FN Thomson Reuters Web of Science™ VR 1.0 PT J AU Gaiser, K Erickson, P Stroeve, P Delplanque, JP AF Gaiser, Kyle Erickson, Paul Stroeve, Pieter Delplanque, Jean-Pierre TI An experimental investigation of design parameters for pico-hydro Turgo turbines using a response surface methodology SO RENEWABLE ENERGY LA English DT Article DE Pico-hydro; Turgo turbine; Hydroelectricity; Optimization; Central composite design; Response surface methodology ID PERFORMANCE AB Millions of off-grid homes in remote areas around the world have access to pico-hydro (5 kW or less) resources that are undeveloped due to prohibitive installed costs ($/kW). The Turgo turbine, a hydroelectric impulse turbine generally suited for medium to high head applications, has gained renewed attention in research due to its potential applicability to such sites. Nevertheless, published literature about the Turgo turbine is limited and indicates that current theory and experimental knowledge do not adequately explain the effects of certain design parameters, such as nozzle diameter, jet inlet angle, number of blades, and blade speed on the turbine's efficiency. In this study, these parameters are used in a three-level (34) central composite response surface experiment. A low-cost Turgo turbine is built and tested from readily available materials and a second order regression model is developed to predict its efficiency as a function of each parameter above and their interactions. The effects of blade orientation angle and jet impact location on efficiency are also investigated and experimentally found to be of relatively little significance to the turbine. The purpose of this study is to establish empirical design guidelines that enable small hydroelectric manufacturers and individuals to design low-cost efficient Turgo Turbines that can be optimized to a specific pica-hydra site. The results are also expressed in dimensionless parameters to allow for potential scaling to larger systems and manufacturers. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Gaiser, Kyle; Erickson, Paul; Delplanque, Jean-Pierre] Univ Calif Davis, Dept Mech & Aerosp Engn, Davis, CA 95616 USA. [Stroeve, Pieter] Univ Calif Davis, Dept Chem Engn, Davis, CA 95616 USA. [Gaiser, Kyle] Sandia Natl Labs, Livermore, CA USA. RP Erickson, P (reprint author), Univ Calif Davis, Dept Mech & Aerosp Engn, One Shields Ave, Davis, CA 95616 USA. EM kbgaiser@ucdavis.edu; paericicson@ucdavis.edu RI Delplanque, Jean-Pierre/I-8690-2016; OI Delplanque, Jean-Pierre/0000-0003-1774-1641 NR 39 TC 1 Z9 1 U1 2 U2 17 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0960-1481 J9 RENEW ENERG JI Renew. Energy PD JAN PY 2016 VL 85 BP 406 EP 418 DI 10.1016/j.renene.2015.06.049 PG 13 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels SC Science & Technology - Other Topics; Energy & Fuels GA CU2HO UT WOS:000363344800039 ER PT J AU Boubault, A Ho, CK Hall, A Lambert, TN Ambrosini, A AF Boubault, Antoine Ho, Clifford K. Hall, Aaron Lambert, Timothy N. Ambrosini, Andrea TI Levelized cost of energy (LCOE) metric to characterize solar absorber coatings for the CSP industry SO RENEWABLE ENERGY LA English DT Article DE LCOE; LCOC; Aging; Durability; Solar absorber; Coating ID SELECTIVE ABSORBERS; THERMAL-STABILITY; DURABILITY; SYSTEM AB The contribution of each component of a power generation plant to the levelized cost of energy (LCOE) can be estimated and used to increase the power output while reducing system operation and maintenance costs. The LCOE is used in order to quantify solar receiver coating influence on the LCOE of solar power towers. Two new parameters are introduced: the absolute levelized cost of coating (LCOC) and the LCOC efficiency. Depending on the material properties, aging, costs, and temperature, the absolute LCOC enables quantifying the cost-effectiveness of absorber coatings, as well as finding optimal operating conditions. The absolute LCOC is investigated for different hypothetic coatings and is demonstrated on Pyromark 2500 paint. Results show that absorber coatings yield lower LCOE values in most cases, even at significant costs. Optimal reapplication intervals range from one to five years. At receiver temperatures greater than 700 degrees C, non-selective coatings are not always worthwhile while durable selective coatings consistently reduce the LCOE-up to 12% of the value obtained for an uncoated receiver. The absolute LCOC is a powerful tool to characterize and compare different coatings, not only considering their initial efficiencies but also including their durability. Published by Elsevier Ltd. C1 [Boubault, Antoine; Ho, Clifford K.; Hall, Aaron; Lambert, Timothy N.; Ambrosini, Andrea] Sandia Natl Labs, Concentrating Solar Technol Dept, Albuquerque, NM 87185 USA. RP Boubault, A (reprint author), Sandia Natl Labs, Concentrating Solar Technol Dept, POB 5800, Albuquerque, NM 87185 USA. EM ckho@sandia.gov FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. The United States Government and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. NR 24 TC 0 Z9 0 U1 5 U2 26 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0960-1481 J9 RENEW ENERG JI Renew. Energy PD JAN PY 2016 VL 85 BP 472 EP 483 DI 10.1016/j.renene.2015.06.059 PG 12 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels SC Science & Technology - Other Topics; Energy & Fuels GA CU2HO UT WOS:000363344800045 ER PT J AU Popov, S Abdel-Fattah, T Kumar, S AF Popov, Sergiy Abdel-Fattah, Tarek Kumar, Sandeep TI Hydrothermal treatment for enhancing oil extraction and hydrochar production from oilseeds SO RENEWABLE ENERGY LA English DT Article DE Oilseeds; Hydrothermal pretreatment; Soxhlet extraction; Hydrothermal carbonization; Hydrochar ID SUBCRITICAL WATER; ULTRASONIC EXTRACTION; INFRARED-SPECTROSCOPY; VEGETABLE-OILS; KINETICS AB A novel integrated oil extraction process that includes hydrothermal pretreatment and oil extraction (HPOE) from whole oilseeds followed by hydrothermal carbonization (HTC) of the extracted seedcake to hydrochar was developed. Five different types of oilseeds including cotton-, flax-, mustard-, canola-, and jatropha seeds were used in the study. The seeds were subjected to hydrothermal pretreatment in the range of temperatures from 120 to 210 degrees C for 30 min. Oils were extracted from the pretreated seeds using n-hexane in a Soxhlet apparatus for 120 min. The crude oil yields from the pretreated seeds at 180 degrees C and 210 degrees C were significantly higher (up to 30 wt%) than those from the respective untreated ground seeds. The seedcake after oil extraction was subjected to HTC at 300 degrees C with the recycled aqueous phase collected from the pretreatment step. The produced hydrochar had higher heating value of 26.5 kJ/g comparable to that of bituminous coal. BET surface area and pore volume analysis showed that the pretreated seeds had larger surface area and pore volume/size than the respective raw seeds, which resulted in better extractability of oil, shorter extraction time, and overall efficiency of HPOE process. Analyses of the crude oil did not show significant signs of degradation after the hydrothermal pretreatment of oilseeds. The study is the first of its kind where integrated oil extraction and hydrochar production from oilseeds have been studied with the objective of minimizing feedstock preparation and maximizing oil extraction and overall energy conversion using environmentally benign hydrothermal processes. (c) 2015 Elsevier Ltd. All rights reserved. C1 [Popov, Sergiy; Kumar, Sandeep] Old Dominion Univ, Dept Civil & Environm Engn, Norfolk, VA 23529 USA. [Abdel-Fattah, Tarek] Christopher Newport Univ, Appl Res Ctr, Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Abdel-Fattah, Tarek] Christopher Newport Univ, Dept Mol Biol & Chem, Newport News, VA 23606 USA. RP Kumar, S (reprint author), Old Dominion Univ, Dept Civil & Environm Engn, 5115 Hampton Blvd, Norfolk, VA 23529 USA. EM skumar@odu.edu FU Research Foundation at Old Dominion University (ODURF) FX The authors would like to acknowledge the encouragement and support of our colleagues at the Department of Chemistry and Biochemistry at Old Dominion University in the preparation of this article. We also acknowledge Dr. Florin Barla from Old Dominion University for his help with the oil analyses. Our special appreciation goes to the Research Foundation at Old Dominion University (ODURF) for providing the financial support for this research. NR 27 TC 1 Z9 1 U1 4 U2 32 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0960-1481 J9 RENEW ENERG JI Renew. Energy PD JAN PY 2016 VL 85 BP 844 EP 853 DI 10.1016/j.renene.2015.07.048 PG 10 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels SC Science & Technology - Other Topics; Energy & Fuels GA CU2HO UT WOS:000363344800082 ER PT J AU Ren, Z Wu, ZL Song, WQ Xiao, W Guo, YB Ding, J Suib, SL Gao, PX AF Ren, Zheng Wu, Zili Song, Wenqiao Xiao, Wen Guo, Yanbing Ding, Jun Suib, Steven L. Gao, Pu-Xian TI Low temperature propane oxidation over Co3O4 based nano-array catalysts: Ni dopant effect, reaction mechanism and structural stability SO APPLIED CATALYSIS B-ENVIRONMENTAL LA English DT Article DE Nano-array catalyst; in situ DRIFTS; Low temperature propane oxidation; Isotope exchange; Reaction mechanism ID CO OXIDATION; CARBON-MONOXIDE; PEROVSKITE OXIDES; MESOPOROUS CO3O4; COMBUSTION; EMISSIONS; METHANE; SURFACE; MANGANESE; GASOLINE AB Low temperature propane oxidation has been achieved by Co3O4-based nano-array catalysts featuring low catalytic materials loading (15 mg under flow rate of 150 mL/min). The increased Ni doping into the Co3O4 lattice has led to 100% propane conversion at low temperature (<400 degrees C) and has enhanced reaction kinetics by promoting the surface lattice oxygen activity. In situ DRIFTS investigations in tandem with isotopic oxygen exchange reveals that the propane oxidation proceeds via a Mars-van Krevelen mechanism where surface lattice oxygen acts as the active site whereas O-2 in the reaction feed does not directly participate in CO2 formation. The Ni doping promotes the formation of less stable carbonates on the surface to facilitate the CO2 desorption. The thermal stability of Ni doped Co3O4 decreases with increased Ni concentration despite the increased catalytic activity. A balance between enhanced activity and compromised thermal stability is considered in the Ni doped Co3O4 nano-array catalysts for hydrocarbon oxidation. This study provides useful and timely guidance for rational catalyst design toward low temperature catalytic oxidation. (C) 2015 Elsevier B.V. All rights reserved. C1 [Ren, Zheng; Guo, Yanbing; Suib, Steven L.; Gao, Pu-Xian] Univ Connecticut, Dept Mat Sci & Engn, Storrs, CT 06269 USA. [Ren, Zheng; Guo, Yanbing; Suib, Steven L.; Gao, Pu-Xian] Univ Connecticut, Inst Mat Sci, Storrs, CT 06269 USA. [Wu, Zili] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Song, Wenqiao; Suib, Steven L.] Univ Connecticut, Dept Chem, Storrs, CT 06269 USA. [Xiao, Wen; Ding, Jun] Natl Univ Singapore, Dept Mat Sci & Engn, Singapore 119260, Singapore. RP Wu, ZL (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. EM wuzl@ornl.gov; puxian.gao@ims.uconn.edu FU US Department of Energy; US National Science Foundation; General Electrics Graduate Fellowship for Innovation FX The authors are grateful for the financial support from the US Department of Energy and the US National Science Foundation. A portion of this research including the in situ IR and Raman work was conducted at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility. Z.R. would like to acknowledge the partial support from a General Electrics Graduate Fellowship for Innovation. NR 44 TC 10 Z9 10 U1 27 U2 129 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0926-3373 EI 1873-3883 J9 APPL CATAL B-ENVIRON JI Appl. Catal. B-Environ. PD JAN PY 2016 VL 180 BP 150 EP 160 DI 10.1016/j.apcatb.2015.04.021 PG 11 WC Chemistry, Physical; Engineering, Environmental; Engineering, Chemical SC Chemistry; Engineering GA CS8ZZ UT WOS:000362379800018 ER PT J AU Ding, SP Liu, FD Shi, XY He, H AF Ding, Shipeng Liu, Fudong Shi, Xiaoyan He, Hong TI Promotional effect of Nb additive on the activity and hydrothermal stability for the selective catalytic reduction of NOx with NH3 over CeZrOx catalyst SO APPLIED CATALYSIS B-ENVIRONMENTAL LA English DT Article DE Selective catalytic reduction; Nitrogen oxides; Diesel engine exhaust; Hydrothermal stability; CeNbZrOx mixed oxide ID MIXED-OXIDE CATALYST; SULFATED ZIRCONIA; AMMONIA; MECHANISM; DRIFT; PERFORMANCE; REACTIVITY; RESISTANCE; EXHAUST; CERIA AB The promotional mechanism of Nb addition on the activity and hydrothermal stability of CeZr2Ox catalyst for the selective catalytic reduction of NOx with NH3 (NH3-SCR) was investigated by various methods including N-2-physisorption, XRD, H-2-TPR and in situ DRIFTS. The Nb-promoted CeZr2Ox catalyst showed remarkable NH3-SCR activity together with excellent N-2 selectivity, SO2/H2O resistance and outstanding hydrothermal stability. The characterization results showed that the introduction of Nb to CeZr2Ox not only resulted in the high surface area and strong redox ability, but also promoted the adsorption and activation of NH3 and enhanced the reactivity of adsorbed nitrate together with NH3 species. All the above features were favorable for the superior NH3-SCR performance. In addition, the CeNb3.0Zr2Ox catalysts hydrothermally aged below 800 degrees C still possessed high redox ability and abundant acid sites, all of which were responsible for the excellent hydrothermal durability. The novel CeNb3.0Zr2Ox catalyst was a promising candidate for the removal of NOx from diesel engine. (C) 2015 Elsevier B.V. All rights reserved. C1 [Ding, Shipeng; Liu, Fudong; Shi, Xiaoyan; He, Hong] Chinese Acad Sci, Ecoenvironm Sci Res Ctr, State Key Joint Lab Environm Simulat & Pollut Con, Beijing 100085, Peoples R China. RP Liu, FD (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM fudongliu@lbl.gov; honghe@rcees.ac.cn FU National Natural Science Foundation of China [51221892]; Ministry of Science and Technology, China [2013AA065301] FX This work was supported by the National Natural Science Foundation of China (51221892) and the Ministry of Science and Technology, China (2013AA065301). NR 41 TC 9 Z9 9 U1 22 U2 107 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0926-3373 EI 1873-3883 J9 APPL CATAL B-ENVIRON JI Appl. Catal. B-Environ. PD JAN PY 2016 VL 180 BP 766 EP 774 DI 10.1016/j.apcatb.2015.06.055 PG 9 WC Chemistry, Physical; Engineering, Environmental; Engineering, Chemical SC Chemistry; Engineering GA CS8ZZ UT WOS:000362379800086 ER PT J AU Zhou, ZF Yablon, J Zhou, MC Wang, Y Heifetz, A Shahriar, MS AF Zhou, Zifan Yablon, Joshua Zhou, Minchuan Wang, Ye Heifetz, Alexander Shahriar, M. S. TI Modeling and analysis of an ultra-stable subluminal laser SO OPTICS COMMUNICATIONS LA English DT Article DE Optics; Photonics; Laser; Slow light ID ATOMIC PHASE COHERENCE; WHITE-LIGHT CAVITIES; CESIUM VAPOR LASER; RING LASER; QUANTUM LIMIT; ROTATION; POWER; GYRO AB We describe a subluminal laser which is extremely stable against perturbations. It makes use of a composite gain spectrum consisting of a broad background along with a narrow peak. The stability of the laser, defined as the change in frequency as a function of a change in the cavity length, is enhanced by a factor given by the group index, which can be as high as 105 for experimentally realizable parameters. We also show that the fundamental linewidth of such a laser is expected to be smaller by the same factor. We first present an analysis where the gain profile is modeled as a superposition of two Lorentzian functions. We then present a numerical study based on a physical scheme for realizing the composite gain profile. In this scheme, the broad gain is produced by a high pressure buffer gas loaded cell of rubidium vapor. The narrow gain is produced by using a Raman pump in a second rubidium vapor cell, where optical pumping is used to produce a Raman population inversion. We show close agreement between the idealized model and the explicit model. A subluminal laser of this type may prove to be useful for many applications. (C) 2015 Elsevier B.V. All rights reserved C1 [Zhou, Zifan; Yablon, Joshua; Wang, Ye; Shahriar, M. S.] Northwestern Univ, Dept Elect Engn & Comp Sci, Evanston, IL 60201 USA. [Zhou, Minchuan; Shahriar, M. S.] Northwestern Univ, Dept Phys & Astron, Evanston, IL USA. [Heifetz, Alexander] Argonne Natl Lab, Nucl Engn Div, Argonne, IL 60439 USA. RP Zhou, ZF (reprint author), Northwestern Univ, Dept Elect Engn & Comp Sci, Evanston, IL 60201 USA. EM zifanzhou2012@u.northwestern.edu FU AFOSR [FA9550-10-1-0228]; NSF IGERT [DGE-0801685]; NASA [NNM13AA60C] FX This research was supported in part by AFOSR Grant # FA9550-10-1-0228, NSF IGERT Grant # DGE-0801685, and NASA Grant # NNM13AA60C. NR 45 TC 2 Z9 2 U1 0 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0030-4018 EI 1873-0310 J9 OPT COMMUN JI Opt. Commun. PD JAN 1 PY 2016 VL 358 BP 6 EP 19 DI 10.1016/j.optcom.2015.09.007 PG 14 WC Optics SC Optics GA CT8DV UT WOS:000363046100002 ER PT J AU Zarkadoula, E Xue, HZ Zhang, YW Weber, WJ AF Zarkadoula, Eva Xue, Haizhou Zhang, Yanwen Weber, William J. TI Synergy of inelastic and elastic energy loss: Temperature effects and electronic stopping power dependence SO SCRIPTA MATERIALIA LA English DT Article DE Radiation effects; Molecular dynamics; Ceramics; Perovskite; Defects ID THERMAL-CONDUCTIVITY; ION IRRADIATION; HEAVY-IONS; TRACK; RADIATION; CREATION; GROWTH; SRTIO3 AB A combination of an inelastic thermal spike model suitable for insulators and molecular dynamics simulations is used to study the effects of temperature and electronic energy loss on ion track formation, size and morphology in SrTiO3 systems with pre-existing disorder. We find temperature dependence of the ion track size. We also find a threshold in the electronic energy loss for a given pre-existing defect concentration, which indicates a threshold in the synergy between the inelastic and elastic energy loss. (C) 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Zarkadoula, Eva; Zhang, Yanwen; Weber, William J.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Xue, Haizhou; Zhang, Yanwen; Weber, William J.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. RP Zarkadoula, E (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. EM zarkadoulae@ornl.gov RI Weber, William/A-4177-2008; OI Weber, William/0000-0002-9017-7365; Zarkadoula, Eva/0000-0002-6886-9664 FU U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division; Office of Science, US Department of Energy [DEAC02-05CH11231] FX This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division. This research used resources of the National Energy Research Scientific Computing Center, supported by the Office of Science, US Department of Energy under Contract No. DEAC02-05CH11231. NR 32 TC 2 Z9 2 U1 8 U2 42 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD JAN 1 PY 2016 VL 110 BP 2 EP 5 DI 10.1016/j.scriptamat.2015.05.044 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA CT6LC UT WOS:000362923500002 ER PT J AU Guo, W Gan, B Molina-Aldareguia, JM Poplawsky, JD Raabe, D AF Guo, Wei Gan, Bin Molina-Aldareguia, Jon M. Poplawsky, Jonathan D. Raabe, Dierk TI Structure and dynamics of shear bands in amorphous-crystalline nanolaminates SO SCRIPTA MATERIALIA LA English DT Article DE Nanolaminates; Metallic glass; Nanocrystallization; Shear band; Atom probe tomography ID METALLIC GLASSES; MECHANICAL-BEHAVIOR; ATOM-PROBE; CU-ZR; DEFORMATION; ALLOYS; NANOCRYSTALLIZATION; TEMPERATURE AB The velocities of shear bands in amorphous CuZr/crystalline Cu nanolaminates were quantified as a function of strain rate and crystalline volume fraction. A rate-dependent transition in flow response was found in a 100 nm CuZr/10 nm Cu nanolaminates. When increasing the Cu layer thickness from 10 nm to 100 nm, the instantaneous velocity of the shear band in these nanolaminates decreases from 11.2 mu m/s to omega < 3.0 eV. We observed a peak in the real part of Theta(K)(omega) and zero crossing in the imaginary part that we attribute to a resonant interaction with a spin-orbit avoided crossing located approximate to 1.6 eV above the Fermi energy. The resonant enhancement allows measurement of the temperature and magnetic field dependence of Theta(K) in the ultrathin film limit, d >= 2 quintuple layers (QL). We find a sharp transition to zero remanent magnetization at 6 K for d < 8 QL, consistent with theories of the dependence of impurity spin interactions on film thickness and their location relative to topological insulator surfaces. C1 [Patankar, Shreyas; Hinton, J. P.; Griesmar, Joel; Orenstein, J.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Patankar, Shreyas; Hinton, J. P.; Griesmar, Joel; Orenstein, J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA 94720 USA. [Dodge, J. S.] Simon Fraser Univ, Dept Phys, Burnaby, BC VST 1Z1, Canada. [Kou, Xufeng; Pan, Lei; Wang, Kang L.] Univ Calif Los Angeles, Dept Elect Engn, Los Angeles, CA 90095 USA. [Bestwick, A. J.; Fox, E. J.; Goldhaber-Gordon, D.; Wang, Jing; Zhang, Shou-Cheng] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Bestwick, A. J.; Fox, E. J.; Goldhaber-Gordon, D.; Wang, Jing; Zhang, Shou-Cheng] SLAC Natl Accelerator Lab, Stanford Inst Mat & Energy Sci, Menlo Pk, CA 94025 USA. RP Patankar, S (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM jworenstein@lbl.gov RI Orenstein, Joseph/I-3451-2015; Wang, Jing/E-5925-2012 OI Wang, Jing/0000-0002-4674-9485 FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DE-AC02-76SF00515]; Materials Science and Active Surface Program at Ecole Polytechnique, Palaiseau, France (Chaire X-ESPCI-Saint-Gobain); Benchmark Stanford Graduate Fellowship; DOE Office of Science Graduate Fellowship; DARPA MESO program [N66001-12-1-4034, N66001-11-1-4105]; Gordon and Betty Moore Foundation [GBMF3429] FX This research was primarily supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, under Contract No. DE-AC02-76SF00515. J.G. acknowledges a scholarship from the Materials Science and Active Surface Program at Ecole Polytechnique, Palaiseau, France (Chaire X-ESPCI-Saint-Gobain) for support. K.L.W. acknowledges the support of the Raytheon endorsement. A.J.B. acknowledges support from a Benchmark Stanford Graduate Fellowship. E.J.F. acknowledges support from a DOE Office of Science Graduate Fellowship. Materials growth, surface characterization, preliminary electrical characterization, and electronic instrumentation were supported by the DARPA MESO program under Contracts No. N66001-12-1-4034 and No. N66001-11-1-4105. The infrastructure and cryostat were funded in part by the Gordon and Betty Moore Foundation through Grant GBMF3429 to D.G.-G. NR 35 TC 1 Z9 1 U1 9 U2 27 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD DEC 31 PY 2015 VL 92 IS 21 AR 214440 DI 10.1103/PhysRevB.92.214440 PG 6 WC Physics, Condensed Matter SC Physics GA CZ8US UT WOS:000367375200005 ER PT J AU Higginson, DP Link, A Sawada, H Wilks, SC Bartal, T Chawla, S Chen, CD Flippo, KA Jarrott, LC Key, MH McLean, HS Patel, PK Perez, F Wei, MS Beg, FN AF Higginson, D. P. Link, A. Sawada, H. Wilks, S. C. Bartal, T. Chawla, S. Chen, C. D. Flippo, K. A. Jarrott, L. C. Key, M. H. McLean, H. S. Patel, P. K. Perez, F. Wei, M. S. Beg, F. N. TI High-contrast laser acceleration of relativistic electrons in solid cone-wire targets SO PHYSICAL REVIEW E LA English DT Article ID PROTON-BEAMS; HIGH-DENSITY; PLASMA; ABSORPTION; IGNITION; CONDUCTIVITY; SIMULATION; GENERATION; EMISSION; CRYSTALS AB The consequences of small scale-length precursor plasmas on high-intensity laser-driven relativistic electrons are studied via experiments and simulations. Longer scale-length plasmas are shown to dramatically increase the efficiency of electron acceleration, yet, if too long, they reduce the coupling of these electrons into the solid target. Evidence for the existence of an optimal plasma scale-length is presented and estimated to be from 1 to 5 mu m. Experiments on the Trident laser (I = 5 x 10(19) W/cm(2)) diagnosed via K alpha emission from Cu wires attached to Au cones are quantitively reproduced using 2D particle-in-cell simulations that capture the full temporal and spatial scale of the nonlinear laser interaction and electron transport. The simulations indicate that 32% +/- 8% (6.5% +/- 2%) of the laser energy is coupled into electrons of all energies (1-3 MeV) reaching the inner cone tip and that, with an optimized scale-length, this could increase to 35% (9%). C1 [Higginson, D. P.; Sawada, H.; Bartal, T.; Chawla, S.; Jarrott, L. C.; Wei, M. S.; Beg, F. N.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Higginson, D. P.; Link, A.; Wilks, S. C.; Bartal, T.; Chawla, S.; Chen, C. D.; Jarrott, L. C.; Key, M. H.; McLean, H. S.; Patel, P. K.; Perez, F.] Lawrence Livermore Natl Lab, Livermore, CA 94440 USA. [Sawada, H.] Univ Nevada, Dept Phys, Reno, NV 89557 USA. [Flippo, K. A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Perez, F.] Univ Paris 06, Ecole Polytech, CNRS, Lab Utilisat Lasers Intenses,CEA,UMR 7605, F-91128 Palaiseau, France. [Wei, M. S.] Gen Atom Co, San Diego, CA 92186 USA. RP Higginson, DP (reprint author), Univ Calif San Diego, La Jolla, CA 92093 USA. RI Higginson, Drew/G-5942-2016; Patel, Pravesh/E-1400-2011; Sawada, Hiroshi/Q-8434-2016 OI Higginson, Drew/0000-0002-7699-3788; Sawada, Hiroshi/0000-0002-7972-9894 FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Lawrence Scholar Program at Lawrence Livermore National Laboratory FX The authors acknowledge the contributions of K. U. Akli, S. D. Baton, R. Fedosejevs, R. R. Freeman, H. Friesen, S. Gaillard, D. Hey, G. E. Kemp, M. Koenig, A. G. Krygier, T. Ma, C. Murphy, D. T. Offerman, Y. Y. Tsui, D. Turnbull, T. L. D. Van Woerkom, B. Westover, T. Yabuuchi, and the Trident and Titan Laser team with performing the experiment. We are grateful for the work of D. W. Schumacher and C. Orban in the extended development and improvements to the LSP code. We acknowledge R. B. Stephens and E. Giraldez for fabrication and assembly of targets. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. D.P.H. was supported through the Lawrence Scholar Program at Lawrence Livermore National Laboratory. NR 50 TC 1 Z9 1 U1 6 U2 17 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 EI 1550-2376 J9 PHYS REV E JI Phys. Rev. E PD DEC 31 PY 2015 VL 92 IS 6 AR 063112 DI 10.1103/PhysRevE.92.063112 PG 6 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA CZ8XZ UT WOS:000367383700010 PM 26764843 ER PT J AU Zhu, W Yu, KM Walukiewicz, W AF Zhu, Wei Yu, Kin Man Walukiewicz, W. TI Indium doped Cd1-xZnxO alloys as wide window transparent conductors SO THIN SOLID FILMS LA English DT Article DE Transparent conducting oxides; Cadmium oxide; Zinc oxides; Full spectrum photovoltaics ID LASER DEPOSITION; FILMS; CDO; OXIDE AB We have synthesized Indium doped Cd1-xZnxO alloys across the full composition range using magnetron sputtering method. The crystallographic structure of these alloys changes from rocksalt (RS) to wurtzite (WZ) when the Zn content is higher than 30%. The rocksalt phase alloys in the composition range 0 < x < 0.3 can be efficiently n-type doped, shifting the absorption edge to 3.25 eV and reducing resistivity to about 2.0 x 10(-4) Omega-cm. We found that In doped CdO (ICO) transmits more solar photons than commercial fluorine doped tin oxide (FTO) with comparable sheet conductivity. The infrared transmittance is further extended to longer than 1500 nm wavelengths by depositing the In doped Cd1-xZnxO in similar to 1% of O-2. This material has a potential for applications as a transparent conductor for silicon and multi-junction solar cells. (C) 2015 Elsevier B.V. All rights reserved. C1 [Zhu, Wei; Yu, Kin Man; Walukiewicz, W.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Zhu, Wei] Univ Sci & Technol China, Ctr Phys Expt, Dept Phys, Hefei 230026, Anhui, Peoples R China. [Yu, Kin Man] City Univ Hong Kong, Dept Phys & Mat Sci, Kowloon, Hong Kong, Peoples R China. RP Yu, KM (reprint author), City Univ Hong Kong, Dept Phys & Mat Sci, Kowloon, Hong Kong, Peoples R China. EM kinmanyu@cityu.edu.hk FU Department of Energy through the Bay Area Photovoltaic Consortium [DE-EE0004946]; Oversea Academic Training Funds of USTC FX This work was supported by the Department of Energy through the Bay Area Photovoltaic Consortium under Award Number DE-EE0004946. Wei Zhu acknowledges support from the Oversea Academic Training Funds of USTC. NR 17 TC 0 Z9 0 U1 8 U2 24 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0040-6090 J9 THIN SOLID FILMS JI Thin Solid Films PD DEC 31 PY 2015 VL 597 BP 183 EP 187 DI 10.1016/j.tsf.2015.11.052 PG 5 WC Materials Science, Multidisciplinary; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA CY8GO UT WOS:000366647000028 ER PT J AU Schultz, AM Brown, TD Buric, MP Lee, SW Gerdes, K Ohodnicki, PR AF Schultz, Andrew M. Brown, Thomas D. Buric, Michael P. Lee, Shiwoo Gerdes, Kirk Ohodnicki, Paul R. TI High temperature fiber-optic evanescent wave hydrogen sensors using La-doped SrTiO3 for SOFC applications SO SENSORS AND ACTUATORS B-CHEMICAL LA English DT Article DE Optical fiber sensor; Metal oxide; Hydrogen sensor; SrTiO3; High temperature ID STRONTIUM-TITANATE; LANTHANUM; GAS; CHEMISTRY; CERAMICS AB Advanced sensors are needed for development of next-generation fossil fuel power generation technologies and for enhancing efficiencies of existing power generation systems. Optical waveguide-based sensing technologies have become increasingly important for harsh environment energy applications. In this manuscript, we present sensing results for fiber-optic evanescent wave hydrogen sensors employing La-doped SrTiO3 layers as the active sensing element. These sensors show a rapid, reproducible sensing response to hydrogen fuel gas streams at elevated temperatures (600-800 degrees C). The presence of hydrogen results in a reversible and reproducible decrease in near-infrared transmission through the sensor. Sensors were also tested directly in the anode assembly of an operating solid oxide fuel cell (SOFC) with the sensor response correlating with both H-2 concentration and SOFC cell potential. (C) 2015 Elsevier B.V. All rights reserved. C1 [Schultz, Andrew M.; Brown, Thomas D.; Buric, Michael P.; Gerdes, Kirk; Ohodnicki, Paul R.] Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. [Lee, Shiwoo] AECOM GES, Morgantown, WV 26507 USA. RP Schultz, AM (reprint author), Natl Energy Technol Lab, 626 Cochrans Mill Rd, Pittsburgh, PA 15236 USA. EM andy.schultzl@gmail.com FU U.S. DOE Advanced Research/Crosscutting Technologies program at National Energy Technology Laboratory; U.S. Department of Energy; United States Government FX The authors acknowledge Dr. Gregory Hackett and Mr. Dave Ruehl for assistance and support in completing the SOFC experiments. This work was funded by the U.S. DOE Advanced Research/Crosscutting Technologies program at the National Energy Technology Laboratory. This research was supported in part by an appointment to the National Energy Technology Laboratory Research Participation Program, sponsored by the U.S. Department of Energy and administered by the Oak Ridge Institute for Science and Education.; This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. NR 21 TC 3 Z9 3 U1 10 U2 98 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-4005 J9 SENSOR ACTUAT B-CHEM JI Sens. Actuator B-Chem. PD DEC 31 PY 2015 VL 221 BP 1307 EP 1313 DI 10.1016/j.snb.2015.07.046 PG 7 WC Chemistry, Analytical; Electrochemistry; Instruments & Instrumentation SC Chemistry; Electrochemistry; Instruments & Instrumentation GA CT6JA UT WOS:000362918100165 ER PT J AU Ayzner, AL Mei, JG Appleton, A DeLongchamp, D Nardes, A Benight, S Kopidakis, N Toney, MF Bao, ZN AF Ayzner, Alexander L. Mei, Jianguo Appleton, Anthony DeLongchamp, Dean Nardes, Alexandre Benight, Stephanie Kopidakis, Nikos Toney, Michael F. Bao, Zhenan TI Impact of the Crystallite Orientation Distribution on Exciton Transport in Donor-Acceptor Conjugated Polymers SO ACS APPLIED MATERIALS & INTERFACES LA English DT Article DE exciton diffusion; conjugated polymer; texture; crystallographic orientation; fluorescence quenching ID ORGANIC SOLAR-CELLS; DIFFUSION LENGTH; CHARGE-TRANSPORT; PHOTOVOLTAIC DEVICES; FULLERENE ACCEPTORS; ENERGY-TRANSFER; SIDE-CHAINS; THIN-FILMS; HETEROJUNCTION; POLY(3-HEXYLTHIOPHENE) AB Conjugated polymers are widely used materials in organic photovoltaic devices. Owing to their extended electronic wave functions, they often form semicrystalline thin films. In this work, we aim to understand whether distribution of crystallographic orientations affects exciton diffusion using a low-band-gap polymer backbone motif that is representative of the donor/acceptor copolymer class. Using the fact that the polymer side chain can tune the dominant crystallographic orientation in the thin film, we have measured the quenching of polymer photoluminescence, and thus the extent of exciton dissociation, as a function of crystal orientation with respect to a quenching substrate. We find that the crystallite orientation distribution has little effect on the average exciton diffusion length. We suggest several possibilities for the lack of correlation between crystallographic texture and exciton transport in semicrystalline conjugated polymer films. C1 [Ayzner, Alexander L.; Mei, Jianguo; Appleton, Anthony; Benight, Stephanie; Bao, Zhenan] Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA. [Ayzner, Alexander L.; Toney, Michael F.] SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA. [DeLongchamp, Dean] Natl Inst Stand & Technol, Gaithersburg, MD 20899 USA. [Nardes, Alexandre; Kopidakis, Nikos] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Toney, MF (reprint author), SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA. EM mftoney@slac.stanford.edu; zbao@stanford.edu RI mei, jianguo/C-6711-2011; OI mei, jianguo/0000-0002-5743-2715; Ayzner, Alexander/0000-0002-6549-4721 FU Center for Advanced Molecular Photovoltaics [KUS-C1-015-21]; Global Climate and Energy Program at Stanford; Energy Frontier Research Center "Molecularly Engineered Energy Materials (MEEMs)" - U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001342:001] FX We thank the Bent group at Stanford University for help with ALD preparation of titania films. This work was partially supported by the Center for Advanced Molecular Photovoltaics, Award No. KUS-C1-015-21, made by King Abdullah University of Science and Technology. We also acknowledge support from the Global Climate and Energy Program at Stanford. GIXD measurements were carried out at the Stanford Synchrotron Radiation Lightsource, a national user facility operated by Stanford University on behalf of the U.S. Department of Energy, Office of Basic Energy Sciences. N.K. and A.M.N. acknowledge funding from the Energy Frontier Research Center "Molecularly Engineered Energy Materials (MEEMs)" funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract Number DE-SC0001342:001. NR 52 TC 5 Z9 5 U1 9 U2 33 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1944-8244 J9 ACS APPL MATER INTER JI ACS Appl. Mater. Interfaces PD DEC 30 PY 2015 VL 7 IS 51 BP 28035 EP 28041 DI 10.1021/acsami.5b02968 PG 7 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA DC8CT UT WOS:000369448200008 PM 26292836 ER PT J AU Kung, CW Mondloch, JE Wang, TC Bury, W Hoffeditz, W Klahr, BM Klet, RC Pellin, MJ Farha, OK Hupp, JT AF Kung, Chung-Wei Mondloch, Joseph E. Wang, Timothy C. Bury, Wojciech Hoffeditz, William Klahr, Benjamin M. Klet, Rachel C. Pellin, Michael J. Farha, Omar K. Hupp, Joseph T. TI Metal-Organic Framework Thin Films as Platforms for Atomic Layer Deposition of Cobalt Ions To Enable Electrocatalytic Water Oxidation SO ACS APPLIED MATERIALS & INTERFACES LA English DT Article DE metal-organic frameworks; water oxidation; electrocatalyst; atomic layer deposition; cobalt oxide; pyrene ID PHOTOSYSTEM-II; CATALYST; STABILITY; ENERGY; REDUCTION; MECHANISM; EVOLUTION; MODELS; GROWTH AB Thin films of the metal organic framework (MOP) NU-1000 were grown on conducting glass substrates. The films uniformly cover the conducting glass substrates and are composed of free-standing sub-micrometer rods. Subsequently, atomic layer deposition (ALD) was utilized to deposit Co2+ ions throughout the entire MOF film via self-limiting surface-mediated reaction chemistry. The Co ions bind at aqua and hydroxo sites lining the channels of NU-1000, resulting in three-dimensional arrays of separated Co ions in the MOF thin film. The Co-modified MOF thin films demonstrate promising electrocatalytic activity for water oxidation. C1 [Kung, Chung-Wei; Mondloch, Joseph E.; Wang, Timothy C.; Bury, Wojciech; Hoffeditz, William; Klahr, Benjamin M.; Klet, Rachel C.; Farha, Omar K.; Hupp, Joseph T.] Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA. [Kung, Chung-Wei] Natl Taiwan Univ, Dept Chem Engn, Taipei 10617, Taiwan. [Bury, Wojciech] Warsaw Univ Technol, Dept Chem, PL-00664 Warsaw, Poland. [Hoffeditz, William; Klahr, Benjamin M.; Pellin, Michael J.; Hupp, Joseph T.] Argonne Natl Lab, Argonne, IL 60439 USA. [Farha, Omar K.] King Abdulaziz Univ, Fac Sci, Dept Chem, Jeddah, Saudi Arabia. RP Farha, OK (reprint author), Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA. EM o-farha@northwestern.edu; j-hupp@northwestem.edu RI Pellin, Michael/B-5897-2008; Faculty of, Sciences, KAU/E-7305-2017 OI Pellin, Michael/0000-0002-8149-9768; FU Argonne Northwestern Solar Energy Research (ANSER) Center, an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001059]; Graduate Students Study Abroad Program - National Science Council (Taiwan); Foundation for Polish Science through the "Kolumb" Program; DOE [DE-AC05-060R23100] FX This work was supported as part of the Argonne Northwestern Solar Energy Research (ANSER) Center, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Award DE-SC0001059. C.-W.K. acknowledges support from the Graduate Students Study Abroad Program sponsored by the National Science Council (Taiwan). W.B. acknowledges support from the Foundation for Polish Science through the "Kolumb" Program. J.E.M. acknowledges a DOE EERE Postdoctoral Research Award, EERE Fuel Cell Technologies Program, administered by ORISE for DOE. B.M.K acknowledges a DOE EERE Postdoctoral Research Award, EERE Solar Program, administered by ORISE for DOE. ORISE is managed by ORAU under DOE Contract DE-AC05-060R23100. We thank Dr. Zhanyong Li for helpful discussions. NR 49 TC 22 Z9 22 U1 40 U2 115 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1944-8244 J9 ACS APPL MATER INTER JI ACS Appl. Mater. Interfaces PD DEC 30 PY 2015 VL 7 IS 51 BP 28223 EP 28230 DI 10.1021/acsami.5b06901 PG 8 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA DC8CT UT WOS:000369448200029 PM 26636174 ER PT J AU Li, J Rochester, CW Jacobs, IE Friedrich, S Stroeve, P Riede, M Moule, AJ AF Li, Jun Rochester, Chris W. Jacobs, Ian E. Friedrich, Stephan Stroeve, Pieter Riede, Moritz Moule, Adam J. TI Measurement of Small Molecular Dopant F4TCNQ and C60F36 Diffusion in Organic Bilayer Architectures SO ACS APPLIED MATERIALS & INTERFACES LA English DT Article DE organic light emitting diodes; organic photovoltaics; dopant; diffusion; device stability ID LIGHT-EMITTING-DIODES; DOPED TRANSPORT LAYERS; POLYMER SOLAR-CELLS; ELECTROLUMINESCENT DEVICES; CONJUGATED POLYMERS; CHARGE-TRANSPORT; HIGH-PERFORMANCE; THIN-FILMS; SEMICONDUCTORS; STABILITY AB The diffusion of molecules through and between organic layers is a serious stability concern in organic electronic devices. In this work, the temperature-dependent diffusion of molecular dopants through small molecule hole transport layers is observed. Specifically we investigate bilayer stacks of small molecules used for hole transport (MeO-TPD) and p-type dopants (F4TCNQ and C60F36) used in hole injection layers for organic light emitting diodes and hole collection electrodes for organic photovoltaics. With the use of absorbance spectroscopy, photoluminescence spectroscopy, neutron reflectometry, and near-edge X-ray absorption fine structure spectroscopy, we are able to obtain a comprehensive picture of the diffusion of fluorinated small molecules through MeO-TPD layers. F4TCNQ spontaneously diffuses into the MeO-TPD material even at room temperature, while C60F36, a much bulkier molecule, is shown to have a substantially higher morphological stability. This study highlights that the differences in size/geometry and thermal properties of small molecular dopants can have a significant impact on their diffusion in organic device architectures. C1 [Li, Jun; Rochester, Chris W.; Jacobs, Ian E.; Stroeve, Pieter; Moule, Adam J.] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. [Friedrich, Stephan] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Riede, Moritz] Univ Oxford, Dept Phys, Oxford OX1 3PU, England. RP Moule, AJ (reprint author), Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. EM amoule@ucdavis.edu OI Moule, Adam/0000-0003-1354-3517 FU U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DE-SC0010419]; BMBF [031P602]; DOE Office of Basic Energy Sciences and Los Alamos National Laboratory (LANL) under DOE [DE-AC52-06NA25396]; U.S. Department of Energy by Lawrence Livermore National Laboratory (LLNL) [DE-AC52-07NA27344] FX This project was carried out with funding from the U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, under Award No. DE-SC0010419. M. Riede was supported from BMBF, Innoprofile 031P602 Programme. This work benefited from the use of the Lujan Neutron Scattering Center at LANSCE funded by the DOE Office of Basic Energy Sciences and Los Alamos National Laboratory (LANL) under DOE Contract DE-AC52-06NA25396. We thank Jaroslaw Majewski from the LANL for user support and training. Part of this work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory (LLNL) under Contract DE-AC52-07NA27344. We also would like to thank Michael Toney from Stanford Synchrotron Radiation Light source (SSRL) for user support and XRR training. NR 53 TC 10 Z9 10 U1 14 U2 37 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1944-8244 J9 ACS APPL MATER INTER JI ACS Appl. Mater. Interfaces PD DEC 30 PY 2015 VL 7 IS 51 BP 28420 EP 28428 DI 10.1021/acsami.5b09216 PG 9 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA DC8CT UT WOS:000369448200051 PM 26673846 ER PT J AU Feng, ZX Chen, X Qiao, L Lipson, AL Fister, TT Zeng, L Kim, C Yi, TH Sa, N Proffit, DL Burrell, AK Cabana, J Ingram, BJ Biegalski, MD Bedzyk, MJ Fenter, P AF Feng, Zhenxing Chen, Xiao Qiao, Liang Lipson, Albert L. Fister, Timothy T. Zeng, Li Kim, Chunjoong Yi, Tanghong Sa, Niya Proffit, Danielle L. Burrell, Anthony K. Cabana, Jordi Ingram, Brian J. Biegalski, Michael D. Bedzyk, Michael J. Fenter, Paul TI Phase-Controlled Electrochemical Activity of Epitaxial Mg-Spinel Thin Films SO ACS APPLIED MATERIALS & INTERFACES LA English DT Article DE phase-selective electrochemical activity; Mg-spinel; epitaxial phase stabilization; multivalent insertion; pulsed laser deposition ID X-RAY-DIFFRACTION; ELECTRICAL ENERGY-STORAGE; ION BATTERIES; MAGNESIUM BATTERIES; MGMN2O4; INTERCALATION; LIMN2O4; CHALLENGES; DEPOSITION; DIFFUSION AB We report an approach to control the reversible electrochemical activity (i.e., extraction/insertion) of Mg2+ in a cathode host through the use of phase-pure epitaxially stabilized thin film structures. The epitaxially stabilized MgMn2O4. (MMO) thin films in the distinct tetragonal and cubic phases are shown to exhibit dramatically different properties (in a nonaqueous electrolyte, Mg(TFSI)(2) in propylene carbonate): tetragonal MMO shows negligible activity while the cubic MMO (normally found as polymorph at high temperature or high pressure) exhibits reversible Mg2+ activity with associated changes in film structure and Mn oxidation state. These results demonstrate a novel strategy for identifying the factors that control multivalent cation mobility in next generation battery materials. C1 [Feng, Zhenxing; Lipson, Albert L.; Fister, Timothy T.; Sa, Niya; Proffit, Danielle L.; Burrell, Anthony K.; Ingram, Brian J.; Fenter, Paul] Argonne Natl Lab, Chem Sci & Engn Div, Lemont, IL 60439 USA. [Feng, Zhenxing; Lipson, Albert L.; Fister, Timothy T.; Kim, Chunjoong; Yi, Tanghong; Sa, Niya; Proffit, Danielle L.; Burrell, Anthony K.; Cabana, Jordi; Ingram, Brian J.; Fenter, Paul] Argonne Natl Lab, JCESR, Lemont, IL 60439 USA. [Chen, Xiao; Zeng, Li; Bedzyk, Michael J.] Northwestern Univ, Appl Phys Program, Evanston, IL 60208 USA. [Bedzyk, Michael J.] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. [Bedzyk, Michael J.] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. [Qiao, Liang; Bedzyk, Michael J.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Kim, Chunjoong; Yi, Tanghong; Cabana, Jordi] Univ Illinois, Dept Chem, Chicago, IL 60607 USA. RP Feng, ZX (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, Lemont, IL 60439 USA. EM fengz@anl.gov; fenter@anl.gov RI Qiao, Liang/A-8165-2012; Cabana, Jordi/G-6548-2012; Bedzyk, Michael/B-7503-2009; SA, NIYA/E-8521-2017 OI Cabana, Jordi/0000-0002-2353-5986; FU Joint Center for Energy Storage Research (JCESR) through the Office of Basic Energy Sciences (BES), U.S. Department of Energy (DOE); DOE [DE-AC02-06CH11357]; Materials Research Science and Engineering Center (MRSEC) through National Science Foundation (NSF) [DMR-1121262]; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy FX This work was supported by the Joint Center for Energy Storage Research (JCESR) through the Office of Basic Energy Sciences (BES), U.S. Department of Energy (DOE). The Advanced Photon Source is supported by the DOE under Contract DE-AC02-06CH11357. This work made use of Northwestern University Central Facilities supported by the Materials Research Science and Engineering Center (MRSEC) through National Science Foundation (NSF) under Contract DMR-1121262. We thank the beamline staff for technical support, including Christian M. Schlepuetz and Jenia Karapetrova at sector 33, Xiaoyi Zhang at sector 11, and Chengjun Sun at sector 20 of APS. The PLD preparation and characterization were conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. NR 35 TC 7 Z9 7 U1 15 U2 49 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1944-8244 J9 ACS APPL MATER INTER JI ACS Appl. Mater. Interfaces PD DEC 30 PY 2015 VL 7 IS 51 BP 28438 EP 28443 DI 10.1021/acsami.5b09346 PG 6 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA DC8CT UT WOS:000369448200053 PM 26641524 ER PT J AU Li, XM Wolden, CA Ban, CM Yang, YG AF Li, Xuemin Wolden, Colin A. Ban, Chunmei Yang, Yongan TI Facile Synthesis of Lithium Sulfide Nanocrystals for Use in Advanced Rechargeable Batteries SO ACS APPLIED MATERIALS & INTERFACES LA English DT Article DE lithium sulfide; lithium-sulfur batteries; synthesis; hydrogen sulfide; lithium naphthalenide ID SULFUR BATTERIES; ION BATTERIES; CATHODE MATERIALS; ENERGY; LI2S; COMPOSITES; PAPER; NANOPARTICLES; ELECTROLYTE; INTERLAYER AB This work reports a new method of synthesizing anhydrous lithium sulfide (Li2S) nano crystals and demonstrates their potential as cathode materials for advanced rechargeable batteries. Li2S is synthesized by reacting hydrogen sulfide (H2S) with lithium naphthalenide (Li-NAP), a thermodynamically spontaneous reaction that proceeds to completion rapidly at ambient temperature and pressure. The process completely removes H2S, a major industrial waste, while cogenerating 1,4-dihydronaphthalene, itself a value-added chemical that can be used as liquid fuel. The phase purity, morphology, and homogeneity of the resulting nanopowders were confirmed by X-ray diffraction and scanning electron microscopy. The synthesized Li2S nanoparticles (100 nm) were assembled into cathodes, and their performance was compared to that of cathodes fabricated using commercial Li2S micropowders (1-5 mu m). Electrochemical analyses demonstrated that the synthesized Li2S were superior in terms of (dis)charge capacity, cycling stability, output voltage, and voltage efficiency. C1 [Li, Xuemin; Yang, Yongan] Colorado Sch Mines, Dept Chem, Golden, CO 80401 USA. [Wolden, Colin A.] Colorado Sch Mines, Dept Chem & Biol Engn, 1613 Illinois St, Golden, CO 80401 USA. [Ban, Chunmei] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Wolden, CA (reprint author), Colorado Sch Mines, Dept Chem & Biol Engn, 1613 Illinois St, Golden, CO 80401 USA. EM cwolden@mines.edu; yonyang@mines.edu RI Yang, Yongan/C-2688-2011 OI Yang, Yongan/0000-0003-1451-2923 FU Colorado School of Mines; National Science Foundation [DMR-1207294]; Office of Vehicle Technologies of the U.S. Department of Energy [DE-AC02-05CH11231, DE-AC-36-08GO28308] FX This work is financially supported by the Startup Fund for Y.Y. from the Colorado School of Mines. C.A.W. acknowledges support by the National Science Foundation through Award DMR-1207294. C.B. acknowledges support by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231, Subcontract No. DE-AC-36-08GO28308 under Exploratory Battery Materials Research program. NR 57 TC 2 Z9 2 U1 9 U2 55 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1944-8244 J9 ACS APPL MATER INTER JI ACS Appl. Mater. Interfaces PD DEC 30 PY 2015 VL 7 IS 51 BP 28444 EP 28451 DI 10.1021/acsami.5b09367 PG 8 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA DC8CT UT WOS:000369448200054 PM 26633238 ER PT J AU Jia, WT Lau, GY Huang, WH Zhang, CQ Tomsia, AP Fu, Q AF Jia, Weitao Lau, Grace Y. Huang, Wenhai Zhang, Changqing Tomsia, Antoni P. Fu, Qiang TI Bioactive Glass for Large Bone Repair SO ADVANCED HEALTHCARE MATERIALS LA English DT Article ID TISSUE-ENGINEERED BONE; MARROW STROMAL CELLS; CONTROLLABLE DEGRADATION; IN-VITRO; SCAFFOLDS; DEFECTS; REGENERATION; BOROSILICATE; SILICATE; SIZE AB There has been an ongoing quest for new biomedical materials for the repair and regeneration of large segmental bone defects caused by disease or trauma. Autologous bone graft (ABG) remains the gold standard for bone repair despite their limited supply and donor-site morbidity. The current tissue engineering approach with synthetically derived bone grafts requires a bioactive ceramic or polymeric scaffold loaded with growth factors for osteoinduction and angiogenesis, and bone marrow stromal cells (BMSCs) for osteogenic properties. Unfortunately, this approach has serious drawbacks: the low mechanical strength of scaffolds, the high cost of growth factors, and a lack of optimal strategies for growth-factor delivery. Here, it is shown that, for the first time, a synthetic material alone can repair large bone defects as efficiently as the gold standard ABG. Through the use of strong and resorbable bioactive glass scaffolds, complete bone healing, and defect bridging can be achieved in a rabbit femur segmental defect model without growth factors or BMSCs. New bone and blood vessel formation, in both inner and peripheral scaffolds, demonstrates the excellent osteoinductive and osteogenic properties of these scaffolds similar as ABG. C1 [Jia, Weitao; Zhang, Changqing] Shanghai Jiao Tong Univ, Affiliated Peoples Hosp 6, Dept Orthopaed Surg, Shanghai 200233, Peoples R China. [Lau, Grace Y.; Tomsia, Antoni P.; Fu, Qiang] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Huang, Wenhai] Tongji Univ, Dept Mat Sci & Engn, Inst Bioengn & Informat Technol Mat, Shanghai 200092, Peoples R China. RP Huang, WH (reprint author), Tongji Univ, Dept Mat Sci & Engn, Inst Bioengn & Informat Technol Mat, Shanghai 200092, Peoples R China. EM whhuang@mail.tongji.edu.cn; zhang_changqing@hotmail.com; qfu@lbl.gov FU National Institutes of Health/National Institute of Dental and Craniofacial Research (NIH/NIDCR) [1R01DE015633]; Natural Science Foundation of China [51072133, 81572105, 51372170]; Department of Energy [DE-AC02-05CH11231] FX This work was supported by the National Institutes of Health/National Institute of Dental and Craniofacial Research (NIH/NIDCR) under Grant No. 1R01DE015633, and the Natural Science Foundation of China under Grant Nos. 51072133, 81572105, and 51372170. The authors acknowledge the support of the dedicated X-ray tomography beamline 8.3.2 at the Advanced Light Source, funded by Department of Energy under Contract No. DE-AC02-05CH11231. The authors would like to thank Sabin Russell for helpful comments and editing this manuscript. NR 33 TC 2 Z9 2 U1 10 U2 37 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 2192-2640 EI 2192-2659 J9 ADV HEALTHC MATER JI Adv. Healthc. Mater. PD DEC 30 PY 2015 VL 4 IS 18 BP 2842 EP 2848 DI 10.1002/adhm.201500447 PG 7 WC Engineering, Biomedical; Nanoscience & Nanotechnology; Materials Science, Biomaterials SC Engineering; Science & Technology - Other Topics; Materials Science GA DA9QF UT WOS:000368143900009 PM 26582584 ER PT J AU Bekenstein, Y Koscher, BA Eaton, SW Yang, PD Alivisatos, AP AF Bekenstein, Yehonadav Koscher, Brent A. Eaton, Samuel W. Yang, Peidong Alivisatos, A. Paul TI Highly Luminescent Colloidal Nanoplates of Perovskite Cesium Lead Halide and Their Oriented Assemblies SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID ANION-EXCHANGE; SOLAR-CELLS; NANOCRYSTALS; LIGHT; EMISSION; CSPBBR3; CSPBX3; SHEETS; BR; CL AB Anisotropic colloidal quasi-two-dimensional nanoplates (NPLs) hold great promise as functional materials due to their combination of low dimensional optoelectronic properties and versatility through colloidal synthesis. Recently, lead-halide perovskites have emerged as important optoelectronic materials with excellent efficiencies in photovoltaic and light-emitting applications. Here we report the synthesis of quantum confined all inorganic cesium lead halide nanoplates in the perovskite crystal structure that are also highly luminescent (PLQY 84%). The controllable self-assembly of nanoplates either into stacked columnar phases or crystallographic-oriented thin-sheet structures is demonstrated. The broad accessible emission range, high native quantum yields, and ease of self-assembly make perovskite NPLs an ideal platform for fundamental optoelectronic studies and the investigation of future devices. C1 [Bekenstein, Yehonadav; Koscher, Brent A.; Eaton, Samuel W.; Yang, Peidong; Alivisatos, A. Paul] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Yang, Peidong; Alivisatos, A. Paul] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Bekenstein, Yehonadav; Koscher, Brent A.; Yang, Peidong; Alivisatos, A. Paul] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Yang, Peidong; Alivisatos, A. Paul] Kavli Energy NanoSci Inst, Berkeley, CA 94720 USA. RP Alivisatos, AP (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM ap_alivisatos@berkeley.edu RI Alivisatos , Paul /N-8863-2015 OI Alivisatos , Paul /0000-0001-6895-9048 FU Physical Chemistry of Inorganic Nanostructures Program [KC3103]; Office of Basic Energy Sciences of the United States Department of Energy [DE-AC02-05CH11231] FX This work is supported by the Physical Chemistry of Inorganic Nanostructures Program, KC3103, Office of Basic Energy Sciences of the United States Department of Energy, under Contract No. DE-AC02-05CH11231. NR 22 TC 95 Z9 96 U1 101 U2 309 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD DEC 30 PY 2015 VL 137 IS 51 BP 16008 EP 16011 DI 10.1021/jacs.5b11199 PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA DA2OV UT WOS:000367636600008 PM 26669631 ER PT J AU Hickey, DP Schiedler, DA Matanovic, I Doan, PV Atanassov, P Minteer, SD Sigman, MS AF Hickey, David P. Schiedler, David A. Matanovic, Ivana Phuong Vy Doan Atanassov, Plamen Minteer, Shelley D. Sigman, Matthew S. TI Predicting Electrocatalytic Properties: Modeling Structure-Activity Relationships of Nitroxyl Radicals SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID MEDIATED ELECTROOXIDATION; SELECTIVE OXIDATION; OXOAMMONIUM CATION; CARBONYL-COMPOUNDS; CYCLIC NITROXIDES; OXOAMINIUM SALTS; PRIMARY ALCOHOLS; SPIN LABELS; TEMPO; CATALYST AB Stable nitroxyl radical-containing compounds, such as 2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPO) and its derivatives, are capable of electrocatalytically oxidizing a wide range of alcohols under mild and environmentally friendly conditions. Herein, we examine the structure function relationships that determine the catalytic activity of a diverse range of water-soluble nitroxyl radical compounds. A strong correlation is described between the difference in the electrochemical oxidation potentials of a compound and its electrocatalytic activity. Additionally, we construct a simple computational model that is able to accurately predict the electrochemical potential and catalytic activity of a wide range of nitroxyl radical derivatives. C1 [Hickey, David P.; Schiedler, David A.; Phuong Vy Doan; Minteer, Shelley D.; Sigman, Matthew S.] Univ Utah, Dept Chem, Salt Lake City, UT 84112 USA. [Matanovic, Ivana; Atanassov, Plamen] Univ New Mexico, Dept Chem & Biol Engn, Albuquerque, NM 87131 USA. [Matanovic, Ivana] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Minteer, SD (reprint author), Univ Utah, Dept Chem, Salt Lake City, UT 84112 USA. EM minteer@chem.utah.edu; sigman@chem.utah.edu RI Minteer, Shelley/C-4751-2014 OI Minteer, Shelley/0000-0002-5788-2249 FU Center for High Performance Computing at the University of Utah; Office of Science of the U.S. Department of Energy [DE-AC52-06NA25396]; Center for Advanced Research Computing at University of New Mexico FX The support and resources from the Center for High Performance Computing at the University of Utah are gratefully acknowledged. Part of the calculations were done using computational resources of Theoretical division, LANL, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC52-06NA25396 and Center for Advanced Research Computing at University of New Mexico. The authors would like to thank the Army Research Office MURI (#W911NF1410263). This paper was designated LA-UR-15-29076. NR 53 TC 8 Z9 8 U1 9 U2 45 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD DEC 30 PY 2015 VL 137 IS 51 BP 16179 EP 16186 DI 10.1021/jacs.5b11252 PG 8 WC Chemistry, Multidisciplinary SC Chemistry GA DA2OV UT WOS:000367636600031 PM 26635089 ER PT J AU Hu, ZC Lustig, WP Zhang, JM Zheng, C Wang, H Teat, SJ Gong, QH Rudd, ND Li, J AF Hu, Zhichao Lustig, William P. Zhang, Jingming Zheng, Chong Wang, Hao Teat, Simon J. Gong, Qihan Rudd, Nathan D. Li, Jing TI Effective Detection of Mycotoxins by a Highly Luminescent Metal-Organic Framework SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID TOPOLOGICAL ANALYSIS; LINKERS AB We designed and synthesized a new luminescent metal organic framework (LMOF). LMOF-241 is highly porous and emits strong blue light with high efficiency. We demonstrate for the first time that very fast and extremely sensitive optical detection can be achieved, making use of the fluorescence quenching of an LMOF material. The compound is responsive to Aflatoxin B-1 at parts per billion level, which makes it the best performing luminescence-based chemical sensor to date. We studied the electronic properties of LMOF-241 and selected mycotoxins, as well as the extent of mycotoxin-LMOF interactions, employing theoretical methods. Possible electron and energy transfer mechanisms are discussed. C1 [Hu, Zhichao; Lustig, William P.; Zhang, Jingming; Wang, Hao; Gong, Qihan; Rudd, Nathan D.; Li, Jing] Rutgers State Univ, Dept Chem & Chem Biol, Piscataway, NJ 08854 USA. [Zheng, Chong] No Illinois Univ, Dept Chem & Biochem, De Kalb, IL 60115 USA. [Teat, Simon J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Li, J (reprint author), Rutgers State Univ, Dept Chem & Chem Biol, 610 Taylor Rd, Piscataway, NJ 08854 USA. EM jingli@rutgers.edu FU Materials Sciences and Engineering Division, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-FG02-08ER-46491]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX The Rutgers team is grateful for the financial support from the Materials Sciences and Engineering Division, Office of Basic Energy Sciences, of the U.S. Department of Energy through Grant No. DE-FG02-08ER-46491. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Z.H. would like to thank Prof. Davide M. Proserpio for his insightful analysis of the structure topology. W.P.L. would like to thank Ben Deibert for his invaluable assistance with the structure images, as well as general feedback and discussion. NR 32 TC 45 Z9 45 U1 20 U2 93 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD DEC 30 PY 2015 VL 137 IS 51 BP 16209 EP 16215 DI 10.1021/jacs.5b10308 PG 7 WC Chemistry, Multidisciplinary SC Chemistry GA DA2OV UT WOS:000367636600035 PM 26654703 ER PT J AU Kemper, AF Sentef, MA Moritz, B Freericks, JK Devereaux, TP AF Kemper, A. F. Sentef, M. A. Moritz, B. Freericks, J. K. Devereaux, T. P. TI Direct observation of Higgs mode oscillations in the pump-probe photoemission spectra of electron-phonon mediated superconductors SO PHYSICAL REVIEW B LA English DT Article ID CHARGE-DENSITY WAVES; CUPRATE SUPERCONDUCTOR; TRANSITION; DYNAMICS; GAP AB Using the nonequilibrium Keldysh formalism, we solve the equations of motion for electron-phonon superconductivity, including an ultrafast pump field. We present results for time-dependent photoemission spectra out of equilibrium which probe the dynamics of the superconducting gap edge. The partial melting of the order by the pump field leads to oscillations at twice the melted gap frequency, a hallmark of the Higgs or amplitude mode. Thus the Higgs mode can be directly excited through the nonlinear effects of an electromagnetic field and detected without requiring any additional symmetry breaking. C1 [Kemper, A. F.] N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA. [Kemper, A. F.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Sentef, M. A.] Univ Bonn, HISKP, D-53115 Bonn, Germany. [Moritz, B.; Devereaux, T. P.] SLAC Natl Accelerator Lab, Stanford Inst Mat & Energy Sci, Menlo Pk, CA 94025 USA. [Moritz, B.] Univ N Dakota, Dept Phys & Astrophys, Grand Forks, ND 58202 USA. [Freericks, J. K.] Georgetown Univ, Dept Phys, Washington, DC 20057 USA. [Devereaux, T. P.] Stanford Univ, Geballe Lab Adv Mat, Stanford, CA 94305 USA. RP Kemper, AF (reprint author), N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA. EM akemper@ncsu.edu RI Moritz, Brian/D-7505-2015; Kemper, Alexander/F-8243-2016; OI Moritz, Brian/0000-0002-3747-8484; Kemper, Alexander/0000-0002-5426-5181; Freericks, James/0000-0002-6232-9165 FU Laboratory Directed Research and Development Program of Lawrence Berkeley National Laboratory under U.S. Department of Energy [DE-AC02-05CH11231]; U.S. Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering [DE-AC02-76SF00515, DE-FG02-08ER46542, DE-SC0007091]; McDevitt bequest at Georgetown; U.S. Department of Energy, Office of Science [DE-AC02-05CH11231] FX We would like to thank P. Kirchmann for helpful discussions. A.F.K. was supported by the Laboratory Directed Research and Development Program of Lawrence Berkeley National Laboratory under U.S. Department of Energy Contract No. DE-AC02-05CH11231. B.M. and T.P.D. were supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering, under Contract No. DE-AC02-76SF00515. J.K.F. was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering, under Contract No. DE-FG02-08ER46542 and also by the McDevitt bequest at Georgetown. The collaboration was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering, under Contract No. DE-SC0007091. Computational resources were provided by the National Energy Research Scientific Computing Center supported by the U.S. Department of Energy, Office of Science, under Contract No. DE-AC02-05CH11231. NR 39 TC 12 Z9 12 U1 3 U2 15 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD DEC 30 PY 2015 VL 92 IS 22 AR 224517 DI 10.1103/PhysRevB.92.224517 PG 7 WC Physics, Condensed Matter SC Physics GA CZ8VC UT WOS:000367376200003 ER PT J AU Kyung, W Kim, Y Han, G Leem, C Kim, C Koh, Y Kim, B Kim, Y Kim, JS Kim, KS Rotenberg, E Denlinger, JD Kim, C AF Kyung, Wonshik Kim, Yeongkwan Han, Garam Leem, Choonshik Kim, Chul Koh, Yoonyoung Kim, Beomyoung Kim, Youngwook Kim, Jun Sung Kim, Keun Su Rotenberg, Eli Denlinger, Jonathan D. Kim, Changyoung TI Interlayer-state-driven superconductivity in CaC6 studied by angle-resolved photoemission spectroscopy SO PHYSICAL REVIEW B LA English DT Article ID GRAPHENE SHEETS; C6CA AB We performed angle-resolved photoemission experiments on CaC6 and measured k(z)-dependent electronic structures to investigate the interlayer states. The results reveal a spherical interlayer Fermi surface centered at the Gamma point. We also find that the graphene-driven band possesses a weak k(z) dispersion. The overall electronic structure shows a peculiar single-graphene-layer periodicity in the k(z) direction although the CaC6 unit cell is supposed to contain three graphene layers. This suggests that the c-axis ordering of Ca has little effect on the electronic structure of CaC6. In addition to CaC6, we also studied the a low-temperature superconductor BaC6. For BaC6, the graphene-band Dirac-point energy is smaller than that of CaC6. Based on data from CaC6 and BaC6, we rule out the C-xy phonon mode as the origin of the superconductivity in CaC6, which strongly suggests interlayer-state-driven superconductivity. C1 [Kyung, Wonshik; Kim, Yeongkwan; Han, Garam; Leem, Choonshik; Kim, Chul; Koh, Yoonyoung; Kim, Beomyoung; Kim, Changyoung] Yonsei Univ, Inst Phys & Appl Phys, Seoul 120749, South Korea. [Kim, Yeongkwan; Kim, Keun Su; Rotenberg, Eli; Denlinger, Jonathan D.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Kim, Youngwook; Kim, Jun Sung; Kim, Keun Su] Pohang Univ Sci & Technol, Dept Phys, Pohang 790784, South Korea. [Kim, Keun Su] Inst for Basic Sci Korea, Ctr Artificial Low Dimens Elect Syst, Pohang 790784, South Korea. RP Kyung, W (reprint author), Yonsei Univ, Inst Phys & Appl Phys, Seoul 120749, South Korea. EM changyoung@snu.ac.kr RI Kim, Jun Sung/G-8861-2012; Kim, Youngwook/J-7101-2016; Kim, Yeong Kwan/L-8207-2016; Rotenberg, Eli/B-3700-2009 OI Kim, Jun Sung/0000-0002-1413-7265; Rotenberg, Eli/0000-0002-3979-8844 FU National Research Foundation of Korea (NRF) - Ministry of Science, ICT (Information and Communication Technologies) and Future Planning [2011-00329]; Converging Research Center Program through the Ministry of Science, ICT and Future Planning, Korea [2014M3C1A8053752]; Mid-Career Researcher Program [2012-013838]; SRC Center for Topological Matter [2011-0030046] FX We are grateful to J. Yu for fruitful discussions. This research was supported by the Global Research Laboratory (2011-00329) through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT (Information and Communication Technologies) and Future Planning and the Converging Research Center Program through the Ministry of Science, ICT and Future Planning, Korea (2014M3C1A8053752), the Mid-Career Researcher Program (Grant No. 2012-013838) and SRC Center for Topological Matter (Grant No. 2011-0030046). NR 30 TC 1 Z9 1 U1 7 U2 18 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD DEC 30 PY 2015 VL 92 IS 22 AR 224516 DI 10.1103/PhysRevB.92.224516 PG 5 WC Physics, Condensed Matter SC Physics GA CZ8VC UT WOS:000367376200002 ER PT J AU Coloma, P Dobrescu, BA Lopez-Pavon, J AF Coloma, Pilar Dobrescu, Bogdan A. Lopez-Pavon, Jacobo TI Right-handed neutrinos and the 2 TeV W ' boson SO PHYSICAL REVIEW D LA English DT Article ID HEAVY NEUTRINOS; FEYNMAN-RULES; COLLISIONS; SEARCH; PP AB The CMS e(+)e(-) JJ events of invariant mass near 2 TeV are consistent with a W' boson decaying into an electron and a right-handed neutrino whose TeV-scale mass is of the Dirac type. We show that the Dirac partner of the right-handed electron neutrino can be the right-handed tau neutrino. A prediction of this model is that the sum of the tau(+)e(-) JJ and tau(-)e(-) JJ signal cross sections equals twice that for e(+)e(-) JJ. The Standard Model neutrinos acquire Majorana masses and mixings compatible with neutrino oscillation data. C1 [Coloma, Pilar; Dobrescu, Bogdan A.] Fermilab Natl Accelerator Lab, Theoret Phys Dept, Batavia, IL 60510 USA. [Lopez-Pavon, Jacobo] SISSA, I-34136 Trieste, Italy. [Lopez-Pavon, Jacobo] Ist Nazl Fis Nucl, Sez Trieste, I-34136 Trieste, Italy. [Lopez-Pavon, Jacobo] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. RP Coloma, P (reprint author), Fermilab Natl Accelerator Lab, Theoret Phys Dept, Batavia, IL 60510 USA. RI Lopez Pavon, Jacobo/J-7090-2012; OI Lopez Pavon, Jacobo/0000-0002-9554-5075; Coloma, Pilar/0000-0002-1164-9900 FU European Union [PITN-GA-2011-289442-INVISIBLES]; Fermi Research Alliance [DE-AC02-07CH11359]; U.S. Department of Energy; MIUR [2012CPPYP7]; INFN program on Theoretical Astroparticle Physics (TASP) FX We would like to thank Frank Deppisch, Janusz Gluza, Tomasz Jelinski, Zhen Liu, and especially Patrick Fox for stimulating communications. J. L. P. would like to thank Fermilab for hospitality and partial support during the completion of this work. J. L. P. and P. C. acknowledge financial support by the European Union through the ITN INVISIBLES (Marie Curie Actions, PITN-GA-2011-289442-INVISIBLES). P. C. would like to thank the Mainz Institute for Theoretical Physics for hospitality and partial support during the completion of this work. Fermilab is operated by the Fermi Research Alliance under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy. J. L. P. was partially supported by Grant No. 2012CPPYP7 (Theoretical Astroparticle Physics) under the program PRIN 2012 funded by MIUR and the INFN program on Theoretical Astroparticle Physics (TASP). NR 33 TC 18 Z9 18 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD DEC 30 PY 2015 VL 92 IS 11 AR 115023 DI 10.1103/PhysRevD.92.115023 PG 7 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CZ8WX UT WOS:000367380900006 ER PT J AU Noronha, J Denicol, GS AF Noronha, Jorge Denicol, Gabriel S. TI Perfect fluidity of a dissipative system: Analytical solution for the Boltzmann equation in AdS(2) circle times S-2 SO PHYSICAL REVIEW D LA English DT Article AB In this paper we obtain an analytical solution of the relativistic Boltzmann equation under the relaxation time approximation that describes the out-of-equilibrium dynamics of a radially expanding massless gas. This solution is found by mapping this expanding system in flat spacetime to a static flow in the curved spacetime AdS(2) circle times S-2. We further derive explicit analytic expressions for the momentum dependence of the single-particle distribution function as well as for the spatial dependence of its moments. We find that this dissipative system has the ability to flow as a perfect fluid even though its entropy density does not match the equilibrium form. The nonequilibrium contribution to the entropy density is shown to be due to higher-order scalar moments (which possess no hydrodynamical interpretation) of the Boltzmann equation that can remain out of equilibrium but do not couple to the energy-momentum tensor of the system. Thus, in this system the slowly moving hydrodynamic degrees of freedom can exhibit true perfect fluidity while being totally decoupled from the fast moving, nonhydrodynamical microscopic degrees of freedom that lead to entropy production. C1 [Noronha, Jorge] Columbia Univ, Dept Phys, New York, NY 10027 USA. [Noronha, Jorge] Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil. [Denicol, Gabriel S.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Denicol, Gabriel S.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Noronha, J (reprint author), Columbia Univ, Dept Phys, 538 W 120th St, New York, NY 10027 USA. RI Silveira Denicol, Gabriel/L-5048-2016; Noronha, Jorge/M-8800-2014; Noronha, Jorge/E-5783-2013 FU DOE [DE-SC0012704]; Natural Sciences and Engineering Research Council of Canada; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq); Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP) FX The authors thank Y. Hatta, B. Xiao, and M. Martinez for collaboration in the early stage of this work. G. S. Denicol is currently supported under DOE Contract No. DE-SC0012704 and acknowledges the previous support of a Banting fellowship provided by the Natural Sciences and Engineering Research Council of Canada. J. N. thanks Columbia University's Physics Department for the hospitality and Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq) and Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP) for financial support. NR 32 TC 2 Z9 2 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD DEC 30 PY 2015 VL 92 IS 11 AR 114032 DI 10.1103/PhysRevD.92.114032 PG 8 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CZ8WX UT WOS:000367380900001 ER PT J AU Xu, SS Chen, C Cloet, IC Roberts, CD Segovia, J Zong, HS AF Xu, Shu-Sheng Chen, Chen Cloeat, Ian C. Roberts, Craig D. Segovia, Jorge Zong, Hong-Shi TI Contact-interaction Faddeev equation and, inter alia, proton tensor charges SO PHYSICAL REVIEW D LA English DT Article ID QUARK-DIQUARK MODEL; DYSON-SCHWINGER EQUATIONS; ELECTRIC-DIPOLE MOMENTS; QUANTUM CHROMODYNAMICS; PERTURBATION-THEORY; SPIN STRUCTURE; NJL MODEL; SYMMETRY-BREAKING; BARYON STRUCTURE; HADRON PHYSICS AB A confining, symmetry-preserving, Dyson-Schwinger equation treatment of a vector circle times vector contact interaction is used to formulate Faddeev equations for the nucleon and Delta-baryon in which the kernel involves dynamical dressed-quark exchange and whose solutions therefore provide momentum-dependent Faddeev amplitudes. These solutions are compared with those obtained in the static approximation and with a QCD-kindred formulation of the Faddeev kernel. They are also used to compute a range of nucleon properties, amongst them: the proton's sigma-term; the large Bjorken-x values of separate ratios of unpolarized and longitudinally polarized valence u- and d-quark parton distribution functions; and the proton's tensor charges, which enable one to directly determine the effect of dressed-quark electric dipole moments (EDMs) on neutron and proton EDMs. C1 [Xu, Shu-Sheng; Zong, Hong-Shi] Nanjing Univ, Dept Phys, Nanjing 210093, Jiangsu, Peoples R China. [Chen, Chen] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China. [Chen, Chen] Univ Sci & Technol China, Inst Theoret Phys, Hefei 230026, Anhui, Peoples R China. [Chen, Chen] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China. [Cloeat, Ian C.; Roberts, Craig D.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Segovia, Jorge] Univ Salamanca, IUFFyM, E-37008 Salamanca, Spain. RP Roberts, CD (reprint author), Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. EM cdroberts@anl.gov; zonghs@nju.edu.cn RI Segovia, Jorge/C-7202-2015 OI Segovia, Jorge/0000-0001-5838-7103 FU postdoctoral IUFFyM contract at the Universidad de Salamanca; National Natural Science Foundation of China [11275097, 11475085, 11535005]; Fundamental Research Funds for the Central Universities Programme of China [WK2030040050]; U.S. Department of Energy, Office of Science, Office of Nuclear Physics [DE-AC02-06CH11357] FX We are grateful for insightful comments and suggestions from M. Pitschmann, S.-X. Qin and S.-L. Wan. J. Segovia acknowledges financial support from a postdoctoral IUFFyM contract at the Universidad de Salamanca. Work also supported by: the National Natural Science Foundation of China (Grants No. 11275097, No. 11475085 and No. 11535005); the Fundamental Research Funds for the Central Universities Programme of China (Grant No. WK2030040050); and U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357. NR 117 TC 2 Z9 2 U1 2 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD DEC 30 PY 2015 VL 92 IS 11 AR 114034 DI 10.1103/PhysRevD.92.114034 PG 21 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CZ8WX UT WOS:000367380900003 ER PT J AU Aad, G Abbott, B Abdallah, J Abdinov, O Aben, R Abolins, M AbouZeid, OS Abramowicz, H Abreu, H Abreu, R Abulaiti, Y Acharya, BS Adamczyk, L Adams, DL Adelman, J Adomeit, S Adye, T Affolder, AA Agatonovic-Jovin, T Agricola, J Aguilar-Saavedra, JA Ahlen, SP Ahmadov, F Aielli, G Akerstedt, H Akesson, TPA Akimov, AV Alberghi, GL Albert, J Albrand, S Verzini, MJA Aleksa, M Aleksandrov, IN Alexa, C Alexander, G Alexopoulos, T Alhroob, M Alimonti, G Alio, L Alison, J Alkire, SP Allbrooke, BMM Allport, PP Aloisio, A Alonso, A Alonso, F Alpigiani, C Altheimer, A Gonzalez, BA Piqueras, DA Alviggi, MG Amadio, BT Amako, K Coutinho, YA Amelung, C Amidei, D Dos Santos, SPA Amorim, A Amoroso, S Amram, N Amundsen, G Anastopoulos, C Ancu, LS Andari, N Andeen, T Anders, CF Anders, G Anders, JK Anderson, KJ Andreazza, A Andrei, V Angelidakis, S Angelozzi, I Anger, P Angerami, A Anghinolfi, F Anisenkov, AV Anjos, N Annovi, A Antonelli, M Antonov, A Antos, J Anulli, F Aoki, M Bella, LA Arabidze, G Arai, Y Araque, JP Arce, ATH Arduh, FA Arguin, JF Argyropoulos, S Arik, M Armbruster, AJ Arnaez, O Arnal, V Arnold, H Arratia, M Arslan, O Artamonov, A Artoni, G Asai, S Asbah, N Ashkenazi, A Asman, B Asquith, L Assamagan, K Astalos, R Atkinson, M Atlay, NB Augsten, K Aurousseau, M Avolio, G Axen, B Ayoub, MK Azuelos, G Baak, MA Baas, AE Baca, MJ Bacci, C Bachacou, H Bachas, K Backes, M Backhaus, M Bagiacchi, P Bagnaia, P Bai, Y Bain, T Baines, JT Baker, OK Baldin, EM Balek, P Balestri, T Balli, F Banas, E Banerjee, S Bannoura, AAE Bansil, HS Barak, L Barberio, EL Barberis, D Barbero, M Barillari, T Barisonzi, M Barklow, T Barlow, N Barnes, SL Barnett, BM Barnett, RM Barnovska, Z Baroncelli, A Barone, G Barr, AJ Barreiro, F da Costa, JBG Bartoldus, R Barton, AE Bartos, P Basalaev, A Bassalat, A Basye, A Bates, RL Batista, SJ Batley, JR Battaglia, M Bauce, M Bauer, F Bawa, HS Beacham, JB Beattie, MD Beau, T Beauchemin, PH Beccherle, R Bechtle, P Beck, HP Becker, K Becker, M Becker, S Beckingham, M Becot, C Beddall, AJ Beddall, A Bednyakov, VA Bee, CP Beemster, LJ Beermann, TA Begel, M Behr, JK Belanger-Champagne, C Bell, WH Bella, G Bellagamba, L Bellerive, A Bellomo, M Belotskiy, K Beltramello, O Benary, O Benchekroun, D Bender, M Bendtz, K Benekos, N Benhammou, Y Noccioli, EB Garcia, JAB Benjamin, DP Bensinger, JR Bentvelsen, S Beresford, L Beretta, M Berge, D Kuutmann, EB Berger, N Berghaus, F Beringer, J Bernard, C Bernard, NR Bernius, C Bernlochner, FU Berry, T Berta, P Bertella, C Bertoli, G Bertolucci, F Bertsche, C Bertsche, D Besana, MI Besjes, GJ Bylund, OB Bessner, M Besson, N Betancourt, C Bethke, S Bevan, AJ Bhimji, W Bianchi, RM Bianchini, L Bianco, M Biebel, O Biedermann, D Bieniek, SP Biglietti, M De Mendizabal, JB Bilokon, H Bindi, M Binet, S Bingul, A Bini, C Biondi, S Black, CW Black, JE Black, KM Blackburn, D Blair, RE Blanchard, JB Blanco, JE Blazek, T Bloch, I Blocker, C Blum, W Blumenschein, U Bobbink, GJ Bobrovnikov, VS Bocchetta, SS Bocci, A Bock, C Boehler, M Bogaerts, JA Bogavac, D Bogdanchikov, AG Bohm, C Boisvert, V Bold, T Boldea, V Boldyrev, AS Bomben, M Bona, M Boonekamp, M Borisov, A Borissov, G Borroni, S Bortfeldt, J Bortolotto, V Bos, K Boscherini, D Bosman, M Boudreau, J Bouffard, J Bouhova-Thacker, EV Boumediene, D Bourdarios, C Bousson, N Boveia, A Boyd, J Boyko, IR Bozic, I Bracinik, J Brandt, A Brandt, G Brandt, O Bratzler, U Brau, B Brau, JE Braun, HM Brazzale, SF Madden, WDB Brendlinger, K Brennan, AJ Brenner, L Brenner, R Bressler, S Bristow, K Bristow, TM Britton, D Britzger, D Brochu, FM Brock, I Brock, R Bronner, J Brooijmans, G Brooks, T Brooks, WK Brosamer, J Brost, E Brown, J de Renstrom, PAB Bruncko, D Bruneliere, R Bruni, A Bruni, G Bruschi, M Bruscino, N Bryngemark, L Buanes, T Buat, Q Buchholz, P Buckley, AG Buda, SI Budagov, IA Buehrer, F Bugge, L Bugge, MK Bulekov, O Bullock, D Burckhart, H Burdin, S Burgard, CD Burghgrave, B Burke, S Burmeister, I Busato, E Buscher, D Buscher, V Bussey, P Butler, JM Butt, AI Buttar, CM Butterworth, JM Butti, P Buttinger, W Buzatu, A Buzykaev, AR Urban, SC Caforio, D Cairo, VM Cakir, O Calace, N Calafiura, P Calandri, A Calderini, G Calfayan, P Caloba, LP Calvet, D Calvet, S Toro, RC Camarda, S Camarri, P Cameron, D Armadans, RC Campana, S Campanelli, M Campoverde, A Canale, V Canepa, A Bret, MC Cantero, J Cantrill, R Cao, T Garrido, MDMC Caprini, I Caprini, M Capua, M Caputo, R Cardarelli, R Cardillo, F Carli, T Carlino, G Carminati, L Caron, S Carquin, E Carrillo-Montoya, GD Carter, JR Carvalho, J Casadei, D Casado, MP Casolino, M Castaneda-Miranda, E Castelli, A Gimenez, VC Castro, NF Catastini, P Catinaccio, A Catmore, JR Cattai, A Caudron, J Cavaliere, V Cavalli, D Cavalli-Sforza, M Cavasinni, V Ceradini, F Cerio, BC Cerny, K Cerqueira, AS Cerri, A Cerrito, L Cerutti, F Cerv, M Cervelli, A Cetin, SA Chafaq, A Chakraborty, D Chalupkova, I Chang, P Chapman, JD Charlton, DG Chau, CC Barajas, CAC Cheatham, S Chegwidden, A Chekanov, S Chekulaev, SV Chelkov, GA Chelstowska, MA Chen, C Chen, H Chen, K Chen, L Chen, S Chen, X Chen, Y Cheng, HC Cheng, Y Cheplakov, A Cheremushkina, E El Moursli, RC Chernyatin, V Cheu, E Chevalier, L Chiarella, V Chiarelli, G Chiodini, G Chisholm, AS Chislett, RT Chitan, A Chizhov, MV Choi, K Chouridou, S Chow, BKB Christodoulou, V Chromek-Burckhart, D Chudoba, J Chuinard, AJ Chwastowski, JJ Chytka, L Ciapetti, G Ciftci, AK Cinca, D Cindro, V Cioara, IA Ciocio, A Cirotto, F Citron, ZH Ciubancan, M Clark, A Clark, BL Clark, PJ Clarke, RN Cleland, W Clement, C Coadou, Y Cobal, M Coccaro, A Cochran, J Coffey, L Cogan, JG Colasurdo, L Cole, B Cole, S Colijn, AP Collot, J Colombo, T Compostella, G Muino, PC Coniavitis, E Connell, SH Connelly, IA Consorti, V Constantinescu, S Conta, C Conti, G Conventi, F Cooke, M Cooper, BD Cooper-Sarkar, AM Cornelissen, T Corradi, M Corriveau, F Corso-Radu, A Cortes-Gonzalez, A Cortiana, G Costa, G Costa, MJ Costanzo, D Cote, D Cottin, G Cowan, G Cox, BE Cranmer, K Cree, G Crepe-Renaudin, S Crescioli, F Cribbs, WA Ortuzar, MC Cristinziani, M Croft, V Crosetti, G Donszelmann, TC Cummings, J Curatolo, M Cuthbert, C Czirr, H Czodrowski, P D'Auria, S D'Onofrio, M De Sousa, MJDS Da Via, C Dabrowski, W Dafinca, A Dai, T Dale, O Dallaire, F Dallapiccola, C Dam, M Dandoy, JR Dang, NP Daniells, AC Danninger, M Hoffmann, MD Dao, V Darbo, G Darmora, S Dassoulas, J Dattagupta, A Davey, W David, C Davidek, T Davies, E Davies, M Davison, P Davygora, Y Dawe, E Dawson, I Daya-Ishmukhametova, RK De, K de Asmundis, R De Benedetti, A De Castro, S De Cecco, S De Groot, N De Jong, P De la Torre, H De Lorenzi, F De Pedis, D De Salvo, A De Sanctis, U De Santo, A De Regie, JBDV Dearnaley, WJ Debbe, R Debenedetti, C Dedovich, DV Deigaard, I Del Peso, J Prete, T Delgove, D Deliot, F Delitzsch, CM Deliyergiyev, M Dell'Acqua, A Dell'Asta, L Dell'Orso, M Pietra, M Della Volpe, D Delmastro, M Delsart, PA Deluca, C DeMarco, DA Demers, S Demichev, M Demilly, A Denisov, SP Derendarz, D Derkaoui, JE Derue, F Dervan, P Desch, K Deterre, C Deviveiros, PO Dewhurst, A Dhaliwal, S Ciaccio, A Di Ciaccio, L Domenico, A Donato, C Di Girolamo, A Di Girolamo, B Di Mattia, A Micco, B Di Nardo, R Di Simone, A Di Sipio, R Di Valentino, D Diaconu, C Diamond, M Dias, FA Diaz, MA Diehl, EB Dietrich, J Diglio, S Dimitrievska, A Dingfelder, J Dita, P Dita, S Dittus, F Djama, F Djobava, T Djuvsland, JI do Vale, MAB Dobos, D Dobre, M Doglioni, C Dohmae, T Dolejsi, J Dolezal, Z Dolgoshein, BA Donadelli, M Donati, S Dondero, P Donini, J Dopke, J Doria, A Dova, MT Doyle, AT Drechsler, E Dris, M Dubreuil, E Duchovni, E Duckeck, G Ducu, OA Duda, D Dudarev, A Duflot, L Duguid, L Duhrssen, M Dunford, M Yildiz, HD Duren, M Durglishvili, A Duschinger, D Dyndal, M Eckardt, C Ecker, KM Edgar, RC Edson, W Edwards, NC Ehrenfeld, W Eifert, T Eigen, G Einsweiler, K Ekelof, T El Kacimi, M Ellert, M Elles, S Ellinghaus, F Elliot, AA Ellis, N Elmsheuser, J Elsing, M Emeliyanov, D Enari, Y Endner, OC Endo, M Erdmann, J Ereditato, A Ernis, G Ernst, J Ernst, M Errede, S Ertel, E Escalier, M Esch, H Escobar, C Esposito, B Etienvre, AI Etzion, E Evans, H Ezhilov, A Fabbri, L Facini, G Fakhrutdinov, RM Falciano, S Falla, RJ Faltova, J Fang, Y Fanti, M Farbin, A Farilla, A Farooque, T Farrell, S Farrington, SM Farthouat, P Fassi, F Fassnacht, P Fassouliotis, D Giannelli, MF Favareto, A Fayard, L Federic, P Fedin, OL Fedorko, W Feigl, S Feligioni, L Feng, C Feng, EJ Feng, H Fenyuk, AB Feremenga, L Martinez, PF Perez, SF Ferrando, J Ferrari, A Ferrari, P Ferrari, R de Lima, DEF Ferrer, A Ferrere, D Ferretti, C Parodi, AF Fiascaris, M Fiedler, F Filipcic, A Filipuzzi, M Filthaut, F Fincke-Keeler, M Finelli, KD Fiolhais, MCN Fiorini, L Firan, A Fischer, A Fischer, C Fischer, J Fisher, WC Fitzgerald, EA Flaschel, N Fleck, I Fleischmann, P Fleischmann, S Fletcher, GT Fletcher, G Fletcher, RRM Flick, T Floderus, A Castillo, LRF Flowerdew, MJ Formica, A Forti, A Fournier, D Fox, H Fracchia, S Francavilla, P Franchini, M Francis, D Franconi, L Franklin, M Frate, M Fraternali, M Freeborn, D French, ST Friedrich, F Froidevaux, D Frost, JA Fukunaga, C Torregrosa, EF Fulsom, BG Fusayasu, T Fuster, J Gabaldon, C Gabizon, O Gabrielli, A Gabrielli, A Gach, GP Gadatsch, S Gadomski, S Gagliardi, G Gagnon, P Galea, C Galhardo, B Gallas, EJ Gallop, BJ Gallus, P Galster, G Gan, KK Gao, J Gao, Y Gao, YS Walls, FMG Garberson, F Garcia, C Navarro, JEG Garcia-Sciveres, M Gardner, RW Garelli, N Garonne, V Gatti, C Gaudiello, A Gaudio, G Gaur, B Gauthier, L Gauzzi, P Gavrilenko, IL Gay, C Gaycken, G Gazis, EN Ge, P Gecse, Z Gee, CNP Geich-Gimbel, C Geisler, MP Gemme, C Genest, MH Gentile, S George, M George, S Gerbaudo, D Gershon, A Ghasemi, S Ghazlane, H Giacobbe, B Giagu, S Giangiobbe, V Giannetti, P Gibbard, B Gibson, SM Gilchriese, M Gillam, TPS Gillberg, D Gilles, G Gingrich, DM Giokaris, N Giordani, MP Giorgi, FM Giorgi, FM Giraud, PF Giromini, P Giugni, D Giuliani, C Giulini, M Gjelsten, BK Gkaitatzis, S Gkialas, I Gkougkousis, EL Gladilin, LK Glasman, C Glatzer, J Glaysher, PCF Glazov, A Goblirsch-Kolb, M Goddard, JR Godlewski, J Goldfarb, S Golling, T Golubkov, D Gomes, A Goncalo, R Da Costa, JGPF Gonella, L de la Hoz, SG Parra, GG Gonzalez-Sevilla, S Goossens, L Gorbounov, PA Gordon, HA Gorelov, I Gorini, B Gorini, E Gorisek, A Gornicki, E Goshaw, AT Gossling, C Gostkin, MI Goujdami, D Goussiou, AG Govender, N Gozani, E Grabas, HMX Graber, L Grabowska-Bold, I Gradin, POJ Grafstrom, P Grahn, KJ Gramling, J Gramstad, E Grancagnolo, S Gratchev, V Gray, HM Graziani, E Greenwood, ZD Gregersen, K Gregor, IM Grenier, P Griffiths, J Grillo, AA Grimm, K Grinstein, S Gris, P Grivaz, JF Grohs, JP Grohsjean, A Gross, E Grosse-Knetter, J Grossi, GC Grout, ZJ Guan, L Guenther, J Guescini, F Guest, D Gueta, O Guido, E Guillemin, T Guindon, S Gul, U Gumpert, C Guo, J Guo, Y Gupta, S Gustavino, G Gutierrez, P Ortiz, NGG Gutschow, C Guyot, C Gwenlan, C Gwilliam, CB Haas, A Haber, C Hadavand, HK Haddad, N Haefner, P Hagebock, S Hajduk, Z Hakobyan, H Haleem, M Haley, J Hall, D Halladjian, G Hallewell, GD Hamacher, K Hamal, P Hamano, K Hamilton, A Hamity, GN Hamnett, PG Han, L Hanagaki, K Hanawa, K Hance, M Hanke, P Hanna, R Hansen, JB Hansen, JD Hansen, MC Hansen, PH Hara, K Hard, AS Harenberg, T Hariri, F Harkusha, S Harrington, RD Harrison, PF Hartjes, F Hasegawa, M Hasegawa, Y Hasib, A Hassani, S Haug, S Hauser, R Hauswald, L Havranek, M Hawkes, CM Hawkings, RJ Hawkins, AD Hayashi, T Hayden, D Hays, CP Hays, JM Hayward, HS Haywood, SJ Head, SJ Heck, T Hedberg, V Heelan, L Heim, S Heim, T Heinemann, B Heinrich, L Hejbal, J Helary, L Hellman, S Hellmich, D Helsens, C Henderson, J Henderson, RCW Heng, Y Hengler, C Henrichs, A Correia, AMH Henrot-Versille, S Herbert, GH Jimenez, YH Herrberg-Schubert, R Herten, G Hertenberger, R Hervas, L Hesketh, GG Hessey, NP Hetherly, JW Hickling, R Higon-Rodriguez, E Hill, E Hill, JC Hiller, KH Hillier, SJ Hinchliffe, I Hines, E Hinman, RR Hirose, M Hirschbuehl, D Hobbs, J Hod, N Hodgkinson, MC Hodgson, P Hoecker, A Hoeferkamp, MR Hoenig, F Hohlfeld, M Hohn, D Holmes, TR Homann, M Hong, TM van Huysduynen, LH Hopkins, WH Horii, Y Horton, AJ Hostachy, JY Hou, S Hoummada, A Howard, J Howarth, J Hrabovsky, M Hristova, I Hrivnac, J Hryn'ova, T Hrynevich, A Hsu, C Hsu, PJ Hsu, SC Hu, D Hu, Q Hu, X Huang, Y Hubacek, Z Hubaut, F Huegging, F Huffman, TB Hughes, EW Hughes, G Huhtinen, M Hulsing, TA Huseynov, N Huston, J Huth, J Iacobucci, G Iakovidis, G Ibragimov, I Iconomidou-Fayard, L Ideal, E Idrissi, Z Iengo, P Igonkina, O Iizawa, T Ikegami, Y Ikematsu, K Ikeno, M Ilchenko, Y Iliadis, D Ilic, N Ince, T Introzzi, G Ioannou, P Iodice, M Iordanidou, K Ippolito, V Quiles, AI Isaksson, C Ishino, M Ishitsuka, M Ishmukhametov, R Issever, C Istin, S Ponce, JMI Iuppa, R Ivarsson, J Iwanski, W Iwasaki, H Izen, JM Izzo, V Jabbar, S Jackson, B Jackson, M Jackson, P Jaekel, MR Jain, V Jakobs, K Jakobsen, S Jakoubek, T Jakubek, J Jamin, DO Jana, DK Jansen, E Jansky, R Janssen, J Janus, M Jarlskog, G Javadov, N Javurek, T Jeanty, L Jejelava, J Jeng, GY Jennens, D Jenni, P Jentzsch, J Jeske, C Jezequel, S Jia, H Jia, J Jiang, Y Jiggins, S Pena, JJ Jin, S Jinaru, A Jinnouchi, O Joergensen, MD Johansson, P Johns, KA Jon-And, K Jones, G Jones, RWL Jones, TJ Jongmanns, J Jorge, PM Joshi, KD Jovicevic, J Ju, X Jung, CA Jussel, P Rozas, AJ Kaci, M Kaczmarska, A Kado, M Kagan, H Kagan, M Kahn, SJ Kajomovitz, E Kalderon, CW Kama, S Kamenshchikov, A Kanaya, N Kaneti, S Kantserov, VA Kanzaki, J Kaplan, B Kaplan, LS Kapliy, A Kar, D Karakostas, K Karamaoun, A Karastathis, N Kareem, MJ Karentzos, E Karnevskiy, M Karpov, SN Karpova, ZM Karthik, K Kartvelishvili, V Karyukhin, AN Kashif, L Kass, RD Kastanas, A Kataoka, Y Kato, C Katre, A Katzy, J Kawagoe, K Kawamoto, T Kawamura, G Kazama, S Kazanin, VF Keeler, R Kehoe, R Keller, JS Kempster, JJ Keoshkerian, H Kepka, O Kersevan, BP Kersten, S Keyes, RA Khalil-Zada, F Khandanyan, H Khanov, A Kharlamov, AG Khoo, TJ Khovanskiy, V Khramov, E Khubua, J Kido, S Kim, HY Kim, SH Kim, YK Kimura, N Kind, OM King, BT King, M King, SB Kirk, J Kiryunin, AE Kishimoto, T Kisielewska, D Kiss, F Kiuchi, K Kivernyk, O Kladiva, E Klein, MH Klein, M Klein, U Kleinknecht, K Klimek, P Klimentov, A Klingenberg, R Klinger, JA Klioutchnikova, T Kluge, EE Kluit, P Kluth, S Knapik, J Kneringer, E Knoops, EBFG Knue, A Kobayashi, A Kobayashi, D Kobayashi, T Kobel, M Kocian, M Kodys, P Koffas, T Koffeman, E Kogan, LA Kohlmann, S Kohout, Z Kohriki, T Koi, T Kolanoski, H Koletsou, I Komar, AA Komori, Y Kondo, T Kondrashova, N Koneke, K Konig, AC Kono, T Konoplich, R Konstantinidis, N Kopeliansky, R Koperny, S Kopke, L Kopp, AK Korcyl, K Kordas, K Korn, A Korol, AA Korolkov, I Korolkova, EV Kortner, O Kortner, S Kosek, T Kostyukhin, VV Kotov, VM Kotwal, A Kourkoumeli-Charalampidi, A Kourkoumelis, C Kouskoura, V Koutsman, A Kowalewski, R Kowalski, TZ Kozanecki, W Kozhin, AS Kramarenko, VA Kramberger, G Krasnopevtsev, D Krasny, MW Krasznahorkay, A Kraus, JK Kravchenko, A Kreiss, S Kretz, M Kretzschmar, J Kreutzfeldt, K Krieger, P Krizka, K Kroeninger, K Kroha, H Kroll, J Kroseberg, J Krstic, J Kruchonak, U Krueger, H Krumnack, N Kruse, A Kruse, MC Kruskal, M Kubota, T Kucuk, H Kuday, S Kuehn, S Kugel, A Kuger, F Kuhl, A Kuhl, T Kukhtin, V Kulchitsky, Y Kuleshov, S Kuna, M Kunigo, T Kupco, A Kurashige, H Kurochkin, YA Kus, V Kuwertz, ES Kuze, M Kvita, J Kwan, T Kyriazopoulos, D La Rosa, A Navarro, JLL La Rotonda, L Lacasta, C Lacava, F Lacey, J Lacker, H Lacour, D Lacuesta, VR Ladygin, E Lafaye, R Laforge, B Lagouri, T Lai, S Lambourne, L Lammers, S Lampen, CL Lampl, W Lancon, E Landgraf, U Landon, MPJ Lang, VS Lange, JC Lankford, AJ Lanni, F Lantzsch, K Lanza, A Laplace, S Lapoire, C Laporte, JF Lari, T Manghi, FL Lassnig, M Laurelli, P Lavrijsen, W Law, AT Laycock, P Lazovich, T Le Dortz, O Le Guirriec, E Le Menedeu, E LeBlanc, M LeCompte, T Ledroit-Guillon, F Lee, CA Lee, SC Lee, L Lefebvre, G Lefebvre, M Legger, F Leggett, C Lehan, A Miotto, GL Lei, X Leight, WA Leisos, A Leister, AG Leite, MAL Leitner, R Lellouch, D Lemmer, B Leney, KJC Lenz, T Lenzi, B Leone, R Leone, S Leonidopoulos, C Leontsinis, S Leroy, C Lester, CG Levchenko, M Leveque, J Levin, D Levinson, LJ Levy, M Lewis, A Leyko, AM Leyton, M Li, B Li, H Li, HL Li, L Li, L Li, S Li, X Li, Y Liang, Z Liao, H Liberti, B Liblong, A Lichard, P Lie, K Liebal, J Liebig, W Limbach, C Limosani, A Lin, SC Lin, TH Linde, F Lindquist, BE Linnemann, JT Lipeles, E Lipniacka, A Lisovyi, M Liss, TM Lissauer, D Lister, A Litke, AM Liu, B Liu, D Liu, H Liu, J Liu, JB Liu, K Liu, L Liu, M Liu, M Liu, Y Livan, M Lleres, A Merino, JL Lloyd, SL Lo Sterzo, F Lobodzinska, E Loch, P Lockman, WS Loebinger, FK Loevschall-Jensen, AE Loginov, A Lohse, T Lohwasser, K Lokajicek, M Long, BA Long, JD Long, RE Looper, KA Lopes, L Mateos, DL Paredes, BL Paz, IL Lorenz, J Martinez, NL Losada, M Loscutoff, P Losel, PJ Lou, X Lounis, A Love, J Love, PA Lu, N Lubatti, HJ Luci, C Lucotte, A Luehring, F Lukas, W Luminari, L Lundberg, O Lund-Jensen, B Lynn, D Lysak, R Lytken, E Ma, H Ma, LL Maccarrone, G Macchiolo, A Macdonald, CM Macek, B Miguens, JM Macina, D Madaffari, D Madar, R Maddocks, HJ Mader, WF Madsen, A Maeda, J Maeland, S Maeno, T Maevskiy, A Magradze, E Mahboubi, K Mahlstedt, J Maiani, C Maidantchik, C Maier, AA Maier, T Maio, A Majewski, S Makida, Y Makovec, N Malaescu, B Malecki, P Maleev, VP Malek, F Mallik, U Malon, D Malone, C Maltezos, S Malyshev, VM Malyukov, S Mamuzic, J Mancini, G Mandelli, B Mandelli, L Mandic, I Mandrysch, R Maneira, J Manfredini, A de Andrade, LM Ramos, JM Mann, A Manousakis-Katsikakis, A Mansoulie, B Mantifel, R Mantoani, M Mapelli, L March, L Marchiori, G Marcisovsky, M Marino, CP Marjanovic, M Marley, DE Marroquim, F Marsden, SP Marshall, Z Marti, LF Marti-Garcia, S Martin, B Martin, TA Martin, VJ Latour, BMD Martinez, M Martin-Haugh, S Martoiu, VS Martyniuk, AC Marx, M Marzano, F Marzin, A Masetti, L Mashimo, T Mashinistov, R Masik, J Maslennikov, AL Massa, I Massa, L Massol, N Mastrandrea, P Mastroberardino, A Masubuchi, T Mattig, P Mattmann, J Maurer, J Maxfield, SJ Maximov, DA Mazini, R Mazza, SM Mazzaferro, L Mc Goldrick, G Mc Kee, SP McCarn, A McCarthy, RL McCarthy, TG McCubbin, NA McFarlane, KW Mcfayden, JA Mchedlidze, G McMahon, SJ McPherson, RA Medinnis, M Meehan, S Mehlhase, S Mehta, A Meier, K Meineck, C Meirose, B Garcia, BRM Meloni, F Mengarelli, A Menke, S Meoni, E Mercurio, KM Mergelmeyer, S Mermod, P Merola, L Meroni, C Merritt, FS Messina, A Metcalfe, J Mete, AS Meyer, C Meyer, C Meyer, JP Meyer, J Theenhausen, HMZ Middleton, RP Miglioranzi, S Mijovic, L Mikenberg, G Mikestikova, M Mikuz, M Milesi, M Milic, A Miller, DW Mills, C Milov, A Milstead, DA Minaenko, AA Minami, Y Minashvili, IA Mincer, AI Mindur, B Mineev, M Ming, Y Mir, LM Mitani, T Mitrevski, J Mitsou, VA Miucci, A Miyagawa, PS Mjornmark, JU Moa, T Mochizuki, K Mohapatra, S Mohr, W Molander, S Moles-Valls, R Monig, K Monini, C Monk, J Monnier, E Berlingen, JM Monticelli, F Monzani, S Moore, RW Morange, N Moreno, D Llacer, MM Morettini, P Mori, D Morii, M Morinaga, M Morisbak, V Moritz, S Morley, AK Mornacchi, G Morris, JD Mortensen, SS Morton, A Morvaj, L Mosidze, M Moss, J Motohashi, K Mount, R Mountricha, E Mouraviev, SV Moyse, EJW Muanza, S Mudd, RD Mueller, F Mueller, J Mueller, RSP Mueller, T Muenstermann, D Mullen, P Mullier, GA Quijada, JAM Murray, WJ Musheghyan, H Musto, E Myagkov, AG Myska, M Nachman, BP Nackenhorst, O Nadal, J Nagai, K Nagai, R Nagai, Y Nagano, K Nagarkar, A Nagasaka, Y Nagata, K Nagel, M Nagy, E Nairz, AM Nakahama, Y Nakamura, K Nakamura, T Nakano, I Namasivayam, H Garcia, RFN Narayan, R Villar, DIN Naumann, T Navarro, G Nayyar, R Neal, HA Nechaeva, PY Neep, TJ Nef, PD Negri, A Negrini, M Nektarijevic, S Nellist, C Nelson, A Nemecek, S Nemethy, P Nepomuceno, AA Nessi, M Neubauer, MS Neumann, M Neves, RM Nevski, P Newman, PR Nguyen, DH Nickerson, RB Nicolaidou, R Nicquevert, B Nielsen, J Nikiforou, N Nikiforov, A Nikolaenko, V Nikolic-Audit, I Nikolopoulos, K Nilsen, JK Nilsson, P Ninomiya, Y Nisati, A Nisius, R Nobe, T Nomachi, M Nomidis, I Nooney, T Norberg, S Nordberg, M Novgorodova, O Nowak, S Nozaki, M Nozka, L Ntekas, K Hanninger, GN Nunnemann, T Nurse, E Nuti, F O'Brien, BJ O'grady, F O'Neil, DC O'Shea, V Oakham, FG Oberlack, H Obermann, T Ocariz, J Ochi, A Ochoa, I Ochoa-Ricoux, JP Oda, S Odaka, S Ogren, H Oh, A Oh, SH Ohm, CC Ohman, H Oide, H Okamura, W Okawa, H Okumura, Y Okuyama, T Olariu, A Pino, SAO Damazio, DO Garcia, EO Olszewski, A Olszowska, J Onofre, A Onyisi, PUE Oram, CJ Oreglia, MJ Oren, Y Orestano, D Orlando, N Barrera, CO Orr, RS Osculati, B Ospanov, R Garzon, GOY Otono, H Ouchrif, M Ould-Saada, F Ouraou, A Oussoren, KP Ouyang, Q Ovcharova, A Owen, M Owen, RE Ozcan, VE Ozturk, N Pachal, K Pages, AP Aranda, CP Pagacova, M Griso, SP Paganis, E Paige, F Pais, P Pajchel, K Palacino, G Palestini, S Palka, M Pallin, D Palma, A Pan, YB Panagiotopoulou, E Pandini, CE Vazquez, JGP Pani, P Panitkin, S Pantea, D Paolozzi, L Papadopoulou, TD Papageorgiou, K Paramonov, A Hernandez, DP Parker, MA Parker, KA Parodi, F Parsons, JA Parzefall, U Pasqualucci, E Passaggio, S Pastore, F Pastore, F Pasztor, G Pataraia, S Patel, ND Pater, JR Pauly, T Pearce, J Pearson, B Pedersen, LE Pedersen, M Lopez, SP Pedro, R Peleganchuk, SV Pelikan, D Penc, O Peng, C Peng, H Penning, B Penwell, J Perepelitsa, DV Codina, EP Garcia-Estan, MTP Perini, L Pernegger, H Perrella, S Peschke, R Peshekhonov, VD Peters, K Peters, RFY Petersen, BA Petersen, TC Petit, E Petridis, A Petridou, C Petroff, P Petrolo, E Petrucci, F Pettersson, NE Pezoa, R Phillips, PW Piacquadio, G Pianori, E Picazio, A Piccaro, E Piccinini, M Pickering, MA Piegaia, R Pignotti, DT Pilcher, JE Pilkington, AD Pina, J Pinamonti, M Pinfold, JL Pingel, A Pires, S Pirumov, H Pitt, M Pizio, C Plazak, L Pleier, MA Pleskot, V Plotnikova, E Plucinski, P Pluth, D Poettgen, R Poggioli, L Pohl, D Polesello, G Poley, A Policicchio, A Polifka, R Polini, A Pollard, CS Polychronakos, V Pommes, K Pontecorvo, L Pope, BG Popeneciu, GA Popovic, DS Poppleton, A Pospisil, S Potamianos, K Potrap, IN Potter, CJ Potter, CT Poulard, G Poveda, J Pozdnyakov, V Pralavorio, P Pranko, A Prasad, S Prell, S Price, D Price, LE Primavera, M Prince, S Proissl, M Prokofiev, K Prokoshin, F Protopapadaki, E Protopopescu, S Proudfoot, J Przybycien, M Ptacek, E Puddu, D Pueschel, E Puldon, D Purohit, M Puzo, P Qian, J Qin, G Qin, Y Quadt, A Quarrie, DR Quayle, WB Queitsch-Maitland, M Quilty, D Raddum, S Radeka, V Radescu, V Radhakrishnan, SK Radloff, P Rados, P Ragusa, F Rahal, G Rajagopalan, S Rammensee, M Rangel-Smith, C Rauscher, F Rave, S Ravenscroft, T Raymond, M Read, AL Readioff, NP Rebuzzi, DM Redelbach, A Redlinger, G Reece, R Reeves, K Rehnisch, L Reichert, J Reisin, H Relich, M Rembser, C Ren, H Renaud, A Rescigno, M Resconi, S Rezanova, OL Reznicek, P Rezvani, R Richter, R Rijssenbeek, M Richter-Was, E Ricken, O Ridel, M Rieck, P Riegel, CJ Rieger, J Rijssenbeek, M Rimoldi, A Rinaldi, L Ristic, B Ritsch, E Riu, I Rizatdinova, F Rizvi, E Robertson, SH Robichaud-Veronneau, A Robinson, D Robinson, JEM Robson, A Roda, C Roe, S Rohne, O Rolli, S Romaniouk, A Romano, M Saez, SMR Adam, ER Rompotis, N Ronzani, M Roos, L Ros, E Rosati, S Rosbach, K Rose, P Rosendahl, PL Rosenthal, O Rossetti, V Rossi, E Rossi, LP Rosten, JHN Rosten, R Rotaru, M Roth, I Rothberg, J Rousseau, D Royon, CR Rozanov, A Rozen, Y Ruan, X Rubbo, F Rubinskiy, I Rud, VI Rudolph, C Rudolph, MS Ruhr, F Ruiz-Martinez, A Rurikova, Z Rusakovich, NA Ruschke, A Russell, HL Rutherfoord, JP Ruthmann, N Ryabov, YF Rybar, M Rybkin, G Ryder, NC Saavedra, AF Sabato, G Sacerdoti, S Saddique, A Sadrozinski, HFW Sadykov, R Tehrani, FS Sahinsoy, M Saimpert, M Saito, T Sakamoto, H Sakurai, Y Salamanna, G Salamon, A Loyola, JES Saleem, M Salek, D De Bruin, PHS Salihagic, D Salnikov, A Salt, J Salvatore, D Salvatore, F Salvucci, A Salzburger, A Sammel, D Sampsonidis, D Sanchez, A Sanchez, J Martinez, VS Sandaker, H Sandbach, RL Sander, HG Sanders, MP Sandhoff, M Sandoval, C Sandstroem, R Sankey, DPC Sannino, M Sansoni, A Santoni, C Santonico, R Santos, H Castillo, IS Sapp, K Sapronov, A Saraiva, JG Sarrazin, B Sasaki, O Sasaki, Y Sato, K Sauvage, G Sauvan, E Savage, G Savard, P Sawyer, C Sawyer, L Saxon, J Sbarra, C Sbrizzi, A Scanlon, T Scannicchio, DA Scarcella, M Scarfone, V Schaarschmidt, J Schacht, P Schaefer, D Schaefer, R Schaeffer, J Schaepe, S Schaetzel, S Schafer, U Schaffer, AC Schaile, D Schamberger, RD Scharf, V Schegelsky, VA Scheirich, D Schernau, M Schiavi, C Schillo, C Schioppa, M Schlenker, S Schmieden, K Schmitt, C Schmitt, S Schmitt, S Schneider, B Schnellbach, YJ Schnoor, U Schoeffel, L Schoening, A Schoenrock, BD Schopf, E Schorlemmer, ALS Schott, M Schouten, D Schovancova, J Schramm, S Schreyer, M Schroeder, C Schuh, N Schultens, MJ Schultz-Coulon, HC Schulz, H Schumacher, M Schumm, BA Schune, P Schwanenberger, C Schwartzman, A Schwarz, TA Schwegler, P Schweiger, H Schwemling, P Schwienhorst, R Schwindling, J Schwindt, T Sciacca, FG Scifo, E Sciolla, G Scuri, F Scutti, F Searcy, J Sedov, G Sedykh, E Seema, P Seidel, SC Seiden, A Seifert, F Seixas, JM Sekhniaidze, G Sekhon, K Sekula, SJ Seliverstov, DM Semprini-Cesari, N Serfon, C Serin, L Serkin, L Serre, T Sessa, M Seuster, R Severini, H Sfiligoj, T Sforza, F Sfyrla, A Shabalina, E Shamim, M Shan, LY Shang, R Shank, JT Shapiro, M Shatalov, PB Shaw, K Shaw, SM Shcherbakova, A Shehu, CY Sherwood, P Shi, L Shimizu, S Shimmin, CO Shimojima, M Shiyakova, M Shmeleva, A Saadi, DS Shochet, MJ Shojaii, S Shrestha, S Shulga, E Shupe, MA Shushkevich, S Sicho, P Sidebo, PE Sidiropoulou, O Sidorov, D Sidoti, A Siegert, F Sijacki, D Silva, J Silver, Y Silverstein, SB Simak, V Simard, O Simic, L Simion, S Simioni, E Simmons, B Simon, D Sinervo, P Sinev, NB Sioli, M Siragusa, G Sisakyan, AN Sivoklokov, SY Sjolin, J Sjursen, TB Skinner, MB Skottowe, HP Skubic, P Slater, M Slavicek, T Slawinska, M Sliwa, K Smakhtin, V Smart, BH Smestad, L Smirnov, SY Smirnov, Y Smirnova, LN Smirnova, O Smith, MNK Smith, RW Smizanska, M Smolek, K Snesarev, AA Snidero, G Snyder, S Sobie, R Socher, F Soffer, A Soh, DA Sokhrannyi, G Solans, CA Solar, M Solc, J Soldatov, EY Soldevila, U Solodkov, AA Soloshenko, A Solovyanov, OV Solovyev, V Sommer, P Song, HY Soni, N Sood, A Sopczak, A Sopko, B Sopko, V Sorin, V Sosa, D Sosebee, M Sotiropoulou, CL Soualah, R Soukharev, AM South, D Sowden, BC Spagnolo, S Spalla, M Spangenberg, M Spano, F Spearman, WR Sperlich, D Spettel, F Spighi, R Spigo, G Spiller, LA Spousta, M Spreitzer, T St Denis, RD Staerz, S Stahlman, J Stamen, R Stamm, S Stanecka, E Stanescu, C Stanescu-Bellu, M Stanitzki, MM Stapnes, S Starchenko, EA Stark, J Staroba, P Starovoitov, P Staszewski, R Stavina, P Steinberg, P Stelzer, B Stelzer, HJ Stelzer-Chilton, O Stenzel, H Stewart, GA Stillings, JA Stockton, MC Stoebe, M Stoicea, G Stolte, P Stonjek, S Stradling, AR Straessner, A Stramaglia, ME Strandberg, J Strandberg, S Strandlie, A Strauss, E Strauss, M Strizenec, P Strohmer, R Strom, DM Stroynowski, R Strubig, A Stucci, SA Stugu, B Styles, NA Su, D Su, J Subramaniam, R Succurro, A Sugaya, Y Suhr, C Suk, M Sulin, VV Sultansoy, S Sumida, T Sun, S Sun, X Sundermann, JE Suruliz, K Susinno, G Sutton, MR Suzuki, S Svatos, M Swiatlowski, M Sykora, I Sykora, T Ta, D Taccini, C Tackmann, K Taenzer, J Taffard, A Tafirout, R Taiblum, N Takai, H Takashima, R Takeda, H Takeshita, T Takubo, Y Talby, M Talyshev, AA Tam, JYC Tan, KG Tanaka, J Tanaka, R Tanaka, S Tannenwald, BB Tannoury, N Tapprogge, S Tarem, S Tarrade, F Tartarelli, GF Tas, P Tasevsky, M Tashiro, T Tassi, E Delgado, AT Tayalati, Y Taylor, FE Taylor, GN Taylor, W Teischinger, FA Castanheira, MTD Teixeira-Dias, P Temming, KK Temple, D Ten Kate, H Teng, PK Teoh, JJ Tepel, F Terada, S Terashi, K Terron, J Terzo, S Testa, M Teuscher, RJ Theveneaux-Pelzer, T Thomas, JP Thomas-Wilsker, J Thompson, EN Thompson, PD Thompson, RJ Thompson, AS Thomsen, LA Thomson, E Thomson, M Thun, RP Tibbetts, MJ Torres, RET Tikhomirov, VO Tikhonov, YA Timoshenko, S Tiouchichine, E Tipton, P Tisserant, S Todome, K Todorov, T Todorova-Nova, S Tojo, J Tokar, S Tokushuku, K Tollefson, K Tolley, E Tomlinson, L Tomoto, M Tompkins, L Toms, K Torrence, E Torres, H Pastor, ET Toth, J Touchard, F Tovey, DR Trefzger, T Tremblet, L Tricoli, A Trigger, IM Trincaz-Duvoid, S Tripiana, MF Trischuk, W Trocme, B Troncon, C Trottier-McDonald, M Trovatelli, M True, P Truong, L Trzebinski, M Trzupek, A Tsarouchas, C Tseng, JCL Tsiareshka, PV Tsionou, D Tsipolitis, G Tsirintanis, N Tsiskaridze, S Tsiskaridze, V Tskhadadze, EG Tsukerman, II Tsulaia, V Tsuno, S Tsybychev, D Tudorache, A Tudorache, V Tuna, AN Tupputi, SA Turchikhin, S Turecek, D Turra, R Turvey, AJ Tuts, PM Tykhonov, A Tylmad, M Tyndel, M Ueda, I Ueno, R Ughetto, M Ugland, M Ukegawa, F Unal, G Undrus, A Unel, G Ungaro, FC Unno, Y Unverdorben, C Urban, J Urquijo, P Urrejola, P Usai, G Usanova, A Vacavant, L Vacek, V Vachon, B Valderanis, C Valencic, N Valentinetti, S Valero, A Valery, L Valkar, S Gallego, EV Vallecorsa, S Ferrer, JAV Van den Wollenberg, W Van der Deijl, PC van der Geer, R van der Graaf, H van Eldik, N van Gemmeren, P van Nieuwkoop, J van Vulpen, I van Woerden, MC Vanadia, M Vandelli, W Vanguri, R Vaniachine, A Vannucci, F Vardanyan, G Vari, R Varnes, EW Varol, T Varouchas, D Vartapetian, A Varvell, KE Vazeille, F Schroeder, TV Veatch, J Veloce, LM Veloso, F Velz, T Veneziano, S Ventura, A Ventura, D Venturi, M Venturi, N Venturini, A Vercesi, V Verducci, M Verkerke, W Vermeulen, JC Vest, A Vetterli, MC Viazlo, O Vichou, I Vickey, T Boeriu, OEV Viehhauser, GHA Viel, S Vigne, R Villa, M Perez, MV Vilucchi, E Vincter, MG Vinogradov, VB Vivarelli, I Vaque, FV Vlachos, S Vladoiu, D Vlasak, M Vogel, M Vokac, P Volpi, G Volpi, M von der Schmitt, H von Radziewski, H von Toerne, E Vorobel, V Vorobev, K Vos, M Voss, R Vossebeld, JH Vranjes, N Milosavljevic, MV Vrba, V Vreeswijk, M Vuillermet, R Vukotic, I Vykydal, Z Wagner, P Wagner, W Wahlberg, H Wahrmund, S Wakabayashi, J Walder, J Walker, R Walkowiak, W Wang, C Wang, F Wang, H Wang, H Wang, J Wang, J Wang, K Wang, R Wang, SM Wang, T Wang, T Wang, X Wanotayaroj, C Warburton, A Ward, CP Wardrope, DR Washbrook, A Wasicki, C Watkins, PM Watson, AT Watson, IJ Watson, MF Watts, G Watts, S Waugh, BM Webb, S Weber, MS Weber, SW Webster, JS Weidberg, AR Weinert, B Weingarten, J Weiser, C Weits, H Wells, PS Wenaus, T Wengler, T Wenig, S Wermes, N Werner, M Werner, P Wessels, M Wetter, J Whalen, K Wharton, AM White, A White, MJ White, R White, S Whiteson, D Wickens, FJ Wiedenmann, W Wielers, M Wienemann, P Wiglesworth, C Wiik-Fuchs, LAM Wildauer, A Wilkens, HG Williams, HH Williams, S Willis, C Willocq, S Wilson, A Wilson, JA Wingerter-Seez, I Winklmeier, F Winter, BT Wittgen, M Wittkowski, J Wollstadt, SJ Wolter, MW Wolters, H Wosiek, BK Wotschack, J Woudstra, MJ Wozniak, KW Wu, M Wu, M Wu, SL Wu, X Wu, Y Wyatt, TR Wynne, BM Xella, S Xu, D Xu, L Yabsley, B Yacoob, S Yakabe, R Yamada, M Yamaguchi, D Yamaguchi, Y Yamamoto, A Yamamoto, S Yamanaka, T Yamauchi, K Yamazaki, Y Yan, Z Yang, H Yang, H Yang, Y Yao, WM Yasu, Y Yatsenko, E Wong, KHY Ye, J Ye, S Yeletskikh, I Yen, AL Yildirim, E Yorita, K Yoshida, R Yoshihara, K Young, C Young, CJS Youssef, S Yu, DR Yu, J Yu, JM Yu, J Yuan, L Yuen, SPY Yurkewicz, A Yusuff, I Zabinski, B Zaidan, R Zaitsev, AM Zalieckas, J Zaman, A Zambito, S Zanello, L Zanzi, D Zeitnitz, C Zeman, M Zemla, A Zeng, Q Zengel, K Zenin, O Zenis, T Zerwas, D Zhang, D Zhang, F Zhang, H Zhang, J Zhang, L Zhang, R Zhang, X Zhang, Z Zhao, X Zhao, Y Zhao, Z Zhemchugov, A Zhong, J Zhou, B Zhou, C Zhou, L Zhou, L Zhou, N Zhu, CG Zhu, H Zhu, J Zhu, Y Zhuang, X Zhukov, K Zibell, A Zieminska, D Zimine, NI Zimmermann, C Zimmermann, S Zinonos, Z Zinser, M Ziolkowski, M Zivkovic, L Zobernig, G Zoccoli, A Nedden, MZ Zurzolo, G Zwalinski, L AF Aad, G. Abbott, B. Abdallah, J. Abdinov, O. Aben, R. Abolins, M. AbouZeid, O. S. Abramowicz, H. Abreu, H. Abreu, R. Abulaiti, Y. Acharya, B. S. Adamczyk, L. Adams, D. L. Adelman, J. Adomeit, S. Adye, T. Affolder, A. A. Agatonovic-Jovin, T. Agricola, J. Aguilar-Saavedra, J. A. Ahlen, S. P. Ahmadov, F. Aielli, G. Akerstedt, H. Akesson, T. P. A. Akimov, A. V. Alberghi, G. L. Albert, J. Albrand, S. Verzini, M. J. Alconada Aleksa, M. Aleksandrov, I. N. Alexa, C. Alexander, G. Alexopoulos, T. Alhroob, M. Alimonti, G. Alio, L. Alison, J. Alkire, S. P. Allbrooke, B. M. M. Allport, P. P. Aloisio, A. Alonso, A. Alonso, F. Alpigiani, C. Altheimer, A. Gonzalez, B. Alvarez Piqueras, D. Alvarez Alviggi, M. G. Amadio, B. T. Amako, K. Coutinho, Y. Amaral Amelung, C. Amidei, D. Dos Santos, S. P. Amor Amorim, A. Amoroso, S. Amram, N. Amundsen, G. Anastopoulos, C. Ancu, L. S. Andari, N. Andeen, T. Anders, C. F. Anders, G. Anders, J. K. Anderson, K. J. Andreazza, A. Andrei, V. Angelidakis, S. Angelozzi, I. Anger, P. Angerami, A. Anghinolfi, F. Anisenkov, A. V. Anjos, N. Annovi, A. Antonelli, M. Antonov, A. Antos, J. Anulli, F. Aoki, M. Bella, L. Aperio Arabidze, G. Arai, Y. Araque, J. P. Arce, A. T. H. Arduh, F. A. Arguin, J-F. Argyropoulos, S. Arik, M. Armbruster, A. J. Arnaez, O. Arnal, V. Arnold, H. Arratia, M. Arslan, O. Artamonov, A. Artoni, G. Asai, S. Asbah, N. Ashkenazi, A. Asman, B. Asquith, L. Assamagan, K. Astalos, R. Atkinson, M. Atlay, N. B. Augsten, K. Aurousseau, M. Avolio, G. Axen, B. Ayoub, M. K. Azuelos, G. Baak, M. A. Baas, A. E. Baca, M. J. Bacci, C. Bachacou, H. Bachas, K. Backes, M. Backhaus, M. Bagiacchi, P. Bagnaia, P. Bai, Y. Bain, T. Baines, J. T. Baker, O. K. Baldin, E. M. Balek, P. Balestri, T. Balli, F. Banas, E. Banerjee, Sw. Bannoura, A. A. E. Bansil, H. S. Barak, L. Barberio, E. L. Barberis, D. Barbero, M. Barillari, T. Barisonzi, M. Barklow, T. Barlow, N. Barnes, S. L. Barnett, B. M. Barnett, R. M. Barnovska, Z. Baroncelli, A. Barone, G. Barr, A. J. Barreiro, F. da Costa, J. Barreiro Guimaraes Bartoldus, R. Barton, A. E. Bartos, P. Basalaev, A. Bassalat, A. Basye, A. Bates, R. L. Batista, S. J. Batley, J. R. Battaglia, M. Bauce, M. Bauer, F. Bawa, H. S. Beacham, J. B. Beattie, M. D. Beau, T. Beauchemin, P. H. Beccherle, R. Bechtle, P. Beck, H. P. Becker, K. Becker, M. Becker, S. Beckingham, M. Becot, C. Beddall, A. J. Beddall, A. Bednyakov, V. A. Bee, C. P. Beemster, L. J. Beermann, T. A. Begel, M. Behr, J. K. Belanger-Champagne, C. Bell, W. H. Bella, G. Bellagamba, L. Bellerive, A. Bellomo, M. Belotskiy, K. Beltramello, O. Benary, O. Benchekroun, D. Bender, M. Bendtz, K. Benekos, N. Benhammou, Y. Noccioli, E. Benhar Garcia, J. A. Benitez Benjamin, D. P. Bensinger, J. R. Bentvelsen, S. Beresford, L. Beretta, M. Berge, D. Kuutmann, E. Bergeaas Berger, N. Berghaus, F. Beringer, J. Bernard, C. Bernard, N. R. Bernius, C. Bernlochner, F. U. Berry, T. Berta, P. Bertella, C. Bertoli, G. Bertolucci, F. Bertsche, C. Bertsche, D. Besana, M. I. Besjes, G. J. Bylund, O. Bessidskaia Bessner, M. Besson, N. Betancourt, C. Bethke, S. Bevan, A. J. Bhimji, W. Bianchi, R. M. Bianchini, L. Bianco, M. Biebel, O. Biedermann, D. Bieniek, S. P. Biglietti, M. De Mendizabal, J. Bilbao Bilokon, H. Bindi, M. Binet, S. Bingul, A. Bini, C. Biondi, S. Black, C. W. Black, J. E. Black, K. M. Blackburn, D. Blair, R. E. Blanchard, J. -B. Blanco, J. E. Blazek, T. Bloch, I. Blocker, C. Blum, W. Blumenschein, U. Bobbink, G. J. Bobrovnikov, V. S. Bocchetta, S. S. Bocci, A. Bock, C. Boehler, M. Bogaerts, J. A. Bogavac, D. Bogdanchikov, A. G. Bohm, C. Boisvert, V. Bold, T. Boldea, V. Boldyrev, A. S. Bomben, M. Bona, M. Boonekamp, M. Borisov, A. Borissov, G. Borroni, S. Bortfeldt, J. Bortolotto, V. Bos, K. Boscherini, D. Bosman, M. Boudreau, J. Bouffard, J. Bouhova-Thacker, E. V. Boumediene, D. Bourdarios, C. Bousson, N. Boveia, A. Boyd, J. Boyko, I. R. Bozic, I. Bracinik, J. Brandt, A. Brandt, G. Brandt, O. Bratzler, U. Brau, B. Brau, J. E. Braun, H. M. Brazzale, S. F. Madden, W. D. Breaden Brendlinger, K. Brennan, A. J. Brenner, L. Brenner, R. Bressler, S. Bristow, K. Bristow, T. M. Britton, D. Britzger, D. Brochu, F. M. Brock, I. Brock, R. Bronner, J. Brooijmans, G. Brooks, T. Brooks, W. K. Brosamer, J. Brost, E. Brown, J. de Renstrom, P. A. Bruckman Bruncko, D. Bruneliere, R. Bruni, A. Bruni, G. Bruschi, M. Bruscino, N. Bryngemark, L. Buanes, T. Buat, Q. Buchholz, P. Buckley, A. G. Buda, S. I. Budagov, I. A. Buehrer, F. Bugge, L. Bugge, M. K. Bulekov, O. Bullock, D. Burckhart, H. Burdin, S. Burgard, C. D. Burghgrave, B. Burke, S. Burmeister, I. Busato, E. Buescher, D. Buescher, V. Bussey, P. Butler, J. M. Butt, A. I. Buttar, C. M. Butterworth, J. M. Butti, P. Buttinger, W. Buzatu, A. Buzykaev, A. R. Urban, S. Cabrera Caforio, D. Cairo, V. M. Cakir, O. Calace, N. Calafiura, P. Calandri, A. Calderini, G. Calfayan, P. Caloba, L. P. Calvet, D. Calvet, S. Toro, R. Camacho Camarda, S. Camarri, P. Cameron, D. Armadans, R. Caminal Campana, S. Campanelli, M. Campoverde, A. Canale, V. Canepa, A. Bret, M. Cano Cantero, J. Cantrill, R. Cao, T. Garrido, M. D. M. Capeans Caprini, I. Caprini, M. Capua, M. Caputo, R. Cardarelli, R. Cardillo, F. Carli, T. Carlino, G. Carminati, L. Caron, S. Carquin, E. Carrillo-Montoya, G. D. Carter, J. R. Carvalho, J. Casadei, D. Casado, M. P. Casolino, M. Castaneda-Miranda, E. Castelli, A. Gimenez, V. Castillo Castro, N. F. Catastini, P. Catinaccio, A. Catmore, J. R. Cattai, A. Caudron, J. Cavaliere, V. Cavalli, D. Cavalli-Sforza, M. Cavasinni, V. Ceradini, F. Cerio, B. C. Cerny, K. Cerqueira, A. S. Cerri, A. Cerrito, L. Cerutti, F. Cerv, M. Cervelli, A. Cetin, S. A. Chafaq, A. Chakraborty, D. Chalupkova, I. Chang, P. Chapman, J. D. Charlton, D. G. Chau, C. C. Barajas, C. A. Chavez Cheatham, S. Chegwidden, A. Chekanov, S. Chekulaev, S. V. Chelkov, G. A. Chelstowska, M. A. Chen, C. Chen, H. Chen, K. Chen, L. Chen, S. Chen, X. Chen, Y. Cheng, H. C. Cheng, Y. Cheplakov, A. Cheremushkina, E. El Moursli, R. Cherkaoui Chernyatin, V. Cheu, E. Chevalier, L. Chiarella, V. Chiarelli, G. Chiodini, G. Chisholm, A. S. Chislett, R. T. Chitan, A. Chizhov, M. V. Choi, K. Chouridou, S. Chow, B. K. B. Christodoulou, V. Chromek-Burckhart, D. Chudoba, J. Chuinard, A. J. Chwastowski, J. J. Chytka, L. Ciapetti, G. Ciftci, A. K. Cinca, D. Cindro, V. Cioara, I. A. Ciocio, A. Cirotto, F. Citron, Z. H. Ciubancan, M. Clark, A. Clark, B. L. Clark, P. J. Clarke, R. N. Cleland, W. Clement, C. Coadou, Y. Cobal, M. Coccaro, A. Cochran, J. Coffey, L. Cogan, J. G. Colasurdo, L. Cole, B. Cole, S. Colijn, A. P. Collot, J. Colombo, T. Compostella, G. Muino, P. Conde Coniavitis, E. Connell, S. H. Connelly, I. A. Consorti, V. Constantinescu, S. Conta, C. Conti, G. Conventi, F. Cooke, M. Cooper, B. D. Cooper-Sarkar, A. M. Cornelissen, T. Corradi, M. Corriveau, F. Corso-Radu, A. Cortes-Gonzalez, A. Cortiana, G. Costa, G. Costa, M. J. Costanzo, D. Cote, D. Cottin, G. Cowan, G. Cox, B. E. Cranmer, K. Cree, G. Crepe-Renaudin, S. Crescioli, F. Cribbs, W. A. Ortuzar, M. Crispin Cristinziani, M. Croft, V. Crosetti, G. Donszelmann, T. Cuhadar Cummings, J. Curatolo, M. Cuthbert, C. Czirr, H. Czodrowski, P. D'Auria, S. D'Onofrio, M. Da Cunha Sargedas De Sousa, M. J. Da Via, C. Dabrowski, W. Dafinca, A. Dai, T. Dale, O. Dallaire, F. Dallapiccola, C. Dam, M. Dandoy, J. R. Dang, N. P. Daniells, A. C. Danninger, M. Hoffmann, M. Dano Dao, V. Darbo, G. Darmora, S. Dassoulas, J. Dattagupta, A. Davey, W. David, C. Davidek, T. Davies, E. Davies, M. Davison, P. Davygora, Y. Dawe, E. Dawson, I. Daya-Ishmukhametova, R. K. De, K. de Asmundis, R. De Benedetti, A. De Castro, S. De Cecco, S. De Groot, N. de Jong, P. De la Torre, H. De Lorenzi, F. De Pedis, D. De Salvo, A. De Sanctis, U. De Santo, A. De Regie, J. B. De Vivie Dearnaley, W. J. Debbe, R. Debenedetti, C. Dedovich, D. V. Deigaard, I. Del Peso, J. Del Prete, T. Delgove, D. Deliot, F. Delitzsch, C. M. Deliyergiyev, M. Dell'Acqua, A. Dell'Asta, L. Dell'Orso, M. Della Pietra, M. della Volpe, D. Delmastro, M. Delsart, P. A. Deluca, C. DeMarco, D. A. Demers, S. Demichev, M. Demilly, A. Denisov, S. P. Derendarz, D. Derkaoui, J. E. Derue, F. Dervan, P. Desch, K. Deterre, C. Deviveiros, P. O. Dewhurst, A. Dhaliwal, S. Di Ciaccio, A. Di Ciaccio, L. Di Domenico, A. Di Donato, C. Di Girolamo, A. Di Girolamo, B. Di Mattia, A. Di Micco, B. Di Nardo, R. Di Simone, A. Di Sipio, R. Di Valentino, D. Diaconu, C. Diamond, M. Dias, F. A. Diaz, M. A. Diehl, E. B. Dietrich, J. Diglio, S. Dimitrievska, A. Dingfelder, J. Dita, P. Dita, S. Dittus, F. Djama, F. Djobava, T. Djuvsland, J. I. do Vale, M. A. B. Dobos, D. Dobre, M. Doglioni, C. Dohmae, T. Dolejsi, J. Dolezal, Z. Dolgoshein, B. A. Donadelli, M. Donati, S. Dondero, P. Donini, J. Dopke, J. Doria, A. Dova, M. T. Doyle, A. T. Drechsler, E. Dris, M. Dubreuil, E. Duchovni, E. Duckeck, G. Ducu, O. A. Duda, D. Dudarev, A. Duflot, L. Duguid, L. Duehrssen, M. Dunford, M. Yildiz, H. Duran Dueren, M. Durglishvili, A. Duschinger, D. Dyndal, M. Eckardt, C. Ecker, K. M. Edgar, R. C. Edson, W. Edwards, N. C. Ehrenfeld, W. Eifert, T. Eigen, G. Einsweiler, K. Ekelof, T. El Kacimi, M. Ellert, M. Elles, S. Ellinghaus, F. Elliot, A. A. Ellis, N. Elmsheuser, J. Elsing, M. Emeliyanov, D. Enari, Y. Endner, O. C. Endo, M. Erdmann, J. Ereditato, A. Ernis, G. Ernst, J. Ernst, M. Errede, S. Ertel, E. Escalier, M. Esch, H. Escobar, C. Esposito, B. Etienvre, A. I. Etzion, E. Evans, H. Ezhilov, A. Fabbri, L. Facini, G. Fakhrutdinov, R. M. Falciano, S. Falla, R. J. Faltova, J. Fang, Y. Fanti, M. Farbin, A. Farilla, A. Farooque, T. Farrell, S. Farrington, S. M. Farthouat, P. Fassi, F. Fassnacht, P. Fassouliotis, D. Giannelli, M. Faucci Favareto, A. Fayard, L. Federic, P. Fedin, O. L. Fedorko, W. Feigl, S. Feligioni, L. Feng, C. Feng, E. J. Feng, H. Fenyuk, A. B. Feremenga, L. Martinez, P. Fernandez Perez, S. Fernandez Ferrando, J. Ferrari, A. Ferrari, P. Ferrari, R. de Lima, D. E. Ferreira Ferrer, A. Ferrere, D. Ferretti, C. Parodi, A. Ferretto Fiascaris, M. Fiedler, F. Filipcic, A. Filipuzzi, M. Filthaut, F. Fincke-Keeler, M. Finelli, K. D. Fiolhais, M. C. N. Fiorini, L. Firan, A. Fischer, A. Fischer, C. Fischer, J. Fisher, W. C. Fitzgerald, E. A. Flaschel, N. Fleck, I. Fleischmann, P. Fleischmann, S. Fletcher, G. T. Fletcher, G. Fletcher, R. R. M. Flick, T. Floderus, A. Castillo, L. R. Flores Flowerdew, M. J. Formica, A. Forti, A. Fournier, D. Fox, H. Fracchia, S. Francavilla, P. Franchini, M. Francis, D. Franconi, L. Franklin, M. Frate, M. Fraternali, M. Freeborn, D. French, S. T. Friedrich, F. Froidevaux, D. Frost, J. A. Fukunaga, C. Torregrosa, E. Fullana Fulsom, B. G. Fusayasu, T. Fuster, J. Gabaldon, C. Gabizon, O. Gabrielli, A. Gabrielli, A. Gach, G. P. Gadatsch, S. Gadomski, S. Gagliardi, G. Gagnon, P. Galea, C. Galhardo, B. Gallas, E. J. Gallop, B. J. Gallus, P. Galster, G. Gan, K. K. Gao, J. Gao, Y. Gao, Y. S. Walls, F. M. Garay Garberson, F. Garcia, C. Navarro, J. E. Garcia Garcia-Sciveres, M. Gardner, R. W. Garelli, N. Garonne, V. Gatti, C. Gaudiello, A. Gaudio, G. Gaur, B. Gauthier, L. Gauzzi, P. Gavrilenko, I. L. Gay, C. Gaycken, G. Gazis, E. N. Ge, P. Gecse, Z. Gee, C. N. P. Geich-Gimbel, Ch. Geisler, M. P. Gemme, C. Genest, M. H. Gentile, S. George, M. George, S. Gerbaudo, D. Gershon, A. Ghasemi, S. Ghazlane, H. Giacobbe, B. Giagu, S. Giangiobbe, V. Giannetti, P. Gibbard, B. Gibson, S. M. Gilchriese, M. Gillam, T. P. S. Gillberg, D. Gilles, G. Gingrich, D. M. Giokaris, N. Giordani, M. P. Giorgi, F. M. Giorgi, F. M. Giraud, P. F. Giromini, P. Giugni, D. Giuliani, C. Giulini, M. Gjelsten, B. K. Gkaitatzis, S. Gkialas, I. Gkougkousis, E. L. Gladilin, L. K. Glasman, C. Glatzer, J. Glaysher, P. C. F. Glazov, A. Goblirsch-Kolb, M. Goddard, J. R. Godlewski, J. Goldfarb, S. Golling, T. Golubkov, D. Gomes, A. Goncalo, R. Da Costa, J. Goncalves Pinto Firmino Gonella, L. de la Hoz, S. Gonzalez Parra, G. Gonzalez Gonzalez-Sevilla, S. Goossens, L. Gorbounov, P. A. Gordon, H. A. Gorelov, I. Gorini, B. Gorini, E. Gorisek, A. Gornicki, E. Goshaw, A. T. Goessling, C. Gostkin, M. I. Goujdami, D. Goussiou, A. G. Govender, N. Gozani, E. Grabas, H. M. X. Graber, L. Grabowska-Bold, I. Gradin, P. O. J. Grafstroem, P. Grahn, K-J. Gramling, J. Gramstad, E. Grancagnolo, S. Gratchev, V. Gray, H. M. Graziani, E. Greenwood, Z. D. Gregersen, K. Gregor, I. M. Grenier, P. Griffiths, J. Grillo, A. A. Grimm, K. Grinstein, S. Gris, Ph. Grivaz, J. -F. Grohs, J. P. Grohsjean, A. Gross, E. Grosse-Knetter, J. Grossi, G. C. Grout, Z. J. Guan, L. Guenther, J. Guescini, F. Guest, D. Gueta, O. Guido, E. Guillemin, T. Guindon, S. Gul, U. Gumpert, C. Guo, J. Guo, Y. Gupta, S. Gustavino, G. Gutierrez, P. Ortiz, N. G. Gutierrez Gutschow, C. Guyot, C. Gwenlan, C. Gwilliam, C. B. Haas, A. Haber, C. Hadavand, H. K. Haddad, N. Haefner, P. Hageboeck, S. Hajduk, Z. Hakobyan, H. Haleem, M. Haley, J. Hall, D. Halladjian, G. Hallewell, G. D. Hamacher, K. Hamal, P. Hamano, K. Hamilton, A. Hamity, G. N. Hamnett, P. G. Han, L. Hanagaki, K. Hanawa, K. Hance, M. Hanke, P. Hanna, R. Hansen, J. B. Hansen, J. D. Hansen, M. C. Hansen, P. H. Hara, K. Hard, A. S. Harenberg, T. Hariri, F. Harkusha, S. Harrington, R. D. Harrison, P. F. Hartjes, F. Hasegawa, M. Hasegawa, Y. Hasib, A. Hassani, S. Haug, S. Hauser, R. Hauswald, L. Havranek, M. Hawkes, C. M. Hawkings, R. J. Hawkins, A. D. Hayashi, T. Hayden, D. Hays, C. P. Hays, J. M. Hayward, H. S. Haywood, S. J. Head, S. J. Heck, T. Hedberg, V. Heelan, L. Heim, S. Heim, T. Heinemann, B. Heinrich, L. Hejbal, J. Helary, L. Hellman, S. Hellmich, D. Helsens, C. Henderson, J. Henderson, R. C. W. Heng, Y. Hengler, C. Henrichs, A. Correia, A. M. Henriques Henrot-Versille, S. Herbert, G. H. Jimenez, Y. Hernandez Herrberg-Schubert, R. Herten, G. Hertenberger, R. Hervas, L. Hesketh, G. G. Hessey, N. P. Hetherly, J. W. Hickling, R. Higon-Rodriguez, E. Hill, E. Hill, J. C. Hiller, K. H. Hillier, S. J. Hinchliffe, I. Hines, E. Hinman, R. R. Hirose, M. Hirschbuehl, D. Hobbs, J. Hod, N. Hodgkinson, M. C. Hodgson, P. Hoecker, A. Hoeferkamp, M. R. Hoenig, F. Hohlfeld, M. Hohn, D. Holmes, T. R. Homann, M. Hong, T. M. van Huysduynen, L. Hooft Hopkins, W. H. Horii, Y. Horton, A. J. Hostachy, J-Y. Hou, S. Hoummada, A. Howard, J. Howarth, J. Hrabovsky, M. Hristova, I. Hrivnac, J. Hryn'ova, T. Hrynevich, A. Hsu, C. Hsu, P. J. Hsu, S. -C. Hu, D. Hu, Q. Hu, X. Huang, Y. Hubacek, Z. Hubaut, F. Huegging, F. Huffman, T. B. Hughes, E. W. Hughes, G. Huhtinen, M. Huelsing, T. A. Huseynov, N. Huston, J. Huth, J. Iacobucci, G. Iakovidis, G. Ibragimov, I. Iconomidou-Fayard, L. Ideal, E. Idrissi, Z. Iengo, P. Igonkina, O. Iizawa, T. Ikegami, Y. Ikematsu, K. Ikeno, M. Ilchenko, Y. Iliadis, D. Ilic, N. Ince, T. Introzzi, G. Ioannou, P. Iodice, M. Iordanidou, K. Ippolito, V. Quiles, A. Irles Isaksson, C. Ishino, M. Ishitsuka, M. Ishmukhametov, R. Issever, C. Istin, S. Ponce, J. M. Iturbe Iuppa, R. Ivarsson, J. Iwanski, W. Iwasaki, H. Izen, J. M. Izzo, V. Jabbar, S. Jackson, B. Jackson, M. Jackson, P. Jaekel, M. R. Jain, V. Jakobs, K. Jakobsen, S. Jakoubek, T. Jakubek, J. Jamin, D. O. Jana, D. K. Jansen, E. Jansky, R. Janssen, J. Janus, M. Jarlskog, G. Javadov, N. Javurek, T. Jeanty, L. Jejelava, J. Jeng, G. -Y. Jennens, D. Jenni, P. Jentzsch, J. Jeske, C. Jezequel, S. Jia, H. Jia, J. Jiang, Y. Jiggins, S. Pena, J. Jimenez Jin, S. Jinaru, A. Jinnouchi, O. Joergensen, M. D. Johansson, P. Johns, K. A. Jon-And, K. Jones, G. Jones, R. W. L. Jones, T. J. Jongmanns, J. Jorge, P. M. Joshi, K. D. Jovicevic, J. Ju, X. Jung, C. A. Jussel, P. Rozas, A. Juste Kaci, M. Kaczmarska, A. Kado, M. Kagan, H. Kagan, M. Kahn, S. J. Kajomovitz, E. Kalderon, C. W. Kama, S. Kamenshchikov, A. Kanaya, N. Kaneti, S. Kantserov, V. A. Kanzaki, J. Kaplan, B. Kaplan, L. S. Kapliy, A. Kar, D. Karakostas, K. Karamaoun, A. Karastathis, N. Kareem, M. J. Karentzos, E. Karnevskiy, M. Karpov, S. N. Karpova, Z. M. Karthik, K. Kartvelishvili, V. Karyukhin, A. N. Kashif, L. Kass, R. D. Kastanas, A. Kataoka, Y. Kato, C. Katre, A. Katzy, J. Kawagoe, K. Kawamoto, T. Kawamura, G. Kazama, S. Kazanin, V. F. Keeler, R. Kehoe, R. Keller, J. S. Kempster, J. J. Keoshkerian, H. Kepka, O. Kersevan, B. P. Kersten, S. Keyes, R. A. Khalil-zada, F. Khandanyan, H. Khanov, A. Kharlamov, A. G. Khoo, T. J. Khovanskiy, V. Khramov, E. Khubua, J. Kido, S. Kim, H. Y. Kim, S. H. Kim, Y. K. Kimura, N. Kind, O. M. King, B. T. King, M. King, S. B. Kirk, J. Kiryunin, A. E. Kishimoto, T. Kisielewska, D. Kiss, F. Kiuchi, K. Kivernyk, O. Kladiva, E. Klein, M. H. Klein, M. Klein, U. Kleinknecht, K. Klimek, P. Klimentov, A. Klingenberg, R. Klinger, J. A. Klioutchnikova, T. Kluge, E. -E. Kluit, P. Kluth, S. Knapik, J. Kneringer, E. Knoops, E. B. F. G. Knue, A. Kobayashi, A. Kobayashi, D. Kobayashi, T. Kobel, M. Kocian, M. Kodys, P. Koffas, T. Koffeman, E. Kogan, L. A. Kohlmann, S. Kohout, Z. Kohriki, T. Koi, T. Kolanoski, H. Koletsou, I. Komar, A. A. Komori, Y. Kondo, T. Kondrashova, N. Koeneke, K. Konig, A. C. Kono, T. Konoplich, R. Konstantinidis, N. Kopeliansky, R. Koperny, S. Koepke, L. Kopp, A. K. Korcyl, K. Kordas, K. Korn, A. Korol, A. A. Korolkov, I. Korolkova, E. V. Kortner, O. Kortner, S. Kosek, T. Kostyukhin, V. V. Kotov, V. M. Kotwal, A. Kourkoumeli-Charalampidi, A. Kourkoumelis, C. Kouskoura, V. Koutsman, A. Kowalewski, R. Kowalski, T. Z. Kozanecki, W. Kozhin, A. S. Kramarenko, V. A. Kramberger, G. Krasnopevtsev, D. Krasny, M. W. Krasznahorkay, A. Kraus, J. K. Kravchenko, A. Kreiss, S. Kretz, M. Kretzschmar, J. Kreutzfeldt, K. Krieger, P. Krizka, K. Kroeninger, K. Kroha, H. Kroll, J. Kroseberg, J. Krstic, J. Kruchonak, U. Krueger, H. Krumnack, N. Kruse, A. Kruse, M. C. Kruskal, M. Kubota, T. Kucuk, H. Kuday, S. Kuehn, S. Kugel, A. Kuger, F. Kuhl, A. Kuhl, T. Kukhtin, V. Kulchitsky, Y. Kuleshov, S. Kuna, M. Kunigo, T. Kupco, A. Kurashige, H. Kurochkin, Y. A. Kus, V. Kuwertz, E. S. Kuze, M. Kvita, J. Kwan, T. Kyriazopoulos, D. La Rosa, A. La Rosa Navarro, J. L. La Rotonda, L. Lacasta, C. Lacava, F. Lacey, J. Lacker, H. Lacour, D. Lacuesta, V. R. Ladygin, E. Lafaye, R. Laforge, B. Lagouri, T. Lai, S. Lambourne, L. Lammers, S. Lampen, C. L. Lampl, W. Lancon, E. Landgraf, U. Landon, M. P. J. Lang, V. S. Lange, J. C. Lankford, A. J. Lanni, F. Lantzsch, K. Lanza, A. Laplace, S. Lapoire, C. Laporte, J. F. Lari, T. Manghi, F. Lasagni Lassnig, M. Laurelli, P. Lavrijsen, W. Law, A. T. Laycock, P. Lazovich, T. Le Dortz, O. Le Guirriec, E. Le Menedeu, E. LeBlanc, M. LeCompte, T. Ledroit-Guillon, F. Lee, C. A. Lee, S. C. Lee, L. Lefebvre, G. Lefebvre, M. Legger, F. Leggett, C. Lehan, A. Miotto, G. Lehmann Lei, X. Leight, W. A. Leisos, A. Leister, A. G. Leite, M. A. L. Leitner, R. Lellouch, D. Lemmer, B. Leney, K. J. C. Lenz, T. Lenzi, B. Leone, R. Leone, S. Leonidopoulos, C. Leontsinis, S. Leroy, C. Lester, C. G. Levchenko, M. Leveque, J. Levin, D. Levinson, L. J. Levy, M. Lewis, A. Leyko, A. M. Leyton, M. Li, B. y Li, H. Li, H. L. Li, L. Li, L. Li, S. Li, X. Li, Y. Liang, Z. Liao, H. Liberti, B. Liblong, A. Lichard, P. Lie, K. Liebal, J. Liebig, W. Limbach, C. Limosani, A. Lin, S. C. Lin, T. H. Linde, F. Lindquist, B. E. Linnemann, J. T. Lipeles, E. Lipniacka, A. Lisovyi, M. Liss, T. M. Lissauer, D. Lister, A. Litke, A. M. Liu, B. Liu, D. Liu, H. Liu, J. Liu, J. B. Liu, K. Liu, L. Liu, M. Liu, M. Liu, Y. Livan, M. Lleres, A. Merino, J. Llorente Lloyd, S. L. Lo Sterzo, F. Lobodzinska, E. Loch, P. Lockman, W. S. Loebinger, F. K. Loevschall-Jensen, A. E. Loginov, A. Lohse, T. Lohwasser, K. Lokajicek, M. Long, B. A. Long, J. D. Long, R. E. Looper, K. A. Lopes, L. Mateos, D. Lopez Paredes, B. Lopez Paz, I. Lopez Lorenz, J. Martinez, N. Lorenzo Losada, M. Loscutoff, P. Loesel, P. J. Lou, X. Lounis, A. Love, J. Love, P. A. Lu, N. Lubatti, H. J. Luci, C. Lucotte, A. Luehring, F. Lukas, W. Luminari, L. Lundberg, O. Lund-Jensen, B. Lynn, D. Lysak, R. Lytken, E. Ma, H. Ma, L. L. Maccarrone, G. Macchiolo, A. Macdonald, C. M. Macek, B. Miguens, J. Machado Macina, D. Madaffari, D. Madar, R. Maddocks, H. J. Mader, W. F. Madsen, A. Maeda, J. Maeland, S. Maeno, T. Maevskiy, A. Magradze, E. Mahboubi, K. Mahlstedt, J. Maiani, C. Maidantchik, C. Maier, A. A. Maier, T. Maio, A. Majewski, S. Makida, Y. Makovec, N. Malaescu, B. Malecki, Pa. Maleev, V. P. Malek, F. Mallik, U. Malon, D. Malone, C. Maltezos, S. Malyshev, V. M. Malyukov, S. Mamuzic, J. Mancini, G. Mandelli, B. Mandelli, L. Mandic, I. Mandrysch, R. Maneira, J. Manfredini, A. de Andrade Filho, L. Manhaes Ramos, J. Manjarres Mann, A. Manousakis-Katsikakis, A. Mansoulie, B. Mantifel, R. Mantoani, M. Mapelli, L. March, L. Marchiori, G. Marcisovsky, M. Marino, C. P. Marjanovic, M. Marley, D. E. Marroquim, F. Marsden, S. P. Marshall, Z. Marti, L. F. Marti-Garcia, S. Martin, B. Martin, T. A. Martin, V. J. Latour, B. Martin dit Martinez, M. Martin-Haugh, S. Martoiu, V. S. Martyniuk, A. C. Marx, M. Marzano, F. Marzin, A. Masetti, L. Mashimo, T. Mashinistov, R. Masik, J. Maslennikov, A. L. Massa, I. Massa, L. Massol, N. Mastrandrea, P. Mastroberardino, A. Masubuchi, T. Maettig, P. Mattmann, J. Maurer, J. Maxfield, S. J. Maximov, D. A. Mazini, R. Mazza, S. M. Mazzaferro, L. Mc Goldrick, G. Mc Kee, S. P. McCarn, A. McCarthy, R. L. McCarthy, T. G. McCubbin, N. A. McFarlane, K. W. Mcfayden, J. A. Mchedlidze, G. McMahon, S. J. McPherson, R. A. Medinnis, M. Meehan, S. Mehlhase, S. Mehta, A. Meier, K. Meineck, C. Meirose, B. Garcia, B. R. Mellado Meloni, F. Mengarelli, A. Menke, S. Meoni, E. Mercurio, K. M. Mergelmeyer, S. Mermod, P. Merola, L. Meroni, C. Merritt, F. S. Messina, A. Metcalfe, J. Mete, A. S. Meyer, C. Meyer, C. Meyer, J-P. Meyer, J. Theenhausen, H. Meyer Zu Middleton, R. P. Miglioranzi, S. Mijovic, L. Mikenberg, G. Mikestikova, M. Mikuz, M. Milesi, M. Milic, A. Miller, D. W. Mills, C. Milov, A. Milstead, D. A. Minaenko, A. A. Minami, Y. Minashvili, I. A. Mincer, A. I. Mindur, B. Mineev, M. Ming, Y. Mir, L. M. Mitani, T. Mitrevski, J. Mitsou, V. A. Miucci, A. Miyagawa, P. S. Mjornmark, J. U. Moa, T. Mochizuki, K. Mohapatra, S. Mohr, W. Molander, S. Moles-Valls, R. Moenig, K. Monini, C. Monk, J. Monnier, E. Berlingen, J. Montejo Monticelli, F. Monzani, S. Moore, R. W. Morange, N. Moreno, D. Llacer, M. Moreno Morettini, P. Mori, D. Morii, M. Morinaga, M. Morisbak, V. Moritz, S. Morley, A. K. Mornacchi, G. Morris, J. D. Mortensen, S. S. Morton, A. Morvaj, L. Mosidze, M. Moss, J. Motohashi, K. Mount, R. Mountricha, E. Mouraviev, S. V. Moyse, E. J. W. Muanza, S. Mudd, R. D. Mueller, F. Mueller, J. Mueller, R. S. P. Mueller, T. Muenstermann, D. Mullen, P. Mullier, G. A. Quijada, J. A. Murillo Murray, W. J. Musheghyan, H. Musto, E. Myagkov, A. G. Myska, M. Nachman, B. P. Nackenhorst, O. Nadal, J. Nagai, K. Nagai, R. Nagai, Y. Nagano, K. Nagarkar, A. Nagasaka, Y. Nagata, K. Nagel, M. Nagy, E. Nairz, A. M. Nakahama, Y. Nakamura, K. Nakamura, T. Nakano, I. Namasivayam, H. Garcia, R. F. Naranjo Narayan, R. Villar, D. I. Narrias Naumann, T. Navarro, G. Nayyar, R. Neal, H. A. Nechaeva, P. Yu. Neep, T. J. Nef, P. D. Negri, A. Negrini, M. Nektarijevic, S. Nellist, C. Nelson, A. Nemecek, S. Nemethy, P. Nepomuceno, A. A. Nessi, M. Neubauer, M. S. Neumann, M. Neves, R. M. Nevski, P. Newman, P. R. Nguyen, D. H. Nickerson, R. B. Nicolaidou, R. Nicquevert, B. Nielsen, J. Nikiforou, N. Nikiforov, A. Nikolaenko, V. Nikolic-Audit, I. Nikolopoulos, K. Nilsen, J. K. Nilsson, P. Ninomiya, Y. Nisati, A. Nisius, R. Nobe, T. Nomachi, M. Nomidis, I. Nooney, T. Norberg, S. Nordberg, M. Novgorodova, O. Nowak, S. Nozaki, M. Nozka, L. Ntekas, K. Hanninger, G. Nunes Nunnemann, T. Nurse, E. Nuti, F. O'Brien, B. J. O'grady, F. O'Neil, D. C. O'Shea, V. Oakham, F. G. Oberlack, H. Obermann, T. Ocariz, J. Ochi, A. Ochoa, I. Ochoa-Ricoux, J. P. Oda, S. Odaka, S. Ogren, H. Oh, A. Oh, S. H. Ohm, C. C. Ohman, H. Oide, H. Okamura, W. Okawa, H. Okumura, Y. Okuyama, T. Olariu, A. Pino, S. A. Olivares Damazio, D. Oliveira Garcia, E. Oliver Olszewski, A. Olszowska, J. Onofre, A. Onyisi, P. U. E. Oram, C. J. Oreglia, M. J. Oren, Y. Orestano, D. Orlando, N. Barrera, C. Oropeza Orr, R. S. Osculati, B. Ospanov, R. Otero y Garzon, G. Otono, H. Ouchrif, M. Ould-Saada, F. Ouraou, A. Oussoren, K. P. Ouyang, Q. Ovcharova, A. Owen, M. Owen, R. E. Ozcan, V. E. Ozturk, N. Pachal, K. Pages, A. Pacheco Aranda, C. Padilla Pagacova, M. Griso, S. Pagan Paganis, E. Paige, F. Pais, P. Pajchel, K. Palacino, G. Palestini, S. Palka, M. Pallin, D. Palma, A. Pan, Y. B. Panagiotopoulou, E. Pandini, C. E. Vazquez, J. G. Panduro Pani, P. Panitkin, S. Pantea, D. Paolozzi, L. Papadopoulou, Th. D. Papageorgiou, K. Paramonov, A. Hernandez, D. Paredes Parker, M. A. Parker, K. A. Parodi, F. Parsons, J. A. Parzefall, U. Pasqualucci, E. Passaggio, S. Pastore, F. Pastore, Fr. Pasztor, G. Pataraia, S. Patel, N. D. Pater, J. R. Pauly, T. Pearce, J. Pearson, B. Pedersen, L. E. Pedersen, M. Lopez, S. Pedraza Pedro, R. Peleganchuk, S. V. Pelikan, D. Penc, O. Peng, C. Peng, H. Penning, B. Penwell, J. Perepelitsa, D. V. Codina, E. Perez Garcia-Estan, M. T. Perez Perini, L. Pernegger, H. Perrella, S. Peschke, R. Peshekhonov, V. D. Peters, K. Peters, R. F. Y. Petersen, B. A. Petersen, T. C. Petit, E. Petridis, A. Petridou, C. Petroff, P. Petrolo, E. Petrucci, F. Pettersson, N. E. Pezoa, R. Phillips, P. W. Piacquadio, G. Pianori, E. Picazio, A. Piccaro, E. Piccinini, M. Pickering, M. A. Piegaia, R. Pignotti, D. T. Pilcher, J. E. Pilkington, A. D. Pina, J. Pinamonti, M. Pinfold, J. L. Pingel, A. Pires, S. Pirumov, H. Pitt, M. Pizio, C. Plazak, L. Pleier, M. -A. Pleskot, V. Plotnikova, E. Plucinski, P. Pluth, D. Poettgen, R. Poggioli, L. Pohl, D. Polesello, G. Poley, A. Policicchio, A. Polifka, R. Polini, A. Pollard, C. S. Polychronakos, V. Pommes, K. Pontecorvo, L. Pope, B. G. Popeneciu, G. A. Popovic, D. S. Poppleton, A. Pospisil, S. Potamianos, K. Potrap, I. N. Potter, C. J. Potter, C. T. Poulard, G. Poveda, J. Pozdnyakov, V. Pralavorio, P. Pranko, A. Prasad, S. Prell, S. Price, D. Price, L. E. Primavera, M. Prince, S. Proissl, M. Prokofiev, K. Prokoshin, F. Protopapadaki, E. Protopopescu, S. Proudfoot, J. Przybycien, M. Ptacek, E. Puddu, D. Pueschel, E. Puldon, D. Purohit, M. Puzo, P. Qian, J. Qin, G. Qin, Y. Quadt, A. Quarrie, D. R. Quayle, W. B. Queitsch-Maitland, M. Quilty, D. Raddum, S. Radeka, V. Radescu, V. Radhakrishnan, S. K. Radloff, P. Rados, P. Ragusa, F. Rahal, G. Rajagopalan, S. Rammensee, M. Rangel-Smith, C. Rauscher, F. Rave, S. Ravenscroft, T. Raymond, M. Read, A. L. Readioff, N. P. Rebuzzi, D. M. Redelbach, A. Redlinger, G. Reece, R. Reeves, K. Rehnisch, L. Reichert, J. Reisin, H. Relich, M. Rembser, C. Ren, H. Renaud, A. Rescigno, M. Resconi, S. Rezanova, O. L. Reznicek, P. Rezvani, R. Richter, R. Richter, S. Richter-Was, E. Ricken, O. Ridel, M. Rieck, P. Riegel, C. J. Rieger, J. Rijssenbeek, M. Rimoldi, A. Rinaldi, L. Ristic, B. Ritsch, E. Riu, I. Rizatdinova, F. Rizvi, E. Robertson, S. H. Robichaud-Veronneau, A. Robinson, D. Robinson, J. E. M. Robson, A. Roda, C. Roe, S. Rohne, O. Rolli, S. Romaniouk, A. Romano, M. Saez, S. M. Romano Adam, E. Romero Rompotis, N. Ronzani, M. Roos, L. Ros, E. Rosati, S. Rosbach, K. Rose, P. Rosendahl, P. L. Rosenthal, O. Rossetti, V. Rossi, E. Rossi, L. P. Rosten, J. H. N. Rosten, R. Rotaru, M. Roth, I. Rothberg, J. Rousseau, D. Royon, C. R. Rozanov, A. Rozen, Y. Ruan, X. Rubbo, F. Rubinskiy, I. Rud, V. I. Rudolph, C. Rudolph, M. S. Ruehr, F. Ruiz-Martinez, A. Rurikova, Z. Rusakovich, N. A. Ruschke, A. Russell, H. L. Rutherfoord, J. P. Ruthmann, N. Ryabov, Y. F. Rybar, M. Rybkin, G. Ryder, N. C. Saavedra, A. F. Sabato, G. Sacerdoti, S. Saddique, A. Sadrozinski, H. F-W. Sadykov, R. Tehrani, F. Safai Sahinsoy, M. Saimpert, M. Saito, T. Sakamoto, H. Sakurai, Y. Salamanna, G. Salamon, A. Loyola, J. E. Salazar Saleem, M. Salek, D. De Bruin, P. H. Sales Salihagic, D. Salnikov, A. Salt, J. Salvatore, D. Salvatore, F. Salvucci, A. Salzburger, A. Sammel, D. Sampsonidis, D. Sanchez, A. Sanchez, J. Martinez, V. Sanchez Sandaker, H. Sandbach, R. L. Sander, H. G. Sanders, M. P. Sandhoff, M. Sandoval, C. Sandstroem, R. Sankey, D. P. C. Sannino, M. Sansoni, A. Santoni, C. Santonico, R. Santos, H. Castillo, I. Santoyo Sapp, K. Sapronov, A. Saraiva, J. G. Sarrazin, B. Sasaki, O. Sasaki, Y. Sato, K. Sauvage, G. Sauvan, E. Savage, G. Savard, P. Sawyer, C. Sawyer, L. Saxon, J. Sbarra, C. Sbrizzi, A. Scanlon, T. Scannicchio, D. A. Scarcella, M. Scarfone, V. Schaarschmidt, J. Schacht, P. Schaefer, D. Schaefer, R. Schaeffer, J. Schaepe, S. Schaetzel, S. Schaefer, U. Schaffer, A. C. Schaile, D. Schamberger, R. D. Scharf, V. Schegelsky, V. A. Scheirich, D. Schernau, M. Schiavi, C. Schillo, C. Schioppa, M. Schlenker, S. Schmieden, K. Schmitt, C. Schmitt, S. Schmitt, S. Schneider, B. Schnellbach, Y. J. Schnoor, U. Schoeffel, L. Schoening, A. Schoenrock, B. D. Schopf, E. Schorlemmer, A. L. S. Schott, M. Schouten, D. Schovancova, J. Schramm, S. Schreyer, M. Schroeder, C. Schuh, N. Schultens, M. J. Schultz-Coulon, H. -C. Schulz, H. Schumacher, M. Schumm, B. A. Schune, Ph. Schwanenberger, C. Schwartzman, A. Schwarz, T. A. Schwegler, Ph. Schweiger, H. Schwemling, Ph. Schwienhorst, R. Schwindling, J. Schwindt, T. Sciacca, F. G. Scifo, E. Sciolla, G. Scuri, F. Scutti, F. Searcy, J. Sedov, G. Sedykh, E. Seema, P. Seidel, S. C. Seiden, A. Seifert, F. Seixas, J. M. Sekhniaidze, G. Sekhon, K. Sekula, S. J. Seliverstov, D. M. Semprini-Cesari, N. Serfon, C. Serin, L. Serkin, L. Serre, T. Sessa, M. Seuster, R. Severini, H. Sfiligoj, T. Sforza, F. Sfyrla, A. Shabalina, E. Shamim, M. Shan, L. Y. Shang, R. Shank, J. T. Shapiro, M. Shatalov, P. B. Shaw, K. Shaw, S. M. Shcherbakova, A. Shehu, C. Y. Sherwood, P. Shi, L. gg Shimizu, S. Shimmin, C. O. Shimojima, M. Shiyakova, M. Shmeleva, A. Saadi, D. Shoaleh Shochet, M. J. Shojaii, S. Shrestha, S. Shulga, E. Shupe, M. A. Shushkevich, S. Sicho, P. Sidebo, P. E. Sidiropoulou, O. Sidorov, D. Sidoti, A. Siegert, F. Sijacki, Dj. Silva, J. Silver, Y. Silverstein, S. B. Simak, V. Simard, O. Simic, Lj. Simion, S. Simioni, E. Simmons, B. Simon, D. Sinervo, P. Sinev, N. B. Sioli, M. Siragusa, G. Sisakyan, A. N. Sivoklokov, S. Yu. Sjolin, J. Sjursen, T. B. Skinner, M. B. Skottowe, H. P. Skubic, P. Slater, M. Slavicek, T. Slawinska, M. Sliwa, K. Smakhtin, V. Smart, B. H. Smestad, L. Smirnov, S. Yu. Smirnov, Y. Smirnova, L. N. Smirnova, O. Smith, M. N. K. Smith, R. W. Smizanska, M. Smolek, K. Snesarev, A. A. Snidero, G. Snyder, S. Sobie, R. Socher, F. Soffer, A. Soh, D. A. Sokhrannyi, G. Solans, C. A. Solar, M. Solc, J. Soldatov, E. Yu. Soldevila, U. Solodkov, A. A. Soloshenko, A. Solovyanov, O. V. Solovyev, V. Sommer, P. Song, H. Y. Soni, N. Sood, A. Sopczak, A. Sopko, B. Sopko, V. Sorin, V. Sosa, D. Sosebee, M. Sotiropoulou, C. L. Soualah, R. Soukharev, A. M. South, D. Sowden, B. C. Spagnolo, S. Spalla, M. Spangenberg, M. Spano, F. Spearman, W. R. Sperlich, D. Spettel, F. Spighi, R. Spigo, G. Spiller, L. A. Spousta, M. Spreitzer, T. St Denis, R. D. Staerz, S. Stahlman, J. Stamen, R. Stamm, S. Stanecka, E. Stanescu, C. Stanescu-Bellu, M. Stanitzki, M. M. Stapnes, S. Starchenko, E. A. Stark, J. Staroba, P. Starovoitov, P. Staszewski, R. Stavina, P. Steinberg, P. Stelzer, B. Stelzer, H. J. Stelzer-Chilton, O. Stenzel, H. Stewart, G. A. Stillings, J. A. Stockton, M. C. Stoebe, M. Stoicea, G. Stolte, P. Stonjek, S. Stradling, A. R. Straessner, A. Stramaglia, M. E. Strandberg, J. Strandberg, S. Strandlie, A. Strauss, E. Strauss, M. Strizenec, P. Stroehmer, R. Strom, D. M. Stroynowski, R. Strubig, A. Stucci, S. A. Stugu, B. Styles, N. A. Su, D. Su, J. Subramaniam, R. Succurro, A. Sugaya, Y. Suhr, C. Suk, M. Sulin, V. V. Sultansoy, S. Sumida, T. Sun, S. Sun, X. Sundermann, J. E. Suruliz, K. Susinno, G. Sutton, M. R. Suzuki, S. Svatos, M. Swiatlowski, M. Sykora, I. Sykora, T. Ta, D. Taccini, C. Tackmann, K. Taenzer, J. Taffard, A. Tafirout, R. Taiblum, N. Takai, H. Takashima, R. Takeda, H. Takeshita, T. Takubo, Y. Talby, M. Talyshev, A. A. Tam, J. Y. C. Tan, K. G. Tanaka, J. Tanaka, R. Tanaka, S. Tannenwald, B. B. Tannoury, N. Tapprogge, S. Tarem, S. Tarrade, F. Tartarelli, G. F. Tas, P. Tasevsky, M. Tashiro, T. Tassi, E. Delgado, A. Tavares Tayalati, Y. Taylor, F. E. Taylor, G. N. Taylor, W. Teischinger, F. A. Castanheira, M. Teixeira Dias Teixeira-Dias, P. Temming, K. K. Temple, D. Ten Kate, H. Teng, P. K. Teoh, J. J. Tepel, F. Terada, S. Terashi, K. Terron, J. Terzo, S. Testa, M. Teuscher, R. J. Theveneaux-Pelzer, T. Thomas, J. P. Thomas-Wilsker, J. Thompson, E. N. Thompson, P. D. Thompson, R. J. Thompson, A. S. Thomsen, L. A. Thomson, E. Thomson, M. Thun, R. P. Tibbetts, M. J. Torres, R. E. Ticse Tikhomirov, V. O. Tikhonov, Yu. A. Timoshenko, S. Tiouchichine, E. Tipton, P. Tisserant, S. Todome, K. Todorov, T. Todorova-Nova, S. Tojo, J. Tokar, S. Tokushuku, K. Tollefson, K. Tolley, E. Tomlinson, L. Tomoto, M. Tompkins, L. Toms, K. Torrence, E. Torres, H. Pastor, E. Torro Toth, J. kk Touchard, F. Tovey, D. R. Trefzger, T. Tremblet, L. Tricoli, A. Trigger, I. M. Trincaz-Duvoid, S. Tripiana, M. F. Trischuk, W. Trocme, B. Troncon, C. Trottier-McDonald, M. Trovatelli, M. True, P. Truong, L. Trzebinski, M. Trzupek, A. Tsarouchas, C. Tseng, J. C-L. Tsiareshka, P. V. Tsionou, D. Tsipolitis, G. Tsirintanis, N. Tsiskaridze, S. Tsiskaridze, V. Tskhadadze, E. G. Tsukerman, I. I. Tsulaia, V. Tsuno, S. Tsybychev, D. Tudorache, A. Tudorache, V. Tuna, A. N. Tupputi, S. A. Turchikhin, S. Turecek, D. Turra, R. Turvey, A. J. Tuts, P. M. Tykhonov, A. Tylmad, M. Tyndel, M. Ueda, I. Ueno, R. Ughetto, M. Ugland, M. Ukegawa, F. Unal, G. Undrus, A. Unel, G. Ungaro, F. C. Unno, Y. Unverdorben, C. Urban, J. Urquijo, P. Urrejola, P. Usai, G. Usanova, A. Vacavant, L. Vacek, V. Vachon, B. Valderanis, C. Valencic, N. Valentinetti, S. Valero, A. Valery, L. Valkar, S. Gallego, E. Valladolid Vallecorsa, S. Ferrer, J. A. Valls Van den Wollenberg, W. Van der Deijl, P. C. van der Geer, R. van der Graaf, H. van Eldik, N. van Gemmeren, P. van Nieuwkoop, J. van Vulpen, I. van Woerden, M. C. Vanadia, M. Vandelli, W. Vanguri, R. Vaniachine, A. Vannucci, F. Vardanyan, G. Vari, R. Varnes, E. W. Varol, T. Varouchas, D. Vartapetian, A. Varvell, K. E. Vazeille, F. Schroeder, T. Vazquez Veatch, J. Veloce, L. M. Veloso, F. Velz, T. Veneziano, S. Ventura, A. Ventura, D. Venturi, M. Venturi, N. Venturini, A. Vercesi, V. Verducci, M. Verkerke, W. Vermeulen, J. C. Vest, A. Vetterli, M. C. Viazlo, O. Vichou, I. Vickey, T. Boeriu, O. E. Vickey Viehhauser, G. H. A. Viel, S. Vigne, R. Villa, M. Perez, M. Villaplana Vilucchi, E. Vincter, M. G. Vinogradov, V. B. Vivarelli, I. Vaque, F. Vives Vlachos, S. Vladoiu, D. Vlasak, M. Vogel, M. Vokac, P. Volpi, G. Volpi, M. von der Schmitt, H. von Radziewski, H. von Toerne, E. Vorobel, V. Vorobev, K. Vos, M. Voss, R. Vossebeld, J. H. Vranjes, N. Milosavljevic, M. Vranjes Vrba, V. Vreeswijk, M. Vuillermet, R. Vukotic, I. Vykydal, Z. Wagner, P. Wagner, W. Wahlberg, H. Wahrmund, S. Wakabayashi, J. Walder, J. Walker, R. Walkowiak, W. Wang, C. Wang, F. Wang, H. Wang, H. Wang, J. Wang, J. Wang, K. Wang, R. Wang, S. M. Wang, T. Wang, T. Wang, X. Wanotayaroj, C. Warburton, A. Ward, C. P. Wardrope, D. R. Washbrook, A. Wasicki, C. Watkins, P. M. Watson, A. T. Watson, I. J. Watson, M. F. Watts, G. Watts, S. Waugh, B. M. Webb, S. Weber, M. S. Weber, S. W. Webster, J. S. Weidberg, A. R. Weinert, B. Weingarten, J. Weiser, C. Weits, H. Wells, P. S. Wenaus, T. Wengler, T. Wenig, S. Wermes, N. Werner, M. Werner, P. Wessels, M. Wetter, J. Whalen, K. Wharton, A. M. White, A. White, M. J. White, R. White, S. Whiteson, D. Wickens, F. J. Wiedenmann, W. Wielers, M. Wienemann, P. Wiglesworth, C. Wiik-Fuchs, L. A. M. Wildauer, A. Wilkens, H. G. Williams, H. H. Williams, S. Willis, C. Willocq, S. Wilson, A. Wilson, J. A. Wingerter-Seez, I. Winklmeier, F. Winter, B. T. Wittgen, M. Wittkowski, J. Wollstadt, S. J. Wolter, M. W. Wolters, H. Wosiek, B. K. Wotschack, J. Woudstra, M. J. Wozniak, K. W. Wu, M. Wu, M. Wu, S. L. Wu, X. Wu, Y. Wyatt, T. R. Wynne, B. M. Xella, S. Xu, D. Xu, L. Yabsley, B. Yacoob, S. Yakabe, R. Yamada, M. Yamaguchi, D. Yamaguchi, Y. Yamamoto, A. Yamamoto, S. Yamanaka, T. Yamauchi, K. Yamazaki, Y. Yan, Z. Yang, H. Yang, H. Yang, Y. Yao, W-M. Yasu, Y. Yatsenko, E. Wong, K. H. Yau Ye, J. Ye, S. Yeletskikh, I. Yen, A. L. Yildirim, E. Yorita, K. Yoshida, R. Yoshihara, K. Young, C. Young, C. J. S. Youssef, S. Yu, D. R. Yu, J. Yu, J. M. Yu, J. Yuan, L. Yuen, S. P. Y. Yurkewicz, A. Yusuff, I. Zabinski, B. Zaidan, R. Zaitsev, A. M. Zalieckas, J. Zaman, A. Zambito, S. Zanello, L. Zanzi, D. Zeitnitz, C. Zeman, M. Zemla, A. Zeng, Q. Zengel, K. Zenin, O. Zenis, T. Zerwas, D. Zhang, D. Zhang, F. Zhang, H. Zhang, J. Zhang, L. Zhang, R. Zhang, X. Zhang, Z. Zhao, X. Zhao, Y. Zhao, Z. Zhemchugov, A. Zhong, J. Zhou, B. Zhou, C. Zhou, L. Zhou, L. Zhou, N. Zhu, C. G. Zhu, H. Zhu, J. Zhu, Y. Zhuang, X. Zhukov, K. Zibell, A. Zieminska, D. Zimine, N. I. Zimmermann, C. Zimmermann, S. Zinonos, Z. Zinser, M. Ziolkowski, M. Zivkovic, L. Zobernig, G. Zoccoli, A. Nedden, M. Zur Zurzolo, G. Zwalinski, L. CA Atlas Collaboration TI Determination of the Ratio of b-Quark Fragmentation Fractions f(s)/f(d) in pp Collisions at root s=7 TeV with the ATLAS Detector SO PHYSICAL REVIEW LETTERS LA English DT Article AB With an integrated luminosity of 2.47 fb(-1) recorded by the ATLAS experiment at the LHC, the exclusive decays B-s(0) -> J/psi phi and B-d(0) -> J/psi K*(0) of B mesons produced in pp collisions at root s = 7 TeV are used to determine the ratio of fragmentation fractions f(s)/f(d). From the observed B-s(0) -> J/psi phi and B-d(0) -> J/psi K*(0) yields, the quantity (f(s)/f(d))[B(B-s(0) -> J/psi phi)/B(B-d(0) -> J/psi K*(0) )] is measured to be 0.199 +/- 0.004(stat) +/- 0.008(syst). Using a recent theory prediction for [B(B-s(0) -> J/psi phi)/B(B-d(0) -> J/psi K*(0))] yields (f(s)/f(d)) = 0.240 +/- 0.004(stat) +/- 0.010(syst) +/- 0.017(th). This result is based on a new approach that provides a significant improvement of the world average. C1 [Corriveau, F.; Jackson, P.; Lee, L.; McPherson, R. A.; Petridis, A.; Robertson, S. H.; Sobie, R.; Soni, N.; Teuscher, R. J.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia. [Bouffard, J.; Edson, W.; Fischer, A.; Guindon, S.; Jain, V.] SUNY Albany, Dept Phys, Albany, NY 12222 USA. [Butt, A. I.; Czodrowski, P.; Dassoulas, J.; Gingrich, D. M.; Jabbar, S.; Karamaoun, A.; Moore, R. W.; Pinfold, J. L.; Saddique, A.; Vaque, F. Vives] Univ Alberta, Dept Phys, Edmonton, AB, Canada. [Cakir, O.; Ciftci, A. K.] Ankara Univ, Dept Phys, TR-06100 Ankara, Turkey. [Kuday, S.] Istanbul Aydin Univ, Istanbul, Turkey. [Sultansoy, S.] TOBB Univ Econ & Technol, Div Phys, Ankara, Turkey. [Barnovska, Z.; Berger, N.; Hryn'ova, T.; Jezequel, S.; Koletsou, I.; Lafaye, R.; Leveque, J.; Massol, N.; Sauvage, G.; Sauvan, E.; Simard, O.; Wingerter-Seez, I.; Yatsenko, E.] CNRS IN2P3, LAPP, Annecy Le Vieux, France. [Barnovska, Z.; Berger, N.; Hryn'ova, T.; Jezequel, S.; Koletsou, I.; Lafaye, R.; Leveque, J.; Massol, N.; Sauvage, G.; Sauvan, E.; Simard, O.; Wingerter-Seez, I.; Yatsenko, E.] Univ Savoie Mont Blanc, Annecy Le Vieux, France. [Blair, R. E.; Chekanov, S.; Feng, E. J.; LeCompte, T.; Love, J.; Malon, D.; Nguyen, D. H.; Paramonov, A.; Price, L. E.; Proudfoot, J.; van Gemmeren, P.; Vaniachine, A.; Wang, R.; Yoshida, R.; Zhang, J.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Cheu, E.; Johns, K. A.; Lampen, C. L.; Lampl, W.; Lei, X.; Leone, R.; Loch, P.; Nayyar, R.; O'grady, F.; Rutherfoord, J. P.; Shupe, M. A.; Varnes, E. W.; Veatch, J.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Brandt, A.; Bullock, D.; Cote, D.; Darmora, S.; De, K.; Farbin, A.; Feremenga, L.; Griffiths, J.; Hadavand, H. K.; Heelan, L.; Kim, H. Y.; Ozturk, N.; Schovancova, J.; Sosebee, M.; Stradling, A. R.; Usai, G.; Vartapetian, A.; White, A.; Yu, J.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. [Angelidakis, S.; Chouridou, S.; Fassouliotis, D.; Giokaris, N.; Ioannou, P.; Kourkoumelis, C.; Manousakis-Katsikakis, A.; Tsirintanis, N.] Univ Athens, Dept Phys, Athens, Greece. [Alexopoulos, T.; Gazis, E. N.; Karakostas, K.; Karastathis, N.; Karentzos, E.; Leontsinis, S.; Maltezos, S.; Ntekas, K.; Panagiotopoulou, E.; Papadopoulou, Th. D.; Tsipolitis, G.; Vlachos, S.] Natl Tech Univ Athens, Dept Phys, GR-15773 Zografos, Greece. [Abdinov, O.; Khalil-zada, F.] Azerbaijan Acad Sci, Inst Phys, Baku 370143, Azerbaijan. [Anjos, N.; Bosman, M.; Casado, M. P.; Casolino, M.; Cavalli-Sforza, M.; Cortes-Gonzalez, A.; Farooque, T.; Fischer, C.; Fracchia, S.; Giangiobbe, V.; Parra, G. Gonzalez; Grinstein, S.; Helsens, C.; Rozas, A. Juste; Korolkov, I.; Lange, J. C.; Le Menedeu, E.; Paz, I. Lopez; Martinez, M.; Mir, L. M.; Berlingen, J. Montejo; Pages, A. Pacheco; Aranda, C. Padilla; Riu, I.; Sorin, V.; Succurro, A.; Tripiana, M. F.; Tsiskaridze, S.; Valery, L.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Anjos, N.; Bosman, M.; Casado, M. P.; Casolino, M.; Cavalli-Sforza, M.; Cortes-Gonzalez, A.; Farooque, T.; Fischer, C.; Fracchia, S.; Giangiobbe, V.; Parra, G. Gonzalez; Grinstein, S.; Helsens, C.; Rozas, A. Juste; Korolkov, I.; Lange, J. C.; Le Menedeu, E.; Paz, I. Lopez; Martinez, M.; Mir, L. M.; Berlingen, J. Montejo; Pages, A. Pacheco; Aranda, C. Padilla; Riu, I.; Sorin, V.; Succurro, A.; Tripiana, M. F.; Tsiskaridze, S.; Valery, L.] Univ Autonoma Barcelona, Dept Fis, E-08193 Barcelona, Spain. [Agatonovic-Jovin, T.; Bogavac, D.; Bozic, I.; Dimitrievska, A.; Marjanovic, M.; Popovic, D. S.; Sijacki, Dj.; Simic, Lj.; Vranjes, N.; Milosavljevic, M. Vranjes; Zivkovic, L.] Univ Belgrade, Inst Phys, Belgrade, Serbia. [Buanes, T.; Dale, O.; Eigen, G.; Kastanas, A.; Liebig, W.; Lipniacka, A.; Maeland, S.; Latour, B. Martin dit; Rosendahl, P. L.; Sjursen, T. B.; Smestad, L.; Stugu, B.; Ugland, M.; Zalieckas, J.] Univ Bergen, Dept Phys & Technol, Bergen, Norway. [Amadio, B. T.; Axen, B.; Barnett, R. M.; Beringer, J.; Bhimji, W.; Brosamer, J.; Calafiura, P.; Cerutti, F.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Einsweiler, K.; Farrell, S.; Gilchriese, M.; Haber, C.; Heinemann, B.; Hinchliffe, I.; Hinman, R. R.; Holmes, T. R.; Loscutoff, P.; Marshall, Z.; Ohm, C. C.; Ovcharova, A.; Griso, S. Pagan; Potamianos, K.; Pranko, A.; Quarrie, D. R.; Shapiro, M.; Sood, A.; Tibbetts, M. J.; Trottier-McDonald, M.; Tsulaia, V.; Viel, S.; Wang, H.; Yao, W-M.; Yu, D. R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [Amadio, B. T.; Barnett, R. M.; Beringer, J.; Bhimji, W.; Brosamer, J.; Calafiura, P.; Cerutti, F.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Einsweiler, K.; Farrell, S.; Gilchriese, M.; Haber, C.; Heinemann, B.; Hinchliffe, I.; Hinman, R. R.; Holmes, T. R.; Loscutoff, P.; Marshall, Z.; Ohm, C. C.; Ovcharova, A.; Griso, S. Pagan; Potamianos, K.; Pranko, A.; Quarrie, D. R.; Shapiro, M.; Sood, A.; Tibbetts, M. J.; Trottier-McDonald, M.; Tsulaia, V.; Viel, S.; Wang, H.; Yao, W-M.; Yu, D. R.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Biedermann, D.; Giorgi, F. M.; Grancagnolo, S.; Herbert, G. H.; Herrberg-Schubert, R.; Hristova, I.; Kind, O. M.; Kolanoski, H.; Lacker, H.; Lohse, T.; Nikiforov, A.; Rehnisch, L.; Rieck, P.; Sperlich, D.; Stamm, S.; Nedden, M. Zur] Humboldt Univ, Dept Phys, D-10099 Berlin, Germany. [Beck, H. P.; Cervelli, A.; Ereditato, A.; Marti, L. F.; Meloni, F.; Mullier, G. A.; Sciacca, F. G.; Stramaglia, M. E.; Stucci, S. A.; Weber, M. S.] Univ Bern, Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Beck, H. P.; Cervelli, A.; Ereditato, A.; Marti, L. F.; Meloni, F.; Mullier, G. A.; Sciacca, F. G.; Stramaglia, M. E.; Stucci, S. A.; Weber, M. S.] Univ Bern, High Energy Phys Lab, Bern, Switzerland. [Bella, L. Aperio; Baca, M. J.; Bansil, H. S.; Bracinik, J.; Charlton, D. G.; Chisholm, A. S.; Daniells, A. C.; Hillier, S. J.; Levy, M.; Mudd, R. D.; Quijada, J. A. Murillo; Newman, P. R.; Nikolopoulos, K.; Owen, R. E.; Slater, M.; Thomas, J. P.; Thompson, P. D.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Wilson, J. A.] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England. [Arik, M.; Istin, S.; Ozcan, V. E.] Bogazici Univ, Dept Phys, Istanbul, Turkey. [Beddall, A. J.; Beddall, A.; Bingul, A.] Gaziantep Univ, Dept Engn Phys, Gaziantep, Turkey. [Cetin, S. A.] Dogus Univ, Dept Phys, Istanbul, Turkey. [Alberghi, G. L.; Bellagamba, L.; Biondi, S.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruschi, M.; Corradi, M.; De Castro, S.; Fabbri, L.; Franchini, M.; Gabrielli, A.; Giacobbe, B.; Giorgi, F. M.; Grafstroem, P.; Manghi, F. Lasagni; Massa, I.; Mengarelli, A.; Negrini, M.; Piccinini, M.; Polini, A.; Rinaldi, L.; Romano, M.; Sbarra, C.; Sbrizzi, A.; Semprini-Cesari, N.; Sidoti, A.; Sioli, M.; Spighi, R.; Tupputi, S. A.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Ist Nazl Fis Nucl, Sez Bologna, I-40126 Bologna, Italy. [Alberghi, G. L.; Biondi, S.; De Castro, S.; Tupputi, S. A.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Univ Bologna, Dipartimento Fis & Astron, Bologna, Italy. [Arslan, O.; Bechtle, P.; Bernlochner, F. U.; Brock, I.; Bruscino, N.; Cioara, I. A.; Cristinziani, M.; Davey, W.; Desch, K.; Dingfelder, J.; Ehrenfeld, W.; Gaycken, G.; Geich-Gimbel, Ch.; Gonella, L.; Haefner, P.; Hageboeck, S.; Hansen, M. C.; Hellmich, D.; Hohn, D.; Huegging, F.; Janssen, J.; Kostyukhin, V. V.; Kraus, J. K.; Kroseberg, J.; Krueger, H.; Lantzsch, K.; Lenz, T.; Leyko, A. M.; Liebal, J.; Limbach, C.; Mergelmeyer, S.; Mijovic, L.; Moles-Valls, R.; Obermann, T.; Pohl, D.; Ricken, O.; Sarrazin, B.; Schaepe, S.; Schopf, E.; Schultens, M. J.; Schwindt, T.; Scutti, F.; Seema, P.; Stillings, J. A.; Tannoury, N.; Velz, T.; von Toerne, E.; Wagner, P.; Wang, T.; Wermes, N.; Wienemann, P.; Wiik-Fuchs, L. A. M.; Winter, B. T.; Wong, K. H. Yau; Yuen, S. P. Y.] Univ Bonn, Inst Phys, Bonn, Germany. [Ahlen, S. P.; Bernard, C.; Black, K. M.; Butler, J. M.; Dell'Asta, L.; Helary, L.; Kruskal, M.; Long, B. A.; Shank, J. T.; Yan, Z.; Youssef, S.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Amelung, C.; Amundsen, G.; Artoni, G.; Barone, G.; Bensinger, J. R.; Bianchini, L.; Blocker, C.; Coffey, L.; Dhaliwal, S.; Fitzgerald, E. A.; Sciolla, G.; Venturini, A.; Zengel, K.] Brandeis Univ, Dept Phys, Waltham, MA 02254 USA. [Coutinho, Y. Amaral; Caloba, L. P.; Maidantchik, C.; Marroquim, F.; Nepomuceno, A. A.; Seixas, J. M.] Univ Fed Rio de Janeiro, COPPE EE IF, Rio De Janeiro, Brazil. [Cerqueira, A. S.; de Andrade Filho, L. Manhaes] Fed Univ Juiz de Fora UFJF, Elect Circuits Dept, Juiz De Fora, Brazil. [do Vale, M. A. B.] Fed Univ Sao Joao del Rei UFSJ, Sao Joao Del Rei, Brazil. [Donadelli, M.; La Rosa Navarro, J. L.; Leite, M. A. L.] Univ Sao Paulo, Inst Fis, BR-01498 Sao Paulo, Brazil. [Adams, D. L.; Assamagan, K.; Begel, M.; Buttinger, W.; Chen, H.; Chernyatin, V.; Debbe, R.; Ernst, M.; Gibbard, B.; Gordon, H. A.; Iakovidis, G.; Klimentov, A.; Kouskoura, V.; Kravchenko, A.; Lanni, F.; Lissauer, D.; Lynn, D.; Ma, H.; Maeno, T.; Metcalfe, J.; Mountricha, E.; Nevski, P.; Nilsson, P.; Damazio, D. Oliveira; Paige, F.; Panitkin, S.; Perepelitsa, D. V.; Pleier, M. -A.; Polychronakos, V.; Protopopescu, S.; Purohit, M.; Radeka, V.; Rajagopalan, S.; Redlinger, G.; Snyder, S.; Steinberg, P.; Takai, H.; Undrus, A.; Wenaus, T.; Xu, L.; Ye, S.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Alexa, C.; Boldea, V.; Buda, S. I.; Caprini, I.; Caprini, M.; Chitan, A.; Ciubancan, M.; Constantinescu, S.; Dita, P.; Dita, S.; Dobre, M.; Ducu, O. A.; Jinaru, A.; Martoiu, V. S.; Maurer, J.; Olariu, A.; Pantea, D.; Rotaru, M.; Stoicea, G.; Tudorache, A.; Tudorache, V.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Popeneciu, G. A.] Natl Inst Res & Dev Isotop & Mol Technol, Dept Phys, Cluj Napoca, Romania. Univ Politehn Bucuresti, Bucharest, Romania. West Univ Timisoara, Timisoara, Romania. [Otero y Garzon, G.; Piegaia, R.; Reisin, H.; Sacerdoti, S.] Univ Buenos Aires, Dept Fis, Buenos Aires, DF, Argentina. [Arratia, M.; Barlow, N.; Batley, J. R.; Brochu, F. M.; Carter, J. R.; Chapman, J. D.; Cottin, G.; French, S. T.; Gillam, T. P. S.; Hill, J. C.; Kaneti, S.; Khoo, T. J.; Lester, C. G.; Mueller, T.; Parker, M. A.; Robinson, D.; Rosten, J. H. N.; Thomson, M.; Ward, C. P.; Yusuff, I.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Bellerive, A.; Cree, G.; Di Valentino, D.; Koffas, T.; Lacey, J.; McCarthy, T. G.; Nomidis, I.; Oakham, F. G.; Pasztor, G.; Tarrade, F.; Ueno, R.; Vincter, M. G.] Carleton Univ, Dept Phys, Ottawa, ON K1S 5B6, Canada. [Aleksa, M.; Gonzalez, B. Alvarez; Anders, G.; Anghinolfi, F.; Armbruster, A. J.; Arnaez, O.; Avolio, G.; Baak, M. A.; Backes, M.; Backhaus, M.; Barak, L.; Beltramello, O.; Bianco, M.; Bogaerts, J. A.; Boveia, A.; Boyd, J.; Burckhart, H.; Campana, S.; Garrido, M. D. M. Capeans; Carli, T.; Carrillo-Montoya, G. D.; Catinaccio, A.; Cattai, A.; Cerv, M.; Chromek-Burckhart, D.; Conti, G.; Dell'Acqua, A.; Deviveiros, P. O.; Di Girolamo, A.; Di Girolamo, B.; Dittus, F.; Dobos, D.; Dudarev, A.; Duehrssen, M.; Eifert, T.; Ellis, N.; Elsing, M.; Farthouat, P.; Fassnacht, P.; Feigl, S.; Perez, S. Fernandez; Francis, D.; Froidevaux, D.; Gadatsch, S.; Gillberg, D.; Glatzer, J.; Goossens, L.; Gorini, B.; Gray, H. M.; Hawkings, R. J.; Correia, A. M. Henriques; Hervas, L.; Hoecker, A.; Huhtinen, M.; Iengo, P.; Jaekel, M. R.; Jakobsen, S.; Klioutchnikova, T.; Krasznahorkay, A.; Lapoire, C.; Lassnig, M.; Miotto, G. Lehmann; Lenzi, B.; Lichard, P.; Macina, D.; Malyukov, S.; Mandelli, B.; Mapelli, L.; Marzin, A.; Milic, A.; Mornacchi, G.; Nairz, A. M.; Nakahama, Y.; Nessi, M.; Nicquevert, B.; Nordberg, M.; Oide, H.; Palestini, S.; Pauly, T.; Pernegger, H.; Peters, K.; Petersen, B. A.; Pommes, K.; Poppleton, A.; Poulard, G.; Poveda, J.; Prasad, S.; Rammensee, M.; Raymond, M.; Rembser, C.; Ritsch, E.; Roe, S.; Ruiz-Martinez, A.; Salzburger, A.; Schaefer, D.; Schlenker, S.; Schmieden, K.; Serfon, C.; Sforza, F.; Sfyrla, A.; Solans, C. A.; Spigo, G.; Stelzer, H. J.; Teischinger, F. A.; Ten Kate, H.; Tremblet, L.; Tricoli, A.; Tsarouchas, C.; Unal, G.; van Woerden, M. C.; Vandelli, W.; Voss, R.; Vuillermet, R.; Wells, P. S.; Wengler, T.; Wenig, S.; Werner, P.; Wilkens, H. G.; Wotschack, J.; Young, C. J. S.; Zwalinski, L.] CERN, Geneva, Switzerland. [Alison, J.; Anderson, K. J.; Toro, R. Camacho; Cheng, Y.; Dandoy, J. R.; Facini, G.; Fiascaris, M.; Gardner, R. W.; Ilchenko, Y.; Kapliy, A.; Kim, Y. K.; Krizka, K.; Li, H. L.; Merritt, F. S.; Miller, D. W.; Narayan, R.; Okumura, Y.; Onyisi, P. U. E.; Oreglia, M. J.; Penning, B.; Pilcher, J. E.; Saxon, J.; Shochet, M. J.; Vukotic, I.; Webster, J. S.; Wu, M.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Carquin, E.; Diaz, M. A.; Vogel, M.] Pontificia Univ Catolica Chile, Dept Fis, Santiago, Chile. [Brooks, W. K.; Kuleshov, S.; Pezoa, R.; Prokoshin, F.; Loyola, J. E. Salazar; White, R.] Univ Tecn Feder Santa Maria, Dept Fis, Valparaiso, Chile. [Bai, Y.; Fang, Y.; Jin, S.; Lou, X.; Ouyang, Q.; Peng, C.; Ren, H.; Shan, L. Y.; Sun, X.; Wang, J.; Xu, D.; Zhu, H.; Zhuang, X.] Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China. [Gao, J.; Guo, Y.; Han, L.; Hu, Q.; Jiang, Y.; Li, B. y; Liu, J. B.; Liu, M.; Liu, Y.; Peng, H.; Song, H. Y.; Zhang, R.; Zhao, Z.; Zhu, Y.] Univ Sci & Technol China, Dept Modern Phys, Hefei, Anhui, Peoples R China. [Chen, S.; Li, Y.; Zhang, H.] Nanjing Univ, Dept Phys, Nanjing, Jiangsu, Peoples R China. [Chen, L.; Feng, C.; Ge, P.; Liu, B.; Ma, L. L.; Zhang, X.; Zhao, Y.; Zhu, C. G.] Shandong Univ, Sch Phys, Shandong, Peoples R China. [Bret, M. Cano; Guo, J.; Li, L.; Yang, H.] Shanghai Jiao Tong Univ, Dept Phys & Astron, Shanghai Key Lab Particle Phys & Cosmol, Shanghai 200030, Peoples R China. [Chen, X.; Zhou, N.] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Gilles, G.; Gris, Ph.; Liao, H.; Madar, R.; Pallin, D.; Saez, S. M. Romano; Santoni, C.; Simon, D.; Theveneaux-Pelzer, T.; Vazeille, F.] Univ Clermont Ferrand, Lab Phys Corpusculaire, Clermont Ferrand, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Gilles, G.; Gris, Ph.; Liao, H.; Madar, R.; Pallin, D.; Saez, S. M. Romano; Santoni, C.; Simon, D.; Theveneaux-Pelzer, T.; Vazeille, F.] Univ Clermont Ferrand, Clermont Ferrand, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Gilles, G.; Gris, Ph.; Liao, H.; Madar, R.; Pallin, D.; Saez, S. M. Romano; Santoni, C.; Simon, D.; Theveneaux-Pelzer, T.; Vazeille, F.] CNRS IN2P3, Clermont Ferrand, France. [Alkire, S. P.; Altheimer, A.; Andeen, T.; Angerami, A.; Bain, T.; Brooijmans, G.; Cole, B.; Hu, D.; Hughes, E. W.; Iordanidou, K.; Klein, M. H.; Mohapatra, S.; Nikiforou, N.; Parsons, J. A.; Smith, M. N. K.; Smith, R. W.; Thompson, E. N.; Tuts, P. M.; Wang, T.; Zhou, L.] Columbia Univ, Nevis Lab, Irvington, NY USA. [Alonso, A.; Besjes, G. J.; Dam, M.; Galster, G.; Giraud, P. F.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Joergensen, M. D.; Loevschall-Jensen, A. E.; Monk, J.; Mortensen, S. S.; Pedersen, L. E.; Petersen, T. C.; Pingel, A.; Wiglesworth, C.; Xella, S.] Univ Copenhagen, Niels Bohr Inst, Copenhagen, Denmark. [Cairo, V. M.; Capua, M.; Crosetti, G.; La Rotonda, L.; Mastroberardino, A.; Policicchio, A.; Salvatore, D.; Scarfone, V.; Schioppa, M.; Susinno, G.; Tassi, E.] Ist Nazl Fis Nucl, Lab Nazl Frascati, Grp Collegato Cosenza, I-00044 Frascati, Italy. [Cairo, V. M.; Capua, M.; Crosetti, G.; La Rotonda, L.; Mastroberardino, A.; Policicchio, A.; Salvatore, D.; Scarfone, V.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dipartmento Fis, I-87036 Arcavacata Di Rende, Italy. [Adamczyk, L.; Bold, T.; Dabrowski, W.; Dyndal, M.; Gach, G. P.; Grabowska-Bold, I.; Kisielewska, D.; Koperny, S.; Mindur, B.; Przybycien, M.; Zemla, A.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, PL-30059 Krakow, Poland. [Palka, M.; Richter-Was, E.] Jagiellonian Univ, Marian Smoluchowski Inst Phys, Krakow, Poland. [Banas, E.; de Renstrom, P. A. Bruckman; Chwastowski, J. J.; Derendarz, D.; Godlewski, J.; Gornicki, E.; Hajduk, Z.; Iwanski, W.; Kaczmarska, A.; Knapik, J.; Korcyl, K.; Malecki, Pa.; Olszewski, A.; Olszowska, J.; Stanecka, E.; Staszewski, R.; Trzebinski, M.; Trzupek, A.; Wolter, M. W.; Wosiek, B. K.; Wozniak, K. W.; Zabinski, B.] Polish Acad Sci, Inst Nucl Phys, Krakow, Poland. [Cao, T.; Firan, A.; Hetherly, J. W.; Kama, S.; Kehoe, R.; Sekula, S. J.; Stroynowski, R.; Turvey, A. J.; Varol, T.; Wang, H.; Ye, J.; Zhao, X.; Zhou, L.] So Methodist Univ, Dept Phys, Dallas, TX 75275 USA. [Izen, J. M.; Leyton, M.; Meirose, B.; Namasivayam, H.; Reeves, K.] Univ Texas Dallas, Dept Phys, Dallas, TX 75230 USA. [Argyropoulos, S.; Asbah, N.; Bessner, M.; Bloch, I.; Borroni, S.; Britzger, D.; Camarda, S.; Deterre, C.; Eckardt, C.; Filipuzzi, M.; Flaschel, N.; Glazov, A.; Grahn, K-J.; Gregor, I. M.; Grohsjean, A.; Haleem, M.; Hamnett, P. G.; Hengler, C.; Hiller, K. H.; Howarth, J.; Huang, Y.; Katzy, J.; Keller, J. S.; Kondrashova, N.; Kuhl, T.; Lobodzinska, E.; Lohwasser, K.; Mamuzic, J.; Medinnis, M.; Moenig, K.; Garcia, R. F. Naranjo; Naumann, T.; Peschke, R.; Petit, E.; Pirumov, H.; Poley, A.; Radescu, V.; Robinson, J. E. M.; Rubinskiy, I.; Schaefer, R.; Schmitt, S.; Sedov, G.; Shushkevich, S.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Styles, N. A.; Tackmann, K.; Wang, J.; Wasicki, C.; Yildirim, E.] DESY, Hamburg, Germany. [Argyropoulos, S.; Asbah, N.; Bessner, M.; Bloch, I.; Borroni, S.; Britzger, D.; Camarda, S.; Deterre, C.; Eckardt, C.; Filipuzzi, M.; Flaschel, N.; Glazov, A.; Grahn, K-J.; Gregor, I. M.; Grohsjean, A.; Haleem, M.; Hamnett, P. G.; Hengler, C.; Hiller, K. H.; Howarth, J.; Huang, Y.; Katzy, J.; Keller, J. S.; Kondrashova, N.; Kuhl, T.; Lobodzinska, E.; Lohwasser, K.; Mamuzic, J.; Medinnis, M.; Moenig, K.; Garcia, R. F. Naranjo; Naumann, T.; Peschke, R.; Petit, E.; Pirumov, H.; Poley, A.; Radescu, V.; Robinson, J. E. M.; Rubinskiy, I.; Schaefer, R.; Schmitt, S.; Sedov, G.; Shushkevich, S.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Styles, N. A.; Tackmann, K.; Wang, J.; Wasicki, C.; Yildirim, E.] DESY, Zeuthen, Germany. [Burmeister, I.; Erdmann, J.; Esch, H.; Goessling, C.; Homann, M.; Jentzsch, J.; Jung, C. A.; Klingenberg, R.; Kroeninger, K.] Tech Univ Dortmund, Inst Expt Phys 2, D-44221 Dortmund, Germany. [Anger, P.; Duschinger, D.; Friedrich, F.; Grohs, J. P.; Gumpert, C.; Gutschow, C.; Hauswald, L.; Kobel, M.; Mader, W. F.; Novgorodova, O.; Rudolph, C.; Schnoor, U.; Siegert, F.; Socher, F.; Staerz, S.; Straessner, A.; Vest, A.; Wahrmund, S.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Arce, A. T. H.; Benjamin, D. P.; Bocci, A.; Cerio, B. C.; Goshaw, A. T.; Kajomovitz, E.; Kotwal, A.; Kruse, M. C.; Li, L.; Li, S.; Liu, M.; Oh, S. H.; Zhou, C.] Duke Univ, Dept Phys, Durham, NC 27706 USA. [Bristow, T. M.; Clark, P. J.; Dias, F. A.; Edwards, N. C.; Gao, Y.; Walls, F. M. Garay; Glaysher, P. C. F.; Harrington, R. D.; Leonidopoulos, C.; Martin, V. J.; Mills, C.; O'Brien, B. J.; Pino, S. A. Olivares; Proissl, M.; Smart, B. H.; Washbrook, A.; Wynne, B. M.] Univ Edinburgh, SUPA Sch Phys & Astron, Edinburgh, Midlothian, Scotland. [Antonelli, M.; Beretta, M.; Bilokon, H.; Chiarella, V.; Curatolo, M.; Di Nardo, R.; Esposito, B.; Gatti, C.; Giromini, P.; Laurelli, P.; Maccarrone, G.; Mancini, G.; Sansoni, A.; Testa, M.; Vilucchi, E.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Amoroso, S.; Arnold, H.; Betancourt, C.; Boehler, M.; Bruneliere, R.; Buehrer, F.; Burgard, C. D.; Buescher, D.; Cardillo, F.; Coniavitis, E.; Consorti, V.; Dang, N. P.; Dao, V.; Di Simone, A.; Giuliani, C.; Herten, G.; Jakobs, K.; Javurek, T.; Jenni, P.; Kiss, F.; Koeneke, K.; Kopp, A. K.; Kuehn, S.; Landgraf, U.; Mahboubi, K.; Mohr, W.; Pagacova, M.; Parzefall, U.; Ronzani, M.; Rosbach, K.; Ruehr, F.; Rurikova, Z.; Ruthmann, N.; Sammel, D.; Schillo, C.; Schumacher, M.; Sommer, P.; Sundermann, J. E.; Temming, K. K.; Tsiskaridze, V.; Ungaro, F. C.; von Radziewski, H.; Weiser, C.; Werner, M.; Zhang, L.; Zimmermann, S.] Univ Freiburg, Fak Math & Phys, D-79106 Freiburg, Germany. [Ancu, L. S.; Bell, W. H.; Noccioli, E. Benhar; De Mendizabal, J. Bilbao; Calace, N.; Clark, A.; Coccaro, A.; Delitzsch, C. M.; della Volpe, D.; Ferrere, D.; Gadomski, S.; Golling, T.; Gonzalez-Sevilla, S.; Gramling, J.; Guescini, F.; Iacobucci, G.; Katre, A.; Mermod, P.; Miucci, A.; Muenstermann, D.; Paolozzi, L.; Picazio, A.; Ristic, B.; Schramm, S.; Tykhonov, A.; Vallecorsa, S.; Wu, X.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Barberis, D.; Darbo, G.; Favareto, A.; Parodi, A. Ferretto; Gagliardi, G.; Gaudiello, A.; Gemme, C.; Guido, E.; Morettini, P.; Osculati, B.; Parodi, F.; Passaggio, S.; Sannino, M.; Schiavi, C.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Barberis, D.; Favareto, A.; Parodi, A. Ferretto; Gagliardi, G.; Gaudiello, A.; Guido, E.; Osculati, B.; Parodi, F.; Sannino, M.; Schiavi, C.] Univ Genoa, Dipartimento Fis, Genoa, Italy. [Jejelava, J.; Tskhadadze, E. G.] Iv Javakhishvili Tbilisi State Univ, E Andronikashvili Inst Phys, Tbilisi, Rep of Georgia. [Djobava, T.; Durglishvili, A.; Khubua, J.; Mosidze, M.] Tbilisi State Univ, Inst High Energy Phys, GE-380086 Tbilisi, Rep of Georgia. [Dueren, M.; Kreutzfeldt, K.; Stenzel, H.] Univ Giessen, Inst Phys 2, D-35390 Giessen, Germany. [Bates, R. L.; Madden, W. D. Breaden; Britton, D.; Buckley, A. G.; Bussey, P.; Buttar, C. M.; Buzatu, A.; Cinca, D.; D'Auria, S.; Doyle, A. T.; Ferrando, J.; de Lima, D. E. Ferreira; Gul, U.; Knue, A.; Morton, A.; Mullen, P.; O'Shea, V.; Barrera, C. Oropeza; Owen, M.; Pollard, C. S.; Qin, G.; Quilty, D.; Ravenscroft, T.; Robson, A.; St Denis, R. D.; Stewart, G. A.; Thompson, A. S.] Univ Glasgow, SUPA Sch Phys & Astron, Glasgow, Lanark, Scotland. [Agricola, J.; Bindi, M.; Blumenschein, U.; Brandt, G.; Drechsler, E.; George, M.; Graber, L.; Grosse-Knetter, J.; Janus, M.; Kareem, M. J.; Kawamura, G.; Lai, S.; Lemmer, B.; Magradze, E.; Mantoani, M.; Mchedlidze, G.; Llacer, M. Moreno; Musheghyan, H.; Nackenhorst, O.; Nadal, J.; Quadt, A.; Rieger, J.; Schorlemmer, A. L. S.; Shabalina, E.; Stolte, P.; Weingarten, J.; Zinonos, Z.] Univ Gottingen, Inst Phys 2, D-37073 Gottingen, Germany. [Albrand, S.; Brown, J.; Collot, J.; Crepe-Renaudin, S.; Delsart, P. A.; Gabaldon, C.; Genest, M. H.; Hostachy, J-Y.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Monini, C.; Stark, J.; Trocme, B.; Wu, M.] Univ Grenoble Alpes, CNRS IN2P3, Lab Phys Subatom & Cosmol, Grenoble, France. [McFarlane, K. W.] Hampton Univ, Dept Phys, Hampton, VA 23668 USA. [da Costa, J. Barreiro Guimaraes; Catastini, P.; Clark, B. L.; Franklin, M.; Huth, J.; Ippolito, V.; Lazovich, T.; Mateos, D. Lopez; Mercurio, K. M.; Morii, M.; Skottowe, H. P.; Spearman, W. R.; Sun, S.; Tolley, E.; Yen, A. L.; Zambito, S.] Harvard Univ, Lab Particle Phys & Cosmol, Cambridge, MA 02138 USA. [Andrei, V.; Baas, A. E.; Brandt, O.; Djuvsland, J. I.; Dunford, M.; Geisler, M. P.; Hanke, P.; Jongmanns, J.; Kluge, E. -E.; Lang, V. S.; Meier, K.; Theenhausen, H. Meyer Zu; Villar, D. I. Narrias; Sahinsoy, M.; Scharf, V.; Schultz-Coulon, H. -C.; Stamen, R.; Starovoitov, P.; Wessels, M.] Heidelberg Univ, Kirchhoff Inst Phys, Heidelberg, Germany. [Anders, C. F.; Giulini, M.; Lisovyi, M.; Schaetzel, S.; Schmitt, S.; Schoening, A.; Sosa, D.] Heidelberg Univ, Inst Phys, Heidelberg, Germany. [Colombo, T.; Kretz, M.; Kugel, A.] Heidelberg Univ, ZITI Inst Tech Informat, Mannheim, Germany. [Nagasaka, Y.] Hiroshima Inst Technol, Fac Appl Informat Sci, Hiroshima, Japan. [Bortolotto, V.; Castillo, L. R. Flores; Salvucci, A.] Chinese Univ Hong Kong, Dept Phys, Hong Kong, Hong Kong, Peoples R China. [Bortolotto, V.] Univ Hong Kong, Dept Phys, Hong Kong, Hong Kong, Peoples R China. [Bortolotto, V.; Prokofiev, K.] Hong Kong Univ Sci & Technol, Dept Phys, Kowloon, Hong Kong, Peoples R China. [Choi, K.; Dattagupta, A.; Evans, H.; Gagnon, P.; Lammers, S.; Martinez, N. Lorenzo; Luehring, F.; Ogren, H.; Penwell, J.; Weinert, B.; Zieminska, D.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Jansky, R.; Jussel, P.; Kneringer, E.; Lukas, W.; Usanova, A.; Vigne, R.] Leopold Franzens Univ, Inst Astro & Teilchenphys, Innsbruck, Austria. [Mallik, U.; Mandrysch, R.; Zaidan, R.] Univ Iowa, Iowa City, IA USA. [Chen, C.; Cochran, J.; De Lorenzi, F.; Krumnack, N.; Pluth, D.; Prell, S.] Iowa State Univ, Dept Phys & Astron, Ames, IA USA. [Ahmadov, F.; Aleksandrov, I. N.; Bednyakov, V. A.; Boyko, I. R.; Budagov, I. A.; Chelkov, G. A.; Cheplakov, A.; Chizhov, M. V.; Dedovich, D. V.; Demichev, M.; Gostkin, M. I.; Huseynov, N.; Javadov, N.; Karpov, S. N.; Karpova, Z. M.; Khramov, E.; Kotov, V. M.; Kruchonak, U.; Kukhtin, V.; Ladygin, E.; Minashvili, I. A.; Mineev, M.; Peshekhonov, V. D.; Plotnikova, E.; Potrap, I. N.; Pozdnyakov, V.; Rusakovich, N. A.; Sadykov, R.; Sapronov, A.; Shiyakova, M.; Sisakyan, A. N.; Soloshenko, A.; Vinogradov, V. B.; Yeletskikh, I.; Zhemchugov, A.; Zimine, N. I.] JINR Dubna, Joint Nucl Res Inst, Dubna, Russia. [Amako, K.; Aoki, M.; Arai, Y.; Hanagaki, K.; Ikegami, Y.; Ikeno, M.; Iwasaki, H.; Kanzaki, J.; Kohriki, T.; Kondo, T.; Kono, T.; Makida, Y.; Nagano, K.; Nakamura, K.; Nozaki, M.; Odaka, S.; Okuyama, T.; Sasaki, O.; Suzuki, S.; Takubo, Y.; Tanaka, S.; Terada, S.; Tokushuku, K.; Tsuno, S.; Unno, Y.; Yamada, M.; Yamamoto, A.; Yasu, Y.] High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki, Japan. [Chen, Y.; Fuster, J.; Hasegawa, M.; Kido, S.; Kishimoto, T.; Kurashige, H.; Maeda, J.; Ochi, A.; Shimizu, S.; Takeda, H.; Yakabe, R.; Yamazaki, Y.; Yuan, L.] Kobe Univ, Grad Sch Sci, Kobe, Hyogo 657, Japan. [Ishino, M.; Kunigo, T.; Sumida, T.; Tashiro, T.] Kyoto Univ, Fac Sci, Kyoto, Japan. [Takashima, R.] Kyoto Univ, Kyoto 612, Japan. [Kawagoe, K.; Oda, S.; Otono, H.; Tojo, J.] Kyushu Univ, Dept Phys, Fukuoka 812, Japan. [Verzini, M. J. Alconada; Alonso, F.; Arduh, F. A.; Dova, M. T.; Monticelli, F.; Wahlberg, H.] Univ Nacl La Plata, Inst Fis La Plata, RA-1900 La Plata, Buenos Aires, Argentina. [Verzini, M. J. Alconada; Alonso, F.; Arduh, F. A.; Dova, M. T.; Monticelli, F.; Wahlberg, H.] Consejo Nacl Invest Cient & Tecn, La Plata, Buenos Aires, Argentina. [Barton, A. E.; Beattie, M. D.; Borissov, G.; Bouhova-Thacker, E. V.; Dearnaley, W. J.; Fox, H.; Grimm, K.; Henderson, R. C. W.; Hughes, G.; Jones, R. W. L.; Kartvelishvili, V.; Long, R. E.; Love, P. A.; Maddocks, H. J.; Skinner, M. B.; Smizanska, M.; Walder, J.; Wharton, A. M.] Univ Lancaster, Dept Phys, Lancaster, England. [Chiodini, G.; Gorini, E.; Primavera, M.; Spagnolo, S.; Ventura, A.] Ist Nazl Fis Nucl, Sez Lecce, I-73100 Lecce, Italy. [Gorini, E.; Spagnolo, S.; Ventura, A.] Univ Salento, Dipartimento Matemat & Fis, Lecce, Italy. [Affolder, A. A.; Allport, P. P.; Anders, J. K.; Burdin, S.; D'Onofrio, M.; Dervan, P.; Gwilliam, C. B.; Hayward, H. S.; Jackson, M.; Jones, T. J.; King, B. T.; Klein, M.; Klein, U.; Kretzschmar, J.; Laycock, P.; Lehan, A.; Maxfield, S. J.; Mehta, A.; Readioff, N. P.; Schnellbach, Y. J.; Vossebeld, J. H.] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 3BX, Merseyside, England. [Cindro, V.; Deliyergiyev, M.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Sfiligoj, T.; Sokhrannyi, G.] Jozef Stefan Inst, Dept Phys, Ljubljana, Slovenia. [Cindro, V.; Deliyergiyev, M.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Sfiligoj, T.; Sokhrannyi, G.] Univ Ljubljana, Ljubljana, Slovenia. [Alpigiani, C.; Bevan, A. J.; Bona, M.; Cerrito, L.; Fletcher, G.; Goddard, J. R.; Hays, J. M.; Hickling, R.; Landon, M. P. J.; Lloyd, S. L.; Morris, J. D.; Nooney, T.; Piccaro, E.; Rizvi, E.; Sandbach, R. L.; Snidero, G.; Castanheira, M. Teixeira Dias] Queen Mary Univ London, Sch Phys & Astron, London, England. [Berry, T.; Blanco, J. E.; Boisvert, V.; Brooks, T.; Connelly, I. A.; Cowan, G.; Duguid, L.; Giannelli, M. Faucci; George, S.; Gibson, S. M.; Kempster, J. J.; Vazquez, J. G. Panduro; Pastore, Fr.; Savage, G.; Sowden, B. C.; Spano, F.; Teixeira-Dias, P.; Thomas-Wilsker, J.] Royal Holloway Univ London, Dept Phys, Surrey, England. [Bieniek, S. P.; Butterworth, J. M.; Campanelli, M.; Casadei, D.; Chislett, R. T.; Christodoulou, V.; Cooper, B. D.; Davison, P.; Falla, R. J.; Freeborn, D.; Gregersen, K.; Ortiz, N. G. Gutierrez; Hesketh, G. G.; Jansen, E.; Jiggins, S.; Konstantinidis, N.; Korn, A.; Kucuk, H.; Lambourne, L.; Leney, K. J. C.; Martyniuk, A. C.; Mcfayden, J. A.; Nurse, E.; Ochoa, I.; Richter, S.; Scanlon, T.; Sherwood, P.; Simmons, B.; Wardrope, D. R.; Waugh, B. M.] UCL, Dept Phys & Astron, London, England. [Greenwood, Z. D.; Grossi, G. C.; Jana, D. K.; Sawyer, L.; Subramaniam, R.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pandini, C. E.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.; Varouchas, D.] UPMC, Labe Phys Nucl & Hautes Energies, Paris, France. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pandini, C. E.; Pires, S.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.; Varouchas, D.] Univ Paris Diderot, Paris, France. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pandini, C. E.; Pires, S.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.; Varouchas, D.] CNRS IN2P3, Paris, France. [Akesson, T. P. A.; Bocchetta, S. S.; Bryngemark, L.; Doglioni, C.; Floderus, A.; Hawkins, A. D.; Hedberg, V.; Ivarsson, J.; Jarlskog, G.; Lytken, E.; Mjornmark, J. U.; Smirnova, O.; Viazlo, O.] Lund Univ, Inst Fys, Lund, Sweden. [Arnal, V.; Barreiro, F.; Cantero, J.; De la Torre, H.; Del Peso, J.; Glasman, C.; Merino, J. Llorente; Terron, J.] Univ Autonoma Madrid, Dept Fis Teor C 15, Madrid, Spain. [Becker, M.; Bertella, C.; Blum, W.; Buescher, V.; Caputo, R.; Caudron, J.; Endner, O. C.; Ertel, E.; Fiedler, F.; Torregrosa, E. Fullana; Heck, T.; Hohlfeld, M.; Huelsing, T. A.; Karnevskiy, M.; Kleinknecht, K.; Koepke, L.; Lin, T. H.; Masetti, L.; Mattmann, J.; Meyer, C.; Moritz, S.; Rave, S.; Sander, H. G.; Schaeffer, J.; Schaefer, U.; Schmitt, C.; Schott, M.; Schroeder, C.; Schuh, N.; Simioni, E.; Tapprogge, S.; Urrejola, P.; Valderanis, C.; Wollstadt, S. J.; Zimmermann, C.; Zinser, M.] Johannes Gutenberg Univ Mainz, Inst Phys, D-55122 Mainz, Germany. [Balli, F.; Barnes, S. L.; Cox, B. E.; Da Via, C.; Forti, A.; Ponce, J. M. Iturbe; Joshi, K. D.; Keoshkerian, H.; Li, X.; Loebinger, F. K.; Marsden, S. P.; Masik, J.; Neep, T. J.; Oh, A.; Ospanov, R.; Pater, J. R.; Peters, R. F. Y.; Pilkington, A. D.; Price, D.; Qin, Y.; Queitsch-Maitland, M.; Schwanenberger, C.; Schweiger, H.; Shaw, S. M.; Thompson, R. J.; Tomlinson, L.; Watts, S.; Webb, S.; Woudstra, M. J.; Wyatt, T. R.] Univ Manchester, Sch Phys & Astron, Manchester, Lancs, England. [Aad, G.; Alio, L.; Barbero, M.; Chen, L.; Coadou, Y.; Diaconu, C.; Diglio, S.; Djama, F.; Ducu, O. A.; Feligioni, L.; Gao, J.; Hallewell, G. D.; Hubaut, F.; Kahn, S. J.; Knoops, E. B. F. G.; Le Guirriec, E.; Liu, J.; Liu, K.; Madaffari, D.; Mochizuki, K.; Monnier, E.; Muanza, S.; Nagai, Y.; Nagy, E.; Pralavorio, P.; Rozanov, A.; Serre, T.; Talby, M.; Torres, R. E. Ticse; Tiouchichine, E.; Tisserant, S.; Toth, J. kk; Touchard, F.; Vacavant, L.] Aix Marseille Univ, CPPM, Marseille, France. [Bellomo, M.; Bernard, N. R.; Brau, B.; Dallapiccola, C.; Daya-Ishmukhametova, R. K.; Moyse, E. J. W.; Pais, P.; Pueschel, E.; Ventura, D.; Willocq, S.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Belanger-Champagne, C.; Chuinard, A. J.; Corriveau, F.; Keyes, R. A.; Mantifel, R.; Prince, S.; Robertson, S. H.; Robichaud-Veronneau, A.; Stockton, M. C.; Stoebe, M.; Vachon, B.; Schroeder, T. Vazquez; Wang, K.; Warburton, A.] McGill Univ, Dept Phys, Montreal, PQ, Canada. [Barberio, E. L.; Brennan, A. J.; Dawe, E.; Jennens, D.; Kubota, T.; Milesi, M.; Hanninger, G. Nunes; Nuti, F.; Rados, P.; Spiller, L. A.; Tan, K. G.; Taylor, G. N.; Urquijo, P.; Volpi, M.; Zanzi, D.] Univ Melbourne, Sch Phys, Victoria, Australia. [Amidei, D.; Chelstowska, M. A.; Cheng, H. C.; Dai, T.; Diehl, E. B.; Edgar, R. C.; Feng, H.; Ferretti, C.; Fleischmann, P.; Goldfarb, S.; Guan, L.; Hu, X.; Levin, D.; Liu, H.; Long, J. D.; Lu, N.; Marley, D. E.; Mc Kee, S. P.; McCarn, A.; Neal, H. A.; Qian, J.; Schwarz, T. A.; Searcy, J.; Sekhon, K.; Thun, R. P.; Wilson, A.; Wu, Y.; Yu, J. M.; Zhang, D.; Zhou, B.; Zhu, J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Abolins, M.; Arabidze, G.; Brock, R.; Chegwidden, A.; Fisher, W. C.; Halladjian, G.; Hauser, R.; Hayden, D.; Huston, J.; Linnemann, J. T.; Martin, B.; Pope, B. G.; Schoenrock, B. D.; Schwienhorst, R.; Ta, D.; Tollefson, K.; True, P.; Willis, C.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Alimonti, G.; Andreazza, A.; Besana, M. I.; Carminati, L.; Cavalli, D.; Costa, G.; Fanti, M.; Giugni, D.; Lari, T.; Mandelli, L.; Mazza, S. M.; Meroni, C.; Perini, L.; Pizio, C.; Ragusa, F.; Shojaii, S.; Tartarelli, G. F.; Troncon, C.; Turra, R.; Perez, M. Villaplana] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy. [Carminati, L.; Resconi, S.; Turra, R.; Perez, M. Villaplana] Univ Milan, Dipartimento Fis, Milan, Italy. [Harkusha, S.; Kulchitsky, Y.; Kurochkin, Y. A.; Tsiareshka, P. V.] Natl Acad Sci Belarus, BI Stepanov Phys Inst, Minsk, Byelarus. [Hrynevich, A.] Natl Sci & Educ Ctr Particle & High Energy Phys, Minsk, Byelarus. [Taylor, F. E.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Arguin, J-F.; Azuelos, G.; Dallaire, F.; Gauthier, L.; Leroy, C.; Rezvani, R.; Saadi, D. Shoaleh] Univ Montreal, Grp Particle Phys, Montreal, PQ, Canada. [Akimov, A. V.; Gavrilenko, I. L.; Komar, A. A.; Mashinistov, R.; Mouraviev, S. V.; Nechaeva, P. Yu.; Shmeleva, A.; Snesarev, A. A.; Sulin, V. V.; Tikhomirov, V. O.; Zhukov, K.] Russian Acad Sci, PN Lebedev Phys Inst, Moscow, Russia. [Artamonov, A.; Gorbounov, P. A.; Khovanskiy, V.; Shatalov, P. B.; Tsukerman, I. I.] ITEP, Moscow, Russia. [Antonov, A.; Belotskiy, K.; Bulekov, O.; Dolgoshein, B. A.; Kantserov, V. A.; Krasnopevtsev, D.; Romaniouk, A.; Shulga, E.; Smirnov, S. Yu.; Smirnov, Y.; Soldatov, E. Yu.; Tikhomirov, V. O.; Timoshenko, S.; Vorobev, K.] Natl Res Nucl Univ MEPhI, Moscow, Russia. [Boldyrev, A. S.; Gladilin, L. K.; Kramarenko, V. A.; Maevskiy, A.; Rud, V. I.; Sivoklokov, S. Yu.; Smirnova, L. N.; Turchikhin, S.] Moscow MV Lomonosov State Univ, DV Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Adomeit, S.; Becker, S.; Bender, M.; Biebel, O.; Bock, C.; Bortfeldt, J.; Calfayan, P.; Chow, B. K. B.; Duckeck, G.; Elmsheuser, J.; Hertenberger, R.; Hoenig, F.; Legger, F.; Lorenz, J.; Loesel, P. J.; Maier, T.; Mann, A.; Mehlhase, S.; Meineck, C.; Mitrevski, J.; Mueller, R. S. P.; Nunnemann, T.; Rauscher, F.; Ruschke, A.; Sanders, M. P.; Schaile, D.; Unverdorben, C.; Vladoiu, D.; Walker, R.; Wittkowski, J.] Univ Munich, Fak Phys, Munich, Germany. [Barillari, T.; Bethke, S.; Bronner, J.; Compostella, G.; Cortiana, G.; Ecker, K. M.; Flowerdew, M. J.; Goblirsch-Kolb, M.; Ince, T.; Kiryunin, A. E.; Kluth, S.; Kortner, O.; Kortner, S.; Kroha, H.; Macchiolo, A.; Maier, A. A.; Manfredini, A.; Menke, S.; Mueller, F.; Nagel, M.; Nisius, R.; Nowak, S.; Oberlack, H.; Richter, R.; Salihagic, D.; Sandstroem, R.; Schacht, P.; Schwegler, Ph.; Spettel, F.; Stonjek, S.; Terzo, S.; von der Schmitt, H.; Wildauer, A.] Werner Heisenberg Inst Phys, Max Planck Inst Phys, Munich, Germany. [Fusayasu, T.; Shimojima, M.] Nagasaki Inst Appl Sci, Nagasaki, Japan. [Horii, Y.; Morvaj, L.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Grad Sch Sci, Nagoya, Aichi 4648601, Japan. [Horii, Y.; Morvaj, L.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Kobayashi Maskawa Inst, Nagoya, Aichi 4648601, Japan. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Carlino, G.; Cirotto, F.; Conventi, F.; de Asmundis, R.; Della Pietra, M.; Di Donato, C.; Doria, A.; Izzo, V.; Merola, L.; Perrella, S.; Rossi, E.; Sanchez, A.; Sekhniaidze, G.; Zurzolo, G.] Ist Nazl Fis Nucl, Sez Napoli, I-80125 Naples, Italy. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Cirotto, F.; Zurzolo, G.] Univ Naples Federico II, Dipartimento Fis, Naples, Italy. [Gorelov, I.; Hoeferkamp, M. R.; Seidel, S. C.; Toms, K.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Caron, S.; Colasurdo, L.; Croft, V.; De Groot, N.; Filthaut, F.; Galea, C.; Konig, A. C.; Nektarijevic, S.; Strubig, A.] Radboud Univ Nijmegen Nikhef, Inst Math Astrophys & Particle Phys, NL-6525 ED Nijmegen, Netherlands. [Aben, R.; Angelozzi, I.; Beemster, L. J.; Bentvelsen, S.; Berge, D.; Bobbink, G. J.; Bos, K.; Brenner, L.; Butti, P.; Castelli, A.; Colijn, A. P.; de Jong, P.; Deigaard, I.; Deluca, C.; Duda, D.; Ferrari, P.; Hartjes, F.; Hessey, N. P.; Hod, N.; Igonkina, O.; Karastathis, N.; Kluit, P.; Koffeman, E.; Linde, F.; Mahlstedt, J.; Meyer, J.; Oussoren, K. P.; Sabato, G.; Salek, D.; Slawinska, M.; Valencic, N.; Van den Wollenberg, W.; Van der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Weits, H.; Williams, S.] Nikhef Natl Inst Subat Phys, Amsterdam, Netherlands. [Aben, R.; Angelozzi, I.; Beemster, L. J.; Bentvelsen, S.; Berge, D.; Bobbink, G. J.; Bos, K.; Brenner, L.; Butti, P.; Castelli, A.; Colijn, A. P.; de Jong, P.; Deigaard, I.; Deluca, C.; Duda, D.; Ferrari, P.; Hartjes, F.; Hessey, N. P.; Hod, N.; Igonkina, O.; Karastathis, N.; Kluit, P.; Koffeman, E.; Linde, F.; Mahlstedt, J.; Meyer, J.; Oussoren, K. P.; Sabato, G.; Salek, D.; Slawinska, M.; Valencic, N.; Van den Wollenberg, W.; Van der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.; Vuillermet, R.; Weits, H.; Williams, S.] Univ Amsterdam, Amsterdam, Netherlands. [Adelman, J.; Andari, N.; Burghgrave, B.; Chakraborty, D.; Cole, S.; Suhr, C.; Yurkewicz, A.] No Illinois Univ, Dept Phys, De Kalb, IL USA. [Anisenkov, A. V.; Baldin, E. M.; Bobrovnikov, V. S.; Bogdanchikov, A. G.; Buzykaev, A. R.; Kazanin, V. F.; Kharlamov, A. G.; Korol, A. A.; Malyshev, V. M.; Maslennikov, A. L.; Maximov, D. A.; Peleganchuk, S. V.; Rezanova, O. L.; Soukharev, A. M.; Talyshev, A. A.; Tikhonov, Yu. A.] SB RAS, Budker Inst Nucl Phys, Novosibirsk, Russia. [Bernius, C.; Cranmer, K.; Haas, A.; Heinrich, L.; van Huysduynen, L. Hooft; Kaplan, B.; Karthik, K.; Konoplich, R.; Kreiss, S.; Mincer, A. I.; Nemethy, P.; Neves, R. M.] NYU, Dept Phys, New York, NY 10003 USA. [Beacham, J. B.; Gan, K. K.; Ishmukhametov, R.; Kagan, H.; Kass, R. D.; Looper, K. A.; Moss, J.; Nagarkar, A.; Pignotti, D. T.; Shrestha, S.; Tannenwald, B. B.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Fac Sci, Okayama 700, Japan. [Abbott, B.; Alhroob, M.; Bertsche, C.; Bertsche, D.; De Benedetti, A.; Gutierrez, P.; Hasib, A.; Norberg, S.; Pearson, B.; Saleem, M.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA. [Bousson, N.; Haley, J.; Jamin, D. O.; Khanov, A.; Rizatdinova, F.; Sidorov, D.; Yu, J.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA. [Chytka, L.; Hamal, P.; Hrabovsky, M.; Kvita, J.; Nozka, L.] Palacky Univ, RCPTM, CR-77147 Olomouc, Czech Republic. [Abreu, R.; Brau, J. E.; Brost, E.; Hopkins, W. H.; Majewski, S.; Potter, C. T.; Ptacek, E.; Radloff, P.; Shamim, M.; Sinev, N. B.; Strom, D. M.; Torrence, E.; Wanotayaroj, C.; Whalen, K.; Winklmeier, F.] Univ Oregon, Ctr High Energy Phys, Eugene, OR 97403 USA. [Ayoub, M. K.; Bassalat, A.; Becot, C.; Binet, S.; Bourdarios, C.; De Regie, J. B. De Vivie; Delgove, D.; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Gkougkousis, E. L.; Grivaz, J. -F.; Guillemin, T.; Hariri, F.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Kado, M.; Li, Y.; Lounis, A.; Makovec, N.; Morange, N.; Nellist, C.; Petroff, P.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Rybkin, G.; Schaffer, A. C.; Scifo, E.; Serin, L.; Simion, S.; Tanaka, R.; Zerwas, D.; Zhang, Z.; Zhao, Y.] Univ Paris 11, LAL, Orsay, France. [Ayoub, M. K.; Bassalat, A.; Becot, C.; Binet, S.; Bourdarios, C.; De Regie, J. B. De Vivie; Delgove, D.; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Gkougkousis, E. L.; Grivaz, J. -F.; Guillemin, T.; Hariri, F.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Kado, M.; Li, Y.; Lounis, A.; Makovec, N.; Morange, N.; Nellist, C.; Petroff, P.; Poggioli, L.; Puzo, P.; Rousseau, D.; Rybkin, G.; Schaffer, A. C.; Scifo, E.; Serin, L.; Simion, S.; Tanaka, R.; Zerwas, D.; Zhang, Z.; Zhao, Y.] CNRS IN2P3, Orsay, France. [Endo, M.; Nomachi, M.; Okamura, W.; Sugaya, Y.; Teoh, J. J.; Yamaguchi, Y.] Osaka Univ, Grad Sch Sci, Osaka, Japan. [Bugge, L.; Bugge, M. K.; Cameron, D.; Catmore, J. R.; Franconi, L.; Garonne, V.; Gjelsten, B. K.; Gramstad, E.; Morisbak, V.; Nilsen, J. K.; Ould-Saada, F.; Pajchel, K.; Pedersen, M.; Raddum, S.; Read, A. L.; Rohne, O.; Sandaker, H.; Stapnes, S.; Strandlie, A.] Univ Oslo, Dept Phys, Oslo, Norway. [Barr, A. J.; Becker, K.; Behr, J. K.; Beresford, L.; Cooper-Sarkar, A. M.; Ortuzar, M. Crispin; Dafinca, A.; Davies, E.; Frost, J. A.; Gallas, E. J.; Gupta, S.; Gwenlan, C.; Hall, D.; Hays, C. P.; Henderson, J.; Howard, J.; Huffman, T. B.; Issever, C.; Kalderon, C. W.; Kogan, L. A.; Lewis, A.; Nagai, K.; Nickerson, R. B.; Pickering, M. A.; Ryder, N. C.; Tseng, J. C-L.; Viehhauser, G. H. A.; Weidberg, A. R.; Zhong, J.] Univ Oxford, Dept Phys, Oxford, England. [Conta, C.; Dondero, P.; Ferrari, R.; Fraternali, M.; Gaudio, G.; Introzzi, G.; Lanza, A.; Livan, M.; Negri, A.; Polesello, G.; Rebuzzi, D. M.; Rimoldi, A.; Vercesi, V.] Ist Nazl Fis Nucl, Sez Pavia, I-27100 Pavia, Italy. [Conta, C.; Dondero, P.; Fraternali, M.; Introzzi, G.; Livan, M.; Negri, A.; Rebuzzi, D. M.; Rimoldi, A.] Univ Pavia, Dipartimento Fis, I-27100 Pavia, Italy. [Brendlinger, K.; Fletcher, R. R. M.; Heim, S.; Hines, E.; Jackson, B.; Kroll, J.; Lipeles, E.; Miguens, J. Machado; Meyer, C.; Reichert, J.; Stahlman, J.; Thomson, E.; Tuna, A. N.; Vanguri, R.; Williams, H. H.; Yoshihara, K.] Univ Penn, Dept Phys, Philadelphia, PA 19104 USA. [Basalaev, A.; Ezhilov, A.; Fedin, O. L.; Gratchev, V.; Levchenko, M.; Maleev, V. P.; Ryabov, Y. F.; Schegelsky, V. A.; Sedykh, E.; Seliverstov, D. M.; Solovyev, V.] BP Konstantinov Petersburg Nucl Phys Inst, Kurchatov Inst, Natl Res Ctr, St Petersburg, Russia. [Annovi, A.; Beccherle, R.; Bertolucci, F.; Cavasinni, V.; Chiarelli, G.; Del Prete, T.; Dell'Orso, M.; Donati, S.; Giannetti, P.; Leone, S.; Roda, C.; Scuri, F.; Sotiropoulou, C. L.; Spalla, M.; Volpi, G.; White, S.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy. [Annovi, A.; Beccherle, R.; Bertolucci, F.; Cavasinni, V.; Chiarelli, G.; Del Prete, T.; Dell'Orso, M.; Donati, S.; Giannetti, P.; Leone, S.; Roda, C.; Scuri, F.; Sotiropoulou, C. L.; Spalla, M.; Volpi, G.; White, S.] Univ Pisa, Dipartimento Fis E Fermi, Pisa, Italy. [Bianchi, R. M.; Boudreau, J.; Cleland, W.; Escobar, C.; Hong, T. M.; Mueller, J.; Sapp, K.; Su, J.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Aguilar-Saavedra, J. A.; Dos Santos, S. P. Amor; Amorim, A.; Araque, J. P.; Cantrill, R.; Carvalho, J.; Castro, N. F.; Muino, P. Conde; Da Cunha Sargedas De Sousa, M. J.; Fiolhais, M. C. N.; Galhardo, B.; Gomes, A.; Goncalo, R.; Jorge, P. M.; Lopes, L.; Maio, A.; Maneira, J.; Onofre, A.; Palma, A.; Pedro, R.; Pina, J.; Santos, H.; Saraiva, J. G.; Silva, J.; Delgado, A. Tavares; Veloso, F.; Wolters, H.] Lab Instrumentacao & Fis Expt Particulas LIP, Lisbon, Portugal. [Amorim, A.; Muino, P. Conde; Da Cunha Sargedas De Sousa, M. J.; Gomes, A.; Jorge, P. M.; Miguens, J. Machado; Maio, A.; Maneira, J.; Palma, A.; Pedro, R.; Pina, J.; Delgado, A. Tavares] Univ Lisbon, Fac Ciencias, P-1699 Lisbon, Portugal. [Dos Santos, S. P. Amor; Carvalho, J.; Fiolhais, M. C. N.; Galhardo, B.; Veloso, F.; Wolters, H.] Univ Coimbra, Dept Phys, Coimbra, Portugal. [Gomes, A.; Maio, A.; Pina, J.; Saraiva, J. G.; Silva, J.] Univ Lisbon, Ctr Fis Nucl, P-1699 Lisbon, Portugal. [Onofre, A.] Univ Minho, Dept Fis, Braga, Portugal. [Aguilar-Saavedra, J. A.] Univ Granada, Dept Fis Teor & Cosmos, Granada, Spain. [Aguilar-Saavedra, J. A.] Univ Granada, CAFPE, Granada, Spain. Univ Nova Lisboa, Dept Fis, Caparica, Portugal. [Chudoba, J.; Havranek, M.; Hejbal, J.; Jakoubek, T.; Kepka, O.; Kupco, A.; Kus, V.; Lokajicek, M.; Lysak, R.; Marcisovsky, M.; Mikestikova, M.; Nemecek, S.; Penc, O.; Sicho, P.; Staroba, P.; Svatos, M.; Tasevsky, M.; Vrba, V.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Augsten, K.; Caforio, D.; Gallus, P.; Guenther, J.; Hubacek, Z.; Jakubek, J.; Kohout, Z.; Myska, M.; Pospisil, S.; Seifert, F.; Simak, V.; Slavicek, T.; Smolek, K.; Solar, M.; Solc, J.; Sopczak, A.; Sopko, B.; Sopko, V.; Suk, M.; Turecek, D.; Vacek, V.; Vlasak, M.; Vokac, P.; Vykydal, Z.; Zeman, M.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Balek, P.; Berta, P.; Cerny, K.; Chalupkova, I.; Davidek, T.; Dolejsi, J.; Dolezal, Z.; Faltova, J.; Kodys, P.; Kosek, T.; Leitner, R.; Pleskot, V.; Reznicek, P.; Scheirich, D.; Spousta, M.; Sykora, T.; Tas, P.; Todorova-Nova, S.; Valkar, S.; Vorobel, V.] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic. [Borisov, A.; Cheremushkina, E.; Denisov, S. P.; Fakhrutdinov, R. M.; Fenyuk, A. B.; Golubkov, D.; Kamenshchikov, A.; Karyukhin, A. N.; Kozhin, A. S.; Minaenko, A. A.; Myagkov, A. G.; Nikolaenko, V.; Solodkov, A. A.; Solovyanov, O. V.; Starchenko, E. A.; Zaitsev, A. M.; Zenin, O.] Inst High Energy Phys, State Res Ctr, Protvino, Russia. [Adye, T.; Baines, J. T.; Barnett, B. M.; Burke, S.; Dewhurst, A.; Dopke, J.; Emeliyanov, D.; Gallop, B. J.; Gee, C. N. P.; Haywood, S. J.; Kirk, J.; Martin-Haugh, S.; McCubbin, N. A.; McMahon, S. J.; Middleton, R. P.; Murray, W. J.; Phillips, P. W.; Sankey, D. P. C.; Sawyer, C.; Tyndel, M.; Wickens, F. J.; Wielers, M.] Rutherford Appleton Lab, Particle Phys Dept, Didcot OX11 0QX, Oxon, England. [Anulli, F.; Bagiacchi, P.; Bagnaia, P.; Bauce, M.; Bini, C.; Ciapetti, G.; De Pedis, D.; De Salvo, A.; Di Domenico, A.; Falciano, S.; Gabrielli, A.; Gauzzi, P.; Gentile, S.; Giagu, S.; Gustavino, G.; Kuna, M.; Lacava, F.; Luci, C.; Luminari, L.; Marzano, F.; Messina, A.; Monzani, S.; Nisati, A.; Pasqualucci, E.; Petrolo, E.; Pontecorvo, L.; Rescigno, M.; Rosati, S.; Tehrani, F. Safai; Vanadia, M.; Vari, R.; Veneziano, S.; Verducci, M.; Zanello, L.] Ist Nazl Fis Nucl, Sez Roma, Rome, Italy. [Bagiacchi, P.; Bagnaia, P.; Bauce, M.; Bini, C.; Ciapetti, G.; Di Domenico, A.; Gabrielli, A.; Gauzzi, P.; Gentile, S.; Giagu, S.; Gustavino, G.; Kuna, M.; Lacava, F.; Luci, C.; Messina, A.; Monzani, S.; Vanadia, M.; Verducci, M.; Zanello, L.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Aielli, G.; Camarri, P.; Cardarelli, R.; Di Ciaccio, A.; Iuppa, R.; Liberti, B.; Mazzaferro, L.; Salamon, A.; Santonico, R.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, Rome, Italy. [Aielli, G.; Camarri, P.; Di Ciaccio, A.; Iuppa, R.; Mazzaferro, L.; Santonico, R.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy. [Bacci, C.; Baroncelli, A.; Biglietti, M.; Ceradini, F.; Di Micco, B.; Farilla, A.; Graziani, E.; Iodice, M.; Orestano, D.; Pastore, F.; Petrucci, F.; Puddu, D.; Salamanna, G.; Sessa, M.; Stanescu, C.; Taccini, C.] Ist Nazl Fis Nucl, Sez Roma Tre, Rome, Italy. [Bacci, C.; Ceradini, F.; Di Micco, B.; Orestano, D.; Pastore, F.; Petrucci, F.; Puddu, D.; Salamanna, G.; Sessa, M.; Taccini, C.] Univ Rome Tre, Dipartimento Matemat & Fis, I-00146 Rome, Italy. [Benchekroun, D.; Chafaq, A.; Hoummada, A.] Univ Hassan 2, Reseau Univ Phys Hautes Energies, Fac Sci Ain Chock, Casablanca, Morocco. [Ghazlane, H.] Ctr Natl Energie Sci Tech Nucl, Rabat, Morocco. [El Kacimi, M.; Goujdami, D.] Univ Cadi Ayyad, LPHEA Marrakech, Fac Sci Semlalia, Cadi Ayyad, Morocco. [Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] Univ Mohamed Premier, Fac Sci, Oujda, Morocco. [Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] LPTPM, Oujda, Morocco. [El Moursli, R. Cherkaoui; Fassi, F.; Haddad, N.; Idrissi, Z.] Univ Mohammed V Agdal, Fac Sci, Rabat, Morocco. [Bachacou, H.; Bauer, F.; Besson, N.; Blanchard, J. -B.; Boonekamp, M.; Calandri, A.; Chevalier, L.; Hoffmann, M. Dano; Deliot, F.; Etienvre, A. I.; Formica, A.; Giraud, P. F.; Da Costa, J. Goncalves Pinto Firmino; Guyot, C.; Hanna, R.; Hassani, S.; Kivernyk, O.; Kozanecki, W.; Lancon, E.; Laporte, J. F.; Maiani, C.; Mansoulie, B.; Meyer, J-P.; Nicolaidou, R.; Ouraou, A.; Protopapadaki, E.; Royon, C. R.; Saimpert, M.; Schoeffel, L.; Schune, Ph.; Schwemling, Ph.; Schwindling, J.] CEA Saclay Commissariat Energie Atom & Energie Al, DSM IRFU Inst Rech Lois Fdan Univers, Gif Sur Yvette, France. [Battaglia, M.; Debenedetti, C.; Grabas, H. M. X.; Grillo, A. A.; Kuhl, A.; La Rosa, A.; Law, A. T.; Liang, Z.; Litke, A. M.; Lockman, W. S.; Nielsen, J.; Reece, R.; Rose, P.; Sadrozinski, H. F-W.; Schumm, B. A.; Seiden, A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Blackburn, D.; Goussiou, A. G.; Hsu, S. -C.; Lubatti, H. J.; Marx, M.; Rompotis, N.; Rosten, R.; Rothberg, J.; Russell, H. L.; De Bruin, P. H. Sales; Pastor, E. Torro; Watts, G.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Anastopoulos, C.; Costanzo, D.; Donszelmann, T. Cuhadar; Dawson, I.; Fletcher, G. T.; Hamity, G. N.; Hodgkinson, M. C.; Hodgson, P.; Johansson, P.; Klinger, J. A.; Korolkova, E. V.; Kyriazopoulos, D.; Paredes, B. Lopez; Macdonald, C. M.; Miyagawa, P. S.; Paganis, E.; Parker, K. A.; Tovey, D. R.; Vickey, T.; Boeriu, O. E. Vickey] Univ Sheffield, Dept Phys & Astron, Sheffield, S Yorkshire, England. [Hasegawa, Y.; Takeshita, T.] Shinshu Univ, Dept Phys, Nagano, Japan. [Atlay, N. B.; Buchholz, P.; Czirr, H.; Fleck, I.; Gaur, B.; Ghasemi, S.; Ibragimov, I.; Ikematsu, K.; Rosenthal, O.; Walkowiak, W.; Ziolkowski, M.] Univ Siegen, Fachbereich Phys, D-57068 Siegen, Germany. [Buat, Q.; Horton, A. J.; Mori, D.; O'Neil, D. C.; Pachal, K.; Stelzer, B.; Temple, D.; Torres, H.; van Nieuwkoop, J.; Vetterli, M. C.] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada. [Barklow, T.; Bartoldus, R.; Bawa, H. S.; Black, J. E.; Cogan, J. G.; Fulsom, B. G.; Gao, Y. S.; Garelli, N.; Grenier, P.; Ilic, N.; Kagan, M.; Kocian, M.; Koi, T.; Malone, C.; Mount, R.; Nachman, B. P.; Nef, P. D.; Piacquadio, G.; Rubbo, F.; Salnikov, A.; Schwartzman, A.; Strauss, E.; Su, D.; Swiatlowski, M.; Tompkins, L.; Wittgen, M.; Young, C.; Zeng, Q.] SLAC Natl Accelerator Lab, Stanford, CA USA. [Astalos, R.; Bartos, P.; Blazek, T.; Federic, P.; Plazak, L.; Stavina, P.; Sykora, I.; Tokar, S.; Zenis, T.] Comenius Univ, Fac Math, Bratislava, Slovakia. [Antos, J.; Bruncko, D.; Kladiva, E.; Strizenec, P.; Urban, J.] Slovak Acad Sci, Inst Expt Phys, Dept Subnucl Phys, Kosice 04353, Slovakia. [Hamilton, A.; Meehan, S.; Yacoob, S.] Univ Cape Town, Dept Phys, ZA-7925 Cape Town, South Africa. [Aurousseau, M.; Castaneda-Miranda, E.; Connell, S. H.; Govender, N.; Lee, C. A.] Univ Johannesburg, Dept Phys, Johannesburg, South Africa. [Bristow, K.; Hsu, C.; Kar, D.; March, L.; Garcia, B. R. Mellado; Ruan, X.] Univ Witwatersrand, Sch Phys, Johannesburg, South Africa. [Abulaiti, Y.; Akerstedt, H.; Asman, B.; Bendtz, K.; Bertoli, G.; Bylund, O. Bessidskaia; Bohm, C.; Clement, C.; Cribbs, W. A.; Hellman, S.; Jon-And, K.; Khandanyan, H.; Klimek, P.; Lundberg, O.; Milstead, D. A.; Moa, T.; Molander, S.; Pani, P.; Plucinski, P.; Poettgen, R.; Rossetti, V.; Shcherbakova, A.; Silverstein, S. B.; Sjolin, J.; Strandberg, S.; Tylmad, M.; Ughetto, M.] Stockholm Univ, Dept Phys, S-10691 Stockholm, Sweden. [Abulaiti, Y.; Akerstedt, H.; Asman, B.; Bendtz, K.; Bertoli, G.; Bylund, O. Bessidskaia; Clement, C.; Cribbs, W. A.; Hellman, S.; Jon-And, K.; Khandanyan, H.; Klimek, P.; Lundberg, O.; Milstead, D. A.; Moa, T.; Molander, S.; Pani, P.; Plucinski, P.; Poettgen, R.; Rossetti, V.; Shcherbakova, A.; Sjolin, J.; Strandberg, S.; Tylmad, M.; Ughetto, M.] Oskar Klein Ctr, Stockholm, Sweden. [Lund-Jensen, B.; Sidebo, P. E.; Strandberg, J.] Royal Inst Technol, Dept Phys, S-10044 Stockholm, Sweden. [Balestri, T.; Bee, C. P.; Campoverde, A.; Chen, K.; Hobbs, J.; Jia, J.; Li, H.; Lindquist, B. E.; Mastrandrea, P.; McCarthy, R. L.; Puldon, D.; Radhakrishnan, S. K.; Richter, S.; Schamberger, R. D.; Tsybychev, D.; Zaman, A.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Balestri, T.; Bee, C. P.; Campoverde, A.; Chen, K.; Hobbs, J.; Jia, J.; Li, H.; Lindquist, B. E.; Mastrandrea, P.; McCarthy, R. L.; Puldon, D.; Radhakrishnan, S. K.; Richter, S.; Schamberger, R. D.; Tsybychev, D.; Zaman, A.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Allbrooke, B. M. M.; Asquith, L.; Cerri, A.; Barajas, C. A. Chavez; De Sanctis, U.; De Santo, A.; Grout, Z. J.; Potter, C. J.; Salvatore, F.; Castillo, I. Santoyo; Shehu, C. Y.; Suruliz, K.; Sutton, M. R.; Vivarelli, I.] Univ Sussex, Dept Phys & Astron, Brighton, E Sussex, England. [Black, C. W.; Cuthbert, C.; Finelli, K. D.; Jeng, G. -Y.; Limosani, A.; Morley, A. K.; Patel, N. D.; Saavedra, A. F.; Scarcella, M.; Varvell, K. E.; Watson, I. J.; Yabsley, B.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. [Abdallah, J.; Hou, S.; Hsu, P. J.; Lee, S. C.; Lin, S. C.; Liu, B.; Liu, D.; Lo Sterzo, F.; Mazini, R.; Shi, L. gg; Soh, D. A.; Teng, P. K.; Wang, C.; Wang, S. M.; Yang, Y.] Acad Sinica, Inst Phys, Taipei 115, Taiwan. [Abreu, H.; Cheatham, S.; Di Mattia, A.; Gozani, E.; Kopeliansky, R.; Musto, E.; Rozen, Y.; Tarem, S.; van Eldik, N.] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel. [Abramowicz, H.; Alexander, G.; Amram, N.; Ashkenazi, A.; Bella, G.; Benary, O.; Benhammou, Y.; Davies, M.; Etzion, E.; Gershon, A.; Gueta, O.; Oren, Y.; Silver, Y.; Soffer, A.; Taiblum, N.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Bachas, K.; Gkaitatzis, S.; Gkialas, I.; Iliadis, D.; Kimura, N.; Kordas, K.; Kourkoumeli-Charalampidi, A.; Leisos, A.; Orlando, N.; Papageorgiou, K.; Hernandez, D. Paredes; Petridou, C.; Sampsonidis, D.; Tsionou, D.] Aristotle Univ Thessaloniki, Dept Phys, GR-54006 Thessaloniki, Greece. [Asai, S.; Dohmae, T.; Enari, Y.; Hanawa, K.; Kanaya, N.; Kataoka, Y.; Kato, C.; Kawamoto, T.; Kazama, S.; Kobayashi, A.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Minami, Y.; Morinaga, M.; Nakamura, T.; Ninomiya, Y.; Nobe, T.; Saito, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamamoto, S.; Yamanaka, T.] Univ Tokyo, Int Ctr Elementary Particle Phys, Tokyo, Japan. [Bratzler, U.; Fukunaga, C.] Tokyo Metropolitan Univ, Grad Sch Sci & Technol, Tokyo 158, Japan. [Hirose, M.; Ishitsuka, M.; Jinnouchi, O.; Kobayashi, D.; Kuze, M.; Motohashi, K.; Nagai, R.; Pettersson, N. E.; Todome, K.; Yamaguchi, D.] Tokyo Inst Technol, Dept Phys, Tokyo 152, Japan. [AbouZeid, O. S.; Batista, S. J.; Chau, C. C.; DeMarco, D. A.; Di Sipio, R.; Diamond, M.; Krieger, P.; Liblong, A.; Mc Goldrick, G.; Orr, R. S.; Polifka, R.; Rudolph, M. S.; Savard, P.; Sinervo, P.; Spreitzer, T.; Taenzer, J.; Teuscher, R. J.; Trischuk, W.; Veloce, L. M.; Venturi, N.] Univ Toronto, Dept Phys, Toronto, ON, Canada. [Canepa, A.; Chekulaev, S. V.; Jovicevic, J.; Koutsman, A.; Oram, C. J.; Codina, E. Perez; Schneider, B.; Schouten, D.; Seuster, R.; Stelzer-Chilton, O.; Tafirout, R.; Trigger, I. M.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Garcia, J. A. Benitez; Ramos, J. Manjarres; Palacino, G.; Taylor, W.] York Univ, Dept Phys & Astron, Toronto, ON M3J 2R7, Canada. [Hara, K.; Hayashi, T.; Kim, S. H.; Kiuchi, K.; Nagata, K.; Okawa, H.; Sato, K.; Ukegawa, F.] Univ Tsukuba, Fac Pure & Appl Sci, Tsukuba, Ibaraki, Japan. [Beauchemin, P. H.; Meoni, E.; Rolli, S.; Sliwa, K.; Wetter, J.] Tufts Univ, Dept Phys & Astron, Medford, MA 02155 USA. [Losada, M.; Moreno, D.; Navarro, G.; Sandoval, C.] Univ Antonio Narino, Ctr Invest, Bogota, Colombia. [Corso-Radu, A.; Frate, M.; Gerbaudo, D.; Lankford, A. J.; Mete, A. S.; Nelson, A.; Relich, M.; Scannicchio, D. A.; Schernau, M.; Shimmin, C. O.; Taffard, A.; Unel, G.; Whiteson, D.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA USA. [Acharya, B. S.; Barisonzi, M.; Brazzale, S. F.; Cobal, M.; Giordani, M. P.; Miglioranzi, S.; Pinamonti, M.; Quayle, W. B.; Serkin, L.; Shaw, K.; Soualah, R.; Truong, L.] Ist Nazl Fis Nucl, Grp Collegato Udine, Sez Trieste, Udine, Italy. [Acharya, B. S.; Barisonzi, M.; Quayle, W. B.; Serkin, L.; Shaw, K.] Abdus Salaam Int Ctr Theoret Phys, Trieste, Italy. [Brazzale, S. F.; Cobal, M.; Giordani, M. P.; Miglioranzi, S.; Pinamonti, M.; Soualah, R.; Truong, L.] Univ Udine, Dipartimento Chim Fis & Ambiente, I-33100 Udine, Italy. [Atkinson, M.; Basye, A.; Armadans, R. Caminal; Cavaliere, V.; Chang, P.; Errede, S.; Lie, K.; Liss, T. M.; Liu, L.; Neubauer, M. S.; Rybar, M.; Shang, R.; Vichou, I.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Kuutmann, E. Bergeaas; Brenner, R.; Ekelof, T.; Ellert, M.; Ferrari, A.; Gradin, P. O. J.; Isaksson, C.; Madsen, A.; Ohman, H.; Pelikan, D.; Rangel-Smith, C.] Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden. [Piqueras, D. Alvarez; Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Martinez, P. Fernandez; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; de la Hoz, S. Gonzalez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Quiles, A. Irles; Pena, J. Jimenez; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Mitsou, V. A.; Garcia, E. Oliver; Lopez, S. Pedraza; Garcia-Estan, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Vos, M.] Univ Valencia, Inst Fis Corpuscular IFIC, Valencia, Spain. [Piqueras, D. Alvarez; Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Martinez, P. Fernandez; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; de la Hoz, S. Gonzalez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Quiles, A. Irles; Pena, J. Jimenez; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Mitsou, V. A.; Garcia, E. Oliver; Lopez, S. Pedraza; Garcia-Estan, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Vos, M.] Univ Valencia, Dept Fis Atom Mol & Nucl, Valencia, Spain. [Piqueras, D. Alvarez; Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Martinez, P. Fernandez; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; de la Hoz, S. Gonzalez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Quiles, A. Irles; Pena, J. Jimenez; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Mitsou, V. A.; Garcia, E. Oliver; Lopez, S. Pedraza; Garcia-Estan, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Vos, M.] Univ Valencia, Dept Ingn Elect, Valencia, Spain. [Piqueras, D. Alvarez; Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Martinez, P. Fernandez; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; de la Hoz, S. Gonzalez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Quiles, A. Irles; Pena, J. Jimenez; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Mitsou, V. A.; Garcia, E. Oliver; Lopez, S. Pedraza; Garcia-Estan, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Vos, M.] Univ Valencia, Inst Microelect Barcelona IMB CNM, Valencia, Spain. [Piqueras, D. Alvarez; Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Martinez, P. Fernandez; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; de la Hoz, S. Gonzalez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Quiles, A. Irles; Pena, J. Jimenez; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Mitsou, V. A.; Garcia, E. Oliver; Lopez, S. Pedraza; Garcia-Estan, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Vos, M.] CSIC, Valencia, Spain. [Danninger, M.; Fedorko, W.; Gay, C.; Gecse, Z.; King, S. B.; Lister, A.] Univ British Columbia, Dept Phys, Vancouver, BC V5Z 1M9, Canada. [Albert, J.; Berghaus, F.; David, C.; Elliot, A. A.; Fincke-Keeler, M.; Hamano, K.; Hill, E.; Keeler, R.; Kowalewski, R.; Kuwertz, E. S.; Kwan, T.; LeBlanc, M.; Lefebvre, M.; Marino, C. P.; McPherson, R. A.; Pearce, J.; Sobie, R.; Trovatelli, M.; Venturi, M.] Univ Victoria, Dept Phys & Astron, Victoria, BC, Canada. [Beckingham, M.; Farrington, S. M.; Harrison, P. F.; Jeske, C.; Jones, G.; Martin, T. A.; Murray, W. J.; Pianori, E.; Spangenberg, M.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Iizawa, T.; Mitani, T.; Sakurai, Y.; Yorita, K.] Waseda Univ, Tokyo, Japan. [Bressler, S.; Citron, Z. H.; Duchovni, E.; Gross, E.; Lellouch, D.; Levinson, L. J.; Mikenberg, G.; Milov, A.; Pitt, M.; Roth, I.; Schaarschmidt, J.; Smakhtin, V.] Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel. [Banerjee, Sw.; Hard, A. S.; Heng, Y.; Jia, H.; Ju, X.; Kaplan, L. S.; Kashif, L.; Kruse, A.; Ming, Y.; Pan, Y. B.; Wang, F.; Wiedenmann, W.; Wu, S. L.; Yang, H.; Zhang, F.; Zobernig, G.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Kuger, F.; Redelbach, A.; Schreyer, M.; Sidiropoulou, O.; Siragusa, G.; Stroehmer, R.; Tam, J. Y. C.; Trefzger, T.; Weber, S. W.; Zibell, A.] Univ Wurzburg, Fak Phys & Astron, D-97070 Wurzburg, Germany. [Bannoura, A. A. E.; Beermann, T. A.; Braun, H. M.; Cornelissen, T.; Ellinghaus, F.; Ernis, G.; Fischer, J.; Fleischmann, S.; Flick, T.; Gabizon, O.; Hamacher, K.; Harenberg, T.; Heim, T.; Hirschbuehl, D.; Kersten, S.; Kohlmann, S.; Maettig, P.; Neumann, M.; Pataraia, S.; Riegel, C. J.; Sandhoff, M.; Tepel, F.; Wagner, W.; Zeitnitz, C.] Berg Univ Wuppertal, Fachbereich C Phys, Wuppertal, Germany. [Baker, O. K.; Cummings, J.; Demers, S.; Garberson, F.; Guest, D.; Henrichs, A.; Ideal, E.; Lagouri, T.; Leister, A. G.; Loginov, A.; Thomsen, L. A.; Tipton, P.; Wang, X.] Yale Univ, Dept Phys, New Haven, CT USA. [Hakobyan, H.; Vardanyan, G.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Rahal, G.] Inst Natl Phys Nucl & Phys Particules IN2P3, Ctr Calcul, Villeurbanne, France. [Acharya, B. S.] Kings Coll London, Dept Phys, London, England. [Ahmadov, F.; Huseynov, N.; Javadov, N.] Azerbaijan Acad Sci, Inst Phys, Baku 370143, Azerbaijan. [Anisenkov, A. V.; Baldin, E. M.; Bobrovnikov, V. S.; Buzykaev, A. R.; Kazanin, V. F.; Kharlamov, A. G.; Korol, A. A.; Maslennikov, A. L.; Maximov, D. A.; Peleganchuk, S. V.; Rezanova, O. L.; Soukharev, A. M.; Talyshev, A. A.; Tikhonov, Yu. A.] Novosibirsk State Univ, Novosibirsk 630090, Russia. [Azuelos, G.; Gingrich, D. M.; Oakham, F. G.; Vetterli, M. C.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Bawa, H. S.; Gao, Y. S.] Calif State Univ Fresno, Dept Phys, Fresno, CA 93740 USA. [Beck, H. P.] Univ Fribourg, Dept Phys, CH-1700 Fribourg, Switzerland. [Castro, N. F.] Univ Porto, Fac Ciencias, Dept Fis & Astron, Oporto, Portugal. [Chelkov, G. A.] Tomsk State Univ, Tomsk 634050, Russia. [Chen, L.] CNRS IN2P3, Marseille, France. [Conventi, F.; Della Pietra, M.] Univ Napoli Parthenope, Naples, Italy. IPP, Montreal, PQ, Canada. [Davies, E.] Particle Phys Dept, Rutherford Appleton Lab, Didcot, Oxon, England. [Fedin, O. L.] St Petersburg State Polytech Univ, Dept Phys, St Petersburg, Russia. [Greenwood, Z. D.; Sawyer, L.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Grinstein, S.; Rozas, A. Juste; Martinez, M.] ICREA, Inst Catalana Recerca & Estudis Avancats, Barcelona, Spain. [Hanagaki, K.] Osaka Univ, Grad Sch Sci, Osaka, Japan. [Hsu, P. J.] Natl Tsing Hua Univ, Dept Phys, Hsinchu, Taiwan. [Ilchenko, Y.; Onyisi, P. U. E.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. [Jejelava, J.] Ilia State Univ, Inst Theoret Phys, Tbilisi, Rep of Georgia. [Khubua, J.] GTU, Tbilisi, Rep of Georgia. [Konoplich, R.] Manhattan Coll, New York, NY USA. [Leisos, A.] Hellen Open Univ, Patras, Greece. [Lin, S. C.] Acad Sinica, Inst Phys, Acad Sinica Grid Comp, Taipei 115, Taiwan. [Myagkov, A. G.; Nikolaenko, V.; Zaitsev, A. M.] State Univ, Moscow Inst Phys & Technol, Dolgoprudnyi, Russia. [Nessi, M.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Pinamonti, M.] Int Sch Adv Studies SISSA, Trieste, Italy. [Purohit, M.] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. [Soh, D. A.] Sun Yat Sen Univ, Sch Phys & Engn, Guangzhou 510275, Guangdong, Peoples R China. [Smirnova, L. N.; Turchikhin, S.] Moscow MV Lomonosov State Univ, Fac Phys, Moscow, Russia. [Tompkins, L.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Toth, J. kk] Wigner Res Ctr Phys, Inst Particle & Nucl Phys, Budapest, Hungary. [Yusuff, I.] Univ Malaya, Dept Phys, Kuala Lumpur 59100, Malaysia. RP Aad, G (reprint author), Aix Marseille Univ, CPPM, Marseille, France. RI Gladilin, Leonid/B-5226-2011; Doyle, Anthony/C-5889-2009; Livan, Michele/D-7531-2012; Buttar, Craig/D-3706-2011; Warburton, Andreas/N-8028-2013; Carvalho, Joao/M-4060-2013; Mitsou, Vasiliki/D-1967-2009; Tripiana, Martin/H-3404-2015; Smirnova, Oxana/A-4401-2013; Tikhomirov, Vladimir/M-6194-2015; Savarala, Hari Krishna/A-3516-2015; White, Ryan/E-2979-2015; Di Domenico, Antonio/G-6301-2011; Gonzalez de la Hoz, Santiago/E-2494-2016; Guo, Jun/O-5202-2015; Aguilar Saavedra, Juan Antonio/F-1256-2016; Leyton, Michael/G-2214-2016; Jones, Roger/H-5578-2011; Pacheco Pages, Andres/C-5353-2011; Boyko, Igor/J-3659-2013; Vranjes Milosavljevic, Marija/F-9847-2016; Chekulaev, Sergey/O-1145-2015; Zhukov, Konstantin/M-6027-2015; SULIN, VLADIMIR/N-2793-2015; Snesarev, Andrey/H-5090-2013; Nechaeva, Polina/N-1148-2015; Mashinistov, Ruslan/M-8356-2015; Vykydal, Zdenek/H-6426-2016; Fedin, Oleg/H-6753-2016; Brooks, William/C-8636-2013; Ventura, Andrea/A-9544-2015; Kantserov, Vadim/M-9761-2015; Nevski, Pavel/M-6292-2015; Villa, Mauro/C-9883-2009; La Rosa Navarro, Jose Luis/K-4221-2016; Vanadia, Marco/K-5870-2016; Ippolito, Valerio/L-1435-2016; Maneira, Jose/D-8486-2011; Prokoshin, Fedor/E-2795-2012; Staroba, Pavel/G-8850-2014; Gavrilenko, Igor/M-8260-2015; Gauzzi, Paolo/D-2615-2009; Maleev, Victor/R-4140-2016; Camarri, Paolo/M-7979-2015; Mindur, Bartosz/A-2253-2017; Fabbri, Laura/H-3442-2012; Gutierrez, Phillip/C-1161-2011; Solodkov, Alexander/B-8623-2017; Zaitsev, Alexandre/B-8989-2017; Peleganchuk, Sergey/J-6722-2014; Li, Liang/O-1107-2015; Monzani, Simone/D-6328-2017; Kuday, Sinan/C-8528-2014; la rotonda, laura/B-4028-2016; OI Gladilin, Leonid/0000-0001-9422-8636; Doyle, Anthony/0000-0001-6322-6195; Livan, Michele/0000-0002-5877-0062; Warburton, Andreas/0000-0002-2298-7315; Carvalho, Joao/0000-0002-3015-7821; Mitsou, Vasiliki/0000-0002-1533-8886; Smirnova, Oxana/0000-0003-2517-531X; Tikhomirov, Vladimir/0000-0002-9634-0581; Savarala, Hari Krishna/0000-0001-6593-4849; White, Ryan/0000-0003-3589-5900; Di Domenico, Antonio/0000-0001-8078-2759; Gonzalez de la Hoz, Santiago/0000-0001-5304-5390; Guo, Jun/0000-0001-8125-9433; Aguilar Saavedra, Juan Antonio/0000-0002-5475-8920; Leyton, Michael/0000-0002-0727-8107; Jones, Roger/0000-0002-6427-3513; Pacheco Pages, Andres/0000-0001-8210-1734; Boyko, Igor/0000-0002-3355-4662; Vranjes Milosavljevic, Marija/0000-0003-4477-9733; SULIN, VLADIMIR/0000-0003-3943-2495; Mashinistov, Ruslan/0000-0001-7925-4676; Vykydal, Zdenek/0000-0003-2329-0672; Brooks, William/0000-0001-6161-3570; Ventura, Andrea/0000-0002-3368-3413; Kantserov, Vadim/0000-0001-8255-416X; Villa, Mauro/0000-0002-9181-8048; Vanadia, Marco/0000-0003-2684-276X; Ippolito, Valerio/0000-0001-5126-1620; Maneira, Jose/0000-0002-3222-2738; Prokoshin, Fedor/0000-0001-6389-5399; Gauzzi, Paolo/0000-0003-4841-5822; Camarri, Paolo/0000-0002-5732-5645; Mindur, Bartosz/0000-0002-5511-2611; Fabbri, Laura/0000-0002-4002-8353; Solodkov, Alexander/0000-0002-2737-8674; Zaitsev, Alexandre/0000-0002-4961-8368; Peleganchuk, Sergey/0000-0003-0907-7592; Li, Liang/0000-0001-6411-6107; Monzani, Simone/0000-0002-0479-2207; Kuday, Sinan/0000-0002-0116-5494; Sannino, Mario/0000-0001-7700-8383; la rotonda, laura/0000-0002-6780-5829; Pina, Joao /0000-0001-8959-5044; Veneziano, Stefano/0000-0002-2598-2659; Lacasta, Carlos/0000-0002-2623-6252; Belanger-Champagne, Camille/0000-0003-2368-2617 FU ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW, Austria; FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq, Brazil; FAPESP, Brazil; NSERC, Canada; NRC, Canada; CFI, Canada; CERN; CONICYT, Chile; CAS, China; MOST, China; NSFC, China; COLCIENCIAS, Colombia; MSMT CR, Czech Republic; MPO CR, Czech Republic; VSC CR, Czech Republic; DNRF, Denmark; DNSRC, Denmark; Lundbeck Foundation, Denmark; EPLANET, European Union; ERC, European Union; NSRF, European Union; IN2P3-CNRS, France; CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, Germany; DFG, Germany; HGF, Germany; MPG, Germany; AvH Foundation, Germany; GSRT, Greece; NSRF, Greece; ISF, Israel; MINERVA, Israel; GIF, Israel; I-CORE, Israel; Benoziyo Center, Israel; INFN, Italy; MEXT, Japan; JSPS, Japan; CNRST, Morocco; FOM, Netherlands; NWO, Netherlands; BRF, Norway; RCN, Norway; MNiSW, Poland; NCN, Poland; GRICES, Portugal; FCT, Portugal; MNE/IFA, Romania; MES of Russia, Russian Federation; ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS, Slovenia; MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC, Sweden; Wallenberg Foundation, Sweden; SER, Switzerland; SNSF, Switzerland; Canton of Bern, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, United Kingdom; Royal Society, United Kingdom; Leverhulme Trust, United Kingdom; DOE, USA; NSF, USA; Canton of Geneva, Switzerland FX We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC, and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST, and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR, and VSC CR, Czech Republic; DNRF, DNSRC, and Lundbeck Foundation, Denmark; EPLANET, ERC, and NSRF, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG, and AvH Foundation, Germany; GSRT and NSRF, Greece; ISF, MINERVA, GIF, I-CORE, and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNiSW and NCN, Poland; GRICES and FCT, Portugal; MNE/IFA, Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF, and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, USA. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular, from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA), and in the Tier-2 facilities worldwide. NR 20 TC 1 Z9 1 U1 31 U2 130 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD DEC 30 PY 2015 VL 115 IS 26 AR 262001 DI 10.1103/PhysRevLett.115.262001 PG 18 WC Physics, Multidisciplinary SC Physics GA CZ8YO UT WOS:000367385200005 PM 26764987 ER PT J AU Mamun, MA Zhang, K Baumgart, H Elmustafa, AA AF Mamun, M. A. Zhang, K. Baumgart, H. Elmustafa, A. A. TI Evaluation of the nanomechanical properties of vanadium and native oxide vanadium thin films prepared by RF magnetron sputtering SO APPLIED SURFACE SCIENCE LA English DT Article DE Vanadium thin films; RF magnetron sputtering; FE-SEM; XRD; AFM; Nanoindentation; Hardness ID MECHANICAL-PROPERTIES; DEPOSITION; NANOINDENTATION; INDENTATION; COMPRESSION AB Polycrystalline vanadium thin films of 50, 75, and 100 nm thickness were deposited by magnetron sputtering of a vanadium metal target of 2 inch diameter with 99.9% purity on native oxide covered Si substrates. One set of the fabricated samples were kept in moisture free environment and the other set was exposed to ambient air at room temperature for a long period of time that resulted in formation of native oxide prior to testing. The crystal structure and phase purity of the vanadium and the oxidized vanadium thin films were characterized by X-ray diffraction (XRD). The XRD results yield a preferential (1 1 0), and (2 0 0) orientation of the polycrystalline V films and (0 0 4) vanadium oxide (V3O7). The vanadium films thickness were verified using field emission scanning electron microscopy and the films surface morphologies were inspected using atomic force microscopy (AFM). AFM images reveal surface roughness was observed to increase with increasing film thickness and also subsequent to oxidation at room temperature. The nanomechanical properties were measured by nanoindentation to evaluate the modulus and hardness of the vanadium and the oxidized vanadium thin films. The elastic modulus of the vanadium and the oxidized vanadium films was estimated as 150 GPa at 30% film thickness and the elastic modulus of the bulk vanadium target is estimated as 135 GPa. The measured hardness of the vanadium films at 30% film thickness varies between 9 and 14 GPa for the 100 and 50 nm films, respectively, exhibiting size effects, where the hardness increases as the film thickness decreases. The hardness of the oxidized films depicted less variation and is reported as similar to 10 GPa at 30% film thickness for the three oxides. The scanning electron microscopy (SEM) imaging depicted a gradual progression of pile up as the film thickness increased from 75 to 100 nm. It is noticed that as the film thickness increases the films experience softening effect due to grain coarsening and the hardness values depict the hardness of the Si substrate at deep indents. (C) 2015 Elsevier B.V. All rights reserved. C1 [Mamun, M. A.; Elmustafa, A. A.] Old Dominion Univ, Dept Mech & Aerosp Engn, Norfolk, VA 23529 USA. [Zhang, K.; Baumgart, H.] Old Dominion Univ, Dept Elect & Comp Engn, Norfolk, VA 23529 USA. [Mamun, M. A.; Zhang, K.; Baumgart, H.; Elmustafa, A. A.] Thomas Jefferson Natl Accelerator Facil, Appl Res Ctr, Newport News, VA 23606 USA. RP Elmustafa, AA (reprint author), Old Dominion Univ, Dept Mech & Aerosp Engn, Norfolk, VA 23529 USA. EM aelmusta@odu.edu NR 21 TC 1 Z9 1 U1 6 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0169-4332 EI 1873-5584 J9 APPL SURF SCI JI Appl. Surf. Sci. PD DEC 30 PY 2015 VL 359 BP 30 EP 35 DI 10.1016/j.apsusc.2015.10.065 PG 6 WC Chemistry, Physical; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA CY2EC UT WOS:000366220600005 ER PT J AU Gao, J Wang, W Rondinone, AJ He, F Liang, LY AF Gao, Jie Wang, Wei Rondinone, Adam J. He, Feng Liang, Liyuan TI Degradation of Trichloroethene with a Novel Ball Milled Fe-C Nanocomposite SO JOURNAL OF HAZARDOUS MATERIALS LA English DT Article DE Activated carbon; ball mill; dechlorination; groundwater remediation; zero-valent iron nanoparticles ID ZERO-VALENT IRON; COLLOIDAL ACTIVATED CARBON; SITU GROUNDWATER TREATMENT; CHLORINATED HYDROCARBONS; ENVIRONMENTAL REMEDIATION; CARBOXYMETHYL CELLULOSE; PALLADIZED IRON; NANOPARTICLES; DECHLORINATION; PARTICLES AB Nanoscale zero-valent iron (NZVI) is effective in reductively degrading dense non-aqueous phase liquids (DNAPLs), such as trichloroethene (TCE), in groundwater (i.e., dechlorination) although the NZVI technology itself still suffers from high material costs and inability to target hydrophobic contaminants in source zones. To address these problems, we developed a novel, inexpensive iron-carbon (Fe-C) nanocomposite material by simultaneously milling micron-size iron and activated carbon powder. Microscopic and X-ray diffraction (XRD) characterization of the composite material revealed that nanoparticles of Fe were dispersed in activated carbon and a new iron carbide phase was formed. Bench-scale studies showed that this material instantaneously sorbed >90% of TCE from aqueous solutions and subsequently decomposed TCE into non-chlorinated products. Compared to milled Fe, Fe-C nanocomposite dechlorinated TCE at a slightly slower rate and favored the production of ethene over other TCE degradation products such as C-3-C-6 compounds. When placed in hexane-water mixture, the Fe-C nanocomposite materials are preferentially partitioned into the organic phase, indicating the ability of the composite materials to target DNAPL during remediation. (C) 2015 Elsevier B.V. All rights reserved. C1 [Gao, Jie; Wang, Wei; Liang, Liyuan] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Rondinone, Adam J.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [He, Feng] Zhejiang Univ Technol, Coll Biol & Environm Engn, Hangzhou 310032, Zhejiang, Peoples R China. RP He, F (reprint author), Zhejiang Univ Technol, Coll Biol & Environm Engn, Hangzhou 310032, Zhejiang, Peoples R China. EM fenghe@zjut.edu.cn RI Rondinone, Adam/F-6489-2013; He, Feng/B-9444-2012; Wang, Wei/B-5924-2012; Liang, Liyuan/O-7213-2014 OI Rondinone, Adam/0000-0003-0020-4612; He, Feng/0000-0001-5702-4511; Liang, Liyuan/0000-0003-1338-0324 FU Laboratory Directed R&D fund from Oak Ridge National Laboratory (ORNL); National Natural Science Foundation of China [51308312]; US Department of Energy [DE-AC05-000R22725] FX This research was supported by the Laboratory Directed R&D fund from Oak Ridge National Laboratory (ORNL) and by the National Natural Science Foundation of China (No. 51308312). ORNL is managed by UT-Battelle LLC for the US Department of Energy under Contract DE-AC05-000R22725. NR 50 TC 2 Z9 2 U1 16 U2 70 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-3894 EI 1873-3336 J9 J HAZARD MATER JI J. Hazard. Mater. PD DEC 30 PY 2015 VL 300 BP 443 EP 450 DI 10.1016/j.jhazmat.2015.07.038 PG 8 WC Engineering, Environmental; Engineering, Civil; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA CY2FH UT WOS:000366223700051 PM 26223018 ER PT J AU Ledochowitsch, P Yazdan-Shahmorad, A Bouchard, KE Diaz-Botia, C Hanson, TL He, JW Seybold, BA Olivero, E Phillips, EAK Blanche, TJ Schreiner, CE Hasenstaub, A Chang, EF Sabes, PN Maharbiz, MM AF Ledochowitsch, P. Yazdan-Shahmorad, A. Bouchard, K. E. Diaz-Botia, C. Hanson, T. L. He, J. -W. Seybold, B. A. Olivero, E. Phillips, E. A. K. Blanche, T. J. Schreiner, C. E. Hasenstaub, A. Chang, E. F. Sabes, P. N. Maharbiz, M. M. TI Strategies for optical control and simultaneous electrical readout of extended cortical circuits SO JOURNAL OF NEUROSCIENCE METHODS LA English DT Article DE ECoG; Optogenetics; Cranial window; Epidural; Parvalbumin; Auditory; Rat; Mouse; NHP ID MU-ECOG ARRAY; AUDITORY-CORTEX; HIGH-DENSITY; BRAIN; OPTOGENETICS; MICROSTIMULATION; STIMULATION; TRANSPARENT; ELECTRODES; INTERFACE AB Background: To dissect the intricate workings of neural circuits, it is essential to gain precise control over subsets of neurons while retaining the ability to monitor larger-scale circuit dynamics. This requires the ability to both evoke and record neural activity simultaneously with high spatial and temporal resolution. New Method: In this paper we present approaches that address this need by combining micro-electrocorticography (mu ECoG) with optogenetics in ways that avoid photovoltaic artifacts. Results: We demonstrate that variations of this approach are broadly applicable across three commonly studied mammalian species - mouse, rat, and macaque monkey - and that the recorded mu ECoG signal shows complex spectral and spatio-temporal patterns in response to optical stimulation. Comparison with existing methods: While optogenetics provides the ability to excite or inhibit neural sub-populations in a targeted fashion, large-scale recording of resulting neural activity remains challenging. Recent advances in optical physiology, such as genetically encoded Ca2+ indicators, are promising but currently do not allow simultaneous recordings from extended cortical areas due to limitations in optical imaging hardware. Conclusions: We demonstrate techniques for the large-scale simultaneous interrogation of cortical circuits in three commonly used mammalian species. (C) 2015 Elsevier B.V. All rights reserved. C1 [Ledochowitsch, P.; Diaz-Botia, C.] UC Berkeley UCSF Grad Program Bioengn, Berkeley, CA 94720 USA. [Yazdan-Shahmorad, A.; Bouchard, K. E.; Hanson, T. L.; He, J. -W.; Seybold, B. A.; Phillips, E. A. K.; Schreiner, C. E.; Hasenstaub, A.; Chang, E. F.; Sabes, P. N.] UCSF Ctr Integrat Neurosci, San Francisco, CA USA. [Bouchard, K. E.] LBNL, Div Life Sci, Berkeley, CA USA. [Bouchard, K. E.] LBNL, Computat Res Div, Berkeley, CA USA. [Olivero, E.; Maharbiz, M. M.] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA. [Blanche, T. J.] Univ Calif Berkeley, Redwood Ctr Theoret Neurosci, Berkeley, CA 94720 USA. [Ledochowitsch, P.; Yazdan-Shahmorad, A.; Bouchard, K. E.; Diaz-Botia, C.; Hanson, T. L.; He, J. -W.; Seybold, B. A.; Schreiner, C. E.; Chang, E. F.; Sabes, P. N.; Maharbiz, M. M.] Ctr Neural Engn & Prostheses, Berkeley, CA USA. RP Ledochowitsch, P (reprint author), UC Berkeley UCSF Grad Program Bioengn, Berkeley, CA 94720 USA. EM peterl@alleninstitute.org OI Yazdan-Shahmorad, Azadeh/0000-0001-5212-509X FU American Heart Association [14POST18170014]; Defense Advanced Research Projects Agency (DARPA) Reorganization and Plasticity to Accelerate Injury Recovery (REPAIR) [N66001-10-C-2010]; UC Berkeley-UCSF Center for Neural Engineering and Prosthetics (CNEP); NIH [AH: R01-DC014101, CES: R01-DC002260] FX This work was supported by American Heart Association postdoctoral fellowship (AY: award #14POST18170014), Defense Advanced Research Projects Agency (DARPA) Reorganization and Plasticity to Accelerate Injury Recovery (REPAIR; N66001-10-C-2010), and the UC Berkeley-UCSF Center for Neural Engineering and Prosthetics (CNEP) as well as by several grants from the NIH (AH: R01-DC014101; CES: R01-DC002260). We thank Quynh Anh Nguyen, Jon Levy and Alexander Jackson for testing the virus in cell culture, Jonathan Nassi and John Reynolds from the Salk Institute, John Bringas, Adrian Kells and Krystof Bankiewicz from UCSF for technical advice, Karen J. MacLeod, Juliana Milani and Blakely Andrews for their help with animal care, and Joseph O'Doherty and Josh Chartier for their help with the primate experiments. NR 54 TC 2 Z9 2 U1 2 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0165-0270 EI 1872-678X J9 J NEUROSCI METH JI J. Neurosci. Methods PD DEC 30 PY 2015 VL 256 BP 220 EP 231 DI 10.1016/j.jneumeth.2015.07.028 PG 12 WC Biochemical Research Methods; Neurosciences SC Biochemistry & Molecular Biology; Neurosciences & Neurology GA CY7VW UT WOS:000366618400023 PM 26296286 ER PT J AU Vishwakarma, V Waghela, C Wei, Z Prasher, R Nagpure, SC Li, JL Liu, FQ Daniel, C Jain, A AF Vishwakarma, Vivek Waghela, Chirag Wei, Zi Prasher, Ravi Nagpure, Shrikant C. Li, Jianlin Liu, Fuqiang Daniel, Claus Jain, Ankur TI Heat transfer enhancement in a lithium-ion cell through improved material-level thermal transport SO JOURNAL OF POWER SOURCES LA English DT Article DE Li-ion cell; Thermal management; Heat transfer; Interfacial thermal conductance; Thermal runaway ID THERMOPHYSICAL PROPERTIES; POLYMER SURFACES; BATTERIES; ADHESION; CONDUCTIVITY; MODEL AB While Li-ion cells offer excellent electrochemical performance for several applications including electric vehicles, they also exhibit poor thermal transport characteristics, resulting in reduced performance, overheating and thermal runaway. Inadequate heat removal from Li-ion cells originates from poor thermal conductivity within the cell. This paper identifies the rate-limiting material-level process that dominates overall thermal conduction in a Li-ion cell. Results indicate that thermal characteristics of a Liion cell are largely dominated by heat transfer across the cathode-separator interface rather than heat transfer through the materials themselves. This interfacial thermal resistance contributes around 88% of total thermal resistance in the cell. Measured value of interfacial resistance is close to that obtained from theoretical models that account for weak adhesion and large acoustic mismatch between cathode and separator. Further, to address this problem, an amine-based chemical bridging of the interface is carried out. This is shown to result in in four-times lower interfacial thermal resistance without deterioration in electrochemical performance, thereby increasing effective thermal conductivity by three-fold. This improvement is expected to reduce peak temperature rise during operation by 60%. By identifying and addressing the material-level root cause of poor thermal transport in Li-ion cells, this work may contributes towards improved thermal performance of Li-ion cells. (C) 2015 Elsevier B.V. All rights reserved. C1 [Vishwakarma, Vivek; Waghela, Chirag; Jain, Ankur] Univ Texas Arlington, Dept Mech & Aerosp Engn, Arlington, TX 75019 USA. [Wei, Zi; Liu, Fuqiang] Univ Texas Arlington, Dept Mat Sci & Engn, Arlington, TX 75019 USA. [Prasher, Ravi] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Energy Storage & Distributed Resources Div, Berkeley, CA 94720 USA. [Nagpure, Shrikant C.; Li, Jianlin; Daniel, Claus] Oak Ridge Natl Lab, Energy & Transportat Sci Div, Oak Ridge, TN 37831 USA. [Daniel, Claus] Univ Tennessee, Bredesen Ctr Interdisciplinary Res & Grad Educ, Knoxville, TN 37996 USA. RP Jain, A (reprint author), 500 W First St,Rm 211, Arlington, TX 76019 USA. EM jaina@uta.edu RI Daniel, Claus/A-2060-2008; Li, Jianlin/D-3476-2011 OI Daniel, Claus/0000-0002-0571-6054; Li, Jianlin/0000-0002-8710-9847 FU Provost's Office and Department of Mechanical and Aerospace Engineering, The University of Texas at Arlington; National Science Foundation [ECCS-1125588]; U.S. Department of Energy (DOE) [DE-AC05-00OR22725]; Office of Energy Efficiency and Renewable Energy's Vehicle Technologies Office FX A.J. and V.V. would like to acknowledge support from Provost's Office and Department of Mechanical and Aerospace Engineering, The University of Texas at Arlington. F.L. would like to acknowledge support from National Science Foundation (ECCS-1125588). Research at Oak Ridge National Laboratory, managed by UT Battelle, LLC, for the U.S. Department of Energy (DOE) under contract DE-AC05-00OR22725, utilized the DOE Battery Manufacturing R&D Facility at ORNL sponsored by the Office of Energy Efficiency and Renewable Energy's Vehicle Technologies Office. NR 39 TC 9 Z9 9 U1 14 U2 83 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 EI 1873-2755 J9 J POWER SOURCES JI J. Power Sources PD DEC 30 PY 2015 VL 300 BP 123 EP 131 DI 10.1016/j.jpowsour.2015.09.028 PG 9 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA CV7GC UT WOS:000364439400015 ER PT J AU Rosewater, D Williams, A AF Rosewater, David Williams, Adam TI Analyzing system safety in lithium-ion grid energy storage SO JOURNAL OF POWER SOURCES LA English DT Article DE Energy storage; Battery; Safety; Lithium-ion; STAMP; STPA ID BATTERY; RISK; FIRE AB As grid energy storage systems become more complex, it grows more difficult to design them for safe operation. This paper first reviews the properties of lithium-ion batteries that can produce hazards in grid scale systems. Then the conventional safety engineering technique Probabilistic Risk Assessment (PRA) is reviewed to identify its limitations in complex systems. To address this gap, new research is presented on the application of Systems-Theoretic Process Analysis (STPA) to a lithium-ion battery based grid energy storage system. STPA is anticipated to fill the gaps recognized in PRA for designing complex systems and hence be more effective or less costly to use during safety engineering. It was observed that STPA is able to capture causal scenarios for accidents not identified using PRA. Additionally, STPA enabled a more rational assessment of uncertainty (all that is not known) thereby promoting a healthy skepticism of design assumptions. We conclude that STPA may indeed be more cost effective than PRA for safety engineering in lithium-ion battery systems. However, further research is needed to determine if this approach actually reduces safety engineering costs in development, or improves industry safety standards. (C) 2015 Elsevier B.V. All rights reserved. C1 [Rosewater, David] Sandia Natl Labs, Albuquerque, NM USA. [Williams, Adam] MIT, Cambridge, MA 02139 USA. RP Rosewater, D (reprint author), Sandia Natl Labs, 1515 Eubank, Albuquerque, NM USA. EM dmrose@sandia.gov; adwill@mit.edu FU US DOE OE's Energy Storage Program; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was funded by the US DOE OE's Energy Storage Program. The authors would like to thank Dr. Imre Gyuk for his support of research advancing safety in grid energy storage. Special thanks to Dr. Katrina Groth, Dr. Summer Ferreira, and Dr. Josh Lamb for reviewing and editing the content this article.; Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 58 TC 1 Z9 1 U1 7 U2 40 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 EI 1873-2755 J9 J POWER SOURCES JI J. Power Sources PD DEC 30 PY 2015 VL 300 BP 460 EP 471 DI 10.1016/j.jpowsour.2015.09.068 PG 12 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA CV7GC UT WOS:000364439400055 ER PT J AU Snijders, AM Liu, YY Su, L Huang, YR Mao, JH AF Snijders, Antoine M. Liu, Yueyong Su, Li Huang, Yurong Mao, Jian-Hua TI Expression profiling reveals transcriptional regulation by Fbxw7/mTOR pathway in radiation-induced mouse thymic lymphomas SO ONCOTARGET LA English DT Article DE thymic lymphoma; FBXW7; mTOR; rapamycin; radiation ID F-BOX PROTEIN; PHOSPHORYLATION-DEPENDENT DEGRADATION; ENDOPLASMIC-RETICULUM STRESS; INDUCED TUMOR-DEVELOPMENT; SCFFBW7 UBIQUITIN LIGASE; CYCLIN-E; BREAST-CANCER; HCDC4 GENE; ER STRESS; LUNG ADENOCARCINOMAS AB The tumor suppressor gene FBXW7 is deleted and mutated in many different types of human cancers. FBXW7 primarily exerts its tumor suppressor activity by ubiquitinating different oncoproteins including mTOR. Here we used gene transcript profiling to gain a deeper understanding of the role of FBXW7 in tumor development and to determine the influence of mTOR inhibition by rapamycin on tumor transcriptome and biological functions. In comparison to tumors from p53 single heterozygous (p53+/-) mice, we find that radiation-induced thymic lymphomas from Fbxw7/p53 double heterozygous (Fbxw7+/-p53+/-) mice show significant deregulation of cholesterol metabolic processes independent of rapamycin treatment, while cell cycle related genes were upregulated in tumors from placebo treated Fbxw7+/-p53+/- mice, but not in tumors from rapamycin treated Fbxw7+/-p53+/- mice. On the other hand, tumors from rapamycin treated Fbxw7+/-p53+/- mice were enriched for genes involved in the integrated stress response, an adaptive mechanism to survive in stressful environments. Finally, we demonstrated that the Fbxw7 gene signatures identified in mouse tumors significantly overlap with FBXW7 co-expressed genes in human cancers. Importantly these common FBXW7 gene signatures between mouse and human are predictive for disease-free survival in human colon, breast and lung adenocarcinoma cancer patients. These results provide novel insights into the role of FBXW7 in tumor development and have identified a number of potential targets for therapeutic intervention. C1 [Snijders, Antoine M.; Liu, Yueyong; Su, Li; Huang, Yurong; Mao, Jian-Hua] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. [Liu, Yueyong] Harvard Univ, Beth Israel Deaconess Med Ctr, Sch Med, Dept Pathol, Boston, MA 02215 USA. RP Snijders, AM (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. EM AMSnijders@lbl.gov; JHMao@lbl.gov FU NIH, National Cancer Institute [R01 CA116481]; Low Dose Scientific Focus Area, Office of Biological and Environmental Research, U.S. Department of Energy [DE AC02-05CH11231] FX This work was supported by the NIH, National Cancer Institute grant R01 CA116481, and Low Dose Scientific Focus Area, Office of Biological and Environmental Research, U.S. Department of Energy under Contract No. DE AC02-05CH11231. NR 53 TC 0 Z9 0 U1 1 U2 3 PU IMPACT JOURNALS LLC PI ALBANY PA 6211 TIPTON HOUSE, STE 6, ALBANY, NY 12203 USA SN 1949-2553 J9 ONCOTARGET JI Oncotarget PD DEC 29 PY 2015 VL 6 IS 42 BP 44794 EP 44805 PG 12 WC Oncology; Cell Biology SC Oncology; Cell Biology GA DD4QX UT WOS:000369908800054 PM 26575021 ER PT J AU Avazbaeva, Z Sung, W Lee, J Phan, MD Shin, K Vaknin, D Kim, D AF Avazbaeva, Zaure Sung, Woongmo Lee, Jonggwan Minh Dinh Phan Shin, Kwanwoo Vaknin, David Kim, Doseok TI Origin of the Instability of Octadecylamine Langmuir Mono layer at Low pH SO LANGMUIR LA English DT Article ID SUM-FREQUENCY GENERATION; AIR-WATER-INTERFACE; HALIDE-IONS; VIBRATIONAL SPECTROSCOPY; AQUEOUS-SOLUTION; ACID MONOLAYERS; FATTY ACIDS; SURFACE; COUNTERION; ADSORPTION AB It has been reported that an octadecylamine (ODA) Langmuir monolayer becomes unstable at low pH values with no measurable surface pressure at around pH 3.5, suggesting significant dissolution of the ODA molecule into the subphase solution (Albrecht, Colloids Surf A 2006, 284-285, 166-174). However, by lowering the pH further, ODA molecules reoccupy the surface, and a full monolayer is recovered at pH 2.5. Using surface sum-frequency spectroscopy and pressure area isotherms, it is found that the recovered monolayer at very low pH has a larger area per molecule with many gauche defects in the ODA molecules as compared to that at high pH values. This structural change suggests that the reappearance of the monolayer is due to the adsorbed Cl- counterions to the protonated amine groups, leading to partial charge neutralization. This proposition is confirmed by intentionally adding monovalent salts (i.e., NaCl, NaBr, or NaI) to the subphase to recover the monolayer at pH 3.5, in which the detailed structure of the monolayer is confirmed by sum frequency spectra and the adsorbed anions by X-ray reflectivity. C1 [Avazbaeva, Zaure; Sung, Woongmo; Lee, Jonggwan; Kim, Doseok] Sogang Univ, Dept Phys, Seoul 121742, South Korea. [Minh Dinh Phan; Shin, Kwanwoo] Sogang Univ, Dept Chem, Seoul 121742, South Korea. [Minh Dinh Phan; Shin, Kwanwoo] Sogang Univ, Inst Biol Interfaces, Seoul 121742, South Korea. [Vaknin, David] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Vaknin, David] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Kim, D (reprint author), Sogang Univ, Dept Phys, Seoul 121742, South Korea. EM doseok@sogang.ac.kr RI Vaknin, David/B-3302-2009; Phan, Minh/M-4019-2015 OI Vaknin, David/0000-0002-0899-9248; Phan, Minh/0000-0002-6132-5277 FU National Research Foundation [2011-0017435]; Midcareer Researcher Program - Ministry of Science, ICT & Future Planning, Korea [2011-0017539]; Department of Energy, Office of Basic Energy Sciences [DE-AC02-07CH11358] FX This research is supported by the National Research Foundation Grant No. 2011-0017435. K.S. acknowledges financial support by the Midcareer Researcher Program (2011-0017539), funded by the Ministry of Science, ICT & Future Planning, Korea. Z.A. acknowledges help from Peter V. Pikhitsa of Seoul National University. The work at Ames Laboratory was supported by the Department of Energy, Office of Basic Energy Sciences, under Contract Number DE-AC02-07CH11358. NR 29 TC 2 Z9 2 U1 0 U2 10 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD DEC 29 PY 2015 VL 31 IS 51 BP 13753 EP 13758 DI 10.1021/acs.langmuir.5b03947 PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA DA1MK UT WOS:000367559700015 PM 26618452 ER PT J AU Huber, SP Gullikson, E van de Kruijs, RWE Bijkerk, F Prendergast, D AF Huber, S. P. Gullikson, E. van de Kruijs, R. W. E. Bijkerk, F. Prendergast, D. TI Oxygen-stabilized triangular defects in hexagonal boron nitride SO PHYSICAL REVIEW B LA English DT Article ID AUGMENTED-WAVE METHOD; DEPOSITION; RESOLUTION; MONOLAYER; OXIDATION AB Recently several experimental transmission electron microscopy (TEM) studies have reported the observation of nanoscale triangular defects in mono-and multilayer hexagonal boron nitride (h-BN). First-principles calculations are employed to study the thermodynamical stability and spectroscopic properties of these triangular defects and the chemical nature of their edge termination. Oxygen-terminated defects are found to be significantly more stable than defects with nitrogen-terminated edges. Simulated x-ray absorption spectra of the boron K edge for oxygen-terminated defects show excellent agreement with experimental x-ray absorption near-edge spectroscopy (XANES) measurements on defective h-BN films with oxygen impurities. Finally, we show that the structural model for oxygen defects in h-BN as deduced from the simulated core-level spectroscopy is intrinsically linked to the equilateral triangle shape of defects as observed in many recent electron microscopy measurements. C1 [Huber, S. P.; Prendergast, D.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. [Huber, S. P.; van de Kruijs, R. W. E.; Bijkerk, F.] Univ Twente, MESA Res Inst Nanotechnol, Ind Focus Grp XUV Opt, NL-7500 AE Enschede, Netherlands. [Gullikson, E.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Ctr Xray Opt, Berkeley, CA 94720 USA. RP Huber, SP (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. EM shuber@lbl.gov FU Dutch Government; Center for X-ray Optics of Lawrence Berkeley Laboratory; Industrial Focus Group XUV Optics at the MESA+ Institute for Nanotechnology at the University of Twente; Office of Science, Office of Basic Energy Sciences, of the United States Department of Energy [DE-AC02-05CH11231] FX This work is supported by NanoNextNL, a micro and nanotechnology program of the Dutch Government and 130 partners. We acknowledge the support of the Center for X-ray Optics of Lawrence Berkeley Laboratory and the Industrial Focus Group XUV Optics at the MESA+ Institute for Nanotechnology at the University of Twente, notably the partners ASML, Carl Zeiss SMT GmbH, and the Foundation FOM. All the computational work was performed at the Molecular Foundry, which is supported by the Office of Science, Office of Basic Energy Sciences, of the United States Department of Energy under Contract No. DE-AC02-05CH11231. NR 31 TC 3 Z9 3 U1 12 U2 45 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD DEC 29 PY 2015 VL 92 IS 24 AR 245310 DI 10.1103/PhysRevB.92.245310 PG 7 WC Physics, Condensed Matter SC Physics GA CZ8WI UT WOS:000367379400004 ER PT J AU Endres, MG Brower, RC Detmold, W Orginos, K Pochinsky, AV AF Endres, Michael G. Brower, Richard C. Detmold, William Orginos, Kostas Pochinsky, Andrew V. TI Multiscale Monte Carlo equilibration: Pure Yang-Mills theory SO PHYSICAL REVIEW D LA English DT Article ID LATTICE GAUGE-FIELDS; QCD; MODEL; SIMULATIONS; CONFINEMENT; COMPUTATION; ALGORITHMS; TOPOLOGY; SCALE; TIME AB We present a multiscale thermalization algorithm for lattice gauge theory, which enables efficient parallel generation of uncorrelated gauge field configurations. The algorithm combines standard Monte Carlo techniques with ideas drawn from real space renormalization group and multigrid methods. We demonstrate the viability of the algorithm for pure Yang-Mills gauge theory for both heat bath and hybrid Monte Carlo evolution, and show that it ameliorates the problem of topological freezing up to controllable lattice spacing artifacts. C1 [Endres, Michael G.; Detmold, William; Pochinsky, Andrew V.] MIT, Ctr Theoret Phys, Cambridge, MA 02139 USA. [Brower, Richard C.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Orginos, Kostas] Coll William & Mary, Dept Phys, Williamsburg, VA 23187 USA. [Orginos, Kostas] Jefferson Lab, Newport News, VA 23606 USA. RP Endres, MG (reprint author), MIT, Ctr Theoret Phys, Cambridge, MA 02139 USA. EM endres@mit.edu; brower@bu.edu; wdetmold@mit.edu; kostas@wm.edu; avp@mit.edu FU Office of Science of the U.S. Department of Energy; U.S. Department of Energy Early Career Research Award [DE-SC0010495]; Science Office at MIT; U.S. Department of Energy [DE-SC0010025, DE-FG02-04ER41302, DE-AC05-06OR23177]; U.S. Department of Energy Office of Nuclear Physics [DE-FC02-06ER41444] FX The authors would like to acknowledge C.-J. David Lin and Evan Weinberg for helpful advice regarding gradient flow and topological charge, and Simon Catterall for information about computing renormalized coupling constants numerically. All simulations were performed using a modified version of the Chroma Software System for lattice QCD [43]. Computations for this study were carried out in part on facilities of the USQCD Collaboration, which are funded by the Office of Science of the U.S. Department of Energy. M. G. E. was supported by the U.S. Department of Energy Early Career Research Award No. DE-SC0010495, and moneys from the Dean of Science Office at MIT. R. C. B. was supported by the U.S. Department of Energy under Grant No. DE-SC0010025. W. D. was supported in part by the U.S. Department of Energy Early Career Research Award No. DE-SC0010495. K. O. was supported by the U.S. Department of Energy under Grant No. DE-FG02-04ER41302 and through Contract No. DE-AC05-06OR23177 under which JSA operates the Thomas Jefferson National Accelerator Facility. A. V. P. was supported in part by the U.S. Department of Energy Office of Nuclear Physics under Grant No. DE-FC02-06ER41444. NR 44 TC 5 Z9 5 U1 2 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD DEC 29 PY 2015 VL 92 IS 11 AR 114516 DI 10.1103/PhysRevD.92.114516 PG 26 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CZ8WW UT WOS:000367380800006 ER PT J AU Kilianski, A Carcel, P Yao, SJ Roth, P Schulte, J Donarum, GB Fochler, ET Hill, JM Liem, AT Wiley, MR Ladner, JT Pfeffer, BP Elliot, O Petrosov, A Jima, DD Vallard, TG Melendrez, MC Skowronski, E Quan, PL Lipkin, WI Gibbons, HS Hirschberg, DL Palacios, GF Rosenzweig, CN AF Kilianski, Andy Carcel, Patrick Yao, Shijie Roth, Pierce Schulte, Josh Donarum, Greg B. Fochler, Ed T. Hill, Jessica M. Liem, Alvin T. Wiley, Michael R. Ladner, Jason T. Pfeffer, Bradley P. Elliot, Oliver Petrosov, Alexandra Jima, Dereje D. Vallard, Tyghe G. Melendrez, Melanie C. Skowronski, Evan Quan, Phenix-Lan Lipkin, W. Ian Gibbons, Henry S. Hirschberg, David L. Palacios, Gustavo F. Rosenzweig, C. Nicole TI Pathosphere.org: pathogen detection and characterization through a web-based, open source informatics platform SO BMC BIOINFORMATICS LA English DT Article ID UNASSEMBLED SEQUENCING DATA; EBOLA-VIRUS; CLINICAL-SAMPLES; GENOMIC ANALYSIS; IDENTIFICATION; DISCOVERY; SURVEILLANCE; STRAIN; CHALLENGES; ALIGNMENT AB Background: The detection of pathogens in complex sample backgrounds has been revolutionized by wide access to next-generation sequencing (NGS) platforms. However, analytical methods to support NGS platforms are not as uniformly available. Pathosphere (found at Pathosphere.org) is a cloud based open sourced community tool that allows for communication, collaboration and sharing of NGS analytical tools and data amongst scientists working in academia, industry and government. The architecture allows for users to upload data and run available bioinformatics pipelines without the need for onsite processing hardware or technical support. Results: The pathogen detection capabilities hosted on Pathosphere were tested by analyzing pathogen-containing samples sequenced by NGS with both spiked human samples as well as human and zoonotic host backgrounds. Pathosphere analytical pipelines developed by Edgewood Chemical Biological Center (ECBC) identified spiked pathogens within a common sample analyzed by 454, Ion Torrent, and Illumina sequencing platforms. ECBC pipelines also correctly identified pathogens in human samples containing arenavirus in addition to animal samples containing flavivirus and coronavirus. These analytical methods were limited in the detection of sequences with limited homology to previous annotations within NCBI databases, such as parvovirus. Utilizing the pipeline-hosting adaptability of Pathosphere, the analytical suite was supplemented by analytical pipelines designed by the United States Army Medical Research Insititute of Infectious Diseases and Walter Reed Army Institute of Research (USAMRIID-WRAIR). These pipelines were implemented and detected parvovirus sequence in the sample that the ECBC iterative analysis previously failed to identify. Conclusions: By accurately detecting pathogens in a variety of samples, this work demonstrates the utility of Pathosphere and provides a platform for utilizing, modifying and creating pipelines for a variety of NGS technologies developed to detect pathogens in complex sample backgrounds. These results serve as an exhibition for the existing pipelines and web-based interface of Pathosphere as well as the plug-in adaptability that allows for integration of newer NGS analytical software as it becomes available. C1 [Kilianski, Andy; Roth, Pierce; Hill, Jessica M.; Liem, Alvin T.; Gibbons, Henry S.; Rosenzweig, C. Nicole] Edgewood Chem & Biol Ctr, Biosci Div, Aberdeen Proving Ground, MD 21010 USA. [Carcel, Patrick; Yao, Shijie; Roth, Pierce; Schulte, Josh; Donarum, Greg B.; Fochler, Ed T.; Hill, Jessica M.; Liem, Alvin T.] OptiMetrics Inc, Abingdon, MD USA. [Wiley, Michael R.; Ladner, Jason T.; Pfeffer, Bradley P.; Palacios, Gustavo F.] US Med Res Inst Infect Dis, Ctr Genome Sci, Frederick, MD USA. [Elliot, Oliver] Columbia Univ, Dept Biomed Informat, New York, NY USA. [Jima, Dereje D.; Vallard, Tyghe G.; Melendrez, Melanie C.] Walter Reed Army Inst Res, Viral Dis Branch, Silver Spring, MD USA. [Skowronski, Evan] TMG Biosci LLC, Austin, TX USA. [Petrosov, Alexandra; Quan, Phenix-Lan; Lipkin, W. Ian; Hirschberg, David L.] Columbia Univ, Ctr Infect & Immun, New York, NY USA. [Yao, Shijie] LBNL, Joint Genome Inst, Dept Energy, Berkeley, CA USA. [Hirschberg, David L.] Univ Washington, Dept Interdisciplinary Arts & Sci, Tacoma, WA USA. RP Rosenzweig, CN (reprint author), Edgewood Chem & Biol Ctr, Biosci Div, 5183 Blackhawk Rd, Aberdeen Proving Ground, MD 21010 USA. EM carolyn.n.rosenzweig.civ@mail.mil RI Palacios, Gustavo/I-7773-2015; OI Palacios, Gustavo/0000-0001-5062-1938; Melendrez, Melanie/0000-0002-4811-4467; Kilianski, Andy/0000-0002-2350-0142 FU National Academy of Science FX This work was made possible by the Defense Threat Reduction Agency effort CB3576 to C.N.R and CB2847 to H.S.G and C.N.R. and CB3575 to W.I.L. A.K is supported by the National Academy of Science and DTRA as a National Research Council (NRC) fellow. The authors report no competing interests for this work. Conclusions and opinions presented here are those of the authors and are not the official policy of the US Army, ECBC, or the US Government. Information in this report is cleared for public release and distribution is unlimited. NR 59 TC 3 Z9 3 U1 5 U2 20 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1471-2105 J9 BMC BIOINFORMATICS JI BMC Bioinformatics PD DEC 29 PY 2015 VL 16 AR 416 DI 10.1186/s12859-015-0840-5 PG 12 WC Biochemical Research Methods; Biotechnology & Applied Microbiology; Mathematical & Computational Biology SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Mathematical & Computational Biology GA CZ6RU UT WOS:000367229200003 PM 26714571 ER PT J AU Lee, IH Kai, H Carlson, LA Groves, JT Hurley, JH AF Lee, Il-Hyung Kai, Hiroyuki Carlson, Lars-Anders Groves, Jay T. Hurley, James H. TI Negative membrane curvature catalyzes nucleation of endosomal sorting complex required for transport (ESCRT)-III assembly SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE membrane bending; HIV-1; nanofabrication; superresolution imaging ID ESCRT PROTEIN RECRUITMENT; VESICLE FORMATION; III FILAMENTS; MACHINERY; MECHANISMS; PATHWAY; RECONSTITUTION; MORPHOGENESIS; ABSCISSION; DYNAMICS AB The endosomal sorting complexes required for transport (ESCRT) machinery functions in HIV-1 budding, cytokinesis, multivesicular body biogenesis, and other pathways, in the course of which it interacts with concave membrane necks and bud rims. To test the role of membrane shape in regulating ESCRT assembly, we nano-fabricated templates for invaginated supported lipid bilayers. The assembly of the core ESCRT-III subunit CHMP4B/Snf7 is preferentially nucleated in the resulting 100-nm-deep membrane concavities. ESCRT-II and CHMP6 accelerate CHMP4B assembly by increasing the concentration of nucleation seeds. Superresolution imaging was used to visualize CHMP4B/Snf7 concentration in a negatively curved annulus at the rim of the invagination. Although Snf7 assemblies nucleate slowly on flat membranes, outward growth onto the flat membrane is efficiently nucleated at invaginations. The nucleation behavior provides a biophysical explanation for the timing of ESCRT-III recruitment and membrane scission in HIV-1 budding. C1 [Lee, Il-Hyung; Carlson, Lars-Anders; Hurley, James H.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Lee, Il-Hyung; Kai, Hiroyuki; Carlson, Lars-Anders; Groves, Jay T.; Hurley, James H.] Univ Calif Berkeley, Calif Inst Quantitat Biosci, Berkeley, CA 94720 USA. [Kai, Hiroyuki; Groves, Jay T.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Groves, Jay T.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Biophys & Integrated Bioimaging Div, Berkeley, CA 94720 USA. [Groves, Jay T.; Hurley, James H.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA 94720 USA. [Groves, Jay T.] Natl Univ Singapore, Mechanobiol Inst, Singapore 117411, Singapore. RP Hurley, JH (reprint author), Univ Calif Berkeley, Dept Mol & Cell Biol, 229 Stanley Hall, Berkeley, CA 94720 USA. EM jimhurley@berkeley.edu FU National Institute of Allergy and Infectious Diseases of the National Institutes of Health [R01AI112442]; National Cancer Institute of the National Institutes of Health [U01CA202241] FX We thank Peidong Yang and Chong Liu for AFM measurements; Bei Yang, Qingtao Shen, Gerhard Hummer, and Johannes Schoneberg for advice and discussions; the Berkeley Marvell nanofabrication laboratory and Biomolecular Nanotechnology Center for use of nanofabrication instruments; and the Berkeley CNR Biological Imaging Facility for access to and assistance with SIM microscopy. This work was supported by National Institute of Allergy and Infectious Diseases of the National Institutes of Health Grant R01AI112442. Partial support was provided by the National Cancer Institute of the National Institutes of Health under Award no. U01CA202241(to J.T.G.). NR 38 TC 7 Z9 7 U1 3 U2 18 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD DEC 29 PY 2015 VL 112 IS 52 BP 15892 EP 15897 DI 10.1073/pnas.1518765113 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CZ6TU UT WOS:000367234700051 PM 26668364 ER PT J AU Abbott, LJ Stevens, MJ AF Abbott, Lauren J. Stevens, Mark J. TI A temperature-dependent coarse-grained model for the thermoresponsive polymer poly(N-isopropylacrylamide) SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID MOLECULAR-DYNAMICS SIMULATION; VOLUME PHASE-TRANSITION; COIL-GLOBULE TRANSITION; N-ISOPROPYLACRYLAMIDE; SINGLE-CHAIN; FORCE-FIELD; COMPUTER-SIMULATION; EXPLICIT SOLVENT; POOR SOLVENT; WATER AB A coarse-grained (CG) model is developed for the thermoresponsive polymer poly(N-isopropylacrylamide) (PNIPAM), using a hybrid top-down and bottom-up approach. Nonbonded parameters are fit to experimental thermodynamic data following the procedures of the SDK (Shinoda, DeVane, and Klein) CG force field, with minor adjustments to provide better agreement with radial distribution functions from atomistic simulations. Bonded parameters are fit to probability distributions from atomistic simulations using multi-centered Gaussian-based potentials. The temperature-dependent potentials derived for the PNIPAM CG model in this work properly capture the coil-globule transition of PNIPAM single chains and yield a chain-length dependence consistent with atomistic simulations. (C) 2015 AIP Publishing LLC. C1 [Abbott, Lauren J.; Stevens, Mark J.] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. RP Stevens, MJ (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM msteve@sandia.gov OI Abbott, Lauren/0000-0003-3523-9380 FU U.S. Department of Energy, Office of Sciences, Basic Energy Sciences, Division of Materials Sciences and Engineering; U.S. Department of Energy's National Nuclear Security Administration [DE-A-C04-94AL85000] FX This work was supported by the U.S. Department of Energy, Office of Sciences, Basic Energy Sciences, Division of Materials Sciences and Engineering. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-A-C04-94AL85000. NR 63 TC 2 Z9 2 U1 10 U2 26 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD DEC 28 PY 2015 VL 143 IS 24 AR 244901 DI 10.1063/1.4938100 PG 10 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA DE1UV UT WOS:000370412900126 PM 26723705 ER PT J AU Armas-Perez, JC Hernandez-Ortiz, JP de Pablo, JJ AF Armas-Perez, Julio C. Hernandez-Ortiz, Juan P. de Pablo, Juan J. TI Liquid crystal free energy relaxation by a theoretically informed Monte Carlo method using a finite element quadrature approach SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID ELASTIC-CONSTANTS; NANOPARTICLES; DROPLETS; SIMULATIONS; BEHAVIOR; INTERFACES; STABILITY; CAPSULES; COLLOIDS; PARTICLE AB A theoretically informed Monte Carlo method is proposed for Monte Carlo simulation of liquid crystals on the basis of theoretical representations in terms of coarse-grained free energy functionals. The free energy functional is described in the framework of the Landau-de Gennes formalism. A piecewise finite element discretization is used to approximate the alignment field, thereby providing an excellent geometrical representation of curved interfaces and accurate integration of the free energy. The method is suitable for situations where the free energy functional includes highly non-linear terms, including chirality or high-order deformation modes. The validity of the method is established by comparing the results of Monte Carlo simulations to traditional Ginzburg-Landau minimizations of the free energy using a finite difference scheme, and its usefulness is demonstrated in the context of simulations of chiral liquid crystal droplets with and without nanoparticle inclusions. (C) 2015 AIP Publishing LLC. C1 [Armas-Perez, Julio C.; Hernandez-Ortiz, Juan P.; de Pablo, Juan J.] Univ Chicago, Inst Mol Engn, Chicago, IL 60637 USA. [Hernandez-Ortiz, Juan P.] Univ Nacl Colombia, Dept Mat & Minerals, Medellin, Colombia. [de Pablo, Juan J.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Armas-Perez, JC (reprint author), Univ Chicago, Inst Mol Engn, Chicago, IL 60637 USA. EM jphernandezo@unal.edu.co; depablo@uchicago.edu OI Hernandez-Ortiz, Juan/0000-0003-0404-9947 FU National Science Foundation [DMR-1410674]; Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division [DE SC0004025]; CONACYT [186166, 203840]; Universidad Nacional de Colombia Ph.D. grant; COLCIENCIAS [110-165-843-748] FX The study of nanoparticles suspended in liquid crystals reported in this work is supported by the National Science Foundation through Grant No. DMR-1410674. The study of chiral liquid crystal droplets, for which results are also reported here, is supported by the Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division, Grant No. DE SC0004025. An award of computer time was provided by the Innovative and Novel Computational Impact on Theory and Experiment (INCITE) program of the Argonne Leadership Computing Facility at Argonne National Laboratory. Additional development work was performed using the Argonne Laboratory Resource Computing Center (LCRC) and the University of Chicago Midway cluster. J.C.A.-P. is thankful to CONACYT for the Postdoctoral Fellowship under Nos. 186166 and 203840. J.P.H.-O. is grateful to funding provided by the Universidad Nacional de Colombia Ph.D. grant and COLCIENCIAS under Contract No. 110-165-843-748, "Patrimonio Autonomo Fondo Nacional de Financiamiento para la Ciencia, Tecnologia y la Innovacion Francisco Jose de Caldas." NR 84 TC 1 Z9 1 U1 5 U2 9 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD DEC 28 PY 2015 VL 143 IS 24 AR 243157 DI 10.1063/1.4937628 PG 12 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA DE1UV UT WOS:000370412900063 PM 26723642 ER PT J AU Ramirez-Hernandez, A Peters, BL Andreev, M Schieber, JD de Pablo, JJ AF Ramirez-Hernandez, Abelardo Peters, Brandon L. Andreev, Marat Schieber, Jay D. de Pablo, Juan J. TI A multichain polymer slip-spring model with fluctuating number of entanglements for linear and nonlinear rheology SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID STEP STRAIN PREDICTIONS; LINK MODEL; SEGMENT CONNECTIVITY; CONSTRAINT RELEASE; REPTATION MODELS; DYNAMICS; CHAIN; SHEAR; EQUILIBRIUM; SIMULATIONS AB A theoretically informed entangled polymer simulation approach is presented for description of the linear and non-linear rheology of entangled polymer melts. The approach relies on a many-chain representation and introduces the topological effects that arise from the non-crossability of molecules through effective fluctuating interactions, mediated by slip-springs, between neighboring pairs of macromolecules. The total number of slip-springs is not preserved but, instead, it is controlled through a chemical potential that determines the average molecular weight between entanglements. The behavior of the model is discussed in the context of a recent theory for description of homogeneous materials, and its relevance is established by comparing its predictions to experimental linear and non-linear rheology data for a series of well-characterized linear polyisoprene melts. The results are shown to be in quantitative agreement with experiment and suggest that the proposed formalism may also be used to describe the dynamics of inhomogeneous systems, such as composites and copolymers. Importantly, the fundamental connection made here between our many-chain model and the well-established, thermodynamically consistent single-chain mean-field models provides a path to systematic coarse-graining for prediction of polymer rheology in structurally homogeneous and heterogeneous materials. (C) 2015 AIP Publishing LLC. C1 [Ramirez-Hernandez, Abelardo; de Pablo, Juan J.] Argonne Natl Lab, Div Mat Sci, 9700 South Cass Ave, Argonne, IL 60439 USA. [Ramirez-Hernandez, Abelardo; Peters, Brandon L.; Andreev, Marat; Schieber, Jay D.; de Pablo, Juan J.] Univ Chicago, Inst Mol Engn, Chicago, IL 60637 USA. [Schieber, Jay D.] IIT, Dept Chem & Biol Engn, Dept Phys, Chicago, IL 60616 USA. [Schieber, Jay D.] IIT, Ctr Mol Study Condensed Soft Matter, Chicago, IL 60616 USA. RP Ramirez-Hernandez, A (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 South Cass Ave, Argonne, IL 60439 USA. EM abelardo@anl.gov; schieber@iit.edu; depablo@uchicago.edu RI Ramirez-Hernandez, Abelardo/A-1717-2011 OI Ramirez-Hernandez, Abelardo/0000-0002-3569-5223 FU U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Science and Engineering Division; National Science Foundation; NSF-CBET Fluid Dynamics [1438700]; Army Research Office [W911NF-11-2-0018]; NIST through CHiMaD postdoctoral award FX This work was supported by U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Science and Engineering Division. An award of computer time was provided by the INCITE program of the Argonne Leadership Computing Facility. We gratefully acknowledge the computing resources provided on Blues, a high-performance computing cluster operated by the Laboratory Computing Resource Center at Argonne National Laboratory. J.D.S. acknowledges the support of the National Science Foundation, NSF-CBET Fluid Dynamics No. 1438700, and the Army Research Office, No. W911NF-11-2-0018. Marat Andreev gratefully acknowledges the support from NIST through a CHiMaD postdoctoral award. NR 37 TC 4 Z9 4 U1 11 U2 17 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD DEC 28 PY 2015 VL 143 IS 24 AR 243147 DI 10.1063/1.4936878 PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA DE1UV UT WOS:000370412900053 PM 26723632 ER PT J AU Chaston, CC Bonnell, JW Wygant, JR Kletzing, CA Reeves, GD Gerrard, A Lanzerotti, L Smith, CW AF Chaston, C. C. Bonnell, J. W. Wygant, J. R. Kletzing, C. A. Reeves, G. D. Gerrard, A. Lanzerotti, L. Smith, C. W. TI Extreme ionospheric ion energization and electron heating in Alfven waves in the storm time inner magnetosphere SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article DE geomagnetic storms; Alfven waves; ion acceleration; electron precipitation; ion outflow; ion upflow ID FIELD LINE RESONANCES; RING CURRENT; EARTHS MAGNETOSPHERE; ELECTROMAGNETIC-WAVES; ULF WAVES; ACCELERATION; FREQUENCY; OUTFLOWS; SCALE AB We report measurements of energized outflowing/bouncing ionospheric ions and heated electrons in the inner magnetosphere during a geomagnetic storm. The ions arrive in the equatorial plane with pitch angles that increase with energy over a range from tens of eV to>50keV while the electrons are field aligned up to similar to 1keV. These particle distributions are observed during intervals of broadband low-frequency electromagnetic field fluctuations consistent with a Doppler-shifted spectrum of kinetic Alfven waves and kinetic field line resonances. The fluctuations extend from L approximate to 3 out to the apogee of the Van Allen Probes spacecraft at L approximate to 6.5. They thereby span most of the L shell range occupied by the ring current. These measurements suggest a model for ionospheric ion outflow and energization driven by dispersive Alfven waves that may account for the large storm time contribution of ionospheric ions to magnetospheric energy density. C1 [Chaston, C. C.; Bonnell, J. W.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Chaston, C. C.] Univ Sydney, Sch Phys, Camperdown, NSW, Australia. [Wygant, J. R.] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA. [Kletzing, C. A.] Univ Iowa, Dept Phys, Iowa City, IA USA. [Reeves, G. D.] Los Alamos Natl Lab, Los Alamos, NM USA. [Gerrard, A.; Lanzerotti, L.] New Jersey Inst Technol, Dept Phys, Ctr Solar Terr Res, Newark, NJ 07102 USA. [Smith, C. W.] Univ New Hampshire, Dept Phys, Durham, NH 03824 USA. [Smith, C. W.] Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA. RP Chaston, CC (reprint author), Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. EM ccc@ssl.berkeley.edu RI Reeves, Geoffrey/E-8101-2011; OI Reeves, Geoffrey/0000-0002-7985-8098; Kletzing, Craig/0000-0002-4136-3348 FU NASA [NNX11AD78G, NNX15AF57G]; RBSP under NASA, EFW [NAS5-01072]; RBSP under NASA, EMFISIS under JHU/APL [921647]; RBSP-ECT JHU/APL [967399]; RBSP-RBSPICE JHU/APL [937836]; Australian Research Council [FT110100316]; University of Sydney FX This research was supported by the NASA grants NNX11AD78G, NNX15AF57G, and Van Allen Probes (RBSP) funding provided under NASA prime contract NAS5-01072; including the EFW investigation (PI: J.R. Wygant, University of Minnesota), the EMFISIS investigation (PI: C.A. Kletzing, University of Iowa) under JHU/APL contract 921647, RBSP-ECT JHU/APL under contract 967399 and RBSP-RBSPICE JHU/APL under contract 937836 to the New Jersey Institute of Technology Chris Chaston also received support from the Australian Research Council through fellowship FT110100316 and a University of Sydney bridging grant. All data used in this study can be obtained from the following data repositories: EFW http://www.space.umn.edu/rbspefw-data/, EMFISIS http://emfisis.physics.uiowa.edu/data/index, HOPE/MAGEIS http://www.rbsp-ect.lanl.gov/science/DataDirectories.php, RBSPICE http://rbspice.ftecs.com/Data.html, and/or by directly contacting the first author. NR 45 TC 6 Z9 6 U1 0 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD DEC 28 PY 2015 VL 42 IS 24 BP 10531 EP 10540 DI 10.1002/2015GL066674 PG 10 WC Geosciences, Multidisciplinary SC Geology GA DC0WX UT WOS:000368939700033 ER PT J AU Ohia, O Egedal, J Lukin, VS Daughton, W Le, A AF Ohia, O. Egedal, J. Lukin, V. S. Daughton, W. Le, A. TI Scaling laws for magnetic reconnection, set by regulation of the electron pressure anisotropy to the firehose threshold SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article DE magnetic reconnection; electron anisotropy; electron energization; plasma simulation ID INSTABILITIES; SIMULATIONS; PLASMAS AB Magnetic reconnection in a weakly collisional plasma, such as in the Earth's magnetosphere, is known to be accompanied by electron pressure anisotropy. For reconnection scenarios includingmoderate guide magnetic field, electrons are magnetized throughout the reconnection region, and the anisotropy drives extended electron current layers. Along these layers, the anisotropy nears the firehosethreshold. We describe how the anisotropy stagnates at this threshold by a mechanism that does not involve pitch-angle mixing. Using previously established anisotropic equations of state and by imposing the marginalfirehose condition, scaling laws are obtained for quantities along the current layers asfunctions of plasmaparameters upstream of the reconnection region. The predicted reconnection region quantities include the magnetic field strength, plasma density, and the parallel and perpendicular electronpressures, allowing for a characterization of electron energization solely as a function of the upstream plasma conditions. This characterization is in agreement with simulations and spacecraft observations. C1 [Ohia, O.] Univ Maryland, Inst Res Elect & Appl Phys, College Pk, MD 20742 USA. [Egedal, J.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Lukin, V. S.] Natl Sci Fdn, Arlington, VA 22230 USA. [Lukin, V. S.] US Naval Res Lab, Washington, DC USA. [Daughton, W.; Le, A.] Los Alamos Natl Lab, Los Alamos, NM USA. RP Ohia, O (reprint author), Univ Maryland, Inst Res Elect & Appl Phys, College Pk, MD 20742 USA. EM oohia@umd.edu RI Daughton, William/L-9661-2013 FU NSF GEM [1405166]; NASA [NNX14AC68G]; NASA Solar and Heliospheric Physics program; National Science Foundation; NASA's Heliophysics Theory Program FX We thank T. Phan for providing spacecraft data. O.O. would like to acknowledge the National Energy Research Scientific Computing Center for time allocation, as fluid simulations were performed on Hopper. J.E. acknowledges support through NSF GEM award 1405166 and NASA grant NNX14AC68G. V.S.L. acknowledges support from the NASA Solar and Heliospheric Physics program, as well as the National Science Foundation. Contributions from W.D. were supported by NASA's Heliophysics Theory Program. Kinetic simulations were performed on Pleiades provided by NASA's HEC Program and with LANL Institutional Computing resources. Any opinion findings conclusions or recommendations expressed in this material are those of the authors do not necessarily reflect the views of the National Science Foundation. NR 26 TC 3 Z9 3 U1 1 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD DEC 28 PY 2015 VL 42 IS 24 BP 10549 EP 10556 DI 10.1002/2015GL067117 PG 8 WC Geosciences, Multidisciplinary SC Geology GA DC0WX UT WOS:000368939700053 ER PT J AU Kaser, L Karl, T Yuan, B Mauldin, RL Cantrell, CA Guenther, AB Patton, EG Weinheimer, AJ Knote, C Orlando, J Emmons, L Apel, E Hornbrook, R Shertz, S Ullmann, K Hall, S Graus, M de Gouw, J Zhou, X Ye, C AF Kaser, L. Karl, T. Yuan, B. Mauldin, R. L., III Cantrell, C. A. Guenther, A. B. Patton, E. G. Weinheimer, A. J. Knote, C. Orlando, J. Emmons, L. Apel, E. Hornbrook, R. Shertz, S. Ullmann, K. Hall, S. Graus, M. de Gouw, J. Zhou, X. Ye, C. TI Chemistry-turbulence interactions and mesoscale variability influence the cleansing efficiency of the atmosphere SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article DE hydroxyl radical; isoprene; turbulence; fluxes ID TROPICAL RAIN-FOREST; CONVECTIVE BOUNDARY-LAYER; ISOPRENE OXIDATION; DECIDUOUS FOREST; FIELD CAMPAIGN; MODEL; SCALARS; OZONE; HO2; OH AB The hydroxyl radical (OH) is the most important oxidant in the atmosphere and the primary sink for isoprene, the dominant volatile organic compound emitted by vegetation. Recent research on the atmospheric oxidation capacity in isoprene-dominated environments has suggested missing radical sources leading to significant overestimation of the lifetime of isoprene. Here we report, for the first time, a comprehensive experimental budget of isoprene in the planetary boundary layer based on airborne flux measurements along with in situ OH observations in the Southeast and Central U.S. Our findings show that surface heterogeneity of isoprene emissions lead to a physical separation of isoprene and OH resulting in an effective slowdown in the chemistry. Depending on surface heterogeneity, the intensity of segregation (I-s) could locally slow down isoprene chemistry up to 30%. The effect of segregated reactants in the planetary boundary layer on average has an influence on modeled OH radicals that is comparable to that of recently proposed radical recycling mechanisms. C1 [Kaser, L.; Patton, E. G.; Weinheimer, A. J.; Knote, C.; Orlando, J.; Emmons, L.; Apel, E.; Hornbrook, R.; Shertz, S.; Ullmann, K.; Hall, S.] Natl Ctr Atmospher Res, Boulder, CO 80307 USA. [Karl, T.] Univ Innsbruck, Inst Atmospher & Cryospher Sci, A-6020 Innsbruck, Austria. [Yuan, B.; Graus, M.; de Gouw, J.] NOAA, Div Chem Sci, Earth Syst Res Lab, Boulder, CO USA. [Yuan, B.; de Gouw, J.] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO USA. [Mauldin, R. L., III; Cantrell, C. A.] Univ Colorado, Dept Atmospher & Ocean Sci, Boulder, CO 80309 USA. [Mauldin, R. L., III] Univ Helsinki, Dept Phys, Helsinki, Finland. [Guenther, A. B.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Zhou, X.; Ye, C.] New York State Dept Hlth, Wadsworth Ctr, Albany, NY USA. RP Karl, T (reprint author), Univ Innsbruck, Inst Atmospher & Cryospher Sci, A-6020 Innsbruck, Austria. EM thomas.Karl@uibk.ac.at RI de Gouw, Joost/A-9675-2008; Knote, Christoph/A-9809-2010; Karl, Thomas/D-1891-2009; Yuan, Bin/A-1223-2012; Emmons, Louisa/R-8922-2016; Manager, CSD Publications/B-2789-2015; OI de Gouw, Joost/0000-0002-0385-1826; Knote, Christoph/0000-0001-9105-9179; Karl, Thomas/0000-0003-2869-9426; Yuan, Bin/0000-0003-3041-0329; Emmons, Louisa/0000-0003-2325-6212; Patton, Edward/0000-0001-5431-9541 FU National Science Foundation; EC [334084]; NSF [1216743] FX We thank the NCAR EOL flight crew and the NOMADSS science team for excellent mission support. We are grateful to T. Campos for collecting and supplying CO and methane data. The National Center for Atmospheric Research is operated by the University Cooperation for Atmospheric Research and is sponsored by the National Science Foundation. Data are provided by NCAR/EOL under sponsorship of the National Science Foundation. T.K. was also supported by the EC Seventh Framework Program (Marie Curie Reintegration Program, "ALP-AIR", grant 334084). C.A.C. and R.L.M. were supported by NSF grant 1216743. NR 41 TC 5 Z9 5 U1 6 U2 22 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD DEC 28 PY 2015 VL 42 IS 24 BP 10894 EP 10903 DI 10.1002/2015GL066641 PG 10 WC Geosciences, Multidisciplinary SC Geology GA DC0WX UT WOS:000368939700006 ER PT J AU Chen, G Lu, J Burrows, DA Leung, LR AF Chen, Gang Lu, Jian Burrows, D. Alex Leung, L. Ruby TI Local finite-amplitude wave activity as an objective diagnostic of midlatitude extreme weather SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article DE local wave activity; wave breaking; blocking; extreme weather ID REANALYSIS; BREAKING; NORTHERN; BLOCKING; CIRCULATION; TRANSPORT AB Midlatitude extreme weather events are responsible for a large part of climate-related damage, yet our understanding of these extreme events is limited, partly due to the lack of a theoretical basis for midlatitude extreme weather. In this letter, the local finite-amplitude wave activity (LWA) of Huang and Nakamura (2015) is introduced as a diagnostic of the 500hPa geopotential height for characterizing midlatitude weather events. It is found that the LWA climatology and its variability associated with the Arctic Oscillation agree broadly with the previously reported blocking frequency in the literature. There is a strong seasonal and spatial dependence in the trends of LWA in recent decades. While there is no observational evidence for a hemispheric-scale increase in wave amplitude, robust trends in wave activity can be identified at the regional scales, with important implications for regional climate change. C1 [Chen, Gang; Burrows, D. Alex] Cornell Univ, Dept Earth & Atmospher Sci, Ithaca, NY USA. [Lu, Jian; Leung, L. Ruby] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Chen, G (reprint author), Cornell Univ, Dept Earth & Atmospher Sci, Ithaca, NY USA. EM gchen@cornell.edu FU NSF [AGS-1064079]; DOE [DE-SC0012374]; U.S. Department of Energy, Office of Science, Biological and Environmental Research through the Regional and Global Climate Modeling program; DOE by Battelle Memorial Institute [DE-AC05-76RL01830] FX We thank Clare S.Y. Huang and Noboru Nakamura for valuable discussion on FAWA and LWA and for sharing their manuscript on LWA in review. We are grateful for two anonymous reviewers for constructive comments on the manuscript, especially on the interpretation of the LWA for Z500. This work also benefited from discussion with Peter Hess, Steve Colucci, and David Straus. G. Chen and D.A. Burrows are supported by NSF grant AGS-1064079 and DOE grant DE-SC0012374. Jian Lu and L. Ruby Leung are supported by the U.S. Department of Energy, Office of Science, Biological and Environmental Research through the Regional and Global Climate Modeling program. PNNL is operated for DOE by Battelle Memorial Institute under contract DE-AC05-76RL01830. The ERA-Interim (ERA-I) reanalysis data were obtained from http://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=pl/. The NCEP-DOE Reanalysis 2 (NCEP2) data were downloaded from http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis2.html. The monthly mean Arctic Oscillation index was obtained from Climate Prediction Center (http://www.cpc.ncep.noaa.gov/products/precip/CWlink/daily_ao_index/ao.s html). NR 33 TC 0 Z9 0 U1 0 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD DEC 28 PY 2015 VL 42 IS 24 BP 10952 EP 10960 DI 10.1002/2015GL066959 PG 9 WC Geosciences, Multidisciplinary SC Geology GA DC0WX UT WOS:000368939700050 ER PT J AU Kinaci, A Kado, M Rosenmann, D Ling, C Zhu, GH Banerjee, D Chan, MKY AF Kinaci, Alper Kado, Motohisa Rosenmann, Daniel Ling, Chen Zhu, Gaohua Banerjee, Debasish Chan, Maria K. Y. TI Electronic transport in VO2-Experimentally calibrated Boltzmann transport modeling SO APPLIED PHYSICS LETTERS LA English DT Article ID METAL-INSULATOR-TRANSITION; VANADIUM DIOXIDE; BAND THEORY; 1ST PRINCIPLES; THIN-FILMS; VO2; OXIDE; TEMPERATURE; CRYSTAL; HUBBARD AB Materials that undergo metal-insulator transitions (MITs) are under intense study, because the transition is scientifically fascinating and technologically promising for various applications. Among these materials, VO2 has served as a prototype due to its favorable transition temperature. While the physical underpinnings of the transition have been heavily investigated experimentally and computationally, quantitative modeling of electronic transport in the two phases has yet to be undertaken. In this work, we establish a density-functional-theory (DFT)-based approach with Hubbard U correction (DFT+U) to model electronic transport properties in VO2 in the semiconducting and metallic regimes, focusing on band transport using the Boltzmann transport equations. We synthesized high quality VO2 films and measured the transport quantities across the transition, in order to calibrate the free parameters in the model. We find that the experimental calibration of the Hubbard correction term can efficiently and adequately model the metallic and semiconducting phases, allowing for further computational design of MIT materials for desirable transport properties. (C) 2015 AIP Publishing LLC. C1 [Kinaci, Alper; Rosenmann, Daniel; Chan, Maria K. Y.] Ctr Nanoscale Mat, Argonne Natl Lab, Argonne, IL 60439 USA. [Kado, Motohisa] Toyota Motor Co Ltd, Higashifuji Tech Ctr, Susono, Shizuoka 4101193, Japan. [Ling, Chen; Zhu, Gaohua; Banerjee, Debasish] Toyota Motor Engn & Mfg North Amer Inc, Mat Res Dept, Ann Arbor, MI 48105 USA. RP Banerjee, D (reprint author), Toyota Motor Engn & Mfg North Amer Inc, Mat Res Dept, Ann Arbor, MI 48105 USA. EM debasish.banerjee@toyota.com; mchan@anl.gov FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; National Science Foundation [ACI-1053575] FX We acknowledge helpful discussion with Lucas Wagner and David Cahill. Use of the Center for Nanoscale Materials, an Office of Science user facility, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. We gratefully acknowledge the computing resources provided on Blues and Fusion, high-performance computing clusters operated by the Laboratory Computing Resource Center at Argonne National Laboratory. This work used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation Grant No. ACI-1053575.48 NR 47 TC 0 Z9 0 U1 3 U2 16 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD DEC 28 PY 2015 VL 107 IS 26 AR 262108 DI 10.1063/1.4938555 PG 5 WC Physics, Applied SC Physics GA DB3VY UT WOS:000368442300023 ER PT J AU Olson, BV Grein, CH Kim, JK Kadlec, EA Klem, JF Hawkins, SD Shaner, EA AF Olson, B. V. Grein, C. H. Kim, J. K. Kadlec, E. A. Klem, J. F. Hawkins, S. D. Shaner, E. A. TI Auger recombination in long-wave infrared InAs/InAsSb type-II superlattices SO APPLIED PHYSICS LETTERS LA English DT Article ID LAYER SUPERLATTICES; CARRIER LIFETIMES; PERFORMANCE; GAP; DETECTORS; HGCDTE AB The Auger lifetime is a critical intrinsic parameter for infrared photodetectors as it determines the longest potential minority carrier lifetime and consequently the fundamental limitations to their performance. Here, Auger recombination is characterized in a long-wave infrared InAs/InAsSb type-II superlattice. Auger coefficients as small as 7.1 X 10(-26) cm(6)/s are experimentally measured using carrier lifetime data at temperatures in the range of 20 K-80 K. The data are compared to Auger-1 coefficients predicted using a 14-band K . p electronic structure model and to coefficients calculated for HgCdTe of the same bandgap. The experimental superlattice Auger coefficients are found to be an order-of-magnitude smaller than HgCdTe. (C) 2015 AIP Publishing LLC. C1 [Olson, B. V.; Kim, J. K.; Kadlec, E. A.; Klem, J. F.; Hawkins, S. D.; Shaner, E. A.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Grein, C. H.] Univ Illinois, Dept Phys, Chicago, IL 60607 USA. RP Olson, BV (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM benolso@sandia.gov OI Olson, Benjamin/0000-0003-1421-2541 FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; Department of Energy's Office of Basic Energy Science; MDA SBIR Phase 1 [HQ0147-15-C-7167] FX Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. This work was supported in part by the Department of Energy's Office of Basic Energy Science. The Sandia authors also thank Professor Michael Flatte at the University of Iowa for use of his K . p software. C.H.G. thanks the MDA SBIR Phase 1 Contract HQ0147-15-C-7167 for supporting this effort. NR 26 TC 9 Z9 9 U1 7 U2 19 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD DEC 28 PY 2015 VL 107 IS 26 AR 261104 DI 10.1063/1.4939147 PG 4 WC Physics, Applied SC Physics GA DB3VY UT WOS:000368442300004 ER PT J AU Somnath, S Belianinov, A Kalinin, SV Jesse, S AF Somnath, Suhas Belianinov, Alexei Kalinin, Sergei V. Jesse, Stephen TI Full information acquisition in piezoresponse force microscopy SO APPLIED PHYSICS LETTERS LA English DT Article ID DOMAIN SWITCHING DYNAMICS; THIN-FILMS; NANOSCALE; ELECTROMECHANICS; SPECTROSCOPY; RESOLUTION; TRANSPORT AB The information flow from the tip-surface junction to the detector electronics during the piezoresponse force microscopy (PFM) imaging is explored using the recently developed general mode (G-mode) detection. Information-theory analysis suggests that G-mode PFM in the non-switching regime, close to the first resonance mode, contains a relatively small (100-150) number of components containing significant information. The first two primary components are similar to classical PFM images, suggesting that classical lock-in detection schemes provide high veracity information in this case. At the same time, a number of transient components exhibit contrast associated with surface topography, suggesting pathway to separate the two. The number of significant components increases considerably in the non-linear and switching regimes and approaching cantilever resonances, precluding the use of classical lock-in detection and necessitating the use of band excitation or G-mode detection schemes. The future prospects of full information imaging in scanning probe microscopy are discussed. (C) 2015 AIP Publishing LLC. C1 [Belianinov, Alexei] Oak Ridge Natl Lab, Inst Funct Imaging Mat, Oak Ridge, TN 37831 USA. Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Belianinov, A (reprint author), Oak Ridge Natl Lab, Inst Funct Imaging Mat, Oak Ridge, TN 37831 USA. EM somnaths@ornl.gov; belianinova@ornl.gov; sergei2@ornl.gov; sjesse@ornl.gov RI Jesse, Stephen/D-3975-2016; OI Jesse, Stephen/0000-0002-1168-8483; Somnath, Suhas/0000-0002-5398-3050; Belianinov, Alex/0000-0002-3975-4112 FU Division of Materials Sciences and Engineering, Basic Energy Sciences, Department of Energy FX Research was conducted at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility (A.B. and S.J.). Research was sponsored by the Division of Materials Sciences and Engineering, Basic Energy Sciences, Department of Energy (S.S and S.V.K.). S.S. collected and analyzed the data, prepared the figures and the manuscript. A.B. and S.S. developed the analysis software. A.B and S.V.K. contributed to the thoughtful discussions. S.J. developed the instrumentation software. S.J. and S.V.K. conceived the original idea. NR 27 TC 8 Z9 8 U1 7 U2 18 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD DEC 28 PY 2015 VL 107 IS 26 AR 263102 DI 10.1063/1.4938482 PG 4 WC Physics, Applied SC Physics GA DB3VY UT WOS:000368442300034 ER PT J AU Zarkadoula, E Toulemonde, M Weber, WJ AF Zarkadoula, Eva Toulemonde, Marcel Weber, William J. TI Additive effects of electronic and nuclear energy losses in irradiation-induced amorphization of zircon SO APPLIED PHYSICS LETTERS LA English DT Article ID ION TRACK FORMATION; HEAVY-IONS; ACTINIDES; RADIATION; CREATION; SYNERGY AB We used a combination of ion cascades and the unified thermal spike model to study the electronic effects from 800 keV Kr and Xe ion irradiation in zircon. We compared the damage production for four cases: (a) due to ion cascades alone, (b) due to ion cascades with the electronic energy loss activated as a friction term, (c) due to the thermal spike from the combined electronic and nuclear energy losses, and (d) due to ion cascades with electronic stopping and the electron-phonon interactions superimposed. We found that taking the electronic energy loss out as a friction term results in reduced damage, while the electronic electron-phonon interactions have additive impact on the final damage created per ion. (C) 2015 AIP Publishing LLC. C1 [Zarkadoula, Eva; Weber, William J.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Toulemonde, Marcel] Univ Caen, CEA CNRS ENSICAEN, Ctr Interdisciplinaire Rech Ions Matriaux & Photo, F-14070 Caen, France. [Weber, William J.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. RP Zarkadoula, E (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RI Weber, William/A-4177-2008; OI Weber, William/0000-0002-9017-7365; Zarkadoula, Eva/0000-0002-6886-9664 FU U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division; Office of Science, U.S. Department of Energy [DEAC02-05CH11231]; U.S. Department of Energy [DE-AC05-00OR22725] FX This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division. This research used resources of the National Energy Research Scientific Computing Center, supported by the Office of Science, U.S. Department of Energy under Contract No. DEAC02-05CH11231.; This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan). NR 38 TC 1 Z9 1 U1 1 U2 11 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD DEC 28 PY 2015 VL 107 IS 26 AR 261902 DI 10.1063/1.4939110 PG 5 WC Physics, Applied SC Physics GA DB3VY UT WOS:000368442300014 ER PT J AU Yang, Z Albrecht, AR Cederberg, JG Sheik-Bahae, M AF Yang, Zhou Albrecht, Alexander R. Cederberg, Jeffrey G. Sheik-Bahae, Mansoor TI Optically pumped DBR-free semiconductor disk lasers SO OPTICS EXPRESS LA English DT Article ID SURFACE-EMITTING LASERS; CONTINUOUS-WAVE; HIGH-POWER; VECSEL; INTRACAVITY; EFFICIENCY; OUTPUT AB We report high power distributed Bragg reflector (DBR)-free semiconductor disk lasers. With active regions lifted off and bonded to various transparent heatspreaders, the high thermal impedance and narrow bandwidth of DBRs are mitigated. For a strained InGaAs multi-quantum-well sample bonded to a single-crystalline chemical-vapor deposited diamond, a maximum CW output power of 2.5 W and a record 78 nm tuning range centered at lambda approximate to 1160 nm was achieved. Laser operation using a total internal reflection geometry is also demonstrated. Furthermore, analysis for power scaling, based on thermal management, is presented. (C) 2015 Optical Society of America C1 [Yang, Zhou; Albrecht, Alexander R.; Sheik-Bahae, Mansoor] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Cederberg, Jeffrey G.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Sheik-Bahae, M (reprint author), Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. EM msb@unm.edu FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The authors thank Dr. Denis Seletskiy of the University of Konstanz for helpful experimental suggestions and Dr. Stephen Boyd and Behshad Roshanzadeh of the University of New Mexico for assistance with the COMSOL simulations. Special thanks to Element Six for providing high quality diamonds. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 19 TC 5 Z9 5 U1 5 U2 14 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD DEC 28 PY 2015 VL 23 IS 26 BP 33164 EP 33169 DI 10.1364/OE.23.033164 PG 6 WC Optics SC Optics GA DA7SO UT WOS:000368004600030 PM 26831984 ER PT J AU Srinath, S Poyneer, LA Rudy, AR Ammons, SM AF Srinath, Srikar Poyneer, Lisa A. Rudy, Alexander R. Ammons, S. Mark TI Computationally efficient autoregressive method for generating phase screens with frozen flow and turbulence in optical simulations SO OPTICS EXPRESS LA English DT Article ID ADAPTIVE OPTICS; ATMOSPHERIC PHASE; IMPLEMENTATION; STATISTICS AB We present a sample-based, autoregressive (AR) method for the generation and time evolution of atmospheric phase screens that is computationally efficient and uses a single parameter per Fourier mode to vary the power contained in the frozen flow and stochastic components. We address limitations of Fourier-based methods such as screen periodicity and low spatial frequency power content. Comparisons of adaptive optics (AO) simulator performance when fed AR phase screens and translating phase screens reveal significantly elevated residual closed-loop temporal power for small increases in added stochastic content at each time step, thus displaying the importance of properly modeling atmospheric "boiling". We present preliminary evidence that our model fits to AO telemetry are better reflections of real conditions than the pure frozen flow assumption. (C) 2015 Optical Society of America C1 [Srinath, Srikar; Rudy, Alexander R.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Poyneer, Lisa A.; Ammons, S. Mark] Lawrence Livermore Natl Lab, Livermore, CA 94450 USA. RP Srinath, S (reprint author), Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. EM ssrinath@ucsc.edu FU UC Lab Fees Research Program [12-LF-236852]; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX The work of SS and ARR is funded by the UC Lab Fees Research Program grant 12-LF-236852.; This work is performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. The document number is LLNL-JRNL-667773. NR 31 TC 1 Z9 1 U1 2 U2 3 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD DEC 28 PY 2015 VL 23 IS 26 BP 33335 EP 33349 DI 10.1364/OE.23.033335 PG 15 WC Optics SC Optics GA DA7SO UT WOS:000368004600044 PM 26831998 ER PT J AU Balluff, J Meinert, M Schmalhorst, JM Reiss, G Arenholz, E AF Balluff, Jan Meinert, Markus Schmalhorst, Jan-Michael Reiss, Guenter Arenholz, Elke TI Exchange bias in epitaxial and polycrystalline thin film Ru2MnGe/Fe bilayers SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID HEUSLER ALLOYS; SPIN ELECTRONICS; MAGNETORESISTANCE; SPECTROSCOPY AB We report on thin film bilayers of the antiferromagnetic Heusler compound Ru2MnGe and Fe, as well as the resulting exchange bias field at low temperatures and its temperature dependence. Epitaxial Ru2MnGe/Fe bilayers show an exchange bias field up to 680Oe at 3K. For increasing temperatures, a linearly decreasing exchange bias field is found, which vanishes at 130K. Furthermore, we grew polycrystalline Ru2MnGe showing an exchange bias field up to 540 Oe, which vanishes around 30K. By adding a very thin intermediate layer of Mn, the exchange bias field for polycrystalline samples has been increased by about 40%. We discuss differences between the epitaxial and polycrystalline films regarding magnetic and crystallographic properties and compare our results to already published work on this system. (C) 2015 AIP Publishing LLC. C1 [Balluff, Jan; Meinert, Markus; Schmalhorst, Jan-Michael; Reiss, Guenter] Univ Bielefeld, Ctr Spinelect Mat & Devices, D-33501 Bielefeld, Germany. [Arenholz, Elke] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Balluff, J (reprint author), Univ Bielefeld, Ctr Spinelect Mat & Devices, D-33501 Bielefeld, Germany. EM balluff@physik.uni-bielefeld.de RI Meinert, Markus/E-8794-2011; Reiss, Gunter/A-3423-2010 OI Meinert, Markus/0000-0002-7813-600X; Reiss, Gunter/0000-0002-0918-5940 FU European Union [NMP3-SL-2013-604398] FX The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement no. NMP3-SL-2013-604398. NR 22 TC 0 Z9 0 U1 4 U2 12 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD DEC 28 PY 2015 VL 118 IS 24 AR 243907 DI 10.1063/1.4939092 PG 4 WC Physics, Applied SC Physics GA DA1CY UT WOS:000367535100015 ER PT J AU Neumayer, SM Strelcov, E Manzo, M Gallo, K Kravchenko, II Kholkin, AL Kalinin, SV Rodriguez, BJ AF Neumayer, Sabine M. Strelcov, Evgheni Manzo, Michele Gallo, Katia Kravchenko, Ivan I. Kholkin, Andrei L. Kalinin, Sergei V. Rodriguez, Brian J. TI Thickness, humidity, and polarization dependent ferroelectric switching and conductivity in Mg doped lithium niobate SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID DOMAIN INVERSION; FORCE MICROSCOPY; LINBO3; CRYSTALS; RESISTANCE; SURFACES; REVERSAL; DIODE AB Mg doped lithium niobate (Mg:LN) exhibits several advantages over undoped LN such as resistance to photorefraction, lower coercive fields, and p-type conductivity that is particularly pronounced at domain walls and opens up a range of applications, e.g., in domain wall electronics. Engineering of precise domain patterns necessitates well founded knowledge of switching kinetics, which can differ significantly from that of undoped LN. In this work, the role of humidity and sample composition in polarization reversal has been investigated under application of the same voltage waveform. Control over domain sizes has been achieved by varying the sample thickness and initial polarization as well as atmospheric conditions. In addition, local introduction of proton exchanged phases allows for inhibition of domain nucleation or destabilization, which can be utilized to modify domain patterns. Polarization dependent current flow, attributed to charged domain walls and band bending, demonstrates the rectifying ability of Mg: LN in combination with suitable metal electrodes that allow for further tailoring of conductivity. (C) 2015 AIP Publishing LLC. C1 [Neumayer, Sabine M.; Rodriguez, Brian J.] Univ Coll Dublin, Sch Phys, Dublin 4, Ireland. [Neumayer, Sabine M.; Rodriguez, Brian J.] Univ Coll Dublin, Conway Inst Biomol & Biomed Res, Dublin 4, Ireland. [Strelcov, Evgheni; Kravchenko, Ivan I.; Kalinin, Sergei V.