FN Thomson Reuters Web of Science™ VR 1.0 PT J AU Hernandez-Garcia, C Poelker, M Hansknecht, J AF Hernandez-Garcia, C. Poelker, M. Hansknecht, J. TI High Voltage Studies of Inverted-geometry Ceramic Insulators for a 350 kV DC Polarized Electron Gun SO IEEE TRANSACTIONS ON DIELECTRICS AND ELECTRICAL INSULATION LA English DT Article DE Electron guns; high-voltage techniques; insulators; vacuum insulation ID SURFACE FLASHOVER; ALUMINA INSULATORS; VACUUM; PERFORMANCE; CHARGES AB Jefferson Lab is constructing a 350 kV direct current high voltage photoemission gun employing a compact inverted-geometry insulator. This photogun will produce polarized electron beams at an injector test facility intended for low energy nuclear physics experiments, and to assist the development of new technology for the Continuous Electron Beam Accelerator Facility. A photogun operating at 350kV bias voltage reduces the complexity of the injector design, by eliminating the need for a graded-beta radio frequency "capture" section employed to boost lower voltage beams to relativistic speed. However, reliable photogun operation at 350 kV necessitates solving serious high voltage problems related to breakdown and field emission. This study focuses on developing effective methods to avoid breakdown at the interface between the insulator and the commercial high voltage cable that connects the photogun to the high voltage power supply. Three types of inverted insulators were tested, in combination with two electrode configurations. Our results indicate that tailoring the conductivity of the insulator material, and/or adding a cathode triple-junction screening electrode, effectively serves to increase the hold-off voltage from 300kV to more than 375kV. Electrostatic field maps suggest these configurations serve to produce a more uniform potential gradient across the insulator. C1 [Hernandez-Garcia, C.; Poelker, M.; Hansknecht, J.] Thomas Jefferson Natl Accelerator Facil, 12000 Jefferson Ave, Newport News, VA 23606 USA. RP Hernandez-Garcia, C (reprint author), Thomas Jefferson Natl Accelerator Facil, 12000 Jefferson Ave, Newport News, VA 23606 USA. FU U.S. DOE [DE-AC05-06OR23177]; U.S. Department of Energy, Office of Science, Office of Nuclear Physics [DE-AC05-06OR23177] FX Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. The U.S. Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce this manuscript for U.S. Government purposes. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under contract DE-AC05-06OR23177. The authors would like to thank F. Hannon, D. Bullard, J. Clark, Y. Wang, M. Stutzman, P. Adderley, and W. Moore for their contributions to this work; and to J. Benesch for useful comments. NR 30 TC 0 Z9 0 U1 2 U2 2 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1070-9878 EI 1558-4135 J9 IEEE T DIELECT EL IN JI IEEE Trns. Dielectr. Electr. Insul. PD FEB PY 2016 VL 23 IS 1 BP 418 EP 427 DI 10.1109/TDEI.2015.005126 PG 10 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA DG9KE UT WOS:000372400600052 ER PT J AU Ahnen, ML Ansoldi, S Antonelli, LA Antoranz, P Babic, A Banerjee, B Bangale, P de Almeida, UB Barrio, JA Gonzalez, JB Bednarek, W Bernardinik, E Biasuzzi, B Biland, A Blanch, O Bonnefoy, S Bonnoli, G Borracci, F Bretz, T Carmona, E Carosi, A Chatterjee, A Clavero, R Colin, P Colombo, E Contreras, JL Cortina, J Covino, S Da Vela, P Dazzi, F De Angelis, A De Lotto, B Wilhelmi, ED Mendez, CD Di Pierro, F Prester, DD Dorner, D Doro, M Einecke, S Glawion, DE Elsaesser, D Fernandez-Barral, A Fidalgo, D Fonseca, MV Font, L Frantzen, K Fruck, C Galindo, D Lopez, RJG Garczarczyk, M Garrido, DG Gaug, M Giammaria, P Godinovic, N Munoz, AG Guberman, D Hahn, A Hanabata, Y Hayashida, M Herrera, J Hose, J Hrupec, D Hughes, G Idec, W Kodani, K Konno, Y Kubo, H Kushida, J La Barbera, A Lelas, D Lindfors, E Lombardi, S Longo, F Lopez, M Lopez-Coto, R Lopez-Dramas, A Lorenz, E Majumdar, P Makariev, M Mallot, K Maneva, G Manganaro, M Mannheim, K Maraschi, L Marcote, B Mariotti, M Martinez, M Mazing, D Menzel, U Miranda, JM Mirzoyan, R Moralejo, A Moretti, E Nakajima, D Neustroev, V Niedzwiecki, A Rosillo, MN Nilsson, K Nishijima, K Noda, K Orito, R Overkemping, A Paiano, S Palacio, J Palatiello, M Paneque, D Paoletti, R Paredes, JM Paredes-Fortuny, X Persic, M Poutanen, J Moroni, PGP Prandini, E Puljak, I Rhode, W Ribo, M Rico, J Garcia, JR Saito, T Satalecka, K Schultz, C Schweizer, T Shore, SN Sillanpaa, A Sitarek, J Snidaric, I Sobczynska, D Stamerra, A Steinbring, T Strzys, M Takalo, L Takami, H Tavecchio, F Temnikov, P Terzic, T Tescaro, D Teshimag, M Thaele, J Torres, DF Toyama, T Treves, A Verguilov, V Vovk, I Ward, JE Will, M Wu, MH Zanins, R Aleksic, J Wood, M Anderson, B Bloom, ED Cohen-Tanugi, J Drlica-Wagner, A Mazziotta, MN Sanchez-Condea, M Strigari, L AF Ahnen, M. L. Ansoldi, S. Antonelli, L. A. Antoranz, P. Babic, A. Banerjee, B. Bangale, P. Barres de Almeida, U. Barrio, J. A. Gonzalez, J. Becerra Bednarek, W. Bernardinik, E. Biasuzzi, B. Biland, A. Blanch, O. Bonnefoy, S. Bonnoli, G. Borracci, F. Bretz, T. Carmona, E. Carosi, A. Chatterjee, A. Clavero, R. Colin, P. Colombo, E. Contreras, J. L. Cortina, J. Covino, S. Da Vela, P. Dazzi, F. De Angelis, A. De Lotto, B. De Ona Wilhelmi, E. Delgado Mendez, C. Di Pierro, F. Dominis Prester, D. Dorner, D. Doro, M. Einecke, S. Eisenacher Glawion, D. Elsaesser, D. Fernandez-Barral, A. Fidalgo, D. Fonseca, M. V. Font, L. Frantzen, K. Fruck, C. Galindo, D. Garcia Lopez, R. J. Garczarczyk, M. Garrido Terrats, D. Gaug, M. Giammaria, P. Godinovic, N. Gonzalez Munoz, A. Guberman, D. Hahn, A. Hanabata, Y. Hayashida, M. Herrera, J. Hose, J. Hrupec, D. Hughes, G. Idec, W. Kodani, K. Konno, Y. Kubo, H. Kushida, J. La Barbera, A. Lelas, D. Lindfors, E. Lombardi, S. Longo, F. Lopez, M. Lopez-Coto, R. Lopez-Dramas, A. Lorenz, E. Majumdar, P. Makariev, M. Mallot, K. Maneva, G. Manganaro, M. Mannheim, K. Maraschi, L. Marcote, B. Mariotti, M. Martinez, M. Mazing, D. Menzel, U. Miranda, J. M. Mirzoyan, R. Moralejo, A. Moretti, E. Nakajima, D. Neustroev, V. Niedzwiecki, A. Nievas Rosillo, M. Nilsson, K. Nishijima, K. Noda, K. Orito, R. Overkemping, A. Paiano, S. Palacio, J. Palatiello, M. Paneque, D. Paoletti, R. Paredes, J. M. Paredes-Fortuny, X. Persic, M. Poutanen, J. Prada Moroni, P. G. Prandini, E. Puljak, I. Rhode, W. Ribo, M. Rico, J. Rodriguez Garcia, J. Saito, T. Satalecka, K. Schultz, C. Schweizer, T. Shore, S. N. Sillanpaa, A. Sitarek, J. Snidaric, I. Sobczynska, D. Stamerra, A. Steinbring, T. Strzys, M. Takalo, L. Takami, H. Tavecchio, F. Temnikov, P. Terzic, T. Tescaro, D. Teshimag, M. Thaele, J. Torres, D. F. Toyama, T. Treves, A. Verguilov, V. Vovk, I. Ward, J. E. Will, M. Wu, M. H. Zanins, R. Aleksic, J. Wood, M. Anderson, B. Bloom, E. D. Cohen-Tanugi, J. Drlica-Wagner, A. Mazziotta, M. N. Sanchez-Condea, M. Strigari, L. CA MAGIC Collaboration TI Limits to dark matter annihilation cross-section from a combined analysis of MAGIC and Fermi-LAT observations of dwarf satellite galaxies SO JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS LA English DT Article DE dark matter experiments; gamma ray experiments; dwarfs galaxies; neutrino experiments ID GAMMA-RAY EMISSION; LARGE-AREA TELESCOPE; SPHEROIDAL GALAXIES; MAJOR UPGRADE; SEARCH; CONSTRAINTS; DECAY; HESS AB We present the first joint analysis of gamma-ray data from the MAGIC Cherenkov telescopes and the Fermi Large Area Telescope (LAT) to search for gamma-ray signals from dark matter annihilation in dwarf satellite galaxies. We combine 158 hours of Segue 1 observations with MAGIC with 6-year observations of 15 dwarf satellite galaxies by the Fermi-LAT. We obtain limits on the annihilation cross-section for dark matter particle masses between 10 GeV and 100 TeV - the widest mass range ever explored by a single gamma-ray analysis. These limits improve on previously published Fermi-LAT and MAGIC results by up to a factor of two at certain masses. Our new inclusive analysis approach is completely generic and can be used to perform a global, sensitivity-optimized dark matter search by combining data from present and future gamma-ray and neutrino detectors. C1 [Ahnen, M. L.; Biland, A.; Hughes, G.; Prandini, E.] Swiss Fed Inst Technol, CH-8093 Zurich, Switzerland. [Ansoldi, S.; Biasuzzi, B.; De Lotto, B.; Longo, F.; Palatiello, M.; Persic, M.; Treves, A.] Univ Udine, I-33100 Udine, Italy. [Ansoldi, S.; Biasuzzi, B.; De Lotto, B.; Longo, F.; Palatiello, M.; Persic, M.; Treves, A.] INFN Trieste, I-33100 Udine, Italy. [Antonelli, L. A.; Bonnoli, G.; Carosi, A.; Covino, S.; Di Pierro, F.; Giammaria, P.; La Barbera, A.; Lombardi, S.; Maraschi, L.; Stamerra, A.; Tavecchio, F.] INAF Natl Inst Astrophys, I-00136 Rome, Italy. [Antoranz, P.; Da Vela, P.; Miranda, J. M.; Paoletti, R.] Univ Siena, I-53100 Siena, Italy. [Antoranz, P.; Da Vela, P.; Miranda, J. M.; Paoletti, R.] INFN Pisa, I-53100 Siena, Italy. [Babic, A.; Dominis Prester, D.; Godinovic, N.; Hrupec, D.; Lelas, D.; Puljak, I.; Snidaric, I.; Terzic, T.] Univ Split, Univ Rijeka, Rudjer Boskovic Inst, Croatian MAGIC Consortium, Split, Croatia. [Babic, A.; Dominis Prester, D.; Godinovic, N.; Hrupec, D.; Lelas, D.; Puljak, I.; Snidaric, I.; Terzic, T.] Univ Zagreb, Zagreb 41000, Croatia. [Banerjee, B.; Chatterjee, A.; Majumdar, P.] Saha Inst Nucl Phys, 1-AF Bidhannagar,Sect 1, Kolkata 700064, India. [Bangale, P.; Barres de Almeida, U.; Borracci, F.; Colin, P.; Dazzi, F.; Fruck, C.; Hahn, A.; Hose, J.; Lorenz, E.; Mazing, D.; Menzel, U.; Mirzoyan, R.; Moretti, E.; Noda, K.; Paneque, D.; Rodriguez Garcia, J.; Schweizer, T.; Strzys, M.; Teshimag, M.; Toyama, T.; Vovk, I.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Barrio, J. A.; Bonnefoy, S.; Contreras, J. L.; Fidalgo, D.; Fonseca, M. V.; Lopez, M.; Nievas Rosillo, M.; Satalecka, K.] Univ Complutense, E-28040 Madrid, Spain. [Gonzalez, J. Becerra; Clavero, R.; Colombo, E.; Garcia Lopez, R. J.; Herrera, J.; Manganaro, M.; Tescaro, D.; Will, M.] Inst Astrofis Canarias, E-38200 Tenerife, Spain. [Gonzalez, J. Becerra; Clavero, R.; Colombo, E.; Garcia Lopez, R. J.; Herrera, J.; Manganaro, M.; Tescaro, D.; Will, M.] Univ La Laguna, Dept Astrofis, E-38206 Tenerife, Spain. [Bednarek, W.; Idec, W.; Niedzwiecki, A.; Sitarek, J.; Sobczynska, D.] Univ Lodz, PL-90236 Lodz, Poland. [Bernardinik, E.; Garczarczyk, M.; Mallot, K.] DESY, D-15738 Zeuthen, Germany. [Blanch, O.; Cortina, J.; Fernandez-Barral, A.; Gonzalez Munoz, A.; Guberman, D.; Lopez-Coto, R.; Lopez-Dramas, A.; Martinez, M.; Moralejo, A.; Palacio, J.; Rico, J.; Ward, J. E.; Aleksic, J.] Barcelona Inst Sci & Technol, IFAE, Campus UAB, Bellaterra 08193, Barcelona, Spain. [Bretz, T.; Dorner, D.; Eisenacher Glawion, D.; Elsaesser, D.; Mannheim, K.; Steinbring, T.] Univ Wurzburg, D-97074 Wurzburg, Germany. [Carmona, E.; Delgado Mendez, C.] Ctr Invest Energet Medioambientales & Tecnol, E-28040 Madrid, Spain. [De Angelis, A.; Doro, M.; Mariotti, M.; Paiano, S.; Schultz, C.] Univ Padua, I-35131 Padua, Italy. [De Angelis, A.; Doro, M.; Mariotti, M.; Paiano, S.; Schultz, C.] INFN, I-35131 Padua, Italy. [De Ona Wilhelmi, E.; Wu, M. H.] Inst Space Sci CSIC IEEC, E-08193 Barcelona, Spain. [Einecke, S.; Frantzen, K.; Overkemping, A.; Rhode, W.; Thaele, J.] Tech Univ Dortmund, D-44221 Dortmund, Germany. [Font, L.; Gaug, M.] Univ Autonoma Barcelona, Dept Fis, Unitat Fis Radiac, E-08193 Bellaterra, Spain. [Font, L.; Gaug, M.] Univ Autonoma Barcelona, CERES IEEC, E-08193 Bellaterra, Spain. [Galindo, D.; Marcote, B.; Paredes, J. M.; Paredes-Fortuny, X.; Ribo, M.; Zanins, R.] Univ Barcelona, ICC, IEEC UB, E-08028 Barcelona, Spain. [Garrido Terrats, D.; Hanabata, Y.; Hayashida, M.; Kodani, K.; Konno, Y.; Kubo, H.; Kushida, J.; Nakajima, D.; Nishijima, K.; Orito, R.; Saito, T.; Takami, H.] Univ Tokyo, Dept Phys, ICRR, Japanese MAGIC Consortium, Tokyo 1138654, Japan. [Garrido Terrats, D.; Hanabata, Y.; Hayashida, M.; Kodani, K.; Konno, Y.; Kubo, H.; Kushida, J.; Nakajima, D.; Nishijima, K.; Orito, R.; Saito, T.; Takami, H.] Univ Tokushima, Tokai Univ, Kyoto Univ, Hakubi Ctr, Tokushima, Japan. [Lindfors, E.; Neustroev, V.; Nilsson, K.; Poutanen, J.; Sillanpaa, A.; Takalo, L.] Univ Turku, Finnish MAGIC Consortium, Tuorla Observ, SF-20500 Turku, Finland. [Lindfors, E.; Neustroev, V.; Nilsson, K.; Poutanen, J.; Sillanpaa, A.; Takalo, L.] Univ Oulu, Dept Phys, SF-90100 Oulu, Finland. [Makariev, M.; Maneva, G.; Temnikov, P.; Verguilov, V.] Bulgarian Acad Sci, Inst Nucl Res & Nucl Energy, BU-1784 Sofia, Bulgaria. [Prada Moroni, P. G.; Shore, S. N.] Univ Pisa, I-56126 Pisa, Italy. [Prada Moroni, P. G.; Shore, S. N.] INFN Pisa, I-56126 Pisa, Italy. [Torres, D. F.] ICREA, E-08193 Barcelona, Spain. [Torres, D. F.] Inst Space Sci CSIC IEEC, E-08193 Barcelona, Spain. [Barres de Almeida, U.] Ctr Brasileiro Pesquisas Fis, MCTI, R Dr Xavier Sigaud,150 Urca, BR-22290180 Rio De Janeiro, Brazil. [Gonzalez, J. Becerra] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Gonzalez, J. Becerra] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Gonzalez, J. Becerra] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Bernardinik, E.] Humboldt Univ, Inst Phys, Newtonstr 15, D-12489 Berlin, Germany. [Bretz, T.] Ecole Polytech Fed Lausanne, CH-1015 Lausanne, Switzerland. [Lopez-Dramas, A.] CEA Saclay, DSM IRFU, Lab AIM, Serv Astrophys, FR-91191 Gif Sur Yvette, France. [Mazing, D.; Teshimag, M.] Japanese MAGIC Consortium, Kyoto, Japan. [Nilsson, K.] ESO FINCA, Finnish Ctr Astron, Turku, Finland. [Persic, M.] INAF Trieste, Trieste, Italy. [Prandini, E.] ISDC Sci Data Ctr Astrophys, CH-1290 Geneva, Switzerland. [Wood, M.; Bloom, E. D.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, WW Hansen Expt Phys Lab, Stanford, CA 94305 USA. [Wood, M.; Bloom, E. D.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Anderson, B.; Sanchez-Condea, M.] Stockholm Univ, Alballova, Dept Phys, SE-10691 Stockholm, Sweden. [Anderson, B.; Sanchez-Condea, M.] Alballova, Oskar Klein Ctr Cosmoparticle Phys, SE-10691 Stockholm, Sweden. [Cohen-Tanugi, J.] Univ Montpellier, CNRS IN2P3, Lab Univers & Particules Montpellier, F-34059 Montpellier, France. [Drlica-Wagner, A.] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. [Mazziotta, M. N.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Strigari, L.] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA. RP Rico, J; Aleksic, J (reprint author), Barcelona Inst Sci & Technol, IFAE, Campus UAB, Bellaterra 08193, Barcelona, Spain.; Wood, M (reprint author), Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, WW Hansen Expt Phys Lab, Stanford, CA 94305 USA.; Wood, M (reprint author), Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. EM jrico@ifae.es; jelena@ifae.es; mdwood@slac.stanford.edu RI Barrio, Juan/L-3227-2014; GAug, Markus/L-2340-2014; Cortina, Juan/C-2783-2017; Puljak, Ivica/D-8917-2017; Maneva, Galina/L-7120-2016; Makariev, Martin/M-2122-2016; Miranda, Jose Miguel/F-2913-2013; Torres, Diego/O-9422-2016; Font, Lluis/L-4197-2014; Poutanen, Juri/H-6651-2016; Nievas Rosillo, Mireia/K-9738-2014; Contreras Gonzalez, Jose Luis/K-7255-2014; Manganaro, Marina/B-7657-2011; Lopez Moya, Marcos/L-2304-2014; Temnikov, Petar/L-6999-2016 OI Prandini, Elisa/0000-0003-4502-9053; Becerra Gonzalez, Josefa/0000-0002-6729-9022; Barrio, Juan/0000-0002-0965-0259; GAug, Markus/0000-0001-8442-7877; Cortina, Juan/0000-0003-4576-0452; Strigari, Louis/0000-0001-5672-6079; de Ona Wilhelmi, Emma/0000-0002-5401-0744; Miranda, Jose Miguel/0000-0002-1472-9690; Torres, Diego/0000-0002-1522-9065; Font, Lluis/0000-0003-2109-5961; Poutanen, Juri/0000-0002-0983-0049; Nievas Rosillo, Mireia/0000-0002-8321-9168; Contreras Gonzalez, Jose Luis/0000-0001-7282-2394; Manganaro, Marina/0000-0003-1530-3031; Lopez Moya, Marcos/0000-0002-8791-7908; Temnikov, Petar/0000-0002-9559-3384 FU Istituto Nazionale di Astrofisica in Italy; Centre National d'Etudes Spatiales in France; National Aeronautics and Space Administration in the United States; Department of Energy in the United States; Commissariat a l'Energie Atomique in France; Centre National de la Recherche Scientifique / Institut National de Physique Nucleaire et de Physique des Particules in France; Agenzia Spaziale Italiana in Italy; Istituto Nazionale di Fisica Nucleare in Italy; Ministry of Education, Culture, Sports, Science and Technology (MEXT) in Japan; High Energy Accelerator Research Organization (KEK) in Japan; Japan Aerospace Exploration Agency (JAXA) in Japan; K. A. Wallenberg Foundation in Sweden; Swedish Research Council in Sweden; Swedish National Space Board in Sweden; German BMBF; German MPG; Italian INFN; Italian INAF; Swiss National Fund SNF; ERDF under the Spanish MINECO [FPA2012-39502]; Japanese JSPS; Japanese MEXT; Centro de Excelencia Severo Ochoa [SEV-2012-0234]; CPAN [CSD2007-00042]; Spanish Consolider-Ingenio programme [MultiDark CSD2009-00064]; Academy of Finland [268740]; Croatian Science Foundation (HrZZ) Project [09/176]; University of Rijeka Project [13.12.1.3.02]; DFG Collaborative Research Centers [SFB823/C4, SFB876/C3]; Polish MNiSzW [745/N-HESS-MAGIC/2010/0] FX The MAGIC Collaboration thanks the Instituto de Astrofisica de Canarias for the excellent working conditions at the Observatorio del Roque de los Muchachos in La Palma. The financial support of the German BMBF and MPG, the Italian INFN and INAF, the Swiss National Fund SNF, the ERDF under the Spanish MINECO (FPA2012-39502), and the Japanese JSPS and MEXT is gratefully acknowledged. This work was also supported by the Centro de Excelencia Severo Ochoa SEV-2012-0234, CPAN CSD2007-00042, and MultiDark CSD2009-00064 projects of the Spanish Consolider-Ingenio 2010 programme, by grant 268740 of the Academy of Finland, by the Croatian Science Foundation (HrZZ) Project 09/176 and the University of Rijeka Project 13.12.1.3.02, by the DFG Collaborative Research Centers SFB823/C4 and SFB876/C3, and by the Polish MNiSzW grant 745/N-HESS-MAGIC/2010/0.; The Fermi LAT Collaboration acknowledges generous ongoing support from a number of agencies and institutes that have supported both the development and the operation of the LAT as well as scientific data analysis. These include the National Aeronautics and Space Administration and the Department of Energy in the United States, the Commissariat a l'Energie Atomique and the Centre National de la Recherche Scientifique / Institut National de Physique Nucleaire et de Physique des Particules in France, the Agenzia Spaziale Italiana and the Istituto Nazionale di Fisica Nucleare in Italy, the Ministry of Education, Culture, Sports, Science and Technology (MEXT), High Energy Accelerator Research Organization (KEK) and Japan Aerospace Exploration Agency (JAXA) in Japan, and the K. A. Wallenberg Foundation, the Swedish Research Council and the Swedish National Space Board in Sweden.; Additional support for science analysis during the operations phase is gratefully acknowledged from the Istituto Nazionale di Astrofisica in Italy and the Centre National d'Etudes Spatiales in France. NR 61 TC 20 Z9 20 U1 3 U2 17 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1475-7516 J9 J COSMOL ASTROPART P JI J. Cosmol. Astropart. Phys. PD FEB PY 2016 IS 2 AR 039 DI 10.1088/1475-7516/2016/02/039 PG 19 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA DH0IM UT WOS:000372467600040 ER PT J AU Zhou, F Cui, YY Wu, LL Yang, J Liu, L Maitz, MF Brown, IG Huang, N AF Zhou, Feng Cui, Yuan Yuan Wu, Liang Liang Yang, Jie Liu, Li Maitz, Manfred F. Brown, Ian G. Huang, Nan TI Analysis of Flow Field in Mechanical Aortic Bileaflet Heart Valves Using Finite Volume Method SO JOURNAL OF MEDICAL AND BIOLOGICAL ENGINEERING LA English DT Article DE Bileaflet mechanical valves; Computational fluid dynamics; Blood damage ID INDUCED PLATELET ACTIVATION; SHEAR-STRESS MEASUREMENTS; PROSTHESES; DYNAMICS; POSITION; VICINITY; LAMINAR; SAFETY; DAMAGE; MODEL AB Under physiological conditions, the opening and closing of the leaflets of an implanted artificial heart valve (AHV) affects the blood components and therefore may cause various complications to the patient such as hemolysis or platelet activation. In this paper, a computational fluid model is presented. The regional distribution of flow shear stress in an AHV is analyzed using computational fluid dynamics and AHV performance is evaluated in terms of the variation of flow velocity and pressure when blood passes the leaflets in the aortic valve. The results suggest that for the design of a mechanical AHV, the maximum opening angle and internal orifice diameter should be increased to improve the fluid structure interaction and decrease the possibility of damage to blood components. Finally, the fluid stress distribution of the AHV leaflet structure was calculated and analyzed under pulsating flow conditions. C1 [Zhou, Feng; Cui, Yuan Yuan; Wu, Liang Liang; Maitz, Manfred F.; Huang, Nan] Southwest Jiaotong Univ, Sch Mat Sci & Engn, Key Lab Adv Technol Mat, Chinese Educ Minist, Chengdu 610031, Peoples R China. [Yang, Jie] Southwest Jiaotong Univ, Sch Mech Engn, Chengdu 610031, Peoples R China. [Liu, Li] Natl Inst Control Pharmaceut & Biol Prod, Beijing 10050, Peoples R China. [Maitz, Manfred F.] Max Bergmann Ctr Biomat, Leibniz Inst Polymer Res, D-01069 Dresden, Germany. [Brown, Ian G.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94704 USA. RP Huang, N (reprint author), Southwest Jiaotong Univ, Sch Mat Sci & Engn, Key Lab Adv Technol Mat, Chinese Educ Minist, Chengdu 610031, Peoples R China. EM huangnan1956@163.com RI Umlauf, Ursula/D-3356-2014; Maitz, Manfred/E-6749-2010 OI Maitz, Manfred/0000-0002-0671-048X NR 41 TC 0 Z9 1 U1 7 U2 15 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1609-0985 EI 2199-4757 J9 J MED BIOL ENG JI J. Med. Biol. Eng. PD FEB PY 2016 VL 36 IS 1 BP 110 EP 120 DI 10.1007/s40846-016-0106-3 PG 11 WC Engineering, Biomedical SC Engineering GA DH1GT UT WOS:000372533100013 ER PT J AU Choi, S Griffin, BA AF Choi, Sukwon Griffin, Benjamin A. TI Local residual stress monitoring of aluminum nitride MEMS using UV micro-Raman spectroscopy SO JOURNAL OF MICROMECHANICS AND MICROENGINEERING LA English DT Article DE aluminum nitride; microelectromechanical systems; piezoelectric transducers; Raman scattering; stress measurement ID SPUTTERED ALN FILMS; THIN-FILMS; DEPENDENCE AB Localized stress variation in aluminum nitride (AlN) sputtered on patterned metallization has been monitored through the use of UV micro-Raman spectroscopy. This technique utilizing 325 nm laser excitation allows detection of the AlN E-2(high) phonon mode in the presence of metal electrodes beneath the AlN layer with a high spatial resolution of less than 400 nm. The AlN film stress shifted 400 MPa from regions where AlN was deposited over a bottom metal electrode versus silicon dioxide. Across wafer stress variations were also investigated showing that wafer level stress metrology, for example using wafer curvature measurements, introduces large uncertainties for predicting the impact of AlN residual stress on the device performance. C1 [Choi, Sukwon] Penn State Univ, University Pk, PA 16802 USA. [Griffin, Benjamin A.] Sandia Natl Labs, Albuquerque, NM 87123 USA. RP Choi, S (reprint author), Penn State Univ, University Pk, PA 16802 USA.; Griffin, BA (reprint author), Sandia Natl Labs, Albuquerque, NM 87123 USA. EM sukwon.choi@psu.edu; bagriff@sandia.gov FU Laboratory Directed Research and Development Program; US Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was supported by the Laboratory Directed Research and Development Program. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 15 TC 0 Z9 0 U1 7 U2 21 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0960-1317 EI 1361-6439 J9 J MICROMECH MICROENG JI J. Micromech. Microeng. PD FEB PY 2016 VL 26 IS 2 AR 025009 DI 10.1088/0960-1317/26/2/025009 PG 4 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Instruments & Instrumentation; Physics, Applied SC Engineering; Science & Technology - Other Topics; Instruments & Instrumentation; Physics GA DH2CH UT WOS:000372591300011 ER PT J AU Asad, AH Smith, SV Morandeau, LM Chan, S Jeffery, CM Price, RI AF Asad, Ali H. Smith, Suzanne V. Morandeau, Laurence M. Chan, Sun Jeffery, Charmaine M. Price, Roger I. TI Production of Cu-61 by the Zn-nat(p,alpha) reaction: improved separation and specific activity determination by titration with three chelators SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY LA English DT Article DE Cu-61; Zn-nat; Zn-64; Specific activity; ICPMS; Bifunctional chelators ID INDUCED NUCLEAR-REACTIONS; EXCITATION-FUNCTIONS; SMALL CYCLOTRON; ZN-NAT; PET; NANOPARTICLES; GENERATOR; ENERGIES; HYPOXIA; PROTONS AB The cyclotron-based production of positron-emitting Cu-61 using the (p,alpha) reaction at 11.7 MeV was investigated starting from natural-zinc (Zn-nat) and enriched Zn-64-foil targets, as well as its subsequent purification. For natZn, a combination of three resins were assessed to separate Cu-61 from contaminating Ga-66,Ga-67,Ga-68 and natZn. The specific activity of the purified Cu-61 determined using ICP-MS analysis ranged from 143.3 +/- 14.3(SD) to 506.2 +/- 50.6 MBq/mu g while the titration method using p-SCN-Bn-DOTA, p-SCN-Bn-NOTA and diamsar gave variable results (4.7 +/- 0.2-412.5 +/- 15.3 MBq/lg), with diamsar lying closest to the ICP-MS values. Results suggest that the p-SCN-Bn-DOTA and p-SCN-Bn-NOTA titration methods are significantly affected by the presence of trace-metal contaminants. C1 [Asad, Ali H.; Morandeau, Laurence M.; Chan, Sun; Jeffery, Charmaine M.; Price, Roger I.] Sir Charles Gairdner Hosp, Radiopharmaceut Prod & Dev RAPID Lab, Med Technol & Phys, Hosp Ave, Nedlands, WA 6009, Australia. [Asad, Ali H.] Curtin Univ, Dept Imaging & Appl Phys, Perth, WA 6845, Australia. [Smith, Suzanne V.] Brookhaven Natl Lab, Collider Accelerator Dept, Med Isotope Res & Prod Program, Upton, NY 11973 USA. [Price, Roger I.] Univ Western Australia, Sch Phys, Nedlands, WA 6009, Australia. RP Asad, AH (reprint author), Sir Charles Gairdner Hosp, Radiopharmaceut Prod & Dev RAPID Lab, Med Technol & Phys, Hosp Ave, Nedlands, WA 6009, Australia.; Asad, AH (reprint author), Curtin Univ, Dept Imaging & Appl Phys, Perth, WA 6845, Australia. EM ali.h.asad@gmail.com NR 29 TC 0 Z9 0 U1 3 U2 6 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0236-5731 EI 1588-2780 J9 J RADIOANAL NUCL CH JI J. Radioanal. Nucl. Chem. PD FEB PY 2016 VL 307 IS 2 BP 899 EP 906 PG 8 WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA DG7MO UT WOS:000372268600008 ER PT J AU Xu, N Gallimore, D Lujan, E Garduno, K Walker, L Taylor, F Thompson, P Tandon, L AF Xu, Ning Gallimore, David Lujan, Elmer Garduno, Katherine Walker, Laurie Taylor, Fiona Thompson, Pam Tandon, Lav TI Plutonium oxalate precipitation for trace elemental determination in plutonium materials SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY LA English DT Article DE Inductively coupled plasma-optical emission spectroscopy (ICP-OES); Trace impurity; Plutonium; Plutonium oxalate ID EXTRACTION CHROMATOGRAPHY; IMPURITY ANALYSIS; ANION-EXCHANGE; ICP-AES; MANAGEMENT; URANIUM; MS AB An analytical chemistry method has been developed that removes the plutonium (Pu) matrix from the dissolved Pu metal or oxide solution prior to the determination of trace impurities that are present in the metal or oxide. In this study, a Pu oxalate approach was employed to separate Pu from trace impurities. After Pu(III) was precipitated with oxalic acid and separated by centrifugation, trace elemental constituents in the supernatant were analyzed by inductively coupled plasma-optical emission spectroscopy with minimized spectral interferences from the sample matrix. C1 [Xu, Ning; Gallimore, David; Lujan, Elmer; Garduno, Katherine; Walker, Laurie; Tandon, Lav] Los Alamos Natl Lab, POB 1663,MS G740, Los Alamos, NM 87545 USA. [Taylor, Fiona; Thompson, Pam] Atom Weap Estab, Aldermaston RG7 4PR, England. RP Xu, N (reprint author), Los Alamos Natl Lab, POB 1663,MS G740, Los Alamos, NM 87545 USA. EM ningxu@lanl.gov FU Department of Energy and National Nuclear Security Administration FX The authors thank the Department of Energy and National Nuclear Security Administration for research funding. This publication is LA-UR-14-29721. NR 35 TC 2 Z9 2 U1 2 U2 3 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0236-5731 EI 1588-2780 J9 J RADIOANAL NUCL CH JI J. Radioanal. Nucl. Chem. PD FEB PY 2016 VL 307 IS 2 BP 1203 EP 1213 DI 10.1007/s10967-015-4218-y PG 11 WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA DG7MO UT WOS:000372268600040 ER PT J AU Alfonso, MC Bennett, ME Folden, CM AF Alfonso, M. C. Bennett, M. E. Folden, C. M., III TI Extraction chromatography of the Rf homologs, Zr and Hf, using TEVA and UTEVA resins in HCl, HNO3, and H2SO4 media SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY LA English DT Article DE Column chromatography; Extraction; Zirconium; Hafnium; Rutherfordium; Heavy elements ID LIQUID-LIQUID EXTRACTIONS; ANION-EXCHANGE BEHAVIOR; SOLUTION CHEMISTRY; ELEMENT-104; TRIBUTYLPHOSPHATE; PRECONCENTRATION; RUTHERFORDIUM; SEPARATION; SYSTEM AB The extraction behavior of the Rf homologs, Zr and Hf, has been studied in HCl, HNO3, and H2SO4 media using TEVA (R) (a trioctyl and tridecyl methyl ammonium-based resin) and UTEVA (R) (a diamyl amylphosphonate-based resin). All six systems were considered for the future chemical characterization of Rf. Batch uptake studies were first performed to determine which systems could separate Zr and Hf and these results were used to determine what acid concentration range to focus on for the column studies. The batch uptake studies showed that UTEVA separates Zr and Hf in all media, while the intergroup separation was only observed in HCl media with TEVA. Both HCl systems showed viability for potential extraction chromatographic studies of Rf. C1 [Alfonso, M. C.; Bennett, M. E.; Folden, C. M., III] Texas A&M Univ, Inst Cyclotron, College Stn, TX 77843 USA. [Alfonso, M. C.] Texas A&M Univ, Dept Chem, College Stn, TX 77842 USA. [Bennett, M. E.] Argonne Natl Lab, Nucl Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Alfonso, MC (reprint author), Texas A&M Univ, Inst Cyclotron, College Stn, TX 77843 USA.; Alfonso, MC (reprint author), Texas A&M Univ, Dept Chem, College Stn, TX 77842 USA. EM folden@comp.tamu.edu RI Folden, Charles/F-1033-2015 OI Folden, Charles/0000-0002-2814-3762 FU Robert A. Welch Foundation [A-1710] FX The authors would like to thank J. D. Despotopulos, K. J. Moody and E. E. Tereshatov for their informative discussions on this work. The authors would also like to thank the heavy element group at LLNL for providing the 175Hf. This work was supported by the Robert A. Welch Foundation under grant number A-1710. NR 24 TC 1 Z9 1 U1 2 U2 4 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0236-5731 EI 1588-2780 J9 J RADIOANAL NUCL CH JI J. Radioanal. Nucl. Chem. PD FEB PY 2016 VL 307 IS 2 BP 1529 EP 1536 DI 10.1007/s10967-015-4256-5 PG 8 WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA DG7MO UT WOS:000372268600076 ER PT J AU Elvington, MC Taylor-Pashow, KML Tosten, MH Hobbs, DT AF Elvington, Mark C. Taylor-Pashow, Kathryn M. L. Tosten, Michael H. Hobbs, David T. TI Synthesis and Reaction Chemistry of Nanosize Monosodium Titanate SO JOVE-JOURNAL OF VISUALIZED EXPERIMENTS LA English DT Article DE Chemistry; Issue 108; Nanoparticles; sol-gel; titanate; surfactant; ion exchange; hydrogen peroxide ID PEROXOTITANATE; STRONTIUM; PHOTOCATALYSTS; REMOVAL AB This paper describes the synthesis and peroxide-modification of nanosize monosodium titanate (nMST), along with an ion-exchange reaction to load the material with Au(III) ions. The synthesis method was derived from a sol-gel process used to produce micron-sized monosodium titanate (MST), with several key modifications, including altering reagent concentrations, omitting a particle seed step, and introducing a non-ionic surfactant to facilitate control of particle formation and growth. The resultant nMST material exhibits spherical-shaped particle morphology with a monodisperse distribution of particle diameters in the range from 100 to 150 nm. The nMST material was found to have a Brunauer-Emmett-Teller (BET) surface area of 285 m(2)g(-1), which is more than an order of magnitude higher than the micron-sized MST. The isoelectric point of the nMST measured 3.34 pH units, which is a pH unit lower than that measured for the micron-size MST. The nMST material was found to serve as an effective ion exchanger under weakly acidic conditions for the preparation of an Au(III)-exchange nanotitanate. In addition, the formation of the corresponding peroxotitanate was demonstrated by reaction of the nMST with hydrogen peroxide. C1 [Elvington, Mark C.] Savannah River Consulting LLC, Aiken, SC USA. [Taylor-Pashow, Kathryn M. L.; Tosten, Michael H.; Hobbs, David T.] Savannah River Natl Lab, Aiken, SC 29808 USA. RP Taylor-Pashow, KML (reprint author), Savannah River Natl Lab, Aiken, SC 29808 USA. EM Kathryn.Taylor-Pashow@srnl.doe.gov FU Laboratory Directed Research and Development program at the Savannah River National Laboratory (SRNL); National Institute of Health [1R01DE021373-01]; Department of Energy [DE-AC09-08SR22470]; University of Washington FX The authors thank the Laboratory Directed Research and Development program at the Savannah River National Laboratory (SRNL) for funding. We thank Dr. Fernando Fondeur for collection and interpretation of the FT-IR spectra and Dr. John Seaman of the Savannah River Ecology Laboratory for the use of the DLS instrument for particle size measurements. We also thank the Dr. Daniel Chan of the University of Washington and the National Institute of Health (Grant #1R01DE021373-01), for funding experiments investigating the ion exchange reactions with Au(III). The Savannah River National Laboratory is operated by Savannah River Nuclear Solutions, LLC for the Department of Energy under contract DE-AC09-08SR22470. NR 29 TC 0 Z9 0 U1 3 U2 4 PU JOURNAL OF VISUALIZED EXPERIMENTS PI CAMBRIDGE PA 1 ALEWIFE CENTER, STE 200, CAMBRIDGE, MA 02140 USA SN 1940-087X J9 JOVE-J VIS EXP JI J. Vis. Exp. PD FEB PY 2016 IS 108 AR e53248 DI 10.3791/53248 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DH0WF UT WOS:000372504100010 ER PT J AU Murph, SEH Larsen, GK Lascola, RJ AF Murph, Simona E. Hunyadi Larsen, George K. Lascola, Robert J. TI Multifunctional Hybrid Fe2O3-Au Nanoparticles for Efficient Plasmonic Heating SO JOVE-JOURNAL OF VISUALIZED EXPERIMENTS LA English DT Article DE Engineering; Issue 108; Gold; Iron oxide; Multifunctional; Plasmonics; Magnetic material; Photothermal ID FLUORESCENT; METAL AB One of the most widely used methods for manufacturing colloidal gold nanospherical particles involves the reduction of chloroauric acid (HAuCl4) to neutral gold Au(0) by reducing agents, such as sodium citrate or sodium borohydride. The extension of this method to decorate iron oxide or similar nanoparticles with gold nanoparticles to create multifunctional hybrid Fe2O3-Au nanoparticles is straightforward. This approach yields fairly good control over Au nanoparticle dimensions and loading onto Fe2O3. Additionally, the Au metal size, shape, and loading can easily be tuned by changing experimental parameters (e.g., reactant concentrations, reducing agents, surfactants, etc.). An advantage of this procedure is that the reaction can be done in air or water, and, in principle, is amenable to scaling up. The use of such optically tunable Fe2O3-Au nanoparticles for hyperthermia studies is an attractive option as it capitalizes on plasmonic heating of gold nanoparticles tuned to absorb light strongly in the VIS-NIR region. In addition to its plasmonic effects, nanoscale Au provides a unique surface for interesting chemistries and catalysis. The Fe2O3 material provides additional functionality due to its magnetic property. For example, an external magnetic field could be used to collect and recycle the hybrid Fe2O3-Au nanoparticles after a catalytic experiment, or alternatively, the magnetic Fe2O3 can be used for hyperthermia studies through magnetic heat induction. The photothermal experiment described in this report measures bulk temperature change and nanoparticle solution mass loss as functions of time using infrared thermocouples and a balance, respectively. The ease of sample preparation and the use of readily available equipment are distinct advantages of this technique. A caveat is that these photothermal measurements assess the bulk solution temperature and not the surface of the nanoparticle where the heat is transduced and the temperature is likely to be higher. C1 [Murph, Simona E. Hunyadi; Larsen, George K.] Savannah River Ecol Lab, Natl Secur Directorate, Savannah, GA USA. [Lascola, Robert J.] Savannah River Ecol Lab, Analyt Dev Directorate, Savannah, GA USA. RP Murph, SEH (reprint author), Savannah River Ecol Lab, Natl Secur Directorate, Savannah, GA USA. EM Simona.Murph@srnl.doe.gov FU Department of Energy DOE-Laboratory Directed Research & Development (LDRD) Strategic Initiative Program FX The financial support of this work was provided by Department of Energy DOE-Laboratory Directed Research & Development (LDRD) Strategic Initiative Program. We thank Mr. Henry Sessions, and Mr. Charles Shick for providing their time and expertise to assist us with our experiments. NR 24 TC 1 Z9 1 U1 7 U2 27 PU JOURNAL OF VISUALIZED EXPERIMENTS PI CAMBRIDGE PA 1 ALEWIFE CENTER, STE 200, CAMBRIDGE, MA 02140 USA SN 1940-087X J9 JOVE-J VIS EXP JI J. Vis. Exp. PD FEB PY 2016 IS 108 AR e53598 DI 10.3791/53598 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DH0WF UT WOS:000372504100043 ER PT J AU Yu, JC Zhou, YF Hua, X Zhu, ZH Yu, XY AF Yu, Jiachao Zhou, Yufan Hua, Xin Zhu, Zihua Yu, Xiao-Ying TI In Situ Characterization of Hydrated Proteins in Water by SALVI and ToF-SIMS SO JOVE-JOURNAL OF VISUALIZED EXPERIMENTS LA English DT Article DE Chemistry; Issue 108; SALVI; ToF-SIMS; protein; water; in situ; molecular imaging; microfluidics ID ION MASS-SPECTROMETRY; AQUEOUS SURFACES; FIBRONECTIN; MOLECULES; FILMS AB This work demonstrates in situ characterization of protein biomolecules in the aqueous solution using the System for Analysis at the Liquid Vacuum Interface (SALVI) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). The fibronectin protein film was immobilized on the silicon nitride (SiN) membrane that forms the SALVI detection area. During ToF-SIMS analysis, three modes of analysis were conducted including high spatial resolution mass spectrometry, two-dimensional (2D) imaging, and depth profiling. Mass spectra were acquired in both positive and negative modes. Deionized water was also analyzed as a reference sample. Our results show that the fibronectin film in water has more distinct and stronger water cluster peaks compared to water alone. Characteristic peaks of amino acid fragments are also observable in the hydrated protein ToF-SIMS spectra. These results illustrate that protein molecule adsorption on a surface can be studied dynamically using SALVI and ToF-SIMS in the liquid environment for the first time. C1 [Yu, Jiachao; Hua, Xin; Yu, Xiao-Ying] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. [Zhou, Yufan; Zhu, Zihua] Pacific NW Natl Lab, Wiley Environm Mol Sci Lab, Richland, WA 99352 USA. RP Yu, XY (reprint author), Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. EM xiaoying.yu@pnnl.gov RI Zhu, Zihua/K-7652-2012 FU Pacific Northwest National Laboratory (PNNL) Chemical Imaging Initiative-Laboratory Directed Research and Development (CII-LDRD); Materials Synthesis and Simulation across Scales (MS3) Initiative LDRD fund; Office of Biological and Environmental Research (BER) at PNNL; DOE [DE-AC05-76RL01830] FX We are grateful to the Pacific Northwest National Laboratory (PNNL) Chemical Imaging Initiative-Laboratory Directed Research and Development (CII-LDRD) and Materials Synthesis and Simulation across Scales (MS3) Initiative LDRD fund for support. Instrumental access was provided through a W. R. Wiley Environmental Molecular Sciences Laboratory (EMSL) Science Themed Proposal. EMSL is a national scientific user facility sponsored by the Office of Biological and Environmental Research (BER) at PNNL. The authors thank Mr. Xiao Sui, Mr. Yuanzhao Ding, and Ms. Juan Yao for proof reading the manuscript and providing useful feedback. PNNL is operated by Battelle for the DOE under Contract DE-AC05-76RL01830. NR 30 TC 3 Z9 3 U1 4 U2 17 PU JOURNAL OF VISUALIZED EXPERIMENTS PI CAMBRIDGE PA 1 ALEWIFE CENTER, STE 200, CAMBRIDGE, MA 02140 USA SN 1940-087X J9 JOVE-J VIS EXP JI J. Vis. Exp. PD FEB PY 2016 IS 108 AR e53708 DI 10.3791/53708 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DH0WF UT WOS:000372504100064 ER PT J AU Arjunan, P El-Awady, A Dannebaum, RO Kunde-Ramamoorthy, G Cutler, CW AF Arjunan, P. El-Awady, A. Dannebaum, R. O. Kunde-Ramamoorthy, G. Cutler, C. W. TI High-throughput sequencing reveals key genes and immune homeostatic pathways activated in myeloid dendritic cells by Porphyromonas gingivalis 381 and its fimbrial mutants SO MOLECULAR ORAL MICROBIOLOGY LA English DT Article DE dendritic cells; dysbiosis; immune homeostasis; microbiome; Porphyromonas gingivalis; RNA-seqencing ID RNA-SEQ; TRANSCRIPTOME ANALYSIS; DIFFERENTIAL GENE; EPITHELIAL-CELLS; VIBRIO-CHOLERAE; INNATE IMMUNITY; EXPRESSION; PATHOGEN; PERIODONTITIS; PREVALENCE AB The human microbiome consists of highly diverse microbial communities that colonize our skin and mucosal surfaces, aiding in maintenance of immune homeostasis. The keystone pathogen Porphyromonas gingivalis induces a dysbiosis and disrupts immune homeostasis through as yet unclear mechanisms. The fimbrial adhesins of P. gingivalis facilitate biofilm formation, invasion of and dissemination by blood dendritic cells; hence, fimbriae may be key factors in disruption of immune homeostasis. In this study we employed RNA-seqencing transcriptome profiling to identify differentially expressed genes (DEGs) in human monocyte-derived dendritic cells (MoDCs) in response to in vitro infection/exposure by Pg381 or its isogenic mutant strains that solely express minor-Mfa1 fimbriae (DPG3), major-FimA fimbriae (MFI) or are deficient in both fimbriae (MFB) relative to uninfected control. Our results yielded a total of 479 DEGs that were at least twofold upregulated and downregulated in MoDCs significantly (P <= 0.05) by all four strains and certain DEGs that were strain-specific. Interestingly, the gene ontology biological and functional analysis shows that the upregulated genes in DPG3-induced MoDCs were more significant than other strains and associated with inflammation, immune response, anti-apoptosis, cell proliferation, and other homeostatic functions. Both transcriptome and quantitative polymerase chain reaction results show that DPG3, which solely expresses Mfa1, increased ZNF366, CD209, LOX1, IDO1, IL-10, CCL2, SOCS3, STAT3 and FOXO1 gene expression. In conclusion, we have identified key DC-mediated immune homeostatic pathways that could contribute to dysbiosis in periodontal infection with P. gingivalis. C1 [Arjunan, P.; El-Awady, A.; Cutler, C. W.] Georgia Regents Univ, Dept Periodont, 1120 15th St GC1352, Augusta, GA 30912 USA. [Dannebaum, R. O.; Kunde-Ramamoorthy, G.] Joint Genome Inst, Dept Energy, Walnut Creek, CA USA. [Kunde-Ramamoorthy, G.] Natl Univ Singapore, Dept Biochem, Singapore 117548, Singapore. RP Cutler, CW (reprint author), Georgia Regents Univ, Dept Periodont, 1120 15th St GC1352, Augusta, GA 30912 USA. EM chcutler@gru.edu FU National Institutes of Health/NIDCR [RO1 DE14328-09] FX This work was supported by the National Institutes of Health/NIDCR grant: RO1 DE14328-09. NR 56 TC 0 Z9 0 U1 1 U2 3 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 2041-1006 EI 2041-1014 J9 MOL ORAL MICROBIOL JI Mol. Oral Microbiol. PD FEB PY 2016 VL 31 IS 1 BP 78 EP 93 DI 10.1111/omi.12131 PG 16 WC Dentistry, Oral Surgery & Medicine; Microbiology SC Dentistry, Oral Surgery & Medicine; Microbiology GA DG8KM UT WOS:000372332700007 PM 26466817 ER PT J AU Holbe, H Pedersen, TS Geiger, J Bozhenkov, S Konig, R Feng, Y Lore, J Lumsdaine, A AF Hoelbe, H. Pedersen, T. Sunn Geiger, J. Bozhenkov, S. Koenig, R. Feng, Y. Lore, J. Lumsdaine, A. CA Wendelstein 7-X Team TI Access to edge scenarios for testing a scraper element in early operation phases of Wendelstein 7-X SO NUCLEAR FUSION LA English DT Article DE Wendelstein 7-X; scraper element; island divertor; bootstrap current; mimic scenarios; W7-X; SE ID W7-X STELLARATOR; DIVERTOR; EQUILIBRIA; DESIGN AB The edge topology of magnetic fusion devices is decisive for the control of the plasma exhaust. In Wendelstein 7-X, the island divertor concept will be used, for which the edge topology can change significantly as the internal currents in a plasma discharge evolve towards steady-state. Consequently, the device has been optimized to minimize such internal currents, in particular the bootstrap current [1]. Nonetheless, there are predicted pulse scenarios where effects of the remaining internal currents could potentially lead to overload of plasma-facing components. These internal currents are predicted to evolve on long time scales (tens of seconds) so their effects on the edge topology and the divertor heat loads may not be experimentally accessible in the first years of W7-X operation, where only relatively short pulses are possible. However, we show here that for at least one important long-pulse divertor operation issue, relevant physics experiments can be performed already in short-pulse operation, through judicious adjustment of the edge topology by the use of the existing coil sets. The specific issue studied here is a potential overload of the divertor element edges. This overload might be mitigated by the installation of an extra set of plasma-facing components, so-called scraper elements, as suggested in earlier publications. It is shown here that by a targeted control of edge topology, the effectiveness of such scraper elements can be tested already with uncooled test-scraper elements in short-pulse operation. This will allow an early and well-informed decision on whether long-pulse-capable (actively cooled) scraper elements should be built and installed. C1 [Hoelbe, H.; Pedersen, T. Sunn; Geiger, J.; Bozhenkov, S.; Koenig, R.; Feng, Y.] Max Planck Inst Plasma Phys, Wendelsteinstr 1, D-17491 Greifswald, Germany. [Lore, J.; Lumsdaine, A.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Holbe, H (reprint author), Max Planck Inst Plasma Phys, Wendelsteinstr 1, D-17491 Greifswald, Germany. EM hauke.hoelbe@ipp.mpg.de OI Lore, Jeremy/0000-0002-9192-465X FU Euratom research and training programme [633053] FX This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission NR 29 TC 4 Z9 4 U1 2 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 EI 1741-4326 J9 NUCL FUSION JI Nucl. Fusion PD FEB PY 2016 VL 56 IS 2 AR 026015 DI 10.1088/0029-5515/56/2/026015 PG 11 WC Physics, Fluids & Plasmas SC Physics GA DG8KK UT WOS:000372332500007 ER PT J AU Sikes, EL Guilderson, TP AF Sikes, Elisabeth L. Guilderson, Thomas P. TI Southwest Pacific Ocean surface reservoir ages since the last glaciation: Circulation insights from multiple-core studies SO PALEOCEANOGRAPHY LA English DT Article DE radiocarbon; reservoir age; last glaciation; Pacific Ocean circulation; Southern Ocean; climate change ID ANTARCTIC COLD REVERSAL; CARBON-DIOXIDE RELEASE; NEW-ZEALAND; RADIOCARBON AGE; SOUTHERN-OCEAN; ATMOSPHERIC CO2; NORTH-ATLANTIC; YOUNGER DRYAS; SEA-ICE; PLANKTONIC-FORAMINIFERA AB Radiocarbon (C-14) in dissolved inorganic carbon in the ocean can trace the age of ocean water relative to the atmosphere and provide insight into climate-driven changes in ocean circulation since the last glaciation. Here we estimate surface radiocarbon ages from the last glaciation through the deglaciation into the Holocene in the southwestern Pacific by using tephras, both as stratigraphic tie points and for the availability of existing radiocarbon dates from terrestrial- based analyses of the organic carbon associated with them, as markers of past atmospheric C-14. The glacial surface reservoir age of subtropical waters was 700 (14)Cyears older than the coeval atmosphere at 25,000calyrB.P. This was significantly older (more C-14 depleted) by300 (14)Cyears, than modern reservoir ages. At the same time, subantarctic surface water reservoir age was 3200 (14)Cyears, almost 5 times the modern reservoir age, making the difference in age between subtropical and subantarctic surface water masses treble the modern difference. This pattern is attributed to the upwelling and exchange of very old deep waters from the glacial abyss in the Southern Ocean. In the early deglaciation, surface reservoir ages were 600 to 700 (14)Cyears. Recent atmospheric C-14 calibrations project that these surface reservoir ages were older than modern by 1.2-fold to 2-fold. This increased reservoir effect can be attributed to shallow circulation that differed from modern, delivering waters with lower C-14 content to the region. Early Holocene surface reservoir ages of 300 to 500 (14)Cyears, similar to recent, suggest modern circulation patterns were in place by that time. C1 [Sikes, Elisabeth L.] Rutgers State Univ, Inst Marine & Coastal Sci, New Brunswick, NJ 08903 USA. [Guilderson, Thomas P.] Univ Calif Santa Cruz, Dept Ocean Sci, Santa Cruz, CA 95064 USA. [Guilderson, Thomas P.] Lawrence Livermore Natl Lab, Livermore, CA USA. RP Sikes, EL (reprint author), Rutgers State Univ, Inst Marine & Coastal Sci, New Brunswick, NJ 08903 USA. EM sikes@marine.rutgers.edu FU NSF [OCE-0136651, OCE-0425053, OCE 0823487]; U.S. Department of Energy [DE-AC52-07NA27344]; Hanse Wischenschaftkollege FX We thank the crew of the R/V Roger Revelle for the assistance in obtaining the RR0503 cores, and we thank NIWA for providing cores from their collection. We thank Mea Cook and Katherine Allen for their input on early versions of the manuscript. We thank Thomas Higham of the Oxford Radiocarbon Unit for a primer on OxCal and iterating scripts with TPG. NSF grants OCE-0136651, OCE-0425053, and OCE 0823487 to E.L.S. and T.P.G. funded this work. A portion of this work was performed under the auspices of the U.S. Department of Energy (DE-AC52-07NA27344). A fellowship from the Hanse Wischenschaftkollege supported E.L.S. in writing the manuscript. All data used in this paper is either provided in the supporting information accompanying this paper or previously published and is available as a table in Sikes et al. [2000] or in the supporting information accompanying Rose et al. [2010]. NR 81 TC 3 Z9 3 U1 7 U2 10 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0883-8305 EI 1944-9186 J9 PALEOCEANOGRAPHY JI Paleoceanography PD FEB PY 2016 VL 31 IS 2 BP 298 EP 310 DI 10.1002/2015PA002855 PG 13 WC Geosciences, Multidisciplinary; Oceanography; Paleontology SC Geology; Oceanography; Paleontology GA DH4AE UT WOS:000372727100006 ER PT J AU Ding, X Kennedy, BM Evans, WC Stonestrom, DA AF Ding, Xin Kennedy, B. Mack Evans, William C. Stonestrom, David A. TI Experimental Studies and Model Analysis of Noble Gas Fractionation in Porous Media SO VADOSE ZONE JOURNAL LA English DT Article; Proceedings Paper CT 1st Complex Soil Systems Conference CY SEP 03-05, 2014 CL Lawrence Berkeley Natl Lab, Berkeley, CA SP SSSA Bouyoucos Funds, Berkeley Lab, USDOE, MoBio Lab Inc HO Lawrence Berkeley Natl Lab ID DIFFUSION; TRANSPORT; AIR; ADEQUACY; OXYGEN; ICE; LAW; CO2 AB The noble gases, which are chemically inert under normal terrestrial conditions but vary systematically across a wide range of atomic mass and diffusivity, offer a multicomponent approach to investigating gas dynamics in unsaturated soil horizons, including transfer of gas between saturated zones, unsaturated zones, and the atmosphere. To evaluate the degree to which fractionation of noble gases in the presence of an advective-diffusive flux agrees with existing theory, a simple laboratory sand column experiment was conducted. Pure CO2 was injected at the base of the column, providing a series of constant CO2 fluxes through the column. At five fixed sampling depths within the system, samples were collected for CO2 and noble gas analyses, and ambient pressures were measured. Both the advection-diffusion and dusty gas models were used to simulate the behavior of CO2 and noble gases under the experimental conditions, and the simulations were compared with the measured depth-dependent concentration profiles of the gases. Given the relatively high permeability of the sand column (5 x 10(-11) m(2)), Knudsen diffusion terms were small, and both the dusty gas model and the advection-diffusion model accurately predicted the concentration profiles of the CO2 and atmospheric noble gases across a range of CO2 flux from similar to 700 to 10,000 g m(-2) d(-1). The agreement between predicted and measured gas concentrations demonstrated that, when applied to natural systems, the multi-component capability provided by the noble gases can be exploited to constrain component and total gas fluxes of non-conserved (CO2) and conserved (noble gas) species or attributes of the soil column relevant to gas transport, such as porosity, tortuosity, and gas saturation. C1 [Ding, Xin; Kennedy, B. Mack] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Ctr Isotope Geochemi, Berkeley, CA 94720 USA. [Evans, William C.; Stonestrom, David A.] US Geol Survey, 345 Middlefield Rd, Menlo Pk, CA 94025 USA. RP Stonestrom, DA (reprint author), US Geol Survey, 345 Middlefield Rd, Menlo Pk, CA 94025 USA. EM dastones@usgs.gov RI Ding, Xin/R-9406-2016 FU Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; National Research Program of the USGS; Toxic Substances Hydrology Program of the USGS FX Special thanks to Stefan Finsterle and Sergi Molins for providing access to the MIN3P and TMVOC software packages and educating us in their use. The collective experience and insight of Stefan and Sergi was invaluable. This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences, of the U.S. Department of Energy under Contract no. DE-AC02-05CH11231. USGS reviewer Chris Green offered helpful suggestions for improving the paper, as did Associate Editor Peter Nico and three anonymous reviewers. We acknowledge support from the National Research Program and Toxic Substances Hydrology Program of the USGS. Mention of trade names is for identification purposes only and does not constitute endorsement by any entity mentioned herein. NR 23 TC 1 Z9 1 U1 9 U2 15 PU SOIL SCI SOC AMER PI MADISON PA 677 SOUTH SEGOE ROAD, MADISON, WI 53711 USA SN 1539-1663 J9 VADOSE ZONE J JI Vadose Zone J. PD FEB PY 2016 VL 15 IS 2 DI 10.2136/vzj2015.06.0095 PG 12 WC Environmental Sciences; Soil Science; Water Resources SC Environmental Sciences & Ecology; Agriculture; Water Resources GA DH5EN UT WOS:000372808400010 ER PT J AU Faybishenko, B Hubbard, S Brodie, E Nico, P Molz, F Hunt, A Pachepsky, Y AF Faybishenko, Boris Hubbard, Susan Brodie, Eoin Nico, Peter Molz, Fred Hunt, Allen Pachepsky, Yakov TI Preface to the Special Issue of Vadose Zone Journal on Soil as Complex Systems SO VADOSE ZONE JOURNAL LA English DT Editorial Material C1 [Faybishenko, Boris] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, 1 Cyclotron Rd,MS 84-171, Berkeley, CA 94720 USA. [Hubbard, Susan] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, 1 Cyclotron Rd,MS 90-116, Berkeley, CA 94720 USA. [Brodie, Eoin] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Ecol, 1 Cyclotron Rd,MS70A-3317, Berkeley, CA 94720 USA. [Nico, Peter] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, 90R1116,1 Cyclotron Rd, Berkeley, CA 94720 USA. [Molz, Fred] Clemson Univ, Environm Engn & Earth Sci, Rich Lab, 342 Comp Court, Anderson, SC 29625 USA. [Hunt, Allen] Wright State Univ, Phys & Earth & Environm Sci, 3640 Colonel Glenn Hwy, Dayton, OH 45435 USA. [Pachepsky, Yakov] USDA ARS, Beltsville Agr Res Ctr, 10300 Baltimore Ave Bldg 173, Beltsville, MD 20705 USA. RP Faybishenko, B (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, 1 Cyclotron Rd,MS 84-171, Berkeley, CA 94720 USA. EM bfayb@lbl.gov RI Hubbard, Susan/E-9508-2010; Brodie, Eoin/A-7853-2008; Nico, Peter/F-6997-2010; Faybishenko, Boris/G-3363-2015; OI Brodie, Eoin/0000-0002-8453-8435; Nico, Peter/0000-0002-4180-9397; Faybishenko, Boris/0000-0003-0085-8499; Pachepsky, Yakov/0000-0003-0232-6090 NR 12 TC 0 Z9 0 U1 3 U2 8 PU SOIL SCI SOC AMER PI MADISON PA 677 SOUTH SEGOE ROAD, MADISON, WI 53711 USA SN 1539-1663 J9 VADOSE ZONE J JI Vadose Zone J. PD FEB PY 2016 VL 15 IS 2 DI 10.2136/vzj2016.01.0005 PG 3 WC Environmental Sciences; Soil Science; Water Resources SC Environmental Sciences & Ecology; Agriculture; Water Resources GA DH5EN UT WOS:000372808400013 ER PT J AU Liu, YN Bisht, G Subin, ZM Riley, WJ Pau, GSH AF Liu, Yaning Bisht, Gautam Subin, Zachary M. Riley, William J. Pau, George Shu Heng TI A Hybrid Reduced-Order Model of Fine-Resolution Hydrologic Simulations at a Polygonal Tundra Site SO VADOSE ZONE JOURNAL LA English DT Article; Proceedings Paper CT 1st Complex Soil Systems Conference CY SEP 03-05, 2014 CL Lawrence Berkeley Natl Lab, Berkeley, CA SP SSSA Bouyoucos Funds, Berkeley Lab, USDOE, MoBio Lab Inc HO Lawrence Berkeley Natl Lab ID PROPER ORTHOGONAL DECOMPOSITION; SOIL-MOISTURE VARIABILITY; ARCTIC COASTAL-PLAIN; CLIMATE SENSITIVITY; ENGINEERING DESIGN; TEMPORAL DYNAMICS; RICHARDS EQUATION; REDUCTION; ECOSYSTEMS; OUTPUT AB High-resolution predictions of land surface hydrological dynamics are desirable for improved investigations of regional- and watershed-scale processes. Direct deterministic simulations of fine-resolution land surface variables present many challenges, including high computational cost. We therefore propose the use of reduced-order modeling techniques to facilitate emulation of fine-resolution simulations. We use an emulator, Gaussian process regression, to approximate fine-resolution four-dimensional soil moisture fields predicted using a three-dimensional surface-subsurface hydrological simulator (PFLOTRAN). A dimension-reduction technique known as "proper orthogonal decomposition" is further used to improve the efficiency of the resulting reduced-order model (ROM). The ROM reduces simulation computational demand to negligible levels compared to the underlying fine-resolution model. In addition, the ROM that we constructed is equipped with an uncertainty estimate, allowing modelers to construct a ROM consistent with uncertainty in the measured data. The ROM is also capable of constructing statistically equivalent analogs that can be used in uncertainty and sensitivity analyses. We apply the technique to four polygonal tundra sites near Barrow, Alaska that are part of the Department of Energy's Next-Generation Ecosystem Experiments (NGEE)-Arctic project. The ROM is trained for each site using simulated soil moisture from 1998-2000 and validated using the simulated data for 2002 and 2006. The average relative RMSEs of the ROMs are under 1%. C1 [Liu, Yaning; Bisht, Gautam; Subin, Zachary M.; Riley, William J.; Pau, George Shu Heng] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. RP Pau, GSH (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM gpau@lbl.gov RI Liu, Yaning/K-8547-2014; Pau, George Shu Heng/F-2363-2015; Riley, William/D-3345-2015 OI Pau, George Shu Heng/0000-0002-9198-6164; Riley, William/0000-0002-4615-2304 FU Office of Science, Office of Biological and Environmental Research of the US Department of Energy [DEAC02-05CH11231]; Office of Science of the US Department of Energy FX This research was supported by the Director, Office of Science, Office of Biological and Environmental Research of the US Department of Energy under Contract #DEAC02-05CH11231 as part of the Early Career Research Program (Liu and Pau) and the Terrestrial Ecosystem Science Program, including the Next-Generation Ecosystem Experiments (NGEE-Arctic) project (Bisht and Riley). This research used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the US Department of Energy under the aforementioned contract. NR 90 TC 4 Z9 4 U1 2 U2 4 PU SOIL SCI SOC AMER PI MADISON PA 677 SOUTH SEGOE ROAD, MADISON, WI 53711 USA SN 1539-1663 J9 VADOSE ZONE J JI Vadose Zone J. PD FEB PY 2016 VL 15 IS 2 DI 10.2136/vzj2015.05.0068 PG 14 WC Environmental Sciences; Soil Science; Water Resources SC Environmental Sciences & Ecology; Agriculture; Water Resources GA DH5EN UT WOS:000372808400006 ER PT J AU Menon, R Behnia, F Polettini, J Saade, GR Campisi, J Velarde, M AF Menon, Ramkumar Behnia, Faranak Polettini, Jossimara Saade, George R. Campisi, Judith Velarde, Michael TI Placental membrane aging and HMGB1 signaling associated with human parturition SO AGING-US LA English DT Article DE pregnancy; preterm birth; MAPK; SASP; DAMPs; inflammation; fetal membranes; amnion; chorion ID HUMAN FETAL MEMBRANES; INFLAMMATORY CYTOKINE SECRETION; PROGESTERONE-RECEPTOR-A; DNA-DAMAGE; OXIDATIVE STRESS; CELLULAR SENESCENCE; CIGARETTE-SMOKE; PRETERM LABOR; ALARMIN HMGB1; TERM LABOR AB Aging is associated with the onset of several diseases in various organ systems; however, different tissues may age differently, rendering some of them dysfunctional sooner than others. Placental membranes (fetal amniochorionic membranes) protect the fetus throughout pregnancy, but their longevity is limited to the duration of pregnancy. The age-associated dysfunction of these membranes is postulated to trigger parturition. Here, we investigated whether cellular senescence-the loss of cell division potential as a consequence of stress-is involved in placental membrane function at term. We show telomere reduction, p38 MAPK activation, increase in p21 expression, loss of lamin B1 loss, increase in SA-beta-galactosidase, and senescence-associated secretory phenotype (SASP) gene expression in placental membranes after labor and delivery (term labor [TL]) compared to membranes prior to labor at term (term, not-in-labor [TNIL]). Exposing TNIL placental membranes to cigarette smoke extract, an oxidative stress inducer, also induced markers of cellular senescence similar to those in TL placental membranes. Bioinformatics analysis of differentially expressed SASP genes revealed HMGB1 signaling among the top pathways involved in labor. Further, we show that recombinant HMGB1 upregulates the expression of genes associated with parturition in myometrial cells. These data suggest that the natural physiologic aging of placental tissues is associated with cellular senescence and human parturition. C1 [Menon, Ramkumar; Behnia, Faranak; Polettini, Jossimara; Saade, George R.] Univ Texas Med Branch, Dept Obstet & Gynecol, Galveston, TX 77555 USA. [Campisi, Judith; Velarde, Michael] Buck Inst Res Aging, Novato, CA 94945 USA. [Campisi, Judith] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Dept Cell & Mol Biol, Berkeley, CA 94720 USA. [Velarde, Michael] Univ Philippines, Inst Biol, Quezon City 1101, Philippines. RP Menon, R (reprint author), Univ Texas Med Branch, Dept Obstet & Gynecol, Galveston, TX 77555 USA. EM ram.menon@utmb.edu FU Dept. of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX FX This study is supported by faculty development fund provided to Dr. R Menon by the Dept. of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX. NR 75 TC 8 Z9 8 U1 1 U2 2 PU IMPACT JOURNALS LLC PI ALBANY PA 6211 TIPTON HOUSE, STE 6, ALBANY, NY 12203 USA SN 1945-4589 J9 AGING-US JI Aging-US PD FEB PY 2016 VL 8 IS 2 BP 216 EP 230 PG 15 WC Cell Biology SC Cell Biology GA DG5BF UT WOS:000372086600005 PM 26851389 ER PT J AU Gomez-Lazaro, E Bueso, MC Kessler, M Martin-Martinez, S Zhang, J Hodge, BM Molina-Garcia, A AF Gomez-Lazaro, Emilio Bueso, Maria C. Kessler, Mathieu Martin-Martinez, Sergio Zhang, Jie Hodge, Bri-Mathias Molina-Garcia, Angel TI Probability Density Function Characterization for Aggregated Large-Scale Wind Power Based on Weibull Mixtures SO ENERGIES LA English DT Article DE wind power generation; Weibull distributions; Weibull mixtures; Akaike information criterion (AIC); Bayesian information criterion (BIC) ID SPEED DISTRIBUTIONS; ENERGY ANALYSIS; PARAMETERS; STATISTICS; GENERATION; ALGORITHM; IMPACTS; SYSTEMS; WECS AB The Weibull probability distribution has been widely applied to characterize wind speeds for wind energy resources. Wind power generation modeling is different, however, due in particular to power curve limitations, wind turbine control methods, and transmission system operation requirements. These differences are even greater for aggregated wind power generation in power systems with high wind penetration. Consequently, models based on one-Weibull component can provide poor characterizations for aggregated wind power generation. With this aim, the present paper focuses on discussing Weibull mixtures to characterize the probability density function (PDF) for aggregated wind power generation. PDFs of wind power data are firstly classified attending to hourly and seasonal patterns. The selection of the number of components in the mixture is analyzed through two well-known different criteria: the Akaike information criterion (AIC) and the Bayesian information criterion (BIC). Finally, the optimal number of Weibull components for maximum likelihood is explored for the defined patterns, including the estimated weight, scale, and shape parameters. Results show that multi-Weibull models are more suitable to characterize aggregated wind power data due to the impact of distributed generation, variety of wind speed values and wind power curtailment. C1 [Gomez-Lazaro, Emilio; Martin-Martinez, Sergio] Univ Castilla La Mancha, Renewable Energy Res Inst, Albacete 02071, Spain. [Gomez-Lazaro, Emilio; Martin-Martinez, Sergio] Univ Castilla La Mancha, DIEEAC EDII AB, Albacete 02071, Spain. [Bueso, Maria C.; Kessler, Mathieu] Univ Politecn Cartagena, Dept Appl Math & Stat, Cartagena 30202, Spain. [Zhang, Jie] Univ Texas Dallas, Dept Mech Engn, Richardson, TX 75080 USA. [Hodge, Bri-Mathias] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Molina-Garcia, Angel] Univ Politecn Cartagena, Dept Elect Engn, Cartagena 30202, Spain. RP Gomez-Lazaro, E (reprint author), Univ Castilla La Mancha, Renewable Energy Res Inst, Albacete 02071, Spain.; Gomez-Lazaro, E (reprint author), Univ Castilla La Mancha, DIEEAC EDII AB, Albacete 02071, Spain. EM emilio.gomez@uclm.es; mcarmen.bueso@upct.es; mathieu.kessler@upct.es; sergio.martin@uclm.es; jiezhang@utdallas.edu; bri.mathias.hodge@nrel.gov; angel.molina@upct.es RI Bueso, Maria Carmen/G-1239-2016; OI Martin Martinez, Sergio/0000-0002-0986-6068; Molina-Garcia, Angel/0000-0001-6824-8684; Kessler, Mathieu/0000-0002-0196-5811 FU "Ministerio de Economia y Competitividad"; European Union [-ENE2012-34603-]; Fulbright/Spanish Ministry of Education [-PRX14/00694-]; U.S. Department of Energy [DE-AC36-08-GO28308]; National Renewable Energy Laboratory FX This work was supported by "Ministerio de Economia y Competitividad" and the European Union -ENE2012-34603-, Fulbright/Spanish Ministry of Education Visiting Scholar -PRX14/00694-, and by the U.S. Department of Energy under Contract No. DE-AC36-08-GO28308 with the National Renewable Energy Laboratory. NR 43 TC 1 Z9 1 U1 1 U2 5 PU MDPI AG PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND SN 1996-1073 J9 ENERGIES JI Energies PD FEB PY 2016 VL 9 IS 2 AR 91 DI 10.3390/en9020091 PG 15 WC Energy & Fuels SC Energy & Fuels GA DG1MJ UT WOS:000371831900025 ER PT J AU Hock, K Earle, K AF Hock, Kiel Earle, Keith TI Markov Chain Monte Carlo Used in Parameter Inference of Magnetic Resonance Spectra SO ENTROPY LA English DT Article DE parameter optimization; spin resonance spectroscopy; bayes; information geometry ID BAYESIAN-ANALYSIS; SIGNAL-DETECTION; MODEL SELECTION AB In this paper, we use Boltzmann statistics and the maximum likelihood distribution derived from Bayes' Theorem to infer parameter values for a Pake Doublet Spectrum, a lineshape of historical significance and contemporary relevance for determining distances between interacting magnetic dipoles. A Metropolis Hastings Markov Chain Monte Carlo algorithm is implemented and designed to find the optimum parameter set and to estimate parameter uncertainties. The posterior distribution allows us to define a metric on parameter space that induces a geometry with negative curvature that affects the parameter uncertainty estimates, particularly for spectra with low signal to noise. C1 [Hock, Kiel] Brookhaven Natl Lab, 2 Ctr St, Upton, NY 11973 USA. [Earle, Keith] SUNY Albany, Dept Phys, 1400 Washington Ave, Albany, NY 12222 USA. RP Earle, K (reprint author), SUNY Albany, Dept Phys, 1400 Washington Ave, Albany, NY 12222 USA. EM khock@bnl.gov; kearle@albany.edu FU University at Albany FX Kiel Hock thanks Kevin Knuth of the University at Albany Physics Department for several useful discussions. Keith Earle thanks David Schneider of Cornell University for numerous discussions. In addition, Keith Earle thanks the National Institutes of Health Advanced ESR Technology (NIH ACERT) resource at Cornell University for the use of their resources during the preparation of this manuscript. Keith Earle also thanks the University at Albany for partial support of this work via a Faculty Research Award Program grant and the Biomedical EPR Center at the Medical College of Wisconsin for partial support as a participant in the Advanced Visitor Training Program during a sabbatical visit while this manuscript was in preparation. NR 14 TC 0 Z9 0 U1 2 U2 2 PU MDPI AG PI BASEL PA POSTFACH, CH-4005 BASEL, SWITZERLAND SN 1099-4300 J9 ENTROPY-SWITZ JI Entropy PD FEB PY 2016 VL 18 IS 2 AR 57 DI 10.3390/e18020057 PG 13 WC Physics, Multidisciplinary SC Physics GA DG1KV UT WOS:000371827800025 ER PT J AU Stuckless, JS Levich, RA AF Stuckless, John S. Levich, Robert A. TI The Road to Yucca Mountain-Evolution of Nuclear Waste Disposal in the United States SO ENVIRONMENTAL & ENGINEERING GEOSCIENCE LA English DT Article DE Hazardous Waste; Waste; Nuclear; Geopolitical ID SYSTEMATICS; NEVADA; ROCKS; SITE AB The generation of electricity by nuclear power and the manufacturing of atomic weapons have created a large amount of spent nuclear fuel and high-level radioactive waste. There is a world-wide consensus that the best way to protect mankind and the environment is to dispose of this waste in a deep geologic repository. Initial efforts focused on salt as the best medium for disposal, but the heat generated by the radioactive waste led many earth scientists to examine other rock types. In 1976, the director of the U.S. Geological Survey (USGS) wrote to the U.S. Energy Research and Development Administration (ERDA), predecessor agency of the U.S. Department of Energy (DOE), suggesting that there were several favorable environments at the Nevada Test Site (NTS), and that the USGS already had extensive background information on the NTS. Later, in a series of communications and one publication, the USGS espoused the favorability of the thick unsaturated zone. After the passage of the Nuclear Waste Policy Act (1982), the DOE compiled a list of nine favorable sites and settled on three to be characterized. In 1987, as the costs of characterizing three sites ballooned, Congress amended the Nuclear Waste Policy Act directing the DOE to focus only on Yucca Mountain in Nevada, with the proviso that if anything unfavorable was discovered, work would stop immediately. The U.S. DOE, the U.S. DOE national laboratories, and the USGS developed more than 100 detailed plans to study various earth-science aspects of Yucca Mountain and the surrounding area, as well as materials studies and engineering projects needed for a mined geologic repository. The work, which cost more than 10 billion dollars and required hundreds of man-years of work, culminated in a license application submitted to the U.S. Nuclear Regulatory Commission (NRC) in 2008. C1 [Stuckless, John S.] US Geol Survey, Denver Fed Ctr, MS 908, Denver, CO 80225 USA. [Levich, Robert A.] US DOE, 405 Norwood Lane, Las Vegas, NV 89107 USA. RP Stuckless, JS (reprint author), US Geol Survey, Denver Fed Ctr, MS 908, Denver, CO 80225 USA. NR 69 TC 1 Z9 1 U1 16 U2 41 PU GEOLOGICAL SOC AMER, INC PI BOULDER PA PO BOX 9140, BOULDER, CO 80301-9140 USA SN 1078-7275 EI 1558-9161 J9 ENVIRON ENG GEOSCI JI Environ. Eng. Geosci. PD FEB PY 2016 VL 22 IS 1 BP 1 EP 25 PG 25 WC Engineering, Environmental; Engineering, Geological; Geosciences, Multidisciplinary SC Engineering; Geology GA DG4XS UT WOS:000372077100001 ER PT J AU Freeman, L Wu, T AF Freeman, Larry Wu, Thomas TI Method for Derivation and Synthesis of Conducted Susceptibility Limits for System-Level EMC SO IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY LA English DT Article DE Compliance assessment; conducted susceptibility; derivation; requirements; system EMC; tailoring AB This paper presents a novel method for the derivation of conducted susceptibility requirement limits for roll up and synthesis into an overall system-level design. If a system-level EMC design is an assemblage of compliant subsystems, then the subsystems should be an assemblage of compliant components or module designs. This approach requires tailoring the system-level requirements through to component-or module-level designs. The method discussed is applicable to a variety of components and implementable early in the design process. The method provides rationale for the derivation limits, while maintaining traceability to system-level requirements. A discussion is included on comparison and margin analysis of input filtering for verifying compliance to conducted susceptibility requirements at the system level. Detailed examples using both commercial and military requirements are included. C1 [Freeman, Larry] Sandia Natl Labs, Dept Electmagnet, Melbourne, FL 32902 USA. [Wu, Thomas] Univ Cent Florida, Dept Elect & Comp Engn, Orlando, FL 32816 USA. RP Freeman, L (reprint author), Sandia Natl Labs, Dept Electmagnet, Melbourne, FL 32902 USA.; Wu, T (reprint author), Univ Cent Florida, Dept Elect & Comp Engn, Orlando, FL 32816 USA. EM sfreema@sandia.gov; thomaswu@ucf.edu NR 13 TC 0 Z9 0 U1 1 U2 2 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9375 EI 1558-187X J9 IEEE T ELECTROMAGN C JI IEEE Trans. Electromagn. Compat. PD FEB PY 2016 VL 58 IS 1 BP 4 EP 10 DI 10.1109/TEMC.2015.2500103 PG 7 WC Engineering, Electrical & Electronic; Telecommunications SC Engineering; Telecommunications GA DG3ZJ UT WOS:000372009400001 ER PT J AU Halligan, MS Tian, XX Li, X Connor, S Beetner, DG Drewniak, JL AF Halligan, Matthew S. Tian, Xinxin Li, Xiao Connor, Sam Beetner, Daryl G. Drewniak, James L. TI Quantifying High-Density Connector Radiation in a Lossy Multisignal Environment SO IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY LA English DT Article DE Connectors; electromagnetic radiation; printed circuit board (PCB) connectors; radiated power; scattering parameters (S-parameters) ID PRINTED-CIRCUIT BOARDS; ELECTROMAGNETIC-RADIATION; PERFORMANCE; CABLES AB A method is presented to quantify the radiated power from a high-density connector. This method is based on network parameters and the principle of conservation of power. Unlike previous work, which assumed only radiated losses were present, the proposed method is able to characterize the radiated power in environments that contain material losses and when there are multiple signals at the printed circuit board/connector interface. The power losses are quantified through the definition of power loss constant matrices that can be used to find the power losses for arbitrary input excitations when the matrices are entirely known. The power loss constant matrices can be calculated through multiple single-port and two-port excitations for an N-port connector. The formulation of these excitations is dictated by the nonlinear properties of the power loss calculation. Simulations and measurements are presented that validate the proposed power loss calculation methodology. C1 [Halligan, Matthew S.] Sandia Natl Labs, Albuquerque, NM 87123 USA. [Tian, Xinxin] Guangdong Univ Technol, Sch Phys & Optoelectron Engn, Guangzhou 510006, Guangdong, Peoples R China. [Li, Xiao; Beetner, Daryl G.; Drewniak, James L.] Missouri Univ Sci & Technol, Electromegnet Compatibil Lab, Rolla, MO 65401 USA. [Connor, Sam] IBM Corp, Res Triangle Pk, NC 27709 USA. RP Halligan, MS (reprint author), Sandia Natl Labs, Albuquerque, NM 87123 USA.; Tian, XX (reprint author), Guangdong Univ Technol, Sch Phys & Optoelectron Engn, Guangzhou 510006, Guangdong, Peoples R China.; Li, X; Beetner, DG; Drewniak, JL (reprint author), Missouri Univ Sci & Technol, Electromegnet Compatibil Lab, Rolla, MO 65401 USA.; Connor, S (reprint author), IBM Corp, Res Triangle Pk, NC 27709 USA. EM mhallig@sandia.gov; tianxx1988@gmail.com; xl3df@mst.edu; sconnor@us.ibm.com; daryl@mst.edu; drewniak@mst.edu FU Sandia National Laboratories; National Science Foundation [0855878] FX This work was supported in part by the Sandia National Laboratories and by the National Science Foundation under Grant 0855878. NR 24 TC 0 Z9 0 U1 3 U2 3 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9375 EI 1558-187X J9 IEEE T ELECTROMAGN C JI IEEE Trans. Electromagn. Compat. PD FEB PY 2016 VL 58 IS 1 BP 270 EP 277 DI 10.1109/TEMC.2015.2502267 PG 8 WC Engineering, Electrical & Electronic; Telecommunications SC Engineering; Telecommunications GA DG3ZJ UT WOS:000372009400030 ER PT J AU Raylman, RR Stolin, AV Martone, PF Smith, MF AF Raylman, Raymond R. Stolin, Alexander V. Martone, Peter F. Smith, Mark F. TI TandemPET-A High Resolution, Small Animal, Virtual Pinhole-Based PET Scanner: Initial Design Study SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article DE Monte Carlo simulation; PET instrumentation; small animal imaging ID COMPUTED-TOMOGRAPHY; SPATIAL-RESOLUTION; MOUSE-BRAIN; IMAGE-RECONSTRUCTION; POSITRON RANGE; MISSING DATA; SYSTEM; PERFORMANCE; MRI; SPECT AB Mice are the perhaps the most common species of rodents used in biomedical research, but many of the current generation of small animal PET scanners are non-optimal for imaging these small rodents due to their relatively low resolution. Consequently, a number of researchers have investigated the development of high-resolution scanners to address this need. In this investigation, the design of a novel, high-resolution system based on the dual-detector, virtual-pinhole PET concept was explored via Monte Carlo simulations. Specifically, this system, called TandemPET, consists of a 5 cm X 5 cm high-resolution detector made-up of a 90 x 90 array of 0.5 mm x 0.5 x 10 mm (pitch = 0.55 mm) LYSO detector elements in coincidence with a lower resolution detector consisting of a 68 X 68 array of 1.5 mm x 1.5 mm x 10 mm LYSO detector elements (total size = 10.5 cm X 10.5 cm). Analyses indicated that TandemPET's optimal geometry is to position the high-resolution detector 3 cm from the center-of-rotation, with the lower resolution detector positioned 9 cm from center. Measurements using modified NEMA NU4-2008-based protocols revealed that the spatial resolution of the system is rsd similar to 0.5 mm FWHM, after correction of positron range effects. Peak sensitivity is 2.1%, which is comparable to current small animal PET scanners. Images from a digital mouse brain phantom demonstrated the potential of the system for identifying important neurological structures. C1 [Raylman, Raymond R.; Martone, Peter F.] W Virginia Univ, Dept Radiol, Ctr Adv Imaging, Morgantown, WV 26506 USA. [Stolin, Alexander V.] Jefferson Lab, Dept Nucl Phys, Newport News, VA 23606 USA. [Smith, Mark F.] Univ Maryland, Sch Med, Dept Diagnost Radiol & Nucl Med, Baltimore, MD 21201 USA. RP Raylman, RR; Martone, PF (reprint author), W Virginia Univ, Dept Radiol, Ctr Adv Imaging, Morgantown, WV 26506 USA.; Stolin, AV (reprint author), Jefferson Lab, Dept Nucl Phys, Newport News, VA 23606 USA.; Smith, MF (reprint author), Univ Maryland, Sch Med, Dept Diagnost Radiol & Nucl Med, Baltimore, MD 21201 USA. EM rraylman@wvu.edu; astolin@hsc.wvu.edu; pmar-tone@hsc.wvu.edu; msmith7@umm.edu FU National Institutes of Health [R01 CA094196, R01 EB007349] FX This work was supported in part by the National Institutes of Health R01 CA094196 and R01 EB007349. NR 41 TC 1 Z9 1 U1 0 U2 1 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 EI 1558-1578 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD FEB PY 2016 VL 63 IS 1 BP 75 EP 83 DI 10.1109/TNS.2015.2482459 PN 1 PG 9 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA DG4AF UT WOS:000372011600012 PM 27041767 ER PT J AU Egarievwe, SU Chan, W Kim, KH Roy, UN Sams, V Hossain, A Kassu, A James, RB AF Egarievwe, Stephen U. Chan, Wing Kim, Ki Hyun Roy, Utpal N. Sams, Valissa Hossain, Anwar Kassu, Aschalew James, Ralph B. TI Carbon Coating and Defects in CdZnTe and CdMnTe Nuclear Detectors SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article; Proceedings Paper CT 21st Symposium on Room-Temperature Semiconductor Detectors (RTSD) CY NOV 08-15, 2014 CL Seattle, WA DE Bridgman crystal growth; CdMnTe; CdZnTe; dislocations; etch-pit densities; gamma-ray detectors; growth ampoules; sub-grain boundary network ID CRYSTAL-GROWTH; CDTE CRYSTALS; ETCH-PIT; DOPED CDMNTE; X-RAY; (CD,ZN)TE; PROGRESS AB CADMIUM zinc telluride (CdZnTe) and cadmium manganese telluride (CdMnTe) are prime materials for detecting X-rays and gamma-rays at room temperature due to their high average atomic numbers that are essential to having high stopping -power for incident high-energy electromagnetic radiations. A major obstacle in developing CdZnTe and CdMnTe detectors lies in growing crystals free from defects, such as Te inclusions, dislocations, sub-grain boundary networks, and precipitates. We present the results of our study of the relationship between carbon coating of the growth ampoule and dislocations in CdZnTe and sub-grain boundary networks in CdMnTe, grown by Bridgman method. For the CdZnTe crystals, a carbon-coating of 2 Am on the ampoule generated fewer dislocations than did a thinner 0.2 - mu m carbon-coated one. Furthermore, the ampoule's design (normal- or tapered-shape) did not affect the densities of etch pits as much as did the thickness of the carbon-coating. For a CdMnTe ingot with a carbon coating of about 2 mu m, created by cracking spectroscopic-grade acetone at rsd 900 degrees C, we observed very few grain boundaries and grain-boundary networks. C1 [Egarievwe, Stephen U.] Alabama A&M Univ, Dept Elect Engn & Comp Sci, Normal, AL 35762 USA. [Egarievwe, Stephen U.; Sams, Valissa] Alabama A&M Univ, Nucl Engn & Radiol Sci Ctr, Normal, AL 35762 USA. [Chan, Wing; Kassu, Aschalew] Alabama A&M Univ, Normal, AL 35762 USA. [Kim, Ki Hyun] Korea Univ, Dept Radiol Sci, Seoul, South Korea. [Roy, Utpal N.; Hossain, Anwar; James, Ralph B.] Brookhaven Natl Lab, Dept Nonproliferat & Natl Secur, Upton, NY 11973 USA. RP Egarievwe, SU (reprint author), Alabama A&M Univ, Dept Elect Engn & Comp Sci, Normal, AL 35762 USA.; Chan, W; Kassu, A (reprint author), Alabama A&M Univ, Normal, AL 35762 USA.; Kim, KH (reprint author), Korea Univ, Dept Radiol Sci, Seoul, South Korea.; Roy, UN; Hossain, A; James, RB (reprint author), Brookhaven Natl Lab, Dept Nonproliferat & Natl Secur, Upton, NY 11973 USA. EM stephen.egarievwe@aamu.edu; wing.chan@aamu.edu; khkim1@korea.ac.kr; nroy@bnl.gov; hos-sain@bnl.gov; aschalew.kassu@aamu.edu; rjames@bnl.gov NR 42 TC 0 Z9 0 U1 6 U2 17 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 EI 1558-1578 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD FEB PY 2016 VL 63 IS 1 BP 236 EP 245 DI 10.1109/TNS.2016.2515108 PN 2 PG 10 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA DG4AJ UT WOS:000372012000006 ER PT J AU Lee, W Bolotnikov, A Lee, T Camarda, G Cui, Y Gul, R Hossain, A Utpal, R Yang, G James, R AF Lee, Wonho Bolotnikov, Aleksey Lee, Taewoong Camarda, Giuseppe Cui, Yonggang Gul, Rubi Hossain, Anwar Utpal, Roy Yang, Ge James, Ralph TI Mini Compton Camera Based on an Array of Virtual Frisch-Grid CdZnTe Detectors SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article DE CdZnTe; Compton camera; electronic collimation; Frisch-grid ID SEMICONDUCTOR RADIATION DETECTOR; LIST-MODE LIKELIHOOD; SPECTROMETERS; PERFORMANCE; COLLECTION; READOUT AB We constructed a mini Compton camera based on an array of CdZnTe detectors and assessed its spectral and imaging properties. The entire array consisted of 6 x 6 Frisch-grid CdZnTe detectors, each with a size of 6 x 6 x 15 mm(3). Since it is easier and more practical to grow small CdZnTe crystals rather than large monolithic ones, constructing a mosaic array of parallelepiped crystals can be an effective way to build a more efficient, large-volume detector. With the fully operational CdZnTe array, we measured the energy spectra for 133Ba, 137Cs, 60Co-radiation sources; we also located these sources using a Compton imaging approach. Although the Compton camera was small enough to hand-carry, its intrinsic efficiency was several orders higher than those generated in previous researches using spatially separated arrays, because our camera measured the interactions inside the CZT detector array, wherein the detector elements were positioned very close to each other. The performance of our camera was compared with that based on a pixelated detector. C1 [Lee, Wonho; Lee, Taewoong] Korea Univ, Dept Bioconvergence Engn, Seoul 136701, South Korea. [Bolotnikov, Aleksey; Camarda, Giuseppe; Cui, Yonggang; Gul, Rubi; Hossain, Anwar; Utpal, Roy; Yang, Ge; James, Ralph] Brookhaven Natl Lab, Dept Nonproliferat & Natl Secur, Upton, NY 11973 USA. RP Lee, W (reprint author), Korea Univ, Dept Bioconvergence Engn, Seoul 136701, South Korea. EM wonhol@korea.ac.kr FU U.S. Department of Energy, Office of Defense Nuclear Nonproliferation Research & Development, DNN RD; U.S. Defense Threat Reduction Agency (DTRA); BNL's Technology Maturation Award; U.S. Department of Energy [DE-AC02-98CH1-886]; National Research Foundation of Korea (NRF) - Korean government (MEST) [2015M2A2A4021766] FX This work was supported by the U.S. Department of Energy, Office of Defense Nuclear Nonproliferation Research & Development, DNN R&D, U.S. Defense Threat Reduction Agency (DTRA), and BNL's Technology Maturation Award. The manuscript has been authored by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH1-886 with the U.S. Department of Energy. This work was supported by National Research Foundation of Korea (NRF) grant (2015M2A2A4021766), funded by the Korean government (MEST). NR 29 TC 2 Z9 2 U1 3 U2 13 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 EI 1558-1578 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD FEB PY 2016 VL 63 IS 1 BP 259 EP 265 DI 10.1109/TNS.2015.2514120 PN 2 PG 7 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA DG4AJ UT WOS:000372012000009 ER PT J AU Chen, Y Cui, Y O'Connor, P Seo, Y Camarda, GS Hossain, A Roy, U Yang, G James, RB AF Chen, Y. Cui, Y. O'Connor, P. Seo, Y. Camarda, G. S. Hossain, A. Roy, U. Yang, G. James, R. B. TI Stability of the Baseline Holder in Readout Circuits for Radiation Detectors SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article DE ASIC; baseline holder; large-signal analyses; stability; transient-noise analyses AB Baseline holder (BLH) circuits are used widely to stabilize the analog output of application-specific integrated circuits (ASICs) for high-count-rate applications. The careful design of BLH circuits is vital to the overall stability of the analog-signal-processing chain in ASICs. Recently, we observed self-triggered fluctuations in an ASIC in which the shaping circuits have a BLH circuit in the feedback loop. In fact, further investigations showed that methods of enhancing small-signal stabilities cause an even worse situation. To resolve this problem, we used large-signal analyses to study the circuit's stability. We found that a relatively small gain for the error amplifier and a small current in the non-linear stage of the BLH are required to enhance stability in large-signal analysis, which will compromise the properties of the BLH. These findings were verified by SPICE simulations. In this paper, we present our detailed analysis of the BLH circuits, and propose an improved version of them that have only minimal self-triggered fluctuations. We summarize the design considerations both for the stability and the properties of the BLH circuits. C1 [Chen, Y.; Cui, Y.; O'Connor, P.; Camarda, G. S.; Hossain, A.; Roy, U.; Yang, G.; James, R. B.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Chen, Y.] Tsinghua Univ, Dept Engn Phys, Beijing 100084, Peoples R China. [Chen, Y.] Minist Educ, Key Lab Particle & Radiat Imaging, Beijing 100084, Peoples R China. [Seo, Y.] Univ Calif San Francisco, San Francisco, CA 94143 USA. RP Chen, Y; Cui, Y (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA.; Chen, Y (reprint author), Tsinghua Univ, Dept Engn Phys, Beijing 100084, Peoples R China.; Seo, Y (reprint author), Univ Calif San Francisco, San Francisco, CA 94143 USA. EM yu.chenthu08@gmail.com; ycui@bnl.gov; youngho.seo@radiology.ucsf.edu FU U.S. Department of Health & Human Service, National Institutes of Health [R01 EB012965]; China Scholarship Council [201406210171] FX This work was supported by the U.S. Department of Health & Human Service, National Institutes of Health Grant R01 EB012965 and by the China Scholarship Council (File No. 201406210171). NR 16 TC 0 Z9 0 U1 3 U2 3 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 EI 1558-1578 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD FEB PY 2016 VL 63 IS 1 BP 316 EP 324 DI 10.1109/TNS.2016.2516007 PN 2 PG 9 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA DG4AJ UT WOS:000372012000016 PM 27182081 ER PT J AU Azevedo, SG Martz, HE Aufderheide, MB Brown, WD Champley, KM Kallman, JS Roberson, GP Schneberk, D Seetho, IM Smith, JA AF Azevedo, Stephen G. Martz, Harry E., Jr. Aufderheide, Maurice B. Brown, William D. Champley, Kyle M. Kallman, Jeffrey S. Roberson, G. Patrick Schneberk, Daniel Seetho, Isaac M. Smith, Jerel A. TI System-Independent Characterization of Materials Using Dual-Energy Computed Tomography SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article DE Beam-hardening correction; dual-energy computed tomography; effective atomic number; electron density; photoelectric-compton decomposition; quantitative x-ray characterization; system-independent CT ID EFFECTIVE ATOMIC NUMBERS; X-RAY TUBE; ATTENUATION; RADIATION; DENSITY; SAMPLES; CT AB We present a new decomposition approach for dual-energy computed tomography (DECT) called SIRZ that provides precise and accurate material description, independent of the scanner, over diagnostic energy ranges (30 to 200 keV). System independence is achieved by explicitly including a scanner-specific spectral description in the decomposition method, and a new X-ray-relevant feature space. The feature space consists of electron density, rho(e), and a new effective atomic number, Z(e), which is based on published X-ray cross sections. Reference materials are used in conjunction with the system spectral response so that additional beam-hardening correction is not necessary. The technique is tested against other methods on DECT data of known specimens scanned by diverse spectra and systems. Uncertainties in accuracy and precision are less than 3% and 2% respectively for the (rho(e), Z(e)) results compared to prior methods that are inaccurate and imprecise (over 9%). C1 [Azevedo, Stephen G.; Martz, Harry E., Jr.; Aufderheide, Maurice B.; Brown, William D.; Champley, Kyle M.; Kallman, Jeffrey S.; Roberson, G. Patrick; Schneberk, Daniel; Seetho, Isaac M.; Smith, Jerel A.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Azevedo, SG (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. EM steve.azevedo@gmail.com FU Science & Technology Directorate of the Department of Homeland Security (DHS); U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This research was funded by the Science & Technology Directorate of the Department of Homeland Security (DHS). This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL Document number LLNL-JRNL-678559. NR 41 TC 1 Z9 1 U1 5 U2 9 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 EI 1558-1578 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD FEB PY 2016 VL 63 IS 1 BP 341 EP 350 DI 10.1109/TNS.2016.2514364 PN 2 PG 10 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA DG4AJ UT WOS:000372012000019 ER PT J AU Feng, PL Mengesha, W Anstey, MR Cordaro, JG AF Feng, Patrick L. Mengesha, Wondwosen Anstey, Mitchell R. Cordaro, Joseph G. TI Distance Dependent Quenching and Gamma-Ray Spectroscopy in Tin-Loaded Polystyrene Scintillators SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article DE Fluorescence spectroscopy; gamma-ray spectroscopy; organic scintillators; scintillators ID PLASTIC SCINTILLATORS; FLUORESCENCE; ORGANOMETALLICS; STATES AB In this work, we report the synthesis and inclusion of rationally designed organotin compounds in polystyrene matrices as a route towards plastic scintillators capable of gamma-ray spectroscopy. Tin loading ratios of up to 15% w/w have been incorporated, resulting in photopeak energy resolution values as low as 10.9% for 662 keV gamma-rays. Scintillator constituents were selected based upon a previously reported distance-dependent quenching mechanism. Data obtained using UV-Vis and photoluminescence measurements are consistent with this phenomenon and are correlated with the steric and electronic properties of the respective organotin complexes. We also report fast scintillation decay behavior that is comparable to the quenched scintillators 0.5% trans-stilbene doped bibenzyl and the commercial plastic scintillator BC-422Q-1%. These observations are discussed in the context of practical considerations such as optical transparency, ease-of-preparation/scale-up, and total scintillator cost. C1 [Feng, Patrick L.; Mengesha, Wondwosen; Anstey, Mitchell R.; Cordaro, Joseph G.] Sandia Natl Labs, Livermore, CA 94550 USA. RP Feng, PL (reprint author), Sandia Natl Labs, Livermore, CA 94550 USA. EM plfeng@sandia.gov FU Department of Homeland Security-Domestic Nuclear Detection Office (DHS-DNDO) [HSHQDC-13-XB0006-0]; National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was supported by the Department of Homeland Security-Domestic Nuclear Detection Office (DHS-DNDO) under Contract HSHQDC-13-XB0006-0. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 33 TC 2 Z9 2 U1 1 U2 3 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 EI 1558-1578 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD FEB PY 2016 VL 63 IS 1 BP 407 EP 415 DI 10.1109/TNS.2015.2510960 PN 2 PG 9 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA DG4AJ UT WOS:000372012000028 ER PT J AU Giacomini, G Bosisio, L Rashevskaya, I AF Giacomini, Gabriele Bosisio, Luciano Rashevskaya, Irina TI Insulation Issues in Punch-Through Biased Silicon Microstrip Sensors SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article DE Microstrip silicon detectors; parasitic MOSFET; silicon radiation detectors; surface inversion ID INNER TRACKING SYSTEM; ALICE EXPERIMENT; DETECTORS AB During the qualification tests of the punch-through biased, AC-coupled microstrip sensors for the Inner Tracking System of the ALICE experiment at CERN, sensors fabricated by one of the suppliers showed erratic loss of strip insulation on -side. This has been attributed to local surface inversion, facilitated by the very low oxide charge density-order of 10(10) q/cm(2)-that can be obtained with (100) substrates. Numerical simulations providing quantitative insight into the phenomena, and electrical measurements that confirm the origin of the insulation problems are reported. A non-standard measurement technique suitable for investigating strip insulation issues is described. C1 [Giacomini, Gabriele] FBK, Trento, Italy. [Giacomini, Gabriele] Brookhaven Natl Lab, Upton, NY 11973 USA. [Bosisio, Luciano] Univ Trieste, Dept Phys, I-34127 Trieste, Italy. [Bosisio, Luciano] INFN, I-34127 Trieste, Italy. [Rashevskaya, Irina] INFN TIFPA, Trento, Italy. RP Giacomini, G (reprint author), FBK, Trento, Italy.; Giacomini, G (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA.; Bosisio, L (reprint author), Univ Trieste, Dept Phys, I-34127 Trieste, Italy.; Bosisio, L (reprint author), INFN, I-34127 Trieste, Italy.; Rashevskaya, I (reprint author), INFN TIFPA, Trento, Italy. EM gia-comini@bnl.gov; bo-sisio@ts.infn.it; irina.ra-shevskaya@tifpa.infn.it NR 9 TC 0 Z9 0 U1 1 U2 1 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 EI 1558-1578 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD FEB PY 2016 VL 63 IS 1 BP 422 EP 426 DI 10.1109/TNS.2015.2514195 PN 2 PG 5 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA DG4AJ UT WOS:000372012000030 ER PT J AU Butterworth, J Carrazza, S Cooper-Sarkar, A De Roeck, A Feltesse, J Forte, S Gao, J Glazov, S Huston, J Kassabov, Z McNulty, R Morsch, A Nadolsky, P Radescu, V Rojo, J Thorne, R AF Butterworth, Jon Carrazza, Stefano Cooper-Sarkar, Amanda De Roeck, Albert Feltesse, Joel Forte, Stefano Gao, Jun Glazov, Sasha Huston, Joey Kassabov, Zahari McNulty, Ronan Morsch, Andreas Nadolsky, Pavel Radescu, Voica Rojo, Juan Thorne, Robert TI PDF4LHC recommendations for LHC Run II SO JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS LA English DT Review DE parton distribution functions; LHC phenomenology; Higgs physics ID DEEP-INELASTIC SCATTERING; PARTON DISTRIBUTION-FUNCTIONS; STRONG-COUPLING CONSTANT; DIFFERENTIAL CROSS-SECTION; CHARM-QUARK MASS; PP COLLISIONS; ROOT-S=7 TEV; QCD ANALYSIS; ATLAS DETECTOR; DISTRIBUTIONS AB We provide an updated recommendation for the usage of sets of parton distribution functions (PDFs) and the assessment of PDF and PDF+alpha(s) uncertainties suitable for applications at the LHC Run II. We review developments since the previous PDF4LHC recommendation, and discuss and compare the new generation of PDFs, which include substantial information from experimental data from the Run I of the LHC. We then propose a new prescription for the combination of a suitable subset of the available PDF sets, which is presented in terms of a single combined PDF set. We finally discuss tools which allow for the delivery of this combined set in terms of optimized sets of Hessian eigenvectors or Monte Carlo replicas, and their usage, and provide some examples of their application to LHC phenomenology. This paper is dedicated to the memory of Guido Altarelli (1941-2015), whose seminal work made possible the quantitative study of PDFs. C1 [Butterworth, Jon; Thorne, Robert] UCL, Dept Phys & Astron, Gower St, London WC1E 6BT, England. [Carrazza, Stefano; Forte, Stefano; Kassabov, Zahari] Univ Milan, TIF Lab, Dipartimento Fis, Via Celoria 16, I-20133 Milan, Italy. [Carrazza, Stefano; Forte, Stefano; Kassabov, Zahari] Ist Nazl Fis Nucl, Sez Milano, Via Celoria 16, I-20133 Milan, Italy. [Cooper-Sarkar, Amanda] Univ Oxford, Dept Phys, Particle Phys, 1 Keble Rd, Oxford OX1 3NP, England. [De Roeck, Albert; Morsch, Andreas] CERN, PH Dept, CH-1211 Geneva 23, Switzerland. [De Roeck, Albert] Univ Antwerp, B-2610 Antwerp, Belgium. [Feltesse, Joel] CEA, DSM IRFU, CE Saclay, Gif Sur Yvette, France. [Gao, Jun] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Glazov, Sasha] DESY, Notkestr 85, D-22607 Hamburg, Germany. [Huston, Joey] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Kassabov, Zahari] Univ Turin, Dipartimento Fis, Via Pietro Giuria 1, I-10125 Turin, Italy. [Kassabov, Zahari] Ist Nazl Fis Nucl, Sez Torino, Via Pietro Giuria 1, I-10125 Turin, Italy. [McNulty, Ronan] Natl Univ Ireland Univ Coll Dublin, Sci Ctr North, Sch Phys, UCD Belfeld, Dublin 4, Ireland. [Nadolsky, Pavel] So Methodist Univ, Dept Phys, Dallas, TX 75275 USA. [Radescu, Voica] Heidelberg Univ, Inst Phys, Philosophenweg 12, Heidelberg, Germany. [Rojo, Juan] Univ Oxford, Rudolf Peierls Ctr Theoret Phys, 1 Keble Rd, Oxford OX1 3NP, England. RP Rojo, J (reprint author), Univ Oxford, Rudolf Peierls Ctr Theoret Phys, 1 Keble Rd, Oxford OX1 3NP, England. EM juan.rojo@physics.ox.ac.uk RI Forte, Stefano/F-3362-2015; Gao, Jun/C-9777-2017; Carrazza, Stefano/D-8412-2017; OI Forte, Stefano/0000-0002-5848-5907; Carrazza, Stefano/0000-0002-0079-6753; Rojo, Juan/0000-0003-4279-2192 FU Italian PRIN grant; European Investment Bank EIBURS grant; Executive Research Agency (REA) of the European Commission [PITN-GA-2012-316704]; Lagrange award; HICCUP ERC Consolidator grant [614577]; US Department of Energy, High Energy Physics, Office of Science [DE-AC02-06CH11357]; US Department of Energy [DE-SC0013681]; STFC Rutherford Fellowship [ST/K005227/1, ST/M003787/1]; European Research Council Starting Grant 'PDF4BSM'; London Centre for Terauniverse Studies (LCTS), from the European Research Council via the Advanced Investigator Grant [267352]; Science and Technology Facilities Council (STFC) [ST/J000515/1, ST/L000377/1] FX We are grateful to Sergey Alekhin, Johannes Blumlein, Claire Gwenlan, Max Klein, Katerina Lipka, Kristin Lohwasser, Sven Moch, Klaus Rabbertz and Reisaburo Tanaka for their feedback on this report. We are also grateful to Richard Ball, Andre David, Lucian Harland-Lang, Maxime Gouzevitch, Jan Kretzschmar, Jose Ignacio Latorre, Alan Martin, Patrick Motylinski, Ringaile Placakyte, Jon Pumplin, Alessandro Tricoli, Dan Stump, Graeme Watt, CP Yuan, as well as to many other colleagues from the PDF4LHC Working Group community for illuminating discussions about the topics presented in this report. SC and SF are supported in part by an Italian PRIN2010 grant and by a European Investment Bank EIBURS grant. SF and ZK are supported by the Executive Research Agency (REA) of the European Commission under the Grant Agreement PITN-GA-2012-316704 (HiggsTools). SF thanks Matteo Cacciari for hospitatly at LPTHE, Universite Paris VI, where part of this work was done, supported by a Lagrange award. SC is also supported by the HICCUP ERC Consolidator grant (614577). The research of JG in the High Energy Physics Division at Argonne National Laboratory is supported by the US Department of Energy, High Energy Physics, Office of Science, under Contract No. DE-AC02-06CH11357. The work of PN is supported by the US Department of Energy under grant DE-SC0013681. JR is supported by an STFC Rutherford Fellowship and Grant ST/K005227/1 and ST/M003787/1, and by an European Research Council Starting Grant 'PDF4BSM'. The work of RST is supported partly by the London Centre for Terauniverse Studies (LCTS), using funding from the European Research Council via the Advanced Investigator Grant 267352. RST thanks the Science and Technology Facilities Council (STFC) for support via grant awards ST/J000515/1 and ST/L000377/1. NR 139 TC 59 Z9 59 U1 7 U2 18 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0954-3899 EI 1361-6471 J9 J PHYS G NUCL PARTIC JI J. Phys. G-Nucl. Part. Phys. PD FEB PY 2016 VL 43 IS 2 AR 023001 DI 10.1088/0954-3899/43/2/023001 PG 57 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA DG4SX UT WOS:000372064000003 ER PT J AU Marcucci, LE Gross, F Pea, MT Piarulli, M Schiavilla, R Sick, I Stadler, A Van Orden, JW Viviani, M AF Marcucci, L. E. Gross, F. Pea, M. T. Piarulli, M. Schiavilla, R. Sick, I. Stadler, A. Van Orden, J. W. Viviani, M. TI Electromagnetic structure of few-nucleon ground states SO JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS LA English DT Review DE form factors; charge and magnetic radii; electric quadrupole and magnetic dipole moments; light nuclei; chiral effective field theory; covariant spectator theory ID ELECTRON-DEUTERON SCATTERING; EFFECTIVE-FIELD THEORY; MAGNETIC FORM-FACTOR; HIGH MOMENTUM-TRANSFER; MONTE-CARLO CALCULATIONS; CHARGE-INDEPENDENCE BREAKING; STRUCTURE-FUNCTION A(Q(2)); BOSON-EXCHANGE MODEL; CHIRAL LAGRANGIANS; TENSOR POLARIZATION AB Experimental form factors of the hydrogen and helium isotopes, extracted from an up-to-date global analysis of cross sections and polarization observables measured in elastic electron scattering from these systems, are compared to predictions obtained in three different theoretical approaches: the first is based on realistic interactions and currents, including relativistic corrections (labeled as the conventional approach); the second relies on a chiral effective field theory description of the strong and electromagnetic interactions in nuclei (labeled chi EFT); the third utilizes a fully relativistic treatment of nuclear dynamics as implemented in the covariant spectator theory (labeled CST). For momentum transfers below Q less than or similar to 5 fm(-1) there is satisfactory agreement between experimental data and theoretical results in all three approaches. However, at Q greater than or similar to 5 fm(-1), particularly in the case of the deuteron, a relativistic treatment of the dynamics, as is done in the CST, is necessary. The experimental data on the deuteron A structure function extend to Q similar or equal to 12 fm(-1), and the close agreement between these data and the CST results suggests that, even in this extreme kinematical regime, the study of few-body form factors provides no evidence for new effects coming from quark and gluon degrees of freedom at short distances. C1 [Marcucci, L. E.; Viviani, M.] Univ Pisa, Dept Phys E Fermi, I-56127 Pisa, Italy. [Marcucci, L. E.; Viviani, M.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Gross, F.; Piarulli, M.; Schiavilla, R.; Van Orden, J. W.] Jefferson Lab, Newport News, VA 23606 USA. [Gross, F.] Coll William & Mary, Williamsburg, VA 23185 USA. [Pea, M. T.] Univ Lisbon, Inst Super Tecn, Dept Fis, P-1049001 Lisbon, Portugal. [Pea, M. T.; Stadler, A.] Univ Lisbon, Inst Super Tecn, CFTP, P-1049001 Lisbon, Portugal. [Piarulli, M.; Schiavilla, R.; Van Orden, J. W.] Old Dominion Univ, Dept Phys, Norfolk, VA 23529 USA. [Sick, I.] Univ Basel, Dept Phys, CH-4056 Basel, Switzerland. [Stadler, A.] Univ Evora, Dept Fis, Escola Ciencias & Tecnol, P-7000671 Evora, Portugal. RP Marcucci, LE (reprint author), Univ Pisa, Dept Phys E Fermi, I-56127 Pisa, Italy.; Marcucci, LE (reprint author), Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. EM laura.elisa.marcucci@unipi.it RI Stadler, Alfred/C-5550-2009; Pena, Teresa/M-4683-2013 OI Stadler, Alfred/0000-0002-9596-0770; Pena, Teresa/0000-0002-3529-2408 FU Jefferson Science Associates, LLC, under US DOE [DE-AC05-06OR23177]; Fundacao para a Ciencia e a Tecnologia (FCT) [PTDC/FIS/113940/2009, CFTP-FCT (PEst-OE/FIS/U/0777/2013)]; European Union under the HadronPhysics3 Grant [283286]; National Energy Research Supercomputer Center FX The work of FG, RS, and JWVO is partially supported by the by Jefferson Science Associates, LLC, under US DOE Contract No. DE-AC05-06OR23177. AS and MTP received partial financial support by Fundacao para a Ciencia e a Tecnologia (FCT) under Grant Nos. PTDC/FIS/113940/2009, CFTP-FCT (PEst-OE/FIS/U/0777/2013), and by the European Union under the HadronPhysics3 Grant No. 283286. The calculations were made possible by grants of computing time from the National Energy Research Supercomputer Center. NR 178 TC 8 Z9 8 U1 2 U2 10 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0954-3899 EI 1361-6471 J9 J PHYS G NUCL PARTIC JI J. Phys. G-Nucl. Part. Phys. PD FEB PY 2016 VL 43 IS 2 AR 023002 DI 10.1088/0954-3899/43/2/023002 PG 64 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA DG4SX UT WOS:000372064000004 ER PT J AU Frankel, KL Owen, LA Dolan, JF Knott, JR Lifton, ZM Finkel, RC Wasklewicz, T AF Frankel, Kurt L. Owen, Lewis A. Dolan, James F. Knott, Jeffrey R. Lifton, Zachery M. Finkel, Robert C. Wasklewicz, Thad TI Timing and rates of Holocene normal faulting along the Black Mountains fault zone, Death Valley, USA SO LITHOSPHERE LA English DT Article ID CALIFORNIA SHEAR ZONE; SITU COSMOGENIC NUCLIDES; NORTH AMERICA MOTION; EASTERN CALIFORNIA; SIERRA-NEVADA; ALLUVIAL FANS; COSMIC-RAY; SLIP-RATE; KINEMATIC MODELS; PANAMINT VALLEY AB Alluvial fans displaced by normal faults of the Black Mountains fault zone at Badwater and Mormon Point in Death Valley were mapped, surveyed, and dated using optically stimulated luminescence (OSL) and Be-10 terrestrial cosmogenic nuclide (TCN) methods. Applying TCN methods to Holocene geomorphic surfaces in Death Valley is challenging because sediment flux is slow and complex. However, OSL dating produces consistent surface ages, yielding ages for a regionally recognized surface (Qg3a) of 4.5 +/- 1.2 ka at Badwater and 7.0 +/- 1.0 ka at Mormon Point. Holocene faults offsetting Qg3a yield horizontal slip rates directed toward 323 degrees of 0.8 +0.3/-0.2 mm/yr and 1.0 +/- 0.2 mm/yr for Badwater and Mormon Point, respectively. These slip rates are slower than the similar to 2 mm/yr dextral slip rate of the southern end of the northern Death Valley fault zone and are half as fast as NNW-oriented horizontal rates documented for the Panamint Valley fault zone. This indicates that additional strain is transferred southwestward from northern Death Valley and Black Mountains fault zones onto the oblique-normal dextral faults of the Panamint Valley fault zone, which is consistent with published geodetic modeling showing that current opening rates of central Death Valley along the Black Mountains fault zone are about three times slower than for Panamint Valley. This suggests that less than half of the geodetically determined similar to 9-12 mm/yr of right-lateral shear across the region at the latitude of central Death Valley is accommodated by slip on well-defined faults and that distributed deformational processes take up the remainder of this slip transferred between the major faults north of the Garlock fault. C1 [Frankel, Kurt L.; Lifton, Zachery M.] Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA. [Owen, Lewis A.] Univ Cincinnati, Dept Geol, Cincinnati, OH 45221 USA. [Dolan, James F.] Univ So Calif, Dept Earth Sci, Los Angeles, CA 90089 USA. [Knott, Jeffrey R.] Calif State Univ Fullerton, Dept Geol Sci, Fullerton, CA 92831 USA. [Finkel, Robert C.] Lawrence Livermore Natl Lab, Ctr Accelerator Mass Spectrometry, Livermore, CA 94550 USA. [Wasklewicz, Thad] E Carolina Univ, Dept Geog, Greenville, NC 27858 USA. RP Owen, LA (reprint author), Univ Cincinnati, Dept Geol, Cincinnati, OH 45221 USA. EM lewis.owen@uc.edu FU National Science Foundation [EAR-0537901, EAR-0537580]; NASA Earth System Science Fellowship; Georgia Institute of Technology; University of Southern California Department of Earth Sciences Student Research Fund; California State University-Fullerton Department of Geological Sciences; University of California White Mountain Research Station FX This study was supported by National Science Foundation grants EAR-0537901 and EAR-0537580, with additional support from a NASA Earth System Science Fellowship, the Georgia Institute of Technology, the University of Southern California Department of Earth Sciences Student Research Fund, California State University-Fullerton Department of Geological Sciences, and the University of California White Mountain Research Station. Stephanie Briggs, Jeremy Zechar, and Jeremy Hatfield are thanked for their assistance with field work, and Alicia Nobles is thanked for her help with sample preparation. Sincere thanks go to editor Kurt Stuwe, reviewer Terry Pavlis, and an anonymous reviewer for their very constructive and useful comments in helping us improve our manuscript. This manuscript is Open Access in honor of the memory of Kurt Frankel. Kurt is greatly missed by all his family, friends, and academic community. NR 93 TC 3 Z9 3 U1 4 U2 9 PU GEOLOGICAL SOC AMER, INC PI BOULDER PA PO BOX 9140, BOULDER, CO 80301-9140 USA SN 1941-8264 EI 1947-4253 J9 LITHOSPHERE-US JI Lithosphere PD FEB PY 2016 VL 8 IS 1 BP 3 EP 22 DI 10.1130/L464.1 PG 20 WC Geochemistry & Geophysics; Geology SC Geochemistry & Geophysics; Geology GA DG6KB UT WOS:000372192100001 ER PT J AU Zhang, XY Papai, M Moller, KB Zhang, JX Canton, SE AF Zhang, Xiaoyi Papai, Matyas Moller, Klaus B. Zhang, Jianxin Canton, Sophie E. TI Characterizing the Solvated Structure of Photoexcited [Os(terpy)(2)](2+) with X-ray Transient Absorption Spectroscopy and DFT Calculations SO MOLECULES LA English DT Article DE X-ray transient absorption spectroscopy; excited-state; osmium polypyridyl complex ID SENSITIZED SOLAR-CELLS; POLYPYRIDINE COMPLEXES; ELECTRONIC-STRUCTURE; OSMIUM; BEHAVIOR; SYSTEMS; ENERGY; TIO2; APPROXIMATION; ABSORBERS AB Characterizing the geometric and electronic structures of individual photoexcited dye molecules in solution is an important step towards understanding the interfacial properties of photo-active electrodes. The broad family of red sensitizers based on osmium(II) polypyridyl compounds often undergoes small photo-induced structural changes which are challenging to characterize. In this work, X-ray transient absorption spectroscopy with picosecond temporal resolution is employed to determine the geometric and electronic structures of the photoexcited triplet state of [Os(terpy)(2)](2+) (terpy: 2,2:6,2-terpyridine) solvated in methanol. From the EXAFS analysis, the structural changes can be characterized by a slight overall expansion of the first coordination shell [OsN6]. DFT calculations supports the XTA results. They also provide additional information about the nature of the molecular orbitals that contribute to the optical spectrum (with TD-DFT) and the near-edge region of the X-ray spectra. C1 [Zhang, Xiaoyi] Argonne Natl Lab, Xray Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA. [Papai, Matyas; Moller, Klaus B.] Tech Univ Denmark, Dept Chem, DK-2800 Lyngby, Denmark. [Papai, Matyas] Hungarian Acad Sci, Lendulet Momentum Femtosecond Spect Res Grp, Wigner Res Ctr Phys, POB 49, H-1525 Budapest, Hungary. [Zhang, Jianxin] Tianjin Polytech Univ, Sch Environm & Chem Engn, Tianjin 300387, Peoples R China. [Canton, Sophie E.] Deutsch Elecktronen Synchrotron DESY, Notkestr 85, D-22607 Hamburg, Germany. [Canton, Sophie E.] Max Planck Inst Biophys Chem, IFG Struct Dynam Bio Chem Syst, Fassberg 11, D-37077 Gottingen, Germany. RP Zhang, XY (reprint author), Argonne Natl Lab, Xray Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM xyzhang@aps.anl.gov; papai@kemi.dtu.dk; klaus.moller@kemi.dtu.dk; zjx1980@126.com; secanton2012@gmail.com RI Moller, Klaus Braagaard/B-7647-2014; Canton, Sophie/A-8432-2016; OI Moller, Klaus Braagaard/0000-0002-9797-7437; Papai, Matyas Imre/0000-0002-4819-0611 FU DOE Office of Science [DE-AC02-06CH11357]; European Union [609405]; NSFC [21302138]; Tianjin City High School Science and Technology Fund Planning Project [20130504]; [SFB 1073] FX The authors thank M. Naumova for her kind help in acquiring the experimental UV-visible spectrum. Xiaoyi Zhang and the use of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. The research leading to the presented results has received funding from the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme (FP7/2007-2013) under REA grant agreement no 609405 (COFUNDPostdocDTU). Jianxin Zhang greatly acknowledges support from NSFC (21302138) and Tianjin City High School Science and Technology Fund Planning Project (20130504). Sophie E. Canton acknowledges funding from SFB 1073. NR 32 TC 3 Z9 3 U1 6 U2 16 PU MDPI AG PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND SN 1420-3049 J9 MOLECULES JI Molecules PD FEB PY 2016 VL 21 IS 2 AR 235 DI 10.3390/molecules21020235 PG 9 WC Chemistry, Organic SC Chemistry GA DG2KN UT WOS:000371895900064 PM 26907233 ER PT J AU Gul, R Cui, Y Bolotnikov, AE Camarda, GS Egarievwe, SU Hossain, A Roy, UN Yang, G Edgar, JH Nwagwu, U James, RB AF Gul, R. Cui, Y. Bolotnikov, A. E. Camarda, G. S. Egarievwe, S. U. Hossain, A. Roy, U. N. Yang, G. Edgar, J. H. Nwagwu, U. James, R. B. TI Photocurrent response of B12As2 crystals to blue light, and its temperature-dependent electrical characterizations SO AIP ADVANCES LA English DT Article AB With the global shortage of He-3 gas, researchers worldwide are looking for alternative materials for detecting neutrons. Among the candidate materials, semiconductors are attractive because of their light weight and ease in handling. Currently, we are looking into the suitability of boron arsenide (B12As2) for this specific application. As the first step in evaluating the material qualitatively, the photo-response of B12As2 bulk crystals to light with different wavelengths was examined. The crystals showed photocurrent response to a band of 407- and 470- nm blue light. The maximum measured photoresponsivity and the photocurrent density at 0.7 V for 470 nm blue light at room temperature were 0.25 A.W-1 and 2.47 mA.cm(-2), respectively. In addition to photo current measurements, the electrical properties as a function of temperature (range: 50-320 K) were measured. Reliable data were obtained for the low-temperature I-V characteristics, the temperature dependence of dark current and its density, and the resistivity variations with temperature in B12As2 bulk crystals. The experiments showed an exponential dependence on temperature for the dark current, current density, and resistivity; these three electrical parameters, respectively, had a variation of a few nA to mu A, 1-100 mu A.cm(-2) and 7.6x10(5)-7.7x10(3) Omega.cm, for temperature increasing from 50 K to 320 K. The results from this study reported the first photoresponse and demonstrated that B12As2 is a potential candidate for thermal-neutron detectors. (C) 2016 Author(s). C1 [Gul, R.; Cui, Y.; Bolotnikov, A. E.; Camarda, G. S.; Hossain, A.; Roy, U. N.; Yang, G.; James, R. B.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Gul, R.; Egarievwe, S. U.] Alabama A&M Univ, Normal, AL 35762 USA. [Edgar, J. H.; Nwagwu, U.] Kansas State Univ, Manhattan, KS 66506 USA. RP Gul, R (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA.; Gul, R (reprint author), Alabama A&M Univ, Normal, AL 35762 USA. EM rubi786@yahoo.com OI Edgar, James/0000-0003-0918-5964 FU Laboratory Directed Research and Development (LDRD) program at Brookhaven National Laboratory FX This research is supported by Laboratory Directed Research and Development (LDRD) program at Brookhaven National Laboratory. Authors are thankful to Dr. Thomas Tsang from Instrumentation Department, for his technical support and discussions. NR 8 TC 0 Z9 0 U1 3 U2 10 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 2158-3226 J9 AIP ADV JI AIP Adv. PD FEB PY 2016 VL 6 IS 2 AR 025206 DI 10.1063/1.4941937 PG 6 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA DG0FD UT WOS:000371739000057 ER PT J AU Plohr, JN Plohr, BJ AF Plohr, JeeYeon N. Plohr, Bradley J. TI Numerical simulation of systems of shear bands in ductile metal with inclusions SO AIP ADVANCES LA English DT Article ID MODEL; FLOW; LOCALIZATION; NANOFLUID AB We develop a method for numerical simulations of high strain-rate loading of meso-scale samples of ductile metal with inclusions. Because of its small-scale inhomogeneity, the composite material is prone to localized shear deformation (adiabatic shear bands). This method employs the Generalized Method of Cells of Paley and Aboudi [Mech. Materials, vol. 14, pp. 127-139, 1992] to ensure that the micro mechanical behavior of the metal and inclusions is reflected properly in the behavior of the composite at the mesoscale. To find the effective plastic strain rate when shear bands are present, we extend and apply the analytic and numerical analysis of shear bands of Glimm, Plohr, and Sharp [Mech. Materials, vol. 24, pp. 31-41, 1996]. Our tests of the method focus on the stress/strain response in uniaxial-strain flow, both compressive and tensile, of depleted uranium metal containing silicon carbide inclusions. We use the Preston-Tonks-Wallace viscoplasticity model [J. Appl. Phys., vol. 93, pp. 211-220, 2003], which applies to the high strain-rate regime of an isotropic viscoplastic solid. In results, we verify the elevated temperature and thermal softening at shear bands in our simulations of pure DU and DU/SiC composites. We also note that in composites, due the asymmetry caused by the inclusions, shear band form at different times in different subcells. In particular, in the subcells near inclusions, shear band form much earlier than they do in pure DU. (C) 2016 Author(s). C1 [Plohr, JeeYeon N.; Plohr, Bradley J.] Los Alamos Natl Lab, Div Theoret, MS B221, Los Alamos, NM 87545 USA. RP Plohr, JN (reprint author), Los Alamos Natl Lab, Div Theoret, MS B221, Los Alamos, NM 87545 USA. EM jplohr@lanl.gov FU Department of Energy (DOE); Department of Defense (DoD) Munitions Technology Development Program; DOE Advanced Simulation and Computing (ASC) Materials and Physics Program FX This research was supported by the joint Department of Energy (DOE) and Department of Defense (DoD) Munitions Technology Development Program and the DOE Advanced Simulation and Computing (ASC) Materials and Physics Program. NR 22 TC 1 Z9 1 U1 1 U2 3 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 2158-3226 J9 AIP ADV JI AIP Adv. PD FEB PY 2016 VL 6 IS 2 AR 025008 DI 10.1063/1.4941928 PG 27 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA DG0FD UT WOS:000371739000008 ER PT J AU Steinmann, V Brandt, RE Chakraborty, R Jaramillo, R Young, M Ofori-Okai, BK Yang, CX Polizzotti, A Nelson, KA Gordon, RG Buonassisi, T AF Steinmann, Vera Brandt, Riley E. Chakraborty, Rupak Jaramillo, R. Young, Matthew Ofori-Okai, Benjamin K. Yang, Chuanxi Polizzotti, Alex Nelson, Keith A. Gordon, Roy G. Buonassisi, Tonio TI The impact of sodium contamination in tin sulfide thin-film solar cells SO APL MATERIALS LA English DT Article ID CDCL2 TREATMENT; SNS; DEFECTS; NA AB Through empirical observations, sodium (Na) has been identified as a benign contaminant in some thin-film solar cells. Here, we intentionally contaminate thermally evaporated tin sulfide (SnS) thin-films with sodium and measure the SnS absorber properties and solar cell characteristics. The carrier concentration increases from 2 x 1016 cm(-3) to 4.3 x 1017 cm(-3) in Na-doped SnS thin-films, when using a 13 nm NaCl seed layer, which is detrimental for SnS photovoltaic applications but could make Na-doped SnS an attractive candidate in thermoelectrics. The observed trend in carrier concentration is in good agreement with density functional theory calculations, which predict an acceptor-type Na-Sn defect with low formation energy. (C) 2016 Author(s). C1 [Steinmann, Vera; Brandt, Riley E.; Chakraborty, Rupak; Jaramillo, R.; Ofori-Okai, Benjamin K.; Polizzotti, Alex; Nelson, Keith A.; Buonassisi, Tonio] MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Young, Matthew] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Yang, Chuanxi; Gordon, Roy G.] Harvard Univ, Dept Chem & Chem Biol, Cambridge, MA 02138 USA. RP Steinmann, V (reprint author), MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA. EM vsteinma@mit.edu OI Ofori-Okai, Benjamin/0000-0002-0737-6786 FU U.S. Department of Energy through SunShot Initiative [DE-EE0005329]; Alexander von Humboldt foundation; NSF Fellowships; MITei TOTAL fellowship; DOE EERE Postdoctoral Research Award; National Science Foundation (NSF) [DMR-08-19762, ECS-0335765, CHE-11115577] FX The authors thank M. L. Castillo for her help with substrate preparation and J. R. Poindexter for fruitful discussions. This work is supported by the U.S. Department of Energy through the SunShot Initiative under Contract No. DE-EE0005329 and the National Science Foundation Grant No. CHE-11115577. V. Steinmann, R. E. Brandt, B. K. Ofori-Okai, A. Polizzotti, R. Chakraborty, and R. Jaramillo acknowledge the support of the Alexander von Humboldt foundation, NSF Fellowships, a MITei TOTAL fellowship, and a DOE EERE Postdoctoral Research Award, respectively. This work made use of the Center for Materials Science and Engineering at MIT which is supported by the National Science Foundation (NSF) under Award No. DMR-08-19762 and the Center for Nanoscale Systems at Harvard University which is supported by NSF under Award No. ECS-0335765. NR 38 TC 2 Z9 2 U1 4 U2 18 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 2166-532X J9 APL MATER JI APL Mater. PD FEB PY 2016 VL 4 IS 2 AR 026103 DI 10.1063/1.4941713 PG 7 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA DG1GQ UT WOS:000371814500005 ER PT J AU Keiluweit, M Nico, PS Kleber, M Fendorf, S AF Keiluweit, Marco Nico, Peter S. Kleber, Markus Fendorf, Scott TI Are oxygen limitations under recognized regulators of organic carbon turnover in upland soils? SO BIOGEOCHEMISTRY LA English DT Article DE Soil carbon; Organic matter; Anaerobic metabolism; Soils; Oxygen limitations ID TROPICAL FOREST SOILS; HAWAIIAN MONTANE FOREST; PREFERENTIAL FLOW PATHS; FILLED PORE-SPACE; METHANE PRODUCTION; COMMUNITY STRUCTURE; DIFFUSIONAL CONSTRAINTS; ANAEROBIC DEGRADATION; NMR-SPECTROSCOPY; AGGREGATED SOILS AB Understanding the processes controlling organic matter (OM) stocks in upland soils, and the ability to management them, is crucial for maintaining soil fertility and carbon (C) storage as well as projecting change with time. OM inputs are balanced by the mineralization (oxidation) rate, with the difference determining whether the system is aggrading, degrading or at equilibrium with reference to its C storage. In upland soils, it is well recognized that the rate and extent of OM mineralization is affected by climatic factors (particularly temperature and rainfall) in combination with OM chemistry, mineral-organic associations, and physical protection. Here we examine evidence for the existence of persistent anaerobic microsites in upland soils and their effect on microbially mediated OM mineralization rates. We corroborate long-standing assumptions that residence times of OM tend to be greater in soil domains with limited oxygen supply (aggregates or peds). Moreover, the particularly long residence times of reduced organic compounds (e.g., aliphatics) are consistent with thermodynamic constraints on their oxidation under anaerobic conditions. Incorporating (i) pore length and connectivity governing oxygen diffusion rates (and thus oxygen supply) with (ii) 'hot spots' of microbial OM decomposition (and thus oxygen consumption), and (iii) kinetic and thermodynamic constraints on OM metabolism under anaerobic conditions will thus improve conceptual and numerical models of C cycling in upland soils. We conclude that constraints on microbial metabolism induced by oxygen limitations act as a largely unrecognized and greatly underestimated control on overall rates of C oxidation in upland soils. C1 [Keiluweit, Marco; Fendorf, Scott] Stanford Univ, Dept Earth Syst Sci, 473 Via Ortega, Stanford, CA 94305 USA. [Keiluweit, Marco] Univ Massachusetts, Stockbridge Sch Agr, Amherst, MA 01003 USA. [Nico, Peter S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Kleber, Markus] Oregon State Univ, Dept Crop & Soil Sci, Corvallis, OR 97331 USA. RP Fendorf, S (reprint author), Stanford Univ, Dept Earth Syst Sci, 473 Via Ortega, Stanford, CA 94305 USA. EM fendorf@stanford.edu RI Nico, Peter/F-6997-2010; OI Nico, Peter/0000-0002-4180-9397; Fendorf, Scott/0000-0002-9177-1809 FU US Department of Energy, Office of Biological and Environmental Research, Terrestrial Ecosystem Program [DE-FG02-13ER65542] FX This work was supported by the US Department of Energy, Office of Biological and Environmental Research, Terrestrial Ecosystem Program (Award Number DE-FG02-13ER65542). We would also like to thank Patrick Megonigal and an anonymous reviewer for their help in improving this manuscript. NR 119 TC 3 Z9 3 U1 37 U2 80 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0168-2563 EI 1573-515X J9 BIOGEOCHEMISTRY JI Biogeochemistry PD FEB PY 2016 VL 127 IS 2-3 BP 157 EP 171 DI 10.1007/s10533-015-0180-6 PG 15 WC Environmental Sciences; Geosciences, Multidisciplinary SC Environmental Sciences & Ecology; Geology GA DF8KH UT WOS:000371606000001 ER PT J AU Arora, B Spycher, NF Steefel, CI Molins, S Bill, M Conrad, ME Dong, WM Faybishenko, B Tokunaga, TK Wan, JM Williams, KH Yabusaki, SB AF Arora, Bhavna Spycher, Nicolas F. Steefel, Carl I. Molins, Sergi Bill, Markus Conrad, Mark E. Dong, Wenming Faybishenko, Boris Tokunaga, Tetsu K. Wan, Jiamin Williams, Kenneth H. Yabusaki, Steven B. TI Influence of hydrological, biogeochemical and temperature transients on subsurface carbon fluxes in a flood plain environment SO BIOGEOCHEMISTRY LA English DT Article DE Flood plain; Reduced zones; Subsurface carbon dynamics; Temporal variability; Biogeochemical processes ID SOIL ORGANIC-MATTER; MOLAL THERMODYNAMIC PROPERTIES; MICROBIAL COMMUNITY STRUCTURE; URANIUM-CONTAMINATED AQUIFER; STABLE-ISOTOPE VARIATIONS; COLUMN ANALOG EXPERIMENT; BANK FILTRATION; HOT MOMENTS; TERRESTRIAL CARBON; ALLUVIAL AQUIFER AB Flood plains play a potentially important role in the global carbon cycle. The accumulation of organic matter in flood plains often induces the formation of chemically reduced groundwater and sediments along riverbanks. In this study, our objective is to evaluate the cumulative impact of such reduced zones, water table fluctuations, and temperature gradients on subsurface carbon fluxes in a flood plain at Rifle, Colorado located along the Colorado River. 2-D coupled variably-saturated, non-isothermal flow and biogeochemical reactive transport modeling was applied to improve our understanding of the abiotic and microbially mediated reactions controlling carbon dynamics at the Rifle site. Model simulations considering only abiotic reactions (thus ignoring microbial reactions) underestimated CO2 partial pressures observed in the unsaturated zone and severely underestimated inorganic (and overestimated organic) carbon fluxes to the river compared to simulations with biotic pathways. Both model simulations and field observations highlighted the need to include microbial contributions from chemolithoautotrophic processes (e.g., Fe+2 and S-2 oxidation) to match locally-observed high CO2 concentrations above reduced zones. Observed seasonal variations in CO2 concentrations in the unsaturated zone could not be reproduced without incorporating temperature gradients in the simulations. Incorporating temperature fluctuations resulted in an increase in the annual groundwater carbon fluxes to the river by 170 % to 3.3 g m(-2) d(-1), while including water table variations resulted in an overall decrease in the simulated fluxes. We conclude that spatial microbial and redox zonation as well as temporal fluctuations of temperature and water table depth contribute significantly to subsurface carbon fluxes in flood plains and need to be represented appropriately in model simulations. C1 [Arora, Bhavna; Spycher, Nicolas F.; Steefel, Carl I.; Molins, Sergi; Bill, Markus; Conrad, Mark E.; Dong, Wenming; Faybishenko, Boris; Tokunaga, Tetsu K.; Wan, Jiamin; Williams, Kenneth H.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Energy Geosci Div, 1 Cyclotron Rd,MS 74-327R, Berkeley, CA 94720 USA. [Yabusaki, Steven B.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Arora, B (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Energy Geosci Div, 1 Cyclotron Rd,MS 74-327R, Berkeley, CA 94720 USA. EM barora@lbl.gov RI Steefel, Carl/B-7758-2010; Molins, Sergi/A-9097-2012; Bill, Markus/D-8478-2013; Conrad, Mark/G-2767-2010; Williams, Kenneth/O-5181-2014; Dong, Wenming/G-3221-2015; Spycher, Nicolas/E-6899-2010; Wan, Jiamin/H-6656-2014; Faybishenko, Boris/G-3363-2015; Tokunaga, Tetsu/H-2790-2014; Arora, Bhavna/D-2293-2015 OI Molins, Sergi/0000-0001-7675-3218; Bill, Markus/0000-0001-7002-2174; Williams, Kenneth/0000-0002-3568-1155; Dong, Wenming/0000-0003-2074-8887; Faybishenko, Boris/0000-0003-0085-8499; Tokunaga, Tetsu/0000-0003-0861-6128; Arora, Bhavna/0000-0001-7841-886X FU Genomes to Watershed Scientific Focus Area at Lawrence Berkeley National Laboratory - U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research [DE-AC02-05CH11231] FX This material is based upon work supported as part of the Genomes to Watershed Scientific Focus Area at Lawrence Berkeley National Laboratory funded by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research under Award Number DE-AC02-05CH11231. We are grateful to P. E. Long for providing temperature data for this study. NR 133 TC 9 Z9 9 U1 26 U2 41 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0168-2563 EI 1573-515X J9 BIOGEOCHEMISTRY JI Biogeochemistry PD FEB PY 2016 VL 127 IS 2-3 BP 367 EP 396 DI 10.1007/s10533-016-0186-8 PG 30 WC Environmental Sciences; Geosciences, Multidisciplinary SC Environmental Sciences & Ecology; Geology GA DF8KH UT WOS:000371606000014 ER PT J AU Elman, JA Madison, CM Baker, SL Vogel, JW Marks, SM Crowley, S O'Neil, JP Jagust, WJ AF Elman, Jeremy A. Madison, Cindee M. Baker, Suzanne L. Vogel, Jacob W. Marks, Shawn M. Crowley, Sam O'Neil, James P. Jagust, William J. TI Effects of Beta-Amyloid on Resting State Functional Connectivity Within and Between Networks Reflect Known Patterns of Regional Vulnerability SO CEREBRAL CORTEX LA English DT Article DE aging; beta-amyloid; functional connectivity; PIB-PET; resting-state fMRI ID DEFAULT-MODE NETWORK; MILD COGNITIVE IMPAIRMENT; PRECLINICAL ALZHEIMER-DISEASE; PITTSBURGH COMPOUND-B; HUMAN CEREBRAL-CORTEX; HUMAN BRAIN; FRONTOTEMPORAL DEMENTIA; AEROBIC GLYCOLYSIS; OLDER PERSONS; DEPOSITION AB Beta-amyloid (A beta) deposition is one of the hallmarks of Alzheimer's disease (AD). However, it is also present in some cognitively normal elderly adults and may represent a preclinical disease state. While AD patients exhibit disrupted functional connectivity (FC) both within and between resting-state networks, studies of preclinical cases have focused primarily on the default mode network (DMN). The extent to which A beta-related effects occur outside of the DMN and between networks remains unclear. In the present study, we examine how within- and between-network FC are related to both global and regional A beta deposition as measured by [C-11]PIB-PET in 92 cognitively normal older people. We found that within-network FC changes occurred in multiple networks, including the DMN. Changes of between-network FC were also apparent, suggesting that regions maintaining connections to multiple networks may be particularly susceptible to A beta-induced alterations. Cortical regions showing altered FC clustered in parietal and temporal cortex, areas known to be susceptible to AD pathology. These results likely represent a mix of local network disruption, compensatory reorganization, and impaired control network function. They indicate the presence of A beta-related dysfunction of neural systems in cognitively normal people well before these areas become hypometabolic with the onset of cognitive decline. C1 [Elman, Jeremy A.; Baker, Suzanne L.; Crowley, Sam; O'Neil, James P.; Jagust, William J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. [Madison, Cindee M.; Vogel, Jacob W.; Marks, Shawn M.; Jagust, William J.] Univ Calif Berkeley, Helen Wills Neurosci Inst, Berkeley, CA 94720 USA. RP Elman, JA (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd Mail Stop 55R0121G, Berkeley, CA 94720 USA. EM jelman@berkeley.edu OI Marks, Shawn/0000-0001-9884-8461 FU NIH [AG034570] FX This work was supported by NIH grant AG034570. NR 94 TC 4 Z9 5 U1 5 U2 8 PU OXFORD UNIV PRESS INC PI CARY PA JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA SN 1047-3211 EI 1460-2199 J9 CEREB CORTEX JI Cereb. Cortex PD FEB PY 2016 VL 26 IS 2 BP 695 EP 707 DI 10.1093/cercor/bhu259 PG 13 WC Neurosciences SC Neurosciences & Neurology GA DF7FE UT WOS:000371522500022 PM 25405944 ER PT J AU Mendoza, H Roberts, SA Brunini, VE Grillet, AM AF Mendoza, Hector Roberts, Scott A. Brunini, Victor E. Grillet, Anne M. TI Mechanical and Electrochemical Response of a LiCoO2 Cathode using Reconstructed Microstructures SO ELECTROCHIMICA ACTA LA English DT Article DE Battery; Lithium-ion; Degradation; Simulation; Microstructure ID LITHIUM-ION BATTERIES; EMPLOYING GRAPHITE NEGATIVES; INTERCALATION-INDUCED STRESS; NUMERICAL-SIMULATION; LITHIATED SILICON; POROUS-ELECTRODES; POLYMER BATTERY; PARTICLES; MODEL; DEFORMATION AB As LiCoO2 cathodes are charged, delithiation of the LiCoO2 active material leads to an increase in the lattice spacing, causing swelling of the particles. When these particles are packed into a bicontinuous, percolated network, as is the case in a battery electrode, this swelling leads to the generation of significant mechanical stress. In this study we performed coupled electrochemical-mechanical simulations of the charging of a LiCoO2 cathode in order to elucidate the mechanisms of stress generation and the effect of charge rate and microstructure on these stresses. Energy dispersive spectroscopy combined with scanning electron microscopy imaging was used to create 3D reconstructions of a LiCoO2 cathode, and the Conformal Decomposition Finite Element Method is used to automatically generate computational meshes on this reconstructed microstructure. Replacement of the ideal solution Fickian diffusion model, typically used in battery simulations, with a more general non -ideal solution model shows substantially smaller gradients of lithium within particles than is typically observed in the literature. Using this more general model, lithium gradients only appear at states of charge where the open-circuit voltage is relatively constant. While lithium gradients do affect the mechanical stress state in the particles, the maximum stresses are always found in the fully-charged state and are strongly affected by the local details of the microstructure and particle-to-particle contacts. These coupled electrochemical-mechanical simulations begin to yield insight into the partitioning of volume change between reducing pore space and macroscopically swelling the electrode. Finally, preliminary studies that include the presence of the polymeric binder suggest that it can greatly impact stress generation and that it is an important area for future research. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Mendoza, Hector; Roberts, Scott A.; Brunini, Victor E.; Grillet, Anne M.] Sandia Natl Labs, Engn Sci Ctr, POB 5800, Albuquerque, NM 87185 USA. RP Roberts, SA (reprint author), Sandia Natl Labs, Engn Sci Ctr, POB 5800, Albuquerque, NM 87185 USA. EM hmendo@sandia.gov; sarober@sandia.gov; vebruni@sandia.gov; amgrill@sandia.gov RI Roberts, Scott/C-1158-2009 OI Roberts, Scott/0000-0002-4196-6771 FU Sandia's Laboratory Directed Research and Development Program; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The authors acknowledge the entire Lithium Ion Battery Degradation LDRD team at Sandia National Laboratories for insightful discussions and support: Christopher A. Apblett, Kyle R. Fenton, Thomas Humplik, Kevin N. Long, Farid El Gabaly Marquez, and Chelsea M. Snyder. In particular, we thank Kyle Fenton for manufacturing the cathodes that were used in this study along with Michael Rye and Paul Kotula for performing the imaging and multivariate analysis. This work was funded as part of Sandia's Laboratory Directed Research and Development Program. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 64 TC 7 Z9 8 U1 19 U2 49 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0013-4686 EI 1873-3859 J9 ELECTROCHIM ACTA JI Electrochim. Acta PD FEB 1 PY 2016 VL 190 BP 1 EP 15 DI 10.1016/j.electacta.2015.12.224 PG 15 WC Electrochemistry SC Electrochemistry GA DF2AM UT WOS:000371141500001 ER PT J AU McLarty, D Brouwer, J Ainscough, C AF McLarty, Dustin Brouwer, Jack Ainscough, Chris TI Economic analysis of fuel cell installations at commercial buildings including regional pricing and complementary technologies SO ENERGY AND BUILDINGS LA English DT Article DE Energy economics; Fuel cells; Commercial buildings; Market analysis; Complementary technologies; Energy storage ID DISTRIBUTED GENERATION SYSTEMS; COMBINED HEAT; DISPATCH; DESIGN; POWER; INTEGRATION; CALIFORNIA AB This paper presents results from sensitivity studies conducted using the Distributed Generation Build out Economic Assessment Tool (DG-BEAT). The viability of meeting commercial building loads with a stationary fuel cells is studied under different conditions of electricity pricing, dispatch strategies, and complementary technologies. Key findings support the notion that fuel cells are becoming economically viable alternatives in California, New York and Connecticut at installed costs of $7000-10,000/kW. Michigan is identified as another state well suited to fuel cell development with heat recovery. Fuel cell installations reduce net carbon emissions for commercial buildings by 20-30% when compared to local, time-resolved, grid emissions. Grid sell-back, at 50% retail price, significantly improves the economics of a base load fuel cell, but has little impact for a dispatchable system. At installed costs below $5000/kW, load following capability results in significant additional cost reductions as the generating capacity is increased beyond the building's base load requirements. Complementary technologies such as chillers and thermal storage have a pronounced impact particularly in warmer climates. Installing fuel cells paired with electric chillers and thermal storage in Florida at buildings with exceptionally high air conditioning demands can achieve the same economic benefit as a typical New York building. (C) 2015 Elsevier B.V. All rights reserved. C1 [McLarty, Dustin] Washington State Univ, Clean Energy Syst Integrat Lab, Pullman, WA 99164 USA. [Brouwer, Jack] Univ Calif Irvine, Natl Fuel Cell Res Ctr, Irvine, CA 92697 USA. [Brouwer, Jack] Natl Renewable Energy Lab, 15013 Denver West Pkwy, Golden, CO 80401 USA. RP McLarty, D (reprint author), Washington State Univ, Clean Energy Syst Integrat Lab, Pullman, WA 99164 USA. EM dustin.mclarty@wsu.edu FU U.S. Department of Energy FX The authors gratefully acknowledge and recognize the technical contributions of Sam Sprik, Genevieve Saur, Mike Penev and Darlene Steward at the National Renewable Energy Laboratory. We also gratefully acknowledge the funding and technical support from the U.S. Department of Energy and our contract manager Jason Marcinkoski. NR 34 TC 2 Z9 2 U1 3 U2 8 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0378-7788 EI 1872-6178 J9 ENERG BUILDINGS JI Energy Build. PD FEB 1 PY 2016 VL 113 BP 112 EP 122 DI 10.1016/j.enbuild.2015.12.029 PG 11 WC Construction & Building Technology; Energy & Fuels; Engineering, Civil SC Construction & Building Technology; Energy & Fuels; Engineering GA DG1QW UT WOS:000371843600012 ER PT J AU Mayali, X Stewart, B Mabery, S Weber, PK AF Mayali, Xavier Stewart, Benjamin Mabery, Shalini Weber, Peter K. TI Temporal succession in carbon incorporation from macromolecules by particle-attached bacteria in marine microcosms SO ENVIRONMENTAL MICROBIOLOGY REPORTS LA English DT Article ID DISSOLVED ORGANIC-MATTER; 16S RIBOSOMAL-RNA; MEDITERRANEAN SEA; MICROBIAL COMMUNITIES; NATURAL ASSEMBLAGES; ENZYME-ACTIVITIES; IN-SITU; DEGRADATION; DIVERSITY; VARIABILITY AB We investigated bacterial carbon assimilation from stable isotope-labelled macromolecular substrates (proteins; lipids; and two types of polysaccharides, starch and cellobiose) while attached to killed diatom detrital particles during laboratory microcosms incubated for 17 days. Using Chip-SIP (secondary ion mass spectrometry analysis of RNA microarrays), we identified generalist operational taxonomic units (OTUs) from the Gammaproteobacteria, belonging to the genera Colwellia, Glaciecola, Pseudoalteromonas and Rheinheimera, and from the Bacteroidetes, genera Owenweeksia and Maribacter, that incorporated the four tested substrates throughout the incubation period. Many of these OTUs exhibited the highest isotope incorporation relative to the others, indicating that they were likely the most active. Additional OTUs from the Gammaproteobacteria, Bacteroidetes and Alphaproteobacteria exhibited generally (but not always) lower activity and did not incorporate all tested substrates at all times, showing species succession in organic carbon incorporation. We also found evidence to suggest that both generalist and specialist OTUs changed their relative substrate incorporation over time, presumably in response to changing substrate availability as the particles aged. This pattern was demonstrated by temporal succession from relatively higher starch incorporation early in the incubations, eventually switching to higher cellobiose incorporation after 2 weeks. C1 [Mayali, Xavier; Stewart, Benjamin; Mabery, Shalini; Weber, Peter K.] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, 7000 East Ave, Livermore, CA 94550 USA. RP Mayali, X (reprint author), Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, 7000 East Ave, Livermore, CA 94550 USA. EM mayali1@llnl.gov FU LLNL Laboratory Directed Research and Development (LDRD) [11-ERD-066]; LLNL Biofuels Scientific Focus Area; U.S. Department of Energy at Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX We thank V. Lao for assistance in the laboratory, L. Nittler for software development, and three anonymous reviewers for significantly improving the manuscript. This research was supported by LLNL Laboratory Directed Research and Development (LDRD) Grant No. 11-ERD-066 and the LLNL Biofuels Scientific Focus Area. Work was performed under the auspices of the U.S. Department of Energy at Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. The authors state no conflicts of interest. NR 36 TC 2 Z9 2 U1 8 U2 13 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1758-2229 J9 ENV MICROBIOL REP JI Environ. Microbiol. Rep. PD FEB PY 2016 VL 8 IS 1 BP 68 EP 75 DI 10.1111/1758-2229.12352 PG 8 WC Environmental Sciences; Microbiology SC Environmental Sciences & Ecology; Microbiology GA DF6QQ UT WOS:000371481100010 PM 26525158 ER PT J AU Sah, S Myneni, G Atulasimha, J AF Sah, Sanjay Myneni, Ganapati Atulasimha, Jayasimha TI Experimental Characterization of Magnetic Materials for the Magnetic Shielding of Cryomodules in Particle Accelerators SO IEEE TRANSACTIONS ON MAGNETICS LA English DT Article DE Annealing; cavity resonators; magnetic fields; magnetic properties; magnetic shielding; magnetization; permeability AB The magnetic properties of two important passive magnetic shielding materials (A4K and Amumetal) for accelerator applications, subjected to various processing and heat treatment conditions are studied comprehensively over a wide range of temperatures: from cryogenic to room temperature. We analyze the effect of processing on the extent of degradation of the magnetic properties of both materials and investigate the possibility of restoring these properties by reannealing. C1 [Sah, Sanjay; Atulasimha, Jayasimha] Virginia Commonwealth Univ, Dept Mech & Nucl Engn, Med Coll Virginia Campus, Richmond, VA 23284 USA. [Myneni, Ganapati] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. RP Atulasimha, J (reprint author), Virginia Commonwealth Univ, Dept Mech & Nucl Engn, Med Coll Virginia Campus, Richmond, VA 23284 USA. EM jatulasimha@vcu.edu FU Virginia Commonwealth University (VCU); Jefferson Laboratory within U.S. Department of Energy through Thomas Jefferson National Accelerator Facility [DE-AC05-06OR23177] FX The work of S. Sah was supported in part by Virginia Commonwealth University (VCU) and in part by the Jefferson Laboratory within the U.S. Department of Energy through the Thomas Jefferson National Accelerator Facility under Contract DE-AC05-06OR23177. The authors would like to thank Dr. S. B. Y. Leon at VCU Mechanical and Nuclear Engineering for travel support to attend magnetic shielding workshop at the facility for rare isotope beams, Dr. B. Hinderliter at the University of Minnesota, Duluth, for earlier discussions on S. Sah's Ph.D. research topic, M. Adolf at Amuneal Corporation for Amumetal and A4K samples, Nanomaterial Core Characterization at VCU for the use of the vibrating sample magnetometer, and Prof. R. Greene and Dr. S. Saha at the University of Maryland for the use of SQUID Magnetometer. NR 16 TC 0 Z9 0 U1 1 U2 1 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9464 EI 1941-0069 J9 IEEE T MAGN JI IEEE Trans. Magn. PD FEB PY 2016 VL 52 IS 2 AR 2000406 DI 10.1109/TMAG.2015.2494862 PN 2 PG 6 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA DG4WY UT WOS:000372075000006 ER PT J AU Soderlind, P Landa, A Tobin, JG Allen, P Medling, S Booth, CH Bauer, ED Cooley, JC Sokaras, D Weng, TC Nordlund, D AF Soederlind, P. Landa, A. Tobin, J. G. Allen, P. Medling, S. Booth, C. H. Bauer, E. D. Cooley, J. C. Sokaras, D. Weng, T. -C. Nordlund, D. TI On the valence fluctuation in the early actinide metals SO JOURNAL OF ELECTRON SPECTROSCOPY AND RELATED PHENOMENA LA English DT Article DE Valence fluctuations; Actinides; X-ray emission spectroscopy; Density functional theory ID X-RAY-DIFFRACTION; PLUTONIUM; PRESSURE; TEMPERATURE AB Recent X-ray measurements suggest a degree of valence fluctuation in plutonium and uranium intermetallics. We are applying a novel scheme, in conjunction with density functional theory, to predict 5f configuration fractions of states with valence fluctuations for the early actinide metals. For this purpose we perform constrained integer f-occupation calculations for the a phases of uranium, neptunium, and plutonium metals. For plutonium we also investigate the 8 phase. The model predicts uranium and neptunium to be dominated by the f(3) and f(4) configurations, respectively, with only minor contributions from other configurations. For plutonium (both a and 8 phase) the scenario is dramatically different. Here, the calculations predict a relatively even distribution between three valence configurations. The 8 phase has a greater configuration fraction of f(6) compared to that of the a phase. The theory is consistent with the interpretations of modern X-ray experiments and we present resonant X-ray emission spectroscopy results for alpha-uranium. (C) 2015 Elsevier B.V. All rights reserved. C1 [Soederlind, P.; Landa, A.; Tobin, J. G.; Allen, P.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Medling, S.; Booth, C. H.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Bauer, E. D.; Cooley, J. C.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Sokaras, D.; Weng, T. -C.; Nordlund, D.] SLAC Natl Lab, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA. RP Soderlind, P (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM soderlind@llnl.gov RI Nordlund, Dennis/A-8902-2008; OI Nordlund, Dennis/0000-0001-9524-6908; Bauer, Eric/0000-0003-0017-1937 FU U.S. DOE [DE-AC52-07NA27344]; Office of Science, Office of Basic Energy Sciences (OBES), of the U.S. Department of Energy (DOE) [DE-AC02-05CH11231]; U.S. DOE, OBES, Division of Materials Sciences and Engineering FX We thank B. Sadigh for helpful discussion. This work was performed under the auspices of the U.S. DOE by LLNL under Contract DE-AC52-07NA27344. Work at Lawrence Berkeley National Laboratory supported by the Director, Office of Science, Office of Basic Energy Sciences (OBES), of the U.S. Department of Energy (DOE) under Contract No. DE-AC02-05CH11231. Sample preparation at Los Alamos National Laboratory (LANL) was performed under the auspices of the U.S. DOE, OBES, Division of Materials Sciences and Engineering. X-ray absorption and RXES data were collected at the Stanford Synchrotron Radiation Lightsource, a national user facility operated by Stanford University on behalf of the DOE, Office of Basic Energy Sciences. NR 21 TC 2 Z9 2 U1 9 U2 24 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0368-2048 EI 1873-2526 J9 J ELECTRON SPECTROSC JI J. Electron Spectrosc. Relat. Phenom. PD FEB PY 2016 VL 207 BP 14 EP 18 DI 10.1016/j.elspec.2015.11.014 PG 5 WC Spectroscopy SC Spectroscopy GA DG2ZX UT WOS:000371940400003 ER PT J AU Berg, G Rybakova, D Grube, M Koberl, M AF Berg, Gabriele Rybakova, Daria Grube, Martin Koeberl, Martina TI The plant microbiome explored: implications for experimental botany SO JOURNAL OF EXPERIMENTAL BOTANY LA English DT Article; Proceedings Paper CT Society-for-Experimental-Biology Annual Meeting CY JUN 30-JUL 03, 2015 CL Prague, CZECH REPUBLIC DE Endosphere; holobiont; microbiome; phyllosphere; plant-microbe interaction; rhizosphere ID RHIZOSPHERE MICROBIOME; SOIL MICROBIOMES; ROOT MICROBIOME; DIVERSITY; ARABIDOPSIS; ENDOPHYTES; BACTERIA; LIFE; SELECTION; ECOLOGY AB The importance of microbial root inhabitants for plant growth and health was recognized as early as 100 years ago. Recent insights reveal a close symbiotic relationship between plants and their associated microorganisms, and high structural and functional diversity within plant microbiomes. Plants provide microbial communities with specific habitats, which can be broadly categorized as the rhizosphere, phyllosphere, and endosphere. Plant-associated microbes interact with their host in essential functional contexts. They can stimulate germination and growth, help plants fend off disease, promote stress resistance, and influence plant fitness. Therefore, plants have to be considered as metaorganisms within which the associated microbes usually outnumber the cells belonging to the plant host. The structure of the plant microbiome is determined by biotic and abiotic factors but follows ecological rules. Metaorganisms are co-evolved species assemblages. The metabolism and morphology of plants and their microbiota are intensively connected with each other, and the interplay of both maintains the functioning and fitness of the holobiont. Our study of the current literature shows that analysis of plant microbiome data has brought about a paradigm shift in our understanding of the diverse structure and functioning of the plant microbiome with respect to the following: (i) the high interplay of bacteria, archaea, fungi, and protists; (ii) the high specificity even at cultivar level; (iii) the vertical transmission of core microbiomes; (iv) the extraordinary function of endophytes; and (v) several unexpected functions and metabolic interactions. The plant microbiome should be recognized as an additional factor in experimental botany and breeding strategies. C1 [Berg, Gabriele; Rybakova, Daria; Koeberl, Martina] Graz Univ Technol, Inst Environm Biotechnol, A-8010 Graz, Austria. [Berg, Gabriele] Austrian Ctr Ind Biotechnol ACIB GmbH, A-8010 Graz, Austria. [Grube, Martin] Graz Univ, Inst Plant Sci, A-8010 Graz, Austria. [Koeberl, Martina] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. RP Berg, G (reprint author), Graz Univ Technol, Inst Environm Biotechnol, A-8010 Graz, Austria.; Berg, G (reprint author), Austrian Ctr Ind Biotechnol ACIB GmbH, A-8010 Graz, Austria. FU EU-Egypt Innovation Fund [RDI ENPI/2014/342-707]; Austrian Science Fund FWF [J 3638]; European Commission [I 882]; European Union (BIOCOMES) [612713]; project in the Austrian Centre of Industrial Biotechnology; Austrian BMWFW; BMVIT; SFG; Standortagentur Tirol; ZIT through the Austrian FFG-COMET-Funding Program FX We would like to thank Timothy Mark (Graz) for English revision. This study was partly supported by the EU-Egypt Innovation Fund (RDI ENPI/2014/342-707) and the Austrian Science Fund FWF (J 3638 to MK, co-funded by the European Commission, and I 882 to GB and MG) and by the European Union in frame of FP7-KBBE-2013-7-single-stage (BIOCOMES; No. 612713). The cooperation of GB was funded by a project in the Austrian Centre of Industrial Biotechnology, which has been supported by the Austrian BMWFW, BMVIT, SFG, Standortagentur Tirol, and ZIT through the Austrian FFG-COMET-Funding Program. NR 69 TC 13 Z9 13 U1 33 U2 112 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0022-0957 EI 1460-2431 J9 J EXP BOT JI J. Exp. Bot. PD FEB PY 2016 VL 67 IS 4 SI SI BP 995 EP 1002 DI 10.1093/jxb/erv466 PG 8 WC Plant Sciences SC Plant Sciences GA DF0HS UT WOS:000371020400002 PM 26547794 ER PT J AU Romero-Gomez, P Richmond, MC AF Romero-Gomez, Pedro Richmond, Marshall C. TI Numerical simulation of circular cylinders in free-fall SO JOURNAL OF FLUIDS AND STRUCTURES LA English DT Article DE Overset grids; Cylinder; Drag; Secondary motion; 6-DOF; CFD ID CYLINDRICAL PARTICLES; REYNOLDS-NUMBER; FLOW; TURBULENT; MOTION; DRAG; SENSOR AB In this work, we combined the use of (i) overset meshes, (ii) a 6 degree-of-freedom (6-DOF) motion solver, and (iii) an eddy-resolving flow simulation approach to resolve the drag and secondary movement of large-sized cylinders settling in a quiescent fluid at moderate terminal Reynolds numbers (1500 < Re < 28,000). These three strategies were implemented in a series of computational fluid dynamics (CFD) solutions to describe the fluid-structure interactions and the resulting effects on the cylinder motion. Using the drag coefficient, oscillation period, and maximum angular displacement as baselines, the findings show good agreement between the present CFD results and corresponding data of published laboratory experiments. We discussed the computational expense incurred in using the present modeling approach. We also conducted a preceding simulation of flow past a fixed cylinder at Re=3900, which tested the influence of the turbulence approach (time-averaging vs. eddy-resolving) and the meshing strategy (continuous vs. overset) on the numerical results. The outputs indicated a strong effect of the former and an insignificant influence of the latter. The long-term motivation for the present study is the need to understand the motion of an autonomous sensor of cylindrical shape used to measure responses to the hydraulic conditions occurring in operating hydropower turbines. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Romero-Gomez, Pedro; Richmond, Marshall C.] Pacific NW Natl Lab, Hydrol Grp, Richland, WA 99352 USA. RP Richmond, MC (reprint author), Pacific NW Natl Lab, Hydrol Grp, Richland, WA 99352 USA. EM marshall.richmond@pnnl.gov RI Richmond, Marshall/D-3915-2013 OI Richmond, Marshall/0000-0003-0111-1485 FU U.S. Department of Energy, Energy Efficiency and Renewable Energy, Wind and Water Power Program; U.S. Department of Energy by Battelle [DE-AC06-76RLO 1830] FX This research was supported by the U.S. Department of Energy, Energy Efficiency and Renewable Energy, Wind and Water Power Program.; Computations described here were performed using the facilities of the Pacific Northwest National Laboratory (PNNL) institutional computing center (PIC).; Pacific Northwest National Laboratory (PNNL) is operated for the U.S. Department of Energy by Battelle under Contract No. DE-AC06-76RLO 1830. NR 31 TC 1 Z9 1 U1 3 U2 13 PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0889-9746 J9 J FLUID STRUCT JI J. Fluids Struct. PD FEB PY 2016 VL 61 BP 154 EP 167 DI 10.1016/j.jfluidstructs.2015.11.010 PG 14 WC Engineering, Mechanical; Mechanics SC Engineering; Mechanics GA DF7QD UT WOS:000371551800009 ER PT J AU Stenz, R Dong, XQ Xi, BK Feng, Z Kuligowski, RJ AF Stenz, Ronald Dong, Xiquan Xi, Baike Feng, Zhe Kuligowski, Robert J. TI Improving Satellite Quantitative Precipitation Estimation Using GOES-Retrieved Cloud Optical Depth SO JOURNAL OF HYDROMETEOROLOGY LA English DT Article DE Physical Meteorology and Climatology; Observational techniques and algorithms; Satellite observations; Radars/Radar observations; Hydrology; Algorithms; Convective storms; Remote sensing ID UNITED-STATES; RAINFALL ESTIMATION; RADAR; QPE; SYSTEM; Q2 AB To address gaps in ground-based radar coverage and rain gauge networks in the United States, geostationary satellite quantitative precipitation estimation (QPE) such as the Self-Calibrating Multivariate Precipitation Retrieval (SCaMPR) can be used to fill in both spatial and temporal gaps of ground-based measurements. Additionally, with the launch of Geostationary Operational Environmental Satellite R series (GOES-R), the temporal resolution of satellite QPEs may be comparable to Weather Surveillance Radar-1988 Doppler (WSR-88D) volume scans as GOES images will be available every 5 min. However, while satellite QPEs have strengths in spatial coverage and temporal resolution, they face limitations, particularly during convective events. Deep convective systems (DCSs) have large cloud shields with similar brightness temperatures (BTs) over nearly the entire system, but widely varying precipitation rates beneath these clouds. Geostationary satellite QPEs relying on the indirect relationship between BTs and precipitation rates often suffer from large errors because anvil regions (little or no precipitation) cannot be distinguished from rain cores (heavy precipitation) using only BTs. However, a combination of BTs and optical depth tau has been found to reduce overestimates of precipitation in anvil regions. A new rain mask algorithm incorporating both tau and BTs has been developed, and its application to the existing SCaMPR algorithm was evaluated. The performance of the modified SCaMPR was evaluated using traditional skill scores and a more detailed analysis of performance in individual DCS components by utilizing the Feng et al. classification algorithm. SCaMPR estimates with the new rain mask benefited from significantly reduced overestimates of precipitation in anvil regions and overall improvements in skill scores. C1 [Stenz, Ronald; Dong, Xiquan; Xi, Baike] Univ N Dakota, Dept Atmospher Sci, 4149 Univ Ave,Stop 9006, Grand Forks, ND 58203 USA. [Feng, Zhe] Pacific NW Natl Lab, Richland, WA 99352 USA. [Kuligowski, Robert J.] NOAA, NESDIS, Ctr Satellite Applicat & Res, College Pk, MD USA. RP Dong, XQ (reprint author), Univ N Dakota, Dept Atmospher Sci, 4149 Univ Ave,Stop 9006, Grand Forks, ND 58203 USA. EM dong@aero.und.edu RI Kuligowski, Robert/C-6981-2009; Feng, Zhe/E-1877-2015 OI Kuligowski, Robert/0000-0002-6909-2252; Dong, Xiquan/0000-0002-3359-6117; Feng, Zhe/0000-0002-7540-9017 FU NOAA GOES-R project at the University of North Dakota [NA11NES440004]; U.S. Department of Energy Atmospheric Systems Research project [DE-SC0008468]; U.S. Department of Energy, Office of Science, Biological and Environmental Research FX The Q2 product was obtained from the NOAA/National Severe Storms Laboratory. This research was primarily supported by NOAA GOES-R project with Award Number NA11NES440004 at the University of North Dakota. The University of North Dakota authors were also supported by the U.S. Department of Energy Atmospheric Systems Research project with Award Number DE-SC0008468. Dr. Zhe Feng developed the hybrid classification scheme used in this study. He was supported by the U.S. Department of Energy, Office of Science, Biological and Environmental Research as part of the Regional and Global Climate Modeling Program and Atmospheric System Research program. The contents of this paper are solely the opinions of the authors and do not constitute a statement of policy, decision, or position on behalf of NOAA or the U.S. Government. NR 22 TC 2 Z9 2 U1 2 U2 9 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 1525-755X EI 1525-7541 J9 J HYDROMETEOROL JI J. Hydrometeorol. PD FEB PY 2016 VL 17 IS 2 BP 557 EP 570 DI 10.1175/JHM-D-15-0057.1 PG 14 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DF8MQ UT WOS:000371612300003 ER PT J AU Ashouri, H Sorooshian, S Hsu, KL Bosilovich, MG Lee, J Wehner, MF Collow, A AF Ashouri, Hamed Sorooshian, Soroosh Hsu, Kuo-Lin Bosilovich, Michael G. Lee, Jaechoul Wehner, Michael F. Collow, Allison TI Evaluation of NASA's MERRA Precipitation Product in Reproducing the Observed Trend and Distribution of Extreme Precipitation Events in the United States SO JOURNAL OF HYDROMETEOROLOGY LA English DT Article ID CLIMATE EXTREMES; INTENSE PRECIPITATION; GLOBAL ENERGY; MODEL; TEMPERATURE; REANALYSES; VARIABILITY; KNOWLEDGE; ENSEMBLE; WATER AB This study evaluates the performance of NASA's Modern-Era Retrospective Analysis for Research and Applications (MERRA) precipitation product in reproducing the trend and distribution of extreme precipitation events. Utilizing the extreme value theory, time-invariant and time-variant extreme value distributions are developed to model the trends and changes in the patterns of extreme precipitation events over the contiguous United States during 1979-2010. The Climate Prediction Center (CPC) U.S. Unified gridded observation data are used as the observational dataset. The CPC analysis shows that the eastern and western parts of the United States are experiencing positive and negative trends in annual maxima, respectively. The continental-scale patterns of change found in MERRA seem to reasonably mirror the observed patterns of change found in CPC. This is not previously expected, given the difficulty in constraining precipitation in reanalysis products. MERRA tends to overestimate the frequency at which the 99th percentile of precipitation is exceeded because this threshold tends to be lower in MERRA, making it easier to be exceeded. This feature is dominant during the summer months. MERRA tends to reproduce spatial patterns of the scale and location parameters of the generalized extreme value and generalized Pareto distributions. However, MERRA underestimates these parameters, particularly over the Gulf Coast states, leading to lower magnitudes in extreme precipitation events. Two issues in MERRA are identified: 1) MERRA shows a spurious negative trend in Nebraska and Kansas, which is most likely related to the changes in the satellite observing system over time that has apparently affected the water cycle in the central United States, and 2) the patterns of positive trend over the Gulf Coast states and along the East Coast seem to be correlated with the tropical cyclones in these regions. The analysis of the trends in the seasonal precipitation extremes indicates that the hurricane and winter seasons are contributing the most to these trend patterns in the southeastern United States. In addition, the increasing annual trend simulated by MERRA in the Gulf Coast region is due to an incorrect trend in winter precipitation extremes. C1 [Ashouri, Hamed; Sorooshian, Soroosh; Hsu, Kuo-Lin] Univ Calif Irvine, Ctr Hydrometeorol & Remote Sensing, Dept Civil & Environm Engn, Irvine, CA 92697 USA. [Bosilovich, Michael G.; Collow, Allison] NASA, Goddard Space Flight Ctr, Modeling & Assimilat Off, Greenbelt, MD USA. [Lee, Jaechoul] Boise State Univ, Dept Math, Boise, ID 83725 USA. [Wehner, Michael F.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Collow, Allison] Univ Space Res Assoc, Columbia, MD USA. RP Ashouri, H (reprint author), Univ Calif Irvine, Ctr Hydrometeorol & Remote Sensing, Dept Civil & Environm Engn, Irvine, CA 92697 USA. EM h.ashouri@uci.edu RI Ashouri, Hamed/I-3040-2016; sorooshian, soroosh/B-3753-2008; Bosilovich, Michael/F-8175-2012 OI sorooshian, soroosh/0000-0001-7774-5113; FU NASA Earth and Space Science Fellowship (NESSF) [NNX12AO11H]; NOAA Climate Change Data and Detection (CCDD) [NA10DAR4310122]; NASA Decision Support System [NNX09A067G]; Army Research Office [W911NF-11-1-0422]; NSF [DMS 1107225]; Regional and Global Climate Modeling Program of the Office of Biological and Environmental Research in the Department of Energy Office of Science [DE-AC02-05CH11231] FX The CPC U.S. Unified precipitation data are provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, from their website (http://www.esrl.noaa.gov/psd/). The MERRA product is accessible through the Goddard Earth Sciences Data Information Services Center (GES DISC; http://disc.sci.gsfc.nasa.gov/mdisc/overview). The authors would like to thank the anonymous reviewers for the constructive comments. In addition, the authors would like to thank Dr. Jin-Yi Yu, professor at the Department of Earth System Science at the University of California, Irvine, for his insightful comments on the tropical cyclones. We would also like to thank Dr. Tsou Chun Jaw at the Center for Hydrometeorology and Remote Sensing for his assistance in data processing. Ashouri was supported by the NASA Earth and Space Science Fellowship (NESSF; Award NNX12AO11H). Hsu and Sorooshian were supported by the NOAA Climate Change Data and Detection (CCDD; Grant NA10DAR4310122), the NASA Decision Support System (Grant NNX09A067G), and the Army Research Office (Grant W911NF-11-1-0422). Lee was partially supported by the NSF (Grant DMS 1107225), and Wehner was supported by the Regional and Global Climate Modeling Program of the Office of Biological and Environmental Research in the Department of Energy Office of Science under Contract DE-AC02-05CH11231 (LBNL). NR 70 TC 1 Z9 1 U1 1 U2 6 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 1525-755X EI 1525-7541 J9 J HYDROMETEOROL JI J. Hydrometeorol. PD FEB PY 2016 VL 17 IS 2 BP 693 EP 711 DI 10.1175/JHM-D-15-0097.1 PG 19 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DF8MY UT WOS:000371613100001 ER PT J AU Colett, JS Kelly, JC Keoleian, GA AF Colett, Joseph S. Kelly, Jarod C. Keoleian, Gregory A. TI Using Nested Average Electricity Allocation Protocols to Characterize Electrical Grids in Life Cycle Assessment SO JOURNAL OF INDUSTRIAL ECOLOGY LA English DT Article DE electricity allocation protocol; energy; greenhouse gas emissions; industrial ecology; life cycle assessment (LCA); primary aluminum ID PRIMARY ALUMINUM PRODUCTION; GREENHOUSE-GAS EMISSIONS; CONSUMPTION AB This study explored the impacts of electricity allocation protocols on the life cycle greenhouse gas (GHG) emissions of electricity consumption. The selection of appropriate electricity allocation protocols, methodologies that assign pools of electricity generators to electricity consumers, has not been well standardized. This can lead to very different environmental profiles of similar, electricity-intensive processes. In an effort to better represent the interconnected nature of the U.S. electrical grid, we propose two new protocols that utilize inter-regional trade information and localized emission factors to combine generating pools that are sub- or supersets of one another. This new nested approach increases the likelihood of capturing important inter-regional electricity trading and the appropriate assignment of generator emissions to consumers of local and regional electricity. We applied the new and existing protocols to the U.S. primary aluminum industry, an industry whose environmental impact is heavily tied to its electricity consumption. Our analysis found GHG emission factors that were dramatically different than those reported in previous literature. We calculated production-weighted average emission factors of 19.0 and 19.9kilograms carbon dioxide equivalentperkilogram of primary aluminum ingot produced when using our two nested electricity allocation protocols. Previous studies reported values of 10.5 and 11.0, at least 42% lower than those found by our study. C1 [Colett, Joseph S.; Kelly, Jarod C.; Keoleian, Gregory A.] Univ Michigan, Sch Nat Resources & Environm, 3012 Dana Bldg,440 Church St, Ann Arbor, MI 48109 USA. [Kelly, Jarod C.] Ctr Transportat Res, Argonne Natl Labs, Argonne, IL USA. [Keoleian, Gregory A.] Ctr Sustainable Syst, Denver, CO USA. [Keoleian, Gregory A.] Univ Michigan, Civil & Environm Engn Dept, Ann Arbor, MI 48109 USA. RP Keoleian, GA (reprint author), Univ Michigan, Sch Nat Resources & Environm, 3012 Dana Bldg,440 Church St, Ann Arbor, MI 48109 USA. EM gregak@umich.edu FU U.S. Department of Energy [DEPI0000012]; CERC Clean Vehicle Center; National Science Foundation Emerging Frontiers in Research and Innovation Resilient and Sustainable Infrastructures grant [0835995] FX This research is part of the U.S.-China Clean Energy Research Center (CERC) on Clean Vehicles, which is partially supported by the U.S. Department of Energy (award no. DEPI0000012) and its industry partners. This research is Project 5 within Thrust 6: Energy Systems Analysis, Technology Roadmaps and Policy, of the CERC Clean Vehicle Center. This research was also funded through a National Science Foundation Emerging Frontiers in Research and Innovation Resilient and Sustainable Infrastructures grant (award no. 0835995). The authors acknowledge the valuable feedback and support received from Tim Wallington, Hyung Chul Kim, Nathan MacPherson, Anne Marie Lewis, and Robb De Kleine. NR 36 TC 6 Z9 6 U1 3 U2 8 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1088-1980 EI 1530-9290 J9 J IND ECOL JI J. Ind. Ecol. PD FEB PY 2016 VL 20 IS 1 BP 29 EP 41 DI 10.1111/jiec.12268 PG 13 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Engineering, Environmental; Environmental Sciences SC Science & Technology - Other Topics; Engineering; Environmental Sciences & Ecology GA DF6RV UT WOS:000371484400004 ER PT J AU Pincetl, S Graham, R Murphy, S Sivaraman, D AF Pincetl, Stephanie Graham, Robert Murphy, Sinnott Sivaraman, Deepak TI Analysis of High-Resolution Utility Data for Understanding Energy Use in Urban Systems: The Case of Los Angeles, California SO JOURNAL OF INDUSTRIAL ECOLOGY LA English DT Article DE building energy; electricity; energy conservation; resource efficiency; sustainable city; urban metabolism ID MODELING TECHNIQUES; END-USE; METABOLISM; CONSUMPTION; CITIES; SUSTAINABILITY; EMISSIONS; CLIMATE; SECTOR; CITY AB Urban metabolism provides a framework to understand resource flows into cities and waste flows out. Its potential has been hampered by the lack of good disaggregated data. This article presents energy-use findings for the residential sector for the city of Los Angeles based on census-block-level aggregation of address-level electricity use obtained from the Los Angeles Department of Water and Power. City or county billing data by customer class over time can enable empirical tracking of energy conservation and efficiency programs by different customer classes, and matched to census information and county tax assessor data about building vintage, size, and type can provide information important for rate setting, for example, or energy conservation and efficiency program investments. We report on median electricity demand and corresponding greenhouse gas emissions and expenditures at three geographical aggregations: city council district (15 in total); neighborhood (114 in total); and census block group (2,538 in total). We find that the ratio of median annual demand between highest- and lowest-tier users is 26 at the census-block group level, but only 2.2 at the city council district level, demonstrating that spatial aggregation significantly masks the degree of variation that may be observed. We also show how such data can enable the description of energy to develop energy disclosure thresholds that reflect a city's morphology. In contrast to New York City's 50,000-square-foot reporting threshold, to capture half of Los Angeles' electricity consumption, the threshold for reporting would have to be 5,000 square feet. C1 [Pincetl, Stephanie] Univ Calif Los Angeles, Inst Environm & Sustainabil, Calif Ctr Sustainable Communities, Los Angeles, CA 90095 USA. [Graham, Robert; Murphy, Sinnott; Sivaraman, Deepak] Calif Ctr Sustainable Communities, Compton, CA USA. [Murphy, Sinnott] Carnegie Mellon Univ, Sch Engn, Pittsburgh, PA 15213 USA. [Sivaraman, Deepak] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Pincetl, S (reprint author), UCLA, Inst Environm & Sustainabil, 619 Charles East Young Dr, Los Angeles, CA 90095 USA. EM spincetl@ioes.ucla.edu OI Sivaraman, Deepak/0000-0002-2640-0681 FU California Energy Commission's Public Interest Energy Research (PIER) program; County of Los Angeles Office of Sustainability FX The authors gratefully acknowledge funding from the California Energy Commission's Public Interest Energy Research (PIER) program and the County of Los Angeles Office of Sustainability. NR 38 TC 1 Z9 1 U1 2 U2 12 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1088-1980 EI 1530-9290 J9 J IND ECOL JI J. Ind. Ecol. PD FEB PY 2016 VL 20 IS 1 BP 166 EP 178 DI 10.1111/jiec.12299 PG 13 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Engineering, Environmental; Environmental Sciences SC Science & Technology - Other Topics; Engineering; Environmental Sciences & Ecology GA DF6RV UT WOS:000371484400015 ER PT J AU Aab, A Abreu, P Aglietta, M Ahn, EJ Al Samarai, I Albuquerque, IFM Allekotte, I Allison, P Almela, A Castillo, JA Alvarez-Muniz, J Batista, RA Ambrosio, M Aminaei, A Anastasi, GA Anchordoqui, L Andrada, B Andringa, S Aramo, C Arqueros, F Arsene, N Asorey, H Assis, P Aublin, J Avila, G Awal, N Badescu, AM Baus, C Beatty, JJ Becker, KH Bellido, JA Berat, C Bertaina, ME Bertou, X Biermann, PL Billoir, P Blaess, SG Blanco, A Blanco, M Blazek, J Bleve, C Blumer, H Bohacova, M Boncioli, D Bonifazi, C Borodai, N Botti, AM Brack, J Brancus, I Bretz, T Bridgeman, A Brogueira, P Buchholz, P Bueno, A Buitink, S Buscemi, M Caballero-Mora, KS Caccianiga, B Caccianiga, L Candusso, M Caramete, L Caruso, R Castellina, A Cataldi, G Cazon, L Cester, R Chavez, AG Chiavassa, A Chinellato, JA Chudoba, J Cilmo, M Clay, RW Cocciolo, G Colalillo, R Coleman, A Collica, L Coluccia, MR Conceiccao, R Contreras, F Cooper, MJ Cordier, A Coutu, S Covault, CE Cronin, J Dallier, R Daniel, B Dasso, S Daumiller, K Dawson, BR de Almeida, RM de Jong, SJ De Mauro, G Neto, JRTD De Mitri, I de Oliveira, J de Souza, V del Peral, L Deligny, O Dhital, N Di Giulio, C Di Matteo, A Diaz, JC Castro, MLD Diogo, F Dobrigkeit, C Docters, W D'Olivo, JC Dorofeev, A Hasankiadeh, QD dos Anjos, RC Dova, MT Ebr, J Engel, R Erdmann, M Erfani, M Escobar, CO Espadanal, J Etchegoyen, A Falcke, H Fang, K Farrar, G Fauth, AC Fazzini, N Ferguson, AP Fick, B Figueira, JM Filevich, A Filipcic, A Fratu, O Freire, MM Fujii, T Fuster, A Gallo, F Garcia, B Garcia-Gamez, D Garcia-Pinto, D Gate, F Gemmeke, H Gherghel-Lascu, A Ghia, PL Giaccari, U Giammarchi, M Giller, M Glas, D Glaser, C Glass, H Golup, G Berisso, MG Gomez Vitale, PF Gonzalez, N Gookin, B Gordon, J Gorgi, A Gorham, P Gouffon, P Griffith, N Grillo, AF Grubb, TD Guarino, F Guedes, GP Hampel, MR Hansen, P Harari, D Harrison, TA Hartmann, S Harton, JL Haungs, A Hebbeker, T Heck, D Heimann, P Herve, AE Hill, GC Hojvat, C Hollon, N Holt, E Homola, P Horandel, JR Horvath, P Hrabovsky, M Huber, D Huege, T Insolia, A Isar, PG Jandt, I Jansen, S Jarne, C Johnsen, JA Josebachuili, M Kaapa, A Kambeitz, . Kampert, KH Kasper, P Katkov, I Keilhauer, B Kemp, E Kieckhafer, RM Klages, HO Kleifges, M Kleinfeller, J Krause, R Krohm, N Kuempel, D Mezek, GK Kunka, N Awad, AWK LaHurd, D Latronico, L Lauer, R Lauscher, M Lautridou, P Le Coz, S Lebrun, D Lebrun, P de Oliveira, MAL Letessier-Selvon, A Lhenry-Yvon, I Link, K Lopes, L Lopez, R Casado, AL Louedec, K Lucero, A Malacari, M Mallamaci, M Maller, J Mandat, D Mantsch, P Mariazzi, AG Marin, V Maris, IC Marsella, G Martello, D Martinez, H Bravo, OM Martraire, D Meza, JJM Mathes, HJ Mathys, S Matthews, J Matthews, JAJ Matthiae, G Maurizio, D Mayotte, E Mazur, PO Medina, C Medina-Tanco, G Meissner, R Mello, VBB Melo, D Menshikov, A Messina, S Micheletti, MI Middendorf, L Minaya, IA Miramonti, L Mitrica, B Molina-Bueno, L Mollerach, S Montanet, F Morello, C Mostafa, M Moura, CA Muller, G Muller, MA Muller, S Navas, S Necesal, P Nellen, L Nelles, A Neuser, J Nguyen, PH Niculescu-Oglinzanu, M Niechciol, M Niemietz, L Niggemann, T Nitz, D Nosek, D Novotny, V Nozka, L Nunez, LA Ochilo, L Oikonomou, F Olinto, A Pacheco, N Selmi-Dei, DP Palatka, M Pallotta, J Papenbreer, P Parente, G Parra, A Paul, T Pech, M Pekala, J Pelayo, R Pepe, IM Perrone, L Petermann, E Peters, C Petrera, S Petrov, Y Phuntsok, J Piegaia, R Pierog, T Pieroni, P Pimenta, M Pirronello, V Platino, M Plum, M Porcelli, A Porowski, C Prado, RR Privitera, P Prouza, M Quel, EJ Querchfed, S Quinn, S Rautenberg, J Ravel, O Ravignani, D Reinert, D Revenu, B Ridky, J Risse, M Ristori, P Rizi, V de Carvalho, WR Rojo, JR Rodriguez-Frias, MD Rogozin, D Rosado, J Roth, M Roulet, E Rovero, AC Saffi, SJ Saftoiu, A Salazar, H Saleh, A Greus, FS Salina, G Gomez, JDS Sanchez, F Sanchez-Lucas, P Santos, EM Santos, E Sarazin, F Sarkar, B Sarmento, R Sarmiento-Cano, C Sato, R Scarso, C Schauer, M Scherini, V Schieler, H Schmidt, D Scholten, O Schoorlemmer, H Schovanek, P Schroder, FG Schulz, A Schulz, J Schumacher, J Sciutto, SJ Segreto, A Settimo, M Shadkam, A Shellard, RC Sigl, G Sima, O Smialkowski, A Smida, R Snow, GR Sommers, P Sonntag, S Sorokin, J Squartini, R Srivastava, YN Stanca, D Stanic, S Stapleton, J Stasielak, J Stephan, M Stutz, A Suarez, F Duran, MS Suomijarvi, T Supanitsky, AD Sutherland, MS Swain, J Szadkowski, Z Taborda, OA Tapia, A Tepe, A Theodoro, VM Timmermans, C Peixoto, CJT Toma, G Tomankova, L Tome, B Tonachini, A Elipe, GT Machado, DT Travnicek, P Trini, M Ulrich, R Unger, M Urban, M Valdes, JF Valino, I Valore, L van Aar, G van Bodegom, P van den Berg, AM van Velzen, S van Vliet, A Varela, E Cardenas, BV Varner, G Vasquez, R Vazquez, JR Vazquez, RA Veberic, D Verzi, V Vicha, J Videla, M Villasenor, L Vlcek, B Vorobiov, S Wahlberg, H Wainbereg, . Walz, D Watson, AA Weber, M Weidenhaupt, K Weindl, A Werner, F Widom, A Wiencke, L Wilczynski, H Winchen, T Wittkowski, D Wundheiler, B Wykes, S Yang, L Yapici, T Yushkov, A Zas, E Zavrtanik, D Zavrtanik, M Zepeda, A Zimmermann, B Ziolkowski, M Zuccarello, F AF Aab, A. Abreu, P. Aglietta, M. Ahn, E. J. Al Samarai, I. Albuquerque, I. F. M. Allekotte, I. Allison, P. Almela, A. Alvarez Castillo, J. Alvarez-Muniz, J. Batista, R. Alves Ambrosio, M. Aminaei, A. Anastasi, G. A. Anchordoqui, L. Andrada, B. Andringa, S. Aramo, C. Arqueros, F. Arsene, N. Asorey, H. Assis, P. Aublin, J. Avila, G. Awal, N. Badescu, A. M. Baus, C. Beatty, J. J. Becker, K. H. Bellido, J. A. Berat, C. Bertaina, M. E. Bertou, X. Biermann, P. L. Billoir, P. Blaess, S. G. Blanco, A. Blanco, M. Blazek, J. Bleve, C. Bluemer, H. Bohacova, M. Boncioli, D. Bonifazi, C. Borodai, N. Botti, A. M. Brack, J. Brancus, I. Bretz, T. Bridgeman, A. Brogueira, P. Buchholz, P. Bueno, A. Buitink, S. Buscemi, M. Caballero-Mora, K. S. Caccianiga, B. Caccianiga, L. Candusso, M. Caramete, L. Caruso, R. Castellina, A. Cataldi, G. Cazon, L. Cester, R. Chavez, A. G. Chiavassa, A. Chinellato, J. A. Chudoba, J. Cilmo, M. Clay, R. W. Cocciolo, G. Colalillo, R. Coleman, A. Collica, L. Coluccia, M. R. Conceicao, R. Contreras, F. Cooper, M. J. Cordier, A. Coutu, S. Covault, C. E. Cronin, J. Dallier, R. Daniel, B. Dasso, S. Daumiller, K. Dawson, B. R. de Almeida, R. M. de Jong, S. J. De Mauro, G. de Mello Neto, J. R. T. De Mitri, I. de Oliveira, J. de Souza, V. del Peral, L. Deligny, O. Dhital, N. Di Giulio, C. Di Matteo, A. Diaz, J. C. Diaz Castro, M. L. Diogo, F. Dobrigkeit, C. Docters, W. D'Olivo, J. C. Dorofeev, A. Hasankiadeh, Q. Dorosti dos Anjos, R. C. Dova, M. T. Ebr, J. Engel, R. Erdmann, M. Erfani, M. Escobar, C. O. Espadanal, J. Etchegoyen, A. Falcke, H. Fang, K. Farrar, G. Fauth, A. C. Fazzini, N. Ferguson, A. P. Fick, B. Figueira, J. M. Filevich, A. Filipcic, A. Fratu, O. Freire, M. M. Fujii, T. Fuster, A. Gallo, F. Garcia, B. Garcia-Gamez, D. Garcia-Pinto, D. Gate, F. Gemmeke, H. Gherghel-Lascu, A. Ghia, P. L. Giaccari, U. Giammarchi, M. Giller, M. Glas, D. Glaser, C. Glass, H. Golup, G. Berisso, M. Gomez Gomez Vitale, P. F. Gonzalez, N. Gookin, B. Gordon, J. Gorgi, A. Gorham, P. Gouffon, P. Griffith, N. Grillo, A. F. Grubb, T. D. Guarino, F. Guedes, G. P. Hampel, M. R. Hansen, P. Harari, D. Harrison, T. A. Hartmann, S. Harton, J. L. Haungs, A. Hebbeker, T. Heck, D. Heimann, P. Herve, A. E. Hill, G. C. Hojvat, C. Hollon, N. Holt, E. Homola, P. Horandel, J. R. Horvath, P. Hrabovsky, M. Huber, D. Huege, T. Insolia, A. Isar, P. G. Jandt, I. Jansen, S. Jarne, C. Johnsen, J. A. Josebachuili, M. Kaeaepae, A. Kambeitz, . Kampert, K. H. Kasper, P. Katkov, I. Keilhauer, B. Kemp, E. Kieckhafer, R. M. Klages, H. O. Kleifges, M. Kleinfeller, J. Krause, R. Krohm, N. Kuempel, D. Mezek, G. Kukec Kunka, N. Awad, A. W. Kuotb LaHurd, D. Latronico, L. Lauer, R. Lauscher, M. Lautridou, P. Le Coz, S. Lebrun, D. Lebrun, P. Leigui de Oliveira, M. A. Letessier-Selvon, A. Lhenry-Yvon, I. Link, K. Lopes, L. Lopez, R. Lopez Casado, A. Louedec, K. Lucero, A. Malacari, M. Mallamaci, M. Maller, J. Mandat, D. Mantsch, P. Mariazzi, A. G. Marin, V. Maris, I. C. Marsella, G. Martello, D. Martinez, H. Martinez Bravo, O. Martraire, D. Masias Meza, J. J. Mathes, H. J. Mathys, S. Matthews, J. Matthews, J. A. J. Matthiae, G. Maurizio, D. Mayotte, E. Mazur, P. O. Medina, C. Medina-Tanco, G. Meissner, R. Mello, V. B. B. Melo, D. Menshikov, A. Messina, S. Micheletti, M. I. Middendorf, L. Minaya, I. A. Miramonti, L. Mitrica, B. Molina-Bueno, L. Mollerach, S. Montanet, F. Morello, C. Mostafa, M. Moura, C. A. Mueller, G. Muller, M. A. Mueller, S. Navas, S. Necesal, P. Nellen, L. Nelles, A. Neuser, J. Nguyen, P. H. Niculescu-Oglinzanu, M. Niechciol, M. Niemietz, L. Niggemann, T. Nitz, D. Nosek, D. Novotny, V. Nozka, L. Nunez, L. A. Ochilo, L. Oikonomou, F. Olinto, A. Pacheco, N. Pakk Selmi-Dei, D. Palatka, M. Pallotta, J. Papenbreer, P. Parente, G. Parra, A. Paul, T. Pech, M. Pekala, J. Pelayo, R. Pepe, I. M. Perrone, L. Petermann, E. Peters, C. Petrera, S. Petrov, Y. Phuntsok, J. Piegaia, R. Pierog, T. Pieroni, P. Pimenta, M. Pirronello, V. Platino, M. Plum, M. Porcelli, A. Porowski, C. Prado, R. R. Privitera, P. Prouza, M. Quel, E. J. Querchfed, S. Quinn, S. Rautenberg, J. Ravel, O. Ravignani, D. Reinert, D. Revenu, B. Ridky, J. Risse, M. Ristori, P. Rizi, V. Rodrigues de Carvalho, W. Rodriguez Rojo, J. Rodriguez-Frias, M. D. Rogozin, D. Rosado, J. Roth, M. Roulet, E. Rovero, A. C. Saffi, S. J. Saftoiu, A. Salazar, H. Saleh, A. Salesa Greus, F. Salina, G. Sanabria Gomez, J. D. Sanchez, F. Sanchez-Lucas, P. Santos, E. M. Santos, E. Sarazin, F. Sarkar, B. Sarmento, R. Sarmiento-Cano, C. Sato, R. Scarso, C. Schauer, M. Scherini, V. Schieler, H. Schmidt, D. Scholten, O. Schoorlemmer, H. Schovanek, P. Schroeder, F. G. Schulz, A. Schulz, J. Schumacher, J. Sciutto, S. J. Segreto, A. Settimo, M. Shadkam, A. Shellard, R. C. Sigl, G. Sima, O. Smialkowski, A. Smida, R. Snow, G. R. Sommers, P. Sonntag, S. Sorokin, J. Squartini, R. Srivastava, Y. N. Stanca, D. Stanic, S. Stapleton, J. Stasielak, J. Stephan, M. Stutz, A. Suarez, F. Suarez Duran, M. Suomijaervi, T. Supanitsky, A. D. Sutherland, M. S. Swain, J. Szadkowski, Z. Taborda, O. A. Tapia, A. Tepe, A. Theodoro, V. M. Timmermans, C. Todero Peixoto, C. J. Toma, G. Tomankova, L. Tome, B. Tonachini, A. Torralba Elipe, G. Torres Machado, D. Travnicek, P. Trini, M. Ulrich, R. Unger, M. Urban, M. Valdes Galicia, J. F. Valino, I. Valore, L. van Aar, G. van Bodegom, P. van den Berg, A. M. van Velzen, S. van Vliet, A. Varela, E. Vargas Cardenas, B. Varner, G. Vasquez, R. Vazquez, J. R. Vazquez, R. A. Veberic, D. Verzi, V. Vicha, J. Videla, M. Villasenor, L. Vlcek, B. Vorobiov, S. Wahlberg, H. Wainbereg, . Walz, D. Watson, A. A. Weber, M. Weidenhaupt, K. Weindl, A. Werner, F. Widom, A. Wiencke, L. Wilczynski, H. Winchen, T. Wittkowski, D. Wundheiler, B. Wykes, S. Yang, L. Yapici, T. Yushkov, A. Zas, E. Zavrtanik, D. Zavrtanik, M. Zepeda, A. Zimmermann, B. Ziolkowski, M. Zuccarello, F. CA Pierre Auger Collaboration TI Prototype muon detectors for the AMIGA component of the Pierre Auger Observatory SO JOURNAL OF INSTRUMENTATION LA English DT Article DE Detector design and construction technologies and materials; Particle detectors; Overall mechanics design (support structures and materials vibration analysis etc); Performance of High Energy Physics Detectors AB AMIGA (Auger Muons and Infill for the Ground Array) is an upgrade of the Pierre Auger Observatory to extend its range of detection and to directly measure the muon content of the particle showers. It consists of an infill of surface water-Cherenkov detectors accompanied by buried scintillator detectors used for muon counting. The main objectives of the AMIGA engineering array, referred to as the Unitary Cell, are to identify and resolve all engineering issues as well as to understand the muon-number counting uncertainties related to the design of the detector. The mechanical design, fabrication and deployment processes of the muon counters of the Unitary Cell are described in this document. These muon counters modules comprise sealed PVC casings containing plastic scintillation bars, wavelength-shifter optical fibers, 64 pixel photomultiplier tubes, and acquisition electronics. The modules are buried approximately 2.25 m below ground level in order to minimize contamination from electromagnetic shower particles. The mechanical setup, which allows access to the electronics for maintenance, is also described in addition to tests of the modules' response and integrity. The completed Unitary Cell has measured a number of air showers of which a first analysis of a sample event is included here. C1 [Allekotte, I.; Asorey, H.; Bertou, X.; Golup, G.; Berisso, M. Gomez; Harari, D.; Mollerach, S.; Roulet, E.; Taborda, O. A.] Ctr Atom Bariloche, San Carlos de Bariloche, Argentina. [Allekotte, I.; Asorey, H.; Bertou, X.; Golup, G.; Berisso, M. Gomez; Harari, D.; Mollerach, S.; Roulet, E.; Taborda, O. A.] Inst Balseiro CNEA UNCuyo CONICET, San Carlos de Bariloche, Argentina. [Pallotta, J.; Quel, E. J.; Ristori, P.] CITEDEF, Ctr Invest Lciseres & Aplicac, Villa Martelli, Argentina. [Pallotta, J.; Quel, E. J.; Ristori, P.] Consejo Nacl Invest Cient & Tecn, Villa Martelli, Argentina. [Dasso, S.; Masias Meza, J. J.; Piegaia, R.; Pieroni, P.] Univ Buenos Aires, Dept Fis, FCEyN, Buenos Aires, DF, Argentina. [Dasso, S.; Masias Meza, J. J.; Piegaia, R.; Pieroni, P.] Consejo Nacl Invest Cient & Tecn, RA-1033 Buenos Aires, DF, Argentina. [Dova, M. T.; Hansen, P.; Jarne, C.; Mariazzi, A. G.; Sciutto, S. J.; Wahlberg, H.] Univ Nacl La Plata, IFLP, RA-1900 La Plata, Buenos Aires, Argentina. [Dova, M. T.; Hansen, P.; Jarne, C.; Mariazzi, A. G.; Sciutto, S. J.; Wahlberg, H.] Consejo Nacl Invest Cient & Tecn, La Plata, Buenos Aires, Argentina. [Dasso, S.; Rovero, A. C.; Supanitsky, A. D.] IAFE CONICET UBA, Buenos Aires, DF, Argentina. [Freire, M. M.; Micheletti, M. I.] CONICET UNR, Inst Fis Rosario IFIR, Rosario, Argentina. [Freire, M. M.; Micheletti, M. I.] UNR, Fac Ciencias Bioquim & Farmaceut, Rosario, Argentina. [Garcia, B.] Consejo Nacl Invest Cient & Tecn, CNEA, UNSAM, Inst Tecnol Detecc & Astroparticulas, Mendoza, Argentina. [Garcia, B.] Univ Tecnol Nacl Mendoza, Fac Reg Mendoza, CONICET CNEA, Mendoza, Argentina. [Almela, A.; Andrada, B.; Botti, A. M.; Etchegoyen, A.; Figueira, J. M.; Filevich, A.; Fuster, A.; Gallo, F.; Gonzalez, N.; Hampel, M. R.; Josebachuili, M.; Lucero, A.; Melo, D.; Platino, M.; Ravignani, D.; Sanchez, F.; Suarez, F.; Tapia, A.; Videla, M.; Wainbereg, .; Wundheiler, B.] Consejo Nacl Invest Cient & Tecn, Inst Tecnol Detecc & Astroparticulas, CNEA, UNSAM, RA-1033 Buenos Aires, DF, Argentina. [Avila, G.; Contreras, F.; Gomez Vitale, P. F.; Kleinfeller, J.; Rodriguez Rojo, J.; Sato, R.; Scarso, C.; Squartini, R.] Observ Pierre Auger, Malargue, Argentina. [Avila, G.; Gomez Vitale, P. F.] Comis Nacl Energia Atom, Malargue, Argentina. [Almela, A.; Etchegoyen, A.; Suarez, F.; Wainbereg, .] Univ Tecnolog Nacl Buenos Aires, Fac Reg Buenos Aires, Buenos Aires, DF, Argentina. [Bellido, J. A.; Blaess, S. G.; Clay, R. W.; Cooper, M. J.; Dawson, B. R.; Grubb, T. D.; Harrison, T. A.; Hill, G. C.; Malacari, M.; Nguyen, P. H.; Saffi, S. J.; Sorokin, J.; van Bodegom, P.] Univ Adelaide, Adelaide, SA, Australia. [Maurizio, D.; Shellard, R. C.] Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, RJ, Brazil. [Todero Peixoto, C. J.] Univ Sao Paulo, Escola Engn Lorena, Lorena, SP, Brazil. [de Souza, V.; dos Anjos, R. C.; Prado, R. R.] Univ Sao Paulo, Inst Fis Sao Carlos, Sao Carlos, SP, Brazil. [Albuquerque, I. F. M.; Gouffon, P.; Santos, E. M.] Univ Sao Paulo, Inst Fis, CP 20516, BR-01498 Sao Paulo, SP, Brazil. [Chinellato, J. A.; Daniel, B.; Diaz Castro, M. L.; Dobrigkeit, C.; Escobar, C. O.; Fauth, A. C.; Kemp, E.; Muller, M. A.; Pakk Selmi-Dei, D.; Santos, E.; Theodoro, V. M.] Univ Estadual Campinas, IFGW, Campinas, SP, Brazil. [Guedes, G. P.] Univ Estadual Feira de Santana, Feira de Santana, Brazil. [Pepe, I. M.] Univ Fed Bahia, Salvador, BA, Brazil. [Muller, M. A.] Univ Fed Pelotas, Pelotas, RS, Brazil. [Leigui de Oliveira, M. A.; Moura, C. A.] Univ Fed ABC, Santo Andre, SP, Brazil. [Bonifazi, C.; de Mello Neto, J. R. T.; Giaccari, U.; Mello, V. B. B.; Torres Machado, D.; Vasquez, R.] Univ Fed Rio de Janeiro, Inst Fis, BR-21941 Rio De Janeiro, RJ, Brazil. [de Almeida, R. M.; de Oliveira, J.] Univ Fed Fluminense, EEIMVR, Volta Redonda, RJ, Brazil. [Asorey, H.; Nunez, L. A.; Sanabria Gomez, J. D.; Sarmiento-Cano, C.; Suarez Duran, M.] Univ Ind Santander, Bucaramanga, Colombia. [Nosek, D.; Novotny, V.] Charles Univ Prague, Fac Math & Phys, Inst Particle & Nucl Phys, Prague, Czech Republic. [Blazek, J.; Bohacova, M.; Chudoba, J.; Ebr, J.; Hrabovsky, M.; Mandat, D.; Necesal, P.; Palatka, M.; Pech, M.; Prouza, M.; Ridky, J.; Schovanek, P.; Travnicek, P.; Vicha, J.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Horvath, P.; Hrabovsky, M.; Nozka, L.] Palacky Univ, RCPTM, CR-77147 Olomouc, Czech Republic. [Al Samarai, I.; Deligny, O.; Lhenry-Yvon, I.; Martraire, D.; Suomijaervi, T.] Univ Paris 11, Inst Phys Nucl Orsay, CNRS IN2P3, Orsay, France. [Cordier, A.; Garcia-Gamez, D.] Univ Paris 11, Lab Accelerateur Lineaire, CNRS IN2P3, Orsay, France. [Aublin, J.; Billoir, P.; Blanco, M.; Caccianiga, L.; Ghia, P. L.; Letessier-Selvon, A.; Settimo, M.] Univ Paris 06, Lab Phys Nucl & Hautes Energies, Paris, France. [Aublin, J.; Billoir, P.; Blanco, M.; Caccianiga, L.; Ghia, P. L.; Letessier-Selvon, A.; Settimo, M.] Univ Paris 07, CNRS IN2P3, Paris, France. [Berat, C.; Le Coz, S.; Lebrun, D.; Louedec, K.; Montanet, F.; Stutz, A.] Univ Grenoble Alpes, Lab Phys Subatom & Cosmol, CNRS IN2P3, Grenoble, France. [Dallier, R.] Observ Paris, CNRS INSU, Stn Radioastron Nancay, Nancay, France. [Dallier, R.; Gate, F.; Lautridou, P.; Maller, J.; Marin, V.; Ravel, O.; Revenu, B.] Univ Nantes, SUBATECH, Ecole Mines Nantes, CNRS IN2P3, Nantes, France. [Becker, K. H.; Homola, P.; Jandt, I.; Kaeaepae, A.; Kampert, K. H.; Krohm, N.; Mathys, S.; Neuser, J.; Niemietz, L.; Papenbreer, P.; Querchfed, S.; Rautenberg, J.; Sarkar, B.; Schauer, M.; Winchen, T.; Wittkowski, D.] Berg Univ Wuppertal, Fachbereich C Phys, Wuppertal, Germany. [Baus, C.; Bluemer, H.; Huber, D.; Kambeitz, .; Katkov, I.; Link, K.; Werner, F.] Karlsruhe Inst Technol, Inst Expt Kernphys, Campus South, D-76021 Karlsruhe, Germany. [Bluemer, H.; Bridgeman, A.; Daumiller, K.; Hasankiadeh, Q. Dorosti; Engel, R.; Haungs, A.; Heck, D.; Herve, A. E.; Holt, E.; Huege, T.; Keilhauer, B.; Klages, H. O.; Awad, A. W. Kuotb; Mathes, H. J.; Mueller, S.; Pierog, T.; Porcelli, A.; Rogozin, D.; Roth, M.; Schieler, H.; Schroeder, F. G.; Schulz, A.; Smida, R.; Tomankova, L.; Ulrich, R.; Unger, M.; Veberic, D.; Weindl, A.] Karlsruhe Inst Technol, Inst Kernphys, Campus North, D-76021 Karlsruhe, Germany. [Gemmeke, H.; Kleifges, M.; Kunka, N.; Menshikov, A.; Weber, M.; Zimmermann, B.] Karlsruhe Inst Technol, Inst Prozessdatenverarbeitung & Elektr IEKP, D-76021 Karlsruhe, Germany. [Biermann, P. L.] Max Planck Inst Radioastron, Hugel 69, D-53121 Bonn, Germany. [Bretz, T.; Erdmann, M.; Glaser, C.; Hartmann, S.; Hebbeker, T.; Krause, R.; Kuempel, D.; Lauscher, M.; Meissner, R.; Middendorf, L.; Mueller, G.; Niggemann, T.; Peters, C.; Plum, M.; Reinert, D.; Schumacher, J.; Stephan, M.; Urban, M.; Walz, D.; Weidenhaupt, K.] Rhein Westfal TH Aachen, Inst Phys 3, Aachen, Germany. [Batista, R. Alves; Sigl, G.] Univ Hamburg, Inst Theoret Phys 2, Luruper Chaussee 149, Hamburg, Germany. [Aab, A.; Buchholz, P.; Erfani, M.; Heimann, P.; Niechciol, M.; Ochilo, L.; Risse, M.; Sonntag, S.; Tepe, A.; Yushkov, A.; Ziolkowski, M.] Univ Siegen, Fachbereich Phys Expt Teilchenphys 7, Siegen, Germany. [Caccianiga, B.; Giammarchi, M.; Mallamaci, M.; Miramonti, L.] Univ Milan, Milan, Italy. [Caccianiga, B.; Giammarchi, M.; Mallamaci, M.; Miramonti, L.] Ist Nazl Fis Nucl, Via Celoria 16, I-20133 Milan, Italy. [Ambrosio, M.; Aramo, C.; Buscemi, M.; Cilmo, M.; Colalillo, R.; Guarino, F.; Valore, L.] Univ Naples Federico II, Naples, Italy. [Ambrosio, M.; Aramo, C.; Buscemi, M.; Cilmo, M.; Colalillo, R.; Guarino, F.; Valore, L.] Sezione Ist Nazl Fis Nucl, Naples, Italy. [Candusso, M.; Di Giulio, C.; Matthiae, G.; Salina, G.; Verzi, V.] Univ Roma Tor Vergata, I-00173 Rome, Italy. [Candusso, M.; Di Giulio, C.; Matthiae, G.; Salina, G.; Verzi, V.] Sezione Ist Nazl Fis Nucl, Rome, Italy. [Anastasi, G. A.; Caruso, R.; Insolia, A.; Pirronello, V.; Zuccarello, F.] Univ Catania, Catania, Italy. [Anastasi, G. A.; Caruso, R.; Insolia, A.; Pirronello, V.; Zuccarello, F.] Sezione Ist Nazl Fis Nucl, Catania, Italy. [Cester, R.; Tonachini, A.] Univ Turin, Turin, Italy. [Cester, R.; Tonachini, A.] Sezione Ist Nazl Fis Nucl, Turin, Italy. [Bleve, C.; Cataldi, G.; Cocciolo, G.; Coluccia, M. R.; De Mitri, I.; Marsella, G.; Martello, D.; Perrone, L.; Scherini, V.] E De Giorgi Univ Salento, Dipartimento Matemat & Fis, Lecce, Italy. [Bleve, C.; Cataldi, G.; Cocciolo, G.; Coluccia, M. R.; De Mitri, I.; Marsella, G.; Martello, D.; Perrone, L.; Scherini, V.] Sezione Ist Nazl Fis Nucl, Lecce, Italy. [Di Matteo, A.; Petrera, S.; Rizi, V.] Univ Aquila, Dipartimento Sci Fis & Chim, I-67100 Laquila, Italy. [Di Matteo, A.; Petrera, S.; Rizi, V.] Sezione Ist Nazl Fis Nucl, Laquila, Italy. [Petrera, S.] Ist Nazl Fis Nucl, Gran Sasso Sci Inst, Laquila, Italy. [Segreto, A.] Ist Astrofis Spaziale & Fis Cosm Palermo INAF, Palermo, Italy. [Boncioli, D.; Grillo, A. F.] Ist Nazl Fis Nucl, Lab Nazl Gran Sasso, Laquila, Italy. [Aglietta, M.; Castellina, A.; Gorgi, A.; Morello, C.] Osserv Astron Torino, INAF, Turin, Italy. [Aglietta, M.; Bertaina, M. E.; Castellina, A.; Chiavassa, A.; Collica, L.; Gorgi, A.; Latronico, L.; Morello, C.] Ist Nazl Fis Nucl, Sez Torino, Turin, Italy. [Bertaina, M. E.; Chiavassa, A.] Univ Turin, Turin, Italy. [Lopez, R.; Martinez Bravo, O.; Parra, A.; Salazar, H.; Varela, E.] Benemerita Univ Autonoma Puebla, Puebla, Mexico. [Martinez, H.; Zepeda, A.] CINVESTAV, Ctr Invest & Estudios Avanzados, IPN, Mexico City 14000, DF, Mexico. [Pelayo, R.] Inst Politecn Nacl, Unidad Profes Interdisciplinaria Ingn & Tecnol Av, Mexico City, DF, Mexico. [Caballero-Mora, K. S.] Univ Autonoma Chiapas, Tuxtla Gutierrez, Chiapas, Mexico. [Chavez, A. G.; Villasenor, L.] Univ Michoacana San Nicolcis Hidalgo, Morelia, Michoacan, Mexico. [Alvarez Castillo, J.; D'Olivo, J. C.; Medina-Tanco, G.; Nellen, L.; Vargas Cardenas, B.] Univ Nacl Autonoma Mexico, Mexico City 04510, DF, Mexico. [Aminaei, A.; Buitink, S.; de Jong, S. J.; De Mauro, G.; Falcke, H.; Horandel, J. R.; Jansen, S.; Nelles, A.; Schulz, J.; Timmermans, C.; van Aar, G.; van Velzen, S.; van Vliet, A.; Wykes, S.] Radboud Univ Nijmegen, IMAPP, NL-6525 ED Nijmegen, Netherlands. [Docters, W.; Messina, S.; Scholten, O.; van den Berg, A. M.] Univ Groningen, KVI Ctr Adv Radiat Technol, Groningen, Netherlands. [de Jong, S. J.; Falcke, H.; Horandel, J. R.; Jansen, S.; Nelles, A.; Timmermans, C.] Nikhef, Sci Pk, Amsterdam, Netherlands. [Falcke, H.] ASTRON, Dwingeloo, Netherlands. [Borodai, N.; Pekala, J.; Porowski, C.; Stasielak, J.; Wilczynski, H.] Inst Nucl Phys PAN, Krakow, Poland. [Giller, M.; Glas, D.; Smialkowski, A.; Szadkowski, Z.] Univ Lodz, PL-90131 Lodz, Poland. [Abreu, P.; Andringa, S.; Assis, P.; Blanco, M.; Brogueira, P.; Cazon, L.; Conceicao, R.; Diogo, F.; Espadanal, J.; Lopes, L.; Pimenta, M.; Sarmento, R.; Tome, B.] Univ Lisbon, Lab Instrumentacao & Fis Expt Particulas LIP, Lisbon, Portugal. [Abreu, P.; Andringa, S.; Assis, P.; Blanco, A.; Brogueira, P.; Cazon, L.; Conceicao, R.; Diogo, F.; Espadanal, J.; Lopes, L.; Pimenta, M.; Sarmento, R.; Tome, B.] Univ Lisbon, Inst Super Tecn, Lisbon, Portugal. [Brancus, I.; Gherghel-Lascu, A.; Mitrica, B.; Niculescu-Oglinzanu, M.; Saftoiu, A.; Stanca, D.; Toma, G.] Horia Hulubei Natl Inst Phys & Nucl Engn, Bucharest 077125, Romania. [Caramete, L.; Isar, P. G.] Inst Space Sci, Bucharest, Romania. [Arsene, N.; Sima, O.] Univ Bucharest, Dept Phys, Bucharest, Romania. [Badescu, A. M.; Fratu, O.] Univ Politeh Bucharest, Bucharest, Romania. [Filipcic, A.; Zavrtanik, D.; Zavrtanik, M.] J Stefan Inst, Expt Particle Phys Dept, Ljubljana, Slovenia. [Filipcic, A.; Mezek, G. Kukec; Saleh, A.; Stanic, S.; Trini, M.; Vorobiov, S.; Yang, L.; Zavrtanik, D.; Zavrtanik, M.] Univ Nova Gor, Lab Astroparticle Phys, Nova Gorica, Slovenia. [Arqueros, F.; Garcia-Pinto, D.; Minaya, I. A.; Rosado, J.; Vazquez, J. R.] Univ Complutense, E-28040 Madrid, Spain. [del Peral, L.; Pacheco, N.; Rodriguez-Frias, M. D.; Vlcek, B.] Univ Alcala De Henares, Madrid, Spain. [Bueno, A.; Maris, I. C.; Molina-Bueno, L.; Navas, S.; Sanchez-Lucas, P.] Univ Granada, Granada, Spain. [Bueno, A.; Maris, I. C.; Molina-Bueno, L.; Navas, S.; Sanchez-Lucas, P.] CAFPE, Granada, Spain. [Alvarez-Muniz, J.; Lopez Casado, A.; Parente, G.; Rodrigues de Carvalho, W.; Torralba Elipe, G.; Valino, I.; Vazquez, R. A.; Zas, E.] Univ Santiago de Compostela, Santiago De Compostela, Spain. [Covault, C. E.; Ferguson, A. P.; LaHurd, D.; Quinn, S.] Case Western Reserve Univ, Cleveland, OH 44106 USA. [Johnsen, J. A.; Mayotte, E.; Medina, C.; Sarazin, F.; Wiencke, L.] Colorado Sch Mines, Golden, CO 80401 USA. [Brack, J.; Dorofeev, A.; Gookin, B.; Harton, J. L.; Petrov, Y.] Colorado State Univ, Ft Collins, CO 80523 USA. [Anchordoqui, L.; Paul, T.] CUNY, Lehman Coll, Dept Phys & Astron, Bronx, NY USA. [Ahn, E. J.; Escobar, C. O.; Fazzini, N.; Glass, H.; Hojvat, C.; Kasper, P.; Lebrun, P.; Mantsch, P.; Mazur, P. O.] Fermilab Natl Accelerator Lab, Batavia, IL USA. [Matthews, J.; Shadkam, A.] Louisiana State Univ, Baton Rouge, LA 70803 USA. [Dhital, N.; Diaz, J. C.; Fick, B.; Kieckhafer, R. M.; Nitz, D.; Yapici, T.] Michigan Technol Univ, Houghton, MI 49931 USA. [Awal, N.; Farrar, G.; Unger, M.] NYU, New York, NY USA. [Paul, T.; Srivastava, Y. N.; Swain, J.; Widom, A.] Northeastern Univ, Boston, MA 02115 USA. [Allison, P.; Beatty, J. J.; Gordon, J.; Griffith, N.; Stapleton, J.; Sutherland, M. S.] Ohio State Univ, Columbus, OH 43210 USA. [Coleman, A.; Coutu, S.; Mostafa, M.; Oikonomou, F.; Phuntsok, J.; Salesa Greus, F.; Sommers, P.] Penn State Univ, University Pk, PA 16802 USA. [Cronin, J.; Fang, K.; Fujii, T.; Hollon, N.; Olinto, A.; Privitera, P.] Univ Chicago, Enrico Fermi Inst, 5640 S Ellis Ave, Chicago, IL 60637 USA. [Gorham, P.; Schoorlemmer, H.; Varner, G.] Univ Hawaii, Honolulu, HI 96822 USA. [Petermann, E.; Snow, G. R.] Univ Nebraska, Lincoln, NE USA. [Lauer, R.; Matthews, J. A. J.] Univ New Mexico, Albuquerque, NM 87131 USA. [Watson, A. A.] Univ Leeds, Sch Phys & Astron, Leeds, W Yorkshire, England. [Scholten, O.] Vrije Univ Brussels, Brussels, Belgium. RP Aab, A (reprint author), Univ Siegen, Fachbereich Phys Expt Teilchenphys 7, Siegen, Germany. RI de Almeida, Rogerio/L-4584-2016; Fauth, Anderson/F-9570-2012; Abreu, Pedro/L-2220-2014; Assis, Pedro/D-9062-2013; Navas, Sergio/N-4649-2014; Arqueros, Fernando/K-9460-2014; Cazon, Lorenzo/G-6921-2014; Conceicao, Ruben/L-2971-2014; Bueno, Antonio/F-3875-2015; Beatty, James/D-9310-2011; Sao Carlos Institute of Physics, IFSC/USP/M-2664-2016; Badescu, Alina/B-6087-2012; Rosado, Jaime/K-9109-2014; Gouffon, Philippe/I-4549-2012; zas, enrique/I-5556-2015; Chinellato, Jose Augusto/I-7972-2012; Caramete, Laurentiu/C-2328-2011; Chinellato, Carola Dobrigkeit /F-2540-2011; Brogueira, Pedro/K-3868-2012; Moura Santos, Edivaldo/K-5313-2016; Tome, Bernardo/J-4410-2013; Alvarez-Muniz, Jaime/H-1857-2015; Ridky, Jan/H-6184-2014; Pimenta, Mario/M-1741-2013; de Mello Neto, Joao/C-5822-2013; de souza, Vitor/D-1381-2012; Guarino, Fausto/I-3166-2012; Zuccarello, Francesca/R-1834-2016; Colalillo, Roberta/R-5088-2016; Buscemi, Mario/R-5071-2016; Valino, Ines/J-8324-2012; Horvath, Pavel/G-6334-2014; De Mitri, Ivan/C-1728-2017; Mitrica, Bogdan/D-5201-2009; Alves Batista, Rafael/K-6642-2012; Nosek, Dalibor/F-1129-2017 OI de Almeida, Rogerio/0000-0003-3104-2724; Fauth, Anderson/0000-0001-7239-0288; Abreu, Pedro/0000-0002-9973-7314; Assis, Pedro/0000-0001-7765-3606; Navas, Sergio/0000-0003-1688-5758; Arqueros, Fernando/0000-0002-4930-9282; Cazon, Lorenzo/0000-0001-6748-8395; Conceicao, Ruben/0000-0003-4945-5340; Bueno, Antonio/0000-0002-7439-4247; Beatty, James/0000-0003-0481-4952; Del Peral, Luis/0000-0003-2580-5668; Coutu, Stephane/0000-0003-2923-2246; Novotny, Vladimir/0000-0002-4319-4541; Garcia, Beatriz/0000-0003-0919-2734; Nunez, Luis/0000-0003-4575-5899; Rosado, Jaime/0000-0001-8208-9480; Gouffon, Philippe/0000-0001-7511-4115; zas, enrique/0000-0002-4430-8117; Chinellato, Jose Augusto/0000-0002-3240-6270; Chinellato, Carola Dobrigkeit /0000-0002-1236-0789; Brogueira, Pedro/0000-0001-6069-4073; Moura Santos, Edivaldo/0000-0002-2818-8813; Tome, Bernardo/0000-0002-7564-8392; Alvarez-Muniz, Jaime/0000-0002-2367-0803; Ridky, Jan/0000-0001-6697-1393; Pimenta, Mario/0000-0002-2590-0908; Rizi, Vincenzo/0000-0002-5277-6527; Garcia Pinto, Diego/0000-0003-1348-6735; de Mello Neto, Joao/0000-0002-3234-6634; Guarino, Fausto/0000-0003-1427-9885; Zuccarello, Francesca/0000-0003-1853-2550; Colalillo, Roberta/0000-0002-4179-9352; Buscemi, Mario/0000-0003-2123-5434; Valino, Ines/0000-0001-7823-0154; Horvath, Pavel/0000-0002-6710-5339; De Mitri, Ivan/0000-0002-8665-1730; Alves Batista, Rafael/0000-0003-2656-064X; Nosek, Dalibor/0000-0001-6219-200X FU Comision Nacional de Energia Atomica, Agencia Nacional de Promocion Cientifica y Tecnologica (ANPCyT) Argentina; Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET) Argentina; Gobierno de la Provincia de Mendoza, Municipalidad de Malargue Argentina; NDM Holdings and Valle Las Lenas Argentina; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Brazil; Financiadora de Estudos e Projetos (FINEP), Brazil; Fundacao de Amparo a Pesquisa do Estado de Rio de Janeiro (FAPERJ), Brazil; Sao Paulo Research Foundation (FAPESP), Brazil [2010/07359-6, 1999/05404-3]; Australian Research Council; Ministerio de Ciencia e Tecnologia (MCT), Brazil; Czech Science Foundation, Czech Republic; Centre de Calcul IN2P3/CNRS, France; Centre National de la Recherche Scientifique (CNRS), France; Conseil Regional Ile-de-France, France; Departement Physique Nucleaire et Corpusculaire (PNC-IN2P3/CNRS), France; Departement Sciences de l'Univers (SDU-INSU/CNRS), France; Institut Lagrange de Paris (ILP), France [LABEX ANR-10-LABX-63]; Investissements d'Avenir Programme Grant, France; Bundesministerium fur Bildung und Forschu (BMBF), Germany; Deutsche Forschungsgemeinschaft (DFG), Germany; Finanzministerium Baden-Wurttemberg, Germany; Helmholtz Alliance for Astroparticle Physics (HAP), Germany; Helmholtz-Gemeinschaft Deutscher Forschungszentren (HGF), Germany; Ministerium fur Wissenschaft und Forschung, Germany; Nordrhein Westfalen, Germany; Ministerium fur Wissenschaft, Germany; Forschung und Kunst, Germany; Baden-Wurttemberg, Germany; Istituto Nazionale di Fisica Nucleare (INFN), Italy; Ministero dell'Istruzione, dell'Universita e della Ricerca (MIUR), Italy; Gran Sasso Center for Astroparticle Physics (CFA), Italy; CETEMPS Center of Excellence, Italy; Ministero degli Affari Esteri (MAE), Italy; Consejo Nacional de Ciencia y Tecnologia (CONACYT), Mexico; Ministerie van Onderwijs, Netherlands; Cultuur en Wetenschap, Netherlands; Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Netherlands; Stichting voor Fundamenteel Onderzoek der Materie (FOM), Netherlands; National Centre for Research and Development, Poland [ERA-NET-ASPERA/01/11, ERA-NET-ASPERA/02/11]; National Science Centre, Poland [2013/08/M/ST9/00322, 2013/08/M/ST9/00728, HARMONIA 5 - 2013/10/M/ST9/00062]; Portuguese national funds, Portugal; FEDER funds within Programa Operacional Factores de Competitividade through Fundacao para a Ciencia e a Tecnologia (COMPETE), Portugal; Romanian Authority for Scientific Research ANCS, Romania; CNDI-UEFISCDI partnership projects, Romania [20/2012, 194/2012, 1/ASPERA2/2012 ERA-NET, PN-II-RU-PD-2011-3-0145-17, PN-II-RU-PD-2011-3-0062]; Minister of National Education, Programme Space Technology and Advanced Research (STAR), Romania [83/2013]; Slovenian Research Agency, Slovenia; Comunidad de Madrid, Spain; FEDER funds, Spain; Ministerio de Educacion y Ciencia, Spain; Xunta de Galicia, Spain; European Community 7th Framework Program, Spain [FP7-PEOPLE-2012-IEF-328826]; Science and Technology Facilities Council, United Kingdom; Department of Energy, U.S.A. [DE-AC02-07CH11359, DE-FR02-04ER41300, DE-FG02-99ER41107, DE-SC0011689]; National Science Foundation, U.S.A. [0450696]; Grainger Foundation, U.S.A.; NAFOSTED, Vietnam; Marie Curie-IRSES/EPLANET; European Particle Physics Latin American Network; European Union 7th Framework Program [PIRSES-2009-GA-246806]; UNESCO; [MSMT-CR LG13007]; [7AMB14AR005] FX The successful installation, commissioning, and operation of the Pierre Auger Observatory would not have been possible without the strong commitment and effort from the technical and administrative staff in Malargue. We are very grateful to the following agencies and organizations for financial support:; Comision Nacional de Energia Atomica, Agencia Nacional de Promocion Cientifica y Tecnologica (ANPCyT), Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Gobierno de la Provincia de Mendoza, Municipalidad de Malargue, NDM Holdings and Valle Las Lenas, in gratitude for their continuing cooperation over land access, Argentina; the Australian Research Council; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Financiadora de Estudos e Projetos (FINEP), Fundacao de Amparo a Pesquisa do Estado de Rio de Janeiro (FAPERJ), Sao Paulo Research Foundation (FAPESP) Grants No. 2010/07359-6 and No. 1999/05404-3, Ministerio de Ciencia e Tecnologia (MCT), Brazil; Grant No. MSMT-CR LG13007, No. 7AMB14AR005, and the Czech Science Foundation Grant No. 14-17501S, Czech Republic; Centre de Calcul IN2P3/CNRS, Centre National de la Recherche Scientifique (CNRS), Conseil Regional Ile-de-France, Departement Physique Nucleaire et Corpusculaire (PNC-IN2P3/CNRS), Departement Sciences de l'Univers (SDU-INSU/CNRS), Institut Lagrange de Paris (ILP) Grant No. LABEX ANR-10-LABX-63, within the Investissements d'Avenir Programme Grant No. ANR-11-IDEX-0004-02, France; Bundesministerium fur Bildung und Forschu (BMBF), Deutsche Forschungsgemeinschaft (DFG), Finanzministerium Baden-Wurttemberg, Helmholtz Alliance for Astroparticle Physics (HAP), Helmholtz-Gemeinschaft Deutscher Forschungszentren (HGF), Ministerium fur Wissenschaft und Forschung, Nordrhein Westfalen, Ministerium fur Wissenschaft, Forschung und Kunst, Baden-Wurttemberg, Germany; Istituto Nazionale di Fisica Nucleare (INFN), Ministero dell'Istruzione, dell'Universita e della Ricerca (MIUR), Gran Sasso Center for Astroparticle Physics (CFA), CETEMPS Center of Excellence, Ministero degli Affari Esteri (MAE), Italy; Consejo Nacional de Ciencia y Tecnologia (CONACYT), Mexico; Ministerie van Onderwijs, Cultuur en Wetenschap, Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Stichting voor Fundamenteel Onderzoek der Materie (FOM), Netherlands; National Centre for Research and Development, Grants No. ERA-NET-ASPERA/01/11 and No. ERA-NET-ASPERA/02/11, National Science Centre, Grants No. 2013/08/M/ST9/00322, No. 2013/08/M/ST9/00728 and No. HARMONIA 5 - 2013/10/M/ST9/00062, Poland; Portuguese national funds and FEDER funds within Programa Operacional Factores de Competitividade through Fundacao para a Ciencia e a Tecnologia (COMPETE), Portugal; Romanian Authority for Scientific Research ANCS, CNDI-UEFISCDI partnership projects Grants No. 20/2012 and No. 194/2012, Grants No. 1/ASPERA2/2012 ERA-NET, No. PN-II-RU-PD-2011-3-0145-17 and No. PN-II-RU-PD-2011-3-0062, the Minister of National Education, Programme Space Technology and Advanced Research (STAR), Grant No. 83/2013, Romania; Slovenian Research Agency, Slovenia; Comunidad de Madrid, FEDER funds, Ministerio de Educacion y Ciencia, Xunta de Galicia, European Community 7th Framework Program, Grant No. FP7-PEOPLE-2012-IEF-328826, Spain; Science and Technology Facilities Council, United Kingdom; Department of Energy, Contracts No. DE-AC02-07CH11359, No. DE-FR02-04ER41300, No. DE-FG02-99ER41107 and No. DE-SC0011689, National Science Foundation, Grant No. 0450696, The Grainger Foundation, U.S.A.; NAFOSTED, Vietnam; Marie Curie-IRSES/EPLANET, European Particle Physics Latin American Network, European Union 7th Framework Program, Grant No. PIRSES-2009-GA-246806; and UNESCO. NR 19 TC 4 Z9 4 U1 15 U2 41 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD FEB PY 2016 VL 11 AR P02012 DI 10.1088/1748-0221/11/02/P02012 PG 27 WC Instruments & Instrumentation SC Instruments & Instrumentation GA DF6QD UT WOS:000371479800102 ER PT J AU Abbott, B Blair, R Crone, G Green, B Love, J Proudfoot, J Rifki, O Vazquez, WP Vandelli, W Zhang, J AF Abbott, B. Blair, R. Crone, G. Green, B. Love, J. Proudfoot, J. Rifki, O. Vazquez, W. P. Vandelli, W. Zhang, J. TI The evolution of the region of interest builder for the ATLAS experiment at CERN SO JOURNAL OF INSTRUMENTATION LA English DT Article; Proceedings Paper CT Topical Workshop on Electronics for Particle Physics CY SEP 28-OCT 02, 2015 CL Lisbon, PORTUGAL DE Data acquisition concepts; Trigger concepts and systems (hardware and software); Online farms and online filtering AB The ATLAS detector uses a real time selective triggering system to reduce the high interaction rate from 40 MHz to its data storage capacity of 1 kHz. A hardware first level (L1) trigger limits the rate to 100 kHz and a software high level trigger (HLT) selects events for offline analysis. The HLT uses the Regions of Interest (RoIs) identified by L1 and provided by the Region of Interest Builder (RoIB). The current RoIB is a custom VMEbus based system that operated reliably since the first run of the LHC. Since the LHC will reach higher luminosity and ATLAS will increase the complexity and number of L1 triggers, it is desirable to have a more flexible and more operationally maintainable RoIB in the future. In this regard, the functionality of the multi-card VMEbus based RoIB is being migrated to a PC based RoIB with a PCI-Express card. Testing has produced a system that achieved the targeted rate of 100 kHz. C1 [Abbott, B.; Rifki, O.] Univ Oklahoma, Dept Phys & Astron, Norman, OK 73019 USA. [Blair, R.; Love, J.; Proudfoot, J.; Zhang, J.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Crone, G.] UCL, Dept Phys & Astron, London, England. [Green, B.; Vazquez, W. P.] Royal Holloway Univ London, Dept Phys, Surrey, England. [Vandelli, W.] CERN, Geneva, Switzerland. RP Rifki, O (reprint author), Univ Oklahoma, Dept Phys & Astron, Norman, OK 73019 USA. EM othmane.rifki@cern.ch NR 11 TC 0 Z9 0 U1 1 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD FEB PY 2016 VL 11 AR C02080 DI 10.1088/1748-0221/11/02/C02080 PG 9 WC Instruments & Instrumentation SC Instruments & Instrumentation GA DF6QD UT WOS:000371479800080 ER PT J AU Agnes, P Agostino, L Albuquerque, IFM Alexander, T Alton, AK Arisaka, K Back, HO Baldin, B Biery, K Bonfini, G Bossa, M Bottino, B Brigatti, A Brodsky, J Budano, F Bussino, S Cadeddu, M Cadonati, L Cadoni, M Calaprice, F Canci, N Candela, A Cao, H Cariello, M Carlini, M Catalanotti, S Cavalcante, P Chepurnov, A Cocco, AG Covone, G Crippa, L D'Angelo, D D'Incecco, M Davini, S De Cecco, S De Deo, M De Vincenzi, M Derbin, A Devoto, A Di Eusanio, F Di Pietro, G Edkins, E Emp, A Fan, A Fiorillo, G Fomenko, K Forster, G Franco, D Gabriele, F Galbiatic, C Giganti, C Goretti, AM Granato, F Grandi, L Gromov, M Guan, M Guardincerri, Y Hackett, BR Herner, K Hungerford, EV Ianni, A Ianni, A James, I Jollet, C Keeter, K Kendziora, CL Kobychev, V Koh, G Korablev, D Korga, G Kubankin, A Li, X Lissia, M Lombardi, P Luitz, S Ma, Y Machulin, IN Mandarano, A Mari, SM Maricic, J Marini, L Martoff, CJ Meregaglia, A Meyers, PD Miletic, T Milincic, R Montanari, D Monte, A Montuschi, M Monzani, M Mosteiro, P Mount, BJ Muratova, VN Musico, P Napolitano, J Nelson, A Odrowski, S Orsini, M Ortica, F Pagani, L Pallavicini, M Pantic, E Parmeggiano, S Pelczar, K Pelliccia, N Perasso, S Pocar, A Pordes, S Pugachevak, DA Qian, H Randle, K Ranucci, G Razetoc, A Reinhold, B Renshaw, AL Romani, A Rossi, B Rossi, N Rountree, D Sablone, D Saggese, P Saldanha, R Sands, W Sangiorgio, S Savaresek, C Segreto, E Semenov, DA Shields, E Singh, PN Skorokhvatovak, MD Smirnov, O Sotnikov, A Stanford, C Suvorov, Y Tartaglia, R Tatarowicz, J Testera, G Tonazzo, A Trinchese, P Unzhakov, EV Vishneva, A Vogelaar, B Wada, M Walker, S Wang, H Wang, Y Watson, AW Westerdale, S Wilhelmi, J Wojcik, MM Xiang, X Xu, J Yang, C Yoo, J Zavatarelli, S Zec, A Zhong, W Zhu, C Zuzel, G AF Agnes, P. Agostino, L. Albuquerque, I. F. M. Alexander, T. Alton, A. K. Arisaka, K. Back, H. O. Baldin, B. Biery, K. Bonfini, G. Bossa, M. Bottino, B. Brigatti, A. Brodsky, J. Budano, F. Bussino, S. Cadeddu, M. Cadonati, L. Cadoni, M. Calaprice, F. Canci, N. Candela, A. Cao, H. Cariello, M. Carlini, M. Catalanotti, S. Cavalcante, P. Chepurnov, A. Cocco, A. G. Covone, G. Crippa, L. D'Angelo, D. D'Incecco, M. Davini, S. De Cecco, S. De Deo, M. De Vincenzi, M. Derbin, A. Devoto, A. Di Eusanio, F. Di Pietro, G. Edkins, E. Emp, A. Fan, A. Fiorillo, G. Fomenko, K. Forster, G. Franco, D. Gabriele, F. Galbiatic, C. Giganti, C. Goretti, A. M. Granato, F. Grandi, L. Gromov, M. Guan, M. Guardincerri, Y. Hackett, B. R. Herner, K. Hungerford, E. V. Ianni, Al. Ianni, An. James, I. Jollet, C. Keeter, K. Kendziora, C. L. Kobychev, V. Koh, G. Korablev, D. Korga, G. Kubankin, A. Li, X. Lissia, M. Lombardi, P. Luitz, S. Ma, Y. Machulin, I. N. Mandarano, A. Mari, S. M. Maricic, J. Marini, L. Martoff, C. J. Meregaglia, A. Meyers, P. D. Miletic, T. Milincic, R. Montanari, D. Monte, A. Montuschi, M. Monzani, M. Mosteiro, P. Mount, B. J. Muratova, V. N. Musico, P. Napolitano, J. Nelson, A. Odrowski, S. Orsini, M. Ortica, F. Pagani, L. Pallavicini, M. Pantic, E. Parmeggiano, S. Pelczar, K. Pelliccia, N. Perasso, S. Pocar, A. Pordes, S. Pugachevak, D. A. Qian, H. Randle, K. Ranucci, G. Razetoc, A. Reinhold, B. Renshaw, A. L. Romani, A. Rossi, B. Rossi, N. Rountree, D. Sablone, D. Saggese, P. Saldanha, R. Sands, W. Sangiorgio, S. Savaresek, C. Segreto, E. Semenov, D. A. Shields, E. Singh, P. N. Skorokhvatovak, M. D. Smirnov, O. Sotnikov, A. Stanford, C. Suvorov, Y. Tartaglia, R. Tatarowicz, J. Testera, G. Tonazzo, A. Trinchese, P. Unzhakov, E. V. Vishneva, A. Vogelaar, B. Wada, M. Walker, S. Wang, H. Wang, Y. Watson, A. W. Westerdale, S. Wilhelmi, J. Wojcik, M. M. Xiang, X. Xu, J. Yang, C. Yoo, J. Zavatarelli, S. Zec, A. Zhong, W. Zhu, C. Zuzel, G. TI The DarkSide project SO JOURNAL OF INSTRUMENTATION LA English DT Article; Proceedings Paper CT Conference on Light Detection in Noble Elements (LIDINE) CY AUG 28-30, 2015 CL Albany, NY DE Time projection Chambers (TPC); Noble liquid detectors (scintillation, ionization, double-phase); Large detector systems for particle and astroparticle physics; Dark Matter detectors (WIMPs, axions, etc.) ID LIQUID ARGON; GRAN SASSO; LUMINESCENCE; XENON; SCINTILLATION; DETECTOR; KRYPTON; AR-39 AB DarkSide is a graded experimental project based on radiopure argon, and is now, and will be, used in direct dark matter searches. The present DarkSide-50 detector, operating at the Gran Sasso National Laboratory, is a dual-phase, 50 kg, liquid argon time-projection-chamber surrounded by an active liquid scintillator veto. It is designed to be background free in 3 years of operation. DS-50 performances, when filled with atmospheric argon, are reported. However DS-50 filled with underground argon, shows impressive reduction of the Ar-39 isotope. The application of this powerful technology in a future generation of the DarkSide program is discussed. C1 [Agnes, P.; Franco, D.; Perasso, S.; Tonazzo, A.] Univ Paris Diderot, CNRS, CEA Irfu, Obs Paris,Sorbonne Paris Citee,IN2P3,APC, F-75205 Paris, France. [Agostino, L.; De Cecco, S.; Giganti, C.] Univ Paris 06, CNRS, LPNHE Paris, IN2P3, F-75252 Paris, France. [Albuquerque, I. F. M.; Back, H. O.; Brodsky, J.; Calaprice, F.; Cao, H.; Di Eusanio, F.; Galbiatic, C.; Ianni, An.; Koh, G.; Li, X.; Meyers, P. D.; Mosteiro, P.; Nelson, A.; Pocar, A.; Qian, H.; Razetoc, A.; Rossi, B.; Sands, W.; Shields, E.; Stanford, C.; Wada, M.; Westerdale, S.; Xiang, X.; Xu, J.; Zhu, C.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Albuquerque, I. F. M.; Pantic, E.] Univ Sao Paulo, Inst Fis, BR-05508090 Sao Paulo, Brazil. [Alexander, T.; Cadonati, L.; Forster, G.; Monte, A.; Pocar, A.; Randle, K.; Zec, A.] Univ Massachusetts, Amherst Ctr Fundamental Interact, Amherst, MA 01003 USA. [Alexander, T.; Cadonati, L.; Forster, G.; Monte, A.; Pocar, A.; Randle, K.; Zec, A.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Alexander, T.; Baldin, B.; Biery, K.; Forster, G.; Guardincerri, Y.; Herner, K.; Kendziora, C. L.; Montanari, D.; Pordes, S.; Yoo, J.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Alton, A. K.] Augustana Univ, Dept Phys, Sioux Falls, SD 57197 USA. [Arisaka, K.; Fan, A.; Renshaw, A. L.; Suvorov, Y.; Wang, H.; Wang, Y.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Back, H. O.] Pacific NW Natl Lab, Richland, WA 99354 USA. [Bonfini, G.; Bossa, M.; Canci, N.; Candela, A.; Carlini, M.; Cavalcante, P.; D'Incecco, M.; Davini, S.; De Deo, M.; Di Pietro, G.; Gabriele, F.; Galbiatic, C.; Goretti, A. M.; Ianni, Al.; Ianni, An.; Mandarano, A.; Montuschi, M.; Odrowski, S.; Orsini, M.; Razetoc, A.; Rossi, N.; Sablone, D.; Savaresek, C.; Suvorov, Y.; Tartaglia, R.] Lab Nazl Gran Sasso, I-67010 Assergi, AQ, Italy. [Bossa, M.; Davini, S.; Mandarano, A.; Savaresek, C.] Gran Sasso Sci Inst, I-67100 Laquila, AQ, Italy. [Bottino, B.; Marini, L.; Pagani, L.; Pallavicini, M.] Univ Genoa, Dept Phys, I-16146 Genoa, Italy. [Bottino, B.; Cariello, M.; Marini, L.; Musico, P.; Pagani, L.; Pallavicini, M.; Testera, G.; Zavatarelli, S.] Ist Nazl Fis Nucl, Sez Genova, Via Dodecaneso 33, I-16146 Genoa, Italy. [Brigatti, A.; Crippa, L.; D'Angelo, D.; Di Pietro, G.; Lombardi, P.; Parmeggiano, S.; Ranucci, G.; Saggese, P.] Ist Nazl Fis Nucl, Sez Milano, Via Celoria 16, I-20133 Milan, Italy. [Budano, F.; Bussino, S.; De Vincenzi, M.; James, I.; Mari, S. M.] Ist Nazl Fis Nucl, Sez Roma Tre, I-00146 Rome, Italy. [Budano, F.; Bussino, S.; De Vincenzi, M.; James, I.; Mari, S. M.] Univ Rome Tre, Dept Math & Phys, I-00146 Rome, Italy. [Cadeddu, M.; Cadoni, M.; Devoto, A.] Univ Cagliari, Dept Phys, I-09042 Cagliari, Italy. [Cadeddu, M.; Cadoni, M.; Devoto, A.; Lissia, M.] Ist Nazl Fis Nucl, Sez Cagliari, I-09042 Cagliari, Italy. [Canci, N.; Emp, A.; Hungerford, E. V.; Korga, G.; Renshaw, A. L.; Singh, P. N.] Univ Houston, Dept Phys, Houston, TX 77204 USA. [Catalanotti, S.; Covone, G.; Fiorillo, G.; Granato, F.; Korga, G.; Trinchese, P.; Walker, S.] Univ Naples Federico II, Dept Phys, I-80126 Naples, Italy. [Catalanotti, S.; Cocco, A. G.; Covone, G.; Fiorillo, G.; Rossi, B.; Walker, S.] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy. [Cavalcante, P.; Rountree, D.; Vogelaar, B.] Virginia Tech, Dept Phys, Blacksburg, VA 24061 USA. [Chepurnov, A.; Gromov, M.] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow 119991, Russia. [Crippa, L.; D'Angelo, D.] Univ Milan, Dept Phys, I-20133 Milan, Italy. [Derbin, A.; Muratova, V. N.; Semenov, D. A.; Unzhakov, E. V.] St Petersburg Nucl Phys Inst, NRC Kurchatov Inst, Gatchina 188350, Russia. [Edkins, E.; Hackett, B. R.; Maricic, J.; Milincic, R.; Reinhold, B.] Univ Hawaii, Dept Phys & Astron, Honolulu, HI 96822 USA. [Fomenko, K.; Korablev, D.; Smirnov, O.; Sotnikov, A.] Joint Inst Nucl Res, Dubna 141980, Russia. [Granato, F.; Martoff, C. J.; Miletic, T.; Napolitano, J.; Tatarowicz, J.; Vishneva, A.; Watson, A. W.; Wilhelmi, J.] Temple Univ, Dept Phys, Philadelphia, PA 19122 USA. [Grandi, L.; Saldanha, R.] Univ Chicago, Enrico Fermi Inst, Kavli Inst, 5640 S Ellis Ave, Chicago, IL 60637 USA. [Grandi, L.; Saldanha, R.] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. [Guan, M.; Ma, Y.; Wang, Y.; Yang, C.; Zhong, W.] Inst High Energy Phys, Beijing 100049, Peoples R China. [Ianni, Al.] Lab Subterraneo Canfranc, Canfranc Estn 22880, Spain. [Jollet, C.; Meregaglia, A.] Univ Strasbourg, IPHC, CNRS, IN2P3, F-67037 Strasbourg, France. [Keeter, K.; Mount, B. J.] Black Hills State Univ, Sch Nat Sci, Spearfish, SD 57799 USA. [Kobychev, V.] Natl Acad Sci Ukraine, Inst Nucl Res, UA-03680 Kiev, Ukraine. [Kubankin, A.] Belgorod Natl Res Univ, Radiat Phys Lab, Belgorod 308007, Russia. [Luitz, S.; Monzani, M.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Machulin, I. N.; Pugachevak, D. A.; Skorokhvatovak, M. D.; Suvorov, Y.] Nat Res Ctr Kurchatov Inst, Moscow 123182, Russia. [Machulin, I. N.; Pugachevak, D. A.; Skorokhvatovak, M. D.] Natl Res Nucl Univ MEPhI, Moscow 115409, Russia. [Ortica, F.; Pelliccia, N.; Romani, A.] Univ Perugia, Dept Chem Biol & Biotechnol, I-06123 Perugia, Italy. [Ortica, F.; Pelliccia, N.; Romani, A.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Pelczar, K.; Wojcik, M. M.; Zuzel, G.] Jagiellonian Univ, Smoluchowski Inst Phys, PL-30348 Krakow, Poland. [Sangiorgio, S.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Segreto, E.] Univ Estadual Campinas, Inst Phys Gleb Wataghin, BR-13083859 Sao Paulo, Brazil. [Wang, Y.] Univ Chinese Acad Sci, Sch Phys, Beijing 100049, Peoples R China. RP Canci, N (reprint author), Lab Nazl Gran Sasso, I-67010 Assergi, AQ, Italy.; Canci, N (reprint author), Univ Houston, Dept Phys, Houston, TX 77204 USA. EM nicola.canci@angs.infn.it RI Kubankin, Alexander/A-8745-2014; Romani, Aldo/G-8103-2012; Ortica, Fausto/C-1001-2013; Fiorillo, Giuliana/A-2248-2012; Machulin, Igor/R-9711-2016; Canci, Nicola/E-7498-2017; Covone, Giovanni/J-6040-2012; OI Wang, Yi/0000-0002-7351-6978; Romani, Aldo/0000-0002-7338-0097; Ortica, Fausto/0000-0001-8276-452X; Fiorillo, Giuliana/0000-0002-6916-6776; Canci, Nicola/0000-0002-4797-4297; Catalanotti, Sergio/0000-0002-2337-4246; Covone, Giovanni/0000-0002-2553-096X; Franco, Davide/0000-0001-5604-2531; Rossi, Nicola/0000-0002-7046-528X NR 20 TC 1 Z9 1 U1 9 U2 20 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD FEB PY 2016 VL 11 AR C02051 DI 10.1088/1748-0221/11/02/C02051 PG 12 WC Instruments & Instrumentation SC Instruments & Instrumentation GA DF6QD UT WOS:000371479800051 ER PT J AU Allahgholi, A Becker, J Bianco, L Bradford, R Delfs, A Dinapoli, R Goettlicher, P Gronewald, M Graafsma, H Greiffenberg, D Henrich, BH Hirsemann, H Jack, S Klanner, R Klyuev, A Krueger, H Lange, S Marras, A Mezza, D Mozzanica, A Perova, I Xia, Q Schmitt, B Schwandt, J Sheviakov, I Shi, X Trunk, U Zhang, J AF Allahgholi, A. Becker, J. Bianco, L. Bradford, R. Delfs, A. Dinapoli, R. Goettlicher, P. Gronewald, M. Graafsma, H. Greiffenberg, D. Henrich, B. H. Hirsemann, H. Jack, S. Klanner, R. Klyuev, A. Krueger, H. Lange, S. Marras, A. Mezza, D. Mozzanica, A. Perova, I. Xia, Q. Schmitt, B. Schwandt, J. Sheviakov, I. Shi, X. Trunk, U. Zhang, J. TI The adaptive gain integrating pixel detector SO JOURNAL OF INSTRUMENTATION LA English DT Article; Proceedings Paper CT 17th International Workshop on Radiation Imaging Detectors CY JUN 28-JUL 02, 2015 CL DESY, Hamburg, GERMANY HO DESY DE X-ray detectors; X-ray detectors and telescopes; X-ray diffraction detectors ID ELECTRONICS AB The adaptive gain integrating pixel detector (AGIPD) is a development of a collaboration between Deustsches Elektronen-Synchrotron (DESY), the Paul-Scherrer-Institute (PSI), the University of Hamburg and the University of Bonn. The detector is designed to cope with the demanding challenges of the European XFEL. Therefore it comes along with an adaptive gain stage allowing a high dynamic range, spanning from single photon sensitivity to 10(4) x 12.4 keV photons and 352 analogue memory cells per pixel. The aim of this report is to briefly explain the concepts of the AGIPD electronics and mechanics and then present recent experiments demonstrating the functionality of its key features. C1 [Allahgholi, A.; Becker, J.; Bianco, L.; Delfs, A.; Goettlicher, P.; Graafsma, H.; Hirsemann, H.; Jack, S.; Klyuev, A.; Lange, S.; Marras, A.; Perova, I.; Xia, Q.; Sheviakov, I.; Trunk, U.; Zhang, J.] DESY, D-22607 Hamburg, Germany. [Dinapoli, R.; Greiffenberg, D.; Henrich, B. H.; Mezza, D.; Mozzanica, A.; Schmitt, B.; Shi, X.] Paul Scherrer Inst, OFLB-006, CH-5232 Villigen, Switzerland. [Klanner, R.; Schwandt, J.] Univ Hamburg, D-22761 Hamburg, Germany. [Gronewald, M.; Krueger, H.] Univ Bonn, D-53115 Bonn, Germany. [Graafsma, H.] Mid Sweden Univ, Sundsvall, Sweden. [Bradford, R.] Adv Photon Source, Chicago, IL USA. RP Allahgholi, A (reprint author), DESY, D-22607 Hamburg, Germany. EM aschkan.allahgholi@desy.de RI Greiffenberg, Dominic/H-9363-2013; Schmitt, Bernd/H-9365-2013 OI Greiffenberg, Dominic/0000-0002-5723-1825; Schmitt, Bernd/0000-0002-5778-0680 NR 9 TC 0 Z9 0 U1 1 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD FEB PY 2016 VL 11 AR C02066 DI 10.1088/1748-0221/11/02/C02066 PG 9 WC Instruments & Instrumentation SC Instruments & Instrumentation GA DF6QD UT WOS:000371479800066 ER PT J AU Cavaliere, V Adelman, J Albicocco, P Alison, J Ancu, LS Anderson, J Andari, N Andreani, A Andreazza, A Annovi, A Antonelli, M Asbah, N Atkinson, M Baines, J Barberio, E Beccherle, R Beretta, M Bertolucci, F Biesuz, NV Blair, R Bogdan, M Boveia, A Britzger, D Bryant, P Burghgrave, B Calderini, G Camplani, A Cavasinni, V Chakraborty, D Chang, P Cheng, Y Citraro, S Citterio, M Crescioli, F Dawe, N Dell'Orso, M Donati, S Dondero, P Drake, G Gadomski, S Gatta, M Gentsos, C Giannetti, P Gkaitatzis, S Gramling, J Howarth, JW Lizawa, T Ilic, N Jiang, Z Kaji, T Kasten, M Kawaguchi, Y Kim, YK Kimura, N Klimkovich, T Kolb, M Kordas, K Krizka, K Kubota, T Lanza, A Li, HL Liberali, V Lisovyi, M Liu, L Love, J Luciano, P Luongo, C Magalotti, D Maznas, I Meroni, C Mitani, T Nasimi, H Negri, A Neroutsos, P Neubauer, M Nikolaidis, S Okumura, Y Pandini, C Petridou, C Piendibene, M Proudfoot, J Rados, P Roda, C Rossi, E Sakurai, Y Sampsonidis, D Saxon, J Schmitt, S Schoening, A Shochet, M Shojaii, S Soltveit, H Sotiropoulou, CL Stabile, A Swiatlowski, M Tang, F Taylor, PT Testa, M Tompkins, L Vercesi, V Volpi, G Wang, R Watari, R Webster, J Wu, X Yorita, K Yurkewicz, A Zeng, JC Zhang, J Zou, R AF Cavaliere, V. Adelman, J. Albicocco, P. Alison, J. Ancu, L. S. Anderson, J. Andari, N. Andreani, A. Andreazza, A. Annovi, A. Antonelli, M. Asbah, N. Atkinson, M. Baines, J. Barberio, E. Beccherle, R. Beretta, M. Bertolucci, F. Biesuz, N. V. Blair, R. Bogdan, M. Boveia, A. Britzger, D. Bryant, P. Burghgrave, B. Calderini, G. Camplani, A. Cavasinni, V. Chakraborty, D. Chang, P. Cheng, Y. Citraro, S. Citterio, M. Crescioli, F. Dawe, N. Dell'Orso, M. Donati, S. Dondero, P. Drake, G. Gadomski, S. Gatta, M. Gentsos, C. Giannetti, P. Gkaitatzis, S. Gramling, J. Howarth, J. W. Lizawa, T. Ilic, N. Jiang, Z. Kaji, T. Kasten, M. Kawaguchi, Y. Kim, Y. K. Kimura, N. Klimkovich, T. Kolb, M. Kordas, K. Krizka, K. Kubota, T. Lanza, A. Li, H. L. Liberali, V. Lisovyi, M. Liu, L. Love, J. Luciano, P. Luongo, C. Magalotti, D. Maznas, I. Meroni, C. Mitani, T. Nasimi, H. Negri, A. Neroutsos, P. Neubauer, M. Nikolaidis, S. Okumura, Y. Pandini, C. Petridou, C. Piendibene, M. Proudfoot, J. Rados, P. Roda, C. Rossi, E. Sakurai, Y. Sampsonidis, D. Saxon, J. Schmitt, S. Schoening, A. Shochet, M. Shojaii, S. Soltveit, H. Sotiropoulou, C. L. Stabile, A. Swiatlowski, M. Tang, F. Taylor, P. T. Testa, M. Tompkins, L. Vercesi, V. Volpi, G. Wang, R. Watari, R. Webster, J. Wu, X. Yorita, K. Yurkewicz, A. Zeng, J. C. Zhang, J. Zou, R. TI Design of a hardware track finder (Fast Tracker) for the ATLAS trigger SO JOURNAL OF INSTRUMENTATION LA English DT Article; Proceedings Paper CT Topical Workshop on Electronics for Particle Physics CY SEP 28-OCT 02, 2015 CL Lisbon, PORTUGAL DE Trigger concepts and systems (hardware and software); Pattern recognition, cluster, finding, calibration and fitting methods; Trigger algorithms; Data reduction methods AB The use of tracking information at the trigger level in the LHC Run II period is crucial for the trigger and data acquisition system and will be even more so as contemporary collisions that occur at every bunch crossing will increase in Run III. The Fast TracKer is part of the ATLAS trigger upgrade project; it is a hardware processor that will provide every Level-1 accepted event (100 kHz) and within 100 mu s, full tracking information for tracks with momentum as low as 1 GeV. Providing fast, extensive access to tracking information, with resolution comparable to the offline reconstruction, FTK will help in precise detection of the primary and secondary vertices to ensure robust selections and improve the trigger performance. C1 [Cavaliere, V.; Andari, N.; Atkinson, M.; Chang, P.; Kasten, M.; Neubauer, M.; Zeng, J. C.] Univ Illinois, Urbana, IL USA. [Adelman, J.; Burghgrave, B.; Li, H. L.; Yurkewicz, A.] No Illinois Univ, De Kalb, IL 60115 USA. [Albicocco, P.; Antonelli, M.; Beretta, M.; Gatta, M.; Testa, M.] Ist Nazl Fis Nucl, Lab Nazl Frascati, POB 13, I-00044 Frascati, Italy. [Alison, J.; Bogdan, M.; Boveia, A.; Bryant, P.; Cheng, Y.; Kim, Y. K.; Krizka, K.; Liu, L.; Okumura, Y.; Saxon, J.; Shochet, M.; Swiatlowski, M.; Tang, F.; Zou, R.] Univ Chicago, Chicago, IL 60637 USA. [Ancu, L. S.; Gadomski, S.; Gramling, J.; Wu, X.] Univ Geneva, Geneva, Switzerland. [Anderson, J.; Blair, R.; Drake, G.; Lisovyi, M.; Love, J.; Proudfoot, J.; Wang, R.; Webster, J.; Zhang, J.] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. [Andreani, A.; Andreazza, A.; Camplani, A.; Liberali, V.; Shojaii, S.] Univ Milan, Milan, Italy. [Andreani, A.; Andreazza, A.; Camplani, A.; Liberali, V.; Shojaii, S.] Ist Nazl Fis Nucl, Sez Milano, Via Celoria 16, I-20133 Milan, Italy. [Annovi, A.; Beccherle, R.; Bertolucci, F.; Biesuz, N. V.; Cavasinni, V.; Citraro, S.; Dell'Orso, M.; Donati, S.; Giannetti, P.; Luciano, P.; Luongo, C.; Nasimi, H.; Piendibene, M.; Roda, C.; Rossi, E.; Sotiropoulou, C. L.; Volpi, G.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy. [Asbah, N.; Britzger, D.; Howarth, J. W.; Schmitt, S.] DESY, Notkestr 85, Hamburg, Germany. [Asbah, N.; Britzger, D.; Howarth, J. W.; Schmitt, S.] DESY, Zeuthen, Germany. [Cavaliere, V.] CERN, UIUC, CH-1211 Geneva 23, Switzerland. [Baines, J.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Barberio, E.; Dawe, N.; Kubota, T.; Rados, P.; Taylor, P. T.] Univ Melbourne, Melbourne, Vic 3010, Australia. [Bertolucci, F.; Biesuz, N. V.; Cavasinni, V.; Citraro, S.; Dell'Orso, M.; Donati, S.; Luciano, P.; Luongo, C.; Piendibene, M.; Roda, C.; Rossi, E.; Volpi, G.] Univ Pisa, Pisa, Italy. [Calderini, G.; Crescioli, F.; Pandini, C.] UPMC, Lab Phys Nucl & Hautes Energies, Paris, France. [Calderini, G.; Crescioli, F.; Pandini, C.] Univ Paris Diderot, Paris, France. [Calderini, G.; Crescioli, F.; Pandini, C.] CNRS, IN2P3, Paris, France. [Citterio, M.; Meroni, C.; Stabile, A.] Ist Nazl Fis Nucl, Sez Milano, Via Celoria 16, I-20133 Milan, Italy. [Dondero, P.] Univ Pavia, Via Palestro 3, I-27100 Pavia, Italy. [Gkaitatzis, S.; Kimura, N.; Maznas, I.; Neroutsos, P.; Nikolaidis, S.; Petridou, C.; Sampsonidis, D.] Aristotle Univ Thessaloniki, GR-54006 Thessaloniki, Greece. [Lizawa, T.; Kawaguchi, Y.; Kordas, K.; Mitani, T.; Sakurai, Y.; Watari, R.; Yorita, K.] Waseda Univ, Tokyo, Japan. [Ilic, N.; Jiang, Z.; Tompkins, L.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Klimkovich, T.; Kolb, M.; Schoening, A.; Soltveit, H.] Heidelberg Univ, Heidelberg, Germany. [Lanza, A.; Negri, A.; Vercesi, V.] Ist Nazl Fis Nucl, Sez Pavia, I-27100 Pavia, Italy. [Magalotti, D.] Univ Modena & Reggio Emilia, Modena, Italy. [Magalotti, D.] Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy. [Cavaliere, V.] CERN, CH-1211 Geneva 23, Switzerland. RP Cavaliere, V (reprint author), Univ Illinois, Urbana, IL USA.; Cavaliere, V (reprint author), CERN, UIUC, CH-1211 Geneva 23, Switzerland.; Cavaliere, V (reprint author), CERN, CH-1211 Geneva 23, Switzerland. EM viviana.cavaliere@cern.ch RI Stabile, Alberto/L-3419-2016; OI Stabile, Alberto/0000-0002-6868-8329; Liberali, Valentino/0000-0003-1333-6876 NR 6 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD FEB PY 2016 VL 11 AR C02056 DI 10.1088/1748-0221/11/02/C02056 PG 9 WC Instruments & Instrumentation SC Instruments & Instrumentation GA DF6QD UT WOS:000371479800056 ER PT J AU Dharmapalan, R Mane, A Byrum, K Demarteau, M Elam, J May, E Wagner, R Walters, D Xia, L Xie, J Zhao, H Wang, J AF Dharmapalan, R. Mane, A. Byrum, K. Demarteau, M. Elam, J. May, E. Wagner, R. Walters, D. Xia, L. Xie, J. Zhao, H. Wang, J. TI MCP-based photodetectors for cryogenic applications SO JOURNAL OF INSTRUMENTATION LA English DT Article; Proceedings Paper CT Conference on Light Detection in Noble Elements (LIDINE) CY AUG 28-30, 2015 CL Albany, NY DE Detector design and construction technologies and materials; Noble liquid detectors (scintillation, ionization, double-phase); Neutrino detectors; Cryogenics ID ATOMIC LAYER DEPOSITION AB The Argonne MCP-based photo detector is an offshoot of the Large Area Pico-second Photo Detector (LAPPD) project, wherein 6 cm x 6 cm sized detectors are made at Argonne National Laboratory. We have successfully built and tested our first detectors for pico-second timing and few mm spatial resolution. We discuss our efforts to customize these detectors to operate in a cryogenic environment. Initial plans aim to operate in liquid argon. We are also exploring ways to mitigate wave length shifting requirements and also developing bare-MCP photodetectors to operate in a gaseous cryogenic environment. C1 [Dharmapalan, R.; Byrum, K.; Demarteau, M.; May, E.; Wagner, R.; Walters, D.; Xia, L.; Xie, J.; Zhao, H.; Wang, J.] Argonne Natl Lab, HEP Div, 9700 S Cass Ave, Argonne, IL 60439 USA. [Mane, A.; Elam, J.] Argonne Natl Lab, Div Energy Syst, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Dharmapalan, R (reprint author), Argonne Natl Lab, HEP Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM rdharmapalan@anl.gov NR 11 TC 0 Z9 0 U1 1 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD FEB PY 2016 VL 11 AR C02019 DI 10.1088/1748-0221/11/02/C02019 PG 6 WC Instruments & Instrumentation SC Instruments & Instrumentation GA DF6QD UT WOS:000371479800019 ER PT J AU Hare, D Baumbaugh, A Dal Monte, L Freeman, J Hirschauer, J Hughes, E Roy, T Whitbeck, A Yumiceva, F Zimmerman, T AF Hare, D. Baumbaugh, A. Dal Monte, L. Freeman, J. Hirschauer, J. Hughes, E. Roy, T. Whitbeck, A. Yumiceva, F. Zimmerman, T. TI First large volume characterization of the QIE10/11 custom front-end integrated circuits SO JOURNAL OF INSTRUMENTATION LA English DT Article; Proceedings Paper CT Topical Workshop on Electronics for Particle Physics CY SEP 28-OCT 02, 2015 CL Lisbon, PORTUGAL DE Front-end electronics for detector readout; Digital electronic circuits AB The CMS experiment at the CERN Large Hadron Collider (LHC) will upgrade the photon detection and readout systems of its barrel and endcap hadron calorimeters (HCAL) through the second long shutdown of the LHC in 2018. A central feature of this upgrade is the development of two new versions of the QIE (Charge Integrator and Encoder), a Fermilab-designed custom ASIC for measurement of charge from detectors in high-rate environments. These most recent additions to the QIE family feature 17-bits of dynamic range with 1% digitization precision for high charge and a time-to-digital converter (TDC) with half nanosecond resolution all with 16 bits of readout per bunch crossing. For the first time, the CMS experiment has produced and characterized in great detail a large volume of chips. The characteristics and performance of the new QIE and their related chip-to-chip variations as measured in a sample of 10,000 chips is described. C1 [Hare, D.; Baumbaugh, A.; Dal Monte, L.; Freeman, J.; Hirschauer, J.; Whitbeck, A.; Zimmerman, T.] Fermilab Natl Accelerator Lab, Box 500, Batavia, IL 60510 USA. [Hughes, E.] Rutgers State Univ, Dept Phys & Astron, 136 Frelinghuysen Rd, Piscataway, NJ 08854 USA. [Roy, T.; Yumiceva, F.] Florida Inst Technol, Dept Phys & Space Sci, Melbourne, FL 32901 USA. RP Hare, D (reprint author), Fermilab Natl Accelerator Lab, Box 500, Batavia, IL 60510 USA. EM dhare82@gmail.com NR 3 TC 0 Z9 0 U1 1 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD FEB PY 2016 VL 11 AR C02052 DI 10.1088/1748-0221/11/02/C02052 PG 9 WC Instruments & Instrumentation SC Instruments & Instrumentation GA DF6QD UT WOS:000371479800052 ER PT J AU Huffman, BT Affolder, A Arndt, K Bates, R Benoit, M Di Bello, F Blue, A Bortoletto, D Buckland, M Buttar, C Caragiulo, P Das, D Dopke, J Dragone, A Ehrler, F Fadeyev, V Galloway, Z Grabas, H Gregor, IM Grenier, P Grillo, A Hoeferkamp, M Hommeis, LBA John, J Kanisauskas, K Kenney, C Kramberger, J Liang, Z Mandic, I Maneuski, D Martinez-Mckinney, F McMahon, S Meng, L Mikuz, M Muenstermann, D Nickerson, R Peric, I Phillips, P Plackett, R Rubbo, F Segal, J Seidel, S Seiden, A Shipsey, I Song, W Stanitzki, M Su, D Tamma, C Turchetta, R Vigani, L Volk, J Wang, R Warren, M Wilson, F Worm, S Xiu, Q Zhang, J Zhu, H AF Huffman, B. T. Affolder, A. Arndt, K. Bates, R. Benoit, M. Di Bello, F. Blue, A. Bortoletto, D. Buckland, M. Buttar, C. Caragiulo, P. Das, D. Dopke, J. Dragone, A. Ehrler, F. Fadeyev, V. Galloway, Z. Grabas, H. Gregor, I. M. Grenier, P. Grillo, A. Hoeferkamp, M. Hommeis, L. B. A. John, J. Kanisauskas, K. Kenney, C. Kramberger, J. Liang, Z. Mandic, I. Maneuski, D. Martinez-Mckinney, F. McMahon, S. Meng, L. Mikuz, M. Muenstermann, D. Nickerson, R. Peric, I. Phillips, P. Plackett, R. Rubbo, F. Segal, J. Seidel, S. Seiden, A. Shipsey, I. Song, W. Stanitzki, M. Su, D. Tamma, C. Turchetta, R. Vigani, L. Volk, J. Wang, R. Warren, M. Wilson, F. Worm, S. Xiu, Q. Zhang, J. Zhu, H. TI Radiation hardness of two CMOS prototypes for the ATLAS HL-LHC upgrade project SO JOURNAL OF INSTRUMENTATION LA English DT Article; Proceedings Paper CT Topical Workshop on Electronics for Particle Physics CY SEP 28-OCT 02, 2015 CL Lisbon, PORTUGAL DE Radiation damage to electronic components; Solid state detectors; Radiation-hard detectors; Particle tracking detectors (Solid-state detectors) ID PIXEL DETECTORS; TECHNOLOGY AB The LHC luminosity upgrade, known as the High Luminosity LHC (HL-LHC), will require the replacement of the existing silicon strip tracker and the transistion radiation tracker. Although a baseline design for this tracker exists the ATLAS collaboration and other non-ATLAS groups are exploring the feasibility of using CMOS Monolithic Active Pixel Sensors (MAPS) which would be arranged in a strip-like fashion and would take advantage of the service and support structure already being developed for the upgrade. Two test devices made with theAMSH35 process (a High voltage or HV CMOS process) have been subjected to various radiation environments and have performed well. The results of these tests are presented in this paper. C1 [Affolder, A.; Buckland, M.; Meng, L.] Univ Liverpool, Liverpool L69 3BX, Merseyside, England. [Huffman, B. T.; Arndt, K.; Bortoletto, D.; John, J.; Kanisauskas, K.; McMahon, S.; Nickerson, R.; Phillips, P.; Plackett, R.; Shipsey, I.; Vigani, L.] Univ Oxford, Keble Rd, Oxford OX1 3RH, England. [Bates, R.; Blue, A.; Buttar, C.; Kanisauskas, K.; Maneuski, D.] Univ Glasgow, SUPA Sch Phys & Astron, Glasgow, Lanark, Scotland. [Caragiulo, P.; Dragone, A.; Grenier, P.; Kenney, C.; Rubbo, F.; Segal, J.; Tamma, C.] SLAC Natl Accelerator Lab, Menlo Pk, CA USA. [Das, D.; Dopke, J.; McMahon, S.; Phillips, P.; Turchetta, R.; Wilson, F.; Worm, S.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Ehrler, F.; Peric, I.] Karlsruhe Inst Technol, D-76021 Karlsruhe, Germany. [Fadeyev, V.; Galloway, Z.; Grabas, H.; Grillo, A.; Liang, Z.; Martinez-Mckinney, F.; Seiden, A.; Volk, J.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Gregor, I. M.; Stanitzki, M.] DESY, Notkestr 85, Hamburg, Germany. [Hommeis, L. B. A.] Univ Cambridge, Cambridge CB2 1TN, England. [Kramberger, J.; Mandic, I.; Mikuz, M.] Jozef Stefan Inst, Ljubljana, Slovenia. [Mikuz, M.] Univ Ljubljana, Ljubljana 61000, Slovenia. [Benoit, M.; Di Bello, F.; Meng, L.] Univ Geneva, CH-1211 Geneva 4, Switzerland. [Wang, R.; Zhang, J.] Argonne Natl Lab, Argonne, IL 60439 USA. [Warren, M.] UCL, London, England. [Song, W.; Xiu, Q.; Zhu, H.] Inst High Energy Phys, Beijing 100039, Peoples R China. [Buckland, M.] CERN, European Ctr Nucl Res, CH-1211 Geneva 23, Switzerland. [Hoeferkamp, M.; Seidel, S.] Univ New Mexico, Albuquerque, NM 87131 USA. [Muenstermann, D.] Univ Lancaster, Lancaster LA1 4YW, England. RP Huffman, BT (reprint author), Univ Oxford, Keble Rd, Oxford OX1 3RH, England. EM todd.huffman@physics.ox.ac.uk RI Blue, Andrew/C-9882-2016; OI Blue, Andrew/0000-0002-7716-5626; John, Jaya/0000-0001-6831-6501; Muenstermann, Daniel/0000-0001-6223-2497 NR 13 TC 0 Z9 0 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD FEB PY 2016 VL 11 AR C02005 DI 10.1088/1748-0221/11/02/C02005 PG 12 WC Instruments & Instrumentation SC Instruments & Instrumentation GA DF6QD UT WOS:000371479800005 ER PT J AU Kryczynski, P AF Kryczynski, P. CA LArIAT Collaboration TI Scintillation light detection system in LArIAT SO JOURNAL OF INSTRUMENTATION LA English DT Article; Proceedings Paper CT Conference on Light Detection in Noble Elements (LIDINE) CY AUG 28-30, 2015 CL Albany, NY DE Time projection Chambers (TPC); Scintillators, scintillation and light emission processes (solid, gas and liquid scintillators); Cryogenic detectors ID LIQUID ARGON AB The LArIAT experiment is currently taking data at Fermilab using a Liquid Argon TPC, with the aim of studying particle interactions and characterizing detector response for neutrino detectors using argon. In parallel, it serves as a test-bench to develop and evaluate the performance of the simulation, reconstruction, and analysis software used in LAr neutrino experiments. LArIAT also takes advantage of the scintillating capabilities of liquid argon and will evaluate the feasibility of using the light signal to determine calorimetric information and particle identification. To test this possibility, a scintillation light detection system consisting of high Quantum Efficiency (QE) PMT and Silicon Photomultiplier (SiPM) devices is installed in the cryostat, viewing the interior of the TPC. Light collection efficiency is maximized by means of lining the walls with reflector foils covered by a wavelength shifter layer. Collecting the light reflected at the boundaries of the active volume greatly improves also the uniformity of the light yield. Presented here are initial results of the LArIAT light detection system calibration together with the preliminary results of the dedicated simulation and its application in future LAr TPC experiments C1 [Kryczynski, P.] Polish Acad Sci, Inst Nucl Phys, Ul Radzikowskiego 152, PL-31342 Krakow, Poland. Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. RP Kryczynski, P (reprint author), Polish Acad Sci, Inst Nucl Phys, Ul Radzikowskiego 152, PL-31342 Krakow, Poland. EM pkryczyn@fnal.gov NR 15 TC 0 Z9 0 U1 2 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD FEB PY 2016 VL 11 AR C02086 DI 10.1088/1748-0221/11/02/C02086 PG 8 WC Instruments & Instrumentation SC Instruments & Instrumentation GA DF6QD UT WOS:000371479800086 ER PT J AU Naimuddin, M Coutrakon, G Blazey, G Boi, S Dyshkant, A Erdelyi, B Hedin, D Johnson, E Krider, J Rukalin, V Uzunyan, SA Zutshi, V Fordt, R Sellberg, G Rauch, JE Roman, M Rubinov, P Wilson, P AF Naimuddin, Md. Coutrakon, G. Blazey, G. Boi, S. Dyshkant, A. Erdelyi, B. Hedin, D. Johnson, E. Krider, J. Rukalin, V. Uzunyan, S. A. Zutshi, V. Fordt, R. Sellberg, G. Rauch, J. E. Roman, M. Rubinov, P. Wilson, P. TI Development of a proton Computed Tomography detector system SO JOURNAL OF INSTRUMENTATION LA English DT Article; Proceedings Paper CT 17th International Workshop on Radiation Imaging Detectors CY JUN 28-JUL 02, 2015 CL DESY, Hamburg, GERMANY HO DESY DE Instrumentation for hadron therapy; Computerized Tomography (CT) and Computed Radiography (CR); Medical-image reconstruction methods and algorithms, computer-aided software ID RADIOGRAPHY; THERAPY AB Computer tomography is one of the most promising new methods to image abnormal tissues inside the human body. Tomography is also used to position the patient accurately before radiation therapy. Hadron therapy for treating cancer has become one of the most advantegeous and safe options. In order to fully utilize the advantages of hadron therapy, there is a necessity of performing radiography with hadrons as well. In this paper we present the development of a proton computed tomography system. Our second-generation proton tomography system consists of two upstream and two downstream trackers made up of fibers as active material and a range detector consisting of plastic scintillators. We present details of the detector system, readout electronics, and data acquisition system as well as the commissioning of the entire system. We also present preliminary results from the test beam of the range detector. C1 [Naimuddin, Md.] Univ Delhi, Dept Phys & Astrophys, Delhi 110007, India. [Coutrakon, G.; Blazey, G.; Boi, S.; Dyshkant, A.; Erdelyi, B.; Hedin, D.; Johnson, E.; Krider, J.; Rukalin, V.; Uzunyan, S. A.; Zutshi, V.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Fordt, R.; Sellberg, G.; Rauch, J. E.; Roman, M.; Rubinov, P.; Wilson, P.] Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. RP Naimuddin, M (reprint author), Univ Delhi, Dept Phys & Astrophys, Delhi 110007, India. EM nayeem@cern.ch NR 6 TC 3 Z9 3 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD FEB PY 2016 VL 11 AR C02012 DI 10.1088/1748-0221/11/02/C02012 PG 7 WC Instruments & Instrumentation SC Instruments & Instrumentation GA DF6QD UT WOS:000371479800012 ER PT J AU Hasegawa, K Li, YS Bezensek, B Hoang, PH Rathbun, HJ AF Hasegawa, Kunio Li, Yinsheng Bezensek, Bostjan Hoang, Phuong H. Rathbun, Howard J. TI Technical Basis for Application of Collapse Moments for Locally Thinned Pipes Subjected to Torsion and Bending Proposed for ASME Section XI SO JOURNAL OF PRESSURE VESSEL TECHNOLOGY-TRANSACTIONS OF THE ASME LA English DT Article AB Piping components in power plants may experience combined bending and torsion moments during operation. There is a lack of guidance for pipe evaluation for pipes with local wall-thinning flaws under the combined bending and torsion moments. ASME boiler and pressure vessel (B&PV) Code Section XI Working Group is currently developing fully plastic bending pipe evaluation procedures for pressurized piping components containing local wall thinning subjected to combined torsion and bending moments. Using elastic fully plastic finite element (FE) analyses, plastic collapse bending moments under torsions were obtained for 4 (114.3)-24 (609.6) in. (mm) diameter pipes with various local wall-thinning flaw sizes. The objective of this paper is to introduce an equivalent moment, which combines torsion and bending moments by a vector summation, and to establish the applicable range of wall-thinning lengths, angles, and depths, where the equivalent moments are equal to pure bending collapse moments. C1 [Hasegawa, Kunio; Li, Yinsheng] Japan Atom Energy Agcy, Tokai, Ibaraki 3191195, Japan. [Bezensek, Bostjan] Shell UK Ltd, 1 Altens Farm Rd, Aberdeen AB12 3YF, Scotland. [Hoang, Phuong H.] Sargent & Lundy LLC, 55 E Monroe, Chicago, IL 60603 USA. [Rathbun, Howard J.] Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA. RP Hasegawa, K; Li, YS (reprint author), Japan Atom Energy Agcy, Tokai, Ibaraki 3191195, Japan.; Bezensek, B (reprint author), Shell UK Ltd, 1 Altens Farm Rd, Aberdeen AB12 3YF, Scotland.; Hoang, PH (reprint author), Sargent & Lundy LLC, 55 E Monroe, Chicago, IL 60603 USA.; Rathbun, HJ (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA. EM kunioh@kzh.biglobe.ne.jp; li-yinsheng@jaea.go.jp; bostjan.bezensek@shell.com; phuong.h.hoang@sargentlundy.com; Rathbun4@llnl.gov NR 15 TC 0 Z9 0 U1 3 U2 3 PU ASME PI NEW YORK PA TWO PARK AVE, NEW YORK, NY 10016-5990 USA SN 0094-9930 EI 1528-8978 J9 J PRESS VESS-T ASME JI J. Press. Vessel Technol.-Trans. ASME PD FEB PY 2016 VL 138 IS 1 AR 011101 DI 10.1115/1.4031505 PG 8 WC Engineering, Mechanical SC Engineering GA DG0DM UT WOS:000371732900001 ER PT J AU Aoun, B Russo, D AF Aoun, Bachir Russo, Daniela TI Nano-confinement of biomolecules: Hydrophilic confinement promotes structural order and enhances mobility of water molecules SO NANO RESEARCH LA English DT Article DE nano-confinement; protein folding; hydration water; carbon nanotube; drug delivery ID X-RAY-SCATTERING; CARBON NANOTUBES; DYNAMICS; MEMBRANES; PEPTIDES AB Molecular dynamics simulations have been used to investigate the confinement packing characteristics of small hydrophilic (N-acetyl-glycine-methylamide, Nagma) and hydrophobic (N-acetyl-leucine-methylamide, Nalma) biomolecules in large diameter single-wall carbon nanotubes (SWCNTs). We find that hydrophilic biomolecules easily fill the nanotube and self organize into a geometrical configuration which reminds the water structural organization under SWCNT confinement. The packing of hydrophilic biomolecules inside the cylinder confines all water molecules in its core, which enhances their mobility. Conversely, hydrophobic biomolecules accommodate into the nanotubes with a trend for homogeneous filling, which generate unstable small pockets of water and drive toward a state of dehydration. These results shed light on key parameters important for the encapsulation of biomolecules with direct relevance for long-term storage and prevention of degradation. C1 [Aoun, Bachir] Argonne Natl Lab, Chicago, IL 60439 USA. [Russo, Daniela] CNR IOM, Inst Laue Langevin, F-38400 Grenoble, France. [Russo, Daniela] Univ Lyon, Inst Lumiere Matiere, F-69622 Lyon, France. RP Russo, D (reprint author), CNR IOM, Inst Laue Langevin, F-38400 Grenoble, France.; Russo, D (reprint author), Univ Lyon, Inst Lumiere Matiere, F-69622 Lyon, France. EM russo@ill.fr FU ARC-Sante; region Rhone-Alpes (France) FX D. R. thanks ARC-Sante and region Rhone-Alpes (France), for financial support with the Nanofold project. D. R. is grateful to Dr. Jose Teixeira (LLB, CNRS France) and Dr. Alessandro Cunsolo for discussions and suggestions. D. R. is grateful to Dr. Scott Brown (Sunovion Pharmaceuticals, USA) for scientific discussion and to have reviewed the manuscript to improve the scientific language. B. A. gratefully acknowledges the computing resources provided on Blues and Fusion high-performance computing clusters operated by the Laboratory Computing Resource Center at Argonne National Laboratory. NR 26 TC 0 Z9 0 U1 9 U2 12 PU TSINGHUA UNIV PRESS PI BEIJING PA TSINGHUA UNIV, RM A703, XUEYAN BLDG, BEIJING, 10084, PEOPLES R CHINA SN 1998-0124 EI 1998-0000 J9 NANO RES JI Nano Res. PD FEB PY 2016 VL 9 IS 2 BP 273 EP 281 DI 10.1007/s12274-015-0907-7 PG 9 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA DG1BA UT WOS:000371798800001 ER PT J AU Noguere, G Bernard, D Blaise, P Bouland, O Leal, L Leconte, P Litaize, O Peneliau, Y Roque, B Santamarina, A Vidal, JF AF Noguere, G. Bernard, D. Blaise, P. Bouland, O. Leal, L. Leconte, P. Litaize, O. Peneliau, Y. Roque, B. Santamarina, A. Vidal, J. -F. TI Improved Mixed Oxide Fuel Calculations with the Evaluated Nuclear Data Library JEFF-3.2 SO NUCLEAR SCIENCE AND ENGINEERING LA English DT Article DE EOLE; MINERVE; TRIPOLI-4 ID CROSS-SECTIONS; ENERGY-RANGE; REEVALUATION; VALIDATION; CODE AB An overestimation of the k(eff) values for mixed oxide (MOX) fuels was identified with Monte Carlo (TRIPOLI-4) and deterministic (APOLLO2) calculations based on the Joint Evaluated Fission and Fusion (JEFF) evaluated nuclear data library. The overestimation becomes sizeable with Pit aging, reaching a reactivity change of Delta(p)similar or equal to+700 pcm for integral measurements carried out with MOX fuel containing a large amount of americium. This bias was observed for various critical configurations performed in the zero power reactor EOLE of the Commissariat a l'energie atomique et aux energies alternatives (CEA), Cadarache, France. The present work focuses on the improvements achieved with the new (PU)-P-239 and Am-241 evaluated nuclear data files available in the latest version of the JEFF library (JEFF-3.2). The resolved resonance range of the plutonium evaluation was reevaluated at Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee, with the Ski/NH code in collaboration with CEA Cadarache. The resonance parameters of the americium evaluation were obtained with the REFIT code in collaboration with the research institutes Institute for Reference Materials and Measurements aRmm, Geel, Belgium, and Institut de recherche sur les lois fondamentales de l'Univers ofio, Saclay, France. C1 [Noguere, G.; Bernard, D.; Blaise, P.; Bouland, O.; Leconte, P.; Litaize, O.; Peneliau, Y.; Roque, B.; Santamarina, A.; Vidal, J. -F.] CEA, DEN, DER Cadarache, F-13108 St Paul Les Durance, France. [Leal, L.] Oak Ridge Natl Lab, POB 2008, Oak Ridge, TN 37831 USA. RP Noguere, G (reprint author), CEA, DEN, DER Cadarache, F-13108 St Paul Les Durance, France. EM gilles.noguere@cea.fr FU French industrial partner (EDF) through the SINET project of the Nuclear Energy Division of CEA; French industrial partner (AREVA) through the SINET project of the Nuclear Energy Division of CEA FX This work was supported by the French industrial partners (EDF and AREVA) through the SINET project of the Nuclear Energy Division of CEA. NR 56 TC 0 Z9 0 U1 1 U2 1 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5639 EI 1943-748X J9 NUCL SCI ENG JI Nucl. Sci. Eng. PD FEB PY 2016 VL 182 IS 2 BP 135 EP 150 PG 16 WC Nuclear Science & Technology SC Nuclear Science & Technology GA DF7SZ UT WOS:000371559200001 ER PT J AU Ramuhalli, P Roy, S Chai, J AF Ramuhalli, Pradeep Roy, Surajit Chai, Jangbom TI Online Monitoring and Prognostics for Passive Components in Nuclear Power Plants SO NUCLEAR SCIENCE AND ENGINEERING LA English DT Article DE Fatigue crack precursors; Bayesian prognostics; online monitoring ID FATIGUE-CRACK GROWTH; DAMAGE PROGNOSIS; NDE; DEGRADATION; WAVES AB This paper describes research toward developing prognostics technologies for light water nuclear power reactor components. The focus of this paper is on passive components (those that do not need to change state or move to perform their function), although the technologies are applicable to other classes of components as well. A prototypic failure mechanism (high-cycle fatigue) is used to focus the efforts and provide context for the development effort. A Bayesian framework is proposed for the prognostics of remaining useful life and applied to simulated data sets representing nondestructive measurements of high-cycle fatigue damage. The initial results of the prognostics based on simulated data sets are presented. C1 [Ramuhalli, Pradeep; Roy, Surajit] Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. [Chai, Jangbom] Ajou Univ, 5 Woncheon Dong, Suwon 441749, South Korea. RP Ramuhalli, P (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM pradeep.ramuhalli@pnnl.gov FU research project on online monitoring and prognostics for nuclear power plants by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) from the Ministry of Trade, Industry & Energy, Republic of Korea [20128540010020] FX This work was supported under the research project on online monitoring and prognostics for nuclear power plants by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) granted financial resource from the Ministry of Trade, Industry & Energy, Republic of Korea (No. 20128540010020). NR 48 TC 0 Z9 0 U1 1 U2 3 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5639 EI 1943-748X J9 NUCL SCI ENG JI Nucl. Sci. Eng. PD FEB PY 2016 VL 182 IS 2 BP 228 EP 242 PG 15 WC Nuclear Science & Technology SC Nuclear Science & Technology GA DF7SZ UT WOS:000371559200007 ER PT J AU Drosg, M Drake, DM AF Drosg, M. Drake, D. M. TI Neutron Emission Spectra of Triton Beams of 20.22-MeV Fully Stopped in Targets of H2O, D2O, LiF, Si, Ni, Mo, Ta, W, Pt, and Au SO NUCLEAR SCIENCE AND ENGINEERING LA English DT Article DE Fully stopped triton beams; neutron emission cross sections; target materials ID COUNTING EFFICIENCY; 20-MEV TRITONS; DETECTOR; YIELD; WATER AB The Ion Beam Facility of Los Alamos National Laboratory could routinely provide accelerated bunched triton beams to be used in neutron time-of-flight experiments. Exploratory measurements at 0 deg were done to determine the neutron yield with target materials throughout the periodic system yielding absolute specific double-differential neutron yields. Only a few of these measurements were made public previously. The results of these measurements having a mainly demonstrative purpose are presented here because of their uniqueness. For lithium and beryllium, double-differential neutron emission cross sections are given at 17.2 and 15.2 MeV, respectively. C1 [Drosg, M.; Drake, D. M.] Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87544 USA. [Drosg, M.] Univ Vienna, Fac Phys, Boltzmanngasse 5, A-1090 Vienna, Austria. RP Drosg, M (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87544 USA.; Drosg, M (reprint author), Univ Vienna, Fac Phys, Boltzmanngasse 5, A-1090 Vienna, Austria. EM manfred.drosg@univie.ac.at NR 14 TC 1 Z9 1 U1 1 U2 1 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5639 EI 1943-748X J9 NUCL SCI ENG JI Nucl. Sci. Eng. PD FEB PY 2016 VL 182 IS 2 BP 256 EP 260 PG 5 WC Nuclear Science & Technology SC Nuclear Science & Technology GA DF7SZ UT WOS:000371559200009 ER PT J AU Ganda, F Dixon, B Hoffman, E Kim, TK Taiwo, T Wigeland, R AF Ganda, Francesco Dixon, Brent Hoffman, Edward Kim, Taek K. Taiwo, Temitope Wigeland, Roald TI Economic Analysis of Complex Nuclear Fuel Cycles with NE-COST SO NUCLEAR TECHNOLOGY LA English DT Article DE Nuclear economics; fuel cycles AB The purpose of this work is to present a new methodology and the associated computational tools developed within the U.S. Department of Energy Fuel Cycle Options Campaign to quantify the economic performance of complex nuclear fuel cycles. The levelized electricity cost at the busbar is generally chosen to quantibr and compare the economic performance of different base load generating technologies, including nuclear; the levelized electricity cost is the cost that renders the risk-adjusted discounted net present value of the investment cash flow equal to zero. The work presented here is focused on the calculation of the levelized cost of electricity of fuel cycles at mass balance equilibrium, which is termed levelized cost of electricity at equilibrium (LCAE). To alleviate the computational issues associated with the calculation of the LCAE for complex fuel cycles, a novel approach has been developed. This approach has been termed the island approach because of its logical structure, in which a generic complex fuel cycle is subdivided into subsets of fuel cycle facilities called islands, each containing one and only one type of reactor or blanket and an arbitrary number of fuel cycle facilities. A nuclear economic software tool, NE-COST, written in the commercial programming software MATLAB, has been developed to calculate the LCAE of complex fuel cycles with the island computational approach. NE-COST has also been developed with the capability to handle uncertainty: the input parameters (both unit costs and fitel cycle characteristics) can have uncertainty distributions associated with them, and the output can be computed in terms of probability density functions of the LCAE. In this paper, NE-COST will be used to quantify, as examples, the economic performance of (a) once-through systems of current light water reactors PYRs), (b) continuous plutonium recycling in fast reactors (FRs) with drivers and blankets, and (c) recycling of plutonium bred in FRs into LWRs. For each fuel cycle, the contributions to the total LCAE of the main cost components will be identified. C1 [Ganda, Francesco; Hoffman, Edward; Kim, Taek K.; Taiwo, Temitope] Argonne Natl Lab, 9700 S Cass Ave,Bldg 208,Room C114, Argonne, IL 60439 USA. [Dixon, Brent; Wigeland, Roald] Idaho Natl Lab, 2525 Fremont Ave, Idaho Falls, ID 83402 USA. RP Ganda, F (reprint author), Argonne Natl Lab, 9700 S Cass Ave,Bldg 208,Room C114, Argonne, IL 60439 USA. EM fganda@anl.gov FU DOE [DE-AC02-06CH11357] FX This work was supported by the DOE under contract DE-AC02-06CH11357. The authors would like to acknowledge K. Williams for his help in the benchmarking effort of G4-ECONS with NE-COST and G. Rothwell (NEA/OECD) for his expert advice and suggestions. NR 9 TC 0 Z9 0 U1 1 U2 2 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 EI 1943-7471 J9 NUCL TECHNOL JI Nucl. Technol. PD FEB PY 2016 VL 193 IS 2 BP 219 EP 233 PG 15 WC Nuclear Science & Technology SC Nuclear Science & Technology GA DF7SY UT WOS:000371559100001 ER PT J AU Lee, SM Knight, TW Voit, SL Barabash, RI AF Lee, Seung Min Knight, Travis W. Voit, Stewart L. Barabash, Rozaliya I. TI Lattice Parameter Behavior with Different Nd and O Concentrations in (U1-yNdy)O-2 +/- x, Solid Solution SO NUCLEAR TECHNOLOGY LA English DT Article DE Lattice parameter; solid solution; solubility ID OXIDES; FUELS AB The solid solution of (U1-yFPy)O-2 +/- x, has the same fluorite structure as UO2 +/-lambda, and the lattice parameter is affected by dissolved fission product and oxygen concentrations. The relation between the lattice parameter and the concentrations of neodymium and oxygen in the fluorite structure of (U1-yNdy)O-2 +/- x, was investigated using X-ray diffraction. The lattice parameter behavior in the (U1-yNdy)O-2 +/- x, solid solution shows a linear change as a function of the oxygen-to-metal ratio and solubility of neodymium. The lattice parameter depends on the radii of ions forming the fluorite structure and also can be expressed by a particular rule (modified Vegard's law). The numerical analyses of the lattice parameters for the stoichiometric and nonstoichionietric solid solutions were conducted, and the lattice parameter model for the (U1-yNdy)O-2 +/- x, solid solution was assessed. A very linear relationship between the lattice parameter and the Nd and O concentration for the stoichiometry and nonstoichiometry of the (U1-yNdy)O-2 +/- x solid solution was verified. C1 [Lee, Seung Min; Knight, Travis W.] Univ S Carolina, 300 Main St, Columbia, SC 29208 USA. [Voit, Stewart L.] Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. [Barabash, Rozaliya I.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Knight, TW (reprint author), Univ S Carolina, 300 Main St, Columbia, SC 29208 USA. EM knighttw@cec.sc.edu FU ORNL FX The authors gratefully acknowledge support under subcontract from ORNL for the U.S. Department of Energy Fuel Cycle Research and Development Program Advanced Fuels Campaign, and funding for this research was provided by ORNL. NR 14 TC 1 Z9 1 U1 1 U2 2 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 EI 1943-7471 J9 NUCL TECHNOL JI Nucl. Technol. PD FEB PY 2016 VL 193 IS 2 BP 287 EP 296 PG 10 WC Nuclear Science & Technology SC Nuclear Science & Technology GA DF7SY UT WOS:000371559100006 ER PT J AU Sitaraman, H Grout, R AF Sitaraman, Hariswaran Grout, Ray TI Balancing conflicting requirements for grid and particle decomposition in continuum-Lagrangian solvers SO PARALLEL COMPUTING LA English DT Article DE Load balancing; Lagrangian particle tracking; Particle in cell; Exascale simulations ID DIRECT NUMERICAL-SIMULATION; IN-CELL SIMULATIONS; TURBULENT FLOWS; PARALLEL; CODE; COMBUSTION; ALGORITHM; FLAME AB Load balancing strategies for hybrid solvers that involve grid based partial differential equation solution coupled with particle tracking are presented in this paper. A typical Message Passing Interface (MPI) based parallelization of grid based solves are done using a spatial domain decomposition while particle tracking is primarily done using either of the two techniques. One of the techniques is to distribute the particles to MPI ranks to whose grid they belong to while the other is to share the particles equally among all ranks, irrespective of their spatial location. The former technique provides spatial locality for field interpolation but cannot assure load balance in terms of number of particles, which is achieved by the latter. The two techniques are compared for a case of particle tracking in a homogeneous isotropic turbulence box as well as a turbulent jet case. A strong scaling study is performed to more than 32,000 cores, which results in particle densities representative of anticipated exascale machines. The use of alternative implementations of MPI collectives and efficient load equalization strategies are studied to reduce data communication overheads. (C) 2015 Elsevier B.V. All rights reserved. C1 [Sitaraman, Hariswaran; Grout, Ray] Natl Renewable Energy Lab, Computat Sci Ctr, 15013 Denver West Pkwy, Golden, CO 80401 USA. RP Sitaraman, H (reprint author), Natl Renewable Energy Lab, Computat Sci Ctr, 15013 Denver West Pkwy, Golden, CO 80401 USA. EM Hariswaran.Sitaraman@nrel.gov FU Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]; Department of Energy Office of Advanced Scientific Computing Research FX This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. This research was supported by the Department of Energy Office of Advanced Scientific Computing Research. NR 47 TC 0 Z9 0 U1 3 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-8191 EI 1872-7336 J9 PARALLEL COMPUT JI Parallel Comput. PD FEB PY 2016 VL 52 BP 1 EP 21 DI 10.1016/j.parco.2015.10.010 PG 21 WC Computer Science, Theory & Methods SC Computer Science GA DG1RE UT WOS:000371844400001 ER PT J AU Medley, SS Liu, D Gorelenkova, MV Heidbrink, WW Stagner, L AF Medley, S. S. Liu, D. Gorelenkova, M. V. Heidbrink, W. W. Stagner, L. TI Implementation of a 3D halo neutral model in the TRANSP code and application to projected NSTX-U plasmas SO PLASMA PHYSICS AND CONTROLLED FUSION LA English DT Article DE halo neutrals; TRANSP code; NSTX-U ID SPHERICAL TORUS EXPERIMENT; EMISSION AB A 3D halo neutral code developed at the Princeton Plasma Physics Laboratory and implemented for analysis using the TRANSP code is applied to projected National Spherical Torus eXperiment-Upgrade (NSTX-U plasmas). The legacy TRANSP code did not handle halo neutrals properly since they were distributed over the plasma volume rather than remaining in the vicinity of the neutral beam footprint as is actually the case. The 3D halo neutral code uses a 'beam-in-a-box' model that encompasses both injected beam neutrals and resulting halo neutrals. Upon deposition by charge exchange, a subset of the full, one-half and one-third beam energy components produce first generation halo neutrals that are tracked through successive generations until an ionization event occurs or the descendant halos exit the box. The 3D halo neutral model and neutral particle analyzer (NPA) simulator in the TRANSP code have been benchmarked with the Fast-Ion D-Alpha simulation (FIDAsim) code, which provides Monte Carlo simulations of beam neutral injection, attenuation, halo generation, halo spatial diffusion, and photoemission processes. When using the same atomic physics database, TRANSP and FIDAsim simulations achieve excellent agreement on the spatial profile and magnitude of beam and halo neutral densities and the NPA energy spectrum. The simulations show that the halo neutral density can be comparable to the beam neutral density. These halo neutrals can double the NPA flux, but they have minor effects on the NPA energy spectrum shape. The TRANSP and FIDAsim simulations also suggest that the magnitudes of beam and halo neutral densities are relatively sensitive to the choice of the atomic physics databases. C1 [Medley, S. S.; Liu, D.; Gorelenkova, M. V.; Heidbrink, W. W.; Stagner, L.] Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. [Liu, D.; Heidbrink, W. W.; Stagner, L.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. RP Medley, SS (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM medley@pppl.gov OI Stagner, Luke/0000-0001-5516-3729 FU US Department of Energy (DOE) [DE-AC02-09CH11466]; US DOE [DE-FG02-06ER54867] FX This work was supported by US Department of Energy (DOE) under Contract No DE-AC02-09CH11466 and partly by US DOE Grant No. DE-FG02-06ER54867 (UC Irvine). NR 23 TC 0 Z9 0 U1 1 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0741-3335 EI 1361-6587 J9 PLASMA PHYS CONTR F JI Plasma Phys. Control. Fusion PD FEB PY 2016 VL 58 IS 2 AR 025007 DI 10.1088/0741-3335/58/2/025007 PG 15 WC Physics, Fluids & Plasmas SC Physics GA DF7XK UT WOS:000371570900008 ER PT J AU Veinot, KG Eckerman, KF Hertel, NE AF Veinot, K. G. Eckerman, K. F. Hertel, N. E. TI Organ and effective dose coefficients for cranial and caudal irradiation geometries: photons SO RADIATION PROTECTION DOSIMETRY LA English DT Article AB With the introduction of new recommendations of the International Commission on Radiological Protection (ICRP) in Publication 103, the methodology for determining the protection quantity, effective dose, has been modified. The modifications include changes to the defined organs and tissues, the associated tissue weighting factors, radiation weighting factors and the introduction of reference sex-specific computational phantoms. Computations of equivalent doses in organs and tissues are now performed in both the male and female phantoms and the sex-averaged values used to determine the effective dose. Dose coefficients based on the ICRP 103 recommendations were reported in ICRP Publication 116, the revision of ICRP Publication 74 and ICRU Publication 57. The coefficients were determined for the following irradiation geometries: anterior-posterior (AP), posterior-anterior (PA), right and left lateral (RLAT and LLAT), rotational (ROT) and isotropic (ISO). In this work, the methodology of ICRP Publication 116 was used to compute dose coefficients for photon irradiation of the body with parallel beams directed upward from below the feet (caudal) and directed downward from above the head (cranial). These geometries may be encountered in the workplace from personnel standing on contaminated surfaces or volumes and from overhead sources. Calculations of organ and tissue kerma and absorbed doses for caudal and cranial exposures to photons ranging in energy from 10 keV to 10 GeV have been performed using the MCNP6.1 radiation transport code and the adult reference phantoms of ICRP Publication 110. As with calculations reported in ICRP 116, the effects of charged-particle transport are evident when compared with values obtained by using the kerma approximation. At lower energies the effective dose per particle fluence for cranial and caudal exposures is less than AP orientations while above similar to 30 MeV the cranial and caudal values are greater. C1 [Veinot, K. G.; Eckerman, K. F.; Hertel, N. E.] Oak Ridge Natl Lab, Ctr Radiat Protect Knowledge, Oak Ridge, TN 37831 USA. [Hertel, N. E.] Georgia Inst Technol, Atlanta, GA 30332 USA. RP Veinot, KG (reprint author), Oak Ridge Natl Lab, Ctr Radiat Protect Knowledge, Oak Ridge, TN 37831 USA. EM veinotkg@y12.doe.gov NR 11 TC 0 Z9 0 U1 0 U2 0 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0144-8420 EI 1742-3406 J9 RADIAT PROT DOSIM JI Radiat. Prot. Dosim. PD FEB PY 2016 VL 168 IS 2 BP 167 EP 174 DI 10.1093/rpd/ncv183 PG 8 WC Environmental Sciences; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA DF8KV UT WOS:000371607500003 PM 25935016 ER PT J AU Alessi, J AF Alessi, James TI Preface: Proceedings of the 16th International Conference on Ion Sources, New York City, USA 2015 SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Editorial Material C1 [Alessi, James] Brookhaven Natl Lab, Collider Accelerator Dept, Upton, NY 11973 USA. RP Alessi, J (reprint author), Brookhaven Natl Lab, Collider Accelerator Dept, Upton, NY 11973 USA. NR 0 TC 0 Z9 0 U1 4 U2 4 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2016 VL 87 IS 2 AR 02A101 DI 10.1063/1.4940407 PG 2 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA DG0FQ UT WOS:000371740900001 PM 26931907 ER PT J AU Benedetti, LR Holder, JP Perkins, M Brown, CG Anderson, CS Allen, FV Petre, RB Hargrove, D Glenn, SM Simanovskaia, N Bradley, DK Bell, P AF Benedetti, L. R. Holder, J. P. Perkins, M. Brown, C. G. Anderson, C. S. Allen, F. V. Petre, R. B. Hargrove, D. Glenn, S. M. Simanovskaia, N. Bradley, D. K. Bell, P. TI Advances in x-ray framing cameras at the National Ignition Facility to improve quantitative precision in x-ray imaging SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 16th International Conference on Ion Sources (ICIS) CY AUG 23-28, 2015 CL New York, NY SP Brookhaven Natl Lab, Collider Accelerator Dept AB We describe an experimental method to measure the gate profile of an x-ray framing camera and to determine several important functional parameters: relative gain (between strips), relative gain droop (within each strip), gate propagation velocity, gate width, and actual inter-strip timing. Several of these parameters cannot be measured accurately by any other technique. This method is then used to document cross talk-induced gain variations and artifacts created by radiation that arrives before the framing camera is actively amplifying x-rays. Electromagnetic cross talk can cause relative gains to vary significantly as inter-strip timing is varied. This imposes a stringent requirement for gain calibration. If radiation arrives before a framing camera is triggered, it can cause an artifact that manifests as a high-intensity, spatially varying background signal. We have developed a device that can be added to the framing camera head to prevent these artifacts. (C) 2016 AIP Publishing LLC. C1 [Benedetti, L. R.; Holder, J. P.; Perkins, M.; Brown, C. G.; Anderson, C. S.; Allen, F. V.; Petre, R. B.; Hargrove, D.; Glenn, S. M.; Simanovskaia, N.; Bradley, D. K.; Bell, P.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Perkins, M.] Varian, Las Vegas, NV 89119 USA. [Simanovskaia, N.] Pacific Biosci, Menlo Pk, CA 94025 USA. RP Benedetti, LR (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. NR 28 TC 10 Z9 10 U1 4 U2 10 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2016 VL 87 IS 2 AR 023511 DI 10.1063/1.4941754 PG 12 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA DG0FQ UT WOS:000371740900241 PM 26931853 ER PT J AU Bollinger, DS Lackey, J Larson, J Triplett, K AF Bollinger, D. S. Lackey, J. Larson, J. Triplett, K. TI A new solid state extractor pulser for the FNAL magnetron ion source SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 16th International Conference on Ion Sources (ICIS) CY AUG 23-28, 2015 CL New York, NY SP Brookhaven Natl Lab, Collider Accelerator Dept AB A new solid state extractor pulser has been installed on the Fermi National Accelerator Laboratory (FNAL) magnetron ion source, replacing a vacuum tube style pulser that was used for over 40 years. The required ion source extraction voltage is 35 kV for injection into the radio frequency quadrupole. At this voltage, the old pulser had a rise time of over 150 mu s due to the current limit of the vacuum tube. The new solid state pulsers are capable of 50 kV, 100 A peak current pulses and have a rise time of 9 mu s when installed in the operational system. This paper will discuss the pulser design and operational experience to date. (C) 2015 AIP Publishing LLC. C1 [Bollinger, D. S.; Lackey, J.; Larson, J.; Triplett, K.] Fermilab Natl Accelerator Lab, Proton Source Dept, POB 500, Batavia, IL 60510 USA. RP Bollinger, DS (reprint author), Fermilab Natl Accelerator Lab, Proton Source Dept, POB 500, Batavia, IL 60510 USA. EM bollinger@fnal.gov NR 3 TC 0 Z9 0 U1 1 U2 3 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2016 VL 87 IS 2 AR 02B902 DI 10.1063/1.4932121 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA DG0FQ UT WOS:000371740900167 PM 26932074 ER PT J AU Crespillo, ML Graham, JT Zhang, Y Weber, WJ AF Crespillo, M. L. Graham, J. T. Zhang, Y. Weber, W. J. TI Temperature measurements during high flux ion beam irradiations SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 16th International Conference on Ion Sources (ICIS) CY AUG 23-28, 2015 CL New York, NY SP Brookhaven Natl Lab, Collider Accelerator Dept ID THERMAL-CONDUCTIVITY; LUMINESCENCE AB A systematic study of the ion beam heating effect was performed in a temperature range of -170 to 900 degrees C using a 10 MeV Au3+ ion beam and a Yttria stabilized Zirconia (YSZ) sample at a flux of 5.5 x 10(12) cm(-2) s(-1). Different geometric configurations of beam, sample, thermocouple positioning, and sample holder were compared to understand the heat/charge transport mechanisms responsible for the observed temperature increase. The beam heating exhibited a strong dependence on the background (initial) sample temperature with the largest temperature increases occurring at cryogenic temperatures and decreasing with increasing temperature. Comparison with numerical calculations suggests that the observed heating effect is, in reality, a predominantly electronic effect and the true temperature rise is small. A simple model was developed to explain this electronic effect in terms of an electrostatic potential that forms during ion irradiation. Such an artificial beam heating effect is potentially problematic in thermostated ion irradiation and ion beam analysis apparatus, as the operation of temperature feedback systems can be significantly distorted by this effect. (C) 2016 AIP Publishing LLC. C1 [Crespillo, M. L.; Graham, J. T.; Zhang, Y.; Weber, W. J.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Graham, J. T.] Missouri Univ Sci & Technol, Dept Min & Nucl Engn, Rolla, MO 65409 USA. [Zhang, Y.; Weber, W. J.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Crespillo, ML; Graham, JT (reprint author), Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA.; Graham, JT (reprint author), Missouri Univ Sci & Technol, Dept Min & Nucl Engn, Rolla, MO 65409 USA. EM mcrespil@utk.edu; grahamjose@mst.edu RI Weber, William/A-4177-2008 OI Weber, William/0000-0002-9017-7365 NR 17 TC 1 Z9 1 U1 1 U2 5 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2016 VL 87 IS 2 AR 024902 DI 10.1063/1.4941720 PG 7 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA DG0FQ UT WOS:000371740900267 PM 26931879 ER PT J AU Delahaye, P Galata, A Angot, J Cam, JF Traykov, E Ban, G Celona, L Choinski, J Gmaj, P Jardin, P Koivisto, H Kolhinen, V Lamy, T Maunoury, L Patti, G Thuillier, T Tarvainen, O Vondrasek, R Wenander, F AF Delahaye, P. Galata, A. Angot, J. Cam, J. F. Traykov, E. Ban, G. Celona, L. Choinski, J. Gmaj, P. Jardin, P. Koivisto, H. Kolhinen, V. Lamy, T. Maunoury, L. Patti, G. Thuillier, T. Tarvainen, O. Vondrasek, R. Wenander, F. TI Optimizing charge breeding techniques for ISOL facilities in Europe: Conclusions from the EMILIE project SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 16th International Conference on Ion Sources (ICIS) CY AUG 23-28, 2015 CL New York, NY SP Brookhaven Natl Lab, Collider Accelerator Dept ID BEAMS AB The present paper summarizes the results obtained from the past few years in the framework of the Enhanced Multi-Ionization of short-Lived Isotopes for Eurisol (EMILIE) project. The EMILIE project aims at improving the charge breeding techniques with both Electron Cyclotron Resonance Ion Sources (ECRIS) and Electron Beam Ion Sources (EBISs) for European Radioactive Ion Beam (RIB) facilities. Within EMILIE, an original technique for debunching the beam from EBIS charge breeders is being developed, for making an optimal use of the capabilities of CW post-accelerators of the future facilities. Such a debunching technique should eventually resolve duty cycle and time structure issues which presently complicate the data-acquisition of experiments. The results of the first tests of this technique are reported here. In comparison with charge breeding with an EBIS, the ECRIS technique had lower performance in efficiency and attainable charge state for metallic ion beams and also suffered from issues related to beam contamination. In recent years, improvements have been made which significantly reduce the differences between the two techniques, making ECRIS charge breeding more attractive especially for CW machines producing intense beams. Upgraded versions of the Phoenix charge breeder, originally developed by LPSC, will be used at SPES and GANIL/ SPIRAL. These two charge breeders have benefited from studies undertaken within EMILIE, which are also briefly summarized here. (C) 2015 AIP Publishing LLC. C1 [Delahaye, P.; Maunoury, L.] GANIL, CEA DSM, CNRS IN2P3, Blvd Becquerel,BP 55027, F-14076 Caen 05, France. [Galata, A.; Patti, G.] Ist Nazl Fis Nucl, Lab Nazionali Legnaro, Viale Univ 2, I-35020 Padua, Italy. [Angot, J.; Lamy, T.; Thuillier, T.] Univ Grenoble Alpes, LPSC, CNRS IN2P3, 53 Rue Martyrs, F-38026 Grenoble, France. [Cam, J. F.; Traykov, E.; Ban, G.] LPC Caen, 6 Blvd, F-14050 Caen, France. [Celona, L.] Ist Nazl Fis Nucl, Lab Nazionali Sud, Via S Sofia 62, I-95125 Catania, Italy. [Choinski, J.; Gmaj, P.] Univ Warsaw, Heavy Ion Lab, Ul Pasteura 5a, PL-02093 Warsaw, Poland. [Koivisto, H.; Kolhinen, V.; Tarvainen, O.] Univ Jyvaskyla, Dept Phys, PB 35 YEL, SF-40351 Jyvaskyla, Finland. [Vondrasek, R.] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. [Wenander, F.] CERN, ISOLDE, CH-1211 Geneva, Switzerland. RP Delahaye, P (reprint author), GANIL, CEA DSM, CNRS IN2P3, Blvd Becquerel,BP 55027, F-14076 Caen 05, France. EM delahaye@ganil.fr OI Galata, Alessio/0000-0002-8466-3009 NR 24 TC 0 Z9 0 U1 2 U2 7 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2016 VL 87 IS 2 AR 02B510 DI 10.1063/1.4935229 PG 5 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA DG0FQ UT WOS:000371740900156 PM 26932063 ER PT J AU Draganic, IN AF Draganic, I. N. TI Electron stripping processes of H- ion beam in the 80 kV high voltage extraction column and low energy beam transport line at LANSCE SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 16th International Conference on Ion Sources (ICIS) CY AUG 23-28, 2015 CL New York, NY SP Brookhaven Natl Lab, Collider Accelerator Dept AB Basic vacuum calculations were performed for various operating conditions of the Los Alamos National Neutron Science H- Cockcroft-Walton (CW) injector and the Ion Source Test Stand (ISTS). The vacuum pressure was estimated for both the CW and ISTS at five different points: (1) inside the H- ion source, (2) in front of the Pierce electrode, (3) at the extraction electrode, (4) at the column electrode, and (5) at the ground electrode. A static vacuum analysis of residual gases and the working hydrogen gas was completed for the normal ion source working regime. Gas density and partial pressure were estimated for the injected hydrogen gas. The attenuation of H- beam current and generation of electron current in the high voltage acceleration columns and low energy beam transport lines were calculated. The interaction of H- ions on molecular hydrogen (H-2) is discussed as a dominant collision process in describing electron stripping rates. These results are used to estimate the observed increase in the ratio of electrons to H- ion beam in the ISTS beam transport line. (C) 2015 AIP Publishing LLC. C1 [Draganic, I. N.] Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. RP Draganic, IN (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM draganic@lanl.gov NR 5 TC 0 Z9 0 U1 1 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2016 VL 87 IS 2 AR 02B111 DI 10.1063/1.4932398 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA DG0FQ UT WOS:000371740900086 PM 26931993 ER PT J AU Draganic, IN O'Hara, JF Rybarcyk, LJ AF Draganic, I. N. O'Hara, J. F. Rybarcyk, L. J. TI Different approaches to modeling the LANSCE H- ion source filament performance SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 16th International Conference on Ion Sources (ICIS) CY AUG 23-28, 2015 CL New York, NY SP Brookhaven Natl Lab, Collider Accelerator Dept AB An overview of different approaches to modeling of hot tungsten filament performance in the Los Alamos Neutron Science Center (LANSCE) H- surface converter ion source is presented. The most critical components in this negative ion source are two specially shaped wire filaments heated up to the working temperature range of 2600 K-2700 K during normal beam production. In order to prevent catastrophic filament failures (creation of hot spots, wire breaking, excessive filament deflection towards source body, etc.) and to improve understanding of the material erosion processes, we have simulated the filament performance using three different models: a semi-empirical model, a thermal finite-element analysis model, and an analytical model. Results of all three models were compared with data taken during LANSCE beam production. The models were used to support the recent successful transition from the beam pulse repetition rate of 60 Hz-120 Hz. (C) 2015 AIP Publishing LLC. C1 [Draganic, I. N.; O'Hara, J. F.; Rybarcyk, L. J.] Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. RP Draganic, IN (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM draganic@lanl.gov NR 11 TC 0 Z9 0 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2016 VL 87 IS 2 AR 02B112 DI 10.1063/1.4932559 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA DG0FQ UT WOS:000371740900087 PM 26931994 ER PT J AU Dudnikov, V Johnson, R Murray, S Pennisi, T Santana, M Piller, C Stockli, M Welton, R Breitschopf, J Dudnikoya, G AF Dudnikov, V. Johnson, R. Murray, S. Pennisi, T. Santana, M. Piller, C. Stockli, M. Welton, R. Breitschopf, J. Dudnikoya, G. TI Saddle antenna radio frequency ion sources SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 16th International Conference on Ion Sources (ICIS) CY AUG 23-28, 2015 CL New York, NY SP Brookhaven Natl Lab, Collider Accelerator Dept ID SURFACE-PLASMA SOURCE AB Existing RF ion sources for accelerators have specific efficiencies for H+ and H-ion generation similar to 3-5 mA/cm(2) kW, where about 50 kW of RF power is typically needed for 50 mA beam current production. The Saddle Antenna (SA) surface plasma source (SPS) described here was developed to improve H- ion production efficiency, reliability, and availability. In SA RF ion source, the efficiency of positive ion generation in the plasma has been improved to 200 mA/cm(2) kW. After cesiation, the current of negative ions to the collector was increased from 1 mA to 10 mA with RF power similar to 1.5 kW in the plasma (6 mm diameter emission aperture) and up to 30 mA with similar to 4 kW RF. Continuous wave (CW) operation of the SA SPS has been tested on the test stand. The general design of the CW SA SPS is based on the pulsed version. Some modifications were made to improve the cooling and cesiation stability. CW operation with negative ion extraction was tested with RF power up to similar to 1.2 kW in the plasma with production up to Ic = 7 mA. A stable long time generation of H- beam without degradation was demonstrated in RF discharge with AlN discharge chamber. (C) 2015 AIP Publishing LLC. C1 [Dudnikov, V.; Johnson, R.] Muons Inc, Batavia, IL 60510 USA. [Murray, S.; Pennisi, T.; Santana, M.; Piller, C.; Stockli, M.; Welton, R.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Breitschopf, J.] TLU, Seguin, TX 78155 USA. [Dudnikoya, G.] UMD, College Pk, MD 32611 USA. [Dudnikoya, G.] Inst Computat Technol SBRAS, Novosibirsk, Russia. RP Dudnikov, V (reprint author), Muons Inc, Batavia, IL 60510 USA. EM vadim@muonsinc.com OI Piller, Chip/0000-0003-4729-9364 NR 12 TC 0 Z9 0 U1 3 U2 5 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2016 VL 87 IS 2 AR 02B106 DI 10.1063/1.4932120 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA DG0FQ UT WOS:000371740900081 PM 26931988 ER PT J AU Fortgang, CM Batygin, YK Draganic, IN Garnett, RW McCrady, RC Rybarcyk, LJ AF Fortgang, C. M. Batygin, Y. K. Draganic, I. N. Garnett, R. W. McCrady, R. C. Rybarcyk, L. J. TI Design and fabrication of a duoplasmatron extraction geometry and LEBT for the LANSCE H+ RFQ project SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 16th International Conference on Ion Sources (ICIS) CY AUG 23-28, 2015 CL New York, NY SP Brookhaven Natl Lab, Collider Accelerator Dept AB The 750-keV H+ Cockcroft-Walton at LANSCE will be replaced with a recently fabricated 4-rod Radio Frequency Quadrupole (RFQ) with injection energy of 35 keV. The existing duoplasmatron source extraction optics need to be modified to produce up to 35 mA of H+ current with an emittance <0.02 pi-cm-mrad (rms, norm) for injection into the RFQ. Parts for the new source have been fabricated and assembly is in process. We will use the existing duoplasmatron source with a newly designed extraction system and low energy beam transport (LEBT) for beam injection into the RFQ. In addition to source modifications, we need a new LEBT for transport and matching into the RFQ. The LEBT uses two magnetic solenoids with enough drift space between them to accommodate diagnostics and a beam deflector. The LEBT is designed to work over a range of space-charge neutralized currents and emittances. The LEBT is optimized in the sense that it minimizes the beam size in both solenoids for a point design of a given neutralized current and emittance. Special attention has been given to estimating emittance growth due to source extraction optics and solenoid aberrations. Examples of source-to-RFQ matching and emittance growth (due to both non-linear space charge and solenoid aberrations) are presented over a range of currents and emittances about the design point. A mechanical layout drawing will be presented along with the status of the source and LEBT, design, and fabrication. (C) 2015 AIP Publishing LLC. C1 [Fortgang, C. M.; Batygin, Y. K.; Draganic, I. N.; Garnett, R. W.; McCrady, R. C.; Rybarcyk, L. J.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Fortgang, CM (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. EM cfortgang@lanl.gov NR 6 TC 0 Z9 0 U1 1 U2 4 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2016 VL 87 IS 2 AR 02B907 DI 10.1063/1.4932315 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA DG0FQ UT WOS:000371740900172 PM 26932079 ER PT J AU Fuwa, Y Iwashita, Y Tongu, H Inoue, S Hashida, M Sakabe, S Okamura, M Yamazaki, A AF Fuwa, Yasuhiro Iwashita, Yoshihisa Tongu, Hiromu Inoue, Shunsuke Hashida, Masaki Sakabe, Shuji Okamura, Masahiro Yamazaki, Atsushi TI RF synchronized short pulse laser ion source SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 16th International Conference on Ion Sources (ICIS) CY AUG 23-28, 2015 CL New York, NY SP Brookhaven Natl Lab, Collider Accelerator Dept AB A laser ion source that produces shortly bunched ion beam is proposed. In this ion source, ions are extracted immediately after the generation of laser plasma by an ultra-short pulse laser before its diffusion. The ions can be injected into radio frequency (RF) accelerating bucket of a subsequent accelerator. As a proof-of-principle experiment of the ion source, a RF resonator is prepared and H-2 gas was ionized by a short pulse laser in the RF electric field in the resonator. As a result, bunched ions with 1.2 mA peak current and 5 ns pulse length were observed at the exit of RF resonator by a probe. (C) 2015 AIP Publishing LLC. C1 [Fuwa, Yasuhiro; Iwashita, Yoshihisa; Tongu, Hiromu; Inoue, Shunsuke; Hashida, Masaki; Sakabe, Shuji] Kyoto Univ, Inst Chem Res, Uji, Kyoto 6110011, Japan. [Okamura, Masahiro] Brookhaven Natl Lab, Collider Accelerator Dept, Upton, NY 11973 USA. [Yamazaki, Atsushi] Nagoya Univ, Grad Sch Engn, Nagoya, Aichi 4648603, Japan. RP Fuwa, Y (reprint author), Kyoto Univ, Inst Chem Res, Uji, Kyoto 6110011, Japan. EM fuwa@kyticr.kuicr.kyoto-u.ac.jp RI Hashida, Masaki/O-2968-2016 OI Hashida, Masaki/0000-0003-4834-0138 NR 4 TC 0 Z9 0 U1 3 U2 6 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2016 VL 87 IS 2 AR 02A911 DI 10.1063/1.4935841 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA DG0FQ UT WOS:000371740900065 PM 26931972 ER PT J AU Han, BX Stockli, MP Kang, Y Piller, C Murray, SN Pennisi, TR Santana, M Welton, RF AF Han, B. X. Stockli, M. P. Kang, Y. Piller, C. Murray, S. N., Jr. Pennisi, T. R. Santana, M. Welton, R. F. TI Characterization of the CW starter plasma RF matching network for operating the SNS H- ion source with lower H-2 flows SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 16th International Conference on Ion Sources (ICIS) CY AUG 23-28, 2015 CL New York, NY SP Brookhaven Natl Lab, Collider Accelerator Dept AB The Spallation Neutron Source H- ion source is operated with a pulsed 2-MHz RF (50-60 kW) to produce the 1-ms long, similar to 50 mA H- beams at 60 Hz. A continuous low power (similar to 300 W) 13.56-MHz RF plasma, which is initially ignited with a H-2 pressure bump, serves as starter plasma for the pulsed high power 2-MHz RF discharges. To reduce the risk of plasma outages at lower H-2 flow rates which is desired for improved performance of the following radio frequency quadrupole, the 13.56-MHz RF matching network was characterized over a broad range of its two tuning capacitors. The H-alpha line intensity of the 13.56-MHz RF plasma and the reflected power of the 13.56-MHz RF were mapped against the capacitor settings. Optimal tunes for the maximum H-alpha intensity are consistent with the optimal tunes for minimum reflected power. Low limits of the H-2 flow rate not causing plasma outages were explored within the range of the map. A tune region that allows lower H-2 flow rate has been identified, which differs from the optimal tune for global minimum reflected power that was mostly used in the past. (C) 2015 AIP Publishing LLC. C1 [Han, B. X.; Stockli, M. P.; Kang, Y.; Piller, C.; Murray, S. N., Jr.; Pennisi, T. R.; Santana, M.; Welton, R. F.] Oak Ridge Natl Lab, Spallat Neutron Source, Oak Ridge, TN 37831 USA. RP Han, BX (reprint author), Oak Ridge Natl Lab, Spallat Neutron Source, Oak Ridge, TN 37831 USA. EM hanb@ornl.gov OI Piller, Chip/0000-0003-4729-9364 NR 7 TC 0 Z9 0 U1 4 U2 5 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2016 VL 87 IS 2 AR 02B143 DI 10.1063/1.4937772 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA DG0FQ UT WOS:000371740900118 PM 26932025 ER PT J AU Hanada, M Kojima, A Tobari, H Nishikiori, R Hiratsuka, J Kashiwagi, M Umeda, N Yoshida, M Ichikawa, M Watanabe, K Yamano, Y Grisham, LR AF Hanada, M. Kojima, A. Tobari, H. Nishikiori, R. Hiratsuka, J. Kashiwagi, M. Umeda, N. Yoshida, M. Ichikawa, M. Watanabe, K. Yamano, Y. Grisham, L. R. TI Development of the negative ion beams relevant to ITER and JT-60SA at Japan Atomic Energy Agency SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 16th International Conference on Ion Sources (ICIS) CY AUG 23-28, 2015 CL New York, NY SP Brookhaven Natl Lab, Collider Accelerator Dept AB In order to realize negative ion sources and accelerators to be applicable to International Thermonuclear Experimental Reactor and JT-60 Super Advanced, a large cesium (Cs)-seeded negative ion source and a multi-aperture and multi-stage electric acceleration have been developed at Japan Atomic Energy Agency (JAEA). Long pulse production and acceleration of the negative ion beams have been independently carried out. The long pulse production of the high current beams has achieved 100 s at the beam current of 15 A by modifying the JT-60 negative ion source. The pulse duration time is increased three times longer than that before the modification. As for the acceleration, a pulse duration time has been also extended two orders of magnitudes from 0.4 s to 60 s. The developments of the negative ion source and acceleration at JAEA are well in progress towards the realization of the negative ion sources and accelerators for fusion applications. (C) 2015 AIP Publishing LLC. C1 [Hanada, M.; Kojima, A.; Tobari, H.; Nishikiori, R.; Kashiwagi, M.; Umeda, N.; Yoshida, M.; Ichikawa, M.; Watanabe, K.] Japan Atom Energy Agcy, 801-1 Mukouyama, Naka, Ibaraki 3190913, Japan. [Yamano, Y.] Saitama Univ, Saitama, Saitama 3388570, Japan. [Grisham, L. R.] Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. RP Hanada, M (reprint author), Japan Atom Energy Agcy, 801-1 Mukouyama, Naka, Ibaraki 3190913, Japan. EM hanada.masaya@jaea.go.jp NR 10 TC 0 Z9 0 U1 1 U2 2 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2016 VL 87 IS 2 AR 02B322 DI 10.1063/1.4934584 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA DG0FQ UT WOS:000371740900143 PM 26932050 ER PT J AU Hershcovitch, A Gushenets, VI Seleznev, DN Bugaev, AS Dugin, S Oks, EM Kulevoy, TV Alexeyenko, O Kozlov, A Kropachev, GN Kuibeda, RP Minaev, S Vizir, A Yushkov, GY AF Hershcovitch, A. Gushenets, V. I. Seleznev, D. N. Bugaev, A. S. Dugin, S. Oks, E. M. Kulevoy, T. V. Alexeyenko, O. Kozlov, A. Kropachev, G. N. Kuibeda, R. P. Minaev, S. Vizir, A. Yushkov, G. Yu. TI Molecular ion sources for low energy semiconductor ion implantation (invited) SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 16th International Conference on Ion Sources (ICIS) CY AUG 23-28, 2015 CL New York, NY SP Brookhaven Natl Lab, Collider Accelerator Dept ID BEAM EPITAXY; PH3; ASH3 AB Smaller semiconductors require shallow, low energy ion implantation, resulting space charge effects, which reduced beam currents and production rates. To increase production rates, molecular ions are used. Boron and phosphorous (or arsenic) implantation is needed for P-type and N-type semiconductors, respectively. Carborane, which is the most stable molecular boron ion leaves unacceptable carbon residue on extraction grids. A self-cleaning carborane acid compound (C4H12B10O4) was synthesized and utilized in the ITEP Bernas ion source resulting in large carborane ion output, without carbon residue. Pure gaseous processes are desired to enable rapid switch among ion species. Molecular phosphorous was generated by introducing phosphine in dissociators via 4PH(3) = P-4 + 6H(2); generated molecular phosphorous in a pure gaseous process was then injected into the HCEI Calutron-Bernas ion source, from which P-4(+) ion beams were extracted. Results from devices and some additional concepts are described. (C) 2015 AIP Publishing LLC. C1 [Hershcovitch, A.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Gushenets, V. I.; Bugaev, A. S.; Oks, E. M.; Vizir, A.; Yushkov, G. Yu.] Russian Acad Sci, High Current Elect Inst, Siberian Branch, Tomsk 634055, Russia. [Seleznev, D. N.; Kulevoy, T. V.; Kozlov, A.; Kropachev, G. N.; Kuibeda, R. P.; Minaev, S.] Inst Theoret & Expt Phys, Moscow 117218, Russia. [Dugin, S.; Alexeyenko, O.] Russian Federat State Res Inst Chem & Technol Org, State Sci Ctr, Moscow, Russia. RP Hershcovitch, A (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM hershcovitch@bnl.gov RI Yushkov, Georgy/O-8024-2015; Vizir, Alexey/R-2139-2016; OI Yushkov, Georgy/0000-0002-7615-6058; Vizir, Alexey/0000-0002-9563-8650; Oks, Efim/0000-0002-9323-0686 NR 12 TC 0 Z9 0 U1 6 U2 13 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2016 VL 87 IS 2 AR 02B702 DI 10.1063/1.4931719 PG 5 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA DG0FQ UT WOS:000371740900158 PM 26932065 ER PT J AU Hershcovitch, AI AF Hershcovitch, Ady I. TI Eliminating unwanted electrons in EBIS devices SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 16th International Conference on Ion Sources (ICIS) CY AUG 23-28, 2015 CL New York, NY SP Brookhaven Natl Lab, Collider Accelerator Dept AB In electron beam ion sources, step-wise ionization to high charge states is accomplished by magnetically confined electron beam. Electron space charge and high voltage electrodes confine the ions. The relativistic heavy ion collider (RHIC) ion source Debye length meets requirements for instabilities with free source of energy to grow. Electrons stripped from ions provide energy for a variety of microinstabilities to grow. Possible solution is to remove these electrons from the trap to a drift tube biased to higher voltage than the other tubes between the gate and the collector. If needed, a split drift tube for bleeding these electrons to ground is added. (C) 2015 AIP Publishing LLC. C1 [Hershcovitch, Ady I.] Brookhaven Natl Lab, Collider Accelerator Dept, Upton, NY 11973 USA. RP Hershcovitch, AI (reprint author), Brookhaven Natl Lab, Collider Accelerator Dept, Upton, NY 11973 USA. EM hershcovitch@bnl.gov NR 11 TC 1 Z9 1 U1 2 U2 2 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2016 VL 87 IS 2 AR 02A918 DI 10.1063/1.4937013 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA DG0FQ UT WOS:000371740900072 PM 26931979 ER PT J AU Ikeda, S Kumaki, M Kanesue, T Okamura, M AF Ikeda, S. Kumaki, M. Kanesue, T. Okamura, M. TI Effect of the solenoid in various conditions of the laser ion source at Brookhaven National Laboratory SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 16th International Conference on Ion Sources (ICIS) CY AUG 23-28, 2015 CL New York, NY SP Brookhaven Natl Lab, Collider Accelerator Dept AB In the laser ion source (LIS) at the Brookhaven National Laboratory (BNL), a solenoid is used to guide the laser ablation plasma and modulate the extracted beam current. Many types of ion species are guided. In some cases, the plasma plume is injected into the solenoid away from the solenoidal axis. To investigate the effects of the solenoid on the beam extracted from the plasma that has different properties, the beam current was measured in the setup of the LIS at the BNL. The beam current of Li, Al, Si, Fe, and Au increased when the magnetic field was applied. For most of the species the peak current and the total charge within a single beam pulse increased around 10 times with a magnetic field less than 100 G. In addition, for some species the rate of increase of the peak currents became smaller when the magnetic flux densities were larger than certain values depending on the species. In this case, the current waveforms were distorted. At the same magnetic field value, the field was more effective on lighter species than on heavier ones. When plasma was injected offset from the axis of the solenoid, peak current and total charge became half of those without offset. The experimental data are useful for the operation of the LIS at the BNL. (C) 2015 AIP Publishing LLC. C1 [Ikeda, S.] Tokyo Inst Technol, Interdisciplinary Grad Sch Sci & Engn, Yokohama, Kanagawa 2168502, Japan. [Ikeda, S.; Kumaki, M.] RIKEN, Nishina Ctr Accelerator Based Sci, Wako, Saitama 3510108, Japan. [Kanesue, T.; Okamura, M.] Brookhaven Natl Lab, Collider Accelerator Dept, Upton, NY 11973 USA. RP Ikeda, S (reprint author), Tokyo Inst Technol, Interdisciplinary Grad Sch Sci & Engn, Yokohama, Kanagawa 2168502, Japan.; Ikeda, S (reprint author), RIKEN, Nishina Ctr Accelerator Based Sci, Wako, Saitama 3510108, Japan. EM ikeda.s.ae@m.titech.ac.jp NR 3 TC 0 Z9 0 U1 3 U2 7 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2016 VL 87 IS 2 AR 02A915 DI 10.1063/1.4935785 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA DG0FQ UT WOS:000371740900069 PM 26931976 ER PT J AU Ikeda, S Takahashi, K Okamura, M Horioka, K AF Ikeda, S. Takahashi, K. Okamura, M. Horioka, K. TI Behavior of moving plasma in solenoidal magnetic field in a laser ion source SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 16th International Conference on Ion Sources (ICIS) CY AUG 23-28, 2015 CL New York, NY SP Brookhaven Natl Lab, Collider Accelerator Dept AB In a laser ion source, a solenoidal magnetic field is useful to guide the plasma and to control the extracted beam current. However, the behavior of the plasma drifting in the magnetic field has not been well understood. Therefore, to investigate the behavior, we measured the plasma ion current and the total charge within a single pulse in the solenoid by changing the distance from the entrance of the solenoid to a detector. We observed that the decrease of the total charge along the distance became smaller as the magnetic field became larger and then the charge became almost constant with a certain magnetic flux density. The results indicate that the transverse spreading speed of the plasma decreased with increasing the field and the plasma was confined transversely with the magnetic flux density. We found that the reason of the confinement was not magnetization of ions but an influence induced by electrons. (C) 2015 AIP Publishing LLC. C1 [Ikeda, S.; Horioka, K.] Tokyo Inst Technol, Interdisciplinary Grad Sch Sci & Engn, Yokohama, Kanagawa 2268502, Japan. [Ikeda, S.] RIKEN, Nishina Ctr Accelerator Based Sci, Wako, Saitama 3510108, Japan. [Takahashi, K.] Nagaoka Univ Technol, Dept Elect Engn, Nagaoka, Niigata 9402137, Japan. [Okamura, M.] Brookhaven Natl Lab, Collider Accelerator Dept, Upton, NY 11973 USA. RP Ikeda, S (reprint author), Tokyo Inst Technol, Interdisciplinary Grad Sch Sci & Engn, Yokohama, Kanagawa 2268502, Japan.; Ikeda, S (reprint author), RIKEN, Nishina Ctr Accelerator Based Sci, Wako, Saitama 3510108, Japan. EM ikeda.s.ae@m.titech.ac.jp NR 9 TC 2 Z9 2 U1 1 U2 6 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2016 VL 87 IS 2 AR 02A912 DI 10.1063/1.4935646 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA DG0FQ UT WOS:000371740900066 PM 26931973 ER PT J AU Ji, Q Seidl, PA Waldron, WL Takakuwa, JH Friedman, A Grote, DP Persaud, A Barnard, JJ Schenkel, T AF Ji, Q. Seidl, P. A. Waldron, W. L. Takakuwa, J. H. Friedman, A. Grote, D. P. Persaud, A. Barnard, J. J. Schenkel, T. TI Development and testing of a pulsed helium ion source for probing materials and warm dense matter studies SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 16th International Conference on Ion Sources (ICIS) CY AUG 23-28, 2015 CL New York, NY SP Brookhaven Natl Lab, Collider Accelerator Dept ID NDCX-II AB The neutralized drift compression experiment was designed and commissioned as a pulsed, linear induction accelerator to drive thin targets to warm dense matter (WDM) states with peak temperatures of similar to 1 eV using intense, short pulses (similar to 1 ns) of 1.2 MeV lithium ions. At that kinetic energy, heating a thin target foil near the Bragg peak energy using He+ ions leads to more uniform energy deposition of the target material than Li+ ions. Experiments show that a higher current density of helium ions can be delivered from a plasma source compared to Li+ ions from a hot plate type ion source. He+ beam pulses as high as 200 mA at the peak and 4 mu s long were measured from a multi-aperture 7-cm-diameter emission area. Within +/- 5% variation, the uniform beam area is approximately 6 cm across. The accelerated and compressed pulsed ion beams can be used for materials studies and isochoric heating of target materials for high energy density physics experiments and WDM studies. (C) 2015 AIP Publishing LLC. C1 [Ji, Q.; Seidl, P. A.; Waldron, W. L.; Takakuwa, J. H.; Friedman, A.; Grote, D. P.; Persaud, A.; Barnard, J. J.; Schenkel, T.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Friedman, A.; Grote, D. P.; Barnard, J. J.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Ji, Q (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM qji@lbl.gov NR 7 TC 2 Z9 2 U1 3 U2 8 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2016 VL 87 IS 2 AR 02B707 DI 10.1063/1.4932569 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA DG0FQ UT WOS:000371740900163 PM 26932070 ER PT J AU Kanesue, T Kumaki, M Ikeda, S Okamura, M AF Kanesue, T. Kumaki, M. Ikeda, S. Okamura, M. TI Laser ion source for isobaric heavy ion collider experiment SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 16th International Conference on Ion Sources (ICIS) CY AUG 23-28, 2015 CL New York, NY SP Brookhaven Natl Lab, Collider Accelerator Dept AB Heavy-ion collider experiment in isobaric system is under investigation at Relativistic Heavy Ion Collider. For this experiment, ion source is required to maximize the abundance of the intended isotope. The candidate of the experiment is Ru-96 + Zr-96. Since the natural abundance of particular isotope is low and composition of isotope from ion source depends on the composites of the target, an isotope enriched material may be needed as a target. We studied the performance of the laser ion source required for the experiment for Zr ions. (C) 2016 AIP Publishing LLC. C1 [Kanesue, T.; Okamura, M.] Brookhaven Natl Lab, Collider Accelerator Dept, Upton, NY 11973 USA. [Kumaki, M.] Waseda Univ, Res Inst Sci & Engn, Tokyo 1698555, Japan. [Kumaki, M.; Ikeda, S.] RIKEN, Nishina Ctr Accelerator Based Sci, 2-1 Hirosawa, Wako, Saitama 3510198, Japan. [Ikeda, S.] Tokyo Inst Technol, lnterdisciplinary Grad Sch Sci & Engn, Yokohama, Kanagawa 2268503, Japan. RP Kanesue, T (reprint author), Brookhaven Natl Lab, Collider Accelerator Dept, Upton, NY 11973 USA. EM tkanesue@bnl.gov NR 8 TC 0 Z9 0 U1 3 U2 4 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2016 VL 87 IS 2 AR 02A920 DI 10.1063/1.4940405 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA DG0FQ UT WOS:000371740900074 PM 26931981 ER PT J AU Kanesue, T Kumaki, M Ikeda, S Okamura, M AF Kanesue, T. Kumaki, M. Ikeda, S. Okamura, M. TI Low charge state heavy ion production with sub-nanosecond laser SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 16th International Conference on Ion Sources (ICIS) CY AUG 23-28, 2015 CL New York, NY SP Brookhaven Natl Lab, Collider Accelerator Dept ID PLASMA AB We have investigated laser ablation plasma of various species using nanosecond and sub-nanosecond lasers for both high and low charge state ion productions. We found that with sub-nanosecond laser, the generated plasma has a long tail which has low charge state ions determined by an electrostatic ion analyzer even under the laser irradiation condition for highly charged ion production. This can be caused by insufficient laser absorption in plasma plume. This property might be suitable for low charge state ion production. We used a nanosecond laser and a sub-nanosecond laser for low charge state ion production to investigate the difference of generated plasma using the Zirconium target. (C) 2015 AIP Publishing LLC. C1 [Kanesue, T.; Okamura, M.] Brookhaven Natl Lab, Collider Accelerator Dept, Upton, NY 11973 USA. [Kumaki, M.] Waseda Univ, Res Inst Sci & Engn, Tokyo 1698555, Japan. [Kumaki, M.; Ikeda, S.] RIKEN, Nishina Ctr Accelerator Based Sci, 2-1 Hirosawa, Wako, Saitama 3510198, Japan. [Ikeda, S.] Tokyo Inst Technol, lnterdisciplinary Grad Sch Sci & Engn, Tokyo, Kanagawa 2268503, Japan. RP Kanesue, T (reprint author), Brookhaven Natl Lab, Collider Accelerator Dept, Upton, NY 11973 USA. EM tkanesue@bnl.gov NR 7 TC 0 Z9 0 U1 2 U2 3 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2016 VL 87 IS 2 AR 02A916 DI 10.1063/1.4935625 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA DG0FQ UT WOS:000371740900070 PM 26931977 ER PT J AU Koivisto, H Kalvas, T Tarvainen, O Komppula, J Laulainen, J Kronholm, R Ranttila, K Tuunanen, J Thuillier, T Xie, D Machicoane, G AF Koivisto, H. Kalvas, T. Tarvainen, O. Komppula, J. Laulainen, J. Kronholm, R. Ranttila, K. Tuunanen, J. Thuillier, T. Xie, D. Machicoane, G. TI Ion source research and development at University of Jyvaskyla: Studies of different plasma processes and towards the higher beam intensities SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 16th International Conference on Ion Sources (ICIS) CY AUG 23-28, 2015 CL New York, NY SP Brookhaven Natl Lab, Collider Accelerator Dept ID JYFL AB Several ion source related research and development projects are in progress at the Department of Physics, University of Jyvaskyla (JYFL). The work can be divided into investigation of the ion source plasma and development of ion sources, ion beams, and diagnostics. The investigation covers the Electron Cyclotron Resonance Ion Source (ECRIS) plasma instabilities, vacuum ultraviolet (VUV) and visible light emission, photon induced electron emission, and the development of plasma diagnostics. The ion source development covers the work performed for radio-frequency-driven negative ion source, RADIS, beam line upgrade of the JYFL 14 GHz ECRIS, and the development of a new room-temperature-magnet 18 GHz ECRIS, HIISI. (C) 2015 AIP Publishing LLC. C1 [Koivisto, H.; Kalvas, T.; Tarvainen, O.; Komppula, J.; Laulainen, J.; Kronholm, R.; Ranttila, K.; Tuunanen, J.] Univ Jyvaskyla, Dept Phys, POB 35 YFL, FI-40014 Jyvaskyla, Finland. [Thuillier, T.] Univ Grenoble Alpes 1, CNRS IN2P3, LPSC, 53 Rue Martyrs, F-38026 Grenoble, France. [Xie, D.] Lawrence Berkeley Natl Lab, One Cyclotron Rd, Berkeley, CA 94720 USA. [Machicoane, G.] Michigan State Univ, Natl Supercond Cyclotron Lab, E Lansing, MI 48824 USA. RP Koivisto, H (reprint author), Univ Jyvaskyla, Dept Phys, POB 35 YFL, FI-40014 Jyvaskyla, Finland. EM hannu.koivisto@phys.jyu.fi OI Komppula, Jani/0000-0001-5330-556X NR 23 TC 0 Z9 0 U1 0 U2 4 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2016 VL 87 IS 2 AR 02A725 DI 10.1063/1.4934687 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA DG0FQ UT WOS:000371740900036 PM 26931943 ER PT J AU Kojima, A Hanada, M Tobari, H Nishikiori, R Hiratsuka, J Kashiwagi, M Umeda, N Yoshida, M Ichikawa, M Watanabe, K Yamano, Y Grisham, LR AF Kojima, A. Hanada, M. Tobari, H. Nishikiori, R. Hiratsuka, J. Kashiwagi, M. Umeda, N. Yoshida, M. Ichikawa, M. Watanabe, K. Yamano, Y. Grisham, L. R. TI Development of design technique for vacuum insulation in large size multi-aperture multi-grid accelerator for nuclear fusion SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 16th International Conference on Ion Sources (ICIS) CY AUG 23-28, 2015 CL New York, NY SP Brookhaven Natl Lab, Collider Accelerator Dept AB Design techniques for the vacuum insulation have been developed in order to realize a reliable voltage holding capability of multi-aperture multi-grid (MAMuG) accelerators for fusion application. In this method, the nested multi-stage configuration of the MAMuG accelerator can be uniquely designed to satisfy the target voltage within given boundary conditions. The evaluation of the voltage holding capabilities of each acceleration stages was based on the previous experimental results about the area effect and the multi-aperture effect. Since the multi-grid effect was found to be the extension of the area effect by the total facing area this time, the total voltage holding capability of the multi-stage can be estimated from that per single stage by assuming the stage with the highest electric field, the total facing area, and the total apertures. By applying these consideration, the analysis on the 3-stage MAMuG accelerator for JT-60SA agreed well with the past gap-scan experiments with an accuracy of less than 10% variation, which demonstrated the high reliability to design MAMuG accelerators and also multistage high voltage bushings. (C) 2015 AIP Publishing LLC. C1 [Kojima, A.; Hanada, M.; Tobari, H.; Nishikiori, R.; Hiratsuka, J.; Kashiwagi, M.; Umeda, N.; Yoshida, M.; Ichikawa, M.; Watanabe, K.] Japan Atom Energy Agcy, Naka, Ibaraki 3110193, Japan. [Yamano, Y.] Saitama Univ, Saitama, Saitama 3388570, Japan. [Grisham, L. R.] Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. RP Kojima, A (reprint author), Japan Atom Energy Agcy, Naka, Ibaraki 3110193, Japan. EM kojima.atsushi@jaea.go.jp NR 14 TC 1 Z9 1 U1 2 U2 2 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2016 VL 87 IS 2 AR 02B304 DI 10.1063/1.4931803 PG 5 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA DG0FQ UT WOS:000371740900125 PM 26932032 ER PT J AU Kumaki, M Steski, D Ikeda, S Kanesue, T Okamura, M Washio, M AF Kumaki, Masafumi Steski, Dannie Ikeda, Shunsuke Kanesue, Takeshi Okamura, Masahiro Washio, Masakazu TI Contribution of material's surface layer on charge state distribution in laser ablation plasma SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 16th International Conference on Ion Sources (ICIS) CY AUG 23-28, 2015 CL New York, NY SP Brookhaven Natl Lab, Collider Accelerator Dept AB To generate laser ablation plasma, a pulse laser is focused onto a solid target making a crater on the surface. However, not all the evaporated material is efficiently converted to hot plasma. Some portion of the evaporated material could be turned to low temperature plasma or just vapor. To investigate the mechanism, we prepared an aluminum target coated by thin carbon layers. Then, we measured the ablation plasma properties with different carbon thicknesses on the aluminum plate. The results showed that C6+ ions were generated only from the surface layer. The deep layers (over 250 nm from the surface) did not provide high charge state ions. On the other hand, low charge state ions were mainly produced by the deeper layers of the target. Atoms deeper than 1000 nm did not contribute to the ablation plasma formation. (C) 2016 AIP Publishing LLC. C1 [Kumaki, Masafumi; Washio, Masakazu] Waseda Univ, Res Inst Sci & Engn, Tokyo 1698555, Japan. [Kumaki, Masafumi; Ikeda, Shunsuke; Okamura, Masahiro] RIKEN, Nishina Ctr Accelerator Based Sci, 2-1 Hirosawa, Wako, Saitama 3510198, Japan. [Steski, Dannie; Kanesue, Takeshi; Okamura, Masahiro] Brookhaven Natl Lab, Collider Accelerator Dept, Upton, NY 11973 USA. [Ikeda, Shunsuke] Tokyo Inst Technol, lnterdisciplinary Grad Sch Sci & Engn, Yokohama, Kanagawa 2268503, Japan. RP Kumaki, M (reprint author), Waseda Univ, Res Inst Sci & Engn, Tokyo 1698555, Japan.; Kumaki, M (reprint author), RIKEN, Nishina Ctr Accelerator Based Sci, 2-1 Hirosawa, Wako, Saitama 3510198, Japan. EM rogus@asagi.waseda.jp NR 7 TC 0 Z9 0 U1 3 U2 6 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2016 VL 87 IS 2 AR 02A921 DI 10.1063/1.4939781 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA DG0FQ UT WOS:000371740900075 PM 26931982 ER PT J AU Lettry, J Aguglia, D Alessi, J Andersson, P Bertolo, S Briefi, S Butterworth, A Coutron, Y Dallocchio, A David, N Chaudet, E Faircloth, D Fantz, U Fink, DA Garlasche, M Grudiev, A Guida, R Hansen, J Haase, M Hatayama, A Jones, A Koszar, I Lallement, JB Lombardi, AM Machado, C Mastrostefano, C Mathot, S Mattei, S Moyret, P Nisbet, D Nishida, K O'Neil, M Paoluzzi, M Scrivens, R Shibata, T Steyaert, D Thaus, N Voulgarakis, G AF Lettry, J. Aguglia, D. Alessi, J. Andersson, P. Bertolo, S. Briefi, S. Butterworth, A. Coutron, Y. Dallocchio, A. David, N. Chaudet, E. Faircloth, D. Fantz, U. Fink, D. A. Garlasche, M. Grudiev, A. Guida, R. Hansen, J. Haase, M. Hatayama, A. Jones, A. Koszar, I. Lallement, J. -B. Lombardi, A. M. Machado, C. Mastrostefano, C. Mathot, S. Mattei, S. Moyret, P. Nisbet, D. Nishida, K. O'Neil, M. Paoluzzi, M. Scrivens, R. Shibata, T. Steyaert, D. Thaus, N. Voulgarakis, G. TI Linac4 H- ion sources SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 16th International Conference on Ion Sources (ICIS) CY AUG 23-28, 2015 CL New York, NY SP Brookhaven Natl Lab, Collider Accelerator Dept AB CERN's 160 MeV H- linear accelerator (Linac4) is a key constituent of the injector chain upgrade of the Large Hadron Collider that is being installed and commissioned. A cesiated surface ion source prototype is being tested and has delivered a beam intensity of 45 mA within an emittance of 0.3 pi.mm.mrad. The optimum ratio of the co-extracted electron-to ion-current is below 1 and the best production efficiency, defined as the ratio of the beam current to the 2 MHz RF-power transmitted to the plasma, reached 1.1 mA/kW. The H- source prototype and the first tests of the new ion source optics, electron-dump, and front end developed to minimize the beam emittance are presented. A temperature regulated magnetron H- source developed by the Brookhaven National Laboratory was built at CERN. The first tests of the magnetron operated at 0.8 Hz repetition rate are described. (C) 2015 AIP Publishing LLC. C1 [Lettry, J.; Aguglia, D.; Andersson, P.; Bertolo, S.; Butterworth, A.; Coutron, Y.; Dallocchio, A.; David, N.; Chaudet, E.; Fink, D. A.; Garlasche, M.; Grudiev, A.; Guida, R.; Hansen, J.; Haase, M.; Jones, A.; Koszar, I.; Lallement, J. -B.; Lombardi, A. M.; Machado, C.; Mastrostefano, C.; Mathot, S.; Mattei, S.; Moyret, P.; Nisbet, D.; O'Neil, M.; Paoluzzi, M.; Scrivens, R.; Steyaert, D.; Thaus, N.; Voulgarakis, G.] CERN ABP, CH-1211 Geneva 23, Switzerland. [Alessi, J.] Brookhaven Natl Lab, BNL CA, Upton, NY 11973 USA. [Briefi, S.; Fantz, U.] Univ Augsburg, AG Expt Plasmaphys, D-86135 Augsburg, Germany. [Faircloth, D.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Hatayama, A.; Shibata, T.] Keio Univ, Grad Sch Sci & Technol, Kohoku Ku, 3-14-1 Hiyoshi, Yokohama, Kanagawa 2238522, Japan. RP Lettry, J (reprint author), CERN ABP, CH-1211 Geneva 23, Switzerland. EM Jacques.lettry@cern.ch NR 14 TC 3 Z9 3 U1 5 U2 6 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2016 VL 87 IS 2 AR 02B139 DI 10.1063/1.4936120 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA DG0FQ UT WOS:000371740900114 PM 26932021 ER PT J AU Lu, W Qian, C Sun, LT Zhang, XZ Fang, X Gu, JW Yang, Y Feng, YC Ma, BH Xiong, B Ruan, L Zhao, HW Zhan, WL Xie, D AF Lu, W. Qian, C. Sun, L. T. Zhang, X. Z. Fang, X. Gu, J. W. Yang, Y. Feng, Y. C. Ma, B. H. Xiong, B. Ruan, L. Zhao, H. W. Zhan, W. L. Xie, D. TI High intensity high charge state ion beam production with an evaporative cooling magnet ECRIS SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 16th International Conference on Ion Sources (ICIS) CY AUG 23-28, 2015 CL New York, NY SP Brookhaven Natl Lab, Collider Accelerator Dept AB LECR4 (Lanzhou ECR ion source No. 4) is a room temperature electron cyclotron resonance ion source, designed to produce high current, high charge state ion beams for the SSC-LINAC injector (a new injector for sector separated cyclotron) at the Institute of Modern Physics. LECR4 also serves as a PoP machine for the application of evaporative cooling technology in accelerator field. To achieve those goals, LECR4 ECR ion source has been optimized for the operation at 18 GHz. During 2014, LECR4 ion source was commissioned at 18 GHz microwave of 1.6 kW. To further study the influence of injection stage to the production of medium and high charge state ion beams, in March 2015, the injection stage with pumping system was installed, and some optimum results were produced, such as 560 e mu A of O7+, 620 e mu A of Ar11+, 430 e mu A of Ar12+, 430 e mu A of Xe20+, and so on. The comparison will be discussed in the paper. (C) 2015 AIP Publishing LLC. C1 [Lu, W.; Qian, C.; Sun, L. T.; Zhang, X. Z.; Fang, X.; Gu, J. W.; Yang, Y.; Feng, Y. C.; Ma, B. H.; Zhao, H. W.; Zhan, W. L.] Chinese Acad Sci, Inst Modern Phys, Lanzhou 73000, Peoples R China. [Fang, X.; Gu, J. W.; Yang, Y.] Univ Chinese Acad Sci, Beijing 100049, Peoples R China. [Xiong, B.; Ruan, L.] Chinese Acad Sci, Inst Elect Engn, Beijing 100190, Peoples R China. [Xie, D.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Nucl Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. RP Lu, W (reprint author), Chinese Acad Sci, Inst Modern Phys, Lanzhou 73000, Peoples R China. EM luwang@impcas.ac.cn OI Lu, wang/0000-0001-9798-8964 NR 6 TC 1 Z9 1 U1 4 U2 8 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2016 VL 87 IS 2 AR 02A738 DI 10.1063/1.4936183 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA DG0FQ UT WOS:000371740900049 PM 26931956 ER PT J AU Machicoane, G Felice, H Fogleman, J Hafalia, R Morgan, G Pan, H Prestemon, S Pozdeyev, E Rao, X Ren, HT Tobos, L AF Machicoane, Guillaume Felice, Helene Fogleman, Jesse Hafalia, Ray Morgan, Glenn Pan, Heng Prestemon, Soren Pozdeyev, Eduard Rao, Xing Ren, Haitao Tobos, Larry TI Status of ECR ion sources for the Facility for Rare Isotope Beams (FRIB) SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 16th International Conference on Ion Sources (ICIS) CY AUG 23-28, 2015 CL New York, NY SP Brookhaven Natl Lab, Collider Accelerator Dept AB Ahead of the commissioning schedule, installation of the first Electron Cyclotron Resonance (ECR) ion source in the front end area of the Facility for Rare Isotope Beam (FRIB) is planned for the end of 2015. Operating at 14 GHz, this first ECR will be used for the commissioning and initial operation of the facility. In parallel, a superconducting magnet structure compatible with operation at 28 GHz for a new ECR ion source is in development at Lawrence Berkeley National Laboratory. The paper reviews the overall work in progress and development done with ECR ion sources for FRIB. (C) 2016 AIP Publishing LLC. C1 [Machicoane, Guillaume; Morgan, Glenn; Pozdeyev, Eduard; Rao, Xing; Ren, Haitao] Michigan State Univ, Facil Rare Isotope Beams, E Lansing, MI 48824 USA. [Felice, Helene; Hafalia, Ray; Pan, Heng; Prestemon, Soren] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Fogleman, Jesse; Tobos, Larry] Michigan State Univ, Natl Superconducting Cyclotron Lab, 640 South Shaw Lane, E Lansing, MI 48824 USA. RP Machicoane, G (reprint author), Michigan State Univ, Facil Rare Isotope Beams, E Lansing, MI 48824 USA. EM machicoane@frib.msu.edu NR 14 TC 0 Z9 0 U1 2 U2 2 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2016 VL 87 IS 2 AR 02A743 DI 10.1063/1.4939643 PG 5 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA DG0FQ UT WOS:000371740900054 PM 26931961 ER PT J AU Okamura, M Stifler, C Palm, K Steski, D Ikeda, S Kumaki, M Kanesue, T AF Okamura, M. Stifler, C. Palm, K. Steski, D. Ikeda, S. Kumaki, M. Kanesue, T. TI Proton beam production by a laser ion source with hydride target SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 16th International Conference on Ion Sources (ICIS) CY AUG 23-28, 2015 CL New York, NY SP Brookhaven Natl Lab, Collider Accelerator Dept AB We studied proton beam production from a laser ion source using hydrogen rich target materials. In general, gas based species are not suitable for laser ion sources since formation of a dense laser target is difficult. In order to achieve reliable operation, we tested hydride targets using a sub nanosecond Q-switched Nd-YAG laser, which may help suppress target material consumption. We detected enough yields of protons from a titanium hydride target without degradation of beam current during the experiment. The combination of a sub nanosecond laser and compressed hydride target may provide stable proton beam. (C) 2015 AIP Publishing LLC. C1 [Okamura, M.; Steski, D.; Kanesue, T.] Brookhaven Natl Lab, Collider Accelerator Dept, Upton, NY 11973 USA. [Okamura, M.; Ikeda, S.; Kumaki, M.] RIKEN, Nishina Ctr Accelerator Based Sci, Saitama, Japan. [Stifler, C.] Providence Coll, Engn Phys Syst Dept, Providence, RI 02918 USA. [Palm, K.] Cornell Univ, Dept Phys, Ithaca, NY 14853 USA. [Ikeda, S.] Tokyo Inst Technol, Interdisciplinary Grad Sch Sci & Engn, Kanagawa, Japan. [Kumaki, M.] Waseda Univ, Res Inst Sci & Engn, Tokyo, Japan. RP Okamura, M (reprint author), Brookhaven Natl Lab, Collider Accelerator Dept, Upton, NY 11973 USA.; Okamura, M (reprint author), RIKEN, Nishina Ctr Accelerator Based Sci, Saitama, Japan. EM okamura@bnl.gov NR 7 TC 0 Z9 0 U1 4 U2 6 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2016 VL 87 IS 2 AR 02A906 DI 10.1063/1.4933341 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA DG0FQ UT WOS:000371740900060 PM 26931967 ER PT J AU Okamura, M Palm, K Stifler, C Steski, D Ikeda, S Kumaki, M Kanesue, T AF Okamura, M. Palm, K. Stifler, C. Steski, D. Ikeda, S. Kumaki, M. Kanesue, T. TI Calcium and lithium ion production for laser ion source SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 16th International Conference on Ion Sources (ICIS) CY AUG 23-28, 2015 CL New York, NY SP Brookhaven Natl Lab, Collider Accelerator Dept AB Calcium and lithium ion beams are required by NASA Space Radiation Laboratory at Brookhaven National Laboratory to simulate the effects of cosmic radiation. To identify the difficulties in providing such highly reactive materials as laser targets, both species were experimentally tested. Plate shaped lithium and calcium targets were fabricated to create ablation plasmas with a 6 ns 1064 nm neodymium-doped yttrium aluminum garnet laser. We found significant oxygen contamination in both the Ca and Li high charge state beams due to the rapid oxidation of the surfaces. A large spot size, low power density laser was used to create low charge state beams without scanning the targets. The low charge state Ca beam did not have any apparent oxygen contamination, showing the potential to clean the target entirely of oxide with a low power beam once in the chamber. The Li target was clearly still oxidizing in the chamber after each low power shot. To measure the rate of oxidation, we shot the low power laser at the target repeatedly at 10 s, 30 s, 60 s, and 120 s interval lengths, showing a linear relation between the interval time and the amount of oxygen in the beam. (C) 2015 AIP Publishing LLC. C1 [Okamura, M.; Steski, D.; Kanesue, T.] Brookhaven Natl Lab, Collider Accelerator Dept, Upton, NY 11973 USA. [Okamura, M.; Ikeda, S.; Kumaki, M.] RIKEN, Nishina Ctr Accelerator Based Sci, Saitama, Japan. [Palm, K.] Cornell Univ, Dept Phys, Ithaca, NY 14853 USA. [Steski, D.] Providence Coll, Engn Phys Syst Dept, Providence, RI 02918 USA. [Ikeda, S.] Tokyo Inst Technol, Interdisciplinary Grad Sch Sci & Engn, Kanagawa, Japan. [Kumaki, M.] Waseda Univ, Res Inst Sci & Engn, Tokyo, Japan. RP Okamura, M (reprint author), Brookhaven Natl Lab, Collider Accelerator Dept, Upton, NY 11973 USA.; Okamura, M (reprint author), RIKEN, Nishina Ctr Accelerator Based Sci, Saitama, Japan. EM okamura@bnl.gov NR 5 TC 0 Z9 0 U1 3 U2 12 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2016 VL 87 IS 2 AR 02A901 DI 10.1063/1.4931619 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA DG0FQ UT WOS:000371740900055 PM 26931962 ER PT J AU Ostroumov, PN Barcikowski, A Dickerson, CA Mustapha, B Perry, A Sharamentov, SI Vondrasek, RC Zinkann, G AF Ostroumov, P. N. Barcikowski, A. Dickerson, C. A. Mustapha, B. Perry, A. Sharamentov, S. I. Vondrasek, R. C. Zinkann, G. TI Off-line commissioning of EBIS and plans for its integration into ATLAS and CARIBU SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 16th International Conference on Ion Sources (ICIS) CY AUG 23-28, 2015 CL New York, NY SP Brookhaven Natl Lab, Collider Accelerator Dept AB An Electron Beam Ion Source Charge Breeder (EBIS-CB) has been developed at Argonne to breed radioactive beams from the CAlifornium Rare Isotope Breeder Upgrade (CARIBU) facility at Argonne Tandem Linac Accelerator System (ATLAS). The EBIS-CB will replace the existing ECR charge breeder to increase the intensity and significantly improve the purity of reaccelerated radioactive ion beams. The CARIBU EBIS-CB has been successfully commissioned offline with an external singly charged cesium ion source. The performance of the EBIS fully meets the specifications to breed rare isotope beams delivered from CARIBU. The EBIS is being relocated and integrated into ATLAS and CARIBU. A long electrostatic beam transport system including two 180. bends in the vertical plane has been designed. The commissioning of the EBIS and the beam transport system in their permanent location will start at the end of this year. (C) 2015 AIP Publishing LLC. C1 [Ostroumov, P. N.; Barcikowski, A.; Dickerson, C. A.; Mustapha, B.; Perry, A.; Sharamentov, S. I.; Vondrasek, R. C.; Zinkann, G.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Ostroumov, PN (reprint author), Argonne Natl Lab, Argonne, IL 60439 USA. EM ostroumov@anl.gov NR 6 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2016 VL 87 IS 2 AR 02B506 DI 10.1063/1.4935016 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA DG0FQ UT WOS:000371740900152 PM 26932059 ER PT J AU Raparia, D Alessi, J Atoian, G Zelenski, A AF Raparia, D. Alessi, J. Atoian, G. Zelenski, A. TI Charge neutralized low energy beam transport at Brookhaven 200 MeV linac SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 16th International Conference on Ion Sources (ICIS) CY AUG 23-28, 2015 CL New York, NY SP Brookhaven Natl Lab, Collider Accelerator Dept AB The H- magnetron source provides about 100 mA H- beam to be match into the radio-frequency quadrupole accelerator. As H- beam traverses through low energy transport, it ionizes the residual gas and electrons are repelled and positive ions are trapped in the beam, due to negative potential of the beam, providing charge neutralization for the H- beam. The neutralization time for the critical density depends upon the background gas and its pressure. Critical density for xenon gas at 35 keV is about 43 times smaller than that of hydrogen and stripping cross section is only 5 times than that of hydrogen gas. We are using xenon gas to reduce neutralization time and to improve transmission through the 200 MeV linac. We are also using pulse nitrogen gas to improve transmission and stability of polarized H- beam from optically pumped polarized ion source. (C) 2015 AIP Publishing LLC. C1 [Raparia, D.; Alessi, J.; Atoian, G.; Zelenski, A.] Brookhaven Natl Lab, Upton, NY 11786 USA. RP Raparia, D (reprint author), Brookhaven Natl Lab, Upton, NY 11786 USA. EM raparia@bnl.gov NR 7 TC 0 Z9 0 U1 2 U2 3 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2016 VL 87 IS 2 AR 02B935 DI 10.1063/1.4937766 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA DG0FQ UT WOS:000371740900200 PM 26932107 ER PT J AU Rodatos, A Greuner, H Jakubowski, MW Boscary, J Wurden, GA Pedersen, TS Konig, R AF Rodatos, A. Greuner, H. Jakubowski, M. W. Boscary, J. Wurden, G. A. Pedersen, T. S. Koenig, R. TI Detecting divertor damage during steady state operation of Wendelstein 7-X from thermographic measurements SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 16th International Conference on Ion Sources (ICIS) CY AUG 23-28, 2015 CL New York, NY SP Brookhaven Natl Lab, Collider Accelerator Dept ID CARBON; PERFORMANCE; FACILITY; ELEMENTS; TARGETS; LAYERS AB Wendelstein 7-X (W7-X) aims to demonstrate the reactor capability of the stellarator concept, by creating plasmas with pulse lengths of up to 30 min at a heating power of up to 10 MW. The divertor plasma facing components will see convective steady state heat flux densities of up to 10 MW/m(2). These high heat flux target elements are actively cooled and are covered with carbon fibre reinforced carbon (CFC) as plasma facing material. The CFC is bonded to the CuCrZr cooling structure. Over the life time of the experiment this interface may weaken and cracks can occur, greatly reducing the heat conduction between the CFC tile and the cooling structure. Therefore, there is not only the need to monitor the divertor to prevent damage by overheating but also the need to detect these fatigue failures of the interface. A method is presented for an early detection of fatigue failures of the interface layer, solely by using the information delivered by the IR-cameras monitoring the divertor. This was developed and validated through experiments made with high heat flux target elements prior to installation in W7-X. C1 [Rodatos, A.; Jakubowski, M. W.; Pedersen, T. S.; Koenig, R.] Max Planck Inst Plasma Phys, Wendelsteinstr 1, Greifswald, Germany. [Greuner, H.; Boscary, J.] Max Planck Inst Plasma Phys, Boltzmannstr 2, Greifswald, Germany. [Wurden, G. A.] Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87544 USA. RP Rodatos, A (reprint author), Max Planck Inst Plasma Phys, Wendelsteinstr 1, Greifswald, Germany. EM Alexander.Rodatos@ipp.mpg.de RI Wurden, Glen/A-1921-2017; OI Wurden, Glen/0000-0003-2991-1484; Jakubowski, Marcin/0000-0002-6557-3497 NR 24 TC 0 Z9 0 U1 2 U2 3 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2016 VL 87 IS 2 AR 023506 DI 10.1063/1.4941717 PG 7 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA DG0FQ UT WOS:000371740900236 PM 26931848 ER PT J AU Scott, R Bauder, W Palchan-Hazan, T Pardo, R Vondrasek, R AF Scott, R. Bauder, W. Palchan-Hazan, T. Pardo, R. Vondrasek, R. TI Ion beam production with sub-milligram samples of material from an ECR source for AMS SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 16th International Conference on Ion Sources (ICIS) CY AUG 23-28, 2015 CL New York, NY SP Brookhaven Natl Lab, Collider Accelerator Dept AB Current accelerator mass spectrometry experiments at the Argonne Tandem Linac Accelerator System facility at Argonne National Laboratory push us to improve the ion source performance with a large number of samples and a need to minimize cross contamination. These experiments can require the creation of ion beams from as little as a few micrograms of material. These low concentration samples push the limit of our current efficiency and stability capabilities of the electron cyclotron resonance ion source. A combination of laser ablation and sputtering techniques coupled with a newly modified multi-sample changer has been used to meet this demand. We will discuss performance, stability, and consumption rates as well as planned improvements. (C) 2015 AIP Publishing LLC. C1 [Scott, R.; Bauder, W.; Palchan-Hazan, T.; Pardo, R.; Vondrasek, R.] Argonne Natl Lab, Argonne Tandem Linac Accelerator Syst ATLAS, Lemont, IL 60439 USA. [Bauder, W.] Univ Notre Dame, Nucl Struct Lab, Notre Dame, IN 46556 USA. RP Scott, R (reprint author), Argonne Natl Lab, Argonne Tandem Linac Accelerator Syst ATLAS, Lemont, IL 60439 USA. EM scott@phy.anl.gov NR 6 TC 0 Z9 0 U1 1 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2016 VL 87 IS 2 AR 02A732 DI 10.1063/1.4935001 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA DG0FQ UT WOS:000371740900043 PM 26931950 ER PT J AU Sierchio, JM Cziegler, I Terry, JL White, AE Zweben, SJ AF Sierchio, J. M. Cziegler, I. Terry, J. L. White, A. E. Zweben, S. J. TI Comparison of velocimetry techniques for turbulent structures in gas-puff imaging data SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 16th International Conference on Ion Sources (ICIS) CY AUG 23-28, 2015 CL New York, NY SP Brookhaven Natl Lab, Collider Accelerator Dept ID SCRAPE-OFF-LAYER; ALCATOR C-MOD; TIME-DELAY ESTIMATION; EDGE TURBULENCE; TOKAMAK; TRANSPORT; NSTX; FLOW AB Recent analysis of Gas Puff Imaging (GPI) data from Alcator C-Mod found blob velocities with a modified tracking time delay estimation (TDE). These results disagree with velocity analysis performed using direct Fourier methods. In this paper, the two analysis methods are compared. The implementations of these methods are explained, and direct comparisons using the same GPI data sets are presented to highlight the discrepancies in measured velocities. In order to understand the discrepancies, we present a code that generates synthetic sequences of images that mimic features of the experimental GPI images, with user-specified input values for structure (blob) size and velocity. This allows quantitative comparison of the TDE and Fourier analysis methods, which reveals their strengths and weaknesses. We found that the methods agree for structures of any size as long as all structures move at the same velocity and disagree when there is significant nonlinear dispersion or when structures appear to move in opposite directions. Direct Fourier methods used to extract poloidal velocities give incorrect results when there is a significant radial velocity component and are subject to the barber pole effect. Tracking TDE techniques give incorrect velocity measurements when there are features moving at significantly different speeds or in different directions within the same field of view. Finally, we discuss the limitations and appropriate use of each of methods and applications to the relationship between blob size and velocity. (C) 2016 AIP Publishing LLC. C1 [Sierchio, J. M.; Terry, J. L.; White, A. E.] MIT, Plasma Sci & Fus Ctr, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Cziegler, I.] Univ Calif San Diego, Ctr Momentum Transport & Flow Org, San Diego, CA 92093 USA. [Zweben, S. J.] Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. RP Sierchio, JM (reprint author), MIT, Plasma Sci & Fus Ctr, 77 Massachusetts Ave, Cambridge, MA 02139 USA. EM sierchio@mit.edu OI Terry, James/0000-0003-4255-5509 NR 41 TC 2 Z9 2 U1 10 U2 16 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2016 VL 87 IS 2 AR 023502 DI 10.1063/1.4939672 PG 14 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA DG0FQ UT WOS:000371740900232 PM 26931844 ER PT J AU Sosa, A Bollinger, DS Duel, K Karns, PR Pellico, W Tan, CY AF Sosa, A. Bollinger, D. S. Duel, K. Karns, P. R. Pellico, W. Tan, C. Y. TI An overview of the new test stand for H- ion sources at FNAL SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 16th International Conference on Ion Sources (ICIS) CY AUG 23-28, 2015 CL New York, NY SP Brookhaven Natl Lab, Collider Accelerator Dept AB A new test stand at Fermi National Accelerator Laboratory (FNAL) is being constructed to carry out experiments to develop and upgrade the present magnetron-type sources of H- ions of up to 80 mA at 35 keV in the context of the Proton Improvement Plan. The aim of this plan is to provide high-power proton beams for the experiments at FNAL. The technical details of the construction and layout of this test stand are presented, along with a prospective set of diagnostics to monitor the sources. (C) 2015 AIP Publishing LLC. C1 [Sosa, A.; Bollinger, D. S.; Duel, K.; Karns, P. R.; Pellico, W.; Tan, C. Y.] Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. RP Sosa, A (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. EM asosa@fnal.gov NR 2 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2016 VL 87 IS 2 AR 02B105 DI 10.1063/1.4932119 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA DG0FQ UT WOS:000371740900080 PM 26931987 ER PT J AU Stockli, MP Han, B Murray, SN Pennisi, TR Piller, C Santana, M Welton, R AF Stockli, M. P. Han, B. Murray, S. N. Pennisi, T. R. Piller, C. Santana, M. Welton, R. TI Recent performance of and plasma outage studies with the SNS H- source SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 16th International Conference on Ion Sources (ICIS) CY AUG 23-28, 2015 CL New York, NY SP Brookhaven Natl Lab, Collider Accelerator Dept ID ION-SOURCE AB Spallation Neutron Source ramps to higher power levels that can be sustained with high availability. The goal is 1.4 MW despite a compromised radio frequency quadrupole (RFQ), which requires higher radio frequency power than design levels to approach the nominal beam transmission. Unfortunately at higher power the RFQ often loses its thermal stability, a problem apparently enhanced by beam losses and high influxes of hydrogen. Delivering as much H- beam as possible with the least amount of hydrogen led to plasma outages. The root cause is the dense 1-ms long similar to 55-kW 2-MHz plasma pulses reflecting similar to 90% of the continuous similar to 300 W, 13-MHz power, which was mitigated with a 4-ms filter for the reflected power signal and an outage resistant, slightly detuned 13-MHz match. Lowering the H-2 gas also increased the H- beam current to similar to 55 mA and increased the RFQ transmission by similar to 7% (relative). (C) 2015 AIP Publishing LLC. C1 [Stockli, M. P.; Han, B.; Murray, S. N.; Pennisi, T. R.; Piller, C.; Santana, M.; Welton, R.] Oak Ridge Natl Lab, Spallat Neutron Source, Oak Ridge, TN 37830 USA. RP Stockli, MP (reprint author), Oak Ridge Natl Lab, Spallat Neutron Source, Oak Ridge, TN 37830 USA. EM stockli@ornl.gov OI Piller, Chip/0000-0003-4729-9364 NR 19 TC 2 Z9 2 U1 2 U2 3 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2016 VL 87 IS 2 AR 02B140 DI 10.1063/1.4935640 PG 5 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA DG0FQ UT WOS:000371740900115 PM 26932022 ER PT J AU Tamura, J Kumaki, M Kondo, K Kanesue, T Okamura, M AF Tamura, Jun Kumaki, Masafumi Kondo, Kotaro Kanesue, Takeshi Okamura, Masahiro TI Iron plasma generation using a Nd:YAG laser pulse of several hundred picoseconds SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 16th International Conference on Ion Sources (ICIS) CY AUG 23-28, 2015 CL New York, NY SP Brookhaven Natl Lab, Collider Accelerator Dept AB We investigated the high intensity plasma generated by using a Nd:YAG laser to apply a laser-produced plasma to the direct plasma injection scheme. The capability of the source to generate high charge state ions strongly depends on the power density of the laser irradiation. Therefore, we focused on using a higher power laser with several hundred picoseconds of pulse width. The iron target was irradiated with the pulsed laser, and the ion current of the laser-produced iron plasma was measured using a Faraday cup and the charge state distribution was investigated using an electrostatic ion analyzer. We found that higher charge state iron ions (up to Fe21+) were obtained using a laser pulse of several hundred picoseconds in comparison to those obtained using a laser pulse of several nanoseconds (up to Fe19+). We also found that when the laser irradiation area was relatively large, the laser power was absorbed mainly by the contamination on the target surface. (C) 2016 AIP Publishing LLC. C1 [Tamura, Jun] Japan Atom Energy Agcy, JPARC Ctr, Ibaraki 3191195, Japan. [Kumaki, Masafumi] Waseda Univ, Res Inst Sci & Engn, Tokyo 1698555, Japan. [Kondo, Kotaro] Tokyo Inst Technol, Nucl Reactors Res Lab, Tokyo 1528550, Japan. [Kanesue, Takeshi; Okamura, Masahiro] Brookhaven Natl Lab, Collider Accelerator Dept, Upton, NY 11973 USA. RP Tamura, J (reprint author), Japan Atom Energy Agcy, JPARC Ctr, Ibaraki 3191195, Japan. EM jtamura@post.j-parc.jp NR 4 TC 0 Z9 0 U1 5 U2 5 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2016 VL 87 IS 2 AR 02A919 DI 10.1063/1.4938258 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA DG0FQ UT WOS:000371740900073 PM 26931980 ER PT J AU Thuillier, T Angot, J Benitez, JY Hodgkinson, A Lyneis, CM Todd, DS Xie, DZ AF Thuillier, T. Angot, J. Benitez, J. Y. Hodgkinson, A. Lyneis, C. M. Todd, D. S. Xie, D. Z. TI Investigation on the electron flux to the wall in the VENUS ion source SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 16th International Conference on Ion Sources (ICIS) CY AUG 23-28, 2015 CL New York, NY SP Brookhaven Natl Lab, Collider Accelerator Dept AB The long-term operation of high charge state electron cyclotron resonance ion sources fed with high microwave power has caused damage to the plasma chamber wall in several laboratories. Porosity, or a small hole, can be progressively created in the chamber wall which can destroy the plasma chamber over a few year time scale. A burnout of the VENUS plasma chamber is investigated in which the hole formation in relation to the local hot electron power density is studied. First, the results of a simple model assuming that hot electrons are fully magnetized and strictly following magnetic field lines are presented. The model qualitatively reproduces the experimental traces left by the plasma on the wall. However, it is too crude to reproduce the localized electron power density for creating a hole in the chamber wall. Second, the results of a Monte Carlo simulation, following a population of scattering hot electrons, indicate a localized high power deposited to the chamber wall consistent with the hole formation process. Finally, a hypervapotron cooling scheme is proposed to mitigate the hole formation in electron cyclotron resonance plasma chamber wall. (C) 2015 AIP Publishing LLC. C1 [Thuillier, T.; Angot, J.] Univ Grenoble Alpes, CNRS, LPSC, IN2P3, 53 Rue Martyrs, F-38026 Grenoble, France. [Benitez, J. Y.; Hodgkinson, A.; Lyneis, C. M.; Todd, D. S.; Xie, D. Z.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Nucl Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. RP Thuillier, T (reprint author), Univ Grenoble Alpes, CNRS, LPSC, IN2P3, 53 Rue Martyrs, F-38026 Grenoble, France. EM thuillier@lpsc.in2p3.fr NR 14 TC 0 Z9 0 U1 0 U2 5 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2016 VL 87 IS 2 AR 02A736 DI 10.1063/1.4935989 PG 5 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA DG0FQ UT WOS:000371740900047 PM 26931954 ER PT J AU Varentsov, D Antonov, O Bakhmutova, A Barnes, CW Bogdanov, A Danly, CR Efimov, S Endres, M Fertman, A Golubev, AA Hoffmann, DHH Ionita, B Kantsyrev, A Krasik, YE Lang, PM Lomonosov, I Mariam, FG Markov, N Merrill, FE Mintsev, VB Nikolaev, D Panyushkin, V Rodionova, M Schanz, M Schoenberg, K Semennikov, A Shestov, L Skachkov, VS Turtikov, V Udrea, S Vasylyev, O Weyrich, K Wilde, C Zubareva, A AF Varentsov, D. Antonov, O. Bakhmutova, A. Barnes, C. W. Bogdanov, A. Danly, C. R. Efimov, S. Endres, M. Fertman, A. Golubev, A. A. Hoffmann, D. H. H. Ionita, B. Kantsyrev, A. Krasik, Ya. E. Lang, P. M. Lomonosov, I. Mariam, F. G. Markov, N. Merrill, F. E. Mintsev, V. B. Nikolaev, D. Panyushkin, V. Rodionova, M. Schanz, M. Schoenberg, K. Semennikov, A. Shestov, L. Skachkov, V. S. Turtikov, V. Udrea, S. Vasylyev, O. Weyrich, K. Wilde, C. Zubareva, A. TI Commissioning of the PRIOR proton microscope SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 16th International Conference on Ion Sources (ICIS) CY AUG 23-28, 2015 CL New York, NY SP Brookhaven Natl Lab, Collider Accelerator Dept ID HIGH-ENERGY-PHYSICS; FACILITY; ACCELERATOR; RADIOGRAPHY; INSTITUTE; FAIR AB Recently, a new high energy proton microscopy facility PRIOR (Proton Microscope for FAIR Facility for Anti-proton and Ion Research) has been designed, constructed, and successfully commissioned at GSI Helmholtzzentrum fr Schwerionenforschung (Darmstadt, Germany). As a result of the experiments with 3.5-4.5 GeV proton beams delivered by the heavy ion synchrotron SIS-18 of GSI, 30 mu m spatial and 10 ns temporal resolutions of the proton microscope have been demonstrated. A new pulsed power setup for studying properties of matter under extremes has been developed for the dynamic commissioning of the PRIOR facility. This paper describes the PRIOR setup as well as the results of the first static and dynamic proton radiography experiments performed at GSI. (C) 2016 AIP Publishing LLC. C1 [Varentsov, D.; Ionita, B.; Rodionova, M.; Shestov, L.; Vasylyev, O.; Weyrich, K.] GSI Helmholtzzentrum Schwerionenforsch GmbH, Darmstadt, Germany. [Antonov, O.; Efimov, S.; Krasik, Ya. E.] Technion, Dept Phys, Haifa, Israel. [Bakhmutova, A.; Bogdanov, A.; Fertman, A.; Golubev, A. A.; Kantsyrev, A.; Markov, N.; Panyushkin, V.; Semennikov, A.; Skachkov, V. S.; Turtikov, V.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Barnes, C. W.; Danly, C. R.; Mariam, F. G.; Merrill, F. E.; Schoenberg, K.; Wilde, C.] Los Alamos Natl Lab, Los Alamos, NM 87544 USA. [Endres, M.; Hoffmann, D. H. H.; Lang, P. M.; Rodionova, M.; Schanz, M.; Shestov, L.; Udrea, S.] Tech Univ Darmstadt, Darmstadt, Germany. [Lomonosov, I.; Mintsev, V. B.; Nikolaev, D.; Zubareva, A.] Inst Problems Chem Phys, Chernogolovka, Russia. [Bogdanov, A.; Turtikov, V.] Skolkovo Fdn, Skolkovo, Russia. [Lang, P. M.] European XFEL GmbH, Hamburg, Germany. [Udrea, S.] Goethe Univ Frankfurt, Frankfurt, Germany. RP Varentsov, D (reprint author), GSI Helmholtzzentrum Schwerionenforsch GmbH, Darmstadt, Germany. EM d.varentsov@gsi.de RI Lomonosov, Igor/F-1217-2011; OI Lomonosov, Igor/0000-0003-0083-7727; Barnes, Cris/0000-0002-3347-0741 NR 33 TC 0 Z9 0 U1 0 U2 5 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2016 VL 87 IS 2 AR 023303 DI 10.1063/1.4941685 PG 8 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA DG0FQ UT WOS:000371740900229 PM 26931841 ER PT J AU Wells, RP Ghiorso, W Staples, J Huang, TM Sannibale, F Kramasz, TD AF Wells, R. P. Ghiorso, W. Staples, J. Huang, T. M. Sannibale, F. Kramasz, T. D. TI Mechanical design and fabrication of the VHF-gun, the Berkeley normal-conducting continuous-wave high-brightness electron source SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 16th International Conference on Ion Sources (ICIS) CY AUG 23-28, 2015 CL New York, NY SP Brookhaven Natl Lab, Collider Accelerator Dept ID RF GUN AB A high repetition rate, MHz-class, high-brightness electron source is a key element in future high-repetition-rate x-ray free electron laser-based light sources. The VHF-gun, a novel low frequency radio-frequency gun, is the Lawrence Berkeley National Laboratory (LBNL) response to that need. The gun design is based on a normal conducting, single cell cavity resonating at 186 MHz in the VHF band and capable of continuous wave operation while still delivering the high accelerating fields at the cathode required for the high brightness performance. The VHF-gun was fabricated and successfully commissioned in the framework of the Advanced Photo-injector EXperiment, an injector built at LBNL to demonstrate the capability of the gun to deliver the required beam quality. The basis for the selection of the VHF-gun technology, novel design features, and fabrication techniques are described. (C) 2016 AIP Publishing LLC. C1 [Wells, R. P.; Ghiorso, W.; Staples, J.; Huang, T. M.; Sannibale, F.; Kramasz, T. D.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Huang, T. M.] Inst High Energy Phys, Beijing 100039, Peoples R China. RP Wells, RP (reprint author), Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM rpwells@lbl.gov OI Wells, Russell/0000-0003-1764-7129 NR 23 TC 0 Z9 0 U1 4 U2 7 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2016 VL 87 IS 2 AR 023302 DI 10.1063/1.4941836 PG 14 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA DG0FQ UT WOS:000371740900228 PM 26931840 ER PT J AU Welton, RF Aleksandrov, AV Dudnikov, VG Han, BX Kang, Y Murray, SN Pennisi, TR Piller, C Santana, M Stockli, MP AF Welton, R. F. Aleksandrov, A. V. Dudnikov, V. G. Han, B. X. Kang, Y. Murray, S. N. Pennisi, T. R. Piller, C. Santana, M. Stockli, M. P. TI The status of the SNS external antenna ion source and spare RFQ test facility SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 16th International Conference on Ion Sources (ICIS) CY AUG 23-28, 2015 CL New York, NY SP Brookhaven Natl Lab, Collider Accelerator Dept AB The Oak Ridge National Laboratory operates the Spallation Neutron Source, consisting of a H- ion source, a 1 GeV linac and an accumulator ring. The accumulated < 1 mu s-long, similar to 35 A beam pulses are extracted from the ring at 60 Hz and directed onto a liquid Hg target. Spalled neutrons are directed to similar to 20 world class instruments. Currently, the facility operates routinely with similar to 1.2 MW of average beam power, which soon will be raised to 1.4 MW. A future upgrade with a second target station calls for raising the power to 2.8 MW. This paper describes the status of two accelerator components expected to play important roles in achieving these goals: a recently acquired RFQ accelerator and the external antenna ion source. Currently, the RFQ is being conditioned in a newly constructed 2.5 MeV Integrated Test Facility (ITF) and the external antenna source is also being tested on a separate test stand. This paper presents the results of experiments and the testing of these systems. (C) 2016 AIP Publishing LLC. C1 [Welton, R. F.; Aleksandrov, A. V.; Han, B. X.; Kang, Y.; Murray, S. N.; Pennisi, T. R.; Piller, C.; Santana, M.; Stockli, M. P.] Oak Ridge Natl Lab, POB 2008, Oak Ridge, TN 37830 USA. [Dudnikov, V. G.] Muons Inc, 552 N Batavia Ave, Batavia, IL 60510 USA. RP Welton, RF (reprint author), Oak Ridge Natl Lab, POB 2008, Oak Ridge, TN 37830 USA. EM welton@ornl.gov OI Piller, Chip/0000-0003-4729-9364 NR 12 TC 0 Z9 0 U1 3 U2 3 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2016 VL 87 IS 2 AR 02B146 DI 10.1063/1.4935236 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA DG0FQ UT WOS:000371740900121 PM 26932028 ER PT J AU Xie, DZ Benitez, JY Hodgkinson, A Loew, T Lyneis, CM Phair, L Pipersky, P Reynolds, B Todd, DS AF Xie, D. Z. Benitez, J. Y. Hodgkinson, A. Loew, T. Lyneis, C. M. Phair, L. Pipersky, P. Reynolds, B. Todd, D. S. TI Development status of a next generation ECRIS: MARS-D at LBNL SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 16th International Conference on Ion Sources (ICIS) CY AUG 23-28, 2015 CL New York, NY SP Brookhaven Natl Lab, Collider Accelerator Dept ID RESONANCE ION-SOURCE AB To demonstrate a Mixed Axial and Radial field System (MARS) as the best magnet scheme for future ECRISs, MARS-D, a demonstrative ECRIS using a NbTi MARS magnet is progressing at Lawrence Berkeley National Laboratory. An optimized MARS design can use either NbTi or Nb3Sn coils with reduced engineering complexities to construct the needed high-field magnets. The optimized magnet design could enhance MARS-D to a next generation ECRIS by producing minimum-B field maxima of 5.6 T axially and 3.2 T radially for operating frequencies up to 45 GHz. In-progress test winding has achieved a milestone demonstrating the fabrication feasibility of a MARS closed-loop coil. (C) 2015 AIP Publishing LLC. C1 [Xie, D. Z.; Benitez, J. Y.; Hodgkinson, A.; Loew, T.; Lyneis, C. M.; Phair, L.; Pipersky, P.; Reynolds, B.; Todd, D. S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. RP Xie, DZ (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. EM zgxie@lbl.gov NR 8 TC 0 Z9 0 U1 1 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2016 VL 87 IS 2 AR 02A702 DI 10.1063/1.4931713 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA DG0FQ UT WOS:000371740900013 PM 26931920 ER PT J AU Yoshida, M Hanada, M Kojima, A Kashiwagi, M Umeda, N Hiratsuka, J Ichikawa, M Watanabe, K Grisham, LR Tsumori, K Kisaki, M AF Yoshida, M. Hanada, M. Kojima, A. Kashiwagi, M. Umeda, N. Hiratsuka, J. Ichikawa, M. Watanabe, K. Grisham, L. R. Tsumori, K. Kisaki, M. TI Time evolution of negative ion profile in a large cesiated negative ion source applicable to fusion reactors SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 16th International Conference on Ion Sources (ICIS) CY AUG 23-28, 2015 CL New York, NY SP Brookhaven Natl Lab, Collider Accelerator Dept AB To understand the physics of the cesium (Cs) recycling in the large Cs-seeded negative ion sources relevant to ITER and JT-60SA with ion extraction area of 45-60 cm x 110-120 cm, the time evolution of the negative ion profile was precisely measured in JT-60SA where the ion extraction area is longitudinally segmented into 5. The Cs was seeded from the oven at 180 degrees C to the ion source. After 1 g of Cs input, surface production of the negative ions appeared only in the central segment where a Cs nozzle was located. Up to 2 g of Cs, the negative ion profile was longitudinally expanded over full ion extraction area. The measured time evolution of the negative ion profile has the similar tendency of distribution of the Cs atoms that is calculated. From the results, it is suggested that Cs atom distribution is correlated with the formation of the negative ion profile. (C) 2015 AIP Publishing LLC. C1 [Yoshida, M.; Hanada, M.; Kojima, A.; Kashiwagi, M.; Umeda, N.; Hiratsuka, J.; Ichikawa, M.; Watanabe, K.] Japan Atom Energy Agcy, 801-1 Mukoyama, Naka, Ibaraki 3110193, Japan. [Grisham, L. R.] Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. [Tsumori, K.; Kisaki, M.] Natl Inst Fus Sci, Toki, Gifu 5095792, Japan. RP Yoshida, M (reprint author), Japan Atom Energy Agcy, 801-1 Mukoyama, Naka, Ibaraki 3110193, Japan. EM yoshida.masafumi@jaea.go.jp NR 13 TC 0 Z9 0 U1 1 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2016 VL 87 IS 2 AR 02B144 DI 10.1063/1.4938406 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA DG0FQ UT WOS:000371740900119 PM 26932026 ER PT J AU Zelenski, A Atoian, G Raparia, D Ritter, J Steski, D AF Zelenski, A. Atoian, G. Raparia, D. Ritter, J. Steski, D. TI The RHIC polarized H- ion source SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 16th International Conference on Ion Sources (ICIS) CY AUG 23-28, 2015 CL New York, NY SP Brookhaven Natl Lab, Collider Accelerator Dept ID PHYSICS AB A novel polarization technique had been successfully implemented for the Relativistic Heavy Ion Collider (RHIC) polarized H-ion source upgrade to higher intensity and polarization. In this technique, a proton beam inside the high magnetic field solenoid is produced by ionization of the atomic hydrogen beam (from external source) in the He-gaseous ionizer cell. Further proton polarization is produced in the process of polarized electron capture from the optically pumped Rb vapor. The use of high-brightness primary beam and large cross sections of charge-exchange cross sections resulted in production of high intensity H-ion beam of 85% polarization. The source very reliably delivered polarized beam in the RHIC Run-2013 and Run-2015. High beam current, brightness, and polarization resulted in 75% polarization at 23 GeV out of Alternating Gradient Synchrotron (AGS) and 60%-65% beam polarization at 100-250 GeV colliding beams in RHIC. (C) 2015 AIP Publishing LLC. C1 [Zelenski, A.; Atoian, G.; Raparia, D.; Ritter, J.; Steski, D.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Zelenski, A (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM zelenski@bnl.gov NR 9 TC 1 Z9 1 U1 1 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2016 VL 87 IS 2 AR 02B705 DI 10.1063/1.4932392 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA DG0FQ UT WOS:000371740900161 PM 26932068 ER PT J AU Vinogradova, SV Sutormin, RA Mironov, AA Soldatov, RA AF Vinogradova, Svetlana V. Sutormin, Roman A. Mironov, Andrey A. Soldatov, Ruslan A. TI Probing-directed identification of novel structured RNAs SO RNA BIOLOGY LA English DT Article DE PARS; RNA secondary structure; RNASurface; RNA structure probing; SHAPE ID BASE-PAIRING PROBABILITIES; SECONDARY STRUCTURE; MAPPING EXPERIMENTS; GENOME-WIDE; SHAPE; TRANSCRIPTOME; CONSTRAINTS; PREDICTION; LANDSCAPE; ALGORITHM AB Transcripts often harbor RNA elements, which regulate cell processes co- or post-transcriptionally. The functions of many regulatory RNA elements depend on their structure, thus it is important to determine the structure as well as to scan genomes for structured elements. State of the art ab initio approaches to predict structured RNAs rely on DNA sequence analysis. They use 2 major types of information inferred from a sequence: thermodynamic stability of an RNA structure and evolutionary footprints of base-pair interactions. In recent years, chemical probing of RNA has arisen as an alternative source of structural information. RNA probing experiments detect positions accessible to specific types of chemicals or enzymes indicating their propensity to be in a paired or unpaired state. There exist several strategies to integrate probing data into RNA secondary structure prediction algorithms that substantially improve the prediction quality. However, whether and how probing data could contribute to detection of structured RNAs remains an open question. We previously developed the energy-based approach RNASurface to detect locally optimal structured RNA elements. Here, we integrate probing data into the RNASurface energy model using a general framework. We show that the use of experimental data allows for better discrimination of ncRNAs from other transcripts. Application of RNASurface to genome-wide analysis of the human transcriptome with PARS data identifies previously undetectable segments, with evidence of functionality for some of them. C1 [Vinogradova, Svetlana V.; Sutormin, Roman A.; Mironov, Andrey A.; Soldatov, Ruslan A.] Moscow MV Lomonosov State Univ, Dept Bioengn & Bioinformat, 1-73 Vorobievy Gory, Moscow 119991, Russia. [Vinogradova, Svetlana V.; Mironov, Andrey A.; Soldatov, Ruslan A.] Russian Acad Sci, Inst Informat Transmiss Problems, 19 Bolshoi Karetnyi Per, Moscow 127994, Russia. [Sutormin, Roman A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94710 USA. RP Vinogradova, SV (reprint author), Moscow MV Lomonosov State Univ, Dept Bioengn & Bioinformat, 1-73 Vorobievy Gory, Moscow 119991, Russia.; Vinogradova, SV (reprint author), Russian Acad Sci, Inst Informat Transmiss Problems, 19 Bolshoi Karetnyi Per, Moscow 127994, Russia. EM kintany@gmail.com NR 43 TC 1 Z9 2 U1 2 U2 3 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA SN 1547-6286 EI 1555-8584 J9 RNA BIOL JI RNA Biol. PD FEB 1 PY 2016 VL 13 IS 2 BP 232 EP 242 DI 10.1080/15476286.2015.1132140 PG 11 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA DG0HE UT WOS:000371745100013 PM 26732206 ER PT J AU Tang, CP Shokla, SK Modhawar, G Wang, Q AF Tang, Chengpei Shokla, Sanesy Kumcr Modhawar, George Wang, Qiang TI An Effective Collaborative Mobile Weighted Clustering Schemes for Energy Balancing in Wireless Sensor Networks SO SENSORS LA English DT Article DE collaborative weighted clustering algorithm; oil leakage monitoring; mobile environments; weighted clustering algorithm; mobile sensing schemes ID CROSS-LAYER OPTIMIZATION; DATA AGGREGATION; OIL PIPELINE; SIGNAL AB Collaborative strategies for mobile sensor nodes ensure the efficiency and the robustness of data processing, while limiting the required communication bandwidth. In order to solve the problem of pipeline inspection and oil leakage monitoring, a collaborative weighted mobile sensing scheme is proposed. By adopting a weighted mobile sensing scheme, the adaptive collaborative clustering protocol can realize an even distribution of energy load among the mobile sensor nodes in each round, and make the best use of battery energy. A detailed theoretical analysis and experimental results revealed that the proposed protocol is an energy efficient collaborative strategy such that the sensor nodes can communicate with a fusion center and produce high power gain. C1 [Tang, Chengpei] Sun Yat Sen Univ, Sch Engn, Guangzhou 510006, Guangdong, Peoples R China. [Shokla, Sanesy Kumcr] Univ Calif, Lawrence Berkeley Natl Lab, Oakland, CA 94612 USA. [Modhawar, George] Valdosta State Univ, Dept Math & Comp Sci, Dartmouth, MA 02747 USA. [Wang, Qiang] Penn State Univ, Dept Comp Sci, University Pk, PA 16802 USA. RP Shokla, SK (reprint author), Univ Calif, Lawrence Berkeley Natl Lab, Oakland, CA 94612 USA. EM tchengp@mail.sysu.edu.cn; sanesy.kumcr@gmail.com; George.modhawar@gmail.com; wangqianedu@163.com FU Science and technology project of Guangdong province [2013B010401012]; Special Funds for the Development of Strategic Emerging Industries in Guangdong Province [2012556036] FX This work was supported by Science and technology project of Guangdong province under Grant No. 2013B010401012, Special Funds for the Development of Strategic Emerging Industries in Guangdong Province under Grant No. 2012556036. The authors would like to thank the anonymous reviewers and the editor for the very instructive suggestions that led to the much improved quality of this paper. NR 55 TC 2 Z9 2 U1 3 U2 9 PU MDPI AG PI BASEL PA POSTFACH, CH-4005 BASEL, SWITZERLAND SN 1424-8220 J9 SENSORS-BASEL JI Sensors PD FEB PY 2016 VL 16 IS 2 DI 10.3390/s16020261 PG 19 WC Chemistry, Analytical; Electrochemistry; Instruments & Instrumentation SC Chemistry; Electrochemistry; Instruments & Instrumentation GA DG0WX UT WOS:000371787800023 PM 26907285 ER PT J AU Lake, AD Wood, CE Bhat, VS Chorley, BN Carswell, GK Sey, YM Kenyon, EM Padnos, B Moore, TM Tennant, AH Schmid, JE George, BJ Ross, DG Hughes, MF Corton, JC Simmons, JE McQueen, CA Hester, SD AF Lake, April D. Wood, Charles E. Bhat, Virunya S. Chorley, Brian N. Carswell, Gleta K. Sey, Yusupha M. Kenyon, Elaina M. Padnos, Beth Moore, Tanya M. Tennant, Alan H. Schmid, Judith E. George, Barbara Jane Ross, David G. Hughes, Michael F. Corton, J. Christopher Simmons, Jane Ellen McQueen, Charlene A. Hester, Susan D. TI Dose and Effect Thresholds for Early Key Events in a PPAR alpha-Mediated Mode of Action SO TOXICOLOGICAL SCIENCES LA English DT Article DE mode of action; adverse outcome pathway; benchmark dose; peroxisome proliferator-activated receptor-alpha; liver carcinogenesis; phthalate ID CHEMICAL RISK-ASSESSMENT; ANDROSTANE RECEPTOR CAR; HUMAN RELEVANCE; FRAMEWORK; MICE; CONCORDANCE; PHTHALATE; TOXICITY; PATHWAY; DI(2-ETHYLHEXYL)PHTHALATE AB Current strategies for predicting adverse health outcomes of environmental chemicals are centered on early key events in toxicity pathways. However, quantitative relationships between early molecular changes in a given pathway and later health effects are often poorly defined. The goal of this study was to evaluate short-term key event indicators using qualitative and quantitative methods in an established pathway of mouse liver tumorigenesis mediated by peroxisome proliferator-activated receptor alpha (PPAR alpha). Male B6C3F1 mice were exposed for 7 days to di (2-ethylhexyl) phthalate (DEHP), di-n-octyl phthalate (DNOP), and n-butyl benzyl phthalate (BBP), which vary in PPAR alpha activity and liver tumorigenicity. Each phthalate increased expression of select PPARa target genes at 7 days, while only DEHP significantly increased liver cell proliferation labeling index (LI). Transcriptional benchmark dose (BMDT) estimates for dose-related genomic markers stratified phthalates according to hypothetical tumorigenic potencies, unlike BMDs for non-genomic endpoints (relative liver weights or proliferation). The 7-day BMDT values for Acot1 as a surrogate measure for PPAR alpha activation were 29, 370, and 676 mg/kg/day for DEHP, DNOP, and BBP, respectively, distinguishing DEHP (liver tumor BMD of 35 mg/kg/day) from non-tumorigenic DNOP and BBP. Effect thresholds were generated using linear regression of DEHP effects at 7 days and 2-year tumor incidence values to anchor early response molecular indicators and a later phenotypic outcome. Thresholds varied widely by marker, from 2-fold (Pdk4 and proliferation LI) to 30-fold (Acot1) induction to reach hypothetical tumorigenic expression levels. These findings highlight key issues in defining thresholds for biological adversity based on molecular changes. C1 [Lake, April D.] Univ N Carolina, Curriculum Toxicol, Chapel Hill, NC 27599 USA. [Lake, April D.] US EPA, ORD, NHEERL, ORISE, Res Triangle Pk, NC 27711 USA. [Lake, April D.; Wood, Charles E.; Chorley, Brian N.; Carswell, Gleta K.; Sey, Yusupha M.; Kenyon, Elaina M.; Padnos, Beth; Moore, Tanya M.; Tennant, Alan H.; Ross, David G.; Hughes, Michael F.; Corton, J. Christopher; Simmons, Jane Ellen; McQueen, Charlene A.; Hester, Susan D.] US EPA, ORD, NHEERL, Integrated Syst Toxicol Div, Res Triangle Pk, NC 27711 USA. [Bhat, Virunya S.] NSF Int, Ann Arbor, MI 48105 USA. [Schmid, Judith E.] US EPA, ORD, NHEERL, Toxicol Assessment Div, Res Triangle Pk, NC 27711 USA. [George, Barbara Jane] US EPA, ORD, NHEERL, Off Associate Director Hlth, Res Triangle Pk, NC 27711 USA. RP Hester, SD (reprint author), US EPA, ORD, NHEERL, Integrated Syst Toxicol Div, Res Triangle Pk, NC 27711 USA. EM hester.susan@epa.gov FU U.S. Environmental Protection Agency Office of Research and Development FX U.S. Environmental Protection Agency Office of Research and Development. NR 42 TC 2 Z9 2 U1 3 U2 7 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 1096-6080 EI 1096-0929 J9 TOXICOL SCI JI Toxicol. Sci. PD FEB PY 2016 VL 149 IS 2 BP 312 EP 325 DI 10.1093/toxsci/kfv236 PG 14 WC Toxicology SC Toxicology GA DF8NF UT WOS:000371613900008 PM 26519955 ER PT J AU Wei, XD Meng, ZX Ruiz, L Xia, WJ Lee, C Kysar, JW Hone, JC Keten, S Espinosa, HD AF Wei, Xiaoding Meng, Zhaoxu Ruiz, Luis Xia, Wenjie Lee, Changgu Kysar, Jeffrey W. Hone, James C. Keten, Sinan Espinosa, Horacio D. TI Recoverable Slippage Mechanism in Multilayer Graphene Leads to Repeatable Energy Dissipation SO ACS NANO LA English DT Article DE graphene; slippage; stacking nonlinearity; energy dissipation; strength ID FEW-LAYER GRAPHENE; BILAYER GRAPHENE; SINGLE-LAYER; NANOCOMPOSITES; NANOWIRES; STACKING; GRAPHITE; MODEL AB Understanding the deformation mechanisms in multilayer graphene (MLG), an attractive material used in nanodevices as well as in the reinforcement of nanocomposites, is critical yet challenging due to difficulties in experimental characterization and the spatiotemp oral limitations of atomistic modeling. In this study, we combine nanomechanical experiments with coarse-grained molecular dynamics (CG-MD) simulations to elucidate the mechanisms of deformation and failure of MLG sheets. Elastic properties of graphene sheets with one to three layers are measured using film deflection tests. A nonlinear behavior in the force vs deflection curves for MLGs is observed in both experiments simulations: during loading/unloading cycles, MLGs dissipate energy through a "recoverable slippage" mechanism. The CG-MD simulations further reveal an atomic level interlayer slippage process and suggest that the dissipated energy scales with film perimeter. Moreover, our study demonstrates that the finite shear strength between individual layers could explain the experimentally measured size dependent strength with thickness scaling in MLG sheets. C1 [Wei, Xiaoding; Keten, Sinan; Espinosa, Horacio D.] Northwestern Univ, Dept Mech Engn, 2145 Sheridan Rd, Evanston, IL 60208 USA. [Wei, Xiaoding] Peking Univ, Coll Engn, Dept Mech & Engn Sci, Beijing 100871, Peoples R China. [Meng, Zhaoxu; Ruiz, Luis; Xia, Wenjie; Keten, Sinan] Northwestern Univ, Dept Civil & Environm Engn, 2145 Sheridan Rd, Evanston, IL 60208 USA. [Lee, Changgu] Sungkyunkwan Univ, Dept Mech Engn, Suwon 440746, South Korea. [Kysar, Jeffrey W.; Hone, James C.] Columbia Univ, Dept Mech Engn, New York, NY 10027 USA. [Espinosa, Horacio D.] Northwestern Univ, Theoret & Appl Mech, 2145 Sheridan Rd, Evanston, IL 60208 USA. [Ruiz, Luis] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Keten, S; Espinosa, HD (reprint author), Northwestern Univ, Dept Mech Engn, 2145 Sheridan Rd, Evanston, IL 60208 USA.; Keten, S (reprint author), Northwestern Univ, Dept Civil & Environm Engn, 2145 Sheridan Rd, Evanston, IL 60208 USA.; Espinosa, HD (reprint author), Northwestern Univ, Theoret & Appl Mech, 2145 Sheridan Rd, Evanston, IL 60208 USA. EM s-keten@northwestern.edu; espinosa@northwestern.edu RI Espinosa, Horatio/B-6693-2009; Keten, Sinan/F-4080-2010; Wei, Xiaoding/A-9952-2011; OI Wei, Xiaoding/0000-0002-5173-4923; Meng, Zhaoxu/0000-0002-3250-7696 FU NSF through DMREF Award [CMMI-1235480, CMMI-1437450]; ARO through MURI Award [W911NF-08-1-0541]; Department of Civil & Environmental Engineering and Mechanical Engineering at Northwestern University; Quest HPC System at Northwestern University; Basic Science Research Program - Korean Government Ministry of Science, ICT and Future Planning [2009-0083540] FX The authors acknowledge support from NSF through DMREF Award CMMI-1235480, and through Grant CMMI-1437450, and the ARO through MURI Award W911NF-08-1-0541. In addition, the authors thank support from the Department of Civil & Environmental Engineering and Mechanical Engineering at Northwestern University. A supercomputing grant from Quest HPC System at Northwestern University is also acknowledged. C.L. acknowledges the Basic Science Research Program (2009-0083540) funded by the Korean Government Ministry of Science, ICT and Future Planning. NR 39 TC 5 Z9 5 U1 16 U2 37 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD FEB PY 2016 VL 10 IS 2 BP 1820 EP 1828 DI 10.1021/acsnano.5b04939 PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA DE9VL UT WOS:000370987400016 PM 26783825 ER PT J AU Widmer-Cooper, A Geissler, PL AF Widmer-Cooper, Asaph Geissler, Phillip L. TI Ligand-Mediated Interactions between Nanoscale Surfaces Depend Sensitively and Nonlinearly on Temperature, Facet Dimensions, and Ligand Coverage SO ACS NANO LA English DT Article DE nanoparticle; ligand; self-assembled monolayer; surface forces; self-assembly; solution ID SELF-ASSEMBLED MONOLAYERS; MOLECULAR-DYNAMICS SIMULATION; GOLD CLUSTER MOLECULES; CDSE QUANTUM DOTS; NANOCRYSTALS; NANOPARTICLES; MODEL; DISORDER; GROWTH; CHAIN AB Nanoparticles are often covered in ligand monolayers, which can undergo a temperature-dependent order disorder transition that switches the particle particle interaction from repulsive to attractive in solution. In this work, we examine how changes in the ligand surface coverage and facet dimensions affect the ordering of ligands, the arrangement of nearby solvent molecules, and the interaction between ligand monolayers on different particles. In particular, we consider the case of strongly bound octadecyl ligands on the (100) facet of CdS in the presence of an explicit n-hexane solvent. Depending on the facet dimensions and surface coverage, we observe three distinct ordered states that differ in how the ligands are packed together, and which affect the thickness of the ligand shell and the structure of the ligand solvent interface. The temperature dependence of the order disorder transition also broadens and shifts to lower temperature in a nonlinear manner as the nanoscale is approached from above. We find that ligands on nanoscale facets can behave very similarly to those on macroscopic surfaces in solution, and that some facet dimensions affect the ligand alignment more strongly than others. As the ligands order, the interaction between opposing monolayers becomes attractive, even well below full surface coverage. The strength of attraction per unit surface area is strongly affected by ligand coverage, but only weakly by facet width. Conversely, we find that bringing two monolayers together just above the order disorder transition temperature can induce ordering and attraction. C1 [Widmer-Cooper, Asaph] Univ Sydney, Sch Chem, Sydney, NSW 2006, Australia. [Geissler, Phillip L.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Geissler, Phillip L.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Geissler, Phillip L.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Widmer-Cooper, A (reprint author), Univ Sydney, Sch Chem, Sydney, NSW 2006, Australia. EM asaph.widmer-cooper@sydney.edu.au FU Office of Science, Office of Basic Energy Sciences, Materials Sciences, and Engineering Division, of the U.S. Department of Energy [DE-AC02-05CH11231]; Australian Research Council [FT140101061] FX This work was supported by generous grants of computer time from the National Computational Infrastructure facility (which is supported by the Australian Government) and the National Energy Research Scientific Computing Center (which was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences, and Engineering Division, of the U.S. Department of Energy under contract no. DE-AC02-05CH11231). A.W.-C. acknowledges financial support from the Australian Research Council in the form of a Future Fellowship (FT140101061). NR 64 TC 2 Z9 2 U1 8 U2 28 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD FEB PY 2016 VL 10 IS 2 BP 1877 EP 1887 DI 10.1021/acsnano.5b05569 PG 11 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA DE9VL UT WOS:000370987400023 PM 26756464 ER PT J AU Orfield, NJ McBride, JR Wang, F Buck, MR Keene, JD Reid, KR Htoon, H Hollingsworth, JA Rosenthal, SJ AF Orfield, Noah J. McBride, James R. Wang, Feng Buck, Matthew R. Keene, Joseph D. Reid, Kemar R. Htoon, Han Hollingsworth, Jennifer A. Rosenthal, Sandra J. TI Quantum Yield Heterogeneity among Single Nonblinking Quantum Dots Revealed by Atomic Structure-Quantum Optics Correlation SO ACS NANO LA English DT Article DE correlation; nanocrystal quantum dot; nanocrystal atomic structure; quantum yield; heterogeneity ID TRANSMISSION ELECTRON-MICROSCOPY; UP-CONVERSION SPECTROSCOPY; CORE-SHELL NANOCRYSTALS; CDSE NANOCRYSTALS; SEMICONDUCTOR NANOCRYSTALS; SUPPRESSED BLINKING; ROOM-TEMPERATURE; EMISSION; SURFACE; LIGHT AB Physical variations in colloidal nanostructures give rise to heterogeneity in expressed optical behavior. This correlation between nanoscale structure and function demands interrogation of both atomic structure and photophysics at the level of single nanostructures to be fully understood. Herein, by conducting detailed analyses of fine atomic structure, chemical composition, and time-resolved single-photon photoluminescence data for the same individual nanocrystals, we reveal inhomogeneity in the quantum yields of single nonblinking "giant" CdSe/CdS core/shell quantum dots (g-QDs). We find that each g-QD possesses distinctive single exciton and biexciton quantum yields that result mainly from variations in the degree of charging, rather than from volume or structure inhomogeneity. We further establish that there is a very limited nonemissive "dark" fraction (<2%) among the studied g-QDs and present direct evidence that the g-QD core must lack inorganic passivation for the g-QD to be "dark". Therefore, in contrast to conventional QDs, ensemble photoluminescence quantum yield is principally defined by charging processes rather than the existence of dark g-QDs. C1 [Orfield, Noah J.; McBride, James R.; Keene, Joseph D.; Rosenthal, Sandra J.] Vanderbilt Univ, Dept Chem, Box 1583, Nashville, TN 37235 USA. [Orfield, Noah J.; McBride, James R.; Keene, Joseph D.; Reid, Kemar R.; Rosenthal, Sandra J.] Vanderbilt Univ, Vanderbilt Inst Nanoscale Sci & Engn, Nashville, TN 37235 USA. [Wang, Feng; Buck, Matthew R.; Htoon, Han; Hollingsworth, Jennifer A.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA. [Reid, Kemar R.; Rosenthal, Sandra J.] Vanderbilt Univ, Dept Interdisciplinary Mat Sci, Nashville, TN 37235 USA. [Rosenthal, Sandra J.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. [Rosenthal, Sandra J.] Vanderbilt Univ, Dept Pharmacol Chem & Biomol Engn, Nashville, TN 37235 USA. [Rosenthal, Sandra J.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Buck, Matthew R.] Colgate Univ, Dept Chem, Hamilton, NY 13346 USA. [Keene, Joseph D.] Mercer Univ, Dept Chem, Macon, GA 31207 USA. RP McBride, JR; Rosenthal, SJ (reprint author), Vanderbilt Univ, Dept Chem, Box 1583, Nashville, TN 37235 USA.; McBride, JR; Rosenthal, SJ (reprint author), Vanderbilt Univ, Vanderbilt Inst Nanoscale Sci & Engn, Nashville, TN 37235 USA.; Htoon, H; Hollingsworth, JA (reprint author), Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA.; Rosenthal, SJ (reprint author), Vanderbilt Univ, Dept Interdisciplinary Mat Sci, Nashville, TN 37235 USA.; Rosenthal, SJ (reprint author), Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA.; Rosenthal, SJ (reprint author), Vanderbilt Univ, Dept Pharmacol Chem & Biomol Engn, Nashville, TN 37235 USA.; Rosenthal, SJ (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. EM james.r.mcbride@vanderbilt.edu; htoon@lanl.gov; jenn@lanl.gov; sandra.j.rosenthal@vanderbilt.edu RI Keene, Joseph/F-8874-2010; McBride, James/D-2934-2012; OI McBride, James/0000-0003-0161-7283; Orfield, Noah/0000-0003-4555-8668; Htoon, Han/0000-0003-3696-2896 FU National Science Foundation CHE [1213758]; National Science Foundation EPS [1004083]; Division of Materials Science and Engineering DOE, OBES grant [2009LANL1096]; Center for Integrated Nanotechnologies, a U.S. Department of Energy (DOE), Office of Basic Energy Sciences (OBES) Nanoscale Science Research Center AMP; User Facility as part of User Project [U2014B0001] FX This work was supported in part by the National Science Foundation CHE grant 1213758 and National Science Foundation EPS 1004083 (TN-SCORE). JAH, HH and RV acknowledge primary support by a Division of Materials Science and Engineering DOE, OBES grant (2009LANL1096) for g-QD development guided by defining structure-function relationships. Work performed in part at the Center for Integrated Nanotechnologies, a U.S. Department of Energy (DOE), Office of Basic Energy Sciences (OBES) Nanoscale Science Research Center & User Facility as part of User Project U2014B0001. NR 47 TC 8 Z9 8 U1 7 U2 33 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD FEB PY 2016 VL 10 IS 2 BP 1960 EP 1968 DI 10.1021/acsnano.5b05876 PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA DE9VL UT WOS:000370987400032 PM 26849531 ER PT J AU Conroy, M Zubialevich, VZ Li, HN Petkov, N O'Donoghue, S Holmes, JD Parbrook, PJ AF Conroy, Michele Zubialevich, Vitaly Z. Li, Haoning Petkov, Nikolay O'Donoghue, Sally Holmes, Justin D. Parbrook, Peter J. TI Ultra-High-Density Arrays of Defect-Free AIN Nanorods: A "Space-Filling" Approach SO ACS NANO LA English DT Article DE III-nitrides; nanowires; nanorods; aluminum nitride; growth mechanism ID GAN NANOWIRES; GROWTH; HETEROEPITAXY; DISLOCATIONS; SAPPHIRE; EPITAXY; LAYERS AB Nanostructured semiconductors have a clear potential for improved optoelectronic devices, such as high-efficiency light-emitting diodes (LEDs). However, most arrays of semiconductor nanorods suffer from having relatively low densities (or "fill factors") and a high degree of nonuniformity, especially when produced by self organized growth. Ideally an array of nanorods for an optoelectronic emitter should have a fill factor close to 100%, with uniform rod diameter and height. In this article we present a "space-filling" approach for forming defect-free arrays of AIN nanorods, whereby the separation between each rod can be controlled to 5 nm due to a self-limiting process. These arrays of pyramidal-topped AlN nanorods formed over wafer scale areas by metal organic chemical vapor deposition provide a defect-free semipolar top surface, for potential optoelectronic device applications with the highest reported fill factor at 98%. C1 [Conroy, Michele; Zubialevich, Vitaly Z.; Li, Haoning; Petkov, Nikolay; O'Donoghue, Sally; Holmes, Justin D.; Parbrook, Peter J.] Tyndall Natl Inst, Cork T12 R5CP, Ireland. [Conroy, Michele; Li, Haoning; Parbrook, Peter J.] Natl Univ Ireland Univ Coll Cork, Sch Engn, Cork T12 YN60, Ireland. [Conroy, Michele; O'Donoghue, Sally; Holmes, Justin D.] Natl Univ Ireland Univ Coll Cork, Dept Chem, Cork T12 YN60, Ireland. [Conroy, Michele; Holmes, Justin D.] Univ Dublin Trinity Coll, AMBER CRANN, Dublin D02 PN40, Ireland. [Conroy, Michele] Pacific NW Natl Lab, 902 Battelle Blvd, Richland, WA 99354 USA. RP Parbrook, PJ (reprint author), Tyndall Natl Inst, Cork T12 R5CP, Ireland.; Parbrook, PJ (reprint author), Natl Univ Ireland Univ Coll Cork, Sch Engn, Cork T12 YN60, Ireland. EM peter.parbrook@tyndall.ie RI Parbrook, Peter/R-7680-2016; OI Parbrook, Peter/0000-0003-3287-512X; Conroy, Michele/0000-0002-6658-1819 FU Science Foundation Ireland (SFI) [SFI/10/IN.1/I2993]; SFI Engineering Professorship scheme [07/EN/E001A]; INSPIRE FX This research was enabled by the Irish Higher Education Authority Programme for Research in Third Level Institutions Cycles 4 and 5 via the INSPIRE and TYFFANI projects and by Science Foundation Ireland (SFI) under grant no. SFI/10/IN.1/I2993. P.J.P. acknowledges funding from SFI Engineering Professorship scheme 07/EN/E001A, and M.C. acknowledges a Ph.D. research scholarship from INSPIRE. This work was conducted under the framework of the Irish Government's Programme for Research in Third Level Institutions Cycle 5, National Development Plan 2007-2013, with the assistance of the European Regional Development Fund. We also acknowledge the support of M. Ahkter for his support with fabrication and W. Jagoe for his illustrations in the article. NR 32 TC 2 Z9 2 U1 8 U2 20 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD FEB PY 2016 VL 10 IS 2 BP 1988 EP 1994 DI 10.1021/acsnano.5b06062 PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA DE9VL UT WOS:000370987400035 PM 26597059 ER PT J AU Nguyen, SC Zhang, Q Manthiram, K Ye, XC Lomont, JP Harris, CB Weller, H Alivisatos, AP AF Nguyen, Son C. Zhang, Qiao Manthiram, Karthish Ye, Xingchen Lomont, Justin P. Harris, Charles B. Weller, Horst Alivisatos, A. Paul TI Study of Heat Transfer Dynamics from Gold Nanorods to the Environment via Time-Resolved Infrared Spectroscopy SO ACS NANO LA English DT Article DE plasmonic nanoparticle; silica coating; heat transfer; electron ejection; time-resolved infrared spectroscopy ID SHELL NANOPARTICLES; MESOPOROUS SILICA; AQUEOUS-SOLUTION; IR SPECTROSCOPY; SOLVENT; WATER; SIZE; NANOCRYSTALS; DISSIPATION; ABSORPTION AB Studying the local solvent surrounding nanoparticles is important to understanding the energy exchange dynamics between the particles and their environment, and there is a need for spectroscopic methods that can dynamically probe the solvent region that is in nearby contact with the nanoparticles. In this work, we demonstrate the use of time resolved infrared spectroscopy to track changes in a vibrational mode of local water on the time scale of hundreds of picoseconds, revealing the dynamics of heat transfer from gold nanorods to the local water environment. We applied this probe to a prototypical plasmonic photothermal system consisting of organic CTAB bilayer capped gold nanorods, as well as gold nanorods coated with varying thicknesses of inorganic mesoporous-silica. The heat transfer time constant of CTAB capped gold nanorods is about 350 ps and becomes faster with higher laser excitation power, eventually generating bubbles due to superheating in the local solvent. Silica coating of the nanorods slows down the heat transfer and suppresses the formation of superheated bubbles. C1 [Nguyen, Son C.; Zhang, Qiao; Ye, Xingchen; Lomont, Justin P.; Harris, Charles B.; Alivisatos, A. Paul] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Manthiram, Karthish] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. [Alivisatos, A. Paul] Univ Calif Berkeley, Kavli Energy Nanosci Inst, Berkeley, CA 94720 USA. [Alivisatos, A. Paul] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Nguyen, Son C.; Weller, Horst] Univ Hamburg, Inst Phys Chem, Grindelallee 117, D-20146 Hamburg, Germany. [Alivisatos, A. Paul] Univ Hamburg, Hamburg Ctr Ultrafast Imaging, Luruper Chaussee 149, D-22761 Hamburg, Germany. [Weller, Horst] King Abdulaziz Univ, Fac Sci, Dept Chem, Jeddah 21589, Saudi Arabia. RP Harris, CB; Alivisatos, AP (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.; Alivisatos, AP (reprint author), Univ Calif Berkeley, Kavli Energy Nanosci Inst, Berkeley, CA 94720 USA.; Alivisatos, AP (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.; Weller, H (reprint author), Univ Hamburg, Inst Phys Chem, Grindelallee 117, D-20146 Hamburg, Germany.; Alivisatos, AP (reprint author), Univ Hamburg, Hamburg Ctr Ultrafast Imaging, Luruper Chaussee 149, D-22761 Hamburg, Germany.; Weller, H (reprint author), King Abdulaziz Univ, Fac Sci, Dept Chem, Jeddah 21589, Saudi Arabia. EM cbharris@berkeley.edu; weller@chemie.uni-hamburg.de; alivis@berkeley.edu RI Alivisatos , Paul /N-8863-2015; Ye, Xingchen/D-3202-2017; Faculty of, Sciences, KAU/E-7305-2017 OI Alivisatos , Paul /0000-0001-6895-9048; Ye, Xingchen/0000-0001-6851-2721; FU Physical Chemistry of Inorganic Nanostructures Program [KC3103]; Office of Basic Energy Sciences of the United States Department of Energy [DE-AC02-05CH11232]; NSF [CHE-1213135]; German Federal Cluster of Excellence "The Hamburg Centre for Ultrafast Imaging" FX This work is supported by the Physical Chemistry of Inorganic Nanostructures Program, KC3103, Office of Basic Energy Sciences of the United States Department of Energy under Contract DE-AC02-05CH11232 (A.P.A.), NSF Grant CHE-1213135 (C.B.H.), German Federal Cluster of Excellence "The Hamburg Centre for Ultrafast Imaging" (H.W.). NR 39 TC 5 Z9 5 U1 21 U2 51 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD FEB PY 2016 VL 10 IS 2 BP 2144 EP 2151 DI 10.1021/acsnano.5b06623 PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA DE9VL UT WOS:000370987400052 PM 26840805 ER PT J AU Asadi, M Kumar, B Liu, C Phillips, P Yasaei, P Behranginia, A Zapol, P Klie, RF Curtiss, LA Salehi-Khojin, A AF Asadi, Mohammad Kumar, Bijandra Liu, Cong Phillips, Patrick Yasaei, Poya Behranginia, Amirhossein Zapol, Peter Klie, Robert F. Curtiss, Larry A. Salehi-Khojin, Amin TI Cathode Based on Molybdenum Disulfide Nanoflakes for Lithium-Oxygen Batteries SO ACS NANO LA English DT Article DE lithium-O-2 batteries; ORR; OER; catalysts; molybdenum disulfide; ionic liquid ID RECHARGEABLE LI-O-2 BATTERIES; TEMPERATURE IONIC LIQUIDS; ACTIVE EDGE SITES; LI-AIR BATTERIES; ENERGY DENSITY; REDOX MEDIATOR; ATOMIC LAYERS; IN-SITU; ELECTRODE; MOS2 AB Lithium-oxygen (Li-O-2) batteries have been recognized as an emerging technology for energy storage systems owing to their high theoretical specific energy. One challenge is to find an electrolyte/cathode system that is efficient, stable, and cost-effective. We present such a system based on molybdenum disulfide (MoS2) nanoflakes combined with an ionic liquid (IL) that work together as an effective cocatalyst for discharge and charge in a Li-O-2 battery. Cyclic voltammetry results show superior catalytic performance for this cocatalyst for both oxygen reduction and evolution reactions compared to Au and Pt catalysts. It also performs remarkably well in the Li-O-2 battery system with 85% round-trip efficiency and reversibility up to 50 cycles. Density functional calculations provide a mechanistic understanding of the MoS2 nanoflakes/IL system. cocatalyst reported in this work could open the way for exploiting the unique properties of ionic liquids in Li-air batteries in combination with nanostructured MoS2 as a cathode material. C1 [Asadi, Mohammad; Kumar, Bijandra; Yasaei, Poya; Behranginia, Amirhossein; Salehi-Khojin, Amin] Univ Illinois, Dept Mech & Ind Engn, Chicago, IL 60607 USA. [Phillips, Patrick; Klie, Robert F.] Univ Illinois, Dept Phys, Chicago, IL 60607 USA. [Liu, Cong; Zapol, Peter; Curtiss, Larry A.] Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Salehi-Khojin, A (reprint author), Univ Illinois, Dept Mech & Ind Engn, Chicago, IL 60607 USA.; Curtiss, LA (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM curtiss@anl.gov; salehikh@uic.edu OI Liu, Cong/0000-0002-2145-5034 FU University of Illinois at Chicago; MRSEC Materials Preparation and Measurement Laboratory [NSF-DMR-1420709]; MRSEC program (NSF) at the Materials Research Center [DMR-1121262]; Nanoscale Science and Engineering Center (NSF) at the International Institute for Nanotechnology [EEC-0647560]; State of Illinois through International Institute for Nanotechnology; U.S. Department of Energy [DE-AC0206CH11357]; Argonne Director's Fellowship FX A.S.K's work was supported by University of Illinois at Chicago through the Start-up budget and Chancellor Proof of Concept award. The authors acknowledge the MRSEC Materials Preparation and Measurement Laboratory shared user facility at the University of Chicago (Grant No. NSF-DMR-1420709). The authors also acknowledge the EPIC facility (NUANCE Center-Northwestern University), which has received support from the MRSEC program (NSF DMR-1121262) at the Materials Research Center; the Nanoscale Science and Engineering Center (NSF EEC-0647560) at the International Institute for Nanotechnology; and the State of Illinois, through the International Institute for Nanotechnology. The authors acknowledge Conn Renewable Energy Research Center at the University of Louisville, KY, for providing access to the DEMS equipment. The work at Argonne National Laboratory was supported by the U.S. Department of Energy under Contract DE-AC0206CH11357 from the Division of Materials Science and Engineering, Basic Energy Science (P.Z., C.L., and LAC.). We also acknowledge the computing resources operated by the Laboratory Computing Resource Center (ANL) and the ANL Center for Nanoscale Materials. We also thank the Argonne Director's Fellowship for support of C.L. NR 54 TC 13 Z9 13 U1 68 U2 267 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD FEB PY 2016 VL 10 IS 2 BP 2167 EP 2175 DI 10.1021/acsnano.5b06672 PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA DE9VL UT WOS:000370987400055 PM 26789516 ER PT J AU Bergren, MR Palomaki, PKB Neale, NR Furtak, TE Beard, MC AF Bergren, Matthew R. Palomaki, Peter K. B. Neale, Nathan R. Furtak, Thomas E. Beard, Matthew C. TI Size-Dependent Exciton Formation Dynamics in Colloidal Silicon Quantum Dots SO ACS NANO LA English DT Article DE silicon quantum dots; time-resolved THz spectroscopy; carrier dynamics ID RESOLVED TERAHERTZ SPECTROSCOPY; SEMICONDUCTOR NANOCRYSTALS; CARRIER MULTIPLICATION; RELAXATION DYNAMICS; SOLAR-CELLS; GENERATION; POLARIZABILITY; PBSE; PHOTOCONDUCTIVITY; EFFICIENCY AB We report size-dependent exciton formation dynamics within colloidal silicon quantum dots (Si QDs) using time-resolved terahertz (THz) spectroscopy measurements. THz photoconductivity measurements are used to distinguish the initially created hot carriers from excitons that form at later times. At early pump/probe delays, the exciton formation dynamics are revealed by the temporal evolution of the THz transmission. We find an increase in the exciton formation time, from similar to 500 to similar to 900 fs, as the Si QD diameter is reduced from 7.3 to 3.4 nm and all sizes exhibit slower hot-carrier relaxation times compared to bulk Si. In addition, we determine the THz absorption cross section at early delay times is proportional to the carrier mobility while at later delays is proportional to the exciton polarizability, alpha(X). We extract a size-dependent alpha(X) and find an similar to r(4) dependence, consistent with previous reports for quantum-confined excitons in CdSe, InAs, and PbSe QDs. The observed slowing in exciton formation time for smaller Si QDs is attributed to decreased electron-phonon coupling due to increased quantum confinement. These results experimentally verify the modification of hot-carrier relaxation rates by quantum confinement in Si QDs, which likely plays a significant role in the high carrier multiplication efficiency observed in these nanomaterials. C1 [Bergren, Matthew R.; Palomaki, Peter K. B.; Neale, Nathan R.; Beard, Matthew C.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Bergren, Matthew R.; Furtak, Thomas E.; Beard, Matthew C.] Colorado Sch Mines, Dept Phys, Golden, CO 80401 USA. RP Beard, MC (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA.; Beard, MC (reprint author), Colorado Sch Mines, Dept Phys, Golden, CO 80401 USA. EM matt.beard@nrel.gov OI BEARD, MATTHEW/0000-0002-2711-1355 FU National Science Foundation through Renewable Energy Materials Research Science and Engineering Center [DMR-0820518]; division of Chemical Sciences, Geosciences, and Biosciences, Office of Science, Office of Basic Energy Sciences within DOE; DOE [DE-AC36-08G028308] FX M.R.B. and T.E.F. were supported by the National Science Foundation through the Renewable Energy Materials Research Science and Engineering Center under Grant No. DMR-0820518. M.C.B., P.K.B.P., and N.R.N. acknowledge support from the division of Chemical Sciences, Geosciences, and Biosciences, Office of Science, Office of Basic Energy Sciences within DOE. DOE funding was provided to the National Renewable Energy Laboratory (NREL) through contract DE-AC36-08G028308. NR 46 TC 2 Z9 2 U1 24 U2 54 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD FEB PY 2016 VL 10 IS 2 BP 2316 EP 2323 DI 10.1021/acsnano.5b07073 PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA DE9VL UT WOS:000370987400071 PM 26811876 ER PT J AU Casu, A Genovese, A Manna, L Longo, P Buha, J Botton, GA Lazar, S Upadhyay, M Schwingenschloegl, U Prato, M Li, HB Ghosh, S Palazon, F De Donato, F Mozo, SL Zuddas, E Falqui, A AF Casu, Alberto Genovese, Alessandro Manna, Liberato Longo, Paolo Buha, Joka Botton, Gianluigi A. Lazar, Sorin Upadhyay, Mousumi Schwingenschloegl, Udo Prato, Mirko Li, Hongbo Ghosh, Sandeep Palazon, Francisco De Donato, Francesco Mozo, Sergio Lentijo Zuddas, Efisio Falqui, Andrea TI Cu2Se and Cu Nanocrystals as Local Sources of Copper in Thermally Activated In Situ Cation Exchange SO ACS NANO LA English DT Article DE in situ transmission electron microscopy; cation exchange; scanning transmission electron microscopy; energy-dispersive X-ray spectroscopy; electron energy loss spectroscopy; energy-filtered transmission electron microscopy ID COLLOIDAL NANOCRYSTALS; CU2-XSE NANOCRYSTALS; SUPERIONIC COPPER; PLASMON RESONANCE; GROWTH; SE AB Among the different synthesis approaches to colloidal nanocrystals, a recently developed toolkit is represented by cation exchange reactions, where the use of template nanocrystals gives access to materials that would be hardly attainable via direct synthesis. Besides, postsynthetic treatments, such as thermally activated solid-state reactions, represent a further flourishing route to promote finely controlled cation exchange. Here, we report that, upon in situ heating in a transmission electron microscope, Cu2Se or Cu nanocrystals deposited on an amorphous solid substrate undergo partial loss of Cu atoms, which are then engaged in local cation exchange reactions with Cu "acceptor" phases represented by rod- and wire-shaped CdSe nanocrystals. This thermal treatment slowly transforms the initial CdSe nanocrystals into Cu2-xSe nanocrystals, through the complete sublimation of Cd and the partial sublimation of Se atoms. Both Cu "donor" and "acceptor" particles were not always in direct contact with each other; hence, the gradual transfer of Cu species from Cu2Se or metallic Cu to CdSe nanocrystals was mediated by the substrate and depended on the distance between the donor and acceptor nanostructures. Differently from what happens in the comparably faster cation exchange reactions performed in liquid solution, this study shows that slow cation exchange reactions can be performed at the solid state and helps to shed light on the intermediate steps involved in such reactions. C1 [Casu, Alberto; Genovese, Alessandro; Manna, Liberato; Buha, Joka; Prato, Mirko; Li, Hongbo; Ghosh, Sandeep; Palazon, Francisco; De Donato, Francesco] Ist Italiano Tecnol, Dept Nanochem, Via Morego 30, I-16163 Genoa, Italy. [Casu, Alberto; Genovese, Alessandro; Mozo, Sergio Lentijo; Zuddas, Efisio; Falqui, Andrea] KAUST, NABLA Lab, BESE Div, Thuwal 239556900, Saudi Arabia. [Upadhyay, Mousumi; Schwingenschloegl, Udo] KAUST, PSE Div, Thuwal 239556900, Saudi Arabia. [Longo, Paolo] Gatan Inc, 5794 W Las Positas Blvd, Pleasanton, CA 94588 USA. [Botton, Gianluigi A.; Lazar, Sorin] McMaster Univ, Dept Mat Sci & Engn, Hamilton, ON L8S 4L8, Canada. [Lazar, Sorin] FEI Electron Opt, Achtseweg Noord 5, NL-5600 KA Eindhoven, Netherlands. [Li, Hongbo] Los Alamos Natl Lab, Div Chem, POB 1663, Los Alamos, NM 87545 USA. RP Manna, L (reprint author), Ist Italiano Tecnol, Dept Nanochem, Via Morego 30, I-16163 Genoa, Italy.; Falqui, A (reprint author), KAUST, NABLA Lab, BESE Div, Thuwal 239556900, Saudi Arabia. EM liberato.manna@iit.it; andrea.falqui@kaust.edu.sa RI Genovese, Alessandro/I-3803-2016; Manna, Liberato/G-2339-2010; Prato, Mirko/D-8531-2012; OI Genovese, Alessandro/0000-0001-8154-3098; Manna, Liberato/0000-0003-4386-7985; Prato, Mirko/0000-0002-2188-8059; Ghosh, Sandeep/0000-0002-1149-9199; Li, Hongbo/0000-0002-3378-0870; Falqui, Andrea/0000-0002-1476-7742 FU European Union [614897] FX All the authors acknowledge Prof. Albert Figuerola of Barcelona University for the fruitful discussions and advice. L.M. acknowledges financial support from the European Union's Seventh Framework Programme FP7/2007-2013 under Grant Agreement No. 614897 (ERC Grant TRANS-NANO). M.P. acknowledges Dr. S. Nappini, Dr. F. Bondino, and Dr. E. Magnano (Laboratorio TASC, IOM CNR) for fruitful discussions and support in XPS data acquisition at the BACH beamline of the Elettra Synchrotron in Trieste (Italy). NR 28 TC 2 Z9 2 U1 7 U2 40 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD FEB PY 2016 VL 10 IS 2 BP 2406 EP 2414 DI 10.1021/acsnano.5b07219 PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA DE9VL UT WOS:000370987400082 PM 26816347 ER PT J AU Zheng, YJ Huang, YL Chenp, YF Zhao, WJ Eda, G Spataru, CD Zhang, WJ Chang, YH Li, LJ Chi, DZ Quek, SY Wee, ATS AF Zheng, Yu Jie Huang, Yu Li Chenp, Yifeng Zhao, Weijie Eda, Goki Spataru, Catalin D. Zhang, Wenjing Chang, Yung-Huang Li, Lain-Jong Chi, Dongzhi Quek, Su Ying Wee, Andrew Thye Shen TI Heterointerface Screening Effects between Organic Monolayers and Monolayer Transition Metal Dichalcogenides SO ACS NANO LA English DT Article DE two-dimensional transition metal dichalcogenides; organic-inorganic interface; screening effects; energy level alignment; scanning tunneling microscopy/spectroscopy; first principle calculations ID QUASI-PARTICLE ENERGIES; WAVE BASIS-SET; PTCDA/AU(111) INTERFACE; MOS2; MOLECULE; PTCDA; HETEROSTRUCTURES; 1ST-PRINCIPLES; SEMICONDUCTORS; ABSORPTION AB The nature and extent of electronic screening at heterointerfaces and their consequences on energy level alignment are of profound importance in numerous applications, such as solar cells, electronics etc. The increasing availability of two-dimensional (2D) transition metal dichalcogenides (TMDs) brings additional opportunities for them to be used as interlayers in "van der Waals (vdW) heterostructures" and organic/inorganic flexible devices. These innovations raise the question of the extent to which the 2D TMDs participate actively in dielectric screening at the interface. Here we study perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA) monolayers adsorbed on single-layer tungsten diselenide (WSe2), bare graphite, and Au(111) surfaces, revealing a strong dependence of the PTCDA HOMO-LUMO gap on the electronic screening effects from the substrate. The monolayer WSe2 interlayer provides substantial, but not complete, screening at the organic/inorganic interface. Our results lay a foundation for the exploitation of the complex interfacial properties of hybrid systems based on TMD materials. C1 [Zheng, Yu Jie; Huang, Yu Li; Chenp, Yifeng; Zhao, Weijie; Eda, Goki; Quek, Su Ying; Wee, Andrew Thye Shen] Natl Univ Singapore, Dept Phys, 2 Sci Dr 3, Singapore 117551, Singapore. [Huang, Yu Li; Chi, Dongzhi] ASTAR, IMRE, 2 Fusionopolis Way, Singapore 138634, Singapore. [Chenp, Yifeng; Eda, Goki; Quek, Su Ying; Wee, Andrew Thye Shen] Natl Univ Singapore, Ctr Adv Mat 2D, Block S14,Level 6,6 Sci Dr 2, Singapore 117546, Singapore. [Eda, Goki] Natl Univ Singapore, Dept Chem, 3 Sci Dr 3, Singapore 117543, Singapore. [Spataru, Catalin D.] Sandia Natl Labs, Livermore, CA 94551 USA. [Zhang, Wenjing] Shenzhen Univ, SZU NUS Collaborat Innovat Ctr Optoelect Sci & Te, Key Lab Optoelect Devices & Syst, Minist Educ & Guangdong Prov, Shenzhen 518060, Peoples R China. [Chang, Yung-Huang] Natl Chiao Tung Univ, Dept Electrophys, Hsinchu 300, Taiwan. [Li, Lain-Jong] King Abdullah Univ Sci & Technol, Phys Sci & Engn, Thuwal 239556900, Saudi Arabia. [Quek, Su Ying] Agcy Sci Technol & Res, Inst High Performance Comp, 1 Fusionopolis Way,16-16 Connexis, Singapore 138632, Singapore. RP Quek, SY; Wee, ATS (reprint author), Natl Univ Singapore, Dept Phys, 2 Sci Dr 3, Singapore 117551, Singapore.; Quek, SY; Wee, ATS (reprint author), Natl Univ Singapore, Ctr Adv Mat 2D, Block S14,Level 6,6 Sci Dr 2, Singapore 117546, Singapore.; Quek, SY (reprint author), Agcy Sci Technol & Res, Inst High Performance Comp, 1 Fusionopolis Way,16-16 Connexis, Singapore 138632, Singapore. EM phyqsy@nus.edu.sg; phyweets@nus.edu.sg RI Li, Lain-Jong/D-5244-2011; Wee, Andrew/B-6624-2009; Eda, Goki/G-1511-2012; Quek, Su Ying/I-2934-2014; Zhang, Wenjing/G-5932-2012 OI Li, Lain-Jong/0000-0002-4059-7783; Wee, Andrew/0000-0002-5828-4312; Zhang, Wenjing/0000-0001-6931-900X FU MOE [R-144-000-321-112]; National Research Foundation, Singapore [NRF-NRFF2013-07, NRF-NRFF2011-02]; Singapore National Research Foundation, Prime Minister's Office; U.S. DOE [DE-AC04-94AL85000] FX The authors thank Zhuo Wang and Qixing Wang for helping us with transferring the CVD-WSe2 samples and checking the sample quality, Prof. Satoshi Kera and Kyushu Synchrotron Light Research Center (Japan) for ARPES mapping of the clean Au(111) surface, as well as Xin Luo, Kapildeb Dolui, Suchun Li and Zijing Ding for discussions. A.T.S.W. acknowledges support from MOE Grant R-144-000-321-112. S.Y.Q, and Y.C. acknowledge support from Grant NRF-NRFF2013-07 from the National Research Foundation, Singapore. G.E. acknowledges support from Grant NRF-NRFF2011-02 from the National Research Foundation, Singapore. Computations were performed on the NUS Graphene Research Centre cluster. We acknowledge support from the Singapore National Research Foundation, Prime Minister's Office, under its medium-sized centre program. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Co., for the U.S. DOE under contract DE-AC04-94AL85000. NR 56 TC 12 Z9 12 U1 43 U2 120 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD FEB PY 2016 VL 10 IS 2 BP 2476 EP 2484 DI 10.1021/acsnano.5b07314 PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA DE9VL UT WOS:000370987400089 PM 26792247 ER PT J AU Burzuri, E Island, JO Diaz-Torres, R Fursina, A Gonzalez-Campo, A Roubeau, O Teat, SJ Aliaga-Alcalde, N Ruiz, E van der Zant, HSJ AF Burzuri, Enrique Island, Joshua O. Diaz-Torres, Raul Fursina, Alexandra Gonzalez-Campo, Arantzazu Roubeau, Olivier Teat, Simon J. Aliaga-Alcalde, Nuria Ruiz, Eliseo van der Zant, Herre S. J. TI Sequential Electron Transport and Vibrational Excitations in an Organic Molecule Coupled to Few-Layer Graphene Electrodes SO ACS NANO LA English DT Article DE curcuminoids; molecular electronics; vibrations; graphene electrodes ID CARBON NANOTUBES; SINGLE; CURCUMINOIDS; TRANSISTORS; JUNCTIONS AB Graphene electrodes are promising candidates to improve reproducibility and stability in molecular electronics through new electrode molecule anchoring strategies. Here we report sequential electron transport in few-layer graphene transistors containing individual curcuminoid-based molecules anchored to the electrodes via pi-pi orbital bonding. We show the coexistence of inelastic co-tunneling excitations with single-electron transport physics due to an intermediate molecule electrode coupling; we argue that an intermediate electron-phonon coupling is the origin of these vibrational-assisted excitations. These experimental observations are complemented with density functional theory calculations to model electron transport and the interaction between electrons and vibrational modes of the curcuminoid molecule. We find that the calculated vibrational modes of the molecule are in agreement with the experimentally observed excitations. C1 [Burzuri, Enrique; Island, Joshua O.; Fursina, Alexandra; van der Zant, Herre S. J.] Delft Univ Technol, Kavli Inst Nanosci, Lorentzweg 1, NL-2628 CJ Delft, Netherlands. [Diaz-Torres, Raul; Ruiz, Eliseo] Univ Barcelona, Dept Quim Inorgan, Diagonal 645, E-08028 Barcelona, Spain. [Ruiz, Eliseo] Univ Barcelona, Inst Recerca Quim Teor & Computac, Diagonal 645, E-08028 Barcelona, Spain. [Gonzalez-Campo, Arantzazu; Aliaga-Alcalde, Nuria] CSIC ICMAB Inst Ciencia Mat Barcelona, Campus Univ Autonoma Barcelona, Bellaterra 08193, Spain. [Roubeau, Olivier] CSIC, ICMA, Plaza San Francisco S-N, E-50009 Zaragoza, Spain. [Roubeau, Olivier] Univ Zaragoza, Plaza San Francisco S-N, E-50009 Zaragoza, Spain. [Teat, Simon J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Aliaga-Alcalde, Nuria] ICREA, Passeig Lluis Co 23, Barcelona 08010, Spain. RP Burzuri, E (reprint author), Delft Univ Technol, Kavli Inst Nanosci, Lorentzweg 1, NL-2628 CJ Delft, Netherlands.; Aliaga-Alcalde, N (reprint author), CSIC ICMAB Inst Ciencia Mat Barcelona, Campus Univ Autonoma Barcelona, Bellaterra 08193, Spain.; Aliaga-Alcalde, N (reprint author), ICREA, Passeig Lluis Co 23, Barcelona 08010, Spain. EM E.BurzuriLinares@tudelft.nl; naliaga@icmab.es RI Gonzalez-Campo, Arantzazu/J-4124-2012; Aliaga-Alcalde, Nuria/H-5886-2011; Island, Joshua/P-4686-2014; Roubeau, Olivier/A-6839-2010; Ruiz, Eliseo/A-6268-2011; van der Zant, Herre/J-9467-2016; OI Gonzalez-Campo, Arantzazu/0000-0002-1209-8119; Aliaga-Alcalde, Nuria/0000-0003-1080-3862; Island, Joshua/0000-0002-6074-9414; Roubeau, Olivier/0000-0003-2095-5843; Ruiz, Eliseo/0000-0001-9097-8499; van der Zant, Herre/0000-0002-5385-0282; Burzuri, Enrique/0000-0001-7906-7192 FU EU [618082 ACMOL]; ERC; OCW; Dutch funding organization NWO (VENI); FOM; Generalitat de Catalunya; MICINN of Spain [CTQ2012-32247, MAT2013-47869-C4-2-P]; Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the EU FP7 program through project 618082 ACMOL and ERC grant advanced Mols@Mols. It was also supported by OCW and the Dutch funding organization NWO (VENI) and FOM. E.R. thanks Generalitat de Catalunya for an ICREA Academia Award. N.A.-A., R.D.-T., and A.G.-C. thank the MICINN of Spain (projects CTQ2012-32247 and MAT2013-47869-C4-2-P). The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy under contract DE-AC02-05CH11231. NR 44 TC 3 Z9 3 U1 13 U2 37 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD FEB PY 2016 VL 10 IS 2 BP 2521 EP 2527 DI 10.1021/acsnano.5b07382 PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA DE9VL UT WOS:000370987400094 PM 26841282 ER PT J AU Tong, S Jung, IW Choi, YY Hong, S Roelofs, A AF Tong, Sheng Jung, Il Woong Choi, Yoon-Young Hong, Seungbum Roelofs, Andreas TI Imaging Ferroelectric Domains and Domain Walls Using Charge Gradient Microscopy: Role of Screening Charges SO ACS NANO LA English DT Article DE atomic force microscopy; focused ion beam; periodically poled lithium niobate; electrostatic force ID THIN-FILMS; SURFACES; POLARIZATION; STORAGE; ENERGY; WATER AB Advanced scanning probe microscopies (SPMs) open up the possibilities of the next-generation ferroic devices that utilize both domains and domain walls as active elements. However, current SPMs lack the capability of dynamically monitoring the motion of domains and domain walls in conjunction with the transport of the screening charges that lower the total electrostatic energy of both domains and domain walls. Charge gradient microscopy (CGM) is a strong candidate to overcome these shortcomings because it can map domains and domain walls at high speed and mechanically remove the screening charges. Yet the underlying mechanism of the CGM signals is not fully understood due to the complexity of the electrostatic interactions. Here, we designed a semiconductor metal CGM tip, which can separate and quantify the ferroelectric domain and domain wall signals by simply changing its scanning direction. Our investigation reveals that the domain wall signals are due to the spatial change of polarization charges, while the domain signals are due to continuous removal and supply of screening charges at the CGM tip. In addition, we observed asymmetric CGM domain currents from the up and down domains, which are originated from the different debonding energies and the amount of the screening charges on positive and negative bound charges. We believe that our findings can help design CGM with high spatial resolution and lead to breakthroughs in information storage and energy-harvesting devices. C1 [Tong, Sheng; Jung, Il Woong; Roelofs, Andreas] Argonne Natl Lab, Ctr Nanoscale Mat, Lemont, IL 60439 USA. [Choi, Yoon-Young; Hong, Seungbum] Argonne Natl Lab, Div Mat Sci, Lemont, IL 60439 USA. RP Roelofs, A (reprint author), Argonne Natl Lab, Ctr Nanoscale Mat, Lemont, IL 60439 USA.; Hong, S (reprint author), Argonne Natl Lab, Div Mat Sci, Lemont, IL 60439 USA. EM hong@anl.gov; aroelofs@anl.gov RI Tong, Sheng/A-2129-2011; Roelofs, Andreas/H-1742-2011; Hong, Seungbum/B-7708-2009 OI Tong, Sheng/0000-0003-0355-7368; Roelofs, Andreas/0000-0003-4141-3082; Hong, Seungbum/0000-0002-2667-1983 FU Center for Nanoscale Materials a U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences User Facility [DE-AC02-06CH11357]; U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Science and Engineering Division FX This work was performed, in part, at the Center for Nanoscale Materials, a U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences User Facility under Contract No. DE-AC02-06CH11357. SH and YC were supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Science and Engineering Division. The CGM, PFM, and EFM work was performed at the Materials Science Division, and the SEM and FIB work was performed at the Center for Nanoscale Materials. NR 38 TC 3 Z9 3 U1 8 U2 37 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD FEB PY 2016 VL 10 IS 2 BP 2568 EP 2574 DI 10.1021/acsnano.5b07551 PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA DE9VL UT WOS:000370987400099 PM 26751281 ER PT J AU Dou, LT Cui, F Yu, Y Khanarian, G Eaton, SW Yang, Q Resasco, J Schildknecht, C Schierle-Arndt, K Yang, PD AF Dou, Letian Cui, Fan Yu, Yi Khanarian, Garo Eaton, Samuel W. Yang, Qin Resasco, Joaquin Schildknecht, Christian Schierle-Arndt, Kerstin Yang, Peidong TI Solution-Processed Copper/Reduced-Graphene-Oxide Core/Shell Nanowire Transparent Conductors SO ACS NANO LA English DT Article DE Cu nanowires; graphene oxide wrapping; transparent conductors; solution-process; high stability; low haze ID HIGH-PERFORMANCE; COPPER NANOWIRES; SILVER NANOWIRES; ELECTRODES; FILMS; NETWORKS; HAZE AB Copper nanowire (Cu NW) based transparent conductors are promising candidates to replace ITO (indium tin-oxide) owing to the high electrical conductivity and low-cost of copper. However, the relatively low performance and poor stability of Cu NWs under ambient conditions limit the practical application of these devices. Here, we report a solution-based approach to wrap graphene oxide (GO) nanosheets on the surface of ultrathin copper nanowires. By mild thermal annealing, GO can be reduced and high quality Cu r-GO core shell NWs can be obtained. High performance transparent conducting films were fabricated with these ultrathin core shell nanowires and excellent optical and electric performance was achieved. The core shell NW structure enables the production of highly stable conducting films (over 200 days stored in air), which have comparable performance to ITO and silver NW thin films (sheet resistance similar to 28 Omega/sq, haze similar to 2% at transmittance of similar to 90%). C1 [Dou, Letian; Cui, Fan; Yu, Yi; Eaton, Samuel W.; Yang, Qin; Yang, Peidong] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Dou, Letian; Cui, Fan; Schildknecht, Christian; Schierle-Arndt, Kerstin; Yang, Peidong] Univ Calif Berkeley, Calif Res Alliance BASF, Berkeley, CA 94720 USA. [Dou, Letian; Cui, Fan; Yu, Yi; Yang, Peidong] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Khanarian, Garo] BASF Corp, Union, NJ 07083 USA. [Resasco, Joaquin] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. [Yang, Peidong] Univ Calif Berkeley, Kavli Energy NanoSci Inst, Berkeley, CA 94720 USA. [Yang, Peidong] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Yang, Peidong] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. RP Yang, PD (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.; Yang, PD (reprint author), Univ Calif Berkeley, Calif Res Alliance BASF, Berkeley, CA 94720 USA.; Yang, PD (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.; Yang, PD (reprint author), Univ Calif Berkeley, Kavli Energy NanoSci Inst, Berkeley, CA 94720 USA.; Yang, PD (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.; Yang, PD (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. EM p_yang@berkeley.edu FU BASF Corporation [53093]; Camille and Henry Dreyfus Foundation [EP-14-151] FX This work was financially supported by BASF Corporation (Award Number 53093). S.W.E. would like to acknowledge the Camille and Henry Dreyfus Foundation for financial support, Award Number EP-14-151. We thank Y. Zhao and J. Baba for the help on the FTIR measurement and simulation, respectively. NR 37 TC 13 Z9 13 U1 40 U2 157 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD FEB PY 2016 VL 10 IS 2 BP 2600 EP 2606 DI 10.1021/acsnano.5b07651 PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA DE9VL UT WOS:000370987400103 PM 26820809 ER PT J AU Zhang, JW Winget, SA Wu, YR Su, D Sun, XJ Xie, ZX Qin, D AF Zhang, Jiawei Winget, Sarah A. Wu, Yiren Su, Dong Sun, Xiaojun Xie, Zhao-Xiong Qin, Dong TI Ag@Au Concave Cuboctahedra: A Unique Probe for Monitoring Au-Catalyzed Reduction and Oxidation Reactions by Surface-Enhanced Raman Spectroscopy SO ACS NANO LA English DT Article DE seed-mediated growth; surface capping concave nanocrystal; surface-enhanced Raman spectroscopy; Au-catalyzed reduction and oxidation ID HIGH-INDEX FACETS; SELF-ASSEMBLED MONOLAYERS; SEED-MEDIATED GROWTH; CORE-SHELL NANOCUBES; SILVER NANOPARTICLES; CHEMICAL-STABILITY; HOLLOW NANOSTRUCTURES; SCATTERING PROPERTIES; GALVANIC REPLACEMENT; OPTICAL-PROPERTIES AB We report a facile synthesis of Ag@Au concave cuboctahedra by titrating aqueous HAuCl4 into a suspension of Ag cuboctahedra in the presence of ascorbic add (AA), NaOH, and poly(vinylpyrrolidone) (PIT) at room temperature. Initially, the Au atoms derived from the reduction of Au3+ by AA are conformally deposited on the entire surface of a Ag cuboctahedron. Upon the formation of a complete Au shell, however, the subsequently formed Au atoms are preferentially deposited onto the Au{100} facets, resulting in the formation of a Ag@Au cuboctahedron with concave structures at the sites of {111} facets. The concave cuboctahedra embrace excellent SERS activity that is more than 70-fold stronger than that of the original Ag cuboctahedra at an excitation wavelength of 785 nm. The concave cuboctahedra also exhibit remarkable stability in the presence of an oxidant such as H2O2 because of the protection by a complete Au shell. These two unique attributes enable in situ SERS monitoring of the reduction of 4-nitrothiophenol (4-NTP) to 4-aminothiophenol (4-ATP) by NaBH4 through a 4,4'-dimercaptoazobenzene (trans-DMAB) intermediate and the subsequent oxidation of 4 -ATP back to trans-DMAB upon the introduction of H2O2. C1 [Zhang, Jiawei; Winget, Sarah A.; Wu, Yiren; Sun, Xiaojun; Qin, Dong] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA. [Zhang, Jiawei; Xie, Zhao-Xiong] Xiamen Univ, State Key Lab Phys Chem Solid Surfaces, Xiamen 361005, Fujian, Peoples R China. [Zhang, Jiawei; Xie, Zhao-Xiong] Xiamen Univ, Dept Chem, Xiamen 361005, Fujian, Peoples R China. [Winget, Sarah A.] Agnes Scott Coll, Dept Chem, 141 E Coll Ave, Decatur, GA 30030 USA. [Su, Dong] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Qin, D (reprint author), Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA. EM dong.qin@mse.gatech.edu RI Su, Dong/A-8233-2013; Qin, Dong/E-1434-2011; Xie, Zhaoxiong/G-3416-2010 OI Su, Dong/0000-0002-1921-6683; FU National Science Foundation [CHE-1412006]; Georgia Institute of Technology; 3M nontenured faculty award; China Scholarship Council; Center for Functional Nanomaterials a U.S. DOE Office of Science Facility, at Brookhaven National Laboratory [DE-SC0012704] FX This work was supported in part by the National Science Foundation (CHE-1412006), start-up funds from the Georgia Institute of Technology, and 3M nontenured faculty award. Part of the research was performed at the Institute of Electronics and Nanotechnology (IEN). We thank Ming Luo for performing the ICP-MS analysis. J. Zhang was also partially supported by the China Scholarship Council. S. Winget was on sabbatical leave from the Department of Chemistry at Agnes Scott College. We acknowledge the use of electron microscopy resources at the Center for Functional Nanomaterials, a U.S. DOE Office of Science Facility, at Brookhaven National Laboratory under Contract No. DE-SC0012704. NR 51 TC 9 Z9 9 U1 48 U2 156 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD FEB PY 2016 VL 10 IS 2 BP 2607 EP 2616 DI 10.1021/acsnano.5b07665 PG 10 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA DE9VL UT WOS:000370987400104 PM 26812215 ER PT J AU Puretzky, AA Liang, LB Li, XF Xiao, K Sumpter, BG Meunier, V Geohegan, DB AF Puretzky, Alexander A. Liang, Liangbo Li, Xufan Xiao, Kai Sumpter, Bobby G. Meunier, Vincent Geohegan, David B. TI Twisted MoSe2 Bilayers with Variable Local Stacking and Interlayer Coupling Revealed by Low-Frequency Raman Spectroscopy SO ACS NANO LA English DT Article DE two-dimensional materials; transition metal dichalcogenides; low-frequency Raman spectroscopy; stacking configurations; first-principles calculations ID TRANSITION-METAL DICHALCOGENIDES; DER-WAALS HETEROSTRUCTURES; LAYER BLACK PHOSPHORUS; MULTILAYER GRAPHENE; SHEAR MODES; MOS2/WS2 HETEROSTRUCTURES; MOLYBDENUM-DISULFIDE; BREATHING MODES; MONOLAYER; ORIENTATION AB Unique twisted bilayers of MoSe2 with multiple stacking orientations and interlayer couplings in the narrow range of twist angles, 60 +/- 3 degrees, are revealed by low-frequency Raman spectroscopy and theoretical analysis. The slight deviation from 60 allows the concomitant presence of patches featuring all three high-symmetry stacking configurations (2H or AA', AB', and A'B) in one unique bilayer system. In this case, the periodic arrangement of the patches and their size strongly depend on the twist angle. Ab initio modeling predicts significant changes in frequencies and intensities of low-frequency modes versus stacking and twist angle. Experimentally, the variable stacking and coupling across the interface are revealed by the appearance of two breathing modes, corresponding to the mixture of the high-symmetry stacking configurations and unaligned regions of monolayers. Only one breathing mode is observed outside the narrow range of twist angles. This indicates a stacking transition to unaligned monolayers with mismatched atom registry without the in-plane restoring force required to generate a shear mode. The variable interlayer coupling and spacing in transition metal dichalcogenide bilayers revealed in this study may provide an interesting platform for optoelectronic applications of these materials. C1 [Puretzky, Alexander A.; Liang, Liangbo; Li, Xufan; Xiao, Kai; Sumpter, Bobby G.; Geohegan, David B.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Sumpter, Bobby G.] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. [Meunier, Vincent] Rensselaer Polytech Inst, Dept Phys Appl Phys & Astron, Troy, NY 12180 USA. RP Puretzky, AA (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. EM puretzkya@ornl.gov RI Sumpter, Bobby/C-9459-2013; Liang, Liangbo/H-4486-2011; Li, Xufan/A-8292-2013; Geohegan, David/D-3599-2013 OI Sumpter, Bobby/0000-0001-6341-0355; Liang, Liangbo/0000-0003-1199-0049; Li, Xufan/0000-0001-9814-0383; Geohegan, David/0000-0003-0273-3139 FU U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division; NSF EFRI-2DARE [1542707]; Eugene P. Wigner Fellowship at the Oak Ridge National Laboratory; U.S. Department of Energy [DE-AC05-00OR22725] FX The Raman spectroscopy part of this research, including aspects of theory, was conducted at the Center for Nanophase Materials Sciences, a U.S. Department of Energy Office of Science User Facility. The synthesis science including CVD was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division. The theoretical work at Rensselaer Polytechnic Institute (RPI) was supported by NSF EFRI-2DARE 1542707. L.L. was supported by a Eugene P. Wigner Fellowship at the Oak Ridge National Laboratory. The computations were performed using the resources of the Center for Computational Innovation at RPI. This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan). NR 48 TC 12 Z9 12 U1 31 U2 74 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD FEB PY 2016 VL 10 IS 2 BP 2736 EP 2744 DI 10.1021/acsnano.5b07807 PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA DE9VL UT WOS:000370987400117 PM 26762243 ER PT J AU Lin, JH Zhang, YY Zhou, W Pantelides, ST AF Lin, Junhao Zhang, Yuyang Zhou, Wu Pantelides, Sokrates T. TI Structural Flexibility and Alloying in Ultrathin Transition-Metal Chalcogenide Nanowires SO ACS NANO LA English DT Article DE metallic nanowire; alloying; transition metal dichalcogenide; structural flexibility; junctions; chemical constituent manipulation ID MOLYBDENUM-DISULFIDE; ELECTRONIC-STRUCTURE; MOS2 TRANSISTORS; MO6S6 NANOWIRES; GOLD ATOMS; HETEROSTRUCTURES; MONOLAYERS; CHAINS AB Metallic transition-metal chalcogenide (TMC) nanowires are an important building block for 2D electronics that may be fabricated within semiconducting transition-metal dichalcogenide (TMDC) monolayers. Tuning the geometric structure and electronic properties of such nanowires is a promising way to pattern diverse functional channels for wiring multiple units inside a 2D electronic circuit. However, few experimental investigations have been reported exploring the structural and compositional tenability of these nanowires, due to difficulties in manipulating the structure and chemical composition of an individual nanowire. Here, using a combination of scanning transmission electron microscopy (STEM) and density functional theory (DFT), we report that TMC nanowires have substantial intrinsic structural flexibility and their chemical composition can be manipulated. Rotational twisting, axial kinking, and branching of an individual nanowire is consistently observed and junctions with well-ordered atomic structures can be fabricated. We also show that the density of states of these nanowires can be finely tuned via alloying either the chalcogen or the transition-metal elements, where the chalcogen alloying can be further controlled by the acceleration voltage of the electron beam during the fabrication. The results open up the possibility of tailoring the properties of TMC nanowires, paving the way for robust ultrasmall interconnects in TMDC-based 2D flexible nanoelectronics. C1 [Lin, Junhao; Zhang, Yuyang; Pantelides, Sokrates T.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. [Lin, Junhao; Zhang, Yuyang; Zhou, Wu; Pantelides, Sokrates T.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Lin, Junhao] Natl Inst Adv Ind Sci & Technol, Tsukuba, Ibaraki 3058565, Japan. RP Lin, JH (reprint author), Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA.; Lin, JH; Zhou, W (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA.; Lin, JH (reprint author), Natl Inst Adv Ind Sci & Technol, Tsukuba, Ibaraki 3058565, Japan. EM lin.junhao@aist.go.jp; wu.zhou.stem@gmail.com RI Zhang, Yu-Yang/F-2078-2011; Zhou, Wu/D-8526-2011; Lin, Junhao/D-7980-2015 OI Zhang, Yu-Yang/0000-0002-9548-0021; Zhou, Wu/0000-0002-6803-1095; Lin, Junhao/0000-0002-2195-2823 FU U.S. DOE [DE-FG02-09ER46554]; U.S. Department of Energy, Office of Science, Basic Energy Science, Materials Sciences and Engineering Division; ORNL's Center for Nanophase Materials Sciences (CNMS) DOE Office of Science User Facility; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX We thank Dr. Dhiraj Prasai and Dr. Kirill I. Bolotin for helping with the TEM sample preparation, and Dr. Yongji Gong and Prof. Pulickel Ajayan for providing the monolayer alloys. This research was supported in part by U.S. DOE Grant DE-FG02-09ER46554 (J.L., Y.Z., S.T.P.), by the U.S. Department of Energy, Office of Science, Basic Energy Science, Materials Sciences and Engineering Division (W.Z.), and through a user project at ORNL's Center for Nanophase Materials Sciences (CNMS), which is a DOE Office of Science User Facility. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No.DE-AC02-05CH11231. NR 30 TC 2 Z9 2 U1 10 U2 55 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD FEB PY 2016 VL 10 IS 2 BP 2782 EP 2790 DI 10.1021/acsnano.5b07888 PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA DE9VL UT WOS:000370987400123 PM 26775676 ER PT J AU Kim, TY Amani, M Ahn, GH Song, Y Javey, A Chung, S Lee, T AF Kim, Tae-Young Amani, Matin Ahn, Geun Ho Song, Younggul Javey, Ali Chung, Seungjun Lee, Takhee TI Electrical Properties of Synthesized Large-Area MoS2 Field-Effect Transistors Fabricated with Inkjet-Printed Contacts SO ACS NANO LA English DT Article DE molybdenum disulfide; field-effect transistors; inkjet printing; contact resistance; gate-bias stress effect; electronic transport properties ID MONOLAYER MOLYBDENUM-DISULFIDE; CHEMICAL-VAPOR-DEPOSITION; TRANSITION-METAL DICHALCOGENIDES; THIN-FILM TRANSISTORS; LAYER MOS2; TRANSPORT-PROPERTIES; GRAIN-BOUNDARIES; ATOMIC LAYERS; BIAS-STRESS; PHOTOLUMINESCENCE AB We report the electrical properties of synthesized large-area monolayer molybdenum disulfide (MoS2) field-effect transistors (FETs) with low-cost inkjet-printed Ag electrodes. The monolayer MoS2 film was grown by a chemical vapor deposition (CVD) method, and the top contact Ag source/drain electrodes (S/D) were deposited onto the films using a low-cost drop-on-demand inkjet-printing process without any masks and surface treatments. The electrical characteristics of FETs were comparable to those fabricated by conventional deposition methods such as photo- or electron beam lithography. The contact properties between the S/D and the semiconductor layer were also evaluated using the Y function method and an analysis of the output characteristic at the low drain voltage regimes. Furthermore, the electrical instability under positive gate-bias stress was studied to investigate the charge-trapping mechanism of the FETs. CVD-grown large-area monolayer MoS2 FETs with inkjet-printed contacts may represent an attractive approach for realizing large-area and low-cost thin-film electronics. C1 [Kim, Tae-Young; Song, Younggul; Lee, Takhee] Seoul Natl Univ, Dept Phys & Astron, Seoul 08826, South Korea. [Kim, Tae-Young; Song, Younggul; Lee, Takhee] Seoul Natl Univ, Inst Appl Phys, Seoul 08826, South Korea. [Amani, Matin; Ahn, Geun Ho; Javey, Ali; Chung, Seungjun] Univ Calif Berkeley, Elect Engn & Comp Sci, Berkeley, CA 94720 USA. [Amani, Matin; Javey, Ali] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Lee, T (reprint author), Seoul Natl Univ, Dept Phys & Astron, Seoul 08826, South Korea.; Lee, T (reprint author), Seoul Natl Univ, Inst Appl Phys, Seoul 08826, South Korea.; Chung, S (reprint author), Univ Calif Berkeley, Elect Engn & Comp Sci, Berkeley, CA 94720 USA. EM seungjunc@berkeley.edu; tlee@snu.ac.kr FU National Creative Research Laboratory program - Korean Ministry of Science, ICT & Future Planning [2012026372]; Office of Science, Office of Basic Energy Sciences, Material Sciences and Engineering Division of the U.S. Department of Energy [DE-AC02-05CH11231]; LG Yonam Foundation FX The authors appreciate the support from the National Creative Research Laboratory program (Grant No. 2012026372) funded by the Korean Ministry of Science, ICT & Future Planning. MA, G.H.A., and A.J. acknowledge the Electronic Materials Program, funded by the Director, Office of Science, Office of Basic Energy Sciences, Material Sciences and Engineering Division of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. We are also thankful for the contact angle measurements from Korea Polymer Testing & Research Institute (Koptri). T.L. appreciates the financial support from LG Yonam Foundation. NR 55 TC 6 Z9 6 U1 19 U2 74 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD FEB PY 2016 VL 10 IS 2 BP 2819 EP 2826 DI 10.1021/acsnano.5b07942 PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA DE9VL UT WOS:000370987400126 PM 26820160 ER PT J AU Zhang, QF Han, LL Jing, H Blom, DA Lin, Y Xing, HLL Wang, H AF Zhang, Qingfeng Han, Lili Jing, Hao Blom, Douglas A. Lin, Ye Xing, Huolin L. Wang, Hui TI Facet Control of Gold Nanorods SO ACS NANO LA English DT Article DE gold nanorods; high-index facets; low-index facets; overgrowth; plasmon resonances; nanocatalysis; surface-enhanced Raman spectroscopy ID HIGH-INDEX FACETS; ENHANCED RAMAN-SCATTERING; PD ALLOY NANOCRYSTALS; HIGH-YIELD SYNTHESIS; OPTICAL-PROPERTIES; AU NANOPARTICLES; SHAPE CONTROL; ASPECT-RATIO; UNDERPOTENTIAL-DEPOSITION; CATALYTIC-ACTIVITIES AB While great success has been achieved in fine-tuning the aspect ratios and thereby the plasmon resonances of cylindrical Au nanorods, facet control with atomic level precision on the highly curved nanorod surfaces has long been a significantly more challenging task. The intrinsic structural complexity and lack of precise facet control of the nanorod surfaces remain the major obstacles for the atomic-level elucidation of the structure property relationships that underpin the intriguing catalytic performance of Au nanorods. Here we demonstrate that the facets of single-crystalline Au nanorods can be precisely tailored using cuprous ions and cetyltrimethylammonium bromide as a unique pair of surface capping competitors to guide the particle geometry evolution during nanorod overgrowth. By deliberately maneuvering the competition between cuprous ions and cetyltrimethylammonium bromide, we have been able to create, in a highly controllable and selective manner, an entire family of nanorod-derived anisotropic multifaceted geometries whose surfaces are enclosed by specific types of well-defined high-index and low-index facets. This facet controlled nanorod overgrowth approach also allows us to fine-tune the particle aspect ratios while well:preserving all the characteristic facets and geometric features of the faceted Au nanorods. Taking full advantage of the combined structural and plasmonic tunability, we have further studied the facet-dependent heterogeneous catalysis on well-faceted Au nanorods using surface-enhanced Raman spectroscopy as an ultrasensitive spectroscopic tool with unique time-resolving and molecular finger-printing capabilities. C1 [Zhang, Qingfeng; Jing, Hao; Wang, Hui] Univ S Carolina, Dept Chem & Biochem, Columbia, SC 29208 USA. [Han, Lili; Xing, Huolin L.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Blom, Douglas A.] Univ S Carolina, NanoCtr, Columbia, SC 29208 USA. [Lin, Ye] Univ S Carolina, Dept Chem Engn, Columbia, SC 29208 USA. RP Wang, H (reprint author), Univ S Carolina, Dept Chem & Biochem, Columbia, SC 29208 USA. EM wang344@mailbox.sc.edu RI Xin, Huolin/E-2747-2010; OI Xin, Huolin/0000-0002-6521-868X; Wang, Hui/0000-0002-1874-5137 FU National Science Foundation CAREER Award (NSF) [DMR-1253231]; ASPIRE-I Track-I Award from the University of South Carolina Office of Vice President for Research; University of South Carolina Startup Funds; United States Department of Energy (DOE) Office of Science Facility, at Brookhaven National Laboratory [DE-SC0012704] FX This work was supported by a National Science Foundation CAREER Award (NSF DMR-1253231), an ASPIRE-I Track-I Award from the University of South Carolina Office of Vice President for Research, and the University of South Carolina Startup Funds. The authors thank the University of South Carolina Electron Microscopy Center and W.M. Keck Open Laboratory for instrument use and technical assistance. The electron tomography results were obtained using the electron microscopy facility of the Center for Functional Nanomaterials, which is a United States Department of Energy (DOE) Office of Science Facility, at Brookhaven National Laboratory under Contract No. DE-SC0012704. Q.Z. and H.W. conceived the idea. Q.Z. and H.J. synthesized the nanostructures. Q.Z. did the SEM, TEM, EDS, Raman, optical extinction, and c-potential measurements. L.H. and H.L.X. did the electron tomography measurements. D.A.B. did the high-resolution HAADF-STEM measurements. Y.L. did the XPS measurements. H.W. supervised the research. Q.Z. and H.W. wrote the paper. NR 100 TC 10 Z9 10 U1 42 U2 140 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD FEB PY 2016 VL 10 IS 2 BP 2960 EP 2974 DI 10.1021/acsnano.6b00258 PG 15 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA DE9VL UT WOS:000370987400142 PM 26795706 ER PT J AU Penzo, E Palma, M Chenet, DA Ao, GY Zheng, M Hone, JC Wind, SJ AF Penzo, Erika Palma, Matteo Chenet, Daniel A. Ao, Geyou Zheng, Ming Hone, James C. Wind, Shalom J. TI Directed Assembly of Single Wall Carbon Nanotube Field Effect Transistors. SO ACS NANO LA English DT Article DE carbon nanotubes; directed assembly; DNA-wrapped SWCNT; carbon nanotube FETs ID AC-DIELECTROPHORESIS; LARGE-SCALE; GROWTH; SEPARATION; ARRAYS; CHROMATOGRAPHY; PARTITION; MONOLAYER; DEVICES; SURFACE AB The outstanding electronic properties of single wall carbon nanotubes (SWCNTs) have made them prime candidates for future nanoelectronics technologies. One of the main obstacles to the implementation of advanced SWCNT electronics to date is the inability to arrange them in a manner suitable for complex circuits. Directed assembly of SWCNT segments onto lithographically patterned and chemically functionalized substrates is a promising way to organize SWCNTs in topologies that are amenable to integration for advanced applications, but the placement and orientational control required have not yet been demonstrated. We have developed a technique for assembling length sorted and chirality monodisperse DNA -wrapped SWCNT segments on hydrophilic lines patterned on a passivated oxidized silicon substrate. Placement of individual SWCNT segments at predetermined locations was achieved with nanometer accuracy. Three terminal electronic devices, consisting of a single SWCNT segment placed either beneath or on top of metallic source/drain electrodes were fabricated. Devices made with semiconducting nanotubes behaved as typical p -type field effect transistors (FETs), whereas devices made with metallic nanotubes had a finite resistance with little or no gate modulation. This scalable, high resolution approach represents an important step forward toward the potential implementation of complex SWCNT devices and circuits. C1 [Penzo, Erika; Palma, Matteo; Wind, Shalom J.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. [Chenet, Daniel A.; Hone, James C.] Columbia Univ, Dept Mech Engn, New York, NY 10027 USA. [Ao, Geyou; Zheng, Ming] NIST, Gaithersburg, MD 20899 USA. [Penzo, Erika] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. [Palma, Matteo] Queen Mary Univ London, Sch Biol & Chem Sci, Dept Chem & Biochem, London, England. RP Wind, SJ (reprint author), Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. EM sw2128@columbia.edu RI Palma , Matteo/E-6392-2011 OI Palma , Matteo/0000-0001-8715-4034 FU Office of Naval Research [N00014-09-1-1117] FX The authors thank Profs. C. Nuckolls and M. Sheetz for resource support, as well as the staff and facilities of the Columbia Nano Initiative cleanroom, where much of the fabrication work was performed. The authors also gratefully acknowledge financial support from the Office of Naval Research under Award No. N00014-09-1-1117. NR 45 TC 5 Z9 5 U1 16 U2 72 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD FEB PY 2016 VL 10 IS 2 BP 2975 EP 2981 DI 10.1021/acsnano.6b00353 PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA DE9VL UT WOS:000370987400143 PM 26807948 ER PT J AU Nandanwar, SU Coldsnow, K Utgikar, V Sabharwall, P Aston, DE Zhang, YN AF Nandanwar, Sachin U. Coldsnow, Kai Utgikar, Vivek Sabharwall, Piyush Aston, D. Eric Zhang, Yanning TI Synthesis and characterization of ETS-10: supported hollow carbon nano-polyhedrons nanosorbent for adsorption of krypton at near ambient temperatures SO ADSORPTION-JOURNAL OF THE INTERNATIONAL ADSORPTION SOCIETY LA English DT Article DE Adsorption; Nanosorbent; Hollow carbon; ETS-10; Krypton ID MICROPOROUS TITANOSILICATE ETS-10; NUCLEAR-WASTE MANAGEMENT; NOBLE-GAS ADSORPTION; NANOTUBES; ADSORBENTS; SEPARATION; MORDENITE; CAPTURE; IODINE; XENON AB Hollow carbon nano-polyhedrons (HCNPHs) supported on Engelhard Titanosilicate-10 (ETS-10) were synthesized by wet impregnation technique using tetrahydrofuran as a solvent. Synthesized HCNPHs/ETS-10 nanosorbent was characterized by X-ray diffraction, Raman spectra, N2-adsorption-desorption isotherm, BET surface area, and scanning electron microscopy to confirm the morphology and uniformity of carbon particles ranging from 50 to 70 nm in diameter. Sorption characteristics of this nanosorbent for krypton at various carbon loadings were determined using a bench-scale column apparatus. The dynamic sorption capacity of HCNPHs/ETS-10 nanosorbent calculated from the breakthrough curve, 0.75 mmol/kg, which was similar to 15 % higher than for that of activated carbon. The effect of temperature on the adsorption capacity was studied between 263-293 K. Operational capacity of the nanosorbent was found to be 0.45 mmol/kg at 263 K. The experimental results indicate that 10 wt% HCNPHs/ETS-10 nanosorbent showed promising results for krypton adsorption, indicating its potential as an economical and active sorbent for krypton removal from the off-gas streams resulting from operations for recycle of used nuclear fuel. C1 [Nandanwar, Sachin U.; Coldsnow, Kai; Utgikar, Vivek; Aston, D. Eric] Univ Idaho, Dept Chem & Mat Engn, 875 Perimeter Dr, Moscow, ID 83844 USA. [Sabharwall, Piyush] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Zhang, Yanning] Washington State Univ, Sch Mech & Mat Engn, Pullman, WA 99164 USA. RP Utgikar, V (reprint author), Univ Idaho, Dept Chem & Mat Engn, 875 Perimeter Dr, Moscow, ID 83844 USA. EM vutgikar@uidaho.edu FU U.S. Department of Energy-Nuclear Energy University Program FX This work was financially supported by U.S. Department of Energy-Nuclear Energy University Program. We thank to Dr. Susmita Bose, Washington State University, Pullman for her assistance with the BET surface area analysis. NR 43 TC 2 Z9 2 U1 6 U2 14 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0929-5607 EI 1572-8757 J9 ADSORPTION JI Adsorpt.-J. Int. Adsorpt. Soc. PD FEB PY 2016 VL 22 IS 2 BP 129 EP 137 DI 10.1007/s10450-015-9702-8 PG 9 WC Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA DF3HH UT WOS:000371234200003 ER PT J AU Pau, GSH Finsterle, S Zhang, YQ AF Pau, George Shu Heng Finsterle, Stefan Zhang, Yingqi TI Fast high-resolution prediction of multi-phase flow in fractured formations SO ADVANCES IN WATER RESOURCES LA English DT Article DE Multiphase flow; Fracture network; Reduced order model; Downscaling ID PROPER ORTHOGONAL DECOMPOSITION; EMPIRICAL INTERPOLATION; MODEL-REDUCTION; DYNAMICS; OUTPUT; FLUID AB The success of a thermal water flood for enhanced oil recovery (EOR) depends on a detailed representation of the geometrical and hydraulic properties of the fracture network, which induces discrete, channelized flow behavior. The resulting high-resolution model is typically computationally very demanding. Here, we use the Proper Orthogonal Decomposition Mapping Method to reconstruct high-resolution solutions based on efficient low-resolution solutions. The method requires training a reduced order model (ROM) using high and low-resolution solutions determined for a relatively short simulation time. For a cyclic EOR operation, the oil production rate and the heterogeneous structure of the oil saturation are accurately reproduced even after 105 cycles, reducing the computational cost by at least 85%. The method described is general and can be potentially utilized with any multiphase flow model. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Pau, George Shu Heng] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Climate & Ecosyst Sci Div, 1 Cyclotron Rd, Berkeley, CA 94720 USA. [Finsterle, Stefan; Zhang, Yingqi] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Energy Geosci Div, 1 Cyclotron Rd, Berkeley, CA 94720 USA. RP Pau, GSH (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Climate & Ecosyst Sci Div, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM gpau@lbl.gov; safinsterle@ibl.gov; yqzhang@lbl.gov RI Finsterle, Stefan/A-8360-2009; Zhang, Yingqi/D-1203-2015; Pau, George Shu Heng/F-2363-2015 OI Finsterle, Stefan/0000-0002-4446-9906; Pau, George Shu Heng/0000-0002-9198-6164 FU U.S. Department of Energy [DE-AC02-05CH11231] FX We would like to thank A. Guadagnini and the two anonymous reviewers for their constructive comments. This research was supported, in part, by the U.S. Department of Energy under Contract #DE-AC02-05CH11231. We thank Rishi Parashar of the Desert Research Institute for making ThrecDFracMap available to this project. NR 24 TC 0 Z9 0 U1 4 U2 6 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0309-1708 EI 1872-9657 J9 ADV WATER RESOUR JI Adv. Water Resour. PD FEB PY 2016 VL 88 BP 80 EP 85 DI 10.1016/j.advwatres.2015.12.008 PG 6 WC Water Resources SC Water Resources GA DF4IS UT WOS:000371311800009 ER PT J AU Tanaka, T Mizoguchi, K Terasawa, T Okano, Y Saito, K Guo, QX Nishio, M Yu, KM Walukiewicz, W AF Tanaka, Tooru Mizoguchi, Kosuke Terasawa, Toshiki Okano, Yuuki Saito, Katsuhiko Guo, Qixin Nishio, Mitsuhiro Yu, Kin Man Walukiewicz, Wladek TI Compositional dependence of optical transition energies in highly mismatched Zn1-xCdxTe1-yOy alloys SO APPLIED PHYSICS EXPRESS LA English DT Article ID SPECTROSCOPY; ZNTE AB Highly mismatched Zn1-xCdxTe1-yOy layers with a wide range of Cd and O compositions of 0-0.7 and 0.005-0.02, respectively, were grown by molecular beam epitaxy for the application of intermediate band solar cells. The electron transition energies from the valence band (VB) to E- and E+ bands decreased with increasing Cd content. The variation of the transition energies was consistent with the theoretical calculation based on the band anticrossing model. The magnitude of the optical absorption due to electron transitions from the VB to E- band was strongly dependent on the Cd content because of the changing character of the E- band. (C) 2016 The Japan Society of Applied Physics C1 [Tanaka, Tooru; Mizoguchi, Kosuke; Terasawa, Toshiki; Okano, Yuuki; Saito, Katsuhiko; Guo, Qixin; Nishio, Mitsuhiro] Saga Univ, Dept Elect & Elect Engn, Saga 8408502, Japan. [Tanaka, Tooru] Japan Sci & Technol Agcy, PRESTO, Kawaguchi, Saitama 3320012, Japan. [Yu, Kin Man; Walukiewicz, Wladek] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Yu, Kin Man] City Univ Hong Kong, Dept Phys & Mat Sci, Kowloon, Hong Kong, Peoples R China. RP Tanaka, T (reprint author), Saga Univ, Dept Elect & Elect Engn, Saga 8408502, Japan.; Tanaka, T (reprint author), Japan Sci & Technol Agcy, PRESTO, Kawaguchi, Saitama 3320012, Japan. EM ttanaka@cc.saga-u.ac.jp OI Tanaka, Tooru/0000-0001-5747-1717 FU JST PRESTO program; JSPS KAKENHI [15H04253]; Murata Science Foundation; Research Foundation for the Electrotechnology of Chubu; Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the JST PRESTO program, JSPS KAKENHI Grant Number 15H04253, Murata Science Foundation, and Research Foundation for the Electrotechnology of Chubu. Work at LBNL was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 19 TC 0 Z9 0 U1 0 U2 11 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1882-0778 EI 1882-0786 J9 APPL PHYS EXPRESS JI Appl. Phys. Express PD FEB PY 2016 VL 9 IS 2 AR 021202 DI 10.7567/APEX.9.021202 PG 4 WC Physics, Applied SC Physics GA DF4DO UT WOS:000371297800006 ER PT J AU Dawson, KS Kneib, JP Percival, WJ Alam, S Albareti, FD Anderson, SF Armengaud, E Aubourg, E Bailey, S Bautista, JE Berlind, AA Bershady, MA Beutler, F Bizyaev, D Blanton, MR Blomqvist, M Bolton, AS Boyy, J Brandt, WN Brinkmann, J Brownstein, JR Burtin, E Busca, NG Cai, Z Chuang, CH Clerc, N Comparat, J Cope, F Croft, RAC Cruz-Gonzalez, I da Costa, LN Cousinou, MC Darling, J de la Macorra, A de la Torre, S Delubac, T des Bourboux, HD Dwelly, T Ealet, A Eisenstein, DJ Eracleous, M Escoffier, S Fan, XH Finoguenov, A Font-Ribera, A Frinchaboy, P Gaulme, P Georgakakis, A Green, P Guo, H Guy, J Ho, S Holder, D Huehnerhoff, J Hutchinson, T Jing, YP Jullo, E Kamble, V Kinemuchi, K Kirkby, D Kitaura, FS Klaene, MA Laher, RR Lang, D Laurent, P Le Goff, JM Li, C Liang, Y Lima, M Lin, Q Lin, W Lin, YT Long, DC Lundgren, B MacDonald, N Maia, MAG Malanushenko, E Malanushenko, V Mariappan, V McBride, CK McGreer, ID Menard, B Merloni, A Meza, A Montero-Dorta, AD Muna, D Myers, AD Nandra, K Naugle, T Newman, JA Noterdaeme, P Nugent, P Ogando, N Olmstead, MD Oravetz, A Oravetz, DJ Padmanabhan, N Palanque-Delabrouille, N Pan, K Parejko, JK Paris, I Peacock, JA Petitjean, P Pieri, MM Pisani, A Prada, F Prakash, A Raichoor, A Reid, B Rich, J Ridl, J Rodriguez-Torres, S Rosell, AC Ross, AJ Rossi, G Ruan, J Salvato, M Sayres, C Schneider, DP Schlegel, DJ Seljak, U Seo, HJ Sesar, B Shandera, S Shu, YP Slosar, A Sobreira, F Streblyanska, A Suzuki, N Taylor, D Tao, C Tinker, JL Tojeiro, R Vargas-Magana, M Wang, YT Weaver, BA Weinberg, DH White, M Wood-Vasey, WM Yeche, C Zhai, ZX Zhao, C Zhao, GB Zheng, Z Zhu,GB Zou, H AF Dawson, Kyle S. Kneib, Jean -Paul Percival, Will J. Alam, Shadab Albareti, Franco D. Anderson, Scott F. Armengaud, Eric Aubourg, Eric Bailey, Stephen Bautista, Julian E. Berlind, Andreas A. Bershady, Matthew A. Beutler, Florian Bizyaev, Dmitry Blanton, Michael R. Blomqvist, Michael Bolton, Adam S. Boyy, Jo Brandt, W. N. Brinkmann, Jon Brownstein, Joel R. Burtin, Etienne Busca, N. G. Cai, Zheng Chuang, Chia-Hsun Clerc, Nicolas Comparat, Johan Cope, Frances Croft, Rupert A. C. Cruz-Gonzalez, Irene da Costa, Lutz N. Cousinou, Marie-Claude Darling, Jeremy de la Macorra, Axel de la Torre, Sylvain Delubac, Timothee des Bourboux, Helion du Mas Dwelly, Tom Ealet, Anne Eisenstein, Daniel J. Eracleous, Michael Escoffier, S. Fan, Xiaohui Finoguenov, Alexis Font-Ribera, Andreu Frinchaboy, Peter Gaulme, Patrick Georgakakis, Antonis Green, Paul Guo, Hong Guy, Julien Ho, Shirley Holder, Diana Huehnerhoff, Joe Hutchinson, Timothy Jing, Yipeng Jullo, Eric Kamble, Vikrant Kinemuchi, Karen Kirkby, David Kitaura, Francisco-Shu Klaene, Mark A. Laher, Russ R. Lang, Dustin Laurent, Pierre Le Goff, Jean-Marc Li, Cheng Liang, Yu Lima, Marcos Lin, Qiufan Lin, Weipeng Lin, Yen-Ting Long, Daniel C. Lundgren, Britt MacDonald, Nicholas Maia, Marcio Antonio Geimba Malanushenko, Elena Malanushenko, Viktor Mariappan, Vivek McBride, Cameron K. McGreer, Ian D. Menard, Brice Merloni, Andrea Meza, Andres Montero-Dorta, Antonio D. Muna, Demitri Myers, Adam D. Nandra, Kirpal Naugle, Tracy Newman, Jeffrey A. Noterdaeme, Pasquier Nugent, Peter Ogando, Nugentricardo Olmstead, Matthew D. Oravetz, Audrey Oravetz, Daniel J. Padmanabhan, Nikhil Palanque-Delabrouille, Nathalie Pan, Kaike Parejko, John K. Paris, Isabelle Peacock, John A. Petitjean, Patrick Pieri, Matthew M. Pisani, Alice Prada, Francisco Prakash, Abhishek Raichoor, Anand Reid, Beth Rich, James Ridl, Jethro Rodriguez-Torres, Sergio Rosell, Aurelio Carnero Ross, Ashley J. Rossi, Graziano Ruan, John Salvato, Mara Sayres, Conor Schneider, Donald P. Schlegel, David J. Seljak, Uros Seo, Hee-Jong Sesar, Branimir Shandera, Sarah Shu, Yiping Slosar, Anze Sobreira, Flavia Streblyanska, Alina Suzuki, Nao Taylor, Donna Tao, Charling Tinker, Jeremy L. Tojeiro, Rita Vargas-Magana, Mariana Wang, Yuting Weaver, Benjamin A. Weinberg, David H. White, Martin Wood-Vasey, W. M. Yeche, Christophe Zhai, Zhongxu Zhao, Cheng Zhao, Gong-bo Zheng, Zheng Zhu, Guangtun Ben Zou, Hu TI THE SDSS-IV EXTENDED BARYON OSCILLATION SPECTROSCOPIC SURVEY: OVERVIEW AND EARLY DATA SO ASTRONOMICAL JOURNAL LA English DT Article DE cosmology: observations; surveys ID DIGITAL SKY SURVEY; DATA RELEASE 9; REDSHIFT-SPACE DISTORTIONS; LY-ALPHA FOREST; PHOTOMETRICALLY CLASSIFIED QUASARS; PRIMORDIAL NON-GAUSSIANITY; SUPERNOVA LEGACY SURVEY; LUMINOUS RED GALAXIES; LARGE-SCALE STRUCTURE; DR11 BOSS GALAXIES AB In a six-year program started in 2014 July, the Extended Baryon Oscillation Spectroscopic Survey (eBOSS) will conduct novel cosmological observations using the BOSS spectrograph at Apache Point Observatory. These observations will be conducted simultaneously with the Time Domain Spectroscopic Survey (TDSS) designed for variability studies and the Spectroscopic Identification of eROSITA Sources (SPIDERS) program designed for studies of X-ray sources. In particular, eBOSS will measure with percent-level precision the distance-redshift relation with baryon acoustic oscillations (BAO) in the clustering of matter. eBOSS will use four different tracers of the underlying matter density field to vastly expand the volume covered by BOSS and map the large-scale-structures over the relatively unconstrained redshift range 0.6 < z < 2.2. Using more than 250,000 new, spectroscopically confirmed luminous red galaxies at a median redshift z = 0.72, we project that eBOSS will yield measurements of the angular diameter distance d(A)(z) to an accuracy of 1.2% and measurements of H(z) to 2.1% when combined with the z > 0.6 sample of BOSS galaxies. With similar to 195,000 new emission line galaxy redshifts, we expect BAO measurements of d(A)(z) to an accuracy of 3.1% and H(z) to 4.7% at an effective redshift of z = 0.87. A sample of more than 500,000 spectroscopically confirmed quasars will provide the first BAO distance measurements over the redshift range 0.9 < z < 2.2, with expected precision of 2.8% and 4.2% on d(A)(z) and H(z), respectively. Finally, with 60,000 new quasars and re-observation of 60,000 BOSS quasars, we will obtain new Lya forest measurements at redshifts z > 2.1; these new data will enhance the precision of d(A)(z) and H(z) at z > 2.1 by a factor of 1.44 relative to BOSS. Furthermore, eBOSS will provide improved tests of General Relativity on cosmological scales through redshift-space distortion measurements, improved tests for non-Gaussianity in the primordial density field, and new constraints on the summed mass of all neutrino species. Here, we provide an overview of the cosmological goals, spectroscopic target sample, demonstration of spectral quality from early data, and projected cosmological constraints from eBOSS. C1 [Dawson, Kyle S.; Bautista, Julian E.; Bolton, Adam S.; Brownstein, Joel R.; Guo, Hong; Hutchinson, Timothy; Kamble, Vikrant; Mariappan, Vivek; Montero-Dorta, Antonio D.; Shu, Yiping; Taylor, Donna; Zheng, Zheng] Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA. [Kneib, Jean -Paul; Delubac, Timothee] Ecole Polytech Fed Lausanne, Observ Sauverny, Astrophys Lab, CH-1290 Versoix, Switzerland. [Kneib, Jean -Paul; de la Torre, Sylvain; Jullo, Eric; Pieri, Matthew M.] Aix Marseille Univ, CNRS, LAM, UMR 7326, F-13388 Marseille, France. [Percival, Will J.; Ross, Ashley J.; Tojeiro, Rita; Wang, Yuting; Zhao, Gong-bo] Univ Portsmouth, Inst Cosmol & Gravitat, Dennis Sciama Bldg, Portsmouth PO1 3FX, Hants, England. [Alam, Shadab; Croft, Rupert A. C.; Ho, Shirley; Lang, Dustin] Carnegie Mellon Univ, Dept Phys, Bruce & Astrid McWilliams Ctr Cosmol, 5000 Forbes Ave, Pittsburgh, PA 15213 USA. [Albareti, Franco D.; Chuang, Chia-Hsun; Comparat, Johan; Prada, Francisco; Rodriguez-Torres, Sergio] Univ Autonoma Madrid, CSIC, Inst Fis Teor, E-28049 Madrid, Spain. [Anderson, Scott F.; MacDonald, Nicholas; Ruan, John; Sayres, Conor] Univ Washington, Dept Astron, Box 351580, Seattle, WA 98195 USA. [Armengaud, Eric; Burtin, Etienne; des Bourboux, Helion du Mas; Laurent, Pierre; Le Goff, Jean-Marc; Palanque-Delabrouille, Nathalie; Raichoor, Anand; Rich, James; Yeche, Christophe] CEA, Ctr Saclay, Irfu SPP, F-91191 Gif Sur Yvette, France. [Aubourg, Eric; Busca, N. G.] Univ Paris Diderot, APC, CNRS IN2P3, CEA IRFU,Observ Paris,Sorbonne Paris Cite, Paris, France. [Bailey, Stephen; Beutler, Florian; Font-Ribera, Andreu; Nugent, Peter; Reid, Beth; Schlegel, David J.; Seljak, Uros; White, Martin] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, One Cyclotron Rd, Berkeley, CA 94720 USA. [Berlind, Andreas A.] Vanderbilt Univ, Dept Phys & Astron, PMB 401807,2401 Vanderbilt Pl, Nashville, TN 37240 USA. [Bershady, Matthew A.; Lundgren, Britt] Univ Wisconsin, Dept Astron, 475 N Charter St, Madison, WI 53703 USA. [Bizyaev, Dmitry; Bolton, Adam S.; Brinkmann, Jon; Cope, Frances; Gaulme, Patrick; Holder, Diana; Huehnerhoff, Joe; Kinemuchi, Karen; Klaene, Mark A.; Long, Daniel C.; Malanushenko, Elena; Malanushenko, Viktor; Naugle, Tracy; Oravetz, Audrey; Oravetz, Daniel J.; Pan, Kaike] Apache Point Observ, POB 59, Sunspot, NM 88349 USA. [Bizyaev, Dmitry; Kinemuchi, Karen; Malanushenko, Elena; Malanushenko, Viktor; Oravetz, Audrey; Oravetz, Daniel J.; Pan, Kaike] New Mexico State Univ, Dept Astron, MSC 4500,POB 30001, Las Cruces, NM 88003 USA. [Bizyaev, Dmitry] Moscow MV Lomonosov State Univ, Sternberg Astron Inst, Moscow, Russia. [Blanton, Michael R.; Tinker, Jeremy L.; Weaver, Benjamin A.; Zhai, Zhongxu] NYU, Dept Phys, Ctr Cosmol & Particle Phys, 4 Washington Pl, New York, NY 10003 USA. [Blomqvist, Michael; Kirkby, David] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Boyy, Jo] Univ Toronto, Dept Astron & Astrophys, 50 St George St, Toronto, ON M5S 3H4, Canada. [Brandt, W. N.; Eracleous, Michael; Schneider, Donald P.] Penn State Univ, Dept Astron & Astrophys, Davey Lab 525, University Pk, PA 16802 USA. [Brandt, W. N.; Eracleous, Michael; Schneider, Donald P.; Shandera, Sarah] Penn State Univ, Inst Gravitat & Cosmos, University Pk, PA 16802 USA. [Brandt, W. N.; Eracleous, Michael] Penn State Univ, Dept Phys, University Pk, PA 16802 USA. [Cai, Zheng; Fan, Xiaohui; McGreer, Ian D.] Univ Arizona, Steward Observ, 933 North Cherry Ave, Tucson, AZ 85721 USA. [Clerc, Nicolas; Dwelly, Tom; Georgakakis, Antonis; Merloni, Andrea; Nandra, Kirpal; Ridl, Jethro; Salvato, Mara] Max Planck Inst Extraterr Phys, Giessenbachstr, D-85748 Garching, Germany. [Cruz-Gonzalez, Irene; de la Macorra, Axel] Univ Autonoma Madrid, Inst Astron, AP 70-264, E-28049 Madrid, Spain. [da Costa, Lutz N.; Maia, Marcio Antonio Geimba; Ogando, Nugentricardo; Rosell, Aurelio Carnero] Observ Nacl, Rua Gal Jose Cristino 77, BR-20921400 Rio De Janeiro, RJ, Brazil. [da Costa, Lutz N.; Lima, Marcos; Maia, Marcio Antonio Geimba; Ogando, Nugentricardo; Rosell, Aurelio Carnero; Sobreira, Flavia] LIneA, Rua Gal Jose Cristino 77, BR-20921400 Rio De Janeiro, RJ, Brazil. [Cousinou, Marie-Claude; Ealet, Anne; Escoffier, S.; Pisani, Alice; Tao, Charling] Aix Marseille Univ, CNRS, IN2P3, CPPM UMR 7346, F-13288 Marseille, France. [Darling, Jeremy] Univ Colorado, Dept Astrophys & Planetary Sci, Ctr Astrophys & Space Astron, 389 UCB, Boulder, CO 80309 USA. [Eisenstein, Daniel J.; Green, Paul; McBride, Cameron K.] Harvard Univ, Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. [Finoguenov, Alexis] Univ Helsinki, Dept Phys, Gustaf Hallstromin Katu 2a, FI-00014 Helsinki, Finland. [Frinchaboy, Peter] Texas Christian Univ, Dept Phys & Astron, 2800 South Univ Dr, Ft Worth, TX 76129 USA. [Guo, Hong; Li, Cheng; Lin, Weipeng] Chinese Acad Sci, Shanghai Astron Observ, 80 Nandan Rd, Shanghai 200030, Peoples R China. [Guy, Julien] Univ Paris 07, Univ Paris 06, LPNHE, CNRS,IN2P3, 4 Pl Jussieu, F-75252 Paris, France. [Jing, Yipeng] Shanghai Jiao Tong Univ, Dept Phys & Astron, IFSA Collaborat Innovat Ctr, Shanghai 200240, Peoples R China. [Kitaura, Francisco-Shu] Leibniz Inst Astrophys Potsdam AIP, Sternwarte 16, D-14482 Potsdam, Germany. [Laher, Russ R.] CALTECH, Spitzer Sci Ctr, M-S 314-6, Pasadena, CA 91125 USA. [Liang, Yu; Lin, Qiufan; Tao, Charling; Zhao, Cheng] Tsinghua Univ, Tsinghua Ctr Astrophys, Beijing 100084, Peoples R China. [Lima, Marcos] Univ Sao Paulo, Inst Fis, Dept Fis Matemat, CP 66318, BR-05314970 Sao Paulo, SP, Brazil. [Lin, Weipeng] Sun Yat Sen Univ, Sch Astron & Space Sci, Guangzhou 510275, Guangdong, Peoples R China. [Lin, Yen-Ting] Acad Sinica, Inst Astron & Astrophys, Taipei 10617, Taiwan. [Menard, Brice; Zhu, Guangtun Ben] Johns Hopkins Univ, Dept Phys & Astron, Ctr Astrophys Sci, 3400 North Charles St, Baltimore, MD 21218 USA. [Menard, Brice; Suzuki, Nao] Univ Tokyo, Todai Inst Adv Study, Kavli Inst Phys & Math Universe, Kashiwa, Chiba 2778583, Japan. [Meza, Andres] Univ Andres Bello, Dept Ciencias Fis, Ave Republ 220, Santiago, Chile. [Muna, Demitri] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Muna, Demitri] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Myers, Adam D.] Univ Wyoming, Dept Phys & Astron, Laramie, WY 82071 USA. [Newman, Jeffrey A.; Prakash, Abhishek; Wood-Vasey, W. M.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Newman, Jeffrey A.; Prakash, Abhishek; Wood-Vasey, W. M.] Univ Pittsburgh, PITT PACC, Pittsburgh, PA 15260 USA. [Noterdaeme, Pasquier; Petitjean, Patrick; Pisani, Alice] UPMC, CNRS, UMR7095, Inst Astrophys Paris, 98Bis Blvd Arago, F-75014 Paris, France. [Nugent, Peter; Seljak, Uros; White, Martin] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Olmstead, Matthew D.] Kings Coll, Dept Chem & Phys, Wilkes Barre, PA 18711 USA. [Padmanabhan, Nikhil; Parejko, John K.] Yale Univ, Yale Ctr Astron & Astrophys, New Haven, CT 06520 USA. [Paris, Isabelle] INAF Osservatorio Astron Trieste, Via GB Tiepolo 11, I-34131 Trieste, Italy. [Peacock, John A.] Univ Edinburgh, Royal Observ, Inst Astron, Edinburgh EH9 3HJ, Midlothian, Scotland. [Pisani, Alice] Univ Paris 06, Sorbonne univ, UMR7095, Inst Astrophys Paris, 98Bis Bd Arago, F-75014 Paris, France. [Prada, Francisco] Campus Int Excellence UAM CSIC, E-28049 Madrid, Spain. [Prada, Francisco] CSIC, Inst Astrofis Andalucia, E-18080 Granada, Spain. [Ross, Ashley J.; Weinberg, David H.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Rossi, Graziano] Sejong Univ, Dept Astron & Space Sci, Seoul 143747, South Korea. [Seljak, Uros; White, Martin] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Seljak, Uros] LBL, Berkeley Ctr Cosmol Phys, Berkeley, CA 94720 USA. [Seljak, Uros] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Seo, Hee-Jong] Ohio Univ, Dept Phys & Astron, Clippinger Labs 251B, Athens, OH 45701 USA. [Sesar, Branimir] Max Planck Inst Astron, Konigstuhl 17, D-69117 Heidelberg, Germany. [Slosar, Anze] Brookhaven Natl Lab, Bldg 510, Upton, NY 11973 USA. [Sobreira, Flavia] Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. [Streblyanska, Alina] Inst Astrofis Canarias, C Via Lactea S-N, E-38200 San Cristobal la Laguna, Tenerife, Spain. [Streblyanska, Alina] Univ La Laguna, Dept Astrofis, E-38206 Tenerife, Spain. [Vargas-Magana, Mariana] Univ Nacl Autonoma Mexico, Inst Fis, Apdo Postal 20-364, Mexico City 01000, DF, Mexico. [Wang, Yuting; Zhao, Gong-bo; Zou, Hu] Chinese Acad Sci, Natl Astron Observ, Beijing 100012, Peoples R China. [Weinberg, David H.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. RP Dawson, KS (reprint author), Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA. EM kdawson@astro.utah.edu RI Guo, Hong/J-5797-2015; Lima, Marcos/E-8378-2010; White, Martin/I-3880-2015; Sobreira, Flavia/F-4168-2015; Croft, Rupert/N-8707-2014; Georgakakis, Antonis/K-4457-2013; OI Guo, Hong/0000-0003-4936-8247; White, Martin/0000-0001-9912-5070; Sobreira, Flavia/0000-0002-7822-0658; Croft, Rupert/0000-0003-0697-2583; Kirkby, David/0000-0002-8828-5463; Meza, Andres/0000-0002-9460-7828; Jullo, Eric/0000-0002-9253-053X; Beutler, Florian/0000-0003-0467-5438; Georgakakis, Antonis/0000-0002-3514-2442 FU U.S. Department of Energy [DE-SC000995]; ERC advanced grant LIDA; UK STFC [ST/K0090X/1]; European Research Council through grant Darksurvey; Alfred P. Sloan Foundation; National Science Foundation; U.S. Department of Energy Office of Science FX K.D. acknowledges support from the U.S. Department of Energy under Grant DE-SC000995. J.P.K. and T.D. acknowledge support from the ERC advanced grant LIDA. W.J.P. acknowledges support from the UK STFC through the consolidated grant ST/K0090X/1, and from the European Research Council through grant Darksurvey. This paper includes targets derived from the images of the Wide-Field Infrared Survey Explorer, which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory/California Institute of Technology, funded by the National Aeronautics and Space Administration.r This paper represents an effort by both the SDSS-III and SDSS-IV collaborations. Funding for SDSS-III was provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, and the U.S. Department of Energy Office of Science. Funding for the Sloan Digital Sky Survey IV has been provided by the Alfred P. Sloan Foundation, the U.S. Department of Energy Office of Science, and the Participating Institutions. SDSS-IV acknowledges support and resources from the Center for High-Performance Computing at the University of Utah. The SDSS web site is www.sdss.org. NR 155 TC 38 Z9 38 U1 12 U2 20 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 EI 1538-3881 J9 ASTRON J JI Astron. J. PD FEB PY 2016 VL 151 IS 2 AR 44 DI 10.3847/0004-6256/151/2/44 PG 34 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DF3MO UT WOS:000371248600024 ER PT J AU Gerdes, DW Jennings, RJ Bernstein, GM Sako, M Adams, E Goldstein, D Kessler, R Hamilton, S Abbott, T Abdalla, EB Allam, S Benoit-Levy, A Bertin, E Brooks, D Buckley-Geer, E Burke, DL Capozzi, D Rosell, AC Kind, MC Carretero, J Cunha, CE D'Andrea, CB da Costa, LN Depoy, DL Desai, S Dietrich, JP Doel, P Eifler, TF Neto, AF Flaugher, B Frieman, J Gaztanaga, E Gruen, D Gruendl, RA Gutierrez, G Honscheid, K James, DJ Kuehn, K Kuropatkin, N Lahav, O Li, TS Maia, MAG March, M Martini, P Miller, CJ Miquel, R Nichol, RC Nord, B Ogando, R Plazas, AA Romer, AK Roodman, A Sanchez, E Santiago, B Schubnell, M Sevilla-Noarbe, I Smith, RC Soares-Santos, M Sobreira, F Suchyta, E Swanson, MEC Tarle, G Thaler, J Walker, AR Wester, W Zhang, Y AF Gerdes, D. W. Jennings, R. J. Bernstein, G. M. Sako, M. Adams, E. Goldstein, D. Kessler, R. Hamilton, S. Abbott, T. Abdalla, E. B. Allam, S. Benoit-Levy, A. Bertin, E. Brooks, D. Buckley-Geer, E. Burke, D. L. Capozzi, D. Carnero Rosell, A. Kind, M. Carrasco Carretero, J. Cunha, C. E. D'Andrea, C. B. da Costa, L. N. Depoy, D. L. Desai, S. Dietrich, J. P. Doel, P. Eifler, T. F. Fausti Neto, A. Flaugher, B. Frieman, J. Gaztanaga, E. Gruen, D. Gruendl, R. A. Gutierrez, G. Honscheid, K. James, D. J. Kuehn, K. Kuropatkin, N. Lahav, O. Li, T. S. Maia, M. A. G. March, M. Martini, P. Miller, C. J. Miquel, R. Nichol, R. C. Nord, B. Ogando, R. Plazas, A. A. Romer, A. K. Roodman, A. Sanchez, E. Santiago, B. Schubnell, M. Sevilla-Noarbe, I. Smith, R. C. Soares-Santos, M. Sobreira, F. Suchyta, E. Swanson, M. E. C. Tarle, G. Thaler, J. Walker, A. R. Wester, W. Zhang, Y. CA DES Collaboration TI OBSERVATION OF TWO NEW L4 NEPTUNE TROJANS IN THE DARK ENERGY SURVEY SUPERNOVA FIELDS SO ASTRONOMICAL JOURNAL LA English DT Article DE minor planets, asteroids: general ID SIZE DISTRIBUTION; PLANET MIGRATION; KUIPER-BELT; 2004 KV18; ASTEROIDS; JUPITER; POPULATIONS; SOFTWARE; CAPTURE; SEARCH AB We report the discovery of the eighth and ninth known Trojans in stable orbits around Neptune's leading Lagrange point, L4. The objects 2014. QO(441) and 2014. QP(441) were detected in data obtained during the 2013-14 and 2014-15 observing seasons by the Dark Energy Survey, using the Dark Energy Camera (DECam) on the 4-m Blanco telescope at Cerro Tololo Inter-American Observatory. Both are in high-inclination orbits (18 degrees.8 and 19 degrees.4, respectively). With an eccentricity of 0.104, 2014. QO(441) has the most eccentric orbit of the 11 known stable Neptune Trojans. Here we describe the search procedure and investigate the objects' long-term dynamical stability and physical properties. C1 [Gerdes, D. W.; Adams, E.; Hamilton, S.; Miller, C. J.; Schubnell, M.; Tarle, G.; Zhang, Y.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Jennings, R. J.] Carleton Coll, Northfield, MN 55057 USA. [Bernstein, G. M.; Sako, M.; Eifler, T. F.; March, M.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Adams, E.; Miller, C. J.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Goldstein, D.] Univ Calif Berkeley, Dept Astron, 501 Campbell Hall, Berkeley, CA 94720 USA. [Goldstein, D.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. [Kessler, R.; Frieman, J.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Kessler, R.] Univ Chicago, Dept Astron & Astrophys, 5640 South Ellis Ave, Chicago, IL 60637 USA. [Abbott, T.; James, D. J.; Smith, R. C.; Walker, A. R.] Cerro Tololo Interamer Observ, Natl Opt Astron Observ, Casilla 603, La Serena, Chile. [Abdalla, E. B.; Benoit-Levy, A.; Brooks, D.; Doel, P.; Lahav, O.] UCL, Dept Phys & Astron, Gower St, London WC1E 6BT, England. [Abdalla, E. B.] Rhodes Univ, Dept Phys & Elect, POB 94, ZA-6140 Grahamstown, South Africa. [Allam, S.; Buckley-Geer, E.; Flaugher, B.; Frieman, J.; Gutierrez, G.; Kuropatkin, N.; Nord, B.; Soares-Santos, M.; Sobreira, F.; Wester, W.] Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. [Bertin, E.] CNRS, UMR 7095, Inst Astrophys Paris, F-75014 Paris, France. [Bertin, E.] Univ Paris 06, Sorbonne Univ, UMR 7095, Inst Astrophys Paris, F-75014 Paris, France. [Burke, D. L.; Cunha, C. E.; Roodman, A.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, POB 2450, Stanford, CA 94305 USA. [Burke, D. L.; Roodman, A.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Capozzi, D.; D'Andrea, C. B.; Nichol, R. C.] Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 3FX, Hants, England. [Carnero Rosell, A.; da Costa, L. N.; Fausti Neto, A.; Maia, M. A. G.; Ogando, R.; Santiago, B.; Sobreira, F.] LIneA, Rua Gal Jose Cristino 77, BR-20921400 Rio De Janeiro, RJ, Brazil. [Carnero Rosell, A.; da Costa, L. N.; Maia, M. A. G.; Ogando, R.; Sevilla-Noarbe, I.] Observ Nacl, Rua Gal Jose Cristino 77, BR-20921400 Rio De Janeiro, RJ, Brazil. [Kind, M. Carrasco; Gruendl, R. A.] Univ Illinois, Dept Astron, 1002 W Green St, Urbana, IL 61801 USA. [Kind, M. Carrasco; Gruendl, R. A.; Swanson, M. E. C.] Natl Ctr Supercomp Applicat, 1205 West Clark St, Urbana, IL 61801 USA. [Carretero, J.; Gaztanaga, E.] IEEC CSIC, Inst Ciencies Espai, Caner Can Magrans S-N, E-08193 Barcelona, Spain. [Carretero, J.; Miquel, R.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Depoy, D. L.; Li, T. S.] Texas A&M Univ, George P & Cynthia Woods Mitchell Inst Fundamenta, College Stn, TX 77843 USA. [Depoy, D. L.; Li, T. S.] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA. [Desai, S.; Dietrich, J. P.] Excellence Cluster Universe, Boltzmannstr 2, D-85748 Garching, Germany. [Desai, S.] Univ Munich, Fac Phys, Scheinerstr 1, D-81679 Munich, Germany. [Dietrich, J. P.; Gruen, D.] Univ Munich, Fak Phys, Univ Sternwarte, Scheinerstr 1, D-81679 Munich, Germany. [Eifler, T. F.; Plazas, A. A.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Gruen, D.] Max Planck Inst Extraterr Phys, Giessenbachstr, D-85748 Garching, Germany. [Honscheid, K.; Martini, P.; Suchyta, E.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Honscheid, K.; Suchyta, E.] Ohio State Univ, Dept Phys, 174 W 18th Ave, Columbus, OH 43210 USA. [Kuehn, K.] Australian Astron Observ, N Ryde, NSW 2113, Australia. [Martini, P.