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Manzo, Michele; Gallo, Katia] KTH Royal Inst Technol, Dept Appl Phys, S-10691 Stockholm, Sweden. [Kholkin, Andrei L.] Dept Phys, P-3810193 Aveiro, Portugal. [Kholkin, Andrei L.] CICECO Aveiro Inst Mat, P-3810193 Aveiro, Portugal. [Kholkin, Andrei L.] Ural Fed Univ, Inst Nat Sci, Ekaterinburg 620000, Russia. RP Rodriguez, BJ (reprint author), Univ Coll Dublin, Sch Phys, Dublin 4, Ireland. EM brian.rodriguez@ucd.ie RI Kravchenko, Ivan/K-3022-2015; Kholkin, Andrei/G-5834-2010; OI Kravchenko, Ivan/0000-0003-4999-5822; Kholkin, Andrei/0000-0003-3432-7610; Rodriguez, Brian/0000-0001-9419-2717; Neumayer, Sabine M./0000-0002-8167-1230 FU European Commission within FP7 Marie Curie Initial Training Network "Nanomotion" [290158]; Science Foundation Ireland [SFI07/IN1/B931]; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy [CNMS2015-139]; Swedish Research Council [622-2010-526, 621-2014-5407]; FCT/MEC [FCT UID/CTM/50011/2013]; FEDER FX This research was funded by the European Commission within FP7 Marie Curie Initial Training Network "Nanomotion" (Grant Agreement No. 290158). The AFM used for this work was funded by Science Foundation Ireland (SFI07/IN1/B931). PFM and FORC measurements were conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy (user Project No. CNMS2015-139). K.G. gratefully acknowledges support from the Swedish Research Council through a Senior Fellowship (622-2010-526) and research Grant No. 621-2014-5407. A.L.K. acknowledges the CICECO-Aveiro Institute of Materials (Ref. FCT UID/CTM/50011/2013), financed by national funds through the FCT/MEC and when applicable co-financed by FEDER under the PT2020 Partnership Agreement. NR 56 TC 3 Z9 3 U1 6 U2 19 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD DEC 28 PY 2015 VL 118 IS 24 AR 244103 DI 10.1063/1.4938386 PG 8 WC Physics, Applied SC Physics GA DA1CY UT WOS:000367535100019 ER PT J AU Niesen, A Glas, M Ludwig, J Schmalhorst, JM Sahoo, R Ebke, D Arenholz, E Reiss, G AF Niesen, Alessia Glas, Manuel Ludwig, Jana Schmalhorst, Jan-Michael Sahoo, Roshnee Ebke, Daniel Arenholz, Elke Reiss, Guenter TI Titanium nitride as a seed layer for Heusler compounds SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID MAGNETIC TUNNEL-JUNCTIONS; FERROMAGNETS AB Titanium nitride (TiN) shows low resistivity at room temperature (27 mu Omega cm), high thermal stability and thus has the potential to serve as seed layer in magnetic tunnel junctions. High quality TiN thin films with regard to the crystallographic and electrical properties were grown and characterized by x-ray diffraction and 4-terminal transport measurements. Element specific x-ray absorption spectroscopy revealed pure TiN inside the thin films. To investigate the influence of a TiN seed layer on a ferro(i)magnetic bottom electrode in magnetic tunnel junctions, an out-of-plane magnetized Mn2.45Ga as well as in- and out-of-plane magnetized Co2FeAl thin films were deposited on a TiN buffer, respectively. The magnetic properties were investigated using a superconducting quantum interference device and anomalous Hall effect for Mn2.45Ga. Magneto optical Kerr effect measurements were carried out to investigate the magnetic properties of Co2FeAl. TiN buffered Mn2.45Ga thin films showed higher coercivity and squareness ratio compared to unbuffered samples. The Heusler compound Co2FeAl showed already good crystallinity when grown at room temperature on a TiN seed-layer. (C) 2015 AIP Publishing LLC. C1 [Niesen, Alessia; Glas, Manuel; Ludwig, Jana; Schmalhorst, Jan-Michael; Reiss, Guenter] Univ Bielefeld, Ctr Spinelect Mat & Devices, Bielefeld, Germany. [Sahoo, Roshnee; Ebke, Daniel] Max Planck Inst Chem Phys Solids, Dresden, Germany. [Arenholz, Elke] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Niesen, A (reprint author), Univ Bielefeld, Ctr Spinelect Mat & Devices, Bielefeld, Germany. EM aniesen@physik.uni-bielefeld.de RI Reiss, Gunter/A-3423-2010; OI Reiss, Gunter/0000-0002-0918-5940; Sahoo, Roshnee/0000-0002-2783-1563 FU Deutsche Forschungsgemeinschaft (DFG) [RE 1052/32-1]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; ERC [291472 Idea Heusler] FX The authors gratefully acknowledge the financial support from the Deutsche Forschungsgemeinschaft (DFG, Contract No. RE 1052/32-1) and the opportunity to work at BL 6.3.1 of the Advanced Light Source, Berkeley, USA, which is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. D.E. is financially supported by the ERC Advanced Grant (291472 Idea Heusler). NR 19 TC 1 Z9 1 U1 1 U2 12 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD DEC 28 PY 2015 VL 118 IS 24 AR 243904 DI 10.1063/1.4938388 PG 7 WC Physics, Applied SC Physics GA DA1CY UT WOS:000367535100012 ER PT J AU Wong, S Haberl, B Williams, JS Bradby, JE AF Wong, S. Haberl, B. Williams, J. S. Bradby, J. E. TI The influence of hold time on the onset of plastic deformation in silicon SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID TRANSMISSION ELECTRON-MICROSCOPY; INDUCED PHASE-TRANSFORMATION; SPHERICAL INDENTATION; CRYSTALLINE SILICON; RAMAN-SPECTROSCOPY; AMORPHOUS-SILICON; HIGH-PRESSURE; NANOINDENTATION; SIMULATION; BERKOVICH AB The transformation of diamond-cubic silicon to the metallic beta-Sn phase is known to be "sluggish," even when the critical pressure (similar to 11 GPa) for the transformation is reached. In this letter, we use nanoindentation to apply pressures to just above the critical threshold. In this regime, the sample displays purely elastic behavior at zero hold time. As the hold time at maximum load is increased up to 180 s, the percentage of indents that plastically deform also increase. Interestingly, the indents deform via one of two distinct processes: either via a phase transformation to a mixed bc8/r8-Si end phase, or by initiation of crystalline defects. Raman spectroscopy and cross-sectional transmission electron microscopy are used to show that the two deformation mechanisms are mutually exclusive under the indentation conditions presented here, and elastic modelling was utilized to propose a model for this mutually exclusive behavior. Hence, this behavior enhances the potential for application of the exotic bc8/r8-Si end phase. (C) 2015 AIP Publishing LLC. C1 [Wong, S.] Australian Natl Univ, Dept Elect Mat Engn, Res Sch Phys & Engn, Canberra, ACT 2601, Australia. [Haberl, B.] Oak Ridge Natl Lab, Neutron Sci Directorate, Chem & Engn Mat Div, Oak Ridge, TN 37781 USA. [Williams, J. S.; Bradby, J. E.] Australian Natl Univ, Dept Elect Mat Engn, Res Sch Phys & Engn, Canberra, ACT 0200, Australia. RP Wong, S (reprint author), Australian Natl Univ, Dept Elect Mat Engn, Res Sch Phys & Engn, GPO Box 4, Canberra, ACT 2601, Australia. EM Sherman.Wong@anu.edu.au RI Haberl, Bianca/F-9058-2011 OI Haberl, Bianca/0000-0002-7391-6031 FU Australian Research Council; Alvin M. Weinberg Fellowship (ORNL) - U.S. Department of Energy, Office of Basic Energy Sciences; Spallation Neutron Source (ORNL) - U.S. Department of Energy, Office of Basic Energy Sciences FX This work was performed in part at the ACT node of the Australian National Fabrication Facility, a company established under the National Collaborative Research Infrastructure Strategy to provide nano and micro-fabrication facilities for Australian researchers. We also thank the ACT node of the Australian Microscopy and Microanalysis Research Facility for use of the TEM facilities. Funding from the Australian Research Council is gratefully acknowledged. J.E.B. would like to acknowledge the Australian Research Council for a Future Fellowship and funding under the Discovery Project scheme. B.H. gratefully acknowledges funding from an Alvin M. Weinberg Fellowship (ORNL) and the Spallation Neutron Source (ORNL), sponsored by the U.S. Department of Energy, Office of Basic Energy Sciences. NR 40 TC 4 Z9 4 U1 6 U2 15 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD DEC 28 PY 2015 VL 118 IS 24 AR 245904 DI 10.1063/1.4938480 PG 6 WC Physics, Applied SC Physics GA DA1CY UT WOS:000367535100058 ER PT J AU Zhang, JL Agar, JC Martin, LW AF Zhang, Jialan Agar, Josh C. Martin, Lane W. TI Structural phase diagram and pyroelectric properties of free-standing ferroelectric/non-ferroelectric multilayer heterostructures SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID THIN-FILMS; ELASTIC-CONSTANTS; EPITAXIAL BATIO3; DEVICES; OXIDES; MGO; SI AB Ginzburg-Landau-Devonshire models are used to explore ferroelectric phases and pyroelectric coefficients of symmetric free-standing, thin-film trilayer heterostructures composed of a ferroelectric and two identical non-ferroelectric layers. Using BaTiO3 as a model ferroelectric, we explore the influence of temperature, in-plane misfit strain, and the non-ferroelectric layer (including effects of elastic compliance and volume fraction) on the phase evolution in the ferroelectric. The resulting phase diagram reveals six stable phases, two of which are not observed for thin films on semi-infinite cubic substrates. From there, we focus on heterostructures with non-ferroelectric layers of commonly available scandate materials which are widely used as substrates for epitaxial growth. Again, six phases with volatile phase boundaries are found in the phase diagram for the NdScO3/BaTiO3/NdScO3 trilayerheterostructures. The evolution of polarization and pyroelectric coefficients in the free-standing NdScO3 trilayer heterostructures is discussed with particular attention to the role that heterostructure design plays in influencing the phase evolution and temperature-dependence with a goal of creating enhanced pyroelectric response and advantages over traditional thin-film heterostructures. (C) 2015 AIP Publishing LLC. C1 [Zhang, Jialan; Agar, Josh C.; Martin, Lane W.] Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA. [Zhang, Jialan; Agar, Josh C.; Martin, Lane W.] Univ Illinois, Mat Res Lab, Urbana, IL 61801 USA. [Zhang, Jialan] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. [Agar, Josh C.; Martin, Lane W.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Martin, Lane W.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Zhang, JL (reprint author), Univ Illinois, Dept Mat Sci & Engn, 1304 W Green St, Urbana, IL 61801 USA. RI Martin, Lane/H-2409-2011 OI Martin, Lane/0000-0003-1889-2513 FU National Science Foundation [CMMI-1434147, DMR-1451219]; Army Research Office [W911NF-14-1-0104] FX J.Z. acknowledges support from the National Science Foundation under grant CMMI-1434147, J. C. A. acknowledges support from the National Science Foundation under grant DMR-1451219, and L. W. M. acknowledges support from the Army Research Office under grant W911NF-14-1-0104. NR 38 TC 0 Z9 0 U1 5 U2 18 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD DEC 28 PY 2015 VL 118 IS 24 AR 244101 DI 10.1063/1.4938116 PG 8 WC Physics, Applied SC Physics GA DA1CY UT WOS:000367535100017 ER PT J AU Macaluso, DA Aguilar, A Kilcoyne, ALD Red, EC Bilodeau, RC Phaneuf, RA Sterling, NC McLaughlin, BM AF Macaluso, D. A. Aguilar, A. Kilcoyne, A. L. D. Red, E. C. Bilodeau, R. C. Phaneuf, R. A. Sterling, N. C. McLaughlin, B. M. TI Absolute single-photoionization cross sections of Se2+: Experiment and theory SO PHYSICAL REVIEW A LA English DT Article ID NEUTRON-CAPTURE ELEMENTS; ATOMIC DATA; PLANETARY-NEBULAE; ABUNDANCE DETERMINATIONS; IONS; SPECTROSCOPY; EXCITATION; SELENIUM; IMPACT; STATES AB Absolute single-photoionization cross-section measurements for Se2+ ions were performed at the Advanced Light Source at Lawrence Berkeley National Laboratory using the merged-beams photo-ion technique. Measurements were made at a photon energy resolution of 24 +/- 3 meV in the photon energy range 23.5-42.5 eV, spanning the ground state and low-lying metastable state ionization thresholds. To clearly resolve the resonant structure near the ground-state threshold, high-resolution measurements were made from 30.0 to 31.9 eV at a photon energy resolution of 6.7 +/- 0.7 meV. Numerous resonance features observed in the experimental spectra are assigned and their energies and quantum defects tabulated. The high-resolution cross-section measurements are compared with large-scale, state-of-the-art theoretical cross-section calculations obtained from the Dirac Coulomb R-matrix method. Suitable agreement is obtained over the entire photon energy range investigated. These results are an experimental determination of the absolute photoionization cross section of doubly ionized selenium and include a detailed analysis of the photoionization resonance spectrum of this ion. C1 [Macaluso, D. A.] Univ Montana, Dept Phys & Astron, Missoula, MT 59812 USA. [Aguilar, A.; Kilcoyne, A. L. D.; Red, E. C.; Bilodeau, R. C.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Bilodeau, R. C.] Western Michigan Univ, Dept Phys, Kalamazoo, MI 49008 USA. [Phaneuf, R. A.] Univ Nevada, Dept Phys, Reno, NV 89557 USA. [Sterling, N. C.] Univ West Georgia, Dept Phys, Carrollton, GA 30118 USA. [McLaughlin, B. M.] Queens Univ Belfast, CTAMOP, Sch Math & Phys, Belfast BT7 1NN, Antrim, North Ireland. [McLaughlin, B. M.] Harvard Smithsonian Ctr Astrophys, ITAMP, Cambridge, MA 02138 USA. RP Macaluso, DA (reprint author), Univ Montana, Dept Phys & Astron, Missoula, MT 59812 USA. EM david.macaluso@umontana.edu; bmclaughlin899@btinternet.com RI Kilcoyne, David/I-1465-2013 FU Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy (DOE) [DE-AC02-05CH11231, DE-AC03-76SF- 00098, DE-FG02-03ER15424]; Advanced Light Source; Montana Space Grant Consortium; NSF Astronomy and Astrophysics Postdoctoral Fellowship [AST-0901432]; NASA [06-APRA206-0049]; U.S. National Science Foundation under the visitors program; Harvard-Smithsonian Center for Astrophysics, Queen's University Belfast, through a visiting research fellowship (VRF); National Energy Research Scientific Computing Center [DE-AC02-05CH11231]; Oak Ridge National Laboratory [AC05-00OR22725] FX Support by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy (DOE) under Contracts No. DE-AC02-05CH11231 and No. DE-AC03-76SF- 00098 and Grant No. DE-FG02-03ER15424 is gratefully acknowledged. D.M. acknowledges support from the Doctoral Fellowship in Residence Program at the Advanced Light Source and the Montana Space Grant Consortium. N.C.S. acknowledges support from an NSF Astronomy and Astrophysics Postdoctoral Fellowship under Award No. AST-0901432 and from NASA Grant No. 06-APRA206-0049. B.M.M. acknowledges support by the U.S. National Science Foundation under the visitors program and through a grant to ITAMP at the Harvard-Smithsonian Center for Astrophysics, Queen's University Belfast, through a visiting research fellowship (VRF). This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the DOE under Contract No. DE-AC02-05CH11231. The computational work was performed at the National Energy Research Scientific Computing Center in Oakland, California, USA, and at The High Performance Computing Center Stuttgart (HLRS), University of Stuttgart, Stuttgart, Germany. This research also used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of the DoE under Contract No. DE-AC05-00OR22725. NR 55 TC 3 Z9 3 U1 0 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 EI 1094-1622 J9 PHYS REV A JI Phys. Rev. A PD DEC 28 PY 2015 VL 92 IS 6 AR 063424 DI 10.1103/PhysRevA.92.063424 PG 11 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA CZ8TD UT WOS:000367371100017 ER PT J AU Blanco-Roldan, C Choi, Y Quiros, C Valvidares, SM Zarate, R Velez, M Alameda, JM Haskel, D Martin, JI AF Blanco-Roldan, C. Choi, Y. Quiros, C. Valvidares, S. M. Zarate, R. Velez, M. Alameda, J. M. Haskel, D. Martin, J. I. TI Tuning interfacial domain walls in GdCo/Gd/GdCo ' spring magnets SO PHYSICAL REVIEW B LA English DT Article ID AMORPHOUS GD-CO; MAGNETIZATION PROCESSES; TEMPERATURE; DEPENDENCE; FILMS AB Spring magnets based on GdCo multilayers have been prepared to study the nucleation and evolution of interfacial domain walls (iDWs) depending on layer composition and interlayer coupling. GdCo alloy compositions in each layer were chosen so that their net magnetization aligns either with the Gd (Gd35Co65) or Co(Gd11Co89) sublattices. This condition forces an antiparallel arrangement of the layers' net magnetization and leads to nucleation of iDWs above critical magnetic fields whose values are dictated by the interplay between Zeeman and exchange energies. By combining x-ray resonant magnetic scattering with Kerr magnetometry, we provide detailed insight into the nucleation and spatial profile of the iDWs. For strong coupling (GdCo/GdCo' bilayer), iDWs are centered at the interface but with asymmetric width depending on each layer magnetization. When interlayer coupling is weakened by introducing a thin Gd interlayer, the exchange spring effect becomes restricted to a lower temperature and field range than observed in the bilayer structure. Due to the ferromagnetic alignment between the high magnetization Gd35Co65 layer and the Gd interlayer, the iDW shrinks and moves into the lower exchange Gd interlayer, causing a reduction of iDW energy. C1 [Blanco-Roldan, C.; Quiros, C.; Zarate, R.; Velez, M.; Alameda, J. M.; Martin, J. I.] Univ Oviedo, Dept Fis, E-33007 Oviedo, Spain. [Blanco-Roldan, C.; Quiros, C.; Velez, M.; Alameda, J. M.; Martin, J. I.] Univ Oviedo, CSIC, CINN, El Entrego 33940, Spain. [Choi, Y.; Haskel, D.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Valvidares, S. M.] ALBA Synchrotron Light Facil, Barcelona 08290, Spain. RP Blanco-Roldan, C (reprint author), Univ Oviedo, Dept Fis, E-33007 Oviedo, Spain. EM jmartin@uniovi.es RI Martin, Jose/C-5250-2013; Velez, Maria/A-2734-2012; Quiros, Carlos/E-5669-2016; Valvidares, Secundino /M-4979-2016 OI Martin, Jose/0000-0003-2256-0909; Velez, Maria/0000-0003-0311-7434; Quiros, Carlos/0000-0002-0591-5563; Valvidares, Secundino /0000-0003-4895-8114 FU Spanish Ministerio de Economia y Competitividad (MINECO) [FIS2013-45469]; Spanish Ministerio de Ciencia e Innovacion (MICINN) [FIS2008-06249]; U.S. Department of Energy, Office of Science [DE-AC02-06CH11357] FX Work supported by Spanish Ministerio de Economia y Competitividad (MINECO) under grant FIS2013-45469 and Spanish Ministerio de Ciencia e Innovacion (MICINN) under grant FIS2008-06249. Work at Argonne was supported by the U.S. Department of Energy, Office of Science, under Contract No. DE-AC02-06CH11357. Advices for using the PPM software and code updates from A. Mirone are acknowledged. L. F. Seivane is acknowledged for support with Phyton package. Useful discussions with A. Hoffmann and S.G.E. te Velthuis are also acknowledged. NR 32 TC 0 Z9 0 U1 2 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD DEC 28 PY 2015 VL 92 IS 22 AR 224433 DI 10.1103/PhysRevB.92.224433 PG 10 WC Physics, Condensed Matter SC Physics GA CZ8UV UT WOS:000367375500007 ER PT J AU Norman, MR AF Norman, M. R. TI Vector optical activity in the Weyl semimetal TaAs SO PHYSICAL REVIEW B LA English DT Article ID NATURAL CIRCULAR-DICHROISM; FERMION SEMIMETAL; CRYSTALS; ARCS AB It is shown that the Weyl semimetal TaAs can have a significant polar vector contribution to its optical activity. This is quantified by ab initio calculations of the resonant x-ray diffraction at the Ta L1 edge. For the Bragg vector (400), this polar vector contribution to the circular intensity differential between left and right polarized x rays is predicted to be comparable to that arising from linear dichroism, which could be tested by future experiments. Implications this result has in regards to optical effects predicted for topological Weyl semimetals are discussed. C1 [Norman, M. R.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Norman, MR (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. RI Norman, Michael/C-3644-2013 FU Materials Sciences and Engineering Division, Basic Energy Sciences, Office of Science, U.S. DOE FX This work was supported by the Materials Sciences and Engineering Division, Basic Energy Sciences, Office of Science, U.S. DOE. NR 27 TC 0 Z9 0 U1 6 U2 20 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD DEC 28 PY 2015 VL 92 IS 24 AR 241116 DI 10.1103/PhysRevB.92.241116 PG 5 WC Physics, Condensed Matter SC Physics GA CZ8WD UT WOS:000367378900001 ER PT J AU Reichhardt, C Reichhardt, CJO AF Reichhardt, C. Reichhardt, C. J. Olson TI Shapiro steps for skyrmion motion on a washboard potential with longitudinal and transverse ac drives SO PHYSICAL REVIEW B LA English DT Article ID MOVING VORTEX LATTICE; CHARGE-DENSITY WAVES; MODE-LOCKING; QUANTUM INTERFERENCE; MAGNETIC SKYRMIONS; ROOM-TEMPERATURE; DC INTERFERENCE; CHIRAL MAGNET; PHASE-LOCKING; DYNAMICS AB We numerically study the behavior of two-dimensional skyrmions in the presence of a quasi-one-dimensional sinusoidal substrate under the influence of externally applied dc and ac drives. In the overdamped limit, when both dc and ac drives are aligned in the longitudinal direction parallel to the direction of the substrate modulation, the velocity-force curves exhibit classic Shapiro step features when the frequency of the ac drive matches the washboard frequency that is dynamically generated by the motion of the skyrmions over the substrate, similar to previous observations in superconducting vortex systems. In the case of skyrmions, the additional contribution to the skyrmion motion from a nondissipative Magnus force shifts the location of the locking steps to higher dc drives, and we find that the skyrmions move at an angle with respect to the direction of the dc drive. For a longitudinal dc drive and a perpendicular or transverse ac drive, the overdamped system exhibits no Shapiro steps; however, when a finite Magnus force is present, we find pronounced transverse Shapiro steps along with complex two-dimensional periodic orbits of the skyrmions in the phase-locked regimes. Both the longitudinal and transverse ac drives produce locking steps whose widths oscillate with increasing ac drive amplitude. We examine the role of collective skyrmion interactions and find that additional fractional locking steps occur for both longitudinal and transverse ac drives. At higher skyrmion densities, the system undergoes a series of dynamical order-disorder transitions, with the skyrmions forming a moving solid on the phase locking steps and a fluctuating dynamical liquid in regimes between the steps. C1 [Reichhardt, C.; Reichhardt, C. J. Olson] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Reichhardt, C (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. OI Reichhardt, Cynthia/0000-0002-3487-5089 FU NNSA of the U.S. DoE at LANL [DE-AC52-06NA25396] FX This work was carried out under the auspices of the NNSA of the U.S. DoE at LANL under Contract No. DE-AC52-06NA25396. NR 64 TC 9 Z9 9 U1 1 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD DEC 28 PY 2015 VL 92 IS 22 AR 224432 DI 10.1103/PhysRevB.92.224432 PG 11 WC Physics, Condensed Matter SC Physics GA CZ8UV UT WOS:000367375500006 ER PT J AU Schneeloch, JA Xu, ZJ Winn, B Stock, C Gehring, PM Birgeneau, RJ Xu, GY AF Schneeloch, John A. Xu, Zhijun Winn, B. Stock, C. Gehring, P. M. Birgeneau, R. J. Xu, Guangyong TI Phonon coupling to dynamic short-range polar order in a relaxor ferroelectric near the morphotropic phase boundary SO PHYSICAL REVIEW B LA English DT Article ID ELASTIC NEUTRON-SCATTERING; DIFFUSE-SCATTERING; SINGLE-CRYSTALS; PBMG1/3NB2/3O3; PB(MG1/3NB2/3)O-3; TRANSITIONS; FREQUENCIES; ANOMALIES; SYSTEMS AB We report neutron inelastic scattering experiments on single-crystal PbMg1/3Nb2/3O3 doped with 32% PbTiO3, a relaxor ferroelectric that lies close to the morphotropic phase boundary. When cooled under an electric field E parallel to [001] into tetragonal and monoclinic phases, the scattering cross section from transverse acoustic (TA) phonons polarized parallel to E weakens and shifts to higher energy relative to that under zero-field-cooled conditions. Likewise, the scattering cross section from transverse optic (TO) phonons polarized parallel to E weakens for energy transfers 4 <= (h) over bar omega <= 9 meV. However, TA and TO phonons polarized perpendicular to E show no change. This anisotropic field response is similar to that of the diffuse scattering cross section, which, as previously reported, is suppressed when polarized parallel to E but not when polarized perpendicular to E. Our findings suggest that the lattice dynamics and dynamic short-range polar correlations that give rise to the diffuse scattering are coupled. C1 [Schneeloch, John A.; Xu, Guangyong] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Schneeloch, John A.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Xu, Zhijun; Birgeneau, R. J.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Xu, Zhijun; Birgeneau, R. J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Winn, B.] Oak Ridge Natl Lab, Quantum Condensed Matter Div, Oak Ridge, TN 37831 USA. [Stock, C.] Univ Edinburgh, Sch Phys & Astron, Edinburgh EH9 3JZ, Midlothian, Scotland. [Gehring, P. M.] NIST, NIST Ctr Neutron Res, Gaithersburg, MD 20899 USA. RP Schneeloch, JA (reprint author), Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. EM jschneeloch@bnl.gov RI Xu, Guangyong/A-8707-2010 OI Xu, Guangyong/0000-0003-1441-8275 FU Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy; Office of Basic Energy Sciences, US Department of Energy [DE-SC00112704, DE-AC02-05CH11231]; Carnegie Trust for the Universities of Scotland; Royal Society FX This research at Oak Ridge National Laboratory's Spallation Neutron Source was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy. J.A.S. and G.Y.X. acknowledge support by the Office of Basic Energy Sciences, US Department of Energy, under Contract No. DE-SC00112704. Z.J.X. and R.J.B. are also supported by the Office of Basic Energy Sciences, US Department of Energy, through Contract No. DE-AC02-05CH11231. C.S. acknowledges the support of the Carnegie Trust for the Universities of Scotland and the Royal Society. The identification of any commercial product or trade name does not imply endorsement or recommendation by the National Institute of Standards and Technology. NR 70 TC 0 Z9 0 U1 2 U2 18 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD DEC 28 PY 2015 VL 92 IS 21 AR 214302 DI 10.1103/PhysRevB.92.214302 PG 8 WC Physics, Condensed Matter SC Physics GA CZ8UI UT WOS:000367374200005 ER PT J AU Xu, J Anand, VK Bera, AK Frontzek, M Abernathy, DL Casati, N Siemensmeyer, K Lake, B AF Xu, J. Anand, V. K. Bera, A. K. Frontzek, M. Abernathy, D. L. Casati, N. Siemensmeyer, K. Lake, B. TI Magnetic structure and crystal-field states of the pyrochlore antiferromagnet Nd2Zr2O7 SO PHYSICAL REVIEW B LA English DT Article ID SPIN-ICE; HEAT-CAPACITY; MONOPOLES; ND2MO2O7; HO2TI2O7; OXIDES; MODEL AB We present synchrotron x-ray diffraction, neutron powder diffraction, and time-of-flight inelastic neutron scattering measurements on the rare earth pyrochlore oxide Nd2Zr2O7 to study the ordered state magnetic structure and cystal-field states. The structural characterization by high-resolution synchrotron x-ray diffraction confirms that the pyrochlore structure has no detectable O vacancies or Nd/Zr site mixing. The neutron diffraction reveals long-range all-in/all-out antiferromagnetic order below T-N approximate to 0.4 K with propagation vector k = (0 0 0) and an ordered moment of 1.26(2) mu(B)/Nd at 0.1 K. The ordered moment is much smaller than the estimated moment of 2.65 mu(B)/Nd for the local < 111 > Ising ground state of Nd3+ (J = 9/2) suggesting that the ordering is partially suppressed by quantum fluctuations. The inelastic neutron scattering experiment further confirms the Ising anisotropic ground state of Nd3+ and also reveals its dipolar-octupolar character which possibly induces the quantum fluctuation. The crystal-field level scheme and ground state wave function have been determined. C1 [Xu, J.; Anand, V. K.; Bera, A. K.; Siemensmeyer, K.; Lake, B.] Helmholtz Zentrum Berlin Mat & Energie GmbH, D-14109 Berlin, Germany. [Xu, J.; Lake, B.] Tech Univ Berlin, Inst Festkorperphys, D-10623 Berlin, Germany. [Bera, A. K.] Bhabha Atom Res Ctr, Div Solid State Phys, Bombay 400085, Maharashtra, India. [Frontzek, M.; Casati, N.] Paul Scherrer Inst, CH-5232 Villigen, Switzerland. [Abernathy, D. L.] Oak Ridge Natl Lab, Neutron Sci Directorate, Quantum Condensed Matter Div, Oak Ridge, TN 37831 USA. RP Xu, J (reprint author), Helmholtz Zentrum Berlin Mat & Energie GmbH, Hahn Meitner Pl 1, D-14109 Berlin, Germany. EM jianhui.xu@helmholtz-berlin.de; vivekkranand@gmail.com; bella.lake@helmholtz-berlin.de RI Abernathy, Douglas/A-3038-2012; Anand, Vivek Kumar/J-3381-2013; Frontzek, Matthias/C-5146-2012; BL18, ARCS/A-3000-2012; Bera, Anup Kumar /K-6477-2015 OI Lake, Bella/0000-0003-0034-0964; Abernathy, Douglas/0000-0002-3533-003X; Anand, Vivek Kumar/0000-0003-2023-7040; Frontzek, Matthias/0000-0001-8704-8928; Bera, Anup Kumar /0000-0003-0222-0990 FU Helmholtz Gemeinschaft via the Helmholtz Virtual Institute [VH-VI-521]; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy FX We thank A. T. M. N. Islam for his help in sample preparation, B. Klemke for his assistance in measurements using PPMS, F. Yokaichiya for his help in refining XRD data, A. T. Boothroyd for help on crystal-field analysis, and Y.-P. Huang and M. Hermele for helpful discussions on the related theory. We acknowledge Helmholtz Gemeinschaft for funding via the Helmholtz Virtual Institute (Project No. VH-VI-521). The research at ORNL's Spallation Neutron Source was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. NR 48 TC 12 Z9 12 U1 5 U2 34 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD DEC 28 PY 2015 VL 92 IS 22 AR 224430 DI 10.1103/PhysRevB.92.224430 PG 12 WC Physics, Condensed Matter SC Physics GA CZ8UV UT WOS:000367375500004 ER PT J AU Perez, RN Amaro, JE Arriola, ER Maris, P Vary, JP AF Navarro Perez, R. Amaro, J. E. Ruiz Arriola, E. Maris, P. Vary, J. P. TI Statistical error propagation in ab initio no-core full configuration calculations of light nuclei SO PHYSICAL REVIEW C LA English DT Article AB We propagate the statistical uncertainty of experimental NN scattering data into the binding energy of H-3 and He-4. We also study the sensitivity of the magnetic moment and proton radius of the H-3 to changes in the NN interaction. The calculations are made with the no-core full configuration method in a sufficiently large harmonic oscillator basis. For those light nuclei we obtain Delta E-stat(H-3) = 0.015 MeV and Delta E-stat(He-4) = 0.055 MeV. C1 [Navarro Perez, R.] Lawrence Livermore Natl Lab, Nucl & Chem Sci Div, Livermore, CA 94551 USA. [Amaro, J. E.; Ruiz Arriola, E.] Univ Granada, Dept Fis Atom Mol & Nucl, E-18071 Granada, Spain. [Amaro, J. E.; Ruiz Arriola, E.] Univ Granada, Inst Carlos I Fis Teor & Computac, E-18071 Granada, Spain. [Maris, P.; Vary, J. P.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Perez, RN (reprint author), Lawrence Livermore Natl Lab, Nucl & Chem Sci Div, Livermore, CA 94551 USA. EM navarroperez1@llnl.gov; amaro@ugr.es; earriola@ugr.es; pmaris@iastate.edu; jvary@iastate.edu RI Ruiz Arriola, Enrique/A-9388-2015; Amaro, Jose/K-2551-2012 OI Ruiz Arriola, Enrique/0000-0002-9570-2552; Amaro, Jose/0000-0002-3234-9755 FU US Department of Energy [DESC0008485, DE-FG02-87ER40371]; US National Science Foundation [0904782]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]; Spanish DGI [FIS2014-29386-P]; Junta de Andalucia [FQM225]; U.S. Department of Energy [DE-AC52-07NA27344] FX This work was supported by the US Department of Energy under Grants No. DESC0008485 (SciDAC/NUCLEI) and No. DE-FG02-87ER40371, and by the US National Science Foundation under Grant No. 0904782. Computational resources were provided by the National Energy Research Supercomputer Center (NERSC), which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. This work was also supported by Spanish DGI (Grant FIS2014-29386-P) and Junta de Andalucia (Grant FQM225). This work was partly performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. NR 29 TC 5 Z9 5 U1 2 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 EI 1089-490X J9 PHYS REV C JI Phys. Rev. C PD DEC 28 PY 2015 VL 92 IS 6 AR 064003 DI 10.1103/PhysRevC.92.064003 PG 6 WC Physics, Nuclear SC Physics GA CZ8WN UT WOS:000367379900001 ER PT J AU Berlin, A Hooper, D McDermott, SD AF Berlin, Asher Hooper, Dan McDermott, Samuel D. TI Dark matter elastic scattering through Higgs loops SO PHYSICAL REVIEW D LA English DT Article ID GALACTIC-CENTER; EMISSION AB We consider a complete list of simplified models in which Majorana dark matter particles annihilate at tree level to hh or hZ final states and calculate the loop-induced elastic scattering cross section with nuclei in each case. Expressions for these annihilation and elastic scattering cross sections are provided and can be easily applied to a variety of UV-complete models. We identify several phenomenologically viable scenarios, including dark matter that annihilates through the s-channel exchange of a spin-zero mediator or through the t-channel exchange of a fermion. Although the elastic scattering cross sections predicted in this class of models are generally quite small, XENON1T and LZ should be sensitive to significant regions of this parameter space. Models in which the dark matter annihilates to hh or hZ can also generate a gamma-ray signal that is compatible with the excess observed from the Galactic center. C1 [Berlin, Asher] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. [Hooper, Dan] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. [Hooper, Dan] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [McDermott, Samuel D.] SUNY Stony Brook, CN Yang Inst Theoret Phys, Stony Brook, NY 11794 USA. RP Berlin, A (reprint author), Univ Chicago, Dept Phys, Chicago, IL 60637 USA. FU Kavli Institute for Cosmological Physics at the University of Chicago through National Science Foundation [PHY-1125897]; U.S. Department of Energy [DE-FG02-13ER41958, DE-AC02-07CH11359]; National Science Foundation [PHY-1066293, PHY-1316617] FX We would like to thank Mikhail Solon and Richard Hill for helpful discussions. A. B. is supported by the Kavli Institute for Cosmological Physics at the University of Chicago through National Science Foundation Grant No. PHY-1125897. D. H. is supported by the U.S. Department of Energy under Contract No. DE-FG02-13ER41958. Fermilab is operated by Fermi Research Alliance, LLC, under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy. This work was performed in part at the Aspen Center for Physics, which is supported by National Science Foundation Grant No. PHY-1066293. S.D.M. is supported by National Science Foundation Grant No. PHY-1316617. NR 71 TC 5 Z9 5 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD DEC 28 PY 2015 VL 92 IS 12 AR 123531 DI 10.1103/PhysRevD.92.123531 PG 19 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CZ8XC UT WOS:000367381400002 ER PT J AU Hirono, Y Kharzeev, DE Yin, Y AF Hirono, Yuji Kharzeev, Dmitri E. Yin, Yi TI Self-similar inverse cascade of magnetic helicity driven by the chiral anomaly SO PHYSICAL REVIEW D LA English DT Article ID HEAVY-ION COLLISIONS; QUANTUM-FIELD THEORY; ELECTROMAGNETIC-FIELD; TRANSPORT AB For systems with charged chiral fermions, the imbalance of chirality in the presence of magnetic field generates an electric current-this is the chiral magnetic effect (CME). We study the dynamical real-time evolution of electromagnetic fields coupled by the anomaly to the chiral charge density and the CME current by solving the Maxwell-Chern-Simons equations. We find that the CME induces the inverse cascade of magnetic helicity toward the large distances, and that at late times this cascade becomes self-similar, with universal exponents. We also find that in terms of gauge field topology the inverse cascade represents the transition from linked electric and magnetic fields (Hopfions) to the knotted configuration of magnetic field (Chandrasekhar-Kendall states). The magnetic reconnections are accompanied by the pulses of the CME current directed along the magnetic field lines. We devise an experimental signature of these phenomena in heavy ion collisions, and speculate about implications for condensed matter systems. C1 [Hirono, Yuji; Kharzeev, Dmitri E.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Kharzeev, Dmitri E.; Yin, Yi] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Kharzeev, Dmitri E.] Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. RP Hirono, Y (reprint author), SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. FU U.S. Department of Energy [DE-FG-88ER40388]; DOE [DE-SC0012704]; JSPS Research Fellowship for Young Scientists FX We thank Larry McLerran, Soren Schlichting, Paul Wiegmann, Aihong Tang, and Ho-Ung Yee for useful discussions, Roman Jackiw for helpful comments on the manuscript and Carlos Hoyos for communication on the spectral representation of the Hopfion solution. This work was supported by the U.S. Department of Energy under Contract No. DE-FG-88ER40388 (D.K.) and by DOE Grant No. DE-SC0012704 (D.K and Y.Y.). Y.H. is supported by the JSPS Research Fellowship for Young Scientists. NR 34 TC 10 Z9 10 U1 4 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD DEC 28 PY 2015 VL 92 IS 12 DI 10.1103/PhysRevD.92.125031 PG 10 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CZ8XC UT WOS:000367381400006 ER PT J AU Sullivan, JT Mcgee, TJ Thompson, AM Pierce, RB Sumnicht, GK Twigg, L Eloranta, E Hoff, RM AF Sullivan, John T. Mcgee, Thomas J. Thompson, Anne M. Pierce, R. Bradley Sumnicht, Grant K. Twigg, LaurenceW. Eloranta, Edwin Hoff, Raymond M. TI Characterizing the lifetime and occurrence of stratospheric-tropospheric exchange events in the rockymountain region using high-resolution ozone measurements SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID POTENTIAL VORTICITY; NORTHERN-HEMISPHERE; LOW SYSTEMS; TROPOPAUSE; CLIMATOLOGY; LIDAR; INTRUSIONS; TRANSPORT; EUROPE; IMPACT AB The evolution of a Stratospheric-Tropospheric Exchange (STE) event from 4 to 8 August 2014 at Fort Collins, Colorado, is described. The event is characterized with observations from the Goddard Space Flight Center TROPospheric OZone (TROPOZ) Differential Absorption Lidar, the University of Wisconsin High Spectral Resolution Lidar, and multiple ozonesondes during NASA's Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality and the Front Range Air Pollution and Photochemistry Experiment (FRAPPE) campaigns. Based on the extended TROPOZ observations throughout the entire campaign, it was found that STE events have largely contributed to an additional 10-30 ppbv of ozone at Fort Collins. Additional measurements of ozone and relative humidity from the Atmospheric Infrared Sounder are characterize the transport of the intrusion. The Real-time Air Quality Modeling System simulated ozone agrees well with the TROPOZ ozone concentrations and altitude during the STE event. To extend the analysis into other seasons and years, the modeled ozone to potential vorticity ratio is used as a tracer for stratospheric air residing below the tropopause. It is found that at Fort Collins, CO, and depending on season from 2012 to 2014, between 18 and 31% of tropospheric ozone corresponds to stratospheric air. A relationship to determine the lifetime of stratospheric air below the tropopause is derived using the simulated ratio tracer. Results indicate that throughout summer 2014, 43% of stratospheric air resided below the tropopause for less than 12 h. However, nearly 39% persisted below the tropopause for 12-48 h and likely penetrated deeper in the troposphere. C1 [Sullivan, John T.; Mcgee, Thomas J.] NASA, Goddard Space Flight Ctr, Atmospher Chem & Dynam Lab, Greenbelt, MD USA. [Sullivan, John T.] Oak Ridge Associated Univ, Oak Ridge, TN USA. [Thompson, Anne M.] NASA, Goddard Space Flight Ctr, Div Earth Sci, Greenbelt, MD USA. [Pierce, R. Bradley] NOAA NESDIS Ctr Satellite Applicat & Res Cooperat, Adv Satellite Prod Branch, Ctr Satellite Applicat & Res, Madison, WI USA. [Sumnicht, Grant K.; Twigg, LaurenceW.] Sci Syst & Applicat Inc, Lanham, MD USA. [Eloranta, Edwin] Univ Wisconsin, Ctr Space Sci & Engn, Madison, WI 53706 USA. [Hoff, Raymond M.] Univ Maryland Baltimore Cty, Dept Atmospher Sci, Baltimore, MD 21228 USA. [Hoff, Raymond M.] Joint Ctr Earth Syst Technol, Baltimore, MD USA. RP Sullivan, JT (reprint author), NASA, Goddard Space Flight Ctr, Atmospher Chem & Dynam Lab, Greenbelt, MD USA. EM john.t.sullivan@nasa.gov RI Pierce, Robert Bradley/F-5609-2010; Thompson, Anne /C-3649-2014 OI Pierce, Robert Bradley/0000-0002-2767-1643; Thompson, Anne /0000-0002-7829-0920 FU UMBC/JCE [8306, 374]; Maryland Department of the Environment (MDE) [U00P4400079]; NOAA-CREST CCNY Foundation [49173B-02]; National Aeronautics and Space Administration; NASA DISCOVER AQ grant [NNX10ARG]; Colorado Department of Public Health and Environment (CDPHE); NASA Postdoctoral Program; NASA HQ; NASA Tropospheric Chemistry Program; Tropospheric Ozone Lidar Network (TOLNet); Pennsylvania State University FX Unless otherwise noted, all data used in this study can be found in the DISCOVER-AQ/FRAPPE data archive (http://www-air.larc.nasa.gov/missions/discover-aq), the TOLNet data archive (http://www-air.larc.nasa.gov/missions/TOLNet), or the RAQMS data archive (http://raqms.ssec.wisc.edu). This work was supported by UMBC/JCET (Task 374, Project 8306), the Maryland Department of the Environment (MDE, contract U00P4400079), NOAA-CREST CCNY Foundation (subcontract 49173B-02), and the National Aeronautics and Space Administration. The Platteville Nittany Atmospheric Trailer and Integrated Validation Experiment (NATIVE) operations were sponsored by NASA DISCOVER AQ grant NNX10ARG and the Pennsylvania State University. The University of Wisconsin HSRL operations were supported from the Colorado Department of Public Health and Environment (CDPHE). This research was supported by an appointment to the NASA Postdoctoral Program at the Goddard Space Flight Center. The authors gratefully acknowledge support provided by NASA HQ, the NASA Tropospheric Chemistry Program, and the Tropospheric Ozone Lidar Network (TOLNet). Thanks to the NOAA Air Resources Laboratory (ARL) for the provision of the HYSPLIT transport and dispersion model and thanks to the Cooperative Institute for Mesoscale Meteorological Studies (CIMMS) for supporting the RAQMS model runs. Thanks to the helpfulness and expertise of Ryan Stauffer, Hannah Halliday, and Nikolai Balashov who worked with the NATIVE trailer at Platteville. Thanks to Debra Wicks Kollonige for providing her insight and recommendations on this work. Also, thanks to A.O. Langford for the extensive discussions on the heritage of stratospheric events. The views, opinions, and findings contained in this report are those of the author(s) and should not be construed as an official National Oceanic and Atmospheric Administration or U.S. Government position, policy, or decision. NR 40 TC 6 Z9 6 U1 4 U2 15 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD DEC 27 PY 2015 VL 120 IS 24 BP 12410 EP 12424 DI 10.1002/2015JD023877 PG 15 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DD3TU UT WOS:000369846700006 ER PT J AU Gordon, J Gandhi, P Shekhawat, G Frazier, A Hampton-Marcell, J Gilbert, JA AF Gordon, Julian Gandhi, Prasanthi Shekhawat, Gajendra Frazier, Angel Hampton-Marcell, Jarrad Gilbert, Jack A. TI A simple novel device for air sampling by electrokinetic capture SO MICROBIOME LA English DT Article DE Atomic force microscopy; Reverse transcriptase PCR; Air sampling; Field study; Aerosol; Nanoparticles; Aerobiome; Amplicon sequencing; Bacteria; Molds ID RESISTANT STAPHYLOCOCCUS-AUREUS; AIRBORNE BACTERIAL COMMUNITIES; QUANTITATIVE PCR ANALYSIS; SIZE DISTRIBUTIONS; CARE-CENTER; HOUSE-DUST; ALLERGENS; MICROBIOME; VARIABILITY; ASPERGILLUS AB Background: A variety of different sampling devices are currently available to acquire air samples for the study of the microbiome of the air. All have a degree of technical complexity that limits deployment. Here, we evaluate the use of a novel device, which has no technical complexity and is easily deployable. Results: An air-cleaning device powered by electrokinetic propulsion has been adapted to provide a universal method for collecting samples of the aerobiome. Plasma-induced charge in aerosol particles causes propulsion to and capture on a counter-electrode. The flow of ions creates net bulk airflow, with no moving parts. A device and electrode assembly have been re-designed from air-cleaning technology to provide an average air flow of 120 lpm. This compares favorably with current air sampling devices based on physical air pumping. Capture efficiency was determined by comparison with a 0.4 mu m polycarbonate reference filter, using fluorescent latex particles in a controlled environment chamber. Performance was compared with the same reference filter method in field studies in three different environments. For 23 common fungal species by quantitative polymerase chain reaction (qPCR), there was 100 % sensitivity and apparent specificity of 87 %, with the reference filter taken as "gold standard." Further, bacterial analysis of 16S RNA by amplicon sequencing showed equivalent community structure captured by the electrokinetic device and the reference filter. Unlike other current air sampling methods, capture of particles is determined by charge and so is not controlled by particle mass. We analyzed particle sizes captured from air, without regard to specific analyte by atomic force microscopy: particles at least as low as 100 nM could be captured from ambient air. Conclusions: This work introduces a very simple plug-and-play device that can sample air at a high-volume flow rate with no moving parts and collect particles down to the sub-micron range. The performance of the device is substantially equivalent to capture by pumping through a filter for microbiome analysis by quantitative PCR and amplicon sequencing. C1 [Gordon, Julian; Gandhi, Prasanthi] Inspirotec LLC, Glenview, IL 60025 USA. [Shekhawat, Gajendra] Northwestern Univ, McCormick Sch Engn & Appl Sci, Dept Mat Sci & Engn, Evanston, IL 60208 USA. [Frazier, Angel; Hampton-Marcell, Jarrad; Gilbert, Jack A.] Argonne Natl Lab, Biosci Div, Genom & Syst Biol, Argonne, IL 60439 USA. [Gilbert, Jack A.] Univ Chicago, Dept Ecol & Evolut, Chicago, IL 60637 USA. [Gilbert, Jack A.] Univ Chicago, Dept Surg, Chicago, IL 60637 USA. [Gilbert, Jack A.] Marine Biol Lab, Woods Hole, MA 02543 USA. [Gilbert, Jack A.] Zhejiang Univ, Coll Environm & Resource Sci, Hangzhou 310058, Zhejiang, Peoples R China. RP Gordon, J (reprint author), Inspirotec LLC, 3307 Meadow Lane, Glenview, IL 60025 USA. EM jgordon@inspirotec.com FU Breakout Labs; program of the Thiel Foundation; US Dept. of Energy [DE-AC02-06CH11357] FX This work was partly supported by Breakout Labs, a program of the Thiel Foundation, and partly from personal funds from Julian Gordon and Prasanthi Gandhi. The authors are grateful to MS Diana Schnell for making the equestrian facility available for this study. This work was supported in part by the US Dept. of Energy under Contract DE-AC02-06CH11357. NR 50 TC 1 Z9 1 U1 3 U2 11 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 2049-2618 J9 MICROBIOME JI Microbiome PD DEC 27 PY 2015 VL 3 AR 79 DI 10.1186/s40168-015-0141-2 PG 8 WC Microbiology SC Microbiology GA CZ7OT UT WOS:000367289400001 PM 26715467 ER PT J AU Lance, MJ Unocic, KA Haynes, JA Pint, BA AF Lance, M. J. Unocic, K. A. Haynes, J. A. Pint, B. A. TI APS TBC performance on directionally-solidified superalloy substrates with HVOF NiCoCrAlYHfSi bond coatings SO SURFACE & COATINGS TECHNOLOGY LA English DT Article DE Photo-stimulated luminescence piezospectroscopy (PLPS); Water vapor; Bond coating; Alumina scale; TBC; Directionally-solidified superalloy ID THERMAL BARRIER COATINGS; WATER-VAPOR; GAS-TURBINES; ROUGHNESS; OXIDATION; LIFETIME AB Directionally-solidified (DS) superalloy components with advanced thermal barrier coatings (TBC) to lower the metal operating temperature have the potential to replace more expensive single crystal superalloys for large land-based turbines. In order to assess relative TBC performance, furnace cyclic testing was used with superalloys 1483, X4 and Hf-rich DS 247 substrates and high velocity oxygen fuel (HVOF)-NiCoCrAlYHfSi bond coatings at 1100 degrees C with 1-h cycles in air with 10% H2O. With these coating and test conditions, there was no statistically-significant effect of substrate alloy on the average lifetime of the air plasma sprayed (APS) yttria-stabilized zirconia (YSZ) top coatings on small coupons. Using photo-stimulated luminescence piezospectroscopy maps at regular cycling intervals, the residual compressive stress in the alpha-Al2O3 scale underneath the YSZ top coating and on a bare bond coating was similar for all three substrates and delaminations occurred at roughly the same rate and frequency. X-ray fluorescence (XRF) measurements collected from the bare bond coating surface revealed higher Ti interdiffusion occurring with the 1483 substrate, which contained the highest Ti content. (C) 2015 Elsevier B.V. All rights reserved. C1 [Lance, M. J.; Unocic, K. A.; Haynes, J. A.; Pint, B. A.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Lance, MJ (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM lancem@ornl.gov RI Lance, Michael/I-8417-2016 OI Lance, Michael/0000-0001-5167-5452 FU U.S. Department of Energy, Office of Coal and Power R&D in the Office of Fossil Energy FX The authors would like to thank D. Leonard, G. Garner, T. Lowe, T. Geer and T. Jordan for the assistance with the experimental work at ORNL and E. Lara-Curzio and D. Wilson for comments on the manuscript. This research was sponsored by the U.S. Department of Energy, Office of Coal and Power R&D in the Office of Fossil Energy (R. Dennis program manager). NR 13 TC 3 Z9 3 U1 1 U2 8 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0257-8972 J9 SURF COAT TECH JI Surf. Coat. Technol. PD DEC 25 PY 2015 VL 284 BP 9 EP 13 DI 10.1016/j.surfcoat.2015.08.067 PG 5 WC Materials Science, Coatings & Films; Physics, Applied SC Materials Science; Physics GA DA5RH UT WOS:000367859700003 ER PT J AU Jang, BK Sun, JG Kim, S Oh, YS Lee, SM Kim, HT AF Jang, Byung-Koog Sun, Jiangang Kim, Seongwon Oh, Yoon-Suk Lee, Sung-Min Kim, Hyung-Tae TI Thermal conductivity of ZrO2-4 mol%Y2O3 thin coatings by pulsed thermal imaging method SO SURFACE & COATINGS TECHNOLOGY LA English DT Article DE Electron beam-physical vapor deposition; ZrO2; Y2O3; Pulsed thermal imaging method; Thermal conductivity ID PHYSICAL VAPOR-DEPOSITION; BARRIER COATINGS; EB-PVD; FLASH METHOD; ZIRCONIA; DIFFUSIVITY; POROSITY AB Thin ZrO2-4 mol% Y2O3 coatings were deposited onto ZrO2 substrates by electron beam-physical vapor deposition. The coated samples revealed a feather-like columnar microstructure. The main phase of the ZrO2-4 mol% Y2O3 coatings was the tetragonal phase. To evaluate the influence of the coating's thickness on the thermal conductivity of thin ZrO2-4 mol% Y2O3 coatings, the pulsed thermal imaging method was employed to obtain the thermal conductivity of the coating layer in the two-layer (coating and substrate) samples with thickness between 56 and 337 lam. The thermal conductivity of the coating layer was successfully evaluated and compared well with those obtained by the laser flash method for similar coatings. The thermal conductivity of coatings shows an increasing tendency with an increase in the coating's thickness. (C) 2015 Elsevier B.V. All rights reserved. C1 [Jang, Byung-Koog] Natl Inst Mat Sci, High Temp Mat Unit, Tsukuba, Ibaraki 3050047, Japan. [Sun, Jiangang] Argonne Natl Lab, Argonne, IL 60439 USA. [Kim, Seongwon; Oh, Yoon-Suk; Lee, Sung-Min; Kim, Hyung-Tae] Korea Inst Ceram Engn & Technol, Engn Ceram Team, Inchon 17303, South Korea. RP Jang, BK (reprint author), Natl Inst Mat Sci, High Temp Mat Unit, 1-2-1 Sengen, Tsukuba, Ibaraki 3050047, Japan. EM JANG.Byungkoog@nims.go.jp FU NIMS; fundamental R&D program for strategic core technology of materials - Ministry of Trade, Industry and Energy, Korea; U.S. Department of Energy, Office of Fossil Energy, the Crosscutting Research Program FX This work was carried out with financial support from NIMS and the fundamental R&D program for strategic core technology of materials funded by the Ministry of Trade, Industry and Energy, Korea. The Argonne National Laboratory work was sponsored by the U.S. Department of Energy, Office of Fossil Energy, the Crosscutting Research Program. NR 25 TC 0 Z9 0 U1 6 U2 7 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0257-8972 J9 SURF COAT TECH JI Surf. Coat. Technol. PD DEC 25 PY 2015 VL 284 BP 57 EP 62 DI 10.1016/j.surfcoat.2015.09.065 PG 6 WC Materials Science, Coatings & Films; Physics, Applied SC Materials Science; Physics GA DA5RH UT WOS:000367859700010 ER PT J AU Clark, BR Pantoya, ML Hunt, EM Kelly, TJ Allen, BF Heaps, RJ Daniels, MA AF Clark, Billy R. Pantoya, Michelle L. Hunt, Emily M. Kelly, Trent J. Allen, Benton F. Heaps, Ronald J. Daniels, Michael A. TI Synthesis and characterization of flexible, free-standing, energetic thin films SO SURFACE & COATINGS TECHNOLOGY LA English DT Article DE Energetic materials; Mechanical properties; Strength testing; Blade casting; Tape casting; Additive manufacturing; Aluminum combustion; Thermites; Thin films; Energy generation ID COMBUSTION; COMPOSITE; ALUMINUM AB This study uses blade casting methods for the synthesis of flexible, free-standing energetic films. Specifically, films include aluminum (Al) and (MoO3) powder thermites combined with potassium perchlorate (KCIO4) and silicone binder. In addition to this base composite, carbon fiber fabric reinforcement fabric has been incorporated to improve the structural integrity of the film. All films were cast at 1 mm thickness with constant percent solids to ensure consistent rheological properties. The films were ignited and flame propagation was recorded with a high speed camera. The results show that the energy propagation of the films increases with increasing mass percent KCIO4. The inclusion of carbon fiber fabric reinforcement fabric in the energetic film decreased the flame speed by 30% but maintained stable and steady energy propagation. The strengths of the films were tested to determine the effects of the carbon fiber fabric reinforcement fabric on the mechanical properties of the films. The non-reinforced film, failed upon initial loading of approximately 2.27 kg while the reinforced film maintained a load of 72.3 kg. While this method of synthesis allows manufacture of a flexible freestanding energetic film, the composition and rheology of the mixed slurry have potential as an extrusion cast energetic for additive manufacturing of energetic materials. (C) 2015 Elsevier ay. All rights reserved. C1 [Clark, Billy R.; Pantoya, Michelle L.] Texas Tech Univ, Dept Mech Engn, Lubbock, TX 79409 USA. [Heaps, Ronald J.; Daniels, Michael A.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Hunt, Emily M.; Kelly, Trent J.; Allen, Benton F.] West Texas A&M Univ, Dept Engn & Comp Sci, Canyon, TX 79016 USA. RP Pantoya, ML (reprint author), Texas Tech Univ, Dept Mech Engn, Lubbock, TX 79409 USA. EM michelle.pantoya@ttu.edu FU Army Research Office [W911NF-11-1-0439, W911NF-14-1-0250]; Idaho National Laboratory; LDRD program FX The authors are grateful for the support from the Army Research Office contract number W911NF-11-1-0439 and W911NF-14-1-0250 and encouragement from our program manager, Dr. Ralph Anthenien. Idaho National Laboratory is also gratefully acknowledged for supporting this collaborative work with internal funds via the LDRD program. NR 20 TC 0 Z9 0 U1 4 U2 10 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0257-8972 J9 SURF COAT TECH JI Surf. Coat. Technol. PD DEC 25 PY 2015 VL 284 BP 422 EP 426 DI 10.1016/j.surfcoat.2015.05.048 PG 5 WC Materials Science, Coatings & Films; Physics, Applied SC Materials Science; Physics GA DA5RH UT WOS:000367859700060 ER PT J AU Hinkle, JD Ciesielski, PN Gruchalla, K Munch, KR Donohoe, BS AF Hinkle, Jacob D. Ciesielski, Peter N. Gruchalla, Kenny Munch, Kristin R. Donohoe, Bryon S. TI Biomass accessibility analysis using electron tomography SO BIOTECHNOLOGY FOR BIOFUELS LA English DT Article DE Accessibility; Porosimetry; Tomography; Cellulose; Pretreatment; Biomass ID CLOSTRIDIUM-THERMOCELLUM; CELL-WALLS; CELLULOSE ACCESSIBILITY; LIGNOCELLULOSIC BIOMASS; PRETREATED BIOMASS; PORE-SIZE; AXIS; DECONSTRUCTION; DIGESTIBILITY; MICROFIBRILS AB Background: Substrate accessibility to catalysts has been a dominant theme in theories of biomass deconstruction. However, current methods of quantifying accessibility do not elucidate mechanisms for increased accessibility due to changes in microstructure following pretreatment. Results: We introduce methods for characterization of surface accessibility based on fine-scale microstructure of the plant cell wall as revealed by 3D electron tomography. These methods comprise a general framework, enabling analysis of image-based cell wall architecture using a flexible model of accessibility. We analyze corn stover cell walls, both native and after undergoing dilute acid pretreatment with and without a steam explosion process, as well as AFEX pretreatment. Conclusion: Image-based measures provide useful information about how much pretreatments are able to increase biomass surface accessibility to a wide range of catalyst sizes. We find a strong dependence on probe size when measuring surface accessibility, with a substantial decrease in biomass surface accessibility to probe sizes above 5-10 nm radius compared to smaller probes. C1 [Hinkle, Jacob D.; Gruchalla, Kenny; Munch, Kristin R.] Natl Renewable Energy Lab, Computat Sci Ctr, Golden, CO 80401 USA. [Ciesielski, Peter N.; Donohoe, Bryon S.] Natl Renewable Energy Lab, Biosci Ctr, Golden, CO 80401 USA. RP Donohoe, BS (reprint author), Natl Renewable Energy Lab, Biosci Ctr, 15013 Denver West Pkwy, Golden, CO 80401 USA. EM bryon.donohoe@nrel.gov FU Center for Direct Catalytic Conversion of Biomass to Biofuels (C3Bio), an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0000997]; BioEnergy Science Center (BESC); Office of Biological and Environmental Research in the US DOE Office of Science FX The 3D electron tomography imaging of cell wall architecture was supported as part of the Center for Direct Catalytic Conversion of Biomass to Biofuels (C3Bio), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Award Number DE-SC0000997. The visualization and computational analysis of accessibility was supported by the BioEnergy Science Center (BESC). BESC is a US Department of Energy (DOE) Bioenergy Research Center supported by the Office of Biological and Environmental Research in the US DOE Office of Science. We would like to thank our colleagues at the Biomass Conversion Research Laboratory at Michigan State University for providing the AFEX-pretreated materials. We thank Xiaowen Chen and Melvin Tucker for providing the original steam-exploded biomass samples. NR 42 TC 0 Z9 0 U1 8 U2 14 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1754-6834 J9 BIOTECHNOL BIOFUELS JI Biotechnol. Biofuels PD DEC 25 PY 2015 VL 8 AR 212 DI 10.1186/s13068-015-0395-8 PG 16 WC Biotechnology & Applied Microbiology; Energy & Fuels SC Biotechnology & Applied Microbiology; Energy & Fuels GA CZ5KP UT WOS:000367141600001 PM 26709354 ER PT J AU Knihtila, R Holzapfel, G Weiss, K Meilleur, F Mattos, C AF Knihtila, Ryan Holzapfel, Genevieve Weiss, Kevin Meilleur, Flora Mattos, Carla TI Neutron Crystal Structure of RAS GTPase Puts in Question the Protonation State of the GTP gamma-Phosphate SO JOURNAL OF BIOLOGICAL CHEMISTRY LA English DT Article ID GUANOSINE TRIPHOSPHATE HYDROLYSIS; FREE-ENERGY RELATIONSHIPS; CONSERVED AMINO-ACIDS; X-RAY; ACTIVATING PROTEIN; MACROMOLECULAR CRYSTALLOGRAPHY; EVOLUTIONARY TREE; TRANSITION-STATE; ATOM POSITIONS; MECHANISM AB RAS GTPase is a prototype for nucleotide-binding proteins that function by cycling between GTP and GDP, with hydrogen atoms playing an important role in the GTP hydrolysis mechanism. It is one of the most well studied proteins in the superfamily of small GTPases, which has representatives in a wide range of cellular functions. These proteins share a GTP-binding pocket with highly conserved motifs that promote hydrolysis to GDP. The neutron crystal structure of RAS presented here strongly supports a protonated gamma-phosphate at physiological pH. This counters the notion that the phosphate groups of GTP are fully deprotonated at the start of the hydrolysis reaction, which has colored the interpretation of experimental and computational data in studies of the hydrolysis mechanism. The neutron crystal structure presented here puts in question our understanding of the pre-catalytic state associated with the hydrolysis reaction central to the function of RAS and other GTPases. C1 [Knihtila, Ryan; Mattos, Carla] Northeastern Univ, Dept Chem & Chem Biol, Boston, MA 02115 USA. [Holzapfel, Genevieve; Meilleur, Flora; Mattos, Carla] N Carolina State Univ, Dept Mol & Struct Biochem, Raleigh, NC 27695 USA. [Weiss, Kevin; Meilleur, Flora] Oak Ridge Natl Lab, Biol & Soft Matter Div, Neutron Sci Directorate, Oak Ridge, TN 37831 USA. RP Mattos, C (reprint author), Northeastern Univ, Dept Chem & Chem Biol, 102 Hurtig Hall,360 Huntington Ave, Boston, MA 02115 USA. EM c.mattos@neu.edu RI Weiss, Kevin/I-4669-2013 OI Weiss, Kevin/0000-0002-6486-8007 FU National Science Foundation [CHE-0922719]; Scientific User Facilities Division, Office of Basic Energy Sciences, United States Department of Energy FX We thank Matthew Civic for assistance with x-ray data collection. Neutron data were collected at the High Flux Isotope Reactor; Oak Ridge National Laboratory; the IMAGINE beamline was supported by National Science Foundation Grant CHE-0922719, Research conducted at High Flux Isotope Reactor, Oak Ridge National Laboratory, was supported by the Scientific User Facilities Division, Office of Basic Energy Sciences, United States Department of Energy, Large scale protein expression for crystal optimization was conducted at the Center for Structural Molecular Biology, Oak Ridge National Laboratory, which is supported by the United States Department of Energy, Office of Biological and Environmental Research. NR 58 TC 3 Z9 3 U1 3 U2 5 PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA SN 0021-9258 EI 1083-351X J9 J BIOL CHEM JI J. Biol. Chem. PD DEC 25 PY 2015 VL 290 IS 52 BP 31025 EP 31036 DI 10.1074/jbc.M115.679860 PG 12 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA CZ6GK UT WOS:000367199000032 PM 26515069 ER PT J AU Hernandez, SC Wilkerson, MP Huda, MN AF Hernandez, Sarah C. Wilkerson, Marianne P. Huda, Muhammad N. TI Understanding oxygen adsorption on 9.375 at. % Ga-stabilized delta-Pu (111) surface: A DFT study SO JOURNAL OF ALLOYS AND COMPOUNDS LA English DT Article DE Density functional theory; Plutonium-gallium; Surface; Oxygen; Oxidation; Electronic structure ID ELECTRONIC-STRUCTURE; PHASE-STABILITY; AB-INITIO; PLUTONIUM; ALLOYS; TRANSFORMATIONS; METALS AB Plutonium (Pu) metal reacts rapidly in the presence of oxygen (O), resulting in an oxide layer that will eventually have an olive green rust appearance over time. Recent experimental work suggested that the incorporation of gallium (Ga) as an alloying impurity to stabilize the highly symmetric high temperature delta-phase lattice may also provide resistance against corrosion/oxidation of plutonium. In this paper, we modeled a 9.375 at. % Ga stabilized delta-Pu (111) surface and investigated adsorption of atomic O using all-electron density functional theory. Key findings revealed that the O bonded strongly to a Pu-rich threefold hollow fcc site with a chemisorption energy of -5.06 eV. Migration of the O atom to a Pu-rich environment was also highly sensitive to the surface chemistry of the Pu-Ga surface; when the initial on-surface O adsorption site included a bond to a nearest neighboring Ga atom, the O atom relaxed to a Ga deficient environment, thus affirming the O preference for Pu. Only one calculated final on-surface O adsorption site included a Ga-O bond, but this chemisorption energy was energetically unfavorable. Chemisorption energies for interstitial adsorption sites that included a Pu or Pu-Ga environment suggested that over-coordination of the O atom was energetically unfavorable as well. Electronic structure properties of the on-surface sites, illustrated by the partial density of states, implied that the Ga 4p states indirectly but strongly influenced the Pu 6d states to hybridize with the O 2p states. The Ga 4p states also weakly influenced the Pu 5f states to hybridize with the O 2p states, even though Ga was not participating in bonding with O. Published by Elsevier B.V. C1 [Hernandez, Sarah C.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. [Wilkerson, Marianne P.] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. [Huda, Muhammad N.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. RP Hernandez, SC (reprint author), Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. EM hernansc@lanl.gov OI Hernandez, Sarah/0000-0002-1432-700X FU US Department of Energy through the Los Alamos National Laboratory LDRD Program; U.S. Department of Energy [DE-AC52-06NA25396] FX This work was supported by the US Department of Energy through the Los Alamos National Laboratory LDRD Program. Los Alamos National Laboratory is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of U.S. Department of Energy (contract DE-AC52-06NA25396). S.C.H. would like to gratefully acknowledge discussions with R. Atta-Fynn (UTA), T. J. Venhaus (LANL), and P. Roussel (AWE). Computational support from the Texas Advanced Computing Center (www.tacc.utexas.edu) and the University of Texas at Arlington supercomputing facilities are also gratefully acknowledged. NR 40 TC 1 Z9 1 U1 5 U2 24 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-8388 EI 1873-4669 J9 J ALLOY COMPD JI J. Alloy. Compd. PD DEC 25 PY 2015 VL 653 BP 411 EP 421 DI 10.1016/j.jallcom.2015.08.246 PG 11 WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering GA CU1GZ UT WOS:000363270000057 ER PT J AU Raz-Yaseef, N Billesbach, DP Fischer, ML Biraud, SC Gunter, SA Bradford, JA Torn, MS AF Raz-Yaseef, Naama Billesbach, Dave P. Fischer, Marc L. Biraud, Sebastien C. Gunter, Stacey A. Bradford, James A. Torn, Margaret S. TI Vulnerability of crops and native grasses to summer drying in the US Southern Great Plains SO AGRICULTURE ECOSYSTEMS & ENVIRONMENT LA English DT Article DE Agriculture; Drought; Southern Great Plains; Wheat; Switchgrass; Prairie; NEE; GPP; Evapotranspiration ID UNITED-STATES; INTERANNUAL VARIABILITY; TALLGRASS PRAIRIE; SPRING DROUGHT; CARBON FLUXES; NET ECOSYSTEM; EXCHANGE; PRECIPITATION; GRASSLAND; CO2 AB The Southern Great Plains are characterized by a fine-scale mixture of different land-cover types, predominantly winter-wheat and grazed pasture, with relatively small areas of other crops, native prairie, and switchgrass. Recent droughts and predictions of increased drought in the Southern Great Plains, especially during the summer months, raise concern for these ecosystems. We measured ecosystem carbon and water fluxes with eddy-covariance systems over cultivated cropland for 10.years, and over lightly grazed prairie and new switchgrass fields for 2 years each. Growing-season precipitation showed the strongest control over net carbon uptake for all ecosystems, but with a variable effect: grasses (prairie and switchgrass) needed at least 350 mm of precipitation during the growing season to become net carbon sinks, while crops needed only 100 mm. In summer, high temperatures enhanced evaporation and led to higher likelihood of dry soil conditions. Therefore, summer-growing native prairie species and switchgrass experienced more seasonal droughts than spring-growing crops. For wheat, the net reduction in carbon uptake resulted mostly from a decrease in gross primary production rather than an increase in respiration. Flux measurements suggested that management practices for crops were effective in suppressing evapotranspiration and decomposition (by harvesting and removing secondary growth), and in increasing carbon uptake (by fertilizing and conserving summer soil water). In light of future projections for wetter springs and drier and warmer summers in the Southern Great Plains, our study indicates an increased vulnerability in native ecosystems and summer crops over time. (C) 2015 Elsevier B.V. C1 [Raz-Yaseef, Naama; Biraud, Sebastien C.; Torn, Margaret S.] Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA USA. [Billesbach, Dave P.] Univ Nebraska, Dept Biol Syst Engn, Lincoln, NE 68583 USA. [Fischer, Marc L.] Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA USA. [Gunter, Stacey A.; Bradford, James A.] ARS, USDA, Southern Plains Range Res Stn, Miami, FL USA. [Torn, Margaret S.] Univ Calif Berkeley, Energy & Resources Grp, Berkeley, CA 94720 USA. RP Raz-Yaseef, N (reprint author), 1 Cyclotron Rd,84R118B, Berkeley, CA 94720 USA. EM rynaama@gmail.com RI Torn, Margaret/D-2305-2015; Biraud, Sebastien/M-5267-2013; Raz Yaseef, Naama/D-3385-2015 OI Biraud, Sebastien/0000-0001-7697-933X; Raz Yaseef, Naama/0000-0002-7405-1607 FU U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research [DE-AC02-05CH11231] FX This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, Atmospheric System Research and Atmospheric Radiation Measurement Programs, under Award Number DE-AC02-05CH11231. NR 50 TC 0 Z9 0 U1 1 U2 70 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-8809 EI 1873-2305 J9 AGR ECOSYST ENVIRON JI Agric. Ecosyst. Environ. PD DEC 25 PY 2015 VL 213 BP 209 EP 218 DI 10.1016/j.agee.2015.07.021 PG 10 WC Agriculture, Multidisciplinary; Ecology; Environmental Sciences SC Agriculture; Environmental Sciences & Ecology GA CS5TL UT WOS:000362141100021 ER PT J AU Porterfield, JP Nguyen, TL Baraban, JH Buckingham, GT Troy, TP Kostko, O Ahmed, M Stanton, JF Daily, JW Ellison, GB AF Porterfield, Jessica P. Thanh Lam Nguyen Baraban, Joshua H. Buckingham, Grant T. Troy, Tyler P. Kostko, Oleg Ahmed, Musahid Stanton, John F. Daily, John W. Ellison, G. Barney TI Isomerization and Fragmentation of Cyclohexanone in a Heated Micro-Reactor SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID PHOTOELECTRON-SPECTROSCOPY; UNIMOLECULAR DECOMPOSITION; IONIZATION ENERGIES; GAS-PHASE; CYCLOPENTADIENONE; INTERMEDIATE; PYROLYSIS; SPECTRA; BOND; DISSOCIATION AB The thermal decomposition of cyclohexanone (C6H10=O) has been studied in a set of flash-pyrolysis microreactors. Decomposition of the ketone was observed when dilute samples of C6H10=O were heated to 1200 K in a continuous flow microreactor. Pyrolysis products were detected and identified by tunable VUV photoionization mass spectroscopy and by photoionization appearance thresholds. Complementary product identification was provided by matrix infrared absorption spectroscopy. Pyrolysis pressures were roughly 100 Torr, and contact times with the microreactors were roughly 100 mu s. Thermal cracking of cyclohexanone appeared to result from a variety of competing pathways, all of which open roughly simultaneously. Isomerization of cydohexanone to the enol, cydohexen-1-ol (C6H9OH), is followed by retro-Diels-Alder cleavage to CH2=CH2 and CH2=C(OH)-CH=CH2. Further isomerization of CH2=C(OH)-CH=CH2 to methyl vinyl ketone (CH3CO-CH=CH2, MVK) was also observed. Photoionization spectra identified both enols, C6H9OH and CH2=C(OH)-CH=CH2, and the ionization threshold of C6H9OH was measured to be 8.2 +/- 0.1 eV. Coupled cluster electronic structure calculations were used to establish the energetics of MVK. The heats of formation of MVK and its enol were calculated to be Delta H-f(298)(cis-CH3CO-CH=CH2) = -26.1 +/- 0.5 kcal mol(-1) and Delta H-f(298)(s-cis-1-CH2=C(OH)-CH=CH2) = -13.7 +/- 0.5 kcal mol(-1). The reaction enthalpy Delta H-rxn(298)(C6H10=O -> CH2=CH2 + s-cis-1-CH2=C(OH)-CH=CH2) is 53 +/- 1 kcal mol(-1) and Delta H-rxn(298)(C6H10=O -> CH2=CH2 + cis-CH3CO-CH=CH2) is 41 +/- 1 kcal mol(-1). At 1200 K, the products of cydohexanone pyrolysis were found to be C6H9OH, CH2=C(OH)-CH=CH2, MVK, CH2CHCH2, CO, CH2=C=O, CH3, CH2=C=CH2, CH2=CH-CH=CH2, CH2=CHCH2CH3, CH2=CH2, and HC CH. C1 [Porterfield, Jessica P.; Baraban, Joshua H.; Buckingham, Grant T.; Ellison, G. Barney] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA. [Thanh Lam Nguyen; Stanton, John F.] Univ Texas Austin, Dept Chem, Austin, TX 78712 USA. [Troy, Tyler P.; Kostko, Oleg; Ahmed, Musahid] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Daily, John W.] Univ Colorado, Dept Mech Engn, Ctr Combust & Environm Res, Boulder, CO 80309 USA. RP Ellison, GB (reprint author), Univ Colorado, Dept Chem & Biochem, Campus Box 215, Boulder, CO 80309 USA. EM barney@jila.colorado.edu RI Kostko, Oleg/B-3822-2009; Ahmed, Musahid/A-8733-2009 OI Kostko, Oleg/0000-0003-2068-4991; FU National Science Foundation [CHE-1112466, CBET-1403979]; Robert A. Welch Foundation [F-1283]; United States Department of Energy, Basic Energy Sciences [DE-FG02-07ER15884]; Office of Energy Research, Office of Basic Energy Sciences, and Chemical Sciences Division of the U.S. Department of Energy [DE-AC02- 05CH11231] FX We acknowledge support from the National Science Foundation (CHE-1112466 and CBET-1403979) for J.P.P, J.H.B., G.T.B, J.W.D., and G.B.E. J.F.S. and T.L.N. also acknowledge support from the Robert A. Welch Foundation (Grant F-1283) and the United States Department of Energy, Basic Energy Sciences (DE-FG02-07ER15884). M.A., O.K., and T.P.T. and the Advanced Light Source are supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, and Chemical Sciences Division of the U.S. Department of Energy under contract no. DE-AC02- 05CH11231. We are grateful to Dr. Aristotelis Zaras for extended discussions about the computational results for cyclohexanone pyrolysis. We are grateful for the helpful suggestions from the referees. NR 58 TC 1 Z9 2 U1 3 U2 16 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD DEC 24 PY 2015 VL 119 IS 51 BP 12635 EP 12647 DI 10.1021/acs.jpca.5b10984 PG 13 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA DA1MY UT WOS:000367561100006 PM 26617252 ER PT J AU Edri, E Frei, H AF Edri, Eran Frei, Heinz TI Charge Transport through Organic Molecular Wires Embedded in Ultrathin Insulating Inorganic Layer SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID PROTON-EXCHANGE MEMBRANES; SENSITIZED SOLAR-CELLS; CARBON-DIOXIDE; HYDROGEN-PRODUCTION; ELECTRON-TRANSFER; PHOTOCATALYTIC REDUCTION; MESOPOROUS SILICA; WATER OXIDATION; FUEL-CELLS; LIGHT AB Dense phase silica layers with thickness of a few nanometers featuring embedded organic molecular wires of type p-oligo(phenyienevinylene) are shown by visible light sensitized electrochemical measurements to transport charges across the insulating membrane. We find that such hybrid materials combination allows electronic charge transport only through the wires, while blocking molecular transport. Embodiment of the wire molecules in the silica was accomplished by atomic layer deposition under mild temperature conditions. Grown on CO oxide films:for water oxidation, with the wire molecules covalently anchored on the Oxide surface, the layer functions as a proton conducting separation Membrane. Characterization by XPS, FT-IR and STEM/DX confirms the integrity of the silica-encapsulated organic Wires,. Cyclic voltammetry with redox couple of selected potential relative to the energy-levels of the wire molecules shows that the Membrane is free of pinholes. The new type of membrane allows separation of incompatible redox reaction environments on the length stale of nanometers while enabling controlled electron transport between them. This opens up the coupling of carbon dioxide reduction with water oxidation, the essential reactions of artificial photosynthesis, in an integrated nanoscale photosystem. C1 [Edri, Eran; Frei, Heinz] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Frei, H (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. EM hmfrei@lbl.gov RI Edri, Eran/Q-9801-2016 OI Edri, Eran/0000-0003-4593-6489 FU Office of Science, Office of Basic Energy Sciences, Division of Chemical, Geological and Biosciences of the U.S. Department of Energy [DE-AC02-05CH11231]; Office of Science, Office of Basic Energy Sciences; Office of Science of the U.S. Department of Energy [DE-SC0004993] FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Division of Chemical, Geological and Biosciences of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Portions of this work (plasma enhanced atomic layer deposition, e-beam evaporation, ellipsometry), were performed as a User Project at The Molecular Foundry, Lawrence Berkeley National Laboratory, which is supported by the Office of Science, Office of Basic Energy Sciences. Electron microscopy part of this work was performed as a User Project at The National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, which is supported by the Office of Science, Office of Basic Energy Sciences. Portion of the work (XPS measurements, GAATR-FT-IR) was performed at the Joint Center for Artificial Photosynthesis, a DOE Energy Innovation Hub, supported through the Office of Science of the U.S. Department of Energy under Award No. DE-SC0004993. NR 55 TC 2 Z9 2 U1 6 U2 22 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD DEC 24 PY 2015 VL 119 IS 51 BP 28326 EP 28334 DI 10.1021/acs.jpcc.5b09994 PG 9 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA DA1NE UT WOS:000367561700011 ER PT J AU Mattoon, CM Beck, BR AF Mattoon, C. M. Beck, B. R. TI Designing a new structure for storing nuclear data Progress of the Working Party for Evaluation Cooperation subgroup #38 SO EUROPEAN PHYSICAL JOURNAL A LA English DT Article AB An international effort is underway to design a new structure for storing and using nuclear reaction data, with the goal of eventually replacing the current standard, ENDF-6 (see the formats manual at http://www.nndc.bnl.gov/csewg/docs/endf-manual.pdf). This effort, organized by the Working Party for Evaluation Cooperation, was initiated in 2012 and has resulted in a list of requirements and specifications for how the proposed new structure shall perform. The new structure will take advantage of new developments in computational tools, using a nested hierarchy to store data. The structure can be stored in text form (such as an XML file) for human readability and data sharing, or it can be stored in binary to optimize data access. In this paper, we present the progress towards completing the requirements, specifications and implementation of the new structure. C1 [Mattoon, C. M.; Beck, B. R.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Mattoon, CM (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave L-059, Livermore, CA 94550 USA. EM mattoon1@llnl.gov FU Department of Energy (Lawrence Livermore National Laboratory) [AC52-07NA27344]; Nuclear Data Program Initiative of American Recovery and Reinvestment Act (ARRA); 31 OECD/NEA FX WPEC is under the auspices of the 31 OECD/NEA databank member countries: http://www.oecd-nea.org/nea/mcnea.html. This work was performed under the auspices of Department of Energy contract No. DE-AC52-07NA27344 (Lawrence Livermore National Laboratory). The project was partly funded through the Nuclear Data Program Initiative of the American Recovery and Reinvestment Act (ARRA). NR 6 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6001 EI 1434-601X J9 EUR PHYS J A JI Eur. Phys. J. A PD DEC 24 PY 2015 VL 51 IS 12 AR 183 DI 10.1140/epja/i2015-15183-y PG 5 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA DA0AQ UT WOS:000367459500004 ER PT J AU Ahmad, MF Huff, SE Pink, J Alam, I Zhang, A Perry, K Harris, ME Misko, T Porwal, SK Oleinick, NL Miyagi, M Viswanathan, R Dealwis, CG AF Ahmad, Md Faiz Huff, Sarah E. Pink, John Alam, Intekhab Zhang, Andrew Perry, Kay Harris, Michael E. Misko, Tessianna Porwal, Suheel K. Oleinick, Nancy L. Miyagi, Masaru Viswanathan, Rajesh Dealwis, Chris Godfrey TI Identification of Non-nucleoside Human Ribonucleotide Reductase Modulators SO JOURNAL OF MEDICINAL CHEMISTRY LA English DT Article ID ALLOSTERIC REGULATION; DRUG DISCOVERY; LARGE SUBUNIT; COMPREHENSIVE MODEL; DNA-SYNTHESIS; INDUCED OLIGOMERIZATION; DIPHOSPHATE REDUCTASE; QUATERNARY STRUCTURE; ACCURATE DOCKING; STRUCTURAL BASIS AB Ribonucleotide reductase (RR) catalyzes the rate-limiting :step of,dNTP synthesis and is an established cancer target. Drugs targeting RR are mainly nucleoside in nature. In this study, we sought to identify non-nucleoside small-molecule inhibitors of RR. Using Virtual screening, binding affinity, inhibition, and cell toxicity, we have discovered a class of small molecules that alter the equilibrium of inactive hexamers of RR, leading to its inhibition. Several unique, chemical categories, including a phthalimide derivative, show micromolar IC(50)s and K(D)s while demonstrating cytotoxicity. A crystal structure of an active phthalimide binding at the, targeted interface supports the noncompetitive mode of inhibition determined by kinetic studies. Furthermore, the phthalimide shifts the equilibrium from dimer hexamer. Together, these data identify several novel non-nucleoside inhibitors of human RR which act by stabilizing the inactive form of the enzyme. C1 [Ahmad, Md Faiz; Alam, Intekhab; Zhang, Andrew; Misko, Tessianna; Dealwis, Chris Godfrey] Case Western Reserve Univ, Sch Med, Dept Pharmacol, Cleveland, OH 44106 USA. [Huff, Sarah E.; Viswanathan, Rajesh] Case Western Reserve Univ, Dept Chem, Cleveland, OH 44106 USA. [Pink, John; Oleinick, Nancy L.] Case Western Reserve Univ, Case Comprehens Canc Ctr, Cleveland, OH 44106 USA. [Perry, Kay] Argonne Natl Lab, Northeastern CAT Adv Photon Source, Argonne, IL 60439 USA. [Harris, Michael E.] Case Western Reserve Univ, Sch Med, Dept Biochem, Cleveland, OH 44106 USA. [Oleinick, Nancy L.] Case Western Reserve Univ, Sch Med, Dept Radiat Oncol, Cleveland, OH 44106 USA. [Dealwis, Chris Godfrey] Case Western Reserve Univ, Ctr Prote, Cleveland, OH 44106 USA. [Dealwis, Chris Godfrey] Case Western Reserve Univ, Dept Chem, Cleveland, OH 44106 USA. [Porwal, Suheel K.] Univ Deharadun, Dehradun Inst Technol, Dept Chem, Dehra Dun 248197, India. [Miyagi, Masaru] Case Western Reserve Univ, Ctr Prote & Bioinformat, Cleveland, OH 44106 USA. RP Dealwis, CG (reprint author), Case Western Reserve Univ, Sch Med, Dept Pharmacol, Cleveland, OH 44106 USA. EM chris.dealwis@case.edu FU National Institutes of Health [R01GM100887, R01CA100827]; Translational Research & Pharmacology Core Facility of Case Comprehensive Cancer Center [P30 CA43703]; Early Clinical Trials of Anti-Cancer Agents; Phase I Emphasis UO1 grant [U01 CA062502]; National Institute of General Medical Sciences from National Institutes of Health [P41 GM103403]; DOE Office of Science by Argonne National Laboratory [DE-AC02-06CH11357]; [5R25CA148052-05] FX This work was funded by the National Institutes of Health, grants R01GM100887 and R01CA100827. T.M. was supported by training grant 5R25CA148052-05. This research was also supported by the Translational Research & Pharmacology Core Facility of the Case Comprehensive Cancer Center (P30 CA43703) and the Early Clinical Trials of Anti-Cancer Agents with Phase I Emphasis UO1 grant (U01 CA062502). We thank the Case Western Reserve University School of Medicine and the University of Cincinnati for making the chemical library available to us for screening. We thank the members of NE-CAT at the APS and X29 at NSLS for assistance with data collection. The NE-CAT beamlines are supported by a grant from the National Institute of General Medical Sciences (P41 GM103403) from the National Institutes of Health. This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. We acknowledge Mr. Andrew Burr for assisting us with ligand interaction analysis. We appreciate William Seibel for sharing his expert knowledge on the Cincinnati library. We would like to acknowledge Banumathi Sankaran for screening crystals at the ALS beamline. We thank Kathleen Lundberg for her assistance in the mass spectrometry analysis. NR 57 TC 1 Z9 1 U1 2 U2 12 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0022-2623 EI 1520-4804 J9 J MED CHEM JI J. Med. Chem. PD DEC 24 PY 2015 VL 58 IS 24 BP 9498 EP 9509 DI 10.1021/acs.jmedchem.5b00929 PG 12 WC Chemistry, Medicinal SC Pharmacology & Pharmacy GA DA1NS UT WOS:000367563100005 PM 26488902 ER PT J AU Clough, K Figueras, P Finkel, H Kunesch, M Lim, EA Tunyasuvunakool, S AF Clough, Katy Figueras, Pau Finkel, Hal Kunesch, Markus Lim, Eugene A. Tunyasuvunakool, Saran TI GRChombo: Numerical relativity with adaptive mesh refinement SO CLASSICAL AND QUANTUM GRAVITY LA English DT Article DE numerical; general relativity; adaptive mesh ID GRAVITATIONAL COLLAPSE; BLACK-HOLES; EVOLUTIONS; EQUATIONS; WAVES; FIELD AB In this work, we introduce GRChombo: a new numerical relativity code which incorporates full adaptive mesh refinement (AMR) using block structured Berger-Rigoutsos grid generation. The code supports non-trivial 'many-boxes-in-many-boxes' mesh hierarchies and massive parallelism through the message passing interface. GRChombo evolves the Einstein equation using the standard BSSN formalism, with an option to turn on CCZ4 constraint damping if required. The AMR capability permits the study of a range of new physics which has previously been computationally infeasible in a full 3 + 1 setting, while also significantly simplifying the process of setting up the mesh for these problems. We show that GRChombo can stably and accurately evolve standard spacetimes such as binary black hole mergers and scalar collapses into black holes, demonstrate the performance characteristics of our code, and discuss various physics problems which stand to benefit from the AMR technique. C1 [Clough, Katy; Lim, Eugene A.] Kings Coll London, Theoret Particle Phys & Cosmol Grp, London WC2R 2LS, England. [Figueras, Pau] Queen Mary Univ London, London, England. [Finkel, Hal] Argonne Natl Lab, Argonne, IL 60439 USA. [Kunesch, Markus; Tunyasuvunakool, Saran] Univ Cambridge, DAMTP, Cambridge, England. RP Clough, K (reprint author), Kings Coll London, Theoret Particle Phys & Cosmol Grp, London WC2R 2LS, England. OI Clough, Katy/0000-0001-8841-1522; Tunyasuvunakool, Saran/0000-0002-1620-6797 FU BIS National E-infrastructure capital grant [ST/J005673/1]; STFC grants [ST/H008586/1, ST/K00333X/1]; STFC AGP grant [ST/L000717/1]; European Research Council grant [ERC-2011-StG279363HiDGR]; Stephen Hawking Advanced Research Fellowship from the Centre for Theoretical Cosmology, University of Cambridge; STFC studentship; Bridgwater Summer Undergraduate Research Programme at the Centre for Mathematical Sciences, University of Cambridge; King's College, Cambridge; US Department of Energy (DOE) [DE-AC02-06CH11357]; DOE Office of Science User Facility [DE-AC02-06CH11357] FX We would first like to thank the Lean collaboration for allowing us to use their code as a basis for comparison, and especially Helvi Witek for helping with the setting up and running of the Lean simulation. We would like to thank Erik Schnetter, Ulrich Sperhake, Helvi Witek, Luis Lehner, Carlos Palenzuela and Tom Giblin for many useful conversations, and members of the Chombo collaboration, Daniel Martin and Brian Van Straalen. We would especially like to thank Juha Jaykka and James Briggs for their amazing technical support. This work was undertaken on the COSMOS Shared Memory system at DAMTP, University of Cambridge operated on behalf of the STFC DiRAC HPC Facility. This equipment is funded by BIS National E-infrastructure capital grant ST/J005673/1 and STFC grants ST/H008586/1, ST/K00333X/1. EAL acknowledges support from an STFC AGP grant ST/L000717/1. PF and ST are supported by the European Research Council grant ERC-2011-StG279363HiDGR. PF is also supported by the Stephen Hawking Advanced Research Fellowship from the Centre for Theoretical Cosmology, University of Cambridge. MK is supported by an STFC studentship. He started his work on this project as a summer student funded by the Bridgwater Summer Undergraduate Research Programme at the Centre for Mathematical Sciences, University of Cambridge, and by King's College, Cambridge. HF is supported by the US Department of Energy (DOE), and this research used resources of the Argonne Leadership Computing Facility, which is a DOE Office of Science User Facility, both supported under Contract DE-AC02-06CH11357. Part of the performance test for this work was performed on Louisiana State University's High Performance Computing facility. NR 75 TC 7 Z9 7 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0264-9381 EI 1361-6382 J9 CLASSICAL QUANT GRAV JI Class. Quantum Gravity PD DEC 24 PY 2015 VL 32 IS 24 AR 245011 DI 10.1088/0264-9381/32/24/245011 PG 34 WC Astronomy & Astrophysics; Physics, Multidisciplinary; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CY4EH UT WOS:000366360900013 ER PT J AU Ossokine, S Foucart, F Pfeiffer, HP Boyle, M Szilagyi, B AF Ossokine, Serguei Foucart, Francois Pfeiffer, Harald P. Boyle, Michael Szilagyi, Bela TI Improvements to the construction of binary black hole initial data SO CLASSICAL AND QUANTUM GRAVITY LA English DT Article DE numerical relativity; wave generation and sources; classical black holes ID CAUCHY-CHARACTERISTIC EXTRACTION; GENERAL-RELATIVITY; GRAVITATIONAL-RADIATION; NUMERICAL RELATIVITY; ASTROPHYSICS; EVOLUTION; WAVES AB Construction of binary black hole initial data is a prerequisite for numerical evolutions of binary black holes. This paper reports improvements to the binary black hole initial data solver in the spectral Einstein code, to allow robust construction of initial data for mass-ratio above 10:1, and for dimensionless black hole spins above 0.9, while improving efficiency for lower mass-ratios and spins. We implement a more flexible domain decomposition, adaptive mesh refinement and an updated method for choosing free parameters. We also introduce a new method to control and eliminate residual linear momentum in initial data for precessing systems, and demonstrate that it eliminates gravitational mode mixing during the evolution. Finally, the new code is applied to construct initial data for hyperbolic scattering and for binaries with very small separation. C1 [Ossokine, Serguei; Foucart, Francois; Pfeiffer, Harald P.] Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, ON M5S 3H8, Canada. [Ossokine, Serguei] Univ Toronto, Dept Astron & Astrophys, Toronto, ON M5S 3H4, Canada. [Foucart, Francois] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Pfeiffer, Harald P.] Canadian Inst Adv Res, Toronto, ON M5G 1Z8, Canada. [Boyle, Michael] Cornell Univ, Ctr Radiophys & Space Res, Ithaca, NY 14853 USA. [Szilagyi, Bela] CALTECH, Theoret Astrophys 350 17, Pasadena, CA 91125 USA. RP Ossokine, S (reprint author), Univ Toronto, Canadian Inst Theoret Astrophys, 60 St George St, Toronto, ON M5S 3H8, Canada. EM ossokine@astro.utoronto.ca FU NSERC of Canada; Canada Research Chairs Program; Canadian Institute for Advanced Research; Vincent and Beatrice Tremaine Postdoctoral fellowship at CITA; NASA [PF4-150122]; Sherman Fairchild Foundation; NSF Grants at Cornell [PHY-1306125, AST-1333129]; NSF Grants at Caltech [PHY-1440083, AST-1333520]; Canada Foundation for Innovation (CFI) under Compute Canada; Government of Ontario; Ontario Research Fund (ORF)-Research Excellence; University of Toronto; Canada Foundation for Innovation (CFI); Ministere de l'Economie, de l'Innovation et des Exportations du Quebec (MEIE); RMGA; Fonds de recherche du Quebec-Nature et Technologies (FRQ-NT) FX We thank Geoffrey Lovelace, Larry Kidder and Mark Scheel for helpful discussions. Calculations were performed with the SpEC-code [31]. We gratefully acknowledge support from NSERC of Canada, from the Canada Research Chairs Program, and from the Canadian Institute for Advanced Research. FF gratefully acknowledges support from the Vincent and Beatrice Tremaine Postdoctoral fellowship at CITA. Support for this work was provided by NASA through Einstein Postdoctoral Fellowship grant numbered PF4-150122. We further gratefully acknowledge support from the Sherman Fairchild Foundation; from NSF Grants PHY-1306125 and AST-1333129 at Cornell; and from NSF Grants No. PHY-1440083 and AST-1333520 at Caltech. Calculations were performed at the Gravity cluster and the GPC supercomputer at the SciNet HPC Consortium [71]; SciNet is funded by: the Canada Foundation for Innovation (CFI) under the auspices of Compute Canada; the Government of Ontario; Ontario Research Fund (ORF)-Research Excellence; and the University of Toronto. Further calculations were performed on the Briaree cluster from Sherbrooke University, managed by Calcul Quebec and Compute Canada. The operation of this supercomputer is funded by the Canada Foundation for Innovation (CFI), Ministere de l'Economie, de l'Innovation et des Exportations du Quebec (MEIE), RMGA and the Fonds de recherche du Quebec-Nature et Technologies (FRQ-NT). NR 70 TC 5 Z9 5 U1 1 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0264-9381 EI 1361-6382 J9 CLASSICAL QUANT GRAV JI Class. Quantum Gravity PD DEC 24 PY 2015 VL 32 IS 24 AR 245010 DI 10.1088/0264-9381/32/24/245010 PG 24 WC Astronomy & Astrophysics; Physics, Multidisciplinary; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CY4EH UT WOS:000366360900012 ER PT J AU Myers, CE Yamada, M Ji, HT Yoo, J Fox, W Jara-Almonte, J Savcheva, A DeLuca, EE AF Myers, Clayton E. Yamada, Masaaki Ji, Hantao Yoo, Jongsoo Fox, William Jara-Almonte, Jonathan Savcheva, Antonia DeLuca, Edward E. TI A dynamic magnetic tension force as the cause of failed solar eruptions SO NATURE LA English DT Article ID CORONAL MASS EJECTIONS; FLUX ROPE; PROMINENCE ERUPTIONS; TORUS INSTABILITY; KINK INSTABILITY; PLASMA; FLARES; RECONNECTION; EQUILIBRIUM; CATASTROPHE AB Coronal mass ejections are solar eruptions driven by a sudden release of magnetic energy stored in the Sun's corona(1). In many cases, this magnetic energy is stored in long-lived, arched structures called magnetic flux ropes(2-5). When a flux rope destabilizes, it can either erupt and produce a coronal mass ejection or fail and collapse back towards the Sun(6-8). The prevailing belief is that the outcome of a given event is determined by a magnetohydrodynamic force imbalance called the torus instability(9-14). This belief is challenged, however, by observations indicating that torus-unstable flux ropes sometimes fail to erupt(15). This contradiction has not yet been resolved because of a lack of coronal magnetic field measurements and the limitations of idealized numerical modelling. Here we report the results of a laboratory experiment(16) that reveal a previously unknown eruption criterion below which torus-unstable flux ropes fail to erupt. We find that such 'failed torus' events occur when the guide magnetic field (that is, the ambient field that runs toroidally along the flux rope) is strong enough to prevent the flux rope from kinking. Under these conditions, the guide field interacts with electric currents in the flux rope to produce a dynamic toroidal field tension force that halts the eruption. This magnetic tension force is missing from existing eruption models, which is why such models cannot explain or predict failed torus events. C1 [Myers, Clayton E.; Ji, Hantao; Jara-Almonte, Jonathan] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Myers, Clayton E.; Yamada, Masaaki; Ji, Hantao; Yoo, Jongsoo; Fox, William; Jara-Almonte, Jonathan] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Ji, Hantao] Harbin Inst Technol, Lab Space Environm & Phys Sci, Harbin 150001, Heilongjiang, Peoples R China. [Savcheva, Antonia; DeLuca, Edward E.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. RP Myers, CE (reprint author), Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. EM cmyers@pppl.gov RI DeLuca, Edward/L-7534-2013; OI DeLuca, Edward/0000-0001-7416-2895; Yoo, Jongsoo/0000-0003-3881-1995; Myers, Clayton/0000-0003-4539-8406 FU Department of Energy (DoE) [DE-AC02-09CH11466]; National Science Foundation/DoE Center for Magnetic Self-Organization (CMSO) FX We thank R. Cutler for constructing the flux rope experiment and for myriad technical contributions. We also thank F. Scotti and P. Sloboda for additional technical contributions and R. M. Kulsrud for theoretical discussions. This research is supported by Department of Energy (DoE) contract number DE-AC02-09CH11466 and by the National Science Foundation/DoE Center for Magnetic Self-Organization (CMSO). NR 43 TC 7 Z9 7 U1 10 U2 28 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 EI 1476-4687 J9 NATURE JI Nature PD DEC 24 PY 2015 VL 528 IS 7583 BP 526 EP + DI 10.1038/nature16188 PG 15 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CZ3GH UT WOS:000366991900046 PM 26701052 ER PT J AU Brunette, TJ Parmeggiani, F Huang, PS Bhabha, G Ekiert, DC Tsutakawa, SE Hura, GL Tainer, JA Baker, D AF Brunette, T. J. Parmeggiani, Fabio Huang, Po-Ssu Bhabha, Gira Ekiert, Damian C. Tsutakawa, Susan E. Hura, Greg L. Tainer, John A. Baker, David TI Exploring the repeat protein universe through computational protein design SO NATURE LA English DT Article ID X-RAY-SCATTERING; SAXS; SOFTWARE; DATABASE; MOTIF; MACROMOLECULES; ARCHITECTURE; GENERATION; RESOLUTION; STABILITY AB A central question in protein evolution is the extent to which naturally occurring proteins sample the space of folded structures accessible to the polypeptide chain. Repeat proteins composed of multiple tandem copies of a modular structure unit(1) are widespread in nature and have critical roles in molecular recognition, signalling, and other essential biological processes(2). Naturally occurring repeat proteins have been re-engineered for molecular recognition and modular scaffolding applications(3-5). Here we use computational protein design to investigate the space of folded structures that can be generated by tandem repeating a simple helix-loop-helix-loop structural motif. Eighty-three designs with sequences unrelated to known repeat proteins were experimentally characterized. Of these, 53 are monomeric and stable at 95 degrees C, and 43 have solution X-ray scattering spectra consistent with the design models. Crystal structures of 15 designs spanning a broad range of curvatures are in close agreement with the design models with root mean square deviations ranging from 0.7 to 2.5 angstrom. Our results show that existing repeat proteins occupy only a small fraction of the possible repeat protein sequence and structure space and that it is possible to design novel repeat proteins with precisely specified geometries, opening up a wide array of new possibilities for biomolecular engineering. C1 [Brunette, T. J.; Parmeggiani, Fabio; Huang, Po-Ssu; Baker, David] Univ Washington, Dept Biochem, Seattle, WA 98195 USA. [Brunette, T. J.; Parmeggiani, Fabio; Huang, Po-Ssu; Baker, David] Univ Washington, Inst Prot Design, Seattle, WA 98195 USA. [Bhabha, Gira] UCSF, Dept Cellular & Mol Pharmacol, San Francisco, CA 94158 USA. [Ekiert, Damian C.] UCSF, Dept Microbiol & Immunol, San Francisco, CA 94158 USA. [Tsutakawa, Susan E.; Hura, Greg L.; Tainer, John A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Biophys & Integrated Bioimaging, Berkeley, CA 94720 USA. [Hura, Greg L.] Univ Calif Santa Cruz, Dept Chem & Biochem, Santa Cruz, CA 95064 USA. [Tainer, John A.] Univ Texas MD Anderson Canc Ctr, Dept Mol & Cellular Oncol, Houston, TX 77030 USA. [Baker, David] Univ Washington, Howard Hughes Med Inst, Seattle, WA 98195 USA. RP Baker, D (reprint author), Univ Washington, Dept Biochem, Seattle, WA 98195 USA. EM dabaker@uw.edu RI Parmeggiani, Fabio/B-9344-2016; OI Parmeggiani, Fabio/0000-0001-8548-1090; Ekiert, Damian/0000-0002-2570-0404 FU National Science Foundation (NSF) [MCB-1445201, CHE-1332907]; Defense Threat Reduction Agency (DTRA); Air Force Office of Scientific Research (AFOSR) [FA950-12-10112]; Howard Hughes Medical Institute [HHMI-027779]; Swiss National Science Foundation Postdoc Fellowship [PBZHP3-125470]; Human Frontier Science Program Long-Term Fellowship [LT000070/2009-L]; National Institutes of Health grant MINOS (Macromolecular Insights on Nucleic Acids Optimized by Scattering) [GM105404]; United States Department of Energy program Integrated Diffraction Analysis Technologies (IDAT); Damon Runyon Cancer Research Foundation [DRG-2140-12]; Merck fellowship of the Damon Runyon Cancer Research Foundation [DRG-2136-12]; NIH [K99GM112982]; Robert A. Welch Distinguished Chair in Chemistry; Office of Science, Office of Basic Energy Sciences, of the US Department of Energy [DE-AC02-05CH11231]; UC Office of the President, Multicampus Research Programs and Initiatives [MR-15-338599]; Sandler Foundation; National Institutes of Health; National Institute of General Medical Sciences; Howard Hughes Medical Institute FX We thank D. Kim and members of the protein production facility at the Institute for Protein Design. This work was facilitated though the use of advanced computational, storage and networking infrastructure provided by the Hyak supercomputer system at the University of Washington. This work was supported in part by grants from the National Science Foundation (NSF) (MCB-1445201 and CHE-1332907), the Defense Threat Reduction Agency (DTRA), the Air Force Office of Scientific Research (AFOSR) (FA950-12-10112) and the Howard Hughes Medical Institute (HHMI-027779). F.P. was the recipient of a Swiss National Science Foundation Postdoc Fellowship (PBZHP3-125470) and a Human Frontier Science Program Long-Term Fellowship (LT000070/2009-L). SAXS work at the Advanced Light Source SIBLYS beamline was supported by the National Institutes of Health grant MINOS (Macromolecular Insights on Nucleic Acids Optimized by Scattering) GM105404 and by United States Department of Energy program Integrated Diffraction Analysis Technologies (IDAT). D.C.E. is a Damon Runyon Fellow supported by the Damon Runyon Cancer Research Foundation (Grant DRG-2140-12). G.B. is a recipient of the Merck fellowship of the Damon Runyon Cancer Research Foundation (DRG-2136-12) and is supported by NIH grant K99GM112982. J.A.T. is supported by a Robert A. Welch Distinguished Chair in Chemistry. We thank J. Holton for advice on S-SAD data collection, and the staff of ALS 8.2.1 and 8.3.1 for beamline support. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under Contract No. DE-AC02-05CH11231. ALS beamline 8.3.1 is supported by the UC Office of the President, Multicampus Research Programs and Initiatives grant MR-15-338599 and the Program for Breakthrough Biomedical Research, which is partially funded by the Sandler Foundation. ALS beamline 8.2.1 and the Berkeley Center for Structural Biology are supported in part by the National Institutes of Health, National Institute of General Medical Sciences, and the Howard Hughes Medical Institute. NR 47 TC 28 Z9 28 U1 21 U2 70 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 EI 1476-4687 J9 NATURE JI Nature PD DEC 24 PY 2015 VL 528 IS 7583 BP 580 EP + DI 10.1038/nature16162 PG 15 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CZ3GH UT WOS:000366991900058 PM 26675729 ER PT J AU Zhou, W Yin, KB Wang, CH Zhang, YY Xu, T Borisevich, A Sun, LT Idrobo, JC Chisholm, MF Pantelides, ST Klie, RF Lupini, AR AF Zhou, Wu Yin, Kuibo Wang, Canhui Zhang, Yuyang Xu, Tao Borisevich, Albina Sun, Litao Idrobo, Juan Carlos Chisholm, Matthew F. Pantelides, Sokrates T. Klie, Robert F. Lupini, Andrew R. TI The observation of square ice in graphene questioned SO NATURE LA English DT Letter C1 [Zhou, Wu; Yin, Kuibo; Zhang, Yuyang; Borisevich, Albina; Chisholm, Matthew F.; Pantelides, Sokrates T.; Lupini, Andrew R.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Yin, Kuibo; Xu, Tao; Sun, Litao] Southeast Univ, Minist Educ, Key Lab MEMS, SEU FEI Nanopico Ctr, Nanjing 210096, Jiangsu, Peoples R China. [Wang, Canhui; Klie, Robert F.] Univ Illinois, Dept Phys, Chicago, IL 60607 USA. [Zhang, Yuyang; Pantelides, Sokrates T.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. [Idrobo, Juan Carlos] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Zhou, W (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. EM wu.zhou.stem@gmail.com RI Zhou, Wu/D-8526-2011; Borisevich, Albina/B-1624-2009; Zhang, Yu-Yang/F-2078-2011; Yin, Kuibo/G-5812-2011; Xu, Tao/N-2539-2013; OI Zhou, Wu/0000-0002-6803-1095; Borisevich, Albina/0000-0002-3953-8460; Zhang, Yu-Yang/0000-0002-9548-0021; Yin, Kuibo/0000-0001-5268-6807; Xu, Tao/0000-0001-5436-0077; Idrobo, Juan Carlos/0000-0001-7483-9034 NR 9 TC 8 Z9 8 U1 30 U2 118 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 EI 1476-4687 J9 NATURE JI Nature PD DEC 24 PY 2015 VL 528 IS 7583 BP E1 EP E2 DI 10.1038/nature16145 PG 2 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CZ3GH UT WOS:000366991900001 PM 26701058 ER PT J AU Guttormsen, M Aiche, M Garrote, FLB Bernstein, LA Bleuel, DL Byun, Y Ducasse, Q Eriksen, TK Giacoppo, F Gorgen, A Gunsing, F Hagen, TW Jurado, B Klintefjord, M Larsen, AC Lebois, L Leniau, B Nyhus, HT Renstrom, T Rose, SJ Sahin, E Siem, S Tornyi, TG Tveten, GM Voinov, A Wiedeking, M Wilson, J AF Guttormsen, M. Aiche, M. Garrote, F. L. Bello Bernstein, L. A. Bleuel, D. L. Byun, Y. Ducasse, Q. Eriksen, T. K. Giacoppo, F. Gorgen, A. Gunsing, F. Hagen, T. W. Jurado, B. Klintefjord, M. Larsen, A. C. Lebois, L. Leniau, B. Nyhus, H. T. Renstrom, T. Rose, S. J. Sahin, E. Siem, S. Tornyi, T. G. Tveten, G. M. Voinov, A. Wiedeking, M. Wilson, J. TI Experimental level densities of atomic nuclei SO EUROPEAN PHYSICAL JOURNAL A LA English DT Article AB It is almost 80 years since Hans Bethe described the level density as a non-interacting gas of protons and neutrons. In all these years, experimental data were interpreted within this picture of a fermionic gas. However, the renewed interest of measuring level density using various techniques calls for a revision of this description. In particular, the wealth of nuclear level densities measured with the Oslo method favors the constant-temperature level density over the Fermi-gas picture. From the basis of experimental data, we demonstrate that nuclei exhibit a constant-temperature level density behavior for all mass regions and at least up to the neutron threshold. C1 [Guttormsen, M.; Garrote, F. L. Bello; Eriksen, T. K.; Giacoppo, F.; Gorgen, A.; Hagen, T. W.; Klintefjord, M.; Larsen, A. C.; Nyhus, H. T.; Renstrom, T.; Rose, S. J.; Sahin, E.; Siem, S.; Tornyi, T. G.; Tveten, G. M.] Univ Oslo, Dept Phys, POB 1048, N-0316 Oslo, Norway. [Aiche, M.; Ducasse, Q.; Jurado, B.] Univ Bordeaux, CNRS IN2P3, CENBG, F-33175 Gradignan, France. [Bernstein, L. A.; Bleuel, D. L.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Byun, Y.; Voinov, A.] Ohio Univ, Dept Phys & Astron, Athens, OH 45701 USA. [Gunsing, F.] CEA Saclay, DSM Irfu SPhN, F-91191 Gif Sur Yvette, France. [Lebois, L.; Leniau, B.; Wilson, J.] Inst Phys Nucl Orsay, F-91406 Orsay, France. [Wiedeking, M.] iThemba LABS, ZA-7129 Somerset West, South Africa. RP Guttormsen, M (reprint author), Univ Oslo, Dept Phys, POB 1048, N-0316 Oslo, Norway. EM magne.guttormsen@fys.uio.no RI Larsen, Ann-Cecilie/C-8742-2014; OI Larsen, Ann-Cecilie/0000-0002-2188-3709; Tveten, Gry Merete/0000-0002-6942-8254; Gorgen, Andreas/0000-0003-1916-9941 NR 37 TC 4 Z9 4 U1 2 U2 6 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6001 EI 1434-601X J9 EUR PHYS J A JI Eur. Phys. J. A PD DEC 23 PY 2015 VL 51 IS 12 AR 170 DI 10.1140/epja/i2015-15170-4 PG 8 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA DI8XM UT WOS:000373785700009 ER PT J AU Jandel, M Baramsai, B Bond, E Rusev, G Walker, C Bredeweg, TA Chadwick, MB Couture, A Fowler, MM Hayes, A Kawano, T Mosby, S Stetcu, I Taddeucci, TN Talou, P Ullmann, JL Vieira, DJ Wilhelmy, JB AF Jandel, M. Baramsai, B. Bond, E. Rusev, G. Walker, C. Bredeweg, T. A. Chadwick, M. B. Couture, A. Fowler, M. M. Hayes, A. Kawano, T. Mosby, S. Stetcu, I. Taddeucci, T. N. Talou, P. Ullmann, J. L. Vieira, D. J. Wilhelmy, J. B. TI Capture and fission with DANCE and NEUANCE SO EUROPEAN PHYSICAL JOURNAL A LA English DT Article AB A summary of the current and future experimental program at DANCE is presented. Measurements of neutron capture cross sections are planned for many actinide isotopes with the goal to reduce the present uncertainties in nuclear data libraries. Detailed studies of capture gamma rays in the neutron resonance region will be performed in order to derive correlated data on the de-excitation of the compound nucleus. New approaches on how to remove the DANCE detector response from experimental data and retain the correlations between the cascade gamma rays are presented. Studies on U-235 are focused on quantifying the population of short-lived isomeric states in U-236 after neutron capture. For this purpose, a new neutron detector array NEUANCE is under construction. It will be installed in the central cavity of the DANCE array and enable the highly efficient tagging of fission and capture events. In addition, developments of fission fragment detectors are also underway to expand DANCE capabilities to measurements of fully correlated data on fission observables. C1 [Jandel, M.; Baramsai, B.; Bond, E.; Rusev, G.; Walker, C.; Bredeweg, T. A.; Chadwick, M. B.; Couture, A.; Fowler, M. M.; Hayes, A.; Kawano, T.; Mosby, S.; Stetcu, I.; Taddeucci, T. N.; Talou, P.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.] Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. RP Jandel, M (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM mjandel@lanl.gov OI Rusev, Gencho/0000-0001-7563-1518 FU US Department of Energy by Los Alamos National Security, LLC [DE-AC52-06NA25396]; U.S. Department of Energy (DOE), Office of Science, Nuclear Physics [LANL20135009]; U.S. Department of Energy through the LANL/LDRD Program; Office of Defense Nuclear Nonproliferation Research and Development, US Department of Energy, NNSA FX This work benefited from the use of the LANSCE accelerator facility. Work was performed under the auspices of the US Department of Energy by Los Alamos National Security, LLC, under Contract DE-AC52-06NA25396. Work described in sect. 3 was supported by the U.S. Department of Energy (DOE), Office of Science, Nuclear Physics under the Early Career Award #LANL20135009. We gratefully acknowledge the support of the U.S. Department of Energy through the LANL/LDRD Program for the work described in sect. 4. The first measurements of correlated data on fission observables, as described in sect. 5 are supported by the Office of Defense Nuclear Nonproliferation Research and Development, US Department of Energy, NNSA. NR 14 TC 0 Z9 0 U1 0 U2 1 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6001 EI 1434-601X J9 EUR PHYS J A JI Eur. Phys. J. A PD DEC 23 PY 2015 VL 51 IS 12 AR 179 DI 10.1140/epja/i2015-15179-7 PG 9 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA DI8XM UT WOS:000373785700018 ER PT J AU Kawanoa, T AF Kawanoa, T. TI Challenges beyond Hauser-Feshbach for nuclear reaction modeling SO EUROPEAN PHYSICAL JOURNAL A LA English DT Article ID COMPOUND-NUCLEUS; MULTISTEP COMPOUND; FISSION-BARRIERS; CROSS-SECTIONS; HEAVY-NUCLEI; PARTICLE; SCATTERING; CONTINUUM AB We discuss deficiencies in the statistical Hauser-Feshbach theory implemented into the available computer codes, and possible extension of reaction calculations in the next decade, which are particularly important to nuclear data studies. The discussions include a nuclear deformation effect in the width fluctuation calculation, and combining nuclear structure models with the Hauser-Feshbach calculations. Some examples are given to calculate the direct process and the pre-equilibrium process. C1 [Kawanoa, T.] Los Alamos Natl Lab, T-2, Los Alamos, NM 87545 USA. RP Kawanoa, T (reprint author), Los Alamos Natl Lab, T-2, Los Alamos, NM 87545 USA. EM kawano@lanl.gov FU National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory [DE-AC52-06NA25396] FX We would like to thank H.A. Weidenmuller, L. Bonneau, S. Kunieda, P. Talou, R. Capote, S. Hilaire, M. Dupuis, E. Bauge, P. Romain for stimulating discussions and invaluable advice. This work was carried out under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396. NR 37 TC 2 Z9 2 U1 3 U2 3 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6001 EI 1434-601X J9 EUR PHYS J A JI Eur. Phys. J. A PD DEC 23 PY 2015 VL 51 IS 12 AR 164 DI 10.1140/epja/i2015-15164-2 PG 7 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA DI8XM UT WOS:000373785700003 ER PT J AU Moller, P Ichikawa, T AF Moeller, Peter Ichikawa, Takatoshi TI A method to calculate fission-fragment yields Y(Z, N) versus proton and neutron number in the Brownian shape-motion model Application to calculations of U and Pu charge yields SO EUROPEAN PHYSICAL JOURNAL A LA English DT Article ID NUCLEAR-FISSION; MASSES; HEAVY; BARRIERS AB We propose a method to calculate the two-dimensional (2D) fission-fragment yield Y (Z, N) versus both proton and neutron number, with inclusion of odd-even staggering effects in both variables. The approach is to use the Brownian shape-motion on a macroscopic-microscopic potential-energy surface which, for a particular compound system is calculated versus four shape variables: elongation (quadrupole moment Q(2)), neck d, left nascent fragment spheroidal deformation epsilon(f1), right nascent fragment deformation epsilon(f2) and two asymmetry variables, namely proton and neutron numbers in each of the two fragments. The extension of previous models 1) introduces a method to calculate this generalized potential-energy function and 2) allows the correlated transfer of nucleon pairs in one step, in addition to sequential transfer. In the previous version the potential energy was calculated as a function of Z and N of the compound system and its shape, including the asymmetry of the shape. We outline here how to generalize the model from the "compound-system" model to a model where the emerging fragment proton and neutron numbers also enter, over and above the compound system composition. C1 [Moeller, Peter] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Ichikawa, Takatoshi] Kyoto Univ, Yukawa Inst Theoret Phys, Kyoto 6068502, Japan. RP Moller, P (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM moller@lanl.gov OI Moller, Peter/0000-0002-5848-3565 FU NNSA of the U.S. Department of Energy at Los Alamos National Laboratory [DE-AC52-06NA25396]; MEXT SPIRE; MEXT JICFuS; JSPS [25287065]; [DE-FG02-06ER41407] FX Discussions with A. Sierk, A. Iwamoto, and J. Randrup are appreciated. This work was supported by travel grants for P.M. to JUSTIPEN (Japan-U.S. Theory Institute for Physics with Exotic Nuclei) under grant number DE-FG02-06ER41407 (U. Tennessee). This work was carried out under the auspices of the NNSA of the U.S. Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396. TI was supported in part by MEXT SPIRE and JICFuS and JSPS KAKENHI Grant no. 25287065. NR 26 TC 2 Z9 2 U1 2 U2 2 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6001 EI 1434-601X J9 EUR PHYS J A JI Eur. Phys. J. A PD DEC 23 PY 2015 VL 51 IS 12 AR 173 DI 10.1140/epja/i2015-15173-1 PG 11 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA DI8XM UT WOS:000373785700012 ER PT J AU Schunck, N McDonnell, JD Higdon, D Sarich, J Wild, SM AF Schunck, N. McDonnell, J. D. Higdon, D. Sarich, J. Wild, S. M. TI Uncertainty quantification and propagation in nuclear density functional theory SO EUROPEAN PHYSICAL JOURNAL A LA English DT Review ID HARMONIC-OSCILLATOR BASIS; FOCK-BOGOLYUBOV EQUATIONS; AXIALLY DEFORMED SOLUTION; MONTE-CARLO METHOD; SPHERICAL-SYMMETRY; COORDINATE-SPACE; ISOTOPE SHIFTS; GOGNY FORCE; 3D MESH; PROGRAM AB Nuclear density functional theory (DFT) is one of the main theoretical tools used to study the properties of heavy and superheavy elements, or to describe the structure of nuclei far from stability. While on-going efforts seek to better root nuclear DFT in the theory of nuclear forces (see Duguet et al., this Topical Issue), energy functionals remain semi-phenomenological constructions that depend on a set of parameters adjusted to experimental data in finite nuclei. In this paper, we review recent efforts to quantify the related uncertainties, and propagate them to model predictions. In particular, we cover the topics of parameter estimation for inverse problems, statistical analysis of model uncertainties and Bayesian inference methods. Illustrative examples are taken from the literature. C1 [Schunck, N.; McDonnell, J. D.] Lawrence Livermore Natl Lab, Nucl & Chem Sci Div, Livermore, CA 94551 USA. [McDonnell, J. D.] Francis Marion Univ, Dept Phys & Astron, Florence, SC 29501 USA. [Higdon, D.] Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. [Sarich, J.; Wild, S. M.] Argonne Natl Lab, Math & Comp Sci Div, Argonne, IL 60439 USA. RP Schunck, N (reprint author), Lawrence Livermore Natl Lab, Nucl & Chem Sci Div, Livermore, CA 94551 USA. EM schunck1@llnl.gov RI Wild, Stefan/P-4907-2016; OI Wild, Stefan/0000-0002-6099-2772; Schunck, Nicolas/0000-0002-9203-6849 FU U.S. Department of Energy, Office of Science, Office of Nuclear Physics [DE-AC52-07NA27344, DE-AC02-06CH11357, DE-SC0008511]; NNSA's Stewardship Science Academic Alliances Program [DE-NA0001820]; Livermore Computing Resource Center at Lawrence Livermore National Laboratory; Laboratory Computing Resource Center at Argonne National Laboratory; National Center for Computational Sciences and National Institute for Computational Sciences at Oak Ridge National Laboratory FX This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under award numbers DE-AC52-07NA27344 (Lawrence Livermore National Laboratory), DE-AC02-06CH11357 (Argonne National Laboratory), and DE-SC0008511 (NUCLEI SciDAC Collaboration), and by the NNSA's Stewardship Science Academic Alliances Program under award no. DE-NA0001820. Computational resources were provided through an INCITE award "Computational Nuclear Structure" by the National Center for Computational Sciences and National Institute for Computational Sciences at Oak Ridge National Laboratory, through an award by the Livermore Computing Resource Center at Lawrence Livermore National Laboratory, and through an award by the Laboratory Computing Resource Center at Argonne National Laboratory. NR 142 TC 3 Z9 3 U1 2 U2 2 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6001 EI 1434-601X J9 EUR PHYS J A JI Eur. Phys. J. A PD DEC 23 PY 2015 VL 51 IS 12 AR 169 DI 10.1140/epja/i2015-15169-9 PG 14 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA DI8XM UT WOS:000373785700008 ER PT J AU Zadrozny, JM Niklas, J Poluektov, OG Freedman, DE AF Zadrozny, Joseph M. Niklas, Jens Poluektov, Oleg G. Freedman, Danna E. TI Millisecond Coherence Time in a Tunable Molecular Electronic Spin Qubit SO ACS CENTRAL SCIENCE LA English DT Article ID QUANTUM COMPUTATION; DOPED SOLIDS; TEMPERATURE; RELAXATION; COMPUTERS; COMPLEXES; RADICALS; SILICON; MAGNETS AB Quantum information processing (QIP) could revolutionize areas ranging from chemical modeling to cryptography. One key figure of merit for the smallest unit for QIP, the qubit, is the coherence time (T-2), which establishes the lifetime for the qubit. Transition metal complexes offer tremendous potential as tunable qubits, yet their development is hampered by the absence of synthetic design principles to achieve a long T-2. We harnessed molecular design to create a series of qubits, (Ph4P)(2)[V(C8S8)(3)] (1), (Ph4P)(2)[V(beta-C3S5)(3)] (2), (Ph4P)(2)[V(alpha-C3S5)(3)] (3), and (Ph4P)(2)[V(C3S4O)(3)] (4), with T(2)s of 1-4 mu s at 80 K in protiated and deuterated environments. Crucially, through chemical tuning of nuclear spin content in the vanadium(IV) environment we realized a T-2 of similar to 1 ms for the species (d(20)- Ph4P)(2)[V(C8S8)(3)] (1') in CS2, a value that surpasses the coordination complex record by an order of magnitude. This value even eclipses some prominent solid-state qubits. Electrochemical and continuous wave electron paramagnetic resonance (EPR) data reveal variation in the electronic influence of the ligands on the metal ion across 1-4. However, pulsed measurements indicate that the most important influence on decoherence is nuclear spins in the protiated and deuterated solvents utilized herein. Our results illuminate a path forward in synthetic design principles, which should unite CS2 solubility with nuclear spin free ligand fields to develop a new generation of molecular qubits. C1 [Zadrozny, Joseph M.; Freedman, Danna E.] Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA. [Niklas, Jens; Poluektov, Oleg G.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Freedman, DE (reprint author), Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA. EM danna.freedman@northwestern.edu RI Niklas, Jens/I-8598-2016; Zadrozny, Joseph/A-1429-2017; OI Niklas, Jens/0000-0002-6462-2680; Zadrozny, Joseph/0000-0002-1309-6545; Freedman, Danna/0000-0002-2579-8835 NR 35 TC 30 Z9 30 U1 10 U2 17 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2374-7943 EI 2374-7951 J9 ACS CENTRAL SCI JI ACS Central Sci. PD DEC 23 PY 2015 VL 1 IS 9 BP 488 EP 492 DI 10.1021/acscentsci.5b00338 PG 5 WC Chemistry, Multidisciplinary SC Chemistry GA DI0JC UT WOS:000373180900008 PM 27163013 ER PT J AU Qiao, BF Ferru, G de la Cruz, MO Ellis, RJ AF Qiao, Baofu Ferru, Geoffroy de la Cruz, Monica Olvera Ellis, Ross J. TI Molecular Origins of Mesoscale Ordering in a Metalloamphiphile Phase SO ACS CENTRAL SCIENCE LA English DT Article ID SOLVENT-EXTRACTION SYSTEM; LIQUID-LIQUID-EXTRACTION; ORGANIC SOLUTIONS; SCATTERING DATA; TRANSFORMATION; TRANSITION; MICELLES; DYNAMICS; METAL; ORGANIZATION AB Controlling the assembly of soft and deformable molecular aggregates into mesoscale structures is essential for understanding and developing a broad range of processes including rare earth extraction and cleaning of water, as well as for developing materials with unique properties. By combined synchrotron small-and wide-angle X-ray scattering with large-scale atomistic molecular dynamics simulations we analyze here a metalloamphiphile-oil solution that organizes on multiple length scales. The molecules associate into aggregates, and aggregates flocculate into meso-ordered phases. Our study demonstrates that dipolar interactions, centered on the amphiphile headgroup, bridge ionic aggregate cores and drive aggregate flocculation. By identifying specific intermolecular interactions that drive mesoscale ordering in solution, we bridge two different length scales that are classically addressed separately. Our results highlight the importance of individual intermolecular interactions in driving mesoscale ordering. C1 [Qiao, Baofu; Ferru, Geoffroy; Ellis, Ross J.] Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. [de la Cruz, Monica Olvera] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. [de la Cruz, Monica Olvera] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. RP Qiao, BF (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM qiaob@anl.gov; rellis@anl.gov RI ellis, ross/J-1981-2016 OI ellis, ross/0000-0001-7691-5205 NR 41 TC 7 Z9 7 U1 5 U2 7 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2374-7943 EI 2374-7951 J9 ACS CENTRAL SCI JI ACS Central Sci. PD DEC 23 PY 2015 VL 1 IS 9 BP 493 EP 503 DI 10.1021/acscentsci.5b00306 PG 11 WC Chemistry, Multidisciplinary SC Chemistry GA DI0JC UT WOS:000373180900009 PM 27163014 ER PT J AU Huang, CY Zhou, J Tra, VT White, R Trappen, R N'Diaye, AT Spencer, M Frye, C Cabrera, GB Nguyen, V LeBeau, JM Chu, YH Holcomb, MB AF Huang, C-Y Zhou, J. Tra, V. T. White, R. Trappen, R. N'Diaye, A. T. Spencer, M. Frye, C. Cabrera, G. B. Nguyen, V. LeBeau, J. M. Chu, Y-H Holcomb, M. B. TI Imaging magnetic and ferroelectric domains and interfacial spins in magnetoelectric La0.7Sr0.3MnO3/PbZr0.2Ti0.8O3 heterostructures SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article DE magnetoelectric; manganite; interface; photoemission electron microscopy; dichroism; LSMO; image analysis ID MULTIFERROIC MATERIAL; FERROMAGNETISM; COMPOSITES; BATIO3; FILMS AB Strong magnetoelectric coupling can occur at the interface between ferromagnetic and ferroelectric films. Similar to work on interfacial exchange bias, photoemission electron microscopy was utilized to image both magnetic and ferroelectric domains and the resulting interfacial Ti spin in the same locations of La0.7Sr0.3MnO3/PbZr0.2Ti0.8O3 heterostructures. Multiple image analysis techniques, which could be applicable for a variety of fields needing quantitative data on image switching, confirm both improved magnetic switching and an increased population of interfacial spins with increased thickness of the ultrathin La0.7Sr0.3MnO3 layer. The perpendicular orientation of the interfacial spins is also discussed. This work suggests a magnetoelectric dead layer, with reduced interfacial magnetoelectricity when thin magnetic films are present. C1 [Huang, C-Y; Zhou, J.; Trappen, R.; Spencer, M.; Frye, C.; Cabrera, G. B.; Nguyen, V.; Holcomb, M. B.] W Virginia Univ, Dept Phys & Astron, Morgantown, WV 26506 USA. [Tra, V. T.] Natl Chiao Tung Univ, Inst Phys, Hsinchu 30010, Taiwan. [White, R.; LeBeau, J. M.] N Carolina State Univ, Dept Mat Sci & Engn, Raleigh, NC 27695 USA. [N'Diaye, A. T.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Chu, Y-H] Natl Chiao Tung Univ, Dept Mat Sci & Engn, Hsinchu 30010, Taiwan. [Chu, Y-H] Acad Sinica, Inst Phys, Taipei 105, Taiwan. RP Huang, CY (reprint author), W Virginia Univ, Dept Phys & Astron, Morgantown, WV 26506 USA. EM mikel.holcomb@mail.wvu.edu RI Ying-Hao, Chu/A-4204-2008 OI Ying-Hao, Chu/0000-0002-3435-9084 FU WV Higher Education Policy Commission Research Challenge [HECP.dsr.12.29]; National Science Foundation's ADVANCE IT Program [HRD-1007978]; Office of Science, Office of Basic Energy Sciences, of the US Department of Energy [DE-AC02-05CH11231] FX Thank you to Paul Holcomb who developed the initial versions of the Matlab programs for averaging the large data sets shown in figures 3(e) and 4(a). This work was supported predominately by the WV Higher Education Policy Commission Research Challenge grant HECP.dsr.12.29). Partial support for the work was provided by the National Science Foundation's ADVANCE IT Program under Award HRD-1007978. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under Contract No. DE-AC02-05CH11231. NR 43 TC 0 Z9 0 U1 6 U2 37 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 EI 1361-648X J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD DEC 23 PY 2015 VL 27 IS 50 AR 504003 DI 10.1088/0953-8984/27/50/504003 PG 9 WC Physics, Condensed Matter SC Physics GA DA7PT UT WOS:000367997100004 PM 26613406 ER PT J AU Cole, JM Low, KS Gong, Y AF Cole, Jacqueline M. Low, Kian Sing Gong, Yun TI Discovery of Black Dye Crystal Structure Polymorphs: Implications for Dye Conformational Variation in Dye-Sensitized Solar Cells SO ACS APPLIED MATERIALS & INTERFACES LA English DT Article DE multiconformation; structure; dye-sensitized solar cell; black dye; polymorph; dye center dot center dot center dot TiO2 ID NANOCRYSTALLINE TIO2; LINKAGE ISOMERS; COMPLEXES; MOLECULES; DATABASE; ORIENTATION; ABSORPTION; PACKING; SURFACE; PLATON AB We present the discovery of a new crystal structure polymorph (1) and pseudopolymorph (2) of the Black Dye, one of the world's leading dyes for dye-sensitized solar cells, DSSCs (10.4% device performance efficiency). This reveals that Black Dye molecules can adopt multiple low-energy conformers. This is significant since it challenges existing models of the Black Dye center dot center dot center dot TiO2 adsorption process that renders a DSSC working electrode; these have assumed a single molecular conformation that refers to the previously reported Black Dye crystal structure (3). The marked structural differences observed between 1, 2, and 3 make the need for modeling multiple conformations more acute. Additionally, the ordered form of the Black Dye (1) provides a more appropriate depiction of its anionic structure, especially regarding its anchoring group and NCS bonding descriptions. The tendency toward NCS ligand isomerism, evidenced via the disordered form 2, has consequences for electron injection and electron recombination in Black Dye embedded DSSC devices. Dyes 2 and 3 differ primarily by the absence or presence of a solvent of crystallization, respectively; solvent environment effects on the dye are thereby elucidated. This discovery of multiple Black Dye conformers from diffraction, with atomic-level definition, complements recently reported nanoscopic evidence for multiple dye conformations existing at a dye center dot center dot center dot TiO2 interface, for a chemically similar DSSC dye; those results emanated from imaging and spectroscopy, but were unresolved at the submolecular level. Taken together, these findings lead to the general notion that multiple dye conformations should be explicitly considered when modeling dye TiO2 interfaces in DSSCs, at least for ruthenium-based dye complexes. C1 [Cole, Jacqueline M.; Low, Kian Sing; Gong, Yun] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Cole, Jacqueline M.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Cole, JM (reprint author), Univ Cambridge, Cavendish Lab, JJ Thomson Ave, Cambridge CB3 0HE, England. EM jmc61@cam.ac.uk RI Cole, Jacqueline/C-5991-2008 FU DOE Office of Science, Office of Basic Energy Sciences [DE-AC02-299 06CH11357]; EPSRC [EP/P504120/1]; Cambridge Trusts FX J.M.C. is grateful to the 1851 Royal Commission of the Great Exhibition for the 2014 Design Fellowship and to Argonne National Laboratory, IL, where work done was supported by DOE Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-299 06CH11357. K.S.L. acknowledges the EPSRC for a Doctoral Training Grant (EP/P504120/1). Y.G. thanks the Cambridge Trusts for a PhD scholarship. All authors thank Dr. Sarah Barnett from beamline I19 at Diamond Light Source, United Kingdom, for collecting the data for 2 via the mail-in synchrotron access facility. NR 44 TC 1 Z9 1 U1 7 U2 22 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1944-8244 J9 ACS APPL MATER INTER JI ACS Appl. Mater. Interfaces PD DEC 23 PY 2015 VL 7 IS 50 BP 27646 EP 27653 DI 10.1021/acsami.5b07364 PG 8 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA DA1NC UT WOS:000367561500011 PM 26599130 ER PT J AU Adomanis, BM Resnick, PJ Burckel, DB AF Adomanis, Bryan M. Resnick, Paul J. Burckel, D. Bruce TI Reconciling measured scattering response of 3D metamaterials with simulation SO EPJ APPLIED METAMATERIALS LA English DT Article DE 3D Metamaterials; Split Ring Resonator; Micro Fabrication ID 3-DIMENSIONAL PHOTONIC METAMATERIALS; FABRICATION; RESONATORS; OPTICS AB Membrane projection lithography is used to create 3-dimensional unit cells in a silicon matrix decorated with metallic inclusions. The structures show pronounced resonances in the 4-16 mu m wavelength range and demonstrate direct coupling to the magnetic field of a normally incident transverse electromagnetic (TEM) wave, a behavior only possible for vertically oriented resonators. Qualitative agreement between rigorous coupled wave analysis (RCWA) simulation and measured scattering response is shown. COMSOL simulations show that slight variations in both metallic inclusion and silicon unit cell physical dimensions can have large impact in the scattering response, so that design for manufacture of 3D metamaterial structures for applications should be done with care. C1 [Adomanis, Bryan M.] Air Force Res Lab, Wright Patterson AFB, OH 45433 USA. [Resnick, Paul J.; Burckel, D. Bruce] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Adomanis, BM (reprint author), Air Force Res Lab, 3005 Hobson Way, Wright Patterson AFB, OH 45433 USA. EM dbburck@sandia.gov NR 17 TC 0 Z9 0 U1 2 U2 4 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 2272-2394 J9 EPJ APPL METAMATERIA JI EPJ Appl. Metamaterials PD DEC 23 PY 2015 VL 2 AR 9 DI 10.1051/epjam/2015015 PG 6 WC Materials Science, Multidisciplinary SC Materials Science GA DA0YQ UT WOS:000367523900005 ER PT J AU Klet, RC Tussupbayev, S Borycz, J Gallagher, JR Stalzer, MM Miller, JT Gagliardi, L Hupp, JT Marks, TJ Cramer, CJ Delferro, M Farha, OK AF Klet, Rachel C. Tussupbayev, Samat Borycz, Joshua Gallagher, James R. Stalzer, Madelyn M. Miller, Jeffery T. Gagliardi, Laura Hupp, Joseph T. Marks, Tobin J. Cramer, Christopher J. Delferro, Massimiliano Farha, Omar K. TI Single-Site Organozirconium Catalyst Embedded in a Metal-Organic Framework SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID ATOMIC LAYER DEPOSITION; ACTIVATION; ZIRCONIUM; FUNCTIONALIZATION; POLYMERIZATION; COMPLEXES; CHEMISTRY; ETHYLENE AB A structurally well-defined mesoporous Hf-based metal organic framework (Hf-NU-1000) is employed as a well-defined scaffold for a highly electrophilic single-site d(0) Zr-benzyl catalytic center. This new material Hf-NU-1000-ZrBn is fully characterized by a variety of spectroscopic techniques and DFT computation. Hf-NU-1000-ZrBn is found to be a promising single-component catalyst (i.e., not requiring a catalyst/activator) for ethylene and stereoregular 1-hexene polymerization. C1 [Klet, Rachel C.; Stalzer, Madelyn M.; Hupp, Joseph T.; Marks, Tobin J.; Delferro, Massimiliano; Farha, Omar K.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Tussupbayev, Samat; Borycz, Joshua; Gagliardi, Laura; Cramer, Christopher J.] Univ Minnesota, Supercomp Inst, Dept Chem, Minneapolis, MN 55455 USA. [Tussupbayev, Samat; Borycz, Joshua; Gagliardi, Laura; Cramer, Christopher J.] Univ Minnesota, Chem Theory Ctr, Minneapolis, MN 55455 USA. [Gallagher, James R.; Miller, Jeffery T.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Miller, Jeffery T.] Purdue Univ, Sch Chem Engn, W Lafayette, IN 47907 USA. [Farha, Omar K.] King Abdulaziz Univ, Fac Sci, Dept Chem, Jeddah 21413, Saudi Arabia. RP Gagliardi, L (reprint author), Univ Minnesota, Supercomp Inst, Dept Chem, Minneapolis, MN 55455 USA. EM gagliardi@umn.edu; j-hupp@northwestern.edu; t-marks@northwestern.edu; cramer@umn.edu; m-delferro@northwestern.edu; o-farha@northwestern.edu RI Gallagher, James/E-4896-2014; BM, MRCAT/G-7576-2011; Cramer, Christopher/B-6179-2011; Faculty of, Sciences, KAU/E-7305-2017; OI Gallagher, James/0000-0002-5628-5178; Cramer, Christopher/0000-0001-5048-1859; Delferro, Massimiliano/0000-0002-4443-165X FU Inorganometallic Catalyst Design Center, an Energy Frontier Research Center, U.S. DOE [DE-SC0012702, DE-AC02-06CH11357]; Institute for Catalysis in Energy Processes (U.S. DOE) [DE-FG02-03ER15457]; MRSEC program at the Materials Research Center [NSF DMR-1121262]; International Institute for Nanotechnology (IN); State of IL; MRCAT member institutions; U.S. DOE [DE-AC02-06CH11357, DE-AC0-06CH11357] FX I.K.F., J.T.H., L.G., and C.J.C. acknowledge the financial support from the Inorganometallic Catalyst Design Center, an Energy Frontier Research Center funded by the U.S. DOE under award DE-SC0012702 (catalyst synthesis and characterization; computational modeling). M.D. and T.J.M. were supported by the Institute for Catalysis in Energy Processes (U.S. DOE) under award DE-FG02-03ER15457 (catalyst activity). This work made use of the EPIC facility (NUANCE Center-Northwestern U.), which received support from the MRSEC program (NSF DMR-1121262) at the Materials Research Center; the International Institute for Nanotechnology (IN); and the State of IL. Advanced Photon Source use was supported by the U.S. DOE, under award DE-AC02-06CH11357. MRCAT operations are supported by the U.S. DOE and the MRCAT member institutions. J.T.M. and J.R.G.'s funding was provided by the U.S. DOE under award DE-AC0-06CH11357. NR 41 TC 17 Z9 17 U1 23 U2 64 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD DEC 23 PY 2015 VL 137 IS 50 BP 15680 EP 15683 DI 10.1021/jacs.5b11350 PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA DA1NP UT WOS:000367562800022 PM 26652625 ER PT J AU Darago, LE Aubrey, ML Yu, CJ Gonzalez, MI Long, JR AF Darago, Lucy E. Aubrey, Michael L. Yu, Chung Jui Gonzalez, Miguel I. Long, Jeffrey R. TI Electronic Conductivity, Ferrimagnetic Ordering, and Reductive Insertion Mediated by Organic Mixed-Valence in a Ferric Semiquinoid Metal-Organic Framework SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID CHARGE-TRANSFER IVCT; 3D CHIRAL MAGNETS; COORDINATION POLYMERS; ELECTRICAL-CONDUCTIVITY; BRIDGING LIGAND; POROUS CRYSTALS; IRON COMPLEXES; SPIN-CROSSOVER; SURFACE-AREAS; THIN-FILMS AB A three-dimensional network solid composed of Fe-III centers and paramagnetic semiquinoid linkers, (NBu4)(2)-Fe-2(III)(dhbq)(3) (dhbq(2-/3-) = 2,5-dioxidobenzoquinone/1,2-dioxido-4,5-semiquinone), is shown to exhibit a conductivity of 0.16 +/- 0.01 S/cm at 298 K, one of the highest values yet observed for a metal organic framework (MOF). The origin of this electronic conductivity is determined to be ligand mixed-valency, which is characterized using a suite of spectroscopic techniques, slow-scan cyclic voltammetry, and variable-temperature conductivity and magnetic susceptibility measurements. Importantly, UV-vis-NIR diffuse reflectance measurements reveal the first observation of Robin-Day Class II/III mixed valency in a MOP. Pursuit of stoichiometric control over the ligand redox states resulted in synthesis of the reduced framework material Na-0.9(NBu4)(1.8)Fe-2(III)(dhbq)(3). Differences in electronic conductivity and magnetic ordering temperature between the two compounds are investigated and correlated to the relative ratio of the two different ligand redox states. Overall, the transition metal semiquinoid system is established as a particularly promising scaffold for achieving tunable long-range electronic communication in MOFs. C1 [Darago, Lucy E.; Aubrey, Michael L.; Yu, Chung Jui; Gonzalez, Miguel I.; Long, Jeffrey R.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Long, Jeffrey R.] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. [Long, Jeffrey R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Long, JR (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM jrlong@berkeley.edu OI Darago, Lucy/0000-0001-7515-5558; Gonzalez, Miguel/0000-0003-4250-9035 FU NSF [DMR-1309066]; Nanoporous Materials Genome Center of the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences [DE-FG02-12ER16362]; U.S. Department of Energy (DOE) Office of Science User Facility, operated for the DOE Office of Science by Argonne National Laboratory [DE-AC02-06CH11357]; Office of Science, Office of Basic Energy Sciences, of the U.S. DOE [DE-AC02-05CH11231] FX This work was supported by NSF award no. DMR-1309066, with the exception of the magnetic measurements, which were supported by the Nanoporous Materials Genome Center of the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Award Number DE-FG02-12ER16362. We thank NSF for graduate fellowship support of L.E.D. We further thank Dianne J. Xiao for assisting with the Mossbauer spectroscopy experiments, Julia Oktawiec and the 17-BM staff at the Advanced Photon Source for assisting with the PXRD experiments, and Dr. Simon J. Teat for helpful discussions regarding the single-crystal X-ray crystallography data. PXRD data were collected at Beamline 17-BM at the Advanced Photon Source. The Advanced Photon Source is a U.S. Department of Energy (DOE) Office of Science User Facility, operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. Single-crystal XRD data were collected at Beamline 11.3.1 at the Advanced Light Source. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. DOE under Contract No. DE-AC02-05CH11231. NR 77 TC 29 Z9 29 U1 62 U2 195 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD DEC 23 PY 2015 VL 137 IS 50 BP 15703 EP 15711 DI 10.1021/jacs.5b10385 PG 9 WC Chemistry, Multidisciplinary SC Chemistry GA DA1NP UT WOS:000367562800028 PM 26573183 ER PT J AU Nickels, JD Cheng, XL Mostofian, B Stanley, C Lindner, B Heberle, FA Perticaroli, S Feirgenson, M Egami, T Standaert, RF Smith, JC Myles, DAA Ohl, M Katsaras, J AF Nickels, Jonathan D. Cheng, Xiaolin Mostofian, Barmak Stanley, Christopher Lindner, Benjamin Heberle, Frederick A. Perticaroli, Stefania Feirgenson, Mikhail Egami, Takeshi Standaert, Robert F. Smith, Jeremy C. Myles, Dean A. A. Ohl, Michael Katsaras, John TI Mechanical Properties of Nanoscopic Lipid Domains SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID MOLECULAR-DYNAMICS SIMULATION; PARTICLE MESH EWALD; NEUTRON SOURCE SNS; HYBRID LIPIDS; LINE TENSION; 2-COMPONENT MEMBRANES; PHASE-TRANSITIONS; SEGREGATION LIMIT; MODULATED PHASES; BILAYER MIXTURES AB The lipid raft hypothesis presents insights into how the cell membrane organizes proteins and lipids to accomplish its many vital functions. Yet basic questions remain about the physical mechanisms that lead to the formation, stability, and size of lipid rafts. As a result, much interest has been generated in the study of systems that contain similar lateral heterogeneities, or domains. In the current work we present an experimental approach that is capable of isolating the bending moduli of lipid domains. This is accomplished using neutron scattering and its unique sensitivity to the isotopes of hydrogen. Combining contrast matching approaches with inelastic neutron scattering, we isolate the bending modulus of similar to 13 nm diameter domains residing in 60 nm unilamellar vesicles, whose lipid composition mimics the mammalian plasma membrane outer leaflet. Importantly, the bending modulus of the nanoscopic domains differs from the modulus of the continuous phase surrounding them. From additional structural measurements and all-atom simulations, we also determine that nanoscopic domains are in-register across the bilayer leaflets. Taken together, these results inform a number of theoretical models of domain/raft formation and highlight the fact that mismatches in bending modulus must be accounted for when explaining the emergence of lateral heterogeneities in lipid systems and biological membranes. C1 [Nickels, Jonathan D.; Stanley, Christopher; Heberle, Frederick A.; Perticaroli, Stefania; Feirgenson, Mikhail; Standaert, Robert F.; Myles, Dean A. A.; Katsaras, John] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Nickels, Jonathan D.; Katsaras, John] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Cheng, Xiaolin; Mostofian, Barmak; Lindner, Benjamin; Smith, Jeremy C.] Oak Ridge Natl Lab, Ctr Biophys Mol, Oak Ridge, TN 37831 USA. [Cheng, Xiaolin; Standaert, Robert F.; Smith, Jeremy C.] Univ Tennessee, Dept Biochem & Cellular & Mol Biol, Knoxville, TN 37996 USA. [Nickels, Jonathan D.; Heberle, Frederick A.; Perticaroli, Stefania; Egami, Takeshi; Katsaras, John] Joint Inst Neutron Sci, Oak Ridge, TN 37831 USA. [Ohl, Michael] Julich Ctr Neutron Sci, Oak Ridge, TN 37831 USA. RP Nickels, JD (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM nickelsjd@ornl.gov; katsarasj@ornl.gov RI Feygenson, Mikhail /H-9972-2014; myles, dean/D-5860-2016; smith, jeremy/B-7287-2012; Standaert, Robert/D-9467-2013; Nickels, Jonathan/I-1913-2012 OI Katsaras, John/0000-0002-8937-4177; Stanley, Christopher/0000-0002-4226-7710; Feygenson, Mikhail /0000-0002-0316-3265; myles, dean/0000-0002-7693-4964; smith, jeremy/0000-0002-2978-3227; Standaert, Robert/0000-0002-5684-1322; Nickels, Jonathan/0000-0001-8351-7846 FU U.S. DOE BES through the EPSCoR [DE-FG02-08ER46528]; Scientific User Facilities Division of the DOE Office of Basic Energy Sciences (BES) [DE-AC05 00OR2275]; Laboratory Directed RD (LDRD) fund [P7394]; Office of Science of the U.S. Department of Energy [DE-AC05-00OR22725]; Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy; US DOE [DE-AC05-00OR22725] FX The authors gratefully acknowledge Professors F. Brown, R. Epand, G.W. Feigenson, and M. Schick for a critical reading of the manuscript and insightful conversations; J. Neuefeind, C. Gao, R. Moody, M. Doktorova, M. Cochran, and P. Zolnierczuk for technical assistance; and Prof. H. Riezman (Univ. of Geneva) for the generous gift of cholesterol-producing yeast strain and protocol. JDN is partially supported by the U.S. DOE BES through the EPSCoR Grant No. DE-FG02-08ER46528. JK is supported through the Scientific User Facilities Division of the DOE Office of Basic Energy Sciences (BES), under contract no. DE-AC05 00OR2275. XC is partially supported by the Laboratory Directed R&D (LDRD) fund P7394 at the Oak Ridge National Laboratory. This research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725. Research conducted at ORNL's Spallation Neutron Source was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy. Oak Ridge National Laboratory is managed by UT-Battelle, LLC under US DOE Contract No. DE-AC05-00OR22725. NR 94 TC 11 Z9 11 U1 8 U2 45 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD DEC 23 PY 2015 VL 137 IS 50 BP 15772 EP 15780 DI 10.1021/jacs.5b08894 PG 9 WC Chemistry, Multidisciplinary SC Chemistry GA DA1NP UT WOS:000367562800035 PM 26415030 ER PT J AU Zhi, YC Shi, H Mu, LY Liu, Y Mei, DH Camaioni, DM Lercher, JA AF Zhi, Yuchun Shi, Hui Mu, Linyu Liu, Yue Mei, Donghai Camaioni, Donald M. Lercher, Johannes A. TI Dehydration Pathways of 1-Propanol on HZSM-5 in the Presence and Absence of Water SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID SPACE GAUSSIAN PSEUDOPOTENTIALS; GAS-PHASE DEHYDRATION; ZEOLITE CATALYSTS; AB-INITIO; H-ZSM-5 ZEOLITE; ADSORPTION COMPLEXES; ETHANOL DEHYDRATION; ALCOHOL DEHYDRATION; PORE CONFINEMENT; ISOBUTYL ALCOHOL AB The Bronsted acid-catalyzed gas-phase dehydration of 1-propanol (0.075-4 kPa) was studied on zeolite H-MFI (Si/A1 = 26, containing minimal amounts of extra framework Al moieties) in the absence and presence of co-fed water (0-2.5 kPa) at 413-443 K. It is shown that propene can be formed from monomeric and dimeric adsorbed 1-propanol. The stronger adsorption of 1-propanol relative to water indicates that the reduced dehydration rates in the presence of water are not a consequence of the competitive adsorption between 1-propanol and water. Instead, the deleterious effect is related to the different extents of stabilization of adsorbed intermediates and the relevant elimination/substitution transition states by water. Water stabilizes the adsorbed 1-propanol monomer significantly more than the elimination transition state, leading to a higher activation barrier and a greater entropy gain for the rate-limiting step, which eventually leads to propene. In a similar manner, an excess of 1-propanol stabilizes the adsorbed state of 1-propanol more than the elimination transition state. In comparison with the monomer-mediated pathway, adsorbed dimer and the relevant transition states for propene and ether formation are similarly, while less effectively, stabilized by intrazeolite water molecules. C1 [Zhi, Yuchun; Mu, Linyu; Liu, Yue; Lercher, Johannes A.] Tech Univ Munich, Dept Chem, D-85748 Garching, Germany. [Zhi, Yuchun; Mu, Linyu; Liu, Yue; Lercher, Johannes A.] Tech Univ Munich, Catalysis Res Inst, D-85748 Garching, Germany. [Shi, Hui; Mei, Donghai; Camaioni, Donald M.; Lercher, Johannes A.] Pacific NW Natl Lab, Inst Integrated Catalysis, Richland, WA 99352 USA. RP Lercher, JA (reprint author), Tech Univ Munich, Dept Chem, Lichtenbergstr 4, D-85748 Garching, Germany. EM Johannes.Lercher@ch.tum.de RI Mei, Donghai/A-2115-2012; Mei, Donghai/D-3251-2011; Shi, Hui/J-7083-2014 OI Mei, Donghai/0000-0002-0286-4182; FU U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences Biosciences; Office of Biological and Environmental Research; NERSC (the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility by Office of Science of the U.S. Department of Energy) [DE-AC02-05CH11231]; DOE [DE-AC05-76RL01830] FX This work was supported by the U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Portions of the computational work were performed using resources at EMSL (a DOE Office of Science User Facility sponsored by the Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory) and NERSC (the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231). PNNL is a multiprogram national laboratory operated for DOE by Battelle Memorial Institute under contract no. DE-AC05-76RL01830. NR 76 TC 7 Z9 7 U1 26 U2 90 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD DEC 23 PY 2015 VL 137 IS 50 BP 15781 EP 15794 DI 10.1021/jacs.5b09107 PG 14 WC Chemistry, Multidisciplinary SC Chemistry GA DA1NP UT WOS:000367562800036 PM 26560446 ER PT J AU Becknell, N Kang, YJ Chen, C Resasco, J Kornienko, N Guo, JH Markovic, NM Somorjai, GA Stamenkovic, VR Yang, PD AF Becknell, Nigel Kang, Yijin Chen, Chen Resasco, Joaquin Kornienko, Nikolay Guo, Jinghua Markovic, Nenad M. Somorjai, Gabor A. Stamenkovic, Vojislav R. Yang, Peidong TI Atomic Structure of Pt3Ni Nanoframe Electrocatalysts by in Situ X-ray Absorption Spectroscopy SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID OXYGEN REDUCTION REACTION; PT-SKIN SURFACES; BIMETALLIC NANOPARTICLES; ALLOY NANOPARTICLES; CATALYSTS; FUEL; SEGREGATION; PERFORMANCE; CHALLENGES; GROWTH AB Understanding the atomic structure of a catalyst is crucial to exposing the source of its performance characteristics. It is highly unlikely that a catalyst remains the same under reaction conditions when compared to as-synthesized. Hence, the ideal experiment to study the catalyst structure should be performed in situ. Here, we use X-ray absorption spectroscopy (XAS) as an in situ technique to study Pt3Ni nanoframe particles which have been proven to be an excellent electro catalyst for the oxygen reduction reaction (ORR). The surface characteristics of the nanoframes were probed through electrochemical hydrogen underpotential deposition and carbon monoxide electrooxidation, which showed that nanoframe surfaces with different structure exhibit varying levels of binding strength to adsorbate molecules. It is well-known that Pt-skin formation on Pt-Ni catalysts will enhance ORR activity by weakening the binding energy between the surface and adsorbates. Ex situ and in situ XAS results reveal that nanoframes which bind adsorbates more strongly have a rougher Pt surface caused by insufficient segregation of Pt to the surface and consequent Ni dissolution. In contrast, nanoframes which exhibit extremely high ORR activity simultaneously demonstrate more significant segregation of Pt over Ni-rich subsurface layers, allowing better formation of the critical Pt-skin. This work demonstrates that the high ORR activity of the Pt3Ni hollow nanoframes depends on successful formation of the Pt-skin surface structure. C1 [Becknell, Nigel; Chen, Chen; Kornienko, Nikolay; Somorjai, Gabor A.; Yang, Peidong] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Kang, Yijin; Markovic, Nenad M.; Stamenkovic, Vojislav R.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Resasco, Joaquin] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. [Guo, Jinghua] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Somorjai, Gabor A.; Yang, Peidong] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Yang, Peidong] Kavli Energy Nanosci Inst, Berkeley, CA 94720 USA. RP Yang, PD (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM p_yang@berkeley.edu OI Becknell, Nigel/0000-0001-7857-6841 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division [DE-AC02-05CH11231, DE-AC02-06CH11357]; Office of Science, Office of Basic Energy Sciences, U.S. Department of Energy [DE-AC02-05CH11231]; National Science Foundation Graduate Research Fellowship Proposal (NSF GRFP) [DGE-0802270]; UC Berkeley Chancellor's Fellowship FX The research conducted at Lawrence Berkeley National Laboratory and Argonne National Laboratory was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, under Contract No. DE-AC02-05CH11231 (surface) and No. DE-AC02-06CH11357, respectively. The authors thank Matthew Marcus and Sirine Fakra for help with the XAS studies which were carried out at the Advanced Light Source BL 10.3.2. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, U.S. Department of Energy, under Contract No. DE-AC02-05CH11231. J.R. gratefully acknowledges support from the National Science Foundation Graduate Research Fellowship Proposal (NSF GRFP) under Grant No. DGE-0802270 and the UC Berkeley Chancellor's Fellowship. NR 51 TC 13 Z9 13 U1 51 U2 165 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD DEC 23 PY 2015 VL 137 IS 50 BP 15817 EP 15824 DI 10.1021/jacs.5b09639 PG 8 WC Chemistry, Multidisciplinary SC Chemistry GA DA1NP UT WOS:000367562800039 PM 26652294 ER PT J AU Kim, H Lee, JT Magasinski, A Zhao, KJ Liu, Y Yushin, G AF Kim, Hyea Lee, Jung Tae Magasinski, Alexandre Zhao, Kejie Liu, Yang Yushin, Gleb TI In Situ TEM Observation of Electrochemical Lithiation of Sulfur Confined within Inner Cylindrical Pores of Carbon Nanotubes SO ADVANCED ENERGY MATERIALS LA English DT Article DE carbon; carbon nanotubes (CNTs); Li-S; in situ TEM; nanoconfined; solid electrolyte ID TRANSMISSION ELECTRON-MICROSCOPY; RECHARGEABLE LITHIUM BATTERIES; THERMAL-CONDUCTIVITY; ION BATTERIES; CATHODE; PERFORMANCE; NANOPARTICLES; CHALLENGES; DELITHIATION; TEMPERATURE AB Lithium insertion into sulfur confined within 200 nm cylindrical inner pores of individual carbon nanotubes (CNTs) was monitored in situ in a transmission electron microscope (TEM). This electrochemical reaction was initiated at one end of the S-filled CNTs. The material expansion during lithiation was accommodated by the expansion into the remaining empty pore volume and no fracture of the CNT walls was detected. A sharp interface between the initial and lithiated S was observed. The reaction front was flat, oriented perpendicular to the confined S cylinder, and propagated along the cylinder length. Lithiation of S in the proximity of conductive carbon proceeded at the same rate as the one in the center of the pore, suggesting the presence of electron pathways at the Li2S/S interface. Density of states calculations further confirmed this hypothesis. In situ electron diffraction showed a direct phase transformation of S into nanocrystalline Li2S without detectable formation of any intermediates, such as polysulfides and LiS. These important insights may elucidate some of the reaction mechanisms and guide the improvements in the design of C-S nanocomposites for high specific energy Li-S batteries. The proposed use of conductive CNTs with tunable pore diameter as cylindrical reaction vessels for in situ TEM studies of electrochemical reactions proved to be highly advantageous and may help to resolve the ongoing problems in battery technology. C1 [Kim, Hyea; Lee, Jung Tae; Magasinski, Alexandre; Yushin, Gleb] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA. [Kim, Hyea] Sila Nanotechnol Inc, Alameda, CA 94502 USA. [Zhao, Kejie] Purdue Univ, Sch Mech Engn, W Lafayette, IN 47906 USA. [Liu, Yang] Sandia Natl Labs, Ctr Integrated Nanotechnol, Albuquerque, NM 87185 USA. RP Yushin, G (reprint author), Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA. EM yushin@gatech.edu RI Zhao, Kejie/F-8640-2010; Yushin, Gleb/B-4529-2013 OI Yushin, Gleb/0000-0002-3274-9265 FU US ARO [W911NF-12-1-0259]; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was partially supported by US ARO (grant W911NF-12-1-0259). This work was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 59 TC 7 Z9 7 U1 34 U2 127 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 1614-6832 EI 1614-6840 J9 ADV ENERGY MATER JI Adv. Energy Mater. PD DEC 23 PY 2015 VL 5 IS 24 AR 1501306 DI 10.1002/aenm.201501306 PG 7 WC Chemistry, Physical; Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Energy & Fuels; Materials Science; Physics GA CZ6NQ UT WOS:000367218400006 ER PT J AU Hu, WG Zhang, Q Tian, T Li, DY Cheng, G Mu, J Wu, QB Niu, FJ Stegen, JC An, LZ Feng, HY AF Hu, Weigang Zhang, Qi Tian, Tian Li, Dingyao Cheng, Gang Mu, Jing Wu, Qingbai Niu, Fujun Stegen, James C. An, Lizhe Feng, Huyuan TI Relative Roles of Deterministic and Stochastic Processes in Driving the Vertical Distribution of Bacterial Communities in a Permafrost Core from the Qinghai-Tibet Plateau, China SO PLOS ONE LA English DT Article ID PHYLOGENETIC BETA DIVERSITY; MICROBIAL DIVERSITY; NEUTRAL PROCESSES; ECOLOGY; BIODIVERSITY; SOIL; PATTERNS; TUNDRA; NICHE; THAW AB Understanding the processes that influence the structure of biotic communities is one of the major ecological topics, and both stochastic and deterministic processes are expected to be at work simultaneously in most communities. Here, we investigated the vertical distribution patterns of bacterial communities in a 10-m-long soil core taken within permafrost of the Qing-hai-Tibet Plateau. To get a better understanding of the forces that govern these patterns, we examined the diversity and structure of bacterial communities, and the change in community composition along the vertical distance (spatial turnover) from both taxonomic and phylogenetic perspectives. Measures of taxonomic and phylogenetic beta diversity revealed that bacterial community composition changed continuously along the soil core, and showed a vertical distance-decay relationship. Multiple stepwise regression analysis suggested that bacterial alpha diversity and phylogenetic structure were strongly correlated with soil conductivity and pH but weakly correlated with depth. There was evidence that deterministic and stochastic processes collectively drived bacterial vertically-structured pattern. Bacterial communities in five soil horizons (two originated from the active layer and three from permafrost) of the permafrost core were phylogenetically random, indicator of stochastic processes. However, we found a stronger effect of deterministic processes related to soil pH, conductivity, and organic carbon content that were structuring the bacterial communities. We therefore conclude that the vertical distribution of bacterial communities was governed primarily by deterministic ecological selection, although stochastic processes were also at work. Furthermore, the strong impact of environmental conditions ( for example, soil physicochemical parameters and seasonal freeze-thaw cycles) on these communities underlines the sensitivity of permafrost microorganisms to climate change and potentially subsequent permafrost thaw. C1 [Hu, Weigang; Zhang, Qi; Tian, Tian; Li, Dingyao; Cheng, Gang; Mu, Jing; An, Lizhe; Feng, Huyuan] Lanzhou Univ, Minist Educ, Key Lab Cell Activ & Stress Adaptat, Sch Life Sci, Lanzhou 730000, Peoples R China. [Wu, Qingbai; Niu, Fujun] Chinese Acad Sci, SKLFSE, CAREERI, Lanzhou, Peoples R China. [Stegen, James C.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. RP Wu, QB (reprint author), Chinese Acad Sci, SKLFSE, CAREERI, Lanzhou, Peoples R China. EM qbwu@lzb.ac.cn; fenghy@lzu.edu.cn RI Stegen, James/Q-3078-2016 OI Stegen, James/0000-0001-9135-7424 FU National Basic Research Program [2012CB026105]; National Natural Science Foundation [31170482, 31300445, 31370450]; PhD Programs Foundation of Ministry of Education [20130211120005]; Chinese Postdoctoral Science Foundation [2013M540780, 2014T70949]; Fundamental Research Funds for the Central Universities in China [LZUJBKY-2011-119]; State Key Laboratory of Frozen Soil Engineering, Chinese Academy of Sciences [SKLFSE200901] FX This research was supported by funding from the National Basic Research Program (2012CB026105), National Natural Science Foundation (31170482, 31300445, 31370450), PhD Programs Foundation of Ministry of Education (20130211120005), the Chinese Postdoctoral Science Foundation (2013M540780, 2014T70949), Fundamental Research Funds for the Central Universities in China (LZUJBKY-2011-119) and State Key Laboratory of Frozen Soil Engineering, Chinese Academy of Sciences (SKLFSE200901). NR 79 TC 0 Z9 0 U1 7 U2 38 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD DEC 23 PY 2015 VL 10 IS 12 AR e0145747 DI 10.1371/journal.pone.0145747 PG 19 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CZ4SI UT WOS:000367092600128 PM 26699734 ER PT J AU Yang, YR Han, XZ Liang, Y Ghosh, A Chen, J Tang, M AF Yang, Yurong Han, Xiaozhen Liang, Yan Ghosh, Amit Chen, Jie Tang, Ming TI The Combined Effects of Arbuscular Mycorrhizal Fungi (AMF) and Lead (Pb) Stress on Pb Accumulation, Plant Growth Parameters, Photosynthesis, and Antioxidant Enzymes in Robinia pseudoacacia L. SO PLOS ONE LA English DT Article ID HEAVY-METAL STRESS; CHLOROPHYLL FLUORESCENCE; LIPID-PEROXIDATION; HYDROGEN-PEROXIDE; GENE-EXPRESSION; MAIZE PLANTS; WATER STATUS; SALT STRESS; GLUTATHIONE; DAMAGE AB Arbuscular mycorrhizal fungi (AMF) are considered as a potential biotechnological tool for improving phytostabilization efficiency and plant tolerance to heavy metal-contaminated soils. However, the mechanisms through which AMF help to alleviate metal toxicity in plants are still poorly understood. A greenhouse experiment was conducted to evaluate the effects of two AMF species (Funneliformis mosseae and Rhizophagus intraradices) on the growth, Pb accumulation, photosynthesis and antioxidant enzyme activities of a leguminous tree (Robinia pseudoacacia L.) at Pb addition levels of 0, 500, 1000 and 2000 mg kg(-1) soil. AMF symbiosis decreased Pb concentrations in the leaves and promoted the accumulation of biomass as well as photosynthetic pigment contents. Mycorrhizal plants had higher gas exchange capacity, non-photochemistry efficiency, and photochemistry efficiency compared with non-mycorrhizal plants. The enzymatic activities of superoxide dismutase (SOD), ascorbate peroxidases (APX) and glutathione peroxidase (GPX) were enhanced, and hydrogen peroxide (H2O2) and malondialdehyde (MDA) contents were reduced in mycorrhizal plants. These findings suggested that AMF symbiosis could protect plants by alleviating cellular oxidative damage in response to Pb stress. Furthermore, mycorrhizal dependency on plants increased with increasing Pb stress levels, indicating that AMF inoculation likely played a more important role in plant Pb tolerance in heavily contaminated soils. Overall, both F. mosseae and R. intraradices were able to maintain efficient symbiosis with R. pseudoacacia in Pb polluted soils. AMF symbiosis can improve photosynthesis and reactive oxygen species (ROS) scavenging capabilities and decrease Pb concentrations in leaves to alleviate Pb toxicity in R. pseudoacacia. Our results suggest that the application of the two AMF species associated with R. pseudoacacia could be a promising strategy for enhancing the phytostabilization efficiency of Pb contaminated soils. C1 [Yang, Yurong] Northwest A&F Univ, State Key Lab Soil Eros & Dryland Farming Loess P, Yangling 712100, Shaanxi, Peoples R China. [Yang, Yurong; Chen, Jie; Tang, Ming] Northwest A&F Univ, Coll Forestry, Yangling 712100, Shaanxi, Peoples R China. [Han, Xiaozhen] Natl Univ Ireland, Sch Nat Sci, Plant Syst Biol Lab, Bot & Plant Sci, Galway, Ireland. [Liang, Yan] Joint BioEnergy Inst, Emeryville, CA 94608 USA. [Liang, Yan] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Ghosh, Amit] Indian Inst Technol Kharagpur, Sch Energy Sci & Engn, PK Sinha Ctr Bioenergy, Kharagpur 721302, W Bengal, India. RP Tang, M (reprint author), Northwest A&F Univ, Coll Forestry, Yangling 712100, Shaanxi, Peoples R China. EM tangm@nwsuaf.edu.cn RI Liang, Yan/K-8199-2016 OI Liang, Yan/0000-0002-2144-1388 FU National Natural Science Foundation of China [31270639, 31170607, 31170567]; Program for Changjiang Scholars and Innovative Research Team in University of China [IRT1035]; PhD Programs Foundation of Education Ministry of China [20100204110033, 20110204130001]; China Scholarship Council [201306300018]; DOE Joint BioEnergy Institute; U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research [DE-AC02-05CH11231] FX Yurong Yang, Jie Chen and Ming Tang were financially supported by the National Natural Science Foundation of China (31270639, 31170607, 31170567), the Program for Changjiang Scholars and Innovative Research Team in University of China (IRT1035) and the PhD Programs Foundation of Education Ministry of China (20100204110033, 20110204130001). Xiaozhen Han was supported by the China Scholarship Council (201306300018). Yan Liang was funded by the DOE Joint BioEnergy Institute (http://www.jbei.org) which is supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, through contract DE-AC02-05CH11231 between Lawrence Berkeley National Laboratory and the U.S. Department of Energy. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 80 TC 4 Z9 4 U1 13 U2 48 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD DEC 23 PY 2015 VL 10 IS 12 AR e0145726 DI 10.1371/journal.pone.0145726 PG 24 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CZ4SI UT WOS:000367092600123 PM 26698576 ER PT J AU Doudna, JA Gersbach, CA AF Doudna, Jennifer A. Gersbach, Charles A. TI Genome editing: the end of the beginning SO GENOME BIOLOGY LA English DT Editorial Material ID RNA-GUIDED ENDONUCLEASE; CRISPR-CAS SYSTEMS; ENHANCERS; PLANTS; GENES; PROTEINS; FUSION C1 [Doudna, Jennifer A.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Doudna, Jennifer A.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Doudna, Jennifer A.] Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA. [Doudna, Jennifer A.] Univ Calif Berkeley, Innovat Genom Initiat, Berkeley, CA 94720 USA. [Doudna, Jennifer A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Gersbach, Charles A.] Duke Univ, Dept Biomed Engn, Durham, NC 27708 USA. [Gersbach, Charles A.] Duke Univ, Ctr Genom & Computat Biol, Durham, NC 27708 USA. [Gersbach, Charles A.] Duke Univ, Med Ctr, Dept Orthopaed Surg, Durham, NC 27710 USA. RP Gersbach, CA (reprint author), Duke Univ, Dept Biomed Engn, Durham, NC 27708 USA. EM charles.gersbach@duke.edu FU NHGRI NIH HHS [U01 HG007900, U01HG007900]; NIAMS NIH HHS [R21AR067467, R21 AR065956, R21 AR067467, R21AR065956]; NIDA NIH HHS [R01 DA036865, R01DA036865]; NIGMS NIH HHS [GM082250, GM102706, P50 GM082250, P50 GM102706]; NIH HHS [DP2 OD008586] NR 37 TC 0 Z9 0 U1 14 U2 56 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1474-760X J9 GENOME BIOL JI Genome Biol. PD DEC 23 PY 2015 VL 16 AR 292 DI 10.1186/s13059-015-0860-5 PG 3 WC Biotechnology & Applied Microbiology; Genetics & Heredity SC Biotechnology & Applied Microbiology; Genetics & Heredity GA CZ4MD UT WOS:000367076400001 PM 26700220 ER PT J AU Wierschem, K Sunku, SS Kong, T Ito, T Canfield, PC Panagopoulos, C Sengupta, P AF Wierschem, Keola Sunku, Sai Swaroop Kong, Tai Ito, Toshimitsu Canfield, Paul C. Panagopoulos, Christos Sengupta, Pinaki TI Origin of modulated phases and magnetic hysteresis in TmB4 SO PHYSICAL REVIEW B LA English DT Article ID METAMAGNETIC TRANSITIONS; ANGULAR-DEPENDENCE; SPIN SYSTEM; LA-ND; SRCU2(BO3)(2); DIAGRAM; SM AB We investigate the low-temperature magnetic phases in TmB4, a metallic quantum magnet on the geometrically frustrated Shastry-Sutherland lattice, using coordinated experimental and theoretical studies. Our results provide an explanation for the appearance of the intriguing fractional plateau in TmB4 and accompanying magnetic hysteresis. Together with observation of the bump in the half plateau, our results support the picture that the magnetization plateau structure in TmB4 is strongly influenced by the zero-field modulated phases. We present a phenomenological model to explain the appearance of the modulated phases and a microscopic Hamiltonian that captures the complete magnetic behavior of TmB4. C1 [Wierschem, Keola; Sunku, Sai Swaroop; Panagopoulos, Christos; Sengupta, Pinaki] Nanyang Technol Univ, Div Phys & Appl Phys, Sch Phys & Math Sci, Singapore 637371, Singapore. [Kong, Tai; Canfield, Paul C.] US DOE, Ames Lab, Ames, IA 50011 USA. [Kong, Tai; Canfield, Paul C.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Ito, Toshimitsu] Natl Inst Adv Ind Sci & Technol, Tsukuba, Ibaraki 3058562, Japan. RP Wierschem, K (reprint author), Nanyang Technol Univ, Div Phys & Appl Phys, Sch Phys & Math Sci, Singapore 637371, Singapore. RI Sengupta, Pinaki/B-6999-2011; OI Kong, Tai/0000-0002-5064-3464 FU Ministry of Education, Singapore [MOE2014-T2-112]; U.S. Department of Energy, Office of Basic Energy Science, Division of Materials Sciences and Engineering; U.S. Department of Energy [DE-AC02-07CH11358] FX It is a pleasure to thank S. Shastry and C. Batista for useful discussions. Work in Singapore was supported by Grant No. MOE2014-T2-112 from the Ministry of Education, Singapore. Work done at Ames Laboratory (P.C.C. and T.K.) was supported by the U.S. Department of Energy, Office of Basic Energy Science, Division of Materials Sciences and Engineering. The research was performed at the Ames Laboratory. Ames Laboratory is operated for the U.S. Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358. NR 27 TC 1 Z9 1 U1 12 U2 25 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD DEC 23 PY 2015 VL 92 IS 21 AR 214433 DI 10.1103/PhysRevB.92.214433 PG 7 WC Physics, Condensed Matter SC Physics GA CZ4FK UT WOS:000367058700003 ER PT J AU Bhattacharya, T Cirigliano, V Gupta, R Mereghetti, E Yoon, B AF Bhattacharya, Tanmoy Cirigliano, Vincenzo Gupta, Rajan Mereghetti, Emanuele Yoon, Boram TI Dimension-5 CP-odd operators: QCD mixing and renormalization SO PHYSICAL REVIEW D LA English DT Article ID ELECTRIC-DIPOLE MOMENT; RIGHT-HANDED CURRENTS; QUANTUM CHROMODYNAMICS; CHIRAL-SYMMETRY; LATTICE QCD; SUM-RULES; NEUTRON; FERMIONS; ORDER; REGULARIZATION AB We study the off-shell mixing and renormalization of flavor-diagonal dimension-five T- and P-odd operators involving quarks, gluons, and photons, including quark electric dipole and chromoelectric dipole operators. We present the renormalization matrix to one loop in the (MS) over bar scheme. We also provide a definition of the quark chromoelectric dipole operator in a regularization-independent momentum-subtraction scheme suitable for nonperturbative lattice calculations and present the matching coefficients with the (MS) over tilde scheme to one loop in perturbation theory, using both the naive dimensional regularization and 't Hooft-Veltman prescriptions for gamma(5). C1 [Bhattacharya, Tanmoy; Cirigliano, Vincenzo; Gupta, Rajan; Mereghetti, Emanuele; Yoon, Boram] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Bhattacharya, T (reprint author), Los Alamos Natl Lab, Div Theoret, POB 1663, Los Alamos, NM 87545 USA. OI mereghetti, emanuele/0000-0002-8623-5796; Bhattacharya, Tanmoy/0000-0002-1060-652X; Gupta, Rajan/0000-0003-1784-3058 FU US DOE Office of Nuclear Physics and Office of High Energy Physics; LDRD program at Los Alamos National Laboratory FX We acknowledge support by the US DOE Office of Nuclear Physics and Office of High Energy Physics, and by the LDRD program at Los Alamos National Laboratory. We thank T. Blum, T. Izubuchi, C. Lehner, and A. Soni for useful discussions. NR 81 TC 4 Z9 4 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD DEC 23 PY 2015 VL 92 IS 11 AR 114026 DI 10.1103/PhysRevD.92.114026 PG 29 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CZ4LS UT WOS:000367075300005 ER PT J AU Grohs, E Fuller, GM Kishimoto, CT Paris, MW AF Grohs, E. Fuller, G. M. Kishimoto, C. T. Paris, M. W. TI Effect of neutrino rest mass on ionization equilibrium freeze-out SO PHYSICAL REVIEW D LA English DT Article ID FLAVOR OSCILLATIONS; POWER SPECTRUM; RECOMBINATION; COSMOLOGY AB We show how small neutrino rest masses can increase the expansion rate near the photon decoupling epoch in the early Universe, causing an earlier, higher temperature freeze-out for ionization equilibrium compared to the massless neutrino case. This yields a larger free-electron fraction, thereby affecting the photon diffusion length differently than the sound horizon at photon decoupling. This neutrino-mass and recombination effect depends strongly on the neutrino rest masses. Though below current sensitivity, this effect could be probed by next-generation cosmic microwave background experiments, giving another observational handle on neutrino rest mass. C1 [Grohs, E.; Fuller, G. M.; Kishimoto, C. T.] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. [Kishimoto, C. T.] Univ San Diego, Dept Phys, San Diego, CA 92110 USA. [Paris, M. W.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Grohs, E (reprint author), Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. OI Paris, Mark/0000-0003-0471-7896 FU National Science Foundation at UC San Diego [PHY-1307372]; Los Alamos National Laboratory Institute for Geophysics, Space Sciences and Signatures [257842]; National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory [DE-AC52-06NA25396] FX We would like to acknowledge the Institutional Computing Program at Los Alamos National Laboratory for use of their HPC cluster resources. This work was supported in part by National Science Foundation Grant No. PHY-1307372 at UC San Diego, by the Los Alamos National Laboratory Institute for Geophysics, Space Sciences and Signatures Subcontract No. 257842, and the National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396. We thank J. J. Cherry, Amit Yadav, and Lloyd Knox for helpful discussions. We would also like to thank the anonymous referees for their useful comments. NR 32 TC 1 Z9 1 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD DEC 23 PY 2015 VL 92 IS 12 AR 125027 DI 10.1103/PhysRevD.92.125027 PG 6 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CZ4MZ UT WOS:000367078600022 ER PT J AU Orginos, K Parreno, A Savage, MJ Beane, SR Chang, E Detmold, W AF Orginos, Kostas Parreno, Assumpta Savage, Martin J. Beane, Silas R. Chang, Emmanuel Detmold, William TI Two nucleon systems at m(pi) similar to 450 MeV from lattice QCD SO PHYSICAL REVIEW D LA English DT Article ID EFFECTIVE-FIELD THEORY; CHIRAL LAGRANGIANS; FORCES; SCATTERING; BARYONS; STATES; PIONS; LIMIT AB Nucleon-nucleon systems are studied with lattice quantum chromodynamics at a pion mass of m(pi) similar to 450 MeV in three spatial volumes using n(f) = 2 + 1 flavors of light quarks. At the quark masses employed in this work, the deuteron binding energy is calculated to be B-d = 14.4(-2.6)(+3.2) MeV, while the dineutron is bound by B-nn = 12.5(-5.0)(+3.0) MeV. Over the range of energies that are studied, the S-wave scattering phase shifts calculated in the S-1(0) and S-3(1)-D-3(1) channels are found to be similar to those in nature, and indicate repulsive short-range components of the interactions, consistent with phenomenological nucleon-nucleon interactions. In both channels, the phase shifts are determined at three energies that lie within the radius of convergence of the expansion, allowing for constraints to be placed on the inverse scattering lengths and effective ranges. The extracted phase shifts allow for matching to nuclear effective field theories, from which low-energy counterterms are extracted and issues of convergence are investigated. As part of the analysis, a detailed investigation of the single hadron sector is performed, enabling a precise determination of the violation of the Gell-Mann-Okubo mass relation. C1 [Orginos, Kostas] Coll William & Mary, Dept Phys, Williamsburg, VA 23187 USA. [Orginos, Kostas] Jefferson Lab, Newport News, VA 23606 USA. [Parreno, Assumpta] Univ Barcelona, Dept Estruct & Constituents Materia, E-08028 Barcelona, Spain. [Parreno, Assumpta] Univ Barcelona, ICC, E-08028 Barcelona, Spain. [Savage, Martin J.; Chang, Emmanuel] Univ Washington, Inst Nucl Theory, Seattle, WA 98195 USA. [Beane, Silas R.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Detmold, William] MIT, Ctr Theoret Phys, Cambridge, MA 02139 USA. RP Orginos, K (reprint author), Coll William & Mary, Dept Phys, Williamsburg, VA 23187 USA. FU National Science Foundation [OCI-1053575, NSF PHY11-25915]; NERSC (U.S. Department of Energy) [DE-AC02-05CH11231]; USQCD Collaboration; Office of Science of the U.S. Department of Energy [DE-AC05-00OR22725]; NSF [PHY1206498]; U.S. Department of Energy [DE-SC001347, DE-FG02-04ER41302, DE-AC05-06OR23177]; U.S. Department of Energy Early Career Research Award [DE-SC0010495]; MEC (Spain) [FIS2011-24154]; FEDER; U.S. DOE [DE-FG02-00ER41132] FX We thank Andre Walker-Loud and Thomas Luu for the collaboration during initial stages of this work, and Zohreh Davoudi and Raul Briceno for their comments on the manuscript. Calculations were performed using computational resources provided by the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation Grant No. OCI-1053575, NERSC (supported by U.S. Department of Energy Grant No. DE-AC02-05CH11231), and by the USQCD Collaboration. This research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725. Parts of the calculations used the CHROMA software suite [80]. S. R. B. was partially supported by NSF Continuing Grant No. PHY1206498 and by the U.S. Department of Energy through Grant No. DE-SC001347. W. D. was supported in part by U.S. Department of Energy Early Career Research Award No. DE-SC0010495. K. O. was supported by the U.S. Department of Energy through Grant No. DE-FG02-04ER41302 and through Contract No. DE-AC05-06OR23177 under which JSA operates the Thomas Jefferson National Accelerator Facility. The work of A. P. was supported by Contract No. FIS2011-24154 from MEC (Spain) and FEDER. M. J. S. was supported in part by U.S. DOE Grant No. DE-FG02-00ER41132. This research was supported in part by the National Science Foundation under Grant No. NSF PHY11-25915 and W. D. and M. J. S. acknowledge the Kavli Institute for Theoretical Physics for its hospitality during completion of this work. NR 79 TC 11 Z9 11 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD DEC 23 PY 2015 VL 92 IS 11 AR 114512 DI 10.1103/PhysRevD.92.114512 PG 22 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CZ4LS UT WOS:000367075300008 ER PT J AU Pozharskiy, D Zhang, Y Williams, MO McFarland, DM Kevrekidis, PG Vakakis, AF Kevrekidis, IG AF Pozharskiy, D. Zhang, Y. Williams, M. O. McFarland, D. M. Kevrekidis, P. G. Vakakis, A. F. Kevrekidis, I. G. TI Nonlinear resonances and antiresonances of a forced sonic vacuum SO PHYSICAL REVIEW E LA English DT Article ID DISCRETE BREATHERS; SOLITARY WAVES; CHAIN; LATTICES; MODES AB We consider a harmonically driven acoustic medium in the form of a (finite length) highly nonlinear granular crystal with an amplitude-and frequency-dependent boundary drive. Despite the absence of a linear spectrum in the system, we identify resonant periodic propagation whereby the crystal responds at integer multiples of the drive period and observe that this can lead to local maxima of transmitted force at its fixed boundary. In addition, we identify and discuss minima of the transmitted force ("antiresonances") between these resonances. Representative one-parameter complex bifurcation diagrams involve period doublings and Neimark-Sacker bifurcations as well as multiple isolas (e.g., of period-3, -4, or -5 solutions entrained by the forcing). We combine them in a more detailed, two-parameter bifurcation diagram describing the stability of such responses to both frequency and amplitude variations of the drive. This picture supports a notion of a (purely) "nonlinear spectrum" in a system which allows no sound wave propagation (due to zero sound speed: the so-called sonic vacuum). We rationalize this behavior in terms of purely nonlinear building blocks: apparent traveling and standing nonlinear waves. C1 [Pozharskiy, D.; Williams, M. O.; Kevrekidis, I. G.] Princeton Univ, Dept Chem & Biol Engn, Princeton, NJ 08544 USA. [Pozharskiy, D.; Williams, M. O.; Kevrekidis, I. G.] Princeton Univ, PACM, Princeton, NJ 08544 USA. [Zhang, Y.; Vakakis, A. F.] Univ Illinois, Dept Mech Sci & Engn, Urbana, IL 61822 USA. [McFarland, D. M.] Univ Illinois, Dept Aerosp Engn, Urbana, IL 61822 USA. [Kevrekidis, P. G.] Univ Massachusetts, Dept Math & Stat, Amherst, MA 01003 USA. [Kevrekidis, P. G.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87544 USA. [Kevrekidis, P. G.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87544 USA. RP Kevrekidis, IG (reprint author), Princeton Univ, Dept Chem & Biol Engn, Princeton, NJ 08544 USA. EM yannis@princeton.edu FU MURI [US ARO W911NF-09-1-0436]; US AFOSR [FA9550-12-1-0332]; US Department of Energy FX A.F.V. would like to acknowledge the support of MURI Grant No. US ARO W911NF-09-1-0436. D.P., M.O.W., P.G.K., and I.G.K. gratefully acknowledge the support of US AFOSR through Grant No. FA9550-12-1-0332. P.G.K.'s work at Los Alamos is supported in part by the US Department of Energy. NR 38 TC 1 Z9 1 U1 0 U2 13 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 EI 1550-2376 J9 PHYS REV E JI Phys. Rev. E PD DEC 23 PY 2015 VL 92 IS 6 AR 063203 DI 10.1103/PhysRevE.92.063203 PG 8 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA CZ4OH UT WOS:000367082000010 PM 26764846 ER PT J AU Fischer, W Gu, X Altinbas, Z Costanzo, M Hock, J Liu, C Luo, Y Marusic, A Michnoff, R Miller, TA Pikin, AI Schoefer, V Thieberger, P White, SM AF Fischer, W. Gu, X. Altinbas, Z. Costanzo, M. Hock, J. Liu, C. Luo, Y. Marusic, A. Michnoff, R. Miller, T. A. Pikin, A. I. Schoefer, V. Thieberger, P. White, S. M. TI Operational Head-on Beam-Beam Compensation with Electron Lenses in the Relativistic Heavy Ion Collider SO PHYSICAL REVIEW LETTERS LA English DT Article AB Head-on beam-beam compensation has been implemented in the Relativistic Heavy Ion Collider in order to increase the luminosity delivered to the experiments. We discuss the principle of combining a lattice for resonance driving term compensation and an electron lens for tune spread compensation. We describe the electron lens technology and its operational use. To date, the implemented compensation scheme approximately doubled the peak and average luminosities. C1 [Fischer, W.; Gu, X.; Altinbas, Z.; Costanzo, M.; Hock, J.; Liu, C.; Luo, Y.; Marusic, A.; Michnoff, R.; Miller, T. A.; Pikin, A. I.; Schoefer, V.; Thieberger, P.] Brookhaven Natl Lab, Upton, NY 11973 USA. [White, S. M.] European Synchrotron Radiat Facil, F-38043 Grenoble, France. RP Fischer, W (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM Wolfram.Fischer@bnl.gov FU Collider-Accelerator Department; Superconducting Magnet Division at Brookhaven National Laboratory; U.S. LHC Accelerator Research Program (LARP); Brookhaven Science Associates, LLC [DE-AC02-98CH10886]; U.S. Department of Energy FX The work was supported by many in the Collider-Accelerator Department, and the Superconducting Magnet Division at Brookhaven National Laboratory. The authors are also thankful for discussions and support to V. Shiltsev, A. Valishev, T. Sen, and G. Stancari, FNAL, who generously shared the Tevatron experience with us; N. Milas, LNLS; X. Buffat, R. DeMaria, U. Dorda, W. Herr, J.-P. Koutchouk, T. Pieloni, F. Schmidt, and F. Zimmerman, CERN; K. Ohmi, KEK; V. Kamerdziev, FZ Julich; A. Kabel, SLAC, and P. Gorgen, TU Darmstadt. We are thankful to the U.S. LHC Accelerator Research Program (LARP) for support of beam-beam simulations. Work was supported by Brookhaven Science Associates, LLC, under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. NR 23 TC 3 Z9 3 U1 1 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD DEC 23 PY 2015 VL 115 IS 26 AR 264801 DI 10.1103/PhysRevLett.115.264801 PG 5 WC Physics, Multidisciplinary SC Physics GA CZ4BX UT WOS:000367049000008 PM 26764995 ER PT J AU Shao, JH Antipov, SP Baryshev, SV Chen, HB Conde, M Doran, DS Gai, W Jing, CG Liu, WM Power, J Qiu, JQ Shi, JR Wang, D Wang, FY Whiteford, CE Wisniewski, E Xiao, LL AF Shao, Jiahang Antipov, Sergey P. Baryshev, Sergey V. Chen, Huaibi Conde, Manoel Doran, Darrell S. Gai, Wei Jing, Chunguang Liu, Wanming Power, John Qiu, Jiaqi Shi, Jiaru Wang, Dan Wang, Faya Whiteford, Charles E. Wisniewski, Eric Xiao, Liling TI Observation of Field-Emission Dependence on Stored Energy SO PHYSICAL REVIEW LETTERS LA English DT Article ID ELECTRON-EMISSION AB Field emission from a solid metal surface has been continuously studied for a century over macroscopic to atomic scales. It is general knowledge that, other than the surface properties, the emitted current is governed solely by the applied electric field. A pin cathode has been used to study the dependence of field emission on stored energy in an L-band rf gun. The stored energy was changed by adjusting the axial position (distance between the cathode base and the gun back surface) of the cathode while the applied electric field on the cathode tip is kept constant. Avery strong correlation of the field-emission current with the stored energy has been observed. While eliminating all possible interfering sources, an enhancement of the current by a factor of 5 was obtained as the stored energy was increased by a factor of 3. It implies that under certain circumstances a localized field emission may be significantly altered by the global parameters in a system. C1 [Shao, Jiahang; Chen, Huaibi; Shi, Jiaru; Wang, Dan] Tsinghua Univ, Dept Engn Phys, Beijing 100084, Peoples R China. [Shao, Jiahang; Antipov, Sergey P.; Baryshev, Sergey V.; Conde, Manoel; Doran, Darrell S.; Gai, Wei; Jing, Chunguang; Liu, Wanming; Power, John; Qiu, Jiaqi; Wang, Dan; Whiteford, Charles E.; Wisniewski, Eric] Argonne Natl Lab, Lemont, IL 60439 USA. [Antipov, Sergey P.; Baryshev, Sergey V.; Jing, Chunguang; Qiu, Jiaqi] Euclid Techlabs LLC, Solon, OH 44139 USA. [Wang, Faya; Xiao, Liling] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. RP Shao, JH (reprint author), Tsinghua Univ, Dept Engn Phys, Beijing 100084, Peoples R China. EM shaojh07@mails.tsinghua.edu.cn; fywang@slac.stanford.edu FU U.S. Department of Energy Early Career Research Program [LAB 11-572]; U.S. Department of Energy Office of Science [DE-AC02-06CH11357]; National Natural Science Foundation of China [11135004] FX We would like to thank the SLAC machine shop for preparing the pin cathodes, and Dr. Klaus Flottmann from DESY for his great help with the ASTRA code and useful discussions. This work is supported by the U.S. Department of Energy Early Career Research Program under Contract Code LAB 11-572. The work by the AWA group is funded through the U.S. Department of Energy Office of Science under Contract No. DE-AC02-06CH11357, and the work at Tsinghua University is supported by National Natural Science Foundation of China under Grant No. 11135004. NR 28 TC 2 Z9 2 U1 1 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD DEC 23 PY 2015 VL 115 IS 26 AR 264802 DI 10.1103/PhysRevLett.115.264802 PG 5 WC Physics, Multidisciplinary SC Physics GA CZ4BX UT WOS:000367049000009 PM 26764996 ER PT J AU Vasseur, R Karrasch, C Moore, JE AF Vasseur, Romain Karrasch, Christoph Moore, Joel E. TI Expansion Potentials for Exact Far-from-Equilibrium Spreading of Particles and Energy SO PHYSICAL REVIEW LETTERS LA English DT Article ID DELTA-FUNCTION INTERACTION; TONKS-GIRARDEAU GAS; OPTICAL LATTICE; LUTTINGER LIQUID; ULTRACOLD ATOMS; BOSE-GAS; QUANTUM; TRANSPORT; DYNAMICS; MODEL AB The rates at which energy and particle densities move to equalize arbitrarily large temperature and chemical potential differences in an isolated quantum system have an emergent thermodynamical description whenever the energy or particle current commutes with the Hamiltonian. Concrete examples include the energy current in the 1D spinless fermion model with nearest-neighbor interactions (XXZ spin chain), the energy current in Lorentz-invariant theories or the particle current in interacting Bose gases in arbitrary dimension. Even far from equilibrium, these rates are controlled by state functions, which we call "expansion potentials," expressed as integrals of equilibrium Drude weights. This relation between nonequilibrium quantities and linear response implies nonequilibrium Maxwell relations for the Drude weights. We verify our results via density-matrix renormalization group calculations for the XXZ chain. C1 [Vasseur, Romain] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Vasseur, R (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RI Moore, Joel/O-4959-2016; Karrasch, Christoph/S-5716-2016 OI Moore, Joel/0000-0002-4294-5761; Karrasch, Christoph/0000-0002-6475-3584 FU NSF [DMR-1206535]; CaIQuE; Moore Foundation's EPiQS initiative FX The authors thank M. J. Bhaseen, B. Doyon, F. Essler, S. Gazit, V. Korepin, A. C. Potter, D. Weld, the Department of Energy through programs Thermoelectrics (C. K.) and Quantum Materials (R. V.), NSF DMR-1206535, AFOSR MURI and a Simons Investigatorship (J. E. M.), and center support from CaIQuE and the Moore Foundation's EPiQS initiative. NR 72 TC 6 Z9 6 U1 1 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD DEC 23 PY 2015 VL 115 IS 26 AR 267201 DI 10.1103/PhysRevLett.115.267201 PG 6 WC Physics, Multidisciplinary SC Physics GA CZ4BX UT WOS:000367049000017 PM 26765017 ER PT J AU Pellegrini, D Latina, A Schulte, D Bogacz, SA AF Pellegrini, Dario Latina, Andrea Schulte, Daniel Bogacz, S. Alex TI Beam-dynamics driven design of the LHeC energy-recovery linac SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article AB The LHeC is envisioned as a natural upgrade of the LHC that aims at delivering an electron beam for collisions with the existing hadronic beams. The current baseline design for the electron facility consists of a multipass superconducting energy-recovery linac (ERL) operating in a continuous wave mode. The unprecedently high energy of the multipass ERL combined with a stringent emittance dilution budget poses new challenges for the beam optics. Here, we investigate the performances of a novel arc architecture based on a flexible momentum compaction lattice that mitigates the effects of synchrotron radiation while containing the bunch lengthening. Extensive beam-dynamics investigations have been performed with PLACET2, a recently developed tracking code for recirculating machines. They include the first end-to-end tracking and a simulation of the machine operation with a continuous beam. This paper briefly describes the Conceptual Design Report lattice, with an emphasis on possible and proposed improvements that emerged from the beam-dynamics studies. The detector bypass section has been integrated in the lattice, and its design choices are presented here. The stable operation of the ERL with a current up to similar to 150 mA in the linacs has been validated in the presence of single- and multibunch wakefields, synchrotron radiation, and beam-beam effects. C1 [Pellegrini, Dario; Latina, Andrea; Schulte, Daniel] CERN, CH-1211 Geneva, Switzerland. [Bogacz, S. Alex] Jefferson Lab, Newport News, VA 23606 USA. [Pellegrini, Dario] Ecole Polytech Fed Lausanne, CH-1015 Lausanne, Switzerland. RP Pellegrini, D (reprint author), CERN, CH-1211 Geneva, Switzerland. NR 13 TC 0 Z9 0 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD DEC 23 PY 2015 VL 18 IS 12 AR 121004 DI 10.1103/PhysRevSTAB.18.121004 PG 9 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA CZ4PD UT WOS:000367084300001 ER PT J AU Zhang, PF Li, MT Yang, BL Fang, YX Jiang, XG Veith, GM Sun, XG Dai, S AF Zhang, Pengfei Li, Mingtao Yang, Bolun Fang, Youxing Jiang, Xueguang Veith, Gabriel M. Sun, Xiao-Guang Dai, Sheng TI Polymerized Ionic Networks with High Charge Density: Quasi-Solid Electrolytes in Lithium-Metal Batteries SO ADVANCED MATERIALS LA English DT Article ID NANOPARTICLE HYBRID ELECTROLYTES; POLY-IMIDAZOLIUM SALTS; SELECTIVE CO2 CAPTURE; POLY(IONIC LIQUID)S; RADICAL POLYMERIZATION; DENDRITE FORMATION; CONDUCTION; MEMBRANES; BIS(TRIFLUOROMETHANESULFONYL)IMIDE; POLYELECTROLYTES AB Polymerized ionic networks (PINs) with six ion pairs per repeating unit are synthesized by nucleophilic-substitutionmediated polymerization or radical polymerization of monomers bearing six 1-vinylimidazolium cations. PIN-based solid-like electrolytes show good ionic conductivities (up to 5.32 x 10(-3) S cm(-1) at 22 degrees C), wide electrochemical stability windows (up to 5.6 V), and good interfacial compatibility with the electrodes. C1 [Zhang, Pengfei; Li, Mingtao; Sun, Xiao-Guang; Dai, Sheng] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Li, Mingtao; Yang, Bolun] Xi An Jiao Tong Univ, Sch Chem Engn & Technol, Xian 710049, Shaanxi, Peoples R China. [Fang, Youxing; Jiang, Xueguang; Dai, Sheng] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. [Veith, Gabriel M.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Li, MT (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. EM lmt01558@mail.xjtu.edu.cn; dais@ornl.gov RI Jiang, Xueguang/J-5784-2013; fang, youxing/K-1972-2016; Dai, Sheng/K-8411-2015 OI Jiang, Xueguang/0000-0002-9937-6029; Dai, Sheng/0000-0002-8046-3931 FU Fluid Interface Reactions, Structures and Transport (FIRST) Center, an Energy Frontier Research Center - US Department of Energy, Office of Science, Office of Basic Energy Sciences; U.S. Department of Energy (DOE), Basic Energy Sciences (BES), Materials Sciences and Engineering Division; National Natural Science Foundation of China [21303132] FX P.Z. and X.J. (polymer synthesis and characterization) were supported as part of the Fluid Interface Reactions, Structures and Transport (FIRST) Center, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences. Y.F., G.V, X.S., and S.D. (XPS and battery characterizations) were supported by the U.S. Department of Energy (DOE), Basic Energy Sciences (BES), Materials Sciences and Engineering Division. M.L. appreciates the financial support from the National Natural Science Foundation of China (21303132). NR 61 TC 10 Z9 10 U1 42 U2 133 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 0935-9648 EI 1521-4095 J9 ADV MATER JI Adv. Mater. PD DEC 22 PY 2015 VL 27 IS 48 BP 8088 EP 8094 DI 10.1002/adma.201502855 PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA DA5JR UT WOS:000367839900025 PM 26523468 ER PT J AU Lipson, AL Pan, BF Lapidus, SH Liao, C Vaughey, JT Ingram, BJ AF Lipson, Albert L. Pan, Baofei Lapidus, Saul H. Liao, Chen Vaughey, John T. Ingram, Brian J. TI Rechargeable Ca-Ion Batteries: A New Energy Storage System SO CHEMISTRY OF MATERIALS LA English DT Article ID PRUSSIAN BLUE STRUCTURES; X-RAY-ABSORPTION; HEXACYANOFERRATE NANOPARTICLES; NICKEL HEXACYANOFERRATE; CATHODE MATERIALS; LITHIUM; ELECTRODES; SPECTROSCOPY; INSERTION; XANES AB As new uses for larger scale energy storage systems are realized, new chemistries that are less expensive or have higher energy density are needed. While lithium-ion systems have been well studied, the availability of new energy storage chemistries opens up the possibilities for more diverse strategies and uses. One potential path to achieving this goal is to explore chemistries where a multivalent ion such as Ca2+ or Mg2+ is the active species. Herein, we demonstrate this concept for a Ca-ion system utilizing manganese hexacyanoferrate (MFCN) as the cathode to intercalate Ca reversibly in a dry nonaqueous electrolyte. Through characterization via X-ray absorption near-edge spectroscopy, it is determined that only the manganese changes oxidation state during cycling with Ca. X-ray diffraction indicates the MFCN maintains its crystallinity during cycling, with only minor structural changes associated with expansion and contraction. Furthermore, we have demonstrated the first rechargeable Ca-ion battery utilizing MFCN as the cathode and elemental tin as the anode. C1 [Lipson, Albert L.; Pan, Baofei; Liao, Chen; Vaughey, John T.; Ingram, Brian J.] Argonne Natl Lab, Chem Sci & Engn Div, Lemont, IL 60439 USA. [Lapidus, Saul H.] Argonne Natl Lab, Xray Sci Div, Lemont, IL 60439 USA. [Lipson, Albert L.; Pan, Baofei; Liao, Chen; Vaughey, John T.; Ingram, Brian J.] Argonne Natl Lab, Joint Ctr Energy Storage Res, Lemont, IL 60439 USA. RP Ingram, BJ (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Lemont, IL 60439 USA. EM ingram@anl.gov RI BM, MRCAT/G-7576-2011; OI Vaughey, John/0000-0002-2556-6129 FU Joint Center for Energy Storage Research, an Energy Innovation Hub - U.S. Department of Energy, Office of Science, Basic Energy Sciences; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; DOE Office of Science [DE-AC02-06CH11357] FX This work was supported as part of the Joint Center for Energy Storage Research, an Energy Innovation Hub funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences. We would also like to acknowledge the use of the Center for Nanoscale Materials, supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. MRCAT (APS sector 10BM) operations are supported by the Department of Energy and the MRCAT member institutions. This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. D.S. Hodge, JCSER, provided assistance during the preparation of the manuscript. NR 27 TC 21 Z9 21 U1 17 U2 69 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 EI 1520-5002 J9 CHEM MATER JI Chem. Mat. PD DEC 22 PY 2015 VL 27 IS 24 BP 8442 EP 8447 DI 10.1021/acs.chemmater.5b04027 PG 6 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA DA1NH UT WOS:000367562000032 ER PT J AU Hartnett, CA Mahady, K Fowlkes, JD Afkhami, S Kondic, L Rack, PD AF Hartnett, C. A. Mahady, K. Fowlkes, J. D. Afkhami, S. Kondic, L. Rack, P. D. TI Instability of Nano- and Microscale Liquid Metal Filaments: Transition from Single Droplet Collapse to Multidroplet Breakup SO LANGMUIR LA English DT Article ID NANOPARTICLE ARRAYS; SURFACE-TENSION; NANOSTRUCTURES; ELECTRONICS; PLASMONICS; DYNAMICS AB We carry out experimental and numerical studies to investigate the collapse and breakup of finite size, nano- and microscale, liquid metal filaments supported on a substrate. We find the critical dimensions below which filaments do not break up but rather collapse to a single droplet. The transition from collapse to breakup can be described as a competition between two fluid dynamic phenomena: the capillary driven end retraction and the Rayleigh Plateau type instability mechanism that drives the breakup. We focus on the unique spatial and temporal transition region between these two phenomena using patterned metallic thin film strips and pulsed-laser-induced dewetting. The experimental results are compared to an analytical model proposed by Driessen et al. and modified to include substrate interactions. In addition, we report the results of numerical simulations based on a volume-of-fluid method to provide additional insight and highlight the importance of liquid metal resolidification, which reduces inertial effects. C1 [Hartnett, C. A.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Fowlkes, J. D.; Rack, P. D.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Mahady, K.; Afkhami, S.; Kondic, L.] New Jersey Inst Technol, Dept Math Sci, Newark, NJ 07102 USA. [Fowlkes, J. D.; Rack, P. D.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Nanofabricat Res Lab, Oak Ridge, TN 37831 USA. RP Rack, PD (reprint author), Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. EM prack@utk.edu FU NSF [CBET-1235710, NSF-DMS-1320037]; U.S. Department of Energy [DE-AC05-00OR22725] FX Sample preparation including lithography and metal deposition were conducted at the Center for Nanophase Materials Sciences, which is a U.S. Department of Energy, Office of Science User Facility at Oak Ridge National Laboratory. C.A.H, P.D.R., and L.K. acknowledge support from NSF Grant CBET-1235710. S.A. acknowledges support from NSF Grant NSF-DMS-1320037. This manuscript has been authored by UT-Battelle, LLC, under Contract DE-AC05-00OR22725, with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan). NR 26 TC 3 Z9 3 U1 8 U2 22 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD DEC 22 PY 2015 VL 31 IS 50 BP 13609 EP 13617 DI 10.1021/acs.langmuir.5b03598 PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA CZ7LD UT WOS:000367280000017 PM 26595519 ER PT J AU Murphy, RJ Weigandt, KM Uhrig, D Alsayed, A Badre, C Hough, L Muthukumar, M AF Murphy, Ryan J. Weigandt, Katie M. Uhrig, David Alsayed, Ahmed Badre, Chantal Hough, Larry Muthukumar, Murugappan TI Scattering Studies on Poly(3,4-ethylenedioxythiophene)-Polystyrenesulfonate in the Presence of Ionic Liquids SO MACROMOLECULES LA English DT Article ID ANGLE NEUTRON-SCATTERING; X-RAY-SCATTERING; SIGNIFICANT CONDUCTIVITY ENHANCEMENT; DILUTE-SOLUTIONS; LIGHT-SCATTERING; POLY(STYRENESULFONATE) FILMS; NANOSTRUCTURAL ORGANIZATION; ELECTRICAL-CONDUCTIVITY; ANIONIC-POLYMERIZATION; ORDERED STRUCTURE AB The demand for lower cost and flexible electronics has driven industry to develop alternative transparent electrode (TB) materials to replace indium tin oxide (ITO). ITO is the benchmark TE on the market, but its high cost and low flexibility limit it for use in future technologies. Recent work has shown the combination of the conducting polymer poly (3,4- ethylene dioxythiophene)p-olystyrene-sulfonate (PEDOT:PSS) with the ionic liquid 1-ethyl-3-methylimidazolium tetracyanoborate (EMIM:TCB) is a viable ITO replacement. The work presented here investigates the nature of the interaction between PEDOT:PSS and EMIIVI:TCB in the solution state. A combination of scattering methods is used to illustrate a novel, multilength scale model of this system. At length scales larger than 300 nm PEODT:PSS adopts a micro.gel-like structure, and below similar to 300 nm the system adopts an entangled polyelectrolyte mesh structure. As EMIM:TCB is added, the microgel interior adopts a more neutral polymer mesh structure as EMIM:TCB concentration is increased. C1 [Murphy, Ryan J.; Alsayed, Ahmed; Badre, Chantal; Hough, Larry] CNRS SOLVAY PENN UMI 3254, Complex Assemblies Soft Matter, Bristol, PA 19007 USA. [Weigandt, Katie M.] NIST, Gaithersburg, MD 20899 USA. [Uhrig, David] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Muthukumar, Murugappan] Univ Massachusetts, Silvio O Conte Natl Ctr Polymer Res, Dept Polymer Sci & Engn, Amherst, MA 01003 USA. RP Murphy, RJ (reprint author), CNRS SOLVAY PENN UMI 3254, Complex Assemblies Soft Matter, Bristol, PA 19007 USA. EM ryan.murphy@solvay.com FU U.S. Department of Energy [DE-AC05-00OR22725]; Department of Energy FX This manuscript has been authored by UT-Battelle, LLC under Contract DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan). NR 56 TC 1 Z9 1 U1 11 U2 43 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 EI 1520-5835 J9 MACROMOLECULES JI Macromolecules PD DEC 22 PY 2015 VL 48 IS 24 BP 8989 EP 8997 DI 10.1021/acs.macromol.5b02320 PG 9 WC Polymer Science SC Polymer Science GA CZ7KY UT WOS:000367279500033 ER PT J AU Goswami, M Borreguero, JM Pincus, PA Sumpter, BG AF Goswami, Monojoy Borreguero, Jose M. Pincus, Philip A. Sumpter, Bobby G. TI Surfactant-Mediated Polyelectrolyte Self-Assembly in a Polyelectrolyte-Surfactant Complex SO MACROMOLECULES LA English DT Article ID MOLECULAR-DYNAMICS SIMULATIONS; MONTE-CARLO SIMULATIONS; CHARGE-DENSITY; MICELLE COACERVATION; IONIC SURFACTANTS; DODECYL-SULFATE; DRUG-DELIVERY; SALT; MIXTURES; BEHAVIOR AB Self-assembly and dynamics of a polyelectrolyte (PE) surfactant complex (PES) are investigated using molecular dynamics simulations. The complexation is systematically studied for five different PE backbone charge densities. At a fixed surfactant concentration the PES complexation exhibits pearl necklace to agglomerated double spherical structures with a PE chain decorating the surfactant micelles. The counterions do not condense on the complex but are released in the medium with a random distribution. The relaxation dynamics for three different length scales, the polymer chain, segmental, and monomer, show distinct features of the charge and neutral species; the counterions are fastest followed by the PE chain and surfactants. The surfactant heads and tails have the slowest relaxation due to their restricted movement inside the agglomerated structure. At the shortest length scale, all the charge and neutral species show similar relaxation dynamics confirming Rouse behavior at monomer length scales. Overall, the present study highlights the structure property relationship for polymer-surfactant complexation. These results help improve the understanding of PES complexes and should aid in the design of better materials for future applications. C1 [Goswami, Monojoy; Sumpter, Bobby G.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Goswami, Monojoy; Sumpter, Bobby G.] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. [Borreguero, Jose M.] Oak Ridge Natl Lab, Neutron Data Anal & Visualizat, Oak Ridge, TN 37831 USA. [Pincus, Philip A.] Univ Calif Santa Barbara, Dept Mat Sci, Santa Barbara, CA 93106 USA. RP Goswami, M (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. EM goswamim@ornl.gov RI Borreguero, Jose/B-2446-2009 OI Borreguero, Jose/0000-0002-0866-8158 FU U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Materials Science and Engineering Division (MSED); Office of Science of the U.S. Department of Energy [DE-AC05-00OR22725]; Center for Accelerated Materials Modeling (CAMM) - U.S. DOE, BES, MSED; U.S. Department of Energy [DE-AC05-00OR22725] FX This work was supported by the U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Materials Science and Engineering Division (MSED). This research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract DE-AC05-00OR22725. Research by M.G. and J.M.B. is supported by the Center for Accelerated Materials Modeling (CAMM) funded by the U.S. DOE, BES, MSED. This manuscript has been authored by UT-Battelle, LLC, under Contract DE-AC05-00OR22725 with the U.S. Department of Energy. NR 64 TC 3 Z9 3 U1 5 U2 30 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 EI 1520-5835 J9 MACROMOLECULES JI Macromolecules PD DEC 22 PY 2015 VL 48 IS 24 BP 9050 EP 9059 DI 10.1021/acs.macromol.5b02145 PG 10 WC Polymer Science SC Polymer Science GA CZ7KY UT WOS:000367279500039 ER PT J AU Liu, ZK Yi, M Zhang, Y Hu, J Yu, R Zhu, JX He, RH Chen, YL Hashimoto, M Moore, RG Mo, SK Hussain, Z Si, Q Mao, ZQ Lu, DH Shen, ZX AF Liu, Z. K. Yi, M. Zhang, Y. Hu, J. Yu, R. Zhu, J. -X. He, R. -H. Chen, Y. L. Hashimoto, M. Moore, R. G. Mo, S. -K. Hussain, Z. Si, Q. Mao, Z. Q. Lu, D. H. Shen, Z. -X. TI Experimental observation of incoherent-coherent crossover and orbital-dependent band renormalization in iron chalcogenide superconductors SO PHYSICAL REVIEW B LA English DT Article ID HIGH-TEMPERATURE SUPERCONDUCTIVITY; PNICTIDES AB The level of electronic correlation has been one of the key questions in understanding the nature of superconductivity. Among the iron-based superconductors, the iron chalcogenide family exhibits the strongest electron correlations. To gauge the correlation strength, we performed a systematic angle-resolved photoemission spectroscopy study on the iron chalcogenide series Fe1+ySexTe1-x (0 < x < 0.59), a model system with the simplest structure. Our measurement reveals an incoherent-to-coherent crossover in the electronic structure as the selenium ratio increases and the system evolves from a weakly localized to a more itinerant state. Furthermore, we found that the effective mass of bands dominated by the d(xy) orbital character significantly decreases with increasing selenium ratio, as compared to the d(xz/dyz) orbital-dominated bands. The orbital-dependent change in the correlation level agrees with theoretical calculations on the band structure renormalization, and may help to understand the onset of superconductivity in Fe1+ySexTe1-x. C1 [Liu, Z. K.; Yi, M.; Zhang, Y.; Moore, R. G.; Shen, Z. -X.] SLAC Natl Accelerator Lab, Stanford Inst Mat & Energy Sci, Menlo Pk, CA 94025 USA. [Liu, Z. K.; Yi, M.; Shen, Z. -X.] Stanford Univ, Dept Phys, Geballe Lab Adv Mat, Stanford, CA 94305 USA. [Liu, Z. K.; Yi, M.; Shen, Z. -X.] Stanford Univ, Dept Appl Phys, Geballe Lab Adv Mat, Stanford, CA 94305 USA. [Zhang, Y.; Mo, S. -K.; Hussain, Z.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Hu, J.; Mao, Z. Q.] Tulane Univ, Dept Phys & Engn Phys, New Orleans, LA 70118 USA. [Yu, R.] Renmin Univ China, Dept Phys, Beijing 100872, Peoples R China. [Yu, R.; Si, Q.] Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA. [Zhu, J. -X.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [He, R. -H.] Boston Coll, Dept Phys, Chestnut Hill, MA 02467 USA. [Chen, Y. L.] Univ Oxford, Dept Phys, Clarendon Lab, Oxford OX1 3PU, England. [Hashimoto, M.; Lu, D. H.] SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA. RP Liu, ZK (reprint author), SLAC Natl Accelerator Lab, Stanford Inst Mat & Energy Sci, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA. EM zxshen@stanford.edu RI Mo, Sung-Kwan/F-3489-2013; Hu, Jin/C-4141-2014; Yu, Rong/H-3355-2016 OI Mo, Sung-Kwan/0000-0003-0711-8514; Hu, Jin/0000-0003-0080-4239; FU U.S. DOE, Office of Basic Energy Science, Division of Materials Science and Engineering [DE-AC02-76SF00515]; NSF [DMR-1205469, DMR-1309531]; LA-SiGMA program [EPS-1003897]; Robert A. Welch Foundation [C-1411]; National Science Foundation of China [11374361]; Fundamental Research Funds for the Central Universities; Research Funds of Renmin University of China FX ARPES experiments were performed at the Stanford Synchrotron Radiation Lightsource and the Advanced Light Source, which are both operated by the Office of Basic Energy Sciences, U.S. Department of Energy. The Stanford work is supported by the U.S. DOE, Office of Basic Energy Science, Division of Materials Science and Engineering, under Award No. DE-AC02-76SF00515. The work at Tulane is supported by the NSF under Grant No. DMR-1205469 and the LA-SiGMA program under Award No. EPS-1003897. The work at Rice has been supported by NSF Grant No. DMR-1309531 and the Robert A. Welch Foundation Grant No. C-1411. The work at Renmin University has been supported by the National Science Foundation of China Grant No. 11374361, and the Fundamental Research Funds for the Central Universities and the Research Funds of Renmin University of China. NR 31 TC 4 Z9 4 U1 1 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD DEC 22 PY 2015 VL 92 IS 23 AR 235138 DI 10.1103/PhysRevB.92.235138 PG 7 WC Physics, Condensed Matter SC Physics GA CZ4HM UT WOS:000367064100001 ER PT J AU Aad, G Abbott, B Abdallah, J Abdinov, O Aben, R Abolins, M AbouZeid, OS Abramowicz, H Abreu, H Abreu, R Abulaiti, Y Acharya, BS Adamczyk, L Adams, DL Adelman, J Adomeit, S Adye, T Affolder, AA Agatonovic-Jovin, T Agricola, J Aguilar-Saavedra, JA Ahlen, SP Ahmadov, F Aielli, G Akerstedt, H Akesson, TPA Akimov, AV Alberghi, GL Albert, J Albrand, S Verzini, MJA Aleksa, M Aleksandrov, IN Alexa, C Alexander, G Alexopoulos, T Alhroob, M Alimonti, G Alio, L Alison, J Alkire, SP Allbrooke, BMM Allport, PP Aloisio, A Alonso, A Alonso, F Alpigiani, C Altheimer, A Gonzalez, BA Piqueras, DA Alviggi, MG Amadio, BT Amako, K Coutinho, YA Amelung, C Amidei, D Dos Santos, SPA Amorim, A Amoroso, S Amram, N Amundsen, G Anastopoulos, C Ancu, LS Andari, N Andeen, T Anders, CF Anders, G Anders, JK Anderson, KJ Andreazza, A Andrei, V Angelidakis, S Angelozzi, I Anger, P Angerami, A Anghinolfi, F Anisenkov, AV Anjos, N Annovi, A Antonelli, M Antonov, A Antos, J Anulli, F Aoki, M Bella, LA Arabidze, G Arai, Y Araque, JP Arce, ATH Arduh, FA Arguin, JF Argyropoulos, S Arik, M Armbruster, AJ Arnaez, O Arnold, H Arratia, M Arslan, O Artamonov, A Artoni, G Asai, S Asbah, N Ashkenazi, A Asman, B Asquith, L Assamagan, K Astalos, R Atkinson, M Atlay, NB Augsten, K Aurousseau, M Avolio, G Axen, B Ayoub, MK Azuelos, G Baak, MA Baas, AE Baca, MJ Bacci, C Bachacou, H Bachas, K Backes, M Backhaus, M Bagiacchi, P Bagnaia, P Bai, Y Bain, T Baines, JT Baker, OK Baldin, EM Balek, P Balestri, T Balli, F Balunas, WK Banas, E Banerjee, S Bannoura, AAE Barak, L Barberio, EL Barberis, D Barbero, M Barillari, T Barisonzi, M Barklow, T Barlow, N Barnes, SL Barnett, BM Barnett, RM Barnovska, Z Baroncelli, A Barone, G Barr, AJ Barreiro, F da Costa, JBG Bartoldus, R Barton, AE Bartos, P Basalaev, A Bassalat, A Basye, A Bates, RL Batista, SJ Batley, JR Battaglia, M Bauce, M Bauer, F Bawa, HS Beacham, JB Beattie, MD Beau, T Beauchemin, PH Beccherle, R Bechtle, P Beck, HP Becker, K Becker, M Beckingham, M Becot, C Beddall, AJ Beddall, A Bednyakov, VA Bee, CP Beemster, LJ Beermann, TA Begel, M Behr, JK Belanger-Champagne, C Bell, WH Bella, G Bellagamba, L Bellerive, A Bellomo, M Belotskiy, K Beltramello, O Benary, O Benchekroun, D Bender, M Bendtz, K Benekos, N Benhammou, Y Noccioli, EB Garcia, JAB Benjamin, DP Bensinger, JR Bentvelsen, S Beresford, L Beretta, M Berge, D Kuutmann, EB Berger, N Berghaus, F Beringer, J Bernard, C Bernard, NR Bernius, C Bernlochner, FU Berry, T Berta, P Bertella, C Bertoli, G Bertolucci, F Bertsche, C Bertsche, D Besana, MI Besjes, GJ Bylund, OB Bessner, M Besson, N Betancourt, C Bethke, S Bevan, AJ Bhimji, W Bianchi, RM Bianchini, L Bianco, M Biebel, O Biedermann, D Bieniek, SP Biesuz, NV Biglietti, M De Mendizabal, JB Bilokon, H Bindi, M Binet, S Bingul, A Bini, C Biondi, S Bjergaard, DM Black, CW Black, JE Black, KM Blackburn, D Blair, RE Blanchard, JB Blanco, JE Blazek, T Bloch, I Blocker, C Blum, W Blumenschein, U Blunier, S Bobbink, GJ Bobrovnikov, VS Bocchetta, SS Bocci, A Bock, C Boehler, M Bogaerts, JA Bogavac, D Bogdanchikov, AG Bohm, C Boisvert, V Bold, T Boldea, V Boldyrev, AS Bomben, M Bona, M Boonekamp, M Borisov, A Borissov, G Borroni, S Bortfeldt, J Bortolotto, V Bos, K Boscherini, D Bosman, M Boudreau, J Bouffard, J Bouhova-Thacker, EV Boumediene, D Bourdarios, C Bousson, N Boutle, SK Boveia, A Boyd, J Boyko, IR Bozic, I Bracinik, J Brandt, A Brandt, G Brandt, O Bratzler, U Brau, B Brau, JE Braun, HM Madden, WDB Brendlinger, K Brennan, AJ Brenner, L Brenner, R Bressler, S Bristow, K Bristow, TM Britton, D Britzger, D Brochu, FM Brock, I Brock, R Bronner, J Brooijmans, G Brooks, T Brooks, WK Brosamer, J Brost, E de Renstrom, PAB Bruncko, D Bruneliere, R Bruni, A Bruni, G Bruschi, M Bruscino, N Bryngemark, L Buanes, T Buat, Q Buchholz, P Buckley, AG Buda, SI Budagov, IA Buehrer, F Bugge, L Bugge, MK Bulekov, O Bullock, D Burckhart, H Burdin, S Burgard, CD Burghgrave, B Burke, S Burmeister, I Busato, E Buscher, D Buscher, V Bussey, P Butler, JM Butt, AI Buttar, CM Butterworth, JM Butti, P Buttinger, W Buzatu, A Buzykaev, AR Urban, SC Caforio, D Cairo, VM Cakir, O Calace, N Calafiura, P Calandri, A Calderini, G Calfayan, P Caloba, LP Calvet, D Calvet, S Toro, RC Camarda, S Camarri, P Cameron, D Armadans, RC Campana, S Campanelli, M Campoverde, A Canale, V Canepa, A Bret, MC Cantero, J Cantrill, R Cao, T Garrido, MDMC Caprini, I Caprini, M Capua, M Caputo, R Carbone, RM Cardarelli, R Cardillo, F Carli, T Carlino, G Carminati, L Caron, S Carquin, E Carrillo-Montoya, GD Carter, JR Carvalho, J Casadei, D Casado, MP Casolino, M Castaneda-Miranda, E Castelli, A Gimenez, VC Castro, NF Catastini, P Catinaccio, A Catmore, JR Cattai, A Caudron, J Cavaliere, V Cavalli, D Cavalli-Sforza, M Cavasinni, V Ceradini, F Cerio, BC Cerny, K Cerqueira, AS Cerri, A Cerrito, L Cerutti, F Cerv, M Cervelli, A Cetin, SA Chafaq, A Chakraborty, D Chalupkova, I Chang, P Chapman, JD Charlton, DG Chau, CC Barajas, CAC Cheatham, S Chegwidden, A Chekanov, S Chekulaev, SV Chelkov, GA Chelstowska, MA Chen, C Chen, H Chen, K Chen, L Chen, S Chen, S Chen, X Chen, Y Cheng, HC Cheng, Y Cheplakov, A Cheremushkina, E El Moursli, RC Chernyatin, V Cheu, E Chevalier, L Chiarella, V Chiarelli, G Chiodini, G Chisholm, AS Chislett, RT Chitan, A Chizhov, MV Choi, K Chouridou, S Chow, BKB Christodoulou, V Chromek-Burckhart, D Chudoba, J Chuinard, AJ Chwastowski, JJ Chytka, L Ciapetti, G Ciftci, AK Cinca, D Cindro, V Cioara, IA Ciocio, A Cirotto, F Citron, ZH Ciubancan, M Clark, A Clark, BL Clark, PJ Clarke, RN Clement, C Coadou, Y Cobal, M Coccaro, A Cochran, J Coffey, L Cogan, JG Colasurdo, L Cole, B Cole, S Colijn, AP Collot, J Colombo, T Compostella, G Munio, PC Coniavitis, E Connell, SH Connelly, IA Consorti, V Constantinescu, S Conta, C Conti, G Conventi, F Cooke, M Cooper, BD Cooper-Sarkar, AM Cornelissen, T Corradi, M Corriveau, F Corso-Radu, A Cortes-Gonzalez, A Cortiana, G Costa, G Costa, MJ Costanzo, D Cote, D Cottin, G Cowan, G Cox, BE Cranmer, K Cree, G Crepe-Renaudin, S Crescioli, F Cribbs, WA Ortuzar, MC Cristinziani, M Croft, V Crosetti, G Donszelmann, TC Cummings, J Curatolo, M Cuth, J Cuthbert, C Czirr, H Czodrowski, P D'Auria, S D'Onofrio, M De Sousa, MJDS Da Via, C Dabrowski, W Dafinca, A Dai, T Dale, O Dallaire, F Dallapiccola, C Dam, M Dandoy, JR Dang, NP Daniells, AC Danninger, M Hoffmann, MD Dao, V Darbo, G Darmora, S Dassoulas, J Dattagupta, A Davey, W David, C Davidek, T Davies, E Davies, M Davison, P Davygora, Y Dawe, E Dawson, I Daya-Ishmukhametova, RK De, K de Asmundis, R De Benedetti, A De Castro, S De Cecco, S De Groot, N de Jong, P De la Torre, H De Lorenzi, F De Pedis, D De Salvo, A De Sanctis, U De Santo, A De Regie, JBD Dearnaley, WJ Debbe, R Debenedetti, C Dedovich, DV Deigaard, I Del Peso, J Del Prete, T Delgove, D Deliot, F Delitzsch, CM Deliyergiyev, M Dell'Acqua, A Dell'Asta, L Dell'Orso, M Della Pietra, M della Volpe, D Delmastro, M Delsart, PA Deluca, C DeMarco, DA Demers, S Demichev, M Demilly, A Denisov, SP Derendarz, D Derkaoui, JE Derue, F Dervan, P Desch, K Deterre, C Dette, K Deviveiros, PO Dewhurst, A Dhaliwal, S Di Ciaccio, A Di Ciaccio, L Di Domenico, A Di Donato, C Di Girolamo, A Di Girolamo, B Di Mattia, A Di Micco, B Di Nardo, R Di Simone, A Di Sipio, R Di Valentino, D Diaconu, C Diamond, M Dias, FA Diaz, MA Diehl, EB Dietrich, J Diglio, S Dimitrievska, A Dingfelder, J Dita, P Dita, S Dittus, F Djama, F Djobava, T Djuvsland, JI do Vale, MAB Dobos, D Dobre, M Doglioni, C Dohmae, T Dolejsi, J Dolezal, Z Dolgoshein, BA Donadelli, M Donati, S Dondero, P Donini, J Dopke, J Doria, A Dova, MT Doyle, AT Drechsler, E Dris, M Dubreuil, E Duchovni, E Duckeck, G Ducu, OA Duda, D Dudarev, A Duflot, L Duguid, L Duhrssen, M Dunford, M Yildiz, HD Duren, M Durglishvili, A Duschinger, D Dutta, B Dyndal, M Eckardt, C Ecker, KM Edgar, RC Edson, W Edwards, NC Ehrenfeld, W Eifert, T Eigen, G Einsweiler, K Ekelof, T El Kacimi, M Ellert, M Elles, S Ellinghaus, F Elliot, AA Ellis, N Elmsheuser, J Elsing, M Emeliyanov, D Enari, Y Endner, OC Endo, M Erdmann, J Ereditato, A Ernis, G Ernst, J Ernst, M Errede, S Ertel, E Escalier, M Esch, H Escobar, C Esposito, B Etienvre, AI Etzion, E Evans, H Ezhilov, A Fabbri, L Facini, G Fakhrutdinov, RM Falciano, S Falla, RJ Faltova, J Fang, Y Fanti, M Farbin, A Farilla, A Farooque, T Farrell, S Farrington, SM Farthouat, P Fassi, F Fassnacht, P Fassouliotis, D Giannelli, MF Favareto, A Fayard, L Fedin, OL Fedorko, W Feigl, S Feligioni, L Feng, C Feng, EJ Feng, H Fenyuk, AB Feremenga, L Martinez, PF Perez, SF Ferrando, J Ferrari, A Ferrari, P Ferrari, R de Lima, DEF Ferrer, A Ferrere, D Ferretti, C Parodi, AF Fiascaris, M Fiedler, F Filipcic, A Filipuzzi, M Filthaut, F Fincke-Keeler, M Finelli, KD Fiolhais, MCN Fiorini, L Firan, A Fischer, A Fischer, C Fischer, J Fisher, WC Flaschel, N Fleck, I Fleischmann, P Fletcher, GT Fletcher, G Fletcher, RRM Flick, T Floderus, A Castillo, LRF Flowerdew, MJ Formica, A Forti, A Fournier, D Fox, H Fracchia, S Francavilla, P Franchini, M Francis, D Franconi, L Franklin, M Frate, M Fraternali, M Freeborn, D French, ST Friedrich, F Froidevaux, D Frost, JA Fukunaga, C Torregrosa, EF Fulsom, BG Fusayasu, T Fuster, J Gabaldon, C Gabizon, O Gabrielli, A Gabrielli, A Gach, GP Gadatsch, S Gadomski, S Gagliardi, G Gagnon, P Galea, C Galhardo, B Gallas, EJ Gallop, BJ Gallus, P Galster, G Gan, KK Gao, J Gao, Y Gao, YS Walls, FMG Garberson, F Garcia, C Navarro, JEG Garcia-Sciveres, M Gardner, RW Garelli, N Garonne, V Gatti, C Gaudiello, A Gaudio, G Gaur, B Gauthier, L Gauzzi, P Gavrilenko, IL Gay, C Gaycken, G Gazis, EN Ge, P Gecse, Z Gee, CNP Geich-Gimbel, C Geisler, MP Gemme, C Genest, MH Gentile, S George, M George, S Gerbaudo, D Gershon, A Ghasemi, S Ghazlane, H Giacobbe, B Giagu, S Giangiobbe, V Giannetti, P Gibbard, B Gibson, SM Gignac, M Gilchriese, M Gillam, TPS Gillberg, D Gilles, G Gingrich, DM Giokaris, N Giordani, MP Giorgi, FM Giorgi, FM Giraud, PF Giromini, P Giugni, D Giuliani, C Giulini, M Gjelsten, BK Gkaitatzis, S Gkialas, I Gkougkousis, EL Gladilin, LK Glasman, C Glatzer, J Glaysher, PCF Glazov, A Goblirsch-Kolb, M Goddard, JR Godlewski, J Goldfarb, S Golling, T Golubkov, D Gomes, A Goncalo, R Da Costa, JGPF Gonella, L de la Hoz, SG Parra, GG Gonzalez-Sevilla, S Goossens, L Gorbounov, PA Gordon, HA Gorelov, I Gorini, B Gorini, E Gorisek, A Gornicki, E Goshaw, AT Gossling, C Gostkin, MI Goujdami, D Goussiou, AG Govender, N Gozani, E Grabas, HMX Graber, L Grabowska-Bold, I Gradin, POJ Grafstrom, P Grahn, KJ Gramling, J Gramstad, E Grancagnolo, S Gratchev, V Gray, HM Graziani, E Greenwood, ZD Grefe, C Gregersen, K Gregor, IM Grenier, P Griffiths, J Grillo, AA Grimm, K Grinstein, S Gris, P Grivaz, JF Grohs, JP Grohsjean, A Gross, E Grosse-Knetter, J Grossi, GC Grout, ZJ Guan, L Guenther, J Guescini, F Guest, D Gueta, O Guido, E Guillemin, T Guindon, S Gul, U Gumpert, C Guo, J Guo, Y Gupta, S Gustavino, G Gutierrez, P Ortiz, NGG Gutschow, C Guyot, C Gwenlan, C Gwilliam, CB Haas, A Haber, C Hadavand, HK Haddad, N Haefner, P Hagebock, S Hajduk, Z Hakobyan, H Haleem, M Haley, J Hall, D Halladjian, G Hallewell, GD Hamacher, K Hamal, P Hamano, K Hamilton, A Hamity, GN Hamnett, PG Han, L Hanagaki, K Hanawa, K Hance, M Haney, B Hanke, P Hanna, R Hansen, JB Hansen, JD Hansen, MC Hansen, PH Hara, K Hard, AS Harenberg, T Hariri, F Harkusha, S Harrington, RD Harrison, PF Hartjes, F Hasegawa, M Hasegawa, Y Hasib, A Hassani, S Haug, S Hauser, R Hauswald, L Havranek, M Hawkes, CM Hawkings, RJ Hawkins, AD Hayashi, T Hayden, D Hays, CP Hays, JM Hayward, HS Haywood, SJ Head, SJ Heck, T Hedberg, V Heelan, L Heim, S Heim, T Heinemann, B Heinrich, L Hejbal, J Helary, L Hellman, S Hellmich, D Helsens, C Henderson, J Henderson, RCW Heng, Y Hengler, C Henkelmann, S Henrichs, A Correia, AMH Henrot-Versille, S Herbert, GH Jimenez, YH Herten, G Hertenberger, R Hervas, L Hesketh, GG Hessey, NP Hetherly, JW Hickling, R Higon-Rodriguez, E Hill, E Hill, JC Hiller, KH Hillier, SJ Hinchliffe, I Hines, E Hinman, RR Hirose, M Hirschbuehl, D Hobbs, J Hod, N Hodgkinson, MC Hodgson, P Hoecker, A Hoeferkamp, MR Hoenig, F Hohlfeld, M Hohn, D Holmes, TR Homann, M Hong, TM Hopkins, WH Horii, Y Horton, AJ Hostachy, JY Hou, S Hoummada, A Howard, J Howarth, J Hrabovsky, M Hristova, I Hrivnac, J Hryn'ova, T Hrynevich, A Hsu, C Hsu, PJ Hsu, SC Hu, D Hu, Q Hu, X Huang, Y Hubacek, Z Hubaut, F Huegging, F Huffman, TB Hughes, EW Hughes, G Huhtinen, M Hulsing, TA Huseynov, N Huston, J Huth, J Iacobucci, G Iakovidis, G Ibragimov, I Iconomidou-Fayard, L Ideal, E Idrissi, Z Iengo, P Igonkina, O Iizawa, T Ikegami, Y Ikematsu, K Ikeno, M Ilchenko, Y Iliadis, D Ilic, N Ince, T Introzzi, G Ioannou, P Iodice, M Iordanidou, K Ippolito, V Quiles, AI Isaksson, C Ishino, M Ishitsuka, M Ishmukhametov, R Issever, C Istin, S Ponce, JMI Iuppa, R Ivarsson, J Iwanski, W Iwasaki, H Izen, JM Izzo, V Jabbar, S Jackson, B Jackson, M Jackson, P Jaekel, MR Jain, V Jakobs, K Jakobsen, S Jakoubek, T Jakubek, J Jamin, DO Jana, DK Jansen, E Jansky, R Janssen, J Janus, M Jarlskog, G Javadov, N Javurek, T Jeanty, L Jejelava, J Jeng, GY Jennens, D Jenni, P Jentzsch, J Jeske, C Jezequel, S Ji, H Jia, J Jiang, Y Jiggins, S Pena, JJ Jin, S Jinaru, A Jinnouchi, O Joergensen, MD Johansson, P Johns, KA Johnson, WJ Jon-And, K Jones, G Jones, RWL Jones, TJ Jongmanns, J Jorge, PM Joshi, KD Jovicevic, J Ju, X Jussel, P Rozas, AJ Kaci, M Kaczmarska, A Kado, M Kagan, H Kagan, M Kahn, SJ Kajomovitz, E Kalderon, CW Kama, S Kamenshchikov, A Kanaya, N Kaneti, S Kantserov, VA Kanzaki, J Kaplan, B Kaplan, LS Kapliy, A Kar, D Karakostas, K Karamaoun, A Karastathis, N Kareem, MJ Karentzos, E Karnevskiy, M Karpov, SN Karpova, ZM Karthik, K Kartvelishvili, V Karyukhin, AN Kasahara, K Kashif, L Kass, RD Kastanas, A Kataoka, Y Kato, C Katre, A Katzy, J Kawade, K Kawagoe, K Kawamoto, T Kawamura, G Kazama, S Kazanin, VF Keeler, R Kehoe, R Keller, JS Kempster, JJ Keoshkerian, H Kepka, O Kersevan, BP Kersten, S Keyes, RA Khalil-zada, F Khandanyan, H Khanov, A Kharlamov, AG Khoo, TJ Khovanskiy, V Khramov, E Khubua, J Kido, S Kim, HY Kim, SH Kim, YK Kimura, N Kind, OM King, BT King, M King, SB Kirk, J Kiryunin, AE Kishimoto, T Kisielewska, D Kiss, F Kiuchi, K Kivernyk, O Kladiva, E Klein, MH Klein, M Klein, U Kleinknecht, K Klimek, P Klimentov, A Klingenberg, R Klinger, JA Klioutchnikova, T Kluge, EE Kluit, P Kluth, S Knapik, J Kneringer, E Knoops, EBFG Knue, A Kobayashi, A Kobayashi, D Kobayashi, T Kobel, M Kocian, M Kodys, P Koffas, T Koffeman, E Kogan, LA Kohlmann, S Kohout, Z Kohriki, T Koi, T Kolanoski, H Kolb, M Koletsou, I Komar, AA Komori, Y Kondo, T Kondrashova, N Koneke, K Konig, AC Kono, T Konoplich, R Konstantinidis, N Kopeliansky, R Koperny, S Kopke, L Kopp, AK Korcyl, K Kordas, K Korn, A Korol, AA Korolkov, I Korolkova, EV Kortner, O Kortner, S Kosek, T Kostyukhin, VV Kotov, VM Kotwal, A Kourkoumeli-Charalampidi, A Kourkoumelis, C Kouskoura, V Koutsman, A Kowalewski, R Kowalski, TZ Kozanecki, W Kozhin, AS Kramarenko, VA Kramberger, G Krasnopevtsev, D Krasny, MW Krasznahorkay, A Kraus, JK Kravchenko, A Kreiss, S Kretz, M Kretzschmar, J Kreutzfeldt, K Krieger, P Krizka, K Kroeninger, K Kroha, H Kroll, J Kroseberg, J Krstic, J Kruchonak, U Kruger, H Krumnack, N Kruse, A Kruse, MC Kruskal, M Kubota, T Kucuk, H Kuday, S Kuehn, S Kugel, A Kuger, F Kuhl, A Kuhl, T Kukhtin, V Kukla, R Kulchitsky, Y Kuleshov, S Kuna, M Kunigo, T Kupco, A Kurashige, H Kurochkin, YA Kus, V Kuwertz, ES Kuze, M Kvita, J Kwan, T Kyriazopoulos, D La Rosa, A Navarro, JLLR La Rotonda, L Lacasta, C Lacava, F Lacey, J Lacker, H Lacour, D Lacuesta, VR Ladygin, E Lafaye, R Laforge, B Lagouri, T Lai, S Lambourne, L Lammers, S Lampen, CL Lampl, W Lancon, E Landgraf, U Landon, MPJ Lang, VS Lange, JC Lankford, AJ Lanni, F Lantzsch, K Lanza, A Laplace, S Lapoire, C Laporte, JF Lari, T Manghi, FL Lassnig, M Laurelli, P Lavrijsen, W Law, AT Laycock, P Lazovich, T Le Dortz, O Le Guirriec, E Le Menedeu, E LeBlanc, M LeCompte, T Ledroit-Guillon, F Lee, CA Lee, SC Lee, L Lefebvre, G Lefebvre, M Legger, F Leggett, C Lehan, A Miotto, GL Lei, X Leight, WA Leisos, A Leister, AG Leite, MAL Leitner, R Lellouch, D Lemmer, B Leney, KJC Lenz, T Lenzi, B Leone, R Leone, S Leonidopoulos, C Leontsinis, S Leroy, C Lester, CG Levchenko, M Leveque, J Levin, D Levinson, LJ Levy, M Lewis, A Leyko, AM Leyton, M Li, B Li, H Li, HL Li, L Li, L Li, S Li, X Li, Y Liang, Z Liao, H Liberti, B Liblong, A Lichard, P Lie, K Liebal, J Liebig, W Limbach, C Limosani, A Lin, SC Lin, TH Linde, F Lindquist, BE Linnemann, JT Lipeles, E Lipniacka, A Lisovyi, M Liss, TM Lissauer, D Lister, A Litke, AM Liu, B Liu, D Liu, H Liu, J Liu, JB Liu, K Liu, L Liu, M Liu, M Liu, Y Livan, M Lleres, A Merino, JL Lloyd, SL Lo Sterzo, F Lobodzinska, E Loch, P Lockman, WS Loebinger, FK Loevschall-Jensen, AE Loew, KM Loginov, A Lohse, T Lohwasser, K Lokajicek, M Long, BA Long, JD Long, RE Looper, KA Lopes, L Mateos, DL Paredes, BL Paz, IL Lorenz, J Martinez, NL Losada, M Losel, PJ Lou, X Lounis, A Love, J Love, PA Lu, N Lubatti, HJ Luci, C Lucotte, A Luedtke, C Luehring, F Lukas, W Luminari, L Lundberg, O Lund-Jensen, B Lynn, D Lysak, R Lytken, E Ma, H Ma, LL Maccarrone, G Macchiolo, A Macdonald, CM Macek, B Miguens, JM Macina, D Madaffari, D Madar, R Maddocks, HJ Mader, WF Madsen, A Maeda, J Maeland, S Maeno, T Maevskiy, A Magradze, E Mahboubi, K Mahlstedt, J Maiani, C Maidantchik, C Maier, AA Maier, T Maio, A Majewski, S Makida, Y Makovec, N Malaescu, B Malecki, P Maleev, VP Malek, F Mallik, U Malon, D Malone, C Maltezos, S Malyshev, VM Malyukov, S Mamuzic, J Mancini, G Mandelli, B Mandelli, L Mandic, I Mandrysch, R Maneira, J Manfredini, A de Andrade, LM Ramos, JM Mann, A Manousakis-Katsikakis, A Mansoulie, B Mantifel, R Mantoani, M Mapelli, L March, L Marchiori, G Marcisovsky, M Marino, CP Marjanovic, M Marley, DE Marroquim, F Marsden, SP Marshall, Z Marti, LF Marti-Garcia, S Martin, B Martin, TA Martin, VJ dit Latour, BM Martinez, M Martin-Haugh, S Martoiu, VS Martyniuk, AC Marx, M Marzano, F Marzin, A Masetti, L Mashimo, T Mashinistov, R Masik, J Maslennikov, AL Massa, I Massa, L Mastrandrea, P Mastroberardino, A Masubuchi, T Mattig, P Mattmann, J Maurer, J Maxfield, SJ Maximov, DA Mazini, R Mazza, SM Mc Goldrick, G Mc Kee, SP McCarn, A McCarthy, RL McCarthy, TG McCubbin, NA McFarlane, KW Mcfayden, JA Mchedlidze, G McMahon, SJ McPherson, RA Medinnis, M Meehan, S Mehlhase, S Mehta, A Meier, K Meineck, C Meirose, B Garcia, BRM Meloni, F Mengarelli, A Menke, S Meoni, E Mercurio, KM Mergelmeyer, S Mermod, P Merola, L Meroni, C Merritt, FS Messina, A Metcalfe, J Mete, AS Meyer, C Meyer, C Meyer, JP Meyer, J Zu Theenhausen, HM Middleton, RP Miglioranzi, S Mijovic, L Mikenberg, G Mikestikova, M Mikuz, M Milesi, M Milic, A Miller, DW Mills, C Milov, A Milstead, DA Minaenko, AA Minami, Y Minashvili, IA Mincer, AI Mindur, B Mineev, M Ming, Y Mir, LM Mistry, KP Mitani, T Mitrevski, J Mitsou, VA Miucci, A Miyagawa, PS Mjornmark, JU Moa, T Mochizuki, K Mohapatra, S Mohr, W Molander, S Moles-Valls, R Monden, R Monig, K Monini, C Monk, J Monnier, E Montalbano, A Berlingen, JM Monticelli, F Monzani, S Moore, RW Morange, N Moreno, D Llacer, MM Morettini, P Mori, D Mori, T Morii, M Morinaga, M Morisbak, V Moritz, S Morley, AK Mornacchi, G Morris, JD Mortensen, SS Morton, A Morvaj, L Mosidze, M Moss, J Motohashi, K Mount, R Mountricha, E Mouraviev, SV Moyse, EJW Muanza, S Mudd, RD Mueller, F Mueller, J Mueller, RSP Mueller, T Muenstermann, D Mullen, P Mullier, GA Quijada, JAM Murray, WJ Musheghyan, H Musto, E Myagkov, AG Myska, M Nachman, BP Nackenhorst, O Nadal, J Nagai, K Nagai, R Nagai, Y Nagano, K Nagarkar, A Nagasaka, Y Nagata, K Nagel, M Nagy, E Nairz, AM Nakahama, Y Nakamura, K Nakamura, T Nakano, I Namasivayam, H Garcia, RFN Narayan, R Villar, DIN Naumann, T Navarro, G Nayyar, R Neal, HA Nechaeva, PY Neep, TJ Nef, PD Negri, A Negrini, M Nektarijevic, S Nellist, C Nelson, A Nemecek, S Nemethy, P Nepomuceno, AA Nessi, M Neubauer, MS Neumann, M Neves, RM Nevski, P Newman, PR Nguyen, DH Nickerson, RB Nicolaidou, R Nicquevert, B Nielsen, J Nikiforou, N Nikiforov, A Nikolaenko, V Nikolic-Audit, I Nikolopoulos, K Nilsen, JK Nilsson, P Ninomiya, Y Nisati, A Nisius, R Nobe, T Nomachi, M Nomidis, I Nooney, T Norberg, S Nordberg, M Novgorodova, O Nowak, S Nozaki, M Nozka, L Ntekas, K Hanninger, GN Nunnemann, T Nurse, E Nuti, F O'Brien, BJ O'grady, F O'Neil, DC O'Shea, V Oakham, FG Oberlack, H Obermann, T Ocariz, J Ochi, A Ochoa, I Ochoa-Ricoux, JP Oda, S Odaka, S Ogren, H Oh, A Oh, SH Ohm, CC Ohman, H Oide, H Okamura, W Okawa, H Okumura, Y Okuyama, T Olariu, A Pino, SAO Damazio, DO Olszewski, A Olszowska, J Onofre, A Onogi, K Onyisi, PUE Oram, CJ Oreglia, MJ Oren, Y Orestano, D Orlando, N Barrera, CO Orr, RS Osculati, B Ospanov, R Garzon, GOY Otono, H Ouchrif, M Ould-Saada, F Ouraou, A Oussoren, KP Ouyang, Q Ovcharova, A Owen, M Owen, RE Ozcan, VE Ozturk, N Pachal, K Pages, AP Aranda, CP Pagacova, M Griso, SP Paganis, E Paige, F Pais, P Pajchel, K Palacino, G Palestini, S Palka, M Pallin, D Palma, A Pan, YB Panagiotopoulou, ES Pandini, CE Vazquez, JGP Pani, P Panitkin, S Pantea, D Paolozzi, L Papadopoulou, TD Papageorgiou, K Paramonov, A Hernandez, DP Parker, MA Parker, KA Parodi, F Parsons, JA Parzefall, U Pasqualucci, E Passaggio, S Pastore, F Pastore, F Pasztor, G Pataraia, S Patel, ND Pater, JR Pauly, T Pearce, J Pearson, B Pedersen, LE Pedersen, M Lopez, SP Pedro, R Peleganchuk, SV Pelikan, D Penc, O Peng, C Peng, H Penning, B Penwell, J Perepelitsa, DV Codina, EP Garcia-Estan, MTP Perini, L Pernegger, H Perrella, S Peschke, R Peshekhonov, VD Peters, K Peters, RFY Petersen, BA Petersen, TC Petit, E Petridis, A Petridou, C Petroff, P Petrolo, E Petrucci, F Pettersson, NE Pezoa, R Phillips, PW Piacquadio, G Pianori, E Picazio, A Piccaro, E Piccinini, M Pickering, MA Piegaia, R Pignotti, DT Pilcher, JE Pilkington, AD Pin, AWJ Pina, J Pinamonti, M Pinfold, JL Pingel, A Pires, S Pirumov, H Pitt, M Pizio, C Plazak, L Pleier, MA Pleskot, V Plotnikova, E Plucinski, P Pluth, D Poettgen, R Poggioli, L Pohl, D Polesello, G Poley, A Policicchio, A Polifka, R Polini, A Pollard, CS Polychronakos, V Pommes, K Pontecorvo, L Pope, BG Popeneciu, GA Popovic, DS Poppleton, A Pospisil, S Potamianos, K Potrap, IN Potter, CJ Potter, CT Poulard, G Poveda, J Pozdnyakov, V Pralavorio, P Pranko, A Prasad, S Prell, S Price, D Price, LE Primavera, M Prince, S Proissl, M Prokofiev, K Prokoshin, F Protopapadaki, E Protopopescu, S Proudfoot, J Przybycien, M Ptacek, E Puddu, D Pueschel, E Puldon, D Purohit, M Puzo, P Qian, J Qin, G Qin, Y Quadt, A Quarrie, DR Quayle, WB Queitsch-Maitland, M Quilty, D Raddum, S Radeka, V Radescu, V Radhakrishnan, SK Radloff, P Rados, P Ragusa, F Rahal, G Rajagopalan, S Rammensee, M Rangel-Smith, C Rauscher, F Rave, S Ravenscroft, T Raymond, M Read, AL Readioff, NP Rebuzzi, DM Redelbach, A Redlinger, G Reece, R Reeves, K Rehnisch, L Reichert, J Reisin, H Rembser, C Ren, H Renaud, A Rescigno, M Resconi, S Rezanova, OL Reznicek, P Rezvani, R Richter, R Richter, S Richter-Was, E Ricken, O Ridel, M Rieck, P Riegel, CJ Rieger, J Rifki, O Rijssenbeek, M Rimoldi, A Rinaldi, L Ristic, B Ritsch, E Riu, I Rizatdinova, F Rizvi, E Robertson, SH Robichaud-Veronneau, A Robinson, D Robinson, JEM Robson, A Roda, C Roe, S Rohne, O Rolli, S Romaniouk, A Romano, M Saez, SMR Adam, ER Rompotis, N Ronzani, M Roos, L Ros, E Rosati, S Rosbach, K Rose, P Rosendahl, PL Rosenthal, O Rossetti, V Rossi, E Rossi, LP Rosten, JHN Rosten, R Rotaru, M Roth, I Rothberg, J Rousseau, D Royon, CR Rozanov, A Rozen, Y Ruan, X Rubbo, F Rubinskiy, I Rud, VI Rudolph, C Rudolph, MS Ruhr, F Ruiz-Martinez, A Rurikova, Z Rusakovich, NA Ruschke, A Russell, HL Rutherfoord, JP Ruthmann, N Ryabov, YF Rybar, M Rybkin, G Ryder, NC Saavedra, AF Sabato, G Sacerdoti, S Saddique, A Sadrozinski, HFW Sadykov, R Tehrani, FS Saha, P Sahinsoy, M Saimpert, M Saito, T Sakamoto, H Sakurai, Y Salamanna, G Salamon, A Loyola, JES Saleem, M Salek, D De Bruin, PHS Salihagic, D Salnikov, A Salt, J Salvatore, D Salvatore, F Salvucci, A Salzburger, A Sammel, D Sampsonidis, D Sanchez, A Sanchez, J Martinez, VS Sandaker, H Sandbach, RL Sander, HG Sanders, MP Sandhoff, M Sandoval, C Sandstroem, R Sankey, DPC Sannino, M Sansoni, A Santoni, C Santonico, R Santos, H Castillo, IS Sapp, K Sapronov, A Saraiva, JG Sarrazin, B Sasaki, O Sasaki, Y Sato, K Sauvage, G Sauvan, E Savage, G Savard, P Sawyer, C Sawyer, L Saxon, J Sbarra, C Sbrizzi, A Scanlon, T Scannicchio, DA Scarcella, M Scarfone, V Schaarschmidt, J Schacht, P Schaefer, D Schaefer, R Schaeffer, J Schaepe, S Schaetzel, S Schafer, U Schaffer, AC Schaile, D Schamberger, RD Scharf, V Schegelsky, VA Scheirich, D Schernau, M Schiavi, C Schillo, C Schioppa, M Schlenker, S Schmieden, K Schmitt, C Schmitt, S Schmitt, S Schneider, B Schnellbach, YJ Schnoor, U Schoeffel, L Schoening, A Schoenrock, BD Schopf, E Schorlemmer, ALS Schott, M Schouten, D Schovancova, J Schramm, S Schreyer, M Schuh, N Schultens, MJ Schultz-Coulon, HC Schulz, H Schumacher, M Schumm, BA Schune, P Schwanenberger, C Schwartzman, A Schwarz, TA Schwegler, P Schweiger, H Schwemling, P Schwienhorst, R Schwindling, J Schwindt, T Sciacca, FG Scifo, E Sciolla, G Scuri, F Scutti, F Searcy, J Sedov, G Sedykh, E Seema, P Seidel, SC Seiden, A Seifert, F Seixas, JM Sekhniaidze, G Sekhon, K Sekula, SJ Seliverstov, DM Semprini-Cesari, N Serfon, C Serin, L Serkin, L Serre, T Sessa, M Seuster, R Severini, H Sfiligoj, T Sforza, F Sfyrla, A Shabalina, E Shamim, M Shan, LY Shang, R Shank, JT Shapiro, M Shatalov, PB Shaw, K Shaw, SM Shcherbakova, A Shehu, CY Sherwood, P Shi, L Shimizu, S Shimmin, CO Shimojima, M Shiyakova, M Shmeleva, A Saadi, DS Shochet, MJ Shojaii, S Shrestha, S Shulga, E Shupe, MA Shushkevich, S Sicho, P Sidebo, PE Sidiropoulou, O Sidorov, D Sidoti, A Siegert, F Sijacki, D Silva, J Silver, Y Silverstein, SB Simak, V Simard, O Simic, L Simion, S Simioni, E Simmons, B Simon, D Sinervo, P Sinev, NB Sioli, M Siragusa, G Sisakyan, AN Sivoklokov, SY Sjolin, J Sjursen, TB Skinner, MB Skottowe, HP Skubic, P Slater, M Slavicek, T Slawinska, M Sliwa, K Smakhtin, V Smart, BH Smestad, L Smirnov, SY Smirnov, Y Smirnova, LN Smirnova, O Smith, MNK Smith, RW Smizanska, M Smolek, K Snesarev, AA Snidero, G Snyder, S Sobie, R Socher, F Soffer, A Soh, DA Sokhrannyi, G Solans, CA Solar, M Solc, J Soldatov, EY Soldevila, U Solodkov, AA Soloshenko, A Solovyanov, OV Solovyev, V Sommer, P Song, HY Soni, N Sood, A Sopczak, A Sopko, B Sopko, V Sorin, V Sosa, D Sosebee, M Sotiropoulou, CL Soualah, R Soukharev, AM South, D Sowden, BC Spagnolo, S Spalla, M Spangenberg, M Spano, F Spearman, WR Sperlich, D Spettel, F Spighi, R Spigo, G Spiller, LA Spousta, M Denis, RDS Stabile, A Staerz, S Stahlman, J Stamen, R Stamm, S Stanecka, E Stanescu, C Stanescu-Bellu, M Stanitzki, MM Stapnes, S Starchenko, EA Stark, J Staroba, P Starovoitov, P Staszewski, R Steinberg, P Stelzer, B Stelzer, HJ Stelzer-Chilton, O Stenzel, H Stewart, GA Stillings, JA Stockton, MC Stoebe, M Stoicea, G Stolte, P Stonjek, S Stradling, AR Straessner, A Stramaglia, ME Strandberg, J Strandberg, S Strandlie, A Strauss, E Strauss, M Strizenec, P Strohmer, R Strom, DM Stroynowski, R Strubig, A Stucci, SA Stugu, B Styles, NA Su, D Su, J Subramaniam, R Succurro, A Sugaya, Y Suk, M Sulin, VV Sultansoy, S Sumida, T Sun, S Sun, X Sundermann, JE Suruliz, K Susinno, G Sutton, MR Suzuki, S Svatos, M Swiatlowski, M Sykora, I Sykora, T Ta, D Taccini, C Tackmann, K Taenzer, J Taffard, A Tafirout, R Taiblum, N Takai, H Takashima, R Takeda, H Takeshita, T Takubo, Y Talby, M Talyshev, AA Tam, JYC Tan, KG Tanaka, J Tanaka, R Tanaka, S Tannenwald, BB Tannoury, N Araya, ST Tapprogge, S Tarem, S Tarrade, F Tartarelli, GF Tas, P Tasevsky, M Tashiro, T Tassi, E Delgado, AT Tayalati, Y Taylor, FE Taylor, GN Taylor, PTE Taylor, W Teischinger, FA Castanheira, MTD Teixeira-Dias, P Temming, KK Temple, D Ten Kate, H Teng, PK Teoh, JJ Tepel, F Terada, S Terashi, K Terron, J Terzo, S Testa, M Teuscher, RJ Theveneaux-Pelzer, T Thomas, JP Thomas-Wilsker, J Thompson, EN Thompson, PD Thompson, RJ Thompson, AS Thomsen, LA Thomson, E Thomson, M Thun, RP Tibbetts, MJ Torres, RET Tikhomirov, VO Tikhonov, YA Timoshenko, S Tiouchichine, E Tipton, P Tisserant, S Todome, K Todorov, T Todorova-Nova, S Tojo, J Tokar, S Tokushuku, K Tollefson, K Tolley, E Tomlinson, L Tomoto, M Tompkins, L Toms, K Torrence, E Torres, H Pastor, ET Toth, J Touchard, F Tovey, DR Trefzger, T Tremblet, L Tricoli, A Trigger, IM Trincaz-Duvoid, S Tripiana, MF Trischuk, W Trocme, B Troncon, C Trottier-McDonald, M Trovatelli, M Truong, L Trzebinski, M Trzupek, A Tsarouchas, C Tseng, JCL Tsiareshka, PV Tsionou, D Tsipolitis, G Tsirintanis, N Tsiskaridze, S Tsiskaridze, V Tskhadadze, EG Tsukerman, II Tsulaia, V Tsuno, S Tsybychev, D Tudorache, A Tudorache, V Tuna, AN Tupputi, SA Turchikhin, S Turecek, D Turra, R Turvey, AJ Tuts, PM Tykhonov, A Tylmad, M Tyndel, M Ueda, I Ueno, R Ughetto, M Ugland, M Ukegawa, F Unal, G Undrus, A Unel, G Ungaro, FC Unno, Y Unverdorben, C Urban, J Urquijo, P Urrejola, P Usai, G Usanova, A Vacavant, L Vacek, V Vachon, B Valderanis, C Valencic, N Valentinetti, S Valero, A Valery, L Valkar, S Vallecorsa, S Ferrer, JAV Van Den Wollenberg, W Van Der Deijl, PC van der Geer, R van der Graaf, H van Eldik, N van Gemmeren, P Van Nieuwkoop, J van Vulpen, I van Woerden, MC Vanadia, M Vandelli, W Vanguri, R Vaniachine, A Vannucci, F Vardanyan, G Vari, R Varnes, EW Varol, T Varouchas, D Vartapetian, A Varvell, KE Vazeille, F Schroeder, TV Veatch, J Veloce, LM Veloso, F Velz, T Veneziano, S Ventura, A Ventura, D Venturi, M Venturi, N Venturini, A Vercesi, V Verducci, M Verkerke, W Vermeulen, JC Vest, A Vetterli, MC Viazlo, O Vichou, I Vickey, T Boeriu, OEV Viehhauser, GHA Viel, S Vigne, R Villa, M Perez, MV Vilucchi, E Vincter, MG Vinogradov, VB Vivarelli, I Vaque, FV Vlachos, S Vladoiu, D Vlasak, M Vogel, M Vokac, P Volpi, G Volpi, M von der Schmitt, H von Radziewski, H von Toerne, E Vorobel, V Vorobev, K Vos, M Voss, R Vossebeld, JH Vranjes, N Milosavljevic, MV Vrba, V Vreeswijk, M Vuillermet, R Vukotic, I Vykydal, Z Wagner, P Wagner, W Wahlberg, H Wahrmund, S Wakabayashi, J Walder, J Walker, R Walkowiak, W Wang, C Wang, F Wang, H Wang, H Wang, J Wang, J Wang, K Wang, R Wang, SM Wang, T Wang, T Wang, X Wanotayaroj, C Warburton, A Ward, CP Wardrope, DR Washbrook, A Wasicki, C Watkins, PM Watson, AT Watson, IJ Watson, MF Watts, G Watts, S Waugh, BM Webb, S Weber, MS Weber, SW Webster, JS Weidberg, AR Weinert, B Weingarten, J Weiser, C Weits, H Wells, PS Wenaus, T Wengler, T Wenig, S Wermes, N Werner, M Werner, P Wessels, M Wetter, J Whalen, K Wharton, AM White, A White, MJ White, R White, S Whiteson, D Wickens, FJ Wiedenmann, W Wielers, M Wienemann, P Wiglesworth, C Wiik-Fuchs, LAM Wildauer, A Wilkens, HG Williams, HH Williams, S Willis, C Willocq, S Wilson, A Wilson, JA Wingerter-Seez, I Winklmeier, F Winter, BT Wittgen, M Wittkowski, J Wollstadt, SJ Wolter, MW Wolters, H Wosiek, BK Wotschack, J Woudstra, MJ Wozniak, KW Wu, M Wu, M Wu, SL Wu, X Wu, Y Wyatt, TR Wynne, BM Xella, S Xu, D Xu, L Yabsley, B Yacoob, S Yakabe, R Yamada, M Yamaguchi, D Yamaguchi, Y Yamamoto, A Yamamoto, S Yamanaka, T Yamauchi, K Yamazaki, Y Yan, Z Yang, H Yang, H Yang, Y Yao, WM Yap, YC Yasu, Y Yatsenko, E Wong, KHY Ye, J Ye, S Yeletskikh, I Yen, AL Yildirim, E Yorita, K Yoshida, R Yoshihara, K Young, C Young, CJS Youssef, S Yu, DR Yu, J Yu, JM Yu, J Yuan, L Yuen, SPY Yurkewicz, A Yusuff, I Zabinski, B Zaidan, R Zaitsev, AM Zalieckas, J Zaman, A Zambito, S Zanello, L Zanzi, D Zeitnitz, C Zeman, M Zemla, A Zeng, Q Zengel, K Zenin, O Zenis, T Zerwas, D Zhang, D Zhang, F Zhang, G Zhang, H Zhang, J Zhang, L Zhang, R Zhang, X Zhang, Z Zhao, X Zhao, Y Zhao, Z Zhemchugov, A Zhong, J Zhou, B Zhou, C Zhou, L Zhou, L Zhou, M Zhou, N Zhu, CG Zhu, H Zhu, J Zhu, Y Zhuang, X Zhukov, K Zibell, A Zieminska, D Zimine, NI Zimmermann, C Zimmermann, S Zinonos, Z Zinser, M Ziolkowski, M Zivkovic, L Zobernig, G Zoccoli, A zur Nedden, M Zurzolo, G Zwalinski, L AF Aad, G. Abbott, B. Abdallah, J. Abdinov, O. Aben, R. Abolins, M. AbouZeid, O. S. Abramowicz, H. Abreu, H. Abreu, R. Abulaiti, Y. Acharya, B. S. Adamczyk, L. Adams, D. L. Adelman, J. Adomeit, S. Adye, T. Affolder, A. A. Agatonovic-Jovin, T. Agricola, J. Aguilar-Saavedra, J. A. Ahlen, S. P. Ahmadov, F. Aielli, G. Akerstedt, H. Akesson, T. P. A. Akimov, A. V. Alberghi, G. L. Albert, J. Albrand, S. Alconada Verzini, M. J. Aleksa, M. Aleksandrov, I. N. Alexa, C. Alexander, G. Alexopoulos, T. Alhroob, M. Alimonti, G. Alio, L. Alison, J. Alkire, S. P. Allbrooke, B. M. M. Allport, P. P. Aloisio, A. Alonso, A. Alonso, F. Alpigiani, C. Altheimer, A. Gonzalez, B. Alvarez Alvarez Piqueras, D. Alviggi, M. G. Amadio, B. T. Amako, K. Coutinho, Y. Amaral Amelung, C. Amidei, D. Dos Santos, S. P. Amor Amorim, A. Amoroso, S. Amram, N. Amundsen, G. Anastopoulos, C. Ancu, L. S. Andari, N. Andeen, T. Anders, C. F. Anders, G. Anders, J. K. Anderson, K. J. Andreazza, A. Andrei, V. Angelidakis, S. Angelozzi, I. Anger, P. Angerami, A. Anghinolfi, F. Anisenkov, A. V. Anjos, N. Annovi, A. Antonelli, M. Antonov, A. Antos, J. Anulli, F. Aoki, M. Bella, L. Aperio Arabidze, G. Arai, Y. Araque, J. P. Arce, A. T. H. Arduh, F. A. Arguin, J-F. Argyropoulos, S. Arik, M. Armbruster, A. J. Arnaez, O. Arnold, H. Arratia, M. Arslan, O. Artamonov, A. Artoni, G. Asai, S. Asbah, N. Ashkenazi, A. Asman, B. Asquith, L. Assamagan, K. Astalos, R. Atkinson, M. Atlay, N. B. Augsten, K. Aurousseau, M. Avolio, G. Axen, B. Ayoub, M. K. Azuelos, G. Baak, M. A. Baas, A. E. Baca, M. J. Bacci, C. Bachacou, H. Bachas, K. Backes, M. Backhaus, M. Bagiacchi, P. Bagnaia, P. Bai, Y. Bain, T. Baines, J. T. Baker, O. K. Baldin, E. M. Balek, P. Balestri, T. Balli, F. Balunas, W. K. Banas, E. Banerjee, Sw. Bannoura, A. A. E. Barak, L. Barberio, E. L. Barberis, D. Barbero, M. Barillari, T. Barisonzi, M. Barklow, T. Barlow, N. Barnes, S. L. Barnett, B. M. Barnett, R. M. Barnovska, Z. Baroncelli, A. Barone, G. Barr, A. J. Barreiro, F. da Costa, J. Barreiro Guimaraes Bartoldus, R. Barton, A. E. Bartos, P. Basalaev, A. Bassalat, A. Basye, A. Bates, R. L. Batista, S. J. Batley, J. R. Battaglia, M. Bauce, M. Bauer, F. Bawa, H. S. Beacham, J. B. Beattie, M. D. Beau, T. Beauchemin, P. H. Beccherle, R. Bechtle, P. Beck, H. P. Becker, K. Becker, M. Beckingham, M. Becot, C. Beddall, A. J. Beddall, A. Bednyakov, V. A. Bee, C. P. Beemster, L. J. Beermann, T. A. Begel, M. Behr, J. K. Belanger-Champagne, C. Bell, W. H. Bella, G. Bellagamba, L. Bellerive, A. Bellomo, M. Belotskiy, K. Beltramello, O. Benary, O. Benchekroun, D. Bender, M. Bendtz, K. Benekos, N. Benhammou, Y. Noccioli, E. Benhar Garcia, J. A. Benitez Benjamin, D. P. Bensinger, J. R. Bentvelsen, S. Beresford, L. Beretta, M. Berge, D. Kuutmann, E. Bergeaas Berger, N. Berghaus, F. Beringer, J. Bernard, C. Bernard, N. R. Bernius, C. Bernlochner, F. U. Berry, T. Berta, P. Bertella, C. Bertoli, G. Bertolucci, F. Bertsche, C. Bertsche, D. Besana, M. I. Besjes, G. J. Bylund, O. Bessidskaia Bessner, M. Besson, N. Betancourt, C. Bethke, S. Bevan, A. J. Bhimji, W. Bianchi, R. M. Bianchini, L. Bianco, M. Biebel, O. Biedermann, D. Bieniek, S. P. Biesuz, N. V. Biglietti, M. De Mendizabal, J. Bilbao Bilokon, H. Bindi, M. Binet, S. Bingul, A. Bini, C. Biondi, S. Bjergaard, D. M. Black, C. W. Black, J. E. Black, K. M. Blackburn, D. Blair, R. E. Blanchard, J. -B. Blanco, J. E. Blazek, T. Bloch, I. Blocker, C. Blum, W. Blumenschein, U. Blunier, S. Bobbink, G. J. Bobrovnikov, V. S. Bocchetta, S. S. Bocci, A. Bock, C. Boehler, M. Bogaerts, J. A. Bogavac, D. Bogdanchikov, A. G. Bohm, C. Boisvert, V. Bold, T. Boldea, V. Boldyrev, A. S. Bomben, M. Bona, M. Boonekamp, M. Borisov, A. Borissov, G. Borroni, S. Bortfeldt, J. Bortolotto, V. Bos, K. Boscherini, D. Bosman, M. Boudreau, J. Bouffard, J. Bouhova-Thacker, E. V. Boumediene, D. Bourdarios, C. Bousson, N. Boutle, S. K. Boveia, A. Boyd, J. Boyko, I. R. Bozic, I. Bracinik, J. Brandt, A. Brandt, G. Brandt, O. Bratzler, U. Brau, B. Brau, J. E. Braun, H. M. Madden, W. D. Breaden Brendlinger, K. Brennan, A. J. Brenner, L. Brenner, R. Bressler, S. Bristow, K. Bristow, T. M. Britton, D. Britzger, D. Brochu, F. M. Brock, I. Brock, R. Bronner, J. Brooijmans, G. Brooks, T. Brooks, W. K. Brosamer, J. Brost, E. de Renstrom, P. A. Bruckman Bruncko, D. Bruneliere, R. Bruni, A. Bruni, G. Bruschi, M. Bruscino, N. Bryngemark, L. Buanes, T. Buat, Q. Buchholz, P. Buckley, A. G. Buda, S. I. Budagov, I. A. Buehrer, F. Bugge, L. Bugge, M. K. Bulekov, O. Bullock, D. Burckhart, H. Burdin, S. Burgard, C. D. Burghgrave, B. Burke, S. Burmeister, I. Busato, E. Buescher, D. Buescher, V. Bussey, P. Butler, J. M. Butt, A. I. Buttar, C. M. Butterworth, J. M. Butti, P. Buttinger, W. Buzatu, A. Buzykaev, A. R. Cabrera Urban, S. Caforio, D. Cairo, V. M. Cakir, O. Calace, N. Calafiura, P. Calandri, A. Calderini, G. Calfayan, P. Caloba, L. P. Calvet, D. Calvet, S. Toro, R. Camacho Camarda, S. Camarri, P. Cameron, D. Armadans, R. Caminal Campana, S. Campanelli, M. Campoverde, A. Canale, V. Canepa, A. Bret, M. Cano Cantero, J. Cantrill, R. Cao, T. Garrido, M. D. M. Capeans Caprini, I. Caprini, M. Capua, M. Caputo, R. Carbone, R. M. Cardarelli, R. Cardillo, F. Carli, T. Carlino, G. Carminati, L. Caron, S. Carquin, E. Carrillo-Montoya, G. D. Carter, J. R. Carvalho, J. Casadei, D. Casado, M. P. Casolino, M. Castaneda-Miranda, E. Castelli, A. Castillo Gimenez, V. Castro, N. F. Catastini, P. Catinaccio, A. Catmore, J. R. Cattai, A. Caudron, J. Cavaliere, V. Cavalli, D. Cavalli-Sforza, M. Cavasinni, V. Ceradini, F. Cerio, B. C. Cerny, K. Cerqueira, A. S. Cerri, A. Cerrito, L. Cerutti, F. Cerv, M. Cervelli, A. Cetin, S. A. Chafaq, A. Chakraborty, D. Chalupkova, I. Chang, P. Chapman, J. D. Charlton, D. G. Chau, C. C. Barajas, C. A. Chavez Cheatham, S. Chegwidden, A. Chekanov, S. Chekulaev, S. V. Chelkov, G. A. Chelstowska, M. A. Chen, C. Chen, H. Chen, K. Chen, L. Chen, S. Chen, S. Chen, X. Chen, Y. Cheng, H. C. Cheng, Y. Cheplakov, A. Cheremushkina, E. Cherkaoui El Moursli, R. Chernyatin, V. Cheu, E. Chevalier, L. Chiarella, V. Chiarelli, G. Chiodini, G. Chisholm, A. S. Chislett, R. T. Chitan, A. Chizhov, M. V. Choi, K. Chouridou, S. Chow, B. K. B. Christodoulou, V. Chromek-Burckhart, D. Chudoba, J. Chuinard, A. J. Chwastowski, J. J. Chytka, L. Ciapetti, G. Ciftci, A. K. Cinca, D. Cindro, V. Cioara, I. A. Ciocio, A. Cirotto, F. Citron, Z. H. Ciubancan, M. Clark, A. Clark, B. L. Clark, P. J. Clarke, R. N. Clement, C. Coadou, Y. Cobal, M. Coccaro, A. Cochran, J. Coffey, L. Cogan, J. G. Colasurdo, L. Cole, B. Cole, S. Colijn, A. P. Collot, J. Colombo, T. Compostella, G. Muino, P. Conde Coniavitis, E. Connell, S. H. Connelly, I. A. Consorti, V. Constantinescu, S. Conta, C. Conti, G. Conventi, F. Cooke, M. Cooper, B. D. Cooper-Sarkar, A. M. Cornelissen, T. Corradi, M. Corriveau, F. Corso-Radu, A. Cortes-Gonzalez, A. Cortiana, G. Costa, G. Costa, M. J. Costanzo, D. Cote, D. Cottin, G. Cowan, G. Cox, B. E. Cranmer, K. Cree, G. Crepe-Renaudin, S. Crescioli, F. Cribbs, W. A. Ortuzar, M. Crispin Cristinziani, M. Croft, V. Crosetti, G. Donszelmann, T. Cuhadar Cummings, J. Curatolo, M. Cuth, J. Cuthbert, C. Czirr, H. Czodrowski, P. D'Auria, S. D'Onofrio, M. De Sousa, M. J. Da Cunha Sargedas Da Via, C. Dabrowski, W. Dafinca, A. Dai, T. Dale, O. Dallaire, F. Dallapiccola, C. Dam, M. Dandoy, J. R. Dang, N. P. Daniells, A. C. Danninger, M. Hoffmann, M. Dano Dao, V. Darbo, G. Darmora, S. Dassoulas, J. Dattagupta, A. Davey, W. David, C. Davidek, T. Davies, E. Davies, M. Davison, P. Davygora, Y. Dawe, E. Dawson, I. Daya-Ishmukhametova, R. K. De, K. de Asmundis, R. De Benedetti, A. De Castro, S. De Cecco, S. De Groot, N. de Jong, P. De la Torre, H. De Lorenzi, F. De Pedis, D. De Salvo, A. De Sanctis, U. De Santo, A. De Regie, J. B. De Vivie Dearnaley, W. J. Debbe, R. Debenedetti, C. Dedovich, D. V. Deigaard, I. Del Peso, J. Del Prete, T. Delgove, D. Deliot, F. Delitzsch, C. M. Deliyergiyev, M. Dell'Acqua, A. Dell'Asta, L. Dell'Orso, M. Della Pietra, M. della Volpe, D. Delmastro, M. Delsart, P. A. Deluca, C. DeMarco, D. A. Demers, S. Demichev, M. Demilly, A. Denisov, S. P. Derendarz, D. Derkaoui, J. E. Derue, F. Dervan, P. Desch, K. Deterre, C. Dette, K. Deviveiros, P. O. Dewhurst, A. Dhaliwal, S. Di Ciaccio, A. Di Ciaccio, L. Di Domenico, A. Di Donato, C. Di Girolamo, A. Di Girolamo, B. Di Mattia, A. Di Micco, B. Di Nardo, R. Di Simone, A. Di Sipio, R. Di Valentino, D. Diaconu, C. Diamond, M. Dias, F. A. Diaz, M. A. Diehl, E. B. Dietrich, J. Diglio, S. Dimitrievska, A. Dingfelder, J. Dita, P. Dita, S. Dittus, F. Djama, F. Djobava, T. Djuvsland, J. I. do Vale, M. A. B. Dobos, D. Dobre, M. Doglioni, C. Dohmae, T. Dolejsi, J. Dolezal, Z. Dolgoshein, B. A. Donadelli, M. Donati, S. Dondero, P. Donini, J. Dopke, J. Doria, A. Dova, M. T. Doyle, A. T. Drechsler, E. Dris, M. Dubreuil, E. Duchovni, E. Duckeck, G. Ducu, O. A. Duda, D. Dudarev, A. Duflot, L. Duguid, L. Duehrssen, M. Dunford, M. Yildiz, H. Duran Dueren, M. Durglishvili, A. Duschinger, D. Dutta, B. Dyndal, M. Eckardt, C. Ecker, K. M. Edgar, R. C. Edson, W. Edwards, N. C. Ehrenfeld, W. Eifert, T. Eigen, G. Einsweiler, K. Ekelof, T. El Kacimi, M. Ellert, M. Elles, S. Ellinghaus, F. Elliot, A. A. Ellis, N. Elmsheuser, J. Elsing, M. Emeliyanov, D. Enari, Y. Endner, O. C. Endo, M. Erdmann, J. Ereditato, A. Ernis, G. Ernst, J. Ernst, M. Errede, S. Ertel, E. Escalier, M. Esch, H. Escobar, C. Esposito, B. Etienvre, A. I. Etzion, E. Evans, H. Ezhilov, A. Fabbri, L. Facini, G. Fakhrutdinov, R. M. Falciano, S. Falla, R. J. Faltova, J. Fang, Y. Fanti, M. Farbin, A. Farilla, A. Farooque, T. Farrell, S. Farrington, S. M. Farthouat, P. Fassi, F. Fassnacht, P. Fassouliotis, D. Giannelli, M. Faucci Favareto, A. Fayard, L. Fedin, O. L. Fedorko, W. Feigl, S. Feligioni, L. Feng, C. Feng, E. J. Feng, H. Fenyuk, A. B. Feremenga, L. Fernandez Martinez, P. Perez, S. Fernandez Ferrando, J. Ferrari, A. Ferrari, P. Ferrari, R. de Lima, D. E. Ferreira Ferrer, A. Ferrere, D. Ferretti, C. Parodi, A. Ferretto Fiascaris, M. Fiedler, F. Filipcic, A. Filipuzzi, M. Filthaut, F. Fincke-Keeler, M. Finelli, K. D. Fiolhais, M. C. N. Fiorini, L. Firan, A. Fischer, A. Fischer, C. Fischer, J. Fisher, W. C. Flaschel, N. Fleck, I. Fleischmann, P. Fletcher, G. T. Fletcher, G. Fletcher, R. R. M. Flick, T. Floderus, A. Castillo, L. R. Flores Flowerdew, M. J. Formica, A. Forti, A. Fournier, D. Fox, H. Fracchia, S. Francavilla, P. Franchini, M. Francis, D. Franconi, L. Franklin, M. Frate, M. Fraternali, M. Freeborn, D. French, S. T. Friedrich, F. Froidevaux, D. Frost, J. A. Fukunaga, C. Torregrosa, E. Fullana Fulsom, B. G. Fusayasu, T. Fuster, J. Gabaldon, C. Gabizon, O. Gabrielli, A. Gabrielli, A. Gach, G. P. Gadatsch, S. Gadomski, S. Gagliardi, G. Gagnon, P. Galea, C. Galhardo, B. Gallas, E. J. Gallop, B. J. Gallus, P. Galster, G. Gan, K. K. Gao, J. Gao, Y. Gao, Y. S. Walls, F. M. Garay Garberson, F. Garcia, C. Garcia Navarro, J. E. Garcia-Sciveres, M. Gardner, R. W. Garelli, N. Garonne, V. Gatti, C. Gaudiello, A. Gaudio, G. Gaur, B. Gauthier, L. Gauzzi, P. Gavrilenko, I. L. Gay, C. Gaycken, G. Gazis, E. N. Ge, P. Gecse, Z. Gee, C. N. P. Geich-Gimbel, Ch. Geisler, M. P. Gemme, C. Genest, M. H. Gentile, S. George, M. George, S. Gerbaudo, D. Gershon, A. Ghasemi, S. Ghazlane, H. Giacobbe, B. Giagu, S. Giangiobbe, V. Giannetti, P. Gibbard, B. Gibson, S. M. Gignac, M. Gilchriese, M. Gillam, T. P. S. Gillberg, D. Gilles, G. Gingrich, D. M. Giokaris, N. Giordani, M. P. Giorgi, F. M. Giorgi, F. M. Giraud, P. F. Giromini, P. Giugni, D. Giuliani, C. Giulini, M. Gjelsten, B. K. Gkaitatzis, S. Gkialas, I. Gkougkousis, E. L. Gladilin, L. K. Glasman, C. Glatzer, J. Glaysher, P. C. F. Glazov, A. Goblirsch-Kolb, M. Goddard, J. R. Godlewski, J. Goldfarb, S. Golling, T. Golubkov, D. Gomes, A. Goncalo, R. Da Costa, J. Goncalves Pinto Firmino Gonella, L. Gonzalez de la Hoz, S. Gonzalez Parra, G. Gonzalez-Sevilla, S. Goossens, L. Gorbounov, P. A. Gordon, H. A. Gorelov, I. Gorini, B. Gorini, E. Gorisek, A. Gornicki, E. Goshaw, A. T. Goessling, C. Gostkin, M. I. Goujdami, D. Goussiou, A. G. Govender, N. Gozani, E. Grabas, H. M. X. Graber, L. Grabowska-Bold, I. Gradin, P. O. J. Grafstroem, P. Grahn, K-J. Gramling, J. Gramstad, E. Grancagnolo, S. Gratchev, V. Gray, H. M. Graziani, E. Greenwood, Z. D. Grefe, C. Gregersen, K. Gregor, I. M. Grenier, P. Griffiths, J. Grillo, A. A. Grimm, K. Grinstein, S. Gris, Ph. Grivaz, J. -F. Grohs, J. P. Grohsjean, A. Gross, E. Grosse-Knetter, J. Grossi, G. C. Grout, Z. J. Guan, L. Guenther, J. Guescini, F. Guest, D. Gueta, O. Guido, E. Guillemin, T. Guindon, S. Gul, U. Gumpert, C. Guo, J. Guo, Y. Gupta, S. Gustavino, G. Gutierrez, P. Ortiz, N. G. Gutierrez Gutschow, C. Guyot, C. Gwenlan, C. Gwilliam, C. B. Haas, A. Haber, C. Hadavand, H. K. Haddad, N. Haefner, P. Hageboeck, S. Hajduk, Z. Hakobyan, H. Haleem, M. Haley, J. Hall, D. Halladjian, G. Hallewell, G. D. Hamacher, K. Hamal, P. Hamano, K. Hamilton, A. Hamity, G. N. Hamnett, P. G. Han, L. Hanagaki, K. Hanawa, K. Hance, M. Haney, B. Hanke, P. Hanna, R. Hansen, J. B. Hansen, J. D. Hansen, M. C. Hansen, P. H. Hara, K. Hard, A. S. Harenberg, T. Hariri, F. Harkusha, S. Harrington, R. D. Harrison, P. F. Hartjes, F. Hasegawa, M. Hasegawa, Y. Hasib, A. Hassani, S. Haug, S. Hauser, R. Hauswald, L. Havranek, M. Hawkes, C. M. Hawkings, R. J. Hawkins, A. D. Hayashi, T. Hayden, D. Hays, C. P. Hays, J. M. Hayward, H. S. Haywood, S. J. Head, S. J. Heck, T. Hedberg, V. Heelan, L. Heim, S. Heim, T. Heinemann, B. Heinrich, L. Hejbal, J. Helary, L. Hellman, S. Hellmich, D. Helsens, C. Henderson, J. Henderson, R. C. W. Heng, Y. Hengler, C. Henkelmann, S. Henrichs, A. Correia, A. M. Henriques Henrot-Versille, S. Herbert, G. H. Hernandez Jimenez, Y. Herten, G. Hertenberger, R. Hervas, L. Hesketh, G. G. Hessey, N. P. Hetherly, J. W. Hickling, R. Higon-Rodriguez, E. Hill, E. Hill, J. C. Hiller, K. H. Hillier, S. J. Hinchliffe, I. Hines, E. Hinman, R. R. Hirose, M. Hirschbuehl, D. Hobbs, J. Hod, N. Hodgkinson, M. C. Hodgson, P. Hoecker, A. Hoeferkamp, M. R. Hoenig, F. Hohlfeld, M. Hohn, D. Holmes, T. R. Homann, M. Hong, T. M. Hopkins, W. H. Horii, Y. Horton, A. J. Hostachy, J-Y. Hou, S. Hoummada, A. Howard, J. Howarth, J. Hrabovsky, M. Hristova, I. Hrivnac, J. Hryn'ova, T. Hrynevich, A. Hsu, C. Hsu, P. J. Hsu, S. -C. Hu, D. Hu, Q. Hu, X. Huang, Y. Hubacek, Z. Hubaut, F. Huegging, F. Huffman, T. B. Hughes, E. W. Hughes, G. Huhtinen, M. Huelsing, T. A. Huseynov, N. Huston, J. Huth, J. Iacobucci, G. Iakovidis, G. Ibragimov, I. Iconomidou-Fayard, L. Ideal, E. Idrissi, Z. Iengo, P. Igonkina, O. Iizawa, T. Ikegami, Y. Ikematsu, K. Ikeno, M. Ilchenko, Y. Iliadis, D. Ilic, N. Ince, T. Introzzi, G. Ioannou, P. Iodice, M. Iordanidou, K. Ippolito, V. Irles Quiles, A. Isaksson, C. Ishino, M. Ishitsuka, M. Ishmukhametov, R. Issever, C. Istin, S. Ponce, J. M. Iturbe Iuppa, R. Ivarsson, J. Iwanski, W. Iwasaki, H. Izen, J. M. Izzo, V. Jabbar, S. Jackson, B. Jackson, M. Jackson, P. Jaekel, M. R. Jain, V. Jakobs, K. Jakobsen, S. Jakoubek, T. Jakubek, J. Jamin, D. O. Jana, D. K. Jansen, E. Jansky, R. Janssen, J. Janus, M. Jarlskog, G. Javadov, N. Javurek, T. Jeanty, L. Jejelava, J. Jeng, G. -Y. Jennens, D. Jenni, P. Jentzsch, J. Jeske, C. Jezequel, S. Ji, H. Jia, J. Jiang, Y. Jiggins, S. Jimenez Pena, J. Jin, S. Jinaru, A. Jinnouchi, O. Joergensen, M. D. Johansson, P. Johns, K. A. Johnson, W. J. Jon-And, K. Jones, G. Jones, R. W. L. Jones, T. J. Jongmanns, J. Jorge, P. M. Joshi, K. D. Jovicevic, J. Ju, X. Jussel, P. Juste Rozas, A. Kaci, M. Kaczmarska, A. Kado, M. Kagan, H. Kagan, M. Kahn, S. J. Kajomovitz, E. Kalderon, C. W. Kama, S. Kamenshchikov, A. Kanaya, N. Kaneti, S. Kantserov, V. A. Kanzaki, J. Kaplan, B. Kaplan, L. S. Kapliy, A. Kar, D. Karakostas, K. Karamaoun, A. Karastathis, N. Kareem, M. J. Karentzos, E. Karnevskiy, M. Karpov, S. N. Karpova, Z. M. Karthik, K. Kartvelishvili, V. Karyukhin, A. N. Kasahara, K. Kashif, L. Kass, R. D. Kastanas, A. Kataoka, Y. Kato, C. Katre, A. Katzy, J. Kawade, K. Kawagoe, K. Kawamoto, T. Kawamura, G. Kazama, S. Kazanin, V. F. Keeler, R. Kehoe, R. Keller, J. S. Kempster, J. J. Keoshkerian, H. Kepka, O. Kersevan, B. P. Kersten, S. Keyes, R. A. Khalil-zada, F. Khandanyan, H. Khanov, A. Kharlamov, A. G. Khoo, T. J. Khovanskiy, V. Khramov, E. Khubua, J. Kido, S. Kim, H. Y. Kim, S. H. Kim, Y. K. Kimura, N. Kind, O. M. King, B. T. King, M. King, S. B. Kirk, J. Kiryunin, A. E. Kishimoto, T. Kisielewska, D. Kiss, F. Kiuchi, K. Kivernyk, O. Kladiva, E. Klein, M. H. Klein, M. Klein, U. Kleinknecht, K. Klimek, P. Klimentov, A. Klingenberg, R. Klinger, J. A. Klioutchnikova, T. Kluge, E. -E. Kluit, P. Kluth, S. Knapik, J. Kneringer, E. Knoops, E. B. F. G. Knue, A. Kobayashi, A. Kobayashi, D. Kobayashi, T. Kobel, M. Kocian, M. Kodys, P. Koffas, T. Koffeman, E. Kogan, L. A. Kohlmann, S. Kohout, Z. Kohriki, T. Koi, T. Kolanoski, H. Kolb, M. Koletsou, I. Komar, A. A. Komori, Y. Kondo, T. Kondrashova, N. Koeneke, K. Konig, A. C. Kono, T. Konoplich, R. Konstantinidis, N. Kopeliansky, R. Koperny, S. Koepke, L. Kopp, A. K. Korcyl, K. Kordas, K. Korn, A. Korol, A. A. Korolkov, I. Korolkova, E. V. Kortner, O. Kortner, S. Kosek, T. Kostyukhin, V. V. Kotov, V. M. Kotwal, A. Kourkoumeli-Charalampidi, A. Kourkoumelis, C. Kouskoura, V. Koutsman, A. Kowalewski, R. Kowalski, T. Z. Kozanecki, W. Kozhin, A. S. Kramarenko, V. A. Kramberger, G. Krasnopevtsev, D. Krasny, M. W. Krasznahorkay, A. Kraus, J. K. Kravchenko, A. Kreiss, S. Kretz, M. Kretzschmar, J. Kreutzfeldt, K. Krieger, P. Krizka, K. Kroeninger, K. Kroha, H. Kroll, J. Kroseberg, J. Krstic, J. Kruchonak, U. Krueger, H. Krumnack, N. Kruse, A. Kruse, M. C. Kruskal, M. Kubota, T. Kucuk, H. Kuday, S. Kuehn, S. Kugel, A. Kuger, F. Kuhl, A. Kuhl, T. Kukhtin, V. Kukla, R. Kulchitsky, Y. Kuleshov, S. Kuna, M. Kunigo, T. Kupco, A. Kurashige, H. Kurochkin, Y. A. Kus, V. Kuwertz, E. S. Kuze, M. Kvita, J. Kwan, T. Kyriazopoulos, D. La Rosa, A. Navarro, J. L. La Rosa La Rotonda, L. Lacasta, C. Lacava, F. Lacey, J. Lacker, H. Lacour, D. Lacuesta, V. R. Ladygin, E. Lafaye, R. Laforge, B. Lagouri, T. Lai, S. Lambourne, L. Lammers, S. Lampen, C. L. Lampl, W. Lancon, E. Landgraf, U. Landon, M. P. J. Lang, V. S. Lange, J. C. Lankford, A. J. Lanni, F. Lantzsch, K. Lanza, A. Laplace, S. Lapoire, C. Laporte, J. F. Lari, T. Manghi, F. Lasagni Lassnig, M. Laurelli, P. Lavrijsen, W. Law, A. T. Laycock, P. Lazovich, T. Le Dortz, O. Le Guirriec, E. Le Menedeu, E. LeBlanc, M. LeCompte, T. Ledroit-Guillon, F. Lee, C. A. Lee, S. C. Lee, L. Lefebvre, G. Lefebvre, M. Legger, F. Leggett, C. Lehan, A. Miotto, G. Lehmann Lei, X. Leight, W. A. Leisos, A. Leister, A. G. Leite, M. A. L. Leitner, R. Lellouch, D. Lemmer, B. Leney, K. J. C. Lenz, T. Lenzi, B. Leone, R. Leone, S. Leonidopoulos, C. Leontsinis, S. Leroy, C. Lester, C. G. Levchenko, M. Leveque, J. Levin, D. Levinson, L. J. Levy, M. Lewis, A. Leyko, A. M. Leyton, M. Li, B. Li, H. Li, H. L. Li, L. Li, L. Li, S. Li, X. Li, Y. Liang, Z. Liao, H. Liberti, B. Liblong, A. Lichard, P. Lie, K. Liebal, J. Liebig, W. Limbach, C. Limosani, A. Lin, S. C. Lin, T. H. Linde, F. Lindquist, B. E. Linnemann, J. T. Lipeles, E. Lipniacka, A. Lisovyi, M. Liss, T. M. Lissauer, D. Lister, A. Litke, A. M. Liu, B. Liu, D. Liu, H. Liu, J. Liu, J. B. Liu, K. Liu, L. Liu, M. Liu, M. Liu, Y. Livan, M. Lleres, A. Llorente Merino, J. Lloyd, S. L. Lo Sterzo, F. Lobodzinska, E. Loch, P. Lockman, W. S. Loebinger, F. K. Loevschall-Jensen, A. E. Loew, K. M. Loginov, A. Lohse, T. Lohwasser, K. Lokajicek, M. Long, B. A. Long, J. D. Long, R. E. Looper, K. A. Lopes, L. Mateos, D. Lopez Paredes, B. Lopez Paz, I. Lopez Lorenz, J. Martinez, N. Lorenzo Losada, M. Loesel, P. J. Lou, X. Lounis, A. Love, J. Love, P. A. Lu, N. Lubatti, H. J. Luci, C. Lucotte, A. Luedtke, C. Luehring, F. Lukas, W. Luminari, L. Lundberg, O. Lund-Jensen, B. Lynn, D. Lysak, R. Lytken, E. Ma, H. Ma, L. L. Maccarrone, G. Macchiolo, A. Macdonald, C. M. Macek, B. Miguens, J. Machado Macina, D. Madaffari, D. Madar, R. Maddocks, H. J. Mader, W. F. Madsen, A. Maeda, J. Maeland, S. Maeno, T. Maevskiy, A. Magradze, E. Mahboubi, K. Mahlstedt, J. Maiani, C. Maidantchik, C. Maier, A. A. Maier, T. Maio, A. Majewski, S. Makida, Y. Makovec, N. Malaescu, B. Malecki, Pa. Maleev, V. P. Malek, F. Mallik, U. Malon, D. Malone, C. Maltezos, S. Malyshev, V. M. Malyukov, S. Mamuzic, J. Mancini, G. Mandelli, B. Mandelli, L. Mandic, I. Mandrysch, R. Maneira, J. Manfredini, A. Manhaes de Andrade Filho, L. Ramos, J. Manjarres Mann, A. Manousakis-Katsikakis, A. Mansoulie, B. Mantifel, R. Mantoani, M. Mapelli, L. March, L. Marchiori, G. Marcisovsky, M. Marino, C. P. Marjanovic, M. Marley, D. E. Marroquim, F. Marsden, S. P. Marshall, Z. Marti, L. F. Marti-Garcia, S. Martin, B. Martin, T. A. Martin, V. J. dit Latour, B. Martin Martinez, M. Martin-Haugh, S. Martoiu, V. S. Martyniuk, A. C. Marx, M. Marzano, F. Marzin, A. Masetti, L. Mashimo, T. Mashinistov, R. Masik, J. Maslennikov, A. L. Massa, I. Massa, L. Mastrandrea, P. Mastroberardino, A. Masubuchi, T. Maettig, P. Mattmann, J. Maurer, J. Maxfield, S. J. Maximov, D. A. Mazini, R. Mazza, S. M. Mc Goldrick, G. Mc Kee, S. P. McCarn, A. McCarthy, R. L. McCarthy, T. G. McCubbin, N. A. McFarlane, K. W. Mcfayden, J. A. Mchedlidze, G. McMahon, S. J. McPherson, R. A. Medinnis, M. Meehan, S. Mehlhase, S. Mehta, A. Meier, K. Meineck, C. Meirose, B. Garcia, B. R. Mellado Meloni, F. Mengarelli, A. Menke, S. Meoni, E. Mercurio, K. M. Mergelmeyer, S. Mermod, P. Merola, L. Meroni, C. Merritt, F. S. Messina, A. Metcalfe, J. Mete, A. S. Meyer, C. Meyer, C. Meyer, J-P. Meyer, J. Zu Theenhausen, H. Meyer Middleton, R. P. Miglioranzi, S. Mijovic, L. Mikenberg, G. Mikestikova, M. Mikuz, M. Milesi, M. Milic, A. Miller, D. W. Mills, C. Milov, A. Milstead, D. A. Minaenko, A. A. Minami, Y. Minashvili, I. A. Mincer, A. I. Mindur, B. Mineev, M. Ming, Y. Mir, L. M. Mistry, K. P. Mitani, T. Mitrevski, J. Mitsou, V. A. Miucci, A. Miyagawa, P. S. Mjornmark, J. U. Moa, T. Mochizuki, K. Mohapatra, S. Mohr, W. Molander, S. Moles-Valls, R. Monden, R. Moenig, K. Monini, C. Monk, J. Monnier, E. Montalbano, A. Montejo Berlingen, J. Monticelli, F. Monzani, S. Moore, R. W. Morange, N. Moreno, D. Llacer, M. Moreno Morettini, P. Mori, D. Mori, T. Morii, M. Morinaga, M. Morisbak, V. Moritz, S. Morley, A. K. Mornacchi, G. Morris, J. D. Mortensen, S. S. Morton, A. Morvaj, L. Mosidze, M. Moss, J. Motohashi, K. Mount, R. Mountricha, E. Mouraviev, S. V. Moyse, E. J. W. Muanza, S. Mudd, R. D. Mueller, F. Mueller, J. Mueller, R. S. P. Mueller, T. Muenstermann, D. Mullen, P. Mullier, G. A. Quijada, J. A. Murillo Murray, W. J. Musheghyan, H. Musto, E. Myagkov, A. G. Myska, M. Nachman, B. P. Nackenhorst, O. Nadal, J. Nagai, K. Nagai, R. Nagai, Y. Nagano, K. Nagarkar, A. Nagasaka, Y. Nagata, K. Nagel, M. Nagy, E. Nairz, A. M. Nakahama, Y. Nakamura, K. Nakamura, T. Nakano, I. Namasivayam, H. Garcia, R. F. Naranjo Narayan, R. Villar, D. I. Narrias Naumann, T. Navarro, G. Nayyar, R. Neal, H. A. Nechaeva, P. Yu. Neep, T. J. Nef, P. D. Negri, A. Negrini, M. Nektarijevic, S. Nellist, C. Nelson, A. Nemecek, S. Nemethy, P. Nepomuceno, A. A. Nessi, M. Neubauer, M. S. Neumann, M. Neves, R. M. Nevski, P. Newman, P. R. Nguyen, D. H. Nickerson, R. B. Nicolaidou, R. Nicquevert, B. Nielsen, J. Nikiforou, N. Nikiforov, A. Nikolaenko, V. Nikolic-Audit, I. Nikolopoulos, K. Nilsen, J. K. Nilsson, P. Ninomiya, Y. Nisati, A. Nisius, R. Nobe, T. Nomachi, M. Nomidis, I. Nooney, T. Norberg, S. Nordberg, M. Novgorodova, O. Nowak, S. Nozaki, M. Nozka, L. Ntekas, K. Hanninger, G. Nunes Nunnemann, T. Nurse, E. Nuti, F. O'Brien, B. J. O'grady, F. O'Neil, D. C. O'Shea, V. Oakham, F. G. Oberlack, H. Obermann, T. Ocariz, J. Ochi, A. Ochoa, I. Ochoa-Ricoux, J. P. Oda, S. Odaka, S. Ogren, H. Oh, A. Oh, S. H. Ohm, C. C. Ohman, H. Oide, H. Okamura, W. Okawa, H. Okumura, Y. Okuyama, T. Olariu, A. Pino, S. A. Olivares Damazio, D. Oliveira Olszewski, A. Olszowska, J. Onofre, A. Onogi, K. Onyisi, P. U. E. Oram, C. J. Oreglia, M. J. Oren, Y. Orestano, D. Orlando, N. Barrera, C. Oropeza Orr, R. S. Osculati, B. Ospanov, R. Otero y Garzon, G. Otono, H. Ouchrif, M. Ould-Saada, F. Ouraou, A. Oussoren, K. P. Ouyang, Q. Ovcharova, A. Owen, M. Owen, R. E. Ozcan, V. E. Ozturk, N. Pachal, K. Pacheco Pages, A. Padilla Aranda, C. Pagacova, M. Griso, S. Pagan Paganis, E. Paige, F. Pais, P. Pajchel, K. Palacino, G. Palestini, S. Palka, M. Pallin, D. Palma, A. Pan, Y. B. Panagiotopoulou, E. St. Pandini, C. E. Vazquez, J. G. Panduro Pani, P. Panitkin, S. Pantea, D. Paolozzi, L. Papadopoulou, Th. D. Papageorgiou, K. Paramonov, A. Hernandez, D. Paredes Parker, M. A. Parker, K. A. Parodi, F. Parsons, J. A. Parzefall, U. Pasqualucci, E. Passaggio, S. Pastore, F. Pastore, Fr. Pasztor, G. Pataraia, S. Patel, N. D. Pater, J. R. Pauly, T. Pearce, J. Pearson, B. Pedersen, L. E. Pedersen, M. Pedraza Lopez, S. Pedro, R. Peleganchuk, S. V. Pelikan, D. Penc, O. Peng, C. Peng, H. Penning, B. Penwell, J. Perepelitsa, D. V. Codina, E. Perez Perez Garcia-Estan, M. T. Perini, L. Pernegger, H. Perrella, S. Peschke, R. Peshekhonov, V. D. Peters, K. Peters, R. F. Y. Petersen, B. A. Petersen, T. C. Petit, E. Petridis, A. Petridou, C. Petroff, P. Petrolo, E. Petrucci, F. Pettersson, N. E. Pezoa, R. Phillips, P. W. Piacquadio, G. Pianori, E. Picazio, A. Piccaro, E. Piccinini, M. Pickering, M. A. Piegaia, R. Pignotti, D. T. Pilcher, J. E. Pilkington, A. D. Pin, A. W. J. Pina, J. Pinamonti, M. Pinfold, J. L. Pingel, A. Pires, S. Pirumov, H. Pitt, M. Pizio, C. Plazak, L. Pleier, M. -A. Pleskot, V. Plotnikova, E. Plucinski, P. Pluth, D. Poettgen, R. Poggioli, L. Pohl, D. Polesello, G. Poley, A. Policicchio, A. Polifka, R. Polini, A. Pollard, C. S. Polychronakos, V. Pommes, K. Pontecorvo, L. Pope, B. G. Popeneciu, G. A. Popovic, D. S. Poppleton, A. Pospisil, S. Potamianos, K. Potrap, I. N. Potter, C. J. Potter, C. T. Poulard, G. Poveda, J. Pozdnyakov, V. Pralavorio, P. Pranko, A. Prasad, S. Prell, S. Price, D. Price, L. E. Primavera, M. Prince, S. Proissl, M. Prokofiev, K. Prokoshin, F. Protopapadaki, E. Protopopescu, S. Proudfoot, J. Przybycien, M. Ptacek, E. Puddu, D. Pueschel, E. Puldon, D. Purohit, M. Puzo, P. Qian, J. Qin, G. Qin, Y. Quadt, A. Quarrie, D. R. Quayle, W. B. Queitsch-Maitland, M. Quilty, D. Raddum, S. Radeka, V. Radescu, V. Radhakrishnan, S. K. Radloff, P. Rados, P. Ragusa, F. Rahal, G. Rajagopalan, S. Rammensee, M. Rangel-Smith, C. Rauscher, F. Rave, S. Ravenscroft, T. Raymond, M. Read, A. L. Readioff, N. P. Rebuzzi, D. M. Redelbach, A. Redlinger, G. Reece, R. Reeves, K. Rehnisch, L. Reichert, J. Reisin, H. Rembser, C. Ren, H. Renaud, A. Rescigno, M. Resconi, S. Rezanova, O. L. Reznicek, P. Rezvani, R. Richter, R. Richter, S. Richter-Was, E. Ricken, O. Ridel, M. Rieck, P. Riegel, C. J. Rieger, J. Rifki, O. Rijssenbeek, M. Rimoldi, A. Rinaldi, L. Ristic, B. Ritsch, E. Riu, I. Rizatdinova, F. Rizvi, E. Robertson, S. H. Robichaud-Veronneau, A. Robinson, D. Robinson, J. E. M. Robson, A. Roda, C. Roe, S. Rohne, O. Rolli, S. Romaniouk, A. Romano, M. Saez, S. M. Romano Romero Adam, E. Rompotis, N. Ronzani, M. Roos, L. Ros, E. Rosati, S. Rosbach, K. Rose, P. Rosendahl, P. L. Rosenthal, O. Rossetti, V. Rossi, E. Rossi, L. P. Rosten, J. H. N. Rosten, R. Rotaru, M. Roth, I. Rothberg, J. Rousseau, D. Royon, C. R. Rozanov, A. Rozen, Y. Ruan, X. Rubbo, F. Rubinskiy, I. Rud, V. I. Rudolph, C. Rudolph, M. S. Ruehr, F. Ruiz-Martinez, A. Rurikova, Z. Rusakovich, N. A. Ruschke, A. Russell, H. L. Rutherfoord, J. P. Ruthmann, N. Ryabov, Y. F. Rybar, M. Rybkin, G. Ryder, N. C. Saavedra, A. F. Sabato, G. Sacerdoti, S. Saddique, A. Sadrozinski, H. F-W. Sadykov, R. Tehrani, F. Safai Saha, P. Sahinsoy, M. Saimpert, M. Saito, T. Sakamoto, H. Sakurai, Y. Salamanna, G. Salamon, A. Salazar Loyola, J. E. Saleem, M. Salek, D. De Bruin, P. H. Sales Salihagic, D. Salnikov, A. Salt, J. Salvatore, D. Salvatore, F. Salvucci, A. Salzburger, A. Sammel, D. Sampsonidis, D. Sanchez, A. Sanchez, J. Sanchez Martinez, V. Sandaker, H. Sandbach, R. L. Sander, H. G. Sanders, M. P. Sandhoff, M. Sandoval, C. Sandstroem, R. Sankey, D. P. C. Sannino, M. Sansoni, A. Santoni, C. Santonico, R. Santos, H. Castillo, I. Santoyo Sapp, K. Sapronov, A. Saraiva, J. G. Sarrazin, B. Sasaki, O. Sasaki, Y. Sato, K. Sauvage, G. Sauvan, E. Savage, G. Savard, P. Sawyer, C. Sawyer, L. Saxon, J. Sbarra, C. Sbrizzi, A. Scanlon, T. Scannicchio, D. A. Scarcella, M. Scarfone, V. Schaarschmidt, J. Schacht, P. Schaefer, D. Schaefer, R. Schaeffer, J. Schaepe, S. Schaetzel, S. Schaefer, U. Schaffer, A. C. Schaile, D. Schamberger, R. D. Scharf, V. Schegelsky, V. A. Scheirich, D. Schernau, M. Schiavi, C. Schillo, C. Schioppa, M. Schlenker, S. Schmieden, K. Schmitt, C. Schmitt, S. Schmitt, S. Schneider, B. Schnellbach, Y. J. Schnoor, U. Schoeffel, L. Schoening, A. Schoenrock, B. D. Schopf, E. Schorlemmer, A. L. S. Schott, M. Schouten, D. Schovancova, J. Schramm, S. Schreyer, M. Schuh, N. Schultens, M. J. Schultz-Coulon, H. -C. Schulz, H. Schumacher, M. Schumm, B. A. Schune, Ph. Schwanenberger, C. Schwartzman, A. Schwarz, T. A. Schwegler, Ph. Schweiger, H. Schwemling, Ph. Schwienhorst, R. Schwindling, J. Schwindt, T. Sciacca, F. G. Scifo, E. Sciolla, G. Scuri, F. Scutti, F. Searcy, J. Sedov, G. Sedykh, E. Seema, P. Seidel, S. C. Seiden, A. Seifert, F. Seixas, J. M. Sekhniaidze, G. Sekhon, K. Sekula, S. J. Seliverstov, D. M. Semprini-Cesari, N. Serfon, C. Serin, L. Serkin, L. Serre, T. Sessa, M. Seuster, R. Severini, H. Sfiligoj, T. Sforza, F. Sfyrla, A. Shabalina, E. Shamim, M. Shan, L. Y. Shang, R. Shank, J. T. Shapiro, M. Shatalov, P. B. Shaw, K. Shaw, S. M. Shcherbakova, A. Shehu, C. Y. Sherwood, P. Shi, L. Shimizu, S. Shimmin, C. O. Shimojima, M. Shiyakova, M. Shmeleva, A. Saadi, D. Shoaleh Shochet, M. J. Shojaii, S. Shrestha, S. Shulga, E. Shupe, M. A. Shushkevich, S. Sicho, P. Sidebo, P. E. Sidiropoulou, O. Sidorov, D. Sidoti, A. Siegert, F. Sijacki, Dj. Silva, J. Silver, Y. Silverstein, S. B. Simak, V. Simard, O. Simic, Lj. Simion, S. Simioni, E. Simmons, B. Simon, D. Sinervo, P. Sinev, N. B. Sioli, M. Siragusa, G. Sisakyan, A. N. Sivoklokov, S. Yu. Sjolin, J. Sjursen, T. B. Skinner, M. B. Skottowe, H. P. Skubic, P. Slater, M. Slavicek, T. Slawinska, M. Sliwa, K. Smakhtin, V. Smart, B. H. Smestad, L. Smirnov, S. Yu. Smirnov, Y. Smirnova, L. N. Smirnova, O. Smith, M. N. K. Smith, R. W. Smizanska, M. Smolek, K. Snesarev, A. A. Snidero, G. Snyder, S. Sobie, R. Socher, F. Soffer, A. Soh, D. A. Sokhrannyi, G. Solans, C. A. Solar, M. Solc, J. Soldatov, E. Yu. Soldevila, U. Solodkov, A. A. Soloshenko, A. Solovyanov, O. V. Solovyev, V. Sommer, P. Song, H. Y. Soni, N. Sood, A. Sopczak, A. Sopko, B. Sopko, V. Sorin, V. Sosa, D. Sosebee, M. Sotiropoulou, C. L. Soualah, R. Soukharev, A. M. South, D. Sowden, B. C. Spagnolo, S. Spalla, M. Spangenberg, M. Spano, F. Spearman, W. R. Sperlich, D. Spettel, F. Spighi, R. Spigo, G. Spiller, L. A. Spousta, M. Denis, R. D. St. Stabile, A. Staerz, S. Stahlman, J. Stamen, R. Stamm, S. Stanecka, E. Stanescu, C. Stanescu-Bellu, M. Stanitzki, M. M. Stapnes, S. Starchenko, E. A. Stark, J. Staroba, P. Starovoitov, P. Staszewski, R. Steinberg, P. Stelzer, B. Stelzer, H. J. Stelzer-Chilton, O. Stenzel, H. Stewart, G. A. Stillings, J. A. Stockton, M. C. Stoebe, M. Stoicea, G. Stolte, P. Stonjek, S. Stradling, A. R. Straessner, A. Stramaglia, M. E. Strandberg, J. Strandberg, S. Strandlie, A. Strauss, E. Strauss, M. Strizenec, P. Stroehmer, R. Strom, D. M. Stroynowski, R. Strubig, A. Stucci, S. A. Stugu, B. Styles, N. A. Su, D. Su, J. Subramaniam, R. Succurro, A. Sugaya, Y. Suk, M. Sulin, V. V. Sultansoy, S. Sumida, T. Sun, S. Sun, X. Sundermann, J. E. Suruliz, K. Susinno, G. Sutton, M. R. Suzuki, S. Svatos, M. Swiatlowski, M. Sykora, I. Sykora, T. Ta, D. Taccini, C. Tackmann, K. Taenzer, J. Taffard, A. Tafirout, R. Taiblum, N. Takai, H. Takashima, R. Takeda, H. Takeshita, T. Takubo, Y. Talby, M. Talyshev, A. A. Tam, J. Y. C. Tan, K. G. Tanaka, J. Tanaka, R. Tanaka, S. Tannenwald, B. B. Tannoury, N. Tapia Araya, S. Tapprogge, S. Tarem, S. Tarrade, F. Tartarelli, G. F. Tas, P. Tasevsky, M. Tashiro, T. Tassi, E. Delgado, A. Tavares Tayalati, Y. Taylor, F. E. Taylor, G. N. Taylor, P. T. E. Taylor, W. Teischinger, F. A. Castanheira, M. Teixeira Dias Teixeira-Dias, P. Temming, K. K. Temple, D. Ten Kate, H. Teng, P. K. Teoh, J. J. Tepel, F. Terada, S. Terashi, K. Terron, J. Terzo, S. Testa, M. Teuscher, R. J. Theveneaux-Pelzer, T. Thomas, J. P. Thomas-Wilsker, J. Thompson, E. N. Thompson, P. D. Thompson, R. J. Thompson, A. S. Thomsen, L. A. Thomson, E. Thomson, M. Thun, R. P. Tibbetts, M. J. Torres, R. E. Ticse Tikhomirov, V. O. Tikhonov, Yu. A. Timoshenko, S. Tiouchichine, E. Tipton, P. Tisserant, S. Todome, K. Todorov, T. Todorova-Nova, S. Tojo, J. Tokar, S. Tokushuku, K. Tollefson, K. Tolley, E. Tomlinson, L. Tomoto, M. Tompkins, L. Toms, K. Torrence, E. Torres, H. Pastor, E. Torro Toth, J. Touchard, F. Tovey, D. R. Trefzger, T. Tremblet, L. Tricoli, A. Trigger, I. M. Trincaz-Duvoid, S. Tripiana, M. F. Trischuk, W. Trocme, B. Troncon, C. Trottier-McDonald, M. Trovatelli, M. Truong, L. Trzebinski, M. Trzupek, A. Tsarouchas, C. Tseng, J. C-L. Tsiareshka, P. V. Tsionou, D. Tsipolitis, G. Tsirintanis, N. Tsiskaridze, S. Tsiskaridze, V. Tskhadadze, E. G. Tsukerman, I. I. Tsulaia, V. Tsuno, S. Tsybychev, D. Tudorache, A. Tudorache, V. Tuna, A. N. Tupputi, S. A. Turchikhin, S. Turecek, D. Turra, R. Turvey, A. J. Tuts, P. M. Tykhonov, A. Tylmad, M. Tyndel, M. Ueda, I. Ueno, R. Ughetto, M. Ugland, M. Ukegawa, F. Unal, G. Undrus, A. Unel, G. Ungaro, F. C. Unno, Y. Unverdorben, C. Urban, J. Urquijo, P. Urrejola, P. Usai, G. Usanova, A. Vacavant, L. Vacek, V. Vachon, B. Valderanis, C. Valencic, N. Valentinetti, S. Valero, A. Valery, L. Valkar, S. Vallecorsa, S. Valls Ferrer, J. A. Van Den Wollenberg, W. Van Der Deijl, P. C. van der Geer, R. van der Graaf, H. van Eldik, N. van Gemmeren, P. Van Nieuwkoop, J. van Vulpen, I. van Woerden, M. C. Vanadia, M. Vandelli, W. Vanguri, R. Vaniachine, A. Vannucci, F. Vardanyan, G. Vari, R. Varnes, E. W. Varol, T. Varouchas, D. Vartapetian, A. Varvell, K. E. Vazeille, F. Schroeder, T. Vazquez Veatch, J. Veloce, L. M. Veloso, F. Velz, T. Veneziano, S. Ventura, A. Ventura, D. Venturi, M. Venturi, N. Venturini, A. Vercesi, V. Verducci, M. Verkerke, W. Vermeulen, J. C. Vest, A. Vetterli, M. C. Viazlo, O. Vichou, I. Vickey, T. Boeriu, O. E. Vickey Viehhauser, G. H. A. Viel, S. Vigne, R. Villa, M. Perez, M. Villaplana Vilucchi, E. Vincter, M. G. Vinogradov, V. B. Vivarelli, I. Vaque, F. Vives Vlachos, S. Vladoiu, D. Vlasak, M. Vogel, M. Vokac, P. Volpi, G. Volpi, M. von der Schmitt, H. von Radziewski, H. von Toerne, E. Vorobel, V. Vorobev, K. Vos, M. Voss, R. Vossebeld, J. H. Vranjes, N. Milosavljevic, M. Vranjes Vrba, V. Vreeswijk, M. Vuillermet, R. Vukotic, I. Vykydal, Z. Wagner, P. Wagner, W. Wahlberg, H. Wahrmund, S. Wakabayashi, J. Walder, J. Walker, R. Walkowiak, W. Wang, C. Wang, F. Wang, H. Wang, H. Wang, J. Wang, J. Wang, K. Wang, R. Wang, S. M. Wang, T. Wang, T. Wang, X. Wanotayaroj, C. Warburton, A. Ward, C. P. Wardrope, D. R. Washbrook, A. Wasicki, C. Watkins, P. M. Watson, A. T. Watson, I. J. Watson, M. F. Watts, G. Watts, S. Waugh, B. M. Webb, S. Weber, M. S. Weber, S. W. Webster, J. S. Weidberg, A. R. Weinert, B. Weingarten, J. Weiser, C. Weits, H. Wells, P. S. Wenaus, T. Wengler, T. Wenig, S. Wermes, N. Werner, M. Werner, P. Wessels, M. Wetter, J. Whalen, K. Wharton, A. M. White, A. White, M. J. White, R. White, S. Whiteson, D. Wickens, F. J. Wiedenmann, W. Wielers, M. Wienemann, P. Wiglesworth, C. Wiik-Fuchs, L. A. M. Wildauer, A. Wilkens, H. G. Williams, H. H. Williams, S. Willis, C. Willocq, S. Wilson, A. Wilson, J. A. Wingerter-Seez, I. Winklmeier, F. Winter, B. T. Wittgen, M. Wittkowski, J. Wollstadt, S. J. Wolter, M. W. Wolters, H. Wosiek, B. K. Wotschack, J. Woudstra, M. J. Wozniak, K. W. Wu, M. Wu, M. Wu, S. L. Wu, X. Wu, Y. Wyatt, T. R. Wynne, B. M. Xella, S. Xu, D. Xu, L. Yabsley, B. Yacoob, S. Yakabe, R. Yamada, M. Yamaguchi, D. Yamaguchi, Y. Yamamoto, A. Yamamoto, S. Yamanaka, T. Yamauchi, K. Yamazaki, Y. Yan, Z. Yang, H. Yang, H. Yang, Y. Yao, W-M. Yap, Y. C. Yasu, Y. Yatsenko, E. Wong, K. H. Yau Ye, J. Ye, S. Yeletskikh, I. Yen, A. L. Yildirim, E. Yorita, K. Yoshida, R. Yoshihara, K. Young, C. Young, C. J. S. Youssef, S. Yu, D. R. Yu, J. Yu, J. M. Yu, J. Yuan, L. Yuen, S. P. Y. Yurkewicz, A. Yusuff, I. Zabinski, B. Zaidan, R. Zaitsev, A. M. Zalieckas, J. Zaman, A. Zambito, S. Zanello, L. Zanzi, D. Zeitnitz, C. Zeman, M. Zemla, A. Zeng, Q. Zengel, K. Zenin, O. Zenis, T. Zerwas, D. Zhang, D. Zhang, F. Zhang, G. Zhang, H. Zhang, J. Zhang, L. Zhang, R. Zhang, X. Zhang, Z. Zhao, X. Zhao, Y. Zhao, Z. Zhemchugov, A. Zhong, J. Zhou, B. Zhou, C. Zhou, L. Zhou, L. Zhou, M. Zhou, N. Zhu, C. G. Zhu, H. Zhu, J. Zhu, Y. Zhuang, X. Zhukov, K. Zibell, A. Zieminska, D. Zimine, N. I. Zimmermann, C. Zimmermann, S. Zinonos, Z. Zinser, M. Ziolkowski, M. Zivkovic, L. Zobernig, G. Zoccoli, A. zur Nedden, M. Zurzolo, G. Zwalinski, L. CA ATLAS Collaboration TI Search for pair production of a new heavy quark that decays into a W boson and a light quark in pp collisions at root s=8 TeV with the ATLAS detector SO PHYSICAL REVIEW D LA English DT Article ID ELECTROWEAK SYMMETRY-BREAKING; PARTON DISTRIBUTIONS; HADRON COLLIDERS; HIGGS-BOSON; FINAL-STATE; LHC; DYNAMICS AB A search is presented for pair production of a new heavy quark (Q) that decays into aW boson and a light quark (q) in the final state where one W boson decays leptonically (to an electron or muon plus a neutrino) and the other W boson decays hadronically. The analysis is performed using an integrated luminosity of 20.3 fb(-1) of pp collisions at root s = 8 TeV collected by the ATLAS detector at the LHC. No evidence of Q (Q) over bar production is observed. New chiral quarks with masses below 690 GeVare excluded at 95% confidence level, assuming BR(Q -> Wq) = 1. Results are also interpreted in the context of vectorlike quark models, resulting in the limits on the mass of a vectorlike quark in the two-dimensional plane of BR(Q -> Wq) versus BR(Q -> Hq). C1 [Jackson, P.; Lee, L.; McPherson, R. A.; Petridis, A.; Robertson, S. H.; Sobie, R.; Soni, N.; Teuscher, R. J.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia. [Bouffard, J.; Edson, W.; Ernst, J.; Fischer, A.; Guindon, S.; Jain, V.] SUNY Albany, Dept Phys, Albany, NY 12222 USA. [Butt, A. I.; Czodrowski, P.; Dassoulas, J.; Gingrich, D. M.; Jabbar, S.; Karamaoun, A.; Moore, R. W.; Pinfold, J. L.; Saddique, A.; Vaque, F. Vives] Univ Alberta, Dept Phys, Edmonton, AB, Canada. [Cakir, O.; Ciftci, A. K.; Yildiz, H. Duran] Ankara Univ, Dept Phys, TR-06100 Ankara, Turkey. [Kuday, S.] Istanbul Aydin Univ, Istanbul, Turkey. TOBB Univ Econ & Technol, Div Phys, Ankara, Turkey. [Barnovska, Z.; Berger, N.; Delmastro, M.; Di Ciaccio, L.; Elles, S.; Hryn'ova, T.; Jezequel, S.; Koletsou, I.; Lafaye, R.; Leveque, J.; Mastrandrea, P.; Sauvage, G.; Sauvan, E.; Simard, O.; Todorov, T.; Wingerter-Seez, I.; Yatsenko, E.] CNRS IN2P3, LAPP, Annecy Le Vieux, France. [Barnovska, Z.; Berger, N.; Delmastro, M.; Di Ciaccio, L.; Elles, S.; Hryn'ova, T.; Jezequel, S.; Koletsou, I.; Lafaye, R.; Leveque, J.; Mastrandrea, P.; Sauvage, G.; Sauvan, E.; Simard, O.; Todorov, T.; Wingerter-Seez, I.; Yatsenko, E.] Univ Savoie Mt Blanc, Annecy Le Vieux, France. [Blair, R. E.; Chekanov, S.; LeCompte, T.; Love, J.; Malon, D.; Nguyen, D. H.; Paramonov, A.; Price, L. E.; Proudfoot, J.; van Gemmeren, P.; Vaniachine, A.; Wang, R.; Yoshida, R.; Zhang, J.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Cheu, E.; Johns, K. A.; Lampen, C. L.; Lampl, W.; Lei, X.; Leone, R.; Loch, P.; Nayyar, R.; O'grady, F.; Rutherfoord, J. P.; Shupe, M. A.; Varnes, E. W.; Veatch, J.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Brandt, A.; Bullock, D.; Cote, D.; Darmora, S.; De, K.; Farbin, A.; Feremenga, L.; Griffiths, J.; Hadavand, H. K.; Heelan, L.; Kim, H. Y.; Ozturk, N.; Schovancova, J.; Sosebee, M.; Stradling, A. R.; Usai, G.; Vartapetian, A.; White, A.; Yu, J.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. [Angelidakis, S.; Chouridou, S.; Fassouliotis, D.; Giokaris, N.; Ioannou, P.; Kourkoumelis, C.; Manousakis-Katsikakis, A.; Tsirintanis, N.] Univ Athens, Dept Phys, Athens, Greece. [Alexopoulos, T.; Benekos, N.; Dris, M.; Gazis, E. N.; Karakostas, K.; Karastathis, N.; Karentzos, E.; Leontsinis, S.; Maltezos, S.; Ntekas, K.; Panagiotopoulou, E. St.; Papadopoulou, Th. D.; Tsipolitis, G.; Vlachos, S.] Natl Tech Univ Athens, Dept Phys, Zografos, Greece. [Abdinov, O.; Khalil-zada, F.; Looper, K. A.] Azerbaijan Acad Sci, Inst Phys, Baku 370143, Azerbaijan. [Anjos, N.; Bosman, M.; Casado, M. P.; Casolino, M.; Cavalli-Sforza, M.; Cortes-Gonzalez, A.; Farooque, T.; Fischer, C.; Fracchia, S.; Giangiobbe, V.; Gonzalez Parra, G.; Grinstein, S.; Helsens, C.; Juste Rozas, A.; Korolkov, I.; Lange, J. C.; Le Menedeu, E.; Paz, I. Lopez; Martinez, M.; Mir, L. M.; Montejo Berlingen, J.; Pacheco Pages, A.; Padilla Aranda, C.; Riu, I.; Sorin, V.; Succurro, A.; Tripiana, M. F.; Tsiskaridze, S.; Valery, L.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Anjos, N.; Bosman, M.; Casado, M. P.; Casolino, M.; Cavalli-Sforza, M.; Cortes-Gonzalez, A.; Farooque, T.; Fischer, C.; Fracchia, S.; Giangiobbe, V.; Gonzalez Parra, G.; Grinstein, S.; Helsens, C.; Juste Rozas, A.; Korolkov, I.; Lange, J. C.; Le Menedeu, E.; Paz, I. Lopez; Martinez, M.; Mir, L. M.; Montejo Berlingen, J.; Pacheco Pages, A.; Padilla Aranda, C.; Riu, I.; Sorin, V.; Succurro, A.; Tripiana, M. F.; Tsiskaridze, S.; Valery, L.] Univ Autonoma Barcelona, Dept Fis, E-08193 Barcelona, Spain. [Agatonovic-Jovin, T.; Bogavac, D.; Bozic, I.; Dimitrievska, A.; Krstic, J.; Marjanovic, M.; Popovic, D. S.; Sijacki, Dj.; Simic, Lj.; Vranjes, N.; Milosavljevic, M. Vranjes; Zivkovic, L.] Univ Belgrade, Inst Phys, Belgrade, Serbia. [Buanes, T.; Dale, O.; Eigen, G.; Kastanas, A.; Liebig, W.; Lipniacka, A.; Maeland, S.; dit Latour, B. Martin; Rosendahl, P. L.; Sjursen, T. B.; Smestad, L.; Stugu, B.; Ugland, M.; Zalieckas, J.] Univ Bergen, Dept Phys & Technol, Bergen, Norway. [Alonso, A.; Amadio, B. T.; Axen, B.; Barnett, R. M.; Beringer, J.; Bhimji, W.; Brosamer, J.; Calafiura, P.; Cerutti, F.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Einsweiler, K.; Farrell, S.; Gabrielli, A.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Heinemann, B.; Hinchliffe, I.; Hinman, R. R.; Holmes, T. R.; Jeanty, L.; Lavrijsen, W.; Leggett, C.; Marshall, Z.; Ohm, C. C.; Ovcharova, A.; Griso, S. Pagan; Potamianos, K.; Pranko, A.; Quarrie, D. R.; Shapiro, M.; Sood, A.; Tibbetts, M. J.; Trottier-McDonald, M.; Tsulaia, V.; Viel, S.; Wang, H.; Watson, M. F.; Yao, W-M.; Yu, D. R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [Alonso, A.; Amadio, B. T.; Axen, B.; Barnett, R. M.; Beringer, J.; Bhimji, W.; Brosamer, J.; Calafiura, P.; Cerutti, F.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Einsweiler, K.; Farrell, S.; Gabrielli, A.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Heinemann, B.; Hinchliffe, I.; Hinman, R. R.; Holmes, T. R.; Jeanty, L.; Lavrijsen, W.; Leggett, C.; Marshall, Z.; Ohm, C. C.; Ovcharova, A.; Griso, S. Pagan; Potamianos, K.; Pranko, A.; Quarrie, D. R.; Shapiro, M.; Sood, A.; Tibbetts, M. J.; Trottier-McDonald, M.; Tsulaia, V.; Viel, S.; Wang, H.; Watson, M. F.; Yao, W-M.; Yu, D. R.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Biedermann, D.; Dietrich, J.; Giorgi, F. M.; Grancagnolo, S.; Herbert, G. H.; Hristova, I.; Kind, O. M.; Kolanoski, H.; Lacker, H.; Lohse, T.; Nikiforov, A.; Rehnisch, L.; Rieck, P.; Schulz, H.; Sperlich, D.; Stamm, S.; zur Nedden, M.] Humboldt Univ, Dept Phys, D-10099 Berlin, Germany. [Beck, H. P.; Cervelli, A.; Ereditato, A.; Haug, S.; Marti, L. F.; Meloni, F.; Mullier, G. A.; Sciacca, F. G.; Stramaglia, M. E.; Stucci, S. A.; Weber, M. S.] Univ Bern, Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Beck, H. P.; Cervelli, A.; Ereditato, A.; Haug, S.; Marti, L. F.; Meloni, F.; Mullier, G. A.; Sciacca, F. G.; Stramaglia, M. E.; Stucci, S. A.; Weber, M. S.] Univ Bern, High Energy Phys Lab, Bern, Switzerland. [Allport, P. P.; Bella, L. Aperio; Baca, M. J.; Bracinik, J.; Charlton, D. G.; Chisholm, A. S.; Daniells, A. C.; Gach, G. P.; Hawkes, C. M.; Head, S. J.; Hillier, S. J.; Levy, M.; Mudd, R. D.; Quijada, J. A. Murillo; Newman, P. R.; Nikolopoulos, K.; Owen, R. E.; Slater, M.; Thomas, J. P.; Thompson, P. D.; Watkins, P. M.; Watson, A. T.; Wilson, J. A.] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England. [Arik, M.; Istin, S.; Ozcan, V. E.] Bogazici Univ, Dept Phys, Istanbul, Turkey. [Beddall, A. J.; Beddall, A.; Bingul, A.] Gaziantep Univ, Dept Engn Phys, Gaziantep, Turkey. [Cetin, S. A.] Dogus Univ, Dept Phys, Istanbul, Turkey. [Alberghi, G. L.; Bellagamba, L.; Biondi, S.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruschi, M.; Corradi, M.; De Castro, S.; Fabbri, L.; Franchini, M.; Gabrielli, A.; Giacobbe, B.; Giorgi, F. M.; Grafstroem, P.; Manghi, F. Lasagni; Massa, I.; Massa, L.; Mengarelli, A.; Negrini, M.; Piccinini, M.; Polini, A.; Rinaldi, L.; Romano, M.; Sbarra, C.; Sbrizzi, A.; Semprini-Cesari, N.; Sidoti, A.; Sioli, M.; Spighi, R.; Tupputi, S. A.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Ist Nazl Fis Nucl, Sez Bologna, I-40126 Bologna, Italy. [Alberghi, G. L.; Biondi, S.; De Castro, S.; Fabbri, L.; Franchini, M.; Gabrielli, A.; Grafstroem, P.; Manghi, F. Lasagni; Massa, I.; Massa, L.; Mengarelli, A.; Piccinini, M.; Romano, M.; Sbrizzi, A.; Semprini-Cesari, N.; Sidoti, A.; Sioli, M.; Tupputi, S. A.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Univ Bologna, Dipartimento Fis & Astron, Bologna, Italy. [Arslan, O.; Bechtle, P.; Bernlochner, F. U.; Brock, I.; Bruscino, N.; Cioara, I. A.; Cristinziani, M.; Davey, W.; Desch, K.; Dingfelder, J.; Ehrenfeld, W.; Gaycken, G.; Geich-Gimbel, Ch.; Gonella, L.; Grefe, C.; Haefner, P.; Hageboeck, S.; Hansen, M. C.; Hellmich, D.; Hohn, D.; Huegging, F.; Janssen, J.; Kostyukhin, V. V.; Kraus, J. K.; Kroseberg, J.; Krueger, H.; Lantzsch, K.; Lenz, T.; Leyko, A. M.; Liebal, J.; Limbach, C.; Mergelmeyer, S.; Mijovic, L.; Moles-Valls, R.; Obermann, T.; Pohl, D.; Ricken, O.; Sarrazin, B.; Schaepe, S.; Schopf, E.; Schultens, M. J.; Schwindt, T.; Scutti, F.; Seema, P.; Stillings, J. A.; Tannoury, N.; Velz, T.; von Toerne, E.; Wagner, P.; Wang, T.; Wermes, N.; Wienemann, P.; Wiik-Fuchs, L. A. M.; Winter, B. T.; Wong, K. H. Yau; Yuen, S. P. Y.] Univ Bonn, Inst Phys, Bonn, Germany. [Ahlen, S. P.; Bernard, C.; Black, K. M.; Butler, J. M.; Dell'Asta, L.; Helary, L.; Kruskal, M.; Long, B. A.; Shank, J. T.; Yan, Z.; Youssef, S.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Amelung, C.; Amundsen, G.; Artoni, G.; Barone, G.; Bensinger, J. R.; Bianchini, L.; Blocker, C.; Coffey, L.; Dhaliwal, S.; Loew, K. M.; Sciolla, G.; Venturini, A.; Zengel, K.] Brandeis Univ, Dept Phys, Waltham, MA 02254 USA. [Alpigiani, C.; Coutinho, Y. Amaral; Caloba, L. P.; Maidantchik, C.; Marroquim, F.; Nepomuceno, A. A.; Seixas, J. M.] Univ Fed Rio De Janeiro COPPE EE IF, Rio De Janeiro, Brazil. [Cerqueira, A. S.; Manhaes de Andrade Filho, L.] Univ Fed Juiz de Fora, Elect Circuits Dept, Juiz de Fora, Brazil. [do Vale, M. A. B.] Univ Fed Sao Joao del Rei, Sao Joao del Rei, Brazil. [Donadelli, M.; Navarro, J. L. La Rosa; Leite, M. A. L.] Univ Sao Paulo, Inst Fis, BR-01498 Sao Paulo, Brazil. [Adams, D. L.; Assamagan, K.; Begel, M.; Buttinger, W.; Chen, H.; Chernyatin, V.; Debbe, R.; Ernst, M.; Gibbard, B.; Gordon, H. A.; Iakovidis, G.; Klimentov, A.; Kouskoura, V.; Kravchenko, A.; Lanni, F.; Lissauer, D.; Lynn, D.; Ma, H.; Maeno, T.; Metcalfe, J.; Mountricha, E.; Nevski, P.; Nilsson, P.; Damazio, D. Oliveira; Paige, F.; Panitkin, S.; Perepelitsa, D. V.; Pleier, M. -A.; Polychronakos, V.; Protopopescu, S.; Purohit, M.; Radeka, V.; Rajagopalan, S.; Redlinger, G.; Snyder, S.; Steinberg, P.; Takai, H.; Undrus, A.; Wenaus, T.; Xu, L.; Ye, S.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. Transilvania Univ Brasov, Brasov, Romania. [Alexa, C.; Boldea, V.; Buda, S. I.; Caprini, I.; Caprini, M.; Chitan, A.; Ciubancan, M.; Constantinescu, S.; Dita, P.; Dita, S.; Dobre, M.; Ducu, O. A.; Jinaru, A.; Martoiu, V. S.; Maurer, J.; Olariu, A.; Pantea, D.; Rotaru, M.; Stoicea, G.; Tudorache, A.; Tudorache, V.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Popeneciu, G. A.] Natl Inst Res & Dev Isotop & Mol Technol, Dept Phys, Cluj Napoca, Romania. Univ Politehn Bucuresti, Bucharest, Romania. West Univ Timisoara, Timisoara, Romania. [Otero y Garzon, G.; Piegaia, R.; Reisin, H.; Sacerdoti, S.] Univ Buenos Aires, Dept Fis, Buenos Aires, DF, Argentina. [Arratia, M.; Barlow, N.; Batley, J. R.; Brochu, F. M.; Carter, J. R.; Chapman, J. D.; Cottin, G.; French, S. T.; Gillam, T. P. S.; Hill, J. C.; Kaneti, S.; Khoo, T. J.; Lester, C. G.; Mueller, T.; Parker, M. A.; Robinson, D.; Rosten, J. H. N.; Thomson, M.; Ward, C. P.; Yusuff, I.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Bellerive, A.; Cree, G.; Di Valentino, D.; Koffas, T.; Lacey, J.; Leight, W. A.; McCarthy, T. G.; Nomidis, I.; Oakham, F. G.; Pasztor, G.; Tarrade, F.; Ueno, R.; Vincter, M. G.] Carleton Univ, Dept Phys, Ottawa, ON K1S 5B6, Canada. [Aleksa, M.; Gonzalez, B. Alvarez; Anders, G.; Anghinolfi, F.; Armbruster, A. J.; Arnaez, O.; Avolio, G.; Baak, M. A.; Backes, M.; Backhaus, M.; Barak, L.; Beermann, T. A.; Beltramello, O.; Bianco, M.; Bogaerts, J. A.; Boveia, A.; Boyd, J.; Burckhart, H.; Campana, S.; Garrido, M. D. M. Capeans; Carli, T.; Carrillo-Montoya, G. D.; Catinaccio, A.; Cattai, A.; Cerv, M.; Chromek-Burckhart, D.; Conti, G.; Dell'Acqua, A.; Deviveiros, P. O.; Di Girolamo, A.; Di Girolamo, B.; Dittus, F.; Dobos, D.; Dudarev, A.; Duehrssen, M.; Eifert, T.; Ellis, N.; Elsing, M.; Farthouat, P.; Fassnacht, P.; Feigl, S.; Feng, E. J.; Perez, S. Fernandez; Francis, D.; Froidevaux, D.; Gadatsch, S.; Gillberg, D.; Glatzer, J.; Goossens, L.; Gorini, B.; Gray, H. M.; Hawkings, R. J.; Correia, A. M. Henriques; Hervas, L.; Hoecker, A.; Huhtinen, M.; Iengo, P.; Jaekel, M. R.; Jakobsen, S.; Klioutchnikova, T.; Krasznahorkay, A.; Lapoire, C.; Lassnig, M.; Miotto, G. Lehmann; Lenzi, B.; Lichard, P.; Macina, D.; Malyukov, S.; Mandelli, B.; Mapelli, L.; Marzin, A.; Milic, A.; Mornacchi, G.; Nairz, A. M.; Nakahama, Y.; Nessi, M.; Nicquevert, B.; Nordberg, M.; Oide, H.; Palestini, S.; Pauly, T.; Pernegger, H.; Peters, K.; Petersen, B. A.; Pommes, K.; Poppleton, A.; Poulard, G.; Poveda, J.; Prasad, S.; Rammensee, M.; Raymond, M.; Rembser, C.; Ritsch, E.; Roe, S.; Ruiz-Martinez, A.; Ruthmann, N.; Salzburger, A.; Schaefer, D.; Schlenker, S.; Schmieden, K.; Serfon, C.; Sforza, F.; Sfyrla, A.; Solans, C. A.; Spigo, G.; Stelzer, H. J.; Teischinger, F. A.; Ten Kate, H.; Tremblet, L.; Tricoli, A.; Tsarouchas, C.; Unal, G.; van Woerden, M. C.; Vandelli, W.; Voss, R.; Vuillermet, R.; Wells, P. S.; Wengler, T.; Wenig, S.; Werner, P.; Wilkens, H. G.; Wotschack, J.; Young, C. J. S.; Zwalinski, L.] CERN, Geneva, Switzerland. [Alison, J.; Anderson, K. J.; Toro, R. Camacho; Cheng, Y.; Dandoy, J. R.; Facini, G.; Fiascaris, M.; Gardner, R. W.; Ilchenko, Y.; Kapliy, A.; Kim, Y. K.; Krizka, K.; Li, H. L.; Merritt, F. S.; Miller, D. W.; Narayan, R.; Okumura, Y.; Onyisi, P. U. E.; Oreglia, M. J.; Penning, B.; Pilcher, J. E.; Saxon, J.; Shochet, M. J.; Vukotic, I.; Webster, J. S.; Wu, M.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Blunier, S.; Carquin, E.; Diaz, M. A.; Ochoa-Ricoux, J. P.; Vogel, M.] Pontificia Univ Catolica Chile, Dept Fis, Santiago, Chile. [Brooks, W. K.; Kuleshov, S.; Pezoa, R.; Prokoshin, F.; Salazar Loyola, J. E.; Tapia Araya, S.; White, R.] Univ Tecn Federico Santa Maria, Dept Fis, Valparaiso, Chile. [Bai, Y.; Fang, Y.; Jin, S.; Lou, X.; Ouyang, Q.; Peng, C.; Ren, H.; Shan, L. Y.; Sun, X.; Xu, D.; Zhu, H.; Zhuang, X.] Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China. [Gao, J.; Guo, Y.; Han, L.; Hu, Q.; Jiang, Y.; Li, B.; Liu, J. B.; Liu, M.; Liu, Y.; Peng, H.; Song, H. Y.; Zhang, G.; Zhang, R.; Zhao, Z.; Zhu, Y.] Univ Sci & Technol China, Dept Modern Phys, Hefei, Anhui, Peoples R China. [Chen, S.; Li, Y.; Zhang, H.] Nanjing Univ, Dept Phys, Nanjing, Jiangsu, Peoples R China. [Chen, L.; Feng, C.; Ge, P.; Ma, L. L.; Zhang, X.; Zhao, Y.; Zhu, C. G.] Shandong Univ, Sch Phys, Jinan, Shandong, Peoples R China. [Bret, M. Cano; Guo, J.; Li, L.; Yang, H.] Shanghai Jiao Tong Univ, Dept Phys & Astron, Shanghai Key Lab Particle Phys & Cosmol, Shanghai 200030, Peoples R China. [Chen, X.; Zhou, N.] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Gilles, G.; Gris, Ph.; Liao, H.; Madar, R.; Pallin, D.; Saez, S. M. Romano; Santoni, C.; Simon, D.; Theveneaux-Pelzer, T.; Vazeille, F.] Clermont Univ, Phys Corpusculaire Lab, Clermont Ferrand, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Gilles, G.; Gris, Ph.; Liao, H.; Madar, R.; Pallin, D.; Saez, S. M. Romano; Santoni, C.; Simon, D.; Theveneaux-Pelzer, T.; Vazeille, F.] Univ Clermont Ferrand, Clermont Ferrand, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Gilles, G.; Gris, Ph.; Liao, H.; Madar, R.; Pallin, D.; Saez, S. M. Romano; Santoni, C.; Simon, D.; Theveneaux-Pelzer, T.; Vazeille, F.] CNRS IN2P3, Clermont Ferrand, France. [Alkire, S. P.; Altheimer, A.; Andeen, T.; Angerami, A.; Bain, T.; Brooijmans, G.; Carbone, R. M.; Cole, B.; Hu, D.; Hughes, E. W.; Iordanidou, K.; Klein, M. H.; Mohapatra, S.; Nikiforou, N.; Ochoa, I.; Parsons, J. A.; Smith, M. N. K.; Smith, R. W.; Thompson, E. N.; Tuts, P. M.; Wang, T.; Zhou, L.] Columbia Univ, Nevis Lab, Irvington, NY USA. [Besjes, G. J.; Dam, M.; Galster, G.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Joergensen, M. D.; Loevschall-Jensen, A. E.; Monk, J.; Mortensen, S. S.; Petersen, T. C.; Pingel, A.; Wiglesworth, C.; Xella, S.] Univ Copenhagen, Niels Bohr Inst, Copenhagen, Denmark. [Cairo, V. M.; Capua, M.; Crosetti, G.; La Rotonda, L.; Mastroberardino, A.; Policicchio, A.; Salvatore, D.; Scarfone, V.; Schioppa, M.; Susinno, G.; Tassi, E.] INFN Grp Collegato Cosenza, Lab Nazl Frascati, Cosenza, Italy. [Cairo, V. M.; Capua, M.; Crosetti, G.; La Rotonda, L.; Mastroberardino, A.; Policicchio, A.; Salvatore, D.; Scarfone, V.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dipartimento Fis, I-87036 Arcavacata Di Rende, Italy. [Adamczyk, L.; Bold, T.; Dabrowski, W.; Dyndal, M.; Grabowska-Bold, I.; Kisielewska, D.; Koperny, S.; Kowalski, T. Z.; Mindur, B.; Przybycien, M.; Zemla, A.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, PL-30059 Krakow, Poland. [Palka, M.; Richter-Was, E.] Jagiellonian Univ, Marian Smoluchowski Inst Phys, Krakow, Poland. [Banas, E.; de Renstrom, P. A. Bruckman; Chwastowski, J. J.; Derendarz, D.; Godlewski, J.; Gornicki, E.; Hajduk, Z.; Iwanski, W.; Kaczmarska, A.; Knapik, J.; Korcyl, K.; Malecki, Pa.; Olszewski, A.; Olszowska, J.; Stanecka, E.; Staszewski, R.; Trzebinski, M.; Trzupek, A.; Wolter, M. W.; Wosiek, B. K.; Wozniak, K. W.; Zabinski, B.] Polish Acad Sci, Inst Nucl Phys, Krakow, Poland. [Cao, T.; Firan, A.; Hetherly, J. W.; Kama, S.; Kehoe, R.; Sekula, S. J.; Stroynowski, R.; Turvey, A. J.; Varol, T.; Wang, H.; Ye, J.; Zhao, X.; Zhou, L.] So Methodist Univ, Dept Phys, Dallas, TX 75275 USA. [Izen, J. M.; Leyton, M.; Meirose, B.; Namasivayam, H.; Reeves, K.] Univ Texas Dallas, Dept Phys, Richardson, TX 75083 USA. [Asbah, N.; Bessner, M.; Bloch, I.; Borroni, S.; Britzger, D.; Camarda, S.; Deterre, C.; Dutta, B.; Eckardt, C.; Filipuzzi, M.; Flaschel, N.; Glazov, A.; Grahn, K-J.; Gregor, I. M.; Grohsjean, A.; Haleem, M.; Hamnett, P. G.; Hengler, C.; Hiller, K. H.; Howarth, J.; Huang, Y.; Katzy, J.; Keller, J. S.; Kondrashova, N.; Kuhl, T.; Lobodzinska, E.; Lohwasser, K.; Mamuzic, J.; Medinnis, M.; Moenig, K.; Garcia, R. F. Naranjo; Naumann, T.; Peschke, R.; Petit, E.; Pirumov, H.; Poley, A.; Radescu, V.; Robinson, J. E. M.; Rubinskiy, I.; Schaefer, R.; Schmitt, S.; Sedov, G.; Shushkevich, S.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Styles, N. A.; Tackmann, K.; Wang, J.; Wasicki, C.; Yildirim, E.] DESY, Hamburg, Germany. [Asbah, N.; Bessner, M.; Bloch, I.; Borroni, S.; Britzger, D.; Camarda, S.; Deterre, C.; Dutta, B.; Eckardt, C.; Filipuzzi, M.; Flaschel, N.; Glazov, A.; Grahn, K-J.; Gregor, I. M.; Grohsjean, A.; Haleem, M.; Hamnett, P. G.; Hengler, C.; Hiller, K. H.; Howarth, J.; Huang, Y.; Katzy, J.; Keller, J. S.; Kondrashova, N.; Kuhl, T.; Lobodzinska, E.; Lohwasser, K.; Mamuzic, J.; Medinnis, M.; Moenig, K.; Garcia, R. F. Naranjo; Naumann, T.; Peschke, R.; Petit, E.; Pirumov, H.; Poley, A.; Radescu, V.; Robinson, J. E. M.; Rubinskiy, I.; Schaefer, R.; Schmitt, S.; Sedov, G.; Shushkevich, S.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Styles, N. A.; Tackmann, K.; Wang, J.; Wasicki, C.; Yildirim, E.] DESY, Zeuthen, Germany. [Burmeister, I.; Dette, K.; Erdmann, J.; Esch, H.; Goessling, C.; Homann, M.; Jentzsch, J.; Klingenberg, R.; Kroeninger, K.] Tech Univ Dortmund, Inst Expt Phys 4, D-44221 Dortmund, Germany. [Anger, P.; Duschinger, D.; Friedrich, F.; Grohs, J. P.; Gumpert, C.; Gutschow, C.; Hauswald, L.; Kobel, M.; Mader, W. F.; Novgorodova, O.; Rudolph, C.; Schnoor, U.; Siegert, F.; Socher, F.; Staerz, S.; Straessner, A.; Vest, A.; Wahrmund, S.