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Miquel, R.] Inst Catalana Recerca & Estudis Avancats, E-08010 Barcelona, Spain. [Romer, A. K.; Sevilla-Noarbe, I.] Univ Sussex, Dept Phys & Astron, Pevensey Bldg, Brighton BN1 9QH, E Sussex, England. [Sanchez, E.] CIEMAT, Madrid, Spain. [Santiago, B.] Univ Fed Rio Grande do Sul, Inst Fis, Caixa Postal 15051, BR-91501970 Porto Alegre, RS, Brazil. [Thaler, J.] Univ Illinois, Dept Phys, 1110 W Green St, Urbana, IL 61801 USA. RP Gerdes, DW (reprint author), Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. RI Ogando, Ricardo/A-1747-2010; Sobreira, Flavia/F-4168-2015; Gaztanaga, Enrique/L-4894-2014; OI Ogando, Ricardo/0000-0003-2120-1154; Sobreira, Flavia/0000-0002-7822-0658; Gaztanaga, Enrique/0000-0001-9632-0815; Dietrich, Jorg/0000-0002-8134-9591; Carrasco Kind, Matias/0000-0002-4802-3194; Abdalla, Filipe/0000-0003-2063-4345 FU U.S. Department of Energy; U.S. National Science Foundation; Ministry of Science and Education of Spain; Science and Technology Facilities Council of the United Kingdom; Higher Education Funding Council for England; National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign; Kavli Institute of Cosmological Physics at the University of Chicago; Financiadora de Estudos e Projetos; Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico; Ministerio da Ciencia e Tecnologia; Deutsche Forschungsgemeinschaft; Argonne National Laboratory; University of California at Santa Cruz; University of Cambridge; Centro de Investigaciones Energeticas; Medioambientales y Tecnologicas-Madrid; University of Chicago; University College London; DES-Brazil Consortium; Eidgenossische Technische Hochschule (ETH) Zurich; Fermi National Accelerator Laboratory; University of Edinburgh; University of Illinois at Urbana-Champaign; Institut de Ciencies de l'Espai (IEEC/CSIC); Institut de Fisica d'Altes Energies; Lawrence Berkeley National Laboratory; Ludwig-Maximilians Universitat; associated Excellence Cluster universe; University of Michigan; National Optical Astronomy Observatory; University of Nottingham; Ohio State University; University of Pennsylvania; University of Portsmouth; SLAC National Accelerator Laboratory; Stanford University; University of Sussex; Texas AM University FX We are grateful for the extraordinary contributions of our CTIO colleagues and the DES Camera, Commissioning and Science Verification teams for achieving excellent instrument and telescope conditions that have made this work possible. The success of this project also relies critically on the expertise and dedication of the DES Data Management organization. Funding for the DES Projects has been provided by the U.S. Department of Energy, the U.S. National Science Foundation, the Ministry of Science and Education of Spain, the Science and Technology Facilities Council of the United Kingdom, the Higher Education Funding Council for England, the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign, the Kavli Institute of Cosmological Physics at the University of Chicago, Financiadora de Estudos e Projetos, Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Cientifico e Tecnologico and the Ministerio da Ciencia e Tecnologia, the Deutsche Forschungsgemeinschaft, and the Collaborating Institutions in the Dark Energy Survey.r The Collaborating Institutions are Argonne National Laboratory, the University of California at Santa Cruz, the University of Cambridge, Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas-Madrid, the University of Chicago, University College London, the DES-Brazil Consortium, the Eidgenossische Technische Hochschule (ETH) Zurich, Fermi National Accelerator Laboratory, the University of Edinburgh, the University of Illinois at Urbana-Champaign, the Institut de Ciencies de l'Espai (IEEC/CSIC), the Institut de Fisica d'Altes Energies, Lawrence Berkeley National Laboratory, the Ludwig-Maximilians Universitat and the associated Excellence Cluster universe, the University of Michigan, the National Optical Astronomy Observatory, the University of Nottingham, The Ohio State University, the University of Pennsylvania, the University of Portsmouth, SLAC National Accelerator Laboratory, Stanford University, the University of Sussex, and Texas A&M University. NR 41 TC 4 Z9 4 U1 1 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 EI 1538-3881 J9 ASTRON J JI Astron. J. PD FEB PY 2016 VL 151 IS 2 AR 39 DI 10.3847/0004-6256/151/2/39 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DF3MO UT WOS:000371248600019 ER PT J AU Lang, D Hogg, DW Schlegel, DJ AF Lang, Dustin Hogg, David W. Schlegel, David J. TI WISE PHOTOMETRY FOR 400 MILLION SDSS SOURCES SO ASTRONOMICAL JOURNAL LA English DT Article DE catalogs; methods: data analysis; surveys; techniques: image processing ID OSCILLATION SPECTROSCOPIC SURVEY; INFRARED-SURVEY-EXPLORER; QUASAR PROBABILITIES; SKY SURVEY; MISSION; PERFORMANCE; REDSHIFTS; NEOWISE AB We present photometry of images from the Wide-Field Infrared Survey Explorer (WISE) of over 400 million sources detected by the Sloan Digital Sky Survey (SDSS). We use a "forced photometry" technique, using measured SDSS source positions, star-galaxy classification, and galaxy profiles to define the sources whose fluxes are to be measured in the WISE images. We perform photometry with The Tractor image modeling code, working on our "unWISE" coaddds and taking account of the WISE point-spread function and a noise model. The result is a measurement of the flux of each SDSS source in each WISE band. Many sources have little flux in the WISE bands, so often the measurements we report are consistent with zero given our uncertainties. However, for many sources we get 3s or 4s measurements; these sources would not be reported by the "official" WISE pipeline and will not appear in the WISE catalog, yet they can be highly informative for some scientific questions. In addition, these small-signal measurements can be used in stacking analyses at the catalog level. The forced photometry approach has the advantage that we measure a consistent set of sources between SDSS and WISE, taking advantage of the resolution and depth of the SDSS images to interpret the WISE images; objects that are resolved in SDSS but blended together in WISE still have accurate measurements in our photometry. Our results, and the code used to produce them, are publicly available at http://unwise.me. C1 [Lang, Dustin] Univ Toronto, Dept Astron & Astrophys, 50 St George St, Toronto, ON M5S 3H4, Canada. [Lang, Dustin] Univ Toronto, Dunlap Inst, 50 St George St, Toronto, ON M5S 3H4, Canada. [Lang, Dustin] Univ Waterloo, Dept Phys & Astron, 200 Univ Ave West, Waterloo, ON N2L 3G1, Canada. [Hogg, David W.] NYU, Dept Phys, Ctr Cosmol & Particle Phys, 4 Washington Pl, New York, NY 10003 USA. [Hogg, David W.] Max Planck Inst Astron, Konigstuhl 17, D-69117 Heidelberg, Germany. [Schlegel, David J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. RP Lang, D (reprint author), Univ Toronto, Dept Astron & Astrophys, 50 St George St, Toronto, ON M5S 3H4, Canada.; Lang, D (reprint author), Univ Toronto, Dunlap Inst, 50 St George St, Toronto, ON M5S 3H4, Canada.; Lang, D (reprint author), Univ Waterloo, Dept Phys & Astron, 200 Univ Ave West, Waterloo, ON N2L 3G1, Canada. EM dstndstn@gmail.corn FU NSF [IIS-1124794]; NASA [NNX12AI50G]; Moore-Sloan Data Science Environment at NYU; National Aeronautics and Space Administration; Alfred P. Sloan Foundation; National Science Foundation; U.S. Department of Energy Office of Science; University of Arizona; Brazilian Participation Group; Brookhaven National Laboratory; Carnegie Mellon University; University of Florida; French Participation Group; German Participation Group; Harvard University; Instituto de Astrofisica de Canarias; Michigan State/Notre Dame/JINA Participation Group; Johns Hopkins University; Lawrence Berkeley National Laboratory; Max Planck Institute for Astrophysics; Max Planck Institute for Extraterrestrial Physics; New Mexico State University; New York University; Ohio State University; Pennsylvania State University; University of Portsmouth; Princeton University; Spanish Participation Group; University of Tokyo; University of Utah; Vanderbilt University; University of Virginia; University of Washington; Yale University; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX D.W.H. was partially supported by the NSF (grant IIS-1124794), NASA (grant NNX12AI50G), and the Moore-Sloan Data Science Environment at NYU.; This publication makes use of data products from the Wide-field Infrared Survey Explorer, which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory/California Institute of Technology, and NEOWISE, which is a project of the Jet Propulsion Laboratory/California Institute of Technology. WISE and NEOWISE are funded by the National Aeronautics and Space Administration.; This publication makes use of data from the SDSS III. Funding for SDSS-III has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, and the U.S. Department of Energy Office of Science. The SDSS-III website is http://www.sdss3.org/.; SDSS-III is managed by the Astrophysical Research Consortium for the Participating Institutions of the SDSS-III Collaboration including the University of Arizona, the Brazilian Participation Group, Brookhaven National Laboratory, Carnegie Mellon University, University of Florida, the French Participation Group, the German Participation Group, Harvard University, the Instituto de Astrofisica de Canarias, the Michigan State/Notre Dame/JINA Participation Group, Johns Hopkins University, Lawrence Berkeley National Laboratory, Max Planck Institute for Astrophysics, Max Planck Institute for Extraterrestrial Physics, New Mexico State University, New York University, Ohio State University, Pennsylvania State University, University of Portsmouth, Princeton University, the Spanish Participation Group, University of Tokyo, University of Utah, Vanderbilt University, University of Virginia, University of Washington, and Yale University.; This research used the resources of the National Energy Research Scientific Computing Center (NERSC), which is supported by the Office of Science of the U.S. Department of Energy under contract No. DE-AC02-05CH11231. NR 21 TC 9 Z9 9 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 EI 1538-3881 J9 ASTRON J JI Astron. J. PD FEB PY 2016 VL 151 IS 2 AR 36 DI 10.3847/0004-6256/151/2/36 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DF3MO UT WOS:000371248600016 ER PT J AU Rodney, SA Riess, AG Scolnic, DM Jones, DO Hemmati, S Molino, A McCully, C Mobasher, B Strolger, LG Graur, O Hayden, B Casertano, S AF Rodney, Steven A. Riess, Adam G. Scolnic, Daniel M. Jones, David O. Hemmati, Shoubaneh Molino, Alberto McCully, Curtis Mobasher, Bahram Strolger, Louis-Gregory Graur, Or Hayden, Brian Casertano, Stefano TI TWO SNe Ia AT REDSHIFT similar to 2: IMPROVED CLASSIFICATION AND REDSHIFT DETERMINATION WITH MEDIUM-BAND INFRARED IMAGING (vol 150, 156, 2015) SO ASTRONOMICAL JOURNAL LA English DT Correction C1 [Rodney, Steven A.; Riess, Adam G.; Jones, David O.] Johns Hopkins Univ, Dept Phys & Astron, 3400 N Charles St, Baltimore, MD 21218 USA. [Rodney, Steven A.] Univ S Carolina, Dept Phys & Astron, 712 Main St, Columbia, SC 29208 USA. [Riess, Adam G.; Strolger, Louis-Gregory; Casertano, Stefano] Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA. [Scolnic, Daniel M.] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. [Hemmati, Shoubaneh; Mobasher, Bahram] Univ Calif Riverside, Dept Phys & Astron, Riverside, CA 92521 USA. [Molino, Alberto] CSIC, Inst Astrofis Andalucia, E-18080 Granada, Spain. [Molino, Alberto] Univ Sao Paulo, Inst Astron Geofis & Ciencias Atmosfer, Cidade Univ, BR-05508090 Sao Paulo, Brazil. [McCully, Curtis] Global Telescope Network, Las Cumbres Observ, 6740 Cortona Dr,Suite 102, Goleta, CA 93117 USA. [McCully, Curtis] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Strolger, Louis-Gregory] Western Kentucky Univ, Dept Phys, Bowling Green, KY 42101 USA. [Graur, Or] NYU, Ctr Cosmol & Particle Phys, 550 1St Ave, New York, NY 10003 USA. [Graur, Or] Amer Museum Nat Hist, Dept Astrophys, Cent Pk West & 79th St, New York, NY 10024 USA. [Hayden, Brian] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. [Hayden, Brian] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Rodney, SA (reprint author), Johns Hopkins Univ, Dept Phys & Astron, 3400 N Charles St, Baltimore, MD 21218 USA.; Rodney, SA (reprint author), Univ S Carolina, Dept Phys & Astron, 712 Main St, Columbia, SC 29208 USA. EM srodney@sc.edu NR 1 TC 2 Z9 2 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 EI 1538-3881 J9 ASTRON J JI Astron. J. PD FEB PY 2016 VL 151 IS 2 AR 47 DI 10.3847/0004-6256/151/2/47 PG 1 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DF3MO UT WOS:000371248600027 ER PT J AU Vesper, DJ Moore, JE Adams, JP AF Vesper, Dorothy J. Moore, Johnathan E. Adams, James P. TI Inorganic carbon dynamics and CO2 flux associated with coal- mine drainage sites in Blythedale PA and Lambert WV, USA SO ENVIRONMENTAL EARTH SCIENCES LA English DT Article DE Dissolved inorganic carbon (DIC); Carbon dioxide (CO2); CO2 evasion, carbonate geochemistry, coal mine drainage ID MACKENZIE RIVER-BASIN; DISSOLVED METALS; CHEMISTRY; EVOLUTION; STREAMS; PERSPECTIVES; PENNSYLVANIA; MECHANISMS; OXIDATION; INSIGHTS AB Drainage from coal mines, where carbonate dissolution is driven by sulfuric acid, can result in a net transfer of geologically-bound carbon to the atmosphere. The flux and downstream evolution of dissolved inorganic carbon (DIC) is presented for two coal mine sites that discharge high concentrations of DIC (3.7-4.5 mM C) producing a total flux of DIC from the mine from 13 to 249 kg-C/year (18-364 metric tons of CO2/year). More than 65 % of the total DIC is lost via CO2 evasion with the remaining DIC is exported downstream as dissolved species. The fate of the DIC depends upon the pH of the water which is controlled by evasion of CO2, the concentration of pre-existing alkalinity, carbonate precipitation and dissolution, and metal hydrolysis reactions. The CO2 concentrations and fluxes from the study sites are comparable to those estimated from literature data for other coal mine sites in the Appalachian region. The total flux estimated from a dataset of 140 coal mines was comparable in magnitude to the CO2 emissions from a small coal-fired power plant. The extent of CO2 degassing from mine waters is poorly constrained because (1) flux estimates can be biased low when acid waters are excluded in alkalinitybased estimates; (2) flux estimates can be biased high if non-carbonate alkalinity is present in the mine waters; and (3) mine waters react rapidly following discharge hampering the measurement process. The study sites presented illustrate the impact of coal mining as an anthropogenic influence on carbon cycling; however, more data are necessary to fully estimate the importance of this impact on regional scales. C1 [Vesper, Dorothy J.; Adams, James P.] W Virginia Univ, Dept Geol & Geog, 330 Brooks Hall, Morgantown, WV 26506 USA. [Moore, Johnathan E.] Contractor US Dept Energy, AECOM, Natl Energy Technol Lab, 3610 Collins Ferry Rd, Morgantown, WV 26507 USA. RP Vesper, DJ (reprint author), W Virginia Univ, Dept Geol & Geog, 330 Brooks Hall, Morgantown, WV 26506 USA. EM djvesper@mail.wvu.edu FU National Energy Technology Laboratory's Regional University Alliance (NETL-RUA), a collaborative initiative of the NETL, under the RES contract [DE-FE0004000] FX Thanks to Harry Edenborn for help throughout the project; Jill Riddell for help in collecting field data; to the J.F. Allen Memorial Muzzleloader Range for allowing access to the LRM site; and to John Eleyette of the Guardians of the West Fork for providing background information and facilitating access at the LRM site; and to useful suggestions made by Dr. Charles Cravotta and an anonymous reviewer. This work was performed as part of the National Energy Technology Laboratory's Regional University Alliance (NETL-RUA), a collaborative initiative of the NETL, under the RES contract DE-FE0004000. NR 40 TC 0 Z9 0 U1 3 U2 8 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1866-6280 EI 1866-6299 J9 ENVIRON EARTH SCI JI Environ. Earth Sci. PD FEB PY 2016 VL 75 IS 4 AR 340 DI 10.1007/s12665-015-5191-z PG 14 WC Environmental Sciences; Geosciences, Multidisciplinary; Water Resources SC Environmental Sciences & Ecology; Geology; Water Resources GA DF5LO UT WOS:000371393400062 ER PT J AU Wang, WX Sui, WH Faybishenko, B Stringfellow, WT AF Wang, W. X. Sui, W. H. Faybishenko, B. Stringfellow, W. T. TI Permeability variations within mining-induced fractured rock mass and its influence on groundwater inrush SO ENVIRONMENTAL EARTH SCIENCES LA English DT Article DE Underground coal mining; Gob; Bulking factor; Permeability of fractured rock mass; Cover stress re-establishment; Groundwater inrush rate ID LONGWALL; STRESS; DEFORMATION; OVERBURDEN; STIFFNESS; PANELS; CHINA; ROOF; FLOW AB This paper is concerned with the evaluation of permeability of fractured rock mass due to the cover stress re-establishment, which is a major factor in controlling water and gas flow rate induced by mining operations in fractured rock. The case study considered in this paper is based on the results of observations of groundwater inrush and a decrease in water inflow from the fractured roof strata due to mining advancing in the Taiping Coalmine, Shandong Province, China. A conceptual model of an effective porous media was used to assess the permeability distribution in the fractured zone induced by coal mining. The cover stress re-establishment in gob fractured rock mass was evaluated using an empirical formula based on the surface subsidence. A simplified conceptual model of the fractured zone was used to evaluate the deformation of fractured zone along with the evaluation of changes in the rock permeability above the gob due to the cover stress reestablishment. These data were then used to calculate the water inflow rate into the panel. Predicted water inflow rates have been found to be in good agreement with those from monitoring data. This study improved the understanding of the mechanisms of the post-mining cover stress re-establishment on permeability change of the overburden fracture rock strata. These results can then be applied for numerical simulations of the process of overburden failure and consequent groundwater inrush due to coal mining. C1 [Wang, W. X.; Sui, W. H.] China Univ Min & Technol, Sch Resources & Geosci, State Key Lab Geomech & Deep Underground Engn, Xuzhou 221008, Peoples R China. [Wang, W. X.] North China Univ Water Resources & Elect Power, Henan Prov Key Lab Rock & Soil Mech & Struct Engn, Zhengzhou 450045, Peoples R China. [Faybishenko, B.; Stringfellow, W. T.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Wang, W. X.; Stringfellow, W. T.] Univ Pacific, Sch Engn & Comp Sci, Ecol Engn Res Program, Stockton, CA 95211 USA. RP Sui, WH (reprint author), China Univ Min & Technol, Sch Resources & Geosci, State Key Lab Geomech & Deep Underground Engn, Xuzhou 221008, Peoples R China. EM wang603698305@163.com; suiwanghua@cumt.edu.cn; bafaybishenko@lbl.gov; wstringfellow@pacific.edu RI Stringfellow, William/O-4389-2015; Faybishenko, Boris/G-3363-2015 OI Stringfellow, William/0000-0003-3189-5604; Faybishenko, Boris/0000-0003-0085-8499 FU National Natural Science Foundation of China [41172291]; 973 Program [2013CB227903]; Priority Academic Program Development of Jiangsu Higher Education Institutions; Henan institution of higher education key scientific research [16A 410004]; North China University of Water Resources and Electric Power [40470] FX Financial support of the National Natural Science Foundation of China under Grant No. 41172291, 973 Program under Grant No. 2013CB227903, a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions, Henan institution of higher education key scientific research project (16A 410004), and a high-level personnel scientific research startup project of North China University of Water Resources and Electric Power (40470) is acknowledged. The authors also sincerely thank Gregory Weissmann at University of the Pacific for his editorial help. NR 46 TC 2 Z9 2 U1 15 U2 35 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1866-6280 EI 1866-6299 J9 ENVIRON EARTH SCI JI Environ. Earth Sci. PD FEB PY 2016 VL 75 IS 4 AR 326 DI 10.1007/s12665-015-5064-5 PG 15 WC Environmental Sciences; Geosciences, Multidisciplinary; Water Resources SC Environmental Sciences & Ecology; Geology; Water Resources GA DF5LO UT WOS:000371393400048 ER PT J AU Goordial, J Raymond-Bouchard, I Zolotarov, Y de Bethencourt, L Ronholm, J Shapiro, N Woyke, T Stromvik, M Greer, CW Bakermans, C Whyte, L AF Goordial, Jacqueline Raymond-Bouchard, Isabelle Zolotarov, Yevgen de Bethencourt, Luis Ronholm, Jennifer Shapiro, Nicole Woyke, Tanja Stromvik, Martina Greer, Charles W. Bakermans, Corien Whyte, Lyle TI Cold adaptive traits revealed by comparative genomic analysis of the eurypsychrophile Rhodococcus sp JG3 isolated from high elevation McMurdo Dry Valley permafrost, Antarctica SO FEMS MICROBIOLOGY ECOLOGY LA English DT Article DE Rhodococcus; permafrost; eurypsychrophile; cryophile; Antarctica; genome sequence; subzero ID PSYCHROBACTER-ARCTICUS 273-4; SIBERIAN PERMAFROST; ERYTHROPOLIS N9T-4; TEMPERATURE GROWTH; JOSTII RHA1; BACTERIUM; ADAPTATION; SURVIVAL; MICROORGANISMS; SEQUENCE AB The permafrost soils of the high elevation McMurdo Dry Valleys are the most cold, desiccating and oligotrophic on Earth. Rhodococcus sp. JG3 is one of very few bacterial isolates from Antarctic Dry Valley permafrost, and displays subzero growth down to -5 degrees C. To understand how Rhodococcus sp. JG3 is able to survive extreme permafrost conditions and be metabolically active at subzero temperatures, we sequenced its genome and compared it to the genomes of 14 mesophilic rhodococci. Rhodococcus sp. JG3 possessed a higher copy number of genes for general stress response, UV protection and protection from cold shock, osmotic stress and oxidative stress. We characterized genome wide molecular adaptations to cold, and identified genes that had amino acid compositions favourable for increased flexibility and functionality at low temperatures. Rhodococcus sp. JG3 possesses multiple complimentary strategies which may enable its survival in some of the harshest permafrost on Earth. C1 [Goordial, Jacqueline; Raymond-Bouchard, Isabelle; Zolotarov, Yevgen; Ronholm, Jennifer; Stromvik, Martina; Whyte, Lyle] McGill Univ, 21 111 Lakeshore Rd, Ste Anne De Bellevue, PQ H9X 3V9, Canada. [Shapiro, Nicole; Woyke, Tanja] DOE Joint Genome Inst, Walnut Creek, CA 94598 USA. [Greer, Charles W.] Natl Res Council Canada, Montreal, PQ H4P 2R2, Canada. [Bakermans, Corien] Penn State Univ, Altoona Coll, Altoona, PA 16801 USA. RP Goordial, J (reprint author), McGill Univ, 21 111 Lakeshore Rd, Ste Anne De Bellevue, PQ H9X 3V9, Canada. EM jacqueline.goordial@mail.mcgill.ca FU National Aeronautics and Space Administration (NASA) Astrobiology Science and Technology for Exploring Planets (ASTEP) program; NSF/OPP [B-302-M]; Natural Sciences and Engineering Research Council (NSERC); NSERC Northern Supplements Program; NSERC CREATE Canadian Astrobiology Training Program (CATP); US Department of Energy Joint Genome Institute, a DOE Office of Science User Facility [DE-AC02-05CH11231] FX This work was supported by the National Aeronautics and Space Administration (NASA) Astrobiology Science and Technology for Exploring Planets (ASTEP) program and with field support via NSF/OPP (project B-302-M). Support was provided by the Natural Sciences and Engineering Research Council (NSERC) Discovery Grant Program, NSERC Northern Supplements Program and NSERC CREATE Canadian Astrobiology Training Program (CATP). The work conducted by the US Department of Energy Joint Genome Institute, a DOE Office of Science User Facility, is supported under Contract No. DE-AC02-05CH11231. NR 47 TC 0 Z9 0 U1 4 U2 9 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0168-6496 EI 1574-6941 J9 FEMS MICROBIOL ECOL JI FEMS Microbiol. Ecol. PD FEB PY 2016 VL 92 IS 2 AR fiv154 DI 10.1093/femsec/fiv154 PG 11 WC Microbiology SC Microbiology GA DF3MX UT WOS:000371249600003 ER PT J AU Koberl, M Erlacher, A Ramadan, EM El-Arabi, TF Muller, H Bragina, A Berg, G AF Koeberl, Martina Erlacher, Armin Ramadan, Elshahat M. El-Arabi, Tarek F. Mueller, Henry Bragina, Anastasia Berg, Gabriele TI Comparisons of diazotrophic communities in native and agricultural desert ecosystems reveal plants as important drivers in diversity SO FEMS MICROBIOLOGY ECOLOGY LA English DT Article DE desert farming; diazotrophs; medicinal plants; nitrogen-fixing communities; organic agriculture; Rhizobiales ID TARGETED OLIGONUCLEOTIDE PROBES; IN-SITU HYBRIDIZATION; BACTERIAL COMMUNITIES; NITROGEN-FIXATION; GENE; SOIL; RHIZOSPHERE; EXPRESSION; ABUNDANCE; FEATURES AB Diazotrophs provide the only biological source of fixed atmospheric nitrogen in the biosphere. Although they are the key player for plant-available nitrogen, less is known about their diversity and potential importance in arid ecosystems. We investigated the nitrogenase gene diversity in native and agricultural desert soil as well as within root-associated microbiota of medicinal plants grown in Egypt through the combination of nifH-specific qPCR, fingerprints, amplicon pyrosequencing and fluorescence in situ hybridization-confocal laser scanning microscopy. Although the diazotrophic microbiota were characterized by generally high abundances and diversity, statistically significant differences were found between both soils, the different microhabitats, and between the investigated plants (Matricaria chamomilla L., Calendula officinalis L. and Solanum distichum Schumach. and Thonn.). We observed a considerable community shift from desert to agriculturally used soil that demonstrated a higher abundance and diversity in the agro-ecosystem. The endorhiza was characterized by lower abundances and only a subset of species when compared to the rhizosphere. While the microbiomes of the Asteraceae were similar and dominated by potential root-nodulating rhizobia acquired primarily from soil, the perennial S. distichum generally formed associations with free-living nitrogen fixers. These results underline the importance of diazotrophs in desert ecosystems and additionally identify plants as important drivers in functional gene pool diversity. C1 [Koeberl, Martina; Erlacher, Armin; Mueller, Henry; Bragina, Anastasia; Berg, Gabriele] Graz Univ Technol, Inst Environm Biotechnol, A-8010 Graz, Austria. [Ramadan, Elshahat M.; El-Arabi, Tarek F.] Ain Shams Univ, Fac Agr, Cairo 11566, Egypt. [Ramadan, Elshahat M.; El-Arabi, Tarek F.] Heliopolis Univ, Biotechnol Lab, Cairo 11777, Egypt. [Koeberl, Martina] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99354 USA. RP Koberl, M (reprint author), Graz Univ Technol, Inst Environm Biotechnol, A-8010 Graz, Austria.; Koberl, M (reprint author), Petersgasse 12-I, A-8010 Graz, Austria. EM martina.koeberl@tugraz.at FU EU-Egypt Innovation Fund [RDI MED/2009/214-418, ENPI/2014/342-707]; Austrian Science Fund FWF [J 3638]; European Commission FX This work was supported by the EU-Egypt Innovation Fund [RDI MED/2009/214-418 and ENPI/2014/342-707] and the Austrian Science Fund FWF [J 3638 to MK], co-funded by the European Commission. NR 56 TC 1 Z9 1 U1 9 U2 29 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0168-6496 EI 1574-6941 J9 FEMS MICROBIOL ECOL JI FEMS Microbiol. Ecol. PD FEB PY 2016 VL 92 IS 2 AR fiv166 DI 10.1093/femsec/fiv166 PG 11 WC Microbiology SC Microbiology GA DF3MX UT WOS:000371249600011 ER PT J AU Mueller, RC Gallegos-Graves, L Kuske, CR AF Mueller, Rebecca C. Gallegos-Graves, La Verne Kuske, Cheryl R. TI A new fungal large subunit ribosomal RNA primer for high-throughput sequencing surveys SO FEMS MICROBIOLOGY ECOLOGY LA English DT Article DE Illumina sequencing; large subunit ribosomal RNA gene; fungal community composition; phylogenetic community measures; contrived community analysis ID INTERNAL TRANSCRIBED SPACER; MAXIMUM-LIKELIHOOD; COMMUNITY; RESPONSES; ACCURATE; TREE; DNA; CLASSIFICATION; IDENTIFICATION; DIVERSITY AB The inclusion of phylogenetic metrics in community ecology has provided insights into important ecological processes, particularly when combined with high-throughput sequencing methods; however, these approaches have not been widely used in studies of fungal communities relative to other microbial groups. Two obstacles have been considered: (1) the internal transcribed spacer (ITS) region has limited utility for constructing phylogenies and (2) most PCR primers that target the large subunit (LSU) ribosomal unit generate amplicons that exceed current limits of high-throughput sequencing platforms. We designed and tested a PCR primer (LR22R) to target approximately 300-400 bp region of the D2 hypervariable region of the fungal LSU for use with the Illumina MiSeq platform. Both in silico and empirical analyses showed that the LR22R-LR3 pair captured a broad range of fungal taxonomic groups with a small fraction of non-fungal groups. Phylogenetic placement of publically available LSU D2 sequences showed broad agreement with taxonomic classification. Comparisons of the LSU D2 and the ITS2 ribosomal regions from environmental samples and known communities showed similar discriminatory abilities of the two primer sets. Together, these findings show that the LR22R-LR3 primer pair has utility for phylogenetic analyses of fungal communities using high-throughput sequencing methods. C1 [Mueller, Rebecca C.; Gallegos-Graves, La Verne; Kuske, Cheryl R.] Los Alamos Natl Lab, Biosci Div, M888 HRL, Los Alamos, NM 87545 USA. RP Mueller, RC (reprint author), Los Alamos Natl Lab, Biosci Div, M888 HRL, Los Alamos, NM 87545 USA. EM beckymueller@gmail.com FU U.S. Department of Energy Biological and Environmental Research Science Focus Area grant; Los Alamos National Laboratory LDRD Director's Postdoctoral Fellowship FX This work was supported by a U.S. Department of Energy Biological and Environmental Research Science Focus Area grant to CRK and a Los Alamos National Laboratory LDRD Director's Postdoctoral Fellowship to RCM. NR 49 TC 1 Z9 1 U1 5 U2 13 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0168-6496 EI 1574-6941 J9 FEMS MICROBIOL ECOL JI FEMS Microbiol. Ecol. PD FEB PY 2016 VL 92 IS 2 AR fiv153 DI 10.1093/femsec/fiv153 PG 11 WC Microbiology SC Microbiology GA DF3MX UT WOS:000371249600002 ER PT J AU Jang, WS Koo, P Bryson, K Narayanan, S Sandy, AR Russell, TP Mochrie, SG AF Jang, Woo-Sik Koo, Peter Bryson, Kyle Narayanan, Suresh Sandy, Alec R. Russell, Thomas P. Mochrie, Simon G. TI The Static Structure and Dynamics of Cadmium Sulfide Nanoparticles within Poly(styrene-block-isoprene) Diblock Copolymer Melts SO MACROMOLECULAR CHEMISTRY AND PHYSICS LA English DT Article DE cadmium sulfide nanoparticles; poly(styrene-block-2 vinylpyridine); small-angle X-ray scattering; transmission electron microscopy; X-ray photon correlation spectroscopy ID PHOTON-CORRELATION SPECTROSCOPY; X-RAY-SCATTERING; MICROPHASE-SEPARATION; BLOCK-COPOLYMERS; TRIBLOCK COPOLYMERS; CDS NANOPARTICLES; NETWORK PHASES; MICELLES; NANOCOMPOSITES; PARTICLES AB The static structure and dynamic behavior of cadmium sulfide nanoparticles suspended in block copolymer matrix are investigated using transmission electron microscopy, small-angle X-ray scattering, and X-ray photon correlation spectroscopy. The transmission electron microscopy study shows that cadmium sulfide nanoparticles are preferentially segregated within the polyisoprene domain of a poly(styrene-block-isoprene) diblock copolymer. For the dynamics study, X-ray photon correlation spectroscopy captures the relaxation process of cadmium sulfide nanoparticles. The measured characteristic relaxation time reveals that the observed dynamics are hyperdiffusive. The characteristic velocity and corresponding activation energy, which are hallmarks of a hyperdiffusive system, are determined from the relationship between the characteristic relaxation time and the wavevector. C1 [Jang, Woo-Sik; Koo, Peter; Mochrie, Simon G.] Yale Univ, Dept Phys, 217 Prospect St, New Haven, CT 06511 USA. [Bryson, Kyle; Russell, Thomas P.] Univ Massachusetts, Silvio O Conte Natl Ctr Polymer Res, Dept Polymer Sci & Engn, 120 Governors Dr, Amherst, MA 01003 USA. [Narayanan, Suresh; Sandy, Alec R.] Argonne Natl Lab, Adv Photon Source, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Jang, WS; Mochrie, SG (reprint author), Yale Univ, Dept Phys, 217 Prospect St, New Haven, CT 06511 USA. EM jangw@seas.upenn.edu; simon.mochrie@yale.edu FU DOE Division of Basic Energy Sciences [DE-SC0004162]; U.S. DOE [DE-AC02- 06CH11357] FX This work was supported by the DOE Division of Basic Energy Sciences under Grant No. DE-SC0004162. Use of the Advanced Photon Source, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under Contract No. DE-AC02- 06CH11357. The authors especially indebted to Dr. Thomas P. Russell and Kyle Bryson for valuable discussions and assistance. The authors especially indebted to Xuerui Fa for academic discussion. NR 62 TC 0 Z9 0 U1 2 U2 14 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 1022-1352 EI 1521-3935 J9 MACROMOL CHEM PHYS JI Macromol. Chem. Phys. PD FEB PY 2016 VL 217 IS 4 BP 591 EP 598 DI 10.1002/macp.201500357 PG 8 WC Polymer Science SC Polymer Science GA DF3RF UT WOS:000371262700008 ER PT J AU Chen, FR Van Dyck, D Kisielowski, C AF Chen, F. -R. Van Dyck, D. Kisielowski, C. TI In-line three-dimensional holography of nanocrystalline objects at atomic resolution SO NATURE COMMUNICATIONS LA English DT Article ID TRANSMISSION ELECTRON-MICROSCOPY; SINGLE ATOMS; TOMOGRAPHY; RECONSTRUCTION; HREM; NANOPARTICLES; SCATTERING; PARTICLES; CRYSTAL; LEVEL AB Resolution and sensitivity of the latest generation aberration-corrected transmission electron microscopes allow the vast majority of single atoms to be imaged with sub-ngstrom resolution and their locations determined in an image plane with a precision that exceeds the 1.9-pm wavelength of 300 kV electrons. Such unprecedented performance allows expansion of electron microscopic investigations with atomic resolution into the third dimension. Here we report a general tomographic method to recover the three-dimensional shape of a crystalline particle from high-resolution images of a single projection without the need for sample rotation. The method is compatible with low dose rate electron microscopy, which improves on signal quality, while minimizing electron beam-induced structure modifications even for small particles or surfaces. We apply it to germanium, gold and magnesium oxide particles, and achieve a depth resolution of 1-2 A, which is smaller than inter-atomic distances. C1 [Chen, F. -R.] Natl Tsing Hua Univ, Dept Engn & Syst Sci, 101 Kuang Fu Rd, Hsinchu 300, Taiwan. [Van Dyck, D.] Univ Antwerp, Dept Phys, EMAT, B-2020 Antwerp, Belgium. [Kisielowski, C.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry & Joint Ctr Artificial Photosynth, 1 Cyclotron Rd, Berkeley, CA 94720 USA. RP Chen, FR (reprint author), Natl Tsing Hua Univ, Dept Engn & Syst Sci, 101 Kuang Fu Rd, Hsinchu 300, Taiwan. EM fchen1@me.com FU Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; Fund for Scientific Research - Flanders (FWO) [VF04812N, G.0188.08]; [NSC 96-2628-E-007-017-MY3]; [NSC 101-2120-M-007-012-CC1] FX Electron microscopy was performed with the TEAM 0.5 microscope at the Molecular Foundry, NCEM, which is supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under contract number DE-AC02-05CH11231. The MgO substrate was kindly provided by Wangfeng Li from the University of Delaware. D.V.D. acknowledges the financial support from the Fund for Scientific Research - Flanders (FWO) under Project Numbers VF04812N and G.0188.08. F.-R.C. thanks the support from NSC 96-2628-E-007-017-MY3 and NSC 101-2120-M-007-012-CC1. NR 43 TC 3 Z9 3 U1 15 U2 31 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD FEB PY 2016 VL 7 AR 10603 DI 10.1038/ncomms10603 PG 11 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DF0HL UT WOS:000371019700021 PM 26887849 ER PT J AU Gludovatz, B Hohenwarter, A Thurston, KVS Bei, HB Wu, ZG George, EP Ritchie, RO AF Gludovatz, Bernd Hohenwarter, Anton Thurston, Keli V. S. Bei, Hongbin Wu, Zhenggang George, Easo P. Ritchie, Robert O. TI Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures SO NATURE COMMUNICATIONS LA English DT Article ID AUSTENITIC STAINLESS-STEELS; SOLID-SOLUTION ALLOYS; PHASE-STABILITY; MECHANICAL-PROPERTIES; FRACTURE-TOUGHNESS; TENSILE PROPERTIES; TRIP/TWIP STEELS; STRENGTH; SYSTEM; MICROSTRUCTURE AB High-entropy alloys are an intriguing new class of metallic materials that derive their properties from being multi-element systems that can crystallize as a single phase, despite containing high concentrations of five or more elements with different crystal structures. Here we examine an equiatomic medium-entropy alloy containing only three elements, CrCoNi, as a single-phase face-centred cubic solid solution, which displays strength-toughness properties that exceed those of all high-entropy alloys and most multi-phase alloys. At room temperature, the alloy shows tensile strengths of almost 1 GPa, failure strains of similar to 70% and K-JIc fracture-toughness values above 200 MPa m(1/2); at cryogenic temperatures strength, ductility and toughness of the CrCoNi alloy improve to strength levels above 1.3 GPa, failure strains up to 90% and K-JIc values of 275 MPa m(1/2). Such properties appear to result from continuous steady strain hardening, which acts to suppress plastic instability, resulting from pronounced dislocation activity and deformation-induced nano-twinning. C1 [Gludovatz, Bernd; Thurston, Keli V. S.; Ritchie, Robert O.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Hohenwarter, Anton] Univ Leoben, Dept Mat Phys, A-8700 Leoben, Austria. [Hohenwarter, Anton] Austrian Acad Sci, Erich Schmid Inst Mat Sci, A-8700 Leoben, Austria. [Thurston, Keli V. S.; Ritchie, Robert O.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Bei, Hongbin; George, Easo P.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Wu, Zhenggang; George, Easo P.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [George, Easo P.] Ruhr Univ Bochum, Inst Mat, D-44801 Bochum, Germany. RP Ritchie, RO (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.; Ritchie, RO (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA.; George, EP (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA.; George, EP (reprint author), Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA.; George, EP (reprint author), Ruhr Univ Bochum, Inst Mat, D-44801 Bochum, Germany. EM easo.george@rub.de; roritchie@lbl.gov RI Ritchie, Robert/A-8066-2008; OI Ritchie, Robert/0000-0002-0501-6998; Gludovatz, Bernd/0000-0002-2420-3879; Bei, Hongbin/0000-0003-0283-7990 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, through the Materials Science and Technology Division at the Oak Ridge National Laboratory; Mechanical Behavior of Materials Program (KC13) at the Lawrence Berkeley National Laboratory FX This research was sponsored by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, through the Materials Science and Technology Division at the Oak Ridge National Laboratory (for H.B, Z.W. and E.P.G.) and the Mechanical Behavior of Materials Program (KC13) at the Lawrence Berkeley National Laboratory (for B.G., K.V.S.T. and R.O.R.). NR 51 TC 7 Z9 7 U1 37 U2 89 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD FEB PY 2016 VL 7 AR 10602 DI 10.1038/ncomms10602 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DF0HL UT WOS:000371019700020 PM 26830651 ER PT J AU Rondev, F McCutchan, E Singh, B Tuli, J AF Rondev, Filip McCutchan, Elizabeth Singh, Balraj Tuli, Jagdish TI Nuclear Data Sheets for A=227 SO NUCLEAR DATA SHEETS LA English DT Article ID ALPHA-BRANCHING RATIO; SHORT-LIVED ISOTOPES; ODD-A NUCLEI; OCTUPOLE DEFORMATION; REFLECTION ASYMMETRY; LEVEL STRUCTURE; ACTINIDE NUCLEI; RADIUM ISOTOPES; CONVERSION COEFFICIENTS; PRECISION-MEASUREMENTS AB The evaluated spectroscopic data are presented for ten known nuclides of mass 227 (Po, At, Rn, Fr, Ra, Ac, Th, Pa, U, Np). For Po-227, At-227, Rn-227, Pa-227, U-227 and Np-227 nuclei, only the ground-state information is available. Their decay characteristics are mostly unknown. Levels in Fr-227 are known only from the decay of Rn-227 to Fr-227. This decay scheme at present cannot be normalized to deduce gamma intensities per 100 decays due to lack of knowledge about multipolarities of many low-energy transitions. The levels in Ra-227, Ac-227 and Th-227 are known from several decays and reactions, including particle-transfer data for Ra-227 and Ac-227. The decay scheme of Ra-227 to Ac-227 was last studied in 1971 using small Ge detectors. Improved gamma-ray intensity data need to be obtained with a better gamma-detection system. The datasets for Ac-227 have undergone extensive revisions, including detailed data for Pa-231 alpha decay from 1986BaYK report, and single-proton transfer data from 1986MaYU thesis. High-spin (J>13/2 or so) structures are known only for Th-227. Level lifetime data are quite scarce for all the nuclides in this mass chain, thus limiting the knowledge of reduced transition probabilities. Band structures for Fr-227, Ra-227, Ac-227 and Th-227 are known in detail, together with evidence of weak octupole deformation and consequent parity-doublet structures. C1 [Rondev, Filip] ANL, Argonne, IL USA. [McCutchan, Elizabeth; Tuli, Jagdish] BNL, NNDC, Upton, NY USA. [Singh, Balraj] McMaster Univ, Hamilton, ON, Canada. RP Singh, B (reprint author), McMaster Univ, Hamilton, ON, Canada. EM balraj@mcmaster.ca FU IAEA, Vienna; ICTP, Trieste; Office of Science of the U.S. Department of Energy FX This work was supported by the IAEA, Vienna; ICTP, Trieste; and the Office of Science of the U.S. Department of Energy. Sherif Nafee thanks King Abdulaziz City of Science and Technology (KACST) for providing funds for his participation in the workshop. NR 157 TC 0 Z9 0 U1 0 U2 1 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0090-3752 EI 1095-9904 J9 NUCL DATA SHEETS JI Nucl. Data Sheets PD FEB PY 2016 VL 132 BP 257 EP 354 DI 10.1016/j.nds.2016.01.002 PG 98 WC Physics, Nuclear SC Physics GA DF3WT UT WOS:000371279800002 ER PT J AU Van Zand, NR McCrae, JE Fiorino, ST AF Van Zand, Noah R. McCrae, Jack E. Fiorino, Steven T. TI Modeled and measured image-plane polychromatic speckle contrast SO OPTICAL ENGINEERING LA English DT Article DE coherent optical effects; partial coherence in imaging; roughness; speckle; speckle imaging ID SURFACE-ROUGHNESS; LASER PROPAGATION; DEPENDENCE; PATTERNS; ILLUMINATION AB The statistical properties of speckle relevant to short-to medium-range (tactical) active tracking involving polychromatic illumination are investigated. A numerical model is developed to allow rapid simulation of speckled images including the speckle contrast reduction effects of illuminator bandwidth, surface slope, and roughness, and the polarization properties of both the source and the reflection. Regarding surface slope (relative orientation of the surface normal and illumination/observation directions), Huntley's theory for speckle contrast, which employs geometrical approximations to decrease computation time, is modified to increase accuracy by incorporation of a geometrical correction factor and better treatment of roughness and polarization. The resulting model shows excellent agreement with more exact theory over a wide range. An experiment is conducted to validate both the numerical model developed here and existing theory. A diode laser source with coherence length of 259 +/- 7 mu m is reflected off of a silver-coated diffuse surface. Speckle data are gathered for 16 surface slope angles corresponding to speckle contrast between about 0.55 and 1. Taking the measured data as truth, both equations show error mean and standard deviation of less than 3%. Thus, the theory is validated over the range of this experiment. (C) The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. C1 [Van Zand, Noah R.; McCrae, Jack E.; Fiorino, Steven T.] Air Force Inst Technol, Ctr Directed Energy, Dept Engn Phys, 2950 Hobson Way, Dayton, OH 45433 USA. [McCrae, Jack E.] Oak Ridge Inst Sci & Educ, 1299 Bethel Valley Rd, Oak Ridge, TN 37380 USA. RP Fiorino, ST (reprint author), Air Force Inst Technol, Ctr Directed Energy, Dept Engn Phys, 2950 Hobson Way, Dayton, OH 45433 USA. EM steven.fiorino@afit.edu FU High Energy Laser Joint Technology Office in Albuquerque, New Mexico FX The authors recognize the critical support of the High Energy Laser Joint Technology Office in Albuquerque, New Mexico, which sponsored this work as the first author's master's thesis research. This research was also supported in part by an appointment to the Postgraduate Research Participation Program at the Air Force Institute of Technology (AFIT) administered by the Oak Ridge Institute for Science and Education through an interagency agreement between the U.S. Department of Energy and AFIT. Gratitude is also extended to two unnamed reviewers whose comments and suggestions greatly improved the paper. The views expressed in this paper are those of the authors and do not necessarily reflect the official policy of the U.S. Air Force, the Department of Defense, or U.S. Government. NR 29 TC 2 Z9 2 U1 3 U2 4 PU SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98225 USA SN 0091-3286 EI 1560-2303 J9 OPT ENG JI Opt. Eng. PD FEB PY 2016 VL 55 IS 2 AR 024106 DI 10.1117/1.OE.55.2.024106 PG 7 WC Optics SC Optics GA DF3YD UT WOS:000371283600016 ER PT J AU Beresh, SJ Wagner, JL Henfling, JF Spillers, RW Pruett, BOM AF Beresh, Steven J. Wagner, Justin L. Henfling, John F. Spillers, Russell W. Pruett, Brian O. M. TI Turbulent eddies in a compressible jet in crossflow measured using pulse-burst particle image velocimetry SO PHYSICS OF FLUIDS LA English DT Article ID SHEAR-LAYER INSTABILITIES; TRANSVERSE SUPERSONIC JET; LARGE-EDDY SIMULATION; MODE LASER; REYNOLDS-NUMBER; ROUND JET; STABILITY; INJECTION; EVOLUTION; FIELD AB Pulse-burst Particle Image Velocimetry (PIV) has been employed to acquire time-resolved data at 25 kHz of a supersonic jet exhausting into a subsonic compressible crossflow. Data were acquired along the windward boundary of the jet shear layer and used to identify turbulent eddies as they convect downstream in the far-field of the interaction. Eddies were found to have a tendency to occur in closely spaced counter-rotating pairs and are routinely observed in the PIV movies, but the variable orientation of these pairs makes them difficult to detect statistically. Correlated counter-rotating vortices are more strongly observed to pass by at a larger spacing, both leading and trailing the reference eddy. This indicates the paired nature of the turbulent eddies and the tendency for these pairs to recur at repeatable spacing. Velocity spectra reveal a peak at a frequency consistent with this larger spacing between shear-layer vortices rotating with identical sign. The spatial scale of these vortices appears similar to previous observations of compressible jets in crossflow. Super-sampled velocity spectra to 150 kHz reveal a power-law dependency of -5/3 in the inertial subrange as well as a -1 dependency at lower frequencies attributed to the scales of the dominant shear-layer eddies. (C) 2016 AIP Publishing LLC. C1 [Beresh, Steven J.; Wagner, Justin L.; Henfling, John F.; Spillers, Russell W.; Pruett, Brian O. M.] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. RP Beresh, SJ (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM sjberes@sandia.gov FU Sandia National Laboratories; United States Department of Energy; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work is supported by Sandia National Laboratories and the United States Department of Energy. Sandia is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the United States Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 50 TC 2 Z9 2 U1 4 U2 9 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-6631 EI 1089-7666 J9 PHYS FLUIDS JI Phys. Fluids PD FEB PY 2016 VL 28 IS 2 AR 025102 DI 10.1063/1.4940677 PG 22 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA DF3ZG UT WOS:000371286500044 ER PT J AU Coriton, B Frank, JH AF Coriton, Bruno Frank, Jonathan H. TI Experimental study of vorticity-strain rate interaction in turbulent partially premixed jet flames using tomographic particle image velocimetry SO PHYSICS OF FLUIDS LA English DT Article ID VELOCITY-GRADIENT TENSOR; NONPREMIXED FLAMES; HEAT RELEASE; HOMOGENEOUS TURBULENCE; DIFFUSION FLAMES; PIV MEASUREMENTS; SCALAR GRADIENT; FLOW STRUCTURE; ALIGNMENT; DYNAMICS AB In turbulent flows, the interaction between vorticity, omega, and strain rate, s, is considered a primary mechanism for the transfer of energy from large to small scales through vortex stretching. The omega-s coupling in turbulent jet flames is investigated using tomographic particle image velocimetry (TPIV). TPIV provides a direct measurement of the three-dimensional velocity field from which omega and s are determined. The effects of combustion and mean shear on the omega-s interaction are investigated in turbulent partially premixed methane/air jet flames with high and low probabilities of localized extinction as well as in a non-reacting isothermal air jet with Reynolds number of approximately 13 000. Results show that combustion causes structures of high vorticity and strain rate to agglomerate in highly correlated, elongated layers that span the height of the probe volume. In the non-reacting jet, these structures have a more varied morphology, greater fragmentation, and are not as well correlated. The enhanced spatiotemporal correlation of vorticity and strain rate in the stable flame results in stronger omega-s interaction characterized by increased enstrophy and strain-rate production rates via vortex stretching and straining, respectively. The probability of preferential local alignment between omega and the eigenvector of the intermediate principal strain rate, s(2), which is intrinsic to the omega-s coupling in turbulent flows, is larger in the flames and increases with the flame stability. The larger mean shear in the flame imposes a preferential orientation of omega and s(2) tangential to the shear layer. The extensive and compressive principal strain rates, s(1) and s(3), respectively, are preferentially oriented at approximately 45 degrees with respect to the jet axis. The production rates of strain and vorticity tend to be dominated by instances in which omega is parallel to the (s(1)) over bar-(s(2)) over bar plane and orthogonal to (s(3)) over bar. (C) 2016 AIP Publishing LLC. C1 [Coriton, Bruno; Frank, Jonathan H.] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. RP Frank, JH (reprint author), Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. EM jhfrank@sandia.gov FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences; U.S. Department of Energy [DE-AC04-94-AL85000] FX The authors thank Mr. Erxiong Huang for technical assistance in the laboratory. This research was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the U.S. Department of Energy under Contract No. DE-AC04-94-AL85000. NR 45 TC 0 Z9 0 U1 1 U2 14 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-6631 EI 1089-7666 J9 PHYS FLUIDS JI Phys. Fluids PD FEB PY 2016 VL 28 IS 2 AR 025109 DI 10.1063/1.4941528 PG 21 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA DF3ZG UT WOS:000371286500051 ER PT J AU McFarland, JA Black, WJ Dahal, J Morgan, BE AF McFarland, Jacob A. Black, Wolfgang J. Dahal, Jeevan Morgan, Brandon E. TI Computational study of the shock driven instability of a multiphase particle-gas system SO PHYSICS OF FLUIDS LA English DT Article ID RICHTMYER-MESHKOV INSTABILITY; PARTICULATE FLOWS; DRAG COEFFICIENT; REFINEMENT; INTERFACE; DYNAMICS; SPHERE; TUBE AB This paper considers the interaction of a shock wave with a multiphase particle-gas system which creates an instability similar in some ways to the Richtmyer-Meshkov instability but with a larger parameter space. As this parameter space is large, we only present an introductory survey of the effects of many of these parameters. We highlight the effects of particle-gas coupling, incident shock strength, particle size, effective system density differences, and multiple particle relaxation time effects. We focus on dilute flows with mass loading up to 40% and do not attempt to cover all parametric combinations. Instead, we vary one parameter at a time leaving additional parametric combinations for future work. The simulations are run with the Ares code, developed at Lawrence Livermore National Laboratory, which uses a multiphase particulate transport method to model two-way momentum and energy coupling. A brief validation of these models is presented and coupling effects are explored. It is shown that even for small particles, on the order of 1 mu m, multi-phase coupling effects are important and diminish the circulation deposition on the interface by up to 25%. These coupling effects are shown to create large temperature deviations from the dusty gas approximation, up to 20% greater, especially at higher shock strengths. It is also found that for a multiphase instability, the vortex sheet deposited at the interface separates into two sheets. Depending on the particle and particle-gas At wood numbers, the instability may be suppressed or enhanced by the interactions of these two vortex sheets. (C) 2016 AIP Publishing LLC. C1 [McFarland, Jacob A.; Black, Wolfgang J.; Dahal, Jeevan] Univ Missouri, Dept Mech & Aerosp Engn, E2412 Lafferre Hall, Columbia, MO 65211 USA. [Morgan, Brandon E.] Lawrence Livermore Natl Lab, 7000 East Ave,POB 808,L-170, Livermore, CA 94550 USA. RP McFarland, JA (reprint author), Univ Missouri, Dept Mech & Aerosp Engn, E2412 Lafferre Hall, Columbia, MO 65211 USA. EM mcfarlandja@missouri.edu FU University of Missouri Research Board; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX The authors would like to thank the University of Missouri Research Board for their support of this work. The simulation images in this paper were created using the program VisIt55 and the authors would like to thank the VisIt developers for their support of this program. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. NR 55 TC 0 Z9 0 U1 8 U2 22 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-6631 EI 1089-7666 J9 PHYS FLUIDS JI Phys. Fluids PD FEB PY 2016 VL 28 IS 2 AR 024105 DI 10.1063/1.4941131 PG 32 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA DF3ZG UT WOS:000371286500036 ER PT J AU Guerra, FP Richards, JH Fiehn, O Famula, R Stanton, BJ Shuren, R Sykes, R Davis, MF Neale, DB AF Guerra, Fernando P. Richards, James H. Fiehn, Oliver Famula, Randi Stanton, Brian J. Shuren, Richard Sykes, Robert Davis, Mark F. Neale, David B. TI Analysis of the genetic variation in growth, ecophysiology, and chemical and metabolomic composition of wood of Populus trichocarpa provenances SO TREE GENETICS & GENOMES LA English DT Article DE Populus trichocarpa; Growth; Stable isotopes; Lignin; Cellulose; Wood metabolome ID WATER-USE EFFICIENCY; CARBON-ISOTOPE DISCRIMINATION; ROTATION COPPICE CULTURE; ASSOCIATION GENETICS; POPLAR FAMILIES; PRODUCTION PHYSIOLOGY; HYBRID POPLAR; BUD SET; TRAITS; CLONES AB Populus trichocarpa is a biological model and a candidate species for bioethanol production. Although intra-specific variation is recognized, knowledge about genetic variation underlying the properties of its lignocellulosic biomass is still incomplete. Genetic variation is fundamental for continuing genetic improvement. In this study, we carried out a comprehensive phenotypic characterization of this species, analyzing a suite of quantitative traits associated with growth performance and wood quality. Traits involved growth rate (height, diameter), phenology (bud flush), and ecophysiology (leaf carbon and nitrogen content and isotopic composition), along with the chemical composition (contents of sugars and lignin) and metabolome of wood. We utilized 460 clones, representing 101 provenances collected from Oregon and Washington. These genotypes were planted in California, in 2009, and sampled after three growing seasons. Trait characterization was carried out by direct measurements, determination of stable isotopes (leaf samples), and technologies based on mass spectrometry (wood samples). A significant clonal effect was observed for most of the traits, explaining up to 76.4 % of total variation. Estimates of "broad-sense heritability" were moderate to high, reaching 0.96 (for date of bud flush). Phenotypic and genetic correlations varied extensively depending on specific traits. In addition, metabolomic analyses quantified 632 metabolites. Twenty-eight of these varied significantly with experimental factors, showing low to moderate heritability and correlation estimates. The results support the presence of significant clonal variation and inheritance for the assessed traits, required for response to genetic selection. C1 [Guerra, Fernando P.; Famula, Randi; Neale, David B.] Univ Calif Davis, Dept Plant Sci, 262C Robbins Hall,Mail Stop 4, Davis, CA 95616 USA. [Neale, David B.] Univ Calif Davis, Bioenergy Res Ctr, Davis, CA 95616 USA. [Richards, James H.] Univ Calif Davis, Dept Land Air & Water Resources, Davis, CA 95616 USA. [Fiehn, Oliver] Univ Calif Davis, Dept Mol & Cellular Biol, Davis, CA 95616 USA. [Fiehn, Oliver] Univ Calif Davis, Genome Ctr, Davis, CA 95616 USA. [Stanton, Brian J.; Shuren, Richard] GreenWood Resources, Genet Resources Conservat Program, Portland, OR 97201 USA. [Sykes, Robert; Davis, Mark F.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Guerra, Fernando P.] Univ Talca, Inst Ciencias Biol, POB 747, Talca, Chile. RP Neale, DB (reprint author), Univ Calif Davis, Dept Plant Sci, 262C Robbins Hall,Mail Stop 4, Davis, CA 95616 USA.; Neale, DB (reprint author), Univ Calif Davis, Bioenergy Res Ctr, Davis, CA 95616 USA. EM dbneale@ucdavis.edu OI davis, mark/0000-0003-4541-9852 FU Advanced Hardwood Biofuels Northwest Project - Agriculture and Food Research Initiative Competitive Grant from USDA National Institute of Food and Agriculture [2011-68005-30407]; California Agricultural Experiment Station FX This study was funded by the Advanced Hardwood Biofuels Northwest Project, supported by Agriculture and Food Research Initiative Competitive Grant no. 2011-68005-30407, from the USDA National Institute of Food and Agriculture. Additional support was provided through the California Agricultural Experiment Station. NR 54 TC 0 Z9 0 U1 15 U2 36 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1614-2942 EI 1614-2950 J9 TREE GENET GENOMES JI Tree Genet. Genomes PD FEB PY 2016 VL 12 IS 1 AR 6 DI 10.1007/s11295-015-0965-8 PG 16 WC Forestry; Genetics & Heredity; Horticulture SC Forestry; Genetics & Heredity; Agriculture GA DF4OU UT WOS:000371329700008 ER PT J AU Tonks, MR Liu, XY Andersson, D Perez, D Chernatynskiy, A Pastore, G Stanek, CR Williamson, R AF Tonks, Michael R. Liu, Xiang-Yang Andersson, David Perez, Danielle Chernatynskiy, Aleksandr Pastore, Giovanni Stanek, Christopher R. Williamson, Richard TI Development of a multiscale thermal conductivity model for fission gas in UO2 SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article DE Fuel performance modeling; Multiscale modeling; Uranium dioxide; Thermal conductivity ID FUEL-ROD ANALYSIS; MOLECULAR-DYNAMICS; URANIUM-DIOXIDE; TRANSPORT-PROPERTIES; BEHAVIOR; BUBBLES; SIMULATIONS; TRANSURANUS; RELEASE; HELIUM AB Accurately predicting changes in the thermal conductivity of light water reactor UO2 fuel throughout its lifetime in reactor is an essential part of fuel performance modeling. However, typical thermal conductivity models from the literature are empirical. In this work, we begin to develop a mechanistic thermal conductivity model by focusing on the impact of gaseous fission products, which is coupled to swelling and fission gas release. The impact of additional defects and fission products will be added in future work. The model is developed using a combination of atomistic and mesoscale simulation, as well as analytical models. The impact of dispersed fission gas atoms is quantified using molecular dynamics simulations corrected to account for phonon-spin scattering. The impact of intragranular bubbles is accounted for using an analytical model that considers phonon scattering. The impact of grain boundary bubbles is determined using a simple model with five thermal resistors that are parameterized by comparing to 3D mesoscale heat conduction results. When used in the BISON fuel performance code to model four reactor experiments, it produces reasonable predictions without having been fit to fuel thermocouple data. Published by Elsevier B.V. C1 [Tonks, Michael R.] Penn State Univ, Dept Mech & Nucl Engn, University Pk, PA 16802 USA. [Tonks, Michael R.; Perez, Danielle; Pastore, Giovanni; Williamson, Richard] Idaho Natl Lab, Fuel Modeling & Simulat, POB 1625, Idaho Falls, ID 83415 USA. [Liu, Xiang-Yang; Andersson, David; Stanek, Christopher R.] Los Alamos Natl Lab, Div Mat Sci & Technol, POB 1663, Los Alamos, NM 87545 USA. [Chernatynskiy, Aleksandr] Missouri Univ Sci & Technol, Dept Phys, Rolla, MO 65409 USA. RP Tonks, MR (reprint author), Penn State Univ, Dept Mech & Nucl Engn, University Pk, PA 16802 USA.; Tonks, MR (reprint author), Idaho Natl Lab, Fuel Modeling & Simulat, POB 1625, Idaho Falls, ID 83415 USA. EM mrt5296@psu.edu OI Pastore, Giovanni/0000-0003-2812-506X FU Department of Energy Nuclear Energy Advanced Modeling and Simulation program; US Department of Energy [DE-AC07-05ID14517, DE-AC52-06NA25396] FX This work was funded by the Department of Energy Nuclear Energy Advanced Modeling and Simulation program. This manuscript has been authored by Battelle Energy Alliance, LLC under Contract No. DE-AC07-05ID14517 with the US Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under Contract No. DE-AC52-06NA25396. NR 46 TC 6 Z9 6 U1 11 U2 25 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD FEB PY 2016 VL 469 BP 89 EP 98 DI 10.1016/j.jnucmat.2015.11.042 PG 10 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA DD7LE UT WOS:000370105200013 ER PT J AU Anderson, LN Koech, PK Plymale, AE Landorf, EV Konopka, A Collart, FR Lipton, MS Romine, MF Wright, AT AF Anderson, Lindsey N. Koech, Phillip K. Plymale, Andrew E. Landorf, Elizabeth V. Konopka, Allan Collart, Frank R. Lipton, Mary S. Romine, Margaret F. Wright, Aaron T. TI Live Cell Discovery of Microbial Vitamin Transport and Enzyme-Cofactor Interactions SO ACS CHEMICAL BIOLOGY LA English DT Article ID CHLOROFLEXUS-AURANTIACUS; CORYNEBACTERIUM-GLUTAMICUM; COMPARATIVE GENOMICS; SOLUTE TRANSPORTERS; BIOTIN UPTAKE; PROTEIN; PROKARYOTES; BINDING; BACTERIA; SYSTEM AB The rapid completion of microbial genomes is inducing a conundrum in functional gene discovery. Novel methods are needed to shorten the gap between characterizing a microbial genome and experimentally validating bioinformatically predicted functions. Of particular importance are transport mechanisms, which shuttle nutrients such as B vitamins and metabolites across cell membranes and are required for the survival of microbes ranging from members of environmental microbial communities to pathogens. Methods to accurately assign function and specificity for a wide range of experimentally unidentified and/or predicted membrane-embedded transport proteins, along with characterization of intracellular enzyme-cofactor associations, are needed to enable a significantly improved understanding of microbial biochemistry and physiology, microbial interactions, and microbial responses to perturbations. Chemical probes derived from B vitamins B-1, B-2, and B-7 have allowed us to experimentally address the aforementioned needs by identifying B vitamin transporters and intracellular enzyme-cofactor associations through live cell labeling of the filamentous anoxygenic photoheterotroph, Chloroflexus aurantiacus J-10-fl, known to employ mechanisms for both B vitamin biosynthesis and environmental salvage. Our probes provide a unique opportunity to directly link cellular activity and protein function back to ecosystem and/or host dynamics by identifying B vitamin transport and cofactor-dependent interactions required for survival. C1 [Anderson, Lindsey N.; Koech, Phillip K.; Plymale, Andrew E.; Konopka, Allan; Lipton, Mary S.; Romine, Margaret F.; Wright, Aaron T.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. [Landorf, Elizabeth V.; Collart, Frank R.] Argonne Natl Lab, Biosci Div, Argonne, IL 60439 USA. RP Wright, AT (reprint author), Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA.; Wright, AT (reprint author), 902 Battelle Blvd,MSIN J4-02, Richland, WA 99352 USA. EM Aaron.Wright@pnnl.gov RI Anderson, Lindsey /S-6375-2016; OI Anderson, Lindsey /0000-0002-8741-7823; Romine, Margaret/0000-0002-0968-7641; Wright, Aaron/0000-0002-3172-5253; Koech, Phillip/0000-0003-2996-0593; Collart, Frank/0000-0001-6942-4483 FU Genomic Science Program of the U.S. DOE-OBER; OBER at PNNL FX This research was supported by the Genomic Science Program of the U.S. DOE-OBER and is a contribution of the PNNL Foundational Scientific Focus Area. MS-based proteomic measurements used capabilities developed partially under the GSP Panomics project; MS-based measurements and microscopy were performed in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by OBER at PNNL. NR 55 TC 1 Z9 1 U1 1 U2 14 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1554-8929 EI 1554-8937 J9 ACS CHEM BIOL JI ACS Chem. Biol. PD FEB PY 2016 VL 11 IS 2 BP 345 EP 354 DI 10.1021/acschembio.5b00918 PG 10 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA DE6TZ UT WOS:000370767800007 PM 26669591 ER PT J AU Mowry, CD Pimentel, AS Sparks, ES Moorman, MW Achyuthan, KE Manginell, RP AF Mowry, Curtis D. Pimentel, Adam S. Sparks, Elizabeth S. Moorman, Matthew W. Achyuthan, Komandoor E. Manginell, Ronald P. TI Pulsed Discharge Helium Ionization Detector for Highly Sensitive Aquametry SO ANALYTICAL SCIENCES LA English DT Article DE Pulsed discharge helium ionization detector; PDHID-D2; water quantitation; aquametry; gas samples; humidity measurements ID HEADSPACE GAS-CHROMATOGRAPHY; TRACE MOISTURE; PHOTOIONIZATION DETECTOR; ORGANIC-SOLVENTS; DISSOLVED-GASES; WATER; SPECTROSCOPY; LIQUID; SENSOR; GC AB Trace moisture quantitation is crucial in medical, civilian and military applications. Current aquametry technologies are limited by the sample volume, reactivity, or interferences, and/or instrument size, weight, power, cost, and complexity. We report for the first time on the use of a pulsed discharge helium ionization detector (PDHID-D2) (similar to 196 cm(3)) for the sensitive (limit of detection, 0.047 ng; 26 ppm), linear (r(2) >0.99), and rapid (< 2 min) quantitation of water using a small (0.2 - 5.0 mu L) volume of liquid or gas. The relative humidity sensitivity was 0.22% (61.4 ppmv) with a limit of detection of less than 1 ng moisture with gaseous samples. The sensitivity was 10 to 100 to fold superior to competing technologies without the disadvantages inherent to these technologies. The PDHID-D2, due to its small footprint and low power requirement, has good size, weight, and power-portability (SWAPP) factors. The relatively low cost (similar to$5000) and commercial availability of the PDHID-D2 makes our technique applicable to highly sensitive aquametry. C1 [Mowry, Curtis D.; Pimentel, Adam S.; Sparks, Elizabeth S.] Sandia Natl Labs, Mat Characterizat Dept, Albuquerque, NM 87185 USA. [Moorman, Matthew W.; Achyuthan, Komandoor E.; Manginell, Ronald P.] Sandia Natl Labs, Bio Chem Phys Microsensors Dept, Albuquerque, NM 87185 USA. RP Mowry, CD (reprint author), Sandia Natl Labs, Mat Characterizat Dept, Albuquerque, NM 87185 USA. EM cdmowry@sandia.gov FU United States Department of Energy [DE-AC04-94AL85000]; Sandia's Laboratory Directed Research and Development (LDRD) [151318] FX Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL85000. We thank the two anonymous Reviewers for their valuable comments which considerably strengthened the overall quality, clarity, and brevity of this paper. This work was supported by Sandia's Laboratory Directed Research and Development (LDRD) project #151318 awarded to Dr. Ronald Manginell. NR 39 TC 2 Z9 2 U1 3 U2 12 PU JAPAN SOC ANALYTICAL CHEMISTRY PI TOKYO PA 26-2 NISHIGOTANDA 1 CHOME SHINAGAWA-KU, TOKYO, 141, JAPAN SN 0910-6340 EI 1348-2246 J9 ANAL SCI JI Anal. Sci. PD FEB PY 2016 VL 32 IS 2 BP 177 EP 182 PG 6 WC Chemistry, Analytical SC Chemistry GA DE8RM UT WOS:000370904400010 PM 26860562 ER PT J AU Rettberg, P Anesio, AM Baker, VR Baross, JA Cady, SL Detsis, E Foreman, CM Hauber, E Ori, GG Pearce, DA Renno, NO Ruvkun, G Sattler, B Saunders, MP Smith, DH Wagner, D Westall, F AF Rettberg, Petra Anesio, Alexandre M. Baker, Victor R. Baross, John A. Cady, Sherry L. Detsis, Emmanouil Foreman, Christine M. Hauber, Ernst Ori, Gian Gabriele Pearce, David A. Renno, Nilton O. Ruvkun, Gary Sattler, Birgit Saunders, Mark P. Smith, David H. Wagner, Dirk Westall, Frances TI Planetary Protection and Mars Special Regions-A Suggestion for Updating the Definition SO ASTROBIOLOGY LA English DT Article ID RECURRING SLOPE LINEAE; SCIENCE ANALYSIS GROUP; METHANE; ATMOSPHERE AB We highlight the role of COSPAR and the scientific community in defining and updating the framework of planetary protection. Specifically, we focus on Mars "Special Regions," areas where strict planetary protection measures have to be applied before a spacecraft can explore them, given the existence of environmental conditions that may be conducive to terrestrial microbial growth. We outline the history of the concept of Special Regions and inform on recent developments regarding the COSPAR policy, namely, the MEPAG SR-SAG2 review and the Academies and ESF joint committee report on Mars Special Regions. We present some new issues that necessitate the update of the current policy and provide suggestions for new definitions of Special Regions. We conclude with the current major scientific questions that remain unanswered regarding Mars Special Regions. Key Words: Planetary protection-Mars Special Regions-COSPAR policy. Astrobiology 16, 119-125. C1 [Rettberg, Petra] German Aerosp Ctr, D-51147 Cologne, Germany. [Anesio, Alexandre M.] Univ Bristol, Bristol Glaciol Ctr, Bristol, Avon, England. [Baker, Victor R.] Univ Arizona, Dept Hydrol & Water Resources, Tucson, AZ 85721 USA. [Baross, John A.] Univ Washington, Sch Oceanog, Seattle, WA 98195 USA. [Cady, Sherry L.] Pacific NW Natl Lab, Environm & Mol Sci Lab, Richland, WA 99352 USA. [Detsis, Emmanouil] European Sci Fdn, Space Sci Grp, Strasbourg, France. [Foreman, Christine M.] Montana State Univ, Dept Chem & Biol Engn, Bozeman, MT USA. [Hauber, Ernst] German Aerosp Ctr, Dept Planetary Geol, Berlin, Germany. [Ori, Gian Gabriele] Univ G dAnnunzio, Int Res Sch Planetary Sci, Pescara, Italy. [Pearce, David A.] Northumbria Univ, Dept Appl Sci, Newcastle Upon Tyne NE1 8ST, Tyne & Wear, England. [Renno, Nilton O.] Univ Michigan, Coll Engn, Ann Arbor, MI 48109 USA. [Ruvkun, Gary] Harvard Univ, Sch Med, Richard B Simches Res Ctr, Boston, MA USA. [Sattler, Birgit] Univ Innsbruck, Austrian Polar Res Inst, A-6020 Innsbruck, Austria. [Saunders, Mark P.] NASA, Langley Res Ctr, Hampton, VA 23665 USA. [Smith, David H.] Natl Acad Sci Engn & Med, Space Studies Board, Washington, DC USA. [Wagner, Dirk] Helmholtz Ctr Potsdam, German Res Ctr Geosci, Potsdam, Germany. [Westall, Frances] CNRS, Ctr Biophys Mol, Orleans, France. RP Rettberg, P (reprint author), German Aerosp Ctr, Inst Aerosp Med, D-51147 Cologne, Germany. EM Petra.Rettberg@dlr.de RI Wagner, Dirk/C-3932-2012; Rettberg, Petra/K-2378-2015; Anesio, Alexandre/A-7597-2008 OI Wagner, Dirk/0000-0001-5064-497X; Rettberg, Petra/0000-0003-4439-2395; Anesio, Alexandre/0000-0003-2990-4014 FU National Academies of Sciences, Engineering, and Medicine [NNH11CD57B]; National Aeronautics and Space Administration [NNH11CD57B]; European Science Foundation [RFP/IPL-PTM/PA/fg/306.2014]; European Space Agency [RFP/IPL-PTM/PA/fg/306.2014] FX This article is based on work supported by the Contract NNH11CD57B between the National Academies of Sciences, Engineering, and Medicine and the National Aeronautics and Space Administration and work supported by the Contract RFP/IPL-PTM/PA/fg/306.2014 between the European Science Foundation and the European Space Agency. NR 22 TC 1 Z9 1 U1 1 U2 12 PU MARY ANN LIEBERT, INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 1531-1074 EI 1557-8070 J9 ASTROBIOLOGY JI Astrobiology PD FEB 1 PY 2016 VL 16 IS 2 BP 119 EP 125 DI 10.1089/ast.2016.1472 PG 7 WC Astronomy & Astrophysics; Biology; Geosciences, Multidisciplinary SC Astronomy & Astrophysics; Life Sciences & Biomedicine - Other Topics; Geology GA DF0FB UT WOS:000371013300001 PM 26848950 ER PT J AU Cheng, Y He, KB Du, ZY Engling, G Liu, JM Ma, YL Zheng, M Weber, RJ AF Cheng, Yuan He, Ke-bin Du, Zhen-yu Engling, Guenter Liu, Jiu-meng Ma, Yong-liang Zheng, Mei Weber, Rodney J. TI The characteristics of brown carbon aerosol during winter in Beijing SO ATMOSPHERIC ENVIRONMENT LA English DT Article DE Brown carbon; Light absorption; WSOC; Methanol extract; Biomass burning ID SOLUBLE ORGANIC-CARBON; MASS ABSORPTION EFFICIENCY; LIGHT-ABSORPTION; OPTICAL-PROPERTIES; ELEMENTAL CARBON; BLACK CARBON; SOURCE APPORTIONMENT; BIOMASS COMBUSTION; ANGSTROM EXPONENT; BURNING AEROSOLS AB Brown carbon (i.e., light-absorbing organic carbon, or BrC) exerts important effects on the environment and on climate in particular. Based on spectrophotometric absorption measurements on extracts of bulk aerosol samples, this study investigated the characteristics of BrC during winter in Beijing, China. Organic compounds extractable by methanol contributed approximately 85% to the organic carbon (OC) mass. Light absorption by the methanol extracts exhibited a strong wavelength dependence, with an average absorption Angstrom exponent of 7.10 (fitted between 310 and 450 nm). Normalizing the absorption coefficient (babs) measured at 365 nm to the extractable OC mass yielded an average mass absorption efficiency (MAE) of 1.45 m(2)/g for the methanol extracts. This study suggests that light absorption by BrC could be comparable with black carbon in the spectral range of near-ultraviolet light. Our results also indicate that BrC absorption and thus BrC radiative forcing could be largely underestimated when using water-soluble organic carbon (WSOC) as a surrogate for BrC. Compared to previous work relying only on WSOC, this study provides a more comprehensive understanding of BrC aerosol based on methanol extraction. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Cheng, Yuan; He, Ke-bin; Ma, Yong-liang] Tsinghua Univ, Sch Environm, State Key Joint Lab Environm Simulat & Pollut Con, Beijing 100084, Peoples R China. [He, Ke-bin] State Environm Protect Key Lab Sources & Control, Beijing, Peoples R China. [He, Ke-bin] Collaborat Innovat Ctr Reg Environm Qual, Beijing, Peoples R China. [Du, Zhen-yu] Natl Res Ctr Environm Anal & Measurement, Beijing, Peoples R China. [Du, Zhen-yu; Liu, Jiu-meng; Weber, Rodney J.] Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA. [Engling, Guenter] Natl Tsing Hua Univ, Dept Biomed Engn & Environm Sci, Hsinchu, Taiwan. [Engling, Guenter] Univ Nevada, Desert Res Inst, Div Atmospher Sci, Reno, NV 89506 USA. [Liu, Jiu-meng] Pacific NW Natl Lab, Atmospher Sci & Global Change Div, Richland, WA 99352 USA. [Zheng, Mei] Peking Univ, Coll Environm Sci & Engn, Beijing 100871, Peoples R China. RP He, KB (reprint author), Tsinghua Univ, Sch Environm, State Key Joint Lab Environm Simulat & Pollut Con, Beijing 100084, Peoples R China.; He, KB (reprint author), State Environm Protect Key Lab Sources & Control, Beijing, Peoples R China.; He, KB (reprint author), Collaborat Innovat Ctr Reg Environm Qual, Beijing, Peoples R China.; Du, ZY (reprint author), Natl Res Ctr Environm Anal & Measurement, Beijing, Peoples R China.; Du, ZY (reprint author), Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA. EM ycheng@mail.tsinghua.edu.cn; hekb@tsinghua.edu.cn; duzy05@gmail.com RI Cheng, Yuan/E-2508-2011; Liu, Jiumeng/K-2024-2012 OI Cheng, Yuan/0000-0002-2077-5335; Liu, Jiumeng/0000-0001-7238-593X FU National Natural Science Foundation of China [21307067, 21190054]; Tsinghua University [20131089241]; International Postdoctoral Exchange Fellowship Program FX This work was supported by the National Natural Science Foundation of China (21307067 and 21190054) and by Tsinghua University under Grant No. 20131089241. Yuan Cheng also acknowledges support from the International Postdoctoral Exchange Fellowship Program. NR 70 TC 8 Z9 9 U1 16 U2 40 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1352-2310 EI 1873-2844 J9 ATMOS ENVIRON JI Atmos. Environ. PD FEB PY 2016 VL 127 BP 355 EP 364 DI 10.1016/j.atmosenv.2015.12.035 PG 10 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA DE6VC UT WOS:000370770700039 ER PT J AU Gil, EY Jo, UH Lee, HJ Kang, J Seo, JH Lee, ES Kim, YH Kim, I Phan-Lai, V Disis, ML Park, KH AF Gil, Eun-Young Jo, Uk-Hyun Lee, Hye Jin Kang, Jinho Seo, Jae Hong Lee, Eun Sook Kim, Yeul Hong Kim, InSun Phan-Lai, Vy Disis, Mary L. Park, Kyong Hwa TI Vaccination with ErbB-2 peptides prevents cancer stem cell expansion and suppresses the development of spontaneous tumors in MMTV-PyMT transgenic mice (vol 147, pg 69, 2014) SO BREAST CANCER RESEARCH AND TREATMENT LA English DT Correction C1 [Gil, Eun-Young; Jo, Uk-Hyun; Lee, Hye Jin; Kang, Jinho; Seo, Jae Hong; Kim, Yeul Hong; Park, Kyong Hwa] Korea Univ, Anam Hosp, Coll Med, Dept Internal Med,Div Oncol Hematol, 73 Inchon Ro, Seoul 136705, South Korea. [Lee, Eun Sook] Natl Canc Ctr, Res Inst & Hosp, Goyang, Gyeonggi, South Korea. [Kim, InSun] Korea Univ, Coll Med, Dept Pathol, 73 Inchon Ro, Seoul 136705, South Korea. [Phan-Lai, Vy] Univ Calif Los Angeles, Ctr Global Mentoring, UCLA DOE Inst, Los Angeles, CA USA. [Disis, Mary L.] Univ Washington, Tumor Vaccine Grp, Seattle, WA 98195 USA. RP Park, KH (reprint author), Korea Univ, Anam Hosp, Coll Med, Dept Internal Med,Div Oncol Hematol, 73 Inchon Ro, Seoul 136705, South Korea. EM khpark@korea.ac.kr NR 1 TC 0 Z9 0 U1 2 U2 2 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0167-6806 EI 1573-7217 J9 BREAST CANCER RES TR JI Breast Cancer Res. Treat. PD FEB PY 2016 VL 155 IS 3 BP 617 EP 618 DI 10.1007/s10549-016-3715-1 PG 2 WC Oncology SC Oncology GA DF0UR UT WOS:000371055100026 PM 26888722 ER PT J AU Aitken, ML Loughlin, DH Dodder, RS Yelverton, WH AF Aitken, Matthew L. Loughlin, Daniel H. Dodder, Rebecca S. Yelverton, William H. TI Economic and environmental evaluation of coal-and-biomass-to-liquids-and-electricity plants equipped with carbon capture and storage SO CLEAN TECHNOLOGIES AND ENVIRONMENTAL POLICY LA English DT Article DE MARKet ALlocation (MARKAL) energy system model; Fischer-Tropsch liquid fuels; Gasification; Electricity generation; Coal; Biomass; Carbon capture and sequestration ID GASIFICATION; PERFORMANCE; FUELS; FACILITIES; CLIMATE; TRANSPORTATION; INTEGRATION; SCENARIOS; EMISSIONS; OPTIONS AB Among various clean energy technologies, one innovative option for reducing the emission of greenhouse gases (GHGs) and criteria pollutants involves pairing carbon capture and storage (CCS) with the production of synthetic fuels and electricity from a combination of coal and sustainably sourced biomass. With a relatively pure CO2 stream as an inherent byproduct of the process, most of the resulting GHG emissions can be eliminated by simply compressing the CO2 for pipeline transport. Subsequent storage of the CO2 output in underground reservoirs can result in very low-perhaps even near-zero-net GHG emissions, depending on the fraction of biomass as input and its CO2 signature. To examine the potential market penetration and environmental impact of coal-and-biomass-to-liquids-and-electricity (CBtLE), a system-wide sensitivity analysis was performed using the MARKet ALlocation energy model. CBtLE was found to be most competitive in scenarios with a combination of high oil prices, low CCS costs, and, unexpectedly, non-stringent carbon policies. In the scheme considered here (30 % biomass input on an energy basis and 85 % carbon capture), CBtLE fails to achieve significant market share in deep decarbonization scenarios, regardless of oil prices and CCS costs. Such facilities would likely require higher fractions of biomass feedstock and captured CO2 to successfully compete in a carbon-constrained energy system. C1 [Aitken, Matthew L.] US EPA, ORISE, Res Triangle Pk, NC 27709 USA. [Loughlin, Daniel H.; Dodder, Rebecca S.; Yelverton, William H.] US EPA, Res Triangle Pk, NC 27709 USA. RP Loughlin, DH (reprint author), US EPA, Res Triangle Pk, NC 27709 USA. EM loughlin.dan@epa.gov NR 46 TC 2 Z9 2 U1 1 U2 11 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1618-954X EI 1618-9558 J9 CLEAN TECHNOL ENVIR JI Clean Technol. Environ. Policy PD FEB PY 2016 VL 18 IS 2 BP 573 EP 581 DI 10.1007/s10098-015-1020-z PG 9 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Engineering, Environmental; Environmental Sciences SC Science & Technology - Other Topics; Engineering; Environmental Sciences & Ecology GA DE7LY UT WOS:000370819500019 ER PT J AU Bansal, P Mohabir, A Miller, W AF Bansal, Pradeep Mohabir, Amar Miller, William TI A novel method to determine air leakage in heat pump clothes dryers SO ENERGY LA English DT Article DE Heat pump clothes dryer; HPCD; Efficiency; Air leakage; Vented dryer ID ENERGY EFFICIENCY; TUMBLER DRYER; PERFORMANCE AB Although heat pump clothes dryers offer the potential to save a significant amount of energy as compared to conventional vented electric dryers; they are prone to air leakage that can limit their efficiency gain. This study serves to develop a novel method of quantifying leakage, and to determine specific leakage locations in the dryer drum and air circulation system. The method follows an ASTM (American Society of Testing and Materials) standard, which is used to determine air leakage area in a household ventilation system through fan pressurization. This ASTM method is adapted to the dryer system, and the leakage area is determined by an analysis of the leakage volumetric flow - pressure relationship. The procedure presents a framework that determines and quantifies major components contributing to leakage in HPCDs. The novel method can improve component design features, resulting in more efficient HPCD systems. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Bansal, Pradeep; Mohabir, Amar; Miller, William] Oak Ridge Natl Lab, Energy & Transportat Sci Div, Bldg Equipment Grp, One Bethel Valley Rd,MS-6070, Oak Ridge, TN 37831 USA. RP Bansal, P (reprint author), Oak Ridge Natl Lab, Energy & Transportat Sci Div, Bldg Equipment Grp, One Bethel Valley Rd,MS-6070, Oak Ridge, TN 37831 USA. EM pban008@gmail.com OI Mohabir, Amar/0000-0001-5445-0734 FU Building Technologies Office of the US Department of Energy FX The authors are thankful to the Building Technologies Office of the US Department of Energy for their financial support and industry partner General Electric Appliances for their in-kind and technical support. Special thanks are due to a number of contributors for their invaluable contributions and support during this project, including Mr. Edward Vineyard, Dr. Bo Shen, Dr. Kyle Gluesenkamp, Dr. Keith Rice, Mr. Van Baxter, Mr. Phillip Boudreaux, Mr. Jerry Atchley, Mr. Randall Linkous, Mr. Neal Durfee, Mr. David Beers, Mr. Zhiquan Yu and Quentin Pollett. NR 23 TC 2 Z9 2 U1 4 U2 23 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-5442 EI 1873-6785 J9 ENERGY JI Energy PD FEB 1 PY 2016 VL 96 BP 1 EP 7 DI 10.1016/j.energy.2015.12.051 PG 7 WC Thermodynamics; Energy & Fuels SC Thermodynamics; Energy & Fuels GA DE8LE UT WOS:000370886700001 ER PT J AU Black, S Ferrell, JR AF Black, Stuart Ferrell, Jack R., III TI Determination of Carbonyl Groups in Pyrolysis Bio-oils Using Potentiometric Titration: Review and Comparison of Methods SO ENERGY & FUELS LA English DT Review AB Carbonyl compounds present in bio-oils are known to be responsible for bio-oil property changes upon storage and during upgrading. As such, carbonyl content has previously been used as a method of tracking bio-oil aging and condensation reactions with less variability than viscosity measurements. Given the importance of carbonyls in bio-oils, accurate analytical methods for their quantification are very important for the bio-oil community. Potentiometric titration methods based on carbonyl oximation have long been used for the determination of carbonyl content in pyrolysis bio-oils. Here, we present a modification of the traditional carbonyl oximation procedures that results in less reaction time, smaller sample size, higher precision, and more accurate carbonyl determinations. Some compounds such as carbohydrates are not measured by the traditional method (modified Nicolaides method), resulting in low estimations of the carbonyl content. Furthermore, we have shown that reaction completion for the traditional method can take up to 300 h. The new method presented here (the modified Faix method) reduces the reaction time to 2 h, uses triethanolamine (TEA) in the place of pyridine, and requires a smaller sample size for the analysis. Carbonyl contents determined using this new method are consistently higher than when using the traditional titration methods. C1 [Black, Stuart; Ferrell, Jack R., III] Natl Renewable Energy Lab, Natl Bioenergy Ctr, 15013 Denver West Pkwy, Golden, CO USA. RP Black, S (reprint author), Natl Renewable Energy Lab, Natl Bioenergy Ctr, 15013 Denver West Pkwy, Golden, CO USA. EM stuart.black@nrel.gov FU U.S. Department of Energy [DE-AC36-08GO28308]; National Renewable Energy Laboratory; U.S. DOE Office of Energy Efficiency and Renewable Energy Bioenergy Technologies Office FX This work was supported by the U.S. Department of Energy under Contract No. DE-AC36-08GO28308 with the National Renewable Energy Laboratory. Funding provided by U.S. DOE Office of Energy Efficiency and Renewable Energy Bioenergy Technologies Office. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes. NR 23 TC 8 Z9 8 U1 8 U2 10 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 EI 1520-5029 J9 ENERG FUEL JI Energy Fuels PD FEB PY 2016 VL 30 IS 2 BP 1071 EP 1077 DI 10.1021/acs.energyfuels.5b02511 PG 7 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA DE5NZ UT WOS:000370679000036 ER PT J AU Zheng, F Heldebrant, DJ Mathias, PM Koech, P Bhakta, M Freeman, CJ Bearden, MD Zwoster, A AF Zheng, Feng Heldebrant, David J. Mathias, Paul M. Koech, Phillip Bhakta, Mukund Freeman, Charles J. Bearden, Mark D. Zwoster, Andy TI Bench-Scale Testing and Process Performance Projections of CO2 Capture by CO2-Binding Organic Liquids (CO(2)BOLs) with and without Polarity-Swing-Assisted Regeneration SO ENERGY & FUELS LA English DT Article ID IONIC LIQUIDS; ALKANOLAMINES; SOLVENT AB This manuscript provides a detailed analysis of a continuous-flow, bench-scale study of the CO2-binding organic liquid (CO2BOL) solvent platform with and without its polarity-swing-assisted regeneration (PSAR). This study encompassed four months of continuous-flow testing of a candidate CO2BOL with a thermal regeneration and PSAR regeneration using a decane antisolvent. In both regeneration schemes, steady-state capture of >90% CO2 was achieved using simulated flue gas at reasonable liquid/gas (L/G) ratios. Aspen Plus modeling was performed to assess process performance, compared to previous equilibrium performance projections. This paper also includes net power projections, and comparisons to DOE's Case 10 amine baseline, and comments on the viability of the CO2BOL solvent class, for post-combustion CO2 capture. C1 [Zheng, Feng; Heldebrant, David J.; Koech, Phillip; Freeman, Charles J.; Bearden, Mark D.; Zwoster, Andy] Pacific NW Natl Lab, 902 Battelle Blvd, Richland, WA 99352 USA. [Mathias, Paul M.; Bhakta, Mukund] Fluor Corp, 3 Polaris Way, Aliso Viejo, CA 92698 USA. RP Heldebrant, DJ (reprint author), Pacific NW Natl Lab, 902 Battelle Blvd, Richland, WA 99352 USA. EM david.heldebrant@pnnl.gov FU U.S. Department of Energy's Office of Fossil Energy [FWP-65872]; [DE-0007466] FX This work was funded by the U.S. Department of Energy's Office of Fossil Energy (Award No. FWP-65872), and Award No. DE-0007466 managed by the National Energy Technology Laboratory. NR 22 TC 4 Z9 4 U1 8 U2 11 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 EI 1520-5029 J9 ENERG FUEL JI Energy Fuels PD FEB PY 2016 VL 30 IS 2 BP 1192 EP 1203 DI 10.1021/acs.energyfuels.5b02437 PG 12 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA DE5NZ UT WOS:000370679000048 ER PT J AU Mueller, CJ Cannella, WJ Bays, JT Bruno, TJ DeFabio, K Dettman, HD Gieleciak, RM Huber, ML Kweon, CB McConnell, SS Pitz, WJ Ratcliff, MA AF Mueller, Charles J. Cannella, William J. Bays, J. Timothy Bruno, Thomas J. DeFabio, Kathy Dettman, Heather D. Gieleciak, Rafal M. Huber, Marcia L. Kweon, Chol-Bum McConnell, Steven S. Pitz, William J. Ratcliff, Matthew A. TI Diesel Surrogate Fuels for Engine Testing and Chemical-Kinetic Modeling: Compositions and Properties SO ENERGY & FUELS LA English DT Article ID DISTILLATION CURVE APPROACH; THERMOPHYSICAL PROPERTIES; TRANSPORTATION FUELS; CETANE NUMBER; N-HEXADECANE; SHOCK-TUBE; COMBUSTION; MECHANISM; IGNITION; 1,3,5-TRIISOPROPYLCYCLOHEXANE AB The primary objectives of this work were to formulate, blend, and characterize a set of four ultralow-sulfur diesel surrogate fuels in quantities sufficient to enable their study in single-cylinder-engine and combustion-vessel experiments. The surrogate fuels feature increasing levels of compositional accuracy (i.e., increasing exactness in matching hydrocarbon structural characteristics) relative to the single target diesel fuel upon which the surrogate fuels are based. This approach was taken to assist in determining the minimum level of surrogate-fuel compositional accuracy that is required to adequately emulate the performance characteristics of the target fuel under different combustion modes. For each of the four surrogate fuels, an approximately 30 L batch was blended, and a number of the physical aid chemical properties were measured. This work documents the surrogate-fuel creation process= and the results of the property measurements. C1 [Mueller, Charles J.] Sandia Natl Labs, 7011 East Ave,MS 9053, Livermore, CA 94550 USA. [Cannella, William J.; DeFabio, Kathy] Chevron Energy Technol Co, 100 Chevron Way, Richmond, CA 94801 USA. [Bays, J. Timothy] Pacific NW Natl Lab, 902 Battelle Blvd, Richland, WA 99352 USA. [Bruno, Thomas J.; Huber, Marcia L.] Natl Inst Stand & Technol, 325 Broadway, Boulder, CO 80305 USA. [Dettman, Heather D.; Gieleciak, Rafal M.] Nat Resources Canada CanmetENERGY, 1 Oil Patch Dr, Devon, AB T9G 1A8, Canada. [Kweon, Chol-Bum] US Army Res Lab, 4603 Flare Loop Rd, Aberdeen Proving Ground, MD 21005 USA. [McConnell, Steven S.] Marathon Petr Co, 539 South Main St, Findlay, OH 45840 USA. [Pitz, William J.] Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA. [Ratcliff, Matthew A.] Natl Renewable Energy Lab, 15013 Denver West Pkwy, Golden, CO 80401 USA. RP Mueller, CJ (reprint author), Sandia Natl Labs, 7011 East Ave,MS 9053, Livermore, CA 94550 USA. EM cjmuell@sandia.gov RI Kweon, Chol-Bum/G-5425-2016 FU U.S. Department of Energy (U.S. DOE) Office of Vehicle Technologies; Coordinating Research Council (CRC); CRC; Natural Resources Canada; Canadian federal government interdepartmental Program of Energy Research and Development (PERD); ecoENERGY Innovation Initiative (ecoEII); U.S. Army Research Laboratory; U.S. Department of Energy [DE-AC04-94AL85000]; Chevron Energy Technology Co., a division of Chevron USA, Richmond, CA, USA; U.S. DOE [DE-AC05-76RL01830, DE-AC52-07NA27344]; U.S. DOE, Vehicle Technologies Office; Alliance for Sustainable Energy, LLC [DE347AC36-99GO10337] FX Funding for this research was provided by the U.S. Department of Energy (U.S. DOE) Office of Vehicle Technologies, the Coordinating Research Council (CRC) and the companies that employ the CRC members, Natural Resources Canada and the Canadian federal government interdepartmental Program of Energy Research and Development (PERD) and ecoENERGY Innovation Initiative (ecoEII), and the U.S. Army Research Laboratory. The study was conducted under the auspices of CRC. We thank U.S. DOE program managers Kevin Stork and Gurpreet Singh for supporting the participation of the U.S. national laboratories in this study. C.J.M's portion of the research was conducted at the Combustion Research Facility, Sandia National Laboratories, Livermore, CA, USA. Sandia is a multiprogram laboratory operated by Sandia Corp., a Lockheed Martin company, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. W.J.C's portion of the research was funded by and conducted at Chevron Energy Technology Co., a division of Chevron USA, Richmond, CA, USA. J.T.B's portion of the research was conducted at Pacific Northwest National Laboratory, a multiprogram laboratory operated by the Battelle Memorial Institute under Contract No. DE-AC05-76RL01830 for the U.S. DOE. J.T.B. also thanks Drs. John Linehan, Molly O'Hagan, and Suh-Jane Lee, Mr. Gregory Coffey, Ms. Margaret Jones, Ms. Tricia Smurthwaite, and Ms. Diana Tran for their discussions and assistance in obtaining data critical to this work. W.J.P's portion of the research was performed under the auspices of the U.S. DOE by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. M.A.R's portion of the research was conducted at the National Renewable Energy Laboratory, Golden, CO, USA, with support from the U.S. DOE, Vehicle Technologies Office. NREL is operated by the Alliance for Sustainable Energy, LLC under Contract No. DE347AC36-99GO10337. M.A.R. thanks NREL colleagues Jon Luecke, Earl Christensen, Gina Chupka, and Lisa Fouts for their excellent technical contributions to this work. Finally, helpful input and guidance from Kenneth D. Rose, formerly of ExxonMobil, are gratefully acknowledged. NR 82 TC 12 Z9 12 U1 8 U2 22 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 EI 1520-5029 J9 ENERG FUEL JI Energy Fuels PD FEB PY 2016 VL 30 IS 2 BP 1445 EP 1461 DI 10.1021/acs.energyfuels.5b02879 PG 17 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA DE5NZ UT WOS:000370679000075 PM 27330248 ER PT J AU Wang, Y Zhang, R Zheng, Q Deng, Y Van Nostrand, JD Zhou, JZ Jiao, NZ AF Wang, Yu Zhang, Rui Zheng, Qiang Deng, Ye Van Nostrand, Joy D. Zhou, Jizhong Jiao, Nianzhi TI Bacterioplankton community resilience to ocean acidification: evidence from microbial network analysis SO ICES JOURNAL OF MARINE SCIENCE LA English DT Article DE Arctic Ocean; community structure; mesocosm experiment; molecular ecological network ocean acidification ID DIFFERENT PCO(2) LEVELS; CARBON-DIOXIDE LEVELS; MARINE BACTERIAL; CO2 ENRICHMENT; ARCTIC FJORD; POLLINATION NETWORKS; ECOLOGICAL NETWORKS; ELEVATED CO2; DIVERSITY; DYNAMICS AB Ocean acidification (OA), caused by seawater CO2 uptake, has significant impacts on marine calcifying organisms and phototrophs. However, the response of bacterial communities, who play a crucial role in marine biogeochemical cycling, to OA is still not well understood. Previous studies have shown that the diversity and structure of microbial communities change undeterminably with elevated pCO(2). Here, novel phylogenetic molecular ecological networks (pMENs) were employed to investigate the interactions of native bacterial communities in response to OA in the Arctic Ocean through a mesocosm experiment. The pMENs results were in line with the null hypothesis that elevated pCO(2)/pH does not affect biogeochemistry processes. The number of nodes within the pMENs and the connectivity of the bacterial communities were similar, despite increased pCO(2) concentrations. Our results indicate that elevated pCO(2) did not significantly affect microbial community structure and succession in the Arctic Ocean, suggesting bacterioplankton community resilience to elevated pCO(2). The competitive interactions among the native bacterioplankton, as well as the modular community structure, may contribute to this resilience. This pMENs-based investigation of the interactions among microbial community members at different pCO(2) concentrations provides a new insight into our understanding of how OA affects the microbial community. C1 [Wang, Yu; Zhang, Rui; Zheng, Qiang; Jiao, Nianzhi] Xiamen Univ, Inst Marine Microbes & Ecospheres, State Key Lab Marine Environm Sci, Xiamen 361005, Fujian, Peoples R China. [Deng, Ye] Chinese Acad Sci, Res Ctr Ecoenvironm Sci, CAS Key Lab Environm Biotechnol, Beijing 100085, Peoples R China. [Van Nostrand, Joy D.; Zhou, Jizhong] Univ Oklahoma, Inst Environm Genom, Norman, OK 73019 USA. [Van Nostrand, Joy D.; Zhou, Jizhong] Univ Oklahoma, Dept Microbiol & Plant Biol, Norman, OK 73019 USA. [Zhou, Jizhong] Tsinghua Univ, Sch Environm, State Key Joint Lab Environm Simulat & Pollut Con, Beijing 100084, Peoples R China. [Zhou, Jizhong] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Earth Sci Div, Berkeley, CA 94720 USA. RP Jiao, NZ (reprint author), Xiamen Univ, Inst Marine Microbes & Ecospheres, State Key Lab Marine Environm Sci, Xiamen 361005, Fujian, Peoples R China.; Zhou, JZ (reprint author), Univ Oklahoma, Inst Environm Genom, Norman, OK 73019 USA.; Zhou, JZ (reprint author), Univ Oklahoma, Dept Microbiol & Plant Biol, Norman, OK 73019 USA.; Zhou, JZ (reprint author), Tsinghua Univ, Sch Environm, State Key Joint Lab Environm Simulat & Pollut Con, Beijing 100084, Peoples R China.; Zhou, JZ (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Earth Sci Div, Berkeley, CA 94720 USA. EM jiao@xmu.edu.cn; jzhou@ou.edu RI Van Nostrand, Joy/F-1740-2016 OI Van Nostrand, Joy/0000-0001-9548-6450 FU European Community [211384]; NSFC [41522603]; SOA Project [GASI-03-01-02-05]; 973 project [2013CB955700]; [GCMAC1408]; [IC201504] FX This work is a contribution to the European Project on Ocean Acidification (EPOCA), which is funded by the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 211384. We gratefully acknowledge Greenpeace International for assistance with the transport of the mesocosm facility from Kid to Ny-Alesund and back. We also thank the captains and crews of M/V ESPERANZA (Greenpeace) and RV Viking Explorer [University Centre in Svalbard (UNIS)] for assistance during mesocosm transport, deployment, and recovery in Kongsfjord. We thank Liyou Wu, Chongqing Wen, Lanlan Cai, and Kanagarajan Umapathy for their assistance during this study. This work was supported by the NSFC (41522603), the SOA Project (GASI-03-01-02-05) and the 973 project (2013CB955700). RZ was partially supported by GCMAC1408 and IC201504. NR 79 TC 3 Z9 3 U1 8 U2 40 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 1054-3139 EI 1095-9289 J9 ICES J MAR SCI JI ICES J. Mar. Sci. PD FEB-MAR PY 2016 VL 73 IS 3 BP 865 EP 875 DI 10.1093/icesjms/fsv187 PG 11 WC Fisheries; Marine & Freshwater Biology; Oceanography SC Fisheries; Marine & Freshwater Biology; Oceanography GA DF2AR UT WOS:000371142000034 ER PT J AU Liu, Q Wang, X Rao, NSV Brigham, K Kumar, BVKV AF Liu, Qiang Wang, Xin Rao, Nageswara S. V. Brigham, Katharine Kumar, B. V. K. Vijaya TI Effect of Retransmission and Retrodiction on Estimation and Fusion in Long-Haul Sensor Networks SO IEEE-ACM TRANSACTIONS ON NETWORKING LA English DT Article DE Data association; long-haul sensor networks; mean-square-error (MSE) and root-mean-square-error (RMSE) performance; message retransmission; prediction and retrodiction; state estimation and fusion ID OF-SEQUENCE MEASUREMENTS; TARGET TRACKING; OPTIMAL UPDATE; PERFORMANCE; CHANNELS; MODELS; ORDER AB In a long-haul sensor network, sensors are remotely deployed over a large geographical area to perform certain tasks, such as target tracking. In this paper, we study the scenario where sensors take measurements of one or more dynamic targets and send state estimates of the targets to a fusion center via satellite links. The severe loss and delay inherent over the satellite channels reduce the number of estimates successfully arriving at the fusion center, thereby limiting the potential fusion gain and resulting in suboptimal accuracy performance of the fused estimates. In addition, the errors in target-sensor data association can also degrade the estimation performance. To mitigate the effect of imperfect communications on state estimation and fusion, we consider retransmission and retrodiction. The system adopts certain retransmission-based transport protocols so that lost messages can be recovered over time. Moreover, retrodiction/smoothing techniques are applied so that the chances of incurring excess delay due to retransmission are greatly reduced. We analyze the extent to which retransmission and retrodiction can improve the performance of delay-sensitive target tracking tasks under variable communication loss and delay conditions. Simulation results of a ballistic target tracking application are shown in the end to demonstrate the validity of our analysis. C1 [Liu, Qiang; Wang, Xin] SUNY Stony Brook, Dept Elect & Comp Engn, Stony Brook, NY 11794 USA. [Rao, Nageswara S. V.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Brigham, Katharine; Kumar, B. V. K. Vijaya] Carnegie Mellon Univ, Dept Elect & Comp Engn, Pittsburgh, PA 15213 USA. RP Liu, Q; Wang, X (reprint author), SUNY Stony Brook, Dept Elect & Comp Engn, Stony Brook, NY 11794 USA.; Rao, NSV (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.; Brigham, K; Kumar, BVKV (reprint author), Carnegie Mellon Univ, Dept Elect & Comp Engn, Pittsburgh, PA 15213 USA. EM qiangliu@ece.sunysb.edu; xwang@ece.sunysb.edu; raons@ornl.gov; kbrigham@ece.cmu.edu; kumar@ece.cmu.edu OI Rao, Nageswara/0000-0002-3408-5941 FU Mathematics of Complex, Distributed, Interconnected Systems Program, Office of Advanced Computing Research, US Department of Energy; Office of Naval Research under the SensorNet Project; Stony Brook University under NSF [CNS 1247924, ECCS 1231800, ECCS 1408247] FX This work was supported by the Mathematics of Complex, Distributed, Interconnected Systems Program, Office of Advanced Computing Research, US Department of Energy, and the Office of Naval Research under the SensorNet Project, and was performed at Stony Brook University under NSF Awards CNS 1247924, ECCS 1231800, and ECCS 1408247. NR 28 TC 1 Z9 1 U1 1 U2 3 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1063-6692 EI 1558-2566 J9 IEEE ACM T NETWORK JI IEEE-ACM Trans. Netw. PD FEB PY 2016 VL 24 IS 1 BP 449 EP 461 DI 10.1109/TNET.2014.2363841 PG 13 WC Computer Science, Hardware & Architecture; Computer Science, Theory & Methods; Engineering, Electrical & Electronic; Telecommunications SC Computer Science; Engineering; Telecommunications GA DE9PD UT WOS:000370969300034 ER PT J AU Agre, P Bertozzi, C Bissell, M Campbell, KP Cummings, RD Desai, UR Estes, M Flotte, T Fogleman, G Gage, F Ginsburg, D Gordon, JI Hart, G Hascall, V Kiessling, L Kornfeld, S Lowe, J Magnani, J Mahal, LK Medzhitov, R Roberts, RJ Sackstein, R Sarkar, R Schnaar, R Schwartz, N Varki, A Walt, D Weissman, I AF Agre, Peter Bertozzi, Carolyn Bissell, Mina Campbell, Kevin P. Cummings, Richard D. Desai, Umesh R. Estes, Mary Flotte, Terence Fogleman, Guy Gage, Fred Ginsburg, David Gordon, Jeffrey I. Hart, Gerald Hascall, Vincent Kiessling, Laura Kornfeld, Stuart Lowe, John Magnani, John Mahal, Lara K. Medzhitov, Ruslan Roberts, Richard J. Sackstein, Robert Sarkar, Rita Schnaar, Ronald Schwartz, Nancy Varki, Ajit Walt, David Weissman, Irving TI Training the next generation of biomedical investigators in glycosciences SO JOURNAL OF CLINICAL INVESTIGATION LA English DT Editorial Material AB This position statement originated from a working group meeting convened on April 15, 2015, by the NHLBI and incorporates follow-up contributions by the participants as well as other thought leaders subsequently consulted, who together represent research fields relevant to all branches of the NIH. The group was deliberately composed not only of individuals with a current research emphasis in the glycosciences, but also of many experts from other fields, who evinced a strong interest in being involved in the discussions. The original goal was to discuss the value of creating centers of excellence for training the next generation of biomedical investigators in the glycosciences. A broader theme that emerged was the urgent need to bring the glycosciences back into the mainstream of biology by integrating relevant education into the curricula of medical, graduate, and postgraduate training programs, thus generating a critical sustainable workforce that can advance the much-needed translation of glycosciences into a more complete understanding of biology and the enhanced practice of medicine. C1 [Agre, Peter] Johns Hopkins Univ, Dept Mol Microbiol & Immunol, Johns Hopkins Bloomberg Sch Publ Hlth, Baltimore, MD USA. [Bertozzi, Carolyn] Stanford Univ, Dept Chem, Stanford, CA 94305 USA. [Bissell, Mina] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Biol Syst & Engn, Berkeley, CA 94720 USA. [Campbell, Kevin P.] Univ Iowa, Howard Hughes Med Inst, Dept Mol Physiol & Biophys Neurol & Internal Med, Carver Coll Med, Iowa City, IA 52242 USA. [Cummings, Richard D.] Beth Israel Deaconess Med Ctr, Dept Surg, Harvard Med Sch, Boston, MA 02215 USA. [Desai, Umesh R.] Virginia Commonwealth Univ, Dept Med Chem, Richmond, VA 23298 USA. [Desai, Umesh R.] Virginia Commonwealth Univ, Inst Struct Biol Drug Discovery & Dev, Richmond, VA USA. [Estes, Mary] Baylor Coll Med, Dept Mol Virol & Microbiol, Houston, TX 77030 USA. [Flotte, Terence] Univ Massachusetts, Sch Med, Dept Pediat, Worcester, MA USA. [Fogleman, Guy] FASEB, Bethesda, MD USA. [Gage, Fred] Salk Inst far Biol Studies, Lab Genet LOG G, La Jolla, CA USA. [Ginsburg, David] Univ Michigan, Dept Internal Med, Dept Human Genet, Ann Arbor, MI 48109 USA. [Ginsburg, David] Univ Michigan, Dept Pediat, Ann Arbor, MI 48109 USA. [Gordon, Jeffrey I.] Washington Univ, Ctr Genome Sci & Syst Biol, St Louis, MO USA. [Hart, Gerald] Johns Hopkins Univ, Dept Biol Chem, Baltimore, MD USA. [Hascall, Vincent] Cleveland Clin Fdn, Dept Bioengn, 9500 Euclid Ave, Cleveland, OH 44195 USA. [Kiessling, Laura] Univ Wisconsin, Dept Chem, 1101 Univ Ave, Madison, WI 53706 USA. [Kornfeld, Stuart] Washington Univ, Dept Med, St Louis, MO USA. [Lowe, John] Genentech Inc, Dept Pathol Res, San Francisco, CA USA. [Magnani, John] GlycoMimet, Rockville, MD USA. [Mahal, Lara K.] NYU, Dept Chem, Inst Biomed Chem, New York, NY USA. [Medzhitov, Ruslan] Yale Univ, Dept Immunobiol, New Haven, CT USA. [Roberts, Richard J.] New England Biolabs Inc, Ipswich, MA USA. [Sackstein, Robert] Harvard Univ, Brigham & Womens Hosp, Sch Med, Dept Dermatol & Med, Boston, MA 02115 USA. [Sarkar, Rita] NHLBI, Div Blood Dis & Resources, Bethesda, MD USA. [Schnaar, Ronald] Johns Hopkins Univ, Dept Pharmacol & Neurosci, Baltimore, MD USA. [Schwartz, Nancy] Univ Chicago, Dept Pediat & Biochem & Mol Biol, Chicago, IL 60637 USA. [Varki, Ajit] Univ Calif San Diego, Dept Med, San Diego, CA USA. [Varki, Ajit; Walt, David] Univ Calif San Diego, Dept Cellular & Mol Med, San Diego, CA USA. [Walt, David] Tufts Univ, Dept Chem, Tufts Inst Innovat, Medford, MA 02155 USA. [Weissman, Irving] Stanford Univ, Ludwig Ctr Canc Stem Cell Res, Inst Stem Cell Biol & Regenerat Med, Stanford, CA 94305 USA. RP Varki, A (reprint author), Univ Calif San Diego, Dept Med, BRF2,Room 4126,9500 Gilman Dr,MC 0687, La Jolla, CA 92093 USA.; Varki, A (reprint author), Dept Cellular & Mol Med, BRF2,Room 4126,9500 Gilman Dr,MC 0687, La Jolla, CA 92093 USA.; Schnaar, R (reprint author), Johns Hopkins Univ, Sch Med, Dept Pharmacol, 725 N Wolfe St,318 Wood Basic Sci Bldg, Baltimore, MD 21205 USA.; Schnaar, R (reprint author), Johns Hopkins Univ, Sch Med, Dept Neurosci, 725 N Wolfe St,318 Wood Basic Sci Bldg, Baltimore, MD 21205 USA. EM schnaar@jhu.edu; alvarki@ucsd.edu RI Schnaar, Ronald/S-8967-2016; OI Schnaar, Ronald/0000-0002-7701-5484; Desai, Umesh/0000-0002-1976-6597; Roberts, Richard/0000-0002-4348-0169 FU NHLBI NIH HHS [P01 HL107146, P01 HL107150, P01 HL107151]; NINDS NIH HHS [U54 NS053672] NR 1 TC 2 Z9 2 U1 5 U2 14 PU AMER SOC CLINICAL INVESTIGATION INC PI ANN ARBOR PA 2015 MANCHESTER RD, ANN ARBOR, MI 48104 USA SN 0021-9738 EI 1558-8238 J9 J CLIN INVEST JI J. Clin. Invest. PD FEB PY 2016 VL 126 IS 2 BP 405 EP 408 DI 10.1172/JCI85905 PG 4 WC Medicine, Research & Experimental SC Research & Experimental Medicine GA DE5NI UT WOS:000370677300001 PM 26829621 ER PT J AU Ji, YZ Heo, T Zhang, F Chen, LQ AF Ji, Yanzhou Heo, Tae Wook Zhang, Fan Chen, Long-Qing TI Theoretical Assessment on the Phase Transformation Kinetic Pathways of Multi-component Ti Alloys: Application to Ti-6Al-4V SO JOURNAL OF PHASE EQUILIBRIA AND DIFFUSION LA English DT Article; Proceedings Paper CT TMS William Hume-Rothery Award Symposium on Multicomponent Alloy Metallurgy, the Bridge from Materials Science to Materials Engineering CY MAR 15-19, 2015 CL Orlando, FL DE alloys; kinetics; multicomponent; phase transformation; stability ID ALPHA+BETA TITANIUM-ALLOYS; FIELD MODELS; BETA-PHASE; THERMODYNAMIC ASSESSMENT; SPINODAL DECOMPOSITION; QUATERNARY SYSTEM; VARIANT SELECTION; TERNARY-SYSTEM; BCC PHASE; V ALLOYS AB We present our theoretical assessment of the kinetic pathways during phase transformations of multi-component Ti alloys. Employing the graphical thermodynamic approach and an integrated free energy function based on the realistic thermodynamic database and assuming that a displacive structural transformation occurs much faster than long-range diffusional processes, we analyze the phase stabilities of Ti-6Al-4V (Ti-6wt.%Al-4wt.%V). Our systematic analyses predict a variety of possible kinetic pathways for beta to (alpha + beta) transformations leading to different types of microstructures under various heat treatment conditions. In addition, the possibility of unconventional kinetic pathways is discussed. We also briefly discuss the application of our approach to general multicomponent/multiphase alloy systems. C1 [Ji, Yanzhou; Chen, Long-Qing] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. [Heo, Tae Wook] Lawrence Livermore Natl Lab, Div Mat Sci, Livermore, CA 94550 USA. [Zhang, Fan] CompuTherm LLC, 437 S Yellowstone Dr Suite 217, Madison, WI 53719 USA. RP Ji, YZ (reprint author), Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. EM yxj135@psu.edu OI Ji, Yanzhou/0000-0002-5492-743X NR 51 TC 1 Z9 1 U1 7 U2 13 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1547-7037 EI 1863-7345 J9 J PHASE EQUILIB DIFF JI J. Phase Equilib. Diffus. PD FEB PY 2016 VL 37 IS 1 SI SI BP 53 EP 64 DI 10.1007/s11669-015-0436-9 PG 12 WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering GA DE7UR UT WOS:000370842700008 ER PT J AU Kammerer, CC Kulkarni, NS Warmack, B Sohn, YH AF Kammerer, C. C. Kulkarni, N. S. Warmack, B. Sohn, Y. H. TI Interdiffusion in Ternary Magnesium Solid Solutions of Aluminum and Zinc SO JOURNAL OF PHASE EQUILIBRIA AND DIFFUSION LA English DT Article; Proceedings Paper CT TMS William Hume-Rothery Award Symposium on Multicomponent Alloy Metallurgy, the Bridge from Materials Science to Materials Engineering CY MAR 15-19, 2015 CL Orlando, FL DE diffusion couples; electron probe microanalysis (EPMA); interdiffusion; ternary diffusion ID MG-ZN SYSTEM; MULTICOMPONENT METALLIC SYSTEMS; ANISOTROPIC DIFFUSION BEHAVIOR; AUTOMOTIVE APPLICATIONS; IRREVERSIBLE-PROCESSES; QUATERNARY DIFFUSION; RECIPROCAL RELATIONS; ALLOYS; AL; COEFFICIENTS AB Al and Zn are two of the most common alloying elements in commercial Mg alloys, which can improve the physical properties through solid solution strengthening and precipitation hardening. Diffusion plays a key role in the kinetics of these and other microstructural design relevant to Mg-alloy development. However, there is a lack of multicomponent diffusion data available for Mg alloys. Through solid-to-solid diffusion couples, diffusional interactions of Al and Zn in ternary Mg solid-solution at 400A degrees and 450 A degrees C were examined by an extension of the Boltzmann-Matano analysis based on Onsager's formalism. Concentration profiles of Mg-Al-Zn ternary alloys were determined by electron probe microanalysis, and analyzed to determine the ternary interdiffusion coefficients as a function of composition. The magnitude of ternary interdiffusion coefficients was greater than that of the magnitude of ternary interdiffusion coefficients was greater than that of , and the magnitude of was greater than that of . Appreciable diffusional interactions among Mg, Al, and Zn were observed by variations in sign and magnitude of cross interdiffusion coefficients. In particular, Zn was found to significantly influence the interdiffusion of Mg and Al significantly: the and ternary cross interdiffusion coefficients were both negative, and large in magnitude, in comparison to and , respectively. Al and Mg were observed influence the interdiffusion of Mg and Al, respectively, with positive and interdiffusion coefficients, but their influence on the Zn interdiffusion was negligible. C1 [Kammerer, C. C.; Sohn, Y. H.] Univ Cent Florida, Dept Mat Sci & Engn, Adv Mat Proc & Anal Ctr, Orlando, FL 32816 USA. [Warmack, B.] Oak Ridge Natl Lab, Measurement Sci & Syst Engn Div, Oak Ridge, TN 37831 USA. RP Sohn, YH (reprint author), Univ Cent Florida, Dept Mat Sci & Engn, Adv Mat Proc & Anal Ctr, Orlando, FL 32816 USA. EM Yongho.Sohn@ucf.edu RI Sohn, Yongho/A-8517-2010 OI Sohn, Yongho/0000-0003-3723-4743 NR 43 TC 0 Z9 0 U1 11 U2 21 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1547-7037 EI 1863-7345 J9 J PHASE EQUILIB DIFF JI J. Phase Equilib. Diffus. PD FEB PY 2016 VL 37 IS 1 SI SI BP 65 EP 74 DI 10.1007/s11669-015-0438-7 PG 10 WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering GA DE7UR UT WOS:000370842700009 ER PT J AU Sargin, I Genau, AL Napolitano, RE AF Sargin, I. Genau, A. L. Napolitano, R. E. TI Post-solidification Effects in Directionally Grown Al-AgAl-AlCu Eutectics SO JOURNAL OF PHASE EQUILIBRIA AND DIFFUSION LA English DT Article; Proceedings Paper CT TMS William Hume-Rothery Award Symposium on Multicomponent Alloy Metallurgy, the Bridge from Materials Science to Materials Engineering CY MAR 15-19, 2015 CL Orlando, FL DE coupled growth; solid-state effects; ternary eutectics ID LAMELLAR; STABILITY; SYSTEM; SN; MICROSTRUCTURES; ALLOYS AB The post-solidification reactions that take place behind the growth front in directionally solidified ternary eutectic Al-Ag-Cu alloys have a marked influence on the observed room temperature microstructure, obscuring many aspects of the solidification morphology present at the growth front. Quantifying these solid-state processes is necessary for proper interpretation of ex-situ microstructure as an indicator of growth dynamics and operating point selection. In this study, the directional growth structure and phase compositions are quantified as a function of distance from the growth front to describe microstructural changes that occur during cooling in the solid state. The solubility of Ag in the Al(fcc) phase decreases rapidly below the eutectic point, and the excess Ag is accommodated by growth of the Ag2Al(hcp) phase, mainly by motion of the Al(fcc)-Ag2Al(hcp) interface. These structural changes are quantified, and compared to the coupled morphology at the solidification front. A cellular automaton method is proposed here to mimic either the forward or reverse solid-state changes, providing a means to estimate many features of the directional growth morphology based on sampling the structure at some known distance from the front. C1 [Sargin, I.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. [Genau, A. L.] Univ Alabama Birmingham, Dept Mat Sci & Engn, Birmingham, AL 35294 USA. [Napolitano, R. E.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. [Napolitano, R. E.] US DOE, Ames Lab, Div Mat Sci & Engn, Ames, IA 50011 USA. RP Napolitano, RE (reprint author), Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA.; Napolitano, RE (reprint author), US DOE, Ames Lab, Div Mat Sci & Engn, Ames, IA 50011 USA. EM irmak@iastate.edu; genau@uab.edu; ren1@iastate.edu NR 31 TC 0 Z9 0 U1 5 U2 6 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1547-7037 EI 1863-7345 J9 J PHASE EQUILIB DIFF JI J. Phase Equilib. Diffus. PD FEB PY 2016 VL 37 IS 1 SI SI BP 75 EP 85 DI 10.1007/s11669-015-0439-6 PG 11 WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering GA DE7UR UT WOS:000370842700010 ER PT J AU Yu, HC Wang, F Amatucci, GG Thornton, K AF Yu, Hui-Chia Wang, Feng Amatucci, Glenn G. Thornton, Katsuyo TI A Phase-Field Model and Simulation of Kinetically Asymmetric Ternary Conversion-Reconversion Transformation in Battery Electrodes SO JOURNAL OF PHASE EQUILIBRIA AND DIFFUSION LA English DT Article; Proceedings Paper CT TMS William Hume-Rothery Award Symposium on Multicomponent Alloy Metallurgy, the Bridge from Materials Science to Materials Engineering CY MAR 15-19, 2015 CL Orlando, FL DE computational studies; phase field modeling; phase transformation; ternary system ID LITHIUM-ION BATTERIES; FLUORIDE NANOCOMPOSITES; CATHODE MATERIALS; CAPACITY; MICROSTRUCTURE; HYSTERESIS; MECHANISMS; TRANSPORT AB Electrochemical processes in high-energy electrode materials often involve diffusion of multiple species and solid-state phase transformations. Some of these phase transformations involve breaking and rearranging ionic bonds and are referred to as conversion reactions (e.g., the lithium and iron difluoride conversion reaction: 2Li(+) + 2e(-) + FeF2 -> 2LiF + Fe). The phase transformations during conversion processes are governed by fundamental thermodynamics and kinetics in a similar manner to metallurgical systems. In this work, we developed a phase-field model that tracks atomic fractions of three constituent species to simulate the morphological evolution of different phases. The simulations demonstrate that conversion proceeds via a two-stage process consisting of lithiation and decomposition stages, whereas the reconversion process consists of a single-stage delithiation. This asymmetry in evolution paths of conversion and reconversion is likely responsible for the voltage hysteresis commonly observed during lithiation-delithiation cycling of conversion materials. C1 [Yu, Hui-Chia; Thornton, Katsuyo] Univ Michigan, Mat Sci & Engn, Ann Arbor, MI 48109 USA. [Wang, Feng] Brookhaven Natl Lab, Upton, NY 11973 USA. [Amatucci, Glenn G.] Rutgers State Univ, Dept Mat Sci & Engn, North Brunswick, NJ 08902 USA. RP Thornton, K (reprint author), Univ Michigan, Mat Sci & Engn, Ann Arbor, MI 48109 USA. EM kthorn@umich.edu OI /0000-0002-1227-5293 NR 32 TC 2 Z9 2 U1 8 U2 21 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1547-7037 EI 1863-7345 J9 J PHASE EQUILIB DIFF JI J. Phase Equilib. Diffus. PD FEB PY 2016 VL 37 IS 1 SI SI BP 86 EP 99 DI 10.1007/s11669-015-0440-0 PG 14 WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering GA DE7UR UT WOS:000370842700011 ER PT J AU Wu, WT Martin, AB Gandini, A Aubry, N Massoudi, M Antaki, JF AF Wu, Wei-Tao Martin, Andrea Blue Gandini, Alberto Aubry, Nadine Massoudi, Mehrdad Antaki, James F. TI Design of microfluidic channels for magnetic separation of malaria-infected red blood cells SO MICROFLUIDICS AND NANOFLUIDICS LA English DT Article DE Blood; Malaria; Microchannels; Magnetic field; Cell separation ID CONTINUOUS MAGNETOPHORETIC SEPARATION; FORCE MICROSCOPY; CONTINUOUS-FLOW; WHOLE-BLOOD; PARTICLES; GRADIENT; ERYTHROCYTES; SIMULATION; PURIFICATION; GAMETOCYTES AB This study is motivated by the development of a blood cell filtration device for removal of malaria-infected, parasitized red blood cells (pRBCs). The blood was modeled as a multi-component fluid using the computational fluid dynamics discrete element method (CFD-DEM), wherein plasma was treated as a Newtonian fluid and the red blood cells (RBCs) were modeled as soft-sphere solid particles which move under the influence of drag, collisions with other RBCs, and a magnetic force. The CFD-DEM model was first validated by a comparison with experimental data from Han and Frazier (Lab Chip 6: 265-273, 2006) involving a microfluidic magnetophoretic separator for paramagnetic deoxygenated blood cells. The computational model was then applied to a parametric study of a parallel-plate separator having hematocrit of 40 % with 10 % of the RBCs as pRBCs. Specifically, we investigated the hypothesis of introducing an upstream constriction to the channel to divert the magnetic cells within the near-wall layer where the magnetic force is greatest. Simulations compared the efficacy of various geometries upon the stratification efficiency of the pRBCs. For a channel with nominal height of 100 mu m, the addition of an upstream constriction of 80 % improved the proportion of pRBCs retained adjacent to the magnetic wall (separation efficiency) by almost twofold, from 26 to 49 %. Further addition of a downstream diffuser reduced remixing and hence improved separation efficiency to 72 %. The constriction introduced a greater pressure drop (from 17 to 495 Pa), which should be considered when scaling up this design for a clinical-sized system. Overall, the advantages of this design include its ability to accommodate physiological hematocrit and high throughput, which is critical for clinical implementation as a blood-filtration system. C1 [Wu, Wei-Tao; Martin, Andrea Blue; Gandini, Alberto; Antaki, James F.] Carnegie Mellon Univ, Dept Biomed Engn, Pittsburgh, PA 15213 USA. [Aubry, Nadine] Northeastern Univ, Dept Mech & Ind Engn, Boston, MA 02115 USA. [Massoudi, Mehrdad] US DOE, NETL, Pittsburgh, PA 15236 USA. RP Antaki, JF (reprint author), Carnegie Mellon Univ, Dept Biomed Engn, Pittsburgh, PA 15213 USA. EM massoudi@netl.doe.gov; antaki@cmu.edu RI Antaki, James/S-3051-2016 OI Antaki, James/0000-0002-5430-7353 FU NIH [1 R01 HL089456] FX This research was supported by NIH Grant 1 R01 HL089456. NR 61 TC 0 Z9 0 U1 4 U2 20 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1613-4982 EI 1613-4990 J9 MICROFLUID NANOFLUID JI Microfluid. Nanofluid. PD FEB PY 2016 VL 20 IS 2 AR 41 DI 10.1007/s10404-016-1707-4 PG 11 WC Nanoscience & Nanotechnology; Instruments & Instrumentation; Physics, Fluids & Plasmas SC Science & Technology - Other Topics; Instruments & Instrumentation; Physics GA DF1AG UT WOS:000371070200013 ER PT J AU Abdul-Jawad, S Ondondo, B van Hateren, A Gardner, A Elliott, T Korber, B Hanke, T AF Abdul-Jawad, Sultan Ondondo, Beatrice van Hateren, Andy Gardner, Andrew Elliott, Tim Korber, Bette Hanke, Tomas TI Increased Valency of Conserved-mosaic Vaccines Enhances the Breadth and Depth of Epitope Recognition SO MOLECULAR THERAPY LA English DT Article ID HUMAN-IMMUNODEFICIENCY-VIRUS; T-CELL RESPONSES; HIGHLY PATHOGENIC SIV; IMMUNE-RESPONSES; HIV-1 VACCINES; RHESUS-MONKEYS; ESCAPE MUTATIONS; ENVELOPE PROTEIN; GENOTYPE 1; INFECTION AB The biggest roadblock in development of effective vaccines against human immunodeficiency virus type 1 (HIV-1) is the virus genetic diversity. For T-cell vaccine, this can be tackled by focusing the vaccine-elicited T-cells on the highly functionally conserved regions of HIV-1 proteins, mutations in which typically cause a replicative fitness loss, and by computing multivalent mosaic proteins, which maximize the coverage of potential 9-mer T-cell epitopes of the input viral sequences. Our first conserved region vaccines HIVconsv employed clade alternating consensus sequences and showed promise in the initial clinical trials in terms of magnitude and breadth of elicited CD8(+) T-cells. Here, monitoring T-cells restricted by HLA-A*02:01 in transgenic mice, we assessed whether or not the tHIVconsv design (HIVconsv with a tissue plasminogen activator leader sequence) benefits from combining with a complementing conserved mosaic immunogen tHIVcmo, and compared the bivalent immunization to that with trivalent conserved mosaic vaccines. A hierarchy of tHIVconsv <= tHIVconsv + tHIVcmo < tCmo1+tCmo2+tCmo3 vaccinations for induction of CD8+ T-cell responses was observed in terms of recognition of tested peptide variants. Thus, our HLA-A*02: 01-restricted epitope data concur with previously published mouse and macaque observations and suggest that even conserved region vaccines benefit from oligovalent mosaic design. C1 [Abdul-Jawad, Sultan; Ondondo, Beatrice; Gardner, Andrew; Hanke, Tomas] Univ Oxford, Jenner Inst, Old Rd Campus Res Bldg,Roosevelt Dr, Oxford OX3 7DQ, England. [van Hateren, Andy; Elliott, Tim] Univ Southampton, Fac Med, Southampton SO9 5NH, Hants, England. [van Hateren, Andy; Elliott, Tim] Univ Southampton, Inst Life Sci, Southampton, Hants, England. [Korber, Bette] Los Alamos Natl Lab, Theoret Biol & Biophys, Los Alamos, NM USA. [Korber, Bette] New Mexico Consortium, Los Alamos, NM USA. [Hanke, Tomas] Kumamoto Univ, Int Res Ctr Med Sci, Kumamoto, Japan. RP Hanke, T (reprint author), Univ Oxford, Jenner Inst, Old Rd Campus Res Bldg,Roosevelt Dr, Oxford OX3 7DQ, England. EM tomas.hanke@ndm.ox.ac.uk OI Korber, Bette/0000-0002-2026-5757 FU UK Medical Research Council [MRC G1001757]; UK Department for International Development (DFID); King Abdullah scholarship by the Ministry of Higher Education, Kingdom of Saudi Arabia; International AIDS Vaccine Initiative; United States Agency for International Development; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVI-ID) of the National Institute of Allergy and Infectious Diseases USA [UM1-AI100645] FX The work is jointly funded by the UK Medical Research Council (MRC G1001757) and the UK Department for International Development (DFID) under the MRC/DFID Concordat agreements. S.A.-J. is supported by the King Abdullah scholarship by the Ministry of Higher Education, Kingdom of Saudi Arabia. B.O. was funded in part by the International AIDS Vaccine Initiative and made possible by the support of the United States Agency for International Development and other donors. The full list of IAVI donors is available at http://www.iavi.org. B.K. was funded through: the Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVI-ID; UM1-AI100645) of the National Institute of Allergy and Infectious Diseases USA. T.H. is the Jenner Institute Investigator. The authors have no competing interests other than T.H. and B.K. are the inventors on PCT Application No. PCT/US2014/058422. NR 54 TC 5 Z9 5 U1 0 U2 1 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1525-0016 EI 1525-0024 J9 MOL THER JI Mol. Ther. PD FEB PY 2016 VL 24 IS 2 BP 375 EP 384 DI 10.1038/mt.2015.210 PG 10 WC Biotechnology & Applied Microbiology; Genetics & Heredity; Medicine, Research & Experimental SC Biotechnology & Applied Microbiology; Genetics & Heredity; Research & Experimental Medicine GA DE9MH UT WOS:000370961200020 PM 26581160 ER PT J AU Pries, CEH Schuur, EAG Natali, SM Crummer, KG AF Pries, Caitlin E. Hicks Schuur, Edward A. G. Natali, Susan M. Crummer, K. Grace TI Old soil carbon losses increase with ecosystem respiration in experimentally thawed tundra SO NATURE CLIMATE CHANGE LA English DT Article ID PERMAFROST CARBON; CLIMATE-CHANGE; STABLE-ISOTOPES; ORGANIC-MATTER; ALASKAN TUNDRA; CO2 FLUX; DECOMPOSITION; TEMPERATURE; NITROGEN; RELEASE AB Old soil carbon (C) respired to the atmosphere as a result of permafrost thaw has the potential to become a large positive feedback to climate change. As permafrost thaws, quantifying old soil contributions to ecosystem respiration (R-eco) and understanding how these contributions change with warming is necessary to estimate the size of this positive feedback. We used naturally occurring C isotopes (delta C-13 and Delta C-14) to partition R-eco into plant, young soil and old soil sources in a subarctic air and soil warming experiment over three years. We found that old soil contributions to R-eco increased with soil temperature and R-eco flux. However, the increase in the soil warming treatment was smaller than expected because experimentally warming the soils increased plant contributions to R-eco by 30%. On the basis of these data, an increase in mean annual temperature from -5 to 0 degrees C will increase old soil C losses from moist acidic tundra by 35-55 g C m(-2) during the growing season. The largest losses will probably occur where the plant response to warming is minimal. C1 [Crummer, K. Grace] Univ Florida, Dept Biol, POB 118525, Gainesville, FL 32611 USA. [Pries, Caitlin E. Hicks] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Climate Sci Dept, Div Earth Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. [Schuur, Edward A. G.] No Arizona Univ, Dept Biol Sci, Ctr Ecosyst Sci & Soc, Box 5640, Flagstaff, AZ 86011 USA. [Natali, Susan M.] Woods Hole Res Ctr, 149 Woods Hole Rd, Falmouth, MA 02540 USA. RP Pries, CEH (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Climate Sci Dept, Div Earth Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM cehpries@lbl.gov RI Hicks Pries, Caitlin/A-1368-2014 OI Hicks Pries, Caitlin/0000-0003-0813-2211 FU NSF DDIG; NSF CAREER; Bonanza Creek LTER; DOE NICCR; NSF OPP FX This work was made possible by assistance from J. Curtis, K. Venz Curtis, A. B. Lopez, D. DeRaps, D. Rogan, E. Pegoraro and D. Hicks. This work was funded by NSF DDIG (C.E.H.P), NSF CAREER (E.A.G.S.), Bonanza Creek LTER (E.A.G.S.), DOE NICCR and NSF OPP (S.M.N. and E.A.G.S.). NR 55 TC 6 Z9 6 U1 21 U2 51 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1758-678X EI 1758-6798 J9 NAT CLIM CHANGE JI Nat. Clim. Chang. PD FEB PY 2016 VL 6 IS 2 BP 214 EP + DI 10.1038/NCLIMATE2830 PG 7 WC Environmental Sciences; Environmental Studies; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA DE9NB UT WOS:000370963400026 ER PT J AU Bakaul, SR Serrao, CR Lee, M Yeung, CW Sarker, A Hsu, SL Yadav, AK Dedon, L You, L Khan, AI Clarkson, JD Hu, CM Ramesh, R Salahuddin, S AF Bakaul, Saidur Rahman Serrao, Claudy Rayan Lee, Michelle Yeung, Chun Wing Sarker, Asis Hsu, Shang-Lin Yadav, Ajay Kumar Dedon, Liv You, Long Khan, Asif Islam Clarkson, James David Hu, Chenming Ramesh, Ramamoorthy Salahuddin, Sayeef TI Single crystal functional oxides on silicon SO NATURE COMMUNICATIONS LA English DT Article ID NEGATIVE CAPACITANCE; THIN-FILMS; FERROELECTRIC MEMORY; FIELD; SI; SRTIO3 AB Single-crystalline thin films of complex oxides show a rich variety of functional properties such as ferroelectricity, piezoelectricity, ferro and antiferromagnetism and so on that have the potential for completely new electronic applications. Direct synthesis of such oxides on silicon remains challenging because of the fundamental crystal chemistry and mechanical incompatibility of dissimilar interfaces. Here we report integration of thin (down to one unit cell) single crystalline, complex oxide films onto silicon substrates, by epitaxial transfer at room temperature. In a field-effect transistor using a transferred lead zirconate titanate layer as the gate insulator, we demonstrate direct reversible control of the semiconductor channel charge with polarization state. These results represent the realization of long pursued but yet to be demonstrated single-crystal functional oxides on-demand on silicon. C1 [Bakaul, Saidur Rahman; Serrao, Claudy Rayan; Yeung, Chun Wing; Sarker, Asis; You, Long; Khan, Asif Islam; Hu, Chenming; Salahuddin, Sayeef] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA. [Serrao, Claudy Rayan; Yadav, Ajay Kumar; Dedon, Liv; Clarkson, James David; Ramesh, Ramamoorthy] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Lee, Michelle; Ramesh, Ramamoorthy] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Hsu, Shang-Lin; Ramesh, Ramamoorthy; Salahuddin, Sayeef] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Salahuddin, S (reprint author), Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA.; Salahuddin, S (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM sayeef@berkeley.edu RI Yadav, Ajay/I-6337-2016 OI Yadav, Ajay/0000-0001-5088-6506 FU ONR; ARO YIP award; AFOSR YIP award; STARNET LEAST Center; NSF E3S Center; IRICE Program at Berkeley FX This work was supported in part by the ONR, ARO YIP award, the AFOSR YIP award, the STARNET LEAST Center, the NSF E3S Center and the IRICE Program at Berkeley. We acknowledge discussion with Dr Guneeta Singh Bhalla who first brought our attention to wet etching of manganite films. All additional data are available in the supplementary materials. NR 31 TC 2 Z9 2 U1 21 U2 70 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD FEB PY 2016 VL 7 AR 10547 DI 10.1038/ncomms10547 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DF1YS UT WOS:000371136600001 PM 26853112 ER PT J AU Chang, TR Xu, SY Chang, G Lee, CC Huang, SM Wang, B Bian, G Zheng, H Sanchez, DS Belopolski, I Alidoust, N Neupane, M Bansil, A Jeng, HT Lin, H Hasan, MZ AF Chang, Tay-Rong Xu, Su-Yang Chang, Guoqing Lee, Chi-Cheng Huang, Shin-Ming Wang, BaoKai Bian, Guang Zheng, Hao Sanchez, Daniel S. Belopolski, Ilya Alidoust, Nasser Neupane, Madhab Bansil, Arun Jeng, Horng-Tay Lin, Hsin Hasan, M. Zahid TI Prediction of an arc-tunable Weyl Fermion metallic state in MoxW1-xTe2 SO NATURE COMMUNICATIONS LA English DT Article ID AUGMENTED-WAVE METHOD; TOPOLOGICAL INSULATORS; WANNIER FUNCTIONS; PHASE-TRANSITION; ENERGY-BANDS; SEMIMETAL; TAAS; WTE2; DISCOVERY; MOTE2 AB A Weyl semimetal is a new state of matter that hosts Weyl fermions as emergent quasiparticles. The Weyl fermions correspond to isolated points of bulk band degeneracy, Weyl nodes, which are connected only through the crystal's boundary by exotic Fermi arcs. The length of the Fermi arc gives a measure of the topological strength, because the only way to destroy the Weyl nodes is to annihilate them in pairs in the reciprocal space. To date, Weyl semimetals are only realized in the TaAs class. Here, we propose a tunable Weyl state in MoxW1-xTe2 where Weyl nodes are formed by touching points between metallic pockets. We show that the Fermi arc length can be changed as a function of Mo concentration, thus tuning the topological strength. Our results provide an experimentally feasible route to realizing Weyl physics in the layered compound MoxW1-xTe2, where non-saturating magneto-resistance and pressure-driven superconductivity have been observed. C1 [Chang, Tay-Rong; Jeng, Horng-Tay] Natl Tsing Hua Univ, Dept Phys, Hsinchu 30013, Taiwan. [Xu, Su-Yang; Bian, Guang; Zheng, Hao; Sanchez, Daniel S.; Belopolski, Ilya; Alidoust, Nasser; Neupane, Madhab; Hasan, M. Zahid] Princeton Univ, Dept Phys, Lab Topol Quantum Matter & Spect B7, Princeton, NJ 08544 USA. [Chang, Guoqing; Lee, Chi-Cheng; Huang, Shin-Ming; Wang, BaoKai; Lin, Hsin] Natl Univ Singapore, Ctr Adv Mat 2D, 6 Sci Dr 2, Singapore 117546, Singapore. [Chang, Guoqing; Lee, Chi-Cheng; Huang, Shin-Ming; Wang, BaoKai; Lin, Hsin] Natl Univ Singapore, Graphene Res Ctr, 6 Sci Dr 2, Singapore 117546, Singapore. [Chang, Guoqing; Lee, Chi-Cheng; Huang, Shin-Ming; Wang, BaoKai; Lin, Hsin] Natl Univ Singapore, Dept Phys, 2 Sci Dr 3, Singapore 117542, Singapore. [Wang, BaoKai; Bansil, Arun] Northeastern Univ, Dept Phys, Boston, MA 02115 USA. [Neupane, Madhab] Los Alamos Natl Lab, Condensed Matter & Magnet Sci Grp, POB 1663, Los Alamos, NM 87545 USA. [Jeng, Horng-Tay] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Hasan, M. Zahid] Princeton Univ, Princeton Inst Sci & Technol Mat, Princeton Ctr Complex Mat, Princeton, NJ 08544 USA. RP Xu, SY; Hasan, MZ (reprint author), Princeton Univ, Dept Phys, Lab Topol Quantum Matter & Spect B7, Princeton, NJ 08544 USA.; Lin, H (reprint author), Natl Univ Singapore, Ctr Adv Mat 2D, 6 Sci Dr 2, Singapore 117546, Singapore.; Lin, H (reprint author), Natl Univ Singapore, Graphene Res Ctr, 6 Sci Dr 2, Singapore 117546, Singapore.; Lin, H (reprint author), Natl Univ Singapore, Dept Phys, 2 Sci Dr 3, Singapore 117542, Singapore.; Hasan, MZ (reprint author), Princeton Univ, Princeton Inst Sci & Technol Mat, Princeton Ctr Complex Mat, Princeton, NJ 08544 USA. EM suyangxu@princeton.edu; nilnish@gmail.com; mzhasan@princeton.edu RI Lin, Hsin/F-9568-2012; Chang, Tay-Rong/K-3943-2015; zheng, hao/H-8636-2015; OI Lin, Hsin/0000-0002-4688-2315; Chang, Tay-Rong/0000-0003-1222-2527; zheng, hao/0000-0002-6495-874X; Huang, Shin-Ming/0000-0003-4273-9682; wang, Baokai/0000-0002-7221-5671; chang, guoqing/0000-0003-1180-3127; Bian, Guang/0000-0001-7055-2319 FU U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES) [DE-FG-02-05ER46200]; National Research Foundation (NRF), Prime Ministers Office, Singapore, under its NRF fellowship [NRF-NRFF2013-03]; National Science Council, Taiwan; National Center for High-Performance Computing, Computer and Information Network Center National Taiwan University; National Center for Theoretical Sciences, Taiwan; U.S. DOE/BES [DE-FG02-07ER46352]; Northeastern University's Advanced Scientific Computation Center (ASCC); NERSC Supercomputing Center through DOE [DE-AC02-05CH11231]; Gordon and Betty Moore Foundations EPiQS Initiative [GBMF4547] FX Work at Princeton University was supported by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES) under the grant number DE-FG-02-05ER46200. Work at the National University of Singapore were supported by the National Research Foundation (NRF), Prime Ministers Office, Singapore, under its NRF fellowship (NRF award no. NRF-NRFF2013-03). T.-R.C. and H.-T.J. were supported by the National Science Council, Taiwan. H.-T.J. also thanks the National Center for High-Performance Computing, Computer and Information Network Center National Taiwan University, and National Center for Theoretical Sciences, Taiwan, for technical support. The work at Northeastern University was supported by the U.S. DOE/BES grant number DE-FG02-07ER46352, and benefited from the Northeastern University's Advanced Scientific Computation Center (ASCC) and the NERSC Supercomputing Center through DOE grant number DE-AC02-05CH11231. Visits to Princeton University by S.M.H., G.C., T.-R.C. and H.L. were funded by the Gordon and Betty Moore Foundations EPiQS Initiative through Grant GBMF4547 (to M.Z.H.). We thank B. Andrei Bernevig, Chen Fang, Shuang Jia and Fengqi Song for discussions or helpful comments on our manuscript. NR 56 TC 43 Z9 43 U1 35 U2 94 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD FEB PY 2016 VL 7 AR 10639 DI 10.1038/ncomms10639 PG 9 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DF0HU UT WOS:000371020600005 PM 26875819 ER PT J AU Cho, ES Ruminski, AM Aloni, S Liu, YS Guo, JH Urban, JJ AF Cho, Eun Seon Ruminski, Anne M. Aloni, Shaul Liu, Yi-Sheng Guo, Jinghua Urban, Jeffrey J. TI Graphene oxide/metal nanocrystal multilaminates as the atomic limit for safe and selective hydrogen storage SO NATURE COMMUNICATIONS LA English DT Article ID OXIDE MEMBRANES; HIGH-CAPACITY; CARBON; MAGNESIUM; NANOCOMPOSITES; FUEL AB Interest in hydrogen fuel is growing for automotive applications; however, safe, dense, solid-state hydrogen storage remains a formidable scientific challenge. Metal hydrides offer ample storage capacity and do not require cryogens or exceedingly high pressures for operation. However, hydrides have largely been abandoned because of oxidative instability and sluggish kinetics. We report a new, environmentally stable hydrogen storage material constructed of Mg nanocrystals encapsulated by atomically thin and gas-selective reduced graphene oxide (rGO) sheets. This material, protected from oxygen and moisture by the rGO layers, exhibits exceptionally dense hydrogen storage (6.5 wt% and 0.105 kg H-2 per litre in the total composite). As rGO is atomically thin, this approach minimizes inactive mass in the composite, while also providing a kinetic enhancement to hydrogen sorption performance. These multilaminates of rGO-Mg are able to deliver exceptionally dense hydrogen storage and provide a material platform for harnessing the attributes of sensitive nanomaterials in demanding environments. C1 [Cho, Eun Seon; Ruminski, Anne M.; Aloni, Shaul; Urban, Jeffrey J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Mol Foundry, 1 Cyclotron Rd, Berkeley, CA 94720 USA. [Liu, Yi-Sheng; Guo, Jinghua] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Urban, JJ (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Mol Foundry, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM jjurban@lbl.gov RI Cho, Eun Seon/D-2658-2017 FU Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; Department of Energy (DOE) through the Bay Area Photovoltaic Consortium (BAPVC) [DE-EE0004946]; U.S. Department of Energy (Office of Science, Office of Basic Energy Sciences, and Energy Efficiency and Renewable Energy, Solar Energy Technology Program) [DE-AC36-08GO28308]; Government of India, through the Department of Science and Technology [IUSSTF/JCERDC-SERIIUS/2012] FX Work at the Molecular Foundry and the Advanced Light Source was supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract Number DE-AC02-05CH11231. We thank Yi-De Chuang for XANES experimental support. This material is based on work supported by the Department of Energy (DOE) through the Bay Area Photovoltaic Consortium (BAPVC) under Award Number DE-EE0004946 and also in part under the US-India Partnership to Advance Clean Energy-Research (PACE-R) for the Solar Energy Research Institute for India and the United States (SERIIUS), funded jointly by the U.S. Department of Energy (Office of Science, Office of Basic Energy Sciences, and Energy Efficiency and Renewable Energy, Solar Energy Technology Program, under Subcontract DE-AC36-08GO28308 to the National Renewable Energy Laboratory, Golden, Colorado) and the Government of India, through the Department of Science and Technology under Subcontract IUSSTF/JCERDC-SERIIUS/2012 dated 22 November 2012. We sincerely appreciate Jeong Yun Kim and Jayoung Kim for assisting graphic work. NR 30 TC 14 Z9 14 U1 32 U2 96 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD FEB PY 2016 VL 7 AR 10804 DI 10.1038/ncomms10804 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DF0PP UT WOS:000371041600004 PM 26902901 ER PT J AU Das, PK Di Sante, D Vobornik, I Fujii, J Okuda, T Bruyer, E Gyenis, A Feldman, BE Tao, J Ciancio, R Rossi, G Ali, MN Picozzi, S Yadzani, A Panaccione, G Cava, RJ AF Das, Pranab Kumar Di Sante, D. Vobornik, I. Fujii, J. Okuda, T. Bruyer, E. Gyenis, A. Feldman, B. E. Tao, J. Ciancio, R. Rossi, G. Ali, M. N. Picozzi, S. Yadzani, A. Panaccione, G. Cava, R. J. TI Layer-dependent quantum cooperation of electron and hole states in the anomalous semimetal WTe2 SO NATURE COMMUNICATIONS LA English DT Article ID NONSATURATING MAGNETORESISTANCE; BULK; SURFACES; CRYSTAL; LIMIT; METAL AB The behaviour of electrons and holes in a crystal lattice is a fundamental quantum phenomenon, accounting for a rich variety of material properties. Boosted by the remarkable electronic and physical properties of two-dimensional materials such as graphene and topological insulators, transition metal dichalcogenides have recently received renewed attention. In this context, the anomalous bulk properties of semimetallic WTe2 have attracted considerable interest. Here we report angle-and spin-resolved photoemission spectroscopy of WTe2 single crystals, through which we disentangle the role of W and Te atoms in the formation of the band structure and identify the interplay of charge, spin and orbital degrees of freedom. Supported by first-principles calculations and high-resolution surface topography, we reveal the existence of a layer-dependent behaviour. The balance of electron and hole states is found only when considering at least three Te-W-Te layers, showing that the behaviour of WTe2 is not strictly two dimensional. C1 [Das, Pranab Kumar; Vobornik, I.; Fujii, J.; Ciancio, R.; Rossi, G.; Panaccione, G.] CNR, IOM, Lab TASC, Area Sci Pk,SS 14,Km 163-5, I-34149 Trieste, Italy. [Das, Pranab Kumar] Abdus Salaam Int Ctr Theoret Phys, Str Costiera 11, I-34100 Trieste, Italy. [Di Sante, D.; Bruyer, E.; Picozzi, S.] CNR, SPIN, I-67100 Laquila, Italy. [Di Sante, D.] Univ Aquila, Dept Phys & Chem Sci, Via Vetoio, I-67100 Laquila, Italy. [Okuda, T.] Hiroshima Univ, HSRC, 2-313 Kagamiyama, Higashihiroshima 7390046, Japan. [Gyenis, A.; Feldman, B. E.; Yadzani, A.] Princeton Univ, Joseph Henry Labs, Princeton, NJ 08544 USA. [Gyenis, A.; Feldman, B. E.; Yadzani, A.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Tao, J.] Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA. [Rossi, G.] Univ Milan, Dipartimento Fis, Via Celoria 16, I-20133 Milan, Italy. [Ali, M. N.; Cava, R. J.] Princeton Univ, Dept Chem, Princeton, NJ 08544 USA. RP Cava, RJ (reprint author), Princeton Univ, Dept Chem, Princeton, NJ 08544 USA. EM rcava@Princeton.EDU RI Picozzi, Silvia/E-2374-2011; BRUYER, Emilie/J-2671-2016; Di Sante, Domenico/L-8931-2013; Ciancio, Regina/R-8845-2016; Vobornik, Ivana/A-7461-2011 OI Picozzi, Silvia/0000-0002-3232-788X; Vobornik, Ivana/0000-0001-9957-3535 FU DOE BES; Materials Sciences and Engineering Division [DE-AC02-98CH10886]; National Science Foundation MRSEC program [DMR-1420541]; ARO-MURI program [W911NF-12-1-0461]; DARPA-SPWAR Meso program [N6601-11-1-4110]; CARIPLO Foundation through the MAGISTER project [Rif.2013-0726]; Italian Ministry of Research; [NSF-DMR-1104612]; [ARO-W911NF-1-0262] FX This work has been partly performed in the framework of the nanoscience foundry and fine analysis (NFFA-MIUR Italy) project. The electron diffraction study at Brookhaven National Laboratory was supported by the DOE BES, by the Materials Sciences and Engineering Division under contract DE-AC02-98CH10886, and through the use of the Center for Functional Nanomaterials. The work at Princeton was supported by the National Science Foundation MRSEC program grant DMR-1420541, with STM support from NSF-DMR-1104612, ARO-W911NF-1-0262, ARO-MURI program W911NF-12-1-0461 and DARPA-SPWAR Meso program N6601-11-1-4110. D.D.S. and S.P. acknowledge the CARIPLO Foundation through the MAGISTER project Rif.2013-0726. This work was partly supported by the Italian Ministry of Research through the project PRIN Interfacce di ossidi: nuove proprieta emergenti, multifunzionalita e dispositivi per elettronica e energia (OXIDE). NR 32 TC 8 Z9 8 U1 34 U2 107 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD FEB PY 2016 VL 7 AR 10847 DI 10.1038/ncomms10847 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DF0QC UT WOS:000371043000001 PM 26924386 ER PT J AU Gallagher, P Lee, M Amet, F Maksymovych, P Wang, J Wang, SP Lu, XB Zhang, GY Watanabe, K Taniguchi, T Goldhaber-Gordon, D AF Gallagher, Patrick Lee, Menyoung Amet, Francois Maksymovych, Petro Wang, Jun Wang, Shuopei Lu, Xiaobo Zhang, Guangyu Watanabe, Kenji Taniguchi, Takashi Goldhaber-Gordon, David TI Switchable friction enabled by nanoscale self-assembly on graphene SO NATURE COMMUNICATIONS LA English DT Article ID ATOMIC-FORCE MICROSCOPY; HEXAGONAL BORON-NITRIDE; MONOLAYER GRAPHENE; WATER INTERFACE; ANISOTROPY; DOMAINS; ORGANIZATION; SULFATE; SURFACE; AIR AB Graphene monolayers are known to display domains of anisotropic friction with twofold symmetry and anisotropy exceeding 200%. This anisotropy has been thought to originate from periodic nanoscale ripples in the graphene sheet, which enhance puckering around a sliding asperity to a degree determined by the sliding direction. Here we demonstrate that these frictional domains derive not from structural features in the graphene but from self-assembly of environmental adsorbates into a highly regular superlattice of stripes with period 4-6 nm. The stripes and resulting frictional domains appear on monolayer and multilayer graphene on a variety of substrates, as well as on exfoliated flakes of hexagonal boron nitride. We show that the stripe-superlattices can be reproducibly and reversibly manipulated with submicrometre precision using a scanning probe microscope, allowing us to create arbitrary arrangements of frictional domains within a single flake. Our results suggest a revised understanding of the anisotropic friction observed on graphene and bulk graphite in terms of adsorbates. C1 [Gallagher, Patrick; Lee, Menyoung; Goldhaber-Gordon, David] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Amet, Francois] Duke Univ, Dept Phys, Durham, NC 27708 USA. [Amet, Francois] Appalachian State Univ, Dept Phys & Astron, Boone, NC 28608 USA. [Maksymovych, Petro; Wang, Jun] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Wang, Shuopei; Lu, Xiaobo; Zhang, Guangyu] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China. [Watanabe, Kenji; Taniguchi, Takashi] Natl Inst Mat Sci, 1-1 Namiki, Tsukuba, Ibaraki 3050044, Japan. RP Goldhaber-Gordon, D (reprint author), Stanford Univ, Dept Phys, Stanford, CA 94305 USA. EM goldhaber-gordon@stanford.edu RI Zhang, Guangyu/G-7892-2011; TANIGUCHI, Takashi/H-2718-2011; Wang, Jun/N-6882-2014 OI Wang, Jun/0000-0003-4974-1240 FU Air Force Office of Science Research [FA9550-12-1-02520]; Center for Probing the Nanoscale, an NSF NSEC [PHY-0830228]; National Basic Research Program of China (Program 973) [2013CB934500]; National Natural Science Foundation of China [61325021, 91223204]; Strategic Priority Research Program (B) of the Chinese Academy of Sciences [XDB07010100]; Elemental Strategy Initiative; JSPS [262480621, 25106006] FX We gratefully acknowledge Byong-man Kim and Ryan Yoo of Park Systems for verifying the presence of stripes in our samples using their Park NX-10 AFM. We thank Daniel Wastl for carefully reading our manuscript and for encouraging us to re-examine whether the stripes we observed were caused by periodic structural ripples or self-assembled adsorbates. We thank Trevor Petach and Arthur Barnard for other helpful discussions. Sample fabrication and ambient AFM/STM were performed at the Stanford Nano Shared Facilities with support from the Air Force Office of Science Research, Award Number FA9550-12-1-02520. Variable-temperature AFM studies were conducted at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility; our use of the facility was supported by the Center for Probing the Nanoscale, an NSF NSEC, under grant PHY-0830228. S.W., X.L. and G.Z. acknowledge support from the National Basic Research Program of China (Program 973) under grant 2013CB934500, the National Natural Science Foundation of China under grants 61325021 and 91223204, and the Strategic Priority Research Program (B) of the Chinese Academy of Sciences under grant XDB07010100. K.W. and T.T. acknowledge support from the Elemental Strategy Initiative conducted by the MEXT (Japan). T.T. acknowledges support from JSPS Grant-in-Aid for Scientific Research under grants 262480621 and 25106006. NR 37 TC 4 Z9 4 U1 19 U2 66 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD FEB PY 2016 VL 7 AR 10745 DI 10.1038/ncomms10745 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DF0NZ UT WOS:000371037200007 PM 26902595 ER PT J AU Johnston, S Monney, C Bisogni, V Zhou, KJ Kraus, R Behr, G Strocov, VN Malek, J Drechsler, SL Geck, J Schmitt, T van den Brink, J AF Johnston, Steve Monney, Claude Bisogni, Valentina Zhou, Ke-Jin Kraus, Roberto Behr, Guenter Strocov, Vladimir N. Malek, Jiri Drechsler, Stefan-Ludwig Geck, Jochen Schmitt, Thorsten van den Brink, Jeroen TI Electron-lattice interactions strongly renormalize the charge-transfer energy in the spin-chain cuprate Li2CuO2 SO NATURE COMMUNICATIONS LA English DT Article ID X-RAY-SCATTERING; EXCITATIONS; TRANSITION; SUPERCONDUCTORS; TEMPERATURE; SEPARATION; CRYSTAL AB Strongly correlated insulators are broadly divided into two classes: Mott-Hubbard insulators, where the insulating gap is driven by the Coulomb repulsion U on the transition-metal cation, and charge-transfer insulators, where the gap is driven by the charge-transfer energy Delta between the cation and the ligand anions. The relative magnitudes of U and Delta determine which class a material belongs to, and subsequently the nature of its low-energy excitations. These energy scales are typically understood through the local chemistry of the active ions. Here we show that the situation is more complex in the low-dimensional charge-transfer insulator Li2CuO2, where Delta has a large non-electronic component. Combining resonant inelastic X-ray scattering with detailed modelling, we determine how the elementary lattice, charge, spin and orbital excitations are entangled in this material. This results in a large lattice-driven renormalization of Delta, which significantly reshapes the fundamental electronic properties of Li2CuO2. C1 [Johnston, Steve] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Monney, Claude; Zhou, Ke-Jin; Strocov, Vladimir N.; Schmitt, Thorsten] Paul Scherrer Inst, Res Dept Synchrotron Radiat & Nanotechnol, CH-5232 Villigen, Switzerland. [Monney, Claude] Univ Zurich, Dept Phys, Winterthurerstr 190, CH-8057 Zurich, Switzerland. [Bisogni, Valentina; Kraus, Roberto; Behr, Guenter; Drechsler, Stefan-Ludwig; Geck, Jochen; van den Brink, Jeroen] IFW Dresden, Leibniz Inst Solid State & Mat Res, Helmholtzstr 20, D-01171 Dresden, Germany. [Bisogni, Valentina] Brookhaven Natl Lab, Natl Synchrotron Light Source 2, Upton, NY 11973 USA. [Zhou, Ke-Jin] Harwell Sci & Innovat Campus, Diamond Light Source, Didcot OX11 0DE, Oxon, England. [Malek, Jiri] ASCR, Inst Phys, Na Slovance 2, CZ-18221 Prague 8, Czech Republic. [van den Brink, Jeroen] Tech Univ Dresden, Dept Phys, D-01062 Dresden, Germany. RP Johnston, S (reprint author), Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA.; van den Brink, J (reprint author), IFW Dresden, Leibniz Inst Solid State & Mat Res, Helmholtzstr 20, D-01171 Dresden, Germany.; van den Brink, J (reprint author), Tech Univ Dresden, Dept Phys, D-01062 Dresden, Germany. EM sjohn145@utk.edu; j.van.den.brink@ifw-dresden.de RI Malek, Jiri/G-7223-2014; Johnston, Steven/J-7777-2016; van den Brink, Jeroen/E-5670-2011; Schmitt, Thorsten/A-7025-2010; Monney, Claude/C-5553-2011 OI van den Brink, Jeroen/0000-0001-6594-9610; FU German Science Foundation [200021L 141325, GE 1647/3-1]; Deutsche Forschungsgemeinschaft [SFB 1143]; Swiss National Science Foundation [PZ00P2 154867]; Swiss National Science Foundation through the Sinergia network Mott Physics Beyond the Heisenberg Model (MPBH); Emmy-Noether programme of the German Research Foundation [GE1647/2-1] FX We thank M. Berciu, T.P. Devereaux, W.S. Lee, B. Moritz and G. Sawatzky for useful discussions. This research has been funded by the Swiss National Science Foundation and the German Science Foundation within the D-A-CH programme (SNSF Research Grant 200021L 141325 and Grant GE 1647/3-1). This work is supported by SFB 1143 of the Deutsche Forschungsgemeinschaft. C.M. also acknowledges support by the Swiss National Science Foundation under grant no. PZ00P2 154867. Further support has been provided by the Swiss National Science Foundation through the Sinergia network Mott Physics Beyond the Heisenberg Model (MPBH). J.G. gratefully acknowledge the financial support through the Emmy-Noether programme of the German Research Foundation (grant no. GE1647/2-1). The experiments were performed at the ADRESS beamline of the Swiss Light Source at the Paul Scherrer Institut. NR 38 TC 3 Z9 3 U1 9 U2 28 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD FEB PY 2016 VL 7 AR 10653 DI 10.1038/ncomms10563 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DF0FM UT WOS:000371014500005 PM 26884151 ER PT J AU Li, GS Lu, XC Kim, JY Meinhardt, KD Chang, HJ Canfield, NL Sprenkle, VL AF Li, Guosheng Lu, Xiaochuan Kim, Jin Y. Meinhardt, Kerry D. Chang, Hee Jung Canfield, Nathan L. Sprenkle, Vincent L. TI Advanced intermediate temperature sodium-nickel chloride batteries with ultra-high energy density SO NATURE COMMUNICATIONS LA English DT Article ID PERFORMANCE; CHALLENGES; CATHODES; STORAGE AB Sodium-metal halide batteries have been considered as one of the more attractive technologies for stationary electrical energy storage, however, they are not used for broader applications despite their relatively well-known redox system. One of the roadblocks hindering market penetration is the high-operating temperature. Here we demonstrate that planar sodium-nickel chloride batteries can be operated at an intermediate temperature of 190 degrees C with ultra-high energy density. A specific energy density of 350 Wh kg(-1), higher than that of conventional tubular sodium-nickel chloride batteries (280 degrees C), is obtained for planar sodium-nickel chloride batteries operated at 190 degrees C over a long-term cell test (1,000 cycles), and it attributed to the slower particle growth of the cathode materials at the lower operating temperature. Results reported here demonstrate that planar sodium-nickel chloride batteries operated at an intermediate temperature could greatly benefit this traditional energy storage technology by improving battery energy density, cycle life and reducing material costs. C1 [Li, Guosheng; Lu, Xiaochuan; Kim, Jin Y.; Meinhardt, Kerry D.; Chang, Hee Jung; Canfield, Nathan L.; Sprenkle, Vincent L.] Pacific NW Natl Lab, Energy Proc & Mat Div, Electrochem Mat & Syst Grp, Richland, WA 99352 USA. RP Li, GS; Sprenkle, VL (reprint author), Pacific NW Natl Lab, Energy Proc & Mat Div, Electrochem Mat & Syst Grp, Richland, WA 99352 USA. EM guosheng.li@pnnl.gov; vincent.sprenkle@pnnl.gov FU U.S. Department of Energy (DOE) Office of Electricity Delivery and Energy Reliability [57558]; DOE [DE-AC05-76RL01830]; International Collaborative Energy Technology, R&D Program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP), from POSCO; Republic of Korea [20158510050010]; Ministry of Trade, Industry and Energy FX This work was supported by the U.S. Department of Energy (DOE) Office of Electricity Delivery and Energy Reliability under the Contract No. 57558. PNNL is a multiprogram laboratory operated by Battelle Memorial Institute for the DOE under Contract DE-AC05-76RL01830. G.L. and V.L.S. are grateful for the financial support from the International Collaborative Energy Technology, R&D Program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP), grated financial resource from POSCO and the Ministry of Trade, Industry and Energy, and Republic of Korea (No. 20158510050010). NR 23 TC 4 Z9 4 U1 14 U2 32 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD FEB PY 2016 VL 7 AR 10683 DI 10.1038/ncomms10683 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DF0KU UT WOS:000371028700001 PM 26864635 ER PT J AU Liu, W Hu, EY Jiang, H Xiang, YJ Weng, Z Li, M Fan, Q Yu, XQ Altman, EI Wang, HL AF Liu, Wen Hu, Enyuan Jiang, Hong Xiang, Yingjie Weng, Zhe Li, Min Fan, Qi Yu, Xiqian Altman, Eric I. Wang, Hailiang TI A highly active and stable hydrogen evolution catalyst based on pyrite-structured cobalt phosphosulfide SO NATURE COMMUNICATIONS LA English DT Article ID HIGH-PERFORMANCE; MOLYBDENUM SULFIDES; FLEXIBLE ELECTRODES; GRAPHENE OXIDE; MOS2; ELECTROCATALYST; EFFICIENT; NANOPARTICLES; FILMS; DICHALCOGENIDES AB Rational design and controlled synthesis of hybrid structures comprising multiple components with distinctive functionalities are an intriguing and challenging approach to materials development for important energy applications like electrocatalytic hydrogen production, where there is a great need for cost effective, active and durable catalyst materials to replace the precious platinum. Here we report a structure design and sequential synthesis of a highly active and stable hydrogen evolution electrocatalyst material based on pyrite-structured cobalt phosphosulfide nanoparticles grown on carbon nanotubes. The three synthetic steps in turn render electrical conductivity, catalytic activity and stability to the material. The hybrid material exhibits superior activity for hydrogen evolution, achieving current densities of 10 mA cm(-2) and 100 mA cm(-2) at overpotentials of 48 mV and 109 mV, respectively. Phosphorus substitution is crucial for the chemical stability and catalytic durability of the material, the molecular origins of which are uncovered by X-ray absorption spectroscopy and computational simulation. C1 [Liu, Wen; Weng, Zhe; Fan, Qi; Wang, Hailiang] Yale Univ, Dept Chem, 520 West Campus Dr, West Haven, CT 06511 USA. [Liu, Wen; Weng, Zhe; Fan, Qi; Wang, Hailiang] Yale Univ, Energy Sci Inst, 520 West Campus Dr, West Haven, CT 06511 USA. [Hu, Enyuan; Yu, Xiqian] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Jiang, Hong] Peking Univ, Coll Chem & Mol Engn, Beijing Natl Lab Mol Sci, Beijing 100871, Peoples R China. [Xiang, Yingjie] Yale Univ, Dept Mech Engn & Mat Sci, 520 West Campus Dr, West Haven, CT 06511 USA. [Li, Min; Altman, Eric I.] Yale Univ, Dept Chem & Environm Engn, 520 West Campus Dr, West Haven, CT 06511 USA. RP Wang, HL (reprint author), Yale Univ, Dept Chem, 520 West Campus Dr, West Haven, CT 06511 USA.; Wang, HL (reprint author), Yale Univ, Energy Sci Inst, 520 West Campus Dr, West Haven, CT 06511 USA. EM hailiang.wang@yale.edu RI Jiang, Hong/G-6787-2011; Yu, Xiqian/B-5574-2014; Weng, Zhe/I-4824-2012; Hu, Enyuan/D-7492-2016 OI Yu, Xiqian/0000-0001-8513-518X; Weng, Zhe/0000-0002-6005-9552; Hu, Enyuan/0000-0002-1881-4534 FU Yale University; Global Innovation Initiative from Institute of International Education; US Department of Energy, the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies [DE-SC0012704]; U.S. DOE [DE-AC02-06CH11357]; US Department of Energy through Basic Energy Sciences [DE-FG02-98ER14882]; National Science Foundation through the Yale Materials Research Science and Engineering Center [MRSEC DMR-1119826]; National Natural Science Foundation of China [1373017, 21321001] FX The work is partially supported by the Yale University and the Global Innovation Initiative from Institute of International Education. The work at BNL was supported by the US Department of Energy, the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies under Contract Number DE-SC0012704. We acknowledge technical support from the scientists at beamlines 9-BM-B and 12-BM-B of APS (ANL), supported by the U.S. DOE under Contract No. DE-AC02-06CH11357. M.L. and E.I.A. acknowledge the support of the US Department of Energy through Basic Energy Sciences grant DE-FG02-98ER14882 and the use of facilities supported by the National Science Foundation through the Yale Materials Research Science and Engineering Center (Grant No. MRSEC DMR-1119826). H. J. acknowledges the financial support of National Natural Science Foundation of China (Projects No. 1373017 and 21321001). We thank Prof. Fei Wei (Tsinghua University) for providing the CNTs. We appreciate acquisition of XPS spectra by Baowen Li (CMCM IBS Center, the Ulsan National University of Science and Technology). NR 50 TC 18 Z9 18 U1 66 U2 188 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD FEB PY 2016 VL 7 AR 10771 DI 10.1038/ncomms10771 PG 9 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DF0OY UT WOS:000371039900005 PM 26892437 ER PT J AU Mangel, WF McGrath, WJ Xiong, K Graziano, V Blainey, PC AF Mangel, Walter F. McGrath, William J. Xiong, Kan Graziano, Vito Blainey, Paul C. TI Molecular sled is an eleven-amino acid vehicle facilitating biochemical interactions via sliding components along DNA SO NATURE COMMUNICATIONS LA English DT Article ID HUMAN ADENOVIRUS PROTEINASE; REPRESSOR-OPERATOR INTERACTION; VIRAL-PROTEINASE; LINEAR DIFFUSION; PEPTIDE COFACTOR; STRUCTURAL BASIS; AMINO-ACID; DYNAMICS; ACTIN; BINDING AB Recently, we showed the adenovirus proteinase interacts productively with its protein substrates in vitro and in vivo in nascent virus particles via one-dimensional diffusion along the viral DNA. The mechanism by which this occurs has heretofore been unknown. We show sliding of these proteins along DNA occurs on a new vehicle in molecular biology, a 'molecular sled' named pVIc. This 11-amino acid viral peptide binds to DNA independent of sequence. pVIc slides on DNA, exhibiting the fastest one-dimensional diffusion constant, 26 +/- 1.8 x 10(6) (bp)(2) s(-1). pVIc is a 'molecular sled,' because it can slide heterologous cargos along DNA, for example, a streptavidin tetramer. Similar peptides, for example, from the C terminus of beta-actin or NLSIII of the p53 protein, slide along DNA. Characteristics of the 'molecular sled' in its milieu (virion, nucleus) have implications for how proteins in the nucleus of cells interact and imply a new form of biochemistry, one-dimensional biochemistry. C1 [Mangel, Walter F.; McGrath, William J.; Graziano, Vito] Brookhaven Natl Lab, Dept Biol, 50 Bell Ave, Upton, NY 11973 USA. [Xiong, Kan; Blainey, Paul C.] MIT, Dept Biol Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Xiong, Kan; Blainey, Paul C.] Broad Inst MIT & Harvard, Cambridge, MA 02142 USA. RP Mangel, WF; Blainey, PC (reprint author), Brookhaven Natl Lab, Dept Biol, 50 Bell Ave, Upton, NY 11973 USA.; Blainey, PC (reprint author), MIT, Dept Biol Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA.; Blainey, PC (reprint author), Broad Inst MIT & Harvard, Cambridge, MA 02142 USA. EM mangel@bnl.gov; pblainey@broadinstitute.org OI Blainey, Paul/0000-0002-4889-8783 FU National Institute of Allergy and Infectious Diseases of the National Institutes of Health [R01AI41599, R21AI113565]; Broad Institute; Burroughs Welcome Fund via a Career Award at the Scientific Interface; MIT through startup funds FX We thank Sofia Johansson, Guobin Luo and Gregory L. Verdine for helpful discussions. We thank Xiaoliang Sunney Xie for access to microscopy equipment at Harvard University, and Anthony Kulesa for assistance with microscopy instrumentation and data analysis at the Broad Institute and MIT. Some of the research reported in this publication was supported by the National Institute of Allergy and Infectious Diseases of the National Institutes of Health under Awards numbered R01AI41599 and R21AI113565, to W.F.M. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. P.C.B. and K.X. are supported at the Broad Institute and MIT through startup funds and the Burroughs Welcome Fund via a Career Award at the Scientific Interface to P.C.B. NR 62 TC 0 Z9 0 U1 2 U2 6 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD FEB PY 2016 VL 7 AR 10202 DI 10.1038/ncomms10202 PG 11 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DF1ZE UT WOS:000371137900001 PM 26831565 ER PT J AU Merlevede, J Droin, N Qin, TT Meldi, K Yoshida, K Morabito, M Chautard, E Auboeuf, D Fenaux, P Braun, T Itzykson, R de Botton, S Quesnel, B Commes, T Jourdan, E Vainchenker, W Bernard, O Pata-Merci, N Solier, S Gayevskiy, V Dinger, ME Cowley, MJ Selimoglu-Buet, D Meyer, V Artiguenave, F Deleuze, JF Preudhomme, C Stratton, MR Alexandrov, LB Padron, E Ogawa, S Koscielny, S Figueroa, M Solary, E AF Merlevede, Jane Droin, Nathalie Qin, Tingting Meldi, Kristen Yoshida, Kenichi Morabito, Margot Chautard, Emilie Auboeuf, Didier Fenaux, Pierre Braun, Thorsten Itzykson, Raphael de Botton, Stephane Quesnel, Bruno Commes, Therese Jourdan, Eric Vainchenker, William Bernard, Olivier Pata-Merci, Noemie Solier, Stephanie Gayevskiy, Velimir Dinger, Marcel E. Cowley, Mark J. Selimoglu-Buet, Dorothee Meyer, Vincent Artiguenave, Francois Deleuze, Jean-Francois Preudhomme, Claude Stratton, Michael R. Alexandrov, Ludmil B. Padron, Eric Ogawa, Seishi Koscielny, Serge Figueroa, Maria Solary, Eric TI Mutation allele burden remains unchanged in chronic myelomonocytic leukaemia responding to hypomethylating agents SO NATURE COMMUNICATIONS LA English DT Article ID ACUTE MYELOID-LEUKEMIA; RECURRENT MUTATIONS; DEMETHYLATING AGENTS; HUMAN CANCER; MYELODYSPLASTIC SYNDROMES; CLONAL HEMATOPOIESIS; SOMATIC MUTATIONS; TUMOR-SUPPRESSOR; GENE; MALIGNANCIES AB The cytidine analogues azacytidine and 5-aza-2'-deoxycytidine (decitabine) are commonly used to treat myelodysplastic syndromes, with or without a myeloproliferative component. It remains unclear whether the response to these hypomethylating agents results from a cytotoxic or an epigenetic effect. In this study, we address this question in chronic myelomonocytic leukaemia. We describe a comprehensive analysis of the mutational landscape of these tumours, combining whole-exome and whole-genome sequencing. We identify an average of 14 +/- 5 somatic mutations in coding sequences of sorted monocyte DNA and the signatures of three mutational processes. Serial sequencing demonstrates that the response to hypomethylating agents is associated with changes in DNA methylation and gene expression, without any decrease in the mutation allele burden, nor prevention of new genetic alteration occurence. Our findings indicate that cytosine analogues restore a balanced haematopoiesis without decreasing the size of the mutated clone, arguing for a predominantly epigenetic effect. C1 [Merlevede, Jane; Droin, Nathalie; Morabito, Margot; de Botton, Stephane; Vainchenker, William; Bernard, Olivier; Solier, Stephanie; Selimoglu-Buet, Dorothee; Solary, Eric] INSERM, U1170, Gustave Roussy, 14 Rue Edouard Vaillant, F-94805 Villejuif, France. [Merlevede, Jane; Droin, Nathalie; Morabito, Margot; de Botton, Stephane; Vainchenker, William; Bernard, Olivier; Solier, Stephanie; Selimoglu-Buet, Dorothee; Solary, Eric] Gustave Roussy Canc Ctr, Dept Hematol, 114 Rue Edouard Vaillant, F-94805 Villejuif, France. [Droin, Nathalie; Pata-Merci, Noemie] CNRS, INSERM US23, UMS3655, Gustave Roussy, 114 Rue Edouard Vaillant, F-94805 Villejuif, France. [Qin, Tingting; Meldi, Kristen; Figueroa, Maria] Univ Michigan, Dept Pathol, Sch Med, 1500 E Med Ctr Dr, Ann Arbor, MI 48109 USA. [Yoshida, Kenichi; Ogawa, Seishi] Kyoto Univ, Dept Pathol & Tumour Biol, Sakyo Ku, Yoshida Konoe Cho, Kyoto 6068501, Japan. [Chautard, Emilie] Univ Lyon 1, UMR CNRS 5558, 16 Rue Raphael Dubois, F-69100 Lyon, France. [Auboeuf, Didier] Ctr Leon Berard, INSERM U1052, CNRS UMR5286, 8 Prom Lea & Napoleon Bullukian, F-69008 Lyon, France. [Fenaux, Pierre; Itzykson, Raphael] Hop St Louis, AP HP, Dept Hematol, 1 Ave Claude Vellefaux, F-75010 Paris, France. [Braun, Thorsten] Hop Avicenne, AP HP, Dept Hematol, 125 Rue Stalingrad, F-93000 Bobigny, France. [Quesnel, Bruno; Preudhomme, Claude] Canc Res Inst Lille, INSERM U837, 1 Pl Verdun, F-59000 Lille, France. [Commes, Therese] Univ Montpellier, INSERM U1040, Inst Med Regeneratrice, Biotherapie & Inst Biol Computat, 80 Ave Augustin Fliche, F-34295 Montpellier, France. [Jourdan, Eric] Univ Montpellier, Dept Hematol, Ctr Hosp Univ Nimes, 4 Rue Prof Robert Debre, F-30029 Nimes, France. [Gayevskiy, Velimir; Dinger, Marcel E.; Cowley, Mark J.] Garvan Inst Med Res, Kinghor Ctr Clin Genom, Lab Genome Informat, 384 Victoria St, Darlinghurst, NSW 2010, Australia. [Meyer, Vincent; Artiguenave, Francois; Deleuze, Jean-Francois] Ctr Natl Genotypage, 2 Rue Gaston Cremieux CP 5721, F-91057 Evry, France. [Stratton, Michael R.; Alexandrov, Ludmil B.] Wellcome Trust Sanger Inst, Canc Genome Project, Wellcome Trust Genome Campus, Hinxton CB10 1SA, Cambs, England. [Alexandrov, Ludmil B.] Los Alamos Natl Lab, Theoret Biol & Biophys, POB 1663, Los Alamos, NM 87545 USA. [Alexandrov, Ludmil B.] Los Alamos Natl Lab, Ctr Nonlinear Studies, POB 1663, Los Alamos, NM 87545 USA. [Padron, Eric] H Lee Moffitt Canc Ctr & Res Inst, Dept Hematol, Malignant Hematol, 12902 USF Magnolia Dr, Tampa, FL 33612 USA. [Koscielny, Serge] Gustave Roussy Canc Ctr, Dept Biostat, 114 Rue Edouard Vaillant, F-94805 Villejuif, France. [Solary, Eric] Univ Paris 11, Dept Hematol, Fac Med, 63 Rue Gabriel Peri, F-94270 Le Kremlin Bicetre, France. RP Solary, E (reprint author), INSERM, U1170, Gustave Roussy, 14 Rue Edouard Vaillant, F-94805 Villejuif, France.; Solary, E (reprint author), Gustave Roussy Canc Ctr, Dept Hematol, 114 Rue Edouard Vaillant, F-94805 Villejuif, France.; Solary, E (reprint author), Univ Paris 11, Dept Hematol, Fac Med, 63 Rue Gabriel Peri, F-94270 Le Kremlin Bicetre, France. EM eric.solary@gustaveroussy.fr RI Auboeuf, Didier/M-4610-2014; OI Alexandrov, Ludmil/0000-0003-3596-4515; Dinger, Marcel/0000-0003-4423-934X; Cowley, Mark/0000-0002-9519-5714 FU Ligue Nationale Contre le Cancer (equipe labellisee); Institut National du Cancer (INCa PLBIO, SIRIC SOCRATE); Institut National du Cancer; Agence Nationale de la Recherche (Molecular Medicine in Oncology) - Investissements d'avenir; Fondation pour la Recherche Medicale [FDT20140931007]; Direction Generale de l'Offre de Soins [PHRC-K 2011-182]; Agence Nationale de la Recherche (Paris Alliance Cancer Research Institute: France Genomique National program) - Investissements d'avenir FX This programme was supported by grants from Ligue Nationale Contre le Cancer (equipe labellisee), Institut National du Cancer (INCa PLBIO, SIRIC SOCRATE), Institut National du Cancer and Direction Generale de l'Offre de Soins (PHRC-K 2011-182), Agence Nationale de la Recherche (Molecular Medicine in Oncology; Paris Alliance Cancer Research Institute: France Genomique National programs funded by 'Investissements d'avenir'). J.M. was supported by the Fondation pour la Recherche Medicale (FDT20140931007). NR 67 TC 14 Z9 14 U1 3 U2 12 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD FEB PY 2016 VL 7 AR 10767 DI 10.1038/ncomms10767 PG 13 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DF0OY UT WOS:000371039900001 PM 26908133 ER PT J AU Ophus, C Ciston, J Pierce, J Harvey, TR Chess, J McMorran, BJ Czarnik, C Rose, HH Ercius, P AF Ophus, Colin Ciston, Jim Pierce, Jordan Harvey, Tyler R. Chess, Jordan McMorran, Benjamin J. Czarnik, Cory Rose, Harald H. Ercius, Peter TI Efficient linear phase contrast in scanning transmission electron microscopy with matched illumination and detector interferometry SO NATURE COMMUNICATIONS LA English DT Article ID ATOMIC-RESOLUTION; RADIATION-DAMAGE; BIOLOGICAL MOLECULES; VORTEX BEAMS; STEM; INFORMATION; LIMITATIONS; TEM AB The ability to image light elements in soft matter at atomic resolution enables unprecedented insight into the structure and properties of molecular heterostructures and beam-sensitive nanomaterials. In this study, we introduce a scanning transmission electron microscopy technique combining a pre-specimen phase plate designed to produce a probe with structured phase with a high-speed direct electron detector to generate nearly linear contrast images with high efficiency. We demonstrate this method by using both experiment and simulation to simultaneously image the atomic-scale structure of weakly scattering amorphous carbon and strongly scattering gold nanoparticles. Our method demonstrates strong contrast for both materials, making it a promising candidate for structural determination of heterogeneous soft/hard matter samples even at low electron doses comparable to traditional phase-contrast transmission electron microscopy. Simulated images demonstrate the extension of this technique to the challenging problem of structural determination of biological material at the surface of inorganic crystals. C1 [Ophus, Colin; Ciston, Jim; Ercius, Peter] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Natl Ctr Electron Microscopy, 1 Cyclotron Rd, Berkeley, CA 94720 USA. [Pierce, Jordan; Harvey, Tyler R.; Chess, Jordan; McMorran, Benjamin J.] Univ Oregon, Dept Phys, 1585 E 13th Ave, Eugene, OR 97403 USA. [Czarnik, Cory] Gatan Inc, 5794 W Positas Blvd, Pleasanton, CA 94588 USA. [Rose, Harald H.] Univ Ulm, Dept Phys, Ctr Electron Microscopy, Albert Einstein Allee 11, D-89069 Ulm, Germany. RP Ophus, C (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Natl Ctr Electron Microscopy, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM cophus@gmail.com; percius@lbl.gov RI McMorran, Benjamin/G-9954-2016; OI McMorran, Benjamin/0000-0001-7207-1076; Chess, Jordan/0000-0002-2218-4731; Harvey, Tyler/0000-0002-5368-136X FU Office of Science, Office of Basic Energy Sciences, of the US Department of Energy [DE-AC02-05CH11231]; US Department of Energy, Office of Science, Basic Energy Sciences [DE-SC0010466] FX Work at the Molecular Foundry was supported by the Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under Contract No. DE-AC02-05CH11231. Work at University of Oregon was supported by the US Department of Energy, Office of Science, Basic Energy Sciences under Award No. DE-SC0010466. NR 38 TC 9 Z9 9 U1 10 U2 27 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD FEB PY 2016 VL 7 AR 10719 DI 10.1038/ncomms10719 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DF0NJ UT WOS:000371035500003 PM 26923483 ER PT J AU Portnichenko, PY Romhanyi, J Onykiienko, YA Henschel, A Schmidt, M Cameron, AS Surmach, MA Lim, JA Park, JT Schneidewind, A Abernathy, DL Rosner, H van den Brink, J Inosov, DS AF Portnichenko, P. Y. Romhanyi, J. Onykiienko, Y. A. Henschel, A. Schmidt, M. Cameron, A. S. Surmach, M. A. Lim, J. A. Park, J. T. Schneidewind, A. Abernathy, D. L. Rosner, H. van den Brink, Jeroen Inosov, D. S. TI Magnon spectrum of the helimagnetic insulator Cu2OSeO3 SO NATURE COMMUNICATIONS LA English DT Article ID MAGNETIC EXCITATIONS; SKYRMIONS; DYNAMICS; STATE; PHASE AB Complex low-temperature-ordered states in chiral magnets are typically governed by a competition between multiple magnetic interactions. The chiral-lattice multiferroic Cu2OSeO3 became the first insulating helimagnetic material in which a long-range order of topologically stable spin vortices known as skyrmions was established. Here we employ state-of-the-art inelastic neutron scattering to comprehend the full three-dimensional spin-excitation spectrum of Cu2OSeO3 over a broad range of energies. Distinct types of high-and low-energy dispersive magnon modes separated by an extensive energy gap are observed in excellent agreement with the previously suggested microscopic theory based on a model of entangled Cu-4 tetrahedra. The comparison of our neutron spectroscopy data with model spin-dynamical calculations based on these theoretical proposals enables an accurate quantitative verification of the fundamental magnetic interactions in Cu2OSeO3 that are essential for understanding its abundant low-temperature magnetically ordered phases. C1 [Portnichenko, P. Y.; Onykiienko, Y. A.; Cameron, A. S.; Surmach, M. A.; Lim, J. A.; Inosov, D. S.] Tech Univ Dresden, Inst Festkorperphys, Helmholtzstr 10, D-01069 Dresden, Germany. [Romhanyi, J.] Max Planck Inst Solid State Res, Heisenbergstr 1, D-70569 Stuttgart, Germany. [Henschel, A.; Schmidt, M.; Rosner, H.] Max Planck Inst Chem Phys Solids, Nothnitzer Str 40, D-01187 Dresden, Germany. [Park, J. T.] Tech Univ Munich, Heinz Maier Leibnitz Zentrum MLZ, Lichtenbergstr 1, D-85747 Garching, Germany. [Schneidewind, A.] Forschungszentrum Julich GmbH, JCNS, Outstn Heinz Maier Leibnitz Zentrum MLZ, Lichtenbergstr 1, D-85747 Garching, Germany. [Abernathy, D. L.] Oak Ridge Natl Lab, Quantum Condensed Matter Div, Oak Ridge, TN 37831 USA. [van den Brink, Jeroen] IFW Dresden, Leibniz Inst Solid State & Mat Res, Helmholtzstr 20, D-01069 Dresden, Germany. RP Inosov, DS (reprint author), Tech Univ Dresden, Inst Festkorperphys, Helmholtzstr 10, D-01069 Dresden, Germany. EM dmytro.inosov@tu-dresden.de RI Romhanyi, Judit/H-3661-2016; Inosov, Dmytro/B-6781-2008; van den Brink, Jeroen/E-5670-2011; Abernathy, Douglas/A-3038-2012; Park, Jitae/G-1358-2016; BL18, ARCS/A-3000-2012 OI Romhanyi, Judit/0000-0002-4642-7734; van den Brink, Jeroen/0000-0001-6594-9610; Abernathy, Douglas/0000-0002-3533-003X; Park, Jitae/0000-0001-6565-0192; FU German Research Foundation within the collaborative research centre SFB 1143; Hungarian OTKA Grant [K106047]; Scientific User Facilities Division, Office of Basic Energy Sciences, the US Department of Energy; German Research Foundation within the research training group GRK 1621; German Research Foundation [IN 209/4-1] FX We thank S. Zherlitsyn and Y. Gritsenko for sound velocity measurements that assisted our data interpretation and M. Rotter for helpful discussions at the start of this project. The work at the TU Dresden was financially supported by the German Research Foundation within the collaborative research centre SFB 1143, research training group GRK 1621, and the individual research grant no. IN 209/4-1. J.R. acknowledges partial funding from the Hungarian OTKA Grant K106047. Research at ORNL's Spallation Neutron Source was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, the US Department of Energy. NR 28 TC 4 Z9 4 U1 10 U2 34 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD FEB PY 2016 VL 7 AR 10725 DI 10.1038/ncomms10725 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DF0NP UT WOS:000371036100003 PM 26911567 ER PT J AU Rison, W Krehbiel, PR Stock, MG Edens, HE Shao, XM Thomas, RJ Stanley, MA Zhang, Y AF Rison, William Krehbiel, Paul R. Stock, Michael G. Edens, Harald E. Shao, Xuan-Min Thomas, Ronald J. Stanley, Mark A. Zhang, Yang TI Observations of narrow bipolar events reveal how lightning is initiated in thunderstorms SO NATURE COMMUNICATIONS LA English DT Article ID FREQUENCY RADIATION; SPRITE DEVELOPMENT; ELECTRIC-FIELDS; DISCHARGES; INTRACLOUD; RADIO; MECHANISM; STROKES; PHYSICS; SYSTEM AB A long-standing but fundamental question in lightning studies concerns how lightning is initiated inside storms, given the absence of physical conductors. The issue has revolved around the question of whether the discharges are initiated solely by conventional dielectric breakdown or involve relativistic runaway electron processes. Here we report observations of a relatively unknown type of discharge, called fast positive breakdown, that is the cause of high-power discharges known as narrow bipolar events. The breakdown is found to have a wide range of strengths and is the initiating event of numerous lightning discharges. It appears to be purely dielectric in nature and to consist of a system of positive streamers in a locally intense electric field region. It initiates negative breakdown at the starting location of the streamers, which leads to the ensuing flash. The observations show that many or possibly all lightning flashes are initiated by fast positive breakdown. C1 [Rison, William; Krehbiel, Paul R.; Stock, Michael G.; Edens, Harald E.; Thomas, Ronald J.; Stanley, Mark A.] New Mexico Inst Min & Technol, Geophys Res Ctr, Langmuir Lab Atmospher Res, Socorro, NM 87801 USA. [Shao, Xuan-Min] Los Alamos Natl Lab, Space & Remote Sensing Grp, POB 1663, Los Alamos, NM 87544 USA. [Zhang, Yang] Chinese Acad Meteorol Sci, Lab Lightning Phys & Protect Engn, Beijing 100081, Peoples R China. [Stock, Michael G.] Osaka Univ, Div Elect Elect & Informat Engn, Suita, Osaka 5650871, Japan. RP Rison, W; Krehbiel, PR (reprint author), New Mexico Inst Min & Technol, Geophys Res Ctr, Langmuir Lab Atmospher Res, Socorro, NM 87801 USA. EM rison@ee.nmt.edu; krehbiel@ibis.nmt.edu FU Defense Advanced Research Projects Agency NIMBUS program [HR0011-10-1-0057, HR0011-10-1-0059]; National Science Foundation [AGS-1205727]; US Missile Defense Agency [HQ0147-08-C0025]; IGPPS/LDRD at Los Alamos National Laboratory FX Detailed comments by three reviewers were very helpful in improving the initial manuscript. The research was supported by the Defense Advanced Research Projects Agency NIMBUS program under grants HR0011-10-1-0057 and HR0011-10-1-0059 and by the National Science Foundation under grant AGS-1205727. Previous equipment support was provided by the US Missile Defense Agency under grant HQ0147-08-C0025. Work of X.-M.S. was supported by IGPPS/LDRD at Los Alamos National Laboratory. NLDN data were provided by Vaisala, Inc. NR 57 TC 18 Z9 19 U1 5 U2 12 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD FEB PY 2016 VL 7 AR 10721 DI 10.1038/ncomms10721 PG 12 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DF0NJ UT WOS:000371035500005 PM 26876654 ER PT J AU Stier, AV McCreary, KM Jonker, BT Kono, J Crooker, SA AF Stier, Andreas V. McCreary, Kathleen M. Jonker, Berend T. Kono, Junichiro Crooker, Scott A. TI Exciton diamagnetic shifts and valley Zeeman effects in monolayer WS2 and MoS2 to 65 Tesla SO NATURE COMMUNICATIONS LA English DT Article ID TRANSITION-METAL DICHALCOGENIDES; HIGH MAGNETIC-FIELDS; BINDING-ENERGY; WSE2; SEMICONDUCTOR; CRYSTALS; SPECTRA; LAYER; PHOTOLUMINESCENCE; POLARIZATION AB In bulk and quantum-confined semiconductors, magneto-optical studies have historically played an essential role in determining the fundamental parameters of excitons (size, binding energy, spin, dimensionality and so on). Here we report low-temperature polarized reflection spectroscopy of atomically thin WS2 and MoS2 in high magnetic fields to 65 T. Both the A and B excitons exhibit similar Zeeman splittings of approximately -230 mu eV T-1 (g-factor similar or equal to -4), thereby quantifying the valley Zeeman effect in monolayer transition-metal disulphides. Crucially, these large fields also allow observation of the small quadratic diamagnetic shifts of both A and B excitons in monolayer WS2, from which radii of similar to 1.53 and similar to 1.16nm are calculated. Further, when analysed within a model of non-local dielectric screening, these diamagnetic shifts also constrain estimates of the A and B exciton binding energies (410 and 470 meV, respectively, using a reduced A exciton mass of 0.16 times the free electron mass). These results highlight the utility of high magnetic fields for understanding new two-dimensional materials. C1 [Stier, Andreas V.; Crooker, Scott A.] Los Alamos Natl Lab, Natl High Magnet Field Lab, POB 1663, Los Alamos, NM 87545 USA. [McCreary, Kathleen M.; Jonker, Berend T.] Naval Res Lab, Div Mat Sci & Technol, Washington, DC 20375 USA. [Kono, Junichiro] Rice Univ, Dept Elect & Comp Engn, Houston, TX 77005 USA. [Kono, Junichiro] Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA. [Kono, Junichiro] Rice Univ, Dept Mat Sci & NanoEngn, Houston, TX 77005 USA. RP Crooker, SA (reprint author), Los Alamos Natl Lab, Natl High Magnet Field Lab, POB 1663, Los Alamos, NM 87545 USA. EM crooker@lanl.gov OI Stier, Andreas/0000-0002-5476-1919 FU National High Magnetic Field Laboratory [NSF DMR-1157490]; State of Florida; NRL Nanoscience Institute; AFOSR [AOARD 14IOA018-134141]; Air Force Office of Scientific Research [FA9550-14-1-0268] FX We thank K. Velizhanin and P. Hawrylak for helpful discussions. These optical studies were performed at the National High Magnetic Field Laboratory, which is supported by NSF DMR-1157490 and the State of Florida. Work at NRL was supported by core programs and the NRL Nanoscience Institute, and by AFOSR under contract number AOARD 14IOA018-134141. J.K. was supported by the Air Force Office of Scientific Research under Award Number FA9550-14-1-0268. NR 55 TC 18 Z9 18 U1 22 U2 79 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD FEB PY 2016 VL 7 AR 10643 DI 10.1038/ncomms10643 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DF0HU UT WOS:000371020600009 PM 26856412 ER PT J AU Wang, XS Pandey, AK Mulligan, MK Williams, EG Mozhui, K Li, ZS Jovaisaite, V Quarles, LD Xiao, ZS Huang, JS Capra, JA Chen, ZG Taylor, WL Bastarache, L Niu, XN Pollard, KS Ciobanu, DC Reznik, AO Tishkov, AV Zhulin, IB Peng, JM Nelson, SF Denny, JC Auwerx, J Lu, L Williams, RW AF Wang, Xusheng Pandey, Ashutosh K. Mulligan, Megan K. Williams, Evan G. Mozhui, Khyobeni Li, Zhengsheng Jovaisaite, Virginija Quarles, L. Darryl Xiao, Zhousheng Huang, Jinsong Capra, John A. Chen, Zugen Taylor, William L. Bastarache, Lisa Niu, Xinnan Pollard, Katherine S. Ciobanu, Daniel C. Reznik, Alexander O. Tishkov, Artem V. Zhulin, Igor B. Peng, Junmin Nelson, Stanley F. Denny, Joshua C. Auwerx, Johan Lu, Lu Williams, Robert W. TI Joint mouse-human phenome-wide association to test gene function and disease risk SO NATURE COMMUNICATIONS LA English DT Article ID COMPLEX TRAIT ANALYSIS; AMINO-ACID CHANGES; REFERENCE PANEL; GENOME-WIDE; PHENOTYPES; MICE; EXPRESSION; POPULATION; LONGEVITY; ACTIVATION AB Phenome-wide association is a novel reverse genetic strategy to analyze genome-to-phenome relations in human clinical cohorts. Here we test this approach using a large murine population segregating for similar to 5 million sequence variants, and we compare our results to those extracted from a matched analysis of gene variants in a large human cohort. For the mouse cohort, we amassed a deep and broad open-access phenome consisting of similar to 4,500 metabolic, physiological, pharmacological and behavioural traits, and more than 90 independent expression quantitative trait locus (QTL), transcriptome, proteome, metagenome and metabolome data sets-by far the largest coherent phenome for any experimental cohort (www.genenetwork.org). We tested downstream effects of subsets of variants and discovered several novel associations, including a missense mutation in fumarate hydratase that controls variation in the mitochondrial unfolded protein response in both mouse and Caenorhabditis elegans, and missense mutations in Col6a5 that underlies variation in bone mineral density in both mouse and human. C1 [Wang, Xusheng; Pandey, Ashutosh K.; Mulligan, Megan K.; Mozhui, Khyobeni; Li, Zhengsheng; Huang, Jinsong; Ciobanu, Daniel C.; Lu, Lu; Williams, Robert W.] Univ Tennessee, Ctr Hlth Sci, Dept Genet Genom & Informat, Memphis, TN 38163 USA. [Wang, Xusheng; Peng, Junmin] St Jude Childrens Res Hosp, St Jude Prote Facil, 332 N Lauderdale St, Memphis, TN 38105 USA. [Williams, Evan G.; Jovaisaite, Virginija; Auwerx, Johan] Ecole Polytech Fed Lausanne, Sch Life Sci, Lab Integrat & Syst Physiol, CH-1015 Lausanne, Switzerland. [Quarles, L. Darryl; Xiao, Zhousheng; Huang, Jinsong] Univ Tennessee, Ctr Hlth Sci, Dept Med, Memphis, TN 38163 USA. [Capra, John A.; Bastarache, Lisa; Niu, Xinnan; Denny, Joshua C.] Vanderbilt Univ, Sch Med, Dept Biomed Informat, Nashville, TN 37232 USA. [Chen, Zugen; Nelson, Stanley F.] Univ Calif Los Angeles, Dept Human Genet, Los Angeles, CA 90095 USA. [Taylor, William L.] Univ Tennessee, Hlth Sci Ctr, Mol Resource Ctr, Memphis, TN 38163 USA. [Pollard, Katherine S.] Gladstone Inst, San Francisco, CA 94158 USA. [Pollard, Katherine S.] Univ Calif San Francisco, Div Biostat, San Francisco, CA 94158 USA. [Pollard, Katherine S.] Univ Calif San Francisco, Inst Human Genet, San Francisco, CA 94158 USA. [Ciobanu, Daniel C.] Univ Nebraska, Dept Anim Sci, Lincoln, NE 68583 USA. [Reznik, Alexander O.; Tishkov, Artem V.; Zhulin, Igor B.] Univ Tennessee, Oak Ridge Natl Lab, Joint Inst Computat Sci, Oak Ridge, TN 37831 USA. [Denny, Joshua C.] Vanderbilt Univ, Sch Med, Dept Med, Nashville, TN 37232 USA. RP Williams, RW (reprint author), Univ Tennessee, Ctr Hlth Sci, Dept Genet Genom & Informat, Memphis, TN 38163 USA. EM rwilliams@uthsc.edu OI xiao, zhousheng/0000-0002-3363-5673; Williams, Evan/0000-0002-9746-376X; Williams, Robert/0000-0001-8924-4447 FU NIH [R01AG043930, U01 AA016662, U01 AA013499, R01-LM010685, UL1 RR024975, UL1 TR000445, R01 GM072285]; UTHSC Center for Integrative and Translational Genomics; UT-Oak Ridge National Laboratory Governor Chair; Gladstone Institutes; EPFL; Swiss Initiative for Systems Biology [51RTP0-151019, 2013/153]; SNSF [31003A-140780, CSRII3-136201]; Nestle Chair in Energy Metabolism; American Lebanese Syrian Associated Charities FX This work was supported by NIH grants R01AG043930, U01 AA016662, U01 AA013499 (R.W.W.), R01-LM010685, UL1 RR024975 and UL1 TR000445 (J.C.D.), the UTHSC Center for Integrative and Translational Genomics and the UT-Oak Ridge National Laboratory Governor Chair (R.W.W. and L.L.), the Gladstone Institutes (K.S.P. and J.A.C.), the EPFL, the Swiss Initiative for Systems Biology (51RTP0-151019 and 2013/153), SNSF (31003A-140780 and CSRII3-136201), the NIH grant R01 GM072285 (I.B.Z.), the Nestle Chair in Energy Metabolism (J.A.) and the American Lebanese Syrian Associated Charities (J.P.). NR 56 TC 9 Z9 9 U1 3 U2 8 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD FEB PY 2016 VL 7 AR 10464 DI 10.1038/ncomms10464 PG 13 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DF0EM UT WOS:000371011800001 PM 26833085 ER PT J AU Wu, YF Chew, AR Rojas, GA Sini, G Haugstad, G Belianinov, A Kalinin, SV Li, H Risko, C Bredas, JL Salleo, A Frisbie, CD AF Wu, Yanfei Chew, Annabel R. Rojas, Geoffrey A. Sini, Gjergji Haugstad, Greg Belianinov, Alex Kalinin, Sergei V. Li, Hong Risko, Chad Bredas, Jean-Luc Salleo, Alberto Frisbie, C. Daniel TI Strain effects on the work function of an organic semiconductor SO NATURE COMMUNICATIONS LA English DT Article ID FIELD-EFFECT TRANSISTORS; RUBRENE SINGLE-CRYSTALS; AUGMENTED-WAVE METHOD; THIN-FILMS; BAND-GAP; SI; TEMPERATURE; TRANSPORT; MOBILITY; GE AB Establishing fundamental relationships between strain and work function (WF) in organic semiconductors is important not only for understanding electrical properties of organic thin films, which are subject to both intrinsic and extrinsic strains, but also for developing flexible electronic devices. Here we investigate tensile and compressive strain effects on the WF of rubrene single crystals. Mechanical strain induced by thermal expansion mismatch between the substrate and rubrene is quantified by X-ray diffraction. The corresponding WF change is measured by scanning Kelvin probe microscopy. The WF of rubrene increases (decreases) significantly with in-plane tensile (compressive) strain, which agrees qualitatively with density functional theory calculations. An elastic-to-plastic transition, characterized by a steep rise of the WF, occurs at similar to B0.05% tensile strain along the rubrene pi-stacking direction. The results provide the first concrete link between mechanical strain and WF of an organic semiconductor and have important implications for understanding the connection between structural and electronic disorder in soft organic electronic materials. C1 [Wu, Yanfei; Rojas, Geoffrey A.; Frisbie, C. Daniel] Univ Minnesota, Dept Chem Engn & Mat Sci, 421 Washington Ave SE, Minneapolis, MN 55455 USA. [Chew, Annabel R.; Salleo, Alberto] Stanford Univ, Dept Mat Sci & Engn, 476 Lomita Mall, Stanford, CA 94305 USA. [Sini, Gjergji] Univ Cergy Pontoise, Lab Physicochim Polymeres & Interfaces, 5 Mail Gay Lussac, F-95031 Cergy Pontoise, France. [Sini, Gjergji; Bredas, Jean-Luc] King Abdullah Univ Sci & Technol, Phys Sci & Engn Div, Solar & Photovolta Engn Res Ctr, Thuwal 239556900, Saudi Arabia. [Haugstad, Greg] Univ Minnesota, Characterizat Facil, 100 Union St SE, Minneapolis, MN 55455 USA. [Belianinov, Alex; Kalinin, Sergei V.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. [Li, Hong] Georgia Inst Technol, Sch Chem & Biochem, Atlanta, GA 30332 USA. [Li, Hong] Georgia Inst Technol, Ctr Organ Photon & Elect, Atlanta, GA 30332 USA. [Risko, Chad] Univ Kentucky, Dept Chem, Lexington, KY 40506 USA. [Risko, Chad] Univ Kentucky, Ctr Appl Energy Res, Lexington, KY 40506 USA. RP Frisbie, CD (reprint author), Univ Minnesota, Dept Chem Engn & Mat Sci, 421 Washington Ave SE, Minneapolis, MN 55455 USA. EM frisbie@umn.edu OI Bredas, Jean-Luc /0000-0001-7278-4471 FU National Science Foundation [DMR-0706011]; NSF through the MRSEC program [DMR-1420013] FX This work was primarily supported by the National Science Foundation under Grant No. DMR-0706011. Part of this work was carried out in the Characterization Facility, University of Minnesota, which received partial support from NSF through the MRSEC program under Grant No. DMR-1420013. SKPM measurements in this work were conducted at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility. Part of this work was performed at the Stanford Nano Shared Facilities (SNSF). We acknowledge assistance for crystal growth by Dr Wei Xie and Xinglong Ren, and thank them as well as Dr Christopher Sutton for helpful discussions. NR 45 TC 3 Z9 3 U1 17 U2 65 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD FEB PY 2016 VL 7 AR 10270 DI 10.1038/ncomms10270 PG 9 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DF1XB UT WOS:000371131700001 PM 26831362 ER PT J AU Zhang, CL Xu, SY Belopolski, I Yuan, ZJ Lin, ZQ Tong, BB Bian, G Alidoust, N Lee, CC Huang, SM Chang, TR Chang, GQ Hsu, CH Jeng, HT Neupane, M Sanchez, DS Zheng, H Wang, JF Lin, H Zhang, C Lu, HZ Shen, SQ Neupert, T Hasan, MZ Jia, S AF Zhang, Cheng-Long Xu, Su-Yang Belopolski, Ilya Yuan, Zhujun Lin, Ziquan Tong, Bingbing Bian, Guang Alidoust, Nasser Lee, Chi-Cheng Huang, Shin-Ming Chang, Tay-Rong Chang, Guoqing Hsu, Chuang-Han Jeng, Horng-Tay Neupane, Madhab Sanchez, Daniel S. Zheng, Hao Wang, Junfeng Lin, Hsin Zhang, Chi Lu, Hai-Zhou Shen, Shun-Qing Neupert, Titus Hasan, M. Zahid Jia, Shuang TI Signatures of the Adler-Bell-Jackiw chiral anomaly in a Weyl fermion semimetal SO NATURE COMMUNICATIONS LA English DT Article ID LONGITUDINAL MAGNETORESISTANCE; QUANTUM LIMIT; PHASE; TRANSITION; ELECTRON; ARCS AB Weyl semimetals provide the realization of Weyl fermions in solid-state physics. Among all the physical phenomena that are enabled by Weyl semimetals, the chiral anomaly is the most unusual one. Here, we report signatures of the chiral anomaly in the magneto-transport measurements on the first Weyl semimetal TaAs. We show negative magnetoresistance under parallel electric and magnetic fields, that is, unlike most metals whose resistivity increases under an external magnetic field, we observe that our high mobility TaAs samples become more conductive as a magnetic field is applied along the direction of the current for certain ranges of the field strength. We present systematically detailed data and careful analyses, which allow us to exclude other possible origins of the observed negative magnetoresistance. Our transport data, corroborated by photoemission measurements, first-principles calculations and theoretical analyses, collectively demonstrate signatures of the Weyl fermion chiral anomaly in the magneto-transport of TaAs. C1 [Zhang, Cheng-Long; Yuan, Zhujun; Tong, Bingbing; Jia, Shuang] Peking Univ, Int Ctr Quantum Mat, Sch Phys, Beijing 100871, Peoples R China. [Xu, Su-Yang; Belopolski, Ilya; Bian, Guang; Alidoust, Nasser; Chang, Tay-Rong; Neupane, Madhab; Sanchez, Daniel S.; Zheng, Hao; Hasan, M. Zahid] Princeton Univ, Dept Phys, Lab Topol Quantum Matter & Spect B7, Princeton, NJ 08544 USA. [Lin, Ziquan; Wang, Junfeng] Huazhong Univ Sci & Technol, Wuhan Natl High Magnet Field Ctr, Wuhan 430074, Peoples R China. [Lee, Chi-Cheng; Huang, Shin-Ming; Chang, Guoqing; Hsu, Chuang-Han; Lin, Hsin] Natl Univ Singapore, Ctr Adv Mat 2D, Singapore 117546, Singapore. [Lee, Chi-Cheng; Huang, Shin-Ming; Chang, Guoqing; Hsu, Chuang-Han; Lin, Hsin] Natl Univ Singapore, Graphene Res Ctr, Singapore 117546, Singapore. [Lee, Chi-Cheng; Huang, Shin-Ming; Chang, Guoqing; Hsu, Chuang-Han; Lin, Hsin] Natl Univ Singapore, Dept Phys, Singapore 117542, Singapore. [Chang, Tay-Rong; Jeng, Horng-Tay] Natl Tsing Hua Univ, Dept Phys, Hsinchu 30013, Taiwan. [Jeng, Horng-Tay] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Neupane, Madhab] Los Alamos Natl Lab, Condensed Matter & Magnet Sci Grp, POB 1663, Los Alamos, NM 87545 USA. [Neupane, Madhab] Univ Cent Florida, Dept Phys, Orlando, FL 32816 USA. [Zhang, Chi; Jia, Shuang] Collaborat Innovat Ctr Quantum Matter, Beijing 100871, Peoples R China. [Lu, Hai-Zhou] South Univ Sci & Technol China, Dept Phys, Shenzhen, Peoples R China. [Shen, Shun-Qing] Univ Hong Kong, Dept Phys, Pokfulam Rd, Hong Kong, Hong Kong, Peoples R China. [Neupert, Titus] Princeton Univ, Princeton Ctr Theoret Sci, Princeton, NJ 08544 USA. RP Jia, S (reprint author), Peking Univ, Int Ctr Quantum Mat, Sch Phys, Beijing 100871, Peoples R China.; Hasan, MZ (reprint author), Princeton Univ, Dept Phys, Lab Topol Quantum Matter & Spect B7, Princeton, NJ 08544 USA.; Jia, S (reprint author), Collaborat Innovat Ctr Quantum Matter, Beijing 100871, Peoples R China. EM mzhasan@princeton.edu; gwljiashuang@pku.edu.cn RI Shen, Shun-Qing/A-7392-2009; Lin, Hsin/F-9568-2012; Lu, Hai-Zhou/F-2671-2011; Chang, Tay-Rong/K-3943-2015; Neupert, Titus/K-8733-2012; zheng, hao/H-8636-2015 OI Huang, Shin-Ming/0000-0003-4273-9682; chang, guoqing/0000-0003-1180-3127; Lin, Hsin/0000-0002-4688-2315; Lu, Hai-Zhou/0000-0002-6708-0223; Chang, Tay-Rong/0000-0003-1222-2527; Neupert, Titus/0000-0003-0604-041X; zheng, hao/0000-0002-6495-874X FU Gordon and Betty Moore Foundation [GBMF4547]; National Basic Research Program of China [2013CB921901, 2014CB239302]; Opening Project of Wuhan National High Magnetic Field Center [PHMFF2015001]; Huazhong University of Science and Technology; National Science Foundation of China [11374020]; Singapore National Research Foundation [NRF-NRFF201303]; Research Grant Council, University Grants Committee, Hong Kong [17303714]; University of Central Florida; Los Alamos National Laboratory Laboratory Directed Research & Development (LDRD) program; Natural Science Foundation of China [11574127]; U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES) [DE-FG-02-05ER46200] FX M.Z.H., S.-Y.X. and I.B. thank I. Klebanov, A. Polyakov and H. Verlinde for theoretical discussions. T.N. thanks A. G. Grushin for discussions. S.J. thanks J. Xiong and F. Wang for valuable discussions, and C.-L.Z. and Z.Y. thank Y. Li and J. Feng for using instruments in their groups. The work at Princeton and Princeton-led synchrotron-based measurements were supported by Gordon and Betty Moore Foundation through Grant GBMF4547 (Hasan). S.J. was supported by the National Basic Research Program of China (Grant Nos. 2013CB921901 and 2014CB239302) and by the Opening Project of Wuhan National High Magnetic Field Center (Grant No. PHMFF2015001), Huazhong University of Science and Technology. C.Z. was supported by the National Science Foundation of China (Grant No. 11374020). H.-Z.L. acknowledges the Singapore National Research Foundation for the support under NRF Award No. NRF-NRFF201303. S.-Q.S. was supported by the Research Grant Council, University Grants Committee, Hong Kong under Grant No. 17303714. M.N. was supported by the start-up funds from University of Central Florida and Los Alamos National Laboratory Laboratory Directed Research & Development (LDRD) program. H.L. was supported by the Natural Science Foundation of China under Grant No. 11574127. We gratefully acknowledge J.D. Denlinger, S.K. Mo, A.V. Fedorov, M. Hashimoto, M. Hoesch, T. Kim and V.N. Strocov for their beamline assistance at the Advanced Light Source, the Stanford Synchrotron Radiation Lightsource, the Diamond Light Source and the Swiss Light Source. Visits to Princeton University by S.-M.H., G.C., T.-R.C and H.L. were partially funded by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES) under the funding number DE-FG-02-05ER46200. NR 50 TC 62 Z9 62 U1 25 U2 73 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD FEB PY 2016 VL 7 AR 10735 DI 10.1038/ncomms10735 PG 9 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DF0NV UT WOS:000371036800008 PM 26911701 ER PT J AU Hugo, JV Gertman, DI AF Hugo, Jacques V. Gertman, David I. TI A Method to Select Human-System Interfaces for Nuclear Power Plants SO NUCLEAR ENGINEERING AND TECHNOLOGY LA English DT Article DE Advanced nuclear power plants; Design guidance; Human factors engineering; Human-system interface; Technology readiness levels; Technology selection criteria AB The new generation of nuclear power plants (NPPs) will likely make use of state-of-the-art technologies in many areas of the plant. The analysis, design, and selection of advanced humanesystem interfaces (HSIs) constitute an important part of power plant engineering. Designers need to consider the new capabilities afforded by these technologies in the context of current regulations and new operational concepts, which is why they need a more rigorous method by which to plan the introduction of advanced HSIs in NPP work areas. Much of current human factors research stops at the user interface and fails to provide a definitive process for integration of end user devices with instrumentation and control and operational concepts. The current lack of a clear definition of HSI technology, including the process for integration, makes characterization and implementation of new and advanced HSIs difficult. This paper describes how new design concepts in the nuclear industry can be analyzed and how HSI technologies associated with new industrial processes might be considered. It also describes a basis for an understanding of human as well as technology characteristics that could be incorporated into a prioritization scheme for technology selection and deployment plans. Copyright (C) 2015, Published by Elsevier Korea LLC on behalf of Korean Nuclear Society. C1 [Hugo, Jacques V.; Gertman, David I.] Idaho Natl Lab, Controls & Stat Dept, Human Factors, 2525 N Fremont Ave, Idaho Falls, ID 83415 USA. RP Hugo, JV (reprint author), Idaho Natl Lab, Controls & Stat Dept, Human Factors, 2525 N Fremont Ave, Idaho Falls, ID 83415 USA. EM jacques.hugo@inl.gov FU agency of the U.S. Government [DE-AC07-051D14517] FX Part of this paper was prepared as an account of work sponsored by an agency of the U.S. Government under Contract DE-AC07-051D14517. The views and opinions of authors expressed herein do not necessarily state or reflect those of the U.S. government or any agency thereof. NR 20 TC 3 Z9 3 U1 1 U2 4 PU KOREAN NUCLEAR SOC PI DAEJEON PA NUTOPIA BLDG, 342-1 JANGDAE-DONG, DAEJEON, 305-308, SOUTH KOREA SN 1738-5733 J9 NUCL ENG TECHNOL JI Nucl. Eng. Technol. PD FEB PY 2016 VL 48 IS 1 BP 87 EP 97 DI 10.1016/j.net.2015.10.004 PG 11 WC Nuclear Science & Technology SC Nuclear Science & Technology GA DF0QE UT WOS:000371043200009 ER PT J AU Nelson, PF Martin-Del-Campo, C Hallbert, B Mosleh, A AF Nelson, Pamela F. Martin-Del-Campo, Cecilia Hallbert, Bruce Mosleh, Ali TI Development of a Leading Performance Indicator from Operational Experience and Resilience in a Nuclear Power Plant SO NUCLEAR ENGINEERING AND TECHNOLOGY LA English DT Article DE Condition adverse to quality; Corrective action program; Leading performance indicators; Organizational factors; Problem Identification and resolution program; Resilience AB The development of operational performance indicators is of utmost importance for nuclear power plants, since they measure, track, and trend plant operation. Leading indicators are ideal for reducing the likelihood of consequential events. This paper describes the operational data analysis of the information contained in the Corrective Action Program. The methodology considers human error and organizational factors because of their large contribution to consequential events. The results include a tool developed from the data to be used for the identification, prediction, and reduction of the likelihood of significant consequential events. This tool is based on the resilience curve that was built from the plant's operational data. The stress is described by the number of unresolved condition reports. The strain is represented by the number of preventive maintenance tasks and other periodic work activities (i.e., baseline activities), as well as, closing open corrective actions assigned to different departments to resolve the condition reports (i.e., corrective action workload). Beyond the identified resilience threshold, the stress exceeds the station's ability to operate successfully and there is an increased likelihood that a consequential event will occur. A performance indicator is proposed to reduce the likelihood of consequential events at nuclear power plants. Copyright (C) 2015, Published by Elsevier Korea LLC on behalf of Korean Nuclear Society. C1 [Nelson, Pamela F.; Martin-Del-Campo, Cecilia] Univ Nacl Autonoma Mexico, Dept Energy Syst, Mexico City 04510, DF, Mexico. [Hallbert, Bruce] Idaho Natl Lab, Nucl Energy Enabling Technol, 2525 Fremont Ave, Idaho Falls, ID 83402 USA. [Mosleh, Ali] Univ Calif Los Angeles, B John Garrick Inst Risk Sci, Los Angeles, CA 90095 USA. RP Nelson, PF (reprint author), Univ Nacl Autonoma Mexico, Dept Energy Syst, Mexico City 04510, DF, Mexico. EM pnelson_007@yahoo.com RI Hallbert, Bruce/B-5435-2017 OI Hallbert, Bruce/0000-0002-4133-7625 NR 25 TC 0 Z9 0 U1 4 U2 5 PU KOREAN NUCLEAR SOC PI DAEJEON PA NUTOPIA BLDG, 342-1 JANGDAE-DONG, DAEJEON, 305-308, SOUTH KOREA SN 1738-5733 J9 NUCL ENG TECHNOL JI Nucl. Eng. Technol. PD FEB PY 2016 VL 48 IS 1 BP 114 EP 128 DI 10.1016/j.net.2015.10.010 PG 15 WC Nuclear Science & Technology SC Nuclear Science & Technology GA DF0QE UT WOS:000371043200011 ER PT J AU Craft, AE Hilton, BA Papaioannou, GC AF Craft, Aaron E. Hilton, Bruce A. Papaioannou, Glen C. TI Characterization of a Neutron Beam Following Reconfiguration of the Neutron Radiography Reactor (NRAD) Core and Addition of New Fuel Elements SO NUCLEAR ENGINEERING AND TECHNOLOGY LA English DT Article DE Beam Characterization; Neutron Radiography; Neutron Beam ID SELF-SHIELDING FACTORS; SIMPLE GEOMETRIES; RESOLUTION AB The neutron radiography reactor (NRAD) is a 250 kW Mark-II Training, Research, Isotopes, General Atomics (TRIGA) reactor at Idaho National Laboratory, Idaho Falls, ID, USA. The East Radiography Station (ERS) is one of two neutron beams at the NRAD used for neutron radiography, which sits beneath a large hot cell and is primarily used for neutron radiography of highly radioactive objects. Additional fuel elements were added to the NRAD core in 2013 to increase the excess reactivity of the reactor, and may have changed some characteristics of the neutron beamline. This report discusses characterization of the neutron beamline following the addition of fuel to the NRAD. This work includes determination of the facility category according to the American Society for Testing and Materials (ASTM) standards, and also uses an array of gold foils to determine the neutron beam flux and evaluate the neutron beam profile. The NRAD ERS neutron beam is a Category I neutron radiography facility, the highest possible quality level according to the ASTM. Gold foil activation experiments show that the average neutron flux with length-to-diameter ratio (L/D) = 125 is 5.96 x 106 n/cm(2)/s with a 2 sigma standard error of 2.90 x 10(5) n/cm(2)/s. The neutron beam profile can be considered flat for qualitative neutron radiographic evaluation purposes. However, the neutron beam profile should be taken into account for quantitative evaluation. Copyright (C) 2015, Published by Elsevier Korea LLC on behalf of Korean Nuclear Society. C1 [Craft, Aaron E.; Papaioannou, Glen C.] Idaho Natl Lab, 2525 Fremont Ave, Idaho Falls, ID 83415 USA. [Hilton, Bruce A.] TerraPower LLC, 330 120th Ave NE,Suite 100, Bellevue, WA 98005 USA. RP Craft, AE (reprint author), Idaho Natl Lab, 2525 Fremont Ave, Idaho Falls, ID 83415 USA. EM aaron.craft@inl.gov RI Papaioannou, Glen/C-5935-2017; Craft, Aaron/B-7579-2017 OI Papaioannou, Glen/0000-0003-3912-0328; Craft, Aaron/0000-0002-7092-3826 FU TerraPower, LLC FX The authors acknowledge the R & D staff of the Idaho National Laboratory Materials & Fuels Complex facilities of NRAD, Hot Fuels Examination Facility and Analytical Laboratory for having carried out the experimental tests for this work. This work was performed with support of TerraPower, LLC. NR 31 TC 0 Z9 0 U1 3 U2 6 PU KOREAN NUCLEAR SOC PI DAEJEON PA NUTOPIA BLDG, 342-1 JANGDAE-DONG, DAEJEON, 305-308, SOUTH KOREA SN 1738-5733 J9 NUCL ENG TECHNOL JI Nucl. Eng. Technol. PD FEB PY 2016 VL 48 IS 1 BP 200 EP 210 DI 10.1016/j.net.2015.10.006 PG 11 WC Nuclear Science & Technology SC Nuclear Science & Technology GA DF0QE UT WOS:000371043200020 ER PT J AU Franz, R Clavero, C Kolbeck, J Anders, A AF Franz, Robert Clavero, Cesar Kolbeck, Jonathan Anders, Andre TI Influence of ionisation zone motion in high power impulse magnetron sputtering on angular ion flux and NbOx film growth SO PLASMA SOURCES SCIENCE & TECHNOLOGY LA English DT Article DE niobium; niobium oxide; HiPIMS; ion energy; negative ions; angular distribution ID NIOBIUM OXIDE-FILMS; NEGATIVE-IONS; PLASMA; DEPOSITION; DISCHARGE; TARGET; ENERGY AB The ion energies and fluxes in the high power impulse magnetron sputtering plasma from a Nb target were analysed angularly resolved along the tangential direction of the racetrack. A reactive oxygen-containing atmosphere was used as such discharge conditions are typically employed for the synthesis of thin films. Asymmetries in the flux distribution of the recorded ions as well as their energies and charge states were noticed when varying the angle between mass-energy analyser and target surface. More positively charged ions with higher count rates in the medium energy range of their distributions were detected in +E x B than in -E x B direction, thus confirming the notion that ionisation zones (also known as spokes or plasma bunches) are associated with moving potential humps. The motion of the recorded negatively charged high-energy oxygen ions was unaffected. NbOx thin films at different angles and positions were synthesised and analysed as to their structure and properties in order to correlate the observed plasma properties to the film growth conditions. The chemical composition and the film thickness varied with changing deposition angle, where the latter, similar to the ion fluxes, was higher in +E x B than in -E x B direction. C1 [Franz, Robert; Clavero, Cesar; Kolbeck, Jonathan; Anders, Andre] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. [Franz, Robert] Univ Leoben, Franz Josef Str 18, A-8700 Leoben, Austria. RP Franz, R (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA.; Franz, R (reprint author), Univ Leoben, Franz Josef Str 18, A-8700 Leoben, Austria. EM robert.franz@unileoben.ac.at RI Franz, Robert/G-5263-2010; Anders, Andre/B-8580-2009 OI Franz, Robert/0000-0003-4842-7276; Anders, Andre/0000-0002-5313-6505 FU Erwin Schrodinger Fellowship by the Austrian Science Fund (FWF) [J3168-N20]; U.S. Department of Energy [DE-AC02-05CH11231] FX R Franz gratefully acknowledges the support of an Erwin Schrodinger Fellowship by the Austrian Science Fund (FWF, Project J3168-N20) which enabled his research at LBNL. Work at LBNL is supported by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 58 TC 3 Z9 3 U1 0 U2 14 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0963-0252 EI 1361-6595 J9 PLASMA SOURCES SCI T JI Plasma Sources Sci. Technol. PD FEB PY 2016 VL 25 IS 1 AR 015022 DI 10.1088/0963-0252/25/1/015022 PG 11 WC Physics, Fluids & Plasmas SC Physics GA DE9RD UT WOS:000370974800029 ER PT J AU Sumi, H Kennouche, D Yakal-Kremski, K Suzuki, T Barnett, SA Miller, DJ Yamaguchi, T Hamamoto, K Fujishiro, Y AF Sumi, Hirofumi Kennouche, David Yakal-Kremski, Kyle Suzuki, Toshio Barnett, Scott A. Miller, Dean J. Yamaguchi, Toshiaki Hamamoto, Koichi Fujishiro, Yoshinobu TI Electrochemical and microstructural properties of Ni-(Y2O3)(0.08)(ZrO2)(0.92)-(Ce0.9Gd0.1)O-1.95 anode-supported microtubular solid oxide fuel cells SO SOLID STATE IONICS LA English DT Article; Proceedings Paper CT 40th Symposium on Solid State Ionics in Japan CY DEC 16-18, 2014 CL Tokyo, JAPAN SP Solid State Ion Soc Japan DE Zirconia-ceria solid solution; AC impedance; Distribution of relaxation time (DRT); Anode microstructure; Focused ion beam-scanning electron; microscopy (FIB-SEM) ID NI-YSZ ANODE; 3-DIMENSIONAL MICROSTRUCTURE; IMPEDANCE SPECTRA; DIRECT OXIDATION; TEMPERATURE; PERFORMANCE; CERIA; RECONSTRUCTION; HYDROCARBONS; ZIRCONIA AB The nickel-zirconia cermet is widely used as an anode of solid oxide fuel cells (SOFCs). On the other hand, the nickel-ceria based anode indicates high electrochemical activity for hydrogen oxidation and hydrocarbon reforming. In this study, electrochemical and microstructural properties of microtubular SOFCs with Ni-based composite anodes containing yttria-stabilized zirconia (YSZ) and gadolinia-doped ceria (GDC) are investigated electrochemically using impedance spectroscopy (EIS) and microstructurally using focused ion beam-scanning electron microscopy (FIB-SEM). The solid solution of YSZ and GDC was easily formed after mechanical mixing and sintering at 1400 degrees C. The electrical conductivity and mechanical strength for the Ni-YSZGDC composite anodes are low relative to Ni-YSZ due to poor sinterability. The GDC-containing anodes show improved electrochemical activity for hydrogen oxidation, despite having lower three-phase boundary densities. Distribution of relaxation times (DRT) analysis of the EIS data shows that the concentration polarization is lower for the Ni-GDC anode, due to a higher measured pore volume. The maximum power density for the cell with the Ni-YSZGDC composite anode was higher than those with the Ni-YSZ and Ni-GDC anodes. (C) 2015 Elsevier B.V. All rights reserved. C1 [Sumi, Hirofumi; Suzuki, Toshio; Yamaguchi, Toshiaki; Hamamoto, Koichi; Fujishiro, Yoshinobu] Natl Inst Adv Ind Sci & Technol, Inorgan Funct Mat Res Inst, Nagoya, Aichi 4638560, Japan. [Kennouche, David; Yakal-Kremski, Kyle; Barnett, Scott A.] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. [Miller, Dean J.] Argonne Natl Lab, Ctr Electron Microscopy, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Sumi, H (reprint author), Natl Inst Adv Ind Sci & Technol, Inorgan Funct Mat Res Inst, Nagoya, Aichi 4638560, Japan. EM h-sumi@aist.go.jp RI Sumi, Hirofumi/B-5403-2012; Fujishiro, Yoshinobu/K-2224-2016; Barnett, Scott/B-7502-2009 OI Sumi, Hirofumi/0000-0002-8439-0127; Fujishiro, Yoshinobu/0000-0002-8570-6517; NR 41 TC 1 Z9 1 U1 6 U2 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-2738 EI 1872-7689 J9 SOLID STATE IONICS JI Solid State Ion. PD FEB PY 2016 VL 285 SI SI BP 227 EP 233 DI 10.1016/j.ssi.2015.07.005 PG 7 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA DE8QM UT WOS:000370901500039 ER PT J AU Demirkan, MT Trahey, L Karabacak, T AF Demirkan, M. T. Trahey, L. Karabacak, T. TI Low-density silicon thin films for lithium-ion battery anodes SO THIN SOLID FILMS LA English DT Article DE Sputtering; Thin films; Silicon; Lithium Ion; Battery; Anode ID NANOSTRUCTURED COMPLIANT LAYERS; LONG CYCLE LIFE; SI-BASED ANODES; STRESS REDUCTION; HIGH-CAPACITY; NANO-SILICON; PERFORMANCE; COMPOSITES; ELECTRODES; DEPOSITION AB Density of sputter deposited silicon (Si) thin films was changed by a simple working gas pressure control process, and its effects on the cycling performance of Si films in Li-ion batteries as anodes was investigated. Higher gas pressure results in reduced film densities due to a shadowing effect originating from lower mean free path of sputter atoms, which leads to a wider angular distribution of the incoming flux and formation of a porous film microstructure. Si thin film anodes of different densities ranging from 2.27 g/cm(3) (film porosity similar to 3%) down to 1.64 g/cm(3) (similar to 30% porosity) were fabricated by magnetron sputtering at argon pressures varying from 0.2 Pa to 2.6 Pa, respectively. High density Si thin film anodes of 2.27 g/cm(3) suffered from an unstable cycling behavior during charging/discharging depicted by a continuous reduction in specific down to similar to 830 mAh/g at the 100th cycle. Electrochemical properties of lower density films with 1.99 g/cm(3) (similar to 15% porosity) and 1.77 g/cm(3) (similar to 24% porosity) got worse resulting in only similar to 100 mAh/g capacity at 100th cycle. On the other hand, as the density of anode was further reduced down to about 1.64 g/cm(3) (similar to 30% porosity), cycling stability and capacity retention significantly improved resulting in specific capacity values similar to 650 mAh/g at 100th cycle with coulombic efficiencies of >98%. Enhancement in our low density Si film anodes are believed to mainly originate from the availability of voids for volumetric expansion during lithiation and resulting compliant behavior that provides superior mechanical and electrochemical stability. (C) 2016 Elsevier B.V. All rights reserved. C1 [Demirkan, M. T.; Karabacak, T.] Univ Arkansas, Dept Phys & Astron, Little Rock, AR 72204 USA. [Trahey, L.] Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. [Demirkan, M. T.] Gebze Tech Univ, Dept Mat Sci & Engn, Kocaeli, Turkey. RP Demirkan, MT (reprint author), Univ Arkansas, Dept Phys & Astron, Little Rock, AR 72204 USA. EM tmdemirkan@ualr.edu NR 41 TC 2 Z9 2 U1 17 U2 40 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0040-6090 J9 THIN SOLID FILMS JI Thin Solid Films PD FEB 1 PY 2016 VL 600 BP 126 EP 130 DI 10.1016/j.tsf.2016.01.029 PG 5 WC Materials Science, Multidisciplinary; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA DF0QG UT WOS:000371043400020 ER PT J AU Fox, DT Guo, LJ Fujita, Y Huang, H Redden, G AF Fox, Don T. Guo, Luanjing Fujita, Yoshiko Huang, Hai Redden, George TI Experimental and Numerical Analysis of Parallel Reactant Flow and Transverse Mixing with Mineral Precipitation in Homogeneous and Heterogeneous Porous Media SO TRANSPORT IN POROUS MEDIA LA English DT Article DE Mixing; Coupled flow-transport-reaction processes; Mineral precipitation; Permeability ID CARBONATE PRECIPITATION; CALCITE PRECIPITATION; BARITE; DISSOLUTION; ALGORITHMS; TRANSPORT; SOFTWARE; NUCLEAR; SULFATE; ENERGY AB Formation of mineral precipitates in the mixing interface between two reactant solutions flowing in parallel in porous media is governed by reactant mixing by diffusion and dispersion and is coupled to changes in porosity/permeability due to precipitation. The spatial and temporal distribution of mixing-dependent precipitation of barium sulfate in porous media was investigated with side-by-side injection of barium chloride and sodium sulfate solutions in thin rectangular flow cells packed with quartz sand. The results for homogeneous sand beds were compared to beds with higher or lower permeability inclusions positioned in the path of the mixing zone. In the homogeneous and high permeability inclusion experiments, BaSO precipitate (barite) formed in a narrow deposit along the length and in the center of the solution-solution mixing zone even though dispersion was enhanced within, and downstream of, the high permeability inclusion. In the low permeability inclusion experiment, the deflected BaSO precipitation zone broadened around one side and downstream of the inclusion and was observed to migrate laterally toward the sulfate solution. A continuum-scale fully coupled reactive transport model that simultaneously solves the nonlinear governing equations for fluid flow, transport of reactants and geochemical reactions was used to simulate the experiments and provide insight into mechanisms underlying the experimental observations. Migration of the precipitation zone in the low permeability inclusion experiment could be explained by the coupling effects among fluid flow, reactant transport and localized mineral precipitation reaction. C1 [Fox, Don T.; Fujita, Yoshiko; Huang, Hai] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Guo, Luanjing] Univ Utah, Salt Lake City, UT USA. [Redden, George] Montana State Univ, Bozeman, MT 59717 USA. RP Fox, DT (reprint author), Idaho Natl Lab, Idaho Falls, ID 83415 USA.; Redden, G (reprint author), Montana State Univ, Bozeman, MT 59717 USA. EM Don.fox@inl.gov; George.redden@coe.montana.edu FU US Department of Energy, Office of Science, Subsurface Biogeochemical Research Program [DE-AC07-05ID14517] FX This research was conducted under DOE Idaho Operations Office Contract DE-AC07-05ID14517 with funding provided by the US Department of Energy, Office of Science, Subsurface Biogeochemical Research Program. G.R. and Y.F. would also like to express their deep gratitude to the NanoGeoScience program at Copenhagen University for facilitating their contributions to the preparation of this manuscript, and especially to the National Bank of Denmark for helping to make their residence with Copenhagen University possible. NR 31 TC 0 Z9 0 U1 3 U2 8 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0169-3913 EI 1573-1634 J9 TRANSPORT POROUS MED JI Transp. Porous Media PD FEB PY 2016 VL 111 IS 3 BP 605 EP 626 DI 10.1007/s11242-015-0614-6 PG 22 WC Engineering, Chemical SC Engineering GA DF0GL UT WOS:000371017100004 ER PT J AU Voylov, D Saito, T Lokitz, B Uhrig, D Wang, YY Agapov, A Holt, A Bocharova, V Kisliuk, A Sokolov, AP AF Voylov, Dmitry Saito, Tomonori Lokitz, Bradley Uhrig, David Wang, Yangyang Agapov, Alexander Holt, Adam Bocharova, Vera Kisliuk, Alexander Sokolov, Alexei P. TI Graphene Oxide as a Radical Initiator: Free Radical and Controlled Radical Polymerization of Sodium 4-Vinylbenzenesulfonate with Graphene Oxide SO ACS MACRO LETTERS LA English DT Article ID OXIDATIVE DEHYDROGENATION; COMPOSITES; REDUCTION; CATALYSTS; SHEETS; OXYGEN; RAFT AB The free radical and controlled radical polymerization of sodium 4-vinylbenzenesulfonate using graphene oxide as a radical initiator was studied. This work demonstrates that graphene oxide can initiate radical polymerization in an aqueous solution without any additional initiator. Poly(sodium 4-vinylbenzenesulfonate) obtained via reversible addition fragmentation chain transfer polymerization had a controlled molecular weight with a very narrow polydispersity ranging between 1.01 and 1.03. The reduction process of graphene oxide as well as the resulting composite material properties were analyzed in detail. C1 [Voylov, Dmitry; Agapov, Alexander; Sokolov, Alexei P.] Univ Tennessee, Dept Chem, Knoxville, TN 37916 USA. [Holt, Adam] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37916 USA. [Saito, Tomonori; Bocharova, Vera; Kisliuk, Alexander; Sokolov, Alexei P.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37830 USA. [Lokitz, Bradley; Uhrig, David; Wang, Yangyang] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37830 USA. RP Voylov, D (reprint author), Univ Tennessee, Dept Chem, Knoxville, TN 37916 USA.; Saito, T (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37830 USA. EM dvoylov@utk.edu; saitot@ornl.gov RI Saito, Tomonori/M-1735-2016; Wang, Yangyang/A-5925-2010; OI Saito, Tomonori/0000-0002-4536-7530; Wang, Yangyang/0000-0001-7042-9804; Voylov, Dmitry/0000-0001-5552-6024 FU U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division; U.S. Department of Energy [DE-AC05-00OR22725]; Department of Energy FX This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division. A portion of this research was conducted at the Center for Nanophase Materials Sciences ORNL, which is a DOE Office of Science User Facility. D.V. thanks Dr. S. Kurochkin for fruitful discussions. This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan). NR 14 TC 2 Z9 2 U1 11 U2 31 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2161-1653 J9 ACS MACRO LETT JI ACS Macro Lett. PD FEB PY 2016 VL 5 IS 2 BP 199 EP 202 DI 10.1021/acsmacrolett.6b00003 PG 4 WC Polymer Science SC Polymer Science GA DE4CE UT WOS:000370576000010 ER PT J AU Xu, L Yao, Y Bronstein, ND Li, LF Alivisatos, AP Nuzzo, RG AF Xu, Lu Yao, Yuan Bronstein, Noah D. Li, Lanfang Alivisatos, A. Paul Nuzzo, Ralph G. TI Enhanced Photon Collection in Luminescent Solar Concentrators with Distributed Bragg Reflectors SO ACS PHOTONICS LA English DT Article DE luminescent solar concentrator; distributed Bragg reflector; photovoltaics; escape cone loss ID RUGATE FILTERS; WAVE-GUIDES; CELLS; FILMS; NANOCRYSTALS; REABSORPTION; EFFICIENCY; CRYSTALS; OUTPUT; ENERGY AB Escape cone loss is one of the primary limiting factors for efficient photon collection in large-area luminescent solar concentrators (LSCs). The Stokes shift of the luminophore, however, opens up an opportunity to recycle the escaped luminescence at the LSC front surface by utilizing a photonic band-stop filter that reflects photons in the luminophore's emission range while transmitting those in its absorption range. In this study, we examine the functional attributes of such photonic filter designs, ones realized here in the form of a distributed Bragg reflector (DBR) fabricated by spin-coating alternating layers of SiO2 and SnO2 nanoparticle suspensions onto a supportive glass substrate. The central wavelength and the width of the photonic stopband were programmatically tuned by changing the layer thickness and the refractive index contrast between the two dielectric materials. We explore the design sensitivities for a DBR with an optimized stopband frequency that can effectively act as a top angle-restricting optical element for a microcell-based LSC device, affording further capacities to boost the current output of a coupled photovoltaic cell. Detailed studies of the optical interactions between the photonic filter and the LSC using both experimental and computational approaches establish the requirements for optimum photon collection efficiencies. C1 [Xu, Lu; Yao, Yuan; Li, Lanfang; Nuzzo, Ralph G.] Univ Illinois, Frederick Seitz Mat Res Lab, Dept Chem, Urbana, IL 61801 USA. [Alivisatos, A. Paul] Univ Calif Berkeley, Dept Mat Sci & Engn, Kavli Energy NanoSci Inst, Berkeley, CA 94720 USA. [Bronstein, Noah D.; Alivisatos, A. Paul] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Alivisatos, A. Paul] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Nuzzo, RG (reprint author), Univ Illinois, Frederick Seitz Mat Res Lab, Dept Chem, Urbana, IL 61801 USA. EM r-nuzzo@illinois.edu RI Alivisatos , Paul /N-8863-2015 OI Alivisatos , Paul /0000-0001-6895-9048 FU "Light-Material Interactions in Energy Conversion" Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001293] FX This work was supported by the "Light-Material Interactions in Energy Conversion" Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Award Number DE-SC0001293. NR 44 TC 2 Z9 2 U1 11 U2 33 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2330-4022 J9 ACS PHOTONICS JI ACS Photonics PD FEB PY 2016 VL 3 IS 2 BP 278 EP 285 DI 10.1021/acsphotonics.5b00630 PG 8 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Optics; Physics, Applied; Physics, Condensed Matter SC Science & Technology - Other Topics; Materials Science; Optics; Physics GA DE4GK UT WOS:000370587000018 ER PT J AU Campione, S Wendt, JR Keeler, GA Luk, TS AF Campione, Salvatore Wendt, Joel R. Keeler, Gordon A. Luk, Ting S. TI Near-Infrared Strong Coupling between Metamaterials and Epsilon-near-Zero Modes in Degenerately Doped Semiconductor Nanolayers SO ACS PHOTONICS LA English DT Article DE strong light-matter interaction; polariton splitting; epsilon-near-zero; nanoresonators; metamaterials; plasmonics; indium-tin-oxide nanolayer; near-infrared ID PERMITTIVITY; TRANSITION; SLAB AB Epsilon-near-zero (ENZ) modes provide a new path for tailoring light matter interactions at the nanoscale. In this paper, we analyze a strongly coupled system at near-infrared frequencies comprising plasmonic metamaterial resonators and ENZ modes supported by degenerately doped semiconductor nanolayers. In strongly coupled systems that combine optical cavities and intersubband transitions, the polariton splitting (i.e., the ratio of Rabi frequency to bare cavity frequency) scales with the square root of the wavelength, thus favoring the long-wavelength regime. In contrast, we observe that the polariton splitting in ENZ/metamaterial resonator systems increases linearly with the thickness of the nanolayer supporting the ENZ modes. In this work, we employ an indium-tin-oxide nanolayer and observe a large experimental polariton splitting of approximately 30% in the near-infrared. This approach opens up many promising applications, including nonlinear optical components and tunable optical filters based on controlling the polariton splitting by adjusting the frequency of the ENZ mode. C1 [Campione, Salvatore; Wendt, Joel R.; Keeler, Gordon A.; Luk, Ting S.] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. [Campione, Salvatore; Luk, Ting S.] Sandia Natl Labs, Ctr Integrated Nanotechnol CINT, Albuquerque, NM 87185 USA. RP Campione, S; Luk, TS (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA.; Campione, S; Luk, TS (reprint author), Sandia Natl Labs, Ctr Integrated Nanotechnol CINT, Albuquerque, NM 87185 USA. EM sncampi@sandia.gov; tsluk@sandia.gov FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering; Laboratory Directed Research and Development program at Sandia National Laboratories; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX We acknowledge fruitful discussions with Dr. Michael B. Sinclair and Dr. Igal Brener from Sandia National Laboratories. This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, and performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science. Portions of this work were supported by the Laboratory Directed Research and Development program at Sandia National Laboratories. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 34 TC 4 Z9 4 U1 3 U2 19 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2330-4022 J9 ACS PHOTONICS JI ACS Photonics PD FEB PY 2016 VL 3 IS 2 BP 293 EP 297 DI 10.1021/acsphotonics.5b00663 PG 5 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Optics; Physics, Applied; Physics, Condensed Matter SC Science & Technology - Other Topics; Materials Science; Optics; Physics GA DE4GK UT WOS:000370587000020 ER PT J AU Kapoor, M Isheim, D Vaynman, S Fine, ME Chung, YW AF Kapoor, M. Isheim, D. Vaynman, S. Fine, M. E. Chung, Y. -W. TI Effects of increased alloying element content on NiAl-type precipitate formation, loading rate sensitivity, and ductility of Cu- and NiAl-precipitation-strengthened ferritic steels SO ACTA MATERIALIA LA English DT Article DE Bcc-Cu; B2-NiAl-type; Precipitation-strengthened ferritic steel; Mechanical properties; loading rate sensitivity ID GRAIN-BOUNDARY SEGREGATION; MECHANICAL-PROPERTIES; ATOM-PROBE; FE-CU; COPPER; TEMPERATURE; EMBRITTLEMENT; MICROSCOPY; PARTICLES AB Two experimental bcc-Cu- and B2-NiAl-precipitation-strengthened ferritic steels with 6.3 at. % and 12.4 at. % Cu + Mn + Ni + Al, 950 MPa and 1600 MPa yield strength respectively, were studied. Atom probe tomography showed that the volume fraction and number density of NiAl-type precipitates in the heavier alloyed steel (designated as CF-9) is similar to 60-70 times greater than those in the lighter alloyed steel (designated as CF-2). This is attributed to the smaller lattice misfit between these NiAl-type precipitates and the ferritic matrix in CF-9 due to more incorporation of Mn atoms on the Al sub-lattice in the B2 NiAl unit cell. Loading rate sensitivity of hardness was measured for CF-2, CF-9 and SAE-1090, which does not have bcc-Cu precipitates. Results show that even though CF-2 and CF-9 have double and triple the strength of SAE-1090 respectively, their hardness shows weaker dependence on loading rate. This is attributed to the presence of bcc-Cu precipitates in CF-2 and CF-9 providing athermal activation of nearby screw dislocation motion. Auger electron spectroscopy studies of CF-9 samples reveal Cu segregation on grain boundaries. The observed Cu segregation is believed to be partly responsible for the lower elongation-to-failure of CF-9 compared with CF-2. (C) 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Kapoor, M.; Isheim, D.; Vaynman, S.; Fine, M. E.; Chung, Y. -W.] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. [Kapoor, M.] Natl Energy Technol Lab, Struct Mat Dev Div, Albany, OR USA. RP Kapoor, M (reprint author), Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA.; Kapoor, M (reprint author), Natl Energy Technol Lab, Struct Mat Dev Div, Albany, OR USA. EM monica.kapoor@netl.doe.gov RI Chung, Yip-Wah/B-7506-2009 FU National Science Foundation [CMMI-0826535]; MRSEC program of the National Science Foundation [DMR-1121262]; NSF-MRI [DMR-0420532]; ONR-DURIP [N00014-0400798, N00014-0610539, N00014-0910781]; Initiative for Sustainability and Energy at Northwestern FX This work was supported by the National Science Foundation, Grant No. CMMI-0826535 and made use of Northwestern University's Optical Microscopy and Metallographic Facility and the Center for Atom Probe Tomography, supported by the MRSEC program of the National Science Foundation, Grant No. DMR-1121262. The LEAP tomograph at NUCAPT was purchased and upgraded with funding from NSF-MRI (DMR-0420532) and ONR-DURIP (N00014-0400798, N00014-0610539, N00014-0910781) grants. Additional instrumentation at NUCAPT was supported by the Initiative for Sustainability and Energy at Northwestern. Monica Kapoor gratefully acknowledges the help from Dr. Rick Haasch, Center for Microanalysis of Materials, Materials Research Laboratory at University of Illinois at Urbana Champaign. NR 35 TC 2 Z9 2 U1 4 U2 8 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 EI 1873-2453 J9 ACTA MATER JI Acta Mater. PD FEB 1 PY 2016 VL 104 BP 166 EP 171 DI 10.1016/j.actamat.2015.11.041 PG 6 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA DD1JK UT WOS:000369677800018 ER PT J AU Lebensohn, RA Zecevic, M Knezevic, M McCabe, RJ AF Lebensohn, Ricardo A. Zecevic, Miroslav Knezevic, Marko McCabe, Rodney J. TI Average intragranular misorientation trends in polycrystalline materials predicted by a viscoplastic self-consistent approach SO ACTA MATERIALIA LA English DT Article DE Polycrystal plasticity modeling; Micromechanics; Misorientation; Texture; Recrystallization ID FIELD FLUCTUATIONS; TEXTURE DEVELOPMENT; COMPOSITES; EVOLUTION; DEFORMATION; RECRYSTALLIZATION; FORMULATION; BEHAVIOR; COPPER AB This work presents estimations of average intragranular fluctuations of lattice rotation rates in polycrystalline materials, obtained by means of the viscoplastic self-consistent (VPSC) model. These fluctuations give a tensorial measure of the trend of misorientation developing inside each single crystal grain representing a polycrystalline aggregate. We first report details of the algorithm implemented in the VPSC code to estimate these fluctuations, which are then validated by comparison with corresponding full-field calculations. Next, we present predictions of average intragranular fluctuations of lattice rotation rates for cubic aggregates, which are rationalized by comparison with experimental evidence on annealing textures of fcc and bcc polycrystals deformed in tension and compression, respectively, as well as with measured intragranular misorientation distributions in a Cu polycrystal deformed in tension. The orientation-dependent and micromechanically-based estimations of intragranular misorientations that can be derived from the present implementation are necessary to formulate sound sub-models for the prediction of quantitatively accurate deformation textures, grain fragmentation, and recrystallization textures using the VPSC approach. Published by Elsevier Ltd on behalf of Acta Materialia Inc. C1 [Lebensohn, Ricardo A.; Zecevic, Miroslav; McCabe, Rodney J.] Div Mat Sci & Technol, Los Alamos, NM 87544 USA. [Zecevic, Miroslav; Knezevic, Marko] Univ New Hampshire, Dept Mech Engn, Durham, NH 03824 USA. RP Lebensohn, RA (reprint author), Los Alamos Natl Lab, Div Mat Sci & Technol, MS G755, Los Alamos, NM 87845 USA. EM lebenso@lanl.gov RI Lebensohn, Ricardo/A-2494-2008; OI Lebensohn, Ricardo/0000-0002-3152-9105; McCabe, Rodney /0000-0002-6684-7410 FU US Department of Energy, Office of Basic Energy Sciences (OBES) [FWP-06SCPE401]; LANL's Laboratory Directed Research and Development (LDRD) Project [20140630ER] FX This work was supported by US Department of Energy, Office of Basic Energy Sciences (OBES) FWP-06SCPE401 and LANL's Laboratory Directed Research and Development (LDRD) Project 20140630ER. NR 34 TC 5 Z9 5 U1 6 U2 19 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 EI 1873-2453 J9 ACTA MATER JI Acta Mater. PD FEB 1 PY 2016 VL 104 BP 228 EP 236 DI 10.1016/j.actamat.2015.10.035 PG 9 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA DD1JK UT WOS:000369677800025 ER PT J AU Dingreville, R Berbenni, S AF Dingreville, Remi Berbenni, Stephane TI On the interaction of solutes with grain boundaries SO ACTA MATERIALIA LA English DT Article DE Grain boundaries; Dislocations; Disclinations; Solubility; Segregation ID VACANCY FORMATION ENERGIES; STRUCTURAL UNIT MODEL; TILT BOUNDARIES; EDGE DISLOCATION; BINDING FORCE; SEGREGATION; DIFFUSION; HYDROGEN; NICKEL; DEFORMATION AB Solute segregation to grain boundaries is considered by modeling solute atoms as misfitting inclusions within a disclination structural unit model describing the grain boundary structure and its intrinsic stress field. The solute distribution around grain boundaries is described through Fermi-Dirac statistics of site occupancy. The susceptibility of hydrogen segregation to symmetric tilt grain boundaries is discussed in terms of the misorientation angle, the defect type characteristics at the grain boundary, temperature, and the prescribed bulk hydrogen fraction of occupied sites. Through this formalism, it is found that hydrogen trapping on grain boundaries clearly correlates with the grain boundary structure (i.e. type of structural unit composing the grain boundary), and the associated grain boundary misorientation. Specifically, for symmetric tilt grain boundaries about the [0 0 1] axis, grain boundaries composed of both B and C structural units show a lower segregation susceptibility than other grain boundaries. A direct correlation between the segregation susceptibility and the intrinsic net defect density is provided through the Frank-Bilby formalism. Overall, the present formulation could prove to be a simple and useful model to identify classes of grain boundaries relevant to grain boundary engineering. (C) 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Dingreville, Remi] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. [Berbenni, Stephane] Univ Lorraine, CNRS, UMR 7239, LEM3, F-57045 Metz, France. RP Dingreville, R (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM rdingre@sandia.gov OI Dingreville, Remi/0000-0003-1613-695X FU Laboratory Directed Research and Development program at Sandia National Laboratories; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; French government through the National Research Agency (ANR) under the program "Investment in the future" (Labex DAMAS) [ANR-11-LABX-0008-01] FX Supported by the Laboratory Directed Research and Development program at Sandia National Laboratories, a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. S.B. would also like to thank the support of the French government through the National Research Agency (ANR) under the program "Investment in the future" (Labex DAMAS referenced as ANR-11-LABX-0008-01). R.D. would like to thank Labex DAMAS and the Laboratoire d'Etude des Microstructures et de Mecanique des Materiaux (LEM3) for hosting him during the summer of 2015 to complete this work. NR 57 TC 1 Z9 1 U1 4 U2 17 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 EI 1873-2453 J9 ACTA MATER JI Acta Mater. PD FEB 1 PY 2016 VL 104 BP 237 EP 249 DI 10.1016/j.actamat.2015.11.017 PG 13 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA DD1JK UT WOS:000369677800026 ER PT J AU Kang, CM Wade, J Yun, S Lim, J Cho, H Roh, J Lee, H Nam, S Bradley, DDC Kim, JS Lee, C AF Kang, Chan-mo Wade, Jessica Yun, Sumin Lim, Jaehoon Cho, Hyunduck Roh, Jeongkyun Lee, Hyunkoo Nam, Sangwook Bradley, Donal D. C. Kim, Ji-Seon Lee, Changhee TI 1 GHz Pentacene Diode Rectifiers Enabled by Controlled Film Deposition on SAM-Treated Au Anodes SO ADVANCED ELECTRONIC MATERIALS LA English DT Article ID SELF-ASSEMBLED MONOLAYERS; MOLECULAR-ORIENTATION; ORGANIC TRANSISTORS; CHARGE INJECTION; HOLE INJECTION; POLYMER; MORPHOLOGY; GOLD; ELECTRODES; MOBILITY C1 [Kang, Chan-mo; Yun, Sumin; Lim, Jaehoon; Cho, Hyunduck; Roh, Jeongkyun; Lee, Hyunkoo; Nam, Sangwook; Lee, Changhee] Seoul Natl Univ, Dept Elect & Comp Engn, 1 Gwanak Ro, Seoul 08826, South Korea. [Kang, Chan-mo; Yun, Sumin; Lim, Jaehoon; Cho, Hyunduck; Roh, Jeongkyun; Lee, Hyunkoo; Nam, Sangwook; Lee, Changhee] Seoul Natl Univ, Interuniv Semicond Res Ctr, 1 Gwanak Ro, Seoul 08826, South Korea. [Kang, Chan-mo] Elect & Telecommun Res Inst, IoT Convergence Res Dept, 218 Gajeong Ro, Daejeon 34129, South Korea. [Wade, Jessica; Kim, Ji-Seon] Univ London Imperial Coll Sci Technol & Med, Dept Phys, South Kensington Campus, London SW7 2AZ, England. [Wade, Jessica; Kim, Ji-Seon] Univ London Imperial Coll Sci Technol & Med, Ctr Plast Elect, South Kensington Campus, London SW7 2AZ, England. [Lim, Jaehoon] Los Alamos Natl Lab, Div Chem, POB 1663, Los Alamos, NM 87545 USA. [Lee, Hyunkoo] Elect & Telecommun Res Inst, Soft IO Interface Res Sect, 218 Gajeong Ro, Daejeon 34129, South Korea. [Bradley, Donal D. C.] Univ Oxford, Dept Elect Sci, Math Phys & Life Sci Div, Oxford OX1 3PD, England. [Bradley, Donal D. C.] Univ Oxford, Dept Phys, Math Phys & Life Sci Div, Oxford OX1 3PD, England. RP Lee, C (reprint author), Seoul Natl Univ, Dept Elect & Comp Engn, 1 Gwanak Ro, Seoul 08826, South Korea.; Lee, C (reprint author), Seoul Natl Univ, Interuniv Semicond Res Ctr, 1 Gwanak Ro, Seoul 08826, South Korea.; Kim, JS (reprint author), Univ London Imperial Coll Sci Technol & Med, Dept Phys, South Kensington Campus, London SW7 2AZ, England.; Kim, JS (reprint author), Univ London Imperial Coll Sci Technol & Med, Ctr Plast Elect, South Kensington Campus, London SW7 2AZ, England.; Bradley, DDC (reprint author), Univ Oxford, Dept Elect Sci, Math Phys & Life Sci Div, Oxford OX1 3PD, England.; Bradley, DDC (reprint author), Univ Oxford, Dept Phys, Math Phys & Life Sci Div, Oxford OX1 3PD, England. EM Donal.Bradley@mpls.ox.ac.uk; ji-seon.kim@imperial.ac.uk; chlee7@snu.ac.kr RI Lee, Changhee/A-2471-2009 OI Lee, Changhee/0000-0003-2800-8250 FU Global Frontier R&D Program on Center for Multiscale Energy System - National Research Foundation under the Ministry of Science, ICT Future, Korea [2011-0031567]; Human Resources Development programme of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) - Ministry of Trade, Industry, and Energy, Korea; UK Engineering and Physical Sciences Research Council [EP/K029843/1]; Global Partnership Funding the UK Science & Innovation Network [GPF-14 175]; UK Engineering and Physical Sciences Research Council via the "EPSRC Centre for Innovative Manufacturing in Large Area Electronics" [EP/K03099X/1] FX This work was supported by the Global Frontier R&D Program on Center for Multiscale Energy System funded by the National Research Foundation under the Ministry of Science, ICT & Future, Korea (Grant No. 2011-0031567). This work was also supported by the Human Resources Development programme (No. 20124010203170) of the Korea Institute of Energy Technology Evaluation and Planning (KETEP), funded by the Ministry of Trade, Industry, and Energy, Korea. This work was further supported by the UK Engineering and Physical Sciences Research Council (EP/K029843/1 and DTA studentship) and the Global Partnership Funding (GPF-14 175 Plastic Electronics) from the UK Science & Innovation Network. D.D.C.B. acknowledges partial support from the UK Engineering and Physical Sciences Research Council via the "EPSRC Centre for Innovative Manufacturing in Large Area Electronics" (EP/K03099X/1). NR 42 TC 2 Z9 2 U1 4 U2 9 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 2199-160X J9 ADV ELECTRON MATER JI Adv. Electron. Mater. PD FEB PY 2016 VL 2 IS 2 AR 1500282 DI 10.1002/aelm.201500282 PG 7 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA DE0SP UT WOS:000370335200010 ER PT J AU Cooper, F Dawson, JF AF Cooper, Fred Dawson, John F. TI Auxiliary field loop expansion of the effective action for a class of stochastic partial differential equations SO ANNALS OF PHYSICS LA English DT Article DE Stochastic PDEs; Effective action; Path integral; Auxiliary field loop expansion ID PARISI-ZHANG EQUATION; LARGE N; RENORMALIZATION; DYNAMICS; MODEL; TURBULENCE; SYSTEMS; LIMIT AB We present an alternative to the perturbative (in coupling constant) diagrammatic approach for studying stochastic dynamics of a class of reaction diffusion systems. Our approach is based on an auxiliary field loop expansion for the path integral representation for the generating functional of the noise induced correlation functions of the fields describing these systems. The systems we consider include Langevin systems describable by the set of self interacting classical fields phi(i)(x, t) in the presence of external noise eta(i)(x, t), namely (partial derivative(t) - nu del(2))phi - F[phi] = eta, as well as chemical reaction annihilation processes obtained by applying the many body approach of Doi-Peliti to the Master Equation formulation of these problems. We consider two different effective actions, one based on the Onsager-Machlup (OM) approach, and the other due to Janssen-deGenneris based on the Martin-Siggia-Rose (MSR) response function approach. For the simple models we consider, we determine an analytic expression for the Energy landscape (effective potential) in both formalisms and show how to obtain the more physical effective potential of the Onsager-Machlup approach from the MSR effective potential in leading order in the auxiliary field loop expansion. For the KPZ equation we find that our approximation, which is non-perturbative and obeys broken symmetry Ward identities, does not lead to the appearance of a fluctuation induced symmetry breakdown. This contradicts the results of earlier studies. (C) 2015 Elsevier Inc. All rights reserved. C1 [Cooper, Fred] Santa Fe Inst, 1399 Hyde Pk Rd, Santa Fe, NM 87501 USA. [Cooper, Fred] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Cooper, Fred] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Dawson, John F.] Univ New Hampshire, Dept Phys, Durham, NH 03824 USA. RP Dawson, JF (reprint author), Univ New Hampshire, Dept Phys, Durham, NH 03824 USA. EM cooper@santafe.edu; john.dawson@unh.edu OI Dawson, John/0000-0001-8060-5816 NR 52 TC 1 Z9 1 U1 1 U2 5 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0003-4916 EI 1096-035X J9 ANN PHYS-NEW YORK JI Ann. Phys. PD FEB PY 2016 VL 365 BP 118 EP 154 DI 10.1016/j.aop.2015.12.007 PG 37 WC Physics, Multidisciplinary SC Physics GA DD8ZI UT WOS:000370215000009 ER PT J AU Adam, R Ade, PAR Aghanim, N Alves, MIR Arnaud, M Arzoumanian, D Ashdown, M Aumont, J Baccigalupi, C Banday, AJ Barreiro, RB Bartolo, N Battaner, E Benabed, K Benoit-Levy, A Bernard, JP Bersanelli, M Bielewicz, P Bonaldi, A Bonavera, L Bond, JR Borrill, J Bouchet, FR Boulanger, F Bracco, A Burigana, C Butler, RC Calabrese, E Cardoso, JF Catalano, A Chamballu, A Chiang, HC Christensen, PR Colombi, S Colombo, LPL Combet, C Couchot, F Crill, BP Curto, A Cuttaia, F Danese, L Davies, RD Davis, RJ de Bernardis, P de Rosa, A de Zotti, G Delabrouillel, J Dickinson, C Diego, JM Dole, H Donzelli, S Dore, O Douspis, M Ducout, A Dupac, X Efstathiou, G Elsner, F Ensslin, TA Eriksen, HK Falgarone, E Ferriere, K Finelli, F Forni, O Frailis, M Fraisse, AA Franceschi, E Frejse, A Galeotta, S Gai, S Ganga, K Ghosh, T Giard, M Gjerlow, E Gonzalez-Nuevo, J Gorski, KM Gregorio, A Gruppuso, A Guillet, V Hansen, K Hanson, D Harrison, DL Henrot-Versille, S Hernandez-Monteagudo, C Herranz, D Hildebrandt, SR Hivon, E Hobson, M Holmes, WA Hovest, W Huffenberger, KM Hurier, G Jaffe, AH Jaffe, TR Jones, WC Juvela, M Keihanen, E Keskitalo, R Kisner, TS Kneiss, R Knoche, J Kunz, M Kurki-Suonio, H Lagache, G Lamarre, JM Lasenby, A Lattanzi, M Lawrence, CR Leonardi, R Levrier, F Liguori, M Lilje, PB Linden-Vornle, M Lopez-Caniego, M Lubin, PM Macias-Perez, JF Maffei, B Maino, D Mandolesi, N Maris, M Marshal, DJ Martin, PG Martinez-Gonzalez, E Masi, S Matarrese, S Mazzotta, P Melchiorri, A Mendes, L Mennella, A Migliaccio, M Miville-Descheness, MA Moneti, A Montier, L Morgante, G Mortlock, D Munshi, D Murphy, JA Naselsky, P Natoli, P Norgaard-Nielsen, HU Noviello, F Novikov, D Novikov, I Oppermann, N Oxborrow, CA Pagano, L Pajot, F Paoletti, D Pasian, F Perdereau, O Perotto, L Perrotta, F Pettorino, V Piacentini, F Piat, M Plaszczynski, S Pointecouteau, E Polenta, G Ponthieu, N Popa, L Pratt, GW Prunet, S Puget, JL Rachen, JP Reach, WT Reinecke, M Remazeilles, M Renault, C Ristorcelli, I Rocha, G Roudier, G Rubino-Martin, JA Rusholme, B Sandri, M Santos, D Savini, G Scott, D Soler, JD Spencer, LD Stolyarov', V Sudiwala, R Sunyaev, R Sutton, D Suur-Uski, AS Sygnet, JF Tauber, JA Terenzi, L Toffolatti, L Tomasi, M Tristram, M Tucci, M Umana, G Valenziano, L Valiviita, J Van Tent, B Vielva, P Villa, F Wade, LA Wandelt, BD Wehus, IK Wiesemeyer, H Yvon, D Zacchei, A Zonca, A AF Adam, R. Ade, P. A. R. Aghanim, N. Alves, M. I. R. Arnaud, M. Arzoumanian, D. Ashdown, M. Aumont, J. Baccigalupi, C. Banday, A. J. Barreiro, R. B. Bartolo, N. Battaner, E. Benabed, K. Benoit-Levy, A. Bernard, J-P. Bersanelli, M. Bielewicz, P. Bonaldi, A. Bonavera, L. Bond, J. R. Borrill, J. Bouchet, F. R. Boulanger, F. Bracco, A. Burigana, C. Butler, R. C. Calabrese, E. Cardoso, J-F Catalano, A. Chamballu, A. Chiang, H. C. Christensen, P. R. Colombi, S. Colombo, L. P. L. Combet, C. Couchot, F. Crill, B. P. Curto, A. Cuttaia, F. Danese, L. Davies, R. D. Davis, R. J. de Bernardis, P. de Rosa, A. de Zotti, G. Delabrouillel, J. Dickinson, C. Diego, J. M. Dole, H. Donzelli, S. Dore, O. Douspis, M. Ducout, A. Dupac, X. Efstathiou, G. Elsner, F. Ensslin, T. A. Eriksen, H. K. Falgarone, E. Ferriere, K. Finelli, F. Forni, O. Frailis, M. Fraisse, A. A. Franceschi, E. Frejse, A. Galeotta, S. Gai, S. Ganga, K. Ghosh, T. Giard, M. Gjerlow, E. Gonzalez-Nuevo, J. Gorski, K. M. Gregorio, A. Gruppuso, A. Guillet, V. Hansen, K. Hanson, D. Harrison, D. L. Henrot-Versille, S. Hernandez-Monteagudo, C. Herranz, D. Hildebrandt, S. R. Hivon, E. Hobson, M. Holmes, W. A. Hovest, W. Huffenberger, K. M. Hurier, G. Jaffe, A. H. Jaffe, T. R. Jones, W. C. Juvela, M. Keihanen, E. Keskitalo, R. Kisner, T. S. Kneiss, R. Knoche, J. Kunz, M. Kurki-Suonio, H. Lagache, G. Lamarre, J-M. Lasenby, A. Lattanzi, M. Lawrence, C. R. Leonardi, R. Levrier, F. Liguori, M. Lilje, P. B. Linden-Vornle, M. Lopez-Caniego, M. Lubin, P. M. Macias-Perez, J. F. Maffei, B. Maino, D. Mandolesi, N. Maris, M. Marshal, D. J. Martin, P. G. Martinez-Gonzalez, E. Masi, S. Matarrese, S. Mazzotta, P. Melchiorri, A. Mendes, L. Mennella, A. Migliaccio, M. Miville-Descheness, M-A. Moneti, A. Montier, L. Morgante, G. Mortlock, D. Munshi, D. Murphy, J. A. Naselsky, P. Natoli, P. Norgaard-Nielsen, H. U. Noviello, F. Novikov, D. Novikov, I. Oppermann, N. Oxborrow, C. A. Pagano, L. Pajot, F. Paoletti, D. Pasian, F. Perdereau, O. Perotto, L. Perrotta, F. Pettorino, V. Piacentini, F. Piat, M. Plaszczynski, S. Pointecouteau, E. Polenta, G. Ponthieu, N. Popa, L. Pratt, G. W. Prunet, S. Puget, J-L. Rachen, J. P. Reach, W. T. Reinecke, M. Remazeilles, M. Renault, C. Ristorcelli, I. Rocha, G. Roudier, G. Rubino-Martin, J. A. Rusholme, B. Sandri, M. Santos, D. Savini, G. Scott, D. Soler, J. D. Spencer, L. D. Stolyarov', V. Sudiwala, R. Sunyaev, R. Sutton, D. Suur-Uski, A-S. Sygnet, J-F. Tauber, J. A. Terenzi, L. Toffolatti, L. Tomasi, M. Tristram, M. Tucci, M. Umana, G. Valenziano, L. Valiviita, J. Van Tent, B. Vielva, P. Villa, F. Wade, L. A. Wandelt, B. D. Wehus, I. K. Wiesemeyer, H. Yvon, D. Zacchei, A. Zonca, A. CA Planck Collaboration TI Planck intermediate results XXXII. The relative orientation between the magnetic field and structures traced by interstellar dust SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE ISM: clouds; ISM: magnetic fields; ISM: structure; magnetohydrodynamics (MHD); polarization; turbulence ID TAURUS MOLECULAR CLOUD; MASS STAR-FORMATION; INFRARED POLARIMETRY; MILKY-WAY; FILAMENTARY CLOUDS; POLARIZATION MAPS; SPIRAL ARMS; GOULD BELT; TURBULENCE; GAS AB The role of the magnetic field in the formation of the filamentary structures observed in the interstellar medium (ISM) is a debated topic owing to the paucity of relevant observations needed to test existing models. The Planck all-sky maps of linearly polarized emission from dust at 353 GHz provide the required combination of imaging and statistics to study the correlation between the structures of the Galactic magnetic field and of interstellar matter over the whole sky, both in the diffuse ISM and in molecular clouds. The data reveal that structures, or ridges, in the intensity map have counterparts in the Stokes Q and/or U maps. We focus our study on structures at intermediate and high Galactic latitudes, which cover two orders of magnitude in column density, from 10(20) to 10(22) cm(2). We measure the magnetic field orientation on the plane of the sky from the polarization data, and present an algorithm to estimate the orientation of the ridges from the dust intensity map. We use analytical models to account for projection effects. Comparing polarization angles on and off the structures, we estimate the mean ratio between the strengths of the turbulent and mean components of the magnetic field to be between 0.6 and 1.0, with a preferred value of 0.8. We find that the ridges are usually aligned with the magnetic field measured on the structures. This statistical trend becomes more striking for increasing polarization fraction and decreasing column density. There is no alignment for the highest column density ridges. We interpret the increase in alignment with polarization fraction as a consequence of projection effects. We present maps to show that the decrease in alignment for high column density is not due to a loss of correlation between the distribution of matter and the geometry of the magnetic field. In molecular complexes, we also observe structures perpendicular to the magnetic field, which, statistically, cannot be accounted for by projection effects. This first statistical study of the relative orientation between the matter structures and the magnetic field in the ISM points out that, at the angular scales probed by Planck, the field geometry projected on the plane of the sky is correlated with the distribution of matter. In the diffuse ISM, the structures of matter are usually aligned with the magnetic field, while perpendicular structures appear in molecular clouds. We discuss our results in the context of models and MHD simulations, which attempt to describe the respective roles of turbulence, magnetic field, and self-gravity in the formation of structures in the magnetized ISM. C1 [Cardoso, J-F; Delabrouillel, J.; Ganga, K.; Piat, M.; Remazeilles, M.; Roudier, G.] Univ Paris Diderot, AstroParticule & Cosmol, Sorbonne Paris Cite, APC,CNRS,IN2P3,CEA,Irfu,Observ Paris, 10 Rue Alice Domon & Leonie Duquet, F-75205 Paris 13, France. [Kunz, M.] African Inst Math Sci, 6-8 Melrose Rd, Cape Town, South Africa. [Natoli, P.; Polenta, G.] Agenzia Spaziale Italiana, Sci Data Ctr, Via Politecn Snc, I-00133 Rome, Italy. [Mandolesi, N.] Agenzia Spaziale Italiana, Via le Liegi 26, I-00133 Rome, Italy. [Lagache, G.] Aix Marseille Univ, CNRS, LAM, UMR 7326, F-13388 Marseille, France. [Ashdown, M.; Curto, A.; Hobson, M.; Lasenby, A.; Stolyarov', V.] Univ Cambridge, Cavendish Lab, Astrophys Grp, JJ Thomson Ave, Cambridge CB3 OHE, England. [Chiang, H. C.] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Astrophys & Cosmol Res Unit, Westville Campus,Private Bag X54001, ZA-4000 Durban, South Africa. [Kneiss, R.] ALMA Santiago Cent Off, Atacama Large Millimeter Submillimeter Array, Alonso de Cordova 3107,Casilla 763 0355, Santiago, Chile. [Bond, J. R.; Hanson, D.; Martin, P. G.; Miville-Descheness, M-A.; Oppermann, N.] Univ Toronto, CITA, 60 St George St, Toronto, ON M5S 3H8, Canada. [Banday, A. J.; Bernard, J-P.; Bielewicz, P.; Ferriere, K.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] CNRS, TRAP, 9 Ave Colonel Roche,BP 44346, F-31028 Toulouse 4, France. [Dore, O.; Rocha, G.] CALTECH, Pasadena, CA 91125 USA. [Hernandez-Monteagudo, C.] CEFCA, Plaza San Juan 1,Planta 2, Teruel 44001, Spain. [Borrill, J.; Keskitalo, R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA. [Chamballu, A.; Yvon, D.] CEA Saclay, DSM Irfu SPP, F-91191 Gif Sur Yvette, France. [Linden-Vornle, M.; Norgaard-Nielsen, H. U.; Oxborrow, C. A.] Tech Univ Denmark, Natl Space Inst, DTU Space, Elektrovej 327, DK-2800 Lyngby, Denmark. [Kunz, M.; Tucci, M.] Univ Geneva, Dept Phys Theor, 24 Quai E Ansermet, CH-1211 Geneva 4, Switzerland. [Toffolatti, L.] Univ Oviedo, Dept Fis, Avda Calvo Sotelo S-N, E-33007 Oviedo, Spain. [Rachen, J. P.] Radboud Univ Nijmegen, IMAPP, Dept Astrophys, POB 9010, NL-6500 GL Nijmegen, Netherlands. [Scott, D.] Univ British Columbia, Dept Phys & Astron, 6224 Agr Rd, Vancouver, BC V5Z 1M9, Canada. [Colombo, L. P. L.] Univ So Calif, Dana & David Dornsife Coll Letter Arts & Sci, Dept Phys & Astron, Los Angeles, CA 90089 USA. [Benoit-Levy, A.] UCL, Dept Phys & Astron, Mortimer St, London WC1E 6BT, England. [Huffenberger, K. M.] Florida State Univ, Dept Phys, Keen Phys Bldg,77 Chieftan Way, Tallahassee, FL 32306 USA. [Juvela, M.; Keihanen, E.; Kurki-Suonio, H.; Suur-Uski, A-S.; Valiviita, J.] Univ Helsinki, Dept Phys, Gustaf Hallstromin Katu 2a, Helsinki, Finland. [Chiang, H. C.; Fraisse, A. A.; Jones, W. C.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Lubin, P. M.; Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Wandelt, B. D.] Univ Illinois, Dept Phys, 1110 W Green St, Urbana, IL USA. [Bartolo, N.; Liguori, M.; Matarrese, S.] Univ Padua, Dipartimento Fis & Astron G Galilei, Via Marzolo 8, I-35131 Padua, Italy. [Burigana, C.; Lattanzi, M.; Mandolesi, N.; Natoli, P.] Univ Ferrara, Dipartimento Fis & Sci Terra, Via Saragat 1, I-44122 Ferrara, Italy. [de Bernardis, P.; Masi, S.; Melchiorri, A.; Pagano, L.; Piacentini, F.] Univ Roma La Sapienza, Dipartimento Fis, Ple A Moro 2, Rome, Italy. [Bersanelli, M.; Maino, D.; Mennella, A.; Tomasi, M.] Univ Milan, Dipartimento Fis, Via Celoria 16, Milan, Italy. [Gregorio, A.] Univ Trieste, Dipartimento Fis, Via A Valerio 2, Trieste, Italy. [Mazzotta, P.] Univ Roma Tor Vergata, Dipartimento Fis, Via E Carnevale, I-00173 Rome, Italy. [Christensen, P. R.; Naselsky, P.] Niels Bohr Inst, Discovery Ctr, Blegdamsvej 17, DK-2100 Copenhagen, Denmark. [Rubino-Martin, J. A.] Univ La Laguna, Dept Astrofis, E-38206 Tenerife, Spain. [Kneiss, R.] ESO Vitacura, European So Observ, Alonso de Cordova 3107,Casilla 19001, Santiago, Chile. [Dupac, X.; Leonardi, R.; Mendes, L.] European Space Agcy, ESAC, Planck Sci Off, Camino Bajo del Castillo S-N, Madrid, Spain. [Tauber, J. A.] European Space Agcy, Estec, Keplerlaan 1, NL-2201 AZ Noordwijk, Netherlands. [Terenzi, L.] Univ E Campus, Fac Ingn, Via Isimbardi 10, I-22060 Novedrate, CO, Italy. [Pettorino, V.] HGSFP, Philosophenweg 16, D-69120 Heidelberg, Germany. [Pettorino, V.] Heidelberg Univ, Dept Theoret Phys, Philosophenweg 16, D-69120 Heidelberg, Germany. [Kurki-Suonio, H.; Suur-Uski, A-S.; Valiviita, J.] Univ Helsinki, Helsinki Inst Phys, Gustaf Hallstromin Katu 2, Helsinki, Finland. [Umana, G.] INAF Osservatorio Astrofis Catania, Via S Sofia 78, Catania, Italy. [de Zotti, G.] INAF Osservatorio Astron Padova, Vicolo Osservatorio 5, Padua, Italy. [Polenta, G.] INAF Osservatorio Astron Roma, Via Frascati 33, Monte Porzio Catone, Italy. [Frailis, M.; Galeotta, S.; Gregorio, A.; Maris, M.; Pasian, F.; Zacchei, A.] INAF Osservatorio Astron Trieste, Via GB Tiepolo 11, Trieste, Italy. [Burigana, C.; Butler, R. C.; Cuttaia, F.; de Rosa, A.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Mandolesi, N.; Morgante, G.; Natoli, P.; Paoletti, D.; Sandri, M.; Terenzi, L.; Toffolatti, L.; Valenziano, L.; Villa, F.] INAF IASF Bologna, Via Gobetti 101, Bologna, Italy. [Bersanelli, M.; Donzelli, S.; Maino, D.; Mennella, A.; Tomasi, M.] INAF IASF Milano, Via E Bassini 15, Milan, Italy. [Burigana, C.; Finelli, F.; Paoletti, D.] Ist Nazl Fis Nucl, Sez Bologna, Via Irnerio 46, I-40126 Bologna, Italy. [Melchiorri, A.; Pagano, L.] Univ Roma La Sapienza, Ist Nazl Fis Nucl, Sez Roma 1, Piazzale Aldo Moro 2, I-00185 Rome, Italy. [Gregorio, A.] INFN Natl Inst Nucl Phys, Via Valerio 2, I-34127 Trieste, Italy. [Ponthieu, N.] Univ Grenoble Alpes, IPAG, F-38000 Grenoble, France. [Ponthieu, N.] CNRS, IPAG, F-38000 Grenoble, France. [Ducout, A.; Jaffe, A. H.; Mortlock, D.; Novikov, D.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Astrophys Grp, Prince Consort Rd, London SW7 2AZ, England. [Rusholme, B.] CALTECH, Ctr Infrared Proc & Anal, Pasadena, CA 91125 USA. [Dole, H.] Inst Univ France, 103 Bd St Michel, F-75005 Paris, France. [Aghanim, N.; Alves, M. I. R.; Arzoumanian, D.; Aumont, J.; Boulanger, F.; Bracco, A.; Chamballu, A.; Dole, H.; Douspis, M.; Ghosh, T.; Guillet, V.; Hurier, G.; Kunz, M.; Lagache, G.; Miville-Descheness, M-A.; Pajot, F.; Ponthieu, N.; Puget, J-L.; Remazeilles, M.; Soler, J. D.] Univ Paris 11, CNRS, Inst Astrophys Spatiale, UMR 8617, Batiment 121, F-91405 Orsay, France. [Benabed, K.; Benoit-Levy, A.; Bouchet, F. R.; Cardoso, J-F; Colombi, S.; Ducout, A.; Elsner, F.; Gai, S.; Hivon, E.; Moneti, A.; Prunet, S.; Sygnet, J-F.; Wandelt, B. D.] CNRS, Inst Astrophys Paris, UMR 7095, 98bis Blvd Arago, F-75014 Paris, France. [Popa, L.] Inst Space Sci, Bucharest, Romania. [Efstathiou, G.; Harrison, D. L.; Migliaccio, M.; Sutton, D.] Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England. [Eriksen, H. K.; Gjerlow, E.; Hansen, K.; Lilje, P. B.] Univ Oslo, Inst Theoret Astrophys, Oslo, Norway. [Rubino-Martin, J. A.] Inst Astrofis Canarias, C Via Lactea S-N, Tenerife, Spain. [Barreiro, R. B.; Bonavera, L.; Curto, A.; Diego, J. M.; Gonzalez-Nuevo, J.; Herranz, D.; Lopez-Caniego, M.; Martinez-Gonzalez, E.; Toffolatti, L.; Vielva, P.] Univ Cantabria, CSIC, Inst Fis Cantabria, Avda Castros S-N, E-39005 Santander, Spain. [Colombo, L. P. L.; Crill, B. P.; Dore, O.; Gorski, K. M.; Hanson, D.; Hildebrandt, S. R.; Holmes, W. A.; Lawrence, C. R.; Rocha, G.; Roudier, G.; Wade, L. A.; Wehus, I. K.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA USA. [Bonaldi, A.; Davies, R. D.; Davis, R. J.; Dickinson, C.; Maffei, B.; Noviello, F.; Remazeilles, M.] Univ Manchester, Jodrell Bank Ctr Astrophys, Sch Phys & Astron, Alan Turing Bldg,Oxford Rd, Manchester M13 9PL, Lancs, England. [Ashdown, M.; Harrison, D. L.; Lasenby, A.; Migliaccio, M.; Stolyarov', V.; Sutton, D.] Kavli Inst Cosmol Cambridge, Madingley Rd, Cambridge CB3 0HA, England. [Couchot, F.; Henrot-Versille, S.; Perdereau, O.; Plaszczynski, S.; Tristram, M.; Tucci, M.] Univ Paris 11, CNRS, IN2P3, LAL, F-91405 Orsay, France. [Catalano, A.; Falgarone, E.; Lamarre, J-M.; Levrier, F.; Roudier, G.] Observ Paris, CNRS, LERMA, 61 Ave Observ, F-75014 Paris, France. [Arnaud, M.; Chamballu, A.; Marshal, D. J.; Pratt, G. W.] Univ Paris Diderot, Serv Astrophys, Lab AIM, IRFU,CEA,DSM,CNRS,CEA Saclay, Bat 709, F-91191 Gif Sur Yvette, France. [Cardoso, J-F] CNRS, Lab Traitement & Commun Informat, UMR 5141, 46 Rue Barrault, F-75634 Paris 13, France. [Cardoso, J-F] Telecom ParisTech, 46 Rue Barrault, F-75634 Paris 13, France. [Adam, R.; Catalano, A.; Combet, C.; Macias-Perez, J. F.; Perotto, L.; Renault, C.; Santos, D.] Univ Grenoble 1, Lab Phys Subatom & Cosmol, Inst Natl Polytech Grenoble, CNRS,IN2P3, 53 Rue Martyrs, F-38026 Grenoble, France. [Van Tent, B.] Univ Paris 11, Lab Phys Theor, Batiment 210, F-91405 Orsay, France. [Van Tent, B.] CNRS, Batiment 210, F-91405 Orsay, France. [Kisner, T. S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Ensslin, T. A.; Hernandez-Monteagudo, C.; Hovest, W.; Knoche, J.; Rachen, J. P.; Reinecke, M.; Sunyaev, R.] Max Planck Inst Astrophys, Karl Schwarzschild Str 1, D-85741 Garching, Germany. [Wiesemeyer, H.] Max Planck Inst Radioastron, Hugel 69, D-53121 Bonn, Germany. [Hanson, D.] McGill Univ, McGill Phys, Ernest Rutherford Phys Bldg,3600 Rue Univ, Montreal, PQ H3A 2T8, Canada. [Murphy, J. A.] Natl Univ Ireland, Dept Expt Phys, Maynooth, Kildare, Ireland. [Christensen, P. R.; Frejse, A.; Naselsky, P.; Novikov, I.] Niels Bohr Inst, Blegdamsvej 17, DK-2100 Copenhagen, Denmark. [Crill, B. P.] CALTECH, Observat Cosmol, Mail Stop 367-17, Pasadena, CA 91125 USA. [Savini, G.] UCL, Opt Sci Lab, Gower St, London, England. [Baccigalupi, C.; Bielewicz, P.; Danese, L.; de Zotti, G.; Gonzalez-Nuevo, J.; Perrotta, F.] SISSA, Astrophys Sect, Via Bonomea 265, I-34136 Trieste, Italy. [Ade, P. A. R.; Munshi, D.; Spencer, L. D.; Sudiwala, R.] Cardiff Univ, Sch Phys & Astron, Queens Bldg, Cardiff CF24 3AA, S Glam, Wales. [Sunyaev, R.] Russian Acad Sci, Space Res Inst IKI, Profsoyuznaya Str 84-32, Moscow 117997, Russia. [Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Stolyarov', V.] Russian Acad Sci, Special Astrophys Observ, Karachai Cherkessian Rep 369167, Zelenchukskiy R, Russia. [Calabrese, E.] Univ Oxford, Subdept Astrophys, Keble Rd, Oxford OX1 3RH, England. [Benabed, K.; Benoit-Levy, A.; Bouchet, F. R.; Colombi, S.; Elsner, F.; Hivon, E.; Prunet, S.; Wandelt, B. D.] Univ Paris 06, UMR 7095, 98bis Blvd Arago, F-75014 Paris, France. [Banday, A. J.; Bernard, J-P.; Bielewicz, P.; Ferriere, K.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France. [Reach, W. T.] Univ Space Res Assoc, Stratospher Observ Infrared Astron, MS 232-11, Moffett Field, CA 94035 USA. [Battaner, E.] Univ Granada, Fac Ciencias, Dept Fis Teor & Cosmos, Granada, Spain. [Battaner, E.] Univ Granada, Inst Carlos Fis Teor & Computac I, Granada, Spain. [Gorski, K. M.] Univ Warsaw Observ, Aleje Ujazdowskie 4, PL-00478 Warsaw, Poland. RP Bracco, A (reprint author), Univ Paris 11, CNRS, Inst Astrophys Spatiale, UMR 8617, Batiment 121, F-91405 Orsay, France. EM andrea.bracco@ias.u-psud.fr RI Barreiro, Rita Belen/N-5442-2014; Mazzotta, Pasquale/B-1225-2016; bonavera, laura/E-9368-2017; Lopez-Caniego, Marcos/M-4695-2013; Martinez-Gonzalez, Enrique/E-9534-2015; Piacentini, Francesco/E-7234-2010; Gonzalez-Nuevo, Joaquin/I-3562-2014; Novikov, Igor/N-5098-2015; Novikov, Dmitry/P-1807-2015; Ghosh, Tuhin/E-6899-2016; Toffolatti, Luigi/K-5070-2014; Tomasi, Maurizio/I-1234-2016; Colombo, Loris/J-2415-2016; Herranz, Diego/K-9143-2014; popa, lucia/B-4718-2012; Vielva, Patricio/F-6745-2014; OI Barreiro, Rita Belen/0000-0002-6139-4272; Mazzotta, Pasquale/0000-0002-5411-1748; bonavera, laura/0000-0001-8039-3876; Scott, Douglas/0000-0002-6878-9840; Huffenberger, Kevin/0000-0001-7109-0099; Bouchet, Francois/0000-0002-8051-2924; Reach, William/0000-0001-8362-4094; Valiviita, Jussi/0000-0001-6225-3693; Hurier, Guillaume/0000-0002-1215-0706; Martinez-Gonzalez, Enrique/0000-0002-0179-8590; Piacentini, Francesco/0000-0002-5444-9327; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; Toffolatti, Luigi/0000-0003-2645-7386; Tomasi, Maurizio/0000-0002-1448-6131; Colombo, Loris/0000-0003-4572-7732; Herranz, Diego/0000-0003-4540-1417; Vielva, Patricio/0000-0003-0051-272X; Hivon, Eric/0000-0003-1880-2733; Paoletti, Daniela/0000-0003-4761-6147; Savini, Giorgio/0000-0003-4449-9416 FU European Research Council under the European Union/ERC [267934] FX The development of Planck has been supported by: ESA; CNES and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MICINN, JA, and RES (Spain); Tekes, AoF, and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); and PRACE (EU). A description of the Planck Collaboration and a list of its members, including the technical or scientific activities in which they have been involved, can be found at http://www.sciops.esa.int/index.php?project=planck&page=Planck_Collabora tion. The research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement No. 267934. NR 99 TC 7 Z9 7 U1 8 U2 13 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD FEB PY 2016 VL 586 AR A135 DI 10.1051/0004-6361/201425044 PG 24 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DD1XG UT WOS:000369715900145 ER PT J AU Adam, R Ade, PAR Aghanim, N Arnaud, M Aumont, J Baccigalupi, C Banday, AJ Barreiro, RB Bartlett, JG Bartolo, N Battaner, E Benabed, K Benoit-Levy, A Bernard, JP Bersanelli, M Bielewicz, P Bonaldi, A Bonavera, L Bond, JR Borrill, J Bouchet, FR Boulanger, F Bracco, A Bucher, M Burigana, C Butler, RC Calabrese, E Cardoso, JF Catalano, A Challinor, A Chamballu, A Chary, RR Chiang, HC Christensen, PR Clements, DL Colombi, S Colombo, LPL Combet, C Couchot, F Coulais, A Crill, BP Curto, A Cuttaia, F Danese, L Davies, RD Davis, RJ de Bernardis, P de Zotti, G Delabrouille, J Delouis, JM Desert, FX Dickinson, C Diego, JM Dolag, K Dole, H Donzelli, S Dore, O Douspis, M Ducout, A Dunkley, J Dupac, X Efstathiou, G Elsner, F Ensslin, TA Eriksen, HK Falgarone, E Finelli, F Forni, O Frailis, M Fraisse, AA Franceschi, E Frejsel, A Galeotta, S Galli, S Ganga, K Ghosh, T Giard, M Giraud-Heraud, Y Gjerlow, E Gonzalez-Nuevo, J Gorski, KM Gratton, S Gregorio, A Gruppuso, A Guillet, V Hansen, FK Hanson, D Harrison, DL Helou, G Henrot-Versille, S Hernandez-Monteagudo, C Herranz, D Hivon, E Hobson, M Holmes, WA Huffenberger, KM Hurier, G Jaffe, AH Jaffe, TR Jewell, J Jones, WC Juvela, M Keihanen, E Keskitalo, R Kisner, TS Kneissl, R Knoche, J Knox, L Krachmalnicoff, N Kunz, M Kurki-Suonio, H Lagache, G Lamarre, JM Lasenby, A Lattanzi, M Lawrence, CR Leahy, JP Leonardi, R Lesgourgues, J Levrier, F Liguori, M Lilje, PB Linden-Vornle, M Lopez-Caniego, M Lubin, PM Macias-Perez, JF Maffei, B Maino, D Mandolesi, N Mangilli, A Maris, M Martin, PG Martinez-Gonzalez, E Masi, S Matarrese, S Mazzotta, P Meinhold, PR Melchiorri, A Mendes, L Mennella, A Migliaccio, M Mitra, S Miville-Deschenes, MA Moneti, A Montier, L Morgante, G Mortlock, D Moss, A Munshi, D Murphy, JA Naselsky, P Nati, F Natoli, P Netterfield, CB Norgaard-Nielsen, HU Noviello, F Novikov, D Novikov, I Pagano, L Pajot, F Paladini, R Paoletti, D Partridge, B Pasian, F Patanchon, G Pearson, TJ Perdereau, O Perotto, L Perrotta, F Pettorino, V Piacentini, F Piat, M Pierpaoli, E Pietrobon, D Plaszczynski, S Pointecouteau, E Polenta, G Ponthieu, N Popa, L Pratt, GW Prunet, S Puget, JL Rachen, JP Reach, WT Rebolo, R Remazeilles, M Renault, C Renzi, A Ricciardi, S Ristorcelli, I Rocha, G Rosset, C Rossetti, M Roudier, G d'Orfeuil, BR Rubino-Martin, JA Rusholme, B Sandri, M Santos, D Savelainen, M Savini, G Scott, D Soler, JD Spencer, LD Stolyarov, V Stompor, R Sudiwala, R Sunyaev, R Sutton, D Suur-Uski, AS Sygnet, JF Tauber, JA Terenzi, L Toffolatti, L Tomasi, M Tristram, M Tucci, M Tuovinen, J Valenziano, L Valiviita, J Van Tent, B Vibert, L Vielva, P Villa, F Wade, LA Wandelt, BD Watson, R Wehus, IK White, M White, SDM Yvon, D Zacchei, A Zonca, A AF Adam, R. Ade, P. A. R. Aghanim, N. Arnaud, M. Aumont, J. Baccigalupi, C. Banday, A. J. Barreiro, R. B. Bartlett, J. G. Bartolo, N. Battaner, E. Benabed, K. Benoit-Levy, A. Bernard, J. -P. Bersanelli, M. Bielewicz, P. Bonaldi, A. Bonavera, L. Bond, J. R. Borrill, J. Bouchet, F. R. Boulanger, F. Bracco, A. Bucher, M. Burigana, C. Butler, R. C. Calabrese, E. Cardoso, J. -F. Catalano, A. Challinor, A. Chamballu, A. Chary, R. -R. Chiang, H. C. Christensen, P. R. Clements, D. L. Colombi, S. Colombo, L. P. L. Combet, C. Couchot, F. Coulais, A. Crill, B. P. Curto, A. Cuttaia, F. Danese, L. Davies, R. D. Davis, R. J. de Bernardis, P. de Zotti, G. Delabrouille, J. Delouis, J. -M. Desert, F. -X. Dickinson, C. Diego, J. M. Dolag, K. Dole, H. Donzelli, S. Dore, O. Douspis, M. Ducout, A. Dunkley, J. Dupac, X. Efstathiou, G. Elsner, F. Ensslin, T. A. Eriksen, H. K. Falgarone, E. Finelli, F. Forni, O. Frailis, M. Fraisse, A. A. Franceschi, E. Frejsel, A. Galeotta, S. Galli, S. Ganga, K. Ghosh, T. Giard, M. Giraud-Heraud, Y. Gjerlow, E. Gonzalez-Nuevo, J. Gorski, K. M. Gratton, S. Gregorio, A. Gruppuso, A. Guillet, V. Hansen, F. K. Hanson, D. Harrison, D. L. Helou, G. Henrot-Versille, S. Hernandez-Monteagudo, C. Herranz, D. Hivon, E. Hobson, M. Holmes, W. A. Huffenberger, K. M. Hurier, G. Jaffe, A. H. Jaffe, T. R. Jewell, J. Jones, W. C. Juvela, M. Keihaenen, E. Keskitalo, R. Kisner, T. S. Kneissl, R. Knoche, J. Knox, L. Krachmalnicoff, N. Kunz, M. Kurki-Suonio, H. Lagache, G. Lamarre, J. -M. Lasenby, A. Lattanzi, M. Lawrence, C. R. Leahy, J. P. Leonardi, R. Lesgourgues, J. Levrier, F. Liguori, M. Lilje, P. B. Linden-Vornle, M. Lopez-Caniego, M. Lubin, P. M. Macias-Perez, J. F. Maffei, B. Maino, D. Mandolesi, N. Mangilli, A. Maris, M. Martin, P. G. Martinez-Gonzalez, E. Masi, S. Matarrese, S. Mazzotta, P. Meinhold, P. R. Melchiorri, A. Mendes, L. Mennella, A. Migliaccio, M. Mitra, S. Miville-Deschenes, M. -A. Moneti, A. Montier, L. Morgante, G. Mortlock, D. Moss, A. Munshi, D. Murphy, J. A. Naselsky, P. Nati, F. Natoli, P. Netterfield, C. B. Norgaard-Nielsen, H. U. Noviello, F. Novikov, D. Novikov, I. Pagano, L. Pajot, F. Paladini, R. Paoletti, D. Partridge, B. Pasian, F. Patanchon, G. Pearson, T. J. Perdereau, O. Perotto, L. Perrotta, F. Pettorino, V. Piacentini, F. Piat, M. Pierpaoli, E. Pietrobon, D. Plaszczynski, S. Pointecouteau, E. Polenta, G. Ponthieu, N. Popa, L. Pratt, G. W. Prunet, S. Puget, J. -L. Rachen, J. P. Reach, W. T. Rebolo, R. Remazeilles, M. Renault, C. Renzi, A. Ricciardi, S. Ristorcelli, I. Rocha, G. Rosset, C. Rossetti, M. Roudier, G. Rouille d'Orfeuil, B. Rubino-Martin, J. A. Rusholme, B. Sandri, M. Santos, D. Savelainen, M. Savini, G. Scott, D. Soler, J. D. Spencer, L. D. Stolyarov, V. Stompor, R. Sudiwala, R. Sunyaev, R. Sutton, D. Suur-Uski, A. -S. Sygnet, J. -F. Tauber, J. A. Terenzi, L. Toffolatti, L. Tomasi, M. Tristram, M. Tucci, M. Tuovinen, J. Valenziano, L. Valiviita, J. Van Tent, B. Vibert, L. Vielva, P. Villa, F. Wade, L. A. Wandelt, B. D. Watson, R. Wehus, I. K. White, M. White, S. D. M. Yvon, D. Zacchei, A. Zonca, A. CA Planck Collaboration TI Planck intermediate results XXX. The angular power spectrum of polarized dust emission at intermediate and high Galactic latitudes SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE cosmic background radiation; cosmology: observations; ISM: structure; ISM: magnetic fields; polarization ID MICROWAVE BACKGROUND POLARIZATION; PRE-LAUNCH STATUS; INTERSTELLAR DUST; 353 GHZ; STATISTICAL PROPERTIES; FOREGROUND EMISSION; HIGH-FREQUENCY; MOLECULAR GAS; B-MODES; SUBMILLIMETER AB The polarized thermal emission from diffuse Galactic dust is the main foreground present in measurements of the polarization of the cosmic microwave background (CMB) at frequencies above 100 GHz. In this paper we exploit the uniqueness of the Planck HFI polarization data from 100 to 353 GHz to measure the polarized dust angular power spectra C-l(EE) and C-l(BB) over the multipole range 40 < l < 600 well away from the Galactic plane. These measurements will bring new insights into interstellar dust physics and allow a precise determination of the level of contamination for CMB polarization experiments. Despite the non-Gaussian and anisotropic nature of Galactic dust, we show that general statistical properties of the emission can be characterized accurately over large fractions of the sky using angular power spectra. The polarization power spectra of the dust are well described by power laws in multipole, C-l proportional to l(alpha), with exponents alpha(EE,BB) = -2.42 +/- 0.02. The amplitudes of the polarization power spectra vary with the average brightness in a way similar to the intensity power spectra. The frequency dependence of the dust polarization spectra is consistent with modified blackbody emission with beta(d) = 1.59 and T-d = 19.6 K down to the lowest Planck HFI frequencies. We find a systematic difference between the amplitudes of the Galactic B-and E-modes, C-l(BB) = C-l(EE) = 0.5. We verify that these general properties are preserved towards high Galactic latitudes with low dust column densities. We show that even in the faintest dust-emitting regions there are no "clean" windows in the sky where primordial CMB B-mode polarization measurements could be made without subtraction of foreground emission. Finally, we investigate the level of dust polarization in the specific field recently targeted by the BICEP2 experiment. Extrapolation of the Planck 353 GHz data to 150 GHz gives a dust power D-l(BB) equivalent to l(l + 1)C-l(BB)/(2 pi) of 1.32 x 10(-2) mu K-CMB(2) over the multipole range of the primordial recombination bump (40 < l < 120); the statistical uncertainty is +/-0.29 x 10(-2) mu K-CMB(2) and there is an additional uncertainty (+0.28, -0.24) x 10(-2) mu K-CMB(2) from the extrapolation. This level is the same magnitude as reported by BICEP2 over this l range, which highlights the need for assessment of the polarized dust signal even in the cleanest windows of the sky. C1 [Bartlett, J. G.; Bucher, M.; Cardoso, J. -F.; Delabrouille, J.; Ganga, K.; Giraud-Heraud, Y.; Patanchon, G.; Piat, M.; Remazeilles, M.; Rosset, C.; Roudier, G.; Stompor, R.] Univ Paris Diderot, Sorbonne Paris Cite, APC, CNRS,IN2P3,CEA,Irfu,Observ Paris, 10 Rue Alice Domon & Leonie Duquet, F-75205 Paris 13, France. [Kunz, M.] African Inst Math Sci, 6-8 Melrose Rd, Cape Town, South Africa. [Natoli, P.; Polenta, G.] Agenzia Spaziale Italiana Sci Data Ctr, Via Politecn Snc, I-00133 Rome, Italy. [Mandolesi, N.] Agenzia Spaziale Italiana, Viale Liegi 26, Rome, Italy. [Lagache, G.] Aix Marseille Univ, CNRS, LAM, UMR 7326, F-13388 Marseille, France. [Curto, A.; Hobson, M.; Lasenby, A.; Stolyarov, V.] Univ Cambridge, Cavendish Lab, Astrophys Grp, JJ Thomson Ave, Cambridge CB3 0HE, England. [Chiang, H. C.] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Astrophys & Cosmol Res Unit, Westville Campus,Private Bag X54001, ZA-4000 Durban, South Africa. [Kneissl, R.] ALMA Santiago Cent Off, Atacama Large Millimeter Submillimeter Array, Alonso de Cordova 3107,Casilla 763 0355, Santiago, Chile. [Bond, J. R.; Hanson, D.; Martin, P. G.; Miville-Deschenes, M. -A.] Univ Toronto, CITA, 60 St George St, Toronto, ON M5S 3H8, Canada. [Banday, A. J.; Bernard, J. -P.; Bielewicz, P.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] IRAP, CNRS, 9 Ave Colonel Roche,BP 44346, F-31028 Toulouse 4, France. [Tuovinen, J.] Trinity Coll Dublin, CRANN, Dublin, Ireland. [Dore, O.; Helou, G.; Pearson, T. J.; Rocha, G.] CALTECH, Pasadena, CA 91125 USA. [Challinor, A.] Univ Cambridge, Ctr Theoret Cosmol, DAMTP, Wilberforce Rd, Cambridge CB3 0WA, England. [Hernandez-Monteagudo, C.] CEFCA, Plaza San Juan 1,Planta 2, Teruel 44001, Spain. [Borrill, J.; Keskitalo, R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA. [Rebolo, R.] CSIC, Madrid, Spain. [Chamballu, A.; Yvon, D.] CEA Saclay, DSM Irfu SPP, F-91191 Gif Sur Yvette, France. [Linden-Vornle, M.; Norgaard-Nielsen, H. U.] Tech Univ Denmark, Natl Space Inst, DTU Space, Elektrovej 327, DK-2800 Lyngby, Denmark. [Kunz, M.; Tucci, M.] Univ Geneva, Dept Phys Theor, 24 Quai E Ansermet, CH-1211 Geneva 4, Switzerland. [Toffolatti, L.] Univ Oviedo, Dept Fis, Avda Calvo Sotelo S-N, E-33007 Oviedo, Spain. [Netterfield, C. B.] Univ Toronto, Dept Astron & Astrophys, 50 St George St, Toronto, ON, Canada. [Rachen, J. P.] Radboud Univ Nijmegen, IMAPP, Dept Astrophys, POB 9010, NL-6500 GL Nijmegen, Netherlands. [Scott, D.] Univ British Columbia, Dept Phys & Astron, 6224 Agr Rd, Vancouver, BC V5Z 1M9, Canada. [Colombo, L. P. L.; Pierpaoli, E.] Univ So Calif, Dana & David Dornsife Coll Letter Arts & Sci, Dept Phys & Astron, Los Angeles, CA 90089 USA. [Benoit-Levy, A.; Elsner, F.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Huffenberger, K. M.] Florida State Univ, Dept Phys, Keen Phys Bldg, Tallahassee, FL 32306 USA. [Juvela, M.; Keihaenen, E.; Kurki-Suonio, H.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Dept Phys, Gustaf Hallstromin Katu 2a, Helsinki, Finland. [Chiang, H. C.; Fraisse, A. A.; Jones, W. C.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [White, M.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Knox, L.] Univ Calif Davis, Dept Phys, 1 Shields Ave, Davis, CA 95616 USA. [Lubin, P. M.; Meinhold, P. R.; Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Wandelt, B. D.] Univ Illinois, Dept Phys, 1110 W Green St, Urbana, IL 61801 USA. [Bartolo, N.; Liguori, M.; Matarrese, S.] Univ Padua, Dipartimento Fis Astron G Galilei, Via Marzolo 8, I-35131 Padua, Italy. [Burigana, C.; Lattanzi, M.; Mandolesi, N.; Natoli, P.] Univ Ferrara, Dipartimento Fis & Sci Terra, Via Saragat 1, I-44122 Ferrara, Italy. [de Bernardis, P.; Masi, S.; Melchiorri, A.; Nati, F.; Pagano, L.; Piacentini, F.] Univ Roma La Sapienza, Dipartimento Fis, Ple A Moro 2, Rome, Italy. [Bersanelli, M.; Krachmalnicoff, N.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] Univ Milan, Dipartimento Fis, Via Celoria 16, Milan, Italy. [Gregorio, A.] Univ Trieste, Dipartmento Fis, Via A Valerio 2, I-34127 Trieste, Italy. [Mazzotta, P.] Univ Roma Tor Vergata, Dipartimento Fis, Via Ric Sci 1, Rome, Italy. [Renzi, A.] Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci 1, Rome, Italy. [Christensen, P. R.; Naselsky, P.] Niels Bohr Inst, Discovery Ctr, Blegdamsvej 17, DK-2100 Copenhagen, Denmark. [Rebolo, R.; Rubino-Martin, J. A.] ULL, Dept Astrofis, Tenerife 38206, Spain. [Kneissl, R.] European So Observ, ESO Vitacura, Alonso de Cordova 3107,Casilla 19001, 3antiago, Chile. [Dupac, X.; Leonardi, R.; Mendes, L.] European Space Agcy, ESAC, Planck Sci Off, Camino Bajo del Castillo S-N, Madrid, Spain. [Tauber, J. A.] European Space Agcy, Estec, Keplerlaan 1, NL-2201 AZ Noordwijk, Netherlands. [Terenzi, L.] Univ E Campus, Fac Ingn, Via Isimbardi 10, I-22060 Novedrate, CO, Italy. [Matarrese, S.] Ist Nazl Fis Nucl, Gran Sasso Sci Inst, Viale F Crispi 7, I-67100 Laquila, Italy. [Pettorino, V.] HGSFP, Philosophenweg 16, D-69120 Heidelberg, Germany. [Pettorino, V.] Heidelberg Univ, Dept Theoret Phys, Philosophenweg 16, D-69120 Heidelberg, Germany. [Partridge, B.] Haverford Coll, Dept Astron, 370 Lancaster Ave, Haverford, PA 19041 USA. [Kurki-Suonio, H.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Helsinki Inst Phys, Gustaf Hallstromin Katu 2, Helsinki, Finland. [de Zotti, G.] INAF Osservatorio Astron Padova, Vicolo Osservatorio 5, Padua, Italy. [Polenta, G.] INAF Osservatorio Astron Roma, Via Frascati 33, Monte Porzio Catone, Italy. [Frailis, M.; Galeotta, S.; Gregorio, A.; Maris, M.; Pasian, F.; Zacchei, A.] INAF Osservatorio Astron Trieste, Via GB Tiepolo 11, Trieste, Italy. [Burigana, C.; Butler, R. C.; Cuttaia, F.; Ducout, A.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Mandolesi, N.; Morgante, G.; Natoli, P.; Paoletti, D.; Ricciardi, S.; Sandri, M.; Terenzi, L.; Toffolatti, L.; Valenziano, L.; Villa, F.] INAF IASF Bologna, Via Gobetti 101, Bologna, Italy. [Bersanelli, M.; Donzelli, S.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] INAF IASF Milano, Via E Bassini 15, Milan, Italy. [Burigana, C.; Finelli, F.; Paoletti, D.] INFN, Sez Bologna, Via Irnerio 46, I-40126 Bologna, Italy. [Melchiorri, A.; Pagano, L.] Univ Roma La Sapienza, INFN, Sez Roma 1, Piazzale Aldo Moro 2, I-00185 Rome, Italy. [Renzi, A.] Univ Roma Tor Vergata, INFN, Sez Roma 2, Via Ric Sci 1, Rome, Italy. [Gregorio, A.] Ist Nazl Fis Nucl, Natl Inst Nucl Phys, Via Valerio 2, I-34127 Trieste, Italy. [Desert, F. -X.; Ponthieu, N.] Univ Grenoble Alpes, IPAG, CNRS, F-38000 Grenoble, France. [Mitra, S.] IUCAA, Post Bag 4,Pune Univ Campus, Pune 411007, Maharashtra, India. [Clements, D. L.; Ducout, A.; Jaffe, A. H.; Mortlock, D.; Novikov, D.] Univ London Imperial Coll Sci Technol & Med, Astrophys Grp, Blackett Lab, Prince Consort Rd, London SW7 2AZ, England. [Chary, R. -R.; Paladini, R.; Pearson, T. J.; Rusholme, B.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Dole, H.] Inst Univ France, 103 Bd St Michel, F-75005 Paris, France. [Aghanim, N.; Aumont, J.; Boulanger, F.; Bracco, A.; Chamballu, A.; Dole, H.; Douspis, M.; Ghosh, T.; Guillet, V.; Hurier, G.; Kunz, M.; Lagache, G.; Miville-Deschenes, M. -A.; Pajot, F.; Ponthieu, N.; Puget, J. -L.; Remazeilles, M.; Soler, J. D.; Vibert, L.] Univ Paris 11, CNRS, UMR 8617, Inst Astrophys Spatiale, Batiment 121, F-91405 Orsay, France. [Benabed, K.; Benoit-Levy, A.; Bouchet, F. R.; Cardoso, J. -F.; Colombi, S.; Delouis, J. -M.; Ducout, A.; Elsner, F.; Galli, S.; Hivon, E.; Mangilli, A.; Moneti, A.; Prunet, S.; Sygnet, J. -F.; Wandelt, B. D.] CNRS, UMR 7095, Inst Astrophys Paris, 98bis Blvd Arago, F-75014 Paris, France. [Popa, L.] Inst Space Sci, Bucharest, Romania. [Challinor, A.; Efstathiou, G.; Gratton, S.; Harrison, D. L.; Migliaccio, M.; Sutton, D.] Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England. [Eriksen, H. K.; Gjerlow, E.; Hansen, F. K.; Lilje, P. B.] Univ Oslo, Inst Theoret Astrophys, Oslo, Norway. [Rebolo, R.; Rubino-Martin, J. A.] Inst Astrofis Canarias, C Via Lactea S-N, Tenerife, Spain. [Barreiro, R. B.; Bonavera, L.; Curto, A.; Diego, J. M.; Ducout, A.; Gonzalez-Nuevo, J.; Herranz, D.; Lopez-Caniego, M.; Martinez-Gonzalez, E.; Toffolatti, L.; Vielva, P.] Univ Cantabria, CSIC, Inst Fis Cantabria, Avda Castros S-N, E-39005 Santander, Spain. [Bartolo, N.; Matarrese, S.] Ist Nazl Fis Nucl, Sez Padova, Via Marzolo 8, I-35131 Padua, Italy. [Bartlett, J. G.; Colombo, L. P. L.; Crill, B. P.; Dore, O.; Gorski, K. M.; Hanson, D.; Holmes, W. A.; Jewell, J.; Lawrence, C. R.; Mitra, S.; Pietrobon, D.; Rocha, G.; Roudier, G.; Wade, L. A.; Wehus, I. K.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA USA. [Bonaldi, A.; Davies, R. D.; Davis, R. J.; Dickinson, C.; Ducout, A.; Leahy, J. P.; Maffei, B.; Noviello, F.; Remazeilles, M.; Watson, R.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Alan Turing Bldg,Oxford Rd, Manchester M13 9PL, Lancs, England. [Challinor, A.; Gratton, S.; Harrison, D. L.; Lasenby, A.; Migliaccio, M.; Stolyarov, V.; Sutton, D.] Kavli Inst Cosmol Cambridge, Madingley Rd, Cambridge CB3 0HA, England. [Couchot, F.; Henrot-Versille, S.; Perdereau, O.; Plaszczynski, S.; Rouille d'Orfeuil, B.; Tristram, M.] Univ Paris 11, CNRS IN2P3, LAL, Orsay, France. [Lesgourgues, J.] Univ Savoie, CNRS, LAPTh, BP110, F-74941 Annecy Le Vieux, France. [Catalano, A.; Coulais, A.; Falgarone, E.; Lamarre, J. -M.; Levrier, F.; Roudier, G.] Observ Paris, CNRS, LERMA, 61 Ave Observ, F-75014 Paris, France. [Arnaud, M.; Chamballu, A.; Pratt, G. W.] Univ Paris Diderot, CNRS, CEA DSM, Lab AIM,IRFU,Serv Astrophys,CEA Saclay, Bat 709, F-91191 Gif Sur Yvette, France. [Cardoso, J. -F.] CNRS, UMR 5141, Lab Traitement & Commun Informat, 46 Rue Barrault, F-75634 Paris, France. [Cardoso, J. -F.] Telecom ParisTech, 46 Rue Barrault, F-75634 Paris, France. [Adam, R.; Catalano, A.; Combet, C.; Macias-Perez, J. F.; Perotto, L.; Renault, C.; Santos, D.] Univ Grenoble 1, Lab Phys Subatom & Cosmol, CNRS IN2P3, Inst Natl Polytech Grenoble, 53 Rue Martyrs, F-38026 Grenoble, France. [Van Tent, B.] Univ Paris 11, Lab Phys Theor, Batiment 210, F-91405 Orsay, France. [Van Tent, B.] CNRS, Batiment 210, F-91405 Orsay, France. [Kisner, T. S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Dolag, K.; Ensslin, T. A.; Hernandez-Monteagudo, C.; Knoche, J.; Rachen, J. P.; Sunyaev, R.; White, S. D. M.] Max Planck Inst Astrophys, Karl Schwarzschild Str 1, D-85741 Garching, Germany. [Hanson, D.] McGill Univ, McGill Phys, Ernest Rutherford Phys Bldg,3600 Rue Univ, Montreal, PQ H3A 2T8, Canada. [Murphy, J. A.] Natl Univ Ireland, Dept Expt Phys, Maynooth, Kildare, Ireland. [Christensen, P. R.; Frejsel, A.; Naselsky, P.; Novikov, I.] Niels Bohr Inst, Blegdamsvej 17, DK-2100 Copenhagen, Denmark. [Crill, B. P.] CALTECH, Observat Cosmol, Mail Stop 367-17, Pasadena, CA 91125 USA. [Savini, G.] UCL, Opt Sci Lab, Gower St, London, England. [Lesgourgues, J.] Ecole Polytech Fed Lausanne, SB ITP LPPC, CH-1015 Lausanne, Switzerland. [Baccigalupi, C.; Bielewicz, P.; Danese, L.; de Zotti, G.; Gonzalez-Nuevo, J.; Perrotta, F.] SISSA, Astrophys Sect, Via Bonomea 265, I-34136 Trieste, Italy. [Ade, P. A. R.; Munshi, D.; Spencer, L. D.; Sudiwala, R.] Cardiff Univ, Sch Phys & Astron, Queens Bldg, Cardiff CF24 3AA, S Glam, Wales. [Moss, A.] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England. [Sunyaev, R.] Russian Acad Sci, Space Res Inst IKI, Profsoyuznaya Str 84-32, Moscow 117997, Russia. [Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Stolyarov, V.] Russian Acad Sci, Special Astrophys Observ, Karachai Cherkessian Rep 369167, Zelenchukskiy R, Russia. [Calabrese, E.; Dunkley, J.] Univ Oxford, Subdept Astrophys, Keble Rd, Oxford OX1 3RH, England. [Lesgourgues, J.] CERN, PH TH, Div Theory, CH-1211 Geneva 23, Switzerland. [Benabed, K.; Benoit-Levy, A.; Bouchet, F. R.; Colombi, S.; Delouis, J. -M.; Elsner, F.; Hivon, E.; Prunet, S.; Wandelt, B. D.] Univ Paris 06, UMR7095, 98bis Blvd Arago, F-75014 Paris, France. [Banday, A. J.; Bernard, J. -P.; Bielewicz, P.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France. [Reach, W. T.] Univ Space Res Assoc, Stratospher Observ Infrared Astron, MS 232-11, Moffett Field, CA 94035 USA. [Dolag, K.] Univ Munich, Univ Observ, Scheinerstr 1, D-81679 Munich, Germany. [Battaner, E.] Univ Granada, Dept Fis Teor & Cosmos, Fac Ciencias, Granada, Spain. [Battaner, E.] Univ Granada, Inst Carlos Fis Teor & Computac 1, Granada, Spain. [Gorski, K. M.] Univ Warsaw Observ, Aleje Ujazdowskie 4, PL-00478 Warsaw, Poland. RP Aumont, J (reprint author), Univ Paris 11, CNRS, UMR 8617, Inst Astrophys Spatiale, Batiment 121, F-91405 Orsay, France. EM jonathan.aumont@ias.u-psud.fr RI Gonzalez-Nuevo, Joaquin/I-3562-2014; White, Martin/I-3880-2015; Ghosh, Tuhin/E-6899-2016; Toffolatti, Luigi/K-5070-2014; Tomasi, Maurizio/I-1234-2016; Colombo, Loris/J-2415-2016; Herranz, Diego/K-9143-2014; popa, lucia/B-4718-2012; Vielva, Patricio/F-6745-2014; Pearson, Timothy/N-2376-2015; Lopez-Caniego, Marcos/M-4695-2013; Martinez-Gonzalez, Enrique/E-9534-2015; Piacentini, Francesco/E-7234-2010; Nati, Federico/I-4469-2016; Novikov, Igor/N-5098-2015; Novikov, Dmitry/P-1807-2015; Stolyarov, Vladislav/C-5656-2017; Barreiro, Rita Belen/N-5442-2014; Mazzotta, Pasquale/B-1225-2016; bonavera, laura/E-9368-2017; Renzi, Alessandro/K-4114-2015; Remazeilles, Mathieu/N-1793-2015; OI Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; White, Martin/0000-0001-9912-5070; Toffolatti, Luigi/0000-0003-2645-7386; Tomasi, Maurizio/0000-0002-1448-6131; Colombo, Loris/0000-0003-4572-7732; Herranz, Diego/0000-0003-4540-1417; Vielva, Patricio/0000-0003-0051-272X; Pearson, Timothy/0000-0001-5213-6231; Martinez-Gonzalez, Enrique/0000-0002-0179-8590; Piacentini, Francesco/0000-0002-5444-9327; Paoletti, Daniela/0000-0003-4761-6147; Savini, Giorgio/0000-0003-4449-9416; Pierpaoli, Elena/0000-0002-7957-8993; TERENZI, LUCA/0000-0001-9915-6379; Reach, William/0000-0001-8362-4094; Valiviita, Jussi/0000-0001-6225-3693; Hurier, Guillaume/0000-0002-1215-0706; Zacchei, Andrea/0000-0003-0396-1192; Hivon, Eric/0000-0003-1880-2733; Lilje, Per/0000-0003-4324-7794; Nati, Federico/0000-0002-8307-5088; Stolyarov, Vladislav/0000-0001-8151-828X; Barreiro, Rita Belen/0000-0002-6139-4272; Mazzotta, Pasquale/0000-0002-5411-1748; bonavera, laura/0000-0001-8039-3876; Renzi, Alessandro/0000-0001-9856-1970; Remazeilles, Mathieu/0000-0001-9126-6266; Huffenberger, Kevin/0000-0001-7109-0099; Bouchet, Francois/0000-0002-8051-2924 FU European Research Council under the European Union/ERC [267934] FX The development of Planck has been supported by: ESA; CNES and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MICINN, J.A., and RES (Spain); Tekes, AoF, and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); and PRACE (EU). A description of the Planck Collaboration and a list of its members, including the technical or scientific activities in which they have been involved, can be found at http://www.rssd.esa.int/index.php?project=PLANCK&page=Planck_Collaborati on. Some of the results in this paper have been derived using the HEALPix package. The research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement No. 267934. NR 81 TC 172 Z9 172 U1 8 U2 18 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD FEB PY 2016 VL 586 AR A133 DI 10.1051/0004-6361/201425034 PG 25 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DD1XG UT WOS:000369715900143 ER PT J AU Ade, PAR Aghanim, N Alves, MIR Aniano, G Arnaud, M Ashdown, M Atunont, J Baccigalupi, C Banday, AJ Barreiro, RB Bartolo, N Battaner, E Benabed, K Benoit-Levy, A Bernard, JP Bersanelli, M Bielewicz, P Bonaldi, A Bonavera, L Bond, JR Borrill, J Bouchet, FR Boulanger, F Burigana, C Butler, RC Calabrese, E Cardoso, JF Catalano, A Chamballu, A Chiang, HC Christensen, PR Clements, DL Colombi, S Colombo, FPL Couchot, F Crill, BP Curto, A Cuttaia, F Danese, L Avies, RD Davis, RJ de Bernardis, P de Rosa, A de Zotti, G Delabrouille, J Dickinson, C Diego, JM Dole, H Donzelli, S Dore, O Douspis, M Draine, BT Ducout, A Dupac, X Efstathiou, G Elsner, F Ensslin, TA Eriksen, HK Falgarone, E Finelli, F Forni, O Frailis, M Fraisse, AA Franceschi, E Frejsel, A Galcotta, S Galli, S Ganga, K Ghosh, T Giard, M Gjerlow, E Gonzalez-Nuevo, J Gorski, KM Gregorio, A Gruppuso, A Guillet, V Hansen, FK Hanson, D Harrison, DL Henrot-Versille, S Hernandez-Monteagudo, C Herranz, D Hildebrandt, SR Hivon, E Holmes, WA Hovest, W Huffenberger, KM Hurier, G Jaffe, AH Jaffe, TR Jones, WC Keihanen, E Keskitalo, R Kisner, TS Kneissl, R Knoche, J Kunz, M Kurki-Suonio, H Lagache, G Lamarre, JM Lasenby, A Lattanzi, M Lawrence, CR Leonardi, R Levrier, F Liguori, M Lilje, PB Linden-Vornle, M Lopez-Caniego, M Lubin, PM Macias-Perez, JF Maffei, B Maino, D Mandolesi, N Maris, M Marshall, DJ Martin, PG Martinez-Gonzalez, E Masi, S Matarrese, S Mazzotta, P Melchiorri, A Mendes, L Mennella, A Migliaccio, M Miville-Deschenes, MA Moneti, A Montier, L Morgante, G Mortlock, D Munshi, D Murphy, JA Naselsky, P Natoli, P Norgaard-Nielsen, HU Novikov, D Novikov, I Oxborrow, CA Pagano, L Pajot, F Paladini, R Paoletti, D Pasian, F Perdereau, O Perotto, L Perrotta, F Pettorino, V Piacentini, F Piat, M Plaszczynski, S Pointecouteau, E Polenta, G Ponthieu, N Popa, L Pratt, GW Prunet, S Puget, JL Rachen, JP Reach, WT Rebolo, R Reinecke, M Remazeilles, M Renault, C Ristorcelli, I Rocha, G Roudier, G Rubino-Martin, JA Rusholme, B Sandri, M Santos, D ScottI, D Spencer, LD Stolyarov, V Sudiwala, R Sunyaev, R Sutton, D Suur-Uski, AS Sygnet, JF Tauber, JA Terenzi, L Toffolatti, L Tomasi, M Tristram, M Tucci, M Umana, G Valenziano, L Valiviita, J Van Tent, B Vielva, P Villa, F Wade, LA Wandelt, BD Wehus, IK Ysard, N Yvon, D Zacchei, A Zonca, A AF Ade, P. A. R. Aghanim, N. Alves, M. I. R. Aniano, G. Arnaud, M. Ashdown, M. Atunont, J. Baccigalupi, C. Banday, A. J. Barreiro, R. B. Bartolo, N. Battaner, E. Benabed, K. Benoit-Levy, A. Bernard, J. -P. Bersanelli, M. Bielewicz, P. Bonaldi, A. Bonavera, L. Bond, J. R. Borrill, J. Bouchet, F. R. Boulanger, F. Burigana, C. Butler, R. C. Calabrese, E. Cardoso, J. -F. Catalano, A. Chamballu, A. Chiang, H. C. Christensen, P. R. Clements, D. L. Colombi, S. Colombo, F. P. L. Couchot, F. Crill, B. P. Curto, A. Cuttaia, F. Danese, L. Avies, R. D. Davis, R. J. de Bernardis, P. de Rosa, A. de Zotti, G. Delabrouille, J. Dickinson, C. Diego, J. M. Dole, H. Donzelli, S. Dore, O. Douspis, M. Draine, B. T. Ducout, A. Dupac, X. Efstathiou, G. Elsner, F. Ensslin, T. A. Eriksen, H. K. Falgarone, E. Finelli, F. Forni, O. Frailis, M. Fraisse, A. A. Franceschi, E. Frejsel, A. Galcotta, S. Galli, S. Ganga, K. Ghosh, T. Giard, M. Gjerlow, E. Gonzalez-Nuevo, J. Gorski, K. M. Gregorio, A. Gruppuso, A. Guillet, V. Hansen, F. K. Hanson, D. Harrison, D. L. Henrot-Versille, S. Hernandez-Monteagudo, C. Herranz, D. Hildebrandt, S. R. Hivon, E. Holmes, W. A. Hovest, W. Huffenberger, K. M. Hurier, G. Jaffe, A. H. Jaffe, T. R. Jones, W. C. Keihanen, E. Keskitalo, R. Kisner, T. S. Kneissl, R. Knoche, J. Kunz, M. Kurki-Suonio, H. Lagache, G. Lamarre, J-M Lasenby, A. Lattanzi, M. Lawrence, C. R. Leonardi, R. Levrier, F. Liguori, M. Lilje, P. B. Linden-Vornle, M. Lopez-Caniego, M. Lubin, P. M. Macias-Perez, J. F. Maffei, B. Maino, D. Mandolesi, N. Maris, M. Marshall, D. J. Martin, P. G. Martinez-Gonzalez, E. Masi, S. Matarrese, S. Mazzotta, P. Melchiorri, A. Mendes, L. Mennella, A. Migliaccio, M. Miville-Deschenes, M. -A. Moneti, A. Montier, L. Morgante, G. Mortlock, D. Munshi, D. Murphy, J. A. Naselsky, P. Natoli, P. Norgaard-Nielsen, H. U. Novikov, D. Novikov, I. Oxborrow, C. A. Pagano, L. Pajot, F. Paladini, R. Paoletti, D. Pasian, F. Perdereau, O. Perotto, L. Perrotta, F. Pettorino, V. Piacentini, F. Piat, M. Plaszczynski, S. Pointecouteau, E. Polenta, G. Ponthieu, N. Popa, L. Pratt, G. W. Prunet, S. Puget, J-L Rachen, J. P. Reach, W. T. Rebolo, R. Reinecke, M. Remazeilles, M. Renault, C. Ristorcelli, I. Rocha, G. Roudier, G. Rubino-Martin, J. A. Rusholme, B. Sandri, M. Santos, D. Scott, D., I Spencer, L. D. Stolyarov, V. Sudiwala, R. Sunyaev, R. Sutton, D. Suur-Uski, A. -S. Sygnet, J. -F. Tauber, J. A. Terenzi, L. Toffolatti, L. Tomasi, M. Tristram, M. Tucci, M. Umana, G. Valenziano, L. Valiviita, J. Van Tent, B. Vielva, P. Villa, F. Wade, L. A. Wandelt, B. D. Wehus, I. K. Ysard, N. Yvon, D. Zacchei, A. Zonca, A. CA Planck Collaboration TI Planck intermediate results XXIX. All-sky dust modelling with Planck, IRAS, and WISE observations SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE dust, extinction; ISM: general ID DIFFUSE INTERSTELLAR-MEDIUM; SPITZER-SPACE-TELESCOPE; NEARBY GALAXIES SURVEY; SMALL-MAGELLANIC-CLOUD; INFRARED-EMISSION; OPTICAL-PROPERTIES; ARRAY CAMERA; DATA RELEASE; MILKY-WAY; EXTINCTION AB We present all-sky modelling of the high resolution Planck, IRAS, andWISE infrared (IR) observations using the physical dust model presented by Draine & Li in 2007 (DL, ApJ, 657, 810). We study the performance and results of this model, and discuss implications for future dust modelling. The present work extends the DL dust modelling carried out on nearby galaxies using Herschel and Spitzer data to Galactic dust emission. We employ the DL dust model to generate maps of the dust mass surface density Sigma(Md), the dust optical extinction A(V), and the starlight intensity heating the bulk of the dust, parametrized by U-min. The DL model reproduces the observed spectral energy distribution (SED) satisfactorily over most of the sky, with small deviations in the inner Galactic disk and in low ecliptic latitude areas, presumably due to zodiacal light contamination. In the Andromeda galaxy (M31), the present dust mass estimates agree remarkably well (within 10%) with DL estimates based on independent Spitzer and Herschel data. We compare the DL optical extinction A(V) for the diffuse interstellar medium (ISM) with optical estimates for approximately 2 x 10(5) quasi-stellar objects (QSOs) observed in the Sloan Digital Sky Survey (SDSS). The DL A(V) estimates are larger than those determined towards QSOs by a factor of about 2, which depends on U-min. The DL fitting parameter U-min, effectively determined by the wavelength where the SED peaks, appears to trace variations in the far-IR opacity of the dust grains per unit A(V), and not only in the starlight intensity. These results show that some of the physical assumptions of the DL model will need to be revised. To circumvent the model deficiency, we propose an empirical renormalization of the DL A(V) estimate, dependent of U-min, which compensates for the systematic differences found with QSO observations. This renormalization, made to match the A(V) estimates towards QSOs, also brings into agreement the DL A(V) estimates with those derived for molecular clouds from the near-IR colours of stars in the 2 micron all sky survey (2MASS). The DL model and the QSOs data are also used to compress the spectral information in the Planck and IRAS observations for the diffuse ISM to a family of 20 SEDs normalized per A(V), parameterized by U-min, which may be used to test and empirically calibrate dust models. The family of SEDs and the maps generated with the DL model are made public in the Planck Legacy Archive. C1 [Cardoso, J. -F.; Delabrouille, J.; Ganga, K.; Piat, M.; Remazeilles, M.; Roudier, G.] Univ Paris Diderot, APC, Sorbonne Paris Cite, CNRS,IN2P3,CEA,Irfu,Observ Paris, 10 Rue Alice Domon & Leonie Duquet, F-75205 Paris 13, France. [Kunz, M.] African Inst Math Sci, 6-8 Melrose Rd, ZA-7945 Cape Town, South Africa. [Natoli, P.; Polenta, G.] Agenzia Spaziale Italiana Sci Data Ctr, Via Politecn Snc, I-00133 Rome, Italy. [Mandolesi, N.] Agenzia Spaziale Italiana, Viale Liegi 26, I-00133 Rome, Italy. [Ashdown, M.; Curto, A.; Lasenby, A.; Stolyarov, V.] Univ Cambridge, Cavendish Lab, Astrophys Grp, JJ Thomson Ave, Cambridge CB3 0HE, England. [Chiang, H. C.] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Astrophys & Cosmol Res Unit, Westville Campus,Private Bag X54001, ZA-4000 Durban, South Africa. [Kneissl, R.] ALMA Santiago Cent Off, Atacama Large Millimeter Submillimeter Array, Alonso de Cordova 3107,Casilla 763 0355, Santiago, Chile. [Kneissl, R.] Univ Toronto, CITA, 60 St George St, Toronto, ON M5S 3H8, Canada. [Banday, A. J.; Bernard, J. -P.; Bielewicz, P.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] CNRS, IRAP, 9 Ave Colonel Roche,BP 44346, F-31028 Toulouse 4, France. [Dore, O.; Hildebrandt, S. R.; Rocha, G.] CALTECH, Pasadena, CA 91125 USA. [Hernandez-Monteagudo, C.] CEFCA, Plaza San Juan 1,Planta 2, Teruel 44001, Spain. [Borrill, J.; Keskitalo, R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA. [Rebolo, R.] CSIC, Madrid, Spain. [Chamballu, A.; Yvon, D.] CEA Saclay, DSM Irfu SPP, F-91191 Gif Sur Yvette, France. [Linden-Vornle, M.; Norgaard-Nielsen, H. U.; Oxborrow, C. A.] Tech Univ Denmark, Natl Space Inst, DTU Space, Elektrovej 327, DK-2800 Lyngby, Denmark. [Kunz, M.; Tucci, M.] Univ Geneva, Dept Phys Theor, 24 Quai E Ansermet, CH-1211 Geneva 4, Switzerland. [Toffolatti, L.] Univ Oviedo, Dept Fis, Avda Calvo Sotelo S-N, E-33007 Oviedo, Spain. [Rachen, J. P.] Radboud Univ Nijmegen, IMAPP, Dept Astrophys, POB 9010, NL-6500 GL Nijmegen, Netherlands. [Scott, D., I] Univ British Columbia, Dept Phys & Astron, 6224 Agr Rd, Vancouver, BC V5Z 1M9, Canada. [Colombo, F. P. L.] Univ So Calif, Dana & David Dornsife Coll Letter Arts & Sci, Dept Phys & Astron, Los Angeles, CA 90089 USA. [Benoit-Levy, A.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Huffenberger, K. M.] Florida State Univ, Dept Phys, Keen Phys Bldg,77 Chieftan Way, Tallahassee, FL 32306 USA. [Keihanen, E.; Kurki-Suonio, H.; Suur-Uski, A. -S.; Valiviita, J.; Ysard, N.] Univ Helsinki, Dept Phys, Gustaf Hallstromin Katu 2a, Helsinki 00014, Finland. [Chiang, H. C.; Fraisse, A. A.; Jones, W. C.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Lubin, P. M.; Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Wandelt, B. D.] Univ Illinois, Dept Phys, 1110 W Green St, Urbana, IL 61801 USA. [Bartolo, N.; Liguori, M.; Matarrese, S.] Univ Padua, Dipartimento Fis & Astron G Galilei, Via Marzolo 8, I-35131 Padua, Italy. [Burigana, C.; Lattanzi, M.; Mandolesi, N.; Natoli, P.] Univ Ferrara, Dipartimento Fis & Sci Terra, Via Saragat 1, I-44122 Ferrara, Italy. [de Bernardis, P.; Masi, S.; Melchiorri, A.; Pagano, L.; Piacentini, F.] Univ Roma La Sapienza, Dipartimento Fis, Ple A Moro 2, I-00133 Rome, Italy. [Bersanelli, M.; Maino, D.; Mennella, A.; Tomasi, M.] Univ Milan, Dipartimento Fis, Via Celoria 16, I-20133 Milan, Italy. [Gregorio, A.] Univ Trieste, Dipartimento Fis, Via A Valerio 2, I-34127 Trieste, Italy. [Mazzotta, P.] Univ Roma Tor Vergata, Dipartimento Fis, Via Ric Sci 1, I-00185 Rome, Italy. [Christensen, P. R.; Naselsky, P.] Niels Bohr Inst, Discovery Ctr, Blegdamsvej 17, DK-1165 Copenhagen, Denmark. [Rebolo, R.; Rubino-Martin, J. A.] ULL, Dept Astrofis, Tenerife 38206, Spain. [Kneissl, R.] ESO Vitacura, European So Observ, Alonso de Cordova 3107,Casilla 19001, Santiago, Chile. [Dupac, X.; Leonardi, R.; Mendes, L.] European Space Agcy, ESAC, Planck Sci Off, Camino Bajo del Castillo S-N, Madrid, Spain. [Tauber, J. A.] European Space Agcy, Estec, Keplerlaan 1, NL-2201 AZ Noordwijk, Netherlands. [Terenzi, L.] Univ E Campus, Fac Ingn, Via Isimbardi 10, I-22060 Novedrate, CO, Italy. [Pettorino, V.] HGSFP, Philosophenweg 16, D-69120 Heidelberg, Germany. [Pettorino, V.] Heidelberg Univ, Dept Theoret Phys, Philosophenweg 16, D-69120 Heidelberg, Germany. [Kurki-Suonio, H.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Helsinki Inst Phys, Gustaf Hallstromin Katu 2, Helsinki, Finland. [Umana, G.] INAF Osservatorio Astrofis Catania, Via S Sofia 78, Catania, Italy. [de Zotti, G.] INAF Osservatorio Astron Padova, Vicolo Osservatorio 5, I-35131 Padua, Italy. [Polenta, G.] INAF Osservatorio Aston Roma, Via Frascati 33, Monte Porzio Catone, Italy. [Frailis, M.; Galcotta, S.; Gregorio, A.; Maris, M.; Pasian, F.; Zacchei, A.] INAF Osservatorio Astron Trieste, Via GB Tiepolo 11, I-34131 Trieste, Italy. [Burigana, C.; Butler, R. C.; Cuttaia, F.; de Rosa, A.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Mandolesi, N.; Morgante, G.; Natoli, P.; Paoletti, D.; Sandri, M.; Terenzi, L.; Toffolatti, L.; Valenziano, L.; Villa, F.] INAF IASF Bologna, Via Gobetti 101, I-40127 Bologna, Italy. [Bersanelli, M.; Donzelli, S.; Maino, D.; Mennella, A.; Tomasi, M.] INAF IASF Milano, Via E Bassini 15, I-20133 Milan, Italy. [Burigana, C.; Finelli, F.; Paoletti, D.] INFN, Sez Bologna, Via Irnerio 46, I-40126 Bologna, Italy. [Melchiorri, A.; Pagano, L.] Univ Roma La Sapienza, Ist Nazl Fis Nucl, Sez Roma 1, Piazzale Aldo Moro 2, I-00185 Rome, Italy. [Gregorio, A.] Ist Nazl Fis Nucl, Natl Inst Nucl Phys, Via Valerio 2, I-34127 Trieste, Italy. [Ponthieu, N.] Univ Grenoble Alpes, IPAG, CNRS, F-38000 Grenoble, France. [Clements, D. L.; Ducout, A.; Jaffe, A. H.; Mortlock, D.; Novikov, D.] Univ London Imperial Coll Sci Technol & Med, Astrophys Grp, Blackett Lab, Prince Consort Rd, London SW7 2AZ, England. [Paladini, R.; Rusholme, B.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Dole, H.] Inst Univ France, 103 Bd St Michel, F-75005 Paris, France. [Aghanim, N.; Alves, M. I. R.; Aniano, G.; Atunont, J.; Boulanger, F.; Chamballu, A.; Dole, H.; Douspis, M.; Ghosh, T.; Guillet, V.; Hurier, G.; Kunz, M.; Lagache, G.; Miville-Deschenes, M. -A.; Pajot, F.; Ponthieu, N.; Puget, J-L; Remazeilles, M.] Univ Paris 11, CNRS, UMR 8617, Inst Astrophys Spatiale, Batiment 121, F-91898 Orsay, France. [Benabed, K.; Benoit-Levy, A.; Bouchet, F. R.; Cardoso, J. -F.; Colombi, S.; Ducout, A.; Elsner, F.; Galli, S.; Hivon, E.; Moneti, A.; Prunet, S.; Sygnet, J. -F.; Wandelt, B. D.] Inst Astrophys, CNRS, UMR 7095, 98bis Blvd Arago, F-75014 Paris, France. [Popa, L.] Inst Space Sci, Bucharest, Romania. [Efstathiou, G.; Harrison, D. L.; Migliaccio, M.; Sutton, D.] Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England. [Eriksen, H. K.; Gjerlow, E.; Hansen, F. K.; Lilje, P. B.] Univ Oslo, Inst Theoret Astrophys, N-0371 Oslo, Norway. [Rebolo, R.; Rubino-Martin, J. A.] Inst Astrofis Canarias, C Via Lactea S-N, Tenerife 38200, Spain. [Barreiro, R. B.; Bonavera, L.; Curto, A.; Diego, J. M.; Gonzalez-Nuevo, J.; Herranz, D.; Lopez-Caniego, M.; Martinez-Gonzalez, E.; Toffolatti, L.; Vielva, P.] Univ Cantabria, CSIC, Inst Fis Cantabria, Avda Castros S-N, E-39005 Santander, Spain. [Colombo, F. P. L.; Crill, B. P.; Dore, O.; Gorski, K. M.; Hanson, D.; Holmes, W. A.; Lawrence, C. R.; Rocha, G.; Roudier, G.; Wade, L. A.; Wehus, I. K.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA USA. [Bonaldi, A.; Avies, R. D.; Davis, R. J.; Dickinson, C.; Maffei, B.; Remazeilles, M.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Alan Turing Bldg,Oxford Rd, Manchester M13 9PL, Lancs, England. [Ashdown, M.; Harrison, D. L.; Lasenby, A.; Migliaccio, M.; Stolyarov, V.; Sutton, D.] Kavli Inst Cosmol Cambridge, Madingley Rd, Cambridge CB3 0HA, England. [Couchot, F.; Henrot-Versille, S.; Perdereau, O.; Plaszczynski, S.; Tristram, M.; Tucci, M.] Univ Paris 11, CNRS, IN2P3, LAL, F-91898 Orsay, France. [Catalano, A.; Falgarone, E.; Lamarre, J-M; Levrier, F.; Roudier, G.] Observ Paris, CNRS, LERMA, 61 Ave Observ, F-75000 Paris, France. [Arnaud, M.; Chamballu, A.; Marshall, D. J.; Pratt, G. W.] Univ Paris Diderot, CNRS, CEA DSM, Lab AIM,IRFU,Serv Astrophys,CEA Saclay, Bat 709, F-91191 Gif Sur Yvette, France. [Cardoso, J. -F.] CNRS, UMR 5141, Lab Traitement & Commun Informat, 46 Rue Barrault, F-75634 Paris 13, France. [Cardoso, J. -F.] Telecom ParisTech, 46 Rue Barrault, F-75634 Paris 13, France. [Catalano, A.; Macias-Perez, J. F.; Perotto, L.; Renault, C.; Santos, D.] Univ Grenoble 1, Lab Phys Subatom & Cosmol, Inst Natl Polytech Grenoble, CNRS,IN2P3, 53 Rue Martyrs, F-38026 Grenoble, France. [Van Tent, B.] Univ Paris 11, Lab Phys Theor, Batiment 210, F-91405 Orsay, France. [Van Tent, B.] CNRS, Batiment 210, F-91405 Orsay, France. [Kisner, T. S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Ensslin, T. A.; Hernandez-Monteagudo, C.; Hovest, W.; Knoche, J.; Rachen, J. P.; Reinecke, M.; Sunyaev, R.] Max Planck Inst Astrophys, Karl Schwarzschild Str 1, D-85741 Garching, Germany. [Hanson, D.] McGill Univ, McGill Phys, Ernest Rutherford Phys Bldg,3600 Rue Univ, Montreal, PQ H3A 2T8, Canada. [Murphy, J. A.] Natl Univ Ireland, Dept Expt Phys, Maynooth, Kildare, Ireland. [Christensen, P. R.; Frejsel, A.; Naselsky, P.; Novikov, I.] Niels Bohr Inst, Blegdamsvej 17, DK-2100 Copenhagen, Denmark. [Crill, B. P.] CALTECH, Observat Cosmol, Mail Stop 367-17, Pasadena, CA 91125 USA. [Draine, B. T.] Princeton Univ Observ, Peyton Hall, Princeton, NJ 08544 USA. [Baccigalupi, C.; Bielewicz, P.; Danese, L.; de Zotti, G.; Gonzalez-Nuevo, J.; Perrotta, F.] SISSA, Astrophys Sect, Via Bonomea 265, I-34136 Trieste, Italy. [Ade, P. A. R.; Munshi, D.; Spencer, L. D.; Sudiwala, R.] Cardiff Univ, Sch Phys & Astron, Queens Bldg, Cardiff CF24 3AA, S Glam, Wales. [Sunyaev, R.] Russian Acad Sci, Space Res Inst IKI, Profsoyuznaya Str 84-32, Moscow 117997, Russia. [Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Stolyarov, V.] Russian Acad Sci, Special Astrophys Observ, Karachai Cherkessian Rep 369167, Zelenchukskiy R, Russia. [Calabrese, E.] Univ Oxford, Subdept Astrophys, Keble Rd, Oxford OX1 3RH, England. [Benabed, K.; Benoit-Levy, A.; Bouchet, F. R.; Colombi, S.; Elsner, F.; Hivon, E.; Prunet, S.; Wandelt, B. D.] Univ Paris 06, UMR7095, 98bis Blvd Arago, F-75014 Paris, France. [Banday, A. J.; Bernard, J. -P.; Bielewicz, P.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France. [Reach, W. T.] Univ Space Res Assoc, Stratospher Observ Infrared Astron, MS 232-11, Moffett Field, CA 94035 USA. [Battaner, E.] Univ Granada, Dept Fis Teor & Cosmos, Fac Ciencias, E-18071 Granada, Spain. [Battaner, E.] Univ Granada, Inst Carlos Fis Teor & Computac 1, E-18071 Granada, Spain. [Gorski, K. M.] Univ Warsaw Observ, Aleje Ujazdowskie 4, PL-00478 Warsaw, Poland. RP Aniano, G; Boulanger, F (reprint author), Univ Paris 11, CNRS, UMR 8617, Inst Astrophys Spatiale, Batiment 121, F-91898 Orsay, France. EM ganiano@ias.u-psud.fr; francois.boulanger@ias.u-psud.fr RI Barreiro, Rita Belen/N-5442-2014; Mazzotta, Pasquale/B-1225-2016; bonavera, laura/E-9368-2017; Colombo, Loris/J-2415-2016; Remazeilles, Mathieu/N-1793-2015; Stolyarov, Vladislav/C-5656-2017; Ghosh, Tuhin/E-6899-2016; Toffolatti, Luigi/K-5070-2014; Tomasi, Maurizio/I-1234-2016; Herranz, Diego/K-9143-2014; popa, lucia/B-4718-2012; Vielva, Patricio/F-6745-2014; Lopez-Caniego, Marcos/M-4695-2013; Martinez-Gonzalez, Enrique/E-9534-2015; Piacentini, Francesco/E-7234-2010; Gonzalez-Nuevo, Joaquin/I-3562-2014; Novikov, Igor/N-5098-2015; Novikov, Dmitry/P-1807-2015 OI Reach, William/0000-0001-8362-4094; Valiviita, Jussi/0000-0001-6225-3693; Hurier, Guillaume/0000-0002-1215-0706; Zacchei, Andrea/0000-0003-0396-1192; Lilje, Per/0000-0003-4324-7794; Paoletti, Daniela/0000-0003-4761-6147; Barreiro, Rita Belen/0000-0002-6139-4272; Mazzotta, Pasquale/0000-0002-5411-1748; bonavera, laura/0000-0001-8039-3876; Colombo, Loris/0000-0003-4572-7732; Remazeilles, Mathieu/0000-0001-9126-6266; Scott, Douglas/0000-0002-6878-9840; Huffenberger, Kevin/0000-0001-7109-0099; Bouchet, Francois/0000-0002-8051-2924; TERENZI, LUCA/0000-0001-9915-6379; Stolyarov, Vladislav/0000-0001-8151-828X; Toffolatti, Luigi/0000-0003-2645-7386; Tomasi, Maurizio/0000-0002-1448-6131; Herranz, Diego/0000-0003-4540-1417; Vielva, Patricio/0000-0003-0051-272X; Martinez-Gonzalez, Enrique/0000-0002-0179-8590; Piacentini, Francesco/0000-0002-5444-9327; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; FU European Research Council under the European Union/ERC [267934] FX The development of Planck has been supported by: ESA; CNES and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MICINN, JA, and RES (Spain); Tekes, AoF, and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); and PRACE (EU). A description of the Planck Collaboration and a list of its members, including the technical or scientific activities in which they have been involved, can be found at http://www.sciops.esa.int/index.php?project=planck&page=Planck_Collabora tion. The research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement No. 267934. NR 80 TC 18 Z9 18 U1 2 U2 5 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD FEB PY 2016 VL 586 AR A132 DI 10.1051/0004-6361/201424945 PG 26 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DD1XG UT WOS:000369715900142 ER PT J AU Ade, PAR Aghanim, N Arnaud, M Ashdown, M Aumont, J Baccigalupi, C Banday', AJ Barreiro, RB Bartolo, N Battaner, E Benabed', K Benoit-Levy, A Bernard', JP Bersanelli, M Bielewicz, P Bonaldi, A Bonavera, L Bond, JR Borri, J Bouchet, FR Boulanger, F Bracco, A Burigana, C Cardoso, JF Catalano, A Chamballu, A Chary, RR Chiang', HC Christensen', PR Colombo, LPL Combet, C Cri, BP Curto, A Cuttaia, F Danese, L Davies, RD Davis, RJ De Bernardis, P de Rosa, A de Zotti, G Delabrouille, J Delouis, JM Dickinson, C Diego, JM Dole', H Donzelli, S Dore, O Douspis, M Dunkley, J Dupac, X Efstathiou, G Elsner, F Ensslin, TA Eriksen, HK Falgarone, E Ferriere, K Finelli, F Forni, O Frailis, M Fraisse, AA Franceschi, E Frolov, A Galeotta, S Galli, S Ganga, K Ghosh, T Giard, M Gjerlow, E Gonzalez-Nuevo, J Gorski, KM Gruppuso, A Guillet, V Hansen, FK Harrison, DL Helou, G Hernandez-Monteagudo, C Herranz, D Hildebrandt, SR Hivon, E Hornstrup, A Hovest, W Huang, Z Huffenberger, KM Hurier, G Jaffe, TR Jones, WC Juvela, M Keihanen, E Keskitalo, R Kisner, TS Kneiss', R Knoche, J Kunz, M Kurki-Suonio, H Lamarre, JM Lasenby, A Lattanzi, M Lawrence, CR Leonardi, R Leon-Tavares, J Levrier, E Liguori, M Lilje, PB Linden-Vornle, M Lopez-Caniego, M Lubin, PM Macias-Perez, JF Maffei, B Maino, D Mandolesi, N Maris, M Martin, PG Martinez-Gonzalez, E Masi, S Matarrese, S McGehee, P Melchiorri, A Mennella, A Migliaccio, M Miville-Deschenes, MA Moneti, A Montier, L Morgante, G Mortlock, D Munshi, D Murphy, JA Naselsky, P Nati, F Natoli, P Novikov, D Novikov, I Oppermann, N Oxborrow, CA Pagano, L Pajot, F Paoletti, D Pasian, F Perdereau, O Pettorino, V Piacentini, F Piat, M Pierpaoli, E Plaszczynski, S Pointecouteau, E Polenta, G Ponthieu, N Pratt, GW Prunet, S Puget, JL Rachen, JP Reach, WT Rebolo, R Reinecke, M Remazeilles, M Renault, C Renzi, A Ristorcelli, I Rocha, G Rosset, C Rossetti, M Roudier, G Rubino-Martin, JA Rusholme, B Sandri, M Santos, D Savelainen, M Savini, G Scott, D Serra, P Soler, JD Stolyarov, V Sudiwala, R Sunyaev, R Suur-Uski, AS Sygnet, JF Tauber, JA Terenzi, L Toffolatti, L Tomasi, M Tristram, M Tucci, M Umana, G Valenziano, L Valiviita, J Van Tent, B Vielva, P Villa, F Wade, LA Wandelt, BD Wehus, IK Yvon, D Zacchei, A Zonca, A AF Ade, P. A. R. Aghanim, N. Arnaud, M. Ashdown, M. Aumont, J. Baccigalupi, C. Banday, A. J. Barreiro, R. B. Bartolo, N. Battaner, E. Benabed, K. Benoit-Levy, A. Bernard, J-P. Bersanelli, M. Bielewicz, P. Bonaldi, A. Bonavera, L. Bond, J. R. Borrill, J. Bouchet, F. R. Boulanger, F. Bracco, A. Burigana, C. Cardoso, J-F. Catalano, A. Chamballu, A. Chary, R-R. Chiang, H. C. Christensen, P. R. Colombo, L. P. L. Combet, C. Cri, B. P. Curto, A. Cuttaia, F. Danese, L. Davies, R. D. Davis, R. J. De Bernardis, P. de Rosa, A. de Zotti, G. Delabrouille, J. Delouis, J-M. Dickinson, C. Diego, J. M. Dole, H. Donzelli, S. Dore, O. Douspis, M. Dunkley, J. Dupac, X. Efstathiou, G. Elsner, F. Ensslin, T. A. Eriksen, H. K. Falgarone, E. Ferriere, K. Finelli, F. Forni, O. Frailis, M. Fraisse, A. A. Franceschi, E. Frolov, A. Galeotta, S. Galli, S. Ganga, K. Ghosh, T. Giard, M. Gjerlow, E. Gonzalez-Nuevo, J. Gorski, K. M. Gruppuso, A. Guillet, V. Hansen, F. K. Harrison, D. L. Helou, G. Hernandez-Monteagudo, C. Herranz, D. Hildebrandt, S. R. Hivon, E. Hornstrup, A. Hovest, W. Huang, Z. Huffenberger, K. M. Hurier, G. Jaffe, T. R. Jones, W. C. Juvela, M. Keihaenen, E. Keskitalo, R. Kisner, T. S. Kneiss', R. Knoche, J. Kunz, M. Kurki-Suonio, H. Lamarre, J-M. Lasenby, A. Lattanzi, M. Lawrence, C. R. Leonardi, R. Leon-Tavares, J. Levrier, E. Liguori, M. Lilje, P. B. Linden-Vornle, M. Lopez-Caniego, M. Lubin, P. M. Macias-Perez, J. F. Maffei, B. Maino, D. Mandolesi, N. Maris, M. Martin, P. G. Martinez-Gonzalez, E. Masi, S. Matarrese, S. McGehee, P. Melchiorri, A. Mennella, A. Migliaccio, M. Miville-Deschenes, M-A. Moneti, A. Montier, L. Morgante, G. Mortlock, D. Munshi, D. Murphy, J. A. Naselsky, P. Nati, F. Natoli, P. Novikov, D. Novikov, I. Oppermann, N. Oxborrow, C. A. Pagano, L. Pajot, F. Paoletti, D. Pasian, F. Perdereau, O. Pettorino, V. Piacentini, F. Piat, M. Pierpaoli, E. Plaszczynski, S. Pointecouteau, E. Polenta, G. Ponthieu, N. Pratt, G. W. Prunet, S. Puget, J-L Rachen, J. P. Reach, W. T. Rebolo, R. Reinecke, M. Remazeilles, M. Renault, C. Renzi, A. Ristorcelli, I. Rocha, G. Rosset, C. Rossetti, M. Roudier, G. Rubino-Martin, J. A. Rusholme, B. Sandri, M. Santos, D. Savelainen, M. Savini, G. Scott, D. Serra, P. Soler, J. D. Stolyarov, V. Sudiwala, R. Sunyaev, R. Suur-Uski, A-S Sygnet, J-F Tauber, J. A. Terenzi, L. Toffolatti, L. Tomasi, M. Tristram, M. Tucci, M. Umana, G. Valenziano, L. Valiviita, J. Van Tent, B. Vielva, P. Villa, F. Wade, L. A. Wandelt, B. D. Wehus, I. K. Yvon, D. Zacchei, A. Zonca, A. CA Planck Collaboration TI Planck intermediate results XXXVIII. E- and B-modes of dust polarization from the magnetized filamentary structure of the interstellar medium SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE polarization; galaxies: ISM; submillimeter: ISM; ISM: general ID ROTATION MEASURES; COSMIC WEB; EMISSION; GALAXY; MORPHOLOGY; WAVELETS; SPHERE; CLOUD AB The quest for a B-mode imprint from primordial gravity waves on the polarization of the cosmic microwave background (CMB) requires the characterization of foreground polarization from Galactic dust. We present a statistical study of the filamentary structure of the 353 GHz Planck Stokes maps at high Galactic latitude, relevant to the study of dust emission as a polarized foreground to the CMB. We filter the intensity and polarization maps to isolate filaments in the range of angular scales where the power asymmetry between E-modes and B-modes is observed. Using the Smoothed Hessian Major Axis Filament Finder (SMAFF), we identify 259 filaments at high Galactic latitude, with lengths larger or equal to 2 degrees (corresponding to 3.5 pc in length for a typical distance of 100 pc). These filaments show a preferred orientation parallel to the magnetic field projected onto the plane of the sky, derived from their polarization angles. We present mean maps of the filaments in Stokes I, Q, U, E, and B, computed by stacking individual images rotated to align the orientations of the filaments. Combining the stacked images and the histogram of relative orientations, we estimate the mean polarization fraction of the filaments to be 11%. Furthermore, we show that the correlation between the filaments and the magnetic field orientations may account for the E and B asymmetry and the C-l(TE)/C-l(EE) ratio, reported in the power spectra analysis of the Planck 353 GHz polarization maps. Future models of the dust foreground for CMB polarization studies will need to take into account the observed correlation between the dust polarization and the structure of interstellar matter. C1 [Delabrouille, J.; Ganga, K.; Piat, M.; Remazeilles, M.; Rosset, C.; Roudier, G.] Univ Paris Diderot, Observ Paris, Sorbonne Paris Cite, APC,CNRS IN2P3,CEA Irfu, 10 Rue Alice Domon & Leonie Duquet, F-75205 Paris 13, France. [Leon-Tavares, J.] Aalto Univ, Metsahovi Radio Observ, POB 13000, Aalto 00076, Finland. [Kunz, M.] African Inst Math Sci, 6-8 Melrose Rd, Cape Town, South Africa. [Natoli, P.; Polenta, G.] Agenzia Spaziale Italiana Sci Data Ctr, Via Politecn Snc, I-00133 Rome, Italy. [Lasenby, A.; Stolyarov, V.] Univ Cambridge, Cavendish Lab, Astrophys Grp, JJ Thomson Ave, Cambridge CB3 0HE, England. Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Astrophys & Cosmol Res Unit, Westville Campus,Private Bag X54001, ZA-4000 Durban, South Africa. [Kneiss', R.] Atacama Large Millimeter Submillimeter Array, ALMA Santiago Cent Off, Alonso de Cordova 3107,763 0355 Casilla, Santiago, Chile. [Huang, Z.; Martin, P. G.; Miville-Deschenes, M-A.; Oppermann, N.] Univ Toronto, CITA, 60 St George St, Toronto, ON M5S 3H8, Canada. [Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] CNRS, TRAP, 9 Colonel Roche,BP 44346, F-31028 Toulouse 4, France. [Helou, G.; Hildebrandt, S. R.] CALTECH, Pasadena, CA 91125 USA. [Hernandez-Monteagudo, C.] CEFCA, Plaza San Juan 1,Planta 2, Teruel 44001, Spain. [Keskitalo, R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA. [Rebolo, R.] CSIC, Plaza Murillo 2, E-28049 Madrid, Spain. [Yvon, D.] CEA Saclay, DSM Irfu SPP, F-91191 Gif Sur Yvette, France. [Hornstrup, A.; Linden-Vornle, M.; Oxborrow, C. A.] Tech Univ Denmark, Natl Space Inst, DTU Space, Elektrovej 327, DK-2800 Lyngby, Denmark. [Kunz, M.; Tucci, M.] Univ Geneva, Dept Phys Theor, 24 Quai E Ansermet, CH-1211 Geneva 4, Switzerland. [Rebolo, R.; Rubino-Martin, J. A.] Univ La Laguna, Dept Astrofis, E-38206 Tenerife, Spain. [Gonzalez-Nuevo, J.; Toffolatti, L.] Univ Oviedo, Dept Fis, Ave Calvo Sotelo S-N, E-33007 Oviedo, Spain. [Rachen, J. P.] Radboud Univ Nijmegen, Dept Astrophys, IMAPP, NL-6500 GL Nijmegen, Netherlands. [Scott, D.] Univ British Columbia, Dept Phys & Astron, 6224 Agr Rd, Vancouver, BC V5Z 1M9, Canada. [Pierpaoli, E.] Univ So Calif, Dana & David Dornsife Coll Letter Arts & Sci, Dept Phys & Astron, Los Angeles, CA 90089 USA. [Huffenberger, K. M.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Huffenberger, K. M.] Florida State Univ, Dept Phys, Keen Phys Bldg,77 Chieftan Way, Tallahassee, FL 32306 USA. [Juvela, M.; Keihaenen, E.; Kurki-Suonio, H.; Savelainen, M.; Suur-Uski, A-S; Valiviita, J.] Univ Helsinki, Dept Phys, Gustaf Hallstromin Katu 2a, Helsinki 00100, Finland. [Fraisse, A. A.; Jones, W. C.; Nati, F.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Lubin, P. M.; Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Wandelt, B. D.] Univ Illinois, Dept Phys, 1110 W Green St, Urbana, IL USA. [Liguori, M.; Matarrese, S.] Univ Padua, Dipartimento Fis & Astron G Galilei, Via Marzolo 8, I-35131 Padua, Italy. [Lattanzi, M.; Mandolesi, N.; Natoli, P.] Univ Ferrara, Dipartimento Fis & Sci Terra, Via Saragat 1, I-44122 Ferrara, Italy. [Masi, S.; Melchiorri, A.; Pagano, L.; Piacentini, F.] Univ Rome, Dipartimento Fis, Ple A Moro 2, I-00185 Rome, Italy. [Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] Univ Milan, Dipartimento Fis, Via Celoria 16, I-20133 Milan, Italy. [Renzi, A.] Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci 1, I-00133 Rome, Italy. [Naselsky, P.] Niels Bohr Inst, Discovery Ctr, Blegdamsvej 17, DK-2100 Copenhagen, Denmark. [Kneiss', R.] European So Observ, ESO Vitacura, Alonso de Cordova 3107, Santiago, Chile. [Leonardi, R.; Lopez-Caniego, M.] European Space Agcy, ESAC, Planck Sci Off, Camino Bajo del Castillo S-N, Madrid 28692, Spain. [Tauber, J. A.] European Space Agcy, Estec, Keplerlaan 1, NL-2201 AZ Noordwijk, Netherlands. [Terenzi, L.] Univ E Campus, Fac Ingn, Via Isimbardi 10, I-22060 Novedrate, CO, Italy. [Leon-Tavares, J.] Univ Turku, Finnish Ctr Astron, ESO FINCA, Vaisalantie 20, Piikkio 21500, Finland. [Matarrese, S.] Ist Nazl Fis Nucl, Gran Sasso Sci Inst, Viale F Crispi 7, I-67100 Laquila, Italy. [Pettorino, V.] HGSFP, D-69120 Heidelberg, Germany. [Pettorino, V.] Heidelberg Univ, Dept Theoret Phys, Philosophenweg 16, D-69120 Heidelberg, Germany. [Kurki-Suonio, H.; Savelainen, M.; Suur-Uski, A-S; Valiviita, J.] Univ Helsinki, Helsinki Inst Phys, Gustaf Hallstromin Katu 2, FIN-00014 Helsinki, Finland. [Umana, G.] Osserv Astrofis Catania, INAF, Via S Sofia 78, I-95123 Catania, Italy. Osserv Astron Padova, INAF, Vicolo Osservatorio 5, I-35122 Padua, Italy. [Polenta, G.] Osserv Astron Roma, INAF, Via Frascati 33, I-00040 Monte Porzio Catone, Italy. [Frailis, M.; Galeotta, S.; Maris, M.; Pasian, F.; Zacchei, A.] Osserv Astron Trieste, INAF, I-40127 Trieste, Italy. [Franceschi, E.; Gruppuso, A.; Mandolesi, N.; Morgante, G.; Natoli, P.; Paoletti, D.; Sandri, M.; Terenzi, L.; Toffolatti, L.; Valenziano, L.; Villa, F.] IASF Bologna, INAF, Via Gobetti 101, I-40129 Bologna, Italy. [Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] IASF Milano, INAF, Via E. Bassini 15, I-20133 Milan, Italy. [Paoletti, D.] Ist Nazl Fis Nucl, Sez Bologna, Via Irnerio 46, I-40126 Bologna, Italy. [Melchiorri, A.; Pagano, L.] Univ Roma La Sapienza, INFN, Sez Roma 1, Ple Aldo Moro 2, I-00185 Rome, Italy. Univ Roma Tor Vergata, Ist Nazl Fis Nucl, Sez Roma 2, Via Ric Sci 1, I-00185 Rome, Italy. [Ponthieu, N.] Univ Grenoble Alpes, IPAG, F-38000 Grenoble, France. [Ponthieu, N.] CNRS, IPAG, F-38000 Grenoble, France. [Mortlock, D.] Univ London Imperial Coll Sci Technol & Med, Astrophys Grp, Blackett Lab, Prince Consort Rd, London SW7 2AZ, England. [McGehee, P.; Rusholme, B.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. Inst Univ France, 103 bd St Michel, F-75005 Paris, France. [Ghosh, T.; Guillet, V.; Hurier, G.; Kunz, M.; Miville-Deschenes, M-A.; Pajot, F.; Ponthieu, N.; Puget, J-L; Remazeilles, M.; Serra, P.; Soler, J. D.] Univ Paris 11, CNRS, UMR 8617, Inst Astrophys Spatiale, Batiment 121, F-91405 Orsay, France. [Hivon, E.; Moneti, A.; Prunet, S.; Sygnet, J-F; Wandelt, B. D.] CNRS, Inst Astrophys Paris, UMR 7095, 98Bis Blvd Arago, F-75014 Paris, France. [Harrison, D. L.; Migliaccio, M.] Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England. [Gjerlow, E.; Hansen, F. K.; Lilje, P. B.] Univ Oslo, Inst Theoret Astrophys, N-0371 Oslo, Norway. [Leon-Tavares, J.] INAOE, Apartado Postal 51 & 216, Puebla 72000, Mexico. [Rebolo, R.; Rubino-Martin, J. A.] Inst Astrofis Canarias, C Via Lactea S-N, Tenerife 38205, Spain. [Gonzalez-Nuevo, J.; Herranz, D.; Lopez-Caniego, M.; Martinez-Gonzalez, E.; Toffolatti, L.; Vielva, P.] Univ Cantabria, CSIC, Inst Fis Cantabria, Ave Castros S-N, E-39005 Santander, Spain. [Liguori, M.; Matarrese, S.] Ist Nazl Fis Nucl, Sez Padova, Via Marzolo 8, I-35131 Padua, Italy. [Gorski, K. M.; Hildebrandt, S. R.; Lawrence, C. R.; Rocha, G.; Roudier, G.; Wade, L. A.; Wehus, I. K.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 31109 USA. [Maffei, B.; Remazeilles, M.] Univ Manchester, Jodrell Bank, Ctr Astrophys, Sch Phys & Astron, Oxford Rd, Oxford M13 9PL, England. [Galli, S.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Harrison, D. L.; Lasenby, A.; Migliaccio, M.; Stolyarov, V.] Kavli Inst Cosmol Cambridge, Madingley Rd, Cambridge CB3 0HA, England. [Perdereau, O.; Plaszczynski, S.; Tristram, M.] Univ Paris 11, LAL, CNRS, IN2P3, F-91898 Orsay, France. [Lamarre, J-M.; Levrier, E.; Roudier, G.] Observ Paris, CNRS, LERMA, 61 Ave Observ, F-75014 Paris, France. [Pratt, G. W.] Univ Paris Diderot, CNRS, CEA DSM, Lab AIM IRFU Serv Astrophys,CEA Saclay, Bat 709, F-91191 Gif Sur Yvette, France. CNRS, Lab Traitement & Commun Informat, UMR 5141, 46 Rue Barrault, F-75634 Paris 13, France. Telecom ParisTech, 46 Rue Barrault, F-75634 Paris 13, France. [Macias-Perez, J. F.; Renault, C.; Santos, D.] Univ Grenoble Alpes, Lab Phys Subatom & Cosmol, CNRS, IN2P3, 53 Rue Martyrs, F-38026 Grenoble, France. [Van Tent, B.] Univ Paris 11, Lab Phys Theor, Batiment 210, F-91405 Orsay, France. [Van Tent, B.] CNRS, Batiment 210, F-91405 Orsay, France. [Kisner, T. S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Novikov, D.; Novikov, I.] Russian Acad Sci, Lebedev Phys Inst, Ctr Astro Space, 84-32 Profsoyuznaya St,GSP-7, Moscow 117997, Russia. [Hernandez-Monteagudo, C.; Hovest, W.; Knoche, J.; Rachen, J. P.; Reinecke, M.; Sunyaev, R.] Max Planck Inst Astrophys, Karl Schwarzschild Str 1, D-85741 Garching, Germany. [Murphy, J. A.] Natl Univ Ireland, Dept Expt Phys, Maynooth, Kildare, Ireland. Nicolaus Copernicus Astron Ctr, Bartycka 18, PL-00716 Warsaw, Poland. [Naselsky, P.; Novikov, I.] Niels Bohr Inst, Blegdamsvej 17, DK-2100 Copenhagen, Denmark. [Savini, G.] UCL, Opt Sci Lab, Gower St, London WC1E 6BT, England. SISSA, Astrophys Sect, Via Bonomea 265, I-34136 Trieste, Italy. [Ade, P. A. R.; Munshi, D.; Sudiwala, R.] Cardiff Univ, Sch Phys & Astron, Queens Bldg, Cardiff CF24 3AA, Wales. [Frolov, A.] Simon Fraser Univ, Dept Phys, 8888 Univ Dr, Burnaby, BC, Canada. Sorbonne Univ UPMC, Inst Astrophys Paris, UMR 7095, 98Bis Blvd Arago, F-75014 Paris, France. [Sunyaev, R.] Russian Acad Sci, Space Res Inst IKI, Profsoyuznaya Str 84-32, Moscow 117997, Russia. Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Stolyarov, V.] Russian Acad Sci, Special Astrophys Observ, Karachai Cherkessian 369167, Zelenchukskiy R, Russia. Univ Oxford, Subdept Astrophys, Keble Rd, Oxford OX1 3RH, England. [Hivon, E.; Prunet, S.; Wandelt, B. D.] Univ Paris 06, UMR 7095, 98Bis Blvd Arago, F-75014 Paris, France. [Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France. [Reach, W. T.] Univ Space Res Assoc, Stratospher Observ Infrared Astron, MS 232-11, Moffett Field, CA 94035 USA. Univ Granada, Dept Fis Teor & Cosmos, Fac Ciencias, E-18071 Granada, Spain. Univ Granada, Inst Carlos I Fis Teor & Computac, E-18071 Granada, Spain. [Gorski, K. M.] Univ Warsaw Observ, Aleje Ujazdowskie 4, PL-00478 Warsaw, Poland. RP Ghosh, T (reprint author), Univ Paris 11, CNRS, UMR 8617, Inst Astrophys Spatiale, Batiment 121, F-91405 Orsay, France. EM tuhin.ghosh@ias.u-psud.fr RI Novikov, Dmitry/P-1807-2015; Stolyarov, Vladislav/C-5656-2017; Barreiro, Rita Belen/N-5442-2014; bonavera, laura/E-9368-2017; Renzi, Alessandro/K-4114-2015; Remazeilles, Mathieu/N-1793-2015; Herranz, Diego/K-9143-2014; Vielva, Patricio/F-6745-2014; Lopez-Caniego, Marcos/M-4695-2013; Martinez-Gonzalez, Enrique/E-9534-2015; Piacentini, Francesco/E-7234-2010; Gonzalez-Nuevo, Joaquin/I-3562-2014; Nati, Federico/I-4469-2016; Novikov, Igor/N-5098-2015; Ghosh, Tuhin/E-6899-2016; Toffolatti, Luigi/K-5070-2014; Tomasi, Maurizio/I-1234-2016; Colombo, Loris/J-2415-2016; OI Stolyarov, Vladislav/0000-0001-8151-828X; Barreiro, Rita Belen/0000-0002-6139-4272; bonavera, laura/0000-0001-8039-3876; Renzi, Alessandro/0000-0001-9856-1970; Remazeilles, Mathieu/0000-0001-9126-6266; Matarrese, Sabino/0000-0002-2573-1243; Scott, Douglas/0000-0002-6878-9840; Huffenberger, Kevin/0000-0001-7109-0099; Bouchet, Francois/0000-0002-8051-2924; Herranz, Diego/0000-0003-4540-1417; Vielva, Patricio/0000-0003-0051-272X; Martinez-Gonzalez, Enrique/0000-0002-0179-8590; Piacentini, Francesco/0000-0002-5444-9327; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; Nati, Federico/0000-0002-8307-5088; Toffolatti, Luigi/0000-0003-2645-7386; Tomasi, Maurizio/0000-0002-1448-6131; Colombo, Loris/0000-0003-4572-7732; Savini, Giorgio/0000-0003-4449-9416; Pierpaoli, Elena/0000-0002-7957-8993; TERENZI, LUCA/0000-0001-9915-6379; Reach, William/0000-0001-8362-4094; Valiviita, Jussi/0000-0001-6225-3693; Hurier, Guillaume/0000-0002-1215-0706; Huang, Zhiqi/0000-0002-1506-1063; Zacchei, Andrea/0000-0003-0396-1192; Hivon, Eric/0000-0003-1880-2733; Lilje, Per/0000-0003-4324-7794; Paoletti, Daniela/0000-0003-4761-6147 FU ESA; CNES (France); CNRS/INSU-IN2P3-INP (France); ASI (Italy); CNR (Italy); INAF (Italy); NASA (USA); DoE (USA); STFC (UK); UKSA (UK); CSIC (Spain); MINECO (Spain); JA (Spain); RES (Spain); Tekes (Finland); AoF (Finland); CSC (Finland); DLR (Germany); MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC (EU); PRACE (EU); European Research Council under the European Union/ERC [267934] FX The Planck Collaboration acknowledges the support of: ESA; CNES, and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MINECO, JA and RES (Spain); Tekes, AoF, and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC and PRACE (EU). A description of the Planck Collaboration and a list of its members, indicating which technical or scientific activities they have been involved in, can be found at http://www.cosmos.esa.int/web/planck/planck-collaboration. The research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement No. 267934. Some of the results in this paper have been derived using the HEALPix package. NR 50 TC 1 Z9 1 U1 4 U2 7 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD FEB PY 2016 VL 586 AR A141 DI 10.1051/0004-6361/201526506 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DD1XG UT WOS:000369715900151 ER PT J AU Ade, PAR Aghanim, N Alves, MIR Arnaud, M Arzoumanian, D Aumont, J Baccigalupi, C Banday, AJ Barreiro, RB Bartolo, N Battaner, E Benabed, K Benoit-Levy, A Bernard, JP Berne, O Bersanelli, M Bielewicz, P Bonaldi, A Bonavera, L Bond, JR Borrill, J Bouchet, FR Boulanger, F Bracco, A Burigana, C Calabrese, E Cardoso, JF Catalano, A Chamballu, A Chiang, HC Christensen, PR Clements, DL Colombi, S Colombo, LPL Combet, C Couchot, F Crill, BP Curto, A Cuttaia, F Danese, L Davies, RD Davis, RJ de Bernardis, P de Rosa, A de Zotti, G Delabrouille, J Dickinson, C Diego, JM Donzelli, S Dore, O Douspis, M Ducout, A Dupac, X Elsner, F Ensslin, TA Eriksen, HK Falgarone, E Ferriere, K Finelli, F Forni, O Frailis, M Fraisse, AA Franceschi, E Frejse, A Galeotta, S Galli, S Ganga, K Ghosh, T Giard, M Giraud-Heraud, Y Gjerlow, E Gonzalez-Nuevo, J Gorski, KM Gregorio, A Gruppuso, A Guillet, V Hansen, FK Hanson, D Harrison, DL Hernandez-Monteagudo, C Herranz, D Hildebrandt, SR Hivon, E Hobson, M Holmes, WA Huffenberger, KM Hurier, G Jaffe, AH Jaffe, TR Jones, WC Juvela, M Keskitalo, R Kisner, TS Knoche, J Kunz, M Kurki-Suonio, H Lagache, G Lamarre, JM Lasenby, A Lawrence, CR Leonardi, R Levrier, F Liguori, M Lilje, PB Linden-Vornle, M Lopez-Caniego, M Lubin, PM Macias-Perez, JF Maffei, B Mandolesi, N Mangilli, A Maris, M Martin, PG Martinez-Gonzalez, E Masi, S Matarrese, S Mazzotta, P Melchiorri, A Mendes, L Mennella, A Migliaccio, M Mitra, S Miville-Deschenes, MA Moneti, A Montier, L Morgante, G Mortlock, D Munshi, D Murphy, JA Naselsky, P Nati, F Natoli, P Nirgaard-Nielsen, HU Noviello, F Novikov, D Novikov, I Oppermann, N Pagano, L Pajot, F Paladini, R Paoletti, D Pasian, F Perrotta, F Pettorino, V Piacentini, F Piat, M Pierpaoli, E Pietrobon, D Plaszczynski, S Pointecouteau, E Polenta, G Pratt, GW Puget, JL Rachen, JP Rebolo, R Reinecke, M Remazeilles, M Renault, C Renzi, A Ricciardi, S Ristorcelli, I Rocha, G Rosset, C Rossetti, M Roudier, G Rubino-Martin, JA Rusholme, B Sandri, M Savelainen, M Savini, G Scott, D Soler, JD Stolyarov, V Sutton, D Suur-Uski, AS Sygnet, JF Tauber, JA Terenzi, L Toffolatti, L Tomasi, M Tristram, M Tucci, M Valenziano, L Valiviita, J Van Tent, B Vielva, P Villa, F Wade, LA Wandelt, BD Yvon, D Zacchei, A Zonca, A AF Ade, P. A. R. Aghanim, N. Alves, M. I. R. Arnaud, M. Arzoumanian, D. Aumont, J. Baccigalupi, C. Banday, A. J. Barreiro, R. B. Bartolo, N. Battaner, E. Benabed, K. Benoit-Levy, A. Bernard, J-P. Berne, O. Bersanelli, M. Bielewicz, P. Bonaldi, A. Bonavera, L. Bond, J. R. Borrill, J. Bouchet, F. R. Boulanger, F. Bracco, A. Burigana, C. Calabrese, E. Cardoso, J-F. Catalano, A. Chamballu, A. Chiang, H. C. Christensen, P. R. Clements, D. L. Colombi, S. Colombo, L. P. L. Combet, C. Couchot, F. Crill, B. P. Curto, A. Cuttaia, F. Danese, L. Davies, R. D. Davis, R. J. de Bernardis, P. de Rosa, A. de Zotti, G. Delabrouille, J. Dickinson, C. Diego, J. M. Donzelli, S. Dore, O. Douspis, M. Ducout, A. Dupac, X. Elsner, F. Ensslin, T. A. Eriksen, H. K. Falgarone, E. Ferriere, K. Finelli, F. Forni, O. Frailis, M. Fraisse, A. A. Franceschi, E. Frejse, A. Galeotta, S. Galli, S. Ganga, K. Ghosh, T. Giard, M. Giraud-Heraud, Y. Gjerlow, E. Gonzalez-Nuevo, J. Gorski, K. M. Gregorio, A. Gruppuso, A. Guillet, V. Hansen, F. K. Hanson, D. Harrison, D. L. Hernandez-Monteagudo, C. Herranz, D. Hildebrandt, S. R. Hivon, E. Hobson, M. Holmes, W. A. Huffenberger, K. M. Hurier, G. Jaffe, A. H. Jaffe, T. R. Jones, W. C. Juvela, M. Keskitalo, R. Kisner, T. S. Knoche, J. Kunz, M. Kurki-Suonio, H. Lagache, G. Lamarre, J-M. Lasenby, A. Lawrence, C. R. Leonardi, R. Levrier, F. Liguori, M. Lilje, P. B. Linden-Vornle, M. Lopez-Caniego, M. Lubin, P. M. Macias-Perez, J. F. Maffei, B. Mandolesi, N. Mangilli, A. Maris, M. Martin, P. G. Martinez-Gonzalez, E. Masi, S. Matarrese, S. Mazzotta, P. Melchiorri, A. mendes, L. Mennella, A. Migliaccio, M. Mitra, S. Miville-Deschenes, M-A. moneti, A. Montier, L. Morgante, G. Mortlock, D. Munshi, D. Murphy, J. A. Naselsky, P. Nati, F. Natoli, P. Nirgaard-Nielsen, H. U. Noviello, F. Novikov, D. Novikov, I. Oppermann, N. Pagano, L. Pajot, F. Paladini, R. Paoletti, D. Pasian, F. Perrotta, F. Pettorino, V. Piacentini, F. Piat, M. Pierpaoli, E. Pietrobon, D. Plaszczynski, S. Pointecouteau, E. Polenta, G. Pratt, G. W. Puget, J-L. Rachen, J. P. Rebolo, R. Reinecke, M. Remazeilles, M. Renault, C. Renzi, A. Ricciardi, S. Ristorcelli, I. Rocha, G. Rosset, C. Rossetti, M. Roudier, G. Rubino-Martin, J. A. Rusholme, B. Sandri, M. Savelainen, M. Savini, G. Scott, D. Soler, J. D. Stolyarov, V. Sutton, D. Suur-Uski, A-S. Sygnet, J-F. Tauber, J. A. Terenzi, L. Toffolatti, L. Tomasi, M. Tristram, M. Tucci, M. Valenziano, L. Valiviita, J. Van Tent, B. Vielva, P. Villa, F. Wade, L. A. Wandelt, B. D. Yvon, D. Zacchei, A. Zonca, A. CA Planck Collaboration TI Planck intermediate results XXXIII. Signature of the magnetic field geometry of interstellar filaments in dust polarization maps SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE dust, extinction; ISM: magnetic fields; polarization; submillimeter: ISM ID TAURUS MOLECULAR CLOUD; GOULD BELT SURVEY; GRAIN ALIGNMENT; DARK-CLOUDS; RADIATIVE TORQUES; PRESTELLAR CORES; STAR-FORMATION; SUPRATHERMAL ROTATION; INFRARED POLARIMETRY; IMAGING POLARIMETRY AB Planck observations at 353 GHz provide the first fully sampled maps of the polarized dust emission towards interstellar filaments and their backgrounds (i.e., the emission observed in the surroundings of the filaments). The data allow us to determine the intrinsic polarization properties of the filaments and therefore to provide insight into the structure of their magnetic field (B). We present the polarization maps of three nearby (several parsecs long) star-forming filaments of moderate column density (N-H about 10(22) cm(-2)): Musca, B211, and L1506. These three filaments are detected above the background in dust total and polarized emission. We use the spatial information to separate Stokes I, Q, and U of the filaments from those of their backgrounds, an essential step in measuring the intrinsic polarization fraction (p) and angle (psi) of each emission component. We find that the polarization angles in the three filaments (psi(fil)) are coherent along their lengths and not the same as in their backgrounds (psi(bg)). The differences between psi(fil) and psi(bg) are 12 degrees and 54 degrees for Musca and L1506, respectively, and only 6 degrees in the case of B211. These di ff erences for Musca and L1506 are larger than the dispersions of psi, both along the filaments and in their backgrounds. The observed changes of psi are direct evidence of variations of the orientation of the plane of the sky (POS) projection of the magnetic field. As in previous studies, we find a decrease of several per cent in p with N-H from the backgrounds to the crest of the filaments. We show that the bulk of the drop in p within the filaments cannot be explained by random fluctuations of the orientation of the magnetic field because they are too small (sigma(psi) < 10 degrees). We recognize the degeneracy between the dust alignment efficiency (by, e. g., radiative torques) and the structure of the B-field in causing variations in p, but we argue that the decrease in p from the backgrounds to the filaments results in part from depolarization associated with the 3D structure of the B-field: both its orientation in the POS and with respect to the POS. We do not resolve the inner structure of the filaments, but at the smallest scales accessible with Planck (similar to 0.2 pc), the observed changes of psi and p hold information on the magnetic field structure within filaments. They show that both the mean field and its fluctuations in the filaments are different from those of their backgrounds, which points to a coupling between the matter and the B-field in the filament formation process. C1 [Cardoso, J-F.; Delabrouille, J.; Ganga, K.; Giraud-Heraud, Y.; Piat, M.; Remazeilles, M.; Rosset, C.; Roudier, G.] Univ Paris Diderot, Sorbonne Paris Cite, AstroParticule & Cosmol, APC,CNRS,IN2P3,CEA,Irfu,Observ Paris, 10 Rue Alice Domon & Leonie Duquet, F-75205 Paris 13, France. [Kunz, M.] African Inst Math Sci, 6-8 Melrose Rd, ZA-7945 Cape Town, South Africa. [Natoli, P.; Polenta, G.] Agenzia Spaziale Italiana, Sci Data Ctr, Via Politecn Snc, I-00133 Rome, Italy. [Lagache, G.] Aix Marseille Univ, CNRS, LAM, UMR 7326, F-13388 Marseille, France. [Curto, A.; Hobson, M.; Lasenby, A.; Stolyarov, V.] Univ Cambridge, Cavendish Lab, Astrophys Grp, JJ Thomson Ave, Cambridge CB3 0HE, England. [Chiang, H. C.] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Astrophys & Cosmol Res Unit, Westville Campus,Private Bag X54001, ZA-4000 Durban, South Africa. [Bond, J. R.; Hanson, D.; Martin, P. G.; Miville-Deschenes, M-A.; Oppermann, N.] Univ Toronto, CITA, 60 St George St, Toronto, ON M5S 3H8, Canada. [Banday, A. J.; Bernard, J-P.; Bielewicz, P.; Ferriere, K.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] CNRS, TRAP, 9 Ave Colonel Roche,BP 44346, F-31028 Toulouse 4, France. [Crill, B. P.; Dore, O.; Hildebrandt, S. R.; Rocha, G.] CALTECH, Pasadena, CA 91125 USA. [Hernandez-Monteagudo, C.] CEFCA, Plaza San Juan 1,Planta 2, Teruel 44001, Spain. [Borrill, J.; Keskitalo, R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA. [Rebolo, R.] CSIC, Madrid, Spain. [Chamballu, A.; Yvon, D.] CEA Saclay, DSM Irfu SPP, F-91191 Gif Sur Yvette, France. [Linden-Vornle, M.; Nirgaard-Nielsen, H. U.] Tech Univ Denmark, Natl Space Inst, DTU Space, Elektrovej 327, DK-2800 Lyngby, Denmark. [Kunz, M.; Tucci, M.] Univ Geneva, Dept Phys Theor, 24 Quai E Ansermet, CH-1211 Geneva 4, Switzerland. [Rebolo, R.; Rubino-Martin, J. A.] Univ La Laguna, Dept Astrofis, E-38206 Tenerife, Spain. [Gonzalez-Nuevo, J.; Toffolatti, L.] Univ Oviedo, Dept Fis, Avda Calvo Sotelo S-N, Oviedo 33003, Spain. [Rachen, J. P.] Radboud Univ Nijmegen, Dept Astrophys IMAPP, POB 9010, NL-6500 GL Nijmegen, Netherlands. [Scott, D.] Univ British Columbia, Dept Phys & Astron, 6224 Agr Rd, Vancouver, BC V5Z 1M9, Canada. [Colombo, L. P. L.; Pierpaoli, E.] Univ So Calif, Dept Phys & Astron, Dana & David Dornsife Coll Letter Arts & Sci, Los Angeles, CA 90089 USA. [Benoit-Levy, A.; Elsner, F.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Huffenberger, K. M.] Florida State Univ, Dept Phys, Keen Phys Bldg,77 Chieftan Way, Tallahassee, FL 32306 USA. [Juvela, M.; Kurki-Suonio, H.; Savelainen, M.; Suur-Uski, A-S.; Valiviita, J.] Univ Helsinki, Dept Phys, Gustaf Hallstromin Katu 2a, Helsinki 00100, Finland. [Chiang, H. C.; Fraisse, A. A.; Jones, W. C.; Nati, F.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Lubin, P. M.; Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Wandelt, B. D.] Univ Illinois, Dept Phys, 1110 West Green St, Urbana, IL USA. [Bartolo, N.; Liguori, M.; Matarrese, S.] Univ Padua, Dipartimento Fis & Astron G Galilei, Via Marzolo 8, I-35131 Padua, Italy. [Burigana, C.; Mandolesi, N.; Natoli, P.] Univ Ferrara, Dipartimento Fis & Sci Terra, Via Saragat 1, I-44122 Ferrara, Italy. [de Bernardis, P.; Masi, S.; Melchiorri, A.; Pagano, L.; Piacentini, F.] Univ Roma La Sapienza, Dipartimento Fis, Ple A Moro 2, Rome, Italy. [Bersanelli, M.; Mennella, A.; Rossetti, M.; Tomasi, M.] Univ Milan, Dipartimento Fis, Via Celoria 16, Milan, Italy. [Gregorio, A.] Univ Trieste, Dipartimento Fis, Via A Valerio 2, I-34128 Trieste, Italy. [Mazzotta, P.] Univ Roma Tor Vergata, Dipartimento Fis, Via Ric Sci 1, Rome, Italy. [Renzi, A.] Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci 1, I-00133 Rome, Italy. [Christensen, P. R.; Naselsky, P.] Niels Bohr Inst, Discovery Ctr, Blegdamsvej 17, DK-2100 Copenhagen, Denmark. [Dupac, X.; Leonardi, R.; Lopez-Caniego, M.; mendes, L.] European Space Agcy, ESAC, Planck Sci Off, Camino Bajo del Castillo S-N, Madrid 28692, Spain. [Tauber, J. A.] European Space Agcy, Estec, Keplerlaan 1, NL-2201 AZ Noordwijk, Netherlands. [Terenzi, L.] Univ E Campus, Fac Ingn, Via Isimbardi 10, I-22060 Novedrate, CO, Italy. [Matarrese, S.] Ist Nazl Fis Nucl, Gran Sasso Sci Inst, Viale F Crispi 7, I-67100 Laquila, Italy. [Pettorino, V.] HGSFP, Philosophenweg 16, D-69120 Heidelberg, Germany. [Pettorino, V.] Heidelberg Univ, Dept Theoret Phys, Philosophenweg 16, D-69120 Heidelberg, Germany. [Kurki-Suonio, H.; Savelainen, M.; Suur-Uski, A-S.; Valiviita, J.] Univ Helsinki, Helsinki Inst Phys, Gustaf Hallstromin Katu 2, SF-00100 Helsinki, Finland. [de Zotti, G.] INAF Osservatorio Astron Padova, Vicolo Osservatorio 5, Padua, Italy. [Polenta, G.] INAF Osservatorio Astron Roma, Via Frascati 33, Monte Porzio Catone, Italy. [Frailis, M.; Galeotta, S.; Gregorio, A.; Maris, M.; Pasian, F.; Zacchei, A.] INAF Osservatorio Astron Trieste, Via GB Tiepolo 11, Trieste, Italy. [Burigana, C.; Cuttaia, F.; de Rosa, A.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Mandolesi, N.; Morgante, G.; Natoli, P.; Paoletti, D.; Ricciardi, S.; Sandri, M.; Terenzi, L.; Toffolatti, L.; Valenziano, L.; Villa, F.] INAF IASF Bologna, Via Gobetti 101, Bologna, Italy. [Bersanelli, M.; Donzelli, S.; Mennella, A.; Rossetti, M.; Tomasi, M.] INAF IASF Milano, Via E Bassini 15, Milan, Italy. [Burigana, C.; Finelli, F.; Paoletti, D.] Ist Nazl Fis Nucl, Sez Bologna, Via Irnerio 46, I-40126 Bologna, Italy. [Melchiorri, A.; Pagano, L.] Univ Roma La Sapienza, Ist Nazl Fis Nucl, Sez Roma 1, Piazzale Aldo Moro 2, I-00185 Rome, Italy. [Renzi, A.] Univ Roma Tor Vergata, Ist Nazl Fis Nucl, Sez Roma 2, Via Ric Sci 1, Rome, Italy. [Gregorio, A.] INFN Natl Inst Nucl Phys, Via Valerio 2, I-34127 Trieste, Italy. [Mitra, S.] IUCAA, Post Bag 4,Pune Univ Campus, Pune 411007, Maharashtra, India. [Clements, D. L.; Ducout, A.; Jaffe, A. H.; Mortlock, D.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Astrophys Grp, Prince Consort Rd, London SW7 2AZ, England. [Paladini, R.; Rusholme, B.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Aghanim, N.; Alves, M. I. R.; Arzoumanian, D.; Aumont, J.; Boulanger, F.; Bracco, A.; Chamballu, A.; Douspis, M.; Ghosh, T.; Guillet, V.; Hurier, G.; Kunz, M.; Lagache, G.; Mangilli, A.; Miville-Deschenes, M-A.; Pajot, F.; Puget, J-L.; Remazeilles, M.; Soler, J. D.] Univ Paris 11, CNRS, Inst Astrophys Spatiale, UMR 8617, Batiment 121, F-91405 Orsay, France. [Benabed, K.; Benoit-Levy, A.; Bouchet, F. R.; Cardoso, J-F.; Colombi, S.; Ducout, A.; Elsner, F.; Hivon, E.; moneti, A.; Sygnet, J-F.; Wandelt, B. D.] CNRS, Inst Astrophys Paris, UMR 7095, 98bis Blvd Arago, F-75014 Paris, France. [Harrison, D. L.; Migliaccio, M.; Sutton, D.] Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England. [Eriksen, H. K.; Gjerlow, E.; Hansen, F. K.; Lilje, P. B.] Univ Oslo, Inst Theoret Astrophys, Oslo, Norway. [Rebolo, R.; Rubino-Martin, J. A.] Inst Astrofis Canarias, C Via Lactea S-N, Tenerife 38205, Spain. [Barreiro, R. B.; Bonavera, L.; Curto, A.; Diego, J. M.; Gonzalez-Nuevo, J.; Herranz, D.; Lopez-Caniego, M.; Martinez-Gonzalez, E.; Toffolatti, L.; Vielva, P.] Univ Cantabria, CSIC, Inst Fis Cantabria, Avda Castros S-N, E-39005 Santander, Spain. [Bartolo, N.; Liguori, M.; Matarrese, S.] Ist Nazl Fis Nucl, Sez Padova, Via Marzolo 8, I-35131 Padua, Italy. [Colombo, L. P. L.; Crill, B. P.; Dore, O.; Gorski, K. M.; Hanson, D.; Hildebrandt, S. R.; Holmes, W. A.; Lawrence, C. R.; Mitra, S.; Pietrobon, D.; Rocha, G.; Roudier, G.; Wade, L. A.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA USA. [Bonaldi, A.; Davies, R. D.; Davis, R. J.; Dickinson, C.; Maffei, B.; Noviello, F.; Remazeilles, M.] Univ Manchester, Jodrell Bank Ctr Astrophys, Sch Phys & Astron, Alan Turing Bldg,Oxford Rd, Manchester M13 9PL, Lancs, England. [Galli, S.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Curto, A.; Harrison, D. L.; Lasenby, A.; Migliaccio, M.; Sutton, D.] Kavli Inst Cosmol Cambridge, Madingley Rd, Cambridge CB3 0HA, England. [Stolyarov, V.] Kazan Fed Univ, 18 Kremlyovskaya St, Kazan 420008, Russia. [Couchot, F.; Mangilli, A.; Plaszczynski, S.; Tristram, M.] Univ Paris 11, LAL, CNRS, IN2P3, F-91400 Orsay, France. [Catalano, A.; Falgarone, E.; Lamarre, J-M.; Levrier, F.; Roudier, G.] Observ Paris, LERMA, CNRS, 61 Ave Observ, F-75014 Paris, France. [Arnaud, M.; Chamballu, A.; Pratt, G. W.] Univ Paris Diderot, CEA Saclay, Serv Astrophys, Lab AIM,IRFU,CEA,DSM,CNRS, Bat 709, F-91191 Gif Sur Yvette, France. [Cardoso, J-F.] CNRS, Lab Traitement & Commun Informat, UMR 5141, 46 Rue Barrault, F-75634 Paris 13, France. [Cardoso, J-F.] Telecom ParisTech, 46 Rue Barrault, F-75634 Paris 13, France. [Catalano, A.; Combet, C.; Macias-Perez, J. F.; Renault, C.] Univ Grenoble Alpes, Lab Phys Subatom & Cosmol, CNRS, IN2P3, 53 Rue Martyrs, F-38026 Grenoble, France. [Van Tent, B.] Univ Paris 11, Lab Phys Theor, Batiment 210, F-91405 Orsay, France. [Van Tent, B.] CNRS, Batiment 210, F-91405 Orsay, France. [Kisner, T. S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Novikov, D.; Novikov, I.] Russian Acad Sci, Lebedev Phys Inst, Ctr Astro Space, 84-32 Profsoyuznaya St,GSP-7, Moscow 117997, Russia. [Ensslin, T. A.; Hernandez-Monteagudo, C.; Knoche, J.; Rachen, J. P.; Reinecke, M.] Max Planck Inst Astrophys, Karl Schwarzschild Str 1, D-85741 Garching, Germany. [Hanson, D.] McGill Univ, McGill Phys, Ernest Rutherford Phys Bldg,3600 Rue Univ, Montreal, PQ H3A 2T8, Canada. [Murphy, J. A.] Natl Univ Ireland, Dept Expt Phys, Maynooth, Kildare, Ireland. [Bielewicz, P.] Nicolaus Copernicus Astron Ctr, Bartycka 18, PL-00716 Warsaw, Poland. [Christensen, P. R.; Frejse, A.; Naselsky, P.; Novikov, I.] Niels Bohr Inst, Blegdamsvej 17, DK-2100 Copenhagen, Denmark. [Savini, G.] UCL, Opt Sci Lab, Gower St, London WC1E 6BT, England. [Baccigalupi, C.; Bielewicz, P.; Danese, L.; de Zotti, G.; Perrotta, F.] SISSA, Astrophys Sect, Via Bonomea 265, I-34136 Trieste, Italy. [Ade, P. A. R.; Munshi, D.] Cardiff Univ, Sch Phys & Astron, Queens Bldg, Cardiff CF24 3AA, S Glam, Wales. [Bouchet, F. R.] UPMC, Univ Paris 04, Inst Astrophys Paris, UMR 7095, 98bis Blvd Arago, F-75014 Paris, France. [Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Stolyarov, V.] Russian Acad Sci, Special Astrophys Observ, Karachai Cherkessian Rep 369167, Zelenchukskiy R, Russia. [Calabrese, E.] Univ Oxford, Subdept Astrophys, Keble Rd, Oxford OX1 3RH, England. [Benabed, K.; Benoit-Levy, A.; Colombi, S.; Elsner, F.; Hivon, E.; Wandelt, B. D.] Univ Paris 06, UMR 7095, 98bis Blvd Arago, F-75014 Paris, France. [Banday, A. J.; Bernard, J-P.; Berne, O.; Ferriere, K.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France. [Battaner, E.] Univ Granada, Fac Ciencias, Dept Fis Teor & Cosmos, E-18071 Granada, Spain. [Battaner, E.] Univ Granada, Inst Carlos Fis Teor & Computac I, E-18071 Granada, Spain. [Gorski, K. M.] Univ Warsaw Observ, Aleje Ujazdowskie 4, PL-00478 Warsaw, Poland. RP Arzoumanian, D (reprint author), Univ Paris 11, CNRS, Inst Astrophys Spatiale, UMR 8617, Batiment 121, F-91405 Orsay, France. EM doris.arzoumanian@ias.u-psud.fr RI Novikov, Dmitry/P-1807-2015; Stolyarov, Vladislav/C-5656-2017; Barreiro, Rita Belen/N-5442-2014; Mazzotta, Pasquale/B-1225-2016; bonavera, laura/E-9368-2017; Renzi, Alessandro/K-4114-2015; Remazeilles, Mathieu/N-1793-2015; Piacentini, Francesco/E-7234-2010; Gonzalez-Nuevo, Joaquin/I-3562-2014; Nati, Federico/I-4469-2016; Novikov, Igor/N-5098-2015; Ghosh, Tuhin/E-6899-2016; Toffolatti, Luigi/K-5070-2014; Tomasi, Maurizio/I-1234-2016; Colombo, Loris/J-2415-2016; Herranz, Diego/K-9143-2014; Vielva, Patricio/F-6745-2014; Lopez-Caniego, Marcos/M-4695-2013; Martinez-Gonzalez, Enrique/E-9534-2015; OI Savini, Giorgio/0000-0003-4449-9416; Pierpaoli, Elena/0000-0002-7957-8993; Stolyarov, Vladislav/0000-0001-8151-828X; Barreiro, Rita Belen/0000-0002-6139-4272; Mazzotta, Pasquale/0000-0002-5411-1748; bonavera, laura/0000-0001-8039-3876; Renzi, Alessandro/0000-0001-9856-1970; Remazeilles, Mathieu/0000-0001-9126-6266; Scott, Douglas/0000-0002-6878-9840; Huffenberger, Kevin/0000-0001-7109-0099; Bouchet, Francois/0000-0002-8051-2924; Ricciardi, Sara/0000-0002-3807-4043; Piacentini, Francesco/0000-0002-5444-9327; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; Nati, Federico/0000-0002-8307-5088; Toffolatti, Luigi/0000-0003-2645-7386; Tomasi, Maurizio/0000-0002-1448-6131; Colombo, Loris/0000-0003-4572-7732; Herranz, Diego/0000-0003-4540-1417; Vielva, Patricio/0000-0003-0051-272X; Martinez-Gonzalez, Enrique/0000-0002-0179-8590; TERENZI, LUCA/0000-0001-9915-6379; Valiviita, Jussi/0000-0001-6225-3693; Hurier, Guillaume/0000-0002-1215-0706; Zacchei, Andrea/0000-0003-0396-1192; Hivon, Eric/0000-0003-1880-2733; Lilje, Per/0000-0003-4324-7794; Paoletti, Daniela/0000-0003-4761-6147 FU ESA; CNES (France); CNRS/INSU-IN2P3-INP (France); ASI (Italy); CNR (Italy); INAF (Italy); NASA (USA); DoE (USA); STFC (UK); UKSA (UK); CSIC (Spain); MINECO (Spain); JA (Spain); RES (Spain); Tekes (Finland); AoF (Finland); CSC (Finland); DLR (Germany); MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC (EU); PRACE (EU); European Research Council under the European Union/ERC [267934] FX The Planck Collaboration acknowledges the support of: ESA; CNES, and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MINECO, JA and RES (Spain); Tekes, AoF, and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC and PRACE (EU). A description of the Planck Collaboration and a list of its members, indicating which technical or scientific activities they have been involved in, can be found at http://www.cosmos.esa.int/web/planck/planck-collaboration. The research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement No. 267934. NR 103 TC 4 Z9 4 U1 5 U2 7 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD FEB PY 2016 VL 586 AR A136 DI 10.1051/0004-6361/201425305 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DD1XG UT WOS:000369715900146 ER PT J AU Ade, PAR Aghanim, N Alves, MIR Arnaud, M Arzoumanian, D Ashdown, M Aumont, J Baccigalupi, C Banday, AJ Barreiro, RB Bartolo, N Battaner, E Benabed, K Benoit, A Benoit-Levy, A Bernard, JP Bersanelli, M Bielewicz, P Bock, JJ Bonavera, L Bond, JR Borrill, J Bouchet, FR Boulanger, F Bracco, A Burigana, C Calabrese, E Cardoso, JF Catalano, A Chiang, HC Christensen, PR Colombo, LPL Combet, C Couchot, F Crill, BP Curto, A Cuttaia, F Danese, L Davies, RD Davis, RJ de Bernardis, P de Rosa, A de Zotti, G Delabrouille, J Dickinson, C Diego, JM Dole, H Donzelli, S Dore, O Douspis, M Ducout, A Dupac, X Efstathiou, G Elsner, F Ensslin, TA Eriksen, HK Falceta-Goncalves, D Falgarone, E Ferriere, K Finelli, F Forni, O Frailis, M Fraisse, AA Franceschi, E Frejsel, A Galeotta, S Galli, S Ganga, K Ghosh, T Giard, M Gjerlow, E Gonzalez-Nuevo, J Gorski, KM Gregorio, A Gruppuso, A Gudmundsson, JE Guillet, V Harrison, DL Helou, G Hennebelle, P Henrot-Versille, S Hernandez-Monteagudo, C Herranz, D Hildebrandt, SR Hivon, E Holmes, WA Hornstrup, A Huffenberger, KM Hurier, G Jaffe, AH Jaffe, TR Jones, WC Juvela, M Keihanen, E Keskitalo, R Kisner, TS Knoche, J Kunz, M Kurki-Suonio, H Lagache, G Lamarre, JM Lasenby, A Lattanzi, M Lawrence, CR Leonardi, R Levrier, F Liguori, M Lilje, PB Linden-Vornle, M Lopez-Caniego, M Lubin, PM Macias-Perez, JF Maino, D Mandolesi, N Mangilli, A Maris, M Martin, PG Martinez-Gonzalez, E Masi, S Matarrese, S Melchiorri, A Mendes, L Mennella, A Migliaccio, M Miville-Deschenes, MA Moneti, A Montier, L Morgante, G Mortlock, D Munshi, D Murphy, JA Naselsky, P Nati, F Netterfield, CB Noviello, F Novikov, D Novikov, I Oppermann, N Oxborrow, CA Pagano, L Pajot, F Paladini, R Paoletti, D Pasian, F Perotto, L Pettorino, V Piacentini, F Piat, M Pierpaoli, E Pietrobon, D Plaszczynski, S Pointecouteau, E Polenta, G Ponthieu, N Pratt, GW Prunet, S Puget, JL Rachen, JP Reinecke, M Remazeilles, M Renault, C Renzi, A Ristorcelli, I Rocha, G Rossetti, M Roudier, G Rubino-Martin, JA Rusholme, B Sandri, M Santos, D Savelainen, M Savini, G Scott, D Soler, JD Stolyarov, V Sudiwala, R Sutton, D Suur-Uski, AS Sygnet, JF Tauber, JA Terenzi, L Toffolatti, L Tomasi, M Tristram, M Tucci, M Umana, G Valenziano, L Valiviita, J Van Tent, B Vielva, P Villa, F Wade, LA Wandelt, BD Wehus, IK Ysard, N Yvon, D Zonca, A AF Ade, P. A. R. Aghanim, N. Alves, M. I. R. Arnaud, M. Arzoumanian, D. Ashdown, M. Aumont, J. Baccigalupi, C. Banday, A. J. Barreiro, R. B. Bartolo, N. Battaner, E. Benabed, K. Benoit, A. Benoit-Levy, A. Bernard, J-P. Bersanelli, M. Bielewicz, P. Bock, J. J. Bonavera, L. Bond, J. R. Borrill, J. Bouchet, F. R. Boulanger, F. Bracco, A. Burigana, C. Calabrese, E. Cardoso, J. -F. Catalano, A. Chiang, H. C. Christensen, P. R. Colombo, L. P. L. Combet, C. Couchot, F. Crill, B. P. Curto, A. Cuttaia, F. Danese, L. Davies, R. D. Davis, R. J. de Bernardis, P. de Rosa, A. de Zotti, G. Delabrouille, J. Dickinson, C. Diego, J. M. Dole, H. Donzelli, S. Dore, O. Douspis, M. Ducout, A. Dupac, X. Efstathiou, G. Elsner, F. Ensslin, T. A. Eriksen, H. K. Falceta-Goncalves, D. Falgarone, E. Ferriere, K. Finelli, F. Forni, O. Frailis, M. Fraisse, A. A. Franceschi, E. Frejsel, A. Galeotta, S. Galli, S. Ganga, K. Ghosh, T. Giard, M. Gjerlow, E. Gonzalez-Nuevo, J. Gorski, K. M. Gregorio, A. Gruppuso, A. Gudmundsson, J. E. Guillet, V. Harrison, D. L. Helou, G. Hennebelle, P. Henrot-Versille, S. Hernandez-Monteagudo, C. Herranz, D. Hildebrandt, S. R. Hivon, E. Holmes, W. A. Hornstrup, A. Huffenberger, K. M. Hurier, G. Jaffe, A. H. Jaffe, T. R. Jones, W. C. Juvela, M. Keihanen, E. Keskitalo, R. Kisner, T. S. Knoche, J. Kunz, M. Kurki-Suonio, H. Lagache, G. Lamarre, J. -M. Lasenby, A. Lattanzi, M. Lawrence, C. R. Leonardi, R. Levrier, F. Liguori, M. Lilje, P. B. Linden-Vornle, M. Lopez-Caniego, M. Lubin, P. M. Macias-Perez, J. F. Maino, D. Mandolesi, N. Mangilli, A. Maris, M. Martin, P. G. Martinez-Gonzalez, E. Masi, S. Matarrese, S. Melchiorri, A. Mendes, L. Mennella, A. Migliaccio, M. Miville-Deschenes, M. -A. Moneti, A. Montier, L. Morgante, G. Mortlock, D. Munshi, D. Murphy, J. A. Naselsky, P. Nati, F. Netterfield, C. B. Noviello, F. Novikov, D. Novikov, I. Oppermann, N. Oxborrow, C. A. Pagano, L. Pajot, F. Paladini, R. Paoletti, D. Pasian, F. Perotto, L. Pettorino, V. Piacentini, F. Piat, M. Pierpaoli, E. Pietrobon, D. Plaszczynski, S. Pointecouteau, E. Polenta, G. Ponthieu, N. Pratt, G. W. Prunet, S. Puget, J. -L. Rachen, J. P. Reinecke, M. Remazeilles, M. Renault, C. Renzi, A. Ristorcelli, I. Rocha, G. Rossetti, M. Roudier, G. Rubino-Martin, J. A. Rusholme, B. Sandri, M. Santos, D. Savelainen, M. Savini, G. Scott, D. Soler, J. D. Stolyarov, V. Sudiwala, R. Sutton, D. Suur-Uski, A. -S. Sygnet, J. -F. Tauber, J. A. Terenzi, L. Toffolatti, L. Tomasi, M. Tristram, M. Tucci, M. Umana, G. Valenziano, L. Valiviita, J. Van Tent, B. Vielva, P. Villa, F. Wade, L. A. Wandelt, B. D. Wehus, I. K. Ysard, N. Yvon, D. Zonca, A. CA Planck Collaboration TI Planck intermediate results XXXV. Probing the role of the magnetic field in the formation of structure in molecular clouds SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE ISM: general; ISM: magnetic fields; ISM: clouds; dust, extinction; submillimeter: ISM; infrared: ISM ID FAR-INFRARED POLARIMETRY; STAR-FORMATION; INTERSTELLAR CLOUDS; GRAIN ALIGNMENT; NONHOMOLOGOUS CONTRACTION; IMAGING POLARIMETRY; ALFVENIC TURBULENCE; VELOCITY ANISOTROPY; SOLAR NEIGHBORHOOD; RADIATIVE TORQUES AB Within ten nearby (d < 450 pc) Gould belt molecular clouds we evaluate statistically the relative orientation between the magnetic field projected on the plane of sky, inferred from the polarized thermal emission of Galactic dust observed by Planck at 353 GHz, and the gas column density structures, quantified by the gradient of the column density, N-H. The selected regions, covering several degrees in size, are analysed at an effective angular resolution of 10' FWHM, thus sampling physical scales from 0.4 to 40 pc in the nearest cloud. The column densities in the selected regions range from N-H approximate to 10(21) to 10(23) cm(-2), and hence they correspond to the bulk of the molecular clouds. The relative orientation is evaluated pixel by pixel and analysed in bins of column density using the novel statistical tool called "histogram of relative orientations". Throughout this study, we assume that the polarized emission observed by Planck at 353 GHz is representative of the projected morphology of the magnetic field in each region, i.e., we assume a constant dust grain alignment efficiency, independent of the local environment. Within most clouds we find that the relative orientation changes progressively with increasing N-H, from mostly parallel or having no preferred orientation to mostly perpendicular. In simulations of magnetohydrodynamic turbulence in molecular clouds this trend in relative orientation is a signature of Alfvenic or sub-Alfvenic turbulence, implying that the magnetic field is significant for the gas dynamics at the scales probed by Planck. We compare the deduced magnetic field strength with estimates we obtain from other methods and discuss the implications of the Planck observations for the general picture of molecular cloud formation and evolution. C1 [Cardoso, J. -F.; Delabrouille, J.; Ganga, K.; Piat, M.; Remazeilles, M.; Roudier, G.] Univ Paris Diderot, AstroParticule & Cosmol, Sorbonne Paris Cite, APC,CNRS,IN2P3,CEA,Irfu,Observ Paris, 10 Rue Alice Domon & Leonie Duquet, F-75205 Paris 13, France. [Kunz, M.] African Inst Math Sci, 6-8 Melrose Rd, Cape Town, South Africa. [Polenta, G.] Agenzia Spaziale Italiana Sci Data Ctr, Via Politecn Snc, I-00133 Rome, Italy. [Lagache, G.] Aix Marseille Univ, CNRS, LAM, UMR 7326, F-13388 Marseille, France. [Ashdown, M.; Benoit, A.; Curto, A.; Lasenby, A.; Stolyarov, V.] Univ Cambridge, Cavendish Lab, Astrophys Grp, JJ Thomson Ave, Cambridge CB3 0HE, England. [Chiang, H. C.] Univ KwaZulu Natal, Astrophys & Cosmol Res Unit, Sch Math Stat & Comp Sci, Westville Campus,Private Bag X54001, ZA-4000 Durban, South Africa. [Bond, J. R.; Martin, P. G.; Miville-Deschenes, M. -A.; Oppermann, N.] Univ Toronto, CITA, 60 St George St, Toronto, ON M5S 3H8, Canada. [Banday, A. J.; Bernard, J-P.; Bielewicz, P.; Ferriere, K.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] CNRS, TRAP, 9 Ave Colonel Roche,BP 44346, F-31028 Toulouse 4, France. [Bock, J. J.; Crill, B. P.; Dore, O.; Helou, G.; Hildebrandt, S. R.; Rocha, G.] CALTECH, Pasadena, CA 91125 USA. [Hernandez-Monteagudo, C.] CEFCA, Plaza San Juan 1,Planta 2, Teruel 44001, Spain. [Borrill, J.; Keskitalo, R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA. [Yvon, D.] CEA Saclay, DSM, Irfu, SPP, F-91191 Gif Sur Yvette, France. [Hornstrup, A.; Linden-Vornle, M.; Oxborrow, C. A.] Tech Univ Denmark, Natl Space Inst, DTU Space, Elektrovej 327, DK-2800 Lyngby, Denmark. [Kunz, M.; Tucci, M.] Univ Geneva, Dept Phys Theor, 24 Quai E Ansermet, CH-1211 Geneva 4, Switzerland. [Rubino-Martin, J. A.] Univ La Laguna, Dept Astrofis, Tenerife 38206, Spain. [Gonzalez-Nuevo, J.; Toffolatti, L.] Univ Oviedo, Dept Fis, Avda Calvo Sotelo S-N, E-33007 Oviedo, Spain. [Netterfield, C. B.] Univ Toronto, Dept Astron & Astrophys, 50 St George St, Toronto, ON M5S, Canada. [Rachen, J. P.] Radboud Univ Nijmegen, Dept Astrophys IMAPP, POB 9010, NL-6500 GL Nijmegen, Netherlands. [Scott, D.] Univ British Columbia, Dept Phys & Astron, 6224 Agr Rd, Vancouver, BC V6T 1Z1, Canada. [Colombo, L. P. L.; Pierpaoli, E.] Univ So Calif, Dept Phys & Astron, Dana & David Dornsife Coll Letter Arts & Sci, Los Angeles, CA 90089 USA. [Benoit-Levy, A.; Elsner, F.] UCL, Dept Phys & Astron, Mortimer St, London WC1E 6BT, England. [Huffenberger, K. M.] Florida State Univ, Dept Phys, Keen Phys Bldg,77 Chieftan Way, Tallahassee, FL 32306 USA. [Juvela, M.; Keihanen, E.; Kurki-Suonio, H.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J.; Ysard, N.] Univ Helsinki, Dept Phys, Gustaf Hallstromin Katu 2a, Helsinki 00014, Finland. [Chiang, H. C.; Fraisse, A. A.; Gudmundsson, J. E.; Jones, W. C.; Nati, F.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Lubin, P. M.; Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Wandelt, B. D.] Univ Illinois, Dept Phys, 1110 West Green St, Urbana, IL 61801 USA. [Bartolo, N.; Liguori, M.; Matarrese, S.] Univ Padua, Dipartimento Fis & Astron G Galilei, Via Marzolo 8, I-35131 Padua, Italy. [Burigana, C.; Lattanzi, M.; Mandolesi, N.] Univ Ferrara, Dipartimento Fis & Sci Terra, Via Saragat 1, I-44122 Ferrara, Italy. [de Bernardis, P.; Masi, S.; Melchiorri, A.; Pagano, L.; Piacentini, F.] Univ Roma La Sapienza, Dipartimento Fis, Ple A Moro 2, I-00185 Rome, Italy. [Bersanelli, M.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] Univ Milan, Dipartimento Fis, Via Celoria 16, I-20133 Milan, Italy. [Gregorio, A.] Univ Trieste, Dipartimento Fis, Via A Valerio 2, I-34128 Trieste, Italy. [Renzi, A.] Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci 1, I-00133 Rome, Italy. [Christensen, P. R.; Naselsky, P.] Niels Bohr Inst, Discovery Ctr, Blegdamsvej 17, DK-2100 Copenhagen, Denmark. [Falceta-Goncalves, D.] Univ Sao Paulo, Escola Artes Ciencias & Humanidades, Rua Arlindo Bettio 1000, BR-03828000 Sao Paulo, Brazil. [Dupac, X.; Leonardi, R.; Lopez-Caniego, M.; Mendes, L.] European Space Agcy, ESAC, Planck Sci Off, Camino Bajo Castillo S-N, Madrid 28691, Spain. [Tauber, J. A.] European Space Agcy, Estec, Keplerlaan 1, NL-2201 AZ Noordwijk, Netherlands. [Terenzi, L.] Univ E Campus, Fac Ingn, Via Isimbardi 10, I-22060 Novedrate, CO, Italy. [Matarrese, S.] Ist Nazl Fis Nucl, Gran Sasso Sci Inst, Viale F Crispi 7, I-67100 Laquila, Italy. [Pettorino, V.] HGSFP, Philosophenweg 16, D-69120 Heidelberg, Germany. [Pettorino, V.] Heidelberg Univ, Dept Theoret Phys, D-69120 Heidelberg, Germany. [Kurki-Suonio, H.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Helsinki Inst Phys, Gustaf Hallstromin Katu 2, SF-00100 Helsinki, Finland. [Umana, G.] INAF Osservatorio Astrofis Catania, Via S Sofia 78, I-95123 Catania, Italy. [de Zotti, G.] INAF Osservatorio Astron Padova, Vicolo Osservatorio 5, I-35122 Padua, Italy. [Polenta, G.] INAF Osservatorio Astron Roma, Via Frascati 33, I-00078 Monte Porzio Catone, Italy. [Frailis, M.; Galeotta, S.; Gregorio, A.; Maris, M.; Pasian, F.] INAF Osservatorio Astron Trieste, Via GB Tiepolo 11, Trieste, Italy. [Burigana, C.; Cuttaia, F.; de Rosa, A.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Mandolesi, N.; Morgante, G.; Paoletti, D.; Sandri, M.; Terenzi, L.; Toffolatti, L.; Valenziano, L.; Villa, F.] INAF IASF Bologna, Via Gobetti 101, I-40129 Bologna, Italy. [Bersanelli, M.; Donzelli, S.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] INAF IASF Milano, Via E Bassini 15, I-20133 Milan, Italy. [Burigana, C.; Finelli, F.; Paoletti, D.] Ist Nazl Fis Nucl, Sez Bologna, Via Irnerio 46, I-40126 Bologna, Italy. [Melchiorri, A.; Pagano, L.] Univ Roma La Sapienza, Ist Nazl Fis Nucl, Sez Roma 1, Ple Aldo Moro 2, I-00185 Rome, Italy. [Renzi, A.] Univ Roma Tor Vergata, Ist Nazl Fis Nucl, Sez Roma 2, Via Ric Sci 1, Rome, Italy. [Gregorio, A.] INFN Natl Inst Nucl Phys, Via Valerio 2, I-34127 Trieste, Italy. [Ponthieu, N.] Univ Grenoble Alpes, IPAG, F-38000 Grenoble, France. [Ponthieu, N.] CNRS, IPAG, F-38000 Grenoble, France. [Ducout, A.; Jaffe, A. H.; Mortlock, D.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Astrophys Grp, Prince Consort Rd, London SW7 2AZ, England. [Paladini, R.; Rusholme, B.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Benoit, A.] Univ Grenoble 1, Inst Neel, CNRS, 25 Rue Martyrs, F-38042 Grenoble, France. [Dole, H.] Inst Univ France, 103 Bd St Michel, F-75005 Paris, France. [Aghanim, N.; Alves, M. I. R.; Arzoumanian, D.; Aumont, J.; Boulanger, F.; Bracco, A.; Dole, H.; Douspis, M.; Ghosh, T.; Guillet, V.; Hurier, G.; Kunz, M.; Lagache, G.; Mangilli, A.; Miville-Deschenes, M. -A.; Pajot, F.; Ponthieu, N.; Puget, J. -L.; Remazeilles, M.; Soler, J. D.] Univ Paris 11, Inst Astrophys Spatiale, CNRS, UMR 8617, Batiment 121, F-91400 Orsay, France. [Benabed, K.; Benoit-Levy, A.; Bouchet, F. R.; Cardoso, J. -F.; Ducout, A.; Elsner, F.; Hivon, E.; Moneti, A.; Prunet, S.; Sygnet, J. -F.; Wandelt, B. D.] Inst Astrophys Paris, CNRS, UMR 7095, 98bis Blvd Arago, F-75014 Paris, France. [Efstathiou, G.; Harrison, D. L.; Migliaccio, M.; Sutton, D.] Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England. [Eriksen, H. K.; Gjerlow, E.; Lilje, P. B.] Univ Oslo, Inst Theoret Astrophys, N-0315 Oslo, Norway. [Rubino-Martin, J. A.] Inst Astrofis Canarias, C Via Lactea S-N, Tenerife 38205, Spain. [Barreiro, R. B.; Bonavera, L.; Curto, A.; Diego, J. M.; Gonzalez-Nuevo, J.; Herranz, D.; Lopez-Caniego, M.; Martinez-Gonzalez, E.; Toffolatti, L.; Vielva, P.] Univ Cantabria, Inst Fis Cantabria, CSIC, E-39005 Santander, Spain. [Bartolo, N.; Liguori, M.; Matarrese, S.] Ist Nazl Fis Nucl, Sez Padova, Via Marzolo 8, I-35131 Padua, Italy. [Bock, J. J.; Colombo, L. P. L.; Crill, B. P.; Dore, O.; Gorski, K. M.; Hildebrandt, S. R.; Holmes, W. A.; Lawrence, C. R.; Pietrobon, D.; Rocha, G.; Roudier, G.; Wade, L. A.; Wehus, I. K.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA USA. [Davies, R. D.; Davis, R. J.; Dickinson, C.; Noviello, F.; Remazeilles, M.] Univ Manchester, Jodrell Bank Ctr Astrophys, Sch Phys & Astron, Alan Turing Bldg,Oxford Rd, Manchester M13 9PL, Lancs, England. [Galli, S.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Ashdown, M.; Curto, A.; Harrison, D. L.; Lasenby, A.; Migliaccio, M.; Sutton, D.] Kavli Inst Cosmol Cambridge, Madingley Rd, Cambridge CB3 0HA, England. [Stolyarov, V.] Kazan Fed Univ, 18 Kremlyovskaya St, Kazan 420008, Russia. [Couchot, F.; Henrot-Versille, S.; Mangilli, A.; Plaszczynski, S.; Tristram, M.] Univ Paris 11, LAL, CNRS, IN2P3, F-91405 Orsay, France. [Catalano, A.; Falgarone, E.; Lamarre, J. -M.; Levrier, F.; Roudier, G.] Observ Paris, LERMA, CNRS, 61 Ave Observ, F-75014 Paris, France. [Arnaud, M.; Hennebelle, P.; Pratt, G. W.] Univ Paris Diderot, Lab AIM, Serv Astrophys, CEA,DSM,CNRS,CEA Saclay,IRFU, Bat 709, F-91191 Gif Sur Yvette, France. [Cardoso, J. -F.] CNRS, Lab Traitement & Commun Informat, UMR 5141, 46 Rue Barrault, F-75634 Paris 13, France. [Cardoso, J. -F.] Telecom ParisTech, 46 Rue Barrault, F-75634 Paris 13, France. [Catalano, A.; Combet, C.; Macias-Perez, J. F.; Perotto, L.; Renault, C.; Santos, D.] Univ Grenoble Alpes, Lab Phys Subatom & Cosmol, CNRS, IN2P3, 53 Rue Martyrs, F-38026 Grenoble, France. [Van Tent, B.] Univ Paris 11, Lab Phys Theor, Batiment 210, F-91405 Orsay, France. [Van Tent, B.] CNRS, Batiment 210, F-91405 Orsay, France. [Kisner, T. S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Novikov, D.; Novikov, I.] Russian Acad Sci, Lebedev Phys Inst, Ctr Astro Space, 84-32 Profsoyuznaya St,GSP-7, Moscow 117997, Russia. [Ensslin, T. A.; Hernandez-Monteagudo, C.; Knoche, J.; Rachen, J. P.; Reinecke, M.] Max Planck Inst Astrophys, Karl Schwarzschild Str 1, D-85741 Garching, Germany. [Murphy, J. A.] Natl Univ Ireland, Dept Expt Phys, Maynooth, Kildare, Ireland. [Bielewicz, P.] Nicolaus Copernicus Astron Ctr, Bartycka 18, PL-00716 Warsaw, Poland. [Christensen, P. R.; Frejsel, A.; Naselsky, P.; Novikov, I.] Niels Bohr Inst, Blegdamsvej 17, DK-2100 Copenhagen, Denmark. [Savini, G.] UCL, Opt Sci Lab, Gower St, London WC1E 6BT, England. [Baccigalupi, C.; Bielewicz, P.; Danese, L.; de Zotti, G.] SISSA, Astrophys Sect, Via Bonomea 265, I-34136 Trieste, Italy. [Falceta-Goncalves, D.] Univ Edinburgh, Inst Astron, SUPA, Royal Observ, Blackford Hill, Edinburgh EH9 3HJ, Midlothian, Scotland. [Ade, P. A. R.; Munshi, D.; Sudiwala, R.] Cardiff Univ, Sch Phys & Astron, Queens Bldg, Cardiff CF24 3AA, S Glam, Wales. [Bouchet, F. R.] Sorbonne Univ, UPMC, UMR 7095, Inst Astrophys Paris, 98bis Blvd Arago, F-75014 Paris, France. [Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Stolyarov, V.] Russian Acad Sci, Special Astrophys Observ, Karachai Cherkessian Rep 369167, Zelenchukskiy R, Russia. [Calabrese, E.] Univ Oxford, Subdept Astrophys, Keble Rd, Oxford OX1 3RH, England. [Benabed, K.; Benoit-Levy, A.; Elsner, F.; Hivon, E.; Prunet, S.; Wandelt, B. D.] Univ Paris 06, UMR 7095, 98bis Blvd Arago, F-75014 Paris, France. [Banday, A. J.; Bernard, J-P.; Ferriere, K.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France. [Battaner, E.] Univ Granada, Dept Fis Teor & Cosmos, Fac Ciencias, E-18071 Granada, Spain. [Battaner, E.] Univ Granada, Inst Carlos Fis Teor & Computac 1, E-18071 Granada, Spain. [Gorski, K. M.] Univ Warsaw Observ, Aleje Ujazdowskie 4, PL-00478 Warsaw, Poland. RP Soler, JD (reprint author), Univ Paris 11, Inst Astrophys Spatiale, CNRS, UMR 8617, Batiment 121, F-91400 Orsay, France. EM jsolerpu@ias.u-psudfr RI Novikov, Igor/N-5098-2015; Novikov, Dmitry/P-1807-2015; Stolyarov, Vladislav/C-5656-2017; Barreiro, Rita Belen/N-5442-2014; bonavera, laura/E-9368-2017; Renzi, Alessandro/K-4114-2015; Remazeilles, Mathieu/N-1793-2015; Martinez-Gonzalez, Enrique/E-9534-2015; Piacentini, Francesco/E-7234-2010; Gonzalez-Nuevo, Joaquin/I-3562-2014; Nati, Federico/I-4469-2016; Falceta-Goncalves, Diego/I-4576-2012; Ghosh, Tuhin/E-6899-2016; Toffolatti, Luigi/K-5070-2014; Tomasi, Maurizio/I-1234-2016; Colombo, Loris/J-2415-2016; Herranz, Diego/K-9143-2014; Vielva, Patricio/F-6745-2014; Lopez-Caniego, Marcos/M-4695-2013; OI Stolyarov, Vladislav/0000-0001-8151-828X; Barreiro, Rita Belen/0000-0002-6139-4272; bonavera, laura/0000-0001-8039-3876; Renzi, Alessandro/0000-0001-9856-1970; Remazeilles, Mathieu/0000-0001-9126-6266; Scott, Douglas/0000-0002-6878-9840; Huffenberger, Kevin/0000-0001-7109-0099; Bouchet, Francois/0000-0002-8051-2924; Martinez-Gonzalez, Enrique/0000-0002-0179-8590; Piacentini, Francesco/0000-0002-5444-9327; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; Nati, Federico/0000-0002-8307-5088; Toffolatti, Luigi/0000-0003-2645-7386; Tomasi, Maurizio/0000-0002-1448-6131; Colombo, Loris/0000-0003-4572-7732; Herranz, Diego/0000-0003-4540-1417; Vielva, Patricio/0000-0003-0051-272X; Pierpaoli, Elena/0000-0002-7957-8993; TERENZI, LUCA/0000-0001-9915-6379; Valiviita, Jussi/0000-0001-6225-3693; Hurier, Guillaume/0000-0002-1215-0706; Hivon, Eric/0000-0003-1880-2733; Lilje, Per/0000-0003-4324-7794; Paoletti, Daniela/0000-0003-4761-6147; Savini, Giorgio/0000-0003-4449-9416 FU European Research Council under the European Union/ERC [267934] FX The development of Planck has been supported by: ESA; CNES and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MICINN, JA, and RES (Spain); Tekes, AoF, and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); and PRACE (EU). A description of the Planck Collaboration and a list of its members, including the technical or scientific activities in which they have been involved, can be found at http://www.sciops.esa.int/index.php?project=planck&page=Planck_Collabora tion. The research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement No. 267934. NR 113 TC 10 Z9 10 U1 3 U2 8 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD FEB PY 2016 VL 586 AR A138 DI 10.1051/0004-6361/201525896 PG 29 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DD1XG UT WOS:000369715900148 ER PT J AU Ade, PAR Aghanim, N Arnaud, M Ashdown, M Aubourg, E Aumont, J Baccigalupi, C Banday, AJ Barreiro, RB Bartolo, N Battaner, E Benabed, K Benoit-Levy, A Bersanelli, M Bielewicz, P Bock, JJ Bonaldi, A Bonavera, L Bond, JR Borrill, J Bouchet, FR Burigana, C Calabrese, E Cardoso, JF Catalano, A Chamballu, A Chiang, HC Christensen, PR Clements, DL Colombo, LPL Combet, C Crill, BP Curto, A Cuttaia, F Danese, L Davies, RD Davis, RJ de Bernardis, P de Zotti, G Delabrouille, J Dickinson, C Diego, JM Dolag, K Donzelli, S Dore, O Douspis, M Ducout, A Dupac, X Efstathiou, G Elsner, F Ensslin, TA Eriksen, HK Finelli, F Forni, O Frailis, M Fraisse, AA Franceschi, E Frejsel, A Galeotta, S Galli, S Ganga, K Genova-Santos, RT Giard, M Gjerlow, E Gonzalez-Nuevo, J Gorski, KM Gregorio, A Gruppuso, A Hansen, FK Harrison, DL Henrot-Versille, S Hernandez-Monteagudo, C Herranz, D Hildebrandt, SR Hivon, E Hobson, M Hornstrup, A Huffenberger, KM Hurier, G Jaffe, AH Jaffe, TR Jones, WC Juvela, M Keihanen, E Keskitalo, R Kitaura, F Kneissl, R Knoche, J Kunz, M Kurki-Suonio, H Lagache, G Lamarre, JM Lasenby, A Lattanzi, M Lawrence, CR Leonardi, R Leon-Tavares, J Levrier, F Liguori, M Lilje, PB Linden-Vornle, M Lopez-Caniego, M Lubin, PM Ma, YZ Macias-Perez, JF Maffei, B Maino, D Mak, DSY Mandolesi, N Mangilli, A Maris, M Martin, PG Martinez-Gonzalez, E Masi, S Matarrese, S McGehee, P Melchiorri, A Mennella, A Migliaccio, M Miville-Deschenes, MA Moneti, A Montier, L Morgante, G Mortlock, D Munshi, D Murphy, JA Naselsky, P Nati, F Natoli, P Noviello, F Novikov, D Novikov, I Oxborrow, CA Pagano, L Pajot, F Paoletti, D Perdereau, O Perotto, L Pettorino, V Piacentini, F Piat, M Pierpaoli, E Pointecouteau, E Polenta, G Pontineu, N Pratt, GW Puget, JL Puisieux, S Rachen, JP Racine, B Reach, WT Reinecke, M Remazeilles, M Renault, C Renzi, A Ristorcelli, I Rocha, G Rosset, C Rossetti, M Roudier, G Rubino-Martin, JA Rusholme, B Sandri, M Santos, D Savelainen, M Savini, G Scott, D Spencer, LD Stolyarov, V Sudiwala, R Sunyaev, R Sutton, D Suur-Uski, AS Sygnet, JF Tauber, JA Terenzi, L Toffolatti, L Tomasi, M Tucci, M Valenziano, L Valiviita, J Van Tent, B Vielva, P Villa, F Wade, LA Wandelt, BD Wang, W Wehus, IK Yvon, D Zacchei, A Zonca, A AF Ade, P. A. R. Aghanim, N. Arnaud, M. Ashdown, M. Aubourg, E. Aumont, J. Baccigalupi, C. Banday, A. J. Barreiro, R. B. Bartolo, N. Battaner, E. Benabed, K. Benoit-Levy, A. Bersanelli, M. Bielewicz, P. Bock, J. J. Bonaldi, A. Bonavera, L. Bond, J. R. Borrill, J. Bouchet, F. R. Burigana, C. Calabrese, E. Cardoso, J. -F. Catalano, A. Chamballu, A. Chiang, H. C. Christensen, P. R. Clements, D. L. Colombo, L. P. L. Combet, C. Crill, B. P. Curto, A. Cuttaia, F. Danese, L. Davies, R. D. Davis, R. J. de Bernardis, P. de Zotti, G. Delabrouille, J. Dickinson, C. Diego, J. M. Dolag, K. Donzelli, S. Dore, O. Douspis, M. Ducout, A. Dupac, X. Efstathiou, G. Elsner, F. Ensslin, T. A. Eriksen, H. K. Finelli, F. Forni, O. Frailis, M. Fraisse, A. A. Franceschi, E. Frejsel, A. Galeotta, S. Galli, S. Ganga, K. Genova-Santos, R. T. Giard, M. Gjerlow, E. Gonzalez-Nuevo, J. Gorski, K. M. Gregorio, A. Gruppuso, A. Hansen, F. K. Harrison, D. L. Henrot-Versille, S. Hernandez-Monteagudo, C. Herranz, D. Hildebrandt, S. R. Hivon, E. Hobson, M. Hornstrup, A. Huffenberger, K. M. Hurier, G. Jaffe, A. H. Jaffe, T. R. Jones, W. C. Juvela, M. Keihanen, E. Keskitalo, R. Kitaura, F. Kneissl, R. Knoche, J. Kunz, M. Kurki-Suonio, H. Lagache, G. Lamarre, J. -M. Lasenby, A. Lattanzi, M. Lawrence, C. R. Leonardi, R. Leon-Tavares, J. Levrier, F. Liguori, M. Lilje, P. B. Linden-Vornle, M. Lopez-Caniego, M. Lubin, P. M. Ma, Y. -Z. Macias-Perez, J. F. Maffei, B. Maino, D. Mak, D. S. Y. Mandolesi, N. Mangilli, A. Maris, M. Martin, P. G. Martinez-Gonzalez, E. Masi, S. Matarrese, S. McGehee, P. Melchiorri, A. Mennella, A. Migliaccio, M. Miville-Deschenes, M. -A. Moneti, A. Montier, L. Morgante, G. Mortlock, D. Munshi, D. Murphy, J. A. Naselsky, P. Nati, F. Natoli, P. Noviello, F. Novikov, D. Novikov, I. Oxborrow, C. A. Pagano, L. Pajot, F. Paoletti, D. Perdereau, O. Perotto, L. Pettorino, V. Piacentini, F. Piat, M. Pierpaoli, E. Pointecouteau, E. Polenta, G. Pontineu, N. Pratt, G. W. Puget, J. -L. Puisieux, S. Rachen, J. P. Racine, B. Reach, W. T. Reinecke, M. Remazeilles, M. Renault, C. Renzi, A. Ristorcelli, I. Rocha, G. Rosset, C. Rossetti, M. Roudier, G. Rubino-Martin, J. A. Rusholme, B. Sandri, M. Santos, D. Savelainen, M. Savini, G. Scott, D. Spencer, L. D. Stolyarov, V. Sudiwala, R. Sunyaev, R. Sutton, D. Suur-Uski, A. -S. Sygnet, J. -F. Tauber, J. A. Terenzi, L. Toffolatti, L. Tomasi, M. Tucci, M. Valenziano, L. Valiviita, J. Van Tent, B. Vielva, P. Villa, F. Wade, L. A. Wandelt, B. D. Wang, W. Wehus, I. K. Yvon, D. Zacchei, A. Zonca, A. CA Planck Collaboration TI Planck intermediate results XXXVII. Evidence of unbound gas from the kinetic Sunyaev-Zeldovich effect SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE cosmic background radiation; cosmology: observations; large-scale structure of Universe; galaxies: clusters: intracluster medium ID PARTICLE HYDRODYNAMICS SIMULATIONS; BULK FLOW; DENSITY FIELDS; COSMOLOGICAL IMPLICATIONS; WIENER RECONSTRUCTION; PECULIAR VELOCITIES; REDSHIFT SURVEYS; GALAXY SAMPLES; IRAS-GALAXIES; DARK ENERGY AB By looking at the kinetic Sunyaev-Zeldovich effect (kSZ) in Planck nominal mission data, we present a significant detection of baryons participating in large-scale bulk flows around central galaxies (CGs) at redshift z approximate to 0.1. We estimate the pairwise momentum of the kSZ temperature fluctuations at the positions of the Central Galaxy Catalogue (CGC) samples extracted from Sloan Digital Sky Survey (SDSS-DR7) data. For the foreground-cleaned SEVEM, SMICA, NILC, and COMMANDER maps, we find 1.8-2.5 sigma detections of the kSZ signal, which are consistent with the kSZ evidence found in individual Planck raw frequency maps, although lower than found in the WMAP-9yr W-band (3.3 sigma). We further reconstruct the peculiar velocity field from the CG density field, and compute for the first time the cross-correlation function between kSZ temperature fluctuations and estimates of CG radial peculiar velocities. This correlation function yields a 3.0-3.7 sigma detection of the peculiar motion of extended gas on Mpc scales in flows correlated up to distances of 80-100 h(-1) Mpc. Both the pairwise momentum estimates and the kSZ temperature-velocity field correlation find evidence for kSZ signatures out to apertures of 8 arcmin and beyond, corresponding to a physical radius of >1 Mpc, more than twice the mean virial radius of halos. This is consistent with the predictions from hydrodynamical simulations that most of the baryons are outside the virialized halos. We fit a simple model, in which the temperature-velocity cross-correlation is proportional to the signal seen in a semi-analytic model built upon N-body simulations, and interpret the proportionality constant as an effective optical depth to Thomson scattering. We find tau(T) = (1.4 +/- 0.5) x 10(-4); the simplest interpretation of this measurement is that much of the gas is in a diffuse phase, which contributes little signal to X-ray or thermal Sunyaev-Zeldovich observations. C1 [Aubourg, E.; Cardoso, J. -F.; Delabrouille, J.; Ganga, K.; Piat, M.; Racine, B.; Remazeilles, M.; Rosset, C.; Roudier, G.] Univ Paris Diderot, AstroParticule & Cosmol, Observ Paris, APC,CNRS,IN2P3,CEA,Irfu,Sorbonne Paris Cite, 10 Rue Alice Damon & Leonie Duquet, F-75205 Paris 13, France. [Leon-Tavares, J.] Aalto Univ, Metsahovi Radio Observ, POB 13000, Aalto 00076, Finland. [Kunz, M.] African Inst Math Sci, 6-8 Melrose Rd, Cape Town, South Africa. [Natoli, P.; Polenta, G.] Agenzia Spaziale Italiana Sci Data Ctr, Via Politecn Snc, I-00133 Rome, Italy. [Lagache, G.] Aix Marseille Univ, CNRS, LAM, UMR 7326, F-13388 Marseille, France. [Ashdown, M.; Curto, A.; Hobson, M.; Lasenby, A.; Stolyarov, V.] Univ Cambridge, Cavendish Lab, Astrophys Grp, JJ Thomson Ave, Cambridge CB3 0HE, England. [Chiang, H. C.] Univ KwaZulu Natal, Astrophys & Cosmol Res Unit, Sch Math Stat & Comp Sci, Westville Campus,Private Bag X54001, ZA-4000 Durban, South Africa. [Kneissl, R.] Atacama Large Millimeter Submillimeter Array, ALMA Santiago Central Off, Alonso de Cordova 3107,Casilla 763 0355, Santiago, Chile. [Bond, J. R.; Martin, P. G.; Miville-Deschenes, M. -A.] Univ Toronto, CITA, 60 St George St, Toronto, ON M5S 3H8, Canada. [Banday, A. J.; Bielewicz, P.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] CNRS, IRAP, 9 Ave Colonel Roche,BP 44346, F-31028 Toulouse 4, France. [Bock, J. J.; Crill, B. P.; Dore, O.; Hildebrandt, S. R.; Rocha, G.] CALTECH, Pasadena, CA 91125 USA. [Hernandez-Monteagudo, C.] CEFCA, Plaza San Juan 1,Planta 2, Teruel 44001, Spain. [Borrill, J.; Keskitalo, R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA. [Chamballu, A.; Puisieux, S.; Yvon, D.] CEA Saclay, DSM, Irfu, SPP, F-91191 Gif Sur Yvette, France. [Hornstrup, A.; Linden-Vornle, M.; Oxborrow, C. A.] Tech Univ Denmark, Natl Space Inst, DTU Space, Elektrovej 327, DK-2800 Lyngby, Denmark. [Kunz, M.; Tucci, M.] Univ Geneva, Dept Phys Theor, 24 Quai E Ansermet, CH-1211 Geneva 4, Switzerland. [Genova-Santos, R. T.; Rubino-Martin, J. A.] Univ La Laguna, Dept Astrofis, E-38206 Tenerife, Spain. [Gonzalez-Nuevo, J.; Toffolatti, L.] Univ Oviedo, Dept Fis, Avda Calvo Sotelo S-N, Oviedo 33003, Spain. [Rachen, J. P.] Radboud Univ Nijmegen, Dept Astrophys IMAPP, POB 9010, NL-6500 GL Nijmegen, Netherlands. [Ma, Y. -Z.; Scott, D.] Univ British Columbia, Dept Phys & Astron, 6224 Agr Rd, Vancouver, BC V5Z 1M9, Canada. [Colombo, L. P. L.; Pierpaoli, E.] Univ So Calif, Dept Phys & Astron, Dana & David Dornsife Coll Letter Arts & Sci, Los Angeles, CA 90089 USA. [Benoit-Levy, A.; Elsner, F.] Univ London Univ Coll, Dept Phys & Astron, Gower St, London WC1E 6BT, England. [Huffenberger, K. M.] Florida State Univ, Dept Phys, Keen Phys Bldg,77 Chieftan Way, Tallahassee, FL 32306 USA. [Juvela, M.; Keihanen, E.; Kurki-Suonio, H.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Dept Phys, Gustaf Hallstromin Katu 2a, Helsinki 00100, Finland. [Chiang, H. C.; Fraisse, A. A.; Jones, W. C.; Nati, F.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Lubin, P. M.; Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Wandelt, B. D.] Univ Illinois, Dept Phys, 1110 West Green St, Urbana, IL USA. [Bartolo, N.; Liguori, M.; Matarrese, S.] Univ Padua, Dipartimento Fis & Astron G Galilei, Via Marzolo 8, I-35131 Padua, Italy. [Burigana, C.; Lattanzi, M.; Mandolesi, N.; Natoli, P.] Univ Ferrara, Dipartimento Fis & Sci Terra, Via Saragat 1, I-44122 Ferrara, Italy. [de Bernardis, P.; Masi, S.; Melchiorri, A.; Pagano, L.; Piacentini, F.] Univ Roma La Sapienza, Dipartimento Fis, Ple A Moro 2, Rome, Italy. [Bersanelli, M.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] Univ Milan, Dipartimento Fis, Via Celoria 16, Milan, Italy. [Gregorio, A.] Univ Trieste, Dipartimento Fis, Via A Valerio 2, Trieste, Italy. [Renzi, A.] Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci 1, Rome, Italy. [Christensen, P. R.; Naselsky, P.] Niels Bohr Inst, Discovery Ctr, 17 Blegdamsvej, Copenhagen, Denmark. [Kneissl, R.] European So Observ, ESO Vitacura, Alonso de Cordova 3107,Casilla 19001, Santiago, Chile. [Dupac, X.; Leonardi, R.; Lopez-Caniego, M.] European Space Agcy, ESAC, Planck Sci Off, Camino Bajo Castillo S-N, Madrid 28692, Spain. [Tauber, J. A.] European Space Agcy, Estec, Keplerlaan 1, NL-2201 AZ Noordwijk, Netherlands. [Terenzi, L.] Univ E Campus, Fac Ingn, Via Isimbardi 10, I-22060 Novedrate, CO, Italy. [Leon-Tavares, J.] Univ Turku, Finnish Ctr Astron ESO FINCA, Vaisalantie 20, Piikkio 21500, Finland. [Matarrese, S.] Ist Nazl Fis Nucl, Gran Sasso Sci Inst, Viale F Crispi 7, I-67100 Laquila, Italy. [Pettorino, V.] HGSFP, Philosophenweg 16, D-69120 Heidelberg, Germany. [Pettorino, V.] Heidelberg Univ, Dept Theoret Phys, Philosophenweg 16, D-69120 Heidelberg, Germany. [Kurki-Suonio, H.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Helsinki Inst Phys, Gustaf Hallstromin Katu 2, SF-00100 Helsinki, Finland. [de Zotti, G.] IINAF Osservatorio Astron Padova, Vicolo Osservatorio 5, Padua, Italy. [Polenta, G.] INAF Osservatorio Astron Roma, Via Frascati 33, Monte Porzio Catone, Italy. [Frailis, M.; Galeotta, S.; Gregorio, A.; Maris, M.; Zacchei, A.] INAF Osservatorio Astron Trieste, Via GB Tiepolo 11, Trieste, Italy. [Burigana, C.; Cuttaia, F.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Mandolesi, N.; Morgante, G.; Natoli, P.; Paoletti, D.; Sandri, M.; Terenzi, L.; Toffolatti, L.; Valenziano, L.; Villa, F.] INAF IASF Bologna, Via Gobetti 101, Bologna, Italy. [Bersanelli, M.; Donzelli, S.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] INAF IASF Milano, Via E Bassini 15, Milan, Italy. [Burigana, C.; Finelli, F.; Paoletti, D.] Ist Nazl Fis Nucl, Sez Bologna, Via Irnerio 46, I-40126 Bologna, Italy. [Melchiorri, A.; Pagano, L.] Univ Roma La Sapienza, Ist Nazl Fis Nucl, Sez Roma 1, Ple Aldo Moro 2, I-00185 Rome, Italy. [Renzi, A.] Univ Roma Tor Vergata, Ist Nazl Fis Nucl, Sez Roma 2, Via Ric Sci 1, Rome, Italy. [Gregorio, A.] INFN Natl Inst Nucl Phys, Via Valerio 2, I-34127 Trieste, Italy. [Pontineu, N.] Univ Grenoble Alpes, IPAG, F-38000 Grenoble, France. [Pontineu, N.] CNRS, IPAG, F-38000 Grenoble, France. [Clements, D. L.; Ducout, A.; Jaffe, A. H.; Mortlock, D.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Astrophys Grp, Prince Consort Rd, London SW7 2AZ, England. [McGehee, P.; Rusholme, B.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Aghanim, N.; Aumont, J.; Chamballu, A.; Douspis, M.; Hurier, G.; Kunz, M.; Lagache, G.; Mangilli, A.; Miville-Deschenes, M. -A.; Pajot, F.; Pontineu, N.; Puget, J. -L.; Remazeilles, M.] Univ Paris 11, Inst Astrophys Spatiale, CNRS, UMR 8617, Batiment 121, Orsay, France. [Benabed, K.; Benoit-Levy, A.; Bouchet, F. R.; Cardoso, J. -F.; Ducout, A.; Elsner, F.; Hivon, E.; Moneti, A.; Sygnet, J. -F.; Wandelt, B. D.] CNRS, Inst Astrophys Paris, UMR 7095, 98bis Blvd Arago, F-75014 Paris, France. [Efstathiou, G.; Harrison, D. L.; Mak, D. S. Y.; Migliaccio, M.; Sutton, D.] Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England. [Eriksen, H. K.; Gjerlow, E.; Hansen, F. K.; Lilje, P. B.] Univ Oslo, Inst Theoret Astrophys, Oslo, Norway. [Leon-Tavares, J.] INAOE, Apartado Postal 51 & 216, Puebla 72000, Mexico. [Genova-Santos, R. T.; Rubino-Martin, J. A.] Inst Astrofis Canarias, C Via Lactea S-N, Tenerife, Spain. [Barreiro, R. B.; Bonavera, L.; Curto, A.; Diego, J. M.; Gonzalez-Nuevo, J.; Herranz, D.; Lopez-Caniego, M.; Martinez-Gonzalez, E.; Toffolatti, L.; Vielva, P.] Univ Cantabria, Inst Fis Cantabria, CSIC, Avda Castros S-N, E-39005 Santander, Spain. [Bartolo, N.; Liguori, M.; Matarrese, S.] Ist Nazl Fis Nucl, Sez Padova, Via Marzolo 8, I-35131 Padua, Italy. [Bock, J. J.; Colombo, L. P. L.; Crill, B. P.; Dore, O.; Gorski, K. M.; Hildebrandt, S. R.; Lawrence, C. R.; Rocha, G.; Roudier, G.; Wade, L. A.; Wehus, I. K.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA USA. [Bonaldi, A.; Davies, R. D.; Davis, R. J.; Dickinson, C.; Ma, Y. -Z.; Maffei, B.; Noviello, F.; Remazeilles, M.] Univ Manchester, Jodrell Bank Ctr Astrophys, Sch Phys & Astron, Alan Turing Bldg,Oxford Rd, Manchester M13 9PL, Lancs, England. [Galli, S.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Ashdown, M.; Curto, A.; Harrison, D. L.; Lasenby, A.; Mak, D. S. Y.; Migliaccio, M.; Sutton, D.] Kavli Inst Cosmol Cambridge, Madingley Rd, Cambridge CB3 0HA, England. [Stolyarov, V.] Kazan Fed Univ, 18 Kremlyovskaya St, Kazan 420008, Russia. [Henrot-Versille, S.; Mangilli, A.; Perdereau, O.] Univ Paris 11, CNRS, LAL, IN2P3, F-91405 Orsay, France. [Catalano, A.; Lamarre, J. -M.; Levrier, F.; Roudier, G.] Observ Paris, LERMA, CNRS, 61 Ave Observ, F-75014 Paris, France. [Arnaud, M.; Chamballu, A.; Pratt, G. W.] CEA Saclay, Lab AIM, Serv Astrophys, CEA,DSM,CNRS,CEA Saclay,IRFU, Bat 709, F-91191 Gif Sur Yvette, France. [Cardoso, J. -F.] CNRS, Lab Traitement & Commun Infonnat, UMR 5141, 46 Rue Barrault, F-75634 Paris 13, France. [Cardoso, J. -F.] Telecom ParisTech, 46 rue Barrault, F-75634 Paris 13, France. [Catalano, A.; Combet, C.; Macias-Perez, J. F.; Perotto, L.; Renault, C.; Santos, D.] Univ Grenoble Alpes, Lab Phys Subatom & Cosmol, CNRS, IN2P3, 53 Rue Martyrs, F-38026 Grenoble, France. [Van Tent, B.] Univ Paris 11, Lab Phys Theor, Batiment 210, F-91405 Orsay, France. [Van Tent, B.] CNRS, Batiment 210, F-91405 Orsay, France. [Novikov, D.; Novikov, I.] Russian Acad Sci, Lebedev Phys Inst, Ctr Astro Space, 84-32 Profsoyuznaya St,GSP7, Moscow 117997, Russia. [Kitaura, F.] Leibniz Inst Astrophys Potsdam AIP, Sternwarte 16, D-14482 Potsdam, Germany. [Dolag, K.; Ensslin, T. A.; Hernandez-Monteagudo, C.; Knoche, J.; Rachen, J. P.; Reinecke, M.; Sunyaev, R.; Wang, W.] Max Planck Inst Astrophys, Karl Schwarzschild Str 1, D-85748 Garching, Germany. [Murphy, J. A.] Natl Univ Ireland, Dept Expt Phys, Maynooth, Kildare, Ireland. [Bielewicz, P.] Nicolaus Copernicus Astron Ctr, Bartycka 18, PL-00716 Warsaw, Poland. [Christensen, P. R.; Frejsel, A.; Naselsky, P.; Novikov, I.] Niels Bohr Inst, Blegdamsvej 17, DK-2100 Copenhagen, Denmark. [Savini, G.] UCL, Opt Sci Lab, London WC1E 6I3T, England. [Baccigalupi, C.; Bielewicz, P.; Danese, L.; de Zotti, G.] SISSA, Astrophys Sector, Via Bonomea 265, I-34136 Trieste, Italy. [Ade, P. A. R.; Munshi, D.; Spencer, L. D.; Sudiwala, R.] Cardiff Univ, Sch Phys & Astron, Queens Bldng, Cardiff CF10 3AX, S Glam, Wales. [Bouchet, F. R.] Sorbonne Univ, UMR 7095, Inst Astrophys Paris, 98bis Blvd Arago, F-75014 Paris, France. [Sunyaev, R.] Russian Acad Sci, Space Res Inst IKI, Profsoyuznaya Str 84-32, Moscow 117997, Russia. [Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Stolyarov, V.] Russian Acad Sci, Special Astrophys Observ, Nizhnii Arkhyz 369167, Zelenchukskiy R, Russia. [Calabrese, E.] Univ Oxford, Sub Dept Astrophys, Keble Rd, Oxford OX1 3RH, England. [Benabed, K.; Benoit-Levy, A.; Elsner, F.; Hivon, E.; Wandelt, B. D.] UPMC Univ Paris 06, UMR 7095, 98bis Blvd Arago, F-75014 Paris, France. [Banday, A. J.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France. [Reach, W. T.] Univ Space Res Assoc, Stratospher Observ Infrared Astron, MS 232-11, Moffett Field, CA 94035 USA. [Dolag, K.] Univ Munich, Univ Observ, Scheinerstr 1, I-81679 Munich, Germany. [Battaner, E.] Univ Granada, Dept Fis Teor & Cosmos, Fac Ciencias, Granada 18071, Spain. [Battaner, E.] Univ Granada, Inst Carlos Fis Teor & Computac 1, Granada 18071, Spain. [Gorski, K. M.] Univ Warsaw Observ, Aleje Ujazdowskie 4, PL-00478 Warsaw, Poland. RP Hernandez-Monteagudo, C (reprint author), CEFCA, Plaza San Juan 1,Planta 2, Teruel 44001, Spain. EM chm@cefca.es RI Stolyarov, Vladislav/C-5656-2017; Barreiro, Rita Belen/N-5442-2014; bonavera, laura/E-9368-2017; Remazeilles, Mathieu/N-1793-2015; Renzi, Alessandro/K-4114-2015; Gonzalez-Nuevo, Joaquin/I-3562-2014; Nati, Federico/I-4469-2016; Novikov, Igor/N-5098-2015; Novikov, Dmitry/P-1807-2015; Toffolatti, Luigi/K-5070-2014; Tomasi, Maurizio/I-1234-2016; Colombo, Loris/J-2415-2016; Herranz, Diego/K-9143-2014; Vielva, Patricio/F-6745-2014; Lopez-Caniego, Marcos/M-4695-2013; Martinez-Gonzalez, Enrique/E-9534-2015; Piacentini, Francesco/E-7234-2010; OI Pierpaoli, Elena/0000-0002-7957-8993; Stolyarov, Vladislav/0000-0001-8151-828X; Barreiro, Rita Belen/0000-0002-6139-4272; bonavera, laura/0000-0001-8039-3876; Remazeilles, Mathieu/0000-0001-9126-6266; Renzi, Alessandro/0000-0001-9856-1970; Scott, Douglas/0000-0002-6878-9840; Huffenberger, Kevin/0000-0001-7109-0099; Bouchet, Francois/0000-0002-8051-2924; TERENZI, LUCA/0000-0001-9915-6379; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; Nati, Federico/0000-0002-8307-5088; Toffolatti, Luigi/0000-0003-2645-7386; Tomasi, Maurizio/0000-0002-1448-6131; Colombo, Loris/0000-0003-4572-7732; Herranz, Diego/0000-0003-4540-1417; Vielva, Patricio/0000-0003-0051-272X; Martinez-Gonzalez, Enrique/0000-0002-0179-8590; Piacentini, Francesco/0000-0002-5444-9327; Reach, William/0000-0001-8362-4094; Valiviita, Jussi/0000-0001-6225-3693; Hurier, Guillaume/0000-0002-1215-0706; Zacchei, Andrea/0000-0003-0396-1192; Hivon, Eric/0000-0003-1880-2733; Lilje, Per/0000-0003-4324-7794; Paoletti, Daniela/0000-0003-4761-6147; Savini, Giorgio/0000-0003-4449-9416 FU ESA; CNES (France); CNRS/INSU-IN2P3-INP (France); ASI (Italy); CNR (Italy); INAF (Italy); NASA (USA); DoE (USA); STFC (UK); UKSA (UK); CSIC (Spain); MINECO (Spain); JA (Spain); RES (Spain); Tekes (Finland); AoF (Finland); CSC (Finland); DLR (Germany); MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC (EU); PRACE (EU); ERC [307209]; Marie Curie Career Integration Grant [CIG 294183]; Spanish Ministerio de Economia y Competitividad [AYA2012-30789] FX The Planck Collaboration acknowledges the support of: ESA; CNES, and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MINECO, JA and RES (Spain); Tekes, AoF, and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC and PRACE (EU). A description of the Planck Collaboration and a list of its members, indicating which technical or scientific activities they have been involved in, can be found at http://www.cosmos.esa.int/web/planck/. This research was supported by ERC Starting Grant (No. 307209), by the Marie Curie Career Integration Grant CIG 294183 and by the Spanish Ministerio de Economia y Competitividad project AYA2012-30789. NR 65 TC 8 Z9 8 U1 3 U2 6 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD FEB PY 2016 VL 586 AR A140 DI 10.1051/0004-6361/201526328 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DD1XG UT WOS:000369715900150 ER PT J AU Ade, PAR Aghanim, N Arnaud, M Ashdown, M Aumont, J Baccigalupi, C Banday, AJ Barreiro, RB Barrena, R Bartolo, N Battaner, E Benabed, K Benoit-Levy, A Bernard, JP Bersanelli, M Bielewicz, P Bikmaev, I Bohringer, H Bonaldi, A Bonavera, L Bond, JR Borrill, J Bouchet, FR Burenin, R Burigana, C Calabrese, E Cardoso, JF Catalano, A Chamballu, A Chary, RR Chiang, HC Chon, G Christensen, PR Clements, DL Colombo, LPL Combet, C Comis, B Crill, BP Curto, A Cuttaia, F Dahle, H Danese, L Davies, RD Davis, RJ de Bernardis, P de Rosa, A de Zotti, G Delabrouille, J Diego, JM Dole, H Donzelli, S Dore, O Douspis, M Dupac, X Efstathiou, G Elsner, F Ensslin, TA Eriksen, HK Ferragamo, A Finelli, F Forni, O Frailis, M Fraisse, AA Franceschi, E Fromenteau, S Galeotta, S Galli, S Ganga, K Genova-Santos, RT Giard, M Gjerlow, E Gonzalez-Nuevo, J Gorski, KM Gruppuso, A Hansen, FK Harrison, DL Hempel, A Hernandez-Monteagudo, C Herranz, D Hildebrandt, SR Hivon, E Hornstrup, A Hovest, W Huffenberger, KM Hurier, G Jaffe, TR Keihanen, E Keskitalo, R Khamitov, I Kisner, TS Kneissl, R Knoche, J Kunz, M Kurki-Suonio, H Lamarre, JM Lasenby, A Lattanzi, M Lawrence, CR Leonardi, R Leon-Tavares, J Levrier, F Lietzen, H Liguori, M Lilje, PB Linden-Vornle, M Lopez-Caniego, M Lubin, PM Macias-Perez, JF Maffei, B Maino, D Mandolesi, N Maris, M Martin, PG Martinez-Gonzalez, E Masi, S Matarrese, S McGehee, P Melchiorri, A Mennella, A Migliaccio, M Miville-Deschenes, MA Moneti, A Montier, L Morgante, G Mortlock, D Munshi, D Murphy, JA Naselsky, P Nati, F Natoli, P Novikov, D Novikov, I Oxborrow, CA Pagano, L Pajot, F Paoletti, D Pasian, F Perdereau, O Pettorino, V Piacentini, F Piat, M Pierpaoli, E Plaszczynski, S Pointecouteau, E Polenta, G Pratt, GW Prunet, S Puget, JL Rachen, JP Rebolo, R Reinecke, M Remazeilles, M Renault, C Renzi, A Ristorcelli, I Rocha, G Rosset, C Rossetti, M Roudier, G Rubino-Martin, JA Rusholme, B Sandri, M Santos, D Savelainen, M Savini, G Scott, D Stolyarov, V Streblyanska, A Sudiwala, R Sunyaev, R Suur-Uski, AS Sygnet, JF Tauber, JA Terenzi, L Toffolatti, L Tomasi, M Tramonte, D Tristram, M Tucci, M Valenziano, L Valiviita, J Van Tent, B Vielva, P Villa, F Wade, LA Wandelt, BD Wehus, IK Yvon, D Zacchei, A Zonca, A AF Ade, P. A. R. Aghanim, N. Arnaud, M. Ashdown, M. Aumont, J. Baccigalupi, C. Banday, A. J. Barreiro, R. B. Barrena, R. Bartolo, N. Battaner, E. Benabed, K. Benoit-Levy, A. Bernard, J. -P. Bersanelli, M. Bielewicz, P. Bikmaev, I. Bohringer, H. Bonaldi, A. Bonavera, L. Bond, J. R. Borrill, J. Bouchet, F. R. Burenin, R. Burigana, C. Calabrese, E. Cardoso, J. -F. Catalano, A. Chamballu, A. Chary, R. -R. Chiang, H. C. Chon, G. Christensen, P. R. Clements, D. L. Colombo, L. P. L. Combet, C. Comis, B. Crill, B. P. Curto, A. Cuttaia, F. Dahle, H. Danese, L. Davies, R. D. Davis, R. J. de Bernardis, P. de Rosa, A. de Zotti, G. Delabrouille, J. Diego, J. M. Dole, H. Donzelli, S. Dore, O. Douspis, M. Dupac, X. Efstathiou, G. Elsner, F. Ensslin, T. A. Eriksen, H. K. Ferragamo, A. Finelli, F. Forni, O. Frailis, M. Fraisse, A. A. Franceschi, E. Fromenteau, S. Galeotta, S. Galli, S. Ganga, K. Genova-Santos, R. T. Giard, M. Gjerlow, E. Gonzalez-Nuevo, J. Gorski, K. M. Gruppuso, A. Hansen, F. K. Harrison, D. L. Hempel, A. Hernandez-Monteagudo, C. Herranz, D. Hildebrandt, S. R. Hivon, E. Hornstrup, A. Hovest, W. Huffenberger, K. M. Hurier, G. Jaffe, T. R. Keihanen, E. Keskitalo, R. Khamitov, I. Kisner, T. S. Kneissl, R. Knoche, J. Kunz, M. Kurki-Suonio, H. Lamarre, J. -M. Lasenby, A. Lattanzi, M. Lawrence, C. R. Leonardi, R. Leon-Tavares, J. Levrier, F. Lietzen, H. Liguori, M. Lilje, P. B. Linden-Vornle, M. Lopez-Caniego, M. Lubin, P. M. Macias-Perez, J. F. Maffei, B. Maino, D. Mandolesi, N. Maris, M. Martin, P. G. Martinez-Gonzalez, E. Masi, S. Matarrese, S. McGehee, P. Melchiorri, A. Mennella, A. Migliaccio, M. Miville-Deschenes, M. -A. Moneti, A. Montier, L. Morgante, G. Mortlock, D. Munshi, D. Murphy, J. A. Naselsky, P. Nati, F. Natoli, P. Novikov, D. Novikov, I. Oxborrow, C. A. Pagano, L. Pajot, F. Paoletti, D. Pasian, F. Perdereau, O. Pettorino, V. Piacentini, F. Piat, M. Pierpaoli, E. Plaszczynski, S. Pointecouteau, E. Polenta, G. Pratt, G. W. Prunet, S. Puget, J. -L. Rachen, J. P. Rebolo, R. Reinecke, M. Remazeilles, M. Renault, C. Renzi, A. Ristorcelli, I. Rocha, G. Rosset, C. Rossetti, M. Roudier, G. Rubino-Martin, J. A. Rusholme, B. Sandri, M. Santos, D. Savelainen, M. Savini, G. Scott, D. Stolyarov, V. Streblyanska, A. Sudiwala, R. Sunyaev, R. Suur-Uski, A. -S. Sygnet, J. -F. Tauber, J. A. Terenzi, L. Toffolatti, L. Tomasi, M. Tramonte, D. Tristram, M. Tucci, M. Valenziano, L. Valiviita, J. Van Tent, B. Vielva, P. Villa, F. Wade, L. A. Wandelt, B. D. Wehus, I. K. Yvon, D. Zacchei, A. Zonca, A. CA Planck Collaboration TI Planck intermediate results XXXVI. Optical identification and redshifts of Planck SZ sources with telescopes at the Canary Islands observatories SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE large-scale structure of Universe; galaxies: clusters: general; catalogs ID DIGITAL SKY SURVEY; GALAXY CLUSTER CATALOG; 720 SQUARE DEGREES; DATA RELEASE; COSMOLOGY; SAMPLE; CONSTRAINTS AB We present the results of approximately three years of observations of Planck Sunyaev-Zeldovich (SZ) sources with telescopes at the Canary Islands observatories as part of the general optical follow-up programme undertaken by the Planck Collaboration. In total, 78 SZ sources are discussed. Deep-imaging observations were obtained for most of these sources; spectroscopic observations in either in long-slit or multi-object modes were obtained for many. We effectively used 37.5 clear nights. We found optical counterparts for 73 of the 78 candidates. This sample includes 53 spectroscopic redshift determinations, 20 of them obtained with a multi-object spectroscopic mode. The sample contains new redshifts for 27 Planck clusters that were not included in the first Planck SZ source catalogue (PSZ1). C1 [Cardoso, J. -F.; Delabrouille, J.; Fromenteau, S.; Ganga, K.; Piat, M.; Remazeilles, M.; Rosset, C.; Roudier, G.] Univ Paris Diderot, AstroParticule & Cosmol, Sorbonne Paris Cite, APC,CNRS,IN2P3,CEA,Irfu,Observ Paris, 10 Rue Alice Domon & Leonie Duquet, F-75205 Paris 13, France. [Leon-Tavares, J.] Aalto Univ, Metsahovi Radio Observ, POB 13000, Aalto 00076, Finland. [Bikmaev, I.] Acad Sci Tatarstan, Bauman Str 20, Kazan 420111, Russia. [Kunz, M.] African Inst Math Sci, 6-8 Melrose Rd, ZA-7945 Cape Town, South Africa. [Natoli, P.; Polenta, G.] Agenzia Spaziale Italiana Sci Data Ctr, Via Politecn Snc, I-00133 Rome, Italy. [Ashdown, M.; Curto, A.; Lasenby, A.; Stolyarov, V.] Univ Cambridge, Cavendish Lab, Astrophys Grp, JJ Thomson Ave, Cambridge CB3 0HE, England. [Chiang, H. C.] Univ KwaZulu Natal, Astrophys & Cosmol Res Unit, Sch Math Stat & Comp Sci, Westville Campus,Private Bag X54001, ZA-4000 Durban, South Africa. [Kneissl, R.] Atacama Large Millimeter Submillimeter Array, ALMA Santiago Cent Off, Alonso de Cordova 3107,Casilla 763, Santiago 0355, Chile. [Leonardi, R.] CGEE, SCS Qd 9,4 Andar,Ed Parque Cidade Corp, BR-70308200 Brasilia, DF, Brazil. [Bond, J. R.; Martin, P. G.; Miville-Deschenes, M. -A.] Univ Toronto, CITA, 60 St George St, Toronto, ON M5S 3H8, Canada. [Banday, A. J.; Bernard, J. -P.; Bielewicz, P.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] CNRS, IRAP, 9 Ave colonel Roche,BP 44346, F-31028 Toulouse 4, France. [Crill, B. P.; Dore, O.; Hildebrandt, S. R.; Rocha, G.] CALTECH, 1200E, Pasadena, CA 91125 USA. [Hernandez-Monteagudo, C.] CEFCA, Plaza San Juan 1,Planta 2, Teruel 44001, Spain. [Borrill, J.; Keskitalo, R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA. [Rebolo, R.] CSIC, Plaza Murillo 2, E-28006 Madrid, Spain. [Chamballu, A.; Yvon, D.] CEA Saclay, DSM, Irfu, SPP, F-91191 Gif Sur Yvette, France. [Hornstrup, A.; Linden-Vornle, M.; Oxborrow, C. A.] Tech Univ Denmark, Natl Space Inst, DTU Space, Elektrovej 327, DK-2800 Lyngby, Denmark. [Kunz, M.; Tucci, M.] Univ Geneva, Dept Phys Theor, 24 Quai E Ansermet, CH-1211 Geneva 4, Switzerland. [Barrena, R.; Ferragamo, A.; Genova-Santos, R. T.; Hempel, A.; Lietzen, H.; Rebolo, R.; Streblyanska, A.; Tramonte, D.] Univ La Laguna, Dept Astrofis, E-38206 Tenerife, Spain. [Gonzalez-Nuevo, J.; Toffolatti, L.] Univ Oviedo, Dept Fis, Avda Calvo Sotelo S-N, Oviedo 33003, Spain. [Bikmaev, I.; Khamitov, I.] Kazan Fed Univ, Dept Astron & Geodesy, Kremlevskaya Str 18, Kazan 420008, Russia. [Rachen, J. P.] Radboud Univ Nijmegen, Dept Astrophys IMAPP, POB 9010, NL-6500 GL Nijmegen, Netherlands. [Scott, D.] Univ British Columbia, Dept Phys & Astron, 6224 Agr Rd, Vancouver, BC V5Z 1M9, Canada. [Colombo, L. P. L.; Pierpaoli, E.] Univ So Calif, Dept Phys & Astron, Dana & David Dornsife Coll Letter Arts & Sci, Los Angeles, CA 90089 USA. [Benoit-Levy, A.; Elsner, F.] Univ London Univ Coll, Dept Phys & Astron, Gower St, London WC1E 6BT, England. [Huffenberger, K. M.] Florida State Univ, Dept Phys, Keen Phys Bldg,77 Chieftan Way, Tallahassee, FL 32306 USA. [Keihanen, E.; Kurki-Suonio, H.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Dept Phys, Gustaf Hallstromin Katu 2a, Helsinki 00100, Finland. [Chiang, H. C.; Fraisse, A. A.; Nati, F.] Princeton Univ, Dept Phys, Princeton, NJ 08540 USA. [Lubin, P. M.; Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Wandelt, B. D.] Univ Illinois, Dept Phys, 1110 West Green St, Urbana, IL USA. [Bartolo, N.; Liguori, M.; Matarrese, S.] Univ Padua, Dipartimento Fis & Astron G Galilei, Via Marzolo 8, I-35131 Padua, Italy. [Burigana, C.; Lattanzi, M.; Mandolesi, N.; Natoli, P.] Univ Ferrara, Dipartimento Fis & Sci Terra, Via Saragat 1, I-44122 Ferrara, Italy. [de Bernardis, P.; Masi, S.; Melchiorri, A.; Pagano, L.; Piacentini, F.] Univ Roma La Sapienza, Dipartimento Fis, Ple A Moro 2, I-00185 Rome, Italy. [Bersanelli, M.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] Univ Milan, Dipartimento Fis, Via Celoria 16, Milan, Italy. [Renzi, A.] Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci 1, I-00173 Rome, Italy. [Christensen, P. R.] Niels Bohr Inst, Discovery Ctr, Blegdamsvej 17, DK-2100 Copenhagen, Denmark. [Naselsky, P.] Univ Copenhagen, Niels Bohr Inst, Discovery Ctr, Blegdamsvej 17, DK-2100 Copenhagen, Denmark. [Kneissl, R.] European So Observ, ESO Vitacura, Alonso de Cordova 3107,Casilla 19001, Santiago, Chile. [Dupac, X.; Lopez-Caniego, M.] European Space Agcy, ESAC, Planck Sci Off, Camino Bajo del Castillo S-N, Madrid 28692, Spain. [Terenzi, L.] Univ E Campus, Fac Ingn, Via Isimbardi 10, I-22060 Novedrate, CO, Italy. [Leon-Tavares, J.] Univ Turku, Finnish Ctr Astron ESO FINCA, Vaisalantie 20, Piikkio 21500, Finland. [Matarrese, S.] Ist Nazl Fis Nucl, Gran Sasso Sci Inst, Viale F Crispi 7, I-67100 Laquila, Italy. [Pettorino, V.] HGSFP, Philosophenweg 16, D-69120 Heidelberg, Germany. [Pettorino, V.] Heidelberg Univ, Dept Theoret Phys, Philosophenweg 16, D-69120 Heidelberg, Germany. [Kurki-Suonio, H.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Helsinki Inst Phys, Gustaf Hallstromin Katu 2, SF-00100 Helsinki, Finland. [de Zotti, G.] INAF Osservatorio Astron Padova, Vicolo Osservatorio 5, Padua, Italy. [Polenta, G.] INAF Osservatorio Astron Roma, Via Frascati 33, I-00136 Monte Porzio Catone, Italy. [Frailis, M.; Galeotta, S.; Maris, M.; Pasian, F.; Zacchei, A.] INAF Osservatorio Astron Trieste, Via GB Tiepolo 11, I-34131 Trieste, Italy. [Burigana, C.; Cuttaia, F.; de Rosa, A.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Mandolesi, N.; Morgante, G.; Natoli, P.; Paoletti, D.; Sandri, M.; Terenzi, L.; Toffolatti, L.; Valenziano, L.; Villa, F.] INAF IASF Bologna, Via Gobetti 101, Bologna, Italy. [Bersanelli, M.; Donzelli, S.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] INAF IASF Milano, Via E Bassini 15, Milan, Italy. [Burigana, C.; Finelli, F.; Paoletti, D.] Ist Nazl Fis Nucl, Sez Bologna, Via Irnerio 46, I-40126 Bologna, Italy. [Melchiorri, A.; Pagano, L.] Univ Roma La Sapienza, Ist Nazl Fis Nucl, Sez Roma 1, Piazzale Aldo Moro 2, I-00185 Rome, Italy. [Renzi, A.] Univ Roma Tor Vergata, Ist Nazl Fis Nucl, Sez Roma 2, Via Ric Sci 1, I-00185 Rome, Italy. [Clements, D. L.; Mortlock, D.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Astrophys Grp, Prince Consort Rd, London SW7 2AZ, England. [Chary, R. -R.; McGehee, P.; Rusholme, B.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Dole, H.] Inst Univ France, 103 Bd St Michel, F-75005 Paris, France. [Aghanim, N.; Aumont, J.; Chamballu, A.; Dole, H.; Douspis, M.; Fromenteau, S.; Hurier, G.; Kunz, M.; Miville-Deschenes, M. -A.; Pajot, F.; Puget, J. -L.; Remazeilles, M.] Univ Paris 11, CNRS, Inst Astrophys Spatiale, UMR 8617, Batiment 121, F-91405 Orsay, France. [Benabed, K.; Benoit-Levy, A.; Bouchet, F. R.; Cardoso, J. -F.; Elsner, F.; Hivon, E.; Moneti, A.; Prunet, S.; Sygnet, J. -F.; Wandelt, B. D.] CNRS, Inst Astrophys Paris, UMR 7095, 98bis Blvd Arago, F-75014 Paris, France. [Efstathiou, G.; Harrison, D. L.; Migliaccio, M.] Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England. [Dahle, H.; Eriksen, H. K.; Gjerlow, E.; Hansen, F. K.; Lilje, P. B.] Univ Oslo, Inst Theoret Astrophys, Oslo, Norway. [Leon-Tavares, J.] INAOE, Apartado Postal 51 & 216, Puebla 72000, Mexico. [Barrena, R.; Ferragamo, A.; Genova-Santos, R. T.; Hempel, A.; Lietzen, H.; Rebolo, R.; Rubino-Martin, J. A.; Streblyanska, A.; Tramonte, D.] Inst Astrofis Canarias, C Via Lactea S-N, Tenerife, Spain. [Barreiro, R. B.; Bonavera, L.; Curto, A.; Diego, J. M.; Gonzalez-Nuevo, J.; Herranz, D.; Lopez-Caniego, M.; Martinez-Gonzalez, E.; Toffolatti, L.; Vielva, P.] Univ Cantabria, Inst Fis Cantabria, CSIC, Avda Castros S-N, E-39005 Santander, Spain. [Bartolo, N.; Liguori, M.; Matarrese, S.] Ist Nazl Fis Nucl, Sez Padova, Via Marzolo 8, I-35131 Padua, Italy. [Colombo, L. P. L.; Crill, B. P.; Dore, O.; Gorski, K. M.; Hildebrandt, S. R.; Lawrence, C. R.; Rocha, G.; Roudier, G.; Wade, L. A.; Wehus, I. K.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA USA. [Bonaldi, A.; Davies, R. D.; Davis, R. J.; Maffei, B.; Remazeilles, M.] Univ Manchester, Jodrell Bank Ctr Astrophys, Sch Phys & Astron, Alan Turing Bldg,Oxford Rd, Manchester M13 9PL, Lancs, England. [Galli, S.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Ashdown, M.; Curto, A.; Harrison, D. L.; Lasenby, A.; Migliaccio, M.] Kavli Inst Cosmol Cambridge, Madingley Rd, Cambridge CB3 0HA, England. [Stolyarov, V.] Kazan Fed Univ, 18 Kremlyovskaya St, Kazan 420008, Russia. [Perdereau, O.; Plaszczynski, S.; Tristram, M.] Univ Paris 11, LAL, CNRS, IN2P3, F-91400 Orsay, France. [Catalano, A.; Lamarre, J. -M.; Levrier, F.; Roudier, G.] Observ Paris, LERMA, CNRS, 61 Ave Observ, F-75014 Paris, France. [Arnaud, M.; Chamballu, A.; Pratt, G. W.] Univ Paris Diderot, Lab AIM, Serv Astrophys, CEA,DSM,CNRS,CEA Saclay,IRFU, Bat 709, F-91191 Gif Sur Yvette, France. [Cardoso, J. -F.] CNRS, Lab Traitement & Commun Informat, UMR 5141, 46 Rue Barrault, F-75634 Paris 13, France. [Cardoso, J. -F.] Telecom ParisTech, 46 Rue Barrault, F-75634 Paris 13, France. [Catalano, A.; Combet, C.; Comis, B.; Macias-Perez, J. F.; Renault, C.; Santos, D.] Univ Grenoble Alpes, Lab Phys Subatom & Cosmol, CNRS, IN2P3, 53 Rue Martyrs, F-38026 Grenoble, France. [Van Tent, B.] Univ Paris 11, Lab Phys Theor, Batiment 210, F-91405 Orsay, France. [Van Tent, B.] CNRS, Batiment 210, F-91405 Orsay, France. [Kisner, T. S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Novikov, D.; Novikov, I.] Russian Acad Sci, Lebedev Phys Inst, Ctr Astro Space, 84-32 Profsoyuznaya St,GSP-7, Moscow 117997, Russia. [Ensslin, T. A.; Hernandez-Monteagudo, C.; Hovest, W.; Knoche, J.; Rachen, J. P.; Reinecke, M.; Sunyaev, R.] Max Planck Inst Astrophys, Karl Schwarzschild Str 1, D-85741 Garching, Germany. [Bohringer, H.; Chon, G.] Max Planck Inst Extraterr Phys, Giessenbachstr, D-85748 Garching, Germany. [Burenin, R.] Moscow Inst Phys & Technol, Inst Sky Per 9, Dolgoprudnyi 141700, Russia. [Murphy, J. A.] Natl Univ Ireland, Dept Expt Phys, Maynooth, Kildare, Ireland. [Bielewicz, P.] Nicolaus Copernicus Astron Ctr, Bartycka 18, PL-00716 Warsaw, Poland. [Christensen, P. R.; Novikov, I.] Niels Bohr Inst, Blegdamsvej 17, DK-2100 Copenhagen, Denmark. [Naselsky, P.] Univ Copenhagen, Niels Bohr Inst, Blegdamsvej 17, DK-2100 Copenhagen, Denmark. [Savini, G.] UCL, Opt Sci Lab, Gower St, London WC1E 6BT, England. [Baccigalupi, C.; Bielewicz, P.; Danese, L.; de Zotti, G.] SISSA, Astrophys Sect, Via Bonomea 265, I-34136 Trieste, Italy. [Ade, P. A. R.; Munshi, D.; Sudiwala, R.] Cardiff Univ, Sch Phys & Astron, Queens Bldg, Cardiff CF24 3AA, S Glam, Wales. [Bouchet, F. R.] Sorbonne Univ, UPMC, UMR 7095, Inst Astrophys Paris, 98bis Blvd Arago, F-75014 Paris, France. [Burenin, R.; Sunyaev, R.] Russian Acad Sci, Space Res Inst IKI, Profsoyuznaya Str 84-32, Moscow 117997, Russia. [Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Stolyarov, V.] Russian Acad Sci, Special Astrophys Observ, Karachai Cherkessian Rep 369167, Zelenchukskiy R, Russia. [Calabrese, E.] Univ Oxford, Subdept Astrophys, Keble Rd, Oxford OX1 3RH, England. [Khamitov, I.] Akdeniz Univ Campus, TUBITAK Natl Observ, TR-07058 Antalya, Turkey. [Benabed, K.; Benoit-Levy, A.; Elsner, F.; Hivon, E.; Prunet, S.; Wandelt, B. D.] Univ Paris 06, UMR 7095, 98bis Blvd Arago, F-75014 Paris, France. [Hempel, A.] Univ Andres Bello, Dept Ciencias Fis, Fac Ciencias Exactas, Santiago De Compostela 8370134, Spain. [Banday, A. J.; Bernard, J. -P.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France. [Battaner, E.] Univ Granada, Dept Fis Teor & Cosmos, Fac Ciencias, Granada 18010, Spain. [Battaner, E.] Univ Granada, Inst Carlos Fis Teor & Computac 1, Granada 18010, Spain. [Gorski, K. M.] Univ Warsaw Observ, Aleje Ujazdowskie 4, PL-00478 Warsaw, Poland. [Tauber, J. A.] European Space Agcy, Estec, Keplerlaan 1, NL-2201 AZ Noordwijk, Netherlands. RP Rubino-Martin, JA (reprint author), Inst Astrofis Canarias, C Via Lactea S-N, Tenerife, Spain. EM jalberto@iac.es RI Stolyarov, Vladislav/C-5656-2017; Barreiro, Rita Belen/N-5442-2014; bonavera, laura/E-9368-2017; Remazeilles, Mathieu/N-1793-2015; Renzi, Alessandro/K-4114-2015; Nati, Federico/I-4469-2016; Novikov, Igor/N-5098-2015; Novikov, Dmitry/P-1807-2015; Toffolatti, Luigi/K-5070-2014; Tomasi, Maurizio/I-1234-2016; Colombo, Loris/J-2415-2016; Herranz, Diego/K-9143-2014; Vielva, Patricio/F-6745-2014; Lopez-Caniego, Marcos/M-4695-2013; Martinez-Gonzalez, Enrique/E-9534-2015; Piacentini, Francesco/E-7234-2010; Gonzalez-Nuevo, Joaquin/I-3562-2014; OI Stolyarov, Vladislav/0000-0001-8151-828X; Barreiro, Rita Belen/0000-0002-6139-4272; bonavera, laura/0000-0001-8039-3876; Remazeilles, Mathieu/0000-0001-9126-6266; Renzi, Alessandro/0000-0001-9856-1970; Scott, Douglas/0000-0002-6878-9840; Huffenberger, Kevin/0000-0001-7109-0099; Bouchet, Francois/0000-0002-8051-2924; TERENZI, LUCA/0000-0001-9915-6379; Nati, Federico/0000-0002-8307-5088; Toffolatti, Luigi/0000-0003-2645-7386; Tomasi, Maurizio/0000-0002-1448-6131; Colombo, Loris/0000-0003-4572-7732; Herranz, Diego/0000-0003-4540-1417; Vielva, Patricio/0000-0003-0051-272X; Martinez-Gonzalez, Enrique/0000-0002-0179-8590; Piacentini, Francesco/0000-0002-5444-9327; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; Pierpaoli, Elena/0000-0002-7957-8993; Valiviita, Jussi/0000-0001-6225-3693; Hurier, Guillaume/0000-0002-1215-0706; Zacchei, Andrea/0000-0003-0396-1192; Hivon, Eric/0000-0003-1880-2733; Lilje, Per/0000-0003-4324-7794; Paoletti, Daniela/0000-0003-4761-6147; Savini, Giorgio/0000-0003-4449-9416 FU ESA; CNES (France); CNRS/INSU-IN2P3-INP (France); ASI (Italy); CNR (Italy); INAF (Italy); NASA (USA); DoE (USA); STFC (UK); UKSA (UK); CSIC (Spain); MINECO (Spain); JA (Spain); RES (Spain); Tekes (Finland); AoF (Finland); CSC (Finland); DLR (Germany); MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC (EU); PRACE (EU); CCI International Time Programme at the Canary Islands observatories [ITP12-2, ITP13-8]; NASA; CNES; CNRS; SDSS; Alfred P. Sloan Foundation; National Aeronautics and Space Administration; National Science Foundation; US Department of Energy; Japanese Monbukagakusho; Max Planck Society; Spanish Ministry of Economy and Competitiveness (MINECO) [MINECO SEV-2011-0187]; Consolider-Ingenio project [CSD2010-00064] FX The Planck Collaboration acknowledges the support of: ESA; CNES, and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MINECO, JA and RES (Spain); Tekes, AoF, and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC and PRACE (EU). A description of the Planck Collaboration and a list of its members, indicating which technical or scientific activities they have been involved in, can be found at http://www.cosmos.esa.int/web/planck/planck-collaboration. This article is based on observations made with a) the Gran Telescopio Canarias (GTC), installed in the Spanish Observatorio del Roque de los Muchachos (ORM) of the Instituto de Astrofisica de Canarias (IAC), in the island of La Palma; b) the Isaac Newton Telescope and the William Herschel Telescope operated on the island of La Palma by the ISAAC Newton Group of Telescopes in the Spanish ORM of the IAC; c) the italian Telescopio Nazionale Galileo (TNG) operated on the island of La Palma by the Fundacion Galileo Galilei of the INAF (Istituto Nazionale di Astrofisica) at the Spanish ORM of the IAC; d) the Nordic Optical Telescope, operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway, and Sweden, in the Spanish ORM of the IAC; and e) the IAC80 telescope operated on the island of Tenerife by the IAC in the Spanish Observatorio del Teide. This research has been carried out with telescope time awarded by the CCI International Time Programme at the Canary Islands observatories (programmes ITP12-2 and ITP13-8). This research has made use of the following databases: the NED database, operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA; SIMBAD, operated at CDS, Strasbourg, France; the SZ-Cluster Database operated by the Integrated Data and Operation Center (IDOC) at the IAS under contract with CNES and CNRS; and the SDSS. Funding for the Sloan Digital Sky Survey (SDSS) has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Aeronautics and Space Administration, the National Science Foundation, the US Department of Energy, the Japanese Monbukagakusho, and the Max Planck Society. A.S., R.B., H.L., and J.A.R.M. acknowledge financial support from the Spanish Ministry of Economy and Competitiveness (MINECO) under the 2011 Severo Ochoa Program MINECO SEV-2011-0187, and the Consolider-Ingenio project CSD2010-00064 (EPI: Exploring the Physics of Inflation). NR 53 TC 0 Z9 0 U1 3 U2 6 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD FEB PY 2016 VL 586 AR A139 DI 10.1051/0004-6361/201526345 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DD1XG UT WOS:000369715900149 ER PT J AU Aghanim, N Alves, MIR Arnaud, M Arzoumanian, D Aumont, J Baccigalupi, C Banday, AJ Barreiro, RB Bartolo, N Battaner, E Benabed, K Benoit-Levy, A Bernard, JP Bersanelli, M Bielewicz, P Bonaldi, A Bonavera, L Bond, JR Borrill, J Bouchet, FR Boulanger, F Bracco, A Burigana, C Calabrese, E Cardoso, JF Catalano, A Chamballu, A Chiang, HC Christensen, PR Colombi, S Colombo, LPL Combet, C Couchot, F Crill, BP Curto, A Cuttaia, F Danese, L Davies, RD Davis, RJ de Bernardis, P de Rosa, A de Zotti, G Delabrouille, J Dickinson, C Diego, JM Dole, H Donzelli, S Dore, O Douspis, M Ducout, A Dupac, X Efstathiou, G Elsner, F Ensslin, TA Eriksen, HK Falgarone, E Ferriere, K Finelli, F Forni, O Frailis, M Fraisse, AA Franceschi, E Frejsel, A Galeotta, S Galli, S Ganga, K Ghosh, T Giard, M Gjerlow, E Gonzalez-Nuevo, J Gorski, KM Gregorio, A Gruppuso, A Guillet, V Hansen, FK Hanson, D Harrison, DL Henrot-Versille, S Herranz, D Hildebrandt, SR Hivon, E Hobson, M Holmes, WA Hornstrup, A Hovest, W Huffenberger, KM Hurier, G Jaffe, AH Jaffe, TR Jewell, J Juvela, M Keskitalo, R Kisner, TS Knoche, J Kunz, M Kurki-Suonio, H Lagache, G Lamarre, JM Lasenby, A Lattanzi, M Lawrence, CR Leonardi, R Levrier, F Liguori, M Lilje, PB Linden-Vornle, M Lopez-Caniego, M Lubin, PM Macias-Perez, JF Maffei, B Maino, D Mandolesi, N Mangilli, A Maris, M Martin, PG Martinez-Gonzalez, E Masi, S Matarrese, S Melchiorri, A Mendes, L Mennella, A Migliaccio, M Miville-Deschenes, MA Moneti, A Montier, L Morgante, G Mortlock, D Moss, A Munshi, D Murphy, JA Naselsky, P Nati, F Natoli, P Netterfield, CB Noviello, F Novikov, D Novikov, I Oppermann, N Pagano, L Pajot, F Paladini, R Paoletti, D Pasian, F Patanchon, G Perdereau, O Pettorino, V Piacentini, F Piat, M Pietrobon, D Plaszczynski, S Pointecouteau, E Polenta, G Ponthieu, N Pratt, GW Prezeau, G Prunet, S Puget, JL Rebolo, R Reinecke, M Remazeilles, M Renault, C Renzi, A Ristorcelli, I Rocha, G Rosset, C Rossetti, M Roudier, G Rubino-Martin, JA Rusholme, B Sandri, M Santos, D Savelainen, M Savini, G Scott, D Soler, JD Spencer, LD Stolyarov, V Sutton, D Suur-Uski, AS Sygnet, JF Tauber, JA Terenzi, L Toffolatti, L Tomasi, M Tristram, M Tucci, M Tuovinen, J Valenziano, L Valiviita, J Van Tent, B Vielva, P Villa, F Wade, LA Wandelt, BD Wehus, IK Wiesemeyer, H Yvon, D Zacchei, A Zonca, A AF Aghanim, N. Alves, M. I. R. Arnaud, M. Arzoumanian, D. Aumont, J. Baccigalupi, C. Banday, A. J. Barreiro, R. B. Bartolo, N. Battaner, E. Benabed, K. Benoit-Levy, A. Bernard, J. -P. Bersanelli, M. Bielewicz, P. Bonaldi, A. Bonavera, L. Bond, J. R. Borrill, J. Bouchet, F. R. Boulanger, F. Bracco, A. Burigana, C. Calabrese, E. Cardoso, J. -F. Catalano, A. Chamballu, A. Chiang, H. C. Christensen, P. R. Colombi, S. Colombo, L. P. L. Combet, C. Couchot, F. Crill, B. P. Curto, A. Cuttaia, F. Danese, L. Davies, R. D. Davis, R. J. de Bernardis, P. de Rosa, A. de Zotti, G. Delabrouille, J. Dickinson, C. Diego, J. M. Dole, H. Donzelli, S. Dore, O. Douspis, M. Ducout, A. Dupac, X. Efstathiou, G. Elsner, F. Ensslin, T. A. Eriksen, H. K. Falgarone, E. Ferriere, K. Finelli, F. Forni, O. Frailis, M. Fraisse, A. A. Franceschi, E. Frejsel, A. Galeotta, S. Galli, S. Ganga, K. Ghosh, T. Giard, M. Gjerlow, E. Gonzalez-Nuevo, J. Gorski, K. M. Gregorio, A. Gruppuso, A. Guillet, V. Hansen, F. K. Hanson, D. Harrison, D. L. Henrot-Versille, S. Herranz, D. Hildebrandt, S. R. Hivon, E. Hobson, M. Holmes, W. A. Hornstrup, A. Hovest, W. Huffenberger, K. M. Hurier, G. Jaffe, A. H. Jaffe, T. R. Jewell, J. Juvela, M. Keskitalo, R. Kisner, T. S. Knoche, J. Kunz, M. Kurki-Suonio, H. Lagache, G. Lamarre, J. -M. Lasenby, A. Lattanzi, M. Lawrence, C. R. Leonardi, R. Levrier, F. Liguori, M. Lilje, P. B. Linden-Vornle, M. Lopez-Caniego, M. Lubin, P. M. Macias-Perez, J. F. Maffei, B. Maino, D. Mandolesi, N. Mangilli, A. Maris, M. Martin, P. G. Martinez-Gonzalez, E. Masi, S. Matarrese, S. Melchiorri, A. Mendes, L. Mennella, A. Migliaccio, M. Miville-Deschenes, M. -A. Moneti, A. Montier, L. Morgante, G. Mortlock, D. Moss, A. Munshi, D. Murphy, J. A. Naselsky, P. Nati, F. Natoli, P. Netterfield, C. B. Noviello, F. Novikov, D. Novikov, I. Oppermann, N. Pagano, L. Pajot, F. Paladini, R. Paoletti, D. Pasian, F. Patanchon, G. Perdereau, O. Pettorino, V. Piacentini, F. Piat, M. Pietrobon, D. Plaszczynski, S. Pointecouteau, E. Polenta, G. Ponthieu, N. Pratt, G. W. Prezeau, G. Prunet, S. Puget, J. -L. Rebolo, R. Reinecke, M. Remazeilles, M. Renault, C. Renzi, A. Ristorcelli, I. Rocha, G. Rosset, C. Rossetti, M. Roudier, G. Rubino-Martin, J. A. Rusholme, B. Sandri, M. Santos, D. Savelainen, M. Savini, G. Scott, D. Soler, J. D. Spencer, L. D. Stolyarov, V. Sutton, D. Suur-Uski, A. -S. Sygnet, J. -F. Tauber, J. A. Terenzi, L. Toffolatti, L. Tomasi, M. Tristram, M. Tucci, M. Tuovinen, J. Valenziano, L. Valiviita, J. Van Tent, B. Vielva, P. Villa, F. Wade, L. A. Wandelt, B. D. Wehus, I. K. Wiesemeyer, H. Yvon, D. Zacchei, A. Zonca, A. CA Planck Collaboration TI Planck intermediate results XXXIV. The magnetic field structure in the Rosette Nebula SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE ISM: magnetic fields; polarization; radiation mechanisms: general; radio continuum: ISM; submillimeter: ISM ID H-II REGIONS; MOLECULAR CLOUDS; STAR-FORMATION; FARADAY-ROTATION; STOKES PARAMETERS; ELEPHANT-TRUNK; GALACTIC PLANE; HII-REGIONS; NGC 2244; EMISSION AB Planck has mapped the polarized dust emission over the whole sky, making it possible to trace the Galactic magnetic field structure that pervades the interstellar medium (ISM). We combine polarization data from Planck with rotation measure (RM) observations towards a massive star-forming region, the Rosette Nebula in the Monoceros molecular cloud, to study its magnetic field structure and the impact of an expanding H II region on the morphology of the field. We derive an analytical solution for the magnetic field, assumed to evolve from an initially uniform configuration following the expansion of ionized gas and the formation of a shell of swept-up ISM. From the RM data we estimate a mean value of the line-of-sight component of the magnetic field of about 3 mu G (towards the observer) in the Rosette Nebula, for a uniform electron density of about 12 cm(-3). The dust shell that surrounds the Rosette H II region is clearly observed in the Planck intensity map at 353 GHz, with a polarization signal significantly different from that of the local background when considered as a whole. The Planck observations constrain the plane-of-the-sky orientation of the magnetic field in the Rosette's parent molecular cloud to be mostly aligned with the large-scale field along the Galactic plane. The Planck data are compared with the analytical model, which predicts the mean polarization properties of a spherical and uniform dust shell for a given orientation of the field. This comparison leads to an upper limit of about 45 degrees on the angle between the line of sight and the magnetic field in the Rosette complex, for an assumed intrinsic dust polarization fraction of 4%. This field direction can reproduce the RM values detected in the ionized region if the magnetic field strength in the Monoceros molecular cloud is in the range 6.5-9 mu G. The present analytical model is able to reproduce the RM distribution across the ionized nebula, as well as the mean dust polarization properties of the swept-up shell, and can be directly applied to other similar objects. C1 [Cardoso, J. -F.; Delabrouille, J.; Ganga, K.; Patanchon, G.; Piat, M.; Remazeilles, M.; Roudier, G.; Savelainen, M.; Scott, D.] Univ Paris Diderot, AstroParticule & Cosmol, Sorbonne Paris Cite, APC,CNRS,IN2P3,CEA,Irfu,Observ Paris, 10 Rue Alice Damon & Leonie Duquet, Paris 13, France. [Kunz, M.] African Inst Math Sci, 6-8 Melrose Rd, ZA-7950 Cape Town, South Africa. [Natoli, P.; Polenta, G.] Agenzia Spaziale Italiana Sci Data Ctr, Via Politecn Snc, I-00133 Rome, Italy. [Mandolesi, N.] Agenzia Spaziale Italiana, Viale Liegi 26, I-00133 Rome, Italy. [Lagache, G.] Aix Marseille Univ, LAM, CNRS, UMR 7326, F-13388 Marseille, France. [Curto, A.; Hobson, M.; Lasenby, A.] Univ Cambridge, Astrophys Grp, Cavendish Lab, JJ Thomson Ave, Cambridge CB3 0HE, England. [Chiang, H. C.] Univ KwaZulu Natal, Astrophys & Cosmol Res Unit, Sch Math Stat & Comp Sci, Westville Campus,Private Bag X54001, ZA-4000 Durban, South Africa. [Bond, J. R.; Hanson, D.; Martin, P. G.; Miville-Deschenes, M. -A.; Oppermann, N.] Univ Toronto, CITA, 60 St George St, Toronto, ON M5S 3H8, Canada. [Alves, M. I. R.; Banday, A. J.; Bernard, J. -P.; Bielewicz, P.; Ferriere, K.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Sandri, M.] CNRS, IRAP, 9 Ave Colonel Roche,BP 44346, F-31028 Toulouse 4, France. [Tuovinen, J.] Univ Dublin Trinity Coll, CRANN, Pearse St, Dublin 2, Ireland. [Dore, O.; Prezeau, G.; Renzi, A.; Santos, D.] CALTECH, Pasadena, CA 91125 USA. [Borrill, J.; Keskitalo, R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA. [Rebolo, R.; Rosset, C.] CSIC, Madrid, Spain. [Chamballu, A.; Yvon, D.] CEA Saclay, DSM, Irfu, SPP, F-91191 Gif Sur Yvette, France. [Hornstrup, A.; Linden-Vornle, M.] Tech Univ Denmark, DTU Space, Natl Space Inst, Elektrovej 327, DK-2800 Lyngby, Denmark. [Kunz, M.; Tucci, M.] Univ Geneva, Dept Phys Theor, 24 Quai E Ansermet, CH-1211 Geneva 4, Switzerland. [Toffolatti, L.] Univ Oviedo, Dept Fis, Avda Calvo Sotelo S-N, E-33007 Oviedo, Spain. [Netterfield, C. B.] Univ Toronto, Dept Astron & Astrophys, 50 St George St, Toronto, ON M5S 3H4, Canada. Univ British Columbia, Dept Phys & Astron, 6224 Agr Rd, Vancouver, BC V6T 1Z4, Canada. [Colombo, L. P. L.] Univ So Calif, Dept Phys & Astron, Dana & David Dornsife Coll Letter Arts & Sci, Los Angeles, CA 90089 USA. [Benoit-Levy, A.; Elsner, F.] UCL, Dept Phys & Astron, Mortimer St, London WC1E 6BT, England. [Huffenberger, K. M.] Florida State Univ, Dept Phys, Keen Phys Bldg,77 Chieftan Way, Tallahassee, FL 32306 USA. [Juvela, M.; Kurki-Suonio, H.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Dept Phys, Gustaf Hallstromin Katu 2a, Helsinki 00100, Finland. [Chiang, H. C.; Fraisse, A. A.] Princeton Univ, Dept Phys, 1746 Elizabeth, Princeton, NJ 08544 USA. [Lubin, P. M.; Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Wandelt, B. D.] Univ Illinois, Dept Phys, 1110 West Green St, Urbana, IL USA. [Bartolo, N.; Liguori, M.; Matarrese, S.] Univ Padua, Dipartimento Fis & Astron G Galilei, Via Marzolo 8, I-35131 Padua, Italy. [Burigana, C.; Lattanzi, M.; Mandolesi, N.; Natoli, P.] Univ Ferrara, Dipartimento Fis & Sci Terra, Via Saragat 1, I-44122 Ferrara, Italy. [de Bernardis, P.; Masi, S.; Melchiorri, A.; Nati, F.; Pagano, L.; Piacentini, F.] Univ Roma La Sapienza, Dipartimento Fis, Ple A Moro 2, I-00133 Rome, Italy. [Bersanelli, M.; Maino, D.; Mennella, A.; Savini, G.; Tomasi, M.] Univ Milan, Dipartimento Fis, Via Celoria 16, Milan, Italy. [Gregorio, A.] Univ Trieste, Dipartimento Fis, Via A Valerio 2, I-34128 Trieste, Italy. [Rusholme, B.] Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci 1, I-00133 Rome, Italy. [Christensen, P. R.; Naselsky, P.] Niels Bohr Inst, Discovery Ctr, Blegdamsvej 17, DK-2100 Copenhagen, Denmark. [Rebolo, R.; Rosset, C.; Soler, J. D.] Univ La Laguna, Dept Astrofis, E-38206 Tenerife, Spain. [Dupac, X.; Leonardi, R.; Mendes, L.] European Space Agcy, ESAC, Planck Sci Off, Camino Bajo Castillo S-N, Madrid 28692, Spain. [Tauber, J. A.] European Space Agcy, Estec, Keplerlaan 1, NL-2201 AZ Noordwijk, Netherlands. [Terenzi, L.] Univ E Campus, Fac Ingn, Via Isimbardi 10, I-22060 Novedrate, CO, Italy. [Matarrese, S.] Ist Nazl Fis Nucl, Gran Sasso Sci Inst, Viale F Crispi 7, I-67100 Laquila, Italy. [Pettorino, V.] HGSFP, Philosophenweg 16, D-69120 Heidelberg, Germany. [Pettorino, V.] Heidelberg Univ, Dept Theoret Phys, Philosophenweg 16, D-69120 Heidelberg, Germany. [Kurki-Suonio, H.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Helsinki Inst Phys, Gustaf Hallstromin Katu 2, SF-00100 Helsinki, Finland. [de Zotti, G.] INAF Osservatorio Astron Padova, Vicolo Osservatorio 5, I-35141 Padua, Italy. [Polenta, G.] INAF Osservatorio Astron Roma, Via Frascati 33, I-00136 Rome, Italy. [Frailis, M.; Galeotta, S.; Gregorio, A.; Maris, M.; Pasian, F.; Zacchei, A.] INAF Osservatorio Astron Trieste, Via GB Tiepolo 11, I-34131 Trieste, Italy. [Burigana, C.; Cuttaia, F.; de Rosa, A.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Mandolesi, N.; Morgante, G.; Natoli, P.; Paoletti, D.; Stolyarov, V.; Terenzi, L.; Toffolatti, L.; Valenziano, L.; Villa, F.] INAF IASF Bologna, Via Gobetti 101, I-40127 Bologna, Italy. [Bersanelli, M.; Donzelli, S.; Maino, D.; Mennella, A.; Savini, G.; Tomasi, M.] INAF IASF Milano, Via E Bassini 15, I-20133 Milan, Italy. [Burigana, C.; Finelli, F.; Paoletti, D.] Ist Nazl Fis Nucl, Sez Bologna, Via Irnerio 46, I-40126 Bologna, Italy. [Melchiorri, A.; Pagano, L.] Univ Roma La Sapienza, Ist Nazl Fis Nucl, Sez Roma 1, Piazzale Aldo Moro 2, I-00185 Rome, Italy. [Rusholme, B.] Univ Roma Tor Vergata, Ist Nazl Fis Nucl, Sez Roma 2, Via Ric Sci 1, Rome, Italy. [Gregorio, A.] INFN Natl Inst Nucl Phys, Via Valerio 2, I-34127 Trieste, Italy. [Ponthieu, N.] Univ Grenoble Alpes, IPAG, F-38000 Grenoble, France. [Jaffe, A. H.; Ponthieu, N.] CNRS, IPAG, F-38000 Grenoble, France. [Ducout, A.; Mortlock, D.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Astrophys Grp, Prince Consort Rd, London SW7 2AZ, England. [Paladini, R.; Spencer, L. D.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Dole, H.] Inst Univ France, 103 Bd St Michel, F-75005 Paris, France. [Aghanim, N.; Alves, M. I. R.; Arzoumanian, D.; Aumont, J.; Boulanger, F.; Bracco, A.; Chamballu, A.; Dole, H.; Douspis, M.; Ghosh, T.; Guillet, V.; Hurier, G.; Kunz, M.; Lagache, G.; Miville-Deschenes, M. -A.; Pajot, F.; Ponthieu, N.; Puget, J. -L.; Remazeilles, M.; Rocha, G.; Roudier, G.] Univ Paris 11, CNRS, UMR 8617, Inst Astrophys Spatiale, Batiment 121, F-91405 Orsay, France. [Benabed, K.; Benoit-Levy, A.; Bouchet, F. R.; Cardoso, J. -F.; Colombi, S.; Ducout, A.; Elsner, F.; Galli, S.; Hivon, E.; Mangilli, A.; Moneti, A.; Prunet, S.; Ristorcelli, I.; Sygnet, J. -F.; Wandelt, B. D.] CNRS, Inst Astrophys Paris, UMR 7095, 98bis Blvd Arago, F-75014 Paris, France. [Efstathiou, G.; Harrison, D. L.; Migliaccio, M.] Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England. [Eriksen, H. K.; Gjerlow, E.; Hansen, F. K.; Lilje, P. B.] Univ Oslo, Inst Theoret Astrophys, N-0371 Oslo, Norway. [Rebolo, R.; Rosset, C.; Soler, J. D.] Inst Astrofis Canarias, C Via Lactea S-N, Tenerife 38205, Spain. [Barreiro, R. B.; Bonavera, L.; Curto, A.; Diego, J. M.; Gonzalez-Nuevo, J.; Herranz, D.; Lopez-Caniego, M.; Martinez-Gonzalez, E.; Toffolatti, L.; Vielva, P.] Univ Cantabria, Inst Fis Cantabria, CSIC, Avda Castros S-N, E-39005 Santander, Spain. [Bartolo, N.; Matarrese, S.] Ist Nazl Fis Nucl, Sez Padova, Via Marzolo 8, I-35131 Padua, Italy. [Colombo, L. P. L.; Crill, B. P.; Dore, O.; Gorski, K. M.; Hanson, D.; Hildebrandt, S. R.; Holmes, W. A.; Jewell, J.; Lawrence, C. R.; Pietrobon, D.; Prezeau, G.; Renzi, A.; Santos, D.; Scott, D.; Wade, L. A.; Wehus, I. K.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91125 USA. [Bonaldi, A.; Davies, R. D.; Davis, R. J.; Dickinson, C.; Maffei, B.; Noviello, F.; Remazeilles, M.; Roudier, G.] Univ Manchester, Jodrell Bank Ctr Astrophys, Sch Phys & Astron, Alan Turing Bldg,Oxford Rd, Manchester M13 9PL, Lancs, England. [Harrison, D. L.; Lasenby, A.; Migliaccio, M.] Kavli Inst Cosmol Cambridge, Madingley Rd, Cambridge CB3 0HA, England. [Couchot, F.; Henrot-Versille, S.; Perdereau, O.; Plaszczynski, S.; Tristram, M.] Univ Paris 11, CNRS, LAL, IN2P3, F-91405 Orsay, France. [Catalano, A.; Falgarone, E.; Lamarre, J. -M.; Levrier, F.; Scott, D.] Observ Paris, LERMA, CNRS, 61 Ave Observ, F-57014 Paris, France. [Arnaud, M.; Chamballu, A.; Pratt, G. W.; Renault, C.] Univ Paris Diderot, Lab AIM, IRFU Serv Astrophys, CEA,DSM,CNRS,CEA Saclay, Bat 709, F-91191 Gif Sur Yvette, France. [Cardoso, J. -F.] CNRS, Lab Traitement & Commun Informat, UMR 5141, 46 Rue Barrault, F-75634 Paris 13, France. [Cardoso, J. -F.] Telecom ParisTech, 46 Rue Barrault, F-75634 Paris 13, France. [Catalano, A.; Combet, C.; Macias-Perez, J. F.; Rubino-Martin, J. A.; Sutton, D.] Univ Grenoble 1, Lab Phys Subatom & Cosmol, CNRS, IN2P3,Inst Natl Polytech Grenoble, 53 Rue Martyrs, F-38026 Grenoble, France. [Van Tent, B.] Univ Paris 11, Lab Phys Theor, Batiment 210, F-91405 Orsay, France. [Van Tent, B.] CNRS, Batiment 210, F-91405 Orsay, France. [Kisner, T. S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Ensslin, T. A.; Hovest, W.; Knoche, J.; Reinecke, M.; Rossetti, M.] Max Planck Inst Astrophys, Karl Schwarzschild Str 1, D-85741 Garching, Germany. [Wiesemeyer, H.] Max Planck Inst Radioastron, Hugel 69, D-53121 Bonn, Germany. [Hanson, D.] McGill Univ, McGill Phys, Ernest Rutherford Phys Bldg,3600 Rue Univ, Montreal, PQ H3A 2T8, Canada. [Murphy, J. A.] Natl Univ Ireland, Dept Expt Phys, Maynooth, Kildare, Ireland. [Christensen, P. R.; Frejsel, A.; Naselsky, P.; Novikov, I.] Niels Bohr Inst, Blegdamsvej 17, DK-2100 Copenhagen, Denmark. [Crill, B. P.] CALTECH, Observat Cosmol, Mail Stop 367-17, Pasadena, CA 91125 USA. UCL, Opt Sci Lab, Gower St, London, England. [Novikov, D.] Russian Acad Sci, PN Lebedev Phys Inst, Ctr Astro Space, 84-32 Profsoyuznaya St,GSP-7, Moscow 117997, Russia. [Baccigalupi, C.; Bielewicz, P.; Danese, L.; de Zotti, G.; Gonzalez-Nuevo, J.] SISSA, Astrophys Sect, Via Bonomea 265, I-34136 Trieste, Italy. [Munshi, D.] Cardiff Univ, Sch Phys & Astron, Queens Bldg, Cardiff CF24 3AA, S Glam, Wales. [Moss, A.] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England. [Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. Russian Acad Sci, Special Astrophys Observ, Karachai Cherkessian Rep 369167, Zelenchukskiy R, Russia. [Calabrese, E.] Univ Oxford, Subdept Astrophys, Keble Rd, Oxford OX1 3RH, England. [Benabed, K.; Benoit-Levy, A.; Bouchet, F. R.; Colombi, S.; Elsner, F.; Hivon, E.; Prunet, S.; Ristorcelli, I.; Wandelt, B. D.] Univ Paris 06, UMR 7095, 98bis Blvd Arago, F-75014 Paris, France. [Alves, M. I. R.; Banday, A. J.; Bernard, J. -P.; Bielewicz, P.; Ferriere, K.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Sandri, M.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France. [Battaner, E.] Univ Granada, Dept Fis Teor & Cosmos, Fac Ciencias, E-18071 Granada, Spain. [Battaner, E.] Univ Granada, Inst Carlos Fis Teor & Computac 1, E-18071 Granada, Spain. [Gorski, K. M.] Univ Warsaw Observ, Aleje Ujazdowskie 4, PL-00478 Warsaw, Poland. RP Alves, MIR (reprint author), CNRS, IRAP, 9 Ave Colonel Roche,BP 44346, F-31028 Toulouse 4, France.; Alves, MIR (reprint author), Univ Paris 11, CNRS, UMR 8617, Inst Astrophys Spatiale, Batiment 121, F-91405 Orsay, France.; Alves, MIR (reprint author), Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France. EM marta.alves@irap.omp.eu RI Novikov, Dmitry/P-1807-2015; Stolyarov, Vladislav/C-5656-2017; Barreiro, Rita Belen/N-5442-2014; bonavera, laura/E-9368-2017; Renzi, Alessandro/K-4114-2015; Remazeilles, Mathieu/N-1793-2015; Ghosh, Tuhin/E-6899-2016; Novikov, Igor/N-5098-2015; Toffolatti, Luigi/K-5070-2014; Tomasi, Maurizio/I-1234-2016; Colombo, Loris/J-2415-2016; Herranz, Diego/K-9143-2014; Vielva, Patricio/F-6745-2014; Lopez-Caniego, Marcos/M-4695-2013; Martinez-Gonzalez, Enrique/E-9534-2015; Piacentini, Francesco/E-7234-2010; Gonzalez-Nuevo, Joaquin/I-3562-2014; Nati, Federico/I-4469-2016 OI Valiviita, Jussi/0000-0001-6225-3693; Hurier, Guillaume/0000-0002-1215-0706; Zacchei, Andrea/0000-0003-0396-1192; Hivon, Eric/0000-0003-1880-2733; Lilje, Per/0000-0003-4324-7794; Paoletti, Daniela/0000-0003-4761-6147; Savini, Giorgio/0000-0003-4449-9416; Stolyarov, Vladislav/0000-0001-8151-828X; Barreiro, Rita Belen/0000-0002-6139-4272; bonavera, laura/0000-0001-8039-3876; Renzi, Alessandro/0000-0001-9856-1970; Remazeilles, Mathieu/0000-0001-9126-6266; Scott, Douglas/0000-0002-6878-9840; Huffenberger, Kevin/0000-0001-7109-0099; Bouchet, Francois/0000-0002-8051-2924; TERENZI, LUCA/0000-0001-9915-6379; Toffolatti, Luigi/0000-0003-2645-7386; Tomasi, Maurizio/0000-0002-1448-6131; Colombo, Loris/0000-0003-4572-7732; Herranz, Diego/0000-0003-4540-1417; Vielva, Patricio/0000-0003-0051-272X; Martinez-Gonzalez, Enrique/0000-0002-0179-8590; Piacentini, Francesco/0000-0002-5444-9327; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; Nati, Federico/0000-0002-8307-5088 FU ESA; CNES (France); CNRS/INSU-IN2P3-INP (France); ASI (Italy); CNR (Italy); INAF (Italy); NASA (USA); DoE (USA); STFC (UK); UKSA (UK); CSIC (Spain); MICINN (Spain); JA (Spain); Tekes (Finland); AoF (Finland); CSC (Finland); DLR (Germany); MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); DEISA (EU); European Research Council under the European Union/ERC [267934] FX We thank the referee for the useful comments. We acknowledge the use of the HEALPix package and IRAS data. The Planck Collaboration acknowledges the support of: ESA; CNES and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MICINN, and JA (Spain); Tekes, AoF, and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); and DEISA (EU). A detailed description of the Planck Collaboration and a list of its members can be found at http://www.rssd.esa.int/index.php?project=PLANCK&page=Planck_Collaborati on. The research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement No. 267934. NR 79 TC 0 Z9 0 U1 3 U2 6 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD FEB PY 2016 VL 586 AR A137 DI 10.1051/0004-6361/201525616 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DD1XG UT WOS:000369715900147 ER PT J AU Arnaud, M Ashdown, M Atrio-Barandela, F Aumont, J Baccigalupi, C Banday, AJ Barreiro, RB Battaner, E Benabed, K Benoit-Levy, A Bernard, JP Bersanelli, M Bielewicz, P Bobin, J Bond, JR Borrill, J Bouchet, FR Brogan, CL Burigana, C Cardoso, JF Catalano, A Chamballu, A Chiang, HC Christensen, PR Colombi, S Colombo, LPL Crill, BP Curto, A Cuttaia, F Davies, RD Davis, RJ de Bernardis, P de Rosa, A de Zotti, G Delabrouille, J Desert, FX Dickinson, C Diego, JM Donzelli, S Dore, O Dupac, X Ensslin, TA Eriksen, HK Finelli, F Forni, O Frailis, M Fraisse, AA Franceschi, E Galeotta, S Ganga, K Giard, M Giraud-Heraud, Y Gonzalez-Nuevo, J Gorski, KM Gregorio, A Gruppuso, A Hansen, FK Harrison, DL Hernandez-Monteagudo, C Herranz, D Hildebrandt, SR Hobson, M Holmes, WA Huffenberger, KM Jaffe, AH Jaffe, TR Keihanen, E Keskitalo, R Kisner, TS Kneissl, R Knoche, J Kunz, M Kurki-Suonio, H Lahteenmaki, A Lamarre, JM Lasenby, A Lawrence, CR Leonardi, R Liguori, M Lilje, PB Linden-Vornle, M Lopez-Caniego, M Lubin, PM Maino, D Maris, M Marshall, DJ Martin, PG Martinez-Gonzalez, E Masi, S Matarrese, S Mazzotta, P Melchiorri, A Mendes, L Mennella, A Migliaccio, M Miville-Deschenes, MA Moneti, A Montier, L Morgante, G Mortlock, D Munshi, D Murphy, JA Naselsky, P Nati, F Noviello, E Novikov, D Novikov, I Oppermann, N Oxborrow, CA Pagano, L Pajot, F Paladini, R Pasian, F Peel, M Perdereau, O Perrotta, F Piacentini, F Piat, M Pietrobon, D Plaszczynski, S Pointecouteau, E Polenta, G Popa, L Pratt, GW Puget, JL Rachen, JP Reach, WT Reich, W Reinecke, M Remazeilles, M Renault, C Rho, J Ricciardi, S Riller, T Ristorcelli, I Rocha, G Rosset, C Roudier, G Rusholme, B Sandri, M Savini, G Scott, D Stolyarov, V Sutton, D Suur-Uski, AS Sygnet, JF Tauber, JA Terenzi, L Toffolatti, L Tomasi, M Tristram, M Tucci, M Umana, G Valenziano, L Valiviita, J Van Tent, B Vielva, P Villa, F Wade, LA Yvon, D Zacchei, A Zonca, A AF Arnaud, M. Ashdown, M. Atrio-Barandela, F. Aumont, J. Baccigalupi, C. Banday, A. J. Barreiro, R. B. Battaner, E. Benabed, K. Benoit-Levy, A. Bernard, J. -P Bersanelli, M. Bielewicz, P. Bobin, J. Bond, J. R. Borrill, J. Bouchet, F. R. Brogan, C. L. Burigana, C. Cardoso, J. -F. Catalano, A. Chamballu, A. Chiang, H. C. Christensen, P. R. Colombi, S. Colombo, L. P. L. Crill, B. P. Curto, A. Cuttaia, F. Davies, R. D. Davis, R. J. de Bernardis, P. de Rosa, A. de Zotti, G. Delabrouille, J. Desert, F. -X. Dickinson, C. Diego, J. M. Donzelli, S. Dore, O. Dupac, X. Ensslin, T. A. Eriksen, H. K. Finelli, F. Forni, O. Frailis, M. Fraisse, A. A. Franceschi, E. Galeotta, S. Ganga, K. Giard, M. Giraud-Heraud, Y. Gonzalez-Nuevo, J. Gorski, K. M. Gregorio, A. Gruppuso, A. Hansen, F. K. Harrison, D. L. Hernandez-Monteagudo, C. Herranz, D. Hildebrandt, S. R. Hobson, M. Holmes, W. A. Huffenberger, K. M. Jaffe, A. H. Jaffe, T. R. Keihaenen, E. Keskitalo, R. Kisner, T. S. Kneissl, R. Knoche, J. Kunz, M. Kurki-Suonio, H. Lahteenmaki, A. Lamarre, J. -M. Lasenby, A. Lawrence, C. R. Leonardi, R. Liguori, M. Lilje, P. B. Linden-Vornle, M. Lopez-Caniego, M. Lubin, P. M. Maino, D. Maris, M. Marshall, D. J. Martin, P. G. Martinez-Gonzalez, E. Masi, S. Matarrese, S. Mazzotta, P. Melchiorri, A. Mendes, L. Mennella, A. Migliaccio, M. Miville-Deschenes, M-A Moneti, A. Montier, L. Morgante, G. Mortlock, D. Munshi, D. Murphy, J. A. Naselsky, P. Nati, F. Noviello, E. Novikov, D. Novikov, I. Oppermann, N. Oxborrow, C. A. Pagano, L. Pajot, F. Paladini, R. Pasian, F. Peel, M. Perdereau, O. Perrotta, F. Piacentini, F. Piat, M. Pietrobon, D. Plaszczynski, S. Pointecouteau, E. Polenta, G. Popa, L. Pratt, G. W. Puget, J. -L. Rachen, J. P. Reach, W. T. Reich, W. Reinecke, M. Remazeilles, M. Renault, C. Rho, J. Ricciardi, S. Riller, T. Ristorcelli, I. Rocha, G. Rosset, C. Roudier, G. Rusholme, B. Sandri, M. Savini, G. Scott, D. Stolyarov, V. Sutton, D. Suur-Uski, A. -S. Sygnet, J. -F. Tauber, J. A. Terenzi, L. Toffolatti, L. Tomasi, M. Tristram, M. Tucci, M. Umana, G. Valenziano, L. Valiviita, J. Van Tent, B. Vielva, P. Villa, F. Wade, L. A. Yvon, D. Zacchei, A. Zonca, A. CA Planck Collaboration TI Planck intermediate results XXXI. Microwave survey of Galactic supernova remnants SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE ISM: supernova remnants; cosmic rays; radio continuum: ISM ID WMAP OBSERVATIONS; FLUX-DENSITY; CYGNUS LOOP; CM OBSERVATIONS; RADIO-EMISSION; IA SUPERNOVA; FERMI-LAT; 32 GHZ; X-RAY; CATALOG AB The all-sky Planck survey in 9 frequency bands was used to search for emission from all 274 known Galactic supernova remnants. Of these, 16 were detected in at least two Planck frequencies. The radio-through-microwave spectral energy distributions were compiled to determine the mechanism for microwave emission. In only one case, IC 443, is there high-frequency emission clearly from dust associated with the supernova remnant. In all cases, the low-frequency emission is from synchrotron radiation. As predicted for a population of relativistic particles with energy distribution that extends continuously to high energies, a single power law is evident for many sources, including the Crab and PKS 1209-51/52. A decrease in flux density relative to the extrapolation of radio emission is evident in several sources. Their spectral energy distributions can be approximated as broken power laws, S-v proportional to v(-alpha), with the spectral index, alpha, increasing by 0.5-1 above a break frequency in the range 10-60 GHz. The break could be due to synchrotron losses. C1 [Cardoso, J. -F.; Delabrouille, J.; Ganga, K.; Giraud-Heraud, Y.; Piat, M.; Remazeilles, M.; Rosset, C.; Roudier, G.] Univ Paris Diderot, Sorbonne Paris Cite, APC, CNRS,IN2P3,CEA,Irfu,Observ Paris, 10 Rue Alice Domon & Leonie Duquet, F-75205 Paris 13, France. [Lahteenmaki, A.] Aalto Univ, Metsahovi Radio Observ, POB 13000, Aalto 00076, Finland. [Lahteenmaki, A.] Aalto Univ, Dept Radio Sci & Engn, POB 13000, Aalto 00076, Finland. [Kunz, M.] African Inst Math Sci, 6-8 Melrose Rd, ZA-7945 Cape Town, South Africa. [Polenta, G.] Agenzia Spaziale Italiana Sci Data Ctr, Via Politecn Snc, I-00133 Rome, Italy. [Ashdown, M.; Curto, A.; Hobson, M.; Lasenby, A.; Stolyarov, V.] Univ Cambridge, Astrophys Grp, Cavendish Lab, JJ Thomson Ave, Cambridge CB3 011E, England. [Chiang, H. C.] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Astrophys & Cosmol Res Unit, Westville Campus,Private Bag X54001, ZA-4000 Durban, South Africa. [Kneissl, R.] ALMA Santiago Cent Off, Atacama Large Millimeter Submillimeter Array, Alonso de Cordova 3107,Casilla 763 0355, Santiago, Chile. [Leonardi, R.] CGEE, SCS Qd 9,Lote C,Torre C,4 Andar,Ed Parque Cidade, BR-70308200 Brasilia, DF, Brazil. [Bond, J. R.; Martin, P. G.; Miville-Deschenes, M-A; Oppermann, N.] Univ Toronto, CITA, 60 St George St, Toronto, ON M5S 3H8, Canada. [Banday, A. J.; Bernard, J. -P; Bielewicz, P.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] IRAP, CNRS, 9 Ave Colonel Roche,BP 44346, F-31028 Toulouse, France. [Crill, B. P.; Dore, O.; Hildebrandt, S. R.; Rocha, G.] CALTECH, Pasadena, CA 91101 USA. [Hernandez-Monteagudo, C.] CEFCA, Plaza San Juan 1,Planta 2, Teruel 44001, Spain. [Borrill, J.; Keskitalo, R.] Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA 91101 USA. [Chamballu, A.; Yvon, D.] CEA Saclay, DSM Irfu SPP, F-91191 Gif Sur Yvette, France. [Linden-Vornle, M.; Oxborrow, C. A.] Tech Univ Denmark, Natl Space Inst, DTU Space, Elektrovej 327, DK-2800 Lyngby, Denmark. [Kunz, M.; Tucci, M.] Univ Geneva, Dept Phys Theor, 24 Quai E Ansennet, CH-1211 Geneva 4, Switzerland. [Atrio-Barandela, F.] Univ Salamanca, Fac Ciencias, Dept Fis Fundamental, E-37008 Salamanca, Spain. [Gonzalez-Nuevo, J.; Toffolatti, L.] Univ Oviedo, Dept Fis, Avda Calvo Sotelo S-N, Oviedo 33003, Spain. [Rachen, J. P.] Radboud Univ Nijmegen, IMAPP, Dept Astrophys, POB 9010, NL-6500 GL Nijmegen, Netherlands. [Scott, D.] Univ British Columbia, Dept Phys & Astron, 6224 Agr Rd, Vancouver, BC V5Z 1M9, Canada. [Colombo, L. P. L.] Univ So Calif, Dana & David Dornsife Coll Letter Arts & Sci, Dept Phys & Astron, Los Angeles, CA 90089 USA. [Benoit-Levy, A.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Huffenberger, K. M.] Florida State Univ, Dept Phys, Keen Phys Bldg,77 Chieftan Way, Tallahassee, FL 32306 USA. [Keihaenen, E.; Kurki-Suonio, H.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Dept Phys, Gustaf Hallstromin Katu 2a, Helsinki 00100, Finland. [Lubin, P. M.; Zonca, A.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Liguori, M.; Matarrese, S.] Univ Padua, Dipartimento Fis & Astron G Galilei, Via Marzolo 8, I-35131 Padua, Italy. [Burigana, C.] Univ Ferrara, Dipartimento Fis & Sci Terra, Via Saragat 1, I-44122 Ferrara, Italy. [de Bernardis, P.; Masi, S.; Melchiorri, A.; Pagano, L.; Piacentini, F.] Univ Roma La Sapienza, Dipartimento Fis, Ple A Moro 2, I-00185 Rome, Italy. [Bersanelli, M.; Maino, D.; Mennella, A.; Tomasi, M.] Univ Milan, Dipartimento Fis, Via Celoria 16, Milan, Italy. [Gregorio, A.] Univ Trieste, Dipartimento Fis, Via A Valerio 2, I-34128 Trieste, Italy. [Mazzotta, P.] Univ Roma Tor Vergata, Dipartimento Fis, Via Ric Sci 1, Rome, Italy. [Christensen, P. R.] Niels Bohr Inst, Discovery Ctr, Blegdainsvej 17, DK-2100 Copenhagen, Denmark. [Naselsky, P.] Univ Copenhagen, Niels Bohr Inst, Discovery Ctr, Blegdamsvej 17, DK-2100 Copenhagen, Denmark. [Kneissl, R.] European So Observ, ESO Vitacura, Alonso de Cordova 3107,Casilla 19001, Santiago, Chile. [Dupac, X.; Lopez-Caniego, M.; Mendes, L.] European Space Agcy, ESAC, Planck Sci Off, Camino Bajo del Castillo S-N, Madrid 28692, Spain. [Tauber, J. A.] European Space Agcy, Estec, Keplerlaan 1, NL-2201 AZ Noordwijk, Netherlands. [Terenzi, L.] Univ E Campus, Fac Ingn, Via Isimbardi 10, I-22060 Novedrate, CO, Italy. [Matarrese, S.] Ist Nazl Fis Nucl, Gran Sasso Sci Inst, Viale F Crispi 7, I-67100 Laquila, Italy. [Kurki-Suonio, H.; Lahteenmaki, A.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Helsinki Inst Phys, Gustaf Hallstromin Katu 2, SF-00100 Helsinki, Finland. [Umana, G.] INAF Osservatorio Astrofis Catania, Via S Sofia 78, Catania, Italy. [de Zotti, G.] INAF Osservatorio Astron Padova, Vicolo Osservatorio 5, Padua, Italy. [Polenta, G.] INAF Osservatorio Astron Roma, Via Frascati 33, Monte Porzio Catone, Italy. [Frailis, M.; Galeotta, S.; Gregorio, A.; Maris, M.; Pasian, F.; Zacchei, A.] INAF Osservatorio Astron Trieste, Via GB Tiepolo 11, Trieste, Italy. [Burigana, C.; Cuttaia, F.; de Rosa, A.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Morgante, G.; Ricciardi, S.; Sandri, M.; Terenzi, L.; Toffolatti, L.; Valenziano, L.; Villa, F.] INAF IASF Bologna, Via Gobefil 101, I-40126 Bologna, Italy. [Bersanelli, M.; Donzelli, S.; Maino, D.; Mennella, A.; Tomasi, M.] INAF IASF Milano, Via E Bassini 15, I-20100 Milan, Italy. [Burigana, C.; Finelli, F.] INFN, Sez Bologna, Via Irnerio 46, I-40126 Bologna, Italy. [Melchiorri, A.; Pagano, L.] Univ Roma La Sapienza, Ist Nazl Fis Nucl, Sez Roma 1, Piazzale Aldo Moro 2, I-00185 Rome, Italy. [Gregorio, A.] INFN Natl Inst Nucl Phys, Via Valerio 2, I-34127 Trieste, Italy. [Desert, F. -X.] Univ Grenoble Alpes, IPAG, F-38000 Grenoble, France. [Desert, F. -X.] CNRS, IPAG, F-38000 Grenoble, France. [Jaffe, A. H.; Mortlock, D.] Univ London Imperial Coll Sci Technol & Med, Astrophys Grp, Blackett Lab, Prince Consort Rd, London SW7 2AZ, England. [Paladini, R.; Rusholme, B.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Aumont, J.; Chamballu, A.; Kunz, M.; Miville-Deschenes, M-A; Pajot, F.; Puget, J. -L.; Remazeilles, M.] Univ Paris 11, CNRS, Inst Astrophys Spatiale, Batiment 121, F-91440 Orsay, France. [Benabed, K.; Benoit-Levy, A.; Bouchet, F. R.; Cardoso, J. -F.; Colombi, S.; Moneti, A.; Sygnet, J. -F.] CNRS, UMR 7095, Inst Astrophys Paris, 98 Bis Blvd Arago, F-75014 Paris, France. [Popa, L.] Inst Space Sci, Bucharest 077125, Romania. [Harrison, D. L.; Migliaccio, M.; Sutton, D.] Univ Cambridge, Inst Astron, Madingley Rd, Cambridge 0133 011A, England. [Eriksen, H. K.; Hansen, F. K.; Lilje, P. B.] Univ Oslo, Inst Theoret Astrophys, N-0371 Oslo, Norway. [Barreiro, R. B.; Curto, A.; Diego, J. M.; Gonzalez-Nuevo, J.; Herranz, D.; Lopez-Caniego, M.; Martinez-Gonzalez, E.; Toffolatti, L.; Vielva, P.] Univ Cantabria, CSIC, Inst Fis Cantabria, Avda Castros S-N, E-39005 Santander, Spain. [Liguori, M.; Matarrese, S.] Ist Nazl Fis Nucl, Sez Padova, Via Marzolo 8, I-35131 Padua, Italy. [Colombo, L. P. L.; Crill, B. P.; Dore, O.; Gorski, K. M.; Hildebrandt, S. R.; Holmes, W. A.; Lawrence, C. R.; Pietrobon, D.; Rocha, G.; Roudier, G.; Wade, L. A.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA USA. [Davies, R. D.; Davis, R. J.; Dickinson, C.; Noviello, E.; Peel, M.; Remazeilles, M.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Alan Turing Bldg,Oxford Rd, Manchester M13 9PL, Lancs, England. [Ashdown, M.; Curto, A.; Harrison, D. L.; Lasenby, A.; Migliaccio, M.; Sutton, D.] Kavli Inst Cosmol Cambridge, Madingley Rd, Cambridge CB3 0HA, England. [Stolyarov, V.] Kazan Fed Univ, 18 Kremlyovskaya St, Kazan 420008, Russia. [Perdereau, O.; Plaszczynski, S.; Tristram, M.] Univ Paris 11, LAL, CNRS IN2P3, F-91400 Orsay, France. [Catalano, A.; Lamarre, J. -M.; Roudier, G.] Observ Paris, CNRS, LERMA, 61 Ave Observ, F-75014 Paris, France. [Arnaud, M.; Bobin, J.; Chamballu, A.; Marshall, D. J.; Pratt, G. W.] Univ Paris Diderot, CNRS, CEA DSM, Lab AIM,IRFU,Serv Astrophys,CEA Saclay, Bat 709, F-91191 Gif Sur Yvette, France. [Cardoso, J. -F.] CNRS, UMR 5141, Lab Traitement & Commun Informat, 46 Rue Barrault, F-75634 Paris 13, France. [Cardoso, J. -F.] Telecom ParisTech, 46 Rue Barrault, F-75634 Paris 13, France. [Catalano, A.; Renault, C.] Univ Grenoble Alpes, Lab Phys Subatom & Cosmol, CNRS IN2P3, 53 Rue Martyrs, F-38026 Grenoble, France. [Van Tent, B.] Univ Paris 11, Lab Phys Theor, Batiment 210, F-91405 Orsay, France. [Van Tent, B.] CNRS, Batiment 210, F-91405 Orsay, France. [Kisner, T. S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Novikov, D.; Novikov, I.] Russian Acad Sci, Ctr Astro Space, Lebedev Phys Inst, 84-32 Profsoyuznaya St,GSP-7, Moscow 117997, Russia. [Ensslin, T. A.; Hernandez-Monteagudo, C.; Knoche, J.; Rachen, J. P.; Reinecke, M.; Riller, T.] Max Planck Inst Astrophys, Karl Schwarzschild Str 1, D-85748 Garching, Germany. [Reich, W.] Max Planck Inst Radioastron, Hugel 69, D-53121 Bonn, Germany. [Brogan, C. L.] Natl Radio Astron Observ, 520 Edgemont Rd, Charlottesville, VA 22903 USA. [Murphy, J. A.] Natl Univ Ireland, Dept Expt Phys, Maynooth, Kildare, Ireland. [Bielewicz, P.] Nicolaus Copernicus Astron Ctr, Bartycka 18, PL-00716 Warsaw, Poland. [Christensen, P. R.; Novikov, I.] Niels Bohr Inst, Blegdamsvej 17, DK-2100 Copenhagen, Denmark. [Naselsky, P.] Univ Copenhagen, Niels Bohr Inst, Blegdamsvej 17, DK-2100 Copenhagen, Denmark. [Savini, G.] UCL, Opt Sci Lab, Gower St, London, England. [Rho, J.] SETE Inst, MS 211-3, Moffett Field, CA 94035 USA. [Rho, J.] NASA, Ames Res Ctr, SOFIA Sci Ctr, MS 211-3, Moffett Field, CA 94035 USA. [Baccigalupi, C.; Bielewicz, P.; de Zotti, G.; Perrotta, F.] SISSA, Astrophys Sect, Via Bonomea 265, I-34136 Trieste, Italy. [Munshi, D.] Cardiff Univ, Sch Phys & Astron, Queens Bldg, Cardiff 024 3AA, S Glam, Wales. [Bouchet, F. R.] UPMC, Univ Paris 04, UMR 7095, Inst Astrophys Paris, 98 Bis Blvd Arago, F-75014 Paris, France. [Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Stolyarov, V.] Russian Acad Sci, Special Astrophys Observ, Karachai Cherkessian Rep 369167, Zelenchukskiy R, Russia. [Benabed, K.; Benoit-Levy, A.; Colombi, S.] Univ Paris 06, UMR 7095, 98 Bis Blvd Arago, F-75014 Paris, France. [Banday, A. J.; Bernard, J. -P; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France. [Reach, W. T.] Univ Space Res Assoc, Stratospher Observ Infrared Astron, MS 232-11, Moffett Field, CA 94035 USA. [Battaner, E.] Univ Granada, Dept Fis Teor & Cosmos, Fac Ciencias, Granada 18010, Spain. [Battaner, E.] Univ Granada, Inst Carlos Fis Teor & Computat 1, Granada 18010, Spain. [Gorski, K. M.] Univ Warsaw Observ, Aleje Ujazdowskie 4, PL-00478 Warsaw, Poland. RP Reach, WT (reprint author), Univ Space Res Assoc, Stratospher Observ Infrared Astron, MS 232-11, Moffett Field, CA 94035 USA. EM wreach@sofia.usra.edu RI Atrio-Barandela, Fernando/A-7379-2017; Novikov, Igor/N-5098-2015; Novikov, Dmitry/P-1807-2015; Stolyarov, Vladislav/C-5656-2017; Barreiro, Rita Belen/N-5442-2014; Mazzotta, Pasquale/B-1225-2016; Remazeilles, Mathieu/N-1793-2015; Lopez-Caniego, Marcos/M-4695-2013; Martinez-Gonzalez, Enrique/E-9534-2015; Piacentini, Francesco/E-7234-2010; Gonzalez-Nuevo, Joaquin/I-3562-2014; Nati, Federico/I-4469-2016; Lahteenmaki, Anne/L-5987-2013; Toffolatti, Luigi/K-5070-2014; Tomasi, Maurizio/I-1234-2016; Colombo, Loris/J-2415-2016; Herranz, Diego/K-9143-2014; popa, lucia/B-4718-2012; Vielva, Patricio/F-6745-2014; OI Savini, Giorgio/0000-0003-4449-9416; Atrio-Barandela, Fernando/0000-0002-2130-2513; Stolyarov, Vladislav/0000-0001-8151-828X; Barreiro, Rita Belen/0000-0002-6139-4272; Mazzotta, Pasquale/0000-0002-5411-1748; Peel, Mike/0000-0003-3412-2586; Remazeilles, Mathieu/0000-0001-9126-6266; Scott, Douglas/0000-0002-6878-9840; Huffenberger, Kevin/0000-0001-7109-0099; Bouchet, Francois/0000-0002-8051-2924; Martinez-Gonzalez, Enrique/0000-0002-0179-8590; Piacentini, Francesco/0000-0002-5444-9327; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; Nati, Federico/0000-0002-8307-5088; Toffolatti, Luigi/0000-0003-2645-7386; Tomasi, Maurizio/0000-0002-1448-6131; Colombo, Loris/0000-0003-4572-7732; Herranz, Diego/0000-0003-4540-1417; Vielva, Patricio/0000-0003-0051-272X; Ricciardi, Sara/0000-0002-3807-4043; TERENZI, LUCA/0000-0001-9915-6379; Reach, William/0000-0001-8362-4094; Valiviita, Jussi/0000-0001-6225-3693; Zacchei, Andrea/0000-0003-0396-1192; Lilje, Per/0000-0003-4324-7794 FU ESA; CNES (France); CNRS/INSU-IN2P3-INP (France); ASI (Italy); CNR (Italy); INAF (Italy); NASA (USA); DoE (USA); STFC (UK); UKSA (UK); CSIC (Spain); MINECO (Spain); JA (Spain); RES (Spain); Tekes (Finland); AoF (Finland); CSC (Finland); DLR (Germany); MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC (EU); PRACE (EU) FX The Planck Collaboration acknowledges the support of: ESA; CNES, and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MINECO, JA and RES (Spain); Tekes, AoF, and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC and PRACE (EU). A description of the Planck Collaboration and a list of its members, indicating which technical or scientific activities they have been involved in, can be found at http://www.cosmos.esa.int/web/planck/planck-collaboration. NR 71 TC 0 Z9 0 U1 4 U2 7 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD FEB PY 2016 VL 586 AR A134 DI 10.1051/0004-6361/201425022 PG 21 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DD1XG UT WOS:000369715900144 ER PT J AU Trabert, E Beiersdorfer, P Brickhouse, NS Golub, L AF Traebert, Elmar Beiersdorfer, Peter Brickhouse, Nancy S. Golub, Leon TI Low-density laboratory spectra near the He II lambda 304 line SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE Sun: corona; atomic data; methods: laboratory: atomic; techniques: spectroscopic; Sun: UV radiation ID EXTREME-ULTRAVIOLET REGION; AN ATOMIC DATABASE; BEAM ION-TRAP; EMISSION-LINES; CORONAL LINES; AR-XIV; FE-VII; CHIANTI; ANGSTROM; INSTRUMENT AB Aims. To interpret the EUV spectra of the solar corona, one hopes for laboratory data of specific chemical elements obtained under coronal conditions. Methods. EUV spectra of He, C, N, O, F, Ne, S, Ar, Fe, and Ni in a 40 angstrom wide wavelength interval near lambda 304 were excited in an electron beam ion trap. Results. We observe some two hundred lines about half of which are not yet identified and included in spectral models. Conclusions. Our data provide a check on the atomic data bases underlying the spectral models that are used to interpret solar corona data. However, a multitude of mostly weak additional lines taken together represent a flux that is comparable to that of various primary lines. C1 [Traebert, Elmar; Beiersdorfer, Peter] Lawrence Livermore Natl Lab, Div Phys, Phys & Life Sci, Livermore, CA 94550 USA. [Traebert, Elmar] Ruhr Univ Bochum, Astron Inst, Fak Phys, D-44780 Bochum, Germany. [Brickhouse, Nancy S.; Golub, Leon] Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. RP Trabert, E; Beiersdorfer, P (reprint author), Lawrence Livermore Natl Lab, Div Phys, Phys & Life Sci, Livermore, CA 94550 USA.; Trabert, E (reprint author), Ruhr Univ Bochum, Astron Inst, Fak Phys, D-44780 Bochum, Germany. EM traebert@astro.rub.de; beiersdorfer1@llnl.gov FU US Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; German Research Association (DFG) [Tr171/18, Tr171/19] FX This work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. E.T. acknowledges support from the German Research Association (DFG) (grants Tr171/18 and Tr171/19). NR 32 TC 0 Z9 0 U1 1 U2 1 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD FEB PY 2016 VL 586 AR A115 DI 10.1051/0004-6361/201527825 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DD1XG UT WOS:000369715900126 ER PT J AU Zirnstein, EJ Funsten, HO Heerikhuisen, J McComas, DJ AF Zirnstein, E. J. Funsten, H. O. Heerikhuisen, J. McComas, D. J. TI Effects of solar wind speed on the secondary energetic neutral source of the Interstellar Boundary Explorer ribbon SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE Sun: heliosphere; solar wind; ISM: atoms; ISM: magnetic fields ID ATOM ENA FLUX; PICK-UP IONS; IBEX RIBBON; MAGNETIC-FIELD; OUTER HELIOSHEATH; LO OBSERVATIONS; HELIOSPHERIC MODELS; SPECTRAL PROPERTIES; CHARGE-EXCHANGE; HYDROGEN FLUX AB The Interstellar Boundary EXplorer (IBEX) ribbon is an intense energetic neutral atom (ENA) emission feature encircling the sky, spanning energies <= 0.5-6 keV. The ribbon may be produced by the "secondary ENA" mechanism, where ENAs emitted from a source plasma population inside the heliosphere propagate outside the heliopause, undergo two charge-exchange events, and become secondary ENAs that may be directed back toward Earth and detected by IBEX. In this scenario, the source plasma population is governed by the interaction of the solar wind (SW) with the interstellar medium and is thus sensitive to the global SW properties. Moreover, this scenario predicts that the distance to the source of secondary ENAs depends on the ENA energy and SW speed, which in turn may affect the shape of the ribbon. In this paper, we use a computational model of the heliosphere with simplified SW boundary conditions to analyze the influence of ENA energy and SW speed, independent of time and latitude, on the global spatial and geometric properties of the ribbon. We find a strong dependence of the simulated ribbon energy spectrum and spatial symmetry on SW speed and ENA energy, and only a slight dependence on ribbon geometry. Our results suggest a significant number of primary ENAs from the inner heliosheath may contribute to the pickup ion source population outside the heliopause, depending on the ENA energy and SW speed. The lack of variation in the simulated ribbon center as a function of ENA energy and SW speed, in contrast to the observations, implies that the asymmetry of the SW plays an important role in determining the position of the ribbon. Comparisons to the IBEX data also signify the ribbon's dependence on the properties of the local interstellar medium, particularly the interstellar magnetic field. C1 [Zirnstein, E. J.; McComas, D. J.] Southwest Res Inst, 6220 Culebra Rd, San Antonio, TX 78238 USA. [Funsten, H. O.] Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. [Heerikhuisen, J.] Univ Alabama, Dept Space Sci, 301 Sparkman Dr, Huntsville, AL 35899 USA. [McComas, D. J.] Univ Texas San Antonio, Dept Phys & Astron, 1 UTSA Circle, San Antonio, TX 78249 USA. RP Zirnstein, EJ (reprint author), Southwest Res Inst, 6220 Culebra Rd, San Antonio, TX 78238 USA. EM ezirnstein@swri.edu OI Funsten, Herbert/0000-0002-6817-1039; Heerikhuisen, Jacob/0000-0001-7867-3633 FU United States Department of Energy; NASA [NNX14AP24G, NNX12AH44G, NNX14AF43G, NNX14AJ53G] FX This work was carried out as part of the IBEX mission, which is part of NASAs Explorer Program. Work at Los Alamos was performed under the auspices of the United States Department of Energy. J.H. acknowledges support from NASA grants NNX14AP24G, NNX12AH44G, NNX14AF43G, and NNX14AJ53G. E.Z. thanks George Livadiotis for helpful discussions. NR 79 TC 4 Z9 4 U1 0 U2 0 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD FEB PY 2016 VL 586 AR A31 DI 10.1051/0004-6361/201527437 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DD1XG UT WOS:000369715900042 ER PT J AU Schlecht, W Li, KL Hu, DH Dong, WJ AF Schlecht, William Li, King-Lun Hu, Dehong Dong, Wenji TI Fluorescence Based Characterization of Calcium Sensitizer Action on the Troponin Complex SO CHEMICAL BIOLOGY & DRUG DESIGN LA English DT Article DE cardiac tropnin; drug screening; fluorescence spectroscopy ID HUMAN CARDIAC TROPONIN; CANINE VENTRICULAR MYOCARDIUM; RESONANCE ENERGY-TRANSFER; GUINEA-PIG HEART; THIN FILAMENT; CA2+ SENSITIZERS; CONFORMATIONAL TRANSITIONS; MUSCLE-CONTRACTION; REGULATORY DOMAIN; INOTROPIC AGENT AB Calcium sensitizers enhance the transduction of the Ca2+ signal into force within the heart and have found use in treating heart failure. However the mechanisms of action for most Ca2+ sensitizers remain unclear. To address this issue an efficient fluorescence based approach to Ca2+ sensitizer screening was developed which monitors cardiac troponin C's (cTnC's) hydrophobic cleft. This approach was tested on four common Ca2+-sensitizers, EMD 57033, levosimendan, bepridil and pimobendan with the aim of elucidating the mechanisms of action for each as well as proving the efficacy of the new screening method. Ca2+-titration experiments were employed to determine the effect on CA(2+) sensitivity and cooperativity of cTnC opening, while stopped flow experiments were used to investigate the impact on cTnC relaxation kinetics. Bepridil was shown to increase the sensitivity of cTnC for CA(2+) under all reconstitution conditions, sensitization by the other drugs was context dependent. Levosimendan and pimobendan reduced the rate of cTnC closing consistent with a stabilization of cTnC's open conformation while bepridil increased the rate of relaxation. Experiments were also run on samples containing cTnT(T204E), a known CA(2+)-desensitizing phosphorylation mimic. Levosimendan, bepridil, and pimobendan were found to elevate the CA(2+)-sensitivity of cTnT(T204E) containing samples in this context. C1 [Schlecht, William; Li, King-Lun; Dong, Wenji] Washington State Univ, Gene & Linda Voiland Sch Chem Engn & Bioengn, POB 646515, Pullman, WA 99164 USA. [Hu, Dehong] Pacific NW Natl Lab, Environm & Mol Sci Lab, 3335 Innovat Blvd, Richland, WA 99354 USA. RP Schlecht, W (reprint author), Washington State Univ, Gene & Linda Voiland Sch Chem Engn & Bioengn, POB 646515, Pullman, WA 99164 USA. EM william.schlecht@email.wsu.edu RI Hu, Dehong/B-4650-2010 OI Hu, Dehong/0000-0002-3974-2963 FU National Institutes of Health [HL80186, IR21HL109693]; EMSL, PNNL [34731]; M. J. Murdock Charitable Trust; NIH/NIGMS [T32-GM008336] FX This work was partially supported by the National Institutes of Health Grant HL80186 (W.-J. D.) and IR21HL109693 (W.-J. D.), and Instrument Usage grant (ID: 34731 to W.-J. D. and D. H.) from EMSL, PNNL, and by the M. J. Murdock Charitable Trust (W.-J. D.). Partial support for this publication came from the NIH/NIGMS through an institutional training grant award T32-GM008336. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the NIGMS or NIH. NR 53 TC 1 Z9 1 U1 1 U2 3 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1747-0277 EI 1747-0285 J9 CHEM BIOL DRUG DES JI Chem. Biol. Drug Des. PD FEB PY 2016 VL 87 IS 2 BP 171 EP 181 DI 10.1111/cbdd.12651 PG 11 WC Biochemistry & Molecular Biology; Chemistry, Medicinal SC Biochemistry & Molecular Biology; Pharmacology & Pharmacy GA DE2VM UT WOS:000370485300002 PM 26375298 ER PT J AU Min, SX Rasul, S Li, HF Grills, DC Takanabe, K Li, LJ Huang, KW AF Min, Shixiong Rasul, Shahid Li, Huaifeng Grills, David C. Takanabe, Kazuhiro Li, Lain-Jong Huang, Kuo-Wei TI Electrocatalytic Reduction of Carbon Dioxide with a Well-Defined PN3-Ru Pincer Complex SO CHEMPLUSCHEM LA English DT Article DE electrocatalysts; electrochemistry; N,P ligands; redox; ruthenium ID LOW-PRESSURE HYDROGENATION; CO2 REDUCTION; ELECTROCHEMICAL REDUCTION; EFFICIENT ELECTROCATALYST; REVERSIBLE HYDROGENATION; BOND ACTIVATION; AQUEOUS CO2; NI PINCER; CATALYST; FORMATE AB A well-defined PN3-Ru pincer complex (5) bearing a redox-active bipyridine ligand with an aminophosphine arm has been established as an effective and stable molecular electrocatalyst for CO2 reduction to CO and HCOOH with negligible formation of H-2 in a H2O/MeCN mixture. C1 [Min, Shixiong; Rasul, Shahid; Li, Huaifeng; Takanabe, Kazuhiro; Li, Lain-Jong; Huang, Kuo-Wei] King Abdullah Univ Sci & Technol, Div Phys Sci & Engn, Thuwal 239556900, Saudi Arabia. [Min, Shixiong; Rasul, Shahid; Li, Huaifeng; Takanabe, Kazuhiro; Li, Lain-Jong; Huang, Kuo-Wei] King Abdullah Univ Sci & Technol, KAUST Catalysis Ctr, Thuwal 239556900, Saudi Arabia. [Min, Shixiong] Beifang Univ Nationalities, Sch Chem & Chem Engn, Ningxia 750021, Peoples R China. [Grills, David C.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Huang, KW (reprint author), King Abdullah Univ Sci & Technol, Div Phys Sci & Engn, Thuwal 239556900, Saudi Arabia.; Huang, KW (reprint author), King Abdullah Univ Sci & Technol, KAUST Catalysis Ctr, Thuwal 239556900, Saudi Arabia. EM hkw@kaust.edu.sa RI Grills, David/F-7196-2016; Li, Lain-Jong/D-5244-2011; Takanabe, Kazuhiro/D-6119-2011 OI Grills, David/0000-0001-8349-9158; Li, Lain-Jong/0000-0002-4059-7783; Takanabe, Kazuhiro/0000-0001-5374-9451 FU King Abdullah University of Science and Technology; National Natural Science Foundation of China [21463001]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences Biosciences [DE-AC02-98CH10886, DE-SC0012704] FX We are grateful for the generous financial support from King Abdullah University of Science and Technology and the National Natural Science Foundation of China (grant no. 21463001). Work at Brookhaven National Laboratory was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences& Biosciences under contracts DE-AC02-98CH10886 and DE-SC0012704. NR 62 TC 0 Z9 1 U1 11 U2 55 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 2192-6506 J9 CHEMPLUSCHEM JI ChemPlusChem PD FEB PY 2016 VL 81 IS 2 BP 166 EP 171 DI 10.1002/cplu.201500474 PG 6 WC Chemistry, Multidisciplinary SC Chemistry GA DE2QB UT WOS:000370470700002 ER PT J AU Sun, WY Yang, B Hansen, N Westbrook, CK Zhang, F Wang, G Moshammer, K Law, CK AF Sun, Wenyu Yang, Bin Hansen, Nils Westbrook, Charles K. Zhang, Feng Wang, Gao Moshammer, Kai Law, Chung K. TI An experimental and kinetic modeling study on dimethyl carbonate (DMC) pyrolysis and combustion SO COMBUSTION AND FLAME LA English DT Article DE Dimethyl carbonate (DMC); Pyrolysis; Laminar premixed flame; Kinetic model ID PHOTOIONIZATION MASS-SPECTROMETRY; LOW-PRESSURE FLAMES; IGNITION DELAY TIMES; SMALL ALKYL ESTERS; PREMIXED FLAMES; HIGH-TEMPERATURE; OXYGENATED HYDROCARBONS; THERMAL-DECOMPOSITION; METHYL BUTANOATE; SHOCK-TUBE AB Dimethyl carbonate (DMC) is a promising oxygenated additive or substitute for hydrocarbon fuels, because of the absence of C-C bonds and the large oxygen content in its molecular structure. To better understand its chemical oxidation and combustion kinetics, flow reactor pyrolysis at different pressures (40, 200 and 1040 mbar) and low-pressure laminar premixed flames with different equivalence ratios (1.0 and 1.5) were investigated. Mole fraction profiles of many reaction intermediates and products were obtained within estimated experimental uncertainties. From theoretical calculations and estimations, a detailed kinetic model for DMC pyrolysis and high-temperature combustion consisting of 257 species and 1563 reactions was developed. The performance of the kinetic model was then analyzed using detailed chemical composition information, primarily from the present measurements. In addition, it was examined against the chemical structure of an opposed-flow diffusion flame, relying on global combustion properties such as the ignition delay times and laminar burning velocities. These extended comparisons yielded overall satisfactory agreement, demonstrating the applicability of the present model over a wide range of high-temperature conditions. (c) 2015 The Combustion Institute. Published by Elsevier Inc. All rights reserved. C1 [Sun, Wenyu; Yang, Bin; Law, Chung K.] Tsinghua Univ, Ctr Combust Energy, Beijing 100084, Peoples R China. [Sun, Wenyu; Yang, Bin; Law, Chung K.] Tsinghua Univ, Dept Thermal Engn, Beijing 100084, Peoples R China. [Hansen, Nils; Moshammer, Kai] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. [Westbrook, Charles K.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Zhang, Feng; Wang, Gao] Univ Sci & Technol China, Natl Synchrotron Radiat Lab, Hefei 230029, Anhui, Peoples R China. [Moshammer, Kai] Univ Bielefeld, Dept Chem, D-33615 Bielefeld, Germany. [Law, Chung K.] Princeton Univ, Dept Mech & Aerosp Engn, Princeton, NJ 08544 USA. RP Yang, B (reprint author), Tsinghua Univ, Ctr Combust Energy, Beijing 100084, Peoples R China.; Yang, B (reprint author), Tsinghua Univ, Dept Thermal Engn, Beijing 100084, Peoples R China. EM byang@tsinghua.edu.cn RI Yang, Bin/A-7158-2008; Hansen, Nils/G-3572-2012; Zhang, Feng/K-8505-2012 OI Yang, Bin/0000-0001-7333-0017; FU Natural Science Foundation of China [51306102, U1332208]; U.S. Department of Energy (USDOE), Office of Basic Energy Sciences (BES) [DE-AC04-94-AL85000, DE-SC0001198]; US Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; US Department of Energy, Office of Vehicle Technologies; Office of Science, BES, USDOE [DE-AC02-05CH11231]; National Nuclear Security Administration [DE-AC04-94-AL85000] FX This research is mostly supported by the Natural Science Foundation of China (51306102, U1332208). NH is supported by the U.S. Department of Energy (USDOE), Office of Basic Energy Sciences (BES) under Grant No. DE-AC04-94-AL85000 and DE-SC0001198 (the Energy Frontier Research Center for Combustion Science). The LLNL work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and was supported by the US Department of Energy, Office of Vehicle Technologies. The measurements were performed within the "Flame Team" collaboration at the Advanced Light Source (ALS), Lawrence Berkeley National Laboratory, Berkeley, USA, and we thank the students and postdocs for the help with the data acquisition. The experiments were profited from the expert technical assistance of Paul Fugazzi. The Advanced Light Source is supported by the Director, Office of Science, BES, USDOE under Contract No. DE-AC02-05CH11231. Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the National Nuclear Security Administration under contract DE-AC04-94-AL85000. The authors thank Prof. Katharina Kohse-Hoinghaus of Bielefeld University and Prof. Fei Qi of Shanghai Jiaotong University for their supports of this work, helpful discussions and critical review of the manuscript NR 62 TC 5 Z9 5 U1 16 U2 48 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0010-2180 EI 1556-2921 J9 COMBUST FLAME JI Combust. Flame PD FEB PY 2016 VL 164 BP 224 EP 238 DI 10.1016/j.combustflame.2015.11.019 PG 15 WC Thermodynamics; Energy & Fuels; Engineering, Multidisciplinary; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA DE2MK UT WOS:000370461200018 ER PT J AU Wang, ZD Zhang, LD Moshammer, K Popolan-Vaida, DM Shankar, VSB Lucassen, A Hemken, C Taatjes, CA Leone, SR Kohse-Hoinghaus, K Hansen, N Dagaut, P Sarathy, SM AF Wang, Zhandong Zhang, Lidong Moshammer, Kai Popolan-Vaida, Denisia M. Shankar, Vijai Shankar Bhavani Lucassen, Arnas Hemken, Christian Taatjes, Craig A. Leone, Stephen R. Kohse-Hoeinghaus, Katharina Hansen, Nils Dagaut, Philippe Sarathy, S. Mani TI Additional chain-branching pathways in the low-temperature oxidation of branched alkanes SO COMBUSTION AND FLAME LA English DT Article DE Auto-oxidation; Chain-branching; Highly oxidized multifunctional molecules; Peroxides; Alternative isomerization; Synchrotron VUV photoionization mass spectrometry ID CHEMICAL KINETIC-MODELS; NORMAL-HEXADECANE AUTOXIDATION; LIQUID-PHASE AUTOXIDATION; SECONDARY ORGANIC AEROSOL; PRESSURE RATE RULES; ELEVATED-TEMPERATURES; COMBUSTION CHEMISTRY; HYDROCARBON FUELS; N-HEPTANE; AUTOIGNITION CHEMISTRY AB Chain-branching reactions represent a general motif in chemistry, encountered in atmospheric chemistry, combustion, polymerization, and photochemistry; the nature and amount of radicals generated by chain branching are decisive for the reaction progress, its energy signature, and the time towards its completion. In this study, experimental evidence for two new types of chain-branching reactions is presented, based upon detection of highly oxidized multifunctional molecules (HOM) formed during the gas-phase low-temperature oxidation of a branched alkane under conditions relevant to combustion. The oxidation of 2,5-dimethylhexane (DMH) in a jet-stirred reactor (JSR) was studied using synchrotron vacuum ultraviolet photoionization molecular beam mass spectrometry (SVUV-PI-MBMS). Specifically, species with four and five oxygen atoms were probed, having molecular formulas of C8H14O4 (e.g., diketo-hydroperoxide/keto-hydroperoxy cyclic ether) and C8H16O5 (e.g., keto-dihydroperoxide/dihydroperoxy cyclic ether), respectively. The formation of C8H16O5 species involves alternative isomerization of OOQOOH radicals via intramolecular H-atom migration, followed by third O-2 addition, intramolecular isomerization, and OH release; C8H14O4 species are proposed to result from subsequent reactions of C8H16O5 species. The mechanistic pathways involving these species are related to those proposed as a source of low-volatility highly oxygenated species in Earth's troposphere. At the higher temperatures relevant to auto-ignition, they can result in a net increase of hydroxyl radical production, so these are additional radical chain-branching pathways for ignition. The results presented herein extend the conceptual basis of reaction mechanisms used to predict the reaction behavior of ignition, and have implications on atmospheric gas-phase chemistry and the oxidative stability of organic substances. (C) 2015 The Combustion Institute. Published by Elsevier Inc. All rights reserved. C1 [Wang, Zhandong; Shankar, Vijai Shankar Bhavani; Sarathy, S. Mani] King Abdullah Univ Sci & Technol, Clean Combust Res Ctr, Thuwal 239556900, Saudi Arabia. [Zhang, Lidong] Univ Sci & Technol China, Natl Synchrotron Radiat Lab, Hefei 230029, Anhui, Peoples R China. [Moshammer, Kai; Taatjes, Craig A.; Hansen, Nils] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. [Popolan-Vaida, Denisia M.; Leone, Stephen R.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Popolan-Vaida, Denisia M.; Leone, Stephen R.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Popolan-Vaida, Denisia M.; Leone, Stephen R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Lucassen, Arnas] Phys Tech Bundesanstalt, Bundesallee 100, D-38116 Braunschweig, Germany. [Hemken, Christian; Kohse-Hoeinghaus, Katharina] Univ Bielefeld, Dept Chem, D-33615 Bielefeld, Germany. [Dagaut, Philippe] INSIS, CNRS, 1C Ave Rech Sci, F-45071 Orleans 2, France. RP Wang, ZD; Sarathy, SM (reprint author), King Abdullah Univ Sci & Technol, Clean Combust Res Ctr, Thuwal 239556900, Saudi Arabia. EM zhandong.wang@kaust.edu.sa; mani.sarathy@kaust.edu.sa RI Dagaut, Philippe/C-1709-2008; Hansen, Nils/G-3572-2012; Kohse-Hoinghaus, Katharina/A-3867-2012; Wang, Zhandong/B-2839-2009; OI Dagaut, Philippe/0000-0003-4825-3288; Lucassen, Arnas/0000-0003-2967-2030; Sarathy, S. Mani/0000-0002-3975-6206 FU King Abdullah University of Science and Technology (KAUST); Saudi Aramco under the FUELCOM program; KAUST; National Key Scientific Instruments and Equipment Development Program of China [2012YQ22011305]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences; Department of Energy Gas Phase Chemical Physics Program at Lawrence Berkeley National Laboratory [DEAC02-05CH11231]; Alexander von Humboldt Foundation; DFG [SFB 686, TP B3]; European Research Council under the European Community's Seventh Framework Programme (FP7)/ERC [291049-2G-CSafe]; National Nuclear Security Administration [DE-AC04-94-AL85000]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DEAC02-05CH11231] FX This work was initiated by the Clean Combustion Research Center with funding from King Abdullah University of Science and Technology (KAUST) and Saudi Aramco under the FUELCOM program. Research reported in this publication was also supported by competitive research funding from KAUST. L.D.Z. is grateful for the support from National Key Scientific Instruments and Equipment Development Program of China (2012YQ22011305). The work of N.H., K.M., and C.A.T. was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. D.M.P.V. and S.R.L. are supported by the Department of Energy Gas Phase Chemical Physics Program at Lawrence Berkeley National Laboratory, under contract DEAC02-05CH11231. D.M.P.V. is particularly grateful to the Alexander von Humboldt Foundation for a Feodor Lynen fellowship and she greatly acknowledges the technical support by James Breen, Erik Granlund and William Thur during the designing process and the fabrication of the JSR system. C.H. and K.K.H. are grateful for partial support by DFG within the large-scale research structure SFB 686, TP B3. P.D. has received funding from the European Research Council under the European Community's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no. 291049-2G-CSafe. Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the National Nuclear Security Administration under contract DE-AC04-94-AL85000. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DEAC02-05CH11231. We would like to thank Prof. Fei Qj for support and helpful discussions, and Lili Xing and Hao Zhao for technical support. NR 71 TC 11 Z9 11 U1 28 U2 74 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0010-2180 EI 1556-2921 J9 COMBUST FLAME JI Combust. Flame PD FEB PY 2016 VL 164 BP 386 EP 396 DI 10.1016/j.combustflame.2015.11.035 PG 11 WC Thermodynamics; Energy & Fuels; Engineering, Multidisciplinary; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA DE2MK UT WOS:000370461200031 ER PT J AU Liu, WS Stewart, CN AF Liu, Wusheng Stewart, C. Neal, Jr. TI Plant synthetic promoters and transcription factors SO CURRENT OPINION IN BIOTECHNOLOGY LA English DT Review ID CIS-REGULATORY ELEMENTS; ZINC-FINGER CHIMERAS; GENE-EXPRESSION; ARABIDOPSIS-THALIANA; HOMOLOGOUS RECOMBINATION; FUNCTIONAL DISSECTION; ACTIVATION DOMAIN; RESPONSE MOTIF; TARGET GENES; REPRESSOR AB Synthetic promoters and transcription factors (TFs) have become incredibly powerful and efficient components for precise regulation of targeted plant transgene expression. Synthetic promoters can be rationally designed and constructed using specific type, copy number and spacing of motifs placed upstream of synthetic or native core promoters. Similarly, synthetic TFs can be constructed using a variety of DNA binding domains (DBDs) and effector domains. Synthetic promoters and TFs can provide tremendous advantages over their natural counterparts with regards to transgene expression strength and specificity. They will probably be needed for coordinated transgene expression for metabolic engineering and synthetic circuit applications in plants for bioenergy and advanced crop engineering. In this article we review the recent advances in synthetic promoters and TFs in plants and speculate on their future. C1 [Liu, Wusheng; Stewart, C. Neal, Jr.] Univ Tennessee, Dept Plant Sci, Knoxville, TN USA. [Stewart, C. Neal, Jr.] Oak Ridge Natl Lab, BioEnergy Sci Ctr, Oak Ridge, TN USA. RP Stewart, CN (reprint author), Univ Tennessee, Dept Plant Sci, Knoxville, TN USA.; Stewart, CN (reprint author), Oak Ridge Natl Lab, BioEnergy Sci Ctr, Oak Ridge, TN USA. EM nealstewart@utk.edu FU University of Tennessee; US Department of Agriculture Hatch grant; US Department of Energy ARPA-E PETRO; BioEnergy Science Center (BESC); Office of Biological and Environmental Research in the DOE Office of Science FX Thanks to funding by the University of Tennessee, US Department of Agriculture Hatch grant, US Department of Energy ARPA-E PETRO and the BioEnergy Science Center (BESC). BESC is a Bioenergy Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science. NR 90 TC 4 Z9 4 U1 14 U2 40 PU CURRENT BIOLOGY LTD PI LONDON PA 84 THEOBALDS RD, LONDON WC1X 8RR, ENGLAND SN 0958-1669 EI 1879-0429 J9 CURR OPIN BIOTECH JI Curr. Opin. Biotechnol. PD FEB PY 2016 VL 37 BP 36 EP 44 DI 10.1016/j.copbio.2015.10.001 PG 9 WC Biochemical Research Methods; Biotechnology & Applied Microbiology SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology GA DE2LM UT WOS:000370458800006 PM 26524248 ER PT J AU Sturtevant, D Lee, YJ Chapman, KD AF Sturtevant, Drew Lee, Young-Jin Chapman, Kent D. TI Matrix assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) for direct visualization of plant metabolites in situ SO CURRENT OPINION IN BIOTECHNOLOGY LA English DT Review ID ARABIDOPSIS-THALIANA; SURFACE METABOLITES; NITROGEN-FIXATION; TOF MS; RESOLUTION; TISSUE; LOCALIZATION; IONIZATION; PROTEINS; SEEDS AB Direct visualization of plant tissues by matrix assisted laser desorption ionization-mass spectrometry imaging (MALDI-MSI) has revealed key insights into the localization of metabolites in situ. Recent efforts have determined the spatial distribution of primary and secondary metabolites in plant tissues and cells. Strategies have been applied in many areas of metabolism including isotope flux analyses, plant interactions, and transcriptional regulation of metabolite accumulation. Technological advances have pushed achievable spatial resolution to subcellular levels and increased instrument sensitivity by several orders of magnitude. It is anticipated that MALDI-MSI and other MSI approaches will bring a new level of understanding to metabolomics as scientists will be encouraged to consider spatial heterogeneity of metabolites in descriptions of metabolic pathway regulation. C1 [Sturtevant, Drew; Chapman, Kent D.] Univ N Texas, Ctr Plant Lipid Res, 1155 Union Circle 305220, Denton, TX 76203 USA. [Sturtevant, Drew; Chapman, Kent D.] Univ N Texas, Dept Biol Sci, 1155 Union Circle 305220, Denton, TX 76203 USA. [Lee, Young-Jin] Iowa State Univ, Dept Chem, Roy J Carver Colab 35A, Ames, IA 50011 USA. [Lee, Young-Jin] US DOE, Ames Lab, Ames, IA 50011 USA. RP Chapman, KD (reprint author), Univ N Texas, Ctr Plant Lipid Res, 1155 Union Circle 305220, Denton, TX 76203 USA.; Chapman, KD (reprint author), Univ N Texas, Dept Biol Sci, 1155 Union Circle 305220, Denton, TX 76203 USA. EM chapman@unt.edu FU Cotton Incorporated [08-395]; U.S. Department of Energy, Office of Science, Basic Energy Sciences program [DE-FG02-14ER15647]; US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences; Iowa State University [DE-AC02-07CH11358] FX Support for the authors research efforts in MSI is from Cotton Incorporated (Agreement #08-395) and U.S. Department of Energy, Office of Science, Basic Energy Sciences program (DE-FG02-14ER15647) to KDC. YL was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. The Ames Laboratory is operated by Iowa State University under Contract DE-AC02-07CH11358. We thank Maria Duenas for obtaining MS images of Arabidopsis seed cross-sections shown in Figure 1. NR 52 TC 15 Z9 15 U1 18 U2 51 PU CURRENT BIOLOGY LTD PI LONDON PA 84 THEOBALDS RD, LONDON WC1X 8RR, ENGLAND SN 0958-1669 EI 1879-0429 J9 CURR OPIN BIOTECH JI Curr. Opin. Biotechnol. PD FEB PY 2016 VL 37 BP 53 EP 60 DI 10.1016/j.copbio.2015.10.004 PG 8 WC Biochemical Research Methods; Biotechnology & Applied Microbiology SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology GA DE2LM UT WOS:000370458800008 PM 26613199 ER PT J AU Shi, H Schwender, J AF Shi, Hai Schwender, Joerg TI Mathematical models of plant metabolism SO CURRENT OPINION IN BIOTECHNOLOGY LA English DT Review ID FLUX BALANCE ANALYSIS; GENOME-SCALE MODELS; ESCHERICHIA-COLI; OILSEED RAPE; VARIABILITY ANALYSIS; STORAGE SYNTHESIS; MAIZE LEAF; ARABIDOPSIS; RECONSTRUCTION; NETWORK AB Among various modeling approaches in plant metabolic research, applications of Constraint-Based modeling are fast increasing in recent years, apparently driven by current advances in genomics and genome sequencing. Constraint Based modeling, the functional analysis of metabolic networks at the whole cell or genome scale, is more difficult to apply to plants than to microbes. Here we discuss recent developments in Constraint-Based modeling in plants with focus on issues of model reconstruction and flux prediction. Another topic is the emerging application of integration of Constraint-Based modeling with omics data to increase predictive power. Furthermore, advances in experimental measurements of cellular fluxes by C-13-Metabolic Flux Analysis are highlighted, including instationary C-13-MFA used to probe autotrophic metabolism in photosynthetic tissue in the light. C1 [Shi, Hai; Schwender, Joerg] Brookhaven Natl Lab, Biol Environm & Climate Sci Dept, Upton, NY 11973 USA. RP Shi, H (reprint author), Brookhaven Natl Lab, Biol Environm & Climate Sci Dept, Upton, NY 11973 USA. RI Schwender, Jorg/P-2282-2014 OI Schwender, Jorg/0000-0003-1350-4171 FU Office of Basic Energy Sciences of the US Department of Energy (Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division) [DEAC0298CH10886]; Laboratory Directed Research and Development program (LDRD) at Brookhaven National Laboratory FX JS gratefully acknowledges the Office of Basic Energy Sciences of the US Department of Energy for support of his laboratory's work on metabolic flux analysis (Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division, grant no. DEAC0298CH10886). Funding by the Laboratory Directed Research and Development program (LDRD) at Brookhaven National Laboratory to J.S. under contract with the U.S. Department of Energy is appreciated as well. NR 96 TC 1 Z9 1 U1 12 U2 24 PU CURRENT BIOLOGY LTD PI LONDON PA 84 THEOBALDS RD, LONDON WC1X 8RR, ENGLAND SN 0958-1669 EI 1879-0429 J9 CURR OPIN BIOTECH JI Curr. Opin. Biotechnol. PD FEB PY 2016 VL 37 BP 143 EP 152 DI 10.1016/j.copbio.2015.10.008 PG 10 WC Biochemical Research Methods; Biotechnology & Applied Microbiology SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology GA DE2LM UT WOS:000370458800019 PM 26723012 ER PT J AU Mottiar, Y Vanholme, R Boerjan, W Ralph, J Mansfield, SD AF Mottiar, Yaseen Vanholme, Ruben Boerjan, Wout Ralph, John Mansfield, Shawn D. TI Designer lignins: harnessing the plasticity of lignification SO CURRENT OPINION IN BIOTECHNOLOGY LA English DT Review ID CELL-WALL; BRACHYPODIUM-DISTACHYON; FERULATE 5-HYDROXYLASE; NMR CHARACTERIZATION; TRANSGENIC POPLARS; HYBRID POPLAR; BIOSYNTHESIS; DEPOSITION; IMPACT; GROWTH AB Lignin is a complex polyphenolic constituent of plant secondary cell walls. Inspired largely by the recalcitrance of lignin to biomass processing, plant engineering efforts have routinely sought to alter lignin quantity, composition, and structure by exploiting the inherent plasticity of lignin biosynthesis. More recently, researchers are attempting to strategically design plants for increased degradability by incorporating monomers that lead to a lower degree of polymerisation, reduced hydrophobicity, fewer bonds to other cell wall constituents, or novel chemically labile linkages in the polymer backbone. In addition, the incorporation of value-added structures could help valorise lignin. Designer lignins may satisfy the biological requirement for lignification in plants while improving the overall efficiency of biomass utilisation. C1 [Mottiar, Yaseen; Mansfield, Shawn D.] Univ British Columbia, Dept Wood Sci, Vancouver, BC V6T 1Z4, Canada. [Vanholme, Ruben; Boerjan, Wout] Univ Ghent, Dept Plant Biotechnol & Bioinformat, B-9052 Ghent, Belgium. [Vanholme, Ruben; Boerjan, Wout] VIB, Dept Plant Syst Biol, B-9052 Ghent, Belgium. [Ralph, John; Mansfield, Shawn D.] Great Lakes Bioenergy Res Ctr, Dept Energy, Madison, WI 53726 USA. [Ralph, John] Univ Wisconsin, Wisconsin Energy Inst, Dept Biochem, Madison, WI 53706 USA. RP Ralph, J (reprint author), Great Lakes Bioenergy Res Ctr, Dept Energy, Madison, WI 53726 USA.; Ralph, J (reprint author), Univ Wisconsin, Wisconsin Energy Inst, Dept Biochem, Madison, WI 53706 USA. EM jralph@wisc.edu FU Natural Sciences and Engineering Research Council of Canada; US Department of Energy Great Lakes Bioenergy Research Center (DOE BER Office of Science) [DE-FC02-07ER64494]; Multidisciplinary Research Partnership 'Biotechnology for a Sustainable Economy' of Ghent University [01MRB510W]; Agency for Innovation by Science and Technology (IWT); Research Foundation-Flanders (FWO); Stanford University's Global Climate and Energy Project (GCEP) FX We gratefully acknowledge the support of the Natural Sciences and Engineering Research Council of Canada through the Discovery Research Grant Program to SDM and a postgraduate scholarship to YM. YM, SDM, and JR were funded in part by the US Department of Energy Great Lakes Bioenergy Research Center (DOE BER Office of Science DE-FC02-07ER64494). RV and WB acknowledge funding from the Multidisciplinary Research Partnership 'Biotechnology for a Sustainable Economy' (01MRB510W) of Ghent University and from the Agency for Innovation by Science and Technology (IWT) for the SBO project 'ARBOREF'. RV is indebted to the Research Foundation-Flanders (FWO) for a postdoctoral fellowship. WB and JR were funded in part by Stanford University's Global Climate and Energy Project (GCEP). NR 52 TC 17 Z9 18 U1 15 U2 56 PU CURRENT BIOLOGY LTD PI LONDON PA 84 THEOBALDS RD, LONDON WC1X 8RR, ENGLAND SN 0958-1669 EI 1879-0429 J9 CURR OPIN BIOTECH JI Curr. Opin. Biotechnol. PD FEB PY 2016 VL 37 BP 190 EP 200 DI 10.1016/j.copbio.2015.10.009 PG 11 WC Biochemical Research Methods; Biotechnology & Applied Microbiology SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology GA DE2LM UT WOS:000370458800025 PM 26775114 ER PT J AU Karma, A Tourret, D AF Karma, Alain Tourret, Damien TI Atomistic to continuum modeling of solidification microstructures SO CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE LA English DT Review DE Multiscale solidification modeling; Atomistics; Interface pattern; Grain structure ID PHASE-FIELD MODEL; FINITE INTERFACE DISSIPATION; ADAPTIVE MESH REFINEMENT; NICKEL-DOPED TUNGSTEN; DENDRITIC GROWTH; DIRECTIONAL SOLIDIFICATION; GRAIN-BOUNDARIES; RAPID SOLIDIFICATION; ALLOY SOLIDIFICATION; MOLECULAR-DYNAMICS AB We summarize recent advances in modeling of solidification microstructures using computational methods that bridge atomistic to continuum scales. We first discuss progress in atomistic modeling of equilibrium and non-equilibrium solid-liquid interface properties influencing microstructure formation, as well as interface coalescence phenomena influencing the late stages of solidification. The latter is relevant in the context of hot tearing reviewed in the article by M. Rappaz in this issue. We then discuss progress to model microstructures on a continuum scale using phase-field methods. We focus on selected examples in which modeling of 3D cellular and dendritic microstructures has been directly linked to experimental observations. Finally, we discuss a recently introduced coarse-grained dendritic needle network approach to simulate the formation of well-developed dendritic microstructures. This approach reliably bridges the well-separated scales traditionally simulated by phase-field and grain structure models, hence opening new avenues for quantitative modeling of complex intra- and inter-grain dynamical interactions on a grain scale. Published by Elsevier Ltd. C1 [Karma, Alain] Northeastern Univ, Dept Phys, Boston, MA 02115 USA. [Karma, Alain] Northeastern Univ, Ctr Interdisciplinary Res Complex Syst, Boston, MA 02115 USA. [Tourret, Damien] Los Alamos Natl Lab, Mat Sci & Technol Div MST 6, POB 1663, Los Alamos, NM 87545 USA. RP Karma, A (reprint author), Northeastern Univ, Dept Phys, Boston, MA 02115 USA.; Karma, A (reprint author), Northeastern Univ, Ctr Interdisciplinary Res Complex Syst, Boston, MA 02115 USA. EM a.karma@neu.edu; dtourret@lanl.gov RI Tourret, Damien/B-2854-2017 OI Tourret, Damien/0000-0003-4574-7004 FU US Department of Energy, Office of Basic Energy Sciences [DEFG02-07ER46400]; Amy Clarke's Early Career award from the U.S. DOE, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering and Los Alamos National Laboratory; U.S. Department of Energy [DE-AC52-06NA25396] FX A.K. acknowledges support of grant DEFG02-07ER46400 from the US Department of Energy, Office of Basic Energy Sciences, for support of atomistic-scale phase-field-crystal modeling of interfacial properties, and NASA for continuum-scale phase-field and dendritic-needle-network modeling of cellular/dendritic microstructures. D.T. is supported by Amy Clarke's Early Career award from the U.S. DOE, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering and Los Alamos National Laboratory, operated by Los Alamos National Security, LLC under Contract No. DE-AC52-06NA25396 for the U.S. Department of Energy. NR 165 TC 5 Z9 5 U1 17 U2 46 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-0286 EI 1879-0348 J9 CURR OPIN SOLID ST M JI Curr. Opin. Solid State Mat. Sci. PD FEB PY 2016 VL 20 IS 1 SI SI BP 25 EP 36 DI 10.1016/j.cossms.2015.09.001 PG 12 WC Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA DE2KR UT WOS:000370456700004 ER PT J AU Yang, S Oostrom, M Truex, MJ Li, G Zhong, L AF Yang, S. Oostrom, M. Truex, M. J. Li, G. Zhong, L. TI Injectable silica-permanganate gel as a slow-release MnO4- source for groundwater remediation: rheological properties and release dynamics SO ENVIRONMENTAL SCIENCE-PROCESSES & IMPACTS LA English DT Article ID SITU CHEMICAL OXIDATION; POTASSIUM-PERMANGANATE; CHLORINATED ETHYLENES; HYDROGEN-PEROXIDE; MASS-TRANSFER; SOURCE ZONES; TCE DNAPL; TRICHLOROETHYLENE; KINETICS; CANDLES AB Injectable slow-release permanganate gels (ISRPGs), formed by mixing aqueous KMnO4 solution with fumed silica powders, may have potential applications in remediating chlorinated solvent plumes in groundwater. A series of batch, column, and two-dimensional (2-D) flow cell experiments has been completed to characterize the ISRPG and study the release of permanganate (MnO4-) under a variety of conditions. The experiments have provided information on ISRPG rheology, MnO4- release dynamics and distribution in porous media, and trichloroethene (TCE) destruction by the ISRPG-released oxidant. The gel possesses shear thinning characteristics, resulting in a relatively low viscosity during mixing, and facilitating subsurface injection and distribution. Batch tests clearly showed that MnO4- diffused out from the ISRPG into water. During this process, the gel did not dissolve or disperse into water, but rather maintained its initial shape. Column experiments demonstrated that MnO4- release from the ISRPG lasted considerably longer than that from an aqueous solution. In addition, due to the longer release duration, TCE destruction by ISRPG-released MnO4- was considerably more effective than that when MnO4- was delivered using aqueous solution injection. In the 2-D flow cell experiments, it was demonstrated that ISRPGs released a long-lasting, low-concentration MnO4- plume potentially sufficient for sustainable remediation in aquifers. C1 [Yang, S.; Li, G.] Tsinghua Univ, Sch Environm, Beijing 100084, Peoples R China. [Yang, S.; Li, G.] Tsinghua Univ, State Key Lab Environm Simulat & Pollut Control, Beijing 100084, Peoples R China. [Oostrom, M.; Truex, M. J.; Zhong, L.] Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA. RP Zhong, L (reprint author), Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA. EM lirong.zhong@pnnl.gov FU Department of Defense Environmental Security Technology Certification Program (ESTCP) [ER-0913]; National High Technology Research and Development Program of China [SS2013AA062607]; US DOE's Office of Biological and Environmental Research; U.S. DOE [DE-AC06-76RLO 1830] FX This work was partially funded by the Department of Defense Environmental Security Technology Certification Program (ESTCP) (project #ER-0913) and by the National High Technology Research and Development Program of China (no. SS2013AA062607). The 2-D flow cell tests were performed in the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the US DOE's Office of Biological and Environmental Research and located at the Pacific Norwest National Lab (PNNL). PNNL is operated by Battelle for the U.S. DOE under contract DE-AC06-76RLO 1830. NR 38 TC 0 Z9 0 U1 8 U2 12 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2050-7887 EI 2050-7895 J9 ENVIRON SCI-PROC IMP JI Environ. Sci.-Process Impacts PD FEB PY 2016 VL 18 IS 2 BP 256 EP 264 DI 10.1039/c5em00559k PG 9 WC Chemistry, Analytical; Environmental Sciences SC Chemistry; Environmental Sciences & Ecology GA DE5RX UT WOS:000370690900010 PM 26766607 ER PT J AU Robinson, GL Mills, GL Schweitzer, S Hernandez, S AF Robinson, Gabrielle L. Mills, Gary L. Schweitzer, Sara Hernandez, Sonia TI Reply to the 'Comment on "Exposure to mercury and Aroclor 1268 congeners in least terns (Sternula antillarum) in coastal Georgia, USA"' by P. C. Fuchsman, M. H. Henning and V. S. Magar, Environmental Science: Processes & Impacts, 2016, 18, DOI: 10.1039/C5EM00489F SO ENVIRONMENTAL SCIENCE-PROCESSES & IMPACTS LA English DT Editorial Material AB This article provides our response to the comment by Fuchsman et al. regarding the interpretation of results presented in our recent publication (Robinson et al., Environmental Science: Processes & Impacts, 2015, 17, 1424) reporting on concentrations of Aroclor 1268 congeners in least tern eggs in coastal Georgia, USA. C1 [Robinson, Gabrielle L.; Hernandez, Sonia] Univ Georgia, Warnell Sch Nat Resources, 180 E Green St, Athens, GA 30602 USA. [Robinson, Gabrielle L.] Cape Cod Natl Seashore, 99 Marconi Site Rd, Wellfeet, MA USA. [Mills, Gary L.] Univ Georgia, Savannah River Ecol Lab, PO Drawer E, Aiken, SC USA. [Schweitzer, Sara] North Carolina Wildlife Resources Commiss, 106 Ferret Run Ln, New Bern, NC USA. [Hernandez, Sonia] Univ Georgia, Southeastern Cooperat Wildlife Dis Study, Coll Vet Med, 589 W Brooks Dr, Athens, GA 30602 USA. RP Robinson, GL (reprint author), Univ Georgia, Warnell Sch Nat Resources, 180 E Green St, Athens, GA 30602 USA.; Robinson, GL (reprint author), Cape Cod Natl Seashore, 99 Marconi Site Rd, Wellfeet, MA USA.; Mills, GL (reprint author), Univ Georgia, Savannah River Ecol Lab, PO Drawer E, Aiken, SC USA. EM gabrielle_robinson@nps.gov; glmills@uga.edu; sara.schweitzer@ncwildlife.org; shernz@uga.edu NR 9 TC 0 Z9 0 U1 1 U2 2 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2050-7887 EI 2050-7895 J9 ENVIRON SCI-PROC IMP JI Environ. Sci.-Process Impacts PD FEB PY 2016 VL 18 IS 2 BP 292 EP 293 DI 10.1039/c5em00663e PG 2 WC Chemistry, Analytical; Environmental Sciences SC Chemistry; Environmental Sciences & Ecology GA DE5RX UT WOS:000370690900014 PM 26814679 ER PT J AU Mahadevapuram, N Mitra, I Sridhar, S Strzalka, J Stein, GE AF Mahadevapuram, Nikhila Mitra, Indranil Sridhar, Shyam Strzalka, Joseph Stein, Gila E. TI Ordering of lamellar block copolymers on oxidized silane coatings SO EUROPEAN POLYMER JOURNAL LA English DT Article DE Block copolymer; Thin film; Lithography; Patterning; Silane; GISAXS ID GLASS-TRANSITION TEMPERATURE; THIN POLYMER-FILMS; PERPENDICULAR ORIENTATION; INTERFACIAL INTERACTIONS; SURFACE; THICKNESS; DOMAINS; METHACRYLATE); LITHOGRAPHY; DEPENDENCE AB Thin films of lamellar poly(styrene-b-methyl methacrylate) (PS-PMMA) block copolymers are widely investigated for surface patterning. These materials can generate dense arrays of nanoscale lines when the lamellar domains are oriented perpendicular to the substrate. To stabilize this preferred domain orientation, we tuned the substrate surface energy using oxidation of hydrophobic silane coatings. This simple approach is effective for a broad range of PS-PMMA film thicknesses when the oxidation time is optimized, which demonstrates that the substrate coating is energetically neutral with respect to PS and PMMA segments. The lamellar films are characterized by high densities of defects that exhibit a strong dependence on film thickness: in-plane topological defects disrupt the lateral order in ultrathin films, while lamellar domains in thick films can bend and tilt to large misorientation angles. The types and densities of these defects are similar to those observed with other classes of neutral substrate coatings, such as random copolymer brushes, which demonstrates that oxidized silanes can be used to control PS-PMMA self assembly in thin films. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Mahadevapuram, Nikhila; Mitra, Indranil; Sridhar, Shyam; Stein, Gila E.] Univ Houston, Dept Chem & Biomol Engn, Houston, TX 77204 USA. [Strzalka, Joseph] Argonne Natl Lab, Xray Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Stein, GE (reprint author), Univ Houston, Dept Chem & Biomol Engn, Houston, TX 77204 USA. EM gestein@uh.edu RI Stein, Gila/P-1927-2016 OI Stein, Gila/0000-0002-3973-4496 FU National Science Foundation [DMR-1151468]; U.S. DOE [DE-AC02-06CH11357] FX The authors acknowledge financial support from the National Science Foundation under Grant No. DMR-1151468. Use of the Advanced Photon Source, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) by Argonne National Laboratory, was supported by the U.S. DOE under Contract No. DE-AC02-06CH11357. The authors thank Dr. Long Chang for assistance with SEM and Dr. Matt Hammond for sharing g((r) over right arrow) code. NR 44 TC 1 Z9 1 U1 4 U2 14 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0014-3057 EI 1873-1945 J9 EUR POLYM J JI Eur. Polym. J. PD FEB PY 2016 VL 75 BP 495 EP 503 DI 10.1016/j.eurpolymj.2016.01.010 PG 9 WC Polymer Science SC Polymer Science GA DE0IW UT WOS:000370309400041 ER PT J AU Torrealba, VA Karpyn, ZT Yoon, H Klise, KA Crandall, D AF Torrealba, V. A. Karpyn, Z. T. Yoon, H. Klise, K. A. Crandall, D. TI Pore-scale investigation on stress-dependent characteristics of granular packs and the impact of pore deformation on fluid distribution SO GEOFLUIDS LA English DT Article DE computed microtomography; experiment; pore structure; saturation; stress ID POROUS-MEDIA; COMPACTION; MODEL; FLOW AB Understanding the effect of changing stress conditions on multiphase flow in porous media is of fundamental importance for many subsurface activities including enhanced oil recovery, water drawdown from aquifers, soil confinement, and geologic carbon storage. Geomechanical properties of complex porous systems are dynamically linked to flow conditions, but their feedback relationship is often oversimplified due to the difficulty of representing pore-scale stress deformation and multiphase flow characteristics in high fidelity. In this work, we performed pore-scale experiments of single- and multiphase flow through bead packs at different confining pressure conditions to elucidate compaction-dependent characteristics of granular packs and their impact on fluid flow. A series of drainage and imbibition cycles were conducted on a water-wet, soda-lime glass bead pack under varying confining stress conditions. Simultaneously, X-ray micro-CT was used to visualize and quantify the degree of deformation and fluid distribution corresponding with each stress condition and injection cycle. Micro-CT images were segmented using a gradient-based method to identify fluids (e.g., oil and water), and solid phase redistribution throughout the different experimental stages. Changes in porosity, tortuosity, and specific surface area were quantified as a function of applied confining pressure. Results demonstrate varying degrees of sensitivity of these properties to confining pressure, which suggests that caution must be taken when considering scalability of these properties for practical modeling purposes. Changes in capillary number with confining pressure are attributed to the increase in pore velocity as a result of pore contraction. However, this increase in pore velocity was found to have a marginal impact on average phase trapping at different confining pressures. C1 [Torrealba, V. A.; Karpyn, Z. T.] Penn State Univ, John & Willie Leone Family Dept Energy & Mineral, 151 Hosler Bldg, University Pk, PA 16802 USA. [Torrealba, V. A.; Karpyn, Z. T.] Penn State Univ, EMS Energy Inst, 151 Hosler Bldg, University Pk, PA 16802 USA. [Yoon, H.; Klise, K. A.] Sandia Natl Labs, Geosci Res & Applicat, POB 5800, Albuquerque, NM 87185 USA. [Crandall, D.] Natl Energy Technol Lab, Predict Geosci Div, Morgantown, WV USA. RP Karpyn, ZT (reprint author), Penn State Univ, John & Willie Leone Family Dept Energy & Mineral, 151 Hosler Bldg, University Pk, PA 16802 USA.; Karpyn, ZT (reprint author), Penn State Univ, EMS Energy Inst, 151 Hosler Bldg, University Pk, PA 16802 USA. EM ZKarpyn@psu.edu FU Department of Energy DOE-BES [DE-SC0006883]; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The authors would like to acknowledge the financial support of the Department of Energy DOE-BES (DE-SC0006883). Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 24 TC 0 Z9 0 U1 5 U2 16 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1468-8115 EI 1468-8123 J9 GEOFLUIDS JI Geofluids PD FEB PY 2016 VL 16 IS 1 BP 198 EP 207 DI 10.1111/gfl.12143 PG 10 WC Geochemistry & Geophysics; Geology SC Geochemistry & Geophysics; Geology GA DD6ZG UT WOS:000370072700011 ER PT J AU Huang, LJ Vanstone, MR Hartley, T Osmond, M Barrowman, N Allanson, J Baker, L Dabir, TA Dipple, KM Dobyns, WB Estrella, J Faghfoury, H Favaro, FP Goel, H Gregersen, PA Gripp, KW Grix, A Guion-Almeida, ML Harr, MH Hudson, C Hunter, AGW Johnson, J Joss, SK Kimball, A Kini, U Kline, AD Lauzon, J Lildballe, DL Lopez-Gonzalez, V Martinezmoles, J Meldrum, C Mirzaa, GM Morel, CF Morton, JEV Pyle, LC Quintero-Rivera, F Richer, J Scheuerle, AE Schonewolf-Greulich, B Shears, DJ Silver, J Smith, AC Temple, IK van de Kamp, JM van Dijk, FS Vandersteen, AM White, SM Zackai, EH Zou, RB Bulman, DE Boycott, KM Lines, MA AF Huang, Lijia Vanstone, Megan R. Hartley, Taila Osmond, Matthew Barrowman, Nick Allanson, Judith Baker, Laura Dabir, Tabib A. Dipple, Katrina M. Dobyns, William B. Estrella, Jane Faghfoury, Hanna Favaro, Francine P. Goel, Himanshu Gregersen, Pernille A. Gripp, Karen W. Grix, Art Guion-Almeida, Maria-Leine Harr, Margaret H. Hudson, Cindy Hunter, Alasdair G. W. Johnson, John Joss, Shelagh K. Kimball, Amy Kini, Usha Kline, Antonie D. Lauzon, Julie Lildballe, Dorte L. Lopez-Gonzalez, Vanesa Martinezmoles, Johanna Meldrum, Cliff Mirzaa, Ghayda M. Morel, Chantal F. Morton, Jenny E. V. Pyle, Louise C. Quintero-Rivera, Fabiola Richer, Julie Scheuerle, Angela E. Schonewolf-Greulich, Bitten Shears, Deborah J. Silver, Josh Smith, Amanda C. Temple, I. Karen van de Kamp, Jiddeke M. van Dijk, Fleur S. Vandersteen, Anthony M. White, Sue M. Zackai, Elaine H. Zou, Ruobing Bulman, Dennis E. Boycott, Kym M. Lines, Matthew A. CA UCLA Clinical Genomics Ctr Care4Rare Canada Consortium TI Mandibulofacial Dysostosis with Microcephaly: Mutation and Database Update SO HUMAN MUTATION LA English DT Article DE EFTUD2; mandibulofacial dysostosis with microcephaly; MFDM; mandibulofacial dysostosis Guion-Almeida type; mandibulofacial dysostosis; microcephaly ID TREACHER-COLLINS-SYNDROME; ESOPHAGEAL ATRESIA; MENTAL-RETARDATION; EFTUD2 MUTATIONS; CHOANAL ATRESIA; HAPLOINSUFFICIENCY; PHENOTYPES; COMPLEX; PROTEIN; SNRNP AB Mandibulofacial dysostosis with microcephaly (MFDM) is a multiple malformation syndrome comprising microcephaly, craniofacial anomalies, hearing loss, dysmorphic features, and, in some cases, esophageal atresia. Haploinsufficiency of a spliceosomal GTPase, U5-116 kDa/EFTUD2, is responsible. Here, we review the molecular basis of MFDM in the 69 individuals described to date, and report mutations in 38 new individuals, bringing the total number of reported individuals to 107 individuals from 94 kindreds. Pathogenic EFTUD2 variants comprise 76 distinct mutations and seven microdeletions. Among point mutations, missense substitutions are infrequent (14 out of 76; 18%) relative to stop-gain (29 out of 76; 38%), and splicing (33 out of 76; 43%) mutations. Where known, mutation origin was de novo in 48 out of 64 individuals (75%), dominantly inherited in 12 out of 64 (19%), and due to proven germline mosaicism in four out of 64 (6%). Highly penetrant clinical features include, microcephaly, first and second arch craniofacial malformations, and hearing loss; esophageal atresia is present in an estimated similar to 27%. Microcephaly is virtually universal in childhood, with some adults exhibiting late "catch-up" growth and normocephaly at maturity. Occasionally reported anomalies, include vestibular and ossicular malformations, reduced mouth opening, atrophy of cerebral white matter, structural brain malformations, and epibulbar dermoid. All reported EFTUD2 mutations can be found in the EFTUD2 mutation database (http://databases.lovd.nl/shared/genes/EFTUD2). (C) 2015 Wiley Periodicals, Inc. C1 [Huang, Lijia; Vanstone, Megan R.; Hartley, Taila; Osmond, Matthew; Barrowman, Nick; Richer, Julie; Zou, Ruobing; Bulman, Dennis E.; Boycott, Kym M.; Lines, Matthew A.; Care4Rare Canada Consortium] Univ Ottawa, Childrens Hosp, Eastern Ontario Res Inst, Ottawa, ON, Canada. [Barrowman, Nick; Allanson, Judith; Lines, Matthew A.] Univ Ottawa, Dept Pediat, Ottawa, ON K1N 6N5, Canada. [Allanson, Judith; Richer, Julie; Smith, Amanda C.; Boycott, Kym M.] Childrens Hosp Eastern Ontario, Dept Genet, Ottawa, ON K1H 8L1, Canada. [Baker, Laura; Gripp, Karen W.] Alfred I DuPont Hosp Children, Div Med Genet, Wilmington, DE USA. [Dabir, Tabib A.] Belfast City Hosp, Dept Clin Genet, Belfast BT9 7AD, Antrim, North Ireland. [Dipple, Katrina M.] Univ Calif Los Angeles, David Geffen Sch Med, Dept Pediat & Human Genet, Los Angeles, CA 90095 USA. [Dobyns, William B.; Mirzaa, Ghayda M.] Univ Washington, Dept Pediat, Div Med Genet, Seattle, WA 98195 USA. [Dobyns, William B.; Mirzaa, Ghayda M.] Seattle Childrens Res Inst, Ctr Integrat Brain Res, Seattle, WA USA. [Estrella, Jane] Westmead Hosp, Dept Med Genet, Sydney, NSW, Australia. [Faghfoury, Hanna; Hunter, Alasdair G. W.; Morel, Chantal F.] Univ Toronto, Univ Hlth Network, Fred A Litwin Family Ctr Genet Med, Toronto, ON, Canada. [Faghfoury, Hanna; Morel, Chantal F.; Silver, Josh] Univ Toronto, Mt Sinai Hosp, Toronto, ON M5G 1X5, Canada. [Favaro, Francine P.; Guion-Almeida, Maria-Leine] Univ Sao Paulo, Dept Clin Genet, Hosp Rehabil Craniofacial Anomalies, Bauru, Brazil. [Goel, Himanshu] Univ Newcastle, Fac Hlth, Newcastle Sch Med & Publ Hlth, Callaghan, NSW 2308, Australia. [Gregersen, Pernille A.; Lildballe, Dorte L.] Aarhus Univ Hosp, Dept Clin Genet, DK-8000 Aarhus, Denmark. [Grix, Art] Permanente Med Grp Inc, Dept Genet, Roseville, CA USA. [Harr, Margaret H.; Zackai, Elaine H.] Childrens Hosp Philadelphia, Div Human Genet, Philadelphia, PA 19104 USA. [Harr, Margaret H.] Univ Penn, Perelman Sch Med, Philadelphia, PA 19104 USA. [Hudson, Cindy; Johnson, John] Shodair Childrens Hosp, Helena, MT USA. [Johnson, John] Floating Hosp Children, Tufts Med Ctr, Clin Genet & Metab, Boston, MA USA. [Joss, Shelagh K.] South Glasgow Univ Hosp, West Scotland Clin Genet Serv, Glasgow, Lanark, Scotland. [Kimball, Amy; Kline, Antonie D.] Greater Baltimore Med Ctr, Harvey Inst Human Genet, Baltimore, MD USA. [Kini, Usha] Oxford Univ Hosp NHS Trust, Dept Clin Genet, Oxford, England. [Lauzon, Julie] Univ Calgary, Alberta Childrens Hosp Res Inst, Dept Med Genet, Calgary, AB, Canada. [Lopez-Gonzalez, Vanesa] Hosp Clin Univ Virgen Arrixaca, IMIB Arrixaca, Serv Pediat, Secc Genet Med, Murcia, Spain. [Lopez-Gonzalez, Vanesa] Inst Salud Carlos III, CIBERER, Grp Clin Vinculado, Madrid, Spain. [Martinezmoles, Johanna] Lawrence Livermore Natl Lab, Sacramento Med Ctr, Dept Genet, Sacramento, CA 95817 USA. [Meldrum, Cliff] NSW Hlth Pathol, Newcastle, NSW, Australia. [Morton, Jenny E. V.] Birmingham Womens Hosp, West Midlands Reg Genet Serv, Birmingham, W Midlands, England. [Pyle, Louise C.; Zackai, Elaine H.] Univ Penn, Perelman Sch Med, Dept Pediat, Philadelphia, PA 19104 USA. [Quintero-Rivera, Fabiola; UCLA Clinical Genomics Ctr] Univ Calif Los Angeles, David Geffen Sch Med, Dept Pathol & Lab Med, UCLA Clin Genom Ctr, Los Angeles, CA 90095 USA. [Scheuerle, Angela E.] Univ Texas SW Med Ctr Dallas, Dept Pediat, Dallas, TX 75390 USA. [Schonewolf-Greulich, Bitten] Copenhagen Univ Hosp, Rigshosp, Genet Counselling Clin Kennedy Ctr, Glostrup, Denmark. [Shears, Deborah J.] Oxford Univ Hosp NHS Trust, Churchill Hosp, Oxford Reg Genet Serv, Oxford, England. [Temple, I. Karen] Univ Southampton, Fac Med, Human Dev & Hlth, Southampton SO9 5NH, Hants, England. [Temple, I. Karen] Univ Hosp Southampton NHS Fdn Trust, Princess Anne Hosp, Wessex Clin Genet Serv, Southampton, Hants, England. [van de Kamp, Jiddeke M.; van Dijk, Fleur S.] Vrije Univ Amsterdam Med Ctr, Dept Clin Genet, Amsterdam, Netherlands. [Vandersteen, Anthony M.] IWKHlth Ctr, Maritime Med Genet Serv, Halifax, NS, Canada. [White, Sue M.] Murdoch Childrens Res Inst, Victoria Clin Genet Serv, Melbourne, Vic, Australia. [White, Sue M.] Univ Melbourne, Dept Pediat, Melbourne, Vic, Australia. [Bulman, Dennis E.] Childrens Hosp Eastern Ontario, Newborn Screening Ontario, Ottawa, ON K1H 8L1, Canada. [Lines, Matthew A.] Childrens Hosp Eastern Ontario, Dept Pediat, Metab & Newborn Screening, Ottawa, ON K1H 8L1, Canada. RP Lines, MA (reprint author), Childrens Hosp Eastern Ontario, Metab, 3rd Floor Max Keeping Wing,401 Smyth Rd, Ottawa, ON K1H 8L1, Canada. EM mlines@cheo.on.ca OI Schonewolf-Greulich, Bitten/0000-0003-0088-0792; Dobyns, William/0000-0002-7681-2844 FU Genome Canada; Canadian Institutes of Health Research; Ontario Genomics Institute; Ontario Research Fund; Genome Quebec; Children's Hospital of Eastern Ontario Foundation; Resident Research Award from Physician's Services Incorporated (PSI) Foundation FX Contract grant sponsors: Genome Canada; the Canadian Institutes of Health Research; the Ontario Genomics Institute; Ontario Research Fund; Genome Quebec; Children's Hospital of Eastern Ontario Foundation; Resident Research Award from Physician's Services Incorporated (PSI) Foundation. NR 30 TC 1 Z9 1 U1 1 U2 3 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1059-7794 EI 1098-1004 J9 HUM MUTAT JI Hum. Mutat. PD FEB PY 2016 VL 37 IS 2 BP 148 EP 154 DI 10.1002/humu.22924 PG 7 WC Genetics & Heredity SC Genetics & Heredity GA DD8PZ UT WOS:000370190500002 PM 26507355 ER PT J AU Lyons, JL Krishnaswamy, K Gordon, L Janotti, A van de Walle, CG AF Lyons, John L. Krishnaswamy, Karthik Gordon, Luke Janotti, Anderson van de Walle, Chris G. TI Identification of Microscopic Hole-Trapping Mechanisms in Nitride Semiconductors SO IEEE ELECTRON DEVICE LETTERS LA English DT Article DE Hole traps; nitride semiconductors; first-principles calculations; impurities AB Hole trapping has been observed in nitride heterostructure devices, where the Fermi level is in the vicinity of the valence-band maximum. Using hybrid density functional calculations, we examine microscopic mechanisms for hole trapping in GaN and AlN. In a defect-free material, hole trapping does not spontaneously occur, but trapping can occur in the vicinity of impurities, such as C-a common unintentional impurity in nitrides. Using Schrodinger-Poisson simulations, we assess the effects of C-derived hole traps on N-face high-electron mobility transistors, which we find to be more detrimental than the previously proposed interface traps. C1 [Lyons, John L.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Krishnaswamy, Karthik; Gordon, Luke; Janotti, Anderson; van de Walle, Chris G.] Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA. RP Lyons, JL (reprint author), Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. EM jlyons@bnl.gov OI Lyons, John L./0000-0001-8023-3055 FU Center for Low Energy Systems Technology, one of the six SRC STARnet Centers, through the Microelectronics Advanced Research Corporation (MARCO); Defense Advanced Research Projects Agency (DARPA); National Science Foundation (NSF) [DMR-1434854]; Materials Research Laboratory (an NSF Materials Research Science and Engineering Center) [DMR-1121053, NSF CNS-0960316]; Extreme Science and Engineering Discovery Environment through NSF [ACI-1053575] FX This work was supported in part by the Center for Low Energy Systems Technology, one of the six SRC STARnet Centers, through the Microelectronics Advanced Research Corporation (MARCO) and the Defense Advanced Research Projects Agency (DARPA), and in part by the National Science Foundation (NSF) under Grant DMR-1434854. Computational resources for the work were provided in part by the Center for Scientific Computing at the California Nanosystems Institute and the Materials Research Laboratory (an NSF Materials Research Science and Engineering Center under Grant DMR-1121053) under Grant NSF CNS-0960316, and in part by the Extreme Science and Engineering Discovery Environment, through NSF under Grant ACI-1053575. The review of this letter was arranged by Editor Takashi Egawa. NR 14 TC 0 Z9 0 U1 3 U2 17 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0741-3106 EI 1558-0563 J9 IEEE ELECTR DEVICE L JI IEEE Electron Device Lett. PD FEB PY 2016 VL 37 IS 2 BP 154 EP 156 DI 10.1109/LED.2015.2509068 PG 3 WC Engineering, Electrical & Electronic SC Engineering GA DE2BU UT WOS:000370432000007 ER PT J AU Liu, ZW Kind, J AF Liu, Ziwei Kind, Joanna TI Pressure Points: Why It Makes Sense to Label Sprinklers With Pressure Regulation SO JOURNAL AMERICAN WATER WORKS ASSOCIATION LA English DT Article C1 [Liu, Ziwei] US EPA, WaterSense Program, ORISE, 1200 Penn Ave NW,7324U, Washington, DC 20460 USA. [Kind, Joanna] Eastern Res Grp Inc, Lexington, MA USA. RP Liu, ZW (reprint author), US EPA, WaterSense Program, ORISE, 1200 Penn Ave NW,7324U, Washington, DC 20460 USA. EM liu.ziwei@epa.gov NR 5 TC 0 Z9 0 U1 0 U2 0 PU AMER WATER WORKS ASSOC PI DENVER PA 6666 W QUINCY AVE, DENVER, CO 80235 USA SN 2164-4535 J9 J AM WATER WORKS ASS JI J. Am. Water Work Assoc. PD FEB PY 2016 VL 108 IS 2 BP 36 EP 39 DI 10.5942/jawwa.2016.108.0036 PG 4 WC Engineering, Civil; Water Resources SC Engineering; Water Resources GA DD8VQ UT WOS:000370205400008 ER PT J AU Haupt, SE Copeland, J Cheng, WYY Zhang, YX Ammann, C Sullivan, P AF Haupt, Sue Ellen Copeland, Jeffrey Cheng, William Y. Y. Zhang, Yongxin Ammann, Caspar Sullivan, Patrick TI A Method to Assess the Wind and Solar Resource and to Quantify Interannual Variability over the United States under Current and Projected Future Climate SO JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY LA English DT Article DE Climate variability; Statistical techniques; Interannual variability; Renewable energy; Climate models ID LOW-LEVEL JETS; ENERGY RESOURCE; MODEL; GENERATION; MITIGATION; SCENARIOS; IMPACTS; REGIMES; NARCCAP; EUROPE AB The National Center for Atmospheric Research and the National Renewable Energy Laboratory (NREL) collaborated to develop a method to assess the interannual variability of wind and solar power over the contiguous United States under current and projected future climate conditions, for use with NREL's Regional Energy Deployment System (ReEDS) model. The team leveraged a reanalysis-derived database to estimate the wind and solar power resources and their interannual variability under current climate conditions (1985-2005). Then, a projected future climate database for the time range of 2040-69 was derived on the basis of the North American Regional Climate Change Assessment Program (NARCCAP) regional climate model (RCM) simulations driven by free-running atmosphere-ocean general circulation models. To compare current and future climate variability, the team developed a baseline by decomposing the current climate reanalysis database into self-organizing maps (SOMs) to determine the predominant modes of variability. The current climate patterns found were compared with those of an NARCCAP-based future climate scenario, and the CRCM-CCSM combination was chosen to describe the future climate scenario. The future climate scenarios' data were projected onto the Climate Four Dimensional Data Assimilation reanalysis SOMs. The projected future climate database was then created by resampling the reanalysis on the basis of the frequency of occurrence of the future SOM patterns, adjusting for the differences in magnitude of the wind speed or solar irradiance between the current and future climate conditions. Comparison of the changes in the frequency of occurrence of the SOM modes between current and future climate conditions indicates that the annual mean wind speed and solar irradiance could be expected to change by up to 10% (increasing or decreasing regionally). C1 [Haupt, Sue Ellen; Cheng, William Y. Y.; Zhang, Yongxin; Ammann, Caspar] Natl Ctr Atmospher Res, 3450 Mitchell Lane, Boulder, CO 80303 USA. [Copeland, Jeffrey] Weatherflow Inc, Ft Collins, CO USA. [Sullivan, Patrick] Natl Renewable Energy Lab, Golden, CO USA. RP Haupt, SE (reprint author), Natl Ctr Atmospher Res, 3450 Mitchell Lane, Boulder, CO 80303 USA. EM haupt@ucar.edu FU NREL [XGG-1-11953-01] FX This study was funded by NREL Subcontract XGG-1-11953-01. The authors thank Daran Rife for helpful discussions, Yan Chen for assisting with the data processing, and Branko Kosovic and James Pinto for commenting on an early version of the manuscript. The authors also thank three anonymous reviewers who made suggestions that have improved the paper. NR 53 TC 0 Z9 0 U1 5 U2 14 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 1558-8424 EI 1558-8432 J9 J APPL METEOROL CLIM JI J. Appl. Meteorol. Climatol. PD FEB PY 2016 VL 55 IS 2 BP 345 EP 363 DI 10.1175/JAMC-D-15-0011.1 PG 19 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DE1WY UT WOS:000370418400002 ER PT J AU Oue, M Galletti, M Verlinde, J Ryzhkov, A Lu, YH AF Oue, Mariko Galletti, Michele Verlinde, Johannes Ryzhkov, Alexander Lu, Yinghui TI Use of X-Band Differential Reflectivity Measurements to Study Shallow Arctic Mixed-Phase Clouds SO JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY LA English DT Article DE Radars/Radar observations; Ice crystals; Cloud microphysics ID DUAL-POLARIZATION RADAR; HYDROMETEOR CLASSIFICATION ALGORITHM; POLARIMETRIC RADAR; ICE NUCLEI; VERTICAL MOTIONS; DOPPLER RADAR; WINTER CLOUDS; BEAUFORT SEA; LIDAR; SCATTERING AB Microphysical processes in shallow Arctic precipitation clouds are illustrated using measurements of differential reflectivity Z(DR) from the U.S. Department of Energy Atmospheric Radiation Measurement Program polarimetric X-band radar deployed in Barrow, Alaska. X-band hemispheric range height indicator scans used in conjunction with Ka-band radar and lidar measurements revealed prolonged periods dominated by vapor depositional, riming, and/or aggregation growth. In each case, ice precipitation fell through at least one liquid-cloud layer in a seeder-feeder situation before reaching the surface. A long period of sustained low radar reflectivity Z(H) (Z) and high Z(DR) (6-7.5 dB) throughout the depth of the cloud and subcloud layer, coinciding with observations of large pristine dendrites at the surface, suggests vapor depositional growth of large dendrites at low number concentrations. In contrast, Z(DR) values decreased to 2-3 dB in the mean profile when surface precipitation was dominated by aggregates or rimed dendrites. Small but consistent differences in zenith Ka-band radar Doppler velocity and lidar depolarization measurements were found between aggregation- and riming-dominated periods. The clean Arctic environment can enhance Z(DR) signals relative to more complex midlatitude cases, producing higher values. C1 [Oue, Mariko; Verlinde, Johannes; Lu, Yinghui] Penn State Univ, Dept Meteorol, 503 Walker Bldg, University Pk, PA 16802 USA. [Galletti, Michele] Brookhaven Natl Lab, Biol Environm & Climate Sci Dept, Upton, NY 11973 USA. [Ryzhkov, Alexander] Univ Oklahoma, Cooperat Inst Mesoscale Meteorol Studies, Norman, OK 73019 USA. [Ryzhkov, Alexander] Natl Severe Storms Lab, Norman, OK 73069 USA. RP Oue, M (reprint author), Penn State Univ, Dept Meteorol, 503 Walker Bldg, University Pk, PA 16802 USA. EM muo15@psu.edu RI Lu, Yinghui/J-1151-2016 OI Lu, Yinghui/0000-0001-7027-2210 FU U.S. Department of Energy's Atmospheric Science Program Atmospheric System Research, an Office of Science, Office of Biological and Environmental Research program [DE-FG02-05ER64058, DE-SC0008811, ER65459] FX This research was supported by the U.S. Department of Energy's Atmospheric Science Program Atmospheric System Research, an Office of Science, Office of Biological and Environmental Research program, under Grants DE-FG02-05ER64058, DE-SC0008811, and ER65459. The authors thank Scott Giangrande, Edwin Eloranta, Eugene Clothiaux, and Kultegin Aydin for fruitful suggestions and comments. The authors also thank Mark Ivey and Nitin Bharadwaj for collecting radar data during the IOP and Maria Cadeddu for input on the LWP retrievals. Thanks are extended to the reviewers of this paper, whose comments helped to improve the manuscript. The High Spectral Resolution Lidar data were obtained from the University of Wisconsin Lidar Group (http://lidar.ssec.wisc.edu/index.htm). NR 78 TC 3 Z9 3 U1 6 U2 9 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 1558-8424 EI 1558-8432 J9 J APPL METEOROL CLIM JI J. Appl. Meteorol. Climatol. PD FEB PY 2016 VL 55 IS 2 BP 403 EP 424 DI 10.1175/JAMC-D-15-0168.1 PG 22 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DE1WZ UT WOS:000370418500003 ER PT J AU Shaughnessy, MC Jones, RE AF Shaughnessy, M. C. Jones, R. E. TI Efficient Use of an Adapting Database of Ab Initio Calculations To Generate Accurate Newtonian Dynamics SO JOURNAL OF CHEMICAL THEORY AND COMPUTATION LA English DT Article ID EFFECTIVE CLUSTER INTERACTIONS; BOND-ORDER POTENTIALS; MULTICOMPONENT SYSTEMS; INTERATOMIC POTENTIALS; VARIATION FORMALISM; ENERGY; PLASTICITY; SURFACES; DISTANCE; SETS AB We develop and demonstrate a method to efficiently use density functional calculations to drive classical dynamics of complex atomic and molecular systems. The method has the potential to scale to systems and time scales unreachable with current ab initio molecular dynamics schemes. It relies on an adapting dataset of independently computed Hellmann-Feynman forces for atomic configurations endowed with a distance metric. The metric on configurations enables fast database lookup and robust interpolation of the stored forces. We discuss mechanisms for the database to adapt to the needs of the evolving dynamics, while maintaining accuracy, and other extensions of the basic algorithm. C1 [Shaughnessy, M. C.] Sandia Natl Labs, Dept Mat Phys, Livermore, CA 94550 USA. [Jones, R. E.] Sandia Natl Labs, Mech Mat Dept, Livermore, CA 94550 USA. [Shaughnessy, M. C.] Flourish Data, Napa, CA 94558 USA. RP Jones, RE (reprint author), Sandia Natl Labs, Mech Mat Dept, Livermore, CA 94550 USA. EM rjones@sandia.gov FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX We appreciate helpful discussions with Aidan Thompson, Kevin Young, Ali Pinar, Catalin Spataru, Norm Bartelt, Josh Sugar, Jeremy Templeton, and Peter Schultz (Sandia), as well as funding from Sandia Laboratories. We are indebted to an anonymous reviewer for helping us focus and improve this work. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration (under Contract No. DE-AC04-94AL85000). NR 47 TC 1 Z9 1 U1 3 U2 7 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1549-9618 EI 1549-9626 J9 J CHEM THEORY COMPUT JI J. Chem. Theory Comput. PD FEB PY 2016 VL 12 IS 2 BP 664 EP 675 DI 10.1021/acs.jctc.5b00474 PG 12 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA DD7OB UT WOS:000370112900020 PM 26669825 ER PT J AU Cuny, J Xie, Y Pickard, CJ Hassanali, AA AF Cuny, Jerome Xie, Yu Pickard, Chris J. Hassanali, Ali A. TI Ab Initio Quality NMR Parameters in Solid-State Materials Using a High-Dimensional Neural-Network Representation SO JOURNAL OF CHEMICAL THEORY AND COMPUTATION LA English DT Article ID MESOPOROUS SILICA NANOPARTICLES; MULTILAYER FEEDFORWARD NETWORKS; SUPERCOOLED LIQUID-STATE; AUGMENTED-WAVE METHOD; ANGLE-SPINNING NMR; SI-29 MAS-NMR; CHEMICAL-SHIFTS; 1ST-PRINCIPLES CALCULATION; ALUMINOSILICATE GLASSES; MQMAS NMR AB Nuclear magnetic resonance (NMR) spectroscopy is one of the most powerful experimental tools to probe the local atomic order Of a wide range of solid-state compounds. However,: due to the complexity of the related spectra, in particular for amorphous materials, their interpretation in terms of structural information is often challenging. These difficulties can be overcome by combining molecular dynamics simulations to generate realistic structural models with an ab initio evaluation of the corresponding chemical shift and quadrupolar coupling tensors. However, due to computational constraints, this approach is limited to relatively small system sizes which, for amorphous materials, prevents an adequate statistical sampling of the distribution of the local environments that is required to quantitatively describe the system. In this work, we present an approach to efficiently and accurately predict the NMR parameters of very large systems. This is achieved by using a high-dimensional neural-network representation of NMR parameters that are calculated:using an ab initio formalism. To illustrate the potential of-this approach, we applied this neural-network NMR (NN-NMR) method on the O-17 and Si-29 quadrupolar coupling and chemical shift parameters of various crystalline silica polymoiphs and silica glasses. This approach is, in principal, general and has the potential to be applied to predict the NMR properties of various materials. C1 [Cuny, Jerome] Univ Toulouse UPS, Lab Chim & Phys Quant, 118 Route Narbonne, F-31062 Toulouse, France. [Cuny, Jerome] CNRS, 118 Route Narbonne, F-31062 Toulouse, France. [Xie, Yu] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Pickard, Chris J.] Univ Cambridge, Dept Mat Sci & Met, 27 Charles Babbage Rd, Cambridge CB3 0FS, England. [Hassanali, Ali A.] Abdus Salaam Int Ctr Theoret Phys, Condensed Matter Phys Sect, Str Costiera 11, I-34151 Trieste, Italy. RP Cuny, J (reprint author), Univ Toulouse UPS, Lab Chim & Phys Quant, 118 Route Narbonne, F-31062 Toulouse, France.; Cuny, J (reprint author), CNRS, 118 Route Narbonne, F-31062 Toulouse, France.; Xie, Y (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA.; Hassanali, AA (reprint author), Abdus Salaam Int Ctr Theoret Phys, Condensed Matter Phys Sect, Str Costiera 11, I-34151 Trieste, Italy. EM jerome.cuny@irsamc.ups-tlse.fr; xiey@ornl.gov; ahassana@ictp.it RI Pickard, Chris/D-4704-2016; Xie, Yu/E-5875-2011 OI Pickard, Chris/0000-0002-9684-5432; Xie, Yu/0000-0002-7782-5428 NR 99 TC 2 Z9 2 U1 3 U2 20 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1549-9618 EI 1549-9626 J9 J CHEM THEORY COMPUT JI J. Chem. Theory Comput. PD FEB PY 2016 VL 12 IS 2 BP 765 EP 773 DI 10.1021/acs.jctc.5b01006 PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA DD7OB UT WOS:000370112900028 PM 26730889 ER PT J AU Chylek, P Vogelsang, TJ Klett, JD Hengartner, N Higdon, D Lesins, G Dubey, MK AF Chylek, Petr Vogelsang, Timothy J. Klett, James D. Hengartner, Nicholas Higdon, Dave Lesins, Glen Dubey, Manvendra K. TI Indirect Aerosol Effect Increases CMIP5 Models' Projected Arctic Warming SO JOURNAL OF CLIMATE LA English DT Article DE Arctic; Variability; Models and modeling; Geographic location/entity; Temperature; Physical Meteorology and Climatology; Time series; Climate variability; Model comparison; Mathematical and statistical techniques; Climate models ID ATLANTIC MULTIDECADAL OSCILLATION; SEA-ICE; POLAR AMPLIFICATION; CLIMATE MODELS; 20TH-CENTURY; VARIABILITY; SIMULATIONS; FEEDBACKS; SERIES AB Phase 5 of the Coupled Model Intercomparison Project (CMIP5) climate models' projections of the 2014-2100 Arctic warming under radiative forcing from representative concentration pathway 4.5 (RCP4.5) vary from 0.9 degrees to 6.7 degrees C. Climate models with or without a full indirect aerosol effect are both equally successful in reproducing the observed (1900-2014) Arctic warming and its trends. However, the 2014-2100 Arctic warming and the warming trends projected by models that include a full indirect aerosol effect (denoted here as AA models) are significantly higher (mean projected Arctic warming is about 1.5 degrees C higher) than those projected by models without a full indirect aerosol effect (denoted here as NAA models). The suggestion is that, within models including full indirect aerosol effects, those projecting stronger future changes are not necessarily distinguishable historically because any stronger past warming may have been partially offset by stronger historical aerosol cooling. The CMIP5 models that include a full indirect aerosol effect follow an inverse radiative forcing to equilibrium climate sensitivity relationship, while models without it do not. C1 [Chylek, Petr; Dubey, Manvendra K.] Los Alamos Natl Lab, Earth & Environm Sci, Bikini Rd, Los Alamos, NM 87545 USA. [Vogelsang, Timothy J.] Michigan State Univ, Dept Econ, E Lansing, MI 48824 USA. [Klett, James D.] Par Associates, Las Cruces, NM USA. [Klett, James D.] New Mexico State Univ, Dept Phys, Las Cruces, NM 88003 USA. [Hengartner, Nicholas] Los Alamos Natl Lab, Theoret Biol & Biophys, Los Alamos, NM 87545 USA. [Higdon, Dave] Virginia Polytech Inst & State Univ, Virginia Bioinformat Inst, Blacksburg, VA USA. [Lesins, Glen] Dalhousie Univ, Dept Phys & Atmospher Sci, Halifax, NS, Canada. RP Chylek, P (reprint author), Los Alamos Natl Lab, Earth & Environm Sci, Bikini Rd, Los Alamos, NM 87545 USA. EM chylek@lanl.gov RI Dubey, Manvendra/E-3949-2010 OI Dubey, Manvendra/0000-0002-3492-790X FU Los Alamos National Laboratory Institute of Geophysics, Planetary Physics and Signatures [LA-UR-15-27649]; DOE Office of Science's Atmospheric System Research program [F265] FX Reported research (LA-UR-15-27649) was supported in part by the Los Alamos National Laboratory Institute of Geophysics, Planetary Physics and Signatures. All data used are freely available from sources identified in the text. The authors thank the editor and three reviewers for their comments and suggestions, which lead to a significant improvement of the manuscript. MKD thanks the DOE Office of Science's Atmospheric System Research program (F265) for support. NR 41 TC 1 Z9 1 U1 6 U2 16 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 EI 1520-0442 J9 J CLIMATE JI J. Clim. PD FEB PY 2016 VL 29 IS 4 BP 1417 EP 1428 DI 10.1175/JCLI-D-15-0362.1 PG 12 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DE2IS UT WOS:000370451600001 ER PT J AU Overman, NR Mathaudhu, SN Choi, JP Roosendaal, TJ Pitman, S AF Overman, N. R. Mathaudhu, S. N. Choi, J. P. Roosendaal, T. J. Pitman, S. TI Microstructure and mechanical properties of a novel rapidly solidified, high-temperature Al-alloy SO MATERIALS CHARACTERIZATION LA English DT Article DE Rapid solidification; Aluminum alloy; Microstructure; Cooling rate; Flake ID ALUMINUM-ALLOYS; STABILITY; EVOLUTION AB Rapid solidification (RS) processing, as a production method, offers a variety of unique properties based on far from-equilibrium microstructures obtained through rapid cooling rates. In this study, we seek to investigate the microstructures and properties of a novel Al-alloy specifically designed for high temperature mechanical stability. Synthesis of, AlFe11.4Si1.8V1.6Mn0.9 (wt.%), was performed by two approaches: rotating cup atomization ("shot") and melt spinning ("flake"). These methods were chosen because of their ability to produce alloys with tailored microstructures due to their inherent differences in cooling rate. The as-solidified precursor materials were microstructurally characterized with electron microscopy. The results show that the higher cooling rate flake material exhibited the formation of nanocrystalline regions as well additional phase morphologies not seen in the shot material. Secondary dendritic branching in the flake material was on the order of 0.1-0.25 mu m whereas branching in the shot material was 0.5-1.0 mu m. Consolidated and extruded material from both precursor materials was mechanically evaluated at both ambient and high (300 degrees C) temperature. The consolidated RS flake material is shown to exhibit higher strengths than the shot material. The ultimate tensile strength of the melt spun flake was reported as 544.2 MPa at room temperature and 298.0 MPa at 300 degrees C. These results forecast the ability to design alloys and processing approaches with unique non-equilibrium microstructures with robust mechanical properties at elevated temperatures. (C) 2015 Elsevier Inc. All rights reserved. C1 [Overman, N. R.; Mathaudhu, S. N.; Choi, J. P.; Roosendaal, T. J.; Pitman, S.] Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. [Mathaudhu, S. N.] Univ Calif Riverside, 3401 Watkins Dr, Riverside, CA 92521 USA. RP Overman, NR (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM Nicole.Overman@pnnl.gov FU Department of Energy, Vehicle Technologies Office [VTO504000] FX Financial support for this work was awarded by the Department of Energy, Vehicle Technologies Office under Project VTO504000. The authors would also like to thank CRADA partner Cummins in addition to testing expertise provided by Tyler Kafentzis, Mike Dahl and Karl Mattlin. NR 23 TC 0 Z9 0 U1 5 U2 13 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1044-5803 EI 1873-4189 J9 MATER CHARACT JI Mater. Charact. PD FEB PY 2016 VL 112 BP 142 EP 148 DI 10.1016/j.matchar.2015.12.015 PG 7 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Materials Science, Characterization & Testing SC Materials Science; Metallurgy & Metallurgical Engineering GA DD7MR UT WOS:000370109200017 ER PT J AU Chaudhury, P Neiner, T D'Imprima, E Banerjee, A Reindl, S Ghosh, A Arvai, AS Mills, DJ van der Does, C Tainer, JA Vonck, J Albers, SV AF Chaudhury, Paushali Neiner, Tomasz D'Imprima, Edoardo Banerjee, Ankan Reindl, Sophia Ghosh, Abhrajyoti Arvai, Andrew S. Mills, Deryck J. van der Does, Chris Tainer, John A. Vonck, Janet Albers, Sonja-Verena TI The nucleotide-dependent interaction of FlaH and FlaI is essential for assembly and function of the archaellum motor SO MOLECULAR MICROBIOLOGY LA English DT Article ID SULFOLOBUS-ACIDOCALDARIUS; CRYSTAL-STRUCTURE; IV PILUS; PROTEIN; FLAGELLA; SOFTWARE; MOTILITY; INSIGHTS; BINDING; SYSTEM AB The motor of the membrane-anchored archaeal motility structure, the archaellum, contains FlaX, FlaI and FlaH. FlaX forms a 30nm ring structure that acts as a scaffold protein and was shown to interact with the bifunctional ATPase FlaI and FlaH. However, the structure and function of FlaH has been enigmatic. Here we present structural and functional analyses of isolated FlaH and archaellum motor subcomplexes. The FlaH crystal structure reveals a RecA/Rad51 family fold with an ATP bound on a conserved and exposed surface, which presumably forms an oligomerization interface. FlaH does not hydrolyze ATPin vitro, but ATP binding to FlaH is essential for its interaction with FlaI and for archaellum assembly. FlaH interacts with the C-terminus of FlaX, which was earlier shown to be essential for FlaX ring formation and to mediate interaction with FlaI. Electron microscopy reveals that FlaH assembles as a second ring inside the FlaX ring in vitro. Collectively these data reveal central structural mechanisms for FlaH interactions in mediating archaellar assembly: FlaH binding within the FlaX ring and nucleotide-regulated FlaH binding to FlaI form the archaellar basal body core. C1 [Chaudhury, Paushali; Neiner, Tomasz; Ghosh, Abhrajyoti; van der Does, Chris; Albers, Sonja-Verena] Univ Freiburg, Inst Biol 2, Mol Biol Archaea, Schaenzlestr 1, D-79104 Freiburg, Germany. [D'Imprima, Edoardo; Mills, Deryck J.; Vonck, Janet] Max Planck Inst Biophys, Dept Biol Struct, Max von Laue Str 3, D-60438 Frankfurt, Germany. [Banerjee, Ankan] Univ Marburg, AG Essen, FB Chem Biochem, Hans Meerwein Str 4, D-35039 Marburg, Germany. [Reindl, Sophia; Arvai, Andrew S.; Tainer, John A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. [Tainer, John A.] Univ Texas MD Anderson Canc Ctr, Dept Mol & Cellular Oncol, 1515 Holcombe Blvd, Houston, TX 77030 USA. RP Albers, SV (reprint author), Univ Freiburg, Inst Biol 2, Mol Biol Archaea, Schaenzlestr 1, D-79104 Freiburg, Germany. EM sonja.albers@biologie.uni-freiburg.de RI Ghosh, Abhrajyoti/H-8550-2012; Banerjee, Ankan/A-5520-2016; OI Ghosh, Abhrajyoti/0000-0002-2469-3740; Banerjee, Ankan/0000-0002-1791-252X; Albers, Sonja-Verena/0000-0003-2459-2226 FU ERC [311523]; Max Planck Society; National Institutes of Health [GM105404]; United States Department of Energy program Integrated Diffraction Analysis Technologies (IDAT) FX TN and PC were supported by an ERC starting grant (Nr. 311523, Archaellum). AG, AB und SVA were supported by intramural funds of the Max Planck Society. We are grateful to Werner Kuhlbrandt for his support. We thank Juan Castillo-Hernandez for computer support. This work was supported by the National Institutes of Health grant MINOS (Macromolecular Insights on Nucleic Acids Optimized by Scattering) GM105404 (MH/JAT). SIBYLS beamline efforts to combine structural methods at the Advanced Light Source of Lawrence Berkeley National Laboratory are supported in part by United States Department of Energy program Integrated Diffraction Analysis Technologies (IDAT). The authors declare no conflict of interests. NR 36 TC 6 Z9 6 U1 0 U2 1 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0950-382X EI 1365-2958 J9 MOL MICROBIOL JI Mol. Microbiol. PD FEB PY 2016 VL 99 IS 4 BP 674 EP 685 DI 10.1111/mmi.13260 PG 12 WC Biochemistry & Molecular Biology; Microbiology SC Biochemistry & Molecular Biology; Microbiology GA DE0TX UT WOS:000370338900005 PM 26508112 ER PT J AU Li, XL Yan, PF Arey, BW Luo, W Ji, XL Wang, CM Liu, J Zhang, JG AF Li, Xiaolin Yan, Pengfei Arey, Bruce W. Luo, Wei Ji, Xiulei Wang, Chongmin Liu, Jun Zhang, Ji-Guang TI A stable nanoporous silicon anode prepared by modified magnesiothermic reactions SO NANO ENERGY LA English DT Article DE Silicon anode; Lithium ion batteries; Magnesiothermic reaction; Porous silicon ID LITHIUM-ION BATTERIES; LONG CYCLE LIFE; NANOCOMPOSITE ANODES; MACROPOROUS SILICON; MESOPOROUS SILICON; C COMPOSITE; PERFORMANCE; SI; NANOPARTICLES; STORAGE AB Porous silicon prepared by low-cost and scalable magnesiothermic reactions is a promising anode material for Li-ion batteries; yet, retaining good cycling stability for such materials in electrodes of practical loading remains a challenge. Here, we engineered the nanoporous silicon from a modified magnesiothermic reaction by controlled surface oxidization forming a <5 nm oxide layer on the 10-20 nm Si nanocrystallites. High loading electrodes of similar to 3 mAh/cm(2) demonstrates stable cycling with similar to 80% capacity retention over 150 cycles. The specific discharge capacity based on the total electrode weight is similar to 1000 mAh/g at the lithiation/delithiation current density of 0.5/0.75 nnA/cm(2). This work reveals the importance of the surface treatment on nanostructured Si, which will lead to a well-controlled ratio of silicon and surface oxide layer and provide guidance on further improvement on silicon-based anode materials. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Li, Xiaolin; Yan, Pengfei; Arey, Bruce W.; Wang, Chongmin; Liu, Jun; Zhang, Ji-Guang] Pacific NW Natl Lab, Richland, WA 99352 USA. [Luo, Wei; Ji, Xiulei] Oregon State Univ, Dept Chem, Gilbert Hall 153, Corvallis, OR 97331 USA. RP Liu, J; Zhang, JG (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM jun.liu@pnnl.gov; jiguang.zhang@pnnl.gov RI yan, pengfei/E-4784-2016; Luo, Wei/E-1582-2011 OI yan, pengfei/0000-0001-6387-7502; Luo, Wei/0000-0002-4019-4634 FU Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the U.S. Department of Energy under the Advanced Battery Materials Research (BMR) program [DE-AC02-05CH11231, 18769]; Department of Energy's Office of Biological and Environmental Research FX This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the U.S. Department of Energy under Contract no. DE-AC02-05CH11231, Subcontract no. 18769 under the under the Advanced Battery Materials Research (BMR) program. A portion of the research was performed in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. NR 49 TC 5 Z9 5 U1 27 U2 118 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2211-2855 EI 2211-3282 J9 NANO ENERGY JI Nano Energy PD FEB PY 2016 VL 20 BP 68 EP 75 DI 10.1016/j.nanoen.2015.12.011 PG 8 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA DE2PD UT WOS:000370468300008 ER PT J AU Raciti, D Kubal, J Ma, C Barclay, M Gonzalez, M Chi, MF Greeley, J More, KL Wang, C AF Raciti, David Kubal, Joseph Ma, Cheng Barclay, Michael Gonzalez, Matthew Chi, Miaofang Greeley, Jeffrey More, Karren L. Wang, Chao TI Pt3Re alloy nanoparticles as electrocatalysts for the oxygen reduction reaction SO NANO ENERGY LA English DT Article DE Platinum rhenium alloy nanoparticles; Organic solution synthesis; Electrocatalysts; Ligand effect; Oxygen reduction reaction ID DENSITY-FUNCTIONAL THEORY; SHAPE-CONTROLLED SYNTHESIS; AUGMENTED-WAVE METHOD; PT-SKIN SURFACES; PLATINUM NANOPARTICLES; FEPT NANOPARTICLES; PARTICLE-SIZE; ELECTRONIC-STRUCTURE; METAL; CATALYSIS AB Development of renewable energy technologies requires advanced catalysts for efficient electrical-chemical energy conversion reactions. Here we report the study of Pt-Re alloy nanoparticles as an electrocatalyst for the oxygen reduction reaction (ORR). An organic solution approach is developed to synthesize monodisperse and homogeneous Pt3Re alloy nanoparticles. Electrochemical studies show that these nanoparticles exhibit an improvement factor of 4 in catalytic activity for the ORR compared to commercial Pt catalysts of similar particle sizes. Fundamental understanding of the structure-property relationship is established by combining material characterization using X-ray spectroscopy and atomically resolved electron microscopy, as well as Density Functional Theory (DFT) calculations. Our work revealed that an electronic modification of the surface properties of Pt by subsurface Re (ligand effect) accounts for the catalytic enhancement. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Raciti, David; Gonzalez, Matthew; Wang, Chao] Johns Hopkins Univ, Dept Chem & Biomol Engn, 3400 N Charles St, Baltimore, MD 21218 USA. [Kubal, Joseph; Greeley, Jeffrey] Purdue Univ, Sch Chem Engn, W Lafayette, IN 47907 USA. [Ma, Cheng; Chi, Miaofang; More, Karren L.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Barclay, Michael] Johns Hopkins Univ, Dept Chem, 3400 N Charles St, Baltimore, MD 21218 USA. RP Wang, C (reprint author), Johns Hopkins Univ, Dept Chem & Biomol Engn, 3400 N Charles St, Baltimore, MD 21218 USA. EM chaowang@jhu.edu RI Ma, Cheng/C-9120-2014; Wang, Chao/F-4558-2012; Chi, Miaofang/Q-2489-2015 OI Wang, Chao/0000-0001-7398-2090; Chi, Miaofang/0000-0003-0764-1567 FU start-up fund from Johns Hopkins University; E2SHI Seed Grant from Johns Hopkins University; Ralph E. Powe Jr. Faculty Enhancement Award (ORAU); National Science Foundation [CBET-1437219]; U.S. Department of Energy, Office of Science; Early Career grant from the Department of Energy, Office of Science, Office of Basic Energy Sciences, Chemical Sciences Division FX This work was supported by the start-up fund and E2SHI Seed Grant from Johns Hopkins University, the Ralph E. Powe Jr. Faculty Enhancement Award (ORAU), and the National Science Foundation (CBET-1437219). The microscopic work at Oak Ridge National Laboratory was performed at the Center for Nanophase Materials Sciences (CNMS), which is a user facility supported by the U.S. Department of Energy, Office of Science. J.G also acknowledges support through an Early Career grant from the Department of Energy, Office of Science, Office of Basic Energy Sciences, Chemical Sciences Division. Computational support through the National Energy Research Scientific Computing Center (NERSC) is gratefully acknowledged. The authors thank Prof. Howard Fairbrother for help on XPS analysis. NR 65 TC 3 Z9 3 U1 13 U2 67 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2211-2855 EI 2211-3282 J9 NANO ENERGY JI Nano Energy PD FEB PY 2016 VL 20 BP 202 EP 211 DI 10.1016/j.nanoen.2015.12.014 PG 10 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA DE2PD UT WOS:000370468300022 ER PT J AU Wang, DL He, H Han, LL Lin, RQ Wang, J Wu, ZX Liu, HF Xin, HLL AF Wang, Deli He, Huan Han, Lili Lin, Ruoqian Wang, Jie Wu, Zexing Liu, Hongfang Xin, Huolin L. TI Three-dimensional hollow-structured binary oxide particles as an advanced anode material for high-rate and long cycle life lithium-ion batteries SO NANO ENERGY LA English DT Article DE Transition metal oxides; Hollow structures; Lithium ion battery; Electron tomography ID HIGH-PERFORMANCE ANODE; HIGH-RATE CAPABILITY; STORAGE PROPERTIES; CONTROLLABLE SYNTHESIS; CO3O4 NANOPARTICLES; TEMPLATED FORMATION; COBALT OXIDE; SPHERES; NANOSTRUCTURES; MICROSPHERES AB Transition metal oxides are among the most promising anode candidates for next-generation lithium-ion batteries for their high theoretical capacity. However, the large volume expansion and low lithium ion diffusivity leading to a poor charging/discharging performance. In this study, we developed a surfactant and template-free strategy for the synthesis of a composite of CoXFe3-XO4 hollow spheres supported by carbon nanotubes via an impregnation-reduction-oxidation process. The synergy of the composite, as well as the hollow structures in the electrode materials, not only facilitate Li ion and electron transport, but also accommodate large volume expansion. Using state-of-the-art electron tomography, we directly visualize the particles in 3-D, where the voids in the hollow structures serve to buffer the volume expansion of the material. These improvements result in a high reversible capacity as well as an outstanding rate performance for lithium-ion battery applications. This study sheds light on large-scale production of hollow structured metal oxides for commercial applications in energy storage and conversion. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Wang, Deli; He, Huan; Wang, Jie; Wu, Zexing; Liu, Hongfang] Huazhong Univ Sci & Technol, Hubei Key Lab Mat Chem & Serv Failure, Key Lab Mat Chem Energy Convers & Storage, Sch Chem & Chem Engn,Minist Educ, Wuhan 430074, Peoples R China. [Han, Lili; Lin, Ruoqian; Xin, Huolin L.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Han, Lili] Tianjin Univ, Sch Mat Sci & Engn, Tianjin 300072, Peoples R China. [Lin, Ruoqian] SUNY Stony Brook, Dept Mat Sci & Engn, Stony Brook, NY 11794 USA. RP Wang, DL (reprint author), Huazhong Univ Sci & Technol, Hubei Key Lab Mat Chem & Serv Failure, Key Lab Mat Chem Energy Convers & Storage, Sch Chem & Chem Engn,Minist Educ, Wuhan 430074, Peoples R China.; Xin, HLL (reprint author), Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. EM wangdl81125@hust.edu.cn; hxin@bnl.gov RI Wang, Jie/H-3638-2015; Xin, Huolin/E-2747-2010; Wang, Deli/K-5029-2012 OI Wang, Jie/0000-0002-7188-3053; Xin, Huolin/0000-0002-6521-868X; FU National Natural Science Foundation of China [21306060, 21573083]; Program for New Century Excellent Talents in Universities of China [NCET-13-0237]; Doctoral Fund of Ministry of Education of China [20130142120039]; Fundamental Research Funds for the Central University [2013TS136, 2014YQ009]; U.S. DOE Office of Science Facility, at Brookhaven National Laboratory [DE-SC0012704] FX This work was supported by the National Natural Science Foundation of China (21306060 and 21573083), the Program for New Century Excellent Talents in Universities of China (NCET-13-0237), the Doctoral Fund of Ministry of Education of China (20130142120039), the Fundamental Research Funds for the Central University (2013TS136 and 2014YQ009). We thank Analytical and Testing Center of Huazhong University of Science and Technology for allowing us to use its facilities. This research used resources of the Center for Functional Nanomaterials, which is a U.S. DOE Office of Science Facility, at Brookhaven National Laboratory under Contract no. DE-SC0012704. NR 52 TC 4 Z9 4 U1 39 U2 122 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2211-2855 EI 2211-3282 J9 NANO ENERGY JI Nano Energy PD FEB PY 2016 VL 20 BP 212 EP 220 DI 10.1016/j.nanoen.2015.12.019 PG 9 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA DE2PD UT WOS:000370468300023 ER PT J AU Yeh, PC Jin, W Zaki, N Kunstmann, J Chenet, D Arefe, G Sadowski, JT Dadap, JI Sutter, P Hone, J Osgood, RM AF Yeh, Po-Chun Jin, Wencan Zaki, Nader Kunstmann, Jens Chenet, Daniel Arefe, Ghidewon Sadowski, Jerzy T. Dadap, Jerry I. Sutter, Peter Hone, James Osgood, Richard M., Jr. TI Direct Measurement of the Tunable Electronic Structure of Bilayer MoS2 by Interlayer Twist SO NANO LETTERS LA English DT Article DE Stacked van der Waals structures; photoemission; twisted van der Waals materials; spectromicroscopy; low energy electron microscopy (LEEM); MoS2 ID MOLYBDENUM-DISULFIDE; MONOLAYER; TRANSITION; BANDGAP; PHOTOLUMINESCENCE; SPECTROSCOPY AB Using angle-resolved photoemission on micrometer-scale sample areas, we directly measure the interlayer twist angle-dependent electronic band structure of bilayer molybdenum-disulfide (MoS2). Our measurements, performed on arbitrarily stacked bilayer MoS2 flakes prepared by chemical vapor deposition, provide direct evidence for a downshift of the quasiparticle energy of the valence band at the Brillouin zone center ((Gamma) over bar point) with the interlayer twist angle, up to a maximum of 120 meV at a twist angle of similar to 40 degrees. Our direct measurements of the valence band structure enable the extraction of the hole effective mass as a function of the interlayer twist angle, While our results at (Gamma) over bar agree with recently published photoluminescence data, our measurements of the quasiparticle spectrum over the full 2D Brillouin zone reveal a richer and more complicated change in the electronic structure than previously theoretically predicted. The electronic structure measurements reported here, including the evolution of the effective mass with twist-angle, provide new insight into the physics of twisted transition-metal dichalcogenide bilayers and serve as a guide for the practical design of MoS2 optoelectronic and spin-/valley-tronic devices. C1 [Yeh, Po-Chun; Dadap, Jerry I.; Osgood, Richard M., Jr.] Columbia Univ, Dept Elect Engn, New York, NY 10027 USA. [Jin, Wencan; Zaki, Nader; Osgood, Richard M., Jr.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. [Kunstmann, Jens] Columbia Univ, Dept Chem, New York, NY 10027 USA. [Kunstmann, Jens] Tech Univ Dresden, Theoret Chem, D-01062 Dresden, Germany. [Chenet, Daniel; Arefe, Ghidewon; Hone, James] Columbia Univ, Dept Mech Engn, New York, NY 10027 USA. [Sadowski, Jerzy T.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Sutter, Peter] Univ Nebraska, Dept Elect & Comp Engn, Lincoln, NE 68588 USA. RP Osgood, RM (reprint author), Columbia Univ, Dept Elect Engn, New York, NY 10027 USA.; Osgood, RM (reprint author), Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. EM py2175@Columbia.edu RI Kunstmann, Jens/F-7082-2010; OI Sadowski, Jerzy/0000-0002-4365-7796 FU Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DE-FG 02-04-ER-46157]; U.S. DOE Office of Science User Facilities at Brookhaven National Laboratory [DE-SC0012704]; Center for Redefining Photovoltaic Efficiency through Molecular Scale Control, an Energy Frontier Research Center (EFRC) - U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences [DE-SC0001085]; Empire State Development's Division of Science, Technology and Innovation (NYSTAR) [C090147]; New York State Energy Research Development Authority (NYSERDA) [17353] FX The beamline measurements and analyses and the sample mounting were supported by the Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award Contract No. DE-FG 02-04-ER-46157. This research used resources of the Center for Functional Nanomaterials and National Synchrotron Light Source, which are U.S. DOE Office of Science User Facilities, at Brookhaven National Laboratory under Contract No. DE-SC0012704 (J.S. and P.S.). The sample preparation and optical characterization (by D.C., A.G., and J.H.) and twist theory (J.K.) were supported as part of the Center for Redefining Photovoltaic Efficiency through Molecular Scale Control, an Energy Frontier Research Center (EFRC) funded by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences under Award No. DE-SC0001085. The EFRC work is also supported by a matching grant from the Empire State Development's Division of Science, Technology and Innovation (NYSTAR), contract no. C090147, as well as by the New York State Energy Research Development Authority (NYSERDA), Contract # 17353. NR 31 TC 9 Z9 9 U1 24 U2 87 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD FEB PY 2016 VL 16 IS 2 BP 953 EP 959 DI 10.1021/acs.nanolett.5b03883 PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA DD8ZK UT WOS:000370215200020 PM 26760447 ER PT J AU Ye, GL Gong, YJ Lin, JH Li, B He, YM Pantelides, ST Zhou, W Vajtai, R Ajayan, PM AF Ye, Gonglan Gong, Yongji Lin, Junhao Li, Bo He, Yongmin Pantelides, Sokrates T. Zhou, Wu Vajtai, Robert Ajayan, Pulickel M. TI Defects Engineered Monolayer MoS2 for Improved Hydrogen Evolution Reaction SO NANO LETTERS LA English DT Article DE Monolayer MoS2; hydrogen evolution reaction; defects; oxygen plasma; hydrogen treatment ID ACTIVE EDGE SITES; ULTRATHIN NANOSHEETS; MOLYBDENUM SULFIDES; H-2 EVOLUTION; EFFICIENT; GROWTH; ELECTROCATALYSIS; GRAPHENE; PHOTOLUMINESCENCE; NANOPARTICLES AB MoS2 is a promising and low-cost material for electrochemical hydrogen production due to its high activity and stability during the reaction. However, the efficiency of hydrogen production is limited by the amount of active sites, for example, edges, in MoS2. Here, we demonstrate that oxygen plasma exposure and hydrogen treatment on pristine monolayer MoS2 could introduce more active sites via the formation of defects within the monolayer, leading to a high density of exposed edges and a significant improvement of the hydrogen evolution activity. These as-fabricated defects are characterized at the scale from macroscopic continuum to discrete atoms. Our work represents a facile method to increase the hydrogen production in electrochemical reaction of MoS2 via defect engineering, and helps to understand the catalytic properties of MoS2. C1 [Ye, Gonglan; Li, Bo; Vajtai, Robert; Ajayan, Pulickel M.] Rice Univ, Dept Mat Sci & NanoEngn, Houston, TX 77005 USA. [Gong, Yongji; Ajayan, Pulickel M.] Rice Univ, Dept Chem, Houston, TX 77005 USA. [Lin, Junhao; Pantelides, Sokrates T.; Zhou, Wu] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Lin, Junhao; Pantelides, Sokrates T.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. RP Vajtai, R; Ajayan, PM (reprint author), Rice Univ, Dept Mat Sci & NanoEngn, Houston, TX 77005 USA.; Gong, YJ; Ajayan, PM (reprint author), Rice Univ, Dept Chem, Houston, TX 77005 USA. EM Yongji.Gong@rice.edu; Robert.Vajtai@rice.edu; ajayan@rice.edu RI Zhou, Wu/D-8526-2011; Lin, Junhao/D-7980-2015; Gong, Yongji/L-7628-2016 OI Zhou, Wu/0000-0002-6803-1095; Lin, Junhao/0000-0002-2195-2823; FU Army Research Office MURI Grant [W911NF-11-1-0362]; FAME Center; U.S. DOE [DE-FG02-09ER46554]; U.S. Department of Energy, Office of Science, Basic Energy Science, Materials Sciences and Engineering Division; MARCO; DARPA FX This work was supported by the Army Research Office MURI Grant W911NF-11-1-0362 and the FAME Center, one of six centers of STARnet, a Semiconductor Research Corporation program sponsored by MARCO and DARPA. This research was supported in part by U.S. DOE Grant DE-FG02-09ER46554 (J.L. and S.T.P.), by the U.S. Department of Energy, Office of Science, Basic Energy Science, Materials Sciences and Engineering Division (W.Z.), and through a user project at ORNL's Center for Nanophase Materials Sciences (CNMS), which is a DOE Office of Science User Facility. NR 44 TC 44 Z9 44 U1 93 U2 286 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD FEB PY 2016 VL 16 IS 2 BP 1097 EP 1103 DI 10.1021/acs.nanolett.5b04331 PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA DD8ZK UT WOS:000370215200042 PM 26761422 ER PT J AU Li, YJ Zolotavin, P Doak, P Kronik, L Neaton, JB Natelson, D AF Li, Yajing Zolotavin, Pavlo Doak, Peter Kronik, Leeor Neaton, Jeffrey B. Natelson, Douglas TI Interplay of Bias-Driven Charging and the Vibrational Stark Effect in Molecular Junctions SO NANO LETTERS LA English DT Article DE Molecular junction; surface-enhanced Raman spectroscopy; charge transfer; vibrational Stark effect ID ENHANCED RAMAN-SPECTROSCOPY; SINGLE-MOLECULE; ELECTRIC-FIELDS; SCATTERING; SERS; NANOPARTICLES; TRANSITION; TRANSPORT; PROTEINS; NANOGAP AB We observe large, reversible, bias driven changes in the vibrational energies of PCBM based on simultaneous transport and surface-enhanced Raman spectroscopy (SERS) measurements on PCBM-gold junctions. A combination of linear and quadratic shifts in vibrational energies with voltage is analyzed and compared with similar measurements involving C-60-gold junctions. A theoretical model based on density functional theory (DFT) calculations suggests that both a vibrational Stark effect and bias-induced charging of the junction contribute to the shifts in vibrational energies. In the PCBM case, a linear vibrational Stark effect is observed due to the permanent electric dipole moment of PCBM. The vibrational Stark shifts shown here for PCBM junctions are comparable to or larger than the charging effects that dominate in C-60 junctions. C1 [Li, Yajing; Zolotavin, Pavlo; Natelson, Douglas] Rice Univ, Dept Phys & Astron, MS 61,6100 Main St, Houston, TX 77005 USA. [Doak, Peter] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Kronik, Leeor] Weizmann Inst Sci, Dept Mat & Interfaces, IL-76100 Rehovot, Israel. [Neaton, Jeffrey B.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. [Neaton, Jeffrey B.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Neaton, Jeffrey B.] Kavli Energy Nanosci Inst Berkeley, Berkeley, CA 94720 USA. [Natelson, Douglas] Rice Univ, Dept Elect & Comp Engn, MS 366, Houston, TX 77005 USA. [Natelson, Douglas] Rice Univ, Dept Mat Sci & Nanoengn, MS 325, Houston, TX 77005 USA. RP Natelson, D (reprint author), Rice Univ, Dept Phys & Astron, MS 61,6100 Main St, Houston, TX 77005 USA.; Natelson, D (reprint author), Rice Univ, Dept Elect & Comp Engn, MS 366, Houston, TX 77005 USA.; Natelson, D (reprint author), Rice Univ, Dept Mat Sci & Nanoengn, MS 325, Houston, TX 77005 USA. EM natelson@rice.edu RI Doak, Peter/A-1910-2016 OI Doak, Peter/0000-0001-6039-9752 FU Robert A. Welch Foundation [C-1636]; ARO award [W911-NF-13-0476]; U.S. Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division [DE-AC02-05CH11231]; Israel Science Foundation; Lise Meitner Center for Computational Chemistry; Office of Science, Office of Basic Energy Sciences, of U.S. Department of Energy [DE-AC02-05CH11231] FX Y.L. and D.N. acknowledge support from Robert A. Welch Foundation Grant C-1636. P.Z. and D.N. acknowledge support from ARO award W911-NF-13-0476. Work by P.D. and J.B.N. was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, under Contract No. DE-AC02-05CH11231. Portions of this work at the Molecular Foundry were supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under the same contract number. Computational resources provided by NERSC. Work by L.K. was supported by the Israel Science Foundation and the Lise Meitner Center for Computational Chemistry. NR 36 TC 7 Z9 7 U1 6 U2 25 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD FEB PY 2016 VL 16 IS 2 BP 1104 EP 1109 DI 10.1021/acs.nanolett.5b04340 PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA DD8ZK UT WOS:000370215200043 PM 26814562 ER PT J AU Yang, JH Zhang, YY Yin, WJ Gong, XG Yakobson, BI Wei, SH AF Yang, Ji-Hui Zhang, Yueyu Yin, Wan-Jian Gong, X. G. Yakobson, Boris I. Wei, Su-Huai TI Two-Dimensional SiS Layers with Promising Electronic and Optoelectronic Properties: Theoretical Prediction SO NANO LETTERS LA English DT Article DE SiS; direct bandgap; high mobility; stability; differential evolution; global structure search ID HEXAGONAL BORON-NITRIDE; TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; BLACK PHOSPHORUS; DIFFERENTIAL EVOLUTION; MOS2 TRANSISTORS; MONOLAYER MOS2; GRAPHENE ELECTRONICS; GLOBAL OPTIMIZATION; HOLE MOBILITY AB Two-dimensional (2D) semiconductors can be very useful for novel electronic and optoelectronic applications because of their good material properties. However, all current 2D materials have shortcomings that limit their performance. As a result, new 2D materials are highly desirable. Using atomic transmutation and differential evolution global optimization methods, we identified two group IV-VI 2D materials, Pma2-SiS and silicene sulfide. Pma2-SiS is found to be both chemically, energetically, and thermally stable. Most importantly, Pma2-SiS has shown good electronic and optoelectronic properties, including direct bandgaps suitable for solar cells, good mobility for nanoelectronics, good flexibility of property tuning by layer control and applied strain, and good air stability as well. Therefore, Pma2-SiS is expected to be a promising 2D material in the field of 2D electronics and optoelectronics. The designing principles demonstrated in identifying these two tantalizing examples have great potential to accelerate the finding of new functional 2D materials. C1 [Yang, Ji-Hui; Yin, Wan-Jian] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Zhang, Yueyu; Gong, X. G.] Fudan Univ, Dept Phys, State Key Lab Surface Phys, Key Lab Computat Phys Sci MOE, Shanghai 200433, Peoples R China. [Zhang, Yueyu; Gong, X. G.] Collaborat Innovat Ctr Adv Microstruct, Nanjing 210093, Jiangsu, Peoples R China. [Yang, Ji-Hui; Yakobson, Boris I.] Rice Univ, Dept Mat Sci & NanoEngn, Houston, TX 77005 USA. [Wei, Su-Huai] Beijing Computat Sci Res Ctr, Beijing 100094, Peoples R China. RP Yang, JH (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA.; Yang, JH (reprint author), Rice Univ, Dept Mat Sci & NanoEngn, Houston, TX 77005 USA.; Wei, SH (reprint author), Beijing Computat Sci Res Ctr, Beijing 100094, Peoples R China. EM Ji-Hui.Yang@nrel.gov; suhuaiwei@csrc.ac.cn RI Yin, Wanjian/F-6738-2013; gong, xingao/D-6532-2011 FU U.S Department of Energy (DOE) [DE-AC36-08GO28308]; Laboratory Directed Research and Development Program [065K1601]; Office of Science of U.S. Department of Energy [DE-AC02-05CH11231]; U.S. Army Research Office MURI Grant [W911NF-11-1-0362] FX The work at NREL is funded by the U.S Department of Energy (DOE) under Contract No. DE-AC36-08GO28308 and the Laboratory Directed Research and Development Program under Grant No. 065K1601. The calculations are done on NREL peregrine supercomputer and on the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Effort at Rice was supported by the U.S. Army Research Office MURI Grant W911NF-11-1-0362. NR 68 TC 18 Z9 18 U1 32 U2 95 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD FEB PY 2016 VL 16 IS 2 BP 1110 EP 1117 DI 10.1021/acs.nanolett.5b04341 PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA DD8ZK UT WOS:000370215200044 PM 26741149 ER PT J AU Caneva, S Weatherup, RS Bayer, BC Blume, R Cabrero-Vilatela, A Braeuninger-Weirner, P Martin, MB Wang, RZ Baehtz, C Schloegl, R Meyer, JC Hofmann, S AF Caneva, Sabina Weatherup, Robert S. Bayer, Bernhard C. Blume, Raoul Cabrero-Vilatela, Andrea Braeuninger-Weirner, Philipp Martin, Marie-Blandine Wang, Ruizhi Baehtz, Carsten Schloegl, Robert Meyer, Jannik C. Hofmann, Stephan TI Controlling Catalyst Bulk Reservoir Effects for Monolayer Hexagonal Boron Nitride CVD SO NANO LETTERS LA English DT Article DE hexagonal boron nitride (h-BN); chemical vapor deposition (CVD); borazine (HBNH)(3); ammonia (NH3); iron (Fe) ID CHEMICAL-VAPOR-DEPOSITION; H-BN MONOLAYER; 2-DIMENSIONAL MATERIALS; GRAPHENE; GROWTH; CRYSTALLINE; FOIL; HETEROSTRUCTURES; HETEROEPITAXY; SPECTROSCOPY AB Highly controlled Fe-catalyzed growth of monolayer hexagonal boron nitride (h-BN) films is demonstrated by the dissolution of nitrogen into the catalyst bulk via NH3 exposure prior to the actual growth step. This "pre-filling" of the catalyst bulk reservoir allows us to control and limit the uptake of B and N species during borazine exposure and thereby to control the incubation time and h-BN growth kinetics while also limiting the contribution of uncontrolled precipitation-driven h-BN growth during cooling. Using in situ X-ray diffraction and in situ X-ray photoelectron spectroscopy combined with systematic growth calibrations, we develop an understanding and framework for engineering the catalyst bulk reservoir to optimize the growth process, which is also relevant to other 2D materials and their heterostructures. C1 [Caneva, Sabina; Weatherup, Robert S.; Bayer, Bernhard C.; Cabrero-Vilatela, Andrea; Braeuninger-Weirner, Philipp; Martin, Marie-Blandine; Wang, Ruizhi; Hofmann, Stephan] Univ Cambridge, Dept Engn, JJ Thomson Ave, Cambridge CB3 0FA, England. [Weatherup, Robert S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. [Bayer, Bernhard C.; Meyer, Jannik C.] Univ Vienna, Fac Phys, Boltzmanngasse 5, A-1090 Vienna, Austria. [Blume, Raoul] Helmholtz Zentrum Berlin Mat & Energie, D-12489 Berlin, Germany. [Baehtz, Carsten] Helmholtz Zentrum Dresden Rossendorf, Inst Radiat Phys, D-01314 Dresden, Germany. [Schloegl, Robert] Fritz Haber Inst, D-14195 Berlin, Germany. RP Hofmann, S (reprint author), Univ Cambridge, Dept Engn, JJ Thomson Ave, Cambridge CB3 0FA, England. EM sh315@cam.ac.uk RI Meyer, Jannik/H-8541-2012; Hofmann, Stephan/D-3906-2012; The Rossendorf Beamline at ESRF, ROBL/A-2586-2011; Weatherup, Robert/O-5725-2016; Bayer, Bernhard/D-3655-2012 OI Meyer, Jannik/0000-0003-4023-0778; Hofmann, Stephan/0000-0001-6375-1459; Weatherup, Robert/0000-0002-3993-9045; Bayer, Bernhard/0000-0002-4829-3207 FU EPSRC; St. John's College, Cambridge; EU Marie Sklodowska-Curie Individual Fellowship (Global) under grant ARTIST from European Union's Horizon research and innovation programme [656870]; European Union's Horizon research and innovation programme under Marie Sklodowska-Curie grant [656214-2DInterFOX]; Austrian Science Fund (EWE) [P25721-N20]; Austrian Research Promotion Agency (FFG) [848152-GraphenMoFET]; Conacyt Cambridge Scholarship; Roberto Rocca Fellowship; ERC grant InsituNANO [279342] FX S.C. and R.W. acknowledge funding from EPSRC (Doctoral training award). R.S.W. acknowledges a Research Fellowship from St. John's College, Cambridge and a EU Marie Sklodowska-Curie Individual Fellowship (Global) under grant ARTIST (no. 656870) from the European Union's Horizon 2020 research and innovation programme. B.C.B. acknowledges funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 656214-2DInterFOX. B.C.B. and J.C.M. acknowledge support from the Austrian Science Fund (EWE): P25721-N20 and the Austrian Research Promotion Agency (FFG): 848152-GraphenMoFET. A.C.-V acknowledges the Conacyt Cambridge Scholarship and Roberto Rocca Fellowship. S.H. acknowledges funding from ERC grant InsituNANO (no. 279342). We acknowledge the European Synchrotron Radiation Facility (ESRF) for provision of synchrotron radiation facilities at the BM20/ROBL beamline. We acknowledge the Helmholtz-Zentrum-Berlin Electron storage ring BESSY II for provision of synchrotron radiation at the ISISS beamline. We thank the ESRF and BESSY staff for continued support of our experiments and valuable discussion. NR 59 TC 8 Z9 8 U1 24 U2 73 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD FEB PY 2016 VL 16 IS 2 BP 1250 EP 1261 DI 10.1021/acs.nanolett.5b04586 PG 12 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA DD8ZK UT WOS:000370215200064 PM 26756610 ER PT J AU Huang, SX Liang, LB Ling, X Puretzky, AA Geohegan, DB Sumpter, BG Kong, J Meunier, V Dresselhaus, MS AF Huang, Shengxi Liang, Liangbo Ling, Xi Puretzky, Alexander A. Geohegan, David B. Sumpter, Bobby G. Kong, Jing Meunier, Vincent Dresselhaus, Mildred S. TI Low-Frequency Interlayer Raman Modes to Probe Interface of Twisted Bilayer MoS2 SO NANO LETTERS LA English DT Article DE Molybdenum disulfide; twisted bilayer; interlayer coupling; interlayer phonon modes; low-frequency Raman spectroscopy; density functional theory ID TRANSITION-METAL DICHALCOGENIDES; LAYER BLACK PHOSPHORUS; MONOLAYER MOS2; MOLYBDENUM-DISULFIDE; MULTILAYER GRAPHENE; SHEAR MODES; BREATHING MODES; TRILAYER MOS2; SPECTROSCOPY; VALLEY AB van der Waals homo- and heterostructures assembled by stamping monolayers together present opto-electronic properties suitable for diverse applications. Understanding the details of the interlayer stacking and resulting coupling is crucial for tuning these properties. We investigated the low-frequency interlayer shear and breathing Raman modes (<50 cm(-1)) in twisted bilayer MoS2 by Raman spectroscopy and first-principles modeling. Twisting significantly alters the interlayer stacking and coupling, leading to notable frequency and intensity changes of low-frequency modes. The frequency variation can be up to 8 cm(-1) and the intensity can vary by a factor of for twisting angles near 0 and 60, where the stacking is a mixture of high-symmetry stacking patterns and is thus sensitive to. twisting. For twisting angles between 20 and 40, the interlayer coupling is nearly constant because the stacking results in mismatched lattices over the entire sample. It follows that the Raman signature is relatively uniform. Note that for some samples, multiple breathing mode peaks appear, indicating nonuniform coupling across the interface. In contrast to the low-frequency interlayer modes, high-frequency intralayer Raman modes are much less sensitive to interlayer stacking and coupling. This research demonstrates the effectiveness of low-frequency Raman modes for probing the interfacial coupling and environment of twisted bilayer MoS2 and potentially other two-dimensional materials and heterostructures. C1 [Huang, Shengxi; Ling, Xi; Kong, Jing; Dresselhaus, Mildred S.] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA. [Liang, Liangbo; Meunier, Vincent] Rensselaer Polytech Inst, Dept Phys Appl Phys & Astron, Troy, NY 12180 USA. [Liang, Liangbo; Puretzky, Alexander A.; Geohegan, David B.; Sumpter, Bobby G.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Sumpter, Bobby G.] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. [Dresselhaus, Mildred S.] MIT, Dept Phys, Cambridge, MA 02139 USA. RP Ling, X; Dresselhaus, MS (reprint author), MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA.; Meunier, V (reprint author), Rensselaer Polytech Inst, Dept Phys Appl Phys & Astron, Troy, NY 12180 USA.; Dresselhaus, MS (reprint author), MIT, Dept Phys, Cambridge, MA 02139 USA. EM xiling@mit.edu; meuniv@rpi.edu; millie@mgm.mit.edu RI Sumpter, Bobby/C-9459-2013; Liang, Liangbo/H-4486-2011; Geohegan, David/D-3599-2013 OI Sumpter, Bobby/0000-0001-6341-0355; Liang, Liangbo/0000-0003-1199-0049; Geohegan, David/0000-0003-0273-3139 FU NSF [EFRI-2DARE 1542707h]; Eugene P. Wigner Fellowship at Oak Ridge National Laboratory; [DE-SC0001299] FX S.H., X.L., and M.S.D. acknowledge Grant DE-SC0001299 for financial support. The Raman measurements were conducted at the Center for Nanophase Materials Sciences, a DOE Office of Science User Facility. The theoretical work at Rensselaer Polytechnic Institute (RPI) was supported by NSF under grant EFRI-2DARE 1542707h. L.L. acknowledges the support from Eugene P. Wigner Fellowship at the Oak Ridge National Laboratory. The computations were performed using the resources of the Center for Computational Innovation at RPI. NR 59 TC 10 Z9 10 U1 22 U2 77 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD FEB PY 2016 VL 16 IS 2 BP 1435 EP 1444 DI 10.1021/acs.nanolett.5b05015 PG 10 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA DD8ZK UT WOS:000370215200091 PM 26797083 ER PT J AU Rice, WD Liu, WY Baker, TA Sinitsyn, NA Klimov, VI Crooker, SA AF Rice, William D. Liu, Wenyong Baker, Thomas A. Sinitsyn, Nikolai A. Klimov, Victor I. Crooker, Scott A. TI Revealing giant internal magnetic fields due to spin fluctuations in magnetically doped colloidal nanocrystals SO NATURE NANOTECHNOLOGY LA English DT Article ID CDSE QUANTUM DOTS; EXCHANGE INTERACTIONS; SEMICONDUCTOR AB Strong quantum confinement in semiconductors can compress the wavefunctions of band electrons and holes to nanometrescale volumes, significantly enhancing interactions between themselves and individual dopants. In magnetically doped semiconductors, where paramagnetic dopants (such as Mn2+, Co2+ and so on) couple to band carriers via strong sp-d spin exchange(1,2), giant magneto-optical effects can therefore be realized in confined geometries using few(3-7) or even single(8,9) impurity spins. Importantly, however, thermodynamic spin fluctuations become increasingly relevant in this few-spin limit(10). In nanoscale volumes, the statistical root N fluctuations of N spins are expected to generate giant effective magnetic fields Beff, which should dramatically impact carrier spin dynamics, even in the absence of any applied field. Here we directly and unambiguously reveal the large Beff that exist in Mn2+-doped CdSe colloidal nanocrystals using ultrafast optical spectroscopy. At zero applied magnetic field, extremely rapid (300-600 GHz) spin precession of photoinjected electrons is observed, indicating B-eff similar to 15-30 T for electrons. Precession frequencies exceed 2 THz in applied magnetic fields. These signals arise from electron precession about the random fields due to statistically incomplete cancellation of the embedded Mn2+ moments, thereby revealing the initial coherent dynamics of magnetic polaron formation, and highlighting the importance of magnetization fluctuations on carrier spin dynamics in nanomaterials. C1 [Rice, William D.; Crooker, Scott A.] Los Alamos Natl Lab, Natl High Magnet Field Lab, POB 1663, Los Alamos, NM 87545 USA. [Liu, Wenyong; Baker, Thomas A.; Klimov, Victor I.] Los Alamos Natl Lab, Div Chem, POB 1663, Los Alamos, NM 87545 USA. [Sinitsyn, Nikolai A.] Los Alamos Natl Lab, Div Theory, POB 1663, Los Alamos, NM 87545 USA. [Rice, William D.] Univ Wyoming, Dept Phys & Astron, Laramie, WY 82071 USA. RP Crooker, SA (reprint author), Los Alamos Natl Lab, Natl High Magnet Field Lab, POB 1663, Los Alamos, NM 87545 USA.; Klimov, VI (reprint author), Los Alamos Natl Lab, Div Chem, POB 1663, Los Alamos, NM 87545 USA. EM klimov@lanl.gov; crooker@lanl.gov OI Klimov, Victor/0000-0003-1158-3179 FU Los Alamos LDRD programme; Office of Chemical Sciences, Biosciences, and Geosciences of the Department of Energy Office of Basic Energy Sciences; NSF [DMR-1157490] FX We gratefully thank D. R. Yakovlev and D. L. Smith for helpful discussions and insight. W.D.R. acknowledges support from the Los Alamos LDRD programme. W.L., T.A.B., and V.I.K. are supported by the Office of Chemical Sciences, Biosciences, and Geosciences of the Department of Energy Office of Basic Energy Sciences. All optical measurements were performed at the National High Magnetic Field Laboratory, which is supported by NSF DMR-1157490. NR 32 TC 6 Z9 6 U1 11 U2 42 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1748-3387 EI 1748-3395 J9 NAT NANOTECHNOL JI Nat. Nanotechnol. PD FEB PY 2016 VL 11 IS 2 BP 137 EP 142 DI 10.1038/NNANO.2015.258 PG 6 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA DE6UR UT WOS:000370769600009 PM 26595331 ER PT J AU Baggetto, L Charvillat, C Thebault, Y Esvan, J Lafont, MC Scheid, E Veith, GM Vahlas, C AF Baggetto, Loic Charvillat, Cedric Thebault, Yannick Esvan, Jerome Lafont, Marie-Christine Scheid, Emmanuel Veith, Gabriel M. Vahlas, Constantin TI Amorphous alumina thin films deposited on titanium: Interfacial chemistry and thermal oxidation barrier properties SO PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE LA English DT Article DE deposition; interdiffusion; oxygen barriers; thin films; Ti; Al2O3; X-ray photoelectron spectroscopy ID CHEMICAL-VAPOR-DEPOSITION; SOLID-SOLUTIONS; COATINGS; SILICON; AL2O3; CVD; OXYGEN; TI; SYSTEM; OXIDES AB Ti/Al2O3 bilayer stacks are used as model systems to investigate the role of atomic layer deposition (ALD) and chemical vapor deposition (CVD) to prepare 30-180nm thick amorphous alumina films as protective barriers for the medium temperature oxidation (500-600 degrees C) of titanium, which is employed in aeronautic applications. X-ray diffraction (XRD), transmission electron microscopy (TEM) with selected area electron diffraction (SAED), and X-ray photoelectron spectroscopy (XPS) results show that the films produced from the direct liquid injection (DLI) CVD of aluminum tri-isopropoxide (ATI) are poor oxygen barriers. The films processed using the ALD of trimethylaluminum (TMA) show good barrier properties but an extensive intermixing with Ti which subsequently oxidizes. In contrast, the films prepared from dimethyl aluminum isopropoxide (DMAI) by CVD are excellent oxygen barriers and show little intermixing with Ti. Overall, these measurements correlate the effect of the alumina coating thickness, morphology, and stoichiometry resulting from the preparation method to the oxidation barrier properties, and show that compact and stoichiometric amorphous alumina films offer superior barrier properties. C1 [Baggetto, Loic; Charvillat, Cedric; Thebault, Yannick; Esvan, Jerome; Lafont, Marie-Christine; Vahlas, Constantin] Ctr Interuniv Rech & Ingn Mat CIRIMAT, CNRS, UMR5085, 4 Allee Emile Monso,BP 44362, F-31030 Toulouse 4, France. [Scheid, Emmanuel] CNRS, LAAS, 7 Ave Colonel Roche, F-31400 Toulouse, France. [Veith, Gabriel M.] Oak Ridge Natl Lab, Mat Sci & Technol Div, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. RP Baggetto, L (reprint author), Ctr Interuniv Rech & Ingn Mat CIRIMAT, CNRS, UMR5085, 4 Allee Emile Monso,BP 44362, F-31030 Toulouse 4, France. EM loic_baggetto@yahoo.fr; constantin.vahlas@ensiacet.fr RI Baggetto, Loic/D-5542-2017 OI Baggetto, Loic/0000-0002-9029-2363 FU STAE-RTRA foundation (Toulouse, France) [RTRA-STAE/2014/P/VIMA/12]; U.S. Department of Energy (DOE), Basic Energy Sciences (BES), Materials Sciences and Engineering Division FX This work was financially supported by the STAE-RTRA foundation (Toulouse, France) under the RTRA-STAE/2014/P/VIMA/12 project grant. The U.S. Department of Energy (DOE), Basic Energy Sciences (BES), Materials Sciences and Engineering Division supported a portion of this work (G.M.V., Ti thin film preparation). NR 37 TC 1 Z9 1 U1 9 U2 28 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 1862-6300 EI 1862-6319 J9 PHYS STATUS SOLIDI A JI Phys. Status Solidi A-Appl. Mat. PD FEB PY 2016 VL 213 IS 2 BP 470 EP 480 DI 10.1002/pssa.201532838 PG 11 WC Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA DD8PI UT WOS:000370188700039 ER PT J AU Wanlass, MW Ahrenkiel, SP Carapella, JJ Friedman, DJ Osterwald, CR Romero, M AF Wanlass, Mark W. Ahrenkiel, Scott P. Carapella, Jeffrey J. Friedman, Daniel J. Osterwald, Carl R. Romero, Manuel TI Progress toward an advanced four-subcell inverted metamorphic multi-junction (IMM) solar cell SO PROGRESS IN PHOTOVOLTAICS LA English DT Article DE III-V; multijunction solar cells; high efficiency ID EFFICIENCY AB We report progress on the development of an advanced four-subcell IMM CPV solar cell that is designed for extremely high conversion efficiency under realistic concentrator operating conditions. Practical considerations allowing the design to mitigate problems related to Al-containing alloys, lattice mismatch, non-ideal short-wavelength response, and reflection losses are described. Performance modeling is used to guide the choice of optimal subcell band gaps for the new IMM cell. Early experimental efforts to develop and implement the new design are described and discussed. Copyright (C) 2015 John Wiley&Sons, Ltd. C1 [Wanlass, Mark W.; Ahrenkiel, Scott P.; Carapella, Jeffrey J.; Friedman, Daniel J.; Osterwald, Carl R.; Romero, Manuel] Natl Renewable Energy Lab, Golden, CO USA. RP Wanlass, MW (reprint author), Natl Renewable Energy Lab, Golden, CO USA. EM mwwanlass@gmail.com FU United States Department of Energy [20436] FX The authors gratefully acknowledge support for this work from the United States Department of Energy under the American Reinvestment and Recovery Act funded agreement # 20436. NR 11 TC 2 Z9 2 U1 4 U2 10 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1062-7995 EI 1099-159X J9 PROG PHOTOVOLTAICS JI Prog. Photovoltaics PD FEB PY 2016 VL 24 IS 2 BP 139 EP 149 DI 10.1002/pip.2609 PG 11 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA DE0OT UT WOS:000370324900001 ER PT J AU Novoa, FD Miller, DC Dauskardt, RH AF Novoa, Fernando D. Miller, David C. Dauskardt, Reinhold H. TI Adhesion and debonding kinetics of photovoltaic encapsulation in moist environments SO PROGRESS IN PHOTOVOLTAICS LA English DT Article DE encapsulation debonding; interfacial adhesion; moisture; delamination; durability ID ETHYLENE-VINYL ACETATE; PACKAGING MATERIALS; CRACK GROWTH; PEEL TEST; MODULES; DEGRADATION; TEMPERATURE; RELIABILITY; INTERFACES; MODEL AB Debonding of photovoltaic (PV) encapsulation in moist environments is frequently reported but presently not well understood or quantified. Temperature cycling, moisture, and mechanical loads often cause loss of encapsulation adhesion and interfacial debonding, initially facilitating back-reflectance and reduced electrical current, but ultimately leading to internal corrosion and loss of module functionality. To investigate the effects of temperature (T) and relative humidity (RH) on the kinetics of encapsulation debonding, we developed a mechanics-based technique to measure encapsulation debond energy and debond growth rates in a chamber of controlled environment. The debond energy decreased from 2.15 to 1.75 kJ m(-2) in poly(ethylene-co-vinyl acetate) (EVA) and from 0.67 to 0.52 kJ m(-2) in polyvinyl butyral when T increased from 25 to 50 degrees C and 20 to 40 degrees C, respectively. The debond growth rates of EVA increased up to 1000-fold with small increases of T (10 degrees C) and RH (15%). To elucidate the mechanisms of environmental debonding, we developed a fracture-kinetics model, where the viscoelastic relaxation processes at the debonding-tip are used to predict debond growth. The model and techniques constitute the fundamental basis for developing accelerated aging tests and long-term reliability predictions for PV encapsulation. Copyright (C) 2015 John Wiley & Sons, Ltd. C1 [Novoa, Fernando D.; Dauskardt, Reinhold H.] Stanford Univ, Dept Mat Sci & Engn, 416 Escondido Mall,Bldg 550,Rm 550G, Stanford, CA 94305 USA. [Miller, David C.] NREL, Natl Ctr Photovolta, Golden, CO USA. RP Dauskardt, RH (reprint author), Stanford Univ, Dept Mat Sci & Engn, 416 Escondido Mall,Bldg 550,Rm 550G, Stanford, CA 94305 USA. EM dauskardt@stanford.edu FU Department of Energy through Bay Area Photovoltaic Consortium [DE-EE0004946]; US Department of Energy [DE-AC36-08GO28308]; National Renewable Energy Laboratory FX This material is based upon work supported by the Department of Energy through the Bay Area Photovoltaic Consortium under award number DE-EE0004946 and the US Department of Energy under contract no. DE-AC36-08GO28308 with the National Renewable Energy Laboratory. NR 54 TC 4 Z9 4 U1 7 U2 10 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1062-7995 EI 1099-159X J9 PROG PHOTOVOLTAICS JI Prog. Photovoltaics PD FEB PY 2016 VL 24 IS 2 BP 183 EP 194 DI 10.1002/pip.2657 PG 12 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA DE0OT UT WOS:000370324900005 ER PT J AU Preston, DN Brown, GW Sandstrom, MM Pollard, CJ Warner, KF Remmers, DL Phillips, JJ Shelley, TJ Reyes, JA Hsu, PC Reynolds, JG AF Preston, Daniel N. Brown, Geoffrey W. Sandstrom, Mary M. Pollard, Colin J. Warner, Kirstin F. Remmers, Daniel L. Phillips, Jason J. Shelley, Timothy J. Reyes, Jose A. Hsu, Peter C. Reynolds, John G. TI Small-Scale Safety Testing of Ammonium Nitrate and Mixtures SO PROPELLANTS EXPLOSIVES PYROTECHNICS LA English DT Article DE Safety testing; Ammonium nitrate; Gunpowder; Impact sensitivity; Ammonium nitrate mixtures AB Ammonium nitrate (AN), gunpowder (GP), and an ammonium nitrate gunpowder mixture (AN/GP) were studied for impact sensitivity by four laboratories using the drop hammer apparatus. Bruceton and Neyer methods were used as experimental protocols and for data reduction. The results are presented as 50% probability of reaction (DH50). For AN, the DH50 values are widely varied among the participants, from sensitive to completely insensitive (limit of the equipment), with no real correlation among results. GP and the AN/GP mixture exhibited much more sensitivity overall and were in some cases within statistical values extrapolated from previous studies of RDX. The variability in results for the AN data is attributed to the difficulty in determining a positive reaction event for AN, as detailed by Neyer experiments and photography during positive reactions. Variability in results for the GP and AN/GP mixtures is attributed to equipment environment and detection criteria. This work was performed by the Integrated Data Collection Analysis (IDCA) program, a multi-laboratory effort to standardize safety testing of improvised or homemade explosives funded by the Department of Homeland Security. C1 [Preston, Daniel N.; Brown, Geoffrey W.; Sandstrom, Mary M.; Pollard, Colin J.] Los Alamos Natl Lab, Los Alamos, NM USA. [Warner, Kirstin F.; Remmers, Daniel L.] Naval Surface Warfare Ctr, Indian Head Div, Indian Head, MD USA. [Phillips, Jason J.] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. [Shelley, Timothy J.] Bur Alcohol Tobacco Firearms & Explos, Redstone Arsenal, AL USA. [Reyes, Jose A.] Appl Res Associates AFRL, Tyndall AFB, FL USA. [Hsu, Peter C.; Reynolds, John G.] Lawrence Livermore Natl Lab, Livermore, CA USA. RP Reynolds, JG (reprint author), Lawrence Livermore Natl Lab, Livermore, CA USA. EM reynolds3@llnl.gov FU Los Alamos National Laboratory; Lawrence Livermore National Laboratory; Sandia National Laboratories; Air Force Research Laboratory; Indian Head Division; Naval Surface Warfare under of the U.S. Department of Homeland Security, Science and Technology Directorate, Explosives Division; Los Alamos National Security, LLC, for the U.S. Department of Energy [DE-AC52-06NA25396]; Sandia Corporation, a Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Air Force Research Laboratory and Indian Head Division, Naval Surface Warfare [HSHQDC10X00414. LLNL-JRNL-669221 (791018)] FX The authors thank Doug Bauer, Laura J. Parker and Greg Struba for their enthusiastic support. This work was performed by the Integrated Data Collection Analysis (IDCA) Program, a five-lab effort supported by Los Alamos National Laboratory, Lawrence Livermore National Laboratory, Sandia National Laboratories, the Air Force Research Laboratory, and Indian Head Division, Naval Surface Warfare under sponsorship of the U.S. Department of Homeland Security, Science and Technology Directorate, Explosives Division. Los Alamos National Laboratory is operated by Los Alamos National Security, LLC, for the U.S. Department of Energy under Contract DE-AC52-06NA25396. Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. The Air Force Research Laboratory and Indian Head Division, Naval Surface Warfare also performed work in support of this effort under contract HSHQDC10X00414. LLNL-JRNL-669221 (791018). NR 11 TC 1 Z9 1 U1 4 U2 8 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 0721-3115 EI 1521-4087 J9 PROPELL EXPLOS PYROT JI Propellants Explos. Pyrotech. PD FEB PY 2016 VL 41 IS 1 BP 9 EP 13 DI 10.1002/prep.201500124 PG 5 WC Chemistry, Applied; Engineering, Chemical SC Chemistry; Engineering GA DE0RZ UT WOS:000370333300002 ER PT J AU Sandstrom, MM Brown, GW Warner, KF Sorensen, DN Phillips, JJ Shelley, TJ Reyes, JA Hsu, PC Reynolds, JG AF Sandstrom, Mary M. Brown, Geoffrey W. Warner, Kirstin F. Sorensen, Daniel N. Phillips, Jason J. Shelley, Timothy J. Reyes, Jose A. Hsu, Peter C. Reynolds, John G. TI Small-Scale Thermal Studies of Volatile Homemade Explosives SO PROPELLANTS EXPLOSIVES PYROTECHNICS LA English DT Article DE Small-scale safety testing; Thermal screening; Differential scanning calorimetry; Homemade explosives; HME; Round-robin test; Proficiency test ID AMMONIUM-NITRATE; POTASSIUM PERCHLORATE; STABILITY; DSC AB Several homemade or improvised explosive mixtures that either contained volatile components or produced volatile products were examined using standard small-scale safety and thermal (SSST) testing that employed differential scanning calorimetry (DSC) techniques (constant heating rate and standard sample holders). KClO3 and KClO4 mixtures with dodecane exhibited different enthalpy behavior when using a vented sample holder in contrast to a sealed sample holder. The standard configuration produced profiles that exhibited only endothermic transitions. The sealed system produced profiles that exhibited additional exothermic transitions absent in the standard configuration produced profiles. When H2O2/fuel mixtures were examined, the volatilization of the peroxide (endothermic) dominated the profiles. When a sealed sample holder was used, the energetic releases of the mixture could be clearly observed. For AN and AN mixtures, the high temperature decomposition appears as an intense endothermic event. Using a nominally sealed sample holder also did not adequately contain the system. Only when a high-pressure rated sample holder was used the high temperature decomposition of the AN could be detected as an exothermic release. The testing was conducted during a proficiency (or round-robin type) test that included three U.S. Department of Energy and two U.S. Department of Defense laboratories. In the course of this proficiency test, certain HMEs exhibited thermal behavior that was not adequately accounted for by standard techniques. Further examination of this atypical behavior highlighted issues that may have not been recognized previously because some of these materials are not routinely tested. More importantly, if not recognized, the SSST testing results could lead to inaccurate safety assessments. This study provides examples, where standard techniques can be applied, and results can be obtained, but these results may be misleading in establishing thermal properties. C1 [Sandstrom, Mary M.; Brown, Geoffrey W.] Los Alamos Natl Lab, Los Alamos, NM USA. [Warner, Kirstin F.; Sorensen, Daniel N.] Naval Surface Warfare Ctr, Indian Head Div, Indian Head, MD USA. [Phillips, Jason J.] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. [Shelley, Timothy J.] Bur Alcohol Tobacco Firearms & Explos, Redstone Arsenal, AL USA. [Reyes, Jose A.] Appl Res Associates, Tyndall AFB, FL USA. [Hsu, Peter C.; Reynolds, John G.] Lawrence Livermore Natl Lab, Livermore, CA USA. RP Reynolds, JG (reprint author), Lawrence Livermore Natl Lab, Livermore, CA USA. EM reynolds3@llnl.gov FU Los Alamos National Laboratory; Lawrence Livermore National Laboratory; Sandia National Laboratories; Air Force Research Laboratory; Indian Head Division, Naval Surface Warfare under sponsorship of the U.S. Department of Homeland Security, Science and Technology Directorate, Explosives Division; Los Alamos National Security, LLC, for the U.S. Department of Energy [DE-AC52-06NA25396]; Sandia Corporation, a Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Air Force Research Laboratory and Indian Head Division, Naval Surface Warfare [HSHQDC10X00414. LLNL-JRNL-669352 (791244)] FX The authors thank Doug Bauer, Laura J. Parker, and Greg Struba for their enthusiastic support. This work was performed by the Integrated Data Collection Analysis (IDCA) Program, a five-lab effort supported by Los Alamos National Laboratory, Lawrence Livermore National Laboratory, Sandia National Laboratories, the Air Force Research Laboratory, and Indian Head Division, Naval Surface Warfare under sponsorship of the U.S. Department of Homeland Security, Science and Technology Directorate, Explosives Division. Los Alamos National Laboratory is operated by Los Alamos National Security, LLC, for the U.S. Department of Energy under Contract DE-AC52-06NA25396. Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. The Air Force Research Laboratory and Indian Head Division, Naval Surface Warfare also performed work in support of this effort under contract HSHQDC10X00414. LLNL-JRNL-669352 (791244). NR 23 TC 0 Z9 0 U1 3 U2 11 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 0721-3115 EI 1521-4087 J9 PROPELL EXPLOS PYROT JI Propellants Explos. Pyrotech. PD FEB PY 2016 VL 41 IS 1 BP 14 EP 19 DI 10.1002/prep.201500210 PG 6 WC Chemistry, Applied; Engineering, Chemical SC Chemistry; Engineering GA DE0RZ UT WOS:000370333300003 ER PT J AU Xiao, CX Goh, TW Qi, ZY Goes, S Brashler, K Perez, C Huang, WY AF Xiao, Chaoxian Goh, Tian-Wei Qi, Zhiyuan Goes, Shannon Brashler, Kyle Perez, Christopher Huang, Wenyu TI Conversion of Levulinic Acid to gamma-Valerolactone over Few-Layer Graphene-Supported Ruthenium Catalysts SO ACS CATALYSIS LA English DT Article DE biomass conversion; cellulose; levulinic acid; gamma-valerolactone; hydrocarbon fuel; hydrogenation; graphene ID LIQUID-HYDROCARBON FUELS; GRAPHITE OXIDE; SELECTIVE HYDROGENATION; CO ADSORPTION; BIOMASS; CELLULOSE; REDUCTION; NANOPARTICLES; SPECTROSCOPY; HEMICELLULOSE AB Few-layer graphene (FLG) supported ruthenium nanoparticle catalysts were synthesized and used for the hydrogenation of levulinic acid (LA), one of the "top 10" biomass platform molecules derived from carbohydrates. FLG-supported ruthenium catalyst showed 99.7% conversion and 100% selectivity toward gamma-valerolactone (GVL) at room temperature in a batch reactor under high-pressure hydrogen. This catalyst showed 4 times higher activity and exceptional stability in comparison with traditional activated carbon supported ruthenium catalysts (Ru/C). X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) studies suggest that the superior catalytic properties of Ru nanoparticles supported on FLG in LA hydrogenation could be attributed to the greater metallic Ru content present in the Ru/FLG in comparison to that in Ru/C. C1 [Xiao, Chaoxian; Goh, Tian-Wei; Qi, Zhiyuan; Goes, Shannon; Brashler, Kyle; Huang, Wenyu] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. [Perez, Christopher; Huang, Wenyu] US DOE, Ames Lab, Ames, IA 50011 USA. RP Huang, WY (reprint author), Iowa State Univ, Dept Chem, Ames, IA 50011 USA. EM whuang@iastate.edu RI Goh, Tian Wei/G-3463-2016; Huang, Wenyu/L-3784-2014 OI Goh, Tian Wei/0000-0002-4141-3392; Huang, Wenyu/0000-0003-2327-7259 FU Iowa Energy Center; Iowa State University FX This work was supported through funding from the Iowa Energy Center. We thank Iowa State University for startup funds. We also thank Gordon J. Miller for use of his XRD instrument and Igor I. Slowing for use of his ICP-AES instrument. The valuable discussion with Young-Jin Lee and Aaron J. Rossini is greatly appreciated. NR 52 TC 12 Z9 12 U1 28 U2 87 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2155-5435 J9 ACS CATAL JI ACS Catal. PD FEB PY 2016 VL 6 IS 2 BP 593 EP 599 DI 10.1021/acscatal.5b02673 PG 7 WC Chemistry, Physical SC Chemistry GA DD2TK UT WOS:000369774900012 ER PT J AU Ertem, MZ Himeda, Y Fujita, E Muckerman, JT AF Ertem, Mehmed Z. Himeda, Yuichiro Fujita, Etsuko Muckerman, James T. TI Interconversion of Formic Acid and Carbon Dioxide by Proton-Responsive, Half-Sandwich Cp*Ir-III Complexes: A Computational Mechanistic Investigation SO ACS CATALYSIS LA English DT Article DE density functional theory; proton-responsive ligand; iridium complexes; CO2 hydrogenation; formic acid dehydrogenation; kinetic isotope effect; hydrogen storage ID ORBITAL COUPLED-CLUSTER; SOLVATION FREE-ENERGIES; HYDROGEN STORAGE; DENSITY FUNCTIONALS; HOMOGENEOUS HYDROGENATION; TRANSITION-ELEMENTS; AMBIENT-TEMPERATURE; CATALYTIC-ACTIVITY; IRIDIUM COMPLEXES; AQUEOUS-MEDIA AB Dihydrogen (H-2) has many desirable features as a fuel, but utilization of H-2 is limited due to storage and transportation problems. A promising solution to these issues is reversible storage of hydrogen in the form of liquid-phase chemicals such as formic acid (FA), which could be accomplished by the development of efficient and robust catalysts. Recently, proton-responsive, half-sandwich Cp*Ir-III (where Cp* = pentamethylcyclo-pentadienyl anion) complexes capable of reversible hydrogen storage via interconversion between H-2/CO2 and formic acid/formate in water have been reported. This interconversion is performed via CO2 hydrogenation and FA dehydrogenation reactions and modulated by the pH of the medium. We report the results of a computational investigation of the mechanistic aspects of reversible hydrogen storage via two of these catalysts: namely, [Cp*Ir(4DHBP)](2+) (4DHBP = 4,4'-dihydroxy-2,2'-bipyridine) and [Cp*Ir(6DHBP)](2+) (6DHBP = 6,6'-dihydroxy-2,2'-bipyridine). Distinct features of the catalytic cycles of [Cp*Ir-(4DHBP)](2+) and [Cp*Ir(6DHBP)](2+). for CO2 hydrogenation and FA dehydrogenation reactions are demonstrated using density functional theory (DFT) calculations employing a "speciation" approach and probing deuterium kinetic isotope effects (KIE). In addition to the mechanistic insights and principles for the design of improved next-generation catalysts, the validation of computational methods for the investigation of the hydrogenation and dehydrogenation reactions is addressed. C1 [Ertem, Mehmed Z.; Fujita, Etsuko; Muckerman, James T.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Himeda, Yuichiro] Natl Inst Adv Ind Sci & Technol, Tsukuba Cent 5,1-1-1 Higashi, Tsukuba, Ibaraki 3058565, Japan. [Himeda, Yuichiro] ACT C, Japan Sci & Technol Agcy, 4-1-8 Honcho, Kawaguchi, Saitama 3320012, Japan. RP Ertem, MZ; Muckerman, JT (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. EM mzertem@bnl.gov; muckerma@bnl.gov FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC00112704]; Japan Science and Technology Agency (JST), ACT-C FX The work at BNL was carried out under contract DE-SC00112704 with the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, and utilized resources at the BNL Center for Functional Nanomaterials. Y.H. thanks the Japan Science and Technology Agency (JST), ACT-C, for financial support. NR 55 TC 9 Z9 9 U1 15 U2 56 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2155-5435 J9 ACS CATAL JI ACS Catal. PD FEB PY 2016 VL 6 IS 2 BP 600 EP 609 DI 10.1021/acscatal.5b01663 PG 10 WC Chemistry, Physical SC Chemistry GA DD2TK UT WOS:000369774900013 ER PT J AU Shao, YY Cheng, YW Duan, WT Wang, W Li, B Ling, YH Wang, Y Liu, J AF Shao, Yuyan Cheng, Yingwen Duan, Wentao Wang, Wei Li, Bin Ling, Yuehe Wang, Yong Liu, Jun TI Nanostructured Electrocatalysts for PEM Fuel Cells and Redox Flow Batteries: A Selected Review (vol 5, pg 7288, 2015) SO ACS CATALYSIS LA English DT Correction C1 [Shao, Yuyan; Cheng, Yingwen; Duan, Wentao; Wang, Wei; Li, Bin; Wang, Yong; Liu, Jun] Pacific NW Natl Lab, Richland, WA 99352 USA. [Wang, Yong] Washington State Univ, Voiland Sch Chem Engn & Bioengn, Pullman, WA 99163 USA. [Ling, Yuehe] Washington State Univ, Sch Mech & Mat Engn, Pullman, WA 99164 USA. RP Shao, YY; Wang, Y; Liu, J (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA.; Wang, Y (reprint author), Washington State Univ, Voiland Sch Chem Engn & Bioengn, Pullman, WA 99163 USA. EM yuyan.shao@pnnl.gov; yong.wang@pnnl.gov; jun.liu@pnnl.gov RI Cheng, Yingwen/B-2202-2012; Wang, Wei/F-4196-2010 OI Cheng, Yingwen/0000-0002-0778-5504; Wang, Wei/0000-0002-5453-4695 NR 1 TC 0 Z9 0 U1 6 U2 33 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2155-5435 J9 ACS CATAL JI ACS Catal. PD FEB PY 2016 VL 6 IS 2 BP 634 EP 634 DI 10.1021/acscatal.5b02849 PG 1 WC Chemistry, Physical SC Chemistry GA DD2TK UT WOS:000369774900015 ER PT J AU Song, WJ Liu, YS Barath, E Wang, LL Zhao, C Mei, DH Lercher, JA AF Song, Wenji Liu, Yuanshuai Barath, Eszter Wang, Lucy L. Zhao, Chen Mei, Donghai Lercher, Johannes A. TI Dehydration of 1-Octadecanol over H-BEA: A Combined Experimental and Computational Study SO ACS CATALYSIS LA English DT Article DE 1-octadecanol; dehydration; H-BEA zeolite; density functional theory; Bronsted acid site; Lewis acid site ID BRONSTED ACID SITES; ZEOLITE-BETA; MOLECULAR-SIEVES; ETHER FORMATION; MICROALGAE OIL; CONVERSION; METHANOL; MECHANISM; CATALYSIS; ALCOHOLS AB Liquid-phase dehydration of 1-octadecanol, which is intermediately formed during the hydrodeoxygenation of microalgae oil on zeolite H-BEA, has been studied, combining experiment and theory. Both the OH group and the alkyl chain of 1-octadecanol interact with zeolite Bronsted acid sites, inducing inefficient utilization in the presence of high acid-site concentrations. The parallel intramolecular and intermolecular dehydration pathways, leading to octadecene and dioctadecyl ether, have different activation energies and pass through different reaction intermediates. The formation of surface alkoxides is the rate-limiting step in the intramolecular dehydration, whereas the intermolecular dehydration proceeds via a bulky dimer intermediate, occurring preferentially at the pore mouth or outer surface of zeolite crystallites. Despite the main contribution of Bronsted acid sites toward both dehydration pathways, Lewis acid sites are also active to form dioctadecyl ether. C1 [Song, Wenji; Liu, Yuanshuai; Barath, Eszter; Zhao, Chen; Lercher, Johannes A.] Tech Univ Munich, Dept Chem, Lichtenbergstr 4, D-85748 Garching, Germany. [Song, Wenji; Liu, Yuanshuai; Barath, Eszter; Zhao, Chen; Lercher, Johannes A.] Tech Univ Munich, Catalysis Res Inst, Lichtenbergstr 4, D-85748 Garching, Germany. [Wang, Lucy L.; Mei, Donghai; Lercher, Johannes A.] Pacific NW Natl Lab, Inst Integrated Catalysis, Richland, WA 99352 USA. [Zhao, Chen] E China Normal Univ, Shanghai Key Lab Green Chem & Chem Proc, Dept Chem, North Zhongshan Rd 3663, Shanghai 200062, Peoples R China. RP Lercher, JA (reprint author), Tech Univ Munich, Dept Chem, Lichtenbergstr 4, D-85748 Garching, Germany.; Lercher, JA (reprint author), Tech Univ Munich, Catalysis Res Inst, Lichtenbergstr 4, D-85748 Garching, Germany.; Mei, DH; Lercher, JA (reprint author), Pacific NW Natl Lab, Inst Integrated Catalysis, Richland, WA 99352 USA. EM Donghai.mei@pnnl.gov; Johannes.Lercher@ch.tum.de RI Mei, Donghai/A-2115-2012; Mei, Donghai/D-3251-2011 OI Mei, Donghai/0000-0002-0286-4182; FU AlgenFlugKraft project; Graduate School (Faculty Graduate Center of Chemistry) of the Technische Universitat Munchen; Elitenetzwerk Bayern (Graduate School NanoCat); U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences Biosciences; DOE's Office of Biological and Environmental Research FX We appreciate the financial support from AlgenFlugKraft project. W.S. was partially supported by the Graduate School (Faculty Graduate Center of Chemistry) of the Technische Universitat Munchen and the Elitenetzwerk Bayern (Graduate School NanoCat). L.W., D.M., and J.A.L. acknowledge the partial support from the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. Computing time was granted by the grand challenge of computational catalysis of the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) and by the National Energy Research Scientific Computing Center (NERSC). EMSL is a national scientific user facility located at Pacific Northwest National Laboratory (PNNL) and sponsored by DOE's Office of Biological and Environmental Research. NR 47 TC 1 Z9 1 U1 18 U2 42 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2155-5435 J9 ACS CATAL JI ACS Catal. PD FEB PY 2016 VL 6 IS 2 BP 878 EP 889 DI 10.1021/acscatal.5b01217 PG 12 WC Chemistry, Physical SC Chemistry GA DD2TK UT WOS:000369774900049 ER PT J AU Ho, CR Shylesh, S Bell, AT AF Ho, Christopher R. Shylesh, Sankaranarayanapillai Bell, Alexis T. TI Mechanism and Kinetics of Ethanol Coupling to Butanol over Hydroxyapatite SO ACS CATALYSIS LA English DT Article DE hydroxyapatite; ethanol coupling; acetaldehyde; butanol; Guerbet reaction ID N-BUTANOL; BASIC OXIDES; CALCIUM HYDROXYAPATITE; CONDENSATION-REACTIONS; CATALYTIC CONVERSION; ALCOHOLS; SURFACE; 1-BUTANOL; ACID; DEHYDRATION AB The mechanism and kinetics for ethanol coupling to n-butanol over hydroxyapatite (HAP) were investigated at 573-613 K. In situ titration experiments show that the active sites for acetaldehyde and butanol formation are different. In combination with FTIR studies, it was found that ethanol dehydrogenation is catalyzed by Ca-O sites, whereas condensation of acetaldehyde is catalyzed by CaO/PO43- pairs. Measurements of the reaction kinetics at various ethanol (3.5-9.4 kPa) and acetaldehyde (0.055-0.12 kPa) partial pressures reveal that direct condensation involving two ethanol molecules does not play a significant role in butanol formation; instead, n-butanol is formed via a Guerbet pathway. At a constant acetaldehyde pressure, enolate formation is rate-limiting, and ethanol inhibits acetaldehyde condensation rates by competitive adsorption. A model of the reaction kinetics consistent with all experimental observations is developed. C1 [Ho, Christopher R.; Shylesh, Sankaranarayanapillai; Bell, Alexis T.] Univ Calif Berkeley, Dept Biomol & Chem Engn, Berkeley, CA 94720 USA. [Ho, Christopher R.; Bell, Alexis T.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Bell, AT (reprint author), Univ Calif Berkeley, Dept Biomol & Chem Engn, Berkeley, CA 94720 USA.; Bell, AT (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. EM bell@cchem.berkeley.edu OI Bell, Alexis/0000-0002-5738-4645 FU Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was funded by Director, Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The authors would like to thank Joseph Gomes for helpful discussions. NR 49 TC 11 Z9 11 U1 22 U2 53 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2155-5435 J9 ACS CATAL JI ACS Catal. PD FEB PY 2016 VL 6 IS 2 BP 939 EP 948 DI 10.1021/acscatal.5b02672 PG 10 WC Chemistry, Physical SC Chemistry GA DD2TK UT WOS:000369774900054 ER PT J AU Schaidle, JA Blackburn, J Farberow, CA Nash, C Steirer, KX Clark, J Robichaud, DJ Ruddy, DA AF Schaidle, Joshua A. Blackburn, Jeffrey Farberow, Carrie A. Nash, Connor Steirer, K. Xerxes Clark, Jared Robichaud, David J. Ruddy, Daniel A. TI Experimental and Computational Investigation of Acetic Acid Deoxygenation over Oxophilic Molybdenum Carbide: Surface Chemistry and Active Site Identity SO ACS CATALYSIS LA English DT Article DE molybdenum carbide; acetic acid; deoxygenation; bio-oil; vapor phase upgrading catalytic fast pyrolysis; oxygen vacancy; Bronsted acid ID WATER-GAS-SHIFT; UNSATURATED-HYDROCARBONS; SELECTIVE DEOXYGENATION; TUNGSTEN CARBIDE; ETHYLENE-GLYCOL; FORMIC-ACID; CATALYSTS; HYDRODEOXYGENATION; XPS; HYDROGENATION AB Ex situ catalytic fast pyrolysis (CFP) is a promising route for producing fungible biofuels; however, this process requires bifunctional catalysts that favor C-O bond cleavage, activate hydrogen at near atmospheric pressure and high temperature (350-500 degrees C), and are stable under high steam, low hydrogen-to-carbon environments. Recently, early transition-metal carbides have been reported to selectively cleave C-O bonds of alcohols, aldehydes, and oxygenated aromatics, yet there is limited understanding of the metal carbide surface chemistry under reaction conditions and the identity of the active sites for deoxygenation. In this paper, we evaluated molybdenum carbide (Mo2C) for the deoxygenation of acetic acid, an abundant component of biomass pyrolysis vapors, under ex situ CFP conditions, and we probed the Mo2C surface chemistry, identity of the active sites, and deoxygenation pathways using in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), X-ray photoelectron spectroscopy (XPS), and density functional theory (DFT) calculations. The Mo2C catalyst favored the production of acetaldehyde and ethylene from acetic acid over the temperature range of 250-400 degrees C, with decarbonylation pathways favored at temperatures greater than 400 degrees C. Little to no ethanol was observed due to the high activity of the carbide surface for alcohol dehydration. The Mo2C surface, which was at least partially oxidized following pretreatment and exposure to reaction conditions (possibly existing as an oxycarbide), possessed both metallic-like H-adsorption sites (i.e., exposed Mo and C) and Bronsted acidic surface hydroxyl sites, in a ratio of 1:8 metallic:acidic sites following pretreatment. The strength of the acidic sites was similar to that for H-Beta, H-Y, and H-X zeolites. Oxygen vacancy sites (exposed Mo sites) were also present under reaction conditions, inferred from DRIFTS results and calculated surface phase diagrams. It is proposed that C-O bond cleavage steps proceeded over the acidic sites or over the oxygen vacancy sites and that the deoxygenation rate may be limited by the availability of adsorbed hydrogen, due to the high surface coverage of oxygen under reaction conditions. Importantly, the reaction conditions (temperature and partial pressures of H-2 and H2O) had a strong effect on oxygen surface coverage, and accordingly, the relative concentrations of the different types of active sites, and could ultimately result in completely different reaction pathways under different reaction conditions. C1 [Schaidle, Joshua A.; Farberow, Carrie A.; Nash, Connor; Clark, Jared; Robichaud, David J.] Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO 80401 USA. [Blackburn, Jeffrey; Ruddy, Daniel A.] Natl Renewable Energy Lab, Chem & Nanosci Ctr, Golden, CO 80401 USA. [Steirer, K. Xerxes] Natl Renewable Energy Lab, Ctr Mat Sci, Golden, CO 80401 USA. RP Schaidle, JA (reprint author), Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO 80401 USA. EM Joshua.Schaidle@nrel.gov FU Laboratory Directed Research and Development Program at the National Renewable Energy Laboratory; Department of Energy Bioenergy Technologies Office [DE-AC36-08-GO28308] FX This work was supported by the Laboratory Directed Research and Development Program at the National Renewable Energy Laboratory and the Department of Energy Bioenergy Technologies Office under Contract no. DE-AC36-08-GO28308. The authors would also like to thank Mayank Behl for performing the NH3-TPD experiments. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes. NR 70 TC 7 Z9 7 U1 41 U2 112 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2155-5435 J9 ACS CATAL JI ACS Catal. PD FEB PY 2016 VL 6 IS 2 BP 1181 EP 1197 DI 10.1021/acscatal.5b01930 PG 17 WC Chemistry, Physical SC Chemistry GA DD2TK UT WOS:000369774900080 ER PT J AU Kauffman, DR Alfonso, D Tafen, D Lekse, J Wang, CJ Deng, XY Lee, J Jang, H Lee, JS Kumar, S Matranga, C AF Kauffman, Douglas R. Alfonso, Dominic Tafen, De Nyago Lekse, Jonathan Wang, Congjun Deng, Xingyi Lee, Junseok Jang, Hoyoung Lee, Jun-sik Kumar, Santosh Matranga, Christopher TI Electrocatalytic Oxygen Evolution with an Atomically Precise Nickel Catalyst SO ACS CATALYSIS LA English DT Article DE electrocatalysis; oxygen evolution reaction; water splitting density functional theory; atomically precise catalyst; nickel; organometallic ID X-RAY-ABSORPTION; WATER OXIDATION CATALYSIS; DENSITY-FUNCTIONAL THEORY; L-EDGE; ELECTRONIC-STRUCTURE; HYDROGEN-EVOLUTION; OXIDE SURFACES; CARBON-DIOXIDE; H-2 PRODUCTION; XPS SPECTRA AB The electrochemical oxygen evolution reaction (OER) is an important anodic process in water splitting and CO2 reduction applications. Precious metals including Ir, Ru. and Pt are traditional OER catalysts, but recent emphasis has been placed on finding less expensive, earth-abundant materials with high OER activity. Ni-based materials are promising next-generation OER catalysts because they show high reaction rates and good long-term stability. Unfortunately, most catalyst samples contain heterogeneous particle sizes and surface structures that produce a range of reaction rates and rate-determining steps. Here we use a combination of experimental and computational techniques to study the OER at a supported organometallic nickel complex with a precisely known crystal structure. The Ni-6(PET)(12) (PET = phenylethyl thiol) complex out performed bulk NiO and Pt and showed OER activity comparable to Ir. Density functional theory (DFT) analysis of electrochemical OER at a realistic Ni-6(SCH3)(12) model determined the Gibbs free energy change (Delta G) associated with each mechanistic step. This allowed computational prediction of potential determining steps and OER onset potentials that were in excellent agreement with experimentally determined values. Moreover, DFT found that small changes in adsorbate binding configuration can shift the potential determining step within the OER mechanism and drastically change onset potentials. Our work shows that atomically precise nanocatalysts like Ni-6(PET)(12) facilitate joint experimental and computational studies because experimentalists and theorists can study nearly identical systems. These types of efforts can identify atomic-level structure-property relationships that would be difficult to obtain with traditional heterogeneous catalyst samples. C1 [Kauffman, Douglas R.; Alfonso, Dominic; Tafen, De Nyago; Lekse, Jonathan; Wang, Congjun; Deng, Xingyi; Lee, Junseok; Kumar, Santosh; Matranga, Christopher] US DOE, Natl Energy Technol Lab, Pittsburgh, PA USA. [Tafen, De Nyago; Lekse, Jonathan; Wang, Congjun; Deng, Xingyi; Lee, Junseok] AECOM, Pittsburgh, PA USA. [Jang, Hoyoung; Lee, Jun-sik] SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA. RP Alfonso, D; Matranga, C (reprint author), US DOE, Natl Energy Technol Lab, Pittsburgh, PA USA. EM Dominic.Alfonso@NETL.DOE.GOV; Christopher.Matranga@NETL.DOE.GOV OI Deng, Xingyi/0000-0001-9109-1443 FU National Energy Technology Laboratory's ongoing research under the RES contract [DE-FE0004000]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-76SF00515]; Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division [DE-AC02-76SF00515]; agency of the United States Government FX Portions of this work were performed in support of the National Energy Technology Laboratory's ongoing research under the RES contract DE-FE0004000. Use of the Stanford Synchrotron Radiation Lightsource (BL 8-2), SLAG National Accelerator Laboratory, is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-76SF00515. J.-S.L. acknowledges support by the Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, under contract DE-AC02-76SF00515. This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed or represents that its use would not infringe privately owned rights. NR 81 TC 7 Z9 7 U1 35 U2 156 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2155-5435 J9 ACS CATAL JI ACS Catal. PD FEB PY 2016 VL 6 IS 2 BP 1225 EP 1234 DI 10.1021/acscatal.5b02633 PG 10 WC Chemistry, Physical SC Chemistry GA DD2TK UT WOS:000369774900084 ER PT J AU Foo, GS Rogers, AK Yung, MM Sievers, C AF Foo, Guo Shiou Rogers, Allyson K. Yung, Matthew M. Sievers, Carsten TI Steric Effect and Evolution of Surface Species in the Hydrodeoxygenation of Bio-Oil Model Compounds over Pt/HBEA SO ACS CATALYSIS LA English DT Article DE deactivation; coke formation; polynuclear aromatics; operando FTIR spectroscopy; biomass ID VAPOR-PHASE HYDRODEOXYGENATION; FAST PYROLYSIS OIL; CATALYTIC HYDRODEOXYGENATION; M-CRESOL; PT/GAMMA-AL2O3 CATALYSTS; PHENOLIC-COMPOUNDS; OXIDE CATALYSTS; GUAIACOL; ZEOLITES; BIOMASS AB The formation and evolution of surface species during the hydrodeoxygenation of various bio-oil model compounds (anisole, m-cresol, and guaiacol) over Pt/HBEA and HBEA is investigated. Anisole and m-cresol form phenate and cresolate species on Lewis acid sites, while guaiacol can chemisorb more strongly forming bidentate surface species. The position of functional groups within these molecules has a strong influence on the degree of hydrodeoxygenation over Pt/HBEA, due to steric hindrance of the C-O scission step. Consequently, the highest yield of deoxygenated products is formed over anisole, followed by m-cresol and guaiacol. No deoxygenation products are produced from HBEA. On the basis of operando transmission FTIR spectroscopy experiments at 400 degrees C and 1 atm of hydrogen pressure, a timeline for the formation of polynuclear aromatics and graphitic coke from aromatics with different substituents is established for Pt/HBEA. The early formation of relatively small amounts of graphitic coke and polynuclear aromatics results in pronounced catalyst deactivation. In addition, the formation of strongly adsorbed monomeric species appears to restrict transport processes within the zeolite pores and contribute to deactivation. C1 [Foo, Guo Shiou; Rogers, Allyson K.; Sievers, Carsten] Georgia Inst Technol, Sch Chem & Biomol Engn, 311 Ferst Dr NW, Atlanta, GA 30332 USA. [Yung, Matthew M.] Natl Renewable Energy Lab, 15013 Denver West Pkwy, Golden, CO 80401 USA. RP Sievers, C (reprint author), Georgia Inst Technol, Sch Chem & Biomol Engn, 311 Ferst Dr NW, Atlanta, GA 30332 USA. EM carsten.sievers@chbe.gatech.edu OI Foo, Guo Shiou/0000-0003-0807-5878 FU U.S. Department of Energy [DE-AC36-08-GO28308] FX The Renewable Bioproducts Institute (RBI) is acknowledged for the use of its facilities. Funding from the U.S. Department of Energy (grant DE-AC36-08-GO28308) is gratefully acknowledged. The authors thank Professor Fabio Ribeiro for providing the CAD drawings of the operando IR cell, as well as Jeffrey Andrews and Brad Parker for constructing the IR cell body. We thank Prof. Andreas Heyden for a helpful discussion. NR 87 TC 9 Z9 9 U1 19 U2 57 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2155-5435 J9 ACS CATAL JI ACS Catal. PD FEB PY 2016 VL 6 IS 2 BP 1292 EP 1307 DI 10.1021/acscatal.5b02684 PG 16 WC Chemistry, Physical SC Chemistry GA DD2TK UT WOS:000369774900092 ER PT J AU Kruger, JS Cleveland, NS Zhang, ST Katahira, R Black, BA Chupka, GM Lammens, T Hamilton, PG Biddy, MJ Beckham, GT AF Kruger, Jacob S. Cleveland, Nicholas S. Zhang, Shuting Katahira, Rui Black, Brenna A. Chupka, Gina M. Lammens, Tijs Hamilton, Phillip G. Biddy, Mary J. Beckham, Gregg T. TI Lignin Depolymerization with Nitrate-Intercalated Hydrotalcite Catalysts SO ACS CATALYSIS LA English DT Article DE lignin valorization; lignin nitration; layered double hydroxide; catalyst recycle; catalyst regeneration ID O BOND-CLEAVAGE; CLEAN FRACTIONATION PRETREATMENT; HETEROGENEOUS NICKEL-CATALYSTS; HIGH-PRESSURE HYDROGENATION; ARYLATHERN DURCH ALKALI; ARYL-ETHER CLEAVAGE; POROUS METAL-OXIDES; MODEL COMPOUNDS; ORGANOSOLV LIGNIN; EXCHANGE PROPERTIES AB Hydrotalcites (HTCs) exhibit multiple adjustable parameters to tune catalytic activity, including interlayer anion composition, metal hydroxide layer composition, and catalyst preparation methods. Here, we report the influence of several of these parameters on beta-O-4 bond scission in a lignin model dimer, 2-phenoxy-l-phenethanol (PE), to yield phenol and acetophenone. We find that the presence of both basic and NO3- anions in the interlayer increases the catalyst activity by 2-3-fold. In contrast, other anions or transition metals do not enhance catalytic activity in comparison to blank HTC. The catalyst is not active for C-C bond cleavage on lignin model dimers and has no effect on dimers without an alpha-OH group. Most importantly, the catalyst is highly active in the depolymerization of two process-relevant lignin substrates, producing a significant amount of low-molecular-weight aromatic species. The catalyst can be recycled until the NO3- anions are depleted, after which the activity can be restored by replenishing the NO3- reservoir and regenerating the hydrated HTC structure. These results demonstrate a route to selective lignin depolymerization in a heterogeneous system with an inexpensive, earth-abundant, commercially relevant, and easily regenerated catalyst. C1 [Kruger, Jacob S.; Cleveland, Nicholas S.; Zhang, Shuting; Katahira, Rui; Black, Brenna A.; Biddy, Mary J.; Beckham, Gregg T.] Natl Renewable Energy Lab, Natl Bioenergy Ctr, 15013 Denver West Pkwy, Golden, CO 80401 USA. [Chupka, Gina M.] Natl Renewable Energy Lab, Hydrogen & Transportat Syst Ctr, 15013 Denver West Pkwy, Golden, CO 80401 USA. [Lammens, Tijs] Shell Global Solut Inc, Shell Technol Ctr, Houston, TX 77082 USA. [Hamilton, Phillip G.] Shell Global Solut Inc, Shell Technol Ctr, Amsterdam, Netherlands. RP Biddy, MJ; Beckham, GT (reprint author), Natl Renewable Energy Lab, Natl Bioenergy Ctr, 15013 Denver West Pkwy, Golden, CO 80401 USA. EM mary.biddy@nrel.gov; gregg.beckham@nrel.gov FU NREL CRADA [13-513]; Shell Global Solutions, Inc.; U.S. Department of Energy Bioenergy Technologies Office FX This work was funded by NREL CRADA 13-513 with Shell Global Solutions, Inc., and by the U.S. Department of Energy Bioenergy Technologies Office. The authors are grateful to Dr. Steven Chmely for synthesis of deuterated PE, to Kelsey Ramirez for assistance with HPLC analysis, to Melvin Tucker, Michael Resch, Xiaowen Chen, and Erik Kuhn for preparation of lignin substrates (DDE and DAP), and to Seonah Kim and Roberto Rinaldi for discussions regarding potential mechanisms. NR 89 TC 6 Z9 6 U1 27 U2 79 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2155-5435 J9 ACS CATAL JI ACS Catal. PD FEB PY 2016 VL 6 IS 2 BP 1316 EP 1328 DI 10.1021/acscatal.5b02062 PG 13 WC Chemistry, Physical SC Chemistry GA DD2TK UT WOS:000369774900094 ER PT J AU Sener, C Wesley, TS Alba-Rubio, AC Kumbhalkar, MD Hakim, SH Ribeiro, FH Miller, JT Dumesic, JA AF Sener, Canan Wesley, Thejas S. Alba-Rubio, Ana C. Kumbhalkar, Mrunmayi D. Hakim, Sikander H. Ribeiro, Fabio H. Miller, Jeffrey T. Dumesic, James A. TI PtMo Bimetallic Catalysts Synthesized by Controlled Surface Reactions for Water Gas Shift SO ACS CATALYSIS LA English DT Article DE bimetallic catalysts; controlled surface reactions; water gas shift; platinum; molybdenum; support effect; X-ray absorption spectroscopy; STEM/EDS ID ORGANOMETALLIC CHEMISTRY; REACTION-KINETICS; PLATINUM CATALYSTS; REDOX REACTIONS; ACTIVE-SITE; METALS; CERIA; NANOPARTICLES; DEPOSITION; COMPLEXES AB Supported PtMo bimetallic catalysts were prepared by controlled surface reactions (CSR) and studied for water gas shift (WGS) at 543 IC Carbon and silica supports were used for the preparation of monometallic Pt catalysts, and Mo was deposited onto these catalysts by reaction with cycloheptatriene molybdenum tricarbonyl ((C7H(8))Mo(CO)(3)). Catalysts were characterized by CO chemisorption, inductively coupled plasma-atomic emission spectroscopy (ICP-AES), STEM/EDS, and XAS analysis. We report that carbon supported Pt nanoparticles are saturated with Mo species at a Mo:Pt atomic ratio of 0.32. Molybdenum has a strong promotional effect in these catalysts, increasing the TOF by up to a factor of more than 4000. Silica-supported catalysts were found to be more active, but the TOF promotional effect of Mo was smaller than for the carbon-supported catalysts at 15. EDS analyses and activity studies showed that the formation of bimetallic catalysts was therefore more efficient using the carbon support. The active sites for WGS are suggested to be at the interface between Pt atoms and Mo moieties that are possibly in an oxidized form. C1 [Sener, Canan; Wesley, Thejas S.; Alba-Rubio, Ana C.; Kumbhalkar, Mrunmayi D.; Hakim, Sikander H.; Dumesic, James A.] Univ Wisconsin, Dept Chem & Biol Engn, 1415 Engn Dr, Madison, WI 53706 USA. [Ribeiro, Fabio H.] Purdue Univ, Sch Chem Engn, 480 Stadium Mall Dr, W Lafayette, IN 47907 USA. [Miller, Jeffrey T.] Argonne Natl Lab, Chem Sci & Energy Div, 9700 S Cass Ave,Bldg 200, Argonne, IL 60439 USA. RP Dumesic, JA (reprint author), Univ Wisconsin, Dept Chem & Biol Engn, 1415 Engn Dr, Madison, WI 53706 USA. EM jdumesic@wisc.edu RI BM, MRCAT/G-7576-2011 FU U.S. Department of Energy, Office of Basic Energy Sciences [DE-FG02-84ER13183]; Great Lakes Bioenergy Research Center (GLBRC) [PRJ-65UI]; University of Wisconsin-Madison Holstrom Environmental Scholarship; Hilldale Undergraduate Research Fellowship; U.S. DOE [DE-AC02-06CH11357]; University of Wisconsin Materials Research Science and Engineering Center [DMR-1121288]; Nanoscale Science and Engineering Center [DMR-0832760] FX This material is based upon work supported by the U.S. Department of Energy, Office of Basic Energy Sciences (DE-FG02-84ER13183, and the Great Lakes Bioenergy Research Center (GLBRC) (PRJ-65UI). T.S.W. acknowledges support from the University of Wisconsin-Madison Holstrom Environmental Scholarship and Hilldale Undergraduate Research Fellowship. We are thankful for the use of the Advanced Photon Source, an Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory, supported by the U.S. DOE under Contract DE-AC02-06CH11357. The authors acknowledge use of facilities and instrumentation supported by the University of Wisconsin Materials Research Science and Engineering Center (DMR-1121288) and Nanoscale Science and Engineering Center (DMR-0832760. The authors acknowledge Thomas J. Schwartz for insightful discussions, and also acknowledge Ali Hussain Motagamwala, Duygu Gerceker and Yifei Liu for their help in obtaining XAS data. NR 43 TC 7 Z9 7 U1 21 U2 74 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2155-5435 J9 ACS CATAL JI ACS Catal. PD FEB PY 2016 VL 6 IS 2 BP 1334 EP 1344 DI 10.1021/acscatal.5b02028 PG 11 WC Chemistry, Physical SC Chemistry GA DD2TK UT WOS:000369774900096 ER PT J AU Morgan, K Touitou, J Choi, JS Coney, C Hardacre, C Pihl, JA Stere, CE Kim, MY Stewart, C Goguet, A Partridge, WP AF Morgan, Kevin Touitou, Jamal Choi, Jae -Soon Coney, Ciaran Hardacre, Christopher Pihl, Josh A. Stere, Cristina E. Kim, Mi-Young Stewart, Caomhan Goguet, Alexandre Partridge, William P. TI Evolution and Enabling Capabilities of Spatially Resolved Techniques for the Characterization of Heterogeneously Catalyzed Reactions SO ACS CATALYSIS LA English DT Article DE spatial resolution; catalyst characterization; monoliths; packed beds; electromagnetic probes; physical probes ID LEAN NOX TRAP; FIXED-BED REACTOR; X-RAY-ABSORPTION; FREQUENCY-DOMAIN REFLECTOMETRY; STORAGE-REDUCTION CATALYST; LASER-INDUCED FLUORESCENCE; SITU PROBE TECHNIQUES; SHORT-CONTACT TIMES; GAS-PHASE REACTIONS; HETTEL ET-AL AB The development and optimization of catalysts and catalytic processes requires knowledge of reaction kinetics and mechanisms. In traditional catalyst kinetic characterization, the gas composition is known at the inlet, and the exit flow is measured to determine changes in concentration. As such, the progression of the chemistry within the catalyst is not known. Technological advances in electromagnetic and physical probes have made visualizing the evolution of the chemistry within catalyst samples a reality, as part of a methodology commonly known as spatial resolution. Herein, we discuss and evaluate the development of spatially resolved techniques, including the evolutions and achievements of this growing area of catalytic research. The impact of such techniques is discussed in terms of the invasiveness of physical probes on catalytic systems, as well as how experimentally obtained spatial profiles can be used in conjunction with kinetic modeling. Furthermore, some aims and aspirations for further evolution of spatially resolved techniques are considered. C1 [Morgan, Kevin] Queens Univ Belfast, Sch Mech & Aerosp Engn, Ashby Bldg,Stranmillis Rd, Belfast BT9 5AH, Antrim, North Ireland. [Touitou, Jamal] King Abdulaziz Univ, Dept Chem & Mat Engn, Jeddah 21413, Saudi Arabia. [Choi, Jae -Soon; Pihl, Josh A.; Kim, Mi-Young; Partridge, William P.] Oak Ridge Natl Lab, Fuels Engines & Emiss Res Ctr, POB 2008,MS-6472, Oak Ridge, TN 37831 USA. [Coney, Ciaran; Hardacre, Christopher; Stere, Cristina E.; Stewart, Caomhan; Goguet, Alexandre] Queens Univ Belfast, Sch Chem & Chem Engn, David Keir Bldg,Stranmillis Rd, Belfast BT9 5AG, Antrim, North Ireland. RP Morgan, K (reprint author), Queens Univ Belfast, Sch Mech & Aerosp Engn, Ashby Bldg,Stranmillis Rd, Belfast BT9 5AH, Antrim, North Ireland.; Partridge, WP (reprint author), Oak Ridge Natl Lab, Fuels Engines & Emiss Res Ctr, POB 2008,MS-6472, Oak Ridge, TN 37831 USA.; Goguet, A (reprint author), Queens Univ Belfast, Sch Chem & Chem Engn, David Keir Bldg,Stranmillis Rd, Belfast BT9 5AG, Antrim, North Ireland. EM kmorgan08@qub.ac.uk; a.goguet@qub.ac.uk; partridgewp@ornl.gov RI Morgan, Kevin/B-6056-2012 OI Morgan, Kevin/0000-0002-6648-2546 FU EPSRC UK [EP/F026390/1, EP/G02152X/1, EP/K014714/1]; Johnson Matthey under a CASE award; Department of Employment and Learning NI; U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office FX The authors of Queen's University Belfast wish to thank EPSRC UK for funding under the First Grant Scheme (AG; EP/F026390/1), and the CASTech (EP/G02152X/1) and UK Catalysis Hub (EP/K014714/1) projects. Funding of studentships by EPSRC UK and Johnson Matthey under a CASE award (CC), and the Department of Employment and Learning NI (CS) are also acknowledged. W.P.P. thanks Professors William Epling, Michael Harold, Raimund Horn, Petr KoCi, and Louise Olsson, as well as Neal Currier and Melanie DeBusk for helpful discussions. ORNL's research and contributions were sponsored by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office, with Gurpreet Singh, Ken Howden, and Leo Breton as the Program Managers. The authors also wish to express gratitude to graphic artist Colby A. Earles of ORNL for the enhancement of the cover art design. NR 187 TC 5 Z9 5 U1 9 U2 21 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2155-5435 J9 ACS CATAL JI ACS Catal. PD FEB PY 2016 VL 6 IS 2 BP 1356 EP 1381 DI 10.1021/acscatal.5b02602 PG 26 WC Chemistry, Physical SC Chemistry GA DD2TK UT WOS:000369774900099 ER PT J AU Homel, MA Guilkey, JE Brannon, RM AF Homel, Michael A. Guilkey, James E. Brannon, Rebecca M. TI Continuum effective-stress approach for high-rate plastic deformation of fluid-saturated geomaterials with application to shaped-charge jet penetration SO ACTA MECHANICA LA English DT Article ID MATERIAL-POINT METHOD; BEREA SANDSTONE; GRANULAR-MATERIALS; POROUS MATERIALS; MODEL; MEDIA; BONE; POROMECHANICS; FORMULATION; SIMULATION AB A practical engineering approach for modeling the constitutive response of fluid-saturated porous geomaterials is developed and applied to shaped-charge jet penetration in wellbore completion. An analytical model of a saturated thick spherical shell provides valuable insight into the qualitative character of the elastic-plastic response with an evolving pore fluid pressure. However, intrinsic limitations of such a simplistic theory are discussed to motivate the more realistic semi-empirical model used in this work. The constitutive model is implemented into a material point method code that can accommodate extremely large deformations. Consistent with experimental observations, the simulations of wellbore perforation exhibit appropriate dependencies of depth of penetration on pore pressure and confining stress. C1 [Homel, Michael A.; Guilkey, James E.; Brannon, Rebecca M.] Univ Utah, Dept Mech Engn, 2134 MEB,50 S Cent Campus Dr, Salt Lake City, UT 84112 USA. [Homel, Michael A.] Lawrence Livermore Natl Lab, 4000 East Ave, Livermore, CA 94550 USA. RP Homel, MA (reprint author), Univ Utah, Dept Mech Engn, 2134 MEB,50 S Cent Campus Dr, Salt Lake City, UT 84112 USA.; Homel, MA (reprint author), Lawrence Livermore Natl Lab, 4000 East Ave, Livermore, CA 94550 USA. EM homel1@llnl.gov; james.guilkey@utah.edu; Rebecca.Brannon@utah.edu FU Schlumberger Technology Corporation; ONR MURI [N00014-11-1-0691] FX Primary support from Schlumberger Technology Corporation is gratefully acknowledged. Valuable assistance in developing the Arenisca constitutive model was provided by James W. Colovos. Interactions with other University of Utah researchers under ONR MURI Grant N00014-11-1-0691 are also acknowledged. Essential hardware support was provided by the University of Utah's Center for High Performance Computing. NR 66 TC 2 Z9 2 U1 3 U2 16 PU SPRINGER WIEN PI WIEN PA SACHSENPLATZ 4-6, PO BOX 89, A-1201 WIEN, AUSTRIA SN 0001-5970 EI 1619-6937 J9 ACTA MECH JI Acta Mech. PD FEB PY 2016 VL 227 IS 2 BP 279 EP 310 DI 10.1007/s00707-015-1407-2 PG 32 WC Mechanics SC Mechanics GA DD5VV UT WOS:000369993700001 ER PT J AU Pasebani, S Charit, I Butt, DP Cole, JI Wu, YQ Burns, J AF Pasebani, Somayeh Charit, Indrajit Butt, Darryl P. Cole, James I. Wu, Yaqiao Burns, Jatuporn TI Sintering Behavior of Lanthana-Bearing Nanostructured Ferritic Steel Consolidated via Spark Plasma Sintering SO ADVANCED ENGINEERING MATERIALS LA English DT Article ID MECHANICAL-PROPERTIES; OXIDE PARTICLES; ALLOYS; MICROSTRUCTURE AB Elemental powder mixture of Fe-14Cr-1Ti-0.3Mo-0.5La(2)O(3) (wt%) composition is mechanically alloyed for different milling durations (5, 10 and 20h) and subsequently consolidated via spark plasma sintering under vacuum at 950 degrees C for 7min. The effects of milling time on the densification behavior and density/microhardness are studied. The sintering activation energy is found to be close to that of grain boundary diffusion. The bimodal grain structure created in the milled and sintered material is found to be a result of milling and not of sintering alone. The oxide particle diameter varies between 2 and 70nm. Faceted precipitates smaller than 10nm in diameter are found to be mostly La-Ti-Cr-enriched complex oxides that restrict further recrystallization and related phenomena. C1 [Pasebani, Somayeh; Charit, Indrajit] Univ Idaho, Dept Chem & Mat Engn, Moscow, ID 83844 USA. [Butt, Darryl P.; Wu, Yaqiao; Burns, Jatuporn] Boise State Univ, Dept Mat Sci & Engn, Boise, ID 83725 USA. [Cole, James I.] Idaho Natl Lab, Idaho Falls, ID 83401 USA. [Pasebani, Somayeh; Charit, Indrajit; Butt, Darryl P.; Cole, James I.; Wu, Yaqiao; Burns, Jatuporn] Ctr Adv Energy Studies, Idaho Falls, ID 83401 USA. RP Charit, I (reprint author), Univ Idaho, Dept Chem & Mat Engn, Moscow, ID 83844 USA. EM icharit@uidaho.edu OI Cole, James/0000-0003-1178-5846 FU Laboratory Directed Research and Development Program of Idaho National Laboratory [DE-AC07-05ID14517]; Advanced Test Reactor National Scientific User Facility (ATR NSUF) FX This work was supported partly by the Laboratory Directed Research and Development Program of Idaho National Laboratory, Contract DE-AC07-05ID14517, and partly by a grant of the Advanced Test Reactor National Scientific User Facility (ATR NSUF). The help of the Boise State University (BSU) and the Center for Advanced Energy Studies (CAES) staff is gratefully acknowledged. Lastly, we would like to acknowledge the manuscript reviewers for their helpful comments and suggestions. NR 32 TC 0 Z9 0 U1 1 U2 4 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 1438-1656 EI 1527-2648 J9 ADV ENG MATER JI Adv. Eng. Mater. PD FEB PY 2016 VL 18 IS 2 BP 324 EP 332 DI 10.1002/adem.201500294 PG 9 WC Materials Science, Multidisciplinary SC Materials Science GA DD8AV UT WOS:000370147000019 ER PT J AU Brodwin, M McDonald, M Gonzalez, AH Stanford, SA Eisenhardt, PR Stern, D Zeimann, GR AF Brodwin, Mark McDonald, Michael Gonzalez, Anthony H. Stanford, S. A. Eisenhardt, Peter R. Stern, Daniel Zeimann, Gregory R. TI IDCS J1426.5+3508: THE MOST MASSIVE GALAXY CLUSTER AT z > 1.5 SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: clusters: individual (IDCS J1426.5+3508); galaxies: clusters: intracluster medium; galaxies: high-redshift; large-scale structure of universe; X-rays: galaxies: clusters ID SOUTH-POLE TELESCOPE; ACTIVE GALACTIC NUCLEI; IRAC SHALLOW SURVEY; COOL-CORE CLUSTER; SPT-SZ SURVEY; STAR-FORMATION; SPECTROSCOPIC CONFIRMATION; COSMOLOGICAL IMPLICATIONS; HIGH-REDSHIFT; FIELD SURVEY AB We present a deep (100 ks) Chandra observation of IDCS J1426.5+3508, a spectroscopically confirmed, infrared-selected galaxy cluster at z = 1.75. This cluster is the most massive galaxy cluster currently known at z > 1.5, based on existing Sunyaev-Zel'dovich (SZ) and gravitational lensing detections. We confirm this high mass via a variety of X-ray scaling relations, including T-X-M, f(g)-M, Y-X-M, and L-X-M, finding a tight distribution of masses from these different methods, spanning M-500 = 2.3-3.3 x 10(14)M(circle dot), with the low-scatter Y-X-based mass M-500,M-YX = 2.6(-0.5)(+1.5) x 10(14)M(circle dot). IDCS J1426.5+3508 is currently the only cluster at z > 1.5 for which X-ray, SZ, and gravitational lensing mass estimates exist, and these are in remarkably good agreement. We find a relatively tight distribution of the gas-to-total mass ratio, employing total masses from all of the aforementioned indicators, with values ranging from f(gas,500) = 0.087-0.12. We do not detect metals in the intracluster medium (ICM) of this system, placing a 2 sigma upper limit of Z(r < R-500) < 0.18 Z(circle dot). This upper limit on the metallicity suggests that this system may still be in the process of enriching its ICM. The cluster has a dense, low-entropy core, offset by similar to 30 kpc from the X-ray centroid, which makes it one of the few "cool core" clusters discovered at z > 1, and the first known cool core cluster at z > 1.2. The offset of this core from the large-scale centroid suggests that this cluster has had a relatively recent (less than or similar to 500 Myr) merger/interaction with another massive system. C1 [Brodwin, Mark] Univ Missouri, Dept Phys & Astron, Kansas City, MO 64110 USA. [McDonald, Michael] MIT, Kavli Inst Astrophys & Space Res, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Gonzalez, Anthony H.] Univ Florida, Dept Astron, Gainesville, FL 32611 USA. [Stanford, S. A.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Stanford, S. A.] Lawrence Livermore Natl Lab, Inst Geophys & Planetary Phys, Livermore, CA 94551 USA. [Eisenhardt, Peter R.; Stern, Daniel] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Zeimann, Gregory R.] Penn State Univ, Dept Astron & Astrophys, 525 Davey Lab, University Pk, PA 16802 USA. RP Brodwin, M (reprint author), Univ Missouri, Dept Phys & Astron, Kansas City, MO 64110 USA. FU National Aeronautics and Space Administration (NASA) [GO3-14135A]; NASA [NAS8-03060, NAS 5-26555]; NASA through Space Telescope Science Institute [11663, 12203, 12994] FX Support for this work was provided by the National Aeronautics and Space Administration (NASA) through Chandra Award Number GO3-14135A issued the the Chandra X-ray Observatory Center, which is operated by the Smithsonian Astrophysical Observatory for and behalf of NASA under contract NAS8-03060. This work is based in part on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Support for HST programs 11663, 12203 and 12994 were provided by NASA through a grant from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. NR 65 TC 4 Z9 4 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 1 PY 2016 VL 817 IS 2 AR 122 DI 10.3847/0004-637X/817/2/122 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DC7YU UT WOS:000369437900039 ER PT J AU Colgan, J Kilcrease, DP Magee, NH Sherrill, ME Abdallah, J Hakel, P Fontes, CJ Guzik, JA Mussack, KA AF Colgan, J. Kilcrease, D. P. Magee, N. H. Sherrill, M. E. Abdallah, J., Jr. Hakel, P. Fontes, C. J. Guzik, J. A. Mussack, K. A. TI A NEW GENERATION OF LOS ALAMOS OPACITY TABLES SO ASTROPHYSICAL JOURNAL LA English DT Article DE opacity; plasmas ID FREE ABSORPTION-COEFFICIENT; LIGHT-ELEMENT OPACITIES; EQUATION-OF-STATE; ELECTRON-ION PLASMAS; FREE GAUNT FACTOR; STELLAR ENVELOPES; SOLAR MODELS; COMPLEX ASTEROSEISMOLOGY; ASTROPHYSICAL INTEREST; CHEMICAL-COMPOSITION AB We present a new, publicly available set of Los Alamos OPLIB opacity tables for the elements hydrogen through zinc. Our tables are computed using the Los Alamos ATOMIC opacity and plasma modeling code, and make use of atomic structure calculations that use fine-structure detail for all the elements considered. Our equation of state model, known as ChemEOS, is based on the minimization of free energy in a chemical picture and appears to be a reasonable and robust approach to determining atomic state populations over a wide range of temperatures and densities. In this paper we discuss in detail the calculations that we have performed for the 30 elements considered, and present some comparisons of our monochromatic opacities with measurements and other opacity codes. We also use our new opacity tables in solar modeling calculations and compare and contrast such modeling with previous work. C1 [Colgan, J.; Kilcrease, D. P.; Magee, N. H.; Sherrill, M. E.; Abdallah, J., Jr.; Hakel, P.; Fontes, C. J.; Guzik, J. A.; Mussack, K. A.] Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. RP Colgan, J (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. OI Hakel, Peter/0000-0002-7936-4231; Kilcrease, David/0000-0002-2319-5934 FU Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy [DE-AC52-06NA25396] FX The Los Alamos National Laboratory is operated by Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under Contract No. DE-AC52-06NA25396. We thank P. Walczak, who helped prepare the ATOMIC and OPAL tables for the solar model results presented here. We obtained LLNL opacities from the Lawrence Livermore National Laboratory OPAL Opacity Web site: http://opalopacity.llnl.gov/opal.html. NR 85 TC 12 Z9 12 U1 1 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 1 PY 2016 VL 817 IS 2 AR 116 DI 10.3847/0004-637X/817/2/116 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DC7YU UT WOS:000369437900033 ER PT J AU Jee, MJ Dawson, WA Stroe, A Wittman, D van Weeren, RJ Bruggen, M Bradac, M Rottgering, H AF Jee, M. James Dawson, William A. Stroe, Andra Wittman, David van Weeren, Reinout J. Brueggen, Marcus Bradac, Marusa Rottgering, Huub TI MC2: MAPPING THE DARK MATTER DISTRIBUTION OF THE "TOOTHBRUSH" CLUSTER RX J0603.3+4214 WITH HUBBLE SPACE TELESCOPE AND SUBARU WEAK LENSING SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmology: observations; dark matter; galaxies: clusters: individual (RX J0603.3+4214); galaxies: high-redshift; gravitational lensing: weak; X-rays: galaxies: clusters ID DIFFUSE RADIO-EMISSION; MERGING GALAXY CLUSTER; EL GORDO; PARTICLE-ACCELERATION; CIZA J2242.8+5301; RELICS; MERGERS; CORE; LUMINOSITY; COSMOLOGY AB The galaxy cluster RX J0603.3+4214. at z-0.225 is one of the rarest clusters boasting an extremely large (similar to 2 Mpc) radio. relic. Because of the remarkable morphology of the relic, the cluster is nicknamed the. "Toothbrush Cluster." Although the cluster's underlying mass distribution is one of the critical pieces of information needed to reconstruct the merger scenario responsible for the puzzling radio. relic morphology, its proximity to the Galactic plane b similar to 10 degrees has imposed significant observational challenges. We present a high-resolution weak-lensing study of the cluster with Subaru/Suprime Cam and Hubble Space Telescope imaging data. Our mass reconstruction reveals that the cluster is composed of complicated dark matter substructures closely tracing the galaxy distribution, in contrast, however, with the relatively simple binary X-ray morphology. Nevertheless, we find that the cluster mass is still dominated by the two most massive clumps aligned north-south with a similar to 3: 1 mass ratio (M-200 = 6.29(-1.62)(+2.24) x 10(14) M-circle dot and 1.98(-0.74)(+1.24) x 10(14) M-circle dot for the northern and southern clumps, respectively). The southern mass peak is similar to 2' offset toward the south with respect to the corresponding X-ray peak, which has a "bullet"-like morphology pointing south. Comparison of the current weak-lensing result with the X-ray, galaxy, and radio. relic suggests that perhaps the dominant mechanism responsible for the observed relic may be a highspeed collision of the two most massive subclusters, although the peculiarity of the morphology necessitates involvement of additional subclusters. Careful numerical simulations should follow in order to obtain more complete understanding of the merger scenario utilizing all existing observations. C1 [Jee, M. James] Yonsei Univ, Dept Astron, 50 Yonsei Ro, Seoul 03722, South Korea. [Jee, M. James] Yonsei Univ, Ctr Galaxy Evolut Res, 50 Yonsei Ro, Seoul 03722, South Korea. [Jee, M. James; Wittman, David; Bradac, Marusa] Univ Calif Davis, Dept Phys, One Shields Ave, Davis, CA 95616 USA. [Dawson, William A.] Lawrence Livermore Natl Lab, POB 808 L-210, Livermore, CA 94551 USA. [Stroe, Andra; Rottgering, Huub] Leiden Univ, Leiden Observ, POB 9513, NL-2300 RA Leiden, Netherlands. [van Weeren, Reinout J.] Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. [Brueggen, Marcus] Hamburger Sternwarte, Gojenbergsweg 112, D-21029 Hamburg, Germany. RP Jee, MJ (reprint author), Yonsei Univ, Dept Astron, 50 Yonsei Ro, Seoul 03722, South Korea.; Jee, MJ (reprint author), Yonsei Univ, Ctr Galaxy Evolut Res, 50 Yonsei Ro, Seoul 03722, South Korea.; Jee, MJ (reprint author), Univ Calif Davis, Dept Phys, One Shields Ave, Davis, CA 95616 USA. OI van Weeren, Reinout/0000-0002-0587-1660 FU NASA through a grant from the Space Telescope Science Institute [HST-GO-13343.01-A]; NRF of Korea; NWO top subsidy [614.001.006]; European Research Council under the European Unions Seventh Framework Programme (FP)/ERC Advanced Grant [NewClusters-321271]; U.S. DOE [DE-AC52-07NA27344] FX Support for Program number HST-GO-13343.01-A was provided by NASA through a grant from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Incorporated, under NASA contract NAS5-26555. M.J.J. acknowledges support from NRF of Korea to CGER. A.S. acknowledges financial support from an NWO top subsidy (614.001.006). H.R. gratefully acknowledges support from the European Research Council under the European Unions Seventh Framework Programme (FP/2007-2013)/ERC Advanced Grant NewClusters-321271. Part of this work was performed under the auspices of the U.S. DOE by LLNL under Contract DE-AC52-07NA27344. NR 56 TC 2 Z9 2 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 1 PY 2016 VL 817 IS 2 AR 179 DI 10.3847/0004-637X/817/2/179 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DC7YU UT WOS:000369437900096 ER PT J AU Lee, KG Hennawi, JF White, M Prochaska, JX Font-Ribera, A Schlegel, DJ Rich, RM Suzuki, N Stark, CW Le Fevre, O Nugent, PE Salvato, M Zamorani, G AF Lee, Khee-Gan Hennawi, Joseph F. White, Martin Prochaska, J. Xavier Font-Ribera, Andreu Schlegel, David J. Rich, R. Michael Suzuki, Nao Stark, Casey W. Le Fevre, Olivier Nugent, Peter E. Salvato, Mara Zamorani, Gianni TI SHADOW OF A COLOSSUS: A z=2.44 GALAXY PROTOCLUSTER DETECTED IN 3D Ly alpha FOREST TOMOGRAPHIC MAPPING OF THE COSMOS FIELD SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmology: observations; galaxies: clusters: general; galaxies: high-redshift; intergalactic medium; quasars: absorption lines; techniques: spectroscopic ID BARYON ACOUSTIC-OSCILLATIONS; TEMPERATURE-DENSITY RELATION; FRAME ULTRAVIOLET-SPECTRA; HUBBLE-SPACE-TELESCOPE; LARGE-SCALE STRUCTURE; INTERGALACTIC MEDIUM; TRANSMITTED FLUX; REDSHIFT SURVEY; PROTO-CLUSTERS; ABSORPTION AB Using moderate-resolution optical spectra from 58 background Lyman-break galaxies and quasars at z similar to 2.3-3 within a 11'.5 x 13'.5 area of the COSMOS field (similar to 1200 deg(-2) projected area density or similar to 2.4 h(-1) Mpc mean transverse separation), we reconstruct a 3D tomographic map of the foreground Ly alpha forest absorption at 2.2 < z < 2.5 with an effective smoothing scale of is an element of(3D) approximate to 2.5 h(-1) Mpc comoving. Comparing with 61 coeval galaxies with spectroscopic redshifts in the same volume, we find that the galaxy positions are clearly biased toward regions with enhanced intergalactic medium (IGM) absorption in the tomographic map. We find an extended IGM overdensity with deep absorption troughs at z = 2.45 associated with a recently discovered galaxy protocluster at the same redshift. Based on simulations matched to our data, we estimate the enclosed dark matter mass within this IGM overdensity to be M-dm(z = 2.45) = (1.1 +/- 0.6) x 10(14) h M-1(circle dot), and argue based on this mass and absorption strength that it will form at least one z similar to 0 galaxy cluster with M(z = 0) = (3 +/- 1.5) x 10(14) h(-1)M(circle dot), although its elongated nature suggests that it will likely collapse into two separate clusters. We also point out a compact overdensity of six MOSDEF galaxies at z = 2.30 within a r similar to 1 h(-1) Mpc radius and Delta z similar to 0.006, which does not appear to have a large associated IGM overdensity. These results demonstrate the potential of Ly alpha forest tomography on larger volumes to study galaxy properties as a function of environment, as well as revealing the large-scale IGM overdensities associated with protoclusters or other features of large-scale structure. C1 [Lee, Khee-Gan; Hennawi, Joseph F.] Max Planck Inst Astron, Konigstuhl 17, D-69117 Heidelberg, Germany. [White, Martin; Stark, Casey W.] Univ Calif Berkeley, Dept Astron, B-20 Hearst Field Annex 3411, Berkeley, CA 94720 USA. [White, Martin; Font-Ribera, Andreu; Schlegel, David J.; Stark, Casey W.; Nugent, Peter E.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. [Prochaska, J. Xavier] Univ Calif Santa Cruz, Dept Astron & Astrophys, 1156 High St, Santa Cruz, CA 95064 USA. [Prochaska, J. Xavier] Univ Calif Santa Cruz, Univ Calif Observ, Lick Observ, 1156 High St, Santa Cruz, CA 95064 USA. [Rich, R. Michael] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Suzuki, Nao] Univ Tokyo, Kavli Inst Phys & Math Universe IPMU, Kashiwano Ha 5-1-5, Kashiwa, Chiba, Japan. [Le Fevre, Olivier] Aix Marseille Univ, CNRS, LAM, UMR 7326, F-13388 Marseille, France. [Salvato, Mara] Max Planck Inst Extraterr Phys, Giessenbachstrae 1, D-85741 Garching, Germany. [Zamorani, Gianni] Osservatorio Astron Bologna, INAF, Via Ranzani 1, I-40127 Bologna, Italy. RP Lee, KG (reprint author), Max Planck Inst Astron, Konigstuhl 17, D-69117 Heidelberg, Germany. EM lee@mpia.de RI White, Martin/I-3880-2015 OI White, Martin/0000-0001-9912-5070 FU German Federal Ministry for Education and Research; W. M. Keck Foundation FX We are grateful to the entire COSMOS collaboration for their assistance and helpful discussions. J.F.H. acknowledges generous support from the Alexander von Humboldt foundation in the context of the Sofja Kovalevskaja Award. The Humboldt foundation is funded by the German Federal Ministry for Education and Research. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. The authors also wish to recognize and acknowledge the very significant cultural role and reverence that the summit of Maunakea has always had within the indigenous Hawai'ian community. We are most fortunate to have the opportunity to conduct observations from this mountain. NR 60 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 1 PY 2016 VL 817 IS 2 AR 160 DI 10.3847/0004-637X/817/2/160 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DC7YU UT WOS:000369437900077 ER PT J AU Li, TS Balbinot, E Mondrik, N Marshall, JL Yanny, B Bechtol, K Drlica-Wagner, A Oscar, D Santiago, B Simon, JD Vivas, AK Walker, AR Wang, MY Abbott, TMC Abdalla, FB Benorr-Levy, A Bernstein, GM Bertin, E Brooks, D Burke, DL Rosell, AC Kind, MC Carretero, J da Costa, LN DePoy, DL Desai, S Diehl, HT Doel, P Estrada, J Finley, DA Flaugher, B Frieman, J Gruen, D Gruendl, RA Gutierrez, G Honscheid, K James, DJ Kuehn, K Kuropatkin, N Lahav, O Maia, MAG March, M Martini, P Ogando, R Plazas, AA Reil, K Romer, AK Roodman, A Sanchez, E Scarpine, V Schubnell, M Sevilla-Noarbe, I Smith, RC Soares-Santos, M Sobreira, F Suchyta, E Swanson, MEC Tarle, G Tucker, D Zhang, Y AF Li, T. S. Balbinot, E. Mondrik, N. Marshall, J. L. Yanny, B. Bechtol, K. Drlica-Wagner, A. Oscar, D. Santiago, B. Simon, J. D. Vivas, A. K. Walker, A. R. Wang, M. Y. Abbott, T. M. C. Abdalla, F. B. Benorr-Levy, A. Bernstein, G. M. Bertin, E. Brooks, D. Burke, D. L. Carnero Rosell, A. Kind, M. Carrasco Carretero, J. da Costa, L. N. DePoy, D. L. Desai, S. Diehl, H. T. Doel, P. Estrada, J. Finley, D. A. Flaugher, B. Frieman, J. Gruen, D. Gruendl, R. A. Gutierrez, G. Honscheid, K. James, D. J. Kuehn, K. Kuropatkin, N. Lahav, O. Maia, M. A. G. March, M. Martini, P. Ogando, R. Plazas, A. A. Reil, K. Romer, A. K. Roodman, A. Sanchez, E. Scarpine, V. Schubnell, M. Sevilla-Noarbe, I. Smith, R. C. Soares-Santos, M. Sobreira, F. Suchyta, E. Swanson, M. E. C. Tarle, G. Tucker, D. Zhang, Y. CA DES Collaboration TI DISCOVERY OF A STELLAR OVERDENSITY IN ERIDANUS-PHOENIX IN THE DARK ENERGY SURVEY SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxy: formation; galaxy: halo; galaxy: structure; local group ID DIGITAL SKY SURVEY; EXPLORING HALO SUBSTRUCTURE; TRACING GALAXY FORMATION; HERCULES-AQUILA CLOUD; WAY GLOBULAR-CLUSTERS; MILKY-WAY; PISCES OVERDENSITY; DWARF GALAXY; TRIANGULUM-ANDROMEDA; SATELLITE GALAXIES AB We report the discovery of an excess of main-sequence turnoff stars in the direction of the constellations of Eridanus and Phoenix from the first-year data of the Dark Energy Survey (DES). The Eridanus-Phoenix (EriPhe) overdensity is centered around l similar to 285 degrees and b similar to -60 degrees and spans at least 30 degrees in longitude and 10 degrees in latitude. The Poisson significance of the detection is at least 9 sigma. The stellar population in the overdense region is similar in brightness and color to that of the nearby globular cluster NGC 1261, indicating that the heliocentric distance of EriPhe is about d similar to 16 kpc. The extent of EriPhe in projection is therefore at least similar to 4 kpc by similar to 3 kpc. On the sky, this overdensity is located between NGC 1261 and a new stellar stream discovered by DES at a similar heliocentric distance, the so-called Phoenix Stream. Given their similar distance and proximity to each other, it is possible that these three structures may be kinematically associated. Alternatively, the EriPhe overdensity is morphologically similar to the Virgo overdensity and the Hercules-Aquila cloud, which also lie at a similar Galactocentric distance. These three overdensities lie along a polar plane separated by similar to 120 degrees and may share a common origin. Spectroscopic follow-up observations of the stars in EriPhe are required to fully understand the nature of this overdensity. C1 [Li, T. S.; Mondrik, N.; Marshall, J. L.; Wang, M. Y.; DePoy, D. L.] Texas A&M Univ, George P & Cynthia Woods Mitchell Inst Fundamenta, College Stn, TX 77843 USA. [Li, T. S.; Mondrik, N.; Marshall, J. L.; Wang, M. Y.; DePoy, D. L.] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA. [Balbinot, E.] Univ Surrey, Dept Phys, Guildford GU2 7XH, Surrey, England. [Mondrik, N.] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA. [Yanny, B.; Drlica-Wagner, A.; Diehl, H. T.; Estrada, J.; Finley, D. A.; Flaugher, B.; Frieman, J.; Gutierrez, G.; Kuropatkin, N.; Scarpine, V.; Soares-Santos, M.; Sobreira, F.; Tucker, D.] Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. [Bechtol, K.; Frieman, J.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Oscar, D.; Santiago, B.] Univ Fed Rio Grande do Sul, Inst Fis, Caixa Postal 15051, BR-91501970 Porto Alegre, RS, Brazil. [Oscar, D.; Santiago, B.; Carnero Rosell, A.; da Costa, L. N.; Maia, M. A. G.; Ogando, R.; Sobreira, F.] Lab Interinst E Astron LIneA, Rua Gal Jose Cristino 77, BR-20921400 Rio De Janeiro, RJ, Brazil. [Simon, J. D.] Carnegie Observ, 813 Santa Barbara St, Pasadena, CA 91101 USA. [Vivas, A. K.; Walker, A. R.; Abbott, T. M. C.; James, D. J.; Smith, R. C.] Natl Opt Astron Observ, Cerro Tololo Interamer Observ, Casilla 603, La Serena, Chile. [Abdalla, F. B.; Benorr-Levy, A.; Brooks, D.; Doel, P.; Lahav, O.] UCL, Dept Phys & Astron, Gower St, London WC1E 6BT, England. [Bernstein, G. M.; March, M.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Bertin, E.] CNRS, UMR 7095, Inst Astrophys Paris, F-75014 Paris, France. [Bertin, E.] Univ Paris 06, Sorbonne Univ, UMR 7095, Inst Astrophys Paris, F-75014 Paris, France. [Burke, D. L.; Reil, K.; Roodman, A.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, POB 2450, Stanford, CA 94305 USA. [Burke, D. L.; Reil, K.; Roodman, A.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Carnero Rosell, A.; da Costa, L. N.; Maia, M. A. G.; Ogando, R.] Observ Nacl, Rua Gal Jose Cristino 77, BR-20921400 Rio De Janeiro, RJ, Brazil. [Kind, M. Carrasco; Gruendl, R. A.; Sevilla-Noarbe, I.] Univ Illinois, Dept Astron, 1002 W Green St, Urbana, IL 61801 USA. [Kind, M. Carrasco; Gruendl, R. A.; Swanson, M. E. C.] Univ Illinois, Natl Ctr Supercomp Applicat, 1205 West Clark St, Urbana, IL 61801 USA. [Carretero, J.] IEEC CSIC, Inst Ciencies Espai, Campus UAB,Caner Can Magrans S-N, E-08193 Barcelona, Spain. [Carretero, J.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Desai, S.] Excellence Cluster Universe, Boltzmannstr 2, D-85748 Garching, Germany. [Desai, S.] Univ Munich, Fac Phys, Scheinerstr 1, D-81679 Munich, Germany. [Gruen, D.] Max Planck Inst Extraterr Phys, Giessenbachstr, D-85748 Garching, Germany. [Gruen, D.] Univ Munich, Fak Phys, Univ Sternwarte, Scheinerstr 1, D-81679 Munich, Germany. [Honscheid, K.; Martini, P.; Suchyta, E.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Honscheid, K.; Suchyta, E.] Ohio State Univ, Dept Phys, 174 W 18th Ave, Columbus, OH 43210 USA. [Kuehn, K.] Australian Astron Observ, N Ryde, NSW 2113, Australia. [Martini, P.] Ohio State Univ, Dept Astron, 174 W 18Th Ave, Columbus, OH 43210 USA. [Plazas, A. A.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Romer, A. K.] Univ Sussex, Dept Phys & Astron, Pevensey Bldg, Brighton BN1 9QH, E Sussex, England. [Sanchez, E.; Sevilla-Noarbe, I.] Ctr Invest Energet Medioambientales & Tecnol CIEM, Madrid, Spain. [Schubnell, M.; Tarle, G.; Zhang, Y.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. RP Li, TS (reprint author), Texas A&M Univ, George P & Cynthia Woods Mitchell Inst Fundamenta, College Stn, TX 77843 USA.; Li, TS (reprint author), Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA. EM sazabi@neo.tamu.edu RI Ogando, Ricardo/A-1747-2010; Sobreira, Flavia/F-4168-2015; Balbinot, Eduardo/E-8019-2015; OI Ogando, Ricardo/0000-0003-2120-1154; Sobreira, Flavia/0000-0002-7822-0658; Balbinot, Eduardo/0000-0002-1322-3153; Abdalla, Filipe/0000-0003-2063-4345 FU European Research Council (CLUSTERS) [ERC-StG-335936]; U.S. Department of Energy; U.S. National Science Foundation; Ministry of Science and Education of Spain; Science and Technology Facilities Council of the United Kingdom; Higher Education Funding Council for England; National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign; Kavli Institute of Cosmological Physics at the University of Chicago; Center for Cosmology and Astro-Particle Physics at the Ohio State University; Mitchell Institute for Fundamental Physics and Astronomy at Texas AM University; Financiadora de Estudos e Projetos; Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico; Ministerio da Ciencia, Tecnologia e Inovacao; Deutsche Forschungsgemeinschaft; National Science Foundation [AST-1138766]; MINECO [AYA2012-39559, ESP2013-48274, FPA2013-47986]; Centro de Excelencia Severo Ochoa [SEV-2012-0234]; European Research Council under the European Unions Seventh Framework Programme (FP7); Argonne National Laboratory; University of California at Santa Cruz; University of Cambridge; University of Chicago; University College London; DES-Brazil Consortium; University of Edinburgh; Eidgenossische Technische Hochschule (ETH) Zurich; Fermi National Accelerator Laboratory; Institut de Ciencies de l'Espai (IEEC/CSIC); Institut de Fisica d'Altes Energies; Ludwig-Maximilians Universitat Munchen; University of Michigan; National Optical Astronomy Observatory; University of Nottingham; Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas-Madrid; University of Illinois at Urbana-Champaign; Lawrence Berkeley National Laboratory; Ohio State University; University of Pennsylvania; University of Portsmouth; SLAC National Accelerator Laboratory; Stanford University; University of Sussex; Texas AM University; ERC [240672, 291329, 306478] FX This paper has gone through internal review by the DES collaboration. We thank the anonymous referee for comments and suggestions that improved the paper. We also thank Helmut Jerjen and Marcel Pawlowski for providing the original VPOS coordinates. T.S.L. thanks Jonathan Hargis, Steven Boada, Daniel Nagasawa, and Katelyn Stringer for very helpful conversations. E.Ba. acknowledges financial support from the European Research Council (ERC-StG-335936, CLUSTERS). This research made use of Astropy, a community-developed core Python package for Astronomy (Astropy Collaboration et al. 2013).r Funding for the DES Projects has been provided by the U.S. Department of Energy, the U.S. National Science Foundation, the Ministry of Science and Education of Spain, the Science and Technology Facilities Council of the United Kingdom, the Higher Education Funding Council for England, the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign, the Kavli Institute of Cosmological Physics at the University of Chicago, the Center for Cosmology and Astro-Particle Physics at the Ohio State University, the Mitchell Institute for Fundamental Physics and Astronomy at Texas A&M University, Financiadora de Estudos e Projetos, Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Cientifico e Tecnologico and the Ministerio da Ciencia, Tecnologia e Inovacao, the Deutsche Forschungsgemeinschaft, and the Collaborating Institutions in the Dark Energy Survey.r The Collaborating Institutions are Argonne National Laboratory, the University of California at Santa Cruz, the University of Cambridge, Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas-Madrid, the University of Chicago, University College London, the DES-Brazil Consortium, the University of Edinburgh, the Eidgenossische Technische Hochschule (ETH) Zurich, Fermi National Accelerator Laboratory, the University of Illinois at Urbana-Champaign, the Institut de Ciencies de l'Espai (IEEC/CSIC), the Institut de Fisica d'Altes Energies, Lawrence Berkeley National Laboratory, the Ludwig-Maximilians Universitat Munchen and the associated Excellence Cluster Universe, the University of Michigan, the National Optical Astronomy Observatory, the University of Nottingham, The Ohio State University, the University of Pennsylvania, the University of Portsmouth, SLAC National Accelerator Laboratory, Stanford University, the University of Sussex, and Texas A&M University.r The DES data management system is supported by the National Science Foundation under Grant Number AST-1138766. The DES participants from Spanish institutions are partially supported by MINECO under grants AYA2012-39559, ESP2013-48274, FPA2013-47986, and Centro de Excelencia Severo Ochoa SEV-2012-0234. Research leading to these results has received funding from the European Research Council under the European Unions Seventh Framework Programme (FP7/2007-2013), including ERC grant agreements 240672, 291329, and 306478. NR 91 TC 3 Z9 3 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 1 PY 2016 VL 817 IS 2 AR 135 DI 10.3847/0004-637X/817/2/135 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DC7YU UT WOS:000369437900052 ER PT J AU McDonald, M Stalder, B Bayliss, M Allen, SW Applegate, DE Ashby, MLN Bautz, M Benson, BA Bleem, LE Brodwin, M Carlstrom, JE Chiu, I Desai, S Gonzalez, AH Hlavacek-Larrondo, J Holzapfel, WL Marrone, DP Miller, ED Reichardt, CL Saliwanchik, BR Saro, A Schrabback, T Stanford, SA Stark, AA Vieira, JD Zenteno, A AF McDonald, M. Stalder, B. Bayliss, M. Allen, S. W. Applegate, D. E. Ashby, M. L. N. Bautz, M. Benson, B. A. Bleem, L. E. Brodwin, M. Carlstrom, J. E. Chiu, I. Desai, S. Gonzalez, A. H. Hlavacek-Larrondo, J. Holzapfel, W. L. Marrone, D. P. Miller, E. D. Reichardt, C. L. Saliwanchik, B. R. Saro, A. Schrabback, T. Stanford, S. A. Stark, A. A. Vieira, J. D. Zenteno, A. TI STAR-FORMING BRIGHTEST CLUSTER GALAXIES AT 0.25 < z < 1.25: A TRANSITIONING FUEL SUPPLY SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: clusters: intracluster medium; galaxies: elliptical and lenticular, cD; galaxies: starburst; X-rays: galaxies: clusters ID COOLING FLOW CLUSTERS; GALACTIC NUCLEUS FEEDBACK; X-RAY CAVITIES; SPT-SZ SURVEY; SOUTH-POLE TELESCOPE; H-ALPHA FILAMENTS; MOLECULAR-HYDROGEN; THERMAL-INSTABILITY; SPACE-TELESCOPE; INFRARED-SURVEY AB We present a multiwavelength study of the 90 brightest cluster galaxies (BCGs) in a sample of galaxy clusters selected via the Sunyaev Zel'dovich effect by the South Pole Telescope, utilizing data from various ground- and space-based facilities. We infer the star-formation rate (SFR) for the BCG in each cluster-based on the UV and IR continuum luminosity, as well as the [O II] lambda lambda 3726,3729 emission line luminosity in cases where spectroscopy is available-and find seven systems with SFR > 100 M circle dot yr(-1). We find that the BCG SFR exceeds 10 M circle dot yr(-1) in 31 of 90 (34%) cases at 0.25 < z < 1.25, compared to similar to 1%-5% at z similar to 0 from the literature. At z greater than or similar to 1, this fraction increases to 92(-31)(+6)%, implying a steady decrease in the BCG SFR over the past similar to 9 Gyr. At low-z, we find that the specific SFR in BCGs is declining more slowly with time than for field or cluster galaxies, which is most likely due to the replenishing fuel from the cooling ICM in relaxed, cool core clusters. At z greater than or similar to 0.6, the correlation between the cluster central entropy and BCG star formation-which is well established at z similar to 0-is not present. Instead, we find that the most star-forming BCGs at high-z are found in the cores of dynamically unrelaxed clusters. We use data from the Hubble Space Telescope to investigate the rest-frame near-UV morphology of a subsample of the most star-forming BCGs, and find complex, highly asymmetric UV morphologies on scales as large as similar to 50-60 kpc. The high fraction of star-forming BCGs hosted in unrelaxed, non-cool core clusters at early times suggests that the dominant mode of fueling star formation in BCGs may have recently transitioned from galaxy-galaxy interactions to ICM cooling. C1 [McDonald, M.; Bautz, M.; Miller, E. D.] MIT, Kavli Inst Astrophys & Space Res, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Stalder, B.] Univ Hawaii, Inst Astron IFA, 2680 Woodlawn Dr, Honolulu, HI 96822 USA. [Bayliss, M.; Ashby, M. L. N.; Stark, A. A.] Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. [Bayliss, M.] Harvard Univ, Dept Phys, 17 Oxford St, Cambridge, MA 02138 USA. [Allen, S. W.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, 452 Lomita Mall, Stanford, CA 94305 USA. [Allen, S. W.] Stanford Univ, Dept Phys, 382 Via Pueblo Mall, Stanford, CA 94305 USA. [Allen, S. W.] SLAC Natl Accelerator Lab, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA. [Applegate, D. E.; Schrabback, T.] Argelander Inst Astron, Hugel 71, D-53121 Bonn, Germany. [Benson, B. A.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Benson, B. A.; Bleem, L. E.; Carlstrom, J. E.] Univ Chicago, Kavli Inst Cosmol Phys, 5640 S Ellis Ave, Chicago, IL 60637 USA. [Benson, B. A.; Carlstrom, J. E.] Univ Chicago, Dept Astron & Astrophys, 5640 S Ellis Ave, Chicago, IL 60637 USA. [Bleem, L. E.; Carlstrom, J. E.] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. [Bleem, L. E.; Carlstrom, J. E.] Univ Chicago, Dept Phys, 5640 S Ellis Ave, Chicago, IL 60637 USA. [Brodwin, M.] Univ Missouri, Dept Phys & Astron, 5110 Rockhill Rd, Kansas City, MO 64110 USA. [Carlstrom, J. E.] Univ Chicago, Enrico Fermi Inst, 5640 S Ellis Ave, Chicago, IL 60637 USA. [Chiu, I.; Desai, S.; Saro, A.] Univ Munich, Dept Phys, Scheinerstr 1, D-81679 Munich, Germany. [Desai, S.] Excellence Cluster Universe, Boltzmannstr 2, D-85748 Garching, Germany. [Gonzalez, A. H.] Univ Florida, Dept Astron, Gainesville, FL 32611 USA. [Hlavacek-Larrondo, J.] Univ Montreal, Dept Phys, CP 6128,Succ Ctr Ville, Montreal, PQ H3C 3J7, Canada. [Holzapfel, W. L.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Marrone, D. P.] Univ Arizona, Steward Observ, 933 N Cherry Ave, Tucson, AZ 85721 USA. [Reichardt, C. L.] Univ Melbourne, Sch Phys, Parkville, Vic 3010, Australia. [Saliwanchik, B. R.] Case Western Reserve Univ, Dept Phys, Ctr Educ & Res Cosmol & Astrophys, Cleveland, OH 44106 USA. [Stanford, S. A.] Univ Calif Davis, Dept Phys, One Shields Ave, Davis, CA 95616 USA. [Vieira, J. D.] Univ Illinois, Dept Astron, 1002 W Green St, Urbana, IL 61801 USA. [Vieira, J. D.] Univ Illinois, Dept Phys, 1002 W Green St, Urbana, IL 61801 USA. [Zenteno, A.] Cerro Tololo Interamer Observ, Casilla 603, La Serena, Chile. RP McDonald, M (reprint author), MIT, Kavli Inst Astrophys & Space Res, 77 Massachusetts Ave, Cambridge, MA 02139 USA. EM mcdonald@space.mit.edu OI Reichardt, Christian/0000-0003-2226-9169 FU NASA [HST-GO-13456.002A, GO4-15122A, NAS 5-26555, 12800071, 12800088, 13800883]; Hubble Fellowship grant - Space Telescope Science Institute [HST-HF51308.01-A]; National Science Foundation [ANT-0638937, PLR-1248097, PHY-1125897]; NSF Physics Frontier Center grant [PHY-0114422]; Kavli Foundation; Gordon and Betty Moore Foundation; NSF [AST-1009012, AST-1009649, MRI-0723073]; National Sciences and Engineering Research Council of Canada; Canada Research Chairs program; Canadian Institute for Advanced Research; U.S. Department of Energy [DE-AC02-06CH11357]; University of Melbourne; Australian Research Councils Discovery Projects scheme [DP150103208]; German Federal Ministry of Economics and Technology (BMWi) through DLR [50 OR 1210, 50 OR 1308, 50 OR 1407] FX We thank Mark Voit and John ZuHone for helpful conversations. M.M. acknowledges support by NASA through contracts HST-GO-13456.002A (Hubble) and GO4-15122A (Chandra), and Hubble Fellowship grant HST-HF51308.01-A awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract NAS 5-26555. The South Pole Telescope program is supported by the National Science Foundation through grants ANT-0638937 and PLR-1248097. Partial support is also provided by the NSF Physics Frontier Center grant PHY-0114422 to the Kavli Institute of Cosmological Physics at the University of Chicago, the Kavli Foundation, and the Gordon and Betty Moore Foundation. Support for X-ray analysis was provided by NASA through Chandra Award Numbers 12800071, 12800088, and 13800883 issued by the Chandra X-ray Observatory Center, which is operated by the Smithsonian Astrophysical Observatory for and on behalf of NASA. Galaxy cluster research at Harvard is supported by NSF grant AST-1009012 and at SAO by NSF grants AST-1009649 and MRI-0723073. The McGill group acknowledges funding from the National Sciences and Engineering Research Council of Canada, Canada Research Chairs program, and the Canadian Institute for Advanced Research. Argonne National Laboratory's work was supported under U.S. Department of Energy contract DE-AC02-06CH11357. This work is based in part on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. J.E.C. acknowledges support from National Science Foundation grants PLR-1248097 and PHY-1125897. C.R. acknowledges support from the University of Melbourne and from the Australian Research Councils Discovery Projects scheme (DP150103208). D.A. and T.S. acknowledge support from the German Federal Ministry of Economics and Technology (BMWi) provided through DLR under projects 50 OR 1210, 50 OR 1308, and 50 OR 1407. NR 113 TC 5 Z9 5 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 1 PY 2016 VL 817 IS 2 AR 86 DI 10.3847/0004-637X/817/2/86 PG 18 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DC7YU UT WOS:000369437900003 ER PT J AU van Weeren, RJ Ogrean, GA Jones, C Forman, WR Andrade-Santos, F Bonafede, A Bruggen, M Bulbul, E Clarke, TE Churazov, E David, L Dawson, WA Donahue, M Goulding, A Kraft, RP Mason, B Merten, J Mroczkowski, T Murray, SS Nulsen, PEJ Rosati, P Roediger, E Randall, SW Sayers, J Umetsu, K Vikhlinin, A Zitrin, A AF van Weeren, R. J. Ogrean, G. A. Jones, C. Forman, W. R. Andrade-Santos, F. Bonafede, A. Brueggen, M. Bulbul, E. Clarke, T. E. Churazov, E. David, L. Dawson, W. A. Donahue, M. Goulding, A. Kraft, R. P. Mason, B. Merten, J. Mroczkowski, T. Murray, S. S. Nulsen, P. E. J. Rosati, P. Roediger, E. Randall, S. W. Sayers, J. Umetsu, K. Vikhlinin, A. Zitrin, A. TI THE DISCOVERY OF LENSED RADIO AND X-RAY SOURCES BEHIND THE FRONTIER FIELDS CLUSTER MACS J0717.5+3745 WITH THE JVLA AND CHANDRA SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: clusters: individual (MACS J0717.5+3745); gravitational lensing: strong; radio continuum: galaxies ID ACTIVE GALACTIC NUCLEI; MERGER ABELL 2744; GALAXY CLUSTERS; STAR-FORMATION; PARAMETER-ESTIMATION; MASS RECONSTRUCTION; LUMINOSITY FUNCTION; MAGNIFICATION MAPS; NUMBER COUNTS; W-PROJECTION AB We report on high-resolution JVLA and Chandra observations of the Hubble Space Telescope (HST) Frontier Cluster MACS J0717.5+3745. MACS J0717.5+3745 offers the largest contiguous magnified area of any known cluster, making it a promising target to search for lensed radio and X-ray sources. With the high-resolution 1.0-6.5 GHz JVLA imaging in A and B configuration, we detect a total of 51 compact radio sources within the area covered by the HST imaging. Within this sample, we find seven. lensed sources with amplification factors larger than two. None of these sources are identified as multiply lensed. Based on the radio luminosities, the majority of these sources are likely star-forming galaxies with star-formation rates (SFRs) of 10-50 M-circle dot yr(-1) located at 1 less than or similar to z less than or similar to 2. Two of the lensed radio sources are also detected in the Chandra image of the cluster. These two sources are likely active galactic nuclei, given their 2-10 keV X-ray luminosities of similar to 10(43-44) erg s(-1). From the derived radio luminosity function, we find evidence for an increase in the number density of radio sources at 0.6 < z < 2.0, compared to a z < 0.3 sample. Our observations indicate that deep radio imaging of lensing clusters can be used to study star-forming galaxies, with SFRs as low as similar to 10(circle dot) yr(-1), at the peak of cosmic star formation history. C1 [van Weeren, R. J.; Ogrean, G. A.; Jones, C.; Forman, W. R.; Andrade-Santos, F.; Bulbul, E.; David, L.; Kraft, R. P.; Murray, S. S.; Nulsen, P. E. J.; Randall, S. W.; Vikhlinin, A.] Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. [Bonafede, A.; Brueggen, M.] Univ Hamburg, Hamburger Sternwarte, Gojenbergsweg 112, D-21029 Hamburg, Germany. [Clarke, T. E.; Mroczkowski, T.] US Naval Res Lab, 4555 Overlook Ave SW, Washington, DC 20375 USA. [Churazov, E.] Max Planck Inst Astrophys, Karl Schwarzschild Str 1, D-85741 Garching, Germany. [Churazov, E.] Space Res Inst, Profsoyuznaya 84-32, Moscow 117997, Russia. [Dawson, W. A.] Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA. [Donahue, M.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Goulding, A.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Mason, B.] Natl Radio Astron Observ, 520 Edgemont Rd, Charlottesville, VA 22903 USA. [Merten, J.] Univ Oxford, Dept Phys, Keble Rd, Oxford OX1 3RH, England. [Murray, S. S.] Johns Hopkins Univ, Dept Phys & Astron, 3400 North Charles St, Baltimore, MD 21218 USA. [Nulsen, P. E. J.] Univ Western Australia, ICRAR, 35 Stirling Hwy, Crawley, WA 6009, Australia. [Rosati, P.] Univ Ferrara, Dipartimento Fis & Sci Terra, Via Saragat 1, I-44122 Ferrara, Italy. [Roediger, E.] Univ Hull, EA Milne Ctr Astrophys, Dept Math & Phys, Cottinton Rd, Kingston Upon Hull HU6 7RX, N Humberside, England. [Sayers, J.; Zitrin, A.] CALTECH, Cahill Ctr Astron & Astrophys, MC 249-17, Pasadena, CA 91125 USA. [Umetsu, K.] Acad Sinica, Inst Astron & Astrophys, POB 23-141, Taipei 10617, Taiwan. RP van Weeren, RJ (reprint author), Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. EM rvanweeren@cfa.harvard.edu RI Churazov, Eugene/A-7783-2013; OI Mroczkowski, Tony/0000-0003-3816-5372; Umetsu, Keiichi/0000-0002-7196-4822; Nulsen, Paul/0000-0003-0297-4493; van Weeren, Reinout/0000-0002-0587-1660; Forman, William/0000-0002-9478-1682 FU National Aeronautics and Space Administration through Chandra Award [GO4-15129X]; National Aeronautics Space Administration [NAS8-03060]; NASA through the Einstein Postdoctoral grant - Chandra X-ray Center [PF2-130104]; NASA [NAS8-03060, NAS5-26555]; NASA through a Hubble Fellowship - Space Telescope Science Institute [HST-HF2-51345.001-A]; Deutsche Forschungsgemeinschaft [FOR 1254]; Smithsonian Institution; Chandra grant [GO3-14131X]; NASA through Hubble Fellowship - STScI [HST-HF2-51334.001-A]; 6.1 Base funding; STScI grant [12065.007-A]; U.S. DOE [DE-AC52-07NA27344] FX We thank the anonymous referee for useful comments. We thank Megan Gralla for a discussion on the lensed radio sources. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. Support for this work was provided by the National Aeronautics and Space Administration through Chandra Award Number GO4-15129X issued by the Chandra X-ray Observatory Center, which is operated by the Smithsonian Astrophysical Observatory for and on behalf of the National Aeronautics Space Administration under contract NAS8-03060. R.J.W. is supported by NASA through the Einstein Postdoctoral grant number PF2-130104 awarded by the Chandra X-ray Center, which is operated by the Smithsonian Astrophysical Observatory for NASA under contract NAS8-03060. G.A.O. acknowledges support by NASA through a Hubble Fellowship grant HST-HF2-51345.001-A awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Incorporated, under NASA contract NAS5-26555. M.B. acknowledges support by the research group FOR 1254 funded by the Deutsche Forschungsgemeinschaft: "Magnetization of interstellar and intergalactic media: the prospects of low-frequency radio observations." W.R.F., C.J., and F.A.-S. acknowledge support from the Smithsonian Institution. F.A.-S. acknowledges support from Chandra grant GO3-14131X. A.Z. is supported by NASA through Hubble Fellowship grant HST-HF2-51334.001-A awarded by STScI. This research was performed while T.M. held a National Research Council Research Associateship Award at the Naval Research Laboratory (NRL). Basic research in radio astronomy at NRL by T.M. and T.E.C. is supported by 6.1 Base funding. M.D. acknowledges the support of STScI grant 12065.007-A. P.E.J.N. was partially supported by NASA contract NAS8-03060. E.R. acknowledges a Visiting Scientist Fellowship of the Smithsonian Astrophysical Observatory, and the hospitality of the Center for Astrophysics in Cambridge. Part of this work performed under the auspices of the U.S. DOE by LLNL under Contract DE-AC52-07NA27344. NR 57 TC 2 Z9 2 U1 1 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 1 PY 2016 VL 817 IS 2 AR 98 DI 10.3847/0004-637X/817/2/98 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DC7YU UT WOS:000369437900015 ER PT J AU Wallace, J Burrows, A Dolence, JC AF Wallace, Joshua Burrows, Adam Dolence, Joshua C. TI DETECTING THE SUPERNOVA BREAKOUT BURST IN TERRESTRIAL NEUTRINO DETECTORS SO ASTROPHYSICAL JOURNAL LA English DT Article DE neutrinos; supernovae: general ID EQUATION-OF-STATE; NUCLEAR-MATTER; KAMIOKANDE; STARS; C-12; 1ST AB We calculate the distance-dependent performance of a few representative terrestrial neutrino detectors in detecting and measuring the properties of the nu(e) breakout burst light curve in a Galactic core-collapse supernova. The breakout burst is a signature phenomenon of core collapse and offers a probe into the stellar core through collapse and bounce. We examine cases of no neutrino oscillations and oscillations due to normal and inverted neutrinomass hierarchies. For the normal hierarchy, other neutrino flavors emitted by the supernova overwhelm the nu(e) signal, making a detection of the breakout burst difficult. For the inverted hierarchy (IH), some detectors at some distances should be able to see the nu(e) breakout burst peak and measure its properties. For the IH, the maximum luminosity of the breakout burst can be measured at 10 kpc to accuracies of similar to 30% for Hyper-Kamiokande (Hyper-K) and similar to 60% for the Deep Underground Neutrino Experiment (DUNE). Super-Kamiokande (Super-K) and Jiangmen Underground Neutrino Observatory (JUNO) lack the mass needed to make an accurate measurement. For the IH, the time of the maximum luminosity of the breakout burst can be measured in Hyper-K to an accuracy of similar to 3 ms at 7 kpc, in DUNE to similar to 2 ms at 4 kpc, and JUNO and Super-K can measure the time of maximum luminosity to an accuracy of similar to 2 ms at 1 kpc. Detector backgrounds in IceCube render a measurement of the nu(e) breakout burst unlikely. For the IH, a measurement of the maximum luminosity of the breakout burst could be used to differentiate between nuclear equations of state. C1 [Wallace, Joshua; Burrows, Adam] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Dolence, Joshua C.] Los Alamos Natl Lab, Computat Phys Grp CCS 2, MS K784,POB 1663, Los Alamos, NM 87545 USA. RP Wallace, J (reprint author), Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. EM joshuajw@astro.princeton.edu OI Wallace, Joshua/0000-0001-6135-3086; Dolence, Joshua/0000-0003-4353-8751 FU NSF PetaApps program from Louisiana State University [OCI-0905046, 44592]; Max-Planck/Princeton Center (MPPC) for Plasma Physics [NSF PHY-1144374]; Princeton Institute for Computational Science and Engineering (PICSciE); Princeton University Office of Information Technology; Office of Science of the US Department of Energy [DE-AC03-76SF00098]; National Science Foundation [ACI-1440032, OCI-0725070, ACI-1238993]; state of Illinois FX We thank Kate Scholberg, Andre Rubbia, Masayuki Nakahata, and Lutz Kopke for useful conversations. We also thank Gabriel Martinez-Pinedo for providing us with tables for the 40Ar cross sections. The authors acknowledge support provided by the NSF PetaApps program, under award OCI-0905046 via subaward no. 44592 from Louisiana State University to Princeton University, and by the Max-Planck/Princeton Center (MPPC) for Plasma Physics (NSF PHY-1144374). The authors employed computational resources provided by the TIGRESS high-performance computer center at Princeton University, which is jointly supported by the Princeton Institute for Computational Science and Engineering (PICSciE) and the Princeton University Office of Information Technology and by the National Energy Research Scientific Computing Center (NERSC), which is supported by the Office of Science of the US Department of Energy under contract DE-AC03-76SF00098. This work is part of the "Three Dimensional Modeling of Core-Collapse Supernovae" PRAC allocation support by the National Science Foundation (award number ACI-1440032). In addition, this research is part of the Blue Waters sustained-petascale computing project, which is supported by the National Science Foundation (awards OCI-0725070 and ACI-1238993) and the state of Illinois. Blue Waters is a joint effort of the University of Illinois at Urbana-Champaign and its National Center for Supercomputing Applications. NR 53 TC 1 Z9 1 U1 2 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 1 PY 2016 VL 817 IS 2 AR 182 DI 10.3847/0004-637X/817/2/182 PG 24 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DC7YU UT WOS:000369437900099 ER PT J AU Yoon, JH AF Yoon, Jin-Ho TI Multi-model analysis of the Atlantic influence on Southern Amazon rainfall SO ATMOSPHERIC SCIENCE LETTERS LA English DT Article DE Amazon rainfall; Atlantic SST variability; CMIP5 ID TROPICAL ATLANTIC; CLIMATE VARIABILITY; DROUGHT; OSCILLATION; ANOMALIES; PACIFIC; AMERICA; MODELS AB Amazon rainfall is subject to year-to-year fluctuation resulting in drought and flood in various intensities. A major climatic driver of the interannual variation of the Amazon rainfall is El Nino/Southern Oscillation. Also, the sea surface temperature over the Atlantic Ocean is identified as an important climatic driver on the Amazon water cycle. Previously, observational data sets were used to support the Atlantic influence on Amazon rainfall. Here, it is found that multiple global climate models do reproduce the Atlantic-Amazon link robustly. However, there exist differences in rainfall response, which primarily depends on the climatological rainfall amount. C1 [Yoon, Jin-Ho] Pacific NW Natl Lab, Atmospher Sci & Global Change Div, POB 999,MSIN K9-30,902 Battelle Blvd, Richland, WA 99352 USA. RP Yoon, JH (reprint author), Pacific NW Natl Lab, Atmospher Sci & Global Change Div, POB 999,MSIN K9-30,902 Battelle Blvd, Richland, WA 99352 USA. EM jin-Ho.Yoon@pnnl.gov FU Office of Science of the US Department of Energy; Department of Energy [DEAC05-76RLO1830] FX J.-H. Yoon is supported by the Office of Science of the US Department of Energy. Historical simulations in the CMIP5 were originally processed by Dr Jung Choi at Seoul National University and kindly shared. Editorial suggestions and internal review by Dr Kyo-Sun Sunny Lim at PNNL is valuable to improve the manuscript. PNNL is operated for the Department of Energy by Battelle Memorial Institute under Contract DEAC05-76RLO1830. NR 30 TC 1 Z9 1 U1 1 U2 3 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1530-261X J9 ATMOS SCI LETT JI Atmos. Sci. Lett. PD FEB PY 2016 VL 17 IS 2 BP 122 EP 127 DI 10.1002/asl.600 PG 6 WC Geochemistry & Geophysics; Meteorology & Atmospheric Sciences SC Geochemistry & Geophysics; Meteorology & Atmospheric Sciences GA DD2FI UT WOS:000369737600001 ER PT J AU Silva, GGZ Green, KT Dutilh, BE Edwards, RA AF Silva, Genivaldo Gueiros Z. Green, Kevin T. Dutilh, Bas E. Edwards, Robert A. TI SUPER-FOCUS: a tool for agile functional analysis of shotgun metagenomic data SO BIOINFORMATICS LA English DT Article ID GENOME ANNOTATION; RAST SERVER; K-MERS; MICROBIOME; GENES; CLASSIFICATION; SEED; ENVIRONMENT; GENERATION; DIVERSITY AB Analyzing the functional profile of a microbial community from unannotated shotgun sequencing reads is one of the important goals in metagenomics. Functional profiling has valuable applications in biological research because it identifies the abundances of the functional genes of the organisms present in the original sample, answering the question what they can do. Currently, available tools do not scale well with increasing data volumes, which is important because both the number and lengths of the reads produced by sequencing platforms keep increasing. Here, we introduce SUPER-FOCUS, SUbsystems Profile by databasE Reduction using FOCUS, an agile homology-based approach using a reduced reference database to report the subsystems present in metagenomic datasets and profile their abundances. SUPER-FOCUS was tested with over 70 real metagenomes, the results showing that it accurately predicts the subsystems present in the profiled microbial communities, and is up to 1000 times faster than other tools. C1 [Silva, Genivaldo Gueiros Z.; Edwards, Robert A.] San Diego State Univ, Computat Sci Res Ctr, San Diego, CA 92182 USA. [Green, Kevin T.; Edwards, Robert A.] San Diego State Univ, Dept Biol, San Diego, CA 92182 USA. [Dutilh, Bas E.] Univ Utrecht, Theoret Biol & Bioinformat, NL-3584 CH Utrecht, Netherlands. [Dutilh, Bas E.] Radboud Univ Nijmegen, Med Ctr, Radboud Inst Mol Life Sci, Ctr Mol & Biomol Informat, NL-6525 GA Nijmegen, Netherlands. [Dutilh, Bas E.; Edwards, Robert A.] Univ Fed Rio de Janeiro, Inst Biol, Dept Marine Biol, BR-21941 Rio De Janeiro, Brazil. [Edwards, Robert A.] San Diego State Univ, Dept Comp Sci, San Diego, CA 92182 USA. [Edwards, Robert A.] Argonne Natl Lab, Div Math & Comp Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Edwards, RA (reprint author), San Diego State Univ, Computat Sci Res Ctr, San Diego, CA 92182 USA.; Edwards, RA (reprint author), San Diego State Univ, Dept Biol, San Diego, CA 92182 USA.; Edwards, RA (reprint author), Univ Fed Rio de Janeiro, Inst Biol, Dept Marine Biol, BR-21941 Rio De Janeiro, Brazil.; Edwards, RA (reprint author), San Diego State Univ, Dept Comp Sci, San Diego, CA 92182 USA.; Edwards, RA (reprint author), Argonne Natl Lab, Div Math & Comp Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM redwards@mail.sdsu.edu OI Dutilh, Bas E./0000-0003-2329-7890 FU NSF [CNS-1305112, MCB-1330800, DUE-132809]; CAPES/BRASIL FX G.G.Z.S. was supported by NSF Grants (CNS-1305112, MCB-1330800, and DUE-132809 to RAE). B.E.D. was supported by CAPES/BRASIL. NR 40 TC 5 Z9 5 U1 2 U2 11 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 1367-4803 EI 1460-2059 J9 BIOINFORMATICS JI Bioinformatics PD FEB 1 PY 2016 VL 32 IS 3 BP 354 EP 361 DI 10.1093/bioinformatics/btv584 PG 8 WC Biochemical Research Methods; Biotechnology & Applied Microbiology; Computer Science, Interdisciplinary Applications; Mathematical & Computational Biology; Statistics & Probability SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Computer Science; Mathematical & Computational Biology; Mathematics GA DD8US UT WOS:000370203000006 PM 26454280 ER PT J AU Kern, MM Guzy, JC Lovich, JE Gibbons, JW Dorcas, ME AF Kern, Maximilian M. Guzy, Jacquelyn C. Lovich, Jeffrey E. Gibbons, J. Whitfield Dorcas, Michael E. TI Relationships of maternal body size and morphology with egg and clutch size in the diamondback terrapin, Malaclemys terrapin (Testudines: Emydidae) SO BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY LA English DT Article DE constraint; optimal egg size; reproduction; reptile; turtle ID TURTLES CHELYDRA-SERPENTINA; FRESH-WATER TURTLES; KINOSTERNON-INTEGRUM; CHRYSEMYS-PICTA; CONSTRAINT; PATTERNS; SEX; COMPETITION; HYPOTHESIS; ALLOCATION AB Because resources are finite, female animals face trade-offs between the size and number of offspring they are able to produce during a single reproductive event. Optimal egg size (OES) theory predicts that any increase in resources allocated to reproduction should increase clutch size with minimal effects on egg size. Variations of OES predict that egg size should be optimized, although not necessarily constant across a population, because optimality is contingent on maternal phenotypes, such as body size and morphology, and recent environmental conditions. We examined the relationships among body size variables (pelvic aperture width, caudal gap height, and plastron length), clutch size, and egg width of diamondback terrapins from separate but proximate populations at Kiawah Island and Edisto Island, South Carolina. We found that terrapins do not meet some of the predictions of OES theory. Both populations exhibited greater variation in egg size among clutches than within, suggesting an absence of optimization except as it may relate to phenotype/habitat matching. We found that egg size appeared to be constrained by more than just pelvic aperture width in Kiawah terrapins but not in the Edisto population. Terrapins at Edisto appeared to exhibit osteokinesis in the caudal region of their shells, which may aid in the oviposition of large eggs. (C) 2015 The Linnean Society of London C1 [Kern, Maximilian M.] Univ Calif Davis, Grad Grp Ecol, Davis, CA 95616 USA. [Guzy, Jacquelyn C.] Univ Arkansas, Dept Biol Sci, Fayetteville, AR 72701 USA. [Lovich, Jeffrey E.] US Geol Survey, Southwest Biol Sci Ctr, 2255 North Gemini Dr, Flagstaff, AZ 86001 USA. [Gibbons, J. Whitfield] Savannah River Ecol Lab, PO Drawer E, Aiken, SC 29802 USA. [Dorcas, Michael E.] Davidson Coll, Dept Biol, Davidson, NC 28035 USA. RP Kern, MM (reprint author), Univ Calif Davis, Grad Grp Ecol, Davis, CA 95616 USA. EM maxkern@ucdavis.edu OI Lovich, Jeffrey/0000-0002-7789-2831 FU Davidson College Faculty Research grant; Department of Biology at Davidson College; Sigma Xi Grant-In-Aid of Research; Davidson College Animal Care and Use Committee FX This project was supported by a Davidson College Faculty Research grant to M. Dorcas, the Department of Biology at Davidson College, and a Sigma Xi Grant-In-Aid of Research. Wyndam Vacation Rentals, and, in particular, A. Baker, provided housing during some of our research. For assistance in the field, we thank all the volunteers and SCDNR employees at the Botany Bay Wildlife Management Area, especially B. Kellett, B. Rawl, C. Renkas, and K. Price, as well as T. Rainwater, and B. VanSkoik. For help in sampling and processing turtles over the years, we thank the University of Georgia-Savannah River Ecology Laboratory, Davidson College, and Kiawah Nature center personnel, especially L. King, N. Boehm, and J. Feary. We thank M. Hoyle for her assistance with finding volunteers and various other logistics, and also for providing housing for the duration of the project. Our gratitude is extended to B. Cribb (Charleston Veterinary Care) for the use of his X-radiography equipment and also to W. Roosenburg for providing us with the regression equation used to estimate egg mass from EW with which to aid our calculations of maternal body condition. We thank E. Jacobson for permission to use his photograph of a turtle skeleton used in Figure 1A. This manuscript was greatly improved by the comments provided by M. Stanback and three anonymous reviewers. Research was conducted under SCDNR Scientific Terrapin Collection Permit numbers SCI13-0100 and SCI11-0492 under the auspices of the Davidson College Animal Care and Use Committee. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the US Government. NR 39 TC 0 Z9 0 U1 12 U2 27 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0024-4066 EI 1095-8312 J9 BIOL J LINN SOC JI Biol. J. Linnean Soc. PD FEB PY 2016 VL 117 IS 2 BP 295 EP 304 DI 10.1111/bij.12655 PG 10 WC Evolutionary Biology SC Evolutionary Biology GA DD8ET UT WOS:000370158900010 ER PT J AU Hedlund, JK Cronauer, DC Jacobs, G Kropf, AJ Libera, JA Elam, JW Marshall, CL Pendyala, VRR Davis, BH AF Hedlund, Jenny K. Cronauer, Donald C. Jacobs, Gary Kropf, A. Jeremy Libera, Joseph A. Elam, Jeffrey W. Marshall, Christopher L. Pendyala, Venkat R. R. Davis, Burtron H. TI Titania Supported Ru Nanoclusters as Catalysts for Hydrodeoxygenation of Pyrolysis Oils SO CATALYSIS LETTERS LA English DT Article DE Ruthenium (Ru) catalyst; Titania (TiO2) support; Pyrolysis of bio-oil; Hydrodeoxygenation (HDO); Atomic layer deposition (ALD) ID ATOMIC LAYER DEPOSITION; RAY-ABSORPTION SPECTROSCOPY; BIMETALLIC CATALYSTS; RU/TIO2 CATALYST; METAL-CATALYSTS; ACETIC-ACID; BIO-OIL; BIOMASS; KINETICS; PHENOL AB This study evaluates: (1) Ru-containing catalysts for low temperature hydrogenation of acetic acid in aqueous medium to simulate hydrogenating bio-derived oils, and (2) the development of the role of ruthenium-titania (Ru-TiO2) catalytic interaction for this system. A series of 9 catalysts was screened, and a comparison of selectivity versus conversion indicated that selectivity was a function of conversion, with ethanol being the predominant product at low conversion, and light gases being favored at higher conversion by secondary reactions. Exponential trend curves for ethanol (decay) and methane (increase) with conversion were fitted. On a per gram catalyst basis, the most active catalyst under study in the temperature range of 120A degrees through 220 A degrees C with a hydrogen partial pressure of 1000 psi (7.0 MPa) was 5 % Ru on carbon; however, its selectivity for the conversion to ethanol was exceptionally low (5 % selectivity at similar to 70 % conversion and 180 A degrees C) with the primary products being ethane and methane. This catalyst formulation displayed a negative deviation from the trend curve for ethanol and a higher methane selectivity deviation. On the other hand, a catalyst of Ru prepared by atomic layer deposition (i.e., Ru(ALD)/Ti(ALD)/Nb/Si) was also highly active (similar to 55 % conversion at 180 A degrees C) but displayed a significant positive deviation from the trend curve (similar to 40 % selectivity). These results combined with those of EXAFS suggest that the interface between the deposited Ru and the titania support may be responsible for the increase in selectivity to ethanol. In general, the catalysts prepared by ALD were more active on a per gram catalyst basis than the catalysts prepared by standard aqueous impregnation. Samples of catalyst that were observed using transmission electron microscopy confirmed that the Ru was well dispersed in that no Ru nanoparticle morphology was observed within the resolving power of the JEOL JEM-3010 TEM instrument. Regarding the nanostructure of the support, TEM measurements revealed that the ALD method resulted in support domain sizes that were significantly smaller (< 5 nm) as compared to a commercial titania (> 10 nm), promoting defect formation. EXAFS characterization indicated that the best ALD catalyst (i.e., Ru(ALD)/Ti(ALD)/Nb/Si) had higher dispersion (i.e., smaller nanoparticles and thus greater metal-support interface) than the reference catalysts prepared by aqueous impregnation. A Ru-O-support contribution was required in order to obtain an acceptable EXAFS fit ('the long metal-oxygen bond'). Increases in Ru-Ru coordination along with decreases in Ru-O-support coordination were observed for longer catalyst aging times and higher treatment temperatures. In summary, the selectivity to ethanol during hydrogenation of acetic acid was promoted by preparing finely dispersed Ru particles in close interaction with nanoscale titania domains. The hydrogenation of the bio-model compound, acetic acid, over Ru-deposited catalyst leads to ethanol and methane/ethane. Based on XANES/EXAFS results, the reaction on finely dispersed Ru interacting with titania leads to the preferred product, ethanol, while larger Ru metal particles in the absence of contact between Ru and titania leads towards the formation of light hydrocarbon gases. [GRAPHICS] C1 [Hedlund, Jenny K.; Cronauer, Donald C.; Kropf, A. Jeremy; Libera, Joseph A.; Elam, Jeffrey W.; Marshall, Christopher L.] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. [Jacobs, Gary; Pendyala, Venkat R. R.; Davis, Burtron H.] Univ Kentucky, Ctr Appl Energy Res, 2540 Res Pk Dr, Lexington, KY 40511 USA. RP Cronauer, DC (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM dccronauer@anl.gov FU Institute for Atom-efficient Chemical Transformations (IACT); U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences; Biomass Program of the Energy Efficiency and Renewable Energy Office of the U.S. Department of Energy [DE-AC02-06CH11357]; Commonwealth of Kentucky; U.S. DOE, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; DOE; MRCAT FX This material is based upon work supported in part by the Institute for Atom-efficient Chemical Transformations (IACT), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. Additional support was provided by the Biomass Program of the Energy Efficiency and Renewable Energy Office of the U.S. Department of Energy under Contract No. DE-AC02-06CH11357. Experiments conducted at UK-CAER were supported by the Commonwealth of Kentucky. The use of the APS was supported by the U.S. DOE, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. MRCAT operations are supported by the DOE and the MRCAT member institutions. JAL and JWE are grateful to Tosoh, Inc. for supplying the ALD Ru precursor. NR 26 TC 1 Z9 1 U1 14 U2 55 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1011-372X EI 1572-879X J9 CATAL LETT JI Catal. Lett. PD FEB PY 2016 VL 146 IS 2 BP 525 EP 539 DI 10.1007/s10562-015-1669-2 PG 15 WC Chemistry, Physical SC Chemistry GA DD7AO UT WOS:000370076200026 ER PT J AU Cho, C Li, R Wang, SY Yoon, JH Gillies, RR AF Cho, Changrae Li, Rong Wang, S. -Y. Yoon, Jin-Ho Gillies, Robert R. TI Anthropogenic footprint of climate change in the June 2013 northern India flood SO CLIMATE DYNAMICS LA English DT Article DE Extreme events; Climate and weather interactions; Greenhouse gas (GHG) forcing; Synoptic wave train; CMIP5; WRF model; Cold air intrusion ID PRECIPITATION; EXTREMES; MODEL AB During 13-17 June 2013, heavy rainfall occurred in the northern Indian state of Uttarakhand and led to one of the worst floods in history and massive landslides, resulting in more than 5000 casualties and a huge loss of property. In this study, meteorological and climatic conditions leading up to this rainfall event in 2013 and similar cases were analyzed for the period of 1979-2012. Attribution analysis was performed to identify the natural and anthropogenic influences on the climate anomalies using the historical single-forcing experiments in the Coupled Model Intercomparison Project Phase 5. In addition, regional modeling experiments were carried out to quantify the role of the long-term climate trends in affecting the rainfall magnitude of the June 2013 event. It was found that (a) northern India has experienced increasingly large rainfall in June since the late 1980s, (b) the increase in rainfall appears to be associated with a tendency in the upper troposphere towards amplified short waves, and (c) the phasing of such amplified short waves is tied to increased loading of green-house gases and aerosols. In addition, a regional modeling diagnosis attributed 60-90 % of rainfall amounts in the June 2013 event to post-1980 climate trends. C1 [Cho, Changrae; Li, Rong; Wang, S. -Y.; Gillies, Robert R.] Utah State Univ, Utah Climate Ctr, Logan, UT 84322 USA. [Li, Rong; Wang, S. -Y.; Gillies, Robert R.] Utah State Univ, Dept Plants Soils & Climate, Logan, UT 84322 USA. [Yoon, Jin-Ho] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Wang, SY (reprint author), Utah State Univ, Utah Climate Ctr, Logan, UT 84322 USA.; Wang, SY (reprint author), Utah State Univ, Dept Plants Soils & Climate, Logan, UT 84322 USA. EM lirong18@gmail.com; simon.wang@usu.edu RI YOON, JIN-HO/A-1672-2009 OI YOON, JIN-HO/0000-0002-4939-8078 FU Office of Science of the U.S. Department of Energy as part of the Earth System Modeling program; Department of Energy by Battelle Memorial Institute [DEAC05-76RLO1830] FX PRECL Precipitation data and NCEP Reanalysis data were provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from their Web site at http://www.esrl.noaa.gov/psd/. We would like to thank Sunny and Henry Lin for their assistance. J.-H. Yoon is supported by the Office of Science of the U.S. Department of Energy as part of the Earth System Modeling program. PNNL is operated for the Department of Energy by Battelle Memorial Institute under Contract DEAC05-76RLO1830. NR 22 TC 3 Z9 4 U1 4 U2 13 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0930-7575 EI 1432-0894 J9 CLIM DYNAM JI Clim. Dyn. PD FEB PY 2016 VL 46 IS 3-4 BP 797 EP 805 DI 10.1007/s00382-015-2613-2 PG 9 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DD6JQ UT WOS:000370030900008 ER PT J AU Grotjahn, R Black, R Leung, R Wehner, MF Barlow, M Bosilovich, M Gershunov, A Gutowski, WJ Gyakum, JR Katz, RW Lee, YY Lim, YK Prabhat AF Grotjahn, Richard Black, Robert Leung, Ruby Wehner, Michael F. Barlow, Mathew Bosilovich, Mike Gershunov, Alexander Gutowski, William J., Jr. Gyakum, John R. Katz, Richard W. Lee, Yun-Young Lim, Young-Kwon Prabhat TI North American extreme temperature events and related large scale meteorological patterns: a review of statistical methods, dynamics, modeling, and trends SO CLIMATE DYNAMICS LA English DT Review DE Large scale meteorological patterns for temperature extremes; Heat waves; Hot spells; Cold air outbreaks; Cold spells; Statistics of temperature extremes; Dynamics of heat waves; Dynamics of cold air outbreaks; Dynamical modeling of temperature extremes; Statistical modeling of extremes; Trends in temperature extremes ID COLD-AIR OUTBREAKS; CLIMATE-CHANGE PROJECTIONS; LOW-FREQUENCY VARIABILITY; SUMMER HEAT-WAVE; ARCTIC SEA-ICE; UNITED-STATES; TELECONNECTION PATTERN; ATMOSPHERIC BLOCKING; CIRCULATION PATTERNS; MIDLATITUDE WEATHER AB The objective of this paper is to review statistical methods, dynamics, modeling efforts, and trends related to temperature extremes, with a focus upon extreme events of short duration that affect parts of North America. These events are associated with large scale meteorological patterns (LSMPs). The statistics, dynamics, and modeling sections of this paper are written to be autonomous and so can be read separately. Methods to define extreme events statistics and to identify and connect LSMPs to extreme temperature events are presented. Recent advances in statistical techniques connect LSMPs to extreme temperatures through appropriately defined covariates that supplement more straightforward analyses. Various LSMPs, ranging from synoptic to planetary scale structures, are associated with extreme temperature events. Current knowledge about the synoptics and the dynamical mechanisms leading to the associated LSMPs is incomplete. Systematic studies of: the physics of LSMP life cycles, comprehensive model assessment of LSMP-extreme temperature event linkages, and LSMP properties are needed. Generally, climate models capture observed properties of heat waves and cold air outbreaks with some fidelity. However they overestimate warm wave frequency and underestimate cold air outbreak frequency, and underestimate the collective influence of low-frequency modes on temperature extremes. Modeling studies have identified the impact of large-scale circulation anomalies and land-atmosphere interactions on changes in extreme temperatures. However, few studies have examined changes in LSMPs to more specifically understand the role of LSMPs on past and future extreme temperature changes. Even though LSMPs are resolvable by global and regional climate models, they are not necessarily well simulated. The paper concludes with unresolved issues and research questions. C1 [Grotjahn, Richard; Lee, Yun-Young] Univ Calif Davis, Atmospher Sci Program, Dept LAWR, One Shields Ave, Davis, CA 95616 USA. [Black, Robert] Georgia Inst Technol, Sch Earth & Atmospher Sci, 311 Ferst Dr, Atlanta, GA 30332 USA. [Leung, Ruby] Pacific NW Natl Lab, Richland, WA 99352 USA. [Wehner, Michael F.; Prabhat] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Barlow, Mathew] Univ Massachusetts Lowell, Lowell, MA 01854 USA. [Bosilovich, Mike] NASA, Goddard Space Flight Ctr, Global Modeling & Assimilat Off, Greenbelt, MD 20771 USA. [Gershunov, Alexander] Univ Calif San Diego, Scripps Inst Oceanog, Climate Atmospher Sci & Phys Oceanog CASPO Div, La Jolla, CA 92093 USA. [Gutowski, William J., Jr.] Iowa State Univ, Dept Geol & Atmospher Sci, Ames, IA 50011 USA. [Gyakum, John R.] McGill Univ, Dept Atmospher & Ocean Sci, Montreal, PQ H3A 0B9, Canada. [Katz, Richard W.] Natl Ctr Atmospher Res, Inst Math Appl Geosci, POB 3000, Boulder, CO 80307 USA. [Lim, Young-Kwon] NASA, Goddard Space Flight Ctr, Global Modeling & Assimilat Off, Goddard Earth Sci Technol & Res IM Syst Grp, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA. RP Grotjahn, R (reprint author), Univ Calif Davis, Atmospher Sci Program, Dept LAWR, One Shields Ave, Davis, CA 95616 USA. EM grotjahn@ucdavis.edu RI Black, Robert/L-8522-2014; Bosilovich, Michael/F-8175-2012; Katz, Richard/K-4133-2012 OI Katz, Richard/0000-0002-0267-8953 FU US CLIVAR office; US CLIVAR; NSF [1236681]; USDA National Institute of Food and Agriculture [CA-D-LAW-4264-H]; Regional and Global Climate Modeling Program of the Office of Biological and Environmental Research in the Department of Energy Office of Science; Battelle Memorial Institute for the DOE [DE-AC05-76RL01830]; Lawrence Berkeley National Laboratory [DE-AC02-05CH11231]; US Department of Energy, Office of Biological and Environmental Research [DE-SC0004942, DE-SC0012554]; National Science Foundation [ARC-1107384, ARC1023369]; Department of Energy [DESC0006643]; Natural Sciences and Engineering Research Council of Canada Discovery Grant; International Polar Year Grant; National Science Foundation FX The authors thank Dr. Christopher J. Paciorek for his assistance in preparing this article. The authors also thank Dr. Steven Vavrus for his comments. Most of the authors are members of the US CLIVAR Extremes working group who greatly appreciate the support provided by the US CLIVAR office. This report was enhanced by discussions held at the 2013 workshop on Analyses, Dynamics, and Modeling of Large Scale Meteorological Patterns Associated with Extreme Temperature and Precipitation Events held at the Lawrence Berkeley National Laboratory and also funded by US CLIVAR (https://usclivar.org/meetings/extremes-workshop-agenda). Research by Grotjahn was funded in part by NSF Grant 1236681 and also supported by the USDA National Institute of Food and Agriculture, Hatch project CA-D-LAW-4264-H. Leung and Wehner were supported by the Regional and Global Climate Modeling Program of the Office of Biological and Environmental Research in the Department of Energy Office of Science. Pacific Northwest National Laboratory is operated by Battelle Memorial Institute for the DOE under contract DE-AC05-76RL01830 and Lawrence Berkeley National Laboratory is under contract DE-AC02-05CH11231. Black was supported by the US Department of Energy, Office of Biological and Environmental Research, awards DE-SC0004942 and DE-SC0012554, and the National Science Foundation Grant ARC-1107384. Gutowski was supported by National Science Foundation Grant ARC1023369 and Department of Energy Grant DESC0006643. Gyakum was supported by a Natural Sciences and Engineering Research Council of Canada Discovery Grant, and by an International Polar Year Grant. The National Center for Atmospheric Research is sponsored by the National Science Foundation. NR 163 TC 5 Z9 5 U1 20 U2 55 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0930-7575 EI 1432-0894 J9 CLIM DYNAM JI Clim. Dyn. PD FEB PY 2016 VL 46 IS 3-4 BP 1151 EP 1184 DI 10.1007/s00382-015-2638-6 PG 34 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DD6JQ UT WOS:000370030900029 ER PT J AU Breslow, AD Porter, L Tiwari, A Laurenzano, M Carrington, L Tullsen, DM Snavely, AE AF Breslow, Alex D. Porter, Leo Tiwari, Ananta Laurenzano, Michael Carrington, Laura Tullsen, Dean M. Snavely, Allan E. TI The case for colocation of high performance computing workloads SO CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE LA English DT Article DE supercomputer performance; HPC application symbiosis; energy-aware optimization ID SYSTEMS AB The current state of practice in supercomputer resource allocation places jobs from different users on disjoint nodes both in terms of time and space. While this approach largely guarantees that jobs from different users do not degrade one another's performance, it does so at high cost to system throughput and energy efficiency. This focused study presents job striping, a technique that significantly increases performance over the current allocation mechanism by colocating pairs of jobs from different users on a shared set of nodes. To evaluate the potential of job striping in large-scale environments, the experiments are run at the scale of 128 nodes on the state-of-the-art Gordon supercomputer. Across all pairings of 1024 process network-attached storage parallel benchmarks, job striping increases mean throughput by 26% and mean energy efficiency by 22%. On pairings of the real applications Gyrokinetic Toroidal Code (GTC), Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS), and MIMD Lattice Computation (MILC) at equal scale, job striping improves average throughput by 12% and mean energy efficiency by 11%. In addition, the study provides a simple set of heuristics for avoiding low performing application pairs. Copyright (c) 2013 John Wiley & Sons, Ltd. C1 [Breslow, Alex D.; Tullsen, Dean M.; Snavely, Allan E.] Univ Calif San Diego, Dept Comp Sci & Engn, 9500 Gilman Dr, La Jolla, CA 92093 USA. [Porter, Leo] Skidmore Coll, Comp Sci, Saratoga Springs, NY 12866 USA. [Tiwari, Ananta; Laurenzano, Michael; Carrington, Laura; Snavely, Allan E.] San Diego Supercomp Ctr, San Diego, CA USA. [Snavely, Allan E.] Lawrence Livermore Natl Lab, Livermore, CA USA. RP Breslow, AD (reprint author), Univ Calif San Diego, Dept Comp Sci & Engn, 9500 Gilman Dr, La Jolla, CA 92093 USA. EM abreslow@cs.ucsd.edu FU DOE Office of Science through the Advanced Scientific Computing Research (ASCR); National Science Foundation [OCI-0910847]; NSF [CCF-0702349, CCF-1018356]; UCSD Computer Science and Engineering Department; Reserve Officers Association Henry J. Reilly Memorial Scholarship; Semiconductor Research Corporation [2005-HJ-1313]; Multiscale Systems Center, one of six research centers under the Focus Center Research Program (FCRP), a Semiconductor Research Corporation program FX This research has been supported in part by the DOE Office of Science through the Advanced Scientific Computing Research (ASCR) award titled 'Thrifty: An Exascale Architecture for Energy-Proportional Computing', National Science Foundation grant: OCI-0910847, Gordon: A Data Intensive Supercomputer, NSF Grant CCF-0702349, NSF grant CCF-1018356, the UCSD Computer Science and Engineering Department, the Reserve Officers Association Henry J. Reilly Memorial Scholarship, and Semiconductor Research Corporation Grant 2005-HJ-1313. The authors also acknowledge the support of the Multiscale Systems Center, one of six research centers funded under the Focus Center Research Program (FCRP), a Semiconductor Research Corporation program. NR 48 TC 2 Z9 2 U1 0 U2 2 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1532-0626 EI 1532-0634 J9 CONCURR COMP-PRACT E JI Concurr. Comput.-Pract. Exp. PD FEB PY 2016 VL 28 IS 2 SI SI BP 232 EP 251 DI 10.1002/cpe.3187 PG 20 WC Computer Science, Software Engineering; Computer Science, Theory & Methods SC Computer Science GA DD3OQ UT WOS:000369832200004 ER PT J AU Pakin, S Storlie, C Lang, M Fields, RE Romero, EE Idler, C Michalak, S Greenberg, H Loncaric, J Rheinheimer, R Grider, G Wendelberger, J AF Pakin, Scott Storlie, Curtis Lang, Michael Fields, Robert E., III Romero, Eloy E., Jr. Idler, Craig Michalak, Sarah Greenberg, Hugh Loncaric, Josip Rheinheimer, Randal Grider, Gary Wendelberger, Joanne TI Power usage of production supercomputers and production workloads SO CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE LA English DT Article DE production supercomputers; power; high-performance computing; measurements; analysis AB Power is becoming an increasingly important concern for large supercomputer centers. However, to date, there have been a dearth of studies of power usage in the wild'on production supercomputers running production workloads. In this paper, we present the initial results of a project to characterize the power usage of the three Top500 supercomputers at Los Alamos National Laboratory: Cielo, Roadrunner, and Luna (#15, #19, and #47, respectively, on the June 2012 Top500 list). Power measurements taken both at the switchboard level and within the compute racks are presented and discussed. Some noteworthy results of this study are that (1) variability in power consumption differs across architectures, even when running a similar workload and (2) Los Alamos National Laboratory's scientific workload draws, on average, only 70-75% of LINPACK power and only 40-55% of nameplate power, implying that power capping may enable a substantial reduction in power and cooling infrastructure while impacting comparatively few applications. Copyright (c) 2013 John Wiley & Sons, Ltd. C1 [Pakin, Scott; Storlie, Curtis; Lang, Michael; Fields, Robert E., III; Romero, Eloy E., Jr.; Idler, Craig; Michalak, Sarah; Greenberg, Hugh; Loncaric, Josip; Rheinheimer, Randal; Grider, Gary; Wendelberger, Joanne] Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. RP Pakin, S (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM pakin@lanl.gov OI Wendelberger, Joanne/0000-0001-5879-3945; Pakin, Scott/0000-0002-5220-1985 NR 34 TC 2 Z9 2 U1 1 U2 3 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1532-0626 EI 1532-0634 J9 CONCURR COMP-PRACT E JI Concurr. Comput.-Pract. Exp. PD FEB PY 2016 VL 28 IS 2 SI SI BP 274 EP 290 DI 10.1002/cpe.3191 PG 17 WC Computer Science, Software Engineering; Computer Science, Theory & Methods SC Computer Science GA DD3OQ UT WOS:000369832200006 ER PT J AU Balaji, P Huang, ZY AF Balaji, Pavan Huang, Zhiyi TI Programming models and applications for multicores and manycores SO CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE LA English DT Editorial Material C1 [Balaji, Pavan] Argonne Natl Lab, Div Math & Comp Sci, Lemont, IL USA. [Huang, Zhiyi] Univ Otago, Dunedin, New Zealand. RP Balaji, P (reprint author), Argonne Natl Lab, Div Math & Comp Sci, Lemont, IL USA. EM balaji@anl.gov NR 6 TC 0 Z9 0 U1 1 U2 1 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1532-0626 EI 1532-0634 J9 CONCURR COMP-PRACT E JI Concurr. Comput.-Pract. Exp. PD FEB PY 2016 VL 28 IS 2 SI SI BP 453 EP 454 DI 10.1002/cpe.3624 PG 2 WC Computer Science, Software Engineering; Computer Science, Theory & Methods SC Computer Science GA DD3OQ UT WOS:000369832200018 ER PT J AU Emery, JD Schleputz, CM Guo, PJ Chang, RPH Martinson, ABF AF Emery, Jonathan D. Schlepuetz, Christian M. Guo, Peijun Chang, Robert P. H. Martinson, Alex B. F. TI Epitaxial Atomic Layer Deposition of Sn-Doped Indium Oxide SO CRYSTAL GROWTH & DESIGN LA English DT Article ID YTTRIA-STABILIZED ZIRCONIA; PULSED-LASER DEPOSITION; MOLECULAR-BEAM EPITAXY; TIN-OXIDE; THIN-FILMS; GROWTH; IN2O3; SEMICONDUCTOR; DYNAMICS; DEVICES AB Coherently strained, epitaxial Sn-doped In2O3 (ITO) thin films were fabricated at temperatures as low as 250 degrees C using atomic layer deposition (ALD) on (001)-, (011)-, and (111)-oriented single-crystal Y-stabilized ZrO2 (YSZ) substrates. Resultant films possess cube-on-cube epitaxial relationships with the underlying YSZ substrates and are smooth, highly conductive, and optically transparent. This epitaxial ALD approach is favorable compared to many conventional growth techniques as it is a large-scale synthesis method that does not necessitate the use of high temperatures or ultrahigh vacuum. These films may prove valuable as a conductive growth template in areas where high-quality crystalline thin film substrates are important, such as solar energy materials, light-emitting diodes, or wide bandgap semiconductors. Furthermore, we discuss the applicability of this ALD system as an excellent model system for the study of ALD surface chemistry, nucleation, and film growth. C1 [Emery, Jonathan D.; Martinson, Alex B. F.] Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. [Schlepuetz, Christian M.] Argonne Natl Lab, Xray Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA. [Guo, Peijun; Chang, Robert P. H.] Northwestern Univ, Dept Mat Sci & Engn, 2220 Campus Dr, Evanston, IL 60208 USA. RP Emery, JD; Martinson, ABF (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM jdemery@anl.gov; martinson@anl.gov RI Chang, R.P.H/B-7505-2009; Guo, Peijun/I-1964-2013; Schleputz, Christian/C-4696-2008 OI Guo, Peijun/0000-0001-5732-7061; Schleputz, Christian/0000-0002-0485-2708 FU Argonne-Northwestern Solar Energy Research (ANSER) Center, an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001059]; UChicago Argonne, LLC. [DE-AC02-06CH11357] FX This work was supported as part of the Argonne-Northwestern Solar Energy Research (ANSER) Center, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Award Number DE-SC0001059. This research, including X-ray studies at the Advanced Photon Source, was performed at Argonne National Laboratory, a U.S. Department of Energy, Office of Science, Laboratory operated under Contract No. DE-AC02-06CH11357 by UChicago Argonne, LLC. We acknowledge use of beamline 33-BM-C for acquisition of the X-ray diffraction data. We would also like to thank Paul Fenter for use of his atomic force microscope, John Hammonds for his work on the development of rsMap3D, and Matthew Weimer for discussions on InCp surface chemistry. NR 40 TC 3 Z9 3 U1 11 U2 38 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1528-7483 EI 1528-7505 J9 CRYST GROWTH DES JI Cryst. Growth Des. PD FEB PY 2016 VL 16 IS 2 BP 640 EP 645 DI 10.1021/acs.cgd.5b01086 PG 6 WC Chemistry, Multidisciplinary; Crystallography; Materials Science, Multidisciplinary SC Chemistry; Crystallography; Materials Science GA DD2SU UT WOS:000369773300014 ER PT J AU Soltis, JA Feinberg, JM Gilbert, B Penn, RL AF Soltis, Jennifer A. Feinberg, Joshua M. Gilbert, Benjamin Penn, R. Lee TI Phase Transformation and Particle-Mediated Growth in the Formation of Hematite from 2-Line Ferrihydrite SO CRYSTAL GROWTH & DESIGN LA English DT Article ID ANATASE-TO-RUTILE; ORIENTED ATTACHMENT; CRYSTAL-GROWTH; 6-LINE FERRIHYDRITE; NANOCRYSTALLINE MATERIAL; OXIDE NANOPARTICLES; IRON OXYHYDROXIDE; FEOOH NANORODS; AGGREGATION; GOETHITE AB Iron oxide nanoparticles are present throughout the Earth and undergo mineral phase transformations that affect their stability and reactivity. The formation of the iron oxide hematite from a 2-line ferrihydrite (2lnFh) precursor requires both phase transformation and growth. Whether phase transformation occurs before or after substantial particle growth, and by which mechanisms particles grow, remain unclear. We conducted time-resolved studies employing X-ray diffraction, room temperature and cryogenic transmission electron microscopy, preferential dissolution by oxalate buffer, and low temperature SQuID magnetometry to investigate the kinetics and mechanism of hematite formation from 2lnFh. A novel form of magnetic measurement was found to be exquisitely sensitive to the presence of hematite, detecting its formation at far lower concentrations than possible with X-ray diffraction. These results indicate that small hematite domains were present even in as-prepared 2lnFh suspensions as a side-product of 2lnFh synthesis and that the hematite domains increased in size and crystallinity with aging time at elevated temperatures. Second-order kinetics reveals that the hematite growth is consistent with a particle-mediated growth mechanism, possibly oriented attachment. C1 [Soltis, Jennifer A.; Penn, R. Lee] Univ Minnesota, Dept Chem, B4,139 Smith Hall,207 Pleasant St SE, Minneapolis, MN 55455 USA. [Feinberg, Joshua M.] Univ Minnesota, Inst Rock Magnetism, Dept Earth Sci, B4,139 Smith Hall,207 Pleasant St SE, Minneapolis, MN 55455 USA. [Gilbert, Benjamin] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Soltis, Jennifer A.] Pacific NW Natl Lab, Div Phys Sci, Richland, WA 99352 USA. RP Penn, RL (reprint author), Univ Minnesota, Dept Chem, B4,139 Smith Hall,207 Pleasant St SE, Minneapolis, MN 55455 USA. EM rleepenn@umn.edu RI Gilbert, Benjamin/E-3182-2010; OI Soltis, Jennifer/0000-0002-7442-0193 FU National Science Foundation [0957696]; University of Minnesota IPrime Nanostructural Materials and Processes Program; Department of Chemistry Newman and Lillian Bortnick Fellowship; NSF-EAR Instrumentation and Facilities [1339505]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy (BES-DOE) [DE-AC02-05CH11231]; DOE [DEAC02-06CH11357] FX Participation of J.A.S. and R.L.P. in this research is funded by the National Science Foundation (No. 0957696). J.A.S. also receives funding from the University of Minnesota IPrime Nanostructural Materials and Processes Program and the Department of Chemistry Newman and Lillian Bortnick Fellowship. Participation of J.M.F. and the Institute for Rock Magnetism in this research is funded by the NSF-EAR Instrumentation and Facilities #1339505. Participation of B.G. in this research is funded by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy (BES-DOE) under Contract No. DE-AC02-05CH11231. Work at the Advanced Photon Source was supported by DOE under Contract DEAC02-06CH11357. NR 82 TC 1 Z9 1 U1 14 U2 51 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1528-7483 EI 1528-7505 J9 CRYST GROWTH DES JI Cryst. Growth Des. PD FEB PY 2016 VL 16 IS 2 BP 922 EP 932 DI 10.1021/acs.cgd.5b01471 PG 11 WC Chemistry, Multidisciplinary; Crystallography; Materials Science, Multidisciplinary SC Chemistry; Crystallography; Materials Science GA DD2SU UT WOS:000369773300044 ER PT J AU Yang, YB Dash, JK Littlejohn, AJ Xiang, Y Wang, Y Shi, J Zhang, LH Kisslinger, K Lu, TM Wang, GC AF Yang, Y. -B. Dash, J. K. Littlejohn, A. J. Xiang, Y. Wang, Y. Shi, J. Zhang, L. H. Kisslinger, K. Lu, T. -M. Wang, G. -C. TI Large Single Crystal SnS2 Flakes Synthesized from Coevaporation of Sn and S SO CRYSTAL GROWTH & DESIGN LA English DT Article ID SCANNING-TUNNELING-MICROSCOPY; HEXAGONAL BORON-NITRIDE; DER-WAALS EPITAXY; ION BATTERY ANODE; RAMAN-SCATTERING; MOLYBDENUM-DISULFIDE; ELECTRONIC-STRUCTURE; VISIBLE-LIGHT; GROWTH; PERFORMANCE AB Remarkable properties of layered metal dichalcogenides and their potential applications in various fields have raised intense interest worldwide. We report tens of microns-sized ultrathin single crystal SnS2 flakes grown on amorphous substrates using a simple one-step thermal coevaporation process. X-ray pole figure analysis reveals that a majority of flakes are oriented with the (0001) plane parallel to the substrate and a preferred fiber texture. For few-layer-thick SnS2, Moire patterns of 6-fold and 12-fold symmetries are observed by transmission electron microscopy imaging and diffraction. These patterns result from the relative rotation between SnS2 layers in the ultrathin flake. The 12-fold symmetry is,consistent with a known quasicrystal pattern. The photoluminescence spectrum supports that these ultrathin flakes possess a direct bandgap. Carrier lifetime measured by time-resolved photoluminescence of a single flake is a few nanoseconds. These results improve our understanding of the formation and shape of ultrathin SnS2 flakes. C1 [Yang, Y. -B.; Dash, J. K.; Littlejohn, A. J.; Xiang, Y.; Lu, T. -M.; Wang, G. -C.] Rensselaer Polytech Inst, Dept Phys Appl Phys & Astron, 110 Eighth St, Troy, NY 12180 USA. [Wang, Y.; Shi, J.] Rensselaer Polytech Inst, Dept Mat Sci & Engn, 110 Eighth St, Troy, NY 12180 USA. [Zhang, L. H.; Kisslinger, K.] Brookhaven Natl Lab, Ctr Funct Nanomat, Bldg 735,POB 5000, Upton, NY 11973 USA. RP Yang, YB (reprint author), Rensselaer Polytech Inst, Dept Phys Appl Phys & Astron, 110 Eighth St, Troy, NY 12180 USA. EM yangy20@rpi.edu RI Zhang, Lihua/F-4502-2014; Kisslinger, Kim/F-4485-2014; OI Wang, Yiping/0000-0001-7626-3278 FU New York State Foundation of Science, Technology and Innovation (NYSTAR) through Focus Center-New York and Rensselaer; U.S. department of Energy, Office of Basic Sciences [DE-AC02-98CH10886] FX This work is supported by the New York State Foundation of Science, Technology and Innovation (NYSTAR) through Focus Center-New York and Rensselaer. TEM studies were carried out in whole at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is operated by the U.S. department of Energy, Office of Basic Sciences, under contract no. DE-AC02-98CH10886. We thank W. Xie and Dustin Andersen for valuable discussions. NR 57 TC 3 Z9 3 U1 14 U2 61 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1528-7483 EI 1528-7505 J9 CRYST GROWTH DES JI Cryst. Growth Des. PD FEB PY 2016 VL 16 IS 2 BP 961 EP 973 DI 10.1021/acs.cgd.5b01512 PG 13 WC Chemistry, Multidisciplinary; Crystallography; Materials Science, Multidisciplinary SC Chemistry; Crystallography; Materials Science GA DD2SU UT WOS:000369773300049 ER PT J AU de Raad, M Fischer, CR Northen, TR AF de Raad, Markus Fischer, Curt R. Northen, Trent R. TI High-throughput platforms for metabolomics SO CURRENT OPINION IN CHEMICAL BIOLOGY LA English DT Review ID TANDEM MASS-SPECTROMETRY; ABLATION ELECTROSPRAY-IONIZATION; SOLID-PHASE EXTRACTION; QUANTITATIVE-ANALYSIS; FLOW-INJECTION; IN-VIVO; MALDI-TOF; MS; CHROMATOGRAPHY; MICROFLUIDICS AB Mass spectrometry has become a choice method for broad-spectrum metabolite analysis in both fundamental and applied research. This can range from comprehensive analysis achieved through time-consuming chromatography to the rapid analysis of a few target metabolites without chromatography. In this review article, we highlight current high-throughput MS-based platforms and their potential application in metabolomics. Although current MS platforms can reach throughputs up to 0.5 seconds per sample, the metabolite coverage of these platforms are low compared to low-throughput, separation-based MS methods. High throughput comes at a cost, as it's a trade-off between sample throughput and metabolite coverage. As we will discuss, promising emerging technologies, including microfluidics and miniaturization of separation techniques, have the potential to achieve both rapid and more comprehensive metabolite analysis. C1 [de Raad, Markus; Fischer, Curt R.; Northen, Trent R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. RP Northen, TR (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM trnorthen@lbl.gov OI Northen, Trent/0000-0001-8404-3259; de Raad, Markus/0000-0001-8263-9198 FU U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research [DE-AC02-05CH11231] FX This work was part of the DOE Joint BioEnergy Institute (http://www.jbei.org) and ENIGMA- Ecosystems and Networks Integrated with Genes and Molecular Assemblies (http://enigma.lbl.gov), a Scientific Focus Area Program at Lawrence Berkeley National Laboratory, both supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, through contract DE-AC02-05CH11231 between Lawrence Berkeley National Laboratory and the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. NR 72 TC 8 Z9 8 U1 16 U2 53 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1367-5931 EI 1879-0402 J9 CURR OPIN CHEM BIOL JI Curr. Opin. Chem. Biol. PD FEB PY 2016 VL 30 BP 7 EP 13 DI 10.1016/j.cbpa.2015.10.012 PG 7 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA DD7JE UT WOS:000370099500003 PM 26544850 ER PT J AU Cong, YZ Katipamula, S Geng, T Prost, SA Tang, KQ Kelly, RT AF Cong, Yongzheng Katipamula, Shanta Geng, Tao Prost, Spencer A. Tang, Keqi Kelly, Ryan T. TI Electrokinetic sample preconcentration and hydrodynamic sample injection for microchip electrophoresis using a pneumatic microvalve SO ELECTROPHORESIS LA English DT Article DE Hydrodynamic injection; Microchip electrophoresis; Microfluidic; Nanochannel preconcentration; Pneumatic microvalve ID MOVING BOUNDARY ELECTROPHORESIS; CAPILLARY-ZONE-ELECTROPHORESIS; SOLID-PHASE EXTRACTION; MASS-SPECTROMETRY; CONCENTRATION POLARIZATION; STACKING TECHNIQUES; MICROFLUIDIC CHIPS; HIGH-THROUGHPUT; SEPARATION; POLY(DIMETHYLSILOXANE) AB A microfluidic platform was developed to perform online electrokinetic sample preconcentration and rapid hydrodynamic sample injection for zone electrophoresis using a single microvalve. The polydimethylsiloxane microchip comprises a separation channel, a side channel for sample introduction, and a control channel which is used as a pneumatic microvalve aligned at the intersection of the two flow channels. The closed microvalve, created by multilayer soft lithography, serves as a nanochannel preconcentrator under an applied electric potential, enabling current to pass through while preventing bulk flow. Once analytes are concentrated, the valve is briefly opened and the stacked sample is pressure injected into the separation channel for electrophoretic separation. Fluorescently labeled peptides were enriched by a factor of approximate to 450 in 230 s. This method enables both rapid analyte concentration and controlled injection volume for high sensitivity, high-resolution CE. C1 [Cong, Yongzheng; Katipamula, Shanta; Geng, Tao; Prost, Spencer A.; Kelly, Ryan T.] Pacific NW Natl Lab, Environm Mol Sci Lab, POB 999, Richland, WA 99352 USA. [Tang, Keqi] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. RP Kelly, RT (reprint author), Pacific NW Natl Lab, Environm Mol Sci Lab, POB 999, Richland, WA 99352 USA. EM ryan.kelly@pnnl.gov RI Kelly, Ryan/B-2999-2008 OI Kelly, Ryan/0000-0002-3339-4443 FU Department of Energy's Office of Biological and Environmental Research FX Pacific Northwest National Laboratory (PNNL), a multiprogram national laboratory operated by Battelle for the U.S. Department of Energy. The research was performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at PNNL. NR 44 TC 7 Z9 7 U1 13 U2 46 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0173-0835 EI 1522-2683 J9 ELECTROPHORESIS JI Electrophoresis PD FEB PY 2016 VL 37 IS 3 SI SI BP 455 EP 462 DI 10.1002/elps.201500286 PG 8 WC Biochemical Research Methods; Chemistry, Analytical SC Biochemistry & Molecular Biology; Chemistry GA DD5JK UT WOS:000369959400011 PM 26255610 ER PT J AU Oldenburg, CM AF Oldenburg, Curtis M. TI How the low price of oil can spur CCS research innovation SO GREENHOUSE GASES-SCIENCE AND TECHNOLOGY LA English DT Editorial Material C1 [Oldenburg, Curtis M.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Oldenburg, CM (reprint author), Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RI Oldenburg, Curtis/L-6219-2013 OI Oldenburg, Curtis/0000-0002-0132-6016 NR 0 TC 0 Z9 0 U1 2 U2 5 PU WILEY PERIODICALS, INC PI SAN FRANCISCO PA ONE MONTGOMERY ST, SUITE 1200, SAN FRANCISCO, CA 94104 USA SN 2152-3878 J9 GREENH GASES JI Greenh. Gases PD FEB PY 2016 VL 6 IS 1 BP 1 EP 2 DI 10.1002/ghg.1588 PG 2 WC Energy & Fuels; Engineering, Environmental; Environmental Sciences SC Energy & Fuels; Engineering; Environmental Sciences & Ecology GA DD5PN UT WOS:000369976400001 ER PT J AU Oldenburg, CM Mukhopadhyay, S Cihan, A AF Oldenburg, Curtis M. Mukhopadhyay, Sumit Cihan, Abdullah TI On the use of Darcy's law and invasion-percolation approaches for modeling large-scale geologic carbon sequestration SO GREENHOUSE GASES-SCIENCE AND TECHNOLOGY LA English DT Review DE invasion-percolation; Darcy's law; geologic carbon sequestration; capillary number; simulation; reservoir modeling; carbon dioxide ID SALINE AQUIFERS; CO2 STORAGE; POROUS-MEDIA; CONSTITUTIVE RELATIONSHIPS; IMMISCIBLE DISPLACEMENT; UTSIRA FORMATION; DECATUR PROJECT; ILLINOIS BASIN; SIMULATION; FLOW AB Most large-scale flow and transport simulations for geologic carbon sequestration (GCS) applications are carried out using simulators that solve flow equations arising from Darcy's law. Recently, the computational advantages of invasion-percolation (IP) modeling approaches have been presented. We show that both the Darcy's-law- and the gravity-capillary balance solved by IP approaches can be derived from the same multiphase continuum momentum equation. More specifically, Darcy's law arises from assuming creeping flow with no viscous momentum transfer to stationary solid grains, while it is assumed in the IP approach that gravity and capillarity are the dominant driving forces in a quasi-static two-phase (or more) system. There is a long history of use of Darcy's law for large-scale GCS simulation. However, simulations based on Darcy's law commonly include significant numerical dispersion as users employ large grid blocks to keep run times practical. In contrast, the computational simplicity of IP approaches allows large-scale models to honor fine-scale hydrostratigraphic details of the storage formation which makes these IP models suitable for analyzing the impact of small-scale heterogeneities on flow. However, the lack of time-dependence in the IP models is a significant disadvantage, while the ability of Darcy's law to simulate a range of flows from single-phase- and pressure-gradient-driven flows to buoyant multiphase gravity-capillary flow is a significant advantage. We believe on balance that Darcy's law simulations should be the preferred approach to large-scale GCS simulations. (c) 2015 Society of Chemical Industry and John Wiley & Sons, Ltd C1 [Oldenburg, Curtis M.; Mukhopadhyay, Sumit; Cihan, Abdullah] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Oldenburg, CM (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Earth Sci Div 74 316C, Berkeley, CA 94720 USA. EM CMOldenburg@lbl.gov RI Oldenburg, Curtis/L-6219-2013; Cihan, Abdullah/D-3704-2015 OI Oldenburg, Curtis/0000-0002-0132-6016; FU Lawrence Berkeley National Laboratory under Department of Energy [DE-AC02-05CH11231] FX We thank Larry Myer (LTI-Global) for suggesting this topic. The presentation was greatly improved by the comments of Stefan Finsterle (LBNL). Support for this work was provided by Lawrence Berkeley National Laboratory under Department of Energy Contract No. DE-AC02-05CH11231. NR 71 TC 0 Z9 0 U1 5 U2 17 PU WILEY PERIODICALS, INC PI SAN FRANCISCO PA ONE MONTGOMERY ST, SUITE 1200, SAN FRANCISCO, CA 94104 USA SN 2152-3878 J9 GREENH GASES JI Greenh. Gases PD FEB PY 2016 VL 6 IS 1 BP 19 EP 33 DI 10.1002/ghg.1564 PG 15 WC Energy & Fuels; Engineering, Environmental; Environmental Sciences SC Energy & Fuels; Engineering; Environmental Sciences & Ecology GA DD5PN UT WOS:000369976400004 ER PT J AU Yang, T Wu, D Sun, YN Lian, JM AF Yang, Tao Wu, Di Sun, Yannan Lian, Jianming TI Minimum-Time Consensus-Based Approach for Power System Applications SO IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS LA English DT Article DE Distributed control; load shedding; minimum-time consensus; multi-agent systems; optimal dispatch ID MULTIAGENT SYSTEMS; ECONOMIC-DISPATCH; COORDINATION; ALGORITHM; NETWORKS; AGENTS; TOPOLOGIES; LEADER AB This paper presents minimum-time consensus-based distributed algorithms for power system applications, such as load shedding and economic dispatch. The proposed algorithms are capable of solving these problems in a minimum number of time steps instead of asymptotically as in most of the existing studies. Moreover, these algorithms are applicable to both undirected and directed communication networks. Simulation results are used to validate the proposed algorithms. C1 [Yang, Tao; Wu, Di; Sun, Yannan; Lian, Jianming] Pacific NW Natl Lab, Richland, WA 99354 USA. RP Yang, T; Wu, D; Sun, YN; Lian, JM (reprint author), Pacific NW Natl Lab, Richland, WA 99354 USA. EM Tao.Yang@pnnl.gov; Di.Wu@pnnl.gov; Yannan.Sun@pnnl.gov; Jianming.Lian@pnnl.gov RI Yang, Tao/K-7139-2016; OI Yang, Tao/0000-0003-4090-8497; Wu, Di/0000-0001-6955-4333 FU Laboratory Directed Research and Development (LDRD) program at the Pacific Northwest National Laboratory FX This work was supported by the Laboratory Directed Research and Development (LDRD) program at the Pacific Northwest National Laboratory. NR 44 TC 0 Z9 0 U1 4 U2 9 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0278-0046 EI 1557-9948 J9 IEEE T IND ELECTRON JI IEEE Trans. Ind. Electron. PD FEB PY 2016 VL 63 IS 2 BP 1318 EP 1328 DI 10.1109/TIE.2015.2504050 PG 11 WC Automation & Control Systems; Engineering, Electrical & Electronic; Instruments & Instrumentation SC Automation & Control Systems; Engineering; Instruments & Instrumentation GA DD5UP UT WOS:000369990300061 ER PT J AU Perlepe, PS Cunha-Silva, L Gagnon, KJ Teat, SJ Lampropoulos, C Escuer, A Stamatatos, TC AF Perlepe, Panagiota S. Cunha-Silva, Luis Gagnon, Kevin J. Teat, Simon J. Lampropoulos, Christos Escuer, Albert Stamatatos, Theocharis C. TI "Ligands-with-Benefits": Naphthalene-Substituted Schiff Bases Yielding New Ni-II Metal Clusters with Ferromagnetic and Emissive Properties and Undergoing Exciting Transformations SO INORGANIC CHEMISTRY LA English DT Article ID SINGLE-MOLECULE MAGNETS; HIGH-SPIN MOLECULES; STRUCTURAL AESTHETICS; CHEMISTRY; COMPLEXES; IRON(III); TOPOLOGY; SOLVENT; DESIGN; CHAIN AB The initial employment of the fluorescent bridging ligand N-naphthalidene-2-amino-5-chlorobenzoic acid (nacbH(2)) in metal cluster chemistry has led to new Ni-12 (1) and Ni-5 (2) clusters with wheel-like and molecular chain topologies, respectively. The doubly-deprotonated nacb(2-) ligands were found to adopt four different coordination modes within 1 and 2. The nature of the ligand has also allowed unexpected organic transformations to occur and ferromagnetic and emission behaviors to emerge. The combined work demonstrates the ability of some "ligands-with-benefits" to yield beautiful structures with exciting topologies and interesting physicochemical properties. C1 [Perlepe, Panagiota S.; Stamatatos, Theocharis C.] Brock Univ, Dept Chem, St Catharines, ON L2S 3A1, Canada. [Cunha-Silva, Luis] Univ Porto, REQUIMTE LAQV, P-4169007 Oporto, Portugal. [Cunha-Silva, Luis] Univ Porto, Dept Chem & Biochem, Fac Sci, P-4169007 Oporto, Portugal. [Gagnon, Kevin J.; Teat, Simon J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, 1 Cyclotron Rd, Berkeley, CA 94720 USA. [Lampropoulos, Christos] Univ N Florida, Dept Chem, Jacksonville, FL 32224 USA. [Escuer, Albert] Univ Barcelona, Dept Quim Inorgan, Diagonal 645, Barcelona 08028, Spain. [Escuer, Albert] Univ Barcelona, Inst Nanociencia & Nanotecnol, Diagonal 645, E-08028 Barcelona, Spain. RP Stamatatos, TC (reprint author), Brock Univ, Dept Chem, St Catharines, ON L2S 3A1, Canada. EM tstamatatos@brocku.ca RI Escuer, Albert/L-4706-2014 OI Escuer, Albert/0000-0002-6274-6866 FU Brock University; NSERC-DG; ERA; Alexander S. Onassis Public Benefit Foundation; Fundacao para a Ciencia e a Tecnologia (Portugal), REQUIMTE/LAQV [UID/QUI/50006/2013]; CICYT [CTQ2012-30662]; Office of Science, Office of Basic Energy Sciences, U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by Brock University, NSERC-DG, and ERA (to T.C.S), the Alexander S. Onassis Public Benefit Foundation (graduate scholarship to P.S.P.), Fundacao para a Ciencia e a Tecnologia (Portugal), which funded REQUIMTE/LAQV (UID/QUI/50006/2013), and CICYT (Project CTQ2012-30662 to A.E). The Advanced Light Source was supported by The Director, Office of Science, Office of Basic Energy Sciences, U.S. Department of Energy, under Contract DE-AC02-05CH11231. We also thank Professor Dionyssios Papaioannou (Chemistry Department, University of Patras, Patras, Greece) for assistance with the proposed mechanism for the formation of L2-/LH- groups in complex 2. C.L. acknowledges support through the Cottrell College Science Award from the Research Corporation for Science Advancement and the Dreyfus Foundation. NR 61 TC 2 Z9 2 U1 4 U2 21 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 EI 1520-510X J9 INORG CHEM JI Inorg. Chem. PD FEB 1 PY 2016 VL 55 IS 3 BP 1270 EP 1277 DI 10.1021/acs.inorgchem.5b02492 PG 8 WC Chemistry, Inorganic & Nuclear SC Chemistry GA DC6VD UT WOS:000369356800033 PM 26788587 ER PT J AU Ansari, SA Yang, YQ Zhang, ZC Gagnon, KJ Teat, SJ Luo, SZ Rao, LF AF Ansari, Seraj A. Yang, Yanqiu Zhang, Zhicheng Gagnon, Kevin J. Teat, Simon J. Luo, Shunzhong Rao, Linfeng TI Complexation of Lanthanides with Glutaroimide-dioxime: Binding Strength and Coordination Modes SO INORGANIC CHEMISTRY LA English DT Article ID EQUILIBRIUM-CONSTANTS; SEAWATER; GLUTARIMIDEDIOXIME; URANIUM; U(VI); SEQUESTRATION; STANDARD; FIELD AB The complexation of lanthanides (Nd3+ and Eu3+) with glutaroimide-dioxime (H2L), a cyclic imide dioxime ligand that has been found to form stable complexes with actinides (UO22+ and NpO2+) and transition metal ions (Fe3+, Cu2+, etc.), was studied by potentiometry, absorption spectrophotometry, luminescence spectroscopy, and microcalorimetry. Lanthanides form three successive complexes, M(HL)(2+), M(HL)L, and M(HL)(2)(+) (where M stands for Nd3+/Eu3+ and HL- stands for the singly deprotonated ligand). The enthalpies of complexation, determined by microcalorimetry, show that the formation of these complexes is exothermic. The stability constants of Ln(3+)/H2L complexes are several orders of magnitude lower than that of the corresponding Fe3+/H2L complexes but are comparable with that of UO22+/H2L complexes. A structure of Eu3+/H2L complex, identified by single-crystal X-ray diffractometry, shows that the ligand coordinates to Eu3+ in a tridentate mode, via the two oxygen atoms of the oxime group and the nitrogen atom of the imide group. The relocation of protons of the oxime groups (-CH=N-OH) from the oxygen to the nitrogen atom, and the deprotonation of the imide group (-CH-NH-CH-) result in a conjugated system with delocalized electron density on the ligand (-O-N-C-N-C-N-O-) that forms strong complexes with the lanthanide ions. C1 [Ansari, Seraj A.; Yang, Yanqiu; Zhang, Zhicheng; Rao, Linfeng] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Ansari, Seraj A.] Bhabha Atom Res Ctr, Div Radiochem, Bombay 400085, Maharashtra, India. [Yang, Yanqiu; Luo, Shunzhong] CAEP, Inst Nucl Phys & Chem, Mianyang 621900, Peoples R China. [Gagnon, Kevin J.; Teat, Simon J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Zhang, ZC (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA.; Luo, SZ (reprint author), CAEP, Inst Nucl Phys & Chem, Mianyang 621900, Peoples R China. EM lxzhang@lbl.gov; luoshzh@caep.cn FU U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences at LBNL [DE-AC02-05CH11231]; Fuel Resources Program, Fuel Cycle Research and Development Program, Office of Nuclear Energy of the U.S. DOE at LBNL [DE-AC02-05CH11231]; Office of Science, Office of Basic Energy Sciences, U.S. DOE [DE-AC02-05CH11231]; Indo-US Science & Technology Forum (IUSSTF) FX The thermodynamic measurements and crystallographic work were supported by the U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, under contract no. DE-AC02-05CH11231 at LBNL. The synthesis of glutaroimide-dioxime and the NMR experiments were supported by the Fuel Resources Program, Fuel Cycle Research and Development Program, Office of Nuclear Energy of the U.S. DOE, under contract no. DE-AC02-05CH11231 at LBNL. Single-crystal X-ray diffraction data were collected and analysed at the Advanced Light Source (ALS). ALS is supported by the Director, Office of Science, Office of Basic Energy Sciences, U.S. DOE, under contract no. DE-AC02-05CH11231. S. A. Ansari acknowledges the Indo-US Science & Technology Forum (IUSSTF) for awarding a fellowship to support the experimental work at LBNL. The authors thank C. J. Leggett of LBNL for synthesizing and checking the purity of the glutaroimide-dioxime ligand. NR 19 TC 2 Z9 2 U1 8 U2 24 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 EI 1520-510X J9 INORG CHEM JI Inorg. Chem. PD FEB 1 PY 2016 VL 55 IS 3 BP 1315 EP 1323 DI 10.1021/acs.inorgchem.5b02653 PG 9 WC Chemistry, Inorganic & Nuclear SC Chemistry GA DC6VD UT WOS:000369356800038 PM 26765525 ER PT J AU Babiniec, SM Coker, EN Miller, JE Ambrosini, A AF Babiniec, Sean M. Coker, Eric N. Miller, James E. Ambrosini, Andrea TI Doped calcium manganites for advanced high-temperature thermochemical energy storage SO INTERNATIONAL JOURNAL OF ENERGY RESEARCH LA English DT Article DE thermochemical energy storage; concentrating solar power; perovskite; thermogravimetric analysis; air Brayton ID COBALT OXIDE; CYCLES; NONSTOICHIOMETRY; CAMNO3-DELTA; MN; FE AB Developing efficient thermal storage for concentrating solar power plants is essential to reducing the cost of generated electricity, extending or shifting the hours of operation, and facilitating renewable penetration into the grid. Perovskite materials of the CaBxMn1-xO3-delta family, where B = Al or Ti, promise improvements in cost and energy storage density over other perovskites currently under investigation. Thermogravimetric analysis of the thermal reduction and reoxidation of these materials was used to extract equilibrium thermodynamic parameters. The results demonstrate that these novel thermochemical energy storage media display the highest reaction enthalpy capacity for perovskites reported to date, with a reaction enthalpy of 390 kJ/kg, a 56% increase over previously reported compositions. Copyright (C) 2015 John Wiley & Sons, Ltd. C1 [Babiniec, Sean M.; Ambrosini, Andrea] Sandia Natl Labs, Mat Devices & Energy Technol, POB 5800,MS 0734, Albuquerque, NM 87185 USA. [Coker, Eric N.; Miller, James E.] Sandia Natl Labs, Adv Mat Lab, 1001 Univ Blvd SE,St 100, Albuquerque, NM 87106 USA. RP Ambrosini, A (reprint author), Sandia Natl Labs, Mat Devices & Energy Technol, POB 5800,MS 0734, Albuquerque, NM 87185 USA. EM aambros@sandia.gov FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; U.S. Department of Energy SunShot Initiative [DE-FOA-0000805] FX Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. This work was supported by the U.S. Department of Energy SunShot Initiative under award number DE-FOA-0000805. NR 21 TC 6 Z9 6 U1 8 U2 31 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0363-907X EI 1099-114X J9 INT J ENERG RES JI Int. J. Energy Res. PD FEB PY 2016 VL 40 IS 2 BP 280 EP 284 DI 10.1002/er.3467 PG 5 WC Energy & Fuels; Nuclear Science & Technology SC Energy & Fuels; Nuclear Science & Technology GA DD4EI UT WOS:000369874900015 ER PT J AU Oostrom, M White, MD Porse, SL Krevor, SCM Mathias, SA AF Oostrom, M. White, M. D. Porse, S. L. Krevor, S. C. M. Mathias, S. A. TI Comparison of relative permeability-saturation-capillary pressure models for simulation of reservoir CO2 injection SO INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL LA English DT Article DE CO2 sequestration; Multiphase simulation; Relative permeability; Capillary pressure; Multifluid constitutive relations ID GOVERNING MULTIPHASE FLOW; SALINE AQUIFERS; CARBON SEQUESTRATION; GEOLOGIC SEQUESTRATION; HYDRAULIC CONDUCTIVITY; CHARACTERISTIC CURVES; SALT-PRECIPITATION; POROUS-MEDIA; NORTH-SEA; STORAGE AB Constitutive relations between relative permeability (k(r)), fluid saturation (S), and capillary pressure (P-c) determine to a large extent the distribution of brine and supercritical CO2 (scCO(2)) during subsurface injection operations. Published numerical multiphase simulations for brine-scCO(2) systems so far have primarily used four k(r) - S - P-c models. For the S - P-c relations, either the Brooks-Corey (BC) or Van Genuchten (VG) equations are used. The k(r) - S relations are based on Mualem, Burdine, or Corey equations without the consideration of experimental data. Recently, two additional models have been proposed where the k(r) - S relations are obtained by fitting to experimental data using either an endpoint power law or a modified Corey approach. The six models were tested using data from four well-characterized sandstones (Berea, Paaratte, Tuscaloosa, Mt. Simon) for two radial injection test cases. The results show a large variation in plume extent and saturation distribution for each of the sandstones, depending on the used model. The VG-Mualem model predicts plumes that are considerably larger than for the other models due to the overestimation of the gas relative permeability. The predicted plume sizes are the smallest for the VG-Corey model due to the underestimation of the aqueous phase relative permeability. Of the four models that do not use fits to experimental relative permeability" data, the hybrid model with Mualem aqueous phase and Corey gas phase relative permeabilities provide the best fits to the experimental data and produce results close to the model with fits to the capillary pressure and relative permeability data. The model with the endpoint power law resulted in very low, uniform gas saturations outside the dry-out zone for the Tuscaloosa sandstone, as the result of a rapidly declining aqueous phase relative permeability. This observed behavior illustrates the need to obtain reliable relative permeability relations for a potential reservoir, beyond permeability and porosity data. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Oostrom, M.; White, M. D.] Pacific NW Natl Lab, Div Energy & Environm, POB 999,MS K9-33, Richland, WA 99354 USA. [Porse, S. L.] US DOE, Geothermal Technol Off, Washington, DC 20585 USA. [Krevor, S. C. M.] Imperial Coll London, Dept Earth Sci & Engn, London, England. [Mathias, S. A.] Univ Durham, Dept Earth Sci, Durham, England. RP Oostrom, M (reprint author), Pacific NW Natl Lab, Div Energy & Environm, POB 999,MS K9-33, Richland, WA 99354 USA. FU FutureGen 2.0 program [DE-FE0001882]; FutureGen Industrial Alliance; Battelle Memorial Institute for the Department of Energy (DOE) [DE-AC06-76RLO 1830] FX Funding for this research was provided by the FutureGen 2.0 program, implemented under Cooperative Agreement DE-FE0001882 between the U.S. Department of Energy and the FutureGen Industrial Alliance, a non-profit membership organization created to benefit the public interest and the interests of science through research, development, and demonstration of near-zero emissions coal technology. For more information on FutureGen 2.0, please visit www.futuregenalliance.org. Pacific Northwest National Laboratory is operated by the Battelle Memorial Institute for the Department of Energy (DOE) under Contract DE-AC06-76RLO 1830. NR 72 TC 4 Z9 4 U1 4 U2 15 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1750-5836 EI 1878-0148 J9 INT J GREENH GAS CON JI Int. J. Greenh. Gas Control PD FEB PY 2016 VL 45 BP 70 EP 85 DI 10.1016/j.ijggc.2015.12.013 PG 16 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Engineering, Environmental SC Science & Technology - Other Topics; Energy & Fuels; Engineering GA DD7IN UT WOS:000370097000008 ER PT J AU Harp, DR Pawar, R Carey, JW Gable, CW AF Harp, Dylan R. Pawar, Rajesh Carey, J. William Gable, Carl W. TI Reduced order models of transient CO2 and brine leakage along abandoned wellbores from geologic carbon sequestration reservoirs SO INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL LA English DT Article DE Reduced-order model; Wellbore; Leakage; CO2; Geologic sequestration ID WELL; GROUNDWATER; INJECTION; IMPACTS; SITE AB We have developed reduced order models (ROMs) for CO2 and brine leakage rates along wellbores including abandoned wells at geologic CO2 storage sites using a Multivariate Adaptive Regression Splines (MARS) algorithm. The ROMs were developed for use within systems level performance assessment models such as Los Alamos National Laboratory's CO2-PENS model. The ROMs are used to compute leakage rates as a function of wellbore properties including effective permeability, depth as well as pressures and saturations in the reservoir where the wellbore intercepts the reservoir. The ROMs were created using results of complex, 3-D multi-phase numerical simulations of large-scale CO2 injection at a generic CO2 storage site with an abandoned wellbore. The generic site included not only the primary storage reservoir but also a groundwater aquifer and an intermediate permeable zone. Two sets of simulations were performed, one with and one without an abandoned wellbore in order to capture the effect of coupling between the storage reservoir and wellbore in a system level model where it is assumed that they are decoupled. Cross-validation against the complex, multi-phase numerical simulation results were used to evaluate the ability of the ROMs to reproduce numerical simulation results. Further, our ROM development approach effectively captures transient CO2 and brine leakage during and after CO2 injection as well as the effects of an intermediate permeable zone on leakage to a shallow groundwater aquifer and to the atmosphere. Ultimately, the ROM is a computationally efficient model that effectively captures many of the complex underlying processes taking place during CO2 and brine leakage along a wellbore at a geologic CO2 storage site. Published by Elsevier Ltd. C1 [Harp, Dylan R.; Pawar, Rajesh; Carey, J. William; Gable, Carl W.] Los Alamos Natl Lab, Earth & Environm Sci Div, POB 1663, Los Alamos, NM 87544 USA. RP Harp, DR (reprint author), Los Alamos Natl Lab, Earth & Environm Sci Div, POB 1663, Los Alamos, NM 87544 USA. EM dharp@lanl.gov OI Harp, Dylan/0000-0001-9777-8000; Gable, Carl/0000-0001-7063-0815 FU US DOE's Fossil Energy Office through National Risk Assessment Partnership (NRAP); High Performance Computing Division FX This work was funded by the US DOE's Fossil Energy Office through the National Risk Assessment Partnership (NRAP) managed by the National Energy Technology Laboratory (NETL). Numerical simulations were performed on Los Alamos National Laboratory clusters supported by the High Performance Computing Division. NR 29 TC 2 Z9 2 U1 2 U2 7 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1750-5836 EI 1878-0148 J9 INT J GREENH GAS CON JI Int. J. Greenh. Gas Control PD FEB PY 2016 VL 45 BP 150 EP 162 DI 10.1016/j.ijggc.2015.12.001 PG 13 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Engineering, Environmental SC Science & Technology - Other Topics; Energy & Fuels; Engineering GA DD7IN UT WOS:000370097000015 ER PT J AU Li, C Zhang, KN Wang, YS Guo, CB Maggi, F AF Li, Cai Zhang, Keni Wang, Yongsheng Guo, Chaobin Maggi, Federico TI Experimental and numerical analysis of reservoir performance for geological CO2 storage in the Ordos Basin in China SO INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL LA English DT Article DE Reservoir performance; History matching; Geological CO2 storage; The Ordos Basin; Heterogeneity; Injection procedure ID HYDRAULIC CONDUCTIVITY; SALINE FORMATIONS; CARBON-DIOXIDE; CLIMATE-CHANGE; SEQUESTRATION; INJECTION; MEDIA; HETEROGENEITY; AQUIFERS; EQUATION AB Unique reservoir performance was observed in the Shenhua 100,000 t/year Carbon Capture and Storage (SHCCS) Demonstration Project. Suggested by the geological pre-assessments, hydraulic fracturing and a multi-layer injection procedure were employed to improve the injectivity and reduce the risk of an over-pressure. However, in-situ data showed the total injection rate increased after the injection started, while the injection initiation pressure decreased with only a minor pressure build-up development. Additionally, the injectivity of the uppermost injection layer, which was not fractured, grew considerably over the years, making this layer potentially able to meet the target rate by itself. To clarify this unforeseen observation, the reservoir performance was investigated through numerical simulations and comparison against the 2.5-year historical data. The simulation results indicated that permeability heterogeneity of the injection layers might explain the observed reservoir performance. High CO2 injectivity in the uppermost injection layer could be attributed to its overall permeability being higher than that of other layers, and the considerable injectivity increase over the years could have been caused by the substantial permeability increase along the principal direction of CO2 migration in this layer. The injectivity improvement caused by hydraulic fracturing was significant in the early time of injection, but it dramatically reduced afterwards. The intermittent injection procedure could effectively reduce the pressure build-up in the reservoir and helped to maintain the injection at the target rate. Based on these assessments, the cumulative injected CO2 mass could reach 300,000 t in December 2015, but the yearly average injection rate would drop slightly. The predicted cumulative mass could be underestimated because the higher injectivity in 2014 was not accounted for in the calibration, and because the model size could have affected the reservoir performance, as shown by the sensitivity analysis. This research indicated that permeability heterogeneity and the injection procedure could significantly affect the reservoir performance, and should be given consideration in the performance assessment. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Li, Cai; Maggi, Federico] Univ Sydney, Sch Civil Engn, Sydney, NSW 2006, Australia. [Zhang, Keni] Beijing Normal Univ, Coll Water Sci, Beijing 1000875, Peoples R China. [Wang, Yongsheng] China Shenhua Coal Liquid & Chem Co Ltd, Beijing 100011, Peoples R China. [Guo, Chaobin] Tongji Univ, Sch Mech Engn, Shanghai 201804, Peoples R China. [Li, Cai] China Inst Geoenvironm Monitoring, Beijing 100081, Peoples R China. [Zhang, Keni] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. RP Zhang, KN (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM kzhang@lbl.gov FU Ministry of Science and Technology of the People's Republic of China [2011BAC08B00]; National Energy Administration of China [NY20111102-1] FX The authors greatly appreciate the efforts of two anonymous reviewers and their insightful comments and suggestions for improving this manuscript. This research is granted partly by the Ministry of Science and Technology of the People's Republic of China, under the National Key Technologies R&D Program (grant no. 2011BAC08B00). It is also supplementally funded by the National Energy Administration of China under the grant no. NY20111102-1 for the National Energy Application Technology Research and Engineering Demonstration Program. NR 40 TC 3 Z9 4 U1 2 U2 14 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1750-5836 EI 1878-0148 J9 INT J GREENH GAS CON JI Int. J. Greenh. Gas Control PD FEB PY 2016 VL 45 BP 216 EP 232 DI 10.1016/j.ijggc.2015.11.011 PG 17 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Engineering, Environmental SC Science & Technology - Other Topics; Energy & Fuels; Engineering GA DD7IN UT WOS:000370097000022 ER PT J AU Lai, KH Chen, JS Liu, CW Hsu, SY Steefel, C AF Lai, Keng-Hsin Chen, Jui-Sheng Liu, Chen-Wuing Hsu, Shao-Yiu Steefel, Carl TI Effect of medium permeability anisotropy on the morphological evolution of two non-uniformities in a geochemical dissolution system SO JOURNAL OF HYDROLOGY LA English DT Article DE Chemical dissolution front; Medium permeability anisotropy; Stable planar front; Unstable single-fingering front; Unstable double-fingering front; Flow-focusing effect ID SATURATED POROUS-MEDIA; FRONT INSTABILITY; SELF-ORGANIZATION; NUMERICAL-SIMULATION; TRANSPORT; POROSITY; ROCKS; FLOW AB The morphological evolutions of chemical dissolution fronts have attracted increasing interest in the field of the geological sciences and in industrial applications. Extensive research based on numerical simulations has been conducted to understand how various mechanisms and processes influence the morphological evolution of chemical dissolution fronts within geological media. Most researchers in previous studies have assumed the medium permeability to be isotropic for developing numerical models, despite isotropic geological media being uncommon in the real world. This study investigates the effect of medium permeability anisotropy on the morphological evolutions of two non-uniformities with higher permeability in a geochemical dissolution system. A series of numerical simulations are performed to evaluate the effect of medium permeability anisotropy on the morphological evolution of a chemical dissolution front. The simulation results indicate that the patterns of the dissolution reaction front are substantially affected by medium permeability anisotropy. An increase in the permeability anisotropy ratio, which is defined as the ratio of the permeability in the transverse direction to that in the longitudinal direction, enhances the dominance of the flow-focusing effect over the stabilizing or merging effect induced by diffusion/dispersion mechanism. Therefore, an increase in the permeability anisotropy ratio can increase the fingering length of the dissolution front or cause the dissolution front to have a more unstable pattern. By contrast, a reduction in the permeability anisotropy ratio will weaken the flow-focusing effect, thereby reducing the fingering length of the dissolution front or changing the front morphology such that it has a more stable status. The effect of the permeability anisotropy ratio on the morphological evolution tends to decrease when the Zhao number (negative dimensionless upstream pressure gradient) of the system increases. The consideration of medium permeability anisotropy in the geochemical dissolution model renders the simulation of the morphological evolutions of dissolution reaction fronts more realistic. (C) 2015 Elsevier B.V. All rights reserved. C1 [Lai, Keng-Hsin; Chen, Jui-Sheng] Natl Cent Univ, Grad Inst Appl Geol, Taoyuan 32001, Taiwan. [Liu, Chen-Wuing] Natl Taiwan Univ, Dept Bioenvironm Syst Engn, Taipei 10617, Taiwan. [Hsu, Shao-Yiu] Natl Cent Univ, Grad Inst Hydrol & Ocean Sci, Taoyuan 32001, Taiwan. [Steefel, Carl] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Chen, JS (reprint author), Natl Cent Univ, Grad Inst Appl Geol, Taoyuan 32001, Taiwan. EM jschen@geo.ncu.edu.tw RI Steefel, Carl/B-7758-2010 FU Ministry of Science and Technology of Taiwan [NSC. 98-2313-B008-002-MY3] FX The author would like to thank the Ministry of Science and Technology of Taiwan for financially supporting this work under Contract No. NSC. 98-2313-B008-002-MY3. NR 28 TC 1 Z9 1 U1 2 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-1694 EI 1879-2707 J9 J HYDROL JI J. Hydrol. PD FEB PY 2016 VL 533 BP 224 EP 233 DI 10.1016/j.jhydrol.2015.11.039 PG 10 WC Engineering, Civil; Geosciences, Multidisciplinary; Water Resources SC Engineering; Geology; Water Resources GA DD7EJ UT WOS:000370086200019 ER PT J AU Yu, HB Zhang, K Yao, ZW Kirk, MA Long, F Daymond, MR AF Yu, Hongbing Zhang, Ken Yao, Zhongwen Kirk, Mark A. Long, Fei Daymond, Mark R. TI Metastable phases in Zr-Excel alloy and their stability under heavy ion (Kr2+) irradiation SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article DE Zr-Excel alloy; Heavy ion irradiation; Phase stability; Chemi-STEM EDS ID PERCENT NB ALLOYS; PROTON IRRADIATION; ZIRCONIUM ALLOYS; OMEGA-PHASE; STRUCTURAL-PROPERTIES; LATTICE-PARAMETERS; AGING RESPONSE; BETA-PHASE; TRANSFORMATION; REDISTRIBUTION AB Zr-Excel alloy (Zr-3.5Sn-0.8Nb-0.8Mo, wt.%) has been proposed as a candidate material of pressure tubes in the CANDU-SCWR design. It is a dual-phase alloy containing primary hcp alpha-Zr and metastable bcc beta-Zr. Metastable hexagonal omega-Zr phase could form in beta-Zr as a result of aging during the processing of the tube. A synchrotron X-ray study was employed to study the lattice properties of the metastable phases in as-received Zr-Excel pressure tube material. In situ heavy ion (1 MeV Kr2+) irradiations were carried out at 200 degrees C and 450 degrees C to emulate the stability of the metastable phase under a reactor environment. Quantitative Chemi-STEM EDS analysis was conducted on both un-irradiated and irradiated samples to investigate alloying element redistribution induced by heavy ion irradiation. It was found that no decomposition of beta-Zr was observed under irradiation at both 200 degrees C and 450 degrees C. However, omega-Zr particles experienced shape changes and shrinkage associated with enrichment of Fe at the beta/omega interface during 200 degrees C irradiation but not at 450 degrees C. There is a noticeable increase in the level of Fe in the a matrix after irradiation at both 200 degrees C and 450 degrees C. The concentrations of Nb, Mo and Fe are increased in the omega phase but decreased in the beta phase at 200 degrees C. The stability of metastable phases under heavy ion irradiation associated with elemental redistribution is discussed. (C) 2015 Elsevier B.V. All rights reserved. C1 [Yu, Hongbing; Zhang, Ken; Yao, Zhongwen; Long, Fei; Daymond, Mark R.] Queens Univ, Dept Mech & Mat Engn, Kingston, ON K7L 3N6, Canada. [Kirk, Mark A.] Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Yu, HB (reprint author), Queens Univ, Dept Mech & Mat Engn, Kingston, ON K7L 3N6, Canada. EM 12hy1@queensu.ca OI Daymond, Mark/0000-0001-6242-7489; Long, Fei/0000-0002-6522-8407 FU NSERC/NRCan Gen-IV project; NSERC/UNENE/Nu-Tech Precision Metals Industrial Research Chair Program at Queen's University; US Department Office of Science Laboratory [DE-AC02-06CH11357] FX This work is supported by the NSERC/NRCan Gen-IV project, and the NSERC/UNENE/Nu-Tech Precision Metals Industrial Research Chair Program at Queen's University. The in-situ ion irradiation and synchrotron X-ray diffraction were accomplished at Argonne National Laboratory, a US Department Office of Science Laboratory under Contract No. DE-AC02-06CH11357 managed by University of Chicago. The authors are grateful for Peter Boldo's assistance with in-situ ion irradiation and Dr. Levente Balogh's kind help in synchrotron diffraction. NR 45 TC 0 Z9 0 U1 5 U2 16 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD FEB PY 2016 VL 469 BP 9 EP 19 DI 10.1016/j.jnucmat.2015.11.020 PG 11 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA DD7LE UT WOS:000370105200003 ER PT J AU Xu, WZ Li, LL Valdez, JA Saber, M Zhu, YT Koch, CC Scattergood, RO AF Xu, Weizong Li, Lulu Valdez, James A. Saber, Mostafa Zhu, Yuntian Koch, Carl C. Scattergood, Ronald O. TI Effect of nano-oxide particle size on radiation resistance of iron-chromium alloys SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article DE He bubble; Irradiation; Nano-oxide; Void swelling ID NANOSTRUCTURED FERRITIC ALLOYS; DISPERSION-STRENGTHENED STEELS; HEAVY-ION IRRADIATION; THERMAL-STABILITY; IMPLANTATION; EMISSION; REACTORS; BEHAVIOR; DAMAGE; ZRO2 AB Radiation resistance of Fe-14Cr alloys under 200 keV He irradiation at 500 degrees C was systematically investigated with varying sizes of nano oxide Zr, Hf and Cr particles. It is found that these nano oxide particles acted as effective sites for He bubble formation. By statistically analyzing 700-1500 He bubbles at the depth of about 150-700 nm from a series of HRTEM images for each sample, we established the variation of average He bubble size, He bubble density, and swelling percentage along the depth, and found them to be consistent with the He concentration profile calculated from the SIRM program. Oxide particles with sizes less than 3.5-4 nm are found most effective for enhancing radiation resistance in the studied alloy systems. (C) 2015 Elsevier B.V. All rights reserved. C1 [Xu, Weizong; Li, Lulu; Zhu, Yuntian; Koch, Carl C.; Scattergood, Ronald O.] N Carolina State Univ, Dept Mat Sci & Engn, Box 7907, Raleigh, NC 27695 USA. [Valdez, James A.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. [Saber, Mostafa] Portland State Univ, Dept Mech & Mat Engn, Portland, OR 97201 USA. RP Zhu, YT (reprint author), N Carolina State Univ, Dept Mat Sci & Engn, Box 7907, Raleigh, NC 27695 USA. EM ytzhu@ncsu.edu RI Zhu, Yuntian/B-3021-2008 OI Zhu, Yuntian/0000-0002-5961-7422 FU Department of Energy Idaho Field Office [DE-NE0000538]; LDRD program in Los Alamos National Laboratory [20130118DR]; State of North Carolina; National Science Foundation FX We acknowledge financial support from the Department of Energy Idaho Field Office (DE-NE0000538) and from the LDRD program # 20130118DR in Los Alamos National Laboratory. The authors also acknowledge the use of the Analytical Instrumentation Facility (AIF) at North Carolina State University, which is supported by the State of North Carolina and the National Science Foundation. Lastly, the authors also acknowledge Yongqiang Wang and Juan Wen from the Ion Beam Materials Laboratory at Los Alamos National Laboratory for performing the irradiations on the samples used in this study. NR 41 TC 1 Z9 1 U1 7 U2 23 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD FEB PY 2016 VL 469 BP 72 EP 81 DI 10.1016/j.jnucmat.2015.11.044 PG 10 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA DD7LE UT WOS:000370105200011 ER PT J AU Skerjanc, WF Maki, JT Collin, BP Petti, DA AF Skerjanc, William F. Maki, John T. Collin, Blaise P. Petti, David A. TI Evaluation of design parameters for TRISO-coated fuel particles to establish manufacturing critical limits using PARFUME SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID HTR FUEL; BEHAVIOR AB The success of modular high temperature gas-cooled reactors is highly dependent on the performance of the tristructural-isotopic (TRISO) coated fuel particle and the quality to which it can be manufactured. During irradiation, TRISO-coated fuel particles act as a pressure vessel to contain fission gas and mitigate the diffusion of fission products to the coolant boundary. The fuel specifications place limits on key attributes to minimize fuel particle failure under irradiation and postulated accident conditions. PAR FUME (an integrated mechanistic coated particle fuel performance code developed at the Idaho National Laboratory) was used to calculate fuel particle failure probabilities. By systematically varying key TRISO-coated particle attributes, failure probability functions were developed to understand how each attribute contributes to fuel particle failure. Critical manufacturing limits were calculated for the key attributes of a low enriched TRISO-coated nuclear fuel particle with a kernel diameter of 425 mu m. These critical manufacturing limits identify ranges beyond where an increase in fuel particle failure probability is expected to occur. (C) 2015 Elsevier B.V. All rights reserved. C1 [Skerjanc, William F.; Maki, John T.; Collin, Blaise P.; Petti, David A.] Idaho Natl Lab, POB 1625, Idaho Falls, ID 83415 USA. RP Skerjanc, WF (reprint author), Idaho Natl Lab, POB 1625, Idaho Falls, ID 83415 USA. EM william.skerjanc@inl.gov OI Collin, Blaise/0000-0002-1128-7399 FU U.S. Department of Energy Office of Nuclear Energy, under DOE Idaho Operations Office [DE-AC07-05ID14517] FX This work was supported by the U.S. Department of Energy Office of Nuclear Energy, under DOE Idaho Operations Office Contract DE-AC07-05ID14517. The authors would also like to acknowledge the late Gregory K. Miller for his contributions in the development of PARFUME. NR 11 TC 0 Z9 0 U1 1 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD FEB PY 2016 VL 469 BP 99 EP 105 DI 10.1016/j.jnucmat.2015.11.027 PG 7 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA DD7LE UT WOS:000370105200014 ER PT J AU Martinez, E Schwen, D Hetherly, J Caro, A AF Martinez, Enrique Schwen, D. Hetherly, J. Caro, A. TI Analytical model of the effect of misfit dislocation character on the bubble-to-void transition in metals SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article DE Segregation; Diffusion; Irradiation ID HELIUM; EQUATION; ALLOYS AB This paper addresses the role of misfit dislocations in the nucleation and growth of nanoscale He bubbles at interfaces. In a recent work, we studied the nanoscale effects on the capillarity equation and on equilibrium conditions. We proposed an expression for surface energy and for the equation of state, EOS, for He in bubbles, which have a size dependence that captures the role of the interface forces, which become relevant at the nanoscale. Here we determine the EOS for several twist grain boundaries in Fe and Cu and incorporate these results into the rate equation that determines the bubble-to-void transition, focusing on the influence of interface dislocations on the evaporation rate of vacancies. We find a significant effect of the magnitude of the Burgers vector of the dislocations on the critical radius for the transition. These results give a quantitative way to characterize grain boundaries in their ability to capture He and alter the onset of swelling. (C) 2015 Elsevier B.V. All rights reserved. C1 [Martinez, Enrique; Hetherly, J.; Caro, A.] Los Alamos Natl Lab, Div Mat Sci & Technol, MST 8, Los Alamos, NM 87545 USA. [Schwen, D.] Idaho Natl Lab, Fuels Modeling & Simulat, Idaho Falls, ID 83415 USA. RP Martinez, E (reprint author), Los Alamos Natl Lab, Div Mat Sci & Technol, MST 8, Los Alamos, NM 87545 USA. EM enriquem@lanl.gov OI Martinez Saez, Enrique/0000-0002-2690-2622; Schwen, Daniel/0000-0002-8958-4748 FU U.S. Department of Energy at Los Alamos National Laboratory at Los Alamos National Laboratory [2008LANL1026]; U.S. DOE [DE-AC52-06NA25396] FX This work was performed by the Center for Materials at Irradiation and Mechanical Extremes, an Energy Frontier Research Center funded by the U.S. Department of Energy (Award Number 2008LANL1026) at Los Alamos National Laboratory. This research used resources provided by the LANL Institutional Computing Program. LANL, an affirmative action/equal opportunity employer, is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. DOE under contract DE-AC52-06NA25396. NR 19 TC 0 Z9 0 U1 3 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD FEB PY 2016 VL 469 BP 106 EP 111 DI 10.1016/j.jnucmat.2015.11.046 PG 6 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA DD7LE UT WOS:000370105200015 ER PT J AU Olsen, RJ Jin, K Lu, CY Beland, LK Wang, LM Bei, HB Specht, ED Larson, BC AF Olsen, Raina J. Jin, Ke Lu, Chenyang Beland, Laurent K. Wang, Lumin Bei, Hongbin Specht, Eliot D. Larson, Bennett C. TI Investigation of defect clusters in ion-irradiated Ni and NiCo using diffuse X-ray scattering and electron microscopy SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article DE Irradiation damage; Asymptotic diffuse X-ray scattering; Stacking fault tetrahedra; Nickel; Alloy ID STACKING-FAULT TETRAHEDRA; PURE NI; NICKEL; ALLOYS; DAMAGE; ENERGY; TEMPERATURE; EVOLUTION; CASCADES; SURFACES AB The nature of defect clusters in Ni and Ni-50 Co-50 (NiCo) irradiated at room temperature with 2-16 MeV Ni ions is studied using asymptotic diffuse X-ray scattering and transmission electron microscopy (TEM). Analysis of the scattering data provides separate size distributions for vacancy and interstitial type defect clusters, showing that both types of defect clusters have smaller sizes and higher densities in NiCo than in Ni. Diffuse scattering results show good quantitative agreement with TEM size distributions for cluster sizes greater than 2 nm in diameter, but we find that TEM under represents the number of defect clusters <= 2 nm, which comprise the majority of vacancy clusters in NiCo. Interstitial dislocation loops and stacking fault tetrahedra are identified by TEM. Comparison of diffuse scattering lineshapes to those calculated for dislocation loops and SFI's indicates that most of the vacancy clusters are SFTs. Published by Elsevier B.V. C1 [Olsen, Raina J.; Jin, Ke; Beland, Laurent K.; Bei, Hongbin; Specht, Eliot D.; Larson, Bennett C.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Jin, Ke] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Lu, Chenyang; Wang, Lumin] Univ Michigan, Dept Nucl Engn & Radiol Sci, Ann Arbor, MI 48109 USA. RP Olsen, RJ (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. EM olsenrj@ornl.gov OI Bei, Hongbin/0000-0003-0283-7990 FU Energy Dissipation to Defect Evolution (EDDE); Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Basic Energy Sciences; IBML FX This work was supported as part of the Energy Dissipation to Defect Evolution (EDDE), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences. B. Larson was an unsupported collaborator. Ion beam work was performed at the UT-ORNL Ion Beam Materials Laboratory (IBML) located at the campus of the University of Tennessee, Knoxville. We thank Y. Zhang for designing the multiple energy irradiation procedure, R. Stoller for review of the manuscript, and W.J. Weber for access to IBML and financial support of the research conducted there. NR 42 TC 2 Z9 2 U1 3 U2 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD FEB PY 2016 VL 469 BP 153 EP 161 DI 10.1016/j.jnucmat.2015.11.030 PG 9 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA DD7LE UT WOS:000370105200021 ER PT J AU Mazumder, B Yu, X Edmondson, PD Parish, CM Miller, MK Meyer, HM Feng, Z AF Mazumder, B. Yu, X. Edmondson, P. D. Parish, C. M. Miller, M. K. Meyer, H. M., III Feng, Z. TI Effect of friction stir welding and post-weld heat treatment on a nanostructured ferritic alloy SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article DE Friction stir weld; Nanostructured ferritic alloys; Atom probe tomography ID DISPERSION-STRENGTHENED STEEL; ION-IRRADIATION; MECHANICAL-PROPERTIES; NANOCLUSTERS; EVOLUTION; MICROSTRUCTURE; STABILITY; REACTORS; 14YWT AB Nanostructured ferritic alloys (NFAs) are new generation materials for use in high temperature energy systems, such as nuclear fission or fusion reactors. However, joining these materials is a concern, as their unique microstructure is destroyed by traditional liquid-state welding methods. The microstructural evolution of a friction stir welded 14YWT NFA was investigated by atom probe tomography, before and after a post-weld heat treatment (PWHT) at 1123K. The particle size, number density, elemental composition, and morphology of the titanium-yttrium-oxygen-enriched nanoclusters (NCs) in the stir and thermally-affected zones were studied and compared with the base metal. No statistical difference in the size of the NCs was observed in any of these conditions. After the PWHT, increases in the number density and the oxygen enrichment in the NCs were observed. Therefore, these new results provide additional supporting evidence that friction stir welding appears to be a viable joining technique for NFAs, as the microstructural parameters of the NCs are not strongly affected, in contrast to traditional welding techniques. Published by Elsevier B.V. C1 [Mazumder, B.; Miller, M. K.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, POB 2008, Oak Ridge, TN 37831 USA. [Yu, X.; Edmondson, P. D.; Parish, C. M.; Meyer, H. M., III; Feng, Z.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Mazumder, B (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, POB 2008, Oak Ridge, TN 37831 USA. EM mazumderb@ornl.gov RI Parish, Chad/J-8381-2013; Yu, Xinghua/E-2254-2017 OI Yu, Xinghua/0000-0001-9605-8239 FU Materials Sciences and Engineering Division, Office of Basic Energy Sciences (ERKCM52), US Department of Energy FX Research sponsored by the Materials Sciences and Engineering Division, Office of Basic Energy Sciences (ERKCM52), US Department of Energy. APT was conducted as part of a user project at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility. FSW was made as part of DOE Fusion Energy Program. NR 39 TC 0 Z9 0 U1 2 U2 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD FEB PY 2016 VL 469 BP 200 EP 208 DI 10.1016/j.jnucmat.2015.11.061 PG 9 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA DD7LE UT WOS:000370105200026 ER PT J AU Kato, M Ikusawa, Y Sunaoshi, T Nelson, AT McClellan, KJ AF Kato, Masato Ikusawa, Yoshihisa Sunaoshi, Takeo Nelson, Andrew T. McClellan, Kenneth J. TI Thermal expansion measurement of (U,Pu)O2-x in oxygen partial pressure-controlled atmosphere SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID THERMOPHYSICAL PROPERTIES; ACTINIDE DIOXIDES; MIXED OXIDES; UO2; MOX; STOICHIOMETRY; REACTOR; FUELS; PUO2; AM AB Thermal expansion of U0.7Pu0.3O2-x (x = 0, 0.01, 0.02, 0.03) and U0.52Pu0.48O2.00 was investigated by a unique dilatometry which measured in an oxygen partial pressure-controlled atmosphere. The oxygen partial pressure was controlled to hold a constant oxygen-to-metal ratio in the (U,Pu)O2-x during the measurement. Thermal expansion slightly increased with the decrease in oxygen-to-metal ratio. We proposed a relationship to describe thermal expansion as a function of temperature, O/M and Pu content. (C) 2015 Elsevier B.V. All rights reserved. C1 [Kato, Masato; Ikusawa, Yoshihisa] Japan Atom Energy Agcy, Fast Reactor Fuel Cycle Technol Dev Div, 4-33 Muramatsu, Tokai, Ibaraki 3191194, Japan. [Sunaoshi, Takeo] Inspect Dev Co, 4-33 Muramatsu, Tokai, Ibaraki 3191194, Japan. [Nelson, Andrew T.; McClellan, Kenneth J.] Los Alamos Natl Lab, POB 1667, Los Alamos, NM 87545 USA. RP Kato, M (reprint author), Japan Atom Energy Agcy, Fast Reactor Fuel Cycle Technol Dev Div, 4-33 Muramatsu, Tokai, Ibaraki 3191194, Japan. EM kato.masato@jaea.go.jp NR 26 TC 0 Z9 0 U1 0 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD FEB PY 2016 VL 469 BP 223 EP 227 DI 10.1016/j.jnucmat.2015.11.048 PG 5 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA DD7LE UT WOS:000370105200029 ER PT J AU Wu, C Xiong, W Dai, JB Wu, QY AF Wu, Chao Xiong, Wei Dai, Junbiao Wu, Qingyu TI Kinetic flux profiling dissects nitrogen utilization pathways in the oleaginous green alga Chlorella protothecoides SO JOURNAL OF PHYCOLOGY LA English DT Article DE KFP; GDH pathway; GS-GOGAT cycle; Chlorella protothecoides ID CHLAMYDOMONAS-REINHARDTII; BIODIESEL PRODUCTION; SELENASTRUM-MINUTUM; GLUTAMATE-DEHYDROGENASE; AMMONIUM ASSIMILATION; FERMENTATION; ACCUMULATION; QUANTITATION; RESPIRATION; SYNTHETASE AB As a promising candidate for biodiesel production, the green alga Chlorella protothecoides can efficiently produce oleaginous biomass and the lipid biosynthesis is greatly influenced by the availability of nitrogen source and corresponding nitrogen assimilation pathways. Based on isotope-assisted kinetic flux profiling (KFP), the fluxes through the nitrogen utilization pathway were quantitatively analyzed. We found that autotrophic C.protothecoides cells absorbed ammonium mainly through glutamate dehydrogenase (GDH), and partially through glutamine synthetase (GS), which was the rate-limiting enzyme of nitrogen assimilation process with rare metabolic activity of glutamine oxoglutarate aminotransferase (GOGAT, also known as glutamate synthase); whereas under heterotrophic conditions, the cells adapted to GS-GOGAT cycle for nitrogen assimilation in which GS reaction rate was associated with GOGAT activity. The fact that C.protothecoides chooses the adenosine triphosphate-free and less ammonium-affinity GDH pathway, or alternatively the energy-consuming GS-GOGAT cycle with high ammonium affinity for nitrogen assimilation, highlights the metabolic adaptability of C.protothecoides exposed to altered nitrogen conditions. C1 [Wu, Chao; Dai, Junbiao; Wu, Qingyu] Tsinghua Univ, Sch Life Sci, MOE Key Lab Bioinformat, Beijing 100084, Peoples R China. [Xiong, Wei] Natl Renewable Energy Lab, Biosci Ctr, Golden, CO 80401 USA. RP Dai, JB; Wu, QY (reprint author), Tsinghua Univ, Sch Life Sci, MOE Key Lab Bioinformat, Beijing 100084, Peoples R China. EM jbdai@tsinghua.edu.cn; qingyu@tsinghua.edu.cn FU NSFC [31370282]; MOST [2014AA02200]; National Renewable Energy Laboratory Director's Postdoc Fellowship; Tsinghua University Initiative Scientific Research Program [2012Z08128] FX We thank Dr. Yi Ding and Yu Tian at the center of biomedical analysis of Tsinghua University for valuable advice and discussions in compound determination using LC-MS. We also thank Daniel Brune and David J Menn for helpful comments and English improvement in preparing the manuscript. This work was supported by the NSFC project 31370282 and MOST project 2014AA02200 to Qingyu Wu, the National Renewable Energy Laboratory Director's Postdoc Fellowship to Wei Xiong and Tsinghua University Initiative Scientific Research Program 2012Z08128 to Junbiao Dai. NR 26 TC 1 Z9 1 U1 1 U2 7 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0022-3646 EI 1529-8817 J9 J PHYCOL JI J. Phycol. PD FEB PY 2016 VL 52 IS 1 BP 116 EP 124 DI 10.1111/jpy.12374 PG 9 WC Plant Sciences; Marine & Freshwater Biology SC Plant Sciences; Marine & Freshwater Biology GA DD6AB UT WOS:000370005000010 PM 26987093 ER PT J AU Aria, AI Kidambi, PR Weatherup, RS Xiao, L Williams, JA Hofmann, S AF Aria, Adrianus I. Kidambi, Piran R. Weatherup, Robert S. Xiao, Long Williams, John A. Hofmann, Stephan TI Time Evolution of the Wettability of Supported Graphene under Ambient Air Exposure SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID CHEMICAL-VAPOR-DEPOSITION; CARBON NANOTUBE ARRAYS; IN-SITU OBSERVATIONS; SOLID-SURFACES; 2-DIMENSIONAL MATERIALS; POLYCRYSTALLINE COPPER; WATER WETTABILITY; METAL-SURFACES; ADSORPTION; GRAPHITE AB The wettability of graphene is both fundamental and crucial for interfacing in most applications, but a detailed understanding of its time evolution remains elusive. Here we systematically investigate the wettability of metal-supported, chemical vapor deposited graphene films as a function of ambient air exposure time using water and various other test liquids with widely different surface tensions. The wettability of graphene is not constant, but varies with substrate interactions and air exposure time. The substrate interactions affect the initial graphene wettability, where, for instance, water contact angles of, similar to 85 and, similar to 61 degrees were measured for Ni and Cu supported graphene, respectively, after just minutes of air exposure. Analysis of the surface free energy components indicates that the substrate interactions strongly influence the Lewis acid-base component of supported graphene, which is considerably weaker for Ni supported graphene than for Cu supported graphene, suggesting that the classical van der Waals interaction theory alone is insufficient to describe the wettability of graphene. For prolonged air exposure, the effect of physisorption of airborne contaminants becomes increasingly dominant, resulting in an increase of water contact angle that follows a universal linear logarithmic relationship with exposure time, until saturating at a maximum value of 92-98 degrees. The adsorbed contaminants render all supported graphene samples increasingly nonpolar, although their total surface free energy decreases only by 10-16% to about 37-41 mJ/m(2). Our finding shows that failure to account for the air exposure time may lead to widely different wettability values and contradicting arguments about the wetting transparency of graphene. C1 [Aria, Adrianus I.; Kidambi, Piran R.; Weatherup, Robert S.; Xiao, Long; Hofmann, Stephan] Univ Cambridge, Dept Engn, Div Elect Engn, Cambridge CB2 1PZ, England. [Williams, John A.] Univ Cambridge, Dept Engn, Div Mech Mat & Design, Cambridge CB2 1PZ, England. [Kidambi, Piran R.] MIT, Dept Mech Engn, Cambridge, MA 02139 USA. [Weatherup, Robert S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Hofmann, S (reprint author), Univ Cambridge, Dept Engn, Div Elect Engn, Cambridge CB2 1PZ, England. EM sh315@cam.ac.uk RI Hofmann, Stephan/D-3906-2012; Weatherup, Robert/O-5725-2016; Aria, Adrianus/C-5835-2017 OI Hofmann, Stephan/0000-0001-6375-1459; Weatherup, Robert/0000-0002-3993-9045; Aria, Adrianus/0000-0002-6305-3906 FU EPSRC (GRAPHTED) [EP/K016636/1]; ERC (InsituNANO) [279342]; Lindemann Trust Fellowship; St. John's College, Cambridge; EU Marie Sklodowska-Curie Individual Fellowship under ARTIST from the European Union's Horizon research and innovation programme [656870] FX We acknowledge funding from EPSRC (Grant EP/K016636/1, GRAPHTED) and ERC (Grant 279342, InsituNANO). P.R.K. acknowledges the Lindemann Trust Fellowship. R.S.W. acknowledges a Research Fellowship from St. John's College, Cambridge, and a EU Marie Sklodowska-Curie Individual Fellowship under grant ARTIST (No. 656870) from the European Union's Horizon 2020 research and innovation programme. NR 60 TC 10 Z9 10 U1 12 U2 35 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD FEB PY 2016 VL 120 IS 4 BP 2215 EP 2224 DI 10.1021/acs.jpcc.5b10492 PG 10 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA DD2SQ UT WOS:000369772900021 ER PT J AU Ali-Loytty, H Louie, MW Singh, MR Li, L Casalongue, HGS Ogasawara, H Crumlin, EJ Liu, Z Bell, AT Nilsson, A Friebel, D AF Ali-Loeytty, Harri Louie, Mary W. Singh, Meenesh R. Li, Lin Casalongue, Hernan G. Sanchez Ogasawara, Hirohito Crumlin, Ethan J. Liu, Zhi Bell, Alexis T. Nilsson, Anders Friebel, Daniel TI Ambient-Pressure XPS Study of a Ni-Fe Electrocatalyst for the Oxygen Evolution Reaction SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID IN-SITU OBSERVATION; PHOTOELECTRON-SPECTROSCOPY; NICKEL METAL; SURFACE SCIENCE; NANOPARTICLES; CATALYSTS; OPERANDO; OXIDES; CELLS; PH AB Chemical analysis of solid liquid interfaces under electrochemical conditions has recently become feasible due to the development of new synchrotron radiation techniques. Here we report the use of "tender" X-ray ambient-pressure X-ray photoelectron spectroscopy (APXPS) to characterize a thin film of Ni-Fe oxyhydroxide electro-deposited on Au as the working electrode at different applied potentials in 0.1 M KOH as the electrolyte. Our results show that the as-prepared 7 urn thick Ni-Fe (50% Fe) film contains Fe and Ni in both their metallic as well as oxidized states, and undergoes further oxidation when the sample is subjected to electrochemical oxidation reduction cycles. Metallic Fe is oxidized to Fe3+ and metallic Ni to Ni2+/3+. This work shows that it is possible to monitor the chemical nature of the Ni Fe catalyst as a function of potential when the corresponding current densities are small. This allows for operando measurements just above the onset of OER; however, current densities as they are desired in photoelectrochemical devices (similar to 1-10 mA cm(-2)) could not be achieved in this work, due to ohmic losses in the thin electrolyte film. We use a two-dimensional model to describe the spatial distribution of the electrochemical potential, current density, and pH as a function of the position above the electrolyte meniscus, to provide guidance toward enabling the acquisition of operando APXPS at high current density. The shifts in binding energy of water with applied potential predicted by the model are in good agreement with the experimental values. C1 [Ali-Loeytty, Harri; Li, Lin; Casalongue, Hernan G. Sanchez; Nilsson, Anders; Friebel, Daniel] SUNCAT Ctr Interface Sci & Catalysis, SLAC Natl Accelerator Lab, 2575 Sand Hill Rd,MS31, Menlo Pk, CA 94025 USA. [Ali-Loeytty, Harri] Tampere Univ Technol, Optoelect Res Ctr, Surface Sci Lab, Tampere 33720, Finland. [Louie, Mary W.; Singh, Meenesh R.; Bell, Alexis T.] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. [Louie, Mary W.; Singh, Meenesh R.; Bell, Alexis T.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Joint Ctr Artificial Photosynthesis, Berkeley, CA 94720 USA. [Ogasawara, Hirohito] SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Light Source SSRL, Menlo Pk, CA 94025 USA. [Crumlin, Ethan J.; Liu, Zhi] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Louie, Mary W.] Exponent, Mat & Corros Engn, 149 Commonwealth Dr, Menlo Pk, CA 94025 USA. [Casalongue, Hernan G. Sanchez] Exponent, Polymer Sci & Mat Chem, 149 Commonwealth Dr, Menlo Pk, CA 94025 USA. RP Friebel, D (reprint author), SUNCAT Ctr Interface Sci & Catalysis, SLAC Natl Accelerator Lab, 2575 Sand Hill Rd,MS31, Menlo Pk, CA 94025 USA. EM mlouie@exponent.com; hsanchez@exponent.com; dfriebel@slac.stanford.edu RI Nilsson, Anders/E-1943-2011; Ogasawara, Hirohito/D-2105-2009; Liu, Zhi/B-3642-2009; OI Nilsson, Anders/0000-0003-1968-8696; Ogasawara, Hirohito/0000-0001-5338-1079; Liu, Zhi/0000-0002-8973-6561; Singh, Meenesh/0000-0002-3638-8866; Ali-Loytty, Harri/0000-0001-8746-7268; Bell, Alexis/0000-0002-5738-4645 FU Office of Science of the U.S. Department of Energy [DE-SC0004993]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; Finnish Cultural Foundation; KAUTE Foundation; Wallenberg Foundation postdoctoral scholarship program; MAX IV synchrotron radiation facility program FX This material is based upon work performed by the Joint Center for Artificial Photosynthesis, a DOE Energy Innovation Hub, supported through the Office of Science of the U.S. Department of Energy under Award DE-SC0004993. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract DE-AC02-05CH11231. HA.-L. is supported by the Finnish Cultural Foundation and the KAUTE Foundation. L.L. is supported by the Wallenberg Foundation postdoctoral scholarship program, the MAX IV synchrotron radiation facility program. NR 33 TC 24 Z9 24 U1 42 U2 125 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD FEB PY 2016 VL 120 IS 4 BP 2247 EP 2253 DI 10.1021/acs.jpcc.5b10931 PG 7 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA DD2SQ UT WOS:000369772900024 ER PT J AU Chen, CF Yang, P King, G Tegtmeier, EL AF Chen, Ching-Fong Yang, Pin King, Graham Tegtmeier, Eric L. TI Processing of Transparent Polycrystalline AlON:Ce3+ Scintillators SO JOURNAL OF THE AMERICAN CERAMIC SOCIETY LA English DT Article ID ENERGY-RESOLUTION SCINTILLATOR; CERAMIC SCINTILLATORS; LIGHT OUTPUT; HALIDES; SPINEL AB A new polycrystalline ceramic scintillator is reported for potential use in radiation detection and medical imaging applications. The goal was to develop cerium-activated aluminum oxynitride (AlON:Ce3+) ceramics, which can be produced using ceramic processes in comparison to the high-cost, low-yield single-crystal growth technique. A phase pure AlON:Ce3+ powder with cubic symmetry was successfully synthesized at high temperature under a reducing atmosphere to convert Ce4+ to Ce3+ in the solid solution. Two different activator concentrations (0.5 and 1.0 mol%) were explored. Fully dense and transparent AlON:Ce3+ ceramics were produced by a liquid-phase-assisted pressureless sintering. The crystal field splitting around the Ce3+ activator in the AlON was comparable to the splitting induced by Br- and the Cl- ligands, which produced an emission spectrum perfectly matching the maximum quantum efficiency range of the photomultiplier tube for radiation detection. Both optical excitation and radiation ionizations in AlON:Ce3+ were demonstrated. Challenges and mechanisms related to the radioluminescence efficiency are discussed. C1 [Chen, Ching-Fong; King, Graham; Tegtmeier, Eric L.] Los Alamos Natl Lab, Div Mat Sci, POB 1663, Los Alamos, NM 87545 USA. [Yang, Pin] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. RP Chen, CF (reprint author), Los Alamos Natl Lab, Div Mat Sci, POB 1663, Los Alamos, NM 87545 USA. EM cchen@lanl.gov RI King, Graham/E-3632-2010 OI King, Graham/0000-0003-1886-7254 FU ADTR/RD office of Los Alamos National Laboratory FX This program was supported by the ADTR/RD office of the Los Alamos National Laboratory. NR 36 TC 0 Z9 0 U1 7 U2 25 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0002-7820 EI 1551-2916 J9 J AM CERAM SOC JI J. Am. Ceram. Soc. PD FEB PY 2016 VL 99 IS 2 BP 424 EP 430 DI 10.1111/jace.13986 PG 7 WC Materials Science, Ceramics SC Materials Science GA DD3QC UT WOS:000369836600010 ER PT J AU Yang, J Naguib, M Ghidiu, M Pan, LM Gu, J Nanda, J Halim, J Gogotsi, Y Barsoum, MW AF Yang, Jian Naguib, Michael Ghidiu, Michael Pan, Li-Mei Gu, Jian Nanda, Jagjit Halim, Joseph Gogotsi, Yury Barsoum, Michel W. TI Two-Dimensional Nb-Based M4C3 Solid Solutions (MXenes) SO JOURNAL OF THE AMERICAN CERAMIC SOCIETY LA English DT Article ID TRANSITION-METAL CARBIDES; HIGH VOLUMETRIC CAPACITANCE; LI-ION BATTERIES; TITANIUM CARBIDE; TI3C2X2 X; NANOSHEETS; CATALYST; PHASES; ANODE; CARBONITRIDES AB Herein, two new two-dimensional Nb4C3-based solid solutions (MXenes), (Nb-0.8,Ti-0.2)(4)C3Tx and (Nb-0.8,Zr-0.2)(4)C3Tx (where T is a surface termination) were synthesizedas confirmed by X-ray diffractionfrom their corresponding MAX phase precursors (Nb-0.8,Ti-0.2)(4)AlC3 and (Nb-0.8,Zr-0.2)(4)AlC3. This is the first report on a Zr-containing MXene. Intercalation of Li ions into these two compositions, and Nb4C3Tx was studied to determine the potential of those materials for energy storage applications. Lithiation and delithiation peaks at 2.26 and 2.35 V, respectively, appeared in the case of Nb4C3Tx, but were not present in Nb2CTx. After 20 cycles at a rate of C/4, the specific capacities of (Nb-0.8,Ti-0.2)(4)C3Tx and (Nb-0.8,Zr-0.2)(4)C3Tx were 158 and 132 mAh/g, respectively, both slightly lower than the capacity of Nb4C3Tx. C1 [Yang, Jian; Ghidiu, Michael; Halim, Joseph; Gogotsi, Yury; Barsoum, Michel W.] Drexel Univ, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA. [Yang, Jian; Ghidiu, Michael; Halim, Joseph; Gogotsi, Yury; Barsoum, Michel W.] Drexel Univ, AJ Drexel Nanomat Inst, Philadelphia, PA 19104 USA. [Yang, Jian; Pan, Li-Mei; Gu, Jian] Nanjing Tech Univ, Coll Mat Sci & Engn, Nanjing 210009, Jiangsu, Peoples R China. [Naguib, Michael; Nanda, Jagjit] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37381 USA. [Halim, Joseph] Linkoping Univ, Dept Phys Chem & Biol IFM, Thin Film Phys Div, SE-58331 Linkoping, Sweden. RP Barsoum, MW (reprint author), Drexel Univ, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA.; Barsoum, MW (reprint author), Drexel Univ, AJ Drexel Nanomat Inst, Philadelphia, PA 19104 USA.; Naguib, M (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37381 USA. EM naguibma@ornl.gov; barsoumw@drexel.edu FU U.S. National Science Foundation (NSF) [DMR-1310245]; Jiangsu Government; Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD); Program for Chang Jiang Scholars and Innovative Research Team in University (PCSIRT) [IRT1146]; Laboratory Directed Research and Development Program of Oak Ridge National Laboratory; Office of Vehicle Technology under Energy Efficiency and Renewable Energy, Department of Energy; Swedish Research Council [621-2011-4420, 621-2014-4890]; Swedish Foundation for Strategic Research through Synergy Grant FUNCASE Functional Carbides for Advanced Surface Engineering FX The authors thank Dr. Mengqiang Zhao for the TEM work. This work was supported by the U.S. National Science Foundation (NSF) grant DMR-1310245. J.Y. was supported by Jiangsu Government Scholarship for Overseas Studies, the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) and the Program for Chang Jiang Scholars and Innovative Research Team in University (PCSIRT), IRT1146. MN was sponsored by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. Department of Energy. JN acknowledges support from the Office of Vehicle Technology, under the Energy Efficiency and Renewable Energy, Department of Energy. J. H. acknowledge the support from the Swedish Research Council through Project Grants 621-2011-4420 and 621-2014-4890 the Swedish Foundation for Strategic Research through the Synergy Grant FUNCASE Functional Carbides for Advanced Surface Engineering. NR 39 TC 11 Z9 11 U1 31 U2 106 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0002-7820 EI 1551-2916 J9 J AM CERAM SOC JI J. Am. Ceram. Soc. PD FEB PY 2016 VL 99 IS 2 BP 660 EP 666 DI 10.1111/jace.13922 PG 7 WC Materials Science, Ceramics SC Materials Science GA DD3QC UT WOS:000369836600041 ER PT J AU Song, XY Ma, Q Cai, ZG Tanaka, R Shiono, T Grubbs, RB AF Song, Xiangyang Ma, Qiong Cai, Zhengguo Tanaka, Ryo Shiono, Takeshi Grubbs, Robert B. TI Facile Synthesis of Novel Polyethylene-Based A-B-C Block Copolymers Containing Poly(methyl methacrylate) Using a Living Polymerization System SO MACROMOLECULAR RAPID COMMUNICATIONS LA English DT Article DE living polymerization; methyl methacrylate; olefin; single-site catalyst; triblock copolymers ID ANSA-FLUORENYLAMIDODIMETHYLTITANIUM COMPLEX; METHYL-METHACRYLATE; FUNCTIONAL POLYOLEFINS; METALLOCENE CATALYSTS; HIGHER 1-OLEFINS; POLAR MONOMERS; VINYL ADDITION; PROPYLENE; NORBORNENE; PROPENE AB Ethylene-propylene-methyl methacrylate (MMA) and ethylene-hexene-MMA A-B-C block copolymers with high molecular weight (>100 000) are synthesized using fluorenylamide-ligated titanium complex activated by modified methylaluminoxane and 2,6-di-tert-butyl-4-methylphenol for the first time. After diblock copolymerization of olefin is conducted completely, MMA is added and activated by aluminum Lewis acid to promote anionic polymerization. The length of polyolefin and poly (methyl methacrylate) (PMMA) is controllable precisely by the change of the additive amount of olefin and polymerization time, respectively. A soft amorphous polypropylene or polyhexene segment is located between two hard segments of semicrystalline polyethylene and glassy PMMA blocks. C1 [Song, Xiangyang; Ma, Qiong; Cai, Zhengguo] Donghua Univ, State Key Lab Modificat Chem Fibers & Polymer Mat, Coll Mat Sci & Engn, 2999 North Renmin Rd, Shanghai 201620, Peoples R China. [Tanaka, Ryo; Shiono, Takeshi] Hiroshima Univ, Dept Appl Chem, Grad Sch Engn, 1-4-1 Kagamiyama, Higashihiroshima 7398527, Japan. [Grubbs, Robert B.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Grubbs, Robert B.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Cai, ZG (reprint author), Donghua Univ, State Key Lab Modificat Chem Fibers & Polymer Mat, Coll Mat Sci & Engn, 2999 North Renmin Rd, Shanghai 201620, Peoples R China.; Shiono, T (reprint author), Hiroshima Univ, Dept Appl Chem, Grad Sch Engn, 1-4-1 Kagamiyama, Higashihiroshima 7398527, Japan.; Grubbs, RB (reprint author), SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA.; Grubbs, RB (reprint author), Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. EM caizg@dhu.edu.cn; tshiono@hiroshima-u.ac.jp; robert.grubbs@stonybrook.edu RI Tanaka, Ryo/K-8254-2014; SHIONO, Takeshi/D-7024-2011 OI Tanaka, Ryo/0000-0002-6085-074X; SHIONO, Takeshi/0000-0002-1118-9991 FU National Natural Science Foundation of China [21174026]; Program for New Century Excellent Talents in University; Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning,; "Shu Guang" project - Shanghai Municipal Education Commission; Shanghai Education Development Foundation; Fundamental Research Funds for the Central Universities FX This work was supported by National Natural Science Foundation of China (21174026), Program for New Century Excellent Talents in University, the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning, "Shu Guang" project supported by Shanghai Municipal Education Commission and Shanghai Education Development Foundation and the Fundamental Research Funds for the Central Universities. The authors thank Tosoh-Finechem Co. for generous donations of MMAO. NR 34 TC 1 Z9 1 U1 14 U2 43 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 1022-1336 EI 1521-3927 J9 MACROMOL RAPID COMM JI Macromol. Rapid Commun. PD FEB PY 2016 VL 37 IS 3 BP 227 EP 231 DI 10.1002/marc.201500614 PG 5 WC Polymer Science SC Polymer Science GA DD3PJ UT WOS:000369834400005 PM 26641599 ER PT J AU Zhang, QY Zheng, FF Zhao, TF Qu, XH Aires-de-Sousa, J AF Zhang, Qingyou Zheng, Fangfang Zhao, Tanfeng Qu, Xiaohui Aires-de-Sousa, Joao TI Machine Learning Estimation of Atom Condensed Fukui Functions SO MOLECULAR INFORMATICS LA English DT Article DE QSPR; Random Forest; Chemoinformatics; Bradley-Terry Models; Quantum Chemistry ID REACTIVITY AB To enable the fast estimation of atom condensed Fukui functions, machine learning algorithms were trained with databases of DFT pre-calculated values for ca. 23,000 atoms in organic molecules. The problem was approached as the ranking of atom types with the Bradley-Terry (BT) model, and as the regression of the Fukui function. Random Forests (RF) were trained to predict the condensed Fukui function, to rank atoms in a molecule, and to classify atoms as high/low Fukui function. Atomic descriptors were based on counts of atom types in spheres around the kernel atom. The BT coefficients assigned to atom types enabled the identification (93-94% accuracy) of the atom with the highest Fukui function in pairs of atoms in the same molecule with differences 0.1. In whole molecules, the atom with the top Fukui function could be recognized in ca. 50% of the cases and, on the average, about 3 of the top 4 atoms could be recognized in a shortlist of 4. Regression RF yielded predictions for test sets with R-2=0.68-0.69, improving the ability of BT coefficients to rank atoms in a molecule. Atom classification (as high/low Fukui function) was obtained with RF with sensitivity of 55-61% and specificity of 94-95%. C1 [Zhang, Qingyou; Zheng, Fangfang; Zhao, Tanfeng] Henan Univ, Inst Environm & Analyt Sci, Coll Chem & Chem Engn, Kaifeng 475004, Peoples R China. [Qu, Xiaohui] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. [Qu, Xiaohui; Aires-de-Sousa, Joao] Univ Nova Lisboa, LAQV REQUIMTE, Dept Quim, Fac Ciencias & Tecnol, P-2829516 Caparica, Portugal. RP Aires-de-Sousa, J (reprint author), Univ Nova Lisboa, LAQV REQUIMTE, Dept Quim, Fac Ciencias & Tecnol, P-2829516 Caparica, Portugal. EM joao@airesdesousa.com RI Aires-de-Sousa, Joao/C-7826-2013; OI Aires-de-Sousa, Joao/0000-0002-5887-2966; Zhao, Tanfeng/0000-0002-6654-3679 FU National Natural Science Foundation of China [20875022]; Portuguese national funds via FCT - Fundacao para a Ciencia e a Tecnologia (Lisboa, Portugal) [PEst-C/EQB/LA0006/2013] FX The authors acknowledge the International Science and Technology Cooperation of Henan Province (P. R.China) (No. 114300510009), and thank the financial support of the National Natural Science Foundation of China (No. 20875022). This work was funded by Portuguese national funds via FCT - Fundacao para a Ciencia e a Tecnologia (Lisboa, Portugal) - under project PEst-C/EQB/LA0006/2013. NR 26 TC 1 Z9 1 U1 5 U2 12 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 1868-1743 EI 1868-1751 J9 MOL INFORM JI Mol. Inf. PD FEB PY 2016 VL 35 IS 2 BP 62 EP 69 DI 10.1002/minf.201500113 PG 8 WC Chemistry, Medicinal; Computer Science, Interdisciplinary Applications; Mathematical & Computational Biology SC Pharmacology & Pharmacy; Computer Science; Mathematical & Computational Biology GA DD8JV UT WOS:000370173700003 PM 27491791 ER PT J AU Dave, B Abernethy, M Hampton-Marcell, J Alverdy, A Rosenfeld, AB Leader-Cramer, A Katarzyna, B Gottel, N Margaret, M Christina, LG Jack, G Kimberly, K AF Dave, Bhumy Abernethy, Melinda Hampton-Marcell, Jarrad Alverdy, Alex Rosenfeld, Amy B. Leader-Cramer, Alix Katarzyna, Bochenska Gottel, Neil Margaret, Mueller Christina, Lewicky-Gaupp Jack, Gilbert Kimberly, Kenton TI LACTOBACILLUS IN THE URINARY MICROBIOME OF WOMEN WITH STRESS INCONTINENCE SO NEUROUROLOGY AND URODYNAMICS LA English DT Meeting Abstract CT Winter Meeting of the Society-of-Urodynamics-Female-Pelvic-Medicine-and-Urogenital-Reconstruct ion CY FEB 23-27, 2016 CL New Orleans, LA SP Soc Urodynam Female Pelv Med & Urogenital Reconstruct C1 [Dave, Bhumy; Leader-Cramer, Alix; Katarzyna, Bochenska; Margaret, Mueller; Christina, Lewicky-Gaupp] Northwestern Univ, Div Female Pelv Med & Reconstruct Surg, Feinberg Sch Med, Chicago, IL 60611 USA. [Abernethy, Melinda] Johns Hopkins Univ, Div Female Pelv Med & Reconstruct Surg, Sch Med, Baltimore, MD 21218 USA. [Hampton-Marcell, Jarrad; Gottel, Neil; Jack, Gilbert] Argonne Natl Lab, Inst Genom & Syst Biol, 9700 S Cass Ave, Argonne, IL 60439 USA. [Alverdy, Alex] Northwestern Univ, Feinberg Sch Med, Chicago, IL 60611 USA. [Rosenfeld, Amy B.] Columbia Univ, Dept Microbiol & Immunol, New York, NY USA. [Kimberly, Kenton] Northwestern Univ, Depatrtment Obstet & Gynecol, Feinberg Sch Med, Chicago, IL 60611 USA. [Kimberly, Kenton] Northwestern Univ, Deaprtment Urol, Feinberg Sch Med, Div Female Pelv Med & Reconstruct Surg, Chicago, IL 60611 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0733-2467 EI 1520-6777 J9 NEUROUROL URODYNAM JI Neurourol. Urodyn. PD FEB PY 2016 VL 35 SU 1 MA BS14 BP S12 EP S12 PG 1 WC Urology & Nephrology SC Urology & Nephrology GA DD2BF UT WOS:000369726700016 ER PT J AU Kovchegov, YV Sievert, MD AF Kovchegov, Yuri V. Sievert, Matthew D. TI Calculating TMDs of a large nucleus: Quasi-classical approximation and quantum evolution SO NUCLEAR PHYSICS B LA English DT Article ID COLOR GLASS CONDENSATE; GLUON DISTRIBUTION-FUNCTIONS; SPIN PRODUCTION ASYMMETRIES; WEIZSACKER-WILLIAMS FIELD; STRUCTURE-FUNCTION G(1); SMALL-X EVOLUTION; BFKL POMERON; TRANSVERSE-MOMENTUM; STATE INTERACTIONS; PARTON SATURATION AB We set up a formalism for calculating transverse-momentum-dependent parton distribution functions (TMDs) of a large nucleus using the tools of saturation physics. By generalizing the quasi-classical Glauber-Gribov-Mueller/McLerran-Venugopalan approximation to allow for the possibility of spin-orbit coupling, we show how any TMD can be calculated in the saturation framework. This can also be applied to the TMDs of a proton by modeling it as a large "nucleus." To illustrate our technique, we calculate the quark TMDs of an unpolarized nucleus at large-x: the unpolarized quark distribution and the quark Boer-Mulders distribution. We observe that spin orbit coupling leads to mixing between different TMDs of the nucleus and of the nucleons. We then consider the evolution of TMDs: at large-x, in the double-logarithmic approximation, we obtain the Sudakov form factor. At small-x the evolution of unpolarized-target quark TMDs is governed by BK/JIMWLK evolution, while the small-x evolution of polarized-target quark TMDs appears to be dominated by the QCD Reggeon. Published by Elsevier B.V. C1 [Kovchegov, Yuri V.] Ohio State Univ, Dept Phys, 174 W 18th Ave, Columbus, OH 43210 USA. [Sievert, Matthew D.] Brookhaven Natl Lab, Dept Phys, Bldg 510A, Upton, NY 11973 USA. RP Sievert, MD (reprint author), Brookhaven Natl Lab, Dept Phys, Bldg 510A, Upton, NY 11973 USA. EM kovchegov.1@osu.edu; msievert@bnl.gov OI Sievert, Matthew/0000-0002-6018-269X FU U.S. Department of Energy, Office of Science, Office of Nuclear Physics [DE-SC0004286]; DOE Contract [DE-SC0012704] FX The authors are grateful to Elke Aschenauer, Ian Balitsky, Stan Brodsky, Cedric Lorce, Daniel Pitonyak, Jianwei Qiu, Andrey Tarasov, and Yi Yin for informative discussions. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under Award Number DE-SC0004286. MS is supported under DOE Contract No. DE-SC0012704. NR 98 TC 6 Z9 6 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0550-3213 EI 1873-1562 J9 NUCL PHYS B JI Nucl. Phys. B PD FEB PY 2016 VL 903 BP 164 EP 203 DI 10.1016/j.nuclphysb.2015.12.008 PG 40 WC Physics, Particles & Fields SC Physics GA DD7FQ UT WOS:000370089500010 ER PT J AU Zhang, Y Sahinidis, NV AF Zhang, Yan Sahinidis, Nikolaos V. TI Global optimization of mathematical programs with complementarity constraints and application to clean energy deployment SO OPTIMIZATION LETTERS LA English DT Article DE Complementarity constraints; Global optimization; Cap-and-trade; Carbon taxation; Market equilibria AB We study the problem of clean energy introduction under emission regulations using the generation expansion models developed by He et al. (Comput Ind Eng 63:708-716, 2012). A game theoretic approach was used to model capacity investments and new technology introduction in response to carbon emission regulations. We report algorithmic advancements that were made to enhance the performance of BARON (Tawarmalani and Sahinidis, Math Progr 103:225-249, 2005) on this and other mathematical programs with complementarity constraints. C1 [Zhang, Yan; Sahinidis, Nikolaos V.] US DOE, Natl Energy Technol Lab, Pittsburgh, PA USA. [Zhang, Yan; Sahinidis, Nikolaos V.] Carnegie Mellon Univ, Chem Engn, Pittsburgh, PA 15213 USA. RP Sahinidis, NV (reprint author), US DOE, Natl Energy Technol Lab, Pittsburgh, PA USA.; Sahinidis, NV (reprint author), Carnegie Mellon Univ, Chem Engn, Pittsburgh, PA 15213 USA. EM sahinidis@cmu.edu NR 29 TC 1 Z9 1 U1 1 U2 5 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1862-4472 EI 1862-4480 J9 OPTIM LETT JI Optim. Lett. PD FEB PY 2016 VL 10 IS 2 BP 325 EP 340 DI 10.1007/s11590-015-0880-9 PG 16 WC Operations Research & Management Science; Mathematics, Applied SC Operations Research & Management Science; Mathematics GA DD5ET UT WOS:000369946200008 ER PT J AU Duignan, MJ Cunniffe, JP Glans, PA Arenholz, E McGuinness, C McGilp, JF AF Duignan, M. J. Cunniffe, J. P. Glans, P. -A. Arenholz, E. McGuinness, C. McGilp, J. F. TI Temperature dependent studies of capped magnetic nanowires using XMCD SO PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS LA English DT Article DE cobalt; magnetic nanowires; platinum; self-assembly; X-ray magnetic circular dichroism ID CURIE-TEMPERATURE; ANISOTROPY; CO; CU; FERROMAGNETISM; CHAINS; FE; NI AB Aligned cobalt nanowires, 1, 2, and 3 atoms wide, were grown on platinum (997) surfaces under UHV conditions and capped with five monolayers of gold. X-ray magnetic circular dichroism (XMCD) measurements were performed at the L-2,L-3 edges of Co. Element specific magnetic hysteresis loops were measured as a function of temperature and coercivities were extracted. The easy axis of magnetization was confirmed to be perpendicular to the (111) terrace for all samples. The temperature dependence of the coercivity, which varies by an order-of-magnitude over a 150K temperature range for the 1-atom-wide wire, was found to be well described by the Gaunt strong domain wall pinning model for all three wires. The observation that capping increases the Curie temperature of the 1-atom-wide nanowire by at least 270K, together with the strong temperature dependence of the coercivity and the perpendicular magnetic anisotropy, may have important implications for the technological application of low dimensional, nanoscale magnetic materials. C1 [Duignan, M. J.; Cunniffe, J. P.; McGuinness, C.; McGilp, J. F.] Univ Dublin Trinity Coll, Sch Phys, Dublin 2, Ireland. [Glans, P. -A.; Arenholz, E.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. RP McGilp, JF (reprint author), Univ Dublin Trinity Coll, Sch Phys, Dublin 2, Ireland. EM jmcgilp@tcd.ie RI McGuinness, Cormac/C-6808-2008; Glans, Per-Anders/G-8674-2016 OI McGuinness, Cormac/0000-0002-3095-330X; FU Science Foundation Ireland [07/RFP/MASF157]; Office of Science, Office of Basic Energy Sciences, of the US Department of Energy [DE-AC02-05CH11231] FX This publication has emanated from research conducted with the financial support of Science Foundation Ireland under contract no. 07/RFP/MASF157. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under Contract No. DE-AC02-05CH11231. NR 22 TC 0 Z9 0 U1 4 U2 10 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 0370-1972 EI 1521-3951 J9 PHYS STATUS SOLIDI B JI Phys. Status Solidi B-Basic Solid State Phys. PD FEB PY 2016 VL 253 IS 2 BP 241 EP 246 DI 10.1002/pssb.201552488 PG 6 WC Physics, Condensed Matter SC Physics GA DD6GI UT WOS:000370022300007 ER PT J AU Lorenz, S Bhattacharyya, M Feiler, C Rape, M Kuriyan, J AF Lorenz, Sonja Bhattacharyya, Moitrayee Feiler, Christian Rape, Michael Kuriyan, John TI Crystal Structure of a Ube2S-Ubiquitin Conjugate SO PLOS ONE LA English DT Article ID ANAPHASE-PROMOTING COMPLEX; UBIQUITIN CHAINS; E3 LIGASE; PROTEIN UBIQUITINATION; MECHANISM; E2; ENZYME; REVEALS; INTERMEDIATE; ACTIVATION AB Protein ubiquitination occurs through the sequential formation and reorganization of specific protein-protein interfaces. Ubiquitin-conjugating (E2) enzymes, such as Ube2S, catalyze the formation of an isopeptide linkage between the C-terminus of a "donor" ubiquitin and a primary amino group of an "acceptor" ubiquitin molecule. This reaction involves an intermediate, in which the C-terminus of the donor ubiquitin is thioester-bound to the active site cysteine of the E2 and a functionally important interface is formed between the two proteins. A docked model of a Ube2S-donor ubiquitin complex was generated previously, based on chemical shift mapping by NMR, and predicted contacts were validated in functional studies. We now present the crystal structure of a covalent Ube2S-ubiquitin complex. The structure contains an interface between Ube2S and ubiquitin in trans that resembles the earlier model in general terms, but differs in detail. The crystallographic interface is more hydrophobic than the earlier model and is stable in molecular dynamics (MD) simulations. Remarkably, the docked Ube2S-donor complex converges readily to the configuration seen in the crystal structure in 3 out of 8 MD trajectories. Since the crystallographic interface is fully consistent with mutational effects, this indicates that the structure provides an energetically favorable representation of the functionally critical Ube2S-donor interface. C1 [Lorenz, Sonja; Bhattacharyya, Moitrayee; Rape, Michael; Kuriyan, John] Univ Calif Berkeley, Calif Inst Quantitat Biosci, Berkeley, CA 94720 USA. [Lorenz, Sonja; Bhattacharyya, Moitrayee; Rape, Michael; Kuriyan, John] Univ Calif Berkeley, Dept Mol & Cell Biol, 229 Stanley Hall, Berkeley, CA 94720 USA. [Lorenz, Sonja; Feiler, Christian] Univ Wurzburg, Rudolf Virchow Ctr Expt Biomed, D-97070 Wurzburg, Germany. [Rape, Michael; Kuriyan, John] Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA. [Kuriyan, John] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Kuriyan, John] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Kuriyan, J (reprint author), Univ Calif Berkeley, Calif Inst Quantitat Biosci, Berkeley, CA 94720 USA.; Kuriyan, J (reprint author), Univ Calif Berkeley, Dept Mol & Cell Biol, 229 Stanley Hall, Berkeley, CA 94720 USA.; Kuriyan, J (reprint author), Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA.; Kuriyan, J (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.; Kuriyan, J (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. EM kuriyan@berkeley.edu OI Lorenz, Sonja/0000-0002-9639-2381 FU Leukemia and Lymphoma Society [LLS 5509-11]; Emmy Noether Program of the German Research Foundation [LO 2003/1-1]; Human Frontiers Science Program [LT000002/2013]; NHI [NIGMS]; Howard Hughes Medical Institute FX This work was supported in part by the Leukemia and Lymphoma Society [grant number LLS 5509-11 (to SL)], the Emmy Noether Program of the German Research Foundation [grant number LO 2003/1-1 (to SL)], the Human Frontiers Science Program [grant number LT000002/2013 (to MB)], and an NHI RO1 grant [NIGMS (to MR)]. JK and MR are funded by the Howard Hughes Medical Institute. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 51 TC 2 Z9 2 U1 0 U2 8 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD FEB 1 PY 2016 VL 11 IS 2 AR e0147550 DI 10.1371/journal.pone.0147550 PG 15 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DC9NL UT WOS:000369548200024 PM 26828794 ER PT J AU Hasan, SM Harmon, G Zhou, F Raymond, JE Gustafson, TP Wilson, TS Maitland, DJ AF Hasan, Sayyeda M. Harmon, Garrett Zhou, Fang Raymond, Jeffery E. Gustafson, Tiffany P. Wilson, Thomas S. Maitland, Duncan J. TI Tungsten-loaded SMP foam nanocomposites with inherent radiopacity and tunable thermo-mechanical properties SO POLYMERS FOR ADVANCED TECHNOLOGIES LA English DT Article DE nanocomposite; radiopacity; dispersion; aneurysm; glass transition temperature ID SHAPE-MEMORY POLYMERS; BIOMEDICAL APPLICATIONS; COILS; DEGRADATION; COMPOSITE AB Shape memory polymer (SMP) foams have been developed for use in neurovascular occlusion applications. These materials are predominantly polyurethanes that are known for their biocompatibility and tunable properties. However, these polymers inherently lack X-ray visibility, which is a significant challenge for their use as implantable materials. Herein, low density, highly porous shape memory polyurethane foams were developed with tungsten nanoparticles dispersed into the foam matrix, at increasing concentrations, to serve as a radiopaque agent. Utilizing X-ray fluoroscopy sufficient visibility of the foams at small geometries was observed. Thermal characterization of the foams indicated altered thermal response and delayed foam actuation with increasing nanoparticle loading (because of restricted network mobility). Mechanical testing indicated decreased toughness and strength for higher loading because of disruption of the SMP matrix. Overall, filler addition imparted x-ray visibility to the SMP foams and allowed for tuned control of the transition temperature and actuation kinetics for the material. Copyright (C) 2015 John Wiley & Sons, Ltd. C1 [Hasan, Sayyeda M.; Harmon, Garrett; Maitland, Duncan J.] Texas A&M Univ, Dept Biomed Engn, 5045 Emerging Technol Bldg,3120 TAMU, College Stn, TX 77843 USA. [Raymond, Jeffery E.; Gustafson, Tiffany P.] Texas A&M Univ, Lab Synthet Biol Interact, Dept Chem, 1031 Chem Complex,3012 TAMU, College Stn, TX 77842 USA. [Zhou, Fang] Univ Minnesota, Characterizat Facil, Coll Sci & Engn, 1-234 Nils Hasselmo Hall,Church St SE, Minneapolis, MN 55455 USA. [Wilson, Thomas S.] Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA. RP Maitland, DJ (reprint author), Texas A&M Univ, Dept Biomed Engn, 5045 Emerging Technol Bldg,3120 TAMU, College Stn, TX 77843 USA. EM djmaitland@tamu.edu FU National Institutes of Health/National Institute of Biomedical Imaging and Bioengineering [R01EB000462]; Welch Foundation [A-0001]; Laboratory for Synthetic-Biologic Interactions, Texas A&M Institute for Preclinical Studies; Texas A&M University Graduate Diversity Fellowship; NSF FX This work was supported by the National Institutes of Health/National Institute of Biomedical Imaging and Bioengineering Grant R01EB000462, the Welch Foundation (Welch Chair, #A-0001), the Laboratory for Synthetic-Biologic Interactions, Texas A&M Institute for Preclinical Studies, and the Texas A&M University Graduate Diversity Fellowship. Parts of this work were carried out in the Characterization Facility, University of Minnesota, a member of the NSF-funded Materials Research Facilities Network (www.mrfn.org) via the MRSEC program. NR 30 TC 4 Z9 4 U1 2 U2 17 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1042-7147 EI 1099-1581 J9 POLYM ADVAN TECHNOL JI Polym. Adv. Technol. PD FEB PY 2016 VL 27 IS 2 BP 195 EP 203 DI 10.1002/pat.3621 PG 9 WC Polymer Science SC Polymer Science GA DD4DZ UT WOS:000369874000007 ER PT J AU Ontko, JS AF Ontko, J. S. TI Similitude in cyclone separators SO POWDER TECHNOLOGY LA English DT Article DE Cyclone separator; Similitude; Scaling; Stochastic ID FRACTIONAL EFFICIENCY; COLLECTION AB Criteria for similitude in reverse flow cyclone separators are developed in this paper explicitly including the inlet particulate probability distribution. The application of these criteria is demonstrated by example using data from the literature. Some practical points to consider when using cyclone similarity relations are presented in the Conclusion. Published by Elsevier B.V. C1 [Ontko, J. S.] US DOE, Natl Energy Technol Lab, 3610 Collins Ferry Rd, Morgantown, WV 26505 USA. RP Ontko, JS (reprint author), US DOE, Natl Energy Technol Lab, 3610 Collins Ferry Rd, Morgantown, WV 26505 USA. EM john.ontko@netl.doe.gov NR 13 TC 0 Z9 0 U1 8 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0032-5910 EI 1873-328X J9 POWDER TECHNOL JI Powder Technol. PD FEB PY 2016 VL 289 BP 159 EP 162 DI 10.1016/j.powtec.2015.11.048 PG 4 WC Engineering, Chemical SC Engineering GA DD7HX UT WOS:000370095400021 ER PT J AU Perras, FA AF Perras, Frederic A. TI Quantitative structure parameters from the NMR spectroscopy of quadrupolar nuclei SO PURE AND APPLIED CHEMISTRY LA English DT Article DE crystal structure refinements; dipolar coupling; IUPAC-SOLVAY International Award for Young Chemists; J coupling; NMR crystallography; NMR spectroscopy; quadrupolar nuclei; solid-state NMR ID SOLID-STATE NMR; RESOLUTION HETERONUCLEAR CORRELATION; ECHO DOUBLE-RESONANCE; ESTIMATING INTERNUCLEAR DISTANCES; RESIDUAL DIPOLAR COUPLINGS; ANGLE-SPINNING SPECTRA; CHEMICAL-SHIFT TENSORS; DOUBLE-ROTATION NMR; J-RESOLVED NMR; MAGNETIC-RESONANCE AB Nuclear magnetic resonance (NMR) spectroscopy is one of the most important characterization tools in chemistry, however, 3/4 of the NMR active nuclei are underutilized due to their quadrupolar nature. This short review centers on the development of methods that use solid-state NMR of quadrupolar nuclei for obtaining quantitative structural information. Namely, techniques using dipolar recoupling as well as the resolution afforded by double-rotation are presented for the measurement of spin-spin coupling between quadrupoles, enabling the measurement of internuclear distances and connectivities. Two-dimensional J-resolved-type experiments are then presented for the measurement of dipolar and J coupling, between spin1/ 2 and quadrupolar nuclei as well as in pairs of quadrupolar nuclei. Select examples utilizing these techniques for the extraction of structural information are given. Techniques are then described that enable the fine refinement of crystalline structures using solely the electric field gradient tensor, measured using NMR, as a constraint. These approaches enable the solution of crystal structures, from polycrystalline compounds, that are of comparable quality to those solved using single-crystal diffraction. C1 [Perras, Frederic A.] Iowa State Univ, Ames Lab, 211 Spedding Hall, Ames, IA 50011 USA. RP Perras, FA (reprint author), Iowa State Univ, Ames Lab, 211 Spedding Hall, Ames, IA 50011 USA. EM FredericPerras@ameslab.gov FU NSERC; LDRD program FX I would firstly like to thank IUPAC for providing me with the opportunity of writing this short review. NSERC is acknowledged for a graduate scholarship. Current support is from a Spedding fellowship funded by the LDRD program. Most importantly, I would like to thank my thesis advisor Prof. David L. Bryce for his guidance and support throughout my graduate work. Prof. Bryce is also kindly thanked for his useful comments regarding this article. NR 108 TC 2 Z9 2 U1 12 U2 32 PU WALTER DE GRUYTER GMBH PI BERLIN PA GENTHINER STRASSE 13, D-10785 BERLIN, GERMANY SN 0033-4545 EI 1365-3075 J9 PURE APPL CHEM JI Pure Appl. Chem. PD FEB PY 2016 VL 88 IS 1-2 BP 95 EP 111 DI 10.1515/pac-2015-0801 PG 17 WC Chemistry, Multidisciplinary SC Chemistry GA DD8IP UT WOS:000370170200010 ER PT J AU Kim, HM Rutqvist, J Kim, H Park, D Ryu, DW Park, ES AF Kim, Hyung-Mok Rutqvist, Jonny Kim, Hyunwoo Park, Dohyun Ryu, Dong-Woo Park, Eui-Seob TI Failure Monitoring and Leakage Detection for Underground Storage of Compressed Air Energy in Lined Rock Caverns SO ROCK MECHANICS AND ROCK ENGINEERING LA English DT Article DE Lined rock cavern (LRC); Compressed air energy storage (CAES); Failure monitoring; Leakage detection; Pressure monitoring ID PRESSURE AB Underground compressed air energy storage (CAES) in lined rock caverns (LRCs) provides a promising solution for storing energy on a large scale. One of the essential issues facing underground CAES implementation is the risk of air leakage from the storage caverns. Compressed air may leak through an initial defect in the inner containment liner, such as imperfect welds and construction joints, or through structurally damaged points of the liner during CAES operation for repeated compression and decompression cycles. Detection of the air leakage and identification of the leakage location around the underground storage cavern are required. In this study, we analyzed the displacement (or strain) monitoring method to detect the mechanical failure of liners that provides major pathways of air leakage using a previously developed numerical technique simulating the coupled thermodynamic and geomechanical behavior of underground CAES in LRCs. We analyzed the use of pressure monitoring to detect air leakage and characterize the leakage location. From the simulation results, we demonstrated that tangential strain monitoring at the inner face of sealing liners could enable one to detect failure. We also demonstrated that the use of the cross-correlation method between pressure history data measured at various sensors could identify the air leak location. These results may help in the overall design of a monitoring and alarm system for the successful implementation and operation of CAES in LRCs. C1 [Kim, Hyung-Mok] Sejong Univ, Energy & Mineral Resources Engn, Seoul 143747, South Korea. [Rutqvist, Jonny] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Kim, Hyunwoo; Park, Dohyun; Ryu, Dong-Woo; Park, Eui-Seob] KIGAM, Underground Space Dept, Geol Environm Div, 124 Gwahang No, Daejeon 305350, South Korea. RP Kim, H (reprint author), KIGAM, Underground Space Dept, Geol Environm Div, 124 Gwahang No, Daejeon 305350, South Korea. EM hyunwoo.kim@kigam.re.kr RI Rutqvist, Jonny/F-4957-2015 OI Rutqvist, Jonny/0000-0002-7949-9785 FU Basic Research Project of the Korea Institute of Geoscience and Mineral Resources (KIGAM) - Ministry of Science, ICT and Future Planning of Korea [GP2015-010]; KIGAM by US Department of Energy [DE-AC02-05CH11231]; Basic Science Research Program through National Research Foundation of Korea (KRF) - Ministry of Education [2013R1A1A2004605] FX The authors would like to thank Prof. Herbert Einstein at the Massachusetts Institute of Technology for his careful and detailed review, which improved the clarity and quality of the paper considerably. This research was supported by the Basic Research Project of the Korea Institute of Geoscience and Mineral Resources (KIGAM, Project code no. GP2015-010) that is funded by the Ministry of Science, ICT and Future Planning of Korea. Funding from KIGAM for Dr. Jonny Rutqvist and Berkeley Lab was provided by the US Department of Energy Contract No. DE-AC02-05CH11231. Dr. Hyung-Mok Kim was supported by the Basic Science Research Program through the National Research Foundation of Korea (KRF) that is funded by the Ministry of Education (2013R1A1A2004605). NR 19 TC 1 Z9 1 U1 2 U2 15 PU SPRINGER WIEN PI WIEN PA SACHSENPLATZ 4-6, PO BOX 89, A-1201 WIEN, AUSTRIA SN 0723-2632 EI 1434-453X J9 ROCK MECH ROCK ENG JI Rock Mech. Rock Eng. PD FEB PY 2016 VL 49 IS 2 SI SI BP 573 EP 584 DI 10.1007/s00603-015-0761-7 PG 12 WC Engineering, Geological; Geosciences, Multidisciplinary SC Engineering; Geology GA DD6SD UT WOS:000370053600015 ER PT J AU Wong-Ng, W Culp, JT Chen, YS Deschamps, JR Marti, A AF Wong-Ng, Winnie Culp, Jeffrey T. Chen, Yu-S. Deschamps, Jeffrey R. Marti, Anna TI Synthesis and structural characterization of a flexible metal organic framework {[Ni(dpbz)][Ni(CN)(4)]}(n), dpbz=1,4-bis(4-pyridyl)benzene) with an unusual Ni-N bond SO SOLID STATE SCIENCES LA English DT Article DE Carbon dioxide capture; Flexible porous MOF; Soft porous crystals; Ni(1,4-bis (4-pyridyl)benzene)[Ni(CN)(4)]; Synchrotron crystal structure; Sorption isotherms; 5-Coordinate nickel complex ID POROUS COORDINATION POLYMER; SYNCHROTRON X-RAY; SPIN-CROSSOVER; CRYSTAL-STRUCTURES; MAGNETIC-PROPERTIES; POWDER DIFFRACTION; CO2; ADSORPTION; COMPLEXES; CYANIDE AB The chartreuse monoclinic Ni-dpbz (Ni(L)[Ni(CN)(4)], (L = 1,4-Bis(4-pyridyl) benzene, or dpbz) crystal assumes a pillared structure with layers defined by 2-D Ni[Ni(CN)(4)](n) nets and dpbz ligands as pillars, linking between coordinated Ni sites. In addition to the hysteretic adsorption/desorption feature of Ni-dpbz, in half of the parallelepiped-shape space enclosed by the pillars and nets, an additional dpbz ligand was found to link between the open ends of two four-fold Ni sites. This arrangement results in an unusual 5-fold pseudo square-pyramid environment for Ni and a significantly long Ni-N distance of 2.369(4) angstrom. The presence of disordered dimethyl sulfoxide (DMSO) solvent molecules give rise to the formula of Ni(dpbz)[Ni(CN)(4)].1/2dpbz.0.44DMSO. Sorption isotherms showed flexible behavior during the adsorption and desorption of CO2. Published by Elsevier Masson SAS. C1 [Wong-Ng, Winnie] NIST, Mat Measurement Sci Div, Gaithersburg, MD 20899 USA. [Culp, Jeffrey T.; Marti, Anna] Natl Energy Technol Lab, Dept Energy, POB 10940, Pittsburgh, PA 15236 USA. [Culp, Jeffrey T.] AECOM, South Pk, PA 15219 USA. [Chen, Yu-S.] Univ Chicago, ChemMatCARS, Argonne, IL 60439 USA. [Deschamps, Jeffrey R.] Naval Res Lab, Washington, DC 20375 USA. RP Wong-Ng, W (reprint author), NIST, Mat Measurement Sci Div, Gaithersburg, MD 20899 USA. EM Winnie.wong-ng@nist.gov FU National Energy Technology under the RES contract [DE-FE0004000]; National Science Foundation/Department of Energy [NSF/CHE-0822838]; U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX This technical effort was performed in support of the National Energy Technology's ongoing research in CO2 capture under the RES contract DE-FE0004000. The authors gratefully acknowledge ChemMatCARS Sector 15 which is principally supported by the National Science Foundation/Department of Energy under grant number NSF/CHE-0822838. Use of the Advanced Photon Source was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 68 TC 1 Z9 1 U1 19 U2 44 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1293-2558 EI 1873-3085 J9 SOLID STATE SCI JI Solid State Sci. PD FEB PY 2016 VL 52 BP 1 EP 9 DI 10.1016/j.solidstatesciences.2015.11.010 PG 9 WC Chemistry, Inorganic & Nuclear; Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA DB9GB UT WOS:000368823300001 ER PT J AU Williams, NJ Bryanstev, VS Custelcean, R Seipp, CA Moyer, BA AF Williams, Neil J. Bryanstev, Vyacheslav S. Custelcean, Radu Seipp, Charles A. Moyer, Bruce A. TI alpha, alpha', a., a'.- meso- tetrahexyltetramethyl- calix[4] pyrrole: an easy- to- prepare, isomerically pure anion extractant with enhanced solubility in organic solvents SO SUPRAMOLECULAR CHEMISTRY LA English DT Article DE pyrrole; solubility; anion binding; chloride; extraction ID ION-PAIR RECEPTOR; CROWN-ETHERS; BINDING; RECOGNITION; DENSITY; CATIONS; OLD AB alpha,alpha ',alpha'',alpha '''-meso-Tetrahexyltetramethyl-calix[4]pyrrole is easily obtained as a single diastereomer in a one-pot reaction. It exhibits enhanced solubility in organic solvents, including aliphatic solvents, relative to its parent meso-octamethylcalix[4]pyrrole (1). Somewhat surprisingly, the tetrahexyl derivative 2 complexes with tributylmethylammonium chloride in chloroform more strongly than does 1 as shown by NMR titrations. However, 1 and 2 exhibit comparable complexation strength in extraction experiments, the difference between the NMR and extraction results being attributed to the effect of organic-phase water in the extraction systems. Mass-action analysis indicates the formation of the predominant complex TBMA(+)(1 or 2)Cl- in both NMR and extraction systems, and equilibrium constants are reported. x-Ray crystal structures were obtained for the free ligand 2 and its complex with tetramethylammonium chloride. The free ligand crystallises in the 1,3-alt conformation with equatorial hexyl arms. In the chloride complex with 2 in its cone conformation, the hexyl arms adopt an axial orientation, enveloping the anion. DFT calculations show this binding conformation to be the most stable, mostly owing to destabilising steric interactions involving the pyrrole C-H and alkyl C-H groups positioned equatorially. C1 [Williams, Neil J.; Bryanstev, Vyacheslav S.; Custelcean, Radu; Seipp, Charles A.; Moyer, Bruce A.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN USA. [Williams, Neil J.] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. [Seipp, Charles A.] Univ Texas Austin, Dept Chem, Austin, TX 78712 USA. RP Moyer, BA (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN USA. EM moyerba@ornl.gov RI Seipp, Charles/J-5546-2016; Custelcean, Radu/C-1037-2009; Moyer, Bruce/L-2744-2016 OI Seipp, Charles/0000-0003-4476-6991; Custelcean, Radu/0000-0002-0727-7972; Moyer, Bruce/0000-0001-7484-6277 FU U.S. Department of Energy, Office of Science, Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division [FWP ERKCC08, DE-AC05-00OR22725 w] FX This work was supported by U.S. Department of Energy, Office of Science, Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division [FWP ERKCC08 under Contract No. DE-AC05-00OR22725 w]. NR 48 TC 0 Z9 0 U1 2 U2 12 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND SN 1061-0278 EI 1029-0478 J9 SUPRAMOL CHEM JI Supramol. Chem. PD FEB 1 PY 2016 VL 28 IS 1-2 SI SI BP 176 EP 187 DI 10.1080/10610278.2015.1120873 PG 12 WC Chemistry, Multidisciplinary SC Chemistry GA DD2RM UT WOS:000369769900021 ER PT J AU Brown, CJ Kokai, A Miller, GM Bergman, RG Raymond, KN AF Brown, Casey J. Kokai, Akos Miller, Gregory M. Bergman, Robert G. Raymond, Kenneth N. TI Improved scope and diastereoselectivity of C-H activation in an expanded supramolecular host SO SUPRAMOLECULAR CHEMISTRY LA English DT Article DE supramolecular catalysis; organometallic chemistry; C-H activation ID BOND ACTIVATION; CATALYSIS; COMPLEXES; DESIGN; GUEST; HYDROFORMYLATION; REACTIVITY; FRAMEWORKS; CHEMISTRY; MECHANISM AB Chiral Ga4L6 assembly Ga-4(L-N)(6) encapsulates cationic iridium half-sandwich complexes that activate aldehyde C-H bonds to form chiral, strongly bound piano-stool complexes. Herein, we report the expanded scope of the larger Ga-4(L-P)(6) host in mediating this transformation. The larger assembly significantly improves both the scope and the diastereoselectivity of this organometallic transformation generally, while substrate-specific interactions demonstrate that host size is an important, but not definitive, factor in determining diastereoselectivity. C1 [Brown, Casey J.; Kokai, Akos; Miller, Gregory M.; Bergman, Robert G.; Raymond, Kenneth N.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Brown, Casey J.; Kokai, Akos; Miller, Gregory M.; Bergman, Robert G.; Raymond, Kenneth N.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Raymond, KN (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.; Raymond, KN (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. EM raymond@socrates.berkeley.edu OI Kokai, Akos/0000-0002-0335-7780 FU Office of Science, Office of Basic Energy Sciences, and the Division of Chemical Sciences, Geosciences, and Biosciences of the U.S. Department of Energy at LBNL [DE-AC02-05CH11231] FX This research was supported by the Director, Office of Science, Office of Basic Energy Sciences, and the Division of Chemical Sciences, Geosciences, and Biosciences of the U.S. Department of Energy at LBNL [DE-AC02-05CH11231]. NR 29 TC 0 Z9 0 U1 9 U2 26 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND SN 1061-0278 EI 1029-0478 J9 SUPRAMOL CHEM JI Supramol. Chem. PD FEB 1 PY 2016 VL 28 IS 1-2 SI SI BP 188 EP 191 DI 10.1080/10610278.2015.1122196 PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA DD2RM UT WOS:000369769900022 ER PT J AU Li, NN Xu, CC Li-Beisson, YH Philippar, K AF Li, Nannan Xu, Changcheng Li-Beisson, Yonghua Philippar, Katrin TI Fatty Acid and Lipid Transport in Plant Cells SO TRENDS IN PLANT SCIENCE LA English DT Review ID ACYL-COA SYNTHETASE; BINDING CASSETTE TRANSPORTER; POLLEN EXINE DEVELOPMENT; PEROXISOMAL BETA-OXIDATION; CARRIER PROTEIN SYNTHETASE; MEMBRANE CONTACT SITES; ARABIDOPSIS-THALIANA; ABC TRANSPORTER; ENDOPLASMIC-RETICULUM; CHLAMYDOMONAS-REINHARDTII AB Fatty acids (FAs) and lipids are essential not only as membrane constituents but also for growth and development. In plants and algae, FAs are synthesized in plastids and to a large extent transported to the endoplasmic reticulum for modification and lipid assembly. Subsequently, lipophilic compounds are distributed within the cell, and thus are transported across most membrane systems. Membrane-intrinsic transporters and proteins for cellular FA/lipid transfer therefore represent key components for delivery and dissemination. In addition to highlighting their role in lipid homeostasis and plant performance, different transport mechanisms for land plants and green algae-in the model systems Arabidopsis thatiana, Chlamydomonas reinhardtii-are compared, thereby providing a current perspective on protein-mediated FA and lipid trafficking in photosynthetic cells. C1 [Li, Nannan] Southwest Univ, Coll Resources & Environm, RCBB, Chongqing 400715, Peoples R China. [Xu, Changcheng] Brookhaven Natl Lab, Dept Biol, 50 Bell Ave, Upton, NY 11973 USA. [Li-Beisson, Yonghua] Commissariat Energie Atom CEA Cadarache, Inst Environm Biol & Biotechnol, French Atom & Alternat Energy Commiss, UMR 7265, F-13108 St Paul Les Durance, France. [Philippar, Katrin] Univ Munich, Dept Biol 1, D-82152 Planegg Martinsried, Germany. RP Philippar, K (reprint author), Univ Munich, Dept Biol 1, D-82152 Planegg Martinsried, Germany. EM philippar@lmu.de RI Li, Yonghua/C-7047-2011 OI Li, Yonghua/0000-0003-1064-1816 FU National Natural Science Foundation of China [NSFC 31400063]; fundamental research funds for the central universities [XDJK2014C099]; Office of Basic Energy Sciences of the US Department of Energy [DEAC0298CH10886]; Agence Nationale de la Recherche (ANR); Heisenberg fellowship; German Research Foundation (Deutsche Forschungsgemeinschaft; DFG) [PH73/6-1, PH73/7-1] FX We first apologize to researchers whose contributions to lipid transport could not be directly cited in this review owing to space limitations. N.L. is funded by the National Natural Science Foundation of China (NSFC 31400063) and fundamental research funds for the central universities (XDJK2014C099). C.X. is funded by the Office of Basic Energy Sciences of the US Department of Energy (DEAC0298CH10886). Y.L-B acknowledges financial support from Agence Nationale de la Recherche (ANR) project MUSCA (Metabolic Engineering of a Green Microalga for Production of Medium-Chain Alkanes). K.P. is funded by a Heisenberg fellowship and basic funding module of the German Research Foundation (Deutsche Forschungsgemeinschaft; DFG grants PH73/6-1, PH73/7-1). NR 129 TC 6 Z9 7 U1 12 U2 53 PU ELSEVIER SCIENCE LONDON PI LONDON PA 84 THEOBALDS RD, LONDON WC1X 8RR, ENGLAND SN 1360-1385 J9 TRENDS PLANT SCI JI Trends Plant Sci. PD FEB PY 2016 VL 21 IS 2 BP 145 EP 158 DI 10.1016/j.tplants.2015.10.011 PG 14 WC Plant Sciences SC Plant Sciences GA DC8IS UT WOS:000369463700009 PM 26616197 ER PT J AU Hong, EM Nam, WH Choi, JY Pachepsky, YA AF Hong, Eun-Mi Nam, Won-Ho Choi, Jin-Yong Pachepsky, Yakov A. TI Projected irrigation requirements for upland crops using soil moisture model under climate change in South Korea SO AGRICULTURAL WATER MANAGEMENT LA English DT Article DE Climate change; Evapotranspiration; Irrigation requirement; Soil moisture model; South Korea; Upland crop ID WATER-BALANCE; REFERENCE EVAPOTRANSPIRATION; COEFFICIENT METHOD; CROPPING SYSTEMS; NEXT-GENERATION; CHANGE IMPACTS; NORTH CHINA; RIVER-BASIN; DROUGHT; REGION AB An increase in abnormal climate change patterns and unsustainable irrigation in uplands cause drought and affect agricultural water security, crop productivity, and price fluctuations. In this study, we developed a soil moisture model to project irrigation requirements (IR) for upland crops under climate change using estimated effective rainfall (ER), crop evapotranspiration (ETc) and the IR of 29 major upland crops in South Korea. The temperature and precipitation will increase, but the ER is projected to decrease under climate change. ETc and the net irrigation requirement (NIR) are expected to increase under climate change. Vegetable crops have less ER and more NIR than cereal crops with a similar amount of ETc, which means they are more sensitive to water scarcity and IR than cereal crops. In addition, we found that barley has the smallest daily ETc and IR but the highest increase rate in NIR under climate change, especially in the central part of South Korea. The NIR of Chinese cabbage-fall is the lowest in the northern region and increases moving southwards. The NIR of spinach is projected to increase gradually from the southern and eastern coastlines to the northern inland area. Onions have the largest ETc and NIR of the 29 upland crops, but they show small changes compared to other crops under climate change. Water scarcity is a major limiting factor for sustainable agricultural production. The variation of IR and ETc values for each crop under different climate change scenarios depends on the crop, soil, space, and meteorological characteristics. The results of this study can be used as a guideline for irrigation and soil water management for upland crops under climate change. (C) 2015 Elsevier B.V. All rights reserved. C1 [Hong, Eun-Mi; Pachepsky, Yakov A.] ARS, USDA, Beltsville Agr Res Ctr, Beltsville, MD USA. [Hong, Eun-Mi] Oak Ridge Inst Sci & Engn, Oak Ridge, TN USA. [Nam, Won-Ho] Univ Nebraska, Sch Nat Resources, Natl Drought Mitigat Ctr, Lincoln, NE USA. [Choi, Jin-Yong] Seoul Natl Univ, Dept Rural Syst Engn, Seoul, South Korea. [Choi, Jin-Yong] Seoul Natl Univ, Res Inst Agr & Life Sci, Seoul, South Korea. RP Nam, WH (reprint author), Univ Nebraska, Sch Nat Resources, Natl Drought Mitigat Ctr, Lincoln, NE USA. EM wonho.nam@gmail.com RI NAM, WONHO/B-3489-2014; OI NAM, WONHO/0000-0002-9671-6569; Pachepsky, Yakov/0000-0003-0232-6090 FU DOE [DE-AC05-060R23100]; Basic Science Research Program through the National Research Foundation of Korea (NRF); Ministry of Education, Science and Technology [2013R1A6A3A03019009] FX This research was supported in part by an appointment to the Agricultural Research Service (ARS) Research Participation Program administered by the Oak Ridge Institute for Science and Education (ORISE) through an interagency agreement between the U.S. Department of Energy (DOE) and the U.S. Department of Agriculture (USDA). ORISE is managed by ORAU under DOE contract number DE-AC05-060R23100. Also, this research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) and was funded by the Ministry of Education, Science and Technology (2013R1A6A3A03019009). All opinions expressed in this paper are the author's and do not necessarily reflect the policies and views of USDA, ARS, DOE, ORAU/ORISE, NRF or any of its sub-agencies. Finally, the authors would like to thank the editor, and anonymous reviewers who took the time to review and provide guidance on this paper. NR 71 TC 1 Z9 1 U1 2 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-3774 EI 1873-2283 J9 AGR WATER MANAGE JI Agric. Water Manage. PD FEB PY 2016 VL 165 BP 163 EP 180 DI 10.1016/j.agwat.2015.12.003 PG 18 WC Agronomy; Water Resources SC Agriculture; Water Resources GA DC4PT UT WOS:000369203500016 ER PT J AU McCarthy, S Johnson, T Pavlik, BJ Payne, S Schackwitz, W Martin, J Lipzen, A Keffeler, E Blum, P AF McCarthy, Samuel Johnson, Tyler Pavlik, Benjamin J. Payne, Sophie Schackwitz, Wendy Martin, Joel Lipzen, Anna Keffeler, Erica Blum, Paul TI Expanding the Limits of Thermoacidophily in the Archaeon Sulfolobus solfataricus by Adaptive Evolution SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID HEAT-SHOCK RESPONSE; ESCHERICHIA-COLI; ACID RESISTANCE; METALLOSPHAERA-SEDULA; MERCURY RESISTANCE; LACTIC-ACID; LISTERIA-MONOCYTOGENES; SPONTANEOUS MUTATION; TETRAETHER LIPIDS; BACILLUS-SUBTILIS AB Extremely thermoacidophilic Crenarchaeota belonging to the order Sulfolobales flourish in hot acidic habitats that are strongly oxidizing. The pH extremes of these habitats, however, often exceed the acid tolerance of type species and strains. Here, adaptive laboratory evolution was used over a 3-year period to test whether such organisms harbor additional thermoacidophilic capacity. Three distinct cell lines derived from a single type species were subjected to high-temperature serial passage while culture acidity was gradually increased. A 178-fold increase in thermoacidophily was achieved after 29 increments of shifted culture pH resulting in growth at pH 0.8 and 80 degrees C. These strains were named super-acid-resistant Crenarchaeota (SARC). Mathematical modeling using growth parameters predicted the limits of acid resistance, while genome resequencing and transcriptome resequencing were conducted for insight into mechanisms responsible for the evolved trait. Among the mutations that were detected, a set of eight nonsynonymous changes may explain the heritability of increased acid resistance despite an unexpected lack of transposition. Four multigene components of the SARC transcriptome implicated oxidative stress as a primary challenge accompanying growth at acid extremes. These components included accelerated membrane biogenesis, induction of the mer operon, and an increased capacity for the generation of energy and reductant. C1 [McCarthy, Samuel; Johnson, Tyler; Payne, Sophie; Keffeler, Erica; Blum, Paul] Univ Nebraska, Sch Biol Sci, Lincoln, NE USA. [Pavlik, Benjamin J.; Blum, Paul] Univ Nebraska, Dept Chem & Biomol Engn, Lincoln, NE USA. [Schackwitz, Wendy; Martin, Joel; Lipzen, Anna] US DOE, Joint Genome Inst, Walnut Creek, CA USA. RP Blum, P (reprint author), Univ Nebraska, Sch Biol Sci, Lincoln, NE USA.; Blum, P (reprint author), Univ Nebraska, Dept Chem & Biomol Engn, Lincoln, NE USA. EM pblum1@unl.edu FU National Science Foundation [MCB 1517408]; Nebraska Center for Energy Science Research; UNL Cell Development Facility; Department of Energy Joint Genome Institute (DOE-JGI) under the community sequencing program (CSP) [1019966, 1019969, 1019972]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by National Science Foundation grant MCB 1517408, the Nebraska Center for Energy Science Research, the UNL Cell Development Facility, and the Department of Energy Joint Genome Institute (DOE-JGI) under the community sequencing program (CSP Proposal 1218, projects 1019966, 1019969, and 1019972). The work conducted by the DOE-JGI, a DOE Office of Science User Facility, was supported by the Office of Science of the U.S. Department of Energy under contract no. DE-AC02-05CH11231. NR 77 TC 1 Z9 1 U1 1 U2 7 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 EI 1098-5336 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD FEB PY 2016 VL 82 IS 3 BP 857 EP 867 DI 10.1128/AEM.03225-15 PG 11 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA DC7BR UT WOS:000369373800010 ER PT J AU Britstein, M Devescovi, G Handley, KM Malik, A Haber, M Saurav, K Teta, R Costantino, V Burgsdorf, I Gilbert, JA Sher, N Venturi, V Steindler, L AF Britstein, Maya Devescovi, Giulia Handley, Kim M. Malik, Assaf Haber, Markus Saurav, Kumar Teta, Roberta Costantino, Valeria Burgsdorf, Ilia Gilbert, Jack A. Sher, Noa Venturi, Vittorio Steindler, Laura TI A New N-Acyl Homoserine Lactone Synthase in an Uncultured Symbiont of the Red Sea Sponge Theonella swinhoei SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID RNA GENE DATABASE; AGROBACTERIUM-TUMEFACIENS; SEQUENCING DATA; MARINE SPONGES; MICROBIAL COMMUNITY; SIGNAL PRODUCTION; IN-VITRO; BACTERIA; DIVERSITY; ASSEMBLER AB Sponges harbor a remarkable diversity of microbial symbionts in which signal molecules can accumulate and enable cell-cell communication, such as quorum sensing (QS). Bacteria capable of QS were isolated from marine sponges; however, an extremely small fraction of the sponge microbiome is amenable to cultivation. We took advantage of community genome assembly and binning to investigate the uncultured majority of sponge symbionts. We identified a complete N-acyl-homoserine lactone (AHL)-QS system (designated TswIR) and seven partial luxI homologues in the microbiome of Theonella swinhoei. The TswIR system was novel and shown to be associated with an alphaproteobacterium of the order Rhodobacterales, here termed Rhodobacterales bacterium TS309. The tswI gene, when expressed in Escherichia coli, produced three AHLs, two of which were also identified in a T. swinhoei sponge extract. The taxonomic affiliation of the 16S rRNA of Rhodobacterales bacterium TS309 to a sponge-coral specific clade, its enrichment in sponge versus seawater and marine sediment samples, and the presence of spongespecific features, such as ankyrin-like domains and tetratricopeptide repeats, indicate a likely symbiotic nature of this bacterium. C1 [Britstein, Maya; Haber, Markus; Saurav, Kumar; Burgsdorf, Ilia; Steindler, Laura] Univ Haifa, Leon H Charney Sch Marine Sci, Dept Marine Biol, IL-31999 Haifa, Israel. [Devescovi, Giulia; Venturi, Vittorio] Int Ctr Genet Engn & Biotechnol, Bacteriol Grp, Padriciano 99, I-34012 Trieste, Italy. [Handley, Kim M.; Gilbert, Jack A.] Argonne Natl Lab, Inst Genom & Syst Biol, 9700 S Cass Ave, Argonne, IL 60439 USA. [Handley, Kim M.; Gilbert, Jack A.] Univ Chicago, Dept Ecol & Evolut, 940 E 57Th St, Chicago, IL 60637 USA. [Malik, Assaf; Sher, Noa] Univ Haifa, Bioinformat Serv Unit, IL-31999 Haifa, Israel. [Teta, Roberta; Costantino, Valeria] Univ Naples Federico II, Dipartimento Farm, Naples, Italy. [Gilbert, Jack A.] Marine Biol Lab, Woods Hole, MA 02543 USA. [Gilbert, Jack A.] Univ Chicago, Dept Surg, 5841 S Maryland Ave, Chicago, IL 60637 USA. [Gilbert, Jack A.] Zhejiang Univ, Coll Environm & Resource Sci, Hangzhou 310003, Zhejiang, Peoples R China. RP Steindler, L (reprint author), Univ Haifa, Leon H Charney Sch Marine Sci, Dept Marine Biol, IL-31999 Haifa, Israel. EM lsteindler@univ.haifa.ac.il OI Handley, Kim/0000-0003-0531-3009; Saurav, Kumar/0000-0002-7084-4204 FU University of Chicago Research Computing Center; Earth Microbiome Project [1740] FX We thank the staff of the Inter-University Institute (IUI) in Eilat for their help during the course of this study. Samples were collected in compliance with the 40246/2014 permit from the Israel Nature and National Parks Protection Authority. Sequencing was conducted at the Institute for Genomics and Systems Biology's Next Generation Sequencing Core (IGSB-NGS, ANL). We acknowledge the University of Chicago Research Computing Center for support of this work. We also acknowledge the Earth Microbiome Project for the sponge project ID 1740. We thank Clay Fuqua for kindly providing the AHL- A. tumefaciens NTL4 strain. We thank Claire Duchet and Bank Beszteri for advice on graph preparation. We also thank four anonymous reviewers who greatly helped improve this article. NR 86 TC 3 Z9 3 U1 1 U2 15 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 EI 1098-5336 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD FEB PY 2016 VL 82 IS 4 BP 1274 EP 1285 DI 10.1128/AEM.03111-15 PG 12 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA DC7CJ UT WOS:000369375900030 ER PT J AU Ryu, S Hipp, J Trinh, CT AF Ryu, Seunghyun Hipp, Julie Trinh, Cong T. TI Activating and Elucidating Metabolism of Complex Sugars in Yarrowia lipolytica SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID SACCHAROMYCES-CEREVISIAE; BETA-GLUCOSIDASE; PICHIA-STIPITIS; GENE-EXPRESSION; CATABOLITE REPRESSION; EFFICIENT PRODUCTION; XYLOSE FERMENTATION; ETHANOL-PRODUCTION; ASPERGILLUS-NIGER; LIPID PRODUCTION AB The oleaginous yeast Yarrowia lipolytica is an industrially important host for production of organic acids, oleochemicals, lipids, and proteins with broad biotechnological applications. Albeit known for decades, the unique native metabolism of Y. lipolytica for using complex fermentable sugars, which are abundant in lignocellulosic biomass, is poorly understood. In this study, we activated and elucidated the native sugar metabolism in Y. lipolytica for cell growth on xylose and cellobiose as well as their mixtures with glucose through comprehensive metabolic and transcriptomic analyses. We identified 7 putative glucose-specific transporters, 16 putative xylose-specific transporters, and 4 putative cellobiose-specific transporters that are transcriptionally upregulated for growth on respective single sugars. Y. lipolytica is capable of using xylose as a carbon source, but xylose dehydrogenase is the key bottleneck of xylose assimilation and is transcriptionally repressed by glucose. Y. lipolytica has a set of 5 extracellular and 6 intracellular beta-glucosidases and is capable of assimilating cellobiose via extra-and intracellular mechanisms, the latter being dominant for growth on cellobiose as a sole carbon source. Strikingly, Y. lipolytica exhibited enhanced sugar utilization for growth in mixed sugars, with strong carbon catabolite activation for growth on the mixture of xylose and cellobiose and with mild carbon catabolite repression of glucose on xylose and cellobiose. The results of this study shed light on fundamental understanding of the complex native sugar metabolism of Y. lipolytica and will help guide inverse metabolic engineering of Y. lipolytica for enhanced conversion of biomass-derived fermentable sugars to chemicals and fuels. C1 [Ryu, Seunghyun; Hipp, Julie; Trinh, Cong T.] Univ Tennessee, Dept Chem & Biomol Engn, Knoxville, TN USA. [Trinh, Cong T.] Univ Tennessee, Bredesen Ctr Interdisciplinary Res & Grad Educ, Knoxville, TN USA. [Trinh, Cong T.] Oak Ridge Natl Lab, Bioenergy Sci Ctr BESC, Oak Ridge, TN USA. RP Trinh, CT (reprint author), Univ Tennessee, Dept Chem & Biomol Engn, Knoxville, TN USA.; Trinh, CT (reprint author), Univ Tennessee, Bredesen Ctr Interdisciplinary Res & Grad Educ, Knoxville, TN USA.; Trinh, CT (reprint author), Oak Ridge Natl Lab, Bioenergy Sci Ctr BESC, Oak Ridge, TN USA. EM ctrinh@utk.edu RI Trinh, Cong/H-5300-2012 FU National Science Foundation (NSF) [1511881, 1360867]; Sustainable Energy and Education Research Center (SEERC) at The University of Tennessee, Knoxville, TN FX National Science Foundation (NSF) provided funding to Cong T. Trinh under grant numbers 1511881 and 1360867.; This research was also funded by the Sustainable Energy and Education Research Center (SEERC) at The University of Tennessee, Knoxville, TN. NR 67 TC 7 Z9 7 U1 7 U2 21 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 EI 1098-5336 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD FEB PY 2016 VL 82 IS 4 BP 1334 EP 1345 DI 10.1128/AEM.03582-15 PG 12 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA DC7CJ UT WOS:000369375900036 PM 26682853 ER PT J AU Wang, LN Patel, PL Yu, S Liu, B McLeod, J Clarke, LE Chen, WY AF Wang, Lining Patel, Pralit L. Yu, Sha Liu, Bo McLeod, Jeff Clarke, Leon E. Chen, Wenying TI Win-Win strategies to promote air pollutant control policies and non-fossil energy target regulation in China SO APPLIED ENERGY LA English DT Article DE Air pollution; Non-fossil energy target; Co-benefit; China; GCAM-TU ID CO-BENEFITS ASSESSMENT; GLOBAL PERSPECTIVE; CEMENT INDUSTRY; EFFICIENCY; EMISSIONS; SECTOR; IMPACT; CARBON; MODEL; MITIGATION AB The rapid growth of energy consumption in China has led to increased emissions of air pollutants. As a response, in its 12th Five Year Plan the Chinese government proposed mitigation targets for SO2 and NOx emissions. In this paper, we have investigated mitigation measures taken in different sectors and their corresponding impacts on the energy system. Additionally, as non-fossil energy development has gained attention in addressing energy and environmental challenges in China, we investigated the impact of non-fossil energy development on air pollutant emissions, and explored interactions and co-benefits between these two types of policies. An extended Global Change Assessment Model (GCAM) was used in this study. The extended version of GCAM includes an additional air pollutant emissions control module coupling multiple end-of-pipe (EOP) control technologies with energy technologies, as well as more detailed end-use sectors in China. We find that implementing EOP control technologies would reduce air pollution in the near future, but with little room left to implement these EOP technologies, other cleaner and more efficient technologies are also effective. These technologies would reduce final energy consumption, increase electricity's share in final energy, and increase the share of non-fossil fuels in primary energy and electricity consumption. Increasing non-fossil energy usage at China's proposed adoption rate would in turn also reduce SO2 and NO, emissions, however, the reductions from this policy alone still lag behind the targets for air pollutant reduction. A combination of air pollutant controls and non-fossil energy development could synergistically help realize the respective individual targets, and would result in lower costs than would addressing these issues separately. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Wang, Lining; Chen, Wenying] Tsinghua Univ, Inst Energy Environm & Econ, Beijing 100084, Peoples R China. [Patel, Pralit L.; Yu, Sha; Liu, Bo; McLeod, Jeff; Clarke, Leon E.] Pacific NW Natl Lab, Joint Global Change Res Inst, College Pk, MD 20740 USA. RP Chen, WY (reprint author), Tsinghua Univ, Inst Energy Environm & Econ, Beijing 100084, Peoples R China. EM chenwy@mail.tsinghua.edu.cn FU Ministry of Science and Technology of China [2012BAC20B01]; MOE project of Key Research Institute of Humanities and Social Science at Universities [12JJD630002]; China Scholarship Council (CSC) FX This research is supported by the Ministry of Science and Technology of China (2012BAC20B01), and the MOE project of Key Research Institute of Humanities and Social Science at Universities (12JJD630002), and China Scholarship Council (CSC). We thank Steven J. Smith, senior staff scientist of Joint Global Change Research Institute (PNNL) for constructive suggestions to improve this paper. NR 35 TC 6 Z9 6 U1 5 U2 31 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0306-2619 EI 1872-9118 J9 APPL ENERG JI Appl. Energy PD FEB 1 PY 2016 VL 163 BP 244 EP 253 DI 10.1016/j.apenergy.2015.10.189 PG 10 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA DC4QD UT WOS:000369204500023 ER PT J AU Cha, M Chung, D Westpheling, J AF Cha, Minseok Chung, Daehwan Westpheling, Janet TI Deletion of a gene cluster for [Ni-Fe] hydrogenase maturation in the anaerobic hyperthermophilic bacterium Caldicellulosiruptor bescii identifies its role in hydrogen metabolism SO APPLIED MICROBIOLOGY AND BIOTECHNOLOGY LA English DT Article DE Anaerobe; Hyperthermophile; Caldicellulosiruptor bescii; Hydrogen; Bifurcating [Fe-Fe] hydrogenase; [Ni-Fe] hydrogenase; Hydrogenase maturation proteins ID PLANT BIOMASS; SACCHAROLYTICUS; YIELDS; ARCHAEON; ETHANOL AB The anaerobic, hyperthermophlic, cellulolytic bacterium Caldicellulosiruptor bescii grows optimally at similar to 80 A degrees C and effectively degrades plant biomass without conventional pretreatment. It utilizes a variety of carbohydrate carbon sources, including both C5 and C6 sugars, released from plant biomass and produces lactate, acetate, CO2, and H-2 as primary fermentation products. The C. bescii genome encodes two hydrogenases, a bifurcating [Fe-Fe] hydrogenase and a [Ni-Fe] hydrogenase. The [Ni-Fe] hydrogenase is the most widely distributed in nature and is predicted to catalyze hydrogen production and to pump protons across the cellular membrane creating proton motive force. Hydrogenases are the key enzymes in hydrogen metabolism and their crystal structure reveals complexity in the organization of their prosthetic groups suggesting extensive maturation of the primary protein. Here, we report the deletion of a cluster of genes, hypABFCDE, required for maturation of the [Ni-Fe] hydrogenase. These proteins are specific for the hydrogenases they modify and are required for hydrogenase activity. The deletion strain grew more slowly than the wild type or the parent strain and produced slightly less hydrogen overall, but more hydrogen per mole of cellobiose. Acetate yield per mole of cellobiose was increased similar to 67 % and ethanol yield per mole of cellobiose was decreased similar to 39 %. These data suggest that the primary role of the [Ni-Fe] hydrogenase is to generate a proton gradient in the membrane driving ATP synthesis and is not the primary enzyme for hydrogen catalysis. In its absence, ATP is generated from increased acetate production resulting in more hydrogen produced per mole of cellobiose. C1 [Cha, Minseok; Chung, Daehwan; Westpheling, Janet] Univ Georgia, Dept Genet, Athens, GA 30602 USA. [Cha, Minseok; Chung, Daehwan; Westpheling, Janet] Oak Ridge Natl Lab, BioEnergy Sci Ctr, Oak Ridge, TN 37831 USA. RP Westpheling, J (reprint author), Univ Georgia, Dept Genet, Athens, GA 30602 USA.; Westpheling, J (reprint author), Oak Ridge Natl Lab, BioEnergy Sci Ctr, Oak Ridge, TN 37831 USA. EM janwest@uga.edu FU Office of Biological and Environmental Research in the DOE Office of Science FX We thank Jennifer Copeland and Elise Snyder for the outstanding technical assistance, Brian Davison for providing the switchgrass used in this study, Sidney Kushner for the expert technical advice, William Whitman for the advice and use of his GC, Joe Groom and Jenna Young for the critical review of the manuscript. The BioEnergy Science Center is a U.S. Department of Energy Bioenergy Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science. NR 23 TC 1 Z9 1 U1 1 U2 7 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0175-7598 EI 1432-0614 J9 APPL MICROBIOL BIOT JI Appl. Microbiol. Biotechnol. PD FEB PY 2016 VL 100 IS 4 BP 1823 EP 1831 DI 10.1007/s00253-015-7025-z PG 9 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA DC6DC UT WOS:000369309000025 PM 26536872 ER PT J AU Burr, T Croft, S Krieger, T Martin, K Norman, C Walsh, S AF Burr, T. Croft, S. Krieger, T. Martin, K. Norman, C. Walsh, S. TI Uncertainty quantification for radiation measurements: Bottom-up error variance estimation using calibration information SO APPLIED RADIATION AND ISOTOPES LA English DT Article DE Classical calibration; Enrichment meter principle; Errors in predictors; Inverse regression; Uncertainty ID INVERSE REGRESSION METHODS; GUM AB One example of top-down uncertainty quantification (UQ) involves comparing two or more measurements on each of multiple items. One example of bottom-up UQ expresses a measurement result as a function of one or more input variables that have associated errors, such as a measured count rate, which individually (or collectively) can be evaluated for impact on the uncertainty in the resulting measured value. In practice, it is often found that top-down UQ exhibits larger error variances than bottom-up UQ because some error sources are present in the fielded assay methods used in top-down UQ that are not present (or not recognized) in the assay studies used in bottom-up UQ One would like better consistency between the two approaches in order to claim understanding of the measurement process. The purpose of this paper is to refine bottom-up uncertainty estimation by using calibration information so that if there are no unknown error sources, the refined bottom-up uncertainty estimate will agree with the top-down uncertainty estimate to within a specified tolerance. Then, in practice, if the top-down uncertainty estimate is larger than the refined bottom-up uncertainty estimate by more than the specified tolerance, there must be omitted sources of error beyond those predicted from calibration uncertainty. The paper develops a refined bottom-up uncertainty approach for four cases of simple linear calibration: (1) inverse regression with negligible error in predictors, (2) inverse regression with non negligible error in predictors, (3) classical regression followed by inversion with negligible error in predictors, and (4) classical regression followed by inversion with non-negligible errors in predictors. Our illustrations are of general interest, but are drawn from our experience with nuclear material assay by non-destructive assay. The main example we use is gamma spectroscopy that applies the enrichment meter principle. Previous papers that ignore error in predictors have shown a tendency for inverse regression to have lower error variance than classical regression followed by inversion. This paper supports that tendency both with and without error in predictors. Also, the paper shows that calibration parameter estimates using error in predictor methods perform worse than without using error in predictor methods in the case of inverse regression, but perform better than without using error in predictor methods in the case of classical regression followed by inversion. Both inverse and classical regression involve the ratio of dependent random variables; therefore, the assumed error distribution(s) will matter in parameter estimation and in uncertainty calculations. Mainly for that reason, calibration using a single predictor is distinct from simple regression, and it has not been thoroughly treated in the literature, nor in the ISO Guide to the Expression of Uncertainty in Measurements (GUM). Our refined approach is based on simulation, because we illustrate that analytical approximations are not adequate when there are, for example, 10 or fewer calibration measurements, which is common in calibration applications, each consisting of measured responses from known quantities. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Burr, T.; Krieger, T.; Martin, K.; Norman, C.] IAEA, Nucl Fuel Cycle Anal, Box 100, A-1400 Vienna, Austria. [Croft, S.] Oak Ridge Natl Lab, Nucl Secur & Isotope Technol Div, Oak Ridge, TN 37831 USA. [Walsh, S.] IAEA, Off Safeguards Analyt Serv, Box 100, A-1400 Vienna, Austria. RP Burr, T (reprint author), IAEA, Nucl Fuel Cycle Anal, Box 100, A-1400 Vienna, Austria. EM t.burr@iaea.org OI Walsh, Stephen/0000-0002-0505-648X NR 38 TC 0 Z9 0 U1 1 U2 3 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0969-8043 J9 APPL RADIAT ISOTOPES JI Appl. Radiat. Isot. PD FEB PY 2016 VL 108 BP 49 EP 57 DI 10.1016/j.apradiso.2015.11.014 PG 9 WC Chemistry, Inorganic & Nuclear; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Chemistry; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA DC4QN UT WOS:000369205500009 PM 26698221 ER PT J AU Aalseth, CE Humble, PH Mace, EK Orrell, JL Seifert, A Williams, RM AF Aalseth, C. E. Humble, P. H. Mace, E. K. Orrell, J. L. Seifert, A. Williams, R. M. TI Shielding concepts for low-background proportional counter arrays in surface laboratories SO APPLIED RADIATION AND ISOTOPES LA English DT Article DE Gas proportional counter system; Cosmic ray shielding; Low background radiation detection; Ar-37 ID AR-37 AB Development of ultra low background gas proportional counters has made the contribution from naturally occurring radioactive isotopes - primarily alpha and beta activity in the uranium and thorium decay chains - inconsequential to instrumental sensitivity levels when measurements are performed in above ground surface laboratories. Simple lead shielding is enough to mitigate against gamma rays as gas proportional counters are already relatively insensitive to naturally occurring gamma radiation. The dominant background in these surface laboratory measurements using ultra low background gas proportional counters is due to cosmic ray generated muons, neutrons, and protons. Studies of measurements with ultra low background gas proportional counters in surface and underground laboratories as well as radiation transport Monte Carlo simulations suggest a preferred conceptual design to achieve the highest possible sensitivity from an array of low background gas proportional counters when operated in a surface laboratory. The basis for a low background gas proportional counter array and the preferred shielding configuration is reported, especially in relation to measurements of radioactive gases having low energy decays such as Ar-37. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Aalseth, C. E.; Humble, P. H.; Mace, E. K.; Orrell, J. L.; Seifert, A.; Williams, R. M.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Orrell, JL (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM john.orrell@pnnl.gov RI Humble, Paul/K-1961-2012; Orrell, John/E-9313-2015 OI Humble, Paul/0000-0002-2632-6557; Orrell, John/0000-0001-7968-4051 FU Ultra-Sensitive Nuclear Measurements (USNM) Initiative; Laboratory Directed Research and Development Program at the Pacific Northwest National Laboratory; U.S. Department of Energy [PNNL-SA-106350] FX The research described in this paper was supported in part by the Ultra-Sensitive Nuclear Measurements (USNM) Initiative, a Laboratory Directed Research and Development Program at the Pacific Northwest National Laboratory, a multiprogram national laboratory operated by Battelle for the U.S. Department of Energy. Information Release PNNL-SA-106350. NR 15 TC 0 Z9 0 U1 1 U2 4 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0969-8043 J9 APPL RADIAT ISOTOPES JI Appl. Radiat. Isot. PD FEB PY 2016 VL 108 BP 92 EP 99 DI 10.1016/j.apradiso.2015.12.033 PG 8 WC Chemistry, Inorganic & Nuclear; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Chemistry; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA DC4QN UT WOS:000369205500014 PM 26720259 ER PT J AU Sutton, N Cho, S Armsworth, PR AF Sutton, N. J. Cho, S. Armsworth, P. R. TI A reliance on agricultural land values in conservation planning alters the spatial distribution of priorities and overestimates the acquisition costs of protected areas SO BIOLOGICAL CONSERVATION LA English DT Article DE Systematic conservation planning; Value of information; Land trust; Nature reserve; Biodiversity protection ID BIODIVERSITY-CONSERVATION; RESERVE SELECTION; SPECIES-RICHNESS; DISTRIBUTION MODELS; MAXIMIZING RETURN; SCALE; BENEFITS; HOTSPOTS; REGION; IMPLEMENTATION AB A common focus for conservation planning is to identify locations for siting potential protected areas, something that requires estimates for the costs of setting up these areas and benefits for biodiversity of doing so. When cost data are not available over relevant scales, conservation planners commonly rely on proxy data that they hope will estimate conservation costs. Here, we assessed how accurately agricultural land values, a commonly used proxy for cost data in conservation planning, estimate the actual acquisition costs of protected areas, focusing on a case study from the central and southern Appalachians. We compared plans based on cost estimates derived from different sources and that involved different levels of spatial aggregation to understand how a reliance on these estimates would impact conservation planning. We found that the average agricultural land value in a county did not accurately predict the acquisition costs of protected areas in that county. This lack of accuracy was a result of choosing agricultural land values as a proxy for acquisition costs, and not spatial averaging. A reliance on agricultural land values risks diverting limited funds for establishing protected areas away from parcels that offer the greatest return-on-investment. It would also lead a conservation organization to overestimate the budget needed to protect a given number of species. Our findings highlight the importance of incorporating data on how much protected areas actually cost in future conservation planning studies. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Sutton, N. J.; Armsworth, P. R.] Univ Tennessee, Dept Ecol & Evolutionary Biol, Knoxville, TN USA. [Sutton, N. J.] Oak Ridge Natl Lab, Div Environm Sci, POB 2008, Oak Ridge, TN 37831 USA. [Cho, S.] Univ Tennessee, Dept Agr & Resource Econ, Knoxville, TN USA. RP Sutton, N (reprint author), 569 Dabney Hall,1416 Circle Dr, Knoxville, TN 37996 USA. EM nsutton2@vols.utk.edu OI Armsworth, Paul/0000-0003-0918-0573 FU National Science Foundation [1211142] FX This work was funding by the National Science Foundation (award 1211142) through the project CNH-Ex: The Influence of the Size of Protected Areas on Their Ecological and Economic Effectiveness. This sponsor reviewed the study design, but had no role in the collection, analysis, or interpretation of the data, the writing in this manuscript, or the decision to submit this manuscript for publication. NR 70 TC 1 Z9 2 U1 3 U2 21 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0006-3207 EI 1873-2917 J9 BIOL CONSERV JI Biol. Conserv. PD FEB PY 2016 VL 194 BP 2 EP 10 DI 10.1016/j.biocon.2015.11.021 PG 9 WC Biodiversity Conservation; Ecology; Environmental Sciences SC Biodiversity & Conservation; Environmental Sciences & Ecology GA DC8FW UT WOS:000369456300001 ER PT J AU Chen, YX Raphael, B Sekhar, SC AF Chen, Yixing Raphael, Benny Sekhar, S. C. TI Experimental and simulated energy performance of a personalized ventilation system with individual airflow control in a hot and humid climate SO BUILDING AND ENVIRONMENT LA English DT Article DE Personalized ventilation; Energy performance; Individual control; Hot and humid climate ID THERMAL COMFORT; MOVEMENT; IMPACT; CONJUNCTION; OCCUPANTS; FANS AB This paper presents the energy performance of a personalized ventilation (PV) system with individual control of airflow rate in a hot and humid climate. A set of experiments with 46 tropically acclimatized subjects were conducted with ambient temperatures of 23 and 26 degrees C and PV air temperatures of 20, 23 and 26 degrees C. It has been found that as the ambient temperature is increased, subjects prefer higher PV airflow rates. While the higher ambient temperature reduces the cooling load, this is partly offset by the increased ventilation load. Therefore, it is not straightforward to quantify the energy savings accurately. In this work, an EnergyPlus simulation model was developed and validated by measurement data. The model was normalized to take into account the effects of the variations of outdoor conditions and the number of occupants. It was then applied to evaluate the energy performance of the PV system. The results show that when the PV air temperature is kept at 20 degrees C, the energy consumption at an ambient temperature of 23 degrees C is 10.8% higher than that at 26 degrees C. The best results are obtained when the PV air temperature is 20 degrees C and the ambient temperature is 26 degrees C. It is therefore concluded that increasing the ambient temperature has good potential to reduce energy consumption, whereas increasing the PV temperature does not bring appreciable benefits. Published by Elsevier Ltd. C1 [Chen, Yixing] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Bldg Technol & Urban Syst Div, Berkeley, CA 94720 USA. [Raphael, Benny] Indian Inst Technol, Dept Civil Engn, Madras 600036, Tamil Nadu, India. [Sekhar, S. C.] Natl Univ Singapore, Dept Bldg, 4 Architecture Dr,SDE2,03-10, Singapore 117566, Singapore. RP Chen, YX (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Bldg Technol & Urban Syst Div, Berkeley, CA 94720 USA. EM yixingchen@lbl.gov OI Chen, Yixing/0000-0002-2077-0614 FU Singapore Ministry of Education; Office of Research, (ORE), NUS [R-296-000-102-112]; National University of Singapore FX This research is funded by the Singapore Ministry of Education's AcRF Tier 1 funding and the Office of Research, (ORE), NUS, through the grant R-296-000-102-112. The first author wishes to thank the National University of Singapore for a postgraduate scholarship, which supported this study. Discussions with Dr. Li Ruixin and Dr. Jovan Pantelic were extremely helpful for the smooth conduct of the experiments. NR 39 TC 1 Z9 1 U1 1 U2 7 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-1323 EI 1873-684X J9 BUILD ENVIRON JI Build. Environ. PD FEB 1 PY 2016 VL 96 BP 283 EP 292 DI 10.1016/j.buildenv.2015.11.036 PG 10 WC Construction & Building Technology; Engineering, Environmental; Engineering, Civil SC Construction & Building Technology; Engineering GA DC4QX UT WOS:000369206500026 ER PT J AU Kotov, DV Yee, HC Wray, AA Hadjadj, A Sjogreen, B AF Kotov, D. V. Yee, H. C. Wray, A. A. Hadjadj, A. Sjoegreen, B. TI High Order Numerical Methods for the Dynamic SGS Model of Turbulent Flows with Shocks SO COMMUNICATIONS IN COMPUTATIONAL PHYSICS LA English DT Article DE High order numerical methods; turbulent flows with shocks; Germano SGS model; LES ID LARGE-EDDY SIMULATION; COMPRESSIBLE TURBULENCE; SUBCELL RESOLUTION; CAPTURING SCHEMES; DISSIPATION; LES AB Simulation of turbulent flows with shocks employing subgrid-scale (SGS) filtering may encounter a loss of accuracy in the vicinity of a shock. This paper addresses the accuracy improvement of LES of turbulent flows in two ways: (a) from the SGS model standpoint and (b) from the numerical method improvement standpoint. In an internal report, Kotov et al. ("High Order Numerical Methods for large eddy simulation (LES) of Turbulent Flows with Shocks", CTR Tech Brief, Oct. 2014, Stanford University), we performed a preliminary comparative study of different approaches to reduce the loss of accuracy within the framework of the dynamic Germano SGS model. The high order low dissipative method of Yee & Sjogreen (2009) using local flow sensors to control the amount of numerical dissipation where needed is used for the LES simulation. The considered improved dynamics model approaches include applying the one-sided SGS test filter of Sagaut & Germano (2005) and/or disabling the SGS terms at the shock location. For Mach 1.5 and 3 canonical shock-turbulence interaction problems, both of these approaches show a similar accuracy improvement to that of the full use of the SGS terms. The present study focuses on a five levels of grid refinement study to obtain the reference direct numerical simulation (DNS) solution for additional LES SGS comparison and approaches. One of the numerical accuracy improvements included here applies Harten's subcell resolution procedure to locate and sharpen the shock, and uses a one-sided test filter at the grid points adjacent to the exact shock location. C1 [Kotov, D. V.] Environm Res Inst, Bay Area, 625 2nd St,Ste 209, Petaluma, CA USA. [Yee, H. C.; Wray, A. A.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Hadjadj, A.] CORIA, UMR 6614, F-76800 St Etienne, France. [Hadjadj, A.] INSA De Rouen, F-76800 St Etienne, France. [Sjoegreen, B.] Lawrence Livermore Natl Lab, Livermore, CA USA. RP Yee, HC (reprint author), NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. EM dmitry.v.kotov@nasa.gov; Helen.M.Yee@nasa.gov; alan.a.wray@nasa.gov; hadjadj@coria.fr; sjogreen2@llnl.gov FU DOE/SciDAC SAP [DE-AI02-06ER25796]; NASA Aerosciences/RCA program; U.S. Department of Energy at Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX The support of the DOE/SciDAC SAP grant DE-AI02-06ER25796 is acknowledged. The authors are grateful to J. Larsson for providing the turbulent inflow and selected input data. The work has been performed with the first author as a postdoctoral fellow at the Center for Turbulence Research, Stanford University. Financial support from the NASA Aerosciences/RCA program for the second author is gratefully acknowledged. Work by the fifth author was performed under the auspices of the U.S. Department of Energy at Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 44 TC 0 Z9 0 U1 3 U2 4 PU GLOBAL SCIENCE PRESS PI WANCHAI PA ROOM 3208, CENTRAL PLAZA, 18 HARBOUR RD, WANCHAI, HONG KONG 00000, PEOPLES R CHINA SN 1815-2406 EI 1991-7120 J9 COMMUN COMPUT PHYS JI Commun. Comput. Phys. PD FEB PY 2016 VL 19 IS 2 BP 273 EP 300 DI 10.4208/cicp.211014.040915a PG 28 WC Physics, Mathematical SC Physics GA DC5HS UT WOS:000369252700001 ER PT J AU Wang, R Fu, PC Zhang, JM AF Wang, Rui Fu, Pengcheng Zhang, Jian-Min TI Finite element model for piles in liquefiable ground SO COMPUTERS AND GEOTECHNICS LA English DT Article DE Seismic pile response; Liquefaction; Constitutive model; FEM; Centrifuge test ID PLASTICITY MODEL; LATERAL SPREADS; SEISMIC ANALYSIS; SAND; SOIL; LIQUEFACTION; EARTHQUAKE; TESTS; DEFORMATION; BEHAVIOR AB This paper develops a three dimensional finite element modelling method for piles in liquefiable ground and applies it to the analysis of seismic pile responses. A unified plasticity model for large post liquefaction shear deformation of sand provides the basis for the effective and efficient modelling of liquefiable ground. Special attention is dedicated towards the modelling of piles and soil-pile interface to accurately reflect the behaviour of piles. A staged modelling procedure is adopted to appropriately generate the initial conditions for the soil and piles and achieve hydrostatic pore pressure prior to seismic loading. Three centrifuge shaking table tests on single piles, both with and without pile cap and superstructure, in level and inclined liquefiable ground are conducted and simulated in validation and application of the proposed method. Further studies to investigate the effects of pile cap, lateral spreading, and non-liquefiable surface layer are undertaken numerically using the validated method. The results show these aforementioned factors to be influential in the dynamic and residual response of piles in liquefiable ground. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Wang, Rui; Zhang, Jian-Min] Tsinghua Univ, Dept Hydraul Engn, State Key Lab Hydrosci & Engn, Sch Civil Engn, Beijing 100084, Peoples R China. [Fu, Pengcheng] Lawrence Livermore Natl Lab, Atmospher Earth & Energy Div, Livermore, CA 94550 USA. RP Zhang, JM (reprint author), Tsinghua Univ, Dept Hydraul Engn, State Key Lab Hydrosci & Engn, Sch Civil Engn, Beijing 100084, Peoples R China. EM zhangjm@mail.tsinghua.edu.cn OI Wang, Rui/0000-0002-1607-9783 FU National Natural Science Foundation of China [51079074, 51038007]; China Postdoctoral Science Foundation [2015M570106]; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX The authors would like to thank the National Natural Science Foundation of China (No. 51079074 and No. 51038007) and the China Postdoctoral Science Foundation (2015M570106) for funding the work presented in this paper. Fu's work was partly performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 71 TC 1 Z9 1 U1 6 U2 17 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0266-352X EI 1873-7633 J9 COMPUT GEOTECH JI Comput. Geotech. PD FEB PY 2016 VL 72 BP 1 EP 14 DI 10.1016/j.compgeo.2015.10.009 PG 14 WC Computer Science, Interdisciplinary Applications; Engineering, Geological; Geosciences, Multidisciplinary SC Computer Science; Engineering; Geology GA DC4QW UT WOS:000369206400001 ER PT J AU Nakano, A Bennett, J Nakano, J AF Nakano, Anna Bennett, James Nakano, Jinichiro TI Failure mechanisms in Pt-Rh-x thermocouple sensors caused by gaseous phosphorous species SO CORROSION SCIENCE LA English DT Article DE Platinum; SEM; XRD; High temperature corrosion; Intergranular corrosion; Thermodynamic diagrams ID SULFUR; REGENERATION; PLATINUM AB Interactions between Pt-Rh sensor alloys and P-containing gas in an environment simulating a carbon feedstock gasification process were investigated. A series of exposure tests revealed materials failure through two distinct P diffusion mechanisms, depending on Rh concentrations; intergranular diffusion in low Rh alloys and intragranular diffusion in high Rh alloys. Upon exposure, P rapidly migrated into the alloys, lowering the melting temperature of the alloys and/or forming intermediate phases with Rh at grain boundaries or within grains. The failure mechanisms of Pt-Rh alloys by P-bearing gas in the conditions studied are proposed. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Nakano, Anna; Bennett, James; Nakano, Jinichiro] US DOE, Natl Energy Technol Lab, 1450 Queen Ave, Albany, OR 97321 USA. [Nakano, Jinichiro] AECOM, POB 1959, Albany, OR 97321 USA. RP Nakano, A (reprint author), US DOE, Natl Energy Technol Lab, 1450 Queen Ave, Albany, OR 97321 USA. EM anna.nakano@netl.doe.gov FU National Energy Technology Laboratory Research Participation Program; U.S. Department of Energy FX Authors acknowledge Paul Danielson (NETL) for the metallographic work, John Sears (NETL) for valuable advice, and Richard Chinn (NETL) for conducting the XRD analyses. This research was supported in part by an appointment to the National Energy Technology Laboratory Research Participation Program, sponsored by the U.S. Department of Energy and administered by the Oak Ridge Institute for Science and Education. NR 22 TC 1 Z9 1 U1 4 U2 7 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0010-938X EI 1879-0496 J9 CORROS SCI JI Corrosion Sci. PD FEB PY 2016 VL 103 BP 30 EP 41 DI 10.1016/j.corsci.2015.11.001 PG 12 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA DC4OV UT WOS:000369201100004 ER PT J AU Yang, XM Liu, M Gao, YT Zhang, DS Feng, SL Liu, HJ Yu, GJ Wu, GZ Wang, MH Zhou, XT Xia, HH Huai, P Sham, TK Wang, JQ Guo, JH AF Yang, Xinmei Liu, Min Gao, Yantao Zhang, Dongsheng Feng, Shanglei Liu, Huajian Yu, Guojun Wu, Guozhong Wang, Mouhua Zhou, Xingtai Xia, Huihao Huai, Ping Sham, T. K. Wang, Jianqiang Guo, Jinghua TI Effect of oxygen on the corrosion of SiC in LiF-NaF-KF molten salt SO CORROSION SCIENCE LA English DT Article DE Ceramic; Molten salts; XANES; XPS; High temperature corrosion; Reactor conditions ID X-RAY-DIFFRACTION; SILICON-CARBIDE; C FILMS; COMPOSITES; FIBERS; XPS; SPECTROSCOPY; INTERFACE; RADIATION; OXIDE AB The corrosion of SiC in molten FLiNaK (46.5 mol% LiF, 11.5 mol% NaF and 42 mol% KF) salt was studied. Results reveal that oxygen impurities from SiC and salt can affect the corrosion. SiC with a large amount of oxygen impurity is corroded, whereas high purity SiC is only slightly corroded. SiC can react with oxygen impurity in salt to form oxide and then corroded by the cleavage of Si-O-Si bond. Corrosion decreases the Si content in SiC, resulting in formation of a carbon-rich surface. A portion of excess C reacts with F to form C F bonds. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Yang, Xinmei; Liu, Min; Gao, Yantao; Zhang, Dongsheng; Feng, Shanglei; Liu, Huajian; Yu, Guojun; Wu, Guozhong; Wang, Mouhua; Zhou, Xingtai; Xia, Huihao; Huai, Ping; Wang, Jianqiang] Chinese Acad Sci, Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China. [Sham, T. K.] Univ Western Ontario, Dept Chem, London, ON N6A 5B7, Canada. [Guo, Jinghua] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source Div, One Cyclotron Rd MS 6R2100, Berkeley, CA 94720 USA. RP Zhang, DS; Xia, HH (reprint author), Chinese Acad Sci, Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China. EM zhangdongsheng@sinap.ac.cn; xiahuihao@sinap.ac.cn FU Strategic Priority Research Program of the Chinese Academy of Science [XDA 02004220]; Program of International S & T Co-operation of China [2014DFG60230] FX This work is supported by the Strategic Priority Research Program of the Chinese Academy of Science with Grant (XDA 02004220) and the Program of International S & T Co-operation of China (No. 2014DFG60230). NR 43 TC 2 Z9 2 U1 16 U2 30 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0010-938X EI 1879-0496 J9 CORROS SCI JI Corrosion Sci. PD FEB PY 2016 VL 103 BP 165 EP 172 DI 10.1016/j.corsci.2015.11.014 PG 8 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA DC4OV UT WOS:000369201100017 ER PT J AU Du Frane, WL Cervantes, O Ellsworth, GF Kuntz, JD AF Du Frane, W. L. Cervantes, O. Ellsworth, G. F. Kuntz, J. D. TI Consolidation of cubic and hexagonal boron nitride composites SO DIAMOND AND RELATED MATERIALS LA English DT Article DE Boron-nitride; Composite; Grinding; Consolidation; Tailored properties; Piston cylinder press ID SAMPLE CONTAMINATION; S SYSTEM; PRESSURE; BN; TEMPERATURES AB Consolidating cubic boron nitride (cBN) typically requires either a matrix of metal bearing materials that are undesirable for certain applications, or very high pressures within the cBN phase stability field that are prohibitive to manufacturing size and cost. We present new methodology for consolidating high stiffness cBN composites within a hexagonal boron nitride (hBN) matrix (15-25 vol%) with the aid of a binder phase (0-6 vol%) at moderate pressures (0.5-1.0 GPa) and temperatures (900-1300 degrees C). The composites are demonstrated to be highly tailorable with a range of compositions and resulting physical/mechanical properties. Ultrasonic measurements indicate that in some cases these composites have elastic mechanical properties that exceed those of the highest strength steel alloys: Two methods were identified to prevent phase transformation of the metastable cBN phase into hBN during consolidation: 1. removal of hydrocarbons, and 2. increased cBN particle size. Lithium tetraborate worked better as a binder than boron oxide, aiding consolidation without enhancing cBN to hBN phase transformation kinetics. These powder mixtures consolidated within error of their full theoretical mass densities at 1 GPa, and had only slightly lower densities at 0.5 GPa. This shows potential for consolidation of these composites into larger parts, in a variety of shapes, at even lower pressures using more conventional manufacturing methods, such as hot-pressing. (C) 2015 Elsevier B.V. All rights reserved. C1 [Du Frane, W. L.; Cervantes, O.; Ellsworth, G. F.; Kuntz, J. D.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Du Frane, WL (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM dufrane2@llnl.gov FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX We thank Professor Emeritus Zuhair Munir (U.C. Davis) for discussions and comments that help to greatly improve this manuscript. We thank Harris Mason and Art 'Colorado Cowboy' Neslon for their helpful comments and discussion; Rick Ryerson for his comments and assistance with operating the piston cylinder press; Sarah Roberts for assistance with XRD; Cheng Saw for performing XRD analysis; Ed Sedillo for performing SEM imaging; Brian Fix and Karl Fisher for performing ultrasonic measurements and calculations; Ernie Young, Francisco Yepiz, and Christian Oda for sample machining (LLNL). This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 32 TC 0 Z9 0 U1 10 U2 18 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-9635 EI 1879-0062 J9 DIAM RELAT MATER JI Diam. Relat. Mat. PD FEB PY 2016 VL 62 BP 30 EP 41 DI 10.1016/j.diamond.2015.12.003 PG 12 WC Materials Science, Multidisciplinary SC Materials Science GA DC8EK UT WOS:000369452500005 ER PT J AU Shumilova, TG Isaenko, SI Tkachev, SN AF Shumilova, T. G. Isaenko, S. I. Tkachev, S. N. TI Diamond formation through metastable liquid carbon SO DIAMOND AND RELATED MATERIALS LA English DT Article ID NANOCRYSTALLINE DIAMOND; RAMAN-SPECTROSCOPY; HIGH-PRESSURE; GRAPHITE; PHASE; TEMPERATURE; DIAGRAM; SPECTRUM; GROWTH; STATES AB It is known that carbon melts at temperatures around 4000 K or higher, and, therefore, this will be for the first time, when liquid carbon state formation preserved within diamond is documented in a carbon-carbonate system at the PT-conditions around 8.0 GPa and 2000 K, that is essentially far from the carbon diagram liquid field, so the newly reported liquid carbon was formed by neither fusion nor condensation. Based on a preponderance of such a strong circumstantial evidence, as morphological features of globular glass-like carbon inclusions within the globular-textured host diamond crystals resulting from liquid segregation process under synthesis conditions, it is suggested, that the produced carbon state has general properties of liquid and is formed through agglomeration alongside with diffusion process of carbon within carbonate melt solvent, and, thus, can potentially open a novel route for liquid carbon production and manufacturing of advanced high-refractory alloys and high-temperature compounds at lower than commonly accepted standard temperatures. A new model of diamond formation via metastable liquid carbon is presented. (C) 2015 Elsevier B.V. All rights reserved. C1 [Shumilova, T. G.; Isaenko, S. I.] Inst Geol Komi SC UB RAS, Pervomayskaya St 54, Syktyvkar, Russia. [Tkachev, S. N.] Argonne Natl Lab, Adv Photon Source, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Shumilova, TG (reprint author), Inst Geol Komi SC UB RAS, Pervomayskaya St 54, Syktyvkar, Russia. EM shumilova@geo.komisc.ru; tkachev@cars.uchicago.edu NR 40 TC 0 Z9 0 U1 8 U2 15 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-9635 EI 1879-0062 J9 DIAM RELAT MATER JI Diam. Relat. Mat. PD FEB PY 2016 VL 62 BP 42 EP 48 DI 10.1016/j.diamond.2015.12.015 PG 7 WC Materials Science, Multidisciplinary SC Materials Science GA DC8EK UT WOS:000369452500006 ER PT J AU Kholod, N Evans, M AF Kholod, Nazar Evans, Meredydd TI Reducing black carbon emissions from diesel vehicles in Russia: An assessment and policy recommendations SO ENVIRONMENTAL SCIENCE & POLICY LA English DT Article DE Black carbon; Diesel; Transport; Russia AB The paper assesses options and challenges of reducing black carbon emissions from diesel vehicles in Russia. Black carbon is a product of incomplete diesel combustion and is a component of fine particulate matter. Particulate matter emissions have adverse health impacts, causing cardiopulmonary disease and lung cancer; black carbon is also a large climate forcer. Black carbon emissions from Russian diesel sources affect not only the Russian territory but also contribute to overall pollution. This paper analyzes current ecological standards for vehicles and fuel, evaluates policies for emission reductions from existing diesel vehicle fleet, and assesses Russia's attempts to encourage the use of natural gas as a vehicle fuel. Based on best practices of black carbon emission reductions, this paper provides a number of policy recommendations for Russia. (C) 2015 The Authors. Published by Elsevier Ltd. C1 [Kholod, Nazar; Evans, Meredydd] Pacific NW Natl Lab, Joint Global Change Res Inst, 5825 Univ Res Court,Suite 3500, College Pk, MD 20742 USA. RP Kholod, N (reprint author), Pacific NW Natl Lab, Joint Global Change Res Inst, 5825 Univ Res Court,Suite 3500, College Pk, MD 20742 USA. EM Nazar.kholod@pnnl.gov FU U.S. Environmental Protection Agency, Office of International and Tribal Affairs [X4-83527901]; U.S. Department of State; U.S. Department of Energy [DE-AC05-76RL01831] FX The authors are grateful for research support provided by the U.S. Environmental Protection Agency, Office of International and Tribal Affairs (grant no. X4-83527901) and the U.S. Department of State. Battelle Memorial Institute operates the Pacific Northwest National Laboratory for the U.S. Department of Energy under contract DE-AC05-76RL01831. The views and opinions expressed in this paper are those of the authors alone. NR 34 TC 1 Z9 1 U1 3 U2 5 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1462-9011 EI 1873-6416 J9 ENVIRON SCI POLICY JI Environ. Sci. Policy PD FEB PY 2016 VL 56 BP 1 EP 8 DI 10.1016/j.envsci.2015.10.017 PG 8 WC Environmental Sciences SC Environmental Sciences & Ecology GA DC4MT UT WOS:000369195700001 ER PT J AU Spielmann, M Kakar, N Tayebi, N Leettola, C Nurnberg, G Sowada, N Lupianez, DG Harabula, I Flottmann, R Horn, D Chan, WL Wittler, L Yilmaz, R Altmueller, J Thiele, H van Bokhoven, H Schwartz, CE Nurnberg, P Bowie, JU Ahmad, J Kubisch, C Mundlos, S Borck, G AF Spielmann, Malte Kakar, Naseebullah Tayebi, Naeimeh Leettola, Catherine Nuernberg, Gudrun Sowada, Nadine Lupianez, Dario G. Harabula, Izabela Floettmann, Ricarda Horn, Denise Chan, Wing Lee Wittler, Lars Yilmaz, Ruestem Altmueller, Janine Thiele, Holger van Bokhoven, Hans Schwartz, Charles E. Nuernberg, Peter Bowie, James U. Ahmad, Jamil Kubisch, Christian Mundlos, Stefan Borck, Guntram TI Exome sequencing and CRISPR/Cas genome editing identify mutations of ZAK as a cause of limb defects in humans and mice SO GENOME RESEARCH LA English DT Article ID HAND/SPLIT-FOOT MALFORMATION; STERILE-ALPHA MOTIF; MOLECULAR CHARACTERIZATION; SAM DOMAIN; ARRAY-CGH; PROTEIN; CELLS; P63; KINASE; GENES AB The CRISPR/Cas technology enables targeted genome editing and the rapid generation of transgenic animal models for the study of human genetic disorders. Here we describe an autosomal recessive human disease in two unrelated families characterized by a split-foot defect, nail abnormalities of the hands, and hearing loss, due to mutations disrupting the SAM domain of the protein kinase ZAK. ZAK is a member of the MAPKKK family with no known role in limb development. We show that Zak is expressed in the developing limbs and that a CRISPR/Cas-mediated knockout of the two Zak isoforms is embryonically lethal in mice. In contrast, a deletion of the SAM domain induces a complex hindlimb defect associated with down-regulation of Trp63, a known split-hand/split-foot malformation disease gene. Our results identify ZAK as a key player in mammalian limb patterning and demonstrate the rapid utility of CRISPR/Cas genome editing to assign causality to human mutations in the mouse in <10 wk. C1 [Spielmann, Malte; Tayebi, Naeimeh; Lupianez, Dario G.; Harabula, Izabela; Wittler, Lars; Mundlos, Stefan] Max Planck Inst Mol Genet, Ihnestr 73, D-14195 Berlin, Germany. [Spielmann, Malte; Lupianez, Dario G.; Floettmann, Ricarda; Horn, Denise; Chan, Wing Lee; Mundlos, Stefan] Charite, Inst Med Genet & Human Genet, D-13353 Berlin, Germany. [Spielmann, Malte; Mundlos, Stefan] Berlin Brandenburg Sch Regenerat Therapies BSRT, D-13353 Berlin, Germany. [Kakar, Naseebullah; Sowada, Nadine; Yilmaz, Ruestem; Borck, Guntram] Univ Ulm, Inst Human Genet, D-89081 Ulm, Germany. [Kakar, Naseebullah; Sowada, Nadine; Yilmaz, Ruestem] Univ Ulm, Int Grad Sch Mol Med Ulm, D-89081 Ulm, Germany. [Ahmad, Jamil] BUITEMS, Dept Biotechnol & Informat, Quetta 57789, Pakistan. [Leettola, Catherine; Bowie, James U.] Univ Calif Los Angeles, UCLA DOE Inst Genom & Prote, Dept Chem & Biochem, Los Angeles, CA 90095 USA. [Nuernberg, Gudrun; Altmueller, Janine; Thiele, Holger; Nuernberg, Peter] Univ Cologne, Cologne Ctr Genom, D-50931 Cologne, Germany. [Lupianez, Dario G.] Berlin Brandenburg Ctr Regenerat Therapies BCRT, D-13353 Berlin, Germany. [van Bokhoven, Hans] Radboud Univ Nijmegen, Med Ctr, Dept Human Genet, NL-6525 GA Nijmegen, Netherlands. [Schwartz, Charles E.] Greenwood Genet Ctr, JC Self Res Inst, Greenwood, SC 29646 USA. [Nuernberg, Peter] Univ Cologne, Cologne Excellence Cluster Cellular Stress Respon, D-50931 Cologne, Germany. [Nuernberg, Peter] Univ Cologne, Ctr Mol Med Cologne, D-50931 Cologne, Germany. [Kubisch, Christian] Univ Med Ctr Hamburg Eppendorf, Inst Human Genet, D-20246 Hamburg, Germany. RP Mundlos, S (reprint author), Max Planck Inst Mol Genet, Ihnestr 73, D-14195 Berlin, Germany.; Mundlos, S (reprint author), Charite, Inst Med Genet & Human Genet, D-13353 Berlin, Germany.; Mundlos, S (reprint author), Berlin Brandenburg Sch Regenerat Therapies BSRT, D-13353 Berlin, Germany.; Borck, G (reprint author), Univ Ulm, Inst Human Genet, D-89081 Ulm, Germany. EM stefan.mundlos@charite.de; guntram.borck@uni-ulm.de RI Kubisch, Christian/F-1893-2011 OI Kubisch, Christian/0000-0003-4220-0978 FU Berlin-Brandenburg School for Regenerative Therapies (BSRT), Berlin, Germany FX We thank the families for their collaboration and contribution to this project. M.S. was supported by a fellowship of the Berlin-Brandenburg School for Regenerative Therapies (BSRT), Berlin, Germany. NR 44 TC 7 Z9 7 U1 0 U2 8 PU COLD SPRING HARBOR LAB PRESS, PUBLICATIONS DEPT PI COLD SPRING HARBOR PA 1 BUNGTOWN RD, COLD SPRING HARBOR, NY 11724 USA SN 1088-9051 EI 1549-5469 J9 GENOME RES JI Genome Res. PD FEB PY 2016 VL 26 IS 2 BP 183 EP 191 DI 10.1101/gr.199430.115 PG 9 WC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Genetics & Heredity SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Genetics & Heredity GA DC6PK UT WOS:000369341900004 PM 26755636 ER PT J AU Deng, Y He, ZL Xiong, JB Yu, H Xu, MY Hobbie, SE Reich, PB Schadt, CW Kent, A Pendall, E Wallenstein, M Zhou, JZ AF Deng, Ye He, Zhili Xiong, Jinbo Yu, Hao Xu, Meiying Hobbie, Sarah E. Reich, Peter B. Schadt, Christopher W. Kent, Angela Pendall, Elise Wallenstein, Matthew Zhou, Jizhong TI Elevated carbon dioxide accelerates the spatial turnover of soil microbial communities SO GLOBAL CHANGE BIOLOGY LA English DT Article DE elevated carbon dioxide; free air CO2 enrichment; microbial community; spatial turnover rate; -diversity ID DISTANCE-DECAY; BACTERIAL COMMUNITIES; CO2; DIVERSITY; NITROGEN; BIOGEOGRAPHY; ECOSYSTEM; PATTERNS; FOREST; SHIFTS AB Although elevated CO2 (eCO(2)) significantly affects the -diversity, composition, function, interaction and dynamics of soil microbial communities at the local scale, little is known about eCO(2) impacts on the geographic distribution of micro-organisms regionally or globally. Here, we examined the -diversity of 110 soil microbial communities across six free air CO2 enrichment (FACE) experimental sites using a high-throughput functional gene array. The -diversity of soil microbial communities was significantly (P<0.05) correlated with geographic distance under both CO2 conditions, but declined significantly (P<0.05) faster at eCO(2) with a slope of -0.0250 than at ambient CO2 (aCO(2)) with a slope of -0.0231 although it varied within each individual site, indicating that the spatial turnover rate of soil microbial communities was accelerated under eCO(2) at a larger geographic scale (e.g. regionally). Both distance and soil properties significantly (P<0.05) contributed to the observed microbial -diversity. This study provides new hypotheses for further understanding their assembly mechanisms that may be especially important as global CO2 continues to increase. C1 [Deng, Ye; Yu, Hao] Chinese Acad Sci, Res Ctr Ecoenvironm Sci, Key Lab Environm Biotechnol, Beijing 100085, Peoples R China. [Deng, Ye; He, Zhili; Xiong, Jinbo; Xu, Meiying; Zhou, Jizhong] Univ Oklahoma, Inst Environm Genom, Dept Microbiol & Plant Biol, Norman, OK 73019 USA. [Xiong, Jinbo; Hobbie, Sarah E.] Ningbo Univ, Sch Marine Sci, Ningbo 315211, Zhejiang, Peoples R China. [Yu, Hao] Harbin Inst Technol, Harbin 150006, Peoples R China. [Yu, Hao] Liaoning Tech Univ, Sch Environm Sci & Engn, Fuxing, Peoples R China. [Xu, Meiying] Guangdong Inst Microbiol, State Key Lab Appl Microbiol Southern China, Guangzhou, Guangdong, Peoples R China. [Hobbie, Sarah E.; Reich, Peter B.] Univ Minnesota, St Paul, MN 55108 USA. [Reich, Peter B.] Univ Western Sydney, Hawkesbury Inst Environm, Richmond, NSW 2751, Australia. [Schadt, Christopher W.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. [Kent, Angela] Univ Illinois, Dept Nat Resources & Environm Sci, Urbana, IL USA. [Pendall, Elise] Univ Wyoming, Laramie, WY 82071 USA. [Wallenstein, Matthew] Colorado State Univ, Nat Resource Ecol Lab, Ft Collins, CO 80523 USA. RP He, ZL; Zhou, JZ (reprint author), Univ Oklahoma, Inst Environm Genom, Dept Microbiol & Plant Biol, Norman, OK 73019 USA. EM zhili.he@ou.edu; jzhou@ou.edu RI Schadt, Christopher/B-7143-2008; OI Schadt, Christopher/0000-0001-8759-2448; Pendall, Elise/0000-0002-1651-8969; ?, ?/0000-0002-7584-0632; Hobbie, Sarah/0000-0001-5159-031X FU Strategic Priority Research Program of the Chinese Academy of Sciences [XDB15010302]; '100 Talents' program of Chinese Academy of Sciences; US Department of Agriculture through the NSF-USDA Microbial Observatories Program [2007-35319-18305]; US Department of Energy, Biological Systems Research on the Role of Microbial Communities in Carbon Cycling Program [DE-SC0004601]; National Science Foundation [DEB-0716587, DEB-0620652, DEB-0322057, DEB-0080382, DEB-0218039, DEB-0219104, DEB-0217631, DEB 1021559]; DOE Program for Ecosystem Research; Minnesota Environment and Natural Resources Trust Fund; USDA Agricultural Research Service and CSREES [2008-35107-18655]; US Department of Energy's Office of Science (BER) FX This work was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant XDB15010302) and '100 Talents' program of Chinese Academy of Sciences to Ye Deng. The experiments were conducted by the US Department of Agriculture (Project 2007-35319-18305) through the NSF-USDA Microbial Observatories Program, by the US Department of Energy, Biological Systems Research on the Role of Microbial Communities in Carbon Cycling Program (DE-SC0004601) as well as by the National Science Foundation under Grant Numbers DEB-0716587, DEB-0620652, DEB-0322057, DEB-0080382, DEB-0218039, DEB-0219104, DEB-0217631, DEB-0716587 BioComplexity, LTER and LTREB projects, the DOE Program for Ecosystem Research, and the Minnesota Environment and Natural Resources Trust Fund. PHACE support was provided by the USDA Agricultural Research Service and CSREES (2008-35107-18655), the US Department of Energy's Office of Science (BER), and by the National Science Foundation (DEB# 1021559). The authors declared no conflict of interest in this paper. NR 56 TC 1 Z9 1 U1 15 U2 58 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1354-1013 EI 1365-2486 J9 GLOBAL CHANGE BIOL JI Glob. Change Biol. PD FEB PY 2016 VL 22 IS 2 BP 957 EP 964 DI 10.1111/gcb.13098 PG 8 WC Biodiversity Conservation; Ecology; Environmental Sciences SC Biodiversity & Conservation; Environmental Sciences & Ecology GA DC3RC UT WOS:000369135400037 PM 26414247 ER PT J AU Pan, YB Khan, N Lu, M Jeon, J AF Pan, Yanbiao Khan, Nabeela Lu, Ming Jeon, Jaeseok TI Organic Microelectromechanical Relays for Ultralow-Power Flexible Transparent Large-Area Electronics SO IEEE TRANSACTIONS ON ELECTRON DEVICES LA English DT Article DE Microelectromechanical (MEM) relays; organic FET (OFET); organic thin-film transistor; polymer; relay ID THIN-FILM TRANSISTORS; FIELD-EFFECT TRANSISTORS; ANTI-STICTION COATINGS; COMPLEMENTARY CIRCUITS; MECHANICAL-PROPERTIES; SURFACE; TEMPERATURE; STABILITY; POLYMER; MEMS AB This paper presents the development of electrostatically actuated polymer-based microelectromechanical relays as a potential replacement for organic field-effect thin-film transistors in order to enable near-zero-power flexible transparent large-area electronics. A low-temperature five-mask surface-micromachining process is developed to fabricate two types of prototype relays: purely polymeric and partially polymeric (inorganic-organic hybrid) relays. Experimental results demonstrate the operation of the prototypes as a switch, showing immeasurably low OFF-state leakage current (similar to 10 fA), abrupt switching behavior and high ON/OFF-current ratio (>10(5) over an effective input voltage swing of <= 100 mV), small hysteresis voltages (<= 100 mV), and low contact adhesive forces (<10 nN/mu m(2)). The influence of temperature on switching characteristics, including hysteresis voltages, is investigated as well. C1 [Pan, Yanbiao; Khan, Nabeela; Jeon, Jaeseok] Rutgers State Univ, Dept Elect & Comp Engn, Piscataway, NJ 08854 USA. [Lu, Ming] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Jeon, Jaeseok] Rutgers State Univ, Inst Adv Mat Devices & Nanotechnol, Piscataway, NJ 08854 USA. RP Pan, YB; Khan, N; Jeon, J (reprint author), Rutgers State Univ, Dept Elect & Comp Engn, Piscataway, NJ 08854 USA.; Lu, M (reprint author), Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA.; Jeon, J (reprint author), Rutgers State Univ, Inst Adv Mat Devices & Nanotechnol, Piscataway, NJ 08854 USA. EM yanbiao.pan@rutgers.edu; nzkhan2208@gmail.com; mlu@bnl.gov; jjeon@ece.rutgers.edu FU U.S. Department of Energy, Office of Basic Energy Sciences through Brookhaven National Laboratory, Center for Functional Nanomaterials [DE-SC0012704] FX This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences through the Brookhaven National Laboratory, Center for Functional Nanomaterials under Contract DE-SC0012704. The review of this paper was arranged by Editor F. Ayazi. NR 55 TC 1 Z9 1 U1 7 U2 30 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9383 EI 1557-9646 J9 IEEE T ELECTRON DEV JI IEEE Trans. Electron Devices PD FEB PY 2016 VL 63 IS 2 BP 832 EP 840 DI 10.1109/TED.2015.2507520 PG 9 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA DC6BM UT WOS:000369304700046 ER PT J AU Maizel, D Blum, JS Ferrero, MA Utturkar, SM Brown, SD Rosen, BP Oremland, RS AF Maizel, Daniela Blum, Jodi Switzer Ferrero, Marcela A. Utturkar, Sagar M. Brown, Steven D. Rosen, Barry P. Oremland, Ronald S. TI Characterization of the extremely arsenic-resistant Brevibacterium linens strain AE038-8 isolated from contaminated groundwater in Tucuman, Argentina SO INTERNATIONAL BIODETERIORATION & BIODEGRADATION LA English DT Article DE Arsenic-resistance; Brevibacterium linens; Groundwater ID PROTEIN-TYROSINE PHOSPHATASES; GROWTH-PROMOTING TRAITS; ARS OPERON HOMOLOG; ESCHERICHIA-COLI; AGRICULTURAL SOIL; REDUCING BACTERIA; BACILLUS-SUBTILIS; DETOXIFICATION; REDUCTION; RHIZOSPHERE AB Brevibacterium linens AE038-8, isolated from As-contaminated groundwater in Tucuman (Argentina), is highly resistant to arsenic oxyanions, being able to tolerate up to 1 M As(V) and 75 mM As(III) in a complex medium. Strain AE038-8 was also able to reduce As(V) to As(III) when grown in complex medium but paradoxically it could not do this in a defined minimal medium with sodium acetate and ammonium sulfate as carbon and nitrogen sources, respectively. No oxidation of As(III) to As(V) was observed under any conditions. Three copies of the ars operon comprising arsenic resistance genes were found on B. linens AE038-8 genome. In addition to the well known arsC, ACR3 and arsR, two copies of the arsO gene of unknown function were detected. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Maizel, Daniela; Ferrero, Marcela A.] Univ Nacl Tucuman, CONICET, PROIMI, RA-4000 San Miguel De Tucuman, Tucuman, Argentina. [Utturkar, Sagar M.; Brown, Steven D.] Univ Tennessee, Grad Sch Genome Sci & Technol, Knoxville, TN USA. [Brown, Steven D.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN USA. [Rosen, Barry P.] Florida Int Univ, Dept Cellular Biol & Pharmacol, Herbert Wertheim Coll Med, Miami, FL 33199 USA. [Blum, Jodi Switzer; Oremland, Ronald S.] US Geol Survey, 345 Middlefield Rd,MS 480, Menlo Pk, CA 94025 USA. RP Ferrero, MA (reprint author), Univ Nacl Tucuman, CONICET, PROIMI, RA-4000 San Miguel De Tucuman, Tucuman, Argentina. EM mferrero@proimi.org.ar OI Brown, Steven/0000-0002-9281-3898 FU NASA-PBI (Planetary Biology Internship) program; NIH [R37 GM55425]; DOE [DE-AC05-00OR22725]; Ministry of Science and Technology (MINCyT), Argentina [PICT2008-312] FX The authors acknowledge financial support from NASA-PBI (Planetary Biology Internship) program, NIH grant R37 GM55425 to BPR, and to the U.S. Geological Survey (Menlo Park, California) and the Herbert Wertheim College of Medicine, Florida International University (Miami, Florida) for allowing us to conduct part of this research at their labs. We also acknowledge the Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the DOE under Contract DE-AC05-00OR22725. This study was conducted as a part of the Project PICT2008-312 of the Ministry of Science and Technology (MINCyT), Argentina. NR 44 TC 0 Z9 0 U1 2 U2 21 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0964-8305 EI 1879-0208 J9 INT BIODETER BIODEGR JI Int. Biodeterior. Biodegrad. PD FEB PY 2016 VL 107 BP 147 EP 153 DI 10.1016/j.ibiod.2015.11.022 PG 7 WC Biotechnology & Applied Microbiology; Environmental Sciences SC Biotechnology & Applied Microbiology; Environmental Sciences & Ecology GA DC4QZ UT WOS:000369206700020 ER PT J AU Roni, MS Eksioglu, SD Jin, MZ Mamun, S AF Roni, Mohammad S. Eksioglu, Sandra D. Jin, Mingzhou Mamun, Saleh TI A hybrid inventory policy with split delivery under regular and surge demand SO INTERNATIONAL JOURNAL OF PRODUCTION ECONOMICS LA English DT Article DE Level crossing theory; Split delivery; Surge demand; Regular demand; Tabu search; Inventory model ID SERVICE LEVEL CONSTRAINTS; SUPPLY CHAIN GLITCHES; VARIABLE LEAD TIME; LOST-SALES; RATIONING POLICY; EMERGENCY ORDERS; POISSON DEMANDS; SYSTEM; MODEL; MANAGEMENT AB This paper proposes a hybrid inventory policy with split delivery under regular and surge demand. The combination of regular and surge demand can be observed in many areas, such as healthcare inventory and humanitarian supply chain management. The arrival rate of regular demand is typically higher than the arrival rate of surge demand, whereas the volume of regular demand is typically lower than the volume of surge demand. This paper proposes an inventory management model that considers both emergency and regular replenishments corresponding to both demand patterns. The equilibrium equations developed for this model are based on the level crossing theory. These equations are used to develop a search-based heuristics to identify near optimal inventory management policies. Numerical results show that the proposed hybrid inventory policy with split delivery outperforms similar hybrid inventory policy without split delivery when holding and shortage costs are relatively low. Crown Copyright (C) 2015 Published by Elsevier B.V. All rights reserved. C1 [Roni, Mohammad S.] Idaho Natl Lab, Biofuels & Renewable Energy Technol, POB 1625, Idaho Falls, ID 83415 USA. [Eksioglu, Sandra D.] Clemson Univ, Dept Ind Engn, Clemson, SC 29631 USA. [Jin, Mingzhou] Univ Tennessee, Dept Ind & Syst Engn, Knoxville, TN 37996 USA. [Mamun, Saleh] Univ New Mexico, Dept Econ, Albuquerque, NM 87131 USA. RP Roni, MS (reprint author), Idaho Natl Lab, Biofuels & Renewable Energy Technol, POB 1625, Idaho Falls, ID 83415 USA. EM mohammad.roni@inl.gov RI Eksioglu, Sandra/G-8623-2016 OI Eksioglu, Sandra/0000-0002-6674-2133 NR 60 TC 0 Z9 0 U1 8 U2 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0925-5273 EI 1873-7579 J9 INT J PROD ECON JI Int. J. Prod. Econ. PD FEB PY 2016 VL 172 BP 126 EP 136 DI 10.1016/j.ijpe.2015.11.015 PG 11 WC Engineering, Industrial; Engineering, Manufacturing; Operations Research & Management Science SC Engineering; Operations Research & Management Science GA DC4TK UT WOS:000369213000010 ER PT J AU Li, FK Parnell, SR Bai, HY Yang, WC Hamilton, WA Maranville, BB Ashkar, R Baxter, DV Cremer, JT Pynn, R AF Li, Fankang Parnell, Steven R. Bai, Hongyu Yang, Wencao Hamilton, William A. Maranville, Brian B. Ashkar, Rana Baxter, David V. Cremer, J. Ted Pynn, Roger TI Spin echo modulated small-angle neutron scattering using superconducting magnetic Wollaston prisms SO JOURNAL OF APPLIED CRYSTALLOGRAPHY LA English DT Article DE magnetic Wollaston prisms; Larmor labeling; spin echo modulated small-angle neutron scattering (SEMSANS); neutron spin echo; correlation functions ID PRECESSION; TOOL AB The spin echo modulated small-angle neutron scattering technique has been implemented using two superconducting magnetic Wollaston prisms at a reactor neutron source. The density autocorrelation function measured for a test sample of colloidal silica in a suspension agrees with that obtained previously by other neutron scattering methods on an identically prepared sample. The reported apparatus has a number of advantages over competing technologies: it should allow larger length scales (up to several micrometres) to be probed; it has very small parasitic neutron scattering and attenuation; the magnetic fields within the device are highly uniform; and the neutron spin transport across the device boundaries is very efficient. To understand quantitatively the results of the reported experiment and to guide future instrument development, Monte Carlo simulations are presented, in which the evolution of the neutron polarization through the apparatus is based on magnetic field integrals obtained from finite-element simulations of the various magnetic components. The Monte Carlo simulations indicate that the polarization losses observed in the experiments are a result of instrumental artifacts that can be easily corrected in future experiments. C1 [Li, Fankang; Yang, Wencao; Baxter, David V.; Pynn, Roger] Indiana Univ, Ctr Explorat Energy & Matter, 2401 Milo B Sampson Lane, Bloomington, IN 47408 USA. [Parnell, Steven R.] Delft Univ Technol, Fac Sci Appl, Mekelweg 15, NL-2629 JB Delft, Netherlands. [Bai, Hongyu] Natl High Magnet Field Lab, Tallahassee, FL 32310 USA. [Hamilton, William A.; Ashkar, Rana; Pynn, Roger] Oak Ridge Natl Lab, Neutron Sci Directorate, POB 2008, Oak Ridge, TN 37830 USA. [Maranville, Brian B.; Ashkar, Rana] NIST, Gaithersburg, MD 20899 USA. [Ashkar, Rana] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA. [Cremer, J. Ted] Adelphi Technol Inc, Redwood City, CA 94063 USA. RP Li, FK; Pynn, R (reprint author), Indiana Univ, Ctr Explorat Energy & Matter, 2401 Milo B Sampson Lane, Bloomington, IN 47408 USA.; Pynn, R (reprint author), Oak Ridge Natl Lab, Neutron Sci Directorate, POB 2008, Oak Ridge, TN 37830 USA. EM fankli@indiana.edu; pynn@mrl.ucsb.edu RI Baxter, David /D-3769-2013; OI Baxter, David /0000-0003-2812-0904; Ashkar, Rana/0000-0003-4075-2330; Li, Fankang/0000-0001-8859-0102 FU National Science Foundation [DMR-0956741, DMR-0944772, DMR-0220560, DMR-0320627]; STTR program of the US Department of Energy [DE-SC0009584]; 21st Century Science and Technology fund of Indiana, Indiana University; Department of Defense FX The conceptual design and simulations of the first HTS Wollaston prism were supported by the National Science Foundation (grant No. DMR-0956741). The design and construction of the two magnetic Wollaston prisms were supported by the STTR program of the US Department of Energy (grant No. DE-SC0009584). We would like to extend our gratitude to Dr J. Plomp (Delft University of Technology) for providing the current-sheet flipper, J. Doskow (Indiana University Bloomington) for designing the vacuum chamber, and the members of the sample environment team at the NCNR, Tanya Dax and Qiang (Alan) Ye, for their help with the cryogenics. We also acknowledge the support of the National Institute of Standards and Technology, US Department of Commerce, in providing access to the neutron research facilities, supported in part by the National Science Foundation under grant No. DMR-0944772. Construction of LENS was supported by the National Science Foundation grants DMR-0220560 and DMR-0320627, the 21st Century Science and Technology fund of Indiana, Indiana University, and the Department of Defense. NR 34 TC 2 Z9 2 U1 2 U2 16 PU INT UNION CRYSTALLOGRAPHY PI CHESTER PA 2 ABBEY SQ, CHESTER, CH1 2HU, ENGLAND SN 1600-5767 J9 J APPL CRYSTALLOGR JI J. Appl. Crystallogr. PD FEB PY 2016 VL 49 BP 55 EP 63 DI 10.1107/S1600576715021573 PN 1 PG 9 WC Chemistry, Multidisciplinary; Crystallography SC Chemistry; Crystallography GA DC7HB UT WOS:000369389300007 ER PT J AU Frolich, S Leemreize, H Jakus, A Xiao, X Shah, R Birkedal, H Almer, JD Stock, SR AF Frolich, S. Leemreize, H. Jakus, A. Xiao, X. Shah, R. Birkedal, H. Almer, J. D. Stock, S. R. TI Diffraction tomography and Rietveld refinement of a hydroxyapatite bone phantom SO JOURNAL OF APPLIED CRYSTALLOGRAPHY LA English DT Article DE X-ray diffraction tomography; Rietveld refinement; hydroxyapatite; bone ID X-RAY MICROTOMOGRAPHY; COMPUTED-TOMOGRAPHY; PHASE-CONTRAST AB A model sample consisting of two different hydroxyapatite (hAp) powders was used as a bone phantom to investigate the extent to which X-ray diffraction tomography could map differences in hAp lattice constants and crystallite size. The diffraction data were collected at beamline 1-ID, the Advanced Photon Source, using monochromatic 65 keV X-radiation, a 25 x 25 mm pinhole beam and translation/rotation data collection. The diffraction pattern was reconstructed for each volume element (voxel) in the sample, and Rietveld refinement was used to determine the hAp lattice constants. The crystallite size for each voxel was also determined from the 00.2 hAp diffraction peak width. The results clearly show that differences between hAp powders could be measured with diffraction tomography. C1 [Frolich, S.; Leemreize, H.; Birkedal, H.] Aarhus Univ, iNANO, DK-8000 Aarhus, Denmark. [Frolich, S.; Leemreize, H.; Birkedal, H.] Aarhus Univ, Dept Chem, Langelandsgade 140, DK-8000 Aarhus, Denmark. [Jakus, A.; Shah, R.] Northwestern Univ, Dept Mat Sci & Engn, Dept Surg, Div Organ Transplantat, 303 E Chicago Ave, Chicago, IL 60611 USA. [Jakus, A.; Shah, R.] Northwestern Univ, Simpson Querrey Inst Bionanotechnol, 303 E Chicago Ave, Chicago, IL 60611 USA. [Xiao, X.; Almer, J. D.] Argonne Natl Lab, Adv Photon Source, 9700 S Cass Ave, Argonne, IL 60439 USA. [Stock, S. R.] Northwestern Univ, Feinberg Sch Med, Dept Cell & Mol Biol, 303 E Chicago Ave, Chicago, IL 60611 USA. [Leemreize, H.] Max Planck Inst Colloids & Interfaces, Dept Biomat, D-14476 Potsdam, Germany. RP Stock, SR (reprint author), Northwestern Univ, Feinberg Sch Med, Dept Cell & Mol Biol, 303 E Chicago Ave, Chicago, IL 60611 USA. EM s-stock@northwestern.edu RI Shah, Ramille/E-3737-2010 FU NIDCR [DE001374]; Human Frontiers Science Program (HFSP); DANSCATT; Danish Council for Independent Research - Natural Sciences; Graduate School of Science and Technology (GSST) of Aarhus University; US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX The authors are grateful to various funding agencies for supporting this research: SRS acknowledges support from NIDCR grant DE001374; SF, HL and HB thank the Human Frontiers Science Program (HFSP), DANSCATT, the Danish Council for Independent Research - Natural Sciences, and the Graduate School of Science and Technology (GSST) of Aarhus University. Use of the Advanced Photon Source is supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract No. DE-AC02-06CH11357. NR 26 TC 0 Z9 0 U1 4 U2 15 PU INT UNION CRYSTALLOGRAPHY PI CHESTER PA 2 ABBEY SQ, CHESTER, CH1 2HU, ENGLAND SN 1600-5767 J9 J APPL CRYSTALLOGR JI J. Appl. Crystallogr. PD FEB PY 2016 VL 49 BP 103 EP 109 DI 10.1107/S1600576715022633 PN 1 PG 7 WC Chemistry, Multidisciplinary; Crystallography SC Chemistry; Crystallography GA DC7HB UT WOS:000369389300012 ER PT J AU Tompson, AFB AF Tompson, Andrew F. B. TI Born from a flood: The Salton Sea and its story of survival SO JOURNAL OF EARTH SCIENCE LA English DT Article DE Salton Sea; flood; terminal lake; water; agriculture; salinity; wildlife habitat ID CALIFORNIA; LAKE; SELENIUM; WATER AB The Salton Sea is a terminal lake located in the deepest point of the topographically closed Salton Trough in southeastern California. It is currently the largest lake in area in the state. It was created by a flooding event along the Colorado River in 1905-1907, similar to the way historical floods over past centuries created ephemeral incarnations of ancient Lake Cahuilla in the same location. Its position at the center of today's Imperial Valley, a hot and arid locale home to some of the most productive irrigated agricultural lands in the United States, has ensured its ongoing survival through a delicate balance between agricultural runoff, its principal form of input, and vast evaporation losses. Nevertheless, its parallel role as a recreational resource and important wildlife habitat, established over its first century of existence, is threatened by increasing salinity decreasing water quality, and reduced water allocations from the Colorado River that feeds the valley's agriculture. The Salton Sea faces an increasingly uncertain future that will be influenced by reduced water imports from the Colorado River, demands for additional water sources to support farming and energy industries in the valley, and needs to stabilize the lake salinity, maintain recreational resources, and preserve what have become important ecosystems and wildlife habitats. C1 [Tompson, Andrew F. B.] Lawrence Livermore Natl Lab, Atmospher Earth & Energy Div, Livermore, CA 94551 USA. RP Tompson, AFB (reprint author), Lawrence Livermore Natl Lab, Atmospher Earth & Energy Div, Livermore, CA 94551 USA. EM tompson1@llnl.gov FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX LLNL-JRNL-663270. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory (No. DE-AC52-07NA27344). We would like to acknowledge the previous support of Mike Walker, Cheryl Rodriguez, Paul Weghorst and Becky Blasius-Wert of the US Bureau of Reclamation. The final publication is available at Springer via http://dx.doi.org/10.1007/s12583016-0630-7. NR 46 TC 0 Z9 0 U1 10 U2 26 PU CHINA UNIV GEOSCIENCES PI BEIJING PA 29 XUEYUAN RD, BEIJING, 100083, PEOPLES R CHINA SN 1674-487X EI 1867-111X J9 J EARTH SCI-CHINA JI J. Earth Sci. PD FEB PY 2016 VL 27 IS 1 BP 89 EP 97 DI 10.1007/s12583-016-0630-7 PG 9 WC Geosciences, Multidisciplinary SC Geology GA DC5CY UT WOS:000369239800011 ER PT J AU Mauel, ME Greenwald, M Ryutov, D Zarnstorff, M AF Mauel, M. E. Greenwald, Martin Ryutov, Dmitri Zarnstorff, Mike TI Preface to the Special Issue: Strategic Opportunities for Fusion Energy SO JOURNAL OF FUSION ENERGY LA English DT Editorial Material C1 [Mauel, M. E.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY USA. [Greenwald, Martin] MIT, Plasma Sci & Fus Ctr, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Ryutov, Dmitri] Lawrence Livermore Natl Lab, Livermore, CA USA. [Zarnstorff, Mike] Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. RP Mauel, ME (reprint author), Columbia Univ, Dept Appl Phys & Appl Math, New York, NY USA. EM mauel@columbia.edu NR 21 TC 0 Z9 0 U1 3 U2 9 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0164-0313 EI 1572-9591 J9 J FUSION ENERG JI J. Fusion Energy PD FEB PY 2016 VL 35 IS 1 BP 1 EP 3 DI 10.1007/s10894-016-0067-0 PG 3 WC Nuclear Science & Technology SC Nuclear Science & Technology GA DC9MX UT WOS:000369546800001 ER PT J AU Kotschenreuther, M Mahajan, S Valanju, PM Covele, B Waelbroeck, FL Canik, JM LaBombard, B AF Kotschenreuther, M. Mahajan, S. Valanju, P. M. Covele, B. Waelbroeck, F. L. Canik, J. M. LaBombard, B. TI Taming the Heat Flux Problem: Advanced Divertors Towards Fusion Power SO JOURNAL OF FUSION ENERGY LA English DT Article DE Divertor; Scrape-off layer; Plasma detachment ID DENSITY LIMIT; ASDEX UPGRADE; DETACHMENT; JET; REACTOR AB The next generation fusion machines are likely to face enormous heat exhaust problems. In addition to summarizing major issues and physical processes connected with these problems, we discuss how advanced divertors, obtained by modifying the local geometry, may yield workable solutions. We also point out that: (1) the initial interpretation of recent experiments show that the advantages, predicted, for instance, for the X-divertor (in particular, being able to run a detached operation at high pedestal pressure) correlate very well with observations, and (2) the X-D geometry could be implemented on ITER (and DEMOS) respecting all the relevant constraints. A roadmap for future research efforts is proposed. C1 [Kotschenreuther, M.; Mahajan, S.; Valanju, P. M.; Covele, B.; Waelbroeck, F. L.] Univ Texas Austin, Inst Fus Studies, Austin, TX 78712 USA. [Canik, J. M.] Oak Ridge Natl Lab, POB 2008, Oak Ridge, TN 37831 USA. [LaBombard, B.] MIT, Plasma Sci & Fus Ctr, 175 Albany St, Cambridge, MA 02139 USA. RP Waelbroeck, FL (reprint author), Univ Texas Austin, Inst Fus Studies, Austin, TX 78712 USA. EM flw@mail.utexas.edu OI Canik, John/0000-0001-6934-6681 NR 40 TC 1 Z9 1 U1 0 U2 2 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0164-0313 EI 1572-9591 J9 J FUSION ENERG JI J. Fusion Energy PD FEB PY 2016 VL 35 IS 1 BP 27 EP 30 DI 10.1007/s10894-015-0007-4 PG 4 WC Nuclear Science & Technology SC Nuclear Science & Technology GA DC9MX UT WOS:000369546800003 ER PT J AU Soukhanovskii, VA Xu, X AF Soukhanovskii, V. A. Xu, X. TI Tokamak Power Exhaust with the Snowflake Divertor: Present Results and Outstanding Issues SO JOURNAL OF FUSION ENERGY LA English DT Article DE Divertor; Tokamak; Plasma power exhaust ID PARTICLE CONTROL; CHAPTER 4 AB A snowflake divertor magnetic configuration (Ryutov in Phys Plasmas 14(6):064502, 2007) with the second-order poloidal field null offers a number of possible advantages for tokamak plasma heat and particle exhaust in comparison with the standard poloidal divertor with the first-order null. Results from snowflake divertor experiments are briefly reviewed and future directions for research in this area are outlined. C1 [Soukhanovskii, V. A.; Xu, X.] Lawrence Livermore Natl Lab, Livermore, CA USA. RP Soukhanovskii, VA (reprint author), Lawrence Livermore Natl Lab, Livermore, CA USA. EM vlad@llnl.gov FU US Department of Energy [DE-AC5207NA27344] FX Dr. D. D. Ryutov is acknowledged for helpful discussions. This work is supported by the US Department of Energy under DE-AC5207NA27344. NR 38 TC 1 Z9 1 U1 6 U2 12 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0164-0313 EI 1572-9591 J9 J FUSION ENERG JI J. Fusion Energy PD FEB PY 2016 VL 35 IS 1 BP 31 EP 33 DI 10.1007/s10894-015-9999-z PG 3 WC Nuclear Science & Technology SC Nuclear Science & Technology GA DC9MX UT WOS:000369546800004 ER PT J AU Raman, R Jarboe, TR Menard, JE Ono, M Taylor, G Nelson, BA Mueller, D Brown, T AF Raman, R. Jarboe, T. R. Menard, J. E. Ono, M. Taylor, G. Nelson, B. A. Mueller, D. Brown, T. TI Simplifying the ST and AT Concepts SO JOURNAL OF FUSION ENERGY LA English DT Article DE ST; AT; CT; Compact toroid; CHI; Momentum; Fueling; Simplifying fusion; Current drive; EBW; Steady state; Tokamak; Spherical torus ID COMPACT TOROID INJECTION; ADVANCED FUELING SYSTEM; TOKAMAK; TORUS; COMPRESSION; PLASMAS; REACTOR AB As stated in a IEA Burning Plasma Workshop Review (Donn, et al. in Fusion Sci Technol 49:79, 2006) "aEuro broken vertical bar there is not much flexibility in the fueling of ITER". High-performance tokamak and ST plasmas greatly benefit from plasma rotation and rotation shear to increase energy confinement time and sustain high beta, made possible due to toroidal momentum injection from neutral beams. Advanced ST and AT scenarios rely on optimized density and pressure profiles that must be maintained for efficient device performance. In addition these discharges require the capability for off-axis current drive. Controlled variable-depth deep fueling that also injects toroidal momentum, in combination with the capability for off-axis current drive, would allow the AT/ST concepts to operate at close to projected performance levels. Advanced fuelling based on compact toroid injection and Electron Bernstein Wave off-axis current drive in conjunction with solenoid-free plasma start-up are proposed as methods to improve FNSF device performance and simplify the ST/AT Demo. C1 [Raman, R.; Jarboe, T. R.; Nelson, B. A.] Univ Washington, William E Boeing Dept Aeronaut & Astronaut, Seattle, WA 98195 USA. [Menard, J. E.; Ono, M.; Taylor, G.; Mueller, D.; Brown, T.] Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. RP Raman, R (reprint author), Univ Washington, William E Boeing Dept Aeronaut & Astronaut, Seattle, WA 98195 USA. EM raman@aa.washington.edu OI Menard, Jonathan/0000-0003-1292-3286 FU US DOE [DE-FG02-99ER54519, DE-AC02-09CH11466] FX This work is supported by US DOE Contracts DE-FG02-99ER54519 and DE-AC02-09CH11466. NR 26 TC 1 Z9 1 U1 1 U2 5 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0164-0313 EI 1572-9591 J9 J FUSION ENERG JI J. Fusion Energy PD FEB PY 2016 VL 35 IS 1 BP 34 EP 40 DI 10.1007/s10894-015-0040-3 PG 7 WC Nuclear Science & Technology SC Nuclear Science & Technology GA DC9MX UT WOS:000369546800005 ER PT J AU Pace, DC Lanctot, MJ Jackson, GL Sandorfi, AM Smith, SP Wei, X AF Pace, D. C. Lanctot, M. J. Jackson, G. L. Sandorfi, A. M. Smith, S. P. Wei, X. TI Controlling Fusion Yield in Tokamaks with Spin Polarized Fuel, and Feasibility Studies on the DIII-D Tokamak SO JOURNAL OF FUSION ENERGY LA English DT Article DE Spin polarized fusion; Magnetic confinement fusion; Tokamak; High temperature plasma diagnostics; Fusion research policy ID HIGH CONFINEMENT; PLASMAS; REACTOR AB The march towards electricity production through tokamaks requires the construction of new facilities and the inevitable replacement of the previous generation. There are, however, research topics that are better suited to the existing tokamaks, areas of great potential that are not sufficiently mature for implementation in high power machines, and these provide strong support for a balanced policy that includes the redirection of existing programs. Spin polarized fusion, in which the nuclei of tokamak fuel particles are spin-aligned and favorably change both the fusion cross-section and the distribution of initial velocity vectors of charged fusion products, is described here as an example of a technological and physics topic that is ripe for development in a machine such as the DIII-D tokamak. Such research and development experiments may not be efficient at the ITER-scale, while the plasma performance, diagnostic access, and collaborative personnel available within the United States' magnetic fusion research program, and at the DIII-D facility in particular, provide a unique opportunity to further fusion progress. C1 [Pace, D. C.; Lanctot, M. J.; Jackson, G. L.; Smith, S. P.] Gen Atom Co, POB 85608, San Diego, CA 92186 USA. [Sandorfi, A. M.; Wei, X.] Thomas Jefferson Natl Accelerator Facil, 12000 Jefferson Ave,PS 5, Newport News, VA 23606 USA. RP Pace, DC (reprint author), Gen Atom Co, POB 85608, San Diego, CA 92186 USA. EM pacedc@fusion.gat.com RI Lanctot, Matthew J/O-4979-2016 OI Lanctot, Matthew J/0000-0002-7396-3372 FU General Atomics Internal Research and Development Funding; United States Department of Energy, Office of Nuclear Physics Division [DE-AC05-06OR23177] FX This work was supported in part by General Atomics Internal Research and Development Funding and in part by the United States Department of Energy, Office of Nuclear Physics Division, under contract DE-AC05-06OR23177 under which Jefferson Science Associates operates Jefferson Laboratory. The authors would like to thank J. D. King for his time in discussing analysis related to this manuscript. NR 32 TC 1 Z9 1 U1 4 U2 5 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0164-0313 EI 1572-9591 J9 J FUSION ENERG JI J. Fusion Energy PD FEB PY 2016 VL 35 IS 1 BP 54 EP 62 DI 10.1007/s10894-015-0015-4 PG 9 WC Nuclear Science & Technology SC Nuclear Science & Technology GA DC9MX UT WOS:000369546800007 ER PT J AU Wurden, GA Hsu, SC Intrator, TP Grabowski, TC Degnan, JH Domonkos, M Turchi, PJ Campbell, EM Sinars, DB Herrmann, MC Betti, R Bauer, BS Lindemuth, IR Siemon, RE Miller, RL Laberge, M Delage, M AF Wurden, G. A. Hsu, S. C. Intrator, T. P. Grabowski, T. C. Degnan, J. H. Domonkos, M. Turchi, P. J. Campbell, E. M. Sinars, D. B. Herrmann, M. C. Betti, R. Bauer, B. S. Lindemuth, I. R. Siemon, R. E. Miller, R. L. Laberge, M. Delage, M. TI Magneto-Inertial Fusion SO JOURNAL OF FUSION ENERGY LA English DT Article DE Magneto-inertial fusion; Magnetized target fusion; Liner; Plasma jets; Fusion energy; MagLIF ID FIELD-REVERSED CONFIGURATION; TARGET FUSION; PARAMETER SPACE; PLASMA; COMPRESSION AB In this community white paper, we describe an approach to achieving fusion which employs a hybrid of elements from the traditional magnetic and inertial fusion concepts, called magneto-inertial fusion (MIF). The status of MIF research in North America at multiple institutions is summarized including recent progress, research opportunities, and future plans. C1 [Wurden, G. A.; Hsu, S. C.; Intrator, T. P.] Los Alamos Natl Lab, Los Alamos, NM USA. [Grabowski, T. C.; Degnan, J. H.; Domonkos, M.] Air Force Res Lab, Albuquerque, NM USA. [Campbell, E. M.; Sinars, D. B.] Sandia Natl Labs, Albuquerque, NM USA. [Herrmann, M. C.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Betti, R.] Univ Rochester, Rochester, NY USA. [Bauer, B. S.; Lindemuth, I. R.; Siemon, R. E.] Univ Nevada, Reno, NV 89557 USA. [Miller, R. L.] Decys Syst, Santa Fe, NM USA. [Laberge, M.; Delage, M.] Gen Fus, Vancouver, BC, Canada. RP Wurden, GA (reprint author), Los Alamos Natl Lab, Los Alamos, NM USA. EM wurden@lanl.gov RI Wurden, Glen/A-1921-2017; OI Wurden, Glen/0000-0003-2991-1484; Hsu, Scott/0000-0002-6737-4934 NR 43 TC 3 Z9 4 U1 10 U2 17 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0164-0313 EI 1572-9591 J9 J FUSION ENERG JI J. Fusion Energy PD FEB PY 2016 VL 35 IS 1 BP 69 EP 77 DI 10.1007/s10894-015-0038-x PG 9 WC Nuclear Science & Technology SC Nuclear Science & Technology GA DC9MX UT WOS:000369546800009 ER PT J AU Sinars, DB Campbell, EM Cuneo, ME Jennings, CA Peterson, KJ Sefkow, AB AF Sinars, D. B. Campbell, E. M. Cuneo, M. E. Jennings, C. A. Peterson, K. J. Sefkow, A. B. TI The Role of Magnetized Liner Inertial Fusion as a Pathway to Fusion Energy SO JOURNAL OF FUSION ENERGY LA English DT Article DE Inertial confinement fusion; Magneto-inertial fusion; Magnetized target fusion; Magnetized liner inertial fusion; Fusion energy; Market penetration AB We discuss the possible impacts of a new magnetized liner inertial fusion concept on magneto-inertial fusion approaches to fusion energy. Experiments in the last 1.5 years have already shown direct evidence of magnetic flux compression, a highly magnetized fusing fuel, significant compressional heating, a compressed cylindrical fusing plasma, and significant fusion yield. While these exciting results demonstrate several key principles behind magneto-inertial fusion, more work in the coming years will be needed to demonstrate that such targets can scale to ignition and high yield. We argue that justifying significant investment in pulsed inertial fusion energy beyond target development should require well-understood, significant fusion yields to be demonstrated in single-shot experiments. We also caution that even once target ideas and fusion power plants have been demonstrated, historical trends suggest it would still be decades before fusion could materially impact worldwide energy production. C1 [Sinars, D. B.; Campbell, E. M.; Cuneo, M. E.; Jennings, C. A.; Peterson, K. J.; Sefkow, A. B.] Sandia Natl Labs, POB 5800,MS 1193, Albuquerque, NM 87185 USA. RP Sinars, DB (reprint author), Sandia Natl Labs, POB 5800,MS 1193, Albuquerque, NM 87185 USA. EM dbsinar@sandia.gov NR 36 TC 1 Z9 1 U1 2 U2 4 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0164-0313 EI 1572-9591 J9 J FUSION ENERG JI J. Fusion Energy PD FEB PY 2016 VL 35 IS 1 BP 78 EP 84 DI 10.1007/s10894-015-0023-4 PG 7 WC Nuclear Science & Technology SC Nuclear Science & Technology GA DC9MX UT WOS:000369546800010 ER PT J AU Wurden, GA Weber, TE Turchi, PJ Parks, PB Evans, TE Cohen, SA Cassibry, JT Campbell, EM AF Wurden, G. A. Weber, T. E. Turchi, P. J. Parks, P. B. Evans, T. E. Cohen, S. A. Cassibry, J. T. Campbell, E. M. TI A New Vision for Fusion Energy Research: Fusion Rocket Engines for Planetary Defense SO JOURNAL OF FUSION ENERGY LA English DT Article DE Fusion research; Fusion rocket engine; Comet deflection; Planetary defense; Nuclear explosive ID PROPULSION; SPACE AB We argue that it is essential for the fusion energy program to identify an imagination-capturing critical mission by developing a unique product which could command the marketplace. We lay out the logic that this product is a fusion rocket engine, to enable a rapid response capable of deflecting an incoming comet, to prevent its impact on the planet Earth, in defense of our population, infrastructure, and civilization. As a side benefit, deep space solar system exploration, with greater speed and orders-of-magnitude greater payload mass would also be possible. C1 [Wurden, G. A.; Weber, T. E.] Los Alamos Natl Lab, Los Alamos, NM USA. [Parks, P. B.; Evans, T. E.] Gen Atom, San Diego, CA USA. [Cohen, S. A.] Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. [Cassibry, J. T.] Univ Alabama, Huntsville, AL 35899 USA. [Campbell, E. M.] Sandia Natl Labs, Albuquerque, NM USA. RP Wurden, GA (reprint author), Los Alamos Natl Lab, Los Alamos, NM USA. EM wurden@lanl.gov RI Wurden, Glen/A-1921-2017 OI Wurden, Glen/0000-0003-2991-1484 NR 33 TC 1 Z9 1 U1 4 U2 11 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0164-0313 EI 1572-9591 J9 J FUSION ENERG JI J. Fusion Energy PD FEB PY 2016 VL 35 IS 1 BP 123 EP 133 DI 10.1007/s10894-015-0034-1 PG 11 WC Nuclear Science & Technology SC Nuclear Science & Technology GA DC9MX UT WOS:000369546800017 ER PT J AU Chien, YT Cirigliano, V Dekens, W de Vries, J Mereghetti, E AF Chien, Y. T. Cirigliano, V. Dekens, W. de Vries, J. Mereghetti, E. TI Direct and indirect constraints on CP-violating Higgs-quark and Higgs-gluon interactions SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE Higgs Physics; Beyond Standard Model; CP violation; Renormalization Group ID ELECTRIC-DIPOLE MOMENT; MINIMAL FLAVOR VIOLATION; HADRON-HADRON COLLISIONS; TIME-REVERSAL VIOLATION; EFFECTIVE-FIELD THEORY; PARTON DISTRIBUTIONS; EFFECTIVE COUPLINGS; BOSON PRODUCTION; STANDARD MODEL; CROSS-SECTION AB We investigate direct and indirect constraints on the complete set of anomalous CP-violating Higgs couplings to quarks and gluons originating from dimension-6 operators, by studying their signatures at the LHC and in electric dipole moments (EDMs). We show that existing uncertainties in hadronic and nuclear matrix elements have a significant impact on the interpretation of EDM experiments, and we quantify the improvements needed to fully exploit the power of EDM searches. Currently, the best bounds on the anomalous CP-violating Higgs interactions come from a combination of EDM measurements and the data from LHC Run 1. We argue that Higgs production cross section and branching ratios measurements at the LHC Run 2 will not improve the constraints significantly. On the other hand, the bounds on the couplings scale roughly linearly with EDM limits, so that future theoretical and experimental EDM developments can have a major impact in pinning down interactions of the Higgs. C1 [Chien, Y. T.; Cirigliano, V.; Mereghetti, E.