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Arce, A. T. H.; Benjamin, D. P.; Bjergaard, D. M.; Bocci, A.; Cerio, B. C.; Goshaw, A. T.; Kajomovitz, E.; Kotwal, A.; Kruse, M. C.; Li, L.; Li, S.; Liu, M.; Oh, S. H.; Zhou, C.] Duke Univ, Dept Phys, Durham, NC 27706 USA. [Bristow, T. M.; Clark, P. J.; Dias, F. A.; Edwards, N. C.; Gao, Y.; Walls, F. M. Garay; Glaysher, P. C. F.; Harrington, R. D.; Leonidopoulos, C.; Martin, V. J.; Mills, C.; O'Brien, B. J.; Pino, S. A. Olivares; Proissl, M.; Smart, B. H.; Washbrook, A.; Wynne, B. M.] Univ Edinburgh, SUPA Sch Phys & Astron, Edinburgh, Midlothian, Scotland. [Antonelli, M.; Beretta, M.; Bilokon, H.; Chiarella, V.; Curatolo, M.; Di Nardo, R.; Esposito, B.; Gatti, C.; Giromini, P.; Laurelli, P.; Maccarrone, G.; Mancini, G.; Sansoni, A.; Testa, M.; Vilucchi, E.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Amoroso, S.; Arnold, H.; Betancourt, C.; Boehler, M.; Bruneliere, R.; Buehrer, F.; Burgard, C. D.; Buescher, D.; Cardillo, F.; Coniavitis, E.; Consorti, V.; Dang, N. P.; Dao, V.; Di Simone, A.; Herten, G.; Jakobs, K.; Javurek, T.; Jenni, P.; Kiss, F.; Koeneke, K.; Kopp, A. K.; Kuehn, S.; Landgraf, U.; Luedtke, C.; Mahboubi, K.; Mohr, W.; Pagacova, M.; Parzefall, U.; Ronzani, M.; Rosbach, K.; Ruehr, F.; Rurikova, Z.; Sammel, D.; Schillo, C.; Schumacher, M.; Sommer, P.; Sundermann, J. E.; Ta, D.; Temming, K. K.; Tsiskaridze, V.; Ungaro, F. C.; von Radziewski, H.; Weiser, C.; Werner, M.; Zhang, L.; Zimmermann, S.] Univ Freiburg, Fak Math & Phys, D-79106 Freiburg, Germany. [Ancu, L. S.; Bell, W. H.; Noccioli, E. Benhar; De Mendizabal, J. Bilbao; Calace, N.; Clark, A.; Coccaro, A.; Delitzsch, C. M.; della Volpe, D.; Ferrere, D.; Gadomski, S.; Golling, T.; Gonzalez-Sevilla, S.; Gramling, J.; Guescini, F.; Iacobucci, G.; Katre, A.; Mermod, P.; Miucci, A.; Muenstermann, D.; Paolozzi, L.; Picazio, A.; Ristic, B.; Schramm, S.; Tykhonov, A.; Vallecorsa, S.; Wu, X.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Barberis, D.; Darbo, G.; Favareto, A.; Parodi, A. Ferretto; Gagliardi, G.; Gaudiello, A.; Gemme, C.; Guido, E.; Morettini, P.; Osculati, B.; Parodi, F.; Passaggio, S.; Rossi, L. P.; Sannino, M.; Schiavi, C.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Barberis, D.; Favareto, A.; Parodi, A. Ferretto; Gagliardi, G.; Gaudiello, A.; Guido, E.; Osculati, B.; Parodi, F.; Sannino, M.; Schiavi, C.] Univ Genoa, Dipartmento Fis, Genoa, Italy. [Jejelava, J.; Tskhadadze, E. G.] Iv Javakhishvili Tbilisi State Univ, E Andronikashvili Inst Phys, Tbilisi, Rep of Georgia. [Djobava, T.; Durglishvili, A.; Khubua, J.; Mosidze, M.] Tbilisi State Univ, Inst High Energy Phys, GE-380086 Tbilisi, Rep of Georgia. [Dueren, M.; Kreutzfeldt, K.; Stenzel, H.] Univ Giessen, Inst Phys 2, D-35390 Giessen, Germany. [Bates, R. L.; Boutle, S. K.; Madden, W. D. Breaden; Britton, D.; Buckley, A. G.; Bussey, P.; Buttar, C. M.; Buzatu, A.; Cinca, D.; D'Auria, S.; Doyle, A. T.; Ferrando, J.; de Lima, D. E. Ferreira; Gul, U.; Knue, A.; Morton, A.; Mullen, P.; O'Shea, V.; Barrera, C. Oropeza; Owen, M.; Pollard, C. S.; Qin, G.; Quilty, D.; Ravenscroft, T.; Robson, A.; Denis, R. D. St.; Stewart, G. A.; Thompson, A. S.] Univ Glasgow, SUPA Sch Phys & Astron, Glasgow, Lanark, Scotland. [Agricola, J.; Bindi, M.; Blumenschein, U.; Brandt, G.; Drechsler, E.; George, M.; Graber, L.; Grosse-Knetter, J.; Janus, M.; Kareem, M. J.; Kawamura, G.; Lai, S.; Lemmer, B.; Magradze, E.; Mantoani, M.; Mchedlidze, G.; Llacer, M. Moreno; Musheghyan, H.; Nackenhorst, O.; Nadal, J.; Quadt, A.; Rieger, J.; Schorlemmer, A. L. S.; Shabalina, E.; Stolte, P.; Weingarten, J.; Zinonos, Z.] Univ Gottingen, Inst Phys 2, D-37073 Gottingen, Germany. [Albrand, S.; Collot, J.; Crepe-Renaudin, S.; Delsart, P. A.; Gabaldon, C.; Genest, M. H.; Hostachy, J-Y.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Monini, C.; Stark, J.; Trocme, B.; Wu, M.] Univ Grenoble Alpes, CNRS IN2P3, Lab Phys Subatom & Cosmol, Grenoble, France. [McFarlane, K. W.] Hampton Univ, Dept Phys, Hampton, VA 23668 USA. [da Costa, J. Barreiro Guimaraes; Catastini, P.; Clark, B. L.; Franklin, M.; Huth, J.; Ippolito, V.; Lazovich, T.; Mateos, D. Lopez; Mercurio, K. M.; Morii, M.; Skottowe, H. P.; Spearman, W. R.; Sun, S.; Tolley, E.; Tuna, A. N.; Yen, A. L.; Zambito, S.] Harvard Univ, Lab Particle Phys & Cosmol, Cambridge, MA 02138 USA. [Andrei, V.; Baas, A. E.; Brandt, O.; Davygora, Y.; Djuvsland, J. I.; Dunford, M.; Geisler, M. P.; Hanke, P.; Jongmanns, J.; Kluge, E. -E.; Lang, V. S.; Meier, K.; Zu Theenhausen, H. Meyer; Villar, D. I. Narrias; Sahinsoy, M.; Scharf, V.; Schultz-Coulon, H. -C.; Stamen, R.; Starovoitov, P.; Wessels, M.] Heidelberg Univ, Kirchhoff Inst Phys, Heidelberg, Germany. [Anders, C. F.; Giulini, M.; Kolb, M.; Lisovyi, M.; Schaetzel, S.; Schmitt, S.; Schoening, A.; Sosa, D.] Heidelberg Univ, Inst Phys, Heidelberg, Germany. [Colombo, T.; Kretz, M.; Kugel, A.] Heidelberg Univ, ZITI Inst Tech Informat, Mannheim, Germany. [Nagasaka, Y.] Hiroshima Inst Technol, Fac Appl Informat Sci, Hiroshima, Japan. [Bortolotto, V.; Castillo, L. R. Flores; Salvucci, A.] Chinese Univ Hong Kong, Dept Phys, Shatin, Hong Kong, Peoples R China. [Bortolotto, V.] Univ Hong Kong, Dept Phys, Hong Kong, Hong Kong, Peoples R China. [Bortolotto, V.; Prokofiev, K.] Hong Kong Univ Sci & Technol, Dept Phys, Kowloon, Hong Kong, Peoples R China. [Choi, K.; Dattagupta, A.; Evans, H.; Gagnon, P.; Lammers, S.; Martinez, N. Lorenzo; Luehring, F.; Ogren, H.; Penwell, J.; Weinert, B.; Zieminska, D.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Jansky, R.; Jussel, P.; Kneringer, E.; Lukas, W.; Usanova, A.; Vigne, R.] Leopold Franzens Univ, Inst Astro & Teilchenphys, Innsbruck, Austria. [Argyropoulos, S.; Mallik, U.; Mandrysch, R.; Zaidan, R.] Univ Iowa, Iowa City, IA USA. [Chen, C.; Cochran, J.; De Lorenzi, F.; Krumnack, N.; Pluth, D.; Prell, S.] Iowa State Univ, Dept Phys & Astron, Ames, IA USA. [Ahmadov, F.; Aleksandrov, I. N.; Bednyakov, V. A.; Boyko, I. R.; Budagov, I. A.; Chelkov, G. A.; Cheplakov, A.; Chizhov, M. V.; Dedovich, D. V.; Demichev, M.; Gostkin, M. I.; Huseynov, N.; Javadov, N.; Karpov, S. N.; Karpova, Z. M.; Khramov, E.; Kotov, V. M.; Kruchonak, U.; Kukhtin, V.; Ladygin, E.; Minashvili, I. A.; Mineev, M.; Peshekhonov, V. D.; Plotnikova, E.; Potrap, I. N.; Pozdnyakov, V.; Rusakovich, N. A.; Sadykov, R.; Sapronov, A.; Shiyakova, M.; Sisakyan, A. N.; Soloshenko, A.; Vinogradov, V. B.; Yeletskikh, I.; Zhemchugov, A.; Zimine, N. I.] JINR Dubna, Dubna, Russia. [Alonso, F.; Amako, K.; Aoki, M.; Arai, Y.; Hanagaki, K.; Ikegami, Y.; Ikeno, M.; Iwasaki, H.; Kanzaki, J.; Kohriki, T.; Kondo, T.; Kono, T.; Makida, Y.; Nagano, K.; Nakamura, K.; Nozaki, M.; Odaka, S.; Okuyama, T.; Sasaki, O.; Suzuki, S.; Takubo, Y.; Tanaka, S.; Terada, S.; Tokushuku, K.; Tsuno, S.; Unno, Y.; Yamada, M.; Yamamoto, A.; Yasu, Y.] KEK, High Energy Accelerator Res Org, Tsukuba, Ibaraki, Japan. [Chen, Y.; Hasegawa, M.; Kido, S.; Kishimoto, T.; Kurashige, H.; Maeda, J.; Ochi, A.; Shimizu, S.; Takeda, H.; Yakabe, R.; Yamazaki, Y.; Yuan, L.] Kobe Univ, Grad Sch Sci, Kobe, Hyogo 657, Japan. [Ishino, M.; Kunigo, T.; Monden, R.; Sumida, T.; Tashiro, T.] Kyoto Univ, Fac Sci, Kyoto, Japan. [Takashima, R.] Kyoto Univ, Kyoto 612, Japan. [Kawagoe, K.; Oda, S.; Otono, H.; Tojo, J.] Kyushu Univ, Dept Phys, Fukuoka 812, Japan. [Alconada Verzini, M. J.; Arduh, F. A.; Dova, M. T.; Monticelli, F.; Wahlberg, H.] Univ Nacl La Plata, Inst Fis La Plata, RA-1900 La Plata, Buenos Aires, Argentina. [Alconada Verzini, M. J.; Arduh, F. A.; Dova, M. T.; Monticelli, F.; Wahlberg, H.] Consejo Nacl Invest Cient & Tecn, La Plata, Buenos Aires, Argentina. [Barton, A. E.; Beattie, M. D.; Borissov, G.; Bouhova-Thacker, E. V.; Dearnaley, W. J.; Fox, H.; Grimm, K.; Henderson, R. C. W.; Hughes, G.; Jones, R. W. L.; Kartvelishvili, V.; Long, R. E.; Love, P. A.; Maddocks, H. J.; Skinner, M. B.; Smizanska, M.; Walder, J.; Wharton, A. M.] Univ Lancaster, Dept Phys, Lancaster, England. [Chiodini, G.; Gorini, E.; Primavera, M.; Spagnolo, S.; Ventura, A.] Ist Nazl Fis Nucl, Sez Lecce, I-73100 Lecce, Italy. [Gorini, E.; Spagnolo, S.; Ventura, A.] Univ Salento, Dipartimento Matemat & Fis, Lecce, Italy. [Affolder, A. A.; Anders, J. K.; Burdin, S.; D'Onofrio, M.; Dervan, P.; Gwilliam, C. B.; Hayward, H. S.; Jackson, M.; Jones, T. J.; King, B. T.; Klein, M.; Klein, U.; Kretzschmar, J.; Laycock, P.; Lehan, A.; Maxfield, S. J.; Mehta, A.; Readioff, N. P.; Schnellbach, Y. J.; Vossebeld, J. H.] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 3BX, Merseyside, England. [Cindro, V.; Deliyergiyev, M.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Sfiligoj, T.; Sokhrannyi, G.] Jozef Stefan Inst, Dept Phys, Ljubljana, Slovenia. [Cindro, V.; Deliyergiyev, M.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Sfiligoj, T.; Sokhrannyi, G.] Univ Ljubljana, Ljubljana, Slovenia. [Bevan, A. J.; Bona, M.; Cerrito, L.; Fletcher, G.; Goddard, J. R.; Hays, J. M.; Hickling, R.; Landon, M. P. J.; Lloyd, S. L.; Morris, J. D.; Nooney, T.; Piccaro, E.; Rizvi, E.; Sandbach, R. L.; Snidero, G.; Castanheira, M. Teixeira Dias] Queen Mary Univ London, Sch Phys & Astron, London, England. [Berry, T.; Blanco, J. E.; Boisvert, V.; Brooks, T.; Connelly, I. A.; Cowan, G.; Duguid, L.; Giannelli, M. Faucci; George, S.; Gibson, S. M.; Kempster, J. J.; Vazquez, J. G. Panduro; Pastore, Fr.; Savage, G.; Sowden, B. C.; Spano, F.; Teixeira-Dias, P.; Thomas-Wilsker, J.] Royal Holloway Univ London, Dept Phys, Surrey, England. [Bieniek, S. P.; Butterworth, J. M.; Campanelli, M.; Casadei, D.; Chislett, R. T.; Christodoulou, V.; Cooper, B. D.; Davison, P.; Falla, R. J.; Freeborn, D.; Gregersen, K.; Ortiz, N. G. Gutierrez; Hesketh, G. G.; Jansen, E.; Jiggins, S.; Konstantinidis, N.; Korn, A.; Kucuk, H.; Lambourne, L.; Leney, K. J. C.; Martyniuk, A. C.; Mcfayden, J. A.; Nurse, E.; Richter, S.; Scanlon, T.; Sherwood, P.; Simmons, B.; Wardrope, D. R.; Waugh, B. M.] UCL, Dept Phys & Astron, London, England. [Greenwood, Z. D.; Grossi, G. C.; Jana, D. K.; Sawyer, L.; Subramaniam, R.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pandini, C. E.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.; Varouchas, D.; Yap, Y. C.] UPMC, Lab Phys Nucl & Hautes Energies, Paris, France. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pandini, C. E.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.; Varouchas, D.; Yap, Y. C.] Univ Paris Diderot, Paris, France. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pandini, C. E.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.; Varouchas, D.; Yap, Y. C.] CNRS IN2P3, Paris, France. [Akesson, T. P. A.; Bocchetta, S. S.; Bryngemark, L.; Doglioni, C.; Floderus, A.; Hawkins, A. D.; Hedberg, V.; Ivarsson, J.; Jarlskog, G.; Lytken, E.; Mjornmark, J. U.; Smirnova, O.; Viazlo, O.] Lund Univ, Inst Fys, Lund, Sweden. [Barreiro, F.; Cantero, J.; De la Torre, H.; Del Peso, J.; Glasman, C.; Llorente Merino, J.; Terron, J.] Univ Autonoma Madrid, Dept Fis Teor C 15, Madrid, Spain. [Becker, M.; Bertella, C.; Blum, W.; Buescher, V.; Caputo, R.; Caudron, J.; Cuth, J.; Endner, O. C.; Ertel, E.; Fiedler, F.; Torregrosa, E. Fullana; Heck, T.; Hohlfeld, M.; Huelsing, T. A.; Karnevskiy, M.; Kleinknecht, K.; Koepke, L.; Lin, T. H.; Masetti, L.; Mattmann, J.; Meyer, C.; Moritz, S.; Rave, S.; Sander, H. G.; Schaeffer, J.; Schaefer, U.; Schmitt, C.; Schott, M.; Schuh, N.; Simioni, E.; Tapprogge, S.; Urrejola, P.; Valderanis, C.; Wollstadt, S. J.; Zimmermann, C.; Zinser, M.] Johannes Gutenberg Univ Mainz, Inst Phys, D-55122 Mainz, Germany. [Balli, F.; Barnes, S. L.; Cox, B. E.; Da Via, C.; Forti, A.; Ponce, J. M. Iturbe; Joshi, K. D.; Keoshkerian, H.; Li, X.; Loebinger, F. K.; Marsden, S. P.; Masik, J.; Neep, T. J.; Oh, A.; Ospanov, R.; Pater, J. R.; Peters, R. F. Y.; Pilkington, A. D.; Pin, A. W. J.; Price, D.; Qin, Y.; Queitsch-Maitland, M.; Schwanenberger, C.; Schweiger, H.; Shaw, S. M.; Thompson, R. J.; Tomlinson, L.; Watts, S.; Webb, S.; Woudstra, M. J.; Wyatt, T. R.] Univ Manchester, Sch Phys & Astron, Manchester, Lancs, England. [Aad, G.; Alio, L.; Barbero, M.; Coadou, Y.; Diaconu, C.; Diglio, S.; Djama, F.; Ducu, O. A.; Feligioni, L.; Gao, J.; Hallewell, G. D.; Hubaut, F.; Kahn, S. J.; Knoops, E. B. F. G.; Le Guirriec, E.; Liu, J.; Liu, K.; Madaffari, D.; Mochizuki, K.; Monnier, E.; Muanza, S.; Nagai, Y.; Nagy, E.; Pralavorio, P.; Rozanov, A.; Serre, T.; Talby, M.; Torres, R. E. Ticse; Tiouchichine, E.; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.] Aix Marseille Univ, CPPM, Marseille, France. [Aad, G.; Alio, L.; Barbero, M.; Coadou, Y.; Diaconu, C.; Diglio, S.; Djama, F.; Ducu, O. A.; Feligioni, L.; Gao, J.; Hallewell, G. D.; Hubaut, F.; Kahn, S. J.; Knoops, E. B. F. G.; Le Guirriec, E.; Liu, J.; Liu, K.; Madaffari, D.; Mochizuki, K.; Monnier, E.; Muanza, S.; Nagai, Y.; Nagy, E.; Pralavorio, P.; Rozanov, A.; Serre, T.; Talby, M.; Torres, R. E. Ticse; Tiouchichine, E.; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.] CNRS IN2P3, Marseille, France. [Bellomo, M.; Bernard, N. R.; Brau, B.; Dallapiccola, C.; Daya-Ishmukhametova, R. K.; Moyse, E. J. W.; Pais, P.; Pueschel, E.; Ventura, D.; Willocq, S.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Belanger-Champagne, C.; Chuinard, A. J.; Corriveau, F.; Keyes, R. A.; Mantifel, R.; Prince, S.; Robertson, S. H.; Robichaud-Veronneau, A.; Stockton, M. C.; Stoebe, M.; Vachon, B.; Schroeder, T. Vazquez; Wang, K.; Warburton, A.] McGill Univ, Dept Phys, Montreal, PQ, Canada. [Barberio, E. L.; Brennan, A. J.; Dawe, E.; Jennens, D.; Kubota, T.; Milesi, M.; Hanninger, G. Nunes; Nuti, F.; Rados, P.; Spiller, L. A.; Tan, K. G.; Taylor, G. N.; Taylor, P. T. E.; Urquijo, P.; Volpi, M.; Zanzi, D.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. [Amidei, D.; Chelstowska, M. A.; Cheng, H. C.; Dai, T.; Diehl, E. B.; Edgar, R. C.; Feng, H.; Ferretti, C.; Fleischmann, P.; Goldfarb, S.; Guan, L.; Hu, X.; Levin, D.; Liu, H.; Lu, N.; Marley, D. E.; Mc Kee, S. P.; McCarn, A.; Neal, H. A.; Qian, J.; Schwarz, T. A.; Searcy, J.; Sekhon, K.; Thun, R. P.; Wilson, A.; Wu, Y.; Yu, J. M.; Zhang, D.; Zhou, B.; Zhu, J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Abolins, M.; Arabidze, G.; Brock, R.; Chegwidden, A.; Fisher, W. C.; Halladjian, G.; Hauser, R.; Hayden, D.; Huston, J.; Linnemann, J. T.; Martin, B.; Pope, B. G.; Schoenrock, B. D.; Schwienhorst, R.; Tollefson, K.; Willis, C.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Alimonti, G.; Andreazza, A.; Besana, M. I.; Carminati, L.; Cavalli, D.; Costa, G.; Fanti, M.; Giugni, D.; Lari, T.; Mandelli, L.; Mazza, S. M.; Meroni, C.; Perini, L.; Pizio, C.; Ragusa, F.; Resconi, S.; Shojaii, S.; Stabile, A.; Tartarelli, G. F.; Troncon, C.; Turra, R.; Perez, M. Villaplana] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy. [Andreazza, A.; Carminati, L.; Fanti, M.; Mazza, S. M.; Perini, L.; Pizio, C.; Ragusa, F.; Shojaii, S.; Turra, R.; Perez, M. Villaplana] Univ Milan, Dipartmento Fis, Milan, Italy. [Harkusha, S.; Kulchitsky, Y.; Kurochkin, Y. A.; Tsiareshka, P. V.] Natl Acad Sci Belarus, BI Stepanov Inst Phys, Minsk, Byelarus. [Hrynevich, A.] Natl Sci & Educ Ctr Particle & High Energy Phys, Minsk, Byelarus. [Taylor, F. E.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Arguin, J-F.; Azuelos, G.; Dallaire, F.; Gauthier, L.; Leroy, C.; Rezvani, R.; Saadi, D. Shoaleh] Univ Montreal, Grp Particle Phys, Montreal, PQ, Canada. [Akimov, A. V.; Gavrilenko, I. L.; Komar, A. A.; Mashinistov, R.; Mouraviev, S. V.; Nechaeva, P. Yu.; Shmeleva, A.; Snesarev, A. A.; Sulin, V. V.; Tikhomirov, V. O.; Zhukov, K.] PN Lebedev Phys Inst, Acad Sci, Moscow 117924, Russia. [Artamonov, A.; Gorbounov, P. A.; Khovanskiy, V.; Shatalov, P. B.; Tsukerman, I. I.] ITEP, Moscow, Russia. [Antonov, A.; Belotskiy, K.; Bulekov, O.; Dolgoshein, B. A.; Kantserov, V. A.; Krasnopevtsev, D.; Romaniouk, A.; Shulga, E.; Smirnov, S. Yu.; Smirnov, Y.; Soldatov, E. Yu.; Timoshenko, S.; Vorobev, K.] Natl Res Nucl Univ MEPhI, Moscow, Russia. [Boldyrev, A. S.; Gladilin, L. K.; Kramarenko, V. A.; Maevskiy, A.; Rud, V. I.; Sivoklokov, S. Yu.; Smirnova, L. N.; Turchikhin, S.] Moscow MV Lomonosov State Univ, DV Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Adomeit, S.; Bender, M.; Biebel, O.; Bock, C.; Bortfeldt, J.; Calfayan, P.; Chow, B. K. B.; Duckeck, G.; Elmsheuser, J.; Hertenberger, R.; Hoenig, F.; Legger, F.; Lorenz, J.; Loesel, P. J.; Maier, T.; Mann, A.; Mehlhase, S.; Meineck, C.; Mitrevski, J.; Mueller, R. S. P.; Nunnemann, T.; Rauscher, F.; Ruschke, A.; Sanders, M. P.; Schaile, D.; Unverdorben, C.; Vladoiu, D.; Walker, R.; Wittkowski, J.] Univ Munich, Fak Phys, Munich, Germany. [Barillari, T.; Bethke, S.; Bronner, J.; Compostella, G.; Cortiana, G.; Ecker, K. M.; Flowerdew, M. J.; Giuliani, C.; Goblirsch-Kolb, M.; Ince, T.; Kiryunin, A. E.; Kluth, S.; Kortner, O.; Kortner, S.; Kroha, H.; Macchiolo, A.; Maier, A. A.; Manfredini, A.; Menke, S.; Mueller, F.; Nagel, M.; Nisius, R.; Nowak, S.; Oberlack, H.; Richter, R.; Salihagic, D.; Sandstroem, R.; Schacht, P.; Schwegler, Ph.; Spettel, F.; Stonjek, S.; Terzo, S.; von der Schmitt, H.; Wildauer, A.] Max Planck Inst Phys & Astrophys, Werner Heisenberg Inst, D-80805 Munich, Germany. [Fusayasu, T.; Shimojima, M.] Nagasaki Inst Appl Sci, Nagasaki, Japan. [Horii, Y.; Kawade, K.; Morvaj, L.; Onogi, K.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Grad Sch Sci, Nagoya, Aichi 4648601, Japan. [Horii, Y.; Kawade, K.; Morvaj, L.; Onogi, K.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Kobayashi Maskawa Inst, Nagoya, Aichi 4648601, Japan. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Carlino, G.; Cirotto, F.; Conventi, F.; de Asmundis, R.; Della Pietra, M.; Di Donato, C.; Doria, A.; Izzo, V.; Merola, L.; Perrella, S.; Rossi, E.; Sanchez, A.; Sekhniaidze, G.; Zurzolo, G.] Ist Nazl Fis Nucl, Sez Napoli, I-80125 Naples, Italy. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Cirotto, F.; Di Donato, C.; Merola, L.; Perrella, S.; Rossi, E.; Sanchez, A.; Zurzolo, G.] Univ Naples Federico II, Dipartmento Fis, Naples, Italy. [Gorelov, I.; Hoeferkamp, M. R.; Seidel, S. C.; Toms, K.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Caron, S.; Colasurdo, L.; Croft, V.; De Groot, N.; Filthaut, F.; Galea, C.; Konig, A. C.; Nektarijevic, S.; Strubig, A.] Radboud Univ Nijmegen, Nikhef, Inst Math Astrophys & Particle Phys, NL-6525 ED Nijmegen, Netherlands. [Aben, R.; Angelozzi, I.; Beemster, L. J.; Bentvelsen, S.; Berge, D.; Bobbink, G. J.; Bos, K.; Brenner, L.; Butti, P.; Castelli, A.; Colijn, A. P.; de Jong, P.; Deigaard, I.; Deluca, C.; Duda, D.; Ferrari, P.; Hartjes, F.; Hessey, N. P.; Hod, N.; Igonkina, O.; Karastathis, N.; Kluit, P.; Koffeman, E.; Linde, F.; Mahlstedt, J.; Meyer, J.; Oussoren, K. P.; Sabato, G.; Salek, D.; Slawinska, M.; Valencic, N.; Van Den Wollenberg, W.; Van Der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.; Weits, H.; Williams, S.] Nikhef Natl Inst Subat Phys, Amsterdam, Netherlands. [Aben, R.; Angelozzi, I.; Beemster, L. J.; Bentvelsen, S.; Berge, D.; Bobbink, G. J.; Bos, K.; Brenner, L.; Butti, P.; Castelli, A.; Colijn, A. P.; de Jong, P.; Deigaard, I.; Deluca, C.; Duda, D.; Ferrari, P.; Hartjes, F.; Hessey, N. P.; Hod, N.; Igonkina, O.; Karastathis, N.; Kluit, P.; Koffeman, E.; Linde, F.; Mahlstedt, J.; Meyer, J.; Oussoren, K. P.; Sabato, G.; Salek, D.; Slawinska, M.; Valencic, N.; Van Den Wollenberg, W.; Van Der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.; Weits, H.; Williams, S.] Univ Amsterdam, Amsterdam, Netherlands. [Adelman, J.; Andari, N.; Burghgrave, B.; Chakraborty, D.; Cole, S.; Saha, P.; Yurkewicz, A.] No Illinois Univ, Dept Phys, De Kalb, IL USA. [Anisenkov, A. V.; Baldin, E. M.; Bobrovnikov, V. S.; Bogdanchikov, A. G.; Buzykaev, A. R.; Kazanin, V. F.; Kharlamov, A. G.; Korol, A. A.; Malyshev, V. M.; Maslennikov, A. L.; Maximov, D. A.; Peleganchuk, S. V.; Rezanova, O. L.; Soukharev, A. M.; Talyshev, A. A.; Tikhonov, Yu. A.] RAS, Budker Inst Nucl Phys, SB, Novosibirsk, Russia. [Bernius, C.; Cranmer, K.; Haas, A.; Heinrich, L.; Kaplan, B.; Karthik, K.; Konoplich, R.; Kreiss, S.; Mincer, A. I.; Nemethy, P.; Neves, R. M.] NYU, Dept Phys, New York, NY 10003 USA. [Beacham, J. B.; Gan, K. K.; Ishmukhametov, R.; Kagan, H.; Kass, R. D.; Nagarkar, A.; Pignotti, D. T.; Shrestha, S.; Tannenwald, B. B.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Fac Sci, Okayama 700, Japan. [Abbott, B.; Alhroob, M.; Bertsche, C.; Bertsche, D.; De Benedetti, A.; Gutierrez, P.; Hasib, A.; Norberg, S.; Pearson, B.; Rifki, O.; Saleem, M.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA. [Bousson, N.; Haley, J.; Jamin, D. O.; Khanov, A.; Rizatdinova, F.; Sidorov, D.; Yu, J.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA. [Chytka, L.; Hamal, P.; Hrabovsky, M.; Kvita, J.; Nozka, L.] Palacky Univ, RCPTM, CR-77147 Olomouc, Czech Republic. [Abreu, R.; Brau, J. E.; Brost, E.; Hopkins, W. H.; Majewski, S.; Potter, C. T.; Ptacek, E.; Radloff, P.; Shamim, M.; Sinev, N. B.; Strom, D. M.; Torrence, E.; Wanotayaroj, C.; Whalen, K.; Winklmeier, F.] Univ Oregon, Ctr High Energy Phys, Eugene, OR 97403 USA. [Ayoub, M. K.; Bassalat, A.; Becot, C.; Binet, S.; Bourdarios, C.; De Regie, J. B. De Vivie; Delgove, D.; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Gkougkousis, E. L.; Grivaz, J. -F.; Guillemin, T.; Hariri, F.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Kado, M.; Lounis, A.; Makovec, N.; Morange, N.; Nellist, C.; Petroff, P.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Rybkin, G.; Schaffer, A. C.; Scifo, E.; Serin, L.; Simion, S.; Tanaka, R.; Zerwas, D.; Zhang, Z.; Zhao, Y.] Univ Paris 11, LAL, Orsay, France. [Ayoub, M. K.; Bassalat, A.; Becot, C.; Binet, S.; Bourdarios, C.; De Regie, J. B. De Vivie; Delgove, D.; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Gkougkousis, E. L.; Grivaz, J. -F.; Guillemin, T.; Hariri, F.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Kado, M.; Lounis, A.; Makovec, N.; Morange, N.; Nellist, C.; Petroff, P.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Rybkin, G.; Schaffer, A. C.; Scifo, E.; Serin, L.; Simion, S.; Tanaka, R.; Zerwas, D.; Zhang, Z.; Zhao, Y.] CNRS, IN2P3, F-91405 Orsay, France. [Endo, M.; Nomachi, M.; Okamura, W.; Sugaya, Y.; Teoh, J. J.; Yamaguchi, Y.] Osaka Univ, Grad Sch Sci, Osaka, Japan. [Bugge, L.; Bugge, M. K.; Cameron, D.; Catmore, J. R.; Franconi, L.; Garonne, V.; Gjelsten, B. K.; Gramstad, E.; Morisbak, V.; Nilsen, J. K.; Ould-Saada, F.; Pajchel, K.; Pedersen, M.; Raddum, S.; Read, A. L.; Rohne, O.; Sandaker, H.; Stapnes, S.; Strandlie, A.] Univ Oslo, Dept Phys, Oslo, Norway. [Barr, A. J.; Becker, K.; Behr, J. K.; Beresford, L.; Cooper-Sarkar, A. M.; Ortuzar, M. Crispin; Dafinca, A.; Davies, E.; Frost, J. A.; Gallas, E. J.; Gupta, S.; Gwenlan, C.; Hall, D.; Hays, C. P.; Henderson, J.; Howard, J.; Huffman, T. B.; Issever, C.; Kalderon, C. W.; Kogan, L. A.; Lewis, A.; Nagai, K.; Nickerson, R. B.; Pickering, M. A.; Ryder, N. C.; Tseng, J. C-L.; Viehhauser, G. H. A.; Weidberg, A. R.; Zhong, J.] Univ Oxford, Dept Phys, Oxford, England. [Conta, C.; Dondero, P.; Ferrari, R.; Fraternali, M.; Gaudio, G.; Introzzi, G.; Lanza, A.; Livan, M.; Negri, A.; Polesello, G.; Rebuzzi, D. M.; Rimoldi, A.; Vercesi, V.] Ist Nazl Fis Nucl, Sez Pavia, I-27100 Pavia, Italy. [Conta, C.; Dondero, P.; Fraternali, M.; Introzzi, G.; Livan, M.; Negri, A.; Rebuzzi, D. M.; Rimoldi, A.] Univ Pavia, Dipartmento Fis, I-27100 Pavia, Italy. [Balunas, W. K.; Brendlinger, K.; Fletcher, R. R. M.; Haney, B.; Heim, S.; Hines, E.; Jackson, B.; Kroll, J.; Lipeles, E.; Miguens, J. Machado; Meyer, C.; Mistry, K. P.; Reichert, J.; Stahlman, J.; Thomson, E.; Vanguri, R.; Williams, H. H.; Yoshihara, K.] Univ Penn, Dept Phys, Philadelphia, PA 19104 USA. [Basalaev, A.; Ezhilov, A.; Fedin, O. L.; Gratchev, V.; Levchenko, M.; Maleev, V. P.; Ryabov, Y. F.; Schegelsky, V. A.; Sedykh, E.; Seliverstov, D. M.; Solovyev, V.] BP Konstantinov Petersburg Nucl Phys Inst, Kurchatov Inst, Natl Res Ctr, St Petersburg, Russia. [Annovi, A.; Beccherle, R.; Bertolucci, F.; Biesuz, N. V.; Cavasinni, V.; Chiarelli, G.; Del Prete, T.; Dell'Orso, M.; Donati, S.; Giannetti, P.; Leone, S.; Roda, C.; Scuri, F.; Sotiropoulou, C. L.; Spalla, M.; Volpi, G.; White, S.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy. [Annovi, A.; Beccherle, R.; Bertolucci, F.; Biesuz, N. V.; Cavasinni, V.; Chiarelli, G.; Del Prete, T.; Dell'Orso, M.; Donati, S.; Giannetti, P.; Leone, S.; Roda, C.; Scuri, F.; Sotiropoulou, C. L.; Spalla, M.; Volpi, G.; White, S.] Univ Pisa, Dipartimento Fis E Fermi, Pisa, Italy. [Bianchi, R. M.; Boudreau, J.; Escobar, C.; Hong, T. M.; Mueller, J.; Sapp, K.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Aguilar-Saavedra, J. A.; Dos Santos, S. P. Amor; Amorim, A.; Araque, J. P.; Cantrill, R.; Carvalho, J.; Castro, N. F.; Muino, P. Conde; De Sousa, M. J. Da Cunha Sargedas; Fiolhais, M. C. N.; Galhardo, B.; Gomes, A.; Goncalo, R.; Jorge, P. M.; Lopes, L.; Maio, A.; Maneira, J.; Onofre, A.; Palma, A.; Pedro, R.; Pina, J.; Santos, H.; Saraiva, J. G.; Silva, J.; Delgado, A. Tavares; Veloso, F.; Wolters, H.] Lab Instrumentacao & Fis Expt Particulas LIP, Lisbon, Portugal. [Amorim, A.; Muino, P. Conde; De Sousa, M. J. Da Cunha Sargedas; Gomes, A.; Jorge, P. M.; Miguens, J. Machado; Maio, A.; Maneira, J.; Palma, A.; Pedro, R.; Pina, J.; Delgado, A. Tavares] Univ Lisbon, Fac Ciencias, P-1699 Lisbon, Portugal. [Dos Santos, S. P. Amor; Carvalho, J.; Fiolhais, M. C. N.; Galhardo, B.; Veloso, F.; Wolters, H.] Univ Coimbra, Dept Phys, Coimbra, Portugal. [Gomes, A.; Maio, A.; Pina, J.; Saraiva, J. G.; Silva, J.] Univ Lisbon, Ctr Fis Nucl, P-1699 Lisbon, Portugal. [Onofre, A.] Univ Minho, Dept Fis, Braga, Portugal. [Aguilar-Saavedra, J. A.] Univ Granada, Dept Fis Teor & Cosmos, Granada, Spain. [Aguilar-Saavedra, J. A.] Univ Granada, CAFPE, Granada, Spain. Univ Nova Lisboa, Fac Ciencias & Tecnol, Dept Fis, Caparica, Portugal. Univ Nova Lisboa, Fac Ciencias & Tecnol, CEFITEC, Caparica, Portugal. [Chudoba, J.; Havranek, M.; Hejbal, J.; Jakoubek, T.; Kepka, O.; Kupco, A.; Kus, V.; Lokajicek, M.; Lysak, R.; Marcisovsky, M.; Mikestikova, M.; Nemecek, S.; Penc, O.; Sicho, P.; Staroba, P.; Svatos, M.; Tasevsky, M.; Vrba, V.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Augsten, K.; Caforio, D.; Gallus, P.; Guenther, J.; Hubacek, Z.; Jakubek, J.; Kohout, Z.; Myska, M.; Pospisil, S.; Seifert, F.; Simak, V.; Slavicek, T.; Smolek, K.; Solar, M.; Solc, J.; Sopczak, A.; Sopko, B.; Sopko, V.; Su, J.; Suk, M.; Turecek, D.; Vacek, V.; Vlasak, M.; Vokac, P.; Vykydal, Z.; Zeman, M.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Balek, P.; Berta, P.; Cerny, K.; Chalupkova, I.; Davidek, T.; Dolejsi, J.; Dolezal, Z.; Faltova, J.; Kodys, P.; Kosek, T.; Leitner, R.; Pleskot, V.; Reznicek, P.; Scheirich, D.; Spousta, M.; Sykora, T.; Tas, P.; Todorova-Nova, S.; Valkar, S.; Vorobel, V.] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic. [Borisov, A.; Cheremushkina, E.; Denisov, S. P.; Fakhrutdinov, R. M.; Fenyuk, A. B.; Golubkov, D.; Kamenshchikov, A.; Karyukhin, A. N.; Kozhin, A. S.; Minaenko, A. A.; Myagkov, A. G.; Nikolaenko, V.; Solodkov, A. A.; Solovyanov, O. V.; Starchenko, E. A.; Zaitsev, A. M.; Zenin, O.] State Res Ctr Inst High Energy Phys, Protvino, Russia. [Adye, T.; Baines, J. T.; Barnett, B. M.; Burke, S.; Dewhurst, A.; Dopke, J.; Emeliyanov, D.; Gallop, B. J.; Gee, C. N. P.; Haywood, S. J.; Kirk, J.; Martin-Haugh, S.; McCubbin, N. A.; McMahon, S. J.; Middleton, R. P.; Murray, W. J.; Phillips, P. W.; Sankey, D. P. C.; Sawyer, C.; Tyndel, M.; Wickens, F. J.; Wielers, M.] Rutherford Appleton Lab, Particle Phys Dept, Didcot OX11 0QX, Oxon, England. [Anulli, F.; Bagiacchi, P.; Bagnaia, P.; Bauce, M.; Bini, C.; Ciapetti, G.; De Pedis, D.; De Salvo, A.; Di Domenico, A.; Falciano, S.; Gauzzi, P.; Gentile, S.; Giagu, S.; Gustavino, G.; Kuna, M.; Lacava, F.; Luci, C.; Luminari, L.; Marzano, F.; Messina, A.; Monzani, S.; Nisati, A.; Pasqualucci, E.; Petrolo, E.; Pontecorvo, L.; Rescigno, M.; Rosati, S.; Tehrani, F. Safai; Vanadia, M.; Vari, R.; Veneziano, S.; Verducci, M.; Zanello, L.] Ist Nazl Fis Nucl, Sez Roma, Rome, Italy. [Bagiacchi, P.; Bagnaia, P.; Bauce, M.; Bini, C.; Ciapetti, G.; Di Domenico, A.; Gauzzi, P.; Gentile, S.; Giagu, S.; Gustavino, G.; Kuna, M.; Lacava, F.; Luci, C.; Messina, A.; Monzani, S.; Vanadia, M.; Verducci, M.; Zanello, L.] Univ Roma La Sapienza, Dipartmento Fis, I-00185 Rome, Italy. [Aielli, G.; Camarri, P.; Cardarelli, R.; Di Ciaccio, A.; Iuppa, R.; Liberti, B.; Salamon, A.; Santonico, R.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, Rome, Italy. [Aielli, G.; Camarri, P.; Di Ciaccio, A.; Iuppa, R.; Santonico, R.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy. [Bacci, C.; Baroncelli, A.; Biglietti, M.; Ceradini, F.; Di Micco, B.; Farilla, A.; Graziani, E.; Iodice, M.; Orestano, D.; Pastore, F.; Pedersen, L. E.; Petrucci, F.; Puddu, D.; Salamanna, G.; Sessa, M.; Stanescu, C.; Taccini, C.] Ist Nazl Fis Nucl, Sez Roma, Rome, Italy. [Bacci, C.; Ceradini, F.; Di Micco, B.; Orestano, D.; Pastore, F.; Pedersen, L. E.; Petrucci, F.; Puddu, D.; Salamanna, G.; Sessa, M.; Taccini, C.] Univ Rome Tre, Dipartimento Matemat & Fis, I-00146 Rome, Italy. [Benchekroun, D.; Chafaq, A.; Hoummada, A.] Univ Hassan 2, Reseau Univ Phys Hautes Energies, Fac Sci Ain Chock, Casablanca, Morocco. [Ghazlane, H.] Ctr Natl Energie Sci Tech Nucl, Rabat, Morocco. [El Kacimi, M.; Goujdami, D.] Univ Cadi Ayyad, Fac Sci Semlalia, Lphea Marrakech, Morocco. [Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] Univ Mohamed Premier, Fac Sci, Oujda, Morocco. [Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] LPTPM, Oujda, Morocco. [Cherkaoui El Moursli, R.; Fassi, F.; Haddad, N.; Idrissi, Z.] Univ Mohammed 5, Fac Sci, Rabat, Morocco. [Bachacou, H.; Bauer, F.; Besson, N.; Blanchard, J. -B.; Boonekamp, M.; Calandri, A.; Chevalier, L.; Hoffmann, M. Dano; Deliot, F.; Etienvre, A. I.; Formica, A.; Giraud, P. F.; Da Costa, J. Goncalves Pinto Firmino; Guyot, C.; Hanna, R.; Hassani, S.; Kivernyk, O.; Kozanecki, W.; Kukla, R.; Lancon, E.; Laporte, J. F.; Maiani, C.; Mansoulie, B.; Meyer, J-P.; Nicolaidou, R.; Ouraou, A.; Protopapadaki, E.; Royon, C. R.; Saimpert, M.; Schoeffel, L.; Schune, Ph.; Schwemling, Ph.; Schwindling, J.] CEA Saclay, DSM IRFU, F-91191 Gif Sur Yvette, France. [Battaglia, M.; Debenedetti, C.; Grabas, H. M. X.; Grillo, A. A.; Hance, M.; Kuhl, A.; La Rosa, A.; Law, A. T.; Liang, Z.; Litke, A. M.; Lockman, W. S.; Nielsen, J.; Reece, R.; Rose, P.; Sadrozinski, H. F-W.; Schumm, B. A.; Seiden, A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Blackburn, D.; Goussiou, A. G.; Hsu, S. -C.; Johnson, W. J.; Lubatti, H. J.; Marx, M.; Rompotis, N.; Rosten, R.; Rothberg, J.; Russell, H. L.; De Bruin, P. H. Sales; Pastor, E. Torro; Watts, G.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Anastopoulos, C.; Costanzo, D.; Donszelmann, T. Cuhadar; Dawson, I.; Fletcher, G. T.; Hamity, G. N.; Hodgkinson, M. C.; Hodgson, P.; Johansson, P.; Klinger, J. A.; Korolkova, E. V.; Kyriazopoulos, D.; Paredes, B. Lopez; Macdonald, C. M.; Miyagawa, P. S.; Paganis, E.; Parker, K. A.; Tovey, D. R.; Vickey, T.; Boeriu, O. E. Vickey] Univ Sheffield, Dept Phys & Astron, Sheffield, S Yorkshire, England. [Hasegawa, Y.; Takeshita, T.] Shinshu Univ, Dept Phys, Nagano, Japan. [Atlay, N. B.; Buchholz, P.; Czirr, H.; Fleck, I.; Gaur, B.; Ghasemi, S.; Ibragimov, I.; Ikematsu, K.; Rosenthal, O.; Walkowiak, W.; Ziolkowski, M.] Univ Siegen, Fachbereich Phys, D-57068 Siegen, Germany. [Buat, Q.; Glazov, A.; Horton, A. J.; Mori, D.; O'Neil, D. C.; Pachal, K.; Stelzer, B.; Temple, D.; Torres, H.; Van Nieuwkoop, J.; Vetterli, M. C.] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada. [Barklow, T.; Bartoldus, R.; Bawa, H. S.; Black, J. E.; Cogan, J. G.; Fulsom, B. G.; Gao, Y. S.; Garelli, N.; Grenier, P.; Ilic, N.; Kagan, M.; Kocian, M.; Koi, T.; Malone, C.; Moss, J.; Mount, R.; Nachman, B. P.; Nef, P. D.; Piacquadio, G.; Rubbo, F.; Salnikov, A.; Schwartzman, A.; Strauss, E.; Su, D.; Swiatlowski, M.; Tompkins, L.; Wittgen, M.; Young, C.; Zeng, Q.] SLAC Natl Accelerator Lab, Stanford, CA USA. [Astalos, R.; Bartos, P.; Blazek, T.; Plazak, L.; Sykora, I.; Tokar, S.; Zenis, T.] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia. [Antos, J.; Bruncko, D.; Kladiva, E.; Strizenec, P.; Urban, J.] Slovak Acad Sci, Inst Expt Phys, Dept Subnucl Phys, Kosice 04353, Slovakia. [Castaneda-Miranda, E.; Hamilton, A.; Lee, C. A.; Meehan, S.; Yacoob, S.] Univ Cape Town, Dept Phys, ZA-7925 Cape Town, South Africa. [Aurousseau, M.; Connell, S. H.; Govender, N.] Univ Johannesburg, Dept Phys, Johannesburg, South Africa. [Bristow, K.; Hsu, C.; Kar, D.; March, L.; Garcia, B. R. Mellado; Ruan, X.] Univ Witwatersrand, Sch Phys, Johannesburg, South Africa. [Abulaiti, Y.; Akerstedt, H.; Asman, B.; Bendtz, K.; Bertoli, G.; Bylund, O. Bessidskaia; Bohm, C.; Clement, C.; Cribbs, W. A.; Hellman, S.; Jon-And, K.; Khandanyan, H.; Klimek, P.; Lundberg, O.; Milstead, D. A.; Moa, T.; Molander, S.; Pani, P.; Plucinski, P.; Poettgen, R.; Rossetti, V.; Shcherbakova, A.; Silverstein, S. B.; Sjolin, J.; Strandberg, S.; Tylmad, M.; Ughetto, M.] Stockholm Univ, Dept Phys, S-10691 Stockholm, Sweden. [Abulaiti, Y.; Akerstedt, H.; Asman, B.; Bendtz, K.; Bertoli, G.; Bylund, O. Bessidskaia; Clement, C.; Cribbs, W. A.; Hellman, S.; Jon-And, K.; Khandanyan, H.; Klimek, P.; Lundberg, O.; Milstead, D. A.; Moa, T.; Molander, S.; Pani, P.; Plucinski, P.; Poettgen, R.; Rossetti, V.; Shcherbakova, A.; Sjolin, J.; Strandberg, S.; Tylmad, M.; Ughetto, M.] Oskar Klein Ctr, Stockholm, Sweden. [Lund-Jensen, B.; Sidebo, P. E.; Strandberg, J.] Royal Inst Technol, Dept Phys, S-10044 Stockholm, Sweden. [Balestri, T.; Bee, C. P.; Campoverde, A.; Chen, K.; Hobbs, J.; Jia, J.; Li, H.; Lindquist, B. E.; McCarthy, R. L.; Montalbano, A.; Puldon, D.; Radhakrishnan, S. K.; Rijssenbeek, M.; Schamberger, R. D.; Tsybychev, D.; Zaman, A.; Zhou, M.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Balestri, T.; Bee, C. P.; Campoverde, A.; Chen, K.; Hobbs, J.; Jia, J.; Li, H.; Lindquist, B. E.; McCarthy, R. L.; Montalbano, A.; Puldon, D.; Radhakrishnan, S. K.; Rijssenbeek, M.; Schamberger, R. D.; Tsybychev, D.; Zaman, A.; Zhou, M.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Allbrooke, B. M. M.; Asquith, L.; Cerri, A.; Barajas, C. A. Chavez; De Sanctis, U.; De Santo, A.; Grout, Z. J.; Potter, C. J.; Salvatore, F.; Castillo, I. Santoyo; Shehu, C. Y.; Suruliz, K.; Sutton, M. R.; Vivarelli, I.] Univ Sussex, Dept Phys & Astron, Brighton, E Sussex, England. [Black, C. W.; Cuthbert, C.; Finelli, K. D.; Jeng, G. -Y.; Limosani, A.; Morley, A. K.; Patel, N. D.; Saavedra, A. F.; Scarcella, M.; Varvell, K. E.; Wang, J.; Watson, I. J.; Yabsley, B.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. [Abdallah, J.; Hou, S.; Hsu, P. J.; Lee, S. C.; Lin, S. C.; Liu, B.; Liu, D.; Lo Sterzo, F.; Mazini, R.; Shi, L.; Soh, D. A.; Teng, P. K.; Wang, C.; Wang, S. M.; Yang, Y.] Acad Sinica, Inst Phys, Taipei 115, Taiwan. [Abreu, H.; Cheatham, S.; Di Mattia, A.; Gozani, E.; Kopeliansky, R.; Musto, E.; Rozen, Y.; Tarem, S.; van Eldik, N.] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel. [Abramowicz, H.; Alexander, G.; Amram, N.; Ashkenazi, A.; Bella, G.; Benary, O.; Benhammou, Y.; Davies, M.; Etzion, E.; Gershon, A.; Gueta, O.; Oren, Y.; Silver, Y.; Soffer, A.; Taiblum, N.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Bachas, K.; Gkaitatzis, S.; Gkialas, I.; Iliadis, D.; Kimura, N.; Kordas, K.; Kourkoumeli-Charalampidi, A.; Leisos, A.; Orlando, N.; Papageorgiou, K.; Hernandez, D. Paredes; Petridou, C.; Sampsonidis, D.; Tsionou, D.] Aristotle Univ Thessaloniki, Dept Phys, GR-54006 Thessaloniki, Greece. [Asai, S.; Chen, S.; Dohmae, T.; Enari, Y.; Hanawa, K.; Kanaya, N.; Kataoka, Y.; Kato, C.; Kawamoto, T.; Kazama, S.; Kobayashi, A.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Minami, Y.; Mori, T.; Morinaga, M.; Nakamura, T.; Ninomiya, Y.; Nobe, T.; Saito, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamamoto, S.; Yamanaka, T.] Univ Tokyo, Int Ctr Elementary Particle Phys, Tokyo, Japan. [Asai, S.; Chen, S.; Dohmae, T.; Enari, Y.; Hanawa, K.; Kanaya, N.; Kataoka, Y.; Kato, C.; Kawamoto, T.; Kazama, S.; Kobayashi, A.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Minami, Y.; Mori, T.; Morinaga, M.; Nakamura, T.; Ninomiya, Y.; Nobe, T.; Saito, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamamoto, S.; Yamanaka, T.] Univ Tokyo, Dept Phys, Tokyo 113, Japan. [Bratzler, U.; Fukunaga, C.] Tokyo Metropolitan Univ, Grad Sch Sci & Technol, Tokyo 158, Japan. [Hirose, M.; Ishitsuka, M.; Jinnouchi, O.; Kobayashi, D.; Kuze, M.; Motohashi, K.; Nagai, R.; Pettersson, N. E.; Todome, K.; Yamaguchi, D.] Tokyo Inst Technol, Dept Phys, Tokyo 152, Japan. [AbouZeid, O. S.; Batista, S. J.; Chau, C. C.; DeMarco, D. A.; Di Sipio, R.; Diamond, M.; Krieger, P.; Liblong, A.; Mc Goldrick, G.; Orr, R. S.; Polifka, R.; Rudolph, M. S.; Savard, P.; Sinervo, P.; Taenzer, J.; Teuscher, R. J.; Trischuk, W.; Veloce, L. M.; Venturi, N.] Univ Toronto, Dept Phys, Toronto, ON, Canada. [Canepa, A.; Chekulaev, S. V.; Jovicevic, J.; Koutsman, A.; Oram, C. J.; Codina, E. Perez; Schneider, B.; Schouten, D.; Seuster, R.; Stelzer-Chilton, O.; Tafirout, R.; Trigger, I. M.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Garcia, J. A. Benitez; Ramos, J. Manjarres; Palacino, G.; Taylor, W.] York Univ, Dept Phys & Astron, Toronto, ON M3J 2R7, Canada. [Hara, K.; Hayashi, T.; Kasahara, K.; Kim, S. H.; Kiuchi, K.; Nagata, K.; Okawa, H.; Sato, K.; Ukegawa, F.] Univ Tsukuba, Fac Pure & Appl Sci, Tsukuba, Ibaraki, Japan. [Hara, K.; Hayashi, T.; Kasahara, K.; Kim, S. H.; Kiuchi, K.; Nagata, K.; Okawa, H.; Sato, K.; Ukegawa, F.] Univ Tsukuba, Ctr Integrated Res Fundamental Sci & Engn, Tsukuba, Ibaraki, Japan. [Beauchemin, P. H.; Meoni, E.; Rolli, S.; Sliwa, K.; Wetter, J.] Tufts Univ, Dept Phys & Astron, Medford, MA 02155 USA. [Losada, M.; Moreno, D.; Navarro, G.; Sandoval, C.] Univ Antonio Narino, Ctr Invest, Bogota, Colombia. [Corso-Radu, A.; Frate, M.; Gerbaudo, D.; Guest, D.; Lankford, A. J.; Mete, A. S.; Nelson, A.; Scannicchio, D. A.; Schernau, M.; Shimmin, C. O.; Taffard, A.; Unel, G.; Whiteson, D.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA USA. [Acharya, B. S.; Barisonzi, M.; Cobal, M.; Giordani, M. P.; Miglioranzi, S.; Pinamonti, M.; Quayle, W. B.; Serkin, L.; Shaw, K.; Soualah, R.; Truong, L.] INFN Grp Collegato Udine, Sez Trieste, Udine, Italy. [Acharya, B. S.; Barisonzi, M.; Quayle, W. B.; Serkin, L.; Shaw, K.] Abdus Salaam Int Ctr Theoret Phys, Trieste, Italy. [Cobal, M.; Giordani, M. P.; Miglioranzi, S.; Pinamonti, M.; Soualah, R.; Truong, L.] Univ Udine, Dipartimento Chim Fis & Ambiente, I-33100 Udine, Italy. [Atkinson, M.; Basye, A.; Armadans, R. Caminal; Cavaliere, V.; Chang, P.; Errede, S.; Lie, K.; Liss, T. M.; Liu, L.; Long, J. D.; Neubauer, M. S.; Rybar, M.; Shang, R.; Vichou, I.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Kuutmann, E. Bergeaas; Brenner, R.; Ekelof, T.; Ellert, M.; Ferrari, A.; Gradin, P. O. J.; Isaksson, C.; Madsen, A.; Ohman, H.; Pelikan, D.; Rangel-Smith, C.] Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden. [Alvarez Piqueras, D.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Fernandez Martinez, P.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Jimenez Pena, J.; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Mitsou, V. A.; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Valero, A.; Valls Ferrer, J. A.] Univ Valencia, Dept Ingn Elect, Valencia, Spain. [Alvarez Piqueras, D.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Fernandez Martinez, P.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Jimenez Pena, J.; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Mitsou, V. A.; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Valero, A.; Valls Ferrer, J. A.] Univ Valencia, IMB CNM, Valencia, Spain. [Alvarez Piqueras, D.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Fernandez Martinez, P.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Jimenez Pena, J.; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Mitsou, V. A.; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Valero, A.; Valls Ferrer, J. A.] CSIC, Valencia, Spain. [Danninger, M.; Fedorko, W.; Gay, C.; Gecse, Z.; Gignac, M.; Henkelmann, S.; King, S. B.; Lister, A.; Vos, M.] Univ British Columbia, Dept Phys, Vancouver, BC V5Z 1M9, Canada. [Albert, J.; Berghaus, F.; David, C.; Elliot, A. A.; Fincke-Keeler, M.; Hamano, K.; Hill, E.; Keeler, R.; Kowalewski, R.; Kuwertz, E. S.; Kwan, T.; LeBlanc, M.; Lefebvre, M.; Marino, C. P.; McPherson, R. A.; Pearce, J.; Sobie, R.; Trovatelli, M.; Venturi, M.] Univ Victoria, Dept Phys & Astron, Victoria, BC, Canada. [Beckingham, M.; Farrington, S. M.; Harrison, P. F.; Jeske, C.; Jones, G.; Martin, T. A.; Murray, W. J.; Pianori, E.; Spangenberg, M.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Iizawa, T.; Mitani, T.; Sakurai, Y.; Yorita, K.] Waseda Univ, Tokyo, Japan. [Bressler, S.; Citron, Z. H.; Duchovni, E.; Gross, E.; Lellouch, D.; Levinson, L. J.; Mikenberg, G.; Milov, A.; Pitt, M.; Roth, I.; Schaarschmidt, J.; Smakhtin, V.] Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel. [Banerjee, Sw.; Hard, A. S.; Heng, Y.; Ji, H.; Ju, X.; Kaplan, L. S.; Kashif, L.; Kruse, A.; Ming, Y.; Pan, Y. B.; Wang, F.; Wiedenmann, W.; Wu, S. L.; Yang, H.; Zhang, F.; Zobernig, G.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Kuger, F.; Redelbach, A.; Schreyer, M.; Sidiropoulou, O.; Siragusa, G.; Stroehmer, R.; Tam, J. Y. C.; Trefzger, T.; Weber, S. W.; Zibell, A.] Univ Wurzburg, Fak Phys & Astron, D-97070 Wurzburg, Germany. [Bannoura, A. A. E.; Braun, H. M.; Cornelissen, T.; Ellinghaus, F.; Ernis, G.; Fischer, J.; Flick, T.; Gabizon, O.; Hamacher, K.; Harenberg, T.; Heim, T.; Hirschbuehl, D.; Kersten, S.; Kohlmann, S.; Maettig, P.; Neumann, M.; Pataraia, S.; Riegel, C. J.; Sandhoff, M.; Tepel, F.; Wagner, W.; Zeitnitz, C.] Berg Univ Wuppertal, Fachbereich C Phys, Wuppertal, Germany. [Baker, O. K.; Cummings, J.; Demers, S.; Garberson, F.; Henrichs, A.; Ideal, E.; Lagouri, T.; Leister, A. G.; Loginov, A.; Thomsen, L. A.; Tipton, P.; Wang, X.] Yale Univ, Dept Phys, New Haven, CT USA. [Hakobyan, H.; Vardanyan, G.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Rahal, G.] Ctr Calcul Inst Natl Phys Nucl & Phys Particules, Villeurbanne, France. [Acharya, B. S.] Kings Coll London, Dept Phys, London WC2R 2LS, England. [Ahmadov, F.; Huseynov, N.; Javadov, N.] Azerbaijan Acad Sci, Inst Phys, Baku 370143, Azerbaijan. [Anisenkov, A. V.; Baldin, E. M.; Bobrovnikov, V. S.; Buzykaev, A. R.; Kazanin, V. F.; Kharlamov, A. G.; Korol, A. A.; Maslennikov, A. L.; Maximov, D. A.; Peleganchuk, S. V.; Rezanova, O. L.; Soukharev, A. M.; Talyshev, A. A.; Tikhonov, Yu. A.] Novosibirsk State Univ, Novosibirsk 630090, Russia. [Azuelos, G.; Gingrich, D. M.; Oakham, F. G.; Savard, P.; Vetterli, M. C.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Bawa, H. S.; Gao, Y. S.] Calif State Univ Fresno, Dept Phys, Fresno, CA 93740 USA. [Beck, H. P.] Univ Fribourg, Dept Phys, CH-1700 Fribourg, Switzerland. [Castro, N. F.] Univ Porto, Fac Ciencias, Dept Fis & Astron, P-4100 Oporto, Portugal. [Chelkov, G. A.] Tomsk State Univ, Tomsk 634050, Russia. [Chen, L.; Zhang, R.] Aix Marseille Univ, CPPM, Marseille, France. [Chen, L.; Zhang, R.] CNRS IN2P3, Marseille, France. [Conventi, F.; Della Pietra, M.] Univ Napoli Parthenope, Naples, Italy. [Davies, E.] Rutherford Appleton Lab, Particle Phys Dept, Didcot OX11 0QX, Oxon, England. [Fedin, O. L.] St Petersburg State Polytech Univ, Dept Phys, St Petersburg, Russia. [Greenwood, Z. D.; Sawyer, L.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Grinstein, S.; Juste Rozas, A.; Martinez, M.] ICREA, Barcelona, Spain. [Guo, Y.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Hanagaki, K.] Osaka Univ, Grad Sch Sci, Osaka, Japan. [Hsu, P. J.] Natl Tsing Hua Univ, Dept Phys, Hsinchu 30013, Taiwan. [Ilchenko, Y.; Onyisi, P. U. E.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. [Jejelava, J.] Ilia State Univ, Inst Theoret Phys, Tbilisi, Rep of Georgia. [Jenni, P.] CERN, Geneva, Switzerland. [Khubua, J.] Georgian Tech Univ, Tbilisi, Rep of Georgia. [Konoplich, R.] Manhattan Coll, New York, NY USA. [Leisos, A.] Hellen Open Univ, Patras, Greece. [Li, B.; Song, H. Y.] Acad Sinica, Inst Phys, Taipei 115, Taiwan. [Li, Y.] Univ Paris 11, LAL, Orsay, France. [Li, Y.] CNRS IN2P3, Orsay, France. [Lin, S. C.] Acad Sinica, Inst Phys, Acad Sinica Grid Comp, Taipei 115, Taiwan. [Liu, B.] Shandong Univ, Sch Phys, Shandong, Peoples R China. [Myagkov, A. G.; Nikolaenko, V.; Zaitsev, A. M.] Moscow Inst Phys & Technol, Dolgoprudnyi, Russia. [Nessi, M.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Pinamonti, M.] Int Sch Adv Studies SISSA, Trieste, Italy. [Purohit, M.] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. [Shi, L.; Soh, D. A.] Sun Yat Sen Univ, Sch Phys & Engn, Guangzhou 510275, Guangdong, Peoples R China. [Smirnova, L. N.; Turchikhin, S.] Moscow MV Lomonosov State Univ, Fac Phys, Moscow, Russia. [Tikhomirov, V. O.] Natl Res Nucl Univ MEPhI, Moscow, Russia. [Tompkins, L.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Toth, J.] Inst Particle & Nucl Phys, Wigner Res Ctr Phys, Budapest, Hungary. [Yusuff, I.] Univ Malaya, Dept Phys, Kuala Lumpur 59100, Malaysia. RP Aad, G (reprint author), Aix Marseille Univ, CPPM, Marseille, France. RI White, Ryan/E-2979-2015; Doyle, Anthony/C-5889-2009; Warburton, Andreas/N-8028-2013; Gladilin, Leonid/B-5226-2011; Livan, Michele/D-7531-2012; Carvalho, Joao/M-4060-2013; Buttar, Craig/D-3706-2011; Mitsou, Vasiliki/D-1967-2009; Tripiana, Martin/H-3404-2015; Smirnova, Oxana/A-4401-2013; Tikhomirov, Vladimir/M-6194-2015; Savarala, Hari Krishna/A-3516-2015; Li, Liang/O-1107-2015; Monzani, Simone/D-6328-2017; Kuday, Sinan/C-8528-2014; Garcia, Jose /H-6339-2015; la rotonda, laura/B-4028-2016; Staroba, Pavel/G-8850-2014; Kukla, Romain/P-9760-2016; Gavrilenko, Igor/M-8260-2015; Gauzzi, Paolo/D-2615-2009; Maleev, Victor/R-4140-2016; Camarri, Paolo/M-7979-2015; Mindur, Bartosz/A-2253-2017; Mashinistov, Ruslan/M-8356-2015; Fabbri, Laura/H-3442-2012; Gutierrez, Phillip/C-1161-2011; Solodkov, Alexander/B-8623-2017; Zaitsev, Alexandre/B-8989-2017; Peleganchuk, Sergey/J-6722-2014; Vykydal, Zdenek/H-6426-2016; Fedin, Oleg/H-6753-2016; Brooks, William/C-8636-2013; Ventura, Andrea/A-9544-2015; Kantserov, Vadim/M-9761-2015; Nevski, Pavel/M-6292-2015; Villa, Mauro/C-9883-2009; BESSON, NATHALIE/L-6250-2015; Vanadia, Marco/K-5870-2016; Ippolito, Valerio/L-1435-2016; Maneira, Jose/D-8486-2011; Prokoshin, Fedor/E-2795-2012; Stabile, Alberto/L-3419-2016; Di Domenico, Antonio/G-6301-2011; Gonzalez de la Hoz, Santiago/E-2494-2016; Guo, Jun/O-5202-2015; Aguilar Saavedra, Juan Antonio/F-1256-2016; Leyton, Michael/G-2214-2016; Jones, Roger/H-5578-2011; Boyko, Igor/J-3659-2013; Vranjes Milosavljevic, Marija/F-9847-2016; Chekulaev, Sergey/O-1145-2015; Zhukov, Konstantin/M-6027-2015; SULIN, VLADIMIR/N-2793-2015; Snesarev, Andrey/H-5090-2013; Nechaeva, Polina/N-1148-2015 OI White, Ryan/0000-0003-3589-5900; Doyle, Anthony/0000-0001-6322-6195; Warburton, Andreas/0000-0002-2298-7315; Gladilin, Leonid/0000-0001-9422-8636; Livan, Michele/0000-0002-5877-0062; Carvalho, Joao/0000-0002-3015-7821; Mitsou, Vasiliki/0000-0002-1533-8886; Smirnova, Oxana/0000-0003-2517-531X; Tikhomirov, Vladimir/0000-0002-9634-0581; Savarala, Hari Krishna/0000-0001-6593-4849; Lacasta, Carlos/0000-0002-2623-6252; Belanger-Champagne, Camille/0000-0003-2368-2617; Li, Liang/0000-0001-6411-6107; Monzani, Simone/0000-0002-0479-2207; Kuday, Sinan/0000-0002-0116-5494; Sannino, Mario/0000-0001-7700-8383; la rotonda, laura/0000-0002-6780-5829; Pina, Joao /0000-0001-8959-5044; Sotiropoulou, Calliope-Louisa/0000-0001-9851-1658; Veneziano, Stefano/0000-0002-2598-2659; Kukla, Romain/0000-0002-1140-2465; Gauzzi, Paolo/0000-0003-4841-5822; Camarri, Paolo/0000-0002-5732-5645; Mindur, Bartosz/0000-0002-5511-2611; Mashinistov, Ruslan/0000-0001-7925-4676; Fabbri, Laura/0000-0002-4002-8353; Solodkov, Alexander/0000-0002-2737-8674; Zaitsev, Alexandre/0000-0002-4961-8368; Peleganchuk, Sergey/0000-0003-0907-7592; Vykydal, Zdenek/0000-0003-2329-0672; Brooks, William/0000-0001-6161-3570; Ventura, Andrea/0000-0002-3368-3413; Kantserov, Vadim/0000-0001-8255-416X; Villa, Mauro/0000-0002-9181-8048; Vanadia, Marco/0000-0003-2684-276X; Ippolito, Valerio/0000-0001-5126-1620; Maneira, Jose/0000-0002-3222-2738; Prokoshin, Fedor/0000-0001-6389-5399; Stabile, Alberto/0000-0002-6868-8329; Di Domenico, Antonio/0000-0001-8078-2759; Gonzalez de la Hoz, Santiago/0000-0001-5304-5390; Guo, Jun/0000-0001-8125-9433; Aguilar Saavedra, Juan Antonio/0000-0002-5475-8920; Leyton, Michael/0000-0002-0727-8107; Jones, Roger/0000-0002-6427-3513; Boyko, Igor/0000-0002-3355-4662; Vranjes Milosavljevic, Marija/0000-0003-4477-9733; SULIN, VLADIMIR/0000-0003-3943-2495; FU ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW, Austria; FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq, Brazil; FAPESP, Brazil; NSERC, Canada; NRC, Canada; CFI, Canada; CERN; CONICYT, Chile; CAS, China; MOST, China; NSFC, China; COLCIENCIAS, Colombia; MSMT CR, Czech Republic; MPO CR, Czech Republic; VSC CR, Czech Republic; DNRF, Denmark; DNSRC, Denmark; Lundbeck Foundation, Denmark; EPLANET, European Union; ERC, European Union; NSRF, European Union; IN2P3-CNRS, France; CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, Germany; DFG, Germany; HGF, Germany; MPG, Germany; AvH Foundation, Germany; GSRT, Greece; NSRF, Greece; RGC, Hong Kong SAR, China; ISF, Israel; MINERVA, Israel; GIF, Israel; I-CORE, Israel; Benoziyo Center, Israel; INFN, Italy; MEXT, Japan; JSPS, Japan; CNRST, Morocco; FOM, Netherlands; NWO, Netherlands; BRF, Norway; RCN, Norway; MNiSW, Poland; NCN, Poland; GRICES, Portugal; FCT, Portugal; MNE/IFA, Romania; MES of Russia, Russian Federation; NRC KI, Russian Federation; JINR, Serbia; MSTD, Serbia; MSSR, Slovakia; ARRS, Slovenia; MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC, Sweden; Wallenberg Foundation, Sweden; SER, Switzerland; SNSF, Switzerland; Canton of Bern, Switzerland; Canton of Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, United Kingdom; Royal Society and Leverhulme Trust, United Kingdom; DOE, United States of America; NSF, United States of America FX We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; EPLANET, ERC and NSRF, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT and NSRF, Greece; RGC, Hong Kong SAR, China; ISF, MINERVA, GIF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNiSW and NCN, Poland; GRICES and FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide. NR 77 TC 11 Z9 11 U1 18 U2 96 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD DEC 22 PY 2015 VL 92 IS 11 AR 112007 DI 10.1103/PhysRevD.92.112007 PG 28 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CZ4KC UT WOS:000367070900002 ER PT J AU Dai, LY Kang, ZB Prokudin, A Vitev, I AF Dai, Ling-Yun Kang, Zhong-Bo Prokudin, Alexei Vitev, Ivan TI Next-to-leading order transverse momentum-weighted Sivers asymmetry in semi-inclusive deep inelastic scattering: The role of the three-gluon correlator SO PHYSICAL REVIEW D LA English DT Article ID SINGLE-SPIN ASYMMETRIES; DRELL-YAN; EVOLUTION; DIS; DISTRIBUTIONS; COLLINS; NUCLEON; PIONS; KAONS AB We study the Sivers asymmetry in semi-inclusive hadron production in deep inelastic scattering. We concentrate on the contribution from the photon-gluon fusion channel at O(alpha(2)(em)alpha(s)), where three-gluon correlation functions play a major role within the twist-3 collinear factorization formalism. We establish the correspondence between such a formalism with three-gluon correlation functions and the usual transverse momentum-dependent (TMD) factorization formalism at moderate hadron transverse momenta. We derive the coefficient functions used in the usual TMD evolution formalism related to the quark Sivers function expansion in terms of the three-gluon correlation functions. We further perform the next-to-leading order calculation for the transverse momentum-weighted spin-dependent differential cross section and identify the off-diagonal contribution from the three-gluon correlation functions to the QCD collinear evolution of the twist-3 Qiu-Sterman function. C1 [Dai, Ling-Yun; Prokudin, Alexei] Jefferson Lab, Newport News, VA 23606 USA. [Kang, Zhong-Bo; Vitev, Ivan] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Prokudin, Alexei] Penn State Berks, Div Sci, Reading, PA 19610 USA. RP Dai, LY (reprint author), Jefferson Lab, 12000 Jefferson Ave, Newport News, VA 23606 USA. EM lingyun@jlab.org; zkang@lanl.gov; prokudin@jlab.org; ivitev@lanl.gov RI Kang, Zhongbo/P-3645-2014 FU U.S. Department of Energy, Office of Science, Office of Nuclear Physics [DE-AC05-06OR23177, DE-AC52-06NA25396]; LDRD program at LANL FX This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under Contracts No. DE-AC05-06OR23177 (L. D., A. P.) and No. DE-AC52-06NA25396 (Z. K., I. V.), and in part by the LDRD program at LANL. NR 57 TC 4 Z9 4 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD DEC 22 PY 2015 VL 92 IS 11 AR 114024 DI 10.1103/PhysRevD.92.114024 PG 11 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CZ4KC UT WOS:000367070900006 ER PT J AU Kumar, N Martin, SP AF Kumar, Nilanjana Martin, Stephen P. TI Vectorlike leptons at the Large Hadron Collider SO PHYSICAL REVIEW D LA English DT Article ID SUPERSYMMETRIC MODEL; HIGGS; PHENOMENOLOGY; MASS AB We study the prospects for excluding or discovering vectorlike leptons using multilepton events at the LHC. We consider models in which the vectorlike leptons decay to tau leptons. If the vectorlike leptons are weak isosinglets, then discovery in multilepton states is found to be extremely challenging. For the case that the vectorlike leptons are weak isodoublet, we argue that there may be an opportunity for exclusion for masses up to about 275 GeV by direct searches with existing LHC data at root s = 8 TeV. We also discuss prospects for exclusion or discovery at the LHC with future root s = 13 TeV data. C1 [Kumar, Nilanjana; Martin, Stephen P.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Martin, Stephen P.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Kumar, N (reprint author), No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. FU National Science Foundation [PHY-1417028] FX We thank Jahred Adelman and Glen Cowan for helpful discussions about the treatment of significances in the presence of background uncertainties. This work was supported in part by the National Science Foundation Grant No. PHY-1417028. NR 67 TC 9 Z9 9 U1 1 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD DEC 22 PY 2015 VL 92 IS 11 AR 115018 DI 10.1103/PhysRevD.92.115018 PG 24 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CZ4KC UT WOS:000367070900009 ER PT J AU Lees, JP Poireau, V Tisserand, V Grauges, E Palano, A Eigen, G Stugu, B Brown, DN Kerth, LT Kolomensky, YG Lee, MJ Lynch, G Koch, H Schroeder, T Hearty, C Mattison, TS McKenna, JA So, RY Khan, A Blinov, VE Buzykaev, AR Druzhinin, VP Golubev, VB Kravchenko, EA Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Lankford, AJ Dey, B Gary, JW Long, O Sevilla, MF Hong, TM Kovalskyi, D Richman, JD West, CA Eisner, AM Lockman, WS Vazquez, WP Schumm, BA Seiden, A Chao, DS Cheng, CH Echenard, B Flood, KT Hitlin, DG Miyashita, TS Ongmongkolkul, P Porter, FC Rohrken, M Andreassen, R Huard, Z Meadows, BT Pushpawela, BG Sokoloff, MD Sun, L Bloom, PC Ford, WT Gaz, A Smith, JG Wagner, SR Ayad, R Toki, WH Spaan, B Bernard, D Verderi, M Playfer, S Bettoni, D Bozzi, C Calabrese, R Cibinetto, G Fioravanti, E Garzia, I Luppi, E Piemontese, L Santoro, V Calcaterra, A de Sangro, R Finocchiaro, G Martellotti, S Patteri, P Peruzzi, IM Piccolo, M Zallo, A Contri, R Monge, MR Passaggio, S Patrignani, C Bhuyan, B Prasad, V Adametz, A Uwer, U Lacker, HM Mallik, U Chen, C Cochran, J Prell, S Ahmed, H Gritsan, AV Arnaud, N Davier, M Derkach, D Grosdidier, G Le Diberder, F Lutz, AM Malaescu, B Roudeau, P Stocchi, A Wormser, G Lange, DJ Wright, DM Coleman, JP Fry, JR Gabathuler, E Hutchcroft, DE Payne, DJ Touramanis, C Bevan, AJ Di Lodovico, F Sacco, R Cowan, G Brown, DN Davis, CL Denig, AG Fritsch, M Gradl, W Griessinger, K Hafner, A Schubert, KR Barlow, RJ Lafferty, GD Cenci, R Hamilton, B Jawahery, A Roberts, DA Cowan, R Cheaib, R Patel, PM Robertson, SH Neri, N Palombo, F Cremaldi, L Godang, R Summers, DJ Simard, M Taras, P De Nardo, G Onorato, G Sciacca, C Raven, G Jessop, CP LoSecco, JM Honscheid, K Kass, R Margoni, M Morandin, M Posocco, M Rotondo, M Simi, G Simonetto, F Stroili, R Akar, S Ben-Haim, E Bomben, M Bonneaud, GR Briand, H Calderini, G Chauveau, J Leruste, P Marchiori, G Ocariz, J Biasini, M Manoni, E Rossi, A Angelini, C Batignani, G Bettarini, S Carpinelli, M Casarosa, G Chrzaszcz, M Forti, F Giorgi, MA Lusiani, A Oberhof, B Paoloni, E Rama, M Rizzo, G Walsh, JJ Pegna, DL Olsen, J Smith, AJS Anulli, F Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Pilloni, A Piredda, G Bunger, C Dittrich, S Grunberg, O Hess, M Leddig, T Voss, C Waldi, R Adye, T Olaiya, EO Wilson, FF Emery, S Vasseur, G Aston, D Bard, DJ Cartaro, C Convery, MR Dorfan, J Dubois-Felsmann, GP Dunwoodie, W Ebert, M Field, RC Fulsom, BG Graham, MT Hast, C Innes, WR Kim, P Leith, DWGS Luitz, S Luth, V MacFarlane, DB Muller, DR Neal, H Pulliam, T Ratcliff, BN Roodman, A Schindler, RH Snyder, A Su, D Sullivan, MK Va'vra, J Wisniewski, WJ Wulsin, HW Purohit, MV Wilson, JR Randle-Conde, A Sekula, SJ Bellis, M Burchat, PR Puccio, EMT Alam, MS Ernst, JA Gorodeisky, R Guttman, N Peimer, DR Soffer, A Spanier, SM Ritchie, JL Schwitters, RF Izen, JM Lou, XC Bianchi, F De Mori, F Filippi, A Gamba, D Lanceri, L Vitale, L Martinez-Vidal, F Oyanguren, A Albert, J Banerjee, S Beaulieu, A Bernlochner, FU Choi, HHF King, GJ Kowalewski, R Lewczuk, MJ Lueck, T Nugent, IM Roney, JM Sobie, RJ Tasneem, N Gershon, TJ Harrison, PF Latham, TE Band, HR Dasu, S Pan, Y Prepost, R Wu, SL AF Lees, J. P. Poireau, V. Tisserand, V. Grauges, E. Palano, A. Eigen, G. Stugu, B. Brown, D. N. Kerth, L. T. Kolomensky, Yu. G. Lee, M. J. Lynch, G. Koch, H. Schroeder, T. Hearty, C. Mattison, T. S. McKenna, J. A. So, R. Y. Khan, A. Blinov, V. E. Buzykaev, A. R. Druzhinin, V. P. Golubev, V. B. Kravchenko, E. A. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu. Lankford, A. J. Dey, B. Gary, J. W. Long, O. Sevilla, M. Franco Hong, T. M. Kovalskyi, D. Richman, J. D. West, C. A. Eisner, A. M. Lockman, W. S. Vazquez, W. Panduro Schumm, B. A. Seiden, A. Chao, D. S. Cheng, C. H. Echenard, B. Flood, K. T. Hitlin, D. G. Miyashita, T. S. Ongmongkolkul, P. Porter, F. C. Roehrken, M. Andreassen, R. Huard, Z. Meadows, B. T. Pushpawela, B. G. Sokoloff, M. D. Sun, L. Bloom, P. C. Ford, W. T. Gaz, A. Smith, J. G. Wagner, S. R. Ayad, R. Toki, W. H. Spaan, B. Bernard, D. Verderi, M. Playfer, S. Bettoni, D. Bozzi, C. Calabrese, R. Cibinetto, G. Fioravanti, E. Garzia, I. Luppi, E. Piemontese, L. Santoro, V. Calcaterra, A. de Sangro, R. Finocchiaro, G. Martellotti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Zallo, A. Contri, R. Monge, M. R. Passaggio, S. Patrignani, C. Bhuyan, B. Prasad, V. Adametz, A. Uwer, U. Lacker, H. M. Mallik, U. Chen, C. Cochran, J. Prell, S. Ahmed, H. Gritsan, A. V. Arnaud, N. Davier, M. Derkach, D. Grosdidier, G. Le Diberder, F. Lutz, A. M. Malaescu, B. Roudeau, P. Stocchi, A. Wormser, G. Lange, D. J. Wright, D. M. Coleman, J. P. Fry, J. R. Gabathuler, E. Hutchcroft, D. E. Payne, D. J. Touramanis, C. Bevan, A. J. Di Lodovico, F. Sacco, R. Cowan, G. Brown, D. N. Davis, C. L. Denig, A. G. Fritsch, M. Gradl, W. Griessinger, K. Hafner, A. Schubert, K. R. Barlow, R. J. Lafferty, G. D. Cenci, R. Hamilton, B. Jawahery, A. Roberts, D. A. Cowan, R. Cheaib, R. Patel, P. M. Robertson, S. H. Neri, N. Palombo, F. Cremaldi, L. Godang, R. Summers, D. J. Simard, M. Taras, P. De Nardo, G. Onorato, G. Sciacca, C. Raven, G. Jessop, C. P. LoSecco, J. M. Honscheid, K. Kass, R. Margoni, M. Morandin, M. Posocco, M. Rotondo, M. Simi, G. Simonetto, F. Stroili, R. Akar, S. Ben-Haim, E. Bomben, M. Bonneaud, G. R. Briand, H. Calderini, G. Chauveau, J. Leruste, Ph. Marchiori, G. Ocariz, J. Biasini, M. Manoni, E. Rossi, A. Angelini, C. Batignani, G. Bettarini, S. Carpinelli, M. Casarosa, G. Chrzaszcz, M. Forti, F. Giorgi, M. A. Lusiani, A. Oberhof, B. Paoloni, E. Rama, M. Rizzo, G. Walsh, J. J. Pegna, D. Lopes Olsen, J. Smith, A. J. S. Anulli, F. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Pilloni, A. Piredda, G. Buenger, C. Dittrich, S. Gruenberg, O. Hess, M. Leddig, T. Voss, C. Waldi, R. Adye, T. Olaiya, E. O. Wilson, F. F. Emery, S. Vasseur, G. Aston, D. Bard, D. J. Cartaro, C. Convery, M. R. Dorfan, J. Dubois-Felsmann, G. P. Dunwoodie, W. Ebert, M. Field, R. C. Fulsom, B. G. Graham, M. T. Hast, C. Innes, W. R. Kim, P. Leith, D. W. G. S. Luitz, S. Luth, V. MacFarlane, D. B. Muller, D. R. Neal, H. Pulliam, T. Ratcliff, B. N. Roodman, A. Schindler, R. H. Snyder, A. Su, D. Sullivan, M. K. Va'vra, J. Wisniewski, W. J. Wulsin, H. W. Purohit, M. V. Wilson, J. R. Randle-Conde, A. Sekula, S. J. Bellis, M. Burchat, P. R. Puccio, E. M. T. Alam, M. S. Ernst, J. A. Gorodeisky, R. Guttman, N. Peimer, D. R. Soffer, A. Spanier, S. M. Ritchie, J. L. Schwitters, R. F. Izen, J. M. Lou, X. C. Bianchi, F. De Mori, F. Filippi, A. Gamba, D. Lanceri, L. Vitale, L. Martinez-Vidal, F. Oyanguren, A. Albert, J. Banerjee, Sw. Beaulieu, A. Bernlochner, F. U. Choi, H. H. F. King, G. J. Kowalewski, R. Lewczuk, M. J. Lueck, T. Nugent, I. M. Roney, J. M. Sobie, R. J. Tasneem, N. Gershon, T. J. Harrison, P. F. Latham, T. E. Band, H. R. Dasu, S. Pan, Y. Prepost, R. Wu, S. L. CA BaBar Collaboration TI Collins asymmetries in inclusive charged KK and K pi pairs produced in e(+)e(-) annihilation SO PHYSICAL REVIEW D LA English DT Article ID BABAR DETECTOR; PARTON DISTRIBUTIONS; JETS; FRAGMENTATION; PIONS; KAONS AB We present measurements of Collins asymmetries in the inclusive process e(+)e(-) -> h(1)h(2)X, h(1)h(2) = KK, K pi, pi pi, at the center-of-mass energy of 10.6 GeV, using a data sample of 468 fb(-1) collected by the BABAR experiment at the PEP-II B factory at SLAC National Accelerator Center. Considering hadrons in opposite thrust hemispheres of hadronic events, we observe clear azimuthal asymmetries in the ratio of unlike sign to like sign, and unlike sign to all charged h(1)h(2) pairs, which increase with hadron energies. The K pi asymmetries are similar to those measured for the pi pi pairs, whereas those measured for high-energy KK pairs are, in general, larger. C1 [Lees, J. P.; Poireau, V.; Tisserand, V.] Univ Savoie, CNRS IN2P3, LAPP, F-74941 Annecy Le Vieux, France. [Grauges, E.] Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain. [Palano, A.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Palano, A.] Univ Bari, Dipartmento Fis, I-70126 I- Bari, Italy. [Eigen, G.; Stugu, B.] Univ Bergen, Inst Phys, N-5007 Bergen, Norway. [Brown, D. N.; Kerth, L. T.; Kolomensky, Yu. G.; Lee, M. J.; Lynch, G.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Brown, D. N.; Kerth, L. T.; Kolomensky, Yu. G.; Lee, M. J.; Lynch, G.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Koch, H.; Schroeder, T.] Ruhr Univ Bochum, Inst Expt Phys, D-44780 Bochum, Germany. [Hearty, C.; Mattison, T. S.; McKenna, J. A.; So, R. Y.] Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. [Khan, A.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Blinov, V. E.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Kravchenko, E. A.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.] RAS, Budker Inst Nucl Phys, SB, Novosibirsk 630090, Russia. [Blinov, V. E.; Druzhinin, V. P.; Golubev, V. B.; Kravchenko, E. A.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.] Novosibirsk State Univ, Novosibirsk 630090, Russia. [Blinov, V. E.; Onuchin, A. P.] Novosibirsk State Tech Univ, Novosibirsk 630092, Russia. [Lankford, A. J.] Univ Calif Irvine, Irvine, CA 92697 USA. [Dey, B.; Gary, J. W.; Long, O.] Univ Calif Riverside, Riverside, CA 92521 USA. [Sevilla, M. Franco; Hong, T. M.; Kovalskyi, D.; Richman, J. D.; West, C. A.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Eisner, A. M.; Lockman, W. S.; Vazquez, W. Panduro; Schumm, B. A.; Seiden, A.] Univ Calif Santa Cruz, Santa Cruz, CA 95064 USA. [Chao, D. S.; Cheng, C. H.; Echenard, B.; Flood, K. T.; Hitlin, D. G.; Miyashita, T. S.; Ongmongkolkul, P.; Porter, F. C.; Roehrken, M.] CALTECH, Pasadena, CA 91125 USA. [Andreassen, R.; Huard, Z.; Meadows, B. T.; Pushpawela, B. G.; Sokoloff, M. D.; Sun, L.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Bloom, P. C.; Ford, W. T.; Gaz, A.; Smith, J. G.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Ayad, R.; Toki, W. H.] Colorado State Univ, Ft Collins, CO 80523 USA. [Spaan, B.] Tech Univ Dortmund, Fak Phys, D-44221 Dortmund, Germany. [Bernard, D.; Verderi, M.] Ecole Polytech, CNRS IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Playfer, S.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Bettoni, D.; Bozzi, C.; Calabrese, R.; Cibinetto, G.; Fioravanti, E.; Garzia, I.; Luppi, E.; Piemontese, L.; Santoro, V.] Ist Nazl Fis Nucl, Sez Ferrara, I-44122 Ferrara, Italy. [Calabrese, R.; Cibinetto, G.; Fioravanti, E.; Garzia, I.; Luppi, E.] Univ Ferrara, Dipartimento Fis & Sci Terra, I-44122 Ferrara, Italy. [Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Martellotti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Zallo, A.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Contri, R.; Monge, M. R.; Passaggio, S.; Patrignani, C.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Contri, R.; Monge, M. R.; Patrignani, C.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. [Bhuyan, B.; Prasad, V.] Indian Inst Technol Guwahati, Gauhati 781039, Assam, India. [Adametz, A.; Uwer, U.] Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany. [Lacker, H. M.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Mallik, U.] Univ Iowa, Iowa City, IA 52242 USA. [Chen, C.; Cochran, J.; Prell, S.] Iowa State Univ, Ames, IA 50011 USA. [Ahmed, H.] Jazan Univ, Dept Phys, Jazan 22822, Saudi Arabia. [Gritsan, A. V.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Arnaud, N.; Davier, M.; Derkach, D.; Grosdidier, G.; Le Diberder, F.; Lutz, A. M.; Malaescu, B.; Roudeau, P.; Stocchi, A.; Wormser, G.] IN2P3 CNRS, Lab Accelerateur Lineaire, F-91898 Orsay, France. [Arnaud, N.; Davier, M.; Derkach, D.; Grosdidier, G.; Le Diberder, F.; Lutz, A. M.; Malaescu, B.; Roudeau, P.; Stocchi, A.; Wormser, G.] Univ Paris 11, Ctr Sci Orsay, F-91898 Orsay, France. [Lange, D. J.; Wright, D. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Coleman, J. P.; Fry, J. R.; Gabathuler, E.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bevan, A. J.; Di Lodovico, F.; Sacco, R.] Univ London, London E1 4NS, England. [Cowan, G.] Univ London, Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. [Brown, D. N.; Davis, C. L.] Univ Louisville, Louisville, KY 40292 USA. [Denig, A. G.; Fritsch, M.; Gradl, W.; Griessinger, K.; Hafner, A.; Schubert, K. R.] Johannes Gutenberg Univ Mainz, Inst Kernphys, D-55099 Mainz, Germany. [Barlow, R. J.; Lafferty, G. D.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Cenci, R.; Hamilton, B.; Jawahery, A.; Roberts, D. A.] Univ Maryland, College Pk, MD 20742 USA. [Cowan, R.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. [Cheaib, R.; Patel, P. M.; Robertson, S. H.] McGill Univ, Montreal, PQ H3A 2T8, Canada. [Neri, N.; Palombo, F.] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy. [Palombo, F.] Univ Milan, Dipartmento Fis, I-20133 Milan, Italy. [Cremaldi, L.; Godang, R.; Summers, D. J.] Univ Mississippi, University, MS 38677 USA. [Simard, M.; Taras, P.] Univ Montreal, Phys Particules, Montreal, PQ H3C 3J7, Canada. [De Nardo, G.; Onorato, G.; Sciacca, C.] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy. [De Nardo, G.; Onorato, G.; Sciacca, C.] Univ Naples Federico II, Dipartimento Sci Fis, I-80126 Naples, Italy. [Raven, G.] Natl Inst Nucl Phys & High Energy Phys, NIKHEF, NL-1009 DB Amsterdam, Netherlands. [Jessop, C. P.; LoSecco, J. M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Honscheid, K.; Kass, R.] Ohio State Univ, Columbus, OH 43210 USA. [Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simi, G.; Simonetto, F.; Stroili, R.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Margoni, M.; Simi, G.; Simonetto, F.; Stroili, R.] Univ Padua, Dipartmento Fis, I-35131 Padua, Italy. [Akar, S.; Ben-Haim, E.; Bomben, M.; Bonneaud, G. R.; Briand, H.; Calderini, G.; Chauveau, J.; Leruste, Ph.; Marchiori, G.; Ocariz, J.] Univ Paris 07, Univ Paris 06, IN2P3 CNRS, Lab Phys Nucl & Hautes Energies, F-75252 Paris, France. [Biasini, M.; Manoni, E.; Rossi, A.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Biasini, M.] Univ Perugia, Dipartmento Fis, I-06123 Perugia, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Casarosa, G.; Chrzaszcz, M.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Oberhof, B.; Paoloni, E.; Rama, M.; Rizzo, G.; Walsh, J. J.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Casarosa, G.; Forti, F.; Giorgi, M. A.; Oberhof, B.; Paoloni, E.; Rizzo, G.] Univ Pisa, Dipartmento Fis, I-56127 Pisa, Italy. [Lusiani, A.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Pegna, D. Lopes; Olsen, J.; Smith, A. J. S.] Princeton Univ, Princeton, NJ 08544 USA. [Anulli, F.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Pilloni, A.; Piredda, G.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Faccini, R.; Ferroni, F.; Gaspero, M.; Pilloni, A.] Univ Roma La Sapienza, Dipartmento Fis, I-00185 Rome, Italy. [Buenger, C.; Dittrich, S.; Gruenberg, O.; Hess, M.; Leddig, T.; Voss, C.; Waldi, R.] Univ Rostock, D-18051 Rostock, Germany. [Adye, T.; Olaiya, E. O.; Wilson, F. F.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Emery, S.; Vasseur, G.] CEA, Irfu, SPP, Ctr Saclay, F-91191 Gif Sur Yvette, France. [Aston, D.; Bard, D. J.; Cartaro, C.; Convery, M. R.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Ebert, M.; Field, R. C.; Fulsom, B. G.; Graham, M. T.; Hast, C.; Innes, W. R.; Kim, P.; Leith, D. W. G. S.; Luitz, S.; Luth, V.; MacFarlane, D. B.; Muller, D. R.; Neal, H.; Pulliam, T.; Ratcliff, B. N.; Roodman, A.; Schindler, R. H.; Snyder, A.; Su, D.; Sullivan, M. K.; Va'vra, J.; Wisniewski, W. J.; Wulsin, H. W.] SLAC Natl Accelerator Lab, Stanford, CA 94309 USA. [Purohit, M. V.; Wilson, J. R.] Univ S Carolina, Columbia, SC 29208 USA. [Randle-Conde, A.; Sekula, S. J.] So Methodist Univ, Dallas, TX 75275 USA. [Bellis, M.; Burchat, P. R.; Puccio, E. M. T.] Stanford Univ, Stanford, CA 94305 USA. [Alam, M. S.; Ernst, J. A.] SUNY Albany, Albany, NY 12222 USA. [Gorodeisky, R.; Guttman, N.; Peimer, D. R.; Soffer, A.] Tel Aviv Univ, Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Spanier, S. M.] Univ Tennessee, Knoxville, TN 37996 USA. [Ritchie, J. L.; Schwitters, R. F.] Univ Texas Austin, Austin, TX 78712 USA. [Izen, J. M.; Lou, X. C.] Univ Texas Dallas, Richardson, TX 75083 USA. [Bianchi, F.; De Mori, F.; Filippi, A.; Gamba, D.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Bianchi, F.; De Mori, F.; Filippi, A.; Gamba, D.] Univ Turin, Dipartmento Fis, I-10125 Turin, Italy. [Lanceri, L.; Vitale, L.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Lanceri, L.; Vitale, L.] Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy. [Martinez-Vidal, F.; Oyanguren, A.] Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain. [Albert, J.; Banerjee, Sw.; Beaulieu, A.; Bernlochner, F. U.; Choi, H. H. F.; King, G. J.; Kowalewski, R.; Lewczuk, M. J.; Lueck, T.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.; Tasneem, N.] Univ Victoria, Victoria, BC V8W 3P6, Canada. [Gershon, T. J.; Harrison, P. F.; Latham, T. E.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Band, H. R.; Dasu, S.; Pan, Y.; Prepost, R.; Wu, S. L.] Univ Wisconsin, Madison, WI 53706 USA. RP Lees, JP (reprint author), Univ Savoie, CNRS IN2P3, LAPP, F-74941 Annecy Le Vieux, France. RI Patrignani, Claudia/C-5223-2009; Kravchenko, Evgeniy/F-5457-2015; Di Lodovico, Francesca/L-9109-2016; Calcaterra, Alessandro/P-5260-2015; OI Patrignani, Claudia/0000-0002-5882-1747; Di Lodovico, Francesca/0000-0003-3952-2175; Calcaterra, Alessandro/0000-0003-2670-4826; Ebert, Marcus/0000-0002-3014-1512; Bettarini, Stefano/0000-0001-7742-2998; FORD, WILLIAM/0000-0001-8703-6943 FU BABAR; SLAC; DOE (U.S.); NSF (U.S.); NSERC (Canada); CEA (France); CNRS-IN2P3 (France); BMBF (Germany); DFG (Germany); INFN (Italy); FOM (The Netherlands); NFR (Norway); MES (Russia); MEC (Spain); STFC (U.K.); Marie Curie EIF (European Union); A. P. Sloan Foundation FX We are grateful for the excellent luminosity and machine conditions provided by our PEP-II2 colleagues, and for the substantial dedicated effort from the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (U.S.), NSERC (Canada), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MES (Russia), MEC (Spain), and STFC (U.K.). Individuals have received support from the Marie Curie EIF (European Union) and the A. P. Sloan Foundation. NR 29 TC 2 Z9 2 U1 1 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD DEC 22 PY 2015 VL 92 IS 11 AR 111101 DI 10.1103/PhysRevD.92.111101 PG 8 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CZ4KC UT WOS:000367070900001 ER PT J AU Ben-Naim, E Krapivsky, PL Lemons, NW AF Ben-Naim, E. Krapivsky, P. L. Lemons, N. W. TI Scaling exponents for ordered maxima SO PHYSICAL REVIEW E LA English DT Article ID 1ST-PASSAGE PROPERTIES; RANDOM-WALKS; PERSISTENCE; DIFFUSION; WALLS AB We study extreme value statistics of multiple sequences of random variables. For each sequence with N variables, independently drawn from the same distribution, the running maximum is defined as the largest variable to date. We compare the running maxima of m independent sequences and investigate the probability S-N that the maxima are perfectly ordered, that is, the running maximum of the first sequence is always larger than that of the second sequence, which is always larger than the running maximum of the third sequence, and so on. The probability S-N is universal: it does not depend on the distribution from which the random variables are drawn. For two sequences, S-N similar to N-1/2, and in general, the decay is algebraic, S-N similar to N-sigma m, for large N. We analytically obtain the exponent sigma(3) congruent to 1.302931 as root of a transcendental equation. Furthermore, the exponents sigma(m) grow with m, and we show that sigma(m) similar to m for large m. C1 [Ben-Naim, E.; Lemons, N. W.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Ben-Naim, E.; Lemons, N. W.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Krapivsky, P. L.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Krapivsky, P. L.] Univ Paris Saclay, CEA, Inst Phys Theor, F-91191 Gif Sur Yvette, France. [Krapivsky, P. L.] CNRS, F-91191 Gif Sur Yvette, France. RP Ben-Naim, E (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RI Ben-Naim, Eli/C-7542-2009; Krapivsky, Pavel/A-4612-2014 OI Ben-Naim, Eli/0000-0002-2444-7304; FU DOE (USA) [DE-AC52-06NA25396] FX We acknowledge financial support through DOE (USA) Grant No. DE-AC52-06NA25396 for support (E.B. and N.W.L.). NR 43 TC 1 Z9 1 U1 1 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 EI 1550-2376 J9 PHYS REV E JI Phys. Rev. E PD DEC 22 PY 2015 VL 92 IS 6 AR 062139 DI 10.1103/PhysRevE.92.062139 PG 10 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA CZ4OD UT WOS:000367081600003 PM 26764664 ER PT J AU Zhang, YP Li, TT Chen, Q Zhang, HY O'Hara, JF Abele, E Taylor, AJ Chen, HT Azad, AK AF Zhang, Yuping Li, Tongtong Chen, Qi Zhang, Huiyun O'Hara, John F. Abele, Ethan Taylor, Antoinette J. Chen, Hou-Tong Azad, Abul K. TI Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies SO SCIENTIFIC REPORTS LA English DT Article ID METAMATERIAL ABSORBER; TERAHERTZ WAVES; ABSORPTION; ARRAY AB We design a dual-band absorber formed by combining two cross-shaped metallic resonators of different sizes within a super-unit-cell arranged in mirror symmetry. Simulations indicate that absorption efficiencies greater than 99% can be achieved at two different frequencies under normal incidence. We employ a design scheme with graphene integration, which allows independent tuning of individual absorption frequencies by electrostatically changing the Fermi energy of the graphene layer. High absorbance is maintained over a wide incident angle range up to 50 degrees for both TE and TM polarizations. It thus enables a promising way to design electrically tunable absorbers, which may contribute toward the realization of frequency selective detectors for sensing applications. C1 [Zhang, Yuping; Li, Tongtong; Zhang, Huiyun] Shandong Univ Sci & Technol, Qingdao Key Lab Terahertz Technol, Coll Elect Commun & Phys, Qingdao 266510, Shandong, Peoples R China. [Zhang, Yuping; Taylor, Antoinette J.; Chen, Hou-Tong; Azad, Abul K.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA. [Chen, Qi] China Acad Engn Phys, Inst Elect Engn, Mianyang 621999, Sichuan, Peoples R China. [O'Hara, John F.; Abele, Ethan] Oklahoma State Univ, Sch Elect & Comp Engn, Stillwater, OK 74078 USA. RP O'Hara, JF (reprint author), Oklahoma State Univ, Sch Elect & Comp Engn, Stillwater, OK 74078 USA. EM john@wavetechllc.com; aazad@lanl.gov RI Chen, Hou-Tong/C-6860-2009; OI Chen, Hou-Tong/0000-0003-2014-7571; Azad, Abul/0000-0002-7784-7432 FU Los Alamos National Laboratory LDRD program; National Nuclear Security Administration of the U.S. Department of Energy [DE-AC52-06NA25396]; Natural Science Foundation of Shandong Province, China [ZR2012FM011]; Qingdao city innovative leading talent plan [13-CX-25]; CAEP THz Science and Technology Foundation [201401]; Qingdao Economic & Technical Development Zone Science & Technology Project [2013-1-64]; Shandong University of Science and Technology Foundation, China [YC140108]; China Scholarship Council FX We acknowledge partial support from the Los Alamos National Laboratory LDRD program. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. Department of Energy, Office of Basic Energy Sciences user facility. Los Alamos National Laboratory, an affirmative action equal opportunity employer, is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under Contract No. DE-AC52-06NA25396. We also acknowledge partial support from the Natural Science Foundation of Shandong Province, China (Grant No. ZR2012FM011), Qingdao city innovative leading talent plan(13-CX-25), the CAEP THz Science and Technology Foundation (Grant No. 201401), Qingdao Economic & Technical Development Zone Science & Technology Project (Grant No. 2013-1-64), the Shandong University of Science and Technology Foundation, China (Grant No. YC140108), and the China Scholarship Council. We also gratefully acknowledge fruitful discussion with Akhilesh Singh. NR 55 TC 6 Z9 6 U1 23 U2 104 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD DEC 22 PY 2015 VL 5 AR 18463 DI 10.1038/srep18463 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CZ3XL UT WOS:000367037200001 PM 26689917 ER PT J AU Emerson, JM Bartholomai, BM Ringelberg, CS Baker, SE Loros, JJ Dunlap, JC AF Emerson, Jillian M. Bartholomai, Bradley M. Ringelberg, Carol S. Baker, Scott E. Loros, Jennifer J. Dunlap, Jay C. TI period-1 encodes an ATP-dependent RNA helicase that influences nutritional compensation of the Neurospora circadian clock SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE circadian; FRQ; RNA helicase; DDX5; Dbp2p ID DEAD-BOX PROTEINS; TEMPERATURE COMPENSATION; MOLECULAR ARCHITECTURE; CRASSA; RHYTHMS; DBP2; MUTATIONS; FEEDBACK; COMPLEX; TRANSCRIPTION AB Mutants in the period-1 (prd-1) gene, characterized by a recessive allele, display a reduced growth rate and period lengthening of the developmental cycle controlled by the circadian clock. We refined the genetic location of prd-1 and used whole genome sequencing to find the mutation defining it, confirming the identity of prd-1 by rescuing the mutant circadian phenotype via transformation. PRD-1 is an RNA helicase whose orthologs, DDX5 [ DEAD (Asp-Glu-Ala-Asp) Box Helicase 5] and DDX17 in humans and DBP2 (Dead Box Protein 2) in yeast, are implicated in various processes, including transcriptional regulation, elongation, and termination, ribosome biogenesis, and mRNA decay. Although prd-1 mutants display a long period (similar to 25 h) circadian developmental cycle, they interestingly display a WT period when the core circadian oscillator is tracked using a frq-luciferase transcriptional fusion under conditions of limiting nutritional carbon; the core oscillator in the prd-1 mutant strain runs with a long period under glucose-sufficient conditions. Thus, PRD-1 clearly impacts the circadian oscillator and is not only part of a metabolic oscillator ancillary to the core clock. PRD-1 is an essential protein, and its expression is neither light-regulated nor clock-regulated. However, it is transiently induced by glucose; in the presence of sufficient glucose, PRD-1 is in the nucleus until glucose runs out, which elicits its disappearance fromthe nucleus. Because circadian period length is carbon concentration-dependent, prd-1 may be formally viewed as a clock mutant with defective nutritional compensation of circadian period length. C1 [Emerson, Jillian M.; Bartholomai, Bradley M.; Ringelberg, Carol S.; Loros, Jennifer J.; Dunlap, Jay C.] Geisel Sch Med Dartmouth, Dept Genet, Hanover, NH 03755 USA. [Baker, Scott E.] Pacific NW Natl Lab, Earth & Biol Sci Directorate, Environm Mol Sci Lab, Richland, WA 99354 USA. [Loros, Jennifer J.] Geisel Sch Med Dartmouth, Dept Biochem, Hanover, NH 03755 USA. RP Dunlap, JC (reprint author), Geisel Sch Med Dartmouth, Dept Genet, Hanover, NH 03755 USA. EM jay.c.dunlap@dartmouth.edu RI Dunlap, Jay/L-6232-2013 OI Dunlap, Jay/0000-0003-1577-0457 FU National Institute of General Medical Sciences, National Institutes of Health [GM34985, GM083336] FX We thank Xiangjun Xiao and Christopher I. Amos for help with identification of genetic variants based on genomic sequences, and Joanna Hamilton and the staff of the Genomics Shared Resource at the Geisel School of Medicine for excellent technical support. This work was supported by National Institute of General Medical Sciences, National Institutes of Health Grants GM34985 (to J.C.D.) and GM083336 (to J.J.L.). NR 40 TC 3 Z9 3 U1 2 U2 7 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD DEC 22 PY 2015 VL 112 IS 51 BP 15707 EP 15712 DI 10.1073/pnas.1521918112 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CZ2DT UT WOS:000366916000056 PM 26647184 ER PT J AU Kammer, DC Allen, MS Mayes, RL AF Kammer, Daniel C. Allen, Mathew S. Mayes, Randy L. TI Formulation of an experimental substructure model using a Craig-Bampton based transmission simulator SO JOURNAL OF SOUND AND VIBRATION LA English DT Article ID MATRICES; MASS AB Experimental-analytical substructuring is attractive when there is motivation to replace one or more system subcomponents with an experimental model. This experimentally derived substructure can then be coupled to finite element models of the rest of the structure to predict the system response. The transmission simulator method couples a fixture to the component of interest during a vibration test in order to improve the experimental model for the component. The transmission simulator is then subtracted from the tested system to produce the experimental component. The method reduces ill-conditioning by imposing a least squares fit of constraints between substructure modal coordinates to connect substructures, instead of directly connecting physical interface degrees of freedom. This paper presents an alternative means of deriving the experimental substructure model, in which a Craig-Bampton representation of the transmission simulator is created and subtracted from the experimental measurements. The corresponding modal basis of the transmission simulator is described by the fixed-interface modes, rather than free modes that were used in the original approach. These modes do a better job of representing the shape of the transmission simulator as it responds within the experimental system, leading to more accurate results using fewer modes. The new approach is demonstrated using a simple finite element model based example with a redundant interface. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Kammer, Daniel C.; Allen, Mathew S.] Univ Wisconsin, Dept Engn Phys, Madison, WI 53706 USA. [Mayes, Randy L.] Sandia Natl Labs, Struct Dynam, Albuquerque, NM 87185 USA. RP Kammer, DC (reprint author), Univ Wisconsin, Dept Engn Phys, 1500 Engn Dr, Madison, WI 53706 USA. EM kammer@engr.wisc.edu; msallen@engr.wisc.edu; rlmayes@sandia.gov FU Sandia National Laboratories; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was supported by Sandia National Laboratories. Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract: DE-AC04-94AL85000. NR 19 TC 1 Z9 1 U1 2 U2 10 PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0022-460X EI 1095-8568 J9 J SOUND VIB JI J. Sound Vibr. PD DEC 22 PY 2015 VL 359 BP 179 EP 194 DI 10.1016/j.jsv.2015.09.002 PG 16 WC Acoustics; Engineering, Mechanical; Mechanics SC Acoustics; Engineering; Mechanics GA CT0AM UT WOS:000362456100013 ER PT J AU Deffner, S AF Deffner, Sebastian TI Shortcuts to adiabaticity: suppression of pair production in driven Dirac dynamics SO NEW JOURNAL OF PHYSICS LA English DT Article DE shortcuts to adiabaticity; Dirac dynamics; fast-forward technique ID QUANTUM-MECHANICS; FAST-FORWARD; EQUATION; THEOREM; FIELDS; TIME AB Achieving effectively adiabatic dynamics in finite time is a ubiquitous goal in virtually all areas of modern physics. So-called shortcuts to adiabaticity refer to a set of methods and techniques that allow us to produce in a short time the same final state that would result from an adiabatic, infinitely slow process. In this paper we generalize one of these methods-the fast-forward technique-to driven Dirac dynamics. As our main result we find that shortcuts to adiabaticity for the (1 + 1)-dimensional Dirac equation are facilitated by a combination of both scalar and pseudoscalar potentials. Our findings are illustrated for two analytically solvable examples, namely charged particles driven in spatially homogeneous and linear vector fields. C1 [Deffner, Sebastian] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Deffner, Sebastian] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. RP Deffner, S (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM sebastian.deffner@gmail.com RI Deffner, Sebastian/C-5170-2008 OI Deffner, Sebastian/0000-0003-0504-6932 FU US Department of Energy through a LANL Director's Funded Fellowship FX It is a pleasure to thank Avadh Saxena for inspiring an interest in Dirac dynamics, and Bartlomiej Gardas for insightful discussions. SD acknowledges financial support by the US Department of Energy through a LANL Director's Funded Fellowship. NR 45 TC 0 Z9 0 U1 1 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1367-2630 J9 NEW J PHYS JI New J. Phys. PD DEC 21 PY 2015 VL 18 AR 012001 DI 10.1088/1367-2630/18/1/012001 PG 10 WC Physics, Multidisciplinary SC Physics GA DG8UY UT WOS:000372360300001 ER PT J AU Deffner, S AF Deffner, Sebastian TI Shortcuts to adiabaticity: suppression of pair production in driven Dirac dynamics SO NEW JOURNAL OF PHYSICS LA English DT Article DE shortcuts to adiabaticity; Dirac dynamics; fast-forward technique ID QUANTUM-MECHANICS; FAST-FORWARD; EQUATION; THEOREM; FIELDS; TIME AB Achieving effectively adiabatic dynamics in finite time is a ubiquitous goal in virtually all areas of modern physics. So-called shortcuts to adiabaticity refer to a set of methods and techniques that allow us to produce in a short time the same final state that would result from an adiabatic, infinitely slow process. In this paper we generalize one of these methods-the fast-forward technique-to driven Dirac dynamics. As our main result we find that shortcuts to adiabaticity for the (1 + 1)-dimensional Dirac equation are facilitated by a combination of both scalar and pseudoscalar potentials. Our findings are illustrated for two analytically solvable examples, namely charged particles driven in spatially homogeneous and linear vector fields. C1 [Deffner, Sebastian] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Deffner, Sebastian] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. RP Deffner, S (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM sebastian.deffner@gmail.com FU US Department of Energy through a LANL Director's Funded Fellowship FX It is a pleasure to thank Avadh Saxena for inspiring an interest in Dirac dynamics, and Bartlomiej Gardas for insightful discussions. SD acknowledges financial support by the US Department of Energy through a LANL Director's Funded Fellowship. NR 45 TC 0 Z9 0 U1 1 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1367-2630 J9 NEW J PHYS JI New J. Phys. PD DEC 21 PY 2015 VL 18 AR 012001 DI 10.1088/1367-2630/18/1/012001 PG 10 WC Physics, Multidisciplinary SC Physics GA DZ3JC UT WOS:000385741800001 ER PT J AU Kidon, L Wilner, EY Rabani, E AF Kidon, Lyran Wilner, Eli Y. Rabani, Eran TI Exact calculation of the time convolutionless master equation generator: Application to the nonequilibrium resonant level model SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID BROWNIAN-MOTION; QUANTUM; DYNAMICS; SYSTEM; FORMULATION AB The generalized quantum master equation provides a powerful tool to describe the dynamics in quantum impurity models driven away from equilibrium. Two complementary approaches, one based on Nakajima-Zwanzig-Mori time-convolution (TC) and the other on the Tokuyama-Mori time-convolutionless (TCL) formulations provide a starting point to describe the time-evolution of the reduced density matrix. A key in both approaches is to obtain the so called "memory kernel" or " generator," going beyond second or fourth order perturbation techniques. While numerically converged techniques are available for the TC memory kernel, the canonical approach to obtain the TCL generator is based on inverting a super-operator in the full Hilbert space, which is difficult to perform and thus, nearly all applications of the TCL approach rely on a perturbative scheme of some sort. Here, the TCL generator is expressed using a reduced system propagator which can be obtained from system observables alone and requires the calculation of super-operators and their inverse in the reduced Hilbert space rather than the full one. This makes the formulation amenable to quantum impurity solvers or to diagrammatic techniques, such as the nonequilibrium Green's function. We implement the TCL approach for the resonant level model driven away from equilibrium and compare the time scales for the decay of the generator with that of the memory kernel in the TC approach. Furthermore, the effects of temperature, source-drain bias, and gate potential on the TCL/TC generators are discussed. (C) 2015 AIP Publishing LLC. C1 [Kidon, Lyran] Tel Aviv Univ, Sackler Fac Exact Sci, Sch Chem, IL-69978 Tel Aviv, Israel. [Kidon, Lyran; Rabani, Eran] Tel Aviv Univ, Sackler Ctr Computat Mol & Mat Sci, IL-69978 Tel Aviv, Israel. [Wilner, Eli Y.] Tel Aviv Univ, Sackler Fac Exact Sci, Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Rabani, Eran] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Rabani, Eran] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Kidon, L (reprint author), Tel Aviv Univ, Sackler Fac Exact Sci, Sch Chem, IL-69978 Tel Aviv, Israel. FU Center for Nanoscience and Nanotechnology at Tel Aviv University FX We would like to thank Shaul Mukamel, David Reichman, and Michael Thoss for insightful discussions and suggestions. E.Y.W. is grateful to The Center for Nanoscience and Nanotechnology at Tel Aviv University for a doctoral fellowship. NR 54 TC 1 Z9 1 U1 3 U2 7 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD DEC 21 PY 2015 VL 143 IS 23 AR 234110 DI 10.1063/1.4937396 PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA DD3FD UT WOS:000369806500012 PM 26696049 ER PT J AU Lee, O You, L Jang, J Subramanian, V Salahuddin, S AF Lee, OukJae You, Long Jang, Jaewon Subramanian, Vivek Salahuddin, Sayeef TI Flexible spin-orbit torque devices SO APPLIED PHYSICS LETTERS LA English DT Article ID DOMAIN-WALLS; STRETCHABLE ELECTRONICS; MECHANICS; DYNAMICS; FIELDS AB We report on state-of-the-art spintronic devices synthesized and fabricated directly on a flexible organic substrate. Large perpendicular magnetic anisotropy was achieved in ultrathin ferromagnetic heterostructures of Pt/Co/MgO sputtered on a non-rigid plastic substrate at room temperature. Subsequently, a full magnetic reversal of the Co was observed by exploiting the spin orbit coupling in Pt that leads to a spin accumulation at the Pt/Co interface when an in-plane current is applied. Quasi-static measurements show the potential for operating these devices at nano-second speeds. Importantly, the behavior of the devices remained unchanged under varying bending conditions (up to a bending radius of approximate to +/- 20-30mm). Furthermore, the devices showed robust operation even after application of 10(6) successive pulses, which is likely sufficient for many flexible applications. Thus, this work demonstrates the potential for integrating high performance spintronic devices on flexible substrates, which could lead to many applications ranging from flexible non-volatile magnetic memory to local magnetic resonance imaging. (C) 2015 AIP Publishing LLC. C1 [Lee, OukJae; You, Long; Jang, Jaewon; Subramanian, Vivek; Salahuddin, Sayeef] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA. [Salahuddin, Sayeef] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Lee, O (reprint author), Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA. RI Subramanian, Vivek/K-9818-2016 OI Subramanian, Vivek/0000-0002-1783-8219 FU Center of Function Accelerated NanoMaterial Engineering (FAME), one of the six SRC STARnet Centers - MARCO; Center of Function Accelerated NanoMaterial Engineering (FAME), one of the six SRC STARnet Centers - DARPA; NSF E3S center at Berkeley [ECCS-0939514]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0012371] FX The authors would like to thank Dominic Labanowski for useful conversations. This research was supported in part by the Center of Function Accelerated NanoMaterial Engineering (FAME), one of the six SRC STARnet Centers, sponsored by MARCO and DARPA; and the NSF E3S center at Berkeley, Grant No. ECCS-0939514. The materials' development was funded by U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award No. DE-SC0012371. NR 32 TC 1 Z9 1 U1 11 U2 42 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD DEC 21 PY 2015 VL 107 IS 25 AR 252401 DI 10.1063/1.4936934 PG 5 WC Physics, Applied SC Physics GA DB3VW UT WOS:000368442100024 ER PT J AU Leroy, MA Bataille, AM Wang, Q Fitzsimmons, MR Bertran, F Le Fevre, P Taleb-Ibrahimi, A Vlad, A Coati, A Garreau, Y Hauet, T Gatel, C Ott, F Andrieu, S AF Leroy, M. -A. Bataille, A. M. Wang, Q. Fitzsimmons, M. R. Bertran, F. Le Fevre, P. Taleb-Ibrahimi, A. Vlad, A. Coati, A. Garreau, Y. Hauet, T. Gatel, C. Ott, F. Andrieu, S. TI Enhanced magnetization at the Cr/MgO(001) interface SO APPLIED PHYSICS LETTERS LA English DT Article ID SCANNING TUNNELING SPECTROSCOPY; SURFACE ELECTRONIC-STRUCTURE; ANTIFERROMAGNETIC CHROMIUM; CR(001); CR(100); DOMAINS; FILM AB We report on the magnetization at the Cr/MgO interface, which we studied through two complementary techniques: angle-resolved photoemission spectroscopy and polarized neutron reflectivity. We experimentally observe an enhanced interface magnetization at the interface, yet with values much smaller than the ones reported so far by theoretical and experimental studies on Cr(001) surfaces. Our findings cast some doubts on the interpretations on previous works and could be useful in antiferromagnetic spin torque studies. (C) 2015 AIP Publishing LLC. C1 [Leroy, M. -A.; Bataille, A. M.; Ott, F.] CEA Saclay, IRAMIS, Lab Leon Brillouin, F-91191 Gif Sur Yvette, France. [Leroy, M. -A.; Hauet, T.; Andrieu, S.] Univ Lorraine, Inst Jean Lamour, F-54500 Vandoeuvre Les Nancy, France. [Wang, Q.; Fitzsimmons, M. R.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Bertran, F.; Le Fevre, P.; Taleb-Ibrahimi, A.; Vlad, A.; Coati, A.; Garreau, Y.] Synchrotron SOLEIL, LOrme Merisiers, F-91192 Gif Sur Yvette, France. [Garreau, Y.] Univ Paris 07, Sorbonne Paris Cite, MPQ, CNRS,UMR 7162, F-75205 Paris 13, France. [Gatel, C.] CEMES CNRS, F-31055 Toulouse, France. RP Bataille, AM (reprint author), CEA Saclay, IRAMIS, Lab Leon Brillouin, F-91191 Gif Sur Yvette, France. EM alexandre.bataille@cea.fr RI Bataille, Alexandre/K-1711-2013; Gatel, Christophe/F-6046-2014; BERTRAN, Francois/B-7515-2008; andrieu, stephane/N-3654-2016 OI Gatel, Christophe/0000-0001-5549-7008; BERTRAN, Francois/0000-0002-2416-0514; andrieu, stephane/0000-0003-0373-8193 FU French Agence Nationale de la Recherche [ANR-11-JS10-005]; Department of Energy's Office of Basic Energy Science FX We thank Amina Neggache for her help with the ARPES experiment and samples growth and Florence Porcher for her help during diffraction experiments. This work was supported by the French Agence Nationale de la Recherche, ANR-11-JS10-005 "Electra". The HRTEM experiments were supported by the METSA network. This work has benefited from the use of the Lujan Neutron Scattering Center at LANSCE, which is funded by the Department of Energy's Office of Basic Energy Science. NR 37 TC 0 Z9 0 U1 4 U2 18 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD DEC 21 PY 2015 VL 107 IS 25 AR 251602 DI 10.1063/1.4938131 PG 5 WC Physics, Applied SC Physics GA DB3VW UT WOS:000368442100010 ER PT J AU Santala, MK Raoux, S Campbell, GH AF Santala, M. K. Raoux, S. Campbell, G. H. TI Kinetics of liquid-mediated crystallization of amorphous Ge from multi-frame dynamic transmission electron microscopy SO APPLIED PHYSICS LETTERS LA English DT Article ID PULSED-LASER IRRADIATION; TIME-RESOLVED TEM; EXPLOSIVE CRYSTALLIZATION; GERMANIUM; FILMS; SILICON; TEMPERATURE AB The kinetics of laser-induced, liquid-mediated crystallization of amorphous Ge thin films were studied using multi-frame dynamic transmission electron microscopy (DTEM), a nanosecond-scale photo-emission transmission electron microscopy technique. In these experiments, high temperature gradients are established in thin amorphous Ge films with a 12-ns laser pulse with a Gaussian spatial profile. The hottest region at the center of the laser spot crystallizes in similar to 100 ns and becomes nano-crystalline. Over the next several hundred nanoseconds crystallization continues radially outward from the nano-crystalline region forming elongated grains, some many microns long. The growth rate during the formation of these radial grains is measured with time-resolved imaging experiments. Crystal growth rates exceed 10m/s, which are consistent with crystallization mediated by a very thin, undercooled transient liquid layer, rather than a purely solid-state transformation mechanism. The kinetics of this growth mode have been studied in detail under steady-state conditions, but here we provide a detailed study of liquid-mediated growth in high temperature gradients. Unexpectedly, the propagation rate of the crystallization front was observed to remain constant during this growth mode even when passing through large local temperature gradients, in stark contrast to other similar studies that suggested the growth rate changed dramatically. The high throughput of multi-frame DTEM provides gives a more complete picture of the role of temperature and temperature gradient on laser crystallization than previous DTEM experiments. (C) 2015 AIP Publishing LLC. C1 [Santala, M. K.; Campbell, G. H.] Lawrence Livermore Natl Lab, Div Mat Sci, 7000 East Ave, Livermore, CA 94551 USA. [Raoux, S.] Mat & Energie GmbH, Helmholtz Zentrum Berlin, Hahn Meitner Pl 1, D-14109 Berlin, Germany. RP Santala, MK (reprint author), Oregon State Univ, Mech Ind & Mfg Engn, 204 Rogers Hall, Corvallis, OR 97331 USA. EM melissa.santala@oregonstate.edu RI Raoux, Simone/G-3920-2016 FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering for FWP SCW0974 by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work performed under the auspices of the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering for FWP SCW0974 by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. NR 29 TC 3 Z9 3 U1 4 U2 20 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD DEC 21 PY 2015 VL 107 IS 25 AR 252106 DI 10.1063/1.4938751 PG 5 WC Physics, Applied SC Physics GA DB3VW UT WOS:000368442100023 ER PT J AU Siah, SC Brandt, RE Lim, K Schelhas, LT Jaramillo, R Heinemann, MD Chua, D Wright, J Perkins, JD Segre, CU Gordon, RG Toney, MF Buonassisi, T AF Siah, S. C. Brandt, R. E. Lim, K. Schelhas, L. T. Jaramillo, R. Heinemann, M. D. Chua, D. Wright, J. Perkins, J. D. Segre, C. U. Gordon, R. G. Toney, M. F. Buonassisi, T. TI Dopant activation in Sn-doped Ga2O3 investigated by X-ray absorption spectroscopy SO APPLIED PHYSICS LETTERS LA English DT Article ID BETA-GA2O3 SINGLE-CRYSTAL; ELECTRON-PARAMAGNETIC-RESONANCE; FILMS AB Doping activity in both beta-phase (beta-) and amorphous (a-) Sn-doped gallium oxide (Ga2O3:Sn) is investigated by X-ray absorption spectroscopy (XAS). A single crystal of beta-Ga2O3:Sn grown using edge-defined film-fed growth at 1725 degrees C is compared with amorphous Ga2O3:Sn films deposited at low temperature (<300 degrees C). Our XAS analyses indicate that activated Sn dopant atoms in conductive single crystal beta-Ga2O3:Sn are present as Sn4+, preferentially substituting for Ga at the octahedral site, as predicted by theoretical calculations. In contrast, inactive Sn atoms in resistive a-Ga2O3:Sn are present in either +2 or +4 charge states depending on growth conditions. These observations suggest the importance of growing Ga2O3:Sn at high temperature to obtain a crystalline phase and controlling the oxidation state of Sn during growth to achieve dopant activation. (C) 2015 AIP Publishing LLC. C1 [Siah, S. C.; Brandt, R. E.; Jaramillo, R.; Buonassisi, T.] MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Lim, K.; Schelhas, L. T.; Toney, M. F.] SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA. [Lim, K.] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA. [Heinemann, M. D.] PVcomB, Helmholtz Zentrum Berlin, D-12489 Berlin, Germany. [Chua, D.; Gordon, R. G.] Harvard Univ, Dept Chem Mat Sci & Chem Biol, Cambridge, MA 02138 USA. [Wright, J.; Segre, C. U.] IIT, Dept Phys, Chicago, IL 60616 USA. [Wright, J.] IIT, CSRRI, Chicago, IL 60616 USA. [Perkins, J. D.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Siah, SC (reprint author), MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA. EM sincheng@alum.mit.edu; buonassisi@mit.edu RI Segre, Carlo/B-1548-2009; ID, MRCAT/G-7586-2011; OI Segre, Carlo/0000-0001-7664-1574; Heinemann, Marc Daniel/0000-0001-9666-4343 FU Center for Next Generation Materials by Design (CMGMD), an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Basic Energy Sciences [DE-AC36-08GO28308]; U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-76SF00515]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; NRF Singapore; NSF; Kwanjeong Education Foundation; U.S. Department of Energy EERE FX This work was supported as part of the Center for Next Generation Materials by Design (CMGMD), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under Contract No. DE-AC36-08GO28308. Use of the Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, was supported by the U.S. Department of Energy, Office of Basic Energy Sciences under Contract No. DE-AC02-76SF00515. Use of the Advanced Photon Source at Argonne National Laboratory was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. MRCAT operations are supported by the Department of Energy and the MRCAT member institutions. S. Lany, D. S. Ginley, W. Tumas (NREL), and A. M. Kolpak (MIT) are thanked for helpful discussions. J.R. Poindexter (MIT) is thanked for synchrotron assistance. S.C.S., R.E.B., K.L., and R.J. acknowledge a Clean Energy Scholarship from NRF Singapore, an NSF Graduate Research Fellowship, a Kwanjeong Education Foundation Fellowship, and a U.S. Department of Energy EERE Postdoctoral Research Award, respectively. Lastly, Tamura Corporation is thanked for providing insightful information. NR 26 TC 5 Z9 5 U1 10 U2 29 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD DEC 21 PY 2015 VL 107 IS 25 AR 252103 DI 10.1063/1.4938123 PG 5 WC Physics, Applied SC Physics GA DB3VW UT WOS:000368442100020 ER PT J AU Yi, H Liao, ZX Zhang, GH Zhang, GT Fan, C Zhang, X Bunel, EE Pao, CW Lee, JF Lei, AW AF Yi, Hong Liao, Zhixiong Zhang, Guanghui Zhang, Guoting Fan, Chao Zhang, Xu Bunel, Emilio E. Pao, Chih-Wen Lee, Jyh-Fu Lei, Aiwen TI Evidence of Cu-I/Cu-II Redox Process by X-ray Absorption and EPR Spectroscopy: Direct Synthesis of Dihydrofurans from beta-Ketocarbonyl Derivatives and Olefins SO CHEMISTRY-A EUROPEAN JOURNAL LA English DT Article DE copper; homogeneous catalysis; oxidative coupling; redox chemistry; X-ray absorption spectroscopy ID FREE-RADICAL REACTIONS; COUPLING REACTIONS; ULLMANN REACTION; BOND FORMATION; ARYL HALIDES; NATURAL-PRODUCTS; OPERANDO IR; COMPLEXES; OXIDATION; AMINATION AB The Cu-I/Cu-II and Cu-I/Cu-III catalytic cycles have been subject to intense debate in the field of copper-catalyzed oxidative coupling reactions. A mechanistic study on the Cu-I/Cu-II redox process, by X-ray absorption (XAS) and electron paramagnetic resonance (EPR) spectroscopies, has elucidated the reduction mechanism of Cu-II to Cu-I by 1,3-diketone and detailed investigation revealed that the halide ion is important for the reduction process. The oxidative nature of the thereby-formed Cu-I has also been studied by XAS and EPR spectroscopy. This mechanistic information is applicable to the copper-catalyzed oxidative cyclization of beta-ketocarbonyl derivatives to dihydrofurans. This protocol provides an ideal route to highly substituted dihydrofuran rings from easily available 1,3-dicarbonyls and olefins. C1 [Yi, Hong; Liao, Zhixiong; Zhang, Guanghui; Zhang, Guoting; Fan, Chao; Zhang, Xu; Lei, Aiwen] Wuhan Univ, IAS, Coll Chem & Mol Sci, Wuhan 430072, Hubei, Peoples R China. [Lei, Aiwen] Jiangxi Normal Univ, Natl Res Ctr Carbohydrate Synth, Nanchang 330022, Jiangxi, Peoples R China. [Bunel, Emilio E.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Pao, Chih-Wen; Lee, Jyh-Fu] Natl Synchrotron Radiat Res Ctr, Hsinchu 30076, Taiwan. RP Lei, AW (reprint author), Wuhan Univ, IAS, Coll Chem & Mol Sci, Wuhan 430072, Hubei, Peoples R China. EM aiwenlei@whu.edu.cn RI Zhang, Guanghui/C-4747-2008 OI Zhang, Guanghui/0000-0002-5854-6909 FU 973 Program [2012CB725302, 2011CB808600]; National Natural Science Foundation of China [21390400, 21272180, 21302148]; Research Fund for the Doctoral Program of Higher Education of China [20120141130002]; Program for Changjiang Scholars and Innovative Research Team in University [IRT1030]; Ministry of Science and Technology of China [2012YQ120060]; Program of Introducing Talents of Discipline to Universities of China (111 Program); U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; Chemical Sciences and Engineering Division at Argonne National Laboratory FX This work was supported by the 973 Program (2012CB725302 and 2011CB808600), the National Natural Science Foundation of China (21390400, 21272180, and 21302148), the Research Fund for the Doctoral Program of Higher Education of China (20120141130002), the Program for Changjiang Scholars and Innovative Research Team in University (IRT1030), and the Ministry of Science and Technology of China (2012YQ120060). The Program of Introducing Talents of Discipline to Universities of China (111 Program) is also appreciated. Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences (contract no. DE-AC02-06CH11357). MRCAT operations are supported by the Department of Energy and the MRCAT member institutions. This work was also funded by the Chemical Sciences and Engineering Division at Argonne National Laboratory. Some X-ray absorption spectroscopy studies were carried out at beamline 17C1 of the National Synchrotron Radiation Research Center (NSRRC) in Taiwan. NR 65 TC 8 Z9 8 U1 15 U2 53 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 0947-6539 EI 1521-3765 J9 CHEM-EUR J JI Chem.-Eur. J. PD DEC 21 PY 2015 VL 21 IS 52 BP 18925 EP 18929 DI 10.1002/chem.201503822 PG 5 WC Chemistry, Multidisciplinary SC Chemistry GA DB1PX UT WOS:000368282100007 PM 26514113 ER PT J AU Reed, SL McMahon, RG Banerji, M Becker, GD Gonzalez-Solares, E Martini, P Ostrovski, F Rauch, M Abbott, T Abdalla, FB Allam, S Benoit-Levy, A Bertin, E Buckley-Geer, E Burke, D Rosell, AC da Costa, LN D'Andrea, C DePoy, DL Desai, S Diehl, HT Doel, P Cunha, CE Estrada, J Evrard, AE Neto, AF Finley, DA Fosalba, P Frieman, J Gruen, D Honscheid, K James, D Kent, S Kuehn, K Kuropatkin, N Lahav, O Maia, MAG Makler, M Marshall, J Merritt, K Miquel, R Mohr, J Nord, B Ogando, R Plazas, A Romer, K Roodman, A Rykoff, E Sako, M Sanchez, E Santiago, B Schubnell, M Sevilla, I Smith, C Soares-Santos, M Suchyta, E Swanson, MEC Tarle, G Thomas, D Tucker, D Walker, A Wechsler, RH AF Reed, S. L. McMahon, R. G. Banerji, M. Becker, G. D. Gonzalez-Solares, E. Martini, P. Ostrovski, F. Rauch, M. Abbott, T. Abdalla, F. B. Allam, S. Benoit-Levy, A. Bertin, E. Buckley-Geer, E. Burke, D. Rosell, A. Carnero da Costa, L. N. D'Andrea, C. DePoy, D. L. Desai, S. Diehl, H. T. Doel, P. Cunha, C. E. Estrada, J. Evrard, A. E. Neto, A. Fausti Finley, D. A. Fosalba, P. Frieman, J. Gruen, D. Honscheid, K. James, D. Kent, S. Kuehn, K. Kuropatkin, N. Lahav, O. Maia, M. A. G. Makler, M. Marshall, J. Merritt, K. Miquel, R. Mohr, J. Nord, B. Ogando, R. Plazas, A. Romer, K. Roodman, A. Rykoff, E. Sako, M. Sanchez, E. Santiago, B. Schubnell, M. Sevilla, I. Smith, C. Soares-Santos, M. Suchyta, E. Swanson, M. E. C. Tarle, G. Thomas, D. Tucker, D. Walker, A. Wechsler, R. H. TI DES J0454-4448: discovery of the first luminous z >= 6 quasar from the Dark Energy Survey SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE galaxies: active; galaxies: formation; galaxies: high-redshift; quasars: individual: DES J0454-4448; dark ages, reionization, first stars ID DIGITAL SKY SURVEY; ACTIVE GALACTIC NUCLEI; LY-ALPHA FOREST; DATA RELEASE; Z-SIMILAR-TO-6; EVOLUTION; SELECTION; REDSHIFT; REIONIZATION; DENSITY AB We present the first results of a survey for high-redshift, z >= 6, quasars using izY multicolour photometric observations from the Dark Energy Survey (DES). Here we report the discovery and spectroscopic confirmation of the Z(AB), Y-AB = 20.2, 20.2 (M-1450 = -26.5) quasar DES J0454-4448 with a redshift of z = 6.09 +/- 0.02 based on the onset of the Ly alpha forest and an H I near zone size of 4.1(-1.2)(+1.1) proper Mpc. The quasar was selected as an i-band drop out with i-z = 2.46 and z(AB) < 21.5 from an area of similar to 300 deg(2). It is the brightest of our 43 candidates and was identified for spectroscopic follow-up solely based on the DES i-z and z-Y colours. The quasar is detected by WISE and has W1(AB) = 19.68. The discovery of one spectroscopically confirmed quasar with 5.7 < z < 6.5 and z(AB) <= 20.2 is consistent with recent determinations of the luminosity function at z similar to 6. DES when completed will have imaged -5000 deg2 to Y-AB = 23.0 (5 sigma point source) and we expect to discover 50-100 new quasars with z > 6 including 3-10 with z > 7 dramatically increasing the numbers of quasars currently known that are suitable for detailed studies. C1 [Reed, S. L.; McMahon, R. G.; Banerji, M.; Becker, G. D.; Gonzalez-Solares, E.; Ostrovski, F.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Reed, S. L.; McMahon, R. G.; Banerji, M.; Becker, G. D.; Ostrovski, F.] Univ Cambridge, Kavli Inst Cosmol, Cambridge CB3 0HA, England. [Banerji, M.; Abdalla, F. B.; Benoit-Levy, A.; Doel, P.; Lahav, O.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Becker, G. D.; Allam, S.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Martini, P.; Honscheid, K.; Suchyta, E.; Swanson, M. E. C.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Martini, P.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Rauch, M.] Observatories Carnegie Inst Sci, Pasadena, CA 91101 USA. [Abbott, T.; James, D.; Smith, C.; Walker, A.] Natl Opt Astron Observ, Cerro Tololo Interamer Observ, La Serena, Chile. [Allam, S.; Buckley-Geer, E.; Diehl, H. T.; Estrada, J.; Finley, D. A.; Frieman, J.; Kent, S.; Kuropatkin, N.; Merritt, K.; Nord, B.; Soares-Santos, M.; Tucker, D.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Bertin, E.] Univ Paris 06, Inst Astrophys Paris, F-75014 Paris, France. [Bertin, E.] CNRS, UMR7095, F-75014 Paris, France. [Burke, D.; Roodman, A.; Rykoff, E.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Rosell, A. Carnero; da Costa, L. N.; Maia, M. A. G.; Ogando, R.] Observatorio Nacl, BR-20921400 Rio De Janeiro, RJ, Brazil. [da Costa, L. N.; Neto, A. Fausti; Maia, M. A. G.] Lab Interinst eAstron LIneA, BR-20921400 Rio De Janeiro, RJ, Brazil. [D'Andrea, C.; Romer, K.; Thomas, D.] Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 3FX, Hants, England. [DePoy, D. L.; Marshall, J.] Texas A&M Univ, George P & Cynthia Woods Mitchell Inst Fundamenta, College Stn, TX 77843 USA. [DePoy, D. L.; Marshall, J.] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA. [Desai, S.; Gruen, D.; Mohr, J.] Univ Munich, Dept Phys, D-81679 Munich, Germany. [Cunha, C. E.; Roodman, A.; Wechsler, R. H.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. [Evrard, A. E.; Schubnell, M.; Tarle, G.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Fosalba, P.] CSIC, Inst Ciencies Espai, IEEC, Fac Ciencies, E-08193 Barcelona, Spain. [Gruen, D.] Univ Observ Munich, D-81679 Munich, Germany. [Kuehn, K.] Australian Astron Observ, N Ryde, NSW 2113, Australia. [Makler, M.] ICRA, Ctr Brasileiro Pesquisas Fis, BR-22290180 Rio De Janeiro, RJ, Brazil. [Miquel, R.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Plazas, A.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Sako, M.] Hosp Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Sanchez, E.; Sevilla, I.] Ctr Invest Energet Medioambientales & Technol CIE, E-28040 Madrid, Spain. [Santiago, B.] Univ Fed Rio Grande do Sul, Inst Phys, BR-91501970 Porto Alegre, RS, Brazil. [Suchyta, E.; Swanson, M. E. C.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Swanson, M. E. C.] Natl Ctr Supercomp Applicat, Urbana, IL 61801 USA. [Thomas, D.] SEPnet, South East Phys Network, Southampton, Hants, England. [Wechsler, R. H.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. RP Reed, SL (reprint author), Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England. EM sr525@ast.cam.ac.uk RI Ogando, Ricardo/A-1747-2010; Makler, Martin/G-2639-2012; Sanchez, Eusebio/H-5228-2015; Fosalba Vela, Pablo/I-5515-2016; OI Ogando, Ricardo/0000-0003-2120-1154; Makler, Martin/0000-0003-2206-2651; Sanchez, Eusebio/0000-0002-9646-8198; McMahon, Richard/0000-0001-8447-8869; Banerji, Manda/0000-0002-0639-5141; Abdalla, Filipe/0000-0003-2063-4345; Reed, Sophie/0000-0002-4422-0553; Tucker, Douglas/0000-0001-7211-5729 FU UK Science and Technology research Council (STFC); US Department of Energy; US National Science Foundation; Ministry of Science and Education of Spain; Science and Technology Facilities Council of UK; Higher Education Funding Council for England; National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign; Kavli Institute of Cosmological Physics at the University of Chicago; Financiadora de Estudos e Projetos; Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico; Ministerio da Ciencia e Tecnologia; Deutsche Forschungsgemeinschaft; Argonne National Laboratories; University of California at Santa Cruz; University of Cambridge; Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas-Madrid; University of Chicago; University College London; DES-Brazil Consortium; Eidgenossische Technische Hochschule (ETH) Zurich; Fermi National Accelerator Laboratory; University of Edinburgh; University of Illinois at Urbana-Champaign; Institut de Ciencies de l'Espai (IEEC/CSIC); Institut de Fisica d'Altes Energies; Lawrence Berkeley National Laboratory; Ludwig-Maximilians Universitat; associated Excellence Cluster Universe; University of Michigan; National Optical Astronomy Observatory; University of Nottingham; Ohio State University; University of Pennsylvania; University of Portsmouth; SLAC National Laboratory; Stanford University; University of Sussex; Texas AM University; PAPDRJ CAPES/FAPERJ Fellowship FX RGM, SLR and MB acknowledge the support of UK Science and Technology research Council (STFC).; Funding for the DES Projects has been provided by the US Department of Energy, the US National Science Foundation, the Ministry of Science and Education of Spain, the Science and Technology Facilities Council of UK, the Higher Education Funding Council for England, the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign, the Kavli Institute of Cosmological Physics at the University of Chicago, Financiadora de Estudos e Projetos, Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Cientifico e Tecnologico and the Ministerio da Ciencia e Tecnologia, the Deutsche Forschungsgemeinschaft and the Collaborating Institutions in the DES.; The Collaborating Institutions are Argonne National Laboratories, the University of California at Santa Cruz, the University of Cambridge, Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas-Madrid, the University of Chicago, University College London, the DES-Brazil Consortium, the Eidgenossische Technische Hochschule (ETH) Zurich, Fermi National Accelerator Laboratory, the University of Edinburgh, the University of Illinois at Urbana-Champaign, the Institut de Ciencies de l'Espai (IEEC/CSIC), the Institut de Fisica d'Altes Energies, the Lawrence Berkeley National Laboratory, the Ludwig-Maximilians Universitat and the associated Excellence Cluster Universe, the University of Michigan, the National Optical Astronomy Observatory, the University of Nottingham, The Ohio State University, the University of Pennsylvania, the University of Portsmouth, SLAC National Laboratory, Stanford University, the University of Sussex, and Texas A&M University.; ACR acknowledges financial support provided by the PAPDRJ CAPES/FAPERJ Fellowship. NR 38 TC 6 Z9 6 U1 0 U2 1 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD DEC 21 PY 2015 VL 454 IS 4 BP 3952 EP 3961 DI 10.1093/mnras/stv2031 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DA7RK UT WOS:000368001600050 ER PT J AU Fox, OD Smith, N Ammons, SM Andrews, J Bostroem, KA Cenko, SB Clayton, GC Dwek, E Filippenko, AV Gallagher, JS Kelly, PL Mauerhan, JC Miller, AA Van Dyk, SD AF Fox, Ori D. Smith, Nathan Ammons, S. Mark Andrews, Jennifer Bostroem, K. Azalee Cenko, S. Bradley Clayton, Geoffrey C. Dwek, Eli Filippenko, Alexei V. Gallagher, Joseph S. Kelly, Patrick L. Mauerhan, Jon C. Miller, Adam A. Van Dyk, Schuyler D. TI What powers the 3000-day light curve of SN 2006gy? SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE circumstellar matter; supernovae: general; supernovae: individual: SN 2006gy; dust, extinction; infrared: stars ID LUMINOUS SUPERNOVA; CIRCUMSTELLAR INTERACTION; IIN SUPERNOVAE; DUST FORMATION; SPECTROSCOPY; STAR; PHOTOMETRY; EMISSION; 2005IP; 1987A AB SN 2006gy was the most luminous supernova (SN) ever observed at the time of its discovery and the first of the newly defined class of superluminous supernovae (SLSNe). The extraordinary energetics of SN 2006gy and all SLSNe (>10(51) erg) require either atypically large explosion energies (e.g. pair-instability explosion) or the efficient conversion of kinetic into radiative energy (e.g. shock interaction). The mass-loss characteristics can therefore offer important clues regarding the progenitor system. For the case of SN 2006gy, both a scattered and thermal light echo from circumstellar material (CSM) have been reported at later epochs (day similar to 800), ruling out the likelihood of a pair-instability event and leading to constraints on the characteristics of the CSM. Owing to the proximity of the SN to the bright host-galaxy nucleus, continued monitoring of the light echo has not been trivial, requiring the high resolution offered by the Hubble Space Telescope (HST) or ground-based adaptive optics (AO). Here, we report detections of SN 2006gy using HST and Keck AO at similar to 3000 d post-explosion and consider the emission mechanism for the very late-time light curve. While the optical light curve and optical spectral energy distribution are consistent with a continued scattered-light echo, a thermal echo is insufficient to power the K'-band emission by day 3000. Instead, we present evidence for late-time infrared emission from dust that is radiatively heated by CSM interaction within an extremely dense dust shell, and we consider the implications on the CSM characteristics and progenitor system. C1 [Fox, Ori D.; Filippenko, Alexei V.; Kelly, Patrick L.; Mauerhan, Jon C.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Fox, Ori D.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Smith, Nathan; Andrews, Jennifer] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Ammons, S. Mark] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Bostroem, K. Azalee] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Cenko, S. Bradley; Dwek, Eli] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. [Cenko, S. Bradley] Univ Maryland, Joint Space Sci Inst, College Pk, MD 20742 USA. [Clayton, Geoffrey C.] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA. [Gallagher, Joseph S.] Univ Cincinnati, Blue Ash Coll, Blue Ash, OH 45236 USA. [Miller, Adam A.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Miller, Adam A.] CALTECH, Pasadena, CA 91125 USA. [Van Dyk, Schuyler D.] CALTECH, IPAC, Pasadena, CA 91125 USA. RP Fox, OD (reprint author), Univ Calif Berkeley, Dept Astron, 601 Campbell Hall, Berkeley, CA 94720 USA. EM ofox@stsci.edu OI Van Dyk, Schuyler/0000-0001-9038-9950; Clayton, Geoffrey/0000-0002-0141-7436 FU NASA [NAS5-26555]; W. M. Keck Foundation; NASA through STScI [GO-13287]; Christopher R. Redlich Fund; TABASGO Foundation; NSF [AST-1211916]; US Department of Energy through the Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work is based on observations made with the NASA/ESA HST, obtained from the Space Telescope Science Institute (STScI), which is operated by the Association of Universities for Research in Astronomy (AURA), Inc., under NASA contract NAS5-26555. We are grateful to the STScI Help Desk for their assistance with the HST data. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA; the observatory was made possible by the generous financial support of the W. M. Keck Foundation. The Keck observations were made possible by the ToO program. We thank the staff of the Keck Observatory for their assistance with the observations, as well as efforts by Sam Ragland and Mark Morris. Melissa L. Graham and WeiKang Zheng helped obtain and reduce the Keck spectra. We wish to recognize and acknowledge the very significant cultural role and reverence that the summit of Mauna Kea has always had within the indigenous Hawaiian community. We are most fortunate to have the opportunity to conduct observations from this mountain.; Financial support for ODF was provided by NASA through grant GO-13287 from STScI. AVF and his group acknowledge generous financial assistance from the Christopher R. Redlich Fund, the TABASGO Foundation, and NSF grant AST-1211916. The research by SMA is supported by the US Department of Energy through the Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 45 TC 2 Z9 2 U1 0 U2 0 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD DEC 21 PY 2015 VL 454 IS 4 BP 4366 EP 4378 DI 10.1093/mnras/stv2270 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DA7RK UT WOS:000368001600080 ER PT J AU Zhai, DY Lau, KC Wang, HH Wen, JG Miller, DJ Kang, FY Li, BH Zavadil, K Curtiss, LA AF Zhai, Dengyun Lau, Kah Chun Wang, Hsien-Hau Wen, Jianguo Miller, Dean J. Kang, Feiyu Li, Baohua Zavadil, Kevin Curtiss, Larry A. TI The Effect of Potassium Impurities Deliberately Introduced into Activated Carbon Cathodes on the Performance of Lithium-Oxygen Batteries SO CHEMSUSCHEM LA English DT Article DE carbon; batteries; lithium; oxygen; potassium ID RECHARGEABLE LI-O-2 BATTERIES; AIR BATTERIES; LONG-LIFE; ELECTROCHEMICAL PERFORMANCE; POROUS GRAPHENE; RATE CAPABILITY; CATALYSTS; ELECTRODE; CHARGE; DISPROPORTIONATION AB Rechargeable lithium-air (Li-O-2) batteries have drawn much interest owing to their high energy density. We report on the effect of deliberately introducing potassium impurities into the cathode material on the electrochemical performance of a Li-O-2 battery. Small amounts of potassium introduced into the activated carbon (AC) cathode material in the synthesis process are found to have a dramatic effect on the performance of the Li-O-2 cell. An increased amount of potassium significantly increases capacity, cycle life, and round-trip efficiency. This improved performance is probably due to a larger amount of LiO2 in the discharge product, which is a mixture of LiO2 and Li2O2, resulting from the increase in the amount of potassium present. No substantial correlation with porosity or surface area in an AC cathode is found. Experimental and computational studies indicate that potassium can act as an oxygen reduction catalyst, which can account for the dependence of performance on the amount of potassium. C1 [Zhai, Dengyun] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Lau, Kah Chun; Wang, Hsien-Hau; Curtiss, Larry A.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Wen, Jianguo; Miller, Dean J.] Argonne Natl Lab, Elect Microscopy Ctr, Argonne, IL 60439 USA. [Kang, Feiyu; Li, Baohua] Tsinghua Univ, Grad Sch Shenzhen, Shenzhen 518055, Peoples R China. [Zavadil, Kevin] Sandia Natl Labs, Ctr Integrated Nanotechnol, Albuquerque, NM 87185 USA. RP Zhai, DY (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 South Cass Ave, Argonne, IL 60439 USA. EM curtiss@anl.gov FU U.S. Department of Energy, Basic Energy Science, Joint Center for Energy Storage Research an Energy Innovation Hub [DE-AC02-06CH11357]; U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX Support for this work came from the U.S. Department of Energy, Basic Energy Science, Joint Center for Energy Storage Research an Energy Innovation Hub under Contract No. DE-AC02-06CH11357. We also acknowledge grants of computer time through the ALCF Fusion and Blues Cluster at Argonne National Laboratory, and the EMSL Chinook Cluster at Pacific Northwest National Laboratory. Use of the Electron Microscopy Center for Materials Research was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 57 TC 2 Z9 2 U1 8 U2 53 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 1864-5631 EI 1864-564X J9 CHEMSUSCHEM JI ChemSusChem PD DEC 21 PY 2015 VL 8 IS 24 BP 4235 EP 4241 DI 10.1002/cssc.201500960 PG 7 WC Chemistry, Multidisciplinary; GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY SC Chemistry; Science & Technology - Other Topics GA DA5EP UT WOS:000367825900015 PM 26630086 ER PT J AU Beaton, DA Mascarenhas, A Alberi, K AF Beaton, D. A. Mascarenhas, A. Alberi, K. TI Insight into the epitaxial growth of high optical quality GaAs1-xBix SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID MOLECULAR-BEAM EPITAXY; SEMICONDUCTOR ALLOY GAAS1-XBIX; DILUTE NITRIDES; GAAS; AS-4; SB AB The ternary alloy GaAs1-xBix is a potentially important material for infrared light emitting devices, but its use has been limited by poor optical quality. We report on the synthesis of GaAs1-xBix epilayers that exhibit narrow, band edge photoluminescence similar to other ternary GaAs based alloys, e.g., InyGa1-yAs. The measured spectral line widths are as low as 14 meV and 37 meV at low temperature (6 K) and room temperature, respectively, and are less than half of previously reported values. The improved optical quality is attributed to the use of incident UV irradiation of the epitaxial surface and the presence of a partial surface coverage of bismuth in a surfactant layer during epitaxy. Comparisons of samples grown under illuminated and dark conditions provide insight into possible surface processes that may be altered by the incident UV light. The improved optical quality now opens up possibilities for the practical use of GaAs1-xBix in optoelectronic devices. (C) 2015 AIP Publishing LLC. C1 [Beaton, D. A.; Mascarenhas, A.; Alberi, K.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Beaton, DA (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM daniel.beaton@nrel.gov FU Department of Energy, Office of Science, Basic Energy Sciences [DE-AC36-O8GO-28308] FX We acknowledge the financial support of the Department of Energy, Office of Science, Basic Energy Sciences under DE-AC36-O8GO-28308. We thank M. C. Tarun and P. M. Mooney at Simon Fraser Univ. for the preliminary DLTS results. NR 36 TC 2 Z9 2 U1 1 U2 7 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD DEC 21 PY 2015 VL 118 IS 23 AR 235701 DI 10.1063/1.4937574 PG 8 WC Physics, Applied SC Physics GA CZ8VG UT WOS:000367376600061 ER PT J AU Fensin, SJ Walker, EK Cerreta, EK Trujillo, CP Martinez, DT Gray, GT AF Fensin, S. J. Walker, E. K. Cerreta, E. K. Trujillo, C. P. Martinez, D. T. Gray, G. T., III TI Dynamic failure in two-phase materials SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID STACKING-FAULT ENERGY; GRAIN-BOUNDARIES; SPALL DAMAGE; COPPER; FRACTURE; METALS; COMPOSITES; BEHAVIOR; SOLIDS AB Previous experimental research has shown that microstructural features such as interfaces, inclusions, vacancies, and heterogeneities can all act as void nucleation sites. However, it is not well understood how important these interfaces are to damage evolution and failure as a function of the surrounding parent materials. In this work, we present results on three different polycrystalline materials: (1) Cu, (2) Cu-24 wt. % Ag, and (3) Cu-15 wt. % Nb which were studied to probe the influence of bi-metal interfaces on void nucleation and growth. These materials were chosen due to the range of difference in structure and bulk properties between the two phases. The initial results suggest that when there are significant differences between the bulk properties (for example: stacking fault energy, melting temperature, etc.) the type of interface between the two parent materials does not principally control the damage nucleation and growth process. Rather, it is the "weaker" material that dictates the dynamic spall strength of the overall two-phase material. (C) 2015 AIP Publishing LLC. C1 [Fensin, S. J.; Cerreta, E. K.; Trujillo, C. P.; Martinez, D. T.; Gray, G. T., III] Los Alamos Natl Lab, MST 8, Los Alamos, NM 87545 USA. [Walker, E. K.] Los Alamos Natl Lab, MET 2, Los Alamos, NM USA. RP Fensin, SJ (reprint author), Los Alamos Natl Lab, MST 8, Los Alamos, NM 87545 USA. EM saryuj@lanl.gov FU U.S. Department of Energy [DE-AC52-06NA25396]; Joint DoD/DOE Munitions Technology Development Program FX The authors would like to acknowledge R. S. Hixson, P. Rigg for helpful discussion, and Gerald Stevens for assistance with PDV analysis. Los Alamos National Laboratory is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under Contract No. DE-AC52-06NA25396. This work was partially sponsored by the Joint DoD/DOE Munitions Technology Development Program. NR 32 TC 1 Z9 1 U1 3 U2 7 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD DEC 21 PY 2015 VL 118 IS 23 AR 235305 DI 10.1063/1.4938109 PG 8 WC Physics, Applied SC Physics GA CZ8VG UT WOS:000367376600056 ER PT J AU Samin, A Li, X Zhang, JS Mariani, RD Unal, C AF Samin, Adib Li, Xiang Zhang, Jinsuo Mariani, R. D. Unal, Cetin TI Ab initio molecular dynamics study of the properties of cerium in liquid sodium at 1000 K temperature SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID TOTAL-ENERGY CALCULATIONS; AUGMENTED-WAVE METHOD; FAST-REACTOR; MINOR ACTINIDES; ALKALI-METALS; BASIS-SET; SOLUBILITY; FUELS; CHLORIDE; URANIUM AB For liquid-sodium-cooled fast nuclear reactor systems, it is crucial to understand the behavior of lanthanides and other potential fission products in liquid sodium or other liquid metal solutions such as liquid cesium-sodium. In this study, we focus on lanthanide behavior in liquid sodium. Using ab initio molecular dynamics, we found that the solubility of cerium in liquid sodium at 1000 K was less than 0.78 at. %, and the diffusion coefficient of cerium in liquid sodium was calculated to be 5.57 x 10(-9) m(2)/s. Furthermore, it was found that cerium in small amounts may significantly alter the heat capacity of the liquid sodium system. Our results are consistent with the experimental results for similar materials under similar conditions. (C) 2015 AIP Publishing LLC. C1 [Samin, Adib; Li, Xiang; Zhang, Jinsuo] Ohio State Univ, Dept Mech & Aerosp Engn, Nucl Engn Program, Columbus, OH 43210 USA. [Mariani, R. D.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Unal, Cetin] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Samin, A (reprint author), Ohio State Univ, Dept Mech & Aerosp Engn, Nucl Engn Program, 201 W 19th Ave, Columbus, OH 43210 USA. RI Zhang, Jinsuo/H-4717-2012; OI Zhang, Jinsuo/0000-0002-3412-7769; Mariani, Robert/0000-0002-7502-3536; Samin, Adib/0000-0001-7493-2829 FU DOE Office of Nuclear Energy's Nuclear Energy University Programs [14-6482] FX This work was supported in part by an allocation of computing time from the Idaho National Laboratory Supercomputer Center and has been performed using funding received from the DOE Office of Nuclear Energy's Nuclear Energy University Programs (Project No. 14-6482). NR 28 TC 1 Z9 1 U1 0 U2 5 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD DEC 21 PY 2015 VL 118 IS 23 AR 234902 DI 10.1063/1.4937910 PG 5 WC Physics, Applied SC Physics GA CZ8VG UT WOS:000367376600050 ER PT J AU Srivastava, AC Chen, F Ray, T Pattathil, S Pena, MJ Avci, U Li, HJ Huhman, DV Backe, J Urbanowicz, B Miller, JS Bedair, M Wyman, CE Sumner, LW York, WS Hahn, MG Dixon, RA Blancaflor, EB Tang, YH AF Srivastava, Avinash C. Chen, Fang Ray, Tui Pattathil, Sivakumar Pena, Maria J. Avci, Utku Li, Hongjia Huhman, David V. Backe, Jason Urbanowicz, Breeanna Miller, Jeffrey S. Bedair, Mohamed Wyman, Charles E. Sumner, Lloyd W. York, William S. Hahn, Michael G. Dixon, Richard A. Blancaflor, Elison B. Tang, Yuhong TI Loss of function of folylpolyglutamate synthetase 1 reduces lignin content and improves cell wall digestibility in Arabidopsis SO BIOTECHNOLOGY FOR BIOFUELS LA English DT Article DE Arabidopsis; Bioenergy; C1 metabolism; Cell-wall recalcitrance; FPGS1; Lignin; Folylpolyglutamate synthetase ID CINNAMYL ALCOHOL-DEHYDROGENASE; A O-METHYLTRANSFERASE; ONE-CARBON METABOLISM; S-ADENOSYLMETHIONINE; BIOFUEL PRODUCTION; DOWN-REGULATION; BIOSYNTHESIS PERTURBATIONS; FOLATE POLYGLUTAMYLATION; GENETIC MANIPULATION; GLUCURONIC-ACID AB Background: One-carbon (C1) metabolism is important for synthesizing a range of biologically important compounds that are essential for life. In plants, the C1 pathway is crucial for the synthesis of a large number of secondary metabolites, including lignin. Tetrahydrofolate and its derivatives, collectively referred to as folates, are crucial co-factors for C1 metabolic pathway enzymes. Given the link between the C1 and phenylpropanoid pathways, we evaluated whether folylpolyglutamate synthetase (FPGS), an enzyme that catalyzes the addition of a glutamate tail to folates to form folylpolyglutamates, can be a viable target for reducing cell wall recalcitrance in plants. Results: Consistent with its role in lignocellulosic formation, FPGS1 was preferentially expressed in vascular tissues. Total lignin was low in fpgs1 plants leading to higher saccharification efficiency of the mutant. The decrease in total lignin in fpgs1 was mainly due to lower guaiacyl (G) lignin levels. Glycome profiling revealed subtle alterations in the cell walls of fpgs1. Further analyses of hemicellulosic polysaccharides by NMR showed that the degree of methylation of 4-O-methyl glucuronoxylan was reduced in the fpgs1 mutant. Microarray analysis and real-time qRT-PCR revealed that transcripts of a number of genes in the C1 and lignin pathways had altered expression in fpgs1 mutants. Consistent with the transcript changes of C1-related genes, a significant reduction in S-adenosyl-l-methionine content was detected in the fpgs1 mutant. The modified expression of the various methyltransferases and lignin-related genes indicate possible feedback regulation of C1 pathway-mediated lignin biosynthesis. Conclusions: Our observations provide genetic and biochemical support for the importance of folylpolyglutamates in the lignocellulosic pathway and reinforces previous observations that targeting a single FPGS isoform for down-regulation leads to reduced lignin in plants. Because fpgs1 mutants had no dramatic defects in above ground biomass, selective down-regulation of individual components of C1 metabolism is an approach that should be explored further for the improvement of lignocellulosic feedstocks. C1 [Srivastava, Avinash C.; Ray, Tui; Huhman, David V.; Bedair, Mohamed; Sumner, Lloyd W.; Blancaflor, Elison B.; Tang, Yuhong] Samuel Roberts Noble Fdn Inc, Div Plant Biol, Ardmore, OK 73401 USA. [Srivastava, Avinash C.; Chen, Fang; Pattathil, Sivakumar; Pena, Maria J.; Avci, Utku; Li, Hongjia; Backe, Jason; Urbanowicz, Breeanna; Wyman, Charles E.; York, William S.; Hahn, Michael G.; Dixon, Richard A.; Blancaflor, Elison B.; Tang, Yuhong] US DOE, BioEnergy Sci Ctr, Oak Ridge, TN 37831 USA. [Pattathil, Sivakumar; Pena, Maria J.; Avci, Utku; Backe, Jason; Urbanowicz, Breeanna; Miller, Jeffrey S.; York, William S.; Hahn, Michael G.] Univ Georgia, Complex Carbohydrate Res Ctr, Athens, GA 30602 USA. [Pattathil, Sivakumar; Avci, Utku; York, William S.; Hahn, Michael G.] Univ Georgia, Dept Plant Biol, Athens, GA 30602 USA. [Li, Hongjia; Wyman, Charles E.] Univ Calif Riverside, Bourns Coll Engn, Ctr Environm Res & Technol CE CERT, Riverside, CA 92507 USA. [Chen, Fang; Dixon, Richard A.] Univ N Texas, Dept Biol Sci, Denton, TX 76203 USA. RP Tang, YH (reprint author), Samuel Roberts Noble Fdn Inc, Div Plant Biol, Ardmore, OK 73401 USA. EM ytang@noble.org OI , Sivakumar Pattathil/0000-0003-3870-4137 FU BioEnergy Science Center (BESC, a U.S. Department of Energy Bioenergy Research Center - Office of Biological and Environmental Research in DOE Office of Science, U.S. Department of Energy); Samuel Roberts Noble Foundation; NSF Plant Genome Program [DBI-0421683, IOS-0923992] FX The research described in this paper was carried out under the support of the BioEnergy Science Center (BESC, a U.S. Department of Energy Bioenergy Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science, U.S. Department of Energy) and also funded by the Samuel Roberts Noble Foundation. The authors thank Chunxiang Fu for critical reading of the manuscript and technical assistance with sugar analysis and Stacy Allen for assistance with array data generation. The generation of the CCRC series of glycan-directed monoclonal antibodies used in this work was supported by the NSF Plant Genome Program (DBI-0421683; IOS-0923992). NR 91 TC 0 Z9 1 U1 9 U2 30 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1754-6834 J9 BIOTECHNOL BIOFUELS JI Biotechnol. Biofuels PD DEC 21 PY 2015 VL 8 AR 224 DI 10.1186/s13068-015-0403-z PG 17 WC Biotechnology & Applied Microbiology; Energy & Fuels SC Biotechnology & Applied Microbiology; Energy & Fuels GA CZ6RD UT WOS:000367227500008 PM 26697113 ER PT J AU Vermaas, JV Petridis, L Qi, XH Schulz, R Lindner, B Smith, JC AF Vermaas, Josh V. Petridis, Loukas Qi, Xianghong Schulz, Roland Lindner, Benjamin Smith, Jeremy. C. TI Mechanism of lignin inhibition of enzymatic biomass deconstruction SO BIOTECHNOLOGY FOR BIOFUELS LA English DT Article DE Biofuel; Lignin; Cel7A; Cellulose crystallinity ID CARBOHYDRATE-BINDING MODULE; REESEI CELLOBIOHYDROLASE-I; MOLECULAR-DYNAMICS SIMULATIONS; STEAM PRETREATED SOFTWOOD; TRICHODERMA-REESEI; DILUTE-ACID; FORCE-FIELD; CORN STOVER; THERMOCHEMICAL PRETREATMENT; LIGNOCELLULOSIC BIOMASS AB Background: The conversion of plant biomass to ethanol via enzymatic cellulose hydrolysis offers a potentially sustainable route to biofuel production. However, the inhibition of enzymatic activity in pretreated biomass by lignin severely limits the efficiency of this process. Results: By performing atomic-detail molecular dynamics simulation of a biomass model containing cellulose, lignin, and cellulases (TrCel7A), we elucidate detailed lignin inhibition mechanisms. We find that lignin binds preferentially both to the elements of cellulose to which the cellulases also preferentially bind (the hydrophobic faces) and also to the specific residues on the cellulose-binding module of the cellulase that are critical for cellulose binding of TrCel7A (Y466, Y492, and Y493). Conclusions: Lignin thus binds exactly where for industrial purposes it is least desired, providing a simple explanation of why hydrolysis yields increase with lignin removal. C1 [Vermaas, Josh V.; Petridis, Loukas; Qi, Xianghong; Schulz, Roland; Lindner, Benjamin; Smith, Jeremy. C.] Univ Tennessee, Oak Ridge Natl Lab, Ctr Biophys Mol, Oak Ridge, TN 37831 USA. [Vermaas, Josh V.] Univ Illinois, Ctr Biophys & Quantitat Biol, Urbana, IL 61801 USA. [Qi, Xianghong; Schulz, Roland; Smith, Jeremy. C.] Univ Tennessee, Dept Biochem & Cellular & Mol Biol, Knoxville, TN 37996 USA. RP Smith, JC (reprint author), Univ Tennessee, Oak Ridge Natl Lab, Ctr Biophys Mol, POB 2008, Oak Ridge, TN 37831 USA. EM smithjc@ornl.gov RI smith, jeremy/B-7287-2012; Petridis, Loukas/B-3457-2009; OI smith, jeremy/0000-0002-2978-3227; Petridis, Loukas/0000-0001-8569-060X; Vermaas, Josh/0000-0003-3139-6469 FU Genomic Science Program; DOE Office of Science [DE AC05 00OR22725]; DOE Computational Sciences Graduate Fellowship [DE FG02 97ER25308]; Office of Biological and Environmental Research, US Department of Energy FX This research is funded by the Genomic Science Program, Office of Biological and Environmental Research, US Department of Energy. An award of computer time was provided by the Innovative and Novel Computational Impact on Theory and Experiment (INCITE) program. This research used resources of the Oak Ridge Leadership Computing Facility, which is a DOE Office of Science User Facility supported under Contract DE AC05 00OR22725. J.V. acknowledges support from the DOE Computational Sciences Graduate Fellowship supported by Grant DE FG02 97ER25308. NR 104 TC 6 Z9 6 U1 6 U2 43 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1754-6834 J9 BIOTECHNOL BIOFUELS JI Biotechnol. Biofuels PD DEC 21 PY 2015 VL 8 AR 217 DI 10.1186/s13068-015-0379-8 PG 16 WC Biotechnology & Applied Microbiology; Energy & Fuels SC Biotechnology & Applied Microbiology; Energy & Fuels GA CZ6RD UT WOS:000367227500001 PM 26697106 ER PT J AU Walker, JA Takasuka, TE Deng, K Bianchetti, CM Udell, HS Prom, BM Kim, H Adams, PD Northen, TR Fox, BG AF Walker, Johnnie A. Takasuka, Taichi E. Deng, Kai Bianchetti, Christopher M. Udell, Hannah S. Prom, Ben M. Kim, Hyunkee Adams, Paul D. Northen, Trent R. Fox, Brian G. TI Multifunctional cellulase catalysis targeted by fusion to different carbohydrate-binding modules SO BIOTECHNOLOGY FOR BIOFUELS LA English DT Article DE Cellulase; Xylanase; Hemicellulase; Mannanase; Carbohydrate binding module; Ruminoclostridium thermocellum; Enzyme engineering; Biofuels; Mass spectrometry; Kinetic analysis ID PLANT-CELL WALLS; IONIC LIQUID PRETREATMENT; NEUTRON FIBER DIFFRACTION; HYDROGEN-BONDING SYSTEM; SYNCHROTRON X-RAY; CLOSTRIDIUM-THERMOCELLUM; ENZYMATIC-HYDROLYSIS; CRYSTAL-STRUCTURE; LIGNOCELLULOSIC BIOMASS; GLYCOSIDE HYDROLASE AB Background: Carbohydrate binding modules (CBMs) bind polysaccharides and help target glycoside hydrolases catalytic domains to their appropriate carbohydrate substrates. To better understand how CBMs can improve cellulolytic enzyme reactivity, representatives from each of the 18 families of CBM found in Ruminoclostridium thermocellum were fused to the multifunctional GH5 catalytic domain of CelE (Cthe_0797, CelEcc), which can hydrolyze numerous types of polysaccharides including cellulose, mannan, and xylan. Since CelE is a cellulosomal enzyme, none of these fusions to a CBM previously existed. Results: CelEcc_CBM fusions were assayed for their ability to hydrolyze cellulose, lichenan, xylan, and mannan. Several CelEcc_CBM fusions showed enhanced hydrolytic activity with different substrates relative to the fusion to CBM3a from the cellulosome scaffoldin, which has high affinity for binding to crystalline cellulose. Additional binding studies and quantitative catalysis studies using nanostructure-initiator mass spectrometry (NIMS) were carried out with the CBM3a, CBM6, CBM30, and CBM44 fusion enzymes. In general, and consistent with observations of others, enhanced enzyme reactivity was correlated with moderate binding affinity of the CBM. Numerical analysis of reaction time courses showed that CelEcc_CBM44, a combination of a multifunctional enzyme domain with a CBM having broad binding specificity, gave the fastest rates for hydrolysis of both the hexose and pentose fractions of ionic-liquid pretreated switchgrass. Conclusion: We have shown that fusions of different CBMs to a single multifunctional GH5 catalytic domain can increase its rate of reaction with different pure polysaccharides and with pretreated biomass. This fusion approach, incorporating domains with broad specificity for binding and catalysis, provides a new avenue to improve reactivity of simple combinations of enzymes within the complexity of plant biomass. C1 [Walker, Johnnie A.; Takasuka, Taichi E.; Bianchetti, Christopher M.; Udell, Hannah S.; Prom, Ben M.; Kim, Hyunkee; Fox, Brian G.] Univ Wisconsin, US DOE, Great Lakes Bioenergy Res Ctr, Madison, WI 53706 USA. [Walker, Johnnie A.; Takasuka, Taichi E.; Bianchetti, Christopher M.; Fox, Brian G.] Univ Wisconsin, Dept Biochem, Madison, WI 53706 USA. [Takasuka, Taichi E.] Hokkaido Univ, Res Fac Agr, Sapporo, Hokkaido 0608589, Japan. [Deng, Kai; Adams, Paul D.; Northen, Trent R.] US DOE, Joint BioEnergy Inst, Emeryville, CA 94608 USA. [Deng, Kai] Sandia Natl Labs, Livermore, CA 94551 USA. [Adams, Paul D.; Northen, Trent R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Adams, Paul D.] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. RP Fox, BG (reprint author), Univ Wisconsin, US DOE, Great Lakes Bioenergy Res Ctr, Madison, WI 53706 USA. EM bgfox@biochem.wisc.edu RI Adams, Paul/A-1977-2013; OI Adams, Paul/0000-0001-9333-8219; Northen, Trent/0000-0001-8404-3259 FU US Department of Energy, Office of Science, Office of Biological and Environmental Research [DE-FC02-07ER64494, DE AC02 05CH11231]; UW-Madison Science and Medicine Graduate Research Scholars Advanced Opportunity Fellowship Program; National Institute of General Medical Sciences Molecular Biophysics Training Program [NIH T32 GM08293]; National Science Foundation Graduate Research Fellowship [DGE-1256259] FX The DOE Great Lakes Bioenergy Research Center and the DOE Joint BioEnergy Institute are supported by the US Department of Energy, Office of Science, Office of Biological and Environmental Research, through contracts DE-FC02-07ER64494 and through contract DE AC02 05CH11231, respectively. J.A.W. was supported by the UW-Madison Science and Medicine Graduate Research Scholars Advanced Opportunity Fellowship Program, the National Institute of General Medical Sciences Molecular Biophysics Training Program (NIH T32 GM08293), and the National Science Foundation Graduate Research Fellowship (DGE-1256259). NR 111 TC 5 Z9 5 U1 13 U2 62 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1754-6834 J9 BIOTECHNOL BIOFUELS JI Biotechnol. Biofuels PD DEC 21 PY 2015 VL 8 AR 220 DI 10.1186/s13068-015-0402-0 PG 20 WC Biotechnology & Applied Microbiology; Energy & Fuels SC Biotechnology & Applied Microbiology; Energy & Fuels GA CZ6RD UT WOS:000367227500004 PM 26697109 ER PT J AU Boyle, TJ Sears, JM Neville, ML Alam, TM Young, VG AF Boyle, Timothy J. Sears, Jeremiah M. Neville, Michael L. Alam, Todd M. Young, Victor G., Jr. TI Structural Properties of the Acidification Products of Scandium Hydroxy Chloride Hydrate SO INORGANIC CHEMISTRY LA English DT Article ID RAY CRYSTAL-STRUCTURES; HYDROTHERMAL SYNTHESIS; MOLECULAR-STRUCTURE; SOLVENT-EXTRACTION; COMPLEXES; PHOSPHATE; SC-45; YTTRIUM(III); COORDINATION; SULFATES AB The structural properties of a series of scandium inorganic acid derivatives were determined. The reaction of Sc-0 with concentrated aqueous hydrochloric acid led to the isolation of [(H2O)(5)Sc(mu-OH)](2)4Cl center dot 2H(2)O (1). Compound 1 was modified with a series of inorganic acids (i.e., HNO3, H3PO4, and H2SO4) at room temperature and found to form {[(H2O)(4)Sc(kappa(2)-NO3)(mu-OH)]NO3}(2) (2a), [(H2O)(4)Sc(x2-NO3)(2)]NO3 center dot H2O (2b) (at reflux temperatures), {6[H] [Sc(mu-PO4) (PO4)](6)}(n) (3), and [H] [Sc(mu(3)-SO4)(2)]center dot 2H(2)O (4a). Additional organosulfonic acid derivatives were investigated, including tosylic acid (H-OTs) to yield {[(H2O)(4)Sc(OTs)(2)]OTs}center dot 2H(2)O (4b) in H2O and [(DMSO)(3)Sc-(OTs)(3)] (4c) in dimethyl sulfoxide and triflic acid (H-OTf) to form [Sc(H2O)(8)]OTf3 (4d). Other organic acid modifications of 1 were also investigated, and the final structures were determined to be {([(H2O)(2)Sc(mu-OAc)(2)]Cl)(6)}(n) (5) from acetic acid (H-OAc) and [Sc(mu-TFA)(3)Sc(mu-TFA)(3)](n) (6) from trifluoroacetic acid (H-TEA). In addition to single-crystal X-ray structures, the compounds were identified by solid-state and solution-state Sc-45 nuclear magnetic resonance spectroscopic studies. C1 [Boyle, Timothy J.; Sears, Jeremiah M.; Neville, Michael L.; Alam, Todd M.] Sandia Natl Labs, Adv Mat Lab, Albuquerque, NM 87106 USA. [Young, Victor G., Jr.] Univ Minnesota, Dept Chem, Minneapolis, MN 55455 USA. RP Boyle, TJ (reprint author), Sandia Natl Labs, Adv Mat Lab, 1001 Univ Blvd, Albuquerque, NM 87106 USA. EM tjboyle@Sandia.gov FU Laboratory Directed Research and Development (LDRD) program at Sandia National Laboratories; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; National Science Foundation [CHE04-43580] FX This work was supported by the Laboratory Directed Research and Development (LDRD) program at Sandia National Laboratories. The Bruker X-ray diffractometer used for some crystal solutions was purchased via a National Science Foundation CRIF:MU award to the University of New Mexico (CHE04-43580). Sandia is a multiprogram laboratory operated by Sandia Corp., a Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 45 TC 0 Z9 0 U1 2 U2 6 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 EI 1520-510X J9 INORG CHEM JI Inorg. Chem. PD DEC 21 PY 2015 VL 54 IS 24 BP 11831 EP 11841 DI 10.1021/acs.inorgchem.5b02030 PG 11 WC Chemistry, Inorganic & Nuclear SC Chemistry GA CZ5BU UT WOS:000367118100028 PM 26641309 ER PT J AU Pegis, ML Roberts, JAS Wasylenko, DJ Mader, EA Appel, AM Mayer, JM AF Pegis, Michael L. Roberts, John A. S. Wasylenko, Derek J. Mader, Elizabeth A. Appel, Aaron M. Mayer, James M. TI Standard Reduction Potentials for Oxygen and Carbon Dioxide Couples in Acetonitrile and N,N-Dimethylformamide SO INORGANIC CHEMISTRY LA English DT Article ID ELECTROCATALYTIC CO2 REDUCTION; NORMAL HYDROGEN ELECTRODE; MOLECULAR ELECTROCATALYSTS; ELECTROCHEMICAL REDUCTION; AIR BATTERIES; WEAK ACIDS; FUEL-CELLS; WATER; CATALYSTS; SOLVATION AB A variety of next-generation energy processes utilize the electrochemical interconversions of dioxygen and water as the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER). Reported here are the first estimates of the standard reduction potential of the O-2 + 4e(-) + 4H(+) reversible arrow 2H(2)O couple in organic solvents. The values are +1.21 V in acetonitrile (MeCN) and +0.60 V in N,N-dimethylformamide (DMF), each versus the ferrocenium/ferrocene couple (Fc(+/0)) in the respective solvent (as are all of the potentials reported here). The potentials have been determined using a thermochemical cycle that combines the free energy for transferring water from aqueous solution to organic solvent, -0.43 kcal mol(-1) for MeCN and -1.47 kcal mol(-1) for DMF, and the potential of the H+/H-2 couple, - 0.028 V in MeCN and -0.662 V in DMF. The H+/H-2 couple in DMF has been directly measured electrochemically using the previously reported procedure for the MeCN value. The thermochemical approach used for the O-2/H2O couple has been extended to the CO2/CO and CO2/CH4 couples to give values of -0.12 and +0.15 V in MeCN and -0.73 and -0.48 V in DMF, respectively. Extensions to other reduction potentials are discussed. Additionally, the free energy for transfer of protons from water to organic solvent is estimated as +14 kcal mol(-1) for acetonitrile and +0.6 kcal mol(-1) for DMF. C1 [Pegis, Michael L.; Mader, Elizabeth A.; Mayer, James M.] Yale Univ, Dept Chem, New Haven, CT 06520 USA. [Roberts, John A. S.; Appel, Aaron M.] Pacific NW Natl Lab, Ctr Mol Electrocatalysis, Richland, WA 99352 USA. [Wasylenko, Derek J.] Univ Washington, Dept Chem, Seattle, WA 98195 USA. RP Appel, AM (reprint author), Pacific NW Natl Lab, Ctr Mol Electrocatalysis, POB 999 K2-57, Richland, WA 99352 USA. EM aaron.appel@pnnl.gov; james.mayer@yale.edu OI Appel, Aaron/0000-0002-5604-1253 FU Center for Molecular Electrocatalysis, an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences FX The authors thank Dr. Robert Nielsen for helpful discussions. This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy. NR 37 TC 14 Z9 14 U1 11 U2 42 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 EI 1520-510X J9 INORG CHEM JI Inorg. Chem. PD DEC 21 PY 2015 VL 54 IS 24 BP 11883 EP 11888 DI 10.1021/acs.inorgchem.5b02136 PG 6 WC Chemistry, Inorganic & Nuclear SC Chemistry GA CZ5BU UT WOS:000367118100034 PM 26640971 ER PT J AU Manson, JL Huang, QZ Brown, CM Lynn, JW Stone, MB Singleton, J Xiao, F AF Manson, Jamie L. Huang, Qing-zhen Brown, Craig M. Lynn, Jeffrey W. Stone, Matthew B. Singleton, John Xiao, Fan TI Magnetic Structure and Exchange Interactions in Quasi-One-Dimensional MnCl2(urea)(2) SO INORGANIC CHEMISTRY LA English DT Article ID LINEAR-CHAIN; POLYNUCLEAR AGGREGATION; SPIN; COMPLEXES; ANTIFERROMAGNET; MANGANESE; SYSTEMS; NI; PYRAZINE; RB2CRCL4 AB MnCl2(urea)(2) is a new linear chain coordination polymer that exhibits slightly counter-rotated Mn2Cl2 rhomboids along the chain-axis. The material crystallizes in the noncentrosymmetric orthorhombic space group Iba2, with each Mn(II) ion equatorially surrounded by four Cl- that lead to bibridged ribbons. Urea ligands coordinate via O atoms in the axial positions. Hydrogen bonds of the Cl center dot center dot center dot H-N and O center dot center dot center dot H-N type link the chains into a quasi-3D network. Magnetic susceptibility data reveal a broad maximum at 9 K that is consistent with short-range magnetic order. Pulsed-field magnetization measurements conducted at 0.6 K show that a fully polarized magnetic state is achieved at B-sat = 19.6 T with another field-induced phase transition occurring at 2.8 T. Zero-field neutron diffraction studies made on a powdered sample of MnCl2(urea)(2) reveal that long-range magnetic order occurs below T-N = 3.2(1) K. Additional Bragg peaks due to antiferromagnetic (AFM) ordering can be indexed according to the Ib'a2' magnetic space group and propagation vector tau = [0, 0, 0]. Rietveld profile analysis of these data revealed a Neel-type collinear ordering of Mn(II) ions with an ordered magnetic moment of 4.06(6) mu(B) (5 mu(B) is expected for isotropic S = 5/2) oriented along the b-axis, i.e., perpendicular to the chain-axis that runs along the c-direction. Owing to the potential for spatial exchange anisotropy and the pitfalls in modeling bulk magnetic data, we analyzed inelastic neutron scattering data to retrieve the exchange constants: J(c) = 2.22 K (intrachain), J(a) = -0.10 K (interchain), and D = -0.14 K with J > 0 assigned to AFM coupling. This J configuration is most unusual and contrasts the more commonly observed AFM interchain coupling of 1D chains. C1 [Manson, Jamie L.] Eastern Washington Univ, Dept Chem & Biochem, Cheney, WA 99004 USA. [Huang, Qing-zhen; Brown, Craig M.; Lynn, Jeffrey W.] NIST, NISTCtr Neutron Res, Gaithersburg, MD 20899 USA. [Brown, Craig M.] Univ Delaware, Dept Chem & Biochem Engn, Newark, DE 19716 USA. [Stone, Matthew B.] Oak Ridge Natl Lab, Quantum Condensed Matter Div, Oak Ridge, TN 37830 USA. [Singleton, John] Los Alamos Natl Lab, Natl High Magnet Field Lab, Los Alamos, NM 87545 USA. [Xiao, Fan] Univ Durham, Ctr Phys Mat, Durham DH1 3LE, England. RP Manson, JL (reprint author), Eastern Washington Univ, Dept Chem & Biochem, Cheney, WA 99004 USA. EM jmanson@ewu.edu RI Stone, Matthew/G-3275-2011; Brown, Craig/B-5430-2009 OI Stone, Matthew/0000-0001-7884-9715; Brown, Craig/0000-0002-9637-9355 FU National Science Foundation (NSF) [DMR-1306158]; National Science Foundation [DMR-1157490]; State of Florida; U.S. Department of Energy (DoE); DoE Basic Energy Science Field Work Proposal "Science in 100 T"; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy FX The work at EWU was supported by the National Science Foundation (NSF) under Grant DMR-1306158. J.L.M. thanks Prof. Jesper Bendix for helpful discussions. We acknowledge the support of the National Institute of Standards and Technology (NIST), U.S. Department of Commerce, in providing their neutron research facilities used in this work; identification of any commercial product or trade name does not imply endorsement or recommendation by NIST. Work performed at the National High Magnetic Field Laboratory, USA, was supported by the National Science Foundation Cooperative Agreement DMR-1157490, the State of Florida, and the U.S. Department of Energy (DoE), and through the DoE Basic Energy Science Field Work Proposal "Science in 100 T." The research at ORNL was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. NR 60 TC 2 Z9 2 U1 4 U2 16 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 EI 1520-510X J9 INORG CHEM JI Inorg. Chem. PD DEC 21 PY 2015 VL 54 IS 24 BP 11897 EP 11905 DI 10.1021/acs.inorgchem.5b02162 PG 9 WC Chemistry, Inorganic & Nuclear SC Chemistry GA CZ5BU UT WOS:000367118100036 PM 26645988 ER PT J AU Brown, JL Davis, BL Scott, BL Gaunt, AJ AF Brown, Jessie L. Davis, Benjamin L. Scott, Brian L. Gaunt, Andrew J. TI Early-Lanthanide(III) Acetonitrile-Solvento Adducts with Iodide and Noncoordinating Anions SO INORGANIC CHEMISTRY LA English DT Article ID RAY CRYSTAL-STRUCTURES; RARE-EARTH IODIDES; STRUCTURAL-CHARACTERIZATION; LANTHANIDE COMPLEXES; IONIC LIQUIDS; COORDINATION NUMBERS; NEODYMIUM DIIODIDE; FT-IR; TETRAHYDROFURAN; PRECURSORS AB Dissolution of LnI(3) (Ln = La, Ce) in acetonitrile (MeCN) results in the highly soluble solvates LnI(3)(MeCN)(5) [Ln = La (1), Ce (2)] in good yield. The ionic complex [La(MeCN)(9)][LaI6] (4), containing a rare homoleptic La3+ cation and anion, was also isolated as a minor product. Extending this chemistry to NdI3 results in the consistent formation of the complex ionic structure [Nd-(MeCN)(9)](2)[NdI5(MeCN)][NdI6][I] (3), which contains an unprecedented pentaiodide lanthanoid anion. Also described is the synthesis, isolation, and structural characterization of several homoleptic early-lanthanide MeCN solvates with noncoordinating anions, namely, [Ln(MeCN)(9)][AlCl4](3) [Ln = La (5), Ce (6), Nd (7)]. Notably, complex 6 is the first homoleptic cerium MeCN solvate reported to date. All reported complexes were structurally characterized by X-ray crystallography, as well as by IR spectroscopy and CHN elemental analysis. Complexes 1-3 were also characterized by thermogravimetric analysis coupled with mass spectrometry to further elucidate their bulk composition in the solid-state. C1 [Brown, Jessie L.; Gaunt, Andrew J.] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. [Davis, Benjamin L.; Scott, Brian L.] Los Alamos Natl Lab, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA. [Brown, Jessie L.] Transylvania Univ, Div Nat Sci & Math, Lexington, KY 40508 USA. RP Brown, JL (reprint author), Los Alamos Natl Lab, Div Chem, POB 1663, Los Alamos, NM 87545 USA. EM jlbrown@transy.edu; gaunt@lanl.gov RI Davis, Benjamin /I-7897-2015; Scott, Brian/D-8995-2017; OI Scott, Brian/0000-0003-0468-5396; Davis, Benjamin/0000-0001-5439-0751; Gaunt, Andrew/0000-0001-9679-6020 FU Heavy Element Chemistry program [DE-AC52-06NA25396]; G. T. Seaborg Institute at Los Alamos National Laboratory FX We thank the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Early Career program (syntheses and characterization) and the Heavy Element Chemistry program (manuscript preparation) under Contract DE-AC52-06NA25396. J.L.B. thanks the G. T. Seaborg Institute at Los Alamos National Laboratory for postdoctoral fellowship support. NR 55 TC 1 Z9 1 U1 2 U2 9 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 EI 1520-510X J9 INORG CHEM JI Inorg. Chem. PD DEC 21 PY 2015 VL 54 IS 24 BP 11958 EP 11968 DI 10.1021/acs.inorgchem.5b02291 PG 11 WC Chemistry, Inorganic & Nuclear SC Chemistry GA CZ5BU UT WOS:000367118100042 PM 26605553 ER PT J AU Barmparis, GD Puzyrev, YS Zhang, XG Pantelides, ST AF Barmparis, Georgios D. Puzyrev, Yevgeniy S. Zhang, X. -G. Pantelides, Sokrates T. TI Theory of inelastic multiphonon scattering and carrier capture by defects in semiconductors: Application to capture cross sections SO PHYSICAL REVIEW B LA English DT Article ID ELECTRON; TRANSITIONS; SILICON; RECOMBINATION; RELIABILITY; TRANSISTORS; GENERATION AB Inelastic scattering and carrier capture by defects in semiconductors are the primary causes of hot-electron-mediated degradation of power devices, which holds up their commercial development. At the same time, carrier capture is a major issue in the performance of solar cells and light-emitting diodes. A theory of nonradiative (multiphonon) inelastic scattering by defects, however, is nonexistent, while the theory for carrier capture by defects has had a long and arduous history. Here we report the construction of a comprehensive theory of inelastic scattering by defects, with carrier capture being a special case. We distinguish between capture under thermal equilibrium conditions and capture under nonequilibrium conditions, e.g., in the presence of an electrical current or hot carriers where carriers undergo scattering by defects and are described by a mean free path. In the thermal-equilibrium case, capture is mediated by a nonadiabatic perturbation Hamiltonian, originally identified by Huang and Rhys and by Kubo, which is equal to linear electron-phonon coupling to first order. In the nonequilibrium case, we demonstrate that the primary capture mechanism is within the Born-Oppenheimer approximation (adiabatic transitions), with coupling to the defect potential inducing Franck-Condon electronic transitions, followed by multiphonon dissipation of the transition energy, while the nonadiabatic terms are of secondary importance (they scale with the inverse of the mass of typical atoms in the defect complex). We report first-principles density-functional-theory calculations of the capture cross section for a prototype defect using the projector-augmented wave, which allows us to employ all-electron wave functions. We adopt a Monte Carlo scheme to sample multiphonon configurations and obtain converged results. The theory and the results represent a foundation upon which to build engineering-level models for hot-electron degradation of power devices and the performance of solar cells and light-emitting diodes. C1 [Barmparis, Georgios D.; Puzyrev, Yevgeniy S.; Pantelides, Sokrates T.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. [Barmparis, Georgios D.] Univ Crete, Dept Phys, Crete Ctr Quantum Complex & Nanotechnol, Iraklion 71003, Greece. [Zhang, X. -G.] Univ Florida, Dept Phys, Gainesville, FL 32611 USA. [Zhang, X. -G.] Univ Florida, Quantum Theory Project, Gainesville, FL 32611 USA. [Pantelides, Sokrates T.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Pantelides, Sokrates T.] Vanderbilt Univ, Dept Elect Engn & Comp Sci, Nashville, TN 37235 USA. RP Barmparis, GD (reprint author), Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. EM yevgeniy.s.puzyrev@vanderbilt.edu FU Samsung Advanced Institute of Technology (SAIT)'s Global Research Outreach (GRO) Program; AFOSR and AFRL through the Hi-REV program; NSF [ECCS-1508898]; Division of Scientific User Facilities; Office of Science of the U.S. Department of Energy [DE-AC05-00OR22725]; McMinn Endowment at Vanderbilt University; UT-Battelle, LLC [DE-AC05-00OR22725]; U.S. Department of Energy; [EU/FP7-REGPOT-2012-2013-1]; [316165] FX We would like to thank Chris Van de Walle and Audrius Alkauskas for valuable discussions. This work was supported in part by the Samsung Advanced Institute of Technology (SAIT)'s Global Research Outreach (GRO) Program, by the AFOSR and AFRL through the Hi-REV program, and by NSF Grant No. ECCS-1508898. A portion of this research was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Division of Scientific User Facilities. The computation was done using the utilities of the National Energy Research Scientific Computing Center (NERSC) and resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725. G.D. Barmparis acknowledges support from EU/FP7-REGPOT-2012-2013-1 under Grant Agreement No. 316165. The work was also supported by the McMinn Endowment at Vanderbilt University. This paper was authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of the manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan). NR 30 TC 4 Z9 4 U1 4 U2 15 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD DEC 21 PY 2015 VL 92 IS 21 AR 214111 DI 10.1103/PhysRevB.92.214111 PG 17 WC Physics, Condensed Matter SC Physics GA CZ4FC UT WOS:000367057800001 ER PT J AU Prokop, CJ Crider, BP Liddick, SN Ayangeakaa, AD Carpenter, MP Carroll, JJ Chen, J Chiara, CJ David, HM Dombos, AC Go, S Harker, J Janssens, RVF Larson, N Lauritsen, T Lewis, R Quinn, SJ Recchia, F Seweryniak, D Spyrou, A Suchyta, S Walters, WB Zhu, S AF Prokop, C. J. Crider, B. P. Liddick, S. N. Ayangeakaa, A. D. Carpenter, M. P. Carroll, J. J. Chen, J. Chiara, C. J. David, H. M. Dombos, A. C. Go, S. Harker, J. Janssens, R. V. F. Larson, N. Lauritsen, T. Lewis, R. Quinn, S. J. Recchia, F. Seweryniak, D. Spyrou, A. Suchyta, S. Walters, W. B. Zhu, S. TI New low-energy 0(+) state and shape coexistence in Ni-70 SO PHYSICAL REVIEW C LA English DT Article ID BETA-DECAY; ISOTOPES; NUCLEI; SPECTROSCOPY; ISOMERS; BANDS; ODD AB In recent models, the neutron-rich Ni isotopes around N = 40 are predicted to exhibit multiple low-energy excited 0(+) states attributed to neutron and proton excitations across both the N = 40 and Z = 28 shell gaps. In Ni-68, the three observed 0(+) states have been interpreted in terms of triple shape coexistence between spherical, oblate, and prolate deformed shapes. In the present work a new (0(2)(+)) state at an energy of 1567 keV has been discovered in Ni-70 by using beta-delayed, gamma-ray spectroscopy following the decay of Co-70. The precipitous drop in the energy of the prolate-deformed 0(+) level between Ni-68 and Ni-70 with the addition of two neutrons compares favorably with results of Monte Carlo shell-model calculations carried out in the large fpg(9/2)d(5/2) model space, which predict a 0(2)(+) state at 1525 keV in Ni-70. The result extends the shape-coexistence picture in the region to Ni-70 and confirms the importance of the role of the tensor component of the monopole interaction in describing the structure of neutron-rich nuclei. C1 [Prokop, C. J.; Crider, B. P.; Liddick, S. N.; Chen, J.; Dombos, A. C.; Larson, N.; Lewis, R.; Quinn, S. J.; Spyrou, A.] Michigan State Univ, Natl Supercond Cyclotron Lab, E Lansing, MI 48824 USA. [Prokop, C. J.; Liddick, S. N.; Larson, N.; Lewis, R.] Michigan State Univ, Dept Chem, E Lansing, MI 48824 USA. [Ayangeakaa, A. D.; Carpenter, M. P.; David, H. M.; Harker, J.; Janssens, R. V. F.; Lauritsen, T.; Seweryniak, D.; Zhu, S.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Carroll, J. J.] US Army, Res Lab, Adelphi, MD 20783 USA. [Chiara, C. J.] US Army, Res Lab, Oak Ridge Associated Univ Fellowship Program, Adelphi, MD 20783 USA. [Dombos, A. C.; Quinn, S. J.; Spyrou, A.] Michigan State Univ, Dept Phys, E Lansing, MI 48824 USA. [Go, S.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Harker, J.; Walters, W. B.] Univ Maryland, Dept Chem & Biochem, College Pk, MD 20742 USA. [Recchia, F.] Univ Padua, Dipartimento Fis & Astron, I-35131 Padua, Italy. [Suchyta, S.] Univ Calif Berkeley, Dept Nucl Engn, Berkeley, CA 94720 USA. RP Prokop, CJ (reprint author), Michigan State Univ, Natl Supercond Cyclotron Lab, E Lansing, MI 48824 USA. EM prokop@nscl.msu.edu RI Larson, Nicole/S-5997-2016 OI Larson, Nicole/0000-0003-0292-957X FU National Science Foundation (NSF) [PHY-1102511]; Department of Energy National Nuclear Security Administration (NNSA) [DE-NA0000979, DE-NA0002132, DE-FG52-08NA28552]; U.S Department of Energy, Office of Science, Office of Nuclear Physics [DE-AC-06CH11357, DE-FG02-94ER40834, DE-FG02-96ER40983]; U.S. Army Research Laboratory [W911NF-12-2-0019] FX This work was supported in part by National Science Foundation (NSF) under contract No. PHY-1102511, by the Department of Energy National Nuclear Security Administration (NNSA) under Awards No. DE-NA0000979, No. DE-NA0002132, and No. DE-FG52-08NA28552, by the U.S Department of Energy, Office of Science, Office of Nuclear Physics, under Contract No. DE-AC-06CH11357 (ANL) and Grants No. DE-FG02-94ER40834 (Maryland) and No. DE-FG02-96ER40983 (UT), and by the U.S. Army Research Laboratory under Cooperative Agreement W911NF-12-2-0019. NR 41 TC 10 Z9 10 U1 2 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 EI 1089-490X J9 PHYS REV C JI Phys. Rev. C PD DEC 21 PY 2015 VL 92 IS 6 AR 061302 DI 10.1103/PhysRevC.92.061302 PG 6 WC Physics, Nuclear SC Physics GA CZ4IW UT WOS:000367067700001 ER PT J AU Liu, Y Vishniakou, S Yoo, J Dayeh, SA AF Liu, Yang Vishniakou, Siarhei Yoo, Jinkyoung Dayeh, Shadi A. TI Engineering Heteromaterials to Control Lithium Ion Transport Pathways SO SCIENTIFIC REPORTS LA English DT Article ID TRANSMISSION ELECTRON-MICROSCOPY; ELECTROCHEMICAL LITHIATION; SILICON NANOWIRES; STRAIN-RELAXATION; BATTERY ANODES; SURFACE; HETEROSTRUCTURES; NANOIONICS; INTERFACE; SYSTEMS AB Safe and efficient operation of lithium ion batteries requires precisely directed flow of lithium ions and electrons to control the first directional volume changes in anode and cathode materials. Understanding and controlling the lithium ion transport in battery electrodes becomes crucial to the design of high performance and durable batteries. Recent work revealed that the chemical potential barriers encountered at the surfaces of heteromaterials play an important role in directing lithium ion transport at nanoscale. Here, we utilize in situ transmission electron microscopy to demonstrate that we can switch lithiation pathways from radial to axial to grain-by-grain lithiation through the systematic creation of heteromaterial combinations in the Si-Ge nanowire system. Our systematic studies show that engineered materials at nanoscale can overcome the intrinsic orientation-dependent lithiation, and open new pathways to aid in the development of compact, safe, and efficient batteries. C1 [Liu, Yang] Sandia Natl Labs, Ctr Integrated Nanotechnol, Albuquerque, NM 87185 USA. [Liu, Yang] N Carolina State Univ, Dept Mat Sci & Engn, Raleigh, NC 27695 USA. [Vishniakou, Siarhei; Dayeh, Shadi A.] Univ Calif San Diego, Dept Elect & Comp Engn, La Jolla, CA 92093 USA. [Yoo, Jinkyoung] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. [Dayeh, Shadi A.] Univ Calif San Diego, Mat Sci Program, La Jolla, CA 92093 USA. RP Liu, Y (reprint author), Sandia Natl Labs, Ctr Integrated Nanotechnol, POB 5800, Albuquerque, NM 87185 USA. EM yliu78@ncsu.edu; sdayeh@ece.ucsd.edu RI Yoo, Jinkyoung/B-5291-2008 OI Yoo, Jinkyoung/0000-0002-9578-6979 FU Laboratory Directed Research and Development (LDRD) program at Los Alamos National Laboratory; Laboratory Directed Research and Development (LDRD) program at Sandia National Laboratorie (SNL); Nanostructures for Electrical Energy Storage (NEES); Energy Frontier Research Center (EFRC) - U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DESC0001160]; NSF CAREER Award [ECCS-1351980]; NSF [DMR-1503595]; U.S. Department of Energy, Office of Basic Energy Sciences User Facility at Los Alamos National Laboratory [DE-AC52-06NA25396]; U.S. Department of Energy, Office of Basic Energy Sciences User Facility at Sandia National Laboratorie [DE-AC04-94AL85000]; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The authors thank Dr. Binh-Minh Nguyen for providing some of the Ge/Si heteronanowires for this work. Portions of this work were supported by a Laboratory Directed Research and Development (LDRD) program at Los Alamos National Laboratory and Sandia National Laboratories (SNL) and partly by Nanostructures for Electrical Energy Storage (NEES), an Energy Frontier Research Center (EFRC) funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DESC0001160, and an NSF CAREER Award under ECCS-1351980 and an NSF DMR-1503595 Award. This work was performed in part at the Center for Integrated Nanotechnologies (CINT), a U.S. Department of Energy, Office of Basic Energy Sciences User Facility at Los Alamos National Laboratory (Contract DE-AC52-06NA25396) and Sandia National Laboratories (Contract DE-AC04-94AL85000). Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 55 TC 3 Z9 3 U1 5 U2 39 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD DEC 21 PY 2015 VL 5 AR 18482 DI 10.1038/srep18482 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CZ4NN UT WOS:000367080000001 PM 26686655 ER PT J AU Vasin, M Ryzhov, V Vinokur, VM AF Vasin, M. Ryzhov, V. Vinokur, V. M. TI Quantum-to-classical crossover near quantum critical point SO SCIENTIFIC REPORTS LA English DT Article ID RENORMALIZATION-GROUP APPROACH; DIMENSIONAL ISING-MODEL; TRANSVERSE FIELD; PHASE-TRANSITIONS; CRITICAL-BEHAVIOR; DYNAMICS; SYSTEM AB A quantum phase transition (QPT) is an inherently dynamic phenomenon. However, while non-dissipative quantum dynamics is described in detail, the question, that is not thoroughly understood is how the omnipresent dissipative processes enter the critical dynamics near a quantum critical point (QCP). Here we report a general approach enabling inclusion of both adiabatic and dissipative processes into the critical dynamics on the same footing. We reveal three distinct critical modes, the adiabatic quantum mode (AQM), the dissipative classical mode [classical critical dynamics mode (CCDM)], and the dissipative quantum critical mode (DQCM). We find that as a result of the transition from the regime dominated by thermal fluctuations to that governed by the quantum ones, the system acquires effective dimension d+z Lambda(T), where z is the dynamical exponent, and temperature-depending parameter.(T). [0, 1] decreases with the temperature such that.(T=0)=1 and Lambda(T ->infinity)=0. Our findings lead to a unified picture of quantum critical phenomena including both dissipation-and dissipationless quantum dynamic effects and offer a quantitative description of the quantum-to-classical crossover. C1 [Vasin, M.] Russian Acad Sci, Ural Branch, Phys Tech Inst, Izhevsk 426000, Russia. [Vasin, M.; Ryzhov, V.] Russian Acad Sci, Inst High Pressure Phys, Moscow, Russia. [Vinokur, V. M.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60637 USA. RP Vinokur, VM (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60637 USA. EM vinokour@anl.gov RI Vasin, Mikhail/G-4461-2016; Ryzhov, Valentin/A-4472-2017 OI Ryzhov, Valentin/0000-0002-1331-3984 FU Russian Scientific Foundation [RNF 14-12-01185]; U.S. Department of Energy, Office of Science, Materials Sciences and Engineering Division; Russian Foundation for Basic Research [14-22-00093] FX We are grateful to S. M. Stishov and V. V. Brazhkin for stimulating discussions. This work was partly supported by the Russian Scientific Foundation (grant RNF 14-12-01185) and by the U.S. Department of Energy, Office of Science, Materials Sciences and Engineering Division (VV), the work by V. R. is partly supported by the Russian Foundation for Basic Research (Grant 14-22-00093). NR 26 TC 0 Z9 0 U1 4 U2 10 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD DEC 21 PY 2015 VL 5 AR 18600 DI 10.1038/srep18600 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CZ4KV UT WOS:000367072900001 PM 26688102 ER PT J AU Guzik, SM Gao, XF Owen, LD McCorquodale, P Colella, P AF Guzik, Stephen M. Gao, Xinfeng Owen, Landon D. McCorquodale, Peter Colella, Phillip TI A freestream-preserving fourth-order finite-volume method in mapped coordinates with adaptive-mesh refinement SO COMPUTERS & FLUIDS LA English DT Article DE High-order finite-volume method; Freestream-preserving; Mapped grids; Adaptive-mesh refinement; Finite-volume method; Hyperbolic conservation laws ID ESSENTIALLY NONOSCILLATORY SCHEMES; HYPERBOLIC CONSERVATION-LAWS; NAVIER-STOKES EQUATIONS; NUMERICAL-SIMULATION; UNSTRUCTURED GRIDS; COMPRESSIBLE FLOW; EULER EQUATIONS; GEOMETRIES; ACCURACY; SYSTEMS AB A fourth-order accurate finite-volume method is presented for solving time-dependent hyperbolic systems of conservation laws on mapped grids that are adaptively refined in space and time. Novel considerations for formulating the semi-discrete system of equations in computational space are combined with detailed mechanisms for accommodating the adapting grids. These considerations ensure that conservation is maintained and that the divergence of a constant vector field is always zero (freestream-preservation property). The solution in time is advanced with a fourth-order Runge-Kutta method. A series of tests verifies that the expected accuracy is achieved in smooth flows and the solution of a Mach reflection problem demonstrates the effectiveness of the algorithm in resolving strong discontinuities. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Guzik, Stephen M.; Gao, Xinfeng; Owen, Landon D.] Colorado State Univ, Computat Fluid Dynam & Prop Lab, Ft Collins, CO 80525 USA. [McCorquodale, Peter; Colella, Phillip] Lawrence Berkeley Natl Lab, Appl Numer Algorithms Grp, Berkeley, CA 94720 USA. RP Gao, XF (reprint author), Colorado State Univ, Computat Fluid Dynam & Prop Lab, Ft Collins, CO 80525 USA. EM Xinfeng.Gao@colostate.edu FU U.S. Department of Energy (DOE) by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Office of Advanced Scientific Computing Research of the US Department of Energy [DE-AC02-05CH11231]; DOE [DE-EE0006086] FX This work was performed under the auspices of the U.S. Department of Energy (DOE) by Lawrence Livermore National Laboratory under contract number DE-AC52-07NA27344 and by DOE contracts from the ASCR Applied Math Program. Research at the Lawrence Berkeley National Laboratory was supported by the Office of Advanced Scientific Computing Research of the US Department of Energy under contract number DE-AC02-05CH11231. Research at the Colorado State University was supported by DOE under contract number DE-EE0006086. The authors would also like to thank Louis Howell and Milo Dorr for providing comments on notation and notes that were included into the appendix. NR 34 TC 3 Z9 3 U1 0 U2 3 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0045-7930 EI 1879-0747 J9 COMPUT FLUIDS JI Comput. Fluids PD DEC 21 PY 2015 VL 123 BP 202 EP 217 DI 10.1016/j.compfluid.2015.10.001 PG 16 WC Computer Science, Interdisciplinary Applications; Mechanics SC Computer Science; Mechanics GA CX0DQ UT WOS:000365367500016 ER PT J AU Gonzalez-Diaz, D Alvarez, V Borges, FIG Camargo, M Carcel, S Cebrian, S Cervera, A Conde, CAN Dafni, T Diaz, J Esteve, R Fernandes, LMP Ferrari, P Ferreira, AL Freitas, EDC Gehmani, VM Goldschmidt, A Gomez-Cadenas, JJ Gutierrez, RM Hauptman, J Morata, JAH Herrera, DC Irastorza, IG Labarga, L Laing, A Liubarsky, I Lopez-March, N Lorca, D Losada, M Luzon, G Mari, A Martin-Albo, J Martinez-Lema, G Martinez, A Miller, T Monrabal, F Monserrate, M Monteiro, CMB Mora, FJ Moutinho, LM Vidal, JM Nebot-Guinot, M Nygren, D Oliveira, CAB Perez, J Aparicio, JLP Querol, M Renner, J Ripoll, L Rodriguez, J Santos, FP dos Santos, JMF Serra, L Shuman, D Simon, A Sofka, C Sorel, M Toledo, JF Torrent, J Tsamalaidze, Z Veloso, JFCA Villar, JA Webb, R White, JT Yahlali, N Azevedo, C Aznarab, F Calvet, D Castel, J Ferrer-Ribas, E Garcia, JA Giomataris, I Gomez, H Iguaz, FJ Lagraba, A Le Coguie, A Mols, JP Sahin, O Rodriguez, A Ruiz-Choliz, E Segui, L Tomas, A Veenhof, R AF Gonzalez-Diaz, Diego Alvarez, V. Borges, F. I. G. Camargo, M. Carcel, S. Cebrian, S. Cervera, A. Conde, C. A. N. Dafni, T. Diaz, J. Esteve, R. Fernandes, L. M. P. Ferrari, P. Ferreira, A. L. Freitas, E. D. C. Gehmani, V. M. Goldschmidt, A. Gomez-Cadenas, J. J. Gutierrez, R. M. Hauptman, J. Hernando Morata, J. A. Herrera, D. C. Irastorza, I. G. Labarga, L. Laing, A. Liubarsky, I. Lopez-March, N. Lorca, D. Losada, M. Luzon, G. Mari, A. Martin-Albo, J. Martinez-Lema, G. Martinez, A. Miller, T. Monrabal, F. Monserrate, M. Monteiro, C. M. B. Mora, F. J. Moutinho, L. M. Munoz Vidal, J. Nebot-Guinot, M. Nygren, D. Oliveira, C. A. B. Perez, J. Perez Aparicio, J. L. Querol, M. Renner, J. Ripoll, L. Rodriguez, J. Santos, F. P. dos Santos, J. M. F. Serra, L. Shuman, D. Simon, A. Sofka, C. Sorel, M. Toledo, J. F. Torrent, J. Tsamalaidze, Z. Veloso, J. F. C. A. Villar, J. A. Webb, R. White, J. T. Yahlali, N. Azevedo, C. Aznarab, F. Calvet, D. Castel, J. Ferrer-Ribas, E. Garcia, J. A. Giomataris, I. Gomez, H. Iguaz, F. J. Lagraba, A. Le Coguie, A. Mols, J. P. Sahin, O. Rodriguez, A. Ruiz-Choliz, E. Segui, L. Tomas, A. Veenhof, R. TI Accurate gamma and MeV-electron track reconstruction with an ultra-low diffusion Xenon/TMA TPC at 10 atm SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Double-beta decay; Gamma and electron detection; Microbulk micromegas; Time projection chamber; High pressure Xenon-Trimehylamine; Penning-Fluorescent mixtures ID EXCITED TRIMETHYLAMINE; RELAXATION PROCESSES; MICROMEGAS; GAS; FLUCTUATIONS; DETECTORS; CHAMBERS; READOUT AB We report the performance of a 10 atm Xenon/trimethylamine time projection chamber (TPC) for the detection of X-rays (30 keV) and gamma-rays (0.511-1.275 MeV) in conjunction with the accurate tracking of the associated electrons. When operated at such a high pressure and in similar to 1%-admixtures, trimethylamine (TMA) endows Xenon with an extremely low electron diffusion (1.3 +/- 0.13 mm-sigma (longitudinal), 0.95 +/- 0.20 mm-sigma (transverse) along 1 m drift) besides forming a convenient Penning-Fluorescent' mixture. The TPC, that houses 1.1 kg of gas in its fiducial volume, operated continuously for 100 live-days in charge amplification mode. The readout was performed through the recently introduced microbulk Micromegas technology and the AFTER chip, providing a 3D voxelization of 8 mm x 8 mm x 1.2 mm for approximately 10 cm/MeV-long electron tracks. Resolution in energy (epsilon) at full width half maximum (R) inside the fiducial volume ranged from R = 14.6% (30 keV) to R = 4.6% (1.275 MeV). This work was developed as part of the R&D program of the NEXT collaboration for future detector upgrades in the search of the neutrino-less double beta decay (beta beta 0 nu) in Xe-136, specifically those based on novel gas mixtures. Therefore we ultimately focus on the calorimetric and topological properties of the reconstructed MeV-electron tracks. In particular, the obtained energy resolution has been decomposed in its various contributions and improvements towards achieving the R =1.4%root MeV/epsilon levels obtained in small sensors are discussed. (C) 2015 Elsevier BY. All rights reserved. C1 [Gonzalez-Diaz, Diego; Cebrian, S.; Dafni, T.; Herrera, D. C.; Irastorza, I. G.; Luzon, G.; Villar, J. A.; Aznarab, F.; Castel, J.; Garcia, J. A.; Gomez, H.; Iguaz, F. J.; Lagraba, A.; Rodriguez, A.; Ruiz-Choliz, E.; Segui, L.; Tomas, A.] Univ Zaragoza, Lab Fis Nucl & Astroparticulas, Zaragoza, Spain. [Gonzalez-Diaz, Diego; Cebrian, S.; Cervera, A.; Dafni, T.; Herrera, D. C.; Irastorza, I. G.; Luzon, G.; Villar, J. A.; Aznarab, F.; Castel, J.; Garcia, J. A.; Gomez, H.; Iguaz, F. J.; Rodriguez, A.; Ruiz-Choliz, E.; Segui, L.; Tomas, A.] Lab Subterraneo Canfranc, Canfranc, Spain. [Gonzalez-Diaz, Diego; Veenhof, R.] CERN, Geneva, Switzerland. [Alvarez, V.; Carcel, S.; Cervera, A.; Diaz, J.; Ferrari, P.; Gomez-Cadenas, J. J.; Laing, A.; Liubarsky, I.; Lopez-March, N.; Lorca, D.; Martin-Albo, J.; Martinez, A.; Monrabal, F.; Monserrate, M.; Munoz Vidal, J.; Nebot-Guinot, M.; Rodriguez, J.; Serra, L.; Simon, A.; Sorel, M.; Yahlali, N.; Azevedo, C.] CSIC, Inst Fis Corpuscular IFIC, Valencia, Spain. [Alvarez, V.; Carcel, S.; Cervera, A.; Diaz, J.; Ferrari, P.; Gomez-Cadenas, J. J.; Laing, A.; Liubarsky, I.; Lopez-March, N.; Lorca, D.; Martin-Albo, J.; Martinez, A.; Monrabal, F.; Monserrate, M.; Munoz Vidal, J.; Nebot-Guinot, M.; Rodriguez, J.; Serra, L.; Simon, A.; Sorel, M.; Yahlali, N.; Azevedo, C.] Univ Valencia, Valencia, Spain. [Borges, F. I. G.; Conde, C. A. N.; Fernandes, L. M. P.; Freitas, E. D. C.; Monteiro, C. M. B.; Santos, F. P.; dos Santos, J. M. F.] Univ Coimbra, Dept Fis, P-3000 Coimbra, Portugal. [Camargo, M.; Gutierrez, R. M.; Losada, M.] Univ Antonio Narino, Ctr Invest Ciencias Basicas & Aplicadas, Bogota, Colombia. [Esteve, R.; Mari, A.; Mora, F. J.; Toledo, J. F.] Univ Politecn Valencia, Inst Instrumentac Imagen Mol I3M, E-46022 Valencia, Spain. [Ferreira, A. L.; Moutinho, L. M.; Veloso, J. F. C. A.; Azevedo, C.] Univ Aveiro, Inst Nanostruct Nanomodelling & Nanofabricat i3N, P-3800 Aveiro, Portugal. [Gehmani, V. M.; Goldschmidt, A.; Miller, T.; Nygren, D.; Oliveira, C. A. B.; Querol, M.; Renner, J.; Shuman, D.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Hauptman, J.] Iowa State Univ, Dept Phys & Astron, Ames, IA USA. [Hernando Morata, J. A.; Martinez-Lema, G.] Univ Santiago de Compostela, IGFAE, Santiago De Compostela, Spain. [Labarga, L.] Univ Autonoma Madrid, Dept Fis Teor, Madrid, Spain. [Perez, J.] UAM CSIC, IFT, Madrid, Spain. [Perez Aparicio, J. L.] Univ Politecn Valencia, Dpto Mecan Medios Continuos & Teoria Estruct, E-46022 Valencia, Spain. [Ripoll, L.; Torrent, J.] Univ Girona, Escola Politecn Super, Girona, Spain. [Sofka, C.; Webb, R.; White, J. T.] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA. [Tsamalaidze, Z.] Joint Inst Nucl Res, Dubna, Russia. [Sahin, O.; Veenhof, R.] Uludag Univ, Dept Phys, Bursa, Turkey. [Calvet, D.; Ferrer-Ribas, E.; Giomataris, I.; Le Coguie, A.; Mols, J. P.] CEA, IRFU, Saclay, France. RP Gonzalez-Diaz, D (reprint author), Univ Zaragoza, Lab Fis Nucl & Astroparticulas, Zaragoza, Spain. EM Diego.Gonzalez.Diaz@cern.ch; gomez@mail.cern.ch RI Dafni, Theopisti/J-9646-2012; Monrabal, Francesc/A-5880-2015; Diaz, Jose/B-3454-2012; Irastorza, Igor/B-2085-2012; Gonzalez Diaz, Diego/K-7265-2014; Fernandes, Luis/E-2372-2011; AMADE Research Group, AMADE/B-6537-2014; Villar, Jose Angel/K-6630-2014; veloso, joao/J-4478-2013; Moutinho, Luis/J-6021-2013; Lopez March, Neus/P-4411-2014; Iguaz Gutierrez, Francisco Jose/F-4117-2016; OI dos Santos, Joaquim Marques Ferreira/0000-0002-8841-6523; Dafni, Theopisti/0000-0002-8921-910X; Monrabal, Francesc/0000-0002-4047-5620; Munoz Vidal, Javier/0000-0002-9649-2251; Martin-Albo, Justo/0000-0002-7318-1469; Diaz, Jose/0000-0002-7239-223X; Irastorza, Igor/0000-0003-1163-1687; Gonzalez Diaz, Diego/0000-0002-6809-5996; Fernandes, Luis/0000-0002-7061-8768; AMADE Research Group, AMADE/0000-0002-5778-3291; Villar, Jose Angel/0000-0003-0228-7589; Moutinho, Luis/0000-0001-9074-4449; Lopez March, Neus/0000-0001-6586-0675; Iguaz Gutierrez, Francisco Jose/0000-0001-6327-9369; Monteiro, Cristina Maria Bernardes/0000-0002-1912-2804 FU European Research Council [339787-NEXT, 240054-TREX]; Spanish Ministerio de Economia y Competitividad [CSD2008-0037 (CUP), CSD2007-00042 (CPAN), FPA2008-03456, FPA2009-13697]; Portuguese Fundacao para a Ciencia e a Tecnologia; European FEDER [PPTDC/FIS/103860/2008]; US Department Of Energy [DE-AC02-05CH11231] FX The NEXT collaboration acknowledges funding support from the following agencies and institutions: European Research Council under Advanced Grant 339787-NEXT and Starting Grant 240054-TREX, Spanish Ministerio de Economia y Competitividad under grants Consolider-Ingenio 2010 CSD2008-0037 (CUP) and CSD2007-00042 (CPAN), contracts FPA2008-03456 and FPA2009-13697; Portuguese Fundacao para a Ciencia e a Tecnologia; European FEDER under grant PPTDC/FIS/103860/2008; US Department Of Energy under contract DE-AC02-05CH11231. NR 51 TC 4 Z9 4 U1 5 U2 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD DEC 21 PY 2015 VL 804 BP 8 EP 24 DI 10.1016/j.nima.2015.08.033 PG 17 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA CV3BR UT WOS:000364133700002 ER PT J AU Wang, JB Byrum, K Demarteau, M Elam, J Mane, A May, E Wagner, R Walters, D Xia, L Xie, JQ Zhao, HY AF Wang, Jingbo Byrum, Karen Demarteau, Marcel Elam, Jeffrey Mane, Anil May, Edward Wagner, Robert Walters, Dean Xia, Lei Xie, Junqi Zhao, Huyue TI Development and testing of cost-effective, 6 cm x 6 cm MCP-based photodetectors for fast timing applications SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Photodetector; Micro-channel plate; MCP-PMT; Single photoelectron; Time resolution; Position resolution ID ATOMIC LAYER DEPOSITION; MICROCHANNEL PLATES; DETECTORS; PERFORMANCE; PMT AB Micro-channel plate (MCP)-based photodetectors are capable of picosecond level time resolution and sub-mm level position resolution, which makes them a perfect candidate for the next generation large area photodetectors. The large-area picosecond photodetector (LAPPD) collaboration is developing new techniques for making large-area photodetectors based on new MCP fabrication and functionalization methods. A small single tube processing system (SmSTPS) was constructed at Argonne National Laboratory (ANL) for developing scalable, cost-effective, glass-body, 6 cm x 6 cm, picosecond photodetectors based on MCPs functionalized by Atomic Layer Deposition (ALD). Recently, a number of fully processed and hermitically sealed prototypes made of MCPs with 20 pm pores have been fabricated. This is a significant milestone for the LAPPD project. These prototypes were characterized with a pulsed laser test facility. Without optimization, the prototypes have shown excellent results: the time resolution is similar to 57 ps for single photoelectron mode and similar to 15 ps for multi-photoelectron mode; the best position resolution is <= 0.8 mm for large pulses. In this paper, the tube processing system, the detector assembly, experimental setup, data analysis and the key performance will be presented. (C) 2015 Elsevier B.V. All rights reserved. C1 [Wang, Jingbo; Byrum, Karen; Demarteau, Marcel; May, Edward; Wagner, Robert; Walters, Dean; Xia, Lei; Xie, Junqi; Zhao, Huyue] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Elam, Jeffrey; Mane, Anil] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. RP Wang, JB (reprint author), Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. EM wjingbo@anl.gov FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences and Office of High Energy Physics [DE-AC02-06CH11357]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX We would like to thank Ronald Kmak (ANL) for the design of the vacuum chamber. We also thank Joe Gregar (ANL) of the Argonne glass shop, for his talent work on the frit seal. We are deeply grateful to Matthew Wetstein (University of Chicago) and Bernhard Adams (ANL) for their advice on detector testing. Work at ANL was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences and Office of High Energy Physics under contract DE-AC02-06CH11357. Use of the Center for Nanoscale Materials was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract no. DE-AC02-06CH11357. NR 23 TC 2 Z9 2 U1 3 U2 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD DEC 21 PY 2015 VL 804 BP 84 EP 93 DI 10.1016/j.nima.2015.09.020 PG 10 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA CV3BR UT WOS:000364133700011 ER PT J AU Bahng, J Qiang, J Kim, ES AF Bahng, Jungbae Qiang, Ji Kim, Eun-San TI Design study of low-energy beam transport for multi-charge beams at RAON SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Low-energy beam transport; Heavy ion accelerator; Multi-harmonic buncher ID SIMULATION AB The Rare isotope Accelerator Of Newness (RAON) at the Rare Isotope Science Project (RISP) is being designed to simultaneously accelerate beams with multiple charge states. It includes a driver superconducting (SC) linac for producing 200 MeV/u and 400 kW continuous wave (CW) heavy ion beams from protons to uranium. The RAON consists of a few electron cyclotron resonance ion sources, a low-energy beam transport (LEBT) system, a CW 81.25 MHz, 500 keV/u radio frequency quadrupole (RFQ) accelerator, a medium-energy beam transport system, the SC linac, and a charge-stripper system. The LEBT system for the RISP accelerator facility consists of a high-voltage platform, two 90 dipoles, a multi-harmonic buncher (MHB), solenoids, electrostatic quadrupoles, a velocity equalizer, and a diagnostic system. The ECR ion sources are located on a high-voltage platform to reach an initial beam energy of 10 keV/u. After extraction, the ion beam is transported through the LEBT system to the RFQ accelerator. The generated charge states are selected by an achromatic bending system and then bunched by the MHB in the LEBT system. The MHB is used to achieve a small longitudinal emittance in the RFQ by generating a sawtooth wave with three harmonics. In this paper, we present the results and issues of the beam dynamics of the LEBT system. (C) 2015 Elsevier B.V. All rights reserved. C1 [Bahng, Jungbae] Kyungpook Natl Univ, Dept Phys, Daegu 41566, South Korea. [Qiang, Ji] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Kim, Eun-San] Korea Univ, Grad Sch, Dept Accelerator Sci, Sejong 30019, South Korea. RP Kim, ES (reprint author), Korea Univ, Grad Sch, Dept Accelerator Sci, Sejong Campus, Sejong 30019, South Korea. EM eskim1@korea.ac.kr FU Ministry of Science, ICT and Future Planning (MSIP); Ministry of Technology; National Research Foundation (NRF) of the Republic of Korea [2011-0032011] FX This work was made possible by the support of the Ministry of Science, ICT and Future Planning (MSIP), the Ministry of Technology, and the National Research Foundation (NRF) of the Republic of Korea under Contract 2011-0032011. NR 27 TC 0 Z9 0 U1 0 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD DEC 21 PY 2015 VL 804 BP 99 EP 107 DI 10.1016/j.nima.2015.09.041 PG 9 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA CV3BR UT WOS:000364133700013 ER PT J AU Armstrong, WR Choi, S Kaczanowicz, E Lukhanin, A Meziani, ZE Sawatzky, B AF Armstrong, Whitney R. Choi, Seonho Kaczanowicz, Ed Lukhanin, Alexander Meziani, Zein-Eddine Sawatzky, Brad TI A threshold gas Cherenkov detector for the Spin Asymmetries of the Nucleon Experiment SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Threshold gas Cherenkov detector; SANE; Particle identification ID DEUTERON; PROTON; G(2) AB We report on the design, construction, commissioning, and performance of a threshold gas Cherenkov counter in an open configuration, which operates in a high luminosity environment and produces a high photo-electron yield. Part of a unique open geometry detector package called the Big Electron Telescope Array (BETA), this Cherenkov counter served to identify scattered electrons and reject produced pions in an inclusive scattering experiment known as the Spin Asymmetries of the Nucleon Experiment (SANE), E07-003 at Jefferson Lab. The experiment consisted of a measurement of double spin asymmetries A(parallel to) and Lambda(perpendicular to) of a polarized electron beam impinging on a polarized ammonia target. The Cherenkov counter's performance is characterised by a yield of about 20 photoelectrons per electron or positron track. Thanks to this large number of photoelectrons per track, the Cherenkov counter had enough resolution to identify electron-positron pairs from the conversion of photons resulting mainly from pi(0) decays. (C) 2015 Elsevier B.V. All rights reserved. C1 [Armstrong, Whitney R.; Kaczanowicz, Ed; Lukhanin, Alexander; Meziani, Zein-Eddine; Sawatzky, Brad] Temple Univ, Dept Phys, Philadelphia, PA 19122 USA. [Choi, Seonho] Seoul Natl Univ, Seoul 151747, South Korea. [Sawatzky, Brad] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. RP Armstrong, WR (reprint author), Temple Univ, Dept Phys, Philadelphia, PA 19122 USA. EM whit@jlab.org FU DOE [DE-FG02-94ER4084] FX This work is supported by DOE grant DE-FG02-94ER4084. NR 14 TC 0 Z9 0 U1 0 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD DEC 21 PY 2015 VL 804 BP 118 EP 126 DI 10.1016/j.nima.2015.09.050 PG 9 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA CV3BR UT WOS:000364133700016 ER PT J AU Rusev, G Roman, AR Daum, JK Springs, RK Bond, EM Jandel, M Baramsai, B Bredeweg, TA Couture, A Favalli, A Ianakiev, KD Iliev, ML Mosby, S Ullmann, JL Walker, CL AF Rusev, G. Roman, A. R. Daum, J. K. Springs, R. K. Bond, E. M. Jandel, M. Baramsai, B. Bredeweg, T. A. Couture, A. Favalli, A. Ianakiev, K. D. Iliev, M. L. Mosby, S. Ullmann, J. L. Walker, C. L. TI Fission-fragment detector for DANCE based on thin scintillating films SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Thin scintillating films; Neutron-induced fission; Fission-fragment detector ID N,GAMMA AB A fission-fragment detector based on thin scintillating films has been built to serve as a trigger/veto detector in neutron-induced fission measurements at DANCE. The fissile material is surrounded by scintillating films providing 4 pi detection of the fission fragments. The scintillation photons were registered with silicon photomultipliers. A measurement of the U-235 (n,f) reaction with this detector at DANCE revealed a correct time-of-flight spectrum and provided an estimate for the efficiency of the prototype detector of 11.6(7)%. Design and test measurements with the detector are described. (C) 2015 Elsevier B.V. All rights reserved. C1 [Rusev, G.; Roman, A. R.; Daum, J. K.; Springs, R. K.; Bond, E. M.; Jandel, M.; Baramsai, B.; Bredeweg, T. A.; Walker, C. L.] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. [Daum, J. K.; Springs, R. K.] Univ Nevada, Dept Chem, Las Vegas, NV 89154 USA. [Couture, A.; Mosby, S.; Ullmann, J. L.] Los Alamos Natl Lab, Div Phys, Los Alamos, NM 87545 USA. [Favalli, A.; Ianakiev, K. D.; Iliev, M. L.] Los Alamos Natl Lab, Nucl Engn & Nonproliferat Div, Los Alamos, NM 87545 USA. RP Rusev, G (reprint author), Los Alamos Natl Lab, Div Chem, POB 1663, Los Alamos, NM 87545 USA. EM rusev@lanl.gov OI Rusev, Gencho/0000-0001-7563-1518; Ianakiev, Kiril/0000-0002-5074-0715 FU U.S. Department of Energy through the LANL/LDRD Program; U.S. Department of Energy, Office of Science, Nuclear Physics under Early Career Award [LANL20135009]; US Department of Energy by Los Alamos National Security, LLC [DE-AC52-06NA25396]; Department of Homeland Security; Glenn T. Seaborg Institute FX This work has been supported by the U.S. Department of Energy through the LANL/LDRD Program and the U.S. Department of Energy, Office of Science, Nuclear Physics under Early Career Award no. LANL20135009.; This work benefited from the use of the LANSCE facility at the Los Alamos National Laboratory. This work was performed under the auspices of the US Department of Energy by Los Alamos National Security, LLC, under Contract no. DE-AC52-06NA25396.; J.K.D. and R.K.S. acknowledge the support of the U.S. Department of Energy through the LANL/LDRD Program, the Department of Homeland Security and the Glenn T. Seaborg Institute for this work. NR 9 TC 0 Z9 0 U1 0 U2 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD DEC 21 PY 2015 VL 804 BP 207 EP 211 DI 10.1016/j.nima.2015.09.078 PG 5 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA CV3BR UT WOS:000364133700029 ER PT J AU Giaz, A Hull, G Fossati, V Cherepy, N Camera, F Blasi, N Brambilla, S Coelli, S Million, B Riboldi, S AF Giaz, A. Hull, G. Fossati, V. Cherepy, N. Camera, F. Blasi, N. Brambilla, S. Coelli, S. Million, B. Riboldi, S. TI Preliminary investigation of scintillator materials properties: SrI2:Eu, CeBr3 and GYGAG:Ce for gamma rays up to 9 MeV SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Scitillator detectors; Gamma raysy; Gamma Spectroscopy ID DETECTORS; LABR3-CE; CRYSTALS; CONTAMINATION; SPECTROSCOPY AB In this work we measured the performance of a 2 '' x 2 '' cylindrical tapered crystal of SrI2:Eu, a 2 '' x 3 '' cylindrical sample of CeBr3 and a 2 '' x 0.3 '' cylindrical sample of GYGAG:Ce. These scintillators are prototypes in volume or material and were provided by the Lawrence Livermore National Laboratory and by the Institut de Physique Nucleaire d'Orsay. The gamma-ray energy resolution was measured in the energy range of 0.1-9 MeV using different sources. Each scintillator was scanned along x, y and z axes, using a 400 MBq collimated Cs-137 source. Owing to the GYGAG:Ce thickness, it was not possible to obtain the value of the energy resolution at 9 MeV and to scan the crystal along the z axis. The 662 keV full energy peak position and its FWHM were measured relative to the full energy peaks positions produced by a non-collimated Y-88 source. The signals of the detectors were additionally digitized and compared, up to 9 MeV, using a 12 bit LeCroy 600 MHz oscilloscope. (C) 2015 Elsevier B.V. All rights reserved. C1 [Giaz, A.; Camera, F.; Blasi, N.; Brambilla, S.; Coelli, S.; Million, B.; Riboldi, S.] INFN Milano, I-20133 Milan, Italy. [Hull, G.] Inst Phys Nucl Orsay, F-91406 Orsay, France. [Fossati, V.; Camera, F.; Riboldi, S.] Univ Milan, Dept Phys, I-20133 Milan, Italy. [Cherepy, N.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Giaz, A (reprint author), INFN Milano, Via Celoria 16, I-20133 Milan, Italy. EM agnese.giaz@mi.infn.it RI Cherepy, Nerine/F-6176-2013 OI Cherepy, Nerine/0000-0001-8561-923X FU U.S. DOE by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; US Department of Homeland Security, Domestic Nuclear Detection Office [IAA HSHQDC-12-X-00149]; US DOE National Nuclear Security Administration, Defense Nuclear Nonproliferation Research and Development [DE-AC03-76SF00098]; NuPNET-ERA-NET within the theNuPNET GANAS project [202914]; European Union, within the "7th Framework Program" FP7 [262010 ENSAR-INDESYS] FX We would like to acknowledge Rastgo Hawrami and RMD Inc. for growing the SrI2:Eu crystal, Patrick Beck (LLNL) for characterizing it after encapsulation at LLNL, and Zachary Seeley (LLNL) for fabrication of the GYGAG:Ce ceramic. The LLNL effort was performed under the auspices of the U.S. DOE by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, and has been supported by the US Department of Homeland Security, Domestic Nuclear Detection Office, under competitively awarded IAA HSHQDC-12-X-00149, and the US DOE National Nuclear Security Administration, Defense Nuclear Nonproliferation Research and Development under Contract no. DE-AC03-76SF00098. This support does not constitute an express or implied endorsement on the part of the Government.; This work was also supported by NuPNET-ERA-NET within the theNuPNET GANAS project, under Grant agreement no. 202914 and from the European Union, within the "7th Framework Program" FP7/2007-2013, under Grant agreement no. 262010 ENSAR-INDESYS. NR 35 TC 5 Z9 5 U1 1 U2 21 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD DEC 21 PY 2015 VL 804 BP 212 EP 220 DI 10.1016/j.nima.2015.09.065 PG 9 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA CV3BR UT WOS:000364133700030 ER PT J AU Abeysekara, AU Archambault, S Archer, A Aune, T Barnacka, A Benbow, W Bird, R Biteau, J Buckley, JH Bugaev, V Cardenzana, JV Cerruti, M Chen, X Christiansen, JL Ciupik, L Connolly, MP Coppi, P Cui, W Dickinson, HJ Dumm, J Eisch, JD Errando, M Falcone, A Feng, Q Finley, JP Fleischhack, H Flinders, A Fortin, P Fortson, L Furniss, A Gillanders, GH Griffin, S Grube, J Gyuk, G Hutten, M Hakansson, N Hanna, D Holder, J Humensky, TB Johnson, CA Kaaret, P Kar, P Kelley-Hoskins, N Khassen, Y Kieda, D Krause, M Krennrich, F Kumar, S Lang, MJ Maier, G McArthur, S McCann, A Meagher, K Moriarty, P Mukherjee, R Nieto, D De Bhroithe, AO Ong, RA Otte, AN Park, N Perkins, JS Petrashyk, A Pohl, M Popkow, A Pueschel, E Quinn, J Ragan, K Ratliff, G Reynolds, PT Richards, GT Roache, E Rousselle, J Santander, M Sembroski, GH Shahinyan, K Smith, AW Staszak, D Telezhinsky, I Todd, NW Tucci, JV Tyler, J Vassiliev, VV Vincent, S Wakely, SP Weiner, OM Weinstein, A Wilhelm, A Williams, DA Zitzer, B Smith, PS Holoien, TWS Prieto, JL Kochanek, CS Stanek, KZ Shappee, B Hovatta, T Max-Moerbeck, W Pearson, TJ Reeves, RA Richards, JL Readhead, ACS Madejski, GM Djorgovski, SG Drake, AJ Graham, MJ Mahabal, A AF Abeysekara, A. U. Archambault, S. Archer, A. Aune, T. Barnacka, A. Benbow, W. Bird, R. Biteau, J. Buckley, J. H. Bugaev, V. Cardenzana, J. V. Cerruti, M. Chen, X. Christiansen, J. L. Ciupik, L. Connolly, M. P. Coppi, P. Cui, W. Dickinson, H. J. Dumm, J. Eisch, J. D. Errando, M. Falcone, A. Feng, Q. Finley, J. P. Fleischhack, H. Flinders, A. Fortin, P. Fortson, L. Furniss, A. Gillanders, G. H. Griffin, S. Grube, J. Gyuk, G. Huetten, M. Hakansson, N. Hanna, D. Holder, J. Humensky, T. B. Johnson, C. A. Kaaret, P. Kar, P. Kelley-Hoskins, N. Khassen, Y. Kieda, D. Krause, M. Krennrich, F. Kumar, S. Lang, M. J. Maier, G. McArthur, S. McCann, A. Meagher, K. Moriarty, P. Mukherjee, R. Nieto, D. De Bhroithe, A. O'Faolain Ong, R. A. Otte, A. N. Park, N. Perkins, J. S. Petrashyk, A. Pohl, M. Popkow, A. Pueschel, E. Quinn, J. Ragan, K. Ratliff, G. Reynolds, P. T. Richards, G. T. Roache, E. Rousselle, J. Santander, M. Sembroski, G. H. Shahinyan, K. Smith, A. W. Staszak, D. Telezhinsky, I. Todd, N. W. Tucci, J. V. Tyler, J. Vassiliev, V. V. Vincent, S. Wakely, S. P. Weiner, O. M. Weinstein, A. Wilhelm, A. Williams, D. A. Zitzer, B. Smith, P. S. Holoien, T. W. -S. Prieto, J. L. Kochanek, C. S. Stanek, K. Z. Shappee, B. Hovatta, T. Max-Moerbeck, W. Pearson, T. J. Reeves, R. A. Richards, J. L. Readhead, A. C. S. Madejski, G. M. Djorgovski, S. G. Drake, A. J. Graham, M. J. Mahabal, A. CA VERITAS SPOL ASAS-SN OVRO NuSTAR CRTS TI GAMMA-RAYS FROM THE QUASAR PKS 1441+25: STORY OF AN ESCAPE SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE cosmology: observations; diffuse radiation; gamma rays: galaxies; quasars: individual (PKS 1441+25-VER J1443+250); radiation mechanisms: non-thermal ID EXTRAGALACTIC BACKGROUND LIGHT; COMPLETE SAMPLE; FERMI BLAZARS; SPECTRA; VARIABILITY; TELESCOPE; RADIATION; EMISSION; MISSION; ABSORPTION AB Outbursts from gamma-ray quasars provide insights on the relativistic jets of active galactic nuclei and constraints on the diffuse radiation fields that fill the universe. The detection of significant emission above 100 GeV from a distant quasar would show that some of the radiated gamma-rays escape pair-production interactions with low-energy photons, be it the extragalactic background light (EBL), or the radiation near the supermassive black hole lying at the jet's base. VERITAS detected gamma-ray emission up to similar to 200 GeV from PKS 1441+25 (z = 0.939) during 2015 April, a period of high activity across all wavelengths. This observation of PKS 1441+25 suggests that the emission region is located thousands of Schwarzschild radii away from the black hole. The gamma-ray detection also sets a stringent upper limit on the near-ultraviolet to near-infrared EBL intensity, suggesting that galaxy surveys have resolved most, if not all, of the sources of the EBL at these wavelengths. C1 [Abeysekara, A. U.; Flinders, A.; Kar, P.; Kieda, D.] Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA. [Archer, A.; Buckley, J. H.; Bugaev, V.; Errando, M.; Todd, N. W.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Aune, T.; Ong, R. A.; Popkow, A.; Rousselle, J.; Vassiliev, V. V.] Washington Univ, Dept Phys, St Louis, MO 63130 USA. [Barnacka, A.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Benbow, W.; Cerruti, M.; Fortin, P.; Roache, E.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Bird, R.; Khassen, Y.; Pueschel, E.; Quinn, J.] Harvard Smithsonian Ctr Astrophys, Fred Lawrence Whipple Observ, Amado, AZ 85645 USA. [Biteau, J.; Furniss, A.; Johnson, C. A.; Williams, D. A.] Univ Coll Dublin, Sch Phys, Dublin 4, Ireland. [Biteau, J.; Furniss, A.; Johnson, C. A.; Williams, D. A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Cardenzana, J. V.; Eisch, J. D.; Krennrich, F.; Weinstein, A.] Univ Calif Santa Cruz, Dept Phys, Santa Cruz, CA 95064 USA. [Chen, X.; Hakansson, N.; Pohl, M.; Telezhinsky, I.; Wilhelm, A.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Chen, X.; Huetten, M.; Kelley-Hoskins, N.; Krause, M.; Maier, G.; De Bhroithe, A. O'Faolain; Pohl, M.; Telezhinsky, I.; Vincent, S.; Wilhelm, A.] Univ Potsdam, Inst Phys & Astron, D-14476 Potsdam, Germany. [Christiansen, J. L.] DESY, D-15738 Zeuthen, Germany. [Ciupik, L.; Grube, J.; Gyuk, G.; Ratliff, G.] Calif Polytech State Univ San Luis Obispo, Dept Phys, San Luis Obispo, CA 94307 USA. [Connolly, M. P.; Gillanders, G. H.; Lang, M. J.; Moriarty, P.] Adler Planetarium & Astron Museum, Dept Astron, Chicago, IL 60605 USA. [Coppi, P.] Natl Univ Ireland Galway, Sch Phys, Galway, Ireland. [Cui, W.; Feng, Q.; Finley, J. P.; McArthur, S.; Sembroski, G. H.; Tucci, J. V.; Richards, J. L.] Yale Univ, Dept Astron, New Haven, CT 06520 USA. [Dickinson, H. J.; Dumm, J.; Fleischhack, H.; Fortson, L.; Shahinyan, K.] Purdue Univ, Dept Phys & Astron, W Lafayette, IN 47907 USA. [Errando, M.; Mukherjee, R.; Santander, M.] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA. [Falcone, A.] Columbia Univ, Barnard Coll, Dept Phys & Astron, New York, NY 10027 USA. [Holder, J.; Kumar, S.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Holder, J.; Kumar, S.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. [Humensky, T. B.; Nieto, D.; Petrashyk, A.; Weiner, O. M.] Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA. [Kaaret, P.] Columbia Univ, Dept Phys, New York, NY 10027 USA. [Meagher, K.; Otte, A. N.; Richards, G. T.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. [Meagher, K.; Otte, A. N.; Richards, G. T.] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA. [Park, N.; Wakely, S. P.] Georgia Inst Technol, Ctr Relativist Astrophys, Atlanta, GA 30332 USA. [Perkins, J. S.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Reynolds, P. T.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Smith, A. W.] Cork Inst Technol, Dept Appl Sci, Cork, Ireland. [Zitzer, B.] Univ Maryland, College Pk, MD 20742 USA. [Smith, P. S.] Argonne Natl Lab, Argonne, IL 60439 USA. [Holoien, T. W. -S.; Kochanek, C. S.; Stanek, K. Z.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Holoien, T. W. -S.; Kochanek, C. S.; Stanek, K. Z.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Prieto, J. L.] Ohio State Univ, Ctr Cosmol & AstroParticle Phys, Columbus, OH 43210 USA. [Prieto, J. L.] Univ Diego Portales, Fac Ingn, Nucleo Astron, Santiago, Chile. [Shappee, B.] Millennium Inst Astrophys, Santiago, Chile. [Hovatta, T.] Carnegie Observ, Pasadena, CA 91101 USA. [Max-Moerbeck, W.] Aalto Univ, Metsahovi Radio Observ, FI-02540 Kylmala, Finland. [Pearson, T. J.; Readhead, A. C. S.] Natl Radio Astron Observ, Socorro, NM 87801 USA. [Reeves, R. A.] CALTECH, Cahill Ctr Astron & Astrophys, Pasadena, CA 91125 USA. [Madejski, G. M.] Univ Concepcion, Dept Astron, CePIA, Concepcion, Chile. [Madejski, G. M.] Stanford Univ, Dept Phys, Kavli Inst Particle Astrophys & Cosmol, WW Hansen Expt Phys Lab, Stanford, CA 94305 USA. [Djorgovski, S. G.; Drake, A. J.; Graham, M. J.; Mahabal, A.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. CALTECH, Pasadena, CA 91125 USA. RP Abeysekara, AU (reprint author), Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA. EM jbiteau@ucsc.edu; matteo.cerruti@cfa.harvard.edu; errando@astro.columbia.edu; caajohns@ucsc.edu; mark.lang@nuigalway.ie RI Nieto, Daniel/J-7250-2015; Pearson, Timothy/N-2376-2015; OI Nieto, Daniel/0000-0003-3343-0755; Pearson, Timothy/0000-0001-5213-6231; Pueschel, Elisa/0000-0002-0529-1973; Errando, Manel/0000-0002-1853-863X; Lang, Mark/0000-0003-4641-4201; Bird, Ralph/0000-0002-4596-8563 FU U.S. Department of Energy Office of Science; U.S. National Science Foundation; Smithsonian Institution; NSERC in Canada; NASA Swift GI grant [NNX15AR38G]; LCOGT; NSF [AST-1313422, AST-1413600, AST-0808050, AST-1109911]; Mt. Cuba Astronomical Foundation; OSU/CCAPP; MAS/Chile; NASA Fermi GI grant [NNX12AO93G]; NASA [NNX08AW31G, NNX11A043G] FX This research is supported by grants from the U.S. Department of Energy Office of Science, the U.S. National Science Foundation and the Smithsonian Institution, and by NSERC in Canada, with additional support from NASA Swift GI grant NNX15AR38G. We acknowledge the excellent work of the technical support staff at the Fred Lawrence Whipple Observatory and at the collaborating institutions in the construction and operation of the instrument. The VERITAS Collaboration is grateful to Trevor Weekes for his seminal contributions and leadership in the field of VHE gamma-ray astrophysics, which made this study possible.; ASAS-SN thanks LCOGT, NSF, Mt. Cuba Astronomical Foundation, OSU/CCAPP and MAS/Chile for their support.; The observations at Steward Observatory are funded through NASA Fermi GI grant NNX12AO93G.; CRTS is supported by the NSF grants AST-1313422 and AST-1413600.; The OVRO 40-m monitoring program is supported in part by NASA grants NNX08AW31G and NNX11A043G, and NSF grants AST-0808050 and AST-1109911. NR 42 TC 9 Z9 9 U1 2 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD DEC 20 PY 2015 VL 815 IS 2 AR L22 DI 10.1088/2041-8205/815/2/L22 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DC2XI UT WOS:000369081700006 ER PT J AU Karakaya, C Ricote, S Albin, D Sanchez-Cortezon, E Linares-Zea, B Kee, RJ AF Karakaya, Canan Ricote, Sandrine Albin, David Sanchez-Cortezon, Emilio Linares-Zea, Belen Kee, Robert J. TI Thermogravimetric analysis of InCl3 sublimation at atmospheric pressure SO THERMOCHIMICA ACTA LA English DT Article DE Thermogravimetric analysis; Vapor pressure; Metal chloride; InCl3; CuCl; InCl3 oxidation ID ATOMIC LAYER EPITAXY; CUPROUS CHLORIDE; INDIUM OXIDE; THERMODYNAMIC PROPERTIES; THIN-FILMS; VAPOR; COPPER; IN2O3; VAPORIZATION; DEPOSITION AB This paper presents a thermogravimetric approach to evaluate the vapor pressure of low-volatility inorganic compounds such as CuCl and InCl3 under atmospheric conditions. The thermogravimetric analysis (TGA) approach is inherently more straightforward than alternatives such as torsion studies and mass spectrometry. Vapor pressures are evaluated using the Clausius-Clapeyron relationship between the vapor pressure and sublimation (or vaporization) enthalpy at a given temperature. Despite the relative simplicity of TGA, the highly hygroscopic nature of InCl3 demands some caution in the data analysis. Especially at high temperature, a solid-phase oxidation product In2O3 remains as a residual mass. Water is found to be the oxidation agent, with the residual proceeding through a solid-phase InOCl intermediate. However in the relatively low temperature range of interest oxidation is found to be negligible, with the gas-phase sublimation product being In2Cl6. This paper reports sublimation enthalpies and vapor pressures as functions of temperature in the range 570 <= T <= 640 K and atmospheric pressure. (c) 2015 Elsevier B.V. All rights reserved. C1 [Karakaya, Canan; Ricote, Sandrine; Kee, Robert J.] Colorado Sch Mines, Mech Engn, Golden, CO 80401 USA. [Albin, David] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Sanchez-Cortezon, Emilio; Linares-Zea, Belen] Abengoa, Seville 41014, Spain. RP Kee, RJ (reprint author), Colorado Sch Mines, Mech Engn, Golden, CO 80401 USA. EM rjkee@mines.edu FU Abengoa Solar (Seville, Spain; Lakewood, CO); Colorado School of Mines foundation, Protonic Capital Funds FX This research was supported by Abengoa Solar (Seville, Spain; Lakewood, CO) and Colorado School of Mines foundation, Protonic Capital Funds. We gratefully acknowledge numerous insightful discussions with Mr. Joaquin Murillo (Abengoa) and Prof. Jason Porter (CSM). NR 47 TC 0 Z9 0 U1 2 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0040-6031 EI 1872-762X J9 THERMOCHIM ACTA JI Thermochim. Acta PD DEC 20 PY 2015 VL 622 SI SI BP 55 EP 63 DI 10.1016/j.tca.2015.07.018 PG 9 WC Thermodynamics; Chemistry, Analytical; Chemistry, Physical SC Thermodynamics; Chemistry GA DA0MY UT WOS:000367492400009 ER PT J AU Shi, MJ Xiao, CJ Li, QS Wang, HG Wang, XG Li, H AF Shi, M. J. Xiao, C. J. Li, Q. S. Wang, H. G. Wang, X. G. Li, H. TI OBSERVATIONS OF ALFVEN AND SLOW WAVES IN THE SOLAR WIND NEAR 1 AU SO ASTROPHYSICAL JOURNAL LA English DT Article DE magnetohydrodynamics (MHD); plasmas; solar-terrestrial relations; solar wind; turbulence; waves ID HELIOSPHERIC MAGNETIC-FIELD; ION-ACOUSTIC-WAVE; SPACECRAFT OBSERVATIONS; NONLINEAR-INTERACTION; INTERPLANETARY MEDIUM; DENSITY-FLUCTUATIONS; HYDROMAGNETIC WAVES; MAGNETOSONIC WAVE; MODE WAVES; TURBULENCE AB Magnetohydrodynamic (MHD) waves play a significant role in the processes of the solar wind acceleration and the coronal heating. Based on the in situ measurements of the. WIND spacecraft, some MHD waves in the quiet solar wind are identified with two criteria: (1) the correlation coefficients between velocity and magnetic field perturbations. (delta v and delta B) and between thermal pressure and magnetic pressure perturbations. (delta p(t) and delta p(b)), and (2) the dispersion relations of MHD waves. A preliminary statistics of those MHD modes is also achieved by selecting and analyzing the WIND data of 42,279 samples (45050.4 hr) in the 23rd solar cycle. It is found that the time fraction of Alfven waves is 8% in this period,. while the existence time of slow waves is 3.4%,. and the fast wave is rare. The statistical result also shows that the Alfven waves have a higher time fraction in fast solar wind, while the occurrence of slow waves is higher in moderate-speed. solar wind. This work will provide more clues to understanding MHD activities in the solar wind, as well as the studies of solar wind acceleration and heating. C1 [Shi, M. J.; Xiao, C. J.; Li, Q. S.; Wang, H. G.; Wang, X. G.] Peking Univ, Sch Phys, Fusion Simulat Ctr, State Key Lab Nucl Phys & Technol, Beijing 100871, Peoples R China. [Wang, X. G.] Harbin Inst Technol, Dept Phys, Harbin 150001, Peoples R China. [Li, H.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Shi, MJ (reprint author), Peking Univ, Sch Phys, Fusion Simulat Ctr, State Key Lab Nucl Phys & Technol, Beijing 100871, Peoples R China. EM cjxiao@pku.edu.cn FU NSFC [41421003, 41274168]; ITER-CN project [2014GB107004] FX The authors thank the WIND spacecraft team and the data websites: the CDAWeb, the OMNIWeb, and WDC-SILSO, Royal Observatory of Belgium, Brussels. This work was supported by NSFC (grants 41421003 and 41274168) and ITER-CN project (grant 2014GB107004). NR 49 TC 0 Z9 0 U1 5 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD DEC 20 PY 2015 VL 815 IS 2 AR 122 DI 10.1088/0004-637X/815/2/122 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CZ5OG UT WOS:000367151300042 ER PT J AU Zhang, S Hailey, CJ Mori, K Clavel, M Terrier, R Ponti, G Goldwurm, A Bauer, FE Boggs, SE Christensen, FE Craig, WW Harrison, FA Hong, J Nynka, M Soldi, S Stern, D Tomsick, JA Zhang, WW AF Zhang, Shuo Hailey, Charles J. Mori, Kaya Clavel, Maica Terrier, Regis Ponti, Gabriele Goldwurm, Andrea Bauer, Franz E. Boggs, Steven E. Christensen, Finn E. Craig, William W. Harrison, Fiona A. Hong, Jaesub Nynka, Melania Soldi, Simona Stern, Daniel Tomsick, John A. Zhang, William W. TI HARD X-RAY MORPHOLOGICAL AND SPECTRAL STUDIES OF THE GALACTIC CENTER MOLECULAR CLOUD SGR B2: CONSTRAINING PAST SGR A(star) FLARING ACTIVITY SO ASTROPHYSICAL JOURNAL LA English DT Article DE Galaxy: center; ISM: clouds; X-rays: individual (Sgr B2); X-rays: ISM ID SAGITTARIUS-A-ASTERISK; SUPERMASSIVE BLACK-HOLE; 6.4 KEV LINE; CENTER REGION; STAR-FORMATION; COSMIC-RAYS; XMM-NEWTON; CHANDRA OBSERVATIONS; NONTHERMAL EMISSION; BRIGHTEST FLARE AB In 2013, NuSTAR observed the Sgr B2 region and for the first time resolved its hard X-ray emission on subarcminute scales. Two prominent features are detected above 10 keV:. a newly emerging cloud, G0.66-0.13, and the central 90 '' radius region containing two compact cores, Sgr B2(M) and Sgr B2(N), surrounded by diffuse emission. It is inconclusive whether the remaining level of Sgr. B2 emission is still decreasing or has reached a constant background level. A decreasing X-ray emission can be best explained by the X-ray reflection nebula scenario, where the cloud reprocesses a past giant outburst from Sgr A(star). In the X-ray reflection nebula (XRN) scenario, the 3-79 keV Sgr. B2 spectrum allows us to self-consistently test the XRN model using both the Fe K alpha line and the continuum emission. The peak luminosity of the past Sgr A(star) outburst is constrained to L3-79keV similar to 5 x 10(38) ergs s(-1). A newly discovered cloud feature, G0.66-0.13, shows different timing variability. We suggest that it could be a molecular clump located in the Sgr B2 envelope reflecting the same Sgr A(star) outburst. In contrast, if the Sgr. B2 X-ray emission has reached a constant background level, it would imply an origin of low-energy cosmic-ray (CR) proton bombardment. In this scenario, from the NuSTAR measurements we infer a CR ion power of dW/dt = (1 - 4) x 10(39) erg s(-1) and a CR ionization rate of zeta(H) = (6 - 10) x 10(-15) H-1 s(-1). measurements can become powerful tools to constrain the GC CR population. C1 [Zhang, Shuo; Hailey, Charles J.; Mori, Kaya; Nynka, Melania] Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA. [Clavel, Maica; Goldwurm, Andrea] CEA Saclay, Serv Astrophys, IRFU, DSM, F-91191 Gif Sur Yvette, France. [Terrier, Regis; Goldwurm, Andrea; Soldi, Simona] Unite Mixte Rech Astroparticule & Cosmol, F-75205 Paris, France. [Ponti, Gabriele] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Bauer, Franz E.] Pontificia Univ Catolica Chile, Fac Fis, Inst Astrofis, Santiago 22, Chile. [Bauer, Franz E.] Millennium Inst Astrophys, Santiago, Chile. [Bauer, Franz E.] Space Sci Inst, Boulder, CO 80301 USA. [Boggs, Steven E.; Craig, William W.; Tomsick, John A.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Christensen, Finn E.] Tech Univ Denmark, DTU Space Natl Space Inst, DK-2800 Lyngby, Denmark. [Craig, William W.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Harrison, Fiona A.] CALTECH, Cahill Ctr Astron & Astrophys, Pasadena, CA 91125 USA. [Hong, Jaesub] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Stern, Daniel] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Zhang, William W.] NASA, Goddard Space Flight Ctr, Xray Astrophys Lab, Greenbelt, MD 20771 USA. RP Zhang, S (reprint author), Columbia Univ, Columbia Astrophys Lab, 538 W 120th St, New York, NY 10027 USA. EM shuo@astro.columbia.edu RI Boggs, Steven/E-4170-2015; OI Boggs, Steven/0000-0001-9567-4224; Clavel, Maica/0000-0003-0724-2742 FU NASA [NNG08FD60C]; ESA Member States; NASA Headquarters under the NASA Earth and Space Science Fellowship Program [NNX13AM31]; CONICYT-Chile; Ministry of Economy, Development, and Tourism's Millennium Science Initiative; EU Marie Curie Intra European fellowship [FP-PEOPLE-2012-IEF-331095]; Bundesministerium fur Wirtschaft und Technologie/Deutsches Zentrum fur Luft-und Raumfahrt (BMWI/DLR) [FKZ 50 OR 1408]; Max Planck Society; CNES FX This work was supported under NASA Contract No. NNG08FD60C and made use of data from the NuSTAR mission, a project led by the California Institute of Technology, managed by the Jet Propulsion Laboratory, and funded by NASA. We thank the NuSTAR Operations, Software, and Calibration teams for support with the execution and analysis of these observations. This research has made use of the NuSTAR Data Analysis Software (NuSTARDAS) jointly developed by the ASI Science Data Center (ASDC, Italy) and the California Institute of Technology (USA). This research has also made use of data obtained with XMM-Newton, an ESA science mission with instruments and contribution directly funded by ESA Member States and NASA. S.Z. is supported by NASA Headquarters under the NASA Earth and Space Science Fellowship Program-Grant "NNX13AM31." F.E.B. acknowledges support from CONICYT-Chile and the Ministry of Economy, Development, and Tourism's Millennium Science Initiative. G.P. acknowledges support via an EU Marie Curie Intra European fellowship under contract no. FP-PEOPLE-2012-IEF-331095 and Bundesministerium fur Wirtschaft und Technologie/Deutsches Zentrum fur Luft-und Raumfahrt (BMWI/DLR, FKZ 50 OR 1408) and the Max Planck Society. M.C., A.G., R.T., and S.S. acknowledge support by CNES. NR 61 TC 7 Z9 7 U1 3 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD DEC 20 PY 2015 VL 815 IS 2 AR 132 DI 10.1088/0004-637X/815/2/132 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CZ5OG UT WOS:000367151300052 ER PT J AU Fung, J Aulwes, RT Bement, MT Campbell, JM Ferenbaugh, CR Jean, BA Kelley, TM Kenamond, MA Lally, BR Lovegrove, EG Nelson, EM Powell, DM AF Fung, J. Aulwes, R. T. Bement, M. T. Campbell, J. M. Ferenbaugh, C. R. Jean, B. A. Kelley, T. M. Kenamond, M. A. Lally, B. R. Lovegrove, E. G. Nelson, E. M. Powell, D. M. TI Vectorization, threading, and cache-blocking considerations for hydrocodes on emerging architectures SO INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS LA English DT Article DE Lagrangian hydrodynamics; arbitrary Lagrangian Eulerian (ALE) methods; radiation hydrodynamics; computer science and advanced architectures AB The computational efficiency of existing hydrocodes is expected to suffer as computer architectures advance beyond the traditional parallel central processing unit (CPU) model . Concerning new computer architectures, sources of relative performance degradation might include reduced memory bandwidth per core, increased resource contention due to concurrency, increased single instruction, multiple data (SIMD) length, and increasingly complex memory hierarchies. Concerning existing codes, any performance degradation will be influenced by a lack of attention to performance in their design and implementation. This work reports on considerations for improving computational performance in preparation for current and expected changes to computer architecture. The algorithms studied will include increasingly complex prototypes for radiation hydrodynamics codes, such as gradient routines and diffusion matrix assembly (e.g., in [1-6]). The meshes considered for the algorithms are structured or unstructured meshes. The considerations applied for performance improvements are meant to be general in terms of architecture (not specifically graphical processing unit (GPUs) or multi-core machines, for example) and include techniques for vectorization, threading, tiling, and cache blocking. Out of a survey of optimization techniques on applications such as diffusion and hydrodynamics, we make general recommendations with a view toward making these techniques conceptually accessible to the applications code developer. Published 2015. This article is a U.S. Government work and is in the public domain in the USA. C1 [Fung, J.; Bement, M. T.; Campbell, J. M.; Jean, B. A.; Kenamond, M. A.; Nelson, E. M.] Los Alamos Natl Lab, Computat Phys Div 10, Los Alamos, NM 87545 USA. [Aulwes, R. T.; Kelley, T. M.; Lally, B. R.] Los Alamos Natl Lab, Comp Computat & Stat Sci Div, Los Alamos, NM 87545 USA. [Ferenbaugh, C. R.] Los Alamos Natl Lab, High Performance Comp Div, Los Alamos, NM 87545 USA. [Lovegrove, E. G.] Univ Calif Santa Cruz, Santa Cruz, CA 95064 USA. [Powell, D. M.] Stanford Univ, Stanford, CA 94305 USA. RP Fung, J (reprint author), Los Alamos Natl Lab, Computat Phys Div 10, POB 1663, Los Alamos, NM 87545 USA. EM fung@lanl.gov OI Bement, Matthew/0000-0003-3577-3292; Kelley, Timothy/0000-0002-4973-4430 NR 11 TC 0 Z9 0 U1 3 U2 10 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0271-2091 EI 1097-0363 J9 INT J NUMER METH FL JI Int. J. Numer. Methods Fluids PD DEC 20 PY 2015 VL 79 IS 11 BP 596 EP 613 DI 10.1002/fld.4063 PG 18 WC Computer Science, Interdisciplinary Applications; Mathematics, Interdisciplinary Applications; Mechanics; Physics, Fluids & Plasmas SC Computer Science; Mathematics; Mechanics; Physics GA CV8EG UT WOS:000364511900003 ER PT J AU Patel, PP Hanumantha, PJ Velikokhatnyi, OI Datta, MK Hong, DH Gattu, B Poston, JA Manivannan, A Kumta, PN AF Patel, Prasad Prakash Hanumantha, Prashanth Jampani Velikokhatnyi, Oleg I. Datta, Moni Kanchan Hong, Daeho Gattu, Bharat Poston, James A. Manivannan, Ayyakkannu Kumta, Prashant N. TI Nitrogen and cobalt co-doped zinc oxide nanowires - Viable photoanodes for hydrogen generation via photoelectrochemical water splitting SO JOURNAL OF POWER SOURCES LA English DT Article DE Photoelectrochemical water splitting; Nanowires; Hydrothermal; Cobalt doping; Doped zinc oxide; Nitrogen doping ID VISIBLE-LIGHT IRRADIATION; SENSITIZED SOLAR-CELLS; ZNO NANOWIRE; HIGH-PERFORMANCE; ENERGY-STORAGE; NANOROD ARRAYS; PHOTOCATALYTIC ACTIVITY; OPTICAL-PROPERTIES; ELECTRON-MOBILITY; OXYGEN AB Photoelectrochemical (PEC) water splitting has been considered as a promising and environmentally benign approach for efficient and economic hydrogen generation by utilization of solar energy. Development of semiconductor materials with low band gap, high photoelectrochemical activity and stability has been of particular interest for a viable PEC water splitting system. In this study, Co doped ZnO, (Zn0.95Co0.05)O nanowires (NWs) was selected as the composition for further co-doping with nitrogen by comparing solar to hydrogen efficiency (SHE) of ZnO NWs with that of various compositions of (Zn1-xCox)O NWs (x = 0, 0.05, 0.1). Furthermore, nanostructured vertically aligned Co and N-doped ZnO, (Zn1-xCox)O:N NWs (x = 0.05) have been studied as photoanodes for PEC water splitting. An optimal SHE of 1.39% the highest reported so far to the best of our knowledge for ZnO based photoanodes was obtained for the co-doped NWs, (Zn0.95Co0.05)O:N - 600 NWs generated at 600 degrees C in ammonia atmosphere. Further, (Zn0.95Co0.05)O:N-600 NWs exhibited excellent photoelectrochemical stability under illumination compared to pure ZnO NWs. These promising results suggest the potential of (Zn0.95Co0.05) 0:N-600 NWs as a viable photoanode in PEC water splitting cell. Additionally, theoretical first principles C1 [Patel, Prasad Prakash; Gattu, Bharat; Kumta, Prashant N.] Univ Pittsburgh, Swanson Sch Engn, Dept Chem & Petr Engn, Pittsburgh, PA 15261 USA. [Hanumantha, Prashanth Jampani; Velikokhatnyi, Oleg I.; Datta, Moni Kanchan; Hong, Daeho; Kumta, Prashant N.] Univ Pittsburgh, Swanson Sch Engn, Dept Bioengn, Pittsburgh, PA 15261 USA. [Velikokhatnyi, Oleg I.; Datta, Moni Kanchan; Kumta, Prashant N.] Univ Pittsburgh, Ctr Complex Engineered Multifunct Mat, Pittsburgh, PA 15261 USA. [Poston, James A.; Manivannan, Ayyakkannu] Natl Energy Technol Lab, US Dept Energy, Morgantown, WV 26507 USA. [Kumta, Prashant N.] Univ Pittsburgh, Swanson Sch Engn, Mech Engn & Mat Sci, Pittsburgh, PA 15261 USA. [Kumta, Prashant N.] Univ Pittsburgh, Sch Dent Med, Pittsburgh, PA 15217 USA. RP Kumta, PN (reprint author), Dept Bioengn, 815C Benedum Hall,3700 Hara St, Pittsburgh, PA 15261 USA. EM pkumta@pitt.edu RI Jampani Hanumantha, Prashanth/A-9840-2013 OI Jampani Hanumantha, Prashanth/0000-0001-7159-1993 FU National Science Foundation, CBET [0933141]; Center for Complex Engineered Multifunctional Materials (CCEMM) FX Research in part supported by the National Science Foundation, CBET - Grant 0933141. PNK acknowledges the Edward R. Weidlein Chair Professorship funds and the Center for Complex Engineered Multifunctional Materials (CCEMM) for support of this research and also for procurement of the electrochemical equipment and facilities used in this research work. PNK also acknowledges Mr. Matt Detzel (Chemical Engineering Undergraduate Laboratory Technician/Instructor, University of Pittsburgh) for allowing the use of the UV-Vis spectrophotometer and gas chromatography (GC) system. NR 89 TC 5 Z9 5 U1 21 U2 125 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 EI 1873-2755 J9 J POWER SOURCES JI J. Power Sources PD DEC 20 PY 2015 VL 299 BP 11 EP 24 DI 10.1016/j.jpowsour.2015.08.027 PG 14 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA CU9ZY UT WOS:000363907400002 ER PT J AU Fears, TM Sacci, RL Winiarz, JG Kaiser, H Taub, H Veith, GM AF Fears, Tyler M. Sacci, Robert L. Winiarz, Jeffrey G. Kaiser, Helmut Taub, Haskell Veith, Gabriel M. TI A study of perfluorocarboxylate ester solvents for lithium ion battery electrolytes SO JOURNAL OF POWER SOURCES LA English DT Article DE SEI; LiTFSI; Silicon thin-film; Fluorinated electrolyte ID SITU NEUTRON-DIFFRACTION; IN-SITU; FLUORINATED ELECTROLYTES; SILICON ELECTRODES; CHEMISTRY; ANODES; CELL; CARBONIZATION; INTERPHASE; CARBONATE AB Several high-purity methyl perfluorocarboxylates were prepared (>99.5% purity by mole) and investigated as potential fluorine-rich electrolyte solvents in Li-ion batteries. The most conductive electrolyte, 0.1 M lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) in dimethyl perfluoroglutarate (PF5M(2)) (ionic conductivity = 1.87 x 10(-2) mS cm(-1)), is investigated in Si thin-film half-cells. The solid-electrolyteinterphase (SEI) formed by the PF5M(2) electrolyte is composed of similar organic and inorganic moieties and at comparable concentrations as those formed by ethylene carbonate/dimethyl carbonate electrolytes containing LiPF6 and LiTFSI salts. However, the SEI formed by the PF5M(2) electrolyte undergoes reversible electrochemical defluorination, contributing to the reversible capacity of the cell and compensating in part for capacity fade in the Si electrode. While far from ideal these electrolytes provide an opportunity to further develop predictions of suitable fluorinated molecules for use in battery solvents. (C) 2015 Elsevier B.V. All rights reserved. C1 [Fears, Tyler M.; Winiarz, Jeffrey G.] Missouri Univ Sci & Technol, Dept Chem, Rolla, MO 65409 USA. [Fears, Tyler M.; Sacci, Robert L.; Veith, Gabriel M.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37830 USA. [Kaiser, Helmut; Taub, Haskell] Univ Missouri, Univ Missouri Res Reactor, Columbia, MO 65211 USA. [Kaiser, Helmut; Taub, Haskell] Univ Missouri, Dept Phys & Astron, Columbia, MO 65211 USA. RP Veith, GM (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, 1 Bethel Valley Rd, Oak Ridge, TN 37830 USA. EM tmf9rc@mst.edu; veithgm@ornl.gov RI Fears, Tyler/L-1338-2016 OI Fears, Tyler/0000-0001-8648-7582 FU U.S. National Science Foundation [DGE-1069091]; U.S. Department of Energy, Office of Science, Office of Workforce Development for Teachers and Scientists, Office of Science Graduate Student Research (SCGSR) program; DOE [DE-AC05-06OR23100]; Office of Science, Office of Basic Energy Sciences (RLS - Conductivity, ATR-IR) FX Student support and materials for ester synthesis were provided by the U.S. National Science Foundation under Grant No. DGE-1069091. Student support for the electrochemical, XPS, and ATR-IR studies performed at Oak Ridge National Laboratory provided by the U.S. Department of Energy, Office of Science, Office of Workforce Development for Teachers and Scientists, Office of Science Graduate Student Research (SCGSR) program. The SCGSR program is administered by the Oak Ridge Institute for Science and Education for the DOE under contract number DE-AC05-06OR23100. The equipment, materials and technical guidance at ORNL was supported by the Materials Sciences and Engineering Division, Office of Basic Energy Sciences, U.S. Department of Energy under contract with UT-Battelle, LLC (GMV - XPS, ATR-IR, electrochemical) and the Fluid Interface Reactions, Structures, and Transport (FIRST) Center, an Energy Frontier Research Center funded by the Office of Science, Office of Basic Energy Sciences (RLS - Conductivity, ATR-IR). T.M.F. would also like to thank Dr. C. Sotiriou-Leventis for help in formulating the perfluorocarboxylate ester synthesis. NR 30 TC 2 Z9 2 U1 9 U2 64 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 EI 1873-2755 J9 J POWER SOURCES JI J. Power Sources PD DEC 20 PY 2015 VL 299 BP 434 EP 442 DI 10.1016/j.jpowsour.2015.08.098 PG 9 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA CU9ZY UT WOS:000363907400053 ER PT J AU Knudsen, E Albertus, P Cho, KT Weber, AZ Kojic, A AF Knudsen, E. Albertus, P. Cho, K. T. Weber, A. Z. Kojic, A. TI Flow simulation and analysis of high-power flow batteries SO JOURNAL OF POWER SOURCES LA English DT Article DE Flow batteries; CFD; Simulation; Power density; Pressure loss ID ELECTROLYTE FUEL-CELLS; SCALE ENERGY-STORAGE; PERFORMANCE; TRANSPORT; EFFICIENCY; VISCOSITY; DESIGN; FIELDS; LAYERS; MODEL AB The cost of a flow battery system can be reduced by increasing its power density and thereby reducing its stack area. If per-pass utilizations are held constant, higher battery power densities can only be achieved using higher flow rates. Here, a 3D computational fluid dynamics model of a flow battery flow field and electrode is used to analyze the implications of increasing flow rates to high power density operating conditions. Interdigitated and serpentine designs, and cell sizes ranging from 10 cm(2) to 400 cm(2), are simulated. The results quantify the dependence of pressure loss on cell size and design, demonstrating that the details of the passages that distribute flow between individual channels and the inlet and outlet have a major impact on pressure losses in larger cells. Additionally, in-cell flow behavior is analyzed as a function of cell size and design. Flow structures are interrogated to show how and where electrode parameters influence pressure drops, and how regions where transport is slow are correlated with the presence of experimentally observed cell degradation. (C) 2015 Elsevier B.V. All rights reserved. C1 [Knudsen, E.; Kojic, A.] Bosch Res & Technol Ctr, Palo Alto, CA 94304 USA. [Albertus, P.] Adv Res Projects Agcy Energy, Washington, DC 20585 USA. [Cho, K. T.] No Illinois Univ, Dept Mech Engn, De Kalb, IL 60115 USA. [Weber, A. Z.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Knudsen, E (reprint author), Bosch Res & Technol Ctr, Palo Alto, CA 94304 USA. EM ewk@alumni.stanford.edu OI Weber, Adam/0000-0002-7749-1624 FU Advanced Research Projects Agency-Energy (ARPA-E) of the U.S. Department of Energy [DE-AC02-05CH11231, DE-ARDE-AR0000137] FX The authors gratefully acknowledge financial support from the Advanced Research Projects Agency-Energy (ARPA-E) of the U.S. Department of Energy under contract no. DE-AC02-05CH11231 for LBNL and DE-ARDE-AR0000137 for Robert Bosch LLC, with cost share provided by Robert Bosch LLC. NR 40 TC 4 Z9 4 U1 3 U2 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 EI 1873-2755 J9 J POWER SOURCES JI J. Power Sources PD DEC 20 PY 2015 VL 299 BP 617 EP 628 DI 10.1016/j.jpowsour.2015.08.041 PG 12 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA CU9ZY UT WOS:000363907400074 ER PT J AU Gelfand, I Cui, MD Tang, JW Robertson, GP AF Gelfand, Ilya Cui, Mengdi Tang, Jianwu Robertson, G. Philip TI Short-term drought response of N2O and CO2 emissions from mesic agricultural soils in the US Midwest SO AGRICULTURE ECOSYSTEMS & ENVIRONMENT LA English DT Article DE Soil carbon; Conservation reserve program; N2O methodology; Corn; No-till ID NITROUS-OXIDE EMISSIONS; CARBON-DIOXIDE; MOISTURE; CYCLES; FLUXES; WATER; MINERALIZATION; COMPACTION; PULSES; CH4 AB Climate change is causing the intensification of both rainfall and droughts in temperate climatic zones, which will affect soil drying and rewetting cycles and associated processes such as soil greenhouse gas (GHG) fluxes. We investigated the effect of soil rewetting following a prolonged natural drought on soil emissions of nitrous oxide (N2O) and carbon dioxide (CO2) in an agricultural field recently converted from 22 years in the USDA Conservation Reserve Program (CRP). We compared responses to those in a similarly managed field with no CRP history and to a CRP reference field. We additionally compared soil GHG emissions measured by static flux chambers with off-site laboratory analysis versus in situ analysis using a portable quantum cascade laser and infrared gas analyzer. Under growing season drought conditions, average soil N2O fluxes ranged between 0.2 and 0.8 mu g N m(-2) min(-1) and were higher in former CRP soils and unaffected by nitrogen (N) fertilization. After 18 days of drought, a 50 mm rewetting event increased N2O fluxes by 34 and 24 fold respectively in the former CRP and non-CRP soils. Average soil CO2 emissions during drought ranged from 1.1 to 3.1 mg C m(-2) min(-1) for the three systems. CO2 emissions increased 2 fold after the rewetting and were higher from soils with higher C contents. Observations are consistent with the hypothesis that during drought soil N2O emissions are controlled by available C and following rewetting additionally influenced by N availability, whereas soil CO2 emissions are independent of short-term N availability. Finally, soil GHG emissions estimated by off-site and in situ methods were statistically identical. (C) 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). C1 [Gelfand, Ilya; Robertson, G. Philip] Michigan State Univ, WK Kellogg Biol Stn, Hickory Corners, MI 49060 USA. [Gelfand, Ilya; Robertson, G. Philip] Michigan State Univ, Great Lakes Bioenergy Res Ctr, E Lansing, MI 48824 USA. [Cui, Mengdi] Brown Univ, Dept Geol Sci, Providence, RI 02912 USA. [Cui, Mengdi; Tang, Jianwu] Marine Biol Lab, Ecosyst Ctr, Woods Hole, MA 02543 USA. [Robertson, G. Philip] Michigan State Univ, Dept Plant Soil & Microbial Sci, E Lansing, MI 48824 USA. RP Gelfand, I (reprint author), Michigan State Univ, WK Kellogg Biol Stn, Hickory Corners, MI 49060 USA. EM igelfand@msu.edu; mengdi_cui@brown.edu; jtang@mbl.edu; robert30@msu.edu RI Tang, Jianwu/K-6798-2014; Gelfand, Ilya/J-9017-2012 OI Tang, Jianwu/0000-0003-2498-9012; Gelfand, Ilya/0000-0002-8576-0978 FU DOE Office of Science [DE-FC02-07ER64494]; Office of Energy Efficiency and Renewable Energy [DE-AC05-76RL01830]; US National Science Foundation LTER program [DEB 1027253]; MSU AgBioResearch; Brown University; Brown University-Marine Biological Laboratory graduate program in Biological and Environmental Sciences; [NSF/DBI-959333] FX We thank J. Bronson, K. Sun, and L. Tao for field assistance. We thank T. Zenone and others for thoughtful discussions and J. Schuette for helpful comments on an early version of the manuscript. We thank A. Kravchenko for help with statistical analyses. We thank Mrs. E. Marshall for access to CRP field sites. Financial support for this work was provided by the DOE Office of Science (DE-FC02-07ER64494) and Office of Energy Efficiency and Renewable Energy (DE-AC05-76RL01830), the US National Science Foundation LTER program (DEB 1027253), and MSU AgBioResearch. J. Tang and M. Cui were supported additionally by NSF/DBI-959333, Brown University seed funding, and the Brown University-Marine Biological Laboratory graduate program in Biological and Environmental Sciences. NR 34 TC 2 Z9 2 U1 8 U2 173 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-8809 EI 1873-2305 J9 AGR ECOSYST ENVIRON JI Agric. Ecosyst. Environ. PD DEC 20 PY 2015 VL 212 BP 127 EP 133 DI 10.1016/j.agee.2015.07.005 PG 7 WC Agriculture, Multidisciplinary; Ecology; Environmental Sciences SC Agriculture; Environmental Sciences & Ecology GA CR3VL UT WOS:000361261100013 ER PT J AU Diehl, S Rockefeller, G Fryer, CL Riethmiller, D Statler, TS AF Diehl, S. Rockefeller, G. Fryer, C. L. Riethmiller, D. Statler, T. S. TI Generating Optimal Initial Conditions for Smoothed Particle Hydrodynamics Simulations SO PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF AUSTRALIA LA English DT Article DE cosmology: miscellaneous; methods: numerical; supernovae: general ID CENTROIDAL VORONOI TESSELLATIONS; GLOBULAR-CLUSTER CORES; N-BODY SIMULATIONS; NEUTRON-STARS; GALACTIC-CENTER; MAJOR MERGERS; IA SUPERNOVAE; WHITE-DWARFS; DARK-MATTER; A-ASTERISK AB We review existing smoothed particle hydrodynamics setup methods and outline their advantages, limitations, and drawbacks. We present a new method for constructing initial conditions for smoothed particle hydrodynamics simulations, which may also be of interest for N-body simulations, and demonstrate this method on a number of applications. This new method is inspired by adaptive binning techniques using weighted Voronoi tessellations. Particles are placed and iteratively moved based on their proximity to neighbouring particles and the desired spatial resolution. This new method can satisfy arbitrarily complex spatial resolution requirements. C1 [Diehl, S.] Los Alamos Natl Lab, Nucl & Particle Phys Astrophys & Cosmol Grp T 2, Los Alamos, NM 87545 USA. [Diehl, S.; Rockefeller, G.; Fryer, C. L.] Los Alamos Natl Lab, Computat Phys & Methods CCS 2, Los Alamos, NM 87545 USA. [Riethmiller, D.; Statler, T. S.] Ohio Univ, Inst Astrophys, Athens, OH 45701 USA. [Statler, T. S.] Natl Sci Fdn, Arlington, VA 22230 USA. RP Diehl, S (reprint author), Los Alamos Natl Lab, Nucl & Particle Phys Astrophys & Cosmol Grp T 2, POB 1663, Los Alamos, NM 87545 USA. EM gaber@lanl.gov OI Rockefeller, Gabriel/0000-0002-9029-5097 FU National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory [DE-AC52-06NA25396] FX This work was carried out under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396. Three-dimensional images were created using the visit package developed at LLNL. NR 66 TC 0 Z9 0 U1 0 U2 0 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 1323-3580 EI 1448-6083 J9 PUBL ASTRON SOC AUST JI Publ. Astron. Soc. Aust. PD DEC 18 PY 2015 VL 32 AR e048 DI 10.1017/pasa.2015.50 PG 18 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CZ7BT UT WOS:000367255600002 ER PT J AU Couturier, M Navarro, D Chevret, D Henrissat, B Piumi, F Ruiz-Duenas, FJ Martinez, AT Grigoriev, IV Riley, R Lipzen, A Berrin, JG Master, ER Rosso, MN AF Couturier, Marie Navarro, David Chevret, Didier Henrissat, Bernard Piumi, Francois Ruiz-Duenas, Francisco J. Martinez, Angel T. Grigoriev, Igor V. Riley, Robert Lipzen, Anna Berrin, Jean-Guy Master, Emma R. Rosso, Marie-Noelle TI Enhanced degradation of softwood versus hardwood by the white-rot fungus Pycnoporus coccineus SO BIOTECHNOLOGY FOR BIOFUELS LA English DT Article DE Carbohydrate-active enzymes; Lignin-active enzymes; Pycnoporus coccineus; Transcriptomics; Proteomics; ToF-SIMS; White-rot ID ION MASS-SPECTROMETRY; WOOD DECAY FUNGI; PHANEROCHAETE-CHRYSOSPORIUM; CERIPORIOPSIS-SUBVERMISPORA; ENZYMATIC-HYDROLYSIS; COMPARATIVE GENOMICS; GENE-EXPRESSION; SPRUCE WOOD; ENZYMES; BIOMASS AB Background: White-rot basidiomycete fungi are potent degraders of plant biomass, with the ability to mineralize all lignocellulose components. Recent comparative genomics studies showed that these fungi use a wide diversity of enzymes for wood degradation. Deeper functional analyses are however necessary to understand the enzymatic mechanisms leading to lignocellulose breakdown. The Polyporale fungus Pycnoporus coccineus BRFM310 grows well on both coniferous and deciduous wood. In the present study, we analyzed the early response of the fungus to softwood (pine) and hardwood (aspen) feedstocks and tested the effect of the secreted enzymes on lignocellulose deconstruction. Results: Transcriptomic and proteomic analyses revealed that P. coccineus grown separately on pine and aspen displayed similar sets of transcripts and enzymes implicated in lignin and polysaccharide degradation. In particular, the expression of lignin-targeting oxidoreductases, such as manganese peroxidases, increased upon cultivation on both woods. The sets of enzymes secreted during growth on both pine and aspen were more efficient in saccharide release from pine than from aspen, and characterization of the residual solids revealed polysaccharide conversion on both pine and aspen fiber surfaces. Conclusion: The combined analysis of soluble sugars and solid residues showed the suitability of P. coccineus secreted enzymes for softwood degradation. Analyses of solubilized products and residual surface chemistries of enzyme-treated wood samples pointed to differences in fiber penetration by different P. coccineus secretomes. Accordingly, beyond the variety of CAZymes identified in P. coccineus genome, transcriptome and secretome, we discuss several parameters such as the abundance of manganese peroxidases and the potential role of cytochrome P450s and pectin degradation on the efficacy of fungi for softwood conversion. C1 [Couturier, Marie; Navarro, David; Piumi, Francois; Berrin, Jean-Guy; Rosso, Marie-Noelle] Aix Marseille Univ, Biodiversite & Biotechnol Fong UMR1163, F-13288 Marseille, France. [Couturier, Marie; Navarro, David; Piumi, Francois; Berrin, Jean-Guy; Rosso, Marie-Noelle] INRA, Biodiversite & Biotechnol Fong UMR1163, F-13288 Marseille, France. [Couturier, Marie; Navarro, David; Piumi, Francois; Berrin, Jean-Guy; Rosso, Marie-Noelle] Polytech Marseille, Biodiversite & Biotechnol Fong UMR1163, F-13288 Marseille, France. [Couturier, Marie; Master, Emma R.] Univ Toronto, Dept Chem Engn & Appl Chem, Toronto, ON, Canada. [Chevret, Didier] INRA, Micalis UMR1319, Plateforme Anal Prote Paris Sud Ouest, F-78352 Jouy En Josas, France. [Henrissat, Bernard] Univ Aix Marseille, CNRS UMR 7257, AFMB, F-13288 Marseille, France. [Henrissat, Bernard] King Abdulaziz Univ, Dept Biol Sci, Jeddah 21413, Saudi Arabia. [Henrissat, Bernard] INRA, USC AFMB 1408, F-13288 Marseille, France. [Ruiz-Duenas, Francisco J.; Martinez, Angel T.] CSIC, CIB, E-28040 Madrid, Spain. [Grigoriev, Igor V.; Riley, Robert; Lipzen, Anna] Joint Genome Inst JGI, US Dept Energy, Walnut Creek, CA USA. RP Couturier, M (reprint author), Aix Marseille Univ, Biodiversite & Biotechnol Fong UMR1163, 163 Ave Luminy, F-13288 Marseille, France. EM marie.couturier@univ-amu.fr RI Master, Emma/O-3554-2014; Fac Sci, KAU, Biol Sci Dept/L-4228-2013; Ruiz-Duenas, Francisco/L-9837-2015 OI berrin, jean-guy/0000-0001-7570-3745; Martinez, Angel T/0000-0002-1584-2863; Ruiz-Duenas, Francisco/0000-0002-9837-5665 FU INRA MIGALE bioinformatics platform; Marie Curie International Outgoing Fellowship within 7th European Community Framework Program; French National Research Agency (A*MIDEX project) [ANR-11-IDEX-0001-02]; French National Research Agency (ANR FUNLOCK) [ANR-13-BIME-0002-01]; Office of Science of US Department of Energy [DE-AC02-05CH11231] FX We are grateful to Valentin Loux from the INRA MIGALE bioinformatics platform (http://migale.jouy.inra.fr) for providing help and support, Mireille Haon for technical assistance and Estelle Bonnin and Jacqueline Vigouroux for substrate composition analysis. We also thank Robyn Goacher for helpful discussions. MC was funded by a Marie Curie International Outgoing Fellowship within the 7th European Community Framework Program. This study was also funded by the French National Research Agency (A*MIDEX project ANR-11-IDEX-0001-02; ANR FUNLOCK ANR-13-BIME-0002-01). The work by the US Department of Energy Joint Genome Institute, a DOE Office of Science User Facility, is supported by the Office of Science of the US Department of Energy under Contract No. DE-AC02-05CH11231. The RNA-sequencing data sets supporting the results of this article are available in the NCBI's SRA repository under accession number SRP047955. Read counts and normalized read counts are available in GEO database repository with series accession number GSE74234. NR 51 TC 6 Z9 6 U1 10 U2 29 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1754-6834 J9 BIOTECHNOL BIOFUELS JI Biotechnol. Biofuels PD DEC 18 PY 2015 VL 8 AR 216 DI 10.1186/s13068-015-0407-8 PG 16 WC Biotechnology & Applied Microbiology; Energy & Fuels SC Biotechnology & Applied Microbiology; Energy & Fuels GA CZ6QZ UT WOS:000367227100004 PM 26692083 ER PT J AU Huang, K Chai, SH Mayes, RT Veith, GM Browning, KL Sakwa-Novak, MA Potter, ME Jones, CW Wu, YT Dai, S AF Huang, Kuan Chai, Song-Hai Mayes, Richard T. Veith, Gabriel M. Browning, Katie L. Sakwa-Novak, Miles A. Potter, Matthew E. Jones, Christopher W. Wu, You-Ting Dai, Sheng TI An efficient low-temperature route to nitrogen-doping and activation of mesoporous carbons for CO2 capture SO CHEMICAL COMMUNICATIONS LA English DT Article ID DOPED MICROPOROUS CARBONS; POROUS CARBONS; CATALYTIC MATERIALS; DIOXIDE CAPTURE; ALKALI AMIDES; SODIUM AMIDE; ADSORPTION; AMMONIA; PERFORMANCE; NITRIDATION AB An innovative strategy for post-synthesis nitrogen-doping of mesoporous carbons (MCs) with high yields (> 90%) at low temperatures (230-380 degrees C) by using a strong base, sodium amide (NaNH2), was developed. The as-prepared N-doped MCs exhibit a significantly enhanced CO2 adsorption performance in terms of capacity and selectivity when compared to their parent MCs. C1 [Huang, Kuan; Chai, Song-Hai; Dai, Sheng] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. [Huang, Kuan; Wu, You-Ting] Nanjing Univ, Sch Chem & Chem Engn, Nanjing 210093, Jiangsu, Peoples R China. [Mayes, Richard T.; Dai, Sheng] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Veith, Gabriel M.; Browning, Katie L.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Sakwa-Novak, Miles A.; Potter, Matthew E.; Jones, Christopher W.] Georgia Inst Technol, Sch Chem & Biomol Engn, Atlanta, GA 30332 USA. RP Chai, SH (reprint author), Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. EM schai@utk.edu; ytwu@nju.edu.cn; dais@ornl.gov RI Mayes, Richard/G-1499-2016; Dai, Sheng/K-8411-2015; Huang, Kuan/F-7003-2015 OI Mayes, Richard/0000-0002-7457-3261; Dai, Sheng/0000-0002-8046-3931; Huang, Kuan/0000-0003-1905-3017 FU Center for Understanding and Control of Acid Gas-Induced Evolution of Materials for Energy (UNCAGE-ME), an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, at Oak Ridge National Laboratory [DE-SC0012577]; Center for Understanding and Control of Acid Gas-Induced Evolution of Materials for Energy (UNCAGE-ME), an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, at Georgia Tech [DE-SC0012577]; National Natural Science Foundation of China [21376115]; China Scholarship Council (CSC); Materials Sciences and Engineering Division, Office of Basic Energy Sciences, U.S. Department of Energy; UT-Battelle, LLC. FX This work was supported as part of the Center for Understanding and Control of Acid Gas-Induced Evolution of Materials for Energy (UNCAGE-ME), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, at Oak Ridge National Laboratory and at Georgia Tech under DE-SC0012577. A portion of this research was supported by the Materials Sciences and Engineering Division, Office of Basic Energy Sciences, U.S. Department of Energy under contract with UT-Battelle, LLC. Y. T. Wu and K Huang were sponsored by the National Natural Science Foundation of China under Agreement 21376115 and China Scholarship Council (CSC). NR 48 TC 10 Z9 10 U1 15 U2 88 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1359-7345 EI 1364-548X J9 CHEM COMMUN JI Chem. Commun. PD DEC 18 PY 2015 VL 51 IS 97 BP 17261 EP 17264 DI 10.1039/c5cc05619e PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA CZ2SL UT WOS:000366954800014 PM 26460737 ER PT J AU Lou, SF Ma, YL Cheng, XQ Gao, JT Gao, YZ Zuo, PJ Du, CY Yin, GP AF Lou, Shuaifeng Ma, Yulin Cheng, Xinqun Gao, Jintong Gao, Yunzhi Zuo, Pengjian Du, Chunyu Yin, Geping TI Facile synthesis of nanostructured TiNb2O7 anode materials with superior performance for high-rate lithium ion batteries SO CHEMICAL COMMUNICATIONS LA English DT Article ID ELECTRICAL ENERGY-STORAGE; HIGH-RATE CAPABILITY; LARGE-CAPACITY; NIOBIUM OXIDE; LONG-LIFE; HYBRID; CONVERSION; INSERTION; DENSITY; FACETS AB One-dimensional nanostructured TiNb2O7 was prepared by a simple solution-based process and subsequent thermal annealing. The obtained anode materials exhibited excellent electrochemical performance with superior reversible capacity, rate capability and cyclic stability. C1 [Lou, Shuaifeng; Ma, Yulin; Cheng, Xinqun; Gao, Jintong; Gao, Yunzhi; Zuo, Pengjian; Du, Chunyu; Yin, Geping] Harbin Inst Technol, Sch Chem Engn & Technol, Inst Adv Chem Power Sources, Harbin 150001, Peoples R China. [Ma, Yulin] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Energy Storage & Distributed Resources Div, Berkeley, CA 94720 USA. RP Yin, GP (reprint author), Harbin Inst Technol, Sch Chem Engn & Technol, Inst Adv Chem Power Sources, Harbin 150001, Peoples R China. EM yingeping@hit.edu.cn FU National Natural Science Foundation of China [51472065]; Office of FreedomCAR and Vehicle Technologies of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the National Natural Science Foundation of China (No. 51472065). We thank the Center of Analysis and Measurement of Harbin Institute of Technology. Y.M. and S.L. would like to thank Dr Guoying Chen and Marca. M. Doeff (LBNL) for discussion, and Professor Galen Leonhardy for editing assistance. We also acknowledge the support by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of FreedomCAR and Vehicle Technologies of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 34 TC 8 Z9 8 U1 29 U2 105 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1359-7345 EI 1364-548X J9 CHEM COMMUN JI Chem. Commun. PD DEC 18 PY 2015 VL 51 IS 97 BP 17293 EP 17296 DI 10.1039/c5cc07052j PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA CZ2SL UT WOS:000366954800022 PM 26462454 ER PT J AU Boscolo, D Scifoni, E Carlino, A La Tessa, C Berger, T Durante, M Rosso, V Kramer, M AF Boscolo, Daria Scifoni, Emanuele Carlino, Antonio La Tessa, Chiara Berger, Thomas Durante, Marco Rosso, Valeria Kraemer, Michael TI TLD efficiency calculations for heavy ions: an analytical approach SO EUROPEAN PHYSICAL JOURNAL D LA English DT Article ID CHARGED-PARTICLES; TRACK STRUCTURE; SUPRALINEARITY; IRRADIATION; FILMS AB The use of thermoluminescent dosimeters (TLDs) in heavy charged particles' dosimetry is limited by their non-linear dose response curve and by their response dependence on the radiation quality. Thus, in order to use TLDs with particle beams, a model that can reproduce the behavior of these detectors under different conditions is needed. Here a new, simple and completely analytical algorithm for the calculation of the relative TL-efficiency depending on the ion charge Z and energy E is presented. The detector response is evaluated starting from the single ion case, where the computed effectiveness values have been compared with experimental data as well as with predictions from a different method. The main advantage of this approach is that, being fully analytical, it is computationally fast and can be efficiently integrated into treatment planning verification tools. The calculated efficiency values have been then implemented in the treatment planning code TRiP98 and dose calculations on a macroscopic target irradiated with an extended carbon ion field have been performed and verified against experimental data. C1 [Boscolo, Daria; Scifoni, Emanuele; Carlino, Antonio; Durante, Marco; Kraemer, Michael] GSI Helmholtzzentrum Schwerionenforsch GmbH, D-64291 Darmstadt, Germany. [Boscolo, Daria; Rosso, Valeria] Univ Pisa, Dept Phys, I-56127 Pisa, Italy. [Carlino, Antonio] EBG MedAustron GmbH, A-2700 Wiener Neustadt, Austria. [Carlino, Antonio] Univ Palermo, Dept Chem & Phys, I-90133 Palermo, Italy. [La Tessa, Chiara] Brookhaven Natl Lab, Upton, NY 11973 USA. [Berger, Thomas] German Aerosp Ctr DLR, Inst Aerosp Med, D-51147 Cologne, Germany. RP Boscolo, D (reprint author), GSI Helmholtzzentrum Schwerionenforsch GmbH, D-64291 Darmstadt, Germany. EM e.scifoni@gsi.de OI Durante, Marco/0000-0002-4615-553X; Berger, Thomas/0000-0003-3319-5740 FU European Union Seventh Framework Programme [PEOPLE - ITN - ARGENT project] [608163] FX We gratefully acknowledge the help of Dr. S. Greilich and Dr. N. Bassler with numerous discussions. Part of the research leading to these results has received funding from the European Union Seventh Framework Programme [PEOPLE - 2013 - ITN - ARGENT project] under grant agreement n [608163]. NR 21 TC 2 Z9 2 U1 3 U2 4 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6060 EI 1434-6079 J9 EUR PHYS J D JI Eur. Phys. J. D PD DEC 18 PY 2015 VL 69 IS 12 AR 286 DI 10.1140/epjd/e2015-60208-3 PG 6 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA CZ1DJ UT WOS:000366845700002 ER PT J AU Li, N Yadav, SK Wang, J Liu, XY Misra, A AF Li, Nan Yadav, Satyesh K. Wang, Jian Liu, Xiang-Yang Misra, Amit TI Growth and Stress-induced Transformation of Zinc blende AlN Layers in Al-AlN-TiN Multilayers SO SCIENTIFIC REPORTS LA English DT Article ID DENSITY-FUNCTIONAL THEORY; IN-SITU NANOINDENTATION; CUBIC ALN; ELECTRONIC-STRUCTURE; SUPERLATTICES; STABILIZATION; THICKNESS; DEPOSITION; PRESSURE; NITRIDES AB AlN nanolayers in sputter deposited {111} Al/AlN/TiN multilayers exhibit the metastable zinc-blende-structure (z-AlN). Based on density function theory calculations, the growth of the z-AlN is ascribed to the kinetically and energetically favored nitridation of the deposited aluminium layer. In situ nanoindentation of the as-deposited {111} Al/AlN/TiN multilayers in a high-resolution transmission electron microscope revealed the z-AlN to wurzite AlN phase transformation through collective glide of Shockley partial dislocations on every two {111} planes of the z-AlN. C1 [Li, Nan] Los Alamos Natl Lab, Mat Phys & Applicat Div, MPA CINT, Los Alamos, NM 87545 USA. [Yadav, Satyesh K.; Liu, Xiang-Yang] Los Alamos Natl Lab, Mat Sci & Technol Div, Los Alamos, NM 87545 USA. [Wang, Jian] Univ Nebraska, Dept Mech & Mat Engn, Lincoln, NE 68588 USA. [Misra, Amit] Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA. RP Li, N (reprint author), Los Alamos Natl Lab, Mat Phys & Applicat Div, MPA CINT, POB 1663, Los Alamos, NM 87545 USA. EM nanli@lanl.gov; jianwang@unl.edu RI Wang, Jian/F-2669-2012; Li, Nan /F-8459-2010; Yadav, Satyesh/M-6588-2014 OI Wang, Jian/0000-0001-5130-300X; Li, Nan /0000-0002-8248-9027; FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences; University of Nebraska-Lincoln FX This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. J.W. also thanks the Start-up support provided by the University of Nebraska-Lincoln. NR 28 TC 2 Z9 2 U1 6 U2 19 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD DEC 18 PY 2015 VL 5 AR 18554 DI 10.1038/srep18554 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CZ4GA UT WOS:000367060300002 PM 26681109 ER PT J AU Dicksved, J Jansson, JK Lindberg, JE AF Dicksved, Johan Jansson, Janet K. Lindberg, Jan Erik TI Fecal microbiome of growing pigs fed a cereal based diet including chicory (Cichorium intybus L.) or ribwort (Plantago lanceolata L.) forage SO JOURNAL OF ANIMAL SCIENCE AND BIOTECHNOLOGY LA English DT Article DE Amplicon sequencing; Chicory; Microbiome; Ribwort; Uronic acid; Weaning; 16S ID GUT MICROBIOTA; NONSTARCH POLYSACCHARIDES; WEANED PIGLETS; HUMAN COLON; FIBER; BACTERIA; GROWTH; LEVEL; DIGESTIBILITY; FERMENTATION AB Background: The purpose of this study was to investigate how inclusion of chicory forage or ribwort forage in a cereal-based diet influenced the fecal microbial community (microbiome) in newly weaned (35 days of age) piglets. The piglets were fed a cereal-based diet without (B) and with inclusion (80 and 160 g/kg air-dry forage) of vegetative shoots of chicory (C) and leaves of ribwort (R) forage in a 35-day growth trial. Fecal samples were collected at the start (D0), 17 (D17) and 35 (D35) days after weaning and profiles of the microbial consortia were generated using terminal restriction fragment length polymorphism (T-RFLP). 454-FLX pyrosequencing of 16S rRNA gene amplicons was used to analyze the microbial composition in a subset of the samples already analyzed with T-RFLP. Results: The microbial clustering pattern was primarily dependent on age of the pigs, but diet effects could also be observed. Lactobacilli and enterobacteria were more abundant at D0, whereas the genera Streptococcus, Treponema, Clostridium, Clostridiaceae1 and Coprococcus were present in higher abundances at D35. Pigs fed ribwort had an increased abundance of sequences classified as Treponema and a reduction in lactobacilli. However, the abundance of Prevotellaceae increased with age in on both the chicory and the ribwort diet. Moreover, there were significant correlations between the abundance of Bacteroides and the digested amount of galactose, uronic acids and total non-starch polysaccharides, and between the abundance of Bacteroidales and the digested amount of xylose. Conclusion: This study demonstrated that both chicory and ribwort inclusion in the diet of newly weaned pigs influenced the composition of the fecal microbiota and that digestion of specific dietary components was correlated with species composition of the microbiota. Moreover, this study showed that the gut will be exposed to a dramatic shift in the microbial community structure several weeks after weaning. C1 [Dicksved, Johan; Lindberg, Jan Erik] Swedish Univ Agr Sci, Dept Anim Nutr & Management, SE-75007 Uppsala, Sweden. [Dicksved, Johan] Swedish Univ Agr Sci, Dept Microbiol, SE-75007 Uppsala, Sweden. [Jansson, Janet K.] Pacific NW Natl Lab, Div Biol Earth & Biol Sci, Richland, WA 99352 USA. RP Dicksved, J (reprint author), Swedish Univ Agr Sci, Dept Anim Nutr & Management, POB 7024, SE-75007 Uppsala, Sweden. EM johan.dicksved@slu.se FU FORMAS [2005-1608] FX This study was funded by FORMAS, project no: 2005-1608. We thank Anna-Greta Haglund for skilled laboratory assistance and Zongli Zheng at the Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Sweden, for advice and assistance in the statistical analysis. NR 36 TC 3 Z9 3 U1 4 U2 22 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 2049-1891 J9 J ANIM SCI BIOTECHNO JI J. Anim. Sci. Biotechnol. PD DEC 18 PY 2015 VL 6 AR 53 DI 10.1186/s40104-015-0054-8 PG 9 WC Agriculture, Dairy & Animal Science SC Agriculture GA CZ0LA UT WOS:000366795100002 PM 26688727 ER PT J AU Fan, W Zhu, X Ke, F Chen, YB Dong, KC Ji, J Chen, B Tongay, S Ager, JW Liu, K Su, HB Wu, JQ AF Fan, Wen Zhu, Xi Ke, Feng Chen, Yabin Dong, Kaichen Ji, Jie Chen, Bin Tongay, Sefaattin Ager, Joel W. Liu, Kai Su, Haibin Wu, Junqiao TI Vibrational spectrum renormalization by enforced coupling across the van der Waals gap between MoS2 and WS2 monolayers SO PHYSICAL REVIEW B LA English DT Article ID MOLYBDENUM-DISULFIDE; TRANSITION; PHOTOLUMINESCENCE; HETEROSTRUCTURES; MOLECULES; BANDGAP AB At the few or monolayer limit, layered materials define an interesting two-dimensional system with unique electronic and phonon properties. The electron band structure of monolayers can be drastically different from multilayers despite the weak van der Waals interaction between neighboring layers. In this Rapid Communication, we demonstrate that vibrational spectra of a MoS2 monolayer and a WS2 monolayer are also renormalized when the interaction between them is artificially modulated. This is achieved by using a diamond-anvil cell to apply high pressures, up to 39 GPa onto WS2/MoS2 heterobilayers. With increasing pressure, the out-of-plane Raman frequencies of the two individual monolayers repel each other, exhibiting coherent vibrations across the van der Waals gap with an optical-like and an acousticlike interlayer vibration mode. The discovery shows a crossover in lattice vibration from a two-dimensional system toward a three-dimensional system driven by enforced interlayer coupling. C1 [Fan, Wen; Chen, Yabin; Dong, Kaichen; Wu, Junqiao] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Zhu, Xi; Su, Haibin] Nanyang Technol Univ, Sch Mat Sci & Engn, Singapore 639798, Singapore. [Ke, Feng; Chen, Bin] Ctr High Pressure Sci & Technol Adv Res, Shanghai 201203, Peoples R China. [Ji, Jie] Univ Sci & Technol China, Dept Thermal Sci & Energy Engn, Hefei 230027, Anhui, Peoples R China. [Tongay, Sefaattin] Arizona State Univ, Sch Engn Matter Transport & Energy, Tempe, AZ 85287 USA. [Ager, Joel W.; Wu, Junqiao] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Liu, Kai] Tsinghua Univ, Sch Mat Sci & Engn, Beijing 100084, Peoples R China. RP Su, HB (reprint author), Nanyang Technol Univ, Sch Mat Sci & Engn, Singapore 639798, Singapore. EM hbsu@ntu.edu.sg; wuj@berkeley.edu RI Zhu, Xi/M-4512-2013; Liu, Kai/A-4754-2012; Wu, Junqiao/G-7840-2011; OI Liu, Kai/0000-0002-0638-5189; Wu, Junqiao/0000-0002-1498-0148; Su, Haibin/0000-0001-9760-6567 FU National Science Foundation [DMR-1306601]; COMPRES [EAR 11-57758]; Chinese Scholarship Council (CSC) [201406210211]; Singapore-Berkeley Research Initiative for Sustainable Energy (SinBeRISE) FX This work was supported by the National Science Foundation under Grant No. DMR-1306601. H.S. is grateful for the hospitality from Dr. J. Vasbinder at the Institute Para Limes in the early stage of this work. W.F. gratefully acknowledges Dr. J. Yan for help with the DAC setup and Professor F. Wang for useful discussions. The laser milling was supported by COMPRES (Grant No. EAR 11-57758). K.D. acknowledges the Chinese Scholarship Council (CSC, Grant No. 201406210211) for financial support. J.W., J.W.A., and Y.C. acknowledge support from the Singapore-Berkeley Research Initiative for Sustainable Energy (SinBeRISE). NR 27 TC 5 Z9 5 U1 5 U2 44 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD DEC 18 PY 2015 VL 92 IS 24 AR 241408 DI 10.1103/PhysRevB.92.241408 PG 5 WC Physics, Condensed Matter SC Physics GA CY9MX UT WOS:000366732100002 ER PT J AU Smalley, D Iwasaki, H Navratil, P Roth, R Langhammer, J Bader, VM Bazin, D Berryman, JS Campbell, CM Dohet-Eraly, J Fallon, P Gade, A Langer, C Lemasson, A Loelius, C Macchiavelli, AO Morse, C Parker, J Quaglioni, S Recchia, F Stroberg, SR Weisshaar, D Whitmore, K Wimmer, K AF Smalley, D. Iwasaki, H. Navratil, P. Roth, R. Langhammer, J. Bader, V. M. Bazin, D. Berryman, J. S. Campbell, C. M. Dohet-Eraly, J. Fallon, P. Gade, A. Langer, C. Lemasson, A. Loelius, C. Macchiavelli, A. O. Morse, C. Parker, J. Quaglioni, S. Recchia, F. Stroberg, S. R. Weisshaar, D. Whitmore, K. Wimmer, K. TI Lifetime measurements of C-17 excited states and three-body and continuum effects SO PHYSICAL REVIEW C LA English DT Article ID HALO; DEFORMATION; REGION; TOOL AB We studied transition rates for the lowest 1/2(+) and 5/2(+) excited states of C-17 through lifetime measurements with the GRETINA array using the recoil-distance method. The present measurements provide a model-independent determination of transition strengths giving the values of B(M1; 1/2(+) -> 3/2(g.s.)(+)) = 1.04(-0.12)(+0.03) x 10(-2) mu(2)(N) and B(M1; 5/2(+) -> 3/2(g.s.)(+)) = 7.12(-0.96)(+1.27) x 10(-2) mu(2)(N). The quenched M1 transition strength for the 1/2(+) -> 3/2(g.s.)(+) transition, with respect to the 5/2(+) -> 3/2(g.s.)(+) transition, has been confirmed with greater precision. The current data are compared to importance-truncated no-core shell model calculations addressing effects due to continuum and three-body forces. C1 [Smalley, D.; Iwasaki, H.; Bader, V. M.; Bazin, D.; Berryman, J. S.; Gade, A.; Langer, C.; Loelius, C.; Morse, C.; Recchia, F.; Stroberg, S. R.; Weisshaar, D.; Whitmore, K.; Wimmer, K.] Michigan State Univ, Cyclotron Lab, Natl Superconduct, E Lansing, MI 48824 USA. [Iwasaki, H.; Bader, V. M.; Berryman, J. S.; Gade, A.; Loelius, C.; Morse, C.; Stroberg, S. R.; Whitmore, K.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Navratil, P.; Dohet-Eraly, J.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Roth, R.; Langhammer, J.] Tech Univ Darmstadt, Inst Kernphys, D-64289 Darmstadt, Germany. [Campbell, C. M.; Fallon, P.; Macchiavelli, A. O.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. [Langer, C.] Michigan State Univ, Joint Inst Nucl Astrophys, E Lansing, MI 48824 USA. [Lemasson, A.] CEA DSM CNRS IN2P3, Ganil, F-14076 Caen 5, France. [Parker, J.] Florida State Univ, Tallahassee, FL 32306 USA. [Quaglioni, S.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Wimmer, K.] Cent Michigan Univ, Dept Phys, Mt Pleasant, MI 48859 USA. RP Smalley, D (reprint author), Michigan State Univ, Cyclotron Lab, Natl Superconduct, E Lansing, MI 48824 USA. RI Gade, Alexandra/A-6850-2008; Langer, Christoph/L-3422-2016; Roth, Robert/B-6502-2008 OI Gade, Alexandra/0000-0001-8825-0976; FU National Science Foundation (NSF) (USA) [PHY-1102511]; Department of Energy (DOE) National Nuclear Security Administration [DE-NA0000979]; U.S. DOE Office of Science; NSF [PHY-1102511]; DOE [DE-AC02-05CH11231]; Deutsche Forschungsgemeinschaft [SFB 634]; Helmholtz International Center for FAIR (HIC for FAIR) within the LOEWE program of the State of Hesse; BMBF [06DA7047I]; NSERC [401945-2011]; National Research Council Canada; LLNL [DE-AC52-07NA27344]; DOE, Office of Science, Office of Nuclear Physics [SCW1158] FX The authors thank the beam physicists at the coupled cyclotron facility for the delivery of the radioactive beam. This work is supported by the National Science Foundation (NSF) (USA) under PHY-1102511, by the Department of Energy (DOE) National Nuclear Security Administration under award number DE-NA0000979. GRETINA was funded by the U.S. DOE Office of Science. Operation of the array at NSCL is supported by NSF under Cooperative Agreement PHY-1102511 (NSCL) and DOE under Grant No. DE-AC02-05CH11231 (LBNL). Numerical calculations have been performed at the LOEWE-CSC Frankfurt, and at the computing center of the TU Darmstadt (Lichtenberg). Computing support for this work also came in part from the LLNL institutional Computing Grand Challenge program and from an INCITE Award on the Titan supercomputer of the Oak Ridge Leadership Computing Facility (OLCF) at ORNL. Supported by the Deutsche Forschungsgemeinschaft through Contract SFB 634, by the Helmholtz International Center for FAIR (HIC for FAIR) within the LOEWE program of the State of Hesse, and the BMBF through Contract No. 06DA7047I, and from NSERC Grant No. 401945-2011. TRIUMF receives funding via a contribution through the National Research Council Canada. This work is supported in part by LLNL under Contract DE-AC52-07NA27344, and by the DOE, Office of Science, Office of Nuclear Physics, under Work Proposal No. SCW1158. NR 42 TC 2 Z9 2 U1 1 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 EI 1089-490X J9 PHYS REV C JI Phys. Rev. C PD DEC 18 PY 2015 VL 92 IS 6 AR 064314 DI 10.1103/PhysRevC.92.064314 PG 7 WC Physics, Nuclear SC Physics GA CY9NI UT WOS:000366733200001 ER PT J AU Schmittfull, M Feng, Y Beutler, F Sherwin, B Chu, MY AF Schmittfull, Marcel Feng, Yu Beutler, Florian Sherwin, Blake Chu, Man Yat TI Eulerian BAO reconstructions and N-point statistics SO PHYSICAL REVIEW D LA English DT Article ID BARYON ACOUSTIC-OSCILLATIONS; SPECTROSCOPIC GALAXY SAMPLE; REDSHIFT-SPACE; CENT DISTANCE; DATA RELEASE; GRAVITATIONAL-INSTABILITY; SCALE; MATTER; Z=0.35; PEAK AB As galaxy surveys begin to measure the imprint of baryonic acoustic oscillations (BAO) on large-scale structure at the subpercent level, reconstruction techniques that reduce the contamination from nonlinear clustering become increasingly important. Inverting the nonlinear continuity equation, we propose an Eulerian growth-shift reconstruction algorithm that does not require the displacement of any objects, which is needed for the standard Lagrangian BAO reconstruction algorithm. In real-space dark matter-only simulations the algorithm yields 95% of the BAO signal-to-noise obtained from standard reconstruction. The reconstructed power spectrum is obtained by adding specific simple 3- and 4-point statistics to the prereconstruction power spectrum, making it very transparent how additional BAO information from higher-point statistics is included in the power spectrum through the reconstruction process. Analytical models of the reconstructed density for the two algorithms agree at second order. Based on similar modeling efforts, we introduce four additional reconstruction algorithms and discuss their performance. C1 [Schmittfull, Marcel; Feng, Yu; Sherwin, Blake; Chu, Man Yat] Univ Calif Berkeley, Berkeley Ctr Cosmol Phys, Dept Phys, Berkeley, CA 94720 USA. [Schmittfull, Marcel; Feng, Yu; Sherwin, Blake; Chu, Man Yat] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Beutler, Florian] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Sherwin, Blake] Univ Calif Berkeley, Miller Inst Basic Res Sci, Berkeley, CA 94720 USA. RP Schmittfull, M (reprint author), Univ Calif Berkeley, Berkeley Ctr Cosmol Phys, Dept Phys, Berkeley, CA 94720 USA. OI Beutler, Florian/0000-0003-0467-5438 FU Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX We are grateful to Uros Seljak for initial collaboration and many helpful discussions. We also thank Nikhil Padmanabhan and Martin White for useful discussions, and Martin White for providing the RunPB TreePM N-body simulations that were used for parts of this paper. This research used resources of the National Energy Research Scientific Computing Center (NERSC), a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 47 TC 5 Z9 5 U1 1 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD DEC 18 PY 2015 VL 92 IS 12 AR 123522 DI 10.1103/PhysRevD.92.123522 PG 24 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CY9NT UT WOS:000366734300002 ER PT J AU Yuen, A Barnard, JJ AF Yuen, Albert Barnard, John J. TI Characterization of rarefaction waves in van der Waals fluids SO PHYSICAL REVIEW E LA English DT Article ID WARM DENSE MATTER; LASER; PLASMA; SIMULATION; PULSE; BEAMS; ION AB We calculate the isentropic evolution of an instantaneously heated foil, assuming a van der Waals equation of state with the Maxwell construction. The analysis by Yuen and Barnard [Phys. Rev. E 92, 033019 (2015)] is extended for the particular case of three degrees of freedom. We assume heating to temperatures in the vicinity of the critical point. The self-similar profiles of the rarefaction waves describing the evolution of the foil display plateaus in density and temperature due to a phase transition from the single-phase to the two-phase regime. The hydrodynamic equations are expressed in a dimensionless form and the solutions form a set of universal curves, depending on a single parameter: the dimensionless initial entropy. We characterize the rarefaction waves by calculating how the plateau length, density, pressure, temperature, velocity, internal energy, and sound speed vary with dimensionless initial entropy. C1 [Yuen, Albert] Univ Calif Berkeley, Dept Nucl Engn, Berkeley, CA 94720 USA. [Yuen, Albert] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Yuen, Albert] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Barnard, John J.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Yuen, A (reprint author), Univ Calif Berkeley, Dept Nucl Engn, Berkeley, CA 94720 USA. EM albert.yuen@berkeley.edu; barnard1@llnl.gov FU U.S. Department of Energy by Lawrence Livermore National Security, LLC [DE-AC52-07NA27344]; UC Berkeley [DE-FG02-04ER41289] FX The authors are pleased to acknowledge numerous valuable discussions with R. M. More, E. Startsev and I. Kaganovich. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Security, LLC, Grant No. DE-AC52-07NA27344, and supported at UC Berkeley under Grant No. DE-FG02-04ER41289. NR 30 TC 0 Z9 0 U1 2 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 EI 1550-2376 J9 PHYS REV E JI Phys. Rev. E PD DEC 18 PY 2015 VL 92 IS 6 AR 062307 DI 10.1103/PhysRevE.92.062307 PG 8 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA CY9OA UT WOS:000366735000004 PM 26764692 ER PT J AU Rokhlenko, Y Gopinadhan, M Osuji, CO Zhang, K O'Hern, CS Larson, SR Gopalan, P Majewski, PW Yager, KG AF Rokhlenko, Yekaterina Gopinadhan, Manesh Osuji, Chinedum O. Zhang, Kai O'Hern, Corey S. Larson, Steven R. Gopalan, Padma Majewski, Pawel W. Yager, Kevin G. TI Magnetic Alignment of Block Copolymer Microdomains by Intrinsic Chain Anisotropy SO PHYSICAL REVIEW LETTERS LA English DT Article ID FIELD-INDUCED ORIENTATION; NEMATIC LIQUID-CRYSTALS; OPTICAL ANISOTROPY; DIBLOCK COPOLYMERS; PERSISTENCE LENGTH; GRAIN; SUSCEPTIBILITY; BIREFRINGENCE; SCATTERING; GROWTH AB We examine the role of intrinsic chain susceptibility anisotropy in magnetic field directed self-assembly of a block copolymer using in situ x-ray scattering. Alignment of a lamellar mesophase is observed on cooling across the disorder-order transition with the resulting orientational order inversely proportional to the cooling rate. We discuss the origin of the susceptibility anisotropy,Delta chi, that drives alignment and calculate its magnitude using coarse-grained molecular dynamics to sample conformations of surface-tethered chains, finding Delta chi approximate to 2 x 10(-8). From field-dependent scattering data, we estimate that grains of approximate to 1.2 mu m are present during alignment. These results demonstrate that intrinsic anisotropy is sufficient to support strong field-induced mesophase alignment and suggest a versatile strategy for field control of orientational order in block copolymers. C1 [Rokhlenko, Yekaterina; Gopinadhan, Manesh; Osuji, Chinedum O.] Yale Univ, Dept Chem & Environm Engn, New Haven, CT 06511 USA. [Zhang, Kai; O'Hern, Corey S.] Yale Univ, Dept Mech Engn & Mat Sci, New Haven, CT 06511 USA. [Larson, Steven R.; Gopalan, Padma] Univ Wisconsin, Dept Mat Sci & Engn, Madison, WI 53706 USA. [Majewski, Pawel W.; Yager, Kevin G.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Osuji, CO (reprint author), Yale Univ, Dept Chem & Environm Engn, New Haven, CT 06511 USA. EM chinedum.osuji@yale.edu RI Zhang, Kai/F-9188-2016; OI Osuji, Chinedum/0000-0003-0261-3065; Gopinadhan, Manesh/0000-0001-8452-6613 FU NSF [DMR-1119826, DMR-1410568]; U.S. DOE Office of Science Facility, at Brookhaven National Laboratory [DE-SC0012704]; YINQE FX This work was supported by the NSF under Grants No. DMR-1119826 and No. DMR-1410568. Facility use was supported by YINQE. Additionally, this research used resources of the Center for Functional Nanomaterials, which is a U.S. DOE Office of Science Facility, at Brookhaven National Laboratory under Contract No. DE-SC0012704. The authors thank Nitash Balsara and Zhen-Gang Wang for fruitful discussions, and Mike Degen (Rigaku Inc.) and AMI Inc. for technical support. NR 38 TC 7 Z9 7 U1 2 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD DEC 18 PY 2015 VL 115 IS 25 AR 258302 DI 10.1103/PhysRevLett.115.258302 PG 5 WC Physics, Multidisciplinary SC Physics GA CY9LT UT WOS:000366729100008 PM 26722950 ER PT J AU Sun, C Robin, DS Steier, C Portmann, G AF Sun, C. Robin, D. S. Steier, C. Portmann, G. TI Characterization of pseudosingle bunch kick-and-cancel operational mode SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article AB Pseudosingle-bunch kick-and-cancel (PSB-KAC) is a new operational mode at the Advanced Light Source of Lawrence Berkeley National Laboratory that provides full timing and repetition rate control for single x-ray pulse users while being fully transparent to other users of synchrotron radiation light. In this operational mode, a single electron bunch is periodically displaced from a main bunch train by a fast kicker magnet with a user-on-demand repetition rate, creating a single x-ray pulse to be matched to a typical laser excitation pulse rate. This operational mode can significantly improve the signal to noise ratio of single x-ray pulse experiments and drastically reduce dose-induced sample damage rate. It greatly expands the capabilities of synchrotron light sources to carry out dynamics and time-of-flight experiments. In this paper, we carry out extensive characterizations of this PSB-KAC mode both numerically and experimentally. This includes the working principle of this mode, resonance conditions and beam stability, experimental setups, and diagnostic tools and measurements. C1 [Sun, C.; Robin, D. S.; Steier, C.; Portmann, G.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Sun, C (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. EM CCSun@lbl.gov FU Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]; ALS management FX The authors would like to thank Slawomir Kwiatkowski, James Julian, David Plate, Ray Low and Ken Baptiste who constructed the PSB kicker and pulser. We also wish to thank the ALS management for their support and encouragement of these studies. We also would like to thank ALS beam line scientists who helped us carry out tests of this new operation mode. This work is supported by the Director Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 10 TC 0 Z9 0 U1 1 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD DEC 18 PY 2015 VL 18 IS 12 AR 120702 DI 10.1103/PhysRevSTAB.18.120702 PG 9 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA CY9OR UT WOS:000366736700001 ER PT J AU Wehner, MF Easterling, DR AF Wehner, Michael F. Easterling, David R. TI The global warming hiatus's irrelevance SO SCIENCE LA English DT Letter ID CLIMATE RESPONSE C1 [Wehner, Michael F.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Easterling, David R.] NOAA, Ctr Weather & Climate, Natl Ctr Environm Informat, Asheville, NC 28801 USA. RP Easterling, DR (reprint author), NOAA, Ctr Weather & Climate, Natl Ctr Environm Informat, Asheville, NC 28801 USA. EM David.Easterling@noaa.gov NR 9 TC 1 Z9 1 U1 8 U2 49 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 EI 1095-9203 J9 SCIENCE JI Science PD DEC 18 PY 2015 VL 350 IS 6267 BP 1482 EP 1483 PG 2 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CY7LY UT WOS:000366591100042 PM 26680187 ER PT J AU Mannix, AJ Zhou, XF Kiraly, B Wood, JD Alducin, D Myers, BD Liu, XL Fisher, BL Santiago, U Guest, JR Yacaman, MJ Ponce, A Oganov, AR Hersam, MC Guisinger, NP AF Mannix, Andrew J. Zhou, Xiang-Feng Kiraly, Brian Wood, Joshua D. Alducin, Diego Myers, Benjamin D. Liu, Xiaolong Fisher, Brandon L. Santiago, Ulises Guest, Jeffrey R. Yacaman, Miguel Jose Ponce, Arturo Oganov, Artem R. Hersam, Mark C. Guisinger, Nathan P. TI Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs SO SCIENCE LA English DT Article ID ATOMIC-SCALE CHARACTERIZATION; CLUSTERS; GRAPHENE; MONOLAYER; AG(111); GROWTH AB At the atomic-cluster scale, pure boron is markedly similar to carbon, forming simple planar molecules and cage-like fullerenes. Theoretical studies predict that two-dimensional (2D) boron sheets will adopt an atomic configuration similar to that of boron atomic clusters. We synthesized atomically thin, crystalline 2D boron sheets (i.e., borophene) on silver surfaces under ultrahigh-vacuum conditions. Atomic-scale characterization, supported by theoretical calculations, revealed structures reminiscent of fused boron clusters with multiple scales of anisotropic, out-of-plane buckling. Unlike bulk boron allotropes, borophene shows metallic characteristics that are consistent with predictions of a highly anisotropic, 2D metal. C1 [Mannix, Andrew J.; Kiraly, Brian; Fisher, Brandon L.; Guest, Jeffrey R.; Guisinger, Nathan P.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Mannix, Andrew J.; Kiraly, Brian; Wood, Joshua D.; Myers, Benjamin D.; Hersam, Mark C.] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. [Zhou, Xiang-Feng; Oganov, Artem R.] SUNY Stony Brook, Dept Geosci, Ctr Mat Design, Stony Brook, NY 11794 USA. [Zhou, Xiang-Feng; Oganov, Artem R.] SUNY Stony Brook, Inst Adv Computat Sci, Stony Brook, NY 11794 USA. [Zhou, Xiang-Feng] Nankai Univ, Sch Phys, Tianjin 300071, Peoples R China. [Alducin, Diego; Santiago, Ulises; Yacaman, Miguel Jose; Ponce, Arturo] Univ Texas San Antonio, Dept Phys, San Antonio, TX 78249 USA. [Myers, Benjamin D.] Northwestern Univ, NUANCE Ctr, Evanston, IL 60208 USA. [Liu, Xiaolong; Hersam, Mark C.] Northwestern Univ, Appl Phys Grad Program, Evanston, IL 60208 USA. [Oganov, Artem R.] Skolkovo Innovat Ctr, Skolkovo Inst Sci & Technol, Moscow 143026, Russia. [Oganov, Artem R.] Moscow Inst Phys & Technol, Dolgoprudny City 141700, Moscow Region, Russia. [Hersam, Mark C.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. RP Oganov, AR (reprint author), Skolkovo Innovat Ctr, Skolkovo Inst Sci & Technol, 5 Nobel St, Moscow 143026, Russia. EM artem.oganov@stonybrook.edu; m-hersam@northwestern.edu; nguisinger@anl.gov RI Oganov, Artem/A-1213-2008; Zhou, Xiang-Feng/A-1714-2010; Guest, Jeffrey/B-2715-2009; Hersam, Mark/B-6739-2009; jose yacaman, miguel/B-5622-2009; Ponce Pedraza, Arturo/L-4712-2013; OI Oganov, Artem/0000-0001-7082-9728; Zhou, Xiang-Feng/0000-0001-8651-9273; Guest, Jeffrey/0000-0002-9756-8801; Ponce Pedraza, Arturo/0000-0001-5529-6468; Liu, Xiaolong/0000-0002-6186-5257 FU Center for Nanoscale Materials, a U.S. Department of Energy Office of Science User Facility [DE-AC02-06CH11357]; International Institute for Nanotechnology, Materials Research Science and Engineering Centers [NSF DMR-1121262]; Keck Foundation; State of Illinois; Northwestern University; U.S. Department of Energy SISGR [DE-FG02-09ER16109]; Office of Naval Research [N00014-14-1-0669]; National Science Foundation Graduate Fellowship Program [DGE-1324585, DGE-0824162]; National Science Foundation of China [11174152]; National 973 Program of China [2012CB921900]; Program for New Century Excellent Talents in University [NCET-12-0278]; Defense Advanced Research Projects Agency [W31P4Q1210008]; Government of Russian Federation [14.A12.31.0003]; National Institute on Minority Health and Health Disparities (NIMHD) in the program Research Centers in Minority Institutions Program (RCMI) Nanotechnology and Human Health Core [G12MD007591]; NSF PREM DMR [DMR-0934218]; Welch Foundation [AX-1615]; Department of Defense [64756-RT-REP] FX This work was performed, in part, at the Center for Nanoscale Materials, a U.S. Department of Energy Office of Science User Facility under Contract No. DE-AC02-06CH11357. This work was also performed, in part, at the NUANCE Center, supported by the International Institute for Nanotechnology, Materials Research Science and Engineering Centers (NSF DMR-1121262), the Keck Foundation, the State of Illinois, and Northwestern University. A.J.M., B.K., J.D.W., X.L., J.R.G, M.C.H., and N.P.G acknowledge support by the U.S. Department of Energy SISGR (contract no. DE-FG02-09ER16109), the Office of Naval Research (grant no. N00014-14-1-0669), and the National Science Foundation Graduate Fellowship Program (DGE-1324585 and DGE-0824162). X.-F.Z thanks the National Science Foundation of China (grant no. 11174152), the National 973 Program of China (grant no. 2012CB921900), and the Program for New Century Excellent Talents in University (grant no. NCET-12-0278). U.S. thanks the National Council of Science and Technology, CONACyT (proposal no. 250836). A.R.O acknowledges support from the Defense Advanced Research Projects Agency (grant no. W31P4Q1210008) and the Government of Russian Federation (no. 14.A12.31.0003). D.A., M.J.Y, and A.P. acknowledge support by the National Institute on Minority Health and Health Disparities (NIMHD) in the program Research Centers in Minority Institutions Program (RCMI) Nanotechnology and Human Health Core (grant G12MD007591), the NSF PREM DMR (grant no. DMR-0934218), the Welch Foundation (grant no. AX-1615), and the Department of Defense (grant no. 64756-RT-REP). NR 29 TC 144 Z9 145 U1 107 U2 359 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 EI 1095-9203 J9 SCIENCE JI Science PD DEC 18 PY 2015 VL 350 IS 6267 BP 1513 EP 1516 DI 10.1126/science.aad1080 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CY7LY UT WOS:000366591100055 PM 26680195 ER PT J AU McMahon, KW McCarthy, MD Sherwood, OA Larsen, T Guilderson, TP AF McMahon, Kelton W. McCarthy, Matthew D. Sherwood, Owen A. Larsen, Thomas Guilderson, Thomas P. TI Millennial- scale plankton regime shifts in the subtropical North Pacific Ocean SO SCIENCE LA English DT Article ID ORGANIC-MATTER; COMMUNITY STRUCTURE; MARINE PLANKTON; CARBON; GYRE; PATTERNS; SEA; PHYTOPLANKTON; DELTA-C-13; NITROGEN AB Climate change is predicted to alter marine phytoplankton communities and affect productivity, biogeochemistry, and the efficacy of the biological pump. We reconstructed high-resolution records of changing plankton community composition in the North Pacific Ocean over the past millennium. Amino acid-specific delta C-13 records preserved in long-lived deep-sea corals revealed three major plankton regimes corresponding to Northern Hemisphere climate periods. Non-dinitrogen-fixing cyanobacteria dominated during the Medieval Climate Anomaly (950-1250 Common Era) before giving way to a new regime in which eukaryotic microalgae contributed nearly half of all export production during the Little Ice Age (similar to 1400-1850 Common Era). The third regime, unprecedented in the past millennium, began in the industrial era and is characterized by increasing production by dinitrogen-fixing cyanobacteria. This picoplankton community shift may provide a negative feedback to rising atmospheric carbon dioxide concentrations. C1 [McMahon, Kelton W.; McCarthy, Matthew D.; Guilderson, Thomas P.] Univ Calif Santa Cruz, Dept Ocean Sci, Santa Cruz, CA 95064 USA. [McMahon, Kelton W.; Guilderson, Thomas P.] Univ Calif Santa Cruz, Inst Marine Sci, Santa Cruz, CA 95064 USA. [Sherwood, Owen A.] Univ Colorado, Inst Arctic & Alpine Res, Boulder, CO 80309 USA. [Larsen, Thomas] Univ Kiel, Leibniz Lab Radiometr Dating & Stable Isotope Res, D-24118 Kiel, Germany. [Guilderson, Thomas P.