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Dekens, W.] Univ Groningen, Fac Math & Nat Sci, Van Swinderen Inst, Nijenborgh 4, NL-9747 AG Groningen, Netherlands. [de Vries, J.] Forschungszentrum Julich, Inst Adv Simulat, Inst Kernphys, D-52425 Julich, Germany. [de Vries, J.] Forschungszentrum Julich, Julich Ctr Hadron Phys, D-52425 Julich, Germany. RP Chien, YT; Cirigliano, V; Mereghetti, E (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.; Dekens, W (reprint author), Univ Groningen, Fac Math & Nat Sci, Van Swinderen Inst, Nijenborgh 4, NL-9747 AG Groningen, Netherlands.; de Vries, J (reprint author), Forschungszentrum Julich, Inst Adv Simulat, Inst Kernphys, D-52425 Julich, Germany.; de Vries, J (reprint author), Forschungszentrum Julich, Julich Ctr Hadron Phys, D-52425 Julich, Germany. EM ytchien@lanl.gov; cirigliano@lanl.gov; W.G.Dekens@rug.nl; j.de.vries@fz-juelich.de; emereghetti@lanl.gov FU DFG; NSFC [11261130311]; DOE Office of Nuclear Physics; LDRD program at Los Alamos National Laboratory FX This work (JdV) is supported in part by the DFG and the NSFC through funds provided to the Sino-German CRC 110 "Symmetries and the Emergence of Structure in QCD" (Grant No. 11261130311). The work of VC and EM is supported by DOE Office of Nuclear Physics and the LDRD program at Los Alamos National Laboratory. We acknowledge useful discussions with Tanmoy Bhattacharya, Daniel Boer, Giuseppe Cerati, Martin Gonzalez-Alonso, Michael Graesser, Rajan Gupta, Gino Isidori, Robert Harlander, Maxim Pospelov, Maria Ubiali, and Andreas Wirzba. We thank the INT at the University of Washington for its hospitality during the completion of this work. NR 157 TC 13 Z9 13 U1 1 U2 1 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD FEB 1 PY 2016 IS 2 AR 011 DI 10.1007/JHEP02(2016)011 PG 50 WC Physics, Particles & Fields SC Physics GA DC5ZG UT WOS:000369298700002 ER PT J AU Wang, W Li, EY Porth, I Chen, JG Mansfield, S Douglas, C Wang, SC AF Wang, Wei Li, Eryang Porth, Ilga Chen, Jin-Gui Mansfield, Shawn D. Douglas, Carl J. Wang, Shucai TI Spatially and temporally restricted expression of PtrMYB021 regulates secondary cell wall formation in Arabidopsis SO JOURNAL OF PLANT BIOLOGY LA English DT Article DE Arabidopsis thaliana; Populus trichocarpa; PtrMYB021; R2R3 MYB; Secondary cell wall biosynthesis; Transcription factor ID MYB TRANSCRIPTION FACTORS; LIGNIN BIOSYNTHESIS; DIRECT TARGET; GENES; THALIANA; POPLAR; FAMILY; DIFFERENTIATION; POPULUS; MUTANT AB Among the R2R3 MYB transcription factors that involve in the regulation of secondary cell wall formation in Arabidopsis, MYB46 alone is sufficient to induce the entire secondary cell wall biosynthesis program. PtrMYB021, the poplar homolog of MYB46, has been reported to regulate secondary cell wall formation when expressed in Arabidopsis. We report here that spatially and temporally restricted expression of PtrMYB021 is critical for its function in regulating secondary cell wall formation. By using quantitative RT-PCR, we found that PtrMYB021 was expressed primarily in xylem tissues. When expressed in Arabidopsis under the control of PtrCesA8, but not the 35S promoter, PtrMYB021 increased secondary cell wall thickness, which is likely caused by increased lignification as well as changes in cell wall carbohydrate composition. In consistent with this, elevated expression of lignin and cellulose biosynthetic genes were observed in the transgenic plants. When expressed in Arabidopsis protoplasts as fusion proteins to the Gal4 DNA binding domain, PtrMYB021 activated the reporter gene Gal4-GUS. In summary, our results suggest that PtrMYB021 is a transcriptional activator, and spatially and temporally restricted expression of PtrMYB021 in Arabidopsis regulates secondary cell wall formation by activating a subset of secondary cell wall biosynthesis genes. C1 [Wang, Wei; Wang, Shucai] NE Normal Univ, Key Lab Mol Epigenet, MOE, Changchun 130024, Peoples R China. [Li, Eryang; Douglas, Carl J.] Univ British Columbia, Dept Bot, Vancouver, BC V6T 1Z4, Canada. [Porth, Ilga; Mansfield, Shawn D.] Univ British Columbia, Dept Wood Sci, Vancouver, BC V6T 1Z4, Canada. [Chen, Jin-Gui] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. RP Wang, SC (reprint author), NE Normal Univ, Key Lab Mol Epigenet, MOE, Changchun 130024, Peoples R China. EM wangsc550@nenu.edu.cn RI Chen, Jin-Gui/A-4773-2011; Porth, Ilga/N-4862-2015 OI Chen, Jin-Gui/0000-0002-1752-4201; Porth, Ilga/0000-0002-9344-6348 FU Northeast Normal University; Genome British Columbia Applied Genomics Innovation Program project [103BIO] FX We thank Drs. Tom Guilfoyle and Gretchen Hagen (University of Missouri-Columbia) for providing the 35S:GUS seeds and vectors for protoplast transfection assays, the UBC Bioimaging Facility for technical assistance, and the members in the Applied Genomics Innovation Program (AGIP) project for helpful discussion. This work was supported by a startup fund from Northeast Normal University (www.nenu.edu.cn) to S.W., and funds from the Genome British Columbia Applied Genomics Innovation Program project (103BIO) to C.J.D and S.D.M. NR 44 TC 1 Z9 1 U1 3 U2 21 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1226-9239 EI 1867-0725 J9 J PLANT BIOL JI J. Plant Biol. PD FEB PY 2016 VL 59 IS 1 BP 16 EP 23 DI 10.1007/s12374-016-0438-0 PG 8 WC Plant Sciences SC Plant Sciences GA DC5RS UT WOS:000369278700002 ER PT J AU Hu, JZ Zhao, ZC Hu, MY Feng, J Deng, XC Chen, XL Xu, W Liu, J Zhang, JG AF Hu, Jian Zhi Zhao, Zhenchao Hu, Mary Y. Feng, Ju Deng, Xuchu Chen, Xilin Xu, Wu Liu, Jun Zhang, Ji-Guang TI In situ Li-7 and Cs-133 nuclear magnetic resonance investigations on the role of Cs+ additive in lithium-metal deposition process SO JOURNAL OF POWER SOURCES LA English DT Article DE Batteries; Cesium ion; Lithium; In situ; NMR ID ELECTROSTATIC SHIELD MECHANISM; LIQUID ELECTROLYTES; NMR-SPECTROSCOPY; DENDRITE GROWTH; ION BATTERIES; CELLS; CHALLENGES; MICROSCOPY; ALLOY AB Cesium ion (Cs+) has been reported to be an effective electrolyte additive to suppress Li dendrite growth which prevents the application of lithium (Li) metal as an anode for rechargeable Li batteries. In this work, we investigated the effect of Cs+ additive on Li depositions using quantitative in situ Li-7 and Cs-133 nuclear magnetic resonance (NMR) with planar symmetric Li cells. It's found that the addition of Cs+ can significantly enhance both the formation of well aligned Li nanorods and reversibility of the Li electrode. In situ Cs-133 NMR directly confirms that Cs+ migrates to Li electrode to form a positively charged electrostatic shield during the charging process. Much more electrochemical "active" Li was found in Li films deposited with Cs+ additive, while more electrochemical "dead" and thicker Li rods were identified in Li films deposited without Cs+. Combining the in situ and the previous ex-situ results, a Li deposition model has been proposed to explain these observations. (C) 2015 Elsevier B.V. All rights reserved. C1 [Hu, Jian Zhi; Zhao, Zhenchao; Hu, Mary Y.; Feng, Ju; Deng, Xuchu] Pacific NW Natl Lab, Joint Ctr Energy Storage Res, Fundamental & Comp Sci Directorate, Richland, WA 99354 USA. [Chen, Xilin; Xu, Wu; Liu, Jun; Zhang, Ji-Guang] Pacific NW Natl Lab, Joint Ctr Energy Storage Res, Energy & Environm Directorate, Richland, WA 99354 USA. RP Hu, JZ (reprint author), Pacific NW Natl Lab, POB 999,MSIN K8-98, Richland, WA 99352 USA. EM Jianzhi.Hu@pnnl.gov RI Hu, Jian Zhi/F-7126-2012 FU Joint Center for Energy Storage Research (JCESR), an Energy Innovation Hub - U.S. Department of Energy, Office of Science, Basic Energy Sciences (BES); DOE's Office of Biological and Environmental Research (BER); Department of Energy [DE-AC05-76RLO1830] FX This work was supported by the Joint Center for Energy Storage Research (JCESR), an Energy Innovation Hub funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences (BES). The NMR studies were conducted in the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by DOE's Office of Biological and Environmental Research (BER) and located at PNNL. PNNL is operated by Battelle for the Department of Energy under Contract DE-AC05-76RLO1830. NR 29 TC 3 Z9 3 U1 13 U2 50 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 EI 1873-2755 J9 J POWER SOURCES JI J. Power Sources PD FEB 1 PY 2016 VL 304 BP 51 EP 59 DI 10.1016/j.jpowsour.2015.10.067 PG 9 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA DC4OK UT WOS:000369200000007 ER PT J AU Polat, DB Keles, O Amine, K AF Polat, Deniz B. Keles, Ozgul Amine, Khalil TI Compositionally-graded silicon-copper helical arrays as anodes for lithium-ion batteries SO JOURNAL OF POWER SOURCES LA English DT Article DE Graded electrode; Anode; Helices; Si-Cu thin film; Glancing angle deposition ID CHEMICAL-VAPOR-DEPOSITION; THIN-FILMS; AMORPHOUS-SILICON; SI; ELECTRODE; SURFACE; CARBON; INSERTION; GRAPHITE; CELLS AB Restrictions in silicon based anodes have been the subject of many researches for years. As an innovative approach, we have adopted ion assisted deposition technique to glancing angle deposition method and have used compositionally-graded structuring. A unique helical shaped gradient film has been produced in which the Cu/Si atomic ratio decreases from the bottom to the top of the coating. With such a unique film (high surface area) more spaces have been created promoting mechanical integrity and reaction between active materials (silicon) with lithium ions. The highly adherent film is formed as a result of ion assisted deposition process and the gradual change in Cu/Si atomic ratio diverts stress through the helices. To compare the performance of the SiCu electrode, a pure Si film is deposited in the same experimental condition. Galvanostatic test results show that although the film with pure Si helices fails after 30th cycles, the compositionally graded anode exhibits a capacity of 1228 mAh g(-1) at the 100th cycles with 99.5% coulombic efficiencies when cycled at 100 mA g(-1), and delivers 815 mAh when cycled with a rate of 400 mA Published by Elsevier B.V. C1 [Polat, Deniz B.; Keles, Ozgul] Istanbul Tech Univ, Dept Met & Mat Engn, TR-34469 Istanbul, Turkey. [Amine, Khalil] Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Keles, O (reprint author), Istanbul Tech Univ, Dept Met & Mat Engn, TR-34469 Istanbul, Turkey.; Amine, K (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM ozgulkeles@itu.edu.tr; amine@anl.gov FU Scientific and Technological Research Council of Turkey (TUBITAK) [213M511] FX This work is a part of the research project 213M511 approved by The Scientific and Technological Research Council of Turkey (TUBITAK). The authors thank Dr. Robert Erck, Dr. LeventEryilmaz, Dr. Ali Erdemir, Prof. Dr. SebahattinGurmen, and Assoc. Prof. KursatKazmanli for their contributions to the study. Also to be thanked are Prof. Dr. GultekinGoller, Prof. Dr. Mustafa Urgen, Prof. Dr. ServetTimur, SevginTurkeli, and HuseyinSezer for their help with the SEM, XRD, and CV analyses. NR 32 TC 3 Z9 3 U1 13 U2 49 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 EI 1873-2755 J9 J POWER SOURCES JI J. Power Sources PD FEB 1 PY 2016 VL 304 BP 273 EP 281 DI 10.1016/j.jpowsour.2015.11.032 PG 9 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA DC4OK UT WOS:000369200000029 ER PT J AU Finnell, J AF Finnell, Joshua TI Paint Your Wife SO LIBRARY JOURNAL LA English DT Book Review C1 [Finnell, Joshua] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Finnell, J (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. NR 1 TC 0 Z9 0 U1 0 U2 0 PU REED BUSINESS INFORMATION PI NEW YORK PA 360 PARK AVENUE SOUTH, NEW YORK, NY 10010 USA SN 0363-0277 J9 LIBR J JI Libr. J. PD FEB 1 PY 2016 VL 141 IS 2 BP 70 EP 71 PG 2 WC Information Science & Library Science SC Information Science & Library Science GA DC3NV UT WOS:000369126900094 ER PT J AU Ghate, VP Miller, MA Zhu, P AF Ghate, Virendra P. Miller, Mark A. Zhu, Ping TI Differences between Nonprecipitating Tropical and Trade Wind Marine Shallow Cumuli SO MONTHLY WEATHER REVIEW LA English DT Article DE Atm; Ocean Structure; Phenomena; Boundary layer; Cumulus clouds; Physical Meteorology and Climatology; Cloud radiative effects; Clouds ID CLIMATE RESEARCH FACILITY; TOPPED BOUNDARY-LAYERS; FAIR-WEATHER CUMULI; VERTICAL VELOCITY; PART I; WATER-CONTENT; CLOUDS; MODEL; CONVECTION; PARAMETERIZATION AB Marine nonprecipitating cumulus topped boundary layers (CTBLs) observed in a tropical and in a trade wind region are contrasted based on their cloud macrophysical, dynamical, and radiative structures. Data from the Atmospheric Radiation Measurement (ARM) observational site previously operating at Manus Island, Papua New Guinea, and data collected during the deployment of ARM Mobile Facility at the island of Graciosa, in the Azores, were used in this study. The tropical marine CTBLs were deeper, had higher surface fluxes and boundary layer radiative cooling, but lower wind speeds compared to their trade wind counterparts. The radiative velocity scale was 50%-70% of the surface convective velocity scale at both locations, highlighting the prominent role played by radiation in maintaining turbulence in marine CTBLs. Despite greater thicknesses, the chord lengths of tropical cumuli were on average lower than those of trade wind cumuli, and as a result of lower cloud cover, the hourly averaged (cloudy and clear) liquid water paths of tropical cumuli were lower than the trade wind cumuli. At both locations similar to 70% of the cloudy profiles were updrafts, while the average amount of updrafts near cloud base stronger than 1 m s(-1) was similar to 22% in tropical cumuli and similar to 12% in the trade wind cumuli. The mean in-cloud radar reflectivity within updrafts and mean updraft velocity was higher in tropical cumuli than the trade wind cumuli. Despite stronger vertical velocities and a higher number of strong updrafts, due to lower cloud fraction, the updraft mass flux was lower in the tropical cumuli compared to the trade wind cumuli. The observations suggest that the tropical and trade wind marine cumulus clouds differ significantly in their macrophysical and dynamical structures. C1 [Ghate, Virendra P.] Argonne Natl Lab, Div Environm Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. [Miller, Mark A.] Rutgers State Univ, Dept Environm Sci, New Brunswick, NJ 08903 USA. [Zhu, Ping] Florida Int Univ, Dept Earth Sci, University Pk, PA USA. RP Ghate, VP (reprint author), Argonne Natl Lab, Div Environm Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM vghate@anl.gov FU U.S. Department of Energy's (DOE) Atmospheric System Research (ASR), an Office of Science, Office of Biological and Environmental Research (BER) program [DE-AC02-06CH11357]; ASR [DE-FG02-08ER64531]; U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, Climate and Environmental Sciences Division (CESD) FX This work was primarily supported by the U.S. Department of Energy's (DOE) Atmospheric System Research (ASR), an Office of Science, Office of Biological and Environmental Research (BER) program, under Contract DE-AC02-06CH11357 awarded to Argonne National Laboratory. MAM was supported through ASR Grant DE-FG02-08ER64531 to Rutgers, The State University of New Jersey. Some of the data used in this study were obtained from the Atmospheric Radiation Measurement (ARM) Program sponsored by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, Climate and Environmental Sciences Division (CESD). The NCEP-NCAR reanalysis dataset was provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, from their website (http://www.esrl.noaa.gov/psd/). NR 52 TC 1 Z9 1 U1 2 U2 7 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0027-0644 EI 1520-0493 J9 MON WEATHER REV JI Mon. Weather Rev. PD FEB PY 2016 VL 144 IS 2 BP 681 EP 701 DI 10.1175/MWR-D-15-0110.1 PG 21 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DD2AQ UT WOS:000369725200001 ER PT J AU van Lier-Walqui, M Fridlind, AM Ackerman, AS Collis, S Helmus, J MacGorman, DR North, K Kollias, P Posselt, DJ AF van Lier-Walqui, Marcus Fridlind, Ann M. Ackerman, Andrew S. Collis, Scott Helmus, Jonathan MacGorman, Donald R. North, Kirk Kollias, Pavlos Posselt, Derek J. TI On Polarimetric Radar Signatures of Deep Convection for Model Evaluation: Columns of Specific Differential Phase Observed during MC3E SO MONTHLY WEATHER REVIEW LA English DT Article DE Circulation; Dynamics; Convective storms; Updrafts; Atm; Ocean Structure; Phenomena; Lightning; Rainfall; Observational techniques and algorithms; Radars; Radar observations; Mathematical and statistical techniques; Pattern detection ID SUPERCELL STORM; MICROPHYSICAL CHARACTERISTICS; PRECIPITATION PROCESSES; LIGHTNING OBSERVATIONS; MULTIPARAMETER RADAR; PROPAGATION PHASE; SQUALL LINE; IN-SITU; RAINFALL; SYSTEMS AB The representation of deep convection in general circulation models is in part informed by cloud-resolving models (CRMs) that function at higher spatial and temporal resolution; however, recent studies have shown that CRMs often fail at capturing the details of deep convection updrafts. With the goal of providing constraint on CRM simulation of deep convection updrafts, ground-based remote sensing observations are analyzed and statistically correlated for four deep convection events observed during the Midlatitude Continental Convective Clouds Experiment (MC3E). Since positive values of specific differential phase observed above the melting level are associated with deep convection updraft cells, so-called columns are analyzed using two scanning polarimetric radars in Oklahoma: the National Weather Service Vance WSR-88D (KVNX) and the Department of Energy C-band Scanning Atmospheric Radiation Measurement (ARM) Precipitation Radar (C-SAPR). KVNX and C-SAPR volumes and columns are then statistically correlated with vertical winds retrieved via multi-Doppler wind analysis, lightning flash activity derived from the Oklahoma Lightning Mapping Array, and KVNX differential reflectivity . Results indicate strong correlations of volume above the melting level with updraft mass flux, lightning flash activity, and intense rainfall. Analysis of columns reveals signatures of changing updraft properties from one storm event to another as well as during event evolution. Comparison of to shows commonalities in information content of each, as well as potential problems with associated with observational artifacts. C1 [van Lier-Walqui, Marcus] Columbia Univ, CCSR, 2880 Broadway, New York, NY 10027 USA. [van Lier-Walqui, Marcus; Fridlind, Ann M.; Ackerman, Andrew S.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Collis, Scott; Helmus, Jonathan] Argonne Natl Lab, Div Environm Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. [MacGorman, Donald R.] NOAA, Natl Severe Storms Lab, Norman, OK 73069 USA. [MacGorman, Donald R.] Cooperat Inst Mesoscale Meteorol Studies, Norman, OK USA. [North, Kirk; Kollias, Pavlos] McGill Univ, Montreal, PQ, Canada. [Posselt, Derek J.] Univ Michigan, Ann Arbor, MI 48109 USA. RP van Lier-Walqui, M (reprint author), Columbia Univ, CCSR, 2880 Broadway, New York, NY 10027 USA. EM marcus.vanlier-walqui@nasa.gov RI Measurement, Global/C-4698-2015; OI MacGorman, Donald/0000-0002-2395-8196; North, Kirk/0000-0002-1938-4046 FU Office of Science (BER), U.S. Department of Energy [DE-SC0006988]; U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, Climate and Environmental Sciences Division; U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research [DE-AC02-06CH11357]; Office of Biological and Environmental Research (OBER) of the U.S. Department of Energy (DOE) as part of the ARM Program FX This research was supported by the Office of Science (BER), U.S. Department of Energy, Award DE-SC0006988. MC3E data were obtained from the Atmospheric Radiation Measurement (ARM) Program sponsored by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, Climate and Environmental Sciences Division. Argonne National Laboratory's work was supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, under Contract DE-AC02-06CH11357. This work has been supported by the Office of Biological and Environmental Research (OBER) of the U.S. Department of Energy (DOE) as part of the ARM Program. The authors thank Scott Giangrande, Alexander Ryzhkov, and Matthew Kumjian for helpful discussions during preparation of this manuscript. NR 77 TC 1 Z9 1 U1 1 U2 7 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0027-0644 EI 1520-0493 J9 MON WEATHER REV JI Mon. Weather Rev. PD FEB PY 2016 VL 144 IS 2 BP 737 EP 758 DI 10.1175/MWR-D-15-0100.1 PG 22 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DD2AX UT WOS:000369725900002 ER PT J AU Burstein, D Amaro, F Zusman, T Lifshitz, Z Cohen, O Gilbert, JA Pupko, T Shuman, HA Segal, G AF Burstein, David Amaro, Francisco Zusman, Tal Lifshitz, Ziv Cohen, Ofir Gilbert, Jack A. Pupko, Tal Shuman, Howard A. Segal, Gil TI Genomic analysis of 38 Legionella species identifies large and diverse effector repertoires SO NATURE GENETICS LA English DT Article ID PNEUMOPHILA GENOME; LEGIONNAIRES-DISEASE; COXIELLA-BURNETII; PROTEINS; VIRULENCE; RAB1; PATHOGEN; SYSTEM; EXPLOITATION; ACQUISITION AB Infection by the human pathogen Legionella pneumophila relies on the translocation of 300 virulence proteins, termed effectors, which manipulate host cell processes. However, almost no information exists regarding effectors in other Legionella pathogens. Here we sequenced, assembled and characterized the genomes of 38 Legionella species and predicted their effector repertoires using a previously validated machine learning approach. This analysis identified 5,885 predicted effectors. The effector repertoires of different Legionella species were found to be largely non-overlapping, and only seven core effectors were shared by all species studied. Species-specific effectors had atypically low GC content, suggesting exogenous acquisition, possibly from the natural protozoan hosts of these species. Furthermore, we detected numerous new conserved effector domains and discovered new domain combinations, which allowed the inference of as yet undescribed effector functions. The effector collection and network of domain architectures described here can serve as a roadmap for future studies of effector function and evolution. C1 [Burstein, David; Cohen, Ofir; Pupko, Tal] Tel Aviv Univ, George S Wise Fac Life Sci, Dept Cell Res & Immunol, IL-69978 Tel Aviv, Israel. [Amaro, Francisco; Shuman, Howard A.] Univ Chicago, Dept Microbiol, Chicago, IL 60637 USA. [Zusman, Tal; Lifshitz, Ziv; Segal, Gil] Tel Aviv Univ, George S Wise Fac Life Sci, Dept Mol Microbiol & Biotechnol, IL-69978 Tel Aviv, Israel. [Gilbert, Jack A.] Univ Chicago, Argonne Natl Lab, Biol Div, Chicago, IL 60637 USA. [Gilbert, Jack A.] Univ Chicago, Dept Ecol & Evolut, 940 E 57Th St, Chicago, IL 60637 USA. [Burstein, David] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. [Amaro, Francisco] St Louis Univ Madrid Campus, Dept Nat Sci, Madrid, Spain. [Lifshitz, Ziv] Tel Aviv Univ, Tel Aviv Sourasky Med Ctr, Div Epidemiol, IL-69978 Tel Aviv, Israel. [Lifshitz, Ziv] Tel Aviv Univ, Tel Aviv Sourasky Med Ctr, Natl Ctr Antibiot Resistance, IL-69978 Tel Aviv, Israel. [Cohen, Ofir] Broad Inst Harvard & MIT, Cambridge, MA USA. RP Shuman, HA (reprint author), Univ Chicago, Dept Microbiol, Chicago, IL 60637 USA.; Segal, G (reprint author), Tel Aviv Univ, George S Wise Fac Life Sci, Dept Mol Microbiol & Biotechnol, IL-69978 Tel Aviv, Israel. EM hashuman@uchicago.edu; gils@tauex.tau.ac.il OI Pupko, Tal/0000-0001-9463-2575 FU National Institute of Allergy and Infectious Diseases [5RO1 AI23549]; Division of Biological Sciences of the University of Chicago; United States-Israel Binational Science Foundation [2013240]; Israel Science Foundation (ISF) [1092/13]; Edmond J. Safra Center for Bioinformatics at Tel Aviv University; Fulbright Commission; Ministry of Education of Spain FX We wish to thank E. Levy Karin for her kind help with some of the phylogenetic analyses. This work was supported by National Institute of Allergy and Infectious Diseases grant 5RO1 AI23549 (H.A.S.), and the costs of DNA sequencing were supported by startup funds from the Division of Biological Sciences of the University of Chicago (H.A.S.). This work was also supported in part by grant 2013240 from the United States-Israel Binational Science Foundation (G.S. and H.A.S.). T.P. was supported by Israel Science Foundation (ISF) grant 1092/13. D.B. was a fellow of the Converging Technologies Program of the Israeli Council for Higher Education. D.B. and T.P. were also supported by the Edmond J. Safra Center for Bioinformatics at Tel Aviv University. F.A. was supported by a postdoctoral fellowship from the Fulbright Commission and the Ministry of Education of Spain. NR 49 TC 14 Z9 15 U1 6 U2 14 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1061-4036 EI 1546-1718 J9 NAT GENET JI Nature Genet. PD FEB PY 2016 VL 48 IS 2 BP 167 EP 175 DI 10.1038/ng.3481 PG 9 WC Genetics & Heredity SC Genetics & Heredity GA DC2JV UT WOS:000369043900014 PM 26752266 ER PT J AU Gorkhover, T Schorb, S Coffee, R Adolph, M Foucar, L Rupp, D Aquila, A Bozek, JD Epp, SW Erk, B Gumprecht, L Holmegaard, L Hartmann, A Hartmann, R Hauser, G Holl, P Homke, A Johnsson, P Kimmel, N Kuhnel, KU Messerschmidt, M Reich, C Rouzee, A Rudek, B Schmidt, C Schulz, J Soltau, H Stern, S Weidenspointner, G White, B Kupper, J Struder, L Schlichting, I Ullrich, J Rolles, D Rudenko, A Moller, T Bostedt, C AF Gorkhover, Tais Schorb, Sebastian Coffee, Ryan Adolph, Marcus Foucar, Lutz Rupp, Daniela Aquila, Andrew Bozek, John D. Epp, Sascha W. Erk, Benjamin Gumprecht, Lars Holmegaard, Lotte Hartmann, Andreas Hartmann, Robert Hauser, Guenter Holl, Peter Hoemke, Andre Johnsson, Per Kimmel, Nils Kuehnel, Kai-Uwe Messerschmidt, Marc Reich, Christian Rouzee, Arnaud Rudek, Benedikt Schmidt, Carlo Schulz, Joachim Soltau, Heike Stern, Stephan Weidenspointner, Georg White, Bill Kuepper, Jochen Strueder, Lothar Schlichting, Ilme Ullrich, Joachim Rolles, Daniel Rudenko, Artem Moeller, Thomas Bostedt, Christoph TI Femtosecond and nanometre visualization of structural dynamics in superheated nanoparticles SO NATURE PHOTONICS LA English DT Article ID FREE-ELECTRON LASER; LATTICE-DYNAMICS; TIME; SCATTERING; EXPANSION; PLASMA; MATTER; VACUUM AB The ability to observe ultrafast structural changes in nanoscopic samples is essential for understanding non-equilibrium phenomena such as chemical reactions(1), matter under extreme conditions(2), ultrafast phase transitions(3) and intense light-matter interactions(4). Established imaging techniques are limited either in time or spatial resolution and typically require samples to be deposited on a substrate, which interferes with the dynamics. Here, we show that coherent X-ray diffraction images from isolated single samples can be used to visualize femtosecond electron density dynamics. We recorded X-ray snapshot images from a nanoplasma expansion, a prototypical non-equilibrium phenomenon(4,5). Single Xe clusters are superheated using an intense optical laser pulse and the structural evolution of the sample is imaged with a single X-ray pulse. We resolved ultrafast surface softening on the nanometre scale at the plasma/vacuum interface within 100 fs of the heating pulse. Our study is the first time-resolved visualization of irreversible femtosecond processes in free, individual nanometre-sized samples. C1 [Gorkhover, Tais; Schorb, Sebastian; Coffee, Ryan; Aquila, Andrew; Bozek, John D.; White, Bill; Bostedt, Christoph] SLAC Natl Accelerator Lab, Linac Coherent Light Source, Stanford, CA 94309 USA. [Gorkhover, Tais; Schorb, Sebastian; Adolph, Marcus; Rupp, Daniela; Moeller, Thomas] Tech Univ Berlin, Inst Opt & Atomare Phys, Hardenbergstr 36, D-10623 Berlin, Germany. [Coffee, Ryan; Bostedt, Christoph] PULSE Inst, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA. [Coffee, Ryan; Bostedt, Christoph] SLAC Natl Accelerator Lab, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA. [Foucar, Lutz; Epp, Sascha W.; Erk, Benjamin; Hoemke, Andre; Rudek, Benedikt; Schmidt, Carlo; Schlichting, Ilme; Ullrich, Joachim; Rolles, Daniel; Rudenko, Artem] Ctr Free Elect Laser Sci, Max Planck Adv Study Grp, Notkestr 85, D-22607 Hamburg, Germany. [Foucar, Lutz; Schlichting, Ilme; Rolles, Daniel] Max Planck Inst Med Res, Jahnstr 29, D-69120 Heidelberg, Germany. [Aquila, Andrew; Gumprecht, Lars; Holmegaard, Lotte; Schulz, Joachim; Stern, Stephan; Kuepper, Jochen] DESY, Ctr Free Elect Laser Sci CFEL, Notkestr 85, D-22607 Hamburg, Germany. [Aquila, Andrew; Schulz, Joachim] European XFEL GmbH, Albert Einstein Ring 19, D-22761 Hamburg, Germany. [Bozek, John D.; Rudenko, Artem] Synchrotron SOLEIL, BP 48 91192, Gif Sur Yvette, France. [Epp, Sascha W.; Erk, Benjamin; Hoemke, Andre; Kuehnel, Kai-Uwe; Rudek, Benedikt; Schmidt, Carlo; Ullrich, Joachim] Max Planck Inst Kernphys, Saupfercheckweg 1, D-69117 Heidelberg, Germany. [Erk, Benjamin] Photon Sci DESY, Notkestr 85, D-22607 Hamburg, Germany. [Holmegaard, Lotte] Aarhus Univ, Dept Chem, Langelandsgade 140, DK-8000 Aarhus C, Denmark. [Hartmann, Andreas; Hartmann, Robert; Holl, Peter; Reich, Christian; Soltau, Heike; Strueder, Lothar] PNSensor GmbH, Otto Hahn Ring 6, D-81739 Munich, Germany. [Hauser, Guenter; Kimmel, Nils; Weidenspointner, Georg] Max Planck Inst Extraterr Phys, Giessenbachstr, D-85741 Garching, Germany. [Johnsson, Per] Lund Univ, Dept Phys, POB 118, S-22100 Lund, Sweden. [Messerschmidt, Marc] Natl Sci Fdn BioXFEL Sci & Technol Ctr, 700 Ellicott St Buffalo, Buffalo, NY 14203 USA. [Rouzee, Arnaud] Max Born Inst, Max Born Str, D-12489 Berlin, Germany. [Rouzee, Arnaud] FOM Inst AMOLF, NL-1098 XG Amsterdam, Netherlands. [Rudek, Benedikt; Ullrich, Joachim] PTB, Bundesallee 100, D-38116 Braunschweig, Germany. [Stern, Stephan; Kuepper, Jochen] Univ Hamburg, Dept Phys, Luruper Chaussee 149, D-22761 Hamburg, Germany. [Stern, Stephan; Kuepper, Jochen] Univ Hamburg, Ctr Ultrafast Imaging, Luruper Chaussee 149, D-22761 Hamburg, Germany. [Weidenspointner, Georg] Max Planck Inst Halbleiterlabor, Otto Hahn Ring 6, D-81739 Munich, Germany. [Strueder, Lothar] Univ Siegen, Emmy Noether Campus,Walter Flex Str 3, D-57072 Siegen, Germany. [Rolles, Daniel; Rudenko, Artem] Kansas State Univ, JR Macdonald Lab, Manhattan, KS 66506 USA. [Bostedt, Christoph] Argonne Natl Lab, 9700 S Cass Ave, Lemont, IL 60439 USA. [Bostedt, Christoph] Northwestern Univ, Dept Phys & Astron, 2145 Sheridan Rd, Evanston, IL 60208 USA. RP Gorkhover, T; Bostedt, C (reprint author), SLAC Natl Accelerator Lab, Linac Coherent Light Source, Stanford, CA 94309 USA.; Gorkhover, T (reprint author), Tech Univ Berlin, Inst Opt & Atomare Phys, Hardenbergstr 36, D-10623 Berlin, Germany.; Bostedt, C (reprint author), PULSE Inst, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA.; Bostedt, C (reprint author), SLAC Natl Accelerator Lab, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA.; Bostedt, C (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Lemont, IL 60439 USA.; Bostedt, C (reprint author), Northwestern Univ, Dept Phys & Astron, 2145 Sheridan Rd, Evanston, IL 60208 USA. EM taisgork@slac.stanford.edu; cbostedt@anl.gov RI Kupper, Jochen/A-5564-2008; Johnsson, Per/A-5191-2010; Rudenko, Artem/C-7412-2009; Messerschmidt, Marc/F-3796-2010; Rupp, Daniela/P-7590-2016; Bozek, John/E-9260-2010; Rudek, Benedikt/A-5100-2017; OI Kupper, Jochen/0000-0003-4395-9345; Johnsson, Per/0000-0003-2135-0248; Rudenko, Artem/0000-0002-9154-8463; Messerschmidt, Marc/0000-0002-8641-3302; Bozek, John/0000-0001-7486-7238; Epp, Sascha/0000-0001-6366-9113 FU Peter Ewald fellowship from the Volkswagen Foundation; US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical, Geological and Biological Sciences [DE-AC02-06CH11357, DE-AC02-76SF00515, DE-FG02-86ER13491]; BMBF [05K10KT2, 05K13KT2, DFG BO3169/2-2]; Swedish Research Council; Swedish Foundation for Strategic Research; National Science Foundation [1231306]; Max Planck Society within the ASG at CFEL FX T.G. acknowledges a Peter Ewald fellowship from the Volkswagen Foundation. Parts of this research were carried out at the Linac Coherent Light Source (LCLS) at the SLAC National Accelerator Laboratory. LCLS is an Office of Science User Facility operated for the US Department of Energy Office of Science by Stanford University. This work is supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical, Geological and Biological Sciences (contract nos. DE-AC02-06CH11357 (C.B.), DE-AC02-76SF00515 (C.B. and R.C.) and DE-FG02-86ER13491 (D.Ro. and A.R.)). T.M. acknowledges financial support from BMBF projects 05K10KT2 and 05K13KT2 as well as DFG BO3169/2-2. P.J. acknowledges support from the Swedish Research Council and the Swedish Foundation for Strategic Research. M.M. acknowledges support from the National Science Foundation (award no. 1231306). The authors acknowledge the Max Planck Society for funding the development and operation of the CAMP instrument within the ASG at CFEL. The authors thank T. Fennel for discussions, and M. Swiggers, J.-C. Castagna and all LCLS staff for their help in setting up and performing the experiments. NR 31 TC 7 Z9 7 U1 10 U2 51 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1749-4885 EI 1749-4893 J9 NAT PHOTONICS JI Nat. Photonics PD FEB PY 2016 VL 10 IS 2 BP 93 EP + DI 10.1038/NPHOTON.2015.264 PG 6 WC Optics; Physics, Applied SC Optics; Physics GA DC6HT UT WOS:000369321400009 ER PT J AU Hamidian, MH Edkins, SD Kim, CK Davis, JC Mackenzie, AP Eisaki, H Uchida, S Lawler, MJ Kim, EA Sachdev, S Fujita, K AF Hamidian, M. H. Edkins, S. D. Kim, Chung Koo Davis, J. C. Mackenzie, A. P. Eisaki, H. Uchida, S. Lawler, M. J. Kim, E. -A. Sachdev, S. Fujita, K. TI Atomic-scale electronic structure of the cuprate d-symmetry form factor density wave state SO NATURE PHYSICS LA English DT Article ID HIGH-TEMPERATURE SUPERCONDUCTIVITY; CHARGE-STRIPE ORDER; HIGH-T-C; MOMENTUM AB Research on high-temperature superconducting cuprates is at present focused on identifying the relationship between the classic ` pseudogap' phenomenon(1,2) and the more recently investigated density wave state(3-13). This state is generally characterized by a wavevector Q parallel to the planar Cu-O-Cu bonds(4-13) along with a predominantly d-symmetry form factor(14-16) (dFF-DW). To identify the microscopic mechanism giving rise to this state(17-29), one must identify the momentum-space states contributing to the dFF-DW spectral weight, determine their particle-hole phase relationship about the Fermi energy, establish whether they exhibit a characteristic energy gap, and understand the evolution of all these phenomena throughout the phase diagram. Here we use energy-resolved sublattice visualization(14) of electronic structure and reveal that the characteristic energy of the dFF-DW modulations is actually the 'pseudogap' energy Delta 1. Moreover, we demonstrate that the dFF-DW modulations at E = -Delta(1) (filled states) occur with relative phaseffcompared to those at E = -Delta(1) (empty states). Finally, we show that the conventionally defined dFF-DW Q corresponds to scattering between the ` hot frontier' regions of momentum-space beyond which Bogoliubov quasiparticles cease to exist(30-32). These data indicate that the cuprate dFF-DW state involves particle-hole interactions focused at the pseudogap energy scale and between the four pairs of ` hot frontier' regions in momentum space where the pseudogap opens. C1 [Hamidian, M. H.; Edkins, S. D.; Davis, J. C.; Lawler, M. J.; Kim, E. -A.] Cornell Univ, Dept Phys, LASSP, Ithaca, NY 14853 USA. [Hamidian, M. H.; Sachdev, S.] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA. [Edkins, S. D.; Davis, J. C.; Mackenzie, A. P.] Univ St Andrews, Sch Phys & Astron, St Andrews KY16 9SS, Fife, Scotland. [Kim, Chung Koo; Davis, J. C.; Fujita, K.] Brookhaven Natl Lab, CMPMS Dept, Upton, NY 11973 USA. [Davis, J. C.] Cornell Univ, Kavli Inst Cornell Nanoscale Sci, Ithaca, NY 14853 USA. [Mackenzie, A. P.] Max Planck Inst Chem Phys Solids, D-01187 Dresden, Germany. [Eisaki, H.] Inst Adv Ind Sci & Technol, Tsukuba, Ibaraki 3058568, Japan. [Uchida, S.] Univ Tokyo, Dept Phys, Bunkyo Ku, Tokyo 1130033, Japan. [Lawler, M. J.] SUNY Binghamton, Dept Phys, Binghamton, NY 13902 USA. [Sachdev, S.] Perimeter Inst Theoret Phys, Waterloo, ON N2L 2Y5, Canada. RP Davis, JC (reprint author), Cornell Univ, Dept Phys, LASSP, Ithaca, NY 14853 USA.; Davis, JC (reprint author), Univ St Andrews, Sch Phys & Astron, St Andrews KY16 9SS, Fife, Scotland.; Davis, JC (reprint author), Brookhaven Natl Lab, CMPMS Dept, Upton, NY 11973 USA.; Davis, JC (reprint author), Cornell Univ, Kavli Inst Cornell Nanoscale Sci, Ithaca, NY 14853 USA. EM jcseamusdavis@gmail.com RI Lawler, Michael/K-6770-2012 OI Lawler, Michael/0000-0002-2319-2274 FU Center for Emergent Superconductivity, an Energy Frontier Research Center at Brookhaven National Laboratory; US Department of Energy [DE-2009-BNL-PM015]; Ministry of Science and Education (Japan); Global Centers of Excellence Program for Japan Society for the Promotion of Science; FlucTeam Program at Brookhaven National Laboratory [DE-AC02-98CH10886]; EPSRC through Programme Grant 'Topological Protection and Non-Equilibrium States in Correlated Electron Systems'; US Department of Energy, Office of Basic Energy Sciences, Division of Materials Science and Engineering [DE-SC0010313]; NSF [DMR-1103860]; Templeton Foundation; Government of Canada through Industry Canada; Province of Ontario through Ministry of Research and Innovation FX We acknowledge and thank H. Alloul, D. Chowdhury, R. Comin, A. Damascelli, E. Fradkin, D. Hawthorn, S. Hayden, J. E. Hoffman, M.-H. Julien, D. H. Lee, M. Norman and C. Pepin for helpful discussions and communications. We are especially grateful to S. A. Kivelson for key scientific discussions and advice. Experimental studies were supported by the Center for Emergent Superconductivity, an Energy Frontier Research Center, headquartered at Brookhaven National Laboratory and funded by the US Department of Energy under DE-2009-BNL-PM015, as well as by a Grant-in-Aid for Scientific Research from the Ministry of Science and Education (Japan) and the Global Centers of Excellence Program for Japan Society for the Promotion of Science. C.K.K. acknowledges support under the FlucTeam Program at Brookhaven National Laboratory (Contract DE-AC02-98CH10886). S. D. E., J. C. D. and A.P.M. acknowledge the support of EPSRC through the Programme Grant 'Topological Protection and Non-Equilibrium States in Correlated Electron Systems'. Theoretical studies at Cornell University were supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Science and Engineering under Award DE-SC0010313. Theoretical studies at Harvard University were supported by NSF Grant DMR-1103860 and by the Templeton Foundation. Research at Perimeter Institute is supported by the Government of Canada through Industry Canada and by the Province of Ontario through the Ministry of Research and Innovation. The data and/or materials supporting this publication can be accessed at http://dx.doi.org/10.17630/f17227bc-3045-40d6-b289-30a4c1a8966c. NR 40 TC 23 Z9 23 U1 14 U2 46 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1745-2473 EI 1745-2481 J9 NAT PHYS JI Nat. Phys. PD FEB PY 2016 VL 12 IS 2 BP 150 EP 156 DI 10.1038/NPHYS3519 PG 7 WC Physics, Multidisciplinary SC Physics GA DC6HB UT WOS:000369319500015 ER PT J AU Gilbert, I Lao, YY Carrasquillo, I O'Brien, L Watts, JD Manno, M Leighton, C Scholl, A Nisoli, C Schiffer, P AF Gilbert, Ian Lao, Yuyang Carrasquillo, Isaac O'Brien, Liam Watts, Justin D. Manno, Michael Leighton, Chris Scholl, Andreas Nisoli, Cristiano Schiffer, Peter TI Emergent reduced dimensionality by vertex frustration in artificial spin ice SO NATURE PHYSICS LA English DT Article ID SYSTEMS AB Reducing the dimensionality of a physical system can have a profound effect on its properties, as in the ordering of low-dimensional magnetic materials(1), phonon dispersion in mercury chain salts(2), sliding phases(3), and the electronic states of graphene(4). Here we explore the emergence of quasi-one-dimensional behaviour in two-dimensional artificial spin ice, a class of lithographically fabricated nanomagnet arrays used to study geometrical frustration(5-7). We extend the implementation of artificial spin ice by fabricating a new array geometry, the so-called tetris lattice(8) . We demonstrate that the ground state of the tetris lattice consists of alternating ordered and disordered bands of nanomagnetic moments. The disordered bands can be mapped onto an emergent thermal one-dimensional Ising model. Furthermore, we show that the level of degeneracy associated with these bands dictates the susceptibility of island moments to thermally induced reversals, thus establishing that vertex frustration can reduce the relevant dimensionality of physical behaviour in a magnetic system. C1 [Gilbert, Ian; Lao, Yuyang; Carrasquillo, Isaac; Schiffer, Peter] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Gilbert, Ian; Lao, Yuyang; Carrasquillo, Isaac; Schiffer, Peter] Univ Illinois, Frederick Seitz Mat Res Lab, Urbana, IL 61801 USA. [O'Brien, Liam; Watts, Justin D.; Manno, Michael; Leighton, Chris] Univ Minnesota, Dept Chem Engn & Mat Sci, 421 Washington Ave SE, Minneapolis, MN 55455 USA. [O'Brien, Liam] Univ Cambridge, Cavendish Lab, Dept Phys, Film Magnetism Grp, Cambridge CB3 0HE, England. [Watts, Justin D.] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA. [Scholl, Andreas] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Nisoli, Cristiano] Los Alamos Natl Lab, Div Theoret, MS B258, Los Alamos, NM 87545 USA. [Nisoli, Cristiano] Los Alamos Natl Lab, Ctr Nonlinear Studies, MS B258, Los Alamos, NM 87545 USA. RP Schiffer, P (reprint author), Univ Illinois, Dept Phys, Urbana, IL 61801 USA.; Schiffer, P (reprint author), Univ Illinois, Frederick Seitz Mat Res Lab, Urbana, IL 61801 USA. EM pschiffe@illinois.edu RI O'Brien, Liam/H-1994-2012; OI O'Brien, Liam/0000-0002-0136-8603; Gilbert, Ian/0000-0001-8259-0697; Nisoli, Cristiano/0000-0003-0053-1023 FU US Department of Energy, Office of Basic Energy Sciences, Materials Science and Engineering Division [DE-SC0010778]; US Department of Energy at LANL [DE-AC52-06NA253962]; National Science Foundation through UMN MRSEC [DMR-1420013]; EU Marie Curie IOF project [299376]; Office of Science, Office of Basic Energy Sciences of the US Department of Energy [DE-AC02-05CH11231] FX This work was funded by the US Department of Energy, Office of Basic Energy Sciences, Materials Science and Engineering Division under grant no. DE-SC0010778. The work of C.N. was carried out under the auspices of the US Department of Energy at LANL under contract no. DE-AC52-06NA253962. Work performed at the University of Minnesota (UMN) was supported by the National Science Foundation through the UMN MRSEC under award number DMR-1420013, as well as by EU Marie Curie IOF project no. 299376. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under contract no. DE-AC02-05CH11231. NR 30 TC 10 Z9 10 U1 13 U2 31 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1745-2473 EI 1745-2481 J9 NAT PHYS JI Nat. Phys. PD FEB PY 2016 VL 12 IS 2 BP 162 EP + DI 10.1038/NPHYS3520 PG 5 WC Physics, Multidisciplinary SC Physics GA DC6HB UT WOS:000369319500017 ER PT J AU Hu, XH Hong, L Smith, MD Neusius, T Cheng, XL Smith, JC AF Hu, Xiaohu Hong, Liang Smith, Micholas Dean Neusius, Thomas Cheng, Xiaolin Smith, Jeremy C. TI The dynamics of single protein molecules is non-equilibrium and self-similar over thirteen decades in time SO NATURE PHYSICS LA English DT Article ID ANOMALOUS DIFFUSION; NONERGODICITY; MODELS AB Internal motions of proteins are essential to their function. The time dependence of protein structural fluctuations is highly complex, manifesting subdiffusive, non-exponential behaviour with effective relaxation times existing over many decades in time, from ps up to similar to 10(2) s (refs 1-4). Here, using molecular dynamics simulations, we show that, on timescales from 10(-12) to 10(-5) s, motions in single proteins are self-similar, non-equilibrium and exhibit ageing. The characteristic relaxation time for a distance fluctuation, such as inter-domain motion, is observation-time-dependent, increasing in a simple, power-law fashion, arising from the fractal nature of the topology and geometry of the energy landscape explored. Diffusion over the energy landscape follows a non-ergodic continuous time random walk. Comparison with single-molecule experiments suggests that the non-equilibrium self-similar dynamical behaviour persists up to timescales approaching the in vivo lifespan of individual protein molecules. C1 [Hu, Xiaohu; Smith, Micholas Dean; Cheng, Xiaolin; Smith, Jeremy C.] Oak Ridge Natl Lab, Ctr Mol Biophys, Oak Ridge, TN 37830 USA. [Hu, Xiaohu] Univ Tennessee, Grad Sch Genome Sci & Technol, Knoxville, TN 37996 USA. [Hong, Liang] Shanghai Jiao Tong Univ, Inst Nat Sci, Shanghai 200240, Peoples R China. [Hong, Liang] Shanghai Jiao Tong Univ, Dept Phys & Astron, Shanghai 200240, Peoples R China. [Neusius, Thomas] Rhein Main Univ Appl Sci, Wiesbaden Business Sch, Bleichstr 44, D-65183 Wiesbaden, Germany. [Smith, Jeremy C.] Univ Tennessee, Dept Biochem & Cellular & Mol Biol, Knoxville, TN 37996 USA. RP Smith, JC (reprint author), Oak Ridge Natl Lab, Ctr Mol Biophys, Oak Ridge, TN 37830 USA.; Smith, JC (reprint author), Univ Tennessee, Dept Biochem & Cellular & Mol Biol, Knoxville, TN 37996 USA. EM smithjc@ornl.gov RI smith, jeremy/B-7287-2012; hong, liang/D-5647-2012; OI smith, jeremy/0000-0002-2978-3227; Hu, Xiaohu/0000-0002-4720-7848; Neusius, Thomas/0000-0002-5097-9064; Smith, Micholas/0000-0002-0777-7539 FU National Institutes of Health (NIH) [P41GM103712-S1]; Pittsburgh Supercomputing Center (PSC) [P41GM103712-S1]; Office of Science of the US Department of Energy [DE-AC05-00OR22725, DE-AC02-05CH11231]; NSF China [11504231] FX Anton computer time was provided by the National Center for Multiscale Modeling of Biological Systems (MMBioS) through Grant P41GM103712-S1 from the National Institutes of Health (NIH) and the Pittsburgh Supercomputing Center (PSC). The Anton machine at PSC was generously made available by D.E. Shaw Research. This research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of the US Department of Energy under Contract No. DE-AC05-00OR22725 and resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the US Department of Energy under Contract No. DE-AC02-05CH11231. L.H. acknowledges the support from NSF China 11504231. We thank I. M. Sokolov, A. P. Sokolov and F. Noe for fruitful discussions and T. Splettstosser (http://www.scistyle.com) for rendering the 3D protein structure shown in Fig. 1. NR 27 TC 20 Z9 20 U1 10 U2 24 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1745-2473 EI 1745-2481 J9 NAT PHYS JI Nat. Phys. PD FEB PY 2016 VL 12 IS 2 BP 171 EP 174 DI 10.1038/NPHYS3553 PG 4 WC Physics, Multidisciplinary SC Physics GA DC6HB UT WOS:000369319500019 ER PT J AU Hagen, G Ekstrom, A Forssen, C Jansen, GR Nazarewicz, W Papenbrock, T Wendt, KA Bacca, S Barnea, N Carlsson, B Drischler, C Hebeler, K Hjorth-Jensen, M Miorelli, M Orlandini, G Schwenk, A Simonis, J AF Hagen, G. Ekstroem, A. Forssen, C. Jansen, G. R. Nazarewicz, W. Papenbrock, T. Wendt, K. A. Bacca, S. Barnea, N. Carlsson, B. Drischler, C. Hebeler, K. Hjorth-Jensen, M. Miorelli, M. Orlandini, G. Schwenk, A. Simonis, J. TI Neutron and weak-charge distributions of the Ca-48 nucleus SO NATURE PHYSICS LA English DT Article ID ELECTRON-SCATTERING; CROSS-SECTIONS; GROUND-STATE; MONTE-CARLO; RADII; EQUATION; PHYSICS; FORCES AB What is the size of the atomic nucleus? This deceivably simple question is difficult to answer. Although the electric charge distributions in atomic nuclei were measured accurately already half a century ago, our knowledge of the distribution of neutrons is still deficient. In addition to constraining the size of atomic nuclei, the neutron distribution also impacts the number of nuclei that can exist and the size of neutron stars. We present an ab initio calculation of the neutron distribution of the neutron-rich nucleus Ca-48. We show that the neutron skin (difference between the radii of the neutron and proton distributions) is significantly smaller than previously thought. We also make predictions for the electric dipole polarizability and the weak form factor; both quantities that are at present targeted by precision measurements. Based on ab initio results for Ca-48, we provide a constraint on the size of a neutron star. C1 [Hagen, G.; Ekstroem, A.; Forssen, C.; Jansen, G. R.; Nazarewicz, W.; Papenbrock, T.; Wendt, K. A.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Hagen, G.; Ekstroem, A.; Forssen, C.; Jansen, G. R.; Papenbrock, T.; Wendt, K. A.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Forssen, C.; Carlsson, B.] Chalmers, Dept Fundamental Phys, SE-41296 Gothenburg, Sweden. [Nazarewicz, W.; Hjorth-Jensen, M.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Nazarewicz, W.; Hjorth-Jensen, M.] Michigan State Univ, NSCL FRIB, E Lansing, MI 48824 USA. [Nazarewicz, W.] Univ Warsaw, Fac Phys, Pasteura 5, PL-02093 Warsaw, Poland. [Bacca, S.] TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada. [Bacca, S.] Univ Manitoba, Dept Phys & Astron, Winnipeg, MB R3T 2N2, Canada. [Barnea, N.] Hebrew Univ Jerusalem, Racah Inst Phys, IL-91904 Jerusalem, Israel. [Drischler, C.; Hebeler, K.; Schwenk, A.; Simonis, J.] Tech Univ Darmstadt, Inst Kernphys, D-64289 Darmstadt, Germany. [Drischler, C.; Hebeler, K.; Schwenk, A.; Simonis, J.] GSI Helmholtzzentrum Schwerionenforsch GmbH, ExtreMe Matter Inst EMMI, D-64291 Darmstadt, Germany. [Hjorth-Jensen, M.] Univ Oslo, Dept Phys, N-0316 Oslo, Norway. [Miorelli, M.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z4, Canada. [Orlandini, G.] Univ Trento, Dipartimento Fis, I-38123 Trento, Italy. [Orlandini, G.] Ist Nazl Fis Nucl, TIFPA, I-38123 Trento, Italy. RP Hagen, G (reprint author), Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. EM hageng@ornl.gov RI Forssen, Christian/C-6093-2008; Barnea, Nir/F-8960-2011; OI Forssen, Christian/0000-0003-3458-0480; Barnea, Nir/0000-0001-8036-3052; Jansen, Gustav R./0000-0003-3558-0968 FU US Department of Energy, Office of Science, Office of Nuclear Physics [DEFG02-96ER40963, DOE-DE-SC0013365, DE-SC0008499, DE-SC0008511]; Field Work Proposal at Oak Ridge National Laboratory [ERKBP57]; National Science Foundation [1404159]; Swedish Foundation for International Cooperation in Research and Higher Education (STINT) [IG2012-5158]; European Research Council [ERC-StG-240603]; NSERC [2015-00031]; US-Israel Binational Science Foundation [2012212]; ERC [307986 STRONGINT]; Research Council of Norway [ISPFysikk/216699]; National Research Council Canada; Office of Science of the Department of Energy [DEAC05-00OR22725] FX We acknowledge discussions with C. Horowitz, J. Piekarewicz, P.-G. Reinhard and A. Steiner. This material is based on work supported by the US Department of Energy, Office of Science, Office of Nuclear Physics under Award Numbers DEFG02-96ER40963 (University of Tennessee), DOE-DE-SC0013365 (Michigan State University), DE-SC0008499 and DE-SC0008511 (NUCLEI SciDAC collaboration), the Field Work Proposal ERKBP57 at Oak Ridge National Laboratory and the National Science Foundation with award number 1404159. It was also supported by the Swedish Foundation for International Cooperation in Research and Higher Education (STINT, IG2012-5158), by the European Research Council (ERC-StG-240603), by NSERC Grant No. 2015-00031, by the US-Israel Binational Science Foundation (Grant No. 2012212), by the ERC Grant No. 307986 STRONGINT, and the Research Council of Norway under contract ISPFysikk/216699. TRIUMF receives funding via a contribution through the National Research Council Canada. Computer time was provided by the INCITE program. This research used resources of the Oak Ridge Leadership Computing Facility located at Oak Ridge National Laboratory, which is supported by the Office of Science of the Department of Energy under Contract No. DEAC05-00OR22725; and computing resources at the Julich Supercomputing Center. NR 64 TC 31 Z9 31 U1 5 U2 18 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1745-2473 EI 1745-2481 J9 NAT PHYS JI Nat. Phys. PD FEB PY 2016 VL 12 IS 2 BP 186 EP + DI 10.1038/NPHYS3529 PG 7 WC Physics, Multidisciplinary SC Physics GA DC6HB UT WOS:000369319500022 ER PT J AU Mertyurek, U Gauld, IC AF Mertyurek, Ugur Gauld, Ian C. TI Development of ORIGEN libraries for mixed oxide (MOX) fuel assembly designs SO NUCLEAR ENGINEERING AND DESIGN LA English DT Article ID ANALYSIS CAPABILITIES; NUCLEAR-DATA; SCALE 6; TECHNOLOGY; VALIDATION; DEPLETION; SCIENCE AB ORIGEN cross section libraries for reactor-grade mixed oxide (MOX) fuel assembly designs have been developed to provide fast and accurate depletion calculations to predict nuclide inventories, radiation sources and thermal decay heat information needed in safety evaluations and safeguards verification measurements of spent nuclear fuel. These ORIGEN libraries are generated using two-dimensional lattice physics assembly models that include enrichment zoning and cross section data based on ENDF/B-VII.O evaluations. Using the SCALE depletion sequence, burnup-dependent cross sections are created for selected commercial reactor assembly designs and a representative range of reactor operating conditions, fuel enrichments, and fuel burnup. The burnup dependent cross sections are then interpolated to provide problem-dependent cross sections for ORIGEN, avoiding the need for time-consuming lattice physics calculations. The ORIGEN libraries for MOX assembly designs are validated against destructive radiochemical assay measurements of MOX fuel from the MALIBU international experimental program. This program included measurements of MOX fuel from a 15 x 15 pressurized water reactor assembly and a 9 x 9 boiling water reactor assembly. The ORIGEN MOX libraries are also compared against detailed assembly calculations from the Phase IV-B numerical MOX fuel burnup credit benchmark coordinated by the Nuclear Energy Agency within the Organization for Economic Cooperation and Development. The nuclide compositions calculated by ORIGEN using the MOX libraries are shown to be in good agreement with other physics codes and with experimental data. Published by Elsevier B.V. C1 [Mertyurek, Ugur; Gauld, Ian C.] Oak Ridge Natl Lab, POB 2008, Oak Ridge, TN 37831 USA. RP Mertyurek, U; Gauld, IC (reprint author), Oak Ridge Natl Lab, POB 2008, Oak Ridge, TN 37831 USA. EM mertyureku@ornl.gov; gauldi@ornl.gov RI kiaie, robabeh/I-2157-2016; kiaie, fatemeh/I-6083-2016; OI kiaie, robabeh/0000-0001-5251-3201; Gauld, Ian/0000-0002-3893-7515 FU US Department of Energy's (DOE) National Nuclear Security Administration for the International Nuclear Safeguards and Engagement Program (INSEP) as part of the DOE-Euratom FX This work was supported under the US Department of Energy's (DOE) National Nuclear Security Administration for the International Nuclear Safeguards and Engagement Program (INSEP) as part of the DOE-Euratom cooperation agreement. The authors would like to thank Germina Ilas of Oak Ridge National Laboratory for her guidance in developing this report. NR 27 TC 0 Z9 0 U1 1 U2 4 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0029-5493 EI 1872-759X J9 NUCL ENG DES JI Nucl. Eng. Des. PD FEB PY 2016 VL 297 BP 220 EP 230 DI 10.1016/j.nucengdes.2015.11.027 PG 11 WC Nuclear Science & Technology SC Nuclear Science & Technology GA DC4CN UT WOS:000369167700023 ER PT J AU McLerran, L Schenke, B AF McLerran, Larry Schenke, Bjoern TI A tale of tails: Photon rates and flow in ultra-relativistic heavy ion collisions SO NUCLEAR PHYSICS A LA English DT Article DE Quark-gluon plasma; Electromagnetic probes ID QUARK-GLUON PLASMA; FINITE-TEMPERATURE; FIELD-THEORY; THERMALIZATION AB We consider the possibility that quark and gluon distributions in the medium created in high energy heavy ion collisions may be modified by a power law tail at energies much higher than the temperature. We parametrize such a tail by Tsallis distributions with an exponent motivated by phenomenology. These distributions are characterized by an effective temperature scale that we assume to evolve in time like the temperature for thermal distributions. We find that including such a tail increases the rates for photon production and significantly delays the emission times for photons of a fixed energy. We argue that these effects should modify photon yields and flow patterns in a way that will help the agreement of theoretical calculations with data from LHC and RHIC experiments. (C) 2015 Elsevier B.V. All rights reserved. C1 [McLerran, Larry; Schenke, Bjoern] Brookhaven Natl Lab, Dept Phys, Bdg 510A, Upton, NY 11973 USA. [McLerran, Larry] Cent China Normal Univ, Dept Phys, Wuhan, Peoples R China. RP Schenke, B (reprint author), Brookhaven Natl Lab, Dept Phys, Bdg 510A, Upton, NY 11973 USA. EM bschenke@quark.phy.bnl.gov FU Department of Energy [DE-SC0012704]; DOE Office of Science Early Career Award FX We thank Charles Gale and Krzysztof Redlich for very useful comments and Jean-Francois Paquet for providing the prompt photon yield. The authors are supported under Department of Energy Contract No. DE-SC0012704. BPS acknowledges a DOE Office of Science Early Career Award. NR 40 TC 5 Z9 5 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 EI 1873-1554 J9 NUCL PHYS A JI Nucl. Phys. A PD FEB PY 2016 VL 946 BP 158 EP 170 DI 10.1016/j.nuclphysa.2015.11.008 PG 13 WC Physics, Nuclear SC Physics GA DC4MI UT WOS:000369194600008 ER PT J AU Asakura, K Gando, A Gando, Y Hachiya, T Hayashida, S Ikeda, H Inoue, K Ishidoshiro, K Ishikawa, T Ishio, S Koga, M Matsuda, S Mitsui, T Motoki, D Nakamura, K Obara, S Otani, M Oura, T Shimizu, I Shirahata, Y Shirai, J Suzuki, A Tachibana, H Tamae, K Ueshima, K Watanabe, H Xu, BD Yoshida, H Kozlov, A Takemoto, Y Yoshida, S Fushimi, K Banks, TI Berger, BE Fujikawa, BK O'Donnell, T Winslow, LA Efremenko, Y Karwowski, HJ Markoff, DM Tornow, W Detwiler, JA Enomoto, S Decowski, MP AF Asakura, K. Gando, A. Gando, Y. Hachiya, T. Hayashida, S. Ikeda, H. Inoue, K. Ishidoshiro, K. Ishikawa, T. Ishio, S. Koga, M. Matsuda, S. Mitsui, T. Motoki, D. Nakamura, K. Obara, S. Otani, M. Oura, T. Shimizu, I. Shirahata, Y. Shirai, J. Suzuki, A. Tachibana, H. Tamae, K. Ueshima, K. Watanabe, H. Xu, B. D. Yoshida, H. Kozlov, A. Takemoto, Y. Yoshida, S. Fushimi, K. Banks, T. I. Berger, B. E. Fujikawa, B. K. O'Donnell, T. Winslow, L. A. Efremenko, Y. Karwowski, H. J. Markoff, D. M. Tornow, W. Detwiler, J. A. Enomoto, S. Decowski, M. P. TI Search for double-beta decay of Xe-136 to excited states of Ba-136 with the KamLAND-Zen experiment SO NUCLEAR PHYSICS A LA English DT Article DE Double-beta decay; Xe-136; Excited state AB A search for double-beta decays of Xe-136 to excited states of Ba-136 has been performed with the first phase data set of the KamLAND-Zen experiment. The 0(1)(+), 2(1)(+) and 2(2)(+) transitions of 0 nu beta beta decay were evaluated in an exposure of 89.5 kg. yr of Xe-136, while the same transitions of 2 nu beta beta decay were evaluated in an exposure of 61.8 kg. yr. No excess over background was found for all decay modes. The lower half-life limits of the 2(1)(+) state transitions of 0 nu beta beta and 2 nu beta beta decay were improved to T-1/2(0 nu) (0(+) -> 2(1)(+)) > 2.6 x 10(25) yr and T-1/2(2 nu)) (0(+) -> 2(1)(+)) > 4.6 x 10(23) yr (90% C.L.), respectively. We report on the first experimental lower half-life limits for the transitions to the 0(1)(+) Oil-state of Xe-136 for 0 nu beta beta and 2 nu beta beta decay. They are T-1/2(0 nu) (0(+) -> 0(1)(+)) > 2.4 x 10(25) yr and T-1/2(2 nu)(0(+) -> 0(1)(+)) > 8.3 x 10(23) yr (90% C.L.). The transitions to the 22 states are also evaluated for the first time to be T-1/2(0 nu) (0(+) -> 2(2)(+)) > 2.6 x 10(25) yr and T-1/2(2 nu) (0(+) -> 2(2)(+)) > 9.0 x 10(23) yr (90% C.L.). These results are compared to recent theoretical predictions. (C) 2015 Elsevier B.V. All rights reserved. C1 [Asakura, K.; Gando, A.; Gando, Y.; Hachiya, T.; Hayashida, S.; Ikeda, H.; Inoue, K.; Ishidoshiro, K.; Ishikawa, T.; Ishio, S.; Koga, M.; Matsuda, S.; Mitsui, T.; Motoki, D.; Nakamura, K.; Obara, S.; Otani, M.; Oura, T.; Shimizu, I.; Shirahata, Y.; Shirai, J.; Suzuki, A.; Tachibana, H.; Tamae, K.; Ueshima, K.; Watanabe, H.; Xu, B. D.; Yoshida, H.] Tohoku Univ, Res Ctr Neutrino Sci, Sendai, Miyagi 9808578, Japan. [Inoue, K.; Koga, M.; Nakamura, K.; Xu, B. D.; Kozlov, A.; Takemoto, Y.; Berger, B. E.; Fujikawa, B. K.; Efremenko, Y.; Tornow, W.; Detwiler, J. A.; Enomoto, S.; Decowski, M. P.] Univ Tokyo, Kavli Inst Phys & Math, Univ WPI, Univ Tokyo Inst Adv Study, Kashiwa, Chiba 2778583, Japan. [Yoshida, H.; Yoshida, S.] Osaka Univ, Grad Sch Sci, Toyonaka, Osaka 5600043, Japan. [Fushimi, K.] Univ Tokushima, Fac Integrated Arts & Sci, Tokushima 7708502, Japan. [Banks, T. I.; Berger, B. E.; Fujikawa, B. K.; O'Donnell, T.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Banks, T. I.; Berger, B. E.; Fujikawa, B. K.; O'Donnell, T.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Winslow, L. A.] MIT, Cambridge, MA 02139 USA. [Efremenko, Y.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Efremenko, Y.] Natl Res Nucl Univ, Moscow, Russia. [Karwowski, H. J.; Markoff, D. M.; Tornow, W.] Triangle Univ Nucl Lab, Durham, NC 27708 USA. [Karwowski, H. J.; Markoff, D. M.; Tornow, W.] Duke Univ, Dept Phys, Durham, NC 27706 USA. [Karwowski, H. J.; Markoff, D. M.; Tornow, W.] N Carolina Cent Univ, Dept Phys, Durham, NC USA. [Karwowski, H. J.; Markoff, D. M.; Tornow, W.] Univ N Carolina, Chapel Hill, NC USA. [Detwiler, J. A.; Enomoto, S.] Univ Washington, Ctr Expt Nucl Phys & Astrophys, Seattle, WA 98195 USA. [Decowski, M. P.] Nikhef Univ Amsterdam, Sci Pk, Amsterdam, Netherlands. [Otani, M.] High Energy Accelerator Res Org KEK, Tsukuba, Ibaraki, Japan. RP Gando, A (reprint author), Tohoku Univ, Res Ctr Neutrino Sci, Sendai, Miyagi 9808578, Japan. EM azusa@awa.tohoku.ac.jp FU JSPS KAKENHI [21000001, 26104002]; Stichting FOM in the Netherlands; U.S. Department of Energy (DOE) [DE-AC02-05CH11231]; DOE; NSF; NII FX The KamLAND-Zen experiment is supported by JSPS KAKENHI Grant Numbers 21000001 and 26104002; Stichting FOM in the Netherlands; and under the U.S. Department of Energy (DOE) Grant No. DE-AC02-05CH11231, as well as other DOE and NSF grants to individual institutions. The Kamioka Mining and Smelting Company has provided service for activities in the mine. We acknowledge the support of NII for SINET4. NR 19 TC 5 Z9 5 U1 1 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 EI 1873-1554 J9 NUCL PHYS A JI Nucl. Phys. A PD FEB PY 2016 VL 946 BP 171 EP 181 DI 10.1016/j.nuclphysa.2015.11.011 PG 11 WC Physics, Nuclear SC Physics GA DC4MI UT WOS:000369194600009 ER PT J AU Galea, A Dawkins, H Gandolfi, S Gezerlis, A AF Galea, Alexander Dawkins, Hillary Gandolfi, Stefano Gezerlis, Alexandros TI Diffusion Monte Carlo study of strongly interacting two-dimensional Fermi gases SO PHYSICAL REVIEW A LA English DT Article ID 2 DIMENSIONS; BOSE-CONDENSATION AB Ultracold atomic Fermi gases have been a popular topic of research, with attention being paid recently to two-dimensional (2D) gases. In this work, we perform T = 0 ab initio diffusion Monte Carlo calculations for a strongly interacting two-component Fermi gas confined to two dimensions. We first go over finite-size systems and the connection to the thermodynamic limit. After that, we illustrate pertinent 2D scattering physics and properties of the wave function. We then show energy results for the strong-coupling crossover, in between the Bose-Einstein condensation (BEC) and Bardeen-Cooper-Schrieffer (BCS) regimes. Our energy results for the BEC-BCS crossover are parametrized to produce an equation of state, which is used to determine Tan's contact. We carry out a detailed comparison with other microscopic results. Finally, we calculate the pairing gap for a range of interaction strengths in the strong coupling regime, following from variationally optimized many-body wave functions. C1 [Galea, Alexander; Dawkins, Hillary; Gezerlis, Alexandros] Univ Guelph, Dept Phys, Guelph, ON N1G 2W1, Canada. [Gandolfi, Stefano] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Dawkins, Hillary] Univ Waterloo, Dept Phys & Astron, Waterloo, ON N2L 3G1, Canada. RP Galea, A (reprint author), Univ Guelph, Dept Phys, Guelph, ON N1G 2W1, Canada. OI Gandolfi, Stefano/0000-0002-0430-9035 FU Natural Sciences and Engineering Research Council (NSERC) of Canada; Canada Foundation for Innovation (CFI); US Department of Energy, Office of Nuclear Physics [DE-AC52-06NA25396]; LANL LDRD program FX The authors would like to thank Hao Shi and Shiwei Zhang for useful discussions and for sharing the results of their calculations. This work was supported in part by the Natural Sciences and Engineering Research Council (NSERC) of Canada, the Canada Foundation for Innovation (CFI), the US Department of Energy, Office of Nuclear Physics, under Contract DE-AC52-06NA25396, and the LANL LDRD program. Computational resources were provided by SHAR-CNET, NERSC, and Los Alamos Open Supercomputing. NR 52 TC 5 Z9 5 U1 1 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9926 EI 2469-9934 J9 PHYS REV A JI Phys. Rev. A PD FEB 1 PY 2016 VL 93 IS 2 AR 023602 DI 10.1103/PhysRevA.93.023602 PG 9 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA DC6XY UT WOS:000369364100013 ER PT J AU Gertjerenken, B Kevrekidis, PG Carretero-Gonzalez, R Anderson, BP AF Gertjerenken, B. Kevrekidis, P. G. Carretero-Gonzalez, R. Anderson, B. P. TI Generating and manipulating quantized vortices on-demand in a Bose-Einstein condensate: A numerical study SO PHYSICAL REVIEW A LA English DT Article ID VORTEX DIPOLES; DYNAMICS; SOLITONS; GASES; DARK AB We numerically investigate an experimentally viable method for generating and manipulating on-demand several vortices in a highly oblate atomic Bose-Einstein condensate (BEC) in order to initialize complex vortex distributions for studies of vortex dynamics. The method utilizes moving laser beams to generate, capture, and transport vortices inside and outside the BEC. We examine in detail this methodology and show a wide parameter range of applicability for the prototypical two-vortex case, as well as case examples of producing and manipulating several vortices for which there is no net circulation, corresponding to equal numbers of positive and negative circulation vortices, and cases for which there is one net quantum of circulation. We find that the presence of dissipation can help stabilize the pinning of the vortices on their respective laser beam pinning sites. Finally, we illustrate how to utilize laser beams as repositories that hold large numbers of vortices and how to deposit individual vortices in a sequential fashion in the repositories in order to construct superfluid flows about the repository beams with several quanta of circulation. C1 [Gertjerenken, B.; Kevrekidis, P. G.] Univ Massachusetts Amherst, Dept Math & Stat, Amherst, MA 01003 USA. [Gertjerenken, B.] Carl von Ossietzky Univ Oldenburg, Inst Phys, D-26111 Oldenburg, Germany. [Kevrekidis, P. G.] Los Alamos Natl Lab, Ctr Nonlinear Studies, POB 1663, Los Alamos, NM 87544 USA. [Kevrekidis, P. G.] Los Alamos Natl Lab, Div Theoret, POB 1663, Los Alamos, NM 87544 USA. [Carretero-Gonzalez, R.] San Diego State Univ, Computat Sci Res Ctr, Nonlinear Dynam Syst Grp, San Diego, CA 92182 USA. [Carretero-Gonzalez, R.] San Diego State Univ, Dept Math & Stat, San Diego, CA 92182 USA. [Anderson, B. P.] Univ Arizona, Coll Opt Sci, Tucson, AZ 85721 USA. RP Gertjerenken, B (reprint author), Univ Massachusetts Amherst, Dept Math & Stat, Amherst, MA 01003 USA. RI Anderson, Brian/A-2286-2009 OI Anderson, Brian/0000-0002-0442-7867 FU European Union through FP7-PEOPLE-IRSES Grant [605096]; National Science Foundation [DMS-1312856, PHY-1205713]; Binational (US-Israel) Science Foundation [2010239]; US Department of Energy; DFG through its Major Research Instrumentation Programme (INST) [184/108-1 FUGG]; Ministry of Science and Culture (MWK) of the Lower Saxony State; [DMS-1309035] FX We would like to thank Q.-Y. Chen and Logan Richardson for discussions and numerical assistance during the early stages of this project. B.G. acknowledges support from the European Union through FP7-PEOPLE-2013-IRSES Grant No. 605096. P.G.K. acknowledges support from the National Science Foundation under Grant No. DMS-1312856, from the European Union through FP7-PEOPLE-2013-IRSES Grant No. 605096, and from the Binational (US-Israel) Science Foundation through Grant No. 2010239. R.C.G. acknowledges support from DMS-1309035. B.P.A. is supported by the National Science Foundation under Grant No. PHY-1205713. P.G.K.'s work at Los Alamos is supported in part by the US Department of Energy. The computations were performed on the HPC cluster HERO, located at the University of Oldenburg and funded by the DFG through its Major Research Instrumentation Programme (INST 184/108-1 FUGG), and by the Ministry of Science and Culture (MWK) of the Lower Saxony State. NR 49 TC 4 Z9 4 U1 2 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9926 EI 2469-9934 J9 PHYS REV A JI Phys. Rev. A PD FEB 1 PY 2016 VL 93 IS 2 AR 023604 DI 10.1103/PhysRevA.93.023604 PG 11 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA DC6XY UT WOS:000369364100015 ER PT J AU Li, X Haxton, DJ Gaarde, MB Schafer, KJ McCurdy, CW AF Li, X. Haxton, D. J. Gaarde, M. B. Schafer, K. J. McCurdy, C. W. TI Direct extraction of intense-field-induced polarization in the continuum on the attosecond time scale from transient absorption SO PHYSICAL REVIEW A LA English DT Article AB A procedure is suggested for using transient absorption spectroscopy above the ionization threshold to measure the polarization of the continuum induced by an intense optical pulse. In this way transient absorption measurement can be used to probe subfemtosecond intense field dynamics in atoms and molecules. The method is based on an approximation to the dependence of these spectra on time delay between an attosecond XUV probe pulse and an intense pump pulse that is tested over a wide range of intensities and time delays by all-electrons-active calculations using the multiconfiguration time-dependent Hartree-Fock method in the case of neon. C1 [Li, X.; Haxton, D. J.; McCurdy, C. W.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Gaarde, M. B.; Schafer, K. J.] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA. [McCurdy, C. W.] Univ Calif Davis, Dept Chem, Davis, CA 95616 USA. RP Li, X (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences [DE-AC02-05CH11231]; U.S. Department of Energy [DE-SC0007182]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-FG02-13ER16403] FX Work performed at Lawrence Berkeley National Laboratory was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, under Contract No. DE-AC02-05CH11231. Work at the University of California Davis was supported by the U.S. Department of Energy under Award No. DE-SC0007182. Work at Louisiana State University (LSU) was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Award No. DE-FG02-13ER16403. NR 30 TC 1 Z9 1 U1 2 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9926 EI 2469-9934 J9 PHYS REV A JI Phys. Rev. A PD FEB 1 PY 2016 VL 93 IS 2 AR 023401 DI 10.1103/PhysRevA.93.023401 PG 7 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA DC6XY UT WOS:000369364100011 ER PT J AU Lim, CCW AF Lim, Charles Ci Wen TI Optimality of semiquantum nonlocality in the presence of high inconclusive rates SO PHYSICAL REVIEW A LA English DT Article ID QUANTUM; STATES AB Quantum nonlocality is a counterintuitive phenomenon that lies beyond the purview of causal influences. Recently, Bell inequalities have been generalized to the case of quantum inputs, leading to a powerful family of semiquantum Bell inequalities that are capable of detecting any entangled state. Here, we focus on a different problem and investigate how the local indistinguishability of quantum inputs and postselection may affect the requirements to detect semiquantum nonlocality. To this end, we consider a semiquantum nonlocal game based on locally indistinguishable qubit inputs, and derive its postselected local and quantum bounds by using a connection to the local distinguishability of quantum states. Interestingly, we find that the postselected local bound is independent of the measurement efficiency, and the achievable postselected Bell violation increases with decreasing measurement efficiency. C1 [Lim, Charles Ci Wen] Oak Ridge Natl Lab, Computat Sci & Engn Div, Quantum Informat Sci Grp, Oak Ridge, TN 37831 USA. RP Lim, CCW (reprint author), Oak Ridge Natl Lab, Computat Sci & Engn Div, Quantum Informat Sci Grp, Oak Ridge, TN 37831 USA. OI Lim, Charles Ci Wen/0000-0002-2332-4126 FU UT-Battelle for the U.S. Department of Energy [DE-AC05-00OR22725]; laboratory directed research and development program FX We thank J.-D. Bancal, A. Martin, V. Scarani, D. Rosset, N. Gisin, H.-K. Lo, R. Thew, B. Qi, W. Grice, N. Johnston, and A. Cosentino for helpful discussions. This work was performed at Oak Ridge National Laboratory, operated by UT-Battelle for the U.S. Department of Energy under Contract No. DE-AC05-00OR22725. The author acknowledges support from the laboratory directed research and development program. NR 33 TC 3 Z9 4 U1 1 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9926 EI 2469-9934 J9 PHYS REV A JI Phys. Rev. A PD FEB 1 PY 2016 VL 93 IS 2 AR 020101 DI 10.1103/PhysRevA.93.020101 PG 5 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA DC6XY UT WOS:000369364100001 ER PT J AU Samson, EC Wilson, KE Newman, ZL Anderson, BP AF Samson, E. C. Wilson, K. E. Newman, Z. L. Anderson, B. P. TI Deterministic creation, pinning, and manipulation of quantized vortices in a Bose-Einstein condensate SO PHYSICAL REVIEW A LA English DT Article ID MAGNETIC-FIELD; DYNAMICS AB We experimentally and numerically demonstrate deterministic creation and manipulation of a pair of oppositely charged singly quantized vortices in a highly oblate Bose-Einstein condensate (BEC). Two identical blue-detuned, focused Gaussian laser beams that pierce the BEC serve as repulsive obstacles for the superfluid atomic gas; by controlling the positions of the beams within the plane of the BEC, superfluid flow is deterministically established around each beam such that two vortices of opposite circulation are generated by the motion of the beams, with each vortex pinned to the in situ position of a laser beam. We study the vortex creation process, and show that the vortices can be moved about within the BEC by translating the positions of the laser beams. This technique can serve as a building block in future experimental techniques to create, on-demand, deterministic arrangements of few or many vortices within a BEC for precise studies of vortex dynamics and vortex interactions. C1 [Samson, E. C.; Wilson, K. E.; Newman, Z. L.; Anderson, B. P.] Univ Arizona, Ctr Opt Sci, Tucson, AZ 85721 USA. [Samson, E. C.] Los Alamos Natl Lab, Div Phys, Los Alamos, NM 87545 USA. [Wilson, K. E.] Heriot Watt Univ, Sch Engn & Phys Sci, David Brewster Bldg, Edinburgh EH14 4AS, Midlothian, Scotland. RP Samson, EC (reprint author), Univ Arizona, Ctr Opt Sci, Tucson, AZ 85721 USA. EM bpa@optics.arizona.edu RI Samson, E. Carlo/A-3642-2013; Anderson, Brian/A-2286-2009 OI Samson, E. Carlo/0000-0003-4250-0751; Anderson, Brian/0000-0002-0442-7867 FU US National Science Foundation [PHY-0855677, PHY-1205713]; Department of Energy Office of Science Graduate Fellowship Program; ORISE-ORAU [DE-AC05-06OR23100]; University of Arizona TRIF Program FX This research was supported by Grants No. PHY-0855677 and PHY-1205713 from the US National Science Foundation. K.E.W. acknowledges support from the Department of Energy Office of Science Graduate Fellowship Program, administered by ORISE-ORAU under Contract No. DE-AC05-06OR23100. Z.L.N. acknowledges partial support from the University of Arizona TRIF Program. We thank R. Carretero-Gonzalez and P.G. Kevrekidis for a critical reading of the manuscript. NR 44 TC 3 Z9 3 U1 3 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9926 EI 2469-9934 J9 PHYS REV A JI Phys. Rev. A PD FEB 1 PY 2016 VL 93 IS 2 AR 023603 DI 10.1103/PhysRevA.93.023603 PG 8 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA DC6XY UT WOS:000369364100014 ER PT J AU Dressel, M Lazic, P Pustogow, A Zhukova, E Gorshunov, B Schlueter, JA Milat, O Gumhalter, B Tomic, S AF Dressel, M. Lazic, P. Pustogow, A. Zhukova, E. Gorshunov, B. Schlueter, J. A. Milat, O. Gumhalter, B. Tomic, S. TI Lattice vibrations of the charge-transfer salt kappa-(BEDT-TTF)(2)Cu-2(CN)(3): Comprehensive explanation of the electrodynamic response in a spin-liquid compound SO PHYSICAL REVIEW B LA English DT Article ID INITIO MOLECULAR-DYNAMICS; TOTAL-ENERGY CALCULATIONS; AUGMENTED-WAVE METHOD; ORGANIC SUPERCONDUCTOR; AMBIENT-PRESSURE; BASIS-SET; METALS; STATE; CONDUCTORS; PHYSICS AB The dimer Mott insulator kappa-(BEDT-TTF)(2)Cu-2(CN)(3) exhibits unusual electrodynamic properties. Numerical investigations of the electronic ground state and the molecular and lattice vibrations reveal the importance of the Cu-2(CN)(3)(-) anion network coupled to the bis(ethylenedithio) tetrathiafulvalene (BEDT-TTF) molecules: The threefold cyanide coordination of copper and linkage isomerism in the anion structure cause a loss of symmetry, frustration, disorder, and domain formation. Our findings consistently explain the temperature and polarization-dependent THz and infrared measurements, reinforce the understanding of dielectric properties, and have important implications for the quantum spin-liquid state, which should be treated beyond two-dimensional, purely electronic models. C1 [Dressel, M.; Pustogow, A.; Zhukova, E.; Gorshunov, B.] Univ Stuttgart, Inst Phys 1, Pfaffenwaldring 57, D-70550 Stuttgart, Germany. [Lazic, P.] Rudjer Boskovic Inst, Bijenicka Cesta 54, HR-10000 Zagreb, Croatia. [Zhukova, E.; Gorshunov, B.] Russian Acad Sci, AM Prokhorov Gen Phys Inst, Moscow 119991, Russia. [Zhukova, E.; Gorshunov, B.] State Univ, Moscow Inst Phys & Technol, Dolgoprudnyi 141700, Moscow Region, Russia. [Schlueter, J. A.] Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. [Milat, O.; Gumhalter, B.; Tomic, S.] Inst Fiziku, POB 304, HR-10001 Zagreb, Croatia. RP Dressel, M (reprint author), Univ Stuttgart, Inst Phys 1, Pfaffenwaldring 57, D-70550 Stuttgart, Germany. RI Dressel, Martin/D-3244-2012; Tomic, Silvia/D-5466-2011; Zhukova, Elena/M-6761-2013; Gorshunov, Boris/J-3928-2013 OI Zhukova, Elena/0000-0002-5482-9477; Gorshunov, Boris/0000-0001-8882-3930 FU Deutsche Forschungsgemeinschaft (DFG); Deutscher Akademischer Austauschdienst (DAAD) - Ministry of Science, Education and Sports of the Republic of Croatia (MSES); Russian Ministry of Education and Science; Croatian Science Foundation [IP-2013-11-1011] FX We would like to thank P. Foury, V. Ilakovac, J.-P. Pouget, and G. Saito for many enlightening discussions. We acknowledge financial support by the Deutsche Forschungsgemeinschaft (DFG), Deutscher Akademischer Austauschdienst (DAAD) - Ministry of Science, Education and Sports of the Republic of Croatia (MSES) bilateral cooperation, the Russian Ministry of Education and Science (Program 5 top 100), and the Croatian Science Foundation Project IP-2013-11-1011. NR 60 TC 5 Z9 5 U1 9 U2 26 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD FEB 1 PY 2016 VL 93 IS 8 AR 081201 DI 10.1103/PhysRevB.93.081201 PG 5 WC Physics, Condensed Matter SC Physics GA DC7LU UT WOS:000369402400002 ER PT J AU Kaluarachchi, US Taufour, V Bohmer, AE Tanatar, MA Bud'ko, SL Kogan, VG Prozorov, R Canfield, PC AF Kaluarachchi, Udhara S. Taufour, Valentin Boehmer, Anna E. Tanatar, Makariy A. Bud'ko, Sergey L. Kogan, Vladimir G. Prozorov, Ruslan Canfield, Paul C. TI Nonmonotonic pressure evolution of the upper critical field in superconducting FeSe SO PHYSICAL REVIEW B LA English DT Article ID HIGH-TEMPERATURE SUPERCONDUCTIVITY; IRON; DEPENDENCE AB The pressure dependence of the upper critical field, H-c2,H-c, of single crystalline FeSe was studied using measurements of the interplane resistivity, rho(c), in magnetic fields parallel to tetragonal c axis. H-c2,H-c(T) curves obtained under hydrostatic pressures up to 1.56 GPa, the range over which the superconducting transition temperature, T-c, of FeSe exhibits a nonmonotonic dependence with local maximum at p(1) approximate to 0.8 GPa and local minimum at p(2) approximate to 1.2GPa. The slope of the upper critical field at T-c, (dH(c2,c)/dT)T-c, also exhibits a nonmonotonic pressure dependence with distinct changes at p(1) and p(2). For p < p(1) the slope can be described within a multiband orbital model. For both p(1) < p < p(2) and p > p(2) the slope is in good semiquantitative agreement with a single band, orbital Helfand-Werthamer theory with Fermi velocities determined from Shubnikov-de Haas measurements. This finding indicates that Fermi surface changes are responsible for the local minimum of T-c(p) at p(2) approximate to 1.2 GPa. C1 [Kaluarachchi, Udhara S.; Taufour, Valentin; Boehmer, Anna E.; Tanatar, Makariy A.; Bud'ko, Sergey L.; Kogan, Vladimir G.; Prozorov, Ruslan; Canfield, Paul C.] Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. [Kaluarachchi, Udhara S.; Tanatar, Makariy A.; Bud'ko, Sergey L.; Prozorov, Ruslan; Canfield, Paul C.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Kaluarachchi, US (reprint author), Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA.; Kaluarachchi, US (reprint author), Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. FU Ames Laboratory, U.S. DOE [DE-AC02-07CH11358]; Critical Material Institute, an Energy Innovation Hub - U.S. DOE, Office of Energy Efficiency and Renewal Energy, Advanced Manufacturing Office FX We would like to thank A. Kreyssig and T. Kong for useful discussions and T. Terashima for sharing his quantum oscillation data for the comparison in this study. This work was carried out at the Iowa State University and supported by the Ames Laboratory, U.S. DOE, under Contract No. DE-AC02-07CH11358. V.T. is partially supported by Critical Material Institute, an Energy Innovation Hub funded by U.S. DOE, Office of Energy Efficiency and Renewal Energy, Advanced Manufacturing Office. NR 39 TC 6 Z9 6 U1 10 U2 26 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD FEB 1 PY 2016 VL 93 IS 6 AR 064503 DI 10.1103/PhysRevB.93.064503 PG 5 WC Physics, Condensed Matter SC Physics GA DC7JD UT WOS:000369395100010 ER PT J AU Shen, Y Wang, QS Hao, YQ Pan, BY Feng, Y Huang, QZ Harriger, LW Leao, JB Zhao, Y Chisnell, RM Lynn, JW Cao, HB Hu, JP Zhao, J AF Shen, Yao Wang, Qisi Hao, Yiqing Pan, Bingying Feng, Yu Huang, Qingzhen Harriger, L. W. Leao, J. B. Zhao, Yang Chisnell, R. M. Lynn, J. W. Cao, Huibo Hu, Jiangping Zhao, Jun TI Structural and magnetic phase diagram of CrAs and its relationship with pressure-induced superconductivity SO PHYSICAL REVIEW B LA English DT Article ID TRANSITION; ANTIFERROMAGNETISM; FERROMAGNETISM; CHROMIUM; TRIPLET; PHYSICS; URHGE AB We use neutron diffraction to study the structure and magnetic phase diagram of the newly discovered pressure-induced superconductor CrAs. Unlike most magnetic unconventional superconductors where the magnetic moment direction barely changes upon doping, here we show that CrAs exhibits a spin reorientation from the ab plane to the ac plane, along with an abrupt drop of the magnetic propagation vector at a critical pressure (P-c approximate to 0.6 GPa). This magnetic phase transition, accompanied by a lattice anomaly, coincides with the emergence of bulk superconductivity. With further increasing pressure, the magnetic order completely disappears near the optimal T-c regime (P approximate to 0.94 GPa). Moreover, the Cr magnetic moments tend to be aligned antiparallel between nearest neighbors with increasing pressure toward the optimal superconductivity regime. Our findings suggest that the noncollinear helimagnetic order is strongly coupled to structural and electronic degrees of freedom, and that the antiferromagnetic correlations between nearest neighbors might be essential for superconductivity. C1 [Shen, Yao; Wang, Qisi; Hao, Yiqing; Pan, Bingying; Feng, Yu; Zhao, Jun] Fudan Univ, State Key Lab Surface Phys, Shanghai 200433, Peoples R China. [Shen, Yao; Wang, Qisi; Hao, Yiqing; Pan, Bingying; Feng, Yu; Zhao, Jun] Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China. [Huang, Qingzhen; Harriger, L. W.; Leao, J. B.; Zhao, Yang; Chisnell, R. M.; Lynn, J. W.] NIST, NIST Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Zhao, Yang] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA. [Cao, Huibo] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. [Hu, Jiangping] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China. [Hu, Jiangping] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA. [Zhao, Jun] Fudan Univ, Collaborat Innovat Ctr Adv Microstruct, Shanghai 200433, Peoples R China. RP Zhao, J (reprint author), Fudan Univ, State Key Lab Surface Phys, Shanghai 200433, Peoples R China.; Zhao, J (reprint author), Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China. EM zhaoj@fudan.edu.cn RI Hu, Jiangping/A-9154-2010; Zhao, Jun/A-2492-2010 OI Hu, Jiangping/0000-0003-4480-1734; Zhao, Jun/0000-0002-0421-8934 FU National Natural Science Foundation of China [91421106, 11374059]; Ministry of Science and Technology of China (973 project) [2015CB921302]; Shanghai Pujiang Scholar Program [13PJ1401100]; Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy FX This work is supported by the National Natural Science Foundation of China (No. 91421106 and No. 11374059), the Ministry of Science and Technology of China (973 project: 2015CB921302), and the Shanghai Pujiang Scholar Program (No. 13PJ1401100). H.C. received support from the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy. NR 30 TC 3 Z9 3 U1 18 U2 45 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD FEB 1 PY 2016 VL 93 IS 6 AR 060503 DI 10.1103/PhysRevB.93.060503 PG 6 WC Physics, Condensed Matter SC Physics GA DC7JD UT WOS:000369395100003 ER PT J AU Stavrou, E Yao, YS Goncharov, AF Konopkova, Z Raptis, C AF Stavrou, Elissaios Yao, Yansun Goncharov, Alexander F. Konopkova, Zuzana Raptis, Constantine TI High-pressure structural study of MnF2 SO PHYSICAL REVIEW B LA English DT Article ID PHASE-TRANSITION SEQUENCE; AUGMENTED-WAVE METHOD; RUTILE-TYPE; CRYSTAL; POLYMORPHISM; DIFLUORIDES; DIOXIDES; SPECTRA; SILICA; MODULI AB Manganese fluoride (MnF2) with the tetragonal rutile-type structure has been studied using a synchrotron angle-dispersive powder x-ray diffraction and Raman spectroscopy in a diamond anvil cell up to 60 GPa at room temperature combined with first-principles density functional calculations. The experimental data reveal two pressure-induced structural phase transitions with the following sequence: rutile. SrI2 type (3 GPa). alpha-PbCl2 type (13 GPa). Complete structural information, including interatomic distances, has been determined in the case of MnF2 including the exact structure of the debated first high-pressure phase. First-principles density functional calculations confirm this phase transition sequence, and the two calculated transition pressures are in excellent agreement with the experiment. Lattice dynamics calculations also reproduce the experimental Raman spectra measured for the ambient and high-pressure phases. The results are discussed in line with the possible practical use of rutile-type fluorides in general and specifically MnF2 as a model compound to reveal the HP structural behavior of rutile-type SiO2 (Stishovite). C1 [Stavrou, Elissaios; Goncharov, Alexander F.] Carnegie Inst Sci, Geophys Lab, Washington, DC USA. [Stavrou, Elissaios] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, POB 808 L-350, Livermore, CA 94550 USA. [Yao, Yansun] Univ Saskatchewan, Dept Phys & Engn Phys, Saskatoon, SK S7N 5E2, Canada. [Yao, Yansun] Canadian Light Source, Saskatoon, SK S7N 2V3, Canada. [Goncharov, Alexander F.] Chinese Acad Sci, Key Lab Mat Phys, Hefei 230031, Peoples R China. [Goncharov, Alexander F.] Chinese Acad Sci, Inst Solid State Phys, Ctr Energy Matter Extreme Environm, Hefei 230031, Peoples R China. [Konopkova, Zuzana] DESY Photon Sci, D-22607 Hamburg, Germany. [Raptis, Constantine] Natl Tech Univ Athens, Dept Phys, GR-15780 Athens, Greece. RP Stavrou, E (reprint author), Carnegie Inst Sci, Geophys Lab, Washington, DC USA.; Stavrou, E (reprint author), Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, POB 808 L-350, Livermore, CA 94550 USA. EM stavrou1@llnl.gov RI Yao, Yansun/G-3822-2012 FU U.S. Department of Energy by Lawrence Livermore National Security, LLC [DE-AC52-07NA27344]; DARPA [W31P4Q1310005, W31P4Q1210008]; Natural Sciences and Engineering Research Council of Canada (NSERC); European Community's Seventh Framework Programme FP7 [312284] FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Security, LLC under Contract No. DE-AC52-07NA27344. This work was supported by the DARPA (Grant No. W31P4Q1310005 and No. W31P4Q1210008). The work at the University of Saskatchewan was supported by Natural Sciences and Engineering Research Council of Canada (NSERC). Y.Y. gratefully acknowledges the Information and Communications Technology group at the University of Saskatchewan for providing computing resources. Portions of this research were carried out at the light source PETRA III at DESY, a member of the Helmholtz Association (HGF). The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/20072013) under Grant No. 312284. NR 42 TC 2 Z9 2 U1 9 U2 27 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD FEB 1 PY 2016 VL 93 IS 5 AR 054101 DI 10.1103/PhysRevB.93.054101 PG 8 WC Physics, Condensed Matter SC Physics GA DC7HJ UT WOS:000369390100001 ER PT J AU Wilson, MN Williams, TJ Cai, YP Hallas, AM Medina, T Munsie, TJ Cheung, SC Frandsen, BA Liu, L Uemura, YJ Luke, GM AF Wilson, M. N. Williams, T. J. Cai, Y. -P. Hallas, A. M. Medina, T. Munsie, T. J. Cheung, S. C. Frandsen, B. A. Liu, L. Uemura, Y. J. Luke, G. M. TI Antiferromagnetism and hidden order in isoelectronic doping of URu2Si2 SO PHYSICAL REVIEW B LA English DT Article ID ELECTRON SUPERCONDUCTOR URU2SI2; HEAVY-FERMION SYSTEMS; COMPOUND URU2SI2; NEUTRON-SCATTERING; MAGNETIC ORDER; MU-SR; PRESSURE; TRANSITION; SUBSTITUTIONS; TEMPERATURE AB We present muon spin rotation (mu SR) and susceptibility measurements on single crystals of isoelectronically doped URu2-xTxSi2 (T = Fe, Os) for doping levels up to 50%. Zero field (ZF) mu SR measurements show long-lived oscillations demonstrating that an antiferromagnetic state exists down to low doping levels for both Os and Fe dopants. The measurements further show an increase in the internal field with doping for both Fe and Os. Comparison of the local moment-hybridization crossover temperature from susceptibility measurements and our magnetic transition temperature shows that changes in hybridization, rather than solely chemical pressure, are important in driving the evolution of magnetic order with doping. C1 [Wilson, M. N.; Cai, Y. -P.; Hallas, A. M.; Medina, T.; Munsie, T. J.; Luke, G. M.] McMaster Univ, Dept Phys & Astron, Hamilton, ON L8S 4M1, Canada. [Williams, T. J.] Oak Ridge Natl Lab, Neutron Sci Directorate, Quantum Condensed Matter Div, Oak Ridge, TN 37831 USA. [Cheung, S. C.; Frandsen, B. A.; Liu, L.; Uemura, Y. J.] Columbia Univ, Dept Phys, 538 W 120th St, New York, NY 10027 USA. [Luke, G. M.] Canadian Inst Adv Res, Toronto, ON M5G 1Z7, Canada. RP Wilson, MN (reprint author), McMaster Univ, Dept Phys & Astron, Hamilton, ON L8S 4M1, Canada. RI Luke, Graeme/A-9094-2010; Williams, Travis/A-5061-2016 OI Williams, Travis/0000-0003-3212-2726 FU Natural Sciences and Engineering Research Council of Canada; Canadian Foundation for Innovation; Alexander Graham Bell Canada Graduate Scholarship program; Wigner Fellowship program at Oak Ridge National Laboratory; Vanier Canada Graduate Scholarship program; Canadian Institute for Advanced Research; NSF [DMR-1436095, OISE-0968226]; JAEA Reimei project; Friends of U Tokyo, Inc. FX We thank Dr. G. D. Morris, Dr. B. S. Hitti and Dr. D. J. Arseneau (TRIUMF) for their assistance with the mu SR measurements. Work at McMaster university was supported by the Natural Sciences and Engineering Research Council of Canada and the Canadian Foundation for Innovation. M.N.W. acknowledges support from the Alexander Graham Bell Canada Graduate Scholarship program. T.J.W. acknowledges support from the Wigner Fellowship program at Oak Ridge National Laboratory. A.M.H. acknowledges support from the Vanier Canada Graduate Scholarship program. G.M.L. acknowledges support from the Canadian Institute for Advanced Research. The Columbia University group acknowledges support from NSF DMR-1436095 (DMREF) and OISE-0968226 (PIRE), JAEA Reimei project, and Friends of U Tokyo, Inc. NR 45 TC 3 Z9 3 U1 6 U2 24 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD FEB 1 PY 2016 VL 93 IS 6 AR 064402 DI 10.1103/PhysRevB.93.064402 PG 9 WC Physics, Condensed Matter SC Physics GA DC7JD UT WOS:000369395100007 ER PT J AU Xu, Y Dong, JK Lum, IK Zhang, J Hong, XC He, LP Wang, KF Ma, YC Petrovic, C Maple, MB Shu, L Li, SY AF Xu, Y. Dong, J. K. Lum, I. K. Zhang, J. Hong, X. C. He, L. P. Wang, K. F. Ma, Y. C. Petrovic, C. Maple, M. B. Shu, L. Li, S. Y. TI Universal heat conduction in Ce1-xYbxCoIn5: Evidence for robust nodal d-wave superconducting gap SO PHYSICAL REVIEW B LA English DT Article ID FERMION SUPERCONDUCTIVITY; KONDO-LATTICE; UNCONVENTIONAL SUPERCONDUCTIVITY; THERMAL-CONDUCTIVITY; CECOIN5; STATES AB In the heavy-fermion superconductor Ce1-xYbxCoIn5, Yb doping was reported to cause a possible change from nodal d-wave superconductivity to a fully gapped d-wave molecular superfluid of composite pairs near x approximate to 0.07 (nominal value x(nom) = 0.2). Here we present systematic thermal conductivity measurements on Ce1-xYbxCoIn5 (x = 0.013, 0.084, and 0.163) single crystals. The observed finite residual linear term kappa(0)/T is insensitive to Yb doping, verifying the universal heat conduction of the nodal d-wave superconducting gap in Ce1-xYbxCoIn5. Similar universal heat conduction is also observed in the CeCo(In1-yCdy)(5) system. These results reveal a robust nodal d-wave gap in CeCoIn5 upon Yb or Cd doping. C1 [Xu, Y.; Dong, J. K.; Zhang, J.; Hong, X. C.; He, L. P.; Shu, L.; Li, S. Y.] Fudan Univ, State Key Lab Surface Phys, Shanghai 200433, Peoples R China. [Xu, Y.; Dong, J. K.; Zhang, J.; Hong, X. C.; He, L. P.; Shu, L.; Li, S. Y.] Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China. [Dong, J. K.; Li, S. Y.] Fudan Univ, Adv Mat Lab, Shanghai 200433, Peoples R China. [Lum, I. K.; Maple, M. B.] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. [Lum, I. K.; Maple, M. B.] Univ Calif San Diego, Ctr Adv Nanosci, La Jolla, CA 92093 USA. [Wang, K. F.; Ma, Y. C.; Petrovic, C.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Shu, L.; Li, S. Y.] Fudan Univ, Collaborat Innovat Ctr Adv Microstruct, Shanghai 200433, Peoples R China. [Wang, K. F.] Univ Maryland, Dept Phys, CNAM, College Pk, MD 20742 USA. [Ma, Y. C.] Tianjin Univ Technol, Sch Mat Sci & Engn, Tianjin 300384, Peoples R China. RP Dong, JK; Shu, L; Li, SY (reprint author), Fudan Univ, State Key Lab Surface Phys, Shanghai 200433, Peoples R China.; Dong, JK; Shu, L; Li, SY (reprint author), Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China.; Dong, JK; Li, SY (reprint author), Fudan Univ, Adv Mat Lab, Shanghai 200433, Peoples R China. EM jkdong@fudan.edu.cn; leishu@fudan.edu.cn; shiyan_li@fudan.edu.cn RI Li, Shiyan/H-3445-2016 FU Ministry of Science and Technology of China (National Basic Research Program) [2012CB821402, 2015CB921401]; Natural Science Foundation of China; China Postdoctoral Science Foundation [2014M560288]; Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning; STCSM of China [15XD1500200]; U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Science and Engineering [DE-FG02-04-ER46105]; National Science Foundation [DMR 1206553]; U.S. Department of Energy [DE-AC02-98CH10886] FX This work was supported by the Ministry of Science and Technology of China (National Basic Research Program, Grants No. 2012CB821402 and No. 2015CB921401); the Natural Science Foundation of China; the China Postdoctoral Science Foundation, Grant No. 2014M560288; the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning; and the STCSM of China (Grant No. 15XD1500200). Research at UCSD was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Science and Engineering, under Grant No. DE-FG02-04-ER46105 (materials synthesis), and by the National Science Foundation under Grant No. DMR 1206553 (materials characterization). Work at the Brookhaven National Laboratory was supported by the U.S. Department of Energy under Contract No. DE-AC02-98CH10886. NR 42 TC 1 Z9 1 U1 7 U2 16 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD FEB 1 PY 2016 VL 93 IS 6 AR 064502 DI 10.1103/PhysRevB.93.064502 PG 5 WC Physics, Condensed Matter SC Physics GA DC7JD UT WOS:000369395100009 ER PT J AU Nino, MN McCutchan, EA Smith, SV Lister, CJ Greene, JP Carpenter, MP Muench, L Sonzogni, AA Zhu, S AF Nino, M. N. McCutchan, E. A. Smith, S. V. Lister, C. J. Greene, J. P. Carpenter, M. P. Muench, L. Sonzogni, A. A. Zhu, S. TI High-precision gamma-ray spectroscopy of the cardiac PET imaging isotope Rb-82 and its impact on dosimetry SO PHYSICAL REVIEW C LA English DT Article ID RADIATION-DOSIMETRY; DECAY-SCHEME; BIODISTRIBUTION; SOFTWARE AB Rb-82 is a positron-emitting isotope used in cardiac positron emission tomography (PET) imaging which has been reported to deliver a significantly lower effective radiation dose than analogous imaging isotopes like Tl-201 and Tc-99m sestamibi. High-quality beta-decay data are essential to accurately appraise the total dose received by the patients. A source of Sr-82 was produced at the Brookhaven Linac Isotope Producer (BLIP), transported to Argonne National Laboratory, and studied with the Gammasphere facility. Significant revisions have been made to the level scheme of Kr-82 including 12 new levels, 50 new gamma-ray transitions, and the determination of many new spin assignments through angular correlations. These new high-quality data allow a precise reappraisal of the beta-decay strength function and thus the consequent dose received by patients. C1 [Nino, M. N.] Hofstra Univ, Dept Phys & Astron, Hempstead, NY 11549 USA. [McCutchan, E. A.; Sonzogni, A. A.] Brookhaven Natl Lab, Natl Nucl Data Ctr, Upton, NY 11973 USA. [Smith, S. V.; Muench, L.] Brookhaven Natl Lab, Collider Accelerator Dept, Upton, NY 11973 USA. [Lister, C. J.] Univ Massachusetts Lowell, Dept Phys & Appl Phys, Lowell, MA 01854 USA. [Greene, J. P.; Carpenter, M. P.; Zhu, S.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. RP Nino, MN (reprint author), Hofstra Univ, Dept Phys & Astron, Hempstead, NY 11549 USA. FU DOE Isotope Program [ST5001030]; US DOE [DE-FG02-94ER40848, DE-AC02-98CH10946, DE-AC02-06CH11357]; DOE Office of Science, Office of Workforce Development for Teachers and Scientists (WDTS), under the Science Undergraduate Laboratory Internships Program (SULI) FX DOE Isotope Program is acknowledged for funding ST5001030. Work was supported by the US DOE under Grant No. DE-FG02-94ER40848 and Contracts No. DE-AC02-98CH10946 and No. DE-AC02-06CH11357 and by the DOE Office of Science, Office of Workforce Development for Teachers and Scientists (WDTS), under the Science Undergraduate Laboratory Internships Program (SULI). This research used resources of Argonne National Laboratory's ATLAS facility, which is a DOE office of Science User Facility. NR 22 TC 0 Z9 0 U1 2 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD FEB 1 PY 2016 VL 93 IS 2 AR 024301 DI 10.1103/PhysRevC.93.024301 PG 8 WC Physics, Nuclear SC Physics GA DC7NN UT WOS:000369407300001 ER PT J AU Wiedeking, M Krticka, M Bernstein, LA Allmond, JM Basunia, MS Bleuel, DL Burke, JT Daub, BH Fallon, P Firestone, RB Goldblum, BL Hatarik, R Lake, PT Larsen, AC Lee, IY Lesher, SR Paschalis, S Petri, M Phair, L Scielzo, ND Volya, A AF Wiedeking, M. Krticka, M. Bernstein, L. A. Allmond, J. M. Basunia, M. S. Bleuel, D. L. Burke, J. T. Daub, B. H. Fallon, P. Firestone, R. B. Goldblum, B. L. Hatarik, R. Lake, P. T. Larsen, A. C. Lee, I. -Y. Lesher, S. R. Paschalis, S. Petri, M. Phair, L. Scielzo, N. D. Volya, A. TI gamma-ray decay from neutron-bound and unbound states in Mo-95 and a novel technique for spin determination SO PHYSICAL REVIEW C LA English DT Article ID MOLYBDENUM ISOTOPES; NUCLEAR-STRUCTURE; COMPETITION; EMISSION; SYSTEMATICS; DETECTOR; CLOVER; MO AB The emission of gamma rays from neutron-bound and neutron-unbound states in Mo-95, populated in the Mo-94(d, p) reaction, has been investigated. Charged particles and gamma radiation were detected with arrays of annular silicon and Clover-type high-purity Germanium detectors, respectively. Utilizing p-gamma and p-gamma-gamma coincidences, the Mo-95 level scheme was greatly enhanced with 102 new transitions and 43 new states. It agrees well with shell model calculations for excitation energies below approximate to 2 MeV. From p-gamma coincidence data, a new method for the determination of spins of discrete levels is proposed. The method exploits the suppression of high-angular momentum neutron emission from levels with high spins populated in the (d, p) reaction above the neutron separation energy. Spins for almost all Mo-95 levels below 2 MeV (and for a few levels above) have been determined with this method. C1 [Wiedeking, M.] iThemba LABS, Dept Nucl Phys, POBox 722, ZA-7129 Somerset West, South Africa. [Krticka, M.] Charles Univ Prague, Fac Math & Phys, V Holesovickach 2, CR-18000 Prague 8, Czech Republic. [Bernstein, L. A.; Bleuel, D. L.; Burke, J. T.; Hatarik, R.; Lesher, S. R.; Scielzo, N. D.] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94551 USA. [Bernstein, L. A.; Daub, B. H.; Firestone, R. B.; Goldblum, B. L.] Univ Calif Berkeley, Dept Nucl Engn, Berkeley, CA 94720 USA. [Allmond, J. M.] Univ Richmond, Dept Phys, Richmond, VA 23173 USA. [Allmond, J. M.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Basunia, M. S.; Fallon, P.; Firestone, R. B.; Lake, P. T.; Lee, I. -Y.; Paschalis, S.; Petri, M.; Phair, L.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Nucl Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. [Daub, B. H.] Lawrence Livermore Natl Lab, Weapons & Complex Integrat Directorate, Livermore, CA 94551 USA. [Larsen, A. C.] Univ Oslo, Dept Phys, POB 1048, N-0316 Oslo, Norway. [Lesher, S. R.] Univ Wisconsin, Dept Phys, La Crosse, WI 54601 USA. [Volya, A.] Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA. RP Wiedeking, M (reprint author), iThemba LABS, Dept Nucl Phys, POBox 722, ZA-7129 Somerset West, South Africa. EM wiedeking@tlabs.ac.za RI Petri, Marina/H-4630-2016; Paschalis, Stefanos/H-8758-2016; Larsen, Ann-Cecilie/C-8742-2014 OI Petri, Marina/0000-0002-3740-6106; Paschalis, Stefanos/0000-0002-9113-3778; Larsen, Ann-Cecilie/0000-0002-2188-3709 FU National Research Foundation of South Africa [92789, 83867]; University of California Office of the President Laboratory Fees Research Program [12-LR-238745]; U.S. Department of Energy Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Florida State University [DE-SC0009883]; University of Richmond [DE-FG52-06NA26206, DE-FG02-05ER41379]; Office of Science, Office of Nuclear Physics, of the U.S. Department of Energy [DE-AC02-05CH11231]; Czech Science Foundation [13-07117S]; ERC-STG [637686] FX The authors thank the operations staff at the 88-Inch Cyclotron of Lawrence Berkeley National Laboratory for a smooth run. This work is supported by the National Research Foundation of South Africa under Grants No. 92789 and No. 83867. This work is also performed under the auspices of the University of California Office of the President Laboratory Fees Research Program under Award No. 12-LR-238745, the U.S. Department of Energy Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344, Florida State University under DE-SC0009883, and University of Richmond under DE-FG52-06NA26206 and DE-FG02-05ER41379. For Lawrence Berkeley National Laboratory this work was supported by the Director, Office of Science, Office of Nuclear Physics, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. M.K. acknowledges support from Grant No. 13-07117S of the Czech Science Foundation. A.C.L. acknowledges support from the ERC-STG-2014 under Grant Agreement No. 637686. NR 45 TC 1 Z9 1 U1 4 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD FEB 1 PY 2016 VL 93 IS 2 AR 024303 DI 10.1103/PhysRevC.93.024303 PG 11 WC Physics, Nuclear SC Physics GA DC7NN UT WOS:000369407300003 ER PT J AU Cherwinka, J Grant, D Halzen, F Heeger, KM Hsu, L Hubbard, AJF Karle, A Kauer, M Kudryavtsev, VA Lim, KE Macdonald, C Maruyama, RH Paling, SM Pettus, W Pierpoint, ZP Reilly, BN Robinson, M Sandstrom, P Spooner, NJC Telfer, S Yang, L AF Cherwinka, J. Grant, D. Halzen, F. Heeger, K. M. Hsu, L. Hubbard, A. J. F. Karle, A. Kauer, M. Kudryavtsev, V. A. Lim, K. E. Macdonald, C. Maruyama, R. H. Paling, S. M. Pettus, W. Pierpoint, Z. P. Reilly, B. N. Robinson, M. Sandstrom, P. Spooner, N. J. C. Telfer, S. Yang, L. CA DM-Ice Collaboration TI Measurement of muon annual modulation and muon-induced phosphorescence in NaI(TI) crystals with DM-Ice17 SO PHYSICAL REVIEW D LA English DT Article ID DARK-MATTER CANDIDATES; SOUTH-POLE; NO ROLE; CONSTRAINTS; PARTICLES; DAMA/LIBRA; COMPONENTS; ICECUBE; CSI(TL); SEARCH AB We report the measurement of muons and muoninduced phosphorescence in DMIce17, a NaI(Tl) direct detection dark matter experiment at the South Pole. Muon interactions in the crystal are identified by their observed pulse shape and large energy depositions. The measured muon rate in DMIce17 is 2.93 +/- 0.04 mu/crystal/day with a modulation amplitude of 12.3 +/- 1.7%, consistent with expectation. Following muon interactions, we observe longlived phosphorescence in the NaI(Tl) crystals with a decay time of 5.5 +/- 0.5 s. The prompt energy deposited by a muon is correlated to the amount of delayed phosphorescence, the brightest of which consist of tens of millions of photons. These photons are distributed over tens of seconds with a rate and arrival timing that do not mimic a scintillation signal above 2 keV(ee). While the properties of phosphorescencevaryamong individual crystals, the annually modulating signal observed by DAMA cannot be accounted for by phosphorescence with the characteristics observed in DM-Ice17. C1 [Cherwinka, J.] Univ Wisconsin, Phys Sci Lab, Stoughton, WI 53589 USA. [Grant, D.] Univ Alberta, Dept Phys, Edmonton, AB T6G 2E1, Canada. [Halzen, F.; Hubbard, A. J. F.; Karle, A.; Kauer, M.; Pettus, W.; Pierpoint, Z. P.; Reilly, B. N.; Sandstrom, P.] Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA. [Halzen, F.; Hubbard, A. J. F.; Karle, A.; Kauer, M.; Pettus, W.; Pierpoint, Z. P.; Reilly, B. N.; Sandstrom, P.] Univ Wisconsin, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA. [Heeger, K. M.; Hubbard, A. J. F.; Kauer, M.; Lim, K. E.; Maruyama, R. H.; Pettus, W.; Pierpoint, Z. P.; Reilly, B. N.] Yale Univ, Dept Phys, New Haven, CT 06520 USA. [Hsu, L.] Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. [Kudryavtsev, V. A.; Macdonald, C.; Robinson, M.; Spooner, N. J. C.; Telfer, S.] Univ Sheffield, Dept Phys & Astron, Sheffield S10 2TN, S Yorkshire, England. [Paling, S. M.] STFC Boulby Underground Sci Facil, Boulby Mine TS13 4UZ, Cleveland, England. [Yang, L.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Hubbard, A. J. F.] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. [Pierpoint, Z. P.] Univ Wisconsin Fox Valley, Dept Phys & Astron, Menasha, WI 54952 USA. RP Hubbard, AJF (reprint author), Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA.; Hubbard, AJF (reprint author), Univ Wisconsin, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA.; Hubbard, AJF; Maruyama, RH (reprint author), Yale Univ, Dept Phys, New Haven, CT 06520 USA.; Hubbard, AJF (reprint author), Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. EM antonia.hubbard@northwestern.edu; reina.maruyama@yale.edu RI Maruyama, Reina/A-1064-2013; OI Maruyama, Reina/0000-0003-2794-512X; Pettus, Walter/0000-0003-4947-7400; Kudryavtsev, Vitaly/0000-0002-7018-5827 FU Alfred P. Sloan Foundation Fellowship; NSF [PLR-1046816, PHY-1151795, PHY-1457995]; WIPAC; Wisconsin Alumni Research Foundation; Yale University; Natural Sciences and Engineering Research Council of Canada; United States Department of Energy [DE-AC02-07CH11359]; DOE/NNSA Stewardship Science Graduate Fellowship [DE-FC52-08NA28752]; NSF Graduate Research Fellowship [DGE-1256259]; Wisconsin IceCube Particle Astrophysics Center (WIPAC); IceCube Collaboration FX We thank the Wisconsin IceCube Particle Astrophysics Center (WIPAC) and the IceCube Collaboration for their ongoing experimental support and data management, Benedikt Riedel for assisting in the implementation of the IceCube rate information, and Paolo Desiati for useful conversations about muon modulations. This work was supported in part by the Alfred P. Sloan Foundation Fellowship, NSF Grants No. PLR-1046816, No. PHY-1151795, and No. PHY-1457995, WIPAC, the Wisconsin Alumni Research Foundation, Yale University, the Natural Sciences and Engineering Research Council of Canada, and Fermilab operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy. W. P. and A. H. were supported by the DOE/NNSA Stewardship Science Graduate Fellowship (Grant No. DE-FC52-08NA28752) and NSF Graduate Research Fellowship (Grant No. DGE-1256259) respectively. NR 72 TC 2 Z9 2 U1 1 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD FEB 1 PY 2016 VL 93 IS 4 AR 042001 DI 10.1103/PhysRevD.93.042001 PG 9 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA DC7YF UT WOS:000369436200001 ER PT J AU Jungfleisch, MB Zhang, W Sklenar, J Ding, J Jiang, W Chang, H Fradin, FY Pearson, JE Ketterson, JB Novosad, V Wu, M Hoffmann, A AF Jungfleisch, M. B. Zhang, W. Sklenar, J. Ding, J. Jiang, W. Chang, H. Fradin, F. Y. Pearson, J. E. Ketterson, J. B. Novosad, V. Wu, M. Hoffmann, A. TI Large Spin-Wave Bullet in a Ferrimagnetic Insulator Driven by the Spin Hall Effect SO PHYSICAL REVIEW LETTERS LA English DT Article AB Because of its transverse nature, spin Hall effects (SHE) provide the possibility to excite and detect spin currents and magnetization dynamics even in magnetic insulators. Magnetic insulators are outstanding materials for the investigation of nonlinear phenomena and for novel low power spintronics applications because of their extremely low Gilbert damping. Here, we report on the direct imaging of electrically driven spin-torque ferromagnetic resonance (ST-FMR) in the ferrimagnetic insulator Y3Fe5O12 based on the excitation and detection by SHEs. The driven spin dynamics in Y3Fe5O12 is directly imaged by spatially resolved microfocused Brillouin light scattering spectroscopy. Previously, ST-FMR experiments assumed a uniform precession across the sample, which is not valid in our measurements. Astrong spin-wave localization in the center of the sample is observed indicating the formation of a nonlinear, self-localized spin-wave "bullet". C1 [Jungfleisch, M. B.; Zhang, W.; Sklenar, J.; Ding, J.; Jiang, W.; Fradin, F. Y.; Pearson, J. E.; Novosad, V.; Hoffmann, A.] Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. [Sklenar, J.; Ketterson, J. B.] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. [Chang, H.; Wu, M.] Colorado State Univ, Dept Phys, Ft Collins, CO 80523 USA. RP Jungfleisch, MB (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM jungfleisch@anl.gov RI Jungfleisch, Matthias Benjamin/G-1069-2015; Jiang, Wanjun/E-6994-2011; DING, Junjia/K-2277-2013; Novosad, V /J-4843-2015 OI Jungfleisch, Matthias Benjamin/0000-0001-8204-3677; Jiang, Wanjun/0000-0003-0918-3862; DING, Junjia/0000-0002-9917-9156; FU U.S. Department of Energy, Office of Science, Materials Science and Engineering Division; U.S. DOE, Office of Science, Basic Energy Science [DE-AC02-06CH11357]; U.S. Army Research Office [W911NF-14-1-0501]; U.S. National Science Foundation [ECCS-1231598]; C-SPIN (SRC STARnet Centers - MARCO); U.S. Department of Energy [DE-SC0012670]; C-SPIN (SRC STARnet Centers - DARPA) FX We thank Stephen Wu for assistance with ion milling. The work at Argonne, including sample fabrication, microwave measurements, and BLS imaging, was supported by the U.S. Department of Energy, Office of Science, Materials Science and Engineering Division. Lithography was carried out at the Center for Nanoscale Materials, an Office of Science user facility, which is supported by the U.S. DOE, Office of Science, Basic Energy Science under Contract No. DE-AC02-06CH11357. The work at Colorado State University preparing the YIG films was supported by the U.S. Army Research Office (Grant No. W911NF-14-1-0501), the U.S. National Science Foundation (Grant No. ECCS-1231598), C-SPIN (one of the SRC STARnet Centers sponsored by MARCO and DARPA), and the U.S. Department of Energy (Grant No. DE-SC0012670). NR 47 TC 8 Z9 8 U1 9 U2 36 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 1 PY 2016 VL 116 IS 5 AR 057601 DI 10.1103/PhysRevLett.116.057601 PG 6 WC Physics, Multidisciplinary SC Physics GA DC8SU UT WOS:000369490800006 PM 26894733 ER PT J AU Middey, S Meyers, D Doennig, D Kareev, M Liu, X Cao, Y Yang, ZZ Shi, JN Gu, L Ryan, PJ Pentcheva, R Freeland, JW Chakhalian, J AF Middey, S. Meyers, D. Doennig, D. Kareev, M. Liu, X. Cao, Y. Yang, Zhenzhong Shi, Jinan Gu, Lin Ryan, P. J. Pentcheva, R. Freeland, J. W. Chakhalian, J. TI Mott Electrons in an Artificial Graphenelike Crystal of Rare-Earth Nickelate SO PHYSICAL REVIEW LETTERS LA English DT Article ID OXIDE HETEROSTRUCTURES; PEROVSKITE NICKELATE; ORBITAL OCCUPANCY; THIN-FILMS; INTERFACES; TRANSITION; SUPERLATTICES; INSULATORS; PROGRESS AB Deterministic control over the periodic geometrical arrangement of the constituent atoms is the backbone of the material properties, which, along with the interactions, define the electronic and magnetic ground state. Following this notion, a bilayer of a prototypical rare-earth nickelate, NdNiO3, combined with a dielectric spacer, LaAlO3, has been layered along the pseudocubic [111] direction. The resulting artificial graphenelike Mott crystal with magnetic 3d electrons has antiferromagnetic correlations. In addition, a combination of resonant X-ray linear dichroism measurements and ab initio calculations reveal the presence of an ordered orbital pattern, which is unattainable in either bulk nickelates or nickelate based heterostructures grown along the [001] direction. These findings highlight another promising venue towards designing new quantum many-body states by virtue of geometrical engineering. C1 [Middey, S.; Meyers, D.; Kareev, M.; Liu, X.; Cao, Y.; Chakhalian, J.] Univ Arkansas, Dept Phys, Fayetteville, AR 72701 USA. [Doennig, D.; Pentcheva, R.] Univ Munich, Dept Earth & Environm Sci, D-80333 Munich, Germany. [Doennig, D.; Pentcheva, R.] Univ Munich, Ctr Nanosci, D-80333 Munich, Germany. [Yang, Zhenzhong; Shi, Jinan; Gu, Lin] Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China. [Yang, Zhenzhong; Shi, Jinan; Gu, Lin] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China. [Ryan, P. J.; Freeland, J. W.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Pentcheva, R.] Univ Duisburg Essen, Dept Phys, D-47057 Duisburg, Germany. [Gu, Lin] Collaborat Innovat Ctr Quantum Matter, Beijing 100190, Peoples R China. RP Middey, S (reprint author), Univ Arkansas, Dept Phys, Fayetteville, AR 72701 USA. EM smiddey@uark.edu RI Gu, Lin/D-9631-2011; Chakhalian, Jak/F-2274-2015; Middey, Srimanta/D-9580-2013; Pentcheva, Rossitza/F-8293-2014; Yang, Zhenzhong/O-2344-2014 OI Gu, Lin/0000-0002-7504-031X; Middey, Srimanta/0000-0001-5893-0946; Yang, Zhenzhong/0000-0002-7226-7973 FU DOD-ARO [0402-17291]; Gordon and Betty Moore Foundations EPiQS Initiative [GBMF4534]; DFG [SFB/TRR80, G3]; National Basic Research Program of China "973" project [2014CB921002, 2012CB921702]; Strategic Priority Research Program of the Chinese Academy of Sciences [XDB07030200]; DOE Office of Science by Argonne National Laboratory [DEAC02-06CH11357] FX S. M. and J. C. deeply thank D. Khomskii, S. Okamoto, and G. A. Fiete for numerous insightful discussions. S. M. and D. M. were supported by the DOD-ARO under Grant No. 0402-17291. J. C. was supported by the Gordon and Betty Moore Foundations EPiQS Initiative through Grant No. GBMF4534. R. P. and D. D. acknowledge support by the DFG within SFB/TRR80 (project G3). Z. Y., J. S., and L. G. acknowledge National Basic Research Program of China "973" project (2014CB921002, 2012CB921702), Strategic Priority Research Program of the Chinese Academy of Sciences, Grant No. XDB07030200. This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DEAC02-06CH11357. NR 68 TC 10 Z9 10 U1 15 U2 46 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 1 PY 2016 VL 116 IS 5 AR 056801 DI 10.1103/PhysRevLett.116.056801 PG 6 WC Physics, Multidisciplinary SC Physics GA DC8SU UT WOS:000369490800005 PM 26894726 ER PT J AU Ueda, H Yokota, E Kuwata, K Kutsuna, N Mano, S Shimada, T Tamura, K Stefano, G Fukao, Y Brandizzi, F Shimmen, T Nishimura, M Hara-Nishimura, I AF Ueda, Haruko Yokota, Etsuo Kuwata, Keiko Kutsuna, Natsumaro Mano, Shoji Shimada, Tomoo Tamura, Kentaro Stefano, Giovanni Fukao, Yoichiro Brandizzi, Federica Shimmen, Teruo Nishimura, Mikio Hara-Nishimura, Ikuko TI Phosphorylation of the C Terminus of RHD3 Has a Critical Role in Homotypic ER Membrane Fusion in Arabidopsis SO PLANT PHYSIOLOGY LA English DT Article ID TUBULAR ENDOPLASMIC-RETICULUM; PLANT-CELLS; STORAGE PROTEINS; STRUCTURAL BASIS; GTPASE ATLASTIN; GOLGI-APPARATUS; BY-2 CELLS; NETWORK; DOMAIN; THALIANA AB The endoplasmic reticulum (ER) consists of dynamically changing tubules and cisternae. In animals and yeast, homotypic ER membrane fusion is mediated by fusogens (atlastin and Sey1p, respectively) that are membrane-associated dynamin-like GTPases. In Arabidopsis (Arabidopsis thaliana), another dynamin-like GTPase, ROOT HAIR DEFECTIVE3 (RHD3), has been proposed as an ER membrane fusogen, but direct evidence is lacking. Here, we show that RHD3 has an ER membrane fusion activity that is enhanced by phosphorylation of its C terminus. The ER network was RHD3-dependently reconstituted from the cytosol and microsome fraction of tobacco (Nicotiana tabacum) cultured cells by exogenously adding GTP, ATP, and F-actin. We next established an in vitro assay system of ER tubule formation with Arabidopsis ER vesicles, in which addition of GTP caused ER sac formation from the ER vesicles. Subsequent application of a shearing force to this system triggered the formation of tubules from the ER sacs in an RHD-dependent manner. Unexpectedly, in the absence of a shearing force, Ser/Thr kinase treatment triggered RHD3-dependent tubule formation. Mass spectrometry showed that RHD3 was phosphorylated at multiple Ser and Thr residues in the C terminus. An antibody against the RHD3 C-terminal peptide abolished kinase-triggered tubule formation. When the Ser cluster was deleted or when the Ser residues were replaced with Ala residues, kinase treatment had no effect on tubule formation. Kinase treatment induced the oligomerization of RHD3. Neither phosphorylation-dependent modulation of membrane fusion nor oligomerization has been reported for atlastin or Sey1p. Taken together, we propose that phosphorylation-stimulated oligomerization of RHD3 enhances ER membrane fusion to form the ER network. C1 [Ueda, Haruko; Shimada, Tomoo; Tamura, Kentaro; Hara-Nishimura, Ikuko] Kyoto Univ, Grad Sch Sci, Kyoto 6068502, Japan. [Yokota, Etsuo; Shimmen, Teruo] Univ Hyogo, Grad Sch Life Sci, Kobe, Hyogo 6781297, Japan. [Kuwata, Keiko] Nagoya Univ, Inst Transformat Biomol, Nagoya, Aichi 4648601, Japan. [Kutsuna, Natsumaro] Univ Tokyo, Grad Sch Frontier Sci, Chiba 2778562, Japan. [Mano, Shoji; Nishimura, Mikio] Natl Inst Nat Sci, Natl Inst Basic Biol, Dept Cell Biol, 38 Nishigonaka, Okazaki, Aichi 4448585, Japan. [Stefano, Giovanni; Brandizzi, Federica] Michigan State Univ, MSU DOE Plant Res Lab, E Lansing, MI 48824 USA. [Stefano, Giovanni; Brandizzi, Federica] Michigan State Univ, Dept Plant Biol, E Lansing, MI 48824 USA. [Fukao, Yoichiro] Ritsumeikan Univ, Dept Bioinformat, Kusatsu 5258577, Japan. RP Hara-Nishimura, I (reprint author), Kyoto Univ, Grad Sch Sci, Kyoto 6068502, Japan.; Yokota, E (reprint author), Univ Hyogo, Grad Sch Life Sci, Kobe, Hyogo 6781297, Japan. EM yokota@sci.u-hyogo.ac.jp; ihnishi@gr.bot.kyoto-u.ac.jp RI STEFANO, GIOVANNI/A-8264-2011 OI STEFANO, GIOVANNI/0000-0002-2744-0052 FU Japan Society for the Promotion of Science (JSPS) [22000014, 25440132, 15KT0151, 24576057, 23247009, 15H05776]; National Science Foundation [MCB 1243792] FX This work was supported by Specially Promoted Research of Grant-in-Aid for Scientific Research to I.H.-N. (no. 22000014), by Grants-in-Aid for Scientific Research to H.U. (nos. 25440132 and 15KT0151), E.Y. (no. 24576057), Te.S. (no. 23247009), and I.H.-N. (no. 15H05776) from the Japan Society for the Promotion of Science (JSPS), and by the National Science Foundation (MCB 1243792 to F.B.). NR 47 TC 5 Z9 5 U1 0 U2 4 PU AMER SOC PLANT BIOLOGISTS PI ROCKVILLE PA 15501 MONONA DRIVE, ROCKVILLE, MD 20855 USA SN 0032-0889 EI 1532-2548 J9 PLANT PHYSIOL JI Plant Physiol. PD FEB PY 2016 VL 170 IS 2 BP 867 EP 880 DI 10.1104/pp.15.01172 PG 14 WC Plant Sciences SC Plant Sciences GA DC6PY UT WOS:000369343300021 PM 26684656 ER PT J AU Yen, HJ Liou, GS AF Yen, Hung-Ju Liou, Guey-Sheng TI Solution-processable triarylamine-based high-performance polymers for resistive switching memory devices SO POLYMER JOURNAL LA English DT Review ID SOLUBLE AROMATIC POLYIMIDES; DONOR-ACCEPTOR POLYMERS; HIGH ON/OFF RATIO; THIN-FILMS; FUNCTIONAL POLYIMIDES; TETRACARBOXYLIC DIANHYDRIDES; ELECTRICAL BISTABILITY; RANDOM COPOLYIMIDES; POLY(ETHER IMIDE)S; CONJUGATED POLYMER AB This review summarizes the most widely used mechanisms in high-performance polymeric resistive memory devices, such as charge transfer, space charge trapping and filament conduction. In addition, recent studies of functional high-performance polymers for memory device applications are reviewed, compared and differentiated based on the mechanisms and structural design methods used. By carefully designing the polymeric structure based on these systematically investigated switching mechanisms, almost all types of current memory characteristics can be reproduced, and these memory properties show extremely high endurance during long-term operation, which makes polyimides very suitable materials for memory applications. C1 [Yen, Hung-Ju] Los Alamos Natl Lab, Phys Chem & Appl Spect C PCS, Div Chem, Los Alamos, NM USA. [Liou, Guey-Sheng] Natl Taiwan Univ, Inst Polymer Sci & Engn, Funct Polymer Mat Lab, 1 Roosevelt Rd,4th Sect, Taipei 10617, Taiwan. RP Liou, GS (reprint author), Natl Taiwan Univ, Inst Polymer Sci & Engn, Funct Polymer Mat Lab, 1 Roosevelt Rd,4th Sect, Taipei 10617, Taiwan. EM gsliou@ntu.edu.tw OI Yen, Hung-Ju/0000-0002-6316-9124 FU Ministry of Science and Technology of Taiwan FX We gratefully acknowledge the Ministry of Science and Technology of Taiwan for financial support. NR 105 TC 9 Z9 9 U1 17 U2 58 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 0032-3896 EI 1349-0540 J9 POLYM J JI Polym. J. PD FEB PY 2016 VL 48 IS 2 BP 117 EP 138 DI 10.1038/pj.2015.87 PG 22 WC Polymer Science SC Polymer Science GA DC6FT UT WOS:000369315900001 ER PT J AU Morgan, PK Scott, JR Jovanovic, I AF Morgan, Phyllis K. Scott, Jill R. Jovanovic, Igor TI Hybrid interferometric/dispersive atomic spectroscopy of laser-induced uranium plasma SO SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY LA English DT Article DE Laser-induced breakdown spectroscopy; Uranium; Isotopes; Fabry-Perot ID INDUCED BREAKDOWN SPECTROSCOPY; BORON ISOTOPIC RATIO; EMISSION-SPECTROSCOPY; HYPERFINE-STRUCTURE; ABLATION; SPECTRA; FLUORESCENCE; SPECTROMETRY; FEMTOSECOND; SHIFT AB An established optical emission spectroscopy technique, laser-induced breakdown spectroscopy (LIES), holds promise for detection and rapid analysis of elements relevant for nuclear safeguards, nonproliferation, and nuclear power, including the measurement of isotope ratios. One such important application of LIBS is the measurement of uranium enrichment (U-235/U-238), which requires high spectral resolution (e.g., 25 pm for the 424.4 nm U II line). High-resolution dispersive spectrometers necessary for such measurements are typically bulky and expensive. We demonstrate the use of an alternative measurement approach, which is based on an inexpensive and compact Fabry-Perot etalon integrated with a low to moderate resolution Czerny-Turner spectrometer, to achieve the resolution needed for isotope selectivity of LIES of uranium in ambient air. Spectral line widths of similar to 10 pm have been measured at a center wavelength 424.437 nm, clearly discriminating the natural from the highly enriched uranium. (C) 2015 Elsevier B.V. All rights reserved. C1 [Morgan, Phyllis K.; Jovanovic, Igor] Penn State Univ, University Pk, PA 16802 USA. [Scott, Jill R.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Jovanovic, I (reprint author), Penn State Univ, University Pk, PA 16802 USA. EM ijovanovic@psu.edu FU National Nuclear Security Administration's Next Generation Safeguards Initiative (NGSI); U.S. Department of Homeland Security [2012-DN-130-NF0001-02]; U.S. Department of Energy under DOE Idaho Operations Office [DE-AC07-051D14517]; Consortium for Verification Technology under Department of Energy National Nuclear Security Administration [DE-NA0002534] FX The authors would like to thank Eric Boeldt, Jeff Leavey, and the staff at the Penn State Radiation Science and Engineering Center for their help with obtaining uranium samples. Research was performed under appointment to the Nuclear Nonproliferation International Safeguards Graduate Fellowship Program sponsored by the National Nuclear Security Administration's Next Generation Safeguards Initiative (NGSI). Material is based upon work supported by the U.S. Department of Homeland Security under grant award number 2012-DN-130-NF0001-02. The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the U.S. Department of Homeland Security. Research was also sponsored by the U.S. Department of Energy under DOE Idaho Operations Office Contract DE-AC07-051D14517. This work was funded in-part by the Consortium for Verification Technology under the Department of Energy National Nuclear Security Administration, award number DE-NA0002534. NR 25 TC 3 Z9 3 U1 4 U2 17 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0584-8547 J9 SPECTROCHIM ACTA B JI Spectroc. Acta Pt. B-Atom. Spectr. PD FEB 1 PY 2016 VL 116 BP 58 EP 62 DI 10.1016/j.sab.2015.12.006 PG 5 WC Spectroscopy SC Spectroscopy GA DC8JE UT WOS:000369464900009 ER PT J AU Vianco, PT Walker, CA De Smet, D Kilgo, A McKenzie, BM Kotula, PM Grant, RL AF Vianco, P. T. Walker, C. A. De Smet, D. Kilgo, A. McKenzie, B. M. Kotula, P. M. Grant, R. L. TI Understanding the Run-Out Behavior of a Ag-Cu-Zr Braze Alloy SO WELDING JOURNAL LA English DT Editorial Material C1 [Vianco, P. T.; Walker, C. A.; De Smet, D.; Kilgo, A.; McKenzie, B. M.; Kotula, P. M.; Grant, R. L.] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. RP Vianco, PT (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM ptvianc@sandia.gov RI Kotula, Paul/A-7657-2011 OI Kotula, Paul/0000-0002-7521-2759 NR 3 TC 0 Z9 0 U1 0 U2 5 PU AMER WELDING SOC PI MIAMI PA 550 N W LEJEUNE RD, MIAMI, FL 33126 USA SN 0043-2296 J9 WELD J JI Weld. J. PD FEB PY 2016 VL 95 IS 2 BP 36 EP 42 PG 7 WC Metallurgy & Metallurgical Engineering SC Metallurgy & Metallurgical Engineering GA DC9PK UT WOS:000369553300008 ER PT J AU Dmitriev, VV Crowley, DE Zvonarev, AN Rusakova, TG Negri, MC Kolesnikova, SA AF Dmitriev, Vladimir V. Crowley, David E. Zvonarev, Anton N. Rusakova, Tatiana G. Negri, Maria C. Kolesnikova, Svetlana A. TI Modifications of the cell wall of yeasts grown on hexadecane and under starvation conditions SO YEAST LA English DT Article DE yeast; cell wall; 'canals'; polysaccharides; starvation ID MICROORGANISMS AB Electron-microscopic examinations have demonstrated local modifications in the cell wall of the yeast Candida maltosa grown on hexadecane. In our earlier studies, these modified sites, observed in other yeasts grown on oil hydrocarbons, were conventionally called 'canals'. The biochemical and cytochemical studies of C. maltosa have revealed a correlation between the formation of 'canals' and decrease in the amount of cell wall polysaccharides, glucan and mannan. The ultrathin sections and surface replicas have shown that the 'canals' are destroyed by pronase, thus indicating that a significant proportion of their content is represented by proteins. This finding was compatible with our earlier data on the localization of oxidative enzymes in 'canals' and possible participation of the 'canals' in the primary oxidation of hydrocarbons. A completely unexpected and intriguing phenomenon has been the appearance of 'canals' in the yeast C. maltosa under starvation conditions. Unlike the yeasts grown on hexadecane, mannan almost disappears in starving cells, while the quantity of glucan first decreases and then is restored to its initial level. The role of 'canals' in starving cells is as yet unclear; it is assumed that they acquire exoenzymes involved in the utilization of products of cell lysis in the starving population. In the future, 'canals' of starving cells will be studied in connection with their possible participation in apoptosis. Copyright (c) 2015 John Wiley & Sons, Ltd. C1 [Dmitriev, Vladimir V.; Zvonarev, Anton N.; Rusakova, Tatiana G.; Kolesnikova, Svetlana A.] Russian Acad Sci, GK Skryabin Inst Biochem & Physiol Microorganisms, Pushchino 142292, Russia. [Crowley, David E.] Univ Calif Riverside, Dept Environm Sci, Riverside, CA 92521 USA. [Negri, Maria C.] Argonne Natl Lab, Lemont, IL USA. RP Dmitriev, VV (reprint author), Russian Acad Sci, GK Skryabin Inst Biochem & Physiol Microorganisms, Pushchino 142292, Russia.; Dmitriev, VV (reprint author), Prospect Nauki 5, Pushchino 142290, Moscow Region, Russia. EM vdmitrieva@ibpm.pushchino.ru OI Crowley, David/0000-0002-1805-8599 FU US Department of Energy (GIPP) [ANL-T2-243-RU]; Russian Foundation of Fundamental Research [RFFI-14-04-31689 mol._a] FX This study was supported by the US Department of Energy (GIPP; Grant No ANL-T2-243-RU) and the Russian Foundation of Fundamental Research (Grant No. RFFI-14-04-31689 mol._a). NR 19 TC 1 Z9 1 U1 0 U2 4 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0749-503X EI 1097-0061 J9 YEAST JI Yeast PD FEB PY 2016 VL 33 IS 2 BP 55 EP 62 DI 10.1002/yea.3140 PG 8 WC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Microbiology; Mycology SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Microbiology; Mycology GA DD2QY UT WOS:000369768500003 PM 26833628 ER PT J AU Fleming, PA Ning, A Gebraad, PMO Dykes, K AF Fleming, Paul A. Ning, Andrew Gebraad, Pieter M. O. Dykes, Katherine TI Wind plant system engineering through optimization of layout and yaw control SO WIND ENERGY LA English DT Article DE wind plant control; system engineering; wind turbine wakes; optimization ID FARMS; TURBINE; FRAMEWORK; MODEL AB Recent research has demonstrated exciting potential for wind plant control systems to improve the cost of energy of wind plants. Wind plant controls seek to improve global wind plant performance over control systems in which each turbine optimizes only its individual performance by accounting for the way wind turbines interact through their wakes. Although these technologies can be applied to existing wind plants, it is probable that the maximum benefit would be derived by designing wind plants with these capabilities in mind. In this paper, we use system engineering approaches to perform coupled wind plant controls and position layout optimizations of a model wind plant. Using several cost metrics, we compare the results of this optimization to the original plant and to plants in which the control or layout is optimized separately or sequentially. Results demonstrate that the benefit of this coupled optimization can be substantial, but it depends on the particular constraints of the optimization. Copyright (C) 2015 John Wiley & Sons, Ltd. C1 [Fleming, Paul A.; Ning, Andrew; Dykes, Katherine] Natl Renewable Energy Lab, 15013 Denver West Pkwy, Golden, CO 80401 USA. [Gebraad, Pieter M. O.] Delft Univ Technol, Delft Ctr Syst & Control, Mekelweg 2,3mE Bldg, NL-2628 CD Delft, Netherlands. RP Fleming, PA (reprint author), Natl Renewable Energy Lab, 15013 Denver West Pkwy, Golden, CO 80401 USA. EM paul.fleming@nrel.gov OI Ning, Andrew/0000-0003-2190-823X; Fleming, Paul/0000-0001-8249-2544 FU US Department of Energy [DE-AC36-08GO28308]; National Renewable Energy Laboratory FX NREL's contributions to this work were supported by the US Department of Energy under Contract Number DE-AC36-08GO28308 with the National Renewable Energy Laboratory. NR 30 TC 6 Z9 6 U1 0 U2 6 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1095-4244 EI 1099-1824 J9 WIND ENERGY JI Wind Energy PD FEB PY 2016 VL 19 IS 2 BP 329 EP 344 DI 10.1002/we.1836 PG 16 WC Energy & Fuels; Engineering, Mechanical SC Energy & Fuels; Engineering GA DC1RF UT WOS:000368993600010 ER PT J AU Cervini-Silva, J Camacho, AN Palacios, E del Angel, P Pentrak, M Pentrakova, L Kaufhold, S Ufer, K Ramirez-Apan, MT Gomez-Vidales, V Montano, DR Montoya, A Stucki, JW Theng, BKG AF Cervini-Silva, Javiera Nieto Camacho, Antonio Palacios, Eduardo del Angel, Paz Pentrak, Martin Pentrakova, Linda Kaufhold, Stephan Ufer, Kristian Teresa Ramirez-Apan, Maria Gomez-Vidales, Virginia Rodriguez Montano, Daniela Montoya, Ascencion Stucki, Joseph W. Theng, Benny K. G. TI Anti-inflammatory, antibacterial, and cytotoxic activity by natural matrices of nano-iron(hydr)oxide/halloysite SO APPLIED CLAY SCIENCE LA English DT Article DE Nanoferrihydrite; Immune response(s) ID ELECTRON-PARAMAGNETIC-RESONANCE; MOSSBAUER-SPECTRA; OXIDATIVE STRESS; HALLOYSITE; KAOLINITE; NONTRONITE; SMECTITES; ALLOPHANE; MINERALS; ASSAY AB This manuscript reports on the effects of natural Fe-halloysite matrices on infiltration and migration of neutrophils (polymorphonuclear (PMN) leukocytes), which, after the skin, constitute the primary protection of organisms against pathogens. Speciation of mineral Fe was quantified before and after treatment with citrate-bicarbonate-dithionite (CBD). Infiltration and migration of inflammatory and immune effector cells, and cell viability were quantified using the 12-O-tetradecanoylphorbol-13-acetate (TPA) and myeloperoxidase (MPO) enzymatic activity methods, and the Griess assay. Halloysite was collected similar to 2 km from Opotiki, Bay of Plenty, New Zealand. HRSEM images confirmed typical morphological features proper of spheroidal Hal (S-Hal). Mossbauer spectroscopy of S-Hal confirmed the presence of Fe, octahedrally coordinated in the form of substituted Fe(III), magnetically ordered goethite or ferrihydrite. HRTEM images showed the presence of small-size domains of Fe (similar to 3-nm) predominantly in the form of ferrihydrite. EPR analyses of S-Hal (0-5000 ppm) before and after reacting with desferrioxamine-B confirmed the fast release of Fe from the nanodomains of ferrihydrite. Early inhibition of edema by S-Hal doubled that by CBD treated Hal (t-S-Hal), explained because labile Fe (2-L-ferrihydrite) enhanced the 4-h anti-inflammatory response. On the other hand, prolonged inhibition of edema by S-Hal and t-S-Hal compared, consistent with the release of Fe from the Hal structure. The presence of S-Hal or t-S-Hal related to the inhibition of MPO content. After 4 h, the inhibition of MPO content by S-Hal or t-S-Hal compared to that by commercial indomethacin (ca. 80%). S-Hal or t-S-Hal showed high inhibition of MPO contents shortly after exposure, but decreased sharply afterwards. On the other hand, tubular Hal (T-Hal) caused an increasing inhibition of MPO with time, explained because clay structure restricted the kinetics and mechanism of MPO inhibition. Evidenced showed that the release of mineral Fe related to infiltration and migration of inflammatory and immune effector cells, expanding the knowledge that metal ions affect inflammatory responses. Finally, dose-response experiments confirmed that the inhibition of edema and cell viability were surface-mediated. Natural clay reservoirs are complex in composition, therefore identifying the molecular mechanism(s) regulating cell migration and infiltration becomes necessary prior to recommending their use for healing purposes. (C) 2015 Published by Elsevier B.V. C1 [Cervini-Silva, Javiera] Univ Autonoma Metropolitana, Dept Proc & Tecnol, Unidad Cuajimalpa, Ave Vasco de Quiroga 4871, Mexico City 05348, DF, Mexico. [Cervini-Silva, Javiera] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Cervini-Silva, Javiera] NASA, Astrobiol Inst, New York, NY USA. [Nieto Camacho, Antonio; Teresa Ramirez-Apan, Maria] Univ Nacl Autonoma Mexico, Inst Quim, Lab Pruebas Biol, Ciudad Univ, Mexico City 04510, DF, Mexico. [Palacios, Eduardo; del Angel, Paz; Montoya, Ascencion] Inst Mexicano Petr, Direcc Invest & Posgrad, Mexico City 07730, DF, Mexico. [Pentrak, Martin; Pentrakova, Linda; Stucki, Joseph W.] Univ Illinois, Dept Nat Resources & Environm Sci, Urbana, IL USA. [Kaufhold, Stephan; Ufer, Kristian] BGR Bundesansalt Geowissensch & Rohstoff, Stilleweg 2, D-30655 Hannover, Germany. [Gomez-Vidales, Virginia] Univ Nacl Autonoma Mexico, Inst Quim, Lab Resonancia Paramagnet Elect, Ciudad Univ, Mexico City 04510, DF, Mexico. [Rodriguez Montano, Daniela; Theng, Benny K. G.] Univ Nacl Autonoma Mexico, Inst Fisiol Celular, Unidad Histol, Ciudad Univ, Mexico City 04510, DF, Mexico. RP Cervini-Silva, J (reprint author), Univ Autonoma Metropolitana, Dept Proc & Tecnol, Unidad Cuajimalpa, Ave Vasco de Quiroga 4871, Mexico City 05348, DF, Mexico. EM jcervini@correo.cua.uam.mx FU Universidad Autonoma Metropolitana [UAM-C 33678] FX The authors thank Dr. John Keeling (Geological Survey of South Australia) for providing tubular halloysite from Camel Lake; Jaime Ortega Lechuga (UAM-Cuajimalpa), Claudia Rivera Cerecedo and Hector Malagon Rivero (Bioterio, Institute de Fisiologia Celular, UNAM), and Natascha Schleuning (Bundesansaltfur Geowissenschaften and Rohstoffe, BGR) for the assistance; and the Universidad Autonoma Metropolitana for the support (Grant No. UAM-C 33678). NR 44 TC 4 Z9 4 U1 14 U2 33 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0169-1317 EI 1872-9053 J9 APPL CLAY SCI JI Appl. Clay Sci. PD FEB PY 2016 VL 120 BP 101 EP 110 DI 10.1016/j.clay.2015.10.004 PG 10 WC Chemistry, Physical; Materials Science, Multidisciplinary; Mineralogy SC Chemistry; Materials Science; Mineralogy GA DC1BI UT WOS:000368951400013 ER PT J AU Thomee, B Elizalde, B Shamma, DA Ni, K Friedland, G Poland, D Borth, D Li, LJ AF Thomee, Bart Elizalde, Benjamin Shamma, David A. Ni, Karl Friedland, Gerald Poland, Douglas Borth, Damian Li, Li-Jia TI YFCC100M: The New Data in Multimedia Research SO COMMUNICATIONS OF THE ACM LA English DT Article AB THE PHOTOGRAPH AND our understanding of photography transitioned from a world of unprocessed rolls of C-41 sitting in a refrigerator 50 years ago to sharing photos on the 1.5-inch screen of a point-and-shoot camera 10 years ago. Today, the photograph is again something different. The way we take photos has fundamentally changed from what it was. We can view, share, and interact with photos on the device that took them. We can edit, tag, or "filter" photos directly on the camera at the same time we take the photo. Photos can be automatically pushed to various online sharing services, and the distinction between photos and videos has lessened. Beyond this, and more important there are now lots of them. As of 2013, to Facebook alone more than 250 billion photos had been uploaded and on average received more than 350 million C1 [Thomee, Bart; Shamma, David A.] Yahoo Labs & Flickr, HCI Res Grp, San Francisco, CA USA. [Friedland, Gerald] Int Comp Sci Inst, Audio & Multimedia Lab, Berkeley, CA 94704 USA. [Elizalde, Benjamin] Carnegie Mellon Univ, Mountain View, CA USA. [Elizalde, Benjamin; Borth, Damian] Int Comp Sci Inst, Berkeley, CA 94704 USA. [Ni, Karl] In Q Tels Lab41, Menlo Pk, CA USA. [Ni, Karl; Poland, Douglas] Lawrence Livermore Natl Lab, Livermore, CA USA. [Borth, Damian] German Res Ctr Artificial Intelligence, Multimedia Anal & Data Min Grp, Kaiserslautern, Germany. [Li, Li-Jia] Snapchat, Res, Venice, CA USA. [Li, Li-Jia] Yahoo Labs, San Francisco, CA USA. RP Thomee, B; Shamma, DA (reprint author), Yahoo Labs & Flickr, HCI Res Grp, San Francisco, CA USA.; Friedland, G (reprint author), Int Comp Sci Inst, Audio & Multimedia Lab, Berkeley, CA 94704 USA.; Elizalde, B (reprint author), Carnegie Mellon Univ, Mountain View, CA USA.; Elizalde, B; Borth, D (reprint author), Int Comp Sci Inst, Berkeley, CA 94704 USA.; Ni, K (reprint author), In Q Tels Lab41, Menlo Pk, CA USA.; Ni, K; Poland, D (reprint author), Lawrence Livermore Natl Lab, Livermore, CA USA.; Borth, D (reprint author), German Res Ctr Artificial Intelligence, Multimedia Anal & Data Min Grp, Kaiserslautern, Germany.; Li, LJ (reprint author), Snapchat, Res, Venice, CA USA.; Li, LJ (reprint author), Yahoo Labs, San Francisco, CA USA. EM bthomee@yahoo-inc.com; bmartin1@andrew.cmu.edu; aymans@acm.org; kni@iqt.org; fractor@icsi.berkeley.edu; poland1@llnl.gov; damian.borth@dfki.de; lijiali.vision@gmail.com FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; National Science Foundation by ICSI [1251276] FX We thank Jordan Gimbel and Kim Capps-Tanaka at Yahoo, Pierre Garrigues, Simon Osindero, and the rest of the Flickr Vision & Search team, Carmen Carrano and Roger Pearce at Lawrence Livermore National Laboratory, and Julia Bernd, Jaeyoung Choi, Luke Gottlieb, and Adam Janin at the International Computer Science Institute (ICSI). We are further thankful to ICSI for making its data publicly available in collaboration with Amazon. Portions of this work were performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and supported by the National Science Foundation by ICSI under Award Number 1251276. NR 20 TC 27 Z9 28 U1 1 U2 2 PU ASSOC COMPUTING MACHINERY PI NEW YORK PA 2 PENN PLAZA, STE 701, NEW YORK, NY 10121-0701 USA SN 0001-0782 EI 1557-7317 J9 COMMUN ACM JI Commun. ACM PD FEB PY 2016 VL 59 IS 2 BP 64 EP 73 DI 10.1145/2812802 PG 10 WC Computer Science, Hardware & Architecture; Computer Science, Software Engineering; Computer Science, Theory & Methods SC Computer Science GA DB9HY UT WOS:000368828200022 ER PT J AU Wang, C Duan, QY Tong, CH Di, ZH Gong, W AF Wang, Chen Duan, Qingyun Tong, Charles H. Di, Zhenhua Gong, Wei TI A GUI platform for uncertainty quantification of complex dynamical models SO ENVIRONMENTAL MODELLING & SOFTWARE LA English DT Article DE Uncertainty Quantification; Design of experiments; Sensitivity analysis; Surrogate modeling; Parameter optimization; UQ-PyL ID RAINFALL-RUNOFF MODELS; GLOBAL SENSITIVITY MEASURES; AUTOMATIC CALIBRATION; OPTIMIZATION; INDEXES; DESIGN; MACHINE; OUTPUT AB Uncertainty quantification (UQ) refers to quantitative characterization and reduction of uncertainties present in computer model simulations. It is widely used in engineering and geophysics fields to assess and predict the likelihood of various outcomes. This paper describes a UQ platform called UQ-PyL (Uncertainty Quantification Python Laboratory), a flexible software platform designed to quantify uncertainty of complex dynamical models. UQ-PyL integrates different kinds of UQ methods, including experimental design, statistical analysis, sensitivity analysis, surrogate modeling and parameter optimization. It is written in Python language and runs on all common operating systems. UQ-PyL has a graphical user interface that allows users to enter commands via pull-down menus. It is equipped with a model driver generator that allows any computer model to be linked with the software. We illustrate the different functions of UQ-PyL by applying it to the uncertainty analysis of the Sacramento Soil Moisture Accounting Model. We will also demonstrate that UQ-PyL can be applied to a wide range of applications. (C) 2015 The Authors. Published by Elsevier Ltd. C1 [Wang, Chen; Duan, Qingyun; Di, Zhenhua; Gong, Wei] Beijing Normal Univ, Coll Global Change & Earth Syst Sci, Beijing 100875, Peoples R China. [Wang, Chen; Duan, Qingyun; Di, Zhenhua; Gong, Wei] Beijing Normal Univ, Joint Ctr Global Change Res, Beijing 100875, Peoples R China. [Tong, Charles H.] Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA. RP Duan, QY (reprint author), Beijing Normal Univ, Coll Global Change & Earth Syst Sci, Beijing 100875, Peoples R China.; Duan, QY (reprint author), Beijing Normal Univ, Joint Ctr Global Change Res, Beijing 100875, Peoples R China. EM qyduan@bnu.edu.cn RI Duan, Qingyun/C-7652-2011; OI Duan, Qingyun/0000-0001-9955-1512; Wang, Chen/0000-0003-2706-3549; Gong, Wei/0000-0003-3622-7090 FU Ministry of Science and Technology of the People's Republic of China [2013BAB05B04, 41375139] FX This research is supported by the Ministry of Science and Technology of the People's Republic of China National Science and Technology Support Program (No. 2013BAB05B04 and No. 41375139). NR 73 TC 4 Z9 4 U1 7 U2 20 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1364-8152 EI 1873-6726 J9 ENVIRON MODELL SOFTW JI Environ. Modell. Softw. PD FEB PY 2016 VL 76 BP 1 EP 12 DI 10.1016/j.envsoft.2015.11.004 PG 12 WC Computer Science, Interdisciplinary Applications; Engineering, Environmental; Environmental Sciences SC Computer Science; Engineering; Environmental Sciences & Ecology GA DB9WU UT WOS:000368869200001 ER PT J AU Pollastrini, M Feducci, M Bonal, D Fotelli, M Gessler, A Grossiord, C Guyot, V Jactel, H Nguyen, D Radoglou, K Bussotti, F AF Pollastrini, Martina Feducci, Matteo Bonal, Damien Fotelli, Mariangela Gessler, Arthur Grossiord, Charlotte Guyot, Virginie Jactel, Herve Nguyen, Diem Radoglou, Kalliopi Bussotti, Filippo TI Physiological significance of forest tree defoliation: Results from a survey in a mixed forest in Tuscany (central Italy) SO FOREST ECOLOGY AND MANAGEMENT LA English DT Article DE Crown condition; Defoliation; Foliar analysis; FunDivEUROPE; Mixed forests; Tree diversity ID CHESTNUT GALL WASP; CROWN CONDITION; DRYOCOSMUS-KURIPHILUS; EUROPEAN FORESTS; CLIMATE-CHANGE; FLUORESCENCE TRANSIENT; VEGETATIONAL DIVERSITY; MONITORING PLOTS; SUMMER DROUGHT; LEAF AB A survey of tree crown defoliation and leaf physiological traits (chlorophyll a fluorescence, nitrogen content, and stable carbon isotope composition) was carried out in the thermophilous deciduous forests in Tuscany (central Italy). In contrast to large scale surveys, where variation in defoliation can be associated with the change in environmental conditions, in a limited homogenous area the defoliation of co-existing tree species may have different significance and depends on the interaction between the characteristics of each individual species with biotic stress and environmental conditions. The survey included measurements of structural and vegetational characteristics of the forest stands, such as Leaf Area Index (LAI), basal area and tree diversity, which is expressed as the Shannon diversity index. The five tree species studied (Castanea sativa, Quercus corns, Quercus ilex, Quercus petraea and Ostrya carpinifolia) showed species-specific crown conditions and physiological features relative to stand structure and diversity. The shape of the crowns and their area (LAI) affected forest defoliation. Tree diversity reduced defoliation in C. sativa, which was the tree species most affected by defoliation, and likewise for Q. ilex. Chlorophyll a fluorescence parameters showed lower photosynthetic efficiency in defoliated C. sativa, O. carpinifolia and Q. petraea trees. Similarly, foliar nitrogen content decreased in defoliated C. sativa and O. carpinifolia trees, whereas delta C-13 was higher in defoliated C. sativa. These responses may be related to the health status of C. sativa, since it was subjected to pathogen damages and insect attacks. In contrast, the mast year in O. carpinifolia may have diverted the nutrient resources from leaves to fruits, and consequently explaining the physiological effects on the tree crown. These results suggest that the combined analysis of defoliation with foliar features and stand characteristics can provide insights into tree health and vitality. (C) 2015 Elsevier B.V. All rights reserved. C1 [Pollastrini, Martina; Bussotti, Filippo] Univ Florence, Sect Soil & Plant Sci, Dept Agrifood Prod & Environm Sci, I-50121 Florence, Italy. [Feducci, Matteo] Univ Florence, Sect Plant Pathol & Entomol, Dept Agrifood Prod & Environm Sci, I-50121 Florence, Italy. [Bonal, Damien] INRA, UMR EEF, F-54280 Seichamps, France. [Fotelli, Mariangela] Greek Agr Org Dimitra, Forest Res Inst Thessaloniki, Thessaloniki, Greece. [Gessler, Arthur] Swiss Fed Inst Forest Snow & Landscape Res WSL, Long Term Forest Ecosyst Res LWF, Birmensdorf, Switzerland. [Grossiord, Charlotte] Los Alamos Natl Lab, Earth & Environm Sci Div, MS J495, Los Alamos, NM 87545 USA. [Guyot, Virginie] INRA, UMR Biodivers Genes & Ecosyst, Cestas, France. [Guyot, Virginie; Jactel, Herve] INRA INPT ENSAT, UMR Dynafor 1201, Castanet Tolosan, France. [Nguyen, Diem] Swedish Univ Agr Sci, Dept Forest Mycol & Plant Pathol, Box 7026, Uppsala, Sweden. [Radoglou, Kalliopi] Democritus Univ Thrace, Dept Forestry & Management Environm & Nat Resourc, Thessaloniki, Greece. RP Pollastrini, M (reprint author), Univ Florence, Sect Soil & Plant Sci, Dept Agrifood Prod & Environm Sci, I-50121 Florence, Italy. EM martina.pollastrini@unifi.it RI Gessler, Arthur/C-7121-2008; Nguyen, Diem/F-2987-2016; Pollastrini, Martina/N-7989-2014; OI Gessler, Arthur/0000-0002-1910-9589; Nguyen, Diem/0000-0002-9680-5772; Pollastrini, Martina/0000-0003-0959-9489; Grossiord, Charlotte/0000-0002-9113-3671 FU European Union [265171]; Regional Government of Tuscany; National Forest Service (Corpo Fore stale dello Stato) - UTB Follonica; Comunita Montana Colline Metallifere; Municipality of Volterra FX The research leading to these results received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement No. 265171. We are grateful to the Regional Government of Tuscany, the National Forest Service (Corpo Fore stale dello Stato) - UTB Follonica, the Comunita Montana Colline Metallifere, the Municipality of Volterra for having supported the logistic aspects of the research. We thank also Federico Selvi, Andrea Coppi and Elisa Carrari for the survey design and technical support. Thanks to the tree climbers Cinzia Sarti, Claudio Santelli, Giovanni Lotti and Francesco lerimonti for the leaf collection. We thank Tommaso Jucker for the availability of light interception index data, as well as Renate Nitschke, Jurgen Bauhus, Francoise-Xavier Joly and Stephan Hattenschwiller for their contribution in the NIRS and chemical reference analysis. NR 82 TC 4 Z9 4 U1 19 U2 45 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-1127 EI 1872-7042 J9 FOREST ECOL MANAG JI For. Ecol. Manage. PD FEB 1 PY 2016 VL 361 BP 170 EP 178 DI 10.1016/j.foreco.2015.11.018 PG 9 WC Forestry SC Forestry GA DB8FZ UT WOS:000368753900016 ER PT J AU Latta, DE Kemner, KM Mishra, B Boyanov, MI AF Latta, Drew E. Kemner, Kenneth M. Mishra, Bhoopesh Boyanov, Maxim I. TI Effects of calcium and phosphate on uranium(IV) oxidation: Comparison between nanoparticulate uraninite and amorphous U-IV-phosphate SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID CORROSION PRODUCT DEPOSITS; SHALLOW ALLUVIAL AQUIFER; IN-SITU BIOREMEDIATION; ADVANCED PHOTON SOURCE; NUCLEAR-FUEL UO2; U(VI) REDUCTION; DISSOLUTION KINETICS; OXYGENATED SOLUTIONS; U(IV); GROUNDWATER AB The mobility of uranium in subsurface environments depends strongly on its redox state, with U-IV phases being significantly less soluble than U-VI minerals. This study compares the oxidation kinetics and mechanisms of two potential products of U-VI reduction in natural systems, a nanoparticulate UO2 phase and an amorphous U-IV-Ca-PO4 analog to ningyoite (CaUIV(PO4)(2)center dot 1-2H(2)O). The valence of U was tracked by X-ray absorption near-edge spectroscopy (XANES), showing similar oxidation rate constants for (UO2)-O-IV and U-IV-phosphate in solutions equilibrated with atmospheric O-2 and CO2 at pH 7.0 (k(obs, UO2) = 0.17 +/- 0.075 h(-1) vs. k(obs, U PO4)(IV) = 0.30 +/- 0.25 h(-1)). Addition of up to 400 mu M Ca and PO4 decreased the oxidation rate constant by an order of magnitude for both UO2 and U-IV-phosphate. The intermediates and products of oxidation were tracked by electron microscopy, powder X-ray diffraction (pXRD), and extended X-ray absorption fine-structure spectroscopy (EXAFS). In the absence of Ca or PO4, the product of UO2 oxidation is Na-uranyl oxyhydroxide (under environmentally relevant concentrations of sodium, 15 mM NaClO4 and low carbonate concentration), resulting in low concentrations of dissolved U-VI (<2.5 x 10(-7) M). Oxidation of U-IV-phosphate produced a Na-autunite phase (Na-2(UO2)PO4 center dot xH(2)O), resulting in similarly low dissolved U concentrations (<7.3 x 10(-8) M). When Ca and PO4 are present in the solution, the EXAFS data and the solubility of the U-VI phase resulting from oxidation of UO2 and U-IV-phosphate are consistent with the precipitation of Na-autunite. Bicarbonate extractions and Ca K-edge X-ray absorption spectroscopy of oxidized solids indicate the formation of a Ca-U-VI-PO4 layer on the UO2 surface and suggest a passivation layer mechanism for the decreased rate of UO2 oxidation in the presence of Ca and PO4. Interestingly, the extractions were unable to remove all of the oxidized U from partially oxidized UO2 solids, suggesting that oxidized U is distributed between the interior of the UO2 nanoparticles and the labile surface layer. Accounting for the entire pool of oxidized U by XANES is the likely reason for the higher UO2 oxidation rate constants determined here relative to prior studies. Our results suggest that the natural presence or addition of Ca and PO4 in groundwater could slow the rates of U-IV oxidation, but that the rates are still fast enough to cause complete oxidation of U-IV within days under fully oxygenated conditions. (c) 2015 Elsevier Ltd. All rights reserved. C1 [Latta, Drew E.; Kemner, Kenneth M.; Mishra, Bhoopesh; Boyanov, Maxim I.] Argonne Natl Lab, Biosci Div, Bldg 203, Argonne, IL 60439 USA. [Mishra, Bhoopesh] IIT, Dept Phys, Chicago, IL 60616 USA. [Boyanov, Maxim I.] Bulgarian Acad Sci, Inst Chem Engn, Sofia 1113, Bulgaria. [Latta, Drew E.] Univ Iowa, Dept Civil & Environm Engn, Seamans Ctr 4105, Iowa City, IA 52242 USA. RP Latta, DE (reprint author), Argonne Natl Lab, Biosci Div, Bldg 203, Argonne, IL 60439 USA. EM drew-latta@uiowa.edu; Kemner@anl.gov; bmishra3@iit.edu; mboyanov@ice.bas.bg RI ID, MRCAT/G-7586-2011; BM, MRCAT/G-7576-2011 FU DOE Subsurface Biogeochemical Research Program, Office of Biological and Environmental Research, Office of Science; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences; DOE; MRCAT/EnviroCAT member institutions; [DE-AC02-06CH11357] FX We thank Edward O'Loughlin for insightful discussions and Carolyn Steele for editing the final version of the manuscript. This research is part of the Subsurface Science Scientific Focus Area at Argonne National Laboratory, which is supported by the DOE Subsurface Biogeochemical Research Program, Office of Biological and Environmental Research, Office of Science. Use of the Electron Microscopy Center at Argonne and the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. MRCAT/EnviroCAT operations are supported by DOE and the MRCAT/EnviroCAT member institutions. All work at Argonne was under Contract DE-AC02-06CH11357. NR 73 TC 0 Z9 0 U1 19 U2 49 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 EI 1872-9533 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD FEB 1 PY 2016 VL 174 BP 122 EP 142 DI 10.1016/j.gca.2015.11.010 PG 21 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA DB9ES UT WOS:000368819800009 ER PT J AU Ye, P Sun, CX Lapuerta, M Agudelo, J Vander Wal, R Boehman, AL Toops, TJ Daw, S AF Ye, Peng Sun, Chenxi Lapuerta, Magin Agudelo, John Vander Wal, Randy Boehman, Andre L. Toops, Todd J. Daw, Stuart TI Impact of rail pressure and biodiesel fueling on the particulate morphology and soot nanostructures from a common-rail turbocharged direct injection diesel engine SO INTERNATIONAL JOURNAL OF ENGINE RESEARCH LA English DT Article DE Biodiesel; soot; morphology; oxidative reactivity; nanostructure; fractal dimension ID CARBONACEOUS MATERIALS; OPERATING-CONDITIONS; ALTERNATIVE FUELS; SIZE DISTRIBUTION; DIFFUSION FLAMES; OXYGEN DIFFUSION; FRACTAL GEOMETRY; RAMAN-SPECTRA; REACTIVITY; OXIDATION AB An investigation of the impact of rail pressure and biodiesel fueling on exhaust particulate agglomerate morphology and primary particle (soot) nanostructure was conducted with a common-rail turbocharged direct injection diesel engine. The engine was operated at steady state on a dynamometer running at moderate speed with both low (30%) and medium-high (60%) fixed loads, and exhaust particulate was sampled for analysis. The fuels used were ultra-low sulfur diesel and its 20% v/v blends with soybean methyl ester biodiesel. Fuel injection occurred in a single event around top dead center at three different injection pressures. Exhaust particulate samples were characterized with transmission electronic microscopy imaging, scanning mobility particle sizing, thermogravimetric analysis, Raman spectroscopy, and X-ray diffraction analysis. Particulate morphology and oxidative reactivity were found to vary significantly with both rail pressure and biodiesel blend level. Higher biodiesel content led to an increase in the primary particle size and oxidative reactivity but had no impact on nanoscale disorder in the as-received samples. For particulates generated with higher injection pressures, the initial oxidative reactivity increased, but there was no detectable correlation with primary particle size or nanoscale disorder. C1 [Ye, Peng; Sun, Chenxi; Vander Wal, Randy; Boehman, Andre L.] Penn State Univ, John & Willie Leone Family Dept Energy & Mineral, EMS Energy Inst, University Pk, PA 16802 USA. [Ye, Peng] Hess Corp, New York, NY USA. [Sun, Chenxi; Boehman, Andre L.] Univ Michigan, Dept Mech Engn, 1231 Beal Ave,2007 WE Lay Auto Lab, Ann Arbor, MI 48103 USA. [Lapuerta, Magin] Univ Castilla La Mancha, E-13071 Ciudad Real, Spain. [Agudelo, John] Univ Antioquia, Fac Ingn, Medellin, Colombia. [Toops, Todd J.; Daw, Stuart] Oak Ridge Natl Lab, Oak Ridge, TN USA. RP Boehman, AL (reprint author), Univ Michigan, Dept Mech Engn, 1231 Beal Ave,2007 WE Lay Auto Lab, Ann Arbor, MI 48103 USA. EM boehman@umich.edu OI AGUDELO, JOHN/0000-0003-1304-9375; Lapuerta, Magin/0000-0001-7418-1412 FU Spanish Ministry of Education [PR2010-0419]; Department of Energy; Oak Ridge National Lab FX The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: The authors gratefully acknowledge the Spanish Ministry of Education for the financial support to Prof. Lapuerta for his stay at the Energy Institute, Pennsylvania State University (PR2010-0419). The authors also gratefully acknowledge the financial support from Department of Energy and Oak Ridge National Lab. NR 63 TC 6 Z9 6 U1 4 U2 16 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 1468-0874 EI 2041-3149 J9 INT J ENGINE RES JI Int. J. Engine Res. PD FEB PY 2016 VL 17 IS 2 BP 193 EP 208 DI 10.1177/1468087414564229 PG 16 WC Thermodynamics; Engineering, Mechanical; Transportation Science & Technology SC Thermodynamics; Engineering; Transportation GA DB9CY UT WOS:000368815100004 ER PT J AU Ericson, DL Yin, XY Scalia, A Samara, YN Stearns, R Vlahos, H Ellson, R Sweet, RM Soares, AS AF Ericson, Daniel L. Yin, Xingyu Scalia, Alexander Samara, Yasmin N. Stearns, Richard Vlahos, Harry Ellson, Richard Sweet, Robert M. Soares, Alexei S. TI Acoustic Methods to Monitor Protein Crystallization and to Detect Protein Crystals in Suspensions of Agarose and Lipidic Cubic Phase SO JALA LA English DT Article DE crystal detection; lipidic cubic phase; crystallography; acoustic droplet ejection; crystallization; visualization; sonar ID MICROMESHES AB Improvements needed for automated crystallography include crystal detection and crystal harvesting. A technique that uses acoustic droplet ejection to harvest crystals was previously reported. Here a method is described for using the same acoustic instrument to detect protein crystals and to monitor crystal growth. Acoustic pulses were used to monitor the progress of crystallization trials and to detect the presence and location of protein crystals. Crystals were detected, and crystallization was monitored in aqueous solutions and in lipidic cubic phase. Using a commercially available acoustic instrument, crystals measuring similar to 150 mu m or larger were readily detected. Simple laboratory techniques were used to increase the sensitivity to 50 mu m by suspending the crystals away from the plastic surface of the crystallization plate. This increased the sensitivity by separating the strong signal generated by the plate bottom that can mask the signal from small protein crystals. It is possible to further boost the acoustic reflection from small crystals by reducing the wavelength of the incident sound pulse, but our current instrumentation does not allow this option. In the future, commercially available sound-emitting transducers with a characteristic frequency near 300 MHz should detect and monitor the growth of individual 3 mu m crystals. C1 [Ericson, Daniel L.; Yin, Xingyu; Scalia, Alexander; Samara, Yasmin N.] Brookhaven Natl Lab, Off Educ Programs, Upton, NY 11973 USA. [Ericson, Daniel L.] SUNY Buffalo, Dept Biomed Engn, Buffalo, NY 14260 USA. [Yin, Xingyu] SUNY Stony Brook, Dept Biochem & Cell Biol, Stony Brook, NY USA. [Scalia, Alexander] SUNY Binghamton, Dept Biol Sci, Binghamton, NY 13902 USA. [Samara, Yasmin N.] Minist Educ Brazil, CAPES Fdn, Brasilia, DF, Brazil. [Samara, Yasmin N.] Univ Fed Santa Maria, BR-97119900 Santa Maria, RS, Brazil. [Stearns, Richard; Vlahos, Harry; Ellson, Richard] Labcyte Inc, Sunnyvale, CA USA. [Sweet, Robert M.; Soares, Alexei S.] Brookhaven Natl Lab, Photon Sci Directorate, Upton, NY 11973 USA. [Sweet, Robert M.] Brookhaven Natl Lab, Dept Biosci, Upton, NY 11973 USA. RP Soares, AS (reprint author), Brookhaven Natl Lab, Photon Sci Directorate, 745 Brookhaven Ave, Upton, NY 11973 USA. EM soares@bnl.gov FU U.S. Department of Energy, Office of Science, Office of Workforce Development for Teachers and Scientists (WDTS); Brookhaven National Laboratory/U.S. Department of Energy, Laboratory Directed Research and Development [11-008]; Office of Biological and Environmental Research; Office of Basic Energy Sciences of the U.S. Department of Energy; National Center for Research Resources [P41RR012408]; National Institute of General Medical Sciences of the National Institutes of Health [P41GM103473]; National Institutes of Health/National Institute of General Medical Sciences under NSF [DMR-0936384]; National Institute of General Medical Sciences [GM-103485] FX The authors disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: Personnel for this study were recruited largely through the 2014 summer session of the Science Undergraduate Laboratory Internships Program (SULI), supported through the U.S. Department of Energy, Office of Science, Office of Workforce Development for Teachers and Scientists (WDTS). Major ongoing financial support for acoustic droplet ejection applications was through the Brookhaven National Laboratory/U.S. Department of Energy, Laboratory Directed Research and Development Grant 11-008, and from the Offices of Biological and Environmental Research and of Basic Energy Sciences of the U.S. Department of Energy, and from the National Center for Research Resources (P41RR012408) and the National Institute of General Medical Sciences (P41GM103473) of the National Institutes of Health. Data for this study were measured at the Cornell High Energy Synchrotron Source (CHESS), supported by the National Science Foundation and the National Institutes of Health/National Institute of General Medical Sciences under NSF award DMR-0936384, using the MacCHESS facility, which is supported by award GM-103485 from the National Institute of General Medical Sciences. NR 16 TC 3 Z9 3 U1 2 U2 4 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 2211-0682 EI 1540-2452 J9 JALA-J LAB AUTOM JI JALA PD FEB PY 2016 VL 21 IS 1 SI SI BP 107 EP 114 DI 10.1177/2211068215616365 PG 8 WC Biochemical Research Methods; Chemistry, Analytical SC Biochemistry & Molecular Biology; Chemistry GA DB8NC UT WOS:000368772400012 PM 26574563 ER PT J AU Foley, BJ Drozd, AM Bollard, MT Laspina, D Podobedov, N Zeniou, N Rao, AS Andi, B Jackimowicz, R Sweet, RM McSweeney, S Soares, AS AF Foley, Bryan J. Drozd, Ashley M. Bollard, Mary T. Laspina, Denise Podobedov, Nikita Zeniou, Nicholas Rao, Anjali S. Andi, Babak Jackimowicz, Rick Sweet, Robert M. McSweeney, Sean Soares, Alexei S. TI Maintaining Microclimates during Nanoliter Chemical Dispensations Using Custom-Designed Source Plate Lids SO JALA LA English DT Article DE acoustic droplet ejection; liquid handling; chemistry; contamination; microdroplets; evaporation; dehydration; synthesis; solvents; crystallization; drug discovery ID LIBRARIES; OXYGEN; CATALYST AB A method is described for using custom snap-on lids to protect chemicals in microtiter plates from evaporation and contamination. The lids contain apertures (diameter 1.5, 1.0, or 0.5 mm) through which the chemical building blocks can be transferred. The lid with 0.5 mm apertures was tested using a noncontact acoustic liquid handler; the 1.0 and 1.5 mm lids were tested using two tip-based liquid handlers. All of the lids reduced the rate at which solvents evaporated to room air, and greatly reduced the rate of contamination by water and oxygen from room air. In steady-state measurements, the lids reduced the rate of evaporation of methanol, 1-hexene, and water by 33% to 248%. In cycled experiments, the contamination of aqueous solvent with oxygen was reduced below detectability and the rate at which DMSO engorged atmospheric water was reduced by 81%. Our results demonstrate that the lids preserve the integrity of air-sensitive reagents during the time needed for different types of liquid handlers to perform dispensations. Controlling degradation and evaporation of chemical building blocks exposed to the atmosphere is increasingly useful as the reagent volume is reduced by advances in liquid handling technology, such as acoustic droplet ejection. C1 [Foley, Bryan J.; Drozd, Ashley M.; Bollard, Mary T.; Laspina, Denise; Podobedov, Nikita; Zeniou, Nicholas; Rao, Anjali S.] Brookhaven Natl Lab, Off Educ Programs, 745 Brookhaven Ave, Upton, NY 11973 USA. [Andi, Babak; Jackimowicz, Rick; Sweet, Robert M.; McSweeney, Sean; Soares, Alexei S.] Brookhaven Natl Lab, Energy Sci Directorate, NSLS 2, 745 Brookhaven Ave, Upton, NY 11973 USA. [Foley, Bryan J.] Fairmont State Univ, Fairmont, WV USA. [Drozd, Ashley M.] Long Isl Univ, Brooklyn, NY USA. [Bollard, Mary T.] York Coll Penn, York, PA USA. [Laspina, Denise] SUNY Stony Brook, Dept Biol, Stony Brook, NY 11794 USA. [Podobedov, Nikita] Ward Melville High Sch, Setauket East Setauket, NY USA. [Zeniou, Nicholas] St Anthonys High Sch, Huntington Stn, NY USA. [Rao, Anjali S.] SUNY Stony Brook, Dept Mech Engn, Stony Brook, NY 11794 USA. [Sweet, Robert M.; McSweeney, Sean] Brookhaven Natl Lab, Biosci Dept, 745 Brookhaven Ave, Upton, NY 11973 USA. RP Soares, AS (reprint author), Brookhaven Natl Lab, Energy Sci Directorate, NSLS 2, 745 Brookhaven Ave, Upton, NY 11973 USA. EM soares@bnl.gov FU U.S. Department of Energy, Office of Science, Office of Workforce Development for Teachers and Scientists (WDTS); U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-98CH10886]; DOE Office of Biological and Environmental Research [E-SC0012704]; National Institutes of Health, National Institute of General Medical Sciences [P41GM103473, P41GM111244] FX The authors disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: Personnel for this study were recruited largely through the 2015 spring and summer sessions of the Science Undergraduate Laboratory Internships Program (SULI) and High School Research Program (HSRP), supported through the U.S. Department of Energy, Office of Science, Office of Workforce Development for Teachers and Scientists (WDTS). Major ongoing financial support for the LSBR specimen preparation laboratory was through the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract no. DE-AC02-98CH10886. The Life-Science and Biomedical Technology Research Resource for NSLS-II is supported by the DOE Office of Biological and Environmental Research, proposal E-SC0012704, and by the National Institutes of Health, National Institute of General Medical Sciences, including P41GM103473 and P41GM111244. NR 35 TC 0 Z9 0 U1 3 U2 7 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 2211-0682 EI 1540-2452 J9 JALA-J LAB AUTOM JI JALA PD FEB PY 2016 VL 21 IS 1 SI SI BP 115 EP 124 DI 10.1177/2211068215616072 PG 10 WC Biochemical Research Methods; Chemistry, Analytical SC Biochemistry & Molecular Biology; Chemistry GA DB8NC UT WOS:000368772400013 PM 26564917 ER PT J AU Hagos, SM Feng, Z Burleyson, CD Zhao, C Martini, MN Berg, LK AF Hagos, Samson M. Feng, Zhe Burleyson, Casey D. Zhao, Chun Martini, Matus N. Berg, Larry K. TI Moist Process Biases in Simulations of the Madden-Julian Oscillation Episodes Observed during the AMIE/DYNAMO Field Campaign SO JOURNAL OF CLIMATE LA English DT Article DE Circulation; Dynamics; Deep convection; Madden-Julian oscillation; Models and modeling; Cloud parameterizations; Cloud resolving models; Convective parameterization ID STATIC ENERGY BUDGET; TROPICAL INTRASEASONAL VARIABILITY; CONVECTIVE PARAMETERIZATION; CUMULUS PARAMETERIZATION; FORECAST SYSTEM; BOUNDARY-LAYER; PART I; MODEL; MJO; PRECIPITATION AB Two Madden-Julian oscillation (MJO) episodes observed during the 2011 Atmospheric Radiation Measurement Program MJO Investigation Experiment (AMIE)/DYNAMO field campaign are simulated using a regional model with various cumulus parameterizations, a regional cloud-permitting model, and a global variable-resolution model with a high-resolution region centered over the tropical Indian Ocean. Model biases in relationships relevant to existing instability theories of MJO are examined and their relative contributions to the overall model errors are quantified using a linear statistical model. The model simulations capture the observed approximately log-linear relationship between moisture saturation fraction and precipitation, but precipitation associated with the given saturation fraction is overestimated especially at low saturation fraction values. This bias is a major contributor to the excessive precipitation during the suppressed phase of MJO. After accounting for this bias using a linear statistical model, the spatial and temporal structures of the model-simulated MJO episodes are much improved, and what remains of the biases is strongly correlated with biases in saturation fraction. The excess precipitation bias during the suppressed phase of the MJO episodes is accompanied by excessive column-integrated radiative forcing and surface evaporation. A large portion of the bias in evaporation is related to biases in wind speed, which are correlated with those of precipitation. These findings suggest that the precipitation bias sustains itself at least partly by cloud radiative feedbacks and convection-surface wind interactions. C1 [Hagos, Samson M.; Feng, Zhe; Burleyson, Casey D.; Zhao, Chun; Martini, Matus N.; Berg, Larry K.] Pacific NW Natl Lab, 902 Battelle Blvd, Richland, WA 99352 USA. [Martini, Matus N.] US Navy, Res Lab, Monterey, CA USA. RP Hagos, SM (reprint author), Pacific NW Natl Lab, 902 Battelle Blvd, Richland, WA 99352 USA. EM samson.hagos@pnnl.gov RI Zhao, Chun/A-2581-2012; Burleyson, Casey/F-1833-2016; Feng, Zhe/E-1877-2015; OI Zhao, Chun/0000-0003-4693-7213; Burleyson, Casey/0000-0001-6218-9361; Feng, Zhe/0000-0002-7540-9017; Martini, Matus/0000-0003-0459-4988 FU U.S. Department of Energy, Office of Science, Biological and Environmental Research under Atmospheric System Research Program; Regional and Global Climate Modeling Program; U.S. Department of Energy [DE-AC06-76RLO1830] FX This research was supported by the U.S. Department of Energy, Office of Science, Biological and Environmental Research under the Atmospheric System Research Program, and the Regional and Global Climate Modeling Program. Computing resources for the simulations were provided by National Energy Research Scientific Computing Center (NERSC). Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy under Contract DE-AC06-76RLO1830. Data collected on Gan during the AMIE field campaign, including radar, lidar, surface MET, and sounding data, are obtained from the U.S. Department of Energy as part of the Atmospheric Radiation Measurement (ARM) Climate Research Facility. The ARM variational analysis forcing data for AMIE/DYNAMO can be accessed online (http://www.arm.gov/data/eval/29). CombRet can also be accessed online (http://dx.doi.org/10.5439/1169498). The DYNAMO field campaign data used in this paper are available at NCAR's Earth Observing Laboratory's DYNAMO data catalog (https://www.eol.ucar.edu/field_projects/dynamo). The RAMA buoy data can be obtained from NOAA's website (http://www.pmel.noaa.gov/tao/rama/data.html). NR 69 TC 3 Z9 3 U1 3 U2 8 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 EI 1520-0442 J9 J CLIMATE JI J. Clim. PD FEB PY 2016 VL 29 IS 3 BP 1091 EP 1107 DI 10.1175/JCLI-D-15-0349.1 PG 17 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DC5UP UT WOS:000369286300001 ER PT J AU Campione, S Capolino, F AF Campione, Salvatore Capolino, Filippo TI Electromagnetic coupling and array packing induce exchange of dominance on complex modes in 3D periodic arrays of spheres with large permittivity SO JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS LA English DT Article ID TERAHERTZ FREQUENCIES; ARTIFICIAL MAGNETISM; METAMATERIALS; DISPERSION; MICROSPHERES; PERMEABILITY; PARAMETERS; LATTICES AB We investigate the effect on wave propagation of array packing and electromagnetic coupling between spheres in a three-dimensional (3D) lattice of microspheres with large permittivity that exhibit strong magnetic polarizability. We report on the complex wavenumber of Bloch waves in the lattice when each sphere is assumed to possess both electric and magnetic dipoles and full electromagnetic coupling is accounted for. While for small material-filling fractions we always determine one dominant mode with low attenuation constant, the same does not happen for large filling fractions, when electromagnetic coupling is included. In the latter case we peculiarly observe two dominant modes with low attenuation constant, dominant in different frequency ranges. The filling fraction threshold for which two dominant modes appear varies for different metamaterial constituents, as proven by considering spheres made by either titanium dioxide or lead telluride. As further confirmation of our findings, we retrieve the complex propagation constant of the dominant mode(s) via a field fitting procedure employing two sets of waves (direct and reflected) pertaining to two distinct modes, strengthening the presence of the two distinct dominant modes for increasing filling fractions. However, given that one mode only, with transverse polarization, at any given frequency, is dominant and able to propagate inside the lattice, we are able to accurately treat the metamaterial that is known to exhibit artificial magnetism as a homogeneous material with effective parameters, such as the refractive index. Results clearly show that the account of both electric and magnetic scattering processes in evaluating all electromagnetic intersphere couplings is essential for a proper description of the electromagnetic propagation in lattices. (C) 2016 Optical Society of America C1 [Campione, Salvatore; Capolino, Filippo] Univ Calif Irvine, Dept Elect Engn & Comp Sci, Irvine, CA 92697 USA. [Campione, Salvatore] Sandia Natl Labs, Ctr Integrated Nanotechnol, POB 5800, Albuquerque, NM 87185 USA. RP Capolino, F (reprint author), Univ Calif Irvine, Dept Elect Engn & Comp Sci, Irvine, CA 92697 USA. EM f.capolino@uci.edu FU National Science Foundation (NSF) [CMMI-1101074, ECCS-SNM-1449397] FX National Science Foundation (NSF) (CMMI-1101074, ECCS-SNM-1449397). NR 38 TC 2 Z9 2 U1 1 U2 8 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 0740-3224 EI 1520-8540 J9 J OPT SOC AM B JI J. Opt. Soc. Am. B-Opt. Phys. PD FEB 1 PY 2016 VL 33 IS 2 BP 261 EP 270 DI 10.1364/JOSAB.33.000261 PG 10 WC Optics SC Optics GA DC3DK UT WOS:000369099300030 ER PT J AU Segundo, FDS Medina, GN Ramirez-Medina, E Velazquez-Salinas, L Koster, M Grubman, MJ de los Santos, T AF Segundo, Fayna Diaz-San Medina, Gisselle N. Ramirez-Medina, Elizabeth Velazquez-Salinas, Lauro Koster, Marla Grubman, Marvin J. de los Santos, Teresa TI Synonymous Deoptimization of Foot-and-Mouth Disease Virus Causes Attenuation In Vivo while Inducing a Strong Neutralizing Antibody Response SO JOURNAL OF VIROLOGY LA English DT Article ID CODON-PAIR BIAS; RNA VIRUSES; DINUCLEOTIDE FREQUENCIES; VIRAL REPLICATION; CELL-CULTURE; RIG-I; LIVE; VACCINE; PROTEIN; MICE AB Codon bias deoptimization has been previously used to successfully attenuate human pathogens, including poliovirus, respiratory syncytial virus, and influenza virus. We have applied a similar technology to deoptimize the capsid-coding region (P1) of foot-and-mouth disease virus (FMDV). Despite the introduction of 489 nucleotide changes (19%), synonymous deoptimization of the P1 region rendered a viable FMDV progeny. The resulting strain was stable and reached cell culture titers similar to those obtained for wild-type (WT) virus, but at reduced specific infectivity. Studies in mice showed that 100% of animals inoculated with the FMDV A12 P1 deoptimized mutant (A12-P1 deopt) survived, even when the animals were infected at doses 100 times higher than the dose required to cause death by WT virus. All mice inoculated with the A12-P1 deopt mutant developed a strong antibody response and were protected against subsequent lethal challenge with WT virus at 21 days postinoculation. Remarkably, the vaccine safety margin was at least 1,000-fold higher for A12-P1 deopt than for WT virus. Similar patterns of attenuation were observed in swine, in which animals inoculated with A12-P1 deopt virus did not develop clinical disease until doses reached 1,000 to 10,000 times the dose required to cause severe disease in 2 days with WT A12. Consistently, high levels of antibody titers were induced, even at the lowest dose tested. These results highlight the potential use of synonymous codon pair deoptimization as a strategy to safely attenuate FMDV and further develop live attenuated vaccine candidates to control such a feared livestock disease. C1 [Segundo, Fayna Diaz-San; Medina, Gisselle N.; Koster, Marla; Grubman, Marvin J.; de los Santos, Teresa] ARS, Plum Isl Anim Dis Ctr, USDA, Greenport, NY USA. [Segundo, Fayna Diaz-San] Univ Connecticut, Dept Pathobiol & Vet Sci, Storrs, CT USA. [Ramirez-Medina, Elizabeth; Velazquez-Salinas, Lauro] Oak Ridge Inst Sci & Educ, Plum Isl Anim Dis Ctr, Res Participat Program, Oak Ridge, TN USA. RP de los Santos, T (reprint author), ARS, Plum Isl Anim Dis Ctr, USDA, Greenport, NY USA. EM teresa.delossantos@ars.usda.gov FU U.S Department of Agriculture FX U.S Department of Agriculture provided funding to Fayna Diaz-San Segundo, Gisselle N. Medina, Elizabeth Ramirez-Medina, Lauro Velazquez-Salinas, Marla Koster, Marvin J Grubman, and Teresa de los Santos. NR 53 TC 2 Z9 2 U1 0 U2 4 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0022-538X EI 1098-5514 J9 J VIROL JI J. Virol. PD FEB PY 2016 VL 90 IS 3 BP 1298 EP 1310 DI 10.1128/JVI.02167-15 PG 13 WC Virology SC Virology GA DC3WW UT WOS:000369150800012 ER PT J AU Akpinar, F Timm, A Yin, J AF Akpinar, Fulya Timm, Andrea Yin, John TI High-Throughput Single-Cell Kinetics of Virus Infections in the Presence of Defective Interfering Particles SO JOURNAL OF VIROLOGY LA English DT Article ID VESICULAR STOMATITIS-VIRUS; RIBONUCLEIC-ACID SYNTHESIS; VIRAL-RNA MOLECULES; INFLUENZA-VIRUS; PERSISTENT INFECTION; POPULATION CONTEXT; T-PARTICLES; IN-VITRO; RIG-I; REPLICATION AB Defective interfering particles (DIPs) are virus mutants that lack essential genes for growth. In coinfections with helper virus, the diversion of viral proteins to the replication and packaging of DIP genomes can interfere with virus production. Mounting cases of DIPs and DIP-like genomes in clinical and natural isolates, as well as growing interest in DIP-based therapies, underscore a need to better elucidate how DIPs work. DIP activity is primarily measured by its inhibition of virus infection yield, an endpoint that masks the dynamic and potentially diverse individual cell behaviors. Using vesicular stomatitis virus (VSV) as a model, we coinfected BHK cells with VSV DIPs and recombinant helper virus carrying a gene encoding a red fluorescent protein (RFP) whose expression correlates with the timing and level of virus release. For single cells within a monolayer, 10 DIPs per cell suppressed the reporter expression in only 1.2% of the cells. In most cells, it slowed and reduced viral gene expression, manifested as a shift in mean latent time from 4 to 6 h and reduced virus yields by 10-fold. For single cells isolated in microwells, DIP effects were more pronounced, reducing virus yields by 100-fold and extending latent times to 12 h, including individual instances above 20 h. Together, these results suggest that direct or indirect cell-cell interactions prevent most coinfected cells from being completely suppressed by DIPs. Finally, a gamma distribution model captures well how the infection kinetics quantitatively depends on the DIP dose. Such models will be useful for advancing a predictive biology of DIP-associated virus growth and infection spread. C1 [Akpinar, Fulya; Timm, Andrea; Yin, John] Univ Wisconsin, Dept Chem & Biol Engn, Wisconsin Inst Discovery, Syst Biol Theme, Madison, WI USA. [Akpinar, Fulya] Bristol Myers Squibb Co, New Brunswick, NJ USA. [Timm, Andrea] Oak Ridge Natl Lab, Oak Ridge, TN USA. RP Yin, J (reprint author), Univ Wisconsin, Dept Chem & Biol Engn, Wisconsin Inst Discovery, Syst Biol Theme, Madison, WI USA. EM john.yin@wisc.edu FU Office of Extramural Research, National Institutes of Health (OER) [AI091646, AI104317, T32 AI078985] FX Office of Extramural Research, National Institutes of Health (OER) provided funding to Fulya Akpinar, Andrea Timm, and John Yin under grant numbers AI091646, AI104317, and T32 AI078985. NR 73 TC 5 Z9 5 U1 2 U2 11 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0022-538X EI 1098-5514 J9 J VIROL JI J. Virol. PD FEB PY 2016 VL 90 IS 3 BP 1599 EP 1612 DI 10.1128/JVI.02190-15 PG 14 WC Virology SC Virology GA DC3WW UT WOS:000369150800038 PM 26608322 ER PT J AU Karimanzira, D Schwanenberg, D Allen, C Barton, S AF Karimanzira, Divas Schwanenberg, Dirk Allen, Christopher Barton, Steven TI Short-Term Hydropower Optimization and Assessment of Operational Flexibility SO JOURNAL OF WATER RESOURCES PLANNING AND MANAGEMENT LA English DT Article DE Hydropower; Short-term optimization; Reservoir systems; Operational flexibility ID MODEL-PREDICTIVE CONTROL; SYSTEM AB Hydroelectric power systems are largely characterized by variability and uncertainty in water resource obligations. Market volatility and the growing number of operational obligations for flood control, navigation, environmental obligations, and ancillary services (including load-balancing requirements for renewable resources) further the need to quantify sources of uncertainty. The variations caused by these factors require the hydropower system to have enough upward and downward flexibility for control technologies, such as dynamic optimal control load-following, unit commitment, or automatic generation, to be effective. Therefore, it is increasingly important to identify measures of operational flexibility to better manage uncertainty and operational obligations. The objective of this paper is to present and discuss approaches for assessment of operational flexibility as a function of dynamic states and control input and how the available operational flexibility can be used by hydropower producers in a comprehensive optimization reformulation to accommodate business procedures to drive the system in an efficient, safe, and interpretable way. The authors consider simple metrics such as power capability and its derivatives as indicators for upward flexibility and effective energy storage capability for downward flexibility. Test results based on the Federal Columbia River power system (FCRPS), managed by the Bonneville Power Administration, Army Corps of Engineers, and Bureau of Reclamation, are presented and demonstrate how operational flexibility can be assessed and that role it plays in short-term operations. (C) 2015 American Society of Civil Engineers. C1 [Karimanzira, Divas] Fraunhofer IOSB AST, Dept Surface Water & Maritime Syst, Vogelherd 50, D-98693 Ilmenau, Germany. [Schwanenberg, Dirk] Deltares, Dept Operat Water Management, Delft, Netherlands. [Schwanenberg, Dirk] Univ Duisburg Essen, Inst Hydraul Engn, Dept Civil Engn, Essen, Germany. [Allen, Christopher; Barton, Steven] US DOE, Bonneville Power Adm, Portland, OR USA. RP Karimanzira, D (reprint author), Fraunhofer IOSB AST, Dept Surface Water & Maritime Syst, Vogelherd 50, D-98693 Ilmenau, Germany. EM divas.karimanzira@iosb-ast.fraunhofer.de NR 31 TC 0 Z9 0 U1 5 U2 15 PU ASCE-AMER SOC CIVIL ENGINEERS PI RESTON PA 1801 ALEXANDER BELL DR, RESTON, VA 20191-4400 USA SN 0733-9496 EI 1943-5452 J9 J WATER RES PLAN MAN JI J. Water Resour. Plan. Manage.-ASCE PD FEB PY 2016 VL 142 IS 2 AR 04015048 DI 10.1061/(ASCE)WR.1943-5452.0000577 PG 12 WC Engineering, Civil; Water Resources SC Engineering; Water Resources GA DB9IE UT WOS:000368828800007 ER PT J AU Nandwana, P Peter, WH Dehoff, RR Lowe, LE Kirka, MM Medina, F Babu, SS AF Nandwana, Peeyush Peter, William H. Dehoff, Ryan R. Lowe, Larry E. Kirka, Michael M. Medina, Francisco Babu, Sudarsanam S. TI Recyclability Study on Inconel 718 and Ti-6Al-4V Powders for Use in Electron Beam Melting SO METALLURGICAL AND MATERIALS TRANSACTIONS B-PROCESS METALLURGY AND MATERIALS PROCESSING SCIENCE LA English DT Article ID LASER; TEXTURE; ALLOYS AB Powder bed-based additive manufacturing technologies offer a big advantage in terms of reusability of the powders over multiple cycles that result in cost savings. However, currently there are no standards to determine the factors that govern the powder reuse times. This work presents the results from a recyclability study conducted on Inconel 718 and Ti-6Al-4V powders. It has been found that the Inconel 718 powders are chemically stable over a large number of cycles and their reuse time is limited by physical characteristics of powders such as flowability. Ti-6Al-4V, on the other hand, finds its reuse time governed by the oxygen pick up that occurs during and in between build cycles. The detailed results have been presented. C1 [Nandwana, Peeyush; Dehoff, Ryan R.; Lowe, Larry E.; Kirka, Michael M.] Oak Ridge Natl Lab, Deposit Sci & Technol Grp, Mfg Demonstrat Facil, Oak Ridge, TN USA. [Nandwana, Peeyush; Dehoff, Ryan R.; Lowe, Larry E.; Kirka, Michael M.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN USA. [Peter, William H.] Oak Ridge Natl Lab, Mfg Demonstrat Facil, Oak Ridge, TN USA. [Peter, William H.] Oak Ridge Natl Lab, Energy & Transportat Sci Div, Oak Ridge, TN USA. [Medina, Francisco] Arcam AB, Mat Dev Grp, Molndal, Sweden. [Babu, Sudarsanam S.] Oak Ridge Natl Lab, Mfg Demonstrat Facil, Knoxville, TN USA. [Babu, Sudarsanam S.] Oak Ridge Natl Lab, Energy & Transportat Sci Div, Knoxville, TN USA. [Babu, Sudarsanam S.] Univ Tennessee, Dept Mech Aerosp & Biomed Engn, Knoxville, TN USA. RP Nandwana, P (reprint author), Oak Ridge Natl Lab, Deposit Sci & Technol Grp, Mfg Demonstrat Facil, Oak Ridge, TN USA. EM nandwanap@ornl.gov RI Dehoff, Ryan/I-6735-2016; OI Dehoff, Ryan/0000-0001-9456-9633; Nandwana, Peeyush/0000-0002-5147-1668 FU UT-Battelle, LLC [DE-AC05-00OR22725]; U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program FX Research was sponsored the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office, under contract DE-AC05-00OR22725 with UT-Battelle, LLC. This research at the Oak Ridge National Laboratory's High Temperature Materials Laboratory was sponsored by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program. NR 14 TC 3 Z9 3 U1 10 U2 22 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1073-5615 EI 1543-1916 J9 METALL MATER TRANS B JI Metall. Mater. Trans. B-Proc. Metall. Mater. Proc. Sci. PD FEB PY 2016 VL 47 IS 1 BP 754 EP 762 DI 10.1007/s11663-015-0477-9 PG 9 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA DB7JX UT WOS:000368692300068 ER PT J AU Lin, SB Zhang, XW Zhang, P Tan, DM Xu, J Li, W Chen, KJ AF Lin, Shaobing Zhang, Xiaowei Zhang, Pei Tan, Dameng Xu, Jun Li, Wei Chen, Kunji TI High-efficiency near-infrared emission from Bismuth-doped SiO0.73 thin films fabricated by ion implantation technology SO OPTICS LETTERS LA English DT Article ID TIME-RESOLVED PHOTOLUMINESCENCE; NANOCRYSTALLINE SI/SIO2 MULTILAYERS; NONLINEAR-OPTICAL PROPERTIES; SNO2 NANOCRYSTALS; SILICA FILMS; ENERGY-TRANSFER; LUMINESCENCE; GLASS; LASERS; TEMPERATURE AB Over the past decade, the possibility of near-infrared light generation and amplification on chip has attracted great interest for future monolithic integrated optical components. In this Letter, we demonstrated a CMOS-compatible method to fabricate amorphous SiO0.73 thin films doped with Bi ions. It exhibited highly improved sigma(em) x tau of up to 4.2 x 10(-23) cm(2) s and greatly enhanced near-infrared characteristic emission originated from Bi ions by nearly 60 times via Si nanocrystal size control. We anticipated that this Bi-doped near-infrared light emitter would be a new starting point for future research in the field of optoelectronic integration. (C) 2016 Optical Society of America C1 [Lin, Shaobing; Zhang, Xiaowei; Zhang, Pei; Tan, Dameng; Xu, Jun; Li, Wei; Chen, Kunji] Nanjing Univ, Sch Elect Sci & Engn, Natl Lab Solid State Microstruct, Nanjing 210093, Jiangsu, Peoples R China. [Lin, Shaobing; Zhang, Xiaowei; Zhang, Pei; Tan, Dameng; Xu, Jun; Li, Wei; Chen, Kunji] Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Nanjing 210093, Jiangsu, Peoples R China. [Zhang, Xiaowei] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Zhang, Pei] Zhengzhou Univ Light Ind, Dept Elect & Informat Engn, Henan Key Lab Informat Based Elect Appliances, Zhengzhou 450002, Peoples R China. RP Zhang, XW (reprint author), Nanjing Univ, Sch Elect Sci & Engn, Natl Lab Solid State Microstruct, Nanjing 210093, Jiangsu, Peoples R China.; Zhang, XW (reprint author), Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Nanjing 210093, Jiangsu, Peoples R China.; Zhang, XW (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM xiaoweizhang@lbl.gov; junxu@nju.edu.cn FU 973 Program [2013CB632101]; National Natural Science Foundation of China (NSFC) [11274155]; "333 Project" of Jiangsu Provence [BRA2015284]; Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD);; State-Sponsored Study Abroad Programs of China Scholarship Council (CSC) [201406190080] FX 973 Program (2013CB632101); National Natural Science Foundation of China (NSFC) (11274155); "333 Project" of Jiangsu Provence (BRA2015284); Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD); State-Sponsored Study Abroad Programs of China Scholarship Council (CSC) (201406190080). NR 33 TC 1 Z9 1 U1 5 U2 15 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 0146-9592 EI 1539-4794 J9 OPT LETT JI Opt. Lett. PD FEB 1 PY 2016 VL 41 IS 3 BP 630 EP 633 DI 10.1364/OL.41.000630 PG 4 WC Optics SC Optics GA DC2MQ UT WOS:000369051200051 PM 26907441 ER PT J AU Endeve, E Cardall, CY Budiardja, RD Mezzacappa, A AF Endeve, E. Cardall, C. Y. Budiardja, R. D. Mezzacappa, A. TI Convection- and SASI-driven flows in parametrized models of core-collapse supernova explosions SO PHYSICA SCRIPTA LA English DT Article DE supernovae; turbulence; convection; numerical simulations ID ACCRETION-SHOCK INSTABILITY; NEUTRINO-HYDRODYNAMICS SIMULATIONS; CIRCLE-DOT STAR; RIEMANN SOLVER; MECHANISM; TRANSPORT; TURBULENCE; DIMENSIONS; PROGENITOR; STABILITY AB We present initial results from three-dimensional simulations of parametrized core-collapse supernova (CCSN) explosions obtained with our astrophysical simulation code General Astrophysical Simulation System (GenASIS). We are interested in nonlinear flows resulting from neutrino-driven convection and the standing accretion shock instability (SASI) in the CCSN environment prior to and during the explosion. By varying parameters in our model that control neutrino heating and shock dissociation, our simulations result in convection-dominated and SASI-dominated evolution. We describe this initial set of simulation results in some detail. To characterize the turbulent flows in the simulations, we compute and compare velocity power spectra from convection-dominated and SASI-dominated (both non-exploding and exploding) models. When compared to SASI-dominated models, convection-dominated models exhibit significantly more power on small spatial scales. C1 [Endeve, E.] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. [Cardall, C. Y.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Endeve, E.; Cardall, C. Y.; Mezzacappa, A.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Budiardja, R. D.] Univ Tennessee, Natl Inst Computat Sci, Knoxville, TN 37996 USA. RP Endeve, E (reprint author), Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA.; Endeve, E (reprint author), Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. EM endevee@ornl.gov RI Mezzacappa, Anthony/B-3163-2017; OI Mezzacappa, Anthony/0000-0001-9816-9741; Cardall, Christian/0000-0002-0086-105X; Endeve, Eirik/0000-0003-1251-9507 FU Oak Ridge National Laboratory; US Department of Energy [De-AC05-00OR22725] FX This research was supported in part by Oak Ridge National Laboratory, managed by UT-Battelle, LLC for the US Department of Energy under Contract No. De-AC05-00OR22725. It is based on work performed using the computational resource Darter [67], which is supported by the University of Tennessee and Oak Ridge National Laboratory's Joint Institute for Computational Sciences. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the University of Tennessee, Oak Ridge National Laboratory, or the Joint Institute for Computational Sciences. Eirik Endeve thanks the CHIMERA collaboration, especially Eric Lentz, for many valuable discussions, and the organizers of the 'Turbulent Mixing and Beyond Workshop 2014' for a very stimulating program. NR 61 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0031-8949 EI 1402-4896 J9 PHYS SCRIPTA JI Phys. Scr. PD FEB PY 2016 VL 91 IS 2 AR 024002 DI 10.1088/0031-8949/91/2/024002 PG 12 WC Physics, Multidisciplinary SC Physics GA DC1PQ UT WOS:000368988800015 ER PT J AU Hamada, MS Ryan, KJ AF Hamada, M. S. Ryan, K. J. TI The Analysis of Misclassified Ordinal Data from Designed Experiments SO QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL LA English DT Article DE Bayesian; factorial experiment; measurement system assessment; power; simulation AB Standard analyses of ordinal data from designed experiments assume that the data are not misclassified. This article considers the impact of ignoring misclassification and presents a Bayesian approach to account for it. Misclassification depends on the probabilities of misclassifying an item with a given true category to the other categories. Both the cases of known and estimated misclassification probabilities are considered. The analysis methodology is illustrated with data from a real experiment and is assessed using a simulation study. Copyright (c) 2014 John Wiley & Sons, Ltd. C1 [Hamada, M. S.] Los Alamos Natl Lab, Stat Sci Grp, Los Alamos, NM 87545 USA. [Ryan, K. J.] W Virginia Univ, Dept Stat, Morgantown, WV 26506 USA. RP Hamada, MS (reprint author), Los Alamos Natl Lab, Stat Sci Grp, Los Alamos, NM 87545 USA. EM hamada@lanl.gov NR 7 TC 0 Z9 0 U1 1 U2 1 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0748-8017 EI 1099-1638 J9 QUAL RELIAB ENG INT JI Qual. Reliab. Eng. Int. PD FEB PY 2016 VL 32 IS 1 BP 223 EP 229 DI 10.1002/qre.1743 PG 7 WC Engineering, Multidisciplinary; Engineering, Industrial; Operations Research & Management Science SC Engineering; Operations Research & Management Science GA DC3QG UT WOS:000369133200020 ER PT J AU Jang, DH Kim, Y Anderson-Cook, CM AF Jang, Dae-Heung Kim, Youngil Anderson-Cook, Christine M. TI Graphical Methods for Influential Data Points in Cluster Analysis SO QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL LA English DT Article DE influence matrix; condensed influence plot; 3-D influence plot; row-wise membership movement plot; column-wise membership movement plot AB In cluster analysis, many numerical measures to detect which data points are influential have been proposed in the past literature. These numerical measures provide only limited information about which data points are influential but fail to reveal deeper relationships between the observations. They describe an overall pattern but fail to provide details about the mechanism that exists among the influential data points. In this paper, several graphical methods are described for detecting this mechanism. In the process, each data point is decomposed to show the pattern, how it influences other observations and the partitioning in cluster analysis. The approach also allows comparison of different clustering methods and how these options impact the relationship between observations. Copyright (c) 2014 John Wiley & Sons, Ltd. C1 [Jang, Dae-Heung] Pukyong Natl Univ, Dept Stat, Busan, South Korea. [Kim, Youngil] Chung Ang Univ, Sch Business & Econ, Seoul, South Korea. [Anderson-Cook, Christine M.] Los Alamos Natl Lab, Stat Sci Grp, Los Alamos, NM USA. RP Anderson-Cook, CM (reprint author), Los Alamos Natl Lab, Stat Sci Grp, Los Alamos, NM USA. EM candcook@gmail.com NR 13 TC 0 Z9 0 U1 0 U2 0 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0748-8017 EI 1099-1638 J9 QUAL RELIAB ENG INT JI Qual. Reliab. Eng. Int. PD FEB PY 2016 VL 32 IS 1 BP 231 EP 239 DI 10.1002/qre.1744 PG 9 WC Engineering, Multidisciplinary; Engineering, Industrial; Operations Research & Management Science SC Engineering; Operations Research & Management Science GA DC3QG UT WOS:000369133200021 ER PT J AU Hamada, MS Ryan, KJ AF Hamada, M. S. Ryan, K. J. TI Combined Analysis of Overlapping Stratified Random Sample and Simple Random SampleData SO QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL LA English DT Article DE Bayesian; binomial distribution; probability interval; survey sampling; uncertainty AB This article provides a methodology to combine overlapping stratified random samples and a simple random sample to estimate subpopulation proportions. That is, all the available data can be used to better estimate the quantities of interest. The methodology based on a Bayesian approach is illustrated with a synthetic data set. WinBUGS code that implements the combined analysis is also presented. Copyright (c) 2014 John Wiley & Sons, Ltd. C1 [Hamada, M. S.] Los Alamos Natl Lab, Stat Sci Grp, POB 1663, Los Alamos, NM 87545 USA. [Ryan, K. J.] W Virginia Univ, Dept Stat, Morgantown, WV 26506 USA. RP Hamada, MS (reprint author), Los Alamos Natl Lab, Stat Sci Grp, POB 1663, Los Alamos, NM 87545 USA. EM hamada@lanl.gov NR 4 TC 1 Z9 1 U1 3 U2 3 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0748-8017 EI 1099-1638 J9 QUAL RELIAB ENG INT JI Qual. Reliab. Eng. Int. PD FEB PY 2016 VL 32 IS 1 BP 309 EP 314 DI 10.1002/qre.1749 PG 6 WC Engineering, Multidisciplinary; Engineering, Industrial; Operations Research & Management Science SC Engineering; Operations Research & Management Science GA DC3QG UT WOS:000369133200026 ER PT J AU Hansen, G Stone, D Auffhammer, M Huggel, C Cramer, W AF Hansen, Gerrit Stone, Daithi Auffhammer, Maximilian Huggel, Christian Cramer, Wolfgang TI Linking local impacts to changes in climate: a guide to attribution SO REGIONAL ENVIRONMENTAL CHANGE LA English DT Article DE Observed impacts of climate change; Impact detection; Attribution; Human and managed systems; Multiple drivers ID AUSTRALIAN BUSHFIRE 1925-2009; LAND-USE; BUILDING DAMAGE; SEA-LEVEL; CENTRAL ARGENTINA; NATURAL SYSTEMS; LAKE TANGANYIKA; CROP PRODUCTION; TREE MORTALITY; PART I AB Assessing past impacts of observed climate change on natural, human and managed systems requires detailed knowledge about the effects of both climatic and other drivers of change, and their respective interaction. Resulting requirements with regard to system understanding and long-term observational data can be prohibitive for quantitative detection and attribution methods, especially in the case of human systems and in regions with poor monitoring records. To enable a structured examination of past impacts in such cases, we follow the logic of quantitative attribution assessments, however, allowing for qualitative methods and different types of evidence. We demonstrate how multiple lines of evidence can be integrated in support of attribution exercises for human and managed systems. Results show that careful analysis can allow for attribution statements without explicit end-to-end modeling of the whole climate-impact system. However, care must be taken not to overstate or generalize the results and to avoid bias when the analysis is motivated by and limited to observations considered consistent with climate change impacts. C1 [Hansen, Gerrit] Potsdam Inst Climate Impact Res, POB 60 12 03, D-14412 Potsdam, Germany. [Stone, Daithi] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Auffhammer, Maximilian] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Auffhammer, Maximilian] Natl Bur Econ Res, Cambridge, MA 02138 USA. [Huggel, Christian] Univ Zurich, Zurich, Switzerland. [Cramer, Wolfgang] Avignon Univ, Aix Marseille Univ, Inst Mediterraneen Biodiversite & Ecol Marine & C, CNRS,IRD, Aix En Provence, France. RP Hansen, G (reprint author), Potsdam Inst Climate Impact Res, POB 60 12 03, D-14412 Potsdam, Germany. EM hansen@pik-potsdam.de; dstone@lbl.gov; auffhammer@berkeley.edu; christian.huggel@geo.uzh.ch; wolfgang.cramer@imbe.fr RI Cramer, Wolfgang/B-8221-2008; OI Cramer, Wolfgang/0000-0002-9205-5812; Stone, Daithi/0000-0002-2518-100X FU German Ministry for Education and Research; United States Department of Energy, Office of Science, Office of Biological and Environmental Research's Regional, and Global Climate Modeling Program [DE-AC02-05CH11231]; French government through the A*MIDEX project [ANR-11-LABX-0061, ANR-11-IDEX-0001-02] FX We thank all members of the IPCC WG2 cross chapter working group on detection and attribution for valuable input and inspiring discussions during the fifth assessment report cycle. Multifaceted support during preparation of the manuscript by Andy R. Solow is acknowledged with deep gratitude. GH was supported by the German Ministry for Education and Research. DS was supported by the United States Department of Energy, Office of Science, Office of Biological and Environmental Research's Regional, and Global Climate Modeling Program under contract number DE-AC02-05CH11231. WC contributes to the Labex OT-Med (no ANR-11-LABX-0061) funded by the French government through the A*MIDEX project (no ANR-11-IDEX-0001-02). NR 104 TC 4 Z9 4 U1 6 U2 17 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1436-3798 EI 1436-378X J9 REG ENVIRON CHANGE JI Reg. Envir. Chang. PD FEB PY 2016 VL 16 IS 2 SI SI BP 527 EP 541 DI 10.1007/s10113-015-0760-y PG 15 WC Environmental Sciences; Environmental Studies SC Environmental Sciences & Ecology GA DC1VK UT WOS:000369005400020 ER PT J AU Azad, AK Kort-Kamp, WJM Sykora, M Weisse-Bernstein, NR Luk, TS Taylor, AJ Dalvit, DAR Chen, HT AF Azad, Abul K. Kort-Kamp, Wilton J. M. Sykora, Milan Weisse-Bernstein, Nina R. Luk, Ting S. Taylor, Antoinette J. Dalvit, Diego A. R. Chen, Hou-Tong TI Metasurface Broadband Solar Absorber SO SCIENTIFIC REPORTS LA English DT Article ID PERFECT ABSORBER; METAMATERIALS; ABSORPTION; REFLECTION AB We demonstrate a broadband, polarization independent, wide-angle absorber based on a metallic metasurface architecture, which accomplishes greater than 90% absorptance in the visible and near-infrared range of the solar spectrum, and exhibits low absorptivity (emissivity) at mid-and far-infrared wavelengths. The complex unit cell of the metasurface solar absorber consists of eight pairs of gold nano-resonators that are separated from a gold ground plane by a thin silicon dioxide spacer. Our experimental measurements reveal high-performance absorption over a wide range of incidence angles for both s- and p-polarizations. We also investigate numerically the frequency-dependent field and current distributions to elucidate how the absorption occurs within the metasurface structure. C1 [Azad, Abul K.; Taylor, Antoinette J.; Chen, Hou-Tong] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, MS K771, Los Alamos, NM 87545 USA. [Kort-Kamp, Wilton J. M.; Dalvit, Diego A. R.] Los Alamos Natl Lab, Div Theoret, MS B213, Los Alamos, NM 87545 USA. [Kort-Kamp, Wilton J. M.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Sykora, Milan] Los Alamos Natl Lab, Chem Div, MS K558, Los Alamos, NM 87545 USA. [Weisse-Bernstein, Nina R.] Los Alamos Natl Lab, Intelligence & Space Res Div, MS B244, Los Alamos, NM 87545 USA. [Luk, Ting S.] Sandia Natl Labs, Ctr Integrated Nanotechnol, Albuquerque, NM 87123 USA. RP Azad, AK (reprint author), Los Alamos Natl Lab, Ctr Integrated Nanotechnol, MS K771, Los Alamos, NM 87545 USA. EM aazad@lanl.gov RI Kort-Kamp, W./L-3329-2013; Chen, Hou-Tong/C-6860-2009; OI Chen, Hou-Tong/0000-0003-2014-7571; Azad, Abul/0000-0002-7784-7432 FU Los Alamos National Laboratory LDRD Program; National Nuclear Security Administration of the U.S. Department of Energy [DE-AC52-06NA25396] FX We are grateful to Z. Jacob and R. Messina for discussions. We acknowledge support from the Los Alamos National Laboratory LDRD Program. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. Department of Energy, Office of Basic Energy Sciences Nanoscale Science Research Center operated jointly by Los Alamos and Sandia National Laboratories. Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under Contract No. DE-AC52-06NA25396. NR 27 TC 5 Z9 5 U1 16 U2 96 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD FEB 1 PY 2016 VL 6 AR 20347 DI 10.1038/srep20347 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DC1SC UT WOS:000368996100001 PM 26828999 ER PT J AU Jin, K Sales, BC Stocks, GM Samolyuk, GD Daene, M Weber, WJ Zhang, Y Bei, H AF Jin, K. Sales, B. C. Stocks, G. M. Samolyuk, G. D. Daene, M. Weber, W. J. Zhang, Y. Bei, H. TI Tailoring the physical properties of Ni-based single-phase equiatomic alloys by modifying the chemical complexity SO SCIENTIFIC REPORTS LA English DT Article ID HIGH-ENTROPY ALLOYS; COHERENT-POTENTIAL APPROXIMATION; LATTICE THERMAL-CONDUCTIVITY; TRANSITION-METAL ALLOYS; SOLID-SOLUTION ALLOYS; ELECTRICAL-RESISTIVITY; TEMPERATURE-DEPENDENCE; MULTICOMPONENT ALLOYS; MECHANICAL-PROPERTIES; FERROMAGNETIC METALS AB Equiatomic alloys (e.g. high entropy alloys) have recently attracted considerable interest due to their exceptional properties, which might be closely related to their extreme disorder induced by the chemical complexity. In order to understand the effects of chemical complexity on their fundamental physical properties, a family of (eight) Ni-based, face-center-cubic (FCC), equiatomic alloys, extending from elemental Ni to quinary high entropy alloys, has been synthesized, and their electrical, thermal, and magnetic properties are systematically investigated in the range of 4-300 K by combining experiments with ab initio Korring-Kohn-Rostoker coherent-potential-approximation (KKR-CPA) calculations. The scattering of electrons is significantly increased due to the chemical (especially magnetic) disorder. It has weak correlation with the number of elements but strongly depends on the type of elements. Thermal conductivities of the alloys are largely lower than pure metals, primarily because the high electrical resistivity suppresses the electronic thermal conductivity. The temperature dependence of the electrical and thermal transport properties is further discussed, and the magnetization of five alloys containing three or more elements is measured in magnetic fields up to 4 T. C1 [Jin, K.; Sales, B. C.; Stocks, G. M.; Samolyuk, G. D.; Weber, W. J.; Zhang, Y.; Bei, H.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Weber, W. J.; Zhang, Y.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Daene, M.] Lawrence Livermore Natl Lab, Phys & Life Sci, Livermore, CA 94551 USA. RP Bei, H (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. EM beih@ornl.gov RI Weber, William/A-4177-2008; Stocks, George Malcollm/Q-1251-2016; OI Weber, William/0000-0002-9017-7365; Stocks, George Malcollm/0000-0002-9013-260X; Bei, Hongbin/0000-0003-0283-7990 FU Energy Dissipation to Defect Evolution (EDDE); Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Basic Energy Sciences; Department of Energy, Office of Science, BES; Materials Sciences and Engineering Division FX This work was supported as part of the Energy Dissipation to Defect Evolution (EDDE), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences. B. C. S. was supported by the Department of Energy, Office of Science, BES, Materials Sciences and Engineering Division. NR 53 TC 12 Z9 12 U1 19 U2 81 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD FEB 1 PY 2016 VL 6 AR 20159 DI 10.1038/srep20159 PG 10 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DC1OD UT WOS:000368984700001 PM 26832223 ER PT J AU Lu, CY Jin, K Beland, LK Zhang, FF Yang, TN Qiao, L Zhang, YW Bei, HB Christen, HM Stoller, RE Wang, LM AF Lu, Chenyang Jin, Ke Beland, Laurent K. Zhang, Feifei Yang, Taini Qiao, Liang Zhang, Yanwen Bei, Hongbin Christen, Hans M. Stoller, Roger E. Wang, Lumin TI Direct Observation of Defect Range and Evolution in Ion-Irradiated Single Crystalline Ni and Ni Binary Alloys SO SCIENTIFIC REPORTS LA English DT Article ID ACTIVATION-RELAXATION TECHNIQUE; HIGH-ENTROPY ALLOYS; RADIATION-DAMAGE; EXPERIMENTAL TIMESCALES; ATOMISTIC SIMULATIONS; IMPLANTATION; METALS; MECHANISMS; MICROSTRUCTURE; STEELS AB Energetic ions have been widely used to evaluate the irradiation tolerance of structural materials for nuclear power applications and to modify material properties. It is important to understand the defect production, annihilation and migration mechanisms during and after collision cascades. In this study, single crystalline pure nickel metal and single-phase concentrated solid solution alloys of 50%Ni50%Co (NiCo) and 50%Ni50%Fe (NiFe) without apparent preexisting defect sinks were employed to study defect dynamics under ion irradiation. Both cross-sectional transmission electron microscopy characterization (TEM) and Rutherford backscattering spectrometry channeling (RBS-C) spectra show that the range of radiation-induced defect clusters far exceed the theoretically predicted depth in all materials after high-dose irradiation. Defects in nickel migrate faster than in NiCo and NiFe. Both vacancy-type stacking fault tetrahedra (SFT) and interstitial loops coexist in the same region, which is consistent with molecular dynamics simulations. Kinetic activation relaxation technique (k-ART) simulations for nickel showed that small vacancy clusters, such as di-vacancies and tri-vacancies, created by collision cascades are highly mobile, even at room temperature. The slower migration of defects in the alloy along with more localized energy dissipation of the displacement cascade may lead to enhanced radiation tolerance. C1 [Lu, Chenyang; Zhang, Feifei; Yang, Taini; Wang, Lumin] Univ Michigan, Dept Nucl Engn & Radiol Sci, Ann Arbor, MI 48109 USA. [Jin, Ke; Beland, Laurent K.; Zhang, Yanwen; Bei, Hongbin; Stoller, Roger E.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Jin, Ke] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Qiao, Liang; Christen, Hans M.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Qiao, Liang] Univ Manchester, Sch Mat, Manchester M13 9PL, Lancs, England. RP Lu, CY; Wang, LM (reprint author), Univ Michigan, Dept Nucl Engn & Radiol Sci, Ann Arbor, MI 48109 USA. EM chenylu@umich.edu; lmwang@umich.edu RI Qiao, Liang/A-8165-2012; Christen, Hans/H-6551-2013; OI Christen, Hans/0000-0001-8187-7469; Bei, Hongbin/0000-0003-0283-7990 FU Energy Dissipation to Defect Evolution (EDDE) center; Energy Frontier Research Center - US Department of Energy, Office of Science, Basic Energy Sciences; Office of Science, US Department of Energy [DEAC02-05CH11231] FX This work was supported as part of the Energy Dissipation to Defect Evolution (EDDE) center, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Basic Energy Sciences. Ion beam work was performed at the UT-ORNL Ion Beam Materials Laboratory located at the campus of the University of Tennessee-Knoxville. XRD characterization was conducted at the Center for Nanophase Materials Sciences, a DOE Office of Science User Facility. This simulation used resources of the National Energy Research Scientific Computing Center, supported by the Office of Science, US Department of Energy, under Contract No. DEAC02-05CH11231. Electron microscopy was conducted at the Michigan Center for Material Characterization of the University of Michigan-Ann Arbor. NR 61 TC 10 Z9 10 U1 14 U2 46 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD FEB 1 PY 2016 VL 6 AR 19994 DI 10.1038/srep19994 PG 10 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DC1PT UT WOS:000368989100001 PM 26829570 ER PT J AU Wernick, DG Pontrelli, SP Pollock, AW Liao, JC AF Wernick, David G. Pontrelli, Sammy P. Pollock, Alexander W. Liao, James C. TI Sustainable biorefining in wastewater by engineered extreme alkaliphile Bacillus marmarensis SO SCIENTIFIC REPORTS LA English DT Article ID ESCHERICHIA-COLI; ETHANOL-PRODUCTION; PSEUDOFIRMUS OF4; ATP SYNTHASE; C-SUBUNIT; BIOFUELS; BACTERIA; GROWTH; SITE; TRANSFORMATION AB Contamination susceptibility, water usage, and inability to utilize 5-carbon sugars and disaccharides are among the major obstacles in industrialization of sustainable biorefining. Extremophilic thermophiles and acidophiles are being researched to combat these problems, but organisms which answer all the above problems have yet to emerge. Here, we present engineering of the unexplored, extreme alkaliphile Bacillus marmarensis as a platform for new bioprocesses which meet all these challenges. With a newly developed transformation protocol and genetic tools, along with optimized RBSs and antisense RNA, we engineered B. marmarensis to produce ethanol at titers of 38 g/l and 65% yields from glucose in unsterilized media. Furthermore, ethanol titers and yields of 12 g/l and 50%, respectively, were produced from cellobiose and xylose in unsterilized seawater and algal-contaminated wastewater. As such, B. marmarensis presents a promising approach for the contamination-resistant biorefining of a wide range of carbohydrates in unsterilized, non-potable seawater. C1 [Wernick, David G.; Pontrelli, Sammy P.; Pollock, Alexander W.; Liao, James C.] Univ Calif Los Angeles, Dept Chem & Biomol Engn, 5531 Boelter Hall,420 Westwood Plaza, Los Angeles, CA 90095 USA. [Liao, James C.] Univ Calif Los Angeles, Dept Chem & Biochem, 607 Charles E Young Dr East, Los Angeles, CA 90095 USA. [Liao, James C.] Univ Calif Los Angeles, UCLA DOE Inst Genom & Prote, 201 Boyer Hall,611 Charles E Young Dr East, Los Angeles, CA 90095 USA. [Liao, James C.] Univ Calif Los Angeles, Dept Bioengn, 420 Westwood Plaza,5121 Engn 5, Los Angeles, CA 90095 USA. RP Liao, JC (reprint author), Univ Calif Los Angeles, Dept Chem & Biomol Engn, 5531 Boelter Hall,420 Westwood Plaza, Los Angeles, CA 90095 USA.; Liao, JC (reprint author), Univ Calif Los Angeles, Dept Chem & Biochem, 607 Charles E Young Dr East, Los Angeles, CA 90095 USA.; Liao, JC (reprint author), Univ Calif Los Angeles, UCLA DOE Inst Genom & Prote, 201 Boyer Hall,611 Charles E Young Dr East, Los Angeles, CA 90095 USA.; Liao, JC (reprint author), Univ Calif Los Angeles, Dept Bioengn, 420 Westwood Plaza,5121 Engn 5, Los Angeles, CA 90095 USA. EM liaoj@seas.ucla.edu FU Nation Science Foundation [0963183] FX This research was performed in a "collaboratory" renovated by the Nation Science Foundation under Grant No. 0963183 (funded under the American Recovery and Reinvestment Act of 2009). NR 44 TC 1 Z9 1 U1 5 U2 12 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD FEB 1 PY 2016 VL 6 AR 20224 DI 10.1038/srep20224 PG 10 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DC1QR UT WOS:000368992000001 PM 26831574 ER PT J AU Pouladi, N Bime, C Garcia, JGN Lussier, YA AF Pouladi, Nima Bime, Christian Garcia, Joe G. N. Lussier, Yves A. TI Complex genetics of pulmonary diseases: lessons from genome-wide association studies and next-generation sequencing SO TRANSLATIONAL RESEARCH LA English DT Article ID INTERSTITIAL LUNG-DISEASE; ARTERIAL-HYPERTENSION; BRONCHOPULMONARY DYSPLASIA; SUSCEPTIBILITY LOCUS; MISSING HERITABILITY; CHILDHOOD ASTHMA; UNITED-STATES; RISK LOCUS; HAY-FEVER; VARIANTS AB The advent of high-throughput technologies has provided exceptional assistance for lung scientists to discover novel genetic variants underlying the development and progression of complex lung diseases. However, the discovered variants thus far do not explain much of the estimated heritability of complex lung diseases. Here, we review the literature of successfully used genome-wide association studies (GWASs) and identified the polymorphisms that reproducibly underpin the susceptibility to various noncancerous complex lung diseases or affect therapeutic responses. We also discuss the inherent limitations of GWAS approaches and how the use of next-generation sequencing technologies has furthered our understanding about the genetic determinants of these diseases. Next, we describe the contribution of the metagenomics to understand the interactions of the airways microbiome with lung diseases. We then highlight the urgent need for new integrative genomics-phenomics methods to more effectively interrogate and understand multiple downstream "omics" (eg, chromatin modification patterns). Finally, we address the scarcity of genetic studies addressing under-represented populations such as African Americans and Hispanics. C1 Univ Arizona, Dept Med, Tucson, AZ 85721 USA. Univ Arizona, Ctr Biomed Informat & Biostat, Tucson, AZ 85721 USA. [Lussier, Yves A.] Univ Arizona, Inst BIO5, 1657 East Helen St,POB 210240, Tucson, AZ 85721 USA. Univ Arizona, Hlth Sci Ctr, Tucson, AZ 85721 USA. Univ Arizona, Arizona Resp Ctr, Tucson, AZ 85721 USA. Argonne Natl Lab, Inst Genom & Syst Biol, Chicago, IL USA. Univ Chicago, Chicago, IL 60637 USA. RP Lussier, YA (reprint author), Univ Arizona, Inst BIO5, 1657 East Helen St,POB 210240, Tucson, AZ 85721 USA. EM yves@email.arizona.edu OI Lussier, Yves/0000-0001-9854-1005; Bime, Christian/0000-0003-4787-2685 FU University of Arizona Health Sciences Center; University of Arizona Cancer Center [P30CA023074]; University of Arizona Center for Biomedical Informatics and Biostatistics FX This manuscript was funded in part by the University of Arizona Health Sciences Center, the University of Arizona Cancer Center (P30CA023074), and the University of Arizona Center for Biomedical Informatics and Biostatistics. NR 93 TC 1 Z9 1 U1 2 U2 9 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1931-5244 EI 1878-1810 J9 TRANSL RES JI Transl. Res. PD FEB PY 2016 VL 168 BP 22 EP 39 DI 10.1016/j.trsl.2015.04.016 PG 18 WC Medical Laboratory Technology; Medicine, General & Internal; Medicine, Research & Experimental SC Medical Laboratory Technology; General & Internal Medicine; Research & Experimental Medicine GA DC2II UT WOS:000369040000004 PM 26006746 ER PT J AU Crawford, NC Nagle, N Sievers, DA Stickel, JJ AF Crawford, Nathan C. Nagle, Nick Sievers, David A. Stickel, Jonathan J. TI The effects of physical and chemical preprocessing on the flowability of corn stover SO BIOMASS & BIOENERGY LA English DT Article DE Biomass; Feedstock; Flowability; Shear; Rheology; Hopper design ID ROTATIONAL SHEAR CELL; FLOW PROPERTIES; DILUTE-ACID; LIGNOCELLULOSIC BIOMASS; SOLIDS; PRETREATMENT; POWDERS; SWITCHGRASS; HYDROLYSIS; GASIFICATION AB Continuous and reliable feeding of biomass is essential for successful biofuel production. However, the challenges associated with biomass solids handling are commonly overlooked. In this study, we examine the effects of preprocessing (particle size reduction, moisture content, chemical additives, etc.) on the flow properties of corn stover. Compressibility, flow properties (interparticle friction, cohesion, unconfined yield stress, etc.), and wall friction were examined for five corn stover samples: ground, milled (dry and wet), acid impregnated, and deacetylated. The ground corn stover was found to be the least compressible and most flowable material. The water and acid impregnated stovers had similar compressibilities. Yet, the wet corn stover was less flowable than the acid impregnated sample, which displayed a flow index equivalent to the dry, milled corn stover. The deacetylated stover, on the other hand, was the most compressible and least flowable examined material. However, all of the tested stover samples had internal friction angles > 30 degrees, which could present additional feeding and handling challenges. All of the "wetted" materials (water, acid, and deacetylated) displayed reduced flowabilities (excluding the acid impregnated sample), and enhanced compressibilities and wall friction angles, indicating the potential for added handling issues; which was corroborated via theoretical hopper design calculations. All of the "wetted" corn stovers require larger theoretical hopper outlet diameters and steeper hopper walls than the examined "dry" stovers. Published by Elsevier Ltd. C1 [Crawford, Nathan C.; Nagle, Nick; Sievers, David A.; Stickel, Jonathan J.] Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO 80401 USA. RP Crawford, NC (reprint author), Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO 80401 USA. EM nathan.crawford@nrel.gov FU U.S. Department of Energy [DE-AC36-08-GO28308]; National Renewable Energy Laboratory and through the Office of the Biomass Program FX This work was funded by the U.S. Department of Energy under Contract No. DE-AC36-08-GO28308 with the National Renewable Energy Laboratory and through the Office of the Biomass Program. The authors thank Allison E. Ray and Neal A. Yancey (INL) for supplying the milled and ground corn stovers for this study. The U.S. Government and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes. NR 38 TC 0 Z9 0 U1 1 U2 10 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0961-9534 EI 1873-2909 J9 BIOMASS BIOENERG JI Biomass Bioenerg. PD FEB PY 2016 VL 85 BP 126 EP 134 DI 10.1016/j.biombioe.2015.12.015 PG 9 WC Agricultural Engineering; Biotechnology & Applied Microbiology; Energy & Fuels SC Agriculture; Biotechnology & Applied Microbiology; Energy & Fuels GA DB3TW UT WOS:000368435800016 ER PT J AU Steedman, DW Bradley, CR Rougier, E Coblentz, DD AF Steedman, David W. Bradley, Christopher R. Rougier, Esteban Coblentz, David D. TI Phenomenology and Modeling of Explosion-Generated Shear Energy for the Source Physics Experiments SO BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA LA English DT Article ID VELOCITY SOURCE MEDIA; WAVE GENERATION; SEISMIC SOURCE; DISCRIMINATION; GRANITE; DAMAGE; ROCK AB We present a mechanism for shear-wave generation from buried explosions as part of the Source Physics Experiment (SPE) series. The SPE series includes sensitized heavy ammonium nitrate/fuel oil sources of various sizes detonated in a borehole in the jointed Climax stock granite. The cylinder-shaped shots were grouted in the borehole to couple the energy to the rock. A high-fidelity site model-with explicit inclusion of the cylindrical explosive, the grout-filled borehole, and site joint sets-was included in a numerical simulation that mimics the near-field velocity environment measured by an array of in-ground accelerometers. This approach was accommodated through a coupled Euler-Lagrange code that allows simultaneous solving of a Euler domain to model the high-deformation source region and a Lagrange domain that includes the complex geology with full contact. Specific laboratory-measured geomechanical properties for the rock and the joint sets were included in the model. The simulations compare favorably to the data and provide a possible physical mechanism for unexpected shear motion through the release of stored shear strain on the joints. This research will advance our understanding of explosion-generated shear-wave energy from low-yield nuclear tests. C1 [Steedman, David W.; Bradley, Christopher R.; Rougier, Esteban; Coblentz, David D.] Los Alamos Natl Lab, POB 1665,MS F665, Los Alamos, NM 87545 USA. RP Steedman, DW (reprint author), Los Alamos Natl Lab, POB 1665,MS F665, Los Alamos, NM 87545 USA. FU Los Alamos National Laboratory [DE-AC52-06NA25946] FX The Source Physics Experiments (SPE) would not have been possible without the support of many people from several organizations. The authors wish to express their gratitude to the National Nuclear Security Administration, Defense Nuclear Nonproliferation Research and Development, and the SPE working group, a multi-institutional and interdisciplinary group of scientists and engineers. This work was done by Los Alamos National Laboratory under Award Number DE-AC52-06NA25946. NR 29 TC 0 Z9 0 U1 1 U2 1 PU SEISMOLOGICAL SOC AMER PI ALBANY PA 400 EVELYN AVE, SUITE 201, ALBANY, CA 94706-1375 USA SN 0037-1106 EI 1943-3573 J9 B SEISMOL SOC AM JI Bull. Seismol. Soc. Amer. PD FEB PY 2016 VL 106 IS 1 BP 42 EP 53 DI 10.1785/0120150011 PG 12 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA DB5XW UT WOS:000368588200004 ER PT J AU Ross, RD Mashiatulla, M Robling, AG Miller, LM Sumner, DR AF Ross, Ryan D. Mashiatulla, Maleeha Robling, Alexander G. Miller, Lisa M. Sumner, D. Rick TI Bone Matrix Composition Following PTH Treatment is Not Dependent on Sclerostin Status SO CALCIFIED TISSUE INTERNATIONAL LA English DT Article DE Mineralization; Bone quality; Matrix composition; Sclerostin; Parathyroid hormone ID MINERALIZATION DENSITY DISTRIBUTION; ILIAC CREST BIOPSIES; PARATHYROID-HORMONE; COLLAGEN QUALITY; DEFICIENT MICE; OSTEOPOROSIS; TERIPARATIDE; STRENGTH; RATS; SOST AB Sclerostin and parathyroid hormones are strong negative and positive regulators of bone formation, respectively. The anabolic response induced by intermittent (iPTH) treatment is sclerostin status-dependent. However, the interaction between sclerostin and iPTH at the matrix level is unknown. The goal of the current study was to determine if iPTH treatment affects matrix composition and, if so, whether these effects are dependent on sclerostin status. Humeral trabecular and cortical bone sites from 16 week old male wild-type (WT) and sclerostin knockout (KO) mice, which had been treated with vehicle or iPTH from age 10-16 weeks, were examined by micro-computed tomography (A mu CT) to measure bone volume, backscatter scanning electron microscopy (bSEM) to assess global mineralization, and Fourier transform infrared microspectroscopy (FTIRM) to examine matrix composition (mineral-to-matrix ratio, crystallinity, collagen cross-link ratio, and carbonate substitution). The FTIRM measurements were restricted to the tissue formed during the 6-week treatment period. iPTH treatment led to increased trabecular bone volume (p < 0.001) and this effect was much greater in KO mice than WT mice (interaction effect, p < 0.001). iPTH treatment led to reduced trabecular crystallinity (p = 0.047), increased cortical bone area (p < 0.001), decreased cortical bone crystallinity (p = 0.002) and increased cortical bone collagen cross-linking (p = 0.028) to similar degrees in both WT and KO mice. Compared to WT mice, sclerostin KO mice had higher trabecular and cortical bone mass (p < 0.001) and lower mineral-to-matrix ratio in the trabecular (p = 0.010) and cortical (p = 0.016) compartments. Thus, iPTH-induced changes in bone mass are dependent upon sclerostin status in the trabecular compartment, but not in the cortical compartment. In contrast, iPTH-induced changes in matrix composition are sclerostin-independent in both trabecular and cortical compartments. C1 [Ross, Ryan D.; Mashiatulla, Maleeha; Sumner, D. Rick] Rush Univ, Med Ctr, Dept Anat & Cell Biol, 600 South Paulina,Suite 507, Chicago, IL 60612 USA. [Mashiatulla, Maleeha; Sumner, D. Rick] Univ Illinois, Dept Bioengn, Chicago, IL USA. [Sumner, D. Rick] Rush Univ, Med Ctr, Dept Orthopaed Surg, Chicago, IL 60612 USA. [Robling, Alexander G.] Indiana Univ, Dept Anat & Cell Biol, Indianapolis, IN 46204 USA. [Robling, Alexander G.] Richard L Roudebush VA Med Ctr, Indianapolis, IN USA. [Miller, Lisa M.] SUNY Stony Brook, Dept Biomed Engn, Stony Brook, NY 11794 USA. [Miller, Lisa M.] Brookhaven Natl Lab, Natl Synchrotron Light Source 2, Upton, NY 11973 USA. RP Ross, RD (reprint author), Rush Univ, Med Ctr, Dept Anat & Cell Biol, 600 South Paulina,Suite 507, Chicago, IL 60612 USA. EM ryan_ross@rush.edu; Rick_Sumner@rush.edu FU NIH [AR53237]; VA Grant [BX001478] FX This work was supported by NIH Grant AR53237 and VA Grant BX001478 (to AGR). NR 33 TC 2 Z9 2 U1 2 U2 5 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0171-967X EI 1432-0827 J9 CALCIFIED TISSUE INT JI Calcif. Tissue Int. PD FEB PY 2016 VL 98 IS 2 BP 149 EP 157 DI 10.1007/s00223-015-0074-6 PG 9 WC Endocrinology & Metabolism SC Endocrinology & Metabolism GA DB9FY UT WOS:000368823000006 PM 26514840 ER PT J AU Smilowitz, HM Micca, PL Sasso, D Wu, Q Dyment, N Xue, C Kuo, L AF Smilowitz, Henry M. Micca, Peggy L. Sasso, Daniel Wu, Qian Dyment, Nathanial Xue, Crystal Kuo, Lynn TI Increasing radiation dose improves immunotherapy outcome and prolongation of tumor dormancy in a subgroup of mice treated for advanced intracerebral melanoma SO CANCER IMMUNOLOGY IMMUNOTHERAPY LA English DT Article DE Radiation therapy; Radiation dose; Immunotherapy; Intracerebral melanoma; Tumor dormancy ID RADIOTHERAPY; CANCER; MECHANISMS; THERAPY; MICROENVIRONMENT; PROLIFERATION; EQUILIBRIUM; METASTASIS; SYNERGY AB Previously, we developed a clinically relevant therapy model for advanced intracerebral B16 melanomas in syngeneic mice combining radiation and immunotherapies. Here, 7 days after B16-F10-luc2 melanoma cells were implanted intracerebrally (D7), syngeneic mice with bioluminescent tumors that had formed (1E10(5) to 7E10(6) photons per minute (> 1E10(6), large; < 1E10(6), small) were segregated into large-/small-balanced subgroups. Then, mice received either radiation therapy alone (RT) or radiation therapy plus immunotherapy (RT plus IT) (single injection of mAbPC61 to deplete regulatory T cells followed by multiple injections of irradiated granulocyte macrophage colony stimulating factor transfected B16-F10 cells) (RT plus IT). Radiation dose was varied (15, 18.75 or 22.5 Gy, given on D8), while immunotherapy was provided similarly to all mice. The data support the hypothesis that increasing radiation dose improves the outcome of immunotherapy in a subgroup of mice. The tumors that were greatly delayed in beginning their progressive growth were bioluminescent in vivo-some for many months, indicating prolonged tumor "dormancy," in some cases presaging long-term cures. Mice bearing such tumors had far more likely received radiation plus immunotherapy, rather than RT alone. Radiotherapy is a very important adjunct to immunotherapy; the greater the tumor debulking by RT, the greater should be the benefit to tumor immunotherapy. C1 [Smilowitz, Henry M.; Sasso, Daniel; Xue, Crystal] Univ Connecticut, Ctr Hlth, Dept Cell Biol, 263 Farmington Ave, Farmington, CT 06030 USA. [Micca, Peggy L.] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. [Wu, Qian] Univ Connecticut, Ctr Hlth, Dept Anat Pathol & Lab Med, 263 Farmington Ave, Farmington, CT 06030 USA. [Dyment, Nathanial] Univ Connecticut, Ctr Hlth, Dept Reconstruct Sci, 263 Farmington Ave, Farmington, CT 06030 USA. [Kuo, Lynn] Univ Connecticut, Dept Stat, 215 Glenbrook Rd, Storrs, CT 06269 USA. RP Smilowitz, HM (reprint author), Univ Connecticut, Ctr Hlth, Dept Cell Biol, 263 Farmington Ave, Farmington, CT 06030 USA. EM smilowitz@uchc.edu FU University of Connecticut Health Center seed grant FX This work was supported by a University of Connecticut Health Center seed grant to Henry M. Smilowitz. NR 35 TC 2 Z9 2 U1 2 U2 6 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0340-7004 EI 1432-0851 J9 CANCER IMMUNOL IMMUN JI Cancer Immunol. Immunother. PD FEB PY 2016 VL 65 IS 2 BP 127 EP 139 DI 10.1007/s00262-015-1772-7 PG 13 WC Oncology; Immunology SC Oncology; Immunology GA DB7TN UT WOS:000368719200001 PM 26660339 ER PT J AU Birnbaum, LS Dutton, ND Cusack, C Mennemeyer, ST Pavuk, M AF Birnbaum, Linda S. Dutton, N. D. Cusack, C. Mennemeyer, S. T. Pavuk, M. TI Anniston community health survey: Follow-up and dioxin analyses (ACHS-II)-methods SO ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH LA English DT Article DE Polychlorinated biphenyls; PCBs; Dioxins; PCDDs; PCDFs; PBDEs; Heavy metals; Anniston ID POLYCHLORINATED-BIPHENYLS; HALF-LIVES; PCB; RESIDENTS; EXPOSURE AB High serum concentrations of polychlorinated biphenyls (PCBs) have been reported previously among residents of Anniston, Alabama, where a PCB production facility was located in the past. As the second of two cross-sectional studies of these Anniston residents, the Anniston Community Health Survey: Follow-Up and Dioxin Analyses (ACHS-II) will yield repeated measurements to be used to evaluate changes over time in ortho-PCB concentrations and selected health indicators in study participants. Dioxins, non-ortho PCBs, other chemicals, heavy metals, and a variety of additional clinical tests not previously measured in the original ACHS cohort will be examined in ACHS-II. The follow-up study also incorporates a questionnaire with extended sections on diet and occupational history for a more comprehensive assessment of possible exposure sources. Data collection for ACHS-II from 359 eligible participants took place in 2014, 7 to 9 years after ACHS. C1 [Birnbaum, Linda S.] NCI, NIH, Res Triangle Pk, NC 27709 USA. [Dutton, N. D.] Agcy Tox Subst & Dis Registry, Oak Ridge Inst Sci & Educ, Res Participat Program, Atlanta, GA USA. [Cusack, C.; Pavuk, M.] Agcy Tox Subst & Dis Registry, Atlanta, GA USA. [Mennemeyer, S. T.] Univ Alabama Birmingham, Birmingham, AL USA. RP Birnbaum, LS (reprint author), NCI, NIH, Res Triangle Pk, NC 27709 USA. EM birnbaumls@niehs.nih.gov FU National Cancer Institute through Centers for Disease Control and Prevention (CDC) (IAA) [11-AT1-001-00, 12-AT-12-ANNISTON]; ATSDR; ATSDR (CDC) [200-2011-40834] FX The study was funded by the National Cancer Institute (Dr. Linda Birnbaum) through interagency agreements with the Centers for Disease Control and Prevention (CDC) (IAA#: 11-AT1-001-00; IAA#: 12-AT-12-ANNISTON) and by ATSDR. Dr. Pavuk, of ATSDR, is the study's principal investigator (PI). Data collection for this study was funded via contract from ATSDR to the University of Alabama at Birmingham (UAB) (CDC Contract No. 200-2011-40834; Prof. S. Mennemeyer, PI). NR 23 TC 0 Z9 0 U1 0 U2 6 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 0944-1344 EI 1614-7499 J9 ENVIRON SCI POLLUT R JI Environ. Sci. Pollut. Res. PD FEB PY 2016 VL 23 IS 3 BP 2014 EP 2021 DI 10.1007/s11356-015-4684-3 PG 8 WC Environmental Sciences SC Environmental Sciences & Ecology GA DB2YO UT WOS:000368376800006 PM 25982988 ER PT J AU Chaput, J Clerc, V Campillo, M Roux, P Knox, H AF Chaput, J. Clerc, V. Campillo, M. Roux, P. Knox, H. TI On the practical convergence of coda-based correlations: a window optimization approach SO GEOPHYSICAL JOURNAL INTERNATIONAL LA English DT Article DE Inverse theory; Interferometry; Volcano seismology; Antarctica ID AMBIENT SEISMIC NOISE; GREENS-FUNCTION RETRIEVAL; MULTIPLE-SCATTERING; CROSS-CORRELATION; MONTE-CARLO; BODY WAVES; INTERFEROMETRY; EMERGENCE; VOLCANO AB We present a novel optimization approach to improve the convergence of interstation coda correlation functions towards the medium's empirical Green's function. For two stations recording a series of impulsive events in a multiply scattering medium, we explore the impact of coda window selection through a Markov Chain Monte Carlo scheme, with the aim of generating a gather of correlation functions that is the most coherent and symmetric over events, thus recovering intuitive elements of the interstation Green's function without any nonlinear post-processing techniques. This approach is tested here for a 2-D acoustic finite difference model, where a much improved correlation function is obtained, as well as for a database of small impulsive icequakes recorded on Erebus Volcano, Antarctica, where similar robust results are shown. The average coda solutions, as deduced from the posterior probability distributions of the optimization, are further representative of the scattering strength of the medium, with stronger scattering resulting in a slightly delayed overall coda sampling. The recovery of singly scattered arrivals in the coda of correlation functions are also shown to be possible through this approach, and surface wave reflections from outer craters on Erebus volcano were mapped in this fashion. We also note that, due to the improvement of correlation functions over subsequent events, this approach can further be used to improve the resolution of passive temporal monitoring. C1 [Chaput, J.; Clerc, V.; Campillo, M.; Roux, P.] Univ Grenoble 1, ISTERRE, F-38000 Grenoble, France. [Knox, H.] Sandia Natl Labs, Geophys & Atmospher Sci, POB 5800, Albuquerque, NM 87185 USA. RP Chaput, J (reprint author), Univ Grenoble 1, ISTERRE, F-38000 Grenoble, France. EM jchaput82@gmail.com RI roux, philippe/B-8538-2014; Campillo, Michel/K-6231-2012 FU National Science Foundation under Cooperative Agreement [EAR-1063471]; NSF Office of Polar Programs; DOE National Nuclear Security Administration; ERC grant [227507] FX We thank Julien de Rosny for providing the 2-D simulation code used in this paper. Portable seismic instruments for the TOMO Erebus experiment were provided by the Incorporated Research Institutions for Seismology (IRIS) through the PASSCAL Instrument Center at New Mexico Tech. Data are available through the IRIS Data Management Center under network code ZO (2011-2012), YA and ZW (2007-2009). The facilities of the IRIS Consortium are supported by the National Science Foundation under Cooperative Agreement EAR-1063471, the NSF Office of Polar Programs and the DOE National Nuclear Security Administration. This research was supported by the ERC grant 227507 (WHISPER). NR 42 TC 0 Z9 0 U1 3 U2 17 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0956-540X EI 1365-246X J9 GEOPHYS J INT JI Geophys. J. Int. PD FEB PY 2016 VL 204 IS 2 BP 736 EP 747 DI 10.1093/gji/ggv476 PG 12 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA DB3QT UT WOS:000368427100004 ER PT J AU Ridoutt, BG Pfister, S Manzardo, A Bare, J Boulay, AM Cherubini, F Fantke, P Frischknecht, R Hauschild, M Henderson, A Jolliet, O Levasseur, A Margni, M McKone, T Michelsen, O Canals, LMI Page, G Pant, R Raugei, M Sala, S Verones, F AF Ridoutt, Bradley G. Pfister, Stephan Manzardo, Alessandro Bare, Jane Boulay, Anne-Marie Cherubini, Francesco Fantke, Peter Frischknecht, Rolf Hauschild, Michael Henderson, Andrew Jolliet, Olivier Levasseur, Annie Margni, Manuele McKone, Thomas Michelsen, Ottar Mila i Canals, Llorenc Page, Girija Pant, Rana Raugei, Marco Sala, Serenella Verones, Francesca TI Area of concern: a new paradigm in life cycle assessment for the development of footprint metrics SO INTERNATIONAL JOURNAL OF LIFE CYCLE ASSESSMENT LA English DT Article DE Area of protection; Environmental footprint; Environmental labels and declarations; Footprint definition; Footprint indicator; ISO 14044; Life cycle impact assessment; UNEP/SETAC Life Cycle Initiative ID IMPACT ASSESSMENT; INDICATORS; RETHINKING; PROTECTION; FRAMEWORK; LCA AB Purpose As a class of environmental metrics, footprints have been poorly defined, have shared an unclear relationship to life cycle assessment (LCA), and the variety of approaches to quantification have sometimes resulted in confusing and contradictory messages in the marketplace. In response, a task force operating under the auspices of the UNEP/SETAC Life Cycle Initiative project on environmental life cycle impact assessment (LCIA) has been working to develop generic guidance for developers of footprint metrics. The purpose of this paper is to introduce a universal footprint definition and related terminology as well as to discuss modelling implications. Methods The task force has worked from the perspective that footprints should be based on LCA methodology, underpinned by the same data systems and models as used in LCA. However, there are important differences in purpose and orientation relative to LCA impact category indicators. Footprints have a primary orientation toward society and nontechnical stakeholders. They are also typically of narrow scope, having the purpose of reporting only in relation to specific topics. In comparison, LCA has a primary orientation toward stakeholders interested in comprehensive evaluation of overall environmental performance and trade-offs among impact categories. These differences create tension between footprints, the existing LCIA framework based on the area of protection paradigm and the core LCA standards ISO14040/44. Results and discussion In parallel to area of protection, we introduce area of concern as the basis for a universal footprint definition. In the same way that LCA uses impact category indicators to assess impacts that follow a common cause-effect pathway toward areas of protection, footprint metrics address areas of concern. The critical difference is that areas of concern are defined by the interests of stakeholders in society rather than the LCA community. In addition, areas of concern are stand-alone and not necessarily part of a framework intended for comprehensive environmental performance assessment. The area of concern paradigm is needed to support the development of footprints in a way that fulfils their distinctly different purpose. It is also needed as a mechanism to extricate footprints from some of the provisions of ISO 14040/44 which are not considered relevant. Specific issues are identified in relation to double counting, aggregation and the selection of relevant indicators. Conclusions The universal footprint definition and related terminology introduced in this paper create a foundation that will support the development of footprint metrics in parallel with LCA. C1 [Ridoutt, Bradley G.] CSIRO, Private Bag 10, Clayton, Vic 3169, Australia. [Ridoutt, Bradley G.] Univ Free State, Dept Agr Econ, ZA-9300 Bloemfontein, South Africa. [Ridoutt, Bradley G.] ETH, Inst Environm Engn, CH-8093 Zurich, Switzerland. [Manzardo, Alessandro] Univ Padua, Ctr Studi Qualita Ambiente, Dipartimento Ingn Ind, I-35131 Padua, Italy. [Bare, Jane; Henderson, Andrew] Natl Risk Management Res Lab, Syst Anal Branch, Sustainable Technol Div, United States Environm Protect Agcy, Cincinnati, OH 45268 USA. [Boulay, Anne-Marie; Levasseur, Annie; Margni, Manuele] Polytech Montreal, CIRAIG, Montreal, PQ, Canada. [Cherubini, Francesco; Verones, Francesca] Norwegian Univ Sci & Technol NTNU, Dept Energy & Proc Engn, Ind Ecol Programme, NO-7491 Trondheim, Norway. [Fantke, Peter; Hauschild, Michael] Tech Univ Denmark, Div Quantitat Sustainabil Assessment, Dept Engn Management, DK-2800 Lyngby, Denmark. [Frischknecht, Rolf] Treeze Ltd, Uster, Switzerland. [Jolliet, Olivier] Univ Michigan, Sch Publ Hlth Environm Hlth Sci, Ann Arbor, MI 48109 USA. [McKone, Thomas] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [McKone, Thomas] Univ Calif Berkeley, Sch Publ Hlth, Berkeley, CA 94720 USA. [Michelsen, Ottar] Norwegian Univ Sci & Technol, NTNU Sustainabil, N-7491 Trondheim, Norway. [Mila i Canals, Llorenc] Div Technol Ind & Econ, UNEP, 15 Rue Milan, F-75009 Paris, France. [Page, Girija] Univ Western Sydney, Sch Sci & Hlth, Penrith, NSW 2751, Australia. [Pant, Rana; Sala, Serenella] Inst Environm & Sustainabil, European Commiss, Joint Res Ctr, Via Enrico Fermi 2749, I-21027 Ispra, Italy. [Raugei, Marco] Oxford Brookes Univ, Dept Mech Engn & Math Sci, Oxford OX33 1HX, England. RP Ridoutt, BG (reprint author), CSIRO, Private Bag 10, Clayton, Vic 3169, Australia.; Ridoutt, BG (reprint author), Univ Free State, Dept Agr Econ, ZA-9300 Bloemfontein, South Africa. EM Brad.Ridoutt@csiro.au RI Ridoutt, Bradley/D-3329-2011; Raugei, Marco/N-4737-2015; Pfister, Stephan/B-1317-2011; OI Ridoutt, Bradley/0000-0001-7352-0427; Raugei, Marco/0000-0001-5026-8556; Pfister, Stephan/0000-0001-8984-2041; Fantke, Peter/0000-0001-7148-6982; Sala, Serenella/0000-0003-1919-9948; Hauschild, Michael Zwicky/0000-0002-8331-7390 FU United Nations Environment Programme (UNEP)/Society of Environmental Toxicology and Chemistry (SETAC) Life Cycle Initiative FX This work is supported by the United Nations Environment Programme (UNEP)/Society of Environmental Toxicology and Chemistry (SETAC) Life Cycle Initiative. Public and private sector sponsors are listed on the Initiative's website (http://www.lifecycleinitiative.org/). The views expressed in this article are those of the authors and do not necessarily reflect those of the various affiliated organisations. NR 19 TC 5 Z9 5 U1 4 U2 18 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 0948-3349 EI 1614-7502 J9 INT J LIFE CYCLE ASS JI Int. J. Life Cycle Assess. PD FEB PY 2016 VL 21 IS 2 BP 276 EP 280 DI 10.1007/s11367-015-1011-7 PG 5 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA DB7XX UT WOS:000368731900012 ER PT J AU Nobu, MK Dodsworth, JA Murugapiran, SK Rinke, C Gies, EA Webster, G Schwientek, P Kille, P Parkes, RJ Sass, H Jorgensen, BB Weightman, AJ Liu, WT Hallam, SJ Tsiamis, G Woyke, T Hedlund, BP AF Nobu, Masaru K. Dodsworth, Jeremy A. Murugapiran, Senthil K. Rinke, Christian Gies, Esther A. Webster, Gordon Schwientek, Patrick Kille, Peter Parkes, R. John Sass, Henrik Jorgensen, Bo B. Weightman, Andrew J. Liu, Wen-Tso Hallam, Steven J. Tsiamis, George Woyke, Tanja Hedlund, Brian P. TI Phylogeny and physiology of candidate phylum 'Atribacteria' (OP9/JS1) inferred from cultivation-independent genomics SO ISME JOURNAL LA English DT Article ID MICROBIAL DARK-MATTER; MULTIPLE SEQUENCE ALIGNMENT; DEEP MARINE-SEDIMENTS; SINGLE-CELL GENOMICS; RNA GENE-SEQUENCES; LIFE-STYLE; BACTERIAL MICROCOMPARTMENTS; BIOCHEMICAL-EVIDENCE; PETROLEUM RESERVOIR; HIGH-THROUGHPUT AB The 'Atribacteria' is a candidate phylum in the Bacteria recently proposed to include members of the OP9 and JS1 lineages. OP9 and JS1 are globally distributed, and in some cases abundant, in anaerobic marine sediments, geothermal environments, anaerobic digesters and reactors and petroleum reservoirs. However, the monophyly of OP9 and JS1 has been questioned and their physiology and ecology remain largely enigmatic due to a lack of cultivated representatives. Here cultivation-independent genomic approaches were used to provide a first comprehensive view of the phylogeny, conserved genomic features and metabolic potential of members of this ubiquitous candidate phylum. Previously available and heretofore unpublished OP9 and JS1 single-cell genomic data sets were used as recruitment platforms for the reconstruction of atribacterial metagenome bins from a terephthalate-degrading reactor biofilm and from the monimolimnion of meromictic Sakinaw Lake. The single-cell genomes and metagenome bins together comprise six species-to genus-level groups that represent most major lineages within OP9 and JS1. Phylogenomic analyses of these combined data sets confirmed the monophyly of the 'Atribacteria' inclusive of OP9 and JS1. Additional conserved features within the 'Atribacteria' were identified, including a gene cluster encoding putative bacterial microcompartments that may be involved in aldehyde and sugar metabolism, energy conservation and carbon storage. Comparative analysis of the metabolic potential inferred from these data sets revealed that members of the 'Atribacteria' are likely to be heterotrophic anaerobes that lack respiratory capacity, with some lineages predicted to specialize in either primary fermentation of carbohydrates or secondary fermentation of organic acids, such as propionate. C1 [Nobu, Masaru K.; Liu, Wen-Tso] Univ Illinois Champaign Urbana, Dept Civil & Environm Engn, Urbana, IL USA. [Dodsworth, Jeremy A.; Murugapiran, Senthil K.; Hedlund, Brian P.] Univ Nevada, Sch Life Sci, Las Vegas, NV 89154 USA. [Dodsworth, Jeremy A.] Calif State Univ San Bernardino, Dept Biol, 5500 Univ Pkwy, San Bernardino, CA 92407 USA. [Rinke, Christian; Schwientek, Patrick; Woyke, Tanja] DOE Joint Genome Inst, Walnut Creek, CA USA. [Rinke, Christian] Univ Queensland, Australian Ctr Ecogen, St Lucia, Qld, Australia. [Gies, Esther A.; Hallam, Steven J.] Univ British Columbia, Dept Microbiol & Immunol, Vancouver, BC V5Z 1M9, Canada. [Gies, Esther A.; Hallam, Steven J.] Univ British Columbia, Grad Program Bioinformat, Vancouver, BC V5Z 1M9, Canada. [Webster, Gordon; Kille, Peter; Weightman, Andrew J.] Cardiff Univ, Cardiff Sch Biosci, Cardiff CF10 3AX, S Glam, Wales. [Parkes, R. John; Sass, Henrik] Cardiff Univ, Sch Earth & Ocean Sci, Cardiff CF10 3AX, S Glam, Wales. [Jorgensen, Bo B.] Aarhus Univ, Ctr Geomicrobiol, Aarhus, Denmark. [Tsiamis, George] Univ Patras, Dept Environm & Nat Resources Management, Agrinion, Greece. [Hedlund, Brian P.] Univ Nevada, Nevada Inst Personalized Med, Las Vegas, NV 89154 USA. RP Dodsworth, JA (reprint author), Calif State Univ San Bernardino, Dept Biol, 5500 Univ Pkwy, San Bernardino, CA 92407 USA. EM jdodsworth@csusb.edu RI Webster, Gordon/A-1877-2008; Kille, Peter/A-4337-2010; Sass, Henrik/B-8817-2009; Weightman, Andrew/A-2970-2010; Jorgensen, Bo/C-2214-2013; OI Webster, Gordon/0000-0002-9530-7835; Kille, Peter/0000-0001-6023-5221; Sass, Henrik/0000-0001-8740-4224; Weightman, Andrew/0000-0002-6671-2209; Jorgensen, Bo/0000-0001-9398-8027; Murugapiran, Senthil/0000-0002-6952-4713 FU NASA Exobiology grant [EXO-NNX11AR78G]; US National Science Foundation [MCB 0546865, OISE 0968421]; US Department of Energy (DOE) [DE-EE-0000716, DE-SC0006771]; Nevada Renewable Energy Consortium - DOE; Amazon Web Services Education Research Grant; Natural Environment Research Council, UK [NE/J011177/1]; Cardiff University Research Leave Fellowship; Tula Foundation; Natural Sciences and Engineering Research Council (NSERC) of Canada; Canada Foundation for Innovation (CFI); Canadian Institute for Advanced Research (CIFAR); University of British Columbia; Danish National Research Foundation; NERC NBAF [628, 744]; [DE-AC02-05CH11231] FX We thank Lars Schreiber, Karen Lloyd, Ramunas Stepanauskas and the Single Cell Genomics Center at the Bigelow Laboratory for Ocean Sciences for single-cell sorting and providing access to the Aarhus SAGs. This research is supported by NASA Exobiology grant EXO-NNX11AR78G to BPH and JAD; US National Science Foundation grants MCB 0546865 and OISE 0968421 to BPH; US Department of Energy (DOE) grants DE-EE-0000716 and DE-SC0006771 to BPH; the Nevada Renewable Energy Consortium, funded by the DOE, to BPH; an Amazon Web Services Education Research Grant award to BPH and SKM; Natural Environment Research Council, UK grant NE/J011177/1 to AJW, PK, RJP and HS; Cardiff University Research Leave Fellowship to AJW; Tula Foundation, Natural Sciences and Engineering Research Council (NSERC) of Canada, Canada Foundation for Innovation (CFI) and the Canadian Institute for Advanced Research (CIFAR) through grants awarded to SJH; a 4-year fellowship from the University of British Columbia awarded to EAG. Sampling and sorting of the Aarhus Bay SAGs was funded by the Danish National Research Foundation given to the Center for Geomicrobiology, Aarhus University and their sequencing funded by NERC NBAF awards 628 and 744 to AJW. The work conducted by the US Department of Energy Joint Genome Institute, a DOE Office of Science User Facility, is supported under Contract No. DE-AC02-05CH11231. BPH acknowledges the generous support of Greg Fullmer through the UNLV Foundation. NR 101 TC 10 Z9 10 U1 11 U2 43 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1751-7362 EI 1751-7370 J9 ISME J JI ISME J. PD FEB PY 2016 VL 10 IS 2 BP 273 EP 286 DI 10.1038/ismej.2015.97 PG 14 WC Ecology; Microbiology SC Environmental Sciences & Ecology; Microbiology GA DB5NO UT WOS:000368561100001 PM 26090992 ER PT J AU Hoq, QE Kevrekidis, PG Bishop, AR AF Hoq, Q. E. Kevrekidis, P. G. Bishop, A. R. TI Discrete solitons and vortices in anisotropic hexagonal and honeycomb lattices SO JOURNAL OF OPTICS LA English DT Article DE nonsquare lattices; discrete solitons; nonlinear Schrodinger equation; anisotropy; hexagonal lattice; honeycomb lattice ID NONLINEAR SCHRODINGER LATTICES; OPTICAL LATTICES; STABILITY; GASES AB In the present work, we consider the self-focusing discrete nonlinear Schrodinger equation on hexagonal and honeycomb lattice geometries. Our emphasis is on the study of the effects of anisotropy, motivated by the tunability afforded in recent optical and atomic physics experiments. We find that multi-soliton and discrete vortex states undergo destabilizing bifurcations as the relevant anisotropy control parameter is varied. We quantify these bifurcations by means of explicit analytical calculations of the solutions, as well as of their spectral linearization eigenvalues. Finally, we corroborate the relevant stability picture through direct numerical computations. In the latter, we observe the prototypical manifestation of these instabilities to be the spontaneous rearrangement of the solution, for larger values of the coupling, into localized waveforms typically centered over fewer sites than the original unstable structure. For weak coupling, the instability appears to result in a robust breathing of the relevant waveforms. C1 [Hoq, Q. E.] Western New England Univ, Dept Math, Springfield, MA 01119 USA. [Kevrekidis, P. G.] Univ Massachusetts, Dept Math & Stat, Amherst, MA 01003 USA. [Kevrekidis, P. G.; Bishop, A. R.] Los Alamos Natl Lab, Los Alamos, NM 87544 USA. RP Hoq, QE (reprint author), Western New England Univ, Dept Math, Springfield, MA 01119 USA. EM qazi.hoq@wne.edu NR 21 TC 1 Z9 1 U1 2 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2040-8978 EI 2040-8986 J9 J OPTICS-UK JI J. Opt. PD FEB PY 2016 VL 18 IS 2 AR 024008 DI 10.1088/2040-8978/18/2/024008 PG 23 WC Optics SC Optics GA DB1IO UT WOS:000368262000008 ER PT J AU Vaknin, D AF Vaknin, David TI MAGNETIC NEMATICITY A debated origin SO NATURE MATERIALS LA English DT News Item ID FESE C1 [Vaknin, David] Iowa State Univ, Ames Lab, Div Mat Sci & Engn, Ames, IA 50011 USA. [Vaknin, David] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Vaknin, D (reprint author), Iowa State Univ, Ames Lab, Div Mat Sci & Engn, Ames, IA 50011 USA.; Vaknin, D (reprint author), Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. EM vaknin@ameslab.gov RI Vaknin, David/B-3302-2009 OI Vaknin, David/0000-0002-0899-9248 NR 8 TC 0 Z9 0 U1 4 U2 25 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1476-1122 EI 1476-4660 J9 NAT MATER JI Nat. Mater. PD FEB PY 2016 VL 15 IS 2 BP 131 EP 132 DI 10.1038/nmat4546 PG 2 WC Chemistry, Physical; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA DB8KR UT WOS:000368766100008 PM 26796729 ER PT J AU Boles, MA Ling, D Hyeon, T Talapin, DV AF Boles, Michael A. Ling, Daishun Hyeon, Taeghwan Talapin, Dmitri V. TI The surface science of nanocrystals SO NATURE MATERIALS LA English DT Review ID SELF-ASSEMBLED MONOLAYERS; QUANTUM-DOT SOLIDS; LEAD HALIDE PEROVSKITES; COLLOIDAL NANOCRYSTALS; LIGAND-EXCHANGE; CDSE NANOCRYSTALS; CAPPING LIGANDS; ALKANETHIOLATE MONOLAYERS; MAGNETIC NANOPARTICLES; ORGANOSULFUR COMPOUNDS AB All nanomaterials share a common feature of large surface-to-volume ratio, making their surfaces the dominant player in many physical and chemical processes. Surface ligands - molecules that bind to the surface - are an essential component of nanomaterial synthesis, processing and application. Understanding the structure and properties of nanoscale interfaces requires an intricate mix of concepts and techniques borrowed from surface science and coordination chemistry. Our Review elaborates these connections and discusses the bonding, electronic structure and chemical transformations at nanomaterial surfaces. We specifically focus on the role of surface ligands in tuning and rationally designing properties of functional nanomaterials. Given their importance for biomedical (imaging, diagnostics and therapeutics) and optoelectronic (light-emitting devices, transistors, solar cells) applications, we end with an assessment of application-targeted surface engineering. C1 [Boles, Michael A.; Talapin, Dmitri V.] Univ Chicago, Chicago, IL 60637 USA. [Boles, Michael A.; Talapin, Dmitri V.] Univ Chicago, James Franck Inst, 5640 S Ellis Ave, Chicago, IL 60637 USA. [Ling, Daishun; Hyeon, Taeghwan] Inst for Basic Sci Korea, Ctr Nanoparticle Res, Seoul 151742, South Korea. [Ling, Daishun; Hyeon, Taeghwan] Seoul Natl Univ, Sch Chem & Biol Engn, Seoul 151742, South Korea. [Ling, Daishun] Zhejiang Univ, Inst Pharmaceut, Coll Pharmaceut Sci, 866 Yuhangtang Rd, Hangzhou 310058, Zhejiang, Peoples R China. [Talapin, Dmitri V.] Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Talapin, DV (reprint author), Univ Chicago, Chicago, IL 60637 USA. EM dvtalapin@uchicago.edu RI Ling, Daishun/J-4736-2014 OI Ling, Daishun/0000-0002-6814-7370 FU National Science Foundation [DMR-1310398]; DOD Office of Naval Research (ONR) [N00014-13-1-0490] FX We thank the National Science Foundation (Award DMR-1310398) and DOD Office of Naval Research (ONR Grant N00014-13-1-0490). NR 124 TC 82 Z9 83 U1 201 U2 532 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1476-1122 EI 1476-4660 J9 NAT MATER JI Nat. Mater. PD FEB PY 2016 VL 15 IS 2 BP 141 EP 153 DI 10.1038/NMAT4526 PG 13 WC Chemistry, Physical; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA DB8KR UT WOS:000368766100013 PM 26796733 ER PT J AU Autes, G Isaeva, A Moreschini, L Johannsen, JC Pisoni, A Mori, R Zhang, WT Filatova, TG Kuznetsov, AN Forro, L Van den Broek, W Kim, Y Kim, KS Lanzara, A Denlinger, JD Rotenberg, E Bostwick, A Grioni, M Yazyev, OV AF Autes, Gabriel Isaeva, Anna Moreschini, Luca Johannsen, Jens C. Pisoni, Andrea Mori, Ryo Zhang, Wentao Filatova, Taisia G. Kuznetsov, Alexey N. Forro, Laszlo Van den Broek, Wouter Kim, Yeongkwan Kim, Keun Su Lanzara, Alessandra Denlinger, Jonathan D. Rotenberg, Eli Bostwick, Aaron Grioni, Marco Yazyev, Oleg V. TI A novel quasi-one-dimensional topological insulator in bismuth iodide beta-Bi4I4 SO NATURE MATERIALS LA English DT Article ID SINGLE DIRAC CONE; SURFACE; PARTICLE; BI4BR4; BI2TE3 AB Recent progress in the field of topological states of matter(1,2) has largely been initiated by the discovery of bismuth and antimony chalcogenide bulk topological insulators (TIs; refs 3-6), followed by closely related ternary compounds(7-16) and predictions of several weak TIs (refs 17-19). However, both the conceptual richness of Z(2) classification of TIs as well as their structural and compositional diversity are far from being fully exploited. Here, a new Z(2) topological insulator is theoretically predicted and experimentally confirmed in the beta-phase of quasi-one-dimensional bismuth iodide Bi4I4. The electronic structure of beta-Bi4I4, characterized by Z(2) invariants (1;110), is in proximity of both the weak TI phase (0;001) and the trivial insulator phase (0;000). Our angle-resolved photoemission spectroscopy measurements performed on the (001) surface reveal a highly anisotropic band-crossing feature located at the (M) over bar point of the surface Brillouin zone and showing no dispersion with the photon energy, thus being fully consistent with the theoretical prediction. C1 [Autes, Gabriel; Yazyev, Oleg V.] Ecole Polytech Fed Lausanne, Inst Theoret Phys, CH-1015 Lausanne, Switzerland. [Autes, Gabriel; Yazyev, Oleg V.] Ecole Polytech Fed Lausanne, Natl Ctr Computat Design & Discovery Novel Mat MA, CH-1015 Lausanne, Switzerland. [Isaeva, Anna] Tech Univ Dresden, Dept Chem & Food Chem, D-01062 Dresden, Germany. [Moreschini, Luca; Kim, Yeongkwan; Denlinger, Jonathan D.; Rotenberg, Eli; Bostwick, Aaron] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, ALS, Berkeley, CA 94720 USA. [Johannsen, Jens C.; Pisoni, Andrea; Forro, Laszlo; Grioni, Marco] Ecole Polytech Fed Lausanne, Inst Condensed Matter Phys, CH-1015 Lausanne, Switzerland. [Mori, Ryo; Zhang, Wentao; Lanzara, Alessandra] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Mori, Ryo] Univ Calif Berkeley, Grad Grp Appl Sci & Technol, Berkeley, CA 94720 USA. [Zhang, Wentao; Lanzara, Alessandra] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Filatova, Taisia G.; Kuznetsov, Alexey N.] Moscow MV Lomonosov State Univ, Dept Chem, Leninskie Gory 1-3,GSP-1, Moscow 119991, Russia. [Van den Broek, Wouter] Univ Ulm, Expt Phys, Albert Einstein Allee 11, D-89081 Ulm, Germany. [Kim, Yeongkwan] Yonsei Univ, Inst Phys & Appl Phys, Seoul 120749, South Korea. [Kim, Keun Su] Pohang Univ Sci & Technol, Dept Phys, Pohang 790784, South Korea. [Kim, Keun Su] Inst for Basic Sci Korea, Ctr Artificial Low Dimens Elect Syst, Pohang 790784, South Korea. RP Yazyev, OV (reprint author), Ecole Polytech Fed Lausanne, Inst Theoret Phys, CH-1015 Lausanne, Switzerland.; Yazyev, OV (reprint author), Ecole Polytech Fed Lausanne, Natl Ctr Computat Design & Discovery Novel Mat MA, CH-1015 Lausanne, Switzerland. EM oleg.yazyev@epfl.ch RI ZHANG, Wentao/B-3626-2011; Autes, Gabriel/A-5553-2008; Yazyev, Oleg/A-4073-2008; Kim, Yeong Kwan/L-8207-2016; Rotenberg, Eli/B-3700-2009 OI Autes, Gabriel/0000-0002-5265-8512; Yazyev, Oleg/0000-0001-7281-3199; Rotenberg, Eli/0000-0002-3979-8844 FU Swiss NSF [PP00P2_133552, PA00P21-36420]; ERC project 'TopoMat' [306504]; NCCR-MARVEL; Deutsche Forschungsgemeinschaft (DFG) [IS 250/1-1]; Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy [DE-AC02-05CH11231]; Office of Science, Office of Basic Energy Sciences, of the US Department of Energy [DE-AC02-05CH11231]; Swiss National Supercomputing Centre (CSCS) [s515] FX We thank J. H. Dil, M. Ruck, M. Richter and K. Koepernik for fruitful discussions, H. Lee for discussions regarding the computational methodology, B. Kim for support during the beamtime on Merlin, M. Munch, K. Zechel and A. Weiz for assistance with synthesis and SEM/EDX measurements. We are grateful to E. Schmid for ultramicrotomy, to U. Kaiser and C. T. Koch for providing beam time for the TEM characterization. G.A. and O.V.Y. acknowledge support by the Swiss NSF (grant No. PP00P2_133552), ERC project 'TopoMat' (grant No. 306504) and NCCR-MARVEL. A.I. acknowledges the Priority Program 1666 'Topological Insulators' of the Deutsche Forschungsgemeinschaft (DFG, grant No. IS 250/1-1). L.M. acknowledges support by the Swiss NSF (grant No. PA00P21-36420). The Advanced Light Source and the laser-based ARPES measurements, part of the Ultrafast Materials Program at Lawrence Berkeley National Laboratory, are supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under Contract No. DE-AC02-05CH11231. W.V.d.B. acknowledges the Carl-Zeiss Foundation. Electronic structure calculations have been performed at the Swiss National Supercomputing Centre (CSCS) under project s515. NR 36 TC 9 Z9 9 U1 23 U2 75 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1476-1122 EI 1476-4660 J9 NAT MATER JI Nat. Mater. PD FEB PY 2016 VL 15 IS 2 BP 154 EP + DI 10.1038/NMAT4488 PG 6 WC Chemistry, Physical; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA DB8KR UT WOS:000368766100015 PM 26657327 ER PT J AU Wang, QS Shen, Y Pan, BY Hao, YQ Ma, MW Zhou, F Steffens, P Schmalzl, K Forrest, TR Abdel-Hafiez, M Chen, XJ Chareev, DA Vasiliev, AN Bourges, P Sidis, Y Cao, HB Zhao, J AF Wang, Qisi Shen, Yao Pan, Bingying Hao, Yiqing Ma, Mingwei Zhou, Fang Steffens, P. Schmalzl, K. Forrest, T. R. Abdel-Hafiez, M. Chen, Xiaojia Chareev, D. A. Vasiliev, A. N. Bourges, P. Sidis, Y. Cao, Huibo Zhao, Jun TI Strong interplay between stripe spin fluctuations, nematicity and superconductivity in FeSe SO NATURE MATERIALS LA English DT Article ID IRON; STATE; PHASE AB In iron-based superconductors the interactions driving the nematic order (that breaks four-fold rotational symmetry in the iron plane) may also mediate the Cooper pairing(1). The experimental determination of these interactions, which are believed to depend on the orbital or the spin degrees of freedom(1-4), is challenging because nematic order occurs at, or slightly above, the ordering temperature of a stripe magnetic phase(1,5). Here, we study FeSe (ref.6)-which exhibits a nematic (orthorhombic) phase transition at Ts = 90 K without antiferromagnetic ordering-by neutron scattering, finding substantial stripe spin fluctuations coupled with the nematicity that are enhanced abruptly on cooling through Ts. A sharp spin resonance develops in the superconducting state, whose energy (similar to 4 meV) is consistent with an electron-boson coupling mode revealed by scanning tunnelling spectroscopy(7). The magnetic spectralweight in FeSe is found to be comparable to that of the iron arsenides(8,9). Our results support recent theoretical proposals that both nematicity and superconductivity are driven by spin fluctuations(1,10-13). C1 [Wang, Qisi; Shen, Yao; Pan, Bingying; Hao, Yiqing; Zhao, Jun] Fudan Univ, State Key Lab Surface Phys, Shanghai 200433, Peoples R China. [Wang, Qisi; Shen, Yao; Pan, Bingying; Hao, Yiqing; Zhao, Jun] Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China. [Ma, Mingwei; Zhou, Fang] Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Inst Phys, Beijing 100190, Peoples R China. [Steffens, P.] Inst Laue Langevin, 71 Ave Martyrs, F-38042 Grenoble 9, France. [Schmalzl, K.] Forschungszentrum Julich, Outstn ILL, JCNS, F-38042 Grenoble, France. [Forrest, T. R.] European Synchrotron Radiat Facil, BP 220, F-38043 Grenoble, France. [Abdel-Hafiez, M.; Chen, Xiaojia] Ctr High Pressure Sci & Technol Adv Res, Shanghai 201203, Peoples R China. [Abdel-Hafiez, M.] Fayoum Univ, Dept Phys, Fac Sci, Al Fayyum 63514, Egypt. [Chareev, D. A.] Russian Acad Sci, Inst Expt Mineral, Chernogolovka 142432, Moscow District, Russia. [Vasiliev, A. N.] Moscow MV Lomonosov State Univ, Low Temp Phys & Superconduct Dept, Moscow 119991, Russia. [Vasiliev, A. N.] Ural Fed Univ, Theoret Phys & Appl Math Dept, Ekaterinburg 620002, Russia. [Vasiliev, A. N.] Natl Univ Sci & Technol MISiS, Moscow 119049, Russia. [Bourges, P.; Sidis, Y.] CEA Saclay, CEA CNRS, Lab Leon Brillouin, F-91191 Gif Sur Yvette, France. [Cao, Huibo] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. [Zhao, Jun] Fudan Univ, Collaborat Innovat Ctr Adv Microstruct, Shanghai 200433, Peoples R China. RP Zhao, J (reprint author), Fudan Univ, State Key Lab Surface Phys, Shanghai 200433, Peoples R China.; Zhao, J (reprint author), Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China.; Zhao, J (reprint author), Fudan Univ, Collaborat Innovat Ctr Adv Microstruct, Shanghai 200433, Peoples R China. EM zhaoj@fudan.edu.cn RI Chareev, Dmitriy/B-8504-2009; Vasiliev, Alexander/A-7562-2008; Zhao, Jun/A-2492-2010; Cao, Huibo/A-6835-2016 OI Chareev, Dmitriy/0000-0002-9380-2680; Zhao, Jun/0000-0002-0421-8934; Cao, Huibo/0000-0002-5970-4980 FU National Natural Science Foundation of China [11374059, 11190020]; Ministry of Science and Technology of China (973 project) [2015CB921302]; Shanghai Pujiang Scholar Program [13PJ1401100]; Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy; Ministry of Education and Science of the Russian Federation [2-2014-036]; Russian Foundation for Basic Research [13-02-00174, 14-02-92002, 14-02-92693] FX We thank D. H. Lee, Q. Si, F. Wang and H. Yao for useful discussions. This work is supported by the National Natural Science Foundation of China (Grant No. 11374059), the Ministry of Science and Technology of China (973 project: 2015CB921302) and the Shanghai Pujiang Scholar Program (Grant No. 13PJ1401100). M.M. and F.Z. acknowledge support from the National Natural Science Foundation of China (Grant No. 11190020). H.C. received support from the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy. A.N.V. was supported in part by the Ministry of Education and Science of the Russian Federation in the framework of Increase Competitiveness Program of NUST < MISiS > (No. 2-2014-036). D.A.C. and A.N.V. also acknowledge the support of the Russian Foundation for Basic Research through Grants 13-02-00174, 14-02-92002, 14-02-92693. NR 33 TC 36 Z9 36 U1 44 U2 124 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1476-1122 EI 1476-4660 J9 NAT MATER JI Nat. Mater. PD FEB PY 2016 VL 15 IS 2 BP 159 EP + DI 10.1038/NMAT4492 PG 6 WC Chemistry, Physical; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA DB8KR UT WOS:000368766100016 PM 26641018 ER PT J AU Staszak-Jirkovsky, J Malliakas, CD Lopes, PP Danilovic, N Kota, SS Chang, KC Genorio, B Strmcnik, D Stamenkovic, VR Kanatzidis, MG Markovic, NM AF Staszak-Jirkovsky, Jakub Malliakas, Christos D. Lopes, Pietro P. Danilovic, Nemanja Kota, Subrahmanyam S. Chang, Kee-Chul Genorio, Bostjan Strmcnik, Dusan Stamenkovic, Vojislav R. Kanatzidis, Mercouri G. Markovic, Nenad M. TI Design of active and stable Co-Mo-Sx chalcogels as pH-universal catalysts for the hydrogen evolution reaction SO NATURE MATERIALS LA English DT Article ID HYDROTREATING CATALYSTS; ALKALINE-SOLUTIONS; OXYGEN EVOLUTION; ELECTRODES; ELECTROCATALYSIS; METALS; PERFORMANCE; ADSORPTION; STABILITY; PLATINUM AB Three of the fundamental catalytic limitations that have plagued the electrochemical production of hydrogen for decades still remain: low effciency, short lifetime of catalysts and a lack of low-cost materials. Here, we address these three challenges by establishing and exploring an intimate functional link between the reactivity and stability of crystalline (CoS2 and MoS2) and amorphous (CoSx and MoSx) hydrogen evolution catalysts. We propose that Co2+ and Mo4+ centres promote the initial discharge of water (alkaline solutions) or hydronium ions (acid solutions). We establish that although CoSx materials are more active than MoSx they are also less stable, suggesting that the active sites are defects formed after dissolution of Co and Mo cations. By combining the higher activity of CoSx building blocks with the higher stability of MoSx units into a compact and robust CoMoSx chalcogel structure, we are able to design a low-cost alternative to noble metal catalysts for efficient electrocatalytic production of hydrogen in both alkaline and acidic environments. C1 [Staszak-Jirkovsky, Jakub; Malliakas, Christos D.; Lopes, Pietro P.; Danilovic, Nemanja; Chang, Kee-Chul; Genorio, Bostjan; Strmcnik, Dusan; Stamenkovic, Vojislav R.; Kanatzidis, Mercouri G.; Markovic, Nenad M.] Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. [Malliakas, Christos D.; Kota, Subrahmanyam S.; Kanatzidis, Mercouri G.] Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA. [Genorio, Bostjan] Univ Ljubljana, Ljubljana 1000, Slovenia. RP Kanatzidis, MG; Markovic, NM (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM m-kanatzidis@northwestern.edu; nmmarkovic@anl.gov RI Lopes, Pietro/E-2724-2013; OI Lopes, Pietro/0000-0003-3211-470X; Genorio, Bostjan/0000-0002-0714-3472 FU Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences, US Department of Energy (BES-DMSE) [DE-AC02-06CH11357]; DOE Office of Science by Argonne National Laboratory [DE-AC02-06CH11357] FX This work was supported by the Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences, US Department of Energy, under contract DE-AC02-06CH11357 (BES-DMSE). This research used resources of the Advanced Photon Source, a US Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. NR 50 TC 45 Z9 45 U1 115 U2 344 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1476-1122 EI 1476-4660 J9 NAT MATER JI Nat. Mater. PD FEB PY 2016 VL 15 IS 2 BP 197 EP + DI 10.1038/NMAT4481 PG 8 WC Chemistry, Physical; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA DB8KR UT WOS:000368766100024 PM 26618882 ER PT J AU Faries, KM Kressel, LL Dylla, NP Wander, WJ Hanson, DK Holten, D Laible, PD Kirmaier, C AF Faries, Kaitlyn M. Kressel, Lucas L. Dylla, Nicholas P. Wander, Warc J. Hanson, Deborah K. Holten, Dewey Laible, Philip D. Kirmaier, Christine TI Optimizing multi-step B-side charge separation in photosynthetic reaction centers from Rhodobacter capsulatus SO BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS LA English DT Article DE Directionality; Asymmetry; Picosecond; Membrane; Saturation mutagenesis; Charge recombination ID BRANCH ELECTRON-TRANSFER; BACTERIAL REACTION CENTERS; SPHAEROIDES REACTION-CENTER; REACTION-CENTER MUTANT; PHOTOACTIVE BACTERIOPHEOPHYTIN; HIGH-YIELD; CHLOROFLEXUS-AURANTIACUS; TEMPERATURE-DEPENDENCE; Q(A) UBIQUINONE; WATER MOLECULE AB Using high-throughput methods for mutagenesis, protein isolation and charge-separation functionality, we have assayed 40 Rhodobacter capsulatus reaction center (RC) mutants for their P(+)Q(B)(-) yield (P is a dimer of bacterio-chlorophylls and Q is a ubiquinone) as produced using the normally inactive B-side cofactors B-B and H-B (where B is a bacteriochlorophyll and H is a bacteriopheophytin). Two sets of mutants explore all possible residues at M131 (M polypeptide, native residue Val near H-B) in tandem with either a fixed His or a fixed Asn at L181 (L polypeptide, native residue Phe near B-B). A third set of mutants explores all possible residues at L181 with a fixed Glu at M131 that can form a hydrogen bond to H-B. For each set of mutants, the results of a rapid millisecond screening assay that probes the yield of P(+)Q(B)(-) are compared among that set and to the other mutants reported here or previously. For a subset of eight mutants, the rate constants and yields of the individual B-side electron transfer processes are determined via transient absorption measurements spanning 100 fs to 50 mu s. The resulting ranking of mutants for their yield of P(+)Q(B)(-) from ultrafast experiments is in good agreement with that obtained from the millisecond screening assay, further validating the efficient, high-throughput screen for B-side transmembrane charge separation. Results from mutants that individually show progress toward optimization of P+HB- -> P(+)Q(B)(-) electron transfer or initial P* -> P+HB- conversion highlight unmet challenges of optimizing both processes simultaneously. (C) 2015 Elsevier B.V. All rights reserved. C1 [Faries, Kaitlyn M.; Holten, Dewey; Kirmaier, Christine] Washington Univ, Dept Chem, St Louis, MO 63130 USA. [Kressel, Lucas L.; Dylla, Nicholas P.; Wander, Warc J.; Hanson, Deborah K.; Laible, Philip D.] Argonne Natl Lab, Biosci Div, Argonne, IL 60439 USA. RP Kirmaier, C (reprint author), Washington Univ, Dept Chem, St Louis, MO 63130 USA. EM kirmaier@wustl.edu OI Dylla, Nicholas/0000-0002-8731-5640 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0002036]; U.S. Department of Energy Office of Science laboratory [DE-AC02-06CH11357]; National Science Foundation Graduate Research Fellowship [DGE-1143954] FX This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under grant DE-SC0002036 (to CK and DH) and associated Argonne-FWP (to PL). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. KF was supported by the National Science Foundation Graduate Research Fellowship under grant DGE-1143954. NR 53 TC 2 Z9 2 U1 1 U2 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0005-2728 EI 0006-3002 J9 BBA-BIOENERGETICS JI Biochim. Biophys. Acta-Bioenerg. PD FEB PY 2016 VL 1857 IS 2 BP 150 EP 159 DI 10.1016/j.bbabio.2015.11.013 PG 10 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA DB0NI UT WOS:000368204400003 PM 26658355 ER PT J AU Brisson, VL Zhuang, WQ Alvarez-Cohen, L AF Brisson, Vanessa L. Zhuang, Wei-Qin Alvarez-Cohen, Lisa TI Bioleaching of Rare Earth Elements from Monazite Sand SO BIOTECHNOLOGY AND BIOENGINEERING LA English DT Article DE bioleaching; monazite; rare earth elements; phosphate; fungi; Aspergillus ID PHOSPHATE SOLUBILIZING BACTERIA; PLANT-GROWTH PROMOTION; ASPERGILLUS-NIGER; INORGANIC PHOSPHATES; ORGANIC-ACIDS; IRON-ORE; MICROORGANISMS; SOIL; FUNGUS; ROCK AB Three fungal strains were found to be capable of bioleaching rare earth elements from monazite, a rare earth phosphate mineral, utilizing the monazite as a phosphate source and releasing rare earth cations into solution. These organisms include one known phosphate solubilizing fungus, Aspergillus niger ATCC 1015, as well as two newly isolated fungi: an Aspergillus terreus strain ML3-1 and a Paecilomyces spp. strain WE3-F. Although monazite also contains the radioactive element Thorium, bioleaching by these fungi preferentially solubilized rare earth elements over Thorium, leaving the Thorium in the solid residual. Adjustments in growth media composition improved bioleaching performance measured as rare earth release. Cell-free spent medium generated during growth of A. terreus strain ML3-1 and Paecilomyces spp. strain WE3-F in the presence of monazite leached rare earths to concentrations 1.7-3.8 times those of HCl solutions of comparable pH, indicating that compounds exogenously released by these organisms contribute substantially to leaching. Organic acids released by the organisms included acetic, citric, gluconic, itaconic, oxalic, and succinic acids. Abiotic leaching with laboratory prepared solutions of these acids was not as effective as bioleaching or leaching with cell-free spent medium at releasing rare earths from monazite, indicating that compounds other than the identified organic acids contribute to leaching performance. (C) 2015 Wiley Periodicals, Inc. C1 [Brisson, Vanessa L.; Zhuang, Wei-Qin; Alvarez-Cohen, Lisa] Univ Calif Berkeley, Dept Civil & Environm Engn, Berkeley, CA 94720 USA. [Zhuang, Wei-Qin] Univ Auckland, Dept Civil & Environm Engn, Auckland 1142, New Zealand. [Alvarez-Cohen, Lisa] Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Alvarez-Cohen, L (reprint author), Univ Calif Berkeley, Dept Civil & Environm Engn, Berkeley, CA 94720 USA. EM alvarez@ce.berkeley.edu FU Siemens Corporate Research [UCB_CKI-2012-Industry_IS-001-Doyle] FX Contract grant sponsor: Siemens Corporate Research; Contract grant number: UCB_CKI-2012-Industry_IS-001-Doyle NR 55 TC 4 Z9 4 U1 9 U2 34 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0006-3592 EI 1097-0290 J9 BIOTECHNOL BIOENG JI Biotechnol. Bioeng. PD FEB PY 2016 VL 113 IS 2 BP 339 EP 348 DI 10.1002/bit.25823 PG 10 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA DB0HG UT WOS:000368188600011 PM 26332985 ER PT J AU Nelson, MA Brown, MJ Halverson, SA Bieringer, PE Annunzio, A Bieberbach, G Meech, S AF Nelson, Matthew A. Brown, Michael J. Halverson, Scot A. Bieringer, Paul E. Annunzio, Andrew Bieberbach, George Meech, Scott TI A Case Study of the Weather Research and Forecasting Model Applied to the Joint Urban 2003 Tracer Field Experiment. Part 1: Wind and Turbulence SO BOUNDARY-LAYER METEOROLOGY LA English DT Article DE Atmospheric surface-layer winds; Turbulence; Urban transport and dispersion; Vertical structure; Weather Research and Forecasting ID BOUNDARY-LAYER; DATA-ASSIMILATION; MESOSCALE MODEL; PARAMETERIZATION; IMPACT; CONVECTION; DISPERSION; SCHEMES; PROJECT; SYSTEM AB Numerical-weather-prediction models are often used to supply the mean wind and turbulence fields for atmospheric transport and dispersion plume models as they provide dense horizontally- and vertically-resolved geographic coverage in comparison to typically sparse monitoring networks. Here, the Weather Research and Forecasting (WRF) model was run over the month-long period of the Joint Urban 2003 field campaign conducted in Oklahoma City and the simulated fields important to transport and dispersion models were compared to measurements from a number of sodars, tower-based sonic anemometers, and balloon soundings located in the greater metropolitan area. Time histories of computed wind speed, wind direction, turbulent kinetic energy (e), friction velocity (), and reciprocal Obukhov length (1 / L) were compared to measurements over the 1-month field campaign. Vertical profiles of wind speed, potential temperature (), and e were compared during short intensive operating periods. The WRF model was typically able to replicate the measured diurnal variation of the wind fields, but with an average absolute wind direction and speed difference of and , respectively. Using the Mellor-Yamada-Janjic (MYJ) surface-layer scheme, the WRF model was found to generally underpredict surface-layer TKE but overpredict that was observed above a suburban region of Oklahoma City. The TKE-threshold method used by the WRF model's MYJ surface-layer scheme to compute the boundary-layer height (h) consistently overestimated h derived from a gradient method whether using observed or modelled theta profiles. C1 [Nelson, Matthew A.; Brown, Michael J.; Halverson, Scot A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Bieringer, Paul E.; Bieberbach, George] Aeris, Louisville, CO 80027 USA. [Annunzio, Andrew] Citadel, Chicago, IL 60603 USA. [Meech, Scott] Sci & Technol Atmospher Res STAR LLC, Boulder, CO 80301 USA. RP Nelson, MA (reprint author), Los Alamos Natl Lab, MS F609,POB 1663, Los Alamos, NM 87545 USA. EM nelsonm@lanl.gov FU Defense Threat Reduction Agency; Dugway Proving Ground through H. E. Cramer Company, Inc. FX The Joint Urban 2003 field campaign was supported by the Defense Threat Reduction Agency and Dugway Proving Ground through a contract with the H. E. Cramer Company, Inc. The authors also acknowledge the hard work of the other JU2003 team workers and others that contributed to the datasets and figures presented in this work. In addition, the authors are very grateful to the local government workers, business owners and workers, and citizens of Oklahoma City who made the JU2003 field experiment possible. NR 28 TC 1 Z9 1 U1 4 U2 20 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0006-8314 EI 1573-1472 J9 BOUND-LAY METEOROL JI Bound.-Layer Meteor. PD FEB PY 2016 VL 158 IS 2 BP 285 EP 309 DI 10.1007/s10546-015-0091-z PG 25 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DB0DZ UT WOS:000368180100006 ER PT J AU Wu, B Li, HY Du, XM Zhong, LR Yang, B Du, P Gu, QB Li, FS AF Wu, Bin Li, Huiying Du, Xiaoming Zhong, Lirong Yang, Bin Du, Ping Gu, Qingbao Li, Fasheng TI Correlation between DNAPL distribution area and dissolved concentration in surfactant enhanced aquifer remediation effluent: A two-dimensional flow cell study SO CHEMOSPHERE LA English DT Article DE Surfactant; DNAPL; Mass transfer; Distribution area; Dissolved concentration ID NONAQUEOUS PHASE LIQUID; DENSITY-MODIFIED DISPLACEMENT; SOURCE ZONE REMEDIATION; CONTAMINATED SOIL; POROUS-MEDIA; NONIONIC SURFACTANT; SOLUBILIZATION; WATER; DISSOLUTION; REMOVAL AB During the process of surfactant enhanced aquifer remediation (SEAR), free phase dense non-aqueous phase liquid (DNAPL) may be mobilized and spread. The understanding of the impact of DNAPL spreading on the SEAR remediation is not sufficient with its positive effect infrequently mentioned. To evaluate the correlation between DNAPL spreading and remediation efficiency, a two-dimensional sandbox apparatus was used to simulate the migration and dissolution process of 1,2-DCA (1,2-dichloroethane) DNAPL in SEAR. Distribution area of DNAPL in the sandbox was determined by digital image analysis and correlated with effluent DNAPL concentration. The results showed that the effluent DNAPL concentration has significant positive linear correlation with the DNAPL distribution area, indicating the mobilization of DNAPL could improve remediation efficiency by enlarging total NAPL-water interfacial area for mass transfer. Meanwhile, the vertical migration of 1,2-DCA was limited within the boundary of aquifer in all experiments, implying that by manipulating injection parameters in SEAR, optimal remediation efficiency can be reached while the risk of DNAPL vertical migration is minimized. This study provides a convenient visible and quantitative method for the optimization of parameters for SEAR project, and an approach of rapid predicting the extent of DNAPL contaminant distribution based on the dissolved DNAPL concentration in the extraction well. (C) 2015 Published by Elsevier Ltd. C1 [Wu, Bin; Li, Huiying; Du, Xiaoming; Yang, Bin; Du, Ping; Gu, Qingbao; Li, Fasheng] Chinese Res Inst Environm Sci, State Key Lab Environm Criteria & Risk Assessment, Beijing 100012, Peoples R China. [Li, Huiying] Beijing Municipal Res Inst Environm Protect, Beijing 100037, Peoples R China. [Zhong, Lirong] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Li, FS (reprint author), Chinese Res Inst Environm Sci, State Key Lab Environm Criteria & Risk Assessment, Beijing 100012, Peoples R China. EM ligulax@vip.sina.com FU National Natural Science Foundation of China [41271476]; National Environmental Protection Public Welfare projects [201109017] FX This work was supported by the National Natural Science Foundation of China (project No. 41271476) and National Environmental Protection Public Welfare projects (No. 201109017). We are also grateful to Oliver J. Hao, Juan Zhang and Bing Yang for their valuable comments and suggestions. NR 34 TC 2 Z9 3 U1 6 U2 16 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0045-6535 EI 1879-1298 J9 CHEMOSPHERE JI Chemosphere PD FEB PY 2016 VL 144 BP 2142 EP 2149 DI 10.1016/j.chemosphere.2015.11.005 PG 8 WC Environmental Sciences SC Environmental Sciences & Ecology GA DA4MQ UT WOS:000367774400272 PM 26583297 ER PT J AU Mills, E AF Mills, Evan TI Identifying and reducing the health and safety impacts of fuel-based lighting SO ENERGY FOR SUSTAINABLE DEVELOPMENT LA English DT Article DE Kerosene; Lighting; Health ID SOUTH-AFRICAN COMMUNITIES; MIDDLE-INCOME COUNTRIES; HOUSEHOLD AIR-POLLUTION; PARTICULATE MATTER; SIZE DISTRIBUTIONS; SMOKE EXPOSURE; BIOMASS FUELS; BLACK CARBON; KEROSENE; BURNS AB The inequity of costly and low-quality fuel-based lighting is compounded by adverse health and safety risks including burns, indoor air pollution, poisoning due to accidental ingestion of kerosene fuel by children, compromised visual health, maternal health issues, and reduced service in health facilities illuminated solely or sporadically with fuel-based lighting. This article compiles and synthesizes information on the health and safety impacts of fuel-based lighting from 135 reports spanning 33 countries. Energy efficient, off-grid lighting solutions offer the most promising and scalable means to eliminate adverse health outcomes, while lowering lighting costs and reducing greenhouse-gas emissions. Deployments seeking the greatest possible health benefit should target the most impacted geographical and demographic user groups. Because women and children are disproportionately impacted, improved lighting technologies for use by these groups will yield particularly significant health benefits. (C) 2015 International Energy Initiative. Published by Elsevier Inc. All rights reserved. C1 [Mills, Evan] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Mills, E (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, MS 90-2058, Berkeley, CA 94720 USA. FU United Nations Environment Programme's en.lighten initiative; Germany's Federal Ministry for Economic Co-operation and Development (BMZ); U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the United Nations Environment Programme's en.lighten initiative in partnership with Germany's Federal Ministry for Economic Co-operation and Development (BMZ), to facilitate policy development in the Economic Community of West African States (ECOWAS) region, and by the Assistant Secretary for International Affairs of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The following reviewers contributed data, time and expert insights: Peter Alstone and Nick Lam (UC Berkeley); Martin Bachler, Leyla Kuhls and Gerhard Mair (Osram); Kate Bliss and Johanna Diecker (GOGLA); Gautam Dutt (International Energy Initiative); Kevin Gauna (Sunbrothers); James Irlam (UCT); Arne Jacobson (Humbolt State University); Darin Kingston (d.light design); Bohzil Kondev (GIZ); Caroline McGregor (US Department of Energy); Dustin Poppendieck (US Department of Commerce); David Schwebel (University of Alabama Birmingham); Laura Stachel (WeCare Solar); Russell Sturm (IFC); Ibrahim Soumaila (ECREEE); Dehran Swart and Shane Thatcher (Illumination Headquarters Ltd); and, Kathryn Conway and Olola Vieyra (UNEP). NR 111 TC 0 Z9 0 U1 3 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0973-0826 J9 ENERGY SUSTAIN DEV JI Energy Sustain Dev. PD FEB PY 2016 VL 30 BP 39 EP 50 DI 10.1016/j.esd.2015.11.002 PG 12 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels SC Science & Technology - Other Topics; Energy & Fuels GA DA7DV UT WOS:000367965700005 ER PT J AU Byun, TS Yang, Y Overman, NR Busby, JT AF Byun, T. S. Yang, Y. Overman, N. R. Busby, J. T. TI Thermal Aging Phenomena in Cast Duplex Stainless Steels SO JOM LA English DT Article ID MECHANICAL ATTRITION TREATMENT; PHASE PRECIPITATION; CR; ALLOYS; FE; EMBRITTLEMENT; DEFORMATION; SIMULATION; SEPARATION; EVOLUTION AB Cast stainless steels (CASSs) have been extensively used for the large components of light water reactor (LWR) power plants such as primary coolant piping and pump casing. The thermal embrittlement of CASS components is one of the most serious concerns related to the extended-term operation of nuclear power plants. Many past researches have concluded that the formation of Cr-rich alpha-phase by Spinodal decomposition of delta-ferrite phase is the primary mechanism for the thermal embrittlement. Cracking mechanism in the thermally-embrittled duplex stainless steels consists of the formation of cleavage at ferrite and its propagation via separation of ferrite-austenite interphase. This article intends to provide an introductory overview on the thermal aging phenomena in LWR-relevant conditions. Firstly, the thermal aging effect on toughness is discussed in terms of the cause of embrittlement and influential parameters. An approximate analysis of thermal reaction using Arrhenius equation was carried out to scope the aging temperatures for the accelerated aging experiments to simulate the 60 and 80 years of services. Further, an equilibrium precipitation calculation was performed for model CASS alloys using the CALPHAD program, and the results are used to describe the precipitation behaviors in duplex stainless steels. These results are also to be used to guide an on-going research aiming to provide knowledge-based conclusive prediction for the integrity of the CASS components of LWR power plants during the service life extended up to and beyond 60 years. C1 [Byun, T. S.; Overman, N. R.] Pacific NW Natl Lab, Div Nucl Sci, Richland, WA 99352 USA. [Yang, Y.; Busby, J. T.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Byun, TS (reprint author), Pacific NW Natl Lab, Div Nucl Sci, Richland, WA 99352 USA. EM thaksang.byun@pnnl.gov RI Yang, Ying/E-5542-2017 OI Yang, Ying/0000-0001-6480-2254 FU U.S. Department of Energy/Office of Nuclear Energy through Light Water Reactor Sustainability (LWRS) Program; U.S. Department of Energy [DE-AC05-76RL01830] FX This research was sponsored by U.S. Department of Energy/Office of Nuclear Energy through Light Water Reactor Sustainability (LWRS) Program. Pacific Northwest National Laboratory is operated by Battelle Memorial Institute for the U.S. Department of Energy under Contract No. DE-AC05-76RL01830. The authors would like to express special thanks to Dr. Danny Edwards for his technical reviews and thoughtful comments. NR 48 TC 1 Z9 1 U1 2 U2 6 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1047-4838 EI 1543-1851 J9 JOM-US JI JOM PD FEB PY 2016 VL 68 IS 2 BP 507 EP 516 DI 10.1007/s11837-015-1709-9 PG 10 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing SC Materials Science; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing GA DA9ZY UT WOS:000368169600016 ER PT J AU Tan, L Stoller, RE Field, KG Yang, Y Nam, H Morgan, D Wirth, BD Gussev, MN Busby, JT AF Tan, L. Stoller, R. E. Field, K. G. Yang, Y. Nam, H. Morgan, D. Wirth, B. D. Gussev, M. N. Busby, J. T. TI Microstructural Evolution of Type 304 and 316 Stainless Steels Under Neutron Irradiation at LWR Relevant Conditions SO JOM LA English DT Article ID RADIATION-INDUCED SEGREGATION; MULTICOMPONENT MULTIPHASE SYSTEMS; MODEL FERRITIC/MARTENSITIC STEEL; GRAIN-BOUNDARY MISORIENTATION; CR-NI ALLOYS; SOLUTE SEGREGATION; INDUCED DEGRADATION; KINETICS; STRENGTH; SIGMA-3 AB Life extension of light water reactors will expose austenitic internal core components to irradiation damage levels beyond 100 displacements per atom (dpa), leading to profound microstructural evolution and consequent degradation of macroscopic properties. Microstructural evolution, including Frank loops, cavities, precipitates, and segregation at boundaries and the resultant radiation hardening in type 304 and 316 stainless steel (SS) variants were studied in this work via experimental characterization and multiple simulation methods. Experimental data for up to 40 heats of type 304SS and 316SS variants irradiated in different reactors to 0.6-120 dpa at 275-375 degrees C were generated from this work or collected from literature reports. These experimental data were then combined with models of Frank loop and cavity evolution, computational thermodynamics and precipitation, and ab initio and rate theory integrated radiation-induced segregation models to provide insights into microstructural evolution and degradation at higher doses. C1 [Tan, L.; Stoller, R. E.; Field, K. G.; Yang, Y.; Gussev, M. N.; Busby, J. T.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Nam, H.; Morgan, D.] Univ Wisconsin, Madison, WI USA. [Wirth, B. D.] Univ Tennessee, Knoxville, TN USA. RP Tan, L (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM tanl@ornl.gov RI Tan, Lizhen/A-7886-2009; Yang, Ying/E-5542-2017 OI Tan, Lizhen/0000-0002-3418-2450; Yang, Ying/0000-0001-6480-2254 FU US Department of Energy, Office of Nuclear Energy, Light Water Reactor Sustainability Program [DE-AC05-00OR22725]; University of Tennessee-Battelle, LLC. FX This research was sponsored by the US Department of Energy, Office of Nuclear Energy, Light Water Reactor Sustainability Program, under Contract DE-AC05-00OR22725 with University of Tennessee-Battelle, LLC. The United States Govern ment retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan). NR 52 TC 1 Z9 1 U1 10 U2 27 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1047-4838 EI 1543-1851 J9 JOM-US JI JOM PD FEB PY 2016 VL 68 IS 2 BP 517 EP 529 DI 10.1007/s11837-015-1753-5 PG 13 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing SC Materials Science; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing GA DA9ZY UT WOS:000368169600017 ER PT J AU Jamison, RD Shen, YL AF Jamison, Ryan D. Shen, Yu-Lin TI Indentation and overall compression behavior of multilayered thin-film composites: Effect of undulating layer geometry SO JOURNAL OF COMPOSITE MATERIALS LA English DT Article DE Nanoindentation; multilayer thin films; finite element ID METAL-CERAMIC COMPOSITES; MECHANICAL-PROPERTIES; NANOINDENTATION; COATINGS; MICROSTRUCTURES; HARDNESS; FAILURE AB Two finite element models are used to investigate the behavior of aluminum/silicon carbide thin-film layered composites with imperfect internal geometry when subjected to various loadings. In both models, undulating layers are represented by regular waveforms with various amplitudes, wavelengths, and phase offsets. First, uniaxial compressive loading of the composite is considered. The modulus and stress/strain response of the composite is sensitive to both loading direction and frequency of the undulation. Second, the nanoindentation response of the composite is investigated. The derived hardness and modulus are shown to be sensitive to the presence of undulating layers and the relative size of the indenter to the undulation. Undulating layers create bands of tensile and compressive stress in the indentation direction that are significantly different from the flat layers. The amount of equivalent plastic strain in the Al layers is increased by the presence of undulating layers. The correlations between the two forms of loading, and the implications to composite property measurement are carefully examined in this study. C1 [Jamison, Ryan D.] Sandia Natl Labs, Albuquerque, NM 87175 USA. [Shen, Yu-Lin] Univ New Mexico, Dept Mech Engn, Albuquerque, NM 87131 USA. RP Jamison, RD (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87175 USA. EM rdjamis@sandia.gov RI Shen, Yu-Lin/C-1942-2008 FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The authors acknowledge N. Chawla for the experimental information used in this study. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 29 TC 3 Z9 3 U1 2 U2 6 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0021-9983 EI 1530-793X J9 J COMPOS MATER JI J. Compos Mater. PD FEB PY 2016 VL 50 IS 4 BP 507 EP 521 DI 10.1177/0021998315576768 PG 15 WC Materials Science, Composites SC Materials Science GA DA9XX UT WOS:000368164200006 ER PT J AU Aranda, MM Rementeria, R Capdevila, C Hackenberg, RE AF Aranda, M. M. Rementeria, R. Capdevila, C. Hackenberg, R. E. TI Can Pearlite form Outside of the Hultgren Extrapolation of the Ae3 and Acm Phase Boundaries? SO METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE LA English DT Article ID FORCED VELOCITY PEARLITE; RAPID SOLIDIFICATION CONDITIONS; MICROSTRUCTURE SELECTION MAP; ULTRAHIGH-CARBON-STEELS; AUSTENITE GRAIN-SIZE; AL-CU ALLOYS; FE-C; EUTECTIC GROWTH; SOFT IMPINGEMENT; DIFFUSION AB It is usually assumed that ferrous pearlite can form only when the average austenite carbon concentration C (0) lies between the extrapolated Ae3 (gamma/alpha) and Acm (gamma/theta) phase boundaries (the "Hultgren extrapolation"). This "mutual supersaturation" criterion for cooperative lamellar nucleation and growth is critically examined from a historical perspective and in light of recent experiments on coarse-grained hypoeutectoid steels which show pearlite formation outside the Hultgren extrapolation. This criterion, at least as interpreted in terms of the average austenite composition, is shown to be unnecessarily restrictive. The carbon fluxes evaluated from Brandt's solution are sufficient to allow pearlite growth both inside and outside the Hultgren Extrapolation. As for the feasibility of the nucleation events leading to pearlite, the only criterion is that there are some local regions of austenite inside the Hultgren Extrapolation, even if the average austenite composition is outside. C1 [Aranda, M. M.; Rementeria, R.; Capdevila, C.] CSIC, Ctr Nacl Invest Met CENIM, Mat Res Grp, Madrid, Spain. [Hackenberg, R. E.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. RP Aranda, MM (reprint author), CSIC, Ctr Nacl Invest Met CENIM, Mat Res Grp, Madrid, Spain. EM ccm@cenim.csic.es OI Hackenberg, Robert/0000-0002-0380-5723; Rementeria, Rosalia/0000-0003-2364-7344 FU Spanish Ministerio de Ciencia e Innovacion [ENE2009-1376 6-C04-01]; U.S. Department of Energy [DE-AC52-06-NA25396] FX MMA and CC acknowledge financial support from Spanish Ministerio de Ciencia e Innovacion in the form of a Coordinate Project (ENE2009-1376 6-C04-01). REH acknowledges support from the U.S. Department of Energy (contract DE-AC52-06-NA25396). NR 85 TC 3 Z9 3 U1 3 U2 7 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1073-5623 EI 1543-1940 J9 METALL MATER TRANS A JI Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. PD FEB PY 2016 VL 47A IS 2 BP 649 EP 660 DI 10.1007/s11661-015-3249-x PG 12 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA DA8NO UT WOS:000368062300004 ER PT J AU Cakmak, E Watkins, TR Bunn, JR Cooper, RC Cornwell, PA Wang, YL Sochalski-Kolbus, LM Dehoff, RR Babu, SS AF Cakmak, Ercan Watkins, Thomas R. Bunn, Jeffrey R. Cooper, Ryan C. Cornwell, Paris A. Wang, Yanli Sochalski-Kolbus, Lindsay M. Dehoff, Ryan R. Babu, Sudarsanam S. TI Mechanical Characterization of an Additively Manufactured Inconel 718 Theta-Shaped Specimen SO METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE LA English DT Article ID RESIDUAL-STRESSES; LASER; MICROSTRUCTURES; HETEROGENEITY; SUPERALLOY; COMPONENTS; TI-6AL-4V; IN718 AB Two sets of "theta"-shaped specimens were additively manufactured with Inconel 718 powders using an electron beam melting technique with two distinct scan strategies. Light optical microscopy, mechanical testing coupled with a digital image correlation (DIC) technique, finite element modeling, and neutron diffraction with in situ loading characterizations were conducted. The cross-members of the specimens were the focus. Light optical micrographs revealed that different microstructures were formed with different scan strategies. Ex situ mechanical testing revealed each build to be stable under load until ductility was observed on the cross-members before failure. The elastic moduli were determined by forming a correlation between the elastic tensile stresses determined from FEM, and the elastic strains obtained from DIC. The lattice strains were mapped with neutron diffraction during in situ elastic loading; and a good correlation between the average axial lattice strains on the cross-member and those determined from the DIC analysis was found. The spatially resolved stresses in the elastic deformation regime are derived from the lattice strains and increased with applied load, showing a consistent distribution along the cross-member. C1 [Cakmak, Ercan; Watkins, Thomas R.; Cooper, Ryan C.; Wang, Yanli; Dehoff, Ryan R.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Bunn, Jeffrey R.; Sochalski-Kolbus, Lindsay M.] Oak Ridge Natl Lab, Chem & Engn Mat Div, Oak Ridge, TN 37831 USA. [Cornwell, Paris A.] Oak Ridge Natl Lab, Instrument & Source Div, Oak Ridge, TN 37831 USA. [Babu, Sudarsanam S.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Babu, Sudarsanam S.] Oak Ridge Natl Lab, Energy & Transportat Sci Div, Oak Ridge, TN 37831 USA. [Babu, Sudarsanam S.] Univ Tennessee, Dept Mech Aerosp & Biomed Engn, Knoxville, TN 37996 USA. RP Cakmak, E (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. EM cakmake@ornl.gov RI Watkins, Thomas/D-8750-2016; Bunn, Jeffrey/J-4286-2014; Dehoff, Ryan/I-6735-2016 OI Watkins, Thomas/0000-0002-2646-1329; Bunn, Jeffrey/0000-0001-7738-0011; Dehoff, Ryan/0000-0001-9456-9633 FU Laboratory Directed Research and Development Program of Oak Ridge National Laboratory; U. S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office [DE-AC05-00OR22725]; UT-Battelle, LLC; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy FX This research was sponsored by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U. S. Department of Energy. Research at MDF was sponsored by the U. S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office, under contract DE-AC05-00OR22725 with UT-Battelle, LLC. Research at ORNL's High Flux Isotope Reactor was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. EC and TRW would like to thank Dr. E. Andrew Payzant for the neutron beam time, Mr. Christopher O. Stevens for his help with the ex situ mechanical testing, and Mr. Tom Geer for optical microscopy measurements. Further, the authors gratefully acknowledge Dr. Donald L. Erdman III, Mr. Stephen Kulan, and Dr. Ke An for their timely help with the load frame during our measurements at HFIR. EC would also like to thank Dr. Michael M. Kirka for his valuable input and Mr. Cemal Kizildag for his assistance with image processing. NR 38 TC 1 Z9 1 U1 4 U2 25 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1073-5623 EI 1543-1940 J9 METALL MATER TRANS A JI Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. PD FEB PY 2016 VL 47A IS 2 BP 971 EP 980 DI 10.1007/s11661-015-3186-8 PG 10 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA DA8NO UT WOS:000368062300030 ER PT J AU Jones, S Ritter, C Herwig, F Fryer, C Pignatari, M Bertolli, MG Paxton, B AF Jones, S. Ritter, C. Herwig, F. Fryer, C. Pignatari, M. Bertolli, M. G. Paxton, B. TI ingestion into He-burning convection zones in super-AGB stellar models as a potential site for intermediate neutron-density nucleosynthesis SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE stars: abundances; stars: AGB and post-AGB; stars: evolution; stars: interior ID GIANT BRANCH STARS; EXTREMELY METAL-POOR; S-PROCESS NUCLEOSYNTHESIS; THERMONUCLEAR REACTION-RATES; ELECTRON-CAPTURE SUPERNOVAE; VERY-LOW METALLICITY; MASS STARS; HYDRODYNAMIC SIMULATIONS; ASTROPHYSICS MESA; IIN SUPERNOVAE AB We investigate the evolution of super-AGB (SAGB) thermal pulse (TP) stars for a range of metallicities (Z) and explore the effect of convective boundary mixing (CBM). With decreasing metallicity and evolution along the TP phase, the He-shell flash and the third dredge-up (TDU) occur closer together in time. After some time (depending upon the CBM parametrization), efficient TDU begins while the pulse-driven convection zone (PDCZ) is still present, causing a convective exchange of material between the PDCZ and the convective envelope. This results in the ingestion of protons into the convective He-burning pulse. Even small amounts of CBM encourage the interaction of the convection zones leading to transport of protons from the convective envelope into the He layer. H-burning luminosities exceed 10(9) (in some cases 10(10)) L-circle dot. We also calculate models of dredge-out in the most massive SAGB stars and show that the dredge-out phenomenon is another likely site of convective-reactive H-(12)Ccombustion. We discuss the substantial uncertainties of stellar evolution models under these conditions. Nevertheless, the simulations suggest that in the convective-reactive H-combustion regime of H ingestion the star may encounter conditions for the intermediate neutron capture process (i-process). We speculate that some CEMP-s/r stars could originate in i-process conditions in the H ingestion phases of low-Z SAGB stars. This scenario would however suggest a very low electron-capture supernova rate from SAGB stars. We also simulate potential outbursts triggered by such H ingestion events, present their light curves and briefly discuss their transient properties. C1 [Jones, S.; Ritter, C.; Herwig, F.] Univ Victoria, Dept Phys & Astron, Victoria, BC V8W 3P6, Canada. [Jones, S.] Heidelberg Inst Theoret Studies, D-69118 Heidelberg, Germany. [Ritter, C.; Herwig, F.] Michigan State Univ, Ctr Evolut Elements, Joint Inst Nucl Astrophys, E Lansing, MI 48824 USA. [Fryer, C.] LANL, Computat Phys & Methods CCS 2, Los Alamos, NM 87545 USA. [Pignatari, M.] Hungarian Acad Sci, Res Ctr Astron & Earth Sci, Konkoly Observ, H-1121 Budapest, Hungary. [Bertolli, M. G.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Bertolli, M. G.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Paxton, B.] Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA. [Paxton, B.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. RP Jones, S (reprint author), NuGrid Collaborat, London, England. EM samuel.jones@h-its.org OI Pignatari, Marco/0000-0002-9048-6010 FU NSERC; Hungarian Academy of Sciences (Hungary); SNF (Switzerland); EuroGENESIS; US Department of Energy, Office of Nuclear Physics; NSF [PHY 11- 25915, AST 11-09174, ACI 13-39581] FX SJ is a fellow of the Alexander von Humboldt Foundation. FH acknowledges funding through a Discovery Grant from NSERC. MP acknowledges support from the 'Lendulet-2014' Programme of the Hungarian Academy of Sciences (Hungary) and from SNF (Switzerland). MP is also thankful for support from EuroGENESIS. MGB's research is supported by the US Department of Energy, Office of Nuclear Physics. BP is supported by the NSF under grants PHY 11- 25915, AST 11-09174, and ACI 13-39581. NR 107 TC 8 Z9 8 U1 2 U2 3 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD FEB 1 PY 2016 VL 455 IS 4 BP 3848 EP 3863 DI 10.1093/mnras/stv2488 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DA7UH UT WOS:000368009300036 ER PT J AU Marin, FA Beutler, F Blake, C Koda, J Kazin, E Schneider, DP AF Marin, Felipe A. Beutler, Florian Blake, Chris Koda, Jun Kazin, Eyal Schneider, Donald P. TI The BOSS-WiggleZ overlap region - II. Dependence of cosmic growth on galaxy type SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE cosmological parameters - cosmology; observations - large-scale structure of Universe ID REDSHIFT-SPACE DISTORTIONS; OSCILLATION SPECTROSCOPIC SURVEY; DARK ENERGY SURVEY; DIGITAL SKY SURVEY; LARGE-SCALE STRUCTURE; SDSS-III; POWER-SPECTRUM; CROSS-CORRELATION; DATA RELEASE; COSMOLOGICAL CONSTRAINTS AB The anisotropic galaxy two-point correlation function (2PCF) allows measurement of the growth of large-scale structures from the effect of peculiar velocities on the clustering pattern. We present new measurements of the auto- and cross-correlation function multipoles of 69 180 WiggleZ and 46 380 Baryon Oscillation Spectroscopic Survey CMASS galaxies sharing an overlapping volume of similar to 0.2 (h(-1) Gpc)(3). Analysing the redshift-space distortions (RSD) of galaxy two-point statistics for these two galaxy tracers, we test for systematic errors in the modelling depending on galaxy type and investigate potential improvements in cosmological constraints. We build a large number of mock galaxy catalogues to examine the limits of different RSD models in terms of fitting scales and galaxy type, and to study the covariance of the measurements when performing joint fits. For the galaxy data, fitting the monopole and quadrupole of the WiggleZ 2PCF on scales 24 < s < 80 h(-1) Mpc produces a measurement of the normalized growth rate f sigma(8)(z = 0.54) = 0.409 +/- 0.055, whereas for the CMASS galaxies we found a consistent constraint of f sigma(8)(z = 0.54) = 0.466 +/- 0.069, When combining the measurements, accounting for the correlation between the two surveys, we obtain f sigma(8)(z = 0.54) = 0.413 +/- 0.048, in agreement with the A Cold Dark Matter of structure growth and with other survey measurements. C1 [Marin, Felipe A.; Blake, Chris; Koda, Jun; Kazin, Eyal] Swinburne Univ Technol, Ctr Astrophys & Supercomp, Hawthorn, Vic 3122, Australia. [Marin, Felipe A.; Koda, Jun; Kazin, Eyal] ARC Ctr Excellence All Sky Astrophys CAASTRO, Redfern, NSW 2016, Australia. [Beutler, Florian] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Koda, Jun] INAF Osservatorio Astron Brera, I-23807 Merate, Italy. [Schneider, Donald P.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Schneider, Donald P.] Penn State Univ, Inst Gravitat & Cosmos, University Pk, PA 16802 USA. RP Marin, FA (reprint author), Swinburne Univ Technol, Ctr Astrophys & Supercomp, POB 218, Hawthorn, Vic 3122, Australia. EM fmarin@astro.swin.edu.au OI Beutler, Florian/0000-0003-0467-5438 FU Australian Research Council Centre of Excellence for All-Sky Astrophysics (CAASTRO) [CE110001020]; Australian Research Council; Swinburne; Australian Governments Education Investment Fund; Alfred P. Sloan Foundation; National Science Foundation; US Department of Energy; University of Arizona; Brazilian Participation Group; Brookhaven National Laboratory; University of Cambridge; Carnegie Mellon University; University of Florida; French Participation Group; German Participation Group; Harvard University; Instituto de Astrofisica de Canarias; Michigan State/Notre Dame/JINA Participation Group; Johns Hopkins University; Lawrence Berkeley National Laboratory; Max Planck Institute for Astrophysics; Max Planck Institute for Extraterrestrial Physics; New Mexico State University; New York University; Ohio State University; Pennsylvania State University; University of Portsmouth; Princeton University; Spanish Participation Group; University of Tokyo; University of Utah; Vanderbilt University; University of Virginia; University of Washington; Yale University FX We thank our referee David Weinberg for comments and suggestions that have improved this paper. We thank Ariel Sanchez, Hector Gil-Marin, Tamara Davis, David Parkinson, Raul Angulo, Andrew Johnson, Luis Torres, Shahab Joudaki, and Caitlin Adams, for enlightening discussions and comments to this work. FM, CB, EK, JK were supported by the Australian Research Council Centre of Excellence for All-Sky Astrophysics (CAASTRO) through project number CE110001020. CB acknowledges the support of the Australian Research Council through the award of a Future Fellowship. This work was performed on the gSTAR national facility at Swinburne University of Technology. gSTAR is funded by Swinburne and the Australian Governments Education Investment Fund. This research has made use of NASA's Astrophysics Data System.; Funding for SDSS-III has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, and the US Department of Energy. SDSS-III is managed by the Astrophysical Research Consortium for the Participating Institutions of the SDSSIII Collaboration including the University of Arizona, the Brazilian Participation Group, Brookhaven National Laboratory, University of Cambridge, Carnegie Mellon University, University of Florida, the French Participation Group, the German Participation Group, Harvard University, the Instituto de Astrofisica de Canarias, the Michigan State/Notre Dame/JINA Participation Group, Johns Hopkins University, Lawrence Berkeley National Laboratory, Max Planck Institute for Astrophysics, Max Planck Institute for Extraterrestrial Physics, New Mexico State University, New York University, Ohio State University, Pennsylvania State University, University of Portsmouth, Princeton University, the Spanish Participation Group, University of Tokyo, University of Utah, Vanderbilt University, University of Virginia, University of Washington, and Yale University. NR 77 TC 7 Z9 7 U1 1 U2 1 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD FEB 1 PY 2016 VL 455 IS 4 BP 4046 EP 4056 DI 10.1093/mnras/stv2502 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DA7UH UT WOS:000368009300053 ER PT J AU Crocce, M Carretero, J Bauer, AH Ross, AJ Sevilla-Noarbe, I Giannantonio, T Sobreira, F Sanchez, J Gaztanaga, E Kind, MC Sanchez, C Bonnett, C Benoit-Levy, A Brunner, RJ Rosell, AC Cawthon, R Fosalba, P Hartley, W Kim, EJ Leistedt, B Miquel, R Peiris, HV Percival, WJ Rosenfeld, R Rykoff, ES Sanchez, E Abbott, T Abdalla, FB Allam, S Banerji, M Bernstein, GM Bertin, E Brooks, D Buckley-Geer, E Burke, DL Capozzi, D Castander, FJ Cunha, CE D'Andrea, CB Da Costa, LN Desai, S Diehl, HT Eifler, TF Evrard, AE Neto, AF Fernandez, E Finley, DA Flaugher, B Frieman, J Gerdes, DW Gruen, D Gruendl, RA Gutierrez, G Honscheid, K James, DJ Kuehn, K Kuropatkin, N Lahav, O Li, TS Lima, M Maia, MAG March, M Marshall, JL Martini, P Melchior, P Miller, CJ Neilsen, E Nichol, RC Nord, B Ogando, R Plazas, AA Romer, AK Sako, M Santiago, B Schubnell, M Smith, RC Soares-Santos, M Suchyta, E Swanson, MEC Tarle, G Thaler, J Thomas, D Vikram, V Walker, AR Wechsler, RH Weller, J Zuntz, J AF Crocce, M. Carretero, J. Bauer, A. H. Ross, A. J. Sevilla-Noarbe, I. Giannantonio, T. Sobreira, F. Sanchez, J. Gaztanaga, E. Kind, M. Carrasco Sanchez, C. Bonnett, C. Benoit-Levy, A. Brunner, R. J. Carnero Rosell, A. Cawthon, R. Fosalba, P. Hartley, W. Kim, E. J. Leistedt, B. Miquel, R. Peiris, H. V. Percival, W. J. Rosenfeld, R. Rykoff, E. S. Sanchez, E. Abbott, T. Abdalla, F. B. Allam, S. Banerji, M. Bernstein, G. M. Bertin, E. Brooks, D. Buckley-Geer, E. Burke, D. L. Capozzi, D. Castander, F. J. Cunha, C. E. D'Andrea, C. B. Da Costa, L. N. Desai, S. Diehl, H. T. Eifler, T. F. Evrard, A. E. Fausti Neto, A. Fernandez, E. Finley, D. A. Flaugher, B. Frieman, J. Gerdes, D. W. Gruen, D. Gruendl, R. A. Gutierrez, G. Honscheid, K. James, D. J. Kuehn, K. Kuropatkin, N. Lahav, O. Li, T. S. Lima, M. Maia, M. A. G. March, M. Marshall, J. L. Martini, P. Melchior, P. Miller, C. J. Neilsen, E. Nichol, R. C. Nord, B. Ogando, R. Plazas, A. A. Romer, A. K. Sako, M. Santiago, B. Schubnell, M. Smith, R. C. Soares-Santos, M. Suchyta, E. Swanson, M. E. C. Tarle, G. Thaler, J. Thomas, D. Vikram, V. Walker, A. R. Wechsler, R. H. Weller, J. Zuntz, J. CA DES Collaboration TI Galaxy clustering, photometric redshifts and diagnosis of systematics in the DES Science Verification data SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE surveys - cosmology; observations - large-scale structure of Universe ID DARK ENERGY SURVEY; DIGITAL SKY SURVEY; CHALLENGE LIGHTCONE SIMULATION; ANGULAR-CORRELATION FUNCTION; LUMINOUS RED GALAXIES; VLT DEEP SURVEY; SDSS-III; COSMOLOGICAL IMPLICATIONS; SPECTROSCOPIC SURVEY; POWER SPECTRUM AB We study the clustering of galaxies detected at i < 22.5 in the Science Verification observations of the Dark Energy Survey (DES). Two-point correlation functions are measured using 2.3 Chi 10(6) galaxies over a contiguous 116 deg(2) region in five bins of photometric redshift width triangle z = 0.2 in the range 0.2 < z < 1.2. The impact of photometric redshift errors is assessed by comparing results using a template-based photo-z algorithm (BPZ) to a machine-learning algorithm (TPZ). A companion paper presents maps of several observational variables (e.g. seeing, sky brightness) which could modulate the galaxy density. Here we characterize and mitigate systematic errors on the measured clustering which arise from these observational variables, in addition to others such as Galactic dust and stellar contamination. After correcting for systematic effects, we measure galaxy bias over a broad range of linear scales relative to mass clustering predicted from the Planck A cold dark matter model, finding agreement with the Canada-France-Hawaii Telescope Legacy Survey (CFHTLS) measurements with X-2 of 4.0 (8.7) with 5 degrees of freedom for the TPZ (BPZ) redshifts. We test a ' linear bias ' model, in which the galaxy clustering is a fixed multiple of the predicted non-linear dark matter clustering. The precision of the data allows us to determine that the linear bias model describes the observed galaxy clustering to 2.5 per cent accuracy down to scales at least 4-10 times smaller than those on which linear theory is expected to be sufficient. C1 [Crocce, M.; Carretero, J.; Bauer, A. H.; Gaztanaga, E.; Fosalba, P.; Castander, F. J.] IEEC CSIC, Inst Ciencies Espai, E-08193 Barcelona, Spain. [Carretero, J.; Sanchez, C.; Bonnett, C.; Miquel, R.; Fernandez, E.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Ross, A. J.; Honscheid, K.; Martini, P.; Melchior, P.; Suchyta, E.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Sevilla-Noarbe, I.; Sanchez, J.; Sanchez, E.] Ctr Invest Energet Medioambientales & Tecnol CIEM, E-28040 Madrid, Spain. [Sevilla-Noarbe, I.; Kind, M. Carrasco; Brunner, R. J.; Kim, E. J.; Gruendl, R. A.] Univ Illinois, Dept Astron, Urbana, IL 61801 USA. [Giannantonio, T.; Banerji, M.] Univ Cambridge, Kavli Inst Cosmol Cambridge, Cambridge CB3 0HA, England. [Giannantonio, T.; Banerji, M.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Giannantonio, T.] Univ Cambridge, DAMTP, Ctr Theoret Cosmol, Cambridge CB3 0WA, England. [Sobreira, F.; Allam, S.; Buckley-Geer, E.; Diehl, H. T.; Finley, D. A.; Flaugher, B.; Frieman, J.; Gutierrez, G.; Kuropatkin, N.; Neilsen, E.; Nord, B.; Soares-Santos, M.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Sobreira, F.; Carnero Rosell, A.; Rosenfeld, R.; Da Costa, L. N.; Fausti Neto, A.; Lima, M.; Maia, M. A. G.; Ogando, R.; Santiago, B.] Lab Interinst & E Astron LIneA, BR-20921400 Rio De Janeiro, RJ, Brazil. [Kind, M. Carrasco; Brunner, R. J.; Gruendl, R. A.; Swanson, M. E. C.] Univ Illinois, Natl Ctr Supercomp Applicat, Urbana, IL 61801 USA. [Benoit-Levy, A.; Leistedt, B.; Peiris, H. V.; Abdalla, F. B.; Brooks, D.; Lahav, O.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Carnero Rosell, A.; Da Costa, L. N.; Maia, M. A. G.; Ogando, R.] Observ Nacl, BR-20921400 Rio De Janeiro, RJ, Brazil. [Cawthon, R.; Frieman, J.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Hartley, W.] ETH, Dept Phys, CH-8093 Zurich, Switzerland. [Percival, W. J.; Capozzi, D.; D'Andrea, C. B.; Nichol, R. C.; Thomas, D.] Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 3FX, Hants, England. [Rosenfeld, R.] Univ Estadual Paulista, Inst Fis Teor, BR-01140070 Sao Paulo, SP, Brazil. [Rosenfeld, R.] Univ Estadual Paulista, ICTP SAIFR, BR-01140070 Sao Paulo, SP, Brazil. [Rykoff, E. S.; Burke, D. L.; Cunha, C. E.; Wechsler, R. H.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. [Rykoff, E. S.; Burke, D. L.; Wechsler, R. H.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Abbott, T.; James, D. J.; Smith, R. C.; Walker, A. R.] Cerro Tololo Interamer Observ, Natl Opt Astron Observ, La Serena, Chile. [Abdalla, F. B.] Rhodes Univ, Dept Phys & Elect, ZA-6140 Grahamstown, South Africa. [Abdalla, F. B.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Banerji, M.] Univ Cambridge, Kavli Inst Cosmol, Cambridge CB3 0HA, England. [Bernstein, G. M.; Eifler, T. F.; March, M.; Sako, M.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Bertin, E.] CNRS, UMR 7095, Inst Astrophys, F-75014 Paris, France. [Bertin, E.] Univ Paris 06, Sorbonne Univ, UMR 7095, Inst Astrophys Paris, F-75014 Paris, France. [Desai, S.; Weller, J.] Excellence Cluster Universe, D-85748 Garching, Germany. [Desai, S.] Univ Munich, Fac Phys, D-81679 Munich, Germany. [Eifler, T. F.; Plazas, A. A.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Evrard, A. E.; Miller, C. J.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Evrard, A. E.; Gerdes, D. W.; Miller, C. J.; Schubnell, M.; Tarle, G.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Gruen, D.; Weller, J.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Gruen, D.; Weller, J.] Univ Munich, Univ Sternwarte, Fak Phys, D-81679 Munich, Germany. [Honscheid, K.; Melchior, P.; Suchyta, E.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Kuehn, K.] Australian Astron Observ, N Ryde, NSW 2113, Australia. [Li, T. S.; Marshall, J. L.] Texas A&M Univ, George P & Cynthia Woods Mitchell Inst Fundamenta, College Stn, TX 77843 USA. [Li, T. S.; Marshall, J. L.] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA. [Lima, M.] Univ Sao Paulo, Inst Fis, Dept Fis Matemat, BR-05314970 Sao Paulo, SP, Brazil. [Martini, P.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Romer, A. K.] Univ Sussex, Dept Phys & Astron, Brighton BN1 9QH, E Sussex, England. [Santiago, B.] Univ Fed Rio Grande do Sul, Inst Fis, BR-91501970 Porto Alegre, RS, Brazil. [Thaler, J.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Vikram, V.] Argonne Natl Lab, Argonne, IL 60439 USA. [Wechsler, R. H.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Zuntz, J.] Univ Manchester, Sch Phys & Astron, Jodrell Bank, Ctr Astrophys, Manchester M13 9PL, Lancs, England. RP Crocce, M (reprint author), IEEC CSIC, Inst Ciencies Espai, Campus UAB,Carrer Can Magrans S-N, E-08193 Barcelona, Spain. EM martincrocce@gmail.com RI Ogando, Ricardo/A-1747-2010; Lima, Marcos/E-8378-2010; Sanchez, Eusebio/H-5228-2015; Fosalba Vela, Pablo/I-5515-2016; Rosenfeld, Rogerio/L-5845-2016; Sobreira, Flavia/F-4168-2015; Fernandez, Enrique/L-5387-2014; Gaztanaga, Enrique/L-4894-2014; OI Abdalla, Filipe/0000-0003-2063-4345; Ogando, Ricardo/0000-0003-2120-1154; Sanchez, Eusebio/0000-0002-9646-8198; Sobreira, Flavia/0000-0002-7822-0658; Fernandez, Enrique/0000-0002-6405-9488; Gaztanaga, Enrique/0000-0001-9632-0815; Weller, Jochen/0000-0002-8282-2010; Carrasco Kind, Matias/0000-0002-4802-3194 FU US Department of Energy; US National Science Foundation; Ministry of Science and Education of Spain; Science and Technology Facilities Council of the United Kingdom; Higher Education Funding Council for England; National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign; Kavli Institute of Cosmological Physics at the University of Chicago; Center for Cosmology and Astro-Particle Physics at the Ohio State University; Mitchell Institute for Fundamental Physics and Astronomy at Texas AM University; Financiadora de Estudos e Projetos; Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico; Ministerio da Ciencia, Tecnologia e Inovacao; Deutsche Forschungsgemeinschaft; Collaborating Institutions in the Dark Energy Survey; National Science Foundation [AST-1138766] FX Funding for the DES Projects has been provided by the US Department of Energy, the US National Science Foundation, the Ministry of Science and Education of Spain, the Science and Technology Facilities Council of the United Kingdom, the Higher Education Funding Council for England, the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign, the Kavli Institute of Cosmological Physics at the University of Chicago, the Center for Cosmology and Astro-Particle Physics at the Ohio State University, the Mitchell Institute for Fundamental Physics and Astronomy at Texas A&M University, Financiadora de Estudos e Projetos, Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Cientifico e Tecnologico and the Ministerio da Ciencia, Tecnologia e Inovacao, the Deutsche Forschungsgemeinschaft and the Collaborating Institutions in the Dark Energy Survey. The DES data management system is supported by the National Science Foundation under Grant Number AST-1138766.r The DES participants from Spanish institutions are partially supported by MINECO under grants AYA2012-39559, ESP2013-48274, FPA2013-47986 and Centro de Excelencia Severo Ochoa SEV-2012-0234. Research leading to these results has received funding from the European Research Council under the European Union Seventh Framework Programme (FP7/2007-2013) including ERC grant agreements 240672, 291329 and 306478. MC has been partially funded by AYA2013-44327. FS acknowledges financial support provided by CAPES under contract no. 3171-13-2. We thank Jean Coupon and Martin Kilbinger for useful discussions and help at different stages of this work.r This paper has gone through internal review by the DES collaboration. The DES publication number for this article is DES-2015-0055. The Fermilab pre-print number is FERMILAB-PUB-15-305. NR 74 TC 18 Z9 18 U1 1 U2 7 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD FEB 1 PY 2016 VL 455 IS 4 BP 4301 EP 4324 DI 10.1093/mnras/stv2590 PG 24 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DA7UH UT WOS:000368009300069 ER PT J AU Chang, NB Cao, SS Chen, BY Chen, SY Chen, ZY Ding, HT He, M Liu, ZQ Pang, LG Qin, GY Rapp, R Schenke, B Shen, C Song, HC Xu, HJ Wang, Q Wang, XN Zhang, BW Zhang, HZ Zhu, XR Zhuang, PF AF Chang, Ning-bo Cao, ShanShan Chen, Bao-yi Chen, Shi-yong Chen, Zhen-yu Ding, Heng-Tong He, Min Liu, Zhi-quan Pang, Long-gang Qin, Guang-you Rapp, Ralf Schenke, Bjoern Shen, Chun Song, HuiChao Xu, Hao-jie Wang, Qun Wang, Xin-Nian Zhang, Ben-wei Zhang, Han-zhong Zhu, XiangRong Zhuang, Peng-fei TI Physics perspectives of heavy-ion collisions at very high energy SO SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY LA English DT Review DE quark-gluon plasma; heavy-ion collisions; QCD phase transition; properties of QGP ID PB-PB COLLISIONS; QUARK-GLUON PLASMA; NUCLEUS-NUCLEUS COLLISIONS; SHORT-DISTANCE ANALYSIS; EQUATION-OF-STATE; HIGH-DENSITY QCD; HADRON-PRODUCTION; ROOT-S(NN)=2.76 TEV; PSEUDORAPIDITY DISTRIBUTIONS; CENTRALITY DEPENDENCE AB Heavy-ion collisions at very high colliding energies are expected to produce a quark-gluon plasma (QGP) at the highest temperature obtainable in a laboratory setting. Experimental studies of these reactions can provide an unprecedented range of information on properties of the QGP at high temperatures. We report theoretical investigations of the physics perspectives of heavy-ion collisions at a future high-energy collider. These include initial parton production, collective expansion of the dense medium, jet quenching, heavy-quark transport, dissociation and regeneration of quarkonia, photon and dilepton production. We illustrate the potential of future experimental studies of the initial particle production and formation of QGP at the highest temperature to provide constraints on properties of strongly interaction matter. C1 [Chang, Ning-bo; Chen, Shi-yong; Ding, Heng-Tong; Liu, Zhi-quan; Pang, Long-gang; Qin, Guang-you; Wang, Xin-Nian; Zhang, Ben-wei; Zhang, Han-zhong] Cent China Normal Univ, Key Lab Quark & Lepton Phys MOE, Wuhan 430079, Peoples R China. [Chang, Ning-bo; Chen, Shi-yong; Ding, Heng-Tong; Liu, Zhi-quan; Pang, Long-gang; Qin, Guang-you; Wang, Xin-Nian; Zhang, Ben-wei; Zhang, Han-zhong] Cent China Normal Univ, Inst Particle Phys, Wuhan 430079, Peoples R China. [Cao, ShanShan; Wang, Xin-Nian] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Nucl Sci Div MS70R0319, Berkeley, CA 94720 USA. [Chen, Bao-yi; Chen, Zhen-yu; Zhuang, Peng-fei] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China. [He, Min] Nanjing Univ Sci & Technol, Dept Appl Phys, Nanjing 210094, Jiangsu, Peoples R China. [Rapp, Ralf] Texas A&M Univ, Inst Cyclotron, College Stn, TX 77843 USA. [Rapp, Ralf] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA. [Schenke, Bjoern] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Shen, Chun] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Song, HuiChao; Zhu, XiangRong] Peking Univ, Dept Phys, Beijing 100871, Peoples R China. [Song, HuiChao; Zhu, XiangRong] Peking Univ, State Key Lab Nucl Phys & Technol, Beijing 100871, Peoples R China. [Xu, Hao-jie; Wang, Qun] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Peoples R China. RP Wang, XN (reprint author), Cent China Normal Univ, Key Lab Quark & Lepton Phys MOE, Wuhan 430079, Peoples R China. EM xnwang@mail.ccnu.edu.cn RI Xu, Hao-jie/S-7425-2016 OI Xu, Hao-jie/0000-0002-6377-9424 FU National Natural Science Foundation of China [11175071, 11221504, 11305089, 11322546, 11375072, 11435001, 11435004]; China MOST [2014DFG02050, 2015CB856900]; Major State Basic Research Development Program in China [2014CB845404, 2014CB845403]; Natural Sciences and Engineering Research Council of Canada; US National Science Foundation [PHY-1306359]; Office of Energy Research, Office of High Energy and Nuclear Physics, Division of Nuclear Physics, of the U.S. Department of Energy [DE-AC02-05CH11231, DE-SC0012704]; JET Collaboration; DOE Office of Science Early Career Award FX This work was supported by the National Natural Science Foundation of China (Grant Nos. 11175071, 11221504, 11305089, 11322546, 11375072, 11435001 and 11435004), China MOST (Grant Nos. 2014DFG02050 and 2015CB856900), the Major State Basic Research Development Program in China (Grant Nos. 2014CB845404 and 2014CB845403), the Natural Sciences and Engineering Research Council of Canada, the US National Science Foundation (Grant No. PHY-1306359), the Director, Office of Energy Research, Office of High Energy and Nuclear Physics, Division of Nuclear Physics, of the U.S. Department of Energy under Contract Nos. DE-AC02-05CH11231, DE-SC0012704 and within the framework of the JET Collaboration. BJS is also supported by a DOE Office of Science Early Career Award. NR 227 TC 3 Z9 3 U1 3 U2 18 PU SCIENCE PRESS PI BEIJING PA 16 DONGHUANGCHENGGEN NORTH ST, BEIJING 100717, PEOPLES R CHINA SN 1674-7348 EI 1869-1927 J9 SCI CHINA PHYS MECH JI Sci. China-Phys. Mech. Astron. PD FEB PY 2016 VL 59 IS 2 AR 621001 DI 10.1007/s11433-015-5778-0 PG 27 WC Physics, Multidisciplinary SC Physics GA DA8RV UT WOS:000368074700001 ER PT J AU Ludi, A Ahmed, Z Pomeroy, LW Pauszek, SJ Smoliga, GR Moritz, M Dickmu, S Abdoulkadiri, S Arzt, J Garabed, R Rodriguez, LL AF Ludi, A. Ahmed, Z. Pomeroy, L. W. Pauszek, S. J. Smoliga, G. R. Moritz, M. Dickmu, S. Abdoulkadiri, S. Arzt, J. Garabed, R. Rodriguez, L. L. TI Serotype Diversity of Foot-and-Mouth-Disease Virus in Livestock without History of Vaccination in the Far North Region of Cameroon SO TRANSBOUNDARY AND EMERGING DISEASES LA English DT Article DE foot-and-mouth disease virus; Cameroon; Africa; phylogeny; serotyping; SAT2 ID KIDNEY-CELL LINE; MOLECULAR EPIDEMIOLOGY; ADAMAWA PROVINCE; CATTLE; SITE AB Little information is available about the natural cycle of foot-and-mouth disease (FMD) in the absence of control measures such as vaccination. Cameroon presents a unique opportunity for epidemiological studies because FMD vaccination is not practiced. We carried out a prospective study including serological, antigenic and genetic aspects of FMD virus (FMDV) infections among different livestock production systems in the Far North of Cameroon to gain insight into the natural ecology of the virus. We found serological evidence of FMDV infection in over 75% of the animals sampled with no significant differences of prevalence observed among the sampled groups (i.e. market, sedentary, transboundary trade and mobile). We also found antibodies reactive to five of the seven FMDV serotypes (A, O, SAT1, SAT2 and SAT3) among the animals sampled. Finally, we were able to genetically characterize viruses obtained from clinical and subclinical FMD infections in Cameroon. Serotype O viruses grouped into two topotypes (West and East Africa). SAT2 viruses grouped with viruses from Central and Northern Africa, notably within the sublineage causing the large epidemic in Northern Africa in 2012, suggesting a common origin for these viruses. This research will guide future interventions for the control of FMD such as improved diagnostics, guidance for vaccine formulation and epidemiological understanding in support of the progressive control of FMD in Cameroon. C1 [Ludi, A.; Ahmed, Z.; Pauszek, S. J.; Smoliga, G. R.; Arzt, J.; Rodriguez, L. L.] ARS, Foreign Anim Dis Res Unit, USDA, Plum Isl Anim Dis Ctr, Greenport, NY 11944 USA. [Ludi, A.; Ahmed, Z.] Oak Ridge Inst Sci & Educ, Plum Isl Anim Dis Ctr, Res Participat Program, Oak Ridge, TN USA. [Pomeroy, L. W.; Garabed, R.] Ohio State Univ, Dept Vet Prevent Med, Columbus, OH 43210 USA. [Moritz, M.] Ohio State Univ, Dept Anthropol, Columbus, OH 43210 USA. [Dickmu, S.; Abdoulkadiri, S.] Natl Vet Lab, Lanavet, Garoua, Cameroon. [Garabed, R.] Ohio State Univ, Publ Hlth Preparedness Infect Dis Program, Columbus, OH 43210 USA. RP Rodriguez, LL (reprint author), ARS, Foreign Anim Dis Res Unit, USDA, Plum Isl Anim Dis Ctr, POB 848, Greenport, NY 11944 USA. EM luis.rodriguez@ars.usda.gov OI Arzt, Jonathan/0000-0002-7517-7893 FU Science and Technology Directorate of the U.S. Department of Homeland Security [HSHQDC-12-X-00060]; National Science Foundation [DEB-1015908]; Eunice Kennedy Shriver National Institute of Child Health & Human Development [R24-HD058484]; Public Health Preparedness for Infectious Diseases program at the Ohio State University; Plum Island Animal Disease Center Research Participation Program fellowship FX The authors would like to thank Mike Larocco for his technical support, Penny Rempe for administrative assistance, Tim Vojt for help with Table 1 and Figure 3 and Karla Moreno Torres for helpful discussions. This project was funded through an inter-agency agreement with the Science and Technology Directorate of the U.S. Department of Homeland Security under Award Number HSHQDC-12-X-00060, award number DEB-1015908 from the National Science Foundation, award number R24-HD058484 from the Eunice Kennedy Shriver National Institute of Child Health & Human Development awarded to the Ohio State University Initiative in Population Research and a pilot grant awarded by the Public Health Preparedness for Infectious Diseases program at the Ohio State University. Zaheer Ahmed and Anna Ludi are the recipients of a Plum Island Animal Disease Center Research Participation Program fellowship, administered by the Oak Ridge Institute for Science and Education (ORISE) through an interagency agreement between the U.S. Department of Energy (DOE) and the U.S. Department of Agriculture (USDA). All opinions expressed in this paper are the author's and do not necessarily reflect the policies and views of the USDA, DOE, or ORAU/ORISE. LANAVET, The Ohio State University and USDA-ARS FADRU are members of the Global Foot-and-Mouth Disease Research Alliance (GFRA). NR 34 TC 2 Z9 2 U1 2 U2 6 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1865-1674 EI 1865-1682 J9 TRANSBOUND EMERG DIS JI Transbound. Emerg. Dis. PD FEB PY 2016 VL 63 IS 1 BP E27 EP E38 DI 10.1111/tbed.12227 PG 12 WC Infectious Diseases; Veterinary Sciences SC Infectious Diseases; Veterinary Sciences GA DA8YV UT WOS:000368093800003 PM 24735162 ER PT J AU Feng, Y Wei, YZ Jia, Z Zhang, YL Battaglia, V Liu, G AF Feng, Yan Wei, Yuzhen Jia, Zhe Zhang, Yuliang Battaglia, Vincent Liu, Gao TI Polymer-Derived and Sodium Hydroxide-Treated Silicon Carbonitride Material as Anodes for High Electrochemical Performance Li-ion Batteries SO CHEMISTRYSELECT LA English DT Article DE polymer-derived; silicon carbonitride; sodium hydroxide treatment; anode; Li-ion batteries ID RICH SICN CERAMICS; LITHIUM-ION; IMPEDANCE SPECTROSCOPY; COMPOSITE; NANOCOMPOSITES; ENERGETICS; ELECTRODES; INSERTION; BEHAVIOR; SIOC AB Polymer-derived and micro-cracked silicon carbonitride (SiCN) materials have been successfully synthesized via pyrolyzing from poly(diphenylcarbondiimide) and post-treating with different molar concentration of sodium hydroxide (NaOH) aqueous solution (0.2-5.0 mol L-1). The as-prepared SiCN materials have been used as anodes for lithium ion batteries. Electrochemical charge-discharge measurements indicate that the SiCN with the 0.5 mol L-1 of NaOH treating (SiCN-0.5-NaOH) shows the best electrochemical performance. It exhibits a high initial specific extraction capacity of 1159.5 mAh g(-1) and stable capacity of 900 mAh g(-1) at current density of 40 mA g(-1). The morphology and structure measurements show its surface is rough, and many micro-sized cracks are formed. The special performances of NaOH-treated SiCN anodes are attributed to non-conductive Si3N4 phase elimination from SiCN matrix by NaOH treatment, and lithium ion transfer channel enrichment by the formation of micro-cracks. C1 [Feng, Yan; Wei, Yuzhen; Zhang, Yuliang] Tianjin Normal Univ, Minist Educ, Key Lab Inorgan Organ Hybrid Funct Mat Chem, Tianjin 300387, Peoples R China. [Feng, Yan; Wei, Yuzhen; Zhang, Yuliang] Tianjin Key Lab Struct & Performance Funct Mol, Tianjin 300387, Peoples R China. [Feng, Yan; Wei, Yuzhen; Zhang, Yuliang] Tianjin Normal Univ, Coll Chem, Tianjin 300387, Peoples R China. [Feng, Yan; Jia, Zhe; Battaglia, Vincent; Liu, Gao] Lawrence Berkeley Natl Lab, Energy Technol Area, Berkeley, CA 94720 USA. RP Feng, Y (reprint author), Tianjin Normal Univ, Minist Educ, Key Lab Inorgan Organ Hybrid Funct Mat Chem, Tianjin 300387, Peoples R China.; Feng, Y (reprint author), Tianjin Key Lab Struct & Performance Funct Mol, Tianjin 300387, Peoples R China.; Feng, Y (reprint author), Tianjin Normal Univ, Coll Chem, Tianjin 300387, Peoples R China.; Feng, Y; Battaglia, V; Liu, G (reprint author), Lawrence Berkeley Natl Lab, Energy Technol Area, Berkeley, CA 94720 USA. EM hxxyfy@mail.tjnu.edu.cn; vsbattaglia@lbl.gov; gliu@lbl.gov FU National Natural Science Foundation of China [21103124]; Tianjin Municipal Education Commission Fund for Outstanding Young College Teachers [ZX10QN047]; Academic Advancement Project for the Middle-age and Young Teachers of Tianjin Normal University [52xc1502]; Program for Innovative Research Team in Universities of Tianjin [TD12-5038]; China Scholarship Council [201408120022] FX The authors acknowledge the financial supports from the National Natural Science Foundation of China (no. 21103124), Tianjin Municipal Education Commission Fund for Outstanding Young College Teachers (no. ZX10QN047), the Academic Advancement Project for the Middle-age and Young Teachers of Tianjin Normal University (no. 52xc1502), and the Program for Innovative Research Team in Universities of Tianjin (no. TD12-5038). Dr. Yan Feng is supported by the China Scholarship Council (no. 201408120022). NR 37 TC 0 Z9 0 U1 3 U2 3 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 2365-6549 J9 ChemistrySelect JI ChemistrySelect PD FEB PY 2016 VL 1 IS 2 BP 309 EP 317 DI 10.1002/slct.201600046 PG 9 WC Chemistry, Multidisciplinary SC Chemistry GA EI4NY UT WOS:000392471700024 ER PT J AU Hart, SWD Celik, C Maldonado, GI Leal, L AF Hart, Shane W. D. Celik, Cihangir Maldonado, G. Ivan Leal, Luiz TI Creation of problem-dependent Doppler-broadened cross sections in the KENO Monte Carlo code SO ANNALS OF NUCLEAR ENERGY LA English DT Article DE Monte Carlo; Doppler broadening; Thermal scattering; KENO; SCALE ID NEUTRON; DISTRIBUTIONS AB This paper introduces a quick method for improving the accuracy of Monte Carlo simulations by generating one-and two-dimensional cross sections at a user-defined temperature before performing transport calculations. A finite difference method is used to Doppler-broaden cross sections to the desired temperature, and unit-base interpolation is done to generate the probability distributions for double differential two-dimensional thermal moderator cross sections at any arbitrarily user-defined temperature. The accuracy of these methods is tested using a variety of contrived problems. In addition, various benchmarks at elevated temperatures are modeled, and results are compared with benchmark results. The problem-dependent cross sections are observed to produce eigenvalue estimates that are closer to the benchmark results than those without the problem-dependent cross sections. (c) 2015 Elsevier Ltd. All rights reserved. C1 [Hart, Shane W. D.; Celik, Cihangir; Leal, Luiz] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Maldonado, G. Ivan] Univ Tennessee, Knoxville, TN 37996 USA. RP Hart, SWD (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN USA. EM hartsw@ornl.gov; celikc@ornl.gov; imaldona@utk.edu; leall@ornl.gov OI Hart, Shane/0000-0002-0709-2097; Celik, Cihangir/0000-0001-7387-0216; Maldonado, Guillermo/0000-0001-7377-4494 FU U.S. Department of Energy Nuclear Criticality Safety Program FX The work documented in this paper was performed with support from the U.S. Department of Energy Nuclear Criticality Safety Program. NR 21 TC 1 Z9 1 U1 0 U2 1 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0306-4549 J9 ANN NUCL ENERGY JI Ann. Nucl. Energy PD FEB PY 2016 VL 88 BP 49 EP 56 DI 10.1016/j.anucene.2015.10.011 PG 8 WC Nuclear Science & Technology SC Nuclear Science & Technology GA DA5RA UT WOS:000367859000006 ER PT J AU Bielicki, JK AF Bielicki, John K. TI ABCA1 agonist peptides for the treatment of disease SO CURRENT OPINION IN LIPIDOLOGY LA English DT Review DE ATP-binding cassette transporter A1; Alzheimer's disease; atherosclerosis; cellular cholesterol efflux; diabetes; therapeutic peptides ID BINDING CASSETTE TRANSPORTERS; HIGH-DENSITY-LIPOPROTEINS; I MIMETIC PEPTIDES; CHOLESTEROL EFFLUX; INSULIN SENSITIVITY; APOLIPOPROTEIN-E; MITOCHONDRIAL-FUNCTION; GLUCOSE-TOLERANCE; SKELETAL-MUSCLE; APOA-I AB Purpose of reviewThe review summarizes information pertaining to the preclinical development of new apolipoprotein (apo) E mimetic peptides that stimulate cellular cholesterol efflux.Recent findingsSmall -helical peptides based on the C-terminal domain of apoE have been developed for therapeutic applications. These peptides stimulate cellular cholesterol efflux via the ATP-binding cassette transporter A1 (ABCA1) with high potency, like native apolipoproteins on a molar basis. This potent activity has been related to the unique ability of these peptides to maintain -helix structure upon dilution. Recent structure-activity studies improving the safety features of these mimetic peptides have greatly improved their potential for clinical use. These studies have identified structural features of the class A -helix motif that induce muscle toxicity and hypertriglyceridemia, which may have implications for the design of other HDL mimetic peptides.SummaryABCA1 is an integral membrane protein that plays a central role in biology. Its principal function is to mediate the efflux of cholesterol and phospholipid from cells to extracellular apo, preventing a build-up of excess cholesterol in membranes. This process generates HDL particles that perform a variety of functions to protect against disease. A number of these functions can be viewed as directly or indirectly supporting ABCA1 activity, thus constituting a positive feedback system to optimize cellular lipid efflux responses and disease prevention. Consequently, therapeutic approaches that mimic the activities of apos may prove highly effective to combat disease. One such approach involves the use of peptides. The broad biological relevance of ABCA1 suggests these apo mimetic peptides may be useful for the treatment of a number of diseases, such as atherosclerosis, diabetes, and Alzheimer's disease. C1 [Bielicki, John K.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Donner Lab, Div Life Sci, Berkeley, CA 94720 USA. RP Bielicki, JK (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Donner Lab, MS1-267,One Cyclotron Rd, Berkeley, CA 94720 USA. EM jkbielicki@lbl.gov FU Tobacco-Related Disease Research Program (TRDRP) of the state of California [17RT-0082]; NIH [R21-HL085791]; Artery Therapeutics; United States Department of Energy, Office of Science, Office of Biological and Environmental Research [DE-AC02-05CH11231] FX The work was supported by funds from the Tobacco-Related Disease Research Program (TRDRP) of the state of California grant 17RT-0082, NIH grant R21-HL085791, and Artery Therapeutics. Work at Lawrence Berkeley National Laboratory was conducted under contract DE-AC02-05CH11231 with the United States Department of Energy, Office of Science, Office of Biological and Environmental Research. NR 43 TC 0 Z9 0 U1 2 U2 7 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA TWO COMMERCE SQ, 2001 MARKET ST, PHILADELPHIA, PA 19103 USA SN 0957-9672 EI 1473-6535 J9 CURR OPIN LIPIDOL JI Curr. Opin. Lipidology PD FEB PY 2016 VL 27 IS 1 BP 40 EP 46 DI 10.1097/MOL.0000000000000258 PG 7 WC Biochemistry & Molecular Biology; Endocrinology & Metabolism; Peripheral Vascular Disease SC Biochemistry & Molecular Biology; Endocrinology & Metabolism; Cardiovascular System & Cardiology GA DA4AN UT WOS:000367742600007 PM 26655293 ER PT J AU Goldin, EM Pryor, KH AF Goldin, Eric M. Pryor, Kathryn H. TI NCRP PROGRAM AREA COMMITTEE 2: OPERATIONAL RADIATION SAFETY SO HEALTH PHYSICS LA English DT Article DE National Council on Radiation Protection and Measurements; operational safety; radiation protection; radioactive materials AB Program Area Committee 2 of the National Council on Radiation Protection and Measurements provides guidance for radiation safety in occupational settings in a variety of industries and activities. The Committee completed three reports in recent years covering recommendations for the development and administration of radiation safety programs for smaller educational institutions, requirements for self-assessment programs that improve radiation safety and identify and correct deficiencies, and a comprehensive process for effective investigation of radiological incidents. Ongoing work includes a report on sealed radioactive source controls and oversight of a report on radioactive nanomaterials focusing on gaps within current radiation safety programs. Future efforts may deal with operational radiation safety programs in fields such as the safe use of handheld and portable x-ray fluorescence analyzers, occupational airborne radioactive contamination, unsealed radioactive sources, or industrial accelerators. C1 [Pryor, Kathryn H.] Pacific NW Natl Lab, Radiat Protect Div, Richland, WA 99352 USA. RP Pryor, KH (reprint author), Pacific NW Natl Lab, Radiat Protect Div, POB 999,MSIN J2-40,902 Battelle Blvd, Richland, WA 99352 USA. EM kathy.pryor@pnnl.gov NR 3 TC 1 Z9 1 U1 2 U2 3 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA TWO COMMERCE SQ, 2001 MARKET ST, PHILADELPHIA, PA 19103 USA SN 0017-9078 EI 1538-5159 J9 HEALTH PHYS JI Health Phys. PD FEB PY 2016 VL 110 IS 2 BP 101 EP 102 DI 10.1097/HP.0000000000000396 PG 2 WC Environmental Sciences; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA DA5CC UT WOS:000367818700003 PM 26717157 ER PT J AU Taylor, TP Buddemeier, B AF Taylor, Tammy P. Buddemeier, Brooke TI NCRP PROGRAM AREA COMMITTEE 3: NUCLEAR AND RADIOLOGICAL SECURITY AND SAFETY SO HEALTH PHYSICS LA English DT Article DE National Council on Radiation Protection and Measurements; accidents; nuclear; dosimetry; emergencies; radiological AB Program Area Committee (PAC) 3 provides guidance and recommendations for response to nuclear and radiological incidents of both an accidental and deliberate nature. Leadership of PAC 3 was transitioned in March 2015, and the newly composed PAC has been working to delineate and then prioritize the landscape of possible activities for PAC 3. The major activity of PAC 3 during the past year was the establishment of Scientific Committee 3-1 to begin producing a report on Guidance for Emergency Responder Dosimetry. C1 [Taylor, Tammy P.] Pacific NW Natl Lab, Natl Secur Directorate, Richland, WA 99352 USA. [Buddemeier, Brooke] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Taylor, TP (reprint author), Pacific NW Natl Lab, Natl Secur Directorate, 902 Battelle Blvd, Richland, WA 99352 USA. EM tammy.taylor@pnnl.gov NR 0 TC 0 Z9 0 U1 2 U2 4 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA TWO COMMERCE SQ, 2001 MARKET ST, PHILADELPHIA, PA 19103 USA SN 0017-9078 EI 1538-5159 J9 HEALTH PHYS JI Health Phys. PD FEB PY 2016 VL 110 IS 2 BP 103 EP 105 DI 10.1097/HP.0000000000000420 PG 3 WC Environmental Sciences; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA DA5CC UT WOS:000367818700004 PM 26717158 ER PT J AU Chen, SY Napier, B AF Chen, S. Y. Napier, Bruce TI NCRP PROGRAM AREA COMMITTEE 5: ENVIRONMENTAL RADIATION AND RADIOACTIVE WASTE ISSUES SO HEALTH PHYSICS LA English DT Article DE National Council on Radiation Protection and Measurements; environmental impact; safety standards; waste management AB Program Area Committee 5 of the National Council on Radiation Protection and Measurements (NCRP) focuses its activities on environmental radiation and radioactive waste issues. The Committee completed a number of reports in these subject areas, most recently NCRP Report No. 175, Decision Making for Late-Phase Recovery from Major Nuclear or Radiological Incidents. Historically this Committee addressed emerging issues of the nation pertaining to radioactivity or radiation in the environment or radioactive waste issues due either to natural origins or to manmade activities. C1 [Chen, S. Y.] IIT, Hlth Phys Program, Chicago, IL 60616 USA. [Napier, Bruce] Pacific NW Natl Lab, Dept Radiol Sci, Environm & Risk Assessment Sect, Richland, WA 99352 USA. RP Chen, SY (reprint author), IIT, Hlth Phys Program, 162 Life Sci Bldg,3300 South Fed St, Chicago, IL 60616 USA. EM schen32@iit.edu NR 13 TC 0 Z9 0 U1 5 U2 14 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA TWO COMMERCE SQ, 2001 MARKET ST, PHILADELPHIA, PA 19103 USA SN 0017-9078 EI 1538-5159 J9 HEALTH PHYS JI Health Phys. PD FEB PY 2016 VL 110 IS 2 BP 109 EP 112 DI 10.1097/HP.0000000000000418 PG 4 WC Environmental Sciences; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA DA5CC UT WOS:000367818700006 PM 26717160 ER PT J AU Pryor, KH AF Pryor, Kathryn H. TI END OF LIFE DECISIONS FOR SEALED RADIOACTIVE SOURCES SO HEALTH PHYSICS LA English DT Article DE National Council on Radiation Protection and Measurements; radioactive materials; waste management; waste storage ID RECYCLED METALS AB Sealed radioactive sources are encountered in a wide variety of settingsfrom household smoke detectors and instrument check sources through fixed industrial gauges, industrial radiography, and well logging sources, to irradiators and medical teletherapy devices. In general, the higher the level of activity in the sealed source, the stricter the regulatory control that is applied to its use, control, and ultimate disposition. Lower levels of attention and oversight can and do lead to sources ending up in the wrong placeas orphan sources in uncontrolled storage, disposed in a sanitary landfill, melted down in metal recycling operations and incorporated into consumer products, or handled by an unsuspecting member of the public. There is a range of issues that contribute to the problem of improper disposal of sealed sources and, in particular, to disused source disposal. Generally licensed sources and devices are particularly at risk of being disposed incorrectly. Higher activity generally licensed sources, although required to be registered with the U.S. Nuclear Regulatory Commission (NRC) or an Agreement State, receive limited regulatory oversight and are not tracked on a national scale. Users frequently do not consider the full life-cycle costs when procuring sources or devices and discover that they cannot afford and/or are unwilling to pay the associated costs to package, transport and dispose of their sources properly. The NRC requirements for decommissioning funding plans and financial assurance are not adequate to cover sealed source transport and disposal costs fully. While there are regulatory limits for storage of disused sources, enforcement is limited, and there are only limited financial incentives in a small number of states for owners to dispose of the sources. In some cases, the lack of availability of approved Type B shipping casks presents an additional barrier to sealed source disposal. The report of the Disused Sources Working Group does an excellent job of framing these issues (www.disusedsources.org/wp-content/uploads/2014/12/DSWG-Report-March-2014.pdf). This article reviews both the issues and the report's recommendations, which are designed to improve sealed source control and encourage proper disposal of disused sources. C1 [Pryor, Kathryn H.] Pacific NW Natl Lab, Radiat Protect Div, Richland, WA 99352 USA. RP Pryor, KH (reprint author), Pacific NW Natl Lab, Radiat Protect Div, POB 999,MSIN J2-40,902 Battelle Blvd, Richland, WA 99352 USA. EM kathy.pryor@pnnl.gov NR 15 TC 1 Z9 1 U1 2 U2 6 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA TWO COMMERCE SQ, 2001 MARKET ST, PHILADELPHIA, PA 19103 USA SN 0017-9078 EI 1538-5159 J9 HEALTH PHYS JI Health Phys. PD FEB PY 2016 VL 110 IS 2 BP 168 EP 174 DI 10.1097/HP.0000000000000398 PG 7 WC Environmental Sciences; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA DA5CC UT WOS:000367818700017 PM 26717171 ER PT J AU Dauer, LT Ainsbury, EA Dynlacht, J Hoel, D Klein, BEK Mayer, D Prescott, CR Thornton, RH Vano, E Woloschak, GE Flannery, CM Goldstein, LE Hamada, N Tran, PK Grissom, MP Blakely, EA AF Dauer, Lawrence T. Ainsbury, Elizabeth A. Dynlacht, Joseph Hoel, David Klein, Barbara E. K. Mayer, Don Prescott, Christina R. Thornton, Raymond H. Vano, Eliseo Woloschak, Gayle E. Flannery, Cynthia M. Goldstein, Lee E. Hamada, Nobuyuki Tran, Phung K. Grissom, Michael P. Blakely, Eleanor A. TI STATUS OF NCRP SCIENTIFIC COMMITTEE 1-23 COMMENTARY ON GUIDANCE ON RADIATION DOSE LIMITS FOR THE LENS OF THE EYE SO HEALTH PHYSICS LA English DT Article DE National Council on Radiation Protection and Measurements; health effects; radiation damage; safety standards ID PROTECTION AB Previous National Council on Radiation Protection and Measurements (NCRP) publications have addressed the issues of risk and dose limitation in radiation protection and included guidance on specific organs and the lens of the eye. NCRP decided to prepare an updated commentary intended to enhance the previous recommendations provided in earlier reports. The NCRP Scientific Committee 1-23 (SC 1-23) is charged with preparing a commentary that will evaluate recent studies on the radiation dose response for the development of cataracts and also consider the type and severity of the cataracts as well as the dose rate; provide guidance on whether existing dose limits to the lens of the eye should be changed in the United States; and suggest research needs regarding radiation effects on and dose limits to the lens of the eye. A status of the ongoing work of SC 1-23 was presented at the NCRP 2015 Annual Meeting, Changing Regulations and Radiation Guidance: What Does the Future Hold? The following represents a synopsis of a few main points in the current draft commentary. It is likely that several changes will be forthcoming as SC 1-23 responds to subject matter expert review and develops a final document, expected by mid 2016. C1 [Dauer, Lawrence T.; Thornton, Raymond H.] Mem Sloan Kettering Canc Ctr, New York, NY 10065 USA. [Ainsbury, Elizabeth A.] Publ Hlth England, Oxford, England. [Dynlacht, Joseph] Indiana Univ Sch Med, Indianapolis, IN 46202 USA. [Hoel, David] Med Univ S Carolina, Charleston, SC 29425 USA. [Klein, Barbara E. K.] Univ Wisconsin, Madison, WI USA. [Mayer, Don] Indian Point Energy Ctr, Buchanan, NY USA. [Prescott, Christina R.] Johns Hopkins Med, Bel Air, MD USA. [Vano, Eliseo] Univ Complutense Madrid, Madrid, Spain. [Woloschak, Gayle E.] Northwestern Univ, Chicago, IL 60611 USA. [Flannery, Cynthia M.] US Nucl Regulatory Commiss, Rockville, MD USA. [Woloschak, Gayle E.] Boston Univ, Boston, MA 02215 USA. [Hamada, Nobuyuki] Cent Res Inst Elect Power Ind, Tokyo 201, Japan. [Tran, Phung K.] Elect Power Res Inst, Palo Alto, CA USA. [Grissom, Michael P.] Natl Council Radiat Protect & Measurements, Bethesda, MD USA. [Blakely, Eleanor A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Dauer, LT (reprint author), Mem Sloan Kettering Canc Ctr, Dept Med Phys, 1275 York Ave,Box 84, New York, NY 10065 USA. EM dauerl@mskcc.org RI Woloschak, Gayle/A-3799-2017; OI Woloschak, Gayle/0000-0001-9209-8954; Dauer, Lawrence/0000-0002-5629-8462 FU Centers for Disease Control and Prevention; U.S. Nuclear Regulatory Commission FX This work was supported through funding to the National Council on Radiation Protection and Measurements by the Centers for Disease Control and Prevention and the U.S. Nuclear Regulatory Commission. We acknowledge the major support of the NCRP Secretariat, including President John D. Boice, Jr., Managing Editor Cindy L. O'Brien, Office Manager Laura J. Atwell, and Executive Director David A. Smith. We express our gratitude to subject matter expert reviewers, Sophie Jacob, Wayne D. Newhauser, and Prem Subramanian. The views expressed in this paper represent collective opinions of the authors and are not necessarily those of their professional affiliations. NR 29 TC 4 Z9 4 U1 1 U2 5 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA TWO COMMERCE SQ, 2001 MARKET ST, PHILADELPHIA, PA 19103 USA SN 0017-9078 EI 1538-5159 J9 HEALTH PHYS JI Health Phys. PD FEB PY 2016 VL 110 IS 2 BP 182 EP 184 DI 10.1097/HP.0000000000000412 PG 3 WC Environmental Sciences; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA DA5CC UT WOS:000367818700021 PM 26717175 ER PT J AU Poppiti, J Sheffield, R AF Poppiti, James Sheffield, Ryan TI Investigation of an Accidental Radiological Release in an Underground Disposal Facility SO HEALTH PHYSICS LA English DT Article DE operational topics; Am-241; accident analysis; waste disposal AB A radioactive release took place at the Waste Isolation Pilot Plant near Carlsbad, New Mexico, on 14 February 2014. An alarm from a Continuous Air Monitor caused a switch from unfiltered to filtered air exiting the facility through High-Efficiency Particulate Arrestance filters. The activity measured on the filters demonstrated first order decay, indicating that the release was a single release. The facility was reentered in April 2014 and photographic evidence pointed to a single breached 55-gallon drum that originated at Los Alamos as the source of the release. Data were collected and analyzed to verify the source and cause of the release. C1 [Poppiti, James] US DOE, Germantown, MD 20874 USA. [Sheffield, Ryan] Florida Int Univ, Miami, FL 33199 USA. RP Poppiti, J (reprint author), US DOE, Germantown, MD 20874 USA. NR 0 TC 0 Z9 0 U1 0 U2 1 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA TWO COMMERCE SQ, 2001 MARKET ST, PHILADELPHIA, PA 19103 USA SN 0017-9078 EI 1538-5159 J9 HEALTH PHYS JI Health Phys. PD FEB PY 2016 VL 110 IS 2 SU 1 BP S39 EP S47 DI 10.1097/HP.0000000000000464 PG 9 WC Environmental Sciences; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA DA5CB UT WOS:000367818600006 PM 26710163 ER PT J AU Poudel, A Mitchell, KR Chu, TP Neidigk, S Jacques, C AF Poudel, Anish Mitchell, Keven R. Chu, Tsuchin P. Neidigk, Stephen Jacques, Carl TI Non-destructive evaluation of composite repairs by using infrared thermography SO JOURNAL OF COMPOSITE MATERIALS LA English DT Article DE Composite sandwich structures; composite repairs; porosity; delamination; disbonds; non-destructive evaluation; infrared thermography ID SEQUENCES AB Composite structures are found in modern aircraft designs ranging from air transport to general aviation. Maintenance repair technology varies for each original equipment manufacturer and aircraft type. This research reports on two different composite repair methods commonly used within the composite aviation industry and how they compare when inspected with transient infrared thermography non-destructive evaluation technique. Composite sandwich test coupons made with carbon fiber laminate, nomex honeycomb, and glass fiber laminate were used for this work. Impact damages were generated in the sandwich test coupons and repairs were conducted by following repair procedures of two leading general aviation composite aircraft manufactures. During the repair process, controlled flaws were also induced to simulate bad repairs with weak bond areas, disbonds, and excessive porosity. During transient infrared thermography, several patches were identified that contained wrinkles, porosity, and disbond defects in the repaired panels. The indications were evaluated utilizing the time vs. temperature plot curves and profile data. The porosity indications displayed significant variations compared to the surrounding areas and were subsequently deemed defects as a result of the data. C1 [Poudel, Anish; Chu, Tsuchin P.] So Illinois Univ, Dept Mech Engn, Carbondale, IL 62901 USA. [Mitchell, Keven R.] So Illinois Univ, Dept Aviat Technol, Carbondale, IL 62901 USA. [Neidigk, Stephen; Jacques, Carl] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Poudel, A (reprint author), So Illinois Univ, Dept Mech Engn, 1230 Lincoln Dr,MC 6603, Carbondale, IL 62901 USA. EM anish@siu.edu OI Poudel, Anish/0000-0002-5811-4284 NR 21 TC 2 Z9 2 U1 7 U2 23 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0021-9983 EI 1530-793X J9 J COMPOS MATER JI J. Compos Mater. PD FEB PY 2016 VL 50 IS 3 BP 351 EP 363 DI 10.1177/0021998315574755 PG 13 WC Materials Science, Composites SC Materials Science GA DA4BY UT WOS:000367746300006 ER PT J AU Cybinska, J Lorbeer, C Mudring, AV AF Cybinska, Joanna Lorbeer, Chantal Mudring, Anja-Verena TI Ionic liquid assisted microwave synthesis route towards color-tunable luminescence of lanthanide- doped BiPO4 SO JOURNAL OF LUMINESCENCE LA English DT Article DE Ionic liquid; Lanthanides; Nanomaterials; Luminescence; Optical materials; Synthesis ID LOW-TEMPERATURE; BISMUTH PHOSPHATE; CO OXIDATION; NANOPARTICLES; HOST; BI3+; CRYSTAL; OXIDES; LAPO4 AB Ln(3+)-doped (Ln=Sm, Eu, Tb, Dy) nanoparticles of BiPO4 with a particle size below 10 nm were synthesized in a straightforward manner from the appropriate mixture of the respective metal acetates and the task-specific ionic liquids choline or butylammonium dihydrogen-phosphate by conversion in a laboratory microwave (120 degrees C, 10 min). The ionic liquid acts not only as a solvent and microwave susceptor, but also as the reaction partner and nanoparticle stabilizer. The materials were thoroughly characterized not only with respect to their optical properties but also by PXRD, FT-IR, TEM techniques. Depending on the lanthanide, the nanomaterial shows intense luminescence of different colors such as: orange (Sm3+), red (Eu3+), green (Tb3+) or even white (Dy3+). (C) 2015 Elsevier B.V. All rights reserved. C1 [Cybinska, Joanna] Univ Wroclaw, Fac Chem, PL-50383 Wroclaw, Poland. [Lorbeer, Chantal] MIT, Dept Chem, Cambridge, MA 02139 USA. [Mudring, Anja-Verena] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. [Mudring, Anja-Verena] Ames Lab DOE, Crit Mat Inst, Ames, IA 50011 USA. RP Cybinska, J (reprint author), Univ Wroclaw, Fac Chem, Joliot Curie 14, PL-50383 Wroclaw, Poland. EM joanna.cybinska@them.uni.wroc.pl; mudring@iastate.edu FU Minister of Science and Higher Education (Poland) [POIG.01.01.02-02-006/09]; Iowa State University; Critical Materials Institute, an Energy Innovation Hub - U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office FX J.C. thanks for partial support under grant # POIG.01.01.02-02-006/09 of the Minister of Science and Higher Education (Poland). AVM acknowledges support from Iowa State University and by the Critical Materials Institute, an Energy Innovation Hub funded by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office. NR 56 TC 2 Z9 2 U1 22 U2 65 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-2313 EI 1872-7883 J9 J LUMIN JI J. Lumines. PD FEB PY 2016 VL 170 SI SI BP 641 EP 647 DI 10.1016/j.jlumin.2015.06.051 PN 2 PG 7 WC Optics SC Optics GA DA2PO UT WOS:000367638500040 ER PT J AU Xuan, JL Yang, ZQ Huang, DJ Wang, TP Zhou, F AF Xuan, Jiliang Yang, Zhaoqing Huang, Daji Wang, Taiping Zhou, Feng TI Tidal residual current and its role in the mean flow on the Changjiang Bank SO JOURNAL OF MARINE SYSTEMS LA English DT Article DE Tidal residual current; Mean flow; Changjiang Bank; FVCOM ID EAST CHINA SEA; YELLOW SEA; MODEL; CIRCULATION; OCEAN; TIDES AB The tidal residual current may play an important role in the mean flow in the Changjiang Bank region, in addition to other residual currents, such as the Taiwan Warm Current, the Yellow Sea Coastal Current, and the Yellow Sea Warm Current. In this paper, a detailed structure of the tidal residual current, in particular the meso-scale eddies, in the Changjiang Bank region is observed from model simulations, and its role in the mean flow is quantified using the well-validated Finite Volume Coastal Ocean Model. The tidal residual current in the Changjiang Bank region consists of two components: an anticyclonic regional-scale tidal residual circulation around the edge of the Changjiang Bank and some cyclonic meso-scale tidal residual eddies across the Changjiang Bank. The meso-scale tidal residual eddies occur across the Changjiang Bank and contribute to the regional-scale tidal residual circulation offshore at the northwest boundary and on the northeast edge of the Changjiang Bank, southeastward along the 50 m isobath. Tidal rectification is the major mechanism causing the tidal residual current to flow along the isobaths. Both components of the tidal residual current have significant effects on the mean flow. A comparison between the tidal residual current and the mean flow indicates that the contribution of the tidal residual current to the mean flow is greater than 50%. (C) 2015 Elsevier B.V. All rights reserved. C1 [Xuan, Jiliang; Huang, Daji; Zhou, Feng] State Ocean Adm, Inst Oceanog 2, State Key Lab Satellite Ocean Environm Dynam, Hangzhou 310012, Zhejiang, Peoples R China. [Yang, Zhaoqing; Wang, Taiping] Pacific NW Natl Lab, Seattle, WA 98109 USA. [Huang, Daji; Zhou, Feng] Zhejiang Univ, Ocean Coll, Hangzhou 310058, Zhejiang, Peoples R China. RP Yang, ZQ (reprint author), Pacific NW Natl Lab, 1100 Dexter Ave North,Suite 400, Seattle, WA 98109 USA. EM zhaoqing.yang@pnnl.gov RI Zhou, Feng/H-4336-2011 OI Zhou, Feng/0000-0002-4635-9233 FU NASA's QuikSCAT Science Team; National Basic Research Program of China [2011CB409803]; Public Science and Technology Research Funds Projects of Ocean [201205015]; National Natural Science Foundation of China [41306025, 41276028, 41321004]; Project of State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography [SOEDZZ1402]; scientific research fund of the Second Institute of Oceanography, SOA [JG1301] FX The authors sincerely appreciate Dr. W. Long for his assistance with the model setup and Dr. H. Wu for his valuable suggestions for how to improve this manuscript. The authors also thank NASA's QuikSCAT Science Team for the wind data, and the international team of GEBCO for bathymetric data. This study was jointly supported by the National Basic Research Program of China (2011CB409803), the Public Science and Technology Research Funds Projects of Ocean (201205015), the National Natural Science Foundation of China (41306025, 41276028 and 41321004), the Project of State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography (SOEDZZ1402), and the grant from the scientific research fund of the Second Institute of Oceanography, SOA (JG1301). NR 37 TC 5 Z9 5 U1 0 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0924-7963 EI 1879-1573 J9 J MARINE SYST JI J. Mar. Syst. PD FEB PY 2016 VL 154 SI SI BP 66 EP 81 DI 10.1016/j.jmarsys.2015.04.005 PN A PG 16 WC Geosciences, Multidisciplinary; Marine & Freshwater Biology; Oceanography SC Geology; Marine & Freshwater Biology; Oceanography GA DA4HH UT WOS:000367760400008 ER PT J AU Dingreville, R Karnesky, RA Puel, G Schmitt, JH AF Dingreville, Remi Karnesky, Richard A. Puel, Guillaume Schmitt, Jean-Hubert TI Synergies between computational modeling and experimental characterization of materials across length scales SO JOURNAL OF MATERIALS SCIENCE LA English DT Editorial Material C1 [Dingreville, Remi] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Karnesky, Richard A.] Sandia Natl Labs, Livermore, CA 94550 USA. [Puel, Guillaume; Schmitt, Jean-Hubert] Univ Paris Saclay, Cent Supelec, Lab Mecan Sols Struct & Mat MSSMat, CNRS UMR 8579, F-92290 Chatenay Malabry, France. RP Dingreville, R (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM rdingre@sandia.gov OI Dingreville, Remi/0000-0003-1613-695X NR 0 TC 0 Z9 0 U1 0 U2 2 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-2461 EI 1573-4803 J9 J MATER SCI JI J. Mater. Sci. PD FEB PY 2016 VL 51 IS 3 BP 1176 EP 1177 DI 10.1007/s10853-015-9564-1 PG 2 WC Materials Science, Multidisciplinary SC Materials Science GA DA2GE UT WOS:000367612500003 ER PT J AU Dingreville, R Karnesky, RA Puel, G Schmitt, JH AF Dingreville, Remi Karnesky, Richard A. Puel, Guillaume Schmitt, Jean-Hubert TI Review of the synergies between computational modeling and experimental characterization of materials across length scales SO JOURNAL OF MATERIALS SCIENCE LA English DT Review ID X-RAY-DIFFRACTION; ELECTRON BACKSCATTER DIFFRACTION; PARTIAL-DIFFERENTIAL-EQUATIONS; FINITE-ELEMENT SIMULATIONS; ATOM-PROBE TOMOGRAPHY; MULTIPLE TIME SCALES; HIGH-RESOLUTION EBSD; IN-SITU DIFFRACTION; FOCUSED ION-BEAM; CRYSTAL PLASTICITY AB With the increasing interplay between experimental and computational approaches at multiple length scales, new research directions are emerging in materials science and computational mechanics. Such cooperative interactions find many applications in the development, characterization and design of complex material systems. This manuscript provides a broad and comprehensive overview of recent trends in which predictive modeling capabilities are developed in conjunction with experiments and advanced characterization to gain a greater insight into structure-property relationships and study various physical phenomena and mechanisms. The focus of this review is on the intersections of multiscale materials experiments and modeling relevant to the materials mechanics community. After a general discussion on the perspective from various communities, the article focuses on the latest experimental and theoretical opportunities. Emphasis is given to the role of experiments in multiscale models, including insights into how computations can be used as discovery tools for materials engineering, rather than to "simply" support experimental work. This is illustrated by examples from several application areas on structural materials. This manuscript ends with a discussion on some problems and open scientific questions that are being explored in order to advance this relatively new field of research. C1 [Dingreville, Remi] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Karnesky, Richard A.] Sandia Natl Labs, Livermore, CA 94550 USA. [Puel, Guillaume; Schmitt, Jean-Hubert] Univ Paris Saclay, Cent Supelec, Lab Mecan Sols Struct & Mat, CNRS UMR 8579, F-92290 Chatenay Malabry, France. RP Dingreville, R (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM rdingre@sandia.gov; rakarne@sandia.gov OI Karnesky, Richard/0000-0003-4717-457X; Dingreville, Remi/0000-0003-1613-695X FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This review article was written by the organizers of a symposium on the synergies between computational and experimental characterization across length scales at the 7th International Conference on Multiscale Materials Modeling, October 6-10, 2014 in Berkeley California USA. This symposium provided a forum for the Materials Science community to present and discuss the recent successes of predicting various physical phenomena and mechanisms in materials systems enabled by the collaboration between experimentalists and modelers. Some scientific research findings, successful collaborations, and tools leveraging the experiment-modeling synergy presented during this symposium are discussed in the present manuscript. Consequently, the authors thank all participants of this symposium for inspiration and motivation. RD and RAK are supported by the Laboratory Directed Research and Development program at Sandia National Laboratories, a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 239 TC 4 Z9 4 U1 10 U2 49 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-2461 EI 1573-4803 J9 J MATER SCI JI J. Mater. Sci. PD FEB PY 2016 VL 51 IS 3 BP 1178 EP 1203 DI 10.1007/s10853-015-9551-6 PG 26 WC Materials Science, Multidisciplinary SC Materials Science GA DA2GE UT WOS:000367612500004 ER PT J AU Khoo, CY Liu, H Sasangka, WA Made, RI Tamura, N Kunz, M Budiman, AS Gan, CL Thompson, CV AF Khoo, Chee Ying Liu, Hai Sasangka, Wardhana A. Made, Riko I. Tamura, Nobu Kunz, Martin Budiman, Arief S. Gan, Chee Lip Thompson, Carl V. TI Impact of deposition conditions on the crystallization kinetics of amorphous GeTe films SO JOURNAL OF MATERIALS SCIENCE LA English DT Article ID PHASE-CHANGE MATERIALS; THIN-FILMS; RAMAN-SCATTERING; DATA-STORAGE; CRYSTAL; GLASS; CALORIMETRY; MECHANISM; GROWTH; MODEL AB The speed at which phase change memory devices can operate depends strongly on the crystallization kinetics of the amorphous phase. To better understand factors that affect the crystallization rate, we have investigated crystallization of GeTe films as a function of their deposition temperatures and deposition rates, using X-ray synchrotron radiation and Raman spectroscopy. As-deposited films were found to be fully amorphous under all conditions, even though films deposited at higher temperatures and lower rates experienced lower effective quench rates. Non-isothermal transformation curves show that the apparent crystallization temperature of GeTe films decreases with increasing deposition temperature and decreasing deposition rate. It was found that this correlates with a decrease in the activation energy for nucleation (calculated using Kissinger's analysis), while the activation energy for crystal growth remained unaffected. From Raman spectroscopy measurements, it was found that increasing the deposition temperature or decreasing the deposition rate, and therefore the effective quench rate, reduces the number of homopolar Te-Te bonds and thereby reduces the barrier to crystal nucleation. C1 [Khoo, Chee Ying; Liu, Hai; Gan, Chee Lip] Nanyang Technol Univ, Sch Mat Sci & Engn, Singapore 639798, Singapore. [Khoo, Chee Ying; Gan, Chee Lip; Thompson, Carl V.] Singapore MIT Alliance, Adv Mat Micro & Nanosyst, Singapore 117576, Singapore. [Sasangka, Wardhana A.; Made, Riko I.; Gan, Chee Lip; Thompson, Carl V.] Singapore MIT Alliance Res & Technol, Low Energy Elect Syst, Singapore 138602, Singapore. [Tamura, Nobu; Kunz, Martin] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Budiman, Arief S.] Singapore Univ Technol & Design, EPD Pillars, Singapore 138682, Singapore. [Thompson, Carl V.] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA. RP Thompson, CV (reprint author), Singapore MIT Alliance, Adv Mat Micro & Nanosyst, Singapore 117576, Singapore. EM clgan@ntu.edu.sg; cthomp@mit.edu RI Gan, Chee Lip/A-2248-2011 OI Gan, Chee Lip/0000-0002-8420-3168 FU Office of Science, Office of Basic Energy Sciences, Materials Sciences Division of the U.S. Department of Energy at Lawrence Berkeley National Laboratory [DE-AC02-05CH11231]; University of California, Berkeley, California; NSF [0416243]; Singapore-MIT Alliance FX The X-ray synchrotron experiments were carried out at Beamline 12.3.2 of the Advanced Light Source at Lawrence Berkeley National Laboratory, which is supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences Division, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 at Lawrence Berkeley National Laboratory and University of California, Berkeley, California. The move of the micro-diffraction program from ALS beamline 7.3.3 onto to the ALS Superbend source 12.3.2 was enabled through the NSF Grant #0416243. Special thanks to Mr. Xinglin Wen for assistance in carrying out Raman spectroscopy and Mr. Yu Gao for his help in using the Lingo software. The authors would also like to thank the Singapore-MIT Alliance for funding this work and for providing a scholarship for C.Y. Khoo. The electron microscopy work was carried out in the Facility for Analysis, Characterization, Testing and Simulation (FACTS) in Nanyang Technological University, Singapore. NR 38 TC 1 Z9 1 U1 3 U2 22 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-2461 EI 1573-4803 J9 J MATER SCI JI J. Mater. Sci. PD FEB PY 2016 VL 51 IS 4 BP 1864 EP 1872 DI 10.1007/s10853-015-9493-z PG 9 WC Materials Science, Multidisciplinary SC Materials Science GA DA2SR UT WOS:000367647100020 ER PT J AU Kou, RH Gao, J Wang, G Liu, YD Wang, YD Ren, Y Brown, DE AF Kou, R. H. Gao, J. Wang, G. Liu, Y. D. Wang, Y. D. Ren, Y. Brown, D. E. TI Magnetic field-induced changes of lattice parameters and thermal expansion behavior of the CoMnSi compound SO JOURNAL OF MATERIALS SCIENCE LA English DT Article ID TRANSITION AB The crystal structure of the CoMnSi compound during zero-field cooling and field cooling from room temperature down to 200 K was studied using the synchrotron radiation X-ray diffraction technique. The results show that the lattice parameters and thermal expansion behavior of the sample are changed by the applied magnetic fields. The lattice contracts along the a axis, but expands along the b and c axes. Due to enlarged and anisotropic changes under a magnetic field of 6 T, the lattice shows an invar-like behavior along all three axes. Critical interatomic distances and bond angles also show large changes under the influence of such a high magnetic field. These magnetic field-induced changes of the lattice are discussed with respect to their contributions to the large magnetocaloric effect of the CoMnSi compound. C1 [Kou, R. H.; Gao, J.] Northeastern Univ, Minist Educ, Key Lab Electromagnet Proc Mat, Shenyang 110819, Peoples R China. [Wang, G.; Liu, Y. D.] Northeastern Univ, Key Lab Anisotropy & Textures Mat, Minist Educ, Shenyang 110819, Peoples R China. [Wang, Y. D.] Univ Sci & Technol Beijing, State Key Lab Adv Met & Mat, Beijing 100083, Peoples R China. [Ren, Y.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Brown, D. E.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. RP Gao, J (reprint author), Northeastern Univ, Minist Educ, Key Lab Electromagnet Proc Mat, Shenyang 110819, Peoples R China. EM jgao@mail.neu.edu.cn RI wang, yandong/G-9404-2013 FU National Basic Research Program of China [2012CB619405]; Fundamental Research Funds for the Central Universities [N090109001] FX This work was supported by the National Basic Research Program of China (2012CB619405) and by the Fundamental Research Funds for the Central Universities (N090109001). The authors are grateful to the Advanced Photon Source, Argonne National Laboratory, for providing access to the beam line at ID-11-C. NR 21 TC 0 Z9 0 U1 8 U2 27 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-2461 EI 1573-4803 J9 J MATER SCI JI J. Mater. Sci. PD FEB PY 2016 VL 51 IS 4 BP 1896 EP 1902 DI 10.1007/s10853-015-9496-9 PG 7 WC Materials Science, Multidisciplinary SC Materials Science GA DA2SR UT WOS:000367647100023 ER PT J AU Darghouth, NR Wiser, RH Barbose, G AF Darghouth, Naim R. Wiser, Ryan H. Barbose, Galen TI Customer economics of residential photovoltaic systems: Sensitivities to changes in wholesale market design and rate structures SO RENEWABLE & SUSTAINABLE ENERGY REVIEWS LA English DT Review DE Photovoltaics; Net metering; Electricity rate design ID BILL SAVINGS; ELECTRICITY; IMPACT; GENERATION; CALIFORNIA; PRICES AB The customer economics of U.S. residential photovoltaics (PV) often depend on retail electricity rates, because most utilities compensate customer-sited PV generation via net metering. The future bill savings from net metering are uncertain and dependent on retail rate structures, wholesale market design, and renewable penetration levels, among other factors. We explore the impact of the following assumptions on the bill savings from residential PV: a wholesale electricity market design with a price cap (as opposed to an energy-only market); a retail rate with a fixed customer charge (as opposed to a fully volumetric rate); and increasing-block pricing (as opposed to a non-varying flat rate). A wholesale price cap can dampen the expected bill-savings erosion due to moving from a low to a high renewables scenario for customers with time-varying rates and net metering. Moving from a fully volumetric rate to a two-part tariff rate with a fixed customer charge could severely erode the bill savings under net metering, because PV generation could only displace the (reduced) volumetric portion of the rate. Finally, increasing-block pricing might have an even greater impact on the bill savings from behind-the-meter PV than the other uncertainties explored in this paper. Published by Elsevier Ltd. C1 [Darghouth, Naim R.; Wiser, Ryan H.; Barbose, Galen] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Darghouth, NR (reprint author), Ernest Orlando Lawrence Berkeley Natl Lab, 1 Cyclotron Rd,MS 90R4000, Berkeley, CA 94720 USA. EM ndarghouth@lbl.gov FU Office of Energy Efficiency and Renewable Energy (Solar Energy Technologies Program); Office of Electricity Delivery and Energy Reliability (National Electricity Delivery Division) of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Office of Energy Efficiency and Renewable Energy (Solar Energy Technologies Program) and the Office of Electricity Delivery and Energy Reliability (National Electricity Delivery Division) of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The authors would like to thank the anonymous reviewers, and Jarett Zuboy for his editorial support. NR 24 TC 1 Z9 1 U1 3 U2 10 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1364-0321 J9 RENEW SUST ENERG REV JI Renew. Sust. Energ. Rev. PD FEB PY 2016 VL 54 BP 1459 EP 1469 DI 10.1016/j.rser.2015.10.111 PG 11 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels SC Science & Technology - Other Topics; Energy & Fuels GA DA4GM UT WOS:000367758200110 ER PT J AU Mathis, JE Lieffers, JJ Mitra, C Reboredo, FA Bi, Z Bridges, CA Kidder, MK Paranthaman, MP AF Mathis, J. E. Lieffers, J. J. Mitra, C. Reboredo, F. A. Bi, Z. Bridges, C. A. Kidder, M. K. Paranthaman, M. P. TI Increased photocatalytic activity of TiO2 mesoporous microspheres from codoping with transition metals and nitrogen SO CERAMICS INTERNATIONAL LA English DT Article DE TiO2; Codoped; Diffuse reflectance; Photocatalysis ID INITIO MOLECULAR-DYNAMICS; VISIBLE-LIGHT IRRADIATION; ANATASE TIO2; DOPED TIO2; OPTICAL-PROPERTIES; WATER; CO; PHOTOELECTROLYSIS; NANOPARTICLES; FUNCTIONALS AB The composition of anatase TiO2 was modified by codoping using combinations of a transition metal and nitrogen in order to increase its photocatalytic activity and extend it performance in the visible region of the electromagnetic spectrum. The transition metals (Mn, Co, Ni, Cu) were added during the hydrothermal preparation of mesoporous TiO2 particles, and the nitrogen was introduced by post-annealing in flowing ammonia gas at high temperature. The samples were analyzed by SEM, XRD, BET, inductively-coupled plasma spectroscopy, and diffuse reflectance UV vis spectroscopy. The photocatalytic activity was assessed by observing the change in methylene blue concentrations under both UV vis and visible-only light irradiation. The photocatalytic activity of the (Mn,N), (Co,N), (Cu,N), and Ni,N) codoped TiO2 was significantly enhanced relative to (N) TiO2. (C) 2015 Elsevier Ltd and Techna Group S.r.l. All rights reserved. C1 [Mathis, J. E.; Lieffers, J. J.; Bi, Z.; Bridges, C. A.; Kidder, M. K.; Paranthaman, M. P.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Mitra, C.; Reboredo, F. A.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Mathis, JE (reprint author), Embry Riddle Aeronaut Univ, Dept Phys Sci, Daytona Beach, FL 32114 USA. EM mathisjo@erau.edu FU U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division; Oak Ridge National Laboratory's CNMS User Facility - Scientific User Facility Division, Office of Basic Energy Sciences, U. S. Department of Energy; ORISE through U.S. Department of Energy-Visiting Faculty Program (VFP); U.S. Department of Energy, Office of Basic Energy Science, Chemical Sciences, Geosciences, and Biosciences Division FX Materials synthesis work was sponsored by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division. Characterization work was supported by Oak Ridge National Laboratory's CNMS User Facility, which is sponsored by the Scientific User Facility Division, Office of Basic Energy Sciences, U. S. Department of Energy. JM and JL are supported by ORISE through U.S. Department of Energy-Visiting Faculty Program (VFP). MKK acknowledges the support of the U.S. Department of Energy, Office of Basic Energy Science, Chemical Sciences, Geosciences, and Biosciences Division. Thanks are due to C. N. Sun and G. M. Veith for assistance with BET measurements, to G. E. Jellison for providing instruments for the photocatalytic measurements, and R. A. Caruso for useful discussions. NR 36 TC 3 Z9 3 U1 10 U2 52 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0272-8842 EI 1873-3956 J9 CERAM INT JI Ceram. Int. PD FEB 1 PY 2016 VL 42 IS 2 BP 3556 EP 3562 DI 10.1016/j.ceramint.2015.10.164 PN B PG 7 WC Materials Science, Ceramics SC Materials Science GA CZ7KA UT WOS:000367277100078 ER PT J AU Yan, Z Shalapska, T Bourret, ED AF Yan, Z. Shalapska, T. Bourret, E. D. TI Czochralski growth of the mixed halides BaBrCl and BaBrCl:Eu SO JOURNAL OF CRYSTAL GROWTH LA English DT Article DE Czochralski; Solid solution; Halide BaBrCl and BaBrCl:Eu single crystals; Scintillators ID SCINTILLATION PROPERTIES; X-RAY; CRYSTAL; BACL2 AB We present results from the growth of BaBrCl and BaBrCl:Eu single crystals, using the Czochralski method. Cubic inch crack-free crystals of both undoped and 5% Eu doped BaBrCl were obtained. The BaBr2-BaCl2 phase diagram was acquired by differential thermal analysis revealing that the system forms a solid solution at all concentrations with no significant separation between the solidus and liquidus curves. Details of the Czochralski process used to prevent cracking are presented. The scintillation performance of the Czochralski grown crystals is presented. (C) 2015 Elsevier B.V. All rights reserved. C1 [Yan, Z.; Shalapska, T.; Bourret, E. D.] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Yan, Z (reprint author), Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM zyan@lbl.gov FU U.S. Department of Homeland Security/DNDO [DE-AC02-05CH11231] FX The authors would like to thank late Chris Ramsey for his engineering expertise growth instruments, Steve Hanrahan for his professional photography, Eric C. Samulon, Gautam Gundiah, Martin Gascon and Stephen Derenzo for their valuable scientific discussions and support for this work. This work was supported by the U.S. Department of Homeland Security/DNDO and was carried out at the Lawrence Berkeley National Laboratory under Contract no. DE-AC02-05CH11231. NR 16 TC 3 Z9 3 U1 2 U2 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-0248 EI 1873-5002 J9 J CRYST GROWTH JI J. Cryst. Growth PD FEB 1 PY 2016 VL 435 BP 42 EP 45 DI 10.1016/j.jcrysgro.2015.11.032 PG 4 WC Crystallography; Materials Science, Multidisciplinary; Physics, Applied SC Crystallography; Materials Science; Physics GA DA1DN UT WOS:000367536600008 ER PT J AU Boyle, C Carvillo, P Chen, Y Barbero, EJ Mcintyre, D Song, XY AF Boyle, Cullen Carvillo, Paulo Chen, Yun Barbero, Ever J. Mcintyre, Dustin Song, Xueyan TI Grain boundary segregation and thermoelectric performance enhancement of bismuth doped calcium cobaltite SO JOURNAL OF THE EUROPEAN CERAMIC SOCIETY LA English DT Article DE Thermoelectric materials; Calcium cobaltite; Grain boundary segregation ID CA3CO4O9 CERAMICS; BI-SUBSTITUTION; OXIDE MATERIALS; TEMPERATURE; SYSTEM; MICROSTRUCTURE; CRYSTAL; PHASE; AIR AB The effect of Bi doping on the nanostructure and thermoelectric performance of the polycrystalline calcium cobaltite C3-xBixCo4O9 (x= 0, 0.1, 0.2, 0.3 and 0.4) is reported. The samples were prepared using a chemical sal-gel route. Increasing Bi concentrations up to x = 0.3 enhance the grain growth and improve the crystal texture. Through nanostructural and chemical analyses, significant Bi segregation at grain boundary was observed for the first time. From 318 K up to 1073 K, the Seebeck coefficient increases and the electrical resistivity decreases as Bi increases to 0.3, resulting in high power factor of 0.95 mW m(-1) K-2 at 318 K, which is so far the highest power factor for Calcium Cobaltite ceramics. Combined with low thermal conductivity of 1.9W m(-1) K-1, Ca2.8Bi0.2Co4O9 shows the peak ZT value of 0.43 at 1073 K. The Bi grain boundary segregation improves the texture development and acts as carrier filter in increasing the Seebeck coefficient. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Boyle, Cullen; Carvillo, Paulo; Chen, Yun; Barbero, Ever J.; Song, Xueyan] W Virginia Univ, Dept Mech & Aerosp Engn, Morgantown, WV 26506 USA. [Mcintyre, Dustin] Natl Energy Technol Lab, Morgantown, WV 26507 USA. RP Song, XY (reprint author), W Virginia Univ, Dept Mech & Aerosp Engn, Evansdale Dr, Morgantown, WV 26506 USA. EM xueyan.song@mail.wvu.edu FU National Science Foundation DMR [1254594] FX Cullen Boyle, Paulo Carvillo, and Xueyan Song greatly appreciate the Support from the National Science Foundation DMR (1254594). NR 28 TC 1 Z9 1 U1 15 U2 58 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0955-2219 EI 1873-619X J9 J EUR CERAM SOC JI J. Eur. Ceram. Soc. PD FEB PY 2016 VL 36 IS 3 BP 601 EP 607 DI 10.1016/j.jeurceramsoc.2015.10.042 PG 7 WC Materials Science, Ceramics SC Materials Science GA CZ9HF UT WOS:000367407900026 ER PT J AU Phillips, FM Argento, DC Balco, G Caffee, MW Clem, J Dunai, TJ Finkel, R Goehring, B Gosse, JC Hudson, AM Jull, AJT Kelly, MA Kurz, M Lal, D Lifton, N Marrero, SM Nishiizumi, K Reedy, RC Schaefer, J Stone, JOH Swanson, T Zreda, MG AF Phillips, Fred M. Argento, David C. Balco, Greg Caffee, Marc W. Clem, John Dunai, Tibor J. Finkel, Robert Goehring, Brent Gosse, John C. Hudson, Adam M. Jull, A. J. Timothy Kelly, Meredith A. Kurz, Mark Lal, Devendra Lifton, Nathaniel Marrero, Shasta M. Nishiizumi, Kunihiko Reedy, Robert C. Schaefer, Joerg Stone, John O. H. Swanson, Terry Zreda, Marek G. TI The CRONUS-Earth Project: A synthesis SO QUATERNARY GEOCHRONOLOGY LA English DT Article DE Terrestrial cosmogenic nuclides; Beryllium-10; Aluminum-26; Chlorine-36; Carbon-14; Helium-3; Production rate; Interlaboratory comparison; Scaling model ID COSMOGENIC-NUCLIDE PRODUCTION; HE-3 PRODUCTION-RATES; PRODUCTION-RATE CALIBRATION; BE-10 PRODUCTION-RATE; RAY INDUCED NEUTRONS; HOLOCENE LAVA FLOWS; LOW-LATITUDE; COSMIC-RAYS; STATISTICAL-MODELS; AL-26 MEASUREMENTS AB Geological surface-exposure dating using cosmogenic-nuclide accumulation became a practical geochronological endeavor in 1986, when the utility of Be-10, Al-26, Cl-36, and He-3 were all demonstrated. In response to the lack of a common basis for quantifying analytical consistency and calibrating cosmogenic-nuclide production, the CRONUS-Earth Project in the U.S. was started in 2005, along with a European partner project, CRONUS-EU. The goal of the CRONUS-Earth Project was to improve the accuracy and precision of terrestrial cosmogenic nuclide dating in general, focusing especially on nuclide production rates and their variation with altitude, latitude, and time, and to attempt to move from empirically based methods to ones with a stronger basis in physics. The CRONUS-Earth Project conducted extensive intercomparisons of reference materials to attempt to quantify analytical reproducibility at the community level. We found that stated analytical uncertainties nearly always underestimate the actual degree of variability, as quantified by the over-all coefficient of variation of the intercalibration data. The average amount by which the actual coefficient of variation exceeded the analytical uncertainty was a factor of two (100%), but ranged from 15% to 300% depending on the nuclide and material. Coefficients of variation ranged from 3-4% for Be-10 to 6-8% for Cl-36, C-14, and Ne-21, to 5-11% for Al-26. Both interlaboratory bias and within-laboratory excess spread of the data played a role in increasing variability above the stated analytical uncertainties. The physical basis for cosmogenic nuclide production was investigated through numerical modeling and the measurement of energy-dependent neutron cross sections for nuclide interactions. We formulated new, physically based, scaling models, denoted LSD and LSDn, by generalizing global numerical simulations of cosmic-ray processes. The CRONUS-Earth Project identified new geological calibration sites, including one at low latitude and high elevation (Huancane, Peru), and replicated nuclide measurement at numerous laboratories. At many sites multiple nuclides were measured, providing much more confidence in the equivalence of surface-exposure ages calculated from differing nuclides. The data were interpreted using an original cosmogenic-nuclide calculator, CRONUScalc, that incorporates the new physically based scaling. The new data and model produced significantly better fits than previous efforts, but do not fully resolve apparent spatial variations in production rates. The CRONUS-Earth and CRONUS-EU Projects have provided a firm foundation for assessing the strengths and weaknesses of cosmogenic-nuclide analytical methods, adjusted the AMS standards for Be-10 and consequently revised the half-life, and have provided improved calibration data sets and interpretative tools. (C) 2015 Elsevier B.V. All rights reserved. C1 [Phillips, Fred M.; Marrero, Shasta M.] New Mexico Inst Min & Technol, Earth & Environm Sci Dept, Socorro, NM 87801 USA. [Argento, David C.; Stone, John O. H.; Swanson, Terry] Univ Washington, Earth & Space Sci Dept, Seattle, WA 98195 USA. [Balco, Greg] Berkeley Geochronol Ctr, Berkeley, CA 94709 USA. [Caffee, Marc W.] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA. [Clem, John] Univ Delaware, Dept Phys & Astron, Bartol Res Inst, Newark, DE 19716 USA. [Dunai, Tibor J.] Univ Cologne, Dept Geosci, D-50939 Cologne, Germany. [Finkel, Robert] Lawrence Livermore Natl Lab, Ctr Accelerator Mass Spectrometry, Livermore, CA 94550 USA. [Goehring, Brent] Tulane Univ, Dept Earth & Environm Sci, New Orleans, LA 70118 USA. [Gosse, John C.] Dalhousie Univ, Dept Earth Sci, Halifax, NS B3H 4R2, Canada. [Hudson, Adam M.; Jull, A. J. Timothy] Univ Arizona, Dept Geosci, Tucson, AZ 85721 USA. [Jull, A. J. Timothy] Univ Arizona, NSF Arizona AMS Lab, Tucson, AZ 85721 USA. [Kelly, Meredith A.] Dartmouth Coll, Dept Earth Sci, Hanover, NH 03755 USA. [Kurz, Mark] Woods Hole Oceanog Inst, Dept Marine Chem & Geochem, Woods Hole, MA 02543 USA. [Lal, Devendra] Univ Calif San Diego, Scripps Inst Oceanog, Div Geol Res, La Jolla, CA 92093 USA. [Lifton, Nathaniel] Purdue Univ, Dept Earth Atmospher & Planetary Sci, W Lafayette, IN 47907 USA. [Lifton, Nathaniel] Purdue Univ, Dept Phys & Astron, W Lafayette, IN 47907 USA. [Marrero, Shasta M.] Univ Edinburgh, Sch GeoSci, Edinburgh EH8 9XP, Midlothian, Scotland. [Nishiizumi, Kunihiko] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Reedy, Robert C.] Planetary Sci Inst, Tucson, AZ 85719 USA. [Schaefer, Joerg] Lamont Doherty Earth Observ LDEO, Geochem, Palisades, NY 10964 USA. [Zreda, Marek G.] Univ Arizona, Dept Hydrol & Water Resources, Tucson, AZ 85721 USA. RP Phillips, FM (reprint author), New Mexico Inst Min & Technol, Earth & Environm Sci Dept, 801 Leroy Pl, Socorro, NM 87801 USA. EM phillips@nmt.edu RI Dunai, Tibor/E-9558-2012; OI Dunai, Tibor/0000-0001-8858-2401; Reedy, Robert/0000-0002-2189-1303; Hudson, Adam/0000-0002-3387-9838 FU U.S. National Science Foundation [EAR-0345949]; European Union [MC-RTN- 511927]; [EAR-0345150]; [EAR-0345932]; [EAR-0345820]; [EAR-0345574]; [EAR-0345835]; [EAR-0345817] FX The principal support for the CRONUS-Earth Project came through U.S. National Science Foundation grant EAR-0345949 to Phillips. Additional funding was provided through grants EAR-0345150 (Lifton), EAR-0345932 (Finkel), EAR-0345820 (Caffee), EAR-0345949 (Phillips), EAR-0345574 (Stone), EAR-0345835 (Schaefer), EAR-0345817 (Nishiizumi), and EAR-0345949 to Argento. Funding for CRONUS-EU was provided by the European Union's sixth framework program, grant MC-RTN- 511927. Members of both projects gratefully acknowledge the contributions of the late Dr. Devendra Lal. NR 118 TC 23 Z9 24 U1 5 U2 23 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1871-1014 EI 1878-0350 J9 QUAT GEOCHRONOL JI Quat. Geochronol. PD FEB PY 2016 VL 31 BP 119 EP 154 DI 10.1016/j.quageo.2015.09.006 PG 36 WC Geography, Physical; Geosciences, Multidisciplinary SC Physical Geography; Geology GA CZ9JH UT WOS:000367413400011 ER PT J AU Rafi, JM Pellegrini, G Fadeyev, V Galloway, Z Sadrozinski, HFW Christophersen, M Phlips, BF Lynn, D Kierstead, J Hoeferkamp, M Gorelov, I Palni, P Wang, R Seidel, S AF Rafi, J. M. Pellegrini, G. Fadeyev, V. Galloway, Z. Sadrozinski, H. F. -W. Christophersen, M. Phlips, B. F. Lynn, D. Kierstead, J. Hoeferkamp, M. Gorelov, I. Palni, P. Wang, R. Seidel, S. TI Gamma and proton irradiation effects and thermal stability of electrical characteristics of metal-oxide-silicon capacitors with atomic layer deposited Al2O3 dielectric SO SOLID-STATE ELECTRONICS LA English DT Article DE Al2O3; ALD; Gamma irradiation; Proton irradiation; Irradiation effects; Thermal stability ID INDUCED LEAKAGE CURRENT; KAPPA GATE DIELECTRICS; SLIM EDGE TECHNOLOGY; SI SOLAR-CELLS; ALD AL2O3; SURFACE RECOMBINATION; RADIATION; PASSIVATION; CHARGE; FILMS AB The radiation hardness and thermal stability of the electrical characteristics of atomic layer deposited Al2O3 layers to be used as passivation films for silicon radiation detectors with slim edges are investigated. To directly measure the interface charge and to evaluate its change with the ionizing dose, metal-oxide-silicon (MOS) capacitors implementing differently processed Al2O3 layers were fabricated on p-type silicon substrates. Qualitatively similar results are obtained for degradation of capacitance-voltage and current-voltage characteristics under gamma and proton irradiations up to equivalent doses of 30 Mrad and 21.07 Mrad, respectively. While similar negative charge densities are initially extracted for all non-irradiated capacitors, superior radiation hardness is obtained for MOS structures with alumina layers grown with H2O instead of O-3 as oxidant precursor. Competing effects between radiation-induced positive charge trapping and hydrogen release from the H2O-grown Al2O3 layers may explain their higher radiation resistance. Finally, irradiated and non-irradiated MOS capacitors with differently processed Al2O3 layers have been subjected to thermal treatments in air at temperatures ranging between 100 degrees C and 200 degrees C and the thermal stability of their electrical characteristics has been evaluated. Partial recovery of the gamma-induced degradation has been noticed for O-3-grown MOS structures. This can be explained by a trapped holes emission process, for which an activation energy of 1.38 +/- 0.15 eV has been extracted. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Rafi, J. M.; Pellegrini, G.] IMB CNM CSIC, Inst Microelect Barcelona, Bellaterra 08193, Spain. [Fadeyev, V.; Galloway, Z.; Sadrozinski, H. F. -W.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Christophersen, M.; Phlips, B. F.] US Naval Res Lab, Washington, DC USA. [Lynn, D.; Kierstead, J.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Hoeferkamp, M.; Gorelov, I.; Palni, P.; Wang, R.; Seidel, S.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. RP Rafi, JM (reprint author), IMB CNM CSIC, Inst Microelect Barcelona, Campus UAB, Bellaterra 08193, Spain. EM jm.rafi@csic.es RI Christophersen, Marc/B-6795-2008; Rafi, Joan Marc/D-5500-2012; Pellegrini, Giulio/F-4921-2011 OI Rafi, Joan Marc/0000-0003-4581-9477; Pellegrini, Giulio/0000-0002-1606-3546 FU Spanish Ministry of Education and Science through the Particle Physics National Program [FPA2013-48308-C2-2-P]; Department of Energy [DE-FG02-13ER41983]; DOE [DE-SC0012704] FX This work has been performed within the framework of CERN RD50 Collaboration and ATLAS Planar Pixel Proposal. This work has been partially financed by the Spanish Ministry of Education and Science through the Particle Physics National Program FPA2013-48308-C2-2-P. We would like to thank the Institute for Nanoscience (NSI) at the U.S. Naval Research Laboratory (NRL) and the NSI staff. The work done at NRL was supported by the Chief of Naval Research (CNR). The work at SCIPP was supported by Department of Energy, Grant DE-FG02-13ER41983. The work at BNL was supported by DOE Contract No. DE-SC0012704. NR 55 TC 2 Z9 2 U1 6 U2 18 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0038-1101 EI 1879-2405 J9 SOLID STATE ELECTRON JI Solid-State Electron. PD FEB PY 2016 VL 116 BP 38 EP 45 DI 10.1016/j.sse.2015.11.029 PG 8 WC Engineering, Electrical & Electronic; Physics, Applied; Physics, Condensed Matter SC Engineering; Physics GA DA1FQ UT WOS:000367542100008 ER PT J AU Qiu, JQ Ha, GH Jing, CG Baryshev, SV Reed, BW Lau, JW Zhu, YM AF Qiu, Jiaqi Ha, Gwanghui Jing, Chunguang Baryshev, Sergey V. Reed, Bryan W. Lau, June W. Zhu, Yimei TI GHz laser-free time-resolved transmission electron microscopy: A stroboscopic high-duty-cycle method SO ULTRAMICROSCOPY LA English DT Article DE GHz; Stroboscopic; Deflecting cavity; Transmission electron microscopy; Time-resolved; Ultrafast ID DIFFRACTION AB A device and a method for producing ultrashort electron pulses with GHz repetition rates via pulsing an input direct current (dc) electron beam are provided. The device and the method are based on an electromagnetic-mechanical pulser (EMMP) that consists of a series of transverse deflecting cavities and magnetic quadrupoles. The EMMP modulates and chops the incoming dc electron beam and converts it into pico- and sub-pico-second electron pulse sequences (pulse trains) at > 1 GHz repetition rates, as well as controllably manipulates the resulting pulses. Ultimately, it leads to negligible electron pulse phase-space degradation compared to the incoming dc beam parameters. The temporal pulse length and repetition rate for the EMMP can be continuously tunable over wide ranges. Applying the EMMP to a transmission electron microscope (TEM) with any dc electron source (e.g. thermionic, Schottky, or field-emission source), a GHz stroboscopic high-duty-cycle TEM can be realized. Unlike in many recent developments in time-resolved TEM that rely on a sample pumping laser paired with a laser launching electrons from a photocathode to probe the sample, there is no laser in the presented experimental set-up. This is expected to be a significant relief for electron microscopists who are not familiar with laser systems. The EMMP and the sample are externally driven by a radiofrequency (RF) source synchronized through a delay line. With no laser pumping the sample, the problem of the pump laser induced residual heating/damaging the sample is eliminated. As many RF-driven processes can be cycled indefinitely, sampling rates of 1-50 GHz become accessible. Such a GHz stroboscopic TEM would open up a new paradigm for in situ and in operand experiments to study samples externally driven electromagnetically. Complementary to the lower (MHz) repetition rates experiments enabled by laser photocathode TEM, new experiments in the multi-GHz regime will be enabled by the proposed RF design. Because TEM is also a platform for various analytical methods, there are infinite application opportunities in energy and electronics to resolve charge (electronic and ionic) transport, and magnetic, plasmonic and excitonic dynamics in advanced functional materials. In addition, because the beam duty-cycle can be as high as similar to 10(-1) (or 10%), detection can be accomplished by commercially available detectors. In this article, we report an optimal design of the EMMP. The optimal design was found using an analytical generalized matrix approach in the thin lens approximation along with detailed beam dynamics taking actual realistic dc beam parameters in a TEM operating at 200 keV. (c) 2015 Elsevier B.V. All rights reserved. C1 [Qiu, Jiaqi; Ha, Gwanghui; Jing, Chunguang; Baryshev, Sergey V.] Euclid TechLabs, Bolingbrook, IL 60440 USA. [Reed, Bryan W.] Integrated Dynam Electron Solut, Pleasanton, CA 94588 USA. [Lau, June W.] NIST, Mat Sci & Engn Div, Gaithersburg, MD 20899 USA. [Zhu, Yimei] Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA. RP Baryshev, SV (reprint author), Euclid TechLabs, 365 Remington Blvd, Bolingbrook, IL 60440 USA. EM s.baryshev@euclidtechlabs.com FU DOE SBIR program [DE-SC0013121]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0012704] FX Euclid TechLabs work was supported by DOE SBIR program Grant no. DE-SC0013121. Y.Z. was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract no. DE-SC0012704. NR 21 TC 1 Z9 1 U1 10 U2 30 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-3991 EI 1879-2723 J9 ULTRAMICROSCOPY JI Ultramicroscopy PD FEB PY 2016 VL 161 BP 130 EP 136 DI 10.1016/j.ultramic.2015.11.006 PG 7 WC Microscopy SC Microscopy GA CZ8NX UT WOS:000367357500017 PM 26683815 ER PT J AU Cai, YY Sanstad, AH AF Cai, Yongyang Sanstad, Alan H. TI Model uncertainty and energy technology policy: The example of induced technical change SO COMPUTERS & OPERATIONS RESEARCH LA English DT Article DE Energy and climate policy; Technical change; Model uncertainty; Min-max regret; Robust analysis ID GREENHOUSE-GAS ABATEMENT; MINIMAX-REGRET ANALYSIS; CLIMATE POLICY; ROBUST ESTIMATION; EXPECTED UTILITY; SYSTEMS; COMMITMENT; STRATEGIES; INNOVATION; EVOLUTION AB Numerical modeling based on economic principles has become the dominant analytical tool in U.S. energy policy. Energy models are now used extensively by public agencies, private entities, and academic researchers, and in recent years have also formed the core of "integrated assessment" models used to analyze the relationships among the energy system, the economy, and the global climate. However, fundamental uncertainties are intrinsic in what has become the typical circumstance of multiple models embodying different representations of the energy-economy, and producing different policy-relevant outputs that model users are compelled to interpret as equally plausible and/or valid. Because the policy implications of these outputs can diverge substantially, policy-makers are confronted with a significant degree of model-based uncertainty and little or no guidance as to how it should be addressed. This problem of "model uncertainty" has recently been the focus of work in macroeconomics, where scholars have studied the problem of how a decision-maker should proceed in the face of uncertainty regarding the correct model of an economic system that is the object of policy. A unifying theme in this work is the identification of decision-rules that are robust to such uncertainty. This paper describes an application to energy modeling of the macroeconomists' insights and methods related to model uncertainty and robust analysis, focusing on the important example of model representations of technical change. Using a well-known model by Goulder and Mathai, we treat contrasting assumptions on technical change - and their implications for CO2 emissions abatement policy - as a phenomenon of model uncertainty. We apply a non-Bayesian decision rule - so-called "min-max regret" - to this problem and computationally solve the model under the min-max regret criterion, yielding a policy - an emissions abatement path - that reflects a form of robustness to the model uncertainty. (c) 2015 Elsevier Ltd. All rights reserved. C1 [Cai, Yongyang] Stanford Univ, Hoover Inst, Stanford, CA 94305 USA. [Cai, Yongyang] Univ Chicago, Becker Friedman Inst, Chicago, IL 60637 USA. [Sanstad, Alan H.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Sanstad, AH (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM yycai@stanford.edu; ahsanstad@lbl.gov FU National Science Foundation through RDCEP [SES-0951576]; U.S. Department of Energy under Lawrence Berkeley National Laboratory [DE-AC02-05CH11231] FX This paper is adapted from a working paper version released by the Center for Robust Decision-Making on Climate and Energy Policy (RDCEP) at the University of Chicago. This research was supported by the National Science Foundation (SES-0951576) through RDCEP, and Mr. Sanstad's work was supported by the U.S. Department of Energy under Lawrence Berkeley National Laboratory Contract No. DE-AC02-05CH11231. We would like to thank William Brock, Kenneth Judd, Todd Munson, and our other RDCEP colleagues for their comments, and two anonymous referees for very useful comments and suggestions. NR 57 TC 1 Z9 1 U1 0 U2 4 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0305-0548 EI 1873-765X J9 COMPUT OPER RES JI Comput. Oper. Res. PD FEB PY 2016 VL 66 BP 362 EP 373 DI 10.1016/j.cor.2015.07.014 PG 12 WC Computer Science, Interdisciplinary Applications; Engineering, Industrial; Operations Research & Management Science SC Computer Science; Engineering; Operations Research & Management Science GA CZ0FG UT WOS:000366779900033 ER PT J AU Hsieh, PY Kwong, KS Bennett, J AF Hsieh, Peter Y. Kwong, Kyei-Sing Bennett, James TI Correlation between the critical viscosity and ash fusion temperatures of coal gasifier ashes SO FUEL PROCESSING TECHNOLOGY LA English DT Article DE Coal gasification; Critical viscosity temperature; Ash fusion; Rotary viscometry; Non-Newtonian flow; Slag ID LOW-RANK COAL; AUSTRALIAN BITUMINOUS COALS; SUB-LIQUIDUS TEMPERATURES; FLOW PROPERTIES; SLAG VISCOSITY; RHEOLOGICAL PROPERTIES; EMPIRICAL PREDICTIONS; INORGANIC MATTER; MINERAL MATTER; CARBON CAPTURE AB Coal gasification yields synthesis gas, an important intermediate in chemical manufacturing. It is also vital to the production of liquid fuels through the Fischer-Tropsch process and electricity in Integrated Gasification Combined Cycle power generation. Minerals naturally present in coal become molten in entrained-flow slagging gasifiers. Molten coal ash slag penetrates and dissolves refractory bricks, leading to costly plant shutdowns. The extent of coal ash slag penetration and refractory brick dissolution depends on the slag viscosity, the gasification temperature, and the composition of slag and bricks. We measured the viscosity of several synthetic coal ash slags with a high-temperature rotary viscometer and their ash fusion temperatures through optical image analysis. All measurements were made in a carbon monoxide-carbon dioxide reducing atmosphere that approximates coal gasification conditions. Empirical correlation models based on ash fusion temperatures were used to calculate critical viscosity temperatures based on the coal ash compositions. These values were then compared with those obtained from thermodynamic phase-transition models. An understanding of slag viscosity as a function of ash composition is important to reducing refractory wear in slagging coal gasifiers, which would help to reduce the cost and environmental impact of coal for chemical and electricity production. Published by Elsevier B.V. C1 [Hsieh, Peter Y.; Kwong, Kyei-Sing; Bennett, James] Natl Energy Technol Lab, Struct Mat Dev Div, Albany, OR 97321 USA. RP Hsieh, PY (reprint author), Natl Energy Technol Lab, Struct Mat Dev Div, 1450 Queen Ave SW, Albany, OR 97321 USA. EM Peter.Hsieh@NETLDOE.GOV OI Hsieh, Peter/0000-0001-9010-4863 FU agency of the United States Government FX This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. NR 140 TC 2 Z9 3 U1 11 U2 41 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-3820 EI 1873-7188 J9 FUEL PROCESS TECHNOL JI Fuel Process. Technol. PD FEB PY 2016 VL 142 BP 13 EP 26 DI 10.1016/j.fuproc.2015.09.019 PG 14 WC Chemistry, Applied; Energy & Fuels; Engineering, Chemical SC Chemistry; Energy & Fuels; Engineering GA CZ4XV UT WOS:000367107300003 ER PT J AU Cekmer, O Um, S Mench, MM AF Cekmer, Ozgur Um, Sukkee Mench, Matthew M. TI A combined path-percolation - Lattice-Boltzmann model applied to multiphase mass transfer in porous media SO INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER LA English DT Article DE Lattice-Boltzmann model; Path-percolation theory; Porous media; Multiphase flow; OpenMP; Statistical ID NUMERICAL-SIMULATION; FLOW AB In this work, single-component single-phase, and single-component multi-phase Lattice-Boltzmann models were developed to investigate the effects of liquid formation on mass transfer in porous channels via path-percolation theory. A two-dimensional lattice with nine velocity components was used in both Lattice-Boltzmann models. A confidence level of 99% was utilized to obtain statistical results of porosity, effective porosity, and tortuosity of the system with 0%, 10%, and 20% liquid formation. Velocity distributions in randomly generated inhomogeneous porous channels with different solid-liquid-vapor combinations were analyzed. The statistical results show that the porosity range of the initially generated porous media lies between the specified error limit of 0.001 determined by the confidence level study for all three cases with 70%, 80%, and 90% target porosity. When target porosity decreases, the difference between porosity and effective porosity increases, and the effective porosity range gets wider than the range of porosity. Effective diffusion coefficient decreases with increase in liquid formation, since the effective porosity decreases. An application programming interface called OpenMP was implemented on the developed serial in-house program and the effects of 1-4 threads on program performance and efficiency were investigated. The maximum speedup and performance gained are 33553 and 1.275 GFlops for 4 threads of a personal computer with a 38.4 GFlops peak performance. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Cekmer, Ozgur; Mench, Matthew M.] Univ Tennessee, Electrochem Energy Storage & Convers Lab, Dept Mech Aerosp & Biomed Engn, Knoxville, TN 37996 USA. [Um, Sukkee] Hanyang Univ, Sch Mech Engn, Seoul 133791, South Korea. [Mench, Matthew M.] Oak Ridge Natl Lab, Energy & Transportat Sci Div, Oak Ridge, TN 37831 USA. RP Mench, MM (reprint author), Univ Tennessee, Electrochem Energy Storage & Convers Lab, Dept Mech Aerosp & Biomed Engn, Knoxville, TN 37996 USA. EM mmench@utk.edu FU Department of Energy [DE-EE0000470] FX This material is based upon work supported by the Department of Energy under Award Number DE-EE0000470. NR 28 TC 1 Z9 1 U1 4 U2 14 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0017-9310 EI 1879-2189 J9 INT J HEAT MASS TRAN JI Int. J. Heat Mass Transf. PD FEB PY 2016 VL 93 BP 257 EP 272 DI 10.1016/j.ijheatmasstransfer.2015.09.012 PG 16 WC Thermodynamics; Engineering, Mechanical; Mechanics SC Thermodynamics; Engineering; Mechanics GA CZ4XZ UT WOS:000367107700025 ER PT J AU Feng, XH King, C Narumanchi, S AF Feng, Xuhui King, Charlie Narumanchi, Sreekant TI General multilayer heat transfer model for optical-based thermal characterization techniques SO INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER LA English DT Article DE Multilayer structure; Heat transfer; Thermoreflectance; Phase shift; Thermal resistance; Direct bonding ID INTERFACE MATERIALS; LAYERED STRUCTURES; TRANSIENT-THERMOREFLECTANCE; CONDUCTIVITY; SILICON; FILMS; CONDUCTANCE; RESISTANCE; EQUATION; SAMPLES AB Optical-based techniques have been used to characterize thermal energy transport in materials for a few decades. To implement these techniques, a modulated heat source (either pulse or continuous wave) is always employed to excite a periodic temperature variation, which subsequently causes variation of temperature within the material and various other parameters that are a function of temperature. Ambient pressure, surface infrared properties, and radiation are all affected by the temperature variation and serve as indicators to indirectly detect the temperature change. To extract the properties of interest, theoretical models and solutions are necessary. In this work, we propose a general heat transfer model in multilayer structures. We also derived general solutions in the frequency domain using recursive matrix relationships. The recursive matrix simplifies the heat transfer analysis by only considering key parameters within the adjacent layers. In addition, the general analytical solution is only composed of a group of equivalent resistances that yield the contribution to the overall phase shift from each interface and can be used to directly calculate the phase difference within similar configurations. We applied this model and the associated solutions to analyze the data from the phase-sensitive transient thermoreflectance (PSTTR) technique. In contrast with typical thermoreflectance techniques, in the PSTTR technique, the pump and probe beams are applied on the opposite surfaces of the sample. We conducted PSTFR measurements on different multilayer structures, and then determined the thermal/physical properties of interest by fitting the theoretical solutions to the experimental data. The thermal conductivity of thermal grease (TC-5022) was determined to be 3.5 W/(m K). Where appropriate, the fitted results were in excellent agreement with results from the literature, which validates this general model and the solution methodology. As another example of a multilayer structure, a novel direct-bonded interface that contains four layers, was studied. Its overall thermal resistance was 0.46 mm(2) K/W, including the Al-Al contact resistance of 0.33 mm(2) K/W and Al-Si contact resistance of 0.06 mm(2) K/W. Using this general model along with the PSTFR technique, an in-depth understanding of the interfacial resistance was achieved by investigating the contributions from each component in the interface. (C) 2015 Published by Elsevier Ltd. C1 [Feng, Xuhui; King, Charlie; Narumanchi, Sreekant] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Narumanchi, S (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM sreekant.narumanchi@nrel.gov NR 33 TC 1 Z9 1 U1 4 U2 18 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0017-9310 EI 1879-2189 J9 INT J HEAT MASS TRAN JI Int. J. Heat Mass Transf. PD FEB PY 2016 VL 93 BP 695 EP 706 DI 10.1016/j.ijheatmasstransfer.2015.10.016 PG 12 WC Thermodynamics; Engineering, Mechanical; Mechanics SC Thermodynamics; Engineering; Mechanics GA CZ4XZ UT WOS:000367107700064 ER PT J AU Gonis, A Zhang, XG Dane, M Stocks, GM Nicholson, DM AF Gonis, A. Zhang, X. -G. Daene, M. Stocks, G. M. Nicholson, D. M. TI Reformulation of density functional theory for N-representable densities and the resolution of the v-representability problem SO JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS LA English DT Article DE Ab initio calculations; Electronic structure ID CONSISTENT-FIELD METHOD; GROUND-STATE ENERGIES; ELECTRON-DENSITIES; CONSTRUCTION; SYSTEMS AB Density functional theory for the case of general, N-representable densities is reformulated in terms of density functional derivatives of expectation values of operators evaluated with wave functions leading to a density, making no reference to the concept of potential. The developments provide proof of existence of a mathematical procedure that determines whether a density is v-representable and in the case of an affirmative answer determines the potential (within an additive constant) as a derivative with respect to the density of a constrained search functional. It also establishes the existence of an energy functional of the density that, for v-representable densities, assumes its minimum value at the density describing the ground state of an interacting many-particle system. The theorems of Hohenberg and Kohn emerge as special cases of the formalism. Numerical results for one-dimensional non-interacting systems illustrate the formalism. Some direct formal and practical implications of the present reformulation of DFT are also discussed. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Gonis, A.; Daene, M.] Lawrence Livermore Natl Lab, Phys & Life Sci, Livermore, CA 94551 USA. [Zhang, X. -G.] Univ Florida, Dept Phys, Gainesville, FL 32611 USA. [Zhang, X. -G.] Univ Florida, Quantum Theory Project, Gainesville, FL 32611 USA. [Stocks, G. M.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Nicholson, D. M.] Univ N Carolina, Dept Phys, Asheville, NC 28804 USA. RP Gonis, A (reprint author), Lawrence Livermore Natl Lab, Phys & Life Sci, POB 808,L-372, Livermore, CA 94551 USA. EM gonis1@llnl.gov RI Stocks, George Malcollm/Q-1251-2016 OI Stocks, George Malcollm/0000-0002-9013-260X FU U.S. DOE [DE-AC52-07NA27344]; LLNS, LLC; Division of Materials Sciences and Engineering, Office of Basic Energy Sciences; Center for Defect Physics in Structural Materials (CDP), an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences FX The work at LLNL is supported by the U.S. DOE under Contract DE-AC52-07NA27344 with LLNS, LLC (AG). Research at ORNL is sponsored by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences (DMN, GMS), and the Center for Defect Physics in Structural Materials (CDP), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences (DMN, GMS, AG). A portion of this research was conducted at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility. NR 22 TC 2 Z9 2 U1 2 U2 10 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-3697 EI 1879-2553 J9 J PHYS CHEM SOLIDS JI J. Phys. Chem. Solids PD FEB PY 2016 VL 89 BP 23 EP 31 DI 10.1016/j.jpcs.2015.10.006 PG 9 WC Chemistry, Multidisciplinary; Physics, Condensed Matter SC Chemistry; Physics GA CZ0FC UT WOS:000366779500004 ER PT J AU Oleksak, RP Devaraj, A Herman, GS AF Oleksak, Richard P. Devaraj, Arun Herman, Gregory S. TI Atomic-scale structural evolution of Ta-Ni-Si amorphous metal thin films SO MATERIALS LETTERS LA English DT Article DE Amorphous metal thin film; Transmission electron microscopy; Atom probe tomography ID NANOSTRUCTURED/AMORPHOUS DIFFUSION-BARRIERS; COPPER METALLIZATION; FAILURE BEHAVIOR; TANTALUM; CRYSTALLIZATION AB We investigated the thermal stability of a new ternary amorphous metal thin film, Ta2.4Ni2.2Si, and assessed its suitability as a Cu diffusion barrier for semiconductor device applications. Transmission electron microscopy was coupled with atom probe tomography to provide a detailed understanding of the atomic-scale evolution of both structure and composition as a function of annealing temperature. We show that the amorphous structure is stable up to > 800 degrees C under ultrahigh vacuum, while annealing to 900 degrees C induces nano-crystallization of a single ternary phase in an amorphous matrix. The implications of crystallization and solute partitioning are examined in the context of high-temperature stability to aid in the design and understanding of this new class of thin film materials. (C) 2015 Elsevier B.V. All rights reserved. C1 [Oleksak, Richard P.; Herman, Gregory S.] Oregon State Univ, Sch Chem Biol & Environm Engn, Corvallis, OR 97331 USA. [Devaraj, Arun] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. RP Herman, GS (reprint author), Oregon State Univ, Sch Chem Biol & Environm Engn, Corvallis, OR 97331 USA. EM greg.herman@oregonstate.edu FU Center for Sustainable Materials Chemistry, U.S. National Science Foundation [CHE-1102637]; Semiconductor Research Corporation [2013-OJ-2438.001]; William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) [47950]; DOE's Office of Biological and Environmental Research; DOE [DE-AC05-76RLO1830] FX R. P. O. acknowledges support from the Center for Sustainable Materials Chemistry, which is supported by the U.S. National Science Foundation under Grant CHE-1102637. G. S. H. acknowledges support from the Semiconductor Research Corporation under contract number 2013-OJ-2438.001. The authors thank Nick Landau and Brendan Flynn for performing film deposition and annealing, respectively, Kris Olsen for performing preliminary X-ray diffraction measurements, and John McGlone, John Wager, and Doug Keszler for valuable discussions. The atom probe tomography experiments in this study were supported by the science theme user proposal funding (Proposal # 47950) from William R. Wiley Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by DOE's Office of Biological and Environmental Research located at PNNL. PNNL is operated by Battelle for the DOE under Contract DE-AC05-76RLO1830. NR 22 TC 0 Z9 0 U1 5 U2 35 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-577X EI 1873-4979 J9 MATER LETT JI Mater. Lett. PD FEB 1 PY 2016 VL 164 BP 9 EP 14 DI 10.1016/j.matlet.2015.10.112 PG 6 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA CZ5AX UT WOS:000367115600003 ER PT J AU Ozmen, O Zondlo, JW Lee, S Gerdes, K Sabolsky, EM AF Ozmen, Ozcan Zondlo, John W. Lee, Shiwoo Gerdes, Kirk Sabolsky, Edward M. TI Bio-inspired surfactant assisted nano-catalyst impregnation of Solid-Oxide Fuel Cell (SOFC) electrodes SO MATERIALS LETTERS LA English DT Article DE SOFC; Electrodes; Nanomaterial; Polydopamine; Bio-inspired ID STABILITY; CATHODES AB A bio-inspired surfactant was utilized to assist in the efficient impregnation of a nano-CeO2 catalyst throughout both porous Solid Oxide Fuel Cells (SOFC's) electrodes simultaneously. The process included the initial modification of electrode pore walls with a polydopamine film. The cell was then submersed into a cerium salt solution. The amount of nano-CeO2 deposited per impregnation step increased by 3.5 times by utilizing this two-step protocol in comparison to a conventional drip impregnation method. The impregnated cells exhibited a 20% higher power density than a baseline cell without the nanocatalyst at 750 degrees C (using humid H-2 fuel). (C) 2015 Elsevier B.V. All rights reserved. C1 [Ozmen, Ozcan; Sabolsky, Edward M.] W Virginia Univ, Dept Mech & Aerosp Engn, Morgantown, WV 26506 USA. [Ozmen, Ozcan; Lee, Shiwoo; Gerdes, Kirk; Sabolsky, Edward M.] US DOE, Natl Energy Technol Lab, Morgantown, WV 26507 USA. [Zondlo, John W.] W Virginia Univ, Dept Chem Engn, Morgantown, WV 26506 USA. [Lee, Shiwoo] AECOM GES, Morgantown, WV 26507 USA. RP Sabolsky, EM (reprint author), W Virginia Univ, Dept Mech & Aerosp Engn, Morgantown, WV 26506 USA. EM ed.sabolsky@mail.wvu.edu RI bagheri, amir/C-3274-2017 FU Department of Energy, National Energy Technology Laboratory, agency of the United States Government, with URS Energy & Construction, Inc.; NETL [DE-FE0004000] FX As part of the Department of Energy (DOE) National Energy Technology Laboratory's Regional University Alliance (NETL-RUA), a collaborative initiative of the NETL, this technical effort was performed under the contract DE-FE0004000. This project was funded by the Department of Energy, National Energy Technology Laboratory, an agency of the United States Government, through a support contract with URS Energy & Construction, Inc. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. The authors would like to acknowledge James Poston at NETL-Morgantown for his assistance in SEM/EDS characterization. The WVU Shared Research Facilities are also acknowledged for their assistance in materials characterization. NR 24 TC 0 Z9 0 U1 8 U2 28 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-577X EI 1873-4979 J9 MATER LETT JI Mater. Lett. PD FEB 1 PY 2016 VL 164 BP 524 EP 527 DI 10.1016/j.matlet.2015.10.159 PG 4 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA CZ5AX UT WOS:000367115600131 ER PT J AU Zhu, PJ Allada, K Allison, T Badman, T Camsonne, A Chen, JP Cummings, M Gu, C Huang, M Liu, J Musson, J Slifer, K Sulkosky, V Ye, YX Zhang, JX Zielinski, R AF Zhu, Pengjia Allada, Kalyan Allison, Trent Badman, Toby Camsonne, Alexandre Chen, Jian-ping Cummings, Melissa Gu, Chao Huang, Min Liu, Jie Musson, John Slifer, Karl Sulkosky, Vincent Ye, Yunxiu Zhang, Jixie Zielinski, Ryan TI Beam position reconstruction for the g2p experiment in Hall A at Jefferson lab SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE G2p; BPM; Raster; Beam position AB Beam-line equipment was upgraded for experiment E08-027 (g2p) in Hall A at Jefferson Lab. Two beam position monitors (BPMs) were necessary to measure the beam position and angle at the target. A new BPM receiver was designed and built to handle the low beam currents (50-100 nA) used for this experiment. Two new super-harps were installed for calibrating the BPMs. In addition to the existing fast raster system, a slow raster system was installed. Before and during the experiment, these new devices were tested and debugged, and their performance was also evaluated. In order to achieve the required accuracy (1-2 mm in position and 1-2 mrad in angle at the target location), the data of the BPMs and harps were carefully analyzed, as well as reconstructing the beam position and angle event by event at the target location. The calculated beam position will be used in the data analysis to accurately determine the kinematics for each event. (C) 2015 Elsevier B.V. All rights reserved. C1 [Zhu, Pengjia; Ye, Yunxiu] Univ Sci & Technol China, Hefei 230026, Anhui, Peoples R China. [Allada, Kalyan; Allison, Trent; Camsonne, Alexandre; Chen, Jian-ping; Musson, John; Zhang, Jixie] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Badman, Toby; Slifer, Karl; Zielinski, Ryan] Univ New Hampshire, Durham, NH 03824 USA. [Cummings, Melissa] Coll William & Mary, Williamsburg, VA 23187 USA. [Gu, Chao; Liu, Jie; Sulkosky, Vincent; Zhang, Jixie] Univ Virginia, Charlottesville, VA 22904 USA. [Huang, Min] Duke Univ, Durham, NC 27708 USA. [Allada, Kalyan; Sulkosky, Vincent] MIT, Cambridge, MA 02139 USA. RP Zhu, PJ (reprint author), Univ Sci & Technol China, Hefei 230026, Anhui, Peoples R China. EM pzhu@jlab.org OI Gu, Chao/0000-0003-1009-6707 FU DOE under Southeastern Universities Research Association (SURA) [DE-AC05-84ER40150]; National Natural Science Foundation of China [11135002, 11275083]; Natural Science Foundation of Anhui Education Committee [KJ2012B179] FX This work was supported by DOE contract DE-AC05-84ER40150 under which the Southeastern Universities Research Association (SURA) operates the Thomas Jefferson National Accelerator Facility, and by the National Natural Science Foundation of China (11135002, 11275083), the Natural Science Foundation of Anhui Education Committee (KJ2012B179). NR 13 TC 0 Z9 0 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD FEB 1 PY 2016 VL 808 BP 1 EP 10 DI 10.1016/j.nima.2015.10.086 PG 10 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA CZ4TM UT WOS:000367095600001 ER PT J AU Gnanvo, K Bai, XZ Gu, C Liyanage, N Nelyubin, V Zhao, YX AF Gnanvo, Kondo Bai, Xinzhan Gu, Chao Liyanage, Nilanga Nelyubin, Vladimir Zhao, Yuxiang TI Performance in test beam of a large-area and light-weight GEM detector with 2D stereo-angle (U-V) strip readout SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE GEM detector; U-V strip; Stereo-angle readout; Position resolution; Angular resolution; Test beam AB A large-area and light-weight gas electron multiplier (GEM) detector was built at the University of Virginia as a prototype for the detector R&D program of the future Electron Ion Collider. The prototype has a trapezoidal geometry designed as a generic sector module in a disk layer configuration of a forward tracker in collider detectors. It is based on light-weight material and narrow support frames in order to minimize multiple scattering and dead-to-sensitive area ratio. The chamber has a novel type of two dimensional (2D) stereo-angle readout board with U-V strips that provides (r,(0) position information in the cylindrical coordinate system of a collider environment. The prototype was tested at the Fermilab Test Beam Facility in October 2013 and the analysis of the test beam data demonstrates an excellent response uniformity of the large area chamber with an efficiency higher than 95%. An angular resolution of 60 Karl in the azimuthal direction and a position resolution better than 550 pm in the radial direction were achieved with the U-V strip readout board. The results are discussed in this paper. (C) 2015 Elsevier B.V. All rights reserved. C1 [Gnanvo, Kondo; Bai, Xinzhan; Gu, Chao; Liyanage, Nilanga; Nelyubin, Vladimir] Univ Virginia, Dept Phys, Charlottesville, VA 22904 USA. [Zhao, Yuxiang] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Zhao, Yuxiang] Univ Sci & Technol China, Hefei 230026, Anhui, Peoples R China. RP Gnanvo, K (reprint author), Univ Virginia, Dept Phys, Charlottesville, VA 22904 USA. EM kgnanvo@virginia.edu OI Gu, Chao/0000-0003-1009-6707 FU Brookhaven National Laboratory through the eRD6 Consortium within the EIC RD program FX This work is supported by Brookhaven National Laboratory through the eRD6 Consortium within the EIC R&D program. NR 11 TC 2 Z9 2 U1 1 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD FEB 1 PY 2016 VL 808 BP 83 EP 92 DI 10.1016/j.nima.2015.11.071 PG 10 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA CZ4TM UT WOS:000367095600011 ER PT J AU Chu, MC Kwan, KK Kwok, MW Kwok, T Leung, JKC Leung, KY Lin, YC Luk, KB Pun, CSJ AF Chu, M. C. Kwan, K. K. Kwok, M. W. Kwok, T. Leung, J. K. C. Leung, K. Y. Lin, Y. C. Luk, K. B. Pun, C. S. J. TI The radon monitoring system in Daya Bay Reactor Neutrino Experiment SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Radon; Rn; Daya Bay ID ELECTROSTATIC COLLECTION; PO-218 AB We developed a highly sensitive, reliable and portable automatic system (H-3) to monitor the radon concentration of the underground experimental halls of the Daya Bay Reactor Neutrino Experiment. H-3 is able to measure radon concentration with a statistical error less than 10% in a 1-h measurement of dehumidified air (R.H. 5% at 25 degrees C) with radon concentration as low as 50 Bq/m(3). This is achieved by using a large radon progeny collection chamber, semiconductor ox-particle detector with high energy resolution, improved electronics and software. The integrated radon monitoring system is highly customizable to operate in different run modes at scheduled times and can be controlled remotely to sample radon in ambient air or in water from the water pools where the antineutrino detectors are being housed. The radon monitoring system has been running in the three experimental halls of the Daya Bay Reactor Neutrino Experiment since November 2013. (C) 2015 Elsevier By. All rights reserved. C1 [Chu, M. C.; Kwan, K. K.; Kwok, M. W.; Lin, Y. C.] Chinese Univ Hong Kong, Dept Phys, Hong Kong, Hong Kong, Peoples R China. [Kwok, T.; Leung, J. K. C.; Leung, K. Y.; Lin, Y. C.; Pun, C. S. J.] Univ Hong Kong, Dept Phys, Hong Kong, Hong Kong, Peoples R China. [Luk, K. B.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Luk, K. B.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. RP Kwok, T (reprint author), Univ Hong Kong, Dept Phys, Hong Kong, Hong Kong, Peoples R China. EM tnkwok@hku.hk FU Research Grant Council of the Hong Kong Special Administrative Region, China [CUHK 1/07C, CUHK3/CRF/10]; University of Hong Kong [201007176191]; Office of Science, Office of High Energy Physics, of the U.S. Department of Energy [DE-AC02-05CH11231] FX We are grateful for the support with grants from the Research Grant Council of the Hong Kong Special Administrative Region, China (Project nos. CUHK 1/07C and CUHK3/CRF/10) and from the University of Hong Kong (Project code: 201007176191). K.B.L. is supported by the Office of Science, Office of High Energy Physics, of the U.S. Department of Energy under Contract no. DE-AC02-05CH11231. NR 10 TC 0 Z9 0 U1 1 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD FEB 1 PY 2016 VL 808 BP 156 EP 164 DI 10.1016/j.nima.2015.11.093 PG 9 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA CZ4TM UT WOS:000367095600021 ER PT J AU Li, Q Luo, KH Kang, QJ He, YL Chen, Q Liu, Q AF Li, Q. Luo, K. H. Kang, Q. J. He, Y. L. Chen, Q. Liu, Q. TI Lattice Boltzmann methods for multiphase flow and phase-change heat transfer SO PROGRESS IN ENERGY AND COMBUSTION SCIENCE LA English DT Review DE Lattice Boltzmann method; Mesoscopic modeling; Multiphase flow; Heat transfer; Phase change ID LARGE DENSITY RATIO; MEMBRANE FUEL-CELL; INCOMPRESSIBLE 2-PHASE FLOWS; THERMAL-ENERGY STORAGE; NAVIER-STOKES EQUATION; GAS-DIFFUSION-LAYER; RAYLEIGH-BENARD CONVECTION; LIQUID WATER TRANSPORT; CURVED BOUNDARY TREATMENT; MACH NUMBER COMBUSTION AB Over the past few decades, tremendous progress has been made in the development of particle-based discrete simulation methods versus the conventional continuum-based methods. In particular, the lattice Boltzmann (LB) method has evolved from a theoretical novelty to a ubiquitous, versatile and powerful computational methodology for both fundamental research and engineering applications. It is a kinetic-based mesoscopic approach that bridges the microscales and macroscales, which offers distinctive advantages in simulation fidelity and computational efficiency. Applications of the LB method are now found in a wide range of disciplines including physics, chemistry, materials, biomedicine and various branches of engineering. The present work provides a comprehensive review of the LB method for thermofluids and energy applications, focusing on multiphase flows, thermal flows and thermal multiphase flows with phase change. The review first covers the theoretical framework of the LB method, revealing certain inconsistencies and defects as well as common features of multiphase and thermal LB models. Recent developments in improving the thermodynamic and hydrodynamic consistency, reducing spurious currents, enhancing the numerical stability, etc., are highlighted. These efforts have put the LB method on a firmer theoretical foundation with enhanced LB models that can achieve larger liquid-gas density ratio, higher Reynolds number and flexible surface tension. Examples of applications are provided in fuel cells and batteries, droplet collision, boiling heat transfer and evaporation, and energy storage. Finally, further developments and future prospect of the LB method are outlined for thermofluids and energy applications. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Li, Q.; Kang, Q. J.] Los Alamos Natl Lab, Computat Earth Sci Grp, Los Alamos, NM 87545 USA. [Li, Q.] Cent S Univ, Sch Energy Sci & Engn, Changsha 410083, Hunan, Peoples R China. [Luo, K. H.] UCL, Dept Mech Engn, London WC1E 7JE, England. [He, Y. L.; Liu, Q.] Xi An Jiao Tong Univ, Sch Energy & Power Engn, Minist Educ, Key Lab Thermofluid Sci & Engn, Xian 710049, Shaanxi, Peoples R China. [Chen, Q.] Nanjing Forestry Univ, Sch Mech & Elect Engn, Nanjing 210037, Jiangsu, Peoples R China. RP Luo, KH (reprint author), UCL, Dept Mech Engn, Torrington Pl, London WC1E 7JE, England. EM k.luo@ucl.ac.uk RI Kang, Qinjun/A-2585-2010 OI Kang, Qinjun/0000-0002-4754-2240 FU Los Alamos National Laboratory's Lab Directed Research & Development (LDRD) Program; National Natural Science Foundation of China [51506227]; Engineering and Physical Sciences Research Council of the United Kingdom [EP/L00030X/1]; DOE NETL Unconventional Oil Gas Project FX The authors gratefully acknowledge the support from the Los Alamos National Laboratory's Lab Directed Research & Development (LDRD) Program, the National Natural Science Foundation of China (No. 51506227), and the Engineering and Physical Sciences Research Council of the United Kingdom (under the project "UK Consortium on Mesoscale Engineering Sciences (UKCOMES)", Grant No. EP/L00030X/1). Q. J. K. also acknowledges the support from a DOE NETL Unconventional Oil & Gas Project. NR 392 TC 30 Z9 30 U1 66 U2 173 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-1285 J9 PROG ENERG COMBUST JI Prog. Energy Combust. Sci. PD FEB PY 2016 VL 52 BP 62 EP 105 DI 10.1016/j.pecs.2015.10.001 PG 44 WC Thermodynamics; Energy & Fuels; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA CZ0EH UT WOS:000366777400002 ER PT J AU Fyffe, L Krahn, S Clarke, J Kosson, D Hutton, J AF Fyffe, Lyndsey Krahn, Steven Clarke, James Kosson, David Hutton, James TI A preliminary analysis of Key Issues in chemical industry accident reports SO SAFETY SCIENCE LA English DT Article DE Chemical industry; Accident investigation; Process safety; Semi-quantitative analysis AB Chemical industry accident reports provide a wealth of information that can be used to develop lessons learned to improve safety and efficiency of operations at chemical industry facilities. The United States Chemical Safety Board (CSB) is one source of these accident reports. As a part of an investigation and causal analysis process, CSB investigators identify "Key Issues" for each chemical accident. This research evaluated trends in those Key Issues by applying two distinct analyses of these issues. The first analysis assessed the Key Issues naturalistically, as reported by the expert investigation team; however, this result was problematic, as about 2/3 of all Key Issues, as described in the chemical industry accident reports, occurred only once. In the second analysis, the Key Issues were sorted thematically to capture insights from the many single-occurrence issues. This thematic analysis, using categories drawn from the Occupational Safety and Health Administration's (OSHA's) Process Safety Management (PSM) guidance, allowed for a more comprehensive understanding and grouping of the issues behind the chemical accidents studied. The findings of this research identified several accident themes that can be used to develop a better understanding of chemical industry accidents and potentially improve safety and efficiency of operations at chemical facilities. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Fyffe, Lyndsey; Krahn, Steven; Clarke, James; Kosson, David] Vanderbilt Univ, Nashville, TN 37235 USA. [Hutton, James] US DOE, Off Environm Management, Washington, DC 20585 USA. RP Fyffe, L (reprint author), Vanderbilt Univ, 2301 Vanderbilt Pl,PMB 351831, Nashville, TN 37235 USA. EM Lyndsey.Fyffe@Vanderbilt.Edu FU Vanderbilt University by the Department of Energy through DOE funds the Consortium for Risk Evaluation with Stakeholder Participation (CRESP) FX Partial support for this work was provided to Vanderbilt University by the Department of Energy through a cooperative agreement through which DOE funds the Consortium for Risk Evaluation with Stakeholder Participation (CRESP). The opinions, findings, conclusions or recommendations expressed herein are those of the authors and do not necessarily represent the views of the Department of Energy or Vanderbilt University. NR 16 TC 1 Z9 1 U1 3 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0925-7535 EI 1879-1042 J9 SAFETY SCI JI Saf. Sci. PD FEB PY 2016 VL 82 BP 368 EP 373 DI 10.1016/j.ssci.2015.10.008 PG 6 WC Engineering, Industrial; Operations Research & Management Science SC Engineering; Operations Research & Management Science GA CZ0AF UT WOS:000366766800036 ER PT J AU Bai, Z Liang, C Bode, S Huygens, D Boeckx, P AF Bai, Zhen Liang, Chao Bode, Samuel Huygens, Dries Boeckx, Pascal TI Phospholipid C-13 stable isotopic probing during decomposition of wheat residues SO APPLIED SOIL ECOLOGY LA English DT Article DE Soil carbon; Kinetics; Microbial groups; C-13-labeled wheat; Isotope ratio mass spectrometry (IRMS); Phospholipid fatty acid (PLFA) ID SOIL MICROBIAL COMMUNITY; ORGANIC-MATTER; LITTER DECOMPOSITION; CARBON FLOW; FATTY-ACIDS; FIELD CONDITIONS; AMINO-SUGARS; BIOMASS; DYNAMICS; STRAW AB Disentangling the kinetics of the soil microbial community succession, which is simultaneously driven by newly added plant materials and extant soil organic matter (SUM), can enrich our knowledge on microbial carbon (C) utilization patterns under residue amendment. This understanding might be useful to predict the rapid responses of specific microbial functional groups and develop strategies for balancing the terrestrial C budget. Therefore, our objective was to characterize and estimate the parameters of the microbial community dynamics profiled by phospholipid fatty acids (PLFA) from C-13-labeled wheat residues and SOM. We conducted a 21-day microcosm study using two different arable systems (conventional tillage, CT; no-till, NT) amended with three types of C-13-labeled wheat residues (grains, leaves and roots). The abundances and isotopic fractions of (CO2)-C-13 flux and C-13-labeled PLFA were measured via gas trace isotope ratio mass spectrometry (IRMS) and gas chromatography-combustion-isotope ratio mass spectrometry (GC-c-IRMS), respectively. A double exponential model was used to describe the synthesis-degradation kinetics of PLFA from different microbial origins. We found that the PLFA formation generally reaches its maximal abundance within 7 days (except for PLFA from actinomycetes). The SUM- and wheat residue-derived C fluxes, as well as their PLFA profiles, were inconsistently impacted by the residue quality or the tillage regime over the incubation period. Specifically, the abundances of residue-derived CO2 and PLFAs significantly decreased in the following order: grains > leaves > roots. However, those abundances derived from SUM were the lowest with the leaf residue treatments. Residue-derived PLFA patterns were highly influenced by fungi and G bacteria, while G bacterial and actinomycete PLFAs were preferentially linked to extant SUM mineralization. Compared to the residue-derived counterparts, the SUM-derived microbes were characterized by higher G(+)/G bacteria and cy17:01C16:1 omega 7c ratios, as well as lower fungi/bacteria PLFA ratios. Such distinction between residue and SUM was also evidenced by the contrasting tillage effects on C mineralization and the ratios of cy17:01C16:1 omega 7c and fungal/G bacterial PLFA. Our study provides evidence with important implications for adapting the microbial-mediated processes of soil C management through residue quality control. (C) 2015 Elsevier B.V. All rights reserved. C1 [Bai, Zhen; Liang, Chao] Chinese Acad Sci, Inst Appl Ecol, State Key Lab Forest & Soil Ecol, Shenyang 110016, Peoples R China. [Bai, Zhen; Bode, Samuel; Huygens, Dries; Boeckx, Pascal] Univ Ghent, Isotope Biosci Lab ISOFYS, B-9000 Ghent, Belgium. [Liang, Chao] Univ Wisconsin, DOE Great Lakes Bioenergy Res Ctr, Madison, WI 53706 USA. [Huygens, Dries] Univ Austral Chile, Fac Agr Sci, Inst Agr Engn & Soil Sci, Valdivia, Chile. RP Bai, Z (reprint author), Chinese Acad Sci, Inst Appl Ecol, State Key Lab Forest & Soil Ecol, Shenyang 110016, Peoples R China. EM baizhen@iae.ac.cn; cliang823@gmail.com FU National Natural Science Foundation of China [41271250, 41130524]; "China Soil Microbiome Initiative: Function and regulation of soil-microbial systems" of the CAS [XDB15010303]; "Departement Onderwijs en Vorming" of the Flemish Government in Belgium FX This study was supported by the National Natural Science Foundation of China (41271250, 41130524), "China Soil Microbiome Initiative: Function and regulation of soil-microbial systems" of the CAS (XDB15010303), and the "Departement Onderwijs en Vorming" of the Flemish Government in Belgium. We thank Jan Vermeulen for 13C analysis of CO2, Karolien Denef and Johan Six for providing the labelled plant materials, and Philips C. Brookes and Jeremy Lederhouse for language revision and nice suggestions. We would like to thank two anonymous reviewers and the editor for their valuable and constructive inputs. NR 72 TC 2 Z9 2 U1 21 U2 68 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0929-1393 EI 1873-0272 J9 APPL SOIL ECOL JI Appl. Soil Ecol. PD FEB PY 2016 VL 98 BP 65 EP 74 DI 10.1016/j.apsoil.2015.09.009 PG 10 WC Soil Science SC Agriculture GA CX9AW UT WOS:000365998100008 ER PT J AU Jokisaari, AM Permann, C Thornton, K AF Jokisaari, A. M. Permann, C. Thornton, K. TI A nucleation algorithm for the coupled conserved-nonconserved phase field model SO COMPUTATIONAL MATERIALS SCIENCE LA English DT Article DE Phase field modeling; Finite element method; Nucleation; Time adaptivity; Mesh adaptivity ID HETEROEPITAXIAL THIN-FILMS; COMPUTER-SIMULATION; MICROSTRUCTURAL DEVELOPMENT; SPINODAL DECOMPOSITION; CRITICAL NUCLEI; GROWTH; TRANSFORMATIONS; PRECIPITATION; MORPHOLOGY; EVOLUTION AB This paper presents a refinement to the existing nucleation algorithm for a coupled conserved-nonconserved phase field model. In the new method, which offers greater ease of implementation as compared to the existing approach, only the nonconserved order parameter is modified to seed supercritical nuclei ( thus termed order-parameter-only seeding). The order- parameter-only seeding method naturally satisfies the conservation law for the conserved order parameter. In addition, the implementation within a finite element framework is described. The evolution of a single nucleus is examined to ensure that the precipitate growth kinetics are not affected by the seeding method. We find that, after a brief initial transient period, order- parameter-only nucleation yields similar precipitate growth characteristics to that of the existing model. The kinetics of a phase transformation exhibiting concurrent nucleation and growth is analyzed in the form of the Avrami equation, and a statistical analysis is performed to determine if mesh and/or time adaptivity affects the simulation results. The statistical analysis indicates that the nucleation algorithm is amenable to adaptive meshing and adaptive time stepping. (C) 2015 Elsevier B.V. All rights reserved. C1 [Jokisaari, A. M.; Thornton, K.] Univ Michigan, Coll Engn, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA. [Permann, C.] Idaho Natl Lab, Modeling & Simulat Dept, Idaho Falls, ID 83415 USA. RP Thornton, K (reprint author), Univ Michigan, Coll Engn, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA. OI /0000-0002-1227-5293 FU Consortium for Advanced Simulation of Light Water Reactors, an Energy Innovation Hub for Modeling and Simulation of Nuclear Reactors under U.S. Department of Energy [DE-AC05-00OR22725] FX This research was supported by the Consortium for Advanced Simulation of Light Water Reactors (http://www.casl.gov), an Energy Innovation Hub (http://www.energy.gov/hubs) for Modeling and Simulation of Nuclear Reactors under U.S. Department of Energy Contract No. DE-AC05-00OR22725. The simulations were performed using the high performance computation resources Fission and Quark at Idaho National Laboratory (INL). Many thanks to the MOOSE team at INL for the continuing, generous help and support with MOOSE. Finally, many thanks to Michael Tonks at INL for his help and experience with phase field modeling using MOOSE. NR 53 TC 4 Z9 4 U1 4 U2 20 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-0256 EI 1879-0801 J9 COMP MATER SCI JI Comput. Mater. Sci. PD FEB PY 2016 VL 112 BP 128 EP 138 DI 10.1016/j.commatsci.2015.10.009 PN A PG 11 WC Materials Science, Multidisciplinary SC Materials Science GA CX9VE UT WOS:000366053000018 ER PT J AU Gorai, P Gao, DF Ortiz, B Miller, S Barnett, SA Mason, T Lv, Q Stevanovic, V Toberer, ES AF Gorai, Prashun Gao, Duanfeng Ortiz, Brenden Miller, Sam Barnett, Scott A. Mason, Thomas Lv, Qin Stevanovic, Vladan Toberer, Eric S. TI TE Design Lab: A virtual laboratory for thermoelectric material design SO COMPUTATIONAL MATERIALS SCIENCE LA English DT Article DE Thermoelectrics; High-throughput; Materials genome initiative; TE Design Lab ID THERMAL-CONDUCTIVITY; HIGH-PERFORMANCE; EFFICIENCY; ENHANCEMENT; FIGURE; MERIT; PBSE; PBTE AB The discovery of advanced thermoelectric materials is the key bottleneck limiting the commercialization of solid-state technology for waste heat recovery and compression-free refrigeration. Computationally-driven approaches can accelerate the discovery of new thermoelectric materials and provide insights into the underlying structure-property relations that govern thermoelectric performance. We present TE Design Lab (www.tedesignlab.org), a thermoelectrics-focused virtual laboratory that contains calculated thermoelectric properties as well as performance rankings based on a metric (Yan et al., 2015) that combines ab initio calculations and modeled electron and phonon transport to offer a reliable assessment of the intrinsic material properties that govern the thermoelectric figure of merit zT. Another useful component of TE Design Lab is the suite of interactive web-based tools that enable users to mine the raw data and unearth new structure-property relations. Examples that illustrate this utility are presented. With the goal of establishing a close partnership between experiments and computations, TE Design Lab also offers resources to analyze raw experimental thermoelectric data and contribute them to the open access database. (C) 2015 Published by Elsevier B.V. C1 [Gorai, Prashun; Ortiz, Brenden; Stevanovic, Vladan; Toberer, Eric S.] Colorado Sch Mines, Golden, CO 80401 USA. [Gorai, Prashun; Stevanovic, Vladan; Toberer, Eric S.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Gao, Duanfeng; Lv, Qin] Univ Colorado, Boulder, CO 80309 USA. [Miller, Sam; Barnett, Scott A.; Mason, Thomas] Northwestern Univ, Evanston, IL 60208 USA. RP Toberer, ES (reprint author), Colorado Sch Mines, Golden, CO 80401 USA. EM etoberer@mines.edu RI Barnett, Scott/B-7502-2009 FU National Science Foundation (NSF) [1334713, 1334351, 1333335] FX The development of TE Design Lab is supported by the National Science Foundation (NSF) under Grants 1334713, 1334351 and 1333335. Computational infrastructure for first-principles calculations has been enabled by the Department of Energy (DOE), through the National Renewable Energy Laboratory (NREL). NR 32 TC 15 Z9 15 U1 20 U2 80 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-0256 EI 1879-0801 J9 COMP MATER SCI JI Comput. Mater. Sci. PD FEB PY 2016 VL 112 BP 368 EP 376 DI 10.1016/j.commatsci.2015.11.006 PN A PG 9 WC Materials Science, Multidisciplinary SC Materials Science GA CX9VE UT WOS:000366053000047 ER PT J AU Jiang, W Kim, TY AF Jiang, Wen Kim, Tae-Yeon TI Spline-based finite-element method for the stationary quasi-geostrophic equations on arbitrary shaped coastal boundaries SO COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING LA English DT Article DE Nitsche's method; Geophysical fluid dynamics; Ocean circulation; Fourth-order partial differential equations ID INTERFACE PROBLEMS; NITSCHES METHOD; CELL METHOD; OCEAN; MODELS; FORMULATION AB This work concerns a B-spline based finite-element algorithm for the stationary quasi-geostrophic equations to treat the large scale wind-driven ocean circulation on arbitrary shaped domains. The algorithm models arbitrary shaped coastal boundaries on intra-element, or embedded boundaries. Dirichlet boundary conditions on the embedded boundaries are weakly imposed and stabilization is achieved via Nitsche's method. We employ a hierarchical local refinement approach to improve the geometrical representation of curved boundaries. Results from several benchmark problems on rectangular and curved domains are provided to demonstrate the accuracy and robustness of the method. We also provide the Mediterranean sea example that illustrates the effectiveness of the approach in the wind-driven ocean circulation simulation. (C) 2015 Elsevier B.V. All rights reserved. C1 [Jiang, Wen] Idaho Natl Lab, Fuels Modeling & Simulat, Idaho Falls, ID 83415 USA. [Kim, Tae-Yeon] Khalifa Univ Sci Technol & Res, Civil Infrastruct & Environm Engn, Abu Dhabi 127788, U Arab Emirates. RP Kim, TY (reprint author), Khalifa Univ Sci Technol & Res, Civil Infrastruct & Environm Engn, Abu Dhabi 127788, U Arab Emirates. EM taeyeon.kim@kustar.ac.ae RI Kim, Tae-Yeon/P-5766-2016; OI Kim, Tae-Yeon/0000-0003-4743-6023; Jiang, Wen/0000-0001-6978-9159 NR 34 TC 0 Z9 0 U1 1 U2 1 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0045-7825 EI 1879-2138 J9 COMPUT METHOD APPL M JI Comput. Meth. Appl. Mech. Eng. PD FEB 1 PY 2016 VL 299 BP 144 EP 160 DI 10.1016/j.cma.2015.11.003 PG 17 WC Engineering, Multidisciplinary; Mathematics, Interdisciplinary Applications; Mechanics SC Engineering; Mathematics; Mechanics GA CZ1KS UT WOS:000366865300007 ER PT J AU Lehoucq, RB Rowe, ST AF Lehoucq, R. B. Rowe, S. T. TI A radial basis function Galerkin method for inhomogeneous nonlocal diffusion SO COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING LA English DT Article DE Radial basis functions; Nonlocal diffusion; Lagrange functions; Volume constraint ID APPROXIMATIONS AB We introduce a meshfree discretization for a nonlocal diffusion problem using a localized basis of radial basis functions. Our method consists of a conforming radial basis of local Lagrange functions for a variational formulation of a volume constrained nonlocal diffusion equation. We also establish an L-2 error estimate on the local Lagrange interpolant. The stiffness matrix is assembled by a special quadrature routine unique to the localized basis. Combining the quadrature method with the localized basis produces a well-conditioned, sparse, symmetric positive definite stiffness matrix. We demonstrate that both the continuum and discrete problems are well-posed and present numerical results for the convergence behavior of the radial basis function method. We explore approximating the solution to inhomogeneous differential equations by solving inhomogeneous nonlocal integral equations using the proposed radial basis function method. (C) 2015 Elsevier B.V. All rights reserved. C1 [Lehoucq, R. B.] Sandia Natl Labs, Computat Math, Albuquerque, NM 87185 USA. [Rowe, S. T.] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA. RP Lehoucq, RB (reprint author), Sandia Natl Labs, Computat Math, POB 5800, Albuquerque, NM 87185 USA. EM rblehou@sandia.gov; srowe@math.tamu.edu FU Laboratory Directed Research and Development (LDRD) program at Sandia National Laboratories; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The work of the authors was supported by the Laboratory Directed Research and Development (LDRD) program at Sandia National Laboratories. Sandia is a multi-program laboratory managed and operated by Sandia Corporation, a wholly subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 15 TC 0 Z9 0 U1 1 U2 1 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0045-7825 EI 1879-2138 J9 COMPUT METHOD APPL M JI Comput. Meth. Appl. Mech. Eng. PD FEB 1 PY 2016 VL 299 BP 366 EP 380 DI 10.1016/j.cma.2015.10.021 PG 15 WC Engineering, Multidisciplinary; Mathematics, Interdisciplinary Applications; Mechanics SC Engineering; Mathematics; Mechanics GA CZ1KS UT WOS:000366865300015 ER PT J AU Li, PF Liu, XH Chen, MH Lin, PZ Ren, XG Lin, L Yang, C He, LX AF Li, Pengfei Liu, Xiaohui Chen, Mohan Lin, Peize Ren, Xinguo Lin, Lin Yang, Chao He, Lixin TI Large-scale ab initio simulations based on systematically improvable atomic basis SO COMPUTATIONAL MATERIALS SCIENCE LA English DT Article DE First-principles; Computer code package; Large scale; Atomic basis ID DENSITY-FUNCTIONAL THEORY; TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; ELECTRONIC-STRUCTURE; SI(100) SURFACE; ALLOYS; MODEL; SEMICONDUCTORS; APPROXIMATION; PSEUDOPOTENTIALS AB We present a first-principles computer code package (ABACUS) that is based on density functional theory and numerical atomic basis sets. Theoretical foundations and numerical techniques used in the code are described, with focus on the accuracy and transferability of the hierarchical atomic basis sets as generated using a scheme proposed by Chen et al. (2010). Benchmark results are presented for a variety of systems include molecules, solids, surfaces, and defects. All results show that the ABACUS package with its associated atomic basis sets is an efficient and reliable tool for simulating both small and large-scale materials. (C) 2015 Elsevier B.V. All rights reserved. C1 [Li, Pengfei; Liu, Xiaohui; Lin, Peize; Ren, Xinguo; He, Lixin] Univ Sci & Technol China, Key Lab Quantum Informat, Hefei 230026, Peoples R China. [Li, Pengfei; Liu, Xiaohui; Lin, Peize; Ren, Xinguo; He, Lixin] Univ Sci & Technol China, Synerget Innovat Ctr Quantum Informat & Quantum P, Hefei 230026, Peoples R China. [Chen, Mohan] Princeton Univ, Dept Mech & Aerosp Engn, Princeton, NJ 08544 USA. [Lin, Lin] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA. [Lin, Lin; Yang, Chao] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA. RP Chen, MH (reprint author), Univ Sci & Technol China, Key Lab Quantum Informat, Hefei 230026, Peoples R China. EM mohan.chen.chen.mohan@gmail.com; renxg@ustc.edu.cn; helx@ustc.edu.cn RI Ren, Xinguo/N-4768-2014; Chen, Mohan/F-4621-2017 OI Chen, Mohan/0000-0002-8071-5633 FU Chinese National Fundamental Research Program [2011CB921200]; National Natural Science Funds for Distinguished Young Scholars; Chinese National Science Foundation [11374275, 11374276] FX The authors thank Yonghua Zhao and Wei Zhao for the valuable help on the HPSEPS package. LH acknowledges the support from the Chinese National Fundamental Research Program 2011CB921200, the National Natural Science Funds for Distinguished Young Scholars and Chinese National Science Foundation Grant No. 11374275. XR acknowledges the support from Chinese National Science Foundation award number 11374276. NR 70 TC 2 Z9 2 U1 4 U2 24 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-0256 EI 1879-0801 J9 COMP MATER SCI JI Comput. Mater. Sci. PD FEB PY 2016 VL 112 BP 503 EP 517 DI 10.1016/j.commatsci.2015.07.004 PN B PG 15 WC Materials Science, Multidisciplinary SC Materials Science GA CX9VJ UT WOS:000366053500011 ER PT J AU Hu, W Yang, JL AF Hu, Wei Yang, Jinlong TI First-principles study of two-dimensional van der Waals heterojunctions SO COMPUTATIONAL MATERIALS SCIENCE LA English DT Article DE Two-dimensional materials; Van der Waals heterojunctions; Density functional theory ID HEXAGONAL BORON-NITRIDE; FIELD-EFFECT TRANSISTORS; GRAPHITIC CARBON NITRIDE; VISIBLE-LIGHT; ELECTRONIC-PROPERTIES; BLACK PHOSPHORUS; AB-INITIO; GRAPHENE ELECTRONICS; HYDROGEN EVOLUTION; POROUS SILICENE AB Research on graphene and other two-dimensional (2D) materials, such as silicene, germanene, phosphorene, hexagonal boron nitride (h-BN), graphitic carbon nitride (g-C3N4), graphitic zinc oxide (g-ZnO) and molybdenum disulfide (MoS2), has recently received considerable interest owing to their outstanding properties and wide applications. Looking beyond this field, combining the electronic structures of 2D materials in ultrathin van der Waals heterojunctions has also emerged to widely study theoretically and experimentally to explore some new properties and potential applications beyond their single components. Here, this article reviews our recent theoretical studies on the structural, electronic, electrical and optical properties of 2D van der Waals heterojunctions using density functional theory calculations, including the Graphene/Silicene, Graphene/Phosphorene, Graphene/g-ZnO, Graphene/MoS2 and g-C3N4/MoS2 heterojunctions. Our theoretical simulations, designs and calculations show that novel 2D van der Waals heterojunctions provide a promising future for electronic, electrochemical, photovoltaic, photoresponsive and memory devices in the experiments. (C) 2015 Elsevier B.V. All rights reserved. C1 [Hu, Wei; Yang, Jinlong] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China. [Hu, Wei] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA. [Yang, Jinlong] Univ Sci & Technol China, Synerget Innovat Ctr Quantum Informat & Quantum P, Hefei 230026, Anhui, Peoples R China. RP Yang, JL (reprint author), Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China. EM jlyang@ustc.edu.cn RI Yang, Jinlong/D-3465-2009; OI Yang, Jinlong/0000-0002-5651-5340; Hu, Wei/0000-0001-9629-2121 FU National Key Basic Research Program [2011CB921404]; NSFC [11404109, 21121003, 91021004, 21233007, 21222304]; CAS [XDB01020300]; Scientific Discovery through Advanced Computing (SciDAC) program - U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research and Basic Energy Sciences FX This work is partially supported by the National Key Basic Research Program (2011CB921404), by NSFC (11404109, 21121003, 91021004, 21233007, 21222304), by CAS (XDB01020300). This work is also partially supported by the Scientific Discovery through Advanced Computing (SciDAC) program funded by U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research and Basic Energy Sciences (W. H.). We thank the National Energy Research Scientific Computing (NERSC) center, and the USTCSCC, SC-CAS, Tianjin, and Shanghai Supercomputer Centers for the computational resources. NR 110 TC 11 Z9 11 U1 75 U2 331 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-0256 EI 1879-0801 J9 COMP MATER SCI JI Comput. Mater. Sci. PD FEB PY 2016 VL 112 BP 518 EP 526 DI 10.1016/j.commatsci.2015.06.033 PN B PG 9 WC Materials Science, Multidisciplinary SC Materials Science GA CX9VJ UT WOS:000366053500012 ER PT J AU Wu, LL Schliesser, J Woodfield, BF Xu, HW Navrotsky, A AF Wu, Lili Schliesser, Jacob Woodfield, Brian F. Xu, Hongwu Navrotsky, Alexandra TI Heat capacities, standard entropies and Gibbs energies of Sr-, Rb- and Cs-substituted barium aluminotitanate hollandites SO JOURNAL OF CHEMICAL THERMODYNAMICS LA English DT Article DE Heat capacity; Gibbs energy; Entropy; Hollandite; Radionuclide immobilization ID NUCLEAR-WASTE IMMOBILIZATION; CSALSI2O6-CSTISI2O6.5 JOIN; HIGH-TEMPERATURE; THERMOCHEMISTRY; POLLUCITES; PHASE; CHEMISTRY; FORMS AB Heat capacities of Sr-, Rb-, and Cs-hollandite with the compositions Ba1.14Sr0.10Al2.38Ti5.59O16, Ba1.17Rb0.19Al2.46Ti5.53O16, and Ba1.18Cs0.21Al2.44Ti5.53O16 were measured from T = (2 to 300) K using a Quantum Design Physical Property Measurement System (PPMS). From the heat capacity results, the following thermodynamic parameters have been determined. The characteristic Debye temperatures Theta(D) over the temperature range (30 to 300) K of Sr-, Rb-, and Cs-hollandite are T = (1782, 189.7, and 189.2) K, respectively, and their standard entropies at T = 298.15 K are (413.9 +/- 8.3), (415.1 +/- 8.3), and (419.6 +/- 8.4) J . K-1 . mol(-1). Combined with previously reported formation enthalpies, their corresponding Gibbs energies of formation from oxides (Delta(f)G(ox)degrees) are (-194.9 +/- 11.4), (-195.0 +/- 12.8), and (-201.1 +/- 12.8) kJ . mol(-1), and those from elements (Delta(f)G(el)degrees) are (-7694.6 +/- 12.5), (-7697.0 +/- 13.9), and (-7697.1 +/- 13.9) kJ . mol(-1) at T = 298.15 K. The similarities among the obtained Delta(f)G(ox)degrees values suggest that the three substituted hollandites have similar thermodynamic stabilities at standard conditions, which is in agreement with the ease of Cs-Rb-Sr substitutions in the hollandite structure. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Wu, Lili; Navrotsky, Alexandra] Univ Calif Davis, Peter A Rock Thermochem Lab, Davis, CA 95616 USA. [Wu, Lili; Navrotsky, Alexandra] Univ Calif Davis, NEAT ORU, Davis, CA 95616 USA. [Schliesser, Jacob; Woodfield, Brian F.] Brigham Young Univ, Dept Chem & Biochem, Provo, UT 84602 USA. [Xu, Hongwu] Los Alamos Natl Lab, Earth & Environm Sci Div, Los Alamos, NM 87545 USA. RP Navrotsky, A (reprint author), Univ Calif Davis, Peter A Rock Thermochem Lab, Davis, CA 95616 USA. EM anavrotsky@ucdavis.edu OI Xu, Hongwu/0000-0002-0793-6923 FU laboratory directed research and development (LDRD) program of Los Alamos National Laboratory [DE-AC52-06NA25396] FX This work was supported by the laboratory directed research and development (LDRD) program of Los Alamos National Laboratory, which is operated by Los Alamos National Security LLC under DOE Contract DE-AC52-06NA25396. NR 29 TC 0 Z9 0 U1 9 U2 23 PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0021-9614 EI 1096-3626 J9 J CHEM THERMODYN JI J. Chem. Thermodyn. PD FEB PY 2016 VL 93 BP 1 EP 7 DI 10.1016/j.jct.2015.09.019 PG 7 WC Thermodynamics; Chemistry, Physical SC Thermodynamics; Chemistry GA CY0EJ UT WOS:000366078900001 ER PT J AU Pratapa, PP Suryanarayana, P Pask, JE AF Pratapa, Phanisri P. Suryanarayana, Phanish Pask, John E. TI Anderson acceleration of the Jacobi iterative method: An efficient alternative to Krylov methods for large, sparse linear systems SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE Linear systems of equations; Fixed-point iteration; Jacobi method; Anderson extrapolation; Nonsymmetric matrix; Poisson equation; Helmholtz equation; Parallel computing ID DENSITY-FUNCTIONAL THEORY; NONLINEAR ACCELERATION; CONVERGENCE AB We employ Anderson extrapolation to accelerate the classical Jacobi iterative method for large, sparse linear systems. Specifically, we utilize extrapolation at periodic intervals within the Jacobi iteration to develop the Alternating Anderson-Jacobi (AAJ) method. We verify the accuracy and efficacy of AAJ in a range of test cases, including nonsymmetric systems of equations. We demonstrate that AAJ possesses a favorable scaling with system size that is accompanied by a small prefactor, even in the absence of a preconditioner. In particular, we show that AAJ is able to accelerate the classical Jacobi iteration by over four orders of magnitude, with speed-ups that increase as the system gets larger. Moreover, we find that AAJ significantly outperforms the Generalized Minimal Residual (GMRES) method in the range of problems considered here, with the relative performance again improving with size of the system. Overall, the proposed method represents a simple yet efficient technique that is particularly attractive for large-scale parallel solutions of linear systems of equations. (C) 2015 Elsevier Inc. All rights reserved. C1 [Pratapa, Phanisri P.; Suryanarayana, Phanish] Georgia Inst Technol, Coll Engn, Atlanta, GA 30332 USA. [Pask, John E.] Lawrence Livermore Natl Lab, Div Phys, Livermore, CA 94550 USA. RP Suryanarayana, P (reprint author), Georgia Inst Technol, Coll Engn, Atlanta, GA 30332 USA. EM phanish.suryanarayana@ce.gatech.edu FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07-NA27344]; Exascale Co-design Center for Materials in Extreme Environments - Office of Science Advanced Scientific Computing Research Program; National Science Foundation [1333500] FX This work was performed, in part, under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07-NA27344 and the Exascale Co-design Center for Materials in Extreme Environments supported by Office of Science Advanced Scientific Computing Research Program. The authors also gratefully acknowledge the support of National Science Foundation under Grant Number 1333500. NR 30 TC 4 Z9 4 U1 1 U2 11 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 EI 1090-2716 J9 J COMPUT PHYS JI J. Comput. Phys. PD FEB 1 PY 2016 VL 306 BP 43 EP 54 DI 10.1016/j.jcp.2015.11.018 PG 12 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA CY1HJ UT WOS:000366157000003 ER PT J AU Hu, XH Sun, X Golovashchenko, SF AF Hu, X. H. Sun, X. Golovashchenko, S. F. TI An integrated finite element-based simulation framework: From hole piercing to hole expansion SO FINITE ELEMENTS IN ANALYSIS AND DESIGN LA English DT Article DE Hole piercing; Hole expansion ratio; Finite element simulations; Aluminum alloys ID ALUMINUM; TENSILE; SHEET; BEHAVIOR; ALLOYS AB An integrated finite element-based modeling framework is developed to predict the hole expansion ratio (HER) of AA6111-T4 sheet by considering the piercing-induced damages around the hole edge. Using damage models and parameters calibrated from previously reported tensile stretchability studies, the predicted HER correlates well with experimentally measured HER values for different hole piercing clearances. The hole piercing model shows burrs are not generated on the sheared surface for clearances less than 20%, which corresponds well with the experimental data on pierced holes cross-sections. Finite-element-calculated HER also is not especially sensitive to piercing clearances less than this value. However, as clearances increase to 30% and further to 40%, the HER values are predicted to be considerably smaller, also consistent with experimental measurements. Upon validation, the integrated modeling framework is used to examine the effects of different hole piercing and hole expansion conditions on the critical HERs for AA6111-T4. (C) 2015 Elsevier B.V. All rights reserved. C1 [Hu, X. H.; Sun, X.] Pacific NW Natl Lab, Adv Comp Math & Data Div, Richland, WA 99354 USA. [Golovashchenko, S. F.] Oakland Univ, Dept Mech Engn, Oakland, MI 48124 USA. RP Hu, XH (reprint author), Pacific NW Natl Lab, Adv Comp Math & Data Div, Richland, WA 99354 USA. EM xiaohua.hu@pnnl.gov RI Hu, Xiaohua/J-6519-2012 OI Hu, Xiaohua/0000-0002-7735-5091 FU U.S. Department of Energy (DOE) [DE-ACO5-76RL01830]; DOE's Office of FreedomCAR and Vehicle Technologies FX Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy (DOE) under Contract No. DE-ACO5-76RL01830. This work was partially funded by the DOE's Office of FreedomCAR and Vehicle Technologies under the Automotive Lightweighting Materials Program managed by Mr. William Joost. The authors would like to thank Nan Wang at Oakland University, who provided the cross-section pictures of hole-pierced samples. The authors also would like to thank Yevgeniya Katykova and Amir Hassannejadasl for providing the results of accumulated rolling and tension tests. NR 23 TC 0 Z9 0 U1 2 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-874X EI 1872-6925 J9 FINITE ELEM ANAL DES JI Finite Elem. Anal. Des. PD FEB PY 2016 VL 109 BP 1 EP 13 DI 10.1016/j.finel.2015.09.005 PG 13 WC Mathematics, Applied; Mechanics SC Mathematics; Mechanics GA CX6MS UT WOS:000365815800001 ER PT J AU Yoon, KJ Marina, OA AF Yoon, Kyung Joong Marina, Olga A. TI Highly stable dual-phase Y0.8Ca0.2Cr0.8Co0.2O3-Sm0.2Ce0.8O1.9 ceramic composite membrane for oxygen separation SO JOURNAL OF MEMBRANE SCIENCE LA English DT Article DE Dual-phase stable ceramic membrane; High-temperature oxygen separation; Oxygen permeability; High-purity oxygen production; Doped chromite-ceria composite ID OXIDE FUEL-CELLS; HOLLOW-FIBER MEMBRANE; YTTRIA-STABILIZED ZIRCONIA; PEROVSKITE-TYPE OXIDES; THERMAL-EXPANSION; DOPED CERIA; ELECTRICAL-PROPERTIES; AC-IMPEDANCE; PERMEATION; PERMEABILITY AB A highly stable ceramic composite membrane composed of Ca- and Co-doped yttrium chromite, Y0.8Ca0.2Cr0.8Co0.2O3 (YCCC), and samaria-doped ceria, Sm0.2Ce0.8O1.9 (SDC), was demonstrated for oxygen separation. Homogeneously dispersed nano-scale composite powders were synthesized by a single-step combustion process based on the glycine-nitrate method. Dense composite membranes were achieved having submicron grain sizes and well-percolated electronic and ionic conduction pathways. Densification of the composite membrane was assisted by liquid phase sintering caused by cobalt-doping in yttrium chromite, and gas-tight membranes are fabricated at 1400 degrees C. The YCCC and SDC phases were chemically and thermo-mechanically compatible at both processing and operating temperatures. The composite membrane exhibited an oxygen permeation flux comparable to those of the state-of-the-art single-phase membrane materials and excellent stability in harsh operating conditions under a H-2-CO2 environment for long-term operation, which suggests potential application in various combustion and fuel production processes. (C) 2015 Elsevier B.V. All rights reserved. C1 [Yoon, Kyung Joong; Marina, Olga A.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Yoon, Kyung Joong] Korea Inst Sci & Technol, Seoul 135791, South Korea. RP Marina, OA (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM olga.marina@pnnl.gov FU institutional research programs of the Pacific Northwest National Laboratory; U.S. Department of Energy [AC06-76RLO 1830]; Korea Institute of Science and Technology FX This research was financially supported by the institutional research programs of the Pacific Northwest National Laboratory, a multiprogram national laboratory operated by Battelle for the U.S. Department of Energy under Contract AC06-76RLO 1830, and Korea Institute of Science and Technology. NR 54 TC 1 Z9 1 U1 13 U2 73 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0376-7388 EI 1873-3123 J9 J MEMBRANE SCI JI J. Membr. Sci. PD FEB 1 PY 2016 VL 499 BP 301 EP 306 DI 10.1016/j.memsci.2015.10.064 PG 6 WC Engineering, Chemical; Polymer Science SC Engineering; Polymer Science GA CX3IK UT WOS:000365591200028 ER EF