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP McMahon, KW (reprint author), Univ Calif Santa Cruz, Dept Ocean Sci, Santa Cruz, CA 95064 USA. EM kemcmaho@ucsc.edu RI Larsen, Thomas/D-3105-2012 OI Larsen, Thomas/0000-0002-0311-9707 FU National Oceanic and Atmospheric Administration's National Undersea Research Program; National Geographic Society [7717-04]; U.S. Department of Energy [DE-AC52-07NA27344]; NSF [OCE-1061689]; The Future Ocean, a program - German Research Foundation FX All methods, additional figures, and source data are available in the supplementary materials. K.W.M., T.P.G., and M.D.M. conceived the project. K.W.M. prepared samples, performed bulk and compound-specific delta13C analyses, and wrote the manuscript. O.A.S. and T.L. assisted in data analysis and commented on the manuscript. T.P.G. and M.D.M. supervised this project, discussed the results, and commented on the manuscript. We thank M. Hanson, S. Fauque, and J. Liu for assistance in the laboratory. This work would not have been possible without the captain and crew of the research vessel Kaimikai-o-Kanaloa and the pilots and engineers of the Hawaii Undersea Research Laboratory's Pisces IV and V submersibles. We also thank three anonymous reviewers for valuable feedback on the manuscript. Funding for sample collection was provided by the National Oceanic and Atmospheric Administration's National Undersea Research Program and the National Geographic Society (grant 7717-04). A portion of this work was performed under the auspices of the U.S. Department of Energy (grant DE-AC52-07NA27344). The majority of the work presented here was funded by NSF (grant OCE-1061689). T.L. was supported by The Future Ocean, a program funded by the German Research Foundation. NR 29 TC 6 Z9 6 U1 13 U2 59 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 EI 1095-9203 J9 SCIENCE JI Science PD DEC 18 PY 2015 VL 350 IS 6267 BP 1530 EP 1533 DI 10.1126/science.aaa9942 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CY7LY UT WOS:000366591100059 PM 26612834 ER PT J AU McCullough, J Clippinger, AK Talledge, N Skowyra, ML Saunders, MG Naismith, TV Colf, LA Afonine, P Arthur, C Sundquist, WI Hanson, PI Frost, A AF McCullough, John Clippinger, Amy K. Talledge, Nathaniel Skowyra, Michael L. Saunders, Marissa G. Naismith, Teresa V. Colf, Leremy A. Afonine, Pavel Arthur, Christopher Sundquist, Wesley I. Hanson, Phyllis I. Frost, Adam TI Structure and membrane remodeling activity of ESCRT-III helical polymers SO SCIENCE LA English DT Article ID PLASMA-MEMBRANE; FILAMENTS; AUTOINHIBITION; FISSION; CHMP3; REVEALS; PATHWAY; VPS4 AB The endosomal sorting complexes required for transport (ESCRT) proteins mediate fundamental membrane remodeling events that require stabilizing negative membrane curvature. These include endosomal intralumenal vesicle formation, HIV budding, nuclear envelope closure, and cytokinetic abscission. ESCRT-III subunits perform key roles in these processes by changing conformation and polymerizing into membrane-remodeling filaments. Here, we report the 4 angstrom resolution cryogenic electron microscopy reconstruction of a one-start, double-stranded helical copolymer composed of two different human ESCRT-III subunits, charged multivesicular body protein 1B (CHMP1B) and increased sodium tolerance 1 (IST1). The inner strand comprises "open" CHMP1B subunits that interlock in an elaborate domain-swapped architecture and is encircled by an outer strand of "closed" IST1 subunits. Unlike other ESCRT-III proteins, CHMP1B and IST1 polymers form external coats on positively curved membranes in vitro and in vivo. Our analysis suggests how common ESCRT-III filament architectures could stabilize different degrees and directions of membrane curvature. C1 [McCullough, John; Talledge, Nathaniel; Saunders, Marissa G.; Colf, Leremy A.; Sundquist, Wesley I.; Frost, Adam] Univ Utah, Dept Biochem, Salt Lake City, UT 84112 USA. [Clippinger, Amy K.; Skowyra, Michael L.; Naismith, Teresa V.; Hanson, Phyllis I.] Washington Univ, Dept Cell Biol & Physiol, Sch Med, St Louis, MO 63110 USA. [Talledge, Nathaniel; Frost, Adam] Univ Calif San Francisco, Dept Biochem & Biophys, San Francisco, CA 94158 USA. [Afonine, Pavel] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Arthur, Christopher] FEI Co, Hillsboro, OR 97124 USA. RP Sundquist, WI (reprint author), Univ Utah, Dept Biochem, Salt Lake City, UT 84112 USA. EM wes@biochem.utah.edu; phanson22@wustl.edu; adam.frost@ucsf.edu FU National Institutes of Health (NIH) through the National Center for Research Resources (NCRR) P41 program [RR17573]; Searle Scholars Program; Jane Coffin Childs Foundation; Phenix Industrial Consortium; American Cancer Society [PF-11-279-01-CCG]; U.S. Department of Energy [DE-AC02-05CH11231]; NIH [2P50GM082545-06, 1DP2GM110772-01, R01GM112080, R01AI051174, 1P01 GM063210, R01GM076686, R01NS050717]; NSF [DGE-1143954] FX Electron microscopy was performed at the University of California, San Francisco, the University of Utah, and the Oregon Health & Science University (OHSU) Multiscale Microscopy Core with technical support from the FEI Living Lab and the OHSU Center for Spatial Systems Biomedicine (OCSSB). We thank B. Carragher, C. Potter, and the National Resource for Automated Molecular Microscopy-which is supported by the National Institutes of Health (NIH) through the National Center for Research Resources (NCRR) P41 program (RR17573)-where some initial imaging studies were performed. We also thank B. Bammes and Direct Electron, LP (San Diego, CA), W. Chiu, and J. Jakana at the National Center for Macromolecular Imaging at Baylor College of Medicine (Houston, Texas), where other images were collected. Computing support was provided by the Center for High Performance Computing at the University of Utah and the NSF Extreme Science and Engineering Development Environment consortium. We also thank C. Hill, F. Whitby, H. Schubert, B. Barad, and J. Fraser for guidance regarding model refinement and validation; D. Eckert for performing analytical ultracentrifugation experiments; J. Iwasa for artwork; M. LaLonde, C. Rodesch, G. Mercenne, and M. Gudheti for help with supporting experiments; and T. Goddard for Chimera 2 developments. We thank R. Roth for deep-etch EM replicas, J. Heuser for sharing deep-etch EM with us and advice, E. Clipperton for CHMP4A mutants, M. Pretz for IST1-myc constructs, and M. Hartstein for artwork. We thank K. Blumer, M. Babst, and other members of our laboratories and colleagues for helpful discussions. This research was supported by the Searle Scholars Program (A.F.); the Jane Coffin Childs Foundation (M.G.S.); the Phenix Industrial Consortium (P.A.); American Cancer Society grant PF-11-279-01-CCG (L.A.C.); U.S. Department of Energy contract DE-AC02-05CH11231 (P.A.); NIH grants 2P50GM082545-06 (A.F.), 1DP2GM110772-01 (A.F.), R01GM112080 (W.I.S. and A.F.), R01AI051174 (W.I.S.), 1P01 GM063210 (P.A.), R01GM076686 (P.I.H.), and R01NS050717 (P.I.H.); and NSF fellowship DGE-1143954 (A. K. C.). All of the expression constructs used in our study have been or will be deposited in the public DNASU plasmid repository (http://dnasu.org/DNASU/Home.jsp). The density map has been deposited in the Electron Microscopy Data Bank (EMD-6461), and the fitted models were deposited in the PDB (3JC1). NR 30 TC 18 Z9 18 U1 4 U2 30 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 EI 1095-9203 J9 SCIENCE JI Science PD DEC 18 PY 2015 VL 350 IS 6267 BP 1548 EP 1551 DI 10.1126/science.aad8305 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CY7LY UT WOS:000366591100064 PM 26634441 ER PT J AU Sun, C Sinitsyn, NA AF Sun, Chen Sinitsyn, N. A. TI Exact transition probabilities for a linear sweep through a Kramers-Kronig resonance SO JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL LA English DT Article DE Kramers-Kronig; Landau-Zener; inverse Faraday effect; Stokes phenomenon ID FE-8 MOLECULAR NANOMAGNETS; MAGNETIZATION; DYNAMICS AB We consider a localized electronic spin controlled by a circularly polarized optical beam and an external magnetic field. When the frequency of the beam is tuned near an optical resonance with a continuum of higher energy states, effective magnetic fields are induced on the two-level system via the inverse Faraday effect. We explore the process in which the frequency of the beam is made linearly time-dependent so that it sweeps through the optical resonance, starting and ending at the values far away from it. In addition to changes of spin states, Kramers-Kronig relations guarantee that a localized electron can also escape into a continuum of states. We argue that probabilities of transitions between different possible electronic states after such a sweep of the optical frequency can be found exactly, regardless the shape of the resonance. We also discuss extension of our results to multistate systems. C1 [Sun, Chen; Sinitsyn, N. A.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Sun, Chen] Texas A&M Univ, Dept Phys, College Stn, TX 77840 USA. RP Sun, C (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM chen.sun.whu@gmail.com; nsinitsyn@lanl.gov FU National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory [DE-AC52-06NA25396]; LDRD program at LANL FX The work was carried out under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory under contract no. DE-AC52-06NA25396. The authors also thank the acknowledge support from the LDRD program at LANL. NR 43 TC 2 Z9 2 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1751-8113 EI 1751-8121 J9 J PHYS A-MATH THEOR JI J. Phys. A-Math. Theor. PD DEC 18 PY 2015 VL 48 IS 50 AR 505202 DI 10.1088/1751-8113/48/50/505202 PG 15 WC Physics, Multidisciplinary; Physics, Mathematical SC Physics GA CY4YI UT WOS:000366414400005 ER PT J AU Tang, ZH Luo, OJ Li, XW Zheng, MZ Zhu, JJ Szalaj, P Trzaskoma, P Magalska, A Wlodarczyk, J Ruszczycki, B Michalski, P Piecuch, E Wang, P Wang, DJ Tian, SZ Penrad-Mobayed, M Sachs, LM Ruan, XA Wei, CL Liu, ET Wilczynski, GM Plewczynski, D Li, GL Ruan, YJ AF Tang, Zhonghui Luo, Oscar Junhong Li, Xingwang Zheng, Meizhen Zhu, Jacqueline Jufen Szalaj, Przemyslaw Trzaskoma, Pawel Magalska, Adriana Wlodarczyk, Jakub Ruszczycki, Blazej Michalski, Paul Piecuch, Emaly Wang, Ping Wang, Danjuan Tian, Simon Zhongyuan Penrad-Mobayed, May Sachs, Laurent M. Ruan, Xiaoan Wei, Chia-Lin Liu, Edison T. Wilczynski, Grzegorz M. Plewczynski, Dariusz Li, Guoliang Ruan, Yijun TI CTCF-Mediated Human 3D Genome Architecture Reveals Chromatin Topology for Transcription SO CELL LA English DT Article ID IN-SITU HYBRIDIZATION; CHROMOSOMES; PRINCIPLES; RESOLUTION; BINDING AB Spatial genome organization and its effect on transcription remains a fundamental question. We applied an advanced chromatin interaction analysis by paired-end tag sequencing (ChIA-PET) strategy to comprehensively map higher-order chromosome folding and specific chromatin interactions mediated by CCCTC-binding factor (CTCF) and RNA polymerase II (RNAPII) with haplotype specificity and nucleotide resolution in different human cell lineages. We find that CTCF/cohesin-mediated interaction anchors serve as structural foci for spatial organization of constitutive genes concordant with CTCF-motif orientation, whereas RNAPII interacts within these structures by selectively drawing cell-type-specific genes toward CTCF foci for coordinated transcription. Furthermore, we show that haplotype variants and allelic interactions have differential effects on chromosome configuration, influencing gene expression, and may provide mechanistic insights into functions associated with disease susceptibility. 3D genome simulation suggests a model of chromatin folding around chromosomal axes, where CTCF is involved in defining the interface between condensed and open compartments for structural regulation. Our 3D genome strategy thus provides unique insights in the topological mechanism of human variations and diseases. C1 [Tang, Zhonghui; Luo, Oscar Junhong; Li, Xingwang; Zheng, Meizhen; Zhu, Jacqueline Jufen; Michalski, Paul; Piecuch, Emaly; Wang, Ping; Wang, Danjuan; Tian, Simon Zhongyuan; Ruan, Xiaoan; Liu, Edison T.; Ruan, Yijun] Jackson Lab Genom Med, Farmington, CT 06030 USA. [Li, Xingwang; Li, Guoliang; Ruan, Yijun] Huazhong Agr Univ, Coll Life Sci & Technol, Natl Key Lab Crop Genet Improvement, Wuhan 430070, Hubei, Peoples R China. [Zhu, Jacqueline Jufen; Ruan, Yijun] Univ Connecticut, Ctr Hlth, Dept Genet & Genome Sci, Farmington, CT 06030 USA. [Szalaj, Przemyslaw] Med Univ Bialystok, Ctr Bioinformat & Data Anal, PL-15089 Bialystok, Poland. [Szalaj, Przemyslaw] Hasselt Univ, I BioStat, B-3590 Diepenbeek, Belgium. [Szalaj, Przemyslaw; Plewczynski, Dariusz] Univ Warsaw, Ctr New Technol, PL-02097 Warsaw, Poland. [Trzaskoma, Pawel; Magalska, Adriana; Wlodarczyk, Jakub; Ruszczycki, Blazej; Wilczynski, Grzegorz M.] M Nencki Inst Expt Biol, PL-02093 Warsaw, Poland. [Penrad-Mobayed, May] Univ Paris 07, CNRS, F-75205 Paris, France. [Penrad-Mobayed, May] Inst Jacques Monod, F-75205 Paris, France. [Sachs, Laurent M.] CNRS, F-75231 Paris, France. [Sachs, Laurent M.] Museum Natl Hist Nat, F-75231 Paris, France. [Wei, Chia-Lin] Joint Genome Inst, Walnut Creek, CA 94598 USA. [Li, Guoliang] Huazhong Agr Univ, Coll Informat, Wuhan 430070, Hubei, Peoples R China. RP Ruan, YJ (reprint author), Jackson Lab Genom Med, 10 Discovery Dr, Farmington, CT 06030 USA. EM yijun.ruan@jax.org RI Wlodarczyk, Jakub/A-2253-2015 OI Wlodarczyk, Jakub/0000-0001-8343-2340 FU Director Innovation Fund of The Jackson Laboratory; NCI [R01 CA186714]; NHGRI [R25HG007631]; NIDDK [U54DK107967 (4DN)]; Roux family; China "111 project'' [B07041]; Polish National Science Centre [UMO-2012/05/E/NZ4/02997, 2014/15/B/ST6/05082, UMO-2013/09/B/NZ2/00121, DEC-2012/06/M/NZ3/00163]; National Leading Research Centre in Bialystok; European Union under the European Social Fund FX Y.R. is supported by the Director Innovation Fund of The Jackson Laboratory, NCI R01 CA186714, NHGRI R25HG007631, NIDDK U54DK107967 (4DN), and the Roux family as the Florine Roux Endowed Chair in Genomics and Computational Biology. X.L. is supported in part by China "111 project'' (B07041). Polish National Science Centre supports G.M.W. [UMO-2012/05/E/NZ4/02997]; D.P. and P.S. [2014/15/B/ST6/05082; UMO-2013/09/B/NZ2/00121]; and J.W. [DEC-2012/06/M/NZ3/00163]. D.P. and P.S. are also supported by National Leading Research Centre in Bialystok and the European Union under the European Social Fund. The authors thank C.Z. Zhang for initial DNA-FISH, Agnieszka Walczak and Katarzyna Krawczyk for FISH discussion, Rafael Casellas, Michael Stitzel, and Duygu Ucar for manuscript discussion, and Gosia Popiel for help on preparing Figure S7. Some of the genome sequences described in this research were derived from a HeLa cell line. Henrietta Lacks, and the HeLa cell line that was established from her tumor cells without her knowledge or consent in 1951, have made significant contributions to scientific progress and advances in human health. We are grateful to Henrietta Lacks, now deceased, and to her surviving family members for their contributions to biomedical research. The request to use HeLa data for this research was approved by the NIH Director based on the recommendations of the Advisory Committee to the Director and the evaluation by its HeLa Genome Data Access Working Group (http://acd.od.nih.gov/hlgda.htm). The HeLa genomic datasets used for analysis described in this manuscript were obtained from the database of Genotypes and Phenotypes (dbGaP) through dbGaP: phs000640. NR 29 TC 63 Z9 68 U1 10 U2 55 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0092-8674 EI 1097-4172 J9 CELL JI Cell PD DEC 17 PY 2015 VL 163 IS 7 BP 1611 EP 1627 DI 10.1016/j.cell.2015.11.024 PG 17 WC Biochemistry & Molecular Biology; Cell Biology SC Biochemistry & Molecular Biology; Cell Biology GA CZ1GN UT WOS:000366854200010 PM 26686651 ER PT J AU Airapetian, A Akopov, N Akopov, Z Aschenauer, EC Augustyniak, W Avetissian, A Belostotski, S Blok, HP Borissov, A Bryzgalov, V Capitani, GP Ciullo, G Contalbrigo, M Dalpiaz, PF Deconinck, W De Leo, R De Sanctis, E Diefenthaler, M Di Nezza, P Duren, M Elbakian, G Ellinghaus, F Felawka, L Frullani, S Gabbert, D Gapienko, G Gapienko, V Gharibyan, V Giordano, F Gliske, S Hasch, D Hoek, M Holler, Y Ivanilov, A Jackson, HE Joosten, S Kaiser, R Karyan, G Keri, T Kinney, E Kisselev, A Korotkov, V Kozlov, V Krivokhijine, VG Lagamba, L Lapikas, L Lehmann, I Lenisa, P Lorenzon, W Ma, BQ Manaenkov, SI Mao, Y Marianski, B Marukyan, H Miyachi, Y Movsisyan, A Muccifora, V Naryshkin, Y Nass, A Negodaev, M Nowak, WD Pappalardo, LL Perez-Benito, R Petrosyan, A Reimer, PE Reolon, AR Riedl, C Rith, K Rosner, G Rostomyan, A Rubin, J Ryckbosch, D Salomatin, Y Schnell, G Seitz, B Shibata, TA Statera, M Steffens, E Steijger, JJM Stinzing, F Taroian, S Terkulov, A Truty, R Trzcinski, A Tytgat, M Van Haarlem, Y Van Hulse, C Vikhrov, V Vilardi, I Vogel, C Wang, S Yaschenko, S Yen, S Zihlmann, B Zupranski, P AF Airapetian, A. Akopov, N. Akopov, Z. Aschenauer, E. C. Augustyniak, W. Avetissian, A. Belostotski, S. Blok, H. P. Borissov, A. Bryzgalov, V. Capitani, G. P. Ciullo, G. Contalbrigo, M. Dalpiaz, P. F. Deconinck, W. De Leo, R. De Sanctis, E. Diefenthaler, M. Di Nezza, P. Dueren, M. Elbakian, G. Ellinghaus, F. Felawka, L. Frullani, S. Gabbert, D. Gapienko, G. Gapienko, V. Gharibyan, V. Giordano, F. Gliske, S. Hasch, D. Hoek, M. Holler, Y. Ivanilov, A. Jackson, H. E. Joosten, S. Kaiser, R. Karyan, G. Keri, T. Kinney, E. Kisselev, A. Korotkov, V. Kozlov, V. Krivokhijine, V. G. Lagamba, L. Lapikas, L. Lehmann, I. Lenisa, P. Lorenzon, W. Ma, B. -Q. Manaenkov, S. I. Mao, Y. Marianski, B. Marukyan, H. Miyachi, Y. Movsisyan, A. Muccifora, V. Naryshkin, Y. Nass, A. Negodaev, M. Nowak, W. -D. Pappalardo, L. L. Perez-Benito, R. Petrosyan, A. Reimer, P. E. Reolon, A. R. Riedl, C. Rith, K. Rosner, G. Rostomyan, A. Rubin, J. Ryckbosch, D. Salomatin, Y. Schnell, G. Seitz, B. Shibata, T. -A. Statera, M. Steffens, E. Steijger, J. J. M. Stinzing, F. Taroian, S. Terkulov, A. Truty, R. Trzcinski, A. Tytgat, M. Van Haarlem, Y. Van Hulse, C. Vikhrov, V. Vilardi, I. Vogel, C. Wang, S. Yaschenko, S. Yen, S. Zihlmann, B. Zupranski, P. CA HERMES Collaboration TI Transverse-target-spin asymmetry in exclusive omega-meson electroproduction SO EUROPEAN PHYSICAL JOURNAL C LA English DT Article ID PARTON DISTRIBUTIONS; LEPTON SCATTERING; LEPTOPRODUCTION; ENERGY; QCD AB Hard exclusive electroproduction of omega mesons is studied with the HERMES spectrometer at the DESY laboratory by scattering 27.6 GeV positron and electron beams off a transversely polarized hydrogen target. The amplitudes of five azimuthal modulations of the single-spin asymmetry of the cross section with respect to the transverse proton polarization are measured. They are determined in the entire kinematic region as well as for two bins in photon virtuality and momentum transfer to the nucleon. Also, a separation of asymmetry amplitudes into longitudinal and transverse components is done. These results are compared to a phenomenological model that includes the pion pole contribution. Within this model, the data favor a positive pi omega transition form factor. C1 [Jackson, H. E.; Reimer, P. E.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [De Leo, R.; Lagamba, L.; Vilardi, I.] Ist Nazl Fis Nucl, Sez Bari, I-70124 Bari, Italy. [Ma, B. -Q.; Mao, Y.; Wang, S.] Peking Univ, Sch Phys, Beijing 100871, Peoples R China. [Schnell, G.; Van Hulse, C.] Univ Basque Country UPV EHU, Dept Theoret Phys, Bilbao 48080, Spain. [Schnell, G.] Basque Fdn Sci, Ikerbasque, Bilbao 48013, Spain. [Ellinghaus, F.; Kinney, E.] Univ Colorado, Nucl Phys Lab, Boulder, CO 80309 USA. [Akopov, Z.; Borissov, A.; Deconinck, W.; Holler, Y.; Rostomyan, A.; Yaschenko, S.; Zihlmann, B.] DESY, D-22603 Hamburg, Germany. [Aschenauer, E. C.; Gabbert, D.; Negodaev, M.; Nowak, W. -D.; Riedl, C.] DESY, D-15738 Zeuthen, Germany. [Krivokhijine, V. G.] Joint Inst Nucl Res, Dubna 141980, Russia. [Diefenthaler, M.; Nass, A.; Rith, K.; Steffens, E.; Stinzing, F.; Vogel, C.; Yaschenko, S.] Univ Erlangen Nurnberg, Inst Phys, D-91058 Erlangen, Germany. [Ciullo, G.; Contalbrigo, M.; Dalpiaz, P. F.; Giordano, F.; Lenisa, P.; Movsisyan, A.; Pappalardo, L. L.; Statera, M.] Ist Nazl Fis Nucl, Sez Ferrara, I-44122 Ferrara, Italy. [Ciullo, G.; Dalpiaz, P. F.; Giordano, F.; Lenisa, P.; Pappalardo, L. L.; Statera, M.] Univ Ferrara, Dipartimento Fis & Sci Terra, I-44122 Ferrara, Italy. [Capitani, G. P.; De Sanctis, E.; Di Nezza, P.; Hasch, D.; Muccifora, V.; Reolon, A. R.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Joosten, S.; Ryckbosch, D.; Schnell, G.; Tytgat, M.; Van Haarlem, Y.; Van Hulse, C.] Univ Ghent, Dept Phys & Astron, B-9000 Ghent, Belgium. [Airapetian, A.; Dueren, M.; Keri, T.; Perez-Benito, R.] Univ Giessen, Inst Phys 2, D-35392 Giessen, Germany. [Hoek, M.; Kaiser, R.; Lehmann, I.; Rosner, G.; Seitz, B.] Univ Glasgow, Sch Phys & Astron, SUPA, Glasgow G12 8QQ, Lanark, Scotland. [Diefenthaler, M.; Giordano, F.; Riedl, C.; Rubin, J.; Truty, R.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Airapetian, A.; Gliske, S.; Lorenzon, W.; Rubin, J.] Univ Michigan, Randall Lab Phys, Ann Arbor, MI 48109 USA. [Kozlov, V.; Terkulov, A.] PN Lebedev Phys Inst, Moscow 117924, Russia. [Blok, H. P.; Lapikas, L.; Steijger, J. J. M.] Natl Inst Subat Phys Nikhef, NL-1009 DB Amsterdam, Netherlands. [Belostotski, S.; Kisselev, A.; Manaenkov, S. I.; Naryshkin, Y.; Vikhrov, V.] BP Konstantinov Petersburg Nucl Phys Inst, Gatchina 188300, Leningrad Regio, Russia. [Bryzgalov, V.; Gapienko, G.; Gapienko, V.; Ivanilov, A.; Korotkov, V.; Salomatin, Y.] Inst High Energy Phys, Protvino 142281, Moscow Region, Russia. [Frullani, S.] Ist Nazl Fis Nucl, Sez Roma, Grp Coll Sanita, I-00161 Rome, Italy. [Frullani, S.] Ist Super Sanita, I-00161 Rome, Italy. [Felawka, L.; Yen, S.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Miyachi, Y.; Shibata, T. -A.] Tokyo Inst Technol, Dept Phys, Tokyo 152, Japan. [Blok, H. P.] Vrije Univ Amsterdam, Dept Phys & Astron, NL-1081 HV Amsterdam, Netherlands. [Augustyniak, W.; Marianski, B.; Trzcinski, A.; Zupranski, P.] Natl Ctr Nucl Res, PL-00689 Warsaw, Poland. [Akopov, N.; Avetissian, A.; Elbakian, G.; Gharibyan, V.; Karyan, G.; Marukyan, H.; Movsisyan, A.; Petrosyan, A.; Taroian, S.] Yerevan Phys Inst, Yerevan 375036, Armenia. RP Airapetian, A (reprint author), Univ Giessen, Inst Phys 2, D-35392 Giessen, Germany. EM gunar.schnell@desy.de RI Kozlov, Valentin/M-8000-2015; Terkulov, Adel/M-8581-2015; Negodaev, Mikhail/A-7026-2014 FU Ministry of Education and Science of Armenia; FWO-Flanders, Belgium; IWT, Belgium; Natural Sciences and Engineering Research Council of Canada; National Natural Science Foundation of China; Alexander von Humboldt Stiftung; German Bundesministerium fur Bildung und Forschung (BMBF); Deutsche Forschungsgemeinschaft (DFG); Italian Istituto Nazionale di Fisica Nucleare (INFN); MEXT of Japan; JSPS of Japan; G-COE of Japan; Dutch Foundation for Fundamenteel Onderzoek der Materie (FOM); Russian Academy of Science; Russian Federal Agency for Science and Innovations; Basque Foundation for Science (IKERBASQUE); UPV/EHU [UFI 11/55]; U.K. Engineering and Physical Sciences Research Council; Science and Technology Facilities Council; Scottish Universities Physics Alliance; U.S. Department of Energy (DOE); National Science Foundation (NSF) FX We are grateful to Sergey Goloskokov and Peter Kroll for fruitful discussions on the comparison between our data and their model calculations. We gratefully acknowledge the DESY management for its support and the staff at DESY and the collaborating institutions for their significant effort. This work was supported by the Ministry of Education and Science of Armenia; the FWO-Flanders and IWT, Belgium; the Natural Sciences and Engineering Research Council of Canada; the National Natural Science Foundation of China; the Alexander von Humboldt Stiftung, the German Bundesministerium fur Bildung und Forschung (BMBF), and the Deutsche Forschungsgemeinschaft (DFG); the Italian Istituto Nazionale di Fisica Nucleare (INFN); the MEXT, JSPS, and G-COE of Japan; the Dutch Foundation for Fundamenteel Onderzoek der Materie (FOM); the Russian Academy of Science and the Russian Federal Agency for Science and Innovations; the Basque Foundation for Science (IKERBASQUE) and the UPV/EHU under program UFI 11/55; the U.K. Engineering and Physical Sciences Research Council, the Science and Technology Facilities Council, and the Scottish Universities Physics Alliance; as well as the U.S. Department of Energy (DOE) and the National Science Foundation (NSF). NR 23 TC 2 Z9 2 U1 3 U2 15 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6044 EI 1434-6052 J9 EUR PHYS J C JI Eur. Phys. J. C PD DEC 17 PY 2015 VL 75 IS 12 AR 600 DI 10.1140/epjc/s10052-015-3825-7 PG 8 WC Physics, Particles & Fields SC Physics GA CZ1DG UT WOS:000366845400002 ER PT J AU Krechkivska, O Bacskay, GB Troy, TP Nauta, K Kreuscher, TD Kable, SH Schmidt, TW AF Krechkivska, Olha Bacskay, George B. Troy, Tyler P. Nauta, Klaas Kreuscher, Thomas D. Kable, Scott H. Schmidt, Timothy W. TI Resonance-Enhanced 2-Photon Ionization Scheme for C-2 through a Newly Identified Band System: 4(3)Pi(g)-a(3)Pi(u) SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID CONFIGURATION-INTERACTION CALCULATIONS; C2 MOLECULE; ELECTRONIC-TRANSITIONS; CARBON; DISSOCIATION; SPECTROSCOPY; SPECTRA; STARS AB We report the observation of a new band system of C-2, namely, the 4(3)Pi(g)-a(3)Pi(u), system. The bands, observed by resonant 2-photon ionization spectroscopy and time-of-flight mass spectrometry, were identified through a synergy of high-level ab initio computation and double-resonance spectroscopy. Two bands are firmly identified, 1-3 and 0-2, allowing the 4(3)Pi(g) origin to be placed at 51496.44 cm(-1). The 4(3)Pi(g) state is, characterized as having a single bond, with a vibrational frequency of about 1268 cm(-1), and an equilibrium bond length of 1.57 angstrom. The state is predicted to exhibit a barrier to dissociation, with a rotational constant that unusually increases with vibrational excitation up to a maximum before decreasing at higher vibrational excitation. The new band system allows us to probe the a(3)Pi(u) state of C-2 through a straightforward 1 + 1 REMPI scheme. C1 [Krechkivska, Olha; Nauta, Klaas; Kreuscher, Thomas D.; Kable, Scott H.; Schmidt, Timothy W.] Univ New S Wales, Sch Chem, Sydney, NSW 2052, Australia. [Bacskay, George B.; Troy, Tyler P.] Univ Sydney, Sch Chem, Sydney, NSW 2006, Australia. [Troy, Tyler P.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Schmidt, TW (reprint author), Univ New S Wales, Sch Chem, Sydney, NSW 2052, Australia. EM timothy.schmidt@unsw.edu.au FU Australian Research Council [DP120102559, FT130100177]; Australian Government FX This research was funded by the Australian Research Council (grant DP120102559). It was also undertaken with the assistance of resources from the National Computational Infrastructure (NCI), which is supported by the Australian Government. T.W.S. acknowledges the Australian Research Council for the award of a Future Fellowship (FT130100177). NR 48 TC 3 Z9 3 U1 1 U2 17 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD DEC 17 PY 2015 VL 119 IS 50 SI SI BP 12102 EP 12108 DI 10.1021/acs.jpca.5b05685 PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA CZ1QS UT WOS:000366881000018 PM 26186013 ER PT J AU Cotton, SJ Miller, WH AF Cotton, Stephen J. Miller, William H. TI A Symmetrical Quasi-Classical Spin-Mapping Model for the Electronic Degrees of Freedom in Non-Adiabatic Processes SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID QUANTUM RELAXATION DYNAMICS; ZERO-POINT ENERGY; MOLECULAR-DYNAMICS; PHASE-SPACE; S-MATRIX; SIMULATIONS; EXPLORATION; SYSTEMS; FLOW AB A recent series of papers has shown that a symmetrical quasi-classical (SQC) windowing procedure applied to the Meyer-Miller (MM) classical vibronic Hamiltonian provides a very good treatment of electronically nonadiabatic processes in a variety of benchmark model systems, including systems that exhibit strong quantum coherence effects and some which other approximate approaches have difficulty in describing correctly. In this paper, a different classical electronic Hamiltonian for the treatment of electronically nonadiabatic processes is proposed (and "quantized" via the SQC windowing approach), which maps the dynamics of F coupled electronic states to a set of F spin-(1)/(2) degrees of freedom (DOF), similar to the Fermionic spin model described by Miller and White (J. Chem. Phys. 1986, 84, 5059). It is noted that this spin-mapping (SM) Hamiltonian is an exact Hamiltonian if treated as a quantum mechanical (QM) operator-and thus QM'ly equivalent to the MM Hamiltonian-but that an analytically distinct classical analogue is obtained by replacing the QM spin-operators with their classical counterparts. Due to their analytic differences, a practical comparison is then made between the MM and SM Hamiltonians (when quantized with the SQC technique) by applying the latter to many of the same benchmark test problems successfully treated in our recent work with the SQC/MM model. We find that for every benchmark problem the MM model provides (slightly) better agreement with the correct quantum nonadiabatic transition probabilities than does the new SM model. This is despite the fact that one might expect, a priori, a more natural description of electronic state populations (occupied versus unoccupied) to be provided by DOF with only two states, i.e., spin-(1)/(2) DOF, rather than by harmonic oscillator DOF which have an infinite manifold of states (though only two of these are ever occupied). C1 [Miller, William H.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Kenneth S Pitzer Ctr Theoret Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Miller, WH (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM millerwh@berkeley.edu FU National Science Foundation [CHE-1148645]; Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division, U.S. Department of Energy [DE-AC02-05CH11231]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the National Science Foundation under Grant No. CHE-1148645 and by the Director, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division, U.S. Department of Energy, under Contract No. DE-AC02-05CH11231. In addition, this research utilized computation resources provided by the National Energy Research Scientific Computing Center (NERSC), which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. We thank Professor Michael Thoss for providing the QM results used in Figure 4. NR 20 TC 7 Z9 7 U1 7 U2 23 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD DEC 17 PY 2015 VL 119 IS 50 SI SI BP 12138 EP 12145 DI 10.1021/acs.jpca.5b05906 PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA CZ1QS UT WOS:000366881000022 PM 26299361 ER PT J AU Hazra, J Kendrick, BK Balakrishnan, N AF Hazra, Jisha Kendrick, Brian K. Balakrishnan, Naduvalath TI Importance of Geometric Phase Effects in Ultracold Chemistry SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID QUANTUM REACTIVE SCATTERING; STATE TRANSITION-PROBABILITIES; POTENTIAL-ENERGY SURFACES; CONICAL INTERSECTION; VIBRATIONAL-SPECTRUM; H+O-2 SCATTERING; MOLECULES; HO2; RECOMBINATION; COLLISIONS AB It is demonstrated that the inclusion of the geometric phase has an important effect on ultracold chemical reaction rates. The effect appears in rotationally and vibrationally resolved integral cross sections as well as cross sections summed over all product quantum states. The effect arises from interference between scattering amplitudes of two reaction pathways: a direct path and a looping path that encircle the conical intersection between the two lowest adiabatic electronic potential energy surfaces. It is magnified when the two scattering amplitudes have comparable magnitude and they scatter into the same angular region which occurs in the isotropic scattering characteristic of the ultracold regime (s-wave scattering). Results are presented for the O + OH -> H + O-2 reaction for total angular momentum quantum number J = 0-5. Large geometric phase effects occur for collision energies below 0.1 K, but the effect vanishes at higher energies when contributions from different partial waves are included. It is also qualitatively demonstrated that the geometric phase effect can be modulated by applying an external electric field allowing the possibility of quantum control of chemical reactions in the ultracold regime. In this case, the geometric phase plays the role of a "quantum switch" which can turn the reaction "on" or "off". C1 [Hazra, Jisha; Balakrishnan, Naduvalath] Univ Nevada, Dept Chem, Las Vegas, NV 89154 USA. [Kendrick, Brian K.] Los Alamos Natl Lab, Theoret Div T1, Los Alamos, NM 87545 USA. RP Kendrick, BK (reprint author), Los Alamos Natl Lab, Theoret Div T1, MS B221, Los Alamos, NM 87545 USA. EM bkendric@lanl.gov FU US Department of Energy of the Laboratory Directed Research and Development Program at Los Alamos National Laboratory [20140309ER]; National Security Administration of the US Department of Energy [DE-AC52-06NA25396]; Army Research Office, MURI [W911NF-12-1-0476]; National Science Foundation [PHY-1205838, PHY-1505557] FX We acknowledge G. B. Pradhan for his initial exploratory calculations of the GP effect on the O + OH reaction. B.K.K. acknowledges that part of this work was done under the auspices of the US Department of Energy under Project No. 20140309ER of the Laboratory Directed Research and Development Program at Los Alamos National Laboratory. Los Alamos National Laboratory is operated by Los Alamos National Security, LLC, for the National Security Administration of the US Department of Energy under contract DE-AC52-06NA25396. The UNLV team acknowledges support from the Army Research Office, MURI Grant No. W911NF-12-1-0476 and the National Science Foundation, Grant No. PHY-1205838 and PHY-1505557. NR 50 TC 5 Z9 5 U1 2 U2 10 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD DEC 17 PY 2015 VL 119 IS 50 SI SI BP 12291 EP 12303 DI 10.1021/acs.jpca.5b06410 PG 13 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA CZ1QS UT WOS:000366881000038 PM 26317912 ER PT J AU Jacovella, U Holland, DMP Boye-Peronne, S Gans, B de Oliveira, N Ito, K Joyeux, D Archer, LE Lucchese, RR Xu, H Pratt, ST AF Jacovella, U. Holland, D. M. P. Boye-Peronne, S. Gans, Berenger de Oliveira, N. Ito, K. Joyeux, D. Archer, L. E. Lucchese, R. R. Xu, Hong Pratt, S. T. TI A Near-Threshold Shape Resonance in the Valence-Shell Photoabsorption of Linear Alkynes SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID PHOTOIONIZATION CROSS-SECTIONS; AB-INITIO CALCULATIONS; ASYMMETRY PARAMETERS; ABSORPTION; SPECTROSCOPY; COMBUSTION; CONTINUITY; 2-PENTYNE; SPECTRA; SYSTEMS AB The room-temperature photoabsorption spectra of a number of linear alkynes with internal triple bonds (e.g., 2-butyne, 2-pentyne, and 2- and 3-hexyne) show similar resonances just above the lowest ionization threshold of the neutral molecules. These features result in a substantial enhancement of the photoabsorption cross sections relative to the cross sections of alkynes with terminal triple bonds (e.g., propyne, 1-butyne, 1-pentyne,...). Based on earlier work on 2-butyne [Xu et al., J. Chem. Phys. 2012, 136, 154303], these features are assigned to excitation from the neutral highest occupied molecular orbital (HOMO) to a shape resonance with g (l = 4) character and approximate pi symmetry. This generic behavior results from the similarity of the HOMOs in all internal alkynes, as well as the similarity of the corresponding g pi virtual orbital in the continuum. Theoretical calculations of the absorption spectrum above the ionization threshold for the 2- and 3-alkynes show the presence of a shape resonance when the coupling between the two degenerate or nearly degenerate pi channels is included, with a dominant contribution from l = 4. These calculations thus confirm the qualitative arguments for the importance of the l = 4 continuum near threshold for internal alkynes, which should also apply to other linear internal alkynes and alkynyl radicals. The 1-alkynes do not have such high partial waves present in the shape resonance. The lower l partial waves in these systems are consistent with the broader features observed in the corresponding spectra. C1 [Jacovella, U.] ETH, Lab Phys Chem, CH-8093 Zurich, Switzerland. [Holland, D. M. P.] STFC, Daresbury Lab, Warrington WA4 4AD, Cheshire, England. [Boye-Peronne, S.; Gans, Berenger] CNRS, Inst Sci Mol Orsay, UMR 8214, F-91405 Orsay, France. [Boye-Peronne, S.; Gans, Berenger] Univ Paris 11, F-91405 Orsay, France. [de Oliveira, N.; Ito, K.; Joyeux, D.; Archer, L. E.] Synchrotron Soleil, F-91192 Gif Sur Yvette, France. [Lucchese, R. R.] Texas A&M Univ, Dept Chem, College Stn, TX 77843 USA. [Xu, Hong; Pratt, S. T.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Pratt, ST (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. FU Science and Technology Facilities Council, U.K.; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences [DE-AC02-06CH11357, DE-SC0012198]; Robert A. Welch Foundation [A-1020]; Texas A&M University Supercomputing Facility; DESIRS Beamline at SOLEIL [20120675, 20130934] FX We thank Nils Hansen for providing data on the absolute photoionization cross sections of 1- and 2-pentyne prior to their publication. R.R.L. thanks T.N. Rescigno and C.W. McCurdy at LBNL for access to and assistance in using the complex Kohn scattering codes. D.M.P.H. was supported by the Science and Technology Facilities Council, U.K. This material is based on work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences, respectively, under Contracts DE-AC02-06CH11357 (for H.X. and S.T.P.) and DE-SC0012198 (for R.R.L.). R.R.L. also acknowledges the support of the Robert A. Welch Foundation under Grant A-1020. This work was supported by the Texas A&M University Supercomputing Facility. The experiments were performed on the DESIRS Beamline at SOLEIL under Proposals 20120675 and 20130934. We are grateful to the entire staff of SOLEIL for running the facility. NR 42 TC 1 Z9 1 U1 3 U2 10 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD DEC 17 PY 2015 VL 119 IS 50 SI SI BP 12339 EP 12348 DI 10.1021/acs.jpca.5b06949 PG 10 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA CZ1QS UT WOS:000366881000042 PM 26469080 ER PT J AU Shapero, M Cole-Filipiak, NC Haibach-Morris, C Neumark, DM AF Shapero, Mark Cole-Filipiak, Neil C. Haibach-Morris, Courtney Neumark, Daniel M. TI Benzyl Radical Photodissociation Dynamics at 248 nm SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID RING-DOWN SPECTROSCOPY; THERMAL-DECOMPOSITION; EMISSION-SPECTRA; TOLUENE; COMBUSTION; PYROLYSIS; KINETICS; PROPARGYL; MECHANISM; FULVENALLENE AB The photodissociation of jet cooled benzyl radicals, C7H7, at 248 nm has been studied using photofragment translational spectroscopy. Two dissociation channels were observed, H + C7H6 and CH3 + C6H4. The translational energy distribution determined for each channel suggests that both dissociation mechanisms occur via internal conversion to the ground state followed by intramolecular vibrational redistribution and dissociation. The branching ratio between these two channels has been measured to be (CH3 + C6H4)/(H + C7H6) = 0.011 +/- 0.004. The dominance of the H + C7H6 channel is corroborated by the branching ratio calculated using Rice-Ramsperger-Kassel-Marcus theory. C1 [Shapero, Mark; Cole-Filipiak, Neil C.; Neumark, Daniel M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Shapero, Mark; Cole-Filipiak, Neil C.; Haibach-Morris, Courtney; Neumark, Daniel M.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. RP Neumark, DM (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. EM dneumark@berkeley.edu RI Neumark, Daniel/B-9551-2009 OI Neumark, Daniel/0000-0002-3762-9473 FU Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences division of the U.S. Department of Energy [DE-AC02-05CH11231] FX The authors thank Prof. Carlo Cavallotti and Prof. Piergiorgio Casavecchia for helpful discussions. This work was supported by the Director, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences division of the U.S. Department of Energy under Contract DE-AC02-05CH11231. NR 64 TC 3 Z9 3 U1 8 U2 26 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD DEC 17 PY 2015 VL 119 IS 50 SI SI BP 12349 EP 12356 DI 10.1021/acs.jpca.5b07125 PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA CZ1QS UT WOS:000366881000043 PM 26348537 ER PT J AU Cygan, RT Daemen, LL Ilgen, AG Krumhansl, JL Nenoff, TM AF Cygan, Randall T. Daemen, Luke L. Ilgen, Anastasia G. Krumhansl, James L. Nenoff, Tina M. TI Inelastic Neutron Scattering and Molecular Simulation of the Dynamics of Inter layer Water in Smectite Clay Minerals SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID URANYL(VI) ADSORPTION EQUILIBRIA; AB-INITIO CALCULATIONS; SOCIETY SOURCE CLAYS; LEVEL NUCLEAR-WASTE; COMPUTER-SIMULATIONS; NANOCONFINED WATER; STRUCTURAL ARRANGEMENTS; HYDRATION PROPERTIES; HEULANDITE ZEOLITES; SWELLING PROPERTIES AB The study of mineral-water interfaces is of great importance to a variety of applications including oil and gas extraction, gas subsurface storage, environmental contaminant treatment, and nuclear waste repositories. Understanding the fundamentals of that interface is key to the success of those applications. Confinement of water in the interlayer of smectite clay minerals provides a unique environment to examine the interactions among water molecules, interlayer cations, and clay mineral surfaces. Smectite minerals are characterized by a relatively low layer charge that allows the clay to swell with increasing water content. Montmorillonite and beidellite varieties of smectite were investigated to compare the impact of the location of layer charge on the interlayer structure and dynamics. Inelastic neutron scattering of hydrated and dehydrated cation-exchanged smectites was used to probe the dynamics of the interlayer water (200-900 cm(-1) spectral region) and identify the shift in the librational edge as a function of the interlayer cation. Molecular dynamics simulations of equivalent phases and power spectra, derived from the resulting molecular trajectories, indicate a general shift in the librational behavior with interlayer cation that is generally consistent with the neutron scattering results for the monolayer hydrates. Both neutron scattering and power spectra exhibit librational structures affected by the location of layer charge and by the charge of the interlayer cation. Divalent cations (Ba2+ and Mg2+) characterized by large hydration enthalpies typically exhibit multiple broad librational peaks compared to monovalent cations (Cs and Nair), which have relatively small hydration enthalpies. C1 [Cygan, Randall T.; Ilgen, Anastasia G.; Krumhansl, James L.; Nenoff, Tina M.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Daemen, Luke L.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Cygan, RT (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM rtcygan@sandia.gov FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Geosciences Research Program; Oak Ridge National Laboratory [IPTS-13608]; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This study benefitted from numerous technical discussions with Jeffery Greathouse. This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Geosciences Research Program. The authors gratefully acknowledge support by Oak Ridge National Laboratory to perform the neutron scattering measurements at the Spallation Neutron Source (SNS), Oak Ridge, USA (Project IPTS-13608). Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corp., a wholly owned subsidiary of Lockheed Martin Corp., for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 106 TC 3 Z9 3 U1 19 U2 38 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD DEC 17 PY 2015 VL 119 IS 50 BP 28005 EP 28019 DI 10.1021/acs.jpcc.5b08838 PG 15 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA CZ1PT UT WOS:000366878500015 ER PT J AU Xiao, XY Lu, P Fischer, AJ Coltrin, ME Wang, GT Koleske, DD Tsao, JY AF Xiao, Xiaoyin Lu, Ping Fischer, Arthur J. Coltrin, Michael E. Wang, George T. Koleske, Daniel D. Tsao, Jeffrey Y. TI Influence of pH on the Quantum-Size-Controlled Photoelectrochemical Etching of Epitaxial InGaN Quantum Dots SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID GALLIUM-NITRIDE; GAN; PARTICLES; GROWTH; LASER AB Illumination by a narrow-band laser has been shown to enable photoelectrochemical (PEC) etching of InGaN thin films into quantum dots with sizes controlled by the laser wavelength. Here, we investigate and elucidate the influence of solution pH on such quantum-size-controlled PEC etch process. We find that although a pH above 5 is often used for PEC etching of GaN-based materials, oxides (In2O3 and/or Ga2O3) form which interfere with quantum dot formation. At pH below 3, however, oxide-free QDs with selfterminated sizes can be successfully realized. C1 [Xiao, Xiaoyin; Lu, Ping; Fischer, Arthur J.; Coltrin, Michael E.; Wang, George T.; Koleske, Daniel D.; Tsao, Jeffrey Y.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Xiao, XY (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM xnxiao@sandia.gov; jytsao@sandia.gov FU Solid-State Lighting Science Energy Frontier Research Center at Sandia National Laboratories - U.S. Department of Energy, Office of Basic Energy Sciences; Sandia's Laboratory Directed Research and Development Program; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was supported by the Solid-State Lighting Science Energy Frontier Research Center at Sandia National Laboratories, funded by the U.S. Department of Energy, Office of Basic Energy Sciences, and by Sandia's Laboratory Directed Research and Development Program. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corp., a wholly owned subsidiary of Lockheed Martin Corp., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. We thank Nancy Missert, Stephen Casalnuovo, and Rick Schneider of Sandia National Laboratories for helpful discussions. NR 23 TC 0 Z9 0 U1 7 U2 13 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD DEC 17 PY 2015 VL 119 IS 50 BP 28194 EP 28198 DI 10.1021/acs.jpcc.5b09555 PG 5 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA CZ1PT UT WOS:000366878500037 ER PT J AU Li, GQ Govind, N Ratner, MA Cramer, CJ Gagliardi, L AF Li, Guangqi Govind, Niranjan Ratner, Mark A. Cramer, Christopher J. Gagliardi, Laura TI Influence of Coherent Tunneling and Incoherent Hopping on the Charge Transfer Mechanism in Linear Donor-Bridge-Acceptor Systems SO JOURNAL OF PHYSICAL CHEMISTRY LETTERS LA English DT Article ID ELECTRON-TRANSFER; MOLECULAR WIRES; ORGANIC SEMICONDUCTORS; EXCITON DISSOCIATION; SPECTRAL DENSITY; LASER-PULSES; TRANSPORT; DNA; LONG; SEPARATION AB The mechanism of charge transfer has been observed to change from tunneling to hopping with increasing numbers of DNA base pairs in polynucleotides and with the length of molecular wires. The aim of this paper is to investigate this transition by examining the population dynamics using a tight-binding Hamiltonian with model parameters to describe a linear donor-bridge-acceptor (D-B-A) system. The model includes a primary vibration and an electron-vibration coupling at each site. A further coupling of the primary vibration with a secondary phonon bath allows the system to dissipate energy to the environment and reach a steady state. We apply the quantum master equation (QME) approach, based on second-order perturbation theory in a quantum dissipative system, to examine the dynamical processes involved in charge-transfer and follow the population transfer rate at the acceptor, k(a), to shed light on the transition from tunneling to hopping. With a small tunneling parameter, V, the on-site population tends to localize and form polarons, and the hopping mechanism dominates the transfer process. With increasing V, the population tends to be delocalized and the tunneling mechanism dominates. The competition between incoherent hopping and coherent tunneling governs the mechanism of charge transfer. By varying V and the total number of sites, we also examine the onset of the transition from tunneling to hopping with increasing length. C1 [Li, Guangqi; Cramer, Christopher J.; Gagliardi, Laura] Univ Minnesota, Dept Chem, Chem Theory Ctr, Minneapolis, MN 55455 USA. [Li, Guangqi; Cramer, Christopher J.; Gagliardi, Laura] Univ Minnesota, Inst Supercomp, Minneapolis, MN 55455 USA. [Govind, Niranjan] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. [Ratner, Mark A.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. RP Li, GQ (reprint author), Univ Minnesota, Dept Chem, Chem Theory Ctr, Minneapolis, MN 55455 USA. EM guangguangqi@gmail.com RI Cramer, Christopher/B-6179-2011 OI Cramer, Christopher/0000-0001-5048-1859 FU U.S. Department of Energy (DOE), Office of Basic Energy Sciences (BES), under SciDAC grant [DE-SC0008666, KC030102062653] FX This work was supported by the U.S. Department of Energy (DOE), Office of Basic Energy Sciences (BES), under SciDAC grant nos. DE-SC0008666 (C.J.C. and L.G.) and KC030102062653 (N.G.). We acknowledge the Minnesota Supercomputing Institute (MSI) at the University of Minnesota for providing the computational resources. NR 85 TC 5 Z9 5 U1 9 U2 38 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1948-7185 J9 J PHYS CHEM LETT JI J. Phys. Chem. Lett. PD DEC 17 PY 2015 VL 6 IS 24 BP 4889 EP 4897 DI 10.1021/acs.jpclett.5b02154 PG 9 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Atomic, Molecular & Chemical SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA CZ1SQ UT WOS:000366886000003 PM 26554424 ER PT J AU Hua, Y Chandra, K Dam, DHM Wiederrecht, GP Odom, TW AF Hua, Yi Chandra, Kavita Dam, Duncan Hieu M. Wiederrecht, Gary P. Odom, Teri W. TI Shape-Dependent Nonlinear Optical Properties of Anisotropic Gold Nanoparticles SO JOURNAL OF PHYSICAL CHEMISTRY LETTERS LA English DT Article ID SURFACE-PLASMON RESONANCE; Z-SCAN MEASUREMENTS; METAL NANOPARTICLES; NANORODS; LASER; FEMTOSECOND; ABSORPTION; DYNAMICS; ARRAYS; SIZE AB This Letter reports the shape-dependent third-order nonlinear optical properties of anisotropic gold nano-particles. We characterized the nonlinear absorption coefficients of nanorods, nanostars, and nanoshells using femto-second Z-scan measurements. By comparing nanoparticle solutions with a similar linear extinction at the laser excitation wavelength, we separated shape effects from that of the localized surface plasmon wavelength. We found that the nonlinear response depended on particle shape. Using pump probe spectroscopy, we measured the ultrafast transient response of nanoparticles, which supported the strong saturable absorption observed in nanorods and weak nonlinear response in nanoshells. We found that the magnitude of saturable absorption as well as the ultrafast spectral responses of nanoparticles were affected by the linear absorption of the nanoparticles. C1 [Hua, Yi; Chandra, Kavita; Odom, Teri W.] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. [Dam, Duncan Hieu M.; Odom, Teri W.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Wiederrecht, Gary P.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Hua, Y (reprint author), Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. FU National Science Foundation NSF [CHE-1058501, CHE-1507790]; National Institutes of Health (NIH) Director's Pioneer Award [DP1 EB016540]; Cancer Center Support Grant; Biological Imaging Facility; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX This work was supported by National Science Foundation NSF Grants CHE-1058501 and CHE-1507790 and a National Institutes of Health (NIH) Director's Pioneer Award (DP1 EB016540). This work made use of the NU Keck Biophysics Facility supported by the Cancer Center Support Grant, the Biological Imaging Facility, and the Center for Nanoscale Materials that was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 32 TC 10 Z9 10 U1 18 U2 62 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1948-7185 J9 J PHYS CHEM LETT JI J. Phys. Chem. Lett. PD DEC 17 PY 2015 VL 6 IS 24 BP 4904 EP 4908 DI 10.1021/acs.jpclett.5b02263 PG 5 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Atomic, Molecular & Chemical SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA CZ1SQ UT WOS:000366886000005 PM 26595327 ER PT J AU Attar, AR Bhattacherjee, A Leone, SR AF Attar, Andrew R. Bhattacherjee, Aditi Leone, Stephen R. TI Direct Observation of the Transition-State Region in the Photodissociation of CH3I by Femtosecond Extreme Ultraviolet Transient Absorption Spectroscopy SO JOURNAL OF PHYSICAL CHEMISTRY LETTERS LA English DT Article ID STRUCTURAL DYNAMICS; CHARGE-TRANSFER; IODINE; EXCITATION; EMISSION; VELOCITY; SHELL; LASER AB Femtosecond extreme ultraviolet (XUV) pulses produced by high harmonic generation are used to probe the transition-state region in the 266 rim photodissociation of CH3I by the real-time evolution of core-to-valence transitions near the iodine N-edge at 45-60 eV. During C-I bond breaking, new core-to-valence electronic states appear in the spectra, which decay concomitantly with the rise of the atomic iodine resonances of I(P-2(3/2)) and I*(P-2(1/2)). The short-lived features are assigned to repulsive valence-excited transition-state regions of (3)Q(0) and (1)Q(1), which can connect to transient core-excited states via promotion of 4d(I) core electrons. A simplified one-electron transition picture is described that accurately predicts the relative energies of the transient states observed. The transition-state resonances reach a maximum at similar to 40 fs and decay to complete C-I dissociation in similar to 90 fs, representing the shortest-lived chemical transition state observed by core-level, XUV, or X-ray spectroscopy. C1 [Attar, Andrew R.; Bhattacherjee, Aditi; Leone, Stephen R.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Attar, Andrew R.; Bhattacherjee, Aditi; Leone, Stephen R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Leone, Stephen R.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RP Leone, SR (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM srl@berkeley.edu FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-05CH11231]; gas phase chemical physics program through Chemical Sciences Division of Lawrence Berkeley National Laboratory; NSF ERC, EUV Science and Technology [EEC-0310717] FX This work, A.R.A., and A.B., as well as a portion of the materials and equipment were supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract DE-AC02-05CH11231, the gas phase chemical physics program through the Chemical Sciences Division of Lawrence Berkeley National Laboratory. The apparatus was partially funded by a NSF ERC, EUV Science and Technology, under a previously completed grant (EEC-0310717). NR 33 TC 10 Z9 10 U1 8 U2 44 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1948-7185 J9 J PHYS CHEM LETT JI J. Phys. Chem. Lett. PD DEC 17 PY 2015 VL 6 IS 24 BP 5072 EP 5077 DI 10.1021/acs.jpclett.5b02489 PG 6 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Atomic, Molecular & Chemical SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA CZ1SQ UT WOS:000366886000033 PM 26636176 ER PT J AU Lim, CH Holder, AM Hynes, JT Musgrave, CB AF Lim, Chern-Hooi Holder, Aaron M. Hynes, James T. Musgrave, Charles B. TI Catalytic Reduction of CO2 by Renewable Organohydrides SO JOURNAL OF PHYSICAL CHEMISTRY LETTERS LA English DT Article ID FRUSTRATED LEWIS PAIRS; COUPLED ELECTRON-TRANSFER; HYDRIDE-TRANSFER-REACTION; SINGLE BOND FORMATION; RUTHENIUM BLUE DIMER; CARBON-DIOXIDE; ELECTROCATALYTIC REDUCTION; HOMOGENEOUS REDUCTION; PROTON RELAY; P-GAP AB Dihydropyridines are renewable organohydride reducing agents for the catalytic reduction of CO2 to MeOH. Here we discuss various aspects of this important reduction. A centerpiece, which illustrates various general principles, is our theoretical catalytic mechanism for CO2 reduction by successive hydride transfers (HTs) and proton transfers (PTs) from the dihydropyridine PyH2 obtained by 1H(+)/1e(-)/1H(+)/1e(-) reductions of pyridine. The Py/PyH2 redox couple is analogous to NADP(+)/NADPH in that both are driven to effect HTs by rearomatization. High-energy radical intermediates and their associated high barriers/overpotentials are avoided because HT involves a 2e(-) reduction. A HT PT sequence dictates that the reduced intermediates be protonated prior to further reduction for ultimate MeOH formation; these protonations are aided by biased cathodes that significantly lower the local pH. In contrast, cathodes that efficiently reduce H+ such as Pt and Pd produce H-2 and create a high interfacial pH, both obstructing dihydropyridine production and formate protonation and thus ultimately CO2 reduction by HTPTs. The role of water molecule proton relays is discussed. Finally, we suggest future CO2 reduction strategies by organic (photo)catalysts. C1 [Lim, Chern-Hooi; Holder, Aaron M.; Musgrave, Charles B.] Univ Colorado, Dept Chem & Biol Engn, Boulder, CO 80309 USA. [Holder, Aaron M.; Hynes, James T.; Musgrave, Charles B.] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA. [Holder, Aaron M.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Hynes, James T.] Univ Paris 06, Sorbonne Univ, PSL Res Univ, Ecole Norma Super,Dept Chem,CNRS UMR Pasteur 8640, F-75005 Paris, France. RP Musgrave, CB (reprint author), Univ Colorado, Dept Chem & Biol Engn, Boulder, CO 80309 USA. EM charles.musgrave@colorado.edu FU NSF Grants [CHE-1214131, CHE-1112564] FX This work was supported in part by NSF Grants CHE-1214131 (C.B.M. and A.M.H.) and CHE-1112564 (J.T.H.). We also gratefully acknowledge use of XSEDE supercomputing resources (NSF ACI-1053575) and the Janus supercomputer, which is supported by NSF (CNS-0821794) and the University of Colorado Boulder. NR 109 TC 12 Z9 12 U1 14 U2 71 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1948-7185 J9 J PHYS CHEM LETT JI J. Phys. Chem. Lett. PD DEC 17 PY 2015 VL 6 IS 24 BP 5078 EP 5092 DI 10.1021/acs.jpclett.5b01827 PG 15 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Atomic, Molecular & Chemical SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA CZ1SQ UT WOS:000366886000034 PM 26722706 ER PT J AU Milonni, PW Rafsanjani, SMH AF Milonni, Peter W. Rafsanjani, Seyed Mohammad Hashemi TI Distance dependence of two-atom dipole interactions with one atom in an excited state SO PHYSICAL REVIEW A LA English DT Article ID DISPERSION FORCES; IDENTICAL ATOMS; EXCITATION; MOLECULES; ENERGY; CAUSALITY AB We present a Heisenberg-picture approach to the electric dipole interaction of two generally nonidentical atoms, one of which is initially excited, and address the question of whether the dependence of the interaction energy on the interatomic separation r is purely monotonic or is sinusoidally modulated as it falls off with r. We derive energies of both types and associate them with different model assumptions and physical effects. The sinusoidally modulated form is the interaction energy involved in reversible exchange of excitation ("pendulation"). The monotonic form characterizes an energy shift associated with effectively irreversible (Forster) excitation transfer. C1 [Milonni, Peter W.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Milonni, Peter W.] Univ Rochester, Dept Phys & Astron, Rochester, NY 14627 USA. [Rafsanjani, Seyed Mohammad Hashemi] Univ Rochester, Inst Opt, Rochester, NY 14627 USA. RP Milonni, PW (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. NR 33 TC 6 Z9 6 U1 2 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 EI 1094-1622 J9 PHYS REV A JI Phys. Rev. A PD DEC 17 PY 2015 VL 92 IS 6 AR 062711 DI 10.1103/PhysRevA.92.062711 PG 6 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA CY9MG UT WOS:000366730400002 ER PT J AU Gerbig, YB Michaels, CA Bradby, JE Haberl, B Cook, RF AF Gerbig, Y. B. Michaels, C. A. Bradby, J. E. Haberl, B. Cook, R. F. TI In situ spectroscopic study of the plastic deformation of amorphous silicon under nonhydrostatic conditions induced by indentation SO PHYSICAL REVIEW B LA English DT Article ID PHASE-TRANSFORMATIONS; RAMAN-SCATTERING; HIGH-PRESSURE; A-SI; STRUCTURAL RELAXATION; ATOMISTIC SIMULATIONS; REALISTIC MODEL; GE; TRANSITION; ORDER AB Indentation-induced plastic deformation of amorphous silicon (a-Si) thin films was studied by in situ Raman imaging of the deformed contact region of an indented sample, employing a Raman spectroscopy-enhanced instrumented indentation technique. Quantitative analyses of the generated in situ Raman maps provide unique insight into the phase behavior of as-implanted a-Si. In particular, the occurrence and evolving spatial distribution of changes in the a-Si structure caused by processes, such as polyamorphization and crystallization, induced by indentation loading were measured. The experimental results are linked with previously published papers on the plastic deformation of a-Si under hydrostatic compression and shear deformation to establish a sequence for the development of deformation of a-Si under indentation loading. The sequence involves three distinct deformation mechanisms of a-Si: (1) reversible deformation, (2) increase in coordination defects (onset of plastic deformation), and (3) phase transformation. Estimated conditions for the occurrence of these mechanisms are given with respect to relevant intrinsic and extrinsic parameters, such as indentation stress, volumetric strain, and bond angle distribution (a measure for the structural order of the amorphous network). The induced volumetric strains are accommodated solely by reversible deformation of the tetrahedral network when exposed to small indentation stresses. At greater indentation stresses, the increased volumetric strains in the tetrahedral network lead to the formation of predominately fivefold coordination defects, which seems to mark the onset of irreversible or plastic deformation of the a-Si thin film. Further increase in the indentation stress appears to initiate the formation of sixfold coordinated atomic arrangements. These sixfold coordinated arrangements may maintain their amorphous tetrahedral structure with a high density of coordination defects or nucleate as a new crystalline beta-tin phase within the alpha-Si network. C1 [Gerbig, Y. B.; Michaels, C. A.; Cook, R. F.] Natl Inst Stand & Technol, Mat Measurement Lab, Gaithersburg, MD 20899 USA. [Gerbig, Y. B.] Univ Maryland, Dept Mech Engn, College Pk, MD 20742 USA. [Bradby, J. E.] Australian Natl Univ, Res Sch Phys & Engn, Dept Elect Mat Engn, Canberra, ACT 0200, Australia. [Haberl, B.] Oak Ridge Natl Lab, Chem & Engn Mat Div, Neutron Sci Directorate, Oak Ridge, TN 37831 USA. RP Gerbig, YB (reprint author), Natl Inst Stand & Technol, Mat Measurement Lab, 100 Bur Dr, Gaithersburg, MD 20899 USA. EM yvonne.gerbig@nist.gov RI Haberl, Bianca/F-9058-2011 OI Haberl, Bianca/0000-0002-7391-6031 FU Alvin M. Weinberg Fellowship (ORNL); Spallation Neutron Source (ORNL) - U.S. Department of Energy, Office of Basic Energy Sciences; DOE-BES Contract [DE-AC05-00OR22725]; Scientific User Facilities division, DOE-BES [DE-AC05-00OR22725]; Alvin M. Weinberg Fellowship by the ORNL LDRD scheme [7620] FX B.H. gratefully acknowledges current funding from an Alvin M. Weinberg Fellowship (ORNL) and the Spallation Neutron Source (ORNL), sponsored by the U.S. Department of Energy, Office of Basic Energy Sciences. ORNL is funded under DOE-BES Contract No. DE-AC05-00OR22725, the SNS is supported by the Scientific User Facilities division, DOE-BES under Contract No. DE-AC05-00OR22725 and the Alvin M. Weinberg Fellowship by the ORNL LDRD scheme under Project No. 7620. NR 62 TC 1 Z9 1 U1 6 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD DEC 17 PY 2015 VL 92 IS 21 AR 214110 DI 10.1103/PhysRevB.92.214110 PG 15 WC Physics, Condensed Matter SC Physics GA CY9MZ UT WOS:000366732300001 ER PT J AU Nhalil, H Nair, HS Kumar, CMN Strydom, AM Elizabeth, S AF Nhalil, Hariharan Nair, Harikrishnan S. Kumar, C. M. N. Strydom, Andre M. Elizabeth, Suja TI Ferromagnetism and the effect of free charge carriers on electric polarization in the double perovskite Y2NiMnO6 SO PHYSICAL REVIEW B LA English DT Article ID SEPARATE PYROELECTRIC CURRENTS; SINUSOIDAL TEMPERATURE WAVES; NONPYROELECTRIC CURRENTS; MAGNETIC-STRUCTURES; SEMICONDUCTOR; DIELECTRICS; MANGANITES; LA2NIMNO6; NUCLEAR; PHASE AB The double perovskite Y2NiMnO6 displays ferromagnetic transition at T-c approximate to 81 K. The ferromagnetic order at low temperature is confirmed by the saturation value of magnetization (Ms) and also validated by the refined ordered magnetic moment values extracted from neutron powder diffraction data at 10 K. This way, the dominant Mn4+ and Ni2+ cationic ordering is confirmed. The cation-ordered P2(1)/n nuclear structure is revealed by neutron powder diffraction studies at 300 and 10 K. Analysis of the frequency-dependent dielectric constant and equivalent circuit analysis of impedance data take into account the bulk contribution to the total dielectric constant. This reveals an anomaly which coincides with the ferromagnetic transition temperature (T-c). Pyrocurrent measurements register a current flow with onset near T-c and a peak at 57 K that shifts with temperature ramp rate. The extrinsic nature of the observed pyrocurrent is established by employing a special protocol measurement. It is realized that the origin is due to reorientation of electric dipoles created by the free charge carriers and not by spontaneous electric polarization at variance with recently reported magnetism-driven ferroelectricity in this material. C1 [Nhalil, Hariharan; Elizabeth, Suja] Indian Inst Sci, Dept Phys, Bangalore 560012, Karnataka, India. [Nair, Harikrishnan S.; Strydom, Andre M.] Univ Johannesburg, Dept Phys, Highly Correlated Matter Res Grp, ZA-2006 Auckland Pk, South Africa. [Kumar, C. M. N.] Forschungszentrum Julich GmbH, JCNS, Outstat SNS, Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Kumar, C. M. N.] Oak Ridge Natl Lab, Chem & Engn Mat Div, Oak Ridge, TN 37831 USA. RP Nhalil, H (reprint author), Indian Inst Sci, Dept Phys, Bangalore 560012, Karnataka, India. EM hariharan.nhalil@gmail.com RI Nhalil, Hariharan/N-6780-2016; OI Nhalil, Hariharan/0000-0003-4970-7106; Chogondahalli Muniraju, Naveen Kumar/0000-0002-8867-8291 FU SA-NRF [93549]; FRC/URC of UJ; FRC/URC; Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy FX Thanks are due to Aditya Wagh and Ruchika Yadav for help with pyrocurrent measurements. A.M.S. thanks the SA-NRF (93549) and the FRC/URC of UJ for financial assistance. H.S.N. acknowledges FRC/URC for support through a postdoctoral fellowship. Part of the research conducted at ORNL's Spallation Neutron Source was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy. NR 48 TC 5 Z9 5 U1 9 U2 36 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD DEC 17 PY 2015 VL 92 IS 21 AR 214426 DI 10.1103/PhysRevB.92.214426 PG 9 WC Physics, Condensed Matter SC Physics GA CY9MZ UT WOS:000366732300003 ER PT J AU Rotskoff, GM Crooks, GE AF Rotskoff, Grant M. Crooks, Gavin E. TI Optimal control in nonequilibrium systems: Dynamic Riemannian geometry of the Ising model SO PHYSICAL REVIEW E LA English DT Article ID THERMODYNAMICS; TRANSITION; SPEED; PATHS; LINE AB A general understanding of optimal control in nonequilibrium systems would illuminate the operational principles of biological and artificial nanoscale machines. Recent work has shown that a system driven out of equilibrium by a linear response protocol is endowed with a Riemannian metric related to generalized susceptibilities, and that geodesics on this manifold are the nonequilibrium control protocols with the lowest achievable dissipation. While this elegant mathematical framework has inspired numerous studies of exactly solvable systems, no description of the thermodynamic geometry yet exists when the metric cannot be derived analytically. Herein, we numerically construct the dynamic metric of the two-dimensional Ising model in order to study optimal protocols for reversing the net magnetization. C1 [Rotskoff, Grant M.] Univ Calif Berkeley, Biophys Grad Grp, Berkeley, CA 94720 USA. [Crooks, Gavin E.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Biophys Div, Berkeley, CA 94720 USA. [Crooks, Gavin E.] Kavli Energy NanoSci Inst, Berkeley, CA 94720 USA. RP Rotskoff, GM (reprint author), Univ Calif Berkeley, Biophys Grad Grp, Berkeley, CA 94720 USA. EM rotskoff@berkeley.edu OI Rotskoff, Grant/0000-0002-7772-5179 FU NSF; U.S. Army Research Laboratory; U.S. Army Research Office [W911NF-13-1-0390] FX G.M.R. acknowledges enlightening discussions with James Sethian concerning the use and implementation of the fast marching method. The authors would also like to thank David Sivak for useful preliminary conversations. G.M.R. wishes to thank support from the NSF graduate research fellowship. This work was supported in part by the U.S. Army Research Laboratory and the U.S. Army Research Office under Contract No. W911NF-13-1-0390. NR 38 TC 4 Z9 4 U1 2 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 EI 1550-2376 J9 PHYS REV E JI Phys. Rev. E PD DEC 17 PY 2015 VL 92 IS 6 AR 060102 DI 10.1103/PhysRevE.92.060102 PG 5 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA CY9NY UT WOS:000366734800001 PM 26764609 ER PT J AU Dumitru, A Lappi, T Skokov, V AF Dumitru, Adrian Lappi, Tuomas Skokov, Vladimir TI Distribution of Linearly Polarized Gluons and Elliptic Azimuthal Anisotropy in Deep Inelastic Scattering Dijet Production at High Energy SO PHYSICAL REVIEW LETTERS LA English DT Article ID COLOR GLASS CONDENSATE; RENORMALIZATION-GROUP; ANGULAR-CORRELATIONS; TRANSVERSE-MOMENTUM; PB COLLISIONS; LARGE NUCLEI; LONG-RANGE; EVOLUTION; EQUATION; JIMWLK AB We determine the distribution of linearly polarized gluons of a dense target at small x by solving the Balitsky-Jalilian-Marian-Iancu-McLerran-Weigert-Leonidov-Kovner rapidity evolution equations. From these solutions, we estimate the amplitude of similar to cos 2 phi. azimuthal asymmetries in deep inelastic scattering dijet production at high energies. We find sizable long-range in rapidity azimuthal asymmetries with a magnitude in the range of v(2) = < cos 2 phi > similar to 10%. C1 [Dumitru, Adrian] CUNY, Baruch Coll, Dept Nat Sci, New York, NY 10010 USA. [Dumitru, Adrian] CUNY, Grad Sch, New York, NY 10016 USA. [Dumitru, Adrian] CUNY, Univ Ctr, New York, NY 10016 USA. [Lappi, Tuomas] Univ Jyvaskyla, Dept Phys, Jyvaskyla 40014, Finland. [Lappi, Tuomas] Univ Helsinki, Helsinki Inst Phys, FIN-00014 Helsinki, Finland. [Skokov, Vladimir] Western Michigan Univ, Dept Phys, Kalamazoo, MI 49008 USA. [Skokov, Vladimir] Brookhaven Natl Lab, RIKEN, BNL Res Ctr, Upton, NY 11973 USA. RP Dumitru, A (reprint author), CUNY, Baruch Coll, Dept Nat Sci, 17 Lexington Ave, New York, NY 10010 USA. EM Adrian.Dumitru@baruch.cuny.edu; Tuomas.v.v.Lappi@jyu.fi; VSkokov@bnl.gov FU DOE Office of Nuclear Physics [DE-FG02-09ER41620]; City University of New York through the PSC-CUNY Research Award Program [67119-0045]; Academy of Finland [267321, 273464]; RIKEN Foreign Postdoctoral Researcher Program FX We are grateful to E. Aschenauer, A. Metz, and B. Xiao for useful comments. A. D. gratefully acknowledges support from the DOE Office of Nuclear Physics through Grant No. DE-FG02-09ER41620 and from The City University of New York through the PSC-CUNY Research Award Program, Grant No. 67119-0045. T. L. is supported by the Academy of Finland, Projects No. 267321 and No. 273464. V. S. is supported by RIKEN Foreign Postdoctoral Researcher Program. This work used computing resources from CSC-IT Center for Science in Espoo (Finland) and the High Performance Computing Center at Michigan State University (USA). NR 44 TC 7 Z9 7 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD DEC 17 PY 2015 VL 115 IS 25 AR 252301 DI 10.1103/PhysRevLett.115.252301 PG 5 WC Physics, Multidisciplinary SC Physics GA CY9LO UT WOS:000366728600003 PM 26722917 ER PT J AU Jordan, AB Stauffer, PH Knight, EE Rougier, E Anderson, DN AF Jordan, Amy B. Stauffer, Philip H. Knight, Earl E. Rougier, Esteban Anderson, Dale N. TI Radionuclide Gas Transport through Nuclear Explosion-Generated Fracture Networks SO SCIENTIFIC REPORTS LA English DT Article ID TEST-BAN TREATY; CONTAMINANT TRANSPORT; POROUS-MEDIA; MODEL; SYSTEM; PERMEABILITY; MIGRATION; TESTS; SITE; FLOW AB Underground nuclear weapon testing produces radionuclide gases which may seep to the surface. Barometric pumping of gas through explosion-fractured rock is investigated using a new sequentially-coupled hydrodynamic rock damage/gas transport model. Fracture networks are produced for two rock types (granite and tuff) and three depths of burial. The fracture networks are integrated into a flow and transport numerical model driven by surface pressure signals of differing amplitude and variability. There are major differences between predictions using a realistic fracture network and prior results that used a simplified geometry. Matrix porosity and maximum fracture aperture have the greatest impact on gas breakthrough time and window of opportunity for detection, with different effects between granite and tuff simulations highlighting the importance of accurately simulating the fracture network. In particular, maximum fracture aperture has an opposite effect on tuff and granite, due to different damage patterns and their effect on the barometric pumping process. From stochastic simulations using randomly generated hydrogeologic parameters, normalized detection curves are presented to show differences in optimal sampling time for granite and tuff simulations. Seasonal and location-based effects on breakthrough, which occur due to differences in barometric forcing, are stronger where the barometric signal is highly variable. C1 [Jordan, Amy B.; Stauffer, Philip H.; Knight, Earl E.; Rougier, Esteban; Anderson, Dale N.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Jordan, AB (reprint author), Neptune & Co, 1505 15th St, Los Alamos, NM 87545 USA. EM ajordan@neptuneinc.org OI Stauffer, Philip/0000-0002-6976-221X; Knight, Earl/0000-0003-0461-0714 FU Defense Threat Reduction Agency (DTRA) [DTRA1-11-4539I/BRCALL08-Per5-I-2-0008] FX This research was funded by the Defense Threat Reduction Agency (DTRA) under award no. DTRA1-11-4539I/BRCALL08-Per5-I-2-0008. The authors would like to thank Carl Gable of LANL for help with numerical meshes using LaGriT. NR 32 TC 2 Z9 2 U1 3 U2 13 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD DEC 17 PY 2015 VL 5 AR 18383 DI 10.1038/srep18383 PG 10 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CY7EO UT WOS:000366571400002 PM 26676058 ER PT J AU Tang, Y Pattengale, B Ludwig, J Atifi, A Zinovev, AV Dong, B Kong, QY Zuo, XB Zhang, XY Huang, J AF Tang, Yu Pattengale, Brian Ludwig, John Atifi, Abderrahman Zinovev, Alexander V. Dong, Bin Kong, Qingyu Zuo, Xiaobing Zhang, Xiaoyi Huang, Jier TI Direct Observation of Photoinduced Charge Separation in Ruthenium Complex/Ni(OH)(2) Nanoparticle Hybrid SO SCIENTIFIC REPORTS LA English DT Article ID EARTH-ABUNDANT CATALYSTS; HYDROGEN EVOLUTION; OXYGEN-EVOLUTION; H-2 EVOLUTION; WATER; ELECTROCATALYSTS; GENERATION; PHOTOLYSIS; DYNAMICS; CELLS AB Ni(OH)(2) have emerged as important functional materials for solar fuel conversion because of their potential as cost-effective bifunctional catalysts for both hydrogen and oxygen evolution reactions. However, their roles as photocatalysts in the photoinduced charge separation (CS) reactions remain unexplored. In this paper, we investigate the CS dynamics of a newly designed hybrid catalyst by integrating a Ru complex with Ni(OH)(2) nanoparticles (NPs). Using time resolved X-ray absorption spectroscopy (XTA), we directly observed the formation of the reduced Ni metal site (similar to 60 ps), unambiguously demonstrating CS process in the hybrid through ultrafast electron transfer from Ru complex to Ni(OH)(2) NPs. Compared to the ultrafast CS process, the charge recombination in the hybrid is ultraslow (>> 50 ns). These results not only suggest the possibility of developing Ni(OH)(2) as solar fuel catalysts, but also represent the first time direct observation of efficient CS in a hybrid catalyst using XTA. C1 [Tang, Yu; Pattengale, Brian; Ludwig, John; Atifi, Abderrahman; Dong, Bin; Huang, Jier] Marquette Univ, Dept Chem, Milwaukee, WI 53201 USA. [Zinovev, Alexander V.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60349 USA. [Kong, Qingyu; Zuo, Xiaobing; Zhang, Xiaoyi] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60349 USA. RP Zhang, XY (reprint author), Argonne Natl Lab, Xray Sci Div, Argonne, IL 60349 USA. EM xyzhang@aps.anl.gov; jier.huang@marquette.edu OI Dong, Bin/0000-0002-4817-6289 FU Marquette University new faculty startup fund; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division FX This work was supported by Marquette University new faculty startup fund. Use of the Advanced Photon Source and the femtosecond absorption spectroscopy at the Center for Nanoscale Materials (before July 2014) in Argonne National Laboratory was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Award No. DE-AC02-06CH11357. Use of XPS was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division. We thank Dr. Lin X. Chen for initial contribution on Nd:YLF regenerative amplified laser used in XTA measurements. We thank Dr. Sungsik Lee for his help in steady state X-ray absorption spectrum. We thank Dr. Zheng Li and Dr. Yugang Sun for TEM measurements. NR 30 TC 0 Z9 0 U1 4 U2 23 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD DEC 17 PY 2015 VL 5 AR 18505 DI 10.1038/srep18505 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CY7JA UT WOS:000366583300001 PM 26673578 ER PT J AU Aad, G Abbott, B Abdallah, J Abdinov, O Aben, R Abolins, M AbouZeid, OS Abramowicz, H Abreu, H Abreu, R Abulaiti, Y Acharya, BS Adamczyk, L Adams, DL Adelman, J Adomeit, S Adye, T Affolder, AA Agatonovic-Jovin, T Agricola, J Aguilar-Saavedra, JA Ahlen, SP Ahmadov, F Aielli, G Akerstedt, H Akesson, TPA Akimov, AV Alberghi, GL Albert, J Albrand, S Verzini, MJA Aleksa, M Aleksandrov, IN Alexa, C Alexander, G Alexopoulos, T Alhroob, M Alimonti, G Alio, L Alison, J Alkire, SP Allbrooke, BMM Allport, PP Aloisio, A Alonso, A Alonso, F Alpigiani, C Altheimer, A Gonzalez, BA Piqueras, DA Alviggi, MG Amadio, BT Amako, K Coutinho, YA Amelung, C Amidei, D Dos Santos, SPA Amorim, A Amoroso, S Amram, N Amundsen, G Anastopoulos, C Ancu, LS Andari, N Andeen, T Anders, CF Anders, G Anders, JK Anderson, KJ Andreazza, A Andrei, V Angelidakis, S Angelozzi, I Anger, P Angerami, A Anghinolfi, F Anisenkov, AV Anjos, N Annovi, A Antonelli, M Antonov, A Antos, J Anulli, F Aoki, M Bella, LA Arabidze, G Arai, Y Araque, JP Arce, ATH Arduh, FA Arguin, JF Argyropoulos, S Arik, M Armbruster, AJ Arnaez, O Arnal, V Arnold, H Arratia, M Arslan, O Artamonov, A Artoni, G Asai, S Asbah, N Ashkenazi, A Asman, B Asquith, L Assamagan, K Astalos, R Atkinson, M Atlay, NB Augsten, K Aurousseau, M Avolio, G Axen, B Ayoub, MK Azuelos, G Baak, MA Baas, AE Baca, MJ Bacci, C Bachacou, H Bachas, K Backes, M Backhaus, M Bagiacchi, P Bagnaia, P Bai, Y Bain, T Baines, JT Baker, OK Baldin, EM Balek, P Balestri, T Balli, F Banas, E Banerjee, S Bannoura, AAE Bansil, HS Barak, L Barberio, EL Barberis, D Barbero, M Barillari, T Barisonzi, M Barklow, T Barlow, N Barnes, SL Barnett, BM Barnett, RM Barnovska, Z Baroncelli, A Barone, G Barr, AJ Barreiro, F da Costa, JBG Bartoldus, R Barton, AE Bartos, P Basalaev, A Bassalat, A Basye, A Bates, RL Batista, SJ Batley, JR Battaglia, M Bauce, M Bauer, F Bawa, HS Beacham, JB Beattie, MD Beau, T Beauchemin, PH Beccherle, R Bechtle, P Beck, HP Becker, K Becker, M Becker, S Beckingham, M Becot, C Beddall, AJ Beddall, A Bednyakov, VA Bee, CP Beemster, LJ Beermann, TA Begel, M Behr, JK Belanger-Champagne, C Bell, WH Bella, G Bellagamba, L Bellerive, A Bellomo, M Belotskiy, K Beltramello, O Benary, O Benchekroun, D Bender, M Bendtz, K Benekos, N Benhammou, Y Noccioli, EB Garcia, JAB Benjamin, DP Bensinger, JR Bentvelsen, S Beresford, L Beretta, M Berge, D Kuutmann, EB Berger, N Berghaus, F Beringer, J Bernard, C Bernard, NR Bernius, C Bernlochner, FU Berry, T Berta, P Bertella, C Bertoli, G Bertolucci, F Bertsche, C Bertsche, D Besana, MI Besjes, GJ Bylund, OB Bessner, M Besson, N Betancourt, C Bethke, S Bevan, AJ Bhimji, W Bianchi, RM Bianchini, L Bianco, M Biebel, O Biedermann, D Bieniek, SP Biglietti, M De Mendizabal, JB Bilokon, H Bindi, M Binet, S Bingul, A Bini, C Biondi, S Black, CW Black, JE Black, KM Blackburn, D Blair, RE Blanchard, JB Blanco, JE Blazek, T Bloch, I Blocker, C Blum, W Blumenschein, U Bobbink, GJ Bobrovnikov, VS Bocchetta, SS Bocci, A Bock, C Boehler, M Bogaerts, JA Bogavac, D Bogdanchikov, AG Bohm, C Boisvert, V Bold, T Boldea, V Boldyrev, AS Bomben, M Bona, M Boonekamp, M Borisov, A Borissov, G Borroni, S Bortfeldt, J Bortolotto, V Bos, K Boscherini, D Bosman, M Boudreau, J Bouffard, J Bouhova-Thacker, EV Boumediene, D Bourdarios, C Bousson, N Boveia, A Boyd, J Boyko, IR Bozic, I Bracinik, J Brandt, A Brandt, G Brandta, O Bratzler, U Brau, B Brau, JE Braun, HM Brazzale, SF Madden, WDB Brendlinger, K Brennan, AJ Brenner, L Brenner, R Bressler, S Bristow, K Bristow, TM Britton, D Britzger, D Brochu, FM Brock, I Brock, R Bronner, J Brooijmans, G Brooks, T Brooks, WK Brosamer, J Brost, E Brown, J de Renstrom, PAB Bruncko, D Bruneliere, R Bruni, A Bruni, G Bruschi, M Bruscino, N Bryngemark, L Buanes, T Buat, Q Buchholz, P Buckley, AG Buda, SI Budagov, IA Buehrer, F Bugge, L Bugge, MK Bulekov, O Bullock, D Burckhart, H Burdin, S Burgard, CD Burghgrave, B Burke, S Burmeister, I Busato, E Buscher, D Buscher, V Bussey, P Butler, JM Butt, AI Buttar, CM Butterworth, JM Butti, P Buttinger, W Buzatu, A Buzykaev, AR Urban, SC Caforio, D Cairo, VM Cakir, O Calace, N Calafiura, P Calandri, A Calderini, G Calfayan, P Caloba, LP Calvet, D Calvet, S Toro, RC Camarda, S Camarri, P Cameron, D Armadans, RC Campana, S Campanelli, M Campoverde, A Canale, V Canepa, A Bret, MC Cantero, J Cantrill, R Cao, T Garrido, MDMC Caprini, I Caprini, M Capua, M Caputo, R Cardarelli, R Cardillo, F Carli, T Carlino, G Carminati, L Caron, S Carquin, E Carrillo-Montoya, GD Carter, JR Carvalho, J Casadei, D Casado, MP Casolino, M Castaneda-Miranda, E Castelli, A Gimenez, VC Castro, NF Catastini, P Catinaccio, A Catmore, JR Cattai, A Caudron, J Cavaliere, V Cavalli, D Cavalli-Sforza, M Cavasinni, V Ceradini, F Cerio, BC Cerny, K Cerqueira, AS Cerri, A Cerrito, L Cerutti, F Cerv, M Cervelli, A Cetin, SA Chafaq, A Chakraborty, D Chalupkova, I Chang, P Chapman, JD Charlton, DG Chau, CC Barajas, CAC Cheatham, S Chegwidden, A Chekanov, S Chekulaev, SV Chelkov, GA Chelstowska, MA Chen, C Chen, H Chen, K Chen, L Chen, S Chen, X Chen, Y Cheng, HC Cheng, Y Cheplakov, A Cheremushkina, E El Moursli, RC Chernyatin, V Cheu, E Chevalier, L Chiarella, V Chiarelli, G Chiodini, G Chisholm, AS Chislett, RT Chitan, A Chizhov, MV Choi, K Chouridou, S Chow, BKB Christodoulou, V Chromek-Burckhart, D Chudoba, J Chuinard, AJ Chwastowski, JJ Chytka, L Ciapetti, G Ciftci, AK Cinca, D Cindro, V Cioara, IA Ciocio, A Cirotto, F Citron, ZH Ciubancan, M Clark, A Clark, BL Clark, PJ Clarke, RN Cleland, W Clement, C Coadou, Y Cobal, M Coccaro, A Cochran, J Coffey, L Cogan, JG Colasurdo, L Cole, B Cole, S Colijn, AP Collot, J Colombo, T Compostella, G Muino, PC Coniavitis, E Connell, SH Connelly, IA Consorti, V Constantinescu, S Conta, C Conti, G Conventi, F Cooke, M Cooper, BD Cooper-Sarkar, AM Cornelissen, T Corradi, M Corriveau, F Corso-Radu, A Cortes-Gonzalez, A Cortiana, G Costa, G Costa, MJ Costanzo, D Cote, D Cottin, G Cowan, G Cox, BE Cranmer, K Cree, G Crepe-Renaudin, S Crescioli, F Cribbs, WA Ortuzar, MC Cristinziani, M Croft, V Crosetti, G Donszelmann, TC Cummings, J Curatolo, M Cuthbert, C Czirr, H Czodrowski, P D'Auria, S D'Onofrio, M Sousa, MJDCS Da Via, C Dabrowski, W Dafinca, A Dai, T Dale, O Dallaire, F Dallapiccola, C Dam, M Dandoy, JR Dang, NP Daniells, AC Danninger, M Hoffmann, MD Dao, V Darbo, G Darmora, S Dassoulas, J Dattagupta, A Davey, W David, C Davidek, T Davies, E Davies, M Davison, P Davygora, Y Dawe, E Dawson, I Daya-Ishmukhametova, RK De, K de Asmundis, R De Benedetti, A De Castro, S De Cecco, S De Groot, N de Jong, P De la Torre, H De Lorenzi, F De Pedis, D De Salvo, A De Sanctis, U De Santo, A De Regie, JBD Dearnaley, WJ Debbe, R Debenedetti, C Dedovich, DV Deigaard, I Del Peso, J Del Prete, T Delgove, D Deliot, F Delitzsch, CM Deliyergiyev, M Dell'Acqua, A Dell'Asta, L Dell'Orso, M Della Pietra, M della Volpe, D Delmastro, M Delsart, PA Deluca, C DeMarco, DA Demers, S Demichev, M Demilly, A Denisov, SP Derendarz, D Derkaoui, JE Derue, F Dervan, P Desch, K Deterre, C Deviveiros, PO Dewhurst, A Dhaliwal, S Di Ciaccio, A Di Ciaccio, L Di Domenico, A Di Donato, C Di Girolamo, A Di Girolamo, B Di Mattia, A Di Micco, B Di Nardo, R Di Simone, A Di Sipio, R Di Valentino, D Diaconu, C Diamond, M Dias, FA Diaz, MA Diehl, EB Dietrich, J Diglio, S Dimitrievska, A Dingfelder, J Dita, P Dita, S Dittus, F Djama, F Djobava, T Djuvsland, JI do Vale, MAB Dobos, D Dobre, M Doglioni, C Dohmae, T Dolejsi, J Dolezal, Z Dolgoshein, BA Donadelli, M Donati, S Dondero, P Donini, J Dopke, J Doria, A Dova, MT Doyle, AT Drechsler, E Dris, M Dubreuil, E Duchovni, E Duckeck, G Ducu, OA Duda, D Dudarev, A Duflot, L Duguid, L Duhrssen, M Dunford, M Yildiz, HD Duren, M Durglishvili, A Duschinger, D Dyndal, M Eckardt, C Ecker, KM Edgar, RC Edson, W Edwards, NC Ehrenfeld, W Eifert, T Eigen, G Einsweiler, K Ekelof, T El Kacimi, M Ellert, M Elles, S Ellinghaus, F Elliot, AA Ellis, N Elmsheuser, J Elsing, M Emeliyanov, D Enari, Y Endner, OC Endo, M Erdmann, J Ereditato, A Ernis, G Ernst, J Ernst, M Errede, S Ertel, E Escalier, M Esch, H Escobar, C Esposito, B Etienvre, AI Etzion, E Evans, H Ezhilov, A Fabbri, L Facini, G Fakhrutdinov, RM Falciano, S Falla, RJ Faltova, J Fang, Y Fanti, M Farbin, A Farilla, A Farooque, T Farrell, S Farrington, SM Farthouat, P Fassi, F Fassnacht, P Fassouliotis, D Giannelli, MF Favareto, A Fayard, L Federic, P Fedin, OL Fedorko, W Feigl, S Feligioni, L Feng, C Feng, EJ Feng, H Fenyuk, AB Feremenga, L Martinez, PF Perez, SF Ferrando, J Ferrari, A Ferrari, P Ferrari, R Lima, DEF Ferrer, A Ferrere, D Ferretti, C Parodi, AF Fiascaris, M Fiedler, F Filipcic, A Filipuzzi, M Filthaut, F Fincke-Keeler, M Finelli, KD Fiolhais, MCN Fiorini, L Firan, A Fischer, A Fischer, C Fischer, J Fisher, WC Fitzgerald, EA Flaschel, N Fleck, I Fleischmann, P Fleischmann, S Fletcher, GT Fletcher, G Fletcher, RRM Flick, T Floderus, A Castillo, LRF Flowerdew, MJ Formica, A Forti, A Fournier, D Fox, H Fracchia, S Francavilla, P Franchini, M Francis, D Franconi, L Franklin, M Frate, M Fraternali, M Freeborn, D French, ST Friedrich, F Froidevaux, D Frost, JA Fukunaga, C Torregrosa, EF Fulsom, BG Fusayasu, T Fuster, J Gabaldon, C Gabizon, O Gabrielli, A Gabrielli, A Gach, GP Gadatsch, S Gadomski, S Gagliardi, G Gagnon, P Galea, C Galhardo, B Gallas, EJ Gallop, BJ Gallus, P Galster, G Gan, KK Gao, J Gao, Y Gao, YS Walls, FMG Garberson, F Garcia, C Navarro, JEG Garcia-Sciveres, M Gardner, RW Garelli, N Garonne, V Gatti, C Gaudiello, A Gaudio, G Gaur, B Gauthier, L Gauzzi, P Gavrilenko, IL Gay, C Gaycken, G Gazis, EN Ge, P Gecse, Z Gee, CNP Geich-Gimbel, C Geisler, P Gemme, C Genest, MH Gentile, S George, M George, S Gerbaudo, D Gershon, A Ghasemi, S Ghazlane, H Giacobbe, B Giagu, S Giangiobbe, V Giannetti, P Gibbard, B Gibson, SM Gilchriese, M Gillam, TPS Gillberg, D Gilles, G Gingrich, DM Giokaris, N Giordani, MP Giorgi, FM Giorgi, FM Giraud, PF Giromini, P Giugni, D Giuliani, C Giulini, M Gjelsten, BK Gkaitatzis, S Gkialas, I Gkougkousis, EL Gladilin, LK Glasman, C Glatzer, J Glaysher, PCF Glazov, A Goblirsch-Kolb, M Goddard, JR Godlewski, J Goldfarb, S Golling, T Golubkov, D Gomes, A Goncalo, R Da Costa, JGPF Gonella, L de la Hoz, SG Parra, GG Gonzalez-Sevilla, S Goossens, L Gorbounov, PA Gordon, HA Gorelov, I Gorini, B Gorini, E Gorisek, A Gornicki, E Goshaw, AT Gossling, C Gostkin, MI Goujdami, D Goussiou, AG Govender, N Gozani, E Grabas, HMX Graber, L Grabowska-Bold, I Gradin, POJ Grafstrom, P Grahn, KJ Gramling, J Gramstad, E Grancagnolo, S Gratchev, V Gray, HM Graziani, E Greenwood, ZD Gregersen, K Gregor, IM Grenier, P Griffiths, J Grillo, AA Grimm, K Grinstein, S Gris, P Grivaz, JF Grohs, JP Grohsjean, A Gross, E Grosse-Knetter, J Grossi, GC Grout, ZJ Guan, L Guenther, J Guescini, F Guest, D Gueta, O Guido, E Guillemin, T Guindon, S Gul, U Gumpert, C Guo, J Guo, Y Gupta, S Gustavino, G Gutierrez, P Ortiz, NGG Gutschow, C Guyot, C Gwenlan, C Gwilliam, CB Haas, A Haber, C Hadavand, HK Haddad, N Haefner, P Hagebock, S Hajduk, Z Hakobyan, H Haleem, M Haley, J Hall, D Halladjian, G Hallewell, GD Hamacher, K Hamal, P Hamano, K Hamilton, A Hamity, GN Hamnett, PG Han, L Hanagaki, K Hanawa, K Hance, M Hanke, P Hanna, R Hansen, JB Hansen, JD Hansen, MC Hansen, PH Hara, K Hard, AS Harenberg, T Hariri, F Harkusha, S Harrington, RD Harrison, PF Hartjes, F Hasegawa, M Hasegawa, Y Hasib, A Hassani, S Haug, S Hauser, R Hauswald, L Havranek, M Hawkes, CM Hawkings, RJ Hawkins, AD Hayashi, T Hayden, D Hays, CP Hays, JM Hayward, HS Haywood, SJ Head, SJ Heck, T Hedberg, V Heelan, L Heim, S Heim, T Heinemann, B Heinrich, L Hejbal, J Helary, L Hellman, S Hellmich, D Helsens, C Henderson, J Henderson, RCW Heng, Y Hengler, C Henrichs, A Correia, AMH Henrot-Versille, S Herbert, GH Jimenez, YH Herrberg-Schubert, R Herten, G Hertenberger, R Hervas, L Hesketh, GG Hessey, NP Hetherly, JW Hickling, R Higon-Rodriguez, E Hill, E Hill, JC Hiller, KH Hillier, SJ Hinchliffe, I Hines, E Hinman, RR Hirose, M Hirschbuehl, D Hobbs, J Hod, N Hodgkinson, MC Hodgson, P Hoecker, A Hoeferkamp, MR Hoenig, F Hohlfeld, M Hohn, D Holmes, TR Homann, M Hong, TM van Huysduynen, LH Hopkins, WH Horii, Y Horton, AJ Hostachy, JY Hou, S Hoummada, A Howard, J Howarth, J Hrabovsky, M Hristova, I Hrivnac, J Hryn'ova, T Hrynevich, A Hsu, C Hsu, PJ Hsu, SC Hu, D Hu, Q Hu, X Huang, Y Hubacek, Z Hubaut, F Huegging, F Huffman, TB Hughes, EW Hughes, G Huhtinen, M Hulsing, TA Huseynov, N Huston, J Huth, J Iacobucci, G Iakovidis, G Ibragimov, I Iconomidou-Fayard, L Ideal, E Idrissi, Z Iengo, P Igonkina, O Iizawa, T Ikegami, Y Ikematsu, K Ikeno, M Ilchenko, Y Iliadis, D Ilic, N Ince, T Introzzi, G Ioannou, P Iodice, M Iordanidou, K Ippolito, V Quiles, AI Isaksson, C Ishino, M Ishitsuka, M Ishmukhametov, R Issever, C Istina, S Ponce, JMI Iuppa, R Ivarsson, J Iwanski, W Iwasaki, H Izen, JM Izzo, V Jabbar, S Jackson, B Jackson, M Jackson, P Jaekel, MR Jain, V Jakobs, K Jakobsen, S Jakoubek, T Jakubek, J Jamin, DO Jana, DK Jansen, E Jansky, R Janssen, J Janus, M Jarlskog, G Javadov, N Javurek, T Jeanty, L Jejelava, J Jeng, GY Jennens, D Jenni, P Jentzsch, J Jeske, C Jezequel, S Ji, H Jia, J Jiang, Y Jiggins, S Pena, JJ Jin, S Jinaru, A Jinnouchi, O Joergensen, MD Johansson, P Johns, KA Jon-And, K Jones, G Jones, RWL Jones, TJ Jongmanns, J Jorge, PM Joshi, KD Jovicevic, J Ju, X Jung, CA Jussel, P Rozas, AJ Kaci, M Kaczmarska, A Kado, M Kagan, H Kagan, M Kahn, SJ Kajomovitz, E Kalderon, CW Kama, S Kamenshchikov, A Kanaya, N Kaneti, S Kantserov, VA Kanzaki, J Kaplan, B Kaplan, LS Kapliy, A Kar, D Karakostas, K Karamaoun, A Karastathis, N Kareem, MJ Karentzos, E Karnevskiy, M Karpov, SN Karpova, ZM Karthik, K Kartvelishvili, V Karyukhin, AN Kashif, L Kass, RD Kastanas, A Kataoka, Y Kato, C Katre, A Katzy, J Kawagoe, K Kawamoto, T Kawamura, G Kazama, S Kazanin, VF Keeler, R Kehoe, R Keller, JS Kempster, JJ Keoshkerian, H Kepka, O Kersevan, BP Kersten, S Keyes, RA Khalil-Zada, F Khandanyan, H Khanov, A Kharlamov, AG Khoo, TJ Khovanskiy, V Khramov, E Khubua, J Kido, S Kim, HY Kim, SH Kim, YK Kimura, N Kind, OM King, BT King, M King, SB Kirk, J Kiryunin, AE Kishimoto, T Kisielewska, D Kiss, F Kiuchi, K Kivernyk, O Kladiva, E Klein, MH Klein, M Klein, U Kleinknecht, K Klimek, P Klimentov, A Klingenberg, R Klinger, JA Klioutchnikova, T Kluge, EE Kluit, P Kluth, S Knapik, J Kneringer, E Knoops, EBFG Knue, A Kobayashi, A Kobayashi, D Kobayashi, T Kobel, M Kocian, M Kodys, P Koffas, T Koffeman, E Kogan, LA Kohlmann, S Kohout, Z Kohriki, T Koi, T Kolanoski, H Koletsou, I Komar, AA Komori, Y Kondo, T Kondrashova, N Koneke, K Konig, AC Kono, T Konoplich, R Konstantinidis, N Kopeliansky, R Kopernya, S Kopke, L Kopp, AK Korcyl, K Kordas, K Korn, A Korol, AA Korolkov, I Korolkova, EV Kortner, O Kortner, S Kosek, T Kostyukhin, VV Kotov, VM Kotwal, A Kourkoumeli-Charalampidi, A Kourkoumelis, C Kouskoura, V Koutsman, A Kowalewski, R Kowalski, TZ Kozanecki, W Kozhin, AS Kramarenko, VA Kramberger, G Krasnopevtsev, D Krasny, MW Krasznahorkay, A Kraus, JK Kravchenko, A Kreiss, S Kretz, M Kretzschmar, J Kreutzfeldt, K Krieger, P Krizka, K Kroeninger, K Kroha, H Kroll, J Kroseberg, J Krstic, J Kruchonak, U Kruger, H Krumnack, N Kruse, A Kruse, MC Kruskal, M Kubota, T Kucuk, H Kuday, S Kuehn, S Kugel, A Kuger, F Kuhl, A Kuhl, T Kukhtin, V Kukla, R Kulchitsky, Y Kuleshov, S Kuna, M Kunigo, T Kupco, A Kurashige, H Kurochkin, YA Kus, V Kuwertz, ES Kuze, M Kvita, J Kwan, T Kyriazopoulos, D La Rosa, A Navarro, JLL La Rotonda, L Lacasta, C Lacava, F Lacey, J Lacker, H Lacour, D Lacuesta, VR Ladygin, E Lafaye, R Laforge, B Lagouri, T Lai, S Lambourne, L Lammers, S Lampen, CL Lampl, W Lancon, E Landgraf, U Landon, MPJ Lang, VS Lange, JC Lankford, AJ Lanni, F Lantzsch, K Lanzaa, A Laplace, S Lapoire, C Laporte, JF Lari, T Manghi, FL Lassnig, M Laurelli, P Lavrijsen, W Law, AT Laycock, P Lazovich, T Le Dortz, O Le Guirriec, E LeMenedeu, E LeBlanc, M LeCompte, T Ledroit-Guillon, F Lee, CA Lee, SC Lee, L Lefebvre, G Lefebvre, M Legger, F Leggett, C Lehan, A Miotto, GL Lei, X Leight, WA Leisos, A Leister, AG Leite, MAL Leitner, R Lellouch, D Lemmer, B Leney, KJC Lenz, T Lenzi, B Leone, R Leone, S Leonidopoulos, C Leontsinis, S Leroy, C Lester, CG Levchenko, M Leveque, J Levin, D Levinson, LJ Levy, M Lewis, A Leyko, AM Leyton, M Li, B Li, H Li, HL Li, L Lie, L Li, S Li, X Li, Y Liang, Z Liao, H Liberti, B Liblong, A Lichard, P Lie, K Liebal, J Liebig, W Limbach, C Limosani, A Lin, SC Lin, TH Linde, F Lindquist, BE Linnemann, JT Lipeles, E Lipniacka, A Lisovyi, M Liss, TM Lissauer, D Lister, A Litke, AM Liu, B Liu, D Liu, H Liu, J Liub, JB Liu, K Liu, L Liu, M Liu, M Liu, Y Livan, M Lleres, A Merino, JL Lloyd, SL LoSterzo, F Lobodzinska, E Loch, P Lockman, WS Loebinger, FK Loevschall-Jensen, AE Loginov, A Lohse, T Lohwasser, K Lokajicek, M Long, BA Long, JD Long, RE Looper, KA Lopes, L Mateos, DL Paredes, BL Paz, IL Lorenz, J Martinez, NL Losada, M Loscutoff, P Losel, PJ Lou, X Lounis, A Love, J Love, PA Lu, N Lubatti, HJ Luci, C Lucotte, A Luehring, F Lukas, W Luminari, L Lundberg, O Lund-Jensen, B Lynn, D Lysak, R Lytken, E Lyubushkin, V Ma, H Ma, LL Maccarrone, G Macchiolo, A Macdonald, CM Macek, B Miguens, JM Macina, D Madaffari, D Madar, R Maddocks, HJ Mader, WF Madsen, A Maeda, J Maeland, S Maeno, T Maevskiy, A Magradze, E Mahboubi, K Mahlstedt, J Maiani, C Maidantchik, C Maier, AA Maier, T Maio, A Majewski, S Makida, Y Makovec, N Malaescu, B Malecki, P Maleev, VP Malek, F Mallik, U Malon, D Malone, C Maltezos, S Malyshev, VM Malyukov, S Mamuzic, J Mancini, G Mandelli, B Mandelli, L Mandic, I Mandrysch, R Maneira, J Manfredini, A de Andrade, LM Ramos, JM Mann, A Manousakis-Katsikakis, A Mansoulie, B Mantifel, R Mantoani, M Mapelli, L March, L Marchiori, G Marcisovsky, M Marino, CP Marjanovic, M Marley, DE Marroquim, F Marsden, SP Marshall, Z Marti, LF Marti-Garcia, S Martin, B Martin, TA Martin, VJ Latour, BMD Martinez, M Martin-Haugh, S Martoiu, VS Martyniuk, AC Marx, M Marzano, F Marzin, A Masetti, L Mashimo, T Mashinistov, R Masik, J Maslennikov, AL Massa, I Massa, L Massol, N Mastrandrea, P Mastroberardino, A Masubuchi, T Matig, P Mattmann, J Maurer, J Maxfield, SJ Maximov, DA Mazini, R Mazza, SM Mazzaferro, L Mc Goldrick, G Mc Kee, SP McCarn, A McCarthy, RL McCarthy, TG McCubbin, NA McFarlane, KW Mcfayden, JA Mchedlidze, G McMahon, SJ McPherson, RA Medinnis, M Meehan, S Mehlhase, S Mehta, A Meiera, K Meineck, C Meirose, B Garcia, BRM Meloni, F Mengarelli, A Menke, S Meoni, E Mercurio, KM Mergelmeyer, S Mermod, P Merola, L Meroni, C Merritt, FS Messina, A Metcalfe, J Mete, AS Meyer, C Meyer, C Meyer, JP Meyer, J Theenhausen, HMZ Middleton, RP Miglioranzi, S Mijovic, L Mikenberg, G Mikestikova, M Mikuz, M Milesi, M Milic, A Miller, DW Mills, C Milov, A Milstead, DA Minaenko, AA Minami, Y Minashvili, IA Mincer, AI Mindur, B Mineev, M Ming, Y Mir, LM Mitani, T Mitrevski, J Mitsou, VA Miucci, A Miyagawa, PS Mjornmark, JU Moa, T Mochizuki, K Mohapatra, S Mohr, W Molander, S Moles-Valls, R Monig, K Monini, C Monk, J Monnier, E Berlingen, JM Monticelli, F Monzani, S Moore, RW Morange, N Moreno, D Llacer, MM Morettini, P Mori, D Morii, M Morinaga, M Morisbak, V Moritz, S Morley, AK Mornacchi, G Morris, JD Mortensen, SS Morton, A Morvaj, L Mosidze, M Moss, J Motohashi, K Mount, R Mountricha, E Mouraviev, SV Moyse, EJW Muanza, S Mudd, RD Mueller, F Mueller, J Mueller, RSP Mueller, T Muenstermann, D Mullen, P Mullier, GA Quijada, JAM Murray, WJ Musheghyan, H Musto, E Myagkov, AG Myska, M Nachman, BP Nackenhorst, O Nadal, J Nagai, K Nagai, R Nagai, Y Nagano, K Nagarkar, A Nagasaka, Y Nagata, K Nagel, M Nagy, E Nairz, AM Nakahama, Y Nakamura, K Nakamura, T Nakano, I Namasivayam, H Garcia, RFN Narayan, R Villar, DIN Naumann, T Navarro, G Nayyar, R Neal, HA Nechaeva, PY Neep, TJ Nef, PD Negri, A Negrini, M Nektarijevic, S Nellist, C Nelson, A Nemecek, S Nemethy, P Nepomuceno, AA Nessi, M Neubauer, MS Neumann, M Neves, RM Nevski, P Newman, PR Nguyen, DH Nickerson, RB Nicolaidou, R Nicquevert, B Nielsen, J Nikiforou, N Nikiforov, A Nikolaenko, V Nikolic-Audit, I Nikolopoulos, K Nilsen, JK Nilsson, P Ninomiya, Y Nisati, A Nisius, R Nobe, T Nomachi, M Nomidis, I Nooney, T Norberg, S Nordberg, M Novgorodova, O Nowak, S Nozaki, M Nozka, L Ntekas, K Hanninger, GN Nunnemann, T Nurse, E Nuti, F O'Brien, BJ O'grady, F O'Neil, DC O'Shea, V Oakham, FG Oberlack, H Obermann, T Ocariz, J Ochi, A Ochoa, I Ochoa-Ricoux, JP Oda, S Odaka, S Ogren, H Oh, A Oh, SH Ohm, CC Ohman, H Oide, H Okamura, W Okawa, H Okumura, Y Okuyama, T Olariu, A Pino, SAO Damazio, DO Garcia, EO Olszewski, A Olszowska, J Onofre, A Onyisi, PUE Oram, CJ Oreglia, MJ Oren, Y Orestano, D Orlando, N Barrera, CO Orr, RS Osculati, B Ospanov, R Garzon, GOY Otono, H Ouchrif, M Ould-Saada, F Ouraou, A Oussoren, KP Ouyang, Q Ovcharova, A Owen, M Owen, RE Ozcan, VE Ozturk, N Pachal, K Pages, AP Aranda, CP Pagacova, M Griso, SP Paganis, E Paige, F Pais, P Pajchel, K Palacino, G Palestini, S Palka, M Pallin, D Palma, A Pan, YB Panagiotopoulou, E Pandini, CE Vazquez, JGP Pani, P Panitkin, S Pantea, D Paolozzi, L Papadopoulou, TD Papageorgiou, K Paramonov, A Hernandez, DP Parker, MA Parker, KA Parodi, F Parsons, JA Parzefall, U Pasqualucci, E Passaggio, S Pastore, F Pastore, F Pasztor, G Pataraia, S Pataraia, S Patel, ND Pater, JR Pauly, T Pearce, J Pearson, B Pedersen, LE Pedersen, M Lopez, SP Pedro, R Peleganchuk, SV Pelikan, D Penc, O Peng, C Peng, H Penning, B Penwell, J Perepelitsa, DV Codina, EP Garcia-Estan, MTP Perini, L Pernegger, H Perrella, S Peschke, R Peshekhonov, VD Peters, K Peters, RFY Petersen, BA Petersen, TC Petit, E Petridis, A Petridou, C Petroff, P Petrolo, E Petrucci, F Pettersson, NE Pezoa, R Phillips, PW Piacquadio, G Pianori, E Picazio, A Piccaro, E Piccinini, M Pickering, MA Piegaia, R Pignotti, DT Pilcher, JE Pilkington, AD Pina, J Pinamonti, M Pinfold, JL Pingel, A Pires, S Pirumov, H Pitt, M Pizio, C Plazak, L Pleier, MA Pleskot, V Plotnikova, E Plucinski, P Pluth, D Poettgen, R Poggioli, L Pohl, D Polesello, G Poley, A Policicchio, A Polifka, R Polini, A Pollard, CS Polychronakos, V Pommes, K Pontecorvoa, L Pope, BG Popeneciu, GA Popovic, DS Poppleton, A Pospisil, S Potamianos, K Potrap, IN Potter, CJ Potter, CT Poulard, G Poveda, J Pozdnyakov, V Pralavorio, P Pranko, A Prasad, S Prell, S Price, D Price, LE Primaveraa, M Prince, S Proissl, M Prokofiev, K Prokoshin, F Protopapadaki, E Proudfoot, J Protopopescu, S Przybycien, M Ptacek, E Puddu, D Pueschel, E Puldon, D Purohit, M Puzo, P Qian, J Qin, G Qin, Y Quadt, A Quarrie, DR Quayle, WB Queitsch-Maitland, M Quilty, D Raddum, S Radeka, V Radescu, V Radhakrishnan, SK Radloff, P Rados, P Ragusa, F Rahal, G Rajagopalan, S Rammensee, M Rangel-Smith, C Rauscher, F Rave, S Ravenscroft, T Raymond, M Read, AL Readioff, NP Rebuzzi, DM Redelbach, A Redlinger, G Reece, R Reeves, K Rehnisch, L Reichert, J Reisin, H Relich, M Rembser, C Ren, H Renaud, A Rescigno, M Resconi, S Rezanova, OL Reznicek, P Rezvani, R Richter, R Richter, S Richter-Was, E Ricken, O Ridel, M Rieck, P Riegel, CJ Rieger, J Rijssenbeek, M Rimoldi, A Rinaldi, L Ristic, B Ritsch, E Riu, I Rizatdinova, F Rizvi, E Robertson, SH Robichaud-Veronneau, A Robinson, D Robinson, JEM Robson, A Roda, C Roe, S Rohne, O Rolli, S Romaniouk, A Romano, M Saez, SMR Adam, ER Rompotis, N Ronzani, M Roos, L Ros, E Rosati, S Rosbach, K Rose, P Rosendahl, PL Rosenthal, O Rossetti, V Rossi, E Rossi, LP Rosten, JHN Rosten, R Rotaru, M Roth, I Rothberg, J Rousseau, D Royon, CR Rozanov, A Rozen, Y Ruan, X Rubbo, F Rubinskiy, I Rud, VI Rudolph, C Rudolph, MS Ruehr, F Ruiz-Martinez, A Rurikova, Z Rusakovich, NA Ruschke, A Russell, HL Rutherfoord, JP Ruthmann, N Ryabov, YF Rybar, M Rybkin, G Ryder, NC Saavedra, AF Sabato, G Sacerdoti, S Saddique, A Sadrozinski, HFW Sadykov, R Tehrani, FS Sahinsoy, M Saimpert, M Saito, T Sakamoto, H Sakurai, Y Salamanna, G Salamon, A Loyola, JES Saleem, M Salek, D De Bruin, PHS Salihagic, D Salnikov, A Salt, J Salvatore, D Salvatore, F Salvucci, A Salzburger, A Sammel, D Sampsonidis, D Sanchez, A Sanchez, J Martinez, VS Sandaker, H Sandbach, RL Sander, HG Sanders, MP Sandhoff, M Sandoval, C Sandstroem, R Sankey, DPC Sannino, M Sansoni, A Santoni, C Santonico, R Santos, H Castillo, IS Sapp, K Sapronov, A Saraiva, JG Sarrazin, B Sasaki, O Sasaki, Y Sato, K Sauvage, G Sauvan, E Savage, G Savard, P Sawyer, C Sawyer, L Saxon, J Sbarra, C Sbrizzi, A Scanlon, T Scannicchio, DA Scarcella, M Scarfone, V Schaarschmidt, J Schacht, P Schaefer, D Schaefer, R Schaeffer, J Schaepe, S Schaetzel, S Schafer, U Schaffer, AC Schaile, D Schamberger, RD Scharf, V Schegelsky, VA Scheirich, D Schernau, M Schiavi, C Schillo, C Schioppa, M Schlenker, S Schmieden, K Schmitt, C Schmitt, S Schmitt, S Schneider, B Schnellbach, YJ Schnoor, U Schoeffel, L Schoening, A Schoenrock, BD Schopf, E Schorlemmer, ALS Schott, M Schouten, D Schovancova, J Schramm, S Schreyer, M Schroeder, C Schuh, N Schultens, MJ Schultz-Coulon, HC Schulz, H Schumacher, M Schumm, BA Schune, P Schwanenberger, C Schwartzman, A Schwarz, TA Schwegler, P Schweiger, H Schwemling, P Schwienhorst, R Schwindling, J Schwindt, T Sciacca, FG Scifo, E Sciolla, G Scuri, F Scutti, F Searcy, J Sedov, G Sedykh, E Seema, P Seidel, SC Seiden, A Seifert, F Seixas, JM Sekhniaidze, G Sekhon, K Sekula, SJ Seliverstov, DM Semprini-Cesari, N Serfon, C Serin, L Serkin, L Serre, T Sessa, M Seuster, R Severini, H Sfiligoj, T Sforza, F Sfyrla, A Shabalina, E Shamim, M Shan, LY Shang, R Shank, JT Shapiro, M Shatalov, PB Shaw, K Shaw, SM Shcherbakova, A Shehu, CY Sherwood, P Shi, L Shimizu, S Shimmin, CO Shimojima, M Shiyakova, M Shmeleva, A Saadi, DS Shochet, MJ Shojaii, S Shrestha, S Shulga, E Shupe, MA Shushkevich, S Sicho, P Sidebo, PE Sidiropoulou, O Sidorov, D Sidoti, A Siegert, F Sijacki, D Silva, J Silver, Y Silverstein, SB Simak, V Simard, O Simic, L Simion, S Simioni, E Simmons, B Simon, D Sinervo, P Sinev, NB Sioli, M Siragusa, G Sisakyan, AN Sivoklokov, SY Sjolin, J Sjursen, TB Skinner, MB Skottowe, HP Skubic, P Slater, M Slavicek, T Slawinska, M Sliwa, K Smakhtin, V Smart, BH Smestad, L Smirnov, SY Smirnov, Y Smirnova, LN Smirnova, O Smith, MNK Smith, RW Smizanska, M Smolek, K Snesarev, AA Snidero, G Snyder, S Sobie, R Socher, F Soffer, A Soh, DA Sokhrannyi, G Solans, CA Solar, M Solc, J Soldatov, EY Soldevila, U Solodkov, AA Soloshenko, A Solovyanov, OV Solovyev, V Sommer, P Song, HY Soni, N Sood, A Sopczak, A Sopko, B Sopko, V Sorin, V Sosa, D Sosebee, M Sotiropoulou, CL Soualah, R Soukharev, AM South, D Sowden, BC Spagnolo, S Spalla, M Spangenberg, M Spano, F Spearman, WR Sperlich, D Spettel, F Spighi, R Spigo, G Spiller, LA Spousta, M Spreitzer, T Denis, RDS Staerz, S Stahlman, J Stamen, R Stamm, S Stanecka, E Stanescu, C Stanescu-Bellu, M Stanitzki, MM Stapnes, S Starchenko, EA Stark, J Staroba, P Starovoitov, P Staszewski, R Stavina, P Steinberg, P Stelzer, B Stelzer, HJ Stelzer-Chilton, O Stenzel, H Stewart, GA Stillings, JA Stockton, MC Stoebe, M Stoicea, G Stolte, P Stonjek, S Stradling, AR Straessner, A Stramaglia, ME Strandberg, J Strandberg, S Strandlie, A Strauss, E Strauss, M Strizenec, P Strohmer, R Strom, DM Stroynowski, R Strubig, A Stucci, SA Stugu, B Styles, NA Su, D Su, J Subramaniam, R Succurro, A Sugaya, Y Suhr, C Suk, M Sulin, VV Sultansoy, S Sumida, T Sun, S Sun, X Sundermann, JE Suruliz, K Susinno, G Sutton, MR Suzuki, S Svatos, M Swiatlowski, M Sykora, I Sykora, T Ta, D Taccini, C Tackmann, K Taenzer, J Taffard, A Tafirout, R Taiblum, N Takai, H Takashima, R Takeda, H Takeshita, T Takubo, Y Talby, M Talyshev, AA Tam, JYC Tan, KG Tanaka, J Tanaka, R Tanaka, S Tannenwald, BB Tannoury, N Tapprogge, S Tarem, S Tarrade, F Tartarelli, GF Tas, P Tasevsky, M Tashiro, T Tassi, E Delgado, AT Tayalati, Y Taylor, FE Taylor, GN Taylor, W Teischinger, FA Castanheira, MTD Teixeira-Dias, P Temming, KK Temple, D Ten Kate, H Teng, PK Teoh, JJ Tepel, F Terada, S Terashi, K Terron, J Terzo, S Testa, M Teuscher, RJ Theveneaux-Pelzer, T Thomas, JP Thomas-Wilsker, J Thompson, EN Thompson, PD Thompson, RJ Thompson, AS Thomsen, LA Thomson, E Thomson, M Thun, RP Tibbetts, MJ Torres, RET Tikhomirov, VO Tikhonov, YA Timoshenko, S Tiouchichine, E Tipton, P Tisserant, S Todome, K Todorov, T Todorova-Nova, S Tojo, J Tokar, S Tokushuku, K Tollefson, K Tolley, E Tomlinson, L Tomoto, M Tompkins, L Toms, K Torrence, E Torres, H Pastor, ET Toth, J Touchard, F Tovey, DR Trefzger, T Tremblet, L Tricoli, A Trigger, IM Trincaz-Duvoid, S Tripiana, MF Trischuk, W Trocme, B Troncon, C Trottier-McDonald, M Trovatelli, M True, P Truong, L Trzebinski, M Trzupek, A Tsarouchas, C Tseng, JCL Tsiareshka, PV Tsionou, D Tsipolitis, G Tsirintanis, N Tsiskaridze, S Tsiskaridze, V Tskhadadze, EG Tsukerman, II Tsulaia, V Tsuno, S Tsybychev, D Tudorache, A Tudorache, V Tuna, AN Tupputi, SA Turchikhin, S Turecek, D Turra, R Turvey, AJ Tuts, PM Tykhonov, A Tylmad, M Tyndel, M Ueda, I Ueno, R Ughetto, M Ugland, M Ukegawa, F Unal, G Undrus, A Unel, G Ungaro, FC Unno, Y Unverdorben, C Urban, J Urquijo, P Urrejola, P Usai, G Usanova, A Vacavant, L Vacek, V Vachon, B Valderanis, C Valencic, N Valentinetti, S Valero, A Valery, L Valkar, S Gallego, EV Vallecorsa, S Ferrer, JAV Van Den Wollenberg, W Van Der Deijl, PC van der Geer, R van der Graaf, H van Eldik, N van Gemmeren, P Van Nieuwkoop, J van Vulpen, I van Woerden, MC Vanadia, M Vandelli, W Vanguri, R Vaniachine, A Vannucci, F Vardanyan, G Vari, R Varnes, EW Varol, T Varouchas, D Vartapetian, A Varvell, KE Vazeille, F Schroeder, TV Veatch, J Veloce, LM Veloso, F Velz, T Veneziano, S Ventura, A Ventura, D Venturi, M Venturi, N Venturini, A Vercesi, V Verducci, M Verkerke, W Vermeulen, JC Vest, A Vetterli, MC Viazlo, O Vichou, I Vickey, T Boeriu, OEV Viehhauser, GHA Viel, S Vigne, R Villa, M Perez, MV Vilucchi, E Vincter, MG Vinogradov, VB Vivarelli, I Vaque, FV Vlachos, S Vladoiu, D Vlasak, M Vogel, M Vokac, P Volpi, G Volpi, M von der Schmitt, H von Radziewski, H von Toerne, E Vorobel, V Vorobev, K Vos, M Voss, R Vossebeld, JH Vranjes, N Milosavljevic, MV Vrba, V Vreeswijk, M Vuillermet, R Vukotic, I Vykydal, Z Wagner, P Wagner, W Wahlberg, H Wahrmund, S Wakabayashi, J Walder, J Walker, R Walkowiak, W Wang, C Wang, F Wang, H Wang, H Wang, J Wang, J Wang, K Wang, R Wang, SM Wang, T Wang, T Wang, X Wanotayaroj, C Warburton, A Ward, CP Wardrope, DR Washbrook, A Wasicki, C Watkins, PM Watson, AT Watson, IJ Watson, MF Watts, G Watts, S Waugh, BM Webb, S Weber, MS Weber, SW Webster, JS Weidberg, AR Weinert, B Weingarten, J Weiser, C Weits, H Wells, PS Wenaus, T Wengler, T Wenig, S Wermes, N Werner, M Werner, P Wessels, M Wetter, J Whalen, K Wharton, AM White, A White, MJ White, R White, S Whiteson, D Wickens, FJ Wiedenmann, W Wielers, M Wienemann, P Wiglesworth, C Wiik-Fuchs, LAM Wildauer, A Wilkens, HG Williams, HH Williams, S Willis, C Willocq, S Wilson, A Wilson, JA Wingerter-Seez, I Winklmeier, F Winter, BT Wittgen, M Wittkowski, J Wollstadt, SJ Wolter, MW Wolters, H Wosiek, BK Wotschack, J Woudstra, MJ Wozniak, KW Wu, M Wu, M Wu, SL Wu, X Wu, Y Wyatt, TR Wynne, BM Xella, S Xu, D Xu, L Yabsley, B Yacoob, S Yakabe, R Yamada, M Yamaguchi, D Yamaguchi, Y Yamamoto, A Yamamoto, S Yamanaka, T Yamauchi, K Yamazaki, Y Yan, Z Yang, H Yang, H Yang, Y Yao, WM Yasu, Y Yatsenko, E Wong, KHY Ye, J Ye, S Yeletskikh, I Yen, AL Yildirim, E Yorita, K Yoshida, R Yoshihara, K Young, C Young, CJS Youssef, S Yu, DR Yu, J Yu, JM Yu, J Yuan, L Yuen, SPY Yurkewicz, A Yusuff, I Zabinski, B Zaidan, R Zaitsev, AM Zalieckas, J Zaman, A Zambito, S Zanello, L Zanzi, D Zeitnitz, C Zeman, M Zemla, A Zeng, Q Zengel, K Zenin, O Zenis, T Zerwas, D Zhang, D Zhang, F Zhang, H Zhang, J Zhang, L Zhang, R Zhang, X Zhang, Z Zhao, X Zhao, Y Zhao, Z Zhemchugov, A Zhong, J Zhou, B Zhou, C Zhou, L Zhou, L Zhou, M Zhou, N Zhu, CG Zhu, H Zhu, J Zhu, Y Zhuang, X Zhukov, K Zibell, A Zieminska, D Zimine, NI Zimmermann, C Zimmermann, S Zinonos, Z Zinser, M Ziolkowski, M Zivkovic, L Zobernig, G Zoccoli, A zur Nedden, M Zurzolo, G Zwalinski, L AF Aad, G. Abbott, B. Abdallah, J. Abdinov, O. Aben, R. Abolins, M. AbouZeid, O. S. Abramowicz, H. Abreu, H. Abreu, R. Abulaiti, Y. Acharya, B. S. Adamczyk, L. Adams, D. L. Adelman, J. Adomeit, S. Adye, T. Affolder, A. A. Agatonovic-Jovin, T. Agricola, J. Aguilar-Saavedra, J. A. Ahlen, S. P. Ahmadov, F. Aielli, G. Akerstedt, H. Akesson, T. P. A. Akimov, A. V. Alberghi, G. L. Albert, J. Albrand, S. Alconada Verzini, M. J. Aleksa, M. Aleksandrov, I. N. Alexa, C. Alexander, G. Alexopoulos, T. Alhroob, M. Alimonti, G. Alio, L. Alison, J. Alkire, S. P. Allbrooke, B. M. M. Allport, P. P. Aloisio, A. Alonso, A. Alonso, F. Alpigiani, C. Altheimer, A. Gonzalez, B. Alvarez Alvarez Piqueras, D. Alviggi, M. G. Amadio, B. T. Amako, K. Coutinho, Y. Amaral Amelung, C. Amidei, D. Amor Dos Santos, S. P. Amorim, A. Amoroso, S. Amram, N. Amundsen, G. Anastopoulos, C. Ancu, L. S. Andari, N. Andeen, T. Anders, C. F. Anders, G. Anders, J. K. Anderson, K. J. Andreazza, A. Andrei, V. Angelidakis, S. Angelozzi, I. Anger, P. Angerami, A. Anghinolfi, F. Anisenkov, A. V. Anjos, N. Annovi, A. Antonelli, M. Antonov, A. Antos, J. Anulli, F. Aoki, M. Bella, L. Aperio Arabidze, G. Arai, Y. Araque, J. P. Arce, A. T. H. Arduh, F. A. Arguin, J-F. Argyropoulos, S. Arik, M. Armbruster, A. J. Arnaez, O. Arnal, V. Arnold, H. Arratia, M. Arslan, O. Artamonov, A. Artoni, G. Asai, S. Asbah, N. Ashkenazi, A. Asman, B. Asquith, L. Assamagan, K. Astalos, R. Atkinson, M. Atlay, N. B. Augsten, K. Aurousseau, M. Avolio, G. Axen, B. Ayoub, M. K. Azuelos, G. Baak, M. A. Baas, A. E. Baca, M. J. Bacci, C. Bachacou, H. Bachas, K. Backes, M. Backhaus, M. Bagiacchi, P. Bagnaia, P. Bai, Y. Bain, T. Baines, J. T. Baker, O. K. Baldin, E. M. Balek, P. Balestri, T. Balli, F. Banas, E. Banerjee, Sw. Bannoura, A. A. E. Bansil, H. S. Barak, L. Barberio, E. L. Barberis, D. Barbero, M. Barillari, T. Barisonzi, M. Barklow, T. Barlow, N. Barnes, S. L. Barnett, B. M. Barnett, R. M. Barnovska, Z. Baroncelli, A. Barone, G. Barr, A. J. Barreiro, F. da Costa, J. Barreiro Guimaraes Bartoldus, R. Barton, A. E. Bartos, P. Basalaev, A. Bassalat, A. Basye, A. Bates, R. L. Batista, S. J. Batley, J. R. Battaglia, M. Bauce, M. Bauer, F. Bawa, H. S. Beacham, J. B. Beattie, M. D. Beau, T. Beauchemin, P. H. Beccherle, R. Bechtle, P. Beck, H. P. Becker, K. Becker, M. Becker, S. Beckingham, M. Becot, C. Beddall, A. J. Beddall, A. Bednyakov, V. A. Bee, C. P. Beemster, L. J. Beermann, T. A. Begel, M. Behr, J. K. Belanger-Champagne, C. Bell, W. H. Bella, G. Bellagamba, L. Bellerive, A. Bellomo, M. Belotskiy, K. Beltramello, O. Benary, O. Benchekroun, D. Bender, M. Bendtz, K. Benekos, N. Benhammou, Y. Noccioli, E. Benhar Garcia, J. A. Benitez Benjamin, D. P. Bensinger, J. R. Bentvelsen, S. Beresford, L. Beretta, M. Berge, D. Kuutmann, E. Bergeaas Berger, N. Berghaus, F. Beringer, J. Bernard, C. Bernard, N. R. Bernius, C. Bernlochner, F. U. Berry, T. Berta, P. Bertella, C. Bertoli, G. Bertolucci, F. Bertsche, C. Bertsche, D. Besana, M. I. Besjes, G. J. Bylund, O. Bessidskaia Bessner, M. Besson, N. Betancourt, C. Bethke, S. Bevan, A. J. Bhimji, W. Bianchi, R. M. Bianchini, L. Bianco, M. Biebel, O. Biedermann, D. Bieniek, S. P. Biglietti, M. De Mendizabal, J. Bilbao Bilokon, H. Bindi, M. Binet, S. Bingul, A. Bini, C. Biondi, S. Black, C. W. Black, J. E. Black, K. M. Blackburn, D. Blair, R. E. Blanchard, J. -B. Blanco, J. E. Blazek, T. Bloch, I. Blocker, C. Blum, W. Blumenschein, U. Bobbink, G. J. Bobrovnikov, V. S. Bocchetta, S. S. Bocci, A. Bock, C. Boehler, M. Bogaerts, J. A. Bogavac, D. Bogdanchikov, A. G. Bohm, C. Boisvert, V. Bold, T. Boldea, V. Boldyrev, A. S. Bomben, M. Bona, M. Boonekamp, M. Borisov, A. Borissov, G. Borroni, S. Bortfeldt, J. Bortolotto, V. Bos, K. Boscherini, D. Bosman, M. Boudreau, J. Bouffard, J. Bouhova-Thacker, E. V. Boumediene, D. Bourdarios, C. Bousson, N. Boveia, A. Boyd, J. Boyko, I. R. Bozic, I. Bracinik, J. Brandt, A. Brandt, G. Brandta, O. Bratzler, U. Brau, B. Brau, J. E. Braun, H. M. Brazzale, S. F. Madden, W. D. Breaden Brendlinger, K. Brennan, A. J. Brenner, L. Brenner, R. Bressler, S. Bristow, K. Bristow, T. M. Britton, D. Britzger, D. Brochu, F. M. Brock, I. Brock, R. Bronner, J. Brooijmans, G. Brooks, T. Brooks, W. K. Brosamer, J. Brost, E. Brown, J. de Renstrom, P. A. Bruckman Bruncko, D. Bruneliere, R. Bruni, A. Bruni, G. Bruschi, M. Bruscino, N. Bryngemark, L. Buanes, T. Buat, Q. Buchholz, P. Buckley, A. G. Buda, S. I. Budagov, I. A. Buehrer, F. Bugge, L. Bugge, M. K. Bulekov, O. Bullock, D. Burckhart, H. Burdin, S. Burgard, C. D. Burghgrave, B. Burke, S. Burmeister, I. Busato, E. Buescher, D. Buescher, V. Bussey, P. Butler, J. M. Butt, A. I. Buttar, C. M. Butterworth, J. M. Butti, P. Buttinger, W. Buzatu, A. Buzykaev, A. R. Cabrera Urban, S. Caforio, D. Cairo, V. M. Cakir, O. Calace, N. Calafiura, P. Calandri, A. Calderini, G. Calfayan, P. Caloba, L. P. Calvet, D. Calvet, S. Toro, R. Camacho Camarda, S. Camarri, P. Cameron, D. Armadans, R. Caminal Campana, S. Campanelli, M. Campoverde, A. Canale, V. Canepa, A. Bret, M. Cano Cantero, J. Cantrill, R. Cao, T. Garrido, M. D. M. Capeans Caprini, I. Caprini, M. Capua, M. Caputo, R. Cardarelli, R. Cardillo, F. Carli, T. Carlino, G. Carminati, L. Caron, S. Carquin, E. Carrillo-Montoya, G. D. Carter, J. R. Carvalho, J. Casadei, D. Casado, M. P. Casolino, M. Castaneda-Miranda, E. Castelli, A. Castillo Gimenez, V. Castro, N. F. Catastini, P. Catinaccio, A. Catmore, J. R. Cattai, A. Caudron, J. Cavaliere, V. Cavalli, D. Cavalli-Sforza, M. Cavasinni, V. Ceradini, F. Cerio, B. C. Cerny, K. Cerqueira, A. S. Cerri, A. Cerrito, L. Cerutti, F. Cerv, M. Cervelli, A. Cetin, S. A. Chafaq, A. Chakraborty, D. Chalupkova, I. Chang, P. Chapman, J. D. Charlton, D. G. Chau, C. C. Barajas, C. A. Chavez Cheatham, S. Chegwidden, A. Chekanov, S. Chekulaev, S. V. Chelkov, G. A. Chelstowska, M. A. Chen, C. Chen, H. Chen, K. Chen, L. Chen, S. Chen, X. Chen, Y. Cheng, H. C. Cheng, Y. Cheplakov, A. Cheremushkina, E. El Moursli, R. Cherkaoui Chernyatin, V. Cheu, E. Chevalier, L. Chiarella, V. Chiarelli, G. Chiodini, G. Chisholm, A. S. Chislett, R. T. Chitan, A. Chizhov, M. V. Choi, K. Chouridou, S. Chow, B. K. B. Christodoulou, V. Chromek-Burckhart, D. Chudoba, J. Chuinard, A. J. Chwastowski, J. J. Chytka, L. Ciapetti, G. Ciftci, A. K. Cinca, D. Cindro, V. Cioara, I. A. Ciocio, A. Cirotto, F. Citron, Z. H. Ciubancan, M. Clark, A. Clark, B. L. Clark, P. J. Clarke, R. N. Cleland, W. Clement, C. Coadou, Y. Cobal, M. Coccaro, A. Cochran, J. Coffey, L. Cogan, J. G. Colasurdo, L. Cole, B. Cole, S. Colijn, A. P. Collot, J. Colombo, T. Compostella, G. Conde Muino, P. Coniavitis, E. Connell, S. H. Connelly, I. A. Consorti, V. Constantinescu, S. Conta, C. Conti, G. Conventi, F. Cooke, M. Cooper, B. D. Cooper-Sarkar, A. M. Cornelissen, T. Corradi, M. Corriveau, F. Corso-Radu, A. Cortes-Gonzalez, A. Cortiana, G. Costa, G. Costa, M. J. Costanzo, D. Cote, D. Cottin, G. Cowan, G. Cox, B. E. Cranmer, K. Cree, G. Crepe-Renaudin, S. Crescioli, F. Cribbs, W. A. Ortuzar, M. Crispin Cristinziani, M. Croft, V. Crosetti, G. Donszelmann, T. Cuhadar Cummings, J. Curatolo, M. Cuthbert, C. Czirr, H. Czodrowski, P. D'Auria, S. D'Onofrio, M. Da Cunha Sargedas De Sousa, M. J. Da Via, C. Dabrowski, W. Dafinca, A. Dai, T. Dale, O. Dallaire, F. Dallapiccola, C. Dam, M. Dandoy, J. R. Dang, N. P. Daniells, A. C. Danninger, M. Hoffmann, M. Dano Dao, V. Darbo, G. Darmora, S. Dassoulas, J. Dattagupta, A. Davey, W. David, C. Davidek, T. Davies, E. Davies, M. Davison, P. Davygora, Y. Dawe, E. Dawson, I. Daya-Ishmukhametova, R. K. De, K. de Asmundis, R. De Benedetti, A. De Castro, S. De Cecco, S. De Groot, N. de Jong, P. De la Torre, H. De Lorenzi, F. De Pedis, D. De Salvo, A. De Sanctis, U. De Santo, A. De Regie, J. B. De Vivie Dearnaley, W. J. Debbe, R. Debenedetti, C. Dedovich, D. V. Deigaard, I. Del Peso, J. Del Prete, T. Delgove, D. Deliot, F. Delitzsch, C. M. Deliyergiyev, M. Dell'Acqua, A. Dell'Asta, L. Dell'Orso, M. Della Pietra, M. della Volpe, D. Delmastro, M. Delsart, P. A. Deluca, C. DeMarco, D. A. Demers, S. Demichev, M. Demilly, A. Denisov, S. P. Derendarz, D. Derkaoui, J. E. Derue, F. Dervan, P. Desch, K. Deterre, C. Deviveiros, P. O. Dewhurst, A. Dhaliwal, S. Di Ciaccio, A. Di Ciaccio, L. Di Domenico, A. Di Donato, C. Di Girolamo, A. Di Girolamo, B. Di Mattia, A. Di Micco, B. Di Nardo, R. Di Simone, A. Di Sipio, R. Di Valentino, D. Diaconu, C. Diamond, M. Dias, F. A. Diaz, M. A. Diehl, E. B. Dietrich, J. Diglio, S. Dimitrievska, A. Dingfelder, J. Dita, P. Dita, S. Dittus, F. Djama, F. Djobava, T. Djuvsland, J. I. do Vale, M. A. B. Dobos, D. Dobre, M. Doglioni, C. Dohmae, T. Dolejsi, J. Dolezal, Z. Dolgoshein, B. A. Donadelli, M. Donati, S. Dondero, P. Donini, J. Dopke, J. Doria, A. Dova, M. T. Doyle, A. T. Drechsler, E. Dris, M. Dubreuil, E. Duchovni, E. Duckeck, G. Ducu, O. A. Duda, D. Dudarev, A. Duflot, L. Duguid, L. Duehrssen, M. Dunford, M. Yildiz, H. Duran Dueren, M. Durglishvili, A. Duschinger, D. Dyndal, M. Eckardt, C. Ecker, K. M. Edgar, R. C. Edson, W. Edwards, N. C. Ehrenfeld, W. Eifert, T. Eigen, G. Einsweiler, K. Ekelof, T. El Kacimi, M. Ellert, M. Elles, S. Ellinghaus, F. Elliot, A. A. Ellis, N. Elmsheuser, J. Elsing, M. Emeliyanov, D. Enari, Y. Endner, O. C. Endo, M. Erdmann, J. Ereditato, A. Ernis, G. Ernst, J. Ernst, M. Errede, S. Ertel, E. Escalier, M. Esch, H. Escobar, C. Esposito, B. Etienvre, A. I. Etzion, E. Evans, H. Ezhilov, A. Fabbri, L. Facini, G. Fakhrutdinov, R. M. Falciano, S. Falla, R. J. Faltova, J. Fang, Y. Fanti, M. Farbin, A. Farilla, A. Farooque, T. Farrell, S. Farrington, S. M. Farthouat, P. Fassi, F. Fassnacht, P. Fassouliotis, D. Giannelli, M. Faucci Favareto, A. Fayard, L. Federic, P. Fedin, O. L. Fedorko, W. Feigl, S. Feligioni, L. Feng, C. Feng, E. J. Feng, H. Fenyuk, A. B. Feremenga, L. Fernandez Martinez, P. Perez, S. Fernandez Ferrando, J. Ferrari, A. Ferrari, P. Ferrari, R. Lima, D. E. Ferreirade Ferrer, A. Ferrere, D. Ferretti, C. Parodi, A. Ferretto Fiascaris, M. Fiedler, F. Filipcic, A. Filipuzzi, M. Filthaut, F. Fincke-Keeler, M. Finelli, K. D. Fiolhais, M. C. N. Fiorini, L. Firan, A. Fischer, A. Fischer, C. Fischer, J. Fisher, W. C. Fitzgerald, E. A. Flaschel, N. Fleck, I. Fleischmann, P. Fleischmann, S. Fletcher, G. T. Fletcher, G. Fletcher, R. R. M. Flick, T. Floderus, A. Castillo, L. R. Flores Flowerdew, M. J. Formica, A. Forti, A. Fournier, D. Fox, H. Fracchia, S. Francavilla, P. Franchini, M. Francis, D. Franconi, L. Franklin, M. Frate, M. Fraternali, M. Freeborn, D. French, S. T. Friedrich, F. Froidevaux, D. Frost, J. A. Fukunaga, C. Torregrosa, E. Fullana Fulsom, B. G. Fusayasu, T. Fuster, J. Gabaldon, C. Gabizon, O. Gabrielli, A. Gabrielli, A. Gach, G. P. Gadatsch, S. Gadomski, S. Gagliardi, G. Gagnon, P. Galea, C. Galhardo, B. Gallas, E. J. Gallop, B. J. Gallus, P. Galster, G. Gan, K. K. Gao, J. Gao, Y. Gao, Y. S. Walls, F. M. Garay Garberson, F. Garcia, C. Garcia Navarro, J. E. Garcia-Sciveres, M. Gardner, R. W. Garelli, N. Garonne, V. Gatti, C. Gaudiello, A. Gaudio, G. Gaur, B. Gauthier, L. Gauzzi, P. Gavrilenko, I. L. Gay, C. Gaycken, G. Gazis, E. N. Ge, P. Gecse, Z. Gee, C. N. P. Geich-Gimbel, Ch. Geisler, P. Gemme, C. Genest, M. H. Gentile, S. George, M. George, S. Gerbaudo, D. Gershon, A. Ghasemi, S. Ghazlane, H. Giacobbe, B. Giagu, S. Giangiobbe, V. Giannetti, P. Gibbard, B. Gibson, S. M. Gilchriese, M. Gillam, T. P. S. Gillberg, D. Gilles, G. Gingrich, D. M. Giokaris, N. Giordani, M. P. Giorgi, F. M. Giorgi, F. M. Giraud, P. F. Giromini, P. Giugni, D. Giuliani, C. Giulini, M. Gjelsten, B. K. Gkaitatzis, S. Gkialas, I. Gkougkousis, E. L. Gladilin, L. K. Glasman, C. Glatzer, J. Glaysher, P. C. F. Glazov, A. Goblirsch-Kolb, M. Goddard, J. R. Godlewski, J. Goldfarb, S. Golling, T. Golubkov, D. Gomes, A. Goncalo, R. Da Costa, J. Goncalves Pinto Firmino Gonella, L. Gonzalez de la Hoz, S. Gonzalez Parra, G. Gonzalez-Sevilla, S. Goossens, L. Gorbounov, P. A. Gordon, H. A. Gorelov, I. Gorini, B. Gorini, E. Gorisek, A. Gornicki, E. Goshaw, A. T. Goessling, C. Gostkin, M. I. Goujdami, D. Goussiou, A. G. Govender, N. Gozani, E. Grabas, H. M. X. Graber, L. Grabowska-Bold, I. Gradin, P. O. J. Grafstroem, P. Grahn, K-J. Gramling, J. Gramstad, E. Grancagnolo, S. Gratchev, V. Gray, H. M. Graziani, E. Greenwood, Z. D. Gregersen, K. Gregor, I. M. Grenier, P. Griffiths, J. Grillo, A. A. Grimm, K. Grinstein, S. Gris, Ph. Grivaz, J. -F. Grohs, J. P. Grohsjean, A. Gross, E. Grosse-Knetter, J. Grossi, G. C. Grout, Z. J. Guan, L. Guenther, J. Guescini, F. Guest, D. Gueta, O. Guido, E. Guillemin, T. Guindon, S. Gul, U. Gumpert, C. Guo, J. Guo, Y. Gupta, S. Gustavino, G. Gutierrez, P. Ortiz, N. G. Gutierrez Gutschow, C. Guyot, C. Gwenlan, C. Gwilliam, C. B. Haas, A. Haber, C. Hadavand, H. K. Haddad, N. Haefner, P. Hageboeck, S. Hajduk, Z. Hakobyan, H. Haleem, M. Haley, J. Hall, D. Halladjian, G. Hallewell, G. D. Hamacher, K. Hamal, P. Hamano, K. Hamilton, A. Hamity, G. N. Hamnett, P. G. Han, L. Hanagaki, K. Hanawa, K. Hance, M. Hanke, P. Hanna, R. Hansen, J. B. Hansen, J. D. Hansen, M. C. Hansen, P. H. Hara, K. Hard, A. S. Harenberg, T. Hariri, F. Harkusha, S. Harrington, R. D. Harrison, P. F. Hartjes, F. Hasegawa, M. Hasegawa, Y. Hasib, A. Hassani, S. Haug, S. Hauser, R. Hauswald, L. Havranek, M. Hawkes, C. M. Hawkings, R. J. Hawkins, A. D. Hayashi, T. Hayden, D. Hays, C. P. Hays, J. M. Hayward, H. S. Haywood, S. J. Head, S. J. Heck, T. Hedberg, V. Heelan, L. Heim, S. Heim, T. Heinemann, B. Heinrich, L. Hejbal, J. Helary, L. Hellman, S. Hellmich, D. Helsens, C. Henderson, J. Henderson, R. C. W. Heng, Y. Hengler, C. Henrichs, A. Correia, A. M. Henriques Henrot-Versille, S. Herbert, G. H. Hernandez Jimenez, Y. Herrberg-Schubert, R. Herten, G. Hertenberger, R. Hervas, L. Hesketh, G. G. Hessey, N. P. Hetherly, J. W. Hickling, R. Higon-Rodriguez, E. Hill, E. Hill, J. C. Hiller, K. H. Hillier, S. J. Hinchliffe, I. Hines, E. Hinman, R. R. Hirose, M. Hirschbuehl, D. Hobbs, J. Hod, N. Hodgkinson, M. C. Hodgson, P. Hoecker, A. Hoeferkamp, M. R. Hoenig, F. Hohlfeld, M. Hohn, D. Holmes, T. R. Homann, M. Hong, T. M. van Huysduynen, L. Hooft Hopkins, W. H. Horii, Y. Horton, A. J. Hostachy, J-Y Hou, S. Hoummada, A. Howard, J. Howarth, J. Hrabovsky, M. Hristova, I. Hrivnac, J. Hryn'ova, T. Hrynevich, A. Hsu, C. Hsu, P. J. Hsu, S-C. Hu, D. Hu, Q. Hu, X. Huang, Y. Hubacek, Z. Hubaut, F. Huegging, F. Huffman, T. B. Hughes, E. W. Hughes, G. Huhtinen, M. Huelsing, T. A. Huseynov, N. Huston, J. Huth, J. Iacobucci, G. Iakovidis, G. Ibragimov, I. Iconomidou-Fayard, L. Ideal, E. Idrissi, Z. Iengo, P. Igonkina, O. Iizawa, T. Ikegami, Y. Ikematsu, K. Ikeno, M. Ilchenko, Y. Iliadis, D. Ilic, N. Ince, T. Introzzi, G. Ioannou, P. Iodice, M. Iordanidou, K. Ippolito, V. Irles Quiles, A. Isaksson, C. Ishino, M. Ishitsuka, M. Ishmukhametov, R. Issever, C. Istin, S. Ponce, J. M. Iturbe Iuppa, R. Ivarsson, J. Iwanski, W. Iwasaki, H. Izen, J. M. Izzo, V. Jabbar, S. Jackson, B. Jackson, M. Jackson, P. Jaekel, M. R. Jain, V. Jakobs, K. Jakobsen, S. Jakoubek, T. Jakubek, J. Jamin, D. O. Jana, D. K. Jansen, E. Jansky, R. Janssen, J. Janus, M. Jarlskog, G. Javadov, N. Javurek, T. Jeanty, L. Jejelava, J. Jeng, G. -Y. Jennens, D. Jenni, P. Jentzsch, J. Jeske, C. Jezequel, S. Ji, H. Jia, J. Jiang, Y. Jiggins, S. Jimenez Pena, J. Jin, S. Jinaru, A. Jinnouchi, O. Joergensen, M. D. Johansson, P. Johns, K. A. Jon-And, K. Jones, G. Jones, R. W. L. Jones, T. J. Jongmanns, J. Jorge, P. M. Joshi, K. D. Jovicevic, J. Ju, X. Jung, C. A. Jussel, P. Juste Rozas, A. Kaci, M. Kaczmarska, A. Kado, M. Kagan, H. Kagan, M. Kahn, S. J. Kajomovitz, E. Kalderon, C. W. Kama, S. Kamenshchikov, A. Kanaya, N. Kaneti, S. Kantserov, V. A. Kanzaki, J. Kaplan, B. Kaplan, L. S. Kapliy, A. Kar, D. Karakostas, K. Karamaoun, A. Karastathis, N. Kareem, M. J. Karentzos, E. Karnevskiy, M. Karpov, S. N. Karpova, Z. M. Karthik, K. Kartvelishvili, V. Karyukhin, A. N. Kashif, L. Kass, R. D. Kastanas, A. Kataoka, Y. Kato, C. Katre, A. Katzy, J. Kawagoe, K. Kawamoto, T. Kawamura, G. Kazama, S. Kazanin, V. F. Keeler, R. Kehoe, R. Keller, J. S. Kempster, J. J. Keoshkerian, H. Kepka, O. Kersevan, B. P. Kersten, S. Keyes, R. A. Khalil-zada, F. Khandanyan, H. Khanov, A. Kharlamov, A. G. Khoo, T. J. Khovanskiy, V. Khramov, E. Khubua, J. Kido, S. Kim, H. Y. Kim, S. H. Kim, Y. K. Kimura, N. Kind, O. M. King, B. T. King, M. King, S. B. Kirk, J. Kiryunin, A. E. Kishimoto, T. Kisielewska, D. Kiss, F. Kiuchi, K. Kivernyk, O. Kladiva, E. Klein, M. H. Klein, M. Klein, U. Kleinknecht, K. Klimek, P. Klimentov, A. Klingenberg, R. Klinger, J. A. Klioutchnikova, T. Kluge, E. -E. Kluit, P. Kluth, S. Knapik, J. Kneringer, E. Knoops, E. B. F. G. Knue, A. Kobayashi, A. Kobayashi, D. Kobayashi, T. Kobel, M. Kocian, M. Kodys, P. Koffas, T. Koffeman, E. Kogan, L. A. Kohlmann, S. Kohout, Z. Kohriki, T. Koi, T. Kolanoski, H. Koletsou, I. Komar, A. A. Komori, Y. Kondo, T. Kondrashova, N. Koeneke, K. Koenig, A. C. Kono, T. Konoplich, R. Konstantinidis, N. Kopeliansky, R. Kopernya, S. Koepke, L. Kopp, A. K. Korcyl, K. Kordas, K. Korn, A. Korol, A. A. Korolkov, I. Korolkova, E. V. Kortner, O. Kortner, S. Kosek, T. Kostyukhin, V. V. Kotov, V. M. Kotwal, A. Kourkoumeli-Charalampidi, A. Kourkoumelis, C. Kouskoura, V. Koutsman, A. Kowalewski, R. Kowalski, T. Z. Kozanecki, W. Kozhin, A. S. Kramarenko, V. A. Kramberger, G. Krasnopevtsev, D. Krasny, M. W. Krasznahorkay, A. Kraus, J. K. Kravchenko, A. Kreiss, S. Kretz, M. Kretzschmar, J. Kreutzfeldt, K. Krieger, P. Krizka, K. Kroeninger, K. Kroha, H. Kroll, J. Kroseberg, J. Krstic, J. Kruchonak, U. Krueger, H. Krumnack, N. Kruse, A. Kruse, M. C. Kruskal, M. Kubota, T. Kucuk, H. Kuday, S. Kuehn, S. Kugel, A. Kuger, F. Kuhl, A. Kuhl, T. Kukhtin, V. Kukla, R. Kulchitsky, Y. Kuleshov, S. Kuna, M. Kunigo, T. Kupco, A. Kurashige, H. Kurochkin, Y. A. Kus, V. Kuwertz, E. S. Kuze, M. Kvita, J. Kwan, T. Kyriazopoulos, D. La Rosa, A. La Rosa Navarro, J. L. La Rotonda, L. Lacasta, C. Lacava, F. Lacey, J. Lacker, H. Lacour, D. Lacuesta, V. R. Ladygin, E. Lafaye, R. Laforge, B. Lagouri, T. Lai, S. Lambourne, L. Lammers, S. Lampen, C. L. Lampl, W. Lancon, E. Landgraf, U. Landon, M. P. J. Lang, V. S. Lange, J. C. Lankford, A. J. Lanni, F. Lantzsch, K. Lanzaa, A. Laplace, S. Lapoire, C. Laporte, J. F. Lari, T. Manghi, F. Lasagni Lassnig, M. Laurelli, P. Lavrijsen, W. Law, A. T. Laycock, P. Lazovich, T. Le Dortz, O. Le Guirriec, E. LeMenedeu, E. LeBlanc, M. LeCompte, T. Ledroit-Guillon, F. Lee, C. A. Lee, S. C. Lee, L. Lefebvre, G. Lefebvre, M. Legger, F. Leggett, C. Lehan, A. Miotto, G. Lehmann Lei, X. Leight, W. A. Leisos, A. Leister, A. G. Leite, M. A. L. Leitner, R. Lellouch, D. Lemmer, B. Leney, K. J. C. Lenz, T. Lenzi, B. Leone, R. Leone, S. Leonidopoulos, C. Leontsinis, S. Leroy, C. Lester, C. G. Levchenko, M. Leveque, J. Levin, D. Levinson, L. J. Levy, M. Lewis, A. Leyko, A. M. Leyton, M. Li, B. Li, H. Li, H. L. Li, L. Lie, L. Li, S. Li, X. Li, Y. Liang, Z. Liao, H. Liberti, B. Liblong, A. Lichard, P. Lie, K. Liebal, J. Liebig, W. Limbach, C. Limosani, A. Lin, S. C. Lin, T. H. Linde, F. Lindquist, B. E. Linnemann, J. T. Lipeles, E. Lipniacka, A. Lisovyi, M. Liss, T. M. Lissauer, D. Lister, A. Litke, A. M. Liu, B. Liu, D. Liu, H. Liu, J. Liub, J. B. Liu, K. Liu, L. Liu, M. Liu, M. Liu, Y. Livan, M. Lleres, A. Merino, J. Llorente Lloyd, S. L. LoSterzo, F. Lobodzinska, E. Loch, P. Lockman, W. S. Loebinger, F. K. Loevschall-Jensen, A. E. Loginov, A. Lohse, T. Lohwasser, K. Lokajicek, M. Long, B. A. Long, J. D. Long, R. E. Looper, K. A. Lopes, L. Mateos, D. Lopez Paredes, B. Lopez Paz, I. Lopez Lorenz, J. Martinez, N. Lorenzo Losada, M. Loscutoff, P. Loesel, P. J. Lou, X. Lounis, A. Love, J. Love, P. A. Lu, N. Lubatti, H. J. Luci, C. Lucotte, A. Luehring, F. Lukas, W. Luminari, L. Lundberg, O. Lund-Jensen, B. Lynn, D. Lysak, R. Lytken, E. Lyubushkin, V. Ma, H. Ma, L. L. Maccarrone, G. Macchiolo, A. Macdonald, C. M. Macek, B. Miguens, J. Machado Macina, D. Madaffari, D. Madar, R. Maddocks, H. J. Mader, W. F. Madsen, A. Maeda, J. Maeland, S. Maeno, T. Maevskiy, A. Magradze, E. Mahboubi, K. Mahlstedt, J. Maiani, C. Maidantchik, C. Maier, A. A. Maier, T. Maio, A. Majewski, S. Makida, Y. Makovec, N. Malaescu, B. Malecki, Pa. Maleev, V. P. Malek, F. Mallik, U. Malon, D. Malone, C. Maltezos, S. Malyshev, V. M. Malyukov, S. Mamuzic, J. Mancini, G. Mandelli, B. Mandelli, L. Mandic, I. Mandrysch, R. Maneira, J. Manfredini, A. Manhaes de Andrade Filho, L. Ramos, J. Manjarres Mann, A. Manousakis-Katsikakis, A. Mansoulie, B. Mantifel, R. Mantoani, M. Mapelli, L. March, L. Marchiori, G. Marcisovsky, M. Marino, C. P. Marjanovic, M. Marley, D. E. Marroquim, F. Marsden, S. P. Marshall, Z. Marti, L. F. Marti-Garcia, S. Martin, B. Martin, T. A. Martin, V. J. Latour, B. Martin dit Martinez, M. Martin-Haugh, S. Martoiu, V. S. Martyniuk, A. C. Marx, M. Marzano, F. Marzin, A. Masetti, L. Mashimo, T. Mashinistov, R. Masik, J. Maslennikov, A. L. Massa, I. Massa, L. Massol, N. Mastrandrea, P. Mastroberardino, A. Masubuchi, T. Maetig, P. Mattmann, J. Maurer, J. Maxfield, S. J. Maximov, D. A. Mazini, R. Mazza, S. M. Mazzaferro, L. Mc Goldrick, G. Mc Kee, S. P. McCarn, A. McCarthy, R. L. McCarthy, T. G. McCubbin, N. A. McFarlane, K. W. Mcfayden, J. A. Mchedlidze, G. McMahon, S. J. McPherson, R. A. Medinnis, M. Meehan, S. Mehlhase, S. Mehta, A. Meiera, K. Meineck, C. Meirose, B. Garcia, B. R. Mellado Meloni, F. Mengarelli, A. Menke, S. Meoni, E. Mercurio, K. M. Mergelmeyer, S. Mermod, P. Merola, L. Meroni, C. Merritt, F. S. Messina, A. Metcalfe, J. Mete, A. S. Meyer, C. Meyer, C. Meyer, J-P. Meyer, J. Theenhausen, H. Meyer Zu Middleton, R. P. Miglioranzi, S. Mijovic, L. Mikenberg, G. Mikestikova, M. Mikuz, M. Milesi, M. Milic, A. Miller, D. W. Mills, C. Milov, A. Milstead, D. A. Minaenko, A. A. Minami, Y. Minashvili, I. A. Mincer, A. I. Mindur, B. Mineev, M. Ming, Y. Mir, L. M. Mitani, T. Mitrevski, J. Mitsou, V. A. Miucci, A. Miyagawa, P. S. Mjornmark, J. U. Moa, T. Mochizuki, K. Mohapatra, S. Mohr, W. Molander, S. Moles-Valls, R. Moenig, K. Monini, C. Monk, J. Monnier, E. Berlingen, J. Montejo Monticelli, F. Monzani, S. Moore, R. W. Morange, N. Moreno, D. Llacer, M. Moreno Morettini, P. Mori, D. Morii, M. Morinaga, M. Morisbak, V. Moritz, S. Morley, A. K. Mornacchi, G. Morris, J. D. Mortensen, S. S. Morton, A. Morvaj, L. Mosidze, M. Moss, J. Motohashi, K. Mount, R. Mountricha, E. Mouraviev, S. V. Moyse, E. J. W. Muanza, S. Mudd, R. D. Mueller, F. Mueller, J. Mueller, R. S. P. Mueller, T. Muenstermann, D. Mullen, P. Mullier, G. A. Quijada, J. A. Murillo Murray, W. J. Musheghyan, H. Musto, E. Myagkov, A. G. Myska, M. Nachman, B. P. Nackenhorst, O. Nadal, J. Nagai, K. Nagai, R. Nagai, Y. Nagano, K. Nagarkar, A. Nagasaka, Y. Nagata, K. Nagel, M. Nagy, E. Nairz, A. M. Nakahama, Y. Nakamura, K. Nakamura, T. Nakano, I. Namasivayam, H. Garcia, R. F. Naranjo Narayan, R. Villar, D. I. Narrias Naumann, T. Navarro, G. Nayyar, R. Neal, H. A. Nechaeva, P. Yu. Neep, T. J. Nef, P. D. Negri, A. Negrini, M. Nektarijevic, S. Nellist, C. Nelson, A. Nemecek, S. Nemethy, P. Nepomuceno, A. A. Nessi, M. Neubauer, M. S. Neumann, M. Neves, R. M. Nevski, P. Newman, P. R. Nguyen, D. H. Nickerson, R. B. Nicolaidou, R. Nicquevert, B. Nielsen, J. Nikiforou, N. Nikiforov, A. Nikolaenko, V. Nikolic-Audit, I. Nikolopoulos, K. Nilsen, J. K. Nilsson, P. Ninomiya, Y. Nisati, A. Nisius, R. Nobe, T. Nomachi, M. Nomidis, I. Nooney, T. Norberg, S. Nordberg, M. Novgorodova, O. Nowak, S. Nozaki, M. Nozka, L. Ntekas, K. Hanninger, G. Nunes Nunnemann, T. Nurse, E. Nuti, F. O'Brien, B. J. O'grady, F. O'Neil, D. C. O'Shea, V. Oakham, F. G. Oberlack, H. Obermann, T. Ocariz, J. Ochi, A. Ochoa, I. Ochoa-Ricoux, J. P. Oda, S. Odaka, S. Ogren, H. Oh, A. Oh, S. H. Ohm, C. C. Ohman, H. Oide, H. Okamura, W. Okawa, H. Okumura, Y. Okuyama, T. Olariu, A. Pino, S. A. Olivares Damazio, D. Oliveira Garcia, E. Oliver Olszewski, A. Olszowska, J. Onofre, A. Onyisi, P. U. E. Oram, C. J. Oreglia, M. J. Oren, Y. Orestano, D. Orlando, N. Barrera, C. Oropeza Orr, R. S. Osculati, B. Ospanov, R. Garzon, G. Otero y Otono, H. Ouchrif, M. Ould-Saada, F. Ouraou, A. Oussoren, K. P. Ouyang, Q. Ovcharova, A. Owen, M. Owen, R. E. Ozcan, V. E. Ozturk, N. Pachal, K. Pacheco Pages, A. Padilla Aranda, C. Pagacova, M. Griso, S. Pagan Paganis, E. Paige, F. Pais, P. Pajchel, K. Palacino, G. Palestini, S. Palka, M. Pallin, D. Palma, A. Pan, Y. B. Panagiotopoulou, E. Pandini, C. E. Vazquez, J. G. Panduro Pani, P. Panitkin, S. Pantea, D. Paolozzi, L. Papadopoulou, Th. D. Papageorgiou, K. Paramonov, A. Hernandez, D. Paredes Parker, M. A. Parker, K. A. Parodi, F. Parsons, J. A. Parzefall, U. Pasqualucci, E. Passaggio, S. Pastore, F. Pastore, Fr. Pasztor, G. Pataraia, S. Pataraia, S. Patel, N. D. Pater, J. R. Pauly, T. Pearce, J. Pearson, B. Pedersen, L. E. Pedersen, M. Pedraza Lopez, S. Pedro, R. Peleganchuk, S. V. Pelikan, D. Penc, O. Peng, C. Peng, H. Penning, B. Penwell, J. Perepelitsa, D. V. Codina, E. Perez Perez Garcia-Estan, M. T. Perini, L. Pernegger, H. Perrella, S. Peschke, R. Peshekhonov, V. D. Peters, K. Peters, R. F. Y. Petersen, B. A. Petersen, T. C. Petit, E. Petridis, A. Petridou, C. Petroff, P. Petrolo, E. Petrucci, F. Pettersson, N. E. Pezoa, R. Phillips, P. W. Piacquadio, G. Pianori, E. Picazio, A. Piccaro, E. Piccinini, M. Pickering, M. A. Piegaia, R. Pignotti, D. T. Pilcher, J. E. Pilkington, A. D. Pina, J. Pinamonti, M. Pinfold, J. L. Pingel, A. Pires, S. Pirumov, H. Pitt, M. Pizio, C. Plazak, L. Pleier, M. -A. Pleskot, V. Plotnikova, E. Plucinski, P. Pluth, D. Poettgen, R. Poggioli, L. Pohl, D. Polesello, G. Poley, A. Policicchio, A. Polifka, R. Polini, A. Pollard, C. S. Polychronakos, V. Pommes, K. Pontecorvoa, L. Pope, B. G. Popeneciu, G. A. Popovic, D. S. Poppleton, A. Pospisil, S. Potamianos, K. Potrap, I. N. Potter, C. J. Potter, C. T. Poulard, G. Poveda, J. Pozdnyakov, V. Pralavorio, P. Pranko, A. Prasad, S. Prell, S. Price, D. Price, L. E. Primaveraa, M. Prince, S. Proissl, M. Prokofiev, K. Prokoshin, F. Protopapadaki, E. Proudfoot, J. Protopopescu, S. Przybycien, M. Ptacek, E. Puddu, D. Pueschel, E. Puldon, D. Purohit, M. Puzo, P. Qian, J. Qin, G. Qin, Y. Quadt, A. Quarrie, D. R. Quayle, W. B. Queitsch-Maitland, M. Quilty, D. Raddum, S. Radeka, V. Radescu, V. Radhakrishnan, S. K. Radloff, P. Rados, P. Ragusa, F. Rahal, G. Rajagopalan, S. Rammensee, M. Rangel-Smith, C. Rauscher, F. Rave, S. Ravenscroft, T. Raymond, M. Read, A. L. Readioff, N. P. Rebuzzi, D. M. Redelbach, A. Redlinger, G. Reece, R. Reeves, K. Rehnisch, L. Reichert, J. Reisin, H. Relich, M. Rembser, C. Ren, H. Renaud, A. Rescigno, M. Resconi, S. Rezanova, O. L. Reznicek, P. Rezvani, R. Richter, R. Richter, S. Richter-Was, E. Ricken, O. Ridel, M. Rieck, P. Riegel, C. J. Rieger, J. Rijssenbeek, M. Rimoldi, A. Rinaldi, L. Ristic, B. Ritsch, E. Riu, I. Rizatdinova, F. Rizvi, E. Robertson, S. H. Robichaud-Veronneau, A. Robinson, D. Robinson, J. E. M. Robson, A. Roda, C. Roe, S. Rohne, O. Rolli, S. Romaniouk, A. Romano, M. Romano Saez, S. M. Romero Adam, E. Rompotis, N. Ronzani, M. Roos, L. Ros, E. Rosati, S. Rosbach, K. Rose, P. Rosendahl, P. L. Rosenthal, O. Rossetti, V. Rossi, E. Rossi, L. P. Rosten, J. H. N. Rosten, R. Rotaru, M. Roth, I. Rothberg, J. Rousseau, D. Royon, C. R. Rozanov, A. Rozen, Y. Ruan, X. Rubbo, F. Rubinskiy, I. Rud, V. I. Rudolph, C. Rudolph, M. S. Ruehr, F. Ruiz-Martinez, A. Rurikova, Z. Rusakovich, N. A. Ruschke, A. Russell, H. L. Rutherfoord, J. P. Ruthmann, N. Ryabov, Y. F. Rybar, M. Rybkin, G. Ryder, N. C. Saavedra, A. F. Sabato, G. Sacerdoti, S. Saddique, A. Sadrozinski, H. F-W. Sadykov, R. Tehrani, F. Safai Sahinsoy, M. Saimpert, M. Saito, T. Sakamoto, H. Sakurai, Y. Salamanna, G. Salamon, A. Loyola, J. E. Salazar Saleem, M. Salek, D. De Bruin, P. H. Sales Salihagic, D. Salnikov, A. Salt, J. Salvatore, D. Salvatore, F. Salvucci, A. Salzburger, A. Sammel, D. Sampsonidis, D. Sanchez, A. Sanchez, J. Sanchez Martinez, V. Sandaker, H. Sandbach, R. L. Sander, H. G. Sanders, M. P. Sandhoff, M. Sandoval, C. Sandstroem, R. Sankey, D. P. C. Sannino, M. Sansoni, A. Santoni, C. Santonico, R. Santos, H. Castillo, I. Santoyo Sapp, K. Sapronov, A. Saraiva, J. G. Sarrazin, B. Sasaki, O. Sasaki, Y. Sato, K. Sauvage, G. Sauvan, E. Savage, G. Savard, P. Sawyer, C. Sawyer, L. Saxon, J. Sbarra, C. Sbrizzi, A. Scanlon, T. Scannicchio, D. A. Scarcella, M. Scarfone, V. Schaarschmidt, J. Schacht, P. Schaefer, D. Schaefer, R. Schaeffer, J. Schaepe, S. Schaetzel, S. Schaefer, U. Schaffer, A. C. Schaile, D. Schamberger, R. D. Scharf, V. Schegelsky, V. A. Scheirich, D. Schernau, M. Schiavi, C. Schillo, C. Schioppa, M. Schlenker, S. Schmieden, K. Schmitt, C. Schmitt, S. Schmitt, S. Schneider, B. Schnellbach, Y. J. Schnoor, U. Schoeffel, L. Schoening, A. Schoenrock, B. D. Schopf, E. Schorlemmer, A. L. S. Schott, M. Schouten, D. Schovancova, J. Schramm, S. Schreyer, M. Schroeder, C. Schuh, N. Schultens, M. J. Schultz-Coulon, H. -C. Schulz, H. Schumacher, M. Schumm, B. A. Schune, Ph. Schwanenberger, C. Schwartzman, A. Schwarz, T. A. Schwegler, Ph. Schweiger, H. Schwemling, Ph. Schwienhorst, R. Schwindling, J. Schwindt, T. Sciacca, F. G. Scifo, E. Sciolla, G. Scuri, F. Scutti, F. Searcy, J. Sedov, G. Sedykh, E. Seema, P. Seidel, S. C. Seiden, A. Seifert, F. Seixas, J. M. Sekhniaidze, G. Sekhon, K. Sekula, S. J. Seliverstov, D. M. Semprini-Cesari, N. Serfon, C. Serin, L. Serkin, L. Serre, T. Sessa, M. Seuster, R. Severini, H. Sfiligoj, T. Sforza, F. Sfyrla, A. Shabalina, E. Shamim, M. Shan, L. Y. Shang, R. Shank, J. T. Shapiro, M. Shatalov, P. B. Shaw, K. Shaw, S. M. Shcherbakova, A. Shehu, C. Y. Sherwood, P. Shi, L. Shimizu, S. Shimmin, C. O. Shimojima, M. Shiyakova, M. Shmeleva, A. Saadi, D. Shoaleh Shochet, M. J. Shojaii, S. Shrestha, S. Shulga, E. Shupe, M. A. Shushkevich, S. Sicho, P. Sidebo, P. E. Sidiropoulou, O. Sidorov, D. Sidoti, A. Siegert, F. Sijacki, Dj. Silva, J. Silver, Y. Silverstein, S. B. Simak, V. Simard, O. Simic, Lj. Simion, S. Simioni, E. Simmons, B. Simon, D. Sinervo, P. Sinev, N. B. Sioli, M. Siragusa, G. Sisakyan, A. N. Sivoklokov, S. Yu. Sjoelin, J. Sjursen, T. B. Skinner, M. B. Skottowe, H. P. Skubic, P. Slater, M. Slavicek, T. Slawinska, M. Sliwa, K. Smakhtin, V. Smart, B. H. Smestad, L. Smirnov, S. Yu. Smirnov, Y. Smirnova, L. N. Smirnova, O. Smith, M. N. K. Smith, R. W. Smizanska, M. Smolek, K. Snesarev, A. A. Snidero, G. Snyder, S. Sobie, R. Socher, F. Soffer, A. Soh, D. A. Sokhrannyi, G. Solans, C. A. Solar, M. Solc, J. Soldatov, E. Yu. Soldevila, U. Solodkov, A. A. Soloshenko, A. Solovyanov, O. V. Solovyev, V. Sommer, P. Song, H. Y. Soni, N. Sood, A. Sopczak, A. Sopko, B. Sopko, V. Sorin, V. Sosa, D. Sosebee, M. Sotiropoulou, C. L. Soualah, R. Soukharev, A. M. South, D. Sowden, B. C. Spagnolo, S. Spalla, M. Spangenberg, M. Spano, F. Spearman, W. R. Sperlich, D. Spettel, F. Spighi, R. Spigo, G. Spiller, L. A. Spousta, M. Spreitzer, T. Denis, R. D. St. Staerz, S. Stahlman, J. Stamen, R. Stamm, S. Stanecka, E. Stanescu, C. Stanescu-Bellu, M. Stanitzki, M. M. Stapnes, S. Starchenko, E. A. Stark, J. Staroba, P. Starovoitov, P. Staszewski, R. Stavina, P. Steinberg, P. Stelzer, B. Stelzer, H. J. Stelzer-Chilton, O. Stenzel, H. Stewart, G. A. Stillings, J. A. Stockton, M. C. Stoebe, M. Stoicea, G. Stolte, P. Stonjek, S. Stradling, A. R. Straessner, A. Stramaglia, M. E. Strandberg, J. Strandberg, S. Strandlie, A. Strauss, E. Strauss, M. Strizenec, P. Stroehmer, R. Strom, D. M. Stroynowski, R. Strubig, A. Stucci, S. A. Stugu, B. Styles, N. A. Su, D. Su, J. Subramaniam, R. Succurro, A. Sugaya, Y. Suhr, C. Suk, M. Sulin, V. V. Sultansoy, S. Sumida, T. Sun, S. Sun, X. Sundermann, J. E. Suruliz, K. Susinno, G. Sutton, M. R. Suzuki, S. Svatos, M. Swiatlowski, M. Sykora, I. Sykora, T. Ta, D. Taccini, C. Tackmann, K. Taenzer, J. Taffard, A. Tafirout, R. Taiblum, N. Takai, H. Takashima, R. Takeda, H. Takeshita, T. Takubo, Y. Talby, M. Talyshev, A. A. Tam, J. Y. C. Tan, K. G. Tanaka, J. Tanaka, R. Tanaka, S. Tannenwald, B. B. Tannoury, N. Tapprogge, S. Tarem, S. Tarrade, F. Tartarelli, G. F. Tas, P. Tasevsky, M. Tashiro, T. Tassi, E. Tavares Delgado, A. Tayalati, Y. Taylor, F. E. Taylor, G. N. Taylor, W. Teischinger, F. A. Castanheira, M. Teixeira Dias Teixeira-Dias, P. Temming, K. K. Temple, D. Ten Kate, H. Teng, P. K. Teoh, J. J. Tepel, F. Terada, S. Terashi, K. Terron, J. Terzo, S. Testa, M. Teuscher, R. J. Theveneaux-Pelzer, T. Thomas, J. P. Thomas-Wilsker, J. Thompson, E. N. Thompson, P. D. Thompson, R. J. Thompson, A. S. Thomsen, L. A. Thomson, E. Thomson, M. Thun, R. P. Tibbetts, M. J. Torres, R. E. Ticse Tikhomirov, V. O. Tikhonov, Yu. A. Timoshenko, S. Tiouchichine, E. Tipton, P. Tisserant, S. Todome, K. Todorov, T. Todorova-Nova, S. Tojo, J. Tokar, S. Tokushuku, K. Tollefson, K. Tolley, E. Tomlinson, L. Tomoto, M. Tompkins, L. Toms, K. Torrence, E. Torres, H. Pastor, E. Torro Toth, J. Touchard, F. Tovey, D. R. Trefzger, T. Tremblet, L. Tricoli, A. Trigger, I. M. Trincaz-Duvoid, S. Tripiana, M. F. Trischuk, W. Trocme, B. Troncon, C. Trottier-McDonald, M. Trovatelli, M. True, P. Truong, L. Trzebinski, M. Trzupek, A. Tsarouchas, C. Tseng, J. C-L. Tsiareshka, P. V. Tsionou, D. Tsipolitis, G. Tsirintanis, N. Tsiskaridze, S. Tsiskaridze, V. Tskhadadze, E. G. Tsukerman, I. I. Tsulaia, V. Tsuno, S. Tsybychev, D. Tudorache, A. Tudorache, V. Tuna, A. N. Tupputi, S. A. Turchikhin, S. Turecek, D. Turra, R. Turvey, A. J. Tuts, P. M. Tykhonov, A. Tylmad, M. Tyndel, M. Ueda, I. Ueno, R. Ughetto, M. Ugland, M. Ukegawa, F. Unal, G. Undrus, A. Unel, G. Ungaro, F. C. Unno, Y. Unverdorben, C. Urban, J. Urquijo, P. Urrejola, P. Usai, G. Usanova, A. Vacavant, L. Vacek, V. Vachon, B. Valderanis, C. Valencic, N. Valentinetti, S. Valero, A. Valery, L. Valkar, S. Valladolid Gallego, E. Vallecorsa, S. Ferrer, J. A. Valls Van Den Wollenberg, W. Van Der Deijl, P. C. van der Geer, R. van der Graaf, H. van Eldik, N. van Gemmeren, P. Van Nieuwkoop, J. van Vulpen, I. van Woerden, M. C. Vanadia, M. Vandelli, W. Vanguri, R. Vaniachine, A. Vannucci, F. Vardanyan, G. Vari, R. Varnes, E. W. Varol, T. Varouchas, D. Vartapetian, A. Varvell, K. E. Vazeille, F. Schroeder, T. Vazquez Veatch, J. Veloce, L. M. Veloso, F. Velz, T. Veneziano, S. Ventura, A. Ventura, D. Venturi, M. Venturi, N. Venturini, A. Vercesi, V. Verducci, M. Verkerke, W. Vermeulen, J. C. Vest, A. Vetterli, M. C. Viazlo, O. Vichou, I. Vickey, T. Boeriu, O. E. Vickey Viehhauser, G. H. A. Viel, S. Vigne, R. Villa, M. Perez, M. Villaplana Vilucchi, E. Vincter, M. G. Vinogradov, V. B. Vivarelli, I. Vaque, F. Vives Vlachos, S. Vladoiu, D. Vlasak, M. Vogel, M. Vokac, P. Volpi, G. Volpi, M. von der Schmitt, H. von Radziewski, H. von Toerne, E. Vorobel, V. Vorobev, K. Vos, M. Voss, R. Vossebeld, J. H. Vranjes, N. Milosavljevic, M. Vranjes Vrba, V. Vreeswijk, M. Vuillermet, R. Vukotic, I. Vykydal, Z. Wagner, P. Wagner, W. Wahlberg, H. Wahrmund, S. Wakabayashi, J. Walder, J. Walker, R. Walkowiak, W. Wang, C. Wang, F. Wang, H. Wang, H. Wang, J. Wang, J. Wang, K. Wang, R. Wang, S. M. Wang, T. Wang, T. Wang, X. Wanotayaroj, C. Warburton, A. Ward, C. P. Wardrope, D. R. Washbrook, A. Wasicki, C. Watkins, P. M. Watson, A. T. Watson, I. J. Watson, M. F. Watts, G. Watts, S. Waugh, B. M. Webb, S. Weber, M. S. Weber, S. W. Webster, J. S. Weidberg, A. R. Weinert, B. Weingarten, J. Weiser, C. Weits, H. Wells, P. S. Wenaus, T. Wengler, T. Wenig, S. Wermes, N. Werner, M. Werner, P. Wessels, M. Wetter, J. Whalen, K. Wharton, A. M. White, A. White, M. J. White, R. White, S. Whiteson, D. Wickens, F. J. Wiedenmann, W. Wielers, M. Wienemann, P. Wiglesworth, C. Wiik-Fuchs, L. A. M. Wildauer, A. Wilkens, H. G. Williams, H. H. Williams, S. Willis, C. Willocq, S. Wilson, A. Wilson, J. A. Wingerter-Seez, I. Winklmeier, F. Winter, B. T. Wittgen, M. Wittkowski, J. Wollstadt, S. J. Wolter, M. W. Wolters, H. Wosiek, B. K. Wotschack, J. Woudstra, M. J. Wozniak, K. W. Wu, M. Wu, M. Wu, S. L. Wu, X. Wu, Y. Wyatt, T. R. Wynne, B. M. Xella, S. Xu, D. Xu, L. Yabsley, B. Yacoob, S. Yakabe, R. Yamada, M. Yamaguchi, D. Yamaguchi, Y. Yamamoto, A. Yamamoto, S. Yamanaka, T. Yamauchi, K. Yamazaki, Y. Yan, Z. Yang, H. Yang, H. Yang, Y. Yao, W-M. Yasu, Y. Yatsenko, E. Wong, K. H. Yau Ye, J. Ye, S. Yeletskikh, I. Yen, A. L. Yildirim, E. Yorita, K. Yoshida, R. Yoshihara, K. Young, C. Young, C. J. S. Youssef, S. Yu, D. R. Yu, J. Yu, J. M. Yu, J. Yuan, L. Yuen, S. P. Y. Yurkewicz, A. Yusuff, I. Zabinski, B. Zaidan, R. Zaitsev, A. M. Zalieckas, J. Zaman, A. Zambito, S. Zanello, L. Zanzi, D. Zeitnitz, C. Zeman, M. Zemla, A. Zeng, Q. Zengel, K. Zenin, O. Zenis, T. Zerwas, D. Zhang, D. Zhang, F. Zhang, H. Zhang, J. Zhang, L. Zhang, R. Zhang, X. Zhang, Z. Zhao, X. Zhao, Y. Zhao, Z. Zhemchugov, A. Zhong, J. Zhou, B. Zhou, C. Zhou, L. Zhou, L. Zhou, M. Zhou, N. Zhu, C. G. Zhu, H. Zhu, J. Zhu, Y. Zhuang, X. Zhukov, K. Zibell, A. Zieminska, D. Zimine, N. I. Zimmermann, C. Zimmermann, S. Zinonos, Z. Zinser, M. Ziolkowski, M. Zivkovic, L. Zobernig, G. Zoccoli, A. zur Nedden, M. Zurzolo, G. Zwalinski, L. CA ATLAS Collaboration TI Measurement of the branching ratio Gamma(Lambda(0)(b) -> Psi(2S)Lambda(0))/Gamma(Lambda(0.)(b) -> J/Psi Lambda(0)) with the ATLAS detector SO PHYSICS LETTERS B LA English DT Article ID PP COLLISIONS; ROOT-S=7 TEV; LAMBDA(0)(B) AB An observation of the Lambda(0)(b) -> Psi (2S) Lambda(0) decay and a comparison of its branching fraction with that of the Lambda(0)(b) -> Psi (2S) Lambda(0) decay has been made with the ATLAS detector in proton-proton collisions at root s = 8 TeVat the LHC using an integrated luminosity of 20.6fb(-1). The J/Psi and Psi(2S) mesons are reconstructed in their decays to a muon pair, while the Lambda(0) -> p pi(-) decay is exploited for the Lambda(0) 0baryon reconstruction. The Lambda(0)(b) baryons are reconstructed with transverse momentum p(T)> 10 GeVand pseudorapidity vertical bar eta vertical bar < 2.1. The measured branching ratio of the Lambda(0)(b) -> Psi (2S) Lambda(0) and Lambda(0)(b) -> Psi (2S) Lambda(0) decays is Gamma(Lambda(0)(b) -> Psi (2S) Lambda(0)) / Gamma(Lambda(0)(b) -> Psi (2S) Lambda(0)) = 0.501 +/- 0.033(stat) +/- 0.019(syst), lower than the expectation from the covariant quark model. (C) 2015 CERN for the benefit of the ATLAS Collaboration. Published by Elsevier B.V. C1 [Jackson, P.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia. [Bouffard, J.; Edson, W.; Ernst, J.; Fischer, A.; Guindon, S.; Jain, V.] SUNY Albany, Dept Phys, Albany, NY 12222 USA. [Butt, A. I.; Czodrowski, P.; Dassoulas, J.; Gingrich, D. M.; Jabbar, S.; Karamaoun, A.] Univ Alberta, Dept Phys, Edmonton, AB, Canada. [Cakir, O.; Ciftci, A. K.; Yildiz, H. Duran] Ankara Univ, Dept Phys, TR-06100 Ankara, Turkey. [Kuday, S.] Istanbul Aydin Univ, Istanbul, Turkey. [Sultansoy, S.] TOBB Univ Econ & Technol, Div Phys, Ankara, Turkey. [Barnovska, Z.; Berger, N.; Delmastro, M.; Di Ciaccio, L.; Elles, S.; Hryn'ova, T.; Jezequel, S.; Koletsou, I.; Lafaye, R.; Leveque, J.; Massol, N.; Sauvage, G.; Sauvan, E.; Simard, O.; Todorov, T.; Wingerter-Seez, I.; Yatsenko, E.] CNRS, IN2P3, LAPP, Annecy Le Vieux, France. [Barnovska, Z.; Berger, N.; Delmastro, M.; Di Ciaccio, L.; Elles, S.; Hryn'ova, T.; Jezequel, S.; Koletsou, I.; Lafaye, R.; Leveque, J.; Massol, N.; Sauvage, G.; Sauvan, E.; Simard, O.; Todorov, T.; Wingerter-Seez, I.; Yatsenko, E.] Univ Savoie Mont Blanc, Annecy Le Vieux, France. [Blair, R. E.; Chekanov, S.; Feng, E. J.; LeCompte, T.; Love, J.; Malon, D.; Nguyen, D. H.; Paramonov, A.; Price, L. E.; Proudfoot, J.; van Gemmeren, P.; Vaniachine, A.; Wang, R.; Yoshida, R.; Zhang, J.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Cheu, E.; Johns, K. A.; Lampen, C. L.; Lampl, W.; Lei, X.; Leone, R.; Loch, P.; Nayyar, R.; O'grady, F.; Rutherfoord, J. P.; Shupe, M. A.; Varnes, E. W.; Veatch, J.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Brandt, A.; Bullock, D.; Cote, D.; Darmora, S.; De, K.; Farbin, A.; Feremenga, L.; Griffiths, J.; Hadavand, H. K.; Heelan, L.; Kim, H. Y.; Ozturk, N.; Schovancova, J.; Sosebee, M.; Stradling, A. R.; Usai, G.; Vartapetian, A.; White, A.; Yu, J.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. [Angelidakis, S.; Chouridou, S.; Fassouliotis, D.; Giokaris, N.; Ioannou, P.; Kourkoumelis, C.; Manousakis-Katsikakis, A.; Tsirintanis, N.] Univ Athens, Dept Phys, Athens, Greece. [Alexopoulos, T.; Benekos, N.; Dris, M.; Gazis, E. N.; Karakostas, K.; Karastathis, N.; Karentzos, E.; Leontsinis, S.; Maltezos, S.; Ntekas, K.; Panagiotopoulou, E.; Papadopoulou, Th. D.; Tsipolitis, G.; Vlachos, S.] Natl Tech Univ Athens, Dept Phys, Zografos, Greece. [Abdinov, O.; Khalil-zada, F.] Azerbaijan Acad Sci, Inst Phys, Baku 370143, Azerbaijan. [Anjos, N.; Bosman, M.; Casado, M. P.; Casolino, M.; Cavalli-Sforza, M.; Cortes-Gonzalez, A.; Farooque, T.; Fischer, C.; Fracchia, S.; Giangiobbe, V.; Gonzalez Parra, G.; Grinstein, S.; Helsens, C.; Juste Rozas, A.; Korolkov, I.; Lange, J. C.; LeMenedeu, E.; Paz, I. Lopez; Martinez, M.; Mir, L. M.; Berlingen, J. Montejo; Pacheco Pages, A.; Padilla Aranda, C.; Riu, I.; Sorin, V.; Succurro, A.; Tripiana, M. F.; Tsiskaridze, S.; Valery, L.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Anjos, N.; Bosman, M.; Casado, M. P.; Casolino, M.; Cavalli-Sforza, M.; Cortes-Gonzalez, A.; Farooque, T.; Fischer, C.; Fracchia, S.; Giangiobbe, V.; Gonzalez Parra, G.; Grinstein, S.; Helsens, C.; Juste Rozas, A.; Korolkov, I.; Lange, J. C.; LeMenedeu, E.; Paz, I. Lopez; Martinez, M.; Mir, L. M.; Berlingen, J. Montejo; Pacheco Pages, A.; Padilla Aranda, C.; Riu, I.; Sorin, V.; Succurro, A.; Tripiana, M. F.; Tsiskaridze, S.; Valery, L.] Univ Autonoma Barcelona, Dept Fis, E-08193 Barcelona, Spain. [Agatonovic-Jovin, T.; Bogavac, D.; Bozic, I.; Dimitrievska, A.; Krstic, J.; Marjanovic, M.; Popovic, D. S.; Sijacki, Dj.; Simic, Lj.; Vranjes, N.; Milosavljevic, M. Vranjes; Zivkovic, L.] Univ Belgrade, Inst Phys, Belgrade, Serbia. [Buanes, T.; Dale, O.; Eigen, G.; Kastanas, A.; Liebig, W.; Maeland, S.; Latour, B. Martin dit; Rosendahl, P. L.; Sjursen, T. B.; Smestad, L.; Stugu, B.; Ugland, M.; Zalieckas, J.] Univ Bergen, Dept Phys & Technol, Bergen, Norway. [Amadio, B. T.; Axen, B.; Barnett, R. M.; Beringer, J.; Bhimji, W.; Brosamer, J.; Calafiura, P.; Cerutti, F.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Einsweiler, K.; Farrell, S.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Hance, M.; Heinemann, B.; Hinchliffe, I.; Hinman, R. R.; Holmes, T. R.; Jeanty, L.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Marshall, Z.; Ohm, C. C.; Ovcharova, A.; Griso, S. Pagan; Potamianos, K.; Pranko, A.; Quarrie, D. R.; Shapiro, M.; Sood, A.; Tibbetts, M. J.; Trottier-McDonald, M.; Tsulaia, V.; Viel, S.; Wang, H.; Yao, W-M.; Yu, D. R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [Amadio, B. T.; Axen, B.; Barnett, R. M.; Beringer, J.; Bhimji, W.; Brosamer, J.; Calafiura, P.; Cerutti, F.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Einsweiler, K.; Farrell, S.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Hance, M.; Heinemann, B.; Hinchliffe, I.; Hinman, R. R.; Holmes, T. R.; Jeanty, L.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Marshall, Z.; Ohm, C. C.; Ovcharova, A.; Griso, S. Pagan; Potamianos, K.; Pranko, A.; Quarrie, D. R.; Shapiro, M.; Sood, A.; Tibbetts, M. J.; Trottier-McDonald, M.; Tsulaia, V.; Viel, S.; Wang, H.; Yao, W-M.; Yu, D. R.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Biedermann, D.; Dietrich, J.; Giorgi, F. M.; Grancagnolo, S.; Herbert, G. H.; Herrberg-Schubert, R.; Hristova, I.; Kind, O. M.; Kolanoski, H.; Lacker, H.; Lohse, T.; Nikiforov, A.; Rehnisch, L.; Rieck, P.; Schulz, H.; Sperlich, D.; Stamm, S.; zur Nedden, M.] Humboldt Univ, Dept Phys, D-10099 Berlin, Germany. [Beck, H. P.; Cervelli, A.; Ereditato, A.; Haug, S.; Marti, L. F.; Meloni, F.; Mullier, G. A.; Sciacca, F. G.; Stramaglia, M. E.; Stucci, S. A.; Weber, M. S.] Univ Bern, Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Beck, H. P.; Cervelli, A.; Ereditato, A.; Haug, S.; Marti, L. F.; Meloni, F.; Mullier, G. A.; Sciacca, F. G.; Stramaglia, M. E.; Stucci, S. A.; Weber, M. S.] Univ Bern, High Energy Phys Lab, Bern, Switzerland. [Bella, L. Aperio; Baca, M. J.; Bansil, H. S.; Bracinik, J.; Charlton, D. G.; Chisholm, A. S.; Daniells, A. C.; Hawkes, C. M.; Head, S. J.; Hillier, S. J.; Levy, M.; Mudd, R. D.; Quijada, J. A. Murillo; Newman, P. R.; Nikolopoulos, K.; Owen, R. E.; Slater, M.; Thomas, J. P.; Thompson, P. D.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Wilson, J. A.] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England. [Arik, M.; Istin, S.; Ozcan, V. E.] Bogazici Univ, Dept Phys, Istanbul, Turkey. [Beddall, A. J.; Beddall, A.; Bingul, A.] Gaziantep Univ, Dept Engn Phys, Gaziantep, Turkey. [Cetin, S. A.] Dogus Univ, Dept Phys, Istanbul, Turkey. [Alberghi, G. L.; Bellagamba, L.; Biondi, S.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruschi, M.; Corradi, M.; De Castro, S.; Fabbri, L.; Franchini, M.; Gabrielli, A.; Giacobbe, B.; Giorgi, F. M.; Grafstroem, P.; Manghi, F. Lasagni; Massa, I.; Massa, L.; Mengarelli, A.; Negrini, M.; Piccinini, M.; Polini, A.; Rinaldi, L.; Romano, M.; Sbarra, C.; Sbrizzi, A.; Semprini-Cesari, N.; Sidoti, A.; Sioli, M.; Spighi, R.; Tupputi, S. A.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Ist Nazl Fis Nucl, Sez Bologna, I-40126 Bologna, Italy. [Alberghi, G. L.; Biondi, S.; De Castro, S.; Fabbri, L.; Franchini, M.; Gabrielli, A.; Grafstroem, P.; Manghi, F. Lasagni; Massa, I.; Massa, L.; Mengarelli, A.; Piccinini, M.; Romano, M.; Sbrizzi, A.; Semprini-Cesari, N.; Sidoti, A.; Sioli, M.; Tupputi, S. A.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Univ Bologna, Dipartimento Fis & Astron, Bologna, Italy. [Arslan, O.; Bechtle, P.; Bernlochner, F. U.; Brock, I.; Bruscino, N.; Cioara, I. A.; Cristinziani, M.; Davey, W.; Desch, K.; Dingfelder, J.; Ehrenfeld, W.; Gaycken, G.; Geich-Gimbel, Ch.; Gonella, L.; Haefner, P.; Hageboeck, S.; Hansen, M. C.; Hellmich, D.; Hohn, D.; Huegging, F.; Janssen, J.; Kostyukhin, V. V.; Kraus, J. K.; Kroseberg, J.; Krueger, H.; Lantzsch, K.; Lenz, T.; Leyko, A. M.; Liebal, J.; Limbach, C.; Mergelmeyer, S.; Mijovic, L.; Moles-Valls, R.; Obermann, T.; Pohl, D.; Ricken, O.; Sarrazin, B.; Schaepe, S.; Schopf, E.; Schultens, M. J.; Schwindt, T.; Scutti, F.; Seema, P.; Stillings, J. A.; Tannoury, N.; Velz, T.; von Toerne, E.; Wagner, P.; Wang, T.; Wermes, N.; Wienemann, P.; Wiik-Fuchs, L. A. M.; Winter, B. T.; Wong, K. H. Yau; Yuen, S. P. Y.] Univ Bonn, Inst Phys, Bonn, Germany. [Ahlen, S. P.; Bernard, C.; Black, K. M.; Butler, J. M.; Dell'Asta, L.; Helary, L.; Kruskal, M.; Shank, J. T.; Yan, Z.; Youssef, S.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Amelung, C.; Amundsen, G.; Artoni, G.; Barone, G.; Bensinger, J. R.; Bianchini, L.; Blocker, C.; Coffey, L.; Dhaliwal, S.; Fitzgerald, E. A.; Sciolla, G.; Venturini, A.; Zengel, K.] Brandeis Univ, Dept Phys, Waltham, MA 02254 USA. [Coutinho, Y. Amaral; Caloba, L. P.; Maidantchik, C.; Marroquim, F.; Nepomuceno, A. A.; Seixas, J. M.] Univ Fed Rio de Janeiro, COPPE EE IF, Rio De Janeiro, Brazil. [Cerqueira, A. S.; Manhaes de Andrade Filho, L.] Univ Fed Juiz de Fora, Elect Circuits Dept, Juiz De Fora, Brazil. [do Vale, M. A. B.] Univ Fed Sao Joao del Rei, Sao Joao Del Rei, Brazil. [Donadelli, M.; La Rosa Navarro, J. L.; Leite, M. A. L.] Univ Sao Paulo, Inst Fis, BR-01498 Sao Paulo, Brazil. [Adams, D. L.; Assamagan, K.; Begel, M.; Buttinger, W.; Cetin, S. A.; Chen, H.; Chernyatin, V.; Debbe, R.; Ernst, M.; Gibbard, B.; Gordon, H. A.; Iakovidis, G.; Klimentov, A.; Kouskoura, V.; Kravchenko, A.; Lanni, F.; Lissauer, D.; Lynn, D.; Ma, H.; Maeno, T.; Metcalfe, J.; Mountricha, E.; Nevski, P.; Nilsson, P.; Damazio, D. Oliveira; Paige, F.; Panitkin, S.; Perepelitsa, D. V.; Pleier, M. -A.; Polychronakos, V.; Protopopescu, S.; Purohit, M.; Radeka, V.; Rajagopalan, S.; Redlinger, G.; Snyder, S.; Steinberg, P.; Takai, H.; Undrus, A.; Wenaus, T.; Xu, L.; Ye, S.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Alexa, C.; Boldea, V.; Buda, S. I.; Caprini, I.; Caprini, M.; Chitan, A.; Ciubancan, M.; Constantinescu, S.; Dita, P.; Dita, S.; Dobre, M.; Ducu, O. A.; Jinaru, A.; Martoiu, V. S.; Maurer, J.; Olariu, A.; Pantea, D.; Rotaru, M.; Stoicea, G.; Tudorache, A.; Tudorache, V.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Popeneciu, G. A.] Natl Inst Res & Dev Isotop & Mol Technol, Dept Phys, Cluj Napoca, Romania. Univ Politehn Bucuresti, Bucharest, Romania. West Univ Timisoara, Timisoara, Romania. [Garzon, G. Otero y; Piegaia, R.; Reisin, H.; Sacerdoti, S.] Univ Buenos Aires, Dept Fis, Buenos Aires, DF, Argentina. [Arratia, M.; Barlow, N.; Batley, J. R.; Brochu, F. M.; Carter, J. R.; Chapman, J. D.; Cottin, G.; French, S. T.; Gillam, T. P. S.; Hill, J. C.; Kaneti, S.; Khoo, T. J.; Lester, C. G.; Mueller, T.; Parker, M. A.; Robinson, D.; Rosten, J. H. N.; Thomson, M.; Ward, C. P.; Yusuff, I.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Bellerive, A.; Cree, G.; Di Valentino, D.; Koffas, T.; Lacey, J.; Leight, W. A.; McCarthy, T. G.; Nomidis, I.; Oakham, F. G.; Pasztor, G.; Tarrade, F.; Ueno, R.; Vincter, M. G.] Carleton Univ, Dept Phys, Ottawa, ON K1S 5B6, Canada. [Aleksa, M.; Alvarez Piqueras, D.; Anders, G.; Anghinolfi, F.; Armbruster, A. J.; Arnaez, O.; Avolio, G.; Baak, M. A.; Backes, M.; Backhaus, M.; Barak, L.; Beltramello, O.; Bianco, M.; Bogaerts, J. A.; Boveia, A.; Boyd, J.; Burckhart, H.; Campana, S.; Garrido, M. D. M. Capeans; Carli, T.; Carrillo-Montoya, G. D.; Catinaccio, A.; Cattai, A.; Cerv, M.; Chromek-Burckhart, D.; Conti, G.; Dell'Acqua, A.; Deviveiros, P. O.; Di Girolamo, A.; Di Girolamo, B.; Dittus, F.; Dobos, D.; Dudarev, A.; Duehrssen, M.; Eifert, T.; Ellis, N.; Elsing, M.; Farthouat, P.; Fassnacht, P.; Feigl, S.; Perez, S. Fernandez; Francis, D.; Froidevaux, D.; Gadatsch, S.; Gillberg, D.; Glatzer, J.; Goossens, L.; Gorini, B.; Gray, H. M.; Hawkings, R. J.; Correia, A. M. Henriques; Hervas, L.; Hoecker, A.; Huhtinen, M.; Iengo, P.; Jaekel, M. R.; Jakobsen, S.; Jenni, P.; Klioutchnikova, T.; Krasznahorkay, A.; Lapoire, C.; Lassnig, M.; Miotto, G. Lehmann; Lenzi, B.; Lichard, P.; Macina, D.; Malyukov, S.; Mandelli, B.; Mapelli, L.; Marzin, A.; Milic, A.; Mornacchi, G.; Nairz, A. M.; Nakahama, Y.; Nessi, M.; Nicquevert, B.; Nordberg, M.; Oide, H.; Palestini, S.; Pauly, T.; Pernegger, H.; Peters, K.; Petersen, B. A.; Pommes, K.; Poppleton, A.; Poulard, G.; Poveda, J.; Prasad, S.; Rammensee, M.; Raymond, M.; Rembser, C.; Ritsch, E.; Roe, S.; Ruiz-Martinez, A.; Salzburger, A.; Schaefer, D.; Schlenker, S.; Schmieden, K.; Serfon, C.; Sforza, F.; Sfyrla, A.; Solans, C. A.; Spigo, G.; Stelzer, H. J.; Teischinger, F. A.; Ten Kate, H.; Tremblet, L.; Tricoli, A.; Tsarouchas, C.; Unal, G.; van Woerden, M. C.; Vandelli, W.; Voss, R.; Vuillermet, R.; Wells, P. S.; Wengler, T.; Wenig, S.; Werner, P.; Wilkens, H. G.; Wotschack, J.; Young, C. J. S.; Zwalinski, L.] CERN, CH-1211 Geneva 23, Switzerland. [Alison, J.; Anderson, K. J.; Toro, R. Camacho; Cheng, Y.; Dandoy, J. R.; Facini, G.; Fiascaris, M.; Gardner, R. W.; Ilchenko, Y.; Kapliy, A.; Kim, Y. K.; Krizka, K.; Li, H. L.; Merritt, F. S.; Miller, D. W.; Narayan, R.; Okumura, Y.; Onyisi, P. U. E.; Oreglia, M. J.; Penning, B.; Pilcher, J. E.; Saxon, J.; Shochet, M. J.; Vukotic, I.; Webster, J. S.; Wu, M.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Carquin, E.; Diaz, M. A.; Ochoa-Ricoux, J. P.; Vogel, M.] Pontificia Univ Catolica Chile, Dept Fis, Santiago, Chile. [Brooks, W. K.; Kuleshov, S.; Pezoa, R.; Prokoshin, F.; Loyola, J. E. Salazar; White, R.] Univ Tecn Federico Santa Maria, Dept Fis, Valparaiso, Chile. [Bai, Y.; Fang, Y.; Jin, S.; Lou, X.; Ouyang, Q.; Peng, C.; Ren, H.; Shan, L. Y.; Sun, X.; Wang, J.; Xu, D.; Zhu, H.; Zhuang, X.] Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China. [Gao, J.; Guo, Y.; Han, L.; Hu, Q.; Jiang, Y.; Li, B.; Liub, J. B.; Liu, M.; Liu, Y.; Peng, H.; Song, H. Y.; Zhang, R.; Zhao, Z.; Zhu, Y.] Univ Sci & Technol China, Dept Modern Phys, Hefei, Anhui, Peoples R China. [Chen, S.; Li, Y.; Zhang, H.] Nanjing Univ, Dept Phys, Nanjing, Jiangsu, Peoples R China. [Chen, L.; Feng, C.; Ge, P.; Ma, L. L.; Zhao, X.; Zhao, Y.; Zhu, C. G.] Shandong Univ, Sch Phys, Jinan, Shandong, Peoples R China. [Bret, M. Cano; Guo, J.; Li, L.; Yang, H.] Shanghai Jiao Tong Univ, Dept Phys & Astron, Shanghai Key Lab Particle Phys & Cosmol, Shanghai 200030, Peoples R China. [Chen, X.; Zhou, N.] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Gilles, G.; Gris, Ph.; Liao, H.; Madar, R.; Pallin, D.; Romano Saez, S. M.; Santoni, C.; Simon, D.; Theveneaux-Pelzer, T.; Vazeille, F.] Univ Clermont Ferrand, Phys Corpusculaire Lab, Clermont Ferrand, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Gilles, G.; Gris, Ph.; Liao, H.; Madar, R.; Pallin, D.; Romano Saez, S. M.; Santoni, C.; Simon, D.; Theveneaux-Pelzer, T.; Vazeille, F.] Univ Clermont Ferrand, Clermont Ferrand, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Gilles, G.; Gris, Ph.; Liao, H.; Madar, R.; Pallin, D.; Romano Saez, S. M.; Santoni, C.; Simon, D.; Theveneaux-Pelzer, T.; Vazeille, F.] CNRS, IN2P3, Clermont Ferrand, France. [Alkire, S. P.; Altheimer, A.; Andeen, T.; Angerami, A.; Bain, T.; Brooijmans, G.; Cole, B.; Hu, D.; Hughes, E. W.; Iordanidou, K.; Klein, M. H.; Mohapatra, S.; Nikiforou, N.; Parsons, J. A.; Smith, M. N. K.; Smith, R. W.; Thompson, E. N.; Tuts, P. M.; Wang, T.; Zhou, L.] Columbia Univ, Nevis Lab, Irvington, NY USA. [Alonso, A.; Besjes, G. J.; Galster, G.; Goujdami, D.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Joergensen, M. D.; Loevschall-Jensen, A. E.; Monk, J.; Mortensen, S. S.; Pedersen, L. E.; Petersen, T. C.; Pingel, A.; Wiglesworth, C.; Xella, S.] Univ Copenhagen, Niels Bohr Inst, Copenhagen, Denmark. [Cairo, V. M.; Capua, M.; Crosetti, G.; La Rotonda, L.; Mastroberardino, A.; Policicchio, A.; Salvatore, D.; Scarfone, V.; Schioppa, M.; Susinno, G.; Tassi, E.] Ist Nazl Fis Nucl, Grp Collegato Cosenza, Lab Nazl Frascati, Arcavacata Di Rende, Italy. [Cairo, V. M.; Capua, M.; Crosetti, G.; La Rotonda, L.; Mastroberardino, A.; Policicchio, A.; Salvatore, D.; Scarfone, V.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dipartimento Fis, Arcavacata Di Rende, Italy. [Adamczyk, L.; Bold, T.; Dabrowski, W.; Dyndal, M.; Gach, G. P.; Grabowska-Bold, I.; Kisielewska, D.; Kopernya, S.; Kowalski, T. Z.; Mindur, B.; Przybycien, M.; Zemla, A.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, Krakow, Poland. [Palka, M.; Richter-Was, E.] Jagiellonian Univ, Marian Smoluchowski Inst Phys, Krakow, Poland. [Banas, E.; de Renstrom, P. A. Bruckman; Chwastowski, J. J.; Derendarz, D.; Godlewski, J.; Gornicki, E.; Hajduk, Z.; Iwanski, W.; Kaczmarska, A.; Knapik, J.; Korcyl, K.; Malecki, Pa.; Olszewski, A.; Olszowska, J.; Stanecka, E.; Staszewski, R.; Trzebinski, M.; Trzupek, A.; Wolter, M. W.; Wosiek, B. K.; Wozniak, K. W.; Zabinski, B.] Polish Acad Sci, Inst Nucl Phys, Krakow, Poland. [Cao, T.; Firan, A.; Hetherly, J. W.; Kama, S.; Kehoe, R.; Sekula, S. J.; Stroynowski, R.; Turvey, A. J.; Varol, T.; Wang, H.; Ye, J.; Zhao, X.; Zhou, L.] So Methodist Univ, Dept Phys, Dallas, TX 75275 USA. [Izen, J. M.; Leyton, M.; Meirose, B.; Namasivayam, H.; Reeves, K.] Univ Texas Dallas, Dept Phys, Richardson, TX 75083 USA. [Argyropoulos, S.; Asbah, N.; Bessner, M.; Bloch, I.; Borroni, S.; Britzger, D.; Camarda, S.; Deterre, C.; Eckardt, C.; Filipuzzi, M.; Flaschel, N.; Glazov, A.; Grahn, K-J.; Gregor, I. M.; Grohsjean, A.; Haleem, M.; Hamnett, P. G.; Hengler, C.; Hiller, K. H.; Howarth, J.; Huang, Y.; Katzy, J.; Keller, J. S.; Kondrashova, N.; Kuhl, T.; Lobodzinska, E.; Lohwasser, K.; Mamuzic, J.; Medinnis, M.; Moenig, K.; Garcia, R. F. Naranjo; Naumann, T.; Peschke, R.; Petit, E.; Pirumov, H.; Poley, A.; Radescu, V.; Robinson, J. E. M.; Rubinskiy, I.; Schaefer, R.; Schmitt, S.; Sedov, G.; Shushkevich, S.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Styles, N. A.; Tackmann, K.; Wang, J.; Wasicki, C.; Yildirim, E.] DESY, Hamburg, Germany. [Argyropoulos, S.; Asbah, N.; Bessner, M.; Bloch, I.; Borroni, S.; Britzger, D.; Camarda, S.; Deterre, C.; Eckardt, C.; Filipuzzi, M.; Flaschel, N.; Glazov, A.; Grahn, K-J.; Gregor, I. M.; Grohsjean, A.; Haleem, M.; Hamnett, P. G.; Hengler, C.; Hiller, K. H.; Howarth, J.; Huang, Y.; Katzy, J.; Keller, J. S.; Kondrashova, N.; Kuhl, T.; Lobodzinska, E.; Lohwasser, K.; Mamuzic, J.; Medinnis, M.; Moenig, K.; Garcia, R. F. Naranjo; Naumann, T.; Peschke, R.; Petit, E.; Pirumov, H.; Poley, A.; Radescu, V.; Robinson, J. E. M.; Rubinskiy, I.; Schaefer, R.; Schmitt, S.; Sedov, G.; Shushkevich, S.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Styles, N. A.; Tackmann, K.; Wang, J.; Wasicki, C.; Yildirim, E.] DESY, Zeuthen, Germany. [Burmeister, I.; Erdmann, J.; Esch, H.; Goessling, C.; Homann, M.; Jentzsch, J.; Jung, C. A.; Klingenberg, R.; Kroeninger, K.] Tech Univ Dortmund, Inst Expt Phys 4, Dortmund, Germany. [Anger, P.; Duschinger, D.; Friedrich, F.; Grohs, J. P.; Gumpert, C.; Gutschow, C.; Hauswald, L.; Kobel, M.; Mader, W. F.; Novgorodova, O.; Rudolph, C.; Schnoor, U.; Siegert, F.; Socher, F.; Staerz, S.; Straessner, A.; Vest, A.; Wahrmund, S.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Arce, A. T. H.; Benjamin, D. P.; Bocci, A.; Cerio, B. C.; Goshaw, A. T.; Kajomovitz, E.; Kotwal, A.; Kruse, M. C.; Li, L.; Li, S.; Liu, M.; Oh, S. H.; Zhou, C.] Duke Univ, Dept Phys, Durham, NC 27706 USA. [Bristow, T. M.; Clark, P. J.; Dias, F. A.; Edwards, N. C.; Gao, Y.; Walls, F. M. Garay; Glaysher, P. C. F.; Harrington, R. D.; Leonidopoulos, C.; Martin, V. J.; Mills, C.; O'Brien, B. J.; Pino, S. A. Olivares; Proissl, M.; Smart, B. H.; Washbrook, A.; Wynne, B. M.] Univ Edinburgh, Sch Phys & Astron, SUPA, Edinburgh, Midlothian, Scotland. [Antonelli, M.; Beretta, M.; Bilokon, H.; Chiarella, V.; Curatolo, M.; Di Nardo, R.; Esposito, B.; Gatti, C.; Giromini, P.; Laurelli, P.; Maccarrone, G.; Mancini, G.; Sansoni, A.; Testa, M.; Vilucchi, E.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Amoroso, S.; Arnold, H.; Betancourt, C.; Boehler, M.; Bruneliere, R.; Buehrer, F.; Burgard, C. D.; Buescher, D.; Cardillo, F.; Coniavitis, E.; Consorti, V.; Dang, N. P.; Dao, V.; Di Simone, A.; Giuliani, C.; Herten, G.; Jakobs, K.; Javurek, T.; Jenni, P.; Kiss, F.; Koeneke, K.; Kopp, A. K.; Kuehn, S.; Landgraf, U.; Mahboubi, K.; Mohr, W.; Pagacova, M.; Parzefall, U.; Ronzani, M.; Rosbach, K.; Ruehr, F.; Rurikova, Z.; Ruthmann, N.; Sammel, D.; Schillo, C.; Schumacher, M.; Sommer, P.; Sundermann, J. E.; Temming, K. K.; Tsiskaridze, V.; Ungaro, F. C.; von Radziewski, H.; Weiser, C.; Werner, M.; Zhang, L.; Zimmermann, S.] Univ Freiburg, Fakultat Math & Phys, Freiburg, Germany. [Ancu, L. S.; Bell, W. H.; Noccioli, E. Benhar; De Mendizabal, J. Bilbao; Calace, N.; Clark, A.; Coccaro, A.; Delitzsch, C. M.; della Volpe, D.; Ferrere, D.; Gadomski, S.; Golling, T.; Gonzalez-Sevilla, S.; Gramling, J.; Guescini, F.; Iacobucci, G.; Katre, A.; Mermod, P.; Miucci, A.; Muenstermann, D.; Paolozzi, L.; Picazio, A.; Ristic, B.; Schramm, S.; Tykhonov, A.; Vallecorsa, S.; Wu, X.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Barberis, D.; Darbo, G.; Favareto, A.; Parodi, A. Ferretto; Gagliardi, G.; Gaudiello, A.; Gemme, C.; Guido, E.; Morettini, P.; Osculati, B.; Parodi, F.; Passaggio, S.; Rossi, L. P.; Sannino, M.; Schiavi, C.] Ist Nazl Fis Nucl, Sez Genova, Genoa, Italy. [Barberis, D.; Favareto, A.; Parodi, A. Ferretto; Gagliardi, G.; Gaudiello, A.; Guido, E.; Osculati, B.; Parodi, F.; Sannino, M.; Schiavi, C.] Univ Genoa, Dipartimento Fis, Genoa, Italy. [Jejelava, J.; Tskhadadze, E. G.] Iv Javakhishvili Tbilisi State Univ, E Andronikashvili Inst Phys, Tbilisi, Rep of Georgia. [Djobava, T.; Durglishvili, A.; Khubua, J.; Mosidze, M.] Tbilisi State Univ, Inst High Energy Phys, Tbilisi, Rep of Georgia. [Bates, R. L.; Madden, W. D. Breaden; Britton, D.; Buckley, A. G.; Bussey, P.; Buttar, C. M.; Buzatu, A.; Cinca, D.; D'Auria, S.; Doyle, A. T.; Ferrando, J.; Lima, D. E. Ferreirade; Gul, U.; Knue, A.; Morton, A.; Mullen, P.; O'Shea, V.; Barrera, C. Oropeza; Owen, M.; Pollard, C. S.; Qin, G.; Quilty, D.; Ravenscroft, T.; Robson, A.; Denis, R. D. St.; Stewart, G. A.; Thompson, A. S.] Univ Giessen, Inst Phys 2, Giessen, Germany. [Bates, R. L.; Madden, W. D. Breaden; Britton, D.; Buckley, A. G.; Bussey, P.; Buttar, C. M.; Buzatu, A.; Cinca, D.; D'Auria, S.; Doyle, A. T.; Ferrando, J.; Lima, D. E. Ferreirade; Gul, U.; Knue, A.; Morton, A.; Mullen, P.; O'Shea, V.; Barrera, C. Oropeza; Owen, M.; Pollard, C. S.; Qin, G.; Quilty, D.; Ravenscroft, T.; Robson, A.; Denis, R. D. St.; Stewart, G. A.; Thompson, A. S.] Univ Glasgow, SUPA, Sch Phys & Astron, Glasgow, Lanark, Scotland. [Agricola, J.; Bindi, M.; Blumenschein, U.; Brandt, G.; Drechsler, E.; George, M.; Graber, L.; Grosse-Knetter, J.; Janus, M.; Kareem, M. J.; Kawamura, G.; Lai, S.; Lemmer, B.; Magradze, E.; Mantoani, M.; Mchedlidze, G.; Llacer, M. Moreno; Musheghyan, H.; Nackenhorst, O.; Nadal, J.; Quadt, A.; Rieger, J.; Schorlemmer, A. L. S.; Shabalina, E.; Stolte, P.; Weingarten, J.; Zinonos, Z.] Univ Gottingen, Inst Phys 2, Gottingen, Germany. [Albrand, S.; Brown, J.; Collot, J.; Crepe-Renaudin, S.; Delsart, P. A.; Gabaldon, C.; Genest, M. H.; Hostachy, J-Y; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Monini, C.; Stark, J.; Trocme, B.; Wu, M.] Univ Grenoble Alpes, CNRS, IN2P3, Lab Phys Subatom & Cosmol, Grenoble, France. [McFarlane, K. W.] Hampton Univ, Dept Phys, Hampton, VA 23668 USA. [da Costa, J. Barreiro Guimaraes; Catastini, P.; Clark, B. L.; Franklin, M.; Huth, J.; Ippolito, V.; Lazovich, T.; Mateos, D. Lopez; Mercurio, K. M.; Morii, M.; Skottowe, H. P.; Spearman, W. R.; Sun, S.; Tolley, E.; Yen, A. L.; Zambito, S.] Harvard Univ, Lab Particle Phys & Cosmol, Cambridge, MA 02138 USA. [Andrei, V.; Baas, A. E.; Brandta, O.; Davygora, Y.; Djuvsland, J. I.; Dunford, M.; Geisler, P.; Hanke, P.; Jongmanns, J.; Kluge, E. -E.; Lang, V. S.; Meiera, K.; Theenhausen, H. Meyer Zu; Villar, D. I. Narrias; Sahinsoy, M.; Scharf, V.; Schultz-Coulon, H. -C.; Stamen, R.; Starovoitov, P.; Wessels, M.] Heidelberg Univ, Kirchhoff Inst fr Phy, Heidelberg, Germany. [Anders, C. F.; Giulini, M.; Lisovyi, M.; Schaetzel, S.; Schoening, A.; Sosa, D.] Heidelberg Univ, Inst Phys, Heidelberg, Germany. [Colombo, T.; Kretz, M.; Kugel, A.] Heidelberg Univ, ZITI, Inst Tech Informat, Mannheim, Germany. [Nagasaka, Y.; Nessi, M.] Hiroshima Inst Technol, Fac Appl Informat Sci, Hiroshima, Japan. [Bortolotto, V.; Castillo, L. R. Flores; Salvucci, A.] Chinese Univ Hong Kong, Dept Phys, Shatin, Hong Kong, Peoples R China. [Bortolotto, V.] Univ Hong Kong, Dept Phys, Hong Kong, Hong Kong, Peoples R China. [Bortolotto, V.; Prokofiev, K.] Hong Kong Univ Sci & Technol, Dept Phys, Kowloon, Hong Kong, Peoples R China. [Choi, K.; Dattagupta, A.; Evans, H.; Gagnon, P.; Lammers, S.; Martinez, N. Lorenzo; Luehring, F.; Ogren, H.; Penwell, J.; Weinert, B.; Zieminska, D.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Jansky, R.; Jussel, P.; Kneringer, E.; Lukas, W.; Usanova, A.; Vigne, R.] Leopold Franzens Univ, Inst Astro & Teilchenphys, Innsbruck, Austria. [Mallik, U.; Mandrysch, R.; Zaidan, R.] Univ Iowa, Iowa City, IA USA. [Chen, C.; Cochran, J.; De Lorenzi, F.; Krumnack, N.; Pluth, D.; Prell, S.] Iowa State Univ, Dept Phys & Astron, Ames, IA USA. [Ahmadov, F.; Aleksandrov, I. N.; Bednyakov, V. A.; Boyko, I. R.; Budagov, I. A.; Chelkov, G. A.; Cheplakov, A.; Chizhov, M. V.; Dedovich, D. V.; Demichev, M.; Gostkin, M. I.; Huseynov, N.; Javadov, N.; Karpov, S. N.; Karpova, Z. M.; Khramov, E.; Kotov, V. M.; Kruchonak, U.; Kukhtin, V.; Ladygin, E.; Lyubushkin, V.; Minashvili, I. A.; Mineev, M.; Peshekhonov, V. D.; Plotnikova, E.; Potrap, I. N.; Pozdnyakov, V.; Rusakovich, N. A.; Sadykov, R.; Sapronov, A.; Shiyakova, M.; Sisakyan, A. N.; Soloshenko, A.; Vinogradov, V. B.; Yeletskikh, I.; Zhemchugov, A.; Zimine, N. I.] Joint Inst Nucl Res, Dubna, Russia. [Amako, K.; Aoki, M.; Arai, Y.; Hanagaki, K.; Ikegami, Y.; Ikeno, M.; Iwasaki, H.; Kanzaki, J.; Kohriki, T.; Kondo, T.; Kono, T.; Makida, Y.; Nagano, K.; Nakamura, K.; Nozaki, M.; Odaka, S.; Okuyama, T.; Sasaki, O.; Suzuki, S.; Takubo, Y.; Tanaka, S.; Terada, S.; Tokushuku, K.; Tsuno, S.; Unno, Y.; Yamada, M.; Yamamoto, A.; Yasu, Y.] High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki, Japan. [Chen, Y.; Hasegawa, M.; Kido, S.; Kishimoto, T.; Kurashige, H.; Maeda, J.; Ochi, A.; Shimizu, S.; Takeda, H.; Yakabe, R.; Yamazaki, Y.; Yuan, L.] Kobe Univ, Grad Sch Sci, Kobe, Hyogo 657, Japan. [Ishino, M.; Kunigo, T.; Sumida, T.; Tashiro, T.] Kyoto Univ, Fac Sci, Kyoto, Japan. [Takashima, R.] Kyoto Univ, Kyoto 612, Japan. [Kawagoe, K.; Oda, S.; Otono, H.; Tojo, J.] Kyushu Univ, Dept Phys, Fukuoka 812, Japan. [Alconada Verzini, M. J.; Alonso, F.; Arduh, F. A.; Dova, M. T.; Monticelli, F.; Wahlberg, H.] Univ Nacl La Plata, Inst Fis La Plata, La Plata, Buenos Aires, Argentina. [Alconada Verzini, M. J.; Alonso, F.; Arduh, F. A.; Dova, M. T.; Monticelli, F.; Wahlberg, H.] Consejo Nacl Invest Cient & Tecn, La Plata, Buenos Aires, Argentina. [Barton, A. E.; Beattie, M. D.; Borissov, G.; Bouhova-Thacker, E. V.; Dearnaley, W. J.; Fox, H.; Grimm, K.; Henderson, R. C. W.; Hughes, G.; Jones, R. W. L.; Kartvelishvili, V.; Long, R. E.; Love, P. A.; Maddocks, H. J.; Skinner, M. B.; Smizanska, M.; Walder, J.; Wharton, A. M.] Univ Lancaster, Dept Phys, Lancaster, England. [Chiodini, G.; Gorini, E.; Primaveraa, M.; Spagnolo, S.; Ventura, A.] Ist Nazl Fis Nucl, Sez Lecce, I-73100 Lecce, Italy. [Gorini, E.; Spagnolo, S.; Ventura, A.] Univ Salento, Dipartimento Matemat & Fis, Lecce, Italy. [Affolder, A. A.; Allport, P. P.; Anders, J. K.; Burdin, S.; D'Onofrio, M.; Dervan, P.; Gwilliam, C. B.; Hayward, H. S.; Jackson, M.; Jones, T. J.; King, B. T.; Klein, M.; Klein, U.; Kretzschmar, J.; Laycock, P.; Lehan, A.; Maxfield, S. J.; Mehta, A.; Readioff, N. P.; Schnellbach, Y. J.; Vossebeld, J. H.] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 3BX, Merseyside, England. [Cindro, V.; Deliyergiyev, M.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Sfiligoj, T.; Sokhrannyi, G.] Jozef Stefan Inst, Dept Phys, Ljubljana, Slovenia. [Cindro, V.; Deliyergiyev, M.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Sfiligoj, T.; Sokhrannyi, G.] Univ Ljubljana, Ljubljana, Slovenia. [Alpigiani, C.; Bevan, A. J.; Bona, M.; Cerrito, L.; Fletcher, G.; Goddard, J. R.; Hays, J. M.; Hickling, R.; Landon, M. P. J.; Lloyd, S. L.; Morris, J. D.; Nooney, T.; Piccaro, E.; Rizvi, E.; Sandbach, R. L.; Snidero, G.; Castanheira, M. Teixeira Dias] Queen Mary Univ London, Sch Phys & Astron, London, England. [Berry, T.; Blanco, J. E.; Boisvert, V.; Brooks, T.; Connelly, I. A.; Cowan, G.; Duguid, L.; Giannelli, M. Faucci; George, S.; Gibson, S. M.; Kempster, J. J.; Vazquez, J. G. Panduro; Pastore, Fr.; Savage, G.; Sowden, B. C.; Spano, F.; Teixeira-Dias, P.; Thomas-Wilsker, J.] Royal Holloway Univ London, Dept Phys, Surrey, England. [Bieniek, S. P.; Butterworth, J. M.; Campanelli, M.; Casadei, D.; Chislett, R. T.; Christodoulou, V.; Cooper, B. D.; Davison, P.; Falla, R. J.; Freeborn, D.; Gregersen, K.; Ortiz, N. G. Gutierrez; Hesketh, G. G.; Jansen, E.; Jiggins, S.; Konstantinidis, N.; Korn, A.; Kucuk, H.; Lambourne, L.; Leney, K. J. C.; Martyniuk, A. C.; Mcfayden, J. A.; Nurse, E.; Ochoa, I.; Richter, S.; Scanlon, T.; Sherwood, P.; Simmons, B.; Wardrope, D. R.; Waugh, B. M.] UCL, Dept Phys & Astron, London, England. [Greenwood, Z. D.; Grossi, G. C.; Jana, D. K.; Sawyer, L.; Subramaniam, R.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, M.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pandini, C. E.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.; Varouchas, D.] UPMC, Lab Phys Nucl & Hautes Energies, Paris, France. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pandini, C. E.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.; Varouchas, D.] Univ Paris Diderot, CNRS, IN2P3, Paris, France. [Akesson, T. P. A.; Bocchetta, S. S.; Bryngemark, L.; Doglioni, C.; Floderus, A.; Hawkins, A. D.; Hedberg, V.; Ivarsson, J.; Jarlskog, G.; Lytken, E.; Mjornmark, J. U.; Smirnova, O.; Viazlo, O.] Lund Univ, Lund, Sweden. [Arnal, V.; Barreiro, F.; Cantero, J.; De la Torre, H.; Del Peso, J.; Glasman, C.; Terron, J.] Univ Autonoma Madrid, Dept Fis Teor, Madrid, Spain. [Becker, M.; Bertella, C.; Blum, W.; Buescher, V.; Caputo, R.; Caudron, J.; Endner, O. C.; Ertel, E.; Fiedler, F.; Torregrosa, E. Fullana; Heck, T.; Hohlfeld, M.; Huelsing, T. A.; Karnevskiy, M.; Kleinknecht, K.; Koepke, L.; Lin, T. H.; Masetti, L.; Mattmann, J.; Meyer, C.; Moritz, S.; Rave, S.; Sander, H. G.; Schaeffer, J.; Schaefer, U.; Schmitt, C.; Schott, M.; Schroeder, C.; Schuh, N.; Simioni, E.; Tapprogge, S.; Urrejola, P.; Valderanis, C.; Wollstadt, S. J.; Zimmermann, C.; Zinser, M.] Johannes Gutenberg Univ Mainz, Inst Phys, Mainz, Germany. [Balli, F.; Barnes, S. L.; Cox, B. E.; Da Via, C.; Forti, A.; Ponce, J. M. Iturbe; Joshi, K. D.; Keoshkerian, H.; Li, X.; Marsden, S. P.; Masik, J.; Neep, T. J.; Oh, A.; Ospanov, R.; Pater, J. R.; Peters, R. F. Y.; Pilkington, A. D.; Price, D.; Qin, Y.; Queitsch-Maitland, M.; Schwanenberger, C.; Schweiger, H.; Shaw, S. M.; Thompson, R. J.; Tomlinson, L.; Watts, S.; Webb, S.; Woudstra, M. J.; Wyatt, T. R.] Univ Manchester, Sch Phys & Astron, Manchester, Lancs, England. [Aad, G.; Alio, L.; Barbero, M.; Coadou, Y.; Diaconu, C.; Diglio, S.; Djama, F.; Ducu, O. A.; Feligioni, L.; Gao, J.; Hallewell, G. D.; Hubaut, F.; Kahn, S. J.; Knoops, E. B. F. G.; Le Guirriec, E.; Liu, J.; Liu, K.; Madaffari, D.; Mochizuki, K.; Monnier, E.; Muanza, S.; Nagai, Y.; Nagy, E.; Pralavorio, P.; Rozanov, A.; Serre, T.; Talby, M.; Torres, R. E. Ticse; Tiouchichine, E.; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.] Aix Marseille Univ, CPPM, Marseille, France. [Aad, G.; Alio, L.; Barbero, M.; Coadou, Y.; Diaconu, C.; Diglio, S.; Djama, F.; Ducu, O. A.; Feligioni, L.; Gao, J.; Hallewell, G. D.; Hubaut, F.; Kahn, S. J.; Knoops, E. B. F. G.; Le Guirriec, E.; Liu, J.; Liu, K.; Madaffari, D.; Mochizuki, K.; Monnier, E.; Muanza, S.; Nagai, Y.; Nagy, E.; Pralavorio, P.; Rozanov, A.; Serre, T.; Talby, M.; Torres, R. E. Ticse; Tiouchichine, E.; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.] CNRS, IN2P3, Marseille, France. [Bellomo, M.; Bernard, N. R.; Brau, B.; Dallapiccola, C.; Daya-Ishmukhametova, R. K.; Moyse, E. J. W.; Pais, P.; Pueschel, E.; Ventura, D.; Willocq, S.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Belanger-Champagne, C.; Chuinard, A. J.; Corriveau, F.; Keyes, R. A.; Mantifel, R.; Prince, S.; Robertson, S. H.; Robichaud-Veronneau, A.; Stockton, M. C.; Stoebe, M.; Vachon, B.; Schroeder, T. Vazquez; Wang, K.; Warburton, A.] McGill Univ, Dept Phys, Montreal, PQ, Canada. [Barberio, E. L.; Brennan, A. J.; Dawe, E.; Jennens, D.; Kubota, T.; Milesi, M.; Hanninger, G. Nunes; Nuti, F.; Rados, P.; Spiller, L. A.; Tan, K. G.; Taylor, G. N.; Urquijo, P.; Volpi, M.; Zanzi, D.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. [Amidei, D.; Chelstowska, M. A.; Cheng, H. C.; Dai, T.; Diehl, E. B.; Edgar, R. C.; Feng, H.; Ferretti, C.; Fleischmann, P.; Goldfarb, S.; Guan, L.; Hu, X.; Levin, D.; Long, J. D.; Lu, N.; Marley, D. E.; Mc Kee, S. P.; McCarn, A.; Neal, H. A.; Qian, J.; Schwarz, T. A.; Searcy, J.; Sekhon, K.; Thun, R. P.; Wilson, A.; Wu, Y.; Yu, J. M.; Zhang, D.; Zhou, B.; Zhu, J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Abolins, M.; Arabidze, G.; Brock, R.; Chegwidden, A.; Fisher, W. C.; Halladjian, G.; Hauser, R.; Hayden, D.; Huston, J.; Linnemann, J. T.; Martin, B.; Pope, B. G.; Schwienhorst, R.; Ta, D.; Tollefson, K.; True, P.; Willis, C.] Michigan State Univ, Dept Phys & Astron, Lansing, MI USA. [Alimonti, G.; Andreazza, A.; Besana, M. I.; Carminati, L.; Cavalli, D.; Costa, G.; Fanti, M.; Giugni, D.; Lari, T.; Mandelli, L.; Mazza, S. M.; Meroni, C.; Perini, L.; Pizio, C.; Ragusa, F.; Resconi, S.; Shojaii, S.; Tartarelli, G. F.; Troncon, C.; Turra, R.; Perez, M. Villaplana] Ist Nazl Fis Nucl, Sez Milano, Milan, Italy. [Andreazza, A.; Carminati, L.; Fanti, M.; Mazza, S. M.; Perini, L.; Pizio, C.; Ragusa, F.; Shojaii, S.; Turra, R.; Perez, M. Villaplana] Univ Milan, Dipartimento Fis, Milan, Italy. [Harkusha, S.; Kulchitsky, Y.; Kurochkin, Y. A.; Tsiareshka, P. V.] Natl Acad Sci Belarus, BI Stepanov Phys Inst, Minsk, Byelarus. [Hrynevich, A.] Nat Sci & Educ Ctr Particle & High Energy Phys, Minsk, Byelarus. [Taylor, F. E.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Arguin, J-F.; Azuelos, G.; Dallaire, F.; Gauthier, L.; Leroy, C.; Rezvani, R.; Saadi, D. Shoaleh] Univ Montreal, Grp Particle Phys, Montreal, PQ, Canada. [Akimov, A. V.; Gavrilenko, I. L.; Komar, A. A.; Mashinistov, R.; Mouraviev, S. V.; Nechaeva, P. Yu.; Shmeleva, A.; Snesarev, A. A.; Sulin, V. V.; Tikhomirov, V. O.; Zhukov, K.] PN Lebedev Phys Inst, Acad Sci, Moscow 117924, Russia. [Artamonov, A.; Gorbounov, P. A.; Khovanskiy, V.; Shatalov, P. B.; Tsukerman, I. I.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Antonov, A.; Belotskiy, K.; Bulekov, O.; Dolgoshein, B. A.; Kantserov, V. A.; Krasnopevtsev, D.; Romaniouk, A.; Shulga, E.; Smirnov, S. Yu.; Smirnov, Y.; Soldatov, E. Yu.; Tikhomirov, V. O.; Timoshenko, S.; Vorobev, K.] Nat Res Nucl Univ MEPhI, Moscow, Russia. [Boldyrev, A. S.; Gladilin, L. K.; Kramarenko, V. A.; Maevskiy, A.; Rud, V. I.; Sivoklokov, S. Yu.; Smirnova, L. N.; Turchikhin, S.] Moscow MV Lomonosov State Univ, D V Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Adomeit, S.; Becker, S.; Bender, M.; Biebel, O.; Bock, C.; Bortfeldt, J.; Calfayan, P.; Chow, B. K. B.; Duckeck, G.; Elmsheuser, J.; Hertenberger, R.; Hoenig, F.; Legger, F.; Loesel, P. J.; Maier, T.; Mann, A.; Mehlhase, S.; Meineck, C.; Mitrevski, J.; Mueller, R. S. P.; Nunnemann, T.; Rauscher, F.; Ruschke, A.; Sanders, M. P.; Schaile, D.; Unverdorben, C.; Vladoiu, D.; Walker, R.; Wittkowski, J.] Univ Munich, Fak Phys, Munich, Germany. [Barillari, T.; Bethke, S.; Bronner, J.; Compostella, G.; Cortiana, G.; Ecker, K. M.; Flowerdew, M. J.; Goblirsch-Kolb, M.; Ince, T.; Kiryunin, A. E.; Kluth, S.; Kortner, O.; Kortner, S.; Kroha, H.; Macchiolo, A.; Maier, A. A.; Manfredini, A.; Menke, S.; Mueller, F.; Nagel, M.; Nisius, R.; Nowak, S.; Oberlack, H.; Richter, R.; Salihagic, D.; Sandstroem, R.; Schacht, P.; Schwegler, Ph.; Spettel, F.; Stonjek, S.; Terzo, S.; von der Schmitt, H.; Wildauer, A.] Max Planck Inst Phys & Astrophys, Werner Heisenberg Inst, D-80805 Munich, Germany. [Fusayasu, T.; Shimojima, M.] Nagasaki Inst Appl Sci, Nagasaki, Japan. [Horii, Y.; Morvaj, L.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Grad Sch Sci, Nagoya, Aichi, Japan. [Horii, Y.; Morvaj, L.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Kobayashi Maskawa Inst, Nagoya, Aichi 4648601, Japan. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Carlino, G.; Cirotto, F.; Conventi, F.; de Asmundis, R.; Della Pietra, M.; Di Donato, C.; Doria, A.; Izzo, V.; Merola, L.; Perrella, S.; Rossi, E.; Sanchez, A.; Sekhniaidze, G.; Zurzolo, G.] Ist Nazl Fis Nucl, Sez Napoli, I-80125 Naples, Italy. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Cirotto, F.; Di Donato, C.; Merola, L.; Perrella, S.; Rossi, E.; Sanchez, A.; Zurzolo, G.] Univ Naples Federico II, Dipartimento Fis, Naples, Italy. [Gorelov, I.; Hoeferkamp, M. R.; Seidel, S. C.; Toms, K.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Caron, S.; Colasurdo, L.; Croft, V.; De Groot, N.; Filthaut, F.; Galea, C.; Koenig, A. C.; Nektarijevic, S.; Strubig, A.] Radboud Univ Nijmegen Nikhef, Inst Math Astrophys & Particle Phys, Nijmegen, Netherlands. [Aben, R.; Angelozzi, I.; Beemster, L. J.; Bentvelsen, S.; Berge, D.; Bobbink, G. J.; Bos, K.; Brenner, L.; Butti, P.; Castelli, A.; Colijn, A. P.; de Jong, P.; Deigaard, I.; Deluca, C.; Duda, D.; Ferrari, P.; Hartjes, F.; Hessey, N. P.; Hod, N.; Igonkina, O.; Karastathis, N.; Kluit, P.; Koffeman, E.; Linde, F.; Mahlstedt, J.; Meyer, J.; Oussoren, K. P.; Sabato, G.; Salek, D.; Slawinska, M.; Valencic, N.; Van Den Wollenberg, W.; Van Der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.; Weits, H.; Williams, S.] Nikhef Natl Inst Subat Phys, Amsterdam, Netherlands. [Aben, R.; Angelozzi, I.; Beemster, L. J.; Bentvelsen, S.; Berge, D.; Bobbink, G. J.; Bos, K.; Brenner, L.; Butti, P.; Castelli, A.; Colijn, A. P.; de Jong, P.; Deigaard, I.; Deluca, C.; Duda, D.; Ferrari, P.; Hartjes, F.; Hessey, N. P.; Hod, N.; Igonkina, O.; Karastathis, N.; Kluit, P.; Koffeman, E.; Linde, F.; Mahlstedt, J.; Meyer, J.; Oussoren, K. P.; Sabato, G.; Salek, D.; Slawinska, M.; Valencic, N.; Van Den Wollenberg, W.; Van Der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.; Weits, H.; Williams, S.] Univ Amsterdam, Amsterdam, Netherlands. [Adelman, J.; Andari, N.; Burghgrave, B.; Chakraborty, D.; Cole, S.; Suhr, C.; Yurkewicz, A.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Anisenkov, A. V.; Baldin, E. M.; Bobrovnikov, V. S.; Bogdanchikov, A. G.; Buzykaev, A. R.; Kazanin, V. F.; Kharlamov, A. G.; Korol, A. A.; Malyshev, V. M.; Maslennikov, A. L.; Maximov, D. A.; Peleganchuk, S. V.; Rezanova, O. L.; Soukharev, A. M.; Talyshev, A. A.; Tikhonov, Yu. A.] SB RAS, Budker Inst Nucl Phys, Novosibirsk, Russia. [Bernius, C.; Cranmer, K.; Haas, A.; Heinrich, L.; van Huysduynen, L. Hooft; Kaplan, B.; Karthik, K.; Konoplich, R.; Kreiss, S.; Mincer, A. I.; Nemethy, P.; Neves, R. M.] NYU, Dept Phys, New York, NY 10003 USA. [Beacham, J. B.; Gan, K. K.; Ishmukhametov, R.; Kagan, H.; Kass, R. D.; Looper, K. A.; Moss, J.; Nagarkar, A.; Pignotti, D. T.; Shrestha, S.; Tannenwald, B. B.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Fac Sci, Okayama 700, Japan. [Abbott, B.; Alhroob, M.; Bertsche, C.; Bertsche, D.; De Benedetti, A.; Gutierrez, P.; Hasib, A.; Norberg, S.; Pearson, B.; Saleem, M.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA. [Bousson, N.; Haley, J.; Jamin, D. O.; Khanov, A.; Rizatdinova, F.; Sidorov, D.; Yu, J.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA. [Chytka, L.; Hamal, P.; Hrabovsky, M.; Kvita, J.; Nozka, L.] Palacky Univ, RCPTM, CR-77147 Olomouc, Czech Republic. [Abreu, R.; Brau, B.; Brost, E.; Hopkins, W. H.; Majewski, S.; Potter, C. T.; Ptacek, E.; Radloff, P.; Shamim, M.; Sinev, N. B.; Strom, D. M.; Torrence, E.; Wanotayaroj, C.; Whalen, K.; Winklmeier, F.] Univ Oregon, Ctr High Energy Phys, Eugene, OR 97403 USA. [Ayoub, M. K.; Bassalat, A.; Becot, C.; Binet, S.; Bourdarios, C.; De Regie, J. B. De Vivie; Delgove, D.; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Gkougkousis, E. L.; Grivaz, J. -F.; Guillemin, T.; Hariri, F.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Kado, M.; Li, Y.; Lounis, A.; Makovec, N.; Morange, N.; Nellist, C.; Petroff, P.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Rybkin, G.; Schaffer, A. C.; Scifo, E.; Serin, L.; Simion, S.; Tanaka, R.; Zerwas, D.; Zhang, Z.; Zhao, Y.] Univ Paris 11, CNRS, IN2P3, LAL, Orsay, France. [Endo, M.; Hanagaki, K.; Nomachi, M.; Okamura, W.; Sugaya, Y.; Teoh, J. J.; Yamaguchi, Y.] Osaka Univ, Grad Sch Sci, Osaka, Japan. [Bugge, L.; Bugge, M. K.; Cameron, D.; Catmore, J. R.; Franconi, L.; Garonne, V.; Gjelsten, B. K.; Gramstad, E.; Morisbak, V.; Nilsen, J. K.; Ould-Saada, F.; Pajchel, K.; Pedersen, M.; Raddum, S.; Read, A. L.; Rohne, O.; Sandaker, H.; Stapnes, S.; Strandlie, A.] Univ Oslo, Dept Phys, Oslo, Norway. [Barr, A. J.; Becker, K.; Behr, J. K.; Beresford, L.; Cooper-Sarkar, A. M.; Ortuzar, M. Crispin; Dafinca, A.; Davies, E.; Frost, J. A.; Gallas, E. J.; Gupta, S.; Gwenlan, C.; Hall, D.; Hays, C. P.; Henderson, J.; Howard, J.; Huffman, T. B.; Issever, C.; Kalderon, C. W.; Kogan, L. A.; Lewis, A.; Nagai, K.; Nickerson, R. B.; Pickering, M. A.; Ryder, N. C.; Tseng, J. C-L.; Viehhauser, G. H. A.; Weidberg, A. R.; Zhong, J.] Univ Oxford, Dept Phys, Oxford, England. [Conta, C.; Dondero, P.; Ferrari, R.; Fraternali, M.; Gaudio, G.; Introzzi, G.; Lanzaa, A.; Livan, M.; Negri, A.; Polesello, G.; Rebuzzi, D. M.; Rimoldi, A.; Vercesi, V.] Ist Nazl Fis Nucl, Sez Pavia, Pavia, Italy. [Conta, C.; Dondero, P.; Fraternali, M.; Introzzi, G.; Livan, M.; Negri, A.; Rebuzzi, D. M.; Rimoldi, A.] Univ Pavia, Dipartimento Fis, I-27100 Pavia, Italy. [Brendlinger, K.; Fletcher, R. R. M.; Heim, S.; Hines, E.; Jackson, B.; Kroll, J.; Miguens, J. Machado; Meyer, C.; Reichert, J.; Stahlman, J.; Thomson, E.; Tuna, A. N.; Vanguri, R.; Williams, H. H.; Yoshihara, K.] Univ Penn, Dept Phys, Philadelphia, PA 19104 USA. [Basalaev, A.; Ezhilov, A.; Fedin, O. L.; Gratchev, V.; Levchenko, M.; Maleev, V. P.; Ryabov, Y. F.; Schegelsky, V. A.; Sedykh, E.; Seliverstov, D. M.; Solovyev, V.] Natl Res Ctr, Kurchatov Inst, BP Konstantinov Petersburg Nucl Phys Inst, St Petersburg, Russia. [Annovi, A.; Beccherle, R.; Bertolucci, F.; Cavasinni, V.; Chiarelli, G.; Del Prete, T.; Dell'Orso, M.; Donati, S.; Giannetti, P.; Leone, S.; Roda, C.; Scuri, F.; Sotiropoulou, C. L.; Spalla, M.; Volpi, G.; White, S.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy. [Annovi, A.; Beccherle, R.; Bertolucci, F.; Cavasinni, V.; Chiarelli, G.; Del Prete, T.; Dell'Orso, M.; Donati, S.; Giannetti, P.; Leone, S.; Roda, C.; Scuri, F.; Sotiropoulou, C. L.; Spalla, M.; Volpi, G.; White, S.] Univ Pisa, Dipartimento Fis E Fermi, Pisa, Italy. [Bianchi, R. M.; Boudreau, J.; Cleland, W.; Escobar, C.; Hong, T. M.; Mueller, J.; Sapp, K.; Su, J.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Aguilar-Saavedra, J. A.; Amor Dos Santos, S. P.; Amorim, A.; Araque, J. P.; Cantrill, R.; Carvalho, J.; Castro, N. F.; Conde Muino, P.; Da Cunha Sargedas De Sousa, M. J.; Fiolhais, M. C. N.; Galhardo, B.; Gomes, A.; Goncalo, R.; Jorge, P. M.; Lopes, L.; Maio, A.; Maneira, J.; Onofre, A.; Palma, A.; Pedro, R.; Pina, J.; Santos, H.; Saraiva, J. G.; Silva, J.; Tavares Delgado, A.; Veloso, F.; Wolters, H.] Lab Instrumentacao & Fis Expt Particulas, Lisbon, Portugal. [Amorim, A.; Conde Muino, P.; Da Cunha Sargedas De Sousa, M. J.; Gomes, A.; Jorge, P. M.; Miguens, J. Machado; Maio, A.; Maneira, J.; Palma, A.; Pedro, R.; Pina, J.; Tavares Delgado, A.] Univ Lisbon, Fac Ciencias, Lisbon, Portugal. [Amor Dos Santos, S. P.; Carvalho, J.; Fiolhais, M. C. N.; Galhardo, B.; Veloso, F.; Wolters, H.] Univ Coimbra, Dept Phys, Coimbra, Portugal. [Gomes, A.; Maio, A.; Pina, J.; Saraiva, J. G.; Silva, J.] Univ Lisbon, Ctr Fis Nucl, Lisbon, Portugal. [Onofre, A.] Univ Minho, Dept Fis, Braga, Portugal. [Aguilar-Saavedra, J. A.] Univ Granada, Dept Fis Teor Cosmos, Granada, Spain. [Aguilar-Saavedra, J. A.] Univ Granada, CAFPE, Granada, Spain. Univ Nova Lisboa, Dept Fis, Fac Ciencias & Tecnol, Caparica, Portugal. Univ Nova Lisboa, CEFITEC, Fac Ciencias & Tecnol, Caparica, Portugal. [Chudoba, J.; Havranek, M.; Hejbal, J.; Jakoubek, T.; Kepka, O.; Kupco, A.; Kus, V.; Lokajicek, M.; Lysak, R.; Marcisovsky, M.; Mikestikova, M.; Nemecek, S.; Penc, O.; Sicho, P.; Staroba, P.; Svatos, M.; Tasevsky, M.; Vrba, V.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Augsten, K.; Caforio, D.; Gallus, P.; Guenther, J.; Hubacek, Z.; Jakubek, J.; Kohout, Z.; Myska, M.; Pospisil, S.; Seifert, F.; Simak, V.; Slavicek, T.; Smolek, K.; Solar, M.; Solc, J.; Sopczak, A.; Sopko, B.; Sopko, V.; Suk, M.; Turecek, D.; Vacek, V.; Vlasak, M.; Vokac, P.; Vykydal, Z.; Zeman, M.] Czech Tech Univ, Prague, Czech Republic. [Balek, P.; Berta, P.; Cerny, K.; Chalupkova, I.; Davidek, T.; Dolejsi, J.; Dolezal, Z.; Faltova, J.; Kodys, P.; Kosek, T.; Leitner, R.; Pleskot, V.; Reznicek, P.; Scheirich, D.; Spousta, M.; Sykora, T.; Tas, P.; Todorova-Nova, S.; Valkar, S.; Vorobel, V.] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic. [Borisov, A.; Cheremushkina, E.; Denisov, S. P.; Fakhrutdinov, R. M.; Fenyuk, A. B.; Golubkov, D.; Kamenshchikov, A.; Karyukhin, A. N.; Kozhin, A. S.; Minaenko, A. A.; Myagkov, A. G.; Nikolaenko, V.; Solodkov, A. A.; Solovyanov, O. V.; Starchenko, E. A.; Zaitsev, A. M.; Zenin, O.] State Res Ctr Inst High Energy Phys, Protvino, Russia. [Adye, T.; Baines, J. T.; Barnett, B. M.; Burke, S.; Dewhurst, A.; Dopke, J.; Emeliyanov, D.; Gallop, B. J.; Gee, C. N. P.; Haywood, S. J.; Kirk, J.; Martin-Haugh, S.; McCubbin, N. A.; McMahon, S. J.; Middleton, R. P.; Murray, W. J.; Phillips, P. W.; Sankey, D. P. C.; Sawyer, C.; Tyndel, M.; Wickens, F. J.; Wielers, M.] Particle Phys Dept, Rutherford Appleton Lab, Didcot, Oxon, England. [Anulli, F.; Bagiacchi, P.; Bagnaia, P.; Bauce, M.; Bini, C.; Ciapetti, G.; De Pedis, D.; De Salvo, A.; Di Domenico, A.; Falciano, S.; Gabrielli, A.; Gauzzi, P.; Gentile, S.; Giagu, S.; Gustavino, G.; Kuna, M.; Lacava, F.; Luci, C.; Luminari, L.; Marzano, F.; Messina, A.; Monzani, S.; Nisati, A.; Pasqualucci, E.; Petrolo, E.; Pontecorvoa, L.; Rescigno, M.; Rosati, S.; Tehrani, F. Safai; Vanadia, M.; Vari, R.; Veneziano, S.; Verducci, M.; Zanello, L.] Ist Nazl Fis Nucl, Sez Roma, Rome, Italy. [Bagiacchi, P.; Bagnaia, P.; Bauce, M.; Bini, C.; Ciapetti, G.; Di Domenico, A.; Gabrielli, A.; Gauzzi, P.; Gentile, S.; Giagu, S.; Gustavino, G.; Kuna, M.; Lacava, F.; Luci, C.; Messina, A.; Monzani, S.; Vanadia, M.; Verducci, M.; Zanello, L.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Aielli, G.; Camarri, P.; Cardarelli, R.; Di Ciaccio, A.; Iuppa, R.; Liberti, B.; Mazzaferro, L.; Salamon, A.; Santonico, R.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, Rome, Italy. [Aielli, G.; Camarri, P.; Di Ciaccio, A.; Iuppa, R.; Mazzaferro, L.; Santonico, R.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy. [Bacci, C.; Baroncelli, A.; Biglietti, M.; Ceradini, F.; Di Micco, B.; Farilla, A.; Graziani, E.; Iodice, M.; Orestano, D.; Pastore, F.; Petrucci, F.; Puddu, D.; Salamanna, G.; Sessa, M.; Stanescu, C.; Taccini, C.] INFN, Sez Roma Tre, Rome, Italy. [Bacci, C.; Ceradini, F.; Di Micco, B.; Orestano, D.; Pastore, F.; Petrucci, F.; Puddu, D.; Salamanna, G.; Sessa, M.; Taccini, C.] Univ Roma Tre, Dipartimento Matemat & Fis, Rome, Italy. [Benchekroun, D.; Chafaq, A.; Hoummada, A.] Univ Hassan 2, Fac Sci Ain Chock, Reseau Univ Phys Hautes Energies, Casablanca, Morocco. [Ghazlane, H.] Ctr Natl Energie Sci Tech Nucl, Rabat, Morocco. [El Kacimi, M.; Goujdami, D.] Univ Cadi Ayyad, Fac Sci Semlalia, LPHEA, Marrakech, Morocco. [Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] Univ Mohamed Premier, Fac Sci, Oujda, Morocco. [Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] LPTPM, Oujda, Morocco. [El Moursli, R. Cherkaoui; Fassi, F.; Haddad, N.; Idrissi, Z.] Univ Mohammed V Agdal, Fac Sci, Rabat, Morocco. [Bachacou, H.; Bauer, F.; Besson, N.; Blanchard, J. -B.; Boonekamp, M.; Calandri, A.; Chevalier, L.; Hoffmann, M. Dano; Deliot, F.; Di Domenico, A.; Etienvre, A. I.; Formica, A.; Giraud, P. F.; Da Costa, J. Goncalves Pinto Firmino; Guyot, C.; Hanna, R.; Hassani, S.; Kivernyk, O.; Kozanecki, W.; Kukla, R.; Lancon, E.; Laporte, J. F.; Maiani, C.; Mansoulie, B.; Meyer, J-P.; Ouraou, A.; Protopapadaki, E.; Royon, C. R.; Saimpert, M.; Schoeffel, L.; Schune, Ph.; Schwemling, Ph.; Schwindling, J.] CEA Saclay, IRFU, DSM, Commissariat Energie Atom & Energies Alternat, F-91191 Gif Sur Yvette, France. [Battaglia, M.; Debenedetti, C.; Grabas, H. M. X.; Grillo, A. A.; Kuhl, A.; La Rosa, A.; Law, A. T.; Liang, Z.; Litke, A. M.; Lockman, W. S.; Nielsen, J.; Reece, R.; Rose, P.; Sadrozinski, H. F-W.; Schumm, B. A.; Seiden, A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Blackburn, D.; Goussiou, A. G.; Hsu, S-C.; Lubatti, H. J.; Marx, M.; Rompotis, N.; Rosten, R.; Rothberg, J.; Russell, H. L.; De Bruin, P. H. Sales; Pastor, E. Torro; Watts, G.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Anastopoulos, C.; Costanzo, D.; Donszelmann, T. Cuhadar; Dawson, I.; Fletcher, G. T.; Hamity, G. N.; Hodgkinson, M. C.; Hodgson, P.; Johansson, P.; Klinger, J. A.; Korolkova, E. V.; Kyriazopoulos, D.; Paredes, B. Lopez; Macdonald, C. M.; Miyagawa, P. S.; Paganis, E.; Parker, K. A.; Tovey, D. R.; Vickey, T.; Boeriu, O. E. Vickey] Univ Sheffield, Dept Phys & Astron, Sheffield, S Yorkshire, England. [Hasegawa, Y.; Takeshita, T.] Shinshu Univ, Dept Phys, Nagano, Japan. [Atlay, N. B.; Buchholz, P.; Czirr, H.; Fleck, I.; Gaur, B.; Ghasemi, S.; Ibragimov, I.; Ikematsu, K.; Rosenthal, O.; Walkowiak, W.; Ziolkowski, M.] Univ Siegen, Fachbereich Phys, D-57068 Siegen, Germany. [Buat, Q.; Horton, A. J.; Mori, D.; O'Neil, D. C.; Pachal, K.; Stelzer, B.; Temple, D.; Torres, H.; Van Nieuwkoop, J.; Vetterli, M. C.] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada. [Barklow, T.; Bartoldus, R.; Bawa, H. S.; Black, J. E.; Cogan, J. G.; Fulsom, B. G.; Gao, Y. S.; Garelli, N.; Grenier, P.; Ilic, N.; Kagan, M.; Kocian, M.; Koi, T.; Malone, C.; Mount, R.; Nachman, B. P.; Nef, P. D.; Piacquadio, G.; Rubbo, F.; Salnikov, A.; Schwartzman, A.; Strauss, E.; Su, D.; Swiatlowski, M.; Tompkins, L.; Wittgen, M.; Young, C.; Zeng, Q.] SLAC Natl Accelerator Lab, Stanford, CA USA. [Astalos, R.; Bartos, P.; Blazek, T.; Federic, P.; Plazak, L.; Stavina, P.; Sykora, I.; Tokar, S.; Zenis, T.] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia. [Antos, J.; Bruncko, D.; Kladiva, E.; Strizenec, P.; Urban, J.] Slovak Acad Sci, Inst Expt Phys, Dept Subnucl Phys, Kosice 04353, Slovakia. [Hamilton, A.; Meehan, S.; Yacoob, S.] Univ Cape Town, Dept Phys, ZA-7925 Cape Town, South Africa. [Aurousseau, M.; Castaneda-Miranda, E.; Connell, S. H.; Govender, N.; Lee, C. A.] Univ Johannesburg, Dept Phys, Johannesburg, South Africa. [Bristow, K.; Hsu, C.; Kar, D.; March, L.; Garcia, B. R. Mellado; Ruan, X.] Univ Witwatersrand, Sch Phys, Johannesburg, South Africa. [Abulaiti, Y.; Akerstedt, H.; Asman, B.; Bendtz, K.; Bertoli, G.; Bylund, O. Bessidskaia; Bohm, C.; Clement, C.; Cribbs, W. A.; Hellman, S.; Jon-And, K.; Khandanyan, H.; Klimek, P.; Lundberg, O.; Milstead, D. A.; Moa, T.; Molander, S.; Pani, P.; Plucinski, P.; Poettgen, R.; Rossetti, V.; Shcherbakova, A.; Silverstein, S. B.; Sjoelin, J.; Strandberg, S.; Tylmad, M.; Ughetto, M.] Stockholm Univ, Dept Phys, S-10691 Stockholm, Sweden. [Abulaiti, Y.; Akerstedt, H.; Asman, B.; Bendtz, K.; Bertoli, G.; Bylund, O. Bessidskaia; Clement, C.; Cribbs, W. A.; Hellman, S.; Jon-And, K.; Khandanyan, H.; Klimek, P.; Lundberg, O.; Milstead, D. A.; Moa, T.; Molander, S.; Pani, P.; Plucinski, P.; Poettgen, R.; Rossetti, V.; Shcherbakova, A.; Sjoelin, J.; Strandberg, J.; Tylmad, M.; Ughetto, M.] Oskar Klein Ctr, Stockholm, Sweden. [Lund-Jensen, B.; Sidebo, P. E.; Strandberg, J.] Royal Inst Technol, Dept Phys, Stockholm, Sweden. [Balestri, T.; Bee, C. P.; Campoverde, A.; Chen, K.; Hobbs, J.; Jia, J.; Li, H.; Lindquist, B. E.; Mastrandrea, P.; McCarthy, R. L.; Puldon, D.; Radhakrishnan, S. K.; Rijssenbeek, M.; Schamberger, R. D.; Tsybychev, D.; Zaman, A.; Zhou, M.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Balestri, T.; Baroncelli, A.; Bee, C. P.; Campoverde, A.; Chen, K.; Hobbs, J.; Jia, J.; Li, H.; Lindquist, B. E.; Mastroberardino, A.; McCarthy, R. L.; Puldon, D.; Radhakrishnan, S. K.; Rijssenbeek, M.; Schamberger, R. D.; Tsybychev, D.; Zaman, A.; Zhou, M.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Allbrooke, B. M. M.; Asquith, L.; Cerri, A.; Barajas, C. A. Chavez; De Sanctis, U.; De Santo, A.; Grout, Z. J.; Potter, C. J.; Salvatore, F.; Castillo, I. Santoyo; Shehu, C. Y.; Suruliz, K.; Sutton, M. R.; Vivarelli, I.] Univ Sussex, Dept Phys & Astron, Brighton, E Sussex, England. [Black, C. W.; Cuthbert, C.; Finelli, K. D.; Jeng, G. -Y.; Limosani, A.; Morley, A. K.; Patel, N. D.; Saavedra, A. F.; Scarcella, M.; Varvell, K. E.; Watson, I. J.; Yabsley, B.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. [Abdallah, J.; Hou, S.; Hsu, P. J.; Lee, S. C.; Li, B.; Lin, S. C.; Liu, B.; Liu, D.; LoSterzo, F.; Mazini, R.; Shi, L.; Soh, D. A.; Teng, P. K.; Wang, C.; Wang, S. M.; Yang, Y.] Acad Sinica, Inst Phys, Taipei, Taiwan. [Abreu, H.; Cheatham, S.; Di Mattia, A.; Gozani, E.; Kopeliansky, R.; Musto, E.; Rozen, Y.; Tarem, S.; van Eldik, N.] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel. [Abramowicz, H.; Alexander, G.; Amram, N.; Ashkenazi, A.; Bella, G.; Benary, O.; Benhammou, Y.; Davies, M.; Etzion, E.; Gershon, A.; Gueta, O.; Oren, Y.; Silver, Y.; Soffer, A.; Taiblum, N.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Bachas, K.; Gkaitatzis, S.; Gkialas, I.; Iliadis, D.; Kimura, N.; Kordas, K.; Kourkoumeli-Charalampidi, A.; Leisos, A.; Orlando, N.; Papageorgiou, K.; Hernandez, D. Paredes; Petridou, C.; Sampsonidis, D.; Tsionou, D.] Aristotle Univ Thessaloniki, Dept Phys, GR-54006 Thessaloniki, Greece. [Asai, S.; Dohmae, T.; Enari, Y.; Hanawa, K.; Kanaya, N.; Kataoka, Y.; Kato, C.; Kawamoto, T.; Kazama, S.; Kobayashi, A.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Minami, Y.; Morinaga, M.; Nakamura, T.; Ninomiya, Y.; Nobe, T.; Saito, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamamoto, S.; Yamanaka, T.] Univ Tokyo, Internatl Ctr Elementary Particle Phys, Tokyo, Japan. [Asai, S.; Dohmae, T.; Enari, Y.; Hanawa, K.; Kanaya, N.; Kataoka, Y.; Kato, C.; Kawamoto, T.; Kazama, S.; Kobayashi, A.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Minami, Y.; Morinaga, M.; Nakamura, K.; Ninomiya, Y.; Nobe, T.; Saito, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamamoto, S.; Yamanaka, T.] Univ Tokyo, Dept Phys, Tokyo 113, Japan. [Bratzler, U.; Fukunaga, C.] Tokyo Metropolitan Univ, Grad Sch Sci & Technol, Tokyo 158, Japan. [Hirose, M.; Ishitsuka, M.; Jinnouchi, O.; Kobayashi, D.; Kuze, M.; Motohashi, K.; Nagai, R.; Pettersson, N. E.; Todome, K.; Yamaguchi, D.] Tokyo Inst Technol, Dept Phys, Tokyo 152, Japan. [AbouZeid, O. S.; Batista, S. J.; Chau, C. C.; DeMarco, D. A.; Di Sipio, R.; Diamond, M.; Krieger, P.; Liblong, A.; Mc Goldrick, G.; Orr, R. S.; Polifka, R.; Rudolph, M. S.; Savard, P.; Sinervo, P.; Spreitzer, T.; Taenzer, J.; Teuscher, R. J.; Trischuk, W.; Veloce, L. M.; Venturi, N.] Univ Toronto, Dept Phys, Toronto, ON, Canada. [Azuelos, G.; Canepa, A.; Chekulaev, S. V.; Gingrich, D. M.; Jovicevic, J.; Koutsman, A.; Oakham, F. G.; Oram, C. J.; Codina, E. Perez; Savard, P.; Schneider, B.; Schouten, D.; Seuster, R.; Stelzer-Chilton, O.; Tafirout, R.; Trigger, I. M.; Vetterli, M. C.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Garcia, J. A. Benitez; Ramos, J. Manjarres; Palacino, G.; Taylor, W.] York Univ, Dept Phys, Toronto, ON M3J 2R7, Canada. [Hara, K.; Hayashi, T.; Kim, S. H.; Kiuchi, K.; Nagata, K.; Okawa, H.; Sato, K.; Ukegawa, F.] Univ Tsukuba, Fac Pure & Appl Sci, Tsukuba, Ibaraki, Japan. [Beauchemin, P. H.; Meoni, E.; Rolli, S.; Sliwa, K.; Wetter, J.] Tufts Univ, Dept Phys & Astron, Medford, MA 02155 USA. [Losada, M.; Moreno, D.; Navarro, G.; Sandoval, C.] Univ Antonio Narino, Ctr Invest, Bogota, Colombia. [Corso-Radu, A.; Frate, M.; Gerbaudo, D.; Lankford, A. J.; Mete, A. S.; Nelson, A.; Relich, M.; Scannicchio, D. A.; Shimmin, C. O.; Taffard, A.; Unel, G.; Whiteson, D.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA USA. [Acharya, B. S.; Barisonzi, M.; Brazzale, S. F.; Cobal, M.; Giordani, M. P.; Miglioranzi, S.; Pinamonti, M.; Quayle, W. B.; Serkin, L.; Shaw, K.; Soualah, R.; Truong, L.] Ist Nazl Fis Nucl, Grp Collegato Udine, Sez Trieste, Udine, Italy. [Acharya, B. S.; Barisonzi, M.; Quayle, W. B.; Serkin, L.; Shaw, K.] Abdus Salaam Int Ctr Theoret Phys, Trieste, Italy. [Brazzale, S. F.; Cobal, M.; Giordani, M. P.; Miglioranzi, S.; Pinamonti, M.; Soualah, R.; Truong, L.] Univ Udine, Dipartimento Chim Fis & Ambiente, I-33100 Udine, Italy. [Atkinson, M.; Basye, A.; Armadans, R. Caminal; Cavaliere, V.; Chang, P.; Errede, S.; Lie, K.; Liss, T. M.; Liu, L.; Neubauer, M. S.; Rybar, M.; Shang, R.; Vichou, I.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Kuutmann, E. Bergeaas; Brenner, R.; Ekelof, T.; Ellert, M.; Ferrari, A.; Gradin, P. O. J.; Isaksson, C.; Madsen, A.; Ohman, H.; Pelikan, D.; Rangel-Smith, C.] Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden. [Alvarez Piqueras, D.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Fernandez Martinez, P.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Jimenez Pena, J.; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Mitsou, V. A.; Garcia, E. Oliver; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Valero, A.; Valladolid Gallego, E.; Ferrer, J. A. Valls; Vos, M.] Univ Valencia, IFIC, Inst Fis Corpuscular, Valencia, Spain. [Alvarez Piqueras, D.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Fernandez Martinez, P.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Jimenez Pena, J.; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Mitsou, V. A.; Garcia, E. Oliver; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Valero, A.; Valladolid Gallego, E.; Ferrer, J. A. Valls; Vos, M.] Univ Valencia, Dept Fis Atom Mol & Nucl, Valencia, Spain. [Alvarez Piqueras, D.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Fernandez Martinez, P.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Jimenez Pena, J.; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Mitsou, V. A.; Garcia, E. Oliver; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Valero, A.; Valladolid Gallego, E.; Ferrer, J. A. Valls; Vos, M.] Univ Valencia, Dept Ingn Elect, Valencia, Spain. [Adams, D. L.; Alvarez Piqueras, D.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Fernandez Martinez, P.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Jimenez Pena, J.; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Mitsou, V. A.; Garcia, E. Oliver; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Valero, A.; Valladolid Gallego, E.; Vos, M.] Univ Valencia, Inst Microelectron Barcelona IMB CNM, Valencia, Spain. [Alvarez Piqueras, D.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Fernandez Martinez, P.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Jimenez Pena, J.; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Mitsou, V. A.; Garcia, E. Oliver; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Valero, A.; Valladolid Gallego, E.; Ferrer, J. A. Valls; Vos, M.] CSIC, Valencia, Spain. [Danninger, M.; Fedorko, W.; Gay, C.; Gecse, Z.; King, S. B.; Lister, A.] Univ British Columbia, Dept Phys, Vancouver, BC, Canada. [Albert, J.; Berghaus, F.; David, C.; Elliot, A. A.; Fincke-Keeler, M.; Hamano, K.; Hill, E.; Keeler, R.; Kowalewski, R.; Kuwertz, E. S.; Kwan, T.; LeBlanc, M.; Lefebvre, M.; Marino, C. P.; McPherson, R. A.; Pearce, J.; Sobie, R.; Trovatelli, M.; Venturi, M.] Univ Victoria, Dept Phys & Astron, Victoria, BC, Canada. [Beckingham, M.; Farrington, S. M.; Harrison, P. F.; Jeske, C.; Jones, G.; Martin, T. A.; Murray, W. J.; Pianori, E.; Spangenberg, M.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Iizawa, T.; Mitani, T.; Sakurai, Y.; Yorita, K.] Waseda Univ, Tokyo, Japan. [Bressler, S.; Citron, Z. H.; Duchovni, E.; Gross, E.; Lellouch, D.; Levinson, L. J.; Mikenberg, G.; Milov, A.; Pitt, M.; Roth, I.; Schaarschmidt, J.; Smakhtin, V.] Weizmann Inst Sci, Depat Particle Phys, IL-76100 Rehovot, Israel. [Banerjee, Sw.; Hard, A. S.; Heng, Y.; Ji, H.; Ju, X.; Kaplan, L. S.; Kashif, L.; Kruse, A.; Ming, Y.; Pan, Y. B.; Wang, F.; Wiedenmann, W.; Wu, S. L.; Yang, H.; Zhang, F.; Zobernig, G.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Kuger, F.; Redelbach, A.; Sidiropoulou, O.; Siragusa, G.; Stroehmer, R.; Tam, J. Y. C.; Trefzger, T.; Weber, S. W.; Zibell, A.] Univ Wurzburg, Fak Phys & Astron, D-97070 Wurzburg, Germany. [Bannoura, A. A. E.; Beermann, T. A.; Braun, H. M.; Cornelissen, T.; Ellinghaus, F.; Ernis, G.; Fischer, J.; Fleischmann, S.; Flick, T.; Gabizon, O.; Hamacher, K.; Harenberg, T.; Heim, T.; Hirschbuehl, D.; Kersten, S.; Kohlmann, S.; Maetig, P.; Neumann, M.; Pataraia, S.; Riegel, C. J.; Sandhoff, M.; Tepel, F.; Wagner, W.; Zeitnitz, C.] Berg Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany. [Baker, O. K.; Cummings, J.; Demers, S.; Garberson, F.; Guest, D.; Henrichs, A.; Ideal, E.; Lagouri, T.; Leister, A. G.; Loginov, A.; Thomsen, L. A.; Tipton, P.; Wang, X.] Yale Univ, Dept Phys, New Haven, CT USA. [Hakobyan, H.; Vardanyan, G.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Rahal, G.] Ctr Calcul, Inst Natl Phys Nucl & Phys Particules, IN2P3, Villeurbanne, France. [Acharya, B. S.] Kings Coll London, Dept Phys, London, England. [Ahmadov, F.; Huseynov, N.; Javadov, N.] Azerbaijan Acad Sci, Inst Phys, Baku 370143, Azerbaijan. [Anisenkov, A. V.; Baldin, E. M.; Bobrovnikov, V. S.; Buzykaev, A. R.; Kazanin, V. F.; Kharlamov, A. G.; Korol, A. A.; Maslennikov, A. L.; Maximov, D. A.; Peleganchuk, S. V.; Rezanova, O. L.; Soukharev, A. M.; Talyshev, A. A.; Tikhonov, Yu. A.] Novosibirsk State Univ, Novosibirsk 630090, Russia. [Bawa, H. S.; Gao, Y. S.] Calif State Univ Fresno, Dept Phys, Fresno, CA 93740 USA. [Beck, H. P.] Univ Fribourg, Dept Phys, CH-1700 Fribourg, Switzerland. [Castro, N. F.] Univ Porto, Fac Ciencias, Dept Fis & Astron, Oporto, Portugal. [Chelkov, G. A.] Tomsk State Univ, Tomsk 634050, Russia. [Chen, L.] Aix Marseille Univ, CPPM, Marseille, France. [Conventi, F.; Della Pietra, M.] Univ Napoli Parthenope, Naples, Italy. [Corriveau, F.; McPherson, R. A.; Robertson, S. H.; Sobie, R.; Teuscher, R. J.] Inst Particle Phys, Waterloo, ON, Canada. [Fedin, O. L.] St Petersburg State Univ, Dept Phys, St Petersburg 199034, Russia. [Grinstein, S.; Juste Rozas, A.; Martinez, M.] ICREA, Barcelona, Spain. [Hsu, P. J.] Natl Tsing Hua Univ, Dept Phys, Taipei, Taiwan. [Ilchenko, Y.; Onyisi, P. U. E.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. [Jejelava, J.] Ilia State Univ, Inst Theoret Phys, Tbilisi, Rep of Georgia. [Khubua, J.] Georgian Tech Univ, Tbilisi, Rep of Georgia. [Konoplich, R.] Manhattan Coll, New York, NY USA. [Leisos, A.] Hellen Open Univ, Patras, Greece. [Liu, B.] Shandong Univ, Sch Phys, Jinan, Shandong, Peoples R China. [Myagkov, A. G.; Nikolaenko, V.; Zaitsev, A. M.] Moscow Inst Phys & Technol, Dolgoprudnyi, Russia. [Pinamonti, M.] Scuola Int Super Studi Avanzati, SISSA, Trieste, Italy. [Purohit, M.] Univ S Carolina, Dept Phys & Astron, Columbia, SC USA. [Shi, L.; Soh, D. A.] Sun Yat Sen Univ, Sch Phys & Engn, Guangzhou 510275, Guangdong, Peoples R China. [Smirnova, L. N.; Turchikhin, S.] Moscow MV Lomonosov State Univ, Fac Phys, Moscow, Russia. [Tompkins, L.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. Wigner Res Ctr Phys, Inst Nucl & Particle Phys, Budapest, Hungary. [Yusuff, I.] Univ Malaya, Dept Phys, Kuala Lumpur 59100, Malaysia. [Chen, L.] CNRS, IN2P3, Marseille, France. RP Aad, G (reprint author), Aix Marseille Univ, CPPM, Marseille, France. RI Zaitsev, Alexandre/B-8989-2017; Peleganchuk, Sergey/J-6722-2014; Li, Liang/O-1107-2015; Monzani, Simone/D-6328-2017; Kuday, Sinan/C-8528-2014; Garcia, Jose /H-6339-2015; Maneira, Jose/D-8486-2011; Prokoshin, Fedor/E-2795-2012; Staroba, Pavel/G-8850-2014; Kukla, Romain/P-9760-2016; Gavrilenko, Igor/M-8260-2015; Gauzzi, Paolo/D-2615-2009; Maleev, Victor/R-4140-2016; Camarri, Paolo/M-7979-2015; Mindur, Bartosz/A-2253-2017; Mashinistov, Ruslan/M-8356-2015; Fabbri, Laura/H-3442-2012; Gutierrez, Phillip/C-1161-2011; Solodkov, Alexander/B-8623-2017; Gladilin, Leonid/B-5226-2011; Livan, Michele/D-7531-2012; Carvalho, Joao/M-4060-2013; White, Ryan/E-2979-2015; Warburton, Andreas/N-8028-2013; spagnolo, stefania/A-6359-2012; Buttar, Craig/D-3706-2011; Mitsou, Vasiliki/D-1967-2009; Tripiana, Martin/H-3404-2015; Smirnova, Oxana/A-4401-2013; Tikhomirov, Vladimir/M-6194-2015; Savarala, Hari Krishna/A-3516-2015; Snesarev, Andrey/H-5090-2013; Nechaeva, Polina/N-1148-2015; Vykydal, Zdenek/H-6426-2016; Fedin, Oleg/H-6753-2016; Brooks, William/C-8636-2013; Ventura, Andrea/A-9544-2015; Kantserov, Vadim/M-9761-2015; Nevski, Pavel/M-6292-2015; Villa, Mauro/C-9883-2009; BESSON, NATHALIE/L-6250-2015; La Rosa Navarro, Jose Luis/K-4221-2016; Vanadia, Marco/K-5870-2016; Ippolito, Valerio/L-1435-2016; Doyle, Anthony/C-5889-2009; Di Domenico, Antonio/G-6301-2011; Gonzalez de la Hoz, Santiago/E-2494-2016; Guo, Jun/O-5202-2015; Aguilar Saavedra, Juan Antonio/F-1256-2016; Leyton, Michael/G-2214-2016; Jones, Roger/H-5578-2011; Pacheco Pages, Andres/C-5353-2011; Boyko, Igor/J-3659-2013; Vranjes Milosavljevic, Marija/F-9847-2016; Chekulaev, Sergey/O-1145-2015; Zhukov, Konstantin/M-6027-2015; SULIN, VLADIMIR/N-2793-2015 OI Zaitsev, Alexandre/0000-0002-4961-8368; Peleganchuk, Sergey/0000-0003-0907-7592; Li, Liang/0000-0001-6411-6107; Monzani, Simone/0000-0002-0479-2207; Kuday, Sinan/0000-0002-0116-5494; Maneira, Jose/0000-0002-3222-2738; Prokoshin, Fedor/0000-0001-6389-5399; Kukla, Romain/0000-0002-1140-2465; Gauzzi, Paolo/0000-0003-4841-5822; Camarri, Paolo/0000-0002-5732-5645; Mindur, Bartosz/0000-0002-5511-2611; Mashinistov, Ruslan/0000-0001-7925-4676; Fabbri, Laura/0000-0002-4002-8353; Solodkov, Alexander/0000-0002-2737-8674; Gladilin, Leonid/0000-0001-9422-8636; Livan, Michele/0000-0002-5877-0062; Carvalho, Joao/0000-0002-3015-7821; White, Ryan/0000-0003-3589-5900; Warburton, Andreas/0000-0002-2298-7315; spagnolo, stefania/0000-0001-7482-6348; Mitsou, Vasiliki/0000-0002-1533-8886; Smirnova, Oxana/0000-0003-2517-531X; Tikhomirov, Vladimir/0000-0002-9634-0581; Savarala, Hari Krishna/0000-0001-6593-4849; Vykydal, Zdenek/0000-0003-2329-0672; Brooks, William/0000-0001-6161-3570; Ventura, Andrea/0000-0002-3368-3413; Kantserov, Vadim/0000-0001-8255-416X; Villa, Mauro/0000-0002-9181-8048; Vanadia, Marco/0000-0003-2684-276X; Ippolito, Valerio/0000-0001-5126-1620; Doyle, Anthony/0000-0001-6322-6195; Di Domenico, Antonio/0000-0001-8078-2759; Gonzalez de la Hoz, Santiago/0000-0001-5304-5390; Guo, Jun/0000-0001-8125-9433; Aguilar Saavedra, Juan Antonio/0000-0002-5475-8920; Leyton, Michael/0000-0002-0727-8107; Jones, Roger/0000-0002-6427-3513; Pacheco Pages, Andres/0000-0001-8210-1734; Boyko, Igor/0000-0002-3355-4662; Vranjes Milosavljevic, Marija/0000-0003-4477-9733; SULIN, VLADIMIR/0000-0003-3943-2495 FU ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW, Austria; FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq, Brazil; FAPESP, Brazil; NSERC, Canada; NRC, Canada; CFI, Canada; CERN; CONICYT, Chile; CAS, China; MOST, China; NSFC, China; COLCIENCIAS, Colombia; MSMT CR, Czech Republic; MPO CR, Czech Republic; VSC CR, Czech Republic; DNRF, Denmark; DNSRC, Denmark; Lundbeck Foundation, Denmark; EPLANET, European Union; ERC, European Union; NSRF, European Union; IN2P3-CNRS, France; CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, Germany; DFG, Germany; HGF, Germany; MPG, Germany; AvH Foundation, Germany; GSRT, Greece; NSRF, Greece; RGC, China; Hong Kong SAR, China; ISF, Israel; MINERVA, Israel; GIF, Israel; I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT, Japan; JSPS, Japan; CNRST, Morocco; FOM, Netherlands; NWO, Netherlands; BRF, Norway; RCN, Norway; MNiSW, Poland; NCN, Poland; GRICES, Portugal; FCT, Portugal; MNE/IFA, Romania; MES of Russia; NRC KI; Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC, Sweden; Wallenberg Foundation, Sweden; STFC, Canton of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, United Kingdom; Royal Society, United Kingdom; DOE, United States of America; NSF, United States of America; Leverhulme Trust, United Kingdom; SNSF and Canton of Bern and Geneva, Switzerland; MIZS, Slovenia FX We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; EPLANET, ERC and NSRF, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT and NSRF, Greece; RGC, Hong Kong SAR, China; ISF, MINERVA, GIF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNiSW and NCN, Poland; GRICES and FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America. NR 22 TC 2 Z9 2 U1 19 U2 117 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD DEC 17 PY 2015 VL 751 BP 63 EP 80 DI 10.1016/j.physletb.2015.10.009 PG 18 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CX0KF UT WOS:000365384600013 ER PT J AU Khachatryan, V Sirunyan, AM Tumasyan, A Adam, W Asilar, E Bergauer, T Brandstetter, J Brondolin, E Dragicevic, M Ero, J Flechl, M Friedl, M Fruhwirth, R Ghete, VM Hartl, C Hormann, N Hrubec, J Jeitler, M Knunz, V Konig, A Krammer, M Kraschmer, I Liko, D Matsushita, T Mikulec, I Rabady, D Rahbaran, B Rohringer, H Schieck, J Schofbeck, R Strauss, J Treberer-Treberspurg, W Waltenberger, W Wulz, CE Mossolov, V Shumeiko, N Gonzalez, JS Alderweireldt, S Cornelis, T De Wolf, EA Janssen, X Knutsson, A Lauwers, J Luyckx, S Van De Klundert, M Van Haevermaet, H Van Mechelen, P Van Remortel, N Van Spilbeeck, A Abu Zeid, S Blekman, F D'Hondt, J Daci, N De Bruyn, I Deroover, K Heracleous, N Keaveney, J Lowette, S Moreels, L Olbrechts, A Python, Q Strom, D Tavernier, S Van Doninck, W Van Mulders, P Van Onsem, GP Van Parijs, I Barria, P Brun, H Caillol, C Clerbaux, B De Lentdecker, G Fasanella, G Favart, L Grebenyuk, A Karapostoli, G Lenzi, T Leonard, A Maerschalk, T Marinov, A Pernie, L Randle-Conde, A Reis, T Seva, T Velde, CV Vanlaer, P Yonamine, R Zenoni, F Zhang, F Beernaert, K Benucci, L Cimmino, A Crucy, S Dobur, D Fagot, A Garcia, G Gul, M Mccartin, J Rios, AAO Poyraz, D Ryckbosch, D Salva, S Sigamani, M Strobbe, N Tytgat, M Van Driessche, W Yazgan, E Zaganidis, N Basegmez, S Beluffi, C Bondu, O Brochet, S Bruno, G Caudron, A Ceard, L Da Silveira, G Delaere, C Favart, D Forthomme, L Giammanco, A Hollar, J Jafari, A Jez, P Komm, M Lemaitre, V Mertens, A Nuttens, C Perrini, L Pin, A Piotrzkowski, K Popov, A Quertenmont, L Selvaggi, M Marono, MV Beliy, N Hammad, GH Alda, WL Alves, GA Brito, L Martins, MC Hamer, M Hensel, C Herrera, CM Moraes, A Pol, ME Teles, PR Das Chagas, EBB Carvalho, W Chinellato, J Custodio, A Da Costa, EM Damiao, DD Martins, CD De Souza, SF Guativa, LMH Malbouisson, H Figueiredo, D Mundim, L Nogima, H Da Silva, WLP Santoro, A Sznajder, A Manganote, EJT Pereira, AV Ahuja, S Bernardes, CA Santos, AD Dogra, S Tomei, TRFP Gregores, EM Mercadante, PG Moon, CS Novaes, SF Padula, SS Abad, DR Vargas, JCR Aleksandrov, A Hadjiiska, R Iaydjiev, P Rodozov, M Stoykova, S Sultanov, G Vutova, M Dimitrov, A Glushkov, I Litov, L Pavlov, B Petkov, P Ahmad, M Bian, JG Chen, GM Chen, HS Chen, M Cheng, T Du, R Jiang, CH Plestina, R Romeo, F Shaheen, SM Tao, J Wang, C Wang, Z Zhang, H Asawatangtrakuldee, C Ban, Y Li, Q Liu, S Mao, Y Qian, SJ Wang, D Xu, Z Avila, C Cabrera, A Sierra, LFC Florez, C Gomez, JP Moreno, BG Sanabria, JC Godinovic, N Lelas, D Puljak, I Cipriano, PMR Antunovic, Z Kovac, M Brigljevic, V Kadija, K Luetic, J Micanovic, S Sudic, L Attikis, A Mavromanolakis, G Mousa, J Nicolaou, C Ptochos, F Razis, PA Rykaczewski, H Bodlak, M Finger, M Finge, M Assran, Y El Sawy, M Elgammal, S Kamel, AE Kamel, M Mahmoud, MA Mohammed, Y Calpas, B Kadastik, M Murumaa, M Raidal, M Tiko, A Veelken, C Eerola, P Pekkanen, J Voutilainen, M Harkonen, J Karimaki, V Kinnunen, R Lampen, T Lassila-Perini, K Lehti, S Linden, T Luukka, P Maenpaa, T Peltola, T Tuominen, E Tuominiemi, J Tuovinen, E Wendland, L Talvitie, J Tuuva, T Besancon, M Couderc, F Dejardin, M Denegri, D Fabbro, B Faure, JL Favaro, C Ferri, F Ganjour, S Givernaud, A Gras, P De Monchenault, GH Jarry, P Locci, E Machet, M Malcles, J Rander, J Rosowsky, A Titov, M Zghiche, A Antropov, I Baffioni, S Beaudette, F Busson, P Cadamuro, L Chapon, E Charlot, C Dahms, T Davignon, O Filipovic, N Florent, A de Cassagnac, RG Lisniak, S Mastrolorenzo, L Mine, P Naranjo, IN Nguyen, M Ochando, C Ortona, G Paganini, P Pigard, P Regnard, S Salerno, R Sauvan, JB Sirois, Y Strebler, T Yilmaz, Y Zabi, A Agram, JL Andrea, J Aubin, A Bloch, D Brom, JM Buttignol, M Chabert, EC Chanon, N Collard, C Conte, E Coubez, X Fontaine, JC Gele, D Goerlach, U Goetzmann, C Le Bihan, AC Merlin, JA Skovpen, K Van Hove, P Gadrat, S Beauceron, S Bernet, C Boudoul, G Bouvier, E Montoya, CAC Chierici, R Contardo, D Courbon, B Depasse, P El Mamouni, H Fan, J Fay, J Gascon, S Gouzevitch, M Ille, B Lagarde, F Laktineh, IB Lethuillier, M Mirabito, L Pequegnot, AL Perries, S Alvarez, JDR Sabes, D Sgandurra, L Sordini, V Vander Donckt, M Verdier, P Viret, S Toriashvili, T Tsamalaidze, Z Autermann, C Beranek, S Edelhoff, M Feld, L Heister, A Kiesel, MK Klein, K Lipinski, M Ostapchuk, A Preuten, M Raupach, F Schael, S Schulte, JF Verlage, T Weber, H Wittmer, B Zhukov, V Ata, M Brodski, M Dietz-Laursonn, E Duchardt, D Endres, M Erdmann, M Erdweg, S Esch, T Fischer, R Guth, A Hebbeker, T Heidemann, C Hoepfner, K Klingebiel, D Knutzen, S Kreuzer, P Merschmeyer, M Meyer, A Millet, P Olschewski, M Padeken, K Papacz, P Pook, T Radziej, M Reithler, H Rieger, M Scheuch, F Sonnenschein, L Teyssier, D Thuer, S Cherepanov, V Erdogan, Y Flugge, G Geenen, H Geisler, M Hoehle, F Kargoll, B Kress, T Kuessel, Y Kunsken, A Lingemann, J Nehrkorn, A Nowack, A Nugent, IM Pistone, C Pooth, O Stahl, A Martin, MA Asin, I Bartosik, N Behnke, O Behrens, U Bell, AJ Borras, K Burgmeier, A Cakir, A Calligaris, L Campbell, A Choudhury, S Connor, P Costanza, F Pardos, CD Dolinska, G Dooling, S Dorland, T Eckerlin, G Eckstein, D Eichhorn, T Flucke, G Gallo, E Garcia, JG Geiser, A Gizhko, A Luyando, JMG Gunnellini, P Hauk, J Hempel, M Jung, H Kalogeropoulos, A Karacheban, O Kasemann, M Katsas, P Kieseler, J Kleinwort, C Korol, I Lange, W Leonard, J Lipka, K Lobanov, A Lohmann, W Mankel, R Marfin, I Melzer-Pellmann, IA Meyer, AB Mittag, G Mnich, J Mussgiller, A Naumann-Emme, S Nayak, A Ntomari, E Perrey, H Pitzl, D Placakyte, R Raspereza, A Roland, B Sahin, MO Saxena, P Schoerner-Sadenius, T Schroder, M Seitz, C Spannagel, S Trippkewitz, KD Walsh, R Wissing, C Blobel, V Vignali, MC Draeger, AR Erfle, J Garutti, E Goebel, K Gonzalez, D Gorner, M Haller, J Hoffmann, M Hoing, RS Junkes, A Klanner, R Kogler, R Lapsien, T Lenz, T Marchesini, I Marconi, D Meyer, M Nowatschin, D Ott, J Pantaleo, F Peiffer, T Perieanu, A Pietsch, N Poehlsen, J Rathjens, D Sander, C Schettler, H Schleper, P Schlieckau, E Schmidt, A Schwandt, J Seidel, M Sola, V Stadie, H Steinbruck, G Tholen, H Troendle, D Usai, E Vanelderen, L Vanhoefer, A Vormwald, B Akbiyik, M Barth, C Baus, C Berger, J Boser, C Butz, E Chwalek, T Colombo, F Boer, W Descroix, A Dierlamm, A Fink, S Frensch, F Giffels, M Gilbert, A Hartmann, F Heindl, SM Husemann, U Katkov, I Kornmayer, A Pardo, PL Maier, B Mildner, H Mozer, MU Muller, T Muller, T Plagge, M Quast, G Rabbertz, K Rocker, S Roscher, F Simonis, HJ Stober, FM Ulrich, R Wagner-Kuhr, J Wayand, S Weber, M Weiler, T Wohrmann, C Wolf, R Anagnostou, G Daskalakis, G Geralis, T Giakoumopoulou, VA Kyriakis, A Loukas, D Psallidas, A Topsis-Giotis, I Agapitos, A Kesisoglou, S Panagiotou, A Saoulidou, N Tziaferi, E Evangelou, I Flouris, G Foudas, C Kokkas, P Loukas, N Manthos, N Papadopoulos, I Paradas, E Strologas, J Bencze, G Hajdu, C Hazi, A Hidas, P Horvath, D Sikler, F Veszpremi, V Vesztergombi, G Zsigmond, AJ Beni, N Czellar, S Karancsi, J Molnar, J Szillasi, Z Bartok, M Makovec, A Raics, P Trocsanyi, ZL Ujvari, B Mal, P Mandal, K Sahoo, DK Sahoo, N Swain, SK Bansal, S Beri, SB Bhatnagar, V Chawla, R Gupta, R Bhawandeep, U Kalsi, AK Kaur, A Kaur, M Kumar, R Mehta, A Mittal, M Singh, JB Walia, G Kumar, A Bhardwaj, A Choudhary, BC Garg, RB Kumar, A Malhotra, S Naimuddin, M Nishu, N Ranjan, K Sharma, R Sharma, V Bhardwaj, R Bhattacharya, S Chatterjee, K Dey, S Dutta, S Jain, S Majumdar, N Modak, A Mondal, K Mukherjee, S Mukhopadhyay, S Roy, A Roy, D Chowdhury, SR Sarkar, S Sharan, M Abdulsalam, A Chudasama, R Dutta, D Jha, V Kumar, V Mohanty, AK Pant, LM Shukla, P Topkar, A Aziz, T Banerjee, S Bhowmik, S Chatterjee, RM Dewanjee, RK Dugad, S Ganguly, S Ghosh, S Guchait, M Gurtu, A Kole, G Kumar, S Mahakud, B Maity, M Majumder, G Mazumdar, K Mitra, S Mohanty, GB Parida, B Sarkar, T Sur, N Sutar, B Wickramage, N Bakhshiansohi, H Behnamian, H Etesami, SM Fahim, A Goldouzian, R Khakzad, M Najafabadi, MM Naseri, M Mehdiabadi, SP Hosseinabadi, FR Safarzadeh, B Zeinali, M Felcini, M Grunewald, M Abbrescia, M Calabria, C Caputo, C Colaleo, A Creanza, D Cristella, L Filippis, N De Palma, M Fiore, L Iaselli, G Maggi, G Maggi, M Miniello, G My, S Nuzzo, S Pompili, A Pugliese, G Radogna, R Ranieri, A Selvaggi, G Silvestris, L Venditti, R Verwilligen, P Abbiendi, G Battilana, C Benvenuti, AC Bonacorsi, D Braibant-Giacomelli, S Brigliadori, L Campanini, R Capiluppi, P Castro, A Cavallo, FR Chhibra, SS Codispoti, G Cuffiani, M Dallavalle, GM Fabbri, F Fanfani, A Fasanella, D Giacomelli, P Grandi, C Guiducci, L Marcellini, S Masetti, G Montanari, A Navarria, FL Perrotta, A Rossi, AM Rovelli, T Siroli, GP Tosi, N Travaglini, R Cappello, G Chiorboli, M Costa, S Giordano, F Potenza, R Tricomi, A Tuve, C Barbagli, G Ciulli, V Civinini, C D'Alessandro, R Focardi, E Gonzi, S Gori, V Lenzi, P Meschini, M Paoletti, S Sguazzoni, G Tropiano, A Viliani, L Benussi, L Bianco, S Fabbri, F Piccolo, D Primavera, F Calvelli, V Ferro, F Lo Vetere, M Monge, MR Robutti, E Tosi, S Brianza, L Dinardo, ME Fiorendi, S Gennai, S Gerosa, R Ghezzi, A Govoni, P Malvezzi, S Manzoni, RA Marzocchi, B Menasce, D Moroni, L Paganoni, M Pedrini, D Ragazzi, S Redaelli, N de Fatis, TT Buontempo, S Cavallo, N Di Guida, S Esposito, M Fabozzi, F Iorio, AOM Lanza, G Lista, L Meola, S Merola, M Paolucci, P Sciacca, C Thyssen, F Azzi, P Bacchetta, N Benato, L Bisello, D Boletti, A Branca, A Carlin, R Checchia, P Dall'Osso, M Dorigo, T Dosselli, U Gasparini, F Gasparini, U Gonella, F Gozzelino, A Kanishchev, K Lacaprara, S Margoni, M Meneguzzo, AT Pazzini, J Pozzobon, N Ronchese, P Simonetto, F Torassa, E Tosi, M Zanetti, M Zotto, P Zucchetta, A Zumerle, G Braghieri, A Magnani, A Montagna, P Ratti, SP Re, V Riccardi, C Salvini, P Vai, I Vitulo, P Solestizi, LA Biasini, M Bilei, GM Ciangottini, D Fano, L Lariccia, P Mantovani, G Menichelli, M Saha, A Santocchia, A Spiezia, A Androsov, K Azzurri, P Bagliesi, G Bernardini, J Boccali, T Broccolo, G Castaldi, R Ciocci, MA Dell'Orso, R Donato, S Fedi, G Foa, L Giassi, A Grippo, MT Ligabue, F Lomtadze, T Martini, L Messineo, A Palla, F Rizzi, A Savoy-Navarro, A Serban, AT Spagnolo, P Squillacioti, P Tenchini, R Tonelli, G Venturi, A Verdini, PG Barone, L Cavallari, F D'imperio, G Del Re, D Diemoz, M Gelli, S Jorda, C Longo, E Margaroli, F Meridiani, P Organtini, G Paramatti, R Preiato, F Rahatlou, S Rovelli, C Santanastasio, F Traczyk, P Amapane, N Arcidiacono, R Argiro, S Arneodo, M Bellan, R Biino, C Cartiglia, N Costa, M Covarelli, R Degano, A Demaria, N Finco, L Kiani, B Mariotti, C Maselli, S Migliore, E Monaco, V Monteil, E Musich, M Obertino, MM Pacher, L Pastrone, N Pelliccioni, M Angioni, GLP Ravera, F Romero, A Ruspa, M Sacchi, R Solano, A Staiano, A Tamponi, U Belforte, S Candelise, V Casarsa, M Cossutti, F Della Ricca, G Gobbo, B La Licata, C Marone, M Schizzi, A Zanetti, A Kropivnitskaya, A Nam, SK Kim, DH Kim, GN Kim, MS Kong, DJ Lee, S Oh, YD Sakharov, A Son, DC Cifuentes, JAB Kim, H Kim, TJ Song, S Choi, S Go, Y Gyun, D Hong, B Jo, M Kim, H Kim, Y Lee, B Lee, K Lee, KS Lee, S Park, SK Roh, Y Yoo, HD Choi, M Kim, H Kim, JH Lee, JSH Park, IC Ryu, G Ryu, MS Choi, Y Goh, J Kim, D Kwon, E Lee, J Yu, I Juodagalvis, A Vaitkus, J Ahmed, I Ibrahim, ZA Komaragiri, JR Ali, MABM Idris, FM Abdullah, WATW Yusli, MN Linares, EC Castilla-Valdez, H De La Cruz-Burelo, E Heredia-De La Cruz, I Hernandez-Almada, A Lopez-Fernandez, R Sanchez-Hernandez, A Moreno, SC Valencia, FV Pedraza, I Ibarguen, HAS Pineda, AM Krofcheck, D Butler, PH Ahmad, A Ahmad, M Hassan, Q Hoorani, HR Khan, WA Khurshid, T Shoaib, M Bialkowska, H Bluj, M Boimska, B Frueboes, T Gorski, M Kazana, M Nawrocki, K Romanowska-Rybinska, K Szleper, M Zalewski, P Brona, G Bunkowski, K Byszuk, A Doroba, K Kalinowski, A Konecki, M Krolikowski, J Misiura, M Olszewski, M Walczak, M Bargassa, P Silva, CBDE Di Francesco, A Faccioli, P Parracho, PGF Gallinaro, M Leonardo, N Iglesias, LL Nguyen, F Antunes, JR Seixas, J Toldaiev, O Vadruccio, D Varela, J Vischia, P Afanasiev, S Bunin, P Gavrilenko, M Golutvin, I Gorbunov, I Kamenev, A Karjavin, V Konoplyanikov, V Lanev, A Malakhov, A Matveev, V Moisenz, P Palichik, V Perelygin, V Shmatov, S Shulha, S Skatchkov, N Smirnov, V Zarubin, A Golovtsov, V Ivanov, Y Kim, V Kuznetsova, E Levchenko, P Murzin, V Oreshkin, V Smirnov, I Sulimov, V Uvarov, L Vavilov, S Vorobyev, A Andreev, Y Dermenev, A Gninenko, S Golubev, N Karneyeu, A Kirsanov, M Krasnikov, N Pashenkov, A Tlisov, D Toropin, A Epshteyn, V Gavrilov, V Lychkovskaya, N Popov, V Pozdnyakov, I Safronov, G Spiridonov, A Vlasov, E Zhokin, A Bylinkin, A Andreev, V Azarkin, M Dremin, I Kirakosyan, M Leonidov, A Mesyats, G Rusakov, SV Baskakov, A Belyaev, A Boos, E Ershov, A Gribushin, A Khein, L Klyukhin, V Kodolova, O Lokhtin, I Lukina, O Myagkov, I Obraztsov, S Petrushanko, S Savrin, V Snigirev, A Azhgirey, I Bayshev, I Bitioukov, S Kachanov, V Kalinin, A Konstantinov, D Krychkine, V Petrov, V Ryutin, R Sobol, A Tourtchanovitch, L Troshin, S Tyurin, N Uzunian, A Volkov, A Adzic, P Milosevic, J Rekovic, V Maestre, JA Calvo, E Cerrada, M Llatas, MC Colino, N De La Cruz, B Peris, AD Vazquez, DD Del Valle, AE Bedoya, CF Ramos, JPF Flix, J Fouz, MC Garcia-Abia, P Lopez, OG Lopez, SG Hernandez, JM Josa, MI De Martino, EN Yzquierdo, APC Pelayo, JP Olmeda, AQ Redondo, I Romero, L Santaolalla, J Soares, MS Albajar, C de Troconiz, JF Missiroli, M Moran, D Cuevas, J Menendez, JF Folgueras, S Caballero, IG Cortezon, EP Garcia, JMV Cabrillo, IJ Calderon, A De Saa, JRC Manzano, PD Campderros, JD Fernandez, M Garcia-Ferrero, J Gomez, G Virto, AL Marco, J Marco, R Rivero, CM Matorras, F Sanchez, FJM Gomez, JP Rodrigo, T Rodriguez-Marrero, AY Ruiz-Jimeno, A Scodellaro, L Vila, I Cortabitarte, RV Abbaneo, D Auffray, E Auzinger, G Bachtis, M Baillon, P Ball, AH Barney, D Benaglia, A Bendavid, J Benhabib, L Benitez, JF Berruti, GM Bloch, P Bocci, A Bonato, A Botta, C Breuker, H Camporesi, T Castello, R Cerminara, G D'Alfonso, M d'Enterria, D Dabrowski, A Daponte, V David, A De Gruttola, M De Guio, F De Roeck, A De Visscher, S Di Marco, E Dobson, M Dordevic, M Dorney, B du Pree, T Dunser, M Dupont, N Elliott-Peisert, A Franzoni, G Funk, W Gigi, D Gill, K Giordano, D Girone, M Glege, F Guida, R Gundacker, S Guthoff, M Hammer, J Harris, P Hegeman, J Innocente, V Janot, P Kirschenmann, H Kortelainen, MJ Kousouris, K Krajczar, K Lecoq, P Lourenco, C Lucchini, MT Magini, N Malgeri, L Mannelli, M Martelli, A Masetti, L Meijers, F Mersi, S Meschi, E Moortgat, F Morovic, S Mulders, M Nemallapudi, MV Neugebauer, H Orfanelli, S Orsini, L Pape, L Perez, E Peruzzi, M Petrilli, A Petrucciani, G Pfeiffer, A Piparo, D Racz, A Rolandi, G Rovere, M Ruan, M Sakulin, H Schafer, C Schwick, C Sharma, A Silva, P Simon, M Sphicas, P Spiga, D Steggemann, J Stieger, B Stoye, M Takahashi, Y Treille, D Triossi, A Tsirou, A Veres, GI Wardle, N Wohri, HK Zagozdzinska, A Zeuner, WD Bertl, W Deiters, K Erdmann, W Horisberger, R Ingram, Q Kaestli, HC Kotlinski, D Langenegger, U Renker, D Rohe, T Bachmair, F Bani, L Bianchini, L Buchmann, MA Casal, B Dissertori, G Dittmar, M Donega, M Eller, P Grab, C Heidegger, C Hits, D Hoss, J Kasieczka, G Lustermann, W Mangano, B Marionneau, M del Arbol, PMR Masciovecchio, M Meister, D Micheli, F Musella, P Nessi-Tedaldi, F Pandolfi, F Pata, J Pauss, F Perrozzi, L Quittnat, M Rossini, M Starodumov, A Takahashi, M Tavolaro, VR Theofilatos, K Wallny, R Aarrestad, TK Amsler, C Caminada, L Canelli, MF Chiochia, V De Cosa, A Galloni, C Hinzmann, A Hreus, T Kilminster, B Lange, C Ngadiuba, J Pinna, D Robmann, P Ronga, FJ Salerno, D Yang, Y Cardaci, M Chen, KH Doan, TH Jain, S Khurana, R Konyushikhin, M Kuo, CM Lin, W Lu, YJ Yu, SS Kumar, A Bartek, R Chang, P Chang, YH Chang, YW Chao, Y Chen, KF Chen, PH Dietz, C Fiori, F Grundler, U Hou, WS Hsiung, Y Liu, YF Lu, RS Moya, MM Petrakou, E Tsai, JF Tzeng, YM Asavapibhop, B Kovitanggoon, K Singh, G Srimanobhas, N Suwonjandee, N Adiguzel, A Cerci, S Demiroglu, ZS Dozen, C Girgis, S Gokbulut, G Guler, Y Gurpinar, E Hos, I Kangal, EE Topaksu, AK Onengut, G Ozdemir, K Ozturk, S Tali, B Topakli, H Vergili, M Zorbilmez, C Akin, IV Bilin, B Bilmis, S Isildak, B Karapinar, G Yalvac, M Zeyrek, M Albayrak, EA Gulmez, E Kaya, M Kaya, O Yetkin, T Cankocak, K Sen, S Vardarli, FI Grynyov, B Levchuk, L Sorokin, P Aggleton, R Ball, F Beck, L Brooke, JJ Clement, E Cussans, D Flacher, H Goldstein, J Grimes, M Heath, GP Heath, HF Jacob, J Kreczko, L Lucas, C Meng, Z Newbold, DM Paramesvaran, S Poll, A Sakuma, T Nasr-storey, SS Senkin, S Smith, D Smith, VJ Barducci, D Bell, KW Belyaev, A Brew, C Brown, RM Cieri, D Cockerill, DJA Coughlan, JA Harder, K Harper, S Olaiya, E Petyt, D Shepherd-Themistocleous, CH Thea, A Tomalin, IR Williams, T Womersley, WJ Worm, SD Baber, M Bainbridge, R Buchmuller, O Bundock, A Burton, D Casasso, S Citron, M Colling, D Corpe, L Cripps, N Dauncey, P Davies, G De Wit, A Della Negra, M Dunne, P Elwood, A Ferguson, W Fulcher, J Futyan, D Hall, G Iles, G Kenzie, M Lane, R Lucas, R Lyons, L Magnan, AM Malik, S Nash, J Nikitenko, A Pela, J Pesaresi, M Petridis, K Raymond, DM Richards, A Rose, A Seez, C Tapper, A Uchida, K Acosta, MV Virdee, T Zenz, SC Cole, JE Hobson, PR Khan, A Kyberd, P Leggat, D Leslie, D Reid, ID Symonds, P Teodorescu, L Turner, M Borzou, A Call, K Dittmann, J Hatakeyama, K Kasmi, A Liu, H Pastika, N Charaf, O Cooper, SI Henderson, C Rumerio, P Avetisyan, A Bose, T Fantasia, C Gastler, D Lawson, P Rankin, D Richardson, C Rohlf, J John, JS Sulak, L Zou, D Alimena, J Berry, E Bhattacharya, S Cutts, D Dhingra, N Ferapontov, A Garabedian, A Hakala, J Heintz, U Laird, E Landsberg, G Mao, Z Narain, M Piperov, S Sagir, S Sinthuprasith, T Syarif, R Breedon, R Breto, G Sanchez, MCD Chauhan, S Chertok, M Conway, J Conway, R Cox, PT Erbacher, R Gardner, M Ko, W Lander, R Mulhearn, M Pellett, D Pilot, J Ricci-Tam, F Shalhout, S Smith, J Squires, M Stolp, D Tripathi, M Wilbur, S Yohay, R Cousins, R Everaerts, P Farrell, C Hauser, J Ignatenko, M Saltzberg, D Takasugi, E Valuev, V Weber, M Burt, K Clare, R Ellison, J Gary, JW Hanson, G Heilman, J Paneva, MI Jandir, P Kennedy, E Lacroix, F Long, OR Luthra, A Malberti, M Negrete, MO Shrinivas, A Wei, H Wimpenny, S Yates, BR Branson, JG Cerati, GB Cittolin, S D'Agnolo, RT Holzner, A Kelley, R Klein, D Letts, J Macneill, I Olivito, D Padhi, S Pieri, M Sani, M Sharma, V Simon, S Tadel, M Vartak, A Wasserbaech, S Welke, C Wurthwein, F Yagil, A Della Porta, GZ Barge, D Bradmiller-Feld, J Campagnari, C Dishaw, A Dutta, V Flowers, K Sevilla, MF Geffert, P George, C Golf, F Gouskos, L Gran, J Incandela, J Justus, C Mccoll, N Mullin, SD Richman, J Stuart, D Suarez, I To, W West, C Yoo, J Anderson, D Apresyan, A Bornheim, A Bunn, J Chen, Y Duarte, J Mott, A Newman, HB Pena, C Pierini, M Spiropulu, M Vlimant, JR Xie, S Zhu, RY Andrews, MB Azzolini, V Calamba, A Carlson, B Ferguson, T Paulini, M Russ, J Sun, M Vogel, H Vorobiev, I Cumalat, JP Ford, WT Gaz, A Jensen, F Johnson, A Krohn, M Mulholland, T Nauenberg, U Stenson, K Wagner, SR Alexander, J Chatterjee, A Chaves, J Chu, J Dittmer, S Eggert, N Mirman, N Kaufman, GN Patterson, JR Rinkevicius, A Ryd, A Skinnari, L Soffi, L Sun, W Tan, SM Teo, WD Thom, J Thompson, J Tucker, J Weng, Y Wittich, P Abdullin, S Albrow, M Anderson, J Apollinari, G Banerjee, S Bauerdick, LAT Beretvas, A Berryhill, J Bhat, PC Bolla, G Burkett, K Butler, JN Cheung, HWK Chlebana, F Cihangir, S Elvira, VD Fisk, I Freeman, J Gottschalk, E Gray, L Green, D Grunendahl, S Gutsche, O Hanlon, J Hare, D Harris, RM Hasegawa, S Hirschauer, J Hu, Z Jindariani, S Johnson, M Joshi, U Jung, AW Klima, B Kreis, B Kwan, S Lammel, S Linacre, J Lincoln, D Lipton, R Liu, T De Sa, RL Lykken, J Maeshima, K Marraffino, JM Outschoorn, VIM Maruyama, S Mason, D McBride, P Merkel, P Mishra, K Mrenna, S Nahn, S Newman-Holmes, C O'Dell, V Pedro, K Prokofyev, O Rakness, G Sexton-Kennedy, E Soha, A Spalding, WJ Spiegel, L Taylor, L Tkaczyk, S Tran, NV Uplegger, L Vaandering, EW Vernieri, C Verzocchi, M Vidal, R Weber, HA Whitbeck, A Yang, F Acosta, D Avery, P Bortignon, P Bourilkov, D Carnes, A Carver, M Curry, D Das, S Di Giovanni, GP Field, RD Furic, IK Hugon, J Konigsberg, J Korytov, A Low, JF Ma, P Matchev, K Mei, H Milenovic, P Mitselmakher, G Rank, D Rossin, R Shchutska, L Snowball, M Sperka, D Terentyev, N Thomas, L Wang, J Wang, S Yelton, J Hewamanage, S Linn, S Markowitz, P Martinez, G Rodriguez, JL Ackert, A Adams, JR Adams, T Askew, A Bochenek, J Diamond, B Haas, J Hagopian, S Hagopian, V Johnson, KF Khatiwada, A Prosper, H Weinberg, M Baarmand, MM Bhopatkar, V Colafranceschi, S Hohlmann, M Kalakhety, H Noonan, D Roy, T Yumiceva, F Adams, MR Apanasevich, L Berry, D Betts, RR Bucinskaite, I Cavanaugh, R Evdokimov, O Gauthier, L Gerber, CE Hofman, DJ Kurt, P O'Brien, C Gonzalez, IDS Silkworth, C Turner, P Varelas, N Wu, Z Zakaria, M Bilki, B Clarida, W Dilsiz, K Durgut, S Gandrajula, RP Haytmyradov, M Khristenko, V Merlo, JP Mermerkaya, H Mestvirishvili, A Moeller, A Nachtman, J Ogul, H Onel, Y Ozok, F Penzo, A Snyder, C Tan, P Tiras, E Wetzel, J Yi, K Anderson, I Barnett, BA Blumenfeld, B Eminizer, N Fehling, D Feng, L Gritsan, AV Maksimovic, P Martin, C Osherson, M Roskes, J Sady, A Sarica, U Swartz, M Xiao, M Xin, Y You, C Baringer, P Bean, A Benelli, G Bruner, C Kenny, RP Majumder, D Malek, M Murray, M Sanders, S Stringer, R Wang, Q Ivanov, A Kaadze, K Khalil, S Makouski, M Maravin, Y Mohammadi, A Saini, LK Skhirtladze, N Toda, S Lange, D Rebassoo, F Wright, D Anelli, C Baden, A Baron, O Belloni, A Calvert, B Eno, SC Ferraioli, C Gomez, JA Hadley, NJ Jabeen, S Kellogg, RG Kolberg, T Kunkle, J Lu, Y Mignerey, AC Shin, YH Skuja, A Tonjes, MB Tonwar, SC Apyan, A Barbieri, R Baty, A Bierwagen, K Brandt, S Busza, W Cali, IA Demiragli, Z Di Matteo, L Ceballos, GG Goncharov, M Gulhan, D Iiyama, Y Innocenti, GM Klute, M Kovalskyi, D Lai, YS Lee, YJ Levin, A Luckey, PD Marini, AC Mcginn, C Mironov, C Niu, X Paus, C Ralph, D Roland, C Roland, G Salfeld-Nebgen, J Stephans, GSF Sumorok, K Varma, M Velicanu, D Veverka, J Wang, J Wang, TW Wyslouch, B Yang, M Zhukova, V Dahmes, B Evans, A Finkel, A Gude, A Hansen, P Kalafut, S Kao, SC Klapoetke, K Kubota, Y Lesko, Z Mans, J Nourbakhsh, S Ruckstuhl, N Rusack, R Tambe, N Turkewitz, J Acosta, JG Oliveros, S Avdeeva, E Bloom, K Bose, S Claes, DR Dominguez, A Fangmeier, C Suarez, RG Kamalieddin, R Keller, J Knowlton, D Kravchenko, I Lazo-Flores, J Meier, F Monroy, J Ratnikov, F Siado, JE Snow, GR Alyari, M Dolen, J George, J Godshalk, A Harrington, C Iashvili, I Kaisen, J Kharchilava, A Kumar, A Rappoccio, S Alverson, G Barberis, E Baumgartel, D Chasco, M Hortiangtham, A Massironi, A Morse, DM Nash, D Orimoto, T De Lima, RT Trocino, D Wang, RJ Wood, D Zhang, J Hahn, KA Kubik, A Mucia, N Odell, N Pollack, B Pozdnyakov, A Schmitt, M Stoynev, S Sung, K Trovato, M Velasco, M Brinkerhoff, A Dev, N Hildreth, M Jessop, C Karmgard, DJ Kellams, N Lannon, K Lynch, S Marinelli, N Meng, F Mueller, C Musienko, Y Pearson, T Planer, M Reinsvold, A Ruchti, R Smith, G Taroni, S Valls, N Wayne, M Wolf, M Woodard, A Antonelli, L Brinson, J Bylsma, B Durkin, LS Flowers, S Hart, A Hill, C Hughes, R Ji, W Kotov, K Ling, TY Liu, B Luo, W Puigh, D Rodenburg, M Winer, BL Wulsin, HW Driga, O Elmer, P Hardenbrook, J Hebda, P Koay, SA Lujan, P Marlow, D Medvedeva, T Mooney, M Olsen, J Palmer, C Piroue, P Quan, X Saka, H Stickland, D Tully, C Werner, JS Zuranski, A Malik, S Barnes, VE Benedetti, D Bortoletto, D Gutay, L Jha, MK Jones, M Jung, K Miller, DH Neumeister, N Radburn-Smith, BC Shi, X Shipsey, I Silvers, D Sun, J Svyatkovskiy, A Wang, F Xie, W Xu, L Parashar, N Stupak, J Adair, A Akgun, B Chen, Z Ecklund, KM Geurts, FJM Guilbaud, M Li, W Michlin, B Northup, M Padley, BP Redjimi, R Roberts, J Rorie, J Tu, Z Zabel, J Betchart, B Bodek, A de Barbaro, P Demina, R Eshaq, Y Ferbel, T Galanti, M Garcia-Bellido, A Han, J Harel, A Hindrichs, O Khukhunaishvili, A Petrillo, G Verzetti, M Arora, S Barker, A Chou, JP Contreras-Campana, C Contreras-Campana, E Duggan, D Ferencek, D Gershtein, Y Gray, R Halkiadakis, E Hidas, D Hughes, E Kaplan, S Elayavalli, RK Lath, A Nash, K Panwalkar, S Park, M Salur, S Schnetzer, S Sheffield, D Somalwar, S Stone, R Thomas, S Thomassen, P Walker, M Foerster, M Riley, G Rose, K Spanier, S York, A Bouhali, O Hernandez, AC Dalchenko, M De Mattia, M Delgado, A Dildick, S Eusebi, R Flanagan, W Gilmore, J Kamon, T Krutelyov, V Mueller, R Osipenkov, I Pakhotin, Y Patel, R Perloff, A Rose, A Safonov, A Tatarinov, A Ulmer, KA Akchurin, N Cowden, C Damgov, J Dragoiu, C Dudero, PR Faulkner, J Kunori, S Lamichhane, K Lee, SW Libeiro, T Undleeb, S Volobouev, I Appelt, E Delannoy, AG Greene, S Gurrola, A Janjam, R Johns, W Maguire, C Mao, Y Melo, A Ni, H Sheldon, P Snook, B Tuo, S Velkovska, J Xu, Q Arenton, MW Cox, B Francis, B Goodell, J Hirosky, R Ledovskoy, A Li, H Lin, C Neu, C Sun, X Wang, Y Wolfe, E Wood, J Xia, F Clarke, C Harr, R Karchin, PE Don, CKK Lamichhane, P Sturdy, J Belknap, DA Carlsmith, D Cepeda, M Dasu, S Dodd, L Duric, S Friis, E Gomber, B Grothe, M Hall-Wilton, R Herndon, M Herve, A Klabbers, P Lanaro, A Levine, A Long, K Loveless, R Mohapatra, A Ojalvo, I Perry, T Pierro, GA Polese, G Ruggles, T Sarangi, T Savin, A Sharma, A Smith, N Smith, WH Taylor, D Woods, N AF Khachatryan, V. Sirunyan, A. M. Tumasyan, A. Adam, W. Asilar, E. Bergauer, T. Brandstetter, J. Brondolin, E. Dragicevic, M. Eroe, J. Flechl, M. Friedl, M. Fruehwirth, R. Ghete, V. M. Hartl, C. Hoermann, N. Hrubec, J. Jeitler, M. Knuenz, V. Koenig, A. Krammer, M. Kraeschmer, I. Liko, D. Matsushita, T. Mikulec, I. Rabady, D. Rahbaran, B. Rohringer, H. Schieck, J. Schoefbeck, R. Strauss, J. Treberer-Treberspurg, W. Waltenberger, W. Wulz, C. -E. Mossolov, V. Shumeiko, N. Gonzalez, J. Suarez Alderweireldt, S. Cornelis, T. De Wolf, E. A. Janssen, X. Knutsson, A. Lauwers, J. Luyckx, S. Van De Klundert, M. Van Haevermaet, H. Van Mechelen, P. Van Remortel, N. Van Spilbeeck, A. Abu Zeid, S. Blekman, F. D'Hondt, J. Daci, N. De Bruyn, I. Deroover, K. Heracleous, N. Keaveney, J. Lowette, S. Moreels, L. Olbrechts, A. Python, Q. Strom, D. Tavernier, S. Van Doninck, W. Van Mulders, P. Van Onsem, G. P. Van Parijs, I. Barria, P. Brun, H. Caillol, C. Clerbaux, B. De Lentdecker, G. Fasanella, G. Favart, L. Grebenyuk, A. Karapostoli, G. Lenzi, T. Leonard, A. Maerschalk, T. Marinov, A. Pernie, L. Randle-conde, A. Reis, T. Seva, T. Velde, C. Vander Vanlaer, P. Yonamine, R. Zenoni, F. Zhang, F. Beernaert, K. Benucci, L. Cimmino, A. Crucy, S. Dobur, D. Fagot, A. Garcia, G. Gul, M. Mccartin, J. Rios, A. A. Ocampo Poyraz, D. Ryckbosch, D. Salva, S. Sigamani, M. Strobbe, N. Tytgat, M. Van Driessche, W. Yazgan, E. Zaganidis, N. Basegmez, S. Beluffi, C. Bondu, O. Brochet, S. Bruno, G. Caudron, A. Ceard, L. Da Silveira, G. Delaere, C. Favart, D. Forthomme, L. Giammanco, A. Hollar, J. Jafari, A. Jez, P. Komm, M. Lemaitre, V. Mertens, A. Nuttens, C. Perrini, L. Pin, A. Piotrzkowski, K. Popov, A. Quertenmont, L. Selvaggi, M. Marono, M. Vidal Beliy, N. Hammad, G. H. Alda Junior, W. L. Alves, G. A. Brito, L. Correa Martins Junior, M. Hamer, M. Hensel, C. Mora Herrera, C. Moraes, A. Pol, M. E. Rebello Teles, P. Belchior Batista Das Chagas, E. Carvalho, W. Chinellato, J. Custodio, A. Da Costa, E. M. De Jesus Damiao, D. De Oliveira Martins, C. Fonseca De Souza, S. Huertas Guativa, L. M. Malbouisson, H. Matos Figueiredo, D. Mundim, L. Nogima, H. Prado Da Silva, W. L. Santoro, A. Sznajder, A. Tonelli Manganote, E. J. Vilela Pereira, A. Ahuja, S. Bernardes, C. A. De Souza Santos, A. Dogra, S. Fernandez Perez Tomei, T. R. Gregores, E. M. Mercadante, P. G. Moon, C. S. Novaes, S. F. Padula, Sandra S. Romero Abad, D. Ruiz Vargas, J. C. Aleksandrov, A. Hadjiiska, R. Iaydjiev, P. Rodozov, M. Stoykova, S. Sultanov, G. Vutova, M. Dimitrov, A. Glushkov, I. Litov, L. Pavlov, B. Petkov, P. Ahmad, M. Bian, J. G. Chen, G. M. Chen, H. S. Chen, M. Cheng, T. Du, R. Jiang, C. H. Plestina, R. Romeo, F. Shaheen, S. M. Tao, J. Wang, C. Wang, Z. Zhang, H. Asawatangtrakuldee, C. Ban, Y. Li, Q. Liu, S. Mao, Y. Qian, S. J. Wang, D. Xu, Z. Avila, C. Cabrera, A. Chaparro Sierra, L. F. Florez, C. Gomez, J. P. Gomez Moreno, B. Sanabria, J. C. Godinovic, N. Lelas, D. Puljak, I. Cipriano, P. M. Ribeiro Antunovic, Z. Kovac, M. Brigljevic, V. Kadija, K. Luetic, J. Micanovic, S. Sudic, L. Attikis, A. Mavromanolakis, G. Mousa, J. Nicolaou, C. Ptochos, F. Razis, P. A. Rykaczewski, H. Bodlak, M. Finger, M. Finge, M., Jr. Assran, Y. El Sawy, M. Elgammal, S. Kamel, A. Ellithi Kamel, M. Mahmoud, M. A. Mohammed, Y. Calpas, B. Kadastik, M. Murumaa, M. Raidal, M. Tiko, A. Veelken, C. Eerola, P. Pekkanen, J. Voutilainen, M. Harkonen, J. Karimaki, V. Kinnunen, R. Lampen, T. Lassila-Perini, K. Lehti, S. Linden, T. Luukka, P. Maenpaa, T. Peltola, T. Tuominen, E. Tuominiemi, J. Tuovinen, E. Wendland, L. Talvitie, J. Tuuva, T. Besancon, M. Couderc, F. Dejardin, M. Denegri, D. Fabbro, B. Faure, J. L. Favaro, C. Ferri, F. Ganjour, S. Givernaud, A. Gras, P. De Monchenault, G. Hamel Jarry, P. Locci, E. Machet, M. Malcles, J. Rander, J. Rosowsky, A. Titov, M. Zghiche, A. Antropov, I. Baffioni, S. Beaudette, F. Busson, P. Cadamuro, L. Chapon, E. Charlot, C. Dahms, T. Davignon, O. Filipovic, N. Florent, A. de Cassagnac, R. Granier Lisniak, S. Mastrolorenzo, L. Mine, P. Naranjo, I. N. Nguyen, M. Ochando, C. Ortona, G. Paganini, P. Pigard, P. Regnard, S. Salerno, R. Sauvan, J. B. Sirois, Y. Strebler, T. Yilmaz, Y. Zabi, A. Agram, J. -L. Andrea, J. Aubin, A. Bloch, D. Brom, J. -M. Buttignol, M. Chabert, E. C. Chanon, N. Collard, C. Conte, E. Coubez, X. Fontaine, J. -C. Gele, D. Goerlach, U. Goetzmann, C. Le Bihan, A. -C. Merlin, J. A. Skovpen, K. Van Hove, P. Gadrat, S. Beauceron, S. Bernet, C. Boudoul, G. Bouvier, E. Montoya, C. A. Carrillo Chierici, R. Contardo, D. Courbon, B. Depasse, P. El Mamouni, H. Fan, J. Fay, J. Gascon, S. Gouzevitch, M. Ille, B. Lagarde, F. Laktineh, I. B. Lethuillier, M. Mirabito, L. Pequegnot, A. L. Perries, S. Alvarez, J. D. Ruiz Sabes, D. Sgandurra, L. Sordini, V. Vander Donckt, M. Verdier, P. Viret, S. Toriashvili, T. Tsamalaidze, Z. Autermann, C. Beranek, S. Edelhoff, M. Feld, L. Heister, A. Kiesel, M. K. Klein, K. Lipinski, M. Ostapchuk, A. Preuten, M. Raupach, F. Schael, S. Schulte, J. F. Verlage, T. Weber, H. Wittmer, B. Zhukov, V. Ata, M. Brodski, M. Dietz-Laursonn, E. Duchardt, D. Endres, M. Erdmann, M. Erdweg, S. Esch, T. Fischer, R. Gueth, A. Hebbeker, T. Heidemann, C. Hoepfner, K. Klingebiel, D. Knutzen, S. Kreuzer, P. Merschmeyer, M. Meyer, A. Millet, P. Olschewski, M. Padeken, K. Papacz, P. Pook, T. Radziej, M. Reithler, H. Rieger, M. Scheuch, F. Sonnenschein, L. Teyssier, D. Thueer, S. Cherepanov, V. Erdogan, Y. Fluegge, G. Geenen, H. Geisler, M. Hoehle, F. Kargoll, B. Kress, T. Kuessel, Y. Kuensken, A. Lingemann, J. Nehrkorn, A. Nowack, A. Nugent, I. M. Pistone, C. Pooth, O. Stahl, A. Martin, M. Aldaya Asin, I. Bartosik, N. Behnke, O. Behrens, U. Bell, A. J. Borras, K. Burgmeier, A. Cakir, A. Calligaris, L. Campbell, A. Choudhury, S. Connor, P. Costanza, F. Pardos, C. Diez Dolinska, G. Dooling, S. Dorland, T. Eckerlin, G. Eckstein, D. Eichhorn, T. Flucke, G. Gallo, E. Garcia, J. Garay Geiser, A. Gizhko, A. Luyando, J. M. Grados Gunnellini, P. Hauk, J. Hempel, M. Jung, H. Kalogeropoulos, A. Karacheban, O. Kasemann, M. Katsas, P. Kieseler, J. Kleinwort, C. Korol, I. Lange, W. Leonard, J. Lipka, K. Lobanov, A. Lohmann, W. Mankel, R. Marfin, I. Melzer-Pellmann, I. -A. Meyer, A. B. Mittag, G. Mnich, J. Mussgiller, A. Naumann-Emme, S. Nayak, A. Ntomari, E. Perrey, H. Pitzl, D. Placakyte, R. Raspereza, A. Roland, B. Sahin, M. Oe. Saxena, P. Schoerner-Sadenius, T. Schroeder, M. Seitz, C. Spannagel, S. Trippkewitz, K. D. Walsh, R. Wissing, C. Blobel, V. Vignali, M. Centis Draeger, A. R. Erfle, J. Garutti, E. Goebel, K. Gonzalez, D. Goerner, M. Haller, J. Hoffmann, M. Hoeing, R. S. Junkes, A. Klanner, R. Kogler, R. Lapsien, T. Lenz, T. Marchesini, I. Marconi, D. Meyer, M. Nowatschin, D. Ott, J. Pantaleo, F. Peiffer, T. Perieanu, A. Pietsch, N. Poehlsen, J. Rathjens, D. Sander, C. Schettler, H. Schleper, P. Schlieckau, E. Schmidt, A. Schwandt, J. Seidel, M. Sola, V. Stadie, H. Steinbrueck, G. Tholen, H. Troendle, D. Usai, E. Vanelderen, L. Vanhoefer, A. Vormwald, B. Akbiyik, M. Barth, C. Baus, C. Berger, J. Boeser, C. Butz, E. Chwalek, T. Colombo, F. De Boer, W. Descroix, A. Dierlamm, A. Fink, S. Frensch, F. Giffels, M. Gilbert, A. Hartmann, F. Heindl, S. M. Husemann, U. Katkov, I. Kornmayer, A. Pardo, P. Lobelle Maier, B. Mildner, H. Mozer, M. U. Mueller, T. Mueller, Th. Plagge, M. Quast, G. Rabbertz, K. Roecker, S. Roscher, F. Simonis, H. J. Stober, F. M. Ulrich, R. Wagner-Kuhr, J. Wayand, S. Weber, M. Weiler, T. Woehrmann, C. Wolf, R. Anagnostou, G. Daskalakis, G. Geralis, T. Giakoumopoulou, V. A. Kyriakis, A. Loukas, D. Psallidas, A. Topsis-Giotis, I. Agapitos, A. Kesisoglou, S. Panagiotou, A. Saoulidou, N. Tziaferi, E. Evangelou, I. Flouris, G. Foudas, C. Kokkas, P. Loukas, N. Manthos, N. Papadopoulos, I. Paradas, E. Strologas, J. Bencze, G. Hajdu, C. Hazi, A. Hidas, P. Horvath, D. Sikler, F. Veszpremi, V. Vesztergombi, G. Zsigmond, A. J. Beni, N. Czellar, S. Karancsi, J. Molnar, J. Szillasi, Z. Bartok, M. Makovec, A. Raics, P. Trocsanyi, Z. L. Ujvari, B. Mal, P. Mandal, K. Sahoo, D. K. Sahoo, N. Swain, S. K. Bansal, S. Beri, S. B. Bhatnagar, V. Chawla, R. Gupta, R. Bhawandeep, U. Kalsi, A. K. Kaur, A. Kaur, M. Kumar, R. Mehta, A. Mittal, M. Singh, J. B. Walia, G. Kumar, Ashok Bhardwaj, A. Choudhary, B. C. Garg, R. B. Kumar, A. Malhotra, S. Naimuddin, M. Nishu, N. Ranjan, K. Sharma, R. Sharma, V. Bhardwaj, R. Bhattacharya, S. Chatterjee, K. Dey, S. Dutta, S. Jain, Sa. Majumdar, N. Modak, A. Mondal, K. Mukherjee, S. Mukhopadhyay, S. Roy, A. Roy, D. Chowdhury, S. Roy Sarkar, S. Sharan, M. Abdulsalam, A. Chudasama, R. Dutta, D. Jha, V. Kumar, V. Mohanty, A. K. Pant, L. M. Shukla, P. Topkar, A. Aziz, T. Banerjee, S. Bhowmik, S. Chatterjee, R. M. Dewanjee, R. K. Dugad, S. Ganguly, S. Ghosh, S. Guchait, M. Gurtu, A. Kole, G. Kumar, S. Mahakud, B. Maity, M. Majumder, G. Mazumdar, K. Mitra, S. Mohanty, G. B. Parida, B. Sarkar, T. Sur, N. Sutar, B. Wickramage, N. Bakhshiansohi, H. Behnamian, H. Etesami, S. M. Fahim, A. Goldouzian, R. Khakzad, M. Najafabadi, M. Mohammadi Naseri, M. Mehdiabadi, S. Paktinat Hosseinabadi, F. Rezaei Safarzadeh, B. Zeinali, M. Felcini, M. Grunewald, M. Abbrescia, M. Calabria, C. Caputo, C. Colaleo, A. Creanza, D. Cristella, L. De Filippis, N. De Palma, M. Fiore, L. Iaselli, G. Maggi, G. Maggi, M. Miniello, G. My, S. Nuzzo, S. Pompili, A. Pugliese, G. Radogna, R. Ranieri, A. Selvaggi, G. Silvestris, L. Venditti, R. Verwilligen, P. Abbiendi, G. Battilana, C. Benvenuti, A. C. Bonacorsi, D. Braibant-Giacomelli, S. Brigliadori, L. Campanini, R. Capiluppi, P. Castro, A. Cavallo, F. R. Chhibra, S. S. Codispoti, G. Cuffiani, M. Dallavalle, G. M. Fabbri, F. Fanfani, A. Fasanella, D. Giacomelli, P. Grandi, C. Guiducci, L. Marcellini, S. Masetti, G. Montanari, A. Navarria, F. L. Perrotta, A. Rossi, A. M. Rovelli, T. Siroli, G. P. Tosi, N. Travaglini, R. Cappello, G. Chiorboli, M. Costa, S. Giordano, F. Potenza, R. Tricomi, A. Tuve, C. Barbagli, G. Ciulli, V. Civinini, C. D'Alessandro, R. Focardi, E. Gonzi, S. Gori, V. Lenzi, P. Meschini, M. Paoletti, S. Sguazzoni, G. Tropiano, A. Viliani, L. Benussi, L. Bianco, S. Fabbri, F. Piccolo, D. Primavera, F. Calvelli, V. Ferro, F. Lo Vetere, M. Monge, M. R. Robutti, E. Tosi, S. Brianza, L. Dinardo, M. E. Fiorendi, S. Gennai, S. Gerosa, R. Ghezzi, A. Govoni, P. Malvezzi, S. Manzoni, R. A. Marzocchi, B. Menasce, D. Moroni, L. Paganoni, M. Pedrini, D. Ragazzi, S. Redaelli, N. de Fatis, T. Tabarelli Buontempo, S. Cavallo, N. Di Guida, S. Esposito, M. Fabozzi, F. Iorio, A. O. M. Lanza, G. Lista, L. Meola, S. Merola, M. Paolucci, P. Sciacca, C. Thyssen, F. Azzi, P. Bacchetta, N. Benato, L. Bisello, D. Boletti, A. Branca, A. Carlin, R. Checchia, P. Dall'Osso, M. Dorigo, T. Dosselli, U. Gasparini, F. Gasparini, U. Gonella, F. Gozzelino, A. Kanishchev, K. Lacaprara, S. Margoni, M. Meneguzzo, A. T. Pazzini, J. Pozzobon, N. Ronchese, P. Simonetto, F. Torassa, E. Tosi, M. Zanetti, M. Zotto, P. Zucchetta, A. Zumerle, G. Braghieri, A. Magnani, A. Montagna, P. Ratti, S. P. Re, V. Riccardi, C. Salvini, P. Vai, I. Vitulo, P. Solestizi, L. Alunni Biasini, M. Bilei, G. M. Ciangottini, D. Fano, L. Lariccia, P. Mantovani, G. Menichelli, M. Saha, A. Santocchia, A. Spiezia, A. Androsov, K. Azzurri, P. Bagliesi, G. Bernardini, J. Boccali, T. Broccolo, G. Castaldi, R. Ciocci, M. A. Dell'Orso, R. Donato, S. Fedi, G. Foa, L. Giassi, A. Grippo, M. T. Ligabue, F. Lomtadze, T. Martini, L. Messineo, A. Palla, F. Rizzi, A. Savoy-Navarro, A. Serban, A. T. Spagnolo, P. Squillacioti, P. Tenchini, R. Tonelli, G. Venturi, A. Verdini, P. G. Barone, L. Cavallari, F. D'imperio, G. Del Re, D. Diemoz, M. Gelli, S. Jorda, C. Longo, E. Margaroli, F. Meridiani, P. Organtini, G. Paramatti, R. Preiato, F. Rahatlou, S. Rovelli, C. Santanastasio, F. Traczyk, P. Amapane, N. Arcidiacono, R. Argiro, S. Arneodo, M. Bellan, R. Biino, C. Cartiglia, N. Costa, M. Covarelli, R. Degano, A. Demaria, N. Finco, L. Kiani, B. Mariotti, C. Maselli, S. Migliore, E. Monaco, V. Monteil, E. Musich, M. Obertino, M. M. Pacher, L. Pastrone, N. Pelliccioni, M. Angioni, G. L. Pinna Ravera, F. Romero, A. Ruspa, M. Sacchi, R. Solano, A. Staiano, A. Tamponi, U. Belforte, S. Candelise, V. Casarsa, M. Cossutti, F. Della Ricca, G. Gobbo, B. La Licata, C. Marone, M. Schizzi, A. Zanetti, A. Kropivnitskaya, A. Nam, S. K. Kim, D. H. Kim, G. N. Kim, M. S. Kong, D. J. Lee, S. Oh, Y. D. Sakharov, A. Son, D. C. Cifuentes, J. A. Brochero Kim, H. Kim, T. J. Song, S. Choi, S. Go, Y. Gyun, D. Hong, B. Jo, M. Kim, H. Kim, Y. Lee, B. Lee, K. Lee, K. S. Lee, S. Park, S. K. Roh, Y. Yoo, H. D. Choi, M. Kim, H. Kim, J. H. Lee, J. S. H. Park, I. C. Ryu, G. Ryu, M. S. Choi, Y. Goh, J. Kim, D. Kwon, E. Lee, J. Yu, I. Juodagalvis, A. Vaitkus, J. Ahmed, I. Ibrahim, Z. A. Komaragiri, J. R. Ali, M. A. B. Md Idris, F. Mohamad Abdullah, W. A. T. Wan Yusli, M. N. Casimiro Linares, E. Castilla-Valdez, H. De La Cruz-Burelo, E. Heredia-De La Cruz, I. Hernandez-Almada, A. Lopez-Fernandez, R. Sanchez-Hernandez, A. Carrillo Moreno, S. Vazquez Valencia, F. Pedraza, I. Salazar Ibarguen, H. A. Morelos Pineda, A. Krofcheck, D. Butler, P. H. Ahmad, A. Ahmad, M. Hassan, Q. Hoorani, H. R. Khan, W. A. Khurshid, T. Shoaib, M. Bialkowska, H. Bluj, M. Boimska, B. Frueboes, T. Gorski, M. Kazana, M. Nawrocki, K. Romanowska-Rybinska, K. Szleper, M. Zalewski, P. Brona, G. Bunkowski, K. Byszuk, A. Doroba, K. Kalinowski, A. Konecki, M. Krolikowski, J. Misiura, M. Olszewski, M. Walczak, M. Bargassa, P. Beirao Da Cruz E Silva, C. Di Francesco, A. Faccioli, P. Ferreira Parracho, P. G. Gallinaro, M. Leonardo, N. Lloret Iglesias, L. Nguyen, F. Rodrigues Antunes, J. Seixas, J. Toldaiev, O. Vadruccio, D. Varela, J. Vischia, P. Afanasiev, S. Bunin, P. Gavrilenko, M. Golutvin, I. Gorbunov, I. Kamenev, A. Karjavin, V. Konoplyanikov, V. Lanev, A. Malakhov, A. Matveev, V. Moisenz, P. Palichik, V. Perelygin, V. Shmatov, S. Shulha, S. Skatchkov, N. Smirnov, V. Zarubin, A. Golovtsov, V. Ivanov, Y. Kim, V. Kuznetsova, E. Levchenko, P. Murzin, V. Oreshkin, V. Smirnov, I. Sulimov, V. Uvarov, L. Vavilov, S. Vorobyev, A. Andreev, Yu. Dermenev, A. Gninenko, S. Golubev, N. Karneyeu, A. Kirsanov, M. Krasnikov, N. Pashenkov, A. Tlisov, D. Toropin, A. Epshteyn, V. Gavrilov, V. Lychkovskaya, N. Popov, V. Pozdnyakov, I. Safronov, G. Spiridonov, A. Vlasov, E. Zhokin, A. Bylinkin, A. Andreev, V. Azarkin, M. Dremin, I. Kirakosyan, M. Leonidov, A. Mesyats, G. Rusakov, S. V. Baskakov, A. Belyaev, A. Boos, E. Ershov, A. Gribushin, A. Khein, L. Klyukhin, V. Kodolova, O. Lokhtin, I. Lukina, O. Myagkov, I. Obraztsov, S. Petrushanko, S. Savrin, V. Snigirev, A. Azhgirey, I. Bayshev, I. Bitioukov, S. Kachanov, V. Kalinin, A. Konstantinov, D. Krychkine, V. Petrov, V. Ryutin, R. Sobol, A. Tourtchanovitch, L. Troshin, S. Tyurin, N. Uzunian, A. Volkov, A. Adzic, P. Milosevic, J. Rekovic, V. Alcaraz Maestre, J. Calvo, E. Cerrada, M. Chamizo Llatas, M. Colino, N. De La Cruz, B. Delgado Peris, A. Dominguez Vazquez, D. Escalante Del Valle, A. Fernandez Bedoya, C. Fernandez Ramos, J. P. Flix, J. Fouz, M. C. Garcia-Abia, P. Gonzalez Lopez, O. Goy Lopez, S. Hernandez, J. M. Josa, M. I. Navarro De Martino, E. Perez-Calero Yzquierdo, A. Puerta Pelayo, J. Quintario Olmeda, A. Redondo, I. Romero, L. Santaolalla, J. Soares, M. S. Albajar, C. de Troconiz, J. F. Missiroli, M. Moran, D. Cuevas, J. Fernandez Menendez, J. Folgueras, S. Gonzalez Caballero, I. Palencia Cortezon, E. Vizan Garcia, J. M. Cabrillo, I. J. Calderon, A. Castineiras De Saa, J. R. De Castro Manzano, P. Duarte Campderros, J. Fernandez, M. Garcia-Ferrero, J. Gomez, G. Lopez Virto, A. Marco, J. Marco, R. Martinez Rivero, C. Matorras, F. Munoz Sanchez, F. J. Piedra Gomez, J. Rodrigo, T. Rodriguez-Marrero, A. Y. Ruiz-Jimeno, A. Scodellaro, L. Vila, I. Vilar Cortabitarte, R. Abbaneo, D. Auffray, E. Auzinger, G. Bachtis, M. Baillon, P. Ball, A. H. Barney, D. Benaglia, A. Bendavid, J. Benhabib, L. Benitez, J. F. Berruti, G. M. Bloch, P. Bocci, A. Bonato, A. Botta, C. Breuker, H. Camporesi, T. Castello, R. Cerminara, G. D'Alfonso, M. d'Enterria, D. Dabrowski, A. Daponte, V. David, A. De Gruttola, M. De Guio, F. De Roeck, A. De Visscher, S. Di Marco, E. Dobson, M. Dordevic, M. Dorney, B. du Pree, T. Duenser, M. Dupont, N. Elliott-Peisert, A. Franzoni, G. Funk, W. Gigi, D. Gill, K. Giordano, D. Girone, M. Glege, F. Guida, R. Gundacker, S. Guthoff, M. Hammer, J. Harris, P. Hegeman, J. Innocente, V. Janot, P. Kirschenmann, H. Kortelainen, M. J. Kousouris, K. Krajczar, K. Lecoq, P. Lourenco, C. Lucchini, M. T. Magini, N. Malgeri, L. Mannelli, M. Martelli, A. Masetti, L. Meijers, F. Mersi, S. Meschi, E. Moortgat, F. Morovic, S. Mulders, M. Nemallapudi, M. V. Neugebauer, H. Orfanelli, S. Orsini, L. Pape, L. Perez, E. Peruzzi, M. Petrilli, A. Petrucciani, G. Pfeiffer, A. Piparo, D. Racz, A. Rolandi, G. Rovere, M. Ruan, M. Sakulin, H. Schaefer, C. Schwick, C. Sharma, A. Silva, P. Simon, M. Sphicas, P. Spiga, D. Steggemann, J. Stieger, B. Stoye, M. Takahashi, Y. Treille, D. Triossi, A. Tsirou, A. Veres, G. I. Wardle, N. Woehri, H. K. Zagozdzinska, A. Zeuner, W. D. Bertl, W. Deiters, K. Erdmann, W. Horisberger, R. Ingram, Q. Kaestli, H. C. Kotlinski, D. Langenegger, U. Renker, D. Rohe, T. Bachmair, F. Baeni, L. Bianchini, L. Buchmann, M. A. Casal, B. Dissertori, G. Dittmar, M. Donega, M. Eller, P. Grab, C. Heidegger, C. Hits, D. Hoss, J. Kasieczka, G. Lustermann, W. Mangano, B. Marionneau, M. del Arbol, P. Martinez Ruiz Masciovecchio, M. Meister, D. Micheli, F. Musella, P. Nessi-Tedaldi, F. Pandolfi, F. Pata, J. Pauss, F. Perrozzi, L. Quittnat, M. Rossini, M. Starodumov, A. Takahashi, M. Tavolaro, V. R. Theofilatos, K. Wallny, R. Aarrestad, T. K. Amsler, C. Caminada, L. Canelli, M. F. Chiochia, V. De Cosa, A. Galloni, C. Hinzmann, A. Hreus, T. Kilminster, B. Lange, C. Ngadiuba, J. Pinna, D. Robmann, P. Ronga, F. J. Salerno, D. Yang, Y. Cardaci, M. Chen, K. H. Doan, T. H. Jain, Sh. Khurana, R. Konyushikhin, M. Kuo, C. M. Lin, W. Lu, Y. J. Yu, S. S. Kumar, Arun Bartek, R. Chang, P. Chang, Y. H. Chang, Y. W. Chao, Y. Chen, K. F. Chen, P. H. Dietz, C. Fiori, F. Grundler, U. Hou, W. -S. Hsiung, Y. Liu, Y. F. Lu, R. -S. Moya, M. Minano Petrakou, E. Tsai, J. F. Tzeng, Y. M. Asavapibhop, B. Kovitanggoon, K. Singh, G. Srimanobhas, N. Suwonjandee, N. Adiguzel, A. Cerci, S. Demiroglu, Z. S. Dozen, C. Girgis, S. Gokbulut, G. Guler, Y. Gurpinar, E. Hos, I. Kangal, E. E. Topaksu, A. Kayis Onengut, G. Ozdemir, K. Ozturk, S. Tali, B. Topakli, H. Vergili, M. Zorbilmez, C. Akin, I. V. Bilin, B. Bilmis, S. Isildak, B. Karapinar, G. Yalvac, M. Zeyrek, M. Albayrak, E. A. Gulmez, E. Kaya, M. Kaya, O. Yetkin, T. Cankocak, K. Sen, S. Vardarli, F. I. Grynyov, B. Levchuk, L. Sorokin, P. Aggleton, R. Ball, F. Beck, L. Brooke, J. J. Clement, E. Cussans, D. Flacher, H. Goldstein, J. Grimes, M. Heath, G. P. Heath, H. F. Jacob, J. Kreczko, L. Lucas, C. Meng, Z. Newbold, D. M. Paramesvaran, S. Poll, A. Sakuma, T. El Nasr-storey, S. Seif Senkin, S. Smith, D. Smith, V. J. Barducci, D. Bell, K. W. Belyaev, A. Brew, C. Brown, R. M. Cieri, D. Cockerill, D. J. A. Coughlan, J. A. Harder, K. Harper, S. Olaiya, E. Petyt, D. Shepherd-Themistocleous, C. H. Thea, A. Tomalin, I. R. Williams, T. Womersley, W. J. Worm, S. D. Baber, M. Bainbridge, R. Buchmuller, O. Bundock, A. Burton, D. Casasso, S. Citron, M. Colling, D. Corpe, L. Cripps, N. Dauncey, P. Davies, G. De Wit, A. Della Negra, M. Dunne, P. Elwood, A. Ferguson, W. Fulcher, J. Futyan, D. Hall, G. Iles, G. Kenzie, M. Lane, R. Lucas, R. Lyons, L. Magnan, A. -M. Malik, S. Nash, J. Nikitenko, A. Pela, J. Pesaresi, M. Petridis, K. Raymond, D. M. Richards, A. Rose, A. Seez, C. Tapper, A. Uchida, K. Acosta, M. Vazquez Virdee, T. Zenz, S. C. Cole, J. E. Hobson, P. R. Khan, A. Kyberd, P. Leggat, D. Leslie, D. Reid, I. D. Symonds, P. Teodorescu, L. Turner, M. Borzou, A. Call, K. Dittmann, J. Hatakeyama, K. Kasmi, A. Liu, H. Pastika, N. Charaf, O. Cooper, S. I. Henderson, C. Rumerio, P. Avetisyan, A. Bose, T. Fantasia, C. Gastler, D. Lawson, P. Rankin, D. Richardson, C. Rohlf, J. John, J. St. Sulak, L. Zou, D. Alimena, J. Berry, E. Bhattacharya, S. Cutts, D. Dhingra, N. Ferapontov, A. Garabedian, A. Hakala, J. Heintz, U. Laird, E. Landsberg, G. Mao, Z. Narain, M. Piperov, S. Sagir, S. Sinthuprasith, T. Syarif, R. Breedon, R. Breto, G. Sanchez, M. Calderon De La Barca Chauhan, S. Chertok, M. Conway, J. Conway, R. Cox, P. T. Erbacher, R. Gardner, M. Ko, W. Lander, R. Mulhearn, M. Pellett, D. Pilot, J. Ricci-Tam, F. Shalhout, S. Smith, J. Squires, M. Stolp, D. Tripathi, M. Wilbur, S. Yohay, R. Cousins, R. Everaerts, P. Farrell, C. Hauser, J. Ignatenko, M. Saltzberg, D. Takasugi, E. Valuev, V. Weber, M. Burt, K. Clare, R. Ellison, J. Gary, J. W. Hanson, G. Heilman, J. Paneva, M. Ivova Jandir, P. Kennedy, E. Lacroix, F. Long, O. R. Luthra, A. Malberti, M. Negrete, M. Olmedo Shrinivas, A. Wei, H. Wimpenny, S. Yates, B. R. Branson, J. G. Cerati, G. B. Cittolin, S. D'Agnolo, R. T. Holzner, A. Kelley, R. Klein, D. Letts, J. Macneill, I. Olivito, D. Padhi, S. Pieri, M. Sani, M. Sharma, V. Simon, S. Tadel, M. Vartak, A. Wasserbaech, S. Welke, C. Wuerthwein, F. Yagil, A. Della Porta, G. Zevi Barge, D. Bradmiller-Feld, J. Campagnari, C. Dishaw, A. Dutta, V. Flowers, K. Sevilla, M. Franco Geffert, P. George, C. Golf, F. Gouskos, L. Gran, J. Incandela, J. Justus, C. Mccoll, N. Mullin, S. D. Richman, J. Stuart, D. Suarez, I. To, W. West, C. Yoo, J. Anderson, D. Apresyan, A. Bornheim, A. Bunn, J. Chen, Y. Duarte, J. Mott, A. Newman, H. B. Pena, C. Pierini, M. Spiropulu, M. Vlimant, J. R. Xie, S. Zhu, R. Y. Andrews, M. B. Azzolini, V. Calamba, A. Carlson, B. Ferguson, T. Paulini, M. Russ, J. Sun, M. Vogel, H. Vorobiev, I. Cumalat, J. P. Ford, W. T. Gaz, A. Jensen, F. Johnson, A. Krohn, M. Mulholland, T. Nauenberg, U. Stenson, K. Wagner, S. R. Alexander, J. Chatterjee, A. Chaves, J. Chu, J. Dittmer, S. Eggert, N. Mirman, N. Kaufman, G. Nicolas Patterson, J. R. Rinkevicius, A. Ryd, A. Skinnari, L. Soffi, L. Sun, W. Tan, S. M. Teo, W. D. Thom, J. Thompson, J. Tucker, J. Weng, Y. Wittich, P. Abdullin, S. Albrow, M. Anderson, J. Apollinari, G. Banerjee, S. Bauerdick, L. A. T. Beretvas, A. Berryhill, J. Bhat, P. C. Bolla, G. Burkett, K. Butler, J. N. Cheung, H. W. K. Chlebana, F. Cihangir, S. Elvira, V. D. Fisk, I. Freeman, J. Gottschalk, E. Gray, L. Green, D. Gruenendahl, S. Gutsche, O. Hanlon, J. Hare, D. Harris, R. M. Hasegawa, S. Hirschauer, J. Hu, Z. Jindariani, S. Johnson, M. Joshi, U. Jung, A. W. Klima, B. Kreis, B. Kwan, S. Lammel, S. Linacre, J. Lincoln, D. Lipton, R. Liu, T. De Sa, R. Lopes Lykken, J. Maeshima, K. Marraffino, J. M. Outschoorn, V. I. Martinez Maruyama, S. Mason, D. McBride, P. Merkel, P. Mishra, K. Mrenna, S. Nahn, S. Newman-Holmes, C. O'Dell, V. Pedro, K. Prokofyev, O. Rakness, G. Sexton-Kennedy, E. Soha, A. Spalding, W. J. Spiegel, L. Taylor, L. Tkaczyk, S. Tran, N. V. Uplegger, L. Vaandering, E. W. Vernieri, C. Verzocchi, M. Vidal, R. Weber, H. A. Whitbeck, A. Yang, F. Acosta, D. Avery, P. Bortignon, P. Bourilkov, D. Carnes, A. Carver, M. Curry, D. Das, S. Di Giovanni, G. P. Field, R. D. Furic, I. K. Hugon, J. Konigsberg, J. Korytov, A. Low, J. F. Ma, P. Matchev, K. Mei, H. Milenovic, P. Mitselmakher, G. Rank, D. Rossin, R. Shchutska, L. Snowball, M. Sperka, D. Terentyev, N. Thomas, L. Wang, J. Wang, S. Yelton, J. Hewamanage, S. Linn, S. Markowitz, P. Martinez, G. Rodriguez, J. L. Ackert, A. Adams, J. R. Adams, T. Askew, A. Bochenek, J. Diamond, B. Haas, J. Hagopian, S. Hagopian, V. Johnson, K. F. Khatiwada, A. Prosper, H. Weinberg, M. Baarmand, M. M. Bhopatkar, V. Colafranceschi, S. Hohlmann, M. Kalakhety, H. Noonan, D. Roy, T. Yumiceva, F. Adams, M. R. Apanasevich, L. Berry, D. Betts, R. R. Bucinskaite, I. Cavanaugh, R. Evdokimov, O. Gauthier, L. Gerber, C. E. Hofman, D. J. Kurt, P. O'Brien, C. Gonzalez, I. D. Sandoval Silkworth, C. Turner, P. Varelas, N. Wu, Z. Zakaria, M. Bilki, B. Clarida, W. Dilsiz, K. Durgut, S. Gandrajula, R. P. Haytmyradov, M. Khristenko, V. Merlo, J. -P. Mermerkaya, H. Mestvirishvili, A. Moeller, A. Nachtman, J. Ogul, H. Onel, Y. Ozok, F. Penzo, A. Snyder, C. Tan, P. Tiras, E. Wetzel, J. Yi, K. Anderson, I. Barnett, B. A. Blumenfeld, B. Eminizer, N. Fehling, D. Feng, L. Gritsan, A. V. Maksimovic, P. Martin, C. Osherson, M. Roskes, J. Sady, A. Sarica, U. Swartz, M. Xiao, M. Xin, Y. You, C. Baringer, P. Bean, A. Benelli, G. Bruner, C. Kenny, R. P., III Majumder, D. Malek, M. Murray, M. Sanders, S. Stringer, R. Wang, Q. Ivanov, A. Kaadze, K. Khalil, S. Makouski, M. Maravin, Y. Mohammadi, A. Saini, L. K. Skhirtladze, N. Toda, S. Lange, D. Rebassoo, F. Wright, D. Anelli, C. Baden, A. Baron, O. Belloni, A. Calvert, B. Eno, S. C. Ferraioli, C. Gomez, J. A. Hadley, N. J. Jabeen, S. Kellogg, R. G. Kolberg, T. Kunkle, J. Lu, Y. Mignerey, A. C. Shin, Y. H. Skuja, A. Tonjes, M. B. Tonwar, S. C. Apyan, A. Barbieri, R. Baty, A. Bierwagen, K. Brandt, S. Busza, W. Cali, I. A. Demiragli, Z. Di Matteo, L. Ceballos, G. Gomez Goncharov, M. Gulhan, D. Iiyama, Y. Innocenti, G. M. Klute, M. Kovalskyi, D. Lai, Y. S. Lee, Y. -J. Levin, A. Luckey, P. D. Marini, A. C. Mcginn, C. Mironov, C. Niu, X. Paus, C. Ralph, D. Roland, C. Roland, G. Salfeld-Nebgen, J. Stephans, G. S. F. Sumorok, K. Varma, M. Velicanu, D. Veverka, J. Wang, J. Wang, T. W. Wyslouch, B. Yang, M. Zhukova, V. Dahmes, B. Evans, A. Finkel, A. Gude, A. Hansen, P. Kalafut, S. Kao, S. C. Klapoetke, K. Kubota, Y. Lesko, Z. Mans, J. Nourbakhsh, S. Ruckstuhl, N. Rusack, R. Tambe, N. Turkewitz, J. Acosta, J. G. Oliveros, S. Avdeeva, E. Bloom, K. Bose, S. Claes, D. R. Dominguez, A. Fangmeier, C. Suarez, R. Gonzalez Kamalieddin, R. Keller, J. Knowlton, D. Kravchenko, I. Lazo-Flores, J. Meier, F. Monroy, J. Ratnikov, F. Siado, J. E. Snow, G. R. Alyari, M. Dolen, J. George, J. Godshalk, A. Harrington, C. Iashvili, I. Kaisen, J. Kharchilava, A. Kumar, A. Rappoccio, S. Alverson, G. Barberis, E. Baumgartel, D. Chasco, M. Hortiangtham, A. Massironi, A. Morse, D. M. Nash, D. Orimoto, T. De Lima, R. Teixeira Trocino, D. Wang, R. -J. Wood, D. Zhang, J. Hahn, K. A. Kubik, A. Mucia, N. Odell, N. Pollack, B. Pozdnyakov, A. Schmitt, M. Stoynev, S. Sung, K. Trovato, M. Velasco, M. Brinkerhoff, A. Dev, N. Hildreth, M. Jessop, C. Karmgard, D. J. Kellams, N. Lannon, K. Lynch, S. Marinelli, N. Meng, F. Mueller, C. Musienko, Y. Pearson, T. Planer, M. Reinsvold, A. Ruchti, R. Smith, G. Taroni, S. Valls, N. Wayne, M. Wolf, M. Woodard, A. Antonelli, L. Brinson, J. Bylsma, B. Durkin, L. S. Flowers, S. Hart, A. Hill, C. Hughes, R. Ji, W. Kotov, K. Ling, T. Y. Liu, B. Luo, W. Puigh, D. Rodenburg, M. Winer, B. L. Wulsin, H. W. Driga, O. Elmer, P. Hardenbrook, J. Hebda, P. Koay, S. A. Lujan, P. Marlow, D. Medvedeva, T. Mooney, M. Olsen, J. Palmer, C. Piroue, P. Quan, X. Saka, H. Stickland, D. Tully, C. Werner, J. S. Zuranski, A. Malik, S. Barnes, V. E. Benedetti, D. Bortoletto, D. Gutay, L. Jha, M. K. Jones, M. Jung, K. Miller, D. H. Neumeister, N. Radburn-Smith, B. C. Shi, X. Shipsey, I. Silvers, D. Sun, J. Svyatkovskiy, A. Wang, F. Xie, W. Xu, L. Parashar, N. Stupak, J. Adair, A. Akgun, B. Chen, Z. Ecklund, K. M. Geurts, F. J. M. Guilbaud, M. Li, W. Michlin, B. Northup, M. Padley, B. P. Redjimi, R. Roberts, J. Rorie, J. Tu, Z. Zabel, J. Betchart, B. Bodek, A. de Barbaro, P. Demina, R. Eshaq, Y. Ferbel, T. Galanti, M. Garcia-Bellido, A. Han, J. Harel, A. Hindrichs, O. Khukhunaishvili, A. Petrillo, G. Verzetti, M. Arora, S. Barker, A. Chou, J. P. Contreras-Campana, C. Contreras-Campana, E. Duggan, D. Ferencek, D. Gershtein, Y. Gray, R. Halkiadakis, E. Hidas, D. Hughes, E. Kaplan, S. Elayavalli, R. Kunnawalkam Lath, A. Nash, K. Panwalkar, S. Park, M. Salur, S. Schnetzer, S. Sheffield, D. Somalwar, S. Stone, R. Thomas, S. Thomassen, P. Walker, M. Foerster, M. Riley, G. Rose, K. Spanier, S. York, A. Bouhali, O. Hernandez, A. Castaneda Dalchenko, M. De Mattia, M. Delgado, A. Dildick, S. Eusebi, R. Flanagan, W. Gilmore, J. Kamon, T. Krutelyov, V. Mueller, R. Osipenkov, I. Pakhotin, Y. Patel, R. Perloff, A. Rose, A. Safonov, A. Tatarinov, A. Ulmer, K. A. Akchurin, N. Cowden, C. Damgov, J. Dragoiu, C. Dudero, P. R. Faulkner, J. Kunori, S. Lamichhane, K. Lee, S. W. Libeiro, T. Undleeb, S. Volobouev, I. Appelt, E. Delannoy, A. G. Greene, S. Gurrola, A. Janjam, R. Johns, W. Maguire, C. Mao, Y. Melo, A. Ni, H. Sheldon, P. Snook, B. Tuo, S. Velkovska, J. Xu, Q. Arenton, M. W. Cox, B. Francis, B. Goodell, J. Hirosky, R. Ledovskoy, A. Li, H. Lin, C. Neu, C. Sun, X. Wang, Y. Wolfe, E. Wood, J. Xia, F. Clarke, C. Harr, R. Karchin, P. E. Don, C. Kottachchi Kankanamge Lamichhane, P. Sturdy, J. Belknap, D. A. Carlsmith, D. Cepeda, M. Dasu, S. Dodd, L. Duric, S. Friis, E. Gomber, B. Grothe, M. Hall-Wilton, R. Herndon, M. Herve, A. Klabbers, P. Lanaro, A. Levine, A. Long, K. Loveless, R. Mohapatra, A. Ojalvo, I. Perry, T. Pierro, G. A. Polese, G. Ruggles, T. Sarangi, T. Savin, A. Sharma, A. Smith, N. Smith, W. H. Taylor, D. Woods, N. CA CMS Collaboration TI Pseudorapidity distribution of charged hadrons in proton-proton collisions at root s=13TeV SO PHYSICS LETTERS B LA English DT Article DE CMS; Physics; Proton-proton; 13 TeV; Hadrons; Spectra ID DEPENDENCE; COLLIDER; ENERGIES; PHYSICS AB The pseudorapidity distribution of charged hadrons in pp collisions at root s = 13 TeV is measured using a data sample obtained with the CMS detector, operated at zero magnetic field, at the CERN LHC. The yield of primary charged long-lived hadrons produced in inelastic pp collisions is determined in the central region of the CMS pixel detector (vertical bar eta vertical bar < 2) using both hit pairs and reconstructed tracks. For central pseudorapidities (vertical bar eta vertical bar < 0.5), the charged-hadron multiplicity density is dN(ch)/d eta vertical bar(vertical bar eta vertical bar) < 0.5= 5.49 +/- 0.01 (stat) +/- 0.17 (syst), a value obtained by combining the two methods. The result is compared to predictions from Monte Carlo event generators and to similar measurements made at lower collision energies. (C) 2015 CERN for the benefit of the CMS Collaboration. Published by Elsevier B.V. C1 [Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.] Yerevan Phys Inst, Yerevan 375036, Armenia. [CMS Collaboration] CERN, CH-1211 Geneva 23, Switzerland. [Adam, W.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Eroe, J.; Flechl, M.; Friedl, M.; Fruehwirth, R.; Ghete, V. M.; Hartl, C.; Hoermann, N.; Hrubec, J.; Jeitler, M.; Knuenz, V.; Koenig, A.; Krammer, M.; Kraeschmer, I.; Liko, D.; Matsushita, T.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, H.; Schieck, J.; Schoefbeck, R.; Strauss, J.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C. -E.] Inst Hochenergiephys OeAW, Vienna, Austria. [Mossolov, V.; Shumeiko, N.; Gonzalez, J. Suarez] Natl Ctr Particle & High Energy Phys, Minsk, Byelarus. [Alderweireldt, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Knutsson, A.; Lauwers, J.; Luyckx, S.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.] Univ Antwerp, B-2020 Antwerp, Belgium. [Abu Zeid, S.; Blekman, F.; D'Hondt, J.; Daci, N.; De Bruyn, I.; Deroover, K.; Heracleous, N.; Keaveney, J.; Lowette, S.; Moreels, L.; Olbrechts, A.; Python, Q.; Strom, D.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Van Parijs, I.] Vrije Univ Brussel, Brussels, Belgium. [Barria, P.; Brun, H.; Caillol, C.; Clerbaux, B.; De Lentdecker, G.; Fasanella, G.; Favart, L.; Grebenyuk, A.; Karapostoli, G.; Lenzi, T.; Leonard, A.; Maerschalk, T.; Marinov, A.; Pernie, L.; Randle-conde, A.; Reis, T.; Seva, T.; Velde, C. Vander; Vanlaer, P.; Yonamine, R.; Zenoni, F.; Zhang, F.] Univ Libre Bruxelles, Brussels, Belgium. [Beernaert, K.; Benucci, L.; Cimmino, A.; Crucy, S.; Dobur, D.; Fagot, A.; Garcia, G.; Gul, M.; Mccartin, J.; Rios, A. A. Ocampo; Poyraz, D.; Ryckbosch, D.; Salva, S.; Sigamani, M.; Strobbe, N.; Tytgat, M.; Van Driessche, W.; Yazgan, E.; Zaganidis, N.] Univ Ghent, B-9000 Ghent, Belgium. [Basegmez, S.; Beluffi, C.; Bondu, O.; Brochet, S.; Bruno, G.; Caudron, A.; Ceard, L.; Da Silveira, G.; Delaere, C.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Jafari, A.; Jez, P.; Komm, M.; Lemaitre, V.; Mertens, A.; Nuttens, C.; Perrini, L.; Pin, A.; Piotrzkowski, K.; Popov, A.; Quertenmont, L.; Selvaggi, M.; Marono, M. Vidal] Catholic Univ Louvain, Louvain La Neuve, Belgium. [Beliy, N.; Hammad, G. H.] Univ Mons, B-7000 Mons, Belgium. [Alda Junior, W. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Hamer, M.; Hensel, C.; Mora Herrera, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.] Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil. [Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Custodio, A.; Da Costa, E. M.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Ahuja, S.; Dogra, S.; Fernandez Perez Tomei, T. R.; Moon, C. S.; Novaes, S. F.; Padula, Sandra S.] Univ Estadual Paulista, Sao Paulo, Brazil. [Bernardes, C. A.; De Souza Santos, A.; Gregores, E. M.; Mercadante, P. G.] Univ Fed ABC, Sao Paulo, Brazil. [Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.] Inst Nucl Energy Res, Sofia, Bulgaria. [Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.] Univ Sofia, BU-1126 Sofia, Bulgaria. [Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Cheng, T.; Du, R.; Jiang, C. H.; Plestina, R.; Romeo, F.; Shaheen, S. M.; Tao, J.; Wang, C.; Wang, Z.; Wang, D.] Inst High Energy Phys, Beijing 100039, Peoples R China. [Zhang, F.; Asawatangtrakuldee, C.; Ban, Y.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.] Peking Univ, State Key Lab Nucl Phys & Technol, Beijing 100871, Peoples R China. [Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; Gomez Moreno, B.; Sanabria, J. C.] Univ Los Andes, Bogota, Colombia. [Godinovic, N.; Lelas, D.; Puljak, I.; Cipriano, P. M. Ribeiro] Univ Split, Fac Elect Engn Mech Engn & Naval Architecture, Split, Croatia. [Antunovic, Z.; Kovac, M.] Univ Split, Fac Sci, Split, Croatia. [Brigljevic, V.; Kadija, K.; Luetic, J.; Micanovic, S.; Sudic, L.] Rudjer Boskovic Inst, Zagreb, Croatia. [Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.] Univ Cyprus, Nicosia, Cyprus. [Bodlak, M.; Finger, M.; Finge, M., Jr.] Charles Univ Prague, Prague, Czech Republic. [Assran, Y.; El Sawy, M.; Elgammal, S.; Kamel, A. Ellithi; Kamel, M.; Mahmoud, M. A.; Mohammed, Y.] Acad Sci Res & Technol Arab Republ Egypt, Egyptian Network High Energy Phys, Cairo, Egypt. [Giammanco, A.; Calpas, B.; Kadastik, M.; Murumaa, M.; Raidal, M.; Tiko, A.; Veelken, C.] NICPB, Tallinn, Estonia. [Eerola, P.; Pekkanen, J.; Voutilainen, M.] Univ Helsinki, Dept Phys, Helsinki, Finland. [Harkonen, J.; Karimaki, V.; Kinnunen, R.; Lampen, T.; Lassila-Perini, K.; Lehti, S.; Linden, T.; Luukka, P.; Maenpaa, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.] Helsinki Inst Phys, Helsinki, Finland. [Talvitie, J.; Tuuva, T.] Lappeenranta Univ Technol, Lappeenranta, Finland. [Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; De Monchenault, G. Hamel; Jarry, P.; Locci, E.; Machet, M.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Zghiche, A.] CEA Saclay, DSM IRFU, F-91191 Gif Sur Yvette, France. [Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Chapon, E.; Charlot, C.; Dahms, T.; Davignon, O.; Filipovic, N.; Florent, A.; de Cassagnac, R. Granier; Lisniak, S.; Mastrolorenzo, L.; Mine, P.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Paganini, P.; Pigard, P.; Regnard, S.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Strebler, T.; Yilmaz, Y.; Zabi, A.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Agram, J. -L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J. -M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J. -C.; Gele, D.; Goerlach, U.; Goetzmann, C.; Le Bihan, A. -C.; Merlin, J. A.; Skovpen, K.; Van Hove, P.] Univ Haute Alsace Mulhouse, Univ Strasbourg, Inst Pluridisciplinaire Hubert Curien, CNRS,IN2P3, Strasbourg, France. [Gadrat, S.] Inst Natl Phys Nucl & Phys Particules, CNRS, IN2P3, Ctr Calcul, Villeurbanne, France. [Beauceron, S.; Bernet, C.; Boudoul, G.; Bouvier, E.; Montoya, C. A. Carrillo; Chierici, R.; Contardo, D.; Courbon, B.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Lagarde, F.; Laktineh, I. B.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Alvarez, J. D. Ruiz; Sabes, D.; Sgandurra, L.; Sordini, V.; Vander Donckt, M.; Verdier, P.; Viret, S.] Univ Lyon 1, CNRS, IN2P3, Inst Phys Nucl Lyon, F-69622 Villeurbanne, France. [Toriashvili, T.] Georgian Tech Univ, Tbilisi, Rep of Georgia. [Toriashvili, T.; Tsamalaidze, Z.] Tbilisi State Univ, GE-380086 Tbilisi, Rep of Georgia. [Autermann, C.; Beranek, S.; Edelhoff, M.; Feld, L.; Heister, A.; Kiesel, M. K.; Klein, K.; Lipinski, M.; Ostapchuk, A.; Preuten, M.; Raupach, F.; Schael, S.; Schulte, J. F.; Verlage, T.; Weber, H.; Wittmer, B.; Zhukov, V.] Rhein Westfal TH Aachen, Inst Phys 1, Aachen, Germany. [Ata, M.; Brodski, M.; Dietz-Laursonn, E.; Duchardt, D.; Endres, M.; Erdmann, M.; Erdweg, S.; Esch, T.; Fischer, R.; Gueth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Klingebiel, D.; Knutzen, S.; Kreuzer, P.; Merschmeyer, M.; Meyer, A.; Millet, P.; Olschewski, M.; Padeken, K.; Papacz, P.; Pook, T.; Radziej, M.; Reithler, H.; Rieger, M.; Scheuch, F.; Sonnenschein, L.; Teyssier, D.; Thueer, S.; Borras, K.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany. [Cherepanov, V.; Erdogan, Y.; Fluegge, G.; Geenen, H.; Geisler, M.; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Kuensken, A.; Lingemann, J.; Nehrkorn, A.; Nowack, A.; Nugent, I. M.; Pistone, C.; Pooth, O.; Stahl, A.] Rhein Westfal TH Aachen, Phys Inst B 3, Aachen, Germany. [Martin, M. Aldaya; Asin, I.; Bartosik, N.; Behnke, O.; Behrens, U.; Bell, A. J.; Borras, K.; Burgmeier, A.; Cakir, A.; Calligaris, L.; Campbell, A.; Choudhury, S.; Connor, P.; Costanza, F.; Pardos, C. Diez; Dolinska, G.; Dooling, S.; Dorland, T.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Flucke, G.; Gallo, E.; Garcia, J. Garay; Geiser, A.; Gizhko, A.; Luyando, J. M. Grados; Gunnellini, P.; Hauk, J.; Hempel, M.; Jung, H.; Kalogeropoulos, A.; Karacheban, O.; Kasemann, M.; Katsas, P.; Kieseler, J.; Kleinwort, C.; Korol, I.; Lange, W.; Leonard, J.; Lipka, K.; Lobanov, A.; Lohmann, W.; Mankel, R.; Marfin, I.; Melzer-Pellmann, I. -A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Nayak, A.; Ntomari, E.; Perrey, H.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Roland, B.; Sahin, M. Oe.; Saxena, P.; Schoerner-Sadenius, T.; Schroeder, M.; Seitz, C.; Spannagel, S.; Trippkewitz, K. D.; Walsh, R.; Wissing, C.] DESY, Hamburg, Germany. [Gallo, E.; Blobel, V.; Vignali, M. Centis; Draeger, A. R.; Erfle, J.; Garutti, E.; Goebel, K.; Gonzalez, D.; Goerner, M.; Haller, J.; Hoffmann, M.; Hoeing, R. S.; Junkes, A.; Klanner, R.; Kogler, R.; Lapsien, T.; Lenz, T.; Marchesini, I.; Marconi, D.; Meyer, M.; Nowatschin, D.; Ott, J.; Pantaleo, F.; Peiffer, T.; Perieanu, A.; Pietsch, N.; Poehlsen, J.; Rathjens, D.; Sander, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Schwandt, J.; Seidel, M.; Sola, V.; Stadie, H.; Tholen, H.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.; Vormwald, B.] Univ Hamburg, Hamburg, Germany. [Akbiyik, M.; Barth, C.; Baus, C.; Berger, J.; Boeser, C.; Butz, E.; Chwalek, T.; Colombo, F.; De Boer, W.; Descroix, A.; Dierlamm, A.; Fink, S.; Frensch, F.; Giffels, M.; Gilbert, A.; Hartmann, F.; Heindl, S. M.; Husemann, U.; Katkov, I.; Kornmayer, A.; Pardo, P. Lobelle; Maier, B.; Mildner, H.; Mozer, M. U.; Mueller, T.; Mueller, Th.; Plagge, M.; Quast, G.; Rabbertz, K.; Roecker, S.; Roscher, F.; Simonis, H. J.; Stober, F. M.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weber, M.; Weiler, T.; Woehrmann, C.; Wolf, R.] Univ Karlsruhe, Inst Expt Kernphys, Karlsruhe, Germany. [Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Psallidas, A.; Topsis-Giotis, I.] NCSR Demokritos, Inst Nucl & Particle Phys, Aghia Paraskevi, Greece. [Agapitos, A.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Tziaferi, E.; Sphicas, P.] Univ Athens, Athens, Greece. [Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Loukas, N.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Strologas, J.] Univ Ioannina, GR-45110 Ioannina, Greece. [Bencze, G.; Hajdu, C.; Hazi, A.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Bartok, M.] Wigner Res Ctr Phys, Budapest, Hungary. [Horvath, D.; Beni, N.; Czellar, S.; Karancsi, J.; Molnar, J.; Szillasi, Z.] Inst Nucl Res ATOMKI, Debrecen, Hungary. [Karancsi, J.; Bartok, M.; Makovec, A.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.] Univ Debrecen, Debrecen, Hungary. [Mal, P.; Mandal, K.; Sahoo, D. K.; Sahoo, N.; Swain, S. K.] Natl Inst Sci Educ & Res, Bhubaneswar, Orissa, India. [Bansal, S.; Beri, S. B.; Bhatnagar, V.; Chawla, R.; Gupta, R.; Bhawandeep, U.; Kalsi, A. K.; Kaur, A.; Kaur, M.; Kumar, R.; Mehta, A.; Mittal, M.; Singh, J. B.; Walia, G.] Panjab Univ, Chandigarh 160014, India. [Kumar, Ashok; Bhardwaj, A.; Choudhary, B. C.; Garg, R. B.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Nishu, N.; Ranjan, K.; Sharma, R.; Sharma, V.] Univ Delhi, Delhi 110007, India. [Bhardwaj, R.; Bhattacharya, S.; Chatterjee, K.; Dey, S.; Dutta, S.; Jain, Sa.; Majumdar, N.; Modak, A.; Mondal, K.; Mukherjee, S.; Mukhopadhyay, S.; Roy, A.; Roy, D.; Chowdhury, S. Roy; Sarkar, S.; Sharan, M.] Saha Inst Nucl Phys, Kolkata, India. [Abdulsalam, A.; Chudasama, R.; Dutta, D.; Jha, V.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Topkar, A.] Bhabha Atom Res Ctr, Bombay 400085, Maharashtra, India. [Aziz, T.; Banerjee, S.; Bhowmik, S.; Chatterjee, R. M.; Dewanjee, R. K.; Dugad, S.; Ganguly, S.; Ghosh, S.; Guchait, M.; Gurtu, A.; Kole, G.; Kumar, S.; Mahakud, B.; Maity, M.; Majumder, G.; Mazumdar, K.; Mitra, S.; Mohanty, G. B.; Parida, B.; Sarkar, T.; Sur, N.; Sutar, B.; Wickramage, N.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. [Bakhshiansohi, H.; Behnamian, H.; Etesami, S. M.; Fahim, A.; Goldouzian, R.; Khakzad, M.; Najafabadi, M. Mohammadi; Naseri, M.; Mehdiabadi, S. Paktinat; Hosseinabadi, F. Rezaei; Safarzadeh, B.; Zeinali, M.] Inst Res Fundamental Sci IPM, Tehran, Iran. [Felcini, M.; Grunewald, M.] Univ Coll Dublin, Dublin 2, Ireland. [Abbrescia, M.; Calabria, C.; Caputo, C.; Colaleo, A.; Creanza, D.; Cristella, L.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Ranieri, A.; Selvaggi, G.; Silvestris, L.; Venditti, R.; Verwilligen, P.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Abbrescia, M.; Calabria, C.; Caputo, C.; Cristella, L.; De Palma, M.; Miniello, G.; Nuzzo, S.; Pompili, A.; Radogna, R.; Selvaggi, G.; Venditti, R.] Univ Bari, Bari, Italy. [Creanza, D.; De Filippis, N.; Iaselli, G.; Maggi, G.; My, S.; Pugliese, G.] Politecn Bari, Bari, Italy. [Abbiendi, G.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Chhibra, S. S.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.] Ist Nazl Fis Nucl, Sez Bologna, I-40126 Bologna, Italy. [Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Chhibra, S. S.; Codispoti, G.; Cuffiani, M.; Navarria, F. L.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.] Univ Bologna, Bologna, Italy. [Cappello, G.; Chiorboli, M.; Costa, S.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.] Ist Nazl Fis Nucl, Sez Catania, I-95129 Catania, Italy. [Chiorboli, M.; Costa, S.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.] Univ Catania, Catania, Italy. CSFNSM, Catania, Italy. [Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Gonzi, S.; Gori, V.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.; Viliani, L.] Ist Nazl Fis Nucl, Sez Firenze, I-50125 Florence, Italy. [Ciulli, V.; D'Alessandro, R.; Focardi, E.; Gonzi, S.; Gori, V.; Lenzi, P.; Tropiano, A.; Viliani, L.] Univ Florence, Florence, Italy. [Fabbri, F.; Benussi, L.; Bianco, S.; Piccolo, D.; Primavera, F.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Calvelli, V.; Ferro, F.; Lo Vetere, M.; Monge, M. R.; Robutti, E.; Tosi, S.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Calvelli, V.; Lo Vetere, M.; Monge, M. R.; Tosi, S.] Univ Genoa, Genoa, Italy. [Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Gerosa, R.; Ghezzi, A.; Govoni, P.; Malvezzi, S.; Manzoni, R. A.; Marzocchi, B.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; de Fatis, T. Tabarelli] Ist Nazl Fis Nucl, Sez Milano Bicocca, I-20133 Milan, Italy. [Dinardo, M. E.; Fiorendi, S.; Gerosa, R.; Ghezzi, A.; Govoni, P.; Manzoni, R. A.; Marzocchi, B.; Paganoni, M.; Ragazzi, S.; de Fatis, T. Tabarelli] Univ Milano Bicocca, Milan, Italy. [Buontempo, S.; Cavallo, N.; Di Guida, S.; Esposito, M.; Fabozzi, F.; Iorio, A. O. M.; Lanza, G.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.; Sciacca, C.] Ist Nazl Fis Nucl, Sez Napoli, I-80125 Naples, Italy. [Esposito, M.; Iorio, A. O. M.; Sciacca, C.] Univ Naples Federico II, Naples, Italy. [Cavallo, N.; Fabozzi, F.] Univ Basilicata, I-85100 Potenza, Italy. [Di Guida, S.; Meola, S.] Univ G Marconi, Rome, Italy. [Azzi, P.; Bacchetta, N.; Benato, L.; Bisello, D.; Boletti, A.; Branca, A.; Carlin, R.; Checchia, P.; Dall'Osso, M.; Dorigo, T.; Dosselli, U.; Gasparini, F.; Gasparini, U.; Gonella, F.; Gozzelino, A.; Kanishchev, K.; Lacaprara, S.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Zanetti, M.; Zotto, P.; Zucchetta, A.; Zumerle, G.] Ist Nazl Fis Nucl, Sez Padova, Padua, Italy. [Benato, L.; Bisello, D.; Boletti, A.; Branca, A.; Carlin, R.; Dall'Osso, M.; Gasparini, F.; Gasparini, U.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Tosi, M.; Zotto, P.; Zucchetta, A.; Zumerle, G.] Univ Padua, Padua, Italy. [Kanishchev, K.] Univ Trento, Trento, Italy. [Braghieri, A.; Magnani, A.; Montagna, P.; Ratti, S. P.; Re, V.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.] Ist Nazl Fis Nucl, Sez Pavia, I-27100 Pavia, Italy. [Montagna, P.; Ratti, S. P.; Riccardi, C.; Vitulo, P.] Univ Pavia, I-27100 Pavia, Italy. [Solestizi, L. Alunni; Biasini, M.; Bilei, G. M.; Ciangottini, D.; Fano, L.; Lariccia, P.; Mantovani, G.; Menichelli, M.; Saha, A.; Santocchia, A.; Spiezia, A.] Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy. [Solestizi, L. Alunni; Biasini, M.; Ciangottini, D.; Fano, L.; Lariccia, P.; Mantovani, G.; Santocchia, A.; Spiezia, A.] Univ Perugia, I-06100 Perugia, Italy. [Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Broccolo, G.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Foa, L.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Serban, A. T.; Spagnolo, P.; Squillacioti, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.] Ist Nazl Fis Nucl, Pisa, Italy. [Martini, L.; Messineo, A.; Rizzi, A.; Tonelli, G.] Univ Pisa, Pisa, Italy. [Broccolo, G.; Donato, S.; Foa, L.; Ligabue, F.] Scuola Normale Super Pisa, Pisa, Italy. [Barone, L.; Cavallari, F.; D'imperio, G.; Del Re, D.; Diemoz, M.; Gelli, S.; Jorda, C.; Longo, E.; Margaroli, F.; Meridiani, P.; Organtini, G.; Paramatti, R.; Preiato, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Traczyk, P.] Ist Nazl Fis Nucl, Sez Roma, Rome, Italy. [Barone, L.; D'imperio, G.; Del Re, D.; Gelli, S.; Longo, E.; Margaroli, F.; Organtini, G.; Preiato, F.; Rahatlou, S.; Santanastasio, F.; Traczyk, P.] Univ Rome, Rome, Italy. [Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bellan, R.; Biino, C.; Cartiglia, N.; Costa, M.; Covarelli, R.; Degano, A.; Demaria, N.; Finco, L.; Kiani, B.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Monteil, E.; Musich, M.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Angioni, G. L. Pinna; Ravera, F.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Tamponi, U.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Amapane, N.; Argiro, S.; Bellan, R.; Costa, M.; Covarelli, R.; Degano, A.; Finco, L.; Kiani, B.; Migliore, E.; Monaco, V.; Monteil, E.; Obertino, M. M.; Pacher, L.; Angioni, G. L. Pinna; Ravera, F.; Romero, A.; Sacchi, R.; Solano, A.] Univ Turin, Turin, Italy. [Arcidiacono, R.; Arneodo, M.; Ruspa, M.] Univ Piemonte Orientale, Novara, Italy. [Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; La Licata, C.; Marone, M.; Schizzi, A.; Zanetti, A.] Ist Nazl Fis Nucl, Sez Trieste, Trieste, Italy. [Candelise, V.; Della Ricca, G.; La Licata, C.; Marone, M.; Schizzi, A.] Univ Trieste, Trieste, Italy. [Kropivnitskaya, A.; Nam, S. K.] Kangwon Natl Univ, Chunchon, South Korea. [Kim, D. H.; Kim, G. N.; Kim, M. S.; Kong, D. J.; Lee, S.; Oh, Y. D.; Sakharov, A.; Son, D. C.; Kamon, T.] Kyungpook Natl Univ, Daegu, South Korea. [Cifuentes, J. A. Brochero; Kim, H.; Kim, T. J.] Chonbuk Natl Univ, Jeonju, South Korea. [Song, S.] Chonnam Natl Univ, Inst Univ & Elementary Particles, Kwangju, South Korea. [Lee, S.; Kim, H.; Choi, S.; Go, Y.; Gyun, D.; Hong, B.; Jo, M.; Kim, Y.; Lee, B.; Lee, K.; Lee, K. S.; Park, S. K.; Roh, Y.] Korea Univ, Seoul, South Korea. [Yoo, H. D.] Seoul Natl Univ, Seoul, South Korea. [Kim, H.; Choi, M.; Kim, J. H.; Lee, J. S. H.; Park, I. C.; Ryu, G.; Ryu, M. S.] Univ Seoul, Seoul, South Korea. [Choi, Y.; Goh, J.; Kim, D.; Kwon, E.; Lee, J.; Yu, I.] Sungkyunkwan Univ, Suwon, South Korea. [Juodagalvis, A.; Vaitkus, J.] Vilnius State Univ, Vilnius, Lithuania. [Ahmed, I.; Ibrahim, Z. A.; Komaragiri, J. R.; Ali, M. A. B. Md; Idris, F. Mohamad; Abdullah, W. A. T. Wan; Yusli, M. N.] Univ Malaya, Natl Ctr Particle Phys, Kuala Lumpur, Malaysia. [Casimiro Linares, E.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-De La Cruz, I.; Hernandez-Almada, A.; Lopez-Fernandez, R.; Sanchez-Hernandez, A.] IPN, Ctr Invest & Estudios Avanzados, Mexico City 07738, DF, Mexico. [Carrillo Moreno, S.; Vazquez Valencia, F.] Univ Iberoamer, Mexico City, DF, Mexico. [Pedraza, I.; Salazar Ibarguen, H. A.] Benemerita Univ Autonoma Puebla, Puebla, Mexico. [Morelos Pineda, A.] Univ Autonoma San Luis Potosi, San Luis Potosi, Mexico. [Krofcheck, D.] Univ Auckland, Auckland 1, New Zealand. [Butler, P. H.] Univ Canterbury, Christchurch 1, New Zealand. [Ahmad, M.; Ahmad, A.; Hassan, Q.; Hoorani, H. R.; Khan, W. A.; Khurshid, T.; Shoaib, M.] Quaid I Azam Univ, Natl Ctr Phys, Islamabad, Pakistan. [Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Gorski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Zalewski, P.] Natl Ctr Nucl Res, Otwock, Poland. [Olschewski, M.; Brona, G.; Bunkowski, K.; Byszuk, A.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Walczak, M.] Univ Warsaw, Inst Expt Phys, Fac Phys, Warsaw, Poland. [Bargassa, P.; Beirao Da Cruz E Silva, C.; Di Francesco, A.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Leonardo, N.; Lloret Iglesias, L.; Rodrigues Antunes, J.; Seixas, J.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Vischia, P.] Lab Instrumentacao & Fis Expt Particulas, Lisbon, Portugal. [Finger, M.; Finge, M., Jr.; Tsamalaidze, Z.; Afanasiev, S.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Konoplyanikov, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Zarubin, A.] Joint Inst Nucl Res, Dubna, Russia. [Golovtsov, V.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.] Petersburg Nucl Phys Inst, Gatchina, St Petersburg, Russia. [Matveev, V.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Karneyeu, A.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Musienko, Y.] Russian Acad Sci, Inst Nucl Res, Moscow 117312, Russia. [Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Spiridonov, A.; Vlasov, E.; Zhokin, A.; Starodumov, A.; Nikitenko, A.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Bylinkin, A.; Azarkin, M.; Dremin, I.; Leonidov, A.] Natl Res Nucl Univ, Moscow Engn Phys Inst MEPhI, Moscow, Russia. [Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.] PN Lebedev Phys Inst, Moscow 117924, Russia. [Popov, A.; Zhukov, V.; Katkov, I.; Baskakov, A.; Belyaev, A.; Boos, E.; Ershov, A.; Gribushin, A.; Khein, L.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Lukina, O.; Myagkov, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.] Inst High Energy Phys, State Res Ctr Russian Federat, Protvino, Russia. [Adzic, P.; Milosevic, J.; Rekovic, V.; Milenovic, P.] Univ Belgrade, Fac Phys, Belgrade, Serbia. [Adzic, P.; Milosevic, J.; Rekovic, V.; Milenovic, P.] Univ Belgrade, Vinca Inst Nucl Sci, Belgrade, Serbia. [Alcaraz Maestre, J.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Dominguez Vazquez, D.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernandez Ramos, J. P.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Navarro De Martino, E.; Perez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Santaolalla, J.; Soares, M. S.] Ctr Invest Energet Medioambientales & Tecnol CIEM, Madrid, Spain. [Albajar, C.; de Troconiz, J. F.; Missiroli, M.; Moran, D.] Univ Autonoma Madrid, Madrid, Spain. [Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Palencia Cortezon, E.; Vizan Garcia, J. M.] Univ Oviedo, Oviedo, Spain. [Cabrillo, I. J.; Calderon, A.; Castineiras De Saa, J. R.; De Castro Manzano, P.; Duarte Campderros, J.; Fernandez, M.; Garcia-Ferrero, J.; Gomez, G.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Munoz Sanchez, F. J.; Piedra Gomez, J.; Rodrigo, T.; Rodriguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Vila, I.; Vilar Cortabitarte, R.] Univ Cantabria, CSIC, Inst Fis Cantabria IFCA, E-39005 Santander, Spain. [Rabady, D.; Merlin, J. A.; Lingemann, J.; Pantaleo, F.; Hartmann, F.; Kornmayer, A.; Tziaferi, E.; Mohanty, A. K.; Silvestris, L.; Battilana, C.; Marzocchi, B.; Di Guida, S.; Meola, S.; Paolucci, P.; Azzi, P.; Dall'Osso, M.; Zucchetta, A.; Ciangottini, D.; Donato, S.; D'imperio, G.; Traczyk, P.; Arcidiacono, R.; Finco, L.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Benaglia, A.; Bendavid, J.; Benhabib, L.; Benitez, J. F.; Berruti, G. M.; Bloch, P.; Bocci, A.; Bonato, A.; Botta, C.; Breuker, H.; Camporesi, T.; Castello, R.; Cerminara, G.; D'Alfonso, M.; d'Enterria, D.; Dabrowski, A.; Daponte, V.; David, A.; De Gruttola, M.; De Guio, F.; De Roeck, A.; De Visscher, S.; Di Marco, E.; Dobson, M.; Dordevic, M.; Dorney, B.; du Pree, T.; Duenser, M.; Dupont, N.; Elliott-Peisert, A.; Franzoni, G.; Funk, W.; Gigi, D.; Gill, K.; Giordano, D.; Girone, M.; Glege, F.; Guida, R.; Gundacker, S.; Guthoff, M.; Hammer, J.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Kirschenmann, H.; Kortelainen, M. J.; Kousouris, K.; Krajczar, K.; Lecoq, P.; Lourenco, C.; Lucchini, M. T.; Magini, N.; Malgeri, L.; Mannelli, M.; Martelli, A.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moortgat, F.; Morovic, S.; Mulders, M.; Nemallapudi, M. V.; Neugebauer, H.; Orfanelli, S.; Orsini, L.; Pape, L.; Perez, E.; Peruzzi, M.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Piparo, D.; Racz, A.; Rolandi, G.; Rovere, M.; Ruan, M.; Sakulin, H.; Schwick, C.; Sharma, A.; Silva, P.; Simon, M.; Sphicas, P.; Spiga, D.; Steggemann, J.; Stieger, B.; Stoye, M.; Takahashi, Y.; Treille, D.; Triossi, A.; Tsirou, A.; Veres, G. I.; Wardle, N.; Woehri, H. K.; Zagozdzinska, A.; Zeuner, W. D.; Ulmer, K. A.] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland. [Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Renker, D.; Rohe, T.] Paul Scherrer Inst, Villigen, Switzerland. [Bachmair, F.; Baeni, L.; Bianchini, L.; Buchmann, M. A.; Casal, B.; Dissertori, G.; Dittmar, M.; Donega, M.; Eller, P.; Grab, C.; Heidegger, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Lustermann, W.; Mangano, B.; Marionneau, M.; del Arbol, P. Martinez Ruiz; Masciovecchio, M.; Meister, D.; Micheli, F.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pata, J.; Pauss, F.; Perrozzi, L.; Quittnat, M.; Rossini, M.; Starodumov, A.; Takahashi, M.; Tavolaro, V. R.; Theofilatos, K.; Wallny, R.] ETH, Inst Particle Phys, Zurich, Switzerland. [Aarrestad, T. K.; Amsler, C.; Caminada, L.; Canelli, M. F.; Chiochia, V.; De Cosa, A.; Galloni, C.; Hinzmann, A.; Hreus, T.; Kilminster, B.; Lange, C.; Ngadiuba, J.; Pinna, D.; Robmann, P.; Ronga, F. J.; Salerno, D.; Yang, Y.] Univ Zurich, Zurich, Switzerland. [Cardaci, M.; Chen, K. H.; Doan, T. H.; Jain, Sh.; Khurana, R.; Konyushikhin, M.; Kuo, C. M.; Lin, W.; Lu, Y. J.; Yu, S. S.] Natl Cent Univ, Chungli 32054, Taiwan. [Kumar, Arun; Bartek, R.; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Chen, P. H.; Dietz, C.; Fiori, F.; Grundler, U.; Hou, W. -S.; Hsiung, Y.; Liu, Y. F.; Lu, R. -S.; Petrakou, E.; Tsai, J. F.; Tzeng, Y. M.] Natl Taiwan Univ, Taipei 10764, Taiwan. [Asavapibhop, B.; Kovitanggoon, K.; Singh, G.; Srimanobhas, N.; Suwonjandee, N.] Chulalongkorn Univ, Fac Sci, Dept Phys, Bangkok, Thailand. [Adiguzel, A.; Cerci, S.; Demiroglu, Z. S.; Dozen, C.; Girgis, S.; Gokbulut, G.; Guler, Y.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Topaksu, A. Kayis; Onengut, G.; Ozdemir, K.; Ozturk, S.; Tali, B.; Topakli, H.; Vergili, M.; Zorbilmez, C.] Cukurova Univ, Adana, Turkey. [Akin, I. V.; Bilin, B.; Bilmis, S.; Isildak, B.; Karapinar, G.; Yalvac, M.; Zeyrek, M.] Middle E Tech Univ, Dept Phys, TR-06531 Ankara, Turkey. [Albayrak, E. A.; Gulmez, E.; Kaya, M.; Kaya, O.; Yetkin, T.] Bogazici Univ, Istanbul, Turkey. [Cankocak, K.; Sen, S.; Vardarli, F. I.] Istanbul Tech Univ, TR-80626 Istanbul, Turkey. [Grynyov, B.] Natl Acad Sci Ukraine, Inst Scintillat Mat, Kharkov, Ukraine. [Levchuk, L.; Sorokin, P.] Kharkov Phys & Technol Inst, Natl Sci Ctr, UA-310108 Kharkov, Ukraine. [Aggleton, R.; Ball, F.; Beck, L.; Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Meng, Z.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Sakuma, T.; El Nasr-storey, S. Seif; Senkin, S.; Smith, D.; Smith, V. J.] Univ Bristol, Bristol, Avon, England. [Belyaev, A.; Barducci, D.; Bell, K. W.; Brew, C.; Brown, R. M.; Cieri, D.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Williams, T.; Womersley, W. J.; Worm, S. D.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Della Ricca, G.; Baber, M.; Bainbridge, R.; Buchmuller, O.; Bundock, A.; Burton, D.; Casasso, S.; Citron, M.; Colling, D.; Corpe, L.; Cripps, N.; Dauncey, P.; Davies, G.; De Wit, A.; Dunne, P.; Elwood, A.; Ferguson, W.; Fulcher, J.; Futyan, D.; Hall, G.; Iles, G.; Kenzie, M.; Lane, R.; Lucas, R.; Lyons, L.; Magnan, A. -M.; Malik, S.; Nash, J.; Nikitenko, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Raymond, D. M.; Richards, A.; Rose, A.; Seez, C.; Tapper, A.; Uchida, K.; Acosta, M. Vazquez; Virdee, T.; Zenz, S. C.] Univ London Imperial Coll Sci Technol & Med, London, England. [Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Borzou, A.; Call, K.; Dittmann, J.; Hatakeyama, K.; Kasmi, A.; Liu, H.; Pastika, N.] Baylor Univ, Waco, TX 76798 USA. [Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.] Univ Alabama, Tuscaloosa, AL USA. [Avetisyan, A.; Bose, T.; Fantasia, C.; Gastler, D.; Lawson, P.; Rankin, D.; Richardson, C.; Rohlf, J.; John, J. St.; Sulak, L.; Zou, D.] Boston Univ, Boston, MA 02215 USA. [Bhattacharya, S.; Alimena, J.; Berry, E.; Cutts, D.; Dhingra, N.; Ferapontov, A.; Garabedian, A.; Hakala, J.; Heintz, U.; Laird, E.; Landsberg, G.; Mao, Z.; Narain, M.; Piperov, S.; Sagir, S.; Sinthuprasith, T.; Syarif, R.] Brown Univ, Providence, RI 02912 USA. [Calderon, A.; Breedon, R.; Breto, G.; Sanchez, M. Calderon De La Barca; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Gardner, M.; Ko, W.; Lander, R.; Mulhearn, M.; Pellett, D.; Pilot, J.; Ricci-Tam, F.; Shalhout, S.; Smith, J.; Squires, M.; Stolp, D.; Tripathi, M.; Wilbur, S.; Yohay, R.] Univ Calif Davis, Davis, CA 95616 USA. [Weber, M.; Cousins, R.; Everaerts, P.; Farrell, C.; Hauser, J.; Ignatenko, M.; Saltzberg, D.; Takasugi, E.; Valuev, V.] Univ Calif Los Angeles, Los Angeles, CA USA. [Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Hanson, G.; Heilman, J.; Paneva, M. Ivova; Jandir, P.; Kennedy, E.; Lacroix, F.; Long, O. R.; Luthra, A.; Malberti, M.; Negrete, M. Olmedo; Shrinivas, A.; Wei, H.; Wimpenny, S.; Yates, B. R.] Univ Calif Riverside, Riverside, CA 92521 USA. [Sharma, V.; Abdulsalam, A.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; D'Agnolo, R. T.; Holzner, A.; Kelley, R.; Klein, D.; Letts, J.; Macneill, I.; Olivito, D.; Padhi, S.; Pieri, M.; Sani, M.; Simon, S.; Tadel, M.; Vartak, A.; Wasserbaech, S.; Welke, C.; Wuerthwein, F.; Yagil, A.; Della Porta, G. Zevi] Univ Calif San Diego, La Jolla, CA 92093 USA. [Barge, D.; Bradmiller-Feld, J.; Campagnari, C.; Dishaw, A.; Dutta, V.; Flowers, K.; Sevilla, M. Franco; Geffert, P.; George, C.; Golf, F.; Gouskos, L.; Gran, J.; Incandela, J.; Justus, C.; Mccoll, N.; Mullin, S. D.; Richman, J.; Stuart, D.; Suarez, I.; To, W.; West, C.; Yoo, J.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Anderson, D.; Apresyan, A.; Bornheim, A.; Bunn, J.; Chen, Y.; Duarte, J.; Mott, A.; Newman, H. B.; Pena, C.; Pierini, M.; Spiropulu, M.; Vlimant, J. R.; Xie, S.; Zhu, R. Y.] CALTECH, Pasadena, CA 91125 USA. [Andrews, M. B.; Azzolini, V.; Calamba, A.; Carlson, B.; Ferguson, T.; Paulini, M.; Russ, J.; Sun, M.; Vogel, H.; Vorobiev, I.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Cumalat, J. P.; Ford, W. T.; Gaz, A.; Jensen, F.; Johnson, A.; Krohn, M.; Mulholland, T.; Nauenberg, U.; Stenson, K.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Alexander, J.; Chatterjee, A.; Chaves, J.; Chu, J.; Dittmer, S.; Eggert, N.; Mirman, N.; Kaufman, G. Nicolas; Patterson, J. R.; Rinkevicius, A.; Ryd, A.; Skinnari, L.; Soffi, L.; Sun, W.; Tan, S. M.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Weng, Y.; Wittich, P.] Cornell Univ, Ithaca, NY USA. [Banerjee, S.; Abdullin, S.; Albrow, M.; Anderson, J.; Apollinari, G.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gottschalk, E.; Gray, L.; Green, D.; Gruenendahl, S.; Gutsche, O.; Hanlon, J.; Hare, D.; Harris, R. M.; Hasegawa, S.; Hirschauer, J.; Hu, Z.; Jindariani, S.; Johnson, M.; Joshi, U.; Jung, A. W.; Klima, B.; Kreis, B.; Kwan, S.; Lammel, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, T.; De Sa, R. Lopes; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Outschoorn, V. I. Martinez; Maruyama, S.; Mason, D.; McBride, P.; Merkel, P.; Mishra, K.; Mrenna, S.; Nahn, S.; Newman-Holmes, C.; O'Dell, V.; Pedro, K.; Prokofyev, O.; Rakness, G.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vernieri, C.; Verzocchi, M.; Vidal, R.; Weber, H. A.; Whitbeck, A.; Yang, F.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Carnes, A.; Carver, M.; Curry, D.; Das, S.; Di Giovanni, G. P.; Field, R. D.; Furic, I. K.; Hugon, J.; Konigsberg, J.; Korytov, A.; Low, J. F.; Ma, P.; Matchev, K.; Mei, H.; Milenovic, P.; Mitselmakher, G.; Rank, D.; Rossin, R.; Shchutska, L.; Snowball, M.; Sperka, D.; Terentyev, N.; Thomas, L.; Wang, J.; Wang, S.; Yelton, J.] Univ Florida, Gainesville, FL USA. [Hewamanage, S.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.] Florida Int Univ, Miami, FL 33199 USA. [Ackert, A.; Adams, J. R.; Adams, T.; Askew, A.; Bochenek, J.; Diamond, B.; Haas, J.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Khatiwada, A.; Prosper, H.; Weinberg, M.] Florida State Univ, Tallahassee, FL 32306 USA. [Baarmand, M. M.; Bhopatkar, V.; Colafranceschi, S.; Hohlmann, M.; Kalakhety, H.; Noonan, D.; Roy, T.; Yumiceva, F.] Florida Inst Technol, Melbourne, FL 32901 USA. [Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Kurt, P.; O'Brien, C.; Gonzalez, I. D. Sandoval; Silkworth, C.; Turner, P.; Varelas, N.; Wu, Z.; Zakaria, M.] Univ Illinois, Chicago, IL USA. [Bilki, B.; Clarida, W.; Dilsiz, K.; Durgut, S.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J. -P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Snyder, C.; Tan, P.; Tiras, E.; Wetzel, J.; Yi, K.] Univ Iowa, Iowa City, IA USA. [Anderson, I.; Barnett, B. A.; Blumenfeld, B.; Eminizer, N.; Fehling, D.; Feng, L.; Gritsan, A. V.; Maksimovic, P.; Martin, C.; Osherson, M.; Roskes, J.; Sady, A.; Sarica, U.; Swartz, M.; Xiao, M.; Xin, Y.; You, C.] Johns Hopkins Univ, Baltimore, MD USA. [Baringer, P.; Bean, A.; Benelli, G.; Bruner, C.; Kenny, R. P., III; Majumder, D.; Malek, M.; Murray, M.; Sanders, S.; Stringer, R.; Wang, Q.] Univ Kansas, Lawrence, KS 66045 USA. [Ivanov, A.; Kaadze, K.; Khalil, S.; Makouski, M.; Maravin, Y.; Mohammadi, A.; Saini, L. K.; Skhirtladze, N.; Toda, S.] Kansas State Univ, Manhattan, KS 66506 USA. [Lange, D.; Rebassoo, F.; Wright, D.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Anelli, C.; Baden, A.; Baron, O.; Belloni, A.; Calvert, B.; Eno, S. C.; Ferraioli, C.; Gomez, J. A.; Hadley, N. J.; Jabeen, S.; Kellogg, R. G.; Kolberg, T.; Kunkle, J.; Lu, Y.; Mignerey, A. C.; Shin, Y. H.; Skuja, A.; Tonjes, M. B.; Tonwar, S. C.] Univ Maryland, College Pk, MD 20742 USA. [Wang, J.; Apyan, A.; Barbieri, R.; Baty, A.; Bierwagen, K.; Brandt, S.; Busza, W.; Cali, I. A.; Demiragli, Z.; Di Matteo, L.; Ceballos, G. Gomez; Goncharov, M.; Gulhan, D.; Iiyama, Y.; Innocenti, G. M.; Klute, M.; Kovalskyi, D.; Lai, Y. S.; Lee, Y. -J.; Levin, A.; Luckey, P. D.; Marini, A. C.; Mcginn, C.; Mironov, C.; Niu, X.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Salfeld-Nebgen, J.; Stephans, G. S. F.; Sumorok, K.; Varma, M.; Velicanu, D.; Veverka, J.; Wang, T. W.; Wyslouch, B.; Yang, M.; Zhukova, V.] MIT, Cambridge, MA 02139 USA. [Dahmes, B.; Evans, A.; Finkel, A.; Gude, A.; Hansen, P.; Kalafut, S.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Lesko, Z.; Mans, J.; Nourbakhsh, S.; Ruckstuhl, N.; Rusack, R.; Tambe, N.; Turkewitz, J.] Univ Minnesota, Minneapolis, MN USA. [Acosta, J. G.; Oliveros, S.] Univ Mississippi, Oxford, MS USA. [Avdeeva, E.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Fangmeier, C.; Suarez, R. Gonzalez; Kamalieddin, R.; Keller, J.; Knowlton, D.; Kravchenko, I.; Lazo-Flores, J.; Meier, F.; Monroy, J.; Ratnikov, F.; Siado, J. E.; Snow, G. R.] Univ Nebraska, Lincoln, NE USA. [Kumar, A.; Alyari, M.; Dolen, J.; George, J.; Godshalk, A.; Harrington, C.; Iashvili, I.; Kaisen, J.; Kharchilava, A.; Rappoccio, S.] SUNY Buffalo, Buffalo, NY USA. [Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Hortiangtham, A.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; De Lima, R. Teixeira; Trocino, D.; Wang, R. -J.; Wood, D.; Zhang, J.] Northeastern Univ, Boston, MA 02115 USA. [Hahn, K. A.; Kubik, A.; Mucia, N.; Odell, N.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Sung, K.; Trovato, M.; Velasco, M.] Northwestern Univ, Evanston, IL USA. [Brinkerhoff, A.; Dev, N.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Lynch, S.; Marinelli, N.; Meng, F.; Mueller, C.; Musienko, Y.; Pearson, T.; Planer, M.; Reinsvold, A.; Ruchti, R.; Smith, G.; Taroni, S.; Valls, N.; Wayne, M.; Wolf, M.; Woodard, A.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Antonelli, L.; Brinson, J.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Hart, A.; Hill, C.; Hughes, R.; Ji, W.; Kotov, K.; Ling, T. Y.; Liu, B.; Luo, W.; Puigh, D.; Rodenburg, M.; Winer, B. L.; Wulsin, H. W.] Ohio State Univ, Columbus, OH 43210 USA. [Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Koay, S. A.; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Palmer, C.; Piroue, P.; Quan, X.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zuranski, A.] Princeton Univ, Princeton, NJ 08544 USA. [Malik, S.] Univ Puerto Rico, Mayaguez, PR USA. [Savoy-Navarro, A.; Barnes, V. E.; Benedetti, D.; Bortoletto, D.; Gutay, L.; Jha, M. K.; Jones, M.; Jung, K.; Miller, D. H.; Neumeister, N.; Radburn-Smith, B. C.; Shi, X.; Shipsey, I.; Silvers, D.; Sun, J.; Svyatkovskiy, A.; Wang, F.; Xie, W.; Xu, L.] Purdue Univ, W Lafayette, IN 47907 USA. [Parashar, N.; Stupak, J.] Purdue Univ Calumet, Hammond, LA USA. [Adair, A.; Akgun, B.; Chen, Z.; Ecklund, K. M.; Geurts, F. J. M.; Guilbaud, M.; Li, W.; Michlin, B.; Northup, M.; Padley, B. P.; Redjimi, R.; Roberts, J.; Rorie, J.; Tu, Z.; Zabel, J.] Rice Univ, Houston, TX USA. [Betchart, B.; Bodek, A.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Han, J.; Harel, A.; Hindrichs, O.; Khukhunaishvili, A.; Petrillo, G.; Verzetti, M.] Univ Rochester, Rochester, NY 14627 USA. [Arora, S.; Barker, A.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Duggan, D.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Hughes, E.; Kaplan, S.; Elayavalli, R. Kunnawalkam; Lath, A.; Nash, K.; Park, M.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.] Rutgers State Univ, Piscataway, NJ USA. [Foerster, M.; Riley, G.; Rose, K.; Spanier, S.; York, A.] Univ Tennessee, Knoxville, TN USA. [Rose, A.; Mueller, C.; Bouhali, O.; Hernandez, A. Castaneda; Dalchenko, M.; De Mattia, M.; Delgado, A.; Dildick, S.; Eusebi, R.; Flanagan, W.; Gilmore, J.; Kamon, T.; Krutelyov, V.; Osipenkov, I.; Pakhotin, Y.; Patel, R.; Perloff, A.; Safonov, A.; Tatarinov, A.; Ulmer, K. A.] Texas A&M Univ, College Stn, TX USA. [Akchurin, N.; Cowden, C.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Libeiro, T.; Undleeb, S.; Volobouev, I.] Texas Tech Univ, Lubbock, TX 79409 USA. [Mao, Y.; Appelt, E.; Delannoy, A. G.; Greene, S.; Gurrola, A.; Janjam, R.; Johns, W.; Maguire, C.; Melo, A.; Ni, H.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.; Xu, Q.] Vanderbilt Univ, Nashville, TN 37235 USA. [Arenton, M. W.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Li, H.; Lin, C.; Neu, C.; Sun, X.; Wang, Y.; Wolfe, E.; Wood, J.; Xia, F.] Univ Virginia, Charlottesville, VA USA. [Clarke, C.; Harr, R.; Karchin, P. E.; Don, C. Kottachchi Kankanamge; Lamichhane, P.; Sturdy, J.] Wayne State Univ, Detroit, MI USA. [Sharma, A.; Belknap, D. A.; Carlsmith, D.; Cepeda, M.; Dasu, S.; Dodd, L.; Duric, S.; Friis, E.; Gomber, B.; Grothe, M.; Hall-Wilton, R.; Herndon, M.; Herve, A.; Klabbers, P.; Lanaro, A.; Levine, A.; Long, K.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Perry, T.; Pierro, G. A.; Polese, G.; Ruggles, T.; Sarangi, T.; Savin, A.; Smith, N.; Smith, W. H.; Taylor, D.; Woods, N.] Univ Wisconsin, Madison, WI 53706 USA. [Fruehwirth, R.; Jeitler, M.; Krammer, M.; Schieck, J.; Wulz, C. -E.] Vienna Univ Technol, A-1040 Vienna, Austria. [Beluffi, C.] Univ Strasbourg, Univ Haute Alsace Mulhouse, CNRS IN2P3, Inst Pluridisciplinaire Hubert Curien, Strasbourg, France. [Chinellato, J.; Tonelli Manganote, E. J.] Univ Estadual Campinas, Campinas, SP, Brazil. [Moon, C. S.] CNRS, IN2P3, Paris, France. [Plestina, R.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Assran, Y.] Suez Univ, Suez, Egypt. [El Sawy, M.] Beni Suef Univ, Bani Suwayf, Egypt. [El Sawy, M.; Elgammal, S.] British Univ Egypt, Cairo, Egypt. [Kamel, A. Ellithi] Cairo Univ, Cairo, Egypt. [Kamel, M.; Mahmoud, M. A.; Mohammed, Y.] Fayoum Univ, Al Fayyum, Egypt. [Agram, J. -L.; Conte, E.; Fontaine, J. -C.] Univ Haute Alsace, Mulhouse, France. [Hempel, M.; Karacheban, O.; Lohmann, W.; Marfin, I.] Brandenburg Tech Univ Cottbus, D-03044 Cottbus, Germany. [Vesztergombi, G.; Veres, G. I.] Eotvos Lorand Univ, Budapest, Hungary. [Bhowmik, S.; Maity, M.; Sarkar, T.] Visva Bharati Univ, Santini Ketan, W Bengal, India. [Gurtu, A.] King Abdulaziz Univ, Jeddah 21413, Saudi Arabia. [Wickramage, N.] Univ Ruhuna, Matara, Sri Lanka. [Etesami, S. M.] Isfahan Univ Technol, Esfahan, Iran. [Fahim, A.] Univ Tehran, Dept Engn Sci, Tehran, Iran. [Safarzadeh, B.] Islamic Azad Univ, Plasma Phys Res Ctr, Sci & Res Branch, Tehran, Iran. [Androsov, K.; Ciocci, M. A.; Grippo, M. T.; Squillacioti, P.] Univ Siena, I-53100 Siena, Italy. [Ali, M. A. B. Md] Int Islamic Univ Malaysia, Kuala Lumpur, Malaysia. [Idris, F. Mohamad] MOSTI, Malaysian Nucl Agcy, Kajang, Malaysia. [Heredia-De La Cruz, I.] Consejo Nacl Ciencia & Technol, Mexico City, DF, Mexico. [Byszuk, A.; Zagozdzinska, A.] Warsaw Univ Technol, Inst Elect Syst, Warsaw, Poland. [Kim, V.] St Petersburg State Polytech Univ, St Petersburg, Russia. [Orfanelli, S.] Natl Tech Univ Athens, Athens, Greece. [Rolandi, G.] Ist Nazl Fis Nucl, Scuola Normale & Sez, Pisa, Italy. [Amsler, C.] Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Cerci, S.; Tali, B.] Adiyaman Univ, Adiyaman, Turkey. [Kangal, E. E.] Mersin Univ, Mersin, Turkey. [Onengut, G.] Cag Univ, Mersin, Turkey. [Ozdemir, K.] Piri Reis Univ, Istanbul, Turkey. [Ozturk, S.; Topakli, H.] Gaziosmanpasa Univ, Tokat, Turkey. [Isildak, B.] Ozyegin Univ, Istanbul, Turkey. [Karapinar, G.] Izmir Inst Technol, Izmir, Turkey. [Albayrak, E. A.; Ozok, F.] Mimar Sinan Univ, Istanbul, Turkey. [Kaya, M.] Marmara Univ, Istanbul, Turkey. [Kaya, O.] Kafkas Univ, Kars, Turkey. [Yetkin, T.] Yildiz Tekn Univ, Istanbul, Turkey. [Sen, S.] Hacettepe Univ, Ankara, Turkey. [Newbold, D. M.; Lucas, R.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Belyaev, A.] Univ Southampton, Sch Phys & Astron, Southampton, Hants, England. [Acosta, M. Vazquez] Inst Astrofis Canarias, E-38200 San Cristobal la Laguna, Spain. [Wasserbaech, S.] Utah Valley Univ, Orem, UT USA. [Colafranceschi, S.] Univ Rome, Fac Ingn, Rome, Italy. [Bilki, B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Mermerkaya, H.] Erzincan Univ, Erzincan, Turkey. [Bouhali, O.; Hernandez, A. Castaneda] Texas A&M Univ Qatar, Doha, Qatar. RP Khachatryan, V (reprint author), Yerevan Phys Inst, Yerevan 375036, Armenia. RI Inst. of Physics, Gleb Wataghin/A-9780-2017; Dremin, Igor/K-8053-2015; ciocci, maria agnese /I-2153-2015; Sguazzoni, Giacomo/J-4620-2015; Varela, Joao/K-4829-2016; Manganote, Edmilson/K-8251-2013; Ferguson, Thomas/O-3444-2014; de Jesus Damiao, Dilson/G-6218-2012; Matorras, Francisco/I-4983-2015; Dogra, Sunil /B-5330-2013; TUVE', Cristina/P-3933-2015; Leonidov, Andrey/M-4440-2013; Moraes, Arthur/F-6478-2010; Lokhtin, Igor/D-7004-2012; VARDARLI, Fuat Ilkehan/B-6360-2013; Menasce, Dario/A-2168-2016; Paganoni, Marco/A-4235-2016; Mundim, Luiz/A-1291-2012; Konecki, Marcin/G-4164-2015; Vogel, Helmut/N-8882-2014; Benussi, Luigi/O-9684-2014; Xie, Si/O-6830-2016; Leonardo, Nuno/M-6940-2016; Goh, Junghwan/Q-3720-2016; Ruiz, Alberto/E-4473-2011; Petrushanko, Sergey/D-6880-2012; Govoni, Pietro/K-9619-2016; Tuominen, Eija/A-5288-2017; Yazgan, Efe/C-4521-2014; Paulini, Manfred/N-7794-2014; Chinellato, Jose Augusto/I-7972-2012; Tomei, Thiago/E-7091-2012; Kirakosyan, Martin/N-2701-2015; Gulmez, Erhan/P-9518-2015; Tinoco Mendes, Andre David/D-4314-2011; Seixas, Joao/F-5441-2013; Verwilligen, Piet/M-2968-2014; Vilela Pereira, Antonio/L-4142-2016; Sznajder, Andre/L-1621-2016; Da Silveira, Gustavo Gil/N-7279-2014; Mora Herrera, Maria Clemencia/L-3893-2016; Hobson, Peter/C-8919-2016; Malakhov, Alexander/D-5702-2016; Calvo Alamillo, Enrique/L-1203-2014; Flix, Josep/G-5414-2012; Hernandez Calama, Jose Maria/H-9127-2015; Cerrada, Marcos/J-6934-2014; Andreev, Vladimir/M-8665-2015; Perez-Calero Yzquierdo, Antonio/F-2235-2013; Novaes, Sergio/D-3532-2012; Della Ricca, Giuseppe/B-6826-2013; Montanari, Alessandro/J-2420-2012; Azarkin, Maxim/N-2578-2015 OI ciocci, maria agnese /0000-0003-0002-5462; Boccali, Tommaso/0000-0002-9930-9299; Gerosa, Raffaele/0000-0001-8359-3734; Attia Mahmoud, Mohammed/0000-0001-8692-5458; Bilki, Burak/0000-0001-9515-3306; Sguazzoni, Giacomo/0000-0002-0791-3350; Demaria, Natale/0000-0003-0743-9465; Ciulli, Vitaliano/0000-0003-1947-3396; Androsov, Konstantin/0000-0003-2694-6542; Varela, Joao/0000-0003-2613-3146; Ferguson, Thomas/0000-0001-5822-3731; de Jesus Damiao, Dilson/0000-0002-3769-1680; Matorras, Francisco/0000-0003-4295-5668; TUVE', Cristina/0000-0003-0739-3153; Moraes, Arthur/0000-0002-5157-5686; Menasce, Dario/0000-0002-9918-1686; Paganoni, Marco/0000-0003-2461-275X; Mundim, Luiz/0000-0001-9964-7805; Konecki, Marcin/0000-0001-9482-4841; Vogel, Helmut/0000-0002-6109-3023; Benussi, Luigi/0000-0002-2363-8889; Xie, Si/0000-0003-2509-5731; Leonardo, Nuno/0000-0002-9746-4594; Goh, Junghwan/0000-0002-1129-2083; Ruiz, Alberto/0000-0002-3639-0368; Govoni, Pietro/0000-0002-0227-1301; Tuominen, Eija/0000-0002-7073-7767; Yazgan, Efe/0000-0001-5732-7950; Paulini, Manfred/0000-0002-6714-5787; Viliani, Lorenzo/0000-0002-1909-6343; ROMERO ABAD, DAVID/0000-0001-5088-9301; Gallinaro, Michele/0000-0003-1261-2277; Chinellato, Jose Augusto/0000-0002-3240-6270; Tomei, Thiago/0000-0002-1809-5226; Gulmez, Erhan/0000-0002-6353-518X; Tinoco Mendes, Andre David/0000-0001-5854-7699; Seixas, Joao/0000-0002-7531-0842; Vilela Pereira, Antonio/0000-0003-3177-4626; Sznajder, Andre/0000-0001-6998-1108; Da Silveira, Gustavo Gil/0000-0003-3514-7056; Mora Herrera, Maria Clemencia/0000-0003-3915-3170; Hobson, Peter/0000-0002-5645-5253; Calvo Alamillo, Enrique/0000-0002-1100-2963; Flix, Josep/0000-0003-2688-8047; Hernandez Calama, Jose Maria/0000-0001-6436-7547; Cerrada, Marcos/0000-0003-0112-1691; Perez-Calero Yzquierdo, Antonio/0000-0003-3036-7965; Novaes, Sergio/0000-0003-0471-8549; Della Ricca, Giuseppe/0000-0003-2831-6982; Montanari, Alessandro/0000-0003-2748-6373; FU BMWFW (Austria); FWF (Austria); FNRS (Belgium); FWO (Belgium); CNPq (Brazil); CAPES (Brazil); FAPERJ (Brazil); FAPESP (Brazil); MES (Bulgaria); CERN; CAS (China); MOST (China); NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); CSF (Croatia); RPF (Cyprus); MoER (Estonia); ERC IUT (Estonia); ERDF (Estonia); Academy of Finland (Finland); MEC (Finland); HIP (Finland); CEA (France); CNRS/IN2P3 (France); BMBF (Germany); DFG (Germany); HGF (Germany); GSRT (Greece); OTKA (Hungary); NIH (Hungary); DAE (India); DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP (Republic of Korea); NRF (Republic of Korea); LAS (Lithuania); MOE (Malaysia); UM (Malaysia); CINVESTAV (Mexico); CONACYT (Mexico); SEP (Mexico); UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE (Poland); NSC (Poland); FCT (Portugal); JINR (Dubna); MON (Russia); RosAtom (Russia); RAS (Russia); RFBR (Russia); MESTD (Serbia); SEIDI (Spain); CPAN (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter (Thailand); IPST (Thailand); STAR (Thailand); NSTDA (Thailand); TUBITAK (Turkey); TAEK (Turkey); NASU (Ukraine); SFFR (Ukraine); STFC (United Kingdom); DOE (USA); NSF (USA); Marie-Curie programme; European Research Council; EPLANET (European Union); Leventis Foundation; Alfred P. Sloan Foundation; Alexander von Humboldt Foundation; Belgian Federal Science Policy Office; Fonds pour la Formation a la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium); Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; Council of Science and Industrial Research, India; HOMING PLUS programme of the Foundation for Polish Science; European Union, Regional Development Fund; Compagnia di San Paolo (Torino); Consorzio per la Fisica (Trieste); MIUR (Italy) [20108T4XTM]; Thalis and Aristeia programmes; EU-ESF; Greek NSRF; National Priorities Research Program by Qatar National Research Fund; Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University (Thailand); Welch Foundation FX We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centres and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWFW and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MOST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); MoER, ERC IUT and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS and RFBR (Russia); MESTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (USA).; Individuals have received support from the Marie-Curie programme and the European Research Council and EPLANET (European Union); the Leventis Foundation; the Alfred P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation a la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Council of Science and Industrial Research, India; the HOMING PLUS programme of the Foundation for Polish Science, cofinanced from European Union, Regional Development Fund; the Compagnia di San Paolo (Torino); the Consorzio per la Fisica (Trieste); MIUR project 20108T4XTM (Italy); the Thalis and Aristeia programmes cofinanced by EU-ESF and the Greek NSRF; the National Priorities Research Program by Qatar National Research Fund; the Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University (Thailand); and the Welch Foundation. NR 20 TC 12 Z9 12 U1 19 U2 85 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD DEC 17 PY 2015 VL 751 BP 143 EP 163 DI 10.1016/j.physletb.2015.10.004 PG 21 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CX0KF UT WOS:000365384600024 ER PT J AU Guo, XY Shi, SZ Xu, N Xu, Z Zhuang, PF AF Guo, Xingyu Shi, Shuzhe Xu, Nu Xu, Zhe Zhuang, Pengfei TI Magnetic field effect on charmonium formation in high energy nuclear collisions SO PHYSICS LETTERS B LA English DT Article ID HEAVY-ION COLLISIONS; QUARK-GLUON PLASMA; SUPPRESSION; SPS AB It is important to understand the strong external magnetic field generated at the very beginning of heavy ion collisions. We study the effect of the magnetic field on the anisotropic charmonium formation in Pb+Pb collisions at the LHC energy. The time dependent Schrodinger equation is employed to describe the motion of c (c) over bar pairs. We compare our model prediction of the non-collective anisotropic parameter v(2) of J/psi with CMS data at high transverse momentum. (C) 2015 The Authors. Published by Elsevier B.V. C1 [Guo, Xingyu; Shi, Shuzhe; Xu, Zhe; Zhuang, Pengfei] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China. [Guo, Xingyu; Shi, Shuzhe; Xu, Zhe; Zhuang, Pengfei] Collaborat Innovat Ctr Quantum Matter, Beijing 100084, Peoples R China. [Xu, Nu] Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. [Xu, Nu] Cent China Normal Univ, Key Lab Quark & Lepton Phys MOE, Wuhan 430079, Peoples R China. [Xu, Nu] Cent China Normal Univ, Inst Particle Phys, Wuhan 430079, Peoples R China. RP Zhuang, PF (reprint author), Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China. EM zhuangpf@mail.tsinghua.edu.cn FU NSFC [11275103, 11335005]; MOST [2013CB922000, 2014CB845400, 2015CB856900]; DOE [DE-AC03-76SF00098] FX The work is supported by the NSFC (11275103, 11335005), MOST (2013CB922000, 2014CB845400, 2015CB856900) and DOE (DE-AC03-76SF00098). NR 48 TC 5 Z9 5 U1 1 U2 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD DEC 17 PY 2015 VL 751 BP 215 EP 219 DI 10.1016/j.physletb.2015.10.038 PG 5 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CX0KF UT WOS:000365384600034 ER PT J AU Adamczyk, L Adkins, JK Agakishiev, G Aggarwal, MM Ahammed, Z Alekseev, I Aparin, A Arkhipkin, D Aschenauer, EC Averichev, GS Bai, X Bairathi, V Banerjee, A Bellwied, R Bhasin, A Bhati, AK Bhattarai, P Bielcik, J Bielcikova, J Bland, LC Bordyuzhin, G Bouchet, J Brandenburg, D Brandin, AV Bunzarov, I Butterworth, J Caines, H Sanchez, MCDLB Campbell, JM Cebra, D Cervantes, MC Chakaberia, I Chaloupka, P Chang, Z Chattopadhyay, S Chen, X Chen, JH Cheng, J Cherney, M Christie, W Contin, G Crawford, HJ Das, S De Silva, LC Debbe, RR Dedovich, TG Deng, J Derevschikov, AA di Ruzza, B Didenko, L Dilks, C Dong, X Drachenberg, JL Draper, JE Du, CM Dunkelberger, LE Dunlop, JC Efimov, LG Engelage, J Eppley, G Esha, R Evdokimov, O Eyser, O Fatemi, R Fazio, S Federic, P Fedorisin, J Feng, Z Filip, P Fisyak, Y Flores, CE Fulek, L Gagliardi, CA Garand, D Geurts, F Gibson, A Girard, M Greiner, L Grosnick, D Gunarathne, DS Guo, Y Gupta, S Gupta, A Guryn, W Hamad, A Hamed, A Haque, R Harris, JW He, L Heppelmann, S Heppelmann, S Hirsch, A Hoffmann, GW Hofman, DJ Horvat, S Huang, T Huang, B Huang, HZ Huang, X Huck, P Humanic, TJ Igo, G Jacobs, WW Jang, H Jia, J Jiang, K Judd, EG Kabana, S Kalinkin, D Kang, K Kauder, K Ke, HW Keane, D Kechechyan, A Khan, ZH Kikola, DP Kisiel, A Kochenda, L Koetke, DD Kosarzewski, LK Kraishan, AF Kravtsov, P Krueger, K Kumar, L Lamont, MAC Landgraf, JM Landry, KD Lauret, J Lebedev, A Lednicky, R Lee, JH Li, X Li, W Li, ZM Li, Y Li, C Li, X Lisa, MA Liu, F Ljubicic, T Llope, WJ Lomnitz, M Longacre, RS Luo, X Ma, GL Ma, YG Ma, R Ma, L Magdy, N Majka, R Manion, A Margetis, S Markert, C Masui, H Matis, HS McDonald, D Meehan, K Mei, JC Minaev, NG Mioduszewski, S Mishra, D Mohanty, B Mondal, MM Morozov, DA Mustafa, MK Nandi, BK Nasim, M Nayak, TK Nigmatkulov, G Niida, T Nogach, LV Noh, SY Novak, J Nurushev, SB Odyniec, G Ogawa, A Oh, K Okorokov, V Olvitt, D Page, BS Pak, R Pan, YX Pandit, Y Panebratsev, Y Pawlik, B Pei, H Perkins, C Peterson, A Pile, P Pluta, J Poniatowska, K Porter, J Posik, M Poskanzer, AM Pruthi, NK Putschke, J Qiu, H Quintero, A Ramachandran, S Raniwala, R Raniwala, S Ray, RL Ritter, HG Roberts, JB Rogachevskiy, OV Romero, JL Roy, A Ruan, L Rusnak, J Rusnakova, O Sahoo, NR Sahu, PK Sakrejda, I Salur, S Sandweiss, J Sarkar, A Schambach, J Scharenberg, RP Schmah, AM Schmidke, WB Schmitz, N Seger, J Seyboth, P Shah, N Shahaliev, E Shanmuganathan, PV Shao, M Sharma, B Sharma, MK Shen, WQ Shi, SS Shou, QY Sichtermann, EP Sikora, R Simko, M Singha, S Skoby, MJ Smirnov, N Smirnov, D Song, L Sorensen, P Spinka, HM Srivastava, B Stanislaus, TDS Stepanov, M Strikhanov, M Stringfellow, B Sumbera, M Summa, B Sun, Y Sun, Z Sun, XM Sun, X Surrow, B Svirida, DN Szelezniak, MA Tang, AH Tang, Z Tarnowsky, T Tawfik, A Thomas, JH Timmins, AR Tlusty, D Todoroki, T Tokarev, M Trentalange, S Tribble, RE Tribedy, P Tripathy, SK Tsai, OD Ullrich, T Underwood, DG Upsal, I van Buren, G van Nieuwenhuizen, G Vandenbroucke, M Varma, R Vasiliev, AN Vertesi, R Videbaek, F Viyogi, YP Vokal, S Voloshin, SA Vossen, A Wang, JS Wang, F Wang, H Wang, G Wang, Y Wang, Y Webb, G Webb, JC Wen, L Westfall, GD Wieman, H Wissink, SW Witt, R Wu, YF Wu Xiao, ZG Xie, W Xin, K Xu, H Xu, Z Xu, QH Xu, YF Xu, N Yang, S Yang, Y Yang, Q Yang, Y Yang, C Yang, Y Ye, Z Yepes, P Yi, L Yip, K Yoo, IK Yu, N Zbroszczyk, H Zha, W Zhang, Y Zhang, Z Zhang, JB Zhang, J Zhang, XP Zhang, S Zhang, J Zhao, J Zhong, C Zhou, L Zhu, X Zoulkarneeva, Y AF Adamczyk, L. Adkins, J. K. Agakishiev, G. Aggarwal, M. M. Ahammed, Z. Alekseev, I. Aparin, A. Arkhipkin, D. Aschenauer, E. C. Averichev, G. S. Bai, X. Bairathi, V. Banerjee, A. Bellwied, R. Bhasin, A. Bhati, A. K. Bhattarai, P. Bielcik, J. Bielcikova, J. Bland, L. C. Bordyuzhin, G. Bouchet, J. Brandenburg, D. Brandin, A. V. Bunzarov, I. Butterworth, J. Caines, H. Sanchez, M. Calderon de la Barca Campbell, J. M. Cebra, D. Cervantes, M. C. Chakaberia, I. Chaloupka, P. Chang, Z. Chattopadhyay, S. Chen, X. Chen, J. H. Cheng, J. Cherney, M. Christie, W. Contin, G. Crawford, H. J. Das, S. De Silva, L. C. Debbe, R. R. Dedovich, T. G. Deng, J. Derevschikov, A. A. di Ruzza, B. Didenko, L. Dilks, C. Dong, X. Drachenberg, J. L. Draper, J. E. Du, C. M. Dunkelberger, L. E. Dunlop, J. C. Efimov, L. G. Engelage, J. Eppley, G. Esha, R. Evdokimov, O. Eyser, O. Fatemi, R. Fazio, S. Federic, P. Fedorisin, J. Feng, Z. Filip, P. Fisyak, Y. Flores, C. E. Fulek, L. Gagliardi, C. A. Garand, D. Geurts, F. Gibson, A. Girard, M. Greiner, L. Grosnick, D. Gunarathne, D. S. Guo, Y. Gupta, S. Gupta, A. Guryn, W. Hamad, A. Hamed, A. Haque, R. Harris, J. W. He, L. Heppelmann, S. Heppelmann, S. Hirsch, A. Hoffmann, G. W. Hofman, D. J. Horvat, S. Huang, T. Huang, B. Huang, H. Z. Huang, X. Huck, P. Humanic, T. J. Igo, G. Jacobs, W. W. Jang, H. Jia, J. Jiang, K. Judd, E. G. Kabana, S. Kalinkin, D. Kang, K. Kauder, K. Ke, H. W. Keane, D. Kechechyan, A. Khan, Z. H. Kikola, D. P. Kisiel, A. Kochenda, L. Koetke, D. D. Kosarzewski, L. K. Kraishan, A. F. Kravtsov, P. Krueger, K. Kumar, L. Lamont, M. A. C. Landgraf, J. M. Landry, K. D. Lauret, J. Lebedev, A. Lednicky, R. Lee, J. H. Li, X. Li, W. Li, Z. M. Li, Y. Li, C. Li, X. Lisa, M. A. Liu, F. Ljubicic, T. Llope, W. J. Lomnitz, M. Longacre, R. S. Luo, X. Ma, G. L. Ma, Y. G. Ma, R. Ma, L. Magdy, N. Majka, R. Manion, A. Margetis, S. Markert, C. Masui, H. Matis, H. S. McDonald, D. Meehan, K. Mei, J. C. Minaev, N. G. Mioduszewski, S. Mishra, D. Mohanty, B. Mondal, M. M. Morozov, D. A. Mustafa, M. K. Nandi, B. K. Nasim, Md. Nayak, T. K. Nigmatkulov, G. Niida, T. Nogach, L. V. Noh, S. Y. Novak, J. Nurushev, S. B. Odyniec, G. Ogawa, A. Oh, K. Okorokov, V. Olvitt, D., Jr. Page, B. S. Pak, R. Pan, Y. X. Pandit, Y. Panebratsev, Y. Pawlik, B. Pei, H. Perkins, C. Peterson, A. Pile, P. Pluta, J. Poniatowska, K. Porter, J. Posik, M. Poskanzer, A. M. Pruthi, N. K. Putschke, J. Qiu, H. Quintero, A. Ramachandran, S. Raniwala, R. Raniwala, S. Ray, R. L. Ritter, H. G. Roberts, J. B. Rogachevskiy, O. V. Romero, J. L. Roy, A. Ruan, L. Rusnak, J. Rusnakova, O. Sahoo, N. R. Sahu, P. K. Sakrejda, I. Salur, S. Sandweiss, J. Sarkar, A. Schambach, J. Scharenberg, R. P. Schmah, A. M. Schmidke, W. B. Schmitz, N. Seger, J. Seyboth, P. Shah, N. Shahaliev, E. Shanmuganathan, P. V. Shao, M. Sharma, B. Sharma, M. K. Shen, W. Q. Shi, S. S. Shou, Q. Y. Sichtermann, E. P. Sikora, R. Simko, M. Singha, S. Skoby, M. J. Smirnov, N. Smirnov, D. Song, L. Sorensen, P. Spinka, H. M. Srivastava, B. Stanislaus, T. D. S. Stepanov, M. Strikhanov, M. Stringfellow, B. Sumbera, M. Summa, B. Sun, Y. Sun, Z. Sun, X. M. Sun, X. Surrow, B. Svirida, D. N. Szelezniak, M. A. Tang, A. H. Tang, Z. Tarnowsky, T. Tawfik, A. Thomas, J. H. Timmins, A. R. Tlusty, D. Todoroki, T. Tokarev, M. Trentalange, S. Tribble, R. E. Tribedy, P. Tripathy, S. K. Tsai, O. D. Ullrich, T. Underwood, D. G. Upsal, I. van Buren, G. van Nieuwenhuizen, G. Vandenbroucke, M. Varma, R. Vasiliev, A. N. Vertesi, R. Videbaek, F. Viyogi, Y. P. Vokal, S. Voloshin, S. A. Vossen, A. Wang, J. S. Wang, F. Wang, H. Wang, G. Wang, Y. Wang, Y. Webb, G. Webb, J. C. Wen, L. Westfall, G. D. Wieman, H. Wissink, S. W. Witt, R. Wu, Y. F. Wu Xiao, Z. G. Xie, W. Xin, K. Xu, H. Xu, Z. Xu, Q. H. Xu, Y. F. Xu, N. Yang, S. Yang, Y. Yang, Q. Yang, Y. Yang, C. Yang, Y. Ye, Z. Yepes, P. Yi, L. Yip, K. Yoo, I. -K. Yu, N. Zbroszczyk, H. Zha, W. Zhang, Y. Zhang, Z. Zhang, J. B. Zhang, J. Zhang, X. P. Zhang, S. Zhang, J. Zhao, J. Zhong, C. Zhou, L. Zhu, X. Zoulkarneeva, Y. CA STAR Collaboration TI Di-hadron correlations with identified leading hadrons in 200 GeV Au + Au and d plus Au collisions at STAR SO PHYSICS LETTERS B LA English DT Article ID PB-PB COLLISIONS; QUARK-GLUON PLASMA; TRANSVERSE-MOMENTUM; ROOT-S(NN)=2.76 TEV; NUCLEUS COLLISIONS; SPECTRA; PP; COLLABORATION; HADRONIZATION; PERSPECTIVE AB The STAR Collaboration presents for the first time two-dimensional di-hadron correlations with identified leading hadrons in 200 GeV central Au+Au and minimum-bias d+Au collisions to explore hadronization mechanisms in the quark gluon plasma. The enhancement of the jet-like yield for leading pions in Au + Au data with respect to the d + Au reference and the absence of such an enhancement for leading non-pions (protons and kaons) are discussed within the context of a quark recombination scenario. The correlated yield at large angles, specifically in the ridge region, is found to be significantly higher for leading non-pions than pions. The consistencies of the constituent quark scaling, azimuthal harmonic model and a mini-jet modification model description of the data are tested, providing further constraints on hadronization. (C) 2015 The Authors. Published by Elsevier B.V. C1 [Adamczyk, L.; Fulek, L.; Sikora, R.] AGH Univ Sci & Technol, PL-30059 Krakow, Poland. [Krueger, K.; Spinka, H. M.; Underwood, D. G.] Argonne Natl Lab, Argonne, IL 60439 USA. [Arkhipkin, D.; Aschenauer, E. C.; Bland, L. C.; Chakaberia, I.; Christie, W.; Debbe, R. R.; di Ruzza, B.; Didenko, L.; Dunlop, J. C.; Eyser, O.; Fazio, S.; Fisyak, Y.; Guryn, W.; Heppelmann, S.; Huang, T.; Jia, J.; Ke, H. W.; Lamont, M. A. C.; Landgraf, J. M.; Lauret, J.; Lebedev, A.; Lee, J. H.; Ljubicic, T.; Longacre, R. S.; Ogawa, A.; Page, B. S.; Pak, R.; Pile, P.; Ruan, L.; Schmidke, W. B.; Smirnov, D.; Sorensen, P.; Tang, A. H.; Todoroki, T.; Tribedy, P.; Ullrich, T.; van Buren, G.; van Nieuwenhuizen, G.; Videbaek, F.; Wang, H.; Webb, G.; Webb, J. C.; Xu, Z.; Yang, Y.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Crawford, H. J.; Engelage, J.; Judd, E. G.; Perkins, C.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Sanchez, M. Calderon de la Barca; Cebra, D.; Draper, J. E.; Flores, C. E.; Meehan, K.; Romero, J. L.] Univ Calif Davis, Davis, CA 95616 USA. [Dunkelberger, L. E.; Esha, R.; Huang, H. Z.; Igo, G.; Landry, K. D.; Nasim, Md.; Pan, Y. X.; Trentalange, S.; Tsai, O. D.; Wang, G.; Wen, L.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. [Feng, Z.; Huck, P.; Li, Z. M.; Liu, F.; Luo, X.; Pei, H.; Shi, S. S.; Sun, X. M.; Wang, Y.; Wu, Y. F.; Yang, Y.; Yu, N.; Zhang, J. B.; Zhao, J.] Cent China Normal Univ HZNU, Wuhan 430079, Peoples R China. [Bai, X.; Evdokimov, O.; Hofman, D. J.; Huang, B.; Khan, Z. H.; Pandit, Y.; Ye, Z.] Univ Illinois, Chicago, IL 60607 USA. [Cherney, M.; De Silva, L. C.; Seger, J.] Creighton Univ, Omaha, NE 68178 USA. [Bielcik, J.; Chaloupka, P.; Rusnakova, O.] Czech Tech Univ, FNSPE, Prague 11519, Czech Republic. [Bielcikova, J.; Federic, P.; Rusnak, J.; Simko, M.; Sumbera, M.; Vertesi, R.] Acad Sci Czech Republic, Inst Nucl Phys, CZ-25068 Rez, Czech Republic. [Das, S.; Sahu, P. K.; Tripathy, S. K.] Inst Phys, Bhubaneswar 751005, Orissa, India. [Nandi, B. K.; Sarkar, A.; Varma, R.] Indian Inst Technol, Bombay 400076, Maharashtra, India. [Jacobs, W. W.; Skoby, M. J.; Vossen, A.; Wissink, S. W.] Indiana Univ, Bloomington, IN 47408 USA. [Alekseev, I.; Bordyuzhin, G.; Kalinkin, D.; Svirida, D. N.] Alikhanov Inst Theoret & Expt Phys, Moscow 117218, Russia. Univ Jammu, Jammu 180001, India. [Agakishiev, G.; Aparin, A.; Averichev, G. S.; Bunzarov, I.; Dedovich, T. G.; Efimov, L. G.; Fedorisin, J.; Filip, P.; Kechechyan, A.; Lednicky, R.; Panebratsev, Y.; Rogachevskiy, O. V.; Shahaliev, E.; Tokarev, M.; Vokal, S.; Zoulkarneeva, Y.] Joint Inst Nucl Res, Dubna 141980, Russia. [Bouchet, J.; Hamad, A.; Kabana, S.; Keane, D.; Lomnitz, M.; Margetis, S.; Quintero, A.; Shanmuganathan, P. V.; Singha, S.; Wu] Kent State Univ, Kent, OH 44242 USA. [Adkins, J. K.; Fatemi, R.; Ramachandran, S.] Univ Kentucky, Lexington, KY 40506 USA. [Jang, H.; Noh, S. Y.] Korea Inst Sci & Technol Informat, Taejon 305701, South Korea. [Chen, X.; Du, C. M.; Sun, Z.; Wang, J. S.; Xu, H.; Yang, Y.; Zhang, J.] Inst Modern Phys, Lanzhou 730000, Peoples R China. [Contin, G.; Dong, X.; Greiner, L.; Manion, A.; Masui, H.; Mustafa, M. K.; Odyniec, G.; Porter, J.; Poskanzer, A. M.; Qiu, H.; Ritter, H. G.; Sakrejda, I.; Salur, S.; Schmah, A. M.; Sichtermann, E. P.; Sun, X.; Szelezniak, M. A.; Thomas, J. H.; Wieman, H.; Xu, N.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Schmitz, N.; Seyboth, P.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Novak, J.; Tarnowsky, T.; Westfall, G. D.] Michigan State Univ, E Lansing, MI 48824 USA. [Brandin, A. V.; Kochenda, L.; Kravtsov, P.; Nigmatkulov, G.; Okorokov, V.; Strikhanov, M.] Moscow Engn Phys Inst, Moscow 115409, Russia. [Bairathi, V.; Haque, R.; Mishra, D.; Mohanty, B.] Natl Inst Sci Educ & Res, Bhubaneswar 751005, Orissa, India. [Campbell, J. M.; Humanic, T. J.; Lisa, M. A.; Peterson, A.; Upsal, I.] Ohio State Univ, Columbus, OH 43210 USA. [Pawlik, B.] PAN, Inst Nucl Phys, PL-31342 Krakow, Poland. [Aggarwal, M. M.; Bhati, A. K.; Kumar, L.; Pruthi, N. K.; Sharma, B.] Panjab Univ, Chandigarh 160014, India. [Dilks, C.; Heppelmann, S.; Summa, B.] Penn State Univ, University Pk, PA 16802 USA. [Derevschikov, A. A.; Minaev, N. G.; Morozov, D. A.; Nogach, L. V.; Nurushev, S. B.; Vasiliev, A. N.] Inst High Energy Phys, Protvino 142281, Russia. [Garand, D.; He, L.; Hirsch, A.; Scharenberg, R. P.; Srivastava, B.; Stepanov, M.; Stringfellow, B.; Wang, F.; Xie, W.] Purdue Univ, W Lafayette, IN 47907 USA. [Oh, K.; Yoo, I. -K.] Pusan Natl Univ, Pusan 609735, South Korea. [Raniwala, R.; Raniwala, S.] Univ Rajasthan, Jaipur 302004, Rajasthan, India. [Brandenburg, D.; Butterworth, J.; Eppley, G.; Geurts, F.; Roberts, J. B.; Tlusty, D.; Xin, K.; Yepes, P.] Rice Univ, Houston, TX 77251 USA. [Guo, Y.; Jiang, K.; Li, X.; Li, C.; Shao, M.; Sun, Y.; Tang, Z.; Yang, S.; Yang, Q.; Yang, C.; Zha, W.; Zhang, Y.; Zhou, L.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Deng, J.; Mei, J. C.; Xu, Q. H.; Zhang, J.] Shandong Univ, Jinan 250100, Shandong, Peoples R China. [Chen, J. H.; Li, W.; Ma, G. L.; Ma, Y. G.; Ma, L.; Shah, N.; Shen, W. Q.; Shou, Q. Y.; Xu, Y. F.; Zhang, Z.; Zhang, S.; Zhong, C.] Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China. [Magdy, N.] SUNY Stony Brook, Stony Brook, NY 11794 USA. [Gunarathne, D. S.; Kraishan, A. F.; Li, X.; Olvitt, D., Jr.; Posik, M.; Surrow, B.; Vandenbroucke, M.] Temple Univ, Philadelphia, PA 19122 USA. [Cervantes, M. C.; Chang, Z.; Gagliardi, C. A.; Hamed, A.; Mioduszewski, S.; Mondal, M. M.; Sahoo, N. R.; Tribble, R. E.] Texas A&M Univ, College Stn, TX 77843 USA. [Bhattarai, P.; Hoffmann, G. W.; Markert, C.; Ray, R. L.; Schambach, J.] Univ Texas Austin, Austin, TX 78712 USA. [Bellwied, R.; McDonald, D.; Song, L.; Timmins, A. R.] Univ Houston, Houston, TX 77204 USA. [Cheng, J.; Huang, X.; Kang, K.; Li, Y.; Wang, Y.; Xiao, Z. G.; Zhang, X. P.; Zhu, X.] Tsinghua Univ, Beijing 100084, Peoples R China. [Witt, R.] US Naval Acad, Annapolis, MD 21402 USA. [Drachenberg, J. L.; Gibson, A.; Grosnick, D.; Koetke, D. D.; Stanislaus, T. D. S.] Valparaiso Univ, Valparaiso, IN 46383 USA. [Ahammed, Z.; Banerjee, A.; Chattopadhyay, S.; Nayak, T. K.; Roy, A.; Viyogi, Y. P.] Ctr Variable Energy Cyclotron, Kolkata 700064, India. [Girard, M.; Kikola, D. P.; Kisiel, A.; Kosarzewski, L. K.; Pluta, J.; Poniatowska, K.; Zbroszczyk, H.] Warsaw Univ Technol, PL-00661 Warsaw, Poland. [Kauder, K.; Llope, W. J.; Niida, T.; Putschke, J.; Voloshin, S. A.] Wayne State Univ, Detroit, MI 48201 USA. [Tawfik, A.] World Lab Cosmol & Particle Phys WLCAPP, Cairo 11571, Egypt. [Caines, H.; Harris, J. W.; Horvat, S.; Majka, R.; Sandweiss, J.; Smirnov, N.; Yi, L.] Yale Univ, New Haven, CT 06520 USA. [Bhasin, A.; Gupta, S.; Gupta, A.; Sharma, M. K.] Univ Jammu, Jammu 180001, India. RP Kauder, K (reprint author), Wayne State Univ, Detroit, MI 48201 USA. RI Rusnak, Jan/G-8462-2014; Bielcikova, Jana/G-9342-2014; Sumbera, Michal/O-7497-2014; Chaloupka, Petr/E-5965-2012; Huang, Bingchu/H-6343-2015; Fazio, Salvatore /G-5156-2010; Xin, Kefeng/O-9195-2016; Yi, Li/Q-1705-2016; Alekseev, Igor/J-8070-2014; Svirida, Dmitry/R-4909-2016; Tawfik, Abdel Nasser/M-6220-2013; Okorokov, Vitaly/C-4800-2017; Ma, Yu-Gang/M-8122-2013; Gunarathne, Devika/C-4903-2017; Derradi de Souza, Rafael/M-4791-2013; OI Sumbera, Michal/0000-0002-0639-7323; Huang, Bingchu/0000-0002-3253-3210; Xin, Kefeng/0000-0003-4853-9219; Yi, Li/0000-0002-7512-2657; Alekseev, Igor/0000-0003-3358-9635; Tawfik, Abdel Nasser/0000-0002-1679-0225; Okorokov, Vitaly/0000-0002-7162-5345; Ma, Yu-Gang/0000-0002-0233-9900; Gunarathne, Devika/0000-0002-7155-7418; Derradi de Souza, Rafael/0000-0002-2084-7001; Thomas, James/0000-0002-6256-4536; Ke, Hongwei/0000-0003-1463-7291 FU RHIC Operations Group; RCF at BNL; NERSC Center at LBNL; KISTI Center in Korea; Open Science Grid consortium; Offices of Nuclear Physics within the U.S. DOE Office of Science; U.S. NSF, the Ministry of Education and Science of the Russian Federation; NSFC of China; CAS of China; MOST of China; MOE of China; National Research Foundation of Korea; GACR of the Czech Republic; MSMT of the Czech Republic; FIAS of Germany; DAE of India; DST of India; UGC of India; National Science Centre of Poland; National Research Foundation of Croatia; Ministry of Science, Education and Sports of the Republic of Croatia; RosAtom of Russia FX We thank the RHIC Operations Group and RCF at BNL, the NERSC Center at LBNL, the KISTI Center in Korea, and the Open Science Grid consortium for providing resources and support. This work was supported in part by the Offices of Nuclear Physics within the U.S. DOE Office of Science, the U.S. NSF, the Ministry of Education and Science of the Russian Federation, NSFC, CAS, MOST and MOE of China, the National Research Foundation of Korea, GACR and MSMT of the Czech Republic, FIAS of Germany, DAE, DST, and UGC of India, the National Science Centre of Poland, National Research Foundation, the Ministry of Science, Education and Sports of the Republic of Croatia, and RosAtom of Russia. NR 77 TC 3 Z9 3 U1 4 U2 36 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD DEC 17 PY 2015 VL 751 BP 233 EP 240 DI 10.1016/j.physletb.2015.10.037 PG 8 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CX0KF UT WOS:000365384600037 ER PT J AU Bardayan, DW Chipps, KA Ahn, S Blackmon, JC deBoer, RJ Greife, U Jones, KL Kontos, A Kozub, RL Linhardt, L Manning, B Matos, M O'Malley, PD Ota, S Pain, SD Peters, WA Pittman, ST Sachs, A Schmitt, KT Smith, MS Thompson, P AF Bardayan, D. W. Chipps, K. A. Ahn, S. Blackmon, J. C. deBoer, R. J. Greife, U. Jones, K. L. Kontos, A. Kozub, R. L. Linhardt, L. Manning, B. Matos, M. O'Malley, P. D. Ota, S. Pain, S. D. Peters, W. A. Pittman, S. T. Sachs, A. Schmitt, K. T. Smith, M. S. Thompson, P. TI The first science result with the JENSA gas-jet target: Confirmation and study of a strong subthreshold F-18(p, alpha)O-15 resonance SO PHYSICS LETTERS B LA English DT Article DE Novae; Nucleosynthesis; Nuclear; Reactions ID F-18(P,ALPHA)O-15 REACTION; NOVAE; DETECTOR AB The astrophysical F-18(p, alpha)O-15 rate determines, in large part, the extent to which the observable radioisotope F-18 is produced in novae. This rate, however, has been extremely uncertain owing to the unknown properties of a strong subthreshold resonance and its possible interference with higher-lying resonances. The new Jet Experiments in Nuclear Structure and Astrophysics (JENSA) gas-jet target has been used for the first time to determine the spin of this important resonance and significantly reduce uncertainties in the F-18(p, alpha)O-15 rate. (C) 2015 The Authors. Published by Elsevier B.V. C1 [Bardayan, D. W.; deBoer, R. J.; O'Malley, P. D.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. [Bardayan, D. W.; Chipps, K. A.; Matos, M.; Pain, S. D.; Peters, W. A.; Pittman, S. T.; Schmitt, K. T.; Smith, M. S.] Oak Ridge Natl Lab, Dept Phys, Oak Ridge, TN 37831 USA. [Chipps, K. A.; Ahn, S.; Jones, K. L.; Matos, M.; Peters, W. A.; Pittman, S. T.; Sachs, A.; Schmitt, K. T.; Thompson, P.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Chipps, K. A.; Greife, U.] Colorado Sch Mines, Dept Phys, Golden, CO 80401 USA. [Ahn, S.; Kontos, A.] Natl Superconducting Cyclotron Lab, E Lansing, MI 48824 USA. [Blackmon, J. C.; Linhardt, L.] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA. [Kozub, R. L.] Tennessee Technol Univ, Dept Phys, Cookeville, TN 38505 USA. [Manning, B.; Ota, S.] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. RP Bardayan, DW (reprint author), Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. EM danbardayan@nd.edu RI Jones, Katherine/B-8487-2011; Pain, Steven/E-1188-2011; Peters, William/B-3214-2012; OI Jones, Katherine/0000-0001-7335-1379; Pain, Steven/0000-0003-3081-688X; Peters, William/0000-0002-3022-4924; Chipps, Kelly/0000-0003-3050-1298 FU National Science Foundation; Department of Energy Office of Nuclear Physics; Joint Institute for Nuclear Astrophysics (JINA) under NSF [PHY 08-22648] FX The authors gratefully acknowledge useful discussions with C. Brune, J. Jose, A. Laird, and H. Schatz. This work was supported by the National Science Foundation and the Department of Energy Office of Nuclear Physics. This work was also supported in part by the Joint Institute for Nuclear Astrophysics (JINA) under NSF Grant PHY 08-22648. NR 39 TC 1 Z9 1 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD DEC 17 PY 2015 VL 751 BP 311 EP 315 DI 10.1016/j.physletb.2015.10.073 PG 5 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CX0KF UT WOS:000365384600050 ER PT J AU Adam, J Adamova, D Aggarwal, MM Rinella, GA Agnello, M Agrawal, N Ahammed, Z Ahn, SU Aimo, I Aiola, S Ajaz, M Akindinov, A Alam, SN Aleksandrov, D Alessandro, B Alexandre, D Molina, RA Alici, A Alkin, A Alme, J Alt, T Altinpinar, S Altsybeev, I Prado, CAG Andrei, C Andronic, A Anguelov, V Anielski, J Anticic, T Antinori, F Antonioli, P Aphecetche, L Appelshauser, H Arcelli, S Armesto, N Arnaldi, R Aronsson, T Arsene, IC Arslandok, M Augustinus, A Averbeck, R Azmi, MD Bach, M Badala, A Baek, YW Bagnasco, S Bailhache, R Bala, R Baldisseri, A Pedrosa, FBD Baral, RC Barbano, AM Barbera, R Barile, F Barnafoeldi, GG Barnby, LS Barret, V Bartalini, P Barth, K Bartke, J Bartsch, E Basile, M Bastid, N Basu, S Bathen, B Batigne, G Camejo, AB Batyunya, B Batzing, PC Bearden, IG Beck, H Bedda, C Behera, NK Belikov, I Bellini, F Martinez, HB Bellwied, R Belmont, R Belmont-Moreno, E Belyaev, V Bencedi, G Beole, S Berceanu, I Bercuci, A Berdnikov, Y Berenyi, D Bertens, RA Berzano, D Betev, L Bhasin, A Bhat, IR Bhati, AK Bhattacharjee, B Bhom, J Bianchi, L Bianchi, N Bianchin, C Bielcik, J Bielcikova, J Bilandzic, A Biswas, R Biswas, S Bjelogrlic, S Blanco, F Blau, D Blume, C Bock, F Bogdanov, A Boggild, H Boldizsar, L Bombara, M Book, J Borel, H Borissov, A Borri, M Bossu, F Botje, M Botta, E Bottger, S Braun-Munzinger, P Bregant, M Breitner, T Broker, TA Browning, TA Broz, M Brucken, EJ Bruna, E Bruno, GE Budnikov, D Buesching, H Bufalino, S Buncic, P Busch, O Buthelezi, Z Buxton, JT Caffarri, D Cai, X Caines, H Diaz, LC Caliva, A Villar, EC Camerini, P Carena, F Carena, W Castellanos, JC Castro, AJ Casula, EAR Cavicchioli, C Sanchez, CC Cepila, J Cerello, P Chang, B Chapeland, S Chartier, M Charvet, JL Chattopadhyay, S Chattopadhyay, S Chelnokov, V Cherney, M Cheshkov, C Cheynis, B Barroso, VC Chinellato, DD Chochula, P Choi, K Chojnacki, M Choudhury, S Christakoglou, P Christensen, CH Christiansen, P Chujo, T Chung, SU Chunhui, Z Cicalo, C Cifarelli, L Cindolo, F Cleymans, J Colamaria, F Colella, D Collu, A Colocci, M Balbastre, GC del Valle, ZC Connors, ME Contreras, JG Cormier, TM Morales, YC Maldonado, IC Cortese, P Cosentino, MR Costa, F Crochet, P Albino, RC Cuautle, E Cunqueiro, L Dahms, T Dainese, A Danu, A Das, D Das, I Das, S Dash, A Dash, S De, S De Caro, A de Cataldo, G de Cuveland, J de Falco, A De Gruttola, D De Marco, N De Pasquale, S Deisting, A Deloff, A Denes, E D'Erasmo, G Di Bari, D Di Mauro, A Di Nezza, P Corchero, MAD Dietel, T Dillenseger, P Divia, R Djuvsland, O Dobrin, A Dobrowolski, T Gimenez, DD Donigus, B Dordic, O Dubey, AK Dubla, A Ducroux, L Dupieux, P Ehlers, RJ Elia, D Engel, H Erazmus, B Erhardt, F Eschweiler, D Espagnon, B Estienne, M Esumi, S Eum, J Evans, D Evdokimov, S Eyyubova, G Fabbietti, L Fabris, D Faivre, J Fantoni, A Fasel, M Feldkamp, L Felea, D Feliciello, A Feofilov, G Ferencei, J Tellez, AF Ferreiro, EG Ferretti, A Festanti, A Figiel, J Figueredo, MAS Filchagin, S Finogeev, D Fionda, FM Fiore, EM Fleck, MG Floris, M Foertsch, S Foka, P Fokin, S Fragiacomo, E Francescon, A Frankenfeld, U Fuchs, U Furget, C Furs, A Girard, MF Gaardhoje, JJ Gagliardi, M Gago, AM Gallio, M Gangadharan, DR Ganoti, P Gao, C Garabatos, C Garcia-Solis, E Gargiulo, C Gasik, P Germain, M Gheata, A Gheata, M Ghosh, P Ghosh, SK Gianotti, P Giubellino, P Giubilato, P Gladysz-Dziadus, E Glassel, P Ramirez, AG Gonzalez-Zamora, P Gorbunov, S Gorlich, L Gotovac, S Grabski, V Graczykowski, LK Grelli, A Grigoras, A Grigoras, C Grigoriev, V Grigoryan, A Grigoryan, S Grinyov, B Grion, N Grosse-Oetringhaus, JF Grossiord, JY Grosso, R Guber, F Guernane, R Guerzoni, B Gulbrandsen, K Gulkanyan, H Gunji, T Gupta, A Gupta, R Haake, R Haaland, O Hadjidakis, C Haiduc, M Hamagaki, H Hamar, G Hanratty, LD Hansen, A Harris, JW Hartmann, H Harton, A Hatzifotiadou, D Hayashi, S Heckel, ST Heide, M Helstrup, H Herghelegiu, A Corral, GH Hess, BA Hetland, KF Hilden, TE Hillemanns, H Hippolyte, B Hristov, P Huang, M Humanic, TJ Hussain, N Hussain, T Hutter, D Hwang, DS Ilkaev, R Ilkiv, I Inaba, M Ionita, C Ippolitov, M Irfan, M Ivanov, M Ivanov, V Izucheev, V Jacobs, PM Jahnke, C Jang, HJ Janik, MA Jayarathna, PHSY Jena, C Jena, S Bustamante, RTJ Jones, PG Jung, H Jusko, A Kalinak, P Kalweit, A Kamin, J Kang, JH Kaplin, V Kar, S Uysal, AK Karavichev, O Karavicheva, T Karpechev, E Kebschull, U Keidel, R Keijdener, DLD Keil, M Khan, KH Khan, MM Khan, P Khan, SA Khanzadeev, A Kharlov, Y Kileng, B Kim, B Kim, DW Kim, DJ Kim, H Kim, JS Kim, M Kim, M Kim, S Kim, T Kirsch, S Kisel, I Kiselev, S Kisiel, A Kiss, G Klay, JL Klein, C Klein, J Klein-Bosing, C Kluge, A Knichel, ML Knospe, AG Kobayashi, T Kobdaj, C Kofarago, M Kollegger, T Kolojvari, A Kondratiev, V Kondratyeva, N Kondratyuk, E Konevskikh, A Kouzinopoulos, C Kovalenko, O Kovalenko, V Kowalski, M Kox, S Meethaleveedu, GK Kral, J Kralik, I Kravcakova, A Krelina, M Kretz, M Krivda, M Krizek, F Kryshen, E Krzewicki, M Kubera, AM Kucera, V Kugathasan, T Kuhn, C Kuijer, PG Kulakov, I Kumar, J Kumar, L Kurashvili, P Kurepin, A Kurepin, AB Kuryakin, A Kushpil, S Kweon, MJ Kwon, Y La Pointe, SL La Rocca, P Fernandes, CL Lakomov, I Langoy, R Lara, C Lardeux, A Lattuca, A Laudi, E Lea, R Leardini, L Lee, GR Lee, S Legrand, I Lemmon, RC Lenti, V Leogrande, E Monzon, IL Leoncino, M Levai, P Li, S Li, X Lien, J Lietava, R Lindal, S Lindenstruth, V Lippmann, C Lisa, MA Ljunggren, HM Lodato, DF Loenne, PI Loggins, VR Loginov, V Loizides, C Lopez, X Torres, E Lowe, A Luettig, P Lunardon, M Luparello, G Luz, PHFND Maevskaya, A Mager, M Mahajan, S Mahmood, SM Maire, A Majka, RD Malaev, M Cervantes, IM Malinina, L Mal'Kevich, D Malzacher, P Mamonov, A Manceau, L Manko, V Manso, F Manzari, V Marchisone, M Mares, J Margagliotti, GV Margotti, A Margutti, J Marin, A Markert, C Marquard, M Martin, NA Blanco, JM Martinengo, P Martinez, MI Garcia, GM Pedreira, MM Martynov, Y Mas, A Masciocchi, S Masera, M Masoni, A Massacrier, L Mastroserio, A Masui, H Matyja, A Mayer, C Mazer, J Mazzoni, MA Mcdonald, D Meddi, F Menchaca-Rocha, A Meninno, E Perez, JM Meres, M Miake, Y Mieskolainen, MM Mikhaylov, K Milano, L Milosevic, J Minervini, LM Mischke, A Mishra, AN Miskowiec, D Mitra, J Mitu, CM Mohammadi, N Mohanty, B Molnar, L Zetina, LM Montes, E Morando, M De Godoy, DAM Moretto, S Morreale, A Morsch, A Muccifora, V Mudnic, E Muhlheim, D Muhuri, S Mukherjee, M Muller, H Mulligan, JD Munhoz, MG Murray, S Musa, L Musinsky, J Nandi, BK Nania, R Nappi, E Naru, MU Nattrass, C Nayak, K Nayak, TK Nazarenko, S Nedosekin, A Nellen, L Ng, F Nicassio, M Niculescu, M Niedziela, J Nielsen, BS Nikolaev, S Nikulin, S Nikulin, V Noferini, F Nomokonov, P Nooren, G Norman, J Nyanin, A Nystrand, J Oeschler, H Oh, S Oh, SK Ohlson, A Okatan, A Okubo, T Olah, L Oleniacz, J Da Silva, ACO Oliver, MH Onderwaater, J Oppedisano, C Velasquez, AO Oskarsson, A Otwinowski, J Oyama, K Ozdemir, M Pachmayer, Y Pagano, P Paic, G Pajares, C Pal, SK Pan, J Pandey, AK Pant, D Papikyan, V Pappalardo, GS Pareek, P Park, WJ Parmar, S Passfeld, A Paticchio, V Patra, RN Paul, B Peitzmann, T Da Costa, HP De Oliveira, EP Peresunko, D Lara, CEP Peskov, V Pestov, Y Petracek, V Petrov, V Petrovici, M Petta, C Piano, S Pikna, M Pillot, P Pinazza, O Pinsky, L Piyarathna, DB Ploskon, M Planinic, M Pluta, J Pochybova, S Podesta-Lerma, PLM Poghosyan, MG Polichtchouk, B Poljak, N Poonsawat, W Pop, A Porteboeuf-Houssais, S Porter, J Pospisil, J Prasad, SK Preghenella, R Prino, F Pruneau, CA Pshenichnov, I Puccio, M Puddu, G Pujahari, P Punin, V Putschke, J Qvigstad, H Rachevski, A Raha, S Rajput, S Rak, J Rakotozafindrabe, A Ramello, L Raniwala, R Raniwala, S Rasanen, SS Rascanu, BT Rathee, D Read, KF Real, JS Redlich, K Reed, RJ Rehman, A Reichelt, P Reidt, F Ren, X Renfordt, R Reolon, AR Reshetin, A Rettig, F Revol, JP Reygers, K Riabov, V Ricci, RA Richert, T Richter, M Riedler, P Riegler, W Riggi, F Ristea, C Rivetti, A Rocco, E Cahuantzi, MR Manso, AR Roed, K Rogochaya, E Rohr, D Roehrich, D Romita, R Ronchetti, F Ronflette, L Rosnet, P Rossi, A Roukoutakis, F Roy, A Roy, C Roy, P Montero, AJR Rui, R Russo, R Ryabinkin, E Ryabov, Y Rybicki, A Sadovsky, S Safarik, K Sahlmuller, B Sahoo, P Sahoo, R Sahoo, S Sahu, PK Saini, J Sakai, S Saleh, MA Salgado, CA Salzwedel, J Sambyal, S Samsonov, V Castro, XS Sandor, L Sandoval, A Sano, M Santagati, G Sarkar, D Scapparone, E Scarlassara, F Scharenberg, RP Schiaua, C Schicker, R Schmidt, C Schmidt, HR Schuchmann, S Schukraft, J Schulc, M Schuster, T Schutz, Y Schwarz, K Schweda, K Scioli, G Scomparin, E Scott, R Seeder, KS Seger, JE Sekiguchi, Y Selyuzhenkov, I Senosi, K Seo, J Serradilla, E Sevcenco, A Shabanov, A Shabetai, A Shadura, O Shahoyan, R Shangaraev, A Sharma, A Sharma, N Shigaki, K Shtejer, K Sibiriak, Y Siddhanta, S Sielewicz, KM Siemiarczuk, T Silvermyr, D Silvestre, C Simatovic, G Simonetti, G Singaraju, R Singh, R Singha, S Singhal, V Sinha, BC Sinha, T Sitar, B Sitta, M Skaali, TB Skjerdal, K Slupecki, M Smirnov, N Snellings, RJM Snellman, TW Sogaard, C Soltz, R Song, J Song, M Song, Z Soramel, F Sorensen, S Spacek, M Spiriti, E Sputowska, I Spyropoulou-Stassinaki, M Srivastava, BK Stachel, J Stan, I Stefanek, G Steinpreis, M Stenlund, E Steyn, G Stiller, JH Stocco, D Strmen, P Suaide, AAP Sugitate, T Suire, C Suleymanov, M Sultanov, R Sumbera, M Symons, TJM Szabo, A de Toledo, AS Szarka, I Szczepankiewicz, A Szymanski, M Takahashi, J Tanaka, N Tangaro, MA Takaki, JDT Peloni, AT Tariq, M Tarzila, MG Tauro, A Munoz, GT Telesca, A Terasaki, K Terrevoli, C Teyssier, B Thader, J Thomas, D Tieulent, R Timmins, AR Toia, A Trogolo, S Trubnikov, V Trzaska, WH Tsuji, T Tumkin, A Turrisi, R Tveter, TS Ullaland, K Uras, A Usai, GL Utrobicic, A Vajzer, M Vala, M Palomo, LV Vallero, S Van der Maarel, J Van Hoorne, JW van Leeuwen, M Vanat, T Vyvre, PV Varga, D Vargas, A Vargyas, M Varma, R Vasileiou, M Vasiliev, A Vauthier, A Vechernin, V Veen, AM Veldhoen, M Velure, A Venaruzzo, M Vercellin, E Limon, SV Vernet, R Verweij, M Vickovic, L Viesti, G Viinikainen, J Vilakazi, Z Baillie, OV Vinogradov, A Vinogradov, L Vinogradov, Y Virgili, T Vislavicius, V Viyogi, YP Vodopyanov, A Volkl, MA Voloshin, K Voloshin, SA Volpe, G von Haller, B Vorobyev, I Vranic, D Vrlakova, J Vulpescu, B Vyushin, A Wagner, B Wagner, J Wang, H Wang, M Wang, Y Watanabe, D Weber, M Weber, SG Wessels, JP Westerhoff, U Wiechula, J Wikne, J Wilde, M Wilk, G Wilkinson, J Williams, MCS Windelband, B Winn, M Yaldo, CG Yamaguchi, Y Yang, H Yang, P Yano, S Yin, Z Yokoyama, H Yoo, IK Yurchenko, V Yushmanov, I Zaborowska, A Zaccolo, V Zaman, A Zampolli, C Zanoli, HJC Zaporozhets, S Zarochentsev, A Zavada, P Zaviyalov, N Zbroszczyk, H Zgura, IS Zhalov, M Zhang, H Zhang, X Zhang, Y Zhao, C Zhigareva, N Zhou, D Zhou, Y Zhou, Z Zhu, H Zhu, J Zhu, X Zichichi, A Zimmermann, A Zimmermann, MB Zinovjev, G Zyzak, M AF Adam, J. Adamova, D. Aggarwal, M. M. Rinella, G. Aglieri Agnello, M. Agrawal, N. Ahammed, Z. Ahn, S. U. Aimo, I. Aiola, S. Ajaz, M. Akindinov, A. Alam, S. N. Aleksandrov, D. Alessandro, B. Alexandre, D. Alfaro Molina, R. Alici, A. Alkin, A. Alme, J. Alt, T. Altinpinar, S. Altsybeev, I. Alves Garcia Prado, C. Andrei, C. Andronic, A. Anguelov, V. Anielski, J. Anticic, T. Antinori, F. Antonioli, P. Aphecetche, L. Appelshaueser, H. Arcelli, S. Armesto, N. Arnaldi, R. Aronsson, T. Arsene, I. C. Arslandok, M. Augustinus, A. Averbeck, R. Azmi, M. D. Bach, M. Badala, A. Baek, Y. W. Bagnasco, S. Bailhache, R. Bala, R. Baldisseri, A. Pedrosa, F. Baltasar Dos Santos Baral, R. C. Barbano, A. M. Barbera, R. Barile, F. Barnafoeldi, G. G. Barnby, L. S. Barret, V. Bartalini, P. Barth, K. Bartke, J. Bartsch, E. Basile, M. Bastid, N. Basu, S. Bathen, B. Batigne, G. Camejo, A. Batista Batyunya, B. Batzing, P. C. Bearden, I. G. Beck, H. Bedda, C. Behera, N. K. Belikov, I. Bellini, F. Bello Martinez, H. Bellwied, R. Belmont, R. Belmont-Moreno, E. Belyaev, V. Bencedi, G. Beole, S. Berceanu, I. Bercuci, A. Berdnikov, Y. Berenyi, D. Bertens, R. A. Berzano, D. Betev, L. Bhasin, A. Bhat, I. R. Bhati, A. K. Bhattacharjee, B. Bhom, J. Bianchi, L. Bianchi, N. Bianchin, C. Bielcik, J. Bielcikova, J. Bilandzic, A. Biswas, R. Biswas, S. Bjelogrlic, S. Blanco, F. Blau, D. Blume, C. Bock, F. Bogdanov, A. Boggild, H. Boldizsar, L. Bombara, M. Book, J. Borel, H. Borissov, A. Borri, M. Bossu, F. Botje, M. Botta, E. Boettger, S. Braun-Munzinger, P. Bregant, M. Breitner, T. Broker, T. A. Browning, T. A. Broz, M. Brucken, E. J. Bruna, E. Bruno, G. E. Budnikov, D. Buesching, H. Bufalino, S. Buncic, P. Busch, O. Buthelezi, Z. Buxton, J. T. Caffarri, D. Cai, X. Caines, H. Diaz, L. Calero Caliva, A. Calvo Villar, E. Camerini, P. Carena, F. Carena, W. Castellanos, J. Castillo Castro, A. J. Casula, E. A. R. Cavicchioli, C. Ceballos Sanchez, C. Cepila, J. Cerello, P. Chang, B. Chapeland, S. Chartier, M. Charvet, J. L. Chattopadhyay, S. Chattopadhyay, S. Chelnokov, V. Cherney, M. Cheshkov, C. Cheynis, B. Barroso, V. Chibante Chinellato, D. D. Chochula, P. Choi, K. Chojnacki, M. Choudhury, S. Christakoglou, P. Christensen, C. H. Christiansen, P. Chujo, T. Chung, S. U. Chunhui, Z. Cicalo, C. Cifarelli, L. Cindolo, F. Cleymans, J. Colamaria, F. Colella, D. Collu, A. Colocci, M. Balbastre, G. Conesa del Valle, Z. Conesa Connors, M. E. Contreras, J. G. Cormier, T. M. Morales, Y. Corrales Cortes Maldonado, I. Cortese, P. Cosentino, M. R. Costa, F. Crochet, P. Cruz Albino, R. Cuautle, E. Cunqueiro, L. Dahms, T. Dainese, A. Danu, A. Das, D. Das, I. Das, S. Dash, A. Dash, S. De, S. De Caro, A. de Cataldo, G. de Cuveland, J. de Falco, A. De Gruttola, D. De Marco, N. De Pasquale, S. Deisting, A. Deloff, A. Denes, E. D'Erasmo, G. Di Bari, D. Di Mauro, A. Di Nezza, P. Diaz Corchero, M. A. Dietel, T. Dillenseger, P. Divia, R. Djuvsland, O. Dobrin, A. Dobrowolski, T. Domenicis Gimenez, D. Doenigus, B. Dordic, O. Dubey, A. K. Dubla, A. Ducroux, L. Dupieux, P. Ehlers, R. J. Elia, D. Engel, H. Erazmus, B. Erhardt, F. Eschweiler, D. Espagnon, B. Estienne, M. Esumi, S. Eum, J. Evans, D. Evdokimov, S. Eyyubova, G. Fabbietti, L. Fabris, D. Faivre, J. Fantoni, A. Fasel, M. Feldkamp, L. Felea, D. Feliciello, A. Feofilov, G. Ferencei, J. Fernandez Tellez, A. Ferreiro, E. G. Ferretti, A. Festanti, A. Figiel, J. Figueredo, M. A. S. Filchagin, S. Finogeev, D. Fionda, F. M. Fiore, E. M. Fleck, M. G. Floris, M. Foertsch, S. Foka, P. Fokin, S. Fragiacomo, E. Francescon, A. Frankenfeld, U. Fuchs, U. Furget, C. Furs, A. Girard, M. Fusco Gaardhoje, J. J. Gagliardi, M. Gago, A. M. Gallio, M. Gangadharan, D. R. Ganoti, P. Gao, C. Garabatos, C. Garcia-Solis, E. Gargiulo, C. Gasik, P. Germain, M. Gheata, A. Gheata, M. Ghosh, P. Ghosh, S. K. Gianotti, P. Giubellino, P. Giubilato, P. Gladysz-Dziadus, E. Glaessel, P. Ramirez, A. Gomez Gonzalez-Zamora, P. Gorbunov, S. Goerlich, L. Gotovac, S. Grabski, V. Graczykowski, L. K. Grelli, A. Grigoras, A. Grigoras, C. Grigoriev, V. Grigoryan, A. Grigoryan, S. Grinyov, B. Grion, N. Grosse-Oetringhaus, J. F. Grossiord, J. -Y. Grosso, R. Guber, F. Guernane, R. Guerzoni, B. Gulbrandsen, K. Gulkanyan, H. Gunji, T. Gupta, A. Gupta, R. Haake, R. Haaland, O. Hadjidakis, C. Haiduc, M. Hamagaki, H. Hamar, G. Hanratty, L. D. Hansen, A. Harris, J. W. Hartmann, H. Harton, A. Hatzifotiadou, D. Hayashi, S. Heckel, S. T. Heide, M. Helstrup, H. Herghelegiu, A. Herrera Corral, G. Hess, B. A. Hetland, K. F. Hilden, T. E. Hillemanns, H. Hippolyte, B. Hristov, P. Huang, M. Humanic, T. J. Hussain, N. Hussain, T. Hutter, D. Hwang, D. S. Ilkaev, R. Ilkiv, I. Inaba, M. Ionita, C. Ippolitov, M. Irfan, M. Ivanov, M. Ivanov, V. Izucheev, V. Jacobs, P. M. Jahnke, C. Jang, H. J. Janik, M. A. Jayarathna, P. H. S. Y. Jena, C. Jena, S. Bustamante, R. T. Jimenez Jones, P. G. Jung, H. Jusko, A. Kalinak, P. Kalweit, A. Kamin, J. Kang, J. H. Kaplin, V. Kar, S. Uysal, A. Karasu Karavichev, O. Karavicheva, T. Karpechev, E. Kebschull, U. Keidel, R. Keijdener, D. L. D. Keil, M. Khan, K. H. Khan, M. M. Khan, P. Khan, S. A. Khanzadeev, A. Kharlov, Y. Kileng, B. Kim, B. Kim, D. W. Kim, D. J. Kim, H. Kim, J. S. Kim, M. Kim, M. Kim, S. Kim, T. Kirsch, S. Kisel, I. Kiselev, S. Kisiel, A. Kiss, G. Klay, J. L. Klein, C. Klein, J. Klein-Boesing, C. Kluge, A. Knichel, M. L. Knospe, A. G. Kobayashi, T. Kobdaj, C. Kofarago, M. Kollegger, T. Kolojvari, A. Kondratiev, V. Kondratyeva, N. Kondratyuk, E. Konevskikh, A. Kouzinopoulos, C. Kovalenko, O. Kovalenko, V. Kowalski, M. Kox, S. Meethaleveedu, G. Koyithatta Kral, J. Kralik, I. Kravcakova, A. Krelina, M. Kretz, M. Krivda, M. Krizek, F. Kryshen, E. Krzewicki, M. Kubera, A. M. Kucera, V. Kugathasan, T. Kuhn, C. Kuijer, P. G. Kulakov, I. Kumar, J. Kumar, L. Kurashvili, P. Kurepin, A. Kurepin, A. B. Kuryakin, A. Kushpil, S. Kweon, M. J. Kwon, Y. La Pointe, S. L. La Rocca, P. Lagana Fernandes, C. Lakomov, I. Langoy, R. Lara, C. Lardeux, A. Lattuca, A. Laudi, E. Lea, R. Leardini, L. Lee, G. R. Lee, S. Legrand, I. Lemmon, R. C. Lenti, V. Leogrande, E. Leon Monzon, I. Leoncino, M. Levai, P. Li, S. Li, X. Lien, J. Lietava, R. Lindal, S. Lindenstruth, V. Lippmann, C. Lisa, M. A. Ljunggren, H. M. Lodato, D. F. Loenne, P. I. Loggins, V. R. Loginov, V. Loizides, C. Lopez, X. Lopez Torres, E. Lowe, A. Luettig, P. Lunardon, M. Luparello, G. Luz, P. H. F. N. D. Maevskaya, A. Mager, M. Mahajan, S. Mahmood, S. M. Maire, A. Majka, R. D. Malaev, M. Maldonado Cervantes, I. Malinina, L. Mal'Kevich, D. Malzacher, P. Mamonov, A. Manceau, L. Manko, V. Manso, F. Manzari, V. Marchisone, M. Mares, J. Margagliotti, G. V. Margotti, A. Margutti, J. Marin, A. Markert, C. Marquard, M. Martin, N. A. Blanco, J. Martin Martinengo, P. Martinez, M. I. Garcia, G. Martinez Pedreira, M. Martinez Martynov, Y. Mas, A. Masciocchi, S. Masera, M. Masoni, A. Massacrier, L. Mastroserio, A. Masui, H. Matyja, A. Mayer, C. Mazer, J. Mazzoni, M. A. Mcdonald, D. Meddi, F. Menchaca-Rocha, A. Meninno, E. Perez, J. Mercado Meres, M. Miake, Y. Mieskolainen, M. M. Mikhaylov, K. Milano, L. Milosevic, J. Minervini, L. M. Mischke, A. Mishra, A. N. Miskowiec, D. Mitra, J. Mitu, C. M. Mohammadi, N. Mohanty, B. Molnar, L. Montano Zetina, L. Montes, E. Morando, M. De Godoy, D. A. Moreira Moretto, S. Morreale, A. Morsch, A. Muccifora, V. Mudnic, E. Muehlheim, D. Muhuri, S. Mukherjee, M. Mueller, H. Mulligan, J. D. Munhoz, M. G. Murray, S. Musa, L. Musinsky, J. Nandi, B. K. Nania, R. Nappi, E. Naru, M. U. Nattrass, C. Nayak, K. Nayak, T. K. Nazarenko, S. Nedosekin, A. Nellen, L. Ng, F. Nicassio, M. Niculescu, M. Niedziela, J. Nielsen, B. S. Nikolaev, S. Nikulin, S. Nikulin, V. Noferini, F. Nomokonov, P. Nooren, G. Norman, J. Nyanin, A. Nystrand, J. Oeschler, H. Oh, S. Oh, S. K. Ohlson, A. Okatan, A. Okubo, T. Olah, L. Oleniacz, J. Oliveira Da Silva, A. C. Oliver, M. H. Onderwaater, J. Oppedisano, C. Velasquez, A. Ortiz Oskarsson, A. Otwinowski, J. Oyama, K. Ozdemir, M. Pachmayer, Y. Pagano, P. Paic, G. Pajares, C. Pal, S. K. Pan, J. Pandey, A. K. Pant, D. Papikyan, V. Pappalardo, G. S. Pareek, P. Park, W. J. Parmar, S. Passfeld, A. Paticchio, V. Patra, R. N. Paul, B. Peitzmann, T. Da Costa, H. Pereira Pereira De Oliveira Filho, E. Peresunko, D. Lara, C. E. Perez Peskov, V. Pestov, Y. Petracek, V. Petrov, V. Petrovici, M. Petta, C. Piano, S. Pikna, M. Pillot, P. Pinazza, O. Pinsky, L. Piyarathna, D. B. Ploskon, M. Planinic, M. Pluta, J. Pochybova, S. Podesta-Lerma, P. L. M. Poghosyan, M. G. Polichtchouk, B. Poljak, N. Poonsawat, W. Pop, A. Porteboeuf-Houssais, S. Porter, J. Pospisil, J. Prasad, S. K. Preghenella, R. Prino, F. Pruneau, C. A. Pshenichnov, I. Puccio, M. Puddu, G. Pujahari, P. Punin, V. Putschke, J. Qvigstad, H. Rachevski, A. Raha, S. Rajput, S. Rak, J. Rakotozafindrabe, A. Ramello, L. Raniwala, R. Raniwala, S. Raesaenen, S. S. Rascanu, B. T. Rathee, D. Read, K. F. Real, J. S. Redlich, K. Reed, R. J. Rehman, A. Reichelt, P. Reidt, F. Ren, X. Renfordt, R. Reolon, A. R. Reshetin, A. Rettig, F. Revol, J. -P. Reygers, K. Riabov, V. Ricci, R. A. Richert, T. Richter, M. Riedler, P. Riegler, W. Riggi, F. Ristea, C. Rivetti, A. Rocco, E. Rodriguez Cahuantzi, M. Manso, A. Rodriguez Roed, K. Rogochaya, E. Rohr, D. Roehrich, D. Romita, R. Ronchetti, F. Ronflette, L. Rosnet, P. Rossi, A. Roukoutakis, F. Roy, A. Roy, C. Roy, P. Rubio Montero, A. J. Rui, R. Russo, R. Ryabinkin, E. Ryabov, Y. Rybicki, A. Sadovsky, S. Safarik, K. Sahlmuller, B. Sahoo, P. Sahoo, R. Sahoo, S. Sahu, P. K. Saini, J. Sakai, S. Saleh, M. A. Salgado, C. A. Salzwedel, J. Sambyal, S. Samsonov, V. Castro, X. Sanchez Sandor, L. Sandoval, A. Sano, M. Santagati, G. Sarkar, D. Scapparone, E. Scarlassara, F. Scharenberg, R. P. Schiaua, C. Schicker, R. Schmidt, C. Schmidt, H. R. Schuchmann, S. Schukraft, J. Schulc, M. Schuster, T. Schutz, Y. Schwarz, K. Schweda, K. Scioli, G. Scomparin, E. Scott, R. Seeder, K. S. Seger, J. E. Sekiguchi, Y. Selyuzhenkov, I. Senosi, K. Seo, J. Serradilla, E. Sevcenco, A. Shabanov, A. Shabetai, A. Shadura, O. Shahoyan, R. Shangaraev, A. Sharma, A. Sharma, N. Shigaki, K. Shtejer, K. Sibiriak, Y. Siddhanta, S. Sielewicz, K. M. Siemiarczuk, T. Silvermyr, D. Silvestre, C. Simatovic, G. Simonetti, G. Singaraju, R. Singh, R. Singha, S. Singhal, V. Sinha, B. C. Sinha, T. Sitar, B. Sitta, M. Skaali, T. B. Skjerdal, K. Slupecki, M. Smirnov, N. Snellings, R. J. M. Snellman, T. W. Sogaard, C. Soltz, R. Song, J. Song, M. Song, Z. Soramel, F. Sorensen, S. Spacek, M. Spiriti, E. Sputowska, I. Spyropoulou-Stassinaki, M. Srivastava, B. K. Stachel, J. Stan, I. Stefanek, G. Steinpreis, M. Stenlund, E. Steyn, G. Stiller, J. H. Stocco, D. Strmen, P. Suaide, A. A. P. Sugitate, T. Suire, C. Suleymanov, M. Sultanov, R. Sumbera, M. Symons, T. J. M. Szabo, A. Szanto de Toledo, A. Szarka, I. Szczepankiewicz, A. Szymanski, M. Takahashi, J. Tanaka, N. Tangaro, M. A. Takaki, J. D. Tapia Peloni, A. Tarantola Tariq, M. Tarzila, M. G. Tauro, A. Tejeda Munoz, G. Telesca, A. Terasaki, K. Terrevoli, C. Teyssier, B. Thaeder, J. Thomas, D. Tieulent, R. Timmins, A. R. Toia, A. Trogolo, S. Trubnikov, V. Trzaska, W. H. Tsuji, T. Tumkin, A. Turrisi, R. Tveter, T. S. Ullaland, K. Uras, A. Usai, G. L. Utrobicic, A. Vajzer, M. Vala, M. Palomo, L. Valencia Vallero, S. Van der Maarel, J. Van Hoorne, J. W. van Leeuwen, M. Vanat, T. Vyvre, P. Vande Varga, D. Vargas, A. Vargyas, M. Varma, R. Vasileiou, M. Vasiliev, A. Vauthier, A. Vechernin, V. Veen, A. M. Veldhoen, M. Velure, A. Venaruzzo, M. Vercellin, E. Vergara Limon, S. Vernet, R. Verweij, M. Vickovic, L. Viesti, G. Viinikainen, J. Vilakazi, Z. Baillie, O. Villalobos Vinogradov, A. Vinogradov, L. Vinogradov, Y. Virgili, T. Vislavicius, V. Viyogi, Y. P. Vodopyanov, A. Voelkl, M. A. Voloshin, K. Voloshin, S. A. Volpe, G. von Haller, B. Vorobyev, I. Vranic, D. Vrlakova, J. Vulpescu, B. Vyushin, A. Wagner, B. Wagner, J. Wang, H. Wang, M. Wang, Y. Watanabe, D. Weber, M. Weber, S. G. Wessels, J. P. Westerhoff, U. Wiechula, J. Wikne, J. Wilde, M. Wilk, G. Wilkinson, J. Williams, M. C. S. Windelband, B. Winn, M. Yaldo, C. G. Yamaguchi, Y. Yang, H. Yang, P. Yano, S. Yin, Z. Yokoyama, H. Yoo, I. -K. Yurchenko, V. Yushmanov, I. Zaborowska, A. Zaccolo, V. Zaman, A. Zampolli, C. Zanoli, H. J. C. Zaporozhets, S. Zarochentsev, A. Zavada, P. Zaviyalov, N. Zbroszczyk, H. Zgura, I. S. Zhalov, M. Zhang, H. Zhang, X. Zhang, Y. Zhao, C. Zhigareva, N. Zhou, D. Zhou, Y. Zhou, Z. Zhu, H. Zhu, J. Zhu, X. Zichichi, A. Zimmermann, A. Zimmermann, M. B. Zinovjev, G. Zyzak, M. CA ALICE Collaboration TI Coherent psi (2S) photo-production in ultra-peripheral Pb-Pb collisions at root s(NN)=2.76TeV SO PHYSICS LETTERS B LA English DT Article ID J/PSI PHOTOPRODUCTION; TRANSVERSE-MOMENTUM; MESONS; HERA; LHC; TEV; ELECTROPRODUCTION; PARTICLES; E(+)E(-); PHYSICS AB We have performed the first measurement of the coherent psi(2S) photo-production cross section in ultraperipheral Pb-Pb collisions at the LHC. This charmonium excited state is reconstructed via the psi(2S) -> l(+)l(-) and ->(2S) -> J/psi pi(+)pi(-) decays, where the J/psi decays into two leptons. The analysis is based on an event sample corresponding to an integrated luminosity of about 22 mu b(-1). The cross section for coherent psi(2S) production in the rapidity interval -0.9 < y < 0.9is d sigma(coh)(psi(2S))/dy = 0.83 +/- 0.19 (stat+syst) mb. The psi(2S) to J/psi coherent cross section ratio is 0.34(-0.07)(+0.08)(stat+syst). The obtained results are compared to predictions from theoretical models. (C) 2015 CERN for the benefit of the ALICE Collaboration. Published by Elsevier B.V. C1 [Grigoryan, A.; Gulkanyan, H.; Papikyan, V.] AI Alikhanyan Natl Sci Lab Yerevan Phys Inst Fdn, Yerevan, Armenia. [Bello Martinez, H.; Cortes Maldonado, I.; Fernandez Tellez, A.; Martinez, M. I.; Rodriguez Cahuantzi, M.; Tejeda Munoz, G.; Vargas, A.; Vergara Limon, S.] Benemerita Univ Autonoma Puebla, Puebla, Mexico. [Alkin, A.; Chelnokov, V.; Grinyov, B.; Martynov, Y.; Shadura, O.; Trubnikov, V.; Yurchenko, V.; Zinovjev, G.] Bogolyubov Inst Theoret Phys, Kiev, Ukraine. [Biswas, R.; Das, S.; Ghosh, S. K.; Prasad, S. K.; Raha, S.] Bose Inst, Dept Phys, Kolkata, India. [Biswas, R.; Das, S.; Ghosh, S. K.; Prasad, S. K.; Raha, S.] Bose Inst, Ctr Astroparticle Phys & Space Sci, Kolkata, India. [Pestov, Y.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Klay, J. L.] Calif Polytech State Univ San Luis Obispo, San Luis Obispo, CA 93407 USA. [Bartalini, P.; Cai, X.; Gao, C.; Li, S.; Ren, X.; Song, Z.; Wang, M.; Yang, P.; Yin, Z.; Zhang, H.; Zhang, Y.; Zhou, D.; Zhu, H.; Zhu, J.; Zhu, X.] Cent China Normal Univ, Wuhan, Peoples R China. [Vernet, R.] IN2P3, Ctr Calcul, Villeurbanne, France. [Ceballos Sanchez, C.; Lopez Torres, E.; Shtejer, K.] Ctr Aplicac Tecnol & Desarrollo Nucl CEADEN, Havana, Cuba. [Blanco, F.; Diaz Corchero, M. A.; Gonzalez-Zamora, P.; Montes, E.; Rubio Montero, A. J.; Serradilla, E.] Ctr Invest Energet Medioambientales & Tecnol CIEM, Madrid, Spain. [Contreras, J. G.; Cruz Albino, R.; Herrera Corral, G.; Montano Zetina, L.] Ctr Invest & Estudios Avanzados CINVESTAV, Mexico City, DF, Mexico. [Contreras, J. G.; Cruz Albino, R.; Herrera Corral, G.; Montano Zetina, L.] Ctr Invest & Estudios Avanzados CINVESTAV, Merida, Mexico. [Alici, A.; Cifarelli, L.; De Caro, A.; De Gruttola, D.; Noferini, F.; Revol, J. -P.; Zichichi, A.] Ctr Fermi Museo Stor Fis, Rome, Italy. [Alici, A.; Cifarelli, L.; De Caro, A.; De Gruttola, D.; Noferini, F.; Revol, J. -P.; Zichichi, A.] Ctr & Ric Enrico Fermi, Rome, Italy. [Garcia-Solis, E.; Harton, A.] Chicago State Univ, Chicago, IL USA. [Li, X.] China Inst Atom Energy, Beijing, Peoples R China. [Baldisseri, A.; Borel, H.; Castellanos, J. Castillo; Charvet, J. L.; Lardeux, A.; Da Costa, H. Pereira; Rakotozafindrabe, A.] IRFU, Commissariat a Energie Atom, Saclay, France. [Ajaz, M.; Khan, K. H.; Naru, M. U.; Suleymanov, M.; Zaman, A.] COMSATS Inst Informat Technol, Islamabad, Pakistan. [Armesto, N.; Ferreiro, E. G.; Pajares, C.; Salgado, C. A.] Univ Santiago de Compostela, Dept Fis Particulas, Santiago De Compostela, Spain. [Armesto, N.; Ferreiro, E. G.; Pajares, C.; Salgado, C. A.] Univ Santiago de Compostela, IGFAE, Santiago De Compostela, Spain. [Altinpinar, S.; Djuvsland, O.; Haaland, O.; Huang, M.; Loenne, P. I.; Nystrand, J.; Rehman, A.; Roehrich, D.; Skjerdal, K.; Ullaland, K.; Velure, A.; Wagner, B.; Zhang, H.; Zhou, Z.; Zhu, H.] Univ Bergen, Dept Phys & Technol, Bergen, Norway. [Azmi, M. D.; Hussain, T.; Irfan, M.; Khan, M. M.; Tariq, M.] Aligarh Muslim Univ, Dept Phys, Aligarh 202002, Uttar Pradesh, India. [Buxton, J. T.; Humanic, T. J.; Kubera, A. M.; Lisa, M. A.; Salzwedel, J.; Steinpreis, M.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Hwang, D. S.; Kim, S.] Sejong Univ, Dept Phys, Seoul, South Korea. [Arsene, I. C.; Batzing, P. C.; Dordic, O.; Lindal, S.; Mahmood, S. M.; Milosevic, J.; Qvigstad, H.; Richter, M.; Roed, K.; Skaali, T. B.; Tveter, T. S.; Wikne, J.; Zhao, C.] Univ Oslo, Dept Phys, Oslo, Norway. [Minervini, L. M.] Dipartimento Elettrotecn & Elettron Politecn, Bari, Italy. [Meddi, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Mazzoni, M. A.; Meddi, F.] Sezione Ist Nazl Fis Nucl, Rome, Italy. [Casula, E. A. R.; Collu, A.; de Falco, A.; Puddu, G.; Terrevoli, C.; Usai, G. L.] Univ Cagliari, Dipartimento Fis, Cagliari, Italy. [Casula, E. A. R.; Cicalo, C.; Collu, A.; de Falco, A.; Masoni, A.; Puddu, G.; Siddhanta, S.; Terrevoli, C.; Usai, G. L.] Sezione Ist Nazl Fis Nucl, Cagliari, Italy. [Camerini, P.; Lea, R.; Luparello, G.; Margagliotti, G. V.; Rui, R.] Univ Trieste, Dipartimento Fis, Trieste, Italy. [Camerini, P.; Fragiacomo, E.; Grion, N.; Lea, R.; Luparello, G.; Margagliotti, G. V.; Piano, S.; Rachevski, A.; Rui, R.] Sezione Ist Nazl Fis Nucl, Trieste, Italy. [Beole, S.; Berzano, D.; Bianchi, L.; Botta, E.; Morales, Y. Corrales; Ferretti, A.; Gagliardi, M.; Gallio, M.; Lattuca, A.; Leoncino, M.; Marchisone, M.; Masera, M.; Russo, R.; Shtejer, K.; Vallero, S.; Vercellin, E.] Univ Turin, Dipartimento Fis, Turin, Italy. [Agnello, M.; Aimo, I.; Alessandro, B.; Arnaldi, R.; Bagnasco, S.; Barbano, A. M.; Bedda, C.; Beole, S.; Berzano, D.; Bianchi, L.; Botta, E.; Bruna, E.; Bufalino, S.; Cerello, P.; Morales, Y. Corrales; De Marco, N.; Feliciello, A.; Ferretti, A.; Gagliardi, M.; Gallio, M.; Giubellino, P.; La Pointe, S. L.; Lattuca, A.; Leoncino, M.; Manceau, L.; Marchisone, M.; Masera, M.; Oppedisano, C.; Prino, F.; Puccio, M.; Rivetti, A.; Russo, R.; Scomparin, E.; Shtejer, K.; Trogolo, S.; Vallero, S.; Vercellin, E.] Sezione Ist Nazl Fis Nucl, Turin, Italy. [Arcelli, S.; Basile, M.; Bellini, F.; Cifarelli, L.; Colocci, M.; Guerzoni, B.; Scioli, G.; Zichichi, A.] Univ Bologna, Dipartimento Fis & Astron, Bologna, Italy. [Alici, A.; Antonioli, P.; Arcelli, S.; Basile, M.; Bellini, F.; Cifarelli, L.; Cindolo, F.; Colocci, M.; Guerzoni, B.; Hatzifotiadou, D.; Margotti, A.; Nania, R.; Noferini, F.; Pinazza, O.; Preghenella, R.; Scapparone, E.; Scioli, G.; Williams, M. C. S.; Zampolli, C.; Zichichi, A.] Sezione Ist Nazl Fis Nucl, Bologna, Italy. [Barbera, R.; La Rocca, P.; Petta, C.; Riggi, F.; Santagati, G.] Univ Catania, Dipartimento Fis & Astron, Catania, Italy. [Badala, A.; Barbera, R.; La Rocca, P.; Pappalardo, G. S.; Petta, C.; Riggi, F.; Santagati, G.] Sezione Ist Nazl Fis Nucl, Catania, Italy. [Festanti, A.; Francescon, A.; Giubilato, P.; Jena, C.; Lunardon, M.; Morando, M.; Moretto, S.; Scarlassara, F.; Soramel, F.; Terrevoli, C.; Viesti, G.] Univ Padua, Dipartimento Fis & Astron, Padua, Italy. [Antinori, F.; Dainese, A.; Fabris, D.; Festanti, A.; Francescon, A.; Giubilato, P.; Jena, C.; Lunardon, M.; Morando, M.; Moretto, S.; Scarlassara, F.; Soramel, F.; Terrevoli, C.; Turrisi, R.; Viesti, G.] Sezione Ist Nazl Fis Nucl, Padua, Italy. [De Caro, A.; De Gruttola, D.; De Pasquale, S.; Girard, M. Fusco; Meninno, E.; Pagano, P.; Virgili, T.] Univ Salerno, Dipartimento Fis ER Caianiello, I-84100 Salerno, Italy. [De Caro, A.; De Gruttola, D.; De Pasquale, S.; Girard, M. Fusco; Meninno, E.; Pagano, P.; Virgili, T.] Ist Nazl Fis Nucl, Grp Collegato, Salerno, Italy. [Cortese, P.; Ramello, L.; Sitta, M.] Univ Piemonte Orientale, Dipartimento Sci & Innovaz Tecnol, Alessandria, Italy. [Cortese, P.; Ramello, L.; Sitta, M.] Ist Nazl Fis Nucl, Grp Collegato, Alessandria, Italy. [Barile, F.; Bruno, G. E.; Colamaria, F.; Colella, D.; D'Erasmo, G.; Di Bari, D.; Fiore, E. M.; Mastroserio, A.; Tangaro, M. A.] Dipartimento Interateneo Fis M Merlin, Bari, Italy. [Barile, F.; Bruno, G. E.; Colamaria, F.; Colella, D.; de Cataldo, G.; D'Erasmo, G.; Di Bari, D.; Elia, D.; Fionda, F. M.; Fiore, E. M.; Lenti, V.; Manzari, V.; Mastroserio, A.; Minervini, L. M.; Nappi, E.; Paticchio, V.; Tangaro, M. A.] Sezione Ist Nazl Fis Nucl, Bari, Italy. [Christiansen, P.; Ljunggren, H. M.; Oskarsson, A.; Richert, T.; Silvermyr, D.; Sogaard, C.; Stenlund, E.; Vislavicius, V.] Lund Univ, Div Expt High Energy Phys, Lund, Sweden. [Hess, B. A.; Schmidt, H. R.; Wiechula, J.] Univ Tubingen, Tubingen, Germany. [Rinella, G. Aglieri; Augustinus, A.; Pedrosa, F. Baltasar Dos Santos; Barth, K.; Berzano, D.; Betev, L.; Bufalino, S.; Buncic, P.; Caffarri, D.; Carena, F.; Carena, W.; Cavicchioli, C.; Chapeland, S.; Barroso, V. Chibante; Chochula, P.; Costa, F.; Cunqueiro, L.; Di Mauro, A.; Divia, R.; Erazmus, B.; Floris, M.; Francescon, A.; Fuchs, U.; Gargiulo, C.; Gheata, A.; Gheata, M.; Giubellino, P.; Grigoras, A.; Grigoras, C.; Grosse-Oetringhaus, J. F.; Grosso, R.; Hillemanns, H.; Hristov, P.; Ionita, C.; Kalweit, A.; Keil, M.; Kluge, A.; Kofarago, M.; Kouzinopoulos, C.; Kryshen, E.; Kugathasan, T.; Lakomov, I.; Laudi, E.; Legrand, I.; Mager, M.; Manzari, V.; Martinengo, P.; Pedreira, M. Martinez; Milano, L.; Morsch, A.; Mueller, H.; Musa, L.; Niculescu, M.; Niedziela, J.; Ohlson, A.; Pinazza, O.; Preghenella, R.; Reidt, F.; Riedler, P.; Riegler, W.; Rossi, A.; Safarik, K.; Schukraft, J.; Schutz, Y.; Shahoyan, R.; Sielewicz, K. M.; Simonetti, G.; Szczepankiewicz, A.; Tauro, A.; Telesca, A.; Van Hoorne, J. W.; Vyvre, P. Vande; Volpe, G.; von Haller, B.; Vranic, D.; Weber, M.; Zimmermann, M. B.] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland. [Alme, J.; Helstrup, H.; Hetland, K. F.; Kileng, B.] Bergen Univ Coll, Fac Engn, Bergen, Norway. [Meres, M.; Pikna, M.; Sitar, B.; Strmen, P.; Szabo, A.; Szarka, I.] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia. [Adam, J.; Bielcik, J.; Broz, M.; Cepila, J.; Contreras, J. G.; Eyyubova, G.; Krelina, M.; Petracek, V.; Schulc, M.; Spacek, M.] Czech Tech Univ, Fac Nucl Sci & Phys Engn, CR-11519 Prague, Czech Republic. [Bombara, M.; Kravcakova, A.; Vrlakova, J.] Safarik Univ, Fac Sci, Kosice, Slovakia. [Langoy, R.; Lien, J.] Buskerud & Vestfold Univ Coll, Fac Technol, Vestfold, Norway. [Alt, T.; Bach, M.; de Cuveland, J.; Eschweiler, D.; Gorbunov, S.; Hartmann, H.; Hutter, D.; Kirsch, S.; Kisel, I.; Kollegger, T.; Kretz, M.; Krzewicki, M.; Kulakov, I.; Lindenstruth, V.; Rettig, F.; Rohr, D.; Zyzak, M.] Goethe Univ Frankfurt, Frankfurt Inst Adv Studies, D-60054 Frankfurt, Germany. [Baek, Y. W.; Jung, H.; Kim, D. W.; Kim, J. S.; Kim, M.] Gangneung Wonju Natl Univ, Kangnung, South Korea. [Bhattacharjee, B.; Hussain, N.] Gauhati Univ, Dept Phys, Gauhati, India. [Brucken, E. J.; Hilden, T. E.; Mieskolainen, M. M.; Raesaenen, S. S.] Helsinki Inst Phys, Helsinki, Finland. [Okubo, T.; Shigaki, K.; Sugitate, T.; Yano, S.] Hiroshima Univ, Hiroshima, Japan. [Agrawal, N.; Behera, N. K.; Dash, S.; Meethaleveedu, G. Koyithatta; Kumar, J.; Nandi, B. K.; Pandey, A. K.; Pant, D.; Varma, R.] Indian Inst Technol, Bombay 400076, Maharashtra, India. [Behera, N. K.; Mishra, A. N.; Pareek, P.; Roy, A.; Sahoo, P.; Sahoo, R.] Indian Inst Technol Indore, Indore, Madhya Pradesh, India. [Kweon, M. J.] Inha Univ, Inchon, South Korea. [del Valle, Z. Conesa; Das, I.; Espagnon, B.; Hadjidakis, C.; Lakomov, I.; Suire, C.; Takaki, J. D. Tapia] Univ Paris 11, CNRS, IN2P3, Inst Phys Nucl Orsay, F-91405 Orsay, France. [Boettger, S.; Breitner, T.; Engel, H.; Ramirez, A. Gomez; Kebschull, U.; Lara, C.] Goethe Univ Frankfurt, Inst Informat, D-60054 Frankfurt, Germany. [Appelshaueser, H.; Arslandok, M.; Bailhache, R.; Bartsch, E.; Beck, H.; Blume, C.; Book, J.; Broker, T. A.; Buesching, H.; Dillenseger, P.; Doenigus, B.; Heckel, S. T.; Kamin, J.; Klein, C.; Luettig, P.; Marquard, M.; Ozdemir, M.; Peskov, V.; Rascanu, B. T.; Reichelt, P.; Renfordt, R.; Sahlmuller, B.; Schuchmann, S.; Peloni, A. Tarantola; Toia, A.] Goethe Univ Frankfurt, Inst Kernphys, D-60054 Frankfurt, Germany. [Anielski, J.; Bathen, B.; Feldkamp, L.; Haake, R.; Heide, M.; Klein-Boesing, C.; Muehlheim, D.; Passfeld, A.; Wessels, J. P.; Westerhoff, U.; Wilde, M.; Zimmermann, M. B.] Univ Munster, Inst Kernphys, D-48149 Munster, Germany. [Belikov, I.; Hippolyte, B.; Kuhn, C.; Maire, A.; Molnar, L.; Roy, C.; Castro, X. Sanchez] Univ Strasbourg, CNRS, IN2P3, IPHC, Strasbourg, France. [Finogeev, D.; Furs, A.; Guber, F.; Karavichev, O.; Karavicheva, T.; Karpechev, E.; Konevskikh, A.; Kurepin, A.; Kurepin, A. B.; Maevskaya, A.; Pshenichnov, I.; Reshetin, A.; Shabanov, A.] Russian Acad Sci, Inst Nucl Res, Moscow 117312, Russia. [Bertens, R. A.; Bianchin, C.; Bjelogrlic, S.; Caliva, A.; Chunhui, Z.; Dobrin, A.; Dubla, A.; Grelli, A.; Keijdener, D. L. D.; Leogrande, E.; Lodato, D. F.; Margutti, J.; Mischke, A.; Mohammadi, N.; Nooren, G.; Peitzmann, T.; Rocco, E.; Snellings, R. J. M.; Van der Maarel, J.; van Leeuwen, M.; Veen, A. M.; Veldhoen, M.; Wang, H.; Yang, H.; Zhou, Y.] Univ Utrecht, Inst Subatom Phys, Utrecht, Netherlands. [Akindinov, A.; Kiselev, S.; Mal'Kevich, D.; Mikhaylov, K.; Nedosekin, A.; Sultanov, R.; Voloshin, K.; Zhigareva, N.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Kalinak, P.; Kralik, I.; Krivda, M.; Musinsky, J.; Sandor, L.; Vala, M.] Slovak Acad Sci, Inst Expt Phys, Kosice 04353, Slovakia. [Mares, J.; Zavada, P.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Baral, R. C.; Sahoo, S.; Sahu, P. K.; Sharma, N.] Inst Phys, Bhubaneswar 751007, Orissa, India. [Danu, A.; Felea, D.; Gheata, M.; Haiduc, M.; Mitu, C. M.; Niculescu, M.; Ristea, C.; Sevcenco, A.; Stan, I.; Zgura, I. S.] Inst Space Sci, Bucharest, Romania. [Cuautle, E.; Maldonado Cervantes, I.; Nellen, L.; Velasquez, A. Ortiz; Paic, G.] Univ Nacl Autonoma Mexico, Inst Ciencias Nucl, Mexico City 04510, DF, Mexico. [Alfaro Molina, R.; Belmont-Moreno, E.; Grabski, V.; Menchaca-Rocha, A.; Sandoval, A.; Serradilla, E.] Univ Nacl Autonoma Mexico, Inst Fis, Mexico City 01000, DF, Mexico. [Bossu, F.; Buthelezi, Z.; Foertsch, S.; Murray, S.; Senosi, K.; Steyn, G.] Natl Res Fdn, iThemba LABS, Somerset West, South Africa. [Batyunya, B.; Grigoryan, S.; Malinina, L.; Mikhaylov, K.; Nomokonov, P.; Rogochaya, E.; Vodopyanov, A.; Zaporozhets, S.] Joint Inst Nucl Res, Dubna, Russia. [Oh, S. K.; Seo, J.] Konkuk Univ, Seoul, South Korea. [Ahn, S. U.; Jang, H. J.; Kim, D. W.] Korea Inst Sci & Technol Informat, Taejon, South Korea. [Uysal, A. Karasu; Okatan, A.] KTO Karatay Univ, Konya, Turkey. [Barret, V.; Bastid, N.; Camejo, A. Batista; Crochet, P.; Dupieux, P.; Li, S.; Lopez, X.; Manso, F.; Porteboeuf-Houssais, S.; Rosnet, P.; Palomo, L. Valencia; Vulpescu, B.] Univ Clermont Ferrand, Univ Blaise Pascal, CNRS, IN2P3,LPC, Clermont Ferrand, France. [Balbastre, G. Conesa; Faivre, J.; Furget, C.; Guernane, R.; Kox, S.; Real, J. S.; Silvestre, C.; Vauthier, A.] Univ Grenoble Alpes, CNRS, IN2P3, Lab Phys Subatom & Cosmol, Grenoble, France. [Bianchi, N.; Diaz, L. Calero; Di Nezza, P.; Fantoni, A.; Gianotti, P.; Muccifora, V.; Reolon, A. R.; Ronchetti, F.; Sakai, S.; Spiriti, E.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Ricci, R. A.; Venaruzzo, M.] Ist Nazl Fis Nucl, Lab Nazl Legnaro, I-35020 Legnaro, Italy. [Bock, F.; Fasel, M.; Gangadharan, D. R.; Jacobs, P. M.; Loizides, C.; Ploskon, M.; Porter, J.; Symons, T. J. M.; Thaeder, J.; Zhang, X.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Soltz, R.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Belyaev, V.; Bogdanov, A.; Grigoriev, V.; Ippolitov, M.; Kaplin, V.; Kondratyeva, N.; Loginov, V.; Peresunko, D.] Moscow Engn Phys Inst, Moscow 115409, Russia. [Deloff, A.; Dobrowolski, T.; Ilkiv, I.; Kovalenko, O.; Kurashvili, P.; Redlich, K.; Siemiarczuk, T.; Stefanek, G.; Wilk, G.] Natl Ctr Nucl Studies, Warsaw, Poland. [Andrei, C.; Berceanu, I.; Bercuci, A.; Herghelegiu, A.; Petrovici, M.; Pop, A.; Schiaua, C.; Tarzila, M. G.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Biswas, S.; Kumar, L.; Mohanty, B.; Nayak, K.; Singh, R.; Singha, S.] Natl Inst Sci Educ & Res, Bhubaneswar, Orissa, India. [Bearden, I. G.; Bilandzic, A.; Boggild, H.; Chojnacki, M.; Christensen, C. H.; Gaardhoje, J. J.; Gulbrandsen, K.; Hansen, A.; Nielsen, B. S.; Zaccolo, V.; Zhou, Y.] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Botje, M.; Christakoglou, P.; Dobrin, A.; Kuijer, P. G.; Lara, C. E. Perez; Manso, A. Rodriguez] Natl Inst Subatom Phys, Nikhef, Amsterdam, Netherlands. [Borri, M.; Lemmon, R. C.] STFC Daresbury Lab, Nucl Phys Grp, Daresbury, England. [Adamova, D.; Bielcikova, J.; Ferencei, J.; Krizek, F.; Kucera, V.; Kushpil, S.; Pospisil, J.; Sumbera, M.; Vajzer, M.; Vanat, T.] Acad Sci Czech Republic, Inst Nucl Phys, Prague, Czech Republic. [Cormier, T. M.; Silvermyr, D.] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Berdnikov, Y.; Ivanov, V.; Khanzadeev, A.; Malaev, M.; Nikulin, V.; Riabov, V.; Ryabov, Y.; Samsonov, V.; Zhalov, M.] Petersburg Nucl Phys Inst, Gatchina, Russia. [Cherney, M.; Poghosyan, M. G.; Seger, J. E.] Creighton Univ, Dept Phys, Omaha, NE 68178 USA. [Aggarwal, M. M.; Bhati, A. K.; Kumar, L.; Parmar, S.; Rathee, D.] Panjab Univ, Dept Phys, Chandigarh 160014, India. [Ganoti, P.; Roukoutakis, F.; Spyropoulou-Stassinaki, M.; Vasileiou, M.] Univ Athens, Dept Phys, Athens, Greece. [Cleymans, J.; Dietel, T.] Univ Cape Town, Dept Phys, ZA-7925 Cape Town, South Africa. [Bala, R.; Bhasin, A.; Bhat, I. R.; Gupta, A.; Gupta, R.; Mahajan, S.; Rajput, S.; Sambyal, S.; Sharma, A.] Univ Jammu, Dept Phys, Jammu 180004, India. [Raniwala, R.; Raniwala, S.] Univ Rajasthan, Dept Phys, Jaipur 302004, Rajasthan, India. [Dahms, T.; Fabbietti, L.; Gasik, P.; Vorobyev, I.] Tech Univ Munich, Dept Phys, D-80290 Munich, Germany. [Anguelov, V.; Bock, F.; Busch, O.; Deisting, A.; Fleck, M. G.; Glaessel, P.; Klein, J.; Knichel, M. L.; Leardini, L.; Perez, J. Mercado; Oeschler, H.; Oyama, K.; Pachmayer, Y.; Reidt, F.; Reygers, K.; Schicker, R.; Stachel, J.; Stiller, J. H.; Voelkl, M. A.; Wang, Y.; Wilkinson, J.; Windelband, B.; Winn, M.; Zimmermann, A.] Heidelberg Univ, Inst Phys, Heidelberg, Germany. [Aimo, I.] Politecn Torino, Turin, Italy. [Browning, T. A.; Scharenberg, R. P.; Srivastava, B. K.] Purdue Univ, W Lafayette, IN 47907 USA. [Borissov, A.; Choi, K.; Chung, S. U.; Eum, J.; Seo, J.; Song, J.; Yoo, I. -K.] Pusan Natl Univ, Pusan 609735, South Korea. [Andronic, A.; Averbeck, R.; Braun-Munzinger, P.; Deisting, A.; Foka, P.; Frankenfeld, U.; Garabatos, C.; Ivanov, M.; Bustamante, R. T. Jimenez; Kollegger, T.; Krzewicki, M.; Lippmann, C.; Malzacher, P.; Marin, A.; Martin, N. A.; Masciocchi, S.; Miskowiec, D.; Nicassio, M.; Onderwaater, J.; Otwinowski, J.; Park, W. J.; Schmidt, C.; Schwarz, K.; Schweda, K.; Selyuzhenkov, I.; Thaeder, J.; Vranic, D.; Wagner, J.; Weber, S. G.] GSI Helmholtzzentrum Schwerionenforsch, Div Res, Darmstadt, Germany. [Andronic, A.; Averbeck, R.; Braun-Munzinger, P.; Deisting, A.; Foka, P.; Frankenfeld, U.; Garabatos, C.; Ivanov, M.; Bustamante, R. T. Jimenez; Kollegger, T.; Krzewicki, M.; Lippmann, C.; Malzacher, P.; Marin, A.; Martin, N. A.; Masciocchi, S.; Miskowiec, D.; Nicassio, M.; Onderwaater, J.; Otwinowski, J.; Park, W. J.; Schmidt, C.; Schwarz, K.; Schweda, K.; Selyuzhenkov, I.; Thaeder, J.; Vranic, D.; Wagner, J.; Weber, S. G.] GSI Helmholtzzentrum Schwerionenforsch, ExtreMe Matter Inst EMMI, Darmstadt, Germany. [Anticic, T.] Rudjer Boskovic Inst, Zagreb, Croatia. [Budnikov, D.; Filchagin, S.; Ilkaev, R.; Kuryakin, A.; Mamonov, A.; Nazarenko, S.; Punin, V.; Tumkin, A.; Vinogradov, Y.; Vyushin, A.; Zaviyalov, N.] Russian Fed Nucl Ctr VNIIEF, Sarov, Russia. [Aleksandrov, D.; Blau, D.; Fokin, S.; Ippolitov, M.; Manko, V.; Nikolaev, S.; Nikulin, S.; Nyanin, A.; Peresunko, D.; Ryabinkin, E.; Sibiriak, Y.; Vasiliev, A.; Vinogradov, A.; Yushmanov, I.] Kurchatov Inst, Russian Res Ctr, Moscow, Russia. [Chattopadhyay, S.; Das, D.; Das, I.; Khan, P.; Paul, B.; Roy, P.; Sinha, T.] Saha Inst Nucl Phys, Kolkata, India. [Alexandre, D.; Barnby, L. S.; Evans, D.; Hanratty, L. D.; Jones, P. G.; Jusko, A.; Krivda, M.; Lee, G. R.; Lietava, R.; Baillie, O. Villalobos] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England. [Calvo Villar, E.; Gago, A. M.] Pontificia Univ Catolica Peru, Dept Ciencias, Secc Fis, Lima, Peru. [Evdokimov, S.; Izucheev, V.; Kharlov, Y.; Kondratyuk, E.; Petrov, V.; Polichtchouk, B.; Sadovsky, S.; Shangaraev, A.] NRC Kurchatov Inst, SSC IHEP, Protvino, Russia. [Aphecetche, L.; Batigne, G.; Erazmus, B.; Estienne, M.; Germain, M.; Blanco, J. Martin; Garcia, G. Martinez; Massacrier, L.; De Godoy, D. A. Moreira; Morreale, A.; Pillot, P.; Ronflette, L.; Schutz, Y.; Shabetai, A.; Stocco, D.; Wang, M.; Zhu, J.] Univ Nantes, CNRS, IN2P3, SUBATECH,Ecole Mines Nantes, Nantes, France. [Kobdaj, C.; Poonsawat, W.] Suranaree Univ Technol, Nakhon Ratchasima, Thailand. [Gotovac, S.; Mudnic, E.; Vickovic, L.] Tech Univ Split FESB, Split, Croatia. [Bartke, J.; Figiel, J.; Gladysz-Dziadus, E.; Goerlich, L.; Kowalski, M.; Matyja, A.; Mayer, C.; Otwinowski, J.; Rybicki, A.; Sputowska, I.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, Krakow, Poland. [Knospe, A. G.; Markert, C.; Thomas, D.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. [Leon Monzon, I.; Podesta-Lerma, P. L. M.] Univ Autonoma Sinaloa, Culiacan, Mexico. [Alves Garcia Prado, C.; Bregant, M.; Cosentino, M. R.; De, S.; Domenicis Gimenez, D.; Jahnke, C.; Lagana Fernandes, C.; Luz, P. H. F. N. D.; Mas, A.; Munhoz, M. G.; Oliveira Da Silva, A. C.; Pereira De Oliveira Filho, E.; Seeder, K. S.; Suaide, A. A. P.; Szanto de Toledo, A.; Zanoli, H. J. C.] Univ Sao Paulo, Sao Paulo, Brazil. [Chinellato, D. D.; Dash, A.; Takahashi, J.] Univ Estadual Campinas, UNICAMP, Campinas, SP, Brazil. [Bellwied, R.; Bianchi, L.; Jayarathna, P. H. S. Y.; Jena, S.; Mcdonald, D.; Ng, F.; Pinsky, L.; Piyarathna, D. B.; Timmins, A. R.] Univ Houston, Houston, TX USA. [Chang, B.; Kim, D. J.; Kral, J.; Rak, J.; Slupecki, M.; Snellman, T. W.; Trzaska, W. H.; Vargyas, M.; Viinikainen, J.] Univ Jyvaskyla, Jyvaskyla, Finland. [Chartier, M.; Figueredo, M. A. S.; Norman, J.; Romita, R.] Univ Liverpool, Liverpool L69 3BX, Merseyside, England. [Castro, A. J.; Mazer, J.; Nattrass, C.; Read, K. F.; Scott, R.; Sharma, N.; Sorensen, S.] Univ Tennessee, Knoxville, TN USA. [Vilakazi, Z.] Univ Witwatersrand, Johannesburg, South Africa. [Gunji, T.; Hamagaki, H.; Hayashi, S.; Sekiguchi, Y.; Terasaki, K.; Tsuji, T.; Yamaguchi, Y.] Univ Tokyo, Tokyo, Japan. [Bhom, J.; Busch, O.; Chujo, T.; Esumi, S.; Inaba, M.; Kobayashi, T.; Masui, H.; Miake, Y.; Sano, M.; Tanaka, N.; Watanabe, D.; Yokoyama, H.] Univ Tsukuba, Tsukuba, Ibaraki, Japan. [Erhardt, F.; Planinic, M.; Poljak, N.; Simatovic, G.; Utrobicic, A.] Univ Zagreb, Fac Sci, Dept Phys, Bijenicka Cesta 32, Zagreb 10000, Croatia. [Cheshkov, C.; Cheynis, B.; Ducroux, L.; Grossiord, J. -Y.; Teyssier, B.; Tieulent, R.; Uras, A.] Univ Lyon 1, CNRS, IN2P3, IPN Lyon, F-69622 Villeurbanne, France. [Altsybeev, I.; Feofilov, G.; Kolojvari, A.; Kondratiev, V.; Kovalenko, V.; Vechernin, V.; Vinogradov, L.; Zarochentsev, A.] St Petersburg State Univ, V Fock Inst Phys, St Petersburg 199034, Russia. [Ahammed, Z.; Alam, S. N.; Basu, S.; Chattopadhyay, S.; Choudhury, S.; Dubey, A. K.; Ghosh, P.; Kar, S.; Khan, S. A.; Mitra, J.; Mohanty, B.; Muhuri, S.; Mukherjee, M.; Nayak, T. K.; Pal, S. K.; Patra, R. N.; Saini, J.; Sarkar, D.; Singaraju, R.; Singha, S.; Singhal, V.; Sinha, B. C.; Viyogi, Y. P.] Ctr Variable Energy Cyclotron, Kolkata, India. [Milosevic, J.] Vinca Inst Nucl Sci, Belgrade, Serbia. [Graczykowski, L. K.; Janik, M. A.; Kisiel, A.; Oleniacz, J.; Pluta, J.; Szymanski, M.; Zaborowska, A.; Zbroszczyk, H.] Warsaw Univ Technol, Warsaw, Poland. [Belmont, R.; Bianchin, C.; Loggins, V. R.; Pan, J.; Pruneau, C. A.; Pujahari, P.; Putschke, J.; Reed, R. J.; Saleh, M. A.; Verweij, M.; Voloshin, S. A.; Yaldo, C. G.] Wayne State Univ, Detroit, MI USA. [Barnafoeldi, G. G.; Bencedi, G.; Berenyi, D.; Boldizsar, L.; Denes, E.; Hamar, G.; Kiss, G.; Levai, P.; Lowe, A.; Olah, L.; Pochybova, S.; Varga, D.; Volpe, G.] Hungarian Acad Sci, Wigner Res Ctr Phys, Budapest, Hungary. [Aiola, S.; Aronsson, T.; Caines, H.; Connors, M. E.; Ehlers, R. J.; Harris, J. W.; Majka, R. D.; Mulligan, J. D.; Oh, S.; Oliver, M. H.; Schuster, T.; Smirnov, N.] Yale Univ, New Haven, CT USA. [Kang, J. H.; Kim, B.; Kim, H.; Kim, M.; Kim, T.; Kwon, Y.; Lee, S.; Song, M.] Yonsei Univ, Seoul 120749, South Korea. [Keidel, R.] Fachhsch Worms, ZTT, Worms, Germany. [Takaki, J. D. Tapia] Univ Kansas, Lawrence, KS 66045 USA. RP Adam, J (reprint author), Czech Tech Univ, Fac Nucl Sci & Phys Engn, CR-11519 Prague, Czech Republic. RI Bielcikova, Jana/G-9342-2014; Vajzer, Michal/G-8469-2014; Ferencei, Jozef/H-1308-2014; Sumbera, Michal/O-7497-2014; Adamova, Dagmar/G-9789-2014; Pshenichnov, Igor/A-4063-2008; Sevcenco, Adrian/C-1832-2012; Barnby, Lee/G-2135-2010; feofilov, grigory/A-2549-2013; Kucera, Vit/G-8459-2014; Krizek, Filip/G-8967-2014; Natal da Luz, Hugo/F-6460-2013; Bregant, Marco/I-7663-2012; Ferreiro, Elena/C-3797-2017; Armesto, Nestor/C-4341-2017; Martinez Hernandez, Mario Ivan/F-4083-2010; Ferretti, Alessandro/F-4856-2013; Kovalenko, Vladimir/C-5709-2013; Altsybeev, Igor/K-6687-2013; Vickovic, Linda/F-3517-2017; Fernandez Tellez, Arturo/E-9700-2017; Naru, Muhammad Umair/N-5547-2015; Vechernin, Vladimir/J-5832-2013; Christensen, Christian/D-6461-2012; De Pasquale, Salvatore/B-9165-2008; Chinellato, David/D-3092-2012; Felea, Daniel/C-1885-2012; de Cuveland, Jan/H-6454-2016; Kurepin, Alexey/H-4852-2013; Jena, Deepika/P-2873-2015; Jena, Satyajit/P-2409-2015; Akindinov, Alexander/J-2674-2016; Takahashi, Jun/B-2946-2012; Nattrass, Christine/J-6752-2016; Usai, Gianluca/E-9604-2015; Cosentino, Mauro/L-2418-2014; Suaide, Alexandre/L-6239-2016; Peitzmann, Thomas/K-2206-2012; Kondratiev, Valery/J-8574-2013; Vinogradov, Leonid/K-3047-2013; Martynov, Yevgen/L-3009-2015; Castillo Castellanos, Javier/G-8915-2013; Inst. of Physics, Gleb Wataghin/A-9780-2017 OI Sumbera, Michal/0000-0002-0639-7323; Pshenichnov, Igor/0000-0003-1752-4524; Sevcenco, Adrian/0000-0002-4151-1056; Barnby, Lee/0000-0001-7357-9904; feofilov, grigory/0000-0003-3700-8623; Natal da Luz, Hugo/0000-0003-1177-870X; Ferreiro, Elena/0000-0002-4449-2356; Armesto, Nestor/0000-0003-0940-0783; Martinez Hernandez, Mario Ivan/0000-0002-8503-3009; Ferretti, Alessandro/0000-0001-9084-5784; Kovalenko, Vladimir/0000-0001-6012-6615; Altsybeev, Igor/0000-0002-8079-7026; Vickovic, Linda/0000-0002-9820-7960; Fernandez Tellez, Arturo/0000-0003-0152-4220; Naru, Muhammad Umair/0000-0001-6489-0784; Vechernin, Vladimir/0000-0003-1458-8055; Christensen, Christian/0000-0002-1850-0121; De Pasquale, Salvatore/0000-0001-9236-0748; Chinellato, David/0000-0002-9982-9577; Felea, Daniel/0000-0002-3734-9439; de Cuveland, Jan/0000-0003-0455-1398; Kurepin, Alexey/0000-0002-1851-4136; Jena, Deepika/0000-0003-2112-0311; Jena, Satyajit/0000-0002-6220-6982; Akindinov, Alexander/0000-0002-7388-3022; Takahashi, Jun/0000-0002-4091-1779; Nattrass, Christine/0000-0002-8768-6468; Usai, Gianluca/0000-0002-8659-8378; Cosentino, Mauro/0000-0002-7880-8611; Suaide, Alexandre/0000-0003-2847-6556; Peitzmann, Thomas/0000-0002-7116-899X; Kondratiev, Valery/0000-0002-0031-0741; Vinogradov, Leonid/0000-0001-9247-6230; Martynov, Yevgen/0000-0003-0753-2205; Castillo Castellanos, Javier/0000-0002-5187-2779; FU Grid centres; Worldwide LHC Computing Grid (WLCG) Collaboration; State Committee of Science; World Federation of Scientists (WFS); Swiss Fonds Kidagan, Armenia; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq); Financiadora de Estudos e Projetos (FINEP); Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP); National Natural Science Foundation of China (NSFC); Chinese Ministry of Education (CMOE); Ministry of Science and Technology of the People's Republic of China(MSTC); Ministry of Education and Youth of the Czech Republic; Danish Natural Science Research Council; Carlsberg Foundation; Danish National Research Foundation; European Research Council under the European Community's Seventh Framework Programme; Helsinki Institute of Physics; Academy of Finland; French CNRS-IN2P3; 'Region Pays de Loire'; 'Region Alsace'; 'Region Auvergne'; CEA, France; German Bundesministerium fur Bildung; Wissenschaft, Forschung und Technologie (BMBF); Helmholtz Association; General Secretariat for Research and Technology, Ministry of Development, Greece; Hungarian Orszagos Tudomanyos Kutatasi Alappgrammok (OTKA); National Office for Research and Technology (NKTH); Department of Atomic Energy and Department of Science and Technology of the Government of India; Istituto Nazionale di Fisica Nucleare (INFN); Centro Fermi - Museo Storico della Fisica e Centro Studi e Ricerche "Enrico Fermi", Italy; MEXT; Joint Institute for Nuclear Research, Dubna; National Research Foundation of Korea (NRF); Consejo Nacional de Ciencia y Tecnologia(CONACYT); Direccion General de Asuntos del Personal Academico (DGAPA), Mexico; Amerique Latine Formation academique - European Commission (ALFA-EC); EPLANET Program(European Particle Physics Latin American Network); Stichting voor Fundamenteel Onderzoek der Materie (FOM); Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Netherlands; Research Council of Norway (NFR); National Science Centre, Poland; Ministry of NationalEducation/Institute for Atomic Physics; National Council of Scientific Research in Higher Education(CNCSI-UEFISCDI), Romania; Ministry of Education and Science of the Russian Federation; Russian Academy of Sciences; Russian Federal Agency of Atomic Energy; Russian Federal Agency for Science and Innovations; Russian Foundation for Basic Research; Ministry of Education of Slovakia; Department of Science and Technology, Republic of South Africa; Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT); E-Infrastructure shared between Europe and Latin America (EELA); Ministerio de Economia y Competitividad (MINECO) of Spain; Xunta de Galicia (Conselleria de Educacion); Centro de Aplicaciones Tecnologicas y Desarrollo Nuclear (CEADEN); Cubaenergia, Cuba; IAEA (International Atomic Energy Agency); Swedish Research Council (VR); Knut AMP; Alice Wallenberg Foundation (KAW); Ukraine Ministry of Education and Science; United Kingdom Science and Technology Facilities Council (STFC); United States Department of Energy; United States National Science Foundation; State of Texas; State of Ohio; Ministry of Science, Education and Sports of Croatia; Unity through Knowledge Fund, Croatia; Council of Scientific and Industrial Research (CSIR), New Delhi, India FX The ALICE Collaboration would like to thank all its engineers and technicians for their invaluable contributions to the construction of the experiment and the CERN accelerator teams for the outstanding performance of the LHC complex. The ALICE Collaboration gratefully acknowledges the resources and support provided by all Grid centres and the Worldwide LHC Computing Grid (WLCG) Collaboration.; r The ALICE Collaboration acknowledges the following funding agencies for their support in building and running the ALICE detector: State Committee of Science, World Federation of Scientists (WFS) and Swiss Fonds Kidagan, Armenia, Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Financiadora de Estudos e Projetos (FINEP), Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP); National Natural Science Foundation of China (NSFC), the Chinese Ministry of Education (CMOE) and the Ministry of Science and Technology of the People's Republic of China(MSTC); Ministry of Education and Youth of the Czech Republic; Danish Natural Science Research Council, the Carlsberg Foundation and the Danish National Research Foundation; The European Research Council under the European Community's Seventh Framework Programme; Helsinki Institute of Physics and the Academy of Finland; French CNRS-IN2P3, the 'Region Pays de Loire', 'Region Alsace', 'Region Auvergne' and CEA, France; German Bundesministerium fur Bildung, Wissenschaft, Forschung und Technologie (BMBF) and the Helmholtz Association; General Secretariat for Research and Technology, Ministry of Development, Greece; Hungarian Orszagos Tudomanyos Kutatasi Alappgrammok (OTKA) and National Office for Research and Technology (NKTH); Department of Atomic Energy and Department of Science and Technology of the Government of India; Istituto Nazionale di Fisica Nucleare (INFN) and Centro Fermi - Museo Storico della Fisica e Centro Studi e Ricerche "Enrico Fermi", Italy; MEXT Grant- in-Aid for Specially Promoted Research, Japan; Joint Institute for Nuclear Research, Dubna; National Research Foundation of Korea (NRF); Consejo Nacional de Ciencia y Tecnologia(CONACYT), Direccion General de Asuntos del Personal Academico (DGAPA), Mexico, Amerique Latine Formation academique - European Commission (ALFA-EC) and the EPLANET Program(European Particle Physics Latin American Network); Stichting voor Fundamenteel Onderzoek der Materie (FOM) and the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Netherlands; Research Council of Norway (NFR); National Science Centre, Poland; Ministry of NationalEducation/Institute for Atomic Physics and National Council of Scientific Research in Higher Education(CNCSI-UEFISCDI), Romania; Ministry of Education and Science of the Russian Federation, Russian Academy of Sciences, Russian Federal Agency of Atomic Energy, Russian Federal Agency for Science and Innovations and The Russian Foundation for Basic Research; Ministry of Education of Slovakia; Department of Science and Technology, Republic of South Africa; Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT), E-Infrastructure shared between Europe and Latin America (EELA), Ministerio de Economia y Competitividad (MINECO) of Spain, Xunta de Galicia (Conselleria de Educacion), Centro de Aplicaciones Tecnologicas y Desarrollo Nuclear (CEADEN), Cubaenergia, Cuba, and IAEA (International Atomic Energy Agency); Swedish Research Council (VR) and Knut & Alice Wallenberg Foundation (KAW); Ukraine Ministry of Education and Science; United Kingdom Science and Technology Facilities Council (STFC); The United States Department of Energy, the United States National Science Foundation, the State of Texas, and the State of Ohio; Ministry of Science, Education and Sports of Croatia and Unity through Knowledge Fund, Croatia; Council of Scientific and Industrial Research (CSIR), New Delhi, India. NR 41 TC 5 Z9 5 U1 2 U2 59 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD DEC 17 PY 2015 VL 751 BP 358 EP 370 DI 10.1016/j.physletb.2015.10.040 PG 13 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CX0KF UT WOS:000365384600059 ER PT J AU Aad, G Abbott, B Abdallah, J Khalek, SA Abdinov, O Aben, R Abi, B Abolins, M AbouZeid, OS Abramowicz, H Abreu, H Abreu, R Abulaiti, Y Acharya, BS Adamczyk, L Adams, DL Adelman, J Adomeit, S Adye, T Agatonovic-Jovin, T Aguilar-Saavedra, JA Agustoni, M Ahlen, SP Ahmadov, F Aielli, G Akerstedt, H Akesson, TPA Akimoto, G Akimov, AV Alberghi, GL Albert, J Albrand, S Verzini, MJA Aleksa, M Aleksandrov, IN Alexa, C Alexander, G Alexandre, G Alexopoulos, T Alhroob, M Alimonti, G Alio, L Alison, J Allbrooke, BMM Allison, LJ Allport, PP Almond, J Aloisio, A Alonso, A Alonso, F Alpigiani, C Altheimer, A Gonzalez, BA Alviggi, MG Amako, K Coutinho, YA Amelung, C Amidei, D Dos Santos, SPA Amorim, A Amoroso, S Amram, N Amundsen, G Anastopoulos, C Ancu, LS Andari, N Andeen, T Anders, CF Anders, G Anderson, KJ Andreazza, A Andrei, V Anduaga, XS Angelidakis, S Angelozzi, I Anger, P Angerami, A Anghinolfi, F Anisenkov, AV Anjos, N Annovi, A Antonaki, A Antonelli, M Antonov, A Antos, J Anulli, F Aoki, M Bella, LA Apolle, R Arabidze, G Aracena, I Arai, Y Araque, JP Arce, ATH Arguin, JF Argyropoulos, S Arik, M Armbruster, AJ Arnaez, O Arnal, V Arnold, H Arratia, M Arslan, O Artamonov, A Artoni, G Asai, S Asbah, N Ashkenazi, A Asman, B Asquith, L Assamagan, K Astalos, R Atkinson, M Atlay, NB Auerbach, B Augsten, K Aurousseau, M Avolio, G Azuelos, G Azuma, Y Baak, MA Baas, AE Bacci, C Bachacou, H Bachas, K Backes, M Backhaus, M Mayes, JB Badescu, E Bagiacchi, P Bagnaia, P Bai, Y Bain, T Baines, JT Baker, OK Balek, P Balli, F Banas, E Banerjee, S Bannoura, AAE Bansal, V Bansil, HS Barak, L Barberio, L Barberis, D Barbero, M Barillari, T Barisonzi, M Barklow, T Barlow, N Barnett, BM Barnett, RM Barnovska, Z Baroncelli, A Barone, G Barr, AJ Barreiro, F da Costa, JBG Bartoldus, R Barton, AE Bartos, P Bartsch, V Bassalat, A Basye, A Bates, RL Batley, JR Battaglia, M Battistin, M Bauer, F Bawa, HS Beattie, MD Beau, T Beauchemin, PH Beccherle, R Bechtle, P Beck, HP Becker, K Becker, S Beckingham, M Becot, C Beddall, AJ Beddall, A Bedikian, S Bednyakov, VA Bee, CP Beemster, LJ Beermann, TA Begel, M Behr, JK Belanger-Champagne, C Bell, PJ Bell, WH Bella, G Bellagamba, L Bellerive, A Bellomo, M Belotskiy, K Beltramello, O Benary, O Benchekroun, D Bendtz, K Benekos, N Benhammou, Y Noccioli, EB Garcia, JAB Benjamin, DP Bensinger, JR Benslama, K Bentvelsen, S Berge, D Kuutmann, EB Berger, N Berghaus, F Beringer, J Bernard, C Bernat, P Bernius, C Bernlochner, FU Berry, T Berta, P Bertella, C Bertoli, G Bertolucci, F Bertsche, C Bertsche, D Besana, MI Besjes, GJ Bylund, OB Bessner, M Besson, N Betancourt, C Bethke, S Bhimji, W Bianchi, RM Bianchini, L Bianco, M Biebel, O Bieniek, SP Bierwagen, K Biesiada, J Biglietti, M De Mendizabal, JB Bilokon, H Bindi, M Binet, S Bingul, A Bini, C Black, CW Black, JE Black, KM Blackburn, D Blair, RE Blanchard, JB Blazek, T Bloch, I Blocker, C Blum, W Blumenschein, U Bobbink, GJ Bobrovnikov, VS Bocchetta, SS Bocci, A Bock, C Boddy, CR Boehler, M Boek, TT Bogaerts, JA Bogdanchikov, AG Bogouch, A Bohm, C Bohm, J Boisvert, V Bold, T Boldea, V Boldyrev, AS Bomben, M Bona, M Boonekamp, M Borisov, A Borissov, G Borri, M Borroni, S Bortfeldt, J Bortolotto, V Bos, K Boscherini, D Bosman, M Boterenbrood, H Boudreau, J Bouffard, J Bouhova-Thacker, EV Boumediene, D Bourdarios, C Bousson, N Boutouil, S Boveia, A Boyd, J Boyko, IR Bracinik, J Brandt, A Brandt, G Brandt, O Bratzler, U Brau, B Brau, JE Braun, HM Brazzale, SF Brelier, B Brendlinger, K Brennan, AJ Brenner, R Bressler, S Bristow, K Bristow, TM Britton, D Brochu, FM Brock, I Brock, R Bromberg, C Bronner, J Brooijmans, G Brooks, T Brooks, WK Brosamer, J Brost, E Brown, J de Renstrom, PAB Bruncko, D Bruneliere, R Brunet, S Bruni, A Bruni, G Bruschi, M Bryngemark, L Buanes, T Buat, Q Bucci, F Buchholz, P Buckingham, RM Buckley, AG Buda, SI Budagov, IA Buehrer, F Bugge, L Bugge, MK Bulekov, O Bundock, AC Burckhart, H Burdin, S Burghgrave, B Burke, S Burmeister, I Busato, E Buscher, D Buscher, V Bussey, P Buszello, CP Butler, B Butler, JM Butt, AI Buttar, CM Butterworth, JM Butti, P Buttinger, W Buzatu, A Byszewski, M Urban, SC Caforio, D Cakir, O Calafiura, P Calandri, A Calderini, G Calfayan, P Calkins, R Caloba, LP Calvet, D Calvet, S Toro, RC Camarda, S Cameron, D Caminada, LM Armadans, RC Campana, S Campanelli, M Campoverde, A Canale, V Canepa, A Bret, MC Cantero, J Cantrill, R Cao, T Garrido, MDMC Caprini, I Caprini, M Capua, M Caputo, R Cardarelli, R Carli, T Carlino, G Carminati, L Caron, S Carquin, E Carrillo-Montoya, GD Carter, JR Carvalho, J Casadei, D Casado, MP Casolino, M Castaneda-Miranda, E Castelli, A Gimenez, VC Castro, NF Catastini, P Catinaccio, A Catmore, JR Cattai, A Cattani, G Caudron, J Caughron, S Cavaliere, V Cavalli, D Cavalli-Sforza, M Cavasinni, V Ceradini, F Cerio, BC Cerny, K Cerqueira, AS Cerri, A Cerrito, L Cerutti, F Cerv, M Cervelli, A Cetin, SA Chafaq, A Chakraborty, D Chalupkova, I Chang, P Chapleau, B Chapman, JD Charfeddine, D Charlton, DG Chau, CC Barajas, CAC Cheatham, S Chegwidden, A Chekanov, S Chekulaev, SV Chelkov, GA Chelstowska, MA Chen, C Chen, H Chen, K Chen, L Chen, S Chen, X Chen, Y Chen, Y Cheng, HC Cheng, Y Cheplakov, A El Mourslie, RC Chernyatin, V Cheu, E Chevalier, L Chiarella, V Chiefari, G Childers, JT Chilingarov, A Chiodini, G Chisholm, AS Chislett, RT Chitan, A Chizhov, MV Chouridou, S Chow, BKB Chromek-Burckhart, D Chu, ML Chudoba, J Chwastowski, JJ Chytka, L Ciapetti, G Ciftci, AK Ciftci, R Cinca, D Cindro, V Ciocio, A Cirkovic, P Citron, ZH Ciubancan, M Clark, A Clark, PJ Clarke, RN Cleland, W Clemens, JC Clement, C Coadou, Y Cobal, M Coccaro, A Cochran, J Coffey, L Cogan, JG Coggeshall, J Cole, B Cole, S Colijn, AP Collot, J Colombo, T Colon, G Compostella, G Muino, PC Coniavitis, E Conidi, MC Connell, SH Connelly, IA Consonni, SM Consorti, V Constantinescu, S Conta, C Conti, G Conventi, F Cooke, M Cooper, BD Cooper-Sarkar, AM Cooper-Smith, NJ Copic, K Cornelissen, T Corradi, M Corriveau, F Corso-Radu, A Cortes-Gonzalez, A Cortiana, G Costa, G Costa, MJ Costanzo, D Cote, D Cottin, G Cowan, G Cox, BE Cranmer, K Cree, G Crepe-Renaudin, S Crescioli, F Cribbs, WA Ortuzar, MC Cristinziani, M Croft, V Crosetti, G Cuciuc, CM Donszelmann, TC Cummings, J Curatolo, M Cuthbert, C Czirr, H Czodrowski, P Czyczula, Z D'Auria, S D'Onofrio, M De Sousa, MJDS Da Via, C Dabrowski, W Dafinca, A Dai, T Dale, O Dallaire, F Dallapiccola, C Dam, M Daniells, AC Hoffmann, MD Dao, V Darbo, G Darmora, S Dassoulas, J Dattagupta, A Davey, W David, C Davidek, T Davies, E Davies, M Davignon, O Davison, AR Davison, P Davygora, Y Dawe, E Dawson, I Daya-Ishmukhametova, RK De, K de Asmundis, R De Castro, S De Cecco, S De Groot, N de Jong, P De la Torre, H De Lorenzi, F De Nooij, L De Pedis, D De Salvo, A De Sanctis, U De Santo, A De Regie, JBDV Dearnaley, WJ Debbe, R Debenedetti, C Dechenaux, B Dedovich, DV Deigaard, I Del Peso, J Del Prete, T Deliot, F Delitzsch, CM Deliyergiyev, M Dell'Acqua, A Dell'Asta, L Dell'Orso, M Della Pietra, M della Volpe, D Delmastro, M Delsart, PA Deluca, C Demers, S Demichev, M Demilly, A Denisov, SP Derendarz, D Derkaoui, JE Derue, F Dervan, P Desch, K Deterre, C Deviveiros, PO Dewhurst, A Dhaliwal, S Di Ciaccio, A Di Ciaccio, L Di Domenico, A Di Donato, C Di Girolamo, A Di Girolamo, B Di Mattia, A Di Micco, B Di Nardo, R Di Simone, A Di Sipio, R Di Valentino, D Dias, FA Diaz, MA Diehl, EB Dietrich, J Dietzsch, TA Diglio, S Dimitrievska, A Dingfelder, J Dionisi, C Dita, P Dita, S Dittus, F Djama, F Djobava, T Djuvsland, JI do Vale, MAB Wemans, ADV Doan, TKO Dobos, D Doglioni, C Doherty, T Dohmae, T Dolejsi, J Dolezal, Z Dolgoshein, BA Donadelli, M Donati, S Dondero, P Donini, J Dopke, J Doria, A Dova, MT Doyle, AT Dris, M Dubbert, J Dube, S Dubreuil, E Duchovni, E Duckeck, G Ducu, OA Duda, D Dudarev, A Dudziak, F Duflot, L Duguid, L Duhrssen, M Dunford, M Yildiz, HD Duren, M Durglishvili, A Dwuznik, M Dyndal, M Ebke, J Edson, W Edwards, NC Ehrenfeld, W Eifert, T Eigen, G Einsweiler, K Ekelof, T El Kacimi, M Ellert, M Elles, S Ellinghaus, F Ellis, N Elmsheuser, J Elsing, M Emeliyanov, D Enari, Y Endner, OC Endo, M Erdmann, J Ereditato, A Eriksson, D Ernis, G Ernst, J Ernst, M Ernwein, J Errede, D Errede, S Ertel, E Escalier, M Esch, H Escobar, C Esposito, B Etienvre, AI Etzion, E Evans, H Ezhilov, A Fabbri, L Facini, G Fakhrutdinov, RM Falciano, S Falla, RJ Faltova, J Fang, Y Fanti, M Farbin, A Farilla, A Farooque, T Farrell, S Farrington, SM Farthouat, P Fassie, F Fassnacht, P Fassouliotis, D Favareto, A Fayard, L Federic, P Fedin, OL Fedorko, W Fehling-Kaschek, M Feigl, S Feligioni, L Feng, C Feng, EJ Feng, H Fenyuk, AB Perez, SF Ferrag, S Ferrando, J Ferrari, A Ferrari, P Ferrari, R de Lima, DEF Ferrer, A Ferrere, D Ferretti, C Parodi, AF Fiascaris, M Fiedler, F Filipcic, A Filipuzzi, M Filthaut, F Fincke-Keeler, M Finelli, KD Fiolhais, MCN Fiorini, L Firan, A Fischer, A Fischer, J Fisher, WC Fitzgerald, EA Flechl, M Fleck, I Fleischmann, P Fleischmann, S Fletcher, GT Fletcher, G Flick, T Floderus, A Castillo, LRF Bustos, ACF Flowerdew, MJ Formica, A Forti, A Fortin, D Fournier, D Fox, H Fracchia, S Francavilla, P Franchini, M Franchino, S Francis, D Franconi, L Franklin, M Franz, S Fraternali, M French, ST Friedrich, C Friedrich, F Froidevaux, D Frost, JA Fukunaga, C Torregrosa, EF Fulsom, BG Fuster, J Gabaldon, C Gabizon, O Gabrielli, A Gabrielli, A Gadatsch, S Gadomski, S Gagliardi, G Gagnon, P Galea, C Galhardo, B Gallas, EJ Gallo, V Gallop, BJ Gallus, P Galster, G Gan, KK Gandrajula, RP Gao, J Gao, YS Walls, FMG Garberson, F Garcia, C Navarro, EG Garcia-Sciveres, M Gardner, RW Garelli, N Garonne, V Gatti, C Gaudio, G Gaur, B Gauthier, L Gauzzi, P Gavrilenko, IL Gay, C Gaycken, G Gazis, EN Ge, P Gecse, Z Gee, CNP Geerts, DAA Geich-Gimbel, C Gemme, C Gemmell, A Genest, MH Gentile, S George, M George, S Gerbaudo, D Gershon, A Ghazlane, H Ghodbane, N Giacobbe, B Giagu, S Giangiobbe, V Giannetti, P Gianotti, F Gibbard, B Gibson, SM Gilchriese, M Gillam, TPS Gillberg, D Gilles, G Gingrich, DM Giokaris, N Giordani, MP Giordano, R Giorgi, FM Giorgi, FM Giraud, PF Giugni, D Giuliani, C Giulini, M Gjelsten, BK Gkaitatzis, S Gkialas, I Gladilin, LK Glasman, C Glatzer, J Glaysher, PCF Glazov, A Glonti, GL Goblirsch-Kolb, M Goddard, JR Godfrey, J Godlewski, J Goeringer, C Goldfarb, S Golling, T Golubkov, D Gomes, A Fajardo, LSG Goncalo, R Da Costa, JGPF Gonella, L de la Hoz, SG Parra, GG Gonzalez-Sevilla, S Goossens, L Gorbounov, PA Gordon, HA Gorelov, I Gorini, B Gorini, E Gorisek, A Gornicki, E Goshaw, AT Gossling, C Gostkin, MI Gouighri, M Goujdami, D Goulette, MP Goussiou, AG Goy, C Gozpinar, S Grabas, HMX Graber, L Grabowska-Bold, I Grafstrom, P Grahn, KJ Gramling, J Gramstad, E Grancagnolo, S Grassi, V Gratchev, V Gray, HM Graziani, E Grebenyuk, OG Greenwood, ZD Gregersen, K Gregor, IM Grenier, P Griffiths, J Grillo, AA Grimm, K Grinstein, S Gris, P Grishkevich, YV Grivaz, JF Grohs, JP Grohsjean, A Gross, E Grosse-Knetter, J Grossia, GC Groth-Jensen, J Grout, ZJ Guan, L Guenther, J Guescini, F Guest, D Gueta, O Guicheney, C Guido, E Guillemin, T Guindon, S Gul, U Gumpert, C Guo, J Gupta, S Gutierrez, P Ortiz, NGG Gutschow, C Guttman, N Guyot, C Gwenlan, C Gwilliam, CB Haas, A Haber, C Hadavand, HK Haddad, N Haefner, P Hagebock, S Hajduk, Z Hakobyan, H Haleem, M Hall, D Halladjian, G Hamacher, K Hamal, P Hamano, K Hamer, M Hamilton, A Hamilton, S Hamity, GN Hamnett, PG Han, L Hanagaki, K Hanawa, K Hance, M Hanke, P Hanna, R Hansen, JB Hansen, JD Hansen, PH Hara, K Hard, AS Harenberg, T Hariri, F Harkusha, S Harper, D Harrington, RD Harris, OM Harrison, PF Hartjes, F Hasegawa, M Hasegawa, S Hasegawa, Y Hasib, A Hassani, S Haug, S Hauschild, M Hauser, R Havranek, M Hawkes, CM Hawkings, RJ Hawkins, AD Hayashi, T Hayden, D Hays, CP Hayward, HS Haywood, SJ Head, SJ Heck, T Hedberg, V Heelan, L Heim, S Heim, T Heinemann, B Heinrich, L Hejbal, J Helary, L Heller, C Heller, M Hellman, S Hellmich, D Helsens, C Henderson, J Henderson, RCW Heng, Y Hengler, C Henrichs, A Correia, AMH Henrot-Versille, S Hensel, C Herbert, GH Jimenez, YH Herrberg-Schubert, R Herten, G Hertenberger, R Hervas, L Hesketh, GG Hessey, NP Hickling, R Higon-Rodriguez, E Hill, E Hill, JC Hiller, KH Hillert, S Hillier, SJ Hinchliffe, I Hines, E Hirose, M Hirschbuehl, D Hobbs, J Hod, N Hodgkinson, MC Hodgson, P Hoecker, A Hoeferkamp, MR Hoenig, F Hoffman, J Hoffmann, D Hohlfeld, M Holmes, TR Hong, TM van Huysduynen, LH Hostachy, JY Hou, S Hoummada, A Howard, J Howarth, J Hrabovsky, M Hristova, I Hrivnac, J Hryn'ova, T Hsu, C Hsu, PJ Hsu, SC Hu, D Hu, X Huang, Y Hubacek, Z Hubaut, F Huegging, F Huffman, TB Hughes, EW Hughes, G Huhtinen, M Hulsing, TA Hurwitz, M Huseynov, N Huston, J Huth, J Iacobucci, G Iakovidis, G Ibragimov, I Iconomidou-Fayard, L Ideal, E Iengo, P Igonkina, O Iizawa, T Ikegami, Y Ikematsu, K Ikeno, M Ilchenko, Y Iliadis, D Ilic, N Inamaru, Y Ince, T Ioannou, P Iodice, M Iordanidou, K Ippolito, V Quiles, AI Isaksson, C Ishino, M Ishitsuka, M Ishmukhametov, R Issever, C Istin, S Ponce, JMI Iuppa, R Ivarsson, J Iwanski, W Iwasaki, H Izen, JM Izzo, V Jackson, B Jackson, M Jackson, P Jaekel, MR Jain, V Jakobs, K Jakobsen, S Jakoubek, T Jakubek, J Jamin, DO Jana, DK Jansen, E Jansen, H Janssen, J Janus, M Jarlskog, G Javadov, N Javurek, T Jeanty, L Jejelava, J Jeng, GY Jennens, D Jenni, P Jentzsch, J Jeske, C Jezequel, S Ji, H Jia, J Jiang, Y Belenguer, MJ Jin, S Jinaru, A Jinnouchi, O Joergensen, MD Johansson, KE Johansson, P Johns, KA Jon-And, K Jones, G Jones, RWL Jones, TJ Jongmanns, J Jorge, PM Joshi, KD Jovicevic, J Ju, X Jung, CA Jungst, RM Jussel, P Rozas, AJ Kaci, M Kaczmarska, A Kado, M Kagan, H Kagan, M Kajomovitz, E Kalderon, CW Kama, S Kamenshchikov, A Kanaya, N Kaneda, M Kaneti, S Kantserov, VA Kanzaki, J Kaplan, B Kapliy, A Kar, D Karakostas, K Karastathis, N Karnevskiy, M Karpov, SN Karpova, ZM Karthik, K Kartvelishvili, V Karyukhin, AN Kashif, L Kasieczka, G Kass, RD Kastanas, A Kataoka, Y Katre, A Katzy, J Kaushik, V Kawagoe, K Kawamoto, T Kawamura, G Kazama, S Kazanin, VF Kazarinov, MY Keeler, R Kehoe, R Keller, JS Kempster, JJ Keoshkerian, H Kepka, O Kersevan, BP Kersten, S Kessoku, K Keung, J Khalil-zada, F Khandanyan, H Khanov, A Khodinov, A Khomich, A Khoo, TJ Khoriauli, G Khoroshilov, A Khovanskiy, V Khramov, E Khubua, J Kim, HY Kim, H Kim, SH Kimura, N Kind, OM King, BT King, M King, RSB King, SB Kirk, J Kiryunin, AE Kishimoto, T Kisielewska, D Kiss, F Kittelmann, T Kiuchi, K Kladiva, E Klein, M Klein, U Kleinknecht, K Klimek, P Klimentov, A Klingenberg, R Klinger, JA Klioutchnikova, T Klok, PF Kluge, EE Kluit, P Kluth, S Kneringer, E Knoops, EBFG Knue, A Kobayashi, D Kobayashi, T Kobel, M Kocian, M Kodys, P Koevesarki, P Koffas, T Koffeman, E Kogan, LA Kohlmann, S Kohout, Z Kohriki, T Koi, T Kolanoski, H Koletsou, I Koll, J Komar, AA Komori, Y Kondo, T Kondrashova, N Koneke, K Konig, AC Konig, S Kono, T Konoplich, R Konstantinidis, N Kopeliansky, R Kopernya, S Kopke, L Kopp, AK Korcyl, K Kordas, K Korn, A Korol, AA Korolkov, I Korolkova, EV Korotkov, VA Kortner, O Kortner, S Kostyukhin, VV Kotov, VM Kotwal, A Kourkoumelis, C Kouskoura, V Koutsman, A Kowalewski, R Kowalski, TZ Kozanecki, W Kozhin, AS Kral, V Kramarenko, VA Kramberger, G Krasnopevtsev, D Krasny, MW Krasznahorkay, A Kraus, JK Kravchenko, A Kreiss, S Kretzc, M Kretzschmar, J Kreutzfeldt, K Krieger, P Kroeninger, K Kroha, H Kroll, J Kroseberg, J Krstic, J Kruchonak, U Kruger, H Kruker, T Krumnack, N Krumshteyn, ZV Kruse, A Kruse, MC Kruskal, M Kubota, T Kuday, S Kuehn, S Kugel, A Kuhl, A Kuhl, T Kukhtin, V Kulchitsky, Y Kuleshov, S Kuna, M Kunkle, J Kupco, A Kurashige, H Kurochkin, YA Kurumida, R Kus, V Kuwertz, ES Kuze, M Kvita, J La Rosa, A La Rotonda, L Lacasta, C Lacava, F Lacey, J Lacker, H Lacour, D Lacuesta, VR Ladygin, E Lafaye, R Laforge, B Lagouri, T Lai, S Laier, H Lambourne, L Lammers, S Lampen, CL Lampl, W Lancon, E Landgraf, U Landon, MPJ Lang, VS Lankford, AJ Lanni, F Lantzsch, K Laplace, S Lapoire, C Laporte, JF Lari, T Lassnig, M Laurelli, P Lavrijsen, W Law, AT Laycock, P Le Dortz, O Le Guirriec, E Le Menedeu, E Le Compte, T Ledroit-Guillon, F Lee, CA Lee, H Lee, JSH Lee, SC Lee, L Lefebvre, G Lefebvre, M Legger, F Leggett, C Lehan, A Lehmacher, M Miotto, GL Lei, X Leight, WA Leisos, A Leister, AG Leite, MAL Leitner, R Lellouch, D Lemmer, B Leney, KJC Lenz, T Lenzi, B Leone, R Leone, S Leonhardt, K Leonidopoulos, C Leontsinis, S Leroy, C Lester, CG Lester, CM Levchenko, M Leveque, J Levin, D Levinson, LJ Levy, M Lewis, A Lewis, GH Leyko, AM Leyton, M Li, B Li, B Li, H Li, HL Li, L Lie, L Li, S Li, Y Liang, Z Liao, H Liberti, B Lichard, P Lie, K Liebal, J Liebig, W Limbach, C Limosani, A Lin, SC Lin, TH Linde, F Lindquist, BE Linnemann, JT Lipeles, E Lipniacka, A Lisovyi, M Liss, TM Lissauer, D Lister, A Litke, AM Liu, B Liu, D Liu, JB Liu, K Liu, L Liu, M Liu, M Liu, Y Livan, M Livermore, SSA Lleres, A Merino, JL Lloyd, SL Lo Sterzo, F Lobodzinska, E Loch, P Lockman, WS Loebinger, FK Loevschall-Jensen, AE Loginov, A Lohse, T Lohwasser, K Lokajicek, M Lombardo, VP Long, BA Long, JD Long, RE Lopes, L Mateos, DL Paredes, BL Paz, IL Lorenz, J Martinez, NL Losada, M Loscutoff, P Lou, X Lounis, A Love, J Love, PA Lowe, AJ Lu, N Lubatti, HJ Luci, C Lucotte, A Luehring, F Lukas, W Luminari, L Lundberg, O Lund-Jensen, B Lungwitz, M Lynn, D Lysak, R Lytken, E Ma, H Ma, LL Maccarrone, G Macchiolo, A Miguens, JM Macina, D Madaffari, D Madar, R Maddocks, HJ Mader, WF Madsen, A Maeno, T Kataoka, MM Magradze, E Mahboubi, K Mahlstedt, J Mahmoud, S Maiani, C Maidantchik, C Maier, AA Maio, A Majewski, S Makida, Y Makovec, N Mal, P Malaescu, B Malecki, P Maleev, VP Malek, F Mallik, U Malon, D Malone, C Maltezos, S Malyshev, VM Malyukov, S Mamuzic, J Mandelli, B Mandelli, L Mandic, I Mandrysch, R Maneira, J Manfredini, A de Andrade, L Ramos, JM Mann, A Manning, PM Manousakis-Katsikakis, A Mansoulie, B Mantifel, R Mapelli, L March, L Marchand, JF Marchiori, G Marcisovsky, M Marino, CP Marjanovic, M Marques, CN Marroquim, F Marsden, SP Marshall, Z Marti, LF Marti-Garcia, S Martin, B Martin, B Martin, TA Martin, VJ Latour, BMD Martinez, H Martinez, M Martin-Haugh, S Martyniuk, AC Marx, M Marzano, F Marzin, A Masetti, L Mashimo, T Mashinistov, R Masik, J Maslennikov, AL Massa, I Massa, L Massol, N Mastrandrea, P Mastroberardino, A Masubuchi, T Mattig, P Mattmann, J Maurer, J Maxfield, SJ Maximov, DA Mazini, R Mazzaferro, L Mc Goldrick, G Mc Kee, SP McCarn, A McCarthy, RL McCarthy, TG McCubbin, NA McFarlane, KW Mcfayden, JA Mchedlidze, G McMahon, SJ McPherson, RA Meade, A Mechnich, J Medinnis, M Meehan, S Mehlhase, S Mehta, A Meier, K Meineck, C Meirose, B Melachrinos, C Garcia, BRM Meloni, F Mengarelli, A Menke, S Meoni, E Mercurio, KM Mergelmeyer, S Meric, N Mermod, P Merola, L Meroni, C Merritt, FS Merritt, H Messina, A Metcalfe, J Mete, AS Meyer, C Meyer, C Meyer, JP Meyer, J Middleton, RP Migas, S Mijovic, L Mikenberg, G Mikestikova, M Mikuz, M Milic, A Miller, DW Mills, C Milov, A Milstead, DA Milstein, D Minaenko, AA Minashvili, IA Mincer, AI Mindur, B Mineev, M Ming, Y Mir, LM Mirabelli, G Mitani, T Mitrevski, J Mitsou, VA Mitsui, S Miucci, A Miyagawa, PS Mjornmark, JU Moa, T Mochizuki, K Mohapatra, S Mohr, W Molander, S Moles-Valls, R Monig, K Monini, C Monk, J Monnier, E Berlingen, JM Monticelli, F Monzani, S Moore, RW Moraes, A Morange, N Moreno, D Llacer, MM Morettini, P Morgenstern, M Morii, M Moritz, S Morley, AK Mornacchi, G Morris, JD Morvaj, L Moser, HG Mosidze, M Moss, J Motohashi, K Mount, R Mountricha, E Mouraviev, SV Moyse, EJW Muanza, S Mudd, RD Mueller, F Mueller, J Mueller, K Mueller, T Mueller, T Muenstermann, D Munwes, Y Quijada, JAM Murray, WJ Musheghyan, H Musto, E Myagkov, AG Myska, M Nackenhorst, O Nadal, J Nagai, K Nagai, R Nagai, Y Nagano, K Nagarkar, A Nagasaka, Y Nagel, M Nairz, AM Nakahama, Y Nakamura, K Nakamura, T Nakano, I Namasivayam, H Nanava, G Narayan, R Nattermann, T Naumann, T Navarro, G Nayyar, R Neal, HA Nechaeva, PY Neep, TJ Nef, PD Negri, A Negri, G Negrini, M Nektarijevic, S Nelson, A Nelson, TK Nemecek, S Nemethy, P Nepomuceno, AA Nessi, M Neubauer, MS Neumann, M Neves, RM Nevski, P Newman, PR Nguyen, DH Nickerson, RB Nicolaidou, R Nicquevert, B Nielsen, J Nikiforou, N Nikiforov, A Nikolaenko, V Nikolic-Audit, I Nikolics, K Nikolopoulos, K Nilsson, P Ninomiya, Y Nisati, A Nisius, R Nobe, T Nodulman, L Nomachi, M Nomidis, I Norberg, S Nordberg, M Novgorodova, O Nowak, S Nozaki, M Nozka, L Ntekas, K NunesHanninger, G Nunnemann, T Nurse, E Nuti, F O'Brien, BJ O'grady, F O'Neil, DC O'Shea, V Oakham, FG Oberlack, H Obermann, T Ocariz, J Ochi, A Ochoa, I Oda, S Odaka, S Ogren, H Oh, A Oh, SH Ohm, CC Ohman, H Okamura, W Okawa, H Okumura, Y Okuyama, T Olariu, A Olchevski, AG Pino, SAO Damazio, DO Garcia, EO Olszewski, A Olszowska, J Onofre, A Onyisi, PUE Oram, CJ Oreglia, MJ Oren, Y Orestano, D Orlando, N Barrera, CO Orr, RS Osculati, B Ospanov, R Garzon, GOY Otono, H Ouchrif, M Ouellette, EA Ould-Saada, F Ouraou, A Oussoren, KP Ouyang, Q Ovcharova, A Owen, M Ozcana, VE Ozturk, N Pachal, K Pages, AP Aranda, CP Pagacova, M Griso, SP Paganis, E Pahl, C Paige, F Pais, P Pajchel, K Palacino, G Palestini, S Palka, M Pallin, D Palma, A Palmer, JD Pan, YB Panagiotopoulou, E Vazquez, JGP Pani, P Panikashvili, N Panitkin, S Pantea, D Paolozzi, L Papadopoulou, TD Papageorgiou, K Paramonov, A Hernandez, DP Parker, MA Parodi, F Parsons, JA Parzefall, U Pasqualucci, E Passaggio, S Passeri, A Pastore, F Pastore, F Pasztor, G Pataraia, S Patel, ND Pater, JR Patricelli, S Pauly, T Pearce, J Pedersen, M Lopez, SP Pedro, R Peleganchuk, SV Pelikan, D Peng, H Penning, B Penwell, J Perepelitsa, DV Codina, EP Garcia-Estan, MT Reale, VP Perini, L Pernegger, H Perrino, R Peschke, R Peshekhonov, VD Peters, K Peters, RFY Petersen, BA Petersen, TC Petit, E Petridis, A Petridou, C Petrolo, E Petrucci, F Pettersson, NE Pezoa, R Phillips, PW Piacquadio, G Pianori, E Picazio, A Piccaro, E Piccinini, M Piegaia, R Pignotti, DT Pilcher, JE Pilkington, AD Pina, J Pinamonti, M Pinder, A Pinfold, JL Pingel, A Pinto, B Pires, S Pitt, M Pizio, C Plazak, L Pleier, MA Pleskot, V Plotnikova, E Plucinski, P Poddar, S Podlyski, F Poettgen, R Poggioli, L Pohl, D Pohl, M Polesello, G Policicchio, A Polifka, R Polini, A Pollard, CS Polychronakos, V Pommes, K Pontecorvo, L Pope, BG Popeneciu, GA Popovic, DS Poppleton, A Bueso, XP Pospisil, S Potamianos, K Potrap, IN Potter, CJ Potter, CT Poulard, G Poveda, J Pozdnyakov, V Pralavorio, P Pranko, A Prasad, S Pravahan, R Prell, S Price, D Price, J Price, LE Prieur, D Primavera, M Proissl, M Prokofiev, K Prokoshin, F Protopapadaki, E Protopopescu, S Proudfoot, J Przybycien, M Przysiezniak, H Ptacek, E Puddu, D Pueschel, E Puldon, D Purohit, M Puzo, P Qian, J Qin, G Qin, Y Quadt, A Quarrie, DR Quayle, WB Queitsch-Maitland, M Quilty, D Qureshi, A Radeka, V Radescu, V Radhakrishnan, SK Radloff, P Rados, P Ragusa, F Rahal, G Rajagopalan, S Rammensee, M Randle-Conde, AS Rangel-Smith, C Rao, K Rauscher, F Rave, TC Ravenscroft, T Raymond, M Read, AL Readioff, NP Rebuzzi, DM Redelbach, A Redlinger, G Reece, R Reeves, K Rehnisch, L Reisin, H Relich, M Rembser, C Rena, H Ren, ZL Renaud, A Rescigno, M Resconi, S Rezanova, OL Reznicek, P Rezvani, R Richter, R Ridel, M Rieck, P Rieger, J Rijssenbeek, M Rimoldi, A Rinaldi, L Ritsch, E Riu, I Rizatdinova, F Rizvi, E Robertson, SH Robichaud-Veronneau, A Robinson, D Robinson, JEM Robson, A Roda, C Rodrigues, L Roe, S Rohne, O Rolli, S Romaniouk, A Romano, M Adam, ER Rompotis, N Ronzani, M Roos, L Ros, E Rosati, S Rosbach, K Rose, M Rose, P Rosendahl, PL Rosenthal, O Rossetti, V Rossi, E Rossi, P Rosten, R Rotaru, M Roth, I Rothberg, J Rousseau, D Royon, CR Rozanov, A Rozen, Y Ruan, X Rubbo, F Rubinskiy, I Rud, VI Rudolph, C Rudolph, MS Ruhr, F Ruiz-Martinez, A Rurikova, Z Rusakovich, NA Ruschke, A Rutherfoord, JP Ruthmann, N Ryabov, YF Rybar, M Rybkin, G Ryder, NC Saavedra, AF Sacerdoti, S Saddique, A Sadeh, I Sadrozinski, HFW Sadykov, R Tehrani, FS Sakamoto, H Sakurai, Y Salamanna, G Salamon, A Saleem, M Salek, D De Bruin, PHS Salihagic, D Salnikov, A Salt, J Salvatore, D Salvatore, F Salvucci, A Salzburger, A Sampsonidis, D Sanchez, A Sanchez, J Martinez, VS Sandaker, H Sandbach, RL Sander, HG Sanders, MP Sandhoff, M Sandoval, T Sandoval, C Sandstroem, R Sankey, DPC Sansoni, A Santoni, C Santonico, R Santos, H Castillo, IS Sapp, K Sapronov, A Saraiva, JG Sarrazin, B Sartisohn, G Sasaki, O Sasaki, Y Sauvage, G Sauvan, E Savard, P Savu, DO Sawyer, C Sawyer, L Saxon, DH Saxon, J Sbarra, C Sbrizzi, A Scanlon, T Scannicchio, DA Scarcella, M Scarfone, V Schaarschmidt, J Schacht, P Schaefer, D Schaefer, R Schaepe, S Schaetzel, S Schafer, U Schaffer, AC Schaile, D Schamberger, RD Scharf, V Schegelsky, VA Scheirich, D Schernau, M Scherzer, MI Schiavi, C Schieck, J Schillo, C Schioppa, M Schlenker, S Schmidt, E Schmieden, K Schmitt, C Schmittb, S Schneider, B Schnellbach, YJ Schnoor, U Schoeffel, L Schoening, A Schoenrock, BD Schorlemmer, ALS Schott, M Schouten, D Schovancova, J Schramm, S Schreyer, M Schroeder, C Schuh, N Schultens, MJ Schultz-Coulon, HC Schulz, H Schumacher, M Schumm, BA Schune, P Schwanenberger, C Schwartzman, A Schwegler, P Schwemling, P Schwienhorst, R Schwindling, J Schwindt, T Schwoerer, M Sciacca, FG Scifo, E Sciolla, G Scott, WG Scuri, F Scutti, F Searcy, J Sedov, G Sedykh, E Seidel, SC Seiden, A Seifert, F Seixas, JM Sekhniaidze, G Sekula, SJ Selbach, KE Seliverstov, DM Sellers, G Semprini-Cesari, N Serfon, C Serin, L Serkin, L Serre, T Seuster, R Severini, H Sfiligoj, T Sforza, F Sfyrla, A Shabalina, E Shamim, M Shan, LY Shang, R Shank, JT Shapiro, M Shatalov, PB Shaw, K Shehu, CY Sherwood, P Shi, L Shimizu, S Shimmin, CO Shimojima, M Shiyakova, M Shmeleva, A Shochet, MJ Short, D Shrestha, S Shulga, E Shupe, MA Shushkevich, S Sicho, P Sidiropoulou, O Sidorov, D Sidoti, A Siegert, F Sijacki, D Silva, J Silver, Y Silverstein, D Silverstein, SB Simak, V Simard, O Simic, L Simion, S Simioni, E Simmons, B Simoniello, R Simonyan, M Sinervo, P Sinev, NB Sipica, V Siragusa, G Sircar, A Sisakyan, AN Sivoklokov, SY Sjolin, J Sjursen, TB Skottowe, HP Skovpen, KY Skubic, P Slater, M Slavicek, T Sliwa, K Smakhtin, V Smart, BH Smestad, L Smirnov, SY Smirnov, Y Smirnova, LN Smirnova, O Smith, KM Smizanska, M Smolek, K Snesarev, AA Snidero, G Snyder, S Sobie, R Socher, F Soffer, A Soh, DA Solans, CA Solar, M Solc, J Soldatov, EY Soldevila, U Solodkov, AA Soloshenko, A Solovyanov, OV Solovyev, V Sommer, P Song, HY Soni, N Sood, A Sopczak, A Sopko, B Sopko, V Sorin, V Sosebee, M Soualah, R Soueid, P Soukharev, AM South, D Spagnolo, S Spano, F Spearman, WR Spettel, F Spighi, R Spigo, G Spiller, LA Spousta, M Spreitzer, T Spurlock, B St Denis, RD Staerz, S Stahlman, J Stamen, R Stamm, S Stanecka, E Stanek, RW Stanescu, C Stanescu-Bellu, M Stanitzki, MM Stapnes, S Starchenko, EA Stark, J Staroba, P Starovoitov, P Staszewski, R Stavina, P Steinberg, P Stelzer, B Stelzer, HJ Stelzer-Chilton, O Stenzel, H Stern, S Stewart, GA Stillings, JA Stockton, MC Stoebe, M Stoicea, G Stolte, P Stonjek, S Stradling, AR Straessner, A Stramaglia, ME Strandberg, J Strandberg, S Strandlie, A Strauss, E Strauss, M Strizenec, P Strohmer, R Strom, DM Stroynowski, R Stucci, SA Stugu, B Styles, NA Su, D Su, J Subramaniam, R Succurro, A Sugaya, Y Suhr, C Suk, M Sulin, VV Sultansoy, S Sumida, T Sun, S Sun, X Sundermann, JE Suruliz, K Susinno, G Sutton, MR Suzuki, Y Svatos, M Swedish, S Swiatlowski, M Sykora, I Sykora, T Ta, D Taccini, C Tackmann, K Taenzer, J Taffard, A Tafirout, R Taiblum, N Takai, H Takashima, R Takeda, H Takeshita, T Takubo, Y Talby, M Talyshev, AA Tam, JYC Tan, KG Tanaka, J Tanaka, R Tanaka, S Tanaka, S Tanasijczuk, AJ Tannenwald, BB Tannoury, N Tapprogge, S Tarem, S Tarrade, F Tartarelli, GF Tas, P Tasevsky, M Tashiro, T Tassi, E Delgado, AT Tayalati, Y Taylor, FE Taylor, GN Taylor, W Teischinger, FA Castanheira, MTD Teixeira-Dias, P Temming, KK Ten Kate, H Teng, PK Teoh, JJ Terada, S Terashi, K Terron, J Terzo, S Testa, M Teuscher, RJ Therhaag, J Theveneaux-Pelzer, T Thomas, JP Thomas-Wilsker, J Thompson, EN Thompson, PD Thompson, PD Thompson, RJ Thompson, AS Thomsen, LA Thomson, E Thomson, M Thong, WM Thun, RP Tian, F Tibbetts, MJ Tikhomirov, VO Tikhonov, YA Timoshenko, S Tiouchichine, E Tipton, P Tisserant, S Todorov, T Todorova-Nova, S Toggerson, B Tojo, J Tokar, S Tokushuku, K Tollefson, K Tomlinson, L Tomoto, M Tompkins, L Toms, K Topilin, ND Torrence, E Torres, H Pastor, ET Toth, J Touchard, F Tovey, DR Tran, HL Trefzger, T Tremblet, L Tricoli, A Trigger, IM Trincaz-Duvoid, S Tripiana, MF Trischuk, W Trocme, B Troncon, C Trottier-McDonald, M Trovatelli, M True, P Trzebinski, M Trzupek, A Tsarouchas, C Tseng, JCL Tsiareshka, PV Tsionou, D Tsipolitis, G Tsirintanis, N Tsiskaridze, S Tsiskaridze, V Tskhadadze, EG Tsukerman, II Tsulaia, V Tsuno, S Tsybychev, D Tudorache, A Tudorache, V Tuna, AN Tupputi, SA Turchikhin, S Turecek, D Turra, R Tuts, PM Tykhonov, A Tylmad, M Tyndel, M Uchida, K Ueda, I Ueno, R Ughetto, M Ugland, M Uhlenbrock, M Ukegawa, F Unal, G Undrus, A Unel, G Ungaro, FC Unno, Y Unverdorben, C Urbaniec, D Urquijo, P Usai, G Usanova, A Vacavant, L Vacek, V Vachon, B Valencic, N Valentinetti, S Valero, A Valery, L Valkar, S Gallego, EV Vallecorsa, S Ferrer, JAV Van Den Wollenberg, W Van Der Deijl , PC van der Geer, R van der Graaf, H Van der Leeuw, R van der Ster, D van Eldik, N van Gemmeren, P Van Nieuwkoop, J van Vulpen, I van Woerden, MC Vanadia, M Vandelli, W Vanguri, R Vaniachine, A Vannucci, F Vardanyan, G Vari, R Varnes, EW Varol, T Varouchas, D Vartapetian, A Varvell, KE Vazeille, F Schroeder, TV Veatch, J Veloso, F Velz, T Veneziano, S Ventura, A Ventura, D Venturi, M Venturi, N Venturini, A Vercesi, V Verducci, M Verkerke, W Vermeulen, JC Vest, A Vetterli, MC Viazlo, O Vichou, I Vickey, T Boeriu, OEV Viehhauser, GHA Viel, S Vigne, R Villa, M Perez, MV Vilucchi, E Vincter, MG Vinogradov, VB Virzi, J Vivarelli, I Vaque, FV Vlachos, S Vladoiu, D Vlasak, M Vogel, A Vogel, M Vokac, P Volpi, G Volpi, M von der Schmitt, H von Radziewski, H von Toerne, E Vorobel, V Vorobev, K Vos, M Voss, R Vossebeld, JH Vranjes, N Milosavljevic, MV Vrba, V Vreeswijk, M Anh, TV Vuillermet, R Vukotic, I Vykydal, Z Wagner, P Wagner, W Wahlberg, H Wahrmund, S Wakabayashi, J Walder, J Walker, R Walkowiak, W Wall, R Waller, P Walsh, B Wang, C Wang, C Wang, F Wang, H Wang, H Wang, J Wang, J Wang, K Wang, R Wang, SM Wang, T Wang, X Wanotayaroj, C Warburton, A Ward, CP Wardrope, DR Warsinsky, M Washbrook, A Wasicki, C Watkins, PM Watson, AT Watson, IJ Watson, MF Watts, G Watts, S Waugh, BM Webb, S Weber, MS Weber, SW Webster, JS Weidberg, AR Weigell, P Weinert, B Weingarten, J Weiser, C Weits, H Wells, PS Wenaus, T Wendland, D Weng, Z Wengler, T Wenig, S Wermes, N Werner, M Werner, P Wessels, M Wetter, J Whalen, K White, A White, MJ White, R White, S Whiteson, D Wicke, D Wickens, FJ Wiedenmann, W Wielers, M Wienemann, P Wiglesworth, C Wiik-Fuchs, LAM Wijeratne, PA Wildauer, A Wildt, MA Wilkens, HG Will, JZ Williams, HH Williams, S Willis, C Willocq, S Wilson, A Wilson, JA Wingerter-Seez, I Winklmeier, F Winter, BT Wittgen, M Wittig, T Wittkowski, J Wollstadt, SJ Wolter, MW Wolters, H Wosiek, BK Wotschack, J Woudstra, MJ Wozniak, KW Wright, M Wu, M Wu, SL Wu, X Wu, Y Wulf, E Wyatt, TR Wynne, BM Xella, S Xiao, M Xu, D Xu, L Yabsley, B Yacoob, S Yakabe, R Yamada, M Yamaguchi, H Yamaguchi, Y Yamamoto, A Yamamoto, K Yamamoto, S Yamamura, T Yamanaka, T Yamauchi, K Yamazaki, Y Yan, Z Yang, H Yang, H Yang, UK Yang, Y Yanush, S Yao, L Yao, WM Yasu, Y Yatsenko, E Wong, KHY Ye, J Ye, S Yeletskikh, I Yen, AL Yildirim, E Yilmaz, M Yoosoofmiya, R Yorita, K Yoshida, R Yoshihara, K Young, C Young, CJS Youssef, S Yu, DR Yu, J Yu, JM Yu, J Yuan, L Yurkewicz, A Yusuff, I Zabinski, B Zaidan, R Zaitsev, AM Zaman, A Zambito, S Zanello, L Zanzi, D Zeitnitz, C Zeman, M Zemla, A Zengel, K Zenin, O Zenis, T Zerwas, D della Porta, GZ Zhang, D Zhang, F Zhang, H Zhang, J Zhang, L Zhang, X Zhang, Z Zhao, Z Zhemchugov, A Zhong, J Zhou, B Zhou, L Zhou, N Zhu, CG Zhu, H Zhu, J Zhu, Y Zhuang, X Zhukov, K Zibell, A Zieminska, D Zimine, NI Zimmermann, C Zimmermann, R Zimmermann, S Zimmermann, S Zinonos, Z Ziolkowski, M Zobernig, G Zoccoli, A zur Nedden, M Zurzolo, G Zutshi, V Zwalinski, L AF Aad, G. Abbott, B. Abdallah, J. Khalek, S. Abdel Abdinov, O. Aben, R. Abi, B. Abolins, M. AbouZeid, O. S. Abramowicz, H. Abreu, H. Abreu, R. Abulaiti, Y. Acharya, B. S. Adamczyk, L. Adams, D. L. Adelman, J. Adomeit, S. Adye, T. Agatonovic-Jovin, T. Aguilar-Saavedra, J. A. Agustoni, M. Ahlen, S. P. Ahmadov, F. Aielli, G. Akerstedt, H. Akesson, T. P. A. Akimoto, G. Akimov, A. V. Alberghi, G. L. Albert, J. Albrand, S. Alconada Verzini, M. J. Aleksa, M. Aleksandrov, I. N. Alexa, C. Alexander, G. Alexandre, G. Alexopoulos, T. Alhroob, M. Alimonti, G. Alio, L. Alison, J. Allbrooke, B. M. M. Allison, L. J. Allport, P. P. Almond, J. Aloisio, A. Alonso, A. Alonso, F. Alpigiani, C. Altheimer, A. Gonzalez, B. Alvarez Alviggi, M. G. Amako, K. Amaral Coutinho, Y. Amelung, C. Amidei, D. Amor Dos Santos, S. P. Amorim, A. Amoroso, S. Amram, N. Amundsen, G. Anastopoulos, C. Ancu, L. S. Andari, N. Andeen, T. Anders, C. F. Anders, G. Anderson, K. J. Andreazza, A. Andrei, V. Anduaga, X. S. Angelidakis, S. Angelozzi, I. Anger, P. Angerami, A. Anghinolfi, F. Anisenkov, A. V. Anjos, N. Annovi, A. Antonaki, A. Antonelli, M. Antonov, A. Antos, J. Anulli, F. Aoki, M. Bella, L. Aperio Apolle, R. Arabidze, G. Aracena, I. Arai, Y. Araque, J. P. Arce, A. T. H. Arguin, J-F. Argyropoulos, S. Arik, M. Armbruster, A. J. Arnaez, O. Arnal, V. Arnold, H. Arratia, M. Arslan, O. Artamonov, A. Artoni, G. Asai, S. Asbah, N. Ashkenazi, A. Asman, B. Asquith, L. Assamagan, K. Astalos, R. Atkinson, M. Atlay, N. B. Auerbach, B. Augsten, K. Aurousseau, M. Avolio, G. Azuelos, G. Azuma, Y. Baak, M. A. Baas, A. E. Bacci, C. Bachacou, H. Bachas, K. Backes, M. Backhaus, M. Mayes, J. Backus Badescu, E. Bagiacchi, P. Bagnaia, P. Bai, Y. Bain, T. Baines, J. T. Baker, O. K. Balek, P. Balli, F. Banas, E. Banerjee, Sw. Bannoura, A. A. E. Bansal, V. Bansil, H. S. Barak, L. Barberio, L. Barberis, D. Barbero, M. Barillari, T. Barisonzi, M. Barklow, T. Barlow, N. Barnett, B. M. Barnett, R. M. Barnovska, Z. Baroncelli, A. Barone, G. Barr, A. J. Barreiro, F. da Costa, J. Barreiro Guimaraes Bartoldus, R. Barton, A. E. Bartos, P. Bartsch, V. Bassalat, A. Basye, A. Bates, R. L. Batley, J. R. Battaglia, M. Battistin, M. Bauer, F. Bawa, H. S. Beattie, M. D. Beau, T. Beauchemin, P. H. Beccherle, R. Bechtle, P. Beck, H. P. Becker, K. Becker, S. Beckingham, M. Becot, C. Beddall, A. J. Beddall, A. Bedikian, S. Bednyakov, V. A. Bee, C. P. Beemster, L. J. Beermann, T. A. Begel, M. Behr, J. K. Belanger-Champagne, C. Bell, P. J. Bell, W. H. Bella, G. Bellagamba, L. Bellerive, A. Bellomo, M. Belotskiy, K. Beltramello, O. Benary, O. Benchekroun, D. Bendtz, K. Benekos, N. Benhammou, Y. Noccioli, E. Benhar Garcia, J. A. Benitez Benjamin, D. P. Bensinger, J. R. Benslama, K. Bentvelsen, S. Berge, D. Bergeaas Kuutmann, E. Berger, N. Berghaus, F. Beringer, J. Bernard, C. Bernat, P. Bernius, C. Bernlochner, F. U. Berry, T. Berta, P. Bertella, C. Bertoli, G. Bertolucci, F. Bertsche, C. Bertsche, D. Besana, M. I. Besjes, G. J. Bylund, O. Bessidskaia Bessner, M. Besson, N. Betancourt, C. Bethke, S. Bhimji, W. Bianchi, R. M. Bianchini, L. Bianco, M. Biebel, O. Bieniek, S. P. Bierwagen, K. Biesiada, J. Biglietti, M. De Mendizabal, J. Bilbao Bilokon, H. Bindi, M. Binet, S. Bingul, A. Bini, C. Black, C. W. Black, J. E. Black, K. M. Blackburn, D. Blair, R. E. Blanchard, J. -B. Blazek, T. Bloch, I. Blocker, C. Blum, W. Blumenschein, U. Bobbink, G. J. Bobrovnikov, V. S. Bocchetta, S. S. Bocci, A. Bock, C. Boddy, C. R. Boehler, M. Boek, T. T. Bogaerts, J. A. Bogdanchikov, A. G. Bogouch, A. Bohm, C. Bohm, J. Boisvert, V. Bold, T. Boldea, V. Boldyrev, A. S. Bomben, M. Bona, M. Boonekamp, M. Borisov, A. Borissov, G. Borri, M. Borroni, S. Bortfeldt, J. Bortolotto, V. Bos, K. Boscherini, D. Bosman, M. Boterenbrood, H. Boudreau, J. Bouffard, J. Bouhova-Thacker, E. V. Boumediene, D. Bourdarios, C. Bousson, N. Boutouil, S. Boveia, A. Boyd, J. Boyko, I. R. Bracinik, J. Brandt, A. Brandt, G. Brandt, O. Bratzler, U. Brau, B. Brau, J. E. Braun, H. M. Brazzale, S. F. Brelier, B. Brendlinger, K. Brennan, A. J. Brenner, R. Bressler, S. Bristow, K. Bristow, T. M. Britton, D. Brochu, F. M. Brock, I. Brock, R. Bromberg, C. Bronner, J. Brooijmans, G. Brooks, T. Brooks, W. K. Brosamer, J. Brost, E. Brown, J. de Renstrom, P. A. Bruckman Bruncko, D. Bruneliere, R. Brunet, S. Bruni, A. Bruni, G. Bruschi, M. Bryngemark, L. Buanes, T. Buat, Q. Bucci, F. Buchholz, P. Buckingham, R. M. Buckley, A. G. Buda, S. I. Budagov, I. A. Buehrer, F. Bugge, L. Bugge, M. K. Bulekov, O. Bundock, A. C. Burckhart, H. Burdin, S. Burghgrave, B. Burke, S. Burmeister, I. Busato, E. Buescher, D. Buescher, V. Bussey, P. Buszello, C. P. Butler, B. Butler, J. M. Butt, A. I. Buttar, C. M. Butterworth, J. M. Butti, P. Buttinger, W. Buzatu, A. Byszewski, M. Cabrera Urban, S. Caforio, D. Cakir, O. Calafiura, P. Calandri, A. Calderini, G. Calfayan, P. Calkins, R. Caloba, L. P. Calvet, D. Calvet, S. Toro, R. Camacho Camarda, S. Cameron, D. Caminada, L. M. Caminal Armadans, R. Campana, S. Campanelli, M. Campoverde, A. Canale, V. Canepa, A. Bret, M. Cano Cantero, J. Cantrill, R. Cao, T. Garrido, M. D. M. Capeans Caprini, I. Caprini, M. Capua, M. Caputo, R. Cardarelli, R. Carli, T. Carlino, G. Carminati, L. Caron, S. Carquin, E. Carrillo-Montoya, G. D. Carter, J. R. Carvalho, J. Casadei, D. Casado, M. P. Casolino, M. Castaneda-Miranda, E. Castelli, A. Castillo Gimenez, V. Castro, N. F. Catastini, P. Catinaccio, A. Catmore, J. R. Cattai, A. Cattani, G. Caudron, J. Caughron, S. Cavaliere, V. Cavalli, D. Cavalli-Sforza, M. Cavasinni, V. Ceradini, F. Cerio, B. C. Cerny, K. Cerqueira, A. S. Cerri, A. Cerrito, L. Cerutti, F. Cerv, M. Cervelli, A. Cetin, S. A. Chafaq, A. Chakraborty, D. Chalupkova, I. Chang, P. Chapleau, B. Chapman, J. D. Charfeddine, D. Charlton, D. G. Chau, C. C. Barajas, C. A. Chavez Cheatham, S. Chegwidden, A. Chekanov, S. Chekulaev, S. V. Chelkov, G. A. Chelstowska, M. A. Chen, C. Chen, H. Chen, K. Chen, L. Chen, S. Chen, X. Chen, Y. Chen, Y. Cheng, H. C. Cheng, Y. Cheplakov, A. Cherkaoui El Mourslie, R. Chernyatin, V. Cheu, E. Chevalier, L. Chiarella, V. Chiefari, G. Childers, J. T. Chilingarov, A. Chiodini, G. Chisholm, A. S. Chislett, R. T. Chitan, A. Chizhov, M. V. Chouridou, S. Chow, B. K. B. Chromek-Burckhart, D. Chu, M. L. Chudoba, J. Chwastowski, J. J. Chytka, L. Ciapetti, G. Ciftci, A. K. Ciftci, R. Cinca, D. Cindro, V. Ciocio, A. Cirkovic, P. Citron, Z. H. Ciubancan, M. Clark, A. Clark, P. J. Clarke, R. N. Cleland, W. Clemens, J. C. Clement, C. Coadou, Y. Cobal, M. Coccaro, A. Cochran, J. Coffey, L. Cogan, J. G. Coggeshall, J. Cole, B. Cole, S. Colijn, A. P. Collot, J. Colombo, T. Colon, G. Compostella, G. Conde Muino, P. Coniavitis, E. Conidi, M. C. Connell, S. H. Connelly, I. A. Consonni, S. M. Consorti, V. Constantinescu, S. Conta, C. Conti, G. Conventi, F. Cooke, M. Cooper, B. D. Cooper-Sarkar, A. M. Cooper-Smith, N. J. Copic, K. Cornelissen, T. Corradi, M. Corriveau, F. Corso-Radu, A. Cortes-Gonzalez, A. Cortiana, G. Costa, G. Costa, M. J. Costanzo, D. Cote, D. Cottin, G. Cowan, G. Cox, B. E. Cranmer, K. Cree, G. Crepe-Renaudin, S. Crescioli, F. Cribbs, W. A. Ortuzar, M. Crispin Cristinziani, M. Croft, V. Crosetti, G. Cuciuc, C. -M. Donszelmann, T. Cuhadar Cummings, J. Curatolo, M. Cuthbert, C. Czirr, H. Czodrowski, P. Czyczula, Z. D'Auria, S. D'Onofrio, M. Da Cunha Sargedas De Sousa, M. J. Da Via, C. Dabrowski, W. Dafinca, A. Dai, T. Dale, O. Dallaire, F. Dallapiccola, C. Dam, M. Daniells, A. C. Hoffmann, M. Dano Dao, V. Darbo, G. Darmora, S. Dassoulas, J. Dattagupta, A. Davey, W. David, C. Davidek, T. Davies, E. Davies, M. Davignon, O. Davison, A. R. Davison, P. Davygora, Y. Dawe, E. Dawson, I. Daya-Ishmukhametova, R. K. De, K. de Asmundis, R. De Castro, S. De Cecco, S. De Groot, N. de Jong, P. De la Torre, H. De Lorenzi, F. De Nooij, L. De Pedis, D. De Salvo, A. De Sanctis, U. De Santo, A. De Regie, J. B. De Vivie Dearnaley, W. J. Debbe, R. Debenedetti, C. Dechenaux, B. Dedovich, D. V. Deigaard, I. Del Peso, J. Del Prete, T. Deliot, F. Delitzsch, C. M. Deliyergiyev, M. Dell'Acqua, A. Dell'Asta, L. Dell'Orso, M. Della Pietra, M. della Volpe, D. Delmastro, M. Delsart, P. A. Deluca, C. Demers, S. Demichev, M. Demilly, A. Denisov, S. P. Derendarz, D. Derkaoui, J. E. Derue, F. Dervan, P. Desch, K. Deterre, C. Deviveiros, P. O. Dewhurst, A. Dhaliwal, S. Di Ciaccio, A. Di Ciaccio, L. Di Domenico, A. Di Donato, C. Di Girolamo, A. Di Girolamo, B. Di Mattia, A. Di Micco, B. Di Nardo, R. Di Simone, A. Di Sipio, R. Di Valentino, D. Dias, F. A. Diaz, M. A. Diehl, E. B. Dietrich, J. Dietzsch, T. A. Diglio, S. Dimitrievska, A. Dingfelder, J. Dionisi, C. Dita, P. Dita, S. Dittus, F. Djama, F. Djobava, T. Djuvsland, J. I. do Vale, M. A. B. Wemans, A. Do Valle Doan, T. K. O. Dobos, D. Doglioni, C. Doherty, T. Dohmae, T. Dolejsi, J. Dolezal, Z. Dolgoshein, B. A. Donadelli, M. Donati, S. Dondero, P. Donini, J. Dopke, J. Doria, A. Dova, M. T. Doyle, A. T. Dris, M. Dubbert, J. Dube, S. Dubreuil, E. Duchovni, E. Duckeck, G. Ducu, O. A. Duda, D. Dudarev, A. Dudziak, F. Duflot, L. Duguid, L. Duehrssen, M. Dunford, M. Yildiz, H. Duran Dueren, M. Durglishvili, A. Dwuznik, M. Dyndal, M. Ebke, J. Edson, W. Edwards, N. C. Ehrenfeld, W. Eifert, T. Eigen, G. Einsweiler, K. Ekelof, T. El Kacimi, M. Ellert, M. Elles, S. Ellinghaus, F. Ellis, N. Elmsheuser, J. Elsing, M. Emeliyanov, D. Enari, Y. Endner, O. C. Endo, M. Erdmann, J. Ereditato, A. Eriksson, D. Ernis, G. Ernst, J. Ernst, M. Ernwein, J. Errede, D. Errede, S. Ertel, E. Escalier, M. Esch, H. Escobar, C. Esposito, B. Etienvre, A. I. Etzion, E. Evans, H. Ezhilov, A. Fabbri, L. Facini, G. Fakhrutdinov, R. M. Falciano, S. Falla, R. J. Faltova, J. Fang, Y. Fanti, M. Farbin, A. Farilla, A. Farooque, T. Farrell, S. Farrington, S. M. Farthouat, P. Fassie, F. Fassnacht, P. Fassouliotis, D. Favareto, A. Fayard, L. Federic, P. Fedin, O. L. Fedorko, W. Fehling-Kaschek, M. Feigl, S. Feligioni, L. Feng, C. Feng, E. J. Feng, H. Fenyuk, A. B. Perez, S. Fernandez Ferrag, S. Ferrando, J. Ferrari, A. Ferrari, P. Ferrari, R. de Lima, D. E. Ferreira Ferrer, A. Ferrere, D. Ferretti, C. Parodi, A. Ferretto Fiascaris, M. Fiedler, F. Filipcic, A. Filipuzzi, M. Filthaut, F. Fincke-Keeler, M. Finelli, K. D. Fiolhais, M. C. N. Fiorini, L. Firan, A. Fischer, A. Fischer, J. Fisher, W. C. Fitzgerald, E. A. Flechl, M. Fleck, I. Fleischmann, P. Fleischmann, S. Fletcher, G. T. Fletcher, G. Flick, T. Floderus, A. Castillo, L. R. Flores Bustos, A. C. Florez Flowerdew, M. J. Formica, A. Forti, A. Fortin, D. Fournier, D. Fox, H. Fracchia, S. Francavilla, P. Franchini, M. Franchino, S. Francis, D. Franconi, L. Franklin, M. Franz, S. Fraternali, M. French, S. T. Friedrich, C. Friedrich, F. Froidevaux, D. Frost, J. A. Fukunaga, C. Torregrosa, E. Fullana Fulsom, B. G. Fuster, J. Gabaldon, C. Gabizon, O. Gabrielli, A. Gabrielli, A. Gadatsch, S. Gadomski, S. Gagliardi, G. Gagnon, P. Galea, C. Galhardo, B. Gallas, E. J. Gallo, V. Gallop, B. J. Gallus, P. Galster, G. Gan, K. K. Gandrajula, R. P. Gao, J. Gao, Y. S. Walls, F. M. Garay Garberson, F. Garcia, C. Garcia Navarro, E. Garcia-Sciveres, M. Gardner, R. W. Garelli, N. Garonne, V. Gatti, C. Gaudio, G. Gaur, B. Gauthier, L. Gauzzi, P. Gavrilenko, I. L. Gay, C. Gaycken, G. Gazis, E. N. Ge, P. Gecse, Z. Gee, C. N. P. Geerts, D. A. A. Geich-Gimbel, Ch. Gemme, C. Gemmell, A. Genest, M. H. Gentile, S. George, M. George, S. Gerbaudo, D. Gershon, A. Ghazlane, H. Ghodbane, N. Giacobbe, B. Giagu, S. Giangiobbe, V. Giannetti, P. Gianotti, F. Gibbard, B. Gibson, S. M. Gilchriese, M. Gillam, T. P. S. Gillberg, D. Gilles, G. Gingrich, D. M. Giokaris, N. Giordani, M. P. Giordano, R. Giorgi, F. M. Giorgi, F. M. Giraud, P. F. Giugni, D. Giuliani, C. Giulini, M. Gjelsten, B. K. Gkaitatzis, S. Gkialas, I. Gladilin, L. K. Glasman, C. Glatzer, J. Glaysher, P. C. F. Glazov, A. Glonti, G. L. Goblirsch-Kolb, M. Goddard, J. R. Godfrey, J. Godlewski, J. Goeringer, C. Goldfarb, S. Golling, T. Golubkov, D. Gomes, A. Fajardo, L. S. Gomez Goncalo, R. Da Costa, J. Goncalves Pinto Firmino Gonella, L. Gonzalez de la Hoz, S. Gonzalez Parra, G. Gonzalez-Sevilla, S. Goossens, L. Gorbounov, P. A. Gordon, H. A. Gorelov, I. Gorini, B. Gorini, E. Gorisek, A. Gornicki, E. Goshaw, A. T. Goessling, C. Gostkin, M. I. Gouighri, M. Goujdami, D. Goulette, M. P. Goussiou, A. G. Goy, C. Gozpinar, S. Grabas, H. M. X. Graber, L. Grabowska-Bold, I. Grafstroem, P. Grahn, K-J. Gramling, J. Gramstad, E. Grancagnolo, S. Grassi, V. Gratchev, V. Gray, H. M. Graziani, E. Grebenyuk, O. G. Greenwood, Z. D. Gregersen, K. Gregor, I. M. Grenier, P. Griffiths, J. Grillo, A. A. Grimm, K. Grinstein, S. Gris, Ph. Grishkevich, Y. V. Grivaz, J. -F. Grohs, J. P. Grohsjean, A. Gross, E. Grosse-Knetter, J. Grossia, G. C. Groth-Jensen, J. Grout, Z. J. Guan, L. Guenther, J. Guescini, F. Guest, D. Gueta, O. Guicheney, C. Guido, E. Guillemin, T. Guindon, S. Gul, U. Gumpert, C. Guo, J. Gupta, S. Gutierrez, P. Ortiz, N. G. Gutierrez Gutschow, C. Guttman, N. Guyot, C. Gwenlan, C. Gwilliam, C. B. Haas, A. Haber, C. Hadavand, H. K. Haddad, N. Haefner, P. Hageboeck, S. Hajduk, Z. Hakobyan, H. Haleem, M. Hall, D. Halladjian, G. Hamacher, K. Hamal, P. Hamano, K. Hamer, M. Hamilton, A. Hamilton, S. Hamity, G. N. Hamnett, P. G. Han, L. Hanagaki, K. Hanawa, K. Hance, M. Hanke, P. Hanna, R. Hansen, J. B. Hansen, J. D. Hansen, P. H. Hara, K. Hard, A. S. Harenberg, T. Hariri, F. Harkusha, S. Harper, D. Harrington, R. D. Harris, O. M. Harrison, P. F. Hartjes, F. Hasegawa, M. Hasegawa, S. Hasegawa, Y. Hasib, A. Hassani, S. Haug, S. Hauschild, M. Hauser, R. Havranek, M. Hawkes, C. M. Hawkings, R. J. Hawkins, A. D. Hayashi, T. Hayden, D. Hays, C. P. Hayward, H. S. Haywood, S. J. Head, S. J. Heck, T. Hedberg, V. Heelan, L. Heim, S. Heim, T. Heinemann, B. Heinrich, L. Hejbal, J. Helary, L. Heller, C. Heller, M. Hellman, S. Hellmich, D. Helsens, C. Henderson, J. Henderson, R. C. W. Heng, Y. Hengler, C. Henrichs, A. Correia, A. M. Henriques Henrot-Versille, S. Hensel, C. Herbert, G. H. Hernandez Jimenez, Y. Herrberg-Schubert, R. Herten, G. Hertenberger, R. Hervas, L. Hesketh, G. G. Hessey, N. P. Hickling, R. Higon-Rodriguez, E. Hill, E. Hill, J. C. Hiller, K. H. Hillert, S. Hillier, S. J. Hinchliffe, I. Hines, E. Hirose, M. Hirschbuehl, D. Hobbs, J. Hod, N. Hodgkinson, M. C. Hodgson, P. Hoecker, A. Hoeferkamp, M. R. Hoenig, F. Hoffman, J. Hoffmann, D. Hohlfeld, M. Holmes, T. R. Hong, T. M. van Huysduynen, L. Hooft Hostachy, J-Y. Hou, S. Hoummada, A. Howard, J. Howarth, J. Hrabovsky, M. Hristova, I. Hrivnac, J. Hryn'ova, T. Hsu, C. Hsu, P. J. Hsu, S. -C. Hu, D. Hu, X. Huang, Y. Hubacek, Z. Hubaut, F. Huegging, F. Huffman, T. B. Hughes, E. W. Hughes, G. Huhtinen, M. Huelsing, T. A. Hurwitz, M. Huseynov, N. Huston, J. Huth, J. Iacobucci, G. Iakovidis, G. Ibragimov, I. Iconomidou-Fayard, L. Ideal, E. Iengo, P. Igonkina, O. Iizawa, T. Ikegami, Y. Ikematsu, K. Ikeno, M. Ilchenko, Y. Iliadis, D. Ilic, N. Inamaru, Y. Ince, T. Ioannou, P. Iodice, M. Iordanidou, K. Ippolito, V. Quiles, A. Irles Isaksson, C. Ishino, M. Ishitsuka, M. Ishmukhametov, R. Issever, C. Istin, S. Ponce, J. M. Iturbe Iuppa, R. Ivarsson, J. Iwanski, W. Iwasaki, H. Izen, J. M. Izzo, V. Jackson, B. Jackson, M. Jackson, P. Jaekel, M. R. Jain, V. Jakobs, K. Jakobsen, S. Jakoubek, T. Jakubek, J. Jamin, D. O. Jana, D. K. Jansen, E. Jansen, H. Janssen, J. Janus, M. Jarlskog, G. Javadov, N. Javurek, T. Jeanty, L. Jejelava, J. Jeng, G. -Y. Jennens, D. Jenni, P. Jentzsch, J. Jeske, C. Jezequel, S. Ji, H. Jia, J. Jiang, Y. Belenguer, M. Jimenez Jin, S. Jinaru, A. Jinnouchi, O. Joergensen, M. D. Johansson, K. E. Johansson, P. Johns, K. A. Jon-And, K. Jones, G. Jones, R. W. L. Jones, T. J. Jongmanns, J. Jorge, P. M. Joshi, K. D. Jovicevic, J. Ju, X. Jung, C. A. Jungst, R. M. Jussel, P. Juste Rozas, A. Kaci, M. Kaczmarska, A. Kado, M. Kagan, H. Kagan, M. Kajomovitz, E. Kalderon, C. W. Kama, S. Kamenshchikov, A. Kanaya, N. Kaneda, M. Kaneti, S. Kantserov, V. A. Kanzaki, J. Kaplan, B. Kapliy, A. Kar, D. Karakostas, K. Karastathis, N. Karnevskiy, M. Karpov, S. N. Karpova, Z. M. Karthik, K. Kartvelishvili, V. Karyukhin, A. N. Kashif, L. Kasieczka, G. Kass, R. D. Kastanas, A. Kataoka, Y. Katre, A. Katzy, J. Kaushik, V. Kawagoe, K. Kawamoto, T. Kawamura, G. Kazama, S. Kazanin, V. F. Kazarinov, M. Y. Keeler, R. Kehoe, R. Keller, J. S. Kempster, J. J. Keoshkerian, H. Kepka, O. Kersevan, B. P. Kersten, S. Kessoku, K. Keung, J. Khalil-zada, F. Khandanyan, H. Khanov, A. Khodinov, A. Khomich, A. Khoo, T. J. Khoriauli, G. Khoroshilov, A. Khovanskiy, V. Khramov, E. Khubua, J. Kim, H. Y. Kim, H. Kim, S. H. Kimura, N. Kind, O. M. King, B. T. King, M. King, R. S. B. King, S. B. Kirk, J. Kiryunin, A. E. Kishimoto, T. Kisielewska, D. Kiss, F. Kittelmann, T. Kiuchi, K. Kladiva, E. Klein, M. Klein, U. Kleinknecht, K. Klimek, P. Klimentov, A. Klingenberg, R. Klinger, J. A. Klioutchnikova, T. Klok, P. F. Kluge, E. -E. Kluit, P. Kluth, S. Kneringer, E. Knoops, E. B. F. G. Knue, A. Kobayashi, D. Kobayashi, T. Kobel, M. Kocian, M. Kodys, P. Koevesarki, P. Koffas, T. Koffeman, E. Kogan, L. A. Kohlmann, S. Kohout, Z. Kohriki, T. Koi, T. Kolanoski, H. Koletsou, I. Koll, J. Komar, A. A. Komori, Y. Kondo, T. Kondrashova, N. Koeneke, K. Konig, A. C. Koenig, S. Kono, T. Konoplich, R. Konstantinidis, N. Kopeliansky, R. Kopernya, S. Koepke, L. Kopp, A. K. Korcyl, K. Kordas, K. Korn, A. Korol, A. A. Korolkov, I. Korolkova, E. V. Korotkov, V. A. Kortner, O. Kortner, S. Kostyukhin, V. V. Kotov, V. M. Kotwal, A. Kourkoumelis, C. Kouskoura, V. Koutsman, A. Kowalewski, R. Kowalski, T. Z. Kozanecki, W. Kozhin, A. S. Kral, V. Kramarenko, V. A. Kramberger, G. Krasnopevtsev, D. Krasny, M. W. Krasznahorkay, A. Kraus, J. K. Kravchenko, A. Kreiss, S. Kretzc, M. Kretzschmar, J. Kreutzfeldt, K. Krieger, P. Kroeninger, K. Kroha, H. Kroll, J. Kroseberg, J. Krstic, J. Kruchonak, U. Krueger, H. Kruker, T. Krumnack, N. Krumshteyn, Z. V. Kruse, A. Kruse, M. C. Kruskal, M. Kubota, T. Kuday, S. Kuehn, S. Kugel, A. Kuhl, A. Kuhl, T. Kukhtin, V. Kulchitsky, Y. Kuleshov, S. Kuna, M. Kunkle, J. Kupco, A. Kurashige, H. Kurochkin, Y. A. Kurumida, R. Kus, V. Kuwertz, E. S. Kuze, M. Kvita, J. La Rosa, A. La Rotonda, L. Lacasta, C. Lacava, F. Lacey, J. Lacker, H. Lacour, D. Lacuesta, V. R. Ladygin, E. Lafaye, R. Laforge, B. Lagouri, T. Lai, S. Laier, H. Lambourne, L. Lammers, S. Lampen, C. L. Lampl, W. Lancon, E. Landgraf, U. Landon, M. P. J. Lang, V. S. Lankford, A. J. Lanni, F. Lantzsch, K. Laplace, S. Lapoire, C. Laporte, J. F. Lari, T. Lassnig, M. Laurelli, P. Lavrijsen, W. Law, A. T. Laycock, P. Le Dortz, O. Le Guirriec, E. Le Menedeu, E. Le Compte, T. Ledroit-Guillon, F. Lee, C. A. Lee, H. Lee, J. S. H. Lee, S. C. Lee, L. Lefebvre, G. Lefebvre, M. Legger, F. Leggett, C. Lehan, A. Lehmacher, M. Miotto, G. Lehmann Lei, X. Leight, W. A. Leisos, A. Leister, A. G. Leite, M. A. L. Leitner, R. Lellouch, D. Lemmer, B. Leney, K. J. C. Lenz, T. Lenzi, B. Leone, R. Leone, S. Leonhardt, K. Leonidopoulos, C. Leontsinis, S. Leroy, C. Lester, C. G. Lester, C. M. Levchenko, M. Leveque, J. Levin, D. Levinson, L. J. Levy, M. Lewis, A. Lewis, G. H. Leyko, A. M. Leyton, M. Li, B. Li, B. Li, H. Li, H. L. Li, L. Lie, L. Li, S. Li, Y. Liang, Z. Liao, H. Liberti, B. Lichard, P. Lie, K. Liebal, J. Liebig, W. Limbach, C. Limosani, A. Lin, S. C. Lin, T. H. Linde, F. Lindquist, B. E. Linnemann, J. T. Lipeles, E. Lipniacka, A. Lisovyi, M. Liss, T. M. Lissauer, D. Lister, A. Litke, A. M. Liu, B. Liu, D. Liu, J. B. Liu, K. Liu, L. Liu, M. Liu, M. Liu, Y. Livan, M. Livermore, S. S. A. Lleres, A. Merino, J. Llorente Lloyd, S. L. Lo Sterzo, F. Lobodzinska, E. Loch, P. Lockman, W. S. Loebinger, F. K. Loevschall-Jensen, A. E. Loginov, A. Lohse, T. Lohwasser, K. Lokajicek, M. Lombardo, V. P. Long, B. A. Long, J. D. Long, R. E. Lopes, L. Mateos, D. Lopez Paredes, B. Lopez Lopez Paz, I. Lorenz, J. Martinez, N. Lorenzo Losada, M. Loscutoff, P. Lou, X. Lounis, A. Love, J. Love, P. A. Lowe, A. J. Lu, N. Lubatti, H. J. Luci, C. Lucotte, A. Luehring, F. Lukas, W. Luminari, L. Lundberg, O. Lund-Jensen, B. Lungwitz, M. Lynn, D. Lysak, R. Lytken, E. Ma, H. Ma, L. L. Maccarrone, G. Macchiolo, A. Miguens, J. Machado Macina, D. Madaffari, D. Madar, R. Maddocks, H. J. Mader, W. F. Madsen, A. Maeno, T. Kataoka, M. Maeno Magradze, E. Mahboubi, K. Mahlstedt, J. Mahmoud, S. Maiani, C. Maidantchik, C. Maier, A. A. Maio, A. Majewski, S. Makida, Y. Makovec, N. Mal, P. Malaescu, B. Malecki, Pa. Maleev, V. P. Malek, F. Mallik, U. Malon, D. Malone, C. Maltezos, S. Malyshev, V. M. Malyukov, S. Mamuzic, J. Mandelli, B. Mandelli, L. Mandic, I. Mandrysch, R. Maneira, J. Manfredini, A. Manhaes de Andrade Filho, L. Ramos, J. Manjarres Mann, A. Manning, P. M. Manousakis-Katsikakis, A. Mansoulie, B. Mantifel, R. Mapelli, L. March, L. Marchand, J. F. Marchiori, G. Marcisovsky, M. Marino, C. P. Marjanovic, M. Marques, C. N. Marroquim, F. Marsden, S. P. Marshall, Z. Marti, L. F. Marti-Garcia, S. Martin, B. Martin, B. Martin, T. A. Martin, V. J. Latour, B. Martin Dit Martinez, H. Martinez, M. Martin-Haugh, S. Martyniuk, A. C. Marx, M. Marzano, F. Marzin, A. Masetti, L. Mashimo, T. Mashinistov, R. Masik, J. Maslennikov, A. L. Massa, I. Massa, L. Massol, N. Mastrandrea, P. Mastroberardino, A. Masubuchi, T. Maettig, P. Mattmann, J. Maurer, J. Maxfield, S. J. Maximov, D. A. Mazini, R. Mazzaferro, L. Mc Goldrick, G. Mc Kee, S. P. McCarn, A. McCarthy, R. L. McCarthy, T. G. McCubbin, N. A. McFarlane, K. W. Mcfayden, J. A. Mchedlidze, G. McMahon, S. J. McPherson, R. A. Meade, A. Mechnich, J. Medinnis, M. Meehan, S. Mehlhase, S. Mehta, A. Meier, K. Meineck, C. Meirose, B. Melachrinos, C. Garcia, B. R. Mellado Meloni, F. Mengarelli, A. Menke, S. Meoni, E. Mercurio, K. M. Mergelmeyer, S. Meric, N. Mermod, P. Merola, L. Meroni, C. Merritt, F. S. Merritt, H. Messina, A. Metcalfe, J. Mete, A. S. Meyer, C. Meyer, C. Meyer, J-P. Meyer, J. Middleton, R. P. Migas, S. Mijovic, L. Mikenberg, G. Mikestikova, M. Mikuz, M. Milic, A. Miller, D. W. Mills, C. Milov, A. Milstead, D. A. Milstein, D. Minaenko, A. A. Minashvili, I. A. Mincer, A. I. Mindur, B. Mineev, M. Ming, Y. Mir, L. M. Mirabelli, G. Mitani, T. Mitrevski, J. Mitsou, V. A. Mitsui, S. Miucci, A. Miyagawa, P. S. Mjornmark, J. U. Moa, T. Mochizuki, K. Mohapatra, S. Mohr, W. Molander, S. Moles-Valls, R. Moenig, K. Monini, C. Monk, J. Monnier, E. Montejo Berlingen, J. Monticelli, F. Monzani, S. Moore, R. W. Moraes, A. Morange, N. Moreno, D. Llacer, M. Moreno Morettini, P. Morgenstern, M. Morii, M. Moritz, S. Morley, A. K. Mornacchi, G. Morris, J. D. Morvaj, L. Moser, H. G. Mosidze, M. Moss, J. Motohashi, K. Mount, R. Mountricha, E. Mouraviev, S. V. Moyse, E. J. W. Muanza, S. Mudd, R. D. Mueller, F. Mueller, J. Mueller, K. Mueller, T. Mueller, T. Muenstermann, D. Munwes, Y. Quijada, J. A. Murillo Murray, W. J. Musheghyan, H. Musto, E. Myagkov, A. G. Myska, M. Nackenhorst, O. Nadal, J. Nagai, K. Nagai, R. Nagai, Y. Nagano, K. Nagarkar, A. Nagasaka, Y. Nagel, M. Nairz, A. M. Nakahama, Y. Nakamura, K. Nakamura, T. Nakano, I. Namasivayam, H. Nanava, G. Narayan, R. Nattermann, T. Naumann, T. Navarro, G. Nayyar, R. Neal, H. A. Nechaeva, P. Yu. Neep, T. J. Nef, P. D. Negri, A. Negri, G. Negrini, M. Nektarijevic, S. Nelson, A. Nelson, T. K. Nemecek, S. Nemethy, P. Nepomuceno, A. A. Nessi, M. Neubauer, M. S. Neumann, M. Neves, R. M. Nevski, P. Newman, P. R. Nguyen, D. H. Nickerson, R. B. Nicolaidou, R. Nicquevert, B. Nielsen, J. Nikiforou, N. Nikiforov, A. Nikolaenko, V. Nikolic-Audit, I. Nikolics, K. Nikolopoulos, K. Nilsson, P. Ninomiya, Y. Nisati, A. Nisius, R. Nobe, T. Nodulman, L. Nomachi, M. Nomidis, I. Norberg, S. Nordberg, M. Novgorodova, O. Nowak, S. Nozaki, M. Nozka, L. Ntekas, K. NunesHanninger, G. Nunnemann, T. Nurse, E. Nuti, F. O'Brien, B. J. O'grady, F. O'Neil, D. C. O'Shea, V. Oakham, F. G. Oberlack, H. Obermann, T. Ocariz, J. Ochi, A. Ochoa, I. Oda, S. Odaka, S. Ogren, H. Oh, A. Oh, S. H. Ohm, C. C. Ohman, H. Okamura, W. Okawa, H. Okumura, Y. Okuyama, T. Olariu, A. Olchevski, A. G. Pino, S. A. Olivares Damazio, D. Oliveira Oliver Garcia, E. Olszewski, A. Olszowska, J. Onofre, A. Onyisi, P. U. E. Oram, C. J. Oreglia, M. J. Oren, Y. Orestano, D. Orlando, N. Barrera, C. Oropeza Orr, R. S. Osculati, B. Ospanov, R. Otero y Garzon, G. Otono, H. Ouchrif, M. Ouellette, E. A. Ould-Saada, F. Ouraou, A. Oussoren, K. P. Ouyang, Q. Ovcharova, A. Owen, M. Ozcana, V. E. Ozturk, N. Pachal, K. Pacheco Pages, A. Padilla Aranda, C. Pagacova, M. Griso, S. Pagan Paganis, E. Pahl, C. Paige, F. Pais, P. Pajchel, K. Palacino, G. Palestini, S. Palka, M. Pallin, D. Palma, A. Palmer, J. D. Pan, Y. B. Panagiotopoulou, E. Vazquez, J. G. Panduro Pani, P. Panikashvili, N. Panitkin, S. Pantea, D. Paolozzi, L. Papadopoulou, Th. D. Papageorgiou, K. Paramonov, A. Hernandez, D. Paredes Parker, M. A. Parodi, F. Parsons, J. A. Parzefall, U. Pasqualucci, E. Passaggio, S. Passeri, A. Pastore, F. Pastore, Fr. Pasztor, G. Pataraia, S. Patel, N. D. Pater, J. R. Patricelli, S. Pauly, T. Pearce, J. Pedersen, M. Pedraza Lopez, S. Pedro, R. Peleganchuk, S. V. Pelikan, D. Peng, H. Penning, B. Penwell, J. Perepelitsa, D. V. Codina, E. Perez Perez Garcia-Estan, M. T. Reale, V. Perez Perini, L. Pernegger, H. Perrino, R. Peschke, R. Peshekhonov, V. D. Peters, K. Peters, R. F. Y. Petersen, B. A. Petersen, T. C. Petit, E. Petridis, A. Petridou, C. Petrolo, E. Petrucci, F. Pettersson, N. E. Pezoa, R. Phillips, P. W. Piacquadio, G. Pianori, E. Picazio, A. Piccaro, E. Piccinini, M. Piegaia, R. Pignotti, D. T. Pilcher, J. E. Pilkington, A. D. Pina, J. Pinamonti, M. Pinder, A. Pinfold, J. L. Pingel, A. Pinto, B. Pires, S. Pitt, M. Pizio, C. Plazak, L. Pleier, M. -A. Pleskot, V. Plotnikova, E. Plucinski, P. Poddar, S. Podlyski, F. Poettgen, R. Poggioli, L. Pohl, D. Pohl, M. Polesello, G. Policicchio, A. Polifka, R. Polini, A. Pollard, C. S. Polychronakos, V. Pommes, K. Pontecorvo, L. Pope, B. G. Popeneciu, G. A. Popovic, D. S. Poppleton, A. Portell Bueso, X. Pospisil, S. Potamianos, K. Potrap, I. N. Potter, C. J. Potter, C. T. Poulard, G. Poveda, J. Pozdnyakov, V. Pralavorio, P. Pranko, A. Prasad, S. Pravahan, R. Prell, S. Price, D. Price, J. Price, L. E. Prieur, D. Primavera, M. Proissl, M. Prokofiev, K. Prokoshin, F. Protopapadaki, E. Protopopescu, S. Proudfoot, J. Przybycien, M. Przysiezniak, H. Ptacek, E. Puddu, D. Pueschel, E. Puldon, D. Purohit, M. Puzo, P. Qian, J. Qin, G. Qin, Y. Quadt, A. Quarrie, D. R. Quayle, W. B. Queitsch-Maitland, M. Quilty, D. Qureshi, A. Radeka, V. Radescu, V. Radhakrishnan, S. K. Radloff, P. Rados, P. Ragusa, F. Rahal, G. Rajagopalan, S. Rammensee, M. Randle-Conde, A. S. Rangel-Smith, C. Rao, K. Rauscher, F. Rave, T. C. Ravenscroft, T. Raymond, M. Read, A. L. Readioff, N. P. Rebuzzi, D. M. Redelbach, A. Redlinger, G. Reece, R. Reeves, K. Rehnisch, L. Reisin, H. Relich, M. Rembser, C. Rena, H. Ren, Z. L. Renaud, A. Rescigno, M. Resconi, S. Rezanova, O. L. Reznicek, P. Rezvani, R. Richter, R. Ridel, M. Rieck, P. Rieger, J. Rijssenbeek, M. Rimoldi, A. Rinaldi, L. Ritsch, E. Riu, I. Rizatdinova, F. Rizvi, E. Robertson, S. H. Robichaud-Veronneau, A. Robinson, D. Robinson, J. E. M. Robson, A. Roda, C. Rodrigues, L. Roe, S. Rohne, O. Rolli, S. Romaniouk, A. Romano, M. Romero Adam, E. Rompotis, N. Ronzani, M. Roos, L. Ros, E. Rosati, S. Rosbach, K. Rose, M. Rose, P. Rosendahl, P. L. Rosenthal, O. Rossetti, V. Rossi, E. Rossi, P. Rosten, R. Rotaru, M. Roth, I. Rothberg, J. Rousseau, D. Royon, C. R. Rozanov, A. Rozen, Y. Ruan, X. Rubbo, F. Rubinskiy, I. Rud, V. I. Rudolph, C. Rudolph, M. S. Ruehr, F. Ruiz-Martinez, A. Rurikova, Z. Rusakovich, N. A. Ruschke, A. Rutherfoord, J. P. Ruthmann, N. Ryabov, Y. F. Rybar, M. Rybkin, G. Ryder, N. C. Saavedra, A. F. Sacerdoti, S. Saddique, A. Sadeh, I. Sadrozinski, H. F-W. Sadykov, R. Tehrani, F. Safai Sakamoto, H. Sakurai, Y. Salamanna, G. Salamon, A. Saleem, M. Salek, D. De Bruin, P. H. Sales Salihagic, D. Salnikov, A. Salt, J. Salvatore, D. Salvatore, F. Salvucci, A. Salzburger, A. Sampsonidis, D. Sanchez, A. Sanchez, J. Sanchez Martinez, V. Sandaker, H. Sandbach, R. L. Sander, H. G. Sanders, M. P. Sandhoff, M. Sandoval, T. Sandoval, C. Sandstroem, R. Sankey, D. P. C. Sansoni, A. Santoni, C. Santonico, R. Santos, H. Castillo, I. Santoyo Sapp, K. Sapronov, A. Saraiva, J. G. Sarrazin, B. Sartisohn, G. Sasaki, O. Sasaki, Y. Sauvage, G. Sauvan, E. Savard, P. Savu, D. O. Sawyer, C. Sawyer, L. Saxon, D. H. Saxon, J. Sbarra, C. Sbrizzi, A. Scanlon, T. Scannicchio, D. A. Scarcella, M. Scarfone, V. Schaarschmidt, J. Schacht, P. Schaefer, D. Schaefer, R. Schaepe, S. Schaetzel, S. Schaefer, U. Schaffer, A. C. Schaile, D. Schamberger, R. D. Scharf, V. Schegelsky, V. A. Scheirich, D. Schernau, M. Scherzer, M. I. Schiavi, C. Schieck, J. Schillo, C. Schioppa, M. Schlenker, S. Schmidt, E. Schmieden, K. Schmitt, C. Schmittb, S. Schneider, B. Schnellbach, Y. J. Schnoor, U. Schoeffel, L. Schoening, A. Schoenrock, B. D. Schorlemmer, A. L. S. Schott, M. Schouten, D. Schovancova, J. Schramm, S. Schreyer, M. Schroeder, C. Schuh, N. Schultens, M. J. Schultz-Coulon, H. -C. Schulz, H. Schumacher, M. Schumm, B. A. Schune, Ph. Schwanenberger, C. Schwartzman, A. Schwegler, Ph. Schwemling, Ph. Schwienhorst, R. Schwindling, J. Schwindt, T. Schwoerer, M. Sciacca, F. G. Scifo, E. Sciolla, G. Scott, W. G. Scuri, F. Scutti, F. Searcy, J. Sedov, G. Sedykh, E. Seidel, S. C. Seiden, A. Seifert, F. Seixas, J. M. Sekhniaidze, G. Sekula, S. J. Selbach, K. E. Seliverstov, D. M. Sellers, G. Semprini-Cesari, N. Serfon, C. Serin, L. Serkin, L. Serre, T. Seuster, R. Severini, H. Sfiligoj, T. Sforza, F. Sfyrla, A. Shabalina, E. Shamim, M. Shan, L. Y. Shang, R. Shank, J. T. Shapiro, M. Shatalov, P. B. Shaw, K. Shehu, C. Y. Sherwood, P. Shi, L. Shimizu, S. Shimmin, C. O. Shimojima, M. Shiyakova, M. Shmeleva, A. Shochet, M. J. Short, D. Shrestha, S. Shulga, E. Shupe, M. A. Shushkevich, S. Sicho, P. Sidiropoulou, O. Sidorov, D. Sidoti, A. Siegert, F. Sijacki, Dj. Silva, J. Silver, Y. Silverstein, D. Silverstein, S. B. Simak, V. Simard, O. Simic, Lj. Simion, S. Simioni, E. Simmons, B. Simoniello, R. Simonyan, M. Sinervo, P. Sinev, N. B. Sipica, V. Siragusa, G. Sircar, A. Sisakyan, A. N. Sivoklokov, S. Yu. Sjolin, J. Sjursen, T. B. Skottowe, H. P. Skovpen, K. Yu. Skubic, P. Slater, M. Slavicek, T. Sliwa, K. Smakhtin, V. Smart, B. H. Smestad, L. Smirnov, S. Yu. Smirnov, Y. Smirnova, L. N. Smirnova, O. Smith, K. M. Smizanska, M. Smolek, K. Snesarev, A. A. Snidero, G. Snyder, S. Sobie, R. Socher, F. Soffer, A. Soh, D. A. Solans, C. A. Solar, M. Solc, J. Soldatov, E. Yu. Soldevila, U. Solodkov, A. A. Soloshenko, A. Solovyanov, O. V. Solovyev, V. Sommer, P. Song, H. Y. Soni, N. Sood, A. Sopczak, A. Sopko, B. Sopko, V. Sorin, V. Sosebee, M. Soualah, R. Soueid, P. Soukharev, A. M. South, D. Spagnolo, S. Spano, F. Spearman, W. R. Spettel, F. Spighi, R. Spigo, G. Spiller, L. A. Spousta, M. Spreitzer, T. Spurlock, B. St Denis, R. D. Staerz, S. Stahlman, J. Stamen, R. Stamm, S. Stanecka, E. Stanek, R. W. Stanescu, C. Stanescu-Bellu, M. Stanitzki, M. M. Stapnes, S. Starchenko, E. A. Stark, J. Staroba, P. Starovoitov, P. Staszewski, R. Stavina, P. Steinberg, P. Stelzer, B. Stelzer, H. J. Stelzer-Chilton, O. Stenzel, H. Stern, S. Stewart, G. A. Stillings, J. A. Stockton, M. C. Stoebe, M. Stoicea, G. Stolte, P. Stonjek, S. Stradling, A. R. Straessner, A. Stramaglia, M. E. Strandberg, J. Strandberg, S. Strandlie, A. Strauss, E. Strauss, M. Strizenec, P. Stroehmer, R. Strom, D. M. Stroynowski, R. Stucci, S. A. Stugu, B. Styles, N. A. Su, D. Su, J. Subramaniam, R. Succurro, A. Sugaya, Y. Suhr, C. Suk, M. Sulin, V. V. Sultansoy, S. Sumida, T. Sun, S. Sun, X. Sundermann, J. E. Suruliz, K. Susinno, G. Sutton, M. R. Suzuki, Y. Svatos, M. Swedish, S. Swiatlowski, M. Sykora, I. Sykora, T. Ta, D. Taccini, C. Tackmann, K. Taenzer, J. Taffard, A. Tafirout, R. Taiblum, N. Takai, H. Takashima, R. Takeda, H. Takeshita, T. Takubo, Y. Talby, M. Talyshev, A. A. Tam, J. Y. C. Tan, K. G. Tanaka, J. Tanaka, R. Tanaka, S. Tanaka, S. Tanasijczuk, A. J. Tannenwald, B. B. Tannoury, N. Tapprogge, S. Tarem, S. Tarrade, F. Tartarelli, G. F. Tas, P. Tasevsky, M. Tashiro, T. Tassi, E. Tavares Delgado, A. Tayalati, Y. Taylor, F. E. Taylor, G. N. Taylor, W. Teischinger, F. A. Castanheira, M. Teixeira Dias Teixeira-Dias, P. Temming, K. K. Ten Kate, H. Teng, P. K. Teoh, J. J. Terada, S. Terashi, K. Terron, J. Terzo, S. Testa, M. Teuscher, R. J. Therhaag, J. Theveneaux-Pelzer, T. Thomas, J. P. Thomas-Wilsker, J. Thompson, E. N. Thompson, P. D. Thompson, P. D. Thompson, R. J. Thompson, A. S. Thomsen, L. A. Thomson, E. Thomson, M. Thong, W. M. Thun, R. P. Tian, F. Tibbetts, M. J. Tikhomirov, V. O. Tikhonov, Yu. A. Timoshenko, S. Tiouchichine, E. Tipton, P. Tisserant, S. Todorov, T. Todorova-Nova, S. Toggerson, B. Tojo, J. Tokar, S. Tokushuku, K. Tollefson, K. Tomlinson, L. Tomoto, M. Tompkins, L. Toms, K. Topilin, N. D. Torrence, E. Torres, H. Torro Pastor, E. Toth, J. Touchard, F. Tovey, D. R. Tran, H. L. Trefzger, T. Tremblet, L. Tricoli, A. Trigger, I. M. Trincaz-Duvoid, S. Tripiana, M. F. Trischuk, W. Trocme, B. Troncon, C. Trottier-McDonald, M. Trovatelli, M. True, P. Trzebinski, M. Trzupek, A. Tsarouchas, C. Tseng, J. C-L. Tsiareshka, P. V. Tsionou, D. Tsipolitis, G. Tsirintanis, N. Tsiskaridze, S. Tsiskaridze, V. Tskhadadze, E. G. Tsukerman, I. I. Tsulaia, V. Tsuno, S. Tsybychev, D. Tudorache, A. Tudorache, V. Tuna, A. N. Tupputi, S. A. Turchikhin, S. Turecek, D. Turra, R. Tuts, P. M. Tykhonov, A. Tylmad, M. Tyndel, M. Uchida, K. Ueda, I. Ueno, R. Ughetto, M. Ugland, M. Uhlenbrock, M. Ukegawa, F. Unal, G. Undrus, A. Unel, G. Ungaro, F. C. Unno, Y. Unverdorben, C. Urbaniec, D. Urquijo, P. Usai, G. Usanova, A. Vacavant, L. Vacek, V. Vachon, B. Valencic, N. Valentinetti, S. Valero, A. Valery, L. Valkar, S. Gallego, E. Valladolid Vallecorsa, S. Ferrer, J. A. Valls Van Den Wollenberg, W. Van Der Deijl, P. C. van der Geer, R. van der Graaf, H. Van der Leeuw, R. van der Ster, D. van Eldik, N. van Gemmeren, P. Van Nieuwkoop, J. van Vulpen, I. van Woerden, M. C. Vanadia, M. Vandelli, W. Vanguri, R. Vaniachine, A. Vannucci, F. Vardanyan, G. Vari, R. Varnes, E. W. Varol, T. Varouchas, D. Vartapetian, A. Varvell, K. E. Vazeille, F. Schroeder, T. Vazquez Veatch, J. Veloso, F. Velz, T. Veneziano, S. Ventura, A. Ventura, D. Venturi, M. Venturi, N. Venturini, A. Vercesi, V. Verducci, M. Verkerke, W. Vermeulen, J. C. Vest, A. Vetterli, M. C. Viazlo, O. Vichou, I. Vickey, T. Boeriu, O. E. Vickey Viehhauser, G. H. A. Viel, S. Vigne, R. Villa, M. Perez, M. Villaplana Vilucchi, E. Vincter, M. G. Vinogradov, V. B. Virzi, J. Vivarelli, I. Vaque, F. Vives Vlachos, S. Vladoiu, D. Vlasak, M. Vogel, A. Vogel, M. Vokac, P. Volpi, G. Volpi, M. von der Schmitt, H. von Radziewski, H. von Toerne, E. Vorobel, V. Vorobev, K. Vos, M. Voss, R. Vossebeld, J. H. Vranjes, N. Milosavljevic, M. Vranjes Vrba, V. Vreeswijk, M. Anh, T. Vu Vuillermet, R. Vukotic, I. Vykydal, Z. Wagner, P. Wagner, W. Wahlberg, H. Wahrmund, S. Wakabayashi, J. Walder, J. Walker, R. Walkowiak, W. Wall, R. Waller, P. Walsh, B. Wang, C. Wang, C. Wang, F. Wang, H. Wang, H. Wang, J. Wang, J. Wang, K. Wang, R. Wang, S. M. Wang, T. Wang, X. Wanotayaroj, C. Warburton, A. Ward, C. P. Wardrope, D. R. Warsinsky, M. Washbrook, A. Wasicki, C. Watkins, P. M. Watson, A. T. Watson, I. J. Watson, M. F. Watts, G. Watts, S. Waugh, B. M. Webb, S. Weber, M. S. Weber, S. W. Webster, J. S. Weidberg, A. R. Weigell, P. Weinert, B. Weingarten, J. Weiser, C. Weits, H. Wells, P. S. Wenaus, T. Wendland, D. Weng, Z. Wengler, T. Wenig, S. Wermes, N. Werner, M. Werner, P. Wessels, M. Wetter, J. Whalen, K. White, A. White, M. J. White, R. White, S. Whiteson, D. Wicke, D. Wickens, F. J. Wiedenmann, W. Wielers, M. Wienemann, P. Wiglesworth, C. Wiik-Fuchs, L. A. M. Wijeratne, P. A. Wildauer, A. Wildt, M. A. Wilkens, H. G. Will, J. Z. Williams, H. H. Williams, S. Willis, C. Willocq, S. Wilson, A. Wilson, J. A. Wingerter-Seez, I. Winklmeier, F. Winter, B. T. Wittgen, M. Wittig, T. Wittkowski, J. Wollstadt, S. J. Wolter, M. W. Wolters, H. Wosiek, B. K. Wotschack, J. Woudstra, M. J. Wozniak, K. W. Wright, M. Wu, M. Wu, S. L. Wu, X. Wu, Y. Wulf, E. Wyatt, T. R. Wynne, B. M. Xella, S. Xiao, M. Xu, D. Xu, L. Yabsley, B. Yacoob, S. Yakabe, R. Yamada, M. Yamaguchi, H. Yamaguchi, Y. Yamamoto, A. Yamamoto, K. Yamamoto, S. Yamamura, T. Yamanaka, T. Yamauchi, K. Yamazaki, Y. Yan, Z. Yang, H. Yang, H. Yang, U. K. Yang, Y. Yanush, S. Yao, L. Yao, W-M. Yasu, Y. Yatsenko, E. Wong, K. H. Yau Ye, J. Ye, S. Yeletskikh, I. Yen, A. L. Yildirim, E. Yilmaz, M. Yoosoofmiya, R. Yorita, K. Yoshida, R. Yoshihara, K. Young, C. Young, C. J. S. Youssef, S. Yu, D. R. Yu, J. Yu, J. M. Yu, J. Yuan, L. Yurkewicz, A. Yusuff, I. Zabinski, B. Zaidan, R. Zaitsev, A. M. Zaman, A. Zambito, S. Zanello, L. Zanzi, D. Zeitnitz, C. Zeman, M. Zemla, A. Zengel, K. Zenin, O. Zenis, T. Zerwas, D. della Porta, G. Zevi Zhang, D. Zhang, F. Zhang, H. Zhang, J. Zhang, L. Zhang, X. Zhang, Z. Zhao, Z. Zhemchugov, A. Zhong, J. Zhou, B. Zhou, L. Zhou, N. Zhu, C. G. Zhu, H. Zhu, J. Zhu, Y. Zhuang, X. Zhukov, K. Zibell, A. Zieminska, D. Zimine, N. I. Zimmermann, C. Zimmermann, R. Zimmermann, S. Zimmermann, S. Zinonos, Z. Ziolkowski, M. Zobernig, G. Zoccoli, A. zur Nedden, M. Zurzolo, G. Zutshi, V. Zwalinski, L. CA ATLAS Collaboration TI Measurement of the production of neighbouring jets in lead-lead collisions at root s(NN)=2.76TeV with the ATLAS detector SO PHYSICS LETTERS B LA English DT Article ID TRANSVERSE-MOMENTUM DEPENDENCE; ROOT-S-NN=2.76 TEV AB This Letter presents measurements of correlated production of nearby jets in Pb+Pb collisions at root s(NN) = 2.76 TeV using the ATLAS detector at the Large Hadron Collider. The measurement was performed using 0.14 nb(-1)of data recorded in 2011. The production of correlated jet pairs was quantified using the rate, R-Delta R, of "neighbouring" jets that accompany "test" jets within a given range of angular distance, Delta R, in the pseudorapidity-azimuthal angle plane. The jets were measured in the ATLAS calorimeter and were reconstructed using the anti-ktalgorithm with radius parameters d = 0.2, 0.3, and 0.4. R-Delta R was measured in different Pb+Pbcollision centrality bins, characterized by the total transverse energy measured in the forward calorimeters. Acentrality dependence of R-Delta R is observed for all three jet radii with R-Delta R found to be lower in central collisions than in peripheral collisions. The ratios formed by the R-Delta R values in different centrality bins and the values in the 40-80% centrality bin are presented. (C) 2015 CERN for the benefit of the ATLAS Collaboration. Published by Elsevier B.V. C1 [Jackson, P.; Soni, N.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia. [Bouffard, J.; Edson, W.; Ernst, J.; Fischer, A.; Guindon, S.; Jain, V.] SUNY Albany, Dept Phys, Albany, NY 12222 USA. [Butt, A. I.; Czodrowski, P.; Gingrich, D. M.; Moore, R. W.; Pinfold, J. L.; Saddique, A.; Sbrizzi, A.; Vaque, F. Vives] Univ Alberta, Dept Phys, Edmonton, AB, Canada. [Cakir, O.; Ciftci, A. K.; Ciftci, R.; Yildiz, H. Duran; Kuday, S.] Ankara Univ, Dept Phys, TR-06100 Ankara, Turkey. [Yilmaz, M.] Gazi Univ, Dept Phys, Ankara, Turkey. [Sultansoy, S.] TOBB Univ Econ & Technol, Div Phys, Ankara, Turkey. Turkish Atom Energy Commiss, Ankara, Turkey. [Barnovska, Z.; Berger, N.; Delmastro, M.; Di Ciaccio, L.; Doan, T. K. O.; Elles, S.; Goy, C.; Hryn'ova, T.; Jezequel, S.; Keoshkerian, H.; Koletsou, I.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Massol, N.; Sauvage, G.; Sauvan, E.; Simard, O.; Todorov, T.; Wingerter-Seez, I.] CNRS, IN2P3, LAPP, Annecy Le Vieux, France. [Barnovska, Z.; Berger, N.; Delmastro, M.; Doan, T. K. O.; Elles, S.; Goy, C.; Hryn'ova, T.; Jezequel, S.; Keoshkerian, H.; Koletsou, I.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Massol, N.; Przysiezniak, H.; Sauvage, G.; Sauvan, E.; Schwoerer, M.; Simard, O.; Todorov, T.; Wingerter-Seez, I.] Univ Savoie Mont Blanc, Annecy Le Vieux, France. [Asquith, L.; Auerbach, B.; Blair, R. E.; Chekanov, S.; Childers, J. T.; Feng, E. J.; Goshaw, A. T.; Le Compte, T.; Love, J.; Malon, D.; Nguyen, D. H.; Nodulman, L.; Paramonov, A.; Price, L. E.; Proudfoot, J.; Stanek, R. W.; van Gemmeren, P.; Vaniachine, A.; Yoshida, R.; Zhang, J.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Cheu, E.; Johns, K. A.; Kaushik, V.; Lampen, C. L.; Lampl, W.; Lei, X.; Leone, R.; Loch, P.; Nayyar, R.; O'grady, F.; Rutherfoord, J. P.; Shupe, M. A.; Toggerson, B.; Varnes, E. W.; Veatch, J.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Brandt, A.; Cote, D.; Darmora, S.; De, K.; Farbin, A.; Griffiths, J.; Hadavand, H. K.; Heelan, L.; Kim, H. Y.; Kataoka, M. Maeno; Nilsson, P.; Ozturk, N.; Pravahan, R.; Sosebee, M.; Spurlock, B.; Stradling, A. R.; Usai, G.; Vartapetian, A.; White, A.; Yu, J.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. [Angelidakis, S.; Antonaki, A.; Chouridou, S.; Fassouliotis, D.; Giokaris, N.; Ioannou, P.; Iordanidou, K.; Kourkoumelis, C.; Manousakis-Katsikakis, A.; Tsirintanis, N.] Univ Athens, Dept Phys, Athens, Greece. [Alexopoulos, T.; Byszewski, M.; Dris, M.; Gazis, E. N.; Iakovidis, G.; Karakostas, K.; Karastathis, N.; Leontsinis, S.; Maltezos, S.; Ntekas, K.; Panagiotopoulou, E.; Papadopoulou, Th. D.; Tsipolitis, G.; Vlachos, S.] Natl Tech Univ Athens, Dept Phys, GR-15773 Zografos, Greece. [Abdinov, O.; Ahmadov, F.; Huseynov, N.; Javadov, N.; Khalil-zada, F.] Azerbaijan Acad Sci, Inst Phys, Baku 370143, Azerbaijan. [Bosman, M.; Caminal Armadans, R.; Casado, M. P.; Casolino, M.; Cavalli-Sforza, M.; Conidi, M. C.; Cortes-Gonzalez, A.; Farooque, T.; Fracchia, S.; Giangiobbe, V.; Gonzalez Parra, G.; Grinstein, S.; Juste Rozas, A.; Korolkov, I.; Le Menedeu, E.; Lopez Paz, I.; Martinez, M.; Mir, L. M.; Montejo Berlingen, J.; Pacheco Pages, A.; Padilla Aranda, C.; Portell Bueso, X.; Riu, I.; Rubbo, F.; Sorin, V.; Succurro, A.; Tripiana, M. F.; Tsiskaridze, S.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Bosman, M.; Caminal Armadans, R.; Casado, M. P.; Casolino, M.; Cavalli-Sforza, M.; Conidi, M. C.; Cortes-Gonzalez, A.; Farooque, T.; Fracchia, S.; Giangiobbe, V.; Gonzalez Parra, G.; Grinstein, S.; Juste Rozas, A.; Korolkov, I.; Le Menedeu, E.; Lopez Paz, I.; Martinez, M.; Mir, L. M.; Montejo Berlingen, J.; Pacheco Pages, A.; Padilla Aranda, C.; Portell Bueso, X.; Riu, I.; Rubbo, F.; Sorin, V.; Succurro, A.; Tripiana, M. F.; Tsiskaridze, S.] Univ Autonoma Barcelona, Dept Fis, E-08193 Barcelona, Spain. [Agatonovic-Jovin, T.; Cirkovic, P.; Dimitrievska, A.; Krstic, J.; Mamuzic, J.; Marjanovic, M.; Popovic, D. S.; Sijacki, Dj.; Simic, Lj.] Univ Belgrade, Inst Phys, Belgrade, Serbia. [Buanes, T.; Dale, O.; Eigen, G.; Kastanas, A.; Liebig, W.; Lipniacka, A.; Latour, B. Martin Dit; Rosendahl, P. L.; Sandaker, H.; Sjursen, T. B.; Smestad, L.; Stugu, B.; Ugland, M.] Univ Bergen, Dept Phys & Technol, Bergen, Norway. [Barnett, R. M.; Beringer, J.; Biesiada, J.; Brandt, G.; Brosamer, J.; Calafiura, P.; Caminada, L. M.; Cerutti, F.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Copic, K.; Dube, S.; Einsweiler, K.; Farrell, S.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Hance, M.; Heinemann, B.; Hinchliffe, I.; Holmes, T. R.; Hurwitz, M.; Jeanty, L.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Marshall, Z.; Ohm, C. C.; Ovcharova, A.; Griso, S. Pagan; Potamianos, K.; Pranko, A.; Quarrie, D. R.; Shapiro, M.; Sood, A.; Tibbetts, M. J.; Tsulaia, V.; Virzi, J.; Wang, H.; Yao, W-M.; Yu, D. R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [Barnett, R. M.; Beringer, J.; Biesiada, J.; Bingul, A.; Brandt, G.; Brosamer, J.; Calafiura, P.; Caminada, L. M.; Cerutti, F.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Copic, K.; Dube, S.; Einsweiler, K.; Farrell, S.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Hance, M.; Heinemann, B.; Hinchliffe, I.; Holmes, T. R.; Hurwitz, M.; Jeanty, L.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Marshall, Z.; Ohm, C. C.; Ovcharova, A.; Griso, S. Pagan; Potamianos, K.; Pranko, A.; Quarrie, D. R.; Shapiro, M.; Sood, A.; Tibbetts, M. J.; Tsulaia, V.; Virzi, J.; Wang, H.; Yao, W-M.; Yu, D. R.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Giorgi, F. M.; Grancagnolo, S.; Herbert, G. H.; Herrberg-Schubert, R.; Hristova, I.; Kind, O. M.; Kolanoski, H.; Lacker, H.; Lohse, T.; Nikiforov, A.; Rehnisch, L.; Rieck, P.; Schulz, H.; Stamm, S.; Wendland, D.; zur Nedden, M.] Humboldt Univ, Dept Phys, Berlin, Germany. [Agustoni, M.; Beck, H. P.; Cervelli, A.; Ereditato, A.; Gallo, V.; Kruker, T.; Marti, L. F.; Meloni, F.; Schneider, B.; Sciacca, F. G.; Stramaglia, M. E.; Stucci, S. A.; Weber, M. S.] Univ Bern, Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Agustoni, M.; Beck, H. P.; Cervelli, A.; Ereditato, A.; Gallo, V.; Haug, S.; Kruker, T.; Marti, L. F.; Meloni, F.; Schneider, B.; Sciacca, F. G.; Stramaglia, M. E.; Stucci, S. A.; Weber, M. S.] Univ Bern, High Energy Phys Lab, Bern, Switzerland. [Allbrooke, B. M. M.; Bella, L. Aperio; Bansil, H. S.; Bracinik, J.; Charlton, D. G.; Chisholm, A. S.; Daniells, A. C.; Hawkes, C. M.; Head, S. J.; Hillier, S. J.; Levy, M.; Mudd, R. D.; Quijada, J. A. Murillo; Newman, P. R.; Nikolopoulos, K.; Palmer, J. D.; Slater, M.; Thomas, J. P.; Thompson, P. D.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Wilson, J. A.] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England. [Arik, M.; Istin, S.; Ozcana, V. E.] Bogazici Univ, Dept Phys, Istanbul, Turkey. [Cetin, S. A.] Dogus Univ, Dept Phys, Istanbul, Turkey. [Beddall, A. J.; Beddall, A.; Bingul, A.] Gaziantep Univ, Dept Engn Phys, Gaziantep, Turkey. [Alberghi, G. L.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruschi, M.; Caforio, D.; Corradi, M.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Franchini, M.; Gabrielli, A.; Giacobbe, B.; Giorgi, F. M.; Grafstroem, P.; Massa, I.; Massa, L.; Mengarelli, A.; Negrini, M.; Piccinini, M.; Polini, A.; Rinaldi, L.; Romano, M.; Sbarra, C.; Semprini-Cesari, N.; Spighi, R.; Tupputi, S. A.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Ist Nazl Fis Nucl, Sez Bologna, Rome, Italy. [Alberghi, G. L.; Caforio, D.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Franchini, M.; Gabrielli, A.; Grafstroem, P.; Massa, I.; Mengarelli, A.; Piccinini, M.; Romano, M.; Semprini-Cesari, N.; Tupputi, S. A.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Univ Bologna, Dipartimento Fis & Astron, Bologna, Italy. [Arslan, O.; Bechtle, P.; Brock, I.; Cristinziani, M.; Davey, W.; Desch, K.; Dingfelder, J.; Ehrenfeld, W.; Gaycken, G.; Geich-Gimbel, Ch.; Gonella, L.; Haefner, P.; Hageboeck, S.; Hellmich, D.; Hillert, S.; Huegging, F.; Janssen, J.; Khoriauli, G.; Koevesarki, P.; Kostyukhin, V. V.; Kraus, J. K.; Kroseberg, J.; Krueger, H.; Lapoire, C.; Lehmacher, M.; Lenz, T.; Leyko, A. M.; Liebal, J.; Limbach, C.; Mergelmeyer, S.; Mijovic, L.; Mueller, K.; Nanava, G.; Nattermann, T.; Obermann, T.; Pohl, D.; Sarrazin, B.; Schaepe, S.; Schultens, M. J.; Schwindt, T.; Scutti, F.; Stillings, J. A.; Tannoury, N.; Therhaag, J.; Uchida, K.; Uhlenbrock, M.; Velz, T.; Vogel, A.; von Toerne, E.; Wagner, P.; Wang, T.; Wermes, N.; Wienemann, P.; Wiik-Fuchs, L. A. M.; Winter, B. T.; Wong, K. H. Yau; Zimmermann, R.; Zimmermann, S.] Univ Bonn, Inst Phys, Bonn, Germany. [Ahlen, S. P.; Bernard, C.; Black, K. M.; Butler, J. M.; Dell'Asta, L.; Helary, L.; Kruskal, M.; Long, B. A.; Shank, J. T.; Yan, Z.; Youssef, S.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Amelung, C.; Amundsen, G.; Artoni, G.; Bensinger, J. R.; Bianchini, L.; Blocker, C.; Coffey, L.; Fitzgerald, E. A.; Gozpinar, S.; Sciolla, G.; Venturini, A.; Zambito, S.; Zengel, K.] Brandeis Univ, Dept Phys, Waltham, MA 02254 USA. [Amaral Coutinho, Y.; Caloba, L. P.; Maidantchik, C.; Marroquim, F.; Nepomuceno, A. A.; Seixas, J. M.] Univ Fed Rio de Janeiro, COPPE EE IF, Rio De Janeiro, Brazil. [Cerqueira, A. S.; Manhaes de Andrade Filho, L.] Fed Univ Juiz de Fora UFJF, Elect Circuits Dept, Juiz De Fora, Brazil. [do Vale, M. A. B.] Fed Univ Sao Joao del Rei UFSJ, Sao Joao Del Rei, Brazil. [Donadelli, M.; Leite, M. A. L.] Univ Sao Paulo, Inst Fis, BR-01498 Sao Paulo, Brazil. [Adams, D. L.; Assamagan, K.; Begel, M.; Chen, H.; Chernyatin, V.; Debbe, R.; Ernst, M.; Gibbard, B.; Gordon, H. A.; Klimentov, A.; Kravchenko, A.; Lanni, F.; Lissauer, D.; Lynn, D.; Ma, H.; Maeno, T.; Metcalfe, J.; Mountricha, E.; Nevski, P.; Okawa, H.; Damazio, D. Oliveira; Paige, F.; Panitkin, S.; Perepelitsa, D. V.; Pleier, M. -A.; Polychronakos, V.; Protopopescu, S.; Purohit, M.; Radeka, V.; Rajagopalan, S.; Redlinger, G.; Schovancova, J.; Snyder, S.; Steinberg, P.; Takai, H.; Undrus, A.; Wenaus, T.; Ye, S.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Alexa, C.; Badescu, E.; Boldea, V.; Buda, S. I.; Caprini, I.; Caprini, M.; Chitan, A.; Ciubancan, M.; Constantinescu, S.; Cuciuc, C. -M.; Dita, P.; Dita, S.; Ducu, O. A.; Jinaru, A.; Maurer, J.; Olariu, A.; Pantea, D.; Rotaru, M.; Stoicea, G.; Tudorache, A.; Tudorache, V.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Popeneciu, G. A.] Natl Inst Res & Dev Isotop & Mol Technol, Dept Phys, Cluj Napoca, Romania. Univ Politehn Bucuresti, Bucharest, Romania. West Univ Timisoara, Timisoara, Romania. [Otero y Garzon, G.; Piegaia, R.; Reisin, H.; Sacerdoti, S.] Univ Buenos Aires, Dept Fis, Buenos Aires, DF, Argentina. [Arratia, M.; Barlow, N.; Batley, J. R.; Brochu, F. M.; Buttinger, W.; Carter, J. R.; Chapman, J. D.; Cottin, G.; French, S. T.; Frost, J. A.; Gillam, T. P. S.; Hill, J. C.; Kaneti, S.; Khoo, T. J.; Lester, C. G.; Mueller, T.; Parker, M. A.; Robinson, D.; Sandoval, T.; Thomson, M.; Ward, C. P.; Williams, S.; Yusuff, I.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Bellerive, A.; Cree, G.; Di Valentino, D.; Koffas, T.; Lacey, J.; Leight, W. A.; Marchand, J. F.; McCarthy, T. G.; Nomidis, I.; Oakham, F. G.; Pasztor, G.; Tarrade, F.; Ueno, R.; Vincter, M. G.; Whalen, K.] Carleton Univ, Dept Phys, Ottawa, ON K1S 5B6, Canada. [Abreu, R.; Aleksa, M.; Andari, N.; Anders, G.; Anghinolfi, F.; Armbruster, A. J.; Arnaez, O.; Avolio, G.; Baak, M. A.; Backes, M.; Backhaus, M.; Battistin, M.; Beltramello, O.; Bianco, M.; Bogaerts, J. A.; Boyd, J.; Burckhart, H.; Campana, S.; Garrido, M. D. M. Capeans; Carli, T.; Catinaccio, A.; Cattai, A.; Cerv, M.; Chromek-Burckhart, D.; Dell'Acqua, A.; Di Girolamo, A.; Di Girolamo, B.; Dittus, F.; Dobos, D.; Dudarev, A.; Duehrssen, M.; Ellis, N.; Elsing, M.; Farthouat, P.; Fassnacht, P.; Feigl, S.; Perez, S. Fernandez; Franchino, S.; Francis, D.; Froidevaux, D.; Garonne, V.; Gianotti, F.; Gillberg, D.; Glatzer, J.; Godlewski, J.; Goossens, L.; Gorini, B.; Gray, H. M.; Hauschild, M.; Hawkings, R. J.; Heller, M.; Helsens, C.; Correia, A. M. Henriques; Hervas, L.; Hoecker, A.; Hubacek, Z.; Huhtinen, M.; Jaekel, M. R.; Jakobsen, S.; Jansen, H.; Jenni, P.; Jungst, R. M.; Kaneda, M.; Klioutchnikova, T.; Krasznahorkay, A.; Lantzsch, K.; Lassnig, M.; Miotto, G. Lehmann; Lenzi, B.; Lichard, P.; Macina, D.; Malyukov, S.; Mandelli, B.; Mapelli, L.; Martin, B.; Marzin, A.; Messina, A.; Meyer, J.; Milic, A.; Mornacchi, G.; Nairz, A. M.; Nakahama, Y.; Negri, G.; Nessi, M.; Nicquevert, B.; Nordberg, M.; Palestini, S.; Pauly, T.; Pernegger, H.; Peters, K.; Petersen, B. A.; Pommes, K.; Poppleton, A.; Poulard, G.; Prasad, S.; Rammensee, M.; Raymond, M.; Rembser, C.; Rodrigues, L.; Roe, S.; Ruiz-Martinez, A.; Salzburger, A.; Savu, D. O.; Schaefer, D.; Schlenker, S.; Schmieden, K.; Serfon, C.; Sfyrla, A.; Solans, C. A.; Spigo, G.; Stelzer, H. J.; Teischinger, F. A.; Ten Kate, H.; Tremblet, L.; Tricoli, A.; Tsarouchas, C.; Unal, G.; van der Ster, D.; van Eldik, N.; van Woerden, M. C.; Vandelli, W.; Vigne, R.; Voss, R.; Vuillermet, R.; Wells, P. S.; Wengler, T.; Werner, P.; Wilkens, H. G.; Wotschack, J.; Young, C. J. S.; Zwalinski, L.] CERN, Geneva, Switzerland. [Alison, J.; Anderson, K. J.; Boveia, A.; Cheng, Y.; Facini, G.; Fiascaris, M.; Gardner, R. W.; Ilchenko, Y.; Kapliy, A.; Li, H. L.; Meehan, S.; Melachrinos, C.; Merritt, F. S.; Miller, D. W.; Okumura, Y.; Onyisi, P. U. E.; Oreglia, M. J.; Penning, B.; Pilcher, J. E.; Shochet, M. J.; Tompkins, L.; Vukotic, I.; Webster, J. S.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Carquin, E.; Diaz, M. A.; Vogel, M.] Pontificia Univ Catolica Chile, Dept Fis, Santiago, Chile. [Brooks, W. K.; Kuleshov, S.; Pezoa, R.; Prokoshin, F.; White, R.] Univ Tecn Federico Santa Maria, Dept Fis, Valparaiso, Chile. [Bai, Y.; Fang, Y.; Jin, S.; Ouyang, Q.; Rena, H.; Shan, L. Y.; Sun, X.; Wang, J.; Xu, D.; Yao, L.; Zhu, H.; Zhuang, X.] Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China. [Gao, J.; Guan, L.; Han, L.; Jiang, Y.; Li, B.; Liu, J. B.; Liu, K.; Liu, M.; Liu, Y.; Peng, H.; Song, H. Y.; Xu, L.; Zhao, Z.; Zhu, Y.] Univ Sci & Technol China, Dept Modern Phys, Hefei, Anhui, Peoples R China. [Chen, S.; Li, Y.; Wang, C.] Nanjing Univ, Dept Phys, Nanjing, Jiangsu, Peoples R China. [Chen, L.; Feng, C.; Ge, P.; Liu, B.; Ma, L. L.; Zhang, X.; Zhu, C. G.] Shandong Univ, Sch Phys, Jinan, Shandong, Peoples R China. [Li, L.; Yang, H.] Shanghai Jiao Tong Univ, Shanghai Key Lab Particle Phys & Cosmol, Dept Phys & Astron, Shanghai 200030, Peoples R China. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Ghodbane, N.; Gilles, G.; Gris, Ph.; Guicheney, C.; Liao, H.; Pallin, D.; Hernandez, D. Paredes; Podlyski, F.; Santoni, C.; Theveneaux-Pelzer, T.; Valery, L.; Vazeille, F.] Univ Clermont Ferrand, Phys Corpusculaire Lab, Clermont Ferrand, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Ghodbane, N.; Gilles, G.; Gris, Ph.; Guicheney, C.; Liao, H.; Pallin, D.; Hernandez, D. Paredes; Podlyski, F.; Santoni, C.; Theveneaux-Pelzer, T.; Valery, L.; Vazeille, F.] Univ Clermont Ferrand, Clermont Ferrand, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Ghodbane, N.; Gilles, G.; Gris, Ph.; Guicheney, C.; Liao, H.; Pallin, D.; Hernandez, D. Paredes; Podlyski, F.; Santoni, C.; Theveneaux-Pelzer, T.; Valery, L.; Vazeille, F.] Univ Clermont Ferrand, Photochim Mol & Macromol Lab, CNRS, IN2P3, F-63177 Clermont Ferrand, France. [Altheimer, A.; Andeen, T.; Angerami, A.; Bain, T.; Brooijmans, G.; Chen, Y.; Cole, B.; Guo, J.; Hu, D.; Hughes, E. W.; Mohapatra, S.; Nikiforou, N.; Parsons, J. A.; Reale, V. Perez; Scherzer, M. I.; Thompson, E. N.; Tian, F.; Tuts, P. M.; Urbaniec, D.; Wulf, E.; Zhou, L.] Columbia Univ, Nevis Lab, Irvington, NY USA. [Alonso, A.; Dam, M.; Galster, G.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Joergensen, M. D.; Loevschall-Jensen, A. E.; Monk, J.; Petersen, T. C.; Pingel, A.; Simonyan, M.; Thomsen, L. A.; Wiglesworth, C.; Xella, S.] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Capua, M.; Crosetti, G.; La Rotonda, L.; Mastroberardino, A.; Policicchio, A.; Salvatore, D.; Scarfone, V.; Schioppa, M.; Susinno, G.; Tassi, E.] Ist Nazl Fis Nucl, Lab Nazl Frascati, Grp Collegato Cosenza, Frascati, Italy. [Capua, M.; Crosetti, G.; La Rotonda, L.; Mastroberardino, A.; Policicchio, A.; Salvatore, D.; Scarfone, V.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dipartimento Fis, I-87036 Arcavacata Di Rende, Italy. [Adamczyk, L.; Bold, T.; Dabrowski, W.; Dwuznik, M.; Grabowska-Bold, I.; Kisielewska, D.; Kopernya, S.; Kowalski, T. Z.; Mindur, B.; Przybycien, M.; Zemla, A.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, Krakow, Poland. [Palka, M.] Jagiellonian Univ, Marian Smoluchowski Inst Phys, Krakow, Poland. [Banas, E.; de Renstrom, P. A. Bruckman; Chwastowski, J. J.; Derendarz, D.; Gornicki, E.; Hajduk, Z.; Iwanski, W.; Kaczmarska, A.; Korcyl, K.; Malecki, Pa.; Olszewski, A.; Olszowska, J.; Stanecka, E.; Staszewski, R.; Trzebinski, M.; Trzupek, A.; Wolter, M. W.; Wosiek, B. K.; Wozniak, K. W.; Zabinski, B.] Polish Acad Sci, Inst Nucl Phys, Krakow, Poland. [Cao, T.; Firan, A.; Hoffman, J.; Kama, S.; Kehoe, R.; Randle-Conde, A. S.; Sekula, S. J.; Stroynowski, R.; Wang, H.; Ye, J.] So Methodist Univ, Dept Phys, Dallas, TX 75275 USA. [Izen, J. M.; Leyton, M.; Lou, X.; Namasivayam, H.; Reeves, K.] Univ Texas Dallas, Dept Phys, Richardson, TX 75083 USA. [Argyropoulos, S.; Asbah, N.; Bessner, M.; Bloch, I.; Borroni, S.; Camarda, S.; Dassoulas, J.; Deterre, C.; Dietrich, J.; Filipuzzi, M.; Friedrich, C.; Glazov, A.; Fajardo, L. S. Gomez; Grahn, K-J.; Gregor, I. M.; Grohsjean, A.; Haleem, M.; Hamnett, P. G.; Hengler, C.; Hiller, K. H.; Howarth, J.; Huang, Y.; Belenguer, M. Jimenez; Katzy, J.; Keller, J. S.; Kondrashova, N.; Kuhl, T.; Lisovyi, M.; Lobodzinska, E.; Lohwasser, K.; Medinnis, M.; Moenig, K.; Naumann, T.; Peschke, R.; Petit, E.; Radescu, V.; Rubinskiy, I.; Schaefer, R.; Sedov, G.; Shushkevich, S.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Starovoitov, P.; Styles, N. A.; Tackmann, K.; Wang, J.; Wasicki, C.; Wildt, M. A.; Yatsenko, E.; Yildirim, E.] DESY, Hamburg, Germany. [Argyropoulos, S.; Asbah, N.; Bessner, M.; Bloch, I.; Borroni, S.; Camarda, S.; Dassoulas, J.; Deterre, C.; Dietrich, J.; Filipuzzi, M.; Friedrich, C.; Glazov, A.; Fajardo, L. S. Gomez; Grahn, K-J.; Gregor, I. M.; Grohsjean, A.; Haleem, M.; Hamnett, P. G.; Hengler, C.; Hiller, K. H.; Howarth, J.; Huang, Y.; Belenguer, M. Jimenez; Katzy, J.; Keller, J. S.; Kondrashova, N.; Kuhl, T.; Lisovyi, M.; Lobodzinska, E.; Lohwasser, K.; Medinnis, M.; Moenig, K.; Naumann, T.; Peschke, R.; Petit, E.; Radescu, V.; Rubinskiy, I.; Schaefer, R.; Sedov, G.; Shushkevich, S.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Starovoitov, P.; Styles, N. A.; Tackmann, K.; Wang, J.; Wasicki, C.; Wildt, M. A.; Yatsenko, E.; Yildirim, E.] DESY, Zeuthen, Germany. [Burmeister, I.; Esch, H.; Goessling, C.; Jentzsch, J.; Jung, C. A.; Klingenberg, R.; Wittig, T.] Tech Univ Dortmund, Inst Expt Phys 4, Dortmund, Germany. [Anger, P.; Friedrich, F.; Grohs, J. P.; Gumpert, C.; Kobel, M.; Leonhardt, K.; Mader, W. F.; Morgenstern, M.; Novgorodova, O.; Rudolph, C.; Schnoor, U.; Siegert, F.; Socher, F.; Staerz, S.; Straessner, A.; Vest, A.; Wahrmund, S.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Arce, A. T. H.; Benjamin, D. P.; Bocci, A.; Cerio, B. C.; Kajomovitz, E.; Kotwal, A.; Kruse, A.; Kruse, M. C.; Li, L.; Li, S.; Liu, M.; Oh, S. H.; Pollard, C. S.; Wang, C.] Duke Univ, Dept Phys, Durham, NC 27706 USA. [Bhimji, W.; Bristow, T. M.; Clark, P. J.; Dias, F. A.; Edwards, N. C.; Walls, F. M. Garay; Glaysher, P. C. F.; Harrington, R. D.; Leonidopoulos, C.; Martin, V. J.; Mills, C.; O'Brien, B. J.; Pino, S. A. Olivares; Proissl, M.; Selbach, K. E.; Smart, B. H.; Washbrook, A.; Wynne, B. M.] Univ Edinburgh, SUPA Sch Phys & Astron, Edinburgh, Midlothian, Scotland. [Annovi, A.; Antonelli, M.; Bilokon, H.; Chiarella, V.; Curatolo, M.; Di Nardo, R.; Esposito, B.; Gatti, C.; Laurelli, P.; Maccarrone, G.; Prokofiev, K.; Sansoni, A.; Testa, M.; Vilucchi, E.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Amoroso, S.; Arnold, H.; Betancourt, C.; Boehler, M.; Bruneliere, R.; Buehrer, F.; Buescher, D.; Coniavitis, E.; Consorti, V.; Dao, V.; Di Simone, A.; Fehling-Kaschek, M.; Flechl, M.; Giuliani, C.; Herten, G.; Jakobs, K.; Javurek, T.; Jenni, P.; Kiss, F.; Koeneke, K.; Kopp, A. K.; Kuehn, S.; Lai, S.; Landgraf, U.; Madar, R.; Mahboubi, K.; Mohr, W.; Pagacova, M.; Parzefall, U.; Rave, T. C.; Ronzani, M.; Ruehr, F.; Rurikova, Z.; Ruthmann, N.; Schillo, C.; Schmidt, E.; Schumacher, M.; Sommer, P.; Sundermann, J. E.; Temming, K. K.; Tsiskaridze, V.; Ungaro, F. C.; von Radziewski, H.; Anh, T. Vu; Warsinsky, M.; Weiser, C.; Werner, M.; Zimmermann, S.] Univ Freiburg, Fak Math & Phys, D-79106 Freiburg, Germany. [Alexandre, G.; Ancu, L. S.; Barone, G.; Bell, P. J.; Bell, W. H.; Noccioli, E. Benhar; De Mendizabal, J. Bilbao; Bucci, F.; Toro, R. Camacho; Clark, A.; Delitzsch, C. M.; della Volpe, D.; Doglioni, C.; Ferrere, D.; Gadomski, S.; Gonzalez-Sevilla, S.; Goulette, M. P.; Gramling, J.; Guescini, F.; Iacobucci, G.; Katre, A.; La Rosa, A.; Mermod, P.; Miucci, A.; Muenstermann, D.; Nektarijevic, S.; Nessi, M.; Nikolics, K.; Picazio, A.; Pohl, M.; Rosbach, K.; Tykhonov, A.; Vallecorsa, S.; Wu, X.] Univ Geneva, Physiol Sect, Geneva, Switzerland. [Barberis, D.; Darbo, G.; Favareto, A.; Parodi, A. Ferretto; Gagliardi, G.; Gemme, C.; Guido, E.; Morettini, P.; Osculati, B.; Parodi, F.; Passaggio, S.; Rossi, P.; Schiavi, C.] Ist Nazl Fis Nucl, Sez Genova, Genoa, Italy. [Barberis, D.; Favareto, A.; Parodi, A. Ferretto; Gagliardi, G.; Guido, E.; Osculati, B.; Parodi, F.; Schiavi, C.] Univ Genoa, Dipartimento Fis, Genoa, Italy. [Jejelava, J.; Tskhadadze, E. G.] Iv Javakhishvili Tbilisi State Univ, E Andronikashvili Inst Phys, Tbilisi, Rep of Georgia. [Djobava, T.; Durglishvili, A.; Khubua, J.; Mosidze, M.] Tbilisi State Univ, Inst High Energy Phys, Tbilisi, Rep of Georgia. [Dueren, M.; Kreutzfeldt, K.; Stenzel, H.] Univ Giessen, Inst Phys 2, Giessen, Germany. [Bates, R. L.; Britton, D.; Buckley, A. G.; Bussey, P.; Buttar, C. M.; Buzatu, A.; Cinca, D.; D'Auria, S.; Doherty, T.; Doyle, A. T.; Ferrag, S.; Ferrando, J.; de Lima, D. E. Ferreira; Gemmell, A.; Gul, U.; Ortiz, N. G. Gutierrez; Kar, D.; Knue, A.; O'Shea, V.; Barrera, C. Oropeza; Qin, G.; Quilty, D.; Ravenscroft, T.; Robson, A.; Saxon, D. H.; Smith, K. M.; St Denis, R. D.; Stewart, G. A.; Thompson, A. S.; Wright, M.] Univ Glasgow, SUPA Sch Phys & Astron, Glasgow, Lanark, Scotland. [Bierwagen, K.; Bindi, M.; Blumenschein, U.; George, M.; Graber, L.; Grosse-Knetter, J.; Hamer, M.; Hensel, C.; Kawamura, G.; Kroeninger, K.; Lemmer, B.; Magradze, E.; Mchedlidze, G.; Llacer, M. Moreno; Musheghyan, H.; Nackenhorst, O.; Nadal, J.; Quadt, A.; Rieger, J.; Schorlemmer, A. L. S.; Serkin, L.; Shabalina, E.; Stolte, P.; Schroeder, T. Vazquez; Weingarten, J.; Zinonos, Z.] Univ Gottingen, Inst Phys 2, Gottingen, Germany. [Albrand, S.; Brown, J.; Collot, J.; Crepe-Renaudin, S.; Dechenaux, B.; Delsart, P. A.; Gabaldon, C.; Genest, M. H.; Hostachy, J-Y.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Monini, C.; Stark, J.; Trocme, B.; Wu, M.] Univ Grenoble Alpes, CNRS, IN2P3, Lab Phys Subat & Cosmol, Grenoble, France. [McFarlane, K. W.] Hampton Univ, Dept Phys, Hampton, VA 23668 USA. [da Costa, J. Barreiro Guimaraes; Butler, B.; Catastini, P.; Conti, G.; Franklin, M.; Huth, J.; Ippolito, V.; Mateos, D. Lopez; Mercurio, K. M.; Morii, M.; Skottowe, H. P.; Spearman, W. R.; Sun, S.; Yen, A. L.; della Porta, G. Zevi] Harvard Univ, Lab Particle Phys & Cosmol, Cambridge, MA 02138 USA. [Andrei, V.; Baas, A. E.; Belanger-Champagne, C.; Brandt, O.; Davygora, Y.; Dietzsch, T. A.; Djuvsland, J. I.; Dunford, M.; Hanke, P.; Jongmanns, J.; Khomich, A.; Kluge, E. -E.; Laier, H.; Lang, V. S.; Meier, K.; Mueller, F.; Poddar, S.; Scharf, V.; Schultz-Coulon, H. -C.; Stamen, R.; Wessels, M.] Heidelberg Univ, Kirchhoff Inst Phys, Heidelberg, Germany. [Anders, C. F.; Giulini, M.; Kasieczka, G.; Narayan, R.; Schaetzel, S.; Schmittb, S.; Schoening, A.] Heidelberg Univ, Inst Phys, Heidelberg, Germany. [Colombo, T.; Kretzc, M.; Kugel, A.] Heidelberg Univ, ZITI Inst Tech Informat, Mannheim, Germany. [Nagasaka, Y.] Hiroshima Inst Technol, Fac Appl Informat Sci, Hiroshima, Japan. [Dattagupta, A.; Evans, H.; Gagnon, P.; Lammers, S.; Martinez, N. Lorenzo; Luehring, F.; Ogren, H.; Penwell, J.; Poveda, J.; Weinert, B.; Zieminska, D.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Franz, S.; Jussel, P.; Kneringer, E.; Lukas, W.; Nagai, K.; Ritsch, E.; Usanova, A.] Leopold Franzens Univ, Inst Astro & Teilchenphys, Innsbruck, Austria. [Gandrajula, R. P.; Mallik, U.; Mandrysch, R.; Morange, N.; Zaidan, R.] Univ Iowa, Iowa City, IA USA. [Chen, C.; Cochran, J.; De Lorenzi, F.; Dudziak, F.; Krumnack, N.; Prell, S.; Shrestha, S.; Yamamoto, K.] Iowa State Univ, Dept Phys & Astron, Ames, IA USA. [Ahmadov, F.; Aleksandrov, I. N.; Bednyakov, V. A.; Boyko, I. R.; Budagov, I. A.; Chelkov, G. A.; Cheplakov, A.; Chizhov, M. V.; Dedovich, D. V.; Demichev, M.; Glonti, G. L.; Gostkin, M. I.; Huseynov, N.; Javadov, N.; Karpov, S. N.; Karpova, Z. M.; Kazarinov, M. Y.; Khramov, E.; Kotov, V. M.; Kruchonak, U.; Krumshteyn, Z. V.; Ladygin, E.; Minashvili, I. A.; Mineev, M.; Olchevski, A. G.; Peshekhonov, V. D.; Plotnikova, E.; Potrap, I. N.; Pozdnyakov, V.; Rusakovich, N. A.; Sadykov, R.; Sapronov, A.; Shiyakova, M.; Sisakyan, A. N.; Topilin, N. D.; Vinogradov, V. B.; Yeletskikh, I.; Zhemchugov, A.; Zimine, N. I.] Joint Inst Nucl Res Dubna, Dubna, Russia. [Amako, K.; Aoki, M.; Arai, Y.; Ikegami, Y.; Ikeno, M.; Iwasaki, H.; Kanzaki, J.; Kohriki, T.; Kondo, T.; Kono, T.; Makida, Y.; Mitsui, S.; Nagano, K.; Nakamura, K.; Nozaki, M.; Odaka, S.; Sasaki, O.; Suzuki, Y.; Takubo, Y.; Tanaka, S.; Terada, S.; Tokushuku, K.; Tsuno, S.; Unno, Y.; Yamada, M.; Yamamoto, A.; Yasu, Y.] High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki, Japan. [Chen, Y.; Hasegawa, M.; Inamaru, Y.; Kishimoto, T.; Kurashige, H.; Kurumida, R.; Ochi, A.; Shimizu, S.; Takeda, H.; Yakabe, R.; Yamazaki, Y.; Yuan, L.] Kobe Univ, Grad Sch Sci, Kobe, Hyogo 657, Japan. [Ishino, M.; Sumida, T.; Tashiro, T.] Kyoto Univ, Fac Sci, Kyoto, Japan. [Takashima, R.] Kyoto Univ, Kyoto 612, Japan. [Kawagoe, K.; Oda, S.; Otono, H.; Tojo, J.] Kyushu Univ, Dept Phys, Fukuoka 812, Japan. [Alconada Verzini, M. J.; Alonso, F.; Anduaga, X. S.; Dova, M. T.; Monticelli, F.; Wahlberg, H.] Univ Nacl La Plata, Inst Fis La Plata, La Plata, Buenos Aires, Argentina. [Alconada Verzini, M. J.; Alonso, F.; Anduaga, X. S.; Dova, M. T.; Monticelli, F.; Wahlberg, H.] Consejo Nacl Invest Cient & Tecn, La Plata, Buenos Aires, Argentina. [Allison, L. J.; Barton, A. E.; Beattie, M. D.; Borissov, G.; Bouhova-Thacker, E. V.; Chilingarov, A.; Dearnaley, W. J.; Fox, H.; Grimm, K.; Henderson, R. C. W.; Hughes, G.; Jones, R. W. L.; Kartvelishvili, V.; Long, R. E.; Love, P. A.; Maddocks, H. J.; Smizanska, M.; Walder, J.] Univ Lancaster, Dept Phys, Lancaster, England. [Chiodini, G.; Gorini, E.; Orlando, N.; Perrino, R.; Primavera, M.; Spagnolo, S.; Ventura, A.] Ist Nazl Fis Nucl, Sez Lecce, Lecce, Italy. [Gorini, E.; Orlando, N.; Spagnolo, S.; Ventura, A.] Univ Salento, Dipartimento Matemat & Fis, Lecce, Italy. [Allport, P. P.; Bundock, A. C.; Burdin, S.; D'Onofrio, M.; Dervan, P.; Gwilliam, C. B.; Hayward, H. S.; Jackson, M.; Jones, T. J.; King, B. T.; Klein, M.; Klein, U.; Kretzschmar, J.; Laycock, P.; Lehan, A.; Mahmoud, S.; Maxfield, S. J.; Mehta, A.; Migas, S.; Price, J.; Readioff, N. P.; Schnellbach, Y. J.; Sellers, G.; Vossebeld, J. H.; Waller, P.] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 3BX, Merseyside, England. [Cindro, V.; Deliyergiyev, M.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Mandic, I.; Mikuz, M.; Sfiligoj, T.] Jozef Stefan Inst, Dept Phys, Ljubljana, Slovenia. [Cindro, V.; Deliyergiyev, M.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Mandic, I.; Mikuz, M.; Sfiligoj, T.] Univ Ljubljana, Ljubljana, Slovenia. [Alpigiani, C.; Bona, M.; Bret, M. Cano; Cerio, B. C.; Cerrito, L.; Fletcher, G.; Goddard, J. R.; Hickling, R.; Landon, M. P. J.; Lloyd, S. L.; Morris, J. D.; Piccaro, E.; Rizvi, E.; Sandbach, R. L.; Snidero, G.; Castanheira, M. Teixeira Dias] Queen Mary Univ London, Sch Phys & Astron, London, England. [Berry, T.; Boisvert, V.; Brooks, T.; Connelly, I. A.; Cooper-Smith, N. J.; Cowan, G.; Duguid, L.; George, S.; Gibson, S. M.; Kempster, J. J.; Vazquez, J. G. Panduro; Pastore, Fr.; Rose, M.; Spano, F.; Teixeira-Dias, P.; Thomas-Wilsker, J.] Royal Holloway Univ London, Dept Phys, Surrey, England. [Bernat, P.; Bieniek, S. P.; Butterworth, J. M.; Campanelli, M.; Casadei, D.; Chislett, R. T.; Cooper, B. D.; Davison, A. R.; Davison, P.; Falla, R. J.; Gregersen, K.; Gutschow, C.; Hesketh, G. G.; Jansen, E.; Konstantinidis, N.; Korn, A.; Lambourne, L.; Leney, K. J. C.; Martyniuk, A. C.; Mcfayden, J. A.; Nurse, E.; Ochoa, I.; Pilkington, A. D.; Scanlon, T.; Sherwood, P.; Simmons, B.; Wardrope, D. R.; Waugh, B. M.; Wijeratne, P. A.] UCL, Dept Phys & Astron, London, England. [Bernius, C.; Greenwood, Z. D.; Jana, D. K.; Sawyer, L.; Sircar, A.; Subramaniam, R.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; Davignon, O.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Liu, K.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.; Varouchas, D.] UPMC, Lab Phys Nucl & Hautes Energies, Paris, France. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; Davignon, O.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Liu, K.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.; Varouchas, D.] Univ Paris Diderot, Paris, France. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; Davignon, O.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Liu, K.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.; Varouchas, D.] CNRS, IN2P3, Paris, France. [Akesson, T. P. A.; Bocchetta, S. S.; Bryngemark, L.; Floderus, A.; Hawkins, A. D.; Hedberg, V.; Ivarsson, J.; Jarlskog, G.; Lytken, E.; Meirose, B.; Mjornmark, J. U.; Smirnova, O.; Viazlo, O.] Lund Univ, Inst Fys, Lund, Sweden. [Arnal, V.; Barreiro, F.; Cantero, J.; De la Torre, H.; Del Peso, J.; Glasman, C.; Merino, J. Llorente; Terron, J.] Univ Autonoma Madrid, Dept Fis Teor C15, Madrid, Spain. [Blum, W.; Buescher, V.; Caputo, R.; Caudron, J.; Ellinghaus, F.; Endner, O. C.; Ertel, E.; Fiedler, F.; Torregrosa, E. Fullana; Goeringer, C.; Heck, T.; Hohlfeld, M.; Hsu, P. J.; Huelsing, T. A.; Karnevskiy, M.; Kleinknecht, K.; Koenig, S.; Koepke, L.; Lin, T. H.; Lungwitz, M.; Masetti, L.; Mattmann, J.; Meyer, C.; Moreno, D.; Moritz, S.; Mueller, T.; Poettgen, R.; Sander, H. G.; Schaefer, U.; Schmitt, C.; Schott, M.; Schroeder, C.; Schuh, N.; Schulz, H.; Simioni, E.; Tapprogge, S.; Wollstadt, S. J.; Zimmermann, C.] Johannes Gutenberg Univ Mainz, Inst Phys, Mainz, Germany. [Almond, J.; Borri, M.; Cox, B. E.; Da Via, C.; Forti, A.; Ponce, J. M. Iturbe; Joshi, K. D.; Klinger, J. A.; Loebinger, F. K.; Marsden, S. P.; Masik, J.; Neep, T. J.; Oh, A.; Owen, M.; Pater, J. R.; Peters, R. F. Y.; Price, D.; Qin, Y.; Queitsch-Maitland, M.; Robinson, J. E. M.; Schwanenberger, C.; Thompson, R. J.; Tomlinson, L.; Watts, S.; Webb, S.; Woudstra, M. J.; Wyatt, T. R.; Yang, U. K.] Univ Manchester, Sch Phys & Astron, Manchester, Lancs, England. [Aad, G.; Alio, L.; Barbero, M.; Bertella, C.; Chen, L.; Clemens, J. C.; Coadou, Y.; Diglio, S.; Djama, F.; Feligioni, L.; Gao, J.; Hoffmann, D.; Hubaut, F.; Knoops, E. B. F. G.; Le Guirriec, E.; Li, B.; Madaffari, D.; Mochizuki, K.; Monnier, E.; Muanza, S.; Nagai, Y.; Pralavorio, P.; Rozanov, A.; Serre, T.; Talby, M.; Tiouchichine, E.; Tisserant, S.; Toth, J.; Touchard, F.; Ughetto, M.; Vacavant, L.] Univ Aix Marseille, CPPM, Marseille, France. [Aad, G.; Alio, L.; Barbero, M.; Bertella, C.; Chen, L.; Clemens, J. C.; Coadou, Y.; Diglio, S.; Djama, F.; Feligioni, L.; Gao, J.; Hoffmann, D.; Hubaut, F.; Knoops, E. B. F. G.; Le Guirriec, E.; Li, B.; Madaffari, D.; Mochizuki, K.; Monnier, E.; Muanza, S.; Nagai, Y.; Pralavorio, P.; Rozanov, A.; Serre, T.; Talby, M.; Tiouchichine, E.; Tisserant, S.; Toth, J.; Touchard, F.; Ughetto, M.; Vacavant, L.] CNRS, IN2P3, Marseille, France. [Bellomo, M.; Brau, B.; Colon, G.; Dallapiccola, C.; Daya-Ishmukhametova, R. K.; Meade, A.; Moyse, E. J. W.; Pais, P.; Pueschel, E.; Varol, T.; Ventura, D.; Willocq, S.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Belanger-Champagne, C.; Chapleau, B.; Cheatham, S.; Corriveau, F.; Mantifel, R.; Robertson, S. H.; Robichaud-Veronneau, A.; Stockton, M. C.; Stoebe, M.; Vachon, B.; Wang, K.; Warburton, A.] McGill Univ, Dept Phys, Montreal, PQ, Canada. [Barberio, L.; Brennan, A. J.; Jennens, D.; Kubota, T.; Limosani, A.; NunesHanninger, G.; Nuti, F.; Rados, P.; Spiller, L. A.; Tan, K. G.; Taylor, G. N.; Thong, W. M.; Urquijo, P.; Volpi, M.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. [Amidei, D.; Chelstowska, M. A.; Cheng, H. C.; Dai, T.; Diehl, E. B.; Dubbert, J.; Feng, H.; Ferretti, C.; Fleischmann, P.; Goldfarb, S.; Harper, D.; Hu, X.; Levin, D.; Liu, L.; Long, J. D.; Lu, N.; Mc Kee, S. P.; McCarn, A.; Neal, H. A.; Panikashvili, N.; Qian, J.; Searcy, J.; Thun, R. P.; Wilson, A.; Wu, Y.; Xu, L.; Yu, J. M.; Zhang, D.; Zhou, B.; Zhu, Y.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Abolins, M.; Gonzalez, B. Alvarez; Arabidze, G.; Brock, R.; Bromberg, C.; Caughron, S.; Chegwidden, A.; Fisher, W. C.; Halladjian, G.; Hayden, D.; Huston, J.; Koll, J.; Linnemann, J. T.; Marino, C. P.; Martin, B.; Pope, B. G.; Schoenrock, B. D.; Schwienhorst, R.; Ta, D.; Tollefson, K.; True, P.; Willis, C.; Zhang, H.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Alimonti, G.; Andreazza, A.; Besana, M. I.; Carminati, L.; Cavalli, D.; Consonni, S. M.; Costa, G.; Fanti, M.; Giugni, D.; Lari, T.; Mandelli, L.; Meroni, C.; Perini, L.; Pizio, C.; Ragusa, F.; Resconi, S.; Simoniello, R.; Tartarelli, G. F.; Troncon, C.; Turra, R.; Perez, M. Villaplana] Ist Nazl Fis Nucl, Sez Milano, Milan, Italy. [Andreazza, A.; Carminati, L.; Consonni, S. M.; Fanti, M.; Perini, L.; Pizio, C.; Ragusa, F.; Simoniello, R.; Turra, R.; Perez, M. Villaplana] Univ Milan, Dipartimento Fis, Milan, Italy. [Bogouch, A.; Harkusha, S.; Kulchitsky, Y.; Kurochkin, Y. A.; Tsiareshka, P. V.] Natl Acad Sci Belarus, BI Stepanov Inst Phys, Minsk, Byelarus. [Yanush, S.] Natl Sci & Educ Ctr Particle & High Energy Phys, Minsk, Byelarus. [Taylor, F. E.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Arguin, J-F.; Azuelos, G.; Dallaire, F.; Gauthier, L.; Leroy, C.; Rezvani, R.; Soueid, P.] Univ Montreal, Grp Particle Phys, Montreal, PQ, Canada. [Akimov, A. V.; Gavrilenko, I. L.; Komar, A. A.; Mashinistov, R.; Mouraviev, S. V.; Nechaeva, P. Yu.; Shmeleva, A.; Snesarev, A. A.; Sulin, V. V.; Tikhomirov, V. O.; Zhukov, K.] Acad Sci, PN Lebedev Phys Inst, Moscow, Russia. [Artamonov, A.; Gorbounov, P. A.; Khovanskiy, V.; Shatalov, P. B.; Tsukerman, I. I.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Antonov, A.; Belotskiy, K.; Bulekov, O.; Dolgoshein, B. A.; Kantserov, V. A.; Khodinov, A.; Krasnopevtsev, D.; Romaniouk, A.; Shulga, E.; Smirnov, S. Yu.; Smirnov, Y.; Soldatov, E. Yu.; Tikhomirov, V. O.; Timoshenko, S.; Vorobev, K.] Natl Res Nucl Univ MEPhI, Moscow, Russia. [Boldyrev, A. S.; Gladilin, L. K.; Grishkevich, Y. V.; Kramarenko, V. A.; Rud, V. I.; Sivoklokov, S. Yu.; Smirnova, L. N.; Turchikhin, S.] Moscow MV Lomonosov State Univ, DV Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Adomeit, S.; Becker, S.; Biebel, O.; Bock, C.; Bortfeldt, J.; Calfayan, P.; Chow, B. K. B.; Duckeck, G.; Ebke, J.; Elmsheuser, J.; Heller, C.; Hertenberger, R.; Legger, F.; Mann, A.; Mehlhase, S.; Meineck, C.; Mitrevski, J.; Nunnemann, T.; Rauscher, F.; Ruschke, A.; Sanders, M. P.; Schaile, D.; Schieck, J.; Unverdorben, C.; Vladoiu, D.; Walker, R.; Will, J. Z.; Wittkowski, J.] Univ Munich, Fak Phys, Munich, Germany. [Barillari, T.; Bethke, S.; Bronner, J.; Compostella, G.; Cortiana, G.; Flowerdew, M. J.; Goblirsch-Kolb, M.; Ince, T.; Kiryunin, A. E.; Kluth, S.; Kortner, O.; Kortner, S.; Kroha, H.; Macchiolo, A.; Maier, A. A.; Manfredini, A.; Menke, S.; Moser, H. G.; Nagel, M.; Nisius, R.; Nowak, S.; Oberlack, H.; Pahl, C.; Richter, R.; Salihagic, D.; Sandstroem, R.; Schwegler, Ph.; Sforza, F.; Spettel, F.; Stern, S.; Stonjek, S.; Terzo, S.; von der Schmitt, H.; Weigell, P.; Wildauer, A.; Zanzi, D.] Werner Heisenberg Inst, Max Planck Inst Phys, Munich, Germany. [Shimojima, M.] Nagasaki Inst Appl Sci, Nagasaki, Japan. [Hasegawa, S.; Morvaj, L.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Grad Sch Sci, Nagoya, Aichi 4648601, Japan. [Hasegawa, S.; Morvaj, L.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Kobayashi Maskawa Inst, Nagoya, Aichi 4648601, Japan. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Carlino, G.; Chiefari, G.; Conventi, F.; de Asmundis, R.; Della Pietra, M.; Di Donato, C.; Doria, A.; Giordano, R.; Iengo, P.; Izzo, V.; Merola, L.; Patricelli, S.; Rossi, E.; Sanchez, A.; Sekhniaidze, G.; Zurzolo, G.] Ist Nazl Fis Nucl, Sez Napoli, Naples, Italy. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Chiefari, G.; Di Donato, C.; Giordano, R.; Merola, L.; Patricelli, S.; Rossi, E.; Sanchez, A.; Zurzolo, G.] Univ Naples Federico II, Dipartimento Fis, Naples, Italy. [Gorelov, I.; Hoeferkamp, M. R.; Seidel, S. C.; Toms, K.; Wang, R.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Besjes, G. J.; Caron, S.; Croft, V.; De Groot, N.; Filthaut, F.; Galea, C.; Klok, P. F.; Koenig, S.; Salvucci, A.] Radboud Univ Nijmegen, Inst Math Astrophys & Particle Phys, NL-6525 ED Nijmegen, Netherlands. [Aben, R.; Angelozzi, I.; Beemster, L. J.; Bentvelsen, S.; Berge, D.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Butti, P.; Castelli, A.; Colijn, A. P.; de Jong, P.; De Nooij, L.; Deigaard, I.; Deluca, C.; Deviveiros, P. O.; Dhaliwal, S.; Ferrari, P.; Gadatsch, S.; Geerts, D. A. A.; Hartjes, F.; Hessey, N. P.; Hod, N.; Igonkina, O.; Kluit, P.; Koffeman, E.; Lee, H.; Linde, F.; Mahlstedt, J.; Mechnich, J.; Oussoren, K. P.; Pani, P.; Salek, D.; Valencic, N.; Van Den Wollenberg, W.; Van Der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; Van der Leeuw, R.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Milosavljevic, M. Vranjes; Vreeswijk, M.; Weits, H.] Nikhef Natl Inst Subat Phys, Amsterdam, Netherlands. [Aben, R.; Angelozzi, I.; Beemster, L. J.; Bentvelsen, S.; Berge, D.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Butti, P.; Castelli, A.; Colijn, A. P.; de Jong, P.; De Nooij, L.; Deigaard, I.; Deluca, C.; Deviveiros, P. O.; Ferrari, P.; Gadatsch, S.; Geerts, D. A. A.; Hartjes, F.; Hessey, N. P.; Hod, N.; Igonkina, O.; Kluit, P.; Koffeman, E.; Lee, H.; Linde, F.; Mahlstedt, J.; Mechnich, J.; Oussoren, K. P.; Pani, P.; Salek, D.; Valencic, N.; Van Den Wollenberg, W.; Van Der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; Van der Leeuw, R.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Milosavljevic, M. Vranjes; Vreeswijk, M.; Weits, H.] Univ Amsterdam, Amsterdam, Netherlands. [Burghgrave, B.; Calkins, R.; Chakraborty, D.; Cole, S.; Suhr, C.; Yurkewicz, A.; Zutshi, V.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Anisenkov, A. V.; Bobrovnikov, V. S.; Bogdanchikov, A. G.; Kazanin, V. F.; Korol, A. A.; Malyshev, V. M.; Maslennikov, A. L.; Maximov, D. A.; Peleganchuk, S. V.; Rezanova, O. L.; Skovpen, K. Yu.; Soukharev, A. M.; Talyshev, A. A.; Tikhonov, Yu. A.] SB RAS, Budker Inst Nucl Phys, Novosibirsk, Russia. [Cranmer, K.; Haas, A.; Heinrich, L.; van Huysduynen, L. Hooft; Kaplan, B.; Karthik, K.; Konoplich, R.; Kreiss, S.; Lewis, G. H.; Mincer, A. I.; Nemethy, P.; Neves, R. M.] NYU, Dept Phys, New York, NY 10003 USA. [Gan, K. K.; Ishmukhametov, R.; Kagan, H.; Kass, R. D.; Merritt, H.; Moss, J.; Nagarkar, A.; Pignotti, D. T.; Tannenwald, B. B.; Yang, Y.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Fac Sci, Okayama 700, Japan. [Abbott, B.; Bertsche, C.; Bertsche, D.; Gutierrez, P.; Hasib, A.; Norberg, S.; Saleem, M.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA. [Abi, B.; Bousson, N.; Khanov, A.; Rizatdinova, F.; Sidorov, D.; Yu, J.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA. [Chytka, L.; Hamal, P.; Hrabovsky, M.; Kvita, J.; Nozka, L.] Palacky Univ, RCPTM, CR-77147 Olomouc, Czech Republic. [Brau, J. E.; Brost, E.; Majewski, S.; Potter, C. T.; Ptacek, E.; Radloff, P.; Shamim, M.; Sinev, N. B.; Strom, D. M.; Torrence, E.; Wanotayaroj, C.; Winklmeier, F.] Univ Oregon, Ctr High Energy Phys, Eugene, OR 97403 USA. [Khalek, S. Abdel; Bassalat, A.; Becot, C.; Binet, S.; Bourdarios, C.; Charfeddine, D.; De Regie, J. B. De Vivie; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Grivaz, J. -F.; Guillemin, T.; Hariri, F.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Kado, M.; Li, Y.; Lounis, A.; Makovec, N.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Rybkin, G.; Schaffer, A. C.; Scifo, E.; Serin, L.; Simion, S.; Tanaka, R.; Tran, H. L.; Zerwas, D.; Zhang, Z.] Univ Paris 11, LAL, Orsay, France. [Khalek, S. Abdel; Bassalat, A.; Becot, C.; Binet, S.; Bourdarios, C.; Charfeddine, D.; De Regie, J. B. De Vivie; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Grivaz, J. -F.; Guillemin, T.; Hariri, F.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Kado, M.; Li, Y.; Lounis, A.; Makovec, N.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Rybkin, G.; Schaffer, A. C.; Scifo, E.; Serin, L.; Simion, S.; Tanaka, R.; Tran, H. L.; Zerwas, D.; Zhang, Z.] CNRS, IN2P3, F-91405 Orsay, France. [Endo, M.; Hanagaki, K.; Lee, J. S. H.; Nomachi, M.; Okamura, W.; Sugaya, Y.; Teoh, J. J.; Yamaguchi, Y.] Osaka Univ, Grad Sch Sci, Osaka, Japan. [Bugge, L.; Bugge, M. K.; Cameron, D.; Catmore, J. R.; Franconi, L.; Gjelsten, B. K.; Gramstad, E.; Ould-Saada, F.; Pajchel, K.; Pedersen, M.; Read, A. L.; Rohne, O.; Stapnes, S.; Strandlie, A.] Univ Oslo, Dept Phys, Oslo, Norway. [Apolle, R.; Barr, A. J.; Behr, J. K.; Boddy, C. R.; Buckingham, R. M.; Cooper-Sarkar, A. M.; Ortuzar, M. Crispin; Dafinca, A.; Davies, E.; Gallas, E. J.; Gupta, S.; Gwenlan, C.; Hall, D.; Hays, C. P.; Henderson, J.; Howard, J.; Huffman, T. B.; Issever, C.; Kalderon, C. W.; King, R. S. B.; Kogan, L. A.; Lewis, A.; Livermore, S. S. A.; Nickerson, R. B.; Pachal, K.; Pinder, A.; Ryder, N. C.; Sawyer, C.; Short, D.; Tseng, J. C-L.; Vickey, T.; Viehhauser, G. H. A.; Weidberg, A. R.; Zhong, J.] Univ Oxford, Dept Phys, Oxford, England. [Conta, C.; Dondero, P.; Ferrari, R.; Fraternali, M.; Gaudio, G.; Livan, M.; Negri, A.; Polesello, G.; Rebuzzi, D. M.; Rimoldi, A.; Vercesi, V.] Ist Nazl Fis Nucl, Sez Pavia, Pavia, Italy. [Conta, C.; Dondero, P.; Fraternali, M.; Livan, M.; Negri, A.; Rebuzzi, D. M.; Rimoldi, A.] Univ Pavia, Dipartimento Fis, I-27100 Pavia, Italy. [Brendlinger, K.; Heim, S.; Hines, E.; Hong, T. M.; Jackson, B.; Kroll, J.; Kunkle, J.; Lester, C. M.; Lipeles, E.; Meyer, C.; Ospanov, R.; Saxon, J.; Stahlman, J.; Thomson, E.; Tuna, A. N.; Vanguri, R.; Williams, H. H.] Univ Penn, Dept Phys, Philadelphia, PA 19104 USA. [Ezhilov, A.; Fedin, O. L.; Gratchev, V.; Grebenyuk, O. G.; Levchenko, M.; Maleev, V. P.; Ryabov, Y. F.; Schegelsky, V. A.; Sedykh, E.; Seliverstov, D. M.; Solovyev, V.] BP Konstantinov Petersburg Nucl Phys Inst, Kurchatov Inst, Natl Res Ctr, St Petersburg, Russia. [Beccherle, R.; Bertolucci, F.; Cavasinni, V.; Del Prete, T.; Dell'Orso, M.; Donati, S.; Giannetti, P.; Leone, S.; Roda, C.; Scuri, F.; Volpi, G.; White, S.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy. [Bertolucci, F.; Cavasinni, V.; Del Prete, T.; Dell'Orso, M.; Donati, S.; Giannetti, P.; Leone, S.; Roda, C.; Scuri, F.; Volpi, G.; White, S.] Univ Pisa, Dipartimento Fis E Fermi, Pisa, Italy. [Bianchi, R. M.; Boudreau, J.; Cleland, W.; Escobar, C.; Kittelmann, T.; Mueller, J.; Prieur, D.; Sapp, K.; Su, J.; Yoosoofmiya, R.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Aguilar-Saavedra, J. A.; Amor Dos Santos, S. P.; Amorim, A.; Anjos, N.; Araque, J. P.; Cantrill, R.; Carvalho, J.; Castro, N. F.; Conde Muino, P.; Da Cunha Sargedas De Sousa, M. J.; Wemans, A. Do Valle; Fiolhais, M. C. N.; Galhardo, B.; Gomes, A.; Goncalo, R.; Jorge, P. M.; Lopes, L.; Miguens, J. Machado; Maio, A.; Maneira, J.; Marques, C. N.; Onofre, A.; Palma, A.; Pedro, R.; Pina, J.; Pinto, B.; Santos, H.; Saraiva, J. G.; Silva, J.; Tavares Delgado, A.; Veloso, F.; Wolters, H.] LIP, Lab Instrumentacao & Fis Expt Particulas, P-1000 Lisbon, Portugal. [Amorim, A.; Conde Muino, P.; Da Cunha Sargedas De Sousa, M. J.; Gomes, A.; Jorge, P. M.; Miguens, J. Machado; Maio, A.; Maneira, J.; Palma, A.; Pedro, R.; Pina, J.; Tavares Delgado, A.] Univ Lisbon, Fac Ciencias, Lisbon, Portugal. [Amor Dos Santos, S. P.; Carvalho, J.; Fiolhais, M. C. N.; Galhardo, B.; Veloso, F.; Wolters, H.] Univ Coimbra, Dept Phys, Coimbra, Portugal. [Gomes, A.; Maio, A.; Pina, J.; Saraiva, J. G.; Silva, J.] Univ Lisbon, Ctr Fis Nucl, P-1699 Lisbon, Portugal. [Onofre, A.] Univ Minho, Dept Fis, Braga, Portugal. [Aguilar-Saavedra, J. A.] Univ Granada, Dept Fis Teor & Cosmos, Granada, Spain. [Aguilar-Saavedra, J. A.] Univ Granada, CAFPE, Granada, Spain. [Wemans, A. Do Valle] Univ Nova Lisboa, Dept Fis, P-1200 Lisbon, Portugal. [Wemans, A. Do Valle] Univ Nova Lisboa, Fac Ciencias & Tecnol, CEFITEC, P-1200 Lisbon, Portugal. [Bohm, J.; Chudoba, J.; Havranek, M.; Hejbal, J.; Jakoubek, T.; Kepka, O.; Kupco, A.; Kus, V.; Lokajicek, M.; Lysak, R.; Marcisovsky, M.; Mikestikova, M.; Nemecek, S.; Staroba, P.; Svatos, M.; Tasevsky, M.; Vrba, V.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Augsten, K.; Guenther, J.; Jakubek, J.; Kohout, Z.; Kral, V.; Myska, M.; Pospisil, S.; Seifert, F.; Simak, V.; Slavicek, T.; Smolek, K.; Solar, M.; Solc, J.; Sopczak, A.; Sopko, B.; Sopko, V.; Suk, M.; Turecek, D.; Vacek, V.; Vokac, P.; Vykydal, Z.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Balek, P.; Berta, P.; Cerny, K.; Chalupkova, I.; Davidek, T.; Dolejsi, J.; Dolezal, Z.; Faltova, J.; Kodys, P.; Leitner, R.; Pleskot, V.; Reznicek, P.; Rybar, M.; Scheirich, D.; Spousta, M.; Sykora, T.; Tas, P.; Todorova-Nova, S.; Valkar, S.; Vorobel, V.] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic. [Borisov, A.; Denisov, S. P.; Fakhrutdinov, R. M.; Fenyuk, A. B.; Golubkov, D.; Kamenshchikov, A.; Karyukhin, A. N.; Korotkov, V. A.; Kozhin, A. S.; Minaenko, A. A.; Myagkov, A. G.; Nikolaenko, V.; Solodkov, A. A.; Solovyanov, O. V.; Starchenko, E. A.; Zaitsev, A. M.; Zenin, O.] Inst High Energy Phys, State Res Ctr, Protvino, Russia. [Adye, T.; Apolle, R.; Baines, J. T.; Barnett, B. M.; Burke, S.; Davies, E.; Dewhurst, A.; Dopke, J.; Emeliyanov, D.; Gallop, B. J.; Gee, C. N. P.; Haywood, S. J.; Kirk, J.; Martin-Haugh, S.; McCubbin, N. A.; McMahon, S. J.; Murray, W. J.; Phillips, P. W.; Sankey, D. P. C.; Scott, W. G.; Tyndel, M.; Wickens, F. J.; Wielers, M.] Rutherford Appleton Lab, Particle Phys Dept, Didcot OX11 0QX, Oxon, England. [Benslama, K.] Univ Regina, Dept Phys, Regina, SK S4S 0A2, Canada. [Tanaka, S.] Ritsumeikan Univ, Kusatsu, Shiga, Japan. [Anulli, F.; Bagiacchi, P.; Bagnaia, P.; Bini, C.; Ciapetti, G.; De Pedis, D.; De Salvo, A.; Di Domenico, A.; Dionisi, C.; Falciano, S.; Gabrielli, A.; Gauzzi, P.; Gentile, S.; Giagu, S.; Kuna, M.; Luminari, L.; Marzano, F.; Mirabelli, G.; Monzani, S.; Nisati, A.; Pasqualucci, E.; Petrolo, E.; Pontecorvo, L.; Rescigno, M.; Rosati, S.; Tehrani, F. Safai; Sidoti, A.; Vanadia, M.; Vari, R.; Veneziano, S.; Verducci, M.; Zanello, L.] Ist Nazl Fis Nucl, Sez Roma, Rome, Italy. [Bagiacchi, P.; Bini, C.; Ciapetti, G.; Di Domenico, A.; Dionisi, C.; Gabrielli, A.; Gauzzi, P.; Gentile, S.; Giagu, S.; Kuna, M.; Lacava, F.; Luci, C.; Messina, A.; Monzani, S.; Vanadia, M.; Verducci, M.; Zanello, L.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Aielli, G.; Cardarelli, R.; Cattani, G.; Di Ciaccio, A.; Grossia, G. C.; Iuppa, R.; Liberti, B.; Mazzaferro, L.; Paolozzi, L.; Salamon, A.; Santonico, R.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, Rome, Italy. [Aielli, G.; Cattani, G.; Di Ciaccio, A.; Grossia, G. C.; Iuppa, R.; Mazzaferro, L.; Paolozzi, L.; Santonico, R.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy. [Bacci, C.; Baroncelli, A.; Biglietti, M.; Bortolotto, V.; Ceradini, F.; Di Micco, B.; Farilla, A.; Graziani, E.; Iodice, M.; Orestano, D.; Passeri, A.; Pastore, F.; Petrucci, F.; Puddu, D.; Salamanna, G.; Stanescu, C.; Taccini, C.; Trovatelli, M.] Ist Nazl Fis Nucl, Sez Roma Tre, Rome, Italy. [Bacci, C.; Bortolotto, V.; Ceradini, F.; Di Micco, B.; Orestano, D.; Pastore, F.; Petrucci, F.; Puddu, D.; Salamanna, G.; Taccini, C.; Trovatelli, M.] Univ Roma Tre, Dipartimento Matemat & Fis, Rome, Italy. [Benchekroun, D.; Chafaq, A.; Gouighri, M.; Hoummada, A.] Univ Hassan 2, Fac Sci Ain Chock, Reseau Univ Phys Hautes Energies, Casablanca, Morocco. [Ghazlane, H.] Ctr Natl Energie Sci Tech Nucl, Rabat, Morocco. [El Kacimi, M.; Goujdami, D.] Univ Cadi Ayyad, LPHEA, Fac Sci Semlalia, Marrakech, Morocco. [Boutouil, S.; Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] Univ Mohamed Premier, Fac Sci, Oujda, Morocco. [Boutouil, S.; Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] LPTPM, Oujda, Morocco. [Cherkaoui El Mourslie, R.; Fassie, F.; Haddad, N.] Univ Mohammed V Agdal, Fac Sci, Rabat, Morocco. [Bachacou, H.; Balli, F.; Bauer, F.; Besson, N.; Blanchard, J. -B.; Calandri, A.; Chevalier, L.; Hoffmann, M. Dano; Deliot, F.; Ernwein, J.; Etienvre, A. I.; Formica, A.; Giraud, P. F.; Da Costa, J. Goncalves Pinto Firmino; Grabas, H. M. X.; Guyot, C.; Hanna, R.; Hassani, S.; Kozanecki, W.; Lancon, E.; Laporte, J. F.; Maiani, C.; Mal, P.; Mansoulie, B.; Martinez, H.; Meric, N.; Meyer, J-P.; Nicolaidou, R.; Ouraou, A.; Protopapadaki, E.; Royon, C. R.; Schoeffel, L.; Schune, Ph.; Schwemling, Ph.; Schwindling, J.; Tsionou, D.; Vranjes, N.; Xiao, M.] CEA Saclay, DSM IRFU, F-91191 Gif Sur Yvette, France. [Battaglia, M.; Debenedetti, C.; Grillo, A. A.; Kuhl, A.; Law, A. T.; Liang, Z.; Litke, A. M.; Lockman, W. S.; Manning, P. M.; Nielsen, J.; Reece, R.; Rose, P.; Sadrozinski, H. F-W.; Schumm, B. A.; Seiden, A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Blackburn, D.; Coccaro, A.; Goussiou, A. G.; Harris, O. M.; Hsu, S. -C.; Lubatti, H. J.; Marx, M.; Rompotis, N.; Rosten, R.; Rothberg, J.; De Bruin, P. H. Sales; Watts, G.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Anastopoulos, C.; Costanzo, D.; Donszelmann, T. Cuhadar; Dawson, I.; Fletcher, G. T.; Hodgkinson, M. C.; Hodgson, P.; Johansson, K. E.; Korolkova, E. V.; Paredes, B. Lopez; Miyagawa, P. S.; Paganis, E.; Suruliz, K.; Tovey, D. R.] Univ Sheffield, Dept Phys & Astron, Sheffield, S Yorkshire, England. [Hasegawa, Y.; Takeshita, T.] Shinshu Univ, Dept Phys, Nagano, Japan. [Atlay, N. B.; Buchholz, P.; Czirr, H.; Fleck, I.; Gaur, B.; Ibragimov, I.; Ikematsu, K.; Rosenthal, O.; Sipica, V.; Walkowiak, W.; Ziolkowski, M.] Univ Siegen, Fachbereich Phys, D-57068 Siegen, Germany. [Buat, Q.; Dawe, E.; Godfrey, J.; O'Neil, D. C.; Stelzer, B.; Tanasijczuk, A. J.; Torres, H.; Trottier-McDonald, M.; Van Nieuwkoop, J.; Vetterli, M. C.] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada. [Aracena, I.; Mayes, J. Backus; Barklow, T.; Bartoldus, R.; Bawa, H. S.; Black, J. E.; Cogan, J. G.; Eifert, T.; Fulsom, B. G.; Gao, Y. S.; Garelli, N.; Grenier, P.; Kagan, M.; Kocian, M.; Koi, T.; Lowe, A. J.; Malone, C.; Mount, R.; Nef, P. D.; Nelson, T. K.; Piacquadio, G.; Salnikov, A.; Schwartzman, A.; Silverstein, D.; Strauss, E.; Su, D.; Swiatlowski, M.; Wittgen, M.; Young, C.] SLAC Natl Accelerator Lab, Stanford, CA USA. [Astalos, R.; Bartos, P.; Blazek, T.; Federic, P.; Plazak, L.; Stavina, P.; Sykora, I.; Tokar, S.; Zenis, T.] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia. [Antos, J.; Bruncko, D.; Kladiva, E.; Strizenec, P.] Slovak Acad Sci, Inst Expt Phys, Dept Subnucl Phys, Kosice 04353, Slovakia. [Hamilton, A.] Univ Cape Town, Dept Phys, ZA-7925 Cape Town, South Africa. [Aurousseau, M.; Castaneda-Miranda, E.; Connell, S. H.; Yacoob, S.] Univ Johannesburg, Dept Phys, Johannesburg, South Africa. [Bristow, K.; Carrillo-Montoya, G. D.; Chen, X.; Hamity, G. N.; Hsu, C.; March, L.; Garcia, B. R. Mellado; Ruan, X.; Vickey, T.; Boeriu, O. E. Vickey] Univ Witwatersrand, Sch Phys, Johannesburg, South Africa. [Abulaiti, Y.; Akerstedt, H.; Asman, B.; Bendtz, K.; Bertoli, G.; Bylund, O. Bessidskaia; Bohm, C.; Clement, C.; Cribbs, W. A.; Eriksson, D.; Hellman, S.; Johansson, K. E.; Jon-And, K.; Khandanyan, H.; Kim, H.; Klimek, P.; Lundberg, O.; Milstead, D. A.; Moa, T.; Molander, S.; Petridis, A.; Plucinski, P.; Rossetti, V.; Silverstein, S. B.; Sjolin, J.; Strandberg, S.; Tylmad, M.] Stockholm Univ, Dept Phys, Stockholm, Sweden. [Abulaiti, Y.; Akerstedt, H.; Asman, B.; Bendtz, K.; Bertoli, G.; Bylund, O. Bessidskaia; Clement, C.; Cribbs, W. A.; Hellman, S.; Johansson, K. E.; Jon-And, K.; Khandanyan, H.; Kim, H.; Klimek, P.; Lundberg, O.; Milstead, D. A.; Moa, T.; Molander, S.; Petridis, A.; Plucinski, P.; Rossetti, V.; Sjolin, J.; Strandberg, S.; Tylmad, M.] Oskar Klein Ctr, Stockholm, Sweden. [Jovicevic, J.; Kuwertz, E. S.; Lund-Jensen, B.; Morley, A. K.; Strandberg, J.] Royal Inst Technol, Dept Phys, S-10044 Stockholm, Sweden. [Bee, C. P.; Campoverde, A.; Chen, K.; Grassi, V.; Hobbs, J.; Jia, J.; Li, H.; Lindquist, B. E.; Mastrandrea, P.; McCarthy, R. L.; Puldon, D.; Radhakrishnan, S. K.; Rijssenbeek, M.; Schamberger, R. D.; Tsybychev, D.; Zaman, A.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Bee, C. P.; Campoverde, A.; Chen, K.; Grassi, V.; Hobbs, J.; Jia, J.; Li, H.; Lindquist, B. E.; Mastrandrea, P.; McCarthy, R. L.; Puldon, D.; Radhakrishnan, S. K.; Rijssenbeek, M.; Schamberger, R. D.; Tsybychev, D.; Zaman, A.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Bartsch, V.; Cerri, A.; Barajas, C. A. Chavez; De Santo, A.; Grout, Z. J.; Potter, C. J.; Salvatore, F.; Castillo, I. Santoyo; Shehu, C. Y.; Sutton, M. R.; Vivarelli, I.] Univ Sussex, Dept Phys & Astron, Brighton, E Sussex, England. [Black, C. W.; Cuthbert, C.; Finelli, K. D.; Jeng, G. -Y.; Patel, N. D.; Saavedra, A. F.; Scarcella, M.; Varvell, K. E.; Watson, I. J.; Yabsley, B.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. [Abdallah, J.; Chu, M. L.; Hou, S.; Jamin, D. O.; Lee, C. A.; Lee, S. C.; Li, B.; Lin, S. C.; Liu, B.; Liu, D.; Lo Sterzo, F.; Mazini, R.; Ren, Z. L.; Shi, L.; Soh, D. A.; Teng, P. K.; Wang, C.; Wang, S. M.; Weng, Z.; Zhang, L.] Acad Sinica, Inst Phys, Taipei, Taiwan. [Abreu, H.; Di Mattia, A.; Kopeliansky, R.; Musto, E.; Rozen, Y.; Tarem, S.] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel. [Abramowicz, H.; Alexander, G.; Amram, N.; Ashkenazi, A.; Bella, G.; Benary, O.; Benhammou, Y.; Noccioli, E. Benhar; Davies, M.; Etzion, E.; Gershon, A.; Gueta, O.; Guttman, N.; Munwes, Y.; Oren, Y.; Sadeh, I.; Silver, Y.; Soffer, A.; Taiblum, N.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Bachas, K.; Gkaitatzis, S.; Gkialas, I.; Iliadis, D.; Kordas, K.; Kouskoura, V.; Leisos, A.; Papageorgiou, K.; Petridou, C.; Sampsonidis, D.; Sidiropoulou, O.] Aristotle Univ Thessaloniki, Dept Phys, GR-54006 Thessaloniki, Greece. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Enari, Y.; Hanawa, K.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kazama, S.; Kessoku, K.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Nakamura, T.; Ninomiya, Y.; Okuyama, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamaguchi, H.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yoshihara, K.] Univ Tokyo, Int Ctr Elementary Particle Phys, Tokyo, Japan. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Enari, Y.; Hanawa, K.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kazama, S.; Kessoku, K.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Nakamura, T.; Ninomiya, Y.; Okuyama, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamaguchi, H.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yoshihara, K.] Univ Tokyo, Dept Phys, Tokyo 113, Japan. [Bratzler, U.; Fukunaga, C.] Tokyo Metropolitan Univ, Grad Sch Sci & Technol, Tokyo 158, Japan. [Hirose, M.; Ishitsuka, M.; Jinnouchi, O.; Kobayashi, D.; Kuze, M.; Motohashi, K.; Nagai, R.; Nobe, T.; Pettersson, N. E.] Tokyo Inst Technol, Dept Phys, Tokyo 152, Japan. [AbouZeid, O. S.; Brelier, B.; Chau, C. C.; Ilic, N.; Keung, J.; Krieger, P.; Mc Goldrick, G.; Orr, R. S.; Polifka, R.; Rudolph, M. S.; Savard, P.; Schramm, S.; Sinervo, P.; Spreitzer, T.; Taenzer, J.; Teuscher, R. J.; Thompson, P. D.; Trischuk, W.; Venturi, N.] Univ Toronto, Dept Phys, Toronto, ON, Canada. [Azuelos, G.; Canepa, A.; Chekulaev, S. V.; Fortin, D.; Gingrich, D. M.; Koutsman, A.; Oakham, F. G.; Oram, C. J.; Codina, E. Perez; Savard, P.; Schouten, D.; Seuster, R.; Stelzer-Chilton, O.; Tafirout, R.; Trigger, I. M.; Vetterli, M. C.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Garcia, J. A. Benitez; Bustos, A. C. Florez; Ramos, J. Manjarres; Palacino, G.; Qureshi, A.; Taylor, W.] York Univ, Dept Phys & Astron, Toronto, ON M3J 2R7, Canada. [Hara, K.; Hayashi, T.; Kim, S. H.; Kiuchi, K.; Ukegawa, F.] Univ Tsukuba, Fac Pure & Appl Sci, Tsukuba, Ibaraki, Japan. [Beauchemin, P. H.; Hamilton, S.; Meoni, E.; Rolli, S.; Sliwa, K.; Wetter, J.] Tufts Univ, Dept Phys & Astron, Medford, MA 02155 USA. [Losada, M.; Navarro, G.; Sandoval, C.] Univ Antonio Narino, Ctr Invest, Bogota, Colombia. [Corso-Radu, A.; Gerbaudo, D.; Lankford, A. J.; Mete, A. S.; Nelson, A.; Rao, K.; Relich, M.; Scannicchio, D. A.; Schernau, M.; Shimmin, C. O.; Taffard, A.; Unel, G.; Whiteson, D.; Zhou, N.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA USA. [Acharya, B. S.; Alhroob, M.; Brazzale, S. F.; Cobal, M.; De Sanctis, U.; Giordani, M. P.; Pinamonti, M.; Quayle, W. B.; Shaw, K.; Soualah, R.] Ist Nazl Fis Nucl, Sez Trieste, Grp Collegato Udine, Udine, Italy. [Acharya, B. S.; De Sanctis, U.; Quayle, W. B.; Shaw, K.] Abdus Salaam Int Ctr Theoret Phys, Trieste, Italy. [Alhroob, M.; Brazzale, S. F.; Cobal, M.; Giordani, M. P.; Pinamonti, M.; Soualah, R.] Univ Udine, Dipartimento Chim Fis & Ambiente, I-33100 Udine, Italy. [Atkinson, M.; Basye, A.; Benekos, N.; Cavaliere, V.; Chang, P.; Coggeshall, J.; Errede, D.; Errede, S.; Lie, K.; Liss, T. M.; Neubauer, M. S.; Shang, R.; Vichou, I.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Bergeaas Kuutmann, E.; Brenner, R.; Buszello, C. P.; Ekelof, T.; Ellert, M.; Ferrari, A.; Isaksson, C.; Madsen, A.; Ohman, H.; Pelikan, D.; Rangel-Smith, C.] Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden. [Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Torro Pastor, E.; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Vos, M.] Univ Valencia, Inst Fis Corpuscular, Valencia, Spain. [Cabrera Urban, S.; Castillo Gimenez, V.; Costa, G.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Torro Pastor, E.; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Vos, M.] Univ Valencia, Dept Fis Atom Mol & Nucl, Valencia, Spain. [Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Torro Pastor, E.; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Vos, M.] Univ Valencia, Dept Ingn & Elect, Valencia, Spain. [Cabrera Urban, S.; Castillo Gimenez, V.; Costa, G.; Costa, M. J.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Torro Pastor, E.; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Vos, M.] Univ Valencia, Inst Microelect Barcelona IMB CNM, Valencia, Spain. [Cabrera Urban, S.; Castillo Gimenez, V.; Costa, G.; De la Torre, H.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Torro Pastor, E.; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Vos, M.] CSIC, Valencia, Spain. [Fedorko, W.; Gay, C.; Gecse, Z.; King, S. B.; Lister, A.; Swedish, S.; Viel, S.] Univ British Columbia, Dept Phys, Vancouver, BC, Canada. [Albert, J.; Bansal, V.; Berghaus, F.; Bernlochner, F. U.; David, C.; Fincke-Keeler, M.; Hamano, K.; Hill, E.; Keeler, R.; Kowalewski, R.; Lefebvre, M.; Marino, C. P.; McPherson, R. A.; Ouellette, E. A.; Pearce, J.; Sobie, R.; Venturi, M.] Univ Victoria, Dept Phys & Astron, Victoria, BC, Canada. [Beckingham, M.; Farrington, S. M.; Harrison, P. F.; Janus, M.; Jeske, C.; Jones, G.; Martin, T. A.; Murray, W. J.; Pianori, E.] Univ Warwick, Dept Phys, Coventry, W Midlands, England. [Iizawa, T.; Kimura, N.; Mitani, T.; Sakurai, Y.; Yorita, K.] Waseda Univ, Tokyo, Japan. [Barak, L.; Bressler, S.; Citron, Z. H.; Duchovni, E.; Gabizon, O.; Gross, E.; Groth-Jensen, J.; Lellouch, D.; Levinson, L. J.; Mikenberg, G.; Milov, A.; Milstein, D.; Pitt, M.; Roth, I.; Schaarschmidt, J.; Smakhtin, V.] Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel. [Banerjee, Sw.; Cheng, Y.; Castillo, L. R. Flores; Hard, A. S.; Heng, Y.; Ji, H.; Ju, X.; Kashif, L.; Kruse, A.; Ming, Y.; Pan, Y. B.; Wang, F.; Wiedenmann, W.; Wu, S. L.; Yang, H.; Zhang, F.; Zobernig, G.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Redelbach, A.; Schreyer, M.; Siragusa, G.; Stroehmer, R.; Tam, J. Y. C.; Trefzger, T.; Weber, S. W.; Zibell, A.] Univ Wurzburg, Fak Phys & Astron, D-97070 Wurzburg, Germany. [Bannoura, A. A. E.; Barisonzi, M.; Boek, T. T.; Braun, H. M.; Cornelissen, T.; Duda, D.; Ernis, G.; Fischer, J.; Fleischmann, S.; Flick, T.; Hamacher, K.; Harenberg, T.; Heim, T.; Hirschbuehl, D.; Kersten, S.; Khoroshilov, A.; Kohlmann, S.; Maettig, P.; Neumann, M.; Pataraia, S.; Sandhoff, M.; Sartisohn, G.; Wagner, W.; Wicke, D.; Zeitnitz, C.] Berg Univ Wuppertal, Fachbereich Phys C, Wuppertal, Germany. [Adelman, J.; Baker, O. K.; Bedikian, S.; Cummings, J.; Czyczula, Z.; Demers, S.; Erdmann, J.; Garberson, F.; Golling, T.; Guest, D.; Henrichs, A.; Ideal, E.; Lagouri, T.; Lee, L.; Leister, A. G.; Loginov, A.; Tipton, P.; Wall, R.; Walsh, B.; Wang, X.] Yale Univ, Dept Phys, New Haven, CT USA. [Hakobyan, H.; Vardanyan, G.] Yerevan Phys Inst, Yerevan, Armenia. [Rahal, G.] IN2P3, Ctr Calcul, Villeurbanne, France. [Acharya, B. S.] Kings Coll London, Dept Phys, London, England. [Anisenkov, A. V.; Bobrovnikov, V. S.; Kazanin, V. F.; Korol, A. A.; Maslennikov, A. L.; Maximov, D. A.; Peleganchuk, S. V.; Rezanova, O. L.; Soukharev, A. M.; Talyshev, A. A.; Tikhonov, Yu. A.] Novosibirsk State Univ, Novosibirsk 630090, Russia. [Bawa, H. S.; Gao, Y. S.; Lowe, A. J.] Calif State Univ Fresno, Dept Phys, Fresno, CA 93740 USA. [Beck, H. P.] Univ Fribourg, Dept Phys, CH-1700 Fribourg, Switzerland. [Castro, N. F.] Univ Porto, Fac Ciencias, Dept Fis & Astron, P-4100 Oporto, Portugal. [Chelkov, G. A.] Tomsk State Univ, Tomsk 634050, Russia. [Conventi, F.; Della Pietra, M.] Univ Napoli Parthenope, Naples, FL USA. [Fedin, O. L.] St Petersburg State Polytech Univ, Dept Phys, St Petersburg, Russia. [Castillo, L. R. Flores] Chinese Univ Hong Kong, Hong Kong, Hong Kong, Peoples R China. [Grinstein, S.; Juste Rozas, A.; Martinez, M.] ICREA, Inst Catalana Rec & Estud Avancats, Barcelona, Spain. [Ilchenko, Y.; Onyisi, P. U. E.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. [Jejelava, J.] Ilia State Univ, Inst Theoret Phys, Tbilisi, Rep of Georgia. [Khubua, J.] Georgian Tech Univ, Tbilisi, Rep of Georgia. [Kono, T.] Ochanomizu Univ, Ochadai Acad Prod, Tokyo 112, Japan. [Konoplich, R.] Manhattan Coll, New York, NY USA. [Leisos, A.] Hellenic Open Univ, Patras, Greece. [Lin, S. C.] Acad Sinica, Inst Phys, Acad Sinica Grid Comp, Taipei, Taiwan. [Mal, P.] Natl Inst Sci Educ & Res, Sch Phys Sci, Bhubaneswar, Orissa, India. [Myagkov, A. G.; Nikolaenko, V.; Zaitsev, A. M.] State Univ, Moscow Inst Phys & Technol, Dolgoprudnyi, Russia. [Pinamonti, M.] SISSA, Int Sch Adv Studies, I-34014 Trieste, Italy. [Purohit, M.] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. [Shi, L.; Soh, D. A.; Weng, Z.] Sun Yat Sen Univ, Sch Phys & Engn, Guangzhou 510275, Guangdong, Peoples R China. [Smirnova, L. N.; Turchikhin, S.] Moscow MV Lomonosov State Univ, Fac Phys, Moscow, Russia. [Toth, J.] Wigner Res Ctr Phys, Inst Particle & Nucl Phys, Budapest, Hungary. [Wildt, M. A.] Univ Hamburg, Inst Expt Phys, Hamburg, Germany. [Yacoob, S.] Univ KwaZulu Natal, Discipline Phys, Durban, South Africa. [Yusuff, I.] Univ Malaya, Dept Phys, Kuala Lumpur 59100, Malaysia. RP Aad, G (reprint author), Univ Aix Marseille, CPPM, Marseille, France. RI Savarala, Hari Krishna/A-3516-2015; Doyle, Anthony/C-5889-2009; Di Domenico, Antonio/G-6301-2011; Gonzalez de la Hoz, Santiago/E-2494-2016; Guo, Jun/O-5202-2015; Aguilar Saavedra, Juan Antonio/F-1256-2016; Wemans, Andre/A-6738-2012; Leyton, Michael/G-2214-2016; Jones, Roger/H-5578-2011; Pacheco Pages, Andres/C-5353-2011; Boyko, Igor/J-3659-2013; Vranjes Milosavljevic, Marija/F-9847-2016; Perrino, Roberto/B-4633-2010; Carvalho, Joao/M-4060-2013; White, Ryan/E-2979-2015; Warburton, Andreas/N-8028-2013; spagnolo, stefania/A-6359-2012; Buttar, Craig/D-3706-2011; Mitsou, Vasiliki/D-1967-2009; Tripiana, Martin/H-3404-2015; Smirnova, Oxana/A-4401-2013; Gladilin, Leonid/B-5226-2011; Livan, Michele/D-7531-2012; Moraes, Arthur/F-6478-2010; Tikhomirov, Vladimir/M-6194-2015; Gutierrez, Phillip/C-1161-2011; Solodkov, Alexander/B-8623-2017; Zaitsev, Alexandre/B-8989-2017; Peleganchuk, Sergey/J-6722-2014; Li, Liang/O-1107-2015; Monzani, Simone/D-6328-2017; Kuday, Sinan/C-8528-2014; Tartarelli, Giuseppe Francesco/A-5629-2016; la rotonda, laura/B-4028-2016; BESSON, NATHALIE/L-6250-2015; Vanadia, Marco/K-5870-2016; Ippolito, Valerio/L-1435-2016; Maneira, Jose/D-8486-2011; Prokoshin, Fedor/E-2795-2012; KHODINOV, ALEKSANDR/D-6269-2015; Staroba, Pavel/G-8850-2014; Gavrilenko, Igor/M-8260-2015; Gauzzi, Paolo/D-2615-2009; Maleev, Victor/R-4140-2016; Mindur, Bartosz/A-2253-2017; Mashinistov, Ruslan/M-8356-2015; Fabbri, Laura/H-3442-2012; Chekulaev, Sergey/O-1145-2015; Zhukov, Konstantin/M-6027-2015; SULIN, VLADIMIR/N-2793-2015; Nechaeva, Polina/N-1148-2015; Vykydal, Zdenek/H-6426-2016; Fedin, Oleg/H-6753-2016; Brooks, William/C-8636-2013; Olshevskiy, Alexander/I-1580-2016; Snesarev, Andrey/H-5090-2013; Ventura, Andrea/A-9544-2015; Kantserov, Vadim/M-9761-2015; Nevski, Pavel/M-6292-2015; Villa, Mauro/C-9883-2009 OI Savarala, Hari Krishna/0000-0001-6593-4849; Doyle, Anthony/0000-0001-6322-6195; Di Domenico, Antonio/0000-0001-8078-2759; Gonzalez de la Hoz, Santiago/0000-0001-5304-5390; Guo, Jun/0000-0001-8125-9433; Aguilar Saavedra, Juan Antonio/0000-0002-5475-8920; Wemans, Andre/0000-0002-9669-9500; Leyton, Michael/0000-0002-0727-8107; Jones, Roger/0000-0002-6427-3513; Pacheco Pages, Andres/0000-0001-8210-1734; Boyko, Igor/0000-0002-3355-4662; Vranjes Milosavljevic, Marija/0000-0003-4477-9733; Perrino, Roberto/0000-0002-5764-7337; Carvalho, Joao/0000-0002-3015-7821; White, Ryan/0000-0003-3589-5900; Warburton, Andreas/0000-0002-2298-7315; spagnolo, stefania/0000-0001-7482-6348; Mitsou, Vasiliki/0000-0002-1533-8886; Smirnova, Oxana/0000-0003-2517-531X; Gladilin, Leonid/0000-0001-9422-8636; Livan, Michele/0000-0002-5877-0062; Moraes, Arthur/0000-0002-5157-5686; Tikhomirov, Vladimir/0000-0002-9634-0581; Solodkov, Alexander/0000-0002-2737-8674; Zaitsev, Alexandre/0000-0002-4961-8368; Peleganchuk, Sergey/0000-0003-0907-7592; Li, Liang/0000-0001-6411-6107; Monzani, Simone/0000-0002-0479-2207; Kuday, Sinan/0000-0002-0116-5494; Tartarelli, Giuseppe Francesco/0000-0002-4244-502X; la rotonda, laura/0000-0002-6780-5829; Amorim, Antonio/0000-0003-0638-2321; Coccaro, Andrea/0000-0003-2368-4559; Vanadia, Marco/0000-0003-2684-276X; Ippolito, Valerio/0000-0001-5126-1620; Maneira, Jose/0000-0002-3222-2738; Prokoshin, Fedor/0000-0001-6389-5399; KHODINOV, ALEKSANDR/0000-0003-3551-5808; Gauzzi, Paolo/0000-0003-4841-5822; Mindur, Bartosz/0000-0002-5511-2611; Mashinistov, Ruslan/0000-0001-7925-4676; Fabbri, Laura/0000-0002-4002-8353; SULIN, VLADIMIR/0000-0003-3943-2495; Vykydal, Zdenek/0000-0003-2329-0672; Brooks, William/0000-0001-6161-3570; Olshevskiy, Alexander/0000-0002-8902-1793; Ventura, Andrea/0000-0002-3368-3413; Kantserov, Vadim/0000-0001-8255-416X; Villa, Mauro/0000-0002-9181-8048 FU ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW, Austria; FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq, Brazil; FAPESP, Brazil; NSERC, Canada; NRC, Canada; CFI, Canada; CERN; CONICYT, Chile; CAS, China; MOST, China; NSFC, China; COLCIENCIAS, Colombia; MSMT CR, Czech Republic; MPO CR, Czech Republic; VSC CR, Czech Republic; DNRF, Denmark; DNSRC, Denmark; Lundbeck Foundation, Denmark; IN2P3-CNRS, France; CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, Germany; HGF, Germany; MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT, Japan; JSPS, Japan; CNRST, Morocco; FOM, Netherlands; NWO, Netherlands; RCN, Norway; MNiSW, Poland; NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia; NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS, Slovenia; MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC, Sweden; Wallenberg Foundation, Sweden; SERI, Switzerland; SNSF, Switzerland; Canton of Bern, Switzerland; Canton of Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE, United States of America; NSF, United States of America; BCKDF, Canada; Canada Council, Canada; CANARIE, Canada; CRC, Canada; Compute Canada, Canada; FQRNT, Canada; Ontario Innovation Trust, Canada; EPLANET, European Union; ERC, European Union; FP7, European Union; Horizon 2020, European Union; Marie Sklodowska-Curie Actions, European Union; Investissements d'Avenir Labex and Idex, France; ANR, France; Region Auvergne and Fondation Partager le Savoir, France; DFG, Germany; AvH Foundation, Germany; Herakleitos, Thales; EU-ESF; Greek NSRF; BSF, Israel; GIF, Israel; Minerva, Israel; BRF, Norway; Royal Society and Leverhulme Trust, United Kingdom FX We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, the Canada Council, CANARIE, CRC, Compute Canada, FQRNT, and the Ontario Innovation Trust, Canada; EPLANET, ERC, FP7, Horizon 2020 and Marie Sklodowska-Curie Actions, European Union; Investissements d'Avenir Labex and Idex, ANR, Region Auvergne and Fondation Partager le Savoir, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF; BSF, GIF and Minerva, Israel; BRF, Norway; the Royal Society and Leverhulme Trust, United Kingdom. NR 21 TC 7 Z9 7 U1 16 U2 93 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD DEC 17 PY 2015 VL 751 BP 376 EP 395 DI 10.1016/j.physletb.2015.10.059 PG 20 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CX0KF UT WOS:000365384600061 ER PT J AU Yuksel, H Kistler, MD AF Yuksel, Hasan Kistler, Matthew D. TI The cosmic MeV neutrino background as a laboratory for black hole formation SO PHYSICS LETTERS B LA English DT Article ID GAMMA-RAY BURSTS; MASS-METALLICITY RELATION; CORE-COLLAPSE SUPERNOVAE; STAR-FORMATION RATE; FAILED SUPERNOVAE; REDSHIFT DISTRIBUTION; FORMING GALAXIES; PROGENITOR STARS; IA SUPERNOVAE; EVOLUTION AB Calculations of the cosmic rate of core collapses, and the associated neutrino flux, commonly assume that a fixed fraction of massive stars collapse to black holes. We argue that recent results suggest that this fraction instead increases with redshift. With relatively more stars vanishing as "unnovae" in the distant universe, the detectability of the cosmic MeV neutrino background is improved due to their hotter neutrino spectrum, and expectations for supernova surveys are reduced. We conclude that neutrino detectors, after the flux from normal SNe is isolated via either improved modeling or the next Galactic SN, can probe the conditions and history of black hole formation. (C) 2015 The Authors. Published by Elsevier B.V. C1 [Yuksel, Hasan] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87544 USA. [Yuksel, Hasan; Kistler, Matthew D.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Yuksel, Hasan] Mimar Sinan Fine Arts Univ, Dept Phys, TR-34380 Istanbul, Turkey. [Kistler, Matthew D.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RP Yuksel, H (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87544 USA. EM hyuksel@gmail.com FU LANL LDRD program; DOE [DE-SC00046548]; Scientific and Technological Research Council of Turkey (TUBITAK) [114C017]; Marie Curie Actions under FP7; NASA through the Einstein Fellowship Program [PF0-110074]; Department of Energy [DE-AC02-76SF00515]; KIPAC Kavli Fellowship FX H.Y. was supported by the LANL LDRD program, during a visit to Berkeley by DOE contract DE-SC00046548 (to WH) and by the Scientific and Technological Research Council of Turkey (TUBITAK) grant 114C017, cofunded by Marie Curie Actions under FP7; M.D.K. by NASA through the Einstein Fellowship Program, grant PF0-110074, by Department of Energy contract DE-AC02-76SF00515, and the KIPAC Kavli Fellowship made possible by The Kavli Foundation. NR 107 TC 2 Z9 2 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD DEC 17 PY 2015 VL 751 BP 413 EP 417 DI 10.1016/j.physletb.2015.10.055 PG 5 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CX0KF UT WOS:000365384600065 ER PT J AU Anderson, BR Millan, RM Reeves, GD Friedel, RHW AF Anderson, B. R. Millan, R. M. Reeves, G. D. Friedel, R. H. W. TI Acceleration and loss of relativistic electrons during small geomagnetic storms SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID OUTER RADIATION BELT; VAN ALLEN PROBES; DRIVERS AB Past studies of radiation belt relativistic electrons have favored active storm time periods, while the effects of small geomagnetic storms (Dst > -50 nT) have not been statistically characterized. In this timely study, given the current weak solar cycle, we identify 342 small storms from 1989 through 2000 and quantify the corresponding change in relativistic electron flux at geosynchronous orbit. Surprisingly, small storms can be equally as effective as large storms at enhancing and depleting fluxes. Slight differences exist, as small storms are 10% less likely to result in flux enhancement and 10% more likely to result in flux depletion than large storms. Nevertheless, it is clear that neither acceleration nor loss mechanisms scale with storm drivers as would be expected. Small geomagnetic storms play a significant role in radiation belt relativistic electron dynamics and provide opportunities to gain new insights into the complex balance of acceleration and loss processes. C1 [Anderson, B. R.; Millan, R. M.] Dartmouth Coll, Dept Phys & Astron, Hanover, NH 03755 USA. [Reeves, G. D.; Friedel, R. H. W.] Los Alamos Natl Lab, Space Sci & Applicat, Los Alamos, NM USA. [Reeves, G. D.; Friedel, R. H. W.] New Mexico Consortium, Los Alamos, NM USA. RP Anderson, BR (reprint author), Dartmouth Coll, Dept Phys & Astron, Hanover, NH 03755 USA. EM brett.r.anderson.gr@dartmouth.edu OI Anderson, Brett/0000-0001-5937-5497; Reeves, Geoffrey/0000-0002-7985-8098 FU BARREL NASA [NNX08AM58G]; New Hampshire Space Grant Consortium FX This research was supported in part by the BARREL NASA grant NNX08AM58G. B.A. thanks the New Hampshire Space Grant Consortium for support, as well as A. Halford, M. McCarthy, and L. Woodger for numerous conversations that enhanced the present study. The authors thank the World Data Center for Geomagnetism, Kyoto, and the Hermanus, Honolulu, Kakioka, San Juan, and INTERMAGNET observatories for providing the Dst index. We thank the Goddard Space Flight Center Space Physics Data Facility for use of their OMNIWeb Plus service to access OMNI data and CDAWeb service to access NOAA GOES data. Data from the LANL-GEO SOPA instrument were provided by the U.S. Department of Energy's Los Alamos National Laboratories and are available upon request from Geoff Reeves (reeves@lanl.gov). NR 16 TC 6 Z9 6 U1 0 U2 2 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD DEC 16 PY 2015 VL 42 IS 23 DI 10.1002/2015GL066376 PG 7 WC Geosciences, Multidisciplinary SC Geology GA DB2MV UT WOS:000368343900003 ER PT J AU Seeley, JT Romps, DM AF Seeley, Jacob T. Romps, David M. TI Why does tropical convective available potential energy (CAPE) increase with warming? SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID HIGH-RESOLUTION SIMULATION; TOGA COARE; CUMULUS CLOUDS; HOT TOWERS; ATMOSPHERE; SHALLOW; ENTRAINMENT; SENSITIVITY; DETRAINMENT; TROPOSPHERE AB Recent work has produced a theory for tropical convective available potential energy (CAPE) that highlights the Clausius-Clapeyron (CC) scaling of the atmosphere's saturation deficit as a driver of increases in CAPE with warming. Here we test this so-called "zero-buoyancy" theory for CAPE by modulating the saturation deficit of cloud-resolving simulations of radiative-convective equilibrium in two ways: changing the sea surface temperature (SST) and changing the environmental relative humidity (RH). For earthlike and warmer SSTs, undilute parcel buoyancy in the lower troposphere is insensitive to increasing SST because of a countervailing CC scaling that balances the increase in the saturation deficit; however, buoyancy increases dramatically with SST in the upper troposphere. Conversely, in the RH experiment, undilute buoyancy throughout the troposphere increases monotonically with decreasing RH. We show that the zero-buoyancy theory successfully predicts these contrasting behaviors, building confidence that it describes the fundamental physics of CAPE and its response to warming. C1 [Seeley, Jacob T.; Romps, David M.] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. [Seeley, Jacob T.; Romps, David M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Climate & Ecosyst Sci Div, Berkeley, CA 94720 USA. RP Seeley, JT (reprint author), Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. EM jseeley@berkeley.edu OI Seeley, Jacob/0000-0003-0769-292X FU National Science Foundation [DGE1106400]; Scientific Discovery through Advanced Computing (SciDAC) program -U.S. Department of Energy Office of Advanced Scientific Computing Research; Office of Biological and Environmental Research [DE-AC02-05CH11231]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX J.S. thanks J. Edman, N. Jeevanjee, W. Langhans, and D. Yang for their thoughtful questions and suggestions. The authors are grateful for two anonymous reviewers whose feedback improved the manuscript. J. S. was supported by the National Science Foundation Graduate Research Fellowship under grant DGE1106400. D.R. was supported by the Scientific Discovery through Advanced Computing (SciDAC) program funded by U.S. Department of Energy Office of Advanced Scientific Computing Research and Office of Biological and Environmental Research under contract DE-AC02-05CH11231. This research used computing resources of the National Energy Research Scientific Computing Center (NERSC), which is supported by the Office of Science of the U.S. Department of Energy under contract DE-AC02-05CH11231. NR 38 TC 2 Z9 2 U1 6 U2 11 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD DEC 16 PY 2015 VL 42 IS 23 DI 10.1002/2015GL066199 PG 9 WC Geosciences, Multidisciplinary SC Geology GA DB2MV UT WOS:000368343900041 ER PT J AU Ye, S Li, HY Li, S Leung, LR Demissie, Y Ran, QH Bloschl, G AF Ye, Sheng Li, Hong-Yi Li, Shuai Leung, L. Ruby Demissie, Yonas Ran, Qihua Bloeschl, Guenter TI Vegetation regulation on streamflow intra-annual variability through adaption to climate variations SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID ANNUAL WATER-BALANCE; FLOW DURATION CURVES; RAINFALL SEASONALITY; REGIONAL PATTERNS; PHYSICAL CONTROLS; UNGAUGED BASINS; CATCHMENT SCALE; UNITED-STATES; REGIME CURVE; COEVOLUTION AB This study aims to provide a mechanistic explanation of the empirical patterns of streamflow intra-annual variability revealed by watershed-scale hydrological data across the contiguous United States. A mathematical extension of the Budyko formula with explicit account for the soil moisture storage change is used to show that, in catchments with a strong seasonal coupling between precipitation and potential evaporation, climate aridity has a dominant control on intra-annual streamflow variability. But in other catchments, additional factors related to soil water storage change also have important controls on how precipitation seasonality propagates to streamflow. More importantly, use of leaf area index as a direct and indirect indicator of the above ground biomass and plant root system, respectively, reveals the vital role of vegetation in regulating soil moisture storage and hence streamflow intra-annual variability under different climate conditions. C1 [Ye, Sheng; Ran, Qihua] Zhejiang Univ, Sch Civil Engn, Inst Hydrol & Water Resources, Hangzhou 310003, Zhejiang, Peoples R China. [Ye, Sheng; Li, Hong-Yi; Leung, L. Ruby] Pacific NW Natl Lab, Richland, WA 99352 USA. [Li, Shuai] China Three Gorges Corp, Gorges Construct & Operat Management Dept 3, Yichang, Peoples R China. [Demissie, Yonas] Washington State Univ, Dept Civil & Environm Engn, Pullman, WA 99164 USA. [Bloeschl, Guenter] Vienna Univ Technol, Inst Hydraul & Water Resources Engn, A-1040 Vienna, Austria. RP Li, HY (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM hongyi.li@pnnl.gov RI Li, Hong-Yi/C-9143-2014 OI Li, Hong-Yi/0000-0001-5690-3610 FU Office of Science of the U.S. Department of Energy; Regional and Global Climate Modeling Program; Earth System Modeling Program; Battelle Memorial institute [DE-AC05-76RLO 1830]; Austrian Academy of Sciences FX This research was supported by the Office of Science of the U.S. Department of Energy as part of the Regional and Global Climate Modeling Program and Earth System Modeling Program. The Pacific Northwest National Laboratory is operated for DOE by Battelle Memorial institute under contract DE-AC05-76RLO 1830. The last author would like to thank the Austrian Academy of Sciences (project on Predictability of runoff in a changing environment) for financial support. NR 42 TC 3 Z9 3 U1 6 U2 19 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD DEC 16 PY 2015 VL 42 IS 23 DI 10.1002/2015GL066396 PG 9 WC Geosciences, Multidisciplinary SC Geology GA DB2MV UT WOS:000368343900026 ER PT J AU Zhou, C Zelinka, MD Dessler, AE Klein, SA AF Zhou, Chen Zelinka, Mark D. Dessler, Andrew E. Klein, Stephen A. TI The relationship between interannual and long-term cloud feedbacks SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID CLIMATE MODEL SIMULATIONS; SENSITIVITY; SPREAD; COVER; VARIABILITY; ECMWF; CMIP5 AB Analyses of Coupled Model Intercomparison Project phase 5 simulations suggest that climate models with more positive cloud feedback in response to interannual climate fluctuations also have more positive cloud feedback in response to long-term global warming. Ensemble mean vertical profiles of cloud change in response to interannual and long-term surface warming are similar, and the ensemble mean cloud feedback is positive on both timescales. However, the average long-term cloud feedback is smaller than the interannual cloud feedback, likely due to differences in surface warming pattern on the two timescales. Low cloud cover (LCC) change in response to interannual and long-term global surface warming is found to be well correlated across models and explains over half of the covariance between interannual and long-term cloud feedback. The intermodel correlation of LCC across timescales likely results from model-specific sensitivities of LCC to sea surface warming. C1 [Zhou, Chen; Zelinka, Mark D.; Klein, Stephen A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Zhou, Chen; Dessler, Andrew E.] Texas A&M Univ, Dept Atmospher Sci, College Stn, TX USA. RP Zhou, C (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM czhou.atmo@gmail.com RI Klein, Stephen/H-4337-2016; Zelinka, Mark/C-4627-2011; Dessler, Andrew/G-8852-2012 OI Klein, Stephen/0000-0002-5476-858X; Zelinka, Mark/0000-0002-6570-5445; Dessler, Andrew/0000-0003-3939-4820 FU Regional and Global Climate Modeling Program of the Office of Science at the U. S. Department of Energy (DOE); DOE by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; NASA [NNX12AN57H, NNX13AK25G] FX We thank S. Sherwood, M. J. Webb, and K. E. Taylor for their helpful suggestions and thank X. Qu for the help on the linear model. The efforts of C.Z., M.D.Z., and S. A. K. are supported by the Regional and Global Climate Modeling Program of the Office of Science at the U. S. Department of Energy (DOE) under the project "Identifying Robust Cloud Feedbacks in Observations and Models" and was performed under the auspices of DOE by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Part of C.Z.'s work was supported by NASA Earth and Space Science Fellowship (NNX12AN57H). A.E.D. was supported by NASA grant NNX13AK25G to Texas A&M University. For CMIP5 the U. S. Department of Energy's Program for Climate Model Diagnosis and Intercomparison provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals. NR 31 TC 6 Z9 6 U1 2 U2 14 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD DEC 16 PY 2015 VL 42 IS 23 DI 10.1002/2015GL066698 PG 7 WC Geosciences, Multidisciplinary SC Geology GA DB2MV UT WOS:000368343900045 ER PT J AU Aad, G Abbott, B Abdallah, J Abdinov, O Aben, R Abolins, M AbouZeid, OS Abramowicz, H Abreu, H Abreu, R Abulaiti, Y Acharya, BS Adamczyk, L Adams, DL Adelman, J Adomeit, S Adye, T Older, AA Agatonovic-Jovin, T Agricola, J Aguilar-Saavedra, JA Ahlen, SP Ahmadov, F Aielli, G Akerstedt, H Akesson, TPA Akimov, AV Alberghi, GL Albert, J Albrand, S Verzini, MJA Aleksa, M Aleksandrov, IN Alexa, G Alexander, G Alexopoulos, T Alhroob, M Alimonti, G Alio, L Alison, J Alkire, SP Allbrooke, BMM Allport, PP Aloisio, A Alonso, A Alonso, F Alpigiani, C Altheimer, A Gonzalez, BA Piqueras, DA Alviggi, MG Amadio, BT Amako, K Coutinho, YA Amelung, C Amidei, D Dos Santos, SPA Amorim, A Amoroso, S Amram, N Amundsen, G Anastopoulos, C Ancu, LS Andari, N Andeen, T Anders, CF Anders, G Anders, JK Anderson, KJ Andreazza, A Andrei, V Angelidakis, S Angelozzi, I Anger, P Angerami, A Anghinolfi, F Anisenkov, AV Anjos, N Annovi, A Antonelli, M Antonov, A Antos, J Anulli, F Aoki, M Bella, LA Arabidze, G Arai, Y Araque, JP Arce, ATH Arduh, FA Arguin, JF Argyropoulos, S Arik, M Armbruster, AJ Arnaez, O Arnal, V Arnold, H Arratia, M Arslan, O Artamonov, A Artoni, G Asai, S Asbah, N Ashkenazi, A Asman, B Asquith, L Assamagan, K Astalos, R Atkinson, M Atlay, NB Augsten, K Aurousseau, M Avolio, G Axen, B Ayoub, MK Azuelos, G Baak, MA Baas, AE Baca, MJ Bacci, C Bachacou, H Bachas, K Backes, M Backhaus, M Bagiacchi, P Bagnaia, P Bai, Y Bain, T Baines, JT Baker, OK Baldin, EM Balek, P Balestri, T Balli, F Banas, E Banerjee, S Bannoura, AAE Bansil, HS Barak, L Barberio, EL Barberis, D Barbero, M Barillari, T Barisonzi, M Barklow, T Barlow, N Barnes, SL Barnett, BM Barnett, RM Barnovska, Z Baroncelli, A Barone, G Barr, AJ da Costa, FBG Bartoldus, R Barton, AE Bartos, P Basalaev, A Bassalat, A Basye, A Bates, RL Batista, SJ Batley, JR Battaglia, M Bauce, M Bauer, F Bawa, HS Beacham, JB Beattie, MD Beau, T Beauchemin, PH Beccherle, R Bechtle, P Beck, HP Becker, K Becker, M Beckingham, M Becot, C Beddall, AJ Beddall, A Bednyakov, VA Bee, CP Beemster, LJ Beermann, TA Begel, M Behr, JK Belanger-Champagne, C Bell, WH Bella, G Bellagamba, L Bellerive, A Bellomo, M Belotskiy, K Beltramello, O Benary, O Benchekroun, D Bender, M Bendtz, K Benekos, N Benhammou, Y Noccioli, EB Garcia, JAB Benjamin, DP Bensinger, JR Bentvelsen, S Beresford, L Beretta, M Berge, D Kuutmann, EB Berger, N Berghaus, F Beringer, J Bernard, C Bernard, NR Bernius, C Bernlochner, FU Berry, T Berta, P Bertella, C Bertoli, G Bertolucci, F Bertsche, C Bertsche, D Besana, MI Besjes, GJ Bylund, OB Bessner, M Besson, N Betancourt, C Bethke, S Bevan, AJ Bhimji, W Bianchi, RM Bianchini, L Bianco, M Biebel, O Biedermann, D Bieniek, SP Biglietti, M De Mendizabal, JB Bilokon, H Bindi, M Binet, S Bingul, A Bini, C Biondi, S Black, CW Black, JE Black, KM Blackburn, D Blair, RE Blanchard, JB Blanco, JE Blazek, T Bloch, I Blocker, C Blum, W Blumenschein, U Bobbink, GJ Bobrovnikov, VS Bocchetta, SS Bocci, A Bock, C Boehler, M Bogaerts, JA Bogavac, D Bogdanchikov, AG Bohm, C Boisvert, V Bold, T Boldea, V Boldyrev, AS Bomben, M Bona, M Boonekamp, M Borisov, A Borissov, G Borroni, S Bortfeldt, J Bortolotto, V Bos, K Boscherini, D Bosman, M Boudreau, J Bou, J Bouhova-Thacker, EV Boumediene, D Bourdarios, C Bousson, N Boveia, A Boyd, J Boyko, IR Bozic, I Bracinik, J Brandt, A Brandt, G Brandt, O Bratzler, U Brau, B Brau, JE Braun, HM Brazzale, SF Madden, WDB Brendlinger, K Brennan, AJ Brenner, L Brenner, R Bressler, S Bristow, K Bristow, TM Britton, D Britzger, D Brochu, FM Brock, I Brock, R Bronner, J Brooijmans, G Brooks, T Brooks, WK Brosamer, J Brost, E Brown, J de Renstrom, PAB Bruncko, D Bruneliere, R Bruni, A Bruni, G Bruschi, M Bruscino, N Bryngemark, L Buanes, T Buat, Q Buchholz, P Buckley, AG Buda, SI Budagov, IA Buehrer, F Bugge, L Bugge, MK Bulekov, O Bullock, D Burckhart, H Burdin, S Burgard, CD Burghgrave, B Burke, S Burmeister, I Busato, E Buscher, D Buscher, V Bussey, P Butler, JM Butt, AI Buttar, CM Butterworth, JM Butti, P Buttinger, W Buzatu, A Buzykaev, AR Urban, SC Caforio, D Cairo, VM Cakir, O Calace, N Calafiura, P Calandri, A Calderini, G Calfayan, P Caloba, LP Calvet, D Calvet, S Toro, RC Camarda, S Camarri, P Cameron, D Armadans, RC Campana, S Campanelli, M Campoverde, A Canale, V Canepa, A Bret, MC Cantero, J Cantrill, R Cao, T Garrido, MDMC Caprini, I Caprini, M Capua, M Caputo, R Cardarelli, R Cardillo, F Carli, T Carlino, G Carminati, L Caron, S Carquin, E Carrillo-Montoya, GD Carter, JR Carvalho, J Casadei, D Casado, MP Casolino, M Castaneda-Miranda, E Castelli, A Gimenez, VC Castro, NF Catastini, P Catinaccio, A Catmore, JR Cattai, A Caudron, J Cavaliere, V Cavalli, D Cavalli-Sforza, M Cavasinni, V Ceradini, F Cerio, BC Cerny, K Cerqueira, AS Cerri, A Cerrito, L Cerutti, F Cerv, M Cervelli, A Cetin, SA Chafaq, A Chakraborty, D Chalupkova, I Chang, P Chapman, JD Charlton, DG Chau, CC Barajas, CAC Cheatham, S Chegwidden, A Chekanov, S Chekulaev, SV Chelkov, GA Chelstowska, MA Chen, C Chen, H Chen, K Chen, L Chen, S Chen, X Chen, Y Cheng, HC Cheng, Y Cheplakov, A Cheremushkina, E El Moursli, RC Chernyatin, V Cheu, E Chevalier, L Chiarella, V Chiarelli, G Chiodini, G Chisholm, AS Chislett, RT Chitan, A Chizhov, MV Choi, K Chouridou, S Chow, BKB Christodoulou, V Chromek-Burckhart, D Chudoba, J Chuinard, AJ Chwastowski, JJ Chytka, L Ciapetti, G Ciftci, AK Cinca, D Cindro, V Cioara, IA Ciocio, A Cirotto, F Citron, ZH Ciubancan, M Clark, A Clark, BL Clark, PJ Clarke, RN Cleland, W Clement, C Coadou, Y Cobal, M Coccaro, A Cochran, J Coffey, L Cogan, JG Colasurdo, L Cole, B Cole, S Colijn, AP Collot, J Colombo, T Compostella, G Muino, PC Connell, SH Connelly, IA Consorti, V Constantinescu, S Conta, C Conti, G Conventi, F Cooke, M Cooper, BD Cooper-Sarkar, AM Cornelissen, T Corradi, M Corriveau, F Corso-Radu, A Cortes-Gonzalez, A Cortiana, G Costa, G Costa, MJ Costanzo, D Cote, D Cottin, G Cowan, G Cox, BE Cranmer, K Cree, G Crepe-Renaudin, S Crescioli, F Cribbs, WA Ortuzar, MC Cristinziani, M Croft, V Crosetti, G Donszelmann, TC Cummings, J Curatolo, M Cuthbert, C Czirr, H Czodrowski, P D'Auria, S D'Onofrio, M De Sousa, MJDCS Da Via, C Dabrowski, W Dafinca, A Dai, T Dale, O Dallaire, F Dallapiccola, C Dam, M Dandoy, JR Dang, NP Daniells, AC Danninger, M Hoffmann, MD Dao, V Darbo, G Darmora, S Dassoulas, J Dattagupta, A Davey, W David, C Davidek, T Davies, E Davies, M Davison, P Davygora, Y Dawe, E Dawson, I Daya-Ishmukhametova, RK De, K de Asmundis, R De Benedetti, A De Castro, S De Cecco, S De Groot, N de Jong, P De la Torre, H De Lorenzi, F De Pedis, D De Salvo, A De Sanctis, U De Santo, A De Regie, JBD Dearnaley, WJ Debbe, R Debenedetti, C Dedovich, DV Deigaard, I Del Peso, J Del Prete, T Delgove, D Deliot, F Delitzsch, CM Deliyergiyev, M Dell'Acqua, A Dell'Asta, L Dell'Orso, M Della Pietra, M della Volpe, D Delmastro, M Delsart, PA Deluca, C DeMarco, DA Demers, S Demichev, M Demilly, A Denisov, SP Derendarz, D Derkaoui, JE Derue, F Dervan, P Desch, K Deterre, C Deviveiros, PO Dewhurst, A Dhaliwal, S Di Ciaccio, A Di Ciaccio, L Di Domenico, A Di Donato, C Di Girolamo, A Di Girolamo, B Di Mattia, A Di Micco, B Di Nardo, R Di Simone, A Di Sipio, R Di Valentino, D Diaconu, C Diamond, M Dias, FA Diaz, MA Diehl, EB Dietrich, J Diglio, S Dimitrievska, A Dingfelder, J Dita, P Dita, S Dittus, F Djama, F Djobava, T Djuvsland, JI do Vale, MAB Dobos, D Dobre, M Doglioni, C Dohmae, T Dolejsi, J Dolezal, Z Dolgoshein, BA Donadelli, M Donati, S Dondero, P Donini, J Dopke, J Doria, A Dova, MT Doyle, AT Drechsler, E Dris, M Dubreuil, E Duchovni, E Duckeck, G Ducu, OA Duda, D Dudarev, A Duguid, L Uhrssen, MD Dunford, M Yildiz, HD Duren, M Durglishvili, A Duschinger, D Dyndal, M Eckardt, C Ecker, KM Edgar, RC Edson, W Edwards, NC Ehrenfeld, W Eifert, T Eigen, G Einsweiler, K Ekelof, T El Kacimi, M Ellert, M Elles, S Ellinghaus, F Elliot, AA Ellis, N Elmsheuser, J Elsing, M Emeliyanov, D Enari, Y Endner, OC Endo, M Erdmann, J Ereditato, A Ernis, G Ernst, J Ernst, M Errede, S Ertel, E Escalier, M Esch, H Escobar, C Esposito, B Etienvre, AI Etzion, E Evans, H Ezhilov, A Fabbri, L Facini, G Fakhrutdinov, RM Falciano, S Falla, RJ Faltova, J Fang, Y Fanti, M Farbin, A Farilla, A Farooque, T Farrell, S Farrington, SM Farthouat, P Fassi, F Fassnacht, P Fassouliotis, D Giannelli, MF Favareto, A Fayard, L Federic, P Fedin, OL Fedorko, W Feigl, S Feligioni, L Feng, C Feng, EJ Feng, H Fenyuk, AB Feremenga, L Martinez, PF Perez, SF Ferrando, J Ferrari, A Ferrari, P Ferrari, R de Lima, DEF Ferrer, A Ferrere, D Ferretti, C Parodi, AF Fiascaris, M Fiedler, F Filipcic, A Filipuzzi, M Filthaut, F Fincke-Keeler, M Finelli, KD Fiolhais, MCN Fiorini, L Firan, A Fischer, A Fischer, C Fischer, J Fisher, WC Fitzgerald, EA Flaschel, N Fleck, I Fleischmann, P Fleischmann, S Fletcher, GT Fletcher, G Fletcher, RRM Flick, T Floderus, A Castillo, LRF Flowerdew, MJ Formica, A Forti, A Fournier, D Fox, H Fracchia, S Francavilla, P Franchini, M Francis, D Franconi, L Franklin, M Frate, M Fraternali, M Freeborn, D French, ST Friedrich, F Froidevaux, D Frost, JA Fukunaga, C Torregrosa, EF Fulsom, BG Fusayasu, T Fuster, J Gabaldon, C Gabizon, O Gabrielli, A Gabrielli, A Gach, GP Gadatsch, S Gadomski, S Gagliardi, G Gagnon, P Galea, C Galhardo, B Gallas, EJ Gallop, BJ Gallus, P Galster, G Gan, KK Gao, J Gao, Y Gao, YS Walls, FMG Garberson, F Garcia, C Navarro, JEG Garcia-Sciveres, M Gardner, RW Garelli, N Garonne, V Gatti, C Gaudiello, A Gaudio, G Gaur, B Gauthier, L Gauzzi, P Gavrilenko, IL Gay, C Gaycken, G Gazis, EN Ge, P Gecse, Z Gee, CNP Geich-Gimbel, C Geisler, MP Gemme, C Genest, MH Gentile, S George, M George, S Gerbaudo, D Gershon, A Ghasemi, S Ghazlane, H Giacobbe, B Giagu, S Giangiobbe, V Giannetti, P Gibbard, B Gibson, SM Gilchriese, M Gillam, TPS Gillberg, D Gilles, G Gingrich, DM Giokaris, N Giordani, MP Giorgi, FM Giorgi, FM Giraud, PF Giromini, P Giugni, D Giuliani, C Giulini, M Gjelsten, BK Gkaitatzis, S Gkialas, I Gkougkousis, EL Gladilin, LK Glasman, C Glatzer, J Glaysher, PCF Glazov, A Goblirsch-Kolb, M Goddard, JR Godlewski, J Goldfarb, S Golling, T Golubkov, D Gomes, A Goncalo, R Da Costa, JGPF Gonella, L de la Hoz, SG Parra, GG Gonzalez-Sevilla, S Goossens, L Gorbounov, PA Gordon, HA Gorelov, I Gorini, B Gorini, E Gorisek, A Gornicki, E Goshaw, AT Gossling, C Gostkin, MI Goujdami, D Goussiou, AG Govender, N Gozani, E Grabas, HMX Graber, L Grabowska-Bold, I Gradin, POJ Grafstrom, P Grahn, KJ Gramling, J Gramstad, E Grancagnolo, S Gratchev, V Gray, HM Graziani, E Greenwood, ZD Grefe, C Gregersen, K Gregor, IM Grenier, P Griffiths, J Grillo, AA Grimm, K Grinstein, S Gris, P Grivaz, JF Grohs, JP Grohsjean, A Gross, E Grosse-Knetter, J Grossi, GC Grout, ZJ Guan, L Guenther, J Guescini, F Guest, D Gueta, O Guido, E Guillemin, T Guindon, S Gul, U Gumpert, C Guo, J Guo, Y Gupta, S Gustavino, G Gutierrez, P Ortiz, NGG Gutschow, C Guyot, C Gwenlan, C Gwilliam, CB Haas, A Haber, C Hadavand, HK Haddad, N Haefner, P Hagebock, S Hajduk, Z Hakobyan, H Haleem, M Haley, J Hall, D Halladjian, G Hallewell, GD Hamacher, K Hamal, P Hamano, K Hamilton, A Hamity, GN Hamnett, PG Han, L Hanagaki, K Hanawa, K Hance, M Hanke, P Hanna, R Hansen, JB Hansen, JD Hansen, MC Hansen, PH Hara, K Hard, AS Harenberg, T Hariri, F Harkusha, S Harrington, RD Harrison, PF Hartjes, F Hasegawa, M Hasegawa, Y Hasib, A Hassani, S Haug, S Hauser, R Hauswald, L Havranek, M Hawkes, CM Hawkings, RJ Hawkins, AD Hayashi, T Hayden, D Hays, CP Hays, JM Hayward, HS Haywood, SJ Head, SJ Heck, T Hedberg, V Heelan, L Heim, S Heim, T Heinemann, B Heinrich, L Hejbal, J Helary, L Hellman, S Hellmich, D Helsens, C Henderson, J Henderson, RCW Heng, Y Hengler, C Henkelmann, S Henrichs, A Correia, AMH Henrot-Versille, S Herbert, GH Jimenez, YH Herrberg-Schubert, R Herten, G Hertenberger, R Hervas, L Hesketh, GG Hessey, NP Hetherly, JW Hickling, R Higon-Rodriguez, E Hill, E Hill, JC Hiller, KH Hillier, SJ Hinchliffe, I Hines, E Hinman, RR Hirose, M Hirschbuehl, D Hobbs, J Hod, N Hodgkinson, MC Hodgson, P Hoecker, A Hoeferkamp, MR Hoenig, F Hohlfeld, M Hohn, D Holmes, TR Homann, M Hong, TM van Huysduynen, LH Hopkins, WH Horii, Y Horton, AJ Hostachy, JY Hou, S Hoummada, A Howard, J Howarth, J Hrabovsky, M Hristova, I Hrivnac, J Hryn'ova, T Hrynevich, A Hsu, C Hsu, PJ Hsu, SC Hu, D Hu, Q Hu, X Huang, Y Hubacek, Z Hubaut, F Huegging, F Huffman, TB Hughes, EW Hughes, G Huhtinen, M Hulsing, TA Huseynov, N Huston, J Huth, J Iacobucci, G Iakovidis, G Ibragimov, I Iconomidou-Fayard, L Ideal, E Idrissi, Z Iengo, P Igonkina, O Iizawa, T Ikegami, Y Ikematsu, K Ikeno, M Ilchenko, Y Iliadis, D Ilic, N Ince, T Introzzi, G Ioannou, P Iodice, M Iordanidou, K Ippolito, V Quiles, AI Isaksson, C Ishino, M Ishitsuka, M Ishmukhametov, R Issever, C Istin, S Ponce, JMI Iuppa, R Ivarsson, J Iwanski, W Iwasaki, H Izen, JM Izzo, V Jabbar, S Jackson, B Jackson, M Jackson, P Jaekel, MR Jain, V Jakobs, K Jakobsen, S Jakoubek, T Jakubek, J Jamin, DO Jana, DK Jansen, E Jansky, R Janssen, J Janus, M Jarlskog, G Javadov, N Javurek, T Jeanty, L Jejelava, J Jeng, GY Jennens, D Jenni, P Jentzsch, J Jeske, C Jezequel, S Ji, H Jia, J Jiang, Y Jiggins, S Pena, JJ Jin, S Jinaru, A Jinnouchi, O Joergensen, MD Johansson, P Johns, KA Jon-And, K Jones, G Jones, RWL Jones, TJ Jongmanns, J Jorge, PM Joshi, KD Jovicevic, J Ju, X Jung, CA Jussel, P Rozas, AJ Kaci, M Kaczmarska, A Kado, M Kagan, H Kagan, M Kahn, SJ Kajomovitz, E Kalderon, CW Kama, S Kamenshchikov, A Kanaya, N Kaneti, S Kantserov, VA Kanzaki, J Kaplan, B Kaplan, LS Kapliy, A Kar, D Karakostas, K Karamaoun, A Karastathis, N Kareem, MJ Karentzos, E Karnevskiy, M Karpov, SN Karpova, ZM Karthik, K Kartvelishvili, V Karyukhin, AN Kashif, L Kass, RD Kastanas, A Kataoka, Y Kato, C Katre, A Katzy, J Kawagoe, K Kawamoto, T Kawamura, G Kazama, S Kazanin, VF Keeler, R Kehoe, R Keller, JS Kempster, JJ Keoshkerian, H Kepka, O Kersevan, BP Kersten, S Keyes, RA Khalil-Zada, F Khandanyan, H Khanov, A Kharlamov, AG Khoo, TJ Khovanskiy, V Khramov, E Khubua, J Kido, S Kim, HY Kim, SH Kim, YK Kimura, N Kind, OM King, BT King, M King, SB Kirk, J Kiryunin, AE Kishimoto, T Kisielewska, D Kiss, F Kiuchi, K Kivernyk, O Kladiva, E Klein, MH Klein, M Klein, U Kleinknecht, K Klimek, P Klimentov, A Klingenberg, R Klinger, JA Klioutchnikova, T Kluge, EE Kluit, P Kluth, S Knapik, J Kneringer, E Knoops, EBFG Knue, A Kobayashi, A Kobayashi, D Kobayashi, T Kobel, M Kocian, M Kodys, P Koffas, T Kofferman, E Kogan, LA Kohlmann, S Kohout, Z Kohriki, T Koi, T Kolanoski, H Koletsou, I Komar, AA Komori, Y Kondo, T Kondrashova, N Koneke, K Konig, AC Kono, T Konoplich, R Konstantinidis, N Kopeliansky, R Koperny, S Kopke, L Kopp, AK Korcyl, K Kordas, K Korn, A Korol, AA Korolkov, I Korolkova, EV Kortner, O Kortner, S Kosek, T Kostyukhin, VV Kotov, VM Kotwal, A Kourkoumeli-Charalampidi, A Kourkoumelis, C Kouskoura, V Koutsman, A Kowalewski, R Kowalski, TZ Kozanecki, W Kozhin, AS Kramarenko, VA Kramberger, G Krasnopevtsev, D Krasny, MW Krasznahorkay, A Kraus, JK Kravchenko, A Kreiss, S Kretz, M Kretzschmar, J Kreutzfeldt, K Krieger, P Krizka, K Kroeninger, K Kroha, H Kroll, J Kroseberg, J Krstic, J Kruchonak, U Krugger, H Krumnack, N Kruse, A Kruse, MC Kruskal, M Kubota, T Kucuk, H Kuday, S Kuehn, S Kugel, A Kuger, F Kuhl, A Kuhl, T Kukhtin, V Kukla, R Kulchitsky, Y Kuleshov, S Kuna, M Kunigo, T Kupco, A Kurashige, H Kurochkin, YA Kus, V Kuwertz, ES Kuze, M Kvita, J Kwan, T Kyriazopoulos, D La Rosa, A Navarro, JLLR La Rotonda, L Lacasta, C Lacava, F Lacey, J Lacker, H Lacour, D Lacuesta, VR Ladygin, E Lafaye, R Laforge, B Lagouri, T Lai, S Lambourne, L Lammers, S Lampen, CL Lampl, W Lancon, E Landgraf, U Landon, MPJ Lang, VS Lange, JC Lankford, AJ Lanni, F Lantzsch, K Lanza, A Laplace, S Lapoire, C Laporte, JF Lari, T Manghi, FL Lassnig, M Laurelli, P Lavrijsen, W Law, AT Laycock, P Lazovich, T Le Dortz, O Le Guirriec, E Le Menedeu, E LeBlanc, M LeCompte, T Ledroit-Guillon, F Lee, CA Lee, SC Lee, L Lefebvre, G Lefebvre, M Legger, F Leggett, C Lehan, A Miotto, GL Lei, X Leight, WA Leisos, A Leister, AG Leite, MAL Leitner, R Lellouch, D Lemmer, B Leney, KJC Lenz, T Lenzi, B Leone, R Leone, S Leonidopoulos, C Leontsinis, S Leroy, C Lester, CG Levchenko, M Leveque, J Levin, D Levinson, LJ Levy, M Lewis, A Leyko, AM Leyton, M Li, B Li, H Li, HL Li, L Li, L Li, S Li, X Li, Y Liang, Z Liao, H Liberti, B Liblong, A Lichard, P Lie, K Liebal, J Liebig, W Limbach, C Limosani, A Lin, SC Lin, TH Linde, F Lindquist, BE Linnemann, JT Lipeles, E Lipniacka, A Lisovyi, M Liss, TM Lissauer, D Lister, A Litke, AM Liu, B Liu, D Liu, H Liu, J Liu, JB Liu, K Liu, L Liu, M Liu, Y Livan, M Lleres, A Merino, JL Lloyd, SL Lo Sterzo, F Lobodzinska, E Loch, P Lockman, WS Loebinger, FK Loevschall-Jensen, AE Loginov, A Lohse, T Lohwasser, K Lokajicek, M Long, BA Long, JD Long, RE Looper, KA Lopes, L Mateos, DL Paredes, BL Paz, IL Lorenz, J Martinez, NL Losada, M Losel, PJ Lou, X Lounis, A Love, J Love, PA Lu, N Lubatti, HJ Luci, C Lucotte, A Luehring, F Lukas, W Luminari, L Lundberg, O Lund-Jensen, B Lynn, D Lysak, R Lytken, E Ma, H Ma, LL Maccarrone, G Macchiolo, A Macdonald, CM Macek, B Miguens, JM Macina, D Madaffari, D Madar, R Maddocks, HJ Mader, WF Madsen, A Maeda, J Maeland, S Maeno, T Maevskiy, A Magradze, E Mahboubi, K Mahlstedt, J Maiani, C Maidantchik, C Maier, AA Maier, T Maio, A Majewski, S Makida, Y Makovec, N Malaescu, B Malecki, P Maleev, VP Malek, F Mallik, U Malon, D Malone, C Maltezos, S Malyshev, VM Malyukov, S Mamuzic, J Mancini, G Mandelli, B Mandelli, L Mandic, I Mandrysch, R Maneira, J Manfredini, A de Andrade, LM Ramos, JM Mann, A Manousakis-Katsikakis, A Mansoulie, B Mantifel, R Mantoani, M Mapelli, L March, L Marchiori, G Marcisovsky, M Marino, CP Marjanovic, M Marley, DE Marroquim, F Marsden, SP Marshall, Z Marti, LF Marti-Garcia, S Martin, B Martin, TA Martin, VJ dit Latour, BM Martinez, M Martin-Haugh, S Martoiu, VS Martyniuk, AC Marx, M Marzano, F Marzin, A Masetti, L Mashimo, T Mashinistov, R Masik, J Maslennikov, AL Massa, I Massa, L Mastrandrea, P Mastroberardino, A Masubuchi, T Attig, PM Mattmann, J Maurer, J Maxfield, SJ Maximov, DA Mazini, R Mazza, SM Mazzaferro, L Mc Goldrick, G Mc Kee, SP McCarn, A McCarthy, RL McCarthy, TG McCubbin, NA McFarlane, KW Mcfayden, JA Mchedlidze, G McMahon, SJ McPherson, RA Medinnis, M Meehan, S Mehlhase, S Mehta, A Meier, K Meineck, C Meirose, B Garcia, BRM Meloni, F Mengarelli, A Menke, S Meoni, E Mercurio, KM Mergelmeyer, S Mermod, P Merola, L Meroni, C Merritt, FS Messina, A Metcalfe, J Mete, AS Meyer, C Meyer, C Meyer, JP Meyer, J Theenhausen, HMZ Middleton, RP Miglioranzi, S Mijovic, L Mikenberg, G Mikestikova, M Mikuz, M Milesi, M Milic, A Miller, DW Mills, C Milov, A Milstead, DA Minaenko, AA Minami, Y Minashvili, IA Mincer, AI Mindur, B Mineev, M Ming, Y Mir, LM Mitani, T Mitrevski, J Mitsou, VA Miucci, A Miyagawa, PS Mjornmark, JU Moa, T Mochizuki, K Mohapatra, S Mohr, W Molander, S Moles-Valls, R Monden, R Monig, K Monini, C Monk, J Monnier, E Berlingen, JM Monticelli, F Monzani, S Moore, RW Morange, N Moreno, D Llacer, MM Morettini, P Mori, D Morii, M Morinaga, M Morisbak, V Moritz, S Morley, AK Mornacchi, G Morris, JD Mortensen, SS Morton, A Morvaj, L Mosidze, M Moss, J Motohashi, K Mount, R Mountricha, E Mouraviev, SV Moyse, EJW Muanza, S Mudd, RD Mueller, F Mueller, J Mueller, RSP Mueller, T Muenstermann, D Mullen, P Mullier, GA Quijada, JAM Murray, WJ Musheghyan, H Musto, E Myagkov, AG Myska, M Nachman, BP Nackenhorst, O Nadal, J Nagai, K Nagai, R Nagai, Y Nagano, K Nagarkar, A Nagasaka, Y Nagata, K Nagel, M Nagy, E Nairz, AM Nakahama, Y Nakamura, K Nakamura, T Nakano, I Namasivayam, H Garcia, RFN Narayan, R Villar, DIN Naumann, T Navarro, G Nayyar, R Neal, HA Nechaeva, PY Neep, TJ Nef, PD Negri, A Negrini, M Nektarijevic, S Nellist, C Nelson, A Nemecek, S Nemethy, P Nepomuceno, AA Nessi, M Neubauer, MS Neumann, M Neves, RM Nevski, P Newman, PR Nguyen, DH Nickerson, RB Nicolaidou, R Nicquevert, B Nielsen, J Nikiforou, N Nikiforov, A Nikolaenko, V Nikolic-Audit, I Nikolopoulos, K Nilsen, JK Nilsson, P Ninomiya, Y Nisati, A Nisius, R Nobe, T Nomachi, M Nomidis, I Nooney, T Norberg, S Nordberg, M Novgorodova, O Nowak, S Nozaki, M Nozka, L Ntekas, K Hanninger, GN Nunnemann, T Nurse, E Nuti, F O'Brien, BJ O'grady, F O'Neil, DC O'Shea, V Oakham, FG Oberlack, H Obermann, T Ocariz, J Ochi, A Ochoa, I Ochoa-Ricoux, JP Oda, S Odaka, S Ogren, H Oh, A Oh, SH Ohm, CC Ohman, H Oide, H Okamura, W Okawa, H Okumura, Y Okuyama, T Olariu, A Pino, SAO Damazio, DO Garcia, EO Olszewski, A Olszowska, J Onofre, A Onogi, K Onyisi, PUE Oram, CJ Oreglia, MJ Oren, Y Orestano, D Orlando, N Barrera, CO Orr, RS Osculati, B Ospanov, R Garzon, GOY Otono, H Ouchrif, M Ould-Saada, F Ouraou, A Oussoren, KP Ouyang, Q Ovcharova, A Owen, M Owen, RE Ozcan, VE Ozturk, N Pachal, K Pages, AP Aranda, CP Pagacova, M Griso, SP Paganis, E Paige, F Pais, P Pajchel, K Palacino, G Palestini, S Palka, M Pallin, D Palma, A Pan, YB Panagiotopoulou, E Pandini, CE Vazquez, JGP Pani, P Panitkin, S Pantea, D Paolozzi, L Papadopoulou, TD Papageorgiou, K Paramonov, A Hernandez, DP Parker, MA Parker, KA Parodi, F Parsons, JA Parzefall, U Pasqualucci, E Passaggio, S Pastore, F Pastore, F Pasztor, G Pataraia, S Patel, ND Pater, JR Pauly, T Pearce, J Pearson, B Pedersen, LE Pedersen, M Lopez, SP Pedro, R Peleganchuk, SV Pelikan, D Penc, O Peng, C Peng, H Penning, B Penwell, J Perepelitsa, DV Codina, EP Garcia-Estan, MTP Perini, L Pernegger, H Perrella, S Peschke, R Peshekhonov, VD Peters, K Peters, RFY Petersen, BA Petersen, TC Petit, E Petridis, A Petridou, C Petroff, P Petrolo, E Petrucci, F Pettersson, NE Pezoa, R Phillips, PW Piacquadio, G Pianori, E Picazio, A Piccaro, E Piccinini, M Pickering, MA Piegaia, R Pignotti, DT Pilcher, JE Pilkington, AD Pina, J Pinamonti, M Pinfold, JL Pingel, A Pires, S Pirumov, H Pitt, M Pizio, C Plazak, L Pleier, MA Pleskot, V Plotnikova, E Plucinski, P Pluth, D Poettgen, R Poggioli, L Pohl, D Polesello, G Poley, A Policicchio, A Polifka, R Polini, A Pollard, CS Polychronakos, V Pommes, K Pontecorvo, L Pope, BG Popeneciu, GA Popovic, DS Poppleton, A Pospisil, S Potamianos, K Potrap, IN Potter, CJ Potter, CT Poulard, G Poveda, J Pozdnyakov, V Pralavorio, P Pranko, A Prasad, S Prell, S Price, D Price, LE Primavera, M Prince, S Proissl, M Prokofiev, K Prokoshin, F Protopapadaki, E Protopopescu, S Proudfoot, J Przybycien, M Ptacek, E Puddu, D Pueschel, E Puldon, D Purohit, M Puzo, P Qian, J Qin, G Qin, Y Quadt, A Quarrie, DR Quayle, WB Queitsch-Maitland, M Quilty, D Raddum, S Radeka, V Radescu, V Radhakrishnan, SK Radlo, P Rados, P Ragusa, F Rahal, G Rajagopalan, S Rammensee, M Rangel-Smith, C Rauscher, F Rave, S Ravenscroft, T Raymond, M Read, AL Readioff, NP Rebuzzi, DM Redelbach, A Redlinger, G Reece, R Reeves, K Rehnisch, L Reichert, J Reisin, H Relich, M Rembser, C Ren, H Renaud, A Rescigno, M Resconi, S Rezanova, OL Reznicek, P Rezvani, R Richter, R Richter, S Richter-Was, E Ricken, O Ridel, M Rieck, P Riegel, CJ Rieger, J Rifki, O Rijssenbeek, M Rimoldi, A Rinaldi, L Ristic, B Ritsch, E Riu, I Rizatdinova, F Rizvi, E Robertson, H Robichaud-Veronneau, A Robinson, D Robinson, JEM Robson, A Roda, C Roe, S Rohne, O Rolli, S Romaniouk, A Romano, M Saez, SMR Adam, ER Rompotis, N Romaniouk, A Romano, M Saez, SMR Adam, ER Rompotis, N Ronzani, M Roos, L Ros, E Rosati, S Rosbach, K Rose, P Rosendahl, PL Rosenthal, O Rossetti, V Rossi, E Rossi, LP Rosten, JHN Rosten, R Rotaru, M Roth, I Rothberg, J Rousseau, D Royon, CR Rozanov, A Rozen, Y Ruan, X Rubbo, F Rubinskiy, I Rud, VI Rudolph, C Rudolph, MS Ruhr, F Ruiz-Martinez, A Rurikova, Z Rusakovich, NA Ruschke, A Russell, HL Rutherfoord, JP Ruthmann, N Ryabov, YF Rybar, M Rybkin, G Ryder, NC Saavedra, AF Sabato, G Sacerdoti, S Saddique, A Sadrozinski, HFW Sadykov, R Tehrani, FS Sahinsoy, M Saimpert, M Saito, T Sakamoto, H Sakurai, Y Salamanna, G Salamon, A Loyola, JES Saleem, M Salek, D De Bruin, PHS Salihagic, D Salnikov, A Salt, J Salvatore, D Salvatore, F Salvucci, A Salzburger, A Sammel, D Sampsonidis, D Sanchez, A Sanchez, J Martinez, VS Sandaker, H Sandbach, RL Sander, HG Sanders, MP Sandhoff, M Sandoval, C Sandstroem, R Sankey, DPC Sannino, M Sansoni, A Santoni, C Santonico, R Santos, H Castillo, IS Sapp, K Sapronov, A Saraiva, JG Sarrazin, B Sasaki, O Sasaki, Y Sato, K Sauvage, G Sauvan, E Savage, G Savard, P Sawyer, C Sawyer, L Saxon, J Sbarra, C Sbrizzi, A Scanlon, T Scannicchio, DA Scarcella, M Scarfone, V Schaarschmidt, J Schacht, P Schaefer, D Schaefer, R Schaeffer, J Schaepe, S Schaetzel, S Schafer, U Schaffer, AC Schaile, D Schamberger, RD Scharf, V Schegelsky, VA Scheirich, D Schernau, M Schiavi, C Schillo, C Schioppa, M Schlenker, S Schmieden, K Schmitt, C Schmitt, S Schmitt, S Schneider, B Schnellbach, YJ Schnoor, U Schoeffel, L Schoening, A Schoenrock, BD Schopf, E Schorlemmer, ALS Schott, M Schouten, D Schovancova, J Schramm, S Schreyer, M Schroeder, C Schuh, N Schultens, MJ Schultz-Coulon, HC Schulz, H Schumacher, M Schumm, BA Schune, P Schwanenberger, C Schwartzman, A Schwarz, TA Schwegler, P Schweiger, H Schwemling, P Schwienhorst, R Schwindling, J Schwindt, T Sciacca, FG Scifo, E Sciolla, G Scuri, F Scutti, F Searcy, J Sedov, G Sedykh, E Seema, P Seidel, SC Seiden, A Seifert, F Seixas, JM Sekhniaidze, G Sekhon, K Sekula, SJ Seliverstov, DM Semprini-Cesari, N Serfon, C Serin, L Serkin, L Serre, T Sessa, M Seuster, R Severini, H Sfiligoj, T Sforza, F Sfyrla, A Shabalina, E Shamim, M Shan, LY Shang, R Shank, JT Shapiro, M Shatalov, PB Shaw, K Shaw, SM Shcherbakova, A Shehu, CY Sherwood, P Shi, L Shimizu, S Shimmin, CO Shimojima, M Shiyakova, M Shmeleva, A Saadi, DS Shochet, MJ Shojaii, S Shrestha, S Shulga, E Shupe, MA Shushkevich, S Sicho, P Sidebo, PE Sidiropoulou, O Sidorov, D Sidoti, A Siegert, F Sijacki, D Silva, J Silver, Y Silverstein, SB Simak, V Simard, O Simic, L Simion, S Simioni, E Simmons, B Simon, D Sinervo, P Sinev, NB Sioli, M Siragusa, G Sisakyan, AN Sivoklokov, SY Sjolin, J Sjursen, TB Skinner, MB Skottowe, HP Skubic, P Slater, M Slavicek, T Slawinska, M Sliwa, K Smakhtin, V Smart, BH Smestad, L Smirnov, SY Smirnov, Y Smirnova, LN Smirnova, O Smith, MNK Smith, RW Smolek, K Snesarev, AA Snidero, G Snyder, S Sobie, R Socher, F Soffer, A Soh, DA Sokhrannyi, G Solans, CA Solar, M Solc, J Soldatov, EY Soldevila, U Solodkov, AA Soloshenko, A Solovyanov, OV Solovyev, V Sommer, P Song, HY Soni, N Sood, A Sopczak, A Sopko, B Sopko, V Sorin, V Sosa, D Sosebee, M Sotiropoulou, CL Soualah, R Soukharev, AM South, D Sowden, BC Spagnolo, S Spalla, M Spangenberg, M Spano, F Spearman, WR Sperlich, D Spettel, F Spighi, R Spigo, G Spiller, LA Spousta, M Spreitzer, T St Denis, RD Stabile, A Staerz, S Stahlman, J Stamen, R Stamm, S Stanecka, E Stanescu, C Stanescu-Bellu, M Stanitzki, MM Stapnes, S Starchenko, EA Stark, J Staroba, P Starovoitov, P Staszewski, R Steinberg, P Stelzer, B Stelzer, HJ Stelzer-Chilton, O Stenzel, H Stewart, GA Stillings, JA Stockton, MC Stoebe, M Stoicea, G Stolte, P Stonjek, S Stradling, AR Straessner, A Stramaglia, ME Strandberg, J Strandberg, S Strandlie, A Strauss, E Strauss, M Strizenec, P Strohmer, R Strom, DM Stroynowski, R Strubig, A Stucci, SA Stugu, B Styles, NA Su, D Su, J Subramaniam, R Succurro, A Sugaya, Y Suk, M Sulin, VV Sultansoy, S Sumida, T Sun, S Sun, X Sundermann, JE Suruliz, K Susinno, G Sutton, MR Suzuki, S Svatos, M Swiatlowski, M Sykora, I Sykora, T Ta, D Taccini, C Tackmann, K Taenzer, J Taffard, A Rout, RTF Taiblum, N Takai, H Takashima, R Takeda, H Takeshita, T Takubo, Y Talby, M Talyshev, AA Tam, JYC Tan, KG Tanaka, J Tanaka, R Tanaka, S Tannenwald, BB Tannoury, N Tapprogge, S Tarem, S Tarrade, F Tartarelli, GF Tas, P Tasevsky, M Tashiro, T Tassi, E Delgado, AT Tayalati, Y Taylor, FE Taylor, GN Taylor, PTE Taylor, W Teischinger, FA Castanheira, MTD Teixeira-Dias, P Temming, KK Temple, D Ten Kate, H Teng, PK Teoh, JJ Tepel, F Terada, S Terashi, K Terron, J Terzo, S Testa, M Teuscher, RJ Theveneaux-Pelzer, T Thomas, JP Thomas-Wilsker, J Thompson, EN Thompson, PD Thompson, RJ Thompson, AS Thomsen, LA Thomson, E Thomson, M Thun, RP Tibbetts, MJ Torres, RET Tikhomirov, VO Tikhonov, YA Timoshenko, S Tiouchichine, E Tipton, P Tisserant, S Todome, K Todorov, T Todorova-Nova, S Tojo, J Tokar, S Tokushuku, K Tollefson, K Tolley, E Tomlinson, L Tomoto, M Tompkins, L Toms, K Torrence, E Torres, H Pastor, ET Toth, J Touchard, F Tovey, DR Trefzger, T Tremblet, L Tricoli, A Trigger, IM Trincaz-Duvoid, S Tripiana, MF Trischuk, W Trocme, B Troncon, C Trottier-McDonald, M Trovatelli, M True, P Truong, L Trzebinski, M Trzupek, A Tsarouchas, C Tseng, JCL Tsiareshka, PV Tsionou, D Tsipolitis, G Tsirintanis, N Tsiskaridze, S Tsiskaridze, V Tskhadadze, EG Tsukerman, II Tsulaia, V Tsuno, S Tsybychev, D Tudorache, A Tudorache, V Tuna, AN Tupputi, SA Turchikhin, S Turecek, D Turra, R Turvey, AJ Tuts, PM Tykhonov, A Tylmad, M Tyndel, M Ueda, I Ueno, R Ughetto, M Ugland, M Ukegawa, F Unal, G Undrus, A Unel, G Ungaro, FC Unno, Y Unverdorben, C Urban, J Urquijo, P Urrejola, P Usai, G Usanova, A Vacavant, L Vacek, V Vachon, B Valderanis, C Valencic, N Valentinetti, S Valero, A Valery, L Valkar, S Gallego, EV Vallecorsa, S Ferrer, JAV Van Den Wollenberg, W Van der Deijl, PC van der Geer, R van der Graaf, H van Eldik, N van Gemmeren, P Van Nieuwkoop, J van Vulpen, I van Woerden, MC Vanadia, M Vandelli, W Vanguri, R Vaniachine, A Vannucci, F Vardanyan, G Vari, R Varnes, EW Varol, T Varouchas, D Vartapetian, A Varvell, KE Vazeille, F Schroeder, TV Veatch, J Veloce, LM Veloso, F Velz, T Veneziano, S Ventura, A Ventura, D Venturi, M Venturi, N Venturini, A Vercesi, V Verducci, M Verkerke, W Vermeulen, JC Vest, A Vetterli, MC Viazlo, O Vichou, I Vickey, T Boeriu, OEV Viehhauser, GHA Viel, S Vigne, R Villa, M Perez, MV Vilucchi, E Vincter, MG Vinogradov, VB Vivarelli, I Vaque, FV Vlachos, S Vladoiu, D Vlasak, M Vogel, M Vokac, P Volpi, G Volpi, M von der Schmitt, H von Radziewski, H von Toerne, E Vorobel, V Vorobev, K Vos, M Voss, R Vossebeld, JH Vranjes, N Milosavljevic, MV Vrba, V Vreeswijk, M Vuillermet, R Vukotic, I Vykydal, Z Wagner, P Wagner, W Wahlberg, H Wahrmund, S Wakabayashi, J Walder, J Walker, R Walkowiak, W Wang, C Wang, F Wang, H Wang, H Wang, J Wang, J Wang, K Wang, R Wang, SM Wang, T Wang, T Wang, X Wanotayaroj, C Warburton, A Ward, CP Wardrope, DR Washbrook, A Wasicki, C Watkins, PM Watson, AT Watson, IJ Watson, MF Watts, G Watts, S Waugh, BM Webb, S Weber, MS Weber, SW Webster, JS Weidberg, AR Weinert, B Weingarten, J Weiser, C Weits, H Wells, PS Wenaus, T Wengler, T Wenig, S Wermes, N Werner, M Werner, P Wessels, M Wetter, J Whalen, K Wharton, AM White, A White, MJ White, R White, S Whiteson, D Wickens, FJ Wiedenmann, W Wielers, M Wienemann, P Wiglesworth, C Wiik-Fuchs, LAM Wildauer, A Wilkens, HG Williams, HH Williams, S Willis, C Willocq, S Wilson, A Wilson, JA Wingerter-Seez, I Winklmeier, F Winter, BT Wittgen, M Wittkowski, J Wollstadt, SJ Wolter, MW Wolters, H Wosiek, BK Wotschack, J Woudstra, MJ Wozniak, KW Wu, M Wu, M Wu, SL Wu, X Wu, Y Wyatt, TR Wynne, BM Xella, S Xu, D Xu, L Yabsley, B Yacoob, S Yakabe, R Yamada, M Yamaguchi, D Yamaguchi, Y Yamamoto, A Yamamoto, S Yamanaka, T Yamauchi, K Yamazaki, Y Yan, Z Yang, H Yang, H Yang, Y Yao, WM Yasu, Y Yatsenko, E Wong, KHY Ye, J Ye, S Yeletskikh, I Yen, AL Yildirim, E Yorita, K Yoshida, R Yoshihara, K Young, C Young, CJS Youssef, S Yu, DR Yu, J Yu, JM Yu, J Yuan, L Yuen, SPY Yurkewicz, A Yusuff, I Zabinski, B Zaidan, R Zaitsev, AM Zalieckas, J Zaman, A Zambito, S Zanello, L Zanzi, D Zeitnitz, C Zeman, M Zemla, A Zeng, Q Zengel, K Zenin, O Zenis, T Zerwas, D Zhang, D Zhang, F Zhang, H Zhang, J Zhang, L Zhang, R Zhang, X Zhang, Z Zhao, X Zhao, Y Zhao, Z Zhemchugov, A Zhong, J Zhou, B Zhou, C Zhou, L Zhou, L Zhou, M Zhou, N Zhu, CG Zhu, H Zhu, J Zhu, Y Zhuang, X Zhukov, K Zibell, A Zieminska, D Zimine, NI Zimmermann, C Zimmermann, S Zinonos, Z Zinser, M Ziolkowski, M Zivkovic, L Zobernig, G Zoccoli, A zur Nedden, M Zurzolo, G Zwalinski, L AF Aad, G. Abbott, B. Abdallah, J. Abdinov, O. Aben, R. Abolins, M. AbouZeid, O. S. Abramowicz, H. Abreu, H. Abreu, R. Abulaiti, Y. Acharya, B. S. Adamczyk, L. Adams, D. L. Adelman, J. Adomeit, S. Adye, T. Aff older, A. A. Agatonovic-Jovin, T. Agricola, J. Aguilar-Saavedra, J. A. Ahlen, S. P. Ahmadov, F. Aielli, G. Akerstedt, H. Akesson, T. P. A. Akimov, A. V. Alberghi, G. L. Albert, J. Albrand, S. Verzini, M. J. Alconada Aleksa, M. Aleksandrov, I. N. Alexa, G. Alexander, G. Alexopoulos, T. Alhroob, M. Alimonti, G. Alio, L. Alison, J. Alkire, S. P. Allbrooke, B. M. M. Allport, P. P. Aloisio, A. Alonso, A. Alonso, F. Alpigiani, C. Altheimer, A. Alvarez Gonzalez, B. Alvarez Piqueras, D. Alviggi, M. G. Amadio, B. T. Amako, K. Coutinho, Y. Amaral Amelung, C. Amidei, D. Dos Santos, S. P. Amor Amorim, A. Amoroso, S. Amram, N. Amundsen, G. Anastopoulos, C. Ancu, L. S. Andari, N. Andeen, T. Anders, C. F. Anders, G. Anders, J. K. Anderson, K. J. Andreazza, A. Andrei, V. Angelidakis, S. Angelozzi, I. Anger, P. Angerami, A. Anghinolfi, F. Anisenkov, A. V. Anjos, N. Annovi, A. Antonelli, M. Antonov, A. Antos, J. Anulli, F. Aoki, M. Bella, L. Aperio Arabidze, G. Arai, Y. Araque, J. P. Arce, A. T. H. Arduh, F. A. Arguin, J-F. Argyropoulos, S. Arik, M. Armbruster, A. J. Arnaez, O. Arnal, V. Arnold, H. Arratia, M. Arslan, O. Artamonov, A. Artoni, G. Asai, S. Asbah, N. Ashkenazi, A. Asman, B. Asquith, L. Assamagan, K. Astalos, R. Atkinson, M. Atlay, N. B. Augsten, K. Aurousseau, M. Avolio, G. Axen, B. Ayoub, M. K. Azuelos, G. Baak, M. A. Baas, A. E. Baca, M. J. Bacci, C. Bachacou, H. Bachas, K. Backes, M. Backhaus, M. Bagiacchi, P. Bagnaia, P. Bai, Y. Bain, T. Baines, J. T. Baker, O. K. Baldin, E. M. Balek, P. Balestri, T. Balli, F. Banas, E. Banerjee, Sw. Bannoura, A. A. E. Bansil, H. S. Barak, L. Barberio, E. L. Barberis, D. Barbero, M. Barillari, T. Barisonzi, M. Barklow, T. Barlow, N. Barnes, S. L. Barnett, B. M. Barnett, R. M. Barnovska, Z. Baroncelli, A. Barone, G. Barr, A. J. da Costa, F. Barreiro Guimaraes Bartoldus, R. Barton, A. E. Bartos, P. Basalaev, A. Bassalat, A. Basye, A. Bates, R. L. Batista, S. J. Batley, J. R. Battaglia, M. Bauce, M. Bauer, F. Bawa, H. S. Beacham, J. B. Beattie, M. D. Beau, T. Beauchemin, P. H. Beccherle, R. Bechtle, P. Beck, H. P. Becker, K. Becker, M. Beckingham, M. Becot, C. Beddall, A. J. Beddall, A. Bednyakov, V. A. Bee, C. P. Beemster, L. J. Beermann, T. A. Begel, M. Behr, J. K. Belanger-Champagne, C. Bell, W. H. Bella, G. Bellagamba, L. Bellerive, A. Bellomo, M. Belotskiy, K. Beltramello, O. Benary, O. Benchekroun, D. Bender, M. Bendtz, K. Benekos, N. Benhammou, Y. Noccioli, E. Benhar Garcia, J. A. Benitez Benjamin, D. P. Bensinger, J. R. Bentvelsen, S. Beresford, L. Beretta, M. Berge, D. Kuutmann, E. Bergeaas Berger, N. Berghaus, F. Beringer, J. Bernard, C. Bernard, N. R. Bernius, C. Bernlochner, F. U. Berry, T. Berta, P. Bertella, C. Bertoli, G. Bertolucci, F. Bertsche, C. Bertsche, D. Besana, M. I. Besjes, G. J. Bylund, O. Bessidskaia Bessner, M. Besson, N. Betancourt, C. Bethke, S. Bevan, A. J. Bhimji, W. Bianchi, R. M. Bianchini, L. Bianco, M. Biebel, O. Biedermann, D. Bieniek, S. P. Biglietti, M. De Mendizabal, J. Bilbao Bilokon, H. Bindi, M. Binet, S. Bingul, A. Bini, C. Biondi, S. Black, C. W. Black, J. E. Black, K. M. Blackburn, D. Blair, R. E. Blanchard, J. -B. Blanco, J. E. Blazek, T. Bloch, I. Blocker, C. Blum, W. Blumenschein, U. Bobbink, G. J. Bobrovnikov, V. S. Bocchetta, S. S. Bocci, A. Bock, C. Boehler, M. Bogaerts, J. A. Bogavac, D. Bogdanchikov, A. G. Bohm, C. Boisvert, V. Bold, T. Boldea, V. Boldyrev, A. S. Bomben, M. Bona, M. Boonekamp, M. Borisov, A. Borissov, G. Borroni, S. Bortfeldt, J. Bortolotto, V. Bos, K. Boscherini, D. Bosman, M. Boudreau, J. Bou, J. Bouhova-Thacker, E. V. Boumediene, D. Bourdarios, C. Bousson, N. Boveia, A. Boyd, J. Boyko, I. R. Bozic, I. Bracinik, J. Brandt, A. Brandt, G. Brandt, O. Bratzler, U. Brau, B. Brau, J. E. Braun, H. M. Brazzale, S. F. Madden, W. D. Breaden Brendlinger, K. Brennan, A. J. Brenner, L. Brenner, R. Bressler, S. Bristow, K. Bristow, T. M. Britton, D. Britzger, D. Brochu, F. M. Brock, I. Brock, R. Bronner, J. Brooijmans, G. Brooks, T. Brooks, W. K. Brosamer, J. Brost, E. Brown, J. de Renstrom, P. A. Bruckman Bruncko, D. Bruneliere, R. Bruni, A. Bruni, G. Bruschi, M. Bruscino, N. Bryngemark, L. Buanes, T. Buat, Q. Buchholz, P. Buckley, A. G. Buda, S. I. Budagov, I. A. Buehrer, F. Bugge, L. Bugge, M. K. Bulekov, O. Bullock, D. Burckhart, H. Burdin, S. Burgard, C. D. Burghgrave, B. Burke, S. Burmeister, I. Busato, E. Buescher, D. Buescher, V. Bussey, P. Butler, J. M. Butt, A. I. Buttar, C. M. Butterworth, J. M. Butti, P. Buttinger, W. Buzatu, A. Buzykaev, A. R. Urban, S. Cabrera Caforio, D. Cairo, V. M. Cakir, O. Calace, N. Calafiura, P. Calandri, A. Calderini, G. Calfayan, P. Caloba, L. P. Calvet, D. Calvet, S. Toro, R. Camacho Camarda, S. Camarri, P. Cameron, D. Armadans, R. Caminal Campana, S. Campanelli, M. Campoverde, A. Canale, V. Canepa, A. Bret, M. Cano Cantero, J. Cantrill, R. Cao, T. Garrido, M. D. M. Capeans Caprini, I. Caprini, M. Capua, M. Caputo, R. Cardarelli, R. Cardillo, F. Carli, T. Carlino, G. Carminati, L. Caron, S. Carquin, E. Carrillo-Montoya, G. D. Carter, J. R. Carvalho, J. Casadei, D. Casado, M. P. Casolino, M. Castaneda-Miranda, E. Castelli, A. Gimenez, V. Castillo Castro, N. F. Catastini, P. Catinaccio, A. Catmore, J. R. Cattai, A. Caudron, J. Cavaliere, V. Cavalli, D. Cavalli-Sforza, M. Cavasinni, V. Ceradini, F. Cerio, B. C. Cerny, K. Cerqueira, A. S. Cerri, A. Cerrito, L. Cerutti, F. Cerv, M. Cervelli, A. Cetin, S. A. Chafaq, A. Chakraborty, D. Chalupkova, I. Chang, P. Chapman, J. D. Charlton, D. G. Chau, C. C. Barajas, C. A. Chavez Cheatham, S. Chegwidden, A. Chekanov, S. Chekulaev, S. V. Chelkov, G. A. Chelstowska, M. A. Chen, C. Chen, H. Chen, K. Chen, L. Chen, S. Chen, X. Chen, Y. Cheng, H. C. Cheng, Y. Cheplakov, A. Cheremushkina, E. El Moursli, R. Cherkaoui Chernyatin, V. Cheu, E. Chevalier, L. Chiarella, V. Chiarelli, G. Chiodini, G. Chisholm, A. S. Chislett, R. T. Chitan, A. Chizhov, M. V. Choi, K. Chouridou, S. Chow, B. K. B. Christodoulou, V. Chromek-Burckhart, D. Chudoba, J. Chuinard, A. J. Chwastowski, J. J. Chytka, L. Ciapetti, G. Ciftci, A. K. Cinca, D. Cindro, V. Cioara, I. A. Ciocio, A. Cirotto, F. Citron, Z. H. Ciubancan, M. Clark, A. Clark, B. L. Clark, P. J. Clarke, R. N. Cleland, W. Clement, C. Coadou, Y. Cobal, M. Coccaro, A. Cochran, J. Coffey, L. Cogan, J. G. Colasurdo, L. Cole, B. Cole, S. Colijn, A. P. Collot, J. Colombo, T. Compostella, G. Muino, P. Conde Connell, S. H. Connelly, I. A. Consorti, V. Constantinescu, S. Conta, C. Conti, G. Conventi, F. Cooke, M. Cooper, B. D. Cooper-Sarkar, A. M. Cornelissen, T. Corradi, M. Corriveau, F. Corso-Radu, A. Cortes-Gonzalez, A. Cortiana, G. Costa, G. Costa, M. J. Costanzo, D. Cote, D. Cottin, G. Cowan, G. Cox, B. E. Cranmer, K. Cree, G. Crepe-Renaudin, S. Crescioli, F. Cribbs, W. A. Ortuzar, M. Crispin Cristinziani, M. Croft, V. Crosetti, G. Donszelmann, T. Cuhadar Cummings, J. Curatolo, M. Cuthbert, C. Czirr, H. Czodrowski, P. D'Auria, S. D'Onofrio, M. De Sousa, M. J. Da Cunha Sargedas Da Via, C. Dabrowski, W. Dafinca, A. Dai, T. Dale, O. Dallaire, F. Dallapiccola, C. Dam, M. Dandoy, J. R. Dang, N. P. Daniells, A. C. Danninger, M. Hoffmann, M. Dano Dao, V. Darbo, G. Darmora, S. Dassoulas, J. Dattagupta, A. Davey, W. David, C. Davidek, T. Davies, E. Davies, M. Davison, P. Davygora, Y. Dawe, E. Dawson, I. Daya-Ishmukhametova, R. K. De, K. de Asmundis, R. De Benedetti, A. De Castro, S. De Cecco, S. De Groot, N. de Jong, P. De la Torre, H. De Lorenzi, F. De Pedis, D. De Salvo, A. De Sanctis, U. De Santo, A. De Regie, J. B. De Vivie Dearnaley, W. J. Debbe, R. Debenedetti, C. Dedovich, D. V. Deigaard, I. Del Peso, J. Del Prete, T. Delgove, D. Deliot, F. Delitzsch, C. M. Deliyergiyev, M. Dell'Acqua, A. Dell'Asta, L. Dell'Orso, M. Della Pietra, M. della Volpe, D. Delmastro, M. Delsart, P. A. Deluca, C. DeMarco, D. A. Demers, S. Demichev, M. Demilly, A. Denisov, S. P. Derendarz, D. Derkaoui, J. E. Derue, F. Dervan, P. Desch, K. Deterre, C. Deviveiros, P. O. Dewhurst, A. Dhaliwal, S. Di Ciaccio, A. Di Ciaccio, L. Di Domenico, A. Di Donato, C. Di Girolamo, A. Di Girolamo, B. Di Mattia, A. Di Micco, B. Di Nardo, R. Di Simone, A. Di Sipio, R. Di Valentino, D. Diaconu, C. Diamond, M. Dias, F. A. Diaz, M. A. Diehl, E. B. Dietrich, J. Diglio, S. Dimitrievska, A. Dingfelder, J. Dita, P. Dita, S. Dittus, F. Djama, F. Djobava, T. Djuvsland, J. I. do Vale, M. A. B. Dobos, D. Dobre, M. Doglioni, C. Dohmae, T. Dolejsi, J. Dolezal, Z. Dolgoshein, B. A. Donadelli, M. Donati, S. Dondero, P. Donini, J. Dopke, J. Doria, A. Dova, M. T. Doyle, A. T. Drechsler, E. Dris, M. Dubreuil, E. Duchovni, E. Duckeck, G. Ducu, O. A. Duda, D. Dudarev, A. Duguid, L. Uhrssen, M. D. Dunford, M. Yildiz, H. Duran Dueren, M. Durglishvili, A. Duschinger, D. Dyndal, M. Eckardt, C. Ecker, K. M. Edgar, R. C. Edson, W. Edwards, N. C. Ehrenfeld, W. Eifert, T. Eigen, G. Einsweiler, K. Ekelof, T. El Kacimi, M. Ellert, M. Elles, S. Ellinghaus, F. Elliot, A. A. Ellis, N. Elmsheuser, J. Elsing, M. Emeliyanov, D. Enari, Y. Endner, O. C. Endo, M. Erdmann, J. Ereditato, A. Ernis, G. Ernst, J. Ernst, M. Errede, S. Ertel, E. Escalier, M. Esch, H. Escobar, C. Esposito, B. Etienvre, A. I. Etzion, E. Evans, H. Ezhilov, A. Fabbri, L. Facini, G. Fakhrutdinov, R. M. Falciano, S. Falla, R. J. Faltova, J. Fang, Y. Fanti, M. Farbin, A. Farilla, A. Farooque, T. Farrell, S. Farrington, S. M. Farthouat, P. Fassi, F. Fassnacht, P. Fassouliotis, D. Giannelli, M. Faucci Favareto, A. Fayard, L. Federic, P. Fedin, O. L. Fedorko, W. Feigl, S. Feligioni, L. Feng, C. Feng, E. J. Feng, H. Fenyuk, A. B. Feremenga, L. Martinez, P. Fernandez Perez, S. Fernandez Ferrando, J. Ferrari, A. Ferrari, P. Ferrari, R. de Lima, D. E. Ferreira Ferrer, A. Ferrere, D. Ferretti, C. Parodi, A. Ferretto Fiascaris, M. Fiedler, F. Filipcic, A. Filipuzzi, M. Filthaut, F. Fincke-Keeler, M. Finelli, K. D. Fiolhais, M. C. N. Fiorini, L. Firan, A. Fischer, A. Fischer, C. Fischer, J. Fisher, W. C. Fitzgerald, E. A. Flaschel, N. Fleck, I. Fleischmann, P. Fleischmann, S. Fletcher, G. T. Fletcher, G. Fletcher, R. R. M. Flick, T. Floderus, A. Castillo, L. R. Flores Flowerdew, M. J. Formica, A. Forti, A. Fournier, D. Fox, H. Fracchia, S. Francavilla, P. Franchini, M. Francis, D. Franconi, L. Franklin, M. Frate, M. Fraternali, M. Freeborn, D. French, S. T. Friedrich, F. Froidevaux, D. Frost, J. A. Fukunaga, C. Torregrosa, E. Fullana Fulsom, B. G. Fusayasu, T. Fuster, J. Gabaldon, C. Gabizon, O. Gabrielli, A. Gabrielli, A. Gach, G. P. Gadatsch, S. Gadomski, S. Gagliardi, G. Gagnon, P. Galea, C. Galhardo, B. Gallas, E. J. Gallop, B. J. Gallus, P. Galster, G. Gan, K. K. Gao, J. Gao, Y. Gao, Y. S. Walls, F. M. Garay Garberson, F. Garcia, C. Navarro, J. E. Garcia Garcia-Sciveres, M. Gardner, R. W. Garelli, N. Garonne, V. Gatti, C. Gaudiello, A. Gaudio, G. Gaur, B. Gauthier, L. Gauzzi, P. Gavrilenko, I. L. Gay, C. Gaycken, G. Gazis, E. N. Ge, P. Gecse, Z. Gee, C. N. P. Geich-Gimbel, Ch. Geisler, M. P. Gemme, C. Genest, M. H. Gentile, S. George, M. George, S. Gerbaudo, D. Gershon, A. Ghasemi, S. Ghazlane, H. Giacobbe, B. Giagu, S. Giangiobbe, V. Giannetti, P. Gibbard, B. Gibson, S. M. Gilchriese, M. Gillam, T. P. S. Gillberg, D. Gilles, G. Gingrich, D. M. Giokaris, N. Giordani, M. P. Giorgi, F. M. Giorgi, F. M. Giraud, P. F. Giromini, P. Giugni, D. Giuliani, C. Giulini, M. Gjelsten, B. K. Gkaitatzis, S. Gkialas, I. Gkougkousis, E. L. Gladilin, L. K. Glasman, C. Glatzer, J. Glaysher, P. C. F. Glazov, A. Goblirsch-Kolb, M. Goddard, J. R. Godlewski, J. Goldfarb, S. Golling, T. Golubkov, D. Gomes, A. Goncalo, R. Firmino Da Costa, J. Goncalves Pinto Gonella, L. Gonzalez de la Hoz, S. Gonzalez Parra, G. Gonzalez-Sevilla, S. Goossens, L. Gorbounov, P. A. Gordon, H. A. Gorelov, I. Gorini, B. Gorini, E. Gorisek, A. Gornicki, E. Goshaw, A. T. Goessling, C. Gostkin, M. I. Goujdami, D. Goussiou, A. G. Govender, N. Gozani, E. Grabas, H. M. X. Graber, L. Grabowska-Bold, I. Gradin, P. O. J. Grafstrom, P. Grahn, K-J. Gramling, J. Gramstad, E. Grancagnolo, S. Gratchev, V. Gray, H. M. Graziani, E. Greenwood, Z. D. Grefe, C. Gregersen, K. Gregor, I. M. Grenier, P. Griffiths, J. Grillo, A. A. Grimm, K. Grinstein, S. Gris, Ph. Grivaz, J-F. Grohs, J. P. Grohsjean, A. Gross, E. Grosse-Knetter, J. Grossi, G. C. Grout, Z. J. Guan, L. Guenther, J. Guescini, F. Guest, D. Gueta, O. Guido, E. Guillemin, T. Guindon, S. Gul, U. Gumpert, C. Guo, J. Guo, Y. Gupta, S. Gustavino, G. Gutierrez, P. Ortiz, N. G. Gutierrez Gutschow, C. Guyot, C. Gwenlan, C. Gwilliam, C. B. Haas, A. Haber, C. Hadavand, H. K. Haddad, N. Haefner, P. Hagebock, S. Hajduk, Z. Hakobyan, H. Haleem, M. Haley, J. Hall, D. Halladjian, G. Hallewell, G. D. Hamacher, K. Hamal, P. Hamano, K. Hamilton, A. Hamity, G. N. Hamnett, P. G. Han, L. Hanagaki, K. Hanawa, K. Hance, M. Hanke, P. Hanna, R. Hansen, J. B. Hansen, J. D. Hansen, M. C. Hansen, P. H. Hara, K. Hard, A. S. Harenberg, T. Hariri, F. Harkusha, S. Harrington, R. D. Harrison, P. F. Hartjes, F. Hasegawa, M. Hasegawa, Y. Hasib, A. Hassani, S. Haug, S. Hauser, R. Hauswald, L. Havranek, M. Hawkes, C. M. Hawkings, R. J. Hawkins, A. D. Hayashi, T. Hayden, D. Hays, C. P. Hays, J. M. Hayward, H. S. Haywood, S. J. Head, S. J. Heck, T. Hedberg, V. Heelan, L. Heim, S. Heim, T. Heinemann, B. Heinrich, L. Hejbal, J. Helary, L. Hellman, S. Hellmich, D. Helsens, C. Henderson, J. Henderson, R. C. W. Heng, Y. Hengler, C. Henkelmann, S. Henrichs, A. Correia, A. M. Henriques Henrot-Versille, S. Herbert, G. H. Jimenez, Y. Hernandez Herrberg-Schubert, R. Herten, G. Hertenberger, R. Hervas, L. Hesketh, G. G. Hessey, N. P. Hetherly, J. W. Hickling, R. Higon-Rodriguez, E. Hill, E. Hill, J. C. Hiller, K. H. Hillier, S. J. Hinchliffe, I. Hines, E. Hinman, R. R. Hirose, M. Hirschbuehl, D. Hobbs, J. Hod, N. Hodgkinson, M. C. Hodgson, P. Hoecker, A. Hoeferkamp, M. R. Hoenig, F. Hohlfeld, M. Hohn, D. Holmes, T. R. Homann, M. Hong, T. M. van Huysduynen, L. Hooft Hopkins, W. H. Horii, Y. Horton, A. J. Hostachy, J-Y. Hou, S. Hoummada, A. Howard, J. Howarth, J. Hrabovsky, M. Hristova, I. Hrivnac, J. Hryn'ova, T. Hrynevich, A. Hsu, C. Hsu, P. J. Hsu, S-C. Hu, D. Hu, Q. Hu, X. Huang, Y. Hubacek, Z. Hubaut, F. Huegging, F. Huffman, T. B. Hughes, E. W. Hughes, G. Huhtinen, M. Huelsing, T. A. Huseynov, N. Huston, J. Huth, J. Iacobucci, G. Iakovidis, G. Ibragimov, I. Iconomidou-Fayard, L. Ideal, E. Idrissi, Z. Iengo, P. Igonkina, O. Iizawa, T. Ikegami, Y. Ikematsu, K. Ikeno, M. Ilchenko, Y. Iliadis, D. Ilic, N. Ince, T. Introzzi, G. Ioannou, P. Iodice, M. Iordanidou, K. Ippolito, V. Quiles, A. Irles Isaksson, C. Ishino, M. Ishitsuka, M. Ishmukhametov, R. Issever, C. Istin, S. Ponce, J. M. Iturbe Iuppa, R. Ivarsson, J. Iwanski, W. Iwasaki, H. Izen, J. M. Izzo, V. Jabbar, S. Jackson, B. Jackson, M. Jackson, P. Jaekel, M. R. Jain, V. Jakobs, K. Jakobsen, S. Jakoubek, T. Jakubek, J. Jamin, D. O. Jana, D. K. Jansen, E. Jansky, R. Janssen, J. Janus, M. Jarlskog, G. Javadov, N. Javurek, T. Jeanty, L. Jejelava, J. Jeng, G-Y. Jennens, D. Jenni, P. Jentzsch, J. Jeske, C. Jezequel, S. Ji, H. Jia, J. Jiang, Y. Jiggins, S. Pena, J. Jimenez Jin, S. Jinaru, A. Jinnouchi, O. Joergensen, M. D. Johansson, P. Johns, K. A. Jon-And, K. Jones, G. Jones, R. W. L. Jones, T. J. Jongmanns, J. Jorge, P. M. Joshi, K. D. Jovicevic, J. Ju, X. Jung, C. A. Jussel, P. Rozas, A. Juste Kaci, M. Kaczmarska, A. Kado, M. Kagan, H. Kagan, M. Kahn, S. J. Kajomovitz, E. Kalderon, C. W. Kama, S. Kamenshchikov, A. Kanaya, N. Kaneti, S. Kantserov, V. A. Kanzaki, J. Kaplan, B. Kaplan, L. S. Kapliy, A. Kar, D. Karakostas, K. Karamaoun, A. Karastathis, N. Kareem, M. J. Karentzos, E. Karnevskiy, M. Karpov, S. N. Karpova, Z. M. Karthik, K. Kartvelishvili, V. Karyukhin, A. N. Kashif, L. Kass, R. D. Kastanas, A. Kataoka, Y. Kato, C. Katre, A. Katzy, J. Kawagoe, K. Kawamoto, T. Kawamura, G. Kazama, S. Kazanin, V. F. Keeler, R. Kehoe, R. Keller, J. S. Kempster, J. J. Keoshkerian, H. Kepka, O. Kersevan, B. P. Kersten, S. Keyes, R. A. Khalil-Zada, F. Khandanyan, H. Khanov, A. Kharlamov, A. G. Khoo, T. J. Khovanskiy, V. Khramov, E. Khubua, J. Kido, S. Kim, H. Y. Kim, S. H. Kim, Y. K. Kimura, N. Kind, O. M. King, B. T. King, M. King, S. B. Kirk, J. Kiryunin, A. E. Kishimoto, T. Kisielewska, D. Kiss, F. Kiuchi, K. Kivernyk, O. Kladiva, E. Klein, M. H. Klein, M. Klein, U. Kleinknecht, K. Klimek, P. Klimentov, A. Klingenberg, R. Klinger, J. A. Klioutchnikova, T. Kluge, E-E. Kluit, P. Kluth, S. Knapik, J. Kneringer, E. Knoops, E. B. F. G. Knue, A. Kobayashi, A. Kobayashi, D. Kobayashi, T. Kobel, M. Kocian, M. Kodys, P. Koffas, T. Kofferman, E. Kogan, L. A. Kohlmann, S. Kohout, Z. Kohriki, T. Koi, T. Kolanoski, H. Koletsou, I. Komar, A. A. Komori, Y. Kondo, T. Kondrashova, N. Koeneke, K. Koenig, A. C. Kono, T. Konoplich, R. Konstantinidis, N. Kopeliansky, R. Koperny, S. Koepke, L. Kopp, A. K. Korcyl, K. Kordas, K. Korn, A. Korol, A. A. Korolkov, I. Korolkova, E. V. Kortner, O. Kortner, S. Kosek, T. Kostyukhin, V. V. Kotov, V. M. Kotwal, A. Kourkoumeli-Charalampidi, A. Kourkoumelis, C. Kouskoura, V. Koutsman, A. Kowalewski, R. Kowalski, T. Z. Kozanecki, W. Kozhin, A. S. Kramarenko, V. A. Kramberger, G. Krasnopevtsev, D. Krasny, M. W. Krasznahorkay, A. Kraus, J. K. Kravchenko, A. Kreiss, S. Kretz, M. Kretzschmar, J. Kreutzfeldt, K. Krieger, P. Krizka, K. Kroeninger, K. Kroha, H. Kroll, J. Kroseberg, J. Krstic, J. Kruchonak, U. Kruegger, H. Krumnack, N. Kruse, A. Kruse, M. C. Kruskal, M. Kubota, T. Kucuk, H. Kuday, S. Kuehn, S. Kugel, A. Kuger, F. Kuhl, A. Kuhl, T. Kukhtin, V. Kukla, R. Kulchitsky, Y. Kuleshov, S. Kuna, M. Kunigo, T. Kupco, A. Kurashige, H. Kurochkin, Y. A. Kus, V. Kuwertz, E. S. Kuze, M. Kvita, J. Kwan, T. Kyriazopoulos, D. La Rosa, A. Navarro, J. L. La Rosa La Rotonda, L. Lacasta, C. Lacava, F. Lacey, J. Lacker, H. Lacour, D. Lacuesta, V. R. Ladygin, E. Lafaye, R. Laforge, B. Lagouri, T. Lai, S. Lambourne, L. Lammers, S. Lampen, C. L. Lampl, W. Lancon, E. Landgraf, U. Landon, M. P. J. Lang, V. S. Lange, J. C. Lankford, A. J. Lanni, F. Lantzsch, K. Lanza, A. Laplace, S. Lapoire, C. Laporte, J. F. Lari, T. Manghi, F. Lasagni Lassnig, M. Laurelli, P. Lavrijsen, W. Law, A. T. Laycock, P. Lazovich, T. Le Dortz, O. Le Guirriec, E. Le Menedeu, E. LeBlanc, M. LeCompte, T. Ledroit-Guillon, F. Lee, C. A. Lee, S. C. Lee, L. Lefebvre, G. Lefebvre, M. Legger, F. Leggett, C. Lehan, A. Miotto, G. Lehmann Lei, X. Leight, W. A. Leisos, A. Leister, A. G. Leite, M. A. L. Leitner, R. Lellouch, D. Lemmer, B. Leney, K. J. C. Lenz, T. Lenzi, B. Leone, R. Leone, S. Leonidopoulos, C. Leontsinis, S. Leroy, C. Lester, C. G. Levchenko, M. Leveque, J. Levin, D. Levinson, L. J. Levy, M. Lewis, A. Leyko, A. M. Leyton, M. Li, B. Li, H. Li, H. L. Li, L. Li, L. Li, S. Li, X. Li, Y. Liang, Z. Liao, H. Liberti, B. Liblong, A. Lichard, P. Lie, K. Liebal, J. Liebig, W. Limbach, C. Limosani, A. Lin, S. C. Lin, T. H. Linde, F. Lindquist, B. E. Linnemann, J. T. Lipeles, E. Lipniacka, A. Lisovyi, M. Liss, T. M. Lissauer, D. Lister, A. Litke, A. M. Liu, B. Liu, D. Liu, H. Liu, J. Liu, J. B. Liu, K. Liu, L. Liu, M. Liu, Y. Livan, M. Lleres, A. Merino, J. Llorente Lloyd, S. L. Lo Sterzo, F. Lobodzinska, E. Loch, P. Lockman, W. S. Loebinger, F. K. Loevschall-Jensen, A. E. Loginov, A. Lohse, T. Lohwasser, K. Lokajicek, M. Long, B. A. Long, J. D. Long, R. E. Looper, K. A. Lopes, L. Mateos, D. Lopez Paredes, B. Lopez Paz, I. Lopez Lorenz, J. Martinez, N. Lorenzo Losada, M. Loesel, P. J. Lou, X. Lounis, A. Love, J. Love, P. A. Lu, N. Lubatti, H. J. Luci, C. Lucotte, A. Luehring, F. Lukas, W. Luminari, L. Lundberg, O. Lund-Jensen, B. Lynn, D. Lysak, R. Lytken, E. Ma, H. Ma, L. L. Maccarrone, G. Macchiolo, A. Macdonald, C. M. Macek, B. Miguens, J. Machado Macina, D. Madaffari, D. Madar, R. Maddocks, H. J. Mader, W. F. Madsen, A. Maeda, J. Maeland, S. Maeno, T. Maevskiy, A. Magradze, E. Mahboubi, K. Mahlstedt, J. Maiani, C. Maidantchik, C. Maier, A. A. Maier, T. Maio, A. Majewski, S. Makida, Y. Makovec, N. Malaescu, B. Malecki, Pa. Maleev, V. P. Malek, F. Mallik, U. Malon, D. Malone, C. Maltezos, S. Malyshev, V. M. Malyukov, S. Mamuzic, J. Mancini, G. Mandelli, B. Mandelli, L. Mandic, I. Mandrysch, R. Maneira, J. Manfredini, A. de Andrade Filho, L. Manhaes Manjarres Ramos, J. Mann, A. Manousakis-Katsikakis, A. Mansoulie, B. Mantifel, R. Mantoani, M. Mapelli, L. March, L. Marchiori, G. Marcisovsky, M. Marino, C. P. Marjanovic, M. Marley, D. E. Marroquim, F. Marsden, S. P. Marshall, Z. Marti, L. F. Marti-Garcia, S. Martin, B. Martin, T. A. Martin, V. J. dit Latour, B. Martin Martinez, M. Martin-Haugh, S. Martoiu, V. S. Martyniuk, A. C. Marx, M. Marzano, F. Marzin, A. Masetti, L. Mashimo, T. Mashinistov, R. Masik, J. Maslennikov, A. L. Massa, I. Massa, L. Mastrandrea, P. Mastroberardino, A. Masubuchi, T. Attig, P. M. Mattmann, J. Maurer, J. Maxfield, S. J. Maximov, D. A. Mazini, R. Mazza, S. M. Mazzaferro, L. Mc Goldrick, G. Mc Kee, S. P. McCarn, A. McCarthy, R. L. McCarthy, T. G. McCubbin, N. A. McFarlane, K. W. Mcfayden, J. A. Mchedlidze, G. McMahon, S. J. McPherson, R. A. Medinnis, M. Meehan, S. Mehlhase, S. Mehta, A. Meier, K. Meineck, C. Meirose, B. Mellado Garcia, B. R. Meloni, F. Mengarelli, A. Menke, S. Meoni, E. Mercurio, K. M. Mergelmeyer, S. Mermod, P. Merola, L. Meroni, C. Merritt, F. S. Messina, A. Metcalfe, J. Mete, A. S. Meyer, C. Meyer, C. Meyer, J-P. Meyer, J. Theenhausen, H. Meyer Zu Middleton, R. P. Miglioranzi, S. Mijovic, L. Mikenberg, G. Mikestikova, M. Mikuz, M. Milesi, M. Milic, A. Miller, D. W. Mills, C. Milov, A. Milstead, D. A. Minaenko, A. A. Minami, Y. Minashvili, I. A. Mincer, A. I. Mindur, B. Mineev, M. Ming, Y. Mir, L. M. Mitani, T. Mitrevski, J. Mitsou, V. A. Miucci, A. Miyagawa, P. S. Mjornmark, J. U. Moa, T. Mochizuki, K. Mohapatra, S. Mohr, W. Molander, S. Moles-Valls, R. Monden, R. Moenig, K. Monini, C. Monk, J. Monnier, E. Berlingen, J. Montejo Monticelli, F. Monzani, S. Moore, R. W. Morange, N. Moreno, D. Llacer, M. Moreno Morettini, P. Mori, D. Morii, M. Morinaga, M. Morisbak, V. Moritz, S. Morley, A. K. Mornacchi, G. Morris, J. D. Mortensen, S. S. Morton, A. Morvaj, L. Mosidze, M. Moss, J. Motohashi, K. Mount, R. Mountricha, E. Mouraviev, S. V. Moyse, E. J. W. Muanza, S. Mudd, R. D. Mueller, F. Mueller, J. Mueller, R. S. P. Mueller, T. Muenstermann, D. Mullen, P. Mullier, G. A. Quijada, J. A. Murillo Murray, W. J. Musheghyan, H. Musto, E. Myagkov, A. G. Myska, M. Nachman, B. P. Nackenhorst, O. Nadal, J. Nagai, K. Nagai, R. Nagai, Y. Nagano, K. Nagarkar, A. Nagasaka, Y. Nagata, K. Nagel, M. Nagy, E. Nairz, A. M. Nakahama, Y. Nakamura, K. Nakamura, T. Nakano, I. Namasivayam, H. Garcia, R. F. Naranjo Narayan, R. Villar, D. I. Narrias Naumann, T. Navarro, G. Nayyar, R. Neal, H. A. Nechaeva, P. Yu. Neep, T. J. Nef, P. D. Negri, A. Negrini, M. Nektarijevic, S. Nellist, C. Nelson, A. Nemecek, S. Nemethy, P. Nepomuceno, A. A. Nessi, M. Neubauer, M. S. Neumann, M. Neves, R. M. Nevski, P. Newman, P. R. Nguyen, D. H. Nickerson, R. B. Nicolaidou, R. Nicquevert, B. Nielsen, J. Nikiforou, N. Nikiforov, A. Nikolaenko, V. Nikolic-Audit, I. Nikolopoulos, K. Nilsen, J. K. Nilsson, P. Ninomiya, Y. Nisati, A. Nisius, R. Nobe, T. Nomachi, M. Nomidis, I. Nooney, T. Norberg, S. Nordberg, M. Novgorodova, O. Nowak, S. Nozaki, M. Nozka, L. Ntekas, K. Hanninger, G. Nunes Nunnemann, T. Nurse, E. Nuti, F. O'Brien, B. J. O'grady, F. O'Neil, D. C. O'Shea, V. Oakham, F. G. Oberlack, H. Obermann, T. Ocariz, J. Ochi, A. Ochoa, I. Ochoa-Ricoux, J. P. Oda, S. Odaka, S. Ogren, H. Oh, A. Oh, S. H. Ohm, C. C. Ohman, H. Oide, H. Okamura, W. Okawa, H. Okumura, Y. Okuyama, T. Olariu, A. Pino, S. A. Olivares Damazio, D. Oliveira Garcia, E. Oliver Olszewski, A. Olszowska, J. Onofre, A. Onogi, K. Onyisi, P. U. E. Oram, C. J. Oreglia, M. J. Oren, Y. Orestano, D. Orlando, N. Barrera, C. Oropeza Orr, R. S. Osculati, B. Ospanov, R. Garzon, G. Otero Y. Otono, H. Ouchrif, M. Ould-Saada, F. Ouraou, A. Oussoren, K. P. Ouyang, Q. Ovcharova, A. Owen, M. Owen, R. E. Ozcan, V. E. Ozturk, N. Pachal, K. Pages, A. Pacheco Aranda, C. Padilla Pagacova, M. Griso, S. Pagan Paganis, E. Paige, F. Pais, P. Pajchel, K. Palacino, G. Palestini, S. Palka, M. Pallin, D. Palma, A. Pan, Y. B. Panagiotopoulou, E. Pandini, C. E. Vazquez, J. G. Panduro Pani, P. Panitkin, S. Pantea, D. Paolozzi, L. Papadopoulou, Th. D. Papageorgiou, K. Paramonov, A. Paredes Hernandez, D. Parker, M. A. Parker, K. A. Parodi, F. Parsons, J. A. Parzefall, U. Pasqualucci, E. Passaggio, S. Pastore, F. Pastore, Fr. Pasztor, G. Pataraia, S. Patel, N. D. Pater, J. R. Pauly, T. Pearce, J. Pearson, B. Pedersen, L. E. Pedersen, M. Lopez, S. Pedraza Pedro, R. Peleganchuk, S. V. Pelikan, D. Penc, O. Peng, C. Peng, H. Penning, B. Penwell, J. Perepelitsa, D. V. Codina, E. Perez Perez Garcia-Estan, M. T. Perini, L. Pernegger, H. Perrella, S. Peschke, R. Peshekhonov, V. D. Peters, K. Peters, R. F. Y. Petersen, B. A. Petersen, T. C. Petit, E. Petridis, A. Petridou, C. Petroff, P. Petrolo, E. Petrucci, F. Pettersson, N. E. Pezoa, R. Phillips, P. W. Piacquadio, G. Pianori, E. Picazio, A. Piccaro, E. Piccinini, M. Pickering, M. A. Piegaia, R. Pignotti, D. T. Pilcher, J. E. Pilkington, A. D. Pina, J. Pinamonti, M. Pinfold, J. L. Pingel, A. Pires, S. Pirumov, H. Pitt, M. Pizio, C. Plazak, L. Pleier, M-A. Pleskot, V. Plotnikova, E. Plucinski, P. Pluth, D. Poettgen, R. Poggioli, L. Pohl, D. Polesello, G. Poley, A. Policicchio, A. Polifka, R. Polini, A. Pollard, C. S. Polychronakos, V. Pommes, K. Pontecorvo, L. Pope, B. G. Popeneciu, G. A. Popovic, D. S. Poppleton, A. Pospisil, S. Potamianos, K. Potrap, I. N. Potter, C. J. Potter, C. T. Poulard, G. Poveda, J. Pozdnyakov, V. Pralavorio, P. Pranko, A. Prasad, S. Prell, S. Price, D. Price, L. E. Primavera, M. Prince, S. Proissl, M. Prokofiev, K. Prokoshin, F. Protopapadaki, E. Protopopescu, S. Proudfoot, J. Przybycien, M. Ptacek, E. Puddu, D. Pueschel, E. Puldon, D. Purohit, M. Puzo, P. Qian, J. Qin, G. Qin, Y. Quadt, A. Quarrie, D. R. Quayle, W. B. Queitsch-Maitland, M. Quilty, D. Raddum, S. Radeka, V. Radescu, V. Radhakrishnan, S. K. Radlo, P. Rados, P. Ragusa, F. Rahal, G. Rajagopalan, S. Rammensee, M. Rangel-Smith, C. Rauscher, F. Rave, S. Ravenscroft, T. Raymond, M. Read, A. L. Readioff, N. P. Rebuzzi, D. M. Redelbach, A. Redlinger, G. Reece, R. Reeves, K. Rehnisch, L. Reichert, J. Reisin, H. Relich, M. Rembser, C. Ren, H. Renaud, A. Rescigno, M. Resconi, S. Rezanova, O. L. Reznicek, P. Rezvani, R. Richter, R. Richter, S. Richter-Was, E. Ricken, O. Ridel, M. Rieck, P. Riegel, C. J. Rieger, J. Rifki, O. Rijssenbeek, M. Rimoldi, A. Rinaldi, L. Ristic, B. Ritsch, E. Riu, I. Rizatdinova, F. Rizvi, E. Robertson, H. Robichaud-Veronneau, A. Robinson, D. Robinson, J. E. M. Robson, A. Roda, C. Roe, S. Rohne, O. Rolli, S. Romaniouk, A. Romano, M. Saez, S. M. Romano Adam, E. Romero Rompotis, N. Romaniouk, A. Romano, M. Saez, S. M. Romano Adam, E. Romero Rompotis, N. Ronzani, M. Roos, L. Ros, E. Rosati, S. Rosbach, K. Rose, P. Rosendahl, P. L. Rosenthal, O. Rossetti, V. Rossi, E. Rossi, L. P. Rosten, J. H. N. Rosten, R. Rotaru, M. Roth, I. Rothberg, J. Rousseau, D. Royon, C. R. Rozanov, A. Rozen, Y. Ruan, X. Rubbo, F. Rubinskiy, I. Rud, V. I. Rudolph, C. Rudolph, M. S. Ruehr, F. Ruiz-Martinez, A. Rurikova, Z. Rusakovich, N. A. Ruschke, A. Russell, H. L. Rutherfoord, J. P. Ruthmann, N. Ryabov, Y. F. Rybar, M. Rybkin, G. Ryder, N. C. Saavedra, A. F. Sabato, G. Sacerdoti, S. Saddique, A. Sadrozinski, H. F-W. Sadykov, R. Tehrani, F. Safai Sahinsoy, M. Saimpert, M. Saito, T. Sakamoto, H. Sakurai, Y. Salamanna, G. Salamon, A. Loyola, J. E. Salazar Saleem, M. Salek, D. De Bruin, P. H. Sales Salihagic, D. Salnikov, A. Salt, J. Salvatore, D. Salvatore, F. Salvucci, A. Salzburger, A. Sammel, D. Sampsonidis, D. Sanchez, A. Sanchez, J. Martinez, V. Sanchez Sandaker, H. Sandbach, R. L. Sander, H. G. Sanders, M. P. Sandhoff, M. Sandoval, C. Sandstroem, R. Sankey, D. P. C. Sannino, M. Sansoni, A. Santoni, C. Santonico, R. Santos, H. Castillo, I. Santoyo Sapp, K. Sapronov, A. Saraiva, J. G. Sarrazin, B. Sasaki, O. Sasaki, Y. Sato, K. Sauvage, G. Sauvan, E. Savage, G. Savard, P. Sawyer, C. Sawyer, L. Saxon, J. Sbarra, C. Sbrizzi, A. Scanlon, T. Scannicchio, D. A. Scarcella, M. Scarfone, V. Schaarschmidt, J. Schacht, P. Schaefer, D. Schaefer, R. Schaeffer, J. Schaepe, S. Schaetzel, S. Schaefer, U. Schaffer, A. C. Schaile, D. Schamberger, R. D. Scharf, V. Schegelsky, V. A. Scheirich, D. Schernau, M. Schiavi, C. Schillo, C. Schioppa, M. Schlenker, S. Schmieden, K. Schmitt, C. Schmitt, S. Schmitt, S. Schneider, B. Schnellbach, Y. J. Schnoor, U. Schoeffel, L. Schoening, A. Schoenrock, B. D. Schopf, E. Schorlemmer, A. L. S. Schott, M. Schouten, D. Schovancova, J. Schramm, S. Schreyer, M. Schroeder, C. Schuh, N. Schultens, M. J. Schultz-Coulon, H-C Schulz, H. Schumacher, M. Schumm, B. A. Schune, Ph. Schwanenberger, C. Schwartzman, A. Schwarz, T. A. Schwegler, Ph. Schweiger, H. Schwemling, Ph. Schwienhorst, R. Schwindling, J. Schwindt, T. Sciacca, F. G. Scifo, E. Sciolla, G. Scuri, F. Scutti, F. Searcy, J. Sedov, G. Sedykh, E. Seema, P. Seidel, S. C. Seiden, A. Seifert, F. Seixas, J. M. Sekhniaidze, G. Sekhon, K. Sekula, S. J. Seliverstov, D. M. Semprini-Cesari, N. Serfon, C. Serin, L. Serkin, L. Serre, T. Sessa, M. Seuster, R. Severini, H. Sfiligoj, T. Sforza, F. Sfyrla, A. Shabalina, E. Shamim, M. Shan, L. Y. Shang, R. Shank, J. T. Shapiro, M. Shatalov, P. B. Shaw, K. Shaw, S. M. Shcherbakova, A. Shehu, C. Y. Sherwood, P. Shi, L. Shimizu, S. Shimmin, C. O. Shimojima, M. Shiyakova, M. Shmeleva, A. Saadi, D. Shoaleh Shochet, M. J. Shojaii, S. Shrestha, S. Shulga, E. Shupe, M. A. Shushkevich, S. Sicho, P. Sidebo, P. E. Sidiropoulou, O. Sidorov, D. Sidoti, A. Siegert, F. Sijacki, Dj. Silva, J. Silver, Y. Silverstein, S. B. Simak, V. Simard, O. Simic, Lj. Simion, S. Simioni, E. Simmons, B. Simon, D. Sinervo, P. Sinev, N. B. Sioli, M. Siragusa, G. Sisakyan, A. N. Sivoklokov, S. Yu. Sjolin, J. Sjursen, T. B. Skinner, M. B. Skottowe, H. P. Skubic, P. Slater, M. Slavicek, T. Slawinska, M. Sliwa, K. Smakhtin, V. Smart, B. H. Smestad, L. Smirnov, S. Yu. Smirnov, Y. Smirnova, L. N. Smirnova, O. Smith, M. N. K. Smizanska, M. Smolek, K. Snesarev, A. A. Snidero, G. Snyder, S. Sobie, R. Socher, F. Soffer, A. Soh, D. A. Sokhrannyi, G. Solans, C. A. Solar, M. Solc, J. Soldatov, E. Yu. Soldevila, U. Solodkov, A. A. Soloshenko, A. Solovyanov, O. V. Solovyev, V. Sommer, P. Song, H. Y. Soni, N. Sood, A. Sopczak, A. Sopko, B. Sopko, V. Sorin, V. Sosa, D. Sosebee, M. Sotiropoulou, C. L. Soualah, R. Soukharev, A. M. South, D. Sowden, B. C. Spagnolo, S. Spalla, M. Spangenberg, M. Spano, F. Spearman, W. R. Sperlich, D. Spettel, F. Spighi, R. Spigo, G. Spiller, L. A. Spousta, M. Spreitzer, T. St Denis, R. D. Stabile, A. Staerz, S. Stahlman, J. Stamen, R. Stamm, S. Stanecka, E. Stanescu, C. Stanescu-Bellu, M. Stanitzki, M. M. Stapnes, S. Starchenko, E. A. Stark, J. Staroba, P. Starovoitov, P. Staszewski, R. Steinberg, P. Stelzer, B. Stelzer, H. J. Stelzer-Chilton, O. Stenzel, H. Stewart, G. A. Stillings, J. A. Stockton, M. C. Stoebe, M. Stoicea, G. Stolte, P. Stonjek, S. Stradling, A. R. Straessner, A. Stramaglia, M. E. Strandberg, J. Strandberg, S. Strandlie, A. Strauss, E. Strauss, M. Strizenec, P. Strohmer, R. Strom, D. M. Stroynowski, R. Strubig, A. Stucci, S. A. Stugu, B. Styles, N. A. Su, D. Su, J. Subramaniam, R. Succurro, A. Sugaya, Y. Suk, M. Sulin, V. V. Sultansoy, S. Sumida, T. Sun, S. Sun, X. Sundermann, J. E. Suruliz, K. Susinno, G. Sutton, M. R. Suzuki, S. Svatos, M. Swiatlowski, M. Sykora, I. Sykora, T. Ta, D. Taccini, C. Tackmann, K. Taenzer, J. Taffard, A. Tafirout, R. Taiblum, N. Takai, H. Takashima, R. Takeda, H. Takeshita, T. Takubo, Y. Talby, M. Talyshev, A. A. Tam, J. Y. C. Tan, K. G. Tanaka, J. Tanaka, R. Tanaka, S. Tannenwald, B. B. Tannoury, N. Tapprogge, S. Tarem, S. Tarrade, F. Tartarelli, G. F. Tas, P. Tasevsky, M. Tashiro, T. Tassi, E. Delgado, A. Tavares Tayalati, Y. Taylor, F. E. Taylor, G. N. Taylor, P. T. E. Taylor, W. Teischinger, F. A. Dias Castanheira, M. Teixeira Teixeira-Dias, P. Temming, K. K. Temple, D. Ten Kate, H. Teng, P. K. Teoh, J. J. Tepel, F. Terada, S. Terashi, K. Terron, J. Terzo, S. Testa, M. Teuscher, R. J. Theveneaux-Pelzer, T. Thomas, J. P. Thomas-Wilsker, J. Thompson, E. N. Thompson, P. D. Thompson, R. J. Thompson, A. S. Thomsen, L. A. Thomson, E. Thomson, M. Thun, R. P. Tibbetts, M. J. Torres, R. E. Ticse Tikhomirov, V. O. Tikhonov, Yu. A. Timoshenko, S. Tiouchichine, E. Tipton, P. Tisserant, S. Todome, K. Todorov, T. Todorova-Nova, S. Tojo, J. Tokar, S. Tokushuku, K. Tollefson, K. Tolley, E. Tomlinson, L. Tomoto, M. Tompkins, L. Toms, K. Torrence, E. Torres, H. Pastor, E. Torro Toth, J. Touchard, F. Tovey, D. R. Trefzger, T. Tremblet, L. Tricoli, A. Trigger, I. M. Trincaz-Duvoid, S. Tripiana, M. F. Trischuk, W. Trocme, B. Troncon, C. Trottier-McDonald, M. Trovatelli, M. True, P. Truong, L. Trzebinski, M. Trzupek, A. Tsarouchas, C. Tseng, J. C-L. Tsiareshka, P. V. Tsionou, D. Tsipolitis, G. Tsirintanis, N. Tsiskaridze, S. Tsiskaridze, V. Tskhadadze, E. G. Tsukerman, I. I. Tsulaia, V. Tsuno, S. Tsybychev, D. Tudorache, A. Tudorache, V. Tuna, A. N. Tupputi, S. A. Turchikhin, S. Turecek, D. Turra, R. Turvey, A. J. Tuts, P. M. Tykhonov, A. Tylmad, M. Tyndel, M. Ueda, I. Ueno, R. Ughetto, M. Ugland, M. Ukegawa, F. Unal, G. Undrus, A. Unel, G. Ungaro, F. C. Unno, Y. Unverdorben, C. Urban, J. Urquijo, P. Urrejola, P. Usai, G. Usanova, A. Vacavant, L. Vacek, V. Vachon, B. Valderanis, C. Valencic, N. Valentinetti, S. Valero, A. Valery, L. Valkar, S. Gallego, E. Valladolid Vallecorsa, S. Ferrer, J. A. Valls Van Den Wollenberg, W. Van der Deijl, P. C. van der Geer, R. van der Graaf, H. van Eldik, N. van Gemmeren, P. Van Nieuwkoop, J. van Vulpen, I. van Woerden, M. C. Vanadia, M. Vandelli, W. Vanguri, R. Vaniachine, A. Vannucci, F. Vardanyan, G. Vari, R. Varnes, E. W. Varol, T. Varouchas, D. Vartapetian, A. Varvell, K. E. Vazeille, F. Schroeder, T. Vazquez Veatch, J. Veloce, L. M. Veloso, F. Velz, T. Veneziano, S. Ventura, A. Ventura, D. Venturi, M. Venturi, N. Venturini, A. Vercesi, V. Verducci, M. Verkerke, W. Vermeulen, J. C. Vest, A. Vetterli, M. C. Viazlo, O. Vichou, I. Vickey, T. Boeriu, O. E. Vickey Viehhauser, G. H. A. Viel, S. Vigne, R. Villa, M. Perez, M. Villaplana Vilucchi, E. Vincter, M. G. Vinogradov, V. B. Vivarelli, I. Vaque, F. Vives Vlachos, S. Vladoiu, D. Vlasak, M. Vogel, M. Vokac, P. Volpi, G. Volpi, M. von der Schmitt, H. von Radziewski, H. von Toerne, E. Vorobel, V. Vorobev, K. Vos, M. Voss, R. Vossebeld, J. H. Vranjes, N. Milosavljevic, M. Vranjes Vrba, V. Vreeswijk, M. Vuillermet, R. Vukotic, I. Vykydal, Z. Wagner, P. Wagner, W. Wahlberg, H. Wahrmund, S. Wakabayashi, J. Walder, J. Walker, R. Walkowiak, W. Wang, C. Wang, F. Wang, H. Wang, H. Wang, J. Wang, J. Wang, K. Wang, R. Wang, S. M. Wang, T. Wang, T. Wang, X. Wanotayaroj, C. Warburton, A. Ward, C. P. Wardrope, D. R. Washbrook, A. Wasicki, C. Watkins, P. M. Watson, A. T. Watson, I. J. Watson, M. F. Watts, G. Watts, S. Waugh, B. M. Webb, S. Weber, M. S. Weber, S. W. Webster, J. S. Weidberg, A. R. Weinert, B. Weingarten, J. Weiser, C. Weits, H. Wells, P. S. Wenaus, T. Wengler, T. Wenig, S. Wermes, N. Werner, M. Werner, P. Wessels, M. Wetter, J. Whalen, K. Wharton, A. M. White, A. White, M. J. White, R. White, S. Whiteson, D. Wickens, F. J. Wiedenmann, W. Wielers, M. Wienemann, P. Wiglesworth, C. Wiik-Fuchs, L. A. M. Wildauer, A. Wilkens, H. G. Williams, H. H. Williams, S. Willis, C. Willocq, S. Wilson, A. Wilson, J. A. Wingerter-Seez, I. Winklmeier, F. Winter, B. T. Wittgen, M. Wittkowski, J. Wollstadt, S. J. Wolter, M. W. Wolters, H. Wosiek, B. K. Wotschack, J. Woudstra, M. J. Wozniak, K. W. Wu, M. Wu, M. Wu, S. L. Wu, X. Wu, Y. Wyatt, T. R. Wynne, B. M. Xella, S. Xu, D. Xu, L. Yabsley, B. Yacoob, S. Yakabe, R. Yamada, M. Yamaguchi, D. Yamaguchi, Y. Yamamoto, A. Yamamoto, S. Yamanaka, T. Yamauchi, K. Yamazaki, Y. Yan, Z. Yang, H. Yang, H. Yang, Y. Yao, W-M. Yasu, Y. Yatsenko, E. Wong, K. H. Yau Ye, J. Ye, S. Yeletskikh, I. Yen, A. L. Yildirim, E. Yorita, K. Yoshida, R. Yoshihara, K. Young, C. Young, C. J. S. Youssef, S. Yu, D. R. Yu, J. Yu, J. M. Yu, J. Yuan, L. Yuen, S. P. Y. Yurkewicz, A. Yusuff, I. Zabinski, B. Zaidan, R. Zaitsev, A. M. Zalieckas, J. Zaman, A. Zambito, S. Zanello, L. Zanzi, D. Zeitnitz, C. Zeman, M. Zemla, A. Zeng, Q. Zengel, K. Zenin, O. Zenis, T. Zerwas, D. Zhang, D. Zhang, F. Zhang, H. Zhang, J. Zhang, L. Zhang, R. Zhang, X. Zhang, Z. Zhao, X. Zhao, Y. Zhao, Z. Zhemchugov, A. Zhong, J. Zhou, B. Zhou, C. Zhou, L. Zhou, L. Zhou, M. Zhou, N. Zhu, C. G. Zhu, H. Zhu, J. Zhu, Y. Zhuang, X. Zhukov, K. Zibell, A. Zieminska, D. Zimine, N. I. Zimmermann, C. Zimmermann, S. Zinonos, Z. Zinser, M. Ziolkowski, M. Zivkovic, L. Zobernig, G. Zoccoli, A. zur Nedden, M. Zurzolo, G. Zwalinski, L. CA ATLAS Collaboration TI Measurement of four-jet differential cross sections in root s=8 TeV proton-proton collisions using the ATLAS detector SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE Jet physics; Hadron-Hadron scattering; QCD ID MULTI-JET PRODUCTION; P(P)OVER-BAR COLLISIONS; GLUON BREMSSTRAHLUNG; E+E-ANNIHILATION; HIGH-ENERGIES; 3-JET EVENTS; QCD; SUBTRACTION; LHC AB Differential cross sections for the production of at least four jets have been measured in proton-proton collisions at root s = 8 TeV at the Large Hadron Collider using the ATLAS detector. Events are selected if the four anti-k(t) R = 0.4 jets with the largest transverse momentum (p(T)) within the rapidity range vertical bar y vertical bar < 2 : 8 are well separated (Delta R-4j(min) > 0.65), all have p(T) > 64 GeV, and include at least one jet with p(T) > 100 GeV. The dataset corresponds to an integrated luminosity of 20.3 fb(-1). The cross sections, corrected for detector effects, are compared to leading-order and next-to-leading-order calculations as a function of the jet momenta, invariant masses, minimum and maximum opening angles and other kinematic variables. C1 [Jackson, P.; Kukla, R.; Lee, L.; Petridis, A.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia. [Edson, W.; Ernst, J.; Fischer, A.; Guindon, S.; Jain, V.] SUNY Albany, Dept Phys, Albany, NY 12222 USA. [Butt, A. I.; Czodrowski, P.; Dassoulas, J.; Gingrich, D. M.; Karamaoun, A.; Moore, R. W.; Pinfold, J. L.; Vaque, F. Vives] Univ Alberta, Dept Phys, Edmonton, AB, Canada. [Cakir, O.; Ciftci, A. K.; Yildiz, H. Duran] Ankara Univ, Dept Phys, TR-06100 Ankara, Turkey. Istanbul Aydin Univ, Istanbul, Turkey. [Sultansoy, S.] TOBB Univ Econ & Technol, Div Phys, Ankara, Turkey. [Barnovska, Z.; Berger, N.; Delmastro, M.; Di Ciaccio, L.; Elles, S.; Jezequel, S.; Koletsou, I.; Leveque, J.; Sauvage, G.; Sauvan, E.; Simard, O.; Wingerter-Seez, I.; Yatsenko, E.] CNRS, IN2P3, LAPP, Annecy Le Vieux, France. [Barnovska, Z.; Berger, N.; Delmastro, M.; Di Ciaccio, L.; Elles, S.; Jezequel, S.; Koletsou, I.; Leveque, J.; Sauvage, G.; Sauvan, E.; Simard, O.; Wingerter-Seez, I.; Yatsenko, E.] Univ Savoie Mont Blanc, Annecy Le Vieux, France. [Blair, R. E.; Chekanov, S.; Feng, E. J.; LeCompte, T.; Nguyen, D. H.; Paramonov, A.; Proudfoot, J.; Vaniachine, A.; Wang, R.; Yoshida, R.; Zhang, J.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Cheu, E.; Johns, K. A.; Lampen, C. L.; Lampl, W.; Lei, X.; Leone, R.; Loch, P.; Nayyar, R.; O'grady, F.; Rutherfoord, J. P.; Varnes, E. W.; Veatch, J.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Brandt, A.; Bullock, D.; Darmora, S.; De, K.; Feremenga, L.; Hadavand, H. K.; Kim, H. Y.; Vartapetian, A.; White, A.; Yu, J.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. [Chouridou, S.; Fassouliotis, D.; Giokaris, N.; Ioannou, P.; Kourkoumelis, C.; Manousakis-Katsikakis, A.; Tsirintanis, N.] Univ Athens, Dept Phys, Athens, Greece. [Alexopoulos, T.; Benekos, N.; Dris, M.; Gazis, E. N.; Karakostas, K.; Karastathis, N.; Karentzos, E.; Leontsinis, S.; Maltezos, S.; Ntekas, K.; Panagiotopoulou, E.; Papadopoulou, Th. D.; Tsipolitis, G.; Vlachos, S.] Natl Tech Univ Athens, Dept Phys, Zografos, Greece. [Abdinov, O.; Ahmadov, F.; Chelkov, G. A.; Huseynov, N.; Javadov, N.; Khalil-Zada, F.; Kukla, R.; Meirose, B.] Azerbaijan Acad Sci, Inst Phys, Baku 370143, Azerbaijan. [Anjos, N.; Bosman, M.; Casado, M. P.; Casolino, M.; Cavalli-Sforza, M.; Cortes-Gonzalez, A.; Farooque, T.; Fracchia, S.; Giangiobbe, V.; Gonzalez Parra, G.; Grinstein, S.; Helsens, C.; Rozas, A. Juste; Korolkov, I.; Lange, J. C.; Le Menedeu, E.; Paz, I. Lopez; Martinez, M.; Mir, L. M.; Berlingen, J. Montejo; Pages, A. Pacheco; Aranda, C. Padilla; Riu, I.; Sorin, V.; Succurro, A.; Tripiana, M. F.; Tsiskaridze, S.; Valery, L.] Univ Autonoma Barcelona, Inst Fis dAltes Energies, E-08193 Barcelona, Spain. [Anjos, N.; Bosman, M.; Casado, M. P.; Casolino, M.; Cavalli-Sforza, M.; Cortes-Gonzalez, A.; Farooque, T.; Fracchia, S.; Giangiobbe, V.; Gonzalez Parra, G.; Grinstein, S.; Helsens, C.; Rozas, A. Juste; Korolkov, I.; Lange, J. C.; Le Menedeu, E.; Paz, I. Lopez; Martinez, M.; Mir, L. M.; Berlingen, J. Montejo; Pages, A. Pacheco; Aranda, C. Padilla; Riu, I.; Sorin, V.; Succurro, A.; Tripiana, M. F.; Tsiskaridze, S.; Valery, L.] Univ Autonoma Barcelona, Dept Fis, E-08193 Barcelona, Spain. [Agatonovic-Jovin, T.; Bogavac, D.; Bozic, I.; Dimitrievska, A.; Krstic, J.; Marjanovic, M.; Popovic, D. S.; Sijacki, Dj.; Simic, Lj.; Vranjes, N.; Milosavljevic, M. Vranjes; Zivkovic, L.] Univ Belgrade, Inst Phys, Belgrade, Serbia. [Buanes, T.; Dale, O.; Eigen, G.; Kastanas, A.; Liebig, W.; Lipniacka, A.; Maeland, S.; dit Latour, B. Martin; Rosendahl, P. L.; Sjursen, T. B.; Smestad, L.; Stugu, B.; Ugland, M.; Zalieckas, J.] Univ Bergen, Dept Phys & Technol, Bergen, Norway. [Amadio, B. T.; Axen, B.; Barnett, R. M.; Beringer, J.; Bhimji, W.; Brosamer, J.; Calafiura, P.; Cerutti, F.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Einsweiler, K.; Farrell, S.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Hance, M.; Heinemann, B.; Hinchliffe, I.; Hinman, R. R.; Holmes, T. R.; Jeanty, L.; Kruse, M. C.; Lavrijsen, W.; Leggett, C.; Marshall, Z.; Ohm, C. C.; Ovcharova, A.; Griso, S. Pagan; Potamianos, K.; Pranko, A.; Quarrie, D. R.; Shapiro, M.; Sood, A.; Tibbetts, M. J.; Trottier-McDonald, M.; Tsulaia, V.; Viel, S.; Wang, H.; Yao, W-M.; Yu, D. R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [Amadio, B. T.; Axen, B.; Barnett, R. M.; Beringer, J.; Bhimji, W.; Brosamer, J.; Calafiura, P.; Cerutti, F.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Einsweiler, K.; Farrell, S.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Hance, M.; Heinemann, B.; Hinchliffe, I.; Hinman, R. R.; Holmes, T. R.; Jeanty, L.; Kruse, M. C.; Lavrijsen, W.; Leggett, C.; Marshall, Z.; Ohm, C. C.; Ovcharova, A.; Griso, S. Pagan; Potamianos, K.; Pranko, A.; Quarrie, D. R.; Shapiro, M.; Sood, A.; Tibbetts, M. J.; Trottier-McDonald, M.; Tsulaia, V.; Viel, S.; Wang, H.; Yao, W-M.; Yu, D. R.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Biedermann, D.; Dietrich, J.; Giorgi, F. M.; Grancagnolo, S.; Herbert, G. H.; Herrberg-Schubert, R.; Hristova, I.; Kind, O. M.; Kolanoski, H.; Lacker, H.; Lohse, T.; Nikiforov, A.; Rehnisch, L.; Rieck, P.; Schulz, H.; Sperlich, D.; Stamm, S.; zur Nedden, M.] Humboldt Univ, Dept Phys, Berlin, Germany. [Beck, H. P.; Cervelli, A.; Ereditato, A.; Haug, S.; Marti, L. F.; Meloni, F.; Mullier, G. A.; Sciacca, F. G.; Stramaglia, M. E.; Stucci, S. A.; Weber, M. S.] Univ Bern, Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Beck, H. P.; Cervelli, A.; Ereditato, A.; Haug, S.; Marti, L. F.; Meloni, F.; Mullier, G. A.; Sciacca, F. G.; Stramaglia, M. E.; Stucci, S. A.; Weber, M. S.] Univ Bern, High Energy Phys Lab, Bern, Switzerland. [Bella, L. Aperio; Baca, M. J.; Bansil, H. S.; Bracinik, J.; Burgard, C. D.; Charlton, D. G.; Chisholm, A. S.; Daniells, A. C.; Hawkes, C. M.; Head, S. J.; Hillier, S. J.; Kuehn, S.; Levy, M.; Mudd, R. D.; Quijada, J. A. Murillo; Newman, P. R.; Nikolopoulos, K.; Owen, R. E.; Schillo, C.; Slater, M.; Thomas, J. P.; Thompson, P. D.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Wilson, J. A.] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England. [Arik, M.; Istin, S.; Ozcan, V. E.] Bogazici Univ, Dept Phys, Istanbul, Turkey. [Beddall, A. J.; Beddall, A.; Bingul, A.] Gaziantep Univ, Dept Engn Phys, Gaziantep, Turkey. [Cetin, S. A.] Dogus Univ, Dept Phys, Istanbul, Turkey. [Bellagamba, L.; Biondi, S.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruschi, M.; Corradi, M.; Franchini, M.; Gabrielli, A.; Giacobbe, B.; Giorgi, F. M.; Grafstrom, P.; Manghi, F. Lasagni; Massa, I.; Massa, L.; Mengarelli, A.; Negrini, M.; Piccinini, M.; Polini, A.; Rinaldi, L.; Romano, M.; Sbarra, C.; Sbrizzi, A.; Semprini-Cesari, N.; Sidoti, A.; Sioli, M.; Spighi, R.; Tupputi, S. A.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Univ Bologna, INFN Sez Bologna, Bologna, Italy. [Biondi, S.; Franchini, M.; Gabrielli, A.; Grafstrom, P.; Manghi, F. Lasagni; Massa, I.; Massa, L.; Mengarelli, A.; Piccinini, M.; Sbrizzi, A.; Semprini-Cesari, N.; Sidoti, A.; Sioli, M.; Tupputi, S. A.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Univ Bologna, Dipartimento Fis & Astron, Bologna, Italy. [Arslan, O.; Bechtle, P.; Bernlochner, F. U.; Brock, I.; Bruscino, N.; Cioara, I. A.; Cristinziani, M.; Davey, W.; Desch, K.; Dingfelder, J.; Ehrenfeld, W.; Gaycken, G.; Geich-Gimbel, Ch.; Gonella, L.; Grefe, C.; Haefner, P.; Hagebock, S.; Hansen, M. C.; Hellmich, D.; Hohn, D.; Huegging, F.; Janssen, J.; Kostyukhin, V. V.; Kraus, J. K.; Kroseberg, J.; Kruegger, H.; Lantzsch, K.; Lenz, T.; Leyko, A. M.; Liebal, J.; Limbach, C.; Mergelmeyer, S.; Mijovic, L.; Moles-Valls, R.; Obermann, T.; Pohl, D.; Ricken, O.; Sarrazin, B.; Schaepe, S.; Schopf, E.; Schultens, M. J.; Schwindt, T.; Scutti, F.; Seema, P.; Stillings, J. A.; Tannoury, N.; Velz, T.; von Toerne, E.; Wagner, P.; Wang, T.; Wermes, N.; Wienemann, P.; Wiik-Fuchs, L. A. M.; Winter, B. T.; Wong, K. H. Yau; Yuen, S. P. Y.] Univ Bonn, Inst Phys, Bonn, Germany. [Ahlen, S. P.; Bernard, C.; Black, K. M.; Butler, J. M.; Dell'Asta, L.; Helary, L.; Kruskal, M.; Long, B. A.; Shank, J. T.; Yan, Z.; Youssef, S.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Amelung, C.; Amundsen, G.; Artoni, G.; Barone, G.; Bensinger, J. R.; Bianchini, L.; Blocker, C.; Coffey, L.; Dhaliwal, S.; Fitzgerald, E. A.; Sciolla, G.; Venturini, A.; Zengel, K.] Brandeis Univ, Dept Phys, Waltham, MA 02254 USA. [Coutinho, Y. Amaral; Caloba, L. P.; Maidantchik, C.; Marroquim, F.; Nepomuceno, A. A.; Seixas, J. M.] Univ Fed Rio de Janeiro, COPPE EE IF, Rio De Janeiro, Brazil. [Cerqueira, A. S.; de Andrade Filho, L. Manhaes] Fed Univ Juiz De Fora UFJF, Elect Circuits Dept, Juiz De Fora, Brazil. [do Vale, M. A. B.] Fed Univ Sao Joao Del Rei UFSJ, Sao Joao Del Rei, Brazil. [Donadelli, M.; Leite, M. A. L.] Univ Sao Paulo, Inst Fis, BR-01498 Sao Paulo, Brazil. [Adams, D. L.; Assamagan, K.; Begel, M.; Buttinger, W.; Chen, H.; Chernyatin, V.; Debbe, R.; Ernst, M.; Gibbard, B.; Gordon, H. A.; Iakovidis, G.; Klimentov, A.; Kouskoura, V.; Kravchenko, A.; Lanni, F.; Lissauer, D.; Lynn, D.; Ma, H.; Maeno, T.; Metcalfe, J.; Mountricha, E.; Nevski, P.; Nilsson, P.; Damazio, D. Oliveira; Paige, F.; Panitkin, S.; Perepelitsa, D. V.; Pleier, M-A.; Polychronakos, V.; Protopopescu, S.; Purohit, M.; Radeka, V.; Rajagopalan, S.; Redlinger, G.; Snyder, S.; Steinberg, P.; Takai, H.; Undrus, A.; Wenaus, T.; Xu, L.; Ye, S.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Alexa, G.; Boldea, V.; Buda, S. I.; Caprini, I.; Caprini, M.; Chitan, A.; Ciubancan, M.; Constantinescu, S.; Dita, P.; Dita, S.; Dobre, M.; Ducu, O. A.; Jinaru, A.; Martoiu, V. S.; Maurer, J.; Olariu, A.; Pantea, D.; Rotaru, M.; Stoicea, G.; Tudorache, A.; Tudorache, V.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Popeneciu, G. A.] Natl Inst Res & Dev Isotop & Mol Technol, Dept Phys, Cluj Napoca, Romania. Univ Politehn Bucuresti, Bucharest, Romania. West Univ Timisoara, Timisoara, Romania. [Garzon, G. Otero Y.; Piegaia, R.; Reisin, H.; Sacerdoti, S.] Univ Buenos Aires, Dept Fis, Buenos Aires, DF, Argentina. [Arratia, M.; Barlow, N.; Batley, J. R.; Brochu, F. M.; Carter, J. R.; Chapman, J. D.; Cottin, G.; French, S. T.; Gillam, T. P. S.; Hill, J. C.; Kaneti, S.; Khoo, T. J.; Lester, C. G.; Mueller, T.; Parker, M. A.; Robinson, D.; Rosten, J. H. N.; Thomson, M.; Ward, C. P.; Yusuff, I.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Bellerive, A.; Cree, G.; Di Valentino, D.; Koffas, T.; Lacey, J.; Leight, W. A.; McCarthy, T. G.; Nomidis, I.; Oakham, F. G.; Pasztor, G.; Tarrade, F.; Ueno, R.; Vincter, M. G.] Carleton Univ, Dept Phys, Ottawa, ON K1S 5B6, Canada. [Aleksa, M.; Alvarez Gonzalez, B.; Anders, G.; Anghinolfi, F.; Armbruster, A. J.; Arnaez, O.; Avolio, G.; Baak, M. A.; Backes, M.; Backhaus, M.; Barak, L.; Beermann, T. A.; Beltramello, O.; Bianco, M.; Bogaerts, J. A.; Boveia, A.; Boyd, J.; Burckhart, H.; Campana, S.; Garrido, M. D. M. Capeans; Carli, T.; Carrillo-Montoya, G. D.; Catinaccio, A.; Cattai, A.; Cerv, M.; Chromek-Burckhart, D.; Conti, G.; Dell'Acqua, A.; Deviveiros, P. O.; Di Girolamo, A.; Di Girolamo, B.; Dittus, F.; Dobos, D.; Dudarev, A.; Uhrssen, M. D.; Eifert, T.; Ellis, N.; Elsing, M.; Farthouat, P.; Fassnacht, P.; Feigl, S.; Perez, S. Fernandez; Francis, D.; Froidevaux, D.; Gadatsch, S.; Gillberg, D.; Glatzer, J.; Goossens, L.; Gorini, B.; Gray, H. M.; Hawkings, R. J.; Correia, A. M. Henriques; Hervas, L.; Hoecker, A.; Huhtinen, M.; Iengo, P.; Jaekel, M. R.; Jakobsen, S.; Klioutchnikova, T.; Krasznahorkay, A.; Lapoire, C.; Lassnig, M.; Miotto, G. Lehmann; Lenzi, B.; Lichard, P.; Macina, D.; Malyukov, S.; Mandelli, B.; Mapelli, L.; Marzin, A.; Milic, A.; Mornacchi, G.; Nairz, A. M.; Nakahama, Y.; Nessi, M.; Nicquevert, B.; Nordberg, M.; Oide, H.; Palestini, S.; Pauly, T.; Pernegger, H.; Peters, K.; Petersen, B. A.; Pommes, K.; Poppleton, A.; Poulard, G.; Poveda, J.; Prasad, S.; Rammensee, M.; Raymond, M.; Rembser, C.; Ritsch, E.; Roe, S.; Ruiz-Martinez, A.; Salzburger, A.; Schaefer, D.; Schlenker, S.; Schmieden, K.; Serfon, C.; Sforza, F.; Sfyrla, A.; Solans, C. A.; Spigo, G.; Stelzer, H. J.; Teischinger, F. A.; Ten Kate, H.; Tremblet, L.; Tricoli, A.; Tsarouchas, C.; Unal, G.; van Woerden, M. C.; Vandelli, W.; Voss, R.; Vuillermet, R.; Wells, P. S.; Wengler, T.; Wenig, S.; Werner, P.; Wilkens, H. G.; Wotschack, J.; Young, C. J. S.; Zaitsev, A. M.; Zwalinski, L.] CERN, Geneva, Switzerland. [Alison, J.; Anderson, K. J.; Toro, R. Camacho; Cheng, Y.; Dandoy, J. R.; Facini, G.; Fiascaris, M.; Gardner, R. W.; Ilchenko, Y.; Kapliy, A.; Kim, Y. K.; Krizka, K.; Li, H. L.; Merritt, F. S.; Miller, D. W.; Narayan, R.; Okumura, Y.; Onyisi, P. U. E.; Oreglia, M. J.; Penning, B.; Pilcher, J. E.; Saxon, J.; Shochet, M. J.; Vukotic, I.; Webster, J. S.; Wu, M.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Carquin, E.; Diaz, M. A.; Ochoa-Ricoux, J. P.; Vogel, M.] Pontificia Univ Catolica Chile, Dept Fis, Santiago, Chile. [Brooks, W. K.; Kuleshov, S.; Pezoa, R.; Prokoshin, F.; Loyola, J. E. Salazar; White, R.] Univ Tecn Fedico Santa Maria, Dept Fis, Valparaiso, Chile. [Bai, Y.; Fang, Y.; Jin, S.; Lou, X.; Ouyang, Q.; Peng, C.; Ren, H.; Shan, L. Y.; Sun, X.; Wang, J.; Xu, D.; Zhu, H.; Zhuang, X.] Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China. [Gao, J.; Guo, Y.; Han, L.; Hu, Q.; Jiang, Y.; Li, B.; Liu, J. B.; Liu, Y.; Peng, H.; Song, H. Y.; Zhang, R.; Zhao, Z.; Zhu, Y.] Univ Sci & Technol China, Dept Modern Phys, Hefei, Anhui, Peoples R China. [Chen, S.; Guo, J.; Li, Y.; Zhang, H.] Nanjing Univ, Dept Phys, Nanjing, Jiangsu, Peoples R China. [Chen, L.; Ge, P.; Liu, B.; Ma, L. L.; Zhang, X.; Zhao, Y.; Zhu, C. G.] Shandong Univ, Sch Phys, Jinan, Shandong, Peoples R China. [Bret, M. Cano; Li, L.; Yang, H.] Shanghai Jiao Tong Univ, Shanghai Key Lab Particle Phys & Cosmol, Dept Phys & Astron, Shanghai 200030, Peoples R China. [Chen, X.; Zhou, N.] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Gilles, G.; Gris, Ph.; Liao, H.; Madar, R.; Pallin, D.; Saez, S. M. Romano; Santoni, C.; Simon, D.; Susinno, G.; Theveneaux-Pelzer, T.; Vazeille, F.] Clermont Univ, Lab Phys Corpusculaire, Clermont Ferrand, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Gilles, G.; Gris, Ph.; Liao, H.; Madar, R.; Pallin, D.; Santoni, C.; Simon, D.; Susinno, G.; Theveneaux-Pelzer, T.; Vazeille, F.] Univ Clermont Ferrand, Clermont Ferrand, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Gilles, G.; Gris, Ph.; Liao, H.; Madar, R.; Pallin, D.; Santoni, C.; Simon, D.; Susinno, G.; Theveneaux-Pelzer, T.; Vazeille, F.] CNRS, IN2P3, Clermont Ferrand, France. [Alkire, S. P.; Altheimer, A.; Andeen, T.; Angerami, A.; Bain, T.; Brooijmans, G.; Cole, B.; Hu, D.; Hughes, E. W.; Iordanidou, K.; Klein, M. H.; Mohapatra, S.; Nikiforou, N.; Parsons, J. A.; Smith, M. N. K.; Thompson, E. N.; Tuts, P. M.; Wang, T.; Zhou, L.] Columbia Univ, Nevis Lab, Irvington, NY USA. [Alonso, A.; Besjes, G. J.; Dam, M.; Galster, G.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Joergensen, M. D.; Loevschall-Jensen, A. E.; Monk, J.; Mortensen, S. S.; Pedersen, L. E.; Petersen, T. C.; Pingel, A.; Wiglesworth, C.; Xella, S.] Univ Copenhagen, Niels Bohr Inst, Copenhagen, Denmark. [Cairo, V. M.; Capua, M.; La Rotonda, L.; Mastroberardino, A.; Salvatore, D.; Scarfone, V.; Schioppa, M.; Susinno, G.; Tassi, E.] Nazl Frascati Lab, INFN Grp Collegato Cosenza, Arcavacata Di Rende, Italy. [Cairo, V. M.; Capua, M.; La Rotonda, L.; Mastroberardino, A.; Salvatore, D.; Scarfone, V.; Schioppa, M.; Tassi, E.] Univ Calabria, Dipartmento Fis, I-87036 Arcavacata Di Rende, Italy. [Adamczyk, L.; Bold, T.; Dabrowski, W.; Dyndal, M.; Gach, G. P.; Grabowska-Bold, I.; Kisielewska, D.; Koperny, S.; Kowalski, T. Z.; Mindur, B.; Przybycien, M.; Zemla, A.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, PL-30059 Krakow, Poland. [Palka, M.; Richter-Was, E.] Jagiellonian Univ, Marian Smoluchowski Inst Phys, Krakow, Poland. [Banas, E.; de Renstrom, P. A. Bruckman; Chwastowski, J. J.; Derendarz, D.; Godlewski, J.; Gornicki, E.; Hajduk, Z.; Iwanski, W.; Kaczmarska, A.; Knapik, J.; Korcyl, K.; Malecki, Pa.; Olszewski, A.; Olszowska, J.; Stanecka, E.; Staszewski, R.; Trzebinski, M.; Trzupek, A.; Wolter, M. W.; Wosiek, B. K.; Wozniak, K. W.; Zabinski, B.] Polish Acad Sci, Inst Nucl Phys, Krakow, Poland. [Cao, T.; Firan, A.; Hetherly, J. W.; Kama, S.; Kehoe, R.; Sekula, S. J.; Stroynowski, R.; Turvey, A. J.; Varol, T.; Wang, H.; Ye, J.; Zhao, X.; Zhou, L.] So Methodist Univ, Dept Phys, Dallas, TX 75275 USA. [Izen, J. M.; Leyton, M.; Namasivayam, H.; Reeves, K.] Univ Texas Dallas, Dept Phys, Richardson, TX 75083 USA. [Asbah, N.; Bessner, M.; Bloch, I.; Borroni, S.; Britzger, D.; Camarda, S.; Deterre, C.; Eckardt, C.; Filipuzzi, M.; Flaschel, N.; Glazov, A.; Grahn, K-J.; Gregor, I. M.; Grohsjean, A.; Haleem, M.; Hamnett, P. G.; Hengler, C.; Hiller, K. H.; Howarth, J.; Huang, Y.; Katzy, J.; Keller, J. S.; Kondrashova, N.; Kuhl, T.; Lobodzinska, E.; Lohwasser, K.; Mamuzic, J.; Medinnis, M.; Moenig, K.; Garcia, R. F. Naranjo; Naumann, T.; Peschke, R.; Petit, E.; Pirumov, H.; Poley, A.; Radescu, V.; Robinson, J. E. M.; Rubinskiy, I.; Schaefer, R.; Schmitt, S.; Sedov, G.; Shushkevich, S.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Styles, N. A.; Tackmann, K.; Wang, J.; Wasicki, C.; Yildirim, E.] DESY, Hamburg, Germany. [Asbah, N.; Bessner, M.; Bloch, I.; Borroni, S.; Britzger, D.; Camarda, S.; Deterre, C.; Eckardt, C.; Filipuzzi, M.; Flaschel, N.; Glazov, A.; Grahn, K-J.; Gregor, I. M.; Grohsjean, A.; Haleem, M.; Hamnett, P. G.; Hengler, C.; Hiller, K. H.; Howarth, J.; Huang, Y.; Katzy, J.; Keller, J. S.; Kondrashova, N.; Kuhl, T.; Lobodzinska, E.; Lohwasser, K.; Mamuzic, J.; Medinnis, M.; Moenig, K.; Garcia, R. F. Naranjo; Naumann, T.; Peschke, R.; Petit, E.; Pirumov, H.; Poley, A.; Radescu, V.; Robinson, J. E. M.; Rubinskiy, I.; Schaefer, R.; Schmitt, S.; Sedov, G.; Shushkevich, S.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Styles, N. A.; Tackmann, K.; Wang, J.; Wasicki, C.; Yildirim, E.] DESY, Zeuthen, Germany. [Burmeister, I.; Erdmann, J.; Esch, H.; Goessling, C.; Homann, M.; Jentzsch, J.; Jung, C. A.; Klingenberg, R.; Kroeninger, K.] Tech Univ Dortmund, Inst Expt Phys 4, D-44221 Dortmund, Germany. [Anger, P.; Duschinger, D.; Friedrich, F.; Grohs, J. P.; Gumpert, C.; Gutschow, C.; Hauswald, L.; Kobel, M.; Mader, W. F.; Novgorodova, O.; Rudolph, C.; Schnoor, U.; Siegert, F.; Socher, F.; Staerz, S.; Straessner, A.; Vest, A.; Wahrmund, S.] Tech Univ Dresden, Inst Kern Teilchenphys, D-01062 Dresden, Germany. [Arce, A. T. H.; Benjamin, D. P.; Bocci, A.; Cerio, B. C.; Goshaw, A. T.; Kajomovitz, E.; Kotwal, A.; Li, L.; Li, S.; Liu, M.; Oh, S. H.; Zhou, C.] Duke Univ, Dept Phys, Durham, NC 27706 USA. [Bristow, T. M.; Clark, P. J.; Dias, F. A.; Edwards, N. C.; Gao, Y.; Walls, F. M. Garay; Glaysher, P. C. F.; Harrington, R. D.; Leonidopoulos, C.; Martin, V. J.; Mills, C.; O'Brien, B. J.; Pino, S. A. Olivares; Proissl, M.; Smart, B. H.; Washbrook, A.; Wynne, B. M.] Univ Edinburgh, SUPA Sch Phys & Astron, Edinburgh, Midlothian, Scotland. [Antonelli, M.; Beretta, M.; Bilokon, H.; Chiarella, V.; Curatolo, M.; Di Nardo, R.; Esposito, B.; Gatti, C.; Giromini, P.; Laurelli, P.; Maccarrone, G.; Mancini, G.; Sansoni, A.; Testa, M.; Vilucchi, E.] Ist Nazl Fis Nucl, Nazl Frascati Lab, I-00044 Frascati, Italy. [Amoroso, S.; Arnold, H.; Betancourt, C.; Boehler, M.; Bruneliere, R.; Buehrer, F.; Buescher, D.; Cardillo, F.; Consorti, V.; Dang, N. P.; Dao, V.; Di Simone, A.; Giuliani, C.; Herten, G.; Jakobs, K.; Javurek, T.; Jenni, P.; Kiss, F.; Koeneke, K.; Kopp, A. K.; Landgraf, U.; Mahboubi, K.; Mohr, W.; Pagacova, M.; Parzefall, U.; Ronzani, M.; Rosbach, K.; Ruehr, F.; Rurikova, Z.; Ruthmann, N.; Sammel, D.; Schumacher, M.; Sommer, P.; Sundermann, J. E.; Ta, D.; Temming, K. K.; Tsiskaridze, V.; Ungaro, F. C.; von Radziewski, H.; Weiser, C.; Werner, M.; Zhang, L.; Zimmermann, S.] Univ Freiburg, Fak Mathemat & Phys, D-79106 Freiburg, Germany. [Ancu, L. S.; Bell, W. H.; Noccioli, E. Benhar; De Mendizabal, J. Bilbao; Calace, N.; Clark, A.; Coccaro, A.; Delitzsch, C. M.; della Volpe, D.; Gadomski, S.; Golling, T.; Gonzalez-Sevilla, S.; Gramling, J.; Guescini, F.; Iacobucci, G.; Katre, A.; Mermod, P.; Miucci, A.; Muenstermann, D.; Paolozzi, L.; Picazio, A.; Ristic, B.; Schramm, S.; Tykhonov, A.; Vallecorsa, S.; Wu, X.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Darbo, G.; Parodi, A. Ferretto; Gagliardi, G.; Gaudiello, A.; Gemme, C.; Guido, E.; Morettini, P.; Osculati, B.; Parodi, F.; Passaggio, S.; Rossi, L. P.; Sannino, M.; Schiavi, C.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Parodi, A. Ferretto; Gagliardi, G.; Gaudiello, A.; Guido, E.; Osculati, B.; Parodi, F.; Sannino, M.; Schiavi, C.] Univ Genoa, Dipartimento Fis, Genoa, Italy. [Jejelava, J.; Tskhadadze, E. G.] Iv Javakhishvili Tbilisi State Univ, E Andronikashvili Inst Phys, Tbilisi, Rep of Georgia. [Durglishvili, A.; Khubua, J.; Mosidze, M.] Tbilisi State Univ, Inst High Energy Phys, Tbilisi, Rep of Georgia. [Dueren, M.; Kreutzfeldt, K.; Stenzel, H.] Univ Giessen, Inst Phys 2, Giessen, Germany. [Bates, R. L.; Madden, W. D. Breaden; Britton, D.; Buckley, A. G.; Bussey, P.; Buttar, C. M.; Buzatu, A.; Cinca, D.; D'Auria, S.; Doyle, A. T.; Ferrando, J.; de Lima, D. E. Ferreira; Gul, U.; Knue, A.; Morton, A.; Mullen, P.; O'Shea, V.; Barrera, C. Oropeza; Owen, M.; Pollard, C. S.; Qin, G.; Quilty, D.; Ravenscroft, T.; Robson, A.; St Denis, R. D.; Stewart, G. A.; Thompson, A. S.] Univ Glasgow, SUPA Sch Phys & Astron, Glasgow, Lanark, Scotland. [Agricola, J.; Bindi, M.; Blumenschein, U.; Brandt, G.; Drechsler, E.; George, M.; Graber, L.; Grosse-Knetter, J.; Janus, M.; Kareem, M. J.; Kawamura, G.; Lai, S.; Lemmer, B.; Magradze, E.; Mantoani, M.; Mchedlidze, G.; Musheghyan, H.; Nackenhorst, O.; Nadal, J.; Quadt, A.; Rieger, J.; Schorlemmer, A. L. S.; Shabalina, E.; Stolte, P.; Weingarten, J.; Zinonos, Z.] Univ Gottingen, Inst Phys 2, Gottingen, Germany. [Albrand, S.; Brown, J.; Collot, J.; Crepe-Renaudin, S.; Delsart, P. A.; Gabaldon, C.; Genest, M. H.; Hostachy, J-Y.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Monini, C.; Stark, J.; Trocme, B.; Wu, M.] Univ Grenoble Alpes, Lab Phys Subat & Cosmol, CNRS, IN2P3, Grenoble, France. [McFarlane, K. W.] Hampton Univ, Dept Phys, Hampton, VA 23668 USA. [da Costa, F. Barreiro Guimaraes; Catastini, P.; Clark, B. L.; Franklin, M.; Huth, J.; Ippolito, V.; Lazovich, T.; Mateos, D. Lopez; Mercurio, K. M.; Morii, M.; Skottowe, H. P.; Spearman, W. R.; Sun, S.; Tolley, E.; Tuna, A. N.; Yen, A. L.; Zambito, S.] Harvard Univ, Lab Particle Phys & Cosmol, Cambridge, MA 02138 USA. [Andrei, V.; Baas, A. E.; Brandt, O.; Davygora, Y.; Dunford, M.; Geisler, M. P.; Hanke, P.; Jongmanns, J.; Kluge, E-E.; Lang, V. S.; Meier, K.; Theenhausen, H. Meyer Zu; Villar, D. I. Narrias; Sahinsoy, M.; Scharf, V.; Schultz-Coulon, H-C; Stamen, R.; Starovoitov, P.; Wessels, M.] Heidelberg Univ, Kirchhoff Inst Phys, Heidelberg, Germany. [Anders, C. F.; Giulini, M.; Lisovyi, M.; Schaetzel, S.; Schmitt, S.; Schoening, A.; Sosa, D.] Heidelberg Univ, Inst Phys, Heidelberg, Germany. [Colombo, T.; Kretz, M.; Kugel, A.] Heidelberg Univ, ZITI Inst Tech Informat, Mannheim, Germany. [Nagasaka, Y.] Hiroshima Inst Technol, Fac Appl Informat Sci, Hiroshima, Japan. [Castillo, L. R. Flores; Salvucci, A.] Chinese Univ Hong Kong, Dept Phys, Shatin, Hong Kong, Peoples R China. Univ Hong Kong, Dept Phys, Hong Kong, Hong Kong, Peoples R China. [Prokofiev, K.] Hong Kong Univ Sci & Technol, Dept Phys, Kowloon, Hong Kong, Peoples R China. [Choi, K.; Dattagupta, A.; Evans, H.; Gagnon, P.; Lammers, S.; Martinez, N. Lorenzo; Luehring, F.; Ogren, H.; Penwell, J.; Weinert, B.; Zieminska, D.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Jansky, R.; Jussel, P.; Kneringer, E.; Lukas, W.; Usanova, A.; Vigne, R.] Leopold Franzens Univ, Inst Astro & Teilchenphys, Innsbruck, Austria. [Argyropoulos, S.; Mallik, U.; Mandrysch, R.; Zaidan, R.] Univ Iowa, Iowa City, IA USA. [Chen, C.; Cochran, J.; De Lorenzi, F.; Krumnack, N.; Pluth, D.; Prell, S.] Iowa State Univ, Dept Phys & Astron, Ames, IA USA. [Aleksandrov, I. N.; Bednyakov, V. A.; Boyko, I. R.; Budagov, I. A.; Chelkov, G. A.; Cheplakov, A.; Chizhov, M. V.; Dedovich, D. V.; Demichev, M.; Gostkin, M. I.; Huseynov, N.; Javadov, N.; Karpov, S. N.; Karpova, Z. M.; Khramov, E.; Kotov, V. M.; Kruchonak, U.; Kukhtin, V.; Ladygin, E.; Minashvili, I. A.; Mineev, M.; Peshekhonov, V. D.; Plotnikova, E.; Potrap, I. N.; Pozdnyakov, V.; Rusakovich, N. A.; Sadykov, R.; Sapronov, A.; Shiyakova, M.; Sisakyan, A. N.; Soloshenko, A.; Vinogradov, V. B.; Yeletskikh, I.; Zhemchugov, A.; Zimine, N. I.] JINR Dubna, Joint Inst Nucl Res, Dubna, Russia. [Amako, K.; Aoki, M.; Arai, Y.; Hanagaki, K.; Ikegami, Y.; Ikeno, M.; Iwasaki, H.; Kanzaki, J.; Kohriki, T.; Kondo, T.; Kono, T.; Makida, Y.; Nagano, K.; Nakamura, K.; Nozaki, M.; Odaka, S.; Okuyama, T.; Sasaki, O.; Suzuki, S.; Takubo, Y.; Tanaka, S.; Terada, S.; Tokushuku, K.; Tsuno, S.; Unno, Y.; Yamada, M.; Yamamoto, A.; Yasu, Y.] KEK, High Energy Accelerator Res Org, Tsukuba, Ibaraki, Japan. [Chen, Y.; Hasegawa, M.; Kido, S.; Kishimoto, T.; Kurashige, H.; Maeda, J.; Ochi, A.; Shimizu, S.; Takeda, H.; Yakabe, R.; Yamazaki, Y.; Yuan, L.] Kobe Univ, Grad Sch Sci, Kobe, Hyogo 657, Japan. [Ishino, M.; Kunigo, T.; Monden, R.; Sumida, T.; Tashiro, T.] Kyoto Univ, Fac Sci, Kyoto, Japan. [Takashima, R.] Kyoto Univ, Kyoto 612, Japan. [Kawagoe, K.; Oda, S.; Otono, H.; Tojo, J.] Kyushu Univ, Dept Phys, Fukuoka 812, Japan. [Verzini, M. J. Alconada; Alonso, F.; Arduh, F. A.; Dervan, P.; Dova, M. T.; Monticelli, F.; Wahlberg, H.] Univ Nacl La Plata, Inst Fis La Plata, La Plata, Argentina. [Verzini, M. J. Alconada; Alonso, F.; Arduh, F. A.; Dervan, P.; Dova, M. T.; Monticelli, F.; Wahlberg, H.] Consejo Nacl Invest Cient & Tecn, La Plata, Argentina. [Barton, A. E.; Beattie, M. D.; Borissov, G.; Bouhova-Thacker, E. V.; Dearnaley, W. J.; Fox, H.; Grimm, K.; Henderson, R. C. W.; Hughes, G.; Jones, R. W. L.; Kartvelishvili, V.; Long, R. E.; Love, P. A.; Maddocks, H. J.; Skinner, M. B.; Smizanska, M.; Walder, J.; Wharton, A. M.] Univ Lancaster, Dept Phys, Lancaster, England. [Chiodini, G.; Gorini, E.; Primavera, M.; Spagnolo, S.; Ventura, A.] Ist Nazl Fis Nucl, Sez Lecce, I-73100 Lecce, Italy. [Gorini, E.; Spagnolo, S.; Ventura, A.] Univ Salento, Dipartimento Matemat & Fis, Lecce, Italy. [Aff older, A. A.; Allport, P. P.; Anders, J. K.; Burdin, S.; D'Onofrio, M.; Gwilliam, C. B.; Hayward, H. S.; Jackson, M.; Jones, T. J.; King, B. T.; Klein, M.; Klein, U.; Kretzschmar, J.; Laycock, P.; Lehan, A.; Maxfield, S. J.; Mehta, A.; Readioff, N. P.; Schnellbach, Y. J.; Vossebeld, J. H.] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 3BX, Merseyside, England. [Cindro, V.; Deliyergiyev, M.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Sfiligoj, T.; Sokhrannyi, G.] Jozef Stefan Inst, Dept Phys, Ljubljana, Slovenia. [Cindro, V.; Deliyergiyev, M.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Sfiligoj, T.; Sokhrannyi, G.] Univ Ljubljana, Ljubljana, Slovenia. [Alpigiani, C.; Bevan, A. J.; Bona, M.; Cerrito, L.; Fletcher, G.; Goddard, J. R.; Hays, J. M.; Hickling, R.; Landon, M. P. J.; Lloyd, S. L.; Morris, J. D.; Nooney, T.; Piccaro, E.; Rizvi, E.; Snidero, G.; Dias Castanheira, M. Teixeira] Queen Mary Univ London, Sch Phys & Astron, London, England. [Berry, T.; Blanco, J. E.; Boisvert, V.; Brooks, T.; Connelly, I. A.; Cowan, G.; Duguid, L.; Giannelli, M. Faucci; George, S.; Gibson, S. M.; Kempster, J. J.; Vazquez, J. G. Panduro; Pastore, Fr.; Savage, G.; Sowden, B. C.; Spano, F.; Teixeira-Dias, P.; Thomas-Wilsker, J.] Royal Holloway Univ London, Dept Phys, Surrey, England. [Bieniek, S. P.; Butterworth, J. M.; Campanelli, M.; Casadei, D.; Chislett, R. T.; Christodoulou, V.; Cooper, B. D.; Davison, P.; Falla, R. J.; Freeborn, D.; Gregersen, K.; Ortiz, N. G. Gutierrez; Hesketh, G. G.; Jansen, E.; Jiggins, S.; Konstantinidis, N.; Korn, A.; Kucuk, H.; Lambourne, L.; Leney, K. J. C.; Martyniuk, A. C.; Mcfayden, J. A.; Nurse, E.; Ochoa, I.; Richter, S.; Scanlon, T.; Sherwood, P.; Simmons, B.; Wardrope, D. R.; Waugh, B. M.] UCL, Dept Phys & Astron, London, England. [Greenwood, Z. D.; Grossi, G. C.; Jana, D. K.; Sawyer, L.; Subramaniam, R.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Malaescu, B.; Marchiori, G.; Marley, D. E.; Nikolic-Audit, I.; Ocariz, J.; Pandini, C. E.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.; Varouchas, D.] UPMC, Lab Phys Nucl & Hautes Energies, Paris, France. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Malaescu, B.; Marchiori, G.; Marley, D. E.; Nikolic-Audit, I.; Ocariz, J.; Pandini, C. E.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.; Varouchas, D.] Univ Paris Diderot, Paris, France. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Malaescu, B.; Marchiori, G.; Marley, D. E.; Nikolic-Audit, I.; Ocariz, J.; Pandini, C. E.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.; Varouchas, D.] CNRS, IN2P3, Paris, France. [Akesson, T. P. A.; Bocchetta, S. S.; Bryngemark, L.; Doglioni, C.; Floderus, A.; Hawkins, A. D.; Hedberg, V.; Ivarsson, J.; Jarlskog, G.; Lytken, E.; Mjornmark, J. U.; Smirnova, O.; Viazlo, O.] Lund Univ, Fysiska Inst, Lund, Sweden. [Arnal, V.; Cantero, J.; De la Torre, H.; Del Peso, J.; Glasman, C.; Merino, J. Llorente; Terron, J.] Univ Autonoma Madrid, Dept Fis Teor C15, Madrid, Spain. [Becker, M.; Bertella, C.; Blum, W.; Buescher, V.; Caputo, R.; Caudron, J.; Endner, O. C.; Ertel, E.; Fiedler, F.; Torregrosa, E. Fullana; Heck, T.; Hohlfeld, M.; Huelsing, T. A.; Karnevskiy, M.; Kleinknecht, K.; Koepke, L.; Lin, T. H.; Masetti, L.; Mattmann, J.; Meyer, C.; Moritz, S.; Rave, S.; Schaeffer, J.; Schaefer, U.; Schmitt, C.; Schott, M.; Schroeder, C.; Schuh, N.; Simioni, E.; Tapprogge, S.; Urrejola, P.; Valderanis, C.; Wollstadt, S. J.; Zimmermann, C.; Zinser, M.] Johannes Gutenberg Univ Mainz, Inst Phys, Mainz, Germany. [Balli, F.; Barnes, S. L.; Cox, B. E.; Da Via, C.; Forti, A.; Ponce, J. M. Iturbe; Joshi, K. D.; Keoshkerian, H.; Li, X.; Loebinger, F. K.; Marsden, S. P.; Masik, J.; Neep, T. J.; Oh, A.; Ospanov, R.; Pater, J. R.; Peters, R. F. Y.; Pilkington, A. D.; Price, D.; Qin, Y.; Queitsch-Maitland, M.; Schwanenberger, C.; Schweiger, H.; Shaw, S. M.; Thompson, R. J.; Tomlinson, L.; Watts, S.; Webb, S.; Woudstra, M. J.; Wyatt, T. R.] Univ Manchester, Sch Phys & Astron, Manchester, Lancs, England. [Aad, G.; Alio, L.; Barbero, M.; Coadou, Y.; Diaconu, C.; Diglio, S.; Djama, F.; Ducu, O. A.; Feligioni, L.; Gao, J.; Hallewell, G. D.; Hubaut, F.; Kahn, S. J.; Knoops, E. B. F. G.; Le Guirriec, E.; Liu, J.; Liu, K.; Madaffari, D.; Mochizuki, K.; Monnier, E.; Muanza, S.; Nagai, Y.; Nagy, E.; Pralavorio, P.; Rozanov, A.; Serre, T.; Talby, M.; Torres, R. E. Ticse; Tiouchichine, E.; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.] Aix Marseille Univ, CPPM, Marseille, France. [Bellomo, M.; Bernard, N. R.; Brau, B.; Dallapiccola, C.; Daya-Ishmukhametova, R. K.; Moyse, E. J. W.; Pais, P.; Pueschel, E.; Ventura, D.; Willocq, S.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Belanger-Champagne, C.; Chuinard, A. J.; Corriveau, F.; Keyes, R. A.; Mantifel, R.; Prince, S.; Robertson, H.; Robichaud-Veronneau, A.; Stockton, M. C.; Stoebe, M.; Vachon, B.; Schroeder, T. Vazquez; Wang, K.; Warburton, A.] McGill Univ, Dept Phys, Montreal, PQ, Canada. [Barberio, E. L.; Brennan, A. J.; Dawe, E.; Jennens, D.; Kubota, T.; Milesi, M.; Hanninger, G. Nunes; Nuti, F.; Rados, P.; Spiller, L. A.; Tan, K. G.; Taylor, G. N.; Taylor, P. T. E.; Urquijo, P.; Volpi, M.; Zanzi, D.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. [Amidei, D.; Chelstowska, M. A.; Cheng, H. C.; Dai, T.; Diehl, E. B.; Edgar, R. C.; Feng, H.; Ferretti, C.; Fleischmann, P.; Goldfarb, S.; Guan, L.; Hu, X.; Levin, D.; Liu, H.; Long, J. D.; Lu, N.; Mc Kee, S. P.; McCarn, A.; Neal, H. A.; Qian, J.; Schwarz, T. A.; Searcy, J.; Sekhon, K.; Thun, R. P.; Wilson, A.; Wu, Y.; Yu, J. M.; Zhang, D.; Zhou, B.; Zhu, J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Abolins, M.; Arabidze, G.; Brock, R.; Chegwidden, A.; Fisher, W. C.; Halladjian, G.; Hauser, R.; Hayden, D.; Huston, J.; Linnemann, J. T.; Martin, B.; Pope, B. G.; Schoenrock, B. D.; Schwienhorst, R.; Tollefson, K.; True, P.; Willis, C.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Alimonti, G.; Andreazza, A.; Besana, M. I.; Carminati, L.; Cavalli, D.; Costa, G.; Giugni, D.; Lari, T.; Mandelli, L.; Mazza, S. M.; Meroni, C.; Perini, L.; Pizio, C.; Ragusa, F.; Resconi, S.; Shojaii, S.; Stabile, A.; Tartarelli, G. F.; Troncon, C.; Turra, R.; Perez, M. Villaplana] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy. [Andreazza, A.; Carminati, L.; Mazza, S. M.; Perini, L.; Pizio, C.; Ragusa, F.; Shojaii, S.; Turra, R.; Perez, M. Villaplana] Univ Milan, Dipartimento Fis, Milan, Italy. [Harkusha, S.; Kulchitsky, Y.; Kurochkin, Y. A.; Tsiareshka, P. V.] Natl Acad Sci Belarus, BI Stepanov Phys Inst, Minsk, Byelarus. [Hrynevich, A.] Natl Sci & Educ Ctr Particle & High Energy Phys, Minsk, Byelarus. [Taylor, F. E.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Arguin, J-F.; Azuelos, G.; Dallaire, F.; Gauthier, L.; Leroy, C.; Rezvani, R.; Saadi, D. Shoaleh] Univ Montreal, Grp Particle Phys, Montreal, PQ, Canada. [Akimov, A. V.; Gavrilenko, I. L.; Komar, A. A.; Mashinistov, R.; Mouraviev, S. V.; Nechaeva, P. Yu.; Shmeleva, A.; Snesarev, A. A.; Sulin, V. V.; Tikhomirov, V. O.; Zhukov, K.] Acad Sci, PN Lebedev Phys Inst, Moscow, Russia. [Artamonov, A.; Gorbounov, P. A.; Khovanskiy, V.; Shatalov, P. B.; Tsukerman, I. I.] ITEP, Moscow, Russia. [Antonov, A.; Belotskiy, K.; Bulekov, O.; Dolgoshein, B. A.; Kantserov, V. A.; Krasnopevtsev, D.; Romaniouk, A.; Shulga, E.; Smirnov, S. Yu.; Smirnov, Y.; Soldatov, E. Yu.; Timoshenko, S.; Vorobev, K.] Natl Res Nucl Univ MEPhI, Moscow, Russia. [Boldyrev, A. S.; Gladilin, L. K.; Kramarenko, V. A.; Maevskiy, A.; Rud, V. I.; Sivoklokov, S. Yu.; Smirnova, L. N.; Turchikhin, S.] Moscow MV Lomonosov State Univ, DV Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Adomeit, S.; Bender, M.; Biebel, O.; Bock, C.; Bortfeldt, J.; Calfayan, P.; Chow, B. K. B.; Duckeck, G.; Elmsheuser, J.; Hertenberger, R.; Hoenig, F.; Legger, F.; Lorenz, J.; Loesel, P. J.; Maier, T.; Mann, A.; Mehlhase, S.; Meineck, C.; Mitrevski, J.; Mueller, R. S. P.; Nunnemann, T.; Rauscher, F.; Ruschke, A.; Sanders, M. P.; Schaile, D.; Unverdorben, C.; Vladoiu, D.; Walker, R.; Wittkowski, J.] Univ Munich, Fak Phys, Munich, Germany. [Alviggi, M. G.; Barillari, T.; Bethke, S.; Bronner, J.; Compostella, G.; Cortiana, G.; Ecker, K. M.; Flowerdew, M. J.; Goblirsch-Kolb, M.; Ince, T.; Kiryunin, A. E.; Kluth, S.; Kortner, O.; Kortner, S.; Kroha, H.; Macchiolo, A.; Maier, A. A.; Manfredini, A.; Menke, S.; Mueller, F.; Nagel, M.; Nisius, R.; Nowak, S.; Oberlack, H.; Richter, R.; Salihagic, D.; Sandstroem, R.; Schacht, P.; Schwegler, Ph.; Spettel, F.; Stonjek, S.; Terzo, S.; von der Schmitt, H.; Wildauer, A.] Werner Heisenberg Inst, Max Planck Inst Phys, Munich, Germany. [Fusayasu, T.; Shimojima, M.] Nagasaki Inst Appl Sci, Nagasaki, Japan. [Horii, Y.; Morvaj, L.; Onogi, K.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Grad Sch Sci, Nagoya, Aichi 4648601, Japan. [Horii, Y.; Morvaj, L.; Onogi, K.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Kobayashi Maskawa Inst, Nagoya, Aichi 4648601, Japan. [Aloisio, A.; Canale, V.; Carlino, G.; Cirotto, F.; Conventi, F.; de Asmundis, R.; Della Pietra, M.; Di Donato, C.; Doria, A.; Izzo, V.; Merola, L.; Perrella, S.; Rossi, E.; Sanchez, A.; Zurzolo, G.] Ist Nazl Fis Nucl, Sez Napoli, I-80125 Naples, Italy. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Cirotto, F.; Di Donato, C.; Merola, L.; Perrella, S.; Rossi, E.; Sanchez, A.; Zurzolo, G.] Univ Naples Federico II, Dipartimento Fis, Naples, Italy. [Gorelov, I.; Hoeferkamp, M. R.; Seidel, S. C.; Toms, K.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Caron, S.; Colasurdo, L.; Croft, V.; De Groot, N.; Filthaut, F.; Galea, C.; Koenig, A. C.; Nektarijevic, S.; Strubig, A.] Radboud Univ Nijmegen Nikhef, Inst Math Astrophys & Particle Phys, Nijmegen, Netherlands. [Aben, R.; Angelozzi, I.; Beemster, L. J.; Bentvelsen, S.; Berge, D.; Bobbink, G. J.; Bos, K.; Brenner, L.; Butti, P.; Castelli, A.; Colijn, A. P.; de Jong, P.; Deigaard, I.; Deluca, C.; Duda, D.; Ferrari, P.; Hartjes, F.; Hessey, N. P.; Hod, N.; Igonkina, O.; Karastathis, N.; Kluit, P.; Kofferman, E.; Linde, F.; Mahlstedt, J.; Meyer, J.; Oussoren, K. P.; Sabato, G.; Salek, D.; Slawinska, M.; Valencic, N.; Van Den Wollenberg, W.; Van der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.; Weits, H.; Williams, S.] Nikhef Natl Inst Subat Phys, Amsterdam, Netherlands. [Aben, R.; Angelozzi, I.; Beemster, L. J.; Bentvelsen, S.; Berge, D.; Bobbink, G. J.; Bos, K.; Brenner, L.; Butti, P.; Castelli, A.; Colijn, A. P.; de Jong, P.; Deigaard, I.; Deluca, C.; Duda, D.; Ferrari, P.; Hartjes, F.; Hessey, N. P.; Hod, N.; Igonkina, O.; Karastathis, N.; Kluit, P.; Kofferman, E.; Linde, F.; Mahlstedt, J.; Meyer, J.; Oussoren, K. P.; Sabato, G.; Salek, D.; Slawinska, M.; Valencic, N.; Van Den Wollenberg, W.; Van der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.; Weits, H.; Williams, S.] Univ Amsterdam, Amsterdam, Netherlands. [Adelman, J.; Andari, N.; Burghgrave, B.; Cole, S.; Yurkewicz, A.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Anisenkov, A. V.; Baldin, E. M.; Bobrovnikov, V. S.; Bogdanchikov, A. G.; Buzykaev, A. R.; Kazanin, V. F.; Kharlamov, A. G.; Korol, A. A.; Malyshev, V. M.; Maslennikov, A. L.; Maximov, D. A.; Peleganchuk, S. V.; Rezanova, O. L.; Soukharev, A. M.; Talyshev, A. A.; Tikhonov, Yu. A.] SB RAS, Budker Inst Nucl Phys, Novosibirsk, Russia. [Bernius, C.; Cranmer, K.; Haas, A.; Heinrich, L.; van Huysduynen, L. Hooft; Kaplan, B.; Karthik, K.; Konoplich, R.; Kreiss, S.; Mincer, A. I.; Nemethy, P.; Neves, R. M.] NYU, Dept Phys, New York, NY 10003 USA. [Beacham, J. B.; Gan, K. K.; Ishmukhametov, R.; Kagan, H.; Kass, R. D.; Looper, K. A.; Nagarkar, A.; Pignotti, D. T.; Shrestha, S.; Tannenwald, B. B.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Fac Sci, Okayama 700, Japan. [Abbott, B.; Alhroob, M.; Bertsche, C.; Bertsche, D.; De Benedetti, A.; Gutierrez, P.; Hasib, A.; Norberg, S.; Pearson, B.; Rifki, O.; Saleem, M.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA. [Bousson, N.; Haley, J.; Jamin, D. O.; Khanov, A.; Rizatdinova, F.; Sidorov, D.; Yu, J.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA. [Chytka, L.; Hamal, P.; Hrabovsky, M.; Kvita, J.; Nozka, L.] Palacky Univ, RCPTM, CR-77147 Olomouc, Czech Republic. [Abreu, R.; Brau, J. E.; Brost, E.; Hopkins, W. H.; Majewski, S.; Potter, C. T.; Ptacek, E.; Radlo, P.; Shamim, M.; Sinev, N. B.; Strom, D. M.; Torrence, E.; Wanotayaroj, C.; Whalen, K.; Winklmeier, F.] Univ Oregon, Ctr High Energy Phys, Eugene, OR 97403 USA. [Ayoub, M. K.; Bassalat, A.; Becot, C.; Binet, S.; Bourdarios, C.; De Regie, J. B. De Vivie; Delgove, D.; Escalier, M.; Fayard, L.; Fournier, D.; Gkougkousis, E. L.; Grivaz, J-F.; Guillemin, T.; Hariri, F.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Kado, M.; Li, Y.; Lounis, A.; Makovec, N.; Morange, N.; Nellist, C.; Petroff, P.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Rybkin, G.; Schaffer, A. C.; Scifo, E.; Serin, L.; Simion, S.; Tanaka, R.; Zerwas, D.; Zhang, Z.; Zhao, Y.] Univ Paris 11, LAL, Orsay, France. [Ayoub, M. K.; Bassalat, A.; Becot, C.; Binet, S.; Bourdarios, C.; De Regie, J. B. De Vivie; Delgove, D.; Escalier, M.; Fayard, L.; Fournier, D.; Gkougkousis, E. L.; Grivaz, J-F.; Guillemin, T.; Hariri, F.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Kado, M.; Li, Y.; Lounis, A.; Makovec, N.; Morange, N.; Nellist, C.; Petroff, P.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Rybkin, G.; Schaffer, A. C.; Scifo, E.; Serin, L.; Simion, S.; Tanaka, R.; Zerwas, D.; Zhang, Z.; Zhao, Y.] CNRS, IN2P3, Orsay, France. [Endo, M.; Hanagaki, K.; Nomachi, M.; Okamura, W.; Sugaya, Y.; Teoh, J. J.; Yamaguchi, Y.] Osaka Univ, Grad Sch Sci, Osaka, Japan. [Bugge, L.; Bugge, M. K.; Cameron, D.; Catmore, J. R.; Franconi, L.; Garonne, V.; Gjelsten, B. K.; Gramstad, E.; Morisbak, V.; Nilsen, J. K.; Ould-Saada, F.; Pajchel, K.; Pedersen, M.; Raddum, S.; Read, A. L.; Rohne, O.; Sandaker, H.; Stapnes, S.; Strandlie, A.] Univ Oslo, Inst Phys, Oslo, Norway. [Barr, A. J.; Becker, K.; Behr, J. K.; Beresford, L.; Cooper-Sarkar, A. M.; Ortuzar, M. Crispin; Dafinca, A.; Davies, E.; Frost, J. A.; Gallas, E. J.; Gupta, S.; Gwenlan, C.; Hall, D.; Hays, C. P.; Henderson, J.; Howard, J.; Huffman, T. B.; Issever, C.; Kalderon, C. W.; Kogan, L. A.; Lewis, A.; Nagai, K.; Nickerson, R. B.; Pickering, M. A.; Ryder, N. C.; Tseng, J. C-L.; Viehhauser, G. H. A.; Weidberg, A. R.; Zhong, J.] Univ Oxford, Dept Phys, Oxford, England. [Conta, C.; Dondero, P.; Ferrari, R.; Fraternali, M.; Gaudio, G.; Introzzi, G.; Lanza, A.; Livan, M.; Negri, A.; Polesello, G.; Rebuzzi, D. M.; Rimoldi, A.; Vercesi, V.] Ist Nazl Fis Nucl, Sez Pavia, I-27100 Pavia, Italy. [Conta, C.; Dondero, P.; Fraternali, M.; Introzzi, G.; Livan, M.; Negri, A.; Rebuzzi, D. M.; Rimoldi, A.] Univ Pavia, Dipartimento Fis, I-27100 Pavia, Italy. [Brendlinger, K.; Fletcher, R. R. M.; Heim, S.; Hines, E.; Jackson, B.; Kroll, J.; Lipeles, E.; Miguens, J. Machado; Meyer, C.; Reichert, J.; Stahlman, J.; Thomson, E.; Vanguri, R.; Williams, H. H.; Yoshihara, K.] Univ Penn, Dept Phys, Philadelphia, PA 19104 USA. [Basalaev, A.; Ezhilov, A.; Fedin, O. L.; Gratchev, V.; Levchenko, M.; Maleev, V. P.; Ryabov, Y. F.; Schegelsky, V. A.; Sedykh, E.; Seliverstov, D. M.; Solovyev, V.] BP Konstantinov Petersburg Nucl Phys Inst, Kurchatov Inst, Natl Res Ctr, St Petersburg, Russia. [Annovi, A.; Beccherle, R.; Bertolucci, F.; Cavasinni, V.; Chiarelli, G.; Del Prete, T.; Dell'Orso, M.; Donati, S.; Giannetti, P.; Leone, S.; Roda, C.; Scuri, F.; Sotiropoulou, C. L.; Spalla, M.; Volpi, G.; White, S.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy. [Annovi, A.; Beccherle, R.; Bertolucci, F.; Cavasinni, V.; Chiarelli, G.; Del Prete, T.; Dell'Orso, M.; Donati, S.; Giannetti, P.; Leone, S.; Roda, C.; Scuri, F.; Sotiropoulou, C. L.; Spalla, M.; Volpi, G.; White, S.] Univ Pisa, Dipartimento Fis E Fermi, Pisa, Italy. [Bianchi, R. M.; Boudreau, J.; Cleland, W.; Escobar, C.; Hong, T. M.; Mueller, J.; Sapp, K.; Su, J.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Aguilar-Saavedra, J. A.; Dos Santos, S. P. Amor; Amorim, A.; Araque, J. P.; Cantrill, R.; Carvalho, J.; Castro, N. F.; Muino, P. Conde; De Sousa, M. J. Da Cunha Sargedas; Fiolhais, M. C. N.; Galhardo, B.; Gomes, A.; Goncalo, R.; Jorge, P. M.; Lopes, L.; Miguens, J. Machado; Maio, A.; Maneira, J.; Onofre, A.; Palma, A.; Pedro, R.; Pina, J.; Santos, H.; Saraiva, J. G.; Silva, J.; Delgado, A. Tavares; Veloso, F.; Wolters, H.] Lab Instrumentacao & Fis Expt Particulas LIP, Lisbon, Portugal. [Amorim, A.; Muino, P. Conde; De Sousa, M. J. Da Cunha Sargedas; Gomes, A.; Jorge, P. M.; Miguens, J. Machado; Maio, A.; Maneira, J.; Palma, A.; Pedro, R.; Pina, J.; Delgado, A. Tavares] Univ Lisbon, Fac Ciencias, Lisbon, Portugal. [Dos Santos, S. P. Amor; Carvalho, J.; Fiolhais, M. C. N.; Galhardo, B.; Veloso, F.; Wolters, H.] Univ Coimbra, Dept Phys, Coimbra, Portugal. [Gomes, A.; Maio, A.; Pina, J.; Saraiva, J. G.; Silva, J.] Univ Lisbon, Ctr Fis Nucl, Lisbon, Portugal. [Onofre, A.] Univ Minho, Dept Fis, Braga, Portugal. [Aguilar-Saavedra, J. A.] Univ Granada, Dept Fis Teor & Cosmos, Granada, Spain. [Aguilar-Saavedra, J. A.] Univ Granada, CAFPE, Granada, Spain. Univ Nova Lisboa, Dept Fis, P-1200 Lisbon, Portugal. Univ Nova Lisboa, CEFITEC, Fac Ciencias & Tecnol, P-1200 Lisbon, Portugal. [Chudoba, J.; Havranek, M.; Hejbal, J.; Jakoubek, T.; Kepka, O.; Kupco, A.; Kus, V.; Lokajicek, M.; Lysak, R.; Marcisovsky, M.; Mikestikova, M.; Nemecek, S.; Penc, O.; Sicho, P.; Staroba, P.; Svatos, M.; Tasevsky, M.; Vrba, V.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Augsten, K.; Caforio, D.; Gallus, P.; Guenther, J.; Hsu, C.; Hubacek, Z.; Jakubek, J.; Kohout, Z.; Myska, M.; Pospisil, S.; Seifert, F.; Simak, V.; Slavicek, T.; Smolek, K.; Solar, M.; Solc, J.; Sopczak, A.; Sopko, B.; Sopko, V.; Suk, M.; Turecek, D.; Vacek, V.; Vlasak, M.; Vokac, P.; Vykydal, Z.; Zeman, M.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Balek, P.; Berta, P.; Cerny, K.; Chakraborty, D.; Davidek, T.; Dolejsi, J.; Dolezal, Z.; Faltova, J.; Kodys, P.; Kosek, T.; Leitner, R.; Pleskot, V.; Reznicek, P.; Scheirich, D.; Spousta, M.; Sykora, T.; Tas, P.; Todorova-Nova, S.; Valkar, S.; Vorobel, V.] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic. [Borisov, A.; Cheremushkina, E.; Denisov, S. P.; Fakhrutdinov, R. M.; Fenyuk, A. B.; Golubkov, D.; Kamenshchikov, A.; Karyukhin, A. N.; Kozhin, A. S.; Minaenko, A. A.; Myagkov, A. G.; Nikolaenko, V.; Solodkov, A. A.; Solovyanov, O. V.; Starchenko, E. A.; Zaitsev, A. M.; Zenin, O.] State Res Ctr Inst High Energy Phys, Protvino, Russia. [Adye, T.; Baines, J. T.; Barnett, B. M.; Burke, S.; Davies, E.; Dewhurst, A.; Dopke, J.; Emeliyanov, D.; Gallop, B. J.; Gee, C. N. P.; Haywood, S. J.; Kapliy, A.; Kirk, J.; Martin-Haugh, S.; McCubbin, N. A.; McMahon, S. J.; Middleton, R. P.; Murray, W. J.; Phillips, P. W.; Sankey, D. P. C.; Sawyer, C.; Tyndel, M.; Wickens, F. J.; Wielers, M.] Rutherford Appleton Lab, Particle Phys Dept, Didcot OX11 0QX, Oxon, England. [Anulli, F.; Bagiacchi, P.; Bagnaia, P.; Bauce, M.; Bini, C.; Ciapetti, G.; De Pedis, D.; De Salvo, A.; Di Domenico, A.; Falciano, S.; Gabrielli, A.; Gauzzi, P.; Gentile, S.; Giagu, S.; Gustavino, G.; Kuna, M.; Lacava, F.; Luci, C.; Luminari, L.; Marzano, F.; Messina, A.; Monzani, S.; Nisati, A.; Pasqualucci, E.; Petrolo, E.; Pontecorvo, L.; Rescigno, M.; Rosati, S.; Tehrani, F. Safai; Vanadia, M.; Vari, R.; Veneziano, S.; Verducci, M.; Zanello, L.] Ist Nazl Fis Nucl, Sez Roma, Rome, Italy. [Bagiacchi, P.; Bagnaia, P.; Bauce, M.; Bini, C.; Ciapetti, G.; Di Domenico, A.; Gabrielli, A.; Gauzzi, P.; Gentile, S.; Giagu, S.; Gustavino, G.; Kuna, M.; Lacava, F.; Luci, C.; Messina, A.; Monzani, S.; Vanadia, M.; Verducci, M.; Zanello, L.] Sapienza Univ Roma, Dipartimento Fis, Rome, Italy. [Aielli, G.; Camarri, P.; Cardarelli, R.; Di Ciaccio, A.; Iuppa, R.; Liberti, B.; Mazzaferro, L.; Salamon, A.; Santonico, R.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, Rome, Italy. [Aielli, G.; Camarri, P.; Di Ciaccio, A.; Iuppa, R.; Mazzaferro, L.; Santonico, R.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy. [Bacci, C.; Baroncelli, A.; Biglietti, M.; Ceradini, F.; Di Micco, B.; Farilla, A.; Graziani, E.; Iodice, M.; Orestano, D.; Pastore, F.; Petrucci, F.; Puddu, D.; Salamanna, G.; Sessa, M.; Stanescu, C.; Taccini, C.] Ist Nazl Fis Nucl, Sez Roma Tre, Rome, Italy. [Bacci, C.; Ceradini, F.; Di Micco, B.; Orestano, D.; Pastore, F.; Petrucci, F.; Puddu, D.; Salamanna, G.; Sessa, M.; Taccini, C.] Univ Rome Tre, Dipartimento Matemat & Fis, I-00146 Rome, Italy. [Benchekroun, D.; Chafaq, A.; Hoummada, A.] Univ Hassan 2, Reseau Univ Phys Hautes Energies, Fac Sci Ain Chock, Casablanca, Morocco. [Ghazlane, H.] Ctr Natl Energie Sci Techn Nucl, Rabat, Morocco. [El Kacimi, M.; Goujdami, D.] Univ Cadi Ayyad, Fac Sci Semlalia, Lphea Marrakech, Morocco. [Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] Univ Mohamed Premier, Fac Sci, Oujda, Morocco. [Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] LPTPM, Oujda, Morocco. [El Moursli, R. Cherkaoui; Fassi, F.; Haddad, N.; Idrissi, Z.] Univ Mohammed 5, Fac Sci, Rabat, Morocco. [Bachacou, H.; Bauer, F.; Besson, N.; Blanchard, J. -B.; Boonekamp, M.; Calandri, A.; Chevalier, L.; Hoffmann, M. Dano; Deliot, F.; Etienvre, A. I.; Giraud, P. F.; Firmino Da Costa, J. Goncalves Pinto; Guyot, C.; Hanna, R.; Hassani, S.; Kivernyk, O.; Kozanecki, W.; Lancon, E.; Laporte, J. F.; Maiani, C.; Mansoulie, B.; Meyer, J-P.; Nicolaidou, R.; Ouraou, A.; Protopapadaki, E.; Royon, C. R.; Saimpert, M.; Schoeffel, L.; Schune, Ph.; Schwemling, Ph.; Schwindling, J.] CEA Saclay, DSM, IRFU, F-91191 Gif Sur Yvette, France. [Battaglia, M.; Debenedetti, C.; Grabas, H. M. X.; Grillo, A. A.; Kuhl, A.; La Rosa, A.; Law, A. T.; Liang, Z.; Litke, A. M.; Lockman, W. S.; Nielsen, J.; Reece, R.; Rose, P.; Sadrozinski, H. F-W.; Schumm, B. A.; Seiden, A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Blackburn, D.; Goussiou, A. G.; Hsu, S-C.; Lubatti, H. J.; Marx, M.; Rompotis, N.; Rompotis, N.; Rosten, R.; Rothberg, J.; Russell, H. L.; De Bruin, P. H. Sales; Pastor, E. Torro] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Anastopoulos, C.; Costanzo, D.; Donszelmann, T. Cuhadar; Dawson, I.; Fletcher, G. T.; Formica, A.; Hamity, G. N.; Hodgkinson, M. C.; Hodgson, P.; Johansson, P.; Klinger, J. A.; Korolkova, E. V.; Kyriazopoulos, D.; Paredes, B. Lopez; Macdonald, C. M.; Miyagawa, P. S.; Paganis, E.; Parker, K. A.; Tovey, D. R.; Vickey, T.; Boeriu, O. E. Vickey] Univ Sheffield, Dept Phys & Astron, Sheffield, S Yorkshire, England. [Hasegawa, Y.; Takeshita, T.] Shinshu Univ, Dept Phys, Nagano, Japan. [Atlay, N. B.; Buchholz, P.; Czirr, H.; Fleck, I.; Gaur, B.; Ghasemi, S.; Ibragimov, I.; Ikematsu, K.; Rosenthal, O.; Walkowiak, W.; Ziolkowski, M.] Univ Siegen, Fachbereich Phys, D-57068 Siegen, Germany. [Buat, Q.; Horton, A. J.; Mori, D.; O'Neil, D. C.; Pachal, K.; Stelzer, B.; Temple, D.; Torres, H.; Van Nieuwkoop, J.; Vetterli, M. C.] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada. [Barklow, T.; Bartoldus, R.; Bawa, H. S.; Black, J. E.; Cogan, J. G.; Fulsom, B. G.; Gao, Y. S.; Garelli, N.; Grenier, P.; Ilic, N.; Kagan, M.; Kocian, M.; Koi, T.; Malone, C.; Moss, J.; Mount, R.; Nachman, B. P.; Nef, P. D.; Piacquadio, G.; Rubbo, F.; Salnikov, A.; Schwartzman, A.; Strauss, E.; Su, D.; Swiatlowski, M.; Tompkins, L.; Wittgen, M.; Young, C.; Zeng, Q.] SLAC Natl Accelerator Lab, Stanford, CA USA. [Astalos, R.; Bartos, P.; Blazek, T.; Federic, P.; Plazak, L.; Sykora, I.; Tokar, S.; Zenis, T.] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia. [Antos, J.; Bruncko, D.; Kladiva, E.; Strizenec, P.; Sykora, I.; Urban, J.] Slovak Acad Sci, Inst Expt Phys, Dept Subnucl Phys, Kosice 04353, Slovakia. [Castaneda-Miranda, E.; Hamilton, A.; Meehan, S.; Yacoob, S.] Univ Cape Town, Dept Phys, ZA-7925 Cape Town, South Africa. [Aurousseau, M.; Connell, S. H.; Govender, N.; Lee, C. A.] Univ Johannesburg, Dept Phys, Johannesburg, South Africa. [Bristow, K.; Kar, D.; March, L.; Mellado Garcia, B. R.; Ruan, X.] Univ Witwatersrand, Sch Phys, Johannesburg, South Africa. [Abulaiti, Y.; Akerstedt, H.; Asman, B.; Bendtz, K.; Bertoli, G.; Bylund, O. Bessidskaia; Bohm, C.; Clement, C.; Cribbs, W. A.; Hellman, S.; Jon-And, K.; Khandanyan, H.; Klimek, P.; Lundberg, O.; Milstead, D. A.; Moa, T.; Molander, S.; Pani, P.; Plucinski, P.; Poettgen, R.; Rossetti, V.; Shcherbakova, A.; Silverstein, S. B.; Sjolin, J.; Strandberg, S.; Tylmad, M.; Ughetto, M.] Stockholm Univ, Dept Phys, S-10691 Stockholm, Sweden. [Abulaiti, Y.; Akerstedt, H.; Asman, B.; Bendtz, K.; Bertoli, G.; Bylund, O. Bessidskaia; Clement, C.; Cribbs, W. A.; Hellman, S.; Jon-And, K.; Khandanyan, H.; Klimek, P.; Lundberg, O.; Milstead, D. A.; Moa, T.; Molander, S.; Pani, P.; Plucinski, P.; Poettgen, R.; Rossetti, V.; Shcherbakova, A.; Sjolin, J.; Strandberg, S.; Tylmad, M.; Ughetto, M.] Oskar Klein Ctr, Stockholm, Sweden. [Lund-Jensen, B.; Sidebo, P. E.; Strandberg, J.] Royal Inst Technol, Dept Phys, S-10044 Stockholm, Sweden. [Balestri, T.; Bee, C. P.; Campoverde, A.; Chen, K.; Hobbs, J.; Jia, J.; Li, H.; Lindquist, B. E.; Mastrandrea, P.; McCarthy, R. L.; Puldon, D.; Radhakrishnan, S. K.; Rijssenbeek, M.; Schamberger, R. D.; Tsybychev, D.; Zaman, A.; Zhou, M.] SUNY Stony Brook, Dept Phys & Astron & Chem, Stony Brook, NY 11794 USA. [Allbrooke, B. M. M.; Asquith, L.; Cerri, A.; Barajas, C. A. Chavez; De Sanctis, U.; De Santo, A.; Grout, Z. J.; Potter, C. J.; Salvatore, F.; Castillo, I. Santoyo; Shehu, C. Y.; Suruliz, K.; Sutton, M. R.; Vivarelli, I.] Univ Sussex, Dept Phys & Astron, Brighton, E Sussex, England. [Black, C. W.; Cuthbert, C.; Finelli, K. D.; Jeng, G-Y.; Limosani, A.; Morley, A. K.; Patel, N. D.; Saavedra, A. F.; Scarcella, M.; Varvell, K. E.; Watson, I. J.; Yabsley, B.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. [Abdallah, J.; Hou, S.; Hsu, P. J.; Lee, S. C.; Lin, S. C.; Liu, B.; Liu, D.; Lo Sterzo, F.; Mazini, R.; Shi, L.; Soh, D. A.; Teng, P. K.; Wang, C.; Wang, S. M.; Yang, Y.] Acad Sinica, Inst Phys, Taipei, Taiwan. [Abreu, H.; Cheatham, S.; Di Mattia, A.; Gozani, E.; Kopeliansky, R.; Musto, E.; Rozen, Y.; Tarem, S.; van Eldik, N.] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel. [Abramowicz, H.; Alexander, G.; Amram, N.; Ashkenazi, A.; Bella, G.; Benary, O.; Benhammou, Y.; Davies, M.; Etzion, E.; Gershon, A.; Gueta, O.; Oren, Y.; Silver, Y.; Soffer, A.; Taiblum, N.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Bachas, K.; Gkaitatzis, S.; Gkialas, I.; Iliadis, D.; Kimura, N.; Kordas, K.; Kourkoumeli-Charalampidi, A.; Leisos, A.; Orlando, N.; Papageorgiou, K.; Paredes Hernandez, D.; Petridou, C.; Sampsonidis, D.; Tsionou, D.] Aristotle Univ Thessaloniki, Dept Phys, Thessaloniki, Greece. [Asai, S.; Dohmae, T.; Enari, Y.; Hanawa, K.; Kanaya, N.; Kataoka, Y.; Kato, C.; Kawamoto, T.; Kazama, S.; Kobayashi, A.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Minami, Y.; Morinaga, M.; Nakamura, T.; Ninomiya, Y.; Nobe, T.; Saito, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamamoto, S.; Yamanaka, T.] Univ Tokyo, Int Ctr Elementary Particle Phys, Tokyo, Japan. [Asai, S.; Dohmae, T.; Enari, Y.; Hanawa, K.; Kanaya, N.; Kataoka, Y.; Kato, C.; Kawamoto, T.; Kazama, S.; Kobayashi, A.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Minami, Y.; Morinaga, M.; Nakamura, T.; Ninomiya, Y.; Nobe, T.; Saito, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamamoto, S.; Yamanaka, T.] Univ Tokyo, Dept Phys, Tokyo 113, Japan. [Bratzler, U.; Fukunaga, C.] Tokyo Metropolitan Univ, Grad Sch Sci & Technol, Tokyo 158, Japan. [Hirose, M.; Ishitsuka, M.; Jinnouchi, O.; Kobayashi, D.; Kuze, M.; Motohashi, K.; Nagai, R.; Pettersson, N. E.; Todome, K.; Yamaguchi, D.] Tokyo Inst Technol, Dept Phys, Tokyo 152, Japan. [AbouZeid, O. S.; Batista, S. J.; Chau, C. C.; DeMarco, D. A.; Di Sipio, R.; Diamond, M.; Krieger, P.; Liblong, A.; Mc Goldrick, G.; Orr, R. S.; Polifka, R.; Rudolph, M. S.; Savard, P.; Sinervo, P.; Spreitzer, T.; Taenzer, J.; Teuscher, R. J.; Trischuk, W.; Veloce, L. M.; Venturi, N.] Univ Toronto, Dept Phys, Toronto, ON, Canada. [Azuelos, G.; Canepa, A.; Chekulaev, S. V.; Gingrich, D. M.; Jovicevic, J.; Koutsman, A.; Oakham, F. G.; Oram, C. J.; Codina, E. Perez; Savard, P.; Schneider, B.; Schouten, D.; Seuster, R.; Stelzer-Chilton, O.; Tafirout, R.; Trigger, I. M.; Vetterli, M. C.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Garcia, J. A. Benitez; Manjarres Ramos, J.; Palacino, G.; Taylor, W.] York Univ, Dept Phys & Astron, Toronto, ON M3J 2R7, Canada. [Hara, K.; Hayashi, T.; Kim, S. H.; Kiuchi, K.; Nagata, K.; Okawa, H.; Sato, K.; Ukegawa, F.] Univ Tsukuba, Fac Pure & Appl Sci, Tsukuba, Ibaraki, Japan. [Beauchemin, P. H.; Meoni, E.; Rolli, S.; Sliwa, K.; Wetter, J.] Tufts Univ, Dept Phys & Astron, Medford, MA 02155 USA. [Losada, M.; Moreno, D.; Navarro, G.; Sandoval, C.] Univ Antonio Narino, Ctr Invest, Bogota, Colombia. [Corso-Radu, A.; Frate, M.; Gerbaudo, D.; Lankford, A. J.; Mete, A. S.; Nelson, A.; Relich, M.; Scannicchio, D. A.; Schernau, M.; Shimmin, C. O.; Taffard, A.; Unel, G.; Whiteson, D.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA USA. [Acharya, B. S.; Barisonzi, M.; Brazzale, S. F.; Cobal, M.; Giordani, M. P.; Miglioranzi, S.; Pinamonti, M.; Quayle, W. B.; Serkin, L.; Shaw, K.; Soualah, R.; Truong, L.] Ist Nazl Fis Nucl, Grp Collegato Udine, Sez Trieste, Udine, Italy. [Acharya, B. S.; Barisonzi, M.; Quayle, W. B.; Serkin, L.; Shaw, K.] Abdus Salaam Int Ctr Theoret Phys, Trieste, Italy. [Brazzale, S. F.; Cobal, M.; Giordani, M. P.; Miglioranzi, S.; Pinamonti, M.; Soualah, R.; Truong, L.] Univ Udine, Fis Ambiente, Dipartimento Chim, I-33100 Udine, Italy. [Atkinson, M.; Basye, A.; Armadans, R. Caminal; Cavaliere, V.; Chalupkova, I.; Chang, P.; Errede, S.; Lie, K.; Liss, T. M.; Liu, L.; Neubauer, M. S.; Rybar, M.; Shang, R.; Vichou, I.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Kuutmann, E. Bergeaas; Brenner, R.; Ekelof, T.; Ellert, M.; Ferrari, A.; Gradin, P. O. J.; Isaksson, C.; Madsen, A.; Ohman, H.; Pelikan, D.; Rangel-Smith, C.] Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden. [Alvarez Piqueras, D.; Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Martinez, P. Fernandez; Ferrer, A.; Ferrere, D.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; Gonzalez de la Hoz, S.; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Quiles, A. Irles; Pena, J. Jimenez; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Mitsou, V. A.; Garcia, E. Oliver; Lopez, S. Pedraza; Perez Garcia-Estan, M. T.; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Vos, M.] Univ Valencia, Inst Fis Corpuscular IFIC, Valencia, Spain. [Alvarez Piqueras, D.; Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Martinez, P. Fernandez; Ferrer, A.; Ferrere, D.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; Gonzalez de la Hoz, S.; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Quiles, A. Irles; Pena, J. Jimenez; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Mitsou, V. A.; Garcia, E. Oliver; Lopez, S. Pedraza; Perez Garcia-Estan, M. T.; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Vos, M.] Univ Valencia, Dept Fis Atom Mol & Nucl, Valencia, Spain. [Alvarez Piqueras, D.; Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Martinez, P. Fernandez; Ferrer, A.; Ferrere, D.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; Gonzalez de la Hoz, S.; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Quiles, A. Irles; Pena, J. Jimenez; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Mitsou, V. A.; Garcia, E. Oliver; Lopez, S. Pedraza; Perez Garcia-Estan, M. T.; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Vos, M.] Univ Valencia, Dept Ingn Elect, Valencia, Spain. [Alvarez Piqueras, D.; Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Martinez, P. Fernandez; Ferrer, A.; Ferrere, D.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; Gonzalez de la Hoz, S.; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Quiles, A. Irles; Pena, J. Jimenez; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Mitsou, V. A.; Garcia, E. Oliver; Lopez, S. Pedraza; Perez Garcia-Estan, M. T.; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Vos, M.] Univ Valencia, Inst Microelect Barcelona IMB CNM, Valencia, Spain. [Alvarez Piqueras, D.; Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Martinez, P. Fernandez; Ferrer, A.; Ferrere, D.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; Gonzalez de la Hoz, S.; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Quiles, A. Irles; Pena, J. Jimenez; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Mitsou, V. A.; Garcia, E. Oliver; Lopez, S. Pedraza; Perez Garcia-Estan, M. T.; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Vos, M.] CSIC, Valencia, Spain. [Danninger, M.; Fedorko, W.; Gay, C.; Gecse, Z.; Henkelmann, S.; King, S. B.; Lister, A.] Univ British Columbia, Dept Phys, Vancouver, BC, Canada. [Albert, J.; Berghaus, F.; David, C.; Elliot, A. A.; Ferrari, A.; Fincke-Keeler, M.; Hamano, K.; Hill, E.; Keeler, R.; Kowalewski, R.; Kuwertz, E. S.; Kwan, T.; LeBlanc, M.; Lefebvre, M.; Marino, C. P.; McPherson, R. A.; Pearce, J.; Sobie, R.; Trovatelli, M.; Venturi, M.] Univ Victoria, Dept Phys & Astron, Victoria, BC, Canada. [Beckingham, M.; Farrington, S. M.; Harrison, P. F.; Jeske, C.; Jones, G.; Martin, T. A.; Murray, W. J.; Pianori, E.; Spangenberg, M.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Iizawa, T.; Mitani, T.; Sakurai, Y.; Yorita, K.] Waseda Univ, Tokyo, Japan. [Bressler, S.; Citron, Z. H.; Duchovni, E.; Gross, E.; Lellouch, D.; Levinson, L. J.; Mikenberg, G.; Milov, A.; Pitt, M.; Roth, I.; Schaarschmidt, J.; Smakhtin, V.] Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel. [Banerjee, Sw.; Hard, A. S.; Heng, Y.; Ji, H.; Ju, X.; Kaplan, L. S.; Kashif, L.; Kruse, A.; Ming, Y.; Pan, Y. B.; Wang, F.; Wiedenmann, W.; Wu, S. L.; Yang, H.; Zhang, F.; Zobernig, G.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Kuger, F.; Redelbach, A.; Schreyer, M.; Sidiropoulou, O.; Siragusa, G.; Strohmer, R.; Tam, J. Y. C.; Trefzger, T.; Weber, S. W.; Zibell, A.] Univ Wurzburg, Fak Phys & Astron, D-97070 Wurzburg, Germany. [Bannoura, A. A. E.; Braun, H. M.; Cornelissen, T.; Ellinghaus, F.; Ernis, G.; Fischer, J.; Fleischmann, S.; Flick, T.; Gabizon, O.; Hamacher, K.; Harenberg, T.; Heim, T.; Hirschbuehl, D.; Kersten, S.; Kohlmann, S.; Attig, P. M.; Neumann, M.; Pataraia, S.; Riegel, C. J.; Sandhoff, M.; Tepel, F.; Wagner, W.; Zeitnitz, C.] Berg Univ Wuppertal, Fachbereich Phys C, Wuppertal, Germany. [Baker, O. K.; Cummings, J.; Demers, S.; Garberson, F.; Guest, D.; Henrichs, A.; Ideal, E.; Lagouri, T.; Leister, A. G.; Loginov, A.; Thomsen, L. A.; Tipton, P.; Wang, X.] Yale Univ, Dept Phys, New Haven, CT USA. [Hakobyan, H.; Vardanyan, G.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Rahal, G.] Inst Natl Phys Nucl & Phys Particules, Ctr Calcul, IN2P3, Villeurbanne, France. [Acharya, B. S.] Kings Coll London, Dept Phys, London, England. [Anisenkov, A. V.; Baldin, E. M.; Bobrovnikov, V. S.; Buzykaev, A. R.; Kazanin, V. F.; Kharlamov, A. G.; Korol, A. A.; Maslennikov, A. L.; Maximov, D. A.; Peleganchuk, S. V.; Rezanova, O. L.; Soukharev, A. M.; Talyshev, A. A.; Tikhonov, Yu. A.] Novosibirsk State Univ, Novosibirsk 630090, Russia. [Bawa, H. S.; Gao, Y. S.] Calif State Univ Fresno, Dept Phys, Fresno, CA 93740 USA. [Beck, H. P.] Univ Fribourg, Dept Phys, CH-1700 Fribourg, Switzerland. [Castro, N. F.] Univ Porto, Fac Ciencias, Dept Fis & Astron, P-4100 Oporto, Portugal. Tomsk State Univ, Tomsk 634050, Russia. [Chen, L.] Aix Marseille Univ, CPPM, Marseille, France. [Chen, L.] CNRS, IN2P3, Marseille, France. [Conventi, F.; Della Pietra, M.] Univ Napoli Parthenope, Naples, Italy. [Davies, E.] Rutherford Appleton Lab, Particle Phys Dept, Didcot OX11 0QX, Oxon, England. [Fedin, O. L.] St Petersburg State Polytech Univ, Dept Phys, St Petersburg, Russia. [Greenwood, Z. D.; Sawyer, L.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Grinstein, S.; Rozas, A. Juste; Martinez, M.] ICREA, Barcelona, Spain. [Hsu, P. J.] Natl Tsing Hua Univ, Dept Phys, Taipei, Taiwan. [Ilchenko, Y.; Onyisi, P. U. E.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. [Jejelava, J.] Ilia State Univ, Inst Theoret Phys, Tbilisi, Rep of Georgia. [Jenni, P.] CERN, Geneva, Switzerland. [Khubua, J.] GTU, Tbilisi, Rep of Georgia. Manhattan Coll, New York, NY USA. [Leisos, A.] Hellenic Open Univ, Patras, Greece. [Li, B.] Acad Sinica, Inst Phys, Taipei, Taiwan. [Lin, S. C.] Acad Sinica, Inst Phys, Acad Sinica Grid Comp, Taipei, Taiwan. [Myagkov, A. G.; Nikolaenko, V.; Zaitsev, A. M.] Moscow Inst Phys & Technol, Dolgoprudnyi, Russia. [Nessi, M.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Pinamonti, M.] Int Sch Adv Studies SISSA, Trieste, Italy. [Purohit, M.] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. [Shi, L.; Soh, D. A.] Sun Yat Sen Univ, Sch Phys & Engn, Guangzhou, Peoples R China. [Smirnova, L. N.; Turchikhin, S.] Moscow MV Lomonosov State Univ, Fac Phys, Moscow, Russia. [Tikhomirov, V. O.] Natl Res Nucl Univ MEPhI, Moscow, Russia. [Tompkins, L.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Toth, J.] Wigner Res Ctr Phys, Inst Particle & Nucl Phys, Budapest, Hungary. [Yusuff, I.] Univ Malaya, Dept Phys, Kuala Lumpur 59100, Malaysia. RP Aad, G (reprint author), Aix Marseille Univ, CPPM, Marseille, France. RI Kuday, Sinan/C-8528-2014; Gavrilenko, Igor/M-8260-2015; Gauzzi, Paolo/D-2615-2009; Maleev, Victor/R-4140-2016; Camarri, Paolo/M-7979-2015; Mindur, Bartosz/A-2253-2017; Mashinistov, Ruslan/M-8356-2015; Fabbri, Laura/H-3442-2012; Gutierrez, Phillip/C-1161-2011; Solodkov, Alexander/B-8623-2017; Zaitsev, Alexandre/B-8989-2017; Peleganchuk, Sergey/J-6722-2014; Li, Liang/O-1107-2015; Monzani, Simone/D-6328-2017; Snesarev, Andrey/H-5090-2013; Ventura, Andrea/A-9544-2015; Kantserov, Vadim/M-9761-2015; Villa, Mauro/C-9883-2009; Chiarelli, Giorgio/E-8953-2012; Guo, Jun/O-5202-2015; Vanadia, Marco/K-5870-2016; Ippolito, Valerio/L-1435-2016; Maneira, Jose/D-8486-2011; Prokoshin, Fedor/E-2795-2012; Stabile, Alberto/L-3419-2016; Staroba, Pavel/G-8850-2014; Kukla, Romain/P-9760-2016; Gonzalez de la Hoz, Santiago/E-2494-2016; Aguilar Saavedra, Juan Antonio/F-1256-2016; Leyton, Michael/G-2214-2016; Jones, Roger/H-5578-2011; Boyko, Igor/J-3659-2013; Vranjes Milosavljevic, Marija/F-9847-2016; Chekulaev, Sergey/O-1145-2015; Zhukov, Konstantin/M-6027-2015; SULIN, VLADIMIR/N-2793-2015; Nechaeva, Polina/N-1148-2015; Vykydal, Zdenek/H-6426-2016; Fedin, Oleg/H-6753-2016; Brooks, William/C-8636-2013; Savarala, Hari Krishna/A-3516-2015; Gladilin, Leonid/B-5226-2011; Warburton, Andreas/N-8028-2013; Mitsou, Vasiliki/D-1967-2009; White, Ryan/E-2979-2015; Doyle, Anthony/C-5889-2009; Di Domenico, Antonio/G-6301-2011; Livan, Michele/D-7531-2012; Smirnova, Oxana/A-4401-2013; Carvalho, Joao/M-4060-2013; Tikhomirov, Vladimir/M-6194-2015 OI Kuday, Sinan/0000-0002-0116-5494; Gauzzi, Paolo/0000-0003-4841-5822; Camarri, Paolo/0000-0002-5732-5645; Mindur, Bartosz/0000-0002-5511-2611; Mashinistov, Ruslan/0000-0001-7925-4676; Fabbri, Laura/0000-0002-4002-8353; Solodkov, Alexander/0000-0002-2737-8674; Zaitsev, Alexandre/0000-0002-4961-8368; Peleganchuk, Sergey/0000-0003-0907-7592; Li, Liang/0000-0001-6411-6107; Monzani, Simone/0000-0002-0479-2207; Ventura, Andrea/0000-0002-3368-3413; Kantserov, Vadim/0000-0001-8255-416X; Villa, Mauro/0000-0002-9181-8048; Chiarelli, Giorgio/0000-0001-9851-4816; Guo, Jun/0000-0001-8125-9433; Vanadia, Marco/0000-0003-2684-276X; Ippolito, Valerio/0000-0001-5126-1620; Maneira, Jose/0000-0002-3222-2738; Prokoshin, Fedor/0000-0001-6389-5399; Stabile, Alberto/0000-0002-6868-8329; Kukla, Romain/0000-0002-1140-2465; Gonzalez de la Hoz, Santiago/0000-0001-5304-5390; Aguilar Saavedra, Juan Antonio/0000-0002-5475-8920; Leyton, Michael/0000-0002-0727-8107; Jones, Roger/0000-0002-6427-3513; Boyko, Igor/0000-0002-3355-4662; Vranjes Milosavljevic, Marija/0000-0003-4477-9733; SULIN, VLADIMIR/0000-0003-3943-2495; Vykydal, Zdenek/0000-0003-2329-0672; Brooks, William/0000-0001-6161-3570; Savarala, Hari Krishna/0000-0001-6593-4849; Gladilin, Leonid/0000-0001-9422-8636; Warburton, Andreas/0000-0002-2298-7315; Mitsou, Vasiliki/0000-0002-1533-8886; White, Ryan/0000-0003-3589-5900; Doyle, Anthony/0000-0001-6322-6195; Di Domenico, Antonio/0000-0001-8078-2759; Livan, Michele/0000-0002-5877-0062; Smirnova, Oxana/0000-0003-2517-531X; Carvalho, Joao/0000-0002-3015-7821; Tikhomirov, Vladimir/0000-0002-9634-0581 FU ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW, Austria; FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq, Brazil; FAPESP, Brazil; NSERC, Canada; NRC, Canada; CFI, Canada; CERN; CONICYT, Chile; CAS, China; MOST, China; NSFC, China; COLCIENCIAS, Colombia; MSMT CR, Czech Republic; MPO CR, Czech Republic; VSC CR, Czech Republic; DNRF, Denmark; DNSRC, Denmark; Lundbeck Foundation, Denmark; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, Germany; HGF, Germany; MPG, Germany; GSRT, Greece; RGC, China; Hong Kong SAR, China; ISF, Israel; I-CORE, Israel; Benoziyo Center, Israel; INFN, Italy; MEXT, Japan; JSPS, Japan; CNRST, Morocco; FOM, Netherlands; NWO, Netherlands; RCN, Norway; MNiSW, Poland; NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia, Russian Federation; NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS, Slovenia; MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC, Sweden; Wallenberg Foundation, Sweden; SERI, Switzerland; SNSF, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE, United States of America; NSF, United States of America; BCKDF, Canada; Canada Council, Canada; CANARIE, Canada; CRC, Canada; Compute Canada, Canada; FQRNT, Canada; Ontario Innovation Trust, Canada; EPLANET, European Union; ERC, European Union; FP7, European Union; Horizon, European Union; Marie Sklodowska-Curie Actions, European Union; ANR, France; Region Auvergne, France; Fondation Partager le Savoir, France; DFG, Germany; AvH Foundation, Germany; Herakleitos programme - EU-ESF; Thales programme - EU-ESF; Greek NSRF; BSF, Israel; GIF, Israel; Minerva, Israel; BRF, Norway; Royal Society, United Kingdom; Leverhulme Trust, United Kingdom; Aristeia programme - EU-ESF; Canton of Bern, Switzerland; Canton of Geneva, Switzerland; Investissement d'Avenir Labex, France; Investissement d'Avenir Idex, France FX We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, the Canada Council, CANARIE, CRC, Compute Canada, FQRNT, and the Ontario Innovation Trust, Canada; EPLANET, ERC, FP7, Horizon 2020 and Marie Sklodowska-Curie Actions, European Union; Investissements d'Avenir Labex and Idex, ANR, Region Auvergne and Fondation Partager le Savoir, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF; BSF, GIF and Minerva, Israel; BRF, Norway; the Royal Society and Leverhulme Trust, United Kingdom. NR 66 TC 2 Z9 2 U1 14 U2 64 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD DEC 16 PY 2015 IS 12 AR 105 DI 10.1007/JHEP12(2015)105 PG 76 WC Physics, Particles & Fields SC Physics GA DA0GJ UT WOS:000367475300001 ER PT J AU Shi, LR Chen, K Du, R Bachmatiuk, A Rummeli, MH Priydarshi, MK Zhang, YF Manivannan, A Liu, ZF AF Shi, Liurong Chen, Ke Du, Ran Bachmatiuk, Alicja Ruemmeli, Mark Hermann Priydarshi, Manish Kumar Zhang, Yanfeng Manivannan, Ayyakkannu Liu, Zhongfan TI Direct Synthesis of Few-Layer Graphene on NaCl Crystals SO SMALL LA English DT Article ID CHEMICAL-VAPOR-DEPOSITION; HIGH-QUALITY GRAPHENE; RAMAN-SPECTROSCOPY; GROWTH; FOILS; SUPERCAPACITOR; VERSATILE; NETWORKS; FILMS AB Chemical vapor deposition is used to synthesize few-layer graphene on micro crystalline sodium chloride (NaCl) powder. The water-soluble nature of NaCl makes it convenient to produce free standing graphene layers via a facile and low-cost approach. Unlike traditional metal-catalyzed or oxygen-aided growth, the micron-size NaCl crystal planes play an important role in the nucleation and growth of fewlayer graphene. Moreover, the possibility of synthesizing cuboidal graphene is also demonstrated in the present approach for the first time. Raman spectroscopy, optical microscopy, scanning electron microscopy, transmission electron microscopy, and atomic force microscopy are used to evaluate the quality and structure of the fewlayer graphene along with cuboidal graphene obtained in this process. The few-layer graphene synthesized using the present method has an adsorption ability for anionic and cationic dye molecules in water. The present synthesis method may pave a facile way for manufacturing few-layer graphene on a large scale. C1 [Shi, Liurong; Chen, Ke; Du, Ran; Priydarshi, Manish Kumar; Zhang, Yanfeng; Liu, Zhongfan] Peking Univ, Coll Chem & Mol Engn, Ctr Nanochem CNC, Beijing Natl Lab Mol Sci,State Key Lab Struct Che, Beijing 100871, Peoples R China. [Bachmatiuk, Alicja] Polish Acad Sci, Ctr Polymer & Carbon Mat, PL-41819 Zabrze, Poland. [Ruemmeli, Mark Hermann] Sungkyunkwan Univ, Dept Energy Sci, Suwon 440746, South Korea. [Priydarshi, Manish Kumar] Sungkyunkwan Univ, Dept Phys, Suwon 440746, South Korea. [Zhang, Yanfeng] Peking Univ, Coll Engn, Dept Mat Sci & Engn, Beijing 100871, Peoples R China. [Manivannan, Ayyakkannu] W Virginia Univ, Dept Aerosp & Mech Engn, Morgantown, WV 26507 USA. [Manivannan, Ayyakkannu] US DOE, NETL, Morgantown, WV 26507 USA. RP Zhang, YF (reprint author), Peking Univ, Coll Chem & Mol Engn, Ctr Nanochem CNC, Beijing Natl Lab Mol Sci,State Key Lab Struct Che, Beijing 100871, Peoples R China. EM yanfengzhang@pku.edu.cn; zfliu@pku.edu.cn RI Chen, Ke/F-8985-2014; Liu, Zhong/P-2974-2014; OI Chen, Ke/0000-0003-2384-8437; Liu, Zhong/0000-0001-5554-1902; Rummeli, Mark Hermann/0000-0003-3736-6439 FU Ministry of Science and Technology of China [2012CB933401, 2012CB933404, 2011CB933003, 2011CB921903, 2012CB921404]; National Natural Science Foundation of China [51432002, 51290272, 51222201, 51472008]; Ministry of Education [20120001130010]; Beijing Municipal Science and Technology Planning Project [Z141103004414103] FX This work was financially supported by the Ministry of Science and Technology of China (Grant Nos. 2012CB933401, 2012CB933404, 2011CB933003, 2011CB921903, and 2012CB921404), the National Natural Science Foundation of China (Grant Nos. 51432002, 51290272, 51222201, and 51472008), the Ministry of Education (Grant No. 20120001130010), and the Beijing Municipal Science and Technology Planning Project (Grant No. Z141103004414103). NR 36 TC 4 Z9 4 U1 32 U2 99 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 1613-6810 EI 1613-6829 J9 SMALL JI Small PD DEC 16 PY 2015 VL 11 IS 47 BP 6302 EP 6308 DI 10.1002/smll.201502013 PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA DA6LQ UT WOS:000367916600007 PM 26524105 ER PT J AU Niu, L Liu, XF Cong, CX Wu, CY Wu, D Chang, TR Wang, H Zeng, QS Zhou, JD Wang, XL Fu, W Yu, P Fu, QD Najmaei, S Zhang, ZH Yakobson, BI Tay, BK Zhou, W Jeng, HT Lin, H Sum, TC Jin, C He, HY Yu, T Liu, Z AF Niu, Lin Liu, Xinfeng Cong, Chunxiao Wu, Chunyang Wu, Di Chang, Tay Rong Wang, Hong Zeng, Qingsheng Zhou, Jiadong Wang, Xingli Fu, Wei Yu, Peng Fu, Qundong Najmaei, Sina Zhang, Zhuhua Yakobson, Boris I. Tay, Beng Kang Zhou, Wu Jeng, Horng Tay Lin, Hsin Sum, Tze Chien Jin, Chuanhong He, Haiyong Yu, Ting Liu, Zheng TI Controlled Synthesis of Organic/Inorganic van der Waals Solid for Tunable Light-Matter Interactions SO ADVANCED MATERIALS LA English DT Article ID HEXAGONAL BORON-NITRIDE; FIELD-EFFECT TRANSISTORS; GRAPHENE HETEROSTRUCTURES; EPITAXIAL-GROWTH; SOLAR-CELLS; THIN-FILMS; MOS2; HETEROJUNCTIONS; PEROVSKITES; ELECTRONICS C1 [Niu, Lin; Wang, Hong; Zeng, Qingsheng; Zhou, Jiadong; Fu, Wei; Yu, Peng; Fu, Qundong; He, Haiyong; Liu, Zheng] Nanyang Technol Univ, Sch Mat Sci & Engn, Singapore 639798, Singapore. [Liu, Xinfeng; Cong, Chunxiao; Sum, Tze Chien; Yu, Ting] Nanyang Technol Univ, Sch Phys & Math Sci, Singapore 637371, Singapore. [Liu, Xinfeng] Natl Ctr Nanosci & Technol, Beijing 100190, Peoples R China. [Wu, Chunyang; Jin, Chuanhong] Zhejiang Univ, State Key Lab Silicon Mat, Hangzhou 310027, Zhejiang, Peoples R China. [Wu, Chunyang; Jin, Chuanhong] Zhejiang Univ, Sch Mat Sci & Engn, Hangzhou 310027, Zhejiang, Peoples R China. [Wu, Di; Lin, Hsin] Natl Univ Singapore, Ctr Adv Mat 2D, Singapore 117542, Singapore. [Wu, Di; Lin, Hsin] Natl Univ Singapore, Dept Phys, Singapore 117542, Singapore. [Chang, Tay Rong; Jeng, Horng Tay] Natl Tsing Hua Univ, Dept Phys, Hsinchu 30013, Taiwan. [Wang, Xingli; Tay, Beng Kang; Liu, Zheng] Nanyang Technol Univ, Nanoelect Ctr Excellence, Sch Elect & Elect Engn, NOVITAS, Singapore 639798, Singapore. [Najmaei, Sina] US Army, Res Labs, Sensors & Electron Devices Directorate, Adelphi, MD 20783 USA. [Zhang, Zhuhua; Yakobson, Boris I.] Rice Univ, Dept Mat Sci & Nanoengn, Houston, TX 77005 USA. [Zhou, Wu] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP He, HY (reprint author), Nanyang Technol Univ, Sch Mat Sci & Engn, Singapore 639798, Singapore. EM HYHe@ntu.edu.sg; YuTing@ntu.edu.sg; Z.Liu@ntu.edu.sg RI Zhou, Wu/D-8526-2011; Lin, Hsin/F-9568-2012; Chang, Tay-Rong/K-3943-2015; Jin, Chuanhong/I-6460-2015; Zhang, Zhuhua/E-8162-2012 OI Zhou, Wu/0000-0002-6803-1095; Lin, Hsin/0000-0002-4688-2315; Chang, Tay-Rong/0000-0003-1222-2527; Jin, Chuanhong/0000-0001-8845-5664; FU Singapore National Research Foundation (NRF) [NRF-RF2013-08]; Nanyang Technological University [M4081137.070, M4080514]; Ministry of Education AcRF Tier 2 [MOE2013-T2-1-081, MOE2014-T2-1-044]; Singapore NRF through Singapore-Berkeley Research Initiative for Sustainable Energy (SinBerRISE) CREATE Programme; Ministry of Education, Singapore [MOE2012-T2-2-049]; National Science Foundation of China [51222202, 51472215]; National Basic Research Program of China [2014CB932500, 2015CB921000]; Fundamental Research Funds for the Central Universities [2014XZZX003-07] FX L.N., X.L., C.C., and C.W. contributed equally to this work. This work was supported by the Singapore National Research Foundation (NRF) under RF Award No. NRF-RF2013-08, the start-up funding from Nanyang Technological University (M4081137.070 and M4080514), and the Ministry of Education AcRF Tier 2 Grants MOE2013-T2-1-081 and MOE2014-T2-1-044. X.L and T.C.S. also acknowledge the financial support by the Singapore NRF through the Singapore-Berkeley Research Initiative for Sustainable Energy (SinBerRISE) CREATE Programme. C.C and T.Y thank the support of Ministry of Education, Singapore (MOE2012-T2-2-049). C.W. and C.J. thank the Center for Electron Microscopy of Zhejiang University for the access to TEM facilities, and the financial support from the National Science Foundation of China (Grant Nos. 51222202 and 51472215), the National Basic Research Program of China (Grant Nos. 2014CB932500 and 2015CB921000), and the Fundamental Research Funds for the Central Universities (Grant No. 2014XZZX003-07). NR 49 TC 10 Z9 10 U1 31 U2 94 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 0935-9648 EI 1521-4095 J9 ADV MATER JI Adv. Mater. PD DEC 16 PY 2015 VL 27 IS 47 BP 7800 EP 7808 DI 10.1002/adma.201503367 PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA DA5IX UT WOS:000367837900015 PM 26505987 ER PT J AU Singer, E Chong, LS Heidelberg, JF Edwards, KJ AF Singer, Esther Chong, Lauren S. Heidelberg, John F. Edwards, Katrina J. TI Similar Microbial Communities Found on Two Distant Seafloor Basalts SO FRONTIERS IN MICROBIOLOGY LA English DT Article DE seafloor basalt; metagenome; thaumarchaeota; microbe-rock interactions; oceanic crust ID RIBOSOMAL-RNA GENES; EAST PACIFIC RISE; OCEAN CRUST; LOIHI SEAMOUNT; SP. NOV.; DEEP-SEA; LITHOTROPHIC METHANOGEN; MARINE BASALTS; DIVERSITY; BACTERIA AB The oceanic crust forms two thirds of the Earth's surface and hosts a large phylogenetic and functional diversity of microorganisms. While advances have been made in the sedimentary realm, our understanding of the igneous rock portion as a microbial habitat has remained limited. We present the first comparative metagenomic microbial community analysis from ocean floor basalt environments at the Lo'ihi Seamount, Hawaii, and the East Pacific Rise (ERR; 9 degrees N). Phylogenetic analysis indicates the presence of a total of 43 bacterial and archaeal mono-phyletic groups, dominated by Alpha- and Gammaproteobacteria, as well as Thaumarchaeota. Functional gene analysis suggests that these Thaumarchaeota play an important role in ammonium oxidation on seafloor basalts. In addition to ammonium oxidation, the seafloor basalt habitat reveals a wide spectrum of other metabolic potentials, including CO2 fixation, denitrification, dissimilatory sulfate reduction, and sulfur oxidation. Basalt communities from LO'ihi and the EPR show considerable metabolic and phylogenetic overlap down to the genus level despite geographic distance and slightly different seafloor basalt mineralogy. C1 [Singer, Esther] Joint Genome Inst, Walnut Creek, CA 94598 USA. [Chong, Lauren S.; Edwards, Katrina J.] Univ So Calif, Dept Earth Sci, Los Angeles, CA USA. [Heidelberg, John F.; Edwards, Katrina J.] Univ So Calif, Dept Marine Environm Biol, Los Angeles, CA USA. RP Singer, E (reprint author), Joint Genome Inst, Walnut Creek, CA 94598 USA. EM esinger@lbl.gov OI Heidelberg, John/0000-0003-0673-3224 FU NSF Science and Technology Center for Dark Biosphere Investigations (C-DEBI) [0939564] FX We would like to thank Dr. John Fleming for helpful comments. This work was supported by the NSF Science and Technology Center for Dark Biosphere Investigations (C-DEBI) (Award 0939564). This is C-DEBI Contribution 296. NR 65 TC 0 Z9 0 U1 3 U2 13 PU FRONTIERS MEDIA SA PI LAUSANNE PA PO BOX 110, EPFL INNOVATION PARK, BUILDING I, LAUSANNE, 1015, SWITZERLAND SN 1664-302X J9 FRONT MICROBIOL JI Front. Microbiol. PD DEC 16 PY 2015 VL 6 AR 1409 DI 10.3389/fmicb.2015.01409 PG 11 WC Microbiology SC Microbiology GA CZ3ES UT WOS:000366987800001 PM 26733957 ER PT J AU Melia, T AF Melia, Tom TI Proof of a new colour decomposition for QCD amplitudes SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE QCD Phenomenology; NLO Computations AB Recently, Johansson and Ochirov conjectured the form of a new colour decom-position for QCD tree-level amplitudes. This note provides a proof of that conjecture. The proof is based on 'Mario World' Feynman diagrams, which exhibit the hierarchical Dyck structure previously found to be very useful when dealing with multi-quark amplitudes. C1 [Melia, Tom] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Melia, Tom] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Theoret Phys Grp, Berkeley, CA 94720 USA. RP Melia, T (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM tmelia@lbl.gov FU U.S. DOE [DE-AC02-05CH11231]; ERC [291377] FX I would like to thank Alexander Ochirov for valuable comments on a draft of this manuscript. This work is supported by U.S. DOE grant DE-AC02-05CH11231. The author additionally acknowledges computational resources provided through ERC grant number 291377: "LHCtheory". NR 18 TC 3 Z9 3 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD DEC 16 PY 2015 IS 12 BP 1 EP 12 AR 107 DI 10.1007/JHEP12(2015)107 PG 12 WC Physics, Particles & Fields SC Physics GA CZ3OS UT WOS:000367014500001 ER PT J AU Stauber, JM Bloch, ED Vogiatzis, KD Zheng, SL Hadt, RG Hayes, D Chen, LX Gagiardi, L Nocera, DG Cummins, CC AF Stauber, Julia M. Bloch, Eric D. Vogiatzis, Konstantinos D. Zheng, Shao-Liang Hadt, Ryan G. Hayes, Dugan Chen, Lin X. Gagiardi, Laura Nocera, Daniel G. Cummins, Christopher C. TI Pushing Single-Oxygen-Atom-Bridged Bimetallic Systems to the Right: A Cryptand-Encapsulated Co-O-Co Unit SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID MESITYL NITRILE OXIDE; CRYSTAL-STRUCTURE; MU-OXO; STRUCTURE VALIDATION; WATER OXIDATION; ACTIVE-SITES; METAL-IONS; COMPLEXES; REACTIVITY; BOND AB A dicobalt(II) complex, [Co-2(mBDCA-5t](2-) (1), demonstrates a cofacial arrangement of trigonal monopyramidal Co(II) ions with an inter-metal separation of 6.2710(6) angstrom. Reaction of 1 with potassium superoxide generates an encapsulated Co-O-Co core in the dianionic complex, [Co2O(mBDCA-5t)](2-) (2); to form the linear Co-O-Co core, the inter-metal distance has diminished to 3.994(3) angstrom. Co K-edge X-ray absorption spectroscopy data are consistent with a +2 oxidation state assignment for Co in both 1 and 2. Multireference complete active space calculations followed by second-order perturbation theory support this assignment, with hole equivalents residing on the bridging O-atom and on the cryptand ligand for the case of 2. Complex 2 acts as a 2-e(-) oxidant toward substrates including CO and H-2, in both cases efficiently regenerating 1 in what represent net oxygen-atom-transfer reactions. This dicobalt system also functions as a catalase upon treatment with H2O2. C1 [Stauber, Julia M.; Bloch, Eric D.; Cummins, Christopher C.] MIT, Dept Chem, Cambridge, MA 02139 USA. [Bloch, Eric D.; Zheng, Shao-Liang; Nocera, Daniel G.] Harvard Univ, Dept Chem & Chem Biol, Cambridge, MA 02138 USA. [Vogiatzis, Konstantinos D.; Gagiardi, Laura] Univ Minnesota, Dept Chem, Chem Theory Ctr, Minneapolis, MN 55455 USA. [Vogiatzis, Konstantinos D.; Gagiardi, Laura] Univ Minnesota, Inst Supercomp, Minneapolis, MN 55455 USA. [Hadt, Ryan G.; Hayes, Dugan; Chen, Lin X.] Argonne Natl Lab, Chem Sci & Engn Div, Lemont, IL 60439 USA. RP Gagiardi, L (reprint author), Univ Minnesota, Dept Chem, Chem Theory Ctr, 207 Pleasant St SE, Minneapolis, MN 55455 USA. EM gagliard@umn.edu; dnocera@fas.harvard.edu; ccummins@mit.edu OI Cummins, Christopher/0000-0003-2568-3269 FU National Science Foundation [CHE1305124]; U.S. Department of Energy (DOE) [DE-SC0009565]; Laboratory Directed Research and Development (LDRD) program at Argonne National Laboratory; Joseph J. Katz Postdoctoral Fellowship at Argonne National Laboratory (ANL); Division of Chemical Sciences, Biosciences, Office of Basic Energy Sciences, DOE [DE-AC02-06CH11357]; DOE [DE-AC02-06CH11357]; DOE, Office of Basic Energy Sciences, under SciDAC grant [DE-SC0008666] FX This Communication is based upon work supported by the National Science Foundation under CHE1305124 and by the U.S. Department of Energy (DOE) under DE-SC0009565. R.G.H. is supported by the Laboratory Directed Research and Development (LDRD) program at Argonne National Laboratory. D.H. is supported by the Joseph J. Katz Postdoctoral Fellowship at Argonne National Laboratory (ANL). Work at ANL was supported by funding from the Division of Chemical Sciences, Biosciences, Office of Basic Energy Sciences, DOE, through Grant DE-AC02-06CH11357. Use of Beam line 12BM at the Advanced Photon Source was supported by the DOE under Contract No. DE-AC02-06CH11357. The computational part of this work was supported in part by the DOE, Office of Basic Energy Sciences, under SciDAC grant no. DE-SC0008666 (K.V. and L.G.). We acknowledge the Minnesota Supercomputing Institute (MSI) at the University of Minnesota for providing the computational resources, Sungsik Lee for help in making XAS measurements, Nazario Lopez and Glen Alliger for contributions developing cobalt/cryptand synthetic methods, and Varinia Bernales for fruitful discussions on the DFT calculations. NR 51 TC 1 Z9 1 U1 21 U2 60 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD DEC 16 PY 2015 VL 137 IS 49 BP 15354 EP 15357 DI 10.1021/jacs.5b09827 PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA CZ1OH UT WOS:000366874700005 PM 26559923 ER PT J AU Nguyen, NTT Furukawa, H Gandara, F Trickett, CA Jeong, HM Cordova, KE Yaghi, OM AF Nguyen, Nhung T. T. Furukawa, Hiroyasu Gandara, Felipe Trickett, Christopher A. Jeong, Hyung Mo Cordova, Kyle E. Yaghi, Omar M. TI Three-Dimensional Metal-Catecholate Frameworks and Their Ultrahigh Proton Conductivity SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID ORGANIC FRAMEWORK; COORDINATION POLYMERS; CHLORANILIC ACID; CRYSTAL; CHEMISTRY; SOLIDS AB A series of three-dimensional (3D) extended metal catecholates (M-CATs) was synthesized by combining the appropriate metal salt and the hexatopic catecholate linker, H6THO (THO6- = triphenylene-2,3,6,7,10,11-hexakis(olate)) to give Fe(THO)center dot Fe(SO4)(DMA)(3), Fe-CAT-5, Ti(THO)center dot(DMA)(2), Ti-CAT-5, and V(THO)center dot(DMA)(2), V-CAT-.5 (where DMA = dimethylammonium). Their structures are based on the srs topology and are either a 2-fold interpenetrated (Fe-CAT-5 and Ti-CAT-5) or noninterpenetrated (V-CAT-5) porous anionic framework. These examples are among the first catecholate-based 3D frameworks. The single crystal X-ray diffraction structure of the Fe-CAT-5 shows bound sulfate ligands with DMA guests residing in the pores as counterions, and thus ideally suited for proton conductivity. Accordingly, Fe-CAT-5 exhibits ultrahigh proton conductivity (5.0 X 10(-2) S cm(-1)) at 98% relative humidity (RH) and 25 degrees C. The coexistence of sulfate and DMA ions within the pores play an important role in proton conductivity as also evidenced by the lower conductivity values found for Ti-CAT-5 (8.2 X 10(-4) S cm(-1) at 98% RH and 25 degrees C), whose structure only contained DMA guests. C1 [Nguyen, Nhung T. T.; Furukawa, Hiroyasu; Trickett, Christopher A.; Jeong, Hyung Mo; Cordova, Kyle E.; Yaghi, Omar M.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Nguyen, Nhung T. T.; Furukawa, Hiroyasu; Trickett, Christopher A.; Jeong, Hyung Mo; Cordova, Kyle E.; Yaghi, Omar M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Nguyen, Nhung T. T.; Furukawa, Hiroyasu; Trickett, Christopher A.; Jeong, Hyung Mo; Cordova, Kyle E.; Yaghi, Omar M.] Kavli Energy NanoSci Inst Berkeley, Berkeley, CA 94720 USA. [Nguyen, Nhung T. T.; Furukawa, Hiroyasu; Trickett, Christopher A.; Jeong, Hyung Mo; Cordova, Kyle E.; Yaghi, Omar M.] Global Sci Inst Berkeley, Berkeley, CA 94720 USA. [Nguyen, Nhung T. T.; Cordova, Kyle E.] Vietnam Natl Univ Ho Chi Minh City, Ctr Mol & NanoArchitecture MANAR, Ho Chi Minh City 721337, Vietnam. [Gandara, Felipe] CSIC, Inst Ciencia Mat Madrid, Dept New Architectures Mat Chem, E-28049 Madrid, Spain. [Yaghi, Omar M.] King Abdulaziz City Sci & Technol, Riyadh 11442, Saudi Arabia. RP Yaghi, OM (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM yaghi@berkeley.edu RI Gandara, Felipe/B-9198-2013; Furukawa, Hiroyasu/C-5910-2008; OI Gandara, Felipe/0000-0002-1671-6260; Furukawa, Hiroyasu/0000-0002-6082-1738; Yaghi, Omar/0000-0002-5611-3325; Cordova, Kyle/0000-0002-4988-0497 FU Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; Vietnam National University-Ho Chi Minh [A2015-50-01-HD-KHCN]; United States Office of Naval Research Global: Naval International Cooperative Opportunities in Science and Technology Program [N62909-15-1N056]; Fundacion General CSIC (Programa ComFuturo) FX We acknowledge Dr. T. Chantarojsiri and Prof. C. Chang (UC Berkeley) for assistance on performing Mossbauer spectroscopy measurements and Dr. R. Chatterjee (LBNL) for useful discussion on characterization of our samples. Drs. S. Teat and K. Gagnon are acknowledged for the synchrotron X-ray diffraction data acquisition support at the beamline 11.3.1 at Advanced Light Source, Lawrence Berkeley National Laboratory. The synthesis and characterization were supported by BASF SE (Ludwigshafen, Germany) and U.S. Department of Defense, Defense Threat Reduction Agency (HDTRA 1-12-1-0053), respectively. Work performed at the Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. N.T.T.N. and K.E.C. acknowledge financial support for the design and elaboration of this project from Vietnam National University-Ho Chi Minh (No. A2015-50-01-HD-KHCN) and the United States Office of Naval Research Global: Naval International Cooperative Opportunities in Science and Technology Program (No. N62909-15-1N056). F.G. acknowledges financial support from Fundacion General CSIC (Programa ComFuturo). NR 34 TC 22 Z9 22 U1 17 U2 114 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD DEC 16 PY 2015 VL 137 IS 49 BP 15394 EP 15397 DI 10.1021/jacs.5b10999 PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA CZ1OH UT WOS:000366874700015 PM 26595681 ER PT J AU Lin, JJ Liang, LB Ling, X Zhang, SQ Mao, NN Zhang, N Sumpter, BG Meunier, V Tong, LM Zhang, J AF Lin, Jingjing Liang, Liangbo Ling, Xi Zhang, Shuqing Mao, Nannan Zhang, Na Sumpter, Bobby G. Meunier, Vincent Tong, Lianming Zhang, Jin TI Enhanced Raman Scattering on In-Plane Anisotropic Layered Materials SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID FIELD-EFFECT TRANSISTORS; BLACK PHOSPHORUS; CHEMICAL ENHANCEMENT; SPECTROSCOPY; GRAPHENE; SPECTRA; RES2; ORIENTATION; MOLECULES AB Surface-enhanced Raman scattering (SERS) on two-dimensional (2D) layered materials has provided a unique platform to study the chemical mechanism (CM) of the enhancement due to its natural separation from electromagnetic enhancement. The CM stems from the charge interactions between the substrate and molecules. Despite the extensive studies of the energy alignment between 2D materials and molecules, an understanding of how the electronic properties of the substrate are explicitly involved in the charge interaction is still unclear. Lately, a new group of 2D layered materials with anisotropic structures, including orthorhombic black phosphorus (BP) and triclinic rhenium disulfide (ReS2), has attracted great interest due to their unique anisotropic electrical and optical properties. Herein, we report a unique anisotropic Raman enhancement on few-layered BP and ReS2 using copper phthalocyanine (CuPc) molecules as a Raman probe, which is absent on isotropic graphene and h-BN. According to detailed Raman tensor analysis and density functional theory calculations, anisotropic charge interactions between the 2D materials and molecules are responsible for the angular dependence of the Raman enhancement. Our findings not only provide new insights into the CM process in SERS, but also open up new avenues for the exploration and application of the electronic properties of anisotropic 2D layered materials. C1 [Lin, Jingjing; Zhang, Shuqing; Mao, Nannan; Zhang, Na; Tong, Lianming; Zhang, Jin] Peking Univ, Coll Chem & Mol Engn, Ctr Nanochem,Key Lab Phys & Chem Nanodevices,Beij, State Key Lab Struct Chem Unstable & Stable Speci, Beijing 100871, Peoples R China. [Liang, Liangbo; Sumpter, Bobby G.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Liang, Liangbo; Meunier, Vincent] Rensselaer Polytech Inst, Dept Phys Appl Phys & Astron, Troy, NY 12180 USA. [Ling, Xi] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA. [Sumpter, Bobby G.] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. RP Tong, LM (reprint author), Peking Univ, Coll Chem & Mol Engn, Ctr Nanochem,Key Lab Phys & Chem Nanodevices,Beij, State Key Lab Struct Chem Unstable & Stable Speci, Beijing 100871, Peoples R China. EM tonglm@pku.edu.cn; jinzhang@pku.edu.cn RI Sumpter, Bobby/C-9459-2013; Tong, Lianming/B-6000-2012; Liang, Liangbo/H-4486-2011 OI Sumpter, Bobby/0000-0001-6341-0355; Liang, Liangbo/0000-0003-1199-0049 FU NSFC [21233001, 21129001, 51272006, 51432002, 51121091, 11374355, 21573004]; MOST [2011CB932601]; New York State under NYSTAR program [C080117]; Office of Naval Research FX This work was supported by NSFC (21233001, 21129001, 51272006, 51432002, 51121091, 11374355 and 21573004) and MOST (2011CB932601). X. L., N. N. M. and J. Z. thank the MIT international science and technology initiatives (MISTI-China) fund. The theoretical work at Rensselaer Polytechnic Institute (RPI) was supported by New York State under NYSTAR program C080117 and by the Office of Naval Research. The computations were performed using the resources of the Center for Computational Innovation at RPI. L. L. was supported as a Eugene P. Wigner Fellow at the Oak Ridge National Laboratory. B. G. S. acknowledges work at the Center for Nanophase Materials Sciences, a DOE Office of Science User Facility. NR 33 TC 8 Z9 8 U1 37 U2 139 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD DEC 16 PY 2015 VL 137 IS 49 BP 15511 EP 15517 DI 10.1021/jacs.5b10144 PG 7 WC Chemistry, Multidisciplinary SC Chemistry GA CZ1OH UT WOS:000366874700034 PM 26583533 ER PT J AU Olshansky, JH Ding, TX Lee, YV Leone, SR Alivisatos, AP AF Olshansky, Jacob H. Ding, Tina X. Lee, Youjin V. Leone, Stephen R. Alivisatos, A. Paul TI Hole Transfer from Photoexcited Quantum Dots: The Relationship between Driving Force and Rate SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID PHOTOINDUCED ELECTRON-TRANSFER; QUASI-TYPE-II; CDSE QUANTUM; SOLAR-CELLS; SEMICONDUCTOR NANOCRYSTALS; EXCITON DISSOCIATION; CHARGE SEPARATION; EFFICIENCY; COMPLEXES; HETEROSTRUCTURES AB We have investigated the relationship. between driving force and rate for interfacial hole transfer from quantum dots (QDs). This relationship is experimentally explored by using six distinct molecular hole acceptors with an 800 meV range in driving force. Specifically, we have investigated ferrocene derivatives with alkyl thiol moieties that strongly bind to the surface of cadmium chalcogenide QDs. The redox potentials of these ligands are controlled by functionalization of the cyclopentadiene rings on ferrocene with electron withdrawing and donating substituents, thus providing an avenue for tuning the driving force for hole transfer while holding all other system parameters constant. The relative hole transfer rate constant from photoexcited CdSe/CdS core/shell QDs to tethered ferrocene derivatives is determined by measuring the photoluminescence quantum yield of these QD-molecular conjugates at varying ferrocene coverage, as determined via quantitative NAIR. The resulting relationship between rate and energetic driving force for hole transfer is not well modeled by the standard two-state Marcus model, since no inverted region is observed. Alternative mechanisms for charge transfer are posited, including an Auger-assisted mechanism that provides a successful fit to the results. The observed relationship can be used to design QD-molecular systems that maximize interfacial charge transfer rates while minimizing energetic losses associated with the driving force. C1 [Olshansky, Jacob H.; Ding, Tina X.; Lee, Youjin V.; Leone, Stephen R.; Alivisatos, A. Paul] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Alivisatos, A. Paul] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Leone, Stephen R.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Olshansky, Jacob H.; Ding, Tina X.; Alivisatos, A. Paul] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Leone, Stephen R.] Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Olshansky, Jacob H.; Ding, Tina X.; Alivisatos, A. Paul] Kavli Energy NanoSci Inst, Berkeley, CA 94720 USA. RP Alivisatos, AP (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM apalivisatos@lbl.gov FU Physical Chemistry of Inorganic Nanostructures Program [KC3103]; Office of Basic Energy Sciences of the United States Department of Energy [DE-AC02-05CH11232]; National Science Foundation [DGE 1106400] FX This work is supported by the Physical Chemistry of Inorganic Nanostructures Program, KC3103, Office of Basic Energy Sciences of the United States Department of Energy under Contract DE-AC02-05CH11232. T.X.D and J.H.O. acknowledge the National Science Foundation Graduate Research Fellowship under Grant DGE 1106400. NR 52 TC 20 Z9 20 U1 16 U2 66 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD DEC 16 PY 2015 VL 137 IS 49 BP 15567 EP 15575 DI 10.1021/jacs.5b10856 PG 9 WC Chemistry, Multidisciplinary SC Chemistry GA CZ1OH UT WOS:000366874700041 PM 26597761 ER PT J AU Mount, E Kabytayev, C Crain, S Harper, R Baek, SY Vrijsen, G Flammia, ST Brown, KR Maunz, P Kim, J AF Mount, Emily Kabytayev, Chingiz Crain, Stephen Harper, Robin Baek, So-Young Vrijsen, Geert Flammia, Steven T. Brown, Kenneth R. Maunz, Peter Kim, Jungsang TI Error compensation of single-qubit gates in a surface-electrode ion trap using composite pulses SO PHYSICAL REVIEW A LA English DT Article AB The fidelity of laser-driven quantum logic operations on trapped ion qubits tend to be lower than microwave-driven logic operations due to the difficulty of stabilizing the driving fields at the ion location. Through stabilization of the driving optical fields and use of composite pulse sequences, we demonstrate high-fidelity single-qubit gates for the hyperfine qubit of a Yb-171(+) ion trapped in a microfabricated surface-electrode ion trap. Gate error is characterized using a randomized benchmarking protocol and an average error per randomized Clifford group gate of 3.6(3) x 10(-4) is measured. We also report experimental realization of palindromic pulse sequences that scale efficiently in sequence length. C1 [Mount, Emily; Crain, Stephen; Baek, So-Young; Vrijsen, Geert; Kim, Jungsang] Duke Univ, Dept Elect & Comp Engn, Durham, NC 27708 USA. [Kabytayev, Chingiz; Brown, Kenneth R.] Georgia Inst Technol, Sch Chem & Biochem, Atlanta, GA 30332 USA. [Kabytayev, Chingiz; Brown, Kenneth R.] Georgia Inst Technol, Sch Computat Sci & Engn, Atlanta, GA 30332 USA. [Kabytayev, Chingiz; Brown, Kenneth R.] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA. [Kabytayev, Chingiz; Brown, Kenneth R.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. [Harper, Robin; Flammia, Steven T.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. [Maunz, Peter] Sandia Natl Labs, Albuquerque, NM 87123 USA. RP Mount, E (reprint author), Duke Univ, Dept Elect & Comp Engn, Durham, NC 27708 USA. RI Brown, Kenneth/E-5844-2010 OI Brown, Kenneth/0000-0001-7716-1425 FU ARC via EQuS [CE11001013]; U.S. Army Research Office [W911NF-14-1-0098, W911NF-14-1-0103]; ARC Future Fellowship [FT130101744]; Office of the Director of National Intelligence and Intelligence Advanced Research Projects Activity through the Army Research Office FX The authors would like to acknowledge helpful discussions with True Merrill and Jonathan Mizrahi. This work was supported by the Office of the Director of National Intelligence and Intelligence Advanced Research Projects Activity through the Army Research Office, the ARC via EQuS Project No. CE11001013, and by the U.S. Army Research Office Grants No. W911NF-14-1-0098 and No. W911NF-14-1-0103. S.T.F. also acknowledges support from an ARC Future Fellowship Grant No. FT130101744. NR 33 TC 0 Z9 0 U1 5 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 EI 1094-1622 J9 PHYS REV A JI Phys. Rev. A PD DEC 16 PY 2015 VL 92 IS 6 DI 10.1103/PhysRevA.92.060301 PG 5 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA CY6BF UT WOS:000366491400001 ER PT J AU Pessoa, R Gandolfi, S Vitiello, SA Schmidt, KE AF Pessoa, Renato Gandolfi, S. Vitiello, S. A. Schmidt, K. E. TI Contact interaction in a unitary ultracold Fermi gas SO PHYSICAL REVIEW A LA English DT Article AB An ultracold Fermi atomic gas at unitarity presents universal properties that in the dilute limit can be well described by a contact interaction. By employing a guiding function with correct boundary conditions and making simple modifications to the sampling procedure we are able to calculate the properties of a true contact interaction with the diffusion Monte Carlo method. The results are obtained with small variances. Our calculations for the Bertsch and contact parameters are in reasonable agreement with published experiments. The possibility of using a more faithful description of ultracold atomic gases can help uncover additional features of ultracold atomic gases. In addition, this work paves the way to perform quantum Monte Carlo calculations for other systems interacting with contact interactions, where the description using potentials with finite effective range might not be accurate. C1 [Pessoa, Renato] Univ Fed Goias UFG, Inst Fis, BR-74001970 Goiania, Go, Brazil. [Pessoa, Renato; Schmidt, K. E.] Arizona State Univ, Dept Phys, Tempe, AZ 85287 USA. [Gandolfi, S.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Vitiello, S. A.; Schmidt, K. E.] Univ Estadual Campinas UNICAMP, Inst Fis Gleb Wataghin, BR-13083970 Campinas, SP, Brazil. [Vitiello, S. A.] NIST, JILA, Boulder, CO 80309 USA. [Vitiello, S. A.] Univ Colorado, Boulder, CO 80309 USA. RP Pessoa, R (reprint author), Univ Fed Goias UFG, Inst Fis, BR-74001970 Goiania, Go, Brazil. RI Inst. of Physics, Gleb Wataghin/A-9780-2017; OI Gandolfi, Stefano/0000-0002-0430-9035 FU U.S. Department of Energy, Office of Nuclear Physics [DE-AC52-06NA25396]; National Science Foundation [PHY-1404405]; US DOE [DE-AC02-05CH11231]; [FAPESP-2014/20864-2]; [FAPESP-2010/10072-0]; [CAPES 11540/13-3]; [PVE-087/2012] FX R.P. thanks the hospitality of the Department of Physics of the Arizona State University. S.A.V. is happy to acknowledge the hospitality of JILA specifically that of Ana Maria Rey and Murray Holland. We thank Deborah Jin, Tara Drake, and Rabin Paudel for very useful discussions and also for sharing with us their experimental values. This work was partially supported by the U.S. Department of Energy, Office of Nuclear Physics, under Contract DE-AC52-06NA25396 by the programs NUCLEI SciDac and LANLLDRD, the National Science Foundation Grant No. PHY-1404405 and by grants of the Brazilian agencies FAPESP-2014/20864-2, FAPESP-2010/10072-0; CAPES 11540/13-3 and PVE-087/2012. Computational resources have been provided by Los Alamos Open Supercomputing and CENAPAD-SP at Unicamp. We also used resources provided by NERSC, which is supported by the US DOE under contract DE-AC02-05CH11231. NR 33 TC 3 Z9 3 U1 2 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 EI 1094-1622 J9 PHYS REV A JI Phys. Rev. A PD DEC 16 PY 2015 VL 92 IS 6 AR 063625 DI 10.1103/PhysRevA.92.063625 PG 7 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA CY6BF UT WOS:000366491400008 ER PT J AU Laurita, G Page, K Suzuki, S Seshadri, R AF Laurita, Geneva Page, Katharine Suzuki, Shoichiro Seshadri, Ram TI Average and local structure of the Pb-free ferroelectric perovskites (Sr, Sn)TiO3 and (Ba,Ca,Sn)TiO3 SO PHYSICAL REVIEW B LA English DT Article ID STRONTIUM-TITANATE; PHASE-TRANSITIONS; BATIO3; 1ST-PRINCIPLES; CHALCOGENIDES; NANOSCALE; DISORDER; SNTIO3; SRTIO3; STATE AB The characteristic structural off-centering of Pb2+ in oxides, associated with its 6s(2) lone pair, allows it to play a dominant role in polar materials, and makes it a somewhat ubiquitous component of ferroelectrics. In this work, we examine the compounds Sr0.9Sn0.1TiO3 and Ba0.79Ca0.16Sn0.05TiO3 using neutron total scattering techniques with data acquired at different temperatures. In these compounds, previously reported as ferroelectrics, Sn2+ appears to display some of the characteristics of Pb2+. We compare the local and long-range structures of the Sn2+-substituted compositions to the unsubstituted parent compounds SrTiO3 and BaTiO3. We find that even at these small substitution levels, the Sn2+ lone pairs drive the local ordering behavior, with the local structure of both compounds more similar to the structure of PbTiO3 rather than the parent compounds. C1 [Laurita, Geneva; Seshadri, Ram] Univ Calif Santa Barbara, Mat Res Lab, Santa Barbara, CA 93106 USA. [Page, Katharine] Oak Ridge Natl Lab, Chem & Engn Mat Div, Oak Ridge, TN 37831 USA. [Suzuki, Shoichiro] Murata Mfg Co Ltd, Nagaokakyo, Kyoto 6178555, Japan. [Seshadri, Ram] Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA. RP Laurita, G (reprint author), Univ Calif Santa Barbara, Mat Res Lab, Santa Barbara, CA 93106 USA. EM glaurita@mrl.ucsb.edu RI Seshadri, Ram/C-4205-2013; Page, Katharine/C-9726-2009 OI Seshadri, Ram/0000-0001-5858-4027; Page, Katharine/0000-0002-9071-3383 FU National Science Foundation [DMR-1403862]; Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy FX This work was supported by the National Science Foundation through DMR-1403862. The research at ORNL's Spallation Neutron Source was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy. NR 42 TC 5 Z9 5 U1 4 U2 43 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD DEC 16 PY 2015 VL 92 IS 21 AR 214109 DI 10.1103/PhysRevB.92.214109 PG 9 WC Physics, Condensed Matter SC Physics GA CY6EA UT WOS:000366499500001 ER PT J AU Yong, DY He, HY Tang, ZK Wei, SH Pan, BC AF Yong, D. Y. He, H. Y. Tang, Z. K. Wei, Su-Huai Pan, B. C. TI H-stabilized shallow acceptors in N-doped ZnO SO PHYSICAL REVIEW B LA English DT Article ID CHEMICAL-VAPOR-DEPOSITION; TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; THIN-FILMS; ZINC-OXIDE; ROOM-TEMPERATURE; PHOTOLUMINESCENCE; SEMICONDUCTORS; HYDROGEN; METALS AB The origin of the p-type conductivity in N-doped ZnO has been a long standing puzzle for many years because isolated N-O is considered to be a deep acceptor. Recently, the p-type doping has been attributed to the shallow acceptor N-O - V-Zn complex that is supposedly being converted from a N-Zn - V-O complex at the Zn-terminated surface [L. Liu et al., Phys. Rev. Lett. 108, 215501 (2012)]. By performing first-principles calculations, we demonstrate that the p-type N-O - VZn pair is easy to form in bulk N-doped ZnO through the charge transfer and acceptor-acceptor level repulsion without the need of the special growth surface. More importantly, the N-O - V-Zn pair can be further stabilized through hydrogenation, forming the more stable shallow acceptor complexes (N-O - nH) - V-Zn (n = 1-2) with an ionization energy of less than 162 meV, in good agreement with the experiment. These new shallow acceptor complexes are proposed to be responsible for the p-type conductivity of the N-doped ZnO. C1 [Yong, D. Y.; He, H. Y.; Pan, B. C.] Univ Sci & Technol China, Dept Phys, Key Lab Strongly Coupled Quantum Matter Phys, Hefei 230026, Anhui, Peoples R China. [Yong, D. Y.; He, H. Y.; Pan, B. C.] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China. [Tang, Z. K.] Univ Macau, Inst Appl Phys & Mat Engn, Taipa, Macau, Peoples R China. [Tang, Z. K.] Sun Yat Sen Univ, Sch Phys & Engn, Key Lab Optoelect Mat & Technol, Guangzhou 510275, Guangdong, Peoples R China. [Wei, Su-Huai] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Wei, Su-Huai] Beijing Computat Sci Res Ctr, Beijing 100094, Peoples R China. RP Pan, BC (reprint author), Univ Sci & Technol China, Dept Phys, Key Lab Strongly Coupled Quantum Matter Phys, Hefei 230026, Anhui, Peoples R China. EM bcpan@ustc.edu.cn RI Pan, Bicai/A-1235-2010 FU National Natural Science Foundation of China [51232009] FX This work is supported by the National Natural Science Foundation of China (Grant No. 51232009). The computational center of the University of Science and Technology of China is acknowledged for computational support. NR 32 TC 4 Z9 4 U1 13 U2 51 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD DEC 16 PY 2015 VL 92 IS 23 AR 235207 DI 10.1103/PhysRevB.92.235207 PG 5 WC Physics, Condensed Matter SC Physics GA CY6CM UT WOS:000366494800005 ER PT J AU Roux, DG Ma, WC Hagemann, GB Amro, H Elema, DR Fallon, P Gorgen, A Herskind, B Hubei, H Li, Y Macchiavelli, AO Marsh, JC Sletten, G Ward, D Wilson, JN AF Roux, D. G. Ma, W. C. Hagemann, G. B. Amro, H. Elema, D. R. Fallon, P. Goergen, A. Herskind, B. Huebei, H. Li, Y. Macchiavelli, A. O. Marsh, J. C. Sletten, G. Ward, D. Wilson, J. N. TI Toward complete spectroscopy of Lu-167 SO PHYSICAL REVIEW C LA English DT Article ID HIGH-SPIN STATES; ELECTROMAGNETIC PROPERTIES; WOBBLING MODE; EXCITATIONS; NUCLEI; HF-168; PHONON; BANDS; WELL AB Excited states in Lu-167 were populated in the Sb-123(Ca-48,4n) reaction at 203 MeV and decay gamma rays measured using the Gammasphere spectrometer array. Two triaxial strongly deformed bands were identified previously and interpreted as zero- and one-phonon wobbling excitations. As a result of more extensive band search, the level scheme has been considerably extended to include ten new rotational bands and some 630 gamma-ray transitions. A number of interband linking transitions were revealed, so that all but two bands could be connected with each other. Configurations are proposed for all new bands based on measured observables, with the help of cranked shell model calculations. A gamma-ray sequence, previously suggested as a triaxial strongly deformed band based on quasiparticle excitations coexisting with the wobbling excitation in the triaxial potential well, has now been determined to be a signature partner of a coupled band, associated with a normal deformed five-quasiparticle configuration. The possibility of two new bands being associated with triaxial deformation is discussed. C1 [Roux, D. G.; Ma, W. C.; Amro, H.; Li, Y.; Marsh, J. C.] Mississippi State Univ, Dept Phys & Astron, Mississippi State, MS 39762 USA. [Hagemann, G. B.; Elema, D. R.; Sletten, G.; Wilson, J. N.] Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Fallon, P.; Goergen, A.; Macchiavelli, A. O.; Ward, D.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Huebei, H.] Univ Bonn, Helmholtz Inst Strahlen & Kernphys, D-53115 Bonn, Germany. RP Roux, DG (reprint author), Rhodes Univ, Dept Phys & Elect, ZA-6140 Grahamstown, South Africa. FU US Department of Energy, Office of Science, Office of Nuclear Physics [DE-FG02-95ER40939, DE-AC03-76SF00098]; Danish Science Foundation; German BMBF [06 BN 907, 06 BN 109]; Rhodes University; Niels Bohr Institute FX This material was based upon work supported by the US Department of Energy, Office of Science, Office of Nuclear Physics, under Grant No. DE-FG02-95ER40939 (MSU) and under Contract No. DE-AC03-76SF00098 (LBNL), by the Danish Science Foundation, and by the German BMBF under Grants No. 06 BN 907 and No. 06 BN 109. D.G.R. and W.C.M. thank Niels Bohr Institute for partial support during their visits. D.G.R acknowledges partial financial assistance provided by Rhodes University. NR 46 TC 2 Z9 2 U1 1 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 EI 1089-490X J9 PHYS REV C JI Phys. Rev. C PD DEC 16 PY 2015 VL 92 IS 6 AR 064313 DI 10.1103/PhysRevC.92.064313 PG 28 WC Physics, Nuclear SC Physics GA CY6DS UT WOS:000366498600001 ER PT J AU Ligeti, Z Robinson, DJ AF Ligeti, Zoltan Robinson, Dean J. TI Towards More Precise Determinations of the Quark Mixing Phase beta SO PHYSICAL REVIEW LETTERS LA English DT Article ID CP ASYMMETRIES; CKM MATRIX; DECAYS; B-0 AB We derive a new flavor symmetry relation for the determination of the weak phase beta = phi(1) from timedependent CP asymmetries and B -> J/psi P decay rates. In this relation, the contributions to sin 2 beta proportional to V-ub are parametrically suppressed compared to the contributions in the B -> J/psi K-0 time-dependent CP asymmetry alone. This relation uses only SU (3) flavor symmetry, and does not require further diagrammatic assumptions. The current data either fluctuate at the 2 sigma level from expectations, or may hint at effects of unexpected magnitude from contributions proportional to V-ub or from isospin breaking. C1 [Ligeti, Zoltan; Robinson, Dean J.] Univ Calif Berkeley, Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Robinson, Dean J.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RP Ligeti, Z (reprint author), Univ Calif Berkeley, Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. FU Office of High Energy Physics of the U.S. Department of Energy [DE-AC02-05CH11231]; NSF [PHY-1002399] FX This work was supported in part by the Office of High Energy Physics of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 (Z. L.) and by the NSF under Grant No. PHY-1002399 (D. R.). NR 26 TC 3 Z9 3 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD DEC 16 PY 2015 VL 115 IS 25 AR 251801 DI 10.1103/PhysRevLett.115.251801 PG 5 WC Physics, Multidisciplinary SC Physics GA CY5ZL UT WOS:000366486600005 PM 26722914 ER PT J AU Brandino, GP Caux, JS Konik, RM AF Brandino, G. P. Caux, J. -S. Konik, R. M. TI Glimmers of a Quantum KAM Theorem: Insights from Quantum Quenches in One-Dimensional Bose Gases SO PHYSICAL REVIEW X LA English DT Article ID RENORMALIZATION-GROUPS; SPACE APPROACH; SYSTEMS; STATE; MODEL; INTEGRABILITY; TRANSITION; BOSONS; FIELD AB Real-time dynamics in a quantum many-body system are inherently complicated and hence difficult to predict. There are, however, a special set of systems where these dynamics are theoretically tractable: integrable models. Such models possess nontrivial conserved quantities beyond energy and momentum. These quantities are believed to control dynamics and thermalization in low-dimensional atomic gases as well as in quantum spin chains. But what happens when the special symmetries leading to the existence of the extra conserved quantities are broken? Is there any memory of the quantities if the breaking is weak? Here, in the presence of weak integrability breaking, we show that it is possible to construct residual quasiconserved quantities, thus providing a quantum analog to the KAM theorem and its attendant Nekhoreshev estimates. We demonstrate this construction explicitly in the context of quantum quenches in one-dimensional Bose gases and argue that these quasiconserved quantities can be probed experimentally. C1 [Brandino, G. P.; Caux, J. -S.] Univ Amsterdam, Inst Theoret Phys, NL-1090 GL Amsterdam, Netherlands. [Konik, R. M.] Brookhaven Natl Lab, CMPMS Dept, Upton, NY 11973 USA. RP Konik, RM (reprint author), Brookhaven Natl Lab, CMPMS Dept, Bldg 734, Upton, NY 11973 USA. EM rmk@bnl.gov RI Konik, Robert/L-8076-2016 OI Konik, Robert/0000-0003-1209-6890 FU CMPMS Department, Brookhaven National Laboratory; U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886]; Netherlands Organization for Scientific Research (NWO); Foundation for Fundamental Research on Matter (FOM) FX We would like to warmly thank both Marcos Rigol and Neil Robinson for helpful discussions surrounding this work. The research herein was supported by the CMPMS Department, Brookhaven National Laboratory, in turn funded by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886 (R.M.K.) and by the Netherlands Organization for Scientific Research (NWO) and the Foundation for Fundamental Research on Matter (FOM) (J.S.C. and G.P.B.). NR 81 TC 20 Z9 20 U1 1 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2160-3308 J9 PHYS REV X JI Phys. Rev. X PD DEC 16 PY 2015 VL 5 IS 4 AR 041043 DI 10.1103/PhysRevX.5.041043 PG 21 WC Physics, Multidisciplinary SC Physics GA CY6AD UT WOS:000366488500001 ER PT J AU Malasi, A Taz, H Farah, A Patel, M Lawrie, B Pooser, R Baddorf, A Duscher, G Kalyanaraman, R AF Malasi, A. Taz, H. Farah, A. Patel, M. Lawrie, B. Pooser, R. Baddorf, A. Duscher, G. Kalyanaraman, R. TI Novel Iron-based ternary amorphous oxide semiconductor with very high transparency, electronic conductivity, and mobility SO SCIENTIFIC REPORTS LA English DT Article ID THIN-FILM TRANSISTORS; ALPHA-FE2O3 AB Here we report that ternary metal oxides of type (Me)(2)O-3 with the primary metal (Me) constituent being Fe (66 atomic (at.) %) along with the two Lanthanide elements Tb (10 at.%) and Dy (24 at.%) can show excellent semiconducting transport properties. Thin films prepared by pulsed laser deposition at room temperature followed by ambient oxidation showed very high electronic conductivity (>5 x 10(4) S/m) and Hall mobility (>30 cm(2)/V-s). These films had an amorphous microstructure which was stable to at least 500 degrees C and large optical transparency with a direct band gap of 2.85 +/- 0.14 eV. This material shows emergent semiconducting behavior with significantly higher conductivity and mobility than the constituent insulating oxides. Since these results demonstrate a new way to modify the behaviors of transition metal oxides made from unfilled d- and/or f-subshells, a new class of functional transparent conducting oxide materials could be envisioned. C1 [Malasi, A.; Kalyanaraman, R.] Univ Tennessee, Dept Chem & Biomol Engn, Knoxville, TN 37996 USA. [Taz, H.; Patel, M.; Kalyanaraman, R.] Univ Tennessee, Bredesen Ctr, Knoxville, TN 37996 USA. [Farah, A.; Duscher, G.; Kalyanaraman, R.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Lawrie, B.; Pooser, R.] Oak Ridge Natl Lab, Computat Sci & Engn Div, Quantum Informat Sci Grp, Oak Ridge, TN 37831 USA. [Baddorf, A.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Baddorf, A.; Duscher, G.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Kalyanaraman, R (reprint author), Univ Tennessee, Dept Chem & Biomol Engn, Knoxville, TN 37996 USA. EM ramki@utk.edu RI Lawrie, Benjamin/B-7182-2016; Duscher, Gerd/G-1730-2014; Baddorf, Arthur/I-1308-2016; Farah, Annette/L-8141-2016; Malasi, Abhinav/J-6025-2015; OI Lawrie, Benjamin/0000-0003-1431-066X; Duscher, Gerd/0000-0002-2039-548X; Baddorf, Arthur/0000-0001-7023-2382; Farah, Annette/0000-0002-2639-463X; Pooser, Raphael/0000-0002-2922-453X FU ARO grant [W911NF-13-1-0428]; Science Alliance JDRD grant [U013960010]; NSF TNSCORE grant [EPS-1004083, CNMS2013-284, CNMS2014-327]; DOE-Nuclear Energy University Program [DE-NE0000693]; U.S. Department of Energy [DE-AC05-00OR22725]; Lab oratory Directed Research and Development Program at ORNL FX This work was primarily supported by ARO grant W911NF-13-1-0428, and a Science Alliance JDRD grant U013960010. One of the students was partly supported by NSF TNSCORE grant EPS-1004083 while XPS and SEM characterization was conducted through proposals CNMS2013-284 and CNMS2014-327 at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility. Some of the authors would also like to thank Prof. K. Islam at UT Knoxville for access to critical equipment for transport property measurements. The GIXRD experiments were performed using the instruments that were procured through the general infrastructure grant of DOE-Nuclear Energy University Program (DE-NE0000693). A portion of this manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan(http://energy.gov/downloads/doe-public-access-plan). RCP and BL acknowledge support from the Lab oratory Directed Research and Development Program at ORNL. NR 23 TC 2 Z9 2 U1 5 U2 22 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD DEC 16 PY 2015 VL 5 AR 18157 DI 10.1038/srep18157 PG 9 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CY5XG UT WOS:000366480300001 PM 26670421 ER PT J AU Zhu, JL Yang, LX Wang, HW Zhang, JZ Yang, WG Hong, XG Jin, CQ Zhao, YS AF Zhu, Jinlong Yang, Liuxiang Wang, Hsiu-Wen Zhang, Jianzhong Yang, Wenge Hong, Xinguo Jin, Changqing Zhao, Yusheng TI Local structural distortion and electrical transport properties of Bi(Ni1/2Ti1/2)O-3 perovskite under high pressure SO SCIENTIFIC REPORTS LA English DT Article ID PAIR DISTRIBUTION FUNCTION; OXIDES AB Perovskite-structure materials generally exhibit local structural distortions that are distinct from long-range, average crystal structure. The characterization of such distortion is critical to understanding the structural and physical properties of materials. In this work, we combined Pair Distribution Function (PDF) technique with Raman spectroscopy and electrical resistivity measurement to study Bi(Ni1/2Ti1/2)O-3 perovskite under high pressure. PDF analysis reveals strong local structural distortion at ambient conditions. As pressure increases, the local structure distortions are substantially suppressed and eventually vanish around 4 GPa, leading to concurrent changes in the electronic band structure and anomalies in the electrical resistivity. Consistent with PDF analysis, Raman spectroscopy data suggest that the local structure changes to a higher ordered state at pressures above 4 GPa. C1 [Zhu, Jinlong; Zhao, Yusheng] Univ Nevada, Dept Phys & Astron, HiPSEC, Las Vegas, NV 89154 USA. [Yang, Liuxiang; Yang, Wenge] Ctr High Pressure Sci & Technol Adv Res HPSTAR, Shanghai 201203, Peoples R China. [Yang, Liuxiang; Yang, Wenge] Carnegie Inst Sci, Geophys Lab, High Pressure Synerget Consortium HPSynC, Argonne, IL 60439 USA. [Wang, Hsiu-Wen] Los Alamos Natl Lab, Lujan Neutron Scattering Ctr, Los Alamos, NM 87544 USA. [Zhang, Jianzhong] Los Alamos Natl Lab, Mat Sci & Technol Div, Los Alamos, NM 87544 USA. [Hong, Xinguo] SUNY Stony Brook, Inst Mineral Phys, Stony Brook, NY 11794 USA. [Jin, Changqing; Zhao, Yusheng] Chinese Acad Sci, Inst Phys, Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China. RP Zhu, JL (reprint author), Univ Nevada, Dept Phys & Astron, HiPSEC, Las Vegas, NV 89154 USA. EM jlzhu04@iphy.ac.cn; Jin@iphy.ac.cn; Yusheng.Zhao@unlv.edu OI Zhang, Jianzhong/0000-0001-5508-1782 FU High Pressure Science and Engineering Center (HiPSEC), University of Nevada, Las Vegas; National Nuclear Security Administration under the Stewardship Science Academic Alliances program through DOE [DE-NA0001982]; NSF & MOST of China through research projects at Institute of Physics, Chinese Academy of Sciences; COMPRES under NSF [EAR 11-57758]; U.S. Department of Energy's Office of Basic Energy Sciences; DOE-BES X-ray Scattering Core Program [DE-FG0299ER45775] FX We thank the High Pressure Science and Engineering Center (HiPSEC), University of Nevada, Las Vegas for support. This research was sponsored in part by the National Nuclear Security Administration under the Stewardship Science Academic Alliances program through DOE Cooperative Agreement #DE-NA0001982. We acknowledge the support from NSF & MOST of China through research projects at Institute of Physics, Chinese Academy of Sciences. This work is partially supported by COMPRES under NSF grant of EAR 11-57758. Use of the NSLS was supported by the by the U.S. Department of Energy's Office of Basic Energy Sciences. L.Y. and W.Y. acknowledge the financial support from DOE-BES X-ray Scattering Core Program under grant number DE-FG0299ER45775. J.Z. acknowledges Dr. Jianshi Zhou for the fruitful discussion on data analysis. NR 20 TC 1 Z9 1 U1 6 U2 19 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD DEC 16 PY 2015 VL 5 AR 18229 DI 10.1038/srep18229 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CY5XR UT WOS:000366481500001 PM 26671171 ER PT J AU Ghimire, NJ Ronning, F Williams, DJ Scott, BL Luo, YK Thompson, JD Bauer, ED AF Ghimire, N. J. Ronning, F. Williams, D. J. Scott, B. L. Luo, Yongkang Thompson, J. D. Bauer, E. D. TI Investigation of the physical properties of the tetragonal CeMAl4Si2 (M = Rh, Ir, Pt) compounds (vol 27, 025601, 2015) SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Correction C1 [Ghimire, N. J.; Ronning, F.; Williams, D. J.; Scott, B. L.; Luo, Yongkang; Thompson, J. D.; Bauer, E. D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Ghimire, NJ (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM nghimire@lanl.gov OI Ronning, Filip/0000-0002-2679-7957; Bauer, Eric/0000-0003-0017-1937; Scott, Brian/0000-0003-0468-5396 NR 1 TC 0 Z9 0 U1 2 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 EI 1361-648X J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD DEC 16 PY 2015 VL 27 IS 49 AR 499501 DI 10.1088/0953-8984/27/49/499501 PG 1 WC Physics, Condensed Matter SC Physics GA CW9VT UT WOS:000365347000014 ER PT J AU Li, YL Walko, DA Li, QA Liu, YH Rosenkranz, S Zheng, H Mitchell, JF AF Li, Yuelin Walko, Donald A. Li, Qing'an Liu, Yaohua Rosenkranz, Stephan Zheng, Hong Mitchell, J. F. TI Evidence of photo-induced dynamic competition of metallic and insulating phase in a layered manganite SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article DE phase competition by light; manganite bilayer; ultrafast dynamics in correlated; materials ID CHARGE; MAGNETORESISTANCE; OXIDES AB We show evidence that the competition between the antiferromagetic metallic phase and the charge- and orbital-ordered insulating phase at the reentrant phase boundary of a layered manganite, La0.99Sr2.01Mn2O7, can be manipulated using ultrafast optical excitation. The time-dependent evolution of the Jahn-Teller superlattice reflection, which indicates the formation of the charge and orbital order, was measured at different laser fluences. The laser-induced enhancement and reduction the Jahn-Teller reflection intensity shows a reversal of sign between earlier (similar to 10 ns) and later (similar to 150 ns) time delays during the relaxation after photo excitation. This effect is consistent with a scenario whereby the laser excitation modulates the local competition between the metallic and the insulating phases. C1 [Li, Yuelin; Walko, Donald A.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Li, Qing'an; Liu, Yaohua; Rosenkranz, Stephan; Zheng, Hong; Mitchell, J. F.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Liu, Yaohua] Oak Ridge Natl Lab, Quantum Condensed Matter Div, Oak Ridge, TN 37831 USA. RP Li, YL (reprint author), Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. EM ylli@aps.anl.gov RI Liu, Yaohua/B-2529-2009; Rosenkranz, Stephan/E-4672-2011 OI Liu, Yaohua/0000-0002-5867-5065; Rosenkranz, Stephan/0000-0002-5659-0383 FU US Department of Energy Office of Science, Basic Energy Sciences, Materials Science and Engineering Division; US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; Division of Scientific User Facilities of the Office of Basic Energy Sciences, US Department of Energy FX Work in the Materials Science Division of Argonne National Laboratory (sample growth and characterization, discussion of results) was supported by the US Department of Energy Office of Science, Basic Energy Sciences, Materials Science and Engineering Division. Work performed at the APS was supported by US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No DE-AC02-06CH11357. Work at QCMD, ORNL is supported by the Division of Scientific User Facilities of the Office of Basic Energy Sciences, US Department of Energy. NR 33 TC 0 Z9 0 U1 7 U2 33 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 EI 1361-648X J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD DEC 16 PY 2015 VL 27 IS 49 AR 495602 DI 10.1088/0953-8984/27/49/495602 PG 7 WC Physics, Condensed Matter SC Physics GA CW9VT UT WOS:000365347000009 PM 26575485 ER PT J AU Tan, KM Zhou, QX Cheng, BK Zhang, ZT Joachimiak, A Tse-Dinh, YC AF Tan, Kemin Zhou, Qingxuan Cheng, Bokun Zhang, Zhongtao Joachimiak, Andrzej Tse-Dinh, Yuk-Ching TI Structural basis for suppression of hypernegative DNA supercoiling by E-coli topoisomerase I SO NUCLEIC ACIDS RESEARCH LA English DT Article ID R-LOOP FORMATION; SINGLE-MOLECULE LEVEL; ZINC RIBBON DOMAINS; RELAXATION ACTIVITY; CRYSTAL-STRUCTURE; BINDING DOMAIN; III-BETA; CLEAVAGE; TRANSCRIPTION; PROTEIN AB Escherichia coli topoisomerase I has an essential function in preventing hypernegative supercoiling of DNA. A full length structure of E. coli topoisomerase I reported here shows how the C-terminal domains bind single-stranded DNA (ssDNA) to recognize the accumulation of negative supercoils in duplex DNA. These C-terminal domains of E. coli topoisomerase I are known to interact with RNA polymerase, and two flexible linkers within the C-terminal domains may assist in the movement of the ssDNA for the rapid removal of transcription driven negative supercoils. The structure has also unveiled for the first time how the 4-Cys zinc ribbon domain and zinc ribbon-like domain bind ssDNA with primarily pi-stacking interactions. This novel structure, in combination with new biochemical data, provides important insights into the mechanism of genome regulation by type IA topoisomerases that is essential for life, as well as the structures of homologous type IA TOP3 alpha and TOP3 beta from higher eukaryotes that also have multiple 4-Cys zinc ribbon domains required for their physiological functions. C1 [Tan, Kemin; Joachimiak, Andrzej] Argonne Natl Lab, Biosci, Struct Biol Ctr, Argonne, IL 60439 USA. [Zhou, Qingxuan; Tse-Dinh, Yuk-Ching] Florida Int Univ, Dept Chem & Biochem, 11200 SW 8 St, Miami, FL 33199 USA. [Cheng, Bokun; Zhang, Zhongtao] New York Med Coll, Dept Biochem & Mol Biol, Valhalla, NY 10595 USA. [Tse-Dinh, Yuk-Ching] Florida Int Univ, Biomol Sci Inst, Miami, FL 33199 USA. RP Tse-Dinh, YC (reprint author), Florida Int Univ, Dept Chem & Biochem, 11200 SW 8 St, Miami, FL 33199 USA. EM ktan@anl.gov; ytsedinh@fiu.edu FU National Institute of Health (NIH) [GM054226, GM094585]; U. S. Department of Energy, Office of Biological and Environmental Research [DE-AC02-06CH11357]; NIH [R01 GM054226] FX National Institute of Health (NIH) [GM054226 to Y.T. and GM094585 to A.J.]. The use of SBC 19-ID was supported by the U. S. Department of Energy, Office of Biological and Environmental Research, under contract DE-AC02-06CH11357. Funding for open access charge: NIH [R01 GM054226 to Y.T.]. NR 57 TC 0 Z9 0 U1 5 U2 11 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0305-1048 EI 1362-4962 J9 NUCLEIC ACIDS RES JI Nucleic Acids Res. PD DEC 15 PY 2015 VL 43 IS 22 DI 10.1093/nar/gkv1073 PG 16 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA DF3IN UT WOS:000371237600045 ER PT J AU Morrow, WR Marano, J Hasanbeigi, A Masanet, E Sathaye, J AF Morrow, William R., III Marano, John Hasanbeigi, Ali Masanet, Eric Sathaye, Jayant TI Efficiency improvement and CO2 emission reduction potentials in the United States petroleum refining industry SO ENERGY LA English DT Article DE Energy-efficiency; CO2 emissions; Petroleum refining AB The U.S. EPA is in the final stages of promulgating regulations to reduce CO2 emissions from the electricity generating industry. A major component of EPA's regulatory strategy targets improvements to power plant operating efficiencies. As the EPA expands regulatory requirements to other industries, including petroleum refining, it is likely that plant efficiency improvements will be critical to achieving CO2 emission reductions. This paper identifies efficiency improvement measures applicable to refining, and quantifies potential cost of conserved energy for these measures. Analysis is at the U.S. petroleum refining sector national-level employing an aggregated notional refinery model (NRM), with the aim of estimating the efficacy of efficiency improvements for reducing emissions. Using this method, roughly 1500 petajoules per year (PJ/yr) of plant fuel savings and 650 gigawatt-hour per year (GWh/yr) of electricity savings (representing 54% and 2% of U.S. refining industry consumption, respectively) are potentially cost-effective. This equates to a potential 85 Mt-CO2/yr reduction. An additional 458 PJ/yr fuel reduction and close to 2750 GWh/yr of electricity reduction (27 Mt-CO2/yr) are not cost-effective at prevailing natural gas market prices. Results are presented as a supply-curve ordering measures from low to high cost of fuel savings versus cumulative energy reduction. Published by Elsevier Ltd. C1 [Morrow, William R., III; Hasanbeigi, Ali; Sathaye, Jayant] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Marano, John] JM Energy Consulting Inc, Gibsonia, PA USA. [Masanet, Eric] Northwestern Univ, Evanston, IL USA. RP Morrow, WR (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM WRMorrow@lbl.gov RI Masanet, Eric /I-5649-2012; OI Morrow, William/0000-0001-6640-5711 FU Climate Economics Branch, Climate Change Division, U.S. Environmental Protection Agency through U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Climate Economics Branch, Climate Change Division, the U.S. Environmental Protection Agency through the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The Author's thank Eric Smith at EPA for his support for this research. NR 21 TC 6 Z9 6 U1 3 U2 8 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-5442 EI 1873-6785 J9 ENERGY JI Energy PD DEC 15 PY 2015 VL 93 BP 95 EP 105 DI 10.1016/j.energy.2015.08.097 PN 1 PG 11 WC Thermodynamics; Energy & Fuels SC Thermodynamics; Energy & Fuels GA DA2MR UT WOS:000367630200010 ER PT J AU Cantwell, MG Sullivan, JC Katz, DR Burgess, RM Hubeny, JB King, J AF Cantwell, Mark G. Sullivan, Julia C. Katz, David R. Burgess, Robert M. Hubeny, J. Bradford King, John TI Source determination of benzotriazoles in sediment cores from two urban estuaries on the Atlantic Coast of the United States SO MARINE POLLUTION BULLETIN LA English DT Article DE Emerging contaminant; Benzotriazole; UV stabilizer; Sediment core; Corrosion inhibitor; Persistent chemical ID POLYBROMINATED DIPHENYL ETHERS; TANDEM MASS-SPECTROMETRY; FRESH-WATER SEDIMENTS; IN-HOUSE DUST; WASTE-WATER; UV STABILIZERS; ORGANIC-COMPOUNDS; ULTRAVIOLET STABILIZERS; LIQUID-CHROMATOGRAPHY; TREATMENT-PLANT AB Benzotriazoles (BZTs) are used in a broad range of commercial and industrial products, particularly as metal corrosion inhibitors and as ultraviolet (UV) light stabilizer additives in plastics and polymers. In this study, dated sediment cores from two east coast estuaries were analyzed for commonly used BZTs. In Narragansett Bay, UV stabilizing BZTs (UV-BZTs) were present at high levels from 1961 on, reflecting their patent date, local production and long-term preservation in sediment In Salem Sound, UV-BZTs were present at concentrations consistent with other coastal marine locations not influenced by BZT production. Anticorrosive BZTs (AC-BZTs) were found in both cores, with the highest levels reported to date present in Narragansett Bay, indicating sorption to, and preservation in, sediments. This study revealed that both classes of BZTs have remained structurally intact over time in coastal sediment cores, demonstrating their resistance to degradation and persistence in environmental compartments. Published by Elsevier Ltd. C1 [Cantwell, Mark G.; Katz, David R.; Burgess, Robert M.] US EPA, Off Res & Dev, Narragansett, RI 02882 USA. [Sullivan, Julia C.] Oak Ridge Inst Sci & Educ, Narragansett, RI 02882 USA. [Hubeny, J. Bradford] Salem State Univ, Dept Geol Sci, Salem, MA 01970 USA. [King, John] Univ Rhode Isl, Grad Sch Oceanog, Narragansett, RI 02882 USA. RP Cantwell, MG (reprint author), US EPA, Off Res & Dev, Narragansett, RI 02882 USA. EM Cantwell.mark@epa.gov FU US Environmental Protection Agency, Office of Research and Development; US Department of Energy; EPA FX The authors thank Drs. Abbey Joyce, Richard Pruell and Mr. Steven Rego for their technical reviews. This research was supported in part by an appointment to the Research Participation Program for the US Environmental Protection Agency, Office of Research and Development, administered by the Oak Ridge Institute for Science and Education through an interagency agreement between the US Department of Energy and EPA. This manuscript is contribution ORD-012100 of the Atlantic Ecology Division of the United States Environmental Protection Agency, Office of Research and Development, National Health Effects Environmental Research Laboratory. NR 57 TC 0 Z9 1 U1 5 U2 15 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0025-326X EI 1879-3363 J9 MAR POLLUT BULL JI Mar. Pollut. Bull. PD DEC 15 PY 2015 VL 101 IS 1 BP 208 EP 218 DI 10.1016/j.marpolbul.2015.10.075 PG 11 WC Environmental Sciences; Marine & Freshwater Biology SC Environmental Sciences & Ecology; Marine & Freshwater Biology GA DA2MV UT WOS:000367630700035 PM 26561444 ER PT J AU Yu, YQ Merzari, E Obabko, A Thomas, J AF Yu, Yiqi Merzari, Elia Obabko, Aleksandr Thomas, Justin TI A porous medium model for predicting the duct wall temperature of sodium fast reactor fuel assembly SO NUCLEAR ENGINEERING AND DESIGN LA English DT Article ID SIMULATION; BUNDLES; FLOW AB Porous medium models have been established for predicting duct wall temperature of sodium fast reactor rod bundle assembly, which is much less computationally expensive than conventional CFD simulations that explicitly represent the wire-wrap and fuel pin geometry. Three porous medium models are proposed in this paper. Porous medium model 1 takes the whole assembly as one porous medium of uniform characteristics in the conventional approach. Porous medium model 2 distinguishes the pins along the assembly's edge from those in the interior with two distinct regions, each with a distinct porosity, resistance, and volumetric heat source. This accounts for the different fuel-to-coolant volume ratio in the two regions, which is important for predicting the temperature of the assembly's exterior duct wall. In Porous medium model 3, a precise resistance distribution was employed to define the characteristic of the porous medium. The results show that both porous medium model 2 and 3 can capture the average duct wall temperature well. Furthermore, the local duct wall variations due to different sub-channel patterns in bare rod bundles are well captured by porous medium model 3, although the wire effect on the duct wall temperature in wire wrap rod bundle has not been fully reproduced yet. (C) 2015 Elsevier B.V. All rights reserved. C1 [Yu, Yiqi; Thomas, Justin] Argonne Natl Lab, Nucl Engn Div, Lemont, IL 60439 USA. [Merzari, Elia; Obabko, Aleksandr] Argonne Natl Lab, Math & Comp Sci Div, Lemont, IL 60439 USA. RP Yu, YQ (reprint author), Argonne Natl Lab, Nucl Engn Div, Lemont, IL 60439 USA. EM yyu@anl.gov FU Argonne, a U.S. Department of Energy Office of Science laboratory [DE-AC02-06CH11357] FX The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government. NR 26 TC 1 Z9 1 U1 1 U2 4 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0029-5493 EI 1872-759X J9 NUCL ENG DES JI Nucl. Eng. Des. PD DEC 15 PY 2015 VL 295 BP 48 EP 58 DI 10.1016/j.nucengdes.2015.09.020 PG 11 WC Nuclear Science & Technology SC Nuclear Science & Technology GA CZ9JK UT WOS:000367413700005 ER PT J AU Giorla, A Vaitova, M Le Pape, Y Stemberk, P AF Giorla, A. Vaitova, M. Le Pape, Y. Stemberk, P. TI Meso-scale modeling of irradiated concrete in test reactor SO NUCLEAR ENGINEERING AND DESIGN LA English DT Article ID HARDENED CEMENT PASTE; NUCLEAR-POWER-PLANTS; MODERATE TEMPERATURES; QUARTZ; CREEP; EXPANSION; STRENGTH; AMORPHIZATION; SIMULATIONS; RADIOLYSIS AB A numerical model accounting for the effects of neutron irradiation on concrete at the mesoscale is detailed in this paper. Irradiation experiments in test reactor (Elleuch et al., 1972), i.e., in accelerated conditions, are simulated. Concrete is considered as a two-phase material made of elastic inclusions (aggregate) subjected to thermal and irradiation-induced swelling and embedded in a cementitious matrix subjected to shrinkage and thermal expansion. The role of the hardened cement paste in the post-peak regime (brittle-ductile transition with decreasing loading rate), and creep effects are investigated. Radiation-induced volumetric expansion (RIVE) of the aggregate cause the development and propagation of damage around the aggregate which further develops in bridging cracks across the hardened cement paste between the individual aggregate particles. The development of damage is aggravated when shrinkage occurs simultaneously with RIVE during the irradiation experiment. The post-irradiation expansion derived from the simulation is well correlated with the experimental data and, the obtained damage levels are fully consistent with previous estimations based on a micromechanical interpretation of the experimental post-irradiation elastic properties (Le Pape et al., 2015). The proposed modeling opens new perspectives for the interpretation of test reactor experiments in regards to the actual operation of light water reactors. (C) 2015 Elsevier B.V. All rights reserved. C1 [Giorla, A.; Le Pape, Y.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Vaitova, M.; Stemberk, P.] Czech Tech Univ, Prague 16629 6, Czech Republic. RP Le Pape, Y (reprint author), Oak Ridge Natl Lab, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM lepapeym@ornl.gov OI Giorla, Alain/0000-0002-7750-0789 FU U.S. Department of Energy (DOE) Light Water Reactor Sustainability Program; U.S. Department of Energy [DE-AC05-00OR22725]; Department of Energy; Czech Technical University in Prague [SGS15/035/OHK1/1T/11]; IAEA [TC RER035] FX This research is sponsored by the U.S. Department of Energy (DOE) Light Water Reactor Sustainability Program. This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).; The Czech co-authors were financially supported by project SGS15/035/OHK1/1T/11 of the Czech Technical University in Prague, which is gratefully acknowledged. This work was also sponsored by the IAEA, under the TC RER035 project. NR 90 TC 5 Z9 5 U1 5 U2 13 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0029-5493 EI 1872-759X J9 NUCL ENG DES JI Nucl. Eng. Des. PD DEC 15 PY 2015 VL 295 BP 59 EP 73 DI 10.1016/j.nucengdes.2015.08.027 PG 15 WC Nuclear Science & Technology SC Nuclear Science & Technology GA CZ9JK UT WOS:000367413700006 ER PT J AU Nielsen, J Tokuhiro, A Hiromoto, R Tu, L AF Nielsen, Joseph Tokuhiro, Akira Hiromoto, Robert Tu, Lei TI Branch-and-Bound algorithm applied to uncertainty quantification of a Boiling Water Reactor Station Blackout SO NUCLEAR ENGINEERING AND DESIGN LA English DT Article AB Evaluation of the impacts of uncertainty and sensitivity in modeling presents a significant set of challenges in particular to high fidelity modeling. Computational costs and validation of models creates a need for cost effective decision making with regards to experiment design. Experiments designed to validate computation models can be used to reduce uncertainty in the physical model. In some cases, large uncertainty in a particular aspect of the model may or may not have a large impact on the final results. For example, modeling of a relief valve may result in large uncertainty, however, the actual effects on final peak clad temperature in a reactor transient may be small and the large uncertainty with respect to valve modeling may be considered acceptable. Additionally, the ability to determine the adequacy of a model and the validation supporting it should be considered within a risk informed framework. Low fidelity modeling with large uncertainty may be considered adequate if the uncertainty is considered acceptable with respect to risk. In other words, models that are used to evaluate the probability of failure should be evaluated more rigorously with the intent of increasing safety margin. Probabilistic risk assessment (PRA) techniques have traditionally been used to identify accident conditions and transients. Traditional classical event tree methods utilize analysts' knowledge and experience to identify the important timing of events in coordination with thermal-hydraulic modeling. These methods lack the capability to evaluate complex dynamic systems. In these systems, time and energy scales associated with transient events may vary as a function of transition times and energies to arrive at a different physical state. Dynamic PRA (DPRA) methods provide a more rigorous analysis of complex dynamic systems. Unfortunately DPRA methods introduce issues associated with combinatorial explosion of states. This paper presents a methodology to address combinatorial explosion using a Branch-and-Bound algorithm applied to Dynamic Event Trees (DET), which utilize LENDIT (L - Length, E - Energy, N - Number, D - Distribution, I Information, and T - Time) as well as a set theory to describe system, state, resource, and response (S2R2) sets to create bounding functions for the DET. The optimization of the DET in identifying high probability failure branches is extended to create a Phenomenological Identification and Ranking Table (PIRT) methodology to evaluate modeling parameters important to safety of those failure branches that have a high probability of failure. The PIRT can then be used as a tool to identify and evaluate the need for experimental validation of models that have the potential to reduce risk. In order to demonstrate this methodology, a Boiling Water Reactor (BWR) Station Blackout (SBO) case study is presented. (C) 2015 Elsevier B.V. All rights reserved. C1 [Nielsen, Joseph] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Nielsen, Joseph; Tokuhiro, Akira; Tu, Lei] Univ Idaho, Dept Mech Engn, Idaho Falls, ID 83402 USA. [Nielsen, Joseph; Tokuhiro, Akira; Tu, Lei] Univ Idaho, Nucl Engn Program, Idaho Falls, ID 83402 USA. [Hiromoto, Robert] Univ Idaho, Dept Comp Sci, Idaho Falls, ID 83402 USA. RP Nielsen, J (reprint author), Idaho Natl Lab, 1955 N Fremont Ave,POB 1625, Idaho Falls, ID 83415 USA. EM joseph.nielsen@inl.gov FU Laboratory Directed Research and Development (LDRD) program at the Idaho National Laboratory (INL) [00119, 000422461]; Department of Energy under DOE [DE-AC07-05ID14517] FX The authors would like to thank the Laboratory Directed Research and Development (LDRD) program at the Idaho National Laboratory (INL) [release number 00119 under blanket master contract 000422461 for supporting this work. The INL is operated by the Battelle Energy Alliance (BEA) for the Department of Energy under DOE contract DE-AC07-05ID14517. NR 12 TC 0 Z9 0 U1 3 U2 3 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0029-5493 EI 1872-759X J9 NUCL ENG DES JI Nucl. Eng. Des. PD DEC 15 PY 2015 VL 295 BP 283 EP 304 DI 10.1016/j.nucengdes.2015.07.029 PG 22 WC Nuclear Science & Technology SC Nuclear Science & Technology GA CZ9JK UT WOS:000367413700028 ER PT J AU Mohanty, S Soppet, WK Majumdar, S Natesan, K AF Mohanty, Subhasish Soppet, William K. Majumdar, Saurindranath Natesan, Krishnamurti TI Full-scale 3-D finite element modeling of a two-loop pressurized water reactor for heat transfer, thermal-mechanical cyclic stress analysis, and environmental fatigue life estimation SO NUCLEAR ENGINEERING AND DESIGN LA English DT Article ID INTEGRITY ASSESSMENT; VESSEL; SHOCKS; PLANT AB This paper discusses a system-level finite element model of a two-loop pressurized water reactor (PWR). Based on this model, system-level heat transfer analysis and subsequent sequentially coupled thermal-mechanical stress analysis were performed for typical thermal-mechanical fatigue cycles. The in-air fatigue lives of example components, such as the hot and cold legs, were estimated on the basis of stress analysis results, ASME in-air fatigue life estimation criteria, and fatigue design curves. Furthermore, environmental correction factors and associated PWR environment fatigue lives for the hot and cold legs were estimated by using estimated stress and strain histories and the approach described in US-NRC report: NUREG-6909. (C) 2015 Elsevier B.V. All rights reserved. C1 [Mohanty, Subhasish; Soppet, William K.; Majumdar, Saurindranath; Natesan, Krishnamurti] Argonne Natl Lab, Lemont, IL 60439 USA. RP Mohanty, S (reprint author), Argonne Natl Lab, Lemont, IL 60439 USA. EM smohanty@anl.gov FU U.S. Department of Energy's Light Water Reactor Sustainability program FX This research was supported through the U.S. Department of Energy's Light Water Reactor Sustainability program under the work package of environmental fatigue study, program manager Dr Jeremy Busby. NR 38 TC 1 Z9 1 U1 5 U2 10 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0029-5493 EI 1872-759X J9 NUCL ENG DES JI Nucl. Eng. Des. PD DEC 15 PY 2015 VL 295 BP 374 EP 387 DI 10.1016/j.nucengdes.2015.10.012 PG 14 WC Nuclear Science & Technology SC Nuclear Science & Technology GA CZ9JK UT WOS:000367413700034 ER PT J AU Le Pape, Y AF Le Pape, Y. TI Structural effects of radiation-induced volumetric expansion on unreinforced concrete biological shields SO NUCLEAR ENGINEERING AND DESIGN LA English DT Article ID NUCLEAR-POWER-PLANTS; ELEMENTS; STRAIN AB Limited literature (Pomaro et al., 2011; Mirhosseini et al., 2014; Salomoni et al., 2014; Andreev and Kapliy, 2014) is available on the structural analysis of irradiated concrete biological shield (CBS), although extended operations of nuclear powers plants may lead to critical neutron exposure above 1.0 x 10(+19) n cm(-2). To the notable exception of Andreev and Kapliy, available structural models do not account for radiation-induced volumetric expansion, although it was found to develop important linear dimensional change of the order of 1%, and, can lead to significant concrete damage (Le Pape et al., 2015). A ID-cylindrical model of an unreinforced CBS accounting for temperature and irradiation effects is developed. Irradiated concrete properties are characterized probabilistically using the updated database collected by Oak Ridge National Laboratory (Field et al., 2015). The overstressed concrete ratio (OCR) of the CBS, i.e., the proportion of the wall thickness being subject to stresses beyond the resistance of concrete, is derived by deterministic and probabilistic analysis assuming that irradiated concrete behaves as an elastic materials. In the bi-axial compressive zone near the reactor cavity, the OCR is limited to 5.7%, i.e., 8.6 cm (3 1/2 in.), whereas, in the tension zone, the OCR extends to 72%, i.e., 1.08 m (42 1/2 in.). These results, valid for a maximum neutron fluence on the concrete surface of 3.1 x 10(+19) n cm(-2) (E>0.1 MeV) and, obtained after 80 years of operation, give an indication of the potential detrimental effects of prolonged irradiation of concrete in nuclear power plants. (c) 2015 Elsevier B.V. All rights reserved. C1 [Le Pape, Y.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Le Pape, Y (reprint author), Oak Ridge Natl Lab, One Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM lepapeym@ornl.gov FU U.S. Department of Energy Light Water Reactor Sustainability Program; U.S. Department of Energy [DE-AC05-00OR22725] FX This research is sponsored by the U.S. Department of Energy Light Water Reactor Sustainability Program. This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan). NR 59 TC 5 Z9 5 U1 1 U2 8 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0029-5493 EI 1872-759X J9 NUCL ENG DES JI Nucl. Eng. Des. PD DEC 15 PY 2015 VL 295 BP 534 EP 548 DI 10.1016/j.nucengdes.2015.09.018 PG 15 WC Nuclear Science & Technology SC Nuclear Science & Technology GA CZ9JK UT WOS:000367413700047 ER PT J AU Pidaparti, SR Moisseytsev, A Sienicki, JJ Ranjan, D AF Pidaparti, Sandeep R. Moisseytsev, Anton Sienicki, James J. Ranjan, Devesh TI Counter flow induced draft cooling tower option for supercritical carbon dioxide Brayton cycle SO NUCLEAR ENGINEERING AND DESIGN LA English DT Article ID FILLS AB A simplified qualitative analysis was performed to investigate the possibility of using counter flow induced draft cooling tower option to reject heat from the supercritical carbon dioxide Brayton cycle for advanced fast reactor (AFR)-100 and advanced burner reactor (ABR)-1000 plants. A code was developed to estimate the tower dimensions, power and water consumption, and to perform economic analysis. The code developed was verified against a vendor provided quotation and is used to understand the effect of ambient air and water conditions on the design of cooling tower. The calculations indicated that there exists optimum water conditions for given ambient air conditions which will result in minimum power consumption, thereby increasing the cycle efficiency. A cost-based optimization technique is used to estimate the optimum water conditions which will improve the overall plant economics. A comparison of different cooling options for the S-CO2 cycle indicated that the cooling tower option is a much more practical and economical option compared to the dry air cooling or direct water cooling options. (c) 2015 Elsevier B.V. All rights reserved. C1 [Pidaparti, Sandeep R.; Ranjan, Devesh] Georgia Inst Technol, George W Woodruff Sch Mech Engn, Atlanta, GA 30332 USA. [Moisseytsev, Anton; Sienicki, James J.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Pidaparti, SR (reprint author), Georgia Inst Technol, George W Woodruff Sch Mech Engn, Atlanta, GA 30332 USA. EM sandeep.pidaparti@gmail.com; devesh.ranjan@me.gatech.edu OI Ranjan, Devesh/0000-0002-1231-9313 FU US Department of Energy Nuclear Energy University Programs (NEUP) [NEUP 12-3318, NEUP 11-3039] FX This work was funded by the US Department of Energy Nuclear Energy University Programs (NEUP) project NEUP 12-3318 and NEUP 11-3039. NR 15 TC 0 Z9 0 U1 4 U2 10 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0029-5493 EI 1872-759X J9 NUCL ENG DES JI Nucl. Eng. Des. PD DEC 15 PY 2015 VL 295 BP 549 EP 558 DI 10.1016/j.nucengdes.2015.09.026 PG 10 WC Nuclear Science & Technology SC Nuclear Science & Technology GA CZ9JK UT WOS:000367413700048 ER PT J AU Nielsen, JW Nigg, DW LaPorta, AW AF Nielsen, Joseph W. Nigg, David W. LaPorta, Anthony W. TI A fission matrix based validation protocol for computed power distributions in the advanced test reactor SO NUCLEAR ENGINEERING AND DESIGN LA English DT Article ID CONVERGENCE AB The Idaho National Laboratory (INL) has been engaged in a significant multiyear effort to modernize the computational reactor physics tools and validation procedures used to support operations of the Advanced Test Reactor (ATR) and its companion critical facility (ATRC). Several new protocols for validation of computed neutron flux distributions and spectra as well as for validation of computed fission power distributions, based on new experiments and well-recognized least-squares statistical analysis techniques, have been under development. In the case of power distributions, estimates of the a priori ATR-specific fuel element-to-element fission power correlation and covariance matrices are required for validation analysis. A practical method for generating these matrices using the element-to-element fission matrix is presented, along with a high-order scheme for estimating the underlying fission matrix itself. The proposed methodology is illustrated using the MCNP5 neutron transport code for the required neutronics calculations. The general approach is readily adaptable for implementation using any multidimensional stochastic or deterministic transport code that offers the required level of spatial, angular, and energy resolution in the computed solution for the neutron flux and fission source. (c) 2015 The Authors. Published by Elsevier B.V. C1 [Nielsen, Joseph W.; Nigg, David W.; LaPorta, Anthony W.] Idaho Natl Lab, Idaho Falls, ID 83402 USA. RP Nielsen, JW (reprint author), Idaho Natl Lab, 1955 N,Fremont Ave,POB 1625, Idaho Falls, ID 83402 USA. EM joseph.nielsen@inl.gov NR 20 TC 1 Z9 1 U1 1 U2 1 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0029-5493 EI 1872-759X J9 NUCL ENG DES JI Nucl. Eng. Des. PD DEC 15 PY 2015 VL 295 BP 615 EP 624 DI 10.1016/j.nucengdes.2015.07.049 PG 10 WC Nuclear Science & Technology SC Nuclear Science & Technology GA CZ9JK UT WOS:000367413700055 ER PT J AU Slattery, SR Evans, TM Wilson, PPH AF Slattery, Stuart R. Evans, Thomas M. Wilson, Paul P. H. TI A spectral analysis of the domain decomposed Monte Carlo method for linear systems SO NUCLEAR ENGINEERING AND DESIGN LA English DT Article ID EFFICIENT; ALGORITHM AB The domain decomposed behavior of the adjoint Neumann-Ulam Monte Carlo method for solving linear systems is analyzed using the spectral properties of the linear operator. Relationships for the average length of the adjoint random walks, a measure of convergence speed and serial performance, are made with respect to the eigenvalues of the linear operator. In addition, relationships for the effective optical thickness of a domain in the decomposition are presented based on the spectral analysis and diffusion theory. Using the effective optical thickness, the Wigner rational approximation and the mean chord approximation are applied to estimate the leakage fraction of random walks from a domain in the decomposition as a measure of parallel performance and potential communication costs. The one-speed, two-dimensional neutron diffusion equation is used as a model problem in numerical experiments to test the models for symmetric operators with spectral qualities similar to light water reactor problems. In general, the derived approximations show good agreement with random walk lengths and leakage fractions computed by the numerical experiments. (c) 2015 Elsevier B.V. All rights reserved. C1 [Slattery, Stuart R.; Evans, Thomas M.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Wilson, Paul P. H.] Univ Wisconsin, Madison, WI 53706 USA. RP Slattery, SR (reprint author), Oak Ridge Natl Lab, 1 Bethel Valley Rd,POB 2008,MS-6164, Oak Ridge, TN 37831 USA. EM slatterysr@ornl.gov; evanstm@ornl.gov; wilsonp@engr.wisc.edu NR 18 TC 0 Z9 0 U1 1 U2 1 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0029-5493 EI 1872-759X J9 NUCL ENG DES JI Nucl. Eng. Des. PD DEC 15 PY 2015 VL 295 BP 632 EP 638 DI 10.1016/j.nucengdes.2015.07.054 PG 7 WC Nuclear Science & Technology SC Nuclear Science & Technology GA CZ9JK UT WOS:000367413700057 ER PT J AU Betzler, BR Kiedrowski, BC Brown, FB Martin, WR AF Betzler, Benjamin R. Kiedrowski, Brian C. Brown, Forrest B. Martin, William R. TI Calculating infinite-medium alpha-eigenvalue spectra with Monte Carlo using a transition rate matrix method SO NUCLEAR ENGINEERING AND DESIGN LA English DT Article ID NUCLEAR-DATA; TECHNOLOGY; SCIENCE AB The time-dependent behavior of the energy spectrum in neutron transport was investigated with a formulation, based on continuous-time Markov processes, for computing alpha eigenvalues and eigenvectors in an infinite medium. For this, a research Monte Carlo code called "TORTE" (To Obtain Real Time Eigenvalues) was created and used to estimate elements of a transition rate matrix. TORTE is capable of using both multigroup and continuous-energy nuclear data, and verification was performed. Eigenvalue spectra for infinite homogeneous mixtures were obtained, and an eigenfunction expansion was used to investigate transient behavior of the neutron energy spectrum. Published by Elsevier B.V. C1 [Betzler, Benjamin R.; Kiedrowski, Brian C.; Martin, William R.] Univ Michigan, Dept Nucl Engn & Radiol Sci, Ann Arbor, MI 48109 USA. [Brown, Forrest B.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Betzler, BR (reprint author), Oak Ridge Natl Lab, POB 2008,1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM betzlerbr@ornl.gov; bckiedro@umich.edu; fbrown@lanl.gov; wrm@umich.edu OI Betzler, Benjamin/0000-0001-8425-9711 NR 7 TC 0 Z9 0 U1 1 U2 2 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0029-5493 EI 1872-759X J9 NUCL ENG DES JI Nucl. Eng. Des. PD DEC 15 PY 2015 VL 295 BP 639 EP 644 DI 10.1016/j.nucengdes.2015.07.052 PG 6 WC Nuclear Science & Technology SC Nuclear Science & Technology GA CZ9JK UT WOS:000367413700058 ER PT J AU Bang, Y Abdel-Khalik, HS Jessee, MA Mertyurek, U AF Bang, Youngsuk Abdel-Khalik, Hany S. Jessee, Matthew A. Mertyurek, Ugur TI Hybrid reduced order modeling for assembly calculations SO NUCLEAR ENGINEERING AND DESIGN LA English DT Article AB While the accuracy of assembly calculations has considerably improved due to the increase in computer power enabling more refined description of the phase space and use of more sophisticated numerical algorithms, the computational cost continues to increase which limits the full utilization of their effectiveness for routine engineering analysis. Reduced order modeling is a mathematical vehicle that scales down the dimensionality of large-scale numerical problems to enable their repeated executions on small computing environment, often available to end users. This is done by capturing the most dominant underlying relationships between the model's inputs and outputs. Previous works demonstrated the use of the reduced order modeling for a single physics code, such as a radiation transport calculation. This manuscript extends those works to coupled code systems as currently employed in assembly calculations. Numerical tests are conducted using realistic SCALE assembly models with resonance self-shielding, neutron transport, and nuclides transmutation/depletion models representing the components of the coupled code system. (c) 2015 Elsevier B.V. All rights reserved. C1 [Bang, Youngsuk] FNC Technol Co Ltd, Yongin, South Korea. [Abdel-Khalik, Hany S.] Purdue Univ, W Lafayette, IN 47907 USA. [Jessee, Matthew A.; Mertyurek, Ugur] Oak Ridge Natl Lab, Oak Ridge, TN USA. RP Bang, Y (reprint author), FNC Technol Co Ltd, Yongin, South Korea. EM ysbang00@fnctech.com; abdelkhalik@purdue.edu; jesseema@ornl.gov; mertyurek@ornl.gov OI Jessee, Matthew/0000-0003-2954-4995 NR 7 TC 0 Z9 0 U1 2 U2 3 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0029-5493 EI 1872-759X J9 NUCL ENG DES JI Nucl. Eng. Des. PD DEC 15 PY 2015 VL 295 BP 661 EP 666 DI 10.1016/j.nucengdes.2015.07.020 PG 6 WC Nuclear Science & Technology SC Nuclear Science & Technology GA CZ9JK UT WOS:000367413700061 ER PT J AU Baker, RS Dahl, JA Fichtl, EJ Morel, JE AF Baker, Randal S. Dahl, Jon A. Fichtl, Erin J. Morel, Jim E. TI Neutron transport in Eulerian coordinates with bulk material motion SO NUCLEAR ENGINEERING AND DESIGN LA English DT Article ID MOVING MATERIAL; PARTICLE-TRANSPORT AB A consistent, numerically stable algorithm for the solution of the neutron transport equation in the presence of a moving material background is presented for one-dimensional spherical geometry. Manufactured solutions are used to demonstrate the correctness and stability of our numerical algorithm. The importance of including moving material corrections is shown for the r-process in proto-neutron stars. (C) 2015 Elsevier B.V. All rights reserved. C1 [Baker, Randal S.; Dahl, Jon A.; Fichtl, Erin J.] Los Alamos Natl Lab, Computat Phys Grp, Los Alamos, NM 87545 USA. [Morel, Jim E.] Texas A&M Univ, Dept Nucl Engn, College Stn, TX 77843 USA. RP Baker, RS (reprint author), Los Alamos Natl Lab, Computat Phys Grp, Los Alamos, NM 87545 USA. EM rsb@lanl.gov; dahl@lanl.gov; efichtl@lanl.gov; morel@tamu.edu NR 8 TC 0 Z9 0 U1 2 U2 3 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0029-5493 EI 1872-759X J9 NUCL ENG DES JI Nucl. Eng. Des. PD DEC 15 PY 2015 VL 295 BP 667 EP 673 DI 10.1016/j.nucengdes.2015.07.025 PG 7 WC Nuclear Science & Technology SC Nuclear Science & Technology GA CZ9JK UT WOS:000367413700062 ER PT J AU Walsh, JA Palmer, TS Urbatsch, TJ AF Walsh, Jonathan A. Palmer, Todd S. Urbatsch, Todd J. TI Numerical computation of discrete differential scattering cross sections for Monte Carlo charged particle transport SO NUCLEAR ENGINEERING AND DESIGN LA English DT Article AB We investigate a method for numerically generating discrete scattering cross sections for use in charged particle transport simulations. We describe the cross section generation procedure and compare it to existing methods used to obtain discrete cross sections. The numerical approach presented here is generalized to allow greater flexibility in choosing a cross section model from which to derive discrete values. Cross section data computed with this method compare favorably with discrete data generated with an existing method. Additionally, a charged particle transport capability is demonstrated in the time-dependent Implicit Monte Carlo radiative transfer code, Milagro. We verify the implementation of charged particle transport in Milagro with analytic test problems and we compare calculated electron depth dose profiles with another particle transport code that has a validated electron transport capability. Finally, we investigate the integration of the new discrete cross section generation method with the charged particle transport capability in Milagro. (C) 2015 Elsevier B.V. All rights reserved. C1 [Walsh, Jonathan A.] MIT, Dept Nucl Sci & Engn, Cambridge, MA 02139 USA. [Palmer, Todd S.] Oregon State Univ, Dept Nucl Engn & Radiat Hlth Phys, Corvallis, OR 97331 USA. [Urbatsch, Todd J.] Los Alamos Natl Lab, XTD IDA Theoret Design Integrated Design & Assess, Los Alamos, NM 87545 USA. RP Walsh, JA (reprint author), MIT, Dept Nucl Sci & Engn, 77 Massachusetts Ave,24-107, Cambridge, MA 02139 USA. EM walshjon@mit.edu OI Walsh, Jonathan/0000-0002-2542-1149 NR 12 TC 0 Z9 0 U1 0 U2 1 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0029-5493 EI 1872-759X J9 NUCL ENG DES JI Nucl. Eng. Des. PD DEC 15 PY 2015 VL 295 BP 674 EP 678 DI 10.1016/j.nucengdes.2015.07.018 PG 5 WC Nuclear Science & Technology SC Nuclear Science & Technology GA CZ9JK UT WOS:000367413700063 ER PT J AU Jones, CA Dameron, R Sircar, M AF Jones, Christopher A. Dameron, Robert Sircar, Madhumita TI Improving the state of the art in FEM analysis of PCCVs with bonded and unbonded prestress tendons SO NUCLEAR ENGINEERING AND DESIGN LA English DT Article AB In order to assess the structural performance of grouted prestressing systems in nuclear power containment vessels, a full containment vessel was modeled using the finite element program, ABAQUS. Both bonded (grouted) and unbonded (ungrouted) prestressing systems were modeled. Prior to simulation of grouting, both models were identical, with the prestressing stages modeled explicitly, and friction represented along the tendons. The results indicate higher peak stresses and strains in the bonded model since the tendon system is not permitted to slip and redistribute forces as the vessel deforms. Correspondingly, it is noted that the analysis predicts failure of the vessel at a lower internal pressure in the case of the bonded system. This work is an extension of a collaborative study of finite element analysis (FEA) of prestressed concrete containment vessels (PCCVs) sponsored by the United States Nuclear Regulatory Commission (USNRC) and the Atomic Energy Regulatory Board (AERB) of India. Particular emphasis was placed on advancing the state of the art in modeling tendons (Akin et al., 2013a; Heitman et al., 2014). (c) 2015 Elsevier B.V. All rights reserved. C1 [Jones, Christopher A.] Sandia Natl Labs, Albuquerque, NM 87125 USA. [Dameron, Robert] Moffatt & Nichol, San Diego, CA 92108 USA. [Sircar, Madhumita] US Nucl Regulatory Commiss, Washington, DC 20555 USA. RP Jones, CA (reprint author), Sandia Natl Labs, POB 5800,MS 0744, Albuquerque, NM 87125 USA. EM cajone@sandia.gov; rdameron@moffattnichol.com; Madhumita.sircar@nrc.gov NR 6 TC 0 Z9 0 U1 2 U2 5 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0029-5493 EI 1872-759X J9 NUCL ENG DES JI Nucl. Eng. Des. PD DEC 15 PY 2015 VL 295 BP 782 EP 788 DI 10.1016/j.nucengdes.2015.07.023 PG 7 WC Nuclear Science & Technology SC Nuclear Science & Technology GA CZ9JK UT WOS:000367413700073 ER PT J AU Novascone, SR Spencer, BW Hales, JD Williamson, RL AF Novascone, S. R. Spencer, B. W. Hales, J. D. Williamson, R. L. TI Evaluation of coupling approaches for thermomechanical simulations SO NUCLEAR ENGINEERING AND DESIGN LA English DT Article ID MULTIDIMENSIONAL MULTIPHYSICS SIMULATION; FUEL; EQUATIONS; SYSTEMS AB Many problems of interest, particularly in the nuclear engineering field, involve coupling between the thermal and mechanical response of an engineered system. The strength of the two-way feedback between the thermal and mechanical solution fields can vary significantly depending on the problem. Contact problems exhibit a particularly high degree of two-way feedback between those fields. This paper describes and demonstrates the application of a flexible simulation environment that permits the solution of coupled physics problems using either a tightly coupled approach or a loosely coupled approach. In the tight coupling approach, Newton iterations include the coupling effects between all physics, while in the loosely coupled approach, the individual physics models are solved independently, and fixed-point iterations are performed until the coupled system is converged. These approaches are applied to simple demonstration problems and to realistic nuclear engineering applications. The demonstration problems consist of single and multi-domain thermomechanics with and without thermal and mechanical contact. Simulations of a reactor pressure vessel under pressurized thermal shock conditions and a simulation of light water reactor fuel are also presented. Problems that include thermal and mechanical contact, such as the contact between the fuel and cladding in the fuel simulation, exhibit much stronger two-way feedback between the thermal and mechanical solutions, and as a result, are better solved using a tight coupling strategy. (C) 2015 Elsevier B.V. All rights reserved. C1 [Novascone, S. R.; Spencer, B. W.; Hales, J. D.; Williamson, R. L.] Idaho Natl Lab, Fuel Modeling & Simulat, Idaho Falls, ID 83415 USA. RP Novascone, SR (reprint author), Idaho Natl Lab, Fuel Modeling & Simulat, POB 1625, Idaho Falls, ID 83415 USA. EM Stephen.Novascone@inl.gov; Benjamin.Spencer@inl.gov; Jason.Hales@inl.gov; Richard.Williamson@inl.gov OI Hales, Jason/0000-0003-0836-0476; Williamson, Richard/0000-0001-7734-3632 NR 28 TC 2 Z9 2 U1 0 U2 5 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0029-5493 EI 1872-759X J9 NUCL ENG DES JI Nucl. Eng. Des. PD DEC 15 PY 2015 VL 295 BP 910 EP 921 DI 10.1016/j.nucengdes.2015.07.005 PG 12 WC Nuclear Science & Technology SC Nuclear Science & Technology GA CZ9JK UT WOS:000367413700084 ER PT J AU Yamaguchi, T Yano, J Yachandra, VK Nihei, Y Togashi, H Szilagyi, RK Kohzuma, T AF Yamaguchi, Takahide Yano, Junko Yachandra, Vittal K. Nihei, Yuko Togashi, Hiromi Szilagyi, Robert K. Kohzuma, Takamitsu TI The Allosteric Regulation of Axial/Rhombic Population in a "Type 1" Copper Site: Multi-Edge X-ray Absorption Spectroscopic and Density Functional Studies of Pseudoazurin SO BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN LA English DT Article ID LIGAND K-EDGE; ELECTRONIC-STRUCTURE CONTRIBUTIONS; CRYSTAL-STRUCTURE DETERMINATIONS; PSEUDOMONAS-AERUGINOSA AZURIN; CUCURBITA-PEPO-MEDULLOSA; UNNATURAL AMINO-ACIDS; VALENCE SUM ANALYSIS; PI-PI-INTERACTION; NITRITE REDUCTASE; ACTIVE-SITE AB The co-existence of "axial" and "rhombic" coordination environments has been demonstrated in a "Type 1" copper site of Pseudoazurin. This observation opens up previously not considered interpretations for the relationship between geometry and electronic structure of the four coordinate copper site. The Met16 variants of pseudoazurin were considered as model systems for investigating the effect of weak interactions from the second coordination sphere. The correlation between geometric and electronic structures of "Type 1" copper site was evaluated by the multi-edge (Cu K-edge and S K-edge) X-ray absorption spectroscopy (XAS) of Met16 variants of pseudoazurin. The co-existing axial and rhombic sites in pseudoazurin were characterized by Cu ligand distances, effective nuclear charge, and Cu S(Cys) covalency from XAS. The XAS results were correlated with DFT calculations for investigating the effect of protein environment from the inner-sphere and beyond around the Cu site. The combined experimental and theoretical results support the presence of a close correlation between outer sphere environment and inner sphere coordination environment. This is achieved in pseudoazurin by a previously undisclosed allosteric effect that involves a rearrangement of the protein tertiary structure. C1 [Yamaguchi, Takahide; Nihei, Yuko; Togashi, Hiromi; Kohzuma, Takamitsu] Ibaraki Univ, Inst Appl Beam Sci, Mito, Ibaraki 3108512, Japan. [Yano, Junko; Yachandra, Vittal K.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Szilagyi, Robert K.] Montana State Univ, Dept Chem & Biochem, Bozeman, MT 59717 USA. RP Kohzuma, T (reprint author), Ibaraki Univ, Inst Appl Beam Sci, 1-2-2 Bunkyo, Mito, Ibaraki 3108512, Japan. EM kohzuma@mx.ibarakiac.jp OI Szilagyi, Robert/0000-0002-9314-6222 FU JSPS [22550145]; NSF [0744820]; Sekisho Scholar Award; Department of Energy, Office of Biological and Environmental Research; National Institutes of Health, National Center for Research Resources, Biomedical Technology Program; National Institute of General Medical Sciences FX This work has been supported by the JSPS (No. 22550145 to TK), NSF (No. 0744820 to RKS) and Sekisho Scholar Award (TY). Portions of this research were conducted at the Stanford Synchrotron Radiation Laboratory (SSRL) BL 7-3 and BL 4-3, a national user facility operated by Stanford University on behalf of the U.S. Department of Energy, Office of Basic Energy Sciences. The SSRL Structural Molecular Biology Program is supported by the Department of Energy, Office of Biological and Environmental Research, and by the National Institutes of Health, National Center for Research Resources, Biomedical Technology Program, and the National Institute of General Medical Sciences. NR 83 TC 1 Z9 1 U1 3 U2 10 PU CHEMICAL SOC JAPAN PI TOKYO PA 1-5 KANDA-SURUGADAI CHIYODA-KU, TOKYO, 101-8307, JAPAN SN 0009-2673 EI 1348-0634 J9 B CHEM SOC JPN JI Bull. Chem. Soc. Jpn. PD DEC 15 PY 2015 VL 88 IS 12 BP 1642 EP 1652 DI 10.1246/bcsj.20150225 PG 11 WC Chemistry, Multidisciplinary SC Chemistry GA CZ1PW UT WOS:000366878800004 ER PT J AU Wang, LP Curcija, D Breshears, J AF Wang, Liping Curcija, Dragan Breshears, John TI The energy saving potentials of zone-level membrane-based enthalpy recovery ventilators for VAV systems in commercial buildings SO ENERGY AND BUILDINGS LA English DT Article DE Enthalpy recovery ventilators; Control operation; Energy simulation ID PERFORMANCE AB Enthalpy recovery ventilators exchange heat and mass between exhausted air and outdoor ventilation air to reduce mechanical ventilation loads for HVAC systems in buildings. This study demonstrates the energy saving potential of integrating membrane-based energy recovery ventilators at zone-level into the conventional variable air volume (VAV) systems for commercial buildings. Building energy simulations are used to evaluate various operation strategies and potential energy savings for four selected climates including Minneapolis, Atlanta, Baltimore, and Miami. A medium-size DOE reference commercial building model with conventional VAV systems was used as a baseline. Three cases implemented with energy recovery ventilators were simulated using EnergyPlus and their results were compared with baseline cases in compliance with ASHRAE standard 90.1. The annual HVAC energy saving potential can reach up to 18-49% with this technique for various climates. The challenges of implementing and operating the zone-level energy recovery ventilators are also discussed in this paper. (C) 2015 Elsevier B.V. All rights reserved. C1 [Wang, Liping] Univ Wyoming, Dept Civil & Architectural Engn, Laramie, WY 82071 USA. [Curcija, Dragan] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy & Technol Div, Berkeley, CA 94720 USA. [Breshears, John] Architectural Applicat, Portland, OR USA. RP Wang, LP (reprint author), Univ Wyoming, Dept Civil & Architectural Engn, Laramie, WY 82071 USA. EM lwang12@uwyo.edu NR 10 TC 0 Z9 0 U1 5 U2 12 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0378-7788 EI 1872-6178 J9 ENERG BUILDINGS JI Energy Build. PD DEC 15 PY 2015 VL 109 BP 47 EP 52 DI 10.1016/j.enbuild.2015.10.009 PG 6 WC Construction & Building Technology; Energy & Fuels; Engineering, Civil SC Construction & Building Technology; Energy & Fuels; Engineering GA CZ5AU UT WOS:000367115300005 ER PT J AU Firlag, S Yazdanian, M Curcija, C Kohler, C Vidanovic, S Hart, R Czarnecki, S AF Firlag, Szymon Yazdanian, Mehrangiz Curcija, Charlie Kohler, Christian Vidanovic, Simon Hart, Robert Czarnecki, Stephen TI Control algorithms for dynamic windows for residential buildings SO ENERGY AND BUILDINGS LA English DT Article DE Shading control; Dynamic window; Energy consumption; NZEB; Daylight access; Residential buildings ID AUTOMATED VENETIAN BLIND; ENERGY-CONSUMPTION; CONTROL STRATEGIES; OFFICE BUILDINGS; PERFORMANCE; IMPACT; HEAT AB The present study analyzes the influence of control algorithms for dynamic windows on energy consumption, number of hours of retracted shades during daylight and shade operations. Five different control algorithms - heating/cooling, simple rules, perfect citizen, heat flow and predictive weather were developed and compared. The performance of a typical residential building was modeled with EnergyPlus. The program Widow was used to generate a Bi-Directional Distribution Function (BSDF) for two window configurations. The BSDF was exported to EnergyPlus using the IDF file format. The EMS feature in EnergyPlus was used to develop custom control algorithms. The calculations were made for four locations with diverse climate. The results showed that: (a) use of automated shading with proposed control algorithms can reduce the site energy in the range of 11.6-13.0%; in regard to source (primary) energy in the range of 20.1-21.6%, (b) the differences between algorithms in regard to energy savings are not high, (c) the differences between algorithms in regard to number of hours of retracted shades are visible, (e) the control algorithms have a strong influence on shade operation and oscillation of shade can occur, (d) additional energy consumption caused by motor, sensors and a small microprocessor in the analyzed case is very small. (C) 2015 Elsevier B.V. All rights reserved. C1 [Firlag, Szymon] Warsaw Univ Technol, Fac Civil Engn, PL-00661 Warsaw, Poland. [Yazdanian, Mehrangiz; Curcija, Charlie; Kohler, Christian; Vidanovic, Simon; Hart, Robert; Czarnecki, Stephen] Lawrence Berkeley Natl Lab, Windows & Envelope Mat Grp, Berkeley, CA USA. RP Firlag, S (reprint author), Warsaw Univ Technol, Fac Civil Engn, PL-00661 Warsaw, Poland. EM s.firlag@il.pw.edu.pl; M_Yazdanian@lbl.gov; DCCurcija@lbl.gov; CjKohler@lbl.gov; DVVidanovic@lbl.gov; RGHart@lbl.gov; SCzarnecki@lbl.gov NR 28 TC 2 Z9 2 U1 0 U2 7 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0378-7788 EI 1872-6178 J9 ENERG BUILDINGS JI Energy Build. PD DEC 15 PY 2015 VL 109 BP 157 EP 173 DI 10.1016/j.enbuild.2015.09.069 PG 17 WC Construction & Building Technology; Energy & Fuels; Engineering, Civil SC Construction & Building Technology; Energy & Fuels; Engineering GA CZ5AU UT WOS:000367115300015 ER PT J AU Kossak, B Stadler, M AF Kossak, B. Stadler, M. TI Adaptive thermal zone modeling including the storage mass of the building zone SO ENERGY AND BUILDINGS LA English DT Article DE Thermal building zone modeling; Building control; Predictive building control; Building management system ID PREDICTIVE CONTROL; SIMULATION; SYSTEM AB In the course of the European Project Energy Efficiency and Risk Management in public buildings (EnRiMa), a mathematical model has been needed, predicting the room air temperatures based on the physical properties of the thermal zone and weather forecasts. Existing models based on physical building properties and weather forecasts did not deliver acceptable results. Based on the hypothesis that the missing thermal mass in the existing models is the main reason for the unacceptable results, a model based on physical properties and weather forecast, including the storage mass of a building has been developed. Based on this developed model and real data from a test site, Campus Pinkafeld of the University of Applied Science Burgenland, Austria, the model has been verified and validated. With the new developed model it is possible to predict the occurring room air temperature for a whole day with a maximum deviation of approximately +/- 1 K, which increases the precision compared to other models. Published by Elsevier B.V. C1 [Kossak, B.; Stadler, M.] Ctr Energy & Innovat Technol, Hofamt Priel, Austria. [Stadler, M.] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA USA. RP Stadler, M (reprint author), Ctr Energy & Innovat Technol, Hofamt Priel, Austria. EM BKossak@cet.or.at; MStadler@cet.or.at FU European Union Seventh Framework Programme [260041]; Austrian Federal Ministry for Transport, Innovation, and Technology through the "Building of Tomorrow" program; Theodor Kery Foundation of the province of Burgenland FX The research leading to these results has received funding from the European Union Seventh Framework Programme under grant agreement no. 260041 for Collaborative Project "Energy Efficiency and Risk Management in Public Buildings" (EnRiMa).; The Center for Energy and Innovative Technologies (CET) has been supported by the Austrian Federal Ministry for Transport, Innovation, and Technology through the "Building of Tomorrow" program and by the Theodor Kery Foundation of the province of Burgenland. NR 28 TC 0 Z9 0 U1 3 U2 3 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0378-7788 EI 1872-6178 J9 ENERG BUILDINGS JI Energy Build. PD DEC 15 PY 2015 VL 109 BP 407 EP 417 DI 10.1016/j.enbuild.2015.10.016 PG 11 WC Construction & Building Technology; Energy & Fuels; Engineering, Civil SC Construction & Building Technology; Energy & Fuels; Engineering GA CZ5AU UT WOS:000367115300037 ER PT J AU Buck, CS Hammerschmidt, CR Bowman, KL Gill, GA Landing, WM AF Buck, Clifton S. Hammerschmidt, Chad R. Bowman, Katlin L. Gill, Gary A. Landing, William M. TI Flux of Total Mercury and Methylmercury to the Northern Gulf of Mexico from US Estuaries SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID LONG-ISLAND SOUND; YORK/NEW-JERSEY HARBOR; CHESAPEAKE BAY; SURFACE WATERS; ORGANIC-CARBON; MASS-BALANCE; ARCTIC-OCEAN; SEDIMENTS; SEAWATER; RIVER AB To better understand the source of elevated methylmercury (MeHg) concentrations in Gulf of Mexico (GOM) fish, we quantified fluxes of total Hg and MeHg from 11 rivers in the southeastern United States, including the 10 largest rivers discharging to the GOM. Filtered water and suspended particles were collected across estuarine salinity gradients in Spring and Fall 2012 to estimate fluxes from rivers to estuaries and from estuaries to coastal waters. Fluxes of total Hg and MeHg from rivers to estuaries varied as much as 100-fold among rivers. The Mississippi River accounted for 59% of the total Hg flux and 49% of the fluvial MeHg flux into GOM estuaries. While some estuaries were sources of Hg, the combined estimated fluxes of total Hg (similar to 5200 mol y(-1)) and MeHg (similar to 120 mol y(-1)) from the estuaries to the GOM were less than those from rivers to estuaries, suggesting an overall estuarine sink. Fluxes of total Hg from the estuaries to coastal waters of the northern GOM are approximately an order of magnitude less than from atmospheric deposition. However, fluxes from rivers are significant sources of MeHg to estuaries and coastal regions of the northern GOM. C1 [Buck, Clifton S.] Univ Georgia, Skidaway Inst Oceanog, Dept Marine Sci, Savannah, GA 31411 USA. [Hammerschmidt, Chad R.; Bowman, Katlin L.] Wright State Univ, Dept Earth & Environm Sci, Dayton, OH 45435 USA. [Gill, Gary A.] Pacific NW Natl Lab, Marine Sci Lab, Sequim, WA 98382 USA. [Landing, William M.] Florida State Univ, Dept Earth Ocean & Atmospher Sci, Tallahassee, FL 32306 USA. RP Buck, CS (reprint author), Univ Georgia, Skidaway Inst Oceanog, Dept Marine Sci, 10 Ocean Sci Circle, Savannah, GA 31411 USA. EM csbuck@uga.edu RI Buck, Clifton/F-5820-2010 OI Buck, Clifton/0000-0002-5691-9636 FU Gulf of Mexico Alliance; Florida Department of Environmental Protection [RM115] FX Funding was provided by the Gulf of Mexico Alliance and Florida Department of Environmental Protection (RM115 to WML). We thank Michael Blizzard, Kathryn Muldoon, Michele Reliford, and Steven Wolfe at FDEP for their assistance on this project. We also thank Alexandra Landing (FSU); Lauren Levi (NERR/FDEP); Jeff Dauzat, Larry McCarthy, and Chris Piehler (LA DEQ); Al Gibson (MS DEQ); J.T. Ewing (TX GLO); Alan Post (TAMU - Galveston); George Guillen (UHCL); and Darren Guernsey, Harold Hamilton, and Josh Arrowood for their assistance with sampling. NR 48 TC 1 Z9 1 U1 6 U2 36 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X EI 1520-5851 J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD DEC 15 PY 2015 VL 49 IS 24 BP 13992 EP 13999 DI 10.1021/acs.est.5b03538 PG 8 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA CZ1NK UT WOS:000366872300014 PM 26505206 ER PT J AU Lin, P Laskin, J Nizkorodov, SA Laskin, A AF Lin, Peng Laskin, Julia Nizkorodov, Sergey A. Laskin, Alexander TI Revealing Brown Carbon Chromophores Produced in Reactions of Methylglyoxal with Ammonium Sulfate SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID SECONDARY ORGANIC AEROSOL; IONIZATION MASS-SPECTROMETRY; PHOTODIODE-ARRAY DETECTION; LIQUID-CHROMATOGRAPHY; LIGHT-ABSORPTION; CHEMICAL-CHARACTERIZATION; OPTICAL-PROPERTIES; OLIGOMER FORMATION; STATIONARY PHASES; SOLAR-RADIATION AB Atmospheric brown carbon (BrC) is an important contributor to light absorption and climate forcing by aerosols. Reactions between small water-soluble carbonyls and ammonia or amines have been identified as one of the potential pathways of BrC formation. However, detailed chemical characterization of BrC chromophores has been challenging and their formation mechanisms are still poorly understood. Understanding BrC formation is impeded by the lack of suitable methods which can unravel the variability and complexity of BrC mixtures. This study applies high performance liquid chromatography (HPLC) coupled to photodiode array (PDA) detector and high resolution mass spectrometry (HRMS) to investigate optical properties and chemical composition of individual BrC components produced through reactions of methylglyoxal (MG) and ammonium sulfate (AS), both of which are abundant in the atmospheric environment. A direct relationship between optical properties and chemical composition of 30 major BrC chromophores is established. Nearly all of these chromophores are nitrogen-containing compounds that account for >70% of the overall light absorption by the MG+AS system in the 300-500 nm range. These results suggest that reduced-nitrogen organic compounds formed in reactions between atmospheric carbonyls and ammonia/amines are important BrC chromophores. It is also demonstrated that improved separation of BrC chromophores by HPLC will significantly advance understanding of BrC chemistry. C1 [Lin, Peng; Laskin, Alexander] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99354 USA. [Laskin, Julia] Pacific NW Natl Lab, Div Phys Sci, Richland, WA 99354 USA. [Nizkorodov, Sergey A.] Univ Calif Irvine, Dept Chem, Irvine, CA 92697 USA. RP Laskin, A (reprint author), Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99354 USA. EM alexander.laskin@pnnl.gov RI Lin, Peng/G-4867-2016; Laskin, Alexander/I-2574-2012; Nizkorodov, Sergey/I-4120-2014; Laskin, Julia/H-9974-2012 OI Lin, Peng/0000-0002-3567-7017; Laskin, Alexander/0000-0002-7836-8417; Nizkorodov, Sergey/0000-0003-0891-0052; Laskin, Julia/0000-0002-4533-9644 FU U.S. Department of Commerce; National Oceanic and Atmospheric Administration through Climate Program Office's AC4 program [NA13OAR4310066, NA13OAR4310062]; Office of Biological and Environmental Research of the U.S. DOE; US DOE [DEAC06-76RL0 1830] FX We acknowledge support by the U.S. Department of Commerce, National Oceanic and Atmospheric Administration through Climate Program Office's AC4 program, awards NA13OAR4310066 and NA13OAR4310062. The HPLC/PDA/ESI-HRMS measurements were performed at the W.R. Wiley Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility located at PNNL, and sponsored by the Office of Biological and Environmental Research of the U.S. DOE. PNNL is operated for US DOE by Battelle Memorial Institute under Contract No. DEAC06-76RL0 1830. NR 68 TC 10 Z9 10 U1 9 U2 44 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X EI 1520-5851 J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD DEC 15 PY 2015 VL 49 IS 24 BP 14257 EP 14266 DI 10.1021/acs.est.5b03608 PG 10 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA CZ1NK UT WOS:000366872300043 PM 26505092 ER PT J AU Cao, MC Rosado, P Lin, ZH Levinson, R Millstein, D AF Cao, Meichun Rosado, Pablo Lin, Zhaohui Levinson, Ronnen Millstein, Dev TI Cool Roofs in Guangzhou, China: Outdoor Air Temperature Reductions during Heat Waves and Typical Summer Conditions SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID SOLAR REFLECTANCE; CLIMATE-CHANGE; EXTREME HEAT; URBAN; ISLAND; SIMULATION; MITIGATION; SURFACES; MODEL AB In this paper, we simulate temperature reductions during heat-wave events and during typical summer conditions from the installation of highly reflective "cool" roofs in the Chinese megacity of Guangzhou. We simulate temperature reductions during six of the strongest historical heat-wave events over the past decade, finding average urban midday temperature reductions of 1.2 degrees C. In comparison, we simulate 25 typical summer weeks between 2004 and 2008, finding average urban midday temperature reductions of 0.8 degrees C, indicating that air temperature sensitivity to urban albedo in Guangzhou varies with meteorological conditions. We find that roughly three-fourths of the variance in air temperature reductions across all episodes can be accounted for by a linear regression, including only three basic properties related to the meteorological conditions: mean daytime temperature, humidity, and ventilation to the greater Guangzhou urban area. While these results highlight the potential for cool roofs to mitigate peak temperatures during heat waves, the temperature reductions reported here are based on the upper bound case, which increases albedos of all roofs (but does not modify road albedo or wall albedo). C1 [Cao, Meichun; Lin, Zhaohui] Chinese Acad Sci, Inst Atmospher Phys, Int Ctr Climate & Environm Sci, Beijing 100029, Peoples R China. [Rosado, Pablo; Levinson, Ronnen; Millstein, Dev] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Heat Isl Grp, Berkeley, CA 94720 USA. [Lin, Zhaohui] Nanjing Univ Informat Sci & Technol, Collaborat Innovat Ctr Forecast & Evaluat Meteoro, Nanjing 210044, Jiangsu, Peoples R China. RP Millstein, D (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Heat Isl Grp, Berkeley, CA 94720 USA. EM dmillstein@lbl.gov FU U.S.-China Clean Energy Research Center Building Energy Efficiency (CERC-BEE); Strategic Priority Research Program of the Chinese Academy of Sciences [XDA05110200]; National Natural Science Foundation of China [41305093]; U.S. Department of Energy (DOE) [DE-AC02-05CH11231]; Office of Science of the DOE [DE-AC02-05CH11231] FX The authors express their thanks for support from the U.S.-China Clean Energy Research Center Building Energy Efficiency (CERC-BEE), and support from the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA05110200), and the National Natural Science Foundation of China (Grant 41305093). The study was also supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Building Technology, State, and Community Programs, of the U.S. Department of Energy (DOE), under Contract DE-AC02-05CH11231. This research used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility, supported by the Office of Science of the DOE under Contract DE-AC02-05CH11231. NR 54 TC 0 Z9 0 U1 5 U2 13 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X EI 1520-5851 J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD DEC 15 PY 2015 VL 49 IS 24 BP 14672 EP 14679 DI 10.1021/acs.est.5b04886 PG 8 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA CZ1NK UT WOS:000366872300092 PM 26523605 ER PT J AU Yao, Y Graziano, DJ Riddle, M Cresko, J Masanet, E AF Yao, Yuan Graziano, Diane J. Riddle, Matthew Cresko, Joe Masanet, Eric TI Understanding Variability To Reduce the Energy and GHG Footprints of US Ethylene Production SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID GREENHOUSE-GAS EMISSIONS; FORT-WORTH BASIN; NATURAL-GAS; METHANE EMISSIONS; UNITED-STATES; SHALE GAS; PRODUCTION SITES; PROCESS EQUIPMENT; PETROLEUM; SYSTEMS AB Recent growth in U.S. ethylene production due to the shale gas boom is affecting the U.S. chemical industry's energy and greenhouse gas (GHG) emissions footprints. To evaluate these effects, a systematic, first-principles model of the cradle-to-gate ethylene production system was developed and applied. The variances associated with estimating the energy consumption and GHG emission intensities of U.S. ethylene production, both from conventional natural gas,and from shale gas, are explicitly analyzed. A sensitivity analysis illustrates that the large variances in energy intensity are due to process parameters (e.g., compressor efficiency), and that large variances in GHG emissions intensity are due to fugitive emissions from upstream natural gas production. On the basis of these results, the opportunities with the greatest leverage for reducing the energy and GHG footprints are presented. The model and analysis provide energy analysts and policy makers with a better understanding of the drivers of energy use and GHG emissions associated with U.S. ethylene production. They also constitute a rich data resource that can be used to evaluate options for managing the industry's footprints moving forward. C1 [Yao, Yuan; Masanet, Eric] Northwestern Univ, Dept Chem & Biol Engn, Evanston, IL 60201 USA. [Graziano, Diane J.] Argonne Natl Lab, Global Secur Sci Div, Argonne, IL 60439 USA. [Riddle, Matthew] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. [Cresko, Joe] US DOE, Adv Mfg Off, Washington, DC 20585 USA. [Masanet, Eric] Northwestern Univ, Dept Mech Engn, Evanston, IL 60201 USA. RP Masanet, E (reprint author), Northwestern Univ, Dept Chem & Biol Engn, 2145 Sheridan Rd, Evanston, IL 60201 USA. EM eric.masanet@northwestern.edu RI Masanet, Eric /I-5649-2012; OI Yao, Yuan/0000-0001-9359-2030 FU Argonne, a U.S. Department of Energy Office of Science laboratory [DE-AC02-06CH11357] FX The submitted paper has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said paper to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government. NR 118 TC 1 Z9 1 U1 3 U2 9 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X EI 1520-5851 J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD DEC 15 PY 2015 VL 49 IS 24 BP 14704 EP 14716 DI 10.1021/acs.est.5b03851 PG 13 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA CZ1NK UT WOS:000366872300096 PM 26523461 ER PT J AU Hamh, SY Park, SH Han, J Jeon, JH Kahng, SJ Kim, S Choi, SH Bansal, N Oh, S Park, J Kim, JS Kim, JM Noh, DY Lee, JS AF Hamh, Sun Young Park, Soon-Hee Han, Jeongwoo Jeon, Jeong Heum Kahng, Se-Jong Kim, Sung Choi, Suk-Ho Bansal, Namrata Oh, Seongshik Park, Joonbum Kim, Jun Sung Kim, Jae Myung Noh, Do Young Lee, Jong Seok TI Anisotropic Terahertz Emission from Bi2Se3 Thin Films with Inclined Crystal Planes SO NANOSCALE RESEARCH LETTERS LA English DT Article DE Topological insulator; Bi2Se3; Thin film; Terahertz emission ID TOPOLOGICAL INSULATORS; STATES AB We investigate the surface states of topological insulator (TI) Bi2Se3 thin films grown on Si nanocrystals and Al2O3 substrates by using terahertz (THz) emission spectroscopy. Compared to bulk crystalline Bi2Te2Se, film TIs exhibit distinct behaviors in the phase and amplitude of emitted THz radiation. In particular, Bi2Se3 grown on Al2O3 shows an anisotropic response with a strong modulation of the THz signal in its phase. From x-ray diffraction, we find that the crystal plane of the Bi2Se3 films is inclined with respect to the plane of the Al2O3 substrate by about 0.27 degrees. This structural anisotropy affects the dynamics of photocarriers and hence leads to the observed anisotropic response in the THz emission. Such relevance demonstrates that THz emission spectroscopy can be a sensitive tool to investigate the fine details of the surface crystallography and electrostatics of thin film TIs. C1 [Hamh, Sun Young; Park, Soon-Hee; Han, Jeongwoo; Noh, Do Young; Lee, Jong Seok] Gwangju Inst Sci & Technol, Sch Phys & Chem, Dept Phys & Photon Sci, Gwangju 500712, South Korea. [Jeon, Jeong Heum; Kahng, Se-Jong] Korea Univ, Dept Phys, Seoul 136701, South Korea. [Kim, Sung; Choi, Suk-Ho] Kyung Hee Univ, Coll Appl Sci, Dept Appl Phys, Yongin 446701, South Korea. [Bansal, Namrata] Rutgers State Univ, Dept Elect & Comp Engn, Piscataway, NJ 08854 USA. [Oh, Seongshik] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. [Park, Joonbum; Kim, Jun Sung] Pohang Univ Sci & Technol, Dept Phys, Pohang 790784, Gyeongbuk, South Korea. [Kim, Jae Myung] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Lee, JS (reprint author), Gwangju Inst Sci & Technol, Sch Phys & Chem, Dept Phys & Photon Sci, 123 Cheomdangwagi Ro, Gwangju 500712, South Korea. EM jsl@gist.ac.kr RI Kim, Jun Sung/G-8861-2012; Park, Joonbum/L-2508-2015; Kim, Sung/D-3460-2011 OI Kim, Jun Sung/0000-0002-1413-7265; FU Basic Science Research Program through the National Research Foundation of Korea (NRF) - Ministry of Science, ICT & Future Planning [2012R1A1A1013290, 2008-0061906, 2015R1A1A05001560, 2015R1A5A1009962, 2008-0062257]; Gwangju Institute of Science and Technology; Office of Naval Research [N000141210456]; NRF through the SRC Program [2011-0030785] FX This work was supported in part by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (nos. 2012R1A1A1013290, 2008-0061906, 2015R1A1A05001560, 2015R1A5A1009962, and 2008-0062257) and also by the Top Brand Project through a grant provided by the Gwangju Institute of Science and Technology in 2014. Work at Rutgers was supported by the Office of Naval Research (N000141210456). The work at POSTECH was supported by the NRF through the SRC Program (no. 2011-0030785). NR 30 TC 1 Z9 1 U1 6 U2 23 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1556-276X J9 NANOSCALE RES LETT JI Nanoscale Res. Lett. PD DEC 15 PY 2015 VL 10 DI 10.1186/s11671-015-1190-y PG 6 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA CZ7SK UT WOS:000367300100001 PM 26694079 ER PT J AU King, DB Fleming, RM Bielejec, ES McDonald, JK Vizkelethy, G AF King, D. B. Fleming, R. M. Bielejec, E. S. McDonald, J. K. Vizkelethy, G. TI Test simulation of neutron damage to electronic components using accelerator facilities SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS LA English DT Article DE Bipolar transistors; Radiation effects; Ion beam damage; Neutron damage; Displacement damage AB The purpose of this work is to demonstrate equivalent bipolar transistor damage response to neutrons and silicon ions. We report on irradiation tests performed at the White Sands Missile Range Fast Burst Reactor, the Sandia National Laboratories (SNL) Annular Core Research Reactor, the SNL SPHINX accelerator, and the SNL Ion Beam Laboratory using commercial silicon npn bipolar junction transistors (BJTs) and III-V Npn heterojunction bipolar transistors (HBTs). Late time and early time gain metrics as well as defect spectra measurements are reported. (C) 2015 Elsevier B.V. All rights reserved. C1 [King, D. B.; Fleming, R. M.; Bielejec, E. S.; McDonald, J. K.; Vizkelethy, G.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP King, DB (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM dbking@sandia.gov FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 10 TC 0 Z9 0 U1 4 U2 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-583X EI 1872-9584 J9 NUCL INSTRUM METH B JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms PD DEC 15 PY 2015 VL 365 BP 294 EP 299 DI 10.1016/j.nimb.2015.08.026 PN A PG 6 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical; Physics, Nuclear SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA CZ0HY UT WOS:000366786900066 ER PT J AU Wen, J Li, YH Tang, M Valdez, JA Wang, YQ Patel, MK Sickafus, KE AF Wen, J. Li, Y. H. Tang, M. Valdez, J. A. Wang, Y. Q. Patel, M. K. Sickafus, K. E. TI Heavy and light ion irradiation damage effects in delta-phase Sc4Hf3O12 SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS LA English DT Article DE Irradiation damage effects; Phase transformation; TEM; GIXRD ID NUCLEAR-WASTE; DISORDER; PYROCHLORE; PLUTONIUM; IMMOBILIZATION; TRANSFORMATION; TRANSITION; GD2TI2O7; FORM AB Polycrystalline delta-phase Sc4Hf3O12 was irradiated with light and heavy ions to study the radiation stability of this compound. In order to explore the ion species spectrum effect, the irradiations were performed with 400 key Ne2+ ions to fluences ranging from 1 x 10(14) to 1 x 10(15) ions/cm(2), 600 keV Kr3+ ions to fluences ranging from 5 x 10(14) to 5 x 10(15) ions/cm(2), and 6 MeV Xe26+ ions to fluences ranging from 2 x 10(13) to 1 x 10(15) ions/cm(2). Irradiated samples were characterized by various techniques including grazing incidence X-ray diffraction (GIXRD) and transmission electron microscopy (TEM). A complete phase transformation from ordered rhombohedral to disordered fluorite was observed by a fluence of 1 x 10(15) ions/cm(2) with 400 keV Ne2+ ions, equivalent to a peak ballistic damage dose of similar to 0.33 displacements per atom (dpa). Meanwhile, the same transformation was also observed by 600 keV Kr3+ ions at the same fluence of 1 x 10(15) ions/cm(2), which however corresponds to a peak ballistic damage dose of similar to 2.2 dpa. Only a partial O-D transformation was observed for 6 MeV Xe26+ ions in the fluence range used. Experimental results indicated that the O-D transformation is observed under both electronic and nuclear stopping dominant irradiation regimes. It was also observed that light ions are more efficient than heavy ions in producing the retained defects that are presumably responsible for the O-D phase transformation. The O-D transformation mechanism is discussed in the context of anion oxygen Frenkel defects and cation antisite defects. We concluded that the irradiation induced O-D transformation is easier to occur in delta-phase compounds with partial order of cations than in that with fully disordered cation structures. (C) 2015 Elsevier B.V. All rights reserved. C1 [Wen, J.; Li, Y. H.] Lanzhou Univ, Sch Nucl Sci & Technol, Lanzhou 730000, Gansu, Peoples R China. [Wen, J.; Tang, M.; Valdez, J. A.; Wang, Y. Q.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. [Patel, M. K.; Sickafus, K. E.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. RP Li, YH (reprint author), Lanzhou Univ, Sch Nucl Sci & Technol, Lanzhou 730000, Gansu, Peoples R China. EM liyuhong@lzu.edu.cn FU National Natural Science Foundation of China [11475076, 11175076]; U.S. Department of Energy (DOE), Office of Basic Energy Science; China Scholarship Council FX This work was sponsored by the National Natural Science Foundation of China (11475076 and 11175076). The work was also sponsored by the U.S. Department of Energy (DOE), Office of Basic Energy Science. Partial support to J. Wen was provided by China Scholarship Council, a nonprofit organization affiliated with the Ministry of Education of China. We acknowledge the support by the operational staff at the 320 kV platform for multi-discipline research with highly charged ions at the Institute of Modem Physics, CAS. NR 33 TC 0 Z9 0 U1 6 U2 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-583X EI 1872-9584 J9 NUCL INSTRUM METH B JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms PD DEC 15 PY 2015 VL 365 BP 325 EP 330 DI 10.1016/j.nimb.2015.04.011 PN A PG 6 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical; Physics, Nuclear SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA CZ0HY UT WOS:000366786900072 ER PT J AU Meng, R Dennison, PE Huang, CQ Moritz, MA D'Antonio, C AF Meng, Ran Dennison, Philip E. Huang, Chengquan Moritz, Max A. D'Antonio, Carla TI Effects of fire severity and post-fire climate on short-term vegetation recovery of mixed-conifer and red fir forests in the Sierra Nevada Mountains of California SO REMOTE SENSING OF ENVIRONMENT LA English DT Article DE Fire ecology; Landsat time series data; Sierra Nevada; Post-fire climate; Vegetation Change Tracker (VCT) ID NORMALIZED BURN RATIO; SPECIES-ENVIRONMENT RELATIONSHIPS; SOIL-MOISTURE AVAILABILITY; MEDITERRANEAN PINE FORESTS; ABIES-MAGNIFICA FORESTS; YOSEMITE-NATIONAL-PARK; REMOTELY-SENSED DATA; SPATIAL AUTOCORRELATION; NURSE PLANTS; DISTURBANCE HISTORY AB Forest ecosystems in the Sierra Nevada Mountains of California are greatly influenced by wildfire as a natural disturbance, and increased fire severity and drought occurrence may alter the course of post-fire recovery in these ecosystems. We examined effects of fire severity, post-fire climate, and topographic factors on short-term (<5 years) vegetation recovery in mixed-conifer and red fir forests in the Sierra Nevada. We hypothesized that short-term vegetation recovery patterns would be different among patches with varying fire severity, especially between low-moderate and high severity patches, and that post-fire climate would have differing impacts on short-term vegetation recovery in different ecological zones (lower montane forest vs. upper montane forest). 30-meter Landsat time series stacks were used to monitor short-term vegetation recovery following wildfire in mixed-conifer and red fir forest types. Changes in normalized difference vegetation index (NDVI) following thirty-five fires (>405 ha) between 1999 and 2006 were examined. According to the modeling results provided by ordinary least squares (OLS) regressions including spatial variation coefficients, fire severity, post-fire wet eason precipitation, post-fire January minimum temperature, and topographic factors explain variations in short-term post-fire NDVI values (adjusted R-squared = [0.680, 0.688] for red fir forests; adjusted R-squared = [0.671, 0.678] for mixed-conifer forests). The modeling results indicated that burned mixed-conifer forest was sensitive to post-fire drought, while burned red fir forest, with higher summer soil moisture availability, was sensitive to post-fire temperature. We also found that differences in recovery related to fire severity disappeared more quickly in burned mixed-conifer forest than in burned red fir forest. Future efforts should focus on long-term recovery, including competition between forest and shrub species in previously burned areas. (C) 2015 Elsevier Inc. All rights reserved. C1 [Meng, Ran; Dennison, Philip E.] Univ Utah, Dept Geog, Salt Lake City, UT 84112 USA. [Huang, Chengquan] Univ Maryland, Dept Geog Sci, College Pk, MD 20742 USA. [Moritz, Max A.] Univ Calif Berkeley, Dept Environm Sci Policy & Management, Berkeley, CA 94720 USA. [D'Antonio, Carla] Univ Calif Santa Barbara, Dept Ecol Evolut & Marine Biol, Santa Barbara, CA 93106 USA. RP Meng, R (reprint author), Brookhaven Natl Lab, Environm & Climate Sci Dept, Bldg 490A, Upton, NY 11973 USA. EM ranmeng@bnl.gov OI Meng, Ran/0000-0003-4756-9934 FU California Energy Commission [500-10-045] FX Funding for this research was provided by California Energy Commission grant 500-10-045. The authors would like to thank Feng A. Zhao for data assistance. NR 118 TC 6 Z9 6 U1 15 U2 61 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 EI 1879-0704 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD DEC 15 PY 2015 VL 171 BP 311 EP 325 DI 10.1016/j.rse.2015.10.024 PG 15 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA CZ0IE UT WOS:000366787600025 ER PT J AU Hood, ZD Wang, H Li, YC Pandian, AS Paranthaman, MP Liang, CD AF Hood, Zachary D. Wang, Hui Li, Yunchao Pandian, Amaresh Samuthira Paranthaman, M. Parans Liang, Chengdu TI The "filler effect": A study of solid oxide fillers with beta-Li3PS4 for lithium conducting electrolytes SO SOLID STATE IONICS LA English DT Article DE Solid electrolyte; Ionic conductivity; Lithium-sulfur battery; Composite electrolyte; Lithium thiophosphate ID SPACE-CHARGE REGIONS; IONIC-CONDUCTIVITY; COMPOSITE ELECTROLYTES; 2-PHASE SYSTEMS; BATTERIES; PHASE AB Solid electrolytes are the subject of intense study partly because of their use in safer, high energy density, all-solid-state lithium-ion batteries. The addition of solid oxide fillers has been previously explored as a way to increase the ionic conductivity in composite electrolytes; however, no comparative study of the effect of both ion-conducting and non-conducting oxides on solid lithium superionic conductor electrolyte is reported. Nano-crystalline beta-Li3PS4 (LPS) was recently shown to have anomalous high ionic conductivity, but it was found that this property can be further enhanced. This study examines the effect of three solid oxide fillers (Li6ZnNb4O14, Al2O3, and SiO2) in composites with LPS for the enhancement of the parent electrolyte. The electrolytes' processability, ionic conductivity, activation energy, and stability against metallic lithium are presented to gain a complete understanding on the effect of solid oxide fillers on LPS while elucidating the significant enhancement of LPS through the addition of Li6ZnNb4O14 or Al2O3. (C) 2015 Elsevier B.V. All rights reserved. C1 [Hood, Zachary D.; Wang, Hui; Pandian, Amaresh Samuthira; Liang, Chengdu] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Li, Yunchao; Paranthaman, M. Parans] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Li, Yunchao; Paranthaman, M. Parans] Univ Tennessee, Bredesen Ctr Interdisciplinary Res & Grad Educ, Knoxville, TN 37996 USA. RP Liang, CD (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. EM liangcn@ornl.gov OI Li, Yunchao/0000-0001-5460-5855 FU U.S. Department of Energy, Office of Science, Materials Sciences and Engineering Division; Division of Scientific User Facilities Division, U.S. DOE; Higher Education Research Experiences (HERE) at Oak Ridge National Laboratory; National Science Foundation [DGE-1148903]; U.S. Government [DE-AC05-00OR22725] FX The work was supported by the U.S. Department of Energy, Office of Science, Materials Sciences and Engineering Division. The synthesis and characterization of composite materials were completed at the Center for Nanophase Materials Science, which is sponsored by the Division of Scientific User Facilities Division, U.S. DOE. Zachary D. Hood was supported by Higher Education Research Experiences (HERE) at Oak Ridge National Laboratory. This material is also based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1148903. Any opinion, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. This manuscript has been authored by a contractor of the U.S. Government under contract DE-AC05-00OR22725. Accordingly, the U.S. Government retains a paid-up, nonexclusive, irrevocable, worldwide license to publish or reproduce the published form of this contribution, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, or allow others to do so, for U.S. Government purposes. NR 23 TC 5 Z9 5 U1 20 U2 64 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-2738 EI 1872-7689 J9 SOLID STATE IONICS JI Solid State Ion. PD DEC 15 PY 2015 VL 283 BP 75 EP 80 DI 10.1016/j.ssi.2015.10.014 PG 6 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA CZ4ZY UT WOS:000367113100010 ER PT J AU Nobre, TM Martynowycz, MW Andreev, K Kuzmenko, I Nikaido, H Gidalevitz, D AF Nobre, Thatyane M. Martynowycz, Michael W. Andreev, Konstantin Kuzmenko, Ivan Nikaido, Hiroshi Gidalevitz, David TI Modification of Salmonella Lipopolysaccharides Prevents the Outer Membrane Penetration of Novobiocin SO BIOPHYSICAL JOURNAL LA English DT Article ID GRAM-NEGATIVE BACTERIA; X-RAY; PSEUDOMONAS-AERUGINOSA; ESCHERICHIA-COLI; LIPID MONOLAYERS; NEUTRON REFLECTIVITY; PORIN CHANNELS; PERMEABILITY; TYPHIMURIUM; RESISTANCE AB Small hydrophilic antibiotics traverse the outer membrane of Gram-negative bacteria through porin channels. Large lipophilic agents traverse the outer membrane through its bilayer, containing a majority of lipopolysaccharides in its outer leaflet. Genes controlled by the two-component regulatory system PhoPQ modify lipopolysaccharides. We isolate lipopolysaccharides from isogenic mutants of Salmonella sp., one lacking the modification, the other fully modified. These lipopolysaccharides were reconstituted asmonolayers at the air-water interface, and their properties, as well as their interaction with a large lipophilic drug, novobiocin, was studied. X-ray reflectivity showed that the drug penetrated the monolayer of the unmodified lipopolysaccharides reaching the hydrophobic region, but was prevented from this penetration into the modified lipopolysaccharides. Results correlate with behavior of bacterial cells, which become resistant to antibiotics after PhoPQ-regulated modifications. Grazing incidence x-ray diffraction showed that novobiocin produced a striking increase in crystalline coherence length, and the size of the near-crystalline domains. C1 [Nobre, Thatyane M.; Nikaido, Hiroshi] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Nobre, Thatyane M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. [Martynowycz, Michael W.; Andreev, Konstantin; Gidalevitz, David] IIT, Ctr Mol Study Condensed Soft Matter, Chicago, IL 60616 USA. [Martynowycz, Michael W.; Andreev, Konstantin; Gidalevitz, David] IIT, Dept Phys, Chicago, IL 60616 USA. [Martynowycz, Michael W.; Kuzmenko, Ivan] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Lemont, IL USA. RP Gidalevitz, D (reprint author), IIT, Ctr Mol Study Condensed Soft Matter, Chicago, IL 60616 USA. EM thatty@ursa.ifsc.usp.br; gidalevitz@iit.edu RI Sao Carlos Institute of Physics, IFSC/USP/M-2664-2016; OI Andreev, Konstantin/0000-0002-1757-4532 FU National Institutes of Health (NIH) [AI009644, AI073892]; Defense Advanced Research Projects Agency (DARPA) [W911NF-09-1-378]; Brazilian funding agency Coordination for the Improvement of Higher Education Personnel (CAPES) [BEX 4058/11 -9]; U.S. Department of Energy (DOE) [W-31-109-Eng-38]; Illinois Institute of Technology Dean's fellowship; National Science Foundation (NSF) fellowship grant under the Adler Planetarium and Astronomy Museum; Argonne National Laboratory's X-ray science division (XSD), under the inelastic X-ray nuclear scattering group (IXN) FX This work was supported by funds from the National Institutes of Health (NIH) (AI009644 to H.N., AI073892 to D.G.), and Defense Advanced Research Projects Agency (DARPA) (W911NF-09-1-378, D.G.). T.M.N. was supported by a fellowship from the Brazilian funding agency Coordination for the Improvement of Higher Education Personnel (CAPES) (Proc # BEX 4058/11 -9). Use of the Advanced Photon Source (APS) was supported by the U.S. Department of Energy (DOE) under contract No. W-31-109-Eng-38. M.W.M. was supported in part by the Illinois Institute of Technology Dean's fellowship, the National Science Foundation (NSF) fellowship grant under the Adler Planetarium and Astronomy Museum, and Argonne National Laboratory's X-ray science division (XSD), under the inelastic X-ray nuclear scattering group (IXN). NR 39 TC 2 Z9 2 U1 0 U2 16 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0006-3495 EI 1542-0086 J9 BIOPHYS J JI Biophys. J. PD DEC 15 PY 2015 VL 109 IS 12 BP 2537 EP 2545 DI 10.1016/j.bpj.2015.10.013 PG 9 WC Biophysics SC Biophysics GA CY8EC UT WOS:000366640600012 PM 26682812 ER PT J AU Breuer, M Rosso, KM Blumberger, J AF Breuer, Marian Rosso, Kevin M. Blumberger, Jochen TI Flavin Binding to the Deca-heme Cytochrome MtrC: Insights from Computational Molecular Simulation SO BIOPHYSICAL JOURNAL LA English DT Article ID EXTRACELLULAR ELECTRON-TRANSFER; BACTERIAL CYTOCHROMES; FREE-ENERGIES; FORCE-FIELD; SHEWANELLA; PROTEINS; TRANSPORT; DOCKING; MEMBRANE; DYNAMICS AB Certain dissimilatory bacteria have the remarkable ability to use extracellular metal oxide minerals instead of oxygen as terminal electron sinks, using a process known as "extracellular respiration". Specialized multiheme cytochromes located on the outer membrane of the microbe were shown to be crucial for electron transfer from the cell surface to the mineral. This process is facilitated by soluble, biogenic flavins secreted by the organism for the purpose of acting as an electron shuttle. However, their interactions with the outer-membrane cytochromes are not established on a molecular scale. Here, we study the interaction between the outer-membrane deca-heme cytochrome MtrC from Shewanella oneidensis and flavin mononucleotide (FMN in fully oxidized quinone form) using computational docking. We find that interaction of FMN with MtrC is significantly weaker than with known FMN-binding proteins, but identify a mildly preferred interaction site close to heme 2 with a dissociation constant (K-d) = 490 mu M, in good agreement with recent experimental estimates, K-d = 255 mu M. The weak interaction with MtrC can be qualitatively explained by the smaller number of hydrogen bonds that the planar headgroup of FMN can form with this protein compared to FMN-binding proteins. Molecular dynamics simulation gives indications for a possible conformational switch upon cleavage of the disulphide bond of MtrC, but without concomitant increase in binding affinities according to this docking study. Overall, our results suggest that binding of FMN to MtrC is reversible and not highly specific, which may be consistent with a role as redox shuttle that facilitates extracellular respiration. C1 [Breuer, Marian; Blumberger, Jochen] UCL, London, England. [Rosso, Kevin M.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Blumberger, J (reprint author), UCL, London, England. EM j.blumberger@ucl.ac.uk FU University College London; Pacific Northwest National Laboratory through the U.S. Department of Energy Office of Biological and Environmental Research Subsurface Biogeochemistry Research Science Focus Area program at the Pacific Northwest National Laboratory; Royal Society via a University Research Fellowship; Engineering and Physical Sciences Research Council [EP/M001946/1]; Materials Chemistry Consortium (Engineering and Physical Sciences Research Council) [EP/L000202] FX M.B. gratefully acknowledges an IMPACT studentship cosponsored by University College London and Pacific Northwest National Laboratory through the U.S. Department of Energy Office of Biological and Environmental Research Subsurface Biogeochemistry Research Science Focus Area program at the Pacific Northwest National Laboratory, the latter of which provided support for K.M.R. J.B. acknowledges support from the Royal Society via a University Research Fellowship and from the Engineering and Physical Sciences Research Council via grant No. EP/M001946/1. MD simulations were carried out on ARCHER, the UK National High Performance Computing facility (Edinburgh, Scotland), to which access was granted via the Materials Chemistry Consortium (Engineering and Physical Sciences Research Council grant No. EP/L000202). NR 40 TC 2 Z9 4 U1 8 U2 26 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0006-3495 EI 1542-0086 J9 BIOPHYS J JI Biophys. J. PD DEC 15 PY 2015 VL 109 IS 12 BP 2614 EP 2624 DI 10.1016/j.bpj.2015.10.038 PG 11 WC Biophysics SC Biophysics GA CY8EC UT WOS:000366640600018 PM 26682818 ER PT J AU Chen, MY Serna, P Lu, J Gates, BC Dixon, DA AF Chen, Mingyang Serna, Pedro Lu, Jing Gates, Bruce C. Dixon, David A. TI Molecular models of site-isolated cobalt, rhodium, and iridium catalysts supported on zeolites: Ligand bond dissociation energies SO COMPUTATIONAL AND THEORETICAL CHEMISTRY LA English DT Article DE Zeolite supported catalysts; Group 9 transition metals; Density functional theory; ONIOM; Olefin hydrogenation ID DEALUMINATED Y-ZEOLITE; CARBONYL-COMPLEXES; RUTHENIUM COMPLEX; BASIS-SETS; C-H; SPECTROSCOPY; HYDROGENATION; CHEMISTRY; CLUSTERS; DENSITY AB The chemistry of zeolite-supported site-isolated cobalt, rhodium, and iridium complexes that are essentially molecular was investigated with density functional theory (DFT) and the results compared with experimentally determined spectra characterizing rhodium and iridium species formed by the reactions of Rh(C2H4)(2)(acac) and Ir(C2H4)(2)(acac) (acac = acetylacetonate) with acidic zeolites such as dealuminated HY zeolite. The experimental results characterize ligand exchange reactions and catalytic reactions of adsorbed ligands, including olefin hydrogenation and dimerization. Two molecular models were used to characterize various binding sites of the metal complexes in the zeolites, and the agreement between experimental and calculated infrared frequencies and metal-ligand distances determined by extended X-ray absorption fine structure spectroscopy was generally very good. The calculated structures and energies indicate a metal-support-oxygen (M(I)-O) coordination number of two for most of the supported complexes and a value of three when the ligands include the radicals C2H5 or H. The results characterizing various isomers of the supported metal complexes incorporating hydrocarbon ligands indicate that some carbene and carbyne ligands could form. Ligand bond dissociation energies (LDEs) are reported to explain the observed reactivity trends. The experimental observations of a stronger M-CO bond than M-(C2H4) bond for both Ir and Rh match the calculated LDEs, which show that the single-ligand LDEs of the mono and dual-ligand complexes for CO are similar to 12 and similar to 15 kcal/mol higher in energy (when the metal is Rh) and similar to 17 and similar to 20 kcal/mol higher (when the metal is Ir) than the single-ligand LDEs of the mono and dual ligand complexes for C2H4, respectively. The results provide a foundation for the prediction of the catalytic properties of numerous supported metal complexes, as summarized in detail here. (C) 2015 Elsevier B.V. All rights reserved. C1 [Chen, Mingyang; Dixon, David A.] Univ Alabama, Dept Chem, Tuscaloosa, AL 35487 USA. [Chen, Mingyang] Oak Ridge Natl Lab, Natl Ctr Computat Sci, Oak Ridge, TN 37831 USA. [Serna, Pedro; Lu, Jing; Gates, Bruce C.] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. RP Dixon, DA (reprint author), Univ Alabama, Dept Chem, Shelby Hall,Box 87036, Tuscaloosa, AL 35487 USA. EM dadixon@ua.edu FU Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, U.S. Department of Energy (DOE) [DE-SC0005822]; University of Alabama; Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory - Office of Science of the U.S. Department of Energy [DE-AC05-00OR22725] FX This work was supported by the Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, U.S. Department of Energy (DOE) under Grant No. DE-SC0005822 (catalysis center program). DAD thanks the Robert Ramsay Chair Fund of The University of Alabama for support. MC was partially sponsored by the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725. NR 60 TC 2 Z9 2 U1 8 U2 44 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2210-271X EI 1872-7999 J9 COMPUT THEOR CHEM JI Comput. Theor. Chem. PD DEC 15 PY 2015 VL 1074 BP 58 EP 72 DI 10.1016/j.comptc.2015.09.004 PG 15 WC Chemistry, Physical SC Chemistry GA CY6SI UT WOS:000366538700007 ER PT J AU Zhang, LY Ward, JD Cheng, Z Dernburg, AF AF Zhang, Liangyu Ward, Jordan D. Cheng, Ze Dernburg, Abby F. TI The auxin-inducible degradation (AID) system enables versatile conditional protein depletion in C-elegans SO DEVELOPMENT LA English DT Article DE C. elegans; Genetic tool; Degron; Auxin; Auxin-inducible degradation; Tissue-specific depletion ID CAENORHABDITIS-ELEGANS; NUCLEAR RECEPTOR; UBIQUITIN-LIGASE; MAMMALIAN-CELLS; GENE-EXPRESSION; DEGRON SYSTEM; GENOME; TIR1; MEIOSIS; SYNAPSIS AB Experimental manipulation of protein abundance in living cells or organisms is an essential strategy for investigation of biological regulatory mechanisms. Whereas powerful techniques for protein expression have been developed in Caenorhabditis elegans, existing tools for conditional disruption of protein function are far more limited. To address this, we have adapted the auxin-inducible degradation (AID) system discovered in plants to enable conditional protein depletion in C. elegans. We report that expression of a modified Arabidopsis TIR1 F-box protein mediates robust auxin-dependent depletion of degron-tagged targets. We document the effectiveness of this system for depletion of nuclear and cytoplasmic proteins in diverse somatic and germline tissues throughout development. Target proteins were depleted in as little as 20-30 min, and their expression could be re-established upon auxin removal. We have engineered strains expressing TIR1 under the control of various promoter and 3' UTR sequences to drive tissue-specific or temporally regulated expression. The degron tag can be efficiently introduced by CRISPR/Cas9-based genome editing. We have harnessed this system to explore the roles of dynamically expressed nuclear hormone receptors in molting, and to analyze meiosis-specific roles for proteins required for germ line proliferation. Together, our results demonstrate that the AID system provides a powerful new tool for spatiotemporal regulation and analysis of protein function in a metazoan model organism. C1 [Zhang, Liangyu; Cheng, Ze; Dernburg, Abby F.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Zhang, Liangyu; Dernburg, Abby F.] Howard Hughes Med Inst, Chevy Chase, MD 20815 USA. [Zhang, Liangyu; Dernburg, Abby F.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Dept Genome Dynam, Life Sci Div, Berkeley, CA 94720 USA. [Zhang, Liangyu; Dernburg, Abby F.] Calif Inst Quantitat Biosci, Berkeley, CA 94720 USA. [Ward, Jordan D.] Univ Calif San Francisco, Dept Cellular & Mol Pharmacol, San Francisco, CA 94143 USA. RP Dernburg, AF (reprint author), Univ Calif Berkeley, Dept Mol & Cell Biol, 229 Stanley Hall, Berkeley, CA 94720 USA. EM afdernburg@berkeley.edu FU National Institutes of Health [GM065591]; Howard Hughes Medical Institute; National Institute of General Medical Sciences of the NIH [K99GM107345]; NIH [CA20535]; U.S. National Science Foundation [MCB 1157767] FX This work was supported by funding to the Dernburg Lab from the National Institutes of Health [GM065591] and the Howard Hughes Medical Institute. J.D.W. was supported by the National Institute of General Medical Sciences of the NIH under award no. [K99GM107345]. Additional support was from NIH [CA20535] and U.S. National Science Foundation [MCB 1157767] awards to K. Yamamoto (University of California, San Francisco, CA, USA). Deposited in PMC for immediate release. NR 58 TC 13 Z9 13 U1 6 U2 22 PU COMPANY OF BIOLOGISTS LTD PI CAMBRIDGE PA BIDDER BUILDING CAMBRIDGE COMMERCIAL PARK COWLEY RD, CAMBRIDGE CB4 4DL, CAMBS, ENGLAND SN 0950-1991 EI 1477-9129 J9 DEVELOPMENT JI Development PD DEC 15 PY 2015 VL 142 IS 24 BP 4374 EP 4384 DI 10.1242/dev.129635 PG 11 WC Developmental Biology SC Developmental Biology GA CY4GD UT WOS:000366365700018 PM 26552885 ER PT J AU Chern, GW Saxena, A AF Chern, Gia-Wei Saxena, Avadh TI PT-symmetric phase in kagome-based photonic lattices SO OPTICS LETTERS LA English DT Article ID PARITY-TIME SYMMETRY; OPTICS; GAIN AB The kagome lattice is a two-dimensional network of corner-sharing triangles and is often associated with geometrical frustration. In particular, the frustrated coupling between waveguide modes in a kagome array leads to a dispersionless flat band consisting of spatially localized modes. Here we propose a complex photonic lattice by placing PT symmetric dimers at the kagome lattice points. Each dimer corresponds to a pair of strongly coupled waveguides. With balanced arrangement of gain and loss on individual dimers, the system exhibits a PT - symmetric phase for finite gain/loss parameter up to a critical value. The beam evolution in this complex kagome waveguide array exhibits a novel oscillatory rotation of optical power along the propagation distance. Long-lived local chiral structures originating from the nearly flat bands of the kagome structure are observed when the lattice is subject to a narrow beam excitation. (C) 2015 Optical Society of America C1 [Chern, Gia-Wei] Univ Virginia, Dept Phys, Charlottesville, VA 22904 USA. [Chern, Gia-Wei; Saxena, Avadh] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Chern, Gia-Wei; Saxena, Avadh] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. RP Chern, GW (reprint author), Univ Virginia, Dept Phys, Charlottesville, VA 22904 USA. EM gchern@virginia.edu FU U.S. Department of Energy (DOE) through the Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Lab FX U.S. Department of Energy (DOE) through the Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Lab. NR 32 TC 4 Z9 4 U1 7 U2 17 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 0146-9592 EI 1539-4794 J9 OPT LETT JI Opt. Lett. PD DEC 15 PY 2015 VL 40 IS 24 BP 5806 EP 5809 DI 10.1364/OL.40.005806 PG 4 WC Optics SC Optics GA CY8TQ UT WOS:000366681600028 PM 26670517 ER PT J AU Meyers, D Middey, S Kareev, M Liu, J Kim, JW Shafer, P Ryan, PJ Chakhalian, J AF Meyers, D. Middey, S. Kareev, M. Liu, Jian Kim, J. W. Shafer, P. Ryan, P. J. Chakhalian, J. TI Charge order and antiferromagnetism in epitaxial ultrathin films of EuNiO3 SO PHYSICAL REVIEW B LA English DT Article ID METAL-INSULATOR-TRANSITION; NDNIO3 THIN-FILMS; OXIDE INTERFACE; PRESSURE AB On a road towards applications and devices based on functional oxides with correlated electrons, the crucial element is uncovering the effects of the reduced dimensionality on the electronic phase transition into a multiordered ground state. Towards this goal, we present a study of reduced dimensionality on charge and antiferromagnetic orderings in ultrathin EuNiO3 films on NdGaO3 substrates using hard and soft resonant x-ray scattering to investigate the presence of electronic and magnetic orderings. Despite the ultrathin nature of the films, they exhibit the bulklike order parameters up to room temperature, suggesting that the spontaneously coherent Mott ground state in the highly distorted rare-earth nickelates can be successfully sustained even when constrained towards two-dimensionality. The presence of charge ordering at room temperature and below opens prospects for their use in novel electric-field-controlled devices. C1 [Meyers, D.; Middey, S.; Kareev, M.; Chakhalian, J.] Univ Arkansas, Dept Phys, Fayetteville, AR 72701 USA. [Liu, Jian] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Kim, J. W.; Ryan, P. J.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Shafer, P.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Meyers, D (reprint author), Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA. EM dmeyers@email.uark.edu RI Chakhalian, Jak/F-2274-2015; Middey, Srimanta/D-9580-2013; Liu, Jian/I-6746-2013 OI Middey, Srimanta/0000-0001-5893-0946; Liu, Jian/0000-0001-7962-2547 FU Department of Energy [DE-SC0012375]; Gordon and Betty Moore Foundation EPiQS Initiative [GBMF4534]; DOD-ARO [0402-17291]; Science Alliance Joint Directed Research and Development Program at the University of Tennessee; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; DOE Office of Science [DE-AC02-06CH11357] FX The authors deeply acknowledges numerous fruitful theory related discussions with Andrew Millis, Priya Mahadevan, Daniel Khomskii, and D. D. Sarma. J.C. was supported by the Department of Energy Grant No. DE-SC0012375 for synchrotron work. M.K. And D.M. were supported by Gordon and Betty Moore Foundation EPiQS Initiative through Grant No. GBMF4534 for synthesis effort. J.L. and S.M. were supported by the DOD-ARO under Grant No. 0402-17291. J.L. is sponsored by the Science Alliance Joint Directed Research and Development Program at the University of Tennessee. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. NR 46 TC 3 Z9 3 U1 4 U2 27 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD DEC 15 PY 2015 VL 92 IS 23 AR 235126 DI 10.1103/PhysRevB.92.235126 PG 5 WC Physics, Condensed Matter SC Physics GA CY6CE UT WOS:000366494000002 ER PT J AU Poudel, L de la Cruz, C Payzant, EA May, AF Koehler, M Garlea, VO Taylor, AE Parker, DS Cao, HB McGuire, MA Tian, W Matsuda, M Jeen, H Lee, HN Hong, T Calder, S Zhou, HD Lumsden, MD Keppens, V Mandrus, D Christianson, AD AF Poudel, L. de la Cruz, C. Payzant, E. A. May, A. F. Koehler, M. Garlea, V. O. Taylor, A. E. Parker, D. S. Cao, H. B. McGuire, M. A. Tian, W. Matsuda, M. Jeen, H. Lee, H. N. Hong, T. Calder, S. Zhou, H. D. Lumsden, M. D. Keppens, V. Mandrus, D. Christianson, A. D. TI Structural and magnetic phase transitions in CeCu6-xT(x) (T = Ag, Pd) SO PHYSICAL REVIEW B LA English DT Article ID QUANTUM-CRITICAL-POINT; HEAVY-FERMION SYSTEM; KONDO-LATTICE; NEUTRON-SCATTERING; CRITICAL-BEHAVIOR; LIQUID BEHAVIOR; CECU6; FIELD; CRITICALITY; METALS AB The structural and the magnetic properties of CeCu6-xAgx(0 <= x <= 0.85) and CeCu6-xPdx (0 <= x <= 0.4) have been studied using neutron diffraction, resonant ultrasound spectroscopy (RUS), x-ray diffraction measurements, and first principles calculations. The structural and magnetic phase diagrams of CeCu6-xAgx and CeCu6-xPdx as a function of Ag/Pd composition are reported. The end member, CeCu6, undergoes a structural phase transition from an orthorhombic (Pnma) to a monoclinic (P2(1)/c) phase at 240 K. In CeCu6-xAgx, the structural phase transition temperature (T-s) decreases linearly with Ag concentration and extrapolates to zero at x(S) approximate to 0.1. The structural transition in CeCu6-xPd (x) remains unperturbed with Pd substitution within the range of our study. The lattice constant b slightly decreases with Ag/Pd doping, whereas a and c increase with an overall increase in the unit cell volume. Both systems, CeCu6-xAgx and CeCu6-xPdx, exhibit a magnetic quantum critical point (QCP), at x approximate to 0.2 and x approximate to 0.05, respectively. Near the QCP, long range antiferromagnetic ordering takes place at an incommensurate wave vector (delta(1) 0 delta(2)), where delta(1) similar to 0.62, delta 2 similar to 0.25, x = 0.125 for CeCu6-xPdx and delta(1) similar to 0.64, delta(2) similar to 0.3, x = 0.3 for CeCu6-xAgx. The magnetic structure consists of an amplitude modulation of the Ce moments which are aligned along the c axis of the orthorhombic unit cell. C1 [Poudel, L.; Zhou, H. D.; Mandrus, D.; Christianson, A. D.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Poudel, L.; de la Cruz, C.; Garlea, V. O.; Taylor, A. E.; Cao, H. B.; Tian, W.; Matsuda, M.; Hong, T.; Calder, S.; Lumsden, M. D.; Christianson, A. D.] Oak Ridge Natl Lab, Quantum Condensed Matter Div, Oak Ridge, TN 37831 USA. [Payzant, E. A.] Oak Ridge Natl Lab, Chem & Engn Mat Div, Oak Ridge, TN 37831 USA. [May, A. F.; Parker, D. S.; McGuire, M. A.; Jeen, H.; Lee, H. N.; Mandrus, D.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Koehler, M.; Keppens, V.; Mandrus, D.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Jeen, H.] Pusan Natl Univ, Dept Phys, Busan 609735, South Korea. RP Poudel, L (reprint author), Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. EM lpoudel@vols.utk.edu RI Tian, Wei/C-8604-2013; Lumsden, Mark/F-5366-2012; christianson, andrew/A-3277-2016; Payzant, Edward/B-5449-2009; May, Andrew/E-5897-2011; Zhou, Haidong/O-4373-2016; McGuire, Michael/B-5453-2009; Hong, Tao/F-8166-2010; Garlea, Vasile/A-4994-2016; Matsuda, Masaaki/A-6902-2016; Cao, Huibo/A-6835-2016; Mandrus, David/H-3090-2014; Taylor, Alice/I-5616-2012; Lee, Ho Nyung/K-2820-2012; dela Cruz, Clarina/C-2747-2013 OI Tian, Wei/0000-0001-7735-3187; Lumsden, Mark/0000-0002-5472-9660; Calder, Stuart/0000-0001-8402-3741; christianson, andrew/0000-0003-3369-5884; Payzant, Edward/0000-0002-3447-2060; May, Andrew/0000-0003-0777-8539; McGuire, Michael/0000-0003-1762-9406; Hong, Tao/0000-0002-0161-8588; Garlea, Vasile/0000-0002-5322-7271; Matsuda, Masaaki/0000-0003-2209-9526; Cao, Huibo/0000-0002-5970-4980; Taylor, Alice/0000-0002-3036-3019; Lee, Ho Nyung/0000-0002-2180-3975; dela Cruz, Clarina/0000-0003-4233-2145 FU Scientific User Facilities Division, Office of Basic Energy Sciences, U. S. Department of Energy (DOE); U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; U. S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division; U. S. Department of Energy [DE-AC05-00OR22725] FX We acknowledge J. M. Lawrence for useful discussions, M. Suchomel for the technical assistance in synchrotron x-ray diffraction measurements, and R. E. Baumbach and N. J. Ghimire for their assistance in the sample preparation. The research at the High Flux Isotope Reactor (ORNL) is supported by the Scientific User Facilities Division, Office of Basic Energy Sciences, U. S. Department of Energy (DOE). Use of the Advanced Photon Source at Argonne National Laboratory was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. The laboratory XRD work was conducted at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility. H.J., H.N.L., A.F.M., and D.G.M. acknowledge the support from the U. S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division. This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U. S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doepublic-access-plan). NR 68 TC 2 Z9 2 U1 8 U2 26 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD DEC 15 PY 2015 VL 92 IS 21 AR 214421 DI 10.1103/PhysRevB.92.214421 PG 12 WC Physics, Condensed Matter SC Physics GA CY6DY UT WOS:000366499300001 ER PT J AU Kogar, A Vig, S Thaler, A Wong, MH Xiao, Y Reig-i-Plessis, D Cho, GY Valla, T Pan, Z Schneeloch, J Zhong, R Gu, GD Hughes, TL MacDougall, GJ Chiang, TC Abbamonte, P AF Kogar, A. Vig, S. Thaler, A. Wong, M. H. Xiao, Y. Reig-i-Plessis, D. Cho, G. Y. Valla, T. Pan, Z. Schneeloch, J. Zhong, R. Gu, G. D. Hughes, T. L. MacDougall, G. J. Chiang, T. -C. Abbamonte, P. TI Surface Collective Modes in the Topological Insulators Bi2Se3 and Bi0.5Sb1.5Te3-xSex SO PHYSICAL REVIEW LETTERS LA English DT Article ID SINGLE DIRAC CONE; BI2TE3; PLASMONS; SB2TE3; PHASE AB We used low-energy, momentum-resolved inelastic electron scattering to study surface collective modes of the three-dimensional topological insulators Bi2Se3 and Bi0.5Sb1.5Te3-xSex. Our goal was to identify the "spin plasmon" predicted by Raghu and co-workers [Phys. Rev. Lett. 104, 116401 (2010)]. Instead, we found that the primary collective mode is a surface plasmon arising from the bulk, free carriers in these materials. This excitation dominates the spectral weight in the bosonic function of the surface chi (q, omega) at THz energy scales, and is the most likely origin of a quasiparticle dispersion kink observed in previous photoemission experiments. Our study suggests that the spin plasmon may mix with this other surface mode, calling for a more nuanced understanding of optical experiments in which the spin plasmon is reported to play a role. C1 [Kogar, A.; Vig, S.; Thaler, A.; Wong, M. H.; Xiao, Y.; Reig-i-Plessis, D.; Hughes, T. L.; MacDougall, G. J.; Chiang, T. -C.; Abbamonte, P.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Kogar, A.; Vig, S.; Thaler, A.; Wong, M. H.; Xiao, Y.; Reig-i-Plessis, D.; Hughes, T. L.; MacDougall, G. J.; Chiang, T. -C.; Abbamonte, P.] Univ Illinois, Seitz Mat Res Lab, Urbana, IL 61801 USA. [Cho, G. Y.] Korea Adv Inst Sci & Technol, Dept Phys, Taejon 305701, South Korea. [Valla, T.; Pan, Z.; Schneeloch, J.; Zhong, R.; Gu, G. D.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. RP Kogar, A (reprint author), Univ Illinois, Dept Phys, 1110 W Green St, Urbana, IL 61801 USA. EM abbamonte@mrl.illinois.edu RI Zhong, Ruidan/D-5296-2013; OI Zhong, Ruidan/0000-0003-1652-9454; MacDougall, Gregory/0000-0002-7490-9650 FU Center for Emergent Superconductivity, a DOE Energy Frontier Research Center [DE-AC02-98CH10886]; Office of Basic Energy Sciences, U.S. Department of Energy [DE-SC00112704]; EPiQS initiative of the Gordon [GBMF4542]; Betty Moore Foundation; DOE [DE-FG02-07ER46383, DE-SC0012649]; NSF [DMR 13-05583, DMR 140871] FX We acknowledge helpful discussions with S. Raghu, A. Karch, S. Gleason, T. Byrum, R. Soto-Garrido, Y. Dai, C. Homes, and V. Chua. This work was supported by the Center for Emergent Superconductivity, a DOE Energy Frontier Research Center, under Award No. DE-AC02-98CH10886. Work at Brookhaven was supported by the Office of Basic Energy Sciences, U.S. Department of Energy, Grant No. DE-SC00112704. P.A. acknowledges support from Grant No. GBMF4542 through the EPiQS initiative of the Gordon and Betty Moore Foundation. T.-C. C. acknowledges support from DOE Grant No. DE-FG02-07ER46383. Photoemission work at the Synchrotron Radiation Center was partially supported by NSF Grant No. DMR 13-05583. T.L.H. acknowledges supported from DOE Grant No. DE-SC0012649. G.Y.C. acknowledges support from NSF Grant No. DMR 140871. NR 34 TC 4 Z9 4 U1 9 U2 54 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD DEC 15 PY 2015 VL 115 IS 25 AR 257402 DI 10.1103/PhysRevLett.115.257402 PG 5 WC Physics, Multidisciplinary SC Physics GA CY5YW UT WOS:000366484900011 PM 26722943 ER PT J AU Martin, AA Bahm, A Bishop, J Aharonovich, I Toth, M AF Martin, Aiden A. Bahm, Alan Bishop, James Aharonovich, Igor Toth, Milos TI Dynamic Pattern Formation in Electron-Beam-Induced Etching SO PHYSICAL REVIEW LETTERS LA English DT Article ID SINGLE-CRYSTAL DIAMOND; PROFILE EVOLUTION; CVD DIAMOND; WATER-VAPOR; ION-BEAM; DEPOSITION; OXYGEN; SIMULATIONS; ADSORPTION; DESORPTION AB We report highly ordered topographic patterns that form on the surface of diamond, span multiple length scales, and have a symmetry controlled by the precursor gas species used in electron-beam-induced etching (EBIE). The pattern formation dynamics reveals an etch rate anisotropy and an electron energy transfer pathway that is overlooked by existing EBIE models. We, therefore, modify established theory such that it explains our results and remains universally applicable to EBIE. The patterns can be exploited in controlled wetting, optical structuring, and other emerging applications that require nano- and microscale surface texturing of a wide band-gap material. C1 [Martin, Aiden A.; Bahm, Alan; Bishop, James; Aharonovich, Igor; Toth, Milos] Univ Technol Sydney, Sch Math & Phys Sci, Ultimo, NSW 2007, Australia. [Martin, Aiden A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Bahm, Alan] FEI Co, Hillsboro, OR 97124 USA. RP Martin, AA (reprint author), Univ Technol Sydney, Sch Math & Phys Sci, Ultimo, NSW 2007, Australia. EM Igor.Aharonovich@uts.edu.au; Milos.Toth@uts.edu.au FU FEI Company; Australian Research Council [DP140102721]; U.S. Department of Energy [DE-AC52-07NA27344]; Science and Industry Endowment Fund; Australian Research Council Discovery Early Career Research Award [DE130100592] FX A portion of this work was funded by FEI Company and the Australian Research Council (Project No. DP140102721). A portion of this work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. A. A. M. is the recipient of a John Stocker Postgraduate Scholarship from the Science and Industry Endowment Fund. I. A. is the recipient of an Australian Research Council Discovery Early Career Research Award (Project No. DE130100592). A. B. is grateful to Branislav Radjenovic and Ian Mitchell for insightful discussions of etch rate interpolation techniques and the level set method. NR 51 TC 4 Z9 4 U1 5 U2 27 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD DEC 15 PY 2015 VL 115 IS 25 AR 255501 DI 10.1103/PhysRevLett.115.255501 PG 5 WC Physics, Multidisciplinary SC Physics GA CY5YW UT WOS:000366484900004 PM 26722926 ER PT J AU Yi, M Wang, M Kemper, AF Mo, SK Hussain, Z Bourret-Courchesne, E Lanzara, A Hashimoto, M Lu, DH Shen, ZX Birgeneau, RJ AF Yi, M. Wang, Meng Kemper, A. F. Mo, S. -K. Hussain, Z. Bourret-Courchesne, E. Lanzara, A. Hashimoto, M. Lu, D. H. Shen, Z. -X. Birgeneau, R. J. TI Bandwidth and Electron Correlation-Tuned Superconductivity in Rb0.8Fe2(Se1-zSz)(2) SO PHYSICAL REVIEW LETTERS LA English DT Article ID PHOTOEMISSION; SPECTROSCOPY; TRANSITION AB We present a systematic angle-resolved photoemission spectroscopy study of the substitution dependence of the electronic structure of Rb0.8Fe2(Se1-zSz)(2) (z = 0, 0.5, 1), where superconductivity is continuously suppressed into a metallic phase. Going from the nonsuperconducting Rb0.8Fe2S2 to superconducting Rb0.8Fe2S2, we observe little change of the Fermi surface topology, but a reduction of the overall bandwidth by a factor of 2. Hence, for these heavily electron-doped iron chalcogenides, we have identified electron correlation as explicitly manifested in the quasiparticle bandwidth to be the important tuning parameter for superconductivity, and that moderate correlation is essential to achieving high T-C. C1 [Yi, M.; Wang, Meng; Lanzara, A.; Birgeneau, R. J.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Kemper, A. F.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA. [Mo, S. -K.; Hussain, Z.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Bourret-Courchesne, E.; Lanzara, A.; Birgeneau, R. J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA 94720 USA. [Hashimoto, M.; Lu, D. H.] SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA. [Shen, Z. -X.] Stanford Univ, Stanford Inst Mat & Energy Sci, Stanford, CA 94305 USA. [Shen, Z. -X.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Shen, Z. -X.] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA. [Shen, Z. -X.] Stanford Univ, Geballe Lab Adv Mat, Stanford, CA 94305 USA. [Birgeneau, R. J.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. RP Yi, M (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM mingyi@berkeley.edu; wangm@berkeley.edu RI Mo, Sung-Kwan/F-3489-2013; WANG, MENG/E-6595-2012; Kemper, Alexander/F-8243-2016 OI Mo, Sung-Kwan/0000-0003-0711-8514; WANG, MENG/0000-0002-8232-2331; Kemper, Alexander/0000-0002-5426-5181 FU Office of Science, Office of Basic Energy Sciences, U.S. Department of Energy [DE-AC02-05CH11231]; Office of Basic Energy Sciences U.S. DOE [DE-AC03-76SF008]; DOE Office of Basic Energy Sciences, Division of Materials Science FX ARPES experiments were performed at the Advanced Light Source and the Stanford Synchrotron Radiation Lightsource, which are operated by the Office of Basic Energy Science, U.S. Department of Energy. The work at Berkeley and Lawrence Berkeley National Laboratory is supported by the Office of Science, Office of Basic Energy Sciences, U.S. Department of Energy, under Contract No. DE-AC02-05CH11231. The work at Berkeley is also supported by the Office of Basic Energy Sciences U.S. DOE Grant No. DE-AC03-76SF008. The work at Stanford is supported by the DOE Office of Basic Energy Sciences, Division of Materials Science. NR 38 TC 5 Z9 5 U1 4 U2 20 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD DEC 15 PY 2015 VL 115 IS 25 AR 256403 DI 10.1103/PhysRevLett.115.256403 PG 5 WC Physics, Multidisciplinary SC Physics GA CY5YW UT WOS:000366484900007 PM 26722933 ER PT J AU Hart-Cooper, WM Sgarlata, C Perrin, CL Toste, FD Bergman, RG Raymond, KN AF Hart-Cooper, William M. Sgarlata, Carmelo Perrin, Charles L. Toste, F. Dean Bergman, Robert G. Raymond, Kenneth N. TI Protein-like proton exchange in a synthetic host cavity SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE supramolecular; noncovalent; catalysis; proton; hydrogen-deuterium exchange ID CHARGED SUPRAMOLECULAR HOST; HYDROGEN-EXCHANGE; ARTIFICIAL ENZYMES; DEUTERIUM OXIDE; WATER; CATALYSIS; DYNAMICS; ENCAPSULATION; CLUSTER; BINDING AB The mechanism of proton exchange in ametal-ligand enzyme active site mimic (compound 1) is described through amide hydrogen-deuterium exchange kinetics. The type and ratio of cationic guest to host in solution affect the rate of isotope exchange, suggesting that the rate of exchange is driven by a host whose cavity is occupied by water. Rate constants for acid-, base-, and water-mediated proton exchange vary by orders of magnitude depending on the guest, and differ by up to 200 million-fold relative to an alanine polypeptide. These results suggest that the unusual micro-environment of the cavity of 1 can dramatically alter the reactivity of associated water by magnitudes comparable to that of enzymes. C1 [Hart-Cooper, William M.; Sgarlata, Carmelo; Toste, F. Dean; Bergman, Robert G.; Raymond, Kenneth N.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Hart-Cooper, William M.; Sgarlata, Carmelo; Toste, F. Dean; Bergman, Robert G.; Raymond, Kenneth N.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Perrin, Charles L.] Univ Calif San Diego, Dept Chem & Biochem, La Jolla, CA 92093 USA. RP Toste, FD (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. EM fdtoste@berkeley.edu; rbergman@berkeley.edu; raymond@socrates.berkeley.edu NR 48 TC 3 Z9 3 U1 8 U2 34 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD DEC 15 PY 2015 VL 112 IS 50 BP 15303 EP 15307 DI 10.1073/pnas.1515639112 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CY4UN UT WOS:000366404200041 PM 26621709 ER PT J AU Wang, SM Zhu, JL Zhang, Y Yu, XH Zhang, JZ Wang, WD Bai, LG Qian, J Yin, L Sullivan, NS Jin, CQ He, DW Xu, J Zhao, YS AF Wang, Shanmin Zhu, Jinlong Zhang, Yi Yu, Xiaohui Zhang, Jianzhong Wang, Wendan Bai, Ligang Qian, Jiang Yin, Liang Sullivan, Neil S. Jin, Changqing He, Duanwei Xu, Jian Zhao, Yusheng TI Unusual Mott transition in multiferroic PbCrO3 SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE Mott transition; multiferroics; PbCrO3; Mott criticality; isostructural transition ID HIGH-PRESSURE; ELECTRONIC-STRUCTURE; VOLUME COLLAPSE; METAL OXIDES; PEROVSKITE; ANTIFERROMAGNETISM; PHOTOEMISSION AB The Mott insulator in correlated electron systems arises from classical Coulomb repulsion between carriers to provide a powerful force for electron localization. Turning such an insulator into a metal, the so-called Mott transition, is commonly achieved by "bandwidth" control or "band filling." However, both mechanisms deviate from the original concept of Mott, which attributes such a transition to the screening of Coulomb potential and associated lattice contraction. Here, we report a pressure-induced isostructural Mott transition in cubic perovskite PbCrO3. At the transition pressure of similar to 3 GPa, PbCrO3 exhibits significant collapse in both lattice volume and Coulomb potential. Concurrent with the collapse, it transforms from a hybrid multiferroic insulator to a metal. For the first time to our knowledge, these findings validate the scenario conceived by Mott. Close to the Mott criticality at similar to 300 K, fluctuations of the lattice and charge give rise to elastic anomalies and Laudau critical behaviors resembling the classic liquid-gas transition. The anomalously large lattice volume and Coulomb potential in the low-pressure insulating phase are largely associated with the ferroelectric distortion, which is substantially suppressed at high pressures, leading to the first-order phase transition without symmetry breaking. C1 [Wang, Shanmin; Wang, Wendan; He, Duanwei; Xu, Jian] Sichuan Univ, Inst Atom & Mol Phys, Chengdu 610065, Peoples R China. [Wang, Shanmin; Zhu, Jinlong; Zhang, Yi; Bai, Ligang; Zhao, Yusheng] Univ Nevada, High Pressure Sci & Engn Ctr, Las Vegas, NV 89154 USA. [Wang, Shanmin; Zhu, Jinlong; Zhang, Yi; Bai, Ligang; Zhao, Yusheng] Univ Nevada, Dept Phys, Las Vegas, NV 89154 USA. [Wang, Shanmin; Zhu, Jinlong; Yu, Xiaohui; Zhang, Jianzhong; Zhao, Yusheng] Los Alamos Natl Lab, Los Alamos Neutron Sci Ctr, Los Alamos, NM 87545 USA. [Wang, Shanmin; Zhu, Jinlong; Yu, Xiaohui; Zhang, Jianzhong; Zhao, Yusheng] Los Alamos Natl Lab, Mat Sci & Technol Div, Los Alamos, NM 87545 USA. [Zhu, Jinlong; Yu, Xiaohui; Jin, Changqing] Chinese Acad Sci, Inst Phys, Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China. [Bai, Ligang] Carnegie Inst Sci, Geophys Lab, High Pressure Collaborat Access Team, Argonne, IL 60439 USA. [Qian, Jiang] US Synthet Corp, Orem, UT 84058 USA. [Yin, Liang; Sullivan, Neil S.] Univ Florida, Dept Phys, Gainesville, FL 32611 USA. [Jin, Changqing] Collaborat Innovat Ctr Quantum Matter, Beijing 100871, Peoples R China. RP Wang, SM (reprint author), Oak Ridge Natl Lab, Chem & Engn Mat Div, Oak Ridge, TN 37831 USA. EM shanminwang@gmail.com; duanweihe@scu.edu.cn; Yusheng.Zhao@unlv.edu OI Zhang, Jianzhong/0000-0001-5508-1782 FU High Pressure Science & Engineering Center, Department of Energy (DOE) National Nuclear Security Administration (NNSA) Center of Excellence [DE-FC52-06NA27684]; 973 Program; National Natural Science Foundation of China [2011CB808205, 11427810, 51472171]; DOE-NNSA Award [DE-NA0001974]; DOE-Basic Energy Sciences (BES) Award [DE-FG02-99ER45775]; DOE-BES Contract [DE-AC02-06CH11357]; Los Alamos National Laboratory under DOE [DE-AC52-06NA25396]; National Science Foundation (NSF) [DMR-1157490]; State of Florida; DOE; NSF; Ministry of Science and Technology of China FX We thank A. Serafin and J.-S. Xia for help on the measurement of ferroelectricity at the National High Magnetic Field Laboratory (NHMFL) and thank C. Park, C. Kenney-Benson, H. Yan, Y. Xiao, Z. Liu, and S. Tkachev for help on high-P X-ray diffraction, emission, and infrared absorption measurements and gas loading for diamond-anvil cells. We also thank Prof. C. Chen, A. Alvarado, and J. Attapattu for help on theoretical calculations. This work is partially supported by High Pressure Science & Engineering Center, Department of Energy (DOE) National Nuclear Security Administration (NNSA) Center of Excellence operated under Cooperative Agreement DE-FC52-06NA27684. This work was also supported by the 973 Program and National Natural Science Foundation of China Grants 2011CB808205, 11427810, and 51472171. Portions of this work were performed at HPCAT at APS, which is supported by DOE-NNSA Award DE-NA0001974, DOE-Basic Energy Sciences (BES) Award DE-FG02-99ER45775, and DOE-BES Contract DE-AC02-06CH11357. This research is partially supported by Los Alamos National Laboratory under DOE Contract DE-AC52-06NA25396. A portion of this work was performed at the NHMFL supported by National Science Foundation (NSF) Grant DMR-1157490, the State of Florida, and DOE. The work at Institute of Physics, Chinese Academy of Sciences was supported by NSF and the Ministry of Science and Technology of China through research projects. NR 53 TC 3 Z9 3 U1 8 U2 32 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD DEC 15 PY 2015 VL 112 IS 50 BP 15320 EP 15325 DI 10.1073/pnas.1510415112 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CY4UN UT WOS:000366404200044 PM 26604314 ER PT J AU Librado, P Sarkissian, CD Ermini, L Schubert, M Jonsson, H Albrechtsen, A Fumagalli, M Yang, MA Gambo, C Seguin-Orlando, A Mortensen, CD Petersen, B Hoover, CA Lorente-Galdos, B Nedoluzhko, A Boulygina, E Tsygankova, S Neuditschko, M Jagannathan, V Theves, C Alfarhan, AH Alquraishi, SA Al-Rasheid, KAS Sicheritz-Ponten, T Popov, R Grigoriev, S Alekseev, AN Rubin, EM McCue, M Rieder, S Leeb, T Tikhonov, A Crubezy, E Slatkin, M Marques-Bonet, T Nielsen, R Willerslev, E Kantanen, J Prokhortchouk, E Orlando, L AF Librado, Pablo Sarkissian, Clio Der Ermini, Luca Schubert, Mikkel Jonsson, Hakon Albrechtsen, Anders Fumagalli, Matteo Yang, Melinda A. Gambo, Cristina Seguin-Orlando, Andaine Mortensen, Cecilie D. Petersen, Bent Hoover, Cindi A. Lorente-Galdos, Belen Nedoluzhko, Artem Boulygina, Eugenia Tsygankova, Svetlana Neuditschko, Markus Jagannathan, Vidhya Theves, Catherine Alfarhan, Ahmed H. Alquraishi, Saleh A. Al-Rasheid, Khaled A. S. Sicheritz-Ponten, Thomas Popov, Ruslan Grigoriev, Semyon Alekseev, Anatoly N. Rubin, Edward M. McCue, Molly Rieder, Stefan Leeb, Tosso Tikhonov, Alexei Crubezy, Eric Slatkin, Montgomery Marques-Bonet, Tomas Nielsen, Rasmus Willerslev, Eske Kantanen, Juha Prokhortchouk, Egor Orlando, Ludovic TI Tracking the origins of Yakutian horses and the genetic basis for their fast adaptation to subarctic environments SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE ancient genomics; adaptation; population discontinuity; regulatory changes; horse ID GENERATION SEQUENCING DATA; MITOCHONDRIAL-DNA SEQUENCE; PHYLOGENETIC ANALYSIS; POPULATION-GENETICS; PRZEWALSKIS HORSE; GENOME SEQUENCE; EQUUS-CABALLUS; ANCIENT DNA; EVO-DEVO; DOMESTICATION AB Yakutia, Sakha Republic, in the Siberian Far East, represents one of the coldest places on Earth, with winter record temperatures dropping below -70 degrees C. Nevertheless, Yakutian horses survive all year round in the open air due to striking phenotypic adaptations, including compact body conformations, extremely hairy winter coats, and acute seasonal differences in metabolic activities. The evolutionary origins of Yakutian horses and the genetic basis of their adaptations remain, however, contentious. Here, we present the complete genomes of nine present-day Yakutian horses and two ancient specimens dating from the early 19th century and similar to 5,200 y ago. By comparing these genomes with the genomes of two Late Pleistocene, 27 domesticated, and three wild Przewalski's horses, we find that contemporary Yakutian horses do not descend from the native horses that populated the region until the mid-Holocene, but were most likely introduced following the migration of the Yakut people a few centuries ago. Thus, they represent one of the fastest cases of adaptation to the extreme temperatures of the Arctic. We find cis-regulatory mutations to have contributed more than nonsynonymous changes to their adaptation, likely due to the comparatively limited standing variation within gene bodies at the time the population was founded. Genes involved in hair development, body size, and metabolic and hormone signaling pathways represent an essential part of the Yakutian horse adaptive genetic toolkit. Finally, we find evidence for convergent evolution with native human populations and woolly mammoths, suggesting that only a few evolutionary strategies are compatible with survival in extremely cold environments. C1 [Librado, Pablo; Sarkissian, Clio Der; Ermini, Luca; Schubert, Mikkel; Jonsson, Hakon; Gambo, Cristina; Seguin-Orlando, Andaine; Willerslev, Eske; Orlando, Ludovic] Univ Copenhagen, Ctr GeoGenet, Nat Hist Museum Denmark, DK-1350 Copenhagen K, Denmark. [Albrechtsen, Anders] Univ Copenhagen, Dept Biol, Bioinformat Ctr, DK-2200 Copenhagen N, Denmark. [Fumagalli, Matteo] UCL, UCL Genet Inst, Dept Genet Evolut & Environm, London WC1E 6BT, England. [Yang, Melinda A.; Slatkin, Montgomery] Univ Calif Berkeley, Dept Integrat Biol, Berkeley, CA 94720 USA. [Seguin-Orlando, Andaine; Mortensen, Cecilie D.] Univ Copenhagen, Natl High Throughput DNA Sequencing Ctr, DK-1353 Copenhagen K, Denmark. [Petersen, Bent; Sicheritz-Ponten, Thomas] Tech Univ Denmark, Dept Syst Biol, Ctr Biol Sequence Anal, DK-2800 Lyngby, Denmark. [Hoover, Cindi A.; Rubin, Edward M.] Dept Energy Joint Genome Inst, Walnut Creek, CA 94598 USA. [Lorente-Galdos, Belen; Marques-Bonet, Tomas] Univ Pompeu Fabra, CSIC, Barcelona 08003, Spain. [Lorente-Galdos, Belen; Marques-Bonet, Tomas] Ctr Nacl Anal Genom, Barcelona 08028, Spain. [Nedoluzhko, Artem; Boulygina, Eugenia; Tsygankova, Svetlana; Prokhortchouk, Egor] Natl Res Ctr Kurchatov Inst, Moscow 123182, Russia. [Neuditschko, Markus; Rieder, Stefan] Agroscope, Swiss Natl Stud Farm, CH-1580 Avenches, Switzerland. [Jagannathan, Vidhya; Leeb, Tosso] Univ Bern, Inst Genet, CH-3001 Bern, Switzerland. [Theves, Catherine; Orlando, Ludovic] Univ Toulouse 3, Univ Toulouse, Lab Anthropobiol Mol & Imagerie Synth, CNRS UMR 5288, F-31000 Toulouse, France. [Alfarhan, Ahmed H.; Alquraishi, Saleh A.; Al-Rasheid, Khaled A. S.] King Saud Univ, Dept Zool, Coll Sci, Riyadh 11451, Saudi Arabia. [Popov, Ruslan] Yakutian Res Inst Agr, Yakutsk 677002, Sakha, Russia. [Grigoriev, Semyon; Alekseev, Anatoly N.] North Eastern Fed Univ, Yakutsk 677000, Russia. [McCue, Molly] Univ Minnesota, Coll Vet Med, St Paul, MN 55108 USA. [Tikhonov, Alexei] Russian Acad Sci, Inst Zool, St Petersburg 199034, Russia. [Nielsen, Rasmus] Univ Calif Berkeley, Ctr Theoret Evolutionary Genom, Berkeley, CA 94720 USA. [Kantanen, Juha] Agrifood Res Finland, Biotechnol & Food Res, Jokioinen 31600, Finland. [Kantanen, Juha] Univ Eastern Finland, Dept Biol, Kuopio 70211, Finland. RP Orlando, L (reprint author), Univ Copenhagen, Ctr GeoGenet, Nat Hist Museum Denmark, DK-1350 Copenhagen K, Denmark. EM lorlando@snm.ku.dk RI Nielsen, Rasmus/D-4405-2009; Alekseev, Anatoliy/O-1096-2015; Grigoriev, Semyon/F-8848-2014; Gamba, Cristina/B-9427-2015; Prokhortchouk, Egor/I-9108-2014; Nedoluzhko, Artem/I-2312-2014; Orlando, Ludovic/A-8932-2013; Ermini, Luca/O-4813-2016; AL-Rasheid, Khaled/C-2486-2008; Albrechtsen, Anders/K-4281-2013 OI Nielsen, Rasmus/0000-0003-0513-6591; Schubert, Mikkel/0000-0003-2401-9921; Alekseev, Anatoliy/0000-0002-9488-573X; Grigoriev, Semyon/0000-0001-9932-6008; Fumagalli, Matteo/0000-0002-4084-2953; Gamba, Cristina/0000-0003-1187-0258; Nedoluzhko, Artem/0000-0001-7040-0892; Orlando, Ludovic/0000-0003-3936-1850; Ermini, Luca/0000-0001-8109-6021; AL-Rasheid, Khaled/0000-0002-3404-3397; Albrechtsen, Anders/0000-0001-7306-031X FU Danish Council for Independent Research, Natural Sciences [4002-00152B]; Danish National Research Foundation [DNRF94]; Marie-Curie Career Integration grant [FP7 CIG-293845]; Initiative d'Excellence Chaires d'attractivite, Universite de Toulouse (OURASI); International Research Group Program, Deanship of Scientific Research, King Saud University [IRG14-08]; Villum Fonden Blokstipendier grant; Marie-Curie Initial Training Network grant [EUROTAST (Exploring the History, Archeology, and New Genetics of the Transatlantic Slave Trade) [FP7 ITN-290344]; Marie-Curie Intra-European fellowships [FP7-IEF-328024, FP7 IEF-302617]; Lundbeck Foundation [R52-A5062]; National Science Foundation; Human Frontier Science Program fellowship [LT000320/2014]; NIH [R01-GM40282]; Academy of Finland [286040]; French Archaeological Mission in Oriental Siberia (Ministry of Foreign and European Affairs, France); North-Eastern Federal University (Yakutsk, Sakha Republic); Human Adaptation Program of the French Polar Institute Paul Emile Victor [HUMAD MAFSO (Missions Archeologiques Francaises en Siberie Orientale) [1038] FX We thank P. Selmer Olsen, T. Brand, and the staff of the Danish National High-Throughput DNA Sequencing Centre for technical assistance, and Haldja Viinalass and Erkki Si Id from the Estonian University of Life Sciences (Tartu, Estonia) for laboratory work. This work was supported by the Danish Council for Independent Research, Natural Sciences (Grant 4002-00152B); the Danish National Research Foundation (Grant DNRF94); a Marie-Curie Career Integration grant (Grant FP7 CIG-293845); Initiative d'Excellence Chaires d'attractivite, Universite de Toulouse (OURASI); and the International Research Group Program (Grant IRG14-08), Deanship of Scientific Research, King Saud University. P.L. was supported by a Villum Fonden Blokstipendier grant (primary investigator: L.O.); H.J. by a Marie-Curie Initial Training Network grant [EUROTAST (Exploring the History, Archeology, and New Genetics of the Transatlantic Slave Trade); Grant FP7 ITN-290344]; C.G. and L.E. by Marie-Curie Intra-European fellowships (FP7-IEF-328024 and FP7 IEF-302617); M. Schubert by a Lundbeck Foundation grant (Grant R52-A5062); M.A.Y. by a National Science Foundation Graduate Research fellowship; M.F. by a Human Frontier Science Program fellowship (LT000320/2014); A.A. by a Villum Fonden Blokstipendier grant; M. Schubert by an NIH grant (Grant R01-GM40282); and J.K. by the Academy of Finland (Grant 286040). Research work on the ancient Yakut population was supported by the French Archaeological Mission in Oriental Siberia (Ministry of Foreign and European Affairs, France), the North-Eastern Federal University (Yakutsk, Sakha Republic), and the Human Adaptation Program of the French Polar Institute Paul Emile Victor [HUMAD MAFSO (Missions Archeologiques Francaises en Siberie Orientale) 1038]. NR 81 TC 9 Z9 9 U1 23 U2 73 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD DEC 15 PY 2015 VL 112 IS 50 BP E6889 EP E6897 DI 10.1073/pnas.1513696112 PG 9 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CY4UN UT WOS:000366404200011 PM 26598656 ER PT J AU Yang, XX Doerge, DR Teeguarden, JG Fisher, JW AF Yang, Xiaoxia Doerge, Daniel R. Teeguarden, Justin G. Fisher, Jeffrey W. TI Development of a physiologically based pharmacokinetic model for assessment of human exposure to bisphenol A SO TOXICOLOGY AND APPLIED PHARMACOLOGY LA English DT Article DE Bisphenol A; BPA; Physiologically based pharmacokinetic model; PBPK; Human ID SPRAGUE-DAWLEY RATS; ROUTE DEPENDENT DOSIMETRY; TANDEM MASS-SPECTROMETRY; IN-VITRO; METABOLIC-CLEARANCE; ENTEROHEPATIC CIRCULATION; LIQUID-CHROMATOGRAPHY; DRUG CLEARANCE; SERUM PROFILES; HUMAN URINE AB A previously developed physiologically based pharmacokinetic (PBPK) model for bisphenol A (BPA) in adult rhesus monkeys was modified to characterize the pharmacokinetics of BPA and its phase II conjugates in adult humans following oral ingestion. Coupled with in vitro studies on BPA metabolism in the liver and the small intestine, the PBPK model was parameterized using oral pharmacokinetic data with deuterated-BPA (d(6)-BPA) delivered in cookies to adult humans after overnight fasting. The availability of the serum concentration time course of unconjugated d(6)-BPA offered direct empirical evidence for the calibration of BPA model parameters. The recalibrated PBPK adult human model for BPA was then evaluated against published human pharmacokinetic studies with BPA. A hypothesis of decreased oral uptake was needed to account for the reduced peak levels observed in adult humans, where d(6)-BPA was delivered in soup and food was provided prior to BPA ingestion, suggesting the potential impact of dosing vehicles and/or fasting on BPA disposition. With the incorporation of Monte Carlo analysis, the recalibrated adult human model was used to address the inter-individual variability in the internal dose metrics of BPA for the U.S. general population. Model-predicted peak BPA serum levels were in the range of pM, with 95% of human variability falling within an order of magnitude. This recalibrated PBPK model for BPA in adult humans provides a scientific basis for assessing human exposure to BPA that can serve to minimize uncertainties incurred during extrapolations across doses and species. Published by Elsevier Inc. C1 [Yang, Xiaoxia; Doerge, Daniel R.; Fisher, Jeffrey W.] US FDA, Natl Ctr Toxicol Res, Div Biochem Toxicol, Jefferson, AR 72079 USA. [Teeguarden, Justin G.] Pacific NW Natl Lab, Hlth Effects & Exposure Sci, Richland, WA 99352 USA. [Teeguarden, Justin G.] Oregon State Univ, Dept Environm & Mol Toxicol, Corvallis, OR 97331 USA. RP Yang, XX (reprint author), US FDA, Natl Ctr Toxicol Res, 3900 NCTR Rd, Jefferson, AR 72079 USA. EM xiaoxia.yang@fda.hhs.gov FU U.S. Food and Drug Administration/National Center for the Toxicological Research FX This work was supported by the U.S. Food and Drug Administration/National Center for the Toxicological Research. The authors gratefully acknowledge the help with statistics from Dr. Nysia George, and the critical review of this manuscript by Drs. Barry Delclos, Jia-Long Fang, Jason Aungst, and Frederick A. Beland. The manuscript does not necessarily reflect the views of the U.S. Food and Drug Administration. The authors have no conflict of interest. NR 73 TC 3 Z9 3 U1 7 U2 42 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0041-008X EI 1096-0333 J9 TOXICOL APPL PHARM JI Toxicol. Appl. Pharmacol. PD DEC 15 PY 2015 VL 289 IS 3 BP 442 EP 456 DI 10.1016/j.taap.2015.10.016 PG 15 WC Pharmacology & Pharmacy; Toxicology SC Pharmacology & Pharmacy; Toxicology GA CY1EF UT WOS:000366148800009 PM 26522835 ER PT J AU Sakai, Y Saito, S Cohen, ML AF Sakai, Yuki Saito, Susumu Cohen, Marvin L. TI First-Principles Study on Graphene/Hexagonal Boron Nitride Heterostructures SO JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN LA English DT Article ID SCANNING-TUNNELING-MICROSCOPY; DER-WAALS HETEROSTRUCTURES; GRAPHENE/MONOLAYER H-BN; 2-DIMENSIONAL ATOMIC CRYSTALS; CHEMICAL-VAPOR-DEPOSITION; MASSLESS DIRAC FERMIONS; DOUBLE-LAYER GRAPHENE; ELECTRONIC-STRUCTURE; NOBEL LECTURE; BAND-GAP AB This article reviews recent progresses in first-principles studies on graphene/hexagonal boron nitride (h-BN) heterostructures. The experimental demonstration of the usefulness of hexagonal boron nitride as a substrate for graphene devices has attracted considerable interest of graphene/h-BN heterostructure systems. More complicated graphene/h-BN heterostructures have also been fabricated in recent years. In parallel with the experimental progress, first-principles studies have also revealed interesting properties of these heterostructures. The structural and electronic properties of the graphene/h-BN heterostructures are discussed here based on the recent first-principles results. C1 [Sakai, Yuki] Univ Tokyo, Dept Appl Phys, Bunkyo Ku, Tokyo 1138656, Japan. [Sakai, Yuki; Saito, Susumu] Tokyo Inst Technol, Dept Phys, Meguro Ku, Tokyo 1528551, Japan. [Sakai, Yuki; Cohen, Marvin L.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Saito, Susumu] Tokyo Inst Technol, Int Res Ctr Nanosci & Quantum Phys, Meguro Ku, Tokyo 1528551, Japan. [Cohen, Marvin L.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Sakai, Y (reprint author), Univ Tokyo, Dept Appl Phys, Bunkyo Ku, Tokyo 1138656, Japan. EM yuki@ices.utexas.edu FU NSF [DMR-10-1006184]; Lawrence Berkeley National Laboratory through the Office of Basic Science, US Department of Energy [DE-AC02-05CH11231]; Japan Society for the Promotion of Science (JSPS) [12J08928]; MEXT; MEXT, Japan; JSPS [25107005]; Global COE Program of MEXT Japan through the Nanoscience and Quantum Physics Project of the Tokyo Institute of Technology; MEXT Elements Strategy Initiative to Form Core Research Center through Tokodai Institute for Element Strategy FX This work was supported by NSF Grant No. DMR-10-1006184, and the theory program at the Lawrence Berkeley National Laboratory through the Office of Basic Science, US Department of Energy under Contract No. DE-AC02-05CH11231. YS acknowledges the financial support by Japan Society for the Promotion of Science (JSPS, 12J08928), by the research project Materials Design through Computics by MEXT, and also by Computational Materials Science Initiative by MEXT, Japan. SS acknowledges the financial support by Grant-in-Aid for Scientific Research from JSPS (No. 25107005), Global COE Program of MEXT Japan through the Nanoscience and Quantum Physics Project of the Tokyo Institute of Technology, and MEXT Elements Strategy Initiative to Form Core Research Center through Tokodai Institute for Element Strategy. Numerical calculations were partly carried out on the TSUBAME supercomputer in the Tokyo Institute of Technology. The crystal structures, Brillouin zone, and wavefunction are visualized by using XCrysDen code.129) NR 129 TC 2 Z9 2 U1 11 U2 69 PU PHYSICAL SOC JAPAN PI TOKYO PA YUSHIMA URBAN BUILDING 5F, 2-31-22 YUSHIMA, BUNKYO-KU, TOKYO, 113-0034, JAPAN SN 0031-9015 J9 J PHYS SOC JPN JI J. Phys. Soc. Jpn. PD DEC 15 PY 2015 VL 84 IS 12 AR 121002 DI 10.7566/JPSJ.84.121002 PG 11 WC Physics, Multidisciplinary SC Physics GA CX6IJ UT WOS:000365804100002 ER PT J AU Shipra, R Sefat, AS AF Shipra, R. Sefat, A. S. TI Effect of Li2O on the microstructure, magnetic and transport properties of Tl-2223 superconductor SO PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS LA English DT Article DE Cuprate; Tl-2223; Chemical substitution; Critical current density ID CU-O SUPERCONDUCTORS; LITHIUM; TL2BA2CA2CU3O10-DELTA; DIFFRACTION; CRYSTALS; BEHAVIOR; NEUTRON; SYSTEM AB The present study gives an account of the effect of addition of Li2O on the ease of phase formation and superconducting properties of Tl2Ba2Ca2Cu3O10 + delta (Tl-2223) material. Li2O slightly decreases the superconducting transition temperature, while an optimal concentration of 20% Li2O improves the critical current density (J(c)) by about two fold. We also found substantial effects on the synthesis temperature, microstructure and normal state transport properties of Tl-2223 with Li2O addition. Short-time annealing under flowing Ar + 4%H-2 (1 h) further improves the superconducting volume fractions, as well as J(c). (C) 2015 Elsevier B.V. All rights reserved. C1 [Shipra, R.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. [Shipra, R.; Sefat, A. S.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Sefat, AS (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. EM sefata@ornl.gov RI Sefat, Athena/R-5457-2016 OI Sefat, Athena/0000-0002-5596-3504 FU National Science Foundation [DMR-0938330] FX This research was primarily supported by the National Science Foundation through Grant no. DMR-0938330. NR 25 TC 0 Z9 0 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4534 EI 1873-2143 J9 PHYSICA C JI Physica C PD DEC 15 PY 2015 VL 519 BP 108 EP 111 DI 10.1016/j.physc.2015.09.006 PG 4 WC Physics, Applied SC Physics GA CX3LR UT WOS:000365600800019 ER PT J AU Yang, Y Li, G Susner, M Sumption, MD Rindfleisch, M Tomsic, M Collings, EW AF Yang, Y. Li, G. Susner, M. Sumption, M. D. Rindfleisch, M. Tomsic, M. Collings, E. W. TI Influence of twisting and bending on the J(C) and n-value of multifilamentary MgB2 strands SO PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS LA English DT Article DE MgB2; Strand; Twist; Bend; J(C); n-value ID CRITICAL-CURRENT DENSITY; TRANSPORT; TAPE; SUPERCONDUCTORS; POWDER; WIRES AB The influences of strand twisting and bending (applied at room temperature) on the critical current densities, J(C), and n-values of MgB2 multifilamentary strands were evaluated at 4.2 K as function of applied field strength, B. Three types of MgB2 strand were evaluated: (i) advanced internal magnesium infiltration (AIMI)-processed strands with 18 filaments (AIMI-18), (ii) powder-in-tube (PIT) strands processed using a continuous tube forming and filling (CTFF) technique with 36 filaments (PIT-36) and (iii) CTFF processed PIT strands with 54 filaments (PIT-54). Transport measurements of J(C)(B) and n-value at 4.2 K in fields of up to 10 T were made on: (i) PIT-54 after it was twisted (at room temperature) to twist pitch values, L-p, of 10-100 mm. Transport measurements of J(C)-(B) and n-value were performed at 4.2 K; (ii) PIT-36 and AIMI-18 after applying bending strains up to 0.65, at room temperature. PIT-54 twisted to pitches of 100 mm down to 10 mm exhibited no degradation in J(C)(B) and only small changes in n-value. Both the J(C)(B) and n-value of PIT-36 were seen to be tolerant to bending strain of up to 04%. On the other hand, AIMI-18 showed +/- 10% changes in J(C)(B) and significant scatter in n-value over the bending strain range of 0-0.6%. (C) 2015 Elsevier B.V. All rights reserved. C1 [Yang, Y.; Li, G.; Sumption, M. D.; Collings, E. W.] Ohio State Univ, Dept Mat Sci & Engn, Ctr Superconducting & Magnet Mat, Columbus, OH 43210 USA. [Susner, M.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN USA. [Rindfleisch, M.; Tomsic, M.] Hypertech Res, Columbus, OH USA. RP Yang, Y (reprint author), Ohio State Univ, Dept Mat Sci & Engn, Ctr Superconducting & Magnet Mat, 116 W 19Th Ave, Columbus, OH 43210 USA. EM yang.1444@osu.edu RI Susner, Michael/B-1666-2013; Sumption, Mike/N-5913-2016; OI Susner, Michael/0000-0002-1211-8749; Sumption, Mike/0000-0002-4243-8380; Yang, Yuan/0000-0002-1416-4925 FU NIH, National Institute of Biomedical Imaging and Bioengineering [R01 E13018363]; NASA Phase II SBIR FX This work was supported by the NIH, National Institute of Biomedical Imaging and Bioengineering, under R01 E13018363, and NASA Phase II SBIR. NR 29 TC 2 Z9 2 U1 7 U2 28 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4534 EI 1873-2143 J9 PHYSICA C JI Physica C PD DEC 15 PY 2015 VL 519 BP 118 EP 123 DI 10.1016/j.physc.2015.10.002 PG 6 WC Physics, Applied SC Physics GA CX3LR UT WOS:000365600800021 PM 27003959 ER PT J AU Solovyov, VF Li, Q AF Solovyov, Vyacheslav F. Li, Qiang TI Application of active quenching of second generation wire for current limiting SO PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS LA English DT Article DE High temperature superconducting fault current limiter; Normal zone; Second generation wire; Fault-current limiters; Quench; Normal zone propagation ID PROPAGATION; VOLTAGE; CONDUCTORS AB Superconducting fault current limiters (SFCLs) are increasingly implemented in the power grid as a protection of substation equipment from fault currents. Resistive SFCLs are compact and light, however they are passively triggered and thus may not be sufficiently sensitive to respond to faults in the distribution grid. Here, we explore the prospect of adding an active management feature to a traditional resistive SFCL. A flexible radio-frequency coil, which is an integral part of the switching structure, acts as a triggering device. We show that the application of a short, 10 ms, burst of ac magnetic field during the fault triggers a uniform quench of the wire and significantly reduces the reaction time of the wire at low currents. The ac field burst generates a high density of normal zones, which merge into a continuous resistive region at a rate much faster than that of sparse normal zones created by the transport current alone. (C) 2015 Elsevier B.V. All rights reserved. C1 [Solovyov, Vyacheslav F.; Li, Qiang] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. RP Solovyov, VF (reprint author), Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. EM solov@bnl.gov OI Solovyov, Vyacheslav/0000-0003-1879-9802 FU U.S. Department of Energy [DE-SC00112704]; Technology Maturation Grant [TM 14-010] FX This manuscript has been authored by Brookhaven Science Associates, LLC under Contract No. DE-SC00112704 with the U.S. Department of Energy. The work at Brookhaven National Laboratory was supported by Technology Maturation Grant TM 14-010. The authors wish to thank Martin Rupich, Alex Malozemoff and Ivo Dimitrov valuable comments and corrections. NR 31 TC 0 Z9 0 U1 0 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4534 EI 1873-2143 J9 PHYSICA C JI Physica C PD DEC 15 PY 2015 VL 519 BP 130 EP 136 DI 10.1016/j.physc.2015.10.005 PG 7 WC Physics, Applied SC Physics GA CX3LR UT WOS:000365600800023 ER PT J AU Marcus, MA Edwards, KJ Gueguen, B Fakra, SC Horn, G Jelinski, NA Rouxel, O Sorensen, J Toner, BM AF Marcus, Matthew A. Edwards, Katrina J. Gueguen, Bleuenn Fakra, Sirine C. Horn, Gregory Jelinski, Nicolas A. Rouxel, Olivier Sorensen, Jeffry Toner, Brandy M. TI Iron mineral structure, reactivity, and isotopic composition in a South Pacific Gyre ferromanganese nodule over 4 Ma SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID CENTRAL INDIAN BASIN; MANGANESE NODULES; FE-ISOTOPE; MARINE-SEDIMENTS; NORTH-ATLANTIC; ICP-MS; HYDROTHERMAL VENTS; OXIDE DEPOSITS; TRACE-METALS; HALF-LIFE AB Deep-sea ferromanganese nodules accumulate trace elements from seawater and underlying sediment porewaters during the growth of concentric mineral layers over millions of years. These trace elements have the potential to record past ocean geochemical conditions. The goal of this study was to determine whether Fe mineral alteration occurs and how the speciation of trace elements responds to alteration over similar to 3.7 Ma of marine ferromanganese nodule (MFN) formation, a timeline constrained by estimates from Be-9/Be-10 concentrations in the nodule material. We determined Fe-bearing phases and Fe isotope composition in a South Pacific Gyre (SPG) nodule. Specifically, the distribution patterns and speciation of trace element uptake by these Fe phases were investigated. The time interval covered by the growth of our sample of the nodule was derived from Be-9/Be-10 accelerator mass spectrometry (AMS). The composition and distribution of major and trace elements were mapped at various spatial scales, using micro-X-ray fluorescence (mu XRF), electron microprobe analysis (EMPA), and inductively coupled plasma mass spectrometry (ICP-MS). Fe phases were characterized by micro-extended X-ray absorption fine structure (mu EXAFS) spectroscopy and micro-X-ray diffraction (mu XRD). Speciation of Ti and V, associated with Fe, was measured using micro-X-ray absorption near edge structure (mu XANES) spectroscopy. Iron isotope composition (delta Fe-56/54) in subsamples of 1-3 mm increments along the radius of the nodule was determined with multiple-collector ICP-MS (MC-ICP-MS). The SPG nodule formed through primarily hydrogeneous inputs at a rate of 4.0 +/- 0.4 mm/Ma. The nodule exhibited a high diversity of Fe mineral phases: feroxyhite (delta-FeOOH), goethite (alpha-FeOOH), lepidocrocite (gamma-FeOOH), and poorly ordered ferrihydrite-like phases. These findings provide evidence that Fe oxyhydroxides within the nodule undergo alteration to more stable phases over millions of years. Trace Ti and V were spatially correlated with Fe and found to be adsorbed to Fe-bearing minerals. Ti/Fe and V/Fe ratios, and Ti and V speciation, did not vary along the nodule radius. The delta Fe-56/54 values, when averaged over sample increments representing 0.25-0.75 Ma, were homogeneous within uncertainty along the nodule radius, at -0.12 +/- 0.07 parts per thousand (2sd, n = 10). Our results indicate that the Fe isotope composition of the nodule remained constant during nodule growth and that mineral alteration did not affect the primary Fe isotope composition of the nodule. Furthermore, the average delta Fe-56/54 value of -0.12 parts per thousand we find is consistent with Fe sourced from continental eolian particles (dust). Despite mineral alteration, the trace element partitioning of Ti and V, and Fe isotope composition, do not appear to change within the sensitivity of our measurements. These findings suggest that Fe oxyhydroxides within hydrogenetic ferromanganese nodules are out of geochemical contact with seawater once they are covered by subsequent concentric mineral layers. Even though Febearing minerals are altered, trace element ratios, speciation and Fe isotope composition are preserved within the nodule. Published by Elsevier Ltd. C1 [Marcus, Matthew A.; Fakra, Sirine C.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Edwards, Katrina J.; Horn, Gregory] Univ So Calif, Dept Biol Sci, Los Angeles, CA 90089 USA. [Gueguen, Bleuenn; Rouxel, Olivier] IFREMER, Ctr Brest, Unite Geosci Marines, F-29280 Plouzane, France. [Gueguen, Bleuenn] Univ Brest, Inst Univ Europeen Mer, UMR 6538, F-29280 Plouzane, France. [Gueguen, Bleuenn] Yale Univ, Dept Geol & Geophys, New Haven, CT 06520 USA. [Jelinski, Nicolas A.; Sorensen, Jeffry; Toner, Brandy M.] Univ Minnesota, Dept Soil Water & Climate, St Paul, MN 55108 USA. RP Marcus, MA (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. EM mamarcus@lbl.gov RI Toner, Brandy/N-7911-2016 OI Toner, Brandy/0000-0002-3681-3455 FU NSF through the MRSEC program; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; Institut Carnot - EDROME; [ANR-10-LABX-19-01] FX We thank the science team, crew, and Chief Scientist Steven D'Hondt of the KNOX02RR cruise for access to the South Pacific Gyre. We thank Tristan Horner for helpful discussions of the manuscript; Lindsey Briscoe for measuring the XRD pattern of feroxyhite (Characterization Facility, University of Minnesota, which receives partial support from NSF through the MRSEC program); Fred Davis for measuring the elemental composition by electron microprobe (Electron Microprobe Laboratory, University of Minnesota), Shahida Quazi for assistance at ALS BL 10.3.2, and Terhuhiko Kashiwabara for discussions and reference spectra for V and La, Emmanuel Ponzevera, Yoan Germain and Celine Liorzou for technical assistance at Ifremer-IUEM, and Purdue University's PRIME Lab for 10Be AMS measurements. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. O.R. and B.G. thank funding sources from ANR-10-LABX-19-01 and Institut Carnot - EDROME. NR 96 TC 4 Z9 4 U1 9 U2 45 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 EI 1872-9533 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD DEC 15 PY 2015 VL 171 BP 61 EP 79 DI 10.1016/j.gca.2015.08.021 PG 19 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA CW2KW UT WOS:000364822100005 ER PT J AU Swann, ALS Longo, M Knox, RG Lee, E Moorcroft, PR AF Swann, Abigail L. S. Longo, Marcos Knox, Ryan G. Lee, Eunjee Moorcroft, Paul R. TI Future deforestation in the Amazon and consequences for South American climate SO AGRICULTURAL AND FOREST METEOROLOGY LA English DT Article DE Amazon deforestation; Biosphere-atmosphere interactions; Ecosystem-climate interactions ID LAND-USE; REGIONAL CLIMATE; WET-SEASON; TROPICAL DEFORESTATION; CARBON-DIOXIDE; RAIN-FOREST; DRY-SEASON; BASIN; IMPACTS; BRAZIL AB Ongoing agricultural expansion in Amazonia and the surrounding areas of Brazil is expected to continue over the next several decades as global food demand increases. The transition of natural forest and savannah ecosystems to pastureland and agricultural crops is predicted to create warmer and drier atmospheric conditions than the native vegetation. Using a coupled ecosystem regional atmospheric model (EDBRAMS) we investigate the expected impacts of predicted future land use on the climate of South America. The climate response in the model simulations is generally consistent with expectations from previous global modeling simulations with drier conditions resulting from deforestation, however the changes in precipitation are relatively small (on order of a few percent). Local drying is driven primarily by decreases in evapo-transpiration associated with the loss of forest, and concomitant increases in runoff. Significant changes in convectively available potential energy (CAPE) and convective inhibition (CIN) during the transition to the wet season indicate that the decrease in surface latent heat flux is indeed leading to a drier atmosphere, however these changes occur around a mean climatological state that is already very favorable for convection, and thus lead to relatively small changes in precipitation. If, however, these land use changes were to occur under a background state of drier conditions, such as those predicted for the future global climate model experiments, this additional atmospheric drying may be sufficient to decrease precipitation more substantially. (C) 2015 Elsevier B.V. All rights reserved. C1 [Swann, Abigail L. S.] Univ Washington, Dept Atmospher Sci, Seattle, WA 98195 USA. [Longo, Marcos] Embrapa Satellite Monitoring, Campinas, SP, Brazil. [Knox, Ryan G.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Lee, Eunjee; Moorcroft, Paul R.] Harvard Univ, Dept Organism & Evolutionary Biol, Cambridge, MA 02138 USA. RP Swann, ALS (reprint author), Univ Washington, Dept Atmospher Sci, Box 351640, Seattle, WA 98195 USA. EM aswann@u.washington.edu RI Longo, Marcos/F-5033-2014; Knox, Ryan/N-7897-2013 OI Longo, Marcos/0000-0001-5062-6245; Knox, Ryan/0000-0003-1140-3350 FU National Science Foundation [AGS-1321745, EF-1340649]; National Science Foundatiaon [AGS-0449793]; National Aeronautics and Space Administration [NNG06GD63G]; Italy's Ministry for Environment, Land and Sea; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq) FX We acknowledge National Science Foundation Awards AGS-1321745 and EF-1340649 to the University of Washington, as well as National Science Foundatiaon Award AGS-0449793 and National Aeronautics and Space Administration Grant NNG06GD63G to the Massachusetts Institute of Technology. This work was partially conducted while A.L.S.S. and E.L. were Giorgio Ruffolo Fellows in the Sustainability Science Program at Harvard University, for which support from Italy's Ministry for Environment, Land and Sea is gratefully acknowledged. M.L. was supported by Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq). Britaldo Soares Filho provided the SimAmazonia scenarios. We would like to thank an anonymous reviewer for their constructive comments. Jung-Eun Lee, Benjamin Lintner, and Daehyun Kim provided helpful discussions. NR 75 TC 6 Z9 6 U1 20 U2 121 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-1923 EI 1873-2240 J9 AGR FOREST METEOROL JI Agric. For. Meteorol. PD DEC 15 PY 2015 VL 214 BP 12 EP 24 DI 10.1016/j.agrformet.2015.07.006 PG 13 WC Agronomy; Forestry; Meteorology & Atmospheric Sciences SC Agriculture; Forestry; Meteorology & Atmospheric Sciences GA CW1DO UT WOS:000364730000003 ER PT J AU D'Odorico, P Gonsamo, A Gough, CM Bohrer, G Morison, J Wilkinson, M Hanson, PJ Gianelle, D Fuentes, JD Buchmann, N AF D'Odorico, Petra Gonsamo, Alemu Gough, Christopher M. Bohrer, Gil Morison, James Wilkinson, Matthew Hanson, Paul J. Gianelle, Damiano Fuentes, Jose D. Buchmann, Nina TI The match and mismatch between photosynthesis and land surface phenology of deciduous forests SO AGRICULTURAL AND FOREST METEOROLOGY LA English DT Article DE EVI; FLUXNET; Gross ecosystem productivity; MODIS; NDVI; Phenology Index ID NET ECOSYSTEM EXCHANGE; EDDY-COVARIANCE MEASUREMENTS; DIGITAL REPEAT PHOTOGRAPHY; BROAD-LEAVED TREES; SPRING PHENOLOGY; CARBON UPTAKE; BEECH FOREST; VEGETATION PHENOLOGY; NORTHERN WISCONSIN; SEASONAL PATTERN AB Plant phenology is a key indicator of the terrestrial biosphere's response to climate change, as well as a driver of global climate through changes in the carbon, energy and water cycles. Remote sensing observations of seasonal canopy greenness dynamics represent a valuable means to study land surface phenology (LSP) at scales relevant for comparison with regional climate information as well as ecosystem-level CO2 fluxes. We explore relationships among key LSP dates at the start and end of the season captured by three remote sensing products (i.e., NDVI: Normalized Difference Vegetation Index; PI: Phenology Index; MODIS Land Cover Dynamics Product based on the Enhanced Vegetation Index, EVI) over 19 deciduous broadleaf and mixed forest sites in the northern hemisphere for 2000-2012, and compare these estimates to estimates of start and end of photosynthesis phenology extracted from gross primary productivity (GPP) from CO2 flux measurements. To derive phenological transition dates, we use analytical solutions of various derivatives from the fitted logistic curves. LSP dates estimated by the three remote sensing products were not equivalent and differed in their sign and magnitude of lags with photosynthesis phenology dates. NDVI-derived phenology was characterized by shorter growing seasons, while EVI prolonged it by about two weeks compared to the photosynthesis phenology season length. PI start and end of season dates more closely matched the start (r(2) = 0.84, RMSE = 7.61) and end (r(2) = 0.61, RMSE = 8.57) of photosynthesis phenology as estimated by GPP time series. PI was also found agreeing best with LSP estimates from highly spatially resolved ground digital camera observations, available for about half of the investigated FLUXNET sites. Although there were strong relationships between remotely sensed LSP and photosynthesis phenology, the relationships were not consistent across deciduous forest ecosystems implying that the vegetative and photosynthetic timing do not always follow each other in the same direction. (C) 2015 Elsevier B.V. All rights reserved. C1 [D'Odorico, Petra; Buchmann, Nina] ETH, Inst Agr Sci, Grassland Sci Grp, CH-8092 Zurich, Switzerland. [Gonsamo, Alemu] Univ Toronto, Dept Geog, Toronto, ON M5S 3G3, Canada. [Gonsamo, Alemu] Univ Toronto, Program Planning, Toronto, ON M5S 3G3, Canada. [Gough, Christopher M.] Virginia Commonwealth Univ, Dept Biol, Richmond, VA 23284 USA. [Bohrer, Gil] Ohio State Univ, Dept Civil Environm & Geodet Engn, Columbus, OH 43210 USA. [Morison, James; Wilkinson, Matthew] Forest Res, Ctr Sustainable Forestry & Climate Change, Farnham GU10 4LH, Surrey, England. [Hanson, Paul J.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Gianelle, Damiano] Fdn Edmund Mach, IASMA Res & Innovat Ctr, Sustainable Agroecosyst & Bioresources Dept, I-38010 San Michele All Adige, TN, Italy. [Fuentes, Jose D.] Penn State Univ, Dept Meteorol, University Pk, PA 16802 USA. RP D'Odorico, P (reprint author), ETH, Inst Agr Sci, Grassland Sci Grp, Univ Str 2, CH-8092 Zurich, Switzerland. EM petra.dodorico@usys.ethz.ch RI Buchmann, Nina/E-6095-2011; Hanson, Paul J./D-8069-2011; Gonsamo, Alemu/D-1795-2010; Gianelle, Damiano/G-9437-2011; OI Hanson, Paul J./0000-0001-7293-3561; Gonsamo, Alemu/0000-0002-2461-618X; Gianelle, Damiano/0000-0001-7697-5793; Bohrer, Gil/0000-0002-9209-9540 FU FLUXNET network FX We thank the MODIS land product processing team at Oak Ridge National Laboratory Distributed Active Archive Center (ORNL DAAC) for the MODIS Collection 5 data. We thank the FLUXNET network, the site principal investigators, co-investigators, data collection and processing staff, and the agencies and institutions that funded long-term measurements at these sites. Ground digital camera data for US sites were obtained from the PhenoCam network, we thank Andrew Richardson and all the staff which contributed in compiling and maintaining this data archive. We thank Ankur R. Desai for comments on an earlier version of the manuscript. Two anonymous reviewers provided valuable comments. NR 71 TC 6 Z9 6 U1 9 U2 71 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-1923 EI 1873-2240 J9 AGR FOREST METEOROL JI Agric. For. Meteorol. PD DEC 15 PY 2015 VL 214 BP 25 EP 38 DI 10.1016/j.agrformet.2015.07.005 PG 14 WC Agronomy; Forestry; Meteorology & Atmospheric Sciences SC Agriculture; Forestry; Meteorology & Atmospheric Sciences GA CW1DO UT WOS:000364730000004 ER PT J AU Wagle, P Xiao, XM Scott, RL Kolb, TE Cook, DR Brunsell, N Baldocchi, DD Basara, J Matamala, R Zhou, YT Bajgain, R AF Wagle, Pradeep Xiao, Xiangming Scott, Russell L. Kolb, Thomas E. Cook, David R. Brunsell, Nathaniel Baldocchi, Dennis D. Basara, Jeffrey Matamala, Roser Zhou, Yuting Bajgain, Rajen TI Biophysical controls on carbon and water vapor fluxes across a grassland climatic gradient in the United States SO AGRICULTURAL AND FOREST METEOROLOGY LA English DT Article DE Ecosystem water use efficiency; Eddy covariance; Enhanced vegetation index; Evapotranspiration; Grasslands; Gross primary production ID NET ECOSYSTEM EXCHANGE; GROSS PRIMARY PRODUCTION; INTERANNUAL VARIABILITY; USE EFFICIENCY; CO2 EXCHANGE; TERRESTRIAL ECOSYSTEMS; VEGETATION PHENOLOGY; PRIMARY PRODUCTIVITY; TALLGRASS PRAIRIE; DIOXIDE EXCHANGE AB Understanding of the underlying causes of spatial variation in exchange of carbon and water vapor fluxes between grasslands and the atmosphere is crucial for accurate estimates of regional and global carbon and water budgets, and for predicting the impact of climate change on biosphere-atmosphere feedbacks of grasslands. We used ground-based eddy flux and meteorological data, and the Moderate Resolution Imaging Spectroradiometer (MODIS) enhanced vegetation index (EVI) from 12 grasslands across the United States to examine the spatial variability in carbon and water vapor fluxes and to evaluate the biophysical controls on the spatial patterns of fluxes. Precipitation was strongly associated with spatial and temporal variability in carbon and water vapor fluxes and vegetation productivity. Grasslands with annual average precipitation <600 mm generally had neutral annual carbon balance or emitted small amount of carbon to the atmosphere. Despite strong coupling between gross primary production (GPP) and evapotranspiration (ET) across study sites, GPP showed larger spatial variation than ET, and EVI had a greater effect on GPP than on ET. Consequently, large spatial variation in ecosystem water use efficiency (EWUE = annual GPP/ET; varying from 0.67 +/- 0.55 to 2.52 +/- 0.52 g C mm(-1) ET) was observed. Greater reduction in GPP than ET at high air temperature and vapor pressure deficit caused a reduction in EWUE in dry years, indicating a response which is opposite than what has been reported for forests. Our results show that spatial and temporal variations in ecosystem carbon uptake, ET, and water use efficiency of grasslands were strongly associated with canopy greenness and coverage, as indicated by EVI. (C) 2015 Elsevier B.V. All rights reserved. C1 [Wagle, Pradeep; Xiao, Xiangming; Zhou, Yuting; Bajgain, Rajen] Univ Oklahoma, Dept Microbiol & Plant Biol, Ctr Spatial Anal, Norman, OK 73019 USA. [Xiao, Xiangming] Fudan Univ, Inst Biodivers Sci, Shanghai 200433, Peoples R China. [Scott, Russell L.] ARS, USDA, Southwest Watershed Res Ctr, Tucson, AZ 85719 USA. [Kolb, Thomas E.] Univ Arizona, Sch Forestry, Flagstaff, AZ 86011 USA. [Cook, David R.] Argonne Natl Lab, Div Environm Res, Argonne, IL 60439 USA. [Brunsell, Nathaniel] Univ Kansas, Atmospher Sci Program, Dept Geog, Lawrence, KS 66045 USA. [Baldocchi, Dennis D.] Univ Calif Berkeley, Dept Environm Sci Policy & Management, Berkeley, CA 94720 USA. [Basara, Jeffrey] Univ Oklahoma, Sch Meteorol, Norman, OK 73019 USA. [Basara, Jeffrey] Univ Oklahoma, Oklahoma Climatol Survey, Norman, OK 73019 USA. [Matamala, Roser] Argonne Natl Lab, Biosci Div, Argonne, IL 60439 USA. RP Wagle, P (reprint author), Univ Oklahoma, Dept Microbiol & Plant Biol, Ctr Spatial Anal, Norman, OK 73019 USA. EM pradeep.wagle@ou.edu RI Baldocchi, Dennis/A-1625-2009; OI Baldocchi, Dennis/0000-0003-3496-4919; Wagle, Pradeep/0000-0001-7444-0461 FU USDA National Institute for Food and Agriculture (NIFA)'s Agriculture and Food Research Initiative (AFRI) [2012-02355]; Regional Approaches for Adaptation to and Mitigation of Climate Variability and Change; National Science Foundation EPSCoR [(IIA-1301789]; Northern Arizona University from the North American Carbon Program/USDA CREES NRI [2004-35111-15057, 2008-35101-19076]; Science Foundation Arizona [CAA 0-203-08]; NSF EPSCoR (NSF) [EPS-0553722, EPS-0919443]; NSF Long Term Ecological Research Program at Konza Prairie Biological Station [DEB-0823341, SS1093]; NOAA Climate Program Office's Sectoral Applications Research Program (SARP) [NA130AR4310122]; U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, Terrestrial Ecosystem Science Program [DE-AC02-06CH11357]; USDA; USDA and U.S. Department of Energy's Office of Science; [KAN0061396/KAN0066263] FX This study was supported in part by a research grant (Project No. 2012-02355) through the USDA National Institute for Food and Agriculture (NIFA)'s Agriculture and Food Research Initiative (AFRI), Regional Approaches for Adaptation to and Mitigation of Climate Variability and Change, and a research grant (IIA-1301789) from the National Science Foundation EPSCoR. This research was supported by grants to T. Kolb and Northern Arizona University from the North American Carbon Program/USDA CREES NRI (2004-35111-15057 and 2008-35101-19076) and Science Foundation Arizona (CAA 0-203-08). The Konza Prairie site was supported by grants to N. Brunsell from the NSF EPSCoR (NSF EPS-0553722 and EPS-0919443) and KAN0061396/KAN0066263 and the NSF Long Term Ecological Research Program at Konza Prairie Biological Station (DEB-0823341 and sub-contract: SS1093). It was also partly supported by NOAA Climate Program Office's Sectoral Applications Research Program (SARP) grant NA130AR4310122. The Fermi site was supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, Terrestrial Ecosystem Science Program under contract DE-AC02-06CH11357. Funding for the Kendall and Santa Rite flux sites was from the USDA and U.S. Department of Energy's Office of Science. Data were obtained from AmeriFlux database (http://ameriflux.ornl.gov/). The authors thank an anonymous reviewer for the comments on previous version of this manuscript. NR 60 TC 7 Z9 7 U1 7 U2 36 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-1923 EI 1873-2240 J9 AGR FOREST METEOROL JI Agric. For. Meteorol. PD DEC 15 PY 2015 VL 214 BP 293 EP 305 DI 10.1016/j.agrformet.2015.08.265 PG 13 WC Agronomy; Forestry; Meteorology & Atmospheric Sciences SC Agriculture; Forestry; Meteorology & Atmospheric Sciences GA CW1DO UT WOS:000364730000027 ER PT J AU Petrie, MD Pockman, WT Pangle, RE Limousin, JM Plaut, JA McDowell, NG AF Petrie, M. D. Pockman, W. T. Pangle, R. E. Limousin, J. M. Plaut, J. A. McDowell, N. G. TI Winter climate change promotes an altered spring growing season in pinon pine-juniper woodlands SO AGRICULTURAL AND FOREST METEOROLOGY LA English DT Article DE Climate change; Winter ecology; Southwestern United States; Pinon-juniper woodland ID WESTERN UNITED-STATES; SOIL-MOISTURE DYNAMICS; WATER-CONTROLLED ECOSYSTEMS; SOUTHWESTERN NORTH-AMERICA; CHANGE-TYPE DROUGHT; CENTRAL NEW-MEXICO; SUMMER PRECIPITATION; HYDROLOGIC PROCESSES; HIGH-ELEVATION; CARBON FLUXES AB Pinon pine-juniper (Pinus edulis-Juniperus monosperma) woodlands constitute a large proportion of land area in the southwestern United States and have experienced widespread vegetation mortality during regional drought events over the past century. Pinon pines have been especially affected by these events, and drought severity is predicted to increase in this region in the future. Based on research that suggests winter climate may influence growing season productivity in semiarid ecosystems, we evaluated the potential for small changes in average winter climate to affect spring growing season conditions in pinon-juniper woodlands, New Mexico, USA. We developed a low-dimensional ecohydrological model of pinon-juniper woodland ecosystems on moderate slopes (5%) and on steep slopes (25%) and simulated the responses of ecosystem water availability, surface conditions, and water and carbon flux dynamics to a climate change scenario of increased temperature and decreased winter precipitation. The climate change scenario reduced average winter snowcover, decreased surface albedo, increased net radiation, and altered the timing of spring evaporation (E) towards earlier dates. Moderate slope pinon and juniper trees experienced small reductions in transpiration (Tr) and carbon assimilation (A), and those on steep slopes experienced small but relatively larger reductions in Tr and A, as well as higher increases in soil moisture (0) variance and E variance. As a result of climate change, the peak of spring Tr occurred on average 6 days earlier on moderate slopes and 10 days earlier on steep slopes, the timing of A shifted towards earlier March dates, and A was reduced during April and May. Steep slope pinon pines experienced greater proportional reductions in Tr and A than junipers. Our results suggests that winter climate change will promote an earlier growing season in pinon-juniper woodlands, will increase daily variance in 9 and E during spring, and will produce slight reductions in Am woodlands with steep slopes and a large proportion of pinon pines. In a more arid future climate, a shift towards lower soil moisture availability and carbon assimilation in April and May may intensify the effects of early summer drought events for pinon-juniper woodlands, thus exacerbating the impacts of larger changes in climate dynamics. Published by Elsevier B.V. C1 [Petrie, M. D.] US Geol Survey, Southwest Biol Sci Ctr, Flagstaff, AZ 86001 USA. [Petrie, M. D.] Univ Wyoming, Dept Bot, Laramie, WY 82071 USA. [Pockman, W. T.; Pangle, R. E.; Limousin, J. M.; Plaut, J. A.] Univ New Mexico, Dept Biol, Albuquerque, NM 87131 USA. [McDowell, N. G.] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. RP Petrie, MD (reprint author), US Geol Survey, Southwest Biol Sci Ctr, Flagstaff, AZ 86001 USA. EM mpetrie@usgs.gov RI Pockman, William/D-4086-2014 OI Pockman, William/0000-0002-3286-0457 FU National Science Foundation; US DOE Office of Science (BER) FX This research was partially funded by a National Science Foundation grant to the University of New Mexico for Long Term Ecological Research at the Sevilleta LTER. The rainfall manipulation experiment was supported by the US DOE Office of Science (BER). NR 69 TC 0 Z9 0 U1 8 U2 30 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-1923 EI 1873-2240 J9 AGR FOREST METEOROL JI Agric. For. Meteorol. PD DEC 15 PY 2015 VL 214 BP 357 EP 368 DI 10.1016/j.agrformet.2015.08.269 PG 12 WC Agronomy; Forestry; Meteorology & Atmospheric Sciences SC Agriculture; Forestry; Meteorology & Atmospheric Sciences GA CW1DO UT WOS:000364730000033 ER PT J AU Chertkov, M Backhaus, S Lebedev, V AF Chertkov, Michael Backhaus, Scott Lebedev, Vladimir TI Cascading of fluctuations in interdependent energy infrastructures: Gas-grid coupling SO APPLIED ENERGY LA English DT Article DE Natural gas network; Power grid network; Optimization; Uncertainty; Fluctuations ID NATURAL-GAS; PIPELINE NETWORKS; OPTIMAL POWER; FLOW; SYSTEMS; MODEL; OPTIMIZATION; ELECTRICITY; SECURITY AB The revolution of hydraulic fracturing has dramatically increased the supply and lowered the cost of natural gas in the United States driving an expansion of natural gas-fired generation capacity in many electrical grids. Unrelated to the natural gas expansion, lower capital costs and renewable portfolio standards are driving an expansion of intermittent renewable generation capacity such as wind and photovoltaic generation. These two changes may potentially combine to create new threats to the reliability of these interdependent energy infrastructures. Natural gas-fired generators are often used to balance the fluctuating output of wind generation. However, the time-varying output of these generators results in time-varying natural gas burn rates that impact the pressure in interstate transmission pipelines. Fluctuating pressure impacts the reliability of natural gas deliveries to those same generators and the safety of pipeline operations. We adopt a partial differential equation model of natural gas pipelines and use this model to explore the effect of intermittent wind generation on the fluctuations of pressure in natural gas pipelines. The mean square pressure fluctuations are found to grow linearly in time with points of maximum deviation occurring at the locations of flow reversals. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Chertkov, Michael] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Chertkov, Michael] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Chertkov, Michael; Backhaus, Scott] New Mexico Consortium, Los Alamos, NM 87544 USA. [Backhaus, Scott] Los Alamos Natl Lab, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA. [Lebedev, Vladimir] Landau Inst Theoret Phys, Chernogolovka 142432, Moscow Region, Russia. RP Chertkov, M (reprint author), Los Alamos Natl Lab, Div Theoret, POB 1663, Los Alamos, NM 87545 USA. EM chertkov@lanl.gov OI Backhaus, Scott/0000-0002-0344-6791; Chertkov, Michael/0000-0002-6758-515X FU National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory [DE-AC52-06NA25396]; Advanced Grid Modeling Program in the US Department of Energy Office of Electricity; DTRA Basic Research Project [10027-13399]; NSF/ECCS collaborative research project on Power Grid Spectroscopy through NMC FX The authors acknowledge multiple discussions with R. Bent and S. Misra, and A. Zlotnik for discussions and help with references. The work at LANL was carried out under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396. MC and SB also acknowledge partial support of the Advanced Grid Modeling Program in the US Department of Energy Office of Electricity, DTRA Basic Research Project #10027-13399 and the NSF/ECCS collaborative research project on Power Grid Spectroscopy through NMC. NR 41 TC 4 Z9 4 U1 4 U2 17 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0306-2619 EI 1872-9118 J9 APPL ENERG JI Appl. Energy PD DEC 15 PY 2015 VL 160 BP 541 EP 551 DI 10.1016/j.apenergy.2015.09.085 PG 11 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA CW3KH UT WOS:000364890700048 ER PT J AU Adelstein, N Olson, CS Lordi, V AF Adelstein, Nicole Olson, Christopher S. Lordi, Vincenzo TI Hole traps in sodium silicate: First-principles calculations of the mobility edge SO JOURNAL OF NON-CRYSTALLINE SOLIDS LA English DT Article DE Mobility edge; DFT; Sodium silicate; Non-bridging oxygen ID MOLECULAR-DYNAMICS SIMULATIONS; AUGMENTED-WAVE METHOD; AMORPHOUS-SILICON; GLASSES; LUMINESCENCE; TEMPERATURE; TRANSITION; GENERATION; EFFICIENCY; METALS AB The structure and properties of (Na2O)(0.30)(SiO2)(0.70) sodium silicate glass are studied by combined ab-initio and classical molecular dynamics simulations to identify the sources of electronic traps in the band gap. Structures from classical molecular dynamics melt-quench simulations are taken as initial configurations for first-principles density functional theory structural relaxation, from which electronic properties are determined. An ensemble of thirty glass structures, each containing 660 atoms, is prepared in order to perform statistical analyses. The inverse participation ratio is used as a metric to characterize localized states in the band gap and determine the mobility edge. Structures with varying amounts of local disorder (traps) are compared. The most localized and highest energy trap states are due to Si atoms with 2-3 non-bridging oxygen atoms. Control of the electronic properties of amorphous insulators and semiconductors is essential for the advancement of many technologies, such as photo-voltaics and scintillators, for which the present analysis is indispensable. (C) 2015 Elsevier B.V. All rights reserved. C1 [Adelstein, Nicole; Olson, Christopher S.; Lordi, Vincenzo] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Adelstein, N (reprint author), San Francisco State Univ, San Francisco, CA 94132 USA. EM nicoleal@sfsu.edu OI Lordi, Vincenzo/0000-0003-2415-4656 FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; DOE/NNSA Office of Defense Nuclear Nonproliferation Research and Development PDP WMS Team [LL13-MatModelRadDetect-PD2Jf] FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and funded by the DOE/NNSA Office of Defense Nuclear Nonproliferation Research and Development PDP WMS Team (LL13-MatModelRadDetect-PD2Jf). NR 36 TC 1 Z9 1 U1 3 U2 23 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3093 EI 1873-4812 J9 J NON-CRYST SOLIDS JI J. Non-Cryst. Solids PD DEC 15 PY 2015 VL 430 BP 9 EP 15 DI 10.1016/j.jnoncrysol.2015.08.032 PG 7 WC Materials Science, Ceramics; Materials Science, Multidisciplinary SC Materials Science GA CW5RQ UT WOS:000365054700002 ER PT J AU Franz, S Barzi, E Turrioni, D Glionna, L Bestetti, M AF Franz, S. Barzi, E. Turrioni, D. Glionna, L. Bestetti, M. TI Electrochemical synthesis of Nb3Sn coatings on Cu substrates SO MATERIALS LETTERS LA English DT Article DE Nb3Sn; Ionic liquids; 1-Butyl-3-methylimidazolium chloride; Niobium; Tin; Electrodeposition AB This work aims at contributing to the development of superconducting Nb3Sn thin films for possible applications, as for instance in superconducting radio frequency (SRF) cavities. The synthesis of Nb-Sn coatings was carried out on copper substrates by electrodeposition from 1-butyl-3-methylimidazolium chloride (BMIC) ionic liquids containing SnCl2 and NbCl5. Cyclic voltammetric curves were recorded to identify the reduction potentials of Nb and Sn ionic species. Electrodeposition was performed at 40 and 400 mA/cm(2) and 130 degrees C. The CV demonstrated that BMIC has a suitable potential window for co-deposition of Nb and Sn. The electrodeposited coatings showed a cubic Nb3Sn phase with (211) preferred orientation, a disordered orthorhombic NbSn2 phase and Sn-Cu phases. Film thickness was from 200 to 750 nm. These results suggest that electrodeposition of Nb-Sn coatings on copper substrates could be a suitable route to one day replace the current expensive Nb SRF cavities. (C) 2015 The Authors. Published by Elsevier B.V. C1 [Franz, S.; Glionna, L.; Bestetti, M.] Politecn Milan, Dipartimento Chim Mat & Ingn Chim Giulio Natta, I-20131 Milan, Italy. [Barzi, E.; Turrioni, D.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Franz, S (reprint author), Politecn Milan, Dipartimento Chim Mat & Ingn Chim Giulio Natta, Via Mancinelli 7, I-20131 Milan, Italy. EM silvia.franz@polimi.it FU Fermi Research Alliance, LLC [DE-AC02-07CH11359]; U.S. Department of Energy FX Work partially supported by Fermi Research Alliance, LLC, under contract no. DE-AC02-07CH11359 with the U.S. Department of Energy. NR 14 TC 3 Z9 3 U1 4 U2 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-577X EI 1873-4979 J9 MATER LETT JI Mater. Lett. PD DEC 15 PY 2015 VL 161 BP 613 EP 615 DI 10.1016/j.matlet.2015.09.046 PG 3 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA CW3KR UT WOS:000364891700158 ER PT J AU Pasquali, M Lacarbonara, W Farrar, CR AF Pasquali, Michele Lacarbonara, Walter Farrar, Charles R. TI Delamination detection in composite laminates using high-frequency P- and S-waves - Part II: Experimental validation SO COMPOSITE STRUCTURES LA English DT Article DE High-frequency ultrasonic waves; P-waves; S-waves; Delamination detection; Ultrasonic scan; Multilayer composite laminate ID LAMB WAVE AB In this work, the delamination detection procedure presented in part I is experimentally investigated (Pasquali and Lacarbonara, 2015). Attention placed on the through-the-thickness propagation direction of composite laminates undergoing delaminations. As observed in the numerical tests, a precise correlation between the delamination position and the variations of the Time of Flight (ToF) of primary (P) and secondary (S) waves is found. A substantial modulation of the power spectral density (PSD) of the acquired output signals is recorded in the case of delaminations close to the surface onto which the actuator/sensor transducers are bonded. The experimental validation of the proposed SHM procedure is carried out through extensive testing on different types of isotropic and composite specimen. A good agreement between the experimental results and the theoretical predictions shown in part I Ellis found, together with determination of limitations on the delamination position offset with respect to the actuator sensor pair position. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Pasquali, Michele] Univ Roma La Sapienza, Dept Mech & Aerosp Engn, I-00184 Rome, Italy. [Lacarbonara, Walter] Univ Roma La Sapienza, Dept Struct & Geotech Engn, I-00184 Rome, Italy. [Farrar, Charles R.] Los Alamos Natl Lab, Engn Inst, Los Alamos, NM 87545 USA. RP Lacarbonara, W (reprint author), Univ Roma La Sapienza, Dept Struct & Geotech Engn, I-00184 Rome, Italy. EM walter.lacarbonara@uniroma1.it OI Farrar, Charles/0000-0001-6533-6996; Lacarbonara, Walter/0000-0002-8780-281X NR 12 TC 1 Z9 1 U1 3 U2 13 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0263-8223 EI 1879-1085 J9 COMPOS STRUCT JI Compos. Struct. PD DEC 15 PY 2015 VL 134 BP 1109 EP 1117 DI 10.1016/j.compstruct.2015.05.042 PG 9 WC Materials Science, Composites SC Materials Science GA CU8ZF UT WOS:000363831900109 ER PT J AU Sarkar, R Bruckner, F Gunther, M Wang, K Petrovic, C Biswas, PK Luetkens, H Morenzoni, E Amato, A Klauss, HH AF Sarkar, R. Brueckner, F. Guenther, M. Wang, Kefeng Petrovic, C. Biswas, P. K. Luetkens, H. Morenzoni, E. Amato, A. Klauss, H-H. TI Sn-119-NMR investigations on superconducting Ca3Ir4Sn13: Evidence for multigap superconductivity SO PHYSICA B-CONDENSED MATTER LA English DT Article DE NMR; BCS superconductivity; Multigap ID STANNIDES; SYSTEMS AB We report bulk superconductivity (SC) in Ca3Ir4Sn13 by means of Sn-119 nuclear magnetic resonance (NMR) experiments. Two classical signatures of BCS superconductivity in spin-lattice relaxation rate (1/T-1), namely the Hebel-Slichter coherence peak just below the Tc, and the exponential decay in the superconducting phase, are evident. The noticeable decrease of Sn-119 Knight shift below T-c indicates spinsinglet superconductivity. The temperature dependence of the spin-lattice relaxation rate (119)(1/T-1) is convincingly described by the multigap isotropic superconducting gap. NMR experiments do not witness any sign of enhanced spin fluctuations. (C) 2015 Elsevier B.V. All rights reserved. C1 [Sarkar, R.; Brueckner, F.; Guenther, M.; Klauss, H-H.] Tech Univ Dresden, Inst Solid State Phys, D-01069 Dresden, Germany. [Wang, Kefeng; Petrovic, C.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Biswas, P. K.; Luetkens, H.; Morenzoni, E.; Amato, A.] Paul Scherrer Inst, Lab Muon Spin Spect, CH-5232 Villigen, Switzerland. RP Sarkar, R (reprint author), Tech Univ Dresden, Inst Solid State Phys, D-01069 Dresden, Germany. EM rajibsarkarsinp@gmail.com RI Sarkar, Rajib/G-9738-2011; Amato, Alex/H-7674-2013; Luetkens, Hubertus/G-1831-2011 OI Amato, Alex/0000-0001-9963-7498; FU DFG [SA 2426/1-1]; US DOE [DE-SC00112704] FX R. Sarkar is thankful to DFG for the financial support through Grant no. SA 2426/1-1. Work at Brookhaven is supported by the US DOE under Contract no. DE-SC00112704. NR 17 TC 1 Z9 1 U1 3 U2 31 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4526 EI 1873-2135 J9 PHYSICA B JI Physica B PD DEC 15 PY 2015 VL 479 BP 51 EP 53 DI 10.1016/j.physb.2015.09.030 PG 3 WC Physics, Condensed Matter SC Physics GA CV3NS UT WOS:000364166500009 ER PT J AU Javni, I Bilic, O Bilic, N Petrovic, ZS Eastwood, EA Zhang, F Ilavsky, J AF Javni, Ivan Bilic, Olivera Bilic, Nikola Petrovic, Zoran S. Eastwood, Eric A. Zhang, Fan Ilavsky, Jan TI Thermoplastic polyurethanes with isosorbide chain extender SO JOURNAL OF APPLIED POLYMER SCIENCE LA English DT Article DE biopolymers & renewable polymers; elastomers; polyurethanes; structure-property relations ID TISSUE-REPAIR; DIISOCYANATE; REGENERATION; ELASTOMERS; SCAFFOLDS AB Isosorbide, a renewable diol derived from starch, was used alone or in combination with butane diol (BD) as the chain extender in two series of thermoplastic polyurethanes (TPU) with 50 and 70% polytetramethylene ether glycol (PTMEG) soft segment concentration (SSC), respectively. In the synthesized TPUs, the hard segment composition was systematically varied in both series following BD/isosorbide molar ratios of 100 : 0; 75 : 25; 50 : 50; 25 : 75, and 0 : 100 to examine in detail the effect of chain extenders on properties of segmented polyurethane elastomers with different morphologies. We found that polyurethanes with 50% SSC were hard elastomers with Shore D hardness of around 50, which is consistent with assumed co-continuous morphology. Polymers with 70% SSC displayed lower Shore A hardness of 74-79 (Shore D around 25) as a result of globular hard domains dispersed in the soft matrix. Insertion of isosorbide increased rigidity, melting point and glass transition temperature of hard segments and tensile strength of elastomers with 50% SSC. These effects were weaker or non-existent in 70% SSC series due to the short hard segments and low content of isosorbide. We also found that the thermal stability was lowered by increasing isosorbide content in both series. (C) 2015 Wiley Periodicals, Inc. C1 [Javni, Ivan; Bilic, Olivera; Bilic, Nikola; Petrovic, Zoran S.] Pittsburg State Univ, Kansas Polymer Res Ctr, Pittsburg, KS 66762 USA. [Eastwood, Eric A.] Honeywell FM&T LLC, Kansas City, MO USA. [Zhang, Fan] NIST, Mat Measurement Sci Div, Mat Measurement Lab, Gaithersburg, MD 20899 USA. [Ilavsky, Jan] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA. RP Petrovic, ZS (reprint author), Pittsburg State Univ, Kansas Polymer Res Ctr, Pittsburg, KS 66762 USA. EM zpetrovic@pittstate.edu RI Ilavsky, Jan/D-4521-2013 OI Ilavsky, Jan/0000-0003-1982-8900 FU Honeywell; Division of Chemistry (CHE), National Science Foundation [NSF/CHE-1346572]; Division of Materials Research (DMR), National Science Foundation [NSF/CHE-1346572]; U.S. DOE [DE-AC02-06CH11357] FX The authors are indebted to Honeywell for the financial support. ChemMatCARS Sector 15 is principally supported by the Divisions of Chemistry (CHE) and Materials Research (DMR), National Science Foundation, under grant number NSF/CHE-1346572. Use of the Advanced Photon Source, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under Contract No. DE-AC02-06CH11357. NR 22 TC 0 Z9 0 U1 7 U2 55 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0021-8995 EI 1097-4628 J9 J APPL POLYM SCI JI J. Appl. Polym. Sci. PD DEC 15 PY 2015 VL 132 IS 47 AR 42830 DI 10.1002/app.42830 PG 8 WC Polymer Science SC Polymer Science GA CT3WZ UT WOS:000362738900022 ER PT J AU Ko, P Scott, JR Joyanovic, I AF Ko, Phyllis Scott, Jill R. Joyanovic, Igor TI Analysis of high-resolution spectra from a hybrid interferometric/dispersive spectrometer SO OPTICS COMMUNICATIONS LA English DT Article DE Fabry-Perot; High-resolation spectroscopy; Fringe analysis; Laser-induced breakdown spectroscopy ID INDUCED BREAKDOWN SPECTROSCOPY; FABRY-PEROT-INTERFEROMETER; EMISSION-SPECTROSCOPY; DECONVOLUTION; ALGORITHM AB To more fully Lake advantage of a low-cost, small footprint hybrid interferometric/dispersive spectrometer, a mathematical reconstruction technique was developed to accurately capture the high-resolution and relative peak intensities from complex spectral patterns. A Fabry-Perot etalon was coupled to a Czemy-Turner spectrometer, leading to increased spectral resolution by more than an order of magnitude without the commensurate increase in spectrometer size. Measurement or the industry standard Hg 313.1555/313.1844 rim doublet yielded a ratio of 0.682, which agreed well with an independent measurement and literature values. The doublet separation (29 pm) is similar to the U isotope shift (25 pm) at 424.437 rim that is of interest to monitoring nuclear nonproliferation activities. Additionally, the technique was applied to LIBS measurement of the mineral cinnabar (Hgs) and resulted in a ratio of 0.682. This reconstruction method could enable significantly smaller, portable high-resolution instruments with isotopic specificity, benefiting a variety of spectroscopic applications. (C) 2015 Elsevier B.V. All rights reserved. C1 [Ko, Phyllis; Joyanovic, Igor] Penn State Univ, University Pk, PA 16802 USA. [Scott, Jill R.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Joyanovic, I (reprint author), Penn State Univ, University Pk, PA 16802 USA. EM ijovanovic@psu.edu FU U.S. Department of Homeland Security [2012-DN-130-NF0001-02]; Consortium for Verification technology under Department of Energy National Nuclear Security Administration [DE-NA0002534]; U.S. Department of Energy under DOE Idaho Operations Office [DE-AC07-051D14517] FX The authors would like to thank Andrew J. Effenberger, Jr. and Elizabeth J. Judge for their assistance. Research was performed under appointment to the Nuclear Nonproliferation International Safeguards Graduate Fellowship Program sponsored by the National Nuclear Security Administration's Next Generation Safeguards Initiative (NGS1). Material is based upon work supported by the U.S. Department of Homeland Security under Grant Award Number, 2012-DN-130-NF0001-02 and in part funded by the Consortium for Verification technology under Department of Energy National Nuclear Security Administration Award number DE-NA0002534. The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the U.S. Department of Homeland Security. Research was also sponsored by the U.S. Department of Energy under DOE Idaho Operations Office Contract DE-AC07-051D14517. NR 22 TC 1 Z9 1 U1 3 U2 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0030-4018 EI 1873-0310 J9 OPT COMMUN JI Opt. Commun. PD DEC 15 PY 2015 VL 357 BP 95 EP 99 DI 10.1016/j.optcom.2015.08.077 PG 5 WC Optics SC Optics GA CT8DH UT WOS:000363044700016 ER PT J AU Greenfield, ML Byrne, M Mitra-Kirtley, S Kercher, EM Bolin, TB Wu, TP Craddock, PR Bake, KD Pomerantz, AE AF Greenfield, Michael L. Byrne, Michael Mitra-Kirtley, Sudipa Kercher, Eric M. Bolin, Trudy B. Wu, Tianpin Craddock, Paul R. Bake, Kyle D. Pomerantz, Andrew E. TI XANES measurements of sulfur chemistry during asphalt oxidation SO FUEL LA English DT Article DE Sulfur XANES; Warm mix asphalt; Asphalt composition; Asphalt oxidation ID X-RAY-ABSORPTION; NEAR-EDGE STRUCTURE; FINE-STRUCTURE SPECTROSCOPY; ORGANIC SULFUR; PETROLEUM ASPHALTENES; CHEMICAL-SENSITIVITY; CRUDE OILS; SPECIATION; COAL; SPECTRA AB Sulfur K-edge X-ray absorption near-edge structure (XANES) spectroscopy is used to measure how the speciation of sulfur compounds evolves within a warm-mix asphalt as a consequence of the Rolling Thin-Film Oven (RTFO) and Pressure Aging Vessel (PAV) oxidative aging procedures. Identifying the types of sulfur compounds present is important for quantifying the growth in polar sulfur-containing species that can alter the asphalt's mechanical properties over time. Elemental analysis indicates that the sulfur content of the asphalt holds constant at 5 wt% during aging. XANES analysis indicates that thiophenic sulfur compounds are most prevalent (62%), followed by sulfide and elemental sulfur compounds. RTFO and PAV aging cause smaller and larger shifts, respectively, from sulfide to sulfoxide. The amount of unreacted sulfide remains larger than the amount of sulfoxide, even with PAV aging. The XANES spectra lack features that would be expected if engine oil additives indicative of recycled engine oil bottoms were present. The results indicate the importance of including thiophene, sulfide, and sulfoxide chemistries within molecular asphalt models. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Greenfield, Michael L.] Univ Rhode Isl, Dept Chem Engn, Kingston, RI 02881 USA. [Byrne, Michael] Rhode Isl Dept Transportat, Providence, RI 02903 USA. [Mitra-Kirtley, Sudipa; Kercher, Eric M.] Rose Hulman Inst Technol, Terre Haute, IN 47803 USA. [Bolin, Trudy B.; Wu, Tianpin] Argonne Natl Lab, Argonne, IL 60439 USA. [Craddock, Paul R.; Bake, Kyle D.; Pomerantz, Andrew E.] Schlumberger Doll Res Ctr, Cambridge, MA 02139 USA. RP Greenfield, ML (reprint author), Univ Rhode Isl, Dept Chem Engn, Kingston, RI 02881 USA. EM greenfield@uri.edu FU Rhode Island Department of Transportation; Argonne National Laboratory [DE-AC02-06CH11357] FX This work was supported in part through a grant from the Rhode Island Department of Transportation. This research used resources of the Advanced Photon Source, a United States Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. NR 69 TC 5 Z9 5 U1 5 U2 51 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0016-2361 EI 1873-7153 J9 FUEL JI Fuel PD DEC 15 PY 2015 VL 162 BP 179 EP 185 DI 10.1016/j.fuel.2015.08.074 PG 7 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA CS9ZD UT WOS:000362452100022 ER PT J AU Pool, VL Kleb, MT Chorney, CL Arenholz, E Idzerda, YU AF Pool, V. L. Kleb, M. T. Chorney, C. L. Arenholz, E. Idzerda, Y. U. TI Enhanced magnetization in VxFe3-xO4 nanoparticles SO JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS LA English DT Article DE Magnetic nanoparticies; Magnetism; XMCD; XAS ID X-RAY-ABSORPTION; SPIN-GLASSES; OXIDES; SPECTROSCOPY; TRANSITION; IRON AB Nanoparticles of VxFe3-xO4 with up to 33% vanadium doping (x=0 to 1) and a 9 nm diameter are investigated in order to determine the site preference of the vanadium and the magnetic behavior of the nanoparticles. The iron and vanadium L-23-edge X-ray absorption spectroscopy (XAS) and X-ray magnetic circular dichroism (MCD) spectra are used to identify that vanadium initially substitutes into the tetrahedral iron site as V3+ and that the average iron moment is observed to increase with vanadium concentration up to 12.5% (x=.375). When the vanadium incorporation exceeds 12.5%, the XAS and MCD show that the vanadium begins substituting as V2+ in the octahedral coordination. This coincides with a rapid reduction of the average moment to zero by 25% (x=.75). The frequency-dependent alternating-current magnetic susceptibility (ACMS) displays a substantial increase in blocking temperature with vanadium concentration and indicated substantial variation in the strength of inter-particle interactions. (C) 2015 Elsevier B.V. All rights reserved. C1 [Pool, V. L.; Idzerda, Y. U.] Montana State Univ, Dept Phys, Bozeman, MT 59715 USA. [Kleb, M. T.; Chorney, C. L.] Montana Tech Univ, Dept Chem, Butte, MT 59701 USA. [Kleb, M. T.] Montana Tech Univ, Ctr Adv Supramol & Nanoscale Syst, Butte, MT 59701 USA. [Arenholz, E.] Lawrence Berkeley Nat Labs, Adv Light Source, Berkeley, CA 94720 USA. RP Idzerda, YU (reprint author), Montana State Univ, Dept Phys, Bozeman, MT 59715 USA. EM Idzerda@montana.edu FU National Science Foundation [CBET-0709358]; U.S. Department of Energy [DE-AC02-05CH11231] FX This work is supported by the National Science Foundation (CBET-0709358). The Advanced Light Source is supported by the U.S. Department of Energy under Contract no. DE-AC02-05CH11231. NR 25 TC 1 Z9 1 U1 3 U2 48 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-8853 EI 1873-4766 J9 J MAGN MAGN MATER JI J. Magn. Magn. Mater. PD DEC 15 PY 2015 VL 396 BP 304 EP 307 DI 10.1016/j.jmmm.2015.08.005 PG 4 WC Materials Science, Multidisciplinary; Physics, Condensed Matter SC Materials Science; Physics GA CQ5NT UT WOS:000360652700047 ER PT J AU Hocker, J Mentes, TO Sala, A Locatelli, A Schmidt, T Falta, J Senanayake, SD Flege, JI AF Hoecker, Jan Mentes, Tevfik Onur Sala, Alessandro Locatelli, Andrea Schmidt, Thomas Falta, Jens Senanayake, Sanjaya D. Flege, Jan Ingo TI Unraveling the Dynamic Nanoscale Reducibility (Ce4+ -> Ce3+) of CeOX-Ru in Hydrogen Activation SO ADVANCED MATERIALS INTERFACES LA English DT Article ID SCANNING-TUNNELING-MICROSCOPY; CEO2(111) SURFACES; DEFECT STRUCTURE; REDUCED CERIA; H-2; REDUCTION; FILMS; SPECTROSCOPY; CATALYSIS; GROWTH AB The interaction of molecular hydrogen with ceria is of important relevance for heterogeneous catalysis related to green chemistry and renewable energy. Here, the complex structural transformations of a well-defined cerium oxide model catalyst are followed in situ and in real time when exposed to a reactive H-2 environment. By using electron spectromicroscopy and diffraction with chemical and structural sensitivities, it is demonstrated that the transition from CeO2 to crystalline Ce2O3 occurs through a mixture of transient, coexisting phases on the nanoscale. The findings establish a clear relationship between structure and functionality for hydrogen dissociation over ceria(111), bearing profound implications on the nature of the reduction (Ce4+ -> Ce3+) and mechanism for H-2 scission. C1 [Hoecker, Jan; Schmidt, Thomas; Falta, Jens; Flege, Jan Ingo] Univ Bremen, Inst Solid State Phys, Otto Hahn Allee NW1, D-28359 Bremen, Germany. [Mentes, Tevfik Onur; Sala, Alessandro; Locatelli, Andrea] Elettra Sincrotrone Trieste SC pA, I-34149 Trieste, Italy. [Senanayake, Sanjaya D.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Flege, JI (reprint author), Univ Bremen, Inst Solid State Phys, Otto Hahn Allee NW1, D-28359 Bremen, Germany. EM flege@ifp.uni-bremen.de RI COST, CM1104/I-8057-2015; Flege, Jan Ingo/J-6354-2012; Falta, Jens/F-4821-2016; Senanayake, Sanjaya/D-4769-2009; Sala, Alessandro/E-8126-2015 OI Flege, Jan Ingo/0000-0002-8346-6863; Falta, Jens/0000-0002-4154-822X; Senanayake, Sanjaya/0000-0003-3991-4232; Sala, Alessandro/0000-0002-5845-1301 FU European Community's Seventh Framework Programme (FP7) [312284]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences; Catalysis Science Program [DE-SC0012704] FX The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under Grant Agreement No. 312284. S.D.S. was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, and Catalysis Science Program under Contract DE-SC0012704. Finally, the COST Action CM1104 is gratefully acknowledged. NR 28 TC 7 Z9 7 U1 8 U2 27 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 2196-7350 J9 ADV MATER INTERFACES JI Adv. Mater. Interfaces PD DEC 14 PY 2015 VL 2 IS 18 AR 1500314 DI 10.1002/admi.201500314 PG 6 WC Chemistry, Multidisciplinary; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA DC0NZ UT WOS:000368915800010 ER PT J AU Zhang, YY Mishra, R Pennycook, TJ Borisevich, AY Pennycook, SJ Pantelides, ST AF Zhang, Yu Yang Mishra, Rohan Pennycook, Timothy J. Borisevich, Albina Y. Pennycook, Stephen J. Pantelides, Sokrates T. TI Oxygen Disorder, a Way to Accommodate Large Epitaxial Strains in Oxides SO ADVANCED MATERIALS INTERFACES LA English DT Article ID TOTAL-ENERGY CALCULATIONS; AUGMENTED-WAVE METHOD; HETEROSTRUCTURES; METALS; SUPERLATTICES; INTERFACES; CRYSTALS; MISFIT C1 [Zhang, Yu Yang; Mishra, Rohan; Pantelides, Sokrates T.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37831 USA. [Zhang, Yu Yang; Mishra, Rohan; Borisevich, Albina Y.; Pantelides, Sokrates T.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Pennycook, Timothy J.] Univ Vienna, Fac Phys, A-1090 Vienna, Austria. [Pennycook, Stephen J.] Natl Univ Singapore, Dept Mat Sci & Engn, Singapore 117576, Singapore. RP Pantelides, ST (reprint author), Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37831 USA. EM pantelides@vanderbilt.edu RI Mishra, Rohan/J-9127-2013; Borisevich, Albina/B-1624-2009; Zhang, Yu-Yang/F-2078-2011 OI Mishra, Rohan/0000-0003-1261-0087; Borisevich, Albina/0000-0002-3953-8460; Zhang, Yu-Yang/0000-0002-9548-0021 FU US DOE Office of Basic Energy Sciences [DE-FG02-09ER46554]; US Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division; National Science Foundation [ACI-1053575] FX Work at Vanderbilt University (STP) was supported by the US DOE Office of Basic Energy Sciences (Grant No. DE-FG02-09ER46554). Work at ORNL (Y.Y.Z., R.M., S.J.P., and A.Y.B.) was sponsored by the US Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division. Supercomputer time was provided by the National Center for Supercomputing Applications and Extreme Science and Engineering Discovery Environment (XSEDE), which was supported by the National Science Foundation under Grant No. ACI-1053575. NR 38 TC 3 Z9 3 U1 14 U2 37 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 2196-7350 J9 ADV MATER INTERFACES JI Adv. Mater. Interfaces PD DEC 14 PY 2015 VL 2 IS 18 AR 1500344 DI 10.1002/admi.201500344 PG 5 WC Chemistry, Multidisciplinary; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA DC0NZ UT WOS:000368915800002 ER PT J AU Alemayehu, MB Falmbigl, M Ta, K Ditto, J Medlin, DL Johnson, DC AF Alemayehu, Matti B. Falmbigl, Matthias Ta, Kim Ditto, Jeffrey Medlin, Douglas L. Johnson, David C. TI Designed Synthesis of van der Waals Heterostructures: The Power of Kinetic Control SO ANGEWANDTE CHEMIE-INTERNATIONAL EDITION LA English DT Article DE kinetic control; layered structures; nanostructures; selenides; van der Waals heterostructures ID TRANSITION-METAL DICHALCOGENIDES; VANADIUM DISELENIDE; NANOSHEETS; NANOSTRUCTURES; COMPOSITES; GERMANIUM; CRYSTALS; SELENIDE; 1T-VSE2; GESE2 AB Selecting specific 2D building blocks and specific layering sequences of van der Waals heterostructures should allow the formation of new materials with designed properties for specific applications. Unfortunately, the synthetic ability to prepare such structures at will, especially in a manner that can be manufactured, does not exist. Herein, we report the targeted synthesis of new metal-semiconductor heterostructures using the modulated elemental-reactant technique to nucleate specific 2D building blocks, control their thickness, and avoid epitaxial structures with long-range order. The building blocks, VSe2 and GeSe2, have different crystal structures, which inhibits cation intermixing. The precise control of this approach enabled us to synthesize heterostructures containing GeSe2 monolayers alternating with VSe2 structural units with specific sequences. The transport properties systematically change with nanoarchitecture and a charge-density wave-like transition is observed. C1 [Alemayehu, Matti B.; Falmbigl, Matthias; Ta, Kim; Ditto, Jeffrey; Johnson, David C.] Univ Oregon, Dept Chem, Eugene, OR 97403 USA. [Medlin, Douglas L.] Sandia Natl Labs, Livermore, CA 94551 USA. RP Alemayehu, MB (reprint author), Univ Oregon, Dept Chem, Eugene, OR 97403 USA. EM matti@uoregon.edu; davej@uoregon.edu FU National Science Foundation [DMR-1266217]; National Science Foundation through CCI grant [CHE-1102637]; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; [MRI 0923577] FX We acknowledge support from the National Science Foundation under grant DMR-1266217. Grant MRI 0923577 provided funding for the dual beam FIB used to make TEM cross sections. M.F. acknowledges support from the National Science Foundation through CCI grant number CHE-1102637. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 38 TC 3 Z9 3 U1 14 U2 40 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 1433-7851 EI 1521-3773 J9 ANGEW CHEM INT EDIT JI Angew. Chem.-Int. Edit. PD DEC 14 PY 2015 VL 54 IS 51 BP 15468 EP 15472 DI 10.1002/anie.201506152 PG 5 WC Chemistry, Multidisciplinary SC Chemistry GA DA8MH UT WOS:000368058500024 PM 26545566 ER PT J AU Porosoff, MD Myint, MNZ Kattel, S Xie, ZH Gomez, E Liu, P Chen, JGG AF Porosoff, Marc D. Myint, Myat Noe Zin Kattel, Shyam Xie, Zhenhua Gomez, Elaine Liu, Ping Chen, Jingguang G. TI Identifying Different Types of Catalysts for CO2 Reduction by Ethane through Dry Reforming and Oxidative Dehydrogenation SO ANGEWANDTE CHEMIE-INTERNATIONAL EDITION LA English DT Article DE CO2; ethane; heterogeneous catalysis; surface chemistry; X-ray absorption ID CARBON-DIOXIDE; MOLYBDENUM CARBIDE; OXIDE CATALYSTS; ELECTRON-GAS; ETHYLENE; METALS; MODEL; CONVERSION; PYROLYSIS; ALKANES AB The recent shale gas boom combined with the requirement to reduce atmospheric CO2 have created an opportunity for using both raw materials (shale gas and CO2) in a single process. Shale gas is primarily made up of methane, but ethane comprises about 10% and reserves are underutilized. Two routes have been investigated by combining ethane decomposition with CO2 reduction to produce products of higher value. The first reaction is ethane dry reforming which produces synthesis gas (CO+H-2). The second route is oxidative dehydrogenation which produces ethylene using CO2 as a soft oxidant. The results of this study indicate that the Pt/CeO2 catalyst shows promise for the production of synthesis gas, while Mo2C-based materials preserve the C-C bond of ethane to produce ethylene. These findings are supported by density functional theory (DFT) calculations and X-ray absorption near-edge spectroscopy (XANES) characterization of the catalysts under in situ reaction conditions. C1 [Porosoff, Marc D.; Xie, Zhenhua; Gomez, Elaine; Chen, Jingguang G.] Columbia Univ, Dept Chem Engn, New York, NY 10027 USA. [Myint, Myat Noe Zin] Univ Delaware, Dept Chem & Biomol Engn, Newark, DE 19716 USA. [Kattel, Shyam; Liu, Ping; Chen, Jingguang G.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Chen, JGG (reprint author), Columbia Univ, Dept Chem Engn, 500 W 120th St, New York, NY 10027 USA. EM jgchen@columbia.edu FU U.S. Department of Energy, Office of Basic Energy Sciences [DE-SC0012704]; US Department of Energy; National Energy Research Scientific Computing Center (NERSC) - Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX The work was carried out under contract number DE-SC0012704 with the U.S. Department of Energy, Office of Basic Energy Sciences. The DFT calculations were performed using computational resources at the Center for Functional Nanomaterials, a user facility at BNL, supported by the US Department of Energy and the National Energy Research Scientific Computing Center (NERSC) supported by the Office of Science of the U.S. Department of Energy under contract number DE-AC02-05CH11231. NR 44 TC 6 Z9 6 U1 44 U2 152 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 1433-7851 EI 1521-3773 J9 ANGEW CHEM INT EDIT JI Angew. Chem.-Int. Edit. PD DEC 14 PY 2015 VL 54 IS 51 BP 15501 EP 15505 DI 10.1002/anie.201508128 PG 5 WC Chemistry, Multidisciplinary SC Chemistry GA DA8MH UT WOS:000368058500031 PM 26554872 ER PT J AU Rosario-Amorin, D Ouizem, S Dickie, DA Hay, BP Podair, J Delmau, LH Paine, RT AF Rosario-Amorin, Daniel Ouizem, Sabrina Dickie, Diane A. Hay, Benjamin P. Podair, Julien Delmau, Laetitia H. Paine, Robert T. TI Synthesis and lanthanide coordination chemistry of CMPO-decorated dibenzothiophene and dibenzothiophene sulfone platforms SO POLYHEDRON LA English DT Article DE Dibenzothiophene; Dibenzothiophene sulfone; Carbamoylmethylphosphine oxide; Lanthanides; X-ray crystallography ID MM3 FORCE-FIELD; ONE DIBENZOFURAN UNIT; N-OXIDE PLATFORMS; MOLECULAR-MECHANICS; BIDENTATE PHOSPHINES; TRIVALENT ACTINIDES; AQUA COMPLEXES; LIGANDS; EXTRACTION; HYDROCARBONS AB Syntheses and spectroscopic characterization data for two new hybrid chelating ligands, 4,6-bis[(diphenyl-N,N-diethylcarbamoylmethylphosphine oxide)methyl]dibenzothiophene (2) and 4,6-bis[(diphenyl-N,N-diethylcarbamoylmethylphosphine oxide)methyl]dibenzothiophene 5,5-dioxide (3), that contain two CMPO fragments grafted onto dibenzothiophene and dibenzothiophene sulfone platforms, respectively, are presented. Coordination chemistry with selected lanthanide nitrates is described along with a X-ray crystal structure determination for an unexpected Eu(III) complex, Eu(4)(NO3)(3) that contains the intermediate ligand oxidation species 4,6-bis[(diphenyl-N,N-diethylcarbamoylmethylphosphine oxide)methyl]dibenzothiophene 5-oxide (4). (C) 2015 Elsevier Ltd. All rights reserved. C1 [Rosario-Amorin, Daniel; Ouizem, Sabrina; Dickie, Diane A.; Paine, Robert T.] Univ New Mexico, Dept Chem & Chem Biol, Albuquerque, NM 87131 USA. [Hay, Benjamin P.] Supramol Design Inst, Oak Ridge, TN 37830 USA. [Podair, Julien; Delmau, Laetitia H.] Oak Ridge Natl Lab, Nucl Secur & Isotope Technol Div, Oak Ridge, TN 37831 USA. RP Paine, RT (reprint author), Univ New Mexico, Dept Chem & Chem Biol, Albuquerque, NM 87131 USA. EM rtpaine@unm.edu RI Dickie, Diane/B-1647-2010 OI Dickie, Diane/0000-0003-0939-3309 FU U.S. Department of Energy (DoE), Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences and Biosciences Office [DE-FG02-03ER15419]; National Science Foundation [CHE-0443580]; NMR [CHE-0840523, 0946690] FX This material is based upon work supported by the U.S. Department of Energy (DoE), Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences and Biosciences Office, under Award Number DE-FG02-03ER15419) (RTP). In addition, funds from the National Science Foundation assisted the purchase of the X-ray diffractometer (CHE-0443580) and NMR spectrometers (CHE-0840523 and 0946690). NR 59 TC 0 Z9 0 U1 3 U2 10 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0277-5387 J9 POLYHEDRON JI Polyhedron PD DEC 14 PY 2015 VL 102 BP 103 EP 110 DI 10.1016/j.poly.2015.07.066 PG 8 WC Chemistry, Inorganic & Nuclear; Crystallography SC Chemistry; Crystallography GA DA4GC UT WOS:000367757100014 ER PT J AU Liu, J Zhu, XJ Zhang, WJ AF Liu, Joyce Zhu, Xuejun Zhang, Wenjun TI Identifying the Minimal Enzymes Required for Biosynthesis of Epoxyketone Proteasome Inhibitors SO CHEMBIOCHEM LA English DT Article DE acyl-CoA dehydrogenase; biosynthesis; epoxyketones; peptide/polyketide hybrid; proteasome inhibitor ID ACYL-COA DEHYDROGENASES; ESCHERICHIA-COLI; POLYKETIDES; CARFILZOMIB; EPOXOMICIN; SUBSTRATE; POTENT AB Epoxyketone proteasome inhibitors have attracted much interest due to their potential as anticancer drugs. Although the biosynthetic gene clusters for several peptidyl epoxyketone natural products have recently been identified, the enzymatic logic involved in the formation of the terminal epoxyketone pharmacophore has been relatively unexplored. Here, we report the identification of the minimal set of enzymes from the eponemycin gene cluster necessary for the biosynthesis of novel metabolites containing a terminal epoxyketone pharmacophore in Escherichia coli, a versatile and fast-growing heterologous host. This set of enzymes includes a non-ribosomal peptide synthetase (NRPS), a polyketide synthase (PKS), and an acyl-CoA dehydrogenase (ACAD) homologue. In addition to the in vivo functional reconstitution of these enzymes in E. coli, in vitro studies of the eponemycin NRPS and C-13-labeled precursor feeding experiments were performed to advance the mechanistic understanding of terminal epoxyketone formation. C1 [Zhu, Xuejun; Zhang, Wenjun] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94704 USA. [Liu, Joyce] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94704 USA. [Zhang, Wenjun] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Zhang, WJ (reprint author), Univ Calif Berkeley, Dept Chem & Biomol Engn, 2151 Berkeley Way, Berkeley, CA 94704 USA. EM wjzhang@berkeley.edu FU Pew Scholars Program; National Institutes of Health [DP2AT009148] FX We thank Jeffrey Pelton for assistance with NMR spectroscopic analysis. This research was financially supported by the Pew Scholars Program and the National Institutes of Health (DP2AT009148). NR 27 TC 2 Z9 2 U1 2 U2 6 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 1439-4227 EI 1439-7633 J9 CHEMBIOCHEM JI ChemBioChem PD DEC 14 PY 2015 VL 16 IS 18 BP 2585 EP 2589 DI 10.1002/cbic.201500496 PG 5 WC Biochemistry & Molecular Biology; Chemistry, Medicinal SC Biochemistry & Molecular Biology; Pharmacology & Pharmacy GA DA3SX UT WOS:000367720300006 PM 26477320 ER PT J AU Gray, MT Sanders, TD Jenkins, CA Shafer, P Arenholz, E Suzuki, Y AF Gray, M. T. Sanders, T. D. Jenkins, C. A. Shafer, P. Arenholz, E. Suzuki, Y. TI Electronic and magnetic phenomena at the interface of LaAlO3 and Ru doped SrTiO3 SO APPLIED PHYSICS LETTERS LA English DT Article ID LAALO3/SRTIO3 INTERFACE; FERROMAGNETISM; SUPERCONDUCTIVITY; HETEROSTRUCTURES; COEXISTENCE; FILMS; GAS AB We have investigated the effect of Ru doping the SrTiO3 (STO) side of the LaAlO3/STO (LAO/STO) interface. The metallic behavior at the interface is remarkably robust to defects and disorder. Despite spin moment contribution from Ru ions, we see no evidence of magnetic ordering at the Ti L-3,L-2 edge in either doped or undoped interfaces using X-ray magnetic circular dichroism. Magnetotransport measurements also do not show any evidence of magnetic scattering beyond that observed in undoped LAO/STO interfaces. Insertion of more than 7 unit cells of Ru doped STO at the interface suppresses metallic conductivity with a surprisingly sharp metal insulator transition. A similar metal-insulator transition is observed when a homoepitaxial STO film is grown on the single crystal substrate before LAO deposition. Together, our results indicate that ferromagnetism is not intrinsic to the interface, magnetic Ru dopants are not significant sources of scattering, and that cation vacancy formation alone cannot explain the insulating behavior observed in thick homoepitaxial LAO/STO/STO bilayers. (C) 2015 AIP Publishing LLC. C1 [Gray, M. T.] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA. [Gray, M. T.; Sanders, T. D.; Suzuki, Y.] Stanford Univ, Geballe Lab Adv Mat, Stanford, CA 94305 USA. [Sanders, T. D.; Suzuki, Y.] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA. [Jenkins, C. A.; Shafer, P.; Arenholz, E.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Gray, MT (reprint author), Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA. EM mattgray@stanford.edu FU National Security Science and Engineering Faculty Fellowship of the Department of Defense [N00014-15-1-0045]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DESC0008505]; Office of Science, Office of Basic Energy Science of the U. S. Department of Energy [DE-AC02-05CH11231] FX We thank K. M. Yu and A. Anders for their assistance in RBS data collection. We would also like to thank C. B. Eom, M. Gabay, U. S. Alaan, and A. J. Grutter for insightful discussions on sample growth, transport theory, and XMCD experiment and analysis. This research was supported by a National Security Science and Engineering Faculty Fellowship of the Department of Defense under Contract No. N00014-15-1-0045. T.D.S. was supported by the U. S. Department of Energy, Director, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Contract No. DESC0008505. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Science of the U. S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 35 TC 0 Z9 0 U1 6 U2 30 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD DEC 14 PY 2015 VL 107 IS 24 AR 241603 DI 10.1063/1.4938133 PG 5 WC Physics, Applied SC Physics GA CZ7ZF UT WOS:000367318600016 ER PT J AU Kuciauskas, D Dippo, P Kanevce, A Zhao, ZB Cheng, L Los, A Gloeckler, M Metzger, WK AF Kuciauskas, Darius Dippo, Pat Kanevce, Ana Zhao, Zhibo Cheng, Long Los, Andrei Gloeckler, Markus Metzger, Wyatt K. TI The impact of Cu on recombination in high voltage CdTe solar cells SO APPLIED PHYSICS LETTERS LA English DT Article ID CARRIER LIFETIME; THIN-FILM; P-CDTE; PHOTOLUMINESCENCE; ACCEPTORS; DEPENDENCE; DIFFUSION; DEFECTS; DONORS; AG AB Using photoluminescence spectroscopy, we construct a recombination model for state-of-the-art CdTe solar cells doped with Cu. We observe that Cu on Cd sites form a dominant acceptor state about 150 meV from the valence band. Although it is intuitive that this state can increase hole density, we also find that this relatively shallow dopant can also limit lifetime. Consequently, CdTe solar cells doped with Cu could have a lifetime limitation inversely proportional to the hole concentration. (C) 2015 AIP Publishing LLC. C1 [Kuciauskas, Darius; Dippo, Pat; Kanevce, Ana; Metzger, Wyatt K.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Zhao, Zhibo; Cheng, Long; Los, Andrei; Gloeckler, Markus] First Solar Inc, Perrysburg, OH 43551 USA. RP Kuciauskas, D (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM Darius.Kuciauskas@nrel.gov; Wyatt.Metzger@nrel.gov OI Kuciauskas, Darius/0000-0001-8091-5718 FU NREL-First Solar Cooperative Research and Development Agreement (CRADA); U.S. Department of Energy, Energy Efficiency and Renewable Energy [DE-AC36-08GO28308] FX This research was funded by NREL-First Solar Cooperative Research and Development Agreement (CRADA). The work at NREL was supported by the U.S. Department of Energy, Energy Efficiency and Renewable Energy, under Contract No. DE-AC36-08GO28308. NR 44 TC 6 Z9 6 U1 5 U2 20 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD DEC 14 PY 2015 VL 107 IS 24 AR 243906 DI 10.1063/1.4938127 PG 5 WC Physics, Applied SC Physics GA CZ7ZF UT WOS:000367318600064 ER PT J AU Abelof, G Gehrmann-De Ridder, A Majer, I AF Abelof, Gabriel Gehrmann-De Ridder, Aude Majer, Imre TI Top quark pair production at NNLO in the quark-antiquark channel SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE QCD Phenomenology; Hadronic Colliders ID SINGULAR BEHAVIOR; MASSIVE PARTONS; QCD AMPLITUDES; POLYLOGARITHMS; ORDER AB We present the derivation of the NNLO two-parton final state contributions to top pair production in the quark-antiquark channel proportionnal to the leading colour factor N-c(2). Together with the three and four-parton NNLO contributions presented in a previous publication, this enables us to complete the phenomenologically most important NNLO corrections to top pair hadro-production in this channel. We derive this two-parton contribution using the massive extension of the NNLO antenna subtraction formalism and implement those corrections in a parton-level event generator providing full kinematical information on all final state particles. In addition, we also derive the heavy quark contributions proportional to N-h. Combining the new leading-colour and heavy quark contributions together with the light quark contributions derived previously, we present NNLO differential distributions for LHC and Tevatron. We also compute the differential top quark forward-backward asymmetry at Tevatron and find that our results are in good agreement with the measurements by the D0 collaboration. C1 [Abelof, Gabriel] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. [Abelof, Gabriel] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Gehrmann-De Ridder, Aude; Majer, Imre] ETH, Inst Theoret Phys, CH-8093 Zurich, Switzerland. [Gehrmann-De Ridder, Aude] Univ Zurich, Inst Phys, CH-8057 Zurich, Switzerland. [Majer, Imre] Seoul Natl Univ, Dept Phys & Astron, Seoul 151747, South Korea. RP Abelof, G (reprint author), Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. EM gabriel.abelof@northwestern.edu; gehra@itp.phys.ethz.ch; imre.majer@alumni.ethz.ch OI Gehrmann-De Ridder, Aude/0000-0002-2686-9658 FU Swiss National Science Foundation (SNF) [PBEZP2-145917]; United States Department of Energy [DE-FG02-91ER40684, DE-AC02-06CH11357]; European Commission through the ERC Advanced Grant 'MC@NNLO' [340983]; SNF [CRSII2-141847]; National Institute for International Education (NIIED); Korean Government Scholarship (KGSP) [KGSP-GRA-2014-244] FX We would like to thank Philipp Maierhofer for assisting us with the installation and usage of OpenLoops [30], Roberto Bonciani and Andreas von Manteuffel for their help with the implementation of the double virtual matrix elements and Matthias Steinhauser for detailed discussions on the ultraviolet renormalisation of massive loop amplitudes. G.A. is very grateful to the Institute for Theoretical Physics at ETH Zurich for its hospitality. He acknowledges support from the Swiss National Science Foundation (SNF) under contract PBEZP2-145917 and from the United States Department of Energy under grant DE-FG02-91ER40684 and contract DE-AC02-06CH11357. A.G acknowledges the support of the European Commission through the ERC Advanced Grant 'MC@NNLO' (340983) and from the SNF under contract CRSII2-141847. I.M acknowledges the National Institute for International Education (NIIED) for supporting him with a Korean Government Scholarship (KGSP) under number KGSP-GRA-2014-244. NR 57 TC 7 Z9 7 U1 0 U2 3 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD DEC 14 PY 2015 IS 12 BP 1 EP 49 AR 074 DI 10.1007/JHEP12(2015)074 PG 49 WC Physics, Particles & Fields SC Physics GA CZ9YF UT WOS:000367453100001 ER PT J AU Shinozaki, K Zack, JW Pylypenko, S Richards, RM Pivovar, BS Kocha, SS AF Shinozaki, Kazuma Zack, Jason W. Pylypenko, Svitlana Richards, Ryan M. Pivovar, Bryan S. Kocha, Shyam S. TI Benchmarking the oxygen reduction reaction activity of Pt-based catalysts using standardized rotating disk electrode methods SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY LA English DT Article DE Fuel cell; RDE; ORR; Platinum; Catalyst ID GAS-DIFFUSION ELECTRODES; CRYSTAL MICROBALANCE ANALYSIS; PHOSPHORIC-ACID; THIN-FILM; TEMPERATURE-DEPENDENCE; PLATINUM PARTICLES; PROTON CONDUCTION; O-2 REDUCTION; ELECTROCHEMICAL REDUCTION; FUEL-CELLS AB Thin-film rotating disk electrodes (TF-RDEs) have become the preferred half-cell technique for screening small lab-scale quantities of electrocatalysts targeted for proton exchange membrane fuel cells. Utilizing standardized protocols and best practices for Nafion-based catalyst layer fabrication, we demonstrate that catalyst layers fabricated with the rotational air drying technique result in improved film quality and similar to 1.6 x higher ORR activity as compared to the conventional stationary air drying technique for PtCo/C catalysts. The ORR activity of a series of candidate Pt-based electrocatalysts having improved kinetics (Pt-alloys), corrosion-resistance carbon supports, various Pt wt% and the implications for practical proton exchange membrane fuel cells (PEMFCs) is discussed. Copyright (C) 2015, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved. C1 [Shinozaki, Kazuma; Zack, Jason W.; Pylypenko, Svitlana; Pivovar, Bryan S.; Kocha, Shyam S.] Natl Renewable Energy Lab, Electrochem Characterizat Labs, Golden, CO 80401 USA. [Shinozaki, Kazuma; Pylypenko, Svitlana; Richards, Ryan M.] Colorado Sch Mines, Dept Chem, Golden, CO 80401 USA. [Shinozaki, Kazuma] Toyota Cent Res & Dev Labs Inc, Nagoya, Aichi 4801192, Japan. RP Kocha, SS (reprint author), Natl Renewable Energy Lab, Electrochem Characterizat Labs, Golden, CO 80401 USA. EM Shinozaki@mosk.tytlabs.co.jp; shyam.kocha@nrel.gov FU U.S. Department of Energy, Fuel Cells Technologies Program [DE-AC36-08-GO28308]; Toyota Central RD Labs., Inc. FX Shyam S. Kocha gratefully acknowledges funding from the U.S. Department of Energy, Fuel Cells Technologies Program under Contract No. DE-AC36-08-GO28308 to the National Renewable Energy Laboratory. Kazuma Shinozaki's stay at NREL and CSM was funded by Toyota Central R&D Labs., Inc. NR 72 TC 6 Z9 6 U1 23 U2 60 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-3199 EI 1879-3487 J9 INT J HYDROGEN ENERG JI Int. J. Hydrog. Energy PD DEC 14 PY 2015 VL 40 IS 46 BP 16820 EP 16830 DI 10.1016/j.ijhydene.2015.08.024 PG 11 WC Chemistry, Physical; Electrochemistry; Energy & Fuels SC Chemistry; Electrochemistry; Energy & Fuels GA CZ0CZ UT WOS:000366774000099 ER PT J AU Hammond, KD Wirth, BD AF Hammond, Karl D. Wirth, Brian D. TI Crystal orientation effects on helium ion depth distributions and adatom formation processes in plasma-facing tungsten (vol 116, pg 143301, 2014) SO JOURNAL OF APPLIED PHYSICS LA English DT Correction C1 [Hammond, Karl D.; Wirth, Brian D.] Univ Tennessee, Dept Nucl Engn, Knoxville, TN 37996 USA. [Wirth, Brian D.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Wirth, BD (reprint author), Univ Tennessee, Dept Nucl Engn, Knoxville, TN 37996 USA. EM bdwirth@utk.edu RI Hammond, Karl/I-3604-2012 OI Hammond, Karl/0000-0002-5424-8752 NR 2 TC 3 Z9 3 U1 1 U2 6 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD DEC 14 PY 2015 VL 118 IS 22 AR 229901 DI 10.1063/1.4938011 PG 1 WC Physics, Applied SC Physics GA CZ6ED UT WOS:000367193100044 ER PT J AU Neumayer, SM Ivanov, IN Manzo, M Kholkin, AL Gallo, K Rodriguez, BJ AF Neumayer, Sabine M. Ivanov, Ilia N. Manzo, Michele Kholkin, Andrei L. Gallo, Katia Rodriguez, Brian J. TI Interface and thickness dependent domain switching and stability in Mg doped lithium niobate SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID EXCHANGED WAVE-GUIDES; PIEZORESPONSE FORCE MICROSCOPY; LINBO3 CRYSTALS; RAMAN-SPECTROSCOPY; SPECTRA; FABRICATION; SCATTERING; INVERSION; PHONONS; PHASES AB Controlling ferroelectric switching in Mg doped lithium niobate (Mg: LN) is of fundamental importance for optical device and domain wall electronics applications that require precise domain patterns. Stable ferroelectric switching has been previously observed in undoped LN layers above proton exchanged (PE) phases that exhibit reduced polarization, whereas PE layers have been found to inhibit lateral domain growth. Here, Mg doping, which is known to significantly alter ferroelectric switching properties including coercive field and switching currents, is shown to inhibit domain nucleation and stability in Mg: LN above buried PE phases that allow for precise ferroelectric patterning via domain growth control. Furthermore, piezoresponse force microscopy (PFM) and switching spectroscopy PFM reveal that the voltage at which polarization switches from the "up" to the "down" state increases with increasing thickness in pure Mg: LN, whereas the voltage required for stable back switching to the original "up" state does not exhibit this thickness dependence. This behavior is consistent with the presence of an internal frozen defect field. The inhibition of domain nucleation above PE interfaces, observed in this study, is a phenomenon that occurs in Mg: LN but not in undoped samples and is mainly ascribed to a remaining frozen polarization in the PE phase that opposes polarization reversal. This reduced frozen depolarization field in the PE phase also influences the depolarization field of the Mg: LN layer above due to the presence of uncompensated polarization charge at the PE-Mg: LN boundary. These alterations in internal electric fields within the sample cause long-range lattice distortions in Mg: LN via electromechanical coupling, which were corroborated with complimentary Raman measurements. (C) 2015 AIP Publishing LLC. C1 [Neumayer, Sabine M.; Rodriguez, Brian J.] Univ Coll Dublin, Sch Phys, Dublin 4, Ireland. [Neumayer, Sabine M.; Rodriguez, Brian J.] Univ Coll Dublin, Conway Inst Biomol & Biomed Res, Dublin 4, Ireland. [Ivanov, Ilia N.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Manzo, Michele; Gallo, Katia] KTH Royal Inst Technol, Dept Appl Phys, S-10691 Stockholm, Sweden. [Kholkin, Andrei L.] Aveiro Inst Mat, Dept Phys, P-3810193 Aveiro, Portugal. [Kholkin, Andrei L.] Aveiro Inst Mat, CICECO, P-3810193 Aveiro, Portugal. [Kholkin, Andrei L.] Ural Fed Univ, Inst Nat Sci, Ekaterinburg 620000, Russia. RP Gallo, K (reprint author), KTH Royal Inst Technol, Dept Appl Phys, Roslagstullbacken 21, S-10691 Stockholm, Sweden. EM gallo@kth.se; brian.rodriguez@ucd.ie RI Kholkin, Andrei/G-5834-2010; OI Kholkin, Andrei/0000-0003-3432-7610; Rodriguez, Brian/0000-0001-9419-2717; Neumayer, Sabine M./0000-0002-8167-1230 FU European Commission within FP7 Marie Curie Initial Training Network "Nanomotion" [290158]; Science Foundation Ireland [SFI07/IN1/B931]; FCT/MEC [FCT UID/CTM/50011/2013]; FEDER; Swedish Research Council [622-2010-526]; [621-2014-5407] FX This research was funded by the European Commission within FP7 Marie Curie Initial Training Network "Nanomotion" (Grant Agreement No. 290158). The AFM used for this work was funded by Science Foundation Ireland (SFI07/IN1/B931). Raman measurements were conducted at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility (CNMS2015-139). The authors would also like to thank Ivan Kravchenko for depositing the gold bottom electrode at CNMS. A.L.K. acknowledges the CICECO-Aveiro Institute of Materials (Ref. FCT UID/CTM/50011/2013), financed by National funds through the FCT/MEC and when applicable co-financed by FEDER under the PT2020 Partnership Agreetnent. K.G. gratefully acknowledges support from the Swedish Research Council through a Senior Fellowship (622-2010-526) and Grant No. 621-2014-5407. NR 59 TC 3 Z9 3 U1 4 U2 24 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD DEC 14 PY 2015 VL 118 IS 22 AR 224101 DI 10.1063/1.4936605 PG 7 WC Physics, Applied SC Physics GA CZ6ED UT WOS:000367193100007 ER PT J AU Berstis, L Beckham, GT Crowley, MF AF Berstis, Laura Beckham, Gregg T. Crowley, Michael F. TI Electronic coupling through natural amino acids SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID PHOTOSYNTHETIC REACTION CENTERS; CHARGE-TRANSFER; SIDE-CHAINS; CYTOCHROME-P450 REDUCTASE; PROTEIN DYNAMICS; AB-INITIO; PEPTIDES; FLOW; MECHANISMS; TRYPTOPHAN AB Myriad scientific domains concern themselves with biological electron transfer (ET) events that span across vast scales of rate and efficiency through a remarkably fine-tuned integration of amino acid (AA) sequences, electronic structure, dynamics, and environment interactions. Within this intricate scheme, many questions persist as to how proteins modulate electron-tunneling properties. To help elucidate these principles, we develop a model set of peptides representing the common a-helix and alpha-strand motifs including all natural AAs within implicit protein-environment solvation. Using an effective Hamiltonian strategy with density functional theory, we characterize the electronic coupling through these peptides, furthermore considering side-chain dynamics. For both motifs, predictions consistently show that backbone-mediated electronic coupling is distinctly sensitive to AA type (aliphatic, polar, aromatic, negatively charged and positively charged), and to side-chain orientation. The unique properties of these residues may be employed to design activated, deactivated, or switch-like superexchange pathways. Electronic structure calculations and Green's function analyses indicate that localized shifts in the electron density along the peptide play a role in modulating these pathways, and further substantiate the experimentally observed behavior of proline residues as superbridges. The distinct sensitivities of tunneling pathways to sequence and conformation revealed in this electronic coupling database help improve our fundamental understanding of the broad diversity of ET reactivity and provide guiding principles for peptide design. (C) 2015 AIP Publishing LLC. C1 [Berstis, Laura; Beckham, Gregg T.; Crowley, Michael F.] Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO 80401 USA. RP Crowley, MF (reprint author), Natl Renewable Energy Lab, Natl Bioenergy Ctr, 15013 Denver West Pkwy, Golden, CO 80401 USA. EM gregg.beckham@nrel.gov; michael.crowley@nrel.gov FU NREL Laboratory Directed Research and Development funds; DOE Bioenergy Technologies Office; Swiss National Science Foundation; DOE Office of EERE [DE-AC36-08GO28308] FX This work was supported by NREL Laboratory Directed Research and Development funds, the DOE Bioenergy Technologies Office, and by a Swiss National Science Foundation Postdoctoral Fellowship to L.B. The authors are grateful for supercomputer time on Stampede provided by the Texas Advanced Computing Center (TACC) at the University of Texas at Austin through No. MCB09159 and the NREL Computational Sciences Center, which is supported by the DOE Office of EERE under Contract No. DE-AC36-08GO28308. NR 71 TC 1 Z9 1 U1 6 U2 21 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD DEC 14 PY 2015 VL 143 IS 22 AR 225102 DI 10.1063/1.4936588 PG 10 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA CZ6EP UT WOS:000367194300056 PM 26671404 ER PT J AU Bhaskaran-Nair, K Valiev, M Deng, SHM Shelton, WA Kowalski, K Wang, XB AF Bhaskaran-Nair, Kiran Valiev, Marat Deng, S. H. M. Shelton, William A. Kowalski, Karol Wang, Xue-Bin TI Probing microhydration effect on the electronic structure of the GFP chromophore anion: Photoelectron spectroscopy and theoretical investigations SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID GREEN FLUORESCENT PROTEIN; COUPLED-CLUSTER METHOD; EXCITED-STATE DYNAMICS; INTERNAL-CONVERSION; EXCITATION-ENERGIES; GENE-EXPRESSION; IONIZED STATES; AEQUOREA; ABSORPTION; PHOTOISOMERIZATION AB The photophysics of the Green Fluorescent Protein (GFP) chromophore is critically dependent on its local structure and on its environment. Despite extensive experimental and computational studies, there remain many open questions regarding the key fundamental variables that govern this process. One outstanding problem is the role of autoionization as a possible relaxation pathway of the excited state under different environmental conditions. This issue is considered in our work through combined experimental and theoretical studies of microsolvated clusters of the deprotonated p-hydroxybenzylidene-2,3-dimethylimidazolinone anion (HBDI-), an analog of the GFP chromophore. Through selective generation of microsolvated structures of predetermined size and subsequent analysis of experimental photoelectron spectra by high level ab initio methods, we are able to precisely identify the structure of the system, establish the accuracy of theoretical data, and provide reliable description of auto-ionization process as a function of hydrogen-bonding environment. Our study clearly illustrates the first few water molecules progressively stabilize the excited state of the chromophore anion against the autodetached neutral state, which should be an important trait for crystallographic water molecules in GFPs that has not been fully explored to date. (C) 2015 AIP Publishing LLC. C1 [Bhaskaran-Nair, Kiran; Shelton, William A.] Louisiana State Univ, Cain Dept Chem Engn, Baton Rouge, LA 70803 USA. [Bhaskaran-Nair, Kiran; Shelton, William A.] Louisiana State Univ, Ctr Computat & Technol, Baton Rouge, LA 70803 USA. [Deng, S. H. M.; Kowalski, Karol] Pacific NW Natl Lab, William R Wiley Environm Mol Sci Lab, Richland, WA 99352 USA. [Deng, S. H. M.; Wang, Xue-Bin] Pacific NW Natl Lab, Div Phys Sci, Richland, WA 99352 USA. RP Bhaskaran-Nair, K (reprint author), Louisiana State Univ, Cain Dept Chem Engn, Baton Rouge, LA 70803 USA. EM karol.kowalski@pnnl.gov; xuebin.wang@pnnl.gov OI Wang, Xue-Bin/0000-0001-8326-1780 FU U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences; DOE's Office of Biological and Environmental Research; Department of Energy Office of Biological and Environmental Research; U.S. Department of Energy under EPSCoR [DE-SC0012432]; Louisiana Board of Regents FX This work was supported by U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences, and performed using EMSL, a national scientific user facility sponsored by DOE's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory, which is operated by Battelle Memorial Institute for the DOE. The calculations have been performed using the EMSL and PNNL Institutional Computing both resources located at PNNL, which is sponsored by the Department of Energy Office of Biological and Environmental Research. This material is based upon work supported by the U.S. Department of Energy under EPSCoR Grant No. DE-SC0012432 with additional support from the Louisiana Board of Regents (W.A.S.). We thank Professor De-Qing Zhang of Institute of Chemistry, Chinese Academy of Sciences for providing us the HBDI sample. NR 64 TC 4 Z9 4 U1 7 U2 27 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD DEC 14 PY 2015 VL 143 IS 22 AR 224301 DI 10.1063/1.4936252 PG 6 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA CZ6EP UT WOS:000367194300021 PM 26671369 ER PT J AU Pelzer, KM Darling, SB Gray, SK Schaller, RD AF Pelzer, Kenley M. Darling, Seth B. Gray, Stephen K. Schaller, Richard D. TI Exciton size and quantum transport in nanoplatelets SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID POLYMER SOLAR-CELLS; ENERGY-TRANSFER; COLLOIDAL NANOPLATELETS; GRAPHENE OXIDE; AB-INITIO; HETEROSTRUCTURES; DIMENSIONALITY; LAYER AB Two-dimensional nanoplatelets (NPLs) are an exciting class of materials with promising optical and energy transport properties. The possibility of efficient energy transport between nanoplatelets raises questions regarding the nature of energy transfer in these thin, laterally extended systems. A challenge in understanding exciton transport is the uncertainty regarding the size of the exciton. Depending on the material and defects in the nanoplatelet, an exciton could plausibly extend over an entire plate or localize to a small region. The variation in possible exciton sizes raises the question how exciton size impacts the efficiency of transport between nanoplatelet structures. Here, we explore this issue using a quantum master equation approach. This method goes beyond the assumptions of Forster theory to allow for quantum mechanical effects that could increase energy transfer efficiency. The model is extremely flexible in describing different systems, allowing us to test the effect of varying the spatial extent of the exciton. We first discuss qualitative aspects of the relationship between exciton size and transport and then conduct simulations of exciton transport between NPLs for a range of exciton sizes and environmental conditions. Our results reveal that exciton size has a strong effect on energy transfer efficiency and suggest that manipulation of exciton size may be useful in designing NPLs for energy transport. (C) 2015 AIP Publishing LLC. C1 [Pelzer, Kenley M.; Darling, Seth B.; Gray, Stephen K.; Schaller, Richard D.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Darling, Seth B.] Univ Chicago, Inst Mol Engn, Chicago, IL 60637 USA. [Schaller, Richard D.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. RP Pelzer, KM (reprint author), Argonne Natl Lab, Ctr Nanoscale Mat, 9700 Cass Ave, Argonne, IL 60439 USA. EM kpelzer@anl.gov FU Center for Nanoscale Materials, a U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences User Facility [DE-AC02-06CH11357]; Argonne National Laboratory FX This work was performed at the Center for Nanoscale Materials, a U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences User Facility under Contract No. DE-AC02-06CH11357. K. M. Pelzer was funded by the Aneesur Rahman Fellowship of Argonne National Laboratory. NR 39 TC 0 Z9 0 U1 6 U2 20 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD DEC 14 PY 2015 VL 143 IS 22 AR 224106 DI 10.1063/1.4936407 PG 12 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA CZ6EP UT WOS:000367194300009 PM 26671357 ER PT J AU Welland, MJ Lau, KC Redfern, PC Liang, LY Zhai, DY Wolf, D Curtiss, LA AF Welland, Michael J. Lau, Kah Chun Redfern, Paul C. Liang, Linyun Zhai, Denyun Wolf, Dieter Curtiss, Larry A. TI An atomistically informed mesoscale model for growth and coarsening during discharge in lithium-oxygen batteries SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID LI-O-2 BATTERIES; BINARY-ALLOYS; AIR BATTERIES; PEROXIDE; DISPROPORTIONATION; CLUSTERS; LI2O2; MORPHOLOGY; STABILITY; ADDITIVES AB An atomistically informed mesoscale model is developed for the deposition of a discharge product in a Li-O-2 battery. This mescocale model includes particle growth and coarsening as well as a simplified nucleation model. The model involves LiO2 formation through reaction of O-2(-) and Li+ in the electrolyte, which deposits on the cathode surface when the LiO2 concentration reaches supersaturation in the electrolyte. A reaction-diffusion (rate-equation) model is used to describe the processes occurring in the electrolyte and a phase-field model is used to capture microstructural evolution. This model predicts that coarsening, in which large particles grow and small ones disappear, has a substantial effect on the size distribution of the LiO2 particles during the discharge process. The size evolution during discharge is the result of the interplay between this coarsening process and particle growth. The growth through continued deposition of LiO2 has the effect of causing large particles to grow ever faster while delaying the dissolution of small particles. The predicted size evolution is consistent with experimental results for a previously reported cathode material based on activated carbon during discharge and when it is at rest, although kinetic factors need to be included. The approach described in this paper synergistically combines models on different length scales with experimental observations and should have applications in studying other related discharge processes, such as Li2O2 deposition, in Li-O-2 batteries and nucleation and growth in Li-S batteries. (C) 2015 AIP Publishing LLC. C1 [Welland, Michael J.; Lau, Kah Chun; Redfern, Paul C.; Wolf, Dieter; Curtiss, Larry A.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Liang, Linyun] Argonne Natl Lab, Math & Comp Sci, Argonne, IL 60439 USA. [Zhai, Denyun] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Welland, MJ (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM curtiss@anl.gov OI Welland, Michael/0000-0002-7683-6213; Redfern, Paul/0000-0002-9475-5396 FU UChicago Argonne, LLC [DE-AC02-06CH11357]; U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), the Materials Sciences and Engineering Division; Computational Materials and Chemical Sciences Network (CMCSN) project on Computational Microstructure Science; Joint Center for Energy Storage Research, a DOE-BES Energy Innovation Hub FX Work supported by UChicago Argonne, LLC under Contract No. DE-AC02-06CH11357, the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), the Materials Sciences and Engineering Division, the Computational Materials and Chemical Sciences Network (CMCSN) project on Computational Microstructure Science (phase field modeling); and by the Joint Center for Energy Storage Research, a DOE-BES Energy Innovation Hub (electronic structure computations). We gratefully acknowledge the computing resources provided on Fusion and Blues, high-performance computing clusters operated by the Laboratory Computing Resource Center at Argonne National Laboratory. NR 44 TC 1 Z9 1 U1 1 U2 28 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD DEC 14 PY 2015 VL 143 IS 22 AR 224113 DI 10.1063/1.4936410 PG 13 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA CZ6EP UT WOS:000367194300016 PM 26671364 ER PT J AU Sheets, EJ Yang, WC Balow, RB Wang, Y Walker, BC Stach, EA Agrawal, R AF Sheets, Erik J. Yang, Wei-Chang Balow, Robert B. Wang, Yunjie Walker, Bryce C. Stach, Eric A. Agrawal, Rakesh TI An in situ phosphorus source for the synthesis of Cu3P and the subsequent conversion to Cu3PS4 nanoparticle clusters SO JOURNAL OF MATERIALS RESEARCH LA English DT Article ID METAL PHOSPHIDE NANOPARTICLES; LITHIUM-ION BATTERIES; COPPER PHOSPHIDE; LOW-TEMPERATURE; NANOCRYSTALS; DECOMPOSITION; EXCHANGE AB The search for alternative earth abundant semiconducting nanocrystals for sustainable energy applications has brought forth the need for nanoscale syntheses beyond bulk synthesis routes. Of particular interest are metal phosphides and derivative I-V-VI chalcogenides including copper phosphide (Cu3P) and copper thiophosphate (Cu3PS4). Herein, we report a one-pot, solution-based synthesis of Cu3P nanocrystals utilizing an in situ phosphorus source: phosphorus pentasulfide (P2S5) in trioctylphosphine. By injecting this phosphorus source into a copper solution in oleylamine, uniform and size controlled Cu3P nanocrystals with a phosphorous-rich surface are synthesized. The subsequent reaction of the Cu3P nanocrystals with decomposing thiourea forms nanoscale Cu3PS4 particles having p-type conductivity and an effective optical band gap of 2.36 eV. The synthesized Cu3PS4 produces a cathodic photocurrent during photoelectrochemical measurements, demonstrating its application as a light-absorbing material. Our process creates opportunities to explore other solution-based metal-phosphorus systems and their subsequent sulfurization for earth abundant, alternative energy materials. C1 [Sheets, Erik J.; Wang, Yunjie; Walker, Bryce C.; Agrawal, Rakesh] Purdue Univ, Sch Chem Engn, W Lafayette, IN 47907 USA. [Yang, Wei-Chang] Purdue Univ, Sch Mat Engn, W Lafayette, IN 47907 USA. [Balow, Robert B.] Purdue Univ, Dept Chem, W Lafayette, IN 47907 USA. [Stach, Eric A.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Agrawal, R (reprint author), Purdue Univ, Sch Chem Engn, W Lafayette, IN 47907 USA. EM agrawalr@purdue.edu RI Stach, Eric/D-8545-2011 OI Stach, Eric/0000-0002-3366-2153 FU National Science Foundation's Solar Economy IGERT [0903670]; U.S. DOE Office of Science Facility at Brookhaven National Laboratory [DE-SC0012704] FX The authors would like to give special thanks to Karl Wood for his mass spectrometry assistance, and James Meyer for his experimental assistance. This work was supported by the National Science Foundation's Solar Economy IGERT Grant No. 0903670. E.A.S. acknowledges support from the U.S. DOE Office of Science Facility at Brookhaven National Laboratory under Contract No. DE-SC0012704. NR 31 TC 0 Z9 0 U1 15 U2 49 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0884-2914 EI 2044-5326 J9 J MATER RES JI J. Mater. Res. PD DEC 14 PY 2015 VL 30 IS 23 BP 3710 EP 3716 DI 10.1557/jmr.2015.333 PG 7 WC Materials Science, Multidisciplinary SC Materials Science GA CZ7AU UT WOS:000367253100015 ER PT J AU Kemp, DW Rivers, AR Kemp, KM Lipp, EK Porter, JW Wares, JP AF Kemp, Dustin W. Rivers, Adam R. Kemp, Keri M. Lipp, Erin K. Porter, James W. Wares, John P. TI Spatial Homogeneity of Bacterial Communities Associated with the Surface Mucus Layer of the Reef-Building Coral Acropora palmata SO PLOS ONE LA English DT Article ID MICROBIAL COMMUNITIES; DIVERSITY; DISEASE; RNA; SYMBIONTS; SEQUENCES; COMPLEX; UNIFRAC; PORITES; SEARCH AB Coral surface mucus layer (SML) microbiota are critical components of the coral holobiont and play important roles in nutrient cycling and defense against pathogens. We sequenced 16S rRNA amplicons to examine the structure of the SML microbiome within and between colonies of the threatened Caribbean reef-building coral Acropora palmata in the Florida Keys. Samples were taken from three spatially distinct colony regions-uppermost (high irradiance), underside (low irradiance), and the colony base-representing microhabitats that vary in irradiance and water flow. Phylogenetic diversity (PD) values of coral SML bacteria communities were greater than surrounding seawater and lower than adjacent sediment. Bacterial diversity and community composition was consistent among the three microhabitats. Cyanobacteria, Bacteroidetes, Alphaproteobacteria, and Proteobacteria, respectively were the most abundant phyla represented in the samples. This is the first time spatial variability of the surface mucus layer of A. palmata has been studied. Homogeneity in the microbiome of A. palmata contrasts with SML heterogeneity found in other Caribbean corals. These findings suggest that, during non-stressful conditions, host regulation of SML microbiota may override diverse physiochemical influences induced by the topographical complexity of A. palmata. Documenting the spatial distribution of SML microbes is essential to understanding the functional roles these microorganisms play in coral health and adaptability to environmental perturbations. C1 [Kemp, Dustin W.; Kemp, Keri M.; Porter, James W.] Univ Georgia, Odum Sch Ecol, Athens, GA 30602 USA. [Rivers, Adam R.] US DOE, Joint Genome Inst, Walnut Creek, CA 94598 USA. [Lipp, Erin K.] Univ Georgia, Dept Environm Hlth Sci, Athens, GA 30602 USA. [Wares, John P.] Univ Georgia, Dept Genet, Athens, GA 30602 USA. RP Kemp, DW (reprint author), Univ Georgia, Odum Sch Ecol, Athens, GA 30602 USA. EM DKemp1@uga.edu FU National Science Foundation Ecology of Infectious Diseases [1015342] FX This research project was supported by the National Science Foundation Ecology of Infectious Diseases grant #1015342 awarded to JWP, EKL, and JPW. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.; We would like to thank MOTE Tropical Research Laboratory and Erich Bartels for laboratory and boat support. Meredith Meyers provided dive and sample collection assistance and Ron Eytan was very helpful with sample analysis and software support. All samples were collected under the permit FKNMS-2010-131-A1. This research project was supported by the National Science Foundation Ecology of Infectious Diseases grant #1015342 awarded to JWP, EKL, and JPW NR 52 TC 1 Z9 1 U1 7 U2 25 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD DEC 14 PY 2015 VL 10 IS 12 AR e0143790 DI 10.1371/journal.pone.0143790 PG 12 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CY9GR UT WOS:000366715900018 PM 26659364 ER PT J AU van der Laan, JD Wright, JB Scrymgeour, DA Kemme, SA Dereniak, EL AF van der Laan, John D. Wright, Jeremy B. Scrymgeour, David A. Kemme, Shanalyn A. Dereniak, Eustace L. TI Evolution of circular and linear polarization in scattering environments SO OPTICS EXPRESS LA English DT Article ID BACKSCATTERING TARGET DETECTION; ELECTROMAGNETIC PREDICTION; TURBID MEDIUM; LIGHT; MEDIA; DEPOLARIZATION; ENPOLARIZATION; IMPROVEMENT; SIZE; DISCRIMINATION AB This work quantifies the polarization persistence and memory of circularly polarized light in forward-scattering and isotropic (Rayleigh regime) environments; and for the first time, details the evolution of both circularly and linearly polarized states through scattering environments. Circularly polarized light persists through a larger number of scattering events longer than linearly polarized light for all forward-scattering environments; but not for scattering in the Rayleigh regime. Circular polarization's increased persistence occurs for both forward and backscattered light. The simulated environments model polystyrene microspheres in water with particle diameters of 0.1 mu m, 2.0 mu m, and 3.0 mu m. The evolution of the polarization states as they scatter throughout the various environments are illustrated on the Poincare sphere after one, two, and ten scattering events. (C) 2015 Optical Society of America C1 [van der Laan, John D.; Wright, Jeremy B.; Scrymgeour, David A.; Kemme, Shanalyn A.] Sandia Natl Labs, Albuquerque, NM 87123 USA. [Dereniak, Eustace L.] Univ Arizona, Coll Opt Sci, Tucson, AZ 85721 USA. RP van der Laan, JD (reprint author), Sandia Natl Labs, 1515 Eubank Blvd SE, Albuquerque, NM 87123 USA. EM johvand@sandia.gov RI Scrymgeour, David/C-1981-2008 FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 29 TC 3 Z9 3 U1 6 U2 14 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD DEC 14 PY 2015 VL 23 IS 25 BP 31874 EP 31888 DI 10.1364/OE.23.031874 PG 15 WC Optics SC Optics GA CY8VQ UT WOS:000366687200025 PM 26698979 ER PT J AU Pardini, T Cocco, D Hau-Riege, SP AF Pardini, Tom Cocco, Daniele Hau-Riege, Stefan P. TI Effect of slope errors on the performance of mirrors for x-ray free electron laser applications SO OPTICS EXPRESS LA English DT Article AB In this work we point out that slope errors play only a minor role in the performance of a certain class of x-ray optics for X-ray Free Electron Laser (XFEL) applications. Using physical optics propagation simulations and the formalism of Church and Takacs [Opt. Eng. 34, 353 (1995)], we show that diffraction limited optics commonly found at XFEL facilities posses a critical spatial wavelength that makes them less sensitive to slope errors, and more sensitive to height error. Given the number of XFELs currently operating or under construction across the world, we hope that this simple observation will help to correctly define specifications for x-ray optics to be deployed at XFELs, possibly reducing the budget and the timeframe needed to complete the optical manufacturing and metrology. (C) 2015 Optical Society of America C1 [Pardini, Tom; Hau-Riege, Stefan P.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Cocco, Daniele] SLAC Natl Accelerator Lab, Menlo Pk, CA 94566 USA. RP Pardini, T (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM pardini2@llnl.gov FU U.S. Department of Energy [DE-AC52-07NA27344]; U.S. Department of Energy at SLAC [DE-AC02-76SF00515] FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, and under the auspices of the U.S. Department of Energy at SLAC under Contract No. DE-AC02-76SF00515. Document Release Number LLNL-JRNL-677641. NR 11 TC 4 Z9 4 U1 2 U2 10 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD DEC 14 PY 2015 VL 23 IS 25 BP 31889 EP 31895 DI 10.1364/OE.23.031889 PG 7 WC Optics SC Optics GA CY8VQ UT WOS:000366687200026 PM 26698980 ER PT J AU Eedugurala, N Hovey, M Ho, HA Jana, B Lampland, NL Ellern, A Sadow, AD AF Eedugurala, Naresh Hovey, Megan Ho, Hung-An Jana, Barun Lampland, Nicole L. Ellern, Arkady Sadow, Aaron D. TI Cyclopentadienyl-bis(oxazoline) Magnesium and Zirconium Complexes in Aminoalkene Hydroaminations SO ORGANOMETALLICS LA English DT Article ID OLEFIN POLYMERIZATION CATALYSIS; H BOND FORMATION; X-RAY STRUCTURE; INTRAMOLECULAR HYDROAMINATION; STRUCTURAL-CHARACTERIZATION; CRYSTAL-STRUCTURE; LIGANDS; REACTIVITY; ACTIVATION; ADDITIONS AB A new class of cyclopentadiene-bis(oxazoline) compounds and their piano-stool-type organometallic complexes have been prepared as catalysts for hydroamination of aminoalkenes. The two compounds MeC(Ox(Me2))(2)C5H5 (Bo(M)CpH; Ox(Me2) = 4,4-dimethyl-2-oxazoline) and MeC-(Ox(Me2))(2)C5Me4H (Bo(M)Cp(tet)H ) are synthesized from C5R4HI (R = H, Me) and MeC(Ox(Me2))(2)Li. These cyclopentadiene-bis(oxazolines) are converted into ligands that support a variety of metal centers in piano-stool-type geometries, and here we report the preparation of Mg, Tl, Ti, and Zr compounds. Bo(M)CpH and Bo(M)Cp(tet)H react with MgMe2(O2C4H2)(2) to give the magnesium methyl complexes {Bo(M)Cp}MgMe and {Bo(M)Cp(tet)}MgMe. Bo(M)CpH and Bo(M)Cp(tet)H are converted to Bo(M)CpTl and Bo(M)Cp(tet)Tl by reaction with TIOEt. The thallium derivatives react with TiCl3(THF)(3) to provide [{Bo(M)Cp}TiCl(mu-Cl)](2) and [{Bo(M)Cp(tet)}TiCl(mu-Cl)](2), the former of which is crystallographically characterized as a dimeric species. Bo(M)CpH and Zr(NMe2)(4) react to eliminate dimethylamine and afford {Bo(M)Cp}Zr(NMe2)(3), which is crystallographically characterized as a monomeric four-legged piano-stool compound. {Bo(M)Cp}Zr(NMe2)(3), {Bo(M)Cp}MgMe, and {Bo(M)Cp(tet)}MgMe are efficient catalysts for the hydroamination/cyclization of aminoalkenes under mild conditions. C1 [Sadow, Aaron D.] Iowa State Univ, US DOE, Ames Lab, Ames, IA 50011 USA. Iowa State Univ, Dept Chem, Ames, IA 50011 USA. RP Sadow, AD (reprint author), Iowa State Univ, US DOE, Ames Lab, 1605 Gilman Hall, Ames, IA 50011 USA. EM sadow@iastate.edu FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences through Ames Laboratory Catalysis Program [DE-AC02-07CH11358]; Office of Workforce Development for Teachers and Scientists through Summer Undergraduate Laboratory Internship Program through Ames Laboratory FX Drs. Sarah Cady and Toshia Zessin are thanked for valuable assistance with EPR spectra measurements and analysis. This research was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences, through the Ames Laboratory Catalysis Program (Contract No. DE-AC02-07CH11358). M.H. was supported by Office of Workforce Development for Teachers and Scientists through the Summer Undergraduate Laboratory Internship Program through the Ames Laboratory. NR 49 TC 0 Z9 0 U1 4 U2 16 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0276-7333 EI 1520-6041 J9 ORGANOMETALLICS JI Organometallics PD DEC 14 PY 2015 VL 34 IS 23 BP 5566 EP 5575 DI 10.1021/acs.organomet.5b00771 PG 10 WC Chemistry, Inorganic & Nuclear; Chemistry, Organic SC Chemistry GA CY7VD UT WOS:000366616500008 ER PT J AU Alberi, K Beaton, DA Mascarenhas, A AF Alberi, K. Beaton, D. A. Mascarenhas, A. TI Direct observation of the E- resonant state in GaAs1-xBix SO PHYSICAL REVIEW B LA English DT Article ID BAND DISCONTINUITY; ALLOYS; GAP; SEMICONDUCTORS; GAASN AB Bismuth-derived resonant states with T-2 symmetry are detected in the valence band of GaAs1-xBix using electromodulated reflectance. A doublet is located 42 meV below the valence-band edge of GaAs that is split by local strain around isolated Bi impurity atoms. A transition associated with a singlet is also observed just above the GaAs spin-orbit split-off band. These states move deeper into the valence band with increasing Bi concentration but at a much slower rate than the well-known giant upward movement of the valence-band edge in GaAs1-xBix. Our results provide key insight for clarifying the mechanisms by which isovalent impurities alter the band structure of the host semiconductor. C1 [Alberi, K.; Beaton, D. A.; Mascarenhas, A.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Alberi, K (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. FU Department of Energy Office of Science, Basic Energy Sciences [DE-AC36-80GO28308]; U.S. Government FX We acknowledge the financial support of the Department of Energy Office of Science, Basic Energy Sciences under Grant No. DE-AC36-80GO28308. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes. NR 30 TC 3 Z9 3 U1 1 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD DEC 14 PY 2015 VL 92 IS 24 AR 241201 DI 10.1103/PhysRevB.92.241201 PG 4 WC Physics, Condensed Matter SC Physics GA CY6CU UT WOS:000366495700005 ER PT J AU Collins, BA Chu, YS He, L Haskel, D Tsui, F AF Collins, B. A. Chu, Y. S. He, L. Haskel, D. Tsui, F. TI Structural and chemical ordering of Heusler CoxMnyGez epitaxial films on Ge (111): Quantitative study using traditional and anomalous x-ray diffraction techniques SO PHYSICAL REVIEW B LA English DT Article ID HALF-METALLIC FERROMAGNETS; CO(2)MNZ Z; ATOMIC DISORDER; THIN-FILMS; ALLOYS; CRYSTAL; CO2MNGE; MANGANESE; COBALT; GROWTH AB Epitaxial films of CoxMnyGez grown on Ge (111) substrates by molecular-beam-epitaxy techniques have been investigated as a continuous function of composition using combinatorial synchrotron x-ray diffraction (XRD) and x-ray fluorescence (XRF) spectroscopy techniques. A high-resolution ternary epitaxial phase diagram is obtained, revealing a small number of structural phases stabilized over large compositional regions. Ordering of the constituent elements in the compositional region near the full Heusler alloy Co2MnGe has been examined in detail using both traditional XRD and a new multiple-edge anomalous diffraction (MEAD) technique. Multiple-edge anomalous diffraction involves analyzing the energy dependence of multiple reflections across each constituent absorption edge in order to detect and quantify the elemental distribution of occupation in specific lattice sites. Results of this paper show that structural and chemical ordering are very sensitive to the Co : Mn atomic ratio, such that the ordering is the highest at an atomic ratio of 2 but significantly reduced even a few percent off this ratio. The in-plane lattice is nearly coherent with that of the Ge substrate, while the approximately 2% lattice mismatch is accommodated by the out-of-plane tetragonal strain. The quantitative MEAD analysis further reveals no detectable amount (< 0.5%) of Co-Mn site swapping, but instead high levels (26%) of Mn-Ge site swapping. Increasing Ge concentration above the Heusler stoichiometry (Co0.5Mn0.25Ge0.25) is shown to correlate with increased lattice vacancies, antisites, and stacking faults, but reduced lattice relaxation. The highest degree of chemical ordering is observed off the Heusler stoichiometry with a Ge enrichment of 5 at.%. C1 [Collins, B. A.; He, L.; Tsui, F.] Univ N Carolina, Dept Phys & Astron, Chapel Hill, NC 27599 USA. [Chu, Y. S.] Assoc Univ Inc, Brookhaven Natl Lab, Natl Synchrotron Light Source 2, Upton, NY 11973 USA. [Haskel, D.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Collins, BA (reprint author), Washington State Univ, Dept Phys & Astron, Pullman, WA 99164 USA. EM ftsui@physics.unc.edu FU US Department of Energy (DOE) BES [DE-FG02-05ER46216]; U.S. Department of Defense [DURIP W911NF-05-1-0173]; US DOE, Office of Sciences, Office of Basic Energy Sciences [DE-AC02-06CH11357, DE-SC0012704]; APS [5F-00428] FX We thank S. Vogt at APS for assistance in XRF analysis, and E. Kravtsov at the Institute of Metal Physics, Russian Academy of Sciences for exploring additional routes to obtain local structure information from the anomalous diffraction data. This paper is supported by the US Department of Energy (DOE) BES DE-FG02-05ER46216. Combinatorial synthesis instrumentation was supported in part by U.S. Department of Defense, DURIP W911NF-05-1-0173. Use of the APS is supported by the US DOE, Office of Sciences, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. An APS Subcontract No. 5F-00428 for partial student support (BAC) is also acknowledged. Work at the National Synchrotron Light Source II, Brookhaven National Laboratory, was supported by the US DOE, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-SC0012704. NR 59 TC 0 Z9 0 U1 7 U2 24 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD DEC 14 PY 2015 VL 92 IS 22 AR 224108 DI 10.1103/PhysRevB.92.224108 PG 21 WC Physics, Condensed Matter SC Physics GA CY6EF UT WOS:000366500100005 ER PT J AU Phatak, C Petford-Long, AK Zheng, H Mitchell, JF Rosenkranz, S Norman, MR AF Phatak, C. Petford-Long, A. K. Zheng, H. Mitchell, J. F. Rosenkranz, S. Norman, M. R. TI Ferromagnetic domain behavior and phase transition in bilayer manganites investigated at the nanoscale SO PHYSICAL REVIEW B LA English DT Article ID COLOSSAL MAGNETORESISTANCE; LAYERED MANGANITES; T-C; LA2-2XSR1+2XMN2O7; LA1.2SR1.8MN2O7; DISTORTION; FILMS; SPIN AB Understanding the underlying mechanism and phenomenology of colossal magnetoresistance in manganites has largely focused on atomic and nanoscale physics such as double exchange, phase separation, and charge order. Here we consider a more macroscopic view of manganite materials physics, reporting on the ferromagnetic domain behavior in a bilayer manganite sample with a nominal composition of La2-2xSr1+2xMn2O7 with x = 0.38, studied using in situ Lorentz transmission electron microscopy. The role of magnetocrystalline anisotropy on the structure of domain walls was elucidated. Upon cooling, the magnetic domain contrast was seen to appear first at the Curie temperature within the a-b plane. With further reduction in temperature, the change in area fraction of magnetic domains was used to estimate the critical exponent describing the ferromagnetic phase transition. The ferromagnetic phase transition was accompanied by a distinctive nanoscale granular contrast close to the Curie temperature, which we infer to be related to the presence of ferromagnetic nanoclusters in a paramagnetic matrix, which has not yet been reported in bilayer manganites. C1 [Phatak, C.; Petford-Long, A. K.; Zheng, H.; Mitchell, J. F.; Rosenkranz, S.; Norman, M. R.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Petford-Long, A. K.] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. RP Phatak, C (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 South Cass Ave, Argonne, IL 60439 USA. EM cd@anl.gov RI Rosenkranz, Stephan/E-4672-2011; Norman, Michael/C-3644-2013 OI Rosenkranz, Stephan/0000-0002-5659-0383; FU U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division. Use of the Center for Nanoscale Materials, an Office of Science user facility, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 24 TC 0 Z9 0 U1 0 U2 22 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD DEC 14 PY 2015 VL 92 IS 22 AR 224418 DI 10.1103/PhysRevB.92.224418 PG 7 WC Physics, Condensed Matter SC Physics GA CY6EF UT WOS:000366500100007 ER PT J AU Bucher, B Mach, H Aprahamian, A Simpson, GS Rissanen, J Ghita, DG Olaizola, B Kurcewicz, W Aysto, J Bentley, I Eronen, T Fraile, LM Jokinen, A Karvonen, P Moore, ID Penttila, H Reponen, M Ruchowska, E Saastamoinen, A Smith, MK Weber, C AF Bucher, B. Mach, H. Aprahamian, A. Simpson, G. S. Rissanen, J. Ghita, D. G. Olaizola, B. Kurcewicz, W. Aysto, J. Bentley, I. Eronen, T. Fraile, L. M. Jokinen, A. Karvonen, P. Moore, I. D. Penttila, H. Reponen, M. Ruchowska, E. Saastamoinen, A. Smith, M. K. Weber, C. TI New lifetime measurements in Pd-109 and the onset of deformation at N=60 SO PHYSICAL REVIEW C LA English DT Article ID NUCLEAR-DATA SHEETS; NEUTRON-RICH NUCLEI; UNIQUE-PARITY STATES; PARTICLE-ROTOR MODEL; HIGH-SPIN STATES; SHAPE COEXISTENCE; COLLECTIVE EXCITATION; ALAGA MODEL; HEAVY-ION; ISOTOPES AB Several new subnanosecond lifetimes were measured in Pd-109 using the fast-timing beta gamma gamma (t) method. Fission fragments of the A = 109 mass chain were produced by bombarding natural uranium with 30 MeV protons at the Jyvaskyla Ion Guide Isotope Separator On-Line (IGISOL) facility. Lifetimes were obtained for excited states in Pd-109 populated following beta decay of Rh-109. The new lifetimes provide some insight into the evolution of nuclear structure in this mass region. In particular, the distinct structure of the two low-lying 7/2(+) states occurring systematically across the Pd isotopic chain is supported by the new lifetime measurements. The available nuclear data indicate a sudden increase in deformation at N = 60 which is related to the strong p-n interaction between pi g(9/2) and vg(7/2) valence nucleons expected in this region. C1 [Bucher, B.; Mach, H.; Aprahamian, A.; Bentley, I.; Smith, M. K.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. [Bucher, B.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Mach, H.; Ruchowska, E.] Natl Ctr Nucl Res, Div Nucl Phys, PL-00681 Warsaw, Poland. [Simpson, G. S.] Univ Grenoble 1, CNRS, IN2P3, LPSC,Inst Natl Polytech Grenoble, F-38026 Grenoble, France. [Rissanen, J.; Aysto, J.; Eronen, T.; Jokinen, A.; Karvonen, P.; Moore, I. D.; Penttila, H.; Reponen, M.; Saastamoinen, A.; Weber, C.] Univ Jyvaskyla, Dept Phys, FI-40014 Jyvaskyla, Finland. [Ghita, D. G.] Natl Inst Phys & Nucl Engn, R-77125 Bucharest, Romania. [Olaizola, B.; Fraile, L. M.] Univ Complutense, Fac Fis, CEI Moncloa, Grp Fis Nucl, E-28040 Madrid, Spain. [Kurcewicz, W.] Univ Warsaw, Fac Phys, PL-02093 Warsaw, Poland. [Bentley, I.] St Marys Coll, Dept Chem & Phys, Notre Dame, IN 46556 USA. RP Bucher, B (reprint author), Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. EM bucher3@llnl.gov RI Bentley, Ian/C-4347-2016; Fraile, Luis/B-8668-2011; Moore, Iain/D-7255-2014; Jokinen, Ari/C-2477-2017 OI Bentley, Ian/0000-0002-4442-2761; Fraile, Luis/0000-0002-6281-3635; Moore, Iain/0000-0003-0934-8727; Jokinen, Ari/0000-0002-0451-125X FU National Science Foundation [PHY0822648, PHY0758100]; EU [506065]; Spanish MINECO [FPA-2013-41267-P]; Academy of Finland under the Centre of Excellence Programme; U.S. Department of Energy; Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX B.B. would like to acknowledge helpful discussions with S. Frauendorf and A. O. Macchiavelli. Figures 1(a), 4, and 5 were created using the LEVELSCHEME scientific figure preparation system [70]. This project was funded by the National Science Foundation through Grants No. PHY0822648 and No. PHY0758100 and supported by EU 6th Framework program (Integrating Infrastructure Initiative-Transnational Access) Contract No. 506065 (EURONS), the Spanish MINECO via FPA-2013-41267-P, and by the Academy of Finland under the Centre of Excellence Programme 2006-2011 (nuclear and accelerator based physics program at JYFL). B.B. acknowledges support from the U.S. Department of Energy and Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. NR 70 TC 1 Z9 1 U1 4 U2 15 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 EI 1089-490X J9 PHYS REV C JI Phys. Rev. C PD DEC 14 PY 2015 VL 92 IS 6 AR 064312 DI 10.1103/PhysRevC.92.064312 PG 13 WC Physics, Nuclear SC Physics GA CY6DO UT WOS:000366498200008 ER PT J AU Perez, EAC Papenbrock, T AF Perez, E. A. Coello Papenbrock, T. TI Effective field theory for nuclear vibrations with quantified uncertainties SO PHYSICAL REVIEW C LA English DT Article ID NONCOLLECTIVE OBLATE STATES; GENERAL COLLECTIVE MODEL; DATA SHEETS; MASS NUCLEI; ISOTOPES; EXCITATIONS; COEXISTENCE; SYSTEMS AB We develop an effective field theory (EFT) for nuclear vibrations. The key ingredients-quadrupole degrees of freedom, rotational invariance, and a breakdown scale around the three-phonon level-are taken from data. The EFT is developed for spectra and electromagnetic moments and transitions. We employ tools from Bayesian statistics for the quantification of theoretical uncertainties. The EFT consistently describes spectra and electromagnetic transitions for Ni-62, Ru-98,Ru-100, Pd-106,Pd-108, Cd-110,Cd-112,Cd-114, and Te-118,Te-120,Te-122 within the theoretical uncertainties. This suggests that these nuclei can be viewed as anharmonic vibrators. C1 [Perez, E. A. Coello; Papenbrock, T.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Papenbrock, T.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. RP Perez, EAC (reprint author), Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. OI Papenbrock, Thomas/0000-0001-8733-2849 FU U.S. Department of Energy, Office of Science, Office of Nuclear Physics [DEFG02-96ER40963, DE-AC05-00OR22725] FX This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under Grant No. DEFG02-96ER40963 (University of Tennessee) and under Contract No. DE-AC05-00OR22725 (Oak Ridge National Laboratory). NR 84 TC 10 Z9 10 U1 2 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 EI 1089-490X J9 PHYS REV C JI Phys. Rev. C PD DEC 14 PY 2015 VL 92 IS 6 AR 064309 DI 10.1103/PhysRevC.92.064309 PG 19 WC Physics, Nuclear SC Physics GA CY6DO UT WOS:000366498200005 ER PT J AU Seestrom, SJ Adamek, ER Barlow, D Broussard, LJ Callahan, NB Clayton, SM Cude-Woods, C Currie, S Dees, EB Fox, W Geltenbort, P Hickerson, KP Holley, AT Liu, CY Makela, M Medina, J Morley, DJ Morris, CL Ramsey, J Roberts, A Salvat, DJ Saunders, A Sharapov, EI Sjue, SKL Slaughter, BA VornDick, B Walstrom, PL Wang, Z Womack, TL Young, AR Zeck, BA AF Seestrom, S. J. Adamek, E. R. Barlow, D. Broussard, L. J. Callahan, N. B. Clayton, S. M. Cude-Woods, C. Currie, S. Dees, E. B. Fox, W. Geltenbort, P. Hickerson, K. P. Holley, A. T. Liu, C. Y. Makela, M. Medina, J. Morley, D. J. Morris, C. L. Ramsey, J. Roberts, A. Salvat, D. J. Saunders, A. Sharapov, E. I. Sjue, S. K. L. Slaughter, B. A. VornDick, B. Walstrom, P. L. Wang, Z. Womack, T. L. Young, A. R. Zeck, B. A. CA UCN Collaboration TI Upscattering of ultracold neutrons from gases SO PHYSICAL REVIEW C LA English DT Article ID SLOW-NEUTRONS; SCATTERING; LIFETIME; MOLECULES; HYDROGEN; CHAMBER; TRAP AB We present measurements of the upscattering cross sections of ultracold neutrons (UCNs) from room-temperature hydrogen, deuterium, neon, argon, xenon, C4H10, CF4, and air. The values of these cross sections are important for estimating the loss rate of trapped neutrons due to residual gas and are therefore of importance for neutron lifetime measurements using UCNs. Cross sections were obtained from a combined analysis of the UCN attenuation in a gas cell and direct measurement of the neutrons upscattered in the cell. The effects of the UCN velocity and path-length distributions were accounted for using a Monte Carlo transport code. Results are compared with measurements at higher neutron energy as well as with calculations. C1 [Seestrom, S. J.; Barlow, D.; Broussard, L. J.; Clayton, S. M.; Currie, S.; Makela, M.; Medina, J.; Morley, D. J.; Morris, C. L.; Ramsey, J.; Roberts, A.; Salvat, D. J.; Saunders, A.; Sjue, S. K. L.; Walstrom, P. L.; Wang, Z.; Womack, T. L.; Young, A. R.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Adamek, E. R.; Callahan, N. B.; Cude-Woods, C.; Fox, W.; Holley, A. T.; Liu, C. Y.; Salvat, D. J.; Slaughter, B. A.] Indiana Univ, Bloomington, IN 47405 USA. [VornDick, B.; Young, A. R.; Zeck, B. A.] N Carolina State Univ, Raleigh, NC 27695 USA. [Dees, E. B.; Geltenbort, P.] Inst Laue Langevin, F-38042 Grenoble, France. [Hickerson, K. P.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. [Sharapov, E. I.] Joint Inst Nucl Res, Dubna 141980, Russia. RP Seestrom, SJ (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. OI Broussard, Leah/0000-0001-9182-2808; Makela, Mark/0000-0003-0592-3683; Currie, Scott/0000-0002-6164-7321; Morris, Christopher/0000-0003-2141-0255; Clayton, Steven/0000-0002-1401-2761 FU LANL LDRD program; U.S. Department of Energy Office of Science, Office of Nuclear Physics through LANL DOE [2015LANLE9BU]; North Carolina State University [DE-FG02-97ER41042]; U.S. National Science Foundation through Indiana University [PHY-0969490/PHY-1068712]; North Carolina State University grant NSF [1307426] FX This material is supported by the LANL LDRD program, the U.S. Department of Energy Office of Science, Office of Nuclear Physics through LANL DOE Grant No. 2015LANLE9BU and North Carolina State University Grant No. DE-FG02-97ER41042, the U.S. National Science Foundation through Indiana University Grants No. PHY-0969490/PHY-1068712, and North Carolina State University grant NSF Grant No. 1307426. NR 24 TC 0 Z9 0 U1 4 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 EI 1089-490X J9 PHYS REV C JI Phys. Rev. C PD DEC 14 PY 2015 VL 92 IS 6 AR 065501 DI 10.1103/PhysRevC.92.065501 PG 8 WC Physics, Nuclear SC Physics GA CY6DO UT WOS:000366498200013 ER PT J AU Anderle, DP Stratmann, M Ringer, F AF Anderle, Daniele P. Stratmann, Marco Ringer, Felix TI Fragmentation functions at next-to-next-to-leading order accuracy SO PHYSICAL REVIEW D LA English DT Article ID QUANTUM-CHROMODYNAMIC CORRECTIONS; ELECTRON-POSITRON ANNIHILATION; PARTICLE MULTIPLICITY RATIOS; 3-LOOP SPLITTING FUNCTIONS; QCD CORRECTIONS; QUARK JETS; HARMONIC POLYLOGARITHMS; PARTON DISTRIBUTIONS; ANOMALOUS DIMENSIONS; MELLIN TRANSFORMS AB We present a first analysis of parton-to-pion fragmentation functions at next-to-next-to-leading order accuracy in QCD based on single-inclusive pion production in electron-positron annihilation. Special emphasis is put on the technical details necessary to perform the QCD scale evolution and cross section calculation in Mellin moment space. We demonstrate how the description of the data and the theoretical uncertainties are improved when next-to-next-to-leading order QCD corrections are included. C1 [Anderle, Daniele P.; Stratmann, Marco] Univ Tubingen, Inst Theoret Phys, D-72076 Tubingen, Germany. [Ringer, Felix] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Ringer, Felix] Univ Tubingen, Inst Theoret Phys, D-72076 Tubingen, Germany. RP Anderle, DP (reprint author), Univ Tubingen, Inst Theoret Phys, Morgenstelle 14, D-72076 Tubingen, Germany. EM daniele-paolo.anderle@uni-tuebingen.de; marco.stratmann@uni-tuebingen.de; f.ringer@lanl.gov FU Fondazione Cassa Rurale di Trento; Bundesministerium fur Bildung und Forschung (BMBF) [05P12VTCTG]; Institutional Strategy of the University of Tubingen (DFG) [ZUK 63]; U.S. Department of Energy, Office of Science [DE-AC52-06NA25396]; DOE [2012LANL7033] FX We are grateful to R. Sassot, W. Vogelsang, and A. Vogt for helpful discussions and comments. We greatly appreciate extensive discussion with the authors of the MELA code, V. Bertone, S. Carrazza, and E. R. Nocera. D. P. A. acknowledges partial support from the Fondazione Cassa Rurale di Trento. This work was supported in part by the Bundesministerium fur Bildung und Forschung (BMBF) under Grant No. 05P12VTCTG and by the Institutional Strategy of the University of Tubingen (DFG, ZUK 63). This research is supported by the U.S. Department of Energy, Office of Science under Contract No. DE-AC52-06NA25396 and by the DOE Early Career Program under Grant No. 2012LANL7033. NR 73 TC 10 Z9 10 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD DEC 14 PY 2015 VL 92 IS 11 AR 114017 DI 10.1103/PhysRevD.92.114017 PG 15 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CY6EQ UT WOS:000366501300001 ER PT J AU Aubourg, E Bailey, S Bautista, JE Beutler, F Bhardwaj, V Bizyaev, D Blanton, M Blomqvist, M Bolton, AS Bovy, J Brewington, H Brinkmann, J Brownstein, JR Burden, A Busca, NG Carithers, W Chuang, CH Comparat, J Croft, RAC Cuesta, AJ Dawson, KS Delubac, T Eisenstein, DJ Font-Ribera, A Ge, J Le Goff, JM Gontcho, SGA Gott, JR Gunn, JE Guo, H Guy, J Hamilton, JC Ho, S Honscheid, K Howlett, C Kirkby, D Kitaura, FS Kneib, JP Lee, KG Long, D Lupton, RH Magana, MV Malanushenko, V Malanushenko, E Manera, M Maraston, C Margala, D McBride, CK Miralda-Escude, J Myers, AD Nichol, RC Noterdaeme, P Nuza, SE Olmstead, MD Oravetz, D Paris, I Padmanabhan, N Palanque-Delabrouille, N Pan, K Pellejero-Ibanez, M Percival, WJ Petitjean, P Pieri, MM Prada, F Reid, B Rich, J Roe, NA Ross, AJ Ross, NP Rossi, G Rubino-Martin, JA Sanchez, AG Samushia, L Santos, RTG Scoccola, CG Schlegel, DJ Schneider, DP Seo, HJ Sheldon, E Simmons, A Skibba, RA Slosar, A Strauss, MA Thomas, D Tinker, JL Tojeiro, R Vazquez, JA Viel, M Wake, DA Weaver, BA Weinberg, DH Wood-Vasey, WM Yeche, C Zehavi, I Zhao, GB AF Aubourg, Eric Bailey, Stephen Bautista, Julian E. Beutler, Florian Bhardwaj, Vaishali Bizyaev, Dmitry Blanton, Michael Blomqvist, Michael Bolton, Adam S. Bovy, Jo Brewington, Howard Brinkmann, J. Brownstein, Joel R. Burden, Angela Busca, Nicols G. Carithers, William Chuang, Chia-Hsun Comparat, Johan Croft, Rupert A. C. Cuesta, Antonio J. Dawson, Kyle S. Delubac, Timothee Eisenstein, Daniel J. Font-Ribera, Andreu Ge, Jian Le Goff, J. -M. Gontcho, Satya Gontcho A. Gott, J. Richard, III Gunn, James E. Guo, Hong Guy, Julien Hamilton, Jean-Christophe Ho, Shirley Honscheid, Klaus Howlett, Cullan Kirkby, David Kitaura, Francisco S. Kneib, Jean-Paul Lee, Khee-Gan Long, Dan Lupton, Robert H. Magana, Mariana Vargas Malanushenko, Viktor Malanushenko, Elena Manera, Marc Maraston, Claudia Margala, Daniel McBride, Cameron K. Miralda-Escude, Jordi Myers, Adam D. Nichol, Robert C. Noterdaeme, Pasquier Nuza, Sebastian E. Olmstead, Matthew D. Oravetz, Daniel Paris, Isabelle Padmanabhan, Nikhil Palanque-Delabrouille, Nathalie Pan, Kaike Pellejero-Ibanez, Marcos Percival, Will J. Petitjean, Patrick Pieri, Matthew M. Prada, Francisco Reid, Beth Rich, James Roe, Natalie A. Ross, Ashley J. Ross, Nicholas P. Rossi, Graziano Rubino-Martin, Jose Alberto Sanchez, Ariel G. Samushia, Lado Genova Santos, Ricardo Tanausu Scoccola, Claudia G. Schlegel, David J. Schneider, Donald P. Seo, Hee-Jong Sheldon, Erin Simmons, Audrey Skibba, Ramin A. Slosar, Anze Strauss, Michael A. Thomas, Daniel Tinker, Jeremy L. Tojeiro, Rita Vazquez, Jose Alberto Viel, Matteo Wake, David A. Weaver, Benjamin A. Weinberg, David H. Wood-Vasey, W. M. Yeche, Christophe Zehavi, Idit Zhao, Gong-Bo CA BOSS Collaboration TI Cosmological implications of baryon acoustic oscillation measurements SO PHYSICAL REVIEW D LA English DT Article ID DIGITAL SKY SURVEY; LY-ALPHA FOREST; HUBBLE-SPACE-TELESCOPE; DARK ENERGY SURVEY; MICROWAVE BACKGROUND ANISOTROPIES; SPECTROSCOPIC TARGET SELECTION; GALAXY REDSHIFT SURVEY; BVRI LIGHT CURVES; SDSS-III; DATA RELEASE AB We derive constraints on cosmological parameters and tests of dark energy models from the combination of baryon acoustic oscillation (BAO) measurements with cosmic microwave background (CMB) data and a recent reanalysis of Type Ia supernova (SN) data. In particular, we take advantage of high-precision BAO measurements from galaxy clustering and the Lyman-alpha forest (LyaF) in the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS). Treating the BAO scale as an uncalibrated standard ruler, BAO data alone yield a high confidence detection of dark energy; in combination with the CMB angular acoustic scale they further imply a nearly flat universe. Adding the CMB-calibrated physical scale of the sound horizon, the combination of BAO and SN data into an "inverse distance ladder" yields a measurement of H-0 = 67.3 +/- 1.1 km s(-1) Mpc(-1), with 1.7% precision. This measurement assumes standard prerecombination physics but is insensitive to assumptions about dark energy or space curvature, so agreement with CMB-based estimates that assume a flat Lambda CDM cosmology is an important corroboration of this minimal cosmological model. For constant dark energy (Lambda), our BAO + SN + CMB combination yields matter density Omega(m) = 0.301 +/- 0.008 and curvature Omega(k) = -0.003 +/- 0.003. When we allow more general forms of evolving dark energy, the BAO + SN + CMB parameter constraints are always consistent with flat Lambda CDM values at approximate to 1 sigma. While the overall chi(2) of model fits is satisfactory, the LyaF BAO measurements are in moderate (2-2.5 sigma) tension with model predictions. Models with early dark energy that tracks the dominant energy component at high redshift remain consistent with our expansion history constraints, and they yield a higher H-0 and lower matter clustering amplitude, improving agreement with some low redshift observations. Expansion history alone yields an upper limit on the summed mass of neutrino species, Sigma m(nu) < 0.56 eV (95% confidence), improving to Sigma m(nu) < 0.25 eV if we include the lensing signal in the Planck CMB power spectrum. In a flat Lambda CDM model that allows extra relativistic species, our data combination yields N-eff = 3.43 +/- 0.26; while the LyaF BAO data prefer higher N-eff when excluding galaxy BAO, the galaxy BAO alone favor N-eff approximate to 3. When structure growth is extrapolated forward from the CMB to low redshift, standard dark energy models constrained by our data predict a level of matter clustering that is high compared to most, but not all, observational estimates. C1 [Aubourg, Eric; Bautista, Julian E.; Busca, Nicols G.; Hamilton, Jean-Christophe; Magana, Mariana Vargas] Univ Paris Diderot, CNRS, CEA,Sorbonne Paris Cite, Astroparticule & Cosmol,APC,IN2P3,Irfu,Observ Par, F-75205 Paris 13, France. [Bailey, Stephen; Beutler, Florian; Bhardwaj, Vaishali; Carithers, William; Font-Ribera, Andreu; Guy, Julien; Palanque-Delabrouille, Nathalie; Reid, Beth; Roe, Natalie A.; Schlegel, David J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Bhardwaj, Vaishali] Univ Washington, Dept Astron, Seattle, WA 98195 USA. [Bizyaev, Dmitry; Brewington, Howard; Brinkmann, J.; Long, Dan; Malanushenko, Viktor; Malanushenko, Elena; Oravetz, Daniel; Pan, Kaike; Simmons, Audrey] Natl Solar Observ, Sunspot, NM 88349 USA. [Blanton, Michael; Tinker, Jeremy L.; Weaver, Benjamin A.] NYU, Ctr Cosmol & Particle Phys, New York, NY 10003 USA. [Blomqvist, Michael; Kirkby, David; Margala, Daniel] UC Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Bolton, Adam S.; Brownstein, Joel R.; Dawson, Kyle S.; Guo, Hong; Olmstead, Matthew D.] Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA. [Bovy, Jo] Inst Adv Study, Princeton, NJ 08540 USA. [Burden, Angela; Howlett, Cullan; Manera, Marc; Maraston, Claudia; Nichol, Robert C.; Percival, Will J.; Ross, Ashley J.; Thomas, Daniel; Tojeiro, Rita; Zhao, Gong-Bo] Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 3FX, Hants, England. [Busca, Nicols G.] Observ Nacl, BR-20921400 Rio De Janeiro, RJ, Brazil. [Busca, Nicols G.] LIneA, Lab Interinst & Astron, BR-20921400 Rio De Janeiro, RJ, Brazil. [Chuang, Chia-Hsun; Comparat, Johan; Prada, Francisco; Scoccola, Claudia G.] Univ Autonoma Madrid, CSIC, UAM, Inst Fis Teor, E-28049 Madrid, Spain. [Croft, Rupert A. C.; Ho, Shirley] Carnegie Mellon Univ, Dept Phys, Pittsburgh, PA 15213 USA. [Croft, Rupert A. C.] Univ Oxford, Astrophys, Oxford OX1 3RH, England. [Cuesta, Antonio J.; Padmanabhan, Nikhil] Yale Univ, Dept Phys, New Haven, CT 06520 USA. [Cuesta, Antonio J.; Gontcho, Satya Gontcho A.; Miralda-Escude, Jordi] Univ Barcelona, IEEC UB, Inst Ciencies Cosmos, E-08028 Barcelona, Spain. [Delubac, Timothee; Kneib, Jean-Paul] EPFL, Observ Sauverny, Lab Astrophys, CH-1290 Chavannes Des Bois, Switzerland. [Eisenstein, Daniel J.; McBride, Cameron K.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Ge, Jian] Univ Florida, Dept Astron, Gainesville, FL 32611 USA. [Le Goff, J. -M.; Palanque-Delabrouille, Nathalie; Rich, James; Rossi, Graziano; Yeche, Christophe] CEA, Ctr Saclay, IRFU, F-91191 Gif Sur Yvette, France. [Gott, J. Richard, III; Gunn, James E.; Lupton, Robert H.; Strauss, Michael A.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Guo, Hong] Chinese Acad Sci, Shanghai Astron Observ, Key Lab Res Galaxies & Cosmol, Shanghai 200030, Peoples R China. [Guy, Julien] Univ Paris 07, Univ Paris 06, CNRS, LPNHE,IN2P3, F-75252 Paris, France. [Honscheid, Klaus] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Honscheid, Klaus; Ross, Ashley J.; Seo, Hee-Jong; Weinberg, David H.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Kitaura, Francisco S.; Nuza, Sebastian E.] Leibniz Inst Astrophys Potsdam AIP, D-14482 Potsdam, Germany. [Kneib, Jean-Paul] Aix Marseille Univ, CNRS, CPPM, IN2P3, Marseille, France. [Lee, Khee-Gan] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Manera, Marc] UCL, London WC1E 6BT, England. [Miralda-Escude, Jordi] Inst Catalana Recerca & Estudis Avancats, Barcelona, Spain. [Myers, Adam D.] Univ Wyoming, Dept Phys & Astron, Laramie, WY 82071 USA. [Noterdaeme, Pasquier; Petitjean, Patrick] UPMC, CNRS, Inst Astrophys Paris, F-75014 Paris, France. [Paris, Isabelle; Viel, Matteo; Wake, David A.] Osserv Astron Trieste, INAF, I-34131 Trieste, Italy. [Pellejero-Ibanez, Marcos; Rubino-Martin, Jose Alberto; Genova Santos, Ricardo Tanausu; Scoccola, Claudia G.] IAC, E-38200 Tenerife, Spain. [Pellejero-Ibanez, Marcos; Rubino-Martin, Jose Alberto] Univ La Laguna, Dept Astrofis, E-38206 Tenerife, Spain. [Pieri, Matthew M.] Aix Marseille Univ, CNRS, LAM, A MIDEX,UMR 7326, Marseille, France. [Prada, Francisco] Campus Int Excellence UAM CSIC, E-28049 Madrid, Spain. [Prada, Francisco] CSIC, Inst Astrofis Andalucia, E-18080 Granada, Spain. [Reid, Beth] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Ross, Nicholas P.] Drexel Univ, Dept Phys, Philadelphia, PA 19104 USA. [Rossi, Graziano] Sejong Univ, Dept Astron & Space Sci, Seoul 143747, South Korea. [Sanchez, Ariel G.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Samushia, Lado] Kansas State Univ, Dept Phys, Manhattan, KS USA. [Samushia, Lado] Ilia State Univ, Natl Abastumani Astrophys Observ, GE-1060 Tbilisi, Rep of Georgia. [Scoccola, Claudia G.] Univ Autonoma Madrid, Dept Fis Teor, E-28049 Madrid, Spain. [Schneider, Donald P.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Schneider, Donald P.] Penn State Univ, Inst Gravitat & Cosmos, University Pk, PA 16802 USA. [Seo, Hee-Jong] Ohio Univ, Dept Phys & Astron, Athens, OH 45701 USA. [Sheldon, Erin; Slosar, Anze; Vazquez, Jose Alberto] Brookhaven Natl Lab, Upton, NY 11973 USA. [Skibba, Ramin A.] Univ Calif San Diego, Dept Phys, Ctr Astrophys & Space Sci, San Diego, CA 92093 USA. [Viel, Matteo] INFN Natl Inst Nucl Phys, I-34127 Trieste, Italy. [Wake, David A.] Univ Wisconsin Madison, Dept Astron, Madison, WI 53706 USA. [Wake, David A.] Open Univ, Dept Phys Sci, Milton Keynes MK7 6AA, Bucks, England. [Weinberg, David H.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Wood-Vasey, W. M.] Univ Pittsburgh, Dept Phys & Astron, PITT PACC, Pittsburgh, PA 15260 USA. [Zehavi, Idit] Case Western Reserve Univ, Dept Astron, Cleveland, OH 44106 USA. [Zhao, Gong-Bo] Chinese Acad Sci, Natl Astron Observ, Beijing 100012, Peoples R China. RP Aubourg, E (reprint author), Univ Paris Diderot, CNRS, CEA,Sorbonne Paris Cite, Astroparticule & Cosmol,APC,IN2P3,Irfu,Observ Par, 10 Rue Alice Domon & Leonie Duquet, F-75205 Paris 13, France. RI Guo, Hong/J-5797-2015; Croft, Rupert/N-8707-2014; EPFL, Physics/O-6514-2016; OI Guo, Hong/0000-0003-4936-8247; Croft, Rupert/0000-0003-0697-2583; Kirkby, David/0000-0002-8828-5463; Beutler, Florian/0000-0003-0467-5438; Cuesta Vazquez, Antonio Jose/0000-0002-4153-9470 FU Alfred P. Sloan Foundation; National Science Foundation; U.S. Department of Energy Office of Science; University of Arizona; Brazilian Participation Group; Brookhaven National Laboratory; Carnegie Mellon University; University of Florida; French Participation Group; German Participation Group; Harvard University; Instituto de Astrofisica de Canarias; Michigan State/Notre Dame/JINA Participation Group; Johns Hopkins University; Lawrence Berkeley National Laboratory; Max Planck Institute for Astrophysics; Max Planck Institute for Extraterrestrial Physics; New Mexico State University; New York University; Ohio State University; Pennsylvania State University; University of Portsmouth; Princeton University; Spanish Participation Group; University of Tokyo; University of Utah; Vanderbilt University; University of Virginia; University of Washington; Yale University FX We thank Eric Linder for useful discussions of early dark energy and structure growth. We also thank Savvas Koushiappas and Gordon Blackadder for alerting us to an error in the decaying dark matter section of the preprint version of this paper and answering our questions as we corrected it. Funding for SDSS-III has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, and the U.S. Department of Energy Office of Science. The SDSS-III web site is http://www.sdss3.org/. SDSS-III is managed by the Astrophysical Research Consortium for the Participating Institutions of the SDSS-III Collaboration including the University of Arizona, the Brazilian Participation Group, Brookhaven National Laboratory, Carnegie Mellon University, University of Florida, the French Participation Group, the German Participation Group, Harvard University, the Instituto de Astrofisica de Canarias, the Michigan State/Notre Dame/JINA Participation Group, Johns Hopkins University, Lawrence Berkeley National Laboratory, Max Planck Institute for Astrophysics, Max Planck Institute for Extraterrestrial Physics, New Mexico State University, New York University, Ohio State University, Pennsylvania State University, University of Portsmouth, Princeton University, the Spanish Participation Group, University of Tokyo, University of Utah, Vanderbilt University, University of Virginia, University of Washington, and Yale University. NR 126 TC 64 Z9 64 U1 1 U2 13 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD DEC 14 PY 2015 VL 92 IS 12 AR 123516 DI 10.1103/PhysRevD.92.123516 PG 38 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CY6FD UT WOS:000366502800004 ER PT J AU Nakayama, Y Nomura, Y AF Nakayama, Yu Nomura, Yasunori TI Weak gravity conjecture in the AdS/CFT correspondence SO PHYSICAL REVIEW D LA English DT Article ID CORRELATORS AB We study implications of the weak gravity conjecture in the AdS/CFT correspondence. Unlike in Minkowski spacetime, Anti-de Sitter (AdS) spacetime has a physical length scale, so that the conjecture must be generalized with an additional parameter. We discuss possible generalizations and translate them into the language of dual conformal field theories (CFTs), which take the form of inequalities involving the dimension and charge of an operator as well as the current and energy-momentum tensor central charges. We then test these inequalities against various CFTs to see if they are universally obeyed by all the CFTs. We find that certain CFTs, such as supersymmetric QCDs, do not satisfy them even in the large N limit. This does not contradict the conjecture in AdS spacetime because the theories violating them are either unlikely or unclear to have weakly coupled gravitational descriptions, but it suggests that the CFT inequalities obtained here by naive translations do not apply beyond the regime in which weakly coupled gravitational descriptions are available. C1 [Nakayama, Yu] CALTECH, Walter Burke Inst Theoret Phys, Pasadena, CA 91125 USA. [Nakayama, Yu] Univ Tokyo, UTIAS, Kavli Inst Phys & Math Universe WPI, Kashiwa, Chiba 2778583, Japan. [Nomura, Yasunori] Univ Calif Berkeley, Dept Phys, Berkeley Ctr Theoret Phys, Berkeley, CA 94720 USA. [Nomura, Yasunori] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Theoret Phys Grp, Berkeley, CA 94720 USA. RP Nakayama, Y (reprint author), CALTECH, Walter Burke Inst Theoret Phys, Pasadena, CA 91125 USA. OI Nomura, Yasunori/0000-0002-1497-1479 FU Department of Energy (DOE) [de-sc0011632]; World Premier International Research Center Initiative (WPI Initiative), MEXT; Office of Science, Office of High Energy and Nuclear Physics, of the U.S. DOE [DE-AC02-05CH11231]; National Science Foundation [PHY-1214644, PHY-1521446]; MEXT KAKENHI Grant [15H05895]; Sherman Fairchild Senior Research Fellowship at California Institute of Technology FX We would like to thank Sean Hartnoll, Simeon Hellerman, Igor Klebanov, and Tomoki Ohtsuki for useful discussions. Y.N.1 thanks Weizmann Institute of Science and Y.N.2 thanks Kavli Institute for the Physics and Mathematics of the Universe, University of Tokyo for hospitality during their visits in which a part of this work was carried out. The work of Y.N.1 was supported in part by a Sherman Fairchild Senior Research Fellowship at California Institute of Technology and Department of Energy (DOE) Grant No. de-sc0011632 as well as the World Premier International Research Center Initiative (WPI Initiative), MEXT. The work of Y.N.2 was supported in part by the Director, Office of Science, Office of High Energy and Nuclear Physics, of the U.S. DOE under Contract No. DE-AC02-05CH11231, by the National Science Foundation under Grants No. PHY-1214644 and No. PHY-1521446, and by MEXT KAKENHI Grant No. 15H05895. NR 39 TC 9 Z9 9 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD DEC 14 PY 2015 VL 92 IS 12 AR 126006 DI 10.1103/PhysRevD.92.126006 PG 9 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CY6FD UT WOS:000366502800008 ER PT J AU Novikov, VN Sokolov, AP AF Novikov, V. N. Sokolov, A. P. TI Qualitative change in structural dynamics of some glass-forming systems SO PHYSICAL REVIEW E LA English DT Article ID SUPERCOOLED LIQUIDS; TEMPERATURE-DEPENDENCE; MOLECULAR LIQUIDS; LIGHT-SCATTERING; RELAXATION; PRESSURE; VISCOSITY; TRANSITION; POLYMERS; TRANSPORT AB Analysis of the temperature dependence of the structural relaxation time tau(alpha)(T) in supercooled liquids revealed a qualitatively distinct feature-a sharp, cusplike maximum in the second derivative of log tau(alpha)(T) at some T-max. It suggests that the super-Arrhenius temperature dependence of tau(alpha)(T) in glass-forming liquids eventually crosses over to an Arrhenius behavior at T < T-max,T- and there is no divergence of tau(alpha)(T) at nonzero T. T-max can be above or below T-g, depending on the sensitivity of tau (T) to a change in the liquid's density quantified by the exponent gamma in the scaling tau(alpha) (T) similar to exp(A/T rho(-gamma)). These results might turn the discussion of the glass transition in a different direction-toward the origin of the limiting activation energy for structural relaxation at low T. C1 [Novikov, V. N.; Sokolov, A. P.] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. [Novikov, V. N.; Sokolov, A. P.] Univ Tennessee, Joint Inst Neutron Sci, Knoxville, TN 37996 USA. [Sokolov, A. P.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Novikov, VN (reprint author), Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. FU NSF Chemistry program [CHE-1213444] FX We are grateful to P. Griffin for useful discussions and for bringing our attention to the Cohen-Grest function and to M. Roland for providing experimental data for segmental relaxation in poly(methyl methacrylate) with different molecular weights. We acknowledge the support from the NSF Chemistry program (Grant No. CHE-1213444). NR 58 TC 2 Z9 2 U1 2 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 EI 1550-2376 J9 PHYS REV E JI Phys. Rev. E PD DEC 14 PY 2015 VL 92 IS 6 AR 062304 DI 10.1103/PhysRevE.92.062304 PG 8 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA CY6GQ UT WOS:000366507200005 PM 26764689 ER PT J AU Thessen, AE Bunker, DE Buttigieg, PL Cooper, LD Dahdul, WM Domisch, S Franz, NM Jaiswal, P Lawrence-Dill, CJ Midford, PE Mungall, CJ Ramirez, MJ Specht, CD Vogt, L Vos, RA Walls, RL White, JW Zhang, GY Deans, AR Huala, E Lewis, SE Mabee, PM AF Thessen, Anne E. Bunker, Daniel E. Buttigieg, Pier Luigi Cooper, Laurel D. Dahdul, Wasila M. Domisch, Sami Franz, Nico M. Jaiswal, Pankaj Lawrence-Dill, Carolyn J. Midford, Peter E. Mungall, Christopher J. Ramirez, Martin J. Specht, Chelsea D. Vogt, Lars Vos, Rutger Aldo Walls, Ramona L. White, Jeffrey W. Zhang, Guanyang Deans, Andrew R. Huala, Eva Lewis, Suzanna E. Mabee, Paula M. TI Emerging semantics to link phenotype and environment SO PEERJ LA English DT Article DE Phenotype; Environment; Ontology; Semantic web; Biodiversity; Data integration ID PHIDIPPUS-CLARUS; SORGHUM-BICOLOR; JUMPING SPIDER; ONTOLOGY; BIODIVERSITY; INFORMATION; BIOLOGY; ANATOMY; UNIFICATION; VERTEBRATE AB Understanding the interplay between environmental conditions and phenotypes is a fundamental goal of biology. Unfortunately, data that include observations on phenotype and environment are highly heterogeneous and thus difficult to find and integrate. One approach that is likely to improve the status quo involves the use of ontologies to standardize and link data about phenotypes and environments. Specifying and linking data through ontologies will allow researchers to increase the scope and flexibility of large-scale analyses aided by modern computing methods. Investments in this area would advance diverse fields such as ecology, phylogenetics, and conservation biology. While several biological ontologies are well-developed, using them to link phenotypes and environments is rare because of gaps in ontological coverage and limits to interoperability among ontologies and disciplines. In this manuscript, we present (1) use cases from diverse disciplines to illustrate questions that could be answered more efficiently using a robust linkage between phenotypes and environments, (2) two proof-of-concept analyses that show the value of linking phenotypes to environments in fishes and amphibians, and (3) two proposed example data models for linking phenotypes and environments using the extensible observation ontology (OBOE) and the Biological Collections Ontology (BCO); these provide a starting point for the development of a data model linking phenotypes and environments. C1 [Thessen, Anne E.] Ronin Inst Independent Scholarship, Monclair, NJ 07043 USA. [Thessen, Anne E.] Data Detektiv, Waltham, MA USA. [Bunker, Daniel E.] New Jersey Inst Technol, Dept Biol Sci, Newark, NJ 07102 USA. [Buttigieg, Pier Luigi] Helmholtz Zentrum Polar & Meeresforsch, Alfred Wegener Inst, HGF MPG Grp Deep Sea Ecol & Technol, Bremerhaven, Germany. [Cooper, Laurel D.; Jaiswal, Pankaj] Oregon State Univ, Dept Bot & Plant Pathol, Corvallis, OR 97331 USA. [Dahdul, Wasila M.; Mabee, Paula M.] Univ S Dakota, Dept Biol, Vermillion, SD 57069 USA. [Domisch, Sami] Yale Univ, Dept Ecol & Evolutionary Biol, New Haven, CT USA. [Franz, Nico M.; Zhang, Guanyang] Arizona State Univ, Sch Life Sci, Tempe, AZ USA. [Lawrence-Dill, Carolyn J.] Iowa State Univ, Dept Genet, Ames, IA USA. [Lawrence-Dill, Carolyn J.] Iowa State Univ, Dept Dev & Cell Biol, Ames, IA USA. [Lawrence-Dill, Carolyn J.] Iowa State Univ, Dept Agron, Ames, IA USA. [Mungall, Christopher J.; Lewis, Suzanna E.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Genom Div, Berkeley, CA 94720 USA. [Ramirez, Martin J.] Consejo Nacl Invest Cient & Tecn, Museo Argentino Ciencias Natr, Div Arachnol, RA-1033 Buenos Aires, DF, Argentina. [Specht, Chelsea D.] Univ Calif Berkeley, Dept Plant & Microbial Biol, Berkeley, CA 94720 USA. [Specht, Chelsea D.] Univ Calif Berkeley, Dept Integrat Biol, Berkeley, CA 94720 USA. [Vogt, Lars] Univ Bonn, Inst Evolutionsbiol & Okol, Bonn, Germany. [Vos, Rutger Aldo] Nat Biodivers Ctr, Leiden, Netherlands. [Walls, Ramona L.] Univ Arizona, iPlant Collaborat, Tucson, AZ USA. [White, Jeffrey W.] USDA ARS, US Arid Land Agr Res Ctr, Maricopa, AZ USA. [Deans, Andrew R.] Penn State Univ, Dept Entomol, University Pk, PA 16802 USA. [Huala, Eva] Phoenix Bioinformat, Redwood City, CA USA. RP Thessen, AE (reprint author), Ronin Inst Independent Scholarship, Monclair, NJ 07043 USA. EM annethessen@gmail.com RI Jaiswal, Pankaj/H-7599-2016; OI Jaiswal, Pankaj/0000-0002-1005-8383; Thessen, Anne/0000-0002-2908-3327; Lewis, Suzanna/0000-0002-8343-612X; Dahdul, Wasila/0000-0003-3162-7490; Buttigieg, Pier Luigi/0000-0002-4366-3088 FU US National Science Foundation [DEB-0956049, NSF IOS:0822201, IOS:1127112, IOS:1340112, DEB 1208666]; Micro B3 project - European Union [287589]; German Research Foundation DFG [DO 1880/1-1]; iPlant collaborative as part of the National Science Foundation Award [DBI-0735191, DBI-1265383]; Office of Science, Office of Basic Energy Sciences, of the US Department of Energy [DE-AC02-05CH11231]; Phenoscape project (NSF grants) [DBI-1062404, DBI-1062542]; [R24OD011883] FX The scientific meeting from which this review arose was organized by the Phenotype Research Coordination Network, which is funded by the US National Science Foundation, grant number DEB-0956049. PLB's work on this project is supported through the Micro B3 project, funded by the European Union's Seventh Framework Programme (Joint Call OCEAN.2011-2: marine microbial diversity-new insights into marine ecosystems functioning and its biotechnological potential) under the grant agreement no 287589. SD received funding from the German Research Foundation DFG (grant DO 1880/1-1). PJ and LDC received funding from the US National Science Foundation (NSF IOS:0822201, IOS:1127112, IOS:1340112). CDS received funding from the US National Science Foundation grant number DEB 1208666. RLW was supported by the iPlant collaborative as part of the National Science Foundation Award Numbers DBI-0735191 and DBI-1265383. CJM and SEL were supported by R24OD011883 and by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under Contract No. DE-AC02-05CH11231. PMM and WMD were supported through by Phenoscape project (NSF grants DBI-1062404 and DBI-1062542). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 118 TC 2 Z9 2 U1 6 U2 17 PU PEERJ INC PI LONDON PA 341-345 OLD ST, THIRD FLR, LONDON, EC1V 9LL, ENGLAND SN 2167-8359 J9 PEERJ JI PeerJ PD DEC 14 PY 2015 VL 3 AR UNSP e1470 DI 10.7717/peerj.1470 PG 39 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CY4XY UT WOS:000366413400001 PM 26713234 ER PT J AU Marshall, K Pooser, R Siopsis, G Weedbrook, C AF Marshall, Kevin Pooser, Raphael Siopsis, George Weedbrook, Christian TI Quantum simulation of quantum field theory using continuous variables SO PHYSICAL REVIEW A LA English DT Article ID COMPUTATION; INFORMATION; ALGORITHMS; COMPUTERS AB The year 1982 is often credited as the year that theoretical quantum computing was started with a keynote speech by Richard Feynman, who proposed a universal quantum simulator, the idea being that if you had such a machine you could in principle "imitate any quantum system, including the physical world." With that in mind, we present an algorithm for a continuous-variable quantum computing architecture which gives an exponential speedup over the best-known classical methods. Specifically, this relates to efficiently calculating the scattering amplitudes in scalar bosonic quantum field theory, a problem that is believed to be hard using a classical computer. Building on this, we give an experimental implementation based on continuous-variable states that is feasible with today's technology. C1 [Marshall, Kevin] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Pooser, Raphael] Oak Ridge Natl Lab, Quantum Informat Sci Grp, Oak Ridge, TN 37831 USA. [Pooser, Raphael; Siopsis, George] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Weedbrook, Christian] CipherQ, Toronto, ON M5B 2G9, Canada. RP Marshall, K (reprint author), Univ Toronto, Dept Phys, 60 St George St, Toronto, ON M5S 1A7, Canada. EM siopsis@tennessee.edu OI Pooser, Raphael/0000-0002-2922-453X FU NSERC; U.S. Department of Energy [DE-AC05-00OR22725] FX We are grateful to Peter Rohde for feedback. K.M. acknowledges support from NSERC. R.C.P. performed portions of this work at Oak Ridge National Laboratory, operated by UT-Battelle for the U.S. Department of Energy under Contract No. DE-AC05-00OR22725. NR 45 TC 2 Z9 2 U1 4 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 EI 1094-1622 J9 PHYS REV A JI Phys. Rev. A PD DEC 14 PY 2015 VL 92 IS 6 AR 063825 DI 10.1103/PhysRevA.92.063825 PG 7 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA CY6AU UT WOS:000366490300017 ER PT J AU Liu, S Uppal, H Demaria, M Desprez, PY Campisi, J Kapahi, P AF Liu, Su Uppal, Harpreet Demaria, Marco Desprez, Pierre-Yves Campisi, Judith Kapahi, Pankaj TI Simvastatin suppresses breast cancer cell proliferation induced by senescent cells SO SCIENTIFIC REPORTS LA English DT Article ID ENDOCRINE RESISTANCE; HEPATIC MYOFIBROBLASTS; SECRETORY PHENOTYPE; IN-VIVO; FIBROSIS; STATINS; ERK; TUMORIGENESIS; INFLAMMATION; ATORVASTATIN AB Cellular senescence suppresses cancer by preventing the proliferation of damaged cells, but senescent cells can also promote cancer though the pro-inflammatory senescence-associated secretory phenotype (SASP). Simvastatin, an HMG-coA reductase inhibitor, is known to attenuate inflammation and prevent certain cancers. Here, we show that simvastatin decreases the SASP of senescent human fibroblasts by inhibiting protein prenylation, without affecting the senescent growth arrest. The Rho family GTPases Rac1 and Cdc42 were activated in senescent cells, and simvastatin reduced both activities. Further, geranylgeranyl transferase, Rac1 or Cdc42 depletion reduced IL-6 secretion by senescent cells. We also show that simvastatin mitigates the effects of senescent conditioned media on breast cancer cell proliferation and endocrine resistance. Our findings identify a novel activity of simvastatin and mechanism of SASP regulation. They also suggest that senescent cells, which accumulate after radio/chemo therapy, promote endocrine resistance in breast cancer and that simvastatin might suppress this resistance. C1 [Liu, Su; Demaria, Marco; Desprez, Pierre-Yves; Campisi, Judith; Kapahi, Pankaj] Buck Inst Res Aging, Novato, CA 94945 USA. [Uppal, Harpreet] Santa Rosa Jr Coll, Santa Rosa, CA 95401 USA. [Desprez, Pierre-Yves] Calif Pacific Med Ctr, Res Inst, San Francisco, CA 94107 USA. [Campisi, Judith] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. RP Campisi, J (reprint author), Buck Inst Res Aging, Novato, CA 94945 USA. EM JCampisi@lbl.gov; pkapahi@buckinstitute.org OI Demaria, Marco/0000-0002-8429-4813 FU National Institutes of Health [F32 AG043252, R01 AG038688, R37 AG009909, P01 041122]; Larry L. Hillblom Foundation [2009-A-001-CTR]; American Federation for Aging Research (AFAR mid-career award) FX We thank the members of the Campisi laboratory for valuable discussions. This work was funded by grants from the National Institutes of Health (F32 AG043252 to SL; R01 AG038688 to PK; R37 AG009909 to JC; and P01 041122 to PK and JC), the Larry L. Hillblom Foundation (Grant number: 2009-A-001-CTR) and the American Federation for Aging Research (AFAR mid-career award to PK). NR 60 TC 6 Z9 7 U1 1 U2 8 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD DEC 14 PY 2015 VL 5 AR 17895 DI 10.1038/srep17895 PG 11 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CY3CB UT WOS:000366284700001 PM 26658759 ER PT J AU Vasdekis, AE Silverman, AM Stephanopoulos, G AF Vasdekis, A. E. Silverman, A. M. Stephanopoulos, G. TI Origins of Cell-to-Cell Bioprocessing Diversity and Implications of the Extracellular Environment Revealed at the Single-Cell Level SO SCIENTIFIC REPORTS LA English DT Article ID STOCHASTIC GENE-EXPRESSION; YEAST YARROWIA-LIPOLYTICA; ESCHERICHIA-COLI; NOISE; HETEROGENEITY; VARIABILITY; METABOLISM; PHENOTYPES; CHEMICALS; MICROBES AB Bioprocess limitations imposed by microbial cell-to-cell phenotypic diversity remain poorly understood. To address this, we investigated the origins of such culture diversity during lipid production and assessed the impact of the fermentation microenvironment. We measured the single-cell lipid production dynamics in a time-invariant microfluidic environment and discovered that production is not monotonic, but rather sporadic with time. To characterize this, we introduce bioprocessing noise and identify its epigenetic origins. We linked such intracellular production fluctuations with cell-to-cell productivity diversity in culture. This unmasked the phenotypic diversity amplification by the culture microenvironment, a critical parameter in strain engineering as well as metabolic disease treatment. C1 [Vasdekis, A. E.] Univ Idaho, Dept Phys, Moscow, ID 83844 USA. [Vasdekis, A. E.] Pacific NW Natl Lab, Environm & Mol Sci Lab, Richland, WA 99354 USA. [Silverman, A. M.; Stephanopoulos, G.] MIT, Dept Chem Engn, Cambridge, MA 02139 USA. RP Vasdekis, AE (reprint author), Univ Idaho, Dept Phys, Moscow, ID 83844 USA. EM andreasv@uidaho.edu; gregstep@mit.edu OI Vasdekis, Andreas/0000-0003-4315-1047 FU US Department of Energy [SC 0008744]; Institutional Development Award (IDeA) from the National Institute of General Medical Sciences of the National Institutes of Health [P20 GM103408]; Pacific Northwest National Laboratory (Linus Pauling Fellowship) [PN12005/2406]; Department of Energy's Office of Biological and Environmental Research FX GS acknowledges financial support from the US Department of Energy, Grant no. SC 0008744 and AEV from an Institutional Development Award (IDeA) from the National Institute of General Medical Sciences of the National Institutes of Health (P20 GM103408), as well as from the Pacific Northwest National Laboratory (Linus Pauling Fellowship - PN12005/2406). Part of the research was performed using EMSL, a national user facility sponsored by the Department of Energy's Office of Biological and Environmental Research located at Pacific Northwest National Laboratory. NR 39 TC 1 Z9 1 U1 5 U2 28 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD DEC 14 PY 2015 VL 5 AR 17689 DI 10.1038/srep17689 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CY3BT UT WOS:000366283800001 PM 26657999 ER PT J AU Muller, A Schippers, S Hellhund, J Holste, K Kilcoyne, ALD Phaneuf, RA Ballance, CP McLaughlin, BM AF Mueller, A. Schippers, S. Hellhund, J. Holste, K. Kilcoyne, A. L. D. Phaneuf, R. A. Ballance, C. P. McLaughlin, B. M. TI Single-photon single ionization of W+ ions: experiment and theory SO JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS LA English DT Article DE photoionization; tungsten ions; valence shells; absolute cross sections; merged beams; synchrotron radiation; metastable levels ID R-MATRIX METHOD; ELECTRON-IMPACT; TUNGSTEN IONS; PHOTOIONIZATION; RECOMBINATION; EXCITATION; SCATTERING AB Experimental and theoretical results are reported for photoionization of Ta-like (W+) tungsten ions. Absolute cross sections were measured in the energy range 16-245 eV employing the photon-ion merged-beam setup at the advanced light source in Berkeley. Detailed photon-energy scans at 100 meV bandwidth were performed in the 16-108 eV range. In addition, the cross section was scanned at 50 meV resolution in regions where fine resonance structures could be observed. Theoretical results were obtained from a Dirac-Coulomb R-matrix approach. Photoionization cross section calculations were performed for singly ionized atomic tungsten ions in their 5s(2)5p(6)5d(4)(D-5)6s D-6(J), J = 1/2, ground level and the associated excited metastable levels with J = 3/2, 5/2, 7/2 and 9/2. Since the ion beams used in the experiments must be expected to contain long-lived excited states also from excited configurations, additional cross-section calculations were performed for the second-lowest term, 5d(5) S-6(J), J = 5/2, and for the F-4 term, 5d(3)6s(2) F-4(J), with J = 3/2, 5/2, 7/2 and 9/2. Given the complexity of the electronic structure of W+ the calculations reproduce the main features of the experimental cross section quite well. C1 [Mueller, A.; Schippers, S.; Hellhund, J.] Univ Giessen, Inst Atom & Mol Phys, D-35392 Giessen, Germany. [Schippers, S.; Holste, K.] Univ Giessen, Inst Phys 1, D-35392 Giessen, Germany. [Hellhund, J.; Phaneuf, R. A.] Univ Nevada, Dept Phys, Reno, NV 89557 USA. [Kilcoyne, A. L. D.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Ballance, C. P.] Auburn Univ, Dept Phys, Allison Lab 206, Auburn, AL 36849 USA. [Ballance, C. P.; McLaughlin, B. M.] Queens Univ Belfast, Sch Math & Phys, CTAMOP, Belfast BT7 1NN, Antrim, North Ireland. [McLaughlin, B. M.] Harvard Smithsonian Ctr Astrophys, Inst Theoret Atom & Mol Phys, Cambridge, MA 02138 USA. RP Muller, A (reprint author), Univ Giessen, Inst Atom & Mol Phys, D-35392 Giessen, Germany. EM Alfred.Mueller@iamp.physik.uni-giessen.de; b.mclaughlin@qub.ac.uk RI Muller, Alfred/A-3548-2009; Kilcoyne, David/I-1465-2013; Schippers, Stefan/A-7786-2008 OI Muller, Alfred/0000-0002-0030-6929; Schippers, Stefan/0000-0002-6166-7138 FU Deutsche Forschungsgemeinschaft from US Department of Energy (DOE) [Mu-1068/20, DE-AC03-76SF-00098, DE-FG02-03ER15424]; NASA; NSF grants through Auburn University; US National Science Foundation; Queen's University Belfast; Office of Science of the US Department of Energy [DE-AC05-00OR22725]; Office of Science, Office of Basic Energy Sciences, of the US Department of Energy [DE-AC02-05CH11231] FX We acknowledge support by Deutsche Forschungsgemeinschaft under project number Mu-1068/20 in addition to grants from the US Department of Energy (DOE) under contracts DE-AC03-76SF-00098 and DE-FG02-03ER15424. CP Ballance was supported by NASA and NSF grants through Auburn University. BM McLaughlin acknowledges support by the US National Science Foundation through a grant to ITAMP at the Harvard-Smithsonian Center for Astrophysics, Queen's University Belfast for the award of a visiting research fellowship (VRF) and the hospitality of AM, SS and the University of Giessen during a recent visit. The computational work was carried out at the National Energy Research Scientific Computing Center in Oakland, CA, USA and at the High Performance Computing Center Stuttgart (HLRS) of the University of Stuttgart, Stuttgart, Germany. This research also used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of the US Department of Energy under Contract No. DE-AC05-00OR22725. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under Contract No. DE-AC02-05CH11231. NR 44 TC 7 Z9 7 U1 1 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-4075 EI 1361-6455 J9 J PHYS B-AT MOL OPT JI J. Phys. B-At. Mol. Opt. Phys. PD DEC 14 PY 2015 VL 48 IS 23 AR 235203 DI 10.1088/0953-4075/48/23/235203 PG 13 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA CW8HU UT WOS:000365240900010 ER PT J AU Beeman, JW Bellini, F Benetti, P Cardani, L Casali, N Chiesa, D Clemenza, M Dafinei, I Di Domizio, S Ferroni, F Gironi, L Giuliani, A Gotti, C Laubenstein, M Maino, M Nagorny, S Nisi, S Nones, C Orio, F Pagnanini, L Pattavina, L Pessina, G Piperno, G Pirro, S Previtali, E Rusconi, C Schaffner, K Tomei, C Vignati, M AF Beeman, J. W. Bellini, F. Benetti, P. Cardani, L. Casali, N. Chiesa, D. Clemenza, M. Dafinei, I. Di Domizio, S. Ferroni, F. Gironi, L. Giuliani, A. Gotti, C. Laubenstein, M. Maino, M. Nagorny, S. Nisi, S. Nones, C. Orio, F. Pagnanini, L. Pattavina, L. Pessina, G. Piperno, G. Pirro, S. Previtali, E. Rusconi, C. Schaeffner, K. Tomei, C. Vignati, M. TI Double-beta decay investigation with highly pure enriched Se-82 for the LUCIFER experiment SO EUROPEAN PHYSICAL JOURNAL C LA English DT Article ID EXCITED-STATES; BOLOMETERS; ISOTOPES; CRYSTALS AB The LUCIFER project aims at deploying the first array of enriched scintillating bolometers for the investigation of neutrinoless double-beta decay of Se-82. The matrix which embeds the source is an array of ZnSe crystals, where enriched Se-82 is used as decay isotope. The radiopurity of the initial components employed for manufacturing crystals, that can be operated as bolometers, is crucial for achieving a null background level in the region of interest for double-beta decay investigations. In this work, we evaluated the radioactive content in 2.5 kg of 96.3 % enriched Se-82 metal, measured with a high-purity germanium detector at the Gran Sasso deep underground laboratory. The limits on internal contaminations of primordial decay chain elements of Th-232, U-238 and U-235 are respectively: <61,<110 and <74 mu Bq/kg at 90 % C.L. The extremely low-background conditions in which the measurement was carried out and the high radiopurity of the Se-82 allowed us to establish the most stringent lower limits on the half-lives of the double-beta decay of Se-82 to 0(+)(1), 2(2)(+) and 2(1)(+) excited states of Kr-82 of 3.4.10(22), 1.3.10(22) and 1.0.10(22) y, respectively, with a 90 % C.L. C1 [Beeman, J. W.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Bellini, F.; Cardani, L.; Casali, N.; Ferroni, F.; Piperno, G.] Univ Roma La Sapienza, Dipartimento Fis, Piazzale Aldo Moro 5, I-00185 Rome, Italy. [Bellini, F.; Casali, N.; Dafinei, I.; Ferroni, F.; Orio, F.; Piperno, G.; Tomei, C.; Vignati, M.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Benetti, P.] Univ Pavia, Dipartimento Chim, Via Palestro 3, I-27100 Pavia, Italy. [Benetti, P.] Ist Nazl Fis Nucl, Sez Pavia, I-27100 Pavia, Italy. [Cardani, L.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Laubenstein, M.; Nisi, S.; Pattavina, L.; Pirro, S.; Schaeffner, K.] Ist Nazl Fis Nucl, Lab Nazl Gran Sasso, I-67100 Laquila, Italy. [Chiesa, D.; Clemenza, M.; Gironi, L.; Maino, M.] Univ Milano Bicocca, Dipartimento Fis, I-20126 Milan, Italy. [Chiesa, D.; Clemenza, M.; Gironi, L.; Gotti, C.; Maino, M.; Pessina, G.; Previtali, E.; Rusconi, C.] Ist Nazl Fis Nucl, Sez Milano, I-20126 Milan, Italy. [Di Domizio, S.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Di Domizio, S.] Univ Genoa, Dipartimento Fis, Via Dodecaneso 33, I-16126 Genoa, Italy. [Giuliani, A.] Ctr Spectrometrie Nucl & Spectrometrie Masse, F-91405 Orsay, France. [Nagorny, S.; Pagnanini, L.] Gran Sasso Sci Inst, I-67100 Laquila, Italy. [Nones, C.] CEA, SPP Ctr Saclay, Irfu, F-91191 Gif Sur Yvette, France. RP Pattavina, L (reprint author), Ist Nazl Fis Nucl, Lab Nazl Gran Sasso, I-67100 Laquila, Italy. EM luca.pattavina@lngs.infn.it RI Bellini, Fabio/D-1055-2009; Di Domizio, Sergio/L-6378-2014; Vignati, Marco/H-1684-2013; Gironi, Luca/P-2860-2016; Pattavina, Luca/I-7498-2015; Pagnanini, Lorenzo/E-5348-2016; Casali, Nicola/C-9475-2017; Chiesa, Davide/H-7240-2014 OI Bellini, Fabio/0000-0002-2936-660X; Di Domizio, Sergio/0000-0003-2863-5895; Vignati, Marco/0000-0002-8945-1128; Gironi, Luca/0000-0003-2019-0967; Pattavina, Luca/0000-0003-4192-849X; Pagnanini, Lorenzo/0000-0001-9498-5055; Casali, Nicola/0000-0003-3669-8247; Chiesa, Davide/0000-0003-1978-1727 FU European Research Council under the European Union/ERC [247115] FX This work was made in the frame of the LUCIFER experiment, funded by the European Research Council under the European Union? Seventh Framework Programme (FP7/20072013)/ERC Grant Agreement no. 247115. NR 41 TC 3 Z9 3 U1 4 U2 9 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6044 EI 1434-6052 J9 EUR PHYS J C JI Eur. Phys. J. C PD DEC 13 PY 2015 VL 75 IS 12 AR 591 DI 10.1140/epjc/s10052-015-3822-x PG 7 WC Physics, Particles & Fields SC Physics GA DJ4PU UT WOS:000374190000001 ER PT J AU DePaoli, D Watson, J AF DePaoli, David Watson, Jack TI FOREWORD SO SEPARATION SCIENCE AND TECHNOLOGY LA English DT Editorial Material C1 [DePaoli, David] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Watson, Jack] Univ Tennessee, Knoxville, TN 37996 USA. RP DePaoli, D (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. NR 0 TC 0 Z9 0 U1 2 U2 3 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA SN 0149-6395 EI 1520-5754 J9 SEP SCI TECHNOL JI Sep. Sci. Technol. PD DEC 12 PY 2015 VL 50 IS 18 SI SI BP 2767 EP 2768 DI 10.1080/01496395.2015.1087688 PG 2 WC Chemistry, Multidisciplinary; Engineering, Chemical SC Chemistry; Engineering GA DA5FJ UT WOS:000367828300001 ER PT J AU Sun, XQ Zanonato, PL Di Bernardo, P Zhang, ZC Rao, LF AF Sun, Xiaoqi Zanonato, Pier Luigi Di Bernardo, Plinio Zhang, Zhicheng Rao, Linfeng TI Sorption of Uranium and other Metal Ions on Amine-Functionalized Silica Materials SO SEPARATION SCIENCE AND TECHNOLOGY LA English DT Article; Proceedings Paper CT 18th Symposium on Separation Science and Technology for Energy Applications CY OCT 27-30, 2014 CL Oak Ridge, TN DE uranium; sorption; amine-functionalized silica ID ADSORPTION; DIMETHYLSULFOXIDE; COMPLEXATION; EQUILIBRIUM AB Sorption of U(VI) and other metal ions on amine-functionalized silica was studied, including aminopropylsilica (APS), 3-(ethylenediamino)propyl silica (ENPS), and 3-[2-(2-aminoethylamino)ethylamino]propyl silica (DIENPS). DIENPS showed the strongest and fastest sorption for U(VI) that can be described by Langmuir isotherm, suggesting U(VI) was sorbed at well-defined and energetically identical sites independent from each other. The sorption efficiency of DIENPS follows the order: U(VI) > Fe(III) > Cu(II) > Pb(II) > Ni(II) > Mg(II) > Sr(II). Results demonstrate that the amine-functionalized silica materials could be used as efficient sorbents to remove uranium and hazardous metal ions in environmental remediation. C1 [Sun, Xiaoqi; Zhang, Zhicheng; Rao, Linfeng] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Sun, Xiaoqi] Chinese Acad Sci, Xiamen Inst Rare Earth Mat, Xiamen, Peoples R China. [Zanonato, Pier Luigi; Di Bernardo, Plinio] Univ Padua, Dipartimento Sci Chim, Padua, Italy. RP Rao, LF (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM lrao@lbl.gov FU Heavy Element Chemistry Program, Office of Basic Energy Science of the U. S. Department of Energy (DOE); UP; Fuel Resources Program, Fuel Cycle Research and Development Program, Office of Nuclear Energy of the U.S. DOE [DE-AC02-05CH11231] FX The preparation of the functionalized silica materials was conducted at University of Padova (UP), Italy, and supported by the Heavy Element Chemistry Program, Office of Basic Energy Science of the U. S. Department of Energy (DOE) through a subcontract with UP. The sorption experiments were conducted at Lawrence Berkeley National Laboratory (LBNL) and supported by the Fuel Resources Program, Fuel Cycle Research and Development Program, Office of Nuclear Energy of the U.S. DOE, under Contract No. DE-AC02-05CH11231. NR 20 TC 3 Z9 3 U1 6 U2 18 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA SN 0149-6395 EI 1520-5754 J9 SEP SCI TECHNOL JI Sep. Sci. Technol. PD DEC 12 PY 2015 VL 50 IS 18 SI SI BP 2769 EP 2775 DI 10.1080/01496395.2015.1085403 PG 7 WC Chemistry, Multidisciplinary; Engineering, Chemical SC Chemistry; Engineering GA DA5FJ UT WOS:000367828300002 ER PT J AU Almond, PM Daniel, WE Rudisill, TS AF Almond, Philip M. Daniel, William E., Jr. Rudisill, Tracy S. TI Dissolution and Off-Gas Results for U-Al and Al Alloys Representative of MURR-Type Used Nuclear Fuels SO SEPARATION SCIENCE AND TECHNOLOGY LA English DT Article; Proceedings Paper CT 18th Symposium on Separation Science and Technology for Energy Applications CY OCT 27-30, 2014 CL Oak Ridge, TN DE UNF; H-Canyon; dissolver AB Dissolution experiments were performed to build on previous work and allow for modifications of the UNF dissolution flowsheet. The targeted UNF for dissolution at the Savannah River Site (SRS) are fuels similar to the University of Missouri Research Reactor (MURR) fuel. The UAlx-Al fuels are dissolved with HNO3 and Hg catalyst. The experiments initially performed used Al-1100 alloy coupons. The Al-1100 coupons were considered a representative surrogate (based on the fuel bundle and assembly material) that provided an upper bound on the generation of flammable gas during the dissolution process. Hydrogen generation profiles from Al-1100 dissolutions differed from previous work used for the technical basis for UNF dissolution performed with U-Al alloy. To resolve differences in the previous data, additional experiments were performed with U-Al alloys. Results from the initial phase of experimental work are presented including discussion of flammability calculations representative of H-Canyon fuel dissolutions. C1 [Almond, Philip M.; Daniel, William E., Jr.; Rudisill, Tracy S.] Savannah River Natl Lab, Aiken, SC 29808 USA. RP Almond, PM (reprint author), Savannah River Natl Lab, Aiken, SC 29808 USA. EM Philip.almond@srnl.doe.gov NR 11 TC 0 Z9 0 U1 1 U2 3 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA SN 0149-6395 EI 1520-5754 J9 SEP SCI TECHNOL JI Sep. Sci. Technol. PD DEC 12 PY 2015 VL 50 IS 18 SI SI BP 2790 EP 2797 DI 10.1080/01496395.2015.1085415 PG 8 WC Chemistry, Multidisciplinary; Engineering, Chemical SC Chemistry; Engineering GA DA5FJ UT WOS:000367828300004 ER PT J AU Shehee, TC Crowder, ML Rudisill, TS AF Shehee, T. C. Crowder, M. L. Rudisill, T. S. TI Determination of Filter Pore Size for Use in HB Line Phase II Production of Plutonium Oxide SO SEPARATION SCIENCE AND TECHNOLOGY LA English DT Article; Proceedings Paper CT 18th Symposium on Separation Science and Technology for Energy Applications CY OCT 27-30, 2014 CL Oak Ridge, TN DE HB-Line; plutonium oxide; oxalate; precipitation; filtration; MOX AB The Savannah River Site's H-Canyon and HB-Line are tasked with the production of plutonium oxide from a feed of plutonium metal for the Mixed Oxide (MOX) Fuel Fabrication Facility. The work presented here followed the general precipitation methods used at SRS to determine the quantity of solids present in the filtrate and to recommend an alternate filtration strategy. Initial Pu losses were found to be less than 1.5%. With additional filtration, this study indicates that a 50% further reduction in Pu solids in the filtrate can be achieved by the addition of a 2 m filter. C1 [Shehee, T. C.; Crowder, M. L.; Rudisill, T. S.] Savannah River Natl Lab, Aiken, SC 29808 USA. RP Shehee, TC (reprint author), Savannah River Natl Lab, Aiken, SC 29808 USA. EM thomas.shehee@srnl.doe.gov NR 9 TC 0 Z9 0 U1 4 U2 5 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA SN 0149-6395 EI 1520-5754 J9 SEP SCI TECHNOL JI Sep. Sci. Technol. PD DEC 12 PY 2015 VL 50 IS 18 SI SI BP 2798 EP 2802 DI 10.1080/01496395.2015.1085408 PG 5 WC Chemistry, Multidisciplinary; Engineering, Chemical SC Chemistry; Engineering GA DA5FJ UT WOS:000367828300005 ER PT J AU McFarlane, J Benker, D DePaoli, DW Felker, LK Mattus, CH AF McFarlane, J. Benker, D. DePaoli, D. W. Felker, L. K. Mattus, C. H. TI Dissolution and Separation of Aluminum and Aluminosilicates SO SEPARATION SCIENCE AND TECHNOLOGY LA English DT Article; Proceedings Paper CT 18th Symposium on Separation Science and Technology for Energy Applications CY OCT 27-30, 2014 CL Oak Ridge, TN DE aluminosilicate dissolution; aluminum alloy 6061; plutonium for RTGs ID AQUEOUS-SOLUTIONS; HEAT-CAPACITIES; ALKALINE-SOLUTIONS; SOLUBILITY; GIBBSITE; 25-DEGREES-C; RADIOLYSIS; CHEMISTRY; BOEHMITE; SURFACE AB Selection of an aluminum alloy for target cladding affects post-irradiation target dissolution and separations. Recent tests with aluminum alloy 6061 yielded greater than expected precipitation in the dissolver, forming up to 10 wt.% solids of aluminum hydroxides and aluminosilicates. Aluminosilicate dissolution presents challenges in a number of different areas, including metals extraction from minerals, flyash treatment, and separations from aluminum alloys. We present experimental work that attempts to maximize dissolution of aluminum metal in caustic, along with silicon, magnesium, and copper impurities, through control of temperature, the rate of reagent addition, and incubation time. Aluminum phase transformations have been identified as a function of time and temperature, using X-ray diffraction. Solutions have been analyzed using wet chemical methods and X-ray fluorescence. These data have been compared with published calculations of aluminum phase diagrams. Approaches are given to enhance the dissolution of aluminum and aluminosilicate phases in caustic solution. C1 [McFarlane, J.; Benker, D.; DePaoli, D. W.; Felker, L. K.; Mattus, C. H.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP McFarlane, J (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM mcfarlanej@ornl.gov RI McFarlane, Joanna/C-5998-2016; Mattus, Catherine/E-5591-2017 OI McFarlane, Joanna/0000-0002-4112-5104; Mattus, Catherine/0000-0002-4574-1588 FU Pu-238 Production Project; U.S. Department of Energy [DE-AC0500OR22725] FX This work was supported by the Pu-238 Production Project. This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC0500OR22725 with the U.S. Department of Energy. NR 44 TC 0 Z9 0 U1 3 U2 12 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA SN 0149-6395 EI 1520-5754 J9 SEP SCI TECHNOL JI Sep. Sci. Technol. PD DEC 12 PY 2015 VL 50 IS 18 SI SI BP 2803 EP 2818 DI 10.1080/01496395.2014.975362 PG 16 WC Chemistry, Multidisciplinary; Engineering, Chemical SC Chemistry; Engineering GA DA5FJ UT WOS:000367828300006 ER PT J AU Burns, JD Boll, RA AF Burns, Jonathan D. Boll, Rose A. TI Californium Recovery from Palladium Wire SO SEPARATION SCIENCE AND TECHNOLOGY LA English DT Article; Proceedings Paper CT 18th Symposium on Separation Science and Technology for Energy Applications CY OCT 27-30, 2014 CL Oak Ridge, TN DE californium; cation exchange; separations; Californium-252 Program AB The recovery of Cf-252 from palladium-Cf-252 cermet wires was investigated to determine the feasibility of implementation into the cermet wire production operation at the Radiochemical Engineering Development Center at Oak Ridge National Laboratory. The dissolution of Pd wire in 8 M HNO3 and trace amounts of HCl was studied at both ambient and elevated temperatures. These studies showed that it took days to dissolve the wire at ambient temperature and only 2 hours at 60 degrees C. Adjusting the ratio of the volume of solvent to the mass of the wire segment from 0.176 mL/mg down to 0.019 mL/mg resulted in little change in the kinetics of dissolution. A successful separation of Gd-153, a surrogate for Cf-252, from Pd was demonstrated using ion exchange chromatography. C1 [Burns, Jonathan D.; Boll, Rose A.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Burns, JD (reprint author), Oak Ridge Natl Lab, One Bethel Valley Rd,POB 2008,MS-6384, Oak Ridge, TN 37831 USA. EM burnsjd@ornl.gov RI Boll, Rose/C-4138-2016; Burns, Jonathan/O-2028-2015 OI Boll, Rose/0000-0003-2507-4834; Burns, Jonathan/0000-0003-0301-9607 FU U.S. Department of Energy, Office of Nuclear Physics, Isotope Development and Production for Research and Applications Program; U.S. Department of Energy [DE AC05-00OR22725] FX This research is supported by the U.S. Department of Energy, Office of Nuclear Physics, Isotope Development and Production for Research and Applications Program.; ORNL is managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract DE AC05-00OR22725. NR 9 TC 2 Z9 2 U1 0 U2 3 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA SN 0149-6395 EI 1520-5754 J9 SEP SCI TECHNOL JI Sep. Sci. Technol. PD DEC 12 PY 2015 VL 50 IS 18 SI SI BP 2819 EP 2822 DI 10.1080/01496395.2015.1085875 PG 4 WC Chemistry, Multidisciplinary; Engineering, Chemical SC Chemistry; Engineering GA DA5FJ UT WOS:000367828300007 ER PT J AU Rudisill, TS Thompson, MC AF Rudisill, T. S. Thompson, M. C. TI Demonstration of the Use of Formohydroxamic Acid in the UREX Process SO SEPARATION SCIENCE AND TECHNOLOGY LA English DT Article; Proceedings Paper CT 18th Symposium on Separation Science and Technology for Energy Applications CY OCT 27-30, 2014 CL Oak Ridge, TN DE solvent extraction; UREX process; formohydroxamic acid ID SIMPLE HYDROXAMIC ACIDS; SOLVENT-EXTRACTION BEHAVIOR; NITRIC-ACID; ACETOHYDROXAMIC ACID; PLUTONIUM(IV) IONS; REDUCTION; PHOSPHATE; SYSTEM AB The Uranium Extraction (UREX) process was developed to separate U and Tc from the transuranic elements and the remaining fission products. To prevent the extraction of Np and Pu, a dilute nitric acid scrub stream containing acetohydroxamic acid (AHA) is used in the process. When the AHA contacts nitric acid, the complexant begins to decompose producing acetic acid and hydroxylamine nitrate (HAN). The HAN decomposes to gaseous products and water; however, the acetic acid is relatively stable and will contaminate nitric acid recovered from waste streams. To address this issue, formohydroxamic acid (FHA) was evaluated as a replacement for AHA. Formohydroxamic acid prevents the extraction of Np and Pu and its decomposition products (formic acid and HAN) readily decompose. Neptunium and Pu distribution coefficient measurements demonstrated that FHA was an acceptable replacement for AHA. Additional extraction experiments performed with the addition of uranyl nitrate to the aqueous phase showed that its presence had little effect on the distribution coefficients. A steady increase in distribution coefficients with increasing nitrate concentrations was consistent with a salting-out effect. When the actinides were back-extracted into the aqueous phase, the Np and Pu distribution coefficients were larger than the distribution coefficients measured in an extraction mode potentially due to kinetic limitations. These data imply that a greater number of scrub stages would be required in the first bank of the UREX process contactors than would be calculated based on the Pu and Np distribution data generated in the extraction experiments. C1 [Rudisill, T. S.; Thompson, M. C.] Savannah River Natl Lab, Aiken, SC 29808 USA. RP Rudisill, TS (reprint author), Savannah River Natl Lab, Aiken, SC 29808 USA. EM tracy.rudisill@srnl.doe.gov FU Funding Opportunity Announcement (FOA) - US Department of Energy's Office of Nuclear Energy [DE-PS07-08ID14906]; Savannah River Nuclear Solutions [DE-AC09-08SR22470] FX The work was supported by Funding Opportunity Announcement (FOA) number DE-PS07-08ID14906 sponsored by the US Department of Energy's Office of Nuclear Energy. The Savannah River National Laboratory is operated by Savannah River Nuclear Solutions under contract number DE-AC09-08SR22470. NR 21 TC 0 Z9 0 U1 1 U2 7 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA SN 0149-6395 EI 1520-5754 J9 SEP SCI TECHNOL JI Sep. Sci. Technol. PD DEC 12 PY 2015 VL 50 IS 18 SI SI BP 2823 EP 2831 DI 10.1080/01496395.2015.1085413 PG 9 WC Chemistry, Multidisciplinary; Engineering, Chemical SC Chemistry; Engineering GA DA5FJ UT WOS:000367828300008 ER PT J AU Zarzana, CA Peterman, DR Groenewold, GS Olson, LG McDowell, RG Bauer, WF Morgan, SJ AF Zarzana, Christopher A. Peterman, Dean R. Groenewold, Gary S. Olson, Lonnie G. McDowell, Rocklan G. Bauer, William F. Morgan, Sabrina J. TI Investigation of the Impacts of Gamma Radiolysis on an Advanced TALSPEAK Separation SO SEPARATION SCIENCE AND TECHNOLOGY LA English DT Article; Proceedings Paper CT 18th Symposium on Separation Science and Technology for Energy Applications CY OCT 27-30, 2014 CL Oak Ridge, TN DE advanced TALSPEAK; separation; actinide; lanthanide ID EXTRACTION; CHROMATOGRAPHY; SPECTROMETRY; LANTHANIDES; HPLC; ACID; EDTA AB The advanced TALSPEAK process is a selective solvent extraction that utilizes 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester (HEH[EHP]) to separate lanthanide elements from trivalent actinides, which are held back in the aqueous phase by N-hydroxylethyl-N,N',N'-ethylenediamine triacetic acid (HEDTA) buffered by citric acid. Gamma irradiation of an experiment containing Eu(III) and Am(III) as representative lanthanide and actinide elements resulted in higher distribution ratios of both and separation factors which decreased in an exponential fashion with increasing dose. Analysis of the reagents showed that the HEDTA concentration also decreased in an exponential fashion, strongly suggesting that degradation was correlated with loss of separation selectivity. In contrast, the concentration of citrate was unaffected, and while the concentration of HEH[EHP] did decrease, its dose-dependent kinetic profile indicated that it was not limiting partitioning. A second set of experiments were conducted using a citrate concentration that was 7.5 X higher, with the expectation that citrate would protect the HEDTA by scavenging radiolytically formed OH radicals. HEDTA degradation was significantly mitigated at higher gamma doses, but the Eu-Am separation was worse than in the low citrate experiments, presumably because at the high citrate concentrations, the Eu-citrate complexes formed in abundances competitive with the Am complexes, and are more effectively held back in the aqueous phase. C1 [Zarzana, Christopher A.; Peterman, Dean R.; Groenewold, Gary S.; Olson, Lonnie G.; McDowell, Rocklan G.; Bauer, William F.; Morgan, Sabrina J.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Peterman, DR (reprint author), Idaho Natl Lab, Aqueous Separat & Radiochem, Idaho Falls, ID 83415 USA. EM Dean.Peterman@inl.gov RI Bauer, William/B-8357-2016 OI Bauer, William/0000-0002-7190-9700 NR 23 TC 0 Z9 0 U1 1 U2 6 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA SN 0149-6395 EI 1520-5754 J9 SEP SCI TECHNOL JI Sep. Sci. Technol. PD DEC 12 PY 2015 VL 50 IS 18 SI SI BP 2836 EP 2843 DI 10.1080/01496395.2015.1085419 PG 8 WC Chemistry, Multidisciplinary; Engineering, Chemical SC Chemistry; Engineering GA DA5FJ UT WOS:000367828300010 ER PT J AU Taylor-Pashow, KML Peters, TB Fondeur, FF Washington, AL Hobbs, DT AF Taylor-Pashow, Kathryn M. L. Peters, Thomas B. Fondeur, Fernando F. Washington, Aaron L., II Hobbs, David T. TI Determination of the Impact of Glycolate on Cs, Sr, and Actinide Separations in High-Level Waste SO SEPARATION SCIENCE AND TECHNOLOGY LA English DT Article; Proceedings Paper CT 18th Symposium on Separation Science and Technology for Energy Applications CY OCT 27-30, 2014 CL Oak Ridge, TN DE MST; mMST; ARP; MCU; glycolate ID STRONTIUM AB The Defense Waste Processing Facility (DWPF), responsible for vitrifying high-level waste (HLW) at the Savannah River Site (SRS), is planning to introduce glycolic acid as a reductant during chemical conditioning of the waste prior to vitrification. A portion of this glycolic acid may be recycled back to the tank farm as sodium glycolate. Since glycolate can serve as a complexing agent for a variety of metallic ions, recent studies were performed to examine the effect of glycolate on the removal of Sr and actinides by monosodium titanate (MST) and modified MST (mMST) and the separation of Cs by the caustic-side solvent extraction (CSSX) process. C1 [Taylor-Pashow, Kathryn M. L.; Peters, Thomas B.; Fondeur, Fernando F.; Washington, Aaron L., II; Hobbs, David T.] Savannah River Nucl Solut LLC, Savannah River Natl Lab, Aiken, SC 29808 USA. RP Taylor-Pashow, KML (reprint author), Savannah River Nucl Solut LLC, Savannah River Natl Lab, Aiken, SC 29808 USA. EM kathryn.taylor-pashow@srnl.doe.gov FU Savannah River Remediation (SRR) FX The authors gratefully acknowledge Savannah River Remediation (SRR) for funding of this work. NR 19 TC 0 Z9 0 U1 1 U2 1 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA SN 0149-6395 EI 1520-5754 J9 SEP SCI TECHNOL JI Sep. Sci. Technol. PD DEC 12 PY 2015 VL 50 IS 18 SI SI BP 2853 EP 2865 DI 10.1080/01496395.2015.1085414 PG 13 WC Chemistry, Multidisciplinary; Engineering, Chemical SC Chemistry; Engineering GA DA5FJ UT WOS:000367828300012 ER PT J AU Taylor-Pashow, KML Fondeur, FF White, TL DiPrete, DP AF Taylor-Pashow, Kathryn M. L. Fondeur, Fernando F. White, Thomas L. DiPrete, David P. TI Determination of N, N', N''-tris( 3,7-dimethyloctyl) guanidine ( TiDG) in Cesium Extraction Solvent SO SEPARATION SCIENCE AND TECHNOLOGY LA English DT Article; Proceedings Paper CT 18th Symposium on Separation Science and Technology for Energy Applications CY OCT 27-30, 2014 CL Oak Ridge, TN DE titration; H-1 NMR; Cl-36 radiocounting; N,N', N"-tris(3,7-dimethyloctyl)guanidine (TiDG); modular caustic-side solvent extraction (CSSX) Unit (MCU) AB Several analytical methods were evaluated for determining the concentration of N,N',N-tris(3,7-dimethyloctyl)guanidine (TiDG) in a cesium extraction solvent. Of the methods evaluated, non-aqueous titration and H-1 NMR were shown to be successful at quantifying the amount of TiDG present in both a pure solvent extraction system, and a blended system containing an additional base, trioctylamine. C1 [Taylor-Pashow, Kathryn M. L.; Fondeur, Fernando F.; White, Thomas L.; DiPrete, David P.] Savannah River Nucl Solut LLC, Savannah River Natl Lab, Aiken, SC 29808 USA. RP Taylor-Pashow, KML (reprint author), Savannah River Nucl Solut LLC, Savannah River Natl Lab, Aiken, SC 29808 USA. EM kathryn.taylor-pashow@srnl.doe.gov FU Savannah River Remediation (SRR) FX We also thank Savannah River Remediation (SRR) for funding this work. NR 14 TC 0 Z9 0 U1 1 U2 2 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA SN 0149-6395 EI 1520-5754 J9 SEP SCI TECHNOL JI Sep. Sci. Technol. PD DEC 12 PY 2015 VL 50 IS 18 SI SI BP 2866 EP 2872 DI 10.1080/01496395.2015.1085411 PG 7 WC Chemistry, Multidisciplinary; Engineering, Chemical SC Chemistry; Engineering GA DA5FJ UT WOS:000367828300013 ER PT J AU Momen, MA Kaminski, MD Dietz, ML AF Momen, M. A. Kaminski, Michael D. Dietz, Mark L. TI Sol-Gel Glass-Encapsulated Crown Ethers for the Separation and Preconcentration of Strontium from Acidic Media SO SEPARATION SCIENCE AND TECHNOLOGY LA English DT Article; Proceedings Paper CT 18th Symposium on Separation Science and Technology for Energy Applications CY OCT 27-30, 2014 CL Oak Ridge, TN DE extraction chromatography; strontium; crown ethers; sol-gel encapsulation ID CHELATE-FORMING RESIN; EXTRACTION CHROMATOGRAPHIC MATERIAL; ANION-EXCHANGE; ION-EXCHANGE; METAL-IONS; SELECTIVE SEPARATION; CHEMICAL-ANALYSIS; BEARING MERCAPTO; AQUEOUS-SOLUTION; AZO GROUPS AB Extraction chromatography employing an inert polymeric support impregnated with a crown ether (typically, 4,4',(5')-di-(tert-butylcyclohexano)-18-crown-6 (DtBuCH18C6)), either neat (i.e., undiluted) or as a solution in 1-octanol, has previously been shown to provide an effective means for the isolation of radiostrontium from a variety of sample types for subsequent determination. In this study, sol-gel chemistry has been employed to prepare sorbents in which DtBuCH18C6 is encapsulated in a silica matrix. The resultant materials have been evaluated for their ability to retain strontium ion and compared to a commercially available extraction chromatographic (EXC) resin. Certain of the new materials are shown to provide uptake efficiencies comparable to those obtained with the commercial resins, although unless a porogen is employed, the kinetics of strontium uptake are significantly slower. In contrast to conventional EXC materials, however, strontium uptake by DtBuCH18C6-loaded glasses does not increase in proportion to the amount of extractant present, indicating that not all of the crown ether present is available for interaction with the metal ion. C1 [Momen, M. A.; Dietz, Mark L.] Univ Wisconsin, Dept Chem & Biochem, Milwaukee, WI 53211 USA. [Kaminski, Michael D.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Dietz, ML (reprint author), Univ Wisconsin, Dept Chem & Biochem, Milwaukee, WI 53211 USA. EM dietzm@uwm.edu FU Office of Basic Energy Sciences of the United States Department of Energy under the Single Investigator Small Group Research (SISGR) Program; Brookhaven National Laboratory; Centers for Disease Control and Prevention, National Center for Environmental Health, Division of Laboratory Sciences FX The authors gratefully acknowledge the financial support of this work by the Office of Basic Energy Sciences of the United States Department of Energy under the Single Investigator Small Group Research (SISGR) Program through sub-contract with Brookhaven National Laboratory (TGA/SEM/BET studies) and the Centers for Disease Control and Prevention, National Center for Environmental Health, Division of Laboratory Sciences (initial metal ion uptake studies). NR 60 TC 0 Z9 0 U1 5 U2 12 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA SN 0149-6395 EI 1520-5754 J9 SEP SCI TECHNOL JI Sep. Sci. Technol. PD DEC 12 PY 2015 VL 50 IS 18 SI SI BP 2873 EP 2880 DI 10.1080/01496395.2015.1085420 PG 8 WC Chemistry, Multidisciplinary; Engineering, Chemical SC Chemistry; Engineering GA DA5FJ UT WOS:000367828300014 ER PT J AU Nash, C Musall, B Morse, M McCabe, D AF Nash, Charles Musall, Benjamin Morse, Megan McCabe, Daniel TI Characterization of SuperLig 639 Rhenium and Technetium Resin with Batch Contact and Column Tests SO SEPARATION SCIENCE AND TECHNOLOGY LA English DT Article; Proceedings Paper CT 18th Symposium on Separation Science and Technology for Energy Applications CY OCT 27-30, 2014 CL Oak Ridge, TN DE technetium; rhenium; ion exchange resin; isotherm AB Two new (2013) lots of SuperLig((R)) 639 ion exchange resin (IBC Advanced Technologies, American Forks, UT) were tested for the first time above typical sodium concentrations (7.8 M sodium, along with typical 5 M concentration) in highly alkaline solutions. Batch contact and ion exchange column tests characterized rhenium (perrhenate) adsorption as a surrogate for pertechnetate. The work supports technetium removal options for Supplemental Low Activity Waste processing at the Hanford River Protection Project Waste Treatment Plant (WTP). The current work found that the resin performs well in the 7.8 M sodium simulant despite complete floating of the beads. A notable difference in performance between the two new resin lots was found. Resin loading overall versus temperature, potassium concentration, and rhenium/nitrate ratios is consistent with previous data and expectations despite the high sodium concentration and floating of the resin beads. C1 [Nash, Charles; Musall, Benjamin; Morse, Megan; McCabe, Daniel] Savannah River Nucl Solut LLC, Savannah River Natl Lab, Aiken, SC 29808 USA. RP Nash, C (reprint author), Savannah River Nucl Solut LLC, Savannah River Natl Lab, Aiken, SC 29808 USA. EM charles.nash@srnl.doe.gov NR 11 TC 1 Z9 1 U1 2 U2 12 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA SN 0149-6395 EI 1520-5754 J9 SEP SCI TECHNOL JI Sep. Sci. Technol. PD DEC 12 PY 2015 VL 50 IS 18 SI SI BP 2881 EP 2887 DI 10.1080/01496395.2015.1085410 PG 7 WC Chemistry, Multidisciplinary; Engineering, Chemical SC Chemistry; Engineering GA DA5FJ UT WOS:000367828300015 ER PT J AU Taylor-Pashow, KML Hobbs, DT AF Taylor-Pashow, Kathryn M. L. Hobbs, David T. TI Radium and Thorium Sorption by Monosodium Titanate ( MST) and Modified MST ( mMST) SO SEPARATION SCIENCE AND TECHNOLOGY LA English DT Article; Proceedings Paper CT 18th Symposium on Separation Science and Technology for Energy Applications CY OCT 27-30, 2014 CL Oak Ridge, TN DE MST; mMST; radium; thorium; high-level waste ID STRONTIUM AB To confirm performance assessment inputs for the Saltstone Facility at the Savannah River Site (SRS), a series of experiments were performed to examine the removal of Ra and Th by monosodium titanate (MST) and modified MST (mMST). The solubility of Th in the simulated high-level waste solutions was found to be extremely low; therefore, its removal by MST could not be measured. Radium was rapidly removed from the high-level waste simulant by both MST and mMST. C1 [Taylor-Pashow, Kathryn M. L.; Hobbs, David T.] Savannah River Nucl Solut LLC, Savannah River Natl Lab, Aiken, SC 29808 USA. RP Taylor-Pashow, KML (reprint author), Savannah River Nucl Solut LLC, Savannah River Natl Lab, Aiken, SC 29808 USA. EM kathryn.taylor-pashow@srnl.doe.gov FU Savannah River Remediation (SRR) FX The authors would like to acknowledge Savannah River Remediation (SRR) for funding of this work. NR 9 TC 0 Z9 0 U1 4 U2 6 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA SN 0149-6395 EI 1520-5754 J9 SEP SCI TECHNOL JI Sep. Sci. Technol. PD DEC 12 PY 2015 VL 50 IS 18 SI SI BP 2888 EP 2896 DI 10.1080/01496395.2015.1085417 PG 9 WC Chemistry, Multidisciplinary; Engineering, Chemical SC Chemistry; Engineering GA DA5FJ UT WOS:000367828300016 ER PT J AU Sander, K Wilson, CM Rodriguez, M Klingeman, DM Rydzak, T Davison, BH Brown, SD AF Sander, Kyle Wilson, Charlotte M. Rodriguez, Miguel, Jr. Klingeman, Dawn M. Rydzak, Thomas Davison, Brian H. Brown, Steven D. TI Clostridium thermocellum DSM 1313 transcriptional responses to redox perturbation SO BIOTECHNOLOGY FOR BIOFUELS LA English DT Article DE Clostridium thermocellum DSM 1313; Microarray; Transcriptomics; Methyl viologen; Chemostat; Redox; Sulfate; GS-GOGAT; Hydrogenase ID METHYL VIOLOGEN; ATCC 27405; PSEUDOMONAS-AERUGINOSA; DESULFOVIBRIO-VULGARIS; PYRUVATE CATABOLISM; PROTEIN EXPRESSION; CONTINUOUS-CULTURE; ELECTRON FLUX; METABOLISM; ACETOBUTYLICUM AB Background: Clostridium thermocellum is a promising consolidated bioprocessing candidate organism capable of directly converting lignocellulosic biomass to ethanol. Current ethanol yields, productivities, and growth inhibitions are industrial deployment impediments for commodity fuel production by this bacterium. Redox imbalance under certain conditions and in engineered strains may contribute to incomplete substrate utilization and may direct fermentation products to undesirable overflow metabolites. Towards a better understanding of redox metabolism in C. thermocellum, we established continuous growth conditions and analyzed global gene expression during addition of two stress chemicals (methyl viologen and hydrogen peroxide) which changed the fermentation redox potential. Results: The addition of methyl viologen to C. thermocellum DSM 1313 chemostat cultures caused an increase in ethanol and lactate yields. A lower fermenter redox potential was observed in response to methyl viologen exposure, which correlated with a decrease in cell yield and significant differential expression of 123 genes (log(2) > 1.5 or log(2) < -1.5, with a 5 % false discovery rate). Expression levels decreased in four main redox-active systems during methyl viologen exposure; the [NiFe] hydrogenase, sulfate transport and metabolism, ammonia assimilation (GS-GOGAT), and porphyrin/siroheme biosynthesis. Genes encoding sulfate transport and reduction and porphyrin/siroheme biosynthesis are co-located immediately downstream of a putative iscR regulatory gene, which may be a cis-regulatory element controlling expression of these genes. Other genes showing differential expression during methyl viologen exposure included transporters and transposases. Conclusions: The differential expression results from this study support a role for C. thermocellum genes for sulfate transport/reduction, glutamate synthase-glutamine synthetase (the GS-GOGAT system), and porphyrin biosynthesis being involved in redox metabolism and homeostasis. This global profiling study provides gene targets for future studies to elucidate the relative contributions of prospective pathways for co-factor pool re-oxidation and C. thermocellum redox homeostasis. C1 [Sander, Kyle; Davison, Brian H.; Brown, Steven D.] Univ Tennessee, Bredesen Ctr Interdisciplinary Res & Grad Educ, Knoxville, TN 37996 USA. [Sander, Kyle; Wilson, Charlotte M.; Rodriguez, Miguel, Jr.; Klingeman, Dawn M.; Rydzak, Thomas; Davison, Brian H.; Brown, Steven D.] Oak Ridge Natl Lab, BioEnergy Sci Ctr, Oak Ridge, TN 37831 USA. [Sander, Kyle] Univ Tennessee, Dept Chem & Biomol Engn, Knoxville, TN 37996 USA. [Wilson, Charlotte M.; Rodriguez, Miguel, Jr.; Klingeman, Dawn M.; Rydzak, Thomas; Davison, Brian H.; Brown, Steven D.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. RP Brown, SD (reprint author), Univ Tennessee, Bredesen Ctr Interdisciplinary Res & Grad Educ, Knoxville, TN 37996 USA. EM brownsd@ornl.gov RI Brown, Steven/A-6792-2011; Klingeman, Dawn/B-9415-2012; OI Brown, Steven/0000-0002-9281-3898; Klingeman, Dawn/0000-0002-4307-2560; Rydzak, Thomas/0000-0002-5176-3222 FU BioEnergy Science Center; US Department of Energy [DE-AC05-00OR22725]; US Department of Energy Bioenergy Research Center - Office of Biological and Environmental Research in the DOE Office of Science FX We thank Richard Sparling (University of Manitoba) for helpful discussions. This work is sponsored by the BioEnergy Science Center, which is a US Department of Energy Bioenergy Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science. This manuscript has been authored by UT-Battelle, LLC, under Contract no. DE-AC05-00OR22725 with the US Department of Energy.; This manuscript has been authored by UT-Battelle, LLC under Contract no. DE-AC05-00OR22725 with the US Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan). NR 58 TC 4 Z9 4 U1 8 U2 23 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1754-6834 J9 BIOTECHNOL BIOFUELS JI Biotechnol. Biofuels PD DEC 12 PY 2015 VL 8 AR 211 DI 10.1186/s13068-015-0394-9 PG 14 WC Biotechnology & Applied Microbiology; Energy & Fuels SC Biotechnology & Applied Microbiology; Energy & Fuels GA CY2VW UT WOS:000366267300001 PM 26692898 ER PT J AU Geng, J Chisholm, MF Mishra, RK Kumar, KS AF Geng, J. Chisholm, M. F. Mishra, R. K. Kumar, K. S. TI An electron microscopy study of dislocation structures in Mg single crystals compressed along [0001] at room temperature SO PHILOSOPHICAL MAGAZINE LA English DT Article DE magnesium single crystal; compression; transmission electron microscopy; dislocations; deformation ID MOLECULAR-DYNAMICS SIMULATION; CLOSE-PACKED METALS; HCP METALS; CORE STRUCTURE; MAGNESIUM CRYSTALS; EDGE DISLOCATION; PRISMATIC SLIP; PYRAMIDAL SLIP; NONBASAL SLIP; DEFORMATION AB Mg single crystals were compressed along [0001] at room temperature to various stress levels (40, 80, 120, 160 and 320MPa) and the evolution of dislocation structure with stress increment was investigated by TEM. < c+a > slip is confirmed to be the dominant deformation mode; the predominance of edge dislocation debris lying along the < 10 (1) over bar0 > that screw < c+a > dislocations are more mobile than their edge counterpart. The < c+a > edge dislocation may dissociate into < c > and < a > dislocations, and the latter can extend further on the basal plane and bound a basal-stacking fault. Numerous < c+a >-type dislocation loops are generated during deformation and together with point defects and edge dipoles, contribute to the observed high work hardening rate. The smaller (<100nm in diameter) dislocation loops are perfect < c+a > dislocation loops but the larger loops dissociate into two concentric 1/6 < 20<(2)over bar>3 >-type partial dislocations enclosing a basal-stacking fault. Since the Burgers vector of these perfect and faulted loops is out of the loop plane, these loops are sessile, change size by climb, and act as obstacles to mobile dislocations. C1 [Geng, J.; Kumar, K. S.] Brown Univ, Sch Engn, Providence, RI 02912 USA. [Chisholm, M. F.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Mishra, R. K.] GM Global Res & Dev Ctr, Warren, MI 48090 USA. RP Kumar, KS (reprint author), Brown Univ, Sch Engn, Providence, RI 02912 USA. EM Sharvan_Kumar@brown.edu FU General Motors/Brown University Collaborative Research Laboratory on Computational Materials Science; U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Science and Engineering Division; NSF-GOALI [1309687] FX This effort was supported by the General Motors/Brown University Collaborative Research Laboratory on Computational Materials Science. MFC is sponsored by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Science and Engineering Division. One of the authors (KSK) was supported in part during the time the manuscript was written and edited by the NSF-GOALI (award number 1309687) at Brown University titled 'Atomic Scale Modeling and Experimental Characterization of Non-Basal Deformation Modes in Mg Alloys'. NR 47 TC 8 Z9 8 U1 4 U2 21 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 1478-6435 EI 1478-6443 J9 PHILOS MAG JI Philos. Mag. PD DEC 12 PY 2015 VL 95 IS 35 BP 3910 EP 3932 DI 10.1080/14786435.2015.1108531 PG 23 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Physics, Applied; Physics, Condensed Matter SC Materials Science; Metallurgy & Metallurgical Engineering; Physics GA CY2OQ UT WOS:000366248400001 ER PT J AU Saro, A Bocquet, S Rozo, E Benson, BA Mohr, J Rykoff, ES Soares-Santos, M Bleem, L Dodelson, S Melchior, P Sobreira, F Upadhyay, V Weller, J Abbott, T Abdalla, FB Allam, S Armstrong, R Banerji, M Bauer, AH Bayliss, M Benoit-Levy, A Bernstein, GM Bertin, E Brodwin, M Brooks, D Buckley-Geer, E Burke, DL Carlstrom, JE Capasso, R Capozzi, D Rosell, AC Kind, MC Chiu, I Covarrubias, R Crawford, TM Crocce, M D'Andrea, CB da Costa, LN DePoy, DL Desai, S de Haan, T Diehl, HT Dietrich, JP Doel, P Cunha, CE Eifler, TF Evrard, AE Neto, AF Fernandez, E Flaugher, B Fosalba, P Frieman, J Gangkofner, C Gaztanaga, E Gerdes, D Gruen, D Gruendl, RA Gupta, N Hennig, C Holzapfel, WL Honscheid, K Jain, B James, D Kuehn, K Kuropatkin, N Lahav, O Li, TS Lin, H Maia, MAG March, M Marshall, JL Martini, P McDonald, M Miller, CJ Miquel, R Nord, B Ogando, R Plazas, AA Reichardt, CL Romer, AK Roodman, A Sako, M Sanchez, E Schubnell, M Sevilla, I Smith, RC Stalder, B Stark, AA Strazzullo, V Suchyta, E Swanson, MEC Tarle, G Thaler, J Thomas, D Tucker, D Vikram, V von der Linden, A Walker, AR Wechsler, RH Wester, W Zenteno, A Ziegler, KE AF Saro, A. Bocquet, S. Rozo, E. Benson, B. A. Mohr, J. Rykoff, E. S. Soares-Santos, M. Bleem, L. Dodelson, S. Melchior, P. Sobreira, F. Upadhyay, V. Weller, J. Abbott, T. Abdalla, F. B. Allam, S. Armstrong, R. Banerji, M. Bauer, A. H. Bayliss, M. Benoit-Levy, A. Bernstein, G. M. Bertin, E. Brodwin, M. Brooks, D. Buckley-Geer, E. Burke, D. L. Carlstrom, J. E. Capasso, R. Capozzi, D. Carnero Rosell, A. Kind, M. Carrasco Chiu, I. Covarrubias, R. Crawford, T. M. Crocce, M. D'Andrea, C. B. da Costa, L. N. DePoy, D. L. Desai, S. de Haan, T. Diehl, H. T. Dietrich, J. P. Doel, P. Cunha, C. E. Eifler, T. F. Evrard, A. E. Fausti Neto, A. Fernandez, E. Flaugher, B. Fosalba, P. Frieman, J. Gangkofner, C. Gaztanaga, E. Gerdes, D. Gruen, D. Gruendl, R. A. Gupta, N. Hennig, C. Holzapfel, W. L. Honscheid, K. Jain, B. James, D. Kuehn, K. Kuropatkin, N. Lahav, O. Li, T. S. Lin, H. Maia, M. A. G. March, M. Marshall, J. L. Martini, Paul McDonald, M. Miller, C. J. Miquel, R. Nord, B. Ogando, R. Plazas, A. A. Reichardt, C. L. Romer, A. K. Roodman, A. Sako, M. Sanchez, E. Schubnell, M. Sevilla, I. Smith, R. C. Stalder, B. Stark, A. A. Strazzullo, V. Suchyta, E. Swanson, M. E. C. Tarle, G. Thaler, J. Thomas, D. Tucker, D. Vikram, V. von der Linden, A. Walker, A. R. Wechsler, R. H. Wester, W. Zenteno, A. Ziegler, K. E. TI Constraints on the richness-mass relation and the optical-SZE positional offset distribution for SZE-selected clusters SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE catalogues; methods: data analysis; galaxies: abundances; galaxies: clusters: general; galaxies: haloes; galaxies: statistics; cosmology: miscellaneous; large-scale structure of Universe ID SOUTH-POLE TELESCOPE; DIGITAL SKY SURVEY; SCIENCE VERIFICATION DATA; BLANCO COSMOLOGY SURVEY; 720 SQUARE DEGREES; X-RAY-PROPERTIES; SIMILAR-TO 1; GALAXY CLUSTERS; SCALING RELATIONS; DATA RELEASE AB We cross-match galaxy cluster candidates selected via their Sunyaev-Zel'dovich effect (SZE) signatures in 129.1 deg(2) of the South Pole Telescope 2500d SPT-SZ survey with optically identified clusters selected from the Dark Energy Survey science verification data. We identify 25 clusters between 0.1 less than or similar to z less than or similar to 0.8 in the union of the SPT-SZ and redMaPPer (RM) samples. RM is an optical cluster finding algorithm that also returns a richness estimate for each cluster. We model the richness lambda-mass relation with the following function < ln lambda| M-500 > alpha B-lambda ln M-500 + C(lambda)ln E(z) and use SPT-SZ cluster masses and RM richnesses lambda to constrain the parameters. We find B-lambda = 1.14(-0.18)(+0.21) and C-lambda = 0.73(-0.75)(+0.77). The associated scatter in mass at fixed richness is sigma M-ln|lambda = 0.18(-0.05)(+0.08) at a characteristic richness lambda= 70. We demonstrate that our model provides an adequate description of the matched sample, showing that the fraction of SPT-SZ-selected clusters with RM counterparts is consistent with expectations and that the fraction of RM-selected clusters with SPT-SZ counterparts is in mild tension with expectation. We model the optical-SZE cluster positional offset distribution with the sum of two Gaussians, showing that it is consistent with a dominant, centrally peaked population and a subdominant population characterized by larger offsets. We also cross-match the RM catalogue with SPT-SZ candidates below the official catalogue threshold significance xi = 4.5, using the RM catalogue to provide optical confirmation and redshifts for 15 additional clusters with xi is an element of [4, 4.5]. C1 [Saro, A.; Bocquet, S.; Mohr, J.; Capasso, R.; Chiu, I.; Desai, S.; Dietrich, J. P.; Gangkofner, C.; Gupta, N.; Hennig, C.; Strazzullo, V.] Univ Munich, Dept Phys, D-81679 Munich, Germany. [Saro, A.; Bocquet, S.; Mohr, J.; Weller, J.; Capasso, R.; Chiu, I.; Dietrich, J. P.; Gangkofner, C.; Gupta, N.; Hennig, C.; Strazzullo, V.] Excellence Cluster Univ, D-85748 Garching, Germany. [Rozo, E.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Benson, B. A.; Soares-Santos, M.; Dodelson, S.; Sobreira, F.; Allam, S.; Buckley-Geer, E.; Diehl, H. T.; Flaugher, B.; Frieman, J.; Kuropatkin, N.; Lin, H.; Nord, B.; Tucker, D.; Wester, W.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Benson, B. A.; Bleem, L.; Dodelson, S.; Carlstrom, J. E.; Crawford, T. M.; Frieman, J.; Ziegler, K. E.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Benson, B. A.; Dodelson, S.; Carlstrom, J. E.; Crawford, T. M.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Mohr, J.; Weller, J.; Gruen, D.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Rykoff, E. S.; Burke, D. L.; Cunha, C. E.; Roodman, A.; von der Linden, A.; Wechsler, R. H.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. [Rykoff, E. S.; Burke, D. L.; Roodman, A.; Wechsler, R. H.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Bleem, L.; Vikram, V.] Argonne Natl Lab, Lemont, IL 60439 USA. [Melchior, P.; Honscheid, K.; Martini, Paul; Suchyta, E.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Melchior, P.; Honscheid, K.; Suchyta, E.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Sobreira, F.; Carnero Rosell, A.; da Costa, L. N.; Fausti Neto, A.; Maia, M. A. G.; Ogando, R.] Lab Interinst & Astron LIneA, BR-20921400 Rio De Janeiro, Brazil. [Upadhyay, V.] CERN, CH-1211 Geneva 23, Switzerland. [Weller, J.; Gruen, D.] Univ Munich, Fak Phys, Univ Sternwarte, D-81679 Munich, Germany. [Abbott, T.; James, D.; Smith, R. C.; Walker, A. R.] Natl Opt Astron Observ, Cerro Tololo Interamer Observ, La Serena, Chile. [Abdalla, F. B.; Benoit-Levy, A.; Brooks, D.; Doel, P.; Lahav, O.] Univ London Univ Coll, Dept Phys & Astron, London WC1E 6BT, England. [Armstrong, R.; Bernstein, G. M.; Eifler, T. F.; Jain, B.; March, M.; Sako, M.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Banerji, M.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Bauer, A. H.; Crocce, M.; Fosalba, P.; Gaztanaga, E.] CSIC, IEEC, Inst Ciencies Espai, Fac Ciencias, E-08193 Barcelona, Spain. [Bayliss, M.] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA. [Bayliss, M.; Stalder, B.; Stark, A. A.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Bertin, E.] Univ Paris 06, Inst Astrophys Paris, F-75014 Paris, France. [Bertin, E.] CNRS, UMR7095, F-75014 Paris, France. [Brodwin, M.] Univ Missouri, Dept Phys & Astron, Kansas City, MO 64110 USA. [Carlstrom, J. E.] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. [Carlstrom, J. E.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Capozzi, D.; D'Andrea, C. B.; Thomas, D.] Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 3FX, Hants, England. [Carnero Rosell, A.; da Costa, L. N.; Maia, M. A. G.; Ogando, R.] Observ Nacl, BR-20921400 Rio De Janeiro, RJ, Brazil. [Kind, M. Carrasco; Gruendl, R. A.; Sevilla, I.] Univ Illinois, Dept Astron, Urbana, IL 61801 USA. [Kind, M. Carrasco; Covarrubias, R.; Gruendl, R. A.; Swanson, M. E. C.] Natl Ctr Supercomp Applicat, Urbana, IL 61801 USA. [DePoy, D. L.; Li, T. S.; Marshall, J. L.] Texas A&M Univ, George P & Cynthia Woods Mitchell Inst Fundamenta, College Stn, TX 77843 USA. [DePoy, D. L.; Li, T. S.; Marshall, J. L.] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA. [de Haan, T.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [de Haan, T.; Holzapfel, W. L.; Reichardt, C. L.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Eifler, T. F.; Plazas, A. A.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Evrard, A. E.; Miller, C. J.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Evrard, A. E.; Gerdes, D.; Miller, C. J.; Tarle, G.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Fernandez, E.; Miquel, R.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Kuehn, K.] Australian Astron Observ, N Ryde, NSW 2113, Australia. [Martini, Paul] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [McDonald, M.] MIT, Kavli Inst Astrophys & Space Res, Cambridge, MA 02139 USA. [Plazas, A. A.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Reichardt, C. L.] Univ Melbourne, Sch Phys, Parkville, Vic 3010, Australia. [Romer, A. K.] Univ Sussex, Dept Phys & Astron, Brighton BN1 9QH, E Sussex, England. [Sanchez, E.; Sevilla, I.] CIEMAT, Ctr Invest Energet Medioambientales & Tecnol, E-28040 Madrid, Spain. [Stalder, B.] Univ Hawaii Manoa, Inst Astron, Honolulu, HI 96822 USA. [Thaler, J.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [von der Linden, A.; Wechsler, R. H.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [von der Linden, A.] Univ Copenhagen, Niels Bohr Inst, Dark Cosmol Ctr, DK-2100 Copenhagen O, Denmark. [Zenteno, A.] Cerro Tololo Interamer Observ, La Serena, Chile. RP Saro, A (reprint author), Univ Munich, Dept Phys, Scheinerstr 1, D-81679 Munich, Germany. EM saro@usm.lmu.de RI Ogando, Ricardo/A-1747-2010; Sanchez, Eusebio/H-5228-2015; Fosalba Vela, Pablo/I-5515-2016; Sobreira, Flavia/F-4168-2015; OI Abdalla, Filipe/0000-0003-2063-4345; Tucker, Douglas/0000-0001-7211-5729; Ogando, Ricardo/0000-0003-2120-1154; Stark, Antony/0000-0002-2718-9996; Sanchez, Eusebio/0000-0002-9646-8198; Sobreira, Flavia/0000-0002-7822-0658; CRAWFORD, THOMAS/0000-0001-9000-5013; Dietrich, Jorg/0000-0002-8134-9591; Weller, Jochen/0000-0002-8282-2010; Carrasco Kind, Matias/0000-0002-4802-3194; Stern, Corvin/0000-0003-4406-6127 FU DFG Cluster of Excellence 'Origin and Structure of the Universe'; Transregio program TR33 'The Dark Universe'; Ludwig-Maximilians University; National Science Foundation [PLR-1248097]; NSF Physics Frontier Center [PHY-1125897]; Gordon and Betty Moore Foundation [GBMF 947]; Smithsonian Institution; Miller Research Fellowship; Danish National Research Foundation; Australian Research Council's Discovery Projects scheme [DP150103208]; US Department of Energy; US National Science Foundation; Ministry of Science and Education of Spain; Science and Technology Facilities Council of the United Kingdom; Higher Education Funding Council for England; National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign; Kavli Institute of Cosmological Physics at University of Chicago; Center for Cosmology and Astro-Particle Physics at Ohio State University; Mitchell Institute for Fundamental Physics and Astronomy at Texas AM University; Financiadora de Estudos e Projetos; Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico and the Ministerio da Ciencia e Tecnologia; Deutsche Forschungsgemeinschaft; Collaborating Institutions in the Dark Energy Survey; MINECO [AYA2012-39559, ESP2013-48274, FPA2013-47986]; Centro de Excelencia Severo Ochoa [SEV-2012-0234]; European Union FX We acknowledge the support by the DFG Cluster of Excellence 'Origin and Structure of the Universe', the Transregio program TR33 'The Dark Universe' and the Ludwig-Maximilians University. The South Pole Telescope is supported by the National Science Foundation through grant PLR-1248097. Partial support is also provided by the NSF Physics Frontier Center grant PHY-1125897 to the Kavli Institute of Cosmological Physics at the University of Chicago, the Kavli Foundation and the Gordon and Betty Moore Foundation grant GBMF 947. AAS acknowledges a Pell grant from the Smithsonian Institution. TDH is supported by a Miller Research Fellowship. This work was partially completed at Fermilab, operated by Fermi Research Alliance, LLC under contract no. De-AC02-07CH11359 with the United States Department of Energy. The Dark Cosmology Centre is funded by the Danish National Research Foundation. CR acknowledges support from the Australian Research Council's Discovery Projects scheme (DP150103208). Funding for the DES Projects has been provided by the US Department of Energy, the US National Science Foundation, the Ministry of Science and Education of Spain, the Science and Technology Facilities Council of the United Kingdom, the Higher Education Funding Council for England, the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign, the Kavli Institute of Cosmological Physics at the University of Chicago, the Center for Cosmology and Astro-Particle Physics at the Ohio State University, the Mitchell Institute for Fundamental Physics and Astronomy at Texas A&M University, Financiadora de Estudos e Projetos, Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Cientifico e Tecnologico and the Ministerio da Ciencia e Tecnologia, the Deutsche Forschungsgemeinschaft and the Collaborating Institutions in the Dark Energy Survey. The DES participants from Spanish institutions are partially supported by MINECO under grants AYA2012-39559, ESP2013-48274, FPA2013-47986 and Centro de Excelencia Severo Ochoa SEV-2012-0234, some of which include ERDF funds from the European Union. The Collaborating Institutions are Argonne National Laboratory, the University of California at Santa Cruz, the University of Cambridge, Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas-Madrid, the University of Chicago, University College London, the DES-Brazil Consortium, the Eidgenossische Technische Hochschule (ETH) Zurich, Fermi National Accelerator Laboratory, the University of Edinburgh, the University of Illinois at Urbana-Champaign, the Institut de Ciencies de l'Espai (IEEC/CSIC), the Institut de Fisica d'Altes Energies, Lawrence Berkeley National Laboratory, the Ludwig- Maximilians Universitat and the associated Excellence Cluster Universe, the University of Michigan, the National Optical Astronomy Observatory, the University of Nottingham, The Ohio State University, the University of Pennsylvania, the University of Portsmouth, SLAC National Accelerator Laboratory, Stanford University, the University of Sussex and Texas A&M University. NR 79 TC 11 Z9 11 U1 0 U2 1 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD DEC 11 PY 2015 VL 454 IS 3 BP 2305 EP 2319 DI 10.1093/mnras/stv2141 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DA7QY UT WOS:000368000400004 ER PT J AU Eifler, T Krause, E Dodelson, S Zentner, AR Hearin, AP Gnedin, NY AF Eifler, Tim Krause, Elisabeth Dodelson, Scott Zentner, Andrew R. Hearin, Andrew P. Gnedin, Nickolay Y. TI Accounting for baryonic effects in cosmic shear tomography: determining a minimal set of nuisance parameters using PCA SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE cosmological parameters; cosmology: theory; large-scale structure of Universe ID MATTER POWER SPECTRUM; WEAK-LENSING SURVEYS; PHOTOMETRIC REDSHIFT ERRORS; LARGE-SCALE STRUCTURE; DARK-MATTER; COSMOLOGICAL CONSTRAINTS; GALAXY FORMATION; COYOTE UNIVERSE; NUMBER DENSITY; MASS FUNCTION AB Systematic uncertainties that have been subdominant in past large-scale structure (LSS) surveys are likely to exceed statistical uncertainties of current and future LSS data sets, potentially limiting the extraction of cosmological information. Here we present a general framework (Principal Component Analysis - PCA - marginalization) to consistently incorporate systematic effects into a likelihood analysis. This technique naturally accounts for degeneracies between nuisance parameters and can substantially reduce the dimension of the parameter space that needs to be sampled. As a practical application, we apply PCA marginalization to account for baryonic physics as an uncertainty in cosmic shear tomography. Specifically, we use COSMOLIKE to run simulated likelihood analyses on three independent sets of numerical simulations, each covering a wide range of baryonic scenarios differing in cooling, star formation, and feedback mechanisms. We simulate a Stage III (Dark Energy Survey) and Stage IV (Large Synoptic Survey Telescope/Euclid) survey and find a substantial bias in cosmological constraints if baryonic physics is not accounted for. We then show that PCA marginalization (employing at most three to four nuisance parameters) removes this bias. Our study demonstrates that it is possible to obtain robust, precise constraints on the dark energy equation of state even in the presence of large levels of systematic uncertainty in astrophysical processes. We conclude that the PCA marginalization technique is a powerful, general tool for addressing many of the challenges facing the precision cosmology programme. C1 [Eifler, Tim] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Eifler, Tim; Krause, Elisabeth] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Krause, Elisabeth] Stanford Univ, Kavli Inst Particle Cosmol & Astrophys, Stanford, CA 94305 USA. [Dodelson, Scott; Gnedin, Nickolay Y.] Univ Chicago, Kavli Inst Cosmol Phys, Enrico Fermi Inst, Chicago, IL 60637 USA. [Dodelson, Scott; Gnedin, Nickolay Y.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Dodelson, Scott; Hearin, Andrew P.; Gnedin, Nickolay Y.] Fermilab Natl Accelerator Lab, Fermilab Ctr Particle Astrophys, Batavia, IL 60510 USA. [Zentner, Andrew R.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Zentner, Andrew R.] Univ Pittsburgh, PITTsburgh Particle Phys Astrophys & Cosmol Ctr P, Pittsburgh, PA 15260 USA. [Hearin, Andrew P.] Yale Univ, Yale Ctr Astron & Astrophys, New Haven, CT 06520 USA. RP Eifler, T (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM tim.eifler@jpl.nasa.gov FU National Science Foundation [1066293, AST 0806367, AST 1108802]; hospitality of the Aspen Center for Physics; US Department of Energy [DE-FG02-95ER40896]; Pittsburgh Particle physics, Astrophysics, and Cosmology Center (PITT PACC) at the University of Pittsburgh; Scientific Discovery through Advanced Computing (SciDAC) programme - US Department of Energy, Office of Science, Advanced Scientific Computing Research and High Energy Physics; National Aeronautics and Space Administration FX This paper is based upon work supported in part by the National Science Foundation under Grant no. 1066293 and the hospitality of the Aspen Center for Physics. The work of SD and NYG is supported by the US Department of Energy, including grant DE-FG02-95ER40896. The work of ARZ has been funded in part by the Pittsburgh Particle physics, Astrophysics, and Cosmology Center (PITT PACC) at the University of Pittsburgh and by the National Science Foundation under grants AST 0806367 and AST 1108802. Support for this work was provided through the Scientific Discovery through Advanced Computing (SciDAC) programme funded by the US Department of Energy, Office of Science, Advanced Scientific Computing Research and High Energy Physics. Part of the research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 64 TC 7 Z9 7 U1 0 U2 0 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD DEC 11 PY 2015 VL 454 IS 3 BP 2451 EP 2471 DI 10.1093/mnras/stv2000 PG 21 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DA7QY UT WOS:000368000400017 ER PT J AU Baron, E Hoeflich, P Friesen, B Sullivan, M Hsiao, E Ellis, RS Gal-Yam, A Howell, DA Nugent, PE Dominguez, I Krisciunas, K Phillips, MM Suntzeff, N Wang, L Thomas, RC AF Baron, E. Hoeflich, P. Friesen, Brian Sullivan, M. Hsiao, E. Ellis, R. S. Gal-Yam, A. Howell, D. A. Nugent, P. E. Dominguez, I. Krisciunas, K. Phillips, M. M. Suntzeff, N. Wang, L. Thomas, R. C. TI Spectral models for early time SN 2011fe observations SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE radiative transfer; supernovae: general; supernovae: individual: SN 2011fe ID IA SUPERNOVA SPECTRA; STELLAR ATMOSPHERE PROGRAM; MAXIMUM LIGHT; NON-LTE; PARALLEL IMPLEMENTATION; ULTRAVIOLET-SPECTRA; WHITE-DWARFS; PROGENITOR; M101; STAR AB We use observed UV through near-IR spectra to examine whether SN 2011fe can be understood in the framework of Branch-normal Type Ia supernovae (SNe Ia) and to examine its individual peculiarities. As a benchmark, we use a delayed-detonation model with a progenitor metallicity of Z(circle dot)/20. We study the sensitivity of features to variations in progenitor metallicity, the outer density profile, and the distribution of radioactive nickel. The effect of metallicity variations in the progenitor have a relatively small effect on the synthetic spectra. We also find that the abundance stratification of SN 2011fe resembles closely that of a delayed-detonation model with a transition density that has been fit to other Branch-normal SNe Ia. At early times, the model photosphere is formed in material with velocities that are too high, indicating that the photosphere recedes too slowly or that SN 2011fe has a lower specific energy in the outer approximate to 0.1 M-circle dot than does the model. We discuss several explanations for the discrepancies. Finally, we examine variations in both the spectral energy distribution and in the colours due to variations in the progenitor metallicity, which suggests that colours are only weak indicators for the progenitor metallicity, in the particular explosion model that we have studied. We do find that the flux in the U band is significantly higher at maximum light in the solar metallicity model than in the lower metallicity model and the lower metallicity model much better matches the observed spectrum. C1 [Baron, E.; Friesen, Brian] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA. [Baron, E.] Hamburger Sternwarte, D-21029 Hamburg, Germany. [Hoeflich, P.] Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA. [Sullivan, M.] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England. [Hsiao, E.; Phillips, M. M.] Las Campanas Observ, La Serena, Chile. [Ellis, R. S.] CALTECH, Cahill Ctr Astrophys, Pasadena, CA 91125 USA. [Gal-Yam, A.] Weizmann Inst Sci, Benoziyo Ctr Astrophys, IL-76100 Rehovot, Israel. [Howell, D. A.] Las Cumbres Observ, Global Telescope Network, Goleta, CA 93117 USA. [Howell, D. A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Nugent, P. E.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA. [Dominguez, I.; Thomas, R. C.] Univ Granada, E-18071 Granada, Spain. [Krisciunas, K.; Suntzeff, N.; Wang, L.] Texas A&M Univ, Dept Phys & Astron, George P & Cynthia Woods Mitchell Inst Fundamenta, College Stn, TX 77843 USA. RP Baron, E (reprint author), Univ Oklahoma, Homer L Dodge Dept Phys & Astron, 440 W Brooks,Rm 100, Norman, OK 73019 USA. EM baron@ou.edu OI Baron, Edward/0000-0001-5393-1608; Sullivan, Mark/0000-0001-9053-4820 FU NASA through Space Telescope Science Institute [HST-GO-12298.05-A, HST-GO-12948.04-A]; NASA [NAS5-26555]; NSF [AST-0709181, AST-0707704, AST-0708855, AST-0708873, AST-0703902]; DFG [SFB 676, GRK 1354]; Spanish Ministry of Science and Innovation [AYA2008-04211-C02-02]; Office of Science of the US Department of Energy [DE-AC02-05CH11231]; Hochstleistungs Rechenzentrum Nord (HLRN) FX We thank Aaron Dotter for help in constructing the synthetic photometry with a wide choice of filters. We also thank the anonymous referee for improving the presentation of this work. The work has been supported in part by support for programmes HST-GO-12298.05-A, and HST-GO-12948.04-A was provided by NASA through a grant from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Incorporated, under NASA contract NAS5-26555. This work was also supported in part by the NSF, AST-0709181, AST-0707704, AST-0708855, AST-0708873. This research was also supported, in part, by the NSF grant AST-0703902 to PAH. The work of EB was also supported in part by SFB 676, GRK 1354 from the DFG. ID has been supported in part by the Spanish Ministry of Science and Innovation project AYA2008-04211-C02-02 (ID). This research used resources of the National Energy Research Scientific Computing Center (NERSC), which is supported by the Office of Science of the US Department of Energy under Contract No. DE-AC02-05CH11231; and the Hochstleistungs Rechenzentrum Nord (HLRN). We thank both these institutions for a generous allocation of computer time. NR 61 TC 4 Z9 4 U1 3 U2 3 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD DEC 11 PY 2015 VL 454 IS 3 BP 2549 EP 2556 DI 10.1093/mnras/stv1951 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DA7QY UT WOS:000368000400024 ER PT J AU Yuan, YJ Blandford, RD AF Yuan, Yajie Blandford, Roger D. TI On the implications of recent observations of the inner knot in the Crab nebula SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE radiation mechanisms: non-thermal; relativistic processes; shock waves; ISM: individual objects: Crab nebula ID STRIPED PULSAR WIND; MAGNETOHYDRODYNAMIC SIMULATIONS; SYNCHROTRON NEBULA; TERMINATION SHOCK; STANDARD CANDLE; RAY-EMISSION; ACCELERATION; POLARIZATION; ULTRAVIOLET; TELESCOPE AB Recent observations of the Crab nebula (Rudy et al.) have maintained its reputation for high-energy astrophysical enlightenment and its use as a test-bed for theories of the behaviour of magnetized, relativistic plasma. In particular, new observations of the inner knot located 0.65 arcsec SE from the pulsar confirm that it is compact, elongated transversely to the symmetry axis and curved concave towards the pulsar. 60 per cent polarization has been measured along the symmetry axis (Moran et al.). The knot does not appear to be involved in the gamma-ray flares. The new observations both reinforce the interpretation of the knot as dissipation of the pulsar wind at a strong shock and challenge the details of existing models of this process. In particular, it is argued that the compactness, high polarization, and curvature are difficult to reconcile with simple relativistic shock models. Alternative possibilities include deflection of the outflow ahead of the shock and spatial variation in which the knot is interpreted as a caustic. Some future observations are proposed and new theoretical investigations are suggested. C1 [Yuan, Yajie] SLAC, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. Stanford Univ, Stanford, CA 94305 USA. RP Yuan, YJ (reprint author), SLAC, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. EM yuanyj@stanford.edu; rdb3@stanford.edu FU US Department of Energy [DE-AC02-76SF00515]; NSF [AST 12-12195]; Simons Foundation; Humboldt Foundation; Miller Foundation; KIPAC Gregory and Mary Chabolla fellowship; Gabilan Fellowship - Stanford University FX We thank Jon Arons, Rolf Buehler, Stefan Funk, Jeff Kolodziejczak, Serguei Komissarov, Maxim Lyutikov, Claire Max, Stephen O'Dell, Oliver Porth, Roger Romani, Alexander Rudy, Jeff Scargle, and Martin Weisskopf for helpful discussions. This work was supported in part by the US Department of Energy contract to SLAC no. DE-AC02-76SF00515, NSF grant AST 12-12195, as well as the Simons Foundation, the Humboldt Foundation, and the Miller Foundation (RB). YY gratefully acknowledges support from the KIPAC Gregory and Mary Chabolla fellowship and the Gabilan Fellowship awarded by Stanford University. NR 52 TC 5 Z9 5 U1 1 U2 1 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD DEC 11 PY 2015 VL 454 IS 3 BP 2754 EP 2769 DI 10.1093/mnras/stv2093 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DA7QY UT WOS:000368000400039 ER PT J AU Metzger, BD Margalit, B Kasen, D Quataert, E AF Metzger, Brian D. Margalit, Ben Kasen, Daniel Quataert, Eliot TI The diversity of transients from magnetar birth in core collapse supernovae SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE gamma-ray burst: general; stars: magnetars; pulsars: general; supernovae: general ID GAMMA-RAY BURSTS; PULSAR WIND NEBULAE; SUPERLUMINOUS SUPERNOVAE; STELLAR-EXPLOSIONS; SPIN-DOWN; LONG; ACCRETION; GALAXIES; EVENTS; MODELS AB Strongly magnetized, rapidly rotating neutron stars are contenders for the central engines of both long gamma-ray bursts (LGRBs) and hydrogen-poor superluminous supernovae (SLSNe-I). Models for typical (minute long) LGRBs invoke magnetars with high dipole magnetic fields (B-d greater than or similar to 10(15) G) and short spin-down times, SLSNe-I require neutron stars with weaker fields and longer spin-down times of weeks. Here, we identify a transition region in the space of Bd and birth period for which a magnetar can power both a LGRB and a luminous supernova. In particular, a 2 ms period magnetar with a spin-down time of similar to 10(4) s can explain both the ultralong GRB 111209 and its associated luminous SN2011kl. For magnetars with longer spin-down times, we predict even longer duration (similar to 10(5) (6)s) GRBs and brighter supernovae, a correlation that extends to Swift J2058+05 (commonly interpreted as a tidal disruption event). We further show that previous estimates of the maximum rotational energy of a protomagnetar were too conservative and energies up to E-max similar to 1-2 x 10(53) ergs are possible. A magnetar can therefore comfortably accommodate the extreme energy requirements recently posed by the most luminous supernova ASASSN-15lh. The luminous pulsar wind nebula powering ASASSN-15lh may lead to an 'ionization breakout' X-ray burst over the coming months, accompanied by a change in the optical spectrum. C1 [Metzger, Brian D.; Margalit, Ben] Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA. [Kasen, Daniel; Quataert, Eliot] Univ Calif Berkeley, Theoret Astrophys Ctr, Dept Phys, Berkeley, CA 94720 USA. [Kasen, Daniel; Quataert, Eliot] Univ Calif Berkeley, Theoret Astrophys Ctr, Dept Astron, Berkeley, CA 94720 USA. [Kasen, Daniel] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. RP Metzger, BD (reprint author), Columbia Univ, Columbia Astrophys Lab, 538 W 120th St, New York, NY 10027 USA. EM bmetzger@phys.columbia.edu OI Margalit, Ben/0000-0001-8405-2649 FU NSF [AST-1410950, AST-1205732]; Alfred P. Sloan Foundation; Simons Foundation; David and Lucile Packard Foundation; Department of Energy Office of Nuclear Physics Early Career Award; Office of Energy Research, Office of High Energy and Nuclear Physics, Divisions of Nuclear Physics of the US Department of Energy [DE-AC02-05CH11231] FX We thank Jonathan Granot, Andrew Levan, Todd Thompson for helpful conversations, and Subo Dong for providing light-curve data on ASASSN-15lh. BDM and BM acknowledge support from the NSF grant AST-1410950 and the Alfred P. Sloan Foundation. EQ was supported in part by NSF grant AST-1205732, a Simons Investigator award from the Simons Foundation and the David and Lucile Packard Foundation. DK is supported in part by a Department of Energy Office of Nuclear Physics Early Career Award, and by the Director, Office of Energy Research, Office of High Energy and Nuclear Physics, Divisions of Nuclear Physics of the US Department of Energy under contract no. DE-AC02-05CH11231. NR 48 TC 36 Z9 36 U1 0 U2 0 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD DEC 11 PY 2015 VL 454 IS 3 BP 3311 EP 3316 DI 10.1093/mnras/stv2224 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DA7QY UT WOS:000368000400082 ER PT J AU Velliscig, M Cacciato, M Schaye, J Hoekstra, H Bower, RG Crain, RA van Daalen, MP Furlong, M McCarthy, IG Schaller, M Theuns, T AF Velliscig, Marco Cacciato, Marcello Schaye, Joop Hoekstra, Henk Bower, Richard G. Crain, Robert A. van Daalen, Marcel P. Furlong, Michelle McCarthy, I. G. Schaller, Matthieu Theuns, Tom TI Intrinsic alignments of galaxies in the EAGLE and cosmo-OWLS simulations SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE galaxies: formation; galaxies: haloes; cosmology: theory; large-scale structure of Universe ID WEAK-LENSING SURVEYS; DARK-MATTER HALOES; MASSIVEBLACK-II SIMULATION; BLACK-HOLES; COSMOLOGICAL SIMULATIONS; SUPERNOVA FEEDBACK; SATELLITE GALAXIES; GALACTIC OUTFLOWS; RADIAL ALIGNMENT; DISC GALAXIES AB We report results for the alignments of galaxies in the EAGLE and cosmo-OWLS hydrodynamical cosmological simulations as a function of galaxy separation (-1 <= log(10)(r/[h(-1) Mpc]) <= 2) and halo mass (10.7 <= log(10)(M-200/[h(-1) M-circle dot]) <= 15). We focus on two classes of alignments: the orientations of galaxies with respect to either the directions to, or the orientations of, surrounding galaxies. We find that the strength of the alignment is a strongly decreasing function of the distance between galaxies. For galaxies hosted by the most massive haloes in our simulations the alignment can remain significant up to similar to 100 Mpc. Galaxies hosted by more massive haloes show stronger alignment. At a fixed halo mass, more aspherical or prolate galaxies exhibit stronger alignments. The spatial distribution of satellites is anisotropic and significantly aligned with the major axis of the main host halo. The major axes of satellite galaxies, when all stars are considered, are preferentially aligned towards the centre of the main host halo. The predicted projected direction-orientation alignment, epsilon(g)+(r(p)), is in broad agreement with recent observations. We find that the orientation-orientation alignment is weaker than the orientation-direction alignment on all scales. Overall, the strength of galaxy alignments depends strongly on the subset of stars that are used to measure the orientations of galaxies and it is always weaker than the alignment of dark matter haloes. Thus, alignment models that use halo orientation as a direct proxy for galaxy orientation overestimate the impact of intrinsic galaxy alignments. C1 [Velliscig, Marco; Cacciato, Marcello; Schaye, Joop; Hoekstra, Henk; van Daalen, Marcel P.] Leiden Univ, Leiden Observ, NL-2300 RA Leiden, Netherlands. [Bower, Richard G.; Furlong, Michelle; Schaller, Matthieu; Theuns, Tom] Univ Durham, Dept Phys, Inst Computat Cosmol, Durham DH1 3LE, England. [Crain, Robert A.; McCarthy, I. G.] Liverpool John Moores Univ, Astrophys Res Inst, Liverpool L3 5RF, Merseyside, England. [van Daalen, Marcel P.] Max Planck Inst Astrophys, D-85741 Garching, Germany. [van Daalen, Marcel P.] Univ Calif Berkeley, Dept Astron, Theoret Astrophys Ctr, Berkeley, CA 94720 USA. [van Daalen, Marcel P.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Velliscig, M (reprint author), Leiden Univ, Leiden Observ, POB 9513, NL-2300 RA Leiden, Netherlands. EM velliscig@strw.leidenuniv.nl OI Crain, Robert/0000-0001-6258-0344; Schaye, Joop/0000-0002-0668-5560; Schaller, Matthieu/0000-0002-2395-4902 FU BIS National E-infrastructure capital grant [ST/K00042X/1]; STFC [ST/H008519/1]; STFC DiRAC [ST/K003267/1]; Durham University; PRACE; Dutch National Computing Facilities Foundation (NCF); Netherlands Organization for Scientific Research (NWO); European Research Council under European Union/ERC [278594-GasAroundGalaxies, 321334 dustygal]; ERC [279396, 278594]; Belgian Science Policy Office [AP P7/08 CHARM] FX We thank the anonymous referee for insightful comments that helped improve the manuscript. This work used the DiRAC Data Centric system at Durham University, operated by the Institute for Computational Cosmology on behalf of the STFC DiRAC HPC Facility (www.dirac.ac.uk). This equipment was funded by BIS National E-infrastructure capital grant ST/K00042X/1, STFC capital grant ST/H008519/1, and STFC DiRAC Operations grant ST/K003267/1 and Durham University. DiRAC is part of the National E-Infrastructure. We also gratefully acknowledge PRACE for awarding us access to the resource Curie based in France at Tres Grand Centre de Calcul. This work was sponsored by the Dutch National Computing Facilities Foundation (NCF) for the use of supercomputer facilities, with financial support from the Netherlands Organization for Scientific Research (NWO). The research was supported in part by the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013)/ERC Grant agreements 278594-GasAroundGalaxies, and 321334 dustygal. This research was supported by ERC FP7 grant 279396 and ERC FP7 grant 278594. RAC is a Royal Society University Research Fellow. TT acknowledge the Interuniversity Attraction Poles Programme initiated by the Belgian Science Policy Office ([AP P7/08 CHARM]) NR 69 TC 9 Z9 9 U1 0 U2 1 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD DEC 11 PY 2015 VL 454 IS 3 BP 3328 EP 3340 DI 10.1093/mnras/stv2198 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DA7QY UT WOS:000368000400084 ER PT J AU Benjamin, N Dyer, E Fitzpatrick, AL Kachru, S AF Benjamin, Nathan Dyer, Ethan Fitzpatrick, A. Liam Kachru, Shamit TI An extremal N=2 superconformal field theory SO JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL LA English DT Article DE conformal field theory; quantum gravity; holography ID TWISTED VERTEX OPERATORS; ALGEBRA AB We provide an example of an extremal chiral N = 2 superconformal field theory at c = 24. The construction is based on a Z(2) orbifold of the theory associated to the A(1)(24) Niemeier lattice. The statespace is governed by representations of the sporadic group M-23. C1 [Benjamin, Nathan] Stanford Univ, SLAC, Stanford Inst Theoret Phys, Dept Phys, Stanford, CA 94305 USA. Stanford Univ, SLAC, Theory Grp, Stanford, CA 94305 USA. RP Benjamin, N (reprint author), Stanford Univ, SLAC, Stanford Inst Theoret Phys, Dept Phys, Stanford, CA 94305 USA. EM skachru@stanford.edu FU NSF [PHY-0756174]; DoE Office of Basic Energy Sciences [DE-AC02-76SF00515]; Stanford Graduate Fellowship FX We thank M Cheng, J Duncan, S Harrison, A Maloney, G Moore, N Paquette, E Perlmutter, A Shapere, D Whalen, and especially R Volpato for many discussions of closely related subjects. We thank J Duncan, S Harrison, and G Moore for helpful comments on a draft. SK is grateful to the Aspen Center for Physics for hospitality when first reading about these theories in summer 2014, and when completing this paper in summer 2015. NB and SK also thank the Perimeter Institute for hospitality, and the participants of '(Mock) Modularity, moonshine, and String Theory' for useful discussions about related subjects. This research was supported in part by the NSF via grant PHY-0756174, and the DoE Office of Basic Energy Sciences through contract DE-AC02-76SF00515. NB was also supported by a Stanford Graduate Fellowship. NR 29 TC 2 Z9 2 U1 1 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1751-8113 EI 1751-8121 J9 J PHYS A-MATH THEOR JI J. Phys. A-Math. Theor. PD DEC 11 PY 2015 VL 48 IS 49 AR 495401 DI 10.1088/1751-8113/48/49/495401 PG 15 WC Physics, Multidisciplinary; Physics, Mathematical SC Physics GA CY4YF UT WOS:000366414100014 ER PT J AU Ge, XC Lu, DY AF Ge, Xiaochuan Lu, Deyu TI Local representation of the electronic dielectric response function SO PHYSICAL REVIEW B LA English DT Article ID WANNIER FUNCTIONS; DISTRIBUTED POLARIZABILITIES; DECAY PROPERTIES; DENSITY-MATRIX; CONSTANT; METALS AB We present a local representation of the electronic dielectric response function, based on a spatial partition of the dielectric response into contributions from each occupied Wannier orbital using a generalized density functional perturbation theory. This procedure is fully ab initio, and therefore allows us to rigorously define local metrics, such as "bond polarizability," on Wannier centers. We show that the locality of the bare response function is determined by the locality of three quantities: Wannier functions of the occupied manifold, the density matrix, and the Hamiltonian matrix. In systems with a gap, the bare dielectric response is exponentially localized, which supports the physical picture of the dielectric response function as a collection of interacting local responses that can be captured by a tight-binding model. C1 [Ge, Xiaochuan; Lu, Deyu] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Ge, XC (reprint author), Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. EM dlu@bnl.gov RI Lu, Deyu/O-4418-2016 OI Lu, Deyu/0000-0003-4351-6085 FU U.S. DOE Office of Science User Facility, at Brookhaven National Laboratory [DE-SC0012704]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX We thank Mark Hybertsen, Andrew Rappe, and Sohrab Ismail-Beigi for their helpful discussions. This work was performed at the Center for Functional Nanomaterials, which is a U.S. DOE Office of Science User Facility, at Brookhaven National Laboratory under Contract No. DE-SC0012704. This research used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 32 TC 3 Z9 3 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD DEC 11 PY 2015 VL 92 IS 24 AR 241107 DI 10.1103/PhysRevB.92.241107 PG 5 WC Physics, Condensed Matter SC Physics GA CY1LW UT WOS:000366169200001 ER PT J AU Kim, C Park, H Marianetti, CA AF Kim, Chanul Park, Hyowon Marianetti, Chris A. TI New class of planar ferroelectric Mott insulators via first-principles design SO PHYSICAL REVIEW B LA English DT Article ID BRILLOUIN-ZONE INTEGRATIONS; INITIO MOLECULAR-DYNAMICS; TOTAL-ENERGY CALCULATIONS; PEROVSKITE SOLAR-CELLS; AUGMENTED-WAVE METHOD; PHOTOVOLTAIC DEVICES; ELECTRONIC-STRUCTURE; MAGNETIC-STRUCTURE; HIGH-PERFORMANCE; BASIS-SET AB The bulk photovoltaic effect requires a lowelectronic band gap (i.e., approximate to 1-2 eV) and large electronic polarization, which is not common in known materials. Here we use first-principles calculations to design layered double perovskite oxides AA'BB'O-6 which achieve the aforementioned properties in the context of Mott insulators. In our design rules, the gap is dictated by B/B' electronegativity difference in a Mott state, while the polarization is obtained via nominal d(0) filling on the B-site, A-type cations bearing lone-pair electrons, and A = A' size mismatch. Successful execution is demonstrated in BaBiCuVO6, BaBiNiVO6, BaLaCuVO6, and PbLaCuVO6. C1 [Kim, Chanul; Marianetti, Chris A.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. [Park, Hyowon] Univ Illinois, Dept Phys, Chicago, IL 60607 USA. [Park, Hyowon] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Kim, C (reprint author), Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. FU FAME, one of six centers of STARnet; MARCO; DARPA; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX We would like to thank D. Vanderbilt and K. Rabe for valuable discussions. The authors acknowledge funding from the FAME, one of six centers of STARnet, a Semiconductor Research Corporation program sponsored by MARCO and DARPA. The research used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 65 TC 0 Z9 0 U1 3 U2 35 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD DEC 11 PY 2015 VL 92 IS 23 AR 235122 DI 10.1103/PhysRevB.92.235122 PG 5 WC Physics, Condensed Matter SC Physics GA CY1LU UT WOS:000366168900001 ER PT J AU van der Schee, W Schenke, B AF van der Schee, Wilke Schenke, Bjoern TI Rapidity dependence in holographic heavy ion collisions SO PHYSICAL REVIEW C LA English DT Article AB We present an attempt to closely mimic the initial stage of heavy ion collisions within holography, assuming a decoupling of longitudinal and transverse dynamics in the very early stage. We subsequently evolve the obtained initial state using state-of-the-art hydrodynamic simulations and compare results with experimental data. We present results for charged hadron pseudorapidity spectra and directed and elliptic flow as functions of pseudorapidity for root s(NN) = 200 GeV Au-Au and 2.76 TeV Pb-Pb collisions. The directed flow interestingly turns out to be quite sensitive to the viscosity. The results can explain qualitative features of the collisions, but the rapidity spectra in our current model is narrower than the experimental data. C1 [van der Schee, Wilke] MIT, Ctr Theoret Phys, Cambridge, MA 02139 USA. [Schenke, Bjoern] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP van der Schee, W (reprint author), MIT, Ctr Theoret Phys, Cambridge, MA 02139 USA. FU U.S. Department of Energy under DOE [DE-SC0011090, DE-SC0012704]; DOE Office of Science Early Career Award; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX We thank Jorge Casalderrey-Solana, Paul Chesler, Michal Heller, Krishna Rajagopal, and Paul Romatschke for useful discussions. W.S. is supported by the U.S. Department of Energy under DOE Contract No. DE-SC0011090. B.P.S. is supported by the U.S. Department of Energy under DOE Contract No. DE-SC0012704. B.P.S. gratefully acknowledges a DOE Office of Science Early Career Award. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 41 TC 6 Z9 6 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 EI 1089-490X J9 PHYS REV C JI Phys. Rev. C PD DEC 11 PY 2015 VL 92 IS 6 AR 064907 DI 10.1103/PhysRevC.92.064907 PG 5 WC Physics, Nuclear SC Physics GA CY1LX UT WOS:000366169300002 ER PT J AU Dempsey, WP Hodas, NO Ponti, A Pantazis, P AF Dempsey, William P. Hodas, Nathan O. Ponti, Aaron Pantazis, Periklis TI Determination of the source of SHG verniers in zebrafish skeletal muscle SO SCIENTIFIC REPORTS LA English DT Article ID 2ND-HARMONIC GENERATION MICROSCOPY; INTENSITY PATTERN; NANOPROBES; PROTEIN AB SHG microscopy is an emerging microscopic technique for medically relevant imaging because certain endogenous proteins, such as muscle myosin lattices within muscle cells, are sufficiently spatially ordered to generate detectable SHG without the use of any fluorescent dye. Given that SHG signal is sensitive to the structural state of muscle sarcomeres, SHG functional imaging can give insight into the integrity of muscle cells in vivo. Here, we report a thorough theoretical and experimental characterization of myosin-derived SHG intensity profiles within intact zebrafish skeletal muscle. We determined that "SHG vernier" patterns, regions of bifurcated SHG intensity, are illusory when sarcomeres are staggered with respect to one another. These optical artifacts arise due to the phase coherence of SHG signal generation and the Guoy phase shift of the laser at the focus. In contrast, two-photon excited fluorescence images obtained from fluorescently labeled sarcomeric components do not contain such illusory structures, regardless of the orientation of adjacent myofibers. Based on our results, we assert that complex optical artifacts such as SHG verniers should be taken into account when applying functional SHG imaging as a diagnostic readout for pathological muscle conditions. C1 [Dempsey, William P.; Ponti, Aaron; Pantazis, Periklis] ETH, Dept Biosyst Sci & Engn D BSSE, CH-4058 Basel, Switzerland. [Hodas, Nathan O.] Pacific NW Natl Lab, Richland, WA USA. RP Pantazis, P (reprint author), ETH, Dept Biosyst Sci & Engn D BSSE, CH-4058 Basel, Switzerland. EM periklis.pantazis@bsse.ethz.ch FU Swiss National Science Foundation (SNF) [31003A 144048]; European Union Seventh Framework Program (Marie Curie Career Integration Grant (CIG)) [334552]; Swiss National Center for Competence in Research (NCCR) "Nanoscale Science" FX We would like to thank all of the members of the Pantazis laboratory for their feedback as well as Scott Fraser for providing guidance to initial experiments, discussion and advice and Rudy Marcus for discussion and advice. The flip-trap zebrafish transgenic line was a gift from Le Trinh and Scott Fraser. Our study was supported by the Swiss National Science Foundation (SNF grant no. 31003A 144048) and the European Union Seventh Framework Program (Marie Curie Career Integration Grant (CIG) no. 334552). WPD was supported by the Swiss National Center for Competence in Research (NCCR) "Nanoscale Science". NR 33 TC 0 Z9 0 U1 2 U2 2 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD DEC 11 PY 2015 VL 5 DI 10.1038/srep18119 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CY1QT UT WOS:000366183200002 ER PT J AU Peterson, PF Campbell, SI Reuter, MA Taylor, RJ Zikovsky, J AF Peterson, Peter F. Campbell, Stuart I. Reuter, Michael A. Taylor, Russell J. Zikovsky, Janik TI Event-based processing of neutron scattering data SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Neutron; Software; Data Analysis ID NEXUS DATA FORMAT AB Many of the world's time-of-flight spallation neutrons sources are migrating to recording individual neutron events. This provides for new opportunities in data processing, the least of which is to filter the events based on correlating them with logs of sample environment and other ancillary equipment. This paper will describe techniques for processing neutron scattering data acquired in event mode which preserve event information all the way to a final spectrum, including any necessary corrections or normalizations. This results in smaller final uncertainties compared to traditional methods, while significantly reducing processing time and memory requirements in typical experiments. Results with traditional histogramming techniques will be shown for comparison. (C) 2015 Elsevier B.V. All rights reserved. C1 [Peterson, Peter F.; Campbell, Stuart I.; Reuter, Michael A.; Taylor, Russell J.; Zikovsky, Janik] Oak Ridge Natl Lab, Neutron Data Anal & Visualizat, Oak Ridge, TN 37831 USA. RP Peterson, PF (reprint author), Oak Ridge Natl Lab, Neutron Data Anal & Visualizat, Oak Ridge, TN 37831 USA. RI Campbell, Stuart/A-8485-2010; OI Campbell, Stuart/0000-0001-7079-0878; Peterson, Peter/0000-0002-1353-0348; Reuter, Michael/0000-0003-3881-8310 FU Division of Scientific User Facilities, Office of Basic Energy Sciences, US Department of Energy [DE-AC05-000R22725]; UT-Battelle, LLC FX Work was sponsored by the Division of Scientific User Facilities, Office of Basic Energy Sciences, US Department of Energy, under Contract no. DE-AC05-000R22725 with UT-Battelle, LLC. A portion of this research used data from the POWGEN and VISION instruments at Spallation Neutron Source. The authors would also like to thank Nick Draper and Timmy Ramirez-Cuesta for useful discussions. NR 20 TC 3 Z9 3 U1 3 U2 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD DEC 11 PY 2015 VL 803 BP 24 EP 28 DI 10.1016/j.nim.201.5.09.016 PG 5 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA CU3ZF UT WOS:000363464600005 ER PT J AU Adam, W Bergauer, T Dragicevic, M Fried, M Fruehwirth, R Hoch, M Hrubec, J Krammer, M Treberspurg, W Waltenberger, W Alderweireldt, S Beaumont, W Janssen, X Luyckx, S Van Mechelen, P Van Remortel, N Van Spilbeeck, A Barria, P Caillol, C Clerbaux, B De Lentdecker, G Dobur, D Favart, L Grebenyuk, A Lenzi, T Leonard, A Maerschalk, T Mohammadi, A Pernie, L Randle-Conde, A Reis, T Seva, T Thomas, L Vander Velde, C Vanlaer, P Wang, J Zenoni, F Abu Zeid, S Blekman, F De Bruyn, I D'Hondt, J Daci, N Deroover, K Heracleous, N Keaveney, J Lowette, S Moreels, L Olbrechts, A Python, Q Tavernier, S Van Mulders, P Van Onsem, G Van Parijs, I Strom, DA Basegmez, S Bruno, G Castello, R Caudron, A Ceard, L De Callatay, B Delaere, C Du Pree, T Forthomme, L Giammanco, A Hollar, J Jez, P Michotte, D Nuttens, C Perrini, L Pagano, D Quertenmont, L Selvaggi, M Marono, MV Beliy, N Caebergs, T Daubie, E Hammad, GH Harkonen, J Lampen, T Luukka, PR Maenpaa, T Peltola, T Tuominen, E Tuovinen, E Eerola, P Tuuva, T Beaulieu, G Boudoul, G Combaret, C Contardo, D Gallbit, G Lumb, N Mathez, H Mirabito, L Perries, S Sabes, D Vander Donckt, M Verdier, P Viret, S Zoccarato, Y Agram, JL Conte, E Fontaine, JC Andrea, J Bloch, D Bonnin, C Brom, JM Chabert, E Charles, L Goetzmann, C Gross, L Hosselet, J Mathieu, C Richer, M Skovpen, K Autermann, C Edelhoff, M Esser, H Feld, L Karpinski, W Klein, K Lipinski, M Ostapchuk, A Pierschel, G Preuten, M Raupach, F Sammet, J Schael, S Schwering, G Wittmer, B Wlochal, M Zhukov, V Pistone, C Fluegge, G Kuensken, A Geisler, M Pooth, O Stahl, A Bartosik, N Behr, J Burgmeier, A Calligaris, L Dolinska, G Eckerlin, G Eckstein, D Eichhorn, T Fluke, G Garcia, JG Gizhko, A Hansen, K Harb, A Hauk, J Kalogeropoulos, A Kleinwort, C Korol, I Lange, W Lohmann, W Mankel, R Maser, H Mittag, G Muhl, C Mussgiller, A Nayak, A Ntomari, E Perrey, H Pitzl, D Schroeder, M Seitz, C Spannagel, S Zuber, A Biskop, H Blobel, V Buhmann, P Centis-Vignali, M Draeger, AR Erfle, J Fretwurst, E Garutti, E Haller, J Henkel, C Hoffmann, M Junkes, A Klanner, R Lapsien, T Mattig, S Matysek, M Perieanu, A Poehlsen, J Poehlsen, T Scharf, C Schleper, P Schmidt, A Schuwalow, S Schwandt, J Sola, V Steinbruck, G Vormwald, B Wellhausen, J Barvich, T Barth, C Boegelspacher, F De Boer, W Butz, E Casele, M Colombo, F Dierlamm, A Eber, R Freund, B Hartmann, F Hauth, T Heindl, S Hoffmann, KH Husemann, U Kornmeyer, A Mallows, S Muller, T Nuernberg, A Printz, M Simonis, HJ Steck, P Weber, M Weiler, T Bhardwaj, A Kumar, A Kumar, A Ranjan, K Bakhshiansohl, H Behnamian, H Khakzad, M Naseri, M Cariola, P De Robertis, G Fiore, L Franco, M Loddo, F Sala, G Silvestris, L Creanza, D De Palma, M Maggi, G My, S Selvaggi, G Albergo, S Cappello, G Chiorboli, M Costa, S Giordano, F Di Mattia, A Potenza, R Saizu, MA Tricomi, A Tuve, C Barbagli, G Brianzi, M Ciaranfi, R Civinini, C Gallo, E Meschini, M Paoletti, S Sguazzoni, G Ciulli, V D'Alessandro, R Gonzi, S Gori, V Focardi, E Lenzi, P Scarlini, E Tropiano, A Viliani, L Ferro, F Robutti, E Lo Vetere, M Gennai, S Malvezzi, S Menasce, D Moroni, L Pedrini, D Dinardo, M Fiorendi, S Manzoni, RA Azzi, P Bacchetta, N Bisello, D Dall'Osso, M Dorigo, T Giubilato, P Pozzobon, N Tosi, M Zucchetta, A De Canio, F Gaioni, L Manghisoni, M Nodari, B Re, V Traversi, G Comotti, D Ratti, L Bilei, GM Bissi, L Checcucci, B Magalotti, D Menichelli, M Saha, A Servoli, L Storchi, L Biasini, M Conti, E Ciangottini, D Fano, L Lariccia, P Mantovani, G Passeri, D Placidi, P Salvatore, M Santocchia, A Solestizi, LA Spiezia, A Demaria, N Rivetti, A Bellan, R Casasso, S Costa, M Covarelli, R Migliore, E Monteil, E Musich, M Pacher, L Ravera, F Romero, A Solano, A Trapani, P Echeverria, RJ Fernandez, M Gomez, G Moya, D Sanchez, FJG Sanchez, FJM Vila, I Virto, AL Abbaneo, D Ahmed, I Albert, E Auzinger, G Berruti, G Bianchi, G Blanchot, G Breuker, H Ceresa, D Christiansen, J Cichy, K Daguin, J D'Alfonso, M D'Auria, A Detraz, S De Visscher, S Deyrail, D Faccio, F Felici, D Frank, N Gill, K Giordano, D Harris, P Honma, A Kaplon, J Kornmayer, A Kortelainen, M Kottelat, L Kovacs, M Mannelli, M Marchioro, A Marconi, S Martina, S Mersi, S Michelis, S Moll, M Onnela, A Pakulski, T Pavis, S Peisert, A Pernot, JF Petagna, P Petrucciani, G Postema, H Rose, P Rzonca, M Stoye, M Tropea, P Troska, J Tsirou, A Vasey, F Vichoudis, P Verlaat, B Zwalinski, L Bachmair, F Becker, R Bani, L di Calafiori, D Casal, B Djambazov, L Donega, M Dunser, M Eller, P Grab, C Hits, D Horisberger, U Hoss, J Kasieczka, G Lustermann, W Mangano, B Marionneau, M del Arbol, PMR Masciovecchio, M Perrozzi, L Roeser, U Rossini, M Starodumov, A Takahashi, M Wallny, R Amsler, C Bosiger, K Caminada, L Canelli, F Chiochia, V de Cosa, A Galloni, C Hreus, T Kilminster, B Lange, C Maier, R Ngadiuba, J Pinna, D Robmann, P Taroni, S Yang, Y Bertl, W Deiters, K Erdmann, W Horisberger, R Kaestli, HC Kotlinski, D Langenegger, U Meier, B Rohe, T Streuli, S Chen, PH Dietz, C Grundler, U Hou, WS Lu, RS Moya, M Wilken, R Cussans, D Flacher, H Goldstein, J Grimes, M Jacob, J El Nasr-Storey, SS Cole, J Hobson, P Leggat, D Reid, ID Teodorescu, L Bainbridge, R Dauncey, P Fulcher, J Hall, G Magnan, AM Pesaresi, M Raymond, DM Uchida, K Coughlan, JA Harder, K Bic, J Tomalin, IR Garabedian, A Heintz, U Narain, M Nelson, J Sagir, S Speer, T Swanson, J Tersegno, D Watson-Daniels, J Chertok, M Conway, J Conway, R Flores, C Lander, R Pellett, D Ricci-Tam, F Squires, M Thomson, J Yohay, R Burt, K Ellison, J Hanson, G Malberti, M Olmedo, M Cerati, G Sharma, V Vartak, A Yagil, A Della Porta, GZ Dutta, V Gouskos, L Incandela, J Kyre, S McColl, N Mullin, S White, D Cumalat, JP Ford, WT Gaz, A Krohn, M Stenson, K Wagner, SR Baldin, B Bolla, G Burkett, K Butler, J Cheung, H Chramowicz, J Christian, D Cooper, WE Deptuch, G Derylo, G Gingu, C Gruenendahl, S Hasegawa, S Hoff, J Howell, J Hrycyk, M Jindariani, S Johnson, M Jung, A Joshi, U Kahlid, F Lei, CM Lipton, R Liu, T Los, S Matulik, M Merkel, P Nahn, S Prosser, A Rivera, R Shenai, A Spiegel, L Tran, N Uplegger, L Voirin, E Yin, H Adams, MR Berry, DR Evdokimov, A Evdokimov, O Gerber, CE Hofman, DJ Kapustka, BK O'Brien, C Gonzalez, DIS Trauger, H Turner, P Parashar, N Stupak, J Bortoletto, D Bubna, M Hinton, N Jones, M Miller, DH Shi, X Tan, P Baringer, P Bean, A Benelli, G Gray, J Majumder, D Noonan, D Sanders, S Stringer, R Ivanov, A Makouski, M Skhirtladze, N Taylor, R Anderson, I Fehling, D Gritsan, A Maksimovic, P Martin, C Nash, K Osherson, M Swartz, M Xiao, M Acosta, JG Cremaldi, LM Oliveros, S Perera, L Summers, D Bloom, K Bose, S Claes, DR Dominguez, A Fangmeier, C Suarez, RG Meier, F Monroy, J Hahn, K Sevova, S Sung, K Trovato, M Bartz, E Duggan, D Halkiadakis, E Lath, A Park, M Schnetzer, S Stone, R Walker, M Malik, S Mendez, H Vargas, JER Alyari, M Dolen, J George, J Godshalk, A Lashvili, I Kaisen, J Kharchilava, A Kumar, A Rappoccio, S Alexander, J Chaves, J Chu, J Dittmer, S Kaufman, G Mirman, N Ryd, A Salvati, E Skinnari, L Thom, J Thompson, J Tucker, J Winstrom, L Akgun, B Ecklund, KM Nussbaum, T Zabel, J Betchart, B Covarelli, R Demina, R Hindrichs, O Petrillo, G Eusebi, R Osipenkov, I Perloff, A Ulmer, KA Delannoy, AG D'Angelo, P Johns, W AF Adam, W. Bergauer, T. Dragicevic, M. Fried, M. Fruehwirth, R. Hoch, M. Hrubec, J. Krammer, M. Treberspurg, W. Waltenberger, W. Alderweireldt, S. Beaumont, W. Janssen, X. Luyckx, S. Van Mechelen, P. Van Remortel, N. Van Spilbeeck, A. Barria, P. Caillol, C. Clerbaux, B. De Lentdecker, G. Dobur, D. Favart, L. Grebenyuk, A. Lenzi, Th. Leonard, A. Maerschalk, Th. Mohammadi, A. Pernie, L. Randle-Conde, A. Reis, T. Seva, T. Thomas, L. Vander Velde, C. Vanlaer, P. Wang, J. Zenoni, F. Abu Zeid, S. Blekman, F. De Bruyn, I. D'Hondt, J. Daci, N. Deroover, K. Heracleous, N. Keaveney, J. Lowette, S. Moreels, L. Olbrechts, A. Python, Q. Tavernier, S. Van Mulders, P. Van Onsem, G. Van Parijs, I. Strom, D. A. Basegmez, S. Bruno, G. Castello, R. Caudron, A. Ceard, L. De Callatay, B. Delaere, C. Du Pree, T. Forthomme, L. Giammanco, A. Hollar, J. Jez, P. Michotte, D. Nuttens, C. Perrini, L. Pagano, D. Quertenmont, L. Selvaggi, M. Marono, M. Vidal Beliy, N. Caebergs, T. Daubie, E. Hammad, G. H. Harkonen, J. Lampen, T. Luukka, P. -R. Maenpaa, T. Peltola, T. Tuominen, E. Tuovinen, E. Eerola, P. Tuuva, T. Beaulieu, G. Boudoul, G. Combaret, C. Contardo, D. Gallbit, G. Lumb, N. Mathez, H. Mirabito, L. Perries, S. Sabes, D. Vander Donckt, M. Verdier, P. Viret, S. Zoccarato, Y. Agram, J. -L. Conte, E. Fontaine, J. -Ch. Andrea, J. Bloch, D. Bonnin, C. Brom, J. -M. Chabert, E. Charles, L. Goetzmann, Ch. Gross, L. Hosselet, J. Mathieu, C. Richer, M. Skovpen, K. Autermann, C. Edelhoff, M. Esser, H. Feld, L. Karpinski, W. Klein, K. Lipinski, M. Ostapchuk, A. Pierschel, G. Preuten, M. Raupach, F. Sammet, J. Schael, S. Schwering, G. Wittmer, B. Wlochal, M. Zhukov, V. Pistone, C. Fluegge, G. Kuensken, A. Geisler, M. Pooth, O. Stahl, A. Bartosik, N. Behr, J. Burgmeier, A. Calligaris, L. Dolinska, G. Eckerlin, G. Eckstein, D. Eichhorn, T. Fluke, G. Garcia, J. Garay Gizhko, A. Hansen, K. Harb, A. Hauk, J. Kalogeropoulos, A. Kleinwort, C. Korol, I. Lange, W. Lohmann, W. Mankel, R. Maser, H. Mittag, G. Muhl, C. Mussgiller, A. Nayak, A. Ntomari, E. Perrey, H. Pitzl, D. Schroeder, M. Seitz, C. Spannagel, S. Zuber, A. Biskop, H. Blobel, V. Buhmann, P. Centis-Vignali, M. Draeger, A. -R. Erfle, J. Fretwurst, E. Garutti, E. Haller, J. Henkel, Ch. Hoffmann, M. Junkes, A. Klanner, R. Lapsien, T. Maettig, S. Matysek, M. Perieanu, A. Poehlsen, J. Poehlsen, T. Scharf, Ch. Schleper, P. Schmidt, A. Schuwalow, S. Schwandt, J. Sola, V. Steinbrueck, G. Vormwald, B. Wellhausen, J. Barvich, T. Barth, Ch. Boegelspacher, F. De Boer, W. Butz, E. Casele, M. Colombo, F. Dierlamm, A. Eber, R. Freund, B. Hartmann, F. Hauth, Th. Heindl, S. Hoffmann, K. -H. Husemann, U. Kornmeyer, A. Mallows, S. Muller, Th. Nuernberg, A. Printz, M. Simonis, H. J. Steck, P. Weber, M. Weiler, Th. Bhardwaj, A. Kumar, A. Kumar, A. Ranjan, K. Bakhshiansohl, H. Behnamian, H. Khakzad, M. Naseri, M. Cariola, P. De Robertis, G. Fiore, L. Franco, M. Loddo, F. Sala, G. Silvestris, L. Creanza, D. De Palma, M. Maggi, G. My, S. Selvaggi, G. Albergo, S. Cappello, G. Chiorboli, M. Costa, S. Giordano, F. Di Mattia, A. Potenza, R. Saizu, M. A. Tricomi, A. Tuve, C. Barbagli, G. Brianzi, M. Ciaranfi, R. Civinini, C. Gallo, E. Meschini, M. Paoletti, S. Sguazzoni, G. Ciulli, V. D'Alessandro, R. Gonzi, S. Gori, V. Focardi, E. Lenzi, P. Scarlini, E. Tropiano, A. Viliani, L. Ferro, F. Robutti, E. Lo Vetere, M. Gennai, S. Malvezzi, S. Menasce, D. Moroni, L. Pedrini, D. Dinardo, M. Fiorendi, S. Manzoni, R. A. Azzi, P. Bacchetta, N. Bisello, D. Dall'Osso, M. Dorigo, T. Giubilato, P. Pozzobon, N. Tosi, M. Zucchetta, A. De Canio, F. Gaioni, L. Manghisoni, M. Nodari, B. Re, V. Traversi, G. Comotti, D. Ratti, L. Bilei, G. M. Bissi, L. Checcucci, B. Magalotti, D. Menichelli, M. Saha, A. Servoli, L. Storchi, L. Biasini, M. Conti, E. Ciangottini, D. Fano, L. Lariccia, P. Mantovani, G. Passeri, D. Placidi, P. Salvatore, M. Santocchia, A. Solestizi, L. A. Spiezia, A. Demaria, N. Rivetti, A. Bellan, R. Casasso, S. Costa, M. Covarelli, R. Migliore, E. Monteil, E. Musich, M. Pacher, L. Ravera, F. Romero, A. Solano, A. Trapani, P. Jaramillo Echeverria, R. Fernandez, M. Gomez, G. Moya, D. Gonzalez Sanchez, F. J. Munoz Sanchez, F. J. Vila, I. Virto, A. L. Abbaneo, D. Ahmed, I. Albert, E. Auzinger, G. Berruti, G. Bianchi, G. Blanchot, G. Breuker, H. Ceresa, D. Christiansen, J. Cichy, K. Daguin, J. D'Alfonso, M. D'Auria, A. Detraz, S. De Visscher, S. Deyrail, D. Faccio, F. Felici, D. Frank, N. Gill, K. Giordano, D. Harris, P. Honma, A. Kaplon, J. Kornmayer, A. Kortelainen, M. Kottelat, L. Kovacs, M. Mannelli, M. Marchioro, A. Marconi, S. Martina, S. Mersi, S. Michelis, S. Moll, M. Onnela, A. Pakulski, T. Pavis, S. Peisert, A. Pernot, J. -F. Petagna, P. Petrucciani, G. Postema, H. Rose, P. Rzonca, M. Stoye, M. Tropea, P. Troska, J. Tsirou, A. Vasey, F. Vichoudis, P. Verlaat, B. Zwalinski, L. Bachmair, F. Becker, R. Baeni, L. di Calafiori, D. Casal, B. Djambazov, L. Donega, M. Duenser, M. Eller, P. Grab, C. Hits, D. Horisberger, U. Hoss, J. Kasieczka, G. Lustermann, W. Mangano, B. Marionneau, M. del Arbol, P. Martinez Ruiz Masciovecchio, M. Perrozzi, L. Roeser, U. Rossini, M. Starodumov, A. Takahashi, M. Wallny, R. Amsler, C. Boesiger, K. Caminada, L. Canelli, F. Chiochia, V. de Cosa, A. Galloni, C. Hreus, T. Kilminster, B. Lange, C. Maier, R. Ngadiuba, J. Pinna, D. Robmann, P. Taroni, S. Yang, Y. Bertl, W. Deiters, K. Erdmann, W. Horisberger, R. Kaestli, H. -C. Kotlinski, D. Langenegger, U. Meier, B. Rohe, T. Streuli, S. Chen, P-H Dietz, C. Grundler, U. Hou, W. -S. Lu, R. -S. Moya, M. Wilken, R. Cussans, D. Flacher, H. Goldstein, J. Grimes, M. Jacob, J. El Nasr-Storey, S. Seif Cole, J. Hobson, P. Leggat, D. Reid, I. D. Teodorescu, L. Bainbridge, R. Dauncey, P. Fulcher, J. Hall, G. Magnan, A. -M. Pesaresi, M. Raymond, D. M. Uchida, K. Coughlan, J. A. Harder, K. Bic, J. Tomalin, I. R. Garabedian, A. Heintz, U. Narain, M. Nelson, J. Sagir, S. Speer, T. Swanson, J. Tersegno, D. Watson-Daniels, J. Chertok, M. Conway, J. Conway, R. Flores, C. Lander, R. Pellett, D. Ricci-Tam, F. Squires, M. Thomson, J. Yohay, R. Burt, K. Ellison, J. Hanson, G. Malberti, M. Olmedo, M. Cerati, G. Sharma, V. Vartak, A. Yagil, A. Della Porta, G. Zevi Dutta, V. Gouskos, L. Incandela, J. Kyre, S. McColl, N. Mullin, S. White, D. Cumalat, J. P. Ford, W. T. Gaz, A. Krohn, M. Stenson, K. Wagner, S. R. Baldin, B. Bolla, G. Burkett, K. Butler, J. Cheung, H. Chramowicz, J. Christian, D. Cooper, W. E. Deptuch, G. Derylo, G. Gingu, C. Gruenendahl, S. Hasegawa, S. Hoff, J. Howell, J. Hrycyk, M. Jindariani, S. Johnson, M. Jung, A. Joshi, U. Kahlid, F. Lei, C. M. Lipton, R. Liu, T. Los, S. Matulik, M. Merkel, P. Nahn, S. Prosser, A. Rivera, R. Shenai, A. Spiegel, L. Tran, N. Uplegger, L. Voirin, E. Yin, H. Adams, M. R. Berry, D. R. Evdokimov, A. Evdokimov, O. Gerber, C. E. Hofman, D. J. Kapustka, B. K. O'Brien, C. Gonzalez, D. I. Sandoval Trauger, H. Turner, P. Parashar, N. Stupak, J., III Bortoletto, D. Bubna, M. Hinton, N. Jones, M. Miller, D. H. Shi, X. Tan, P. Baringer, P. Bean, A. Benelli, G. Gray, J. Majumder, D. Noonan, D. Sanders, S. Stringer, R. Ivanov, A. Makouski, M. Skhirtladze, N. Taylor, R. Anderson, I. Fehling, D. Gritsan, A. Maksimovic, P. Martin, C. Nash, K. Osherson, M. Swartz, M. Xiao, M. Acosta, J. G. Cremaldi, L. M. Oliveros, S. Perera, L. Summers, D. Bloom, K. Bose, S. Claes, D. R. Dominguez, A. Fangmeier, C. Suarez, R. Gonzalez Meier, F. Monroy, J. Hahn, K. Sevova, S. Sung, K. Trovato, M. Bartz, E. Duggan, D. Halkiadakis, E. Lath, A. Park, M. Schnetzer, S. Stone, R. Walker, M. Malik, S. Mendez, H. Vargas, J. E. Ramirez Alyari, M. Dolen, J. George, J. Godshalk, A. Lashvili, I. Kaisen, J. Kharchilava, A. Kumar, A. Rappoccio, S. Alexander, J. Chaves, J. Chu, J. Dittmer, S. Kaufman, G. Mirman, N. Ryd, A. Salvati, E. Skinnari, L. Thom, J. Thompson, J. Tucker, J. Winstrom, L. Akguen, B. Ecklund, K. M. Nussbaum, T. Zabel, J. Betchart, B. Covarelli, R. Demina, R. Hindrichs, O. Petrillo, G. Eusebi, R. Osipenkov, I. Perloff, A. Ulmer, K. A. Delannoy, A. G. D'Angelo, P. Johns, W. CA CMS Collaboration TI Impact of low-dose electron irradiation on n(+) p silicon strip sensors SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Silicon strip sensors; Charge collection; Radiation damage; Surface damage ID RADIATION-DAMAGE; DETECTORS; CHARGE; PIXEL AB The response of n(+)p silicon strip sensors to electrons from a Sr-90 source was measured using a multi-channel read-out system with 25 ns sampling time. The measurements were performed over a period of several weeks, during which the operating conditions were varied. The sensors were fabricated by Hamamatsu Photonics on 200 im thick float-zone and magnetic-Czochralski silicon. Their pitch was 80 ifm, and both p-stop and p-spray isolation of the n strips were studied. The electrons from the Sr-90 source were collimated to a spot with a full-width-at-half-maximum of 2 mm at the sensor surface, and the dose rate in the SiO2 at the maximum was about 50 Gy(SiO2)/d. After only a few hours of making measurements, significant changes in charge collection and charge sharing were observed. Annealing studies, with temperatures up to 80 degrees C and annealing times of 18 h showed that the changes can only be partially annealed. The observations can be qualitatively explained by the increase of the positive oxidecharge density due to the ionization of the SiO2 by the radiation from the 13 source. TCAD simulations of the electric field in the sensor for different oxide-charge densities and different boundary conditions at the sensor surface support this explanation. The relevance of the measurements for the design of n'p strip sensors is discussed. (C) 2015 Elsevier B.V. C1 [Adam, W.; Bergauer, T.; Dragicevic, M.; Fried, M.; Fruehwirth, R.; Hoch, M.; Hrubec, J.; Krammer, M.; Treberspurg, W.; Waltenberger, W.] Osterreich Akad Wissensch HEPHY, Inst Hochenergiephys, Vienna, Austria. [Alderweireldt, S.; Beaumont, W.; Janssen, X.; Luyckx, S.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.] Univ Antwerp, Antwerp, Belgium. [Barria, P.; Caillol, C.; Clerbaux, B.; De Lentdecker, G.; Dobur, D.; Favart, L.; Grebenyuk, A.; Lenzi, Th.; Leonard, A.; Maerschalk, Th.; Mohammadi, A.; Pernie, L.; Randle-Conde, A.; Reis, T.; Seva, T.; Thomas, L.; Vander Velde, C.; Vanlaer, P.; Wang, J.; Zenoni, F.] Brussels ULB, Brussels, Belgium. [Abu Zeid, S.; Blekman, F.; De Bruyn, I.; D'Hondt, J.; Daci, N.; Deroover, K.; Heracleous, N.; Keaveney, J.; Lowette, S.; Moreels, L.; Olbrechts, A.; Python, Q.; Tavernier, S.; Van Mulders, P.; Van Onsem, G.; Van Parijs, I.; Strom, D. A.; Evdokimov, A.] Brussels VUB, Brussels, Belgium. [Basegmez, S.; Bruno, G.; Castello, R.; Caudron, A.; Ceard, L.; De Callatay, B.; Delaere, C.; Du Pree, T.; Forthomme, L.; Giammanco, A.; Hollar, J.; Jez, P.; Michotte, D.; Nuttens, C.; Perrini, L.; Pagano, D.; Quertenmont, L.; Selvaggi, M.; Marono, M. Vidal] Catholic Univ Louvain, IRMP CP3, Louvain La Neuve, Belgium. [Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.] Univ Mons, B-7000 Mons, Belgium. [Harkonen, J.; Lampen, T.; Luukka, P. -R.; Maenpaa, T.; Peltola, T.; Tuominen, E.; Tuovinen, E.; Eerola, P.] Helsinki Inst Phys, Helsinki, Finland. [Eerola, P.] Univ Helsinki, FIN-00014 Helsinki, Finland. [Tuuva, T.] Lappeenranta Univ Technol, Lappeenranta, Finland. [Beaulieu, G.; Boudoul, G.; Combaret, C.; Contardo, D.; Gallbit, G.; Lumb, N.; Mathez, H.; Mirabito, L.; Perries, S.; Sabes, D.; Vander Donckt, M.; Verdier, P.; Viret, S.; Zoccarato, Y.] Univ Lyon 1, Inst Phys Nucl Lyon, CNRS, IN2P3, F-69622 Villeurbanne, France. [Agram, J. -L.; Conte, E.; Fontaine, J. -Ch.] Univ Haute Alsace, Grp Rech Phys Hautes Energies, Mulhouse, France. [Andrea, J.; Bloch, D.; Bonnin, C.; Brom, J. -M.; Charles, L.; Goetzmann, Ch.; Gross, L.; Hosselet, J.; Mathieu, C.; Richer, M.; Skovpen, K.] Univ Strasbourg, CNRS, IN2P3, Inst Pluridisciplinaire Hubert Curien, Strasbourg, France. [Autermann, C.; Edelhoff, M.; Esser, H.; Feld, L.; Karpinski, W.; Klein, K.; Lipinski, M.; Ostapchuk, A.; Pierschel, G.; Preuten, M.; Raupach, F.; Sammet, J.; Schael, S.; Schwering, G.; Wittmer, B.; Wlochal, M.; Zhukov, V.] Rhein Westfal TH Aachen, Inst Phys 1, Aachen, Germany. [Pistone, C.; Fluegge, G.; Kuensken, A.; Geisler, M.; Pooth, O.; Stahl, A.] Rhein Westfal TH Aachen, Inst Phys 3, Aachen, Germany. [Bartosik, N.; Behr, J.; Burgmeier, A.; Calligaris, L.; Dolinska, G.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Fluke, G.; Garcia, J. Garay; Gizhko, A.; Hansen, K.; Harb, A.; Hauk, J.; Kalogeropoulos, A.; Kleinwort, C.; Korol, I.; Lange, W.; Lohmann, W.; Mankel, R.; Maser, H.; Mittag, G.; Muhl, C.; Mussgiller, A.; Nayak, A.; Ntomari, E.; Perrey, H.; Pitzl, D.; Schroeder, M.; Seitz, C.; Spannagel, S.; Zuber, A.] DESY, Hamburg, Germany. [Biskop, H.; Blobel, V.; Buhmann, P.; Centis-Vignali, M.; Draeger, A. -R.; Erfle, J.; Fretwurst, E.; Garutti, E.; Haller, J.; Henkel, Ch.; Hoffmann, M.; Junkes, A.; Klanner, R.; Lapsien, T.; Maettig, S.; Matysek, M.; Perieanu, A.; Poehlsen, J.; Poehlsen, T.; Scharf, Ch.; Schleper, P.; Schmidt, A.; Schuwalow, S.; Schwandt, J.; Sola, V.; Steinbrueck, G.; Vormwald, B.; Wellhausen, J.] Univ Hamburg, Hamburg, Germany. [Barvich, T.; Barth, Ch.; Boegelspacher, F.; De Boer, W.; Butz, E.; Casele, M.; Colombo, F.; Dierlamm, A.; Eber, R.; Freund, B.; Hartmann, F.; Hauth, Th.; Heindl, S.; Hoffmann, K. -H.; Husemann, U.; Kornmeyer, A.; Mallows, S.; Muller, Th.; Nuernberg, A.; Printz, M.; Simonis, H. J.; Steck, P.; Weber, M.; Weiler, Th.] Karlsruhe IEKP, Karlsruhe, Germany. [Bhardwaj, A.; Kumar, A.; Kumar, A.; Ranjan, K.] Univ Delhi, Dept Phys & Astrophys, Delhu, India. [Bakhshiansohl, H.; Behnamian, H.; Khakzad, M.; Naseri, M.] Inst Res Fundamental Sci IPM, Tehran, Iran. [Cariola, P.; De Robertis, G.; Fiore, L.; Franco, M.; Loddo, F.; Sala, G.; Silvestris, L.] INFN Bari, Bari, Italy. [Creanza, D.; De Palma, M.; Maggi, G.; My, S.; Selvaggi, G.] Ist Nazl Fis Nucl, I-70126 Bari, Italy. [Creanza, D.; De Palma, M.; Maggi, G.; My, S.; Selvaggi, G.] Dipartimento Interateneo Fis, Bari, Italy. [Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Giordano, F.; Di Mattia, A.; Potenza, R.; Saizu, M. A.; Tricomi, A.; Tuve, C.; Ciulli, V.; D'Alessandro, R.; Gonzi, S.; Gori, V.; Focardi, E.; Lenzi, P.; Scarlini, E.; Tropiano, A.; Viliani, L.; Lo Vetere, M.; Dinardo, M.; Fiorendi, S.; Manzoni, R. A.; Bisello, D.; Dall'Osso, M.; Dorigo, T.; Giubilato, P.; Pozzobon, N.; Tosi, M.; Zucchetta, A.; Biasini, M.; Conti, E.; Ciangottini, D.; Fano, L.; Lariccia, P.; Mantovani, G.; Passeri, D.; Placidi, P.; Salvatore, M.; Santocchia, A.; Solestizi, L. A.; Spiezia, A.; Bellan, R.; Casasso, S.; Costa, M.; Covarelli, R.; Migliore, E.; Monteil, E.; Musich, M.; Pacher, L.; Ravera, F.; Romero, A.; Solano, A.; Trapani, P.] Ist Nazl Fis Nucl, Naples, Italy. [Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Giordano, F.; Di Mattia, A.; Potenza, R.; Saizu, M. A.; Tricomi, A.; Tuve, C.] Univ Catania, I-95124 Catania, Italy. [Barbagli, G.; Brianzi, M.; Ciaranfi, R.; Civinini, C.; Gallo, E.; Meschini, M.; Paoletti, S.; Sguazzoni, G.] INFN Firenze, Florence, Italy. [Ciulli, V.; D'Alessandro, R.; Gonzi, S.; Gori, V.; Focardi, E.; Lenzi, P.; Scarlini, E.; Tropiano, A.; Viliani, L.] Univ Florence, I-50121 Florence, Italy. [Ferro, F.; Robutti, E.] INFN Genova, Genoa, Italy. [Lo Vetere, M.] Univ Genoa, Genoa, Italy. [Gennai, S.; Malvezzi, S.; Menasce, D.; Moroni, L.; Pedrini, D.] INFN Milano Bicocca, Milan, Italy. [Dinardo, M.; Fiorendi, S.; Manzoni, R. A.] Univ Milano Bicocca, Milan, Italy. [Azzi, P.; Bacchetta, N.] INFN Padova, Padua, Italy. [Bisello, D.; Dall'Osso, M.; Dorigo, T.; Giubilato, P.; Pozzobon, N.; Tosi, M.; Zucchetta, A.] Univ Padua, I-35100 Padua, Italy. [De Canio, F.; Gaioni, L.; Manghisoni, M.; Nodari, B.; Re, V.; Traversi, G.; Comotti, D.; Ratti, L.] INFN Pavia, Pavia, Italy. [De Canio, F.; Gaioni, L.; Manghisoni, M.; Nodari, B.; Re, V.; Traversi, G.] Univ Bergamo, Bergamo, Italy. [Comotti, D.; Ratti, L.] Univ Pavia, I-27100 Pavia, Italy. [Bilei, G. M.; Bissi, L.; Checcucci, B.; Magalotti, D.; Menichelli, M.; Saha, A.; Servoli, L.; Storchi, L.] INFN Perugia, Perugia, Italy. [Biasini, M.; Conti, E.; Ciangottini, D.; Fano, L.; Lariccia, P.; Mantovani, G.; Passeri, D.; Placidi, P.; Salvatore, M.; Santocchia, A.; Solestizi, L. A.; Spiezia, A.] Univ Perugia, I-06100 Perugia, Italy. [Demaria, N.; Rivetti, A.] INFN Torino, Turin, Italy. [Bellan, R.; Casasso, S.; Costa, M.; Covarelli, R.; Migliore, E.; Monteil, E.; Musich, M.; Pacher, L.; Ravera, F.; Romero, A.; Solano, A.; Trapani, P.] Univ Turin, I-10124 Turin, Italy. [Jaramillo Echeverria, R.; Fernandez, M.; Gomez, G.; Moya, D.; Gonzalez Sanchez, F. J.; Munoz Sanchez, F. J.; Vila, I.; Virto, A. L.] Univ Cantabria, CSIC, Inst Fis Cantabria IFCA, E-39005 Santander, Spain. [Abbaneo, D.; Ahmed, I.; Albert, E.; Auzinger, G.; Berruti, G.; Bianchi, G.; Blanchot, G.; Breuker, H.; Ceresa, D.; Christiansen, J.; Cichy, K.; Daguin, J.; D'Alfonso, M.; D'Auria, A.; Detraz, S.; De Visscher, S.; Deyrail, D.; Faccio, F.; Felici, D.; Frank, N.; Gill, K.; Giordano, D.; Harris, P.; Honma, A.; Kaplon, J.; Kornmayer, A.; Kortelainen, M.; Kottelat, L.; Kovacs, M.; Mannelli, M.; Marchioro, A.; Marconi, S.; Martina, S.; Mersi, S.; Michelis, S.; Moll, M.; Onnela, A.; Pakulski, T.; Pavis, S.; Peisert, A.; Pernot, J. -F.; Petagna, P.; Petrucciani, G.; Postema, H.; Rose, P.; Rzonca, M.; Stoye, M.; Tropea, P.; Troska, J.; Tsirou, A.; Vasey, F.; Vichoudis, P.; Verlaat, B.; Zwalinski, L.] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland. [Bachmair, F.; Becker, R.; Baeni, L.; di Calafiori, D.; Casal, B.; Djambazov, L.; Donega, M.; Duenser, M.; Eller, P.; Grab, C.; Hits, D.; Horisberger, U.; Hoss, J.; Kasieczka, G.; Lustermann, W.; Mangano, B.; Marionneau, M.; del Arbol, P. Martinez Ruiz; Masciovecchio, M.; Perrozzi, L.; Roeser, U.; Rossini, M.; Starodumov, A.; Takahashi, M.; Wallny, R.] ETH, Zurich, Switzerland. [Amsler, C.; Boesiger, K.; Caminada, L.; Canelli, F.; Chiochia, V.; de Cosa, A.; Galloni, C.; Hreus, T.; Kilminster, B.; Lange, C.; Maier, R.; Ngadiuba, J.; Pinna, D.; Robmann, P.; Taroni, S.; Yang, Y.] Univ Zurich, CH-8006 Zurich, Switzerland. [Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Kaestli, H. -C.; Kotlinski, D.; Langenegger, U.; Meier, B.; Rohe, T.; Streuli, S.] Paul Scherrer Inst, Villigen, Switzerland. [Chen, P-H; Dietz, C.; Grundler, U.; Hou, W. -S.; Lu, R. -S.; Moya, M.; Wilken, R.] Natl Taiwan Univ, Taipei, Taiwan. [Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Jacob, J.; El Nasr-Storey, S. Seif] Univ Bristol, Bristol, Avon, England. [Cole, J.; Hobson, P.; Leggat, D.; Reid, I. D.; Teodorescu, L.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Bainbridge, R.; Dauncey, P.; Fulcher, J.; Hall, G.; Magnan, A. -M.; Pesaresi, M.; Raymond, D. M.; Uchida, K.] Univ London Imperial Coll Sci Technol & Med, London, England. [Coughlan, J. A.; Harder, K.; Bic, J.; Tomalin, I. R.] Rutherford Appleton Lab, STFC, Didcot OX11 0QX, Oxon, England. [Garabedian, A.; Heintz, U.; Narain, M.; Nelson, J.; Sagir, S.; Speer, T.; Swanson, J.; Tersegno, D.; Watson-Daniels, J.] Brown Univ, Providence, RI 02912 USA. [Chertok, M.; Conway, J.; Conway, R.; Flores, C.; Lander, R.; Pellett, D.; Ricci-Tam, F.; Squires, M.; Thomson, J.; Yohay, R.] Univ Calif Davis, Davis, CA 95616 USA. [Burt, K.; Ellison, J.; Hanson, G.; Malberti, M.; Olmedo, M.] Univ Calif Riverside, Riverside, CA 92521 USA. [Cerati, G.; Sharma, V.; Vartak, A.; Yagil, A.; Della Porta, G. Zevi] Univ Calif San Diego, San Diego, CA 92103 USA. [Dutta, V.; Gouskos, L.; Incandela, J.; Kyre, S.; McColl, N.; Mullin, S.; White, D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Cumalat, J. P.; Ford, W. T.; Gaz, A.; Krohn, M.; Stenson, K.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Baldin, B.; Bolla, G.; Burkett, K.; Butler, J.; Cheung, H.; Chramowicz, J.; Christian, D.; Cooper, W. E.; Deptuch, G.; Derylo, G.; Gingu, C.; Gruenendahl, S.; Hasegawa, S.; Hoff, J.; Howell, J.; Hrycyk, M.; Jindariani, S.; Johnson, M.; Jung, A.; Joshi, U.; Kahlid, F.; Lei, C. M.; Lipton, R.; Liu, T.; Los, S.; Matulik, M.; Merkel, P.; Nahn, S.; Prosser, A.; Rivera, R.; Shenai, A.; Spiegel, L.; Tran, N.; Uplegger, L.; Voirin, E.; Yin, H.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Adams, M. R.; Berry, D. R.; Evdokimov, A.; Evdokimov, O.; Gerber, C. E.; Hofman, D. J.; Kapustka, B. K.; O'Brien, C.; Gonzalez, D. I. Sandoval; Trauger, H.; Turner, P.] Univ Illinois, Chicago, IL USA. [Parashar, N.; Stupak, J., III] Purdue Univ Calumet, Hammond, IN USA. [Bortoletto, D.; Bubna, M.; Hinton, N.; Jones, M.; Miller, D. H.; Shi, X.] Purdue Univ, W Lafayette, IN 47907 USA. [Tan, P.] Univ Iowa, Iowa City, IA USA. [Baringer, P.; Bean, A.; Benelli, G.; Gray, J.; Majumder, D.; Noonan, D.; Sanders, S.; Stringer, R.] Univ Kansas, Lawrence, KS 66045 USA. [Ivanov, A.; Makouski, M.; Skhirtladze, N.; Taylor, R.] Kansas State Univ, Manhattan, KS 66506 USA. [Anderson, I.; Fehling, D.; Gritsan, A.; Maksimovic, P.; Martin, C.; Nash, K.; Osherson, M.; Swartz, M.; Xiao, M.] Johns Hopkins Univ, Baltimore, MD USA. [Anderson, I.; Fehling, D.; Gritsan, A.; Maksimovic, P.; Martin, C.; Nash, K.; Osherson, M.; Swartz, M.; Xiao, M.] MIT, Cambridge, MA 02139 USA. [Acosta, J. G.; Cremaldi, L. M.; Oliveros, S.; Perera, L.; Summers, D.] Univ Mississippi, University, MS 38677 USA. [Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Fangmeier, C.; Suarez, R. Gonzalez; Meier, F.; Monroy, J.] Univ Nebraska, Lincoln, NE USA. [Hahn, K.; Sevova, S.; Sung, K.; Trovato, M.] Northwestern Univ, Evanston, IL USA. [Bartz, E.; Duggan, D.; Halkiadakis, E.; Lath, A.; Park, M.; Schnetzer, S.; Stone, R.; Walker, M.] Rutgers State Univ, Piscataway, NJ USA. [Malik, S.; Mendez, H.; Vargas, J. E. Ramirez] Univ Puerto Rico, Mayaguez, PR USA. [Alyari, M.; Dolen, J.; George, J.; Godshalk, A.; Lashvili, I.; Kaisen, J.; Kharchilava, A.; Kumar, A.; Rappoccio, S.] SUNY Buffalo, Buffalo, NY 14260 USA. [Alexander, J.; Chaves, J.; Chu, J.; Dittmer, S.; Kaufman, G.; Mirman, N.; Ryd, A.; Salvati, E.; Skinnari, L.; Thom, J.; Thompson, J.; Tucker, J.; Winstrom, L.] Cornell Univ, Ithaca, NY USA. [Akguen, B.; Ecklund, K. M.; Nussbaum, T.; Zabel, J.] Rice Univ, Houston, TX USA. [Betchart, B.; Covarelli, R.; Demina, R.; Hindrichs, O.; Petrillo, G.] Univ Rochester, New York, NY USA. [Eusebi, R.; Osipenkov, I.; Perloff, A.; Ulmer, K. A.] Texas A&M Univ, College Stn, TX USA. [Delannoy, A. G.; D'Angelo, P.; Johns, W.] Vanderbilt Univ, Nashville, TN 37235 USA. [Hartmann, F.] CERN, CH-1211 Geneva 23, Switzerland. [Saizu, M. A.] Horia Hulubei Natl Inst Phys & Nucl Engn IFIN HH, Bucharest, Romania. [Magalotti, D.] Modena & Reggio Emilia Univ, Reggio Emilia, Italy. RP Klanner, R (reprint author), Univ Hamburg, Hamburg, Germany. RI Gennai, Simone/P-2880-2015; TUVE', Cristina/P-3933-2015; Servoli, Leonello/E-6766-2012; Sguazzoni, Giacomo/J-4620-2015; Menasce, Dario/A-2168-2016; Hobson, Peter/C-8919-2016; Canelli, Florencia/O-9693-2016; Tuominen, Eija/A-5288-2017; OI Tricomi, Alessia Rita/0000-0002-5071-5501; Demaria, Natale/0000-0003-0743-9465; Covarelli, Roberto/0000-0003-1216-5235; Ciulli, Vitaliano/0000-0003-1947-3396; RATTI, LODOVICO/0000-0003-1906-1076; Viliani, Lorenzo/0000-0002-1909-6343; Re, Valerio/0000-0003-0697-3420; Reis, Thomas/0000-0003-3703-6624; Luukka, Panja/0000-0003-2340-4641; Jacob, Jeson/0000-0001-6895-5493; Storchi, Loriano/0000-0001-5021-7759; TUVE', Cristina/0000-0003-0739-3153; Servoli, Leonello/0000-0003-1725-9185; Gaioni, Luigi/0000-0001-5499-7916; Manghisoni, Massimo/0000-0001-5559-0894; Sguazzoni, Giacomo/0000-0002-0791-3350; Menasce, Dario/0000-0002-9918-1686; Hobson, Peter/0000-0002-5645-5253; Canelli, Florencia/0000-0001-6361-2117; Tuominen, Eija/0000-0002-7073-7767; Klanner, Robert/0000-0002-7004-9227 FU European Commission [262025] FX The research leading to these results has received funding from the European Commission under the FP7 Research Infrastructures project AIDA, grant agreement no. 262025. The information herein only reflects the views of its authors and not those of the European Commission and no warranty expressed or implied is made with regard to such information or its use. NR 31 TC 1 Z9 1 U1 4 U2 26 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD DEC 11 PY 2015 VL 803 BP 100 EP 112 DI 10.1016/j.nima.2015.08.026 PG 13 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA CU3ZF UT WOS:000363464600014 ER PT J AU Ardley, J Tian, R O'Hara, G Seshadri, R Reddy, TBK Pati, A Woyke, T Markowitz, V Ivanova, N Kyrpides, N Howieson, J Reeve, W AF Ardley, Julie Tian, Rui O'Hara, Graham Seshadri, Rekha Reddy, T. B. K. Pati, Amrita Woyke, Tanja Markowitz, Victor Ivanova, Natalia Kyrpides, Nikos Howieson, John Reeve, Wayne TI High-quality permanent draft genome sequence of Ensifer medicae strain WSM244, a microsymbiont isolated from Medicago polymorpha growing in alkaline soil SO STANDARDS IN GENOMIC SCIENCES LA English DT Article DE Root-nodule bacteria; Nitrogen fixation; Symbiosis; Alphaproteobacteria; Ensifer; GEBA-RNB ID RHIZOBIUM-MELILOTI; ACID TOLERANCE; SINORHIZOBIUM-MELILOTI; MICROBIAL GENOMES; SP-NOV; SYSTEM; GENE; EVOLUTION; BACTERIA; WSM419 AB Ensifer medicae WSM244 is an aerobic, motile, Gram-negative, non-spore-forming rod that can exist as a soil saprophyte or as a legume microsymbiont of Medicago species. WSM244 was isolated in 1979 from a nodule recovered from the roots of the annual Medicago polymorpha L. growing in alkaline soil (pH 8.0) in Tel Afer, Iraq. WSM244 is the only acid-sensitive E. medicae strain that has been sequenced to date. It is effective at fixing nitrogen with M. polymorpha L., as well as with more alkaline-adapted Medicago spp. such as M. littoralis Loisel., M. scutellata (L.) Mill., M. tornata (L.) Mill. and M. truncatula Gaertn. This strain is also effective with the perennial M. sativa L. Here we describe the features of E. medicae WSM244, together with genome sequence information and its annotation. The 6,650,282 bp high-quality permanent draft genome is arranged into 91 scaffolds of 91 contigs containing 6,427 protein-coding genes and 68 RNA-only encoding genes, and is one of the rhizobial genomes sequenced as part of the DOE Joint Genome Institute 2010 Genomic Encyclopedia for Bacteria and Archaea-Root Nodule Bacteria (GEBA-RNB) project proposal. C1 [Ardley, Julie; Tian, Rui; O'Hara, Graham; Howieson, John; Reeve, Wayne] Murdoch Univ, Ctr Rhizobium Studies, Murdoch, WA 6150, Australia. [Seshadri, Rekha; Reddy, T. B. K.; Pati, Amrita; Woyke, Tanja; Ivanova, Natalia; Kyrpides, Nikos] US DOE, Joint Genome Inst, Walnut Creek, CA USA. [Markowitz, Victor] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Biol Data Management & Technol Ctr, Berkeley, CA 94720 USA. [Kyrpides, Nikos] King Abdulaziz Univ, Fac Sci, Dept Biol Sci, Jeddah, Saudi Arabia. RP Reeve, W (reprint author), Murdoch Univ, Ctr Rhizobium Studies, Murdoch, WA 6150, Australia. EM W.Reeve@murdoch.edu.au RI Kyrpides, Nikos/A-6305-2014; Fac Sci, KAU, Biol Sci Dept/L-4228-2013; Faculty of, Sciences, KAU/E-7305-2017; OI Kyrpides, Nikos/0000-0002-6131-0462; Ivanova, Natalia/0000-0002-5802-9485 FU US Department of Energy's Office of Science, Biological and Environmental Research Program; University of California, Lawrence Berkeley National Laboratory [DE-AC02-05CH11231] FX This work was performed under the auspices of the US Department of Energy's Office of Science, Biological and Environmental Research Program, and by the University of California, Lawrence Berkeley National Laboratory under contract No. DE-AC02-05CH11231. We thank Gordon Thompson (Murdoch University) for the preparation of SEM and TEM photos. NR 50 TC 0 Z9 0 U1 0 U2 3 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1944-3277 J9 STAND GENOMIC SCI JI Stand. Genomic Sci. PD DEC 10 PY 2015 VL 10 AR 126 DI 10.1186/s40793-015-0119-5 PG 8 WC Genetics & Heredity; Microbiology SC Genetics & Heredity; Microbiology GA DA7TJ UT WOS:000368006700003 PM 26664655 ER PT J AU Annuar, A Gandhi, P Alexander, DM Lansbury, GB Arevalo, P Ballantyne, DR Balokovic, M Bauer, FE Boggs, SE Brandt, WN Brightman, M Christensen, FE Craig, WW Del Moro, A Hailey, CJ Harrison, FA Hickox, RC Matt, G Puccetti, S Ricci, C Rigby, JR Stern, D Walton, DJ Zappacosta, L Zhang, W AF Annuar, A. Gandhi, P. Alexander, D. M. Lansbury, G. B. Arevalo, P. Ballantyne, D. R. Balokovic, M. Bauer, F. E. Boggs, S. E. Brandt, W. N. Brightman, M. Christensen, F. E. Craig, W. W. Del Moro, A. Hailey, C. J. Harrison, F. A. Hickox, R. C. Matt, G. Puccetti, S. Ricci, C. Rigby, J. R. Stern, D. Walton, D. J. Zappacosta, L. Zhang, W. TI NuSTAR OBSERVATIONS OF THE COMPTON-THICK ACTIVE GALACTIC NUCLEUS AND ULTRALUMINOUS X-RAY SOURCE CANDIDATE IN NGC 5643 SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: active; galaxies: nuclei; techniques: spectroscopic; X-rays: galaxies; X-rays: individual (NGC 5643, NGC 5643 X-1) ID SEYFERT 2 GALAXIES; HOLMBERG IX X-1; XMM-NEWTON; BLACK-HOLES; NEARBY GALAXIES; CIRCINUS GALAXY; EMISSION-LINE; BROAD-BAND; SPECTRAL MODELS; COMPLETE CENSUS AB We present two Nuclear Spectroscopic Telescope Array (NuSTAR) observations of the local Seyfert 2 active galactic nucleus (AGN) and an ultraluminous X-ray source (ULX) candidate in NGC 5643. Together with archival data from Chandra, XMM-Newton, and Swift-BAT, we perform a high-quality broadband spectral analysis of the AGN over two decades in energy (similar to 0.5-100 keV). Previous X-ray observations suggested that the AGN is obscured by a Compton-thick (CT) column of obscuring gas along our line of sight. However, the lack of high-quality greater than or similar to 10 keV observations, together with the presence of a nearby X-ray luminous source, NGC 5643 X-1, have left significant uncertainties in the characterization of the nuclear spectrum. NuSTAR now enables the AGN and NGC 5643 X-1 to be separately resolved above 10 keV for the first time and allows a direct measurement of the absorbing column density toward the nucleus. The new data show that the nucleus is indeed obscured by a CT column of N-H greater than or similar to 5 x 10(24) cm(-2). The range of 2-10 keV absorption-corrected luminosity inferred from the bestfitting models is L-2-10,L-int = (0.8-1.7) x 10(42) erg s(-1), consistent with that predicted from multiwavelength intrinsic luminosity indicators. In addition, we also study the NuSTAR data for NGC 5643 X-1 and show that it exhibits evidence of a spectral cutoff at energy E similar to 10 keV, similar to that seen in other ULXs observed by NuSTAR. Along with the evidence for significant X-ray luminosity variations in the 3-8 keV band from 2003 to 2014, our results further strengthen the ULX classification of NGC 5643 X-1. C1 [Annuar, A.; Gandhi, P.; Alexander, D. M.; Lansbury, G. B.; Del Moro, A.] Univ Durham, Dept Phys, Ctr Extragalact Astron, Durham DH1 3LE, England. [Gandhi, P.] Univ Southampton, Fac Phys Sci & Engn, Dept Phys & Astron, Southampton SO17 1BJ, Hants, England. [Arevalo, P.] Univ Valparaiso, Fac Ciencias, Inst Fis & Astron, Valparaiso, Chile. [Arevalo, P.; Bauer, F. E.] EMBIGGEN Anillo, Concepcion, Chile. [Ballantyne, D. R.] Georgia Inst Technol, Sch Phys, Ctr Relativist Astrophys, Atlanta, GA 30332 USA. [Balokovic, M.; Brightman, M.; Harrison, F. A.; Walton, D. J.] CALTECH, Cahill Ctr Astron & Astrophys, Pasadena, CA 91125 USA. [Bauer, F. E.] Pontificia Univ Catolica Chile, Inst Astrofis, Santiago 22, Chile. [Bauer, F. E.] Millenium Inst Astrophys, Santiago, Chile. [Bauer, F. E.] Space Sci Inst, Boulder, CO 80301 USA. [Boggs, S. E.; Craig, W. W.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Brandt, W. N.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Brandt, W. N.] Penn State Univ, Inst Gravitat & Cosmos, University Pk, PA 16802 USA. [Brandt, W. N.] Penn State Univ, Dept Phys, University Pk, PA 16802 USA. [Christensen, F. E.] Tech Univ Denmark, Natl Space Inst, DTU Space, DK-2800 Lyngby, Denmark. [Craig, W. W.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Hailey, C. J.] Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA. [Hickox, R. C.] Dartmouth Coll, Dept Phys & Astron, Hanover, NH 03755 USA. [Matt, G.] Univ Rome Tre, Dipartimento Matemat & Fis, I-00146 Rome, Italy. [Puccetti, S.] ASI Sci Data Ctr, I-00044 Frascati, Italy. [Puccetti, S.; Zappacosta, L.] INAF, Osservatorio Astron Roma, I-00040 Rome, Italy. [Ricci, C.] Kyoto Univ, Dept Astron, Sakyo Ku, Kyoto 6068502, Japan. [Rigby, J. R.; Zhang, W.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Stern, D.; Walton, D. J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Annuar, A (reprint author), Univ Durham, Dept Phys, Ctr Extragalact Astron, South Rd, Durham DH1 3LE, England. RI Boggs, Steven/E-4170-2015; OI Boggs, Steven/0000-0001-9567-4224; Ballantyne, David/0000-0001-8128-6976; Lansbury, George/0000-0002-5328-9827 FU Majlis Amanah Rakyat (MARA) Malaysia; Science and Technology Facilities Council (STFC) [ST/J003697/1, ST/I0015731/1, ST/K501979/1]; Leverhulme Trust; NASA Headquarters under the NASA Earth and Space Science Fellowship Program [NNX14AQ07H]; CONICYT-Chile grants Basal-CATA [PFB-06/2007]; FONDECYT [1141218]; "EMBIGGEN" Anillo [ACT1101]; Ministry of Economy, Development, and Tourism's Millennium Science Initiative [IC120009]; National Aeronautics and Space Administration (NASA) FX The authors thank the anonymous referee for useful comments that have helped to improve the paper. We thank Chris Done for some discussions on the residuals around the iron line complex. A.A. thanks Wasutep Luangtip for useful discussion on NGC 5643 X-1 and help with the MARX simulation. We also thank Neil Gehrels and the Swift team for the simultaneous Swift-XRT observation. We acknowledge financial support from Majlis Amanah Rakyat (MARA) Malaysia (A. A.), the Science and Technology Facilities Council (STFC) grants ST/J003697/1 (P.G.), ST/I0015731/1 (D.M.A. and A.D.M.), and ST/K501979/1 (G.B.L.), the Leverhulme Trust (D.M.A.), NASA Headquarters under the NASA Earth and Space Science Fellowship Program grant NNX14AQ07H (M.B.), CONICYT-Chile grants Basal-CATA PFB-06/2007 (F.E.B.), FONDECYT 1141218 (F.E.B.), and "EMBIGGEN" Anillo ACT1101 (F.E.B.); the Ministry of Economy, Development, and Tourism's Millennium Science Initiative through grant IC120009, awarded to The Millennium Institute of Astrophysics, MAS (F.E.B.).; NuSTAR is a project led by the California Institute of Technology (Caltech), managed by the Jet Propulsion Laboratory (JPL), and funded by the National Aeronautics and Space Administration (NASA). We thank the NuSTAR Operations, Software and Calibrations teams for support with these observations. This research has made use of the NuSTAR Data Analysis Software (NUSTARDAS) jointly developed by the ASI Science Data Center (ASDC, Italy) and the California Institute of Technology (USA), and the XRT Data Analysis Software (XRT-DAS). This research also made use of the data obtained through the High Energy Astrophysics Science Archive Research Center (HEASARC) Online Service, provided by the NASA/Goddard Space Flight Center, and the NASA/IPAC extragalactic Database (NED) operated by JPL, Caltech under contract with NASA. NR 79 TC 13 Z9 13 U1 1 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD DEC 10 PY 2015 VL 815 IS 1 AR 36 DI 10.1088/0004-637X/815/1/36 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CZ4XB UT WOS:000367105000036 ER PT J AU Beiersdorfer, P Hell, N Lepson, JK Diaz, F Ishikawa, Y AF Beiersdorfer, P. Hell, N. Lepson, J. K. Diaz, F. Ishikawa, Y. TI DENSITY DETERMINATIONS OF THE CORONAE OF COOL STARS USING A NEWLY ASSIGNED PAIR OF Fe XIV LINES IN THE SPECTRA OF alpha CANIS MINOR, alpha CENTAURI, AND THE SUN SO ASTROPHYSICAL JOURNAL LA English DT Article DE atomic processes; line: formation; stars: coronae; stars: individual (Procyon, Alpha Centauri); Sun: X-rays, gamma-rays ID X-RAY SPECTROSCOPY; CHANDRA-LETGS OBSERVATIONS; EXTREME-ULTRAVIOLET; PROXIMA-CENTAURI; PROCYON; DIAGNOSTICS; EMISSION; CAPELLA; TRANSITIONS; HIPPARCOS AB We have identified a previously unassigned pair of lines between 169 and 170 angstrom in the coronae of cool stars. We attribute these lines to Fe XIV and show that their intensity ratio is sensitive to the electron density. Using observations taken with the Low Energy Transmission Grating Spectrometer of the Chandra X-ray Observatory we infer a density of log( n(e)/cm(-3)) = 10.2. +/- 0.7 and 10.3 +/- 0.8 from the newly identified line pair in the coronae of Procyon and alpha Cen A, respectively. C1 [Beiersdorfer, P.; Hell, N.] Lawrence Livermore Natl Lab, Div Phys, Livermore, CA 94550 USA. [Beiersdorfer, P.; Lepson, J. K.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Hell, N.] Univ Erlangen Nurnberg, Dr Karl Remeis Sternwarte & ECAP, D-96049 Bamberg, Germany. [Diaz, F.; Ishikawa, Y.] Univ Puerto Rico, Dept Chem, San Juan, PR 00931 USA. [Diaz, F.; Ishikawa, Y.] Univ Puerto Rico, Chem Phys Program, San Juan, PR 00931 USA. RP Beiersdorfer, P (reprint author), Lawrence Livermore Natl Lab, Div Phys, Livermore, CA 94550 USA. EM beiersdorfer@llnl.gov OI Hell, Natalie/0000-0003-3057-1536 FU Department of Energy [DE-AC52-07NA-27344]; Chandra Guest Observer Awards [GO0-11031X, GO0-15004X]; European Space Agency [4000114313115/NL/CB] FX Work by the Lawrence Livermore National Laboratory was performed under the auspices of the Department of Energy under contract No. DE-AC52-07NA-27344. This work was supported by Chandra Guest Observer Awards GO0-11031X and GO0-15004X. P.B. acknowledges the hospitality of the University of Puerto Rico, Chemical Physics Program, while performing the MRMP and FAC calculations. N.H. acknowledges funding by the European Space Agency under contract No. 4000114313115/NL/CB. NR 45 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD DEC 10 PY 2015 VL 815 IS 1 AR 3 DI 10.1088/0004-637X/815/1/3 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CZ4XB UT WOS:000367105000003 ER PT J AU Fakhouri, HK Boone, K Aldering, G Antilogus, P Aragon, C Bailey, S Baltay, C Barbary, K Baugh, D Bongard, S Buton, C Chen, J Childress, M Chotard, N Copin, Y Fagrelius, P Feindt, U Fleury, M Fouchez, D Gangler, E Hayden, B Kim, AG Kowalski, M Leget, PF Lombardo, S Nordin, J Pain, R Pecontal, E Pereira, R Perlmutter, S Rabinowitz, D Ren, J Rigault, M Rubin, D Runge, K Saunders, C Scalzo, R Smadja, G Sofiatti, C Strovink, M Suzuki, N Tao, C Thomas, RC Weaver, BA AF Fakhouri, H. K. Boone, K. Aldering, G. Antilogus, P. Aragon, C. Bailey, S. Baltay, C. Barbary, K. Baugh, D. Bongard, S. Buton, C. Chen, J. Childress, M. Chotard, N. Copin, Y. Fagrelius, P. Feindt, U. Fleury, M. Fouchez, D. Gangler, E. Hayden, B. Kim, A. G. Kowalski, M. Leget, P. -F. Lombardo, S. Nordin, J. Pain, R. Pecontal, E. Pereira, R. Perlmutter, S. Rabinowitz, D. Ren, J. Rigault, M. Rubin, D. Runge, K. Saunders, C. Scalzo, R. Smadja, G. Sofiatti, C. Strovink, M. Suzuki, N. Tao, C. Thomas, R. C. Weaver, B. A. CA Nearby Supernova Factory TI IMPROVING COSMOLOGICAL DISTANCE MEASUREMENTS USING TWIN TYPE IA SUPERNOVAE SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmology: observations; supernovae: general ID INTEGRAL-FIELD SPECTROGRAPH; HOST-GALAXY PROPERTIES; HUBBLE RESIDUALS; LIGHT CURVES; SYSTEMATIC UNCERTAINTIES; FACTORY OBSERVATIONS; ABSOLUTE MAGNITUDES; PRECISE DISTANCE; LEGACY SURVEY; SDSS-II AB We introduce a method for identifying "twin" Type Ia supernovae (SNe Ia) and using them to improve distance measurements. This novel approach to SN Ia standardization is made possible by spectrophotometric time series observations from the Nearby Supernova Factory (SNfactory). We begin with a well-measured set of SNe, find pairs whose spectra match well across the entire optical window, and then test whether this leads to a smaller dispersion in their absolute brightnesses. This analysis is completed in a blinded fashion, ensuring that decisions made in implementing the method do not inadvertently bias the result. We find that pairs of SNe with more closely matched spectra indeed have reduced brightness dispersion. We are able to standardize this initial set of SNfactory SNe to 0.083 +/- 0.012 mag, implying a dispersion of 0.072 +/- 0.010 mag in the absence of peculiar velocities. We estimate that with larger numbers of comparison SNe, e.g., using the final SNfactory spectrophotometric data set as a reference, this method will be capable of standardizing high-redshift SNe to within 0.06-0.07 mag. These results imply that at least 3/4 of the variance in Hubble residuals in current SN cosmology analyses is due to previously unaccounted-for astrophysical differences among the SNe. C1 [Fakhouri, H. K.; Boone, K.; Aldering, G.; Aragon, C.; Bailey, S.; Fagrelius, P.; Hayden, B.; Kim, A. G.; Nordin, J.; Perlmutter, S.; Ren, J.; Rubin, D.; Runge, K.; Saunders, C.; Sofiatti, C.; Strovink, M.; Suzuki, N.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [Fakhouri, H. K.; Boone, K.; Barbary, K.; Fagrelius, P.; Perlmutter, S.; Ren, J.; Saunders, C.; Sofiatti, C.; Strovink, M.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Antilogus, P.; Bongard, S.; Fleury, M.; Pain, R.] Univ Paris 07, Univ Paris 06, CNRS IN2P3, Lab Phys Nucl & Hautes Energies, F-75252 Paris 05, France. [Baltay, C.; Rabinowitz, D.] Yale Univ, Dept Phys, New Haven, CT 06250 USA. [Baugh, D.; Chen, J.; Tao, C.] Tsinghua Univ, Tsinghua Ctr Astrophys, Beijing 100084, Peoples R China. [Chotard, N.; Copin, Y.; Pereira, R.; Smadja, G.] Univ Lyon 1, F-69622 Villeurbanne, France. [Buton, C.; Chotard, N.; Copin, Y.; Pereira, R.; Smadja, G.] Inst Phys Nucl, CNRS IN2P3, F-69622 Lyon, France. [Childress, M.; Scalzo, R.] Australian Natl Univ, Res Sch Astron & Astrophys, Canberra, ACT 2611, Australia. [Feindt, U.; Kowalski, M.; Lombardo, S.; Nordin, J.; Rigault, M.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Fouchez, D.] Aix Marseille Univ, CNRS IN2P3, Ctr Phys Particules Marseille, F-13288 Marseille 09, France. [Gangler, E.; Leget, P. -F.] Univ Clermont Ferrand, Clermont Univ, CNRS IN2P3, Lab Phys Corpusculaire, F-63000 Clermont Ferrand, France. [Kowalski, M.] DESY, D-15735 Zeuthen, Germany. [Pecontal, E.] Univ Lyon 1, Ctr Rech Astronom Lyon, F-69561 St Genis Laval, France. [Rubin, D.] Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA. [Thomas, R. C.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Res Div, Computat Cosmol Ctr, Berkeley, CA 94720 USA. [Weaver, B. A.] NYU, Ctr Cosmol & Particle Phys, New York, NY 10003 USA. RP Fakhouri, HK (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, 1 Cyclotron Rd, Berkeley, CA 94720 USA. OI Boone, Kyle/0000-0002-5828-6211; Scalzo, Richard/0000-0003-3740-1214 FU Office of Science, Office of High Energy Physics, of the U.S. Department of Energy [DE-AC02-05CH11231]; CNRS/IN2P3; CNRS/INSU; PNC; LABEX ILP - French state funds [ANR-11-IDEX-0004-02]; LABEX Lyon Institute of Origins of the Universite de Lyon within the program "Investissements d'Avenir" of the French government [ANR-10-LABX-0066, ANR-11-IDEX-0007]; DFG [TRR33]; Tsinghua University 985 grant; NSFC grant [11173017]; National Energy Research Scientific Computing Center - Office of Science, Office of Advanced Scientific Computing Research, of the U.S. Department of Energy [DE-AC02-05CH11231]; National Science Foundation [ANI-0087344]; University of California, San Diego FX We thank Dan Birchall for observing assistance, the technical and scientific staffs of the Palomar Observatory, the High Performance Wireless Radio Network (HPWREN), and the University of Hawaii 2.2 m telescope. We recognize the significant cultural role of Mauna Kea within the indigenous Hawaiian community, and we appreciate the opportunity to conduct observations from this revered site. This work was supported in part by the Director, Office of Science, Office of High Energy Physics, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Support in France was provided by CNRS/IN2P3, CNRS/INSU, and PNC; Laboratoire de Physique Nucleaire et des Hautes Energies (LPNHE) acknowledges support from LABEX ILP, supported by French state funds managed by the ANR within the Investissements d'Avenir program under reference ANR-11-IDEX-0004-02. N.C. is grateful to the LABEX Lyon Institute of Origins (ANR-10-LABX-0066) of the Universite de Lyon for its financial support within the program "Investissements d'Avenir" (ANR-11-IDEX-0007) of the French government operated by the National Research Agency (ANR). Support in Germany was provided by the DFG through TRR33 "The Dark Universe," and in China from Tsinghua University 985 grant and NSFC grant No. 11173017. Some results were obtained using resources and support from the National Energy Research Scientific Computing Center, supported by the Director, Office of Science, Office of Advanced Scientific Computing Research, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. HPWREN is funded by National Science Foundation Grant Number ANI-0087344 and the University of California, San Diego. NR 64 TC 5 Z9 5 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD DEC 10 PY 2015 VL 815 IS 1 AR 58 DI 10.1088/0004-637X/815/1/58 PG 18 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CZ4XB UT WOS:000367105000058 ER PT J AU Jin, JQ Miller, JD Dang, LX Wick, CD AF Jin, Jiaqi Miller, Jan D. Dang, Liem X. Wick, Collin D. TI Effect of Cu2+ activation on interfacial water structure at the sphalerite surface as studied by molecular dynamics simulation SO INTERNATIONAL JOURNAL OF MINERAL PROCESSING LA English DT Article DE MDS; DFT; Contact angle; Interfacial water structure ID DENSITY-FUNCTIONAL THEORY; LIQUID WATER; AQUEOUS-SOLUTIONS; VIBRATIONAL SPECTROSCOPY; CONTACT-ANGLE; FTIR ANALYSIS; ION MOBILITY; FORCE-FIELD; FREE-ENERGY; AB-INITIO AB In the first part of this paper, an experimental contact angle study of fresh and Cu2+ activated sphalerite-ZnS surfaces as well as the covellite-CuS (001) surface is reported describing the increased hydrophobic character of the surface during Cu2+ activation. In addition to these experimental results, fresh sphalerite-ZnS (110), copper-zinc sulfide-CuZnS2 (110), villamaninite-CuS2 (100), and covellite-CuS (001) surfaces were examined using Molecular Dynamics Simulation (MDS). Our MDS results on the behavior of interfacial water at the fresh sphalerite-ZnS (110), copper-zinc sulfide-CuZnS2 (110), villamaninite-CuS2 (100), and covellite-CuS (001) surfaces include simulated contact angles, water number density distribution, water dipole orientation, water residence time, and hydrogen-bonding considerations. The copper content at the Cu2+ activated sphalerite surface seems to account for the increased hydrophobicity as revealed by both experimental and MD simulated contact angle measurements. The relatively greater hydrophobic character developed at the Cu2+ activated sphalerite surface and at the copper sulfide surfaces has been described by MDS, based on the structure of interfacial water and its dynamic properties. (C) 2015 Elsevier B.V. All rights reserved. C1 [Jin, Jiaqi; Miller, Jan D.] Univ Utah, Dept Met Engn, Coll Mines & Earth Sci, Salt Lake City, UT 84112 USA. [Dang, Liem X.] Pacific NW Natl Lab, Div Phys Sci, Richland, WA 99352 USA. [Wick, Collin D.] Louisiana Tech Univ, Dept Chem, Coll Engn & Sci, Ruston, LA 71270 USA. RP Miller, JD (reprint author), Univ Utah, Dept Met Engn, Coll Mines & Earth Sci, 135S 1460E,412 WBB, Salt Lake City, UT 84112 USA. EM jan.miller@utah.edu FU U.S. Department of Energy (DOE) under Basic Science Grant [DE-FG-03-93ER14315]; Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences (BES), of the DOE FX Part of the financial support for this study was provided by the U.S. Department of Energy (DOE) under Basic Science Grant No. DE-FG-03-93ER14315. The Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences (BES), of the DOE funded the work performed by Liem X. Dang. Battelle operates the Pacific Northwest National Laboratory for DOE. The calculations were carried out using computer resources provided by BES. The authors are grateful to Professor Tsun-Mei Chang for valuable discussions. NR 80 TC 0 Z9 0 U1 5 U2 16 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0301-7516 EI 1879-3525 J9 INT J MINER PROCESS JI Int. J. Miner. Process. PD DEC 10 PY 2015 VL 145 BP 66 EP 76 DI 10.1016/j.minpro.2015.07.001 PG 11 WC Engineering, Chemical; Mineralogy; Mining & Mineral Processing SC Engineering; Mineralogy; Mining & Mineral Processing GA CZ0GU UT WOS:000366783900009 ER PT J AU Aad, G Abbott, B Abdallah, J Abdinov, O Aben, R Abolins, M AbouZeid, OS Abramowicz, H Abreu, H Abreu, R Abulaiti, Y Acharya, BS Adamczyk, L Adams, DL Adelman, J Adomeit, S Adye, T Affolder, AA Agatonovic-Jovin, T Agricola, J Aguilar-Saavedra, JA Ahlen, SP Ahmadov, F Aielli, G Akerstedt, H Akesson, TPA Akimov, AV Alberghi, GL Albert, J Albrand, S Verzini, MJA Aleksa, M Aleksandrov, IN Alexa, C Alexander, G Alexopoulos, T Alhroob, M Alimonti, G Alio, L Alison, J Alkire, SP Allbrooke, BMM Allport, PP Aloisio, A Alonso, A Alonso, F Alpigiani, C Altheimer, A Gonzalez, BA Piqueras, DA Alviggi, MG Amadio, BT Amako, K Coutinho, YA Amelung, C Amidei, D Dos Santos, SPA Amorim, A Amoroso, S Amram, N Amundsen, G Anastopoulos, C Ancu, LS Andari, N Andeen, T Anders, CF Anders, G Anders, JK Anderson, KJ Andreazza, A Andrei, V Angelidakis, S Angelozzi, I Anger, P Angerami, A Anghinolfi, F Anisenkov, AV Anjos, N Annovi, A Antonelli, M Antonov, A Antos, J Anulli, F Aoki, M Bella, LA Arabidze, G Arai, Y Araque, JP Arce, ATH Arduh, FA Arguin, JF Argyropoulos, S Arik, M Armbruster, AJ Arnaez, O Arnold, H Arratia, M Arslan, O Artamonov, A Artoni, G Asai, S Asbah, N Ashkenazi, A Asman, B Asquith, L Assamagan, K Astalos, R Atkinson, M Atlay, NB Augsten, K Aurousseau, M Avolio, G Axen, B Ayoub, MK Azuelos, G Baak, MA Baas, AE Baca, MJ Bacci, C Bachacou, H Bachas, K Backes, M Backhaus, M Bagiacchi, P Bagnaia, P Bai, Y Bain, T Baines, JT Baker, OK Baldin, EM Balek, P Balestri, T Balli, F Balunas, WK Banas, E Banerjee, SW Bannoura, AAE Barak, L Barberio, EL Barberis, D Barbero, M Barillari, T Barisonzi, M Barklow, T Barlow, N Barnes, SL Barnett, BM Barnett, RM Barnovska, Z Baroncelli, A Barone, G Barr, AJ Barreiro, F da Costa, JBG Bartoldus, R Barton, AE Bartos, P Basalaev, A Bassalat, A Basye, A Bates, RL Batista, SJ Batley, JR Battaglia, M Bauce, M Bauer, F Bawa, HS Beacham, JB Beattie, MD Beau, T Beauchemin, PH Beccherle, R Bechtle, P Beck, HP Becker, K Becker, M Beckingham, M Becot, C Beddall, AJ Beddall, A Bednyakov, VA Bee, CP Beemster, LJ Beermann, TA Begel, M Behr, JK Belanger-Champagne, C Bell, WH Bella, G Bellagamba, L Bellerive, A Bellomo, M Belotskiy, K Beltramello, O Benary, O Benchekroun, D Bender, M Bendtz, K Benekos, N Benhammou, Y Noccioli, EB Garcia, JAB Benjamin, DP Bensinger, JR Bentvelsen, S Beresford, L Beretta, M Berge, D Kuutmann, EB Berger, N Berghaus, F Beringer, J Bernard, C Bernard, NR Bernius, C Bernlochner, FU Berry, T Berta, P Bertella, C Bertoli, G Bertolucci, F Bertsche, C Bertsche, D Besana, MI Besjes, GJ Bylund, OB Bessner, M Besson, N Betancourt, C Bethke, S Bevan, AJ Bhimji, W Bianchi, RM Bianchini, L Bianco, M Biebel, O Biedermann, D Biesuz, NV Biglietti, M De Mendizabal, JB Bilokon, H Bindi, M Binet, S Bingul, A Bini, C Biondi, S Bjergaard, DM Black, CW Black, JE Black, KM Blackburn, D Blair, RE Blanchard, JB Blanco, JE Blazek, T Bloch, I Blocker, C Blum, W Blumenschein, U Blunier, S Bobbink, GJ Bobrovnikov, VS Bocchetta, SS Bocci, A Bock, C Boehler, M Bogaerts, JA Bogavac, D Bogdanchikov, AG Bohm, C Boisvert, V Bold, T Boldea, V Boldyrev, AS Bomben, M Bona, M Boonekamp, M Borisov, A Borissov, G Borroni, S Bortfeldt, J Bortolotto, V Bos, K Boscherini, D Bosman, M Boudreau, J Bouffard, J Bouhova-Thacker, EV Boumediene, D Bourdarios, C Bousson, N Boutle, SK Boveia, A Boyd, J Boyko, IR Bozic, I Bracinik, J Brandt, A Brandt, G Bratzler, OBAU Bratzler, U Brau, B Brau, JE Braun, HM Madden, WDB Brendlinger, K Brennan, AJ Brenner, L Brenner, R Bressler, S Bristow, TM Britton, D Britzger, D Brochu, FM Brock, I Bronner, RBJ Bronner, J Brooijmans, G Brooks, T Brooks, WK Brosamer, J Brost, E de Renstrom, PAB Bruncko, D Bruneliere, R Bruni, A Bruni, G Bruschi, M Bruscino, N Bryngemark, L Buanes, T Buat, Q Buchholz, P Buckley, AG Budagov, IA Buehrer, F Bugge, L Bugge, MK Bulekov, O Bullock, D Burckhart, H Burdin, S Burgard, CD Burghgrave, B Burke, S Burmeister, I Busato, E Buscher, D Buscher, V Bussey, P Butler, JM Butt, AI Buttar, CM Butterworth, JM Butti, P Buttinger, W Buzatu, A Buzykaev, AR Urban, SC Caforio, D Cairo, VM Cakir, O Calace, N Calafiura, P Calandri, A Calderini, G Calfayan, P Caloba, LP Calvet, D Calvet, S Toro, RC Camarda, S Camarri, P Cameron, D Armadans, RC Campana, S Campanelli, M Campoverde, A Canale, V Canepa, A Bret, MC Cantero, J Cantrill, R Cao, T Garrido, MDMC Caprini, I Caprini, M Capua, M Caputo, R Carbone, RM Cardarelli, R Cardillo, F Carli, T Carlino, G Carminati, L Caron, S Carquin, E Carrillo-Montoya, GD Carter, JR Carvalho, J Casadei, D Casado, MP Casolino, M Casper, DW Castaneda-Miranda, E Castelli, A Gimenez, VC Castro, NF Catastini, P Catinaccio, A Catmore, JR Cattai, A Caudron, J Cavaliere, V Cavalli, D Cavalli-Sforza, M Cavasinni, V Ceradini, F Alberich, LC Cerio, BC Cerny, K Cerqueira, AS Cerri, A Cerrito, L Cerutti, F Cerv, M Cervelli, A Cetin, SA Chafaq, A Chakraborty, D Chalupkova, I Chan, YL Chang, P Chapman, JD Charlton, DG Chau, CC Barajas, CAC Cheatham, S Chegwidden, A Chekanov, S Chekulaev, SV Chelkov, GA Chelstowska, MA Chen, C Chen, H Chen, K Chen, L Chen, S Chen, S Chen, X Chen, Y Cheng, HC Cheng, Y Cheplakov, A Cheremushkina, E El Moursli, RC Chernyatin, V Cheu, E Chevalier, L Chiarella, V Chiarelli, G Chiodini, G Chisholm, AS Chislett, RT Chitan, A Chizhov, MV Choi, K Chouridou, S Chow, BKB Christodoulou, V Chromek-Burckhart, D Chudoba, J Chuinard, AJ Chwastowski, JJ Chytka, L Ciapetti, G Ciftci, AK Cinca, D Cindro, V Cioara, IA Ciocio, A Cirotto, F Citron, ZH Ciubancan, M Clark, A Clark, BL Clark, PJ Clarke, RN Clement, C Coadou, Y Cobal, M Coccaro, A Cochran, J Coffey, L Cogan, JG Colasurdo, L Cole, B Cole, S Colijn, AP Collot, J Colombo, T Compostella, G Muino, PC Coniavitis, E Connell, H Connelly, IA Consorti, V Constantinescu, S Conta, C Conti, G Conventi, F Cooke, M Cooper, BD Cooper-Sarkar, AM Cornelissen, T Corradi, M Corriveau, F Corso-Radu, A Cortes-Gonzalez, A Cortiana, G Costa, G Costa, MJ Costanzo, D Cote, D Cottin, G Cowan, G Cox, BE Cranmer, K Cree, G Crepe-Renaudin, S Crescioli, F Cribbs, WA Ortuzar, MC Cristinziani, M Croft, V Crosetti, G Donszelmann, TC Cummings, J Curatolo, M Cuth, J Cuthbert, C Czirr, H Czodrowski, P D'Auria, S D'Onofrio, M De Sousa, MJDCS Da Via, C Dabrowski, W Dafinca, A Dai, T Dale, O Dallaire, F Dallapiccola, C Dam, M Dandoy, JR Dang, NP Daniells, AC Danninger, M Hoffmann, MD Dao, V Darbo, G Darmora, S Dassoulas, J Dattagupta, A Davey, W David, C Davidek, T Davies, E Davies, M Davison, P Davygora, Y Dawe, E Dawson, I Daya-Ishmukhametova, RK De, K De Asmundis, R De Benedetti, A De Castro, S De Cecco, S De Groot, N de Jong, P De la Torre, H De Lorenzi, F De Pedis, D De Salvo, A De Sanctis, U De Santo, A De Regie, JBDV Dearnaley, WJ Debbe, R Debenedetti, C Dedovich, DV Deigaard, I Del Peso, J Del Prete, T Delgove, D Deliot, F Delitzsch, CM Deliyergiyev, M Dell'Acqua, A Dell'Asta, L Dell'Orso, M Della Pietra, M della Volpe, D Delmastro, M Delsart, PA Deluca, C DeMarco, DA Demers, S Demichev, M Demilly, A Denisov, SP Derendarz, D Derkaoui, JE Derue, F Dervan, P Desch, K Deterre, C Dette, K Deviveiros, PO Dewhurst, A Dhaliwal, S Di Ciaccio, A Di Ciaccio, L Di Domenico, A Di Donato, C Di Girolamo, A Di Girolamo, B Di Mattia, A Di Micco, B Di Nardo, R Di Simone, A Di Sipio, R Di Valentino, D Diaconu, C Diamond, M Dias, FA Diaz, MA Diehl, EB Dietrich, J Diglio, S Dimitrievska, A Dingfelder, J Dita, P Dita, S Dittus, F Djama, F Djobava, T Djuvsland, JI do Vale, MAB Dobos, D Dobre, M Doglioni, C Dohmae, T Dolejsi, J Dolezal, Z Dolgoshein, BA Donadelli, M Donati, S Dondero, P Donini, J Dopke, J Doria, A Dova, MT Doyle, AT Drechsler, E Dris, M Du, Y Dubreuil, E Duchovni, E Duckeck, G Ducu, OA Duda, D Dudarev, A Duot, L Duguid, L Duhrssen, M Dunford, M Yildiz, HD Duren, M Durglishvili, A Duschinger, D Dutta, B Dyndal, M Eckardt, C Ecker, KM Edgar, RC Edson, W Edwards, NC Ehrenfeld, W Eifert, T Eigen, G Einsweiler, K Ekelof, T El Kacimi, M Ellert, M Elles, S Ellinghaus, F Elliot, AA Ellis, N Elmsheuser, J Elsing, M Emeliyanov, D Enari, Y Endner, OC Endo, M Erdmann, J Ereditato, A Ernis, G Ernst, J Ernst, M Errede, S Ertel, E Escalier, M Esch, H Escobar, C Esposito, B Etienvre, AI Etzion, E Evans, H Ezhilov, A Fabbri, L Facini, G Fakhrutdinov, RM Falciano, S Falla, RJ Faltova, J Fang, Y Fanti, M Farbin, A Farilla, A Farooque, T Farrell, S Farrington, SM Farthouat, P Fassi, F Fassnacht, P Fassouliotis, D Giannelli, MF Favareto, A Fayard, L Fedin, OL Fedorko, W Feigl, S Feligioni, L Feng, C Feng, EJ Feng, H Fenyuk, AB Feremenga, L Martinez, PF Perez, SF Ferrando, J Ferrari, A Ferrari, P Ferrari, R de Lima, DEF Ferrer, A Ferrere, D Ferretti, C Parodi, AF Fiascaris, M Fiedler, F Filipcic, A Filipuzzi, M Filthaut, F Fincke-Keeler, M Finelli, KD Fiolhais, MCN Fiorini, L Firan, A Fischer, A Fischer, C Fischer, J Fisher, WC Flaschel, N Fleck, I Fleischmann, P Fletcher, GT Fletcher, G Fletcher, RRM Flick, T Floderus, A Castillo, LRF Flowerdew, MJ Formica, A Forti, A Fournier, D Fox, H Fracchia, S Francavilla, P Franchini, M Francis, D Franconi, L Franklin, M Frate, M Fraternali, M Freeborn, D French, ST Fressard-Batraneanu, SM Friedrich, F Froidevaux, D Frost, JA Fukunaga, C Torregrosa, EF Fulsom, BG Fusayasu, T Fuster, J Gabaldon, C Gabizon, O Gabrielli, A Gabrielli, A Gach, GP Gadatsch, S Gadomski, S Gagliardi, G Gagnon, P Galea, C Galhardo, B Gallas, EJ Gallop, BJ Gallus, P Galster, G Gan, KK Gao, J Gao, Y Gao, YS Walls, FMG Garberson, F Garcia, C Navarro, JEG Garcia-Sciveres, M Gardner, RW Garelli, N Garonne, V Gatti, C Gaudiello, A Gaudio, G Gaur, B Gauthier, L Gauzzi, P Gavrilenko, IL Gay, C Gaycken, G Gazis, EN Ge, P Gecse, Z Gee, CNP Geich-Gimbel, C Geisler, MP Gemme, C Genest, MH Geng, C Gentile, S George, M George, S Gerbaudo, D Gershon, A Ghasemi, S Ghazlane, H Giacobbe, B Giagu, S Giangiobbe, V Giannetti, P Gibbard, B Gibson, SM Gignac, M Gilchriese, M Gillam, TPS Gillberg, D Gilles, G Gingrich, DM Giokaris, N Giordani, MP Giorgi, FM Giorgi, FM Giraud, PF Giromini, P Giugni, D Giuliani, C Giulini, M Gjelsten, BK Gkaitatzis, S Gkialas, I Gkougkousis, EL Gladilin, LK Glasman, C Glatzer, J Glaysher, PCF Glazov, A Goblirsch-Kolb, M Goddard, JR Godlewski, J Goldfarb, S Golling, T Golubkov, D Gomes, A Goncalo, R Da Costa, JGPF Gonella, L de la Hoz, SG Parra, GG Gonzalez-Sevilla, S Goossens, L Gorbounov, PA Gordon, HA Gorelov, I Gorini, B Gorini, E Gorisek, A Gornicki, E Goshaw, AT Gossling, C Gostkin, MI Goujdami, D Goussiou, AG Govender, N Gozani, E Grabas, HMX Graber, L Grabowska-Bold, I Gradin, POJ Grafstrom, P Gramling, J Gramstad, E Grancagnolo, S Gratchev, V Gray, HM Graziani, E Greenwood, ZD Grefe, C Gregersen, K Gregor, IM Grenier, P Griffiths, J Grillo, AA Grimm, K Grinstein, S Gris, P Grivaz, JF Grohs, JP Grohsjean, A Gross, E Grosse-Knetter, J Grossi, GC Grout, ZJ Guan, L Guenther, J Guescini, F Guest, D Gueta, O Guido, E Guillemin, T Guindon, S Gul, U Gumpert, C Guo, J Guo, Y Gupta, S Gustavino, G Gutierrez, P Ortiz, NGG Gutschow, C Guyot, C Gwenlan, C Gwilliam, CB Haas, A Haber, C Hadavand, HK Haddad, N Haefner, P Hagebock, S Hajduk, Z Hakobyan, H Haleem, M Haley, J Hall, D Halladjian, G Hallewell, GD Hamacher, K Hamal, P Hamano, K Hamilton, A Hamity, GN Hamnett, PG Han, L Hanagaki, K Hanawa, K Hance, M Haney, B Hanke, P Hanna, R Hansen, JB Hansen, JD Hansen, MC Hansen, PH Hara, K Hard, AS Harenberg, T Hariri, F Harkusha, S Harrington, RD Harrison, PF Hartjes, F Hasegawa, M Hasegawa, Y Hasib, A Hassani, S Haug, S Hauser, R Hauswald, L Havranek, M Hawkes, CM Hawkings, RJ Hawkins, AD Hayashi, T Hayden, D Hays, CP Hays, JM Hayward, HS Haywood, SJ Head, SJ Heck, T Hedberg, V Heelan, L Heim, S Heim, T Heinemann, B Heinrich, L Hejbal, J Helary, L Hellman, S Helsens, C Henderson, J Henderson, RCW Heng, Y Hengler, C Henkelmann, S Henrichs, A Correia, AMH Henrot-Versille, S Herbert, GH Jimenez, YH Herten, G Hertenberger, R Hervas, L Hesketh, GG Hessey, NP Hetherly, JW Hickling, R Higon-Rodriguez, E Hill, E Hill, JC Hiller, KH Hillier, SJ Hinchliffe, I Hines, E Hinman, RR Hirose, M Hirschbuehl, D Hobbs, J Hod, N Hodgkinson, MC Hodgson, P Hoecker, A Hoeferkamp, MR Hoenig, F Hohlfeld, M Hohn, D Holmes, TR Homann, M Hong, TM Hopkins, WH Horii, Y Horton, AJ Hostachy, JY Hou, S Hoummada, A Howard, J Howarth, J Hrabovsky, M Hristova, I Hrivnac, J Hryn'ova, T Hrynevich, A Hsu, C Hsu, PJ Hsu, SC Hu, D Hu, Q Hu, X Huang, Y Hubacek, Z Hubaut, F Huegging, F Huffman, TB Hughes, EW Hughes, G Huhtinen, M Hulsing, TA Huseynov, N Huston, J Huth, J Iacobucci, G Iakovidis, G Ibragimov, I Iconomidou-Fayard, L Ideal, E Idrissi, Z Iengo, P Igonkina, O Iizawa, T Ikegami, Y Ikematsu, K Ikeno, M Ilchenko, Y Iliadis, D Ilic, N Ince, T Introzzi, G Ioannou, P Iodice, M Iordanidou, K Ippolito, V Quiles, AI Isaksson, C Ishino, M Ishitsuka, M Ishmukhametov, R Issever, C Istin, S Ponce, JMI Iuppa, R Ivarsson, J Iwanski, W Iwasaki, H Izen, JM Izzo, V Jabbar, S Jackson, B Jackson, M Jackson, P Jaekel, MR Jain, V Jakobs, K Jakobsen, S Jakoubek, T Jakubek, J Jamin, DO Jana, DK Jansen, E Jansky, R Janssen, J Janus, M Jarlskog, G Javadov, N Javurek, T Jeanty, L Jejelava, J Jeng, GY Jennens, D Jenni, P Jentzsch, J Jeske, C Jezequel, S Ji, H Jia, J Jiang, Y Jiggins, S Pena, JJ Jin, S Jinaru, A Jinnouchi, O Joergensen, MD Johansson, P Johns, KA Johnson, WJ Jon-And, K Jones, G Jones, RWL Jones, TJ Jongmanns, J Jorge, PM Joshi, KD Jovicevic, J Ju, X Juste Rozas, A Kaci, M Kaczmarska, A Kado, M Kagan, H Kagan, M Kahn, SJ Kajomovitz, E Kalderon, CW Kama, S Kamenshchikov, A Kanaya, N Kaneti, S Kantserov, VA Kanzaki, J Kaplan, B Kaplan, LS Kapliy, A Kar, D Karakostas, K Karamaoun, A Karastathis, N Kareem, MJ Karentzos, E Karnevskiy, M Karpov, SN Karpova, ZM Karthik, K Kartvelishvili, V Karyukhin, AN Kasahara, K Kashif, L Kass, RD Kastanas, A Kataoka, Y Kato, C Katre, A Katzy, J Kawade, K Kawagoe, K Kawamoto, T Kawamura, G Kazama, S Kazanin, VF Keeler, R Kehoe, R Keller, JS Kempster, JJ Keoshkerian, H Kepka, O Kersevan, BP Kersten, S Keyes, RA Khalil-Zada, F Khandanyan, H Khanov, A Kharlamov, AG Khoo, TJ Khovanskiy, V Khramov, E Khubua, J Kido, S Kim, HY Kim, SH Kim, YK Kimura, N Kind, OM King, BT King, M King, SB Kirk, J Kiryunin, AE Kishimoto, T Kisielewska, D Kiss, F Kiuchi, K Kivernyk, O Kladiva, E Klein, MH Klein, M Klein, U Kleinknecht, K Klimek, P Klimentov, A Klingenberg, R Klinger, JA Klioutchnikova, T Kluge, EE Kluit, P Kluth, S Knapik, J Kneringer, E Knoops, EBFG Knue, A Kobayashi, A Kobayashi, D Kobayashi, T Kobel, M Kocian, M Kodys, P Koffas, T Koffeman, E Kogan, LA Kohlmann, S Kohout, Z Kohriki, T Koi, T Kolanoski, H Kolb, M Koletsou, I Komar, AA Komori, Y Kondo, T Kondrashova, N Koneke, K Konig, AC Kono, T Konoplich, R Konstantinidis, N Kopeliansky, R Koperny, S Opke, LK Kopp, AK Korcyl, K Kordas, K Korn, A Korol, AA Korolkov, I Korolkova, EV Kortner, O Kortner, S Kosek, T Kostyukhin, VV Kotov, VM Kotwal, A Kourkoumeli-Charalampidi, A Kourkoumelis, C Kouskoura, V Koutsman, A Kowalewski, R Kowalski, TZ Kozanecki, W Kozhin, AS Kramarenko, VA Kramberger, G Krasnopevtsev, D Krasny, MW Krasznahorkay, A Kraus, JK Kreiss, AKS Kreiss, S Kretz, M Kretzschmar, J Kreutzfeldt, K Krieger, P Krizka, K Kroeninger, K Kroha, H Kroll, J Kroseberg, J Krstic, J Kruchonak, U Kruger, H Krumnack, N Kruse, A Kruse, MC Kruskal, M Kubota, T Kucuk, H Kuday, S Kuehn, S Kugel, A Kuger, F Kuhl, A Kuhl, T Kukhtin, V Kukla, R Kulchitsky, Y Kuleshov, S Kuna, M Kunigo, T Kupco, A Kurashige, H Kurochkin, YA Kus, V Kuwertz, ES Kuze, M Kvita, J Kwan, T Kyriazopoulos, D La Rosa, A Navarro, JLR La Rotonda, L Lacasta, C Lacava, F Lacey, J Lacker, H Lacour, D Lacuesta, VR Ladygin, E Lafaye, R Laforge, B Lagouri, T Lai, S Lambourne, L Lammers, S Lampen, CL Lampl, W Lancon, E Landgraf, U Landon, MPJ Lang, VS Lange, JC Lankford, AJ Lanni, F Lantzsch, K Lanza, A Laplace, S Lapoire, C Laporte, JF Lari, T Manghi, FL Lassnig, M Laurelli, P Lavrijsen, W Law, AT Laycock, P Lazovich, T Le Dortz, O Le Guirriec, E Le Menedeu, E LeBlanc, M LeCompte, T Ledroit-Guillon, F Lee, CA Lee, SC Lee, L Lefebvre, G Lefebvre, M Legger, F Leggett, C Lehan, A Miotto, GL Lei, X Leight, WA Leisos, A Leister, AG Leite, MAL Leitner, R Lellouch, D Lemmer, B Leney, KJC Lenz, T Lenzi, B Leone, R Leone, S Leonidopoulos, C Leontsinis, S Leroy, C Lester, CG Levchenko, M Leveque, J Levin, D Levinson, LJ Levy, M Lewis, A Leyko, AM Leyton, M Li, B Li, H Li, HL Li, L Li, L Li, S Li, X Li, Y Liang, Z Liao, H Liberti, B Liblong, A Lichard, P Lie, K Liebal, J Liebig, W Limbach, C Limosani, A Lin, SC Lin, TH Linde, F Lindquist, BE Linnemann, JT Lipeles, E Lipniacka, A Lisovyi, M Liss, TM Lissauer, D Lister, A Litke, AM Liu, B Liu, D Liu, H Liu, J Liu, JB Liu, K Liu, L Liu, M Liu, M Liu, Y Livan, M Lleres, A Merino, JL Lloyd, SL Lo Sterzo, F Lobodzinska, E Loch, P Lockman, WS Loebinger, FK Loevschall-Jensen, AE Loew, KM Loginov, A Lohse, T Lohwasser, K Lokajicek, M Long, BA Long, JD Long, RE Looper, KA Lopes, L Mateos, DL Paredes, BL Paz, IL Lorenz, J Martinez, NL Losada, M Losel, PJ Lou, X Lounis, A Love, J Love, PA Lu, H Lu, N Lubatti, HJ Luci, C Lucotte, A Luedtke, C Luehring, F Lukas, W Luminari, L Lundberg, O Lund-Jensen, B Lynn, D Lysak, R Lytken, E Ma, H Mad, LL Maccarrone, G Macchiolo, A Macdonald, CM Macek, B Miguens, JM Macina, D Madaffari, D Madar, R Maddocks, HJ Mader, WF Madsen, A Maeda, J Maeland, S Maeno, T Maevskiy, A Magradze, E Mahboubi, K Mahlstedt, J Maiani, C Maidantchik, C Maier, AA Maier, T Maio, A Majewski, S Makida, Y Makovec, N Malaescu, B Malecki, P Maleev, VP Malek, F Mallik, U Malon, D Malone, C Maltezos, S Malyshev, VM Malyukov, S Mamuzic, J Mancini, G Mandelli, B Mandelli, L Mandic, I Mandrysch, R Maneira, J de Andrade, LM Ramos, JM Mann, A Manousakis-Katsikakis, A Mansoulie, B Mantifel, R Mantoani, M Mapelli, L March, L Marchiori, G Marcisovsky, M Marino, CP Marjanovic, M Marley, DE Marroquim, F Marsden, SP Marshall, Z Marti, LF Marti-Garcia, S Martin, B Martin, TA Martin, VJ Latour, BMD Martinez, M Martin-Haugh, S Martoiu, S Martyniuk, AC Marx, M Marzano, F Marzin, A Masetti, L Mashimo, T Mashinistov, R Masik, J Maslennikov, AL Massa, I Massa, L Mastrandrea, P Mastroberardino, A Masubuchi, T Mattig, P Mattmann, J Maurer, J Maxfield, SJ Maximov, DA Mazini, R Mazza, SM Mc Goldrick, G Mc Kee, SP McCarn, A McCarthy, RL McCarthy, TG McCubbin, NA McFarlane, KW Mcfayden, JA Mchedlidze, G McMahon, SJ McPherson, RA Medinnis, M Meehan, S Mehlhase, S Mehta, A Meier, K Meineck, C Meirose, B Mellado Garcia, BR Meloni, F Mengarelli, A Menke, S Meoni, E Mercurio, KM Mergelmeyer, S Mermod, P Merola, L Meroni, C Merritt, FS Messina, A Metcalfe, J Mete, AS Meyer, C Meyer, C Meyer, JP Meyer, J Theenhausen, HMZ Middleton, RP Miglioranzi, S Mijovic, L Mikenberg, G Mikestikova, M Mikuz, M Milesi, M Milic, A Miller, DW Mills, C Milov, A Milstead, DA Minaenko, AA Minami, Y Minashvili, IA Mincer, AI Mindur, B Mineev, M Ming, Y Mir, LM Mistry, KP Mitani, T Mitrevski, J Mitsou, VA Miucci, A Miyagawa, PS Mjornmark, JU Moa, T Mochizuki, K Mohapatra, S Mohr, W Molander, S Moles-Valls, R Monden, R Monig, K Monini, C Monk, J Monnier, E Montalbano, A Berlingen, JM Monticelli, F Monzani, S Moore, RW Morange, N Moreno, D Llacer, MM Morettini, P Mori, D Mori, T Morii, M Morinaga, M Morisbak, V Moritz, S Morley, AK Mornacchi, G Morris, JD Mortensen, SS Morton, A Morvaj, L Mosidze, M Moss, J Motohashi, K Mount, R Mountricha, E Mouraviev, SV Moyse, EJW Muanza, S Mudd, RD Mueller, F Mueller, J Mueller, RSP Mueller, T Muenstermann, D Mullen, P Mullier, GA Sanchez, FJM Quijada, JAM Murray, WJ Musheghyan, H Musto, E Myagkov, AG Myska, M Nachman, BP Nackenhorst, O Nadal, J Nagai, K Nagai, R Nagai, Y Nagano, K Nagarkar, A Nagasaka, Y Nagata, K Nagel, M Nagy, E Nairz, AM Nakahama, Y Nakamura, K Nakamura, T Nakano, I Namasivayam, H Garcia, RFN Narayan, R Villar, DIN Naumann, T Navarro, G Nayyar, R Neal, HA Nechaeva, PY Neep, TJ Nef, PD Negri, A Negrini, M Nektarijevic, S Nellist, C Nelson, A Nemecek, S Nemethy, P Nepomuceno, AA Nessi, M Neubauer, MS Neumann, M Neves, RM Nevski, P Newman, PR Nguyen, DH Nickerson, RB Nicolaidou, R Nicquevert, B Nielsen, J Nikiforou, N Nikiforov, A Nikolaenko, V Nikolic-Audit, I Nikolopoulos, K Nilsen, JK Nilsson, P Ninomiya, Y Nisati, A Nisius, R Nobe, T Nomachi, M Nomidis, I Nooney, T Norberg, S Nordberg, M Novgorodova, O Nowak, S Nozaki, M Nozka, L Ntekas, K Hanninger, GN Nunnemann, T Nurse, E Nuti, F O'grady, F O'Neil, DC O'Shea, V Oakham, FG Oberlack, H Obermann, T Ocariz, J Ochi, A Ochoa, I Ochoa-Ricoux, JP Oda, S Odaka, S Ogren, H Oh, A Oh, SH Ohm, CC Ohman, H Oide, H Okamura, W Okawa, H Okumura, Y Okuyama, T Olariu, A Pino, SAO Damazio, DO Olszewski, A Olszowska, J Onofre, A Onogi, K Onyisi, PUE Oram, CJ Oreglia, MJ Oren, Y Orestano, D Orlando, N Barrera, CO Orr, RS Osculati, B Ospanov, R Garzon, GOY Otono, H Ouchrif, M Ould-Saada, F Ouraou, A Oussoren, KP Ouyang, Q Ovcharova, A Owen, M Owen, RE Ozcan, VE Ozturk, N Pachal, K Pages, AP Aranda, CP Pagacova, M Griso, SP Paganis, E Paige, F Pais, P Pajchel, K Palacino, G Palestini, S Palka, M Pallin, D Palma, A Pan, YB St Panagiotopoulou, E Pandini, CE Vazquez, JGP Pani, P Panitkin, S Pantea, D Paolozzi, L Papadopoulou, TD Papageorgiou, K Paramonov, A Hernandez, DP Parker, MA Parker, KA Parodi, F Parsons, JA Parzefall, U Pasqualucci, E Passaggio, S Pastore, F Pastore, F Pasztor, G Pataraia, S Patel, ND Pater, JR Pauly, T Pearce, J Pearson, B Pedersen, LE Pedersen, M Lopez, SP Pedro, R Peleganchuk, SV Pelikan, D Penc, O Peng, C Peng, H Penning, B Penwell, J Perepelitsa, DV Codina, EP Garcia-Estan, MTP Perini, L Pernegger, H Perrella, S Peschke, R Peshekhonov, VD Peters, K Peters, RFY Petersen, BA Petersen, TC Petit, E Petridis, A Petridou, C Petroff, P Petrolo, E Petrucci, F Pettersson, NE Pezoa, R Phillips, PW Piacquadio, G Pianori, E Picazio, A Piccaro, E Piccinini, M Pickering, MA Piegaia, R Pignotti, DT Pilcher, JE Pilkington, AD Pin, AWJ Pina, J Pinamonti, M Pinfold, JL Pingel, A Pires, S Pirumov, H Pitt, M Pizio, C Plazak, L Pleier, MA Pleskot, V Plotnikova, E Plucinski, P Pluth, D Poettgen, R Poggioli, L Pohl, D Polesello, G Poley, A Policicchio, A Polifka, R Polini, A Pollard, CS Polychronakos, V Pommes, K Pontecorvo, L Pope, BG Popeneciu, GA Popovic, DS Poppleton, A Pospisil, S Potamianos, K Potrap, IN Potter, CJ Potter, CT Poulard, G Poveda, J Pozdnyakov, V Astigarraga, MEP Pralavorio, P Pranko, A Prasad, S Prell, S Price, D Price, LE Primavera, M Prince, S Proissl, M Prokofiev, K Prokoshin, F Protopapadaki, E Protopopescu, S Proudfoot, J Przybycien, M Ptacek, E Puddu, D Pueschel, E Puldon, D Purohit, M Puzo, P Qian, J Qin, G Qin, Y Quadt, A Quarrie, DR Quayle, WB Queitsch-Maitland, M Quilty, D Raddum, S Radeka, V Radescu, V Radhakrishnan, SK Radloff, P Rados, P Ragusa, F Rahal, G Rajagopalan, S Rammensee, M Rangel-Smith, C Rauscher, F Rave, S Ravenscroft, T Raymond, M Read, AL Readioff, NP Rebuzzi, DM Redelbach, A Redlinger, G Reece, R Reeves, K Rehnisch, L Reichert, J Reisin, H Rembser, C Ren, H Renaud, A Rescigno, M Resconi, S Rezanova, OL Reznicek, P Rezvani, R Richter, R Richter, S Richter-Was, E Ricken, O Ridel, M Rieck, P Riegel, CJ Rieger, J Rifki, O Rijssenbeek, M Rimoldi, A Rinaldi, L Ristic, B Ritsch, E Riu, I Rizatdinova, F Rizvi, E Robertson, SH Robichaud-Veronneau, A Robinson, D Robinson, JEM Robson, A Roda, C Roe, S Hne, OR Romaniouk, A Romano, M Saez, SMR Adam, ER Rompotis, N Ronzani, M Roos, L Ros, E Rosati, S Rosbach, K Rose, P Rosendahl, PL Rosenthal, O Rossetti, V Rossi, E Rossi, LP Rosten, JHN Rosten, R Rotaru, M Roth, I Rothberg, J Rousseau, D Royon, CR Rozanov, A Rozen, Y Ruan, X Rubbo, F Rubinskiy, I Rud, VI Rudolph, C Rudolph, MS Ruhr, F Ruiz-Martinez, A Rurikova, Z Rusakovich, NA Ruschke, A Russell, HL Rutherfoord, JP Ruthmann, N Ryabov, YF Rybar, M Rybkin, G Ryder, NC Saavedra, AF Sabato, G Sacerdoti, S Saddique, A Sadrozinski, HFW Sadykov, R Tehrani, FS Saha, P Sahinsoy, M Saimpert, M Saito, T Sakamoto, H Sakurai, Y Salamanna, G Salamon, A Loyola, JES Saleem, M Salek, D De Bruin, PHS Salihagic, D Salnikov, A Salt, J Salvatore, D Salvatore, F Salvucci, A Salzburger, A Sammel, D Sampsonidis, D Sanchez, A Sanchez, J Martinez, VS Sandaker, H Sandbach, RL Sander, HG Sanders, MP Sandhoff, M Sandoval, C Sandstroem, R Sankey, DPC Sannino, M Sansoni, A Santoni, C Santonico, R Santos, H Castillo, IS Sapp, K Sapronov, A Saraiva, JG Sarrazin, B Sasaki, O Sasaki, Y Sato, K Sauvage, G Sauvan, E Savage, G Savard, P Sawyer, C Sawyer, L Saxon, J Sbarra, C Sbrizzi, A Scanlon, T Scannicchio, DA Scarcella, M Scarfone, V Schaarschmidt, J Schacht, P Schaefer, D Schaefer, R Schaeffer, J Schaepe, S Schaetzel, S Schafer, U Schaffer, AC Schaile, D Schamberger, RD Scharf, V Schegelsky, VA Scheirich, D Schernau, M Schiavi, C Schillo, C Schioppa, M Schlenker, S Schmieden, K Schmitt, C Schmitt, S Schmitt, S Schmitz, S Schneider, B Schnellbach, YJ Schnoor, U Schoeffel, L Schoening, A Schoenrock, BD Schopf, E Schorlemmer, ALS Schott, M Schouten, D Schovancova, J Schramm, S Schreyer, M Schuh, N Schultens, MJ Schultz-Coulon, HC Schulz, H Schumacher, M Schumm, BA Schune, P Schwanenberger, C Schwartzman, A Schwarz, TA Schwegler, P Schweiger, H Schwemling, P Schwienhorst, R Schwindling, J Schwindt, T Sciacca, FG Scifo, E Sciolla, G Scuri, F Scutti, F Searcy, J Sedov, G Sedykh, E Seema, P Seidel, SC Seiden, A Seifert, F Seixas, JM Sekhniaidze, G Sekhon, K Sekula, SJ Seliverstov, DM Semprini-Cesari, N Serfon, C Serin, L Serkin, L Serre, T Sessa, M Seuster, R Severini, H Sfiligoj, T Sforza, F Sfyrla, A Shabalina, E Shamim, M Shan, LY Shang, R Shank, JT Shapiro, M Shatalov, PB Shaw, K Shaw, SM Shcherbakova, A Shehu, CY Sherwood, P Shi, L Shimizu, S Shimmin, CO Shimojima, M Shiyakova, M Shmeleva, A Saadi, DS Shochet, MJ Shojaii, S Shrestha, S Shulga, E Shupe, MA Sicho, P Sidebo, PE Sidiropoulou, O Sidorov, D Sidoti, A Siegert, F Sijacki, D Silva, J Silver, Y Silverstein, SB Simak, V Simard, O Simic, L Simion, S Simioni, E Simmons, B Simon, D Sinervo, P Sinev, NB Sioli, M Siragusa, G Sisakyan, AN Sivoklokov, SY Sjolin, J Sjursen, TB Skinner, MB Skottowe, HP Skubic, P Slater, M Slavicek, T Slawinska, M Sliwa, K Smakhtin, V Smart, BH Smestad, L Smirnov, SY Smirnov, Y Smirnova, LN Smirnova, O Smith, MNK Smith, RW Smizanska, M Smolek, K Snesarev, AA Snidero, G Snyder, S Sobie, R Socher, F Soffer, A Soh, DA Sokhrannyi, G Solans, CA Solar, M Solc, J Soldatov, EY Soldevila, U Solodkov, AA Soloshenko, A Solovyanov, OV Solovyev, V Sommer, P Song, HY Soni, N Sood, A Sopczak, A Sopko, B Sopko, V Sorin, V Sosa, D Sosebee, M Sotiropoulou, CL Soualah, R Soukharev, AM South, D Sowden, BC Spagnolo, S Spalla, M Spangenberg, M Spano, F Spearman, WR Sperlich, D Spettel, F Spighi, R Spigo, G Spiller, LA Spousta, M Denis, RDS Stabile, A Staerz, S Stahlman, J Stamen, R Stamm, S Stanecka, E Stanescu, C Stanescu-Bellu, M Stanitzki, MM Stapnes, S Starchenko, EA Stark, J Staroba, P Starovoitov, P Staszewski, R Steinberg, P Stelzer, B Stelzer, HJ Stelzer-Chilton, O Stenzel, H Stewart, GA Stillings, JA Stockton, MC Stoebe, M Stoicea, G Stolte, P Stonjek, S Stradling, AR Straessner, A Stramaglia, ME Strandberg, J Strandberg, S Strandlie, A Strauss, E Strauss, M Strizenec, P Strohmer, R Strom, DM Stroynowski, R Strubig, A Stucci, SA Stugu, B Styles, NA Su, D Su, J Subramaniam, R Succurro, A Suchek, S Sugaya, Y Suk, M Sulin, VV Sultansoy, S Sumida, T Sun, S Sun, X Sundermann, JE Suruliz, K Susinno, G Sutton, MR Suzuki, S Svatos, M Swiatlowski, M Sykora, I Sykora, T Ta, D Taccini, C Tackmann, K Taenzer, J Taffard, A Tafirout, R Taiblum, N Takai, H Takashima, R Takeda, H Takeshita, T Takubo, Y Talby, M Talyshev, AA Tam, JYC Tan, KG Tanaka, J Tanaka, R Tanaka, S Tannenwald, BB Araya, ST Tapprogge, S Tarem, S Tarrade, F Tartarelli, GF Tas, P Tasevsky, M Tashiro, T Tassi, E Delgado, AT Tayalati, Y Taylor, FE Taylor, GN Taylor, PTE Taylor, W Teischinger, FA Castanheira, MTD Teixeira-Dias, P Temming, KK Temple, D Ten Kate, H Teng, PK Teoh, JJ Tepel, F Terada, S Terashi, K Terron, J Terzo, S Testa, M Teuscher, RJ Theveneaux-Pelzer, T Thomas, JP Thomas-Wilsker, J Thompson, EN Thompson, PD Thompson, RJ Thompson, AS Thomsen, LA Thomson, E Thomson, M Thun, RP Tibbetts, MJ Torres, RET Tikhomirov, VO Tikhonov, YA Timoshenko, S Tiouchichine, E Tipton, P Tisserant, S Todome, K Todorov, T Todorova-Nova, S Tojo, J Tokar, S Tokushuku, K Tollefson, K Tolley, E Tomlinson, L Tomoto, M Tompkins, L Toms, K Torrence, E Torres, H Pastor, ET Toth, J Touchard, F Tovey, DR Trefzger, T Tremblet, L Tricoli, A Trigger, IM Trincaz-Duvoid, S Tripiana, MF Trischuk, W Trocme, B Troncon, C Trottier-McDonald, M Trovatelli, M Truong, L Trzebinski, M Trzupek, A Tsarouchas, C Tseng, JCL Tsiareshka, PV Tsionou, D Tsipolitis, G Tsirintanis, N Tsiskaridze, S Tsiskaridze, V Tskhadadze, EG Tsui, KM Tsukerman, II Tsulaia, V Tsuno, S Tsybychev, D Tudorache, A Tudorache, V Tuna, AN Tupputi, SA Turchikhin, S Turecek, D Turra, R Turvey, AJ Tuts, PM Tykhonov, A Tylmad, M Tyndel, M Ueda, I Ueno, R Ughetto, M Ukegawa, F Unal, G Undrus, A Unel, G Ungaro, FC Unno, Y Unverdorben, C Urban, J Urquijo, P Urrejola, P Usai, G Usanova, A Vacavant, L Vacek, V Vachon, B Valderanis, C Valencic, N Valentinetti, S Valero, A Valery, L Valkar, S Vallecorsa, S Ferrer, JAV Van Den Wollenberg, W Van Der Deijl, PC van der Geer, R van der Graaf, H van Eldik, N van Gemmeren, P van Nieuwkoop, J van Vulpen, I van Woerden, MC Vanadia, M Vandelli, W Vanguri, R Vaniachine, A Vannucci, F Vardanyan, G Vari, R Varnes, EW Varol, T Varouchas, D Vartapetian, A Varvell, KE Vazeille, F Schroeder, TV Veatch, J Veloce, LM Veloso, F Velz, T Veneziano, S Ventura, A Ventura, D Venturi, M Venturi, N Venturini, A Vercesi, V Verducci, M Verkerke, W Vermeulen, JC Vest, A Vetterli, MC Viazlo, O Vichou, I Vickey, T Boeriu, OEV Viehhauser, GHA Viel, S Vigne, R Villa, M Perez, MV Vilucchi, E Vincter, MG Vinogradov, VB Vivarelli, I Vaque, FV Vlachos, S Vladoiu, D Vlasak, M Vogel, M Vokac, P Volpi, G Volpi, M von der Schmitt, H von Radziewski, H von Toerne, E Vorobel, V Vorobev, K Vos, M Voss, R Vossebeld, JH Vranjes, N Milosavljevic, MV Vrba, V Vreeswijk, M Vuillermet, R Vukotic, I Vykydal, Z Wagner, P Wagner, W Wahlberg, H Wahrmund, S Wakabayashi, J Walder, J Walker, R Walkowiak, W Wang, C Wang, F Wang, H Wang, H Wang, J Wang, J Wang, K Wang, R Wang, SM Wang, T Wang, T Wang, X Wanotayaroj, C Warburton, A Ward, CP Wardrope, DR Washbrook, A Wasicki, C Watkins, PM Watson, AT Watson, IJ Watson, MF Watts, G Watts, S Waugh, BM Webb, S Weber, MS Weber, SW Webster, JS Weidberg, AR Weinert, B Weingarten, J Weiser, C Weits, H Wells, PS Wenaus, T Wengler, T Wenig, S Wermes, N Werner, M Werner, P Wessels, M Wetter, J Whalen, K Wharton, AM White, A White, MJ White, R White, S Whiteson, D Wickens, FJ Wiedenmann, W Wielers, M Wienemann, P Wiglesworth, C Wiik-Fuchs, AM Wildauer, A Wilkens, HG Williams, HH Williams, S Willis, C Willocq, S Wilson, A Wilson, JA Wingerter-Seez, I Winklmeier, F Winter, BT Wittgen, M Wittkowski, J Wollstadt, SJ Wolter, MW Wolters, H Wosiek, BK Wotschack, J Woudstra, MJ Wozniak, KW Wu, M Wu, M Wu, SL Wu, X Wu, Y Wyatt, TR Wynne, BM Xella, S Xu, D Xu, L Yabsley, B Yacoob, S Yakabe, R Yamada, M Yamaguchi, D Yamaguchi, Y Yamamoto, A Yamamoto, S Yamanaka, T Yamauchi, K Yamazaki, Y Yan, Z Yang, H Yang, H Yang, Y Yao, WM Yap, YC Yasu, Y Yatsenko, E Wong, KHY Ye, J Ye, S Yeletskikh, I Yen, AL Yildirim, E Yorita, K Yoshida, R Yoshihara, K Young, C Young, CJS Youssef, S Yu, DR Yu, J Yu, JM Yu, J Yuan, L Yuen, SPY Yurkewicz, A Yusuff, I Zabinski, B Zaidan, R Zaitsev, AM Zalieckas, J Zaman, A Zambito, S Zanello, L Zanzi, D Zeitnitz, C Zeman, M Zemla, A Zeng, Q Zengel, K Zenin, O Zenis, T Zerwas, D Zhang, D Zhang, F Zhang, G Zhang, H Zhang, J Zhang, L Zhang, R Zhang, X Zhang, Z Zhao, X Zhao, Y Zhao, Z Zhemchugov, A Zhong, J Zhou, B Zhou, C Zhou, L Zhou, L Zhou, M Zhou, N Zhu, CG Zhu, H Zhu, J Zhu, Y Zhuang, X Zhukov, K Zibell, A Zieminska, D Zimine, NI Zimmermann, C Zimmermann, S Zinonos, Z Zinser, M Ziolkowski, M Zivkovic, L Zobernig, G Zoccoli, A Nedden, MZ Zurzolo, G Zwalinski, L AF Aad, G. Abbott, B. Abdallah, J. Abdinov, O. Aben, R. Abolins, M. AbouZeid, O. S. Abramowicz, H. Abreu, H. Abreu, R. Abulaiti, Y. Acharya, B. S. Adamczyk, L. Adams, D. L. Adelman, J. Adomeit, S. Adye, T. Affolder, A. A. Agatonovic-Jovin, T. Agricola, J. Aguilar-Saavedra, J. A. Ahlen, S. P. Ahmadov, F. Aielli, G. Akerstedt, H. Akesson, T. P. A. Akimov, A. V. Alberghi, G. L. Albert, J. Albrand, S. Verzini, M. J. Alconada Aleksa, M. Aleksandrov, I. N. Alexa, C. Alexander, G. Alexopoulos, T. Alhroob, M. Alimonti, G. Alio, L. Alison, J. Alkire, S. P. Allbrooke, B. M. M. Allport, P. P. Aloisio, A. Alonso, A. Alonso, F. Alpigiani, C. Altheimer, A. Gonzalez, B. Alvarez Piqueras, D. Alvarez Alviggi, M. G. Amadio, B. T. Amako, K. Coutinho, Y. Amaral Amelung, C. Amidei, D. Dos Santos, S. P. Amor Amorim, A. Amoroso, S. Amram, N. Amundsen, G. Anastopoulos, C. Ancu, L. S. Andari, N. Andeen, T. Anders, C. F. Anders, G. Anders, J. K. Anderson, K. J. Andreazza, A. Andrei, V. Angelidakis, S. Angelozzi, I. Anger, P. Angerami, A. Anghinolfi, F. Anisenkov, A. V. Anjos, N. Annovi, A. Antonelli, M. Antonov, A. Antos, J. Anulli, F. Aoki, M. Bella, L. Aperio Arabidze, G. Arai, Y. Araque, J. P. Arce, A. T. H. Arduh, F. A. Arguin, J-F. Argyropoulos, S. Arik, M. Armbruster, A. J. Arnaez, O. Arnold, H. Arratia, M. Arslan, O. Artamonov, A. Artoni, G. Asai, S. Asbah, N. Ashkenazi, A. Asman, B. Asquith, L. Assamagan, K. Astalos, R. Atkinson, M. Atlay, N. B. Augsten, K. Aurousseau, M. Avolio, G. Axen, B. Ayoub, M. K. Azuelos, G. Baak, M. A. Baas, A. E. Baca, M. J. Bacci, C. Bachacou, H. Bachas, K. Backes, M. Backhaus, M. Bagiacchi, P. Bagnaia, P. Bai, Y. Bain, T. Baines, J. T. Baker, O. K. Baldin, E. M. Balek, P. Balestri, T. Balli, F. Balunas, W. K. Banas, E. Banerjee, S. W. Bannoura, A. A. E. Barak, L. Barberio, E. L. Barberis, D. Barbero, M. Barillari, T. Barisonzi, M. Barklow, T. Barlow, N. Barnes, S. L. Barnett, B. M. Barnett, R. M. Barnovska, Z. Baroncelli, A. Barone, G. Barr, A. J. Barreiro, F. da Costa, J. Barreiro Guimaraes Bartoldus, R. Barton, A. E. Bartos, P. Basalaev, A. Bassalat, A. Basye, A. Bates, R. L. Batista, S. J. Batley, J. R. Battaglia, M. Bauce, M. Bauer, F. Bawa, H. S. Beacham, J. B. Beattie, M. D. Beau, T. Beauchemin, P. H. Beccherle, R. Bechtle, P. Beck, H. P. Becker, K. Becker, M. Beckingham, M. Becot, C. Beddall, A. J. Beddall, A. Bednyakov, V. A. Bee, C. P. Beemster, L. J. Beermann, T. A. Begel, M. Behr, J. K. Belanger-Champagne, C. Bell, W. H. Bella, G. Bellagamba, L. Bellerive, A. Bellomo, M. Belotskiy, K. Beltramello, O. Benary, O. Benchekroun, D. Bender, M. Bendtz, K. Benekos, N. Benhammou, Y. Noccioli, E. Benhar Garcia, J. A. Benitez Benjamin, D. P. Bensinger, J. R. Bentvelsen, S. Beresford, L. Beretta, M. Berge, D. Kuutmann, E. Bergeaas Berger, N. Berghaus, F. Beringer, J. Bernard, C. Bernard, N. R. Bernius, C. Bernlochner, F. U. Berry, T. Berta, P. Bertella, C. Bertoli, G. Bertolucci, F. Bertsche, C. Bertsche, D. Besana, M. I. Besjes, G. J. Bylund, O. Bessidskaia Bessner, M. Besson, N. Betancourt, C. Bethke, S. Bevan, A. J. Bhimji, W. Bianchi, R. M. Bianchini, L. Bianco, M. Biebel, O. Biedermann, D. Biesuz, N. V. Biglietti, M. De Mendizabal, J. Bilbao Bilokon, H. Bindi, M. Binet, S. Bingul, A. Bini, C. Biondi, S. Bjergaard, D. M. Black, C. W. Black, J. E. Black, K. M. Blackburn, D. Blair, R. E. Blanchard, J. -B. Blanco, J. E. Blazek, T. Bloch, I. Blocker, C. Blum, W. Blumenschein, U. Blunier, S. Bobbink, G. J. Bobrovnikov, V. S. Bocchetta, S. S. Bocci, A. Bock, C. Boehler, M. Bogaerts, J. A. Bogavac, D. Bogdanchikov, A. G. Bohm, C. Boisvert, V. Bold, T. Boldea, V. Boldyrev, A. S. Bomben, M. Bona, M. Boonekamp, M. Borisov, A. Borissov, G. Borroni, S. Bortfeldt, J. Bortolotto, V. Bos, K. Boscherini, D. Bosman, M. Boudreau, J. Bouffard, J. Bouhova-Thacker, E. V. Boumediene, D. Bourdarios, C. Bousson, N. Boutle, S. K. Boveia, A. Boyd, J. Boyko, I. R. Bozic, I. Bracinik, J. Brandt, A. Brandt, G. Brandt, O. Bratzler, U. Brau, B. Brau, J. E. Braun, H. M. Madden, W. D. Breaden Brendlinger, K. Brennan, A. J. Brenner, L. Brenner, R. Bressler, S. Bristow, T. M. Britton, D. Britzger, D. Brochu, F. M. Brock, I. Brock, R. Bronner, J. Brooijmans, G. Brooks, T. Brooks, W. K. Brosamer, J. Brost, E. de Renstrom, P. A. Bruckman Bruncko, D. Bruneliere, R. Bruni, A. Bruni, G. Bruschi, M. Bruscino, N. Bryngemark, L. Buanes, T. Buat, Q. Buchholz, P. Buckley, A. G. Budagov, I. A. Buehrer, F. Bugge, L. Bugge, M. K. Bulekov, O. Bullock, D. Burckhart, H. Burdin, S. Burgard, C. D. Burghgrave, B. Burke, S. Burmeister, I. Busato, E. Buscher, D. Buscher, V. Bussey, P. Butler, J. M. Butt, A. I. Buttar, C. M. Butterworth, J. M. Butti, P. Buttinger, W. Buzatu, A. Buzykaev, A. R. Urban, S. Cabrera Caforio, D. Cairo, V. M. Cakir, O. Calace, N. Calafiura, P. Calandri, A. Calderini, G. Calfayan, P. Caloba, L. P. Calvet, D. Calvet, S. Toro, R. Camacho Camarda, S. Camarri, P. Cameron, D. Armadans, R. Caminal Campana, S. Campanelli, M. Campoverde, A. Canale, V. Canepa, A. Bret, M. Cano Cantero, J. Cantrill, R. Cao, T. Garrido, M. D. M. Capeans Caprini, I. Caprini, M. Capua, M. Caputo, R. Carbone, R. M. Cardarelli, R. Cardillo, F. Carli, T. Carlino, G. Carminati, L. Caron, S. Carquin, E. Carrillo-Montoya, G. D. Carter, J. R. Carvalho, J. Casadei, D. Casado, M. P. Casolino, M. Casper, D. W. Castaneda-Miranda, E. Castelli, A. Gimenez, V. Castillo Castro, N. F. Catastini, P. Catinaccio, A. Catmore, J. R. Cattai, A. Caudron, J. Cavaliere, V. Cavalli, D. Cavalli-Sforza, M. Cavasinni, V. Ceradini, F. Alberich, L. Cerda Cerio, B. C. Cerny, K. Cerqueira, A. S. Cerri, A. Cerrito, L. Cerutti, F. Cerv, M. Cervelli, A. Cetin, S. A. Chafaq, A. Chakraborty, D. Chalupkova, I. Chan, Y. L. Chang, P. Chapman, J. D. Charlton, D. G. Chau, C. C. Barajas, C. A. Chavez Cheatham, S. Chegwidden, A. Chekanov, S. Chekulaev, S. V. Chelkov, G. A. Chelstowska, M. A. Chen, C. Chen, H. Chen, K. Chen, L. Chen, S. Chen, S. Chen, X. Chen, Y. Cheng, H. C. Cheng, Y. Cheplakov, A. Cheremushkina, E. El Moursli, R. Cherkaoui Chernyatin, V. Cheu, E. Chevalier, L. Chiarella, V. Chiarelli, G. Chiodini, G. Chisholm, A. S. Chislett, R. T. Chitan, A. Chizhov, M. V. Choi, K. Chouridou, S. Chow, B. K. B. Christodoulou, V. Chromek-Burckhart, D. Chudoba, J. Chuinard, A. J. Chwastowski, J. J. Chytka, L. Ciapetti, G. Ciftci, A. K. Cinca, D. Cindro, V. Cioara, I. A. Ciocio, A. Cirotto, F. Citron, Z. H. Ciubancan, M. Clark, A. Clark, B. L. Clark, P. J. Clarke, R. N. Clement, C. Coadou, Y. Cobal, M. Coccaro, A. Cochran, J. Coffey, L. Cogan, J. G. Colasurdo, L. Cole, B. Cole, S. Colijn, A. P. Collot, J. Colombo, T. Compostella, G. Muino, P. Conde Coniavitis, E. Connell, S. H. Connelly, I. A. Consorti, V. Constantinescu, S. Conta, C. Conti, G. Conventi, F. Cooke, M. Cooper, B. D. Cooper-Sarkar, A. M. Cornelissen, T. Corradi, M. Corriveau, F. Corso-Radu, A. Cortes-Gonzalez, A. Cortiana, G. Costa, G. Costa, M. J. Costanzo, D. Cote, D. Cottin, G. Cowan, G. Cox, B. E. Cranmer, K. Cree, G. Crepe-Renaudin, S. Crescioli, F. Cribbs, W. A. Ortuzar, M. Crispin Cristinziani, M. Croft, V. Crosetti, G. Donszelmann, T. Cuhadar Cummings, J. Curatolo, M. Cuth, J. Cuthbert, C. Czirr, H. Czodrowski, P. D'Auria, S. D'Onofrio, M. De Sousa, M. J. Da Cunha Sargedas Da Via, C. Dabrowski, W. Dafinca, A. Dai, T. Dale, O. Dallaire, F. Dallapiccola, C. Dam, M. Dandoy, J. R. Dang, N. P. Daniells, A. C. Danninger, M. Hoffmann, M. Dano Dao, V. Darbo, G. Darmora, S. Dassoulas, J. Dattagupta, A. Davey, W. David, C. Davidek, T. Davies, E. Davies, M. Davison, P. Davygora, Y. Dawe, E. Dawson, I. Daya-Ishmukhametova, R. K. De, K. De Asmundis, R. De Benedetti, A. De Castro, S. De Cecco, S. De Groot, N. de Jong, P. De la Torre, H. De Lorenzi, F. De Pedis, D. De Salvo, A. De Sanctis, U. De Santo, A. De Regie, J. B. De Vivie Dearnaley, W. J. Debbe, R. Debenedetti, C. Dedovich, D. V. Deigaard, I. Del Peso, J. Del Prete, T. Delgove, D. Deliot, F. Delitzsch, C. M. Deliyergiyev, M. Dell'Acqua, A. Dell'Asta, L. Dell'Orso, M. Della Pietra, M. della Volpe, D. Delmastro, M. Delsart, P. A. Deluca, C. DeMarco, D. A. Demers, S. Demichev, M. Demilly, A. Denisov, S. P. Derendarz, D. Derkaoui, J. E. Derue, F. Dervan, P. Desch, K. Deterre, C. Dette, K. Deviveiros, P. O. Dewhurst, A. Dhaliwal, S. Di Ciaccio, A. Di Ciaccio, L. Di Domenico, A. Di Donato, C. Di Girolamo, A. Di Girolamo, B. Di Mattia, A. Di Micco, B. Di Nardo, R. Di Simone, A. Di Sipio, R. Di Valentino, D. Diaconu, C. Diamond, M. Dias, F. A. Diaz, M. A. Diehl, E. B. Dietrich, J. Diglio, S. Dimitrievska, A. Dingfelder, J. Dita, P. Dita, S. Dittus, F. Djama, F. Djobava, T. Djuvsland, J. I. do Vale, M. A. B. Dobos, D. Dobre, M. Doglioni, C. Dohmae, T. Dolejsi, J. Dolezal, Z. Dolgoshein, B. A. Donadelli, M. Donati, S. Dondero, P. Donini, J. Dopke, J. Doria, A. Dova, M. T. Doyle, A. T. Drechsler, E. Dris, M. Du, Y. Dubreuil, E. Duchovni, E. Duckeck, G. Ducu, O. A. Duda, D. Dudarev, A. Duot, L. Duguid, L. Duhrssen, M. Dunford, M. Yildiz, H. Duran Dueren, M. Durglishvili, A. Duschinger, D. Dutta, B. Dyndal, M. Eckardt, C. Ecker, K. M. Edgar, R. C. Edson, W. Edwards, N. C. Ehrenfeld, W. Eifert, T. Eigen, G. Einsweiler, K. Ekelof, T. El Kacimi, M. Ellert, M. Elles, S. Ellinghaus, F. Elliot, A. A. Ellis, N. Elmsheuser, J. Elsing, M. Emeliyanov, D. Enari, Y. Endner, O. C. Endo, M. Erdmann, J. Ereditato, A. Ernis, G. Ernst, J. Ernst, M. Errede, S. Ertel, E. Escalier, M. Esch, H. Escobar, C. Esposito, B. Etienvre, A. I. Etzion, E. Evans, H. Ezhilov, A. Fabbri, L. Facini, G. Fakhrutdinov, R. M. Falciano, S. Falla, R. J. Faltova, J. Fang, Y. Fanti, M. Farbin, A. Farilla, A. Farooque, T. Farrell, S. Farrington, S. M. Farthouat, P. Fassi, F. Fassnacht, P. Fassouliotis, D. Giannelli, M. Faucci Favareto, A. Fayard, L. Fedin, O. L. Fedorko, W. Feigl, S. Feligioni, L. Feng, C. Feng, E. J. Feng, H. Fenyuk, A. B. Feremenga, L. Martinez, P. Fernandez Perez, S. Fernandez Ferrando, J. Ferrari, A. Ferrari, P. Ferrari, R. de Lima, D. E. Ferreira Ferrer, A. Ferrere, D. Ferretti, C. Parodi, A. Ferretto Fiascaris, M. Fiedler, F. Filipcic, A. Filipuzzi, M. Filthaut, F. Fincke-Keeler, M. Finelli, K. D. Fiolhais, M. C. N. Fiorini, L. Firan, A. Fischer, A. Fischer, C. Fischer, J. Fisher, W. C. Flaschel, N. Fleck, I. Fleischmann, P. Fletcher, G. T. Fletcher, G. Fletcher, R. R. M. Flick, T. Floderus, A. Castillo, L. R. Flores Flowerdew, M. J. Formica, A. Forti, A. Fournier, D. Fox, H. Fracchia, S. Francavilla, P. Franchini, M. Francis, D. Franconi, L. Franklin, M. Frate, M. Fraternali, M. Freeborn, D. French, S. T. Fressard-Batraneanu, S. M. Friedrich, F. Froidevaux, D. Frost, J. A. Fukunaga, C. Torregrosa, E. Fullana Fulsom, B. G. Fusayasu, T. Fuster, J. Gabaldon, C. Gabizon, O. Gabrielli, A. Gabrielli, A. Gach, G. P. Gadatsch, S. Gadomski, S. Gagliardi, G. Gagnon, P. Galea, C. Galhardo, B. Gallas, E. J. Gallop, B. J. Gallus, P. Galster, G. Gan, K. K. Gao, J. Gao, Y. Gao, Y. S. Walls, F. M. Garay Garberson, F. Garcia, C. Navarro, J. E. Garcia Garcia-Sciveres, M. Gardner, R. W. Garelli, N. Garonne, V. Gatti, C. Gaudiello, A. Gaudio, G. Gaur, B. Gauthier, L. Gauzzi, P. Gavrilenko, I. L. Gay, C. Gaycken, G. Gazis, E. N. Ge, P. Gecse, Z. Gee, C. N. P. Geich-Gimbel, Ch. Geisler, M. P. Gemme, C. Genest, M. H. Geng, C. Gentile, S. George, M. George, S. Gerbaudo, D. Gershon, A. Ghasemi, S. Ghazlane, H. Giacobbe, B. Giagu, S. Giangiobbe, V. Giannetti, P. Gibbard, B. Gibson, S. M. Gignac, M. Gilchriese, M. Gillam, T. P. S. Gillberg, D. Gilles, G. Gingrich, D. M. Giokaris, N. Giordani, M. P. Giorgi, F. M. Giorgi, F. M. Giraud, P. F. Giromini, P. Giugni, D. Giuliani, C. Giulini, M. Gjelsten, B. K. Gkaitatzis, S. Gkialas, I. Gkougkousis, E. L. Gladilin, L. K. Glasman, C. Glatzer, J. Glaysher, P. C. F. Glazov, A. Goblirsch-Kolb, M. Goddard, J. R. Godlewski, J. Goldfarb, S. Golling, T. Golubkov, D. Gomes, A. Goncalo, R. Da Costa, J. Goncalves Pinto Firmino Gonella, L. de la Hoz, S. Gonzalez Parra, G. Gonzalez Gonzalez-Sevilla, S. Goossens, L. Gorbounov, P. A. Gordon, H. A. Gorelov, I. Gorini, B. Gorini, E. Gorisek, A. Gornicki, E. Goshaw, A. T. Gossling, C. Gostkin, M. I. Goujdami, D. Goussiou, A. G. Govender, N. Gozani, E. Grabas, H. M. X. Graber, L. Grabowska-Bold, I. Gradin, P. O. J. Grafstrom, P. Gramling, J. Gramstad, E. Grancagnolo, S. Gratchev, V. Gray, H. M. Graziani, E. Greenwood, Z. D. Grefe, C. Gregersen, K. Gregor, I. M. Grenier, P. Griffiths, J. Grillo, A. A. Grimm, K. Grinstein, S. Gris, Ph. Grivaz, J. -F. Grohs, J. P. Grohsjean, A. Gross, E. Grosse-Knetter, J. Grossi, G. C. Grout, Z. J. Guan, L. Guenther, J. Guescini, F. Guest, D. Gueta, O. Guido, E. Guillemin, T. Guindon, S. Gul, U. Gumpert, C. Guo, J. Guo, Y. Gupta, S. Gustavino, G. Gutierrez, P. Ortiz, N. G. Gutierrez Gutschow, C. Guyot, C. Gwenlan, C. Gwilliam, C. B. Haas, A. Haber, C. Hadavand, H. K. Haddad, N. Haefner, P. Hagebock, S. Hajduk, Z. Hakobyan, H. Haleem, M. Haley, J. Hall, D. Halladjian, G. Hallewell, G. D. Hamacher, K. Hamal, P. Hamano, K. Hamilton, A. Hamity, G. N. Hamnett, P. G. Han, L. Hanagaki, K. Hanawa, K. Hance, M. Haney, B. Hanke, P. Hanna, R. Hansen, J. B. Hansen, J. D. Hansen, M. C. Hansen, P. H. Hara, K. Hard, A. S. Harenberg, T. Hariri, F. Harkusha, S. Harrington, R. D. Harrison, P. F. Hartjes, F. Hasegawa, M. Hasegawa, Y. Hasib, A. Hassani, S. Haug, S. Hauser, R. Hauswald, L. Havranek, M. Hawkes, C. M. Hawkings, R. J. Hawkins, A. D. Hayashi, T. Hayden, D. Hays, C. P. Hays, J. M. Hayward, H. S. Haywood, S. J. Head, S. J. Heck, T. Hedberg, V. Heelan, L. Heim, S. Heim, T. Heinemann, B. Heinrich, L. Hejbal, J. Helary, L. Hellman, S. Helsens, C. Henderson, J. Henderson, R. C. W. Heng, Y. Hengler, C. Henkelmann, S. Henrichs, A. Correia, A. M. Henriques Henrot-Versille, S. Herbert, G. H. Jimenez, Y. Hernandez Herten, G. Hertenberger, R. Hervas, L. Hesketh, G. G. Hessey, N. P. Hetherly, J. W. Hickling, R. Higon-Rodriguez, E. Hill, E. Hill, J. C. Hiller, K. H. Hillier, S. J. Hinchliffe, I. Hines, E. Hinman, R. R. Hirose, M. Hirschbuehl, D. Hobbs, J. Hod, N. Hodgkinson, M. C. Hodgson, P. Hoecker, A. Hoeferkamp, M. R. Hoenig, F. Hohlfeld, M. Hohn, D. Holmes, T. R. Homann, M. Hong, T. M. Hopkins, W. H. Horii, Y. Horton, A. J. Hostachy, J-Y. Hou, S. Hoummada, A. Howard, J. Howarth, J. Hrabovsky, M. Hristova, I. Hrivnac, J. Hryn'ova, T. Hrynevich, A. Hsu, C. Hsu, P. J. Hsu, S. -C. Hu, D. Hu, Q. Hu, X. Huang, Y. Hubacek, Z. Hubaut, F. Huegging, F. Huffman, T. B. Hughes, E. W. Hughes, G. Huhtinen, M. Huelsing, T. A. Huseynov, N. Huston, J. Huth, J. Iacobucci, G. Iakovidis, G. Ibragimov, I. Iconomidou-Fayard, L. Ideal, E. Idrissi, Z. Iengo, P. Igonkina, O. Iizawa, T. Ikegami, Y. Ikematsu, K. Ikeno, M. Ilchenko, Y. Iliadis, D. Ilic, N. Ince, T. Introzzi, G. Ioannou, P. Iodice, M. Iordanidou, K. Ippolito, V. Quiles, A. Irles Isaksson, C. Ishino, M. Ishitsuka, M. Ishmukhametov, R. Issever, C. Istin, S. Ponce, J. M. Iturbe Iuppa, R. Ivarsson, J. Iwanski, W. Iwasaki, H. Izen, J. M. Izzo, V. Jabbar, S. Jackson, B. Jackson, M. Jackson, P. Jaekel, M. R. Jain, V. Jakobs, K. Jakobsen, S. Jakoubek, T. Jakubek, J. Jamin, D. O. Jana, D. K. Jansen, E. Jansky, R. Janssen, J. Janus, M. Jarlskog, G. Javadov, N. Javurek, T. Jeanty, L. Jejelava, J. Jeng, G. -Y. Jennens, D. Jenni, P. Jentzsch, J. Jeske, C. Jezequel, S. Ji, H. Jia, J. Jiang, Y. Jiggins, S. Pena, J. Jimenez Jin, S. Jinaru, A. Jinnouchi, O. Joergensen, M. D. Johansson, P. Johns, K. A. Johnson, W. J. Jon-And, K. Jones, G. Jones, R. W. L. Jones, T. J. Jongmanns, J. Jorge, P. M. Joshi, K. D. Jovicevic, J. Ju, X. Juste Rozas, A. Kaci, M. Kaczmarska, A. Kado, M. Kagan, H. Kagan, M. Kahn, S. J. Kajomovitz, E. Kalderon, C. W. Kama, S. Kamenshchikov, A. Kanaya, N. Kaneti, S. Kantserov, V. A. Kanzaki, J. Kaplan, B. Kaplan, L. S. Kapliy, A. Kar, D. Karakostas, K. Karamaoun, A. Karastathis, N. Kareem, M. J. Karentzos, E. Karnevskiy, M. Karpov, S. N. Karpova, Z. M. Karthik, K. Kartvelishvili, V. Karyukhin, A. N. Kasahara, K. Kashif, L. Kass, R. D. Kastanas, A. Kataoka, Y. Kato, C. Katre, A. Katzy, J. Kawade, K. Kawagoe, K. Kawamoto, T. Kawamura, G. Kazama, S. Kazanin, V. F. Keeler, R. Kehoe, R. Keller, J. S. Kempster, J. J. Keoshkerian, H. Kepka, O. Kersevan, B. P. Kersten, S. Keyes, R. A. Khalil-zada, F. Khandanyan, H. Khanov, A. Kharlamov, A. G. Khoo, T. J. Khovanskiy, V. Khramov, E. Khubua, J. Kido, S. Kim, H. Y. Kim, S. H. Kim, Y. K. Kimura, N. Kind, O. M. King, B. T. King, M. King, S. B. Kirk, J. Kiryunin, A. E. Kishimoto, T. Kisielewska, D. Kiss, F. Kiuchi, K. Kivernyk, O. Kladiva, E. Klein, M. H. Klein, M. Klein, U. Kleinknecht, K. Klimek, P. Klimentov, A. Klingenberg, R. Klinger, J. A. Klioutchnikova, T. Kluge, E. -E. Kluit, P. Kluth, S. Knapik, J. Kneringer, E. Knoops, E. B. F. G. Knue, A. Kobayashi, A. Kobayashi, D. Kobayashi, T. Kobel, M. Kocian, M. Kodys, P. Koffas, T. Koffeman, E. Kogan, L. A. Kohlmann, S. Kohout, Z. Kohriki, T. Koi, T. Kolanoski, H. Kolb, M. Koletsou, I. Komar, A. A. Komori, Y. Kondo, T. Kondrashova, N. Koneke, K. Konig, A. C. Kono, T. Konoplich, R. Konstantinidis, N. Kopeliansky, R. Koperny, S. Opke, L. K. Kopp, A. K. Korcyl, K. Kordas, K. Korn, A. Korol, A. A. Korolkov, I. Korolkova, E. V. Kortner, O. Kortner, S. Kosek, T. Kostyukhin, V. V. Kotov, V. M. Kotwal, A. Kourkoumeli-Charalampidi, A. Kourkoumelis, C. Kouskoura, V. Koutsman, A. Kowalewski, R. Kowalski, T. Z. Kozanecki, W. Kozhin, A. S. Kramarenko, V. A. Kramberger, G. Krasnopevtsev, D. Krasny, M. W. Krasznahorkay, A. Kraus, J. K. Kravchenko, A. Kreiss, S. Kretz, M. Kretzschmar, J. Kreutzfeldt, K. Krieger, P. Krizka, K. Kroeninger, K. Kroha, H. Kroll, J. Kroseberg, J. Krstic, J. Kruchonak, U. Kruger, H. Krumnack, N. Kruse, A. Kruse, M. C. Kruskal, M. Kubota, T. Kucuk, H. Kuday, S. Kuehn, S. Kugel, A. Kuger, F. Kuhl, A. Kuhl, T. Kukhtin, V. Kukla, R. Kulchitsky, Y. Kuleshov, S. Kuna, M. Kunigo, T. Kupco, A. Kurashige, H. Kurochkin, Y. A. Kus, V. Kuwertz, E. S. Kuze, M. Kvita, J. Kwan, T. Kyriazopoulos, D. La Rosa, A. La Rosa Navarro, J. L. La Rotonda, L. Lacasta, C. Lacava, F. Lacey, J. Lacker, H. Lacour, D. Lacuesta, V. R. Ladygin, E. Lafaye, R. Laforge, B. Lagouri, T. Lai, S. Lambourne, L. Lammers, S. Lampen, C. L. Lampl, W. Lancon, E. Landgraf, U. Landon, M. P. J. Lang, V. S. Lange, J. C. Lankford, A. J. Lanni, F. Lantzsch, K. Lanza, A. Laplace, S. Lapoire, C. Laporte, J. F. Lari, T. Manghi, F. Lasagni Lassnig, M. Laurelli, P. Lavrijsen, W. Law, A. T. Laycock, P. Lazovich, T. Le Dortz, O. Le Guirriec, E. Le Menedeu, E. LeBlanc, M. LeCompte, T. Ledroit-Guillon, F. Lee, C. A. Lee, S. C. Lee, L. Lefebvre, G. Lefebvre, M. Legger, F. Leggett, C. Lehan, A. Miotto, G. Lehmann Lei, X. Leight, W. A. Leisos, A. Leister, A. G. Leite, M. A. L. Leitner, R. Lellouch, D. Lemmer, B. Leney, K. J. C. Lenz, T. Lenzi, B. Leone, R. Leone, S. Leonidopoulos, C. Leontsinis, S. Leroy, C. Lester, C. G. Levchenko, M. Leveque, J. Levin, D. Levinson, L. J. Levy, M. Lewis, A. Leyko, A. M. Leyton, M. Li, B. Li, H. Li, H. L. Li, L. Li, L. Li, S. Li, X. Li, Y. Liang, Z. Liao, H. Liberti, B. Liblong, A. Lichard, P. Lie, K. Liebal, J. Liebig, W. Limbach, C. Limosani, A. Lin, S. C. Lin, T. H. Linde, F. Lindquist, B. E. Linnemann, J. T. Lipeles, E. Lipniacka, A. Lisovyi, M. Liss, T. M. Lissauer, D. Lister, A. Litke, A. M. Liu, B. Liu, D. Liu, H. Liu, J. Liu, J. B. Liu, K. Liu, L. Liu, M. Liu, M. Liu, Y. Livan, M. Lleres, A. Merino, J. Llorente Lloyd, S. L. Lo Sterzo, F. Lobodzinska, E. Loch, P. Lockman, W. S. Loebinger, F. K. Loevschall-Jensen, A. E. Loew, K. M. Loginov, A. Lohse, T. Lohwasser, K. Lokajicek, M. Long, B. A. Long, J. D. Long, R. E. Looper, K. A. Lopes, L. Mateos, D. Lopez Paredes, B. Lopez Paz, I. Lopez Lorenz, J. Martinez, N. Lorenzo Losada, M. Loesel, P. J. Lou, X. Lounis, A. Love, J. Love, P. A. Lu, H. Lu, N. Lubatti, H. J. Luci, C. Lucotte, A. Luedtke, C. Luehring, F. Lukas, W. Luminari, L. Lundberg, O. Lund-Jensen, B. Lynn, D. Lysak, R. Lytken, E. Ma, H. Mad, L. L. Maccarrone, G. Macchiolo, A. Macdonald, C. M. Macek, B. Miguens, J. Machado Macina, D. Madaffari, D. Madar, R. Maddocks, H. J. Mader, W. F. Madsen, A. Maeda, J. Maeland, S. Maeno, T. Maevskiy, A. Magradze, E. Mahboubi, K. Mahlstedt, J. Maiani, C. Maidantchik, C. Maier, A. A. Maier, T. Maio, A. Majewski, S. Makida, Y. Makovec, N. Malaescu, B. Malecki, Pa. Maleev, V. P. Malek, F. Mallik, U. Malon, D. Malone, C. Maltezos, S. Malyshev, V. M. Malyukov, S. Mamuzic, J. Mancini, G. Mandelli, B. Mandelli, L. Mandic, I. Mandrysch, R. Maneira, J. Manhaes de Andrade Filho, L. Ramos, J. Manjarres Mann, A. Manousakis-Katsikakis, A. Mansoulie, B. Mantifel, R. Mantoani, M. Mapelli, L. March, L. Marchiori, G. Marcisovsky, M. Marino, C. P. Marjanovic, M. Marley, D. E. Marroquim, F. Marsden, S. P. Marshall, Z. Marti, L. F. Marti-Garcia, S. Martin, B. Martin, T. A. Martin, V. J. Latour, B. Martin dit Martinez, M. Martin-Haugh, S. Martoiu, V. S. Martyniuk, A. C. Marx, M. Marzano, F. Marzin, A. Masetti, L. Mashimo, T. Mashinistov, R. Masik, J. Maslennikov, A. L. Massa, I. Massa, L. Mastrandrea, P. Mastroberardino, A. Masubuchi, T. Mattig, P. Mattmann, J. Maurer, J. Maxfield, S. J. Maximov, D. A. Mazini, R. Mazza, S. M. Mc Goldrick, G. Mc Kee, S. P. McCarn, A. McCarthy, R. L. McCarthy, T. G. McCubbin, N. A. McFarlane, K. W. Mcfayden, J. A. Mchedlidze, G. McMahon, S. J. McPherson, R. A. Medinnis, M. Meehan, S. Mehlhase, S. Mehta, A. Meier, K. Meineck, C. Meirose, B. Mellado Garcia, B. R. Meloni, F. Mengarelli, A. Menke, S. Meoni, E. Mercurio, K. M. Mergelmeyer, S. Mermod, P. Merola, L. Meroni, C. Merritt, F. S. Messina, A. Metcalfe, J. Mete, A. S. Meyer, C. Meyer, C. Meyer, J-P. Meyer, J. Theenhausen, H. Meyer Zu Middleton, R. P. Miglioranzi, S. Mijovic, L. Mikenberg, G. Mikestikova, M. Mikuz, M. Milesi, M. Milic, A. Miller, D. W. Mills, C. Milov, A. Milstead, D. A. Minaenko, A. A. Minami, Y. Minashvili, I. A. Mincer, A. I. Mindur, B. Mineev, M. Ming, Y. Mir, L. M. Mistry, K. P. Mitani, T. Mitrevski, J. Mitsou, V. A. Miucci, A. Miyagawa, P. S. Mjornmark, J. U. Moa, T. Mochizuki, K. Mohapatra, S. Mohr, W. Molander, S. Moles-Valls, R. Monden, R. Moenig, K. Monini, C. Monk, J. Monnier, E. Montalbano, A. Berlingen, J. Montejo Monticelli, F. Monzani, S. Moore, R. W. Morange, N. Moreno, D. Llacer, M. Moreno Morettini, P. Mori, D. Mori, T. Morii, M. Morinaga, M. Morisbak, V. Moritz, S. Morley, A. K. Mornacchi, G. Morris, J. D. Mortensen, S. S. Morton, A. Morvaj, L. Mosidze, M. Moss, J. Motohashi, K. Mount, R. Mountricha, E. Mouraviev, S. V. Moyse, E. J. W. Muanza, S. Mudd, R. D. Mueller, F. Mueller, J. Mueller, R. S. P. Mueller, T. Muenstermann, D. Mullen, P. Mullier, G. A. Sanchez, F. J. Munoz Quijada, J. A. Murillo Murray, W. J. Musheghyan, H. Musto, E. Myagkov, A. G. Myska, M. Nachman, B. P. Nackenhorst, O. Nadal, J. Nagai, K. Nagai, R. Nagai, Y. Nagano, K. Nagarkar, A. Nagasaka, Y. Nagata, K. Nagel, M. Nagy, E. Nairz, A. M. Nakahama, Y. Nakamura, K. Nakamura, T. Nakano, I. Namasivayam, H. Garcia, R. F. Naranjo Narayan, R. Villar, D. I. Narrias Naumann, T. Navarro, G. Nayyar, R. Neal, H. A. Nechaeva, P. Yu. Neep, T. J. Nef, P. D. Negri, A. Negrini, M. Nektarijevic, S. Nellist, C. Nelson, A. Nemecek, S. Nemethy, P. Nepomuceno, A. A. Nessi, M. Neubauer, M. S. Neumann, M. Neves, R. M. Nevski, P. Newman, P. R. Nguyen, D. H. Nickerson, R. B. Nicolaidou, R. Nicquevert, B. Nielsen, J. Nikiforou, N. Nikiforov, A. Nikolaenko, V. Nikolic-Audit, I. Nikolopoulos, K. Nilsen, J. K. Nilsson, P. Ninomiya, Y. Nisati, A. Nisius, R. Nobe, T. Nomachi, M. Nomidis, I. Nooney, T. Norberg, S. Nordberg, M. Novgorodova, O. Nowak, S. Nozaki, M. Nozka, L. Ntekas, K. Hanninger, G. Nunes Nunnemann, T. Nurse, E. Nuti, F. O'grady, F. O'Neil, D. C. O'Shea, V. Oakham, F. G. Oberlack, H. Obermann, T. Ocariz, J. Ochi, A. Ochoa, I. Ochoa-Ricoux, J. P. Oda, S. Odaka, S. Ogren, H. Oh, A. Oh, S. H. Ohm, C. C. Ohman, H. Oide, H. Okamura, W. Okawa, H. Okumura, Y. Okuyama, T. Olariu, A. Pino, S. A. Olivares Damazio, D. Oliveira Olszewski, A. Olszowska, J. Onofre, A. Onogi, K. Onyisi, P. U. E. Oram, C. J. Oreglia, M. J. Oren, Y. Orestano, D. Orlando, N. Barrera, C. Oropeza Orr, R. S. Osculati, B. Ospanov, R. Otero y Garzon, G. Otono, H. Ouchrif, M. Ould-Saada, F. Ouraou, A. Oussoren, K. P. Ouyang, Q. Ovcharova, A. Owen, M. Owen, R. E. Ozcan, V. E. Ozturk, N. Pachal, K. Pages, A. Pacheco Aranda, C. Padilla Pagacova, M. Griso, S. Pagan Paganis, E. Paige, F. Pais, P. Pajchel, K. Palacino, G. Palestini, S. Palka, M. Pallin, D. Palma, A. Pan, Y. B. St Panagiotopoulou, E. Pandini, C. E. Vazquez, J. G. Panduro Pani, P. Panitkin, S. Pantea, D. Paolozzi, L. Papadopoulou, Th. D. Papageorgiou, K. Paramonov, A. Hernandez, D. Paredes Parker, M. A. Parker, K. A. Parodi, F. Parsons, J. A. Parzefall, U. Pasqualucci, E. Passaggio, S. Pastore, F. Pastore, Fr. Pasztor, G. Pataraia, S. Patel, N. D. Pater, J. R. Pauly, T. Pearce, J. Pearson, B. Pedersen, L. E. Pedersen, M. Lopez, S. Pedraza Pedro, R. Peleganchuk, S. V. Pelikan, D. Penc, O. Peng, C. Peng, H. Penning, B. Penwell, J. Perepelitsa, D. V. Codina, E. Perez Garcia-Estan, M. T. Perez Perini, L. Pernegger, H. Perrella, S. Peschke, R. Peshekhonov, V. D. Peters, K. Peters, R. F. Y. Petersen, B. A. Petersen, T. C. Petit, E. Petridis, A. Petridou, C. Petroff, P. Petrolo, E. Petrucci, F. Pettersson, N. E. Pezoa, R. Phillips, P. W. Piacquadio, G. Pianori, E. Picazio, A. Piccaro, E. Piccinini, M. Pickering, M. A. Piegaia, R. Pignotti, D. T. Pilcher, J. E. Pilkington, A. D. Pin, A. W. J. Pina, J. Pinamonti, M. Pinfold, J. L. Pingel, A. Pires, S. Pirumov, H. Pitt, M. Pizio, C. Plazak, L. Pleier, M. -A. Pleskot, V. Plotnikova, E. Plucinski, P. Pluth, D. Poettgen, R. Poggioli, L. Pohl, D. Polesello, G. Poley, A. Policicchio, A. Polifka, R. Polini, A. Pollard, C. S. Polychronakos, V. Pommes, K. Pontecorvo, L. Pope, B. G. Popeneciu, G. A. Popovic, D. S. Poppleton, A. Pospisil, S. Potamianos, K. Potrap, I. N. Potter, C. J. Potter, C. T. Poulard, G. Poveda, J. Pozdnyakov, V. Astigarraga, M. E. Pozo Pralavorio, P. Pranko, A. Prasad, S. Prell, S. Price, D. Price, L. E. Primavera, M. Prince, S. Proissl, M. Prokofiev, K. Prokoshin, F. Protopapadaki, E. Protopopescu, S. Proudfoot, J. Przybycien, M. Ptacek, E. Puddu, D. Pueschel, E. Puldon, D. Purohit, M. Puzo, P. Qian, J. Qin, G. Qin, Y. Quadt, A. Quarrie, D. R. Quayle, W. B. Queitsch-Maitland, M. Quilty, D. Raddum, S. Radeka, V. Radescu, V. Radhakrishnan, S. K. Radloff, P. Rados, P. Ragusa, F. Rahal, G. Rajagopalan, S. Rammensee, M. Rangel-Smith, C. Rauscher, F. Rave, S. Ravenscroft, T. Raymond, M. Read, A. L. Readioff, N. P. Rebuzzi, D. M. Redelbach, A. Redlinger, G. Reece, R. Reeves, K. Rehnisch, L. Reichert, J. Reisin, H. Rembser, C. Ren, H. Renaud, A. Rescigno, M. Resconi, S. Rezanova, O. L. Reznicek, P. Rezvani, R. Richter, R. Richter, S. Richter-Was, E. Ricken, O. Ridel, M. Rieck, P. Riegel, C. J. Rieger, J. Rifki, O. Rijssenbeek, M. Rimoldi, A. Rinaldi, L. Ristic, B. Ritsch, E. Riu, I. Rizatdinova, F. Rizvi, E. Robertson, S. H. Robichaud-Veronneau, A. Robinson, D. Robinson, J. E. M. Robson, A. Roda, C. Roe, S. Hne, O. R. Romaniouk, A. Romano, M. Saez, S. M. Romano Adam, E. Romero Rompotis, N. Ronzani, M. Roos, L. Ros, E. Rosati, S. Rosbach, K. Rose, P. Rosendahl, P. L. Rosenthal, O. Rossetti, V. Rossi, E. Rossi, L. P. Rosten, J. H. N. Rosten, R. Rotaru, M. Roth, I. Rothberg, J. Rousseau, D. Royon, C. R. Rozanov, A. Rozen, Y. Ruan, X. Rubbo, F. Rubinskiy, I. Rud, V. I. Rudolph, C. Rudolph, M. S. Ruehr, F. Ruiz-Martinez, A. Rurikova, Z. Rusakovich, N. A. Ruschke, A. Russell, H. L. Rutherfoord, J. P. Ruthmann, N. Ryabov, Y. F. Rybar, M. Rybkin, G. Ryder, N. C. Saavedra, A. F. Sabato, G. Sacerdoti, S. Saddique, A. Sadrozinski, H. F-W. Sadykov, R. Tehrani, F. Safai Saha, P. Sahinsoy, M. Saimpert, M. Saito, T. Sakamoto, H. Sakurai, Y. Salamanna, G. Salamon, A. Loyola, J. E. Salazar Saleem, M. Salek, D. De Bruin, P. H. Sales Salihagic, D. Salnikov, A. Salt, J. Salvatore, D. Salvatore, F. Salvucci, A. Salzburger, A. Sammel, D. Sampsonidis, D. Sanchez, A. Sanchez, J. Martinez, V. Sanchez Sandaker, H. Sandbach, R. L. Sander, H. G. Sanders, M. P. Sandhoff, M. Sandoval, C. Sandstroem, R. Sankey, D. P. C. Sannino, M. Sansoni, A. Santoni, C. Santonico, R. Santos, H. Castillo, I. Santoyo Sapp, K. Sapronov, A. Saraiva, J. G. Sarrazin, B. Sasaki, O. Sasaki, Y. Sato, K. Sauvage, G. Sauvan, E. Savage, G. Savard, P. Sawyer, C. Sawyer, L. Saxon, J. Sbarra, C. Sbrizzi, A. Scanlon, T. Scannicchio, D. A. Scarcella, M. Scarfone, V. Schaarschmidt, J. Schacht, P. Schaefer, D. Schaefer, R. Schaeffer, J. Schaepe, S. Schaetzel, S. Schafer, U. Schaffer, A. C. Schaile, D. Schamberger, R. D. Scharf, V. Schegelsky, V. A. Scheirich, D. Schernau, M. Schiavi, C. Schillo, C. Schioppa, M. Schlenker, S. Schmieden, K. Schmitt, C. Schmitt, S. Schmitt, S. Schmitz, S. Schneider, B. Schnellbach, Y. J. Schnoor, U. Schoeffel, L. Schoening, A. Schoenrock, B. D. Schopf, E. Schorlemmer, A. L. S. Schott, M. Schouten, D. Schovancova, J. Schramm, S. Schreyer, M. Schuh, N. Schultens, M. J. Schultz-Coulon, H. -C. Schulz, H. Schumacher, M. Schumm, B. A. Schune, Ph. Schwanenberger, C. Schwartzman, A. Schwarz, T. A. Schwegler, Ph. Schweiger, H. Schwemling, Ph. Schwienhorst, R. Schwindling, J. Schwindt, T. Sciacca, F. G. Scifo, E. Sciolla, G. Scuri, F. Scutti, F. Searcy, J. Sedov, G. Sedykh, E. Seema, P. Seidel, S. C. Seiden, A. Seifert, F. Seixas, J. M. Sekhniaidze, G. Sekhon, K. Sekula, S. J. Seliverstov, D. M. Semprini-Cesari, N. Serfon, C. Serin, L. Serkin, L. Serre, T. Sessa, M. Seuster, R. Severini, H. Sfiligoj, T. Sforza, F. Sfyrla, A. Shabalina, E. Shamim, M. Shan, L. Y. Shang, R. Shank, J. T. Shapiro, M. Shatalov, P. B. Shaw, K. Shaw, S. M. Shcherbakova, A. Shehu, C. Y. Sherwood, P. Shi, L. Shimizu, S. Shimmin, C. O. Shimojima, M. Shiyakova, M. Shmeleva, A. Saadi, D. Shoaleh Shochet, M. J. Shojaii, S. Shrestha, S. Shulga, E. Shupe, M. A. Sicho, P. Sidebo, P. E. Sidiropoulou, O. Sidorov, D. Sidoti, A. Siegert, F. Sijacki, Dj. Silva, J. Silver, Y. Silverstein, S. B. Simak, V. Simard, O. Simic, Lj. Simion, S. Simioni, E. Simmons, B. Simon, D. Sinervo, P. Sinev, N. B. Sioli, M. Siragusa, G. Sisakyan, A. N. Sivoklokov, S. Yu. Sjolin, J. Sjursen, T. B. Skinner, M. B. Skottowe, H. P. Skubic, P. Slater, M. Slavicek, T. Slawinska, M. Sliwa, K. Smakhtin, V. Smart, B. H. Smestad, L. Smirnov, S. Yu. Smirnov, Y. Smirnova, L. N. Smirnova, O. Smith, M. N. K. Smith, R. W. Smizanska, M. Smolek, K. Snesarev, A. A. Snidero, G. Snyder, S. Sobie, R. Socher, F. Soffer, A. Soh, D. A. Sokhrannyi, G. Solans, C. A. Solar, M. Solc, J. Soldatov, E. Yu. Soldevila, U. Solodkov, A. A. Soloshenko, A. Solovyanov, O. V. Solovyev, V. Sommer, P. Song, H. Y. Soni, N. Sood, A. Sopczak, A. Sopko, B. Sopko, V. Sorin, V. Sosa, D. Sosebee, M. Sotiropoulou, C. L. Soualah, R. Soukharev, A. M. South, D. Sowden, B. C. Spagnolo, S. Spalla, M. Spangenberg, M. Spano, F. Spearman, W. R. Sperlich, D. Spettel, F. Spighi, R. Spigo, G. Spiller, L. A. Spousta, M. Denis, R. D. St. Stabile, A. Staerz, S. Stahlman, J. Stamen, R. Stamm, S. Stanecka, E. Stanescu, C. Stanescu-Bellu, M. Stanitzki, M. M. Stapnes, S. Starchenko, E. A. Stark, J. Staroba, P. Starovoitov, P. Staszewski, R. Steinberg, P. Stelzer, B. Stelzer, H. J. Stelzer-Chilton, O. Stenzel, H. Stewart, G. A. Stillings, J. A. Stockton, M. C. Stoebe, M. Stoicea, G. Stolte, P. Stonjek, S. Stradling, A. R. Straessner, A. Stramaglia, M. E. Strandberg, J. Strandberg, S. Strandlie, A. Strauss, E. Strauss, M. Strizenec, P. Stroehmer, R. Strom, D. M. Stroynowski, R. Strubig, A. Stucci, S. A. Stugu, B. Styles, N. A. Su, D. Su, J. Subramaniam, R. Succurro, A. Suchek, S. Sugaya, Y. Suk, M. Sulin, V. V. Sultansoy, S. Sumida, T. Sun, S. Sun, X. Sundermann, J. E. Suruliz, K. Susinno, G. Sutton, M. R. Suzuki, S. Svatos, M. Swiatlowski, M. Sykora, I. Sykora, T. Ta, D. Taccini, C. Tackmann, K. Taenzer, J. Taffard, A. Tafirout, R. Taiblum, N. Takai, H. Takashima, R. Takeda, H. Takeshita, T. Takubo, Y. Talby, M. Talyshev, A. A. Tam, J. Y. C. Tan, K. G. Tanaka, J. Tanaka, R. Tanaka, S. Tannenwald, B. B. Araya, S. Tapia Tapprogge, S. Tarem, S. Tarrade, F. Tartarelli, G. F. Tas, P. Tasevsky, M. Tashiro, T. Tassi, E. Delgado, A. Tavares Tayalati, Y. Taylor, F. E. Taylor, G. N. Taylor, P. T. E. Taylor, W. Teischinger, F. A. Castanheira, M. Teixeira Dias Teixeira-Dias, P. Temming, K. K. Temple, D. Ten Kate, H. Teng, P. K. Teoh, J. J. Tepel, F. Terada, S. Terashi, K. Terron, J. Terzo, S. Testa, M. Teuscher, R. J. Theveneaux-Pelzer, T. Thomas, J. P. Thomas-Wilsker, J. Thompson, E. N. Thompson, P. D. Thompson, R. J. Thompson, A. S. Thomsen, L. A. Thomson, E. Thomson, M. Thun, R. P. Tibbetts, M. J. Torres, R. E. Ticse Tikhomirov, V. O. Tikhonov, Yu. A. Timoshenko, S. Tiouchichine, E. Tipton, P. Tisserant, S. Todome, K. Todorov, T. Todorova-Nova, S. Tojo, J. Tokar, S. Tokushuku, K. Tollefson, K. Tolley, E. Tomlinson, L. Tomoto, M. Tompkins, L. Toms, K. Torrence, E. Torres, H. Pastor, E. Torro Toth, J. Touchard, F. Tovey, D. R. Trefzger, T. Tremblet, L. Tricoli, A. Trigger, I. M. Trincaz-Duvoid, S. Tripiana, M. F. Trischuk, W. Trocme, B. Troncon, C. Trottier-McDonald, M. Trovatelli, M. Truong, L. Trzebinski, M. Trzupek, A. Tsarouchas, C. Tseng, J. C-L. Tsiareshka, P. V. Tsionou, D. Tsipolitis, G. Tsirintanis, N. Tsiskaridze, S. Tsiskaridze, V. Tskhadadze, E. G. Tsui, K. M. Tsukerman, I. I. Tsulaia, V. Tsuno, S. Tsybychev, D. Tudorache, A. Tudorache, V. Tuna, A. N. Tupputi, S. A. Turchikhin, S. Turecek, D. Turra, R. Turvey, A. J. Tuts, P. M. Tykhonov, A. Tylmad, M. Tyndel, M. Ueda, I. Ueno, R. Ughetto, M. Ukegawa, F. Unal, G. Undrus, A. Unel, G. Ungaro, F. C. Unno, Y. Unverdorben, C. Urban, J. Urquijo, P. Urrejola, P. Usai, G. Usanova, A. Vacavant, L. Vacek, V. Vachon, B. Valderanis, C. Valencic, N. Valentinetti, S. Valero, A. Valery, L. Valkar, S. Vallecorsa, S. Ferrer, J. A. Valls Van Den Wollenberg, W. Van Der Deijl, P. C. van der Geer, R. van der Graaf, H. van Eldik, N. van Gemmeren, P. van Nieuwkoop, J. van Vulpen, I. van Woerden, M. C. Vanadia, M. Vandelli, W. Vanguri, R. Vaniachine, A. Vannucci, F. Vardanyan, G. Vari, R. Varnes, E. W. Varol, T. Varouchas, D. Vartapetian, A. Varvell, K. E. Vazeille, F. Schroeder, T. Vazquez Veatch, J. Veloce, L. M. Veloso, F. Velz, T. Veneziano, S. Ventura, A. Ventura, D. Venturi, M. Venturi, N. Venturini, A. Vercesi, V. Verducci, M. Verkerke, W. Vermeulen, J. C. Vest, A. Vetterli, M. C. Viazlo, O. Vichou, I. Vickey, T. Boeriu, O. E. Vickey Viehhauser, G. H. A. Viel, S. Vigne, R. Villa, M. Perez, M. Villaplana Vilucchi, E. Vincter, M. G. Vinogradov, V. B. Vivarelli, I. Vaque, F. Vives Vlachos, S. Vladoiu, D. Vlasak, M. Vogel, M. Vokac, P. Volpi, G. Volpi, M. von der Schmitt, H. von Radziewski, H. von Toerne, E. Vorobel, V. Vorobev, K. Vos, M. Voss, R. Vossebeld, J. H. Vranjes, N. Milosavljevic, M. Vranjes Vrba, V. Vreeswijk, M. Vuillermet, R. Vukotic, I. Vykydal, Z. Wagner, P. Wagner, W. Wahlberg, H. Wahrmund, S. Wakabayashi, J. Walder, J. Walker, R. Walkowiak, W. Wang, C. Wang, F. Wang, H. Wang, H. Wang, J. Wang, J. Wang, K. Wang, R. Wang, S. M. Wang, T. Wang, T. Wang, X. Wanotayaroj, C. Warburton, A. Ward, C. P. Wardrope, D. R. Washbrook, A. Wasicki, C. Watkins, P. M. Watson, A. T. Watson, I. J. Watson, M. F. Watts, G. Watts, S. Waugh, B. M. Webb, S. Weber, M. S. Weber, S. W. Webster, J. S. Weidberg, A. R. Weinert, B. Weingarten, J. Weiser, C. Weits, H. Wells, P. S. Wenaus, T. Wengler, T. Wenig, S. Wermes, N. Werner, M. Werner, P. Wessels, M. Wetter, J. Whalen, K. Wharton, A. M. White, A. White, M. J. White, R. White, S. Whiteson, D. Wickens, F. J. Wiedenmann, W. Wielers, M. Wienemann, P. Wiglesworth, C. Wiik-Fuchs, A. M. Wildauer, A. Wilkens, H. G. Williams, H. H. Williams, S. Willis, C. Willocq, S. Wilson, A. Wilson, J. A. Wingerter-Seez, I. Winklmeier, F. Winter, B. T. Wittgen, M. Wittkowski, J. Wollstadt, S. J. Wolter, M. W. Wolters, H. Wosiek, B. K. Wotschack, J. Woudstra, M. J. Wozniak, K. W. Wu, M. Wu, M. Wu, S. L. Wu, X. Wu, Y. Wyatt, T. R. Wynne, B. M. Xella, S. Xu, D. Xu, L. Yabsley, B. Yacoob, S. Yakabe, R. Yamada, M. Yamaguchi, D. Yamaguchi, Y. Yamamoto, A. Yamamoto, S. Yamanaka, T. Yamauchi, K. Yamazaki, Y. Yan, Z. Yang, H. Yang, H. Yang, Y. Yao, W-M. Yap, Y. C. Yasu, Y. Yatsenko, E. Wong, K. H. Yau Ye, J. Ye, S. Yeletskikh, I. Yen, A. L. Yildirim, E. Yorita, K. Yoshida, R. Yoshihara, K. Young, C. Young, C. J. S. Youssef, S. Yu, D. R. Yu, J. Yu, J. M. Yu, J. Yuan, L. Yuen, S. P. Y. Yurkewicz, A. Yusuff, I. Zabinski, B. Zaidan, R. Zaitsev, A. M. Zalieckas, J. Zaman, A. Zambito, S. Zanello, L. Zanzi, D. Zeitnitz, C. Zeman, M. Zemla, A. Zeng, Q. Zengel, K. Zenin, O. Zenis, T. Zerwas, D. Zhang, D. Zhang, F. Zhang, G. Zhang, H. Zhang, J. Zhang, L. Zhang, R. Zhang, X. Zhang, Z. Zhao, X. Zhao, Y. Zhao, Z. Zhemchugov, A. Zhong, J. Zhou, B. Zhou, C. Zhou, L. Zhou, L. Zhou, M. Zhou, N. Zhu, C. G. Zhu, H. Zhu, J. Zhu, Y. Zhuang, X. Zhukov, K. Zibell, A. Zieminska, D. Zimine, N. I. Zimmermann, C. Zimmermann, S. Zinonos, Z. Zinser, M. Ziolkowski, M. Zivkovic, L. Zobernig, G. Zoccoli, A. Nedden, M. zur Zurzolo, G. Zwalinski, L. CA ATLAS Collaboration TI Search for flavour-changing neutral current top quark decays t -> Hq in pp collisions at root s=8 TeV with the ATLAS detector SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE Hadron-Hadron Scattering; Top Physics; Higgs Physics; FCNC Interactions ID MODEL HIGGS-BOSON; STANDARD MODEL; PARTON DISTRIBUTIONS; HADRONIC COLLISIONS; MATRIX-ELEMENTS; LHC; PAIR; NLO; COLLIDERS; PROGRAM AB A search for flavour-changing neutral current decays of a top quark to an up-type quark (q = u; c) and the Standard Model Higgs boson, where the Higgs boson decays to b (b) over bar, is presented. The analysis searches for top quark pair events in which one top quark decays to W b, with the W boson decaying leptonically, and the other top quark decays to Hq. The search is based on pp collisions at root s = 8TeV recorded in 2012 with the ATLAS detector at the CERN Large Hadron Collider and uses an integrated luminosity of 20.3 fb(-1). Data are analysed in the lepton-plus-jets final state, characterised by an isolated electron or muon and at least four jets. The search exploits the high multiplicity of b quark jets characteristic of signal events, and employs a likelihood discriminant that uses the kinematic differences between the signal and the background, which is dominated by t (t) over bar -> WbWb decays. No significant excess of events above the background expectation is found, and observed (expected) 95% CL upper limits of 0.56% (0.42%) and 0.61% (0.64%) are derived for the t -> Hc and t -> Hu branching ratios respectively. The combination of this search with other ATLAS searches in the H -> gamma gamma and H -> WW*, tau tau decay modes significantly improves the sensitivity, yielding observed (expected) 95% CL upper limits on the t -> Hc and t -> Hu branching ratios of 0.46% (0.25%) and 0.45% (0.29%) respectively. The corresponding combined observed (expected) upper limits on the vertical bar lambda(tcH)vertical bar and vertical bar lambda(tuH)vertical bar couplings are 0.13 (0.10) and 0.13 (0.10) respectively. These are the most restrictive direct bounds on t q H interactions measured so far. C1 [Jackson, P.; Lee, L.; Petridis, A.; Soni, N.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia. [Bouffard, J.; Edson, W.; Ernst, J.; Fischer, A.; Guindon, S.; Jain, V.] SUNY Albany, Dept Phys, Albany, NY 12222 USA. [Butt, A. I.; Czodrowski, P.; Dassoulas, J.; Gingrich, D. M.; Jabbar, S.; Karamaoun, A.; Moore, R. W.; Pinfold, J. L.; Saddique, A.; Vaque, F. Vives] Univ Alberta, Dept Phys, Edmonton, AB, Canada. [Cakir, O.; Ciftci, A. K.] Ankara Univ, Dept Phys, TR-06100 Ankara, Turkey. [Kuday, S.] Istanbul Aydin Univ, Istanbul, Turkey. [Sultansoy, S.] TOBB Univ Econ & Technol, Div Phys, Ankara, Turkey. [Barnovska, Z.; Berger, N.; Delmastro, M.; Di Ciaccio, L.; Elles, S.; Hryn'ova, T.; Jezequel, S.; Koletsou, I.; Lafaye, R.; Leveque, J.; Mastrandrea, P.; Sauvage, G.; Sauvan, E.; Simard, O.; Todorov, T.; Wingerter-Seez, I.; Yatsenko, E.] CNRS IN2P3, LAPP, Annecy Le Vieux, France. [Barnovska, Z.; Berger, N.; Delmastro, M.; Di Ciaccio, L.; Elles, S.; Hryn'ova, T.; Jezequel, S.; Koletsou, I.; Lafaye, R.; Leveque, J.; Mastrandrea, P.; Sauvage, G.; Sauvan, E.; Simard, O.; Todorov, T.; Wingerter-Seez, I.; Yatsenko, E.] Univ Savoie Mont Blanc, Annecy Le Vieux, France. [Blair, R. E.; Chekanov, S.; LeCompte, T.; Love, J.; Malon, D.; Nguyen, D. H.; Paramonov, A.; Price, L. E.; Proudfoot, J.; van Gemmeren, P.; Vaniachine, A.; Wang, R.; Zhang, J.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Cheu, E.; Johns, K. A.; Lampen, C. L.; Lampl, W.; Lei, X.; Leone, R.; Loch, P.; Nayyar, R.; O'grady, F.; Rutherfoord, J. P.; Shupe, M. A.; Varnes, E. W.; Veatch, J.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Brandt, A.; Bullock, D.; Cote, D.; Darmora, S.; De, K.; Farbin, A.; Feremenga, L.; Griffiths, J.; Hadavand, H. K.; Heelan, L.; Kim, H. Y.; Ozturk, N.; Schovancova, J.; Sosebee, M.; Stradling, A. R.; Usai, G.; Vartapetian, A.; White, A.; Yu, J.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. [Angelidakis, S.; Chouridou, S.; Fassouliotis, D.; Giokaris, N.; Ioannou, P.; Kourkoumelis, C.; Manousakis-Katsikakis, A.; Tsirintanis, N.] Univ Athens, Dept Phys, Athens, Greece. [Alexopoulos, T.; Benekos, N.; Dris, M.; Gazis, E. N.; Karakostas, K.; Karastathis, N.; Karentzos, E.; Leontsinis, S.; Maltezos, S.; Ntekas, K.; St Panagiotopoulou, E.; Papadopoulou, Th. D.; Tsipolitis, G.; Vlachos, S.] Natl Tech Univ Athens, Dept Phys, Zografos, Greece. [Abdinov, O.; Khalil-zada, F.] Azerbaijan Acad Sci, Inst Phys, Baku, Azerbaijan. [Anjos, N.; Bosman, M.; Casado, M. P.; Casolino, M.; Cavalli-Sforza, M.; Cortes-Gonzalez, A.; Farooque, T.; Fischer, C.; Fracchia, S.; Giangiobbe, V.; Parra, G. Gonzalez; Grinstein, S.; Helsens, C.; Juste Rozas, A.; Korolkov, I.; Lange, J. C.; Le Menedeu, E.; Paz, I. Lopez; Luedtke, C.; Martinez, M.; Mir, L. M.; Berlingen, J. Montejo; Pages, A. Pacheco; Aranda, C. Padilla; Riu, I.; Saavedra, A. F.; Sorin, V.; Succurro, A.; Tripiana, M. F.; Tsiskaridze, S.; Valery, L.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Aloisio, A.; Anjos, N.; Bosman, M.; Casado, M. P.; Casolino, M.; Cavalli-Sforza, M.; Cortes-Gonzalez, A.; Farooque, T.; Fischer, C.; Fracchia, S.; Giangiobbe, V.; Parra, G. Gonzalez; Grinstein, S.; Helsens, C.; Juste Rozas, A.; Korolkov, I.; Lange, J. C.; Le Menedeu, E.; Paz, I. Lopez; Luedtke, C.; Martinez, M.; Mir, L. M.; Berlingen, J. Montejo; Pages, A. Pacheco; Aranda, C. Padilla; Riu, I.; Saavedra, A. F.; Sorin, V.; Succurro, A.; Tripiana, M. F.; Tsiskaridze, S.; Valery, L.] Univ Autonoma Barcelona, Dept Fis, E-08193 Barcelona, Spain. [Agatonovic-Jovin, T.; Bogavac, D.; Bozic, I.; Ceradini, F.; Dimitrievska, A.; Hamity, G. N.; Krstic, J.; Marjanovic, M.; Popovic, D. S.; Sijacki, Dj.; Simic, Lj.; Vranjes, N.; Milosavljevic, M. Vranjes; Zivkovic, L.] Univ Belgrade, Inst Phys, Belgrade, Serbia. [Buanes, T.; Dale, O.; Eigen, G.; Kastanas, A.; Liebig, W.; Lipniacka, A.; Luedtke, C.; Lundberg, O.; Maeland, S.; Latour, B. Martin dit; Rosendahl, P. L.; Sjursen, T. B.; Smestad, L.; Stugu, B.; Zalieckas, J.] Univ Bergen, Dept Phys & Technol, Bergen, Norway. [Amadio, B. T.; Axen, B.; Barnett, R. M.; Beringer, J.; Bhimji, W.; Brosamer, J.; Calafiura, P.; Cerutti, F.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Einsweiler, K.; Farrell, S.; Gabrielli, A.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Heinemann, B.; Hinchliffe, I.; Hinman, R. R.; Holmes, T. R.; Jeanty, L.; Lavrijsen, W.; Leggett, C.; Luedtke, C.; Marshall, Z.; Ohm, C. C.; Ovcharova, A.; Griso, S. Pagan; Potamianos, K.; Pranko, A.; Quarrie, D. R.; Shapiro, M.; Sood, A.; Tibbetts, M. J.; Trottier-McDonald, M.; Tsulaia, V.; Viel, S.; Wang, H.; Yao, W-M.; Yu, D. R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [Aloisio, A.; Amadio, B. T.; Axen, B.; Barnett, R. M.; Beringer, J.; Bhimji, W.; Brosamer, J.; Calafiura, P.; Cerutti, F.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Einsweiler, K.; Farrell, S.; Gabrielli, A.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Heinemann, B.; Hinchliffe, I.; Hinman, R. R.; Holmes, T. R.; Jeanty, L.; Lavrijsen, W.; Leggett, C.; Luedtke, C.; Marshall, Z.; Ohm, C. C.; Ovcharova, A.; Griso, S. Pagan; Potamianos, K.; Pranko, A.; Quarrie, D. R.; Shapiro, M.; Sood, A.; Tibbetts, M. J.; Trottier-McDonald, M.; Tsulaia, V.; Viel, S.; Wang, H.; Yao, W-M.; Yu, D. R.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Biedermann, D.; Dietrich, J.; Giorgi, F. M.; Grancagnolo, S.; Herbert, G. H.; Hristova, I.; Kind, O. M.; Kolanoski, H.; Lacker, H.; Lohse, T.; Nikiforov, A.; Rehnisch, L.; Rieck, P.; Schulz, H.; Sperlich, D.; Stamm, S.; Nedden, M. zur] Humboldt Univ, Dept Phys, D-10099 Berlin, Germany. [Beck, H. P.; Cervelli, A.; Ereditato, A.; Haug, S.; Luedtke, C.; Marti, L. F.; Meloni, F.; Mullier, G. A.; Sciacca, F. G.; Stramaglia, M. E.; Stucci, S. A.; Weber, M. S.] Univ Bern, Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Beck, H. P.; Cervelli, A.; Ereditato, A.; Haug, S.; Luedtke, C.; Marti, L. F.; Meloni, F.; Mullier, G. A.; Sciacca, F. G.; Stramaglia, M. E.; Stucci, S. A.; Weber, M. S.] Univ Bern, High Energy Phys Lab, Bern, Switzerland. [Allport, P. P.; Aloisio, A.; Alonso, A.; Altheimer, A.; Bella, L. Aperio; Baca, M. J.; Bracinik, J.; Charlton, D. G.; Chisholm, A. S.; Daniells, A. C.; Gach, G. P.; Hawkes, C. M.; Head, S. J.; Hillier, S. J.; Levy, M.; Luedtke, C.; Mudd, R. D.; Quijada, J. A. Murillo; Newman, P. R.; Nikolopoulos, K.; Owen, R. E.; Slater, M.; Thomas, J. P.; Thompson, P. D.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Wilson, J. A.] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England. [Arik, M.; Istin, S.; Ozcan, V. E.] Bogazici Univ, Dept Phys, Istanbul, Turkey. [Beddall, A. J.; Beddall, A.] Gaziantep Univ, Dept Engn Phys, Gaziantep, Turkey. [Cetin, S. A.] Dogus Univ, Dept Phys, Istanbul, Turkey. [Alberghi, G. L.; Aloisio, A.; Alonso, A.; Altheimer, A.; Bellagamba, L.; Biondi, S.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruschi, M.; Corradi, M.; De Castro, S.; Fabbri, L.; Franchini, M.; Gabrielli, A.; Giacobbe, B.; Giorgi, F. M.; Grafstrom, P.; Manghi, F. Lasagni; Luedtke, C.; Maio, A.; Massa, I.; Massa, L.; Mengarelli, A.; Negrini, M.; Piccinini, M.; Polini, A.; Rinaldi, L.; Romano, M.; Sbarra, C.; Sbrizzi, A.; Semprini-Cesari, N.; Sidoti, A.; Sioli, M.; Spighi, R.; Tupputi, S. A.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Ist Nazl Fis Nucl, Sez Bologna, I-40126 Bologna, Italy. [Alberghi, G. L.; Biondi, S.; De Castro, S.; Fabbri, L.; Franchini, M.; Gabrielli, A.; Grafstrom, P.; Manghi, F. Lasagni; Maio, A.; Massa, I.; Massa, L.; Mengarelli, A.; Piccinini, M.; Romano, M.; Sbrizzi, A.; Semprini-Cesari, N.; Sidoti, A.; Sioli, M.; Tupputi, S. A.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Univ Bologna, Dipartimento Fis Astron, Bologna, Italy. [Arslan, O.; Bechtle, P.; Bernlochner, F. U.; Brock, I.; Bruscino, N.; Cioara, I. A.; Cristinziani, M.; Davey, W.; Desch, K.; Dingfelder, J.; Ehrenfeld, W.; Gaycken, G.; Geich-Gimbel, Ch.; Gonella, L.; Grefe, C.; Haefner, P.; Hagebock, S.; Hansen, M. C.; Hohn, D.; Huegging, F.; Janssen, J.; Kostyukhin, V. V.; Kraus, J. K.; Kroseberg, J.; Kruger, H.; Lantzsch, K.; Lenz, T.; Leyko, A. M.; Liebal, J.; Limbach, C.; Luedtke, C.; Mergelmeyer, S.; Mijovic, L.; Moles-Valls, R.; Obermann, T.; Pohl, D.; Ricken, O.; Sarrazin, B.; Schaepe, S.; Schopf, E.; Schultens, M. J.; Schwindt, T.; Scutti, F.; Seema, P.; Stillings, J. A.; Velz, T.; von Toerne, E.; Wagner, P.; Wang, T.; Wermes, N.; Wienemann, P.; Wiik-Fuchs, A. M.; Winter, B. T.; Wong, K. H. Yau; Yuen, S. P. Y.] Univ Bonn, Inst Phys, Bonn, Germany. [Ahlen, S. P.; Bernard, C.; Black, K. M.; Butler, J. M.; Dell'Asta, L.; Helary, L.; Kruskal, M.; Long, B. A.; Luedtke, C.; Shank, J. T.; Yan, Z.; Youssef, S.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Amelung, C.; Amundsen, G.; Artoni, G.; Barone, G.; Bensinger, J. R.; Bianchini, L.; Blocker, C.; Coffey, L.; Dhaliwal, S.; Loew, K. M.; Sciolla, G.; Venturini, A.; Zengel, K.] Brandeis Univ, Dept Phys, Waltham, MA 02254 USA. [Coutinho, Y. Amaral; Caloba, L. P.; Maidantchik, C.; Marroquim, F.; Nepomuceno, A. A.; Seixas, J. M.] Univ Fed Rio Janeiro COPPE EE IF, Rio De Janeiro, Brazil. [Cerqueira, A. S.; Manhaes de Andrade Filho, L.] Univ Fed Juiz de Fora, Elect Circuits Dept, Juiz de Fora, Brazil. [do Vale, M. A. B.] Fed Univ Sao Joao Rei UFSJ, Sao Joao Del Rei, Brazil. [Donadelli, M.; La Rosa Navarro, J. L.; Leite, M. A. L.] Univ Sao Paulo, Inst Fis, BR-01498 Sao Paulo, Brazil. [Adams, D. L.; Assamagan, K.; Begel, M.; Buttinger, W.; Chen, H.; Chernyatin, V.; Debbe, R.; Ernst, M.; Gibbard, B.; Gordon, H. A.; Iakovidis, G.; Klimentov, A.; Kouskoura, V.; Kravchenko, A.; Lanni, F.; Lissauer, D.; Lynn, D.; Ma, H.; Maeno, T.; Metcalfe, J.; Mountricha, E.; Nevski, P.; Nilsson, P.; Damazio, D. Oliveira; Paige, F.; Panitkin, S.; Perepelitsa, D. V.; Pleier, M. -A.; Polychronakos, V.; Protopopescu, S.; Purohit, M.; Radeka, V.; Rajagopalan, S.; Redlinger, G.; Snyder, S.; Steinberg, P.; Takai, H.; Undrus, A.; Wenaus, T.; Xu, L.; Ye, S.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. Transilvania Univ Brasov, Brasov, Romania. [Alexa, C.; Boldea, V.; Caprini, I.; Caprini, M.; Chitan, A.; Ciubancan, M.; Constantinescu, S.; Dita, P.; Dita, S.; Dobre, M.; Ducu, O. A.; Jinaru, A.; Martoiu, V. S.; Maurer, J.; Olariu, A.; Pantea, D.; Rotaru, M.; Stoicea, G.; Tudorache, A.; Tudorache, V.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Popeneciu, G. A.] Natl Inst Res & Dev Isotop & Mol Technol, Dept Phys, Cluj Napoca, Romania. Univ Politeh Bucharest, Bucharest, Romania. West Univ Timisoara, Timisoara, Romania. [Otero y Garzon, G.; Piegaia, R.; Reisin, H.; Sacerdoti, S.] Univ Buenos Aires, Dept Fis, Buenos Aires, DF, Argentina. [Arratia, M.; Barlow, N.; Batley, J. R.; Brochu, F. M.; Carter, J. R.; Chapman, J. D.; Cottin, G.; French, S. T.; Gillam, T. P. S.; Hill, J. C.; Kaneti, S.; Khoo, T. J.; Lester, C. G.; Luedtke, C.; Mueller, T.; Parker, M. A.; Robinson, D.; Rosten, J. H. N.; Thomson, M.; Ward, C. P.; Yusuff, I.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Bellerive, A.; Cree, G.; Di Valentino, D.; Koffas, T.; Lacey, J.; Leight, W. A.; McCarthy, T. G.; Nomidis, I.; Oakham, F. G.; Pasztor, G.; Tarrade, F.; Ueno, R.; Vincter, M. G.] Carleton Univ, Dept Phys, Ottawa, ON K1S 5B6, Canada. [Aleksa, M.; Gonzalez, B. Alvarez; Anders, G.; Anghinolfi, F.; Armbruster, A. J.; Arnaez, O.; Avolio, G.; Baak, M. A.; Backes, M.; Backhaus, M.; Barak, L.; Beermann, T. A.; Beltramello, O.; Bianco, M.; Bogaerts, J. A.; Boveia, A.; Boyd, J.; Burckhart, H.; Campana, S.; Garrido, M. D. M. Capeans; Carli, T.; Carrillo-Montoya, G. D.; Catinaccio, A.; Cattai, A.; Cerv, M.; Chromek-Burckhart, D.; Conti, G.; Dell'Acqua, A.; Deviveiros, P. O.; Di Girolamo, A.; Di Girolamo, B.; Dittus, F.; Dobos, D.; Dudarev, A.; Duhrssen, M.; Eifert, T.; Ellis, N.; Elsing, M.; Farthouat, P.; Fassnacht, P.; Feigl, S.; Feng, E. J.; Perez, S. Fernandez; Francis, D.; Fressard-Batraneanu, S. M.; Froidevaux, D.; Gadatsch, S.; Gillberg, D.; Glatzer, J.; Goossens, L.; Gorini, B.; Gray, H. M.; Gumpert, C.; Hawkings, R. J.; Correia, A. M. Henriques; Hervas, L.; Hoecker, A.; Huhtinen, M.; Iengo, P.; Jaekel, M. R.; Jakobsen, S.; Klioutchnikova, T.; Krasznahorkay, A.; Lapoire, C.; Lassnig, M.; Miotto, G. Lehmann; Lenzi, B.; Lichard, P.; Luedtke, C.; Macina, D.; Malyukov, S.; Mandelli, B.; Mapelli, L.; Marzin, A.; Milic, A.; Mornacchi, G.; Nairz, A. M.; Nakahama, Y.; Nessi, M.; Nicquevert, B.; Nordberg, M.; Oide, H.; Palestini, S.; Pauly, T.; Pernegger, H.; Peters, K.; Petersen, B. A.; Pommes, K.; Poppleton, A.; Poulard, G.; Poveda, J.; Astigarraga, M. E. Pozo; Prasad, S.; Rammensee, M.; Raymond, M.; Rembser, C.; Ritsch, E.; Roe, S.; Ruiz-Martinez, A.; Ruthmann, N.; Salzburger, A.; Schaefer, D.; Schlenker, S.; Schmieden, K.; Serfon, C.; Sforza, F.; Sfyrla, A.; Solans, C. A.; Spigo, G.; Staerz, S.; Stelzer, H. J.; Teischinger, F. A.; Ten Kate, H.; Tremblet, L.; Tricoli, A.; Tsarouchas, C.; Unal, G.; van Woerden, M. C.; Vandelli, W.; Voss, R.; Vuillermet, R.; Wells, P. S.; Wengler, T.; Wenig, S.; Werner, P.; Wilkens, H. G.; Wotschack, J.; Young, C. J. S.; Zwalinski, L.] CERN, Geneva, Switzerland. [Alison, J.; Anderson, K. J.; Toro, R. Camacho; Cheng, Y.; Dandoy, J. R.; Facini, G.; Fiascaris, M.; Gardner, R. W.; Ilchenko, Y.; Kapliy, A.; Kim, Y. K.; Krizka, K.; Li, H. L.; Merritt, F. S.; Miller, D. W.; Narayan, R.; Okumura, Y.; Onyisi, P. U. E.; Oreglia, M. J.; Penning, B.; Pilcher, J. E.; Saxon, J.; Shochet, M. J.; Swiatlowski, M.; Vukotic, I.; Webster, J. S.; Wu, M.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Blunier, S.; Carquin, E.; Diaz, M. A.; Ochoa-Ricoux, J. P.; Vogel, M.] Pontificia Univ Catolica Chile, Dept Fis, Santiago, Chile. [Brooks, W. K.; Kuleshov, S.; Pezoa, R.; Prokoshin, F.; Loyola, J. E. Salazar; Araya, S. Tapia; White, R.] Univ Tecn Federico Santa Maria, Dept Fis, Valparaiso, Chile. Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China. Univ Sci & Technol China, Dept Modern Phys, Hefei, Anhui, Peoples R China. Nanjing Univ, Dept Phys, Nanjing, Jiangsu, Peoples R China. Shandong Univ, Sch Phys, Shandong, Peoples R China. Shanghai Jiao Tong Univ, Shanghai Key Lab Particle Phys & Cosmol, Dept Phys & Astron, Shanghai 200030, Peoples R China. Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Dyndal, M.; Gilles, G.; Gris, Ph.; Liao, H.; Madar, R.; Pallin, D.; Saez, S. M. Romano; Santoni, C.; Simon, D.; Theveneaux-Pelzer, T.; Vazeille, F.] Clermont Univ, Lab Phys Corpusculaire, Clermont Ferrand, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Dyndal, M.; Gilles, G.; Gris, Ph.; Liao, H.; Madar, R.; Pallin, D.; Saez, S. M. Romano; Santoni, C.; Simon, D.; Theveneaux-Pelzer, T.; Vazeille, F.] Univ Clermont Ferrand, Clermont Ferrand, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Dyndal, M.; Gilles, G.; Gris, Ph.; Liao, H.; Madar, R.; Pallin, D.; Saez, S. M. Romano; Santoni, C.; Simon, D.; Theveneaux-Pelzer, T.; Vazeille, F.] CNRS IN2P3, Clermont Ferrand, France. [Alkire, S. P.; Altheimer, A.; Andeen, T.; Angerami, A.; Annovi, A.; Bain, T.; Brooijmans, G.; Carbone, R. M.; Cole, B.; Hu, D.; Hughes, E. W.; Iordanidou, K.; Klein, M. H.; Mohapatra, S.; Nikiforou, N.; Ochoa, I.; Parsons, J. A.; Smith, M. N. K.; Smith, R. W.; Thompson, E. N.; Tuts, P. M.; Wang, T.; Zhou, L.] Columbia Univ, Nevis Lab, Irvington, NY USA. [Alonso, A.; Besjes, G. J.; Dam, M.; Galster, G.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Joergensen, M. D.; Loevschall-Jensen, A. E.; Monk, J.; Mortensen, S. S.; Pedersen, L. E.; Petersen, T. C.; Pingel, A.; Wiglesworth, C.; Xella, S.] Univ Copenhagen, Niels Bohr Inst, Copenhagen, Denmark. [Cairo, V. M.; Capua, M.; Crosetti, G.; La Rotonda, L.; Mastroberardino, A.; Policicchio, A.; Salvatore, D.; Scarfone, V.; Schioppa, M.; Susinno, G.; Tassi, E.] INFN, Grp Collegato Cosenza, Lab Naz Frascati, Arcavacata Di Rende, Italy. [Cairo, V. M.; Capua, M.; Crosetti, G.; La Rotonda, L.; Mastroberardino, A.; Policicchio, A.; Salvatore, D.; Scarfone, V.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dipartimento Fis, I-87036 Arcavacata Di Rende, Italy. [Adamczyk, L.; Bold, T.; Dabrowski, W.; Grabowska-Bold, I.; Kisielewska, D.; Koperny, S.; Kowalski, T. Z.; Mindur, B.; Przybycien, M.; Zemla, A.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, PL-30059 Krakow, Poland. [Palka, M.; Richter-Was, E.] Jagiellonian Univ, Marian Smoluchowski Inst Phys, Krakow, Poland. [Banas, E.; de Renstrom, P. A. Bruckman; Chwastowski, J. J.; Derendarz, D.; Godlewski, J.; Gornicki, E.; Hajduk, Z.; Iwanski, W.; Kaczmarska, A.; Knapik, J.; Korcyl, K.; Luedtke, C.; Malecki, Pa.; Olszewski, A.; Olszowska, J.; Stanecka, E.; Staszewski, R.; Trzebinski, M.; Trzupek, A.; Wolter, M. W.; Wosiek, B. K.; Wozniak, K. W.; Zabinski, B.] Polish Acad Sci, Inst Nucl Phys, Krakow, Poland. [Cao, T.; Firan, A.; Hetherly, J. W.; Kama, S.; Kehoe, R.; Sekula, S. J.; Stroynowski, R.; Turvey, A. J.; Varol, T.; Wang, H.; Ye, J.; Zhao, X.; Zhou, L.] So Methodist Univ, Dept Phys, Dallas, TX 75275 USA. [Izen, J. M.; Leyton, M.; Meirose, B.; Namasivayam, H.; Reeves, K.] Univ Texas Dallas, Dept Phys, Richardson, TX 75083 USA. [Asbah, N.; Bessner, M.; Bloch, I.; Borroni, S.; Britzger, D.; Camarda, S.; Deterre, C.; Dutta, B.; Eckardt, C.; Filipuzzi, M.; Flaschel, N.; Glazov, A.; Gregor, I. M.; Grohsjean, A.; Haleem, M.; Hamnett, P. G.; Hengler, C.; Hiller, K. H.; Howarth, J.; Huang, Y.; Katzy, J.; Keller, J. S.; Kondrashova, N.; Kuhl, T.; Lobodzinska, E.; Lohwasser, K.; Mamuzic, J.; Medinnis, M.; Moenig, K.; Garcia, R. F. Naranjo; Naumann, T.; Peschke, R.; Petit, E.; Pirumov, H.; Poley, A.; Radescu, V.; Robinson, J. E. M.; Rubinskiy, I.; Schaefer, R.; Schmitt, S.; Sedov, G.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Styles, N. A.; Tackmann, K.; Wang, J.; Wasicki, C.; Yildirim, E.] DESY, Hamburg, Germany. [Asbah, N.; Bessner, M.; Bloch, I.; Borroni, S.; Britzger, D.; Camarda, S.; Deterre, C.; Dutta, B.; Eckardt, C.; Filipuzzi, M.; Flaschel, N.; Glazov, A.; Gregor, I. M.; Grohsjean, A.; Haleem, M.; Hamnett, P. G.; Hengler, C.; Hiller, K. H.; Howarth, J.; Huang, Y.; Katzy, J.; Keller, J. S.; Kondrashova, N.; Kuhl, T.; Lobodzinska, E.; Lohwasser, K.; Luedtke, C.; Mamuzic, J.; Medinnis, M.; Moenig, K.; Garcia, R. F. Naranjo; Naumann, T.; Peschke, R.; Petit, E.; Pirumov, H.; Poley, A.; Radescu, V.; Robinson, J. E. M.; Rubinskiy, I.; Schaefer, R.; Schmitt, S.; Sedov, G.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Styles, N. A.; Tackmann, K.; Wang, J.; Wasicki, C.; Yildirim, E.] DESY, Zeuthen, Germany. [Burmeister, I.; Dette, K.; Erdmann, J.; Esch, H.; Gossling, C.; Homann, M.; Jentzsch, J.; Klingenberg, R.; Kroeninger, K.] Tech Univ Dortmund, Inst Expt Phys 4, D-44221 Dortmund, Germany. [Anger, P.; Duschinger, D.; Friedrich, F.; Grohs, J. P.; Gutschow, C.; Hauswald, L.; Kobel, M.; Mader, W. F.; Novgorodova, O.; Rudolph, C.; Schnoor, U.; Siegert, F.; Socher, F.; Straessner, A.; Vest, A.; Wahrmund, S.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Arce, A. T. H.; Benjamin, D. P.; Bjergaard, D. M.; Bocci, A.; Cerio, B. C.; Goshaw, A. T.; Kajomovitz, E.; Kotwal, A.; Kruse, M. C.; Li, L.; Li, S.; Liu, M.; Oh, S. H.; Zhou, C.] Duke Univ, Dept Phys, Durham, NC 27706 USA. [Bristow, T. M.; Clark, P. J.; Dias, F. A.; Edwards, N. C.; Gao, Y.; Walls, F. M. Garay; Glaysher, P. C. F.; Harrington, R. D.; Leonidopoulos, C.; Martin, V. J.; Mills, C.; Pino, S. A. Olivares; Proissl, M.; Smart, B. H.; Washbrook, A.; Wynne, B. M.] Univ Edinburgh, Sch Phys & Astron, SUPA, Edinburgh, Midlothian, Scotland. [Antonelli, M.; Beretta, M.; Bilokon, H.; Chiarella, V.; Curatolo, M.; Di Nardo, R.; Esposito, B.; Gatti, C.; Giromini, P.; Laurelli, P.; Maccarrone, G.; Mancini, G.; Sansoni, A.; Testa, M.; Vilucchi, E.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Amoroso, S.; Annovi, A.; Arnold, H.; Betancourt, C.; Boehler, M.; Bruneliere, R.; Buehrer, F.; Burgard, C. D.; Buscher, D.; Cardillo, F.; Coniavitis, E.; Consorti, V.; Dang, N. P.; Dao, V.; Di Simone, A.; Herten, G.; Jakobs, K.; Javurek, T.; Jenni, P.; Kiss, F.; Koneke, K.; Kopp, A. K.; Kuehn, S.; Landgraf, U.; Luedtke, C.; Mahboubi, K.; Mohr, W.; Pagacova, M.; Parzefall, U.; Ronzani, M.; Rosbach, K.; Ruehr, F.; Rurikova, Z.; Sammel, D.; Schillo, C.; Schumacher, M.; Sommer, P.; Sundermann, J. E.; Ta, D.; Temming, K. K.; Tsiskaridze, V.; Ungaro, F. C.; von Radziewski, H.; Weiser, C.; Werner, M.; Zhang, L.; Zimmermann, S.] Univ Freiburg, Fak Math & Phys, D-79106 Freiburg, Germany. [Ancu, L. S.; Bell, W. H.; Noccioli, E. Benhar; De Mendizabal, J. Bilbao; Calace, N.; Clark, A.; Coccaro, A.; Delitzsch, C. M.; della Volpe, D.; Ferrere, D.; Gadomski, S.; Golling, T.; Gonzalez-Sevilla, S.; Gramling, J.; Guescini, F.; Iacobucci, G.; Katre, A.; Mermod, P.; Miucci, A.; Muenstermann, D.; Paolozzi, L.; Picazio, A.; Ristic, B.; Schramm, S.; Tykhonov, A.; Vallecorsa, S.; Wu, X.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Barberis, D.; Darbo, G.; Favareto, A.; Parodi, A. Ferretto; Gaudiello, A.; Gemme, C.; Guido, E.; Morettini, P.; Osculati, B.; Parodi, F.; Passaggio, S.; Rossi, L. P.; Sannino, M.; Schiavi, C.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Barberis, D.; Favareto, A.; Parodi, A. Ferretto; Gagliardi, G.; Gaudiello, A.; Guido, E.; Osculati, B.; Parodi, F.; Sannino, M.; Schiavi, C.] Univ Genoa, Dipartimento Fis, Genoa, Italy. [Jejelava, J.; Tskhadadze, E. G.] Javakhishvili Tbilisi State Univ, E Andronikashvili Inst Phys 4, Tbilisi, Rep of Georgia. [Djobava, T.; Durglishvili, A.; Khubua, J.; Mosidze, M.] Tbilisi State Univ, Inst High Energy Phys, Tbilisi, Rep of Georgia. [Dueren, M.; Kreutzfeldt, K.; Stenzel, H.] Univ Giessen, Phys Inst 2, D-35390 Giessen, Germany. [Bates, R. L.; Boutle, S. K.; Madden, W. D. Breaden; Britton, D.; Buckley, A. G.; Bussey, P.; Buttar, C. M.; Buzatu, A.; Cinca, D.; D'Auria, S.; Doyle, A. T.; Ferrando, J.; de Lima, D. E. Ferreira; Gul, U.; Knue, A.; Morton, A.; O'Shea, V.; Barrera, C. Oropeza; Owen, M.; Pollard, C. S.; Qin, G.; Quilty, D.; Ravenscroft, T.; Robson, A.; Denis, R. D. St.; Stewart, G. A.; Thompson, A. S.] Univ Glasgow, Sch Phys & Astron, SUPA, Glasgow, Lanark, Scotland. [Agricola, J.; Bindi, M.; Blumenschein, U.; Brandt, G.; Drechsler, E.; George, M.; Graber, L.; Grosse-Knetter, J.; Janus, M.; Kareem, M. J.; Kawamura, G.; Lai, S.; Lemmer, B.; Magradze, E.; Mantoani, M.; Mchedlidze, G.; Llacer, M. Moreno; Musheghyan, H.; Nackenhorst, O.; Nadal, J.; Quadt, A.; Rieger, J.; Schorlemmer, A. L. S.; Shabalina, E.; Stolte, P.; Weingarten, J.; Zinonos, Z.] Univ Gottingen, Inst Phys 2, D-37073 Gottingen, Germany. [Albrand, S.; Collot, J.; Crepe-Renaudin, S.; Delsart, P. A.; Gabaldon, C.; Genest, M. H.; Hostachy, J-Y.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Monini, C.; Stark, J.; Trocme, B.; Wu, M.] Univ Grenoble Alpes, Lab Phys Subatom & Cosmol, CNRS IN2P3, Grenoble, France. [McFarlane, K. W.] Hampton Univ, Dept Phys, Hampton, VA 23668 USA. [da Costa, J. Barreiro Guimaraes; Catastini, P.; Clark, B. L.; Franklin, M.; Huth, J.; Ippolito, V.; Lazovich, T.; Mateos, D. Lopez; Mercurio, K. M.; Morii, M.; Skottowe, H. P.; Spearman, W. R.; Sun, S.; Tolley, E.; Tuna, A. N.; Yen, A. L.; Zambito, S.] Harvard Univ, Lab Particle Phys & Cosmol, Cambridge, MA 02138 USA. [Andrei, V.; Baas, A. E.; Brandt, O.; Davygora, Y.; Djuvsland, J. I.; Dunford, M.; Geisler, M. P.; Hanke, P.; Jongmanns, J.; Kluge, E. -E.; Lang, V. S.; Meier, K.; Theenhausen, H. Meyer Zu; Villar, D. I. Narrias; Sahinsoy, M.; Scharf, V.; Schultz-Coulon, H. -C.; Stamen, R.; Starovoitov, P.; Suchek, S.; Wessels, M.] Heidelberg Univ, Kirchhoff Inst Phys, Heidelberg, Germany. [Anders, C. F.; Giulini, M.; Kolb, M.; Lisovyi, M.; Schaetzel, S.; Schmitt, S.; Schoening, A.; Sosa, D.] Heidelberg Univ, Inst Phys, Heidelberg, Germany. [Colombo, T.; Kretz, M.; Kugel, A.] Heidelberg Univ, ZITI Inst Tech Informat, Heidelberg, Germany. [Nagasaka, Y.] Hiroshima Inst Technol, Fac Appl Informat Sci, Hiroshima, Japan. [Bortolotto, V.; Chan, Y. L.; Castillo, L. R. Flores; Lu, H.; Salvucci, A.; Tsui, K. M.] Chinese Univ Hong Kong, Dept Phys, Shatin, Hong Kong, Peoples R China. [Bortolotto, V.] Univ Hong Kong, Dept Phys, Hong Kong, Hong Kong, Peoples R China. [Bortolotto, V.; Prokofiev, K.] Hong Kong Univ Sci & Technol, Dept Phys, Kowloon, Hong Kong, Peoples R China. [Choi, K.; Dattagupta, A.; Evans, H.; Gagnon, P.; Lammers, S.; Martinez, N. Lorenzo; Luehring, F.; Ogren, H.; Penwell, J.; Weinert, B.; Zieminska, D.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Jansky, R.; Kneringer, E.; Lukas, W.; Usanova, A.; Vigne, R.] Leopold Franzens Univ, Inst Astro & Teilchenphys, Innsbruck, Austria. [Argyropoulos, S.; Mallik, U.; Mandrysch, R.; Zaidan, R.] Univ Iowa, Iowa City, IA USA. [Chen, C.; Cochran, J.; De Lorenzi, F.; Krumnack, N.; Pluth, D.; Prell, S.] Iowa State Univ, Dept Phys & Astron, Ames, IA USA. [Ahmadov, F.; Aleksandrov, I. N.; Bednyakov, V. A.; Boyko, I. R.; Budagov, I. A.; Chelkov, G. A.; Cheplakov, A.; Chizhov, M. V.; Dedovich, D. V.; Demichev, M.; Gostkin, M. I.; Huseynov, N.; Javadov, N.; Karpov, S. N.; Karpova, Z. M.; Khramov, E.; Kotov, V. M.; Kruchonak, U.; Kukhtin, V.; Ladygin, E.; Minashvili, I. A.; Mineev, M.; Peshekhonov, V. D.; Plotnikova, E.; Potrap, I. N.; Pozdnyakov, V.; Rusakovich, N. A.; Sadykov, R.; Sapronov, A.; Shiyakova, M.; Sisakyan, A. N.; Soloshenko, A.; Vinogradov, V. B.; Yeletskikh, I.; Zhemchugov, A.; Zimine, N. I.] JINR Dubna, Joint Inst Nucl Res, Dubna, Russia. [Amako, K.; Aoki, M.; Arai, Y.; Hanagaki, K.; Ikegami, Y.; Ikeno, M.; Iwasaki, H.; Kanzaki, J.; Kohriki, T.; Kondo, T.; Kono, T.; Makida, Y.; Nagano, K.; Nakamura, K.; Nozaki, M.; Odaka, S.; Okuyama, T.; Sasaki, O.; Suzuki, S.; Takubo, Y.; Tanaka, S.; Terada, S.; Tokushuku, K.; Tsuno, S.; Unno, Y.; Yamada, M.; Yamamoto, A.; Yasu, Y.; Yoshida, R.] High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki, Japan. [Chen, Y.; Hasegawa, M.; Kido, S.; Kishimoto, T.; Kurashige, H.; Maeda, J.; Ochi, A.; Shimizu, S.; Takeda, H.; Yakabe, R.; Yamazaki, Y.; Yuan, L.] Kobe Univ, Grad Sch Sci, Kobe, Hyogo 657, Japan. [Ishino, M.; Kunigo, T.; Monden, R.; Sumida, T.; Tashiro, T.] Kyoto Univ, Fac Sci, Kyoto, Japan. [Takashima, R.] Kyoto Univ, Kyoto 612, Japan. [Kawagoe, K.; Oda, S.; Otono, H.; Tojo, J.] Kyushu Univ, Dept Phys, Fukuoka 812, Japan. [Verzini, M. J. Alconada; Alonso, F.; Arduh, F. A.; Dova, M. T.; Monticelli, F.] Univ Nacl La Plata, Inst Fis La Plata, La Plata, Argentina. [Verzini, M. J. Alconada; Alonso, F.; Arduh, F. A.; Dova, M. T.; Monticelli, F.] Consejo Nacl Invest Cient & Tecn, La Plata, Argentina. [Barton, A. E.; Beattie, M. D.; Borissov, G.; Bouhova-Thacker, E. V.; Dearnaley, W. J.; Fox, H.; Grimm, K.; Henderson, R. C. W.; Hughes, G.; Jones, R. W. L.; Kartvelishvili, V.; Long, R. E.; Love, P. A.; Maddocks, H. J.; Skinner, M. B.; Smizanska, M.; Walder, J.; Wharton, A. M.] Univ Lancaster, Dept Phys, Lancaster, England. [Chiodini, G.; Gorini, E.; Primavera, M.; Spagnolo, S.; Ventura, A.] Ist Nazl Fis Nucl, Sez Lecce, I-73100 Lecce, Italy. [Gorini, E.; Spagnolo, S.; Ventura, A.] Univ Salento, Dipartimento Matemat & Fis, Lecce, Italy. [Affolder, A. A.; Anders, J. K.; Annovi, A.; Antonov, A.; Artamonov, A.; Basalaev, A.; Bellerive, A.; Burdin, S.; D'Onofrio, M.; Dervan, P.; Gwilliam, C. B.; Hayward, H. S.; Jackson, M.; Jones, T. J.; Klein, M.; Klein, U.; Kretzschmar, J.; Laycock, P.; Lehan, A.; Maxfield, S. J.; Mehta, A.; Readioff, N. P.; Schnellbach, Y. J.; Vossebeld, J. H.] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 3BX, Merseyside, England. [Cindro, V.; Deliyergiyev, M.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Sfiligoj, T.; Sokhrannyi, G.] Jozef Stefan Inst, Dept Phys, Ljubljana, Slovenia. [Cindro, V.; Deliyergiyev, M.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Sfiligoj, T.; Sokhrannyi, G.] Univ Ljubljana, Ljubljana, Slovenia. [Bevan, A. J.; Bona, M.; Cerrito, L.; Fletcher, G.; Goddard, J. R.; Hays, J. M.; Hickling, R.; Landon, M. P. J.; Lloyd, S. L.; Morris, J. D.; Nooney, T.; Piccaro, E.; Rizvi, E.; Sandbach, R. L.; Sander, H. G.; Snidero, G.; Castanheira, M. Teixeira Dias] Queen Mary Univ London, Sch Phys & Astron, London, England. [Berry, T.; Blanco, J. E.; Boisvert, V.; Brooks, T.; Connelly, I. A.; Cowan, G.; Duguid, L.; Giannelli, M. Faucci; George, S.; Gibson, S. M.; Kempster, J. J.; Vazquez, J. G. Panduro; Pastore, Fr.; Savage, G.; Sowden, B. C.; Spano, F.; Teixeira-Dias, P.; Thomas-Wilsker, J.] Royal Holloway Univ London, Dept Phys, Surrey, England. [Butterworth, J. M.; Campanelli, M.; Casadei, D.; Chislett, R. T.; Christodoulou, V.; Cooper, B. D.; Davison, P.; Falla, R. J.; Freeborn, D.; Gregersen, K.; Ortiz, N. G. Gutierrez; Hesketh, G. G.; Jansen, E.; Jiggins, S.; Konstantinidis, N.; Korn, A.; Kucuk, H.; Lambourne, L.; Leney, K. J. C.; Martyniuk, A. C.; Mcfayden, J. A.; Nurse, E.; Richter, S.; Scanlon, T.; Sherwood, P.; Simmons, B.; Wardrope, D. R.; Waugh, B. M.] UCL, Dept Phys & Astron, London, England. [Greenwood, Z. D.; Grossi, G. C.; Jana, D. K.; Sawyer, L.; Subramaniam, R.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pandini, C. E.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.; Varouchas, D.; Yap, Y. C.] Univ Paris 06, Lab Phys Nucl & Hautes Energies, Paris, France. [Annovi, A.; Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pandini, C. E.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.; Varouchas, D.; Yap, Y. C.] Univ Paris Diderot, Paris, France. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pandini, C. E.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.; Varouchas, D.; Yap, Y. C.] CNRS IN2P3, Paris, France. [Akesson, T. P. A.; Annovi, A.; Antonov, A.; Artamonov, A.; Bocchetta, S. S.; Bryngemark, L.; Doglioni, C.; Floderus, A.; Hawkins, A. D.; Hedberg, V.; Ivarsson, J.; Jarlskog, G.; Lytken, E.; Mjornmark, J. U.; Smirnova, O.; Viazlo, O.] Lund Univ, Fysiska Inst, Lund, Sweden. [Barreiro, F.; Cantero, J.; De la Torre, H.; Del Peso, J.; Glasman, C.; Merino, J. Llorente; Terron, J.] Univ Autonoma Madrid, Dept Fis Teor C 15, Madrid, Spain. [Becker, M.; Bertella, C.; Blum, W.; Buscher, V.; Caputo, R.; Caudron, J.; Cuth, J.; Endner, O. C.; Ertel, E.; Fiedler, F.; Torregrosa, E. Fullana; Heck, T.; Hohlfeld, M.; Huelsing, T. A.; Karnevskiy, M.; Kleinknecht, K.; Opke, L. K.; Lin, T. H.; Masetti, L.; Mattmann, J.; Meyer, C.; Moritz, S.; Rave, S.; Sander, H. G.; Sanders, M. P.; Schaeffer, J.; Schafer, U.; Schmitt, C.; Schmitz, S.; Schott, M.; Schuh, N.; Simioni, E.; Tapprogge, S.; Urrejola, P.; Valderanis, C.; Wollstadt, S. J.; Zimmermann, C.; Zinser, M.] Johannes Gutenberg Univ Mainz, Inst Phys, D-55122 Mainz, Germany. [Balli, F.; Barnes, S. L.; Cox, B. E.; Da Via, C.; Forti, A.; Ponce, J. M. Iturbe; Joshi, K. D.; Keoshkerian, H.; Li, X.; Loebinger, F. K.; Marsden, S. P.; Masik, J.; Sanchez, F. J. Munoz; Neep, T. J.; Oh, A.; Ospanov, R.; Pater, J. R.; Peters, R. F. Y.; Pilkington, A. D.; Pin, A. W. J.; Price, D.; Qin, Y.; Queitsch-Maitland, M.; Schwanenberger, C.; Schweiger, H.; Shaw, S. M.; Thompson, R. J.; Tomlinson, L.; Watts, S.; Webb, S.; Woudstra, M. J.; Wyatt, T. R.] Univ Manchester, Sch Phys & Astron, Manchester, Lancs, England. [Aad, G.; Alio, L.; Barbero, M.; Coadou, Y.; Diaconu, C.; Diglio, S.; Djama, F.; Ducu, O. A.; Feligioni, L.; Gao, J.; Hallewell, G. D.; Hubaut, F.; Kahn, S. J.; Knoops, E. B. F. G.; Le Guirriec, E.; Liu, J.; Liu, K.; Madaffari, D.; Mochizuki, K.; Monnier, E.; Muanza, S.; Nagai, Y.; Nagy, E.; Pralavorio, P.; Rozanov, A.; Serre, T.; Talby, M.; Torres, R. E. Ticse; Tiouchichine, E.; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.] Aix Marseille Univ, CPPM, Marseille, France. [Aad, G.; Alio, L.; Barbero, M.; Coadou, Y.; Diaconu, C.; Diglio, S.; Djama, F.; Ducu, O. A.; Feligioni, L.; Gao, J.; Hallewell, G. D.; Hubaut, F.; Kahn, S. J.; Knoops, E. B. F. G.; Le Guirriec, E.; Liu, J.; Liu, K.; Madaffari, D.; Mochizuki, K.; Monnier, E.; Muanza, S.; Nagai, Y.; Nagy, E.; Pralavorio, P.; Rozanov, A.; Serre, T.; Talby, M.; Torres, R. E. Ticse; Tiouchichine, E.; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.] CNRS IN2P3, Marseille, France. [Bellomo, M.; Brau, B.; Dallapiccola, C.; Daya-Ishmukhametova, R. K.; Moyse, E. J. W.; Pais, P.; Pueschel, E.; Ventura, D.; Willocq, S.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Belanger-Champagne, C.; Chuinard, A. J.; Corriveau, F.; Keyes, R. A.; Mantifel, R.; Prince, S.; Robertson, S. H.; Robichaud-Veronneau, A.; Stockton, M. C.; Stoebe, M.; Vachon, B.; Schroeder, T. Vazquez; Wang, K.; Warburton, A.] McGill Univ, Dept Phys, Montreal, PQ, Canada. [Barberio, E. L.; Brennan, A. J.; Dawe, E.; Jennens, D.; Kubota, T.; Milesi, M.; Hanninger, G. Nunes; Nuti, F.; Rados, P.; Spiller, L. A.; Tan, K. G.; Taylor, G. N.; Taylor, P. T. E.; Urquijo, P.; Volpi, M.; Zanzi, D.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. [Amidei, D.; Chelstowska, M. A.; Cheng, H. C.; Dai, T.; Diehl, E. B.; Edgar, R. C.; Feng, H.; Ferretti, C.; Fleischmann, P.; Goldfarb, S.; Guan, L.; Hu, X.; Levin, D.; Liu, H.; Lu, N.; Marley, D. E.; Mc Kee, S. P.; McCarn, A.; Neal, H. A.; Qian, J.; Schwarz, T. A.; Searcy, J.; Sekhon, K.; Thun, R. P.; Wilson, A.; Wu, Y.; Yu, J. M.; Zhang, D.; Zhou, B.; Zhu, J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Abolins, M.; Arabidze, G.; Brock, R.; Chegwidden, A.; Fisher, W. C.; Halladjian, G.; Hauser, R.; Hayden, D.; Huston, J.; Linnemann, J. T.; Martin, B.; Pope, B. G.; Schoenrock, B. D.; Schwienhorst, R.; Tollefson, K.; Willis, C.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Alimonti, G.; Andreazza, A.; Besana, M. I.; Carminati, L.; Cavalli, D.; Costa, G.; Fanti, M.; Giugni, D.; Lari, T.; Mandelli, L.; Mazza, S. M.; Meroni, C.; Perini, L.; Pizio, C.; Ragusa, F.; Resconi, S.; Shojaii, S.; Stabile, A.; Tartarelli, G. F.; Troncon, C.; Turra, R.; Perez, M. Villaplana] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy. [Andreazza, A.; Carminati, L.; Fanti, M.; Mazza, S. M.; Perini, L.; Pizio, C.; Ragusa, F.; Shojaii, S.; Turra, R.; Perez, M. Villaplana] Univ Milan, Dipartimento Fis, Milan, Italy. [Harkusha, S.; Kulchitsky, Y.; Kurochkin, Y. A.; Tsiareshka, P. V.] Natl Acad Sci Belarus, BI Stepanov Inst Phys, Minsk, Byelarus. [Hrynevich, A.] Natl Sci & Educ Ctr Particle & High Energy Phys, Minsk, Byelarus. [Taylor, F. E.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Arguin, J-F.; Azuelos, G.; Dallaire, F.; Gauthier, L.; Leroy, C.; Rezvani, R.; Saadi, D. Shoaleh] Univ Montreal, Grp Particle Phys, Montreal, PQ, Canada. [Akimov, A. V.; Gavrilenko, I. L.; Komar, A. A.; Mashinistov, R.; Mouraviev, S. V.; Nechaeva, P. Yu.; Shmeleva, A.; Snesarev, A. A.; Sulin, V. V.; Tikhomirov, V. O.; Zhukov, K.] Acad Sci, PN Lebedev Inst Phys, Moscow, Russia. [Artamonov, A.; Gorbounov, P. A.; Khovanskiy, V.; Shatalov, P. B.; Tsukerman, I. I.] ITEP, Moscow, Russia. [Antonov, A.; Belotskiy, K.; Bulekov, O.; Dolgoshein, B. A.; Kantserov, V. A.; Krasnopevtsev, D.; Romaniouk, A.; Shulga, E.; Smirnov, S. Yu.; Smirnov, Y.; Soldatov, E. Yu.; Timoshenko, S.; Vorobev, K.] Natl Res Nucl Univ MEPhI, Moscow, Russia. [Boldyrev, A. S.; Gladilin, L. K.; Kramarenko, V. A.; Maevskiy, A.; Rud, V. I.; Sivoklokov, S. Yu.; Smirnova, L. N.; Turchikhin, S.] Moscow MV Lomonosov State Univ, DV Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Adomeit, S.; Bender, M.; Biebel, O.; Bock, C.; Bortfeldt, J.; Calfayan, P.; Chow, B. K. B.; Duckeck, G.; Elmsheuser, J.; Hertenberger, R.; Hoenig, F.; Legger, F.; Lorenz, J.; Loesel, P. J.; Maier, T.; Mann, A.; Mehlhase, S.; Meineck, C.; Mitrevski, J.; Mueller, R. S. P.; Nunnemann, T.; Rauscher, F.; Ruschke, A.; Sanders, M. P.; Schaile, D.; Unverdorben, C.; Vladoiu, D.; Walker, R.; Wittkowski, J.] Univ Munich, Fak Phys, Munich, Germany. [Barillari, T.; Bethke, S.; Bronner, J.; Compostella, G.; Cortiana, G.; Ecker, K. M.; Flowerdew, M. J.; Giuliani, C.; Goblirsch-Kolb, M.; Ince, T.; Kiryunin, A. E.; Kluth, S.; Kortner, O.; Kortner, S.; Kroha, H.; Macchiolo, A.; Maier, A. A.; Menke, S.; Mueller, F.; Nagel, M.; Nisius, R.; Nowak, S.; Oberlack, H.; Richter, R.; Salihagic, D.; Sandstroem, R.; Schacht, P.; Schwegler, Ph.; Spettel, F.; Stonjek, S.; Terzo, S.; von der Schmitt, H.; Wildauer, A.] Max Planck Inst Phys & Astrophys, Werner Heisenberg Inst, D-80805 Munich, Germany. [Fusayasu, T.; Shimojima, M.] Nagasaki Inst Appl Sci, Nagasaki, Japan. [Kawade, K.; Morvaj, L.; Onogi, K.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Grad Sch Sci, Nagoya, Aichi 4648601, Japan. [Kawade, K.; Morvaj, L.; Onogi, K.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Kobayashi Maskawa Inst, Nagoya, Aichi 4648601, Japan. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Carlino, G.; Cirotto, F.; Conventi, F.; De Asmundis, R.; Della Pietra, M.; Di Donato, C.; Doria, A.; Izzo, V.; Merola, L.; Perrella, S.; Rossi, E.; Sanchez, A.; Sekhniaidze, G.; Zurzolo, G.] Ist Nazl Fis Nucl, Sez Napoli, I-80125 Naples, Italy. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Cirotto, F.; Di Donato, C.; Merola, L.; Perrella, S.; Rossi, E.; Sanchez, A.] Univ Naples Federico II, Dipartimento Fis, Naples, Italy. [Gorelov, I.; Hoeferkamp, M. R.; Seidel, S. C.; Toms, K.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Caron, S.; Colasurdo, L.; Croft, V.; De Groot, N.; Filthaut, F.; Galea, C.; Konig, A. C.; Nektarijevic, S.; Strubig, A.] Radboud Univ Nijmegen Nikhef, Inst Math Astrophys & Particle Phys, Nijmegen, Netherlands. [Aben, R.; Angelozzi, I.; Beemster, L. J.; Bentvelsen, S.; Berge, D.; Bobbink, G. J.; Bos, K.; Brenner, L.; Butti, P.; Castelli, A.; Colijn, A. P.; de Jong, P.; Deigaard, I.; Deluca, C.; Duda, D.; Ferrari, P.; Hartjes, F.; Hessey, N. P.; Hod, N.; Igonkina, O.; Karastathis, N.; Kluit, P.; Koffeman, E.; Linde, F.; Mahlstedt, J.; Meyer, J.; Oussoren, K. P.; Sabato, G.; Salek, D.; Slawinska, M.; Valencic, N.; Valero, A.; Van Den Wollenberg, W.; Van Der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.; Weits, H.; Williams, S.] Nikhef Natl Inst Subat Phys, Amsterdam, Netherlands. [Aben, R.; Angelozzi, I.; Beemster, L. J.; Bentvelsen, S.; Berge, D.; Bobbink, G. J.; Bos, K.; Brenner, L.; Butti, P.; Castelli, A.; Colijn, A. P.; de Jong, P.; Deigaard, I.; Deluca, C.; Duda, D.; Ferrari, P.; Hartjes, F.; Hessey, N. P.; Hod, N.; Igonkina, O.; Karastathis, N.; Kluit, P.; Koffeman, E.; Linde, F.; Mahlstedt, J.; Meyer, J.; Oussoren, K. P.; Sabato, G.; Salek, D.; Slawinska, M.; Valencic, N.; Valero, A.; Van Den Wollenberg, W.; Van Der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.; Weits, H.; Williams, S.] Univ Amsterdam, Amsterdam, Netherlands. [Adelman, J.; Andari, N.; Burghgrave, B.; Chakraborty, D.; Cole, S.; Saha, P.; Yurkewicz, A.] No Illinois Univ, Dept Phys, De Kalb, IL USA. [Anisenkov, A. V.; Annovi, A.; Baldin, E. M.; Bobrovnikov, V. S.; Bogdanchikov, A. G.; Buzykaev, A. R.; Kazanin, V. F.; Kharlamov, A. G.; Korol, A. A.; Malyshev, V. M.; Maslennikov, A. L.; Maximov, D. A.; Peleganchuk, S. V.; Rezanova, O. L.; Soukharev, A. M.; Talyshev, A. A.; Tikhonov, Yu. A.] SB RAS, Budker Inst Nucl Phys, Novosibirsk, Russia. [Bernius, C.; Cranmer, K.; Haas, A.; Heinrich, L.; Kaplan, B.; Karthik, K.; Konoplich, R.; Kreiss, S.; Mincer, A. I.; Nemethy, P.; Neves, R. M.] NYU, Dept Phys, New York, NY 10003 USA. [Beacham, J. B.; Gan, K. K.; Ishmukhametov, R.; Kagan, H.; Kass, R. D.; Looper, K. A.; Pignotti, D. T.; Shrestha, S.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Fac Sci, Okayama, Japan. [Abbott, B.; Alhroob, M.; Bertsche, C.; Bertsche, D.; De Benedetti, A.; Gutierrez, P.; Hasib, A.; Norberg, S.; Pearson, B.; Rifki, O.; Saleem, M.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA. [Bousson, N.; Haley, J.; Jamin, D. O.; Khanov, A.; Rizatdinova, F.; Sidorov, D.; Yu, J.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA. [Chytka, L.; Hamal, P.; Hrabovsky, M.; Kvita, J.; Nozka, L.] Palacky Univ, RCPTM, Olomouc, Czech Republic. [Abreu, R.; Brau, J. E.; Brost, E.; Hopkins, W. H.; Majewski, S.; Potter, C. T.; Ptacek, E.; Radloff, P.; Shamim, M.; Sinev, N. B.; Strom, D. M.; Torrence, E.; Wanotayaroj, C.; Whalen, K.; Winklmeier, F.] Univ Oregon, Ctr High Energy Phys, Eugene, OR 97403 USA. [Ayoub, M. K.; Bassalat, A.; Becot, C.; Binet, S.; Bourdarios, C.; De Regie, J. B. De Vivie; Delgove, D.; Duot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Gkougkousis, E. L.; Grivaz, J. -F.; Guillemin, T.; Hariri, F.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Kado, M.; Lounis, A.; Makovec, N.; Morange, N.; Nellist, C.; Petroff, P.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Rybkin, G.; Schaffer, A. C.; Scifo, E.; Serin, L.; Simion, S.; Tanaka, R.; Zerwas, D.; Zhang, Z.; Zhao, Y.] Univ Paris 11, LAL, Orsay, France. [Ayoub, M. K.; Bassalat, A.; Becot, C.; Binet, S.; Bourdarios, C.; De Regie, J. B. De Vivie; Delgove, D.; Duot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Gkougkousis, E. L.; Grivaz, J. -F.; Guillemin, T.; Hariri, F.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Kado, M.; Lounis, A.; Makovec, N.; Morange, N.; Nellist, C.; Petroff, P.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Rybkin, G.; Schaffer, A. C.; Scifo, E.; Serin, L.; Simion, S.; Tanaka, R.; Zerwas, D.; Zhang, Z.; Zhao, Y.] CNRS IN2P3, Orsay, France. [Endo, M.; Nomachi, M.; Okamura, W.; Sugaya, Y.; Teoh, J. J.; Yamaguchi, Y.] Osaka Univ, Grad Sch Sci, Osaka, Japan. [Bugge, L.; Bugge, M. K.; Cameron, D.; Catmore, J. R.; Franconi, L.; Garonne, V.; Gjelsten, B. K.; Gramstad, E.; Morisbak, V.; Nilsen, J. K.; Ould-Saada, F.; Pajchel, K.; Pedersen, M.; Raddum, S.; Read, A. L.; Hne, O. R.; Sandaker, H.; Sandbach, R. L.; Stapnes, S.; Strandlie, A.] Univ Oslo, Dept Phys, Oslo, Norway. [Barr, A. J.; Becker, K.; Behr, J. K.; Beresford, L.; Cooper-Sarkar, A. M.; Ortuzar, M. Crispin; Dafinca, A.; Davies, E.; Frost, J. A.; Gallas, E. J.; Gupta, S.; Gwenlan, C.; Hall, D.; Hays, C. P.; Henderson, J.; Howard, J.; Huffman, T. B.; Issever, C.; Kalderon, C. W.; Kogan, L. A.; Lewis, A.; Nagai, K.; Nickerson, R. B.; Pickering, M. A.; Ryder, N. C.; Saavedra, A. F.; Tseng, J. C-L.; Viehhauser, G. H. A.; Weidberg, A. R.; Zhong, J.] Univ Oxford, Dept Phys, Oxford, England. [Conta, C.; Dondero, P.; Ferrari, R.; Fraternali, M.; Gaudio, G.; Introzzi, G.; Lanza, A.; Livan, M.; Negri, A.; Polesello, G.; Rebuzzi, D. M.; Rimoldi, A.; Vercesi, V.] Ist Nazl Fis Nucl, Sez Pavia, I-27100 Pavia, Italy. [Conta, C.; Dondero, P.; Fraternali, M.; Introzzi, G.; Livan, M.; Negri, A.; Rebuzzi, D. M.; Rimoldi, A.] Univ Pavia, Dipartimento Fis, I-27100 Pavia, Italy. [Balunas, W. K.; Brendlinger, K.; Fletcher, R. R. M.; Haney, B.; Heim, S.; Jackson, B.; Kroll, J.; Lipeles, E.; Miguens, J. Machado; Meyer, C.; Mistry, K. P.; Reichert, J.; Stahlman, J.; Thomson, E.; Vanguri, R.; Williams, H. H.; Yoshihara, K.] Univ Penn, Dept Phys, Philadelphia, PA 19104 USA. [Basalaev, A.; Ezhilov, A.; Fedin, O. L.; Gratchev, V.; Levchenko, M.; Maleev, V. P.; Ryabov, Y. F.; Schegelsky, V. A.; Sedykh, E.; Seliverstov, D. M.; Solovyev, V.] Natl Res Ctr, BP Konstantinov Petersburg Nucl Phys Inst, Kurchatov Inst, St Petersburg, Russia. [Annovi, A.; Beccherle, R.; Bertolucci, F.; Biesuz, N. V.; Cavasinni, V.; Chiarelli, G.; Del Prete, T.; Dell'Orso, M.; Donati, S.; Giannetti, P.; Leone, S.; Roda, C.; Scuri, F.; Sotiropoulou, C. L.; Spalla, M.; Volpi, G.; White, S.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy. [Annovi, A.; Beccherle, R.; Bertolucci, F.; Biesuz, N. V.; Cavasinni, V.; Chiarelli, G.; Del Prete, T.; Dell'Orso, M.; Donati, S.; Giannetti, P.; Leone, S.; Roda, C.; Scuri, F.; Sotiropoulou, C. L.; Spalla, M.; Volpi, G.; White, S.] Univ Pisa, Dipartimento Fis E Fermi, Pisa, Italy. [Bianchi, R. M.; Boudreau, J.; Escobar, C.; Hong, T. M.; Mueller, J.; Sapp, K.; Su, J.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Aguilar-Saavedra, J. A.; Dos Santos, S. P. Amor; Amorim, A.; Araque, J. P.; Cantrill, R.; Carvalho, J.; Castro, N. F.; De Sousa, M. J. Da Cunha Sargedas; Fiolhais, M. C. N.; Galhardo, B.; Gomes, A.; Goncalo, R.; Jorge, P. M.; Lopes, L.; Maneira, J.; Onofre, A.; Palma, A.; Pedro, R.; Pina, J.; Santos, H.; Saraiva, J. G.; Silva, J.; Delgado, A. Tavares; Veloso, F.; Wolters, H.] LIP, Lab Instrumentacao & Fis Expt Particulas, P-1000 Lisbon, Portugal. [Amorim, A.; Muino, P. Conde; De Sousa, M. J. Da Cunha Sargedas; Gomes, A.; Jorge, P. M.; Miguens, J. Machado; Maneira, J.; Palma, A.; Pedro, R.; Pina, J.; Delgado, A. Tavares] Univ Lisbon, Fac Ciencias, P-1699 Lisbon, Portugal. [Dos Santos, S. P. Amor; Carvalho, J.; Fiolhais, M. C. N.; Galhardo, B.; Veloso, F.; Wolters, H.] Univ Coimbra, Dept Phys, Coimbra, Portugal. [Gomes, A.; Maio, A.; Pina, J.; Saraiva, J. G.; Silva, J.] Univ Lisbon, Ctr Fis Nucl, P-1699 Lisbon, Portugal. [Onofre, A.] Univ Minho, Dept Fis, Braga, Portugal. [Aguilar-Saavedra, J. A.] Univ Granada, Dept Fis Teor & Cosmos, Granada, Spain. [Aguilar-Saavedra, J. A.] Univ Granada, CAFPE, Granada, Spain. Univ Nova Lisboa, Dept Fis, Caparica, Portugal. Univ Nova Lisboa, CEFITEC Fac Ciencias & Tecnol, Caparica, Portugal. [Chudoba, J.; Havranek, M.; Hejbal, J.; Jakoubek, T.; Kepka, O.; Kupco, A.; Kus, V.; Lokajicek, M.; Lysak, R.; Marcisovsky, M.; Mikestikova, M.; Nemecek, S.; Penc, O.; Sicho, P.; Staroba, P.; Svatos, M.; Tasevsky, M.; Vrba, V.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Augsten, K.; Caforio, D.; Gallus, P.; Guenther, J.; Hubacek, Z.; Jakubek, J.; Kohout, Z.; Myska, M.; Pospisil, S.; Seifert, F.; Simak, V.; Slavicek, T.; Smolek, K.; Solar, M.; Solc, J.; Sopczak, A.; Sopko, B.; Sopko, V.; Suk, M.; Turecek, D.; Vacek, V.; Vlasak, M.; Vokac, P.; Vykydal, Z.; Zeman, M.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Balek, P.; Berta, P.; Cerny, K.; Chalupkova, I.; Davidek, T.; Dolejsi, J.; Dolezal, Z.; Faltova, J.; Kodys, P.; Kosek, T.; Leitner, R.; Pleskot, V.; Reznicek, P.; Scheirich, D.; Spousta, M.; Sykora, T.; Tas, P.; Todorova-Nova, S.; Valkar, S.; Vorobel, V.] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic. [Borisov, A.; Cheremushkina, E.; Denisov, S. P.; Fakhrutdinov, R. M.; Fenyuk, A. B.; Golubkov, D.; Horii, Y.; Kamenshchikov, A.; Karyukhin, A. N.; Kozhin, A. S.; Minaenko, A. A.; Myagkov, A. G.; Nikolaenko, V.; Solodkov, A. A.; Solovyanov, O. V.; Starchenko, E. A.; Zaitsev, A. M.; Zenin, O.] NRC KI, State Res Ctr, Inst High Energy Phys Protvino, Moscow, Russia. [Adye, T.; Baines, J. T.; Barnett, B. M.; Burke, S.; Dewhurst, A.; Dopke, J.; Emeliyanov, D.; Gallop, B. J.; Gee, C. N. P.; Haywood, S. J.; Kirk, J.; Martin-Haugh, S.; McCubbin, N. A.; McMahon, S. J.; Middleton, R. P.; Murray, W. J.; Phillips, P. W.; Sankey, D. P. C.; Sawyer, C.; Tyndel, M.; Wickens, F. J.; Wielers, M.] Rutherford Appleton Lab, Particle Phys Dept, Didcot OX11 0QX, Oxon, England. [Anulli, F.; Bagiacchi, P.; Bagnaia, P.; Bauce, M.; Bini, C.; Ciapetti, G.; De Pedis, D.; De Salvo, A.; Di Domenico, A.; Falciano, S.; Gauzzi, P.; Gentile, S.; Giagu, S.; Gustavino, G.; Kuna, M.; Lacava, F.; Luci, C.; Luminari, L.; Marzano, F.; Messina, A.; Monzani, S.; Nisati, A.; Pasqualucci, E.; Petrolo, E.; Pontecorvo, L.; Rescigno, M.; Rosati, S.; Tehrani, F. Safai; Vanadia, M.; Vari, R.; Veneziano, S.; Verducci, M.; Zanello, L.] Ist Nazl Fis Nucl, Sez Roma, Rome, Italy. [Bagiacchi, P.; Bagnaia, P.; Bauce, M.; Bini, C.; Ciapetti, G.; Di Domenico, A.; Gauzzi, P.; Gentile, S.; Giagu, S.; Gustavino, G.; Kuna, M.; Lacava, F.; Luci, C.; Messina, A.; Monzani, S.; Vanadia, M.; Verducci, M.; Zanello, L.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Aielli, G.; Camarri, P.; Cardarelli, R.; Di Ciaccio, A.; Iuppa, R.; Liberti, B.; Salamon, A.; Santonico, R.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, Rome, Italy. [Aielli, G.; Camarri, P.; Di Ciaccio, A.; Iuppa, R.; Santonico, R.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy. [Bacci, C.; Baroncelli, A.; Biglietti, M.; Ceradini, F.; Di Micco, B.; Farilla, A.; Graziani, E.; Iodice, M.; Orestano, D.; Pastore, F.; Petrucci, F.; Puddu, D.; Salamanna, G.; Sessa, M.; Stanescu, C.; Taccini, C.] Ist Nazl Fis Nucl, Sez Roma Tre, Rome, Italy. [Bacci, C.; Ceradini, F.; Di Micco, B.; Orestano, D.; Pastore, F.; Petrucci, F.; Puddu, D.; Salamanna, G.; Sessa, M.; Taccini, C.] Univ Rome Tre, Dipartimento Matemat & Fis, I-00146 Rome, Italy. [Benchekroun, D.; Chafaq, A.; Hoummada, A.] Univ Hassan 2, Reseau Univ Phys Hautes Energies, Fac Sci Ain Chock, Casablanca, Morocco. [Ghazlane, H.] Ctr Natl Energie Sci Tech Nucl, Rabat, Morocco. [El Kacimi, M.; Goujdami, D.] Univ Cadi Ayyad, Fac Sci Semlalia, LPHEA, Marrakech, Morocco. [Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] Univ Mohamed Premier, Fac Sci, Oujda, Morocco. [Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] LPTPM, Oujda, Morocco. [El Moursli, R. Cherkaoui; Fassi, F.; Haddad, N.; Idrissi, Z.] Univ Mohammed 5, Fac Sci, Rabat, Morocco. [Annovi, A.; Antonov, A.; Artamonov, A.; Bachacou, H.; Bauer, F.; Besson, N.; Blanchard, J. -B.; Boonekamp, M.; Calandri, A.; Chevalier, L.; Muino, P. Conde; Hoffmann, M. Dano; Deliot, F.; Etienvre, A. I.; Formica, A.; Giraud, P. F.; Da Costa, J. Goncalves Pinto Firmino; Guyot, C.; Hanna, R.; Hassani, S.; Kivernyk, O.; Kozanecki, W.; Kukla, R.; Lancon, E.; Laporte, J. F.; Maiani, C.; Mansoulie, B.; Meyer, J-P.; Nicolaidou, R.; Ouraou, A.; Protopapadaki, E.; Royon, C. R.; Saimpert, M.; Schoeffel, L.; Schune, Ph.; Schwemling, Ph.; Schwindling, J.] CEA Saclay, DSM IRFU, Inst Rech Lois Fondament Univers, Commissariat Energie Atom & Energies Alternatives, Gif Sur Yvette, France. [Battaglia, M.; Debenedetti, C.; Grabas, H. M. X.; Grillo, A. A.; Hance, M.; Kuhl, A.; La Rosa, A.; Law, A. T.; Liang, Z.; Litke, A. M.; Lockman, W. S.; Nielsen, J.; Reece, R.; Rose, P.; Sadrozinski, H. F-W.; Schumm, B. A.; Seiden, A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Alpigiani, C.; Blackburn, D.; Goussiou, A. G.; Hsu, S. -C.; Johnson, W. J.; Lubatti, H. J.; Marx, M.; Meehan, S.; Rompotis, N.; Rosten, R.; Rothberg, J.; Russell, H. L.; De Bruin, P. H. Sales; Pastor, E. Torro; Watts, G.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Anastopoulos, C.; Annovi, A.; Antonov, A.; Artamonov, A.; Costanzo, D.; Donszelmann, T. Cuhadar; Dawson, I.; Fletcher, G. T.; Hamity, G. N.; Hodgkinson, M. C.; Hodgson, P.; Johansson, P.; Klinger, J. A.; Korolkova, E. V.; Kyriazopoulos, D.; Paredes, B. Lopez; Macdonald, C. M.; Miyagawa, P. S.; Paganis, E.; Parker, K. A.; Tovey, D. R.; Vickey, T.; Boeriu, O. E. Vickey] Univ Sheffield, Dept Phys & Astron, Sheffield, S Yorkshire, England. [Hasegawa, Y.; Takeshita, T.; Zurzolo, G.] Shinshu Univ, Dept Phys, Nagano, Japan. [Atlay, N. B.; Buchholz, P.; Czirr, H.; Fleck, I.; Gaur, B.; Ghasemi, S.; Ibragimov, I.; Ikematsu, K.; Rosenthal, O.; Walkowiak, W.; Ziolkowski, M.] Univ Siegen, Facbereich Phys, D-57068 Siegen, Germany. [Buat, Q.; Horton, A. J.; Mori, D.; O'Neil, D. C.; Pachal, K.; Stelzer, B.; Temple, D.; Torres, H.; van Nieuwkoop, J.; Vetterli, M. C.] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada. [Barklow, T.; Bartoldus, R.; Bawa, H. S.; Black, J. E.; Cogan, J. G.; Fulsom, B. G.; Gao, Y. S.; Garelli, N.; Grenier, P.; Ilic, N.; Kagan, M.; Kocian, M.; Koi, T.; Malone, C.; Moss, J.; Mount, R.; Nachman, B. P.; Nef, P. D.; Piacquadio, G.; Rubbo, F.; Salnikov, A.; Schwartzman, A.; Strauss, E.; Su, D.; Tompkins, L.; Wittgen, M.; Young, C.; Zeng, Q.] SLAC Natl Accelerator Lab, Stanford, CA USA. [Astalos, R.; Bartos, P.; Blazek, T.; Plazak, L.; Sykora, I.; Tokar, S.; Zenis, T.] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia. [Antos, J.; Bruncko, D.; Kladiva, E.; Strizenec, P.; Urban, J.] Slovak Acad Sci, Inst Expt Phys, Dept Subnucl Phys, Kosice 04353, Slovakia. [Castaneda-Miranda, E.; Hamilton, A.; Lee, C. A.; Yacoob, S.] Univ Cape Town, Dept Phys, ZA-7925 Cape Town, South Africa. [Aurousseau, M.; Connell, S. H.; Govender, N.] Univ Johannesburg, Dept Phys, Johannesburg, South Africa. [Hsu, C.; Kar, D.; March, L.; Mellado Garcia, B. R.; Ruan, X.] Univ Witwatersrand, Sch Phys, Johannesburg, South Africa. [Abulaiti, Y.; Akerstedt, H.; Asman, B.; Bendtz, K.; Bertoli, G.; Bylund, O. Bessidskaia; Bohm, C.; Clement, C.; Cribbs, W. A.; Hellman, S.; Jon-And, K.; Khandanyan, H.; Klimek, P.; Lundberg, O.; Milstead, D. A.; Moa, T.; Molander, S.; Pani, P.; Plucinski, P.; Poettgen, R.; Rossetti, V.; Shcherbakova, A.; Silverstein, S. B.; Sjolin, J.; Strandberg, S.; Tylmad, M.; Ughetto, M.] Stockholm Univ, Dept Phys, S-10691 Stockholm, Sweden. [Abulaiti, Y.; Akerstedt, H.; Asman, B.; Bendtz, K.; Bertoli, G.; Bylund, O. Bessidskaia; Cribbs, W. A.; Hellman, S.; Jon-And, K.; Khandanyan, H.; Klimek, P.; Lundberg, O.; Milstead, D. A.; Moa, T.; Molander, S.; Pani, P.; Plucinski, P.; Poettgen, R.; Rossetti, V.; Shcherbakova, A.; Sjolin, J.; Strandberg, S.; Tylmad, M.; Ughetto, M.] Oskar Klein Ctr, Stockholm, Sweden. [Lund-Jensen, B.; Sidebo, P. E.; Strandberg, J.] Royal Inst Technol, Dept Phys, S-10044 Stockholm, Sweden. [Balestri, T.; Bee, C. P.; Campoverde, A.; Chen, K.; Hobbs, J.; Jia, J.; Li, H.; Lindquist, B. E.; McCarthy, R. L.; Montalbano, A.; Puldon, D.; Radhakrishnan, S. K.; Rijssenbeek, M.; Schamberger, R. D.; Tsybychev, D.; Zaman, A.; Zhou, M.] SUNY Stony Brook, Dept Phys & Astron & Chem, Stony Brook, NY 11794 USA. [Allbrooke, B. M. M.; Asquith, L.; Cerri, A.; Barajas, C. A. Chavez; De Sanctis, U.; De Santo, A.; Grout, Z. J.; Potter, C. J.; Salvatore, F.; Castillo, I. Santoyo; Shehu, C. Y.; Suruliz, K.; Sutton, M. R.; Vivarelli, I.] Univ Sussex, Dept Phys & Astron, Brighton, E Sussex, England. [Black, C. W.; Cuthbert, C.; Finelli, K. D.; Jeng, G. -Y.; Limosani, A.; Morley, A. K.; Patel, N. D.; Saavedra, A. F.; Scarcella, M.; Varvell, K. E.; Wang, J.; Watson, I. J.; Yabsley, B.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. [Abdallah, J.; Hou, S.; Hsu, P. J.; Lee, S. C.; Lin, S. C.; Liu, B.; Liu, D.; Lo Sterzo, F.; Mazini, R.; Shi, L.; Soh, D. A.; Teng, P. K.; Wang, C.; Wang, S. M.; Yang, Y.] Acad Sinica, Inst Phys, Taipei 115, Taiwan. [Abreu, H.; Cheatham, S.; Di Mattia, A.; Gozani, E.; Kopeliansky, R.; Musto, E.; Rozen, Y.; Tarem, S.; van Eldik, N.] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel. [Abramowicz, H.; Alexander, G.; Amram, N.; Ashkenazi, A.; Bella, G.; Benary, O.; Benhammou, Y.; Davies, M.; Etzion, E.; Gershon, A.; Gueta, O.; Oren, Y.; Silver, Y.; Soffer, A.; Taiblum, N.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Bachas, K.; Gkaitatzis, S.; Gkialas, I.; Iliadis, D.; Kimura, N.; Kordas, K.; Kourkoumeli-Charalampidi, A.; Leisos, A.; Orlando, N.; Papageorgiou, K.; Hernandez, D. Paredes; Petridou, C.; Sampsonidis, D.; Tsionou, D.] Aristotle Univ Thessaloniki, Dept Phys, GR-54006 Thessaloniki, Greece. [Asai, S.; Chen, S.; Dohmae, T.; Enari, Y.; Hanawa, K.; Kanaya, N.; Kataoka, Y.; Kato, C.; Kawamoto, T.; Kazama, S.; Kobayashi, A.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Minami, Y.; Mori, T.; Morinaga, M.; Nakamura, T.; Ninomiya, Y.; Nobe, T.; Saito, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamamoto, S.; Yamanaka, T.] Univ Tokyo, Int Ctr Elementary Particle Phys, Tokyo, Japan. [Asai, S.; Chen, S.; Dohmae, T.; Enari, Y.; Hanawa, K.; Kanaya, N.; Kataoka, Y.; Kato, C.; Kawamoto, T.; Kazama, S.; Kobayashi, A.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Minami, Y.; Mori, T.; Morinaga, M.; Nakamura, T.; Ninomiya, Y.; Nobe, T.; Saito, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamamoto, S.; Yamanaka, T.] Univ Tokyo, Dept Phys, Tokyo 113, Japan. [Bratzler, U.; Fukunaga, C.] Tokyo Metropolitan Univ, Grad Sch Sci & Technol, Tokyo 158, Japan. [Hirose, M.; Ishitsuka, M.; Jinnouchi, O.; Kobayashi, D.; Kuze, M.; Motohashi, K.; Nagai, R.; Pettersson, N. E.; Todome, K.; Yamaguchi, D.] Tokyo Inst Technol, Dept Phys, Tokyo 152, Japan. [AbouZeid, O. S.; Batista, S. J.; Chau, C. C.; DeMarco, D. A.; Di Sipio, R.; Diamond, M.; Krieger, P.; Liblong, A.; Mc Goldrick, G.; Orr, R. S.; Polifka, R.; Rudolph, M. S.; Savard, P.; Sinervo, P.; Taenzer, J.; Teuscher, R. J.; Trischuk, W.; Veloce, L. M.; Venturi, N.] Univ Toronto, Dept Phys, Toronto, ON, Canada. [Canepa, A.; Chekulaev, S. V.; Jovicevic, J.; Koutsman, A.; Oram, C. J.; Codina, E. Perez; Schneider, B.; Schouten, D.; Seuster, R.; Stelzer-Chilton, O.; Tafirout, R.; Trigger, I. M.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Garcia, J. A. Benitez; Ramos, J. Manjarres; Palacino, G.; Taylor, W.] York Univ, Dept Phys & Astron, Toronto, ON M3J 2R7, Canada. [Hara, K.; Hayashi, T.; Kasahara, K.; Kim, S. H.; Kiuchi, K.; Nagata, K.; Okawa, H.; Sato, K.; Ukegawa, F.] Univ Tsukuba, Fac Pure & Appl Sci, Tsukuba, Ibaraki, Japan. [Hara, K.; Hayashi, T.; Kasahara, K.; Kim, S. H.; Kiuchi, K.; Nagata, K.; Okawa, H.; Sato, K.; Ukegawa, F.] Univ Tsukuba, Ctr Integrated Res Fundamental Sci & Engn, Tsukuba, Ibaraki, Japan. [Beauchemin, P. H.; Meoni, E.; Sliwa, K.; Wetter, J.] Tufts Univ, Dept Phys & Astron, Medford, MA 02155 USA. [Losada, M.; Moreno, D.; Navarro, G.; Sandoval, C.] Univ Antonio Narino, Ctr Invest, Bogota, Colombia. [Casper, D. W.; Corso-Radu, A.; Frate, M.; Gerbaudo, D.; Guest, D.; Lankford, A. J.; Mete, A. S.; Nelson, A.; Scannicchio, D. A.; Schernau, M.; Shimmin, C. O.; Taffard, A.; Unel, G.; Whiteson, D.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA USA. [Acharya, B. S.; Barisonzi, M.; Cobal, M.; Giordani, M. P.; Miglioranzi, S.; Pinamonti, M.; Quayle, W. B.; Serkin, L.; Shaw, K.; Soualah, R.; Truong, L.] INFN Grp Collegato Udine, Sez Trieste, Udine, Italy. [Acharya, B. S.; Barisonzi, M.; Quayle, W. B.; Serkin, L.; Shaw, K.] Abdus Salaam Int Ctr Theoret Phys, Trieste, Italy. [Cobal, M.; Giordani, M. P.; Miglioranzi, S.; Pinamonti, M.; Soualah, R.; Truong, L.] Univ Udine, Dipartimento Chim Fis & Ambiente, I-33100 Udine, Italy. [Atkinson, M.; Basye, A.; Armadans, R. Caminal; Cavaliere, V.; Chang, P.; Errede, S.; Lie, K.; Liss, T. M.; Liu, L.; Long, J. D.; Neubauer, M. S.; Rybar, M.; Shang, R.; Vichou, I.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Kuutmann, E. Bergeaas; Brenner, R.; Ekelof, T.; Ellert, M.; Ferrari, A.; Gradin, P. O. J.; Isaksson, C.; Madsen, A.; Ohman, H.; Pelikan, D.; Rangel-Smith, C.] Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden. [Piqueras, D. Alvarez; Annovi, A.; Antonov, A.; Artamonov, A.; Urban, S. Cabrera; Gimenez, V. Castillo; Alberich, L. Cerda; Costa, M. J.; Martinez, P. Fernandez; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; de la Hoz, S. Gonzalez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Quiles, A. Irles; Pena, J. Jimenez; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Mitsou, V. A.; Lopez, S. Pedraza; Garcia-Estan, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Sandaker, H.; Soldevila, U.; Ferrer, J. A. Valls; Vos, M.] Univ Valencia, Inst Fis Corpuscular IFIC, Valencia, Spain. [Piqueras, D. Alvarez; Urban, S. Cabrera; Gimenez, V. Castillo; Alberich, L. Cerda; Costa, M. J.; Martinez, P. Fernandez; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; de la Hoz, S. Gonzalez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Quiles, A. Irles; Pena, J. Jimenez; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Mitsou, V. A.; Lopez, S. Pedraza; Garcia-Estan, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Sandaker, H.; Soldevila, U.; Ferrer, J. A. Valls; Vos, M.] Univ Valencia, Dept Fis Atom Mol & Nucl, Valencia, Spain. [Piqueras, D. Alvarez; Annovi, A.; Antonov, A.; Artamonov, A.; Basalaev, A.; Bellerive, A.; Borisov, A.; Urban, S. Cabrera; Gimenez, V. Castillo; Alberich, L. Cerda; Costa, M. J.; Martinez, P. Fernandez; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; de la Hoz, S. Gonzalez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Quiles, A. Irles; Pena, J. Jimenez; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Mitsou, V. A.; Lopez, S. Pedraza; Garcia-Estan, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Sandaker, H.; Soldevila, U.; Ferrer, J. A. Valls; Vos, M.] Univ Valencia, Dept Ingn Elect, Valencia, Spain. [Piqueras, D. Alvarez; Urban, S. Cabrera; Gimenez, V. Castillo; Alberich, L. Cerda; Costa, M. J.; Martinez, P. Fernandez; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; de la Hoz, S. Gonzalez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Quiles, A. Irles; Pena, J. Jimenez; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Mitsou, V. A.; Lopez, S. Pedraza; Garcia-Estan, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Sandaker, H.; Soldevila, U.; Ferrer, J. A. Valls; Vos, M.] Univ Valencia, Inst Microelect Barcelona IMB CNM, Valencia, Spain. [Piqueras, D. Alvarez; Urban, S. Cabrera; Gimenez, V. Castillo; Alberich, L. Cerda; Costa, M. J.; Martinez, P. Fernandez; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; de la Hoz, S. Gonzalez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Quiles, A. Irles; Pena, J. Jimenez; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Mitsou, V. A.; Lopez, S. Pedraza; Garcia-Estan, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Sandaker, H.; Soldevila, U.; Ferrer, J. A. Valls; Vos, M.] CSIC, Valencia, Spain. [Danninger, M.; Fedorko, W.; Gay, C.; Gecse, Z.; Gignac, M.; Henkelmann, S.; King, S. B.; Lister, A.] Univ British Columbia, Dept Phys, Vancouver, BC V5Z 1M9, Canada. [Albert, J.; Berghaus, F.; David, C.; Elliot, A. A.; Fincke-Keeler, M.; Hamano, K.; Hill, E.; Keeler, R.; Kowalewski, R.; Kuwertz, E. S.; Kwan, T.; LeBlanc, M.; Lefebvre, M.; Marino, C. P.; McPherson, R. A.; Pearce, J.; Sobie, R.; Trovatelli, M.; Venturi, M.] Univ Victoria, Dept Phys & Astron, Victoria, BC, Canada. [Beckingham, M.; Farrington, S. M.; Harrison, P. F.; Jeske, C.; Jones, G.; Martin, T. A.; Murray, W. J.; Pianori, E.; Spangenberg, M.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Iizawa, T.; Mitani, T.; Sakurai, Y.; Yorita, K.] Waseda Univ, Tokyo, Japan. [Bressler, S.; Citron, Z. H.; Duchovni, E.; Gross, E.; Lellouch, D.; Levinson, L. J.; Mikenberg, G.; Milov, A.; Pitt, M.; Roth, I.; Schaarschmidt, J.; Smakhtin, V.] Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel. [Banerjee, S. W.; Hard, A. S.; Heng, Y.; Ji, H.; Ju, X.; Kaplan, L. S.; Kashif, L.; Kruse, A.; Ming, Y.; Pan, Y. B.; Wang, F.; Wiedenmann, W.; Wu, S. L.; Yang, H.; Zhang, F.; Zobernig, G.] Univ Wisconsin, Dept Phys, Madison, WI USA. [King, B. T.; Kuger, F.; Redelbach, A.; Schreyer, M.; Sidiropoulou, O.; Siragusa, G.; Stroehmer, R.; Tam, J. Y. C.; Trefzger, T.; Weber, S. W.; Zibell, A.] Julius Maximilians Univ, Fak Phys & Astron, Wurzburg, Germany. [Bannoura, A. A. E.; Braun, H. M.; Cornelissen, T.; Ellinghaus, F.; Ernis, G.; Fischer, J.; Flick, T.; Gabizon, O.; Hamacher, K.; Harenberg, T.; Heim, T.; Hirschbuehl, D.; Kersten, S.; Kohlmann, S.; Mattig, P.; Neumann, M.; Pataraia, S.; Riegel, C. J.; Sandhoff, M.; Tepel, F.; Wagner, W.; Zeitnitz, C.] Berg Univ Wuppertal, Fachbereich C Phys, Wuppertal, Germany. [Baker, O. K.; Cummings, J.; Demers, S.; Garberson, F.; Henrichs, A.; Ideal, E.; Lagouri, T.; Leister, A. G.; Loginov, A.; Thomsen, L. A.; Tipton, P.; Wang, X.] Yale Univ, Dept Phys, New Haven, CT USA. [Hakobyan, H.; Vardanyan, G.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Rahal, G.] Ctr Calcul, Inst Natl Phys Nucl & Phys Particule IN2P3, Villeurbanne, France. Kings Coll London, Dept Phys, London, England. [Huseynov, N.; Javadov, N.] Azerbaijan Acad Sci, Inst Phys, Baku, Azerbaijan. [Kharlamov, A. G.; Korol, A. A.; Maslennikov, A. L.; Maximov, D. A.; Peleganchuk, S. V.; Talyshev, A. A.] Novosibirsk State Univ, Novosibirsk 630090, Russia. [Gingrich, D. M.; Oakham, F. G.; Savard, P.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Banerjee, S. W.] Univ Louisville, Dept Phys & Astron, Louisville, KY 40292 USA. Calif State Univ Fresno, Dept Phys, Fresno, CA 93740 USA. Univ Fribourg, Dept Phys, CH-1700 Fribourg, Switzerland. Univ Porto, Dept Fis & Astron, Fac Ciencias, P-4100 Oporto, Portugal. [McPherson, R. A.] Tomsk State Univ, Tomsk 634050, Russia. [Zhang, R.] Aix Marseille Univ, CPPM, Marseille, France. [Zhang, R.] CNRS IN2P3, Marseille, France. [Della Pietra, M.] Univ Napoli Parthenope, Naples, Italy. [Davies, E.] Rutherford Appleton Lab, Particle Phys Dept, Didcot OX11 0QX, Oxon, England. St Petersburg State Polytech Univ, Dept Phys, St Petersburg, Russia. [Geng, C.; Guo, Y.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Greenwood, Z. D.; Grinstein, S.; Sawyer, L.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Grinstein, S.; Juste Rozas, A.; Martinez, M.] ICREA, Inst Catalana Recerca & Estudis Avancats, Barcelona, Spain. [Hanagaki, K.] Osaka Univ, Grad Sch Sci, Osaka, Japan. [Hsu, P. J.; Ilchenko, Y.; Onyisi, P. U. E.] Natl Tsing Hua Univ, Dept Phys, Hsinchu 30013, Taiwan. [Ilchenko, Y.; Onyisi, P. U. E.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. [Jejelava, J.] Ilia State Univ, Inst Theoret Phys, Tbilisi, Rep of Georgia. [Jenni, P.] CERN, Geneva, Switzerland. [Khubua, J.] GTU, Tbilisi, Rep of Georgia. [Konoplich, R.] Manhattan Coll, New York, NY USA. [Leisos, A.] Hellen Open Univ, Patras, Greece. [Li, B.; Song, H. Y.] Acad Sinica, Inst Phys, Taipei 115, Taiwan. [Li, Y.] Univ Paris 11, LAL, Orsay, France. [Li, Y.] CNRS IN2P3, Orsay, France. [Lin, S. C.] Acad Sinica, Inst Phys, Acad Sinica Grid Comp, Taipei 115, Taiwan. [Liu, B.; Nessi, M.] Shandong Univ, Sch Phys, Shandong, Peoples R China. [Myagkov, A. G.; Nikolaenko, V.; Zaitsev, A. M.] Moscow Inst Phys, Dolgoprudnyi, Russia. [Myagkov, A. G.; Nikolaenko, V.; Zaitsev, A. M.] Technol State Univ, Dolgoprudnyi, Russia. Univ Geneva, Sect Phys, Geneva, Switzerland. [Pinamonti, M.] Int Sch Adv Studies SISSA, Trieste, Italy. [Purohit, M.] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. [Shi, L.; Soh, D. A.] Sun Yat Sen Univ, Sch Phys & Engn, Guangzhou 510275, Guangdong, Peoples R China. [Smirnova, L. N.; Turchikhin, S.] Moscow MV Lomonosov State Univ, Fac Phys, Moscow, Russia. [Tikhomirov, V. O.] Natl Res Nucl Univ MEPhI, Moscow, Russia. [Tompkins, L.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Toth, J.] Wigner Res Ctr Phys, Inst Particle & Nucl Phys, Budapest, Hungary. [Yusuff, I.] Univ Malaya, Dept Phys, Kuala Lumpur 59100, Malaysia. RP Aad, G (reprint author), Aix Marseille Univ, CPPM, Marseille, France. RI Zaitsev, Alexandre/B-8989-2017; Martinez, Mario /I-3549-2015; Peleganchuk, Sergey/J-6722-2014; Li, Liang/O-1107-2015; Monzani, Simone/D-6328-2017; Kuday, Sinan/C-8528-2014; la rotonda, laura/B-4028-2016; Stabile, Alberto/L-3419-2016; Staroba, Pavel/G-8850-2014; Kukla, Romain/P-9760-2016; Gavrilenko, Igor/M-8260-2015; Gauzzi, Paolo/D-2615-2009; Maleev, Victor/R-4140-2016; Camarri, Paolo/M-7979-2015; Mindur, Bartosz/A-2253-2017; Owen, Mark/Q-8268-2016; Mashinistov, Ruslan/M-8356-2015; Fabbri, Laura/H-3442-2012; Gutierrez, Phillip/C-1161-2011; Solodkov, Alexander/B-8623-2017; Fedin, Oleg/H-6753-2016; Brooks, William/C-8636-2013; Snesarev, Andrey/H-5090-2013; Ventura, Andrea/A-9544-2015; Kantserov, Vadim/M-9761-2015; Nevski, Pavel/M-6292-2015; Villa, Mauro/C-9883-2009; Chiarelli, Giorgio/E-8953-2012; La Rosa Navarro, Jose Luis/K-4221-2016; Vanadia, Marco/K-5870-2016; Ippolito, Valerio/L-1435-2016; Maneira, Jose/D-8486-2011; Prokoshin, Fedor/E-2795-2012; Doyle, Anthony/C-5889-2009; Warburton, Andreas/N-8028-2013; Gladilin, Leonid/B-5226-2011; Livan, Michele/D-7531-2012; Carvalho, Joao/M-4060-2013; Buttar, Craig/D-3706-2011; Mitsou, Vasiliki/D-1967-2009; Tripiana, Martin/H-3404-2015; Smirnova, Oxana/A-4401-2013; Tikhomirov, Vladimir/M-6194-2015; Savarala, Hari Krishna/A-3516-2015; White, Ryan/E-2979-2015; Di Domenico, Antonio/G-6301-2011; Gonzalez de la Hoz, Santiago/E-2494-2016; Guo, Jun/O-5202-2015; Aguilar Saavedra, Juan Antonio/F-1256-2016; Leyton, Michael/G-2214-2016; Jones, Roger/H-5578-2011; Boyko, Igor/J-3659-2013; Vranjes Milosavljevic, Marija/F-9847-2016; Chekulaev, Sergey/O-1145-2015; Zhukov, Konstantin/M-6027-2015; SULIN, VLADIMIR/N-2793-2015; Nechaeva, Polina/N-1148-2015; Vykydal, Zdenek/H-6426-2016 OI Zaitsev, Alexandre/0000-0002-4961-8368; Peleganchuk, Sergey/0000-0003-0907-7592; Li, Liang/0000-0001-6411-6107; Monzani, Simone/0000-0002-0479-2207; Kuday, Sinan/0000-0002-0116-5494; Sannino, Mario/0000-0001-7700-8383; la rotonda, laura/0000-0002-6780-5829; Stabile, Alberto/0000-0002-6868-8329; Kukla, Romain/0000-0002-1140-2465; Gauzzi, Paolo/0000-0003-4841-5822; Camarri, Paolo/0000-0002-5732-5645; Mindur, Bartosz/0000-0002-5511-2611; Owen, Mark/0000-0001-6820-0488; Mashinistov, Ruslan/0000-0001-7925-4676; Fabbri, Laura/0000-0002-4002-8353; Solodkov, Alexander/0000-0002-2737-8674; Brooks, William/0000-0001-6161-3570; Ventura, Andrea/0000-0002-3368-3413; Kantserov, Vadim/0000-0001-8255-416X; Villa, Mauro/0000-0002-9181-8048; Chiarelli, Giorgio/0000-0001-9851-4816; Vanadia, Marco/0000-0003-2684-276X; Ippolito, Valerio/0000-0001-5126-1620; Maneira, Jose/0000-0002-3222-2738; Prokoshin, Fedor/0000-0001-6389-5399; Doyle, Anthony/0000-0001-6322-6195; Warburton, Andreas/0000-0002-2298-7315; Gladilin, Leonid/0000-0001-9422-8636; Livan, Michele/0000-0002-5877-0062; Carvalho, Joao/0000-0002-3015-7821; Mitsou, Vasiliki/0000-0002-1533-8886; Smirnova, Oxana/0000-0003-2517-531X; Tikhomirov, Vladimir/0000-0002-9634-0581; Savarala, Hari Krishna/0000-0001-6593-4849; White, Ryan/0000-0003-3589-5900; Di Domenico, Antonio/0000-0001-8078-2759; Gonzalez de la Hoz, Santiago/0000-0001-5304-5390; Guo, Jun/0000-0001-8125-9433; Aguilar Saavedra, Juan Antonio/0000-0002-5475-8920; Leyton, Michael/0000-0002-0727-8107; Jones, Roger/0000-0002-6427-3513; Boyko, Igor/0000-0002-3355-4662; Vranjes Milosavljevic, Marija/0000-0003-4477-9733; SULIN, VLADIMIR/0000-0003-3943-2495; Vykydal, Zdenek/0000-0003-2329-0672 FU ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW, Austria; FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq, Brazil; FAPESP, Brazil; NSERC, Canada; NRC, Canada; CFI, Canada; CERN; CONICYT, Chile; CAS, China; MOST, China; NSFC, China; COLCIENCIAS, Colombia; MSMT CR, Czech Republic; MPO CR, Czech Republic; VSC CR, Czech Republic; DNRF, Denmark; DNSRC, Denmark; Lundbeck Foundation, Denmark; IN2P3-CNRS, France; CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, Germany; HGF, Germany; MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, Israel; I-CORE, Israel; Benoziyo Center, Israel; INFN, Italy; MEXT, Japan; JSPS, Japan; CNRST, Morocco; FOM, Netherlands; NWO, Netherlands; RCN, Norway; MNiSW, Poland; NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia, Russian Federation; NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS, Slovenia; MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC, Sweden; Wallenberg Foundation, Sweden; SERI, Switzerland; SNSF, Switzerland; Canton of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE, United States of America; NSF, United States of America; BCKDF, Canada; Canada Council, Canada; CANARIE, Canada; CRC, Canada; Compute Canada, Canada; FQRNT, Canada; Ontario Innovation Trust, Canada; EPLANET, European Union; ERC, European Union; FP7, European Union; Horizon 2020, European Union; Marie Sklodowska-Curie Actions, European Union; Investissements d'Avenir Labex and Idex, France; ANR, France; Region Auvergne, France; Fondation Partager le Savoir, France; DFG, Germany; AvH Foundation, Germany; Herakleitos programme - EU-ESF; Thales programme - EU-ESF; Aristeia programme - EU-ESF; BSF, Israel; GIF, Israel; Minerva, Israel; BRF, Norway; Royal Society, United Kingdom; Leverhulme Trust, United Kingdom; Herakleitos programme - Greek NSRF; Thales programme - Greek NSRF; Aristeia programme - Greek NSRF FX We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, the Canada Council, CANARIE, CRC, Compute Canada, FQRNT, and the Ontario Innovation Trust, Canada; EPLANET, ERC, FP7, Horizon 2020 and Marie Sklodowska-Curie Actions, European Union; Investissements d'Avenir Labex and Idex, ANR, Region Auvergne and Fondation Partager le Savoir, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF; BSF, GIF and Minerva, Israel; BRF, Norway; the Royal Society and Leverhulme Trust, United Kingdom. NR 106 TC 6 Z9 6 U1 15 U2 75 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD DEC 10 PY 2015 IS 12 AR 061 DI 10.1007/JHEP12(2015)061 PG 65 WC Physics, Particles & Fields SC Physics GA CZ0YE UT WOS:000366831600001 ER PT J AU Hung, LW Duchene, G Arriaga, P Fitzgerald, MP Maire, J Marois, C Millar-Blanchaer, MA Bruzzone, S Rajan, A Pueyo, L Kalas, PG De Rosa, RJ Graham, JR Konopacky, Q Wolff, SG Ammons, SM Chen, CH Chilcote, JK Draper, ZH Esposito, TM Gerard, B Goodsell, S Greenbaum, A Hibon, P Hinkley, S Macintosh, B Marchis, F Metchev, S Nielsen, EL Oppenheimer, R Patience, JL Perrin, MD Rantakyro, FT Sivaramakrishnan, A Wang, JJ Ward-Duong, K Wiktorowicz, SJ AF Hung, Li-Wei Duchene, Gaspard Arriaga, Pauline Fitzgerald, Michael P. Maire, Jerome Marois, Christian Millar-Blanchaer, Maxwell A. Bruzzone, Sebastian Rajan, Abhijith Pueyo, Laurent Kalas, Paul G. De Rosa, Robert J. Graham, James R. Konopacky, Quinn Wolff, Schuyler G. Ammons, S. Mark Chen, Christine H. Chilcote, Jeffrey K. Draper, Zachary H. Esposito, Thomas M. Gerard, Benjamin Goodsell, Stephen Greenbaum, Alexandra Hibon, Pascale Hinkley, Sasha Macintosh, Bruce Marchis, Franck Metchev, Stanimir Nielsen, Eric L. Oppenheimer, Rebecca Patience, Jennifer L. Perrin, Marshall D. Rantakyroe, Fredrik T. Sivaramakrishnan, Anand Wang, Jason J. Ward-Duong, Kimberly Wiktorowicz, Sloane J. TI FIRST SCATTERED-LIGHT IMAGE OF THE DEBRIS DISK AROUND HD 131835 WITH THE GEMINI PLANET IMAGER SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE circumstellar matter; infrared: stars; stars: individual (HD 131835) ID NEAREST OB ASSOCIATION; EVOLUTIONARY MODELS; SCORPIUS-CENTAURUS; RADIATIVE-TRANSFER; BROWN DWARFS; HR 4796A; DISCOVERY; DUST; POLARIMETRY; STARS AB We present the first scattered-light image of the debris disk around HD 131835 in the H band using the Gemini Planet Imager. HD 131835 is a similar to 15 Myr old A2IV star at a distance of similar to 120 pc in the Sco-Cen OB association. We detect the disk only in polarized light and place an upper limit on the peak total intensity. No point sources resembling exoplanets were identified. Compared to its mid-infrared thermal emission,. in scattered light the disk shows similar orientation but different morphology. The scattered-light disk extends from similar to 75 to similar to 210 AU in the disk plane with roughly flat surface density. Our Monte Carlo radiative transfer model can describe the observations with a model disk composed of a mixture of silicates and amorphous carbon. In addition to the obvious brightness asymmetry due to stronger forward scattering, we discover a weak brightness asymmetry along the major axis, with the northeast side being 1.3 times brighter than the southwest side at a 3 sigma level. C1 [Hung, Li-Wei; Arriaga, Pauline; Fitzgerald, Michael P.; Esposito, Thomas M.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Duchene, Gaspard; Kalas, Paul G.; De Rosa, Robert J.; Graham, James R.; Esposito, Thomas M.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Duchene, Gaspard] Univ Grenoble Alpes, IPAG, F-38000 Grenoble, France. [Duchene, Gaspard] CNRS, IPAG, F-38000 Grenoble, France. [Maire, Jerome] Univ Toronto, Dunlap Inst Astron & Astrophys, Toronto, ON M5S 3H4, Canada. [Marois, Christian; Gerard, Benjamin] Natl Res Council Canada Herzberg, Victoria, BC V9E 2E7, Canada. [Marois, Christian; Draper, Zachary H.; Gerard, Benjamin] Univ Victoria, Victoria, BC V8P 5C2, Canada. [Millar-Blanchaer, Maxwell A.] Univ Toronto, Dept Astron & Astrophys, Toronto, ON M5S 3H4, Canada. [Bruzzone, Sebastian; Metchev, Stanimir] Univ Western Ontario, Ctr Planetary & Space Explorat, Dept Phys & Astron, London, ON N6A 3K7, Canada. [Rajan, Abhijith; Patience, Jennifer L.; Ward-Duong, Kimberly] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA. [Pueyo, Laurent; Wolff, Schuyler G.; Chen, Christine H.; Greenbaum, Alexandra; Perrin, Marshall D.; Sivaramakrishnan, Anand] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Konopacky, Quinn] Univ Calif San Diego, Ctr Astrophys & Space Sci, La Jolla, CA 92093 USA. [Wolff, Schuyler G.; Greenbaum, Alexandra] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Ammons, S. Mark; Macintosh, Bruce] Lawrence Livermore Natl Lab, Livermore, CA 94040 USA. [Goodsell, Stephen; Hibon, Pascale; Rantakyroe, Fredrik T.] Gemini Observ, La Serena, Chile. [Goodsell, Stephen] Univ Durham, Durham DH1 3LE, England. [Hinkley, Sasha] Univ Exeter, Sch Phys, Exeter EX4 4QL, Devon, England. [Macintosh, Bruce; Nielsen, Eric L.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. [Marchis, Franck; Nielsen, Eric L.] Carl Sagan Ctr, SETI Inst, Mountain View, CA 94043 USA. [Metchev, Stanimir] SUNY Stony Brook, Stony Brook, NY 11794 USA. [Oppenheimer, Rebecca] Amer Museum Nat Hist, New York, NY 10024 USA. [Wiktorowicz, Sloane J.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. RP Hung, LW (reprint author), Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. OI Duchene, Gaspard/0000-0002-5092-6464; Wang, Jason/0000-0003-0774-6502; Greenbaum, Alexandra/0000-0002-7162-8036; Oppenheimer, Rebecca/0000-0001-7130-7681; Nielsen, Eric/0000-0001-6975-9056; Fitzgerald, Michael/0000-0002-0176-8973 FU NASA [NNX15AD95G, NNX11AD21G, NNX14AJ80G]; NSF [AST-113718, AST-0909188, AST-1411868, AST-1413718, DE-AC52-07NA27344]; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; National Science Foundation [DGE-1144087, DGE-1232825]; ANR [ANR-07-BLAN-0221, ANR-2010-JCJC-0504-01, ANR-2010-JCJC-0501-01]; European Commission [PERG06- GA-2009-256513] FX This research was supported in part by NASA cooperative agreements NNX15AD95G, NNX11AD21G, and NNX14AJ80G, NSF AST-113718, AST-0909188, AST-1411868, AST-1413718, and DE-AC52-07NA27344, and the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Work by L.-W. Hung and A. Greenbaum is supported by the National Science Foundation Graduate Research Fellowships DGE-1144087 and DGE-1232825. We acknowledge the Service Commun de Calcul Intensif de l'Observatoire de Grenoble (SCCI) for computations on the supercomputer funded by ANR (contracts ANR-07-BLAN-0221, ANR-2010-JCJC-0504-01 and ANR-2010-JCJC-0501-01) and the European Commission's 7th Framework Program (contract PERG06- GA-2009-256513). This work is based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministerio da Ciencia, Tecnologia e Inovacao (Brazil), and Ministerio de Ciencia, Tecnologia e Innovacion Productiva (Argentina). NR 49 TC 6 Z9 6 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD DEC 10 PY 2015 VL 815 IS 1 AR L14 DI 10.1088/2041-8205/815/1/L14 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CY5EV UT WOS:000366431800014 ER PT J AU Aad, G Abbott, B Abdallah, J Abdinov, O Aben, R Abolins, M AbouZeid, OS Abramowicz, H Abreu, H Abreu, R Abulaiti, Y Acharya, BS Adamczyk, L Adams, DL Adelman, J Adomeit, S Adye, T Affolder, AA Agatonovic-Jovin, T Aguilar-Saavedra, JA Ahlen, SP Ahmadov, F Aielli, G Akerstedt, H Aring;kesson, TPA Akimoto, G Akimov, AV Alberghi, GL Albert, J Albrand, S Verzini, MJA Aleksa, M Aleksandrov, IN Alexa, C Alexander, G Alexopoulos, T Alhroob, M Alimonti, G Alio, L Alison, J Alkire, SP Allbrooke, BMM Allport, PP Aloisio, A Alonso, A Alonso, F Alpigiani, C Altheimer, A Gonzalez, BA Piqueras, DA Alviggi, MG Amadio, BT Amako, K Coutinho, YA Amelung, C Amidei, D Dos Santos, SPA Amorim, A Amoroso, S Amram, N Amundsen, G Anastopoulos, C Ancu, LS Andari, N Andeen, T Anders, CF Anders, G Anders, JK Anderson, KJ Andreazza, A Andrei, V Angelidakis, S Angelozzi, I Anger, P Angerami, A Anghinolfi, F Anisenkov, V Anjos, N Annovi, A Antonelli, M Antonov, A Antos, J Anulli, F Aoki, M Bella, LA Arabidze, G Arai, Y Araque, JP Arce, ATH Arduh, FA Arguin, JF Argyropoulos, S Arik, M Armbruster, AJ Arnaez, O Arnal, V Arnold, H Arratia, M Arslan, O Artamonov, A Artoni, G Asai, S Asbah, N Ashkenazi, A Aring;sman, B Asquith, L Assamagan, K Astalos, R Atkinson, M Atlay, NB Auerbach, B Augsten, K Aurousseau, M Avolio, G Axen, B Ayoub, MK Azuelos, G Baak, MA Baas, AE Bacci, C Bachacou, H Bachas, K Backes, M Backhaus, M Bagiacchi, P Bagnaia, P Bai, Y Bain, T Baines, JT Baker, OK Balek, P Balestri, T Balli, F Banas, E Banerjee, S Bannoura, AAE Bansil, HS Barak, L Barberio, EL Barberis, D Barbero, M Barillari, T Barisonzi, M Barklow, T Barlow, N Barnes, SL Barnett, BM Barnett, RM Barnovska, Z Baroncelli, A Barone, G Barr, AJ Barreiro, F da Costa, JBG Bartoldus, R Barton, AE Bartos, P Basalaev, A Bassalat, A Basye, A Bates, RL Batista, SJ Batley, JR Battaglia, M Bauce, M Bauer, F Bawa, HS Beacham, JB Beattie, MD Beau, T Beauchemin, PH Beccherle, R Bechtle, P Beck, HP Becker, K Becker, M Becker, S Beckingham, M Becot, C Beddall, AJ Beddall, A Bednyakov, VA Bee, CP Beemster, LJ Beermann, TA Begel, M Behr, JK Belanger-Champagne, C Bell, WH Bella, G Bellagamba, L Bellerive, A Bellomo, M Belotskiy, K Beltramello, O Benary, O Benchekroun, D Bender, M Bendtz, K Benekos, N Benhammou, Y Noccioli, EB Garcia, JAB Benjamin, DP Bensinger, JR Bentvelsen, S Beresford, L Beretta, M Berge, D Kuutmann, EB Berger, N Berghaus, F Beringer, J Bernard, C Bernard, NR Bernius, C Bernlochner, FU Berry, T Berta, P Bertella, C Bertoli, G Bertolucci, F Bertsche, C Bertsche, D Besana, MI Besjes, GJ Bylund, OB Bessner, M Besson, N Betancourt, C Bethke, S Bevan, AJ Bhimji, W Bianchi, RM Bianchini, L Bianco, M Biebel, O Biedermann, D Bieniek, SP Biglietti, M De Mendizabal, JB Bilokon, H Bindi, M Binet, S Bingul, A Bini, C Black, CW Black, JE Black, KM Blackburn, D Blair, RE Blanchard, JB Blanco, JE Blazek, T Bloch, I Blocker, C Blum, W Blumenschein, U Bobbink, GJ Bobrovnikov, VS Bocchetta, SS Bocci, A Bock, C Boehler, M Bogaerts, JA Bogavac, D Bogdanchikov, AG Bohm, C Boisvert, V Bold, T Boldea, V Boldyrev, AS Bomben, M Bona, M Boonekamp, M Borisov, A Borissov, G Borroni, S Bortfeldt, J Bortolotto, V Bos, K Boscherini, D Bosman, M Boudreau, J Bouffard, J Bouhova-Thacker, EV Boumediene, D Bourdarios, C Bousson, N Boveia, A Boyd, J Boyko, IR Bozic, I Bracinik, J Brandt, A Brandt, G Brandt, O Bratzler, U Brau, B Brau, JE Braun, HM Brazzale, SF Madden, WDB Brendlinger, K Brennan, AJ Brenner, L Brenner, R Bressler, S Bristow, K Bristow, TM Britton, D Britzger, D Brochu, FM Brock, I Brock, R Bronner, J Brooijmans, G Brooks, T Brooks, WK Brosamer, J Brost, E Brown, J de Renstrom, PAB Bruncko, D Bruneliere, R Bruni, A Bruni, G Bruschi, M Bruscino, N Bryngemark, L Buanes, T Buat, Q Buchholz, P Buckley, AG Buda, SI Budagov, IA Buehrer, F Bugge, L Bugge, MK Bulekov, O Bullock, D Burckhart, H Burdin, S Burghgrave, B Burke, S Burmeister, I Busato, E Buscher, D Buscher, V Bussey, P Butler, JM Butt, AI Buttar, CM Butterworth, JM Butti, P Buttinger, W Buzatu, A Buzykaev, AR Urban, SC Caforio, D Cairo, VM Cakir, O Calafiura, P Calandri, A Calderini, G Calfayan, P Caloba, LP Calvet, D Calvet, S Toro, RC Camarda, S Camarri, P Cameron, D Caminada, LM Armadans, RC Campana, S Campanelli, M Campoverde, A Canale, V Canepa, A Bret, MC Cantero, J Cantrill, R Cao, T Garrido, MDMC Caprini, I Caprini, M Capua, M Caputo, R Cardarelli, R Cardillo, F Carli, T Carlino, G Carminati, L Caron, S Carquin, E Carrillo-Montoya, GD Carter, JR Carvalho, J Casadei, D Casado, MP Casolino, M Castaneda-Miranda, E Castelli, A Gimenez, VC Castro, NF Catastini, P Catinaccio, A Catmore, JR Cattai, A Caudron, J Cavaliere, V Cavalli, D Cavalli-Sforza, M Cavasinni, V Ceradini, F Cerio, BC Cerny, K Cerqueira, AS Cerri, A Cerrito, L Cerutti, F Cerv, M Cervelli, A Cetin, SA Chafaq, A Chakraborty, D Chalupkova, I Chang, P Chapleau, B Chapman, JD Charlton, DG Chau, CC Barajas, CAC Cheatham, S Chegwidden, A Chekanov, S Chekulaev, SV Chelkov, GA Chelstowska, MA Chen, C Chen, H Chen, K Chen, L Chen, S Chen, X Chen, Y Cheng, HC Cheng, Y Cheplakov, A Cheremushkina, E El Moursli, RC Chernyatin, V Cheu, E Chevalier, L Chiarella, V Childers, JT Chiodini, G Chisholm, AS Chislett, RT Chitan, A Chizhov, MV Choi, K Chouridou, S Chow, BKB Christodoulou, V Chromek-Burckhart, D Chudoba, J Chuinard, AJ Chwastowski, JJ Chytka, L Ciapetti, G Ciftci, AK Cinca, D Cindro, V Cioara, IA Ciocio, A Citron, ZH Ciubancan, M Clark, A Clark, BL Clark, PJ Clarke, RN Cleland, W Clement, C Coadou, Y Cobal, M Coccaro, A Cochran, J Coffey, L Cogan, JG Cole, B Cole, S Colijn, AP Collot, J Colombo, T Compostella, G Muino, PC Coniavitis, E Connell, SH Connelly, IA Consonni, SM Consorti, V Constantinescu, S Conta, C Conti, G Conventi, F Cooke, M Cooper, BD Cooper-Sarkar, AM Cornelissen, T Corradi, M Corriveau, F Corso-Radu, A Cortes-Gonzalez, A Cortiana, G Costa, G Costa, MJ Costanzo, D Cote, D Cottin, G Cowan, G Cox, BE Cranmer, K Cree, G Crepe-Renaudin, S Crescioli, F Cribbs, WA Ortuzar, MC Cristinziani, M Croft, V Crosetti, G Donszelmann, TC Cummings, J Curatolo, M Cuthbert, C Czirr, H Czodrowski, P D'Auria, S D'Onofrio, M De Sousa, MJDS Da Via, C Dabrowski, W Da Finca, A Dai, T Dale, O Dallaire, F Dallapiccola, C Dam, M Dandoy, JR Dang, NP Daniells, AC Danninger, M Hoffmann, MD Dao, V Darbo, G Darmora, S Dassoulas, J Dattagupta, A Davey, W David, C Davidek, T Davies, E Davies, M Davison, P Davygora, Y Dawe, E Dawson, I Daya-Ishmukhametova, RK De, K de Asmundis, R De Castro, S De Cecco, S De Groot, N de Jong, P De la Torre, H De Lorenzi, F De Nooij, L De Pedis, D De Salvo, A De Sanctis, U De Santo, A De Regie, JBD Dearnaley, WJ Debbe, R Debenedetti, C Dedovich, DV Deigaard, I Del Peso, J Del Prete, T Delgove, D Deliot, F Delitzsch, CM Deliyergiyev, M Dell'Acqua, A Dell'Asta, L Dell'Orso, M Della Pietra, M della Volpe, D Delmastro, M Delsart, PA Deluca, C DeMarco, DA Demers, S Demichev, M Demilly, A Denisov, SP Derendarz, D Derkaoui, JE Derue, F Dervan, P Desch, K Deterre, C Deviveiros, PO Dewhurst, A Dhaliwal, S Di Ciaccio, A Di Ciaccio, L Di Domenico, A Di Donato, C Di Girolamo, A Di Girolamo, B Di Mattia, A Di Micco, B Di Nardo, R Di Simone, A Di Sipio, R Di Valentino, D Diaconu, C Diamond, M Dias, FA Diaz, MA Diehl, EB Dietrich, J Diglio, S Dimitrievska, A Dingfelder, J Dita, P Dita, S Dittus, F Djama, F Djobava, T Djuvsland, JI do Vale, MAB Dobos, D Dobre, M Doglioni, C Dohmae, T Dolejsi, J Dolezal, Z Dolgoshein, BA Donadelli, M Donati, S Dondero, P Donini, J Dopke, J Doria, A Dova, MT Doyle, AT Drechsler, E Dris, M Dubreuil, E Duchovni, E Duckeck, G Ducu, OA Duda, D Dudarev, A Duflot, L Duguid, L Duhrssen, M Dunford, M Yildiz, HD Duren, M Durglishvili, A Duschinger, D Dyndal, M Eckardt, C Ecker, KM Edgar, RC Edson, W Edwards, NC Ehrenfeld, W Eifert, T Eigen, G Einsweiler, K Ekelof, T El Kacimi, M Ellert, M Elles, S Ellinghaus, F Elliot, AA Ellis, N Elmsheuser, J Elsing, M Emeliyanov, D Enari, Y Endner, OC Endo, M Erdmann, J Ereditato, A Ernis, G Ernst, J Ernst, M Errede, S Ertel, E Escalier, M Esch, H Escobar, C Esposito, B Etienvre, AI Etzion, E Evans, H Ezhilov, A Fabbri, L Facini, G Fakhrutdinov, RM Falciano, S Falla, RJ Faltova, J Fang, Y Fanti, M Farbin, A Farilla, A Farooque, T Farrell, S Farrington, SM Farthouat, P Fassi, F Fassnacht, P Fassouliotis, D Giannelli, MF Favareto, A Fayard, L Federic, P Fedin, OL Fedorko, W Feigl, S Feligioni, L Feng, C Feng, EJ Feng, H Fenyuk, AB Feremenga, L Martinez, PF Perez, SF Ferrando, J Ferrari, A Ferrari, P Ferrari, R de Lima, DEF Ferrer, A Ferrere, D Ferretti, C Parodi, AF Fiascaris, M Fiedler, F Filipcic, A Filipuzzi, M Filthaut, F Fincke-Keeler, M Finelli, KD Fiolhais, MCN Fiorini, L Firan, A Fischer, A Fischer, C Fischer, J Fisher, WC Fitzgerald, EA Fleck, I Fleischmann, P Fleischmann, S Fletcher, GT Fletcher, G Fletcher, RRM Flick, T Floderus, A Castillo, LRF Flowerdew, MJ Formica, A Forti, A Fournier, D Fox, H Fracchia, S Francavilla, P Franchini, M Francis, D Franconi, L Franklin, M Frate, M Fraternali, M Freeborn, D French, ST Friedrich, F Froidevaux, D Frost, JA Fukunaga, C Torregrosa, EF Fulsom, BG Fuster, J Gabaldon, C Gabizon, O Gabrielli, A Gabrielli, A Gadatsch, S Gadomski, S Gagliardi, G Gagnon, P Galea, C Galhardo, B Gallas, EJ Gallop, BJ Gallus, P Galster, G Gan, KK Gao, J Gao, Y Gao, YS Walls, FMG Garberson, F Garcia, C Navarro, JEG Garcia-Sciveres, M Gardner, RW Garelli, N Garonne, V Gatti, C Gaudiello, A Gaudio, G Gaur, B Gauthier, L Gauzzi, P Gavrilenko, IL Gay, C Gaycken, G Gazis, EN Ge, P Gecse, Z Gee, CNP Geerts, DAA Geich-Gimbel, C Geisler, MP Gemme, C Genest, MH Gentile, S George, M George, S Gerbaudo, D Gershon, A Ghazlane, H Giacobbe, B Giagu, S Giangiobbe, V Giannetti, P Gibbard, B Gibson, SM Gilchriese, M Gillam, TPS Gillberg, D Gilles, G Gingrich, DM Giokaris, N Giordani, MP Giorgi, FM Giorgi, FM Giraud, PF Giromini, P Giugni, D Giuliani, C Giulini, M Gjelsten, BK Gkaitatzis, S Gkialas, I Gkougkousis, EL Gladilin, LK Glasman, C Glatzer, J Glaysher, PCF Glazov, A Goblirsch-Kolb, M Goddard, JR Godlewski, J Goldfarb, S Golling, T Golubkov, D Gomes, A Goncalo, R Da Costa, JGPF Gonella, L de la Hoz, SG Parra, GG Gonzalez-Sevilla, S Goossens, L Gorbounov, PA Gordon, HA Gorelov, I Gorini, B Gorini, E Gorisek, A Gornicki, E Goshaw, AT Gossling, C Gostkin, MI Goujdami, D Goussiou, AG Govender, N Gozani, E Grabas, HMX Graber, L Grabowska-Bold, I Grafstrom, P Grahn, KJ Gramling, J Gramstad, E Grancagnolo, S Grassi, V Gratchev, V Gray, HM Graziani, E Greenwood, ZD Gregersen, K Gregor, IM Grenier, P Griffiths, J Grillo, AA Grimm, K Grinstein, S Gris, P Grivaz, JF Grohs, JP Grohsjean, A Gross, E Grosse-Knetter, J Grossi, GC Grout, ZJ Guan, L Guenther, J Guescini, F Guest, D Gueta, O Guido, E Guillemin, T Guindon, S Gul, U Gumpert, C Guo, J Gupta, S Gustavino, G Gutierrez, P Ortiz, NGG Gutschow, C Guyot, C Gwenlan, C Gwilliam, CB Haas, A Haber, C Hadavand, HK Haddad, N Haefner, P Hagebock, S Hajduk, Z Hakobyan, H Haleem, M Haley, J Hall, D Halladjian, G Hallewell, GD Hamacher, K Hamal, P Hamano, K Hamer, M Hamilton, A Hamity, GN Hamnett, PG Han, L Hanagaki, K Hanawa, K Hance, M Hanke, P Hanna, R Hansen, JB Hansen, JD Hansen, MC Hansen, PH Hara, K Hard, AS Harenberg, T Hariri, F Harkusha, S Harrington, RD Harrison, PF Hartjes, F Hasegawa, M Hasegawa, S Hasegawa, Y Hasib, A Hassani, S Haug, S Hauser, R Hauswald, L Havranek, M Hawkes, CM Hawkings, RJ Hawkins, AD Hayashi, T Hayden, D Hays, CP Hays, JM Hayward, HS Haywood, SJ Head, SJ Heck, T Hedberg, V Heelan, L Heim, S Heim, T Heinemann, B Heinrich, L Hejbal, J Helary, L Hellman, S Hellmich, D Helsens, C Henderson, J Henderson, RCW Heng, Y Hengler, C Henrichs, A Correia, AMH Henrot-Versille, S Herbert, GH Jimenez, YH Herrberg-Schubert, R Herten, G Hertenberger, R Hervas, L Hesketh, GG Hessey, NP Hetherly, JW Hickling, R Higon-Rodriguez, E Hill, E Hill, JC Hiller, KH Hillier, SJ Hinchliffe, I Hines, E Hinman, RR Hirose, M Hirschbuehl, D Hobbs Hod, N Hodgkinson, MC Hodgson, P Hoecker, A Hoeferkamp, MR Hoenig, F Hohlfeld, M Hohn, D Holmes, TR Homann, M Hong, TM van Huysduynen, LH Hopkins, WH Horii, Y Horton, AJ Hostachy, JY Hou, S Hoummada, A Howard, J Howarth, J Hrabovsky, M Hristova, I Hrivnac, J Hryn'ova, T Hrynevich, A Hsu, C Hsu, PJ Hsu, SC Hu, D Hu, Q Hu, X Huang, Y Hubacek, Z Hubaut, F Huegging, F Huffman, TB Hughes, EW Hughes, G Huhtinen, M Hulsing, TA Huseynov, N Huston, J Huth, J Iacobucci, G Iakovidis, G Ibragimov, I Iconomidou-Fayard, L Ideal, E Idrissi, Z Iengo, P Igonkina, O Iizawa, T Ikegami, Y Ikematsu, K Ikeno, M Ilchenko, Y Iliadis, D Ilic, N Inamaru, Y Ince, T Ioannou, P Iodice, M Iordanidou, K Ippolito, V Quiles, AI Isaksson, C Ishino, M Ishitsuka, M Ishmukhametov, R Issever, C Istin, S Ponce, JMI Iuppa, R Ivarsson, J Iwanski, W Iwasaki, H Izen, JM Izzo, V Jabbar, S Jackson, B Jackson, M Jackson, P Jaekel, MR Jain, V Jakobs, K Jakobsen, S Jakoubek, T Jakubek, J Jamin, DO Jana, DK Jansen, E Jansky, RW Janssen, J Janus, M Jarlskog, G Javadov, N Javurek, T Jeanty, L Jejelava, J Jeng, GY Jennens, D Jenni, P Jentzsch, J Jeske, C Jezequel, S Ji, H Jia, J Jiang, Y Jiggins, S Pena, JJ Jin, S Jinaru, A Jinnouchi, O Joergensen, MD Johansson, P Johns, KA Jon-And, K Jones, G Jones, RWL Jones, TJ Jongmanns, J Jorge, PM Joshi, KD Jovicevic, J Ju, X Jung, CA Jussel, P Rozas, AJ Kaci, M Kaczmarska, A Kado, M Kagan, H Kagan, M Kahn, SJ Kajomovitz, E Kalderon, CW Kama, S Kamenshchikov, A Kanaya, N Kaneda, M Kaneti, S Kantserov, VA Kanzaki, J Kaplan, B Kapliy, A Kar, D Karakostas, K Karamaoun, A Karastathis, N Kareem, MJ Karnevskiy, M Karpov, SN Karpova, ZM Karthik, K Kartvelishvili, V Karyukhin, AN Kashif, L Kass, RD Kastanas, A Kataoka, Y Katre, A Katzy, J Kawagoe, K Kawamoto, T Kawamura, G Kazama, S Kazanin, VF Kazarinov, MY Keeler, R Kehoe, R Keller, JS Kempster, JJ Keoshkerian, H Kepka, O Kersevan, BP Kersten, S Keyes, RA Khalil-zada, F Khandanyan, H Khanov, A Kharlamov, AG Khoo, TJ Khovanskiy, V Khramov, E Khubua, J Kim, HY Kim, H Kim, SH Kim, Y Kimura, N Kind, OM King, BT King, M King, SB Kirk, J Kiryunin, AE Kishimoto, T Kisielewska, D Kiss, F Kiuchi, K Kivernyk, O Kladiva, E Klein, MH Klein, M Klein, U Kleinknecht, K Klimek, P Klimentov, A Klingenberg, R Klinger, JA Klioutchnikova, T Kluge, EE Kluit, P Kluth, S Kneringer, E Knoops, EBFG Knue, A Kobayashi, A Kobayashi, D Kobayashi, T Kobel, M Kocian, M Kodys, P Koffas, T Koffeman, E Kogan, LA Kohlmann, S Kohout, Z Kohriki, T Koi, T Kolanoski, H Koletsou, I Komar, AA Komori, Y Kondo, T Kondrashova, N Koneke, K Konig, AC Konig, S Kono, T Konoplich, R Konstantinidis, N Kopeliansky, R Koperny, S Kopke, L Kopp, AK Korcyl, K Kordas, K Korn, A Korol, AA Korolkov, I Korolkova, EV Kortner, O Kortner, S Kosek, T Kostyukhin, VV Kotov, VM Kotwal, A Kourkoumeli-Charalampidi, A Kourkoumelis, C Kouskoura, V Koutsman, A Kowalewski, R Kowalski, TZ Kozanecki, W Kozhin, AS Kramarenko, VA Kramberger, G Krasnopevtsev, D Krasny, MW Krasznahorkay, A Kraus, JK Kravchenko, A Kreiss, S Kretz, M Kretzschmar, J Kreutzfeldt, K Krieger, P Krizka, K Kroeninger, K Kroha, H Kroll, J Kroseberg, J Krstic, J Kruchonak, U Kruger, H Krumnack, N Krumshteyn, ZV Kruse, A Kruse, MC Kruskal, M Kubota, T Kucuk, H Kuday, S Kuehn, S Kugel, A Kuger, F Kuhl, A Kuhl, T Kukhtin, V Kulchitsky, Y Kuleshov, S Kuna, M Kunigo, T Kupco, A Kurashige, H Kurochkin, YA Kurumida, R Kus, V Kuwertz, ES Kuze, M Kvita, J Kwan, T Kyriazopoulos, D La Rosa, A Navarro, JLL La Rotonda, L Lacasta, C Lacava, F Lacey, J Lacker, H Lacour, D Lacuesta, VR Ladygin, E Lafaye, R Laforge, B Lagouri, T Lai, S Lambourne, L Lammers, S Lampen, CL Lampl, W Lancon, E Landgraf, U Landon, MPJ Lang, VS Lange, JC Lankford, AJ Lanni, F Lantzsch, K Laplace, S Lapoire, C Laporte, JF Lari, T Manghi, FL Lassnig, M Laurelli, P Lavrijsen, W Law, AT Laycock, P Lazovich, T Le Dortz, O Le Guirriec, E Le Menedeu, E LeBlanc, M LeCompte, T Ledroit-Guillon, F Lee, CA Lee, SC Lee, L Lefebvre, G Lefebvre, M Legger, F Leggett, C Lehan, A Miotto, GL Lei, X Leight, WA Leisos, A Leister, AG Leite, MAL Leitner, R Lellouch, D Lemmer, B Leney, KJC Lenz, T Lenzi, B Leone, R Leone, S Leonidopoulos, C Leontsinis, S Leroy, C Lester, CG Levchenko, M Leveque, J Levin, D Levinson, LJ Levy, M Lewis, A Leyko, AM Leyton, M Li, B Li, H Li, HL Li, L Li, L Li, S Li, Y Liang, Z Liao, H Liberti, B Liblong, A Lichard, P Lie, K Liebal, J Liebig, W Limbach, C Limosani, A Lin, SC Lin, TH Linde, F Lindquist, BE Linnemann, JT Lipeles, E Lipniacka, A Lisovyi, M Liss, TM Lissauer, D Lister, A Litke, AM Liu, B Liu, D Liu, H Liu, J Liu, JB Liu, K Liu, L Liu, M Liu, M Liu, Y Livan, M Lleres, A Merino, JL Lloyd, SL Lo Sterzo, F Lobodzinska, E Loch, P Lockman, WS Loebinger, FK Loevschall-Jensen, AE Loginov, A Lohse, T Lohwasser, K Lokajicek, M Long, BA Long, JD Long, RE Looper, KA Lopes, L Mateos, DL Paredes, BL Paz, IL Lorenz, J Martinez, NL Losada, M Loscutoff, P Losel, PJ Lou, X Lounis, A Love, J Love, PA Lu, N Lubatti, HJ Luci, C Lucotte, A Luehring, F Lukas, W Luminari, L Lundberg, O Lund-Jensen, B Lynn, D Lysak, R Lytken, E Ma, H Ma, LL Maccarrone, G Macchiolo, A Macdonald, CM Miguens, JM Macina, D Madaffari, D Madar, R Maddocks, HJ Mader, WF Madsen, A Maeland, S Maeno, T Maevskiy, A Magradze, E Mahboubi, K Mahlstedt, J Maiani, C Maidantchik, C Maier, AA Maier, T Maio, A Majewski, S Makida, Y Makovec, N Malaescu, B Malecki, P Maleev, VP Malek, F Mallik, U Malon, D Malone, C Maltezos, S Malyshev, VM Malyukov, S Mamuzic, J Mancini, G Mandelli, B Mandelli, L Mandic, I Mandrysch, R Maneira, J Manfredini, A de Andrade, LM Ramos, JM Mann, A Manning, PM Manousakis-Katsikakis, A Mansoulie, B Mantifel, R Mantoani, M Mapelli, L March, L Marchiori, G Marcisovsky, M Marino, CP Marjanovic, M Marley, DE Marroquim, F Marsden, SP Marshall, Z Marti, LF Marti-Garcia, S Martin, B Martin, TA Martin, VJ Latour, BMD Martinez, M Martin-Haugh, S Martoiu, VS Martyniuk, AC Marx, M Marzano, F Marzin, A Masetti, L Mashimo, T Mashinistov, R Masik, J Maslennikov, AL Massa, I Massa, L Massol, N Mastrandrea, P Mastroberardino, A Masubuchi, T Mattig, P Mattmann, J Maurer, J Maxfield, SJ Maximov, DA Mazini, R Mazza, SM Mazzaferro, L Mc Goldrick, G Mc Kee, SP McCarn, A McCarthy, RL McCarthy, TG McCubbin, NA McFarlane, KW Mcfayden, JA Mchedlidze, G McMahon, SJ McPherson, RA Medinnis, M Meehan, S Mehlhase, S Mehta, A Meier, K Meineck, C Meirose, B Garcia, BRM Meloni, F Mengarelli, A Menke, S Meoni, E Mercurio, KM Mergelmeyer, S Mermod, P Merola, L Meroni, C Merritt, FS Messina, A Metcalfe, J Mete, AS Meyer, C Meyer, C Meyer, JP Meyer, J Middleton, RP Miglioranzi, S Mijovic, L Mikenberg, G Mikestikova, M Mikuz, M Milesi, M Milic, A Miller, DW Mills, C Milov, A Milstead, DA Minaenko, AA Minami, Y Minashvili, IA Mincer, AI Mindur, B Mineev, M Ming, Y Mir, LM Mitani, T Mitrevski, J Mitsou, VA Miucci, A Miyagawa, PS Mjornmark, JU Moa, T Mochizuki, K Mohapatra, S Mohr, W Molander, S Moles-Valls, R Monig, K Monini, C Monk, J Monnier, E Berlingen, JM Monticelli, F Monzani, S Moore, RW Morange, N Moreno, D Llacer, MM Morettini, P Morgenstern, M Morii, M Morinaga, M Morisbak, V Moritz, S Morley, AK Mornacchi, G Morris, JD Mortensen, SS Morton, A Morvaj, L Mosidze, M Moss, J Motohashi, K Mount, R Mountricha, E Mouraviev, SV Moyse, EJW Muanza, S Mudd, RD Mueller, F Mueller, J Mueller, K Mueller, RSP Mueller, T Muenstermann, D Mullen, P Mullier, GA Munwes, Y Quijada, JAM Murray, WJ Musheghyan, H Musto, E Myagkov, AG Myska, M Nackenhorst, O Nadal, J Nagai, K Nagai, R Nagai, Y Nagano, K Nagarkar, A Nagasaka, Y Nagata, K Nagel, M Nagy, E Nairz, AM Nakahama, Y Nakamura, K Nakamura, T Nakano, I Namasivayam, H Garcia, RFN Narayan, R Naumann, T Navarro, G Nayyar, R Neal, HA Nechaeva, PY Neep, TJ Nef, PD Negri, A Negrini, M Nektarijevic, S Nellist, C Nelson, A Nemecek, S Nemethy, P Nepomuceno, AA Nessi, M Neubauer, MS Neumann, M Neves, RM Nevski, P Newman, PR Nguyen, DH Nickerson, RB Nicolaidou, R Nicquevert, B Nielsen, J Nikiforou, N Nikiforov, A Nikolaenko, V Nikolic-Audit, I Nikolopoulos, K Nilsen, JK Nilsson, P Ninomiya, Y Nisati, A Nisius, R Nobe, T Nomachi, M Nomidis, I Nooney, T Norberg, S Nordberg, M Novgorodova, O Nowak, S Nozaki, M Nozka, L Ntekas, K Hanninger, GN Nunnemann, T Nurse, E Nuti, F O'Brien, BJ O'grady, F O'Neil, DC O'Shea, V Oakham, FG Oberlack, H Obermann, T Ocariz, J Ochi, A Ochoa, I Ochoa-Ricoux, JP Oda, S Odaka, S Ogren, H Oh, A Oh, SH Ohm, CC Ohman, H Oide, H Okamura, W Okawa, H Okumura, Y Okuyama, T Olariu, A Pino, SAO Damazio, DO Garcia, EO Olszewski, A Olszowska, J Onofre, A Onyisi, PUE Oram, CJ Oreglia, MJ Oren, Y Orestano, D Orlando, N Barrera, CO Orr, RS Osculati, B Ospanov, R Garzon, GY Otono, H Ouchrif, M Ouellette, EA Ould-Saada, F Ouraou, A Oussoren, KP Ouyang, Q Ovcharova, A Owen, M Owen, RE Ozcan, VE Ozturk, N Pachal, K Pages, AP Aranda, CP Pagacova, M Griso, SP Paganis, E Pahl, C Paige, F Pais, P Pajchel, K Palacino, G Palestini, S Palka, M Pallin, D Palma, A Pan, YB Panagiotopoulou, E Pandini, CE Vazquez, JGP Pani, P Panitkin, S Pantea, D Paolozzi, L Papadopoulou, TD Papageorgiou, K Paramonov, A Hernandez, DP Parker, MA Parker, KA Parodi, F Parsons, JA Parzefall, U Pasqualucci, E Passaggio, S Pastore, F Pastore, F Pasztor, G Pataraia, S Patel, ND Pater, JR Pauly, T Pearce, J Pearson, B Pedersen, LE Pedersen, M Lopez, SP Pedro, R Peleganchuk, SV Pelikan, D Peng, H Penning, B Penwell, J Perepelitsa, DV Codina, EP Garcia-Estan, MTP Perini, L Pernegger, H Perrella, S Peschke, R Peshekhonov, VD Peters, K Peters, RFY Petersen, BA Petersen, TC Petit, E Petridis, A Petridou, C Petrolo, E Petrucci, F Pettersson, NE Pezoa, R Phillips, PW Piacquadio, G Pianori, E Picazio, A Piccaro, E Piccinini, M Pickering, MA Piegaia, R Pignotti, DT Pilcher, JE Pilkington, AD Pina, J Pinamonti, M Pinfold, JL Pingel, A Pinto, B Pires, S Pirumov, H Pitt, M Pizio, C Plazak, L Pleier, MA Pleskot, V Plotnikova, E Plucinski, P Pluth, D Poettgen, R Poggioli, L Pohl, D Polesello, G Poley, A Policicchio, A Polifka, R Polini, A Pollard, CS Polychronakos, V Pommes, K Pontecorvo, L Pope, BG Popeneciu, GA Popovic, DS Poppleton, A Pospisil, S Potamianos, K Potrap, IN Potter, CJ Potter, CT Poulard, G Poveda, J Pozdnyakov, V Pralavorio, P Pranko, A Prasad, S Prell, S Price, D Price, LE Primavera, M Prince, S Proissl, M Prokofiev, K Prokoshin, F Protopapadaki, E Protopopescu, S Proudfoot, J Przybycien, M Ptacek, E Puddu, D Pueschel, E Puldon, D Purohit, M Puzo, P Qian, J Qin, G Qin, Y Quadt, A Quarrie, DR Quayle, WB Queitsch-Maitland, M Quilty, D Raddum, S Radeka, V Radescu, V Radhakrishnan, SK Radloff, P Rados, P Ragusa, F Rahal, G Rajagopalan, S Rammensee, M Rangel-Smith, C Rauscher, F Rave, S Ravenscroft, T Raymond, M Read, AL Readioff, NP Rebuzzi, DM Redelbach, A Redlinger, G Reece, R Reeves, K Rehnisch, L Reisin, H Relich, M Rembser, C Ren, H Renaud, A Rescigno, M Resconi, S Rezanova, OL Reznicek, P Rezvani, R Richter, R Richter, S Richter-Was, E Ricken, O Ridel, M Rieck, P Riegel, CJ Rieger, J Rijssenbeek, M Rimoldi, A Rinaldi, L Ristic, B Ritsch, E Riu, I Rizatdinova, F Rizvi, E Robertson, SH Robichaud-Veronneau, A Robinson, D Robinson, JEM Robson, A Roda, C Roe, S Rohne, O Rolli, S Romaniouk, A Romano, M Saez, SMR Adam, ER Rompotis, N Ronzani, M Roos, L Ros, E Rosati, S Rosbach, K Rose, P Rosendahl, PL Rosenthal, O Rossetti, V Rossi, E Rossi, LP Rosten, R Rotaru, M Roth, I Rothberg, J Rousseau, D Royon, CR Rozanov, A Rozen, Y Ruan, X Rubbo, F Rubinskiy, I Rud, VI Rudolph, C Rudolph, MS Ruhr, F Ruiz-Martinez, A Rurikova, Z Rusakovich, NA Ruschke, A Russell, HL Rutherfoord, JP Ruthmann, N Ryabov, YF Rybar, M Rybkin, G Ryder, NC Saavedra, AF Sabato, G Sacerdoti, S Saddique, A Sadrozinski, HFW Sadykov, R Tehrani, FS Saimpert, M Sakamoto, H Sakurai, Y Salamanna, G Salamon, A Saleem, M Salek, D De Bruin, PHS Salihagic, D Salnikov, A Salt, J Salvatore, D Salvatore, F Salvucci, A Salzburger, A Sampsonidis, D Sanchez, A Sanchez, J Martinez, VS Sandaker, H Sandbach, RL Sander, HG Sanders, MP Sandhoff, M Sandoval, C Sandstroem, R Sankey, DPC Sannino, M Sansoni, A Santoni, C Santonico, R Santos, H Castillo, IS Sapp, K Sapronov, A Saraiva, JG Sarrazin, B Sasaki, O Sasaki, Y Sato, K Sauvage, G Sauvan, E Savage, G Savard, P Sawyer, C Sawyer, L Saxon, J Sbarra, C Sbrizzi, A Scanlon, T Scannicchio, DA Scarcella, M Scarfone, V Schaarschmidt, J Schacht, P Schaefer, D Schaefer, R Schaeffer, J Schaepe, S Schaetzel, S Schafer, U Schaffer, AC Schaile, D Schamberger, RD Scharf, V Schegelsky, VA Scheirich, D Schernau, M Schiavi, C Schillo, C Schioppa, M Schlenker, S Schmidt, E Schmieden, K Schmitt, C Schmitt, S Schmitt, S Schneider, B Schnellbach, YJ Schnoor, U Schoeffel, L Schoening, A Schoenrock, BD Schopf, E Schorlemmer, ALS Schott, M Schouten, D Schovancova, J Schramm, S Schreyer, M Schroeder, C Schuh, N Schultens, MJ Schultz-Coulon, HC Schulz, H Schumacher, M Schumm, BA Schune, P Schwanenberger, C Schwartzman, A Schwarz, TA Schwegler, P Schwemling, P Schwienhorst, R Schwindling, J Schwindt, T Sciacca, FG Scifo, E Sciolla, G Scuri, F Scutti, F Searcy, J Sedov, G Sedykh, E Seema, P Seidel, SC Seiden, A Seifert, F Seixas, JM Sekhniaidze, G Sekhon, K Sekula, SJ Seliverstov, DM Semprini-Cesari, N Serfon, C Serin, L Serkin, L Serre, T Sessa, M Seuster, R Severini, H Sflilgoj, T Sforza, F Sfyrla, A Shabalina, E Shamim, M Shan, LY Shang, R Shank, JT Shapiro, M Shatalov, PB Shaw, K Shaw, SM Shcherbakova, A Shehu, CY Sherwood, P Shi, L Shimizu, S Shimmin, CO Shimojima, M Shiyakova, M Shmeleva, A Saadi, DS Shochet, MJ Shojaii, S Shrestha, S Shulga, E Shupe, MA Shushkevich, S Sicho, P Sidiropoulou, O Sidorov, D Sidoti, A Siegert, F Sijacki, D Silva, J Silver, Y Silverstein, SB Simak, V Simard, O Simic, L Simion, S Simioni, E Simmons, B Simon, D Simoniello, R Sinervo, P Sinev, NB Siragusa, G Sisakyan, AN Sivoklokov, SY Sjolin, J Sjursen, TB Skinner, MB Skottowe, HP Skubic, P Slater, M Slavicek, T Slawinska, M Sliwa, K Smakhtin, V Smart, BH Smestad, L Smirnov, SY Smirnov, Y Smirnova, LN Smirnova, O Smith, MNK Smith, RW Smizanska, M Smolek, K Snesarev, AA Snidero, G Snyder, S Sobie, R Socher, F Soffer, A Soh, DA Solans, CA Solar, M Solc, J Soldatov, EY Soldevila, U Solodkov, AA Soloshenko, A Solovyanov, OV Solovyev, V Sommer, P Song, HY Soni, N Sood, A Sopczak, A Sopko, B Sopko, V Sorin, V Sosa, D Sosebee, M Sotiropoulou, CL Soualah, R Soukharev, AM South, D Sowden, BC Spagnolo, S Spalla, M Spano, F Spearman, WR Spettel, F Spighi, R Spigo, G Spiller, LA Spousta, M Spreitzer, T St Denis, RD Staerz, S Stahlman, J Stamen, R Stamm, S Stanecka, E Stanescu, C Stanescu-Bellu, M Stanitzki, MM Stapnes, S Starchenko, EA Stark, J Staroba, P Starovoitov, P Staszewski, R Stavina, P Steinberg, P Stelzer, B Stelzer, HJ Stelzer-Chilton, O Stenzel, H Stern, S Stewart, GA Stillings, JA Stockton, MC Stoebe, M Stoicea, G Stolte, P Stonjek, S Stradling, AR Straessner, A Stramaglia, ME Strandberg, J Strandberg, S Strandlie, A Strauss, E Strauss, M Strizenec, P Strohmer, R Strom, DM Stroynowski, R Strubig, A Stucci, SA Stugu, B Styles, NA Su, D Su, J Subramaniam, R Succurro, A Sugaya, Y Suhr, C Suk, M Sulin, VV Sultansoy, S Sumida, T Sun, S Sun, X Sundermann, JE Suruliz, K Susinno, G Sutton, MR Suzuki, S Suzuki, Y Svatos, M Swedish, S Swiatlowski, M Sykora, I Sykora, T Ta, D Taccini, C Tackmann, K Taenzer, J Taffard, A Tafirout, R Taiblum, N Takai, H Takashima, R Takeda, H Takeshita, T Takubo, Y Talby, M Talyshev, AA Tam, JYC Tan, KG Tanaka, J Tanaka, R Tanaka, S Tannenwald, BB Tannoury, N Tapprogge, S Tarem, S Tarrade, F Tartarelli, GF Tas, P Tasevsky, M Tashiro, T Tassi, E Delgado, AT Tayalati, Y Taylor, FE Taylor, GN Taylor, W Teischinger, FA Castanheira, MTD Teixeira-Dias, P Temming, KK Ten Kate, H Teng, PK Teoh, JJ Tepel, F Terada, S Terashi, K Terron, J Terzo, S Testa, M Teuscher, RJ Therhaag, J Theveneaux-Pelzer, T Thomas, JP Thomas-Wilsker, J Thompson, EN Thompson, PD Thompson, RJ Thompson, AS Thomsen, LA Thomson, E Thomson, M Thun, RP Tibbetts, MJ Torres, RET Tikhomirov, VO Tikhonov, YA Timoshenko, S Tiouchichine, E Tipton, P Tisserant, S Todorov, T Todorova-Nova, S Tojo, J Tokar, S Tokushuku, K Tollefson, K Tolley, E Tomlinson, L Tomoto, M Tompkins, L Toms, K Torrence, E Torres, H Pastor, ET Toth, J Touchard, F Tovey, DR Trefzger, T Tremblet, L Tricoli, A Trigger, IM Trincaz-Duvoid, S Tripiana, MF Trischuk, W Trocme, B Troncon, C Trottier-McDonald, M Trovatelli, M True, P Truong, L Trzebinski, M Trzupek, A Tsarouchas, C Tseng, JCL Tsiareshka, PV Tsionou, D Tsipolitis, G Tsirintanis, N Tsiskaridze, S Tsiskaridze, V Tskhadadze, EG Tsukerman, II Tsulaia, V Tsuno, S Tsybychev, D Tudorache, A Tudorache, V Tuna, AN Tupputi, A Turchikhin, S Turecek, D Turra, R Turvey, AJ Tuts, PM Tykhonov, A Tylmad, M Tyndel, M Ueda, I Ueno, R Ughetto, M Ugland, M Uhlenbrock, M Ukegawa, F Unal, G Undrus, A Unel, G Ungaro, FC Unno, Y Unverdorben, C Urban, J Urquijo, P Urrejola, P Usai, G Usanova, A Vacavant, L Vacek, V Vachon, B Valderanis, C Valencic, N Valentinetti, S Valero, A Valery, L Valkar, S Gallego, EV Vallecorsa, S Ferrer, JAV Van Den Wollenberg, W Van Der Deijl, PC van der Geer, R van der Graaf, H Van Der Leeuw, R van Eldik, N van Gemmeren, P Van Nieuwkoop, J van Vulpen, I van Woerden, MC Vanadia, M Vandelli, W Vanguri, R Vaniachine, A Vannucci, F Vardanyan, G Vari, R Varnes, EW Varol, T Varouchas, D Vartapetian, A Varvell, KE Vazeille, F Schroeder, TV Veatch, J Veloce, LM Veloso, F Velz, T Veneziano, S Ventura, A Ventura, D Venturi, M Venturi, N Venturini, A Vercesi, V Verducci, M Verkerke, W Vermeulen, JC Vest, A Vetterli, MC Viazlo, O Vichou, I Vickey, T Boeriu, OEV Viehhauser, GHA Viel, S Vigne, R Villa, M Perez, MV Vilucchi, E Vincter, MG Vinogradov, VB Vivarelli, I Vaque, FV Vlachos, S Vladoiu, D Vlasak, M Vogel, M Vokac, P Volpi, G Volpi, M von der Schmitt, H von Radziewski, H von Toerne, E Vorobel, V Vorobev, K Vos, M Voss, R Vossebeld, JH Vranjes, N Milosavljevic, MV Vrba, V Vreeswijk, M Vuillermet, R Vukotic, I Vykydal, Z Wagner, P Wagner, W Wahlberg, H Wahrmund, S Wakabayashi, J Walder, J Walker, R Walkowiak, W Wang, C Wang, F Wang, H Wang, H Wang, J Wang, J Wang, K Wang, R Wang, SM Wang, T Wang, X Wanotayaroj, C Warburton, A Ward, CP Wardrope, DR Warsinsky, M Washbrook, A Wasicki, C Watkins, PM Watson, AT Watson, IJ Watson, MF Watts, G Watts, S Waugh, BM Webb, S Weber, MS Weber, SW Webster, JS Weidberg, AR Weinert, B Weingarten, J Weiser, C Weits, H Wells, PS Wenaus, T Wengler, T Wenig, S Wermes, N Werner, M Werner, P Wessels, M Wetter, J Whalen, K Wharton, AM White, A White, MJ White, R White, S Whiteson, D Wickens, FJ Wiedenmann, W Wielers, M Wienemann, P Wiglesworth, C Wiik-Fuchs, LAM Wildauer, A Wilkens, HG Williams, HH Williams, S Willis, C Willocq, S Wilson, A Wilson, JA Wingerter-Seez, I Winklmeier, F Winter, BT Wittgen, M Wittkowski, J Wollstadt, SJ Wolter, MW Wolters, H Wosiek, BK Wotschack, J Woudstra, MJ Wozniak, KW Wu, M Wu, M Wu, SL Wu, X Wu, Y Wyatt, TR Wynne, BM Xella, S Xu, D Xu, L Yabsley, B Yacoob, S Yakabe, R Yamada, M Yamaguchi, Y Yamamoto, A Yamamoto, S Yamanaka, T Yamauchi, K Yamazaki, Y Yan, Z Yang, H Yang, H Yang, Y Yao, WM Yasu, Y Yatsenko, E Wong, KHY Ye, J Ye, S Yeletskikh, I Yen, AL Yildirim, E Yorita, K Yoshida, R Yoshihara, K Young, C Young, CJS Youssef, S Yu, DR Yu, J Yu, JM Yu, J Yuan, L Yurkewicz, A Yusuff, I Zabinski, B Zaidan, R Zaitsev, AM Zalieckas, J Zaman, A Zambito, S Zanello, L Zanzi, D Zeitnitz, C Zeman, M Zemla, A Zengel, K Zenin, O Zenis, T Zerwas, D Zhang, D Zhang, F Zhang, H Zhang, J Zhang, L Zhang, R Zhang, X Zhang, Z Zhao, X Zhao, Y Zhao, Z Zhemchugov, A Zhong, J Zhou, B Zhou, C Zhou, L Zhou, L Zhou, N Zhu, CG Zhu, H Zhu, J Zhu, Y Zhuang, X Zhukov, K Zibell, A Zieminska, D Zimine, NI Zimmermann, C Zimmermann, S Zinonos, Z Zinser, M Ziolkowski, M Zivkovic, L Zobernig, G Zoccoli, A zur Nedden, M Zurzolo, G Zwalinski, L AF Aad, G. Abbott, B. Abdallah, J. Abdinov, O. Aben, R. Abolins, M. AbouZeid, O. S. Abramowicz, H. Abreu, H. Abreu, R. Abulaiti, Y. Acharya, B. S. Adamczyk, L. Adams, D. L. Adelman, J. Adomeit, S. Adye, T. Affolder, A. A. Agatonovic-Jovin, T. Aguilar-Saavedra, J. A. Ahlen, S. P. Ahmadov, F. Aielli, G. Akerstedt, H. Akesson, T. P. A. Akimoto, G. Akimov, A. V. Alberghi, G. L. Albert, J. Albrand, S. Alconada Verzini, M. J. Aleksa, M. Aleksandrov, I. N. Alexa, C. Alexander, G. Alexopoulos, T. Alhroob, M. Alimonti, G. Alio, L. Alison, J. Alkire, S. P. Allbrooke, B. M. M. Allport, P. P. Aloisio, A. Alonso, A. Alonso, F. Alpigiani, C. Altheimer, A. Gonzalez, B. Alvarez Alvarez Piqueras, D. Alviggi, M. G. Amadio, B. T. Amako, K. Amaral Coutinho, Y. Amelung, C. Amidei, D. Amor Dos Santos, S. P. Amorim, A. Amoroso, S. Amram, N. Amundsen, G. Anastopoulos, C. Ancu, L. S. Andari, N. Andeen, T. Anders, C. F. Anders, G. Anders, J. K. Anderson, K. J. Andreazza, A. Andrei, V. Angelidakis, S. Angelozzi, I. Anger, P. Angerami, A. Anghinolfi, F. Anisenkov, V. Anjos, N. Annovi, A. Antonelli, M. Antonov, A. Antos, J. Anulli, F. Aoki, M. Bella, L. Aperio Arabidze, G. Arai, Y. Araque, J. P. Arce, A. T. H. Arduh, F. A. Arguin, J-F. Argyropoulos, S. Arik, M. Armbruster, A. J. Arnaez, O. Arnal, V. Arnold, H. Arratia, M. Arslan, O. Artamonov, A. Artoni, G. Asai, S. Asbah, N. Ashkenazi, A. Asman, B. Asquith, L. Assamagan, K. Astalos, R. Atkinson, M. Atlay, N. B. Auerbach, B. Augsten, K. Aurousseau, M. Avolio, G. Axen, B. Ayoub, M. K. Azuelos, G. Baak, M. A. Baas, A. E. Bacci, C. Bachacou, H. Bachas, K. Backes, M. Backhaus, M. Bagiacchi, P. Bagnaia, P. Bai, Y. Bain, T. Baines, J. T. Baker, O. K. Balek, P. Balestri, T. Balli, F. Banas, E. Banerjee, Sw. Bannoura, A. A. E. Bansil, H. S. Barak, L. Barberio, E. L. Barberis, D. Barbero, M. Barillari, T. Barisonzi, M. Barklow, T. Barlow, N. Barnes, S. L. Barnett, B. M. Barnett, R. M. Barnovska, Z. Baroncelli, A. Barone, G. Barr, A. J. Barreiro, F. da Costa, J. Barreiro Guimaraes Bartoldus, R. Barton, A. E. Bartos, P. Basalaev, A. Bassalat, A. Basye, A. Bates, R. L. Batista, S. J. Batley, J. R. Battaglia, M. Bauce, M. Bauer, F. Bawa, H. S. Beacham, J. B. Beattie, M. D. Beau, T. Beauchemin, P. H. Beccherle, R. Bechtle, P. Beck, H. P. Becker, K. Becker, M. Becker, S. Beckingham, M. Becot, C. Beddall, A. J. Beddall, A. Bednyakov, V. A. Bee, C. P. Beemster, L. J. Beermann, T. A. Begel, M. Behr, J. K. Belanger-Champagne, C. Bell, W. H. Bella, G. Bellagamba, L. Bellerive, A. Bellomo, M. Belotskiy, K. Beltramello, O. Benary, O. Benchekroun, D. Bender, M. Bendtz, K. Benekos, N. Benhammou, Y. Noccioli, E. Benhar Garcia, J. A. Benitez Benjamin, D. P. Bensinger, J. R. Bentvelsen, S. Beresford, L. Beretta, M. Berge, D. Kuutmann, E. Bergeaas Berger, N. Berghaus, F. Beringer, J. Bernard, C. Bernard, N. R. Bernius, C. Bernlochner, F. U. Berry, T. Berta, P. Bertella, C. Bertoli, G. Bertolucci, F. Bertsche, C. Bertsche, D. Besana, M. I. Besjes, G. J. Bylund, O. Bessidskaia Bessner, M. Besson, N. Betancourt, C. Bethke, S. Bevan, A. J. Bhimji, W. Bianchi, R. M. Bianchini, L. Bianco, M. Biebel, O. Biedermann, D. Bieniek, S. P. Biglietti, M. De Mendizabal, J. Bilbao Bilokon, H. Bindi, M. Binet, S. Bingul, A. Bini, C. Black, C. W. Black, J. E. Black, K. M. Blackburn, D. Blair, R. E. Blanchard, J. -B. Blanco, J. E. Blazek, T. Bloch, I. Blocker, C. Blum, W. Blumenschein, U. Bobbink, G. J. Bobrovnikov, V. S. Bocchetta, S. S. Bocci, A. Bock, C. Boehler, M. Bogaerts, J. A. Bogavac, D. Bogdanchikov, A. G. Bohm, C. Boisvert, V. Bold, T. Boldea, V. Boldyrev, A. S. Bomben, M. Bona, M. Boonekamp, M. Borisov, A. Borissov, G. Borroni, S. Bortfeldt, J. Bortolotto, V. Bos, K. Boscherini, D. Bosman, M. Boudreau, J. Bouffard, J. Bouhova-Thacker, E. V. Boumediene, D. Bourdarios, C. Bousson, N. Boveia, A. Boyd, J. Boyko, I. R. Bozic, I. Bracinik, J. Brandt, A. Brandt, G. Brandt, O. Bratzler, U. Brau, B. Brau, J. E. Braun, H. M. Brazzale, S. F. Madden, W. D. Breaden Brendlinger, K. Brennan, A. J. Brenner, L. Brenner, R. Bressler, S. Bristow, K. Bristow, T. M. Britton, D. Britzger, D. Brochu, F. M. Brock, I. Brock, R. Bronner, J. Brooijmans, G. Brooks, T. Brooks, W. K. Brosamer, J. Brost, E. Brown, J. de Renstrom, P. A. Bruckman Bruncko, D. Bruneliere, R. Bruni, A. Bruni, G. Bruschi, M. Bruscino, N. Bryngemark, L. Buanes, T. Buat, Q. Buchholz, P. Buckley, A. G. Buda, S. I. Budagov, I. A. Buehrer, F. Bugge, L. Bugge, M. K. Bulekov, O. Bullock, D. Burckhart, H. Burdin, S. Burghgrave, B. Burke, S. Burmeister, I. Busato, E. Buescher, D. Buescher, V. Bussey, P. Butler, J. M. Butt, A. I. Buttar, C. M. Butterworth, J. M. Butti, P. Buttinger, W. Buzatu, A. Buzykaev, A. R. Cabrera Urban, S. Caforio, D. Cairo, V. M. Cakir, O. Calafiura, P. Calandri, A. Calderini, G. Calfayan, P. Caloba, L. P. Calvet, D. Calvet, S. Toro, R. Camacho Camarda, S. Camarri, P. Cameron, D. Caminada, L. M. Armadans, R. Caminal Campana, S. Campanelli, M. Campoverde, A. Canale, V. Canepa, A. Bret, M. Cano Cantero, J. Cantrill, R. Cao, T. Garrido, M. D. M. Capeans Caprini, I. Caprini, M. Capua, M. Caputo, R. Cardarelli, R. Cardillo, F. Carli, T. Carlino, G. Carminati, L. Caron, S. Carquin, E. Carrillo-Montoya, G. D. Carter, J. R. Carvalho, J. Casadei, D. Casado, M. P. Casolino, M. Castaneda-Miranda, E. Castelli, A. Castillo Gimenez, V. Castro, N. F. Catastini, P. Catinaccio, A. Catmore, J. R. Cattai, A. Caudron, J. Cavaliere, V. Cavalli, D. Cavalli-Sforza, M. Cavasinni, V. Ceradini, F. Cerio, B. C. Cerny, K. Cerqueira, A. S. Cerri, A. Cerrito, L. Cerutti, F. Cerv, M. Cervelli, A. Cetin, S. A. Chafaq, A. Chakraborty, D. Chalupkova, I. Chang, P. Chapleau, B. Chapman, J. D. Charlton, D. G. Chau, C. C. Barajas, C. A. Chavez Cheatham, S. Chegwidden, A. Chekanov, S. Chekulaev, S. V. Chelkov, G. A. Chelstowska, M. A. Chen, C. Chen, H. Chen, K. Chen, L. Chen, S. Chen, X. Chen, Y. Cheng, H. C. Cheng, Y. Cheplakov, A. Cheremushkina, E. El Moursli, R. Cherkaoui Chernyatin, V. Cheu, E. Chevalier, L. Chiarella, V. Childers, J. T. Chiodini, G. Chisholm, A. S. Chislett, R. T. Chitan, A. Chizhov, M. V. Choi, K. Chouridou, S. Chow, B. K. B. Christodoulou, V. Chromek-Burckhart, D. Chudoba, J. Chuinard, A. J. Chwastowski, J. J. Chytka, L. Ciapetti, G. Ciftci, A. K. Cinca, D. Cindro, V. Cioara, I. A. Ciocio, A. Citron, Z. H. Ciubancan, M. Clark, A. Clark, B. L. Clark, P. J. Clarke, R. N. Cleland, W. Clement, C. Coadou, Y. Cobal, M. Coccaro, A. Cochran, J. Coffey, L. Cogan, J. G. Cole, B. Cole, S. Colijn, A. P. Collot, J. Colombo, T. Compostella, G. Conde Muino, P. Coniavitis, E. Connell, S. H. Connelly, I. A. Consonni, S. M. Consorti, V. Constantinescu, S. Conta, C. Conti, G. Conventi, F. Cooke, M. Cooper, B. D. Cooper-Sarkar, A. M. Cornelissen, T. Corradi, M. Corriveau, F. Corso-Radu, A. Cortes-Gonzalez, A. Cortiana, G. Costa, G. Costa, M. J. Costanzo, D. Cote, D. Cottin, G. Cowan, G. Cox, B. E. Cranmer, K. Cree, G. Crepe-Renaudin, S. Crescioli, F. Cribbs, W. A. Ortuzar, M. Crispin Cristinziani, M. Croft, V. Crosetti, G. Donszelmann, T. Cuhadar Cummings, J. Curatolo, M. Cuthbert, C. Czirr, H. Czodrowski, P. D'Auria, S. D'Onofrio, M. Da Cunha Sargedas De Sousa, M. J. Da Via, C. Dabrowski, W. Da Finca, A. Dai, T. Dale, O. Dallaire, F. Dallapiccola, C. Dam, M. Dandoy, J. R. Dang, N. P. Daniells, A. C. Danninger, M. Hoffmann, M. Dano Dao, V. Darbo, G. Darmora, S. Dassoulas, J. Dattagupta, A. Davey, W. David, C. Davidek, T. Davies, E. Davies, M. Davison, P. Davygora, Y. Dawe, E. Dawson, I. Daya-Ishmukhametova, R. K. De, K. de Asmundis, R. De Castro, S. De Cecco, S. De Groot, N. de Jong, P. De la Torre, H. De Lorenzi, F. De Nooij, L. De Pedis, D. De Salvo, A. De Sanctis, U. De Santo, A. De Regie, J. B. De Vivie Dearnaley, W. J. Debbe, R. Debenedetti, C. Dedovich, D. V. Deigaard, I. Del Peso, J. Del Prete, T. Delgove, D. Deliot, F. Delitzsch, C. M. Deliyergiyev, M. Dell'Acqua, A. Dell'Asta, L. Dell'Orso, M. Della Pietra, M. della Volpe, D. Delmastro, M. Delsart, P. A. Deluca, C. DeMarco, D. A. Demers, S. Demichev, M. Demilly, A. Denisov, S. P. Derendarz, D. Derkaoui, J. E. Derue, F. Dervan, P. Desch, K. Deterre, C. Deviveiros, P. O. Dewhurst, A. Dhaliwal, S. Di Ciaccio, A. Di Ciaccio, L. Di Domenico, A. Di Donato, C. Di Girolamo, A. Di Girolamo, B. Di Mattia, A. Di Micco, B. Di Nardo, R. Di Simone, A. Di Sipio, R. Di Valentino, D. Diaconu, C. Diamond, M. Dias, F. A. Diaz, M. A. Diehl, E. B. Dietrich, J. Diglio, S. Dimitrievska, A. Dingfelder, J. Dita, P. Dita, S. Dittus, F. Djama, F. Djobava, T. Djuvsland, J. I. do Vale, M. A. B. Dobos, D. Dobre, M. Doglioni, C. Dohmae, T. Dolejsi, J. Dolezal, Z. Dolgoshein, B. A. Donadelli, M. Donati, S. Dondero, P. Donini, J. Dopke, J. Doria, A. Dova, M. T. Doyle, A. T. Drechsler, E. Dris, M. Dubreuil, E. Duchovni, E. Duckeck, G. Ducu, O. A. Duda, D. Dudarev, A. Duflot, L. Duguid, L. Duehrssen, M. Dunford, M. Yildiz, H. Duran Dueren, M. Durglishvili, A. Duschinger, D. Dyndal, M. Eckardt, C. Ecker, K. M. Edgar, R. C. Edson, W. Edwards, N. C. Ehrenfeld, W. Eifert, T. Eigen, G. Einsweiler, K. Ekelof, T. El Kacimi, M. Ellert, M. Elles, S. Ellinghaus, F. Elliot, A. A. Ellis, N. Elmsheuser, J. Elsing, M. Emeliyanov, D. Enari, Y. Endner, O. C. Endo, M. Erdmann, J. Ereditato, A. Ernis, G. Ernst, J. Ernst, M. Errede, S. Ertel, E. Escalier, M. Esch, H. Escobar, C. Esposito, B. Etienvre, A. I. Etzion, E. Evans, H. Ezhilov, A. Fabbri, L. Facini, G. Fakhrutdinov, R. M. Falciano, S. Falla, R. J. Faltova, J. Fang, Y. Fanti, M. Farbin, A. Farilla, A. Farooque, T. Farrell, S. Farrington, S. M. Farthouat, P. Fassi, F. Fassnacht, P. Fassouliotis, D. Giannelli, M. Faucci Favareto, A. Fayard, L. Federic, P. Fedin, O. L. Fedorko, W. Feigl, S. Feligioni, L. Feng, C. Feng, E. J. Feng, H. Fenyuk, A. B. Feremenga, L. Fernandez Martinez, P. Perez, S. Fernandez Ferrando, J. Ferrari, A. Ferrari, P. Ferrari, R. de Lima, D. E. Ferreira Ferrer, A. Ferrere, D. Ferretti, C. Parodi, A. Ferretto Fiascaris, M. Fiedler, F. Filipcic, A. Filipuzzi, M. Filthaut, F. Fincke-Keeler, M. Finelli, K. D. Fiolhais, M. C. N. Fiorini, L. Firan, A. Fischer, A. Fischer, C. Fischer, J. Fisher, W. C. Fitzgerald, E. A. Fleck, I. Fleischmann, P. Fleischmann, S. Fletcher, G. T. Fletcher, G. Fletcher, R. R. M. Flick, T. Floderus, A. Castillo, L. R. Flores Flowerdew, M. J. Formica, A. Forti, A. Fournier, D. Fox, H. Fracchia, S. Francavilla, P. Franchini, M. Francis, D. Franconi, L. Franklin, M. Frate, M. Fraternali, M. Freeborn, D. French, S. T. Friedrich, F. Froidevaux, D. Frost, J. A. Fukunaga, C. Torregrosa, E. Fullana Fulsom, B. G. Fuster, J. Gabaldon, C. Gabizon, O. Gabrielli, A. Gabrielli, A. Gadatsch, S. Gadomski, S. Gagliardi, G. Gagnon, P. Galea, C. Galhardo, B. Gallas, E. J. Gallop, B. J. Gallus, P. Galster, G. Gan, K. K. Gao, J. Gao, Y. Gao, Y. S. Walls, F. M. Garay Garberson, F. Garcia, C. Navarro, J. E. Garcia Garcia-Sciveres, M. Gardner, R. W. Garelli, N. Garonne, V. Gatti, C. Gaudiello, A. Gaudio, G. Gaur, B. Gauthier, L. Gauzzi, P. Gavrilenko, I. L. Gay, C. Gaycken, G. Gazis, E. N. Ge, P. Gecse, Z. Gee, C. N. P. Geerts, D. A. A. Geich-Gimbel, Ch. Geisler, M. P. Gemme, C. Genest, M. H. Gentile, S. George, M. George, S. Gerbaudo, D. Gershon, A. Ghazlane, H. Giacobbe, B. Giagu, S. Giangiobbe, V. Giannetti, P. Gibbard, B. Gibson, S. M. Gilchriese, M. Gillam, T. P. S. Gillberg, D. Gilles, G. Gingrich, D. M. Giokaris, N. Giordani, M. P. Giorgi, F. M. Giorgi, F. M. Giraud, P. F. Giromini, P. Giugni, D. Giuliani, C. Giulini, M. Gjelsten, B. K. Gkaitatzis, S. Gkialas, I. Gkougkousis, E. L. Gladilin, L. K. Glasman, C. Glatzer, J. Glaysher, P. C. F. Glazov, A. Goblirsch-Kolb, M. Goddard, J. R. Godlewski, J. Goldfarb, S. Golling, T. Golubkov, D. Gomes, A. Goncalo, R. Da Costa, J. Goncalves Pinto Firmino Gonella, L. Gonzalez de la Hoz, S. Parra, G. Gonzalez Gonzalez-Sevilla, S. Goossens, L. Gorbounov, P. A. Gordon, H. A. Gorelov, I. Gorini, B. Gorini, E. Gorisek, A. Gornicki, E. Goshaw, A. T. Goessling, C. Gostkin, M. I. Goujdami, D. Goussiou, A. G. Govender, N. Gozani, E. Grabas, H. M. X. Graber, L. Grabowska-Bold, I. Grafstroem, P. Grahn, K-J. Gramling, J. Gramstad, E. Grancagnolo, S. Grassi, V. Gratchev, V. Gray, H. M. Graziani, E. Greenwood, Z. D. Gregersen, K. Gregor, I. M. Grenier, P. Griffiths, J. Grillo, A. A. Grimm, K. Grinstein, S. Gris, Ph. Grivaz, J. -F. Grohs, J. P. Grohsjean, A. Gross, E. Grosse-Knetter, J. Grossi, G. C. Grout, Z. J. Guan, L. Guenther, J. Guescini, F. Guest, D. Gueta, O. Guido, E. Guillemin, T. Guindon, S. Gul, U. Gumpert, C. Guo, J. Gupta, S. Gustavino, G. Gutierrez, P. Ortiz, N. G. Gutierrez Gutschow, C. Guyot, C. Gwenlan, C. Gwilliam, C. B. Haas, A. Haber, C. Hadavand, H. K. Haddad, N. Haefner, P. Hageboeck, S. Hajduk, Z. Hakobyan, H. Haleem, M. Haley, J. Hall, D. Halladjian, G. Hallewell, G. D. Hamacher, K. Hamal, P. Hamano, K. Hamer, M. Hamilton, A. Hamity, G. N. Hamnett, P. G. Han, L. Hanagaki, K. Hanawa, K. Hance, M. Hanke, P. Hanna, R. Hansen, J. B. Hansen, J. D. Hansen, M. C. Hansen, P. H. Hara, K. Hard, A. S. Harenberg, T. Hariri, F. Harkusha, S. Harrington, R. D. Harrison, P. F. Hartjes, F. Hasegawa, M. Hasegawa, S. Hasegawa, Y. Hasib, A. Hassani, S. Haug, S. Hauser, R. Hauswald, L. Havranek, M. Hawkes, C. M. Hawkings, R. J. Hawkins, A. D. Hayashi, T. Hayden, D. Hays, C. P. Hays, J. M. Hayward, H. S. Haywood, S. J. Head, S. J. Heck, T. Hedberg, V. Heelan, L. Heim, S. Heim, T. Heinemann, B. Heinrich, L. Hejbal, J. Helary, L. Hellman, S. Hellmich, D. Helsens, C. Henderson, J. Henderson, R. C. W. Heng, Y. Hengler, C. Henrichs, A. Correia, A. M. Henriques Henrot-Versille, S. Herbert, G. H. Jimenez, Y. Hernandez Herrberg-Schubert, R. Herten, G. Hertenberger, R. Hervas, L. Hesketh, G. G. Hessey, N. P. Hetherly, J. W. Hickling, R. Higon-Rodriguez, E. Hill, E. Hill, J. C. Hiller, K. H. Hillier, S. J. Hinchliffe, I. Hines, E. Hinman, R. R. Hirose, M. Hirschbuehl, D. Hobbs Hod, N. Hodgkinson, M. C. Hodgson, P. Hoecker, A. Hoeferkamp, M. R. Hoenig, F. Hohlfeld, M. Hohn, D. Holmes, T. R. Homann, M. Hong, T. M. van Huysduynen, L. Hooft Hopkins, W. H. Horii, Y. Horton, A. J. Hostachy, J-Y. Hou, S. Hoummada, A. Howard, J. Howarth, J. Hrabovsky, M. Hristova, I. Hrivnac, J. Hryn'ova, T. Hrynevich, A. Hsu, C. Hsu, P. J. Hsu, S. -C. Hu, D. Hu, Q. Hu, X. Huang, Y. Hubacek, Z. Hubaut, F. Huegging, F. Huffman, T. B. Hughes, E. W. Hughes, G. Huhtinen, M. Huelsing, T. A. Huseynov, N. Huston, J. Huth, J. Iacobucci, G. Iakovidis, G. Ibragimov, I. Iconomidou-Fayard, L. Ideal, E. Idrissi, Z. Iengo, P. Igonkina, O. Iizawa, T. Ikegami, Y. Ikematsu, K. Ikeno, M. Ilchenko, Y. Iliadis, D. Ilic, N. Inamaru, Y. Ince, T. Ioannou, P. Iodice, M. Iordanidou, K. Ippolito, V. Irles Quiles, A. Isaksson, C. Ishino, M. Ishitsuka, M. Ishmukhametov, R. Issever, C. Istin, S. Ponce, J. M. Iturbe Iuppa, R. Ivarsson, J. Iwanski, W. Iwasaki, H. Izen, J. M. Izzo, V. Jabbar, S. Jackson, B. Jackson, M. Jackson, P. Jaekel, M. R. Jain, V. Jakobs, K. Jakobsen, S. Jakoubek, T. Jakubek, J. Jamin, D. O. Jana, D. K. Jansen, E. Jansky, R. W. Janssen, J. Janus, M. Jarlskog, G. Javadov, N. Javurek, T. Jeanty, L. Jejelava, J. Jeng, G. -Y. Jennens, D. Jenni, P. Jentzsch, J. Jeske, C. Jezequel, S. Ji, H. Jia, J. Jiang, Y. Jiggins, S. Jimenez Pena, J. Jin, S. Jinaru, A. Jinnouchi, O. Joergensen, M. D. Johansson, P. Johns, K. A. Jon-And, K. Jones, G. Jones, R. W. L. Jones, T. J. Jongmanns, J. Jorge, P. M. Joshi, K. D. Jovicevic, J. Ju, X. Jung, C. A. Jussel, P. Rozas, A. Juste Kaci, M. Kaczmarska, A. Kado, M. Kagan, H. Kagan, M. Kahn, S. J. Kajomovitz, E. Kalderon, C. W. Kama, S. Kamenshchikov, A. Kanaya, N. Kaneda, M. Kaneti, S. Kantserov, V. A. Kanzaki, J. Kaplan, B. Kapliy, A. Kar, D. Karakostas, K. Karamaoun, A. Karastathis, N. Kareem, M. J. Karnevskiy, M. Karpov, S. N. Karpova, Z. M. Karthik, K. Kartvelishvili, V. Karyukhin, A. N. Kashif, L. Kass, R. D. Kastanas, A. Kataoka, Y. Katre, A. Katzy, J. Kawagoe, K. Kawamoto, T. Kawamura, G. Kazama, S. Kazanin, V. F. Kazarinov, M. Y. Keeler, R. Kehoe, R. Keller, J. S. Kempster, J. J. Keoshkerian, H. Kepka, O. Kersevan, B. P. Kersten, S. Keyes, R. A. Khalil-zada, F. Khandanyan, H. Khanov, A. Kharlamov, A. G. Khoo, T. J. Khovanskiy, V. Khramov, E. Khubua, J. Kim, H. Y. Kim, H. Kim, S. H. Kim, Y. Kimura, N. Kind, O. M. King, B. T. King, M. King, S. B. Kirk, J. Kiryunin, A. E. Kishimoto, T. Kisielewska, D. Kiss, F. Kiuchi, K. Kivernyk, O. Kladiva, E. Klein, M. H. Klein, M. Klein, U. Kleinknecht, K. Klimek, P. Klimentov, A. Klingenberg, R. Klinger, J. A. Klioutchnikova, T. Kluge, E. -E. Kluit, P. Kluth, S. Kneringer, E. Knoops, E. B. F. G. Knue, A. Kobayashi, A. Kobayashi, D. Kobayashi, T. Kobel, M. Kocian, M. Kodys, P. Koffas, T. Koffeman, E. Kogan, L. A. Kohlmann, S. Kohout, Z. Kohriki, T. Koi, T. Kolanoski, H. Koletsou, I. Komar, A. A. Komori, Y. Kondo, T. Kondrashova, N. Koeneke, K. Koenig, A. C. Koenig, S. Kono, T. Konoplich, R. Konstantinidis, N. Kopeliansky, R. Koperny, S. Koepke, L. Kopp, A. K. Korcyl, K. Kordas, K. Korn, A. Korol, A. A. Korolkov, I. Korolkova, E. V. Kortner, O. Kortner, S. Kosek, T. Kostyukhin, V. V. Kotov, V. M. Kotwal, A. Kourkoumeli-Charalampidi, A. Kourkoumelis, C. Kouskoura, V. Koutsman, A. Kowalewski, R. Kowalski, T. Z. Kozanecki, W. Kozhin, A. S. Kramarenko, V. A. Kramberger, G. Krasnopevtsev, D. Krasny, M. W. Krasznahorkay, A. Kraus, J. K. Kravchenko, A. Kreiss, S. Kretz, M. Kretzschmar, J. Kreutzfeldt, K. Krieger, P. Krizka, K. Kroeninger, K. Kroha, H. Kroll, J. Kroseberg, J. Krstic, J. Kruchonak, U. Krueger, H. Krumnack, N. Krumshteyn, Z. V. Kruse, A. Kruse, M. C. Kruskal, M. Kubota, T. Kucuk, H. Kuday, S. Kuehn, S. Kugel, A. Kuger, F. Kuhl, A. Kuhl, T. Kukhtin, V. Kulchitsky, Y. Kuleshov, S. Kuna, M. Kunigo, T. Kupco, A. Kurashige, H. Kurochkin, Y. A. Kurumida, R. Kus, V. Kuwertz, E. S. Kuze, M. Kvita, J. Kwan, T. Kyriazopoulos, D. La Rosa, A. Navarro, J. L. La Rosa La Rotonda, L. Lacasta, C. Lacava, F. Lacey, J. Lacker, H. Lacour, D. Lacuesta, V. R. Ladygin, E. Lafaye, R. Laforge, B. Lagouri, T. Lai, S. Lambourne, L. Lammers, S. Lampen, C. L. Lampl, W. Lancon, E. Landgraf, U. Landon, M. P. J. Lang, V. S. Lange, J. C. Lankford, A. J. Lanni, F. Lantzsch, K. Laplace, S. Lapoire, C. Laporte, J. F. Lari, T. Manghi, F. Lasagni Lassnig, M. Laurelli, P. Lavrijsen, W. Law, A. T. Laycock, P. Lazovich, T. Le Dortz, O. Le Guirriec, E. Le Menedeu, E. LeBlanc, M. LeCompte, T. Ledroit-Guillon, F. Lee, C. A. Lee, S. C. Lee, L. Lefebvre, G. Lefebvre, M. Legger, F. Leggett, C. Lehan, A. Miotto, G. Lehmann Lei, X. Leight, W. A. Leisos, A. Leister, A. G. Leite, M. A. L. Leitner, R. Lellouch, D. Lemmer, B. Leney, K. J. C. Lenz, T. Lenzi, B. Leone, R. Leone, S. Leonidopoulos, C. Leontsinis, S. Leroy, C. Lester, C. G. Levchenko, M. Leveque, J. Levin, D. Levinson, L. J. Levy, M. Lewis, A. Leyko, A. M. Leyton, M. Li, B. Li, H. Li, H. L. Li, L. Li, L. Li, S. Li, Y. Liang, Z. Liao, H. Liberti, B. Liblong, A. Lichard, P. Lie, K. Liebal, J. Liebig, W. Limbach, C. Limosani, A. Lin, S. C. Lin, T. H. Linde, F. Lindquist, B. E. Linnemann, J. T. Lipeles, E. Lipniacka, A. Lisovyi, M. Liss, T. M. Lissauer, D. Lister, A. Litke, A. M. Liu, B. Liu, D. Liu, H. Liu, J. Liu, J. B. Liu, K. Liu, L. Liu, M. Liu, M. Liu, Y. Livan, M. Lleres, A. Merino, J. Llorente Lloyd, S. L. Lo Sterzo, F. Lobodzinska, E. Loch, P. Lockman, W. S. Loebinger, F. K. Loevschall-Jensen, A. E. Loginov, A. Lohse, T. Lohwasser, K. Lokajicek, M. Long, B. A. Long, J. D. Long, R. E. Looper, K. A. Lopes, L. Mateos, D. Lopez Paredes, B. Lopez Paz, I. Lopez Lorenz, J. Martinez, N. Lorenzo Losada, M. Loscutoff, P. Loesel, P. J. Lou, X. Lounis, A. Love, J. Love, P. A. Lu, N. Lubatti, H. J. Luci, C. Lucotte, A. Luehring, F. Lukas, W. Luminari, L. Lundberg, O. Lund-Jensen, B. Lynn, D. Lysak, R. Lytken, E. Ma, H. Ma, L. L. Maccarrone, G. Macchiolo, A. Macdonald, C. M. Miguens, J. Machado Macina, D. Madaffari, D. Madar, R. Maddocks, H. J. Mader, W. F. Madsen, A. Maeland, S. Maeno, T. Maevskiy, A. Magradze, E. Mahboubi, K. Mahlstedt, J. Maiani, C. Maidantchik, C. Maier, A. A. Maier, T. Maio, A. Majewski, S. Makida, Y. Makovec, N. Malaescu, B. Malecki, Pa. Maleev, V. P. Malek, F. Mallik, U. Malon, D. Malone, C. Maltezos, S. Malyshev, V. M. Malyukov, S. Mamuzic, J. Mancini, G. Mandelli, B. Mandelli, L. Mandic, I. Mandrysch, R. Maneira, J. Manfredini, A. Manhaes de Andrade Filho, L. Ramos, J. Manjarres Mann, A. Manning, P. M. Manousakis-Katsikakis, A. Mansoulie, B. Mantifel, R. Mantoani, M. Mapelli, L. March, L. Marchiori, G. Marcisovsky, M. Marino, C. P. Marjanovic, M. Marley, D. E. Marroquim, F. Marsden, S. P. Marshall, Z. Marti, L. F. Marti-Garcia, S. Martin, B. Martin, T. A. Martin, V. J. Latour, B. Martin dit Martinez, M. Martin-Haugh, S. Martoiu, V. S. Martyniuk, A. C. Marx, M. Marzano, F. Marzin, A. Masetti, L. Mashimo, T. Mashinistov, R. Masik, J. Maslennikov, A. L. Massa, I. Massa, L. Massol, N. Mastrandrea, P. Mastroberardino, A. Masubuchi, T. Maettig, P. Mattmann, J. Maurer, J. Maxfield, S. J. Maximov, D. A. Mazini, R. Mazza, S. M. Mazzaferro, L. Mc Goldrick, G. Mc Kee, S. P. McCarn, A. McCarthy, R. L. McCarthy, T. G. McCubbin, N. A. McFarlane, K. W. Mcfayden, J. A. Mchedlidze, G. McMahon, S. J. McPherson, R. A. Medinnis, M. Meehan, S. Mehlhase, S. Mehta, A. Meier, K. Meineck, C. Meirose, B. Garcia, B. R. Mellado Meloni, F. Mengarelli, A. Menke, S. Meoni, E. Mercurio, K. M. Mergelmeyer, S. Mermod, P. Merola, L. Meroni, C. Merritt, F. S. Messina, A. Metcalfe, J. Mete, A. S. Meyer, C. Meyer, C. Meyer, J-P. Meyer, J. Middleton, R. P. Miglioranzi, S. Mijovic, L. Mikenberg, G. Mikestikova, M. Mikuz, M. Milesi, M. Milic, A. Miller, D. W. Mills, C. Milov, A. Milstead, D. A. Minaenko, A. A. Minami, Y. Minashvili, I. A. Mincer, A. I. Mindur, B. Mineev, M. Ming, Y. Mir, L. M. Mitani, T. Mitrevski, J. Mitsou, V. A. Miucci, A. Miyagawa, P. S. Mjoernmark, J. U. Moa, T. Mochizuki, K. Mohapatra, S. Mohr, W. Molander, S. Moles-Valls, R. Moenig, K. Monini, C. Monk, J. Monnier, E. Berlingen, J. Montejo Monticelli, F. Monzani, S. Moore, R. W. Morange, N. Moreno, D. Llacer, M. Moreno Morettini, P. Morgenstern, M. Morii, M. Morinaga, M. Morisbak, V. Moritz, S. Morley, A. K. Mornacchi, G. Morris, J. D. Mortensen, S. S. Morton, A. Morvaj, L. Mosidze, M. Moss, J. Motohashi, K. Mount, R. Mountricha, E. Mouraviev, S. V. Moyse, E. J. W. Muanza, S. Mudd, R. D. Mueller, F. Mueller, J. Mueller, K. Mueller, R. S. P. Mueller, T. Muenstermann, D. Mullen, P. Mullier, G. A. Munwes, Y. Quijada, J. A. Murillo Murray, W. J. Musheghyan, H. Musto, E. Myagkov, A. G. Myska, M. Nackenhorst, O. Nadal, J. Nagai, K. Nagai, R. Nagai, Y. Nagano, K. Nagarkar, A. Nagasaka, Y. Nagata, K. Nagel, M. Nagy, E. Nairz, A. M. Nakahama, Y. Nakamura, K. Nakamura, T. Nakano, I. Namasivayam, H. Garcia, R. F. Naranjo Narayan, R. Naumann, T. Navarro, G. Nayyar, R. Neal, H. A. Nechaeva, P. Yu. Neep, T. J. Nef, P. D. Negri, A. Negrini, M. Nektarijevic, S. Nellist, C. Nelson, A. Nemecek, S. Nemethy, P. Nepomuceno, A. A. Nessi, M. Neubauer, M. S. Neumann, M. Neves, R. M. Nevski, P. Newman, P. R. Nguyen, D. H. Nickerson, R. B. Nicolaidou, R. Nicquevert, B. Nielsen, J. Nikiforou, N. Nikiforov, A. Nikolaenko, V. Nikolic-Audit, I. Nikolopoulos, K. Nilsen, J. K. Nilsson, P. Ninomiya, Y. Nisati, A. Nisius, R. Nobe, T. Nomachi, M. Nomidis, I. Nooney, T. Norberg, S. Nordberg, M. Novgorodova, O. Nowak, S. Nozaki, M. Nozka, L. Ntekas, K. Hanninger, G. Nunes Nunnemann, T. Nurse, E. Nuti, F. O'Brien, B. J. O'grady, F. O'Neil, D. C. O'Shea, V. Oakham, F. G. Oberlack, H. Obermann, T. Ocariz, J. Ochi, A. Ochoa, I. Ochoa-Ricoux, J. P. Oda, S. Odaka, S. Ogren, H. Oh, A. Oh, S. H. Ohm, C. C. Ohman, H. Oide, H. Okamura, W. Okawa, H. Okumura, Y. Okuyama, T. Olariu, A. Pino, S. A. Olivares Damazio, D. Oliveira Oliver Garcia, E. Olszewski, A. Olszowska, J. Onofre, A. Onyisi, P. U. E. Oram, C. J. Oreglia, M. J. Oren, Y. Orestano, D. Orlando, N. Barrera, C. Oropeza Orr, R. S. Osculati, B. Ospanov, R. Otero y Garzon, G. Otono, H. Ouchrif, M. Ouellette, E. A. Ould-Saada, F. Ouraou, A. Oussoren, K. P. Ouyang, Q. Ovcharova, A. Owen, M. Owen, R. E. Ozcan, V. E. Ozturk, N. Pachal, K. Pages, A. Pacheco Aranda, C. Padilla Pagacova, M. Griso, S. Pagan Paganis, E. Pahl, C. Paige, F. Pais, P. Pajchel, K. Palacino, G. Palestini, S. Palka, M. Pallin, D. Palma, A. Pan, Y. B. Panagiotopoulou, E. Pandini, C. E. Vazquez, J. G. Panduro Pani, P. Panitkin, S. Pantea, D. Paolozzi, L. Papadopoulou, Th. D. Papageorgiou, K. Paramonov, A. Hernandez, D. Paredes Parker, M. A. Parker, K. A. Parodi, F. Parsons, J. A. Parzefall, U. Pasqualucci, E. Passaggio, S. Pastore, F. Pastore, Fr. Pasztor, G. Pataraia, S. Patel, N. D. Pater, J. R. Pauly, T. Pearce, J. Pearson, B. Pedersen, L. E. Pedersen, M. Pedraza Lopez, S. Pedro, R. Peleganchuk, S. V. Pelikan, D. Peng, H. Penning, B. Penwell, J. Perepelitsa, D. V. Codina, E. Perez Garcia-Estan, M. T. Perez Perini, L. Pernegger, H. Perrella, S. Peschke, R. Peshekhonov, V. D. Peters, K. Peters, R. F. Y. Petersen, B. A. Petersen, T. C. Petit, E. Petridis, A. Petridou, C. Petrolo, E. Petrucci, F. Pettersson, N. E. Pezoa, R. Phillips, P. W. Piacquadio, G. Pianori, E. Picazio, A. Piccaro, E. Piccinini, M. Pickering, M. A. Piegaia, R. Pignotti, D. T. Pilcher, J. E. Pilkington, A. D. Pina, J. Pinamonti, M. Pinfold, J. L. Pingel, A. Pinto, B. Pires, S. Pirumov, H. Pitt, M. Pizio, C. Plazak, L. Pleier, M. -A. Pleskot, V. Plotnikova, E. Plucinski, P. Pluth, D. Poettgen, R. Poggioli, L. Pohl, D. Polesello, G. Poley, A. Policicchio, A. Polifka, R. Polini, A. Pollard, C. S. Polychronakos, V. Pommes, K. Pontecorvo, L. Pope, B. G. Popeneciu, G. A. Popovic, D. S. Poppleton, A. Pospisil, S. Potamianos, K. Potrap, I. N. Potter, C. J. Potter, C. T. Poulard, G. Poveda, J. Pozdnyakov, V. Pralavorio, P. Pranko, A. Prasad, S. Prell, S. Price, D. Price, L. E. Primavera, M. Prince, S. Proissl, M. Prokofiev, K. Prokoshin, F. Protopapadaki, E. Protopopescu, S. Proudfoot, J. Przybycien, M. Ptacek, E. Puddu, D. Pueschel, E. Puldon, D. Purohit, M. Puzo, P. Qian, J. Qin, G. Qin, Y. Quadt, A. Quarrie, D. R. Quayle, W. B. Queitsch-Maitland, M. Quilty, D. Raddum, S. Radeka, V. Radescu, V. Radhakrishnan, S. K. Radloff, P. Rados, P. Ragusa, F. Rahal, G. Rajagopalan, S. Rammensee, M. Rangel-Smith, C. Rauscher, F. Rave, S. Ravenscroft, T. Raymond, M. Read, A. L. Readioff, N. P. Rebuzzi, D. M. Redelbach, A. Redlinger, G. Reece, R. Reeves, K. Rehnisch, L. Reisin, H. Relich, M. Rembser, C. Ren, H. Renaud, A. Rescigno, M. Resconi, S. Rezanova, O. L. Reznicek, P. Rezvani, R. Richter, R. Richter, S. Richter-Was, E. Ricken, O. Ridel, M. Rieck, P. Riegel, C. J. Rieger, J. Rijssenbeek, M. Rimoldi, A. Rinaldi, L. Ristic, B. Ritsch, E. Riu, I. Rizatdinova, F. Rizvi, E. Robertson, S. H. Robichaud-Veronneau, A. Robinson, D. Robinson, J. E. M. Robson, A. Roda, C. Roe, S. Rohne, O. Rolli, S. Romaniouk, A. Romano, M. Saez, S. M. Romano Romero Adam, E. Rompotis, N. Ronzani, M. Roos, L. Ros, E. Rosati, S. Rosbach, K. Rose, P. Rosendahl, P. L. Rosenthal, O. Rossetti, V. Rossi, E. Rossi, L. P. Rosten, R. Rotaru, M. Roth, I. Rothberg, J. Rousseau, D. Royon, C. R. Rozanov, A. Rozen, Y. Ruan, X. Rubbo, F. Rubinskiy, I. Rud, V. I. Rudolph, C. Rudolph, M. S. Ruehr, F. Ruiz-Martinez, A. Rurikova, Z. Rusakovich, N. A. Ruschke, A. Russell, H. L. Rutherfoord, J. P. Ruthmann, N. Ryabov, Y. F. Rybar, M. Rybkin, G. Ryder, N. C. Saavedra, A. F. Sabato, G. Sacerdoti, S. Saddique, A. Sadrozinski, H. F-W. Sadykov, R. Tehrani, F. Safai Saimpert, M. Sakamoto, H. Sakurai, Y. Salamanna, G. Salamon, A. Saleem, M. Salek, D. De Bruin, P. H. Sales Salihagic, D. Salnikov, A. Salt, J. Salvatore, D. Salvatore, F. Salvucci, A. Salzburger, A. Sampsonidis, D. Sanchez, A. Sanchez, J. Sanchez Martinez, V. Sandaker, H. Sandbach, R. L. Sander, H. G. Sanders, M. P. Sandhoff, M. Sandoval, C. Sandstroem, R. Sankey, D. P. C. Sannino, M. Sansoni, A. Santoni, C. Santonico, R. Santos, H. Castillo, I. Santoyo Sapp, K. Sapronov, A. Saraiva, J. G. Sarrazin, B. Sasaki, O. Sasaki, Y. Sato, K. Sauvage, G. Sauvan, E. Savage, G. Savard, P. Sawyer, C. Sawyer, L. Saxon, J. Sbarra, C. Sbrizzi, A. Scanlon, T. Scannicchio, D. A. Scarcella, M. Scarfone, V. Schaarschmidt, J. Schacht, P. Schaefer, D. Schaefer, R. Schaeffer, J. Schaepe, S. Schaetzel, S. Schaefer, U. Schaffer, A. C. Schaile, D. Schamberger, R. D. Scharf, V. Schegelsky, V. A. Scheirich, D. Schernau, M. Schiavi, C. Schillo, C. Schioppa, M. Schlenker, S. Schmidt, E. Schmieden, K. Schmitt, C. Schmitt, S. Schmitt, S. Schneider, B. Schnellbach, Y. J. Schnoor, U. Schoeffel, L. Schoening, A. Schoenrock, B. D. Schopf, E. Schorlemmer, A. L. S. Schott, M. Schouten, D. Schovancova, J. Schramm, S. Schreyer, M. Schroeder, C. Schuh, N. Schultens, M. J. Schultz-Coulon, H. -C. Schulz, H. Schumacher, M. Schumm, B. A. Schune, Ph. Schwanenberger, C. Schwartzman, A. Schwarz, T. A. Schwegler, Ph. Schwemling, Ph. Schwienhorst, R. Schwindling, J. Schwindt, T. Sciacca, F. G. Scifo, E. Sciolla, G. Scuri, F. Scutti, F. Searcy, J. Sedov, G. Sedykh, E. Seema, P. Seidel, S. C. Seiden, A. Seifert, F. Seixas, J. M. Sekhniaidze, G. Sekhon, K. Sekula, S. J. Seliverstov, D. M. Semprini-Cesari, N. Serfon, C. Serin, L. Serkin, L. Serre, T. Sessa, M. Seuster, R. Severini, H. Sflilgoj, T. Sforza, F. Sfyrla, A. Shabalina, E. Shamim, M. Shan, L. Y. Shang, R. Shank, J. T. Shapiro, M. Shatalov, P. B. Shaw, K. Shaw, S. M. Shcherbakova, A. Shehu, C. Y. Sherwood, P. Shi, L. Shimizu, S. Shimmin, C. O. Shimojima, M. Shiyakova, M. Shmeleva, A. Saadi, D. Shoaleh Shochet, M. J. Shojaii, S. Shrestha, S. Shulga, E. Shupe, M. A. Shushkevich, S. Sicho, P. Sidiropoulou, O. Sidorov, D. Sidoti, A. Siegert, F. Sijacki, Dj. Silva, J. Silver, Y. Silverstein, S. B. Simak, V. Simard, O. Simic, Lj. Simion, S. Simioni, E. Simmons, B. Simon, D. Simoniello, R. Sinervo, P. Sinev, N. B. Siragusa, G. Sisakyan, A. N. Sivoklokov, S. Yu. Sjolin, J. Sjursen, T. B. Skinner, M. B. Skottowe, H. P. Skubic, P. Slater, M. Slavicek, T. Slawinska, M. Sliwa, K. Smakhtin, V. Smart, B. H. Smestad, L. Smirnov, S. Yu. Smirnov, Y. Smirnova, L. N. Smirnova, O. Smith, M. N. K. Smith, R. W. Smizanska, M. Smolek, K. Snesarev, A. A. Snidero, G. Snyder, S. Sobie, R. Socher, F. Soffer, A. Soh, D. A. Solans, C. A. Solar, M. Solc, J. Soldatov, E. Yu. Soldevila, U. Solodkov, A. A. Soloshenko, A. Solovyanov, O. V. Solovyev, V. Sommer, P. Song, H. Y. Soni, N. Sood, A. Sopczak, A. Sopko, B. Sopko, V. Sorin, V. Sosa, D. Sosebee, M. Sotiropoulou, C. L. Soualah, R. Soukharev, A. M. South, D. Sowden, B. C. Spagnolo, S. Spalla, M. Spano, F. Spearman, W. R. Spettel, F. Spighi, R. Spigo, G. Spiller, L. A. Spousta, M. Spreitzer, T. St Denis, R. D. Staerz, S. Stahlman, J. Stamen, R. Stamm, S. Stanecka, E. Stanescu, C. Stanescu-Bellu, M. Stanitzki, M. M. Stapnes, S. Starchenko, E. A. Stark, J. Staroba, P. Starovoitov, P. Staszewski, R. Stavina, P. Steinberg, P. Stelzer, B. Stelzer, H. J. Stelzer-Chilton, O. Stenzel, H. Stern, S. Stewart, G. A. Stillings, J. A. Stockton, M. C. Stoebe, M. Stoicea, G. Stolte, P. Stonjek, S. Stradling, A. R. Straessner, A. Stramaglia, M. E. Strandberg, J. Strandberg, S. Strandlie, A. Strauss, E. Strauss, M. Strizenec, P. Stroehmer, R. Strom, D. M. Stroynowski, R. Strubig, A. Stucci, S. A. Stugu, B. Styles, N. A. Su, D. Su, J. Subramaniam, R. Succurro, A. Sugaya, Y. Suhr, C. Suk, M. Sulin, V. V. Sultansoy, S. Sumida, T. Sun, S. Sun, X. Sundermann, J. E. Suruliz, K. Susinno, G. Sutton, M. R. Suzuki, S. Suzuki, Y. Svatos, M. Swedish, S. Swiatlowski, M. Sykora, I. Sykora, T. Ta, D. Taccini, C. Tackmann, K. Taenzer, J. Taffard, A. Tafirout, R. Taiblum, N. Takai, H. Takashima, R. Takeda, H. Takeshita, T. Takubo, Y. Talby, M. Talyshev, A. A. Tam, J. Y. C. Tan, K. G. Tanaka, J. Tanaka, R. Tanaka, S. Tannenwald, B. B. Tannoury, N. Tapprogge, S. Tarem, S. Tarrade, F. Tartarelli, G. F. Tas, P. Tasevsky, M. Tashiro, T. Tassi, E. Tavares Delgado, A. Tayalati, Y. Taylor, F. E. Taylor, G. N. Taylor, W. Teischinger, F. A. Castanheira, M. Teixeira Dias Teixeira-Dias, P. Temming, K. K. Ten Kate, H. Teng, P. K. Teoh, J. J. Tepel, F. Terada, S. Terashi, K. Terron, J. Terzo, S. Testa, M. Teuscher, R. J. Therhaag, J. Theveneaux-Pelzer, T. Thomas, J. P. Thomas-Wilsker, J. Thompson, E. N. Thompson, P. D. Thompson, R. J. Thompson, A. S. Thomsen, L. A. Thomson, E. Thomson, M. Thun, R. P. Tibbetts, M. J. Torres, R. E. Ticse Tikhomirov, V. O. Tikhonov, Yu. A. Timoshenko, S. Tiouchichine, E. Tipton, P. Tisserant, S. Todorov, T. Todorova-Nova, S. Tojo, J. Tokar, S. Tokushuku, K. Tollefson, K. Tolley, E. Tomlinson, L. Tomoto, M. Tompkins, L. Toms, K. Torrence, E. Torres, H. Torro Pastor, E. Toth, J. Touchard, F. Tovey, D. R. Trefzger, T. Tremblet, L. Tricoli, A. Trigger, I. M. Trincaz-Duvoid, S. Tripiana, M. F. Trischuk, W. Trocme, B. Troncon, C. Trottier-McDonald, M. Trovatelli, M. True, P. Truong, L. Trzebinski, M. Trzupek, A. Tsarouchas, C. Tseng, J. C-L. Tsiareshka, P. V. Tsionou, D. Tsipolitis, G. Tsirintanis, N. Tsiskaridze, S. Tsiskaridze, V. Tskhadadze, E. G. Tsukerman, I. I. Tsulaia, V. Tsuno, S. Tsybychev, D. Tudorache, A. Tudorache, V. Tuna, A. N. Tupputi, A. Turchikhin, S. Turecek, D. Turra, R. Turvey, A. J. Tuts, P. M. Tykhonov, A. Tylmad, M. Tyndel, M. Ueda, I. Ueno, R. Ughetto, M. Ugland, M. Uhlenbrock, M. Ukegawa, F. Unal, G. Undrus, A. Unel, G. Ungaro, F. C. Unno, Y. Unverdorben, C. Urban, J. Urquijo, P. Urrejola, P. Usai, G. Usanova, A. Vacavant, L. Vacek, V. Vachon, B. Valderanis, C. Valencic, N. Valentinetti, S. Valero, A. Valery, L. Valkar, S. Valladolid Gallego, E. Vallecorsa, S. Valls Ferrer, J. A. Van Den Wollenberg, W. Van Der Deijl, P. C. van der Geer, R. van der Graaf, H. Van Der Leeuw, R. van Eldik, N. van Gemmeren, P. Van Nieuwkoop, J. van Vulpen, I. van Woerden, M. C. Vanadia, M. Vandelli, W. Vanguri, R. Vaniachine, A. Vannucci, F. Vardanyan, G. Vari, R. Varnes, E. W. Varol, T. Varouchas, D. Vartapetian, A. Varvell, K. E. Vazeille, F. Schroeder, T. Vazquez Veatch, J. Veloce, L. M. Veloso, F. Velz, T. Veneziano, S. Ventura, A. Ventura, D. Venturi, M. Venturi, N. Venturini, A. Vercesi, V. Verducci, M. Verkerke, W. Vermeulen, J. C. Vest, A. Vetterli, M. C. Viazlo, O. Vichou, I. Vickey, T. Boeriu, O. E. Vickey Viehhauser, G. H. A. Viel, S. Vigne, R. Villa, M. Perez, M. Villaplana Vilucchi, E. Vincter, M. G. Vinogradov, V. B. Vivarelli, I. Vaque, F. Vives Vlachos, S. Vladoiu, D. Vlasak, M. Vogel, M. Vokac, P. Volpi, G. Volpi, M. von der Schmitt, H. von Radziewski, H. von Toerne, E. Vorobel, V. Vorobev, K. Vos, M. Voss, R. Vossebeld, J. H. Vranjes, N. Milosavljevic, M. Vranjes Vrba, V. Vreeswijk, M. Vuillermet, R. Vukotic, I. Vykydal, Z. Wagner, P. Wagner, W. Wahlberg, H. Wahrmund, S. Wakabayashi, J. Walder, J. Walker, R. Walkowiak, W. Wang, C. Wang, F. Wang, H. Wang, H. Wang, J. Wang, J. Wang, K. Wang, R. Wang, S. M. Wang, T. Wang, X. Wanotayaroj, C. Warburton, A. Ward, C. P. Wardrope, D. R. Warsinsky, M. Washbrook, A. Wasicki, C. Watkins, P. M. Watson, A. T. Watson, I. J. Watson, M. F. Watts, G. Watts, S. Waugh, B. M. Webb, S. Weber, M. S. Weber, S. W. Webster, J. S. Weidberg, A. R. Weinert, B. Weingarten, J. Weiser, C. Weits, H. Wells, P. S. Wenaus, T. Wengler, T. Wenig, S. Wermes, N. Werner, M. Werner, P. Wessels, M. Wetter, J. Whalen, K. Wharton, A. M. White, A. White, M. J. White, R. White, S. Whiteson, D. Wickens, F. J. Wiedenmann, W. Wielers, M. Wienemann, P. Wiglesworth, C. Wiik-Fuchs, L. A. M. Wildauer, A. Wilkens, H. G. Williams, H. H. Williams, S. Willis, C. Willocq, S. Wilson, A. Wilson, J. A. Wingerter-Seez, I. Winklmeier, F. Winter, B. T. Wittgen, M. Wittkowski, J. Wollstadt, S. J. Wolter, M. W. Wolters, H. Wosiek, B. K. Wotschack, J. Woudstra, M. J. Wozniak, K. W. Wu, M. Wu, M. Wu, S. L. Wu, X. Wu, Y. Wyatt, T. R. Wynne, B. M. Xella, S. Xu, D. Xu, L. Yabsley, B. Yacoob, S. Yakabe, R. Yamada, M. Yamaguchi, Y. Yamamoto, A. Yamamoto, S. Yamanaka, T. Yamauchi, K. Yamazaki, Y. Yan, Z. Yang, H. Yang, H. Yang, Y. Yao, W-M. Yasu, Y. Yatsenko, E. Wong, K. H. Yau Ye, J. Ye, S. Yeletskikh, I. Yen, A. L. Yildirim, E. Yorita, K. Yoshida, R. Yoshihara, K. Young, C. Young, C. J. S. Youssef, S. Yu, D. R. Yu, J. Yu, J. M. Yu, J. Yuan, L. Yurkewicz, A. Yusuff, I. Zabinski, B. Zaidan, R. Zaitsev, A. M. Zalieckas, J. Zaman, A. Zambito, S. Zanello, L. Zanzi, D. Zeitnitz, C. Zeman, M. Zemla, A. Zengel, K. Zenin, O. Zenis, T. Zerwas, D. Zhang, D. Zhang, F. Zhang, H. Zhang, J. Zhang, L. Zhang, R. Zhang, X. Zhang, Z. Zhao, X. Zhao, Y. Zhao, Z. Zhemchugov, A. Zhong, J. Zhou, B. Zhou, C. Zhou, L. Zhou, L. Zhou, N. Zhu, C. G. Zhu, H. Zhu, J. Zhu, Y. Zhuang, X. Zhukov, K. Zibell, A. Zieminska, D. Zimine, N. I. Zimmermann, C. Zimmermann, S. Zinonos, Z. Zinser, M. Ziolkowski, M. Zivkovic, L. Zobernig, G. Zoccoli, A. zur Nedden, M. Zurzolo, G. Zwalinski, L. CA ATLAS Collaboration TI Search for high-mass diboson resonances with boson-tagged jets in proton-proton collisions at root s = TeV with the ATLAS detector SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE Exotics; Hadron-Hadron Scattering ID PHYSICS; TECHNICOLOR; LHC AB A search is performed for narrow resonances decaying into WW, WZ, or ZZ boson pairs using 20.3 fb(-1) of proton-proton collision data at a centre-of-mass energy of root s = TeV recorded with the ATLAS detector at the Large Hadron Collider. Diboson resonances with masses in the range from 1.3 to 3.0 TeV are sought after using the invariant mass distribution of dijets where both jets are tagged as a boson jet, compatible with a highly boosted W or Z boson decaying to quarks, using jet mass and substructure properties. The largest deviation from a smoothly falling background in the observed dijet invariant mass distribution occurs around 2 TeV in the WZ channel, with a global significance of 2.5 standard deviations. Exclusion limits at the 95% confidence level are set on the production cross section times branching ratio for the WZ final state of a new heavy gauge boson, W', and for the WW and ZZ final states of Kaluza-Klein excitations of the graviton in a bulk Randall-Sundrum model, as a function of the resonance mass. W' bosons with couplings predicted by the extended gauge model in the mass range from 1.3 to 1.5 TeV are excluded at 95% confidence level. C1 [Jackson, P.; Lee, L.; Soni, N.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia. [Bouffard, J.; Edson, W.; Ernst, J.; Fischer, A.; Guindon, S.; Jain, V.] SUNY Albany, Dept Phys, Albany, NY 12222 USA. [Butt, A. I.; Czodrowski, P.; Dassoulas, J.; Gingrich, D. M.; Jabbar, S.; Karamaoun, A.; Moore, R. W.; Pinfold, J. L.; Saddique, A.; Vaque, F. Vives] Univ Alberta, Dept Phys, Edmonton, AB, Canada. [Cakir, O.; Ciftci, A. K.; Yildiz, H. Duran] Ankara Univ, Dept Phys, TR-06100 Ankara, Turkey. [Kuday, S.] Istanbul Aydin Univ, Istanbul, Turkey. [Sultansoy, S.] TOBB Univ Econ & Technol, Div Phys, Ankara, Turkey. [Barnovska, Z.; Berger, N.; Delmastro, M.; Di Ciaccio, L.; Elles, S.; Hryn'ova, T.; Jezequel, S.; Koletsou, I.; Lafaye, R.; Leveque, J.; Massol, N.; Sauvage, G.; Sauvan, E.; Simard, O.; Todorov, T.; Wingerter-Seez, I.; Yatsenko, E.] CNRS IN2P3, LAPP, Annecy Le Vieux, France. [Barnovska, Z.; Berger, N.; Delmastro, M.; Di Ciaccio, L.; Elles, S.; Hryn'ova, T.; Jezequel, S.; Koletsou, I.; Lafaye, R.; Leveque, J.; Massol, N.; Sauvage, G.; Sauvan, E.; Simard, O.; Todorov, T.; Wingerter-Seez, I.; Yatsenko, E.] Univ Savoie Mont Blanc, Annecy Le Vieux, France. [Auerbach, B.; Blair, R. E.; Chekanov, S.; Childers, J. T.; Feng, E. J.; LeCompte, T.; Love, J.; Malon, D.; Nguyen, D. H.; Paramonov, A.; Price, L. E.; Proudfoot, J.; van Gemmeren, P.; Vaniachine, A.; Wang, R.; Yoshida, R.; Zhang, J.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Carrillo-Montoya, G. D.; Cheu, E.; Johns, K. A.; Lampen, C. L.; Lampl, W.; Lei, X.; Leone, R.; Loch, P.; Nayyar, R.; O'grady, F.; Rutherfoord, J. P.; Shupe, M. A.; Varnes, E. W.; Veatch, J.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Brandt, A.; Bullock, D.; Cote, D.; Darmora, S.; De, K.; Farbin, A.; Feremenga, L.; Griffiths, J.; Hadavand, H. K.; Heelan, L.; Kim, H. Y.; Ozturk, N.; Schovancova, J.; Sosebee, M.; Stradling, A. R.; Usai, G.; Vartapetian, A.; White, A.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. [Angelidakis, S.; Chouridou, S.; Fassouliotis, D.; Giokaris, N.; Ioannou, P.; Kourkoumelis, C.; Manousakis-Katsikakis, A.; Tsirintanis, N.; Yu, J.] Univ Athens, Dept Phys, Athens, Greece. [Alexopoulos, T.; Benekos, N.; Dris, M.; Gazis, E. N.; Karakostas, K.; Karastathis, N.; Leontsinis, S.; Maltezos, S.; Ntekas, K.; Panagiotopoulou, E.; Papadopoulou, Th. D.; Tsipolitis, G.; Vlachos, S.] Natl Tech Univ Athens, Dept Phys, Zografos, Greece. [Abdinov, O.; Khalil-zada, F.] Azerbaijan Acad Sci, Inst Phys, Baku 370143, Azerbaijan. [Anjos, N.; Bosman, M.; Casado, M. P.; Casolino, M.; Cavalli-Sforza, M.; Cortes-Gonzalez, A.; Farooque, T.; Fischer, C.; Fracchia, S.; Giangiobbe, V.; Parra, G. Gonzalez; Grinstein, S.; Rozas, A. Juste; Korolkov, I.; Lange, J. C.; Le Menedeu, E.; Paz, I. Lopez; Martinez, M.; Mir, L. M.; Berlingen, J. Montejo; Pages, A. Pacheco; Aranda, C. Padilla; Riu, I.; Sorin, V.; Succurro, A.; Tripiana, M. F.; Tsiskaridze, S.; Valery, L.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Anjos, N.; Bosman, M.; Casado, M. P.; Casolino, M.; Cavalli-Sforza, M.; Cortes-Gonzalez, A.; Farooque, T.; Fischer, C.; Fracchia, S.; Giangiobbe, V.; Parra, G. Gonzalez; Grinstein, S.; Rozas, A. Juste; Korolkov, I.; Lange, J. C.; Le Menedeu, E.; Paz, I. Lopez; Martinez, M.; Mir, L. M.; Berlingen, J. Montejo; Pages, A. Pacheco; Aranda, C. Padilla; Riu, I.; Sorin, V.; Succurro, A.; Tripiana, M. F.; Tsiskaridze, S.; Valery, L.] Univ Autonoma Barcelona, Dept Fis, E-08193 Barcelona, Spain. [Agatonovic-Jovin, T.; Bogavac, D.; Bozic, I.; Dimitrievska, A.; Krstic, J.; Marjanovic, M.; Popovic, D. S.; Sijacki, Dj.; Simic, Lj.; Vranjes, N.; Milosavljevic, M. Vranjes; Zivkovic, L.] Univ Belgrade, Inst Phys, Belgrade, Serbia. [Buanes, T.; Dale, O.; Eigen, G.; Kastanas, A.; Liebig, W.; Lipniacka, A.; Maeland, S.; Latour, B. Martin dit; Rosendahl, P. L.; Sandaker, H.; Sjursen, T. B.; Smestad, L.; Stugu, B.; Tylmad, M.; Ugland, M.; Zalieckas, J.] Univ Bergen, Dept Phys & Technol, Bergen, Norway. [Amadio, B. T.; Axen, B.; Barnett, R. M.; Beringer, J.; Brosamer, J.; Calafiura, P.; Caminada, L. M.; Cerutti, F.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Einsweiler, K.; Farrell, S.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Hance, M.; Heinemann, B.; Hinchliffe, I.; Hinman, R. R.; Holmes, T. R.; Jeanty, L.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Marshall, Z.; Ohm, C. C.; Ovcharova, A.; Griso, S. Pagan; Potamianos, K.; Pranko, A.; Quarrie, D. R.; Shapiro, M.; Sood, A.; Tibbetts, M. J.; Trottier-McDonald, M.; Tsulaia, V.; Viel, S.; Wang, H.; Yao, W-M.; Yu, D. R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [Amadio, B. T.; Axen, B.; Barnett, R. M.; Beringer, J.; Brosamer, J.; Calafiura, P.; Caminada, L. M.; Cerutti, F.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Einsweiler, K.; Farrell, S.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Hance, M.; Heinemann, B.; Hinchliffe, I.; Hinman, R. R.; Holmes, T. R.; Jeanty, L.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Marshall, Z.; Ohm, C. C.; Ovcharova, A.; Griso, S. Pagan; Potamianos, K.; Pranko, A.; Quarrie, D. R.; Shapiro, M.; Sood, A.; Tibbetts, M. J.; Trottier-McDonald, M.; Tsulaia, V.; Viel, S.; Wang, H.; Yao, W-M.; Yu, D. R.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Biedermann, D.; Dietrich, J.; Giorgi, F. M.; Grancagnolo, S.; Herbert, G. H.; Herrberg-Schubert, R.; Hristova, I.; Kind, O. M.; Kolanoski, H.; Lacker, H.; Lohse, T.; Nikiforov, A.; Rehnisch, L.; Rieck, P.; Schulz, H.; Stamm, S.; zur Nedden, M.] Humboldt Univ, Dept Phys, Berlin, Germany. [Beck, H. P.; Cervelli, A.; Ereditato, A.; Haug, S.; Marti, L. F.; Meloni, F.; Mullier, G. A.; Sciacca, F. G.; Stramaglia, M. E.; Stucci, S. A.; Weber, M. S.] Univ Bern, Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Beck, H. P.; Cervelli, A.; Ereditato, A.; Haug, S.; Marti, L. F.; Meloni, F.; Mullier, G. A.; Sciacca, F. G.; Stramaglia, M. E.; Stucci, S. A.; Weber, M. S.] Univ Bern, High Energy Phys Lab, Bern, Switzerland. [Allbrooke, B. M. M.; Bella, L. Aperio; Bansil, H. S.; Bracinik, J.; Charlton, D. G.; Chisholm, A. S.; Daniells, A. C.; Hawkes, C. M.; Head, S. J.; Hillier, S. J.; Levy, M.; Mudd, R. D.; Quijada, J. A. Murillo; Newman, P. R.; Nikolopoulos, K.; Owen, R. E.; Slater, M.; Thomas, J. P.; Thompson, P. D.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Wilson, J. A.] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England. [Arik, M.; Istin, S.; Ozcan, V. E.] Bogazici Univ, Dept Phys, Istanbul, Turkey. [Cetin, S. A.] Dogus Univ, Dept Phys, Istanbul, Turkey. [Beddall, A. J.; Beddall, A.; Bingul, A.] Gaziantep Univ, Dept Engn Phys, Gaziantep, Turkey. [Alberghi, G. L.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruschi, M.; Corradi, M.; De Castro, S.; Fabbri, L.; Franchini, M.; Gabrielli, A.; Giacobbe, B.; Giorgi, F. M.; Grafstroem, P.; Manghi, F. Lasagni; Massa, I.; Massa, L.; Mengarelli, A.; Negrini, M.; Piccinini, M.; Polini, A.; Rinaldi, L.; Romano, M.; Sbarra, C.; Sbrizzi, A.; Semprini-Cesari, N.; Sidoti, A.; Spighi, R.; Tupputi, A.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Ist Nazl Fis Nucl, Sez Bologna, I-40126 Bologna, Italy. [Alberghi, G. L.; De Castro, S.; Fabbri, L.; Franchini, M.; Gabrielli, A.; Grafstroem, P.; Manghi, F. Lasagni; Massa, I.; Massa, L.; Mengarelli, A.; Piccinini, M.; Romano, M.; Sbrizzi, A.; Semprini-Cesari, N.; Sidoti, A.; Tupputi, A.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Univ Bologna, Dipartimento Fis & Astron, Bologna, Italy. [Arslan, O.; Bechtle, P.; Bernlochner, F. U.; Brock, I.; Bruscino, N.; Cioara, I. A.; Cristinziani, M.; Davey, W.; Desch, K.; Dingfelder, J.; Ehrenfeld, W.; Gaycken, G.; Geich-Gimbel, Ch.; Gonella, L.; Haefner, P.; Hageboeck, S.; Hansen, M. C.; Hellmich, D.; Hohn, D.; Huegging, F.; Janssen, J.; Kostyukhin, V. V.; Kraus, J. K.; Kroseberg, J.; Krueger, H.; Lenz, T.; Leyko, A. M.; Liebal, J.; Limbach, C.; Mergelmeyer, S.; Mijovic, L.; Mueller, K.; Obermann, T.; Pohl, D.; Ricken, O.; Sarrazin, B.; Schaepe, S.; Schopf, E.; Schultens, M. J.; Schwindt, T.; Scutti, F.; Seema, P.; Stillings, J. A.; Tannoury, N.; Therhaag, J.; Uhlenbrock, M.; Velz, T.; von Toerne, E.; Wagner, P.; Wang, T.; Wermes, N.; Wienemann, P.; Wiik-Fuchs, L. A. M.; Winter, B. T.; Wong, K. H. Yau] Univ Bonn, Inst Phys, Bonn, Germany. [Ahlen, S. P.; Bernard, C.; Black, K. M.; Butler, J. M.; Dell'Asta, L.; Helary, L.; Kruskal, M.; Long, B. A.; Shank, J. T.; Yan, Z.; Youssef, S.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Amelung, C.; Amundsen, G.; Artoni, G.; Bensinger, J. R.; Bianchini, L.; Blocker, C.; Coffey, L.; Dhaliwal, S.; Fitzgerald, E. A.; Sciolla, G.; Venturini, A.; Zengel, K.] Brandeis Univ, Dept Phys, Waltham, MA 02254 USA. [Amaral Coutinho, Y.; Caloba, L. P.; Maidantchik, C.; Marroquim, F.; Nepomuceno, A. A.; Seixas, J. M.] Univ Fed Rio de Janeiro, COPPE EE IF, Rio De Janeiro, Brazil. [Cerqueira, A. S.; Manhaes de Andrade Filho, L.] Fed Univ Juiz de Fora UFJF, Elect Circuits Dept, Juiz De Fora, Brazil. [do Vale, M. A. B.] Fed Univ Sao Joao del Rei UFSJ, Sao Joao Del Rei, Brazil. [Donadelli, M.; Navarro, J. L. La Rosa; Leite, M. A. L.] Univ Sao Paulo, Inst Fis, BR-01498 Sao Paulo, Brazil. [Adams, D. L.; Assamagan, K.; Begel, M.; Buttinger, W.; Chen, H.; Chernyatin, V.; Debbe, R.; Ernst, M.; Gibbard, B.; Gordon, H. A.; Iakovidis, G.; Klimentov, A.; Kouskoura, V.; Kravchenko, A.; Lanni, F.; Lissauer, D.; Lynn, D.; Ma, H.; Maeno, T.; Metcalfe, J.; Mountricha, E.; Nevski, P.; Nilsson, P.; Damazio, D. Oliveira; Paige, F.; Panitkin, S.; Perepelitsa, D. V.; Pleier, M. -A.; Polychronakos, V.; Protopopescu, S.; Purohit, M.; Radeka, V.; Rajagopalan, S.; Redlinger, G.; Snyder, S.; Steinberg, P.; Takai, H.; Undrus, A.; Wenaus, T.; Ye, S.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Alexa, C.; Boldea, V.; Buda, S. I.; Caprini, I.; Caprini, M.; Chitan, A.; Ciubancan, M.; Constantinescu, S.; Dita, P.; Dita, S.; Dobre, M.; Ducu, O. A.; Jinaru, A.; Martoiu, V. S.; Maurer, J.; Olariu, A.; Pantea, D.; Rotaru, M.; Stoicea, G.; Tudorache, A.; Tudorache, V.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Popeneciu, G. A.] Natl Inst Res & Dev Isotop & Mol Technol, Dept Phys, Cluj Napoca, Romania. Univ Politehn Bucuresti, Bucharest, Romania. West Univ Timisoara, Timisoara, Romania. [Otero y Garzon, G.; Piegaia, R.; Reisin, H.; Sacerdoti, S.] Univ Buenos Aires, Dept Fis, Buenos Aires, DF, Argentina. [Arratia, M.; Barlow, N.; Batley, J. R.; Brochu, F. M.; Carter, J. R.; Chapman, J. D.; Cottin, G.; French, S. T.; Gillam, T. P. S.; Hill, J. C.; Kaneti, S.; Khoo, T. J.; Lester, C. G.; Mueller, T.; Parker, M. A.; Robinson, D.; Thomson, M.; Ward, C. P.; Yusuff, I.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Bellerive, A.; Cree, G.; Di Valentino, D.; Koffas, T.; Lacey, J.; Leight, W. A.; McCarthy, T. G.; Nomidis, I.; Oakham, F. G.; Pasztor, G.; Tarrade, F.; Ueno, R.; Vincter, M. G.] Carleton Univ, Dept Phys, Ottawa, ON K1S 5B6, Canada. [Abreu, R.; Aleksa, M.; Gonzalez, B. Alvarez; Andari, N.; Anders, G.; Anghinolfi, F.; Armbruster, A. J.; Arnaez, O.; Avolio, G.; Baak, M. A.; Backes, M.; Backhaus, M.; Barak, L.; Beltramello, O.; Bianco, M.; Bogaerts, J. A.; Boveia, A.; Boyd, J.; Burckhart, H.; Campana, S.; Garrido, M. D. M. Capeans; Carli, T.; Catinaccio, A.; Cattai, A.; Cerv, M.; Chromek-Burckhart, D.; Conti, G.; Dell'Acqua, A.; Deviveiros, P. O.; Di Girolamo, A.; Di Girolamo, B.; Dittus, F.; Dobos, D.; Dudarev, A.; Duehrssen, M.; Eifert, T.; Ellis, N.; Elsing, M.; Farthouat, P.; Fassnacht, P.; Feigl, S.; Perez, S. Fernandez; Francis, D.; Froidevaux, D.; Gillberg, D.; Glatzer, J.; Goossens, L.; Gorini, B.; Gray, H. M.; Hawkings, R. J.; Helsens, C.; Correia, A. M. Henriques; Hervas, L.; Hoecker, A.; Hubacek, Z.; Huhtinen, M.; Iengo, P.; Jaekel, M. R.; Jakobsen, S.; Kaneda, M.; Klioutchnikova, T.; Krasznahorkay, A.; Lantzsch, K.; Lapoire, C.; Lassnig, M.; Miotto, G. Lehmann; Lenzi, B.; Lichard, P.; Macina, D.; Malyukov, S.; Mandelli, B.; Mapelli, L.; Marzin, A.; Milic, A.; Mornacchi, G.; Nairz, A. M.; Nakahama, Y.; Nessi, M.; Nicquevert, B.; Nordberg, M.; Oide, H.; Palestini, S.; Pauly, T.; Pernegger, H.; Peters, K.; Petersen, B. A.; Pommes, K.; Poppleton, A.; Poulard, G.; Poveda, J.; Prasad, S.; Rammensee, M.; Raymond, M.; Rembser, C.; Ritsch, E.; Roe, S.; Ruiz-Martinez, A.; Salzburger, A.; Schaefer, D.; Schlenker, S.; Schmieden, K.; Serfon, C.; Sforza, F.; Sfyrla, A.; Solans, C. A.; Spigo, G.; Stelzer, H. J.; Teischinger, F. A.; Ten Kate, H.; Tremblet, L.; Tricoli, A.; Tsarouchas, C.; Unal, G.; van Woerden, M. C.; Vandelli, W.; Voss, R.; Vuillermet, R.; Wells, P. S.; Wengler, T.; Wenig, S.; Werner, P.; Wilkens, H. G.; Wotschack, J.; Young, C. J. S.; Zwalinski, L.] CERN, Geneva, Switzerland. [Alison, J.; Anderson, K. J.; Toro, R. Camacho; Cheng, Y.; Dandoy, J. R.; Facini, G.; Fiascaris, M.; Gardner, R. W.; Ilchenko, Y.; Kapliy, A.; Kim, Y.; Krizka, K.; Li, H. L.; Merritt, F. S.; Miller, D. W.; Narayan, R.; Okumura, Y.; Onyisi, P. U. E.; Oreglia, M. J.; Penning, B.; Saxon, J.; Shochet, M. J.; Vukotic, I.; Webster, J. S.; Wu, M.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Carquin, E.; Diaz, M. A.; Ochoa-Ricoux, J. P.; Vogel, M.] Pontificia Univ Catolica Chile, Dept Fis, Santiago, Chile. [Brooks, W. K.; Kuleshov, S.; Pezoa, R.; Prokoshin, F.; White, R.] Univ Tecn Federico Santa Maria, Dept Fis, Valparaiso, Chile. [Bai, Y.; Fang, Y.; Jin, S.; Lou, X.; Ouyang, Q.; Ren, H.; Shan, L. Y.; Sun, X.; Wang, J.; Xu, D.; Zhu, H.; Zhuang, X.] Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China. [Gao, J.; Guan, L.; Han, L.; Hu, Q.; Jiang, Y.; Liu, J. B.; Liu, M.; Liu, Y.; Peng, H.; Song, H. Y.; Xu, L.; Zhang, R.; Zhao, Z.; Zhu, Y.] Univ Sci & Technol China, Dept Modern Phys, Hefei, Anhui, Peoples R China. [Chen, S.; Li, Y.; Wang, C.; Zhang, H.] Nanjing Univ, Dept Phys, Nanjing, Jiangsu, Peoples R China. [Chen, L.; Feng, C.; Ge, P.; Li, B.; Ma, L. L.; Zhang, X.; Zhao, Y.; Zhu, C. G.] Shandong Univ, Sch Phys, Jinan, Shandong, Peoples R China. [Guo, J.; Li, L.; Yang, H.] Shanghai Jiao Tong Univ, Dept Phys & Astron, Shanghai Key Lab Particle Phys & Cosmol, Shanghai 200030, Peoples R China. [Chen, X.] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Gilles, G.; Gris, Ph.; Liao, H.; Madar, R.; Pallin, D.; Saez, S. M. Romano; Santoni, C.; Simon, D.; Theveneaux-Pelzer, T.; Vazeille, F.] Clermont Univ, Lab Phys Corpusculaire, Clermont Ferrand, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Gilles, G.; Gris, Ph.; Liao, H.; Madar, R.; Pallin, D.; Saez, S. M. Romano; Santoni, C.; Simon, D.; Theveneaux-Pelzer, T.; Vazeille, F.] Univ Clermont Ferrand, CNRS IN2P3, Clermont Ferrand, France. [Alkire, S. P.; Altheimer, A.; Andeen, T.; Angerami, A.; Bain, T.; Brooijmans, G.; Cole, B.; Hu, D.; Hughes, E. W.; Iordanidou, K.; Klein, M. H.; Mohapatra, S.; Nikiforou, N.; Parsons, J. A.; Smith, M. N. K.; Smith, R. W.; Thompson, E. N.; Tuts, P. M.; Zhou, L.] Columbia Univ, Nevis Lab, Irvington, NY USA. [Alonso, A.; Dam, M.; Galster, G.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Joergensen, M. D.; Loevschall-Jensen, A. E.; Monk, J.; Mortensen, S. S.; Pedersen, L. E.; Petersen, T. C.; Pingel, A.; Wiglesworth, C.; Xella, S.] Univ Copenhagen, Niels Bohr Inst, Copenhagen, Denmark. [Cairo, V. M.; Capua, M.; Crosetti, G.; La Rotonda, L.; Mastroberardino, A.; Policicchio, A.; Salvatore, D.; Scarfone, V.; Schioppa, M.; Susinno, G.; Tassi, E.] INFN, Grp Coll Cosenza, Lab Nazl Frascati, Arcavacata Di Rende, Italy. [Cairo, V. M.; Capua, M.; Crosetti, G.; La Rotonda, L.; Mastroberardino, A.; Policicchio, A.; Salvatore, D.; Scarfone, V.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dipartmento Fis, I-87036 Arcavacata Di Rende, Italy. [Adamczyk, L.; Bold, T.; Dabrowski, W.; Dyndal, M.; Grabowska-Bold, I.; Kisielewska, D.; Koperny, S.; Kowalski, T. Z.; Mindur, B.; Przybycien, M.; Zemla, A.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, PL-30059 Krakow, Poland. [Palka, M.; Richter-Was, E.] Jagiellonian Univ, Marian Smoluchowski Inst Phys, Krakow, Poland. [Banas, E.; de Renstrom, P. A. Bruckman; Chwastowski, J. J.; Derendarz, D.; Godlewski, J.; Gornicki, E.; Hajduk, Z.; Iwanski, W.; Kaczmarska, A.; Korcyl, K.; Malecki, Pa.; Olszewski, A.; Olszowska, J.; Stanecka, E.; Staszewski, R.; Trzebinski, M.; Trzupek, A.; Wolter, M. W.; Wosiek, B. K.; Wozniak, K. W.; Zabinski, B.] Polish Acad Sci, Inst Nucl Phys, Krakow, Poland. [Cao, T.; Firan, A.; Hetherly, J. W.; Kama, S.; Kehoe, R.; Sekula, S. J.; Stroynowski, R.; Turvey, A. J.; Varol, T.; Wang, H.; Ye, J.; Zhao, X.; Zhou, L.] So Methodist Univ, Dept Phys, Dallas, TX 75275 USA. [Izen, J. M.; Leyton, M.; Meirose, B.; Namasivayam, H.; Reeves, K.] Univ Texas Dallas, Dept Phys, Richardson, TX 75083 USA. [Argyropoulos, S.; Asbah, N.; Bessner, M.; Borroni, S.; Britzger, D.; Camarda, S.; Deterre, C.; Eckardt, C.; Filipuzzi, M.; Glazov, A.; Grahn, K-J.; Gregor, I. M.; Grohsjean, A.; Haleem, M.; Hamnett, P. G.; Hengler, C.; Hiller, K. H.; Howarth, J.; Huang, Y.; Katzy, J.; Keller, J. S.; Kondrashova, N.; Kuhl, T.; Lobodzinska, E.; Lohwasser, K.; Mamuzic, J.; Medinnis, M.; Moenig, K.; Garcia, R. F. Naranjo; Naumann, T.; Peschke, R.; Petit, E.; Pirumov, H.; Poley, A.; Radescu, V.; Rubinskiy, I.; Schaefer, R.; Schmitt, S.; Sedov, G.; Shushkevich, S.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Starovoitov, P.; Styles, N. A.; Tackmann, K.; Wang, J.; Wasicki, C.; Yildirim, E.] DESY, Hamburg, Germany. [Argyropoulos, S.; Asbah, N.; Bessner, M.; Borroni, S.; Britzger, D.; Camarda, S.; Deterre, C.; Eckardt, C.; Filipuzzi, M.; Glazov, A.; Grahn, K-J.; Gregor, I. M.; Grohsjean, A.; Haleem, M.; Hamnett, P. G.; Hengler, C.; Hiller, K. H.; Howarth, J.; Huang, Y.; Katzy, J.; Keller, J. S.; Kondrashova, N.; Kuhl, T.; Lobodzinska, E.; Lohwasser, K.; Mamuzic, J.; Medinnis, M.; Moenig, K.; Garcia, R. F. Naranjo; Naumann, T.; Peschke, R.; Petit, E.; Pirumov, H.; Poley, A.; Radescu, V.; Rubinskiy, I.; Schaefer, R.; Schmitt, S.; Sedov, G.; Shushkevich, S.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Starovoitov, P.; Styles, N. A.; Tackmann, K.; Wang, J.; Wasicki, C.; Yildirim, E.] DESY, Zeuthen, Germany. [Bloch, I.; Burmeister, I.; Erdmann, J.; Esch, H.; Goessling, C.; Homann, M.; Jentzsch, J.; Jung, C. A.; Klingenberg, R.; Kroeninger, K.] Tech Univ Dortmund, Inst Expt Phys 4, D-44221 Dortmund, Germany. [Anger, P.; Duschinger, D.; Friedrich, F.; Grohs, J. P.; Gumpert, C.; Gutschow, C.; Hauswald, L.; Kobel, M.; Mader, W. F.; Morgenstern, M.; Novgorodova, O.; Rudolph, C.; Schnoor, U.; Siegert, F.; Socher, F.; Staerz, S.; Straessner, A.; Vest, A.; Wahrmund, S.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Arce, A. T. H.; Benjamin, D. P.; Bocci, A.; Cerio, B. C.; Goshaw, A. T.; Kajomovitz, E.; Kotwal, A.; Kruse, M. C.; Li, L.; Li, S.; Liu, M.; Oh, S. H.; Zhou, C.] Duke Univ, Dept Phys, Durham, NC 27706 USA. [Bhimji, W.; Bristow, T. M.; Clark, P. J.; Dias, F. A.; Edwards, N. C.; Gao, Y.; Walls, F. M. Garay; Glaysher, P. C. F.; Harrington, R. D.; Leonidopoulos, C.; Martin, V. J.; Mills, C.; O'Brien, B. J.; Pino, S. A. Olivares; Proissl, M.; Smart, B. H.; Tylmad, M.; Washbrook, A.; Wynne, B. M.] Univ Edinburgh, Sch Phys & Astron, SUPA, Edinburgh, Midlothian, Scotland. [Antonelli, M.; Beretta, M.; Bilokon, H.; Chiarella, V.; Curatolo, M.; Di Nardo, R.; Esposito, B.; Gatti, C.; Giromini, P.; Laurelli, P.; Maccarrone, G.; Mancini, G.; Sansoni, A.; Testa, M.; Vilucchi, E.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Amoroso, S.; Arnold, H.; Betancourt, C.; Boehler, M.; Bruneliere, R.; Buehrer, F.; Buescher, D.; Cardillo, F.; Coniavitis, E.; Consorti, V.; Dang, N. P.; Dao, V.; Di Simone, A.; Giuliani, C.; Herten, G.; Jakobs, K.; Javurek, T.; Jenni, P.; Kiss, F.; Koeneke, K.; Kopp, A. K.; Kuehn, S.; Lai, S.; Landgraf, U.; Mahboubi, K.; Mohr, W.; Pagacova, M.; Parzefall, U.; Ronzani, M.; Rosbach, K.; Ruehr, F.; Rurikova, Z.; Ruthmann, N.; Schillo, C.; Schmidt, E.; Schumacher, M.; Sommer, P.; Sundermann, J. E.; Temming, K. K.; Tsiskaridze, V.; Ungaro, F. C.; von Radziewski, H.; Warsinsky, M.; Weiser, C.; Werner, M.; Zhang, L.; Zimmermann, S.] Univ Freiburg, Fak Math & Phys, D-79106 Freiburg, Germany. [Ancu, L. S.; Barone, G.; Bell, W. H.; Noccioli, E. Benhar; De Mendizabal, J. Bilbao; Clark, A.; Delitzsch, C. M.; della Volpe, D.; Doglioni, C.; Ferrere, D.; Gadomski, S.; Golling, T.; Gonzalez-Sevilla, S.; Gramling, J.; Guescini, F.; Iacobucci, G.; Katre, A.; La Rosa, A.; Mermod, P.; Miucci, A.; Muenstermann, D.; Paolozzi, L.; Picazio, A.; Ristic, B.; Tykhonov, A.; Vallecorsa, S.; Wu, X.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Barberis, D.; Darbo, G.; Favareto, A.; Parodi, A. Ferretto; Gagliardi, G.; Gaudiello, A.; Gemme, C.; Guido, E.; Morettini, P.; Osculati, B.; Parodi, F.; Passaggio, S.; Rossi, L. P.; Sannino, M.; Schiavi, C.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Barberis, D.; Favareto, A.; Parodi, A. Ferretto; Gagliardi, G.; Gaudiello, A.; Guido, E.; Osculati, B.; Parodi, F.; Sannino, M.; Schiavi, C.] Univ Genoa, Dipartimento Fis, Genoa, Italy. [Jejelava, J.; Tskhadadze, E. G.] Iv Javakhishvili Tbilisi State Univ, E Andronikashvili Inst Phys, Tbilisi, Rep of Georgia. [Djobava, T.; Durglishvili, A.; Khubua, J.; Mosidze, M.] Tbilisi State Univ, Inst High Energy Phys, Tbilisi, Rep of Georgia. [Dueren, M.; Kreutzfeldt, K.; Stenzel, H.] Univ Giessen, Inst Phys 2, Giessen, Germany. [Bates, R. L.; Madden, W. D. Breaden; Britton, D.; Buckley, A. G.; Bussey, P.; Buttar, C. M.; Buzatu, A.; Cinca, D.; D'Auria, S.; Doyle, A. T.; Ferrando, J.; de Lima, D. E. Ferreira; Gul, U.; Ortiz, N. G. Gutierrez; Kar, D.; Knue, A.; Morton, A.; Mullen, P.; O'Shea, V.; Barrera, C. Oropeza; Owen, M.; Pollard, C. S.; Qin, G.; Quilty, D.; Ravenscroft, T.; Robson, A.; St Denis, R. D.; Stewart, G. A.; Thompson, A. S.] Univ Glasgow, Sch Phys & Astron, SUPA, Glasgow, Lanark, Scotland. [Bindi, M.; Blumenschein, U.; Brandt, G.; Drechsler, E.; George, M.; Graber, L.; Grosse-Knetter, J.; Hamer, M.; Kareem, M. J.; Kawamura, G.; Lemmer, B.; Magradze, E.; Mantoani, M.; Mchedlidze, G.; Llacer, M. Moreno; Musheghyan, H.; Nackenhorst, O.; Nadal, J.; Qin, Y.; Quadt, A.; Rieger, J.; Schorlemmer, A. L. S.; Shabalina, E.; Stolte, P.; Weingarten, J.; Zinonos, Z.] Univ Gottingen, Inst Phys 2, Gottingen, Germany. [Albrand, S.; Brown, J.; Collot, J.; Crepe-Renaudin, S.; Delsart, P. A.; Gabaldon, C.; Genest, M. H.; Hostachy, J-Y.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Monini, C.; Stark, J.; Trocme, B.; Wu, M.] Univ Grenoble Alpes, CNRS IN2P3, Lab Phys Subatom & Cosmol, Grenoble, France. [McFarlane, K. W.] Hampton Univ, Dept Phys, Hampton, VA 23668 USA. [da Costa, J. Barreiro Guimaraes; Catastini, P.; Clark, B. L.; Franklin, M.; Huth, J.; Ippolito, V.; Lazovich, T.; Mateos, D. Lopez; Mercurio, K. M.; Morii, M.; Skottowe, H. P.; Spearman, W. R.; Sun, S.; Tolley, E.; Yen, A. L.; Zambito, S.] Harvard Univ, Lab Particle Phys & Cosmol, Cambridge, MA 02138 USA. [Andrei, V.; Baas, A. E.; Brandt, O.; Davygora, Y.; Djuvsland, J. I.; Dunford, M.; Geisler, M. P.; Hanke, P.; Jongmanns, J.; Kluge, E. -E.; Lang, V. S.; Meier, K.; Scharf, V.; Schultz-Coulon, H. -C.; Stamen, R.; Wessels, M.] Heidelberg Univ, Kirchhoff Inst Phys, Heidelberg, Germany. [Anders, C. F.; Giulini, M.; Lisovyi, M.; Schaetzel, S.; Schmitt, S.; Schoening, A.; Sosa, D.] Heidelberg Univ, Inst Phys, Heidelberg, Germany. [Colombo, T.; Kretz, M.; Kugel, A.] Heidelberg Univ, ZITI Inst Tech Informat, Mannheim, Germany. [Nagasaka, Y.] Hiroshima Inst Technol, Fac Appl Informat Sci, Hiroshima, Japan. [Bortolotto, V.; Castillo, L. R. Flores] Chinese Univ Hong Kong, Dept Phys, Shatin, Hong Kong, Peoples R China. [Bortolotto, V.] Univ Hong Kong, Dept Phys, Hong Kong, Hong Kong, Peoples R China. [Bortolotto, V.; Prokofiev, K.] Hong Kong Univ Sci & Technol, Dept Phys, Kowloon, Hong Kong, Peoples R China. [Choi, K.; Dattagupta, A.; Evans, H.; Gagnon, P.; Lammers, S.; Martinez, N. Lorenzo; Luehring, F.; Ogren, H.; Penwell, J.; Weinert, B.; Zieminska, D.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Jansky, R. W.; Jussel, P.; Kneringer, E.; Lukas, W.; Usanova, A.; Vigne, R.] Leopold Franzens Univ, Inst Astro & Teilchenphys, Innsbruck, Austria. [Mallik, U.; Mandrysch, R.; Zaidan, R.] Univ Iowa, Iowa City, IA USA. [Cochran, J.; De Lorenzi, F.; Krumnack, N.; Pluth, D.; Prell, S.] Iowa State Univ, Dept Phys & Astron, Ames, IA USA. [Ahmadov, F.; Aleksandrov, I. N.; Bednyakov, V. A.; Boyko, I. R.; Budagov, I. A.; Chelkov, G. A.; Chen, C.; Cheplakov, A.; Chizhov, M. V.; Dedovich, D. V.; Demichev, M.; Gostkin, M. I.; Huseynov, N.; Javadov, N.; Karpov, S. N.; Karpova, Z. M.; Kazarinov, M. Y.; Khramov, E.; Kotov, V. M.; Kruchonak, U.; Krumshteyn, Z. V.; Kukhtin, V.; Ladygin, E.; Minashvili, I. A.; Mineev, M.; Peshekhonov, V. D.; Plotnikova, E.; Potrap, I. N.; Pozdnyakov, V.; Rusakovich, N. A.; Sadykov, R.; Sapronov, A.; Shiyakova, M.; Sisakyan, A. N.; Soloshenko, A.; Vinogradov, V. B.; Yeletskikh, I.; Zhemchugov, A.; Zimine, N. I.] JINR Dubna, Joint Inst Nucl Res, Dubna, Russia. [Amako, K.; Aoki, M.; Arai, Y.; Ikegami, Y.; Ikeno, M.; Iwasaki, H.; Kanzaki, J.; Kohriki, T.; Kondo, T.; Kono, T.; Makida, Y.; Nagano, K.; Nakamura, K.; Nozaki, M.; Odaka, S.; Sasaki, O.; Suzuki, S.; Suzuki, Y.; Takubo, Y.; Tanaka, S.; Terada, S.; Tokushuku, K.; Tsuno, S.; Unno, Y.; Yamada, M.; Yamamoto, A.; Yasu, Y.] High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki, Japan. [Chen, Y.; Hasegawa, M.; Inamaru, Y.; Kishimoto, T.; Kurashige, H.; Kurumida, R.; Ochi, A.; Shimizu, S.; Takeda, H.; Yakabe, R.; Yamazaki, Y.; Yuan, L.] Kobe Univ, Grad Sch Sci, Kobe, Hyogo 657, Japan. [Ishino, M.; Kunigo, T.; Sumida, T.; Tashiro, T.] Kyoto Univ, Fac Sci, Kyoto, Japan. [Takashima, R.] Kyoto Univ, Kyoto 612, Japan. [Kawagoe, K.; Oda, S.; Otono, H.; Tojo, J.] Kyushu Univ, Dept Phys, Fukuoka 812, Japan. [Alconada Verzini, M. J.; Alonso, F.; Arduh, F. A.; Dova, M. T.; Monticelli, F.; Wahlberg, H.] Univ Nacl La Plata, Inst Fis La Plata, RA-1900 La Plata, Buenos Aires, Argentina. [Alconada Verzini, M. J.; Alonso, F.; Arduh, F. A.; Dova, M. T.; Monticelli, F.; Wahlberg, H.] Consejo Nacl Invest Cient & Tecn, La Plata, Buenos Aires, Argentina. [Barton, A. E.; Beattie, M. D.; Borissov, G.; Bouhova-Thacker, E. V.; Dearnaley, W. J.; Fox, H.; Grimm, K.; Henderson, R. C. W.; Hughes, G.; Jones, R. W. L.; Kartvelishvili, V.; Long, R. E.; Love, P. A.; Maddocks, H. J.; Skinner, M. B.; Smizanska, M.; Walder, J.; Wharton, A. M.] Univ Lancaster, Dept Phys, Lancaster, England. [Chiodini, G.; Gorini, E.; Primavera, M.; Spagnolo, S.; Ventura, A.] Ist Nazl Fis Nucl, Sez Lecce, I-73100 Lecce, Italy. [Gorini, E.; Spagnolo, S.; Ventura, A.] Univ Salento, Dipartimento Matemat & Fis, Lecce, Italy. [Affolder, A. A.; Allport, P. P.; Anders, J. K.; Burdin, S.; D'Onofrio, M.; Dervan, P.; Gwilliam, C. B.; Hayward, H. S.; Jackson, M.; Jones, T. J.; King, B. T.; Klein, M.; Klein, U.; Kretzschmar, J.; Laycock, P.; Lehan, A.; Maxfield, S. J.; Mehta, A.; Readioff, N. P.; Schnellbach, Y. J.; Vossebeld, J. H.] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 3BX, Merseyside, England. [Cindro, V.; Deliyergiyev, M.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Mandic, I.; Mikuz, M.; Sflilgoj, T.] Jozef Stefan Inst, Dept Phys, Ljubljana, Slovenia. [Cindro, V.; Deliyergiyev, M.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Mandic, I.; Mikuz, M.; Sflilgoj, T.] Univ Ljubljana, Ljubljana, Slovenia. [Alpigiani, C.; Bevan, A. J.; Bona, M.; Bret, M. Cano; Cerrito, L.; Fletcher, G.; Goddard, J. R.; Hays, J. M.; Hickling, R.; Landon, M. P. J.; Lloyd, S. L.; Morris, J. D.; Nooney, T.; Piccaro, E.; Rizvi, E.; Sandbach, R. L.; Snidero, G.; Castanheira, M. Teixeira Dias] Queen Mary Univ London, Sch Phys & Astron, London, England. [Berry, T.; Blanco, J. E.; Boisvert, V.; Brooks, T.; Connelly, I. A.; Cowan, G.; Duguid, L.; Giannelli, M. Faucci; George, S.; Gibson, S. M.; Kempster, J. J.; Vazquez, J. G. Panduro; Pastore, Fr.; Savage, G.; Sowden, B. C.; Spano, F.; Teixeira-Dias, P.; Thomas-Wilsker, J.] Royal Holloway Univ London, Dept Phys, Surrey, England. [Bieniek, S. P.; Butterworth, J. M.; Campanelli, M.; Casadei, D.; Chislett, R. T.; Christodoulou, V.; Cooper, B. D.; Davison, P.; Falla, R. J.; Freeborn, D.; Gregersen, K.; Hesketh, G. G.; Jansen, E.; Jiggins, S.; Konstantinidis, N.; Korn, A.; Kucuk, H.; Lambourne, L.; Leney, K. J. C.; Martyniuk, A. C.; Mcfayden, J. A.; Nurse, E.; Ochoa, I.; Richter, S.; Scanlon, T.; Sherwood, P.; Simmons, B.; Wardrope, D. R.; Waugh, B. M.] UCL, Dept Phys & Astron, London, England. [Greenwood, Z. D.; Grossi, G. C.; Jana, D. K.; Sawyer, L.; Subramaniam, R.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pandini, C. E.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.; Varouchas, D.] UPMC, Lab Phys Nucl & Hautes Energies, Paris, France. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pandini, C. E.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.; Varouchas, D.] Univ Paris Diderot, Paris, France. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pandini, C. E.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.; Varouchas, D.] CNRS IN2P3, Paris, France. [Akesson, T. P. A.; Bocchetta, S. S.; Bryngemark, L.; Floderus, A.; Hawkins, A. D.; Hedberg, V.; Ivarsson, J.; Jarlskog, G.; Lytken, E.; Mjoernmark, J. U.; Smirnova, O.; Viazlo, O.] Lund Univ, Fysiska Inst, Lund, Sweden. [Arnal, V.; Cantero, J.; De la Torre, H.; Del Peso, J.; Glasman, C.; Merino, J. Llorente; Terron, J.] Univ Autonoma Madrid, Dept Fis Teor C 15, Madrid, Spain. [Barreiro, F.; Becker, M.; Bertella, C.; Blum, W.; Buescher, V.; Caputo, R.; Caudron, J.; Ellinghaus, F.; Endner, O. C.; Ertel, E.; Fiedler, F.; Torregrosa, E. Fullana; Heck, T.; Hohlfeld, M.; Huelsing, T. A.; Karnevskiy, M.; Kleinknecht, K.; Koenig, S.; Koepke, L.; Lin, T. H.; Masetti, L.; Mattmann, J.; Meyer, C.; Moritz, S.; Rave, S.; Sander, H. G.; Schaeffer, J.; Schaefer, U.; Schmitt, C.; Schott, M.; Schroeder, C.; Schuh, N.; Simioni, E.; Tapprogge, S.; Urrejola, P.; Valderanis, C.; Wollstadt, S. J.; Zimmermann, C.; Zinser, M.] Johannes Gutenberg Univ Mainz, Inst Phys, Mainz, Germany. [Balli, F.; Barnes, S. L.; Cox, B. E.; Da Via, C.; Forti, A.; Ponce, J. M. Iturbe; Joshi, K. D.; Keoshkerian, H.; Loebinger, F. K.; Marsden, S. P.; Masik, J.; Neep, T. J.; Oh, A.; Ospanov, R.; Pater, J. R.; Peters, R. F. Y.; Pilkington, A. D.; Price, D.; Queitsch-Maitland, M.; Robinson, J. E. M.; Schwanenberger, C.; Shaw, S. M.; Thompson, R. J.; Tomlinson, L.; Watts, S.; Webb, S.; Woudstra, M. J.; Wyatt, T. R.] Univ Manchester, Sch Phys & Astron, Manchester, Lancs, England. [Aad, G.; Alio, L.; Barbero, M.; Chen, L.; Coadou, Y.; Diaconu, C.; Diglio, S.; Djama, F.; Ducu, O. A.; Feligioni, L.; Gao, J.; Hallewell, G. D.; Hubaut, F.; Kahn, S. J.; Knoops, E. B. F. G.; Le Guirriec, E.; Liu, J.; Liu, K.; Madaffari, D.; Mochizuki, K.; Monnier, E.; Muanza, S.; Nagai, Y.; Nagy, E.; Pralavorio, P.; Rozanov, A.; Serre, T.; Talby, M.; Torres, R. E. Ticse; Tiouchichine, E.; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.] Aix Marseille Univ, CPPM, Marseille, France. [Aad, G.; Alio, L.; Barbero, M.; Chen, L.; Coadou, Y.; Diaconu, C.; Diglio, S.; Djama, F.; Ducu, O. A.; Feligioni, L.; Gao, J.; Hallewell, G. D.; Hubaut, F.; Kahn, S. J.; Knoops, E. B. F. G.; Le Guirriec, E.; Liu, J.; Liu, K.; Madaffari, D.; Mochizuki, K.; Monnier, E.; Muanza, S.; Nagai, Y.; Nagy, E.; Pralavorio, P.; Rozanov, A.; Serre, T.; Talby, M.; Torres, R. E. Ticse; Tiouchichine, E.; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.] CNRS IN2P3, Marseille, France. [Bellomo, M.; Bernard, N. R.; Brau, B.; Dallapiccola, C.; Daya-Ishmukhametova, R. K.; Moyse, E. J. W.; Pais, P.; Pueschel, E.; Ventura, D.; Willocq, S.] Univ Massachusetts, Dept Phys, Amherst, MA USA. [Belanger-Champagne, C.; Chapleau, B.; Chuinard, A. J.; Corriveau, F.; Keyes, R. A.; Mantifel, R.; Prince, S.; Robertson, S. H.; Robichaud-Veronneau, A.; Stockton, M. C.; Stoebe, M.; Vachon, B.; Schroeder, T. Vazquez; Wang, K.; Warburton, A.] McGill Univ, Dept Phys, Montreal, PQ, Canada. [Barberio, E. L.; Brennan, A. J.; Dawe, E.; Jennens, D.; Kubota, T.; Milesi, M.; Hanninger, G. Nunes; Nuti, F.; Rados, P.; Spiller, L. A.; Tan, K. G.; Taylor, G. N.; Urquijo, P.; Volpi, M.; Zanzi, D.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. [Amidei, D.; Chelstowska, M. A.; Cheng, H. C.; Dai, T.; Diehl, E. B.; Edgar, R. C.; Feng, H.; Ferretti, C.; Fleischmann, P.; Goldfarb, S.; Hu, X.; Levin, D.; Liu, H.; Long, J. D.; Lu, N.; Marley, D. E.; Mc Kee, S. P.; McCarn, A.; Neal, H. A.; Qian, J.; Schwarz, T. A.; Searcy, J.; Sekhon, K.; Thun, R. P.; Wilson, A.; Wu, Y.; Xu, L.; Yu, J. M.; Zhang, D.; Zhou, B.; Zhu, J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Abolins, M.; Arabidze, G.; Brock, R.; Chegwidden, A.; Fisher, W. C.; Halladjian, G.; Hauser, R.; Hayden, D.; Huston, J.; Linnemann, J. T.; Martin, B.; Pope, B. G.; Schoenrock, B. D.; Schwienhorst, R.; Ta, D.; Tollefson, K.; True, P.; Willis, C.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Alimonti, G.; Aloisio, A.; Alonso, A.; Altheimer, A.; Amorim, A.; Andreazza, A.; Angerami, A.; Annovi, A.; Besana, M. I.; Carminati, L.; Cavalli, D.; Consonni, S. M.; Costa, G.; Fanti, M.; Giugni, D.; Lari, T.; Mandelli, L.; Mazza, S. M.; Meroni, C.; Perini, L.; Pizio, C.; Ragusa, F.; Resconi, S.; Shojaii, S.; Simoniello, R.; Tartarelli, G. F.; Troncon, C.; Turra, R.; Perez, M. Villaplana] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy. [Andreazza, A.; Carminati, L.; Consonni, S. M.; Fanti, M.; Mazza, S. M.; Perini, L.; Pizio, C.; Ragusa, F.; Shojaii, S.; Simoniello, R.; Turra, R.; Perez, M. Villaplana] Univ Milan, Dipartimento Fis, Milan, Italy. [Harkusha, S.; Kulchitsky, Y.; Kurochkin, Y. A.; Tsiareshka, P. V.] Natl Acad Sci Belarus, BI Stepanov Inst Phys, Minsk, Byelarus. [Hrynevich, A.] Natl Sci & Educ Ctr Particle & High Energy Phys, Minsk, Byelarus. [Taylor, F. E.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Arguin, J-F.; Azuelos, G.; Dallaire, F.; Gauthier, L.; Leroy, C.; Rezvani, R.; Saadi, D. Shoaleh] Univ Montreal, Grp Particle Phys, Montreal, PQ, Canada. [Akimov, A. V.; Gavrilenko, I. L.; Komar, A. A.; Mashinistov, R.; Mouraviev, S. V.; Nechaeva, P. Yu.; Shmeleva, A.; Snesarev, A. A.; Sulin, V. V.; Tikhomirov, V. O.; Zhukov, K.] Acad Sci, PN Lebedev Inst Phys, Moscow, Russia. [Artamonov, A.; Gorbounov, P. A.; Khovanskiy, V.; Shatalov, P. B.; Tsukerman, I. I.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Antonov, A.; Belotskiy, K.; Bulekov, O.; Dolgoshein, B. A.; Kantserov, V. A.; Krasnopevtsev, D.; Romaniouk, A.; Shulga, E.; Smirnov, S. Yu.; Smirnov, Y.; Tikhomirov, V. O.; Timoshenko, S.; Vorobev, K.] Natl Res Nucl Univ MEPhI, Moscow, Russia. [Boldyrev, A. S.; Gladilin, L. K.; Kramarenko, V. A.; Maevskiy, A.; Rud, V. I.; Sivoklokov, S. Yu.; Smirnova, L. N.; Turchikhin, S.] Moscow MV Lomonosov State Univ, DV Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Adomeit, S.; Becker, S.; Bender, M.; Biebel, O.; Bock, C.; Bortfeldt, J.; Calfayan, P.; Chow, B. K. B.; Duckeck, G.; Elmsheuser, J.; Hertenberger, R.; Hoenig, F.; Legger, F.; Lorenz, J.; Loesel, P. J.; Maier, T.; Mann, A.; Mehlhase, S.; Meineck, C.; Mitrevski, J.; Mueller, R. S. P.; Nunnemann, T.; Rauscher, F.; Ruschke, A.; Sanders, M. P.; Schaile, D.; Unverdorben, C.; Vladoiu, D.; Walker, R.; Wittkowski, J.] Univ Munich, Fak Phys, Munich, Germany. [Barillari, T.; Bethke, S.; Bronner, J.; Compostella, G.; Cortiana, G.; Ecker, K. M.; Flowerdew, M. J.; Goblirsch-Kolb, M.; Ince, T.; Kiryunin, A. E.; Kluth, S.; Kortner, O.; Kortner, S.; Kroha, H.; Macchiolo, A.; Maier, A. A.; Manfredini, A.; Menke, S.; Mueller, F.; Nagel, M.; Nisius, R.; Nowak, S.; Oberlack, H.; Pahl, C.; Richter, R.; Salihagic, D.; Sandstroem, R.; Schacht, P.; Schwegler, Ph.; Spettel, F.; Stern, S.; Stonjek, S.; Terzo, S.; von der Schmitt, H.; Wildauer, A.] Max Planck Inst Phys & Astrophys, Werner Heisenberg Inst, D-80805 Munich, Germany. [Shimojima, M.] Nagasaki Inst Appl Sci, Nagasaki, Japan. [Hasegawa, S.; Horii, Y.; Morvaj, L.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Grad Sch Sci, Nagoya, Aichi 4648601, Japan. [Hasegawa, S.; Horii, Y.; Morvaj, L.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Kobayashi Maskawa Inst, Nagoya, Aichi 4648601, Japan. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Carlino, G.; Conventi, F.; de Asmundis, R.; Della Pietra, M.; Di Donato, C.; Doria, A.; Izzo, V.; Merola, L.; Perrella, S.; Rossi, E.; Sanchez, A.; Sekhniaidze, G.; Zurzolo, G.] Ist Nazl Fis Nucl, Sez Napoli, I-80125 Naples, Italy. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Di Donato, C.; Merola, L.; Perrella, S.; Rossi, E.; Sanchez, A.; Zurzolo, G.] Univ Naples Federico II, Dipartimento Fis, Naples, Italy. [Gorelov, I.; Hoeferkamp, M. R.; Seidel, S. C.; Toms, K.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Besjes, G. J.; Caron, S.; Croft, V.; De Groot, N.; Filthaut, F.; Galea, C.; Koenig, A. C.; Nektarijevic, S.; Salvucci, A.; Strubig, A.] Radboud Univ Nijmegen Nikhef, Inst Math Astrophys & Particle Phys, Nijmegen, Netherlands. [Aben, R.; Angelozzi, I.; Beemster, L. J.; Bentvelsen, S.; Berge, D.; Bobbink, G. J.; Bos, K.; Brenner, L.; Butti, P.; Castelli, A.; Colijn, A. P.; de Jong, P.; De Nooij, L.; Deigaard, I.; Deluca, C.; Ferrari, P.; Gadatsch, S.; Geerts, D. A. A.; Hartjes, F.; Hessey, N. P.; Hod, N.; Igonkina, O.; Karastathis, N.; Kluit, P.; Koffeman, E.; Linde, F.; Mahlstedt, J.; Meyer, J.; Oussoren, K. P.; Sabato, G.; Salek, D.; Slawinska, M.; Valencic, N.; Van Den Wollenberg, W.; Van Der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; Van Der Leeuw, R.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.; Weits, H.; Williams, S.] Nikhef Natl Inst Subat Phys, Amsterdam, Netherlands. [Aben, R.; Angelozzi, I.; Beemster, L. J.; Bentvelsen, S.; Berge, D.; Bobbink, G. J.; Bos, K.; Brenner, L.; Butti, P.; Castelli, A.; Colijn, A. P.; de Jong, P.; De Nooij, L.; Deigaard, I.; Deluca, C.; Ferrari, P.; Gadatsch, S.; Geerts, D. A. A.; Hartjes, F.; Hessey, N. P.; Hod, N.; Igonkina, O.; Karastathis, N.; Kluit, P.; Koffeman, E.; Linde, F.; Mahlstedt, J.; Meyer, J.; Oussoren, K. P.; Sabato, G.; Salek, D.; Slawinska, M.; Valencic, N.; Van Den Wollenberg, W.; Van Der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; Van Der Leeuw, R.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.; Weits, H.; Williams, S.] Univ Amsterdam, Amsterdam, Netherlands. [Adelman, J.; Burghgrave, B.; Chakraborty, D.; Cole, S.; Suhr, C.; Yurkewicz, A.] No Illinois Univ, Dept Phys, De Kalb, IL USA. [Anisenkov, V.; Bobrovnikov, V. S.; Bogdanchikov, A. G.; Buzykaev, A. R.; Kazanin, V. F.; Kharlamov, A. G.; Korol, A. A.; Malyshev, V. M.; Maslennikov, A. L.; Maximov, D. A.; Peleganchuk, S. V.; Rezanova, O. L.; Soukharev, A. M.; Talyshev, A. A.; Tikhonov, Yu. A.] RAS, SB, Budker Inst Nucl Phys, Novosibirsk, Russia. [Bernius, C.; Cranmer, K.; Haas, A.; Heinrich, L.; van Huysduynen, L. Hooft; Kaplan, B.; Karthik, K.; Konoplich, R.; Kreiss, S.; Mincer, A. I.; Nemethy, P.; Neves, R. M.] NYU, Dept Phys, New York, NY 10003 USA. [Beacham, J. B.; Gan, K. K.; Ishmukhametov, R.; Kagan, H.; Kass, R. D.; Looper, K. A.; Moss, J.; Nagarkar, A.; Pignotti, D. T.; Shrestha, S.; Tannenwald, B. B.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Fac Sci, Okayama 700, Japan. [Abbott, B.; Alhroob, M.; Bertsche, C.; Bertsche, D.; Gutierrez, P.; Hasib, A.; Norberg, S.; Pearson, B.; Saleem, M.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA. [Bousson, N.; Bruncko, D.; Haley, J.; Khanov, A.; Rizatdinova, F.; Sidorov, D.; Yu, J.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA. [Chytka, L.; Hamal, P.; Hrabovsky, M.; Kvita, J.; Nozka, L.] Palacky Univ, RCPTM, CR-77147 Olomouc, Czech Republic. [Brau, J. E.; Brost, E.; Hopkins, W. H.; Majewski, S.; Potter, C. T.; Ptacek, E.; Radloff, P.; Shamim, M.; Sinev, N. B.; Strom, D. M.; Torrence, E.; Wanotayaroj, C.; Whalen, K.; Winklmeier, F.] Univ Oregon, Ctr High Energy Phys, Eugene, OR 97403 USA. [Ayoub, M. K.; Bassalat, A.; Becot, C.; Binet, S.; Bourdarios, C.; De Regie, J. B. De Vivie; Delgove, D.; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Gkougkousis, E. L.; Grivaz, J. -F.; Guillemin, T.; Hariri, F.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Kado, M.; Li, Y.; Lounis, A.; Makovec, N.; Morange, N.; Nellist, C.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Rybkin, G.; Schaffer, A. C.; Scifo, E.; Serin, L.; Simion, S.; Tanaka, R.; Zerwas, D.; Zhang, Z.; Zhao, Y.] Univ Paris 11, LAL, Orsay, France. [Ayoub, M. K.; Bassalat, A.; Becot, C.; Binet, S.; Bourdarios, C.; De Regie, J. B. De Vivie; Delgove, D.; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Gkougkousis, E. L.; Grivaz, J. -F.; Guillemin, T.; Hariri, F.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Kado, M.; Li, Y.; Lounis, A.; Makovec, N.; Morange, N.; Nellist, C.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Rybkin, G.; Schaffer, A. C.; Scifo, E.; Serin, L.; Simion, S.; Tanaka, R.; Zerwas, D.; Zhang, Z.; Zhao, Y.] CNRS IN2P3, Orsay, France. [Endo, M.; Hanagaki, K.; Nomachi, M.; Okamura, W.; Sugaya, Y.; Teoh, J. J.; Yamaguchi, Y.] Osaka Univ, Grad Sch Sci, Osaka, Japan. [Bugge, L.; Bugge, M. K.; Cameron, D.; Catmore, J. R.; Franconi, L.; Garonne, V.; Gjelsten, B. K.; Gramstad, E.; Morisbak, V.; Nilsen, J. K.; Ould-Saada, F.; Pajchel, K.; Pedersen, M.; Raddum, S.; Read, A. L.; Rohne, O.; Stapnes, S.; Strandlie, A.] Univ Oslo, Dept Phys, Oslo, Norway. [Barr, A. J.; Becker, K.; Behr, J. K.; Beresford, L.; Cooper-Sarkar, A. M.; Ortuzar, M. Crispin; Da Finca, A.; Davies, E.; Frost, J. A.; Gallas, E. J.; Gupta, S.; Gwenlan, C.; Hall, D.; Hays, C. P.; Henderson, J.; Howard, J.; Huffman, T. B.; Issever, C.; Kalderon, C. W.; Kogan, L. A.; Lewis, A.; Nagai, K.; Nickerson, R. B.; Pickering, M. A.; Ryder, N. C.; Tseng, J. C-L.; Viehhauser, G. H. A.; Weidberg, A. R.; Zhong, J.] Univ Oxford, Dept Phys, Oxford, England. [Conta, C.; Dondero, P.; Ferrari, R.; Fraternali, M.; Gaudio, G.; Livan, M.; Negri, A.; Polesello, G.; Rebuzzi, D. M.; Rimoldi, A.; Vercesi, V.] Ist Nazl Fis Nucl, Sez Pavia, I-27100 Pavia, Italy. [Conta, C.; Dondero, P.; Fraternali, M.; Livan, M.; Negri, A.; Rebuzzi, D. M.; Rimoldi, A.] Univ Pavia, Dipartimento Fis, I-27100 Pavia, Italy. [Brendlinger, K.; Fletcher, R. R. M.; Heim, S.; Hines, E.; Jackson, B.; Kroll, J.; Lipeles, E.; Miguens, J. Machado; Meyer, C.; Stahlman, J.; Thomson, E.; Tuna, A. N.; Vanguri, R.; Williams, H. H.; Yoshihara, K.] Univ Penn, Dept Phys, Philadelphia, PA 19104 USA. [Basalaev, A.; Ezhilov, A.; Fedin, O. L.; Gratchev, V.; Levchenko, M.; Maleev, V. P.; Ryabov, Y. F.; Schegelsky, V. A.; Sedykh, E.; Seliverstov, D. M.; Solovyev, V.] BP Konstantinov Petersburg Nucl Phys Inst, Kurchatov Inst, Natl Res Ctr, St Petersburg, Russia. [Annovi, A.; Beccherle, R.; Bertolucci, F.; Cavasinni, V.; Del Prete, T.; Dell'Orso, M.; Donati, S.; Giannetti, P.; Leone, S.; Roda, C.; Scuri, F.; Sotiropoulou, C. L.; Spalla, M.; Volpi, G.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy. [Annovi, A.; Beccherle, R.; Bertolucci, F.; Cavasinni, V.; Del Prete, T.; Dell'Orso, M.; Donati, S.; Giannetti, P.; Leone, S.; Roda, C.; Scuri, F.; Sotiropoulou, C. L.; Spalla, M.; Volpi, G.] Univ Pisa, Dipartimento Fis E Fermi, Pisa, Italy. [Bianchi, R. M.; Boudreau, J.; Cleland, W.; Escobar, C.; Hong, T. M.; Mueller, J.; Sapp, K.; Su, J.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Aguilar-Saavedra, J. A.; Amor Dos Santos, S. P.; Amorim, A.; Araque, J. P.; Cantrill, R.; Carvalho, J.; Castro, N. F.; Conde Muino, P.; Da Cunha Sargedas De Sousa, M. J.; Fiolhais, M. C. N.; Galhardo, B.; Gomes, A.; Goncalo, R.; Jorge, P. M.; Lopes, L.; Maio, A.; Maneira, J.; Onofre, A.; Palma, A.; Pedro, R.; Pina, J.; Pinto, B.; Santos, H.; Saraiva, J. G.; Silva, J.; Tavares Delgado, A.; Veloso, F.; Wolters, H.] LIP, Lab Instrumentacao & Fis Expt Particulas, P-1000 Lisbon, Portugal. [Amorim, A.; Conde Muino, P.; Da Cunha Sargedas De Sousa, M. J.; Gomes, A.; Jorge, P. M.; Miguens, J. Machado; Maio, A.; Maneira, J.; Palma, A.; Pedro, R.; Pina, J.; Tavares Delgado, A.] Univ Lisbon, Fac Ciencias, Lisbon, Portugal. [Amor Dos Santos, S. P.; Carvalho, J.; Fiolhais, M. C. N.; Galhardo, B.; Veloso, F.; Wolters, H.] Univ Coimbra, Dept Phys, Coimbra, Portugal. [Gomes, A.; Maio, A.; Pina, J.; Saraiva, J. G.; Silva, J.] Univ Lisbon, Ctr Fis Nucl, P-1699 Lisbon, Portugal. [Onofre, A.] Univ Minho, Dept Fis, Braga, Portugal. [Aguilar-Saavedra, J. A.] Univ Granada, Dept Fis Teor & Cosmos, Granada, Spain. [Aguilar-Saavedra, J. A.] Univ Granada, CAFPE, Granada, Spain. Univ Nova Lisboa, Dept Fis, Fac Ciencias & Tecnol, Caparica, Portugal. Univ Nova Lisboa, CEFITEC, Fac Ciencias & Tecnol, Caparica, Portugal. [Chudoba, J.; Havranek, M.; Hejbal, J.; Jakoubek, T.; Kepka, O.; Kupco, A.; Kus, V.; Lokajicek, M.; Lysak, R.; Marcisovsky, M.; Mikestikova, M.; Nemecek, S.; Sicho, P.; Staroba, P.; Svatos, M.; Tasevsky, M.; Vrba, V.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Augsten, K.; Caforio, D.; Gallus, P.; Guenther, J.; Jakubek, J.; Kohout, Z.; Myska, M.; Pospisil, S.; Seifert, F.; Simak, V.; Slavicek, T.; Smolek, K.; Solar, M.; Solc, J.; Sopczak, A.; Sopko, B.; Sopko, V.; Suk, M.; Turecek, D.; Vacek, V.; Vlasak, M.; Vokac, P.; Vykydal, Z.; Zeman, M.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Balek, P.; Berta, P.; Cerny, K.; Chalupkova, I.; Davidek, T.; Dolejsi, J.; Dolezal, Z.; Faltova, J.; Kodys, P.; Kosek, T.; Leitner, R.; Pleskot, V.; Reznicek, P.; Rybar, M.; Scheirich, D.; Spousta, M.; Sykora, T.; Tas, P.; Todorova-Nova, S.; Valkar, S.; Vorobel, V.] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic. [Angerami, A.; Borisov, A.; Cheremushkina, E.; Denisov, S. P.; Fakhrutdinov, R. M.; Fenyuk, A. B.; Golubkov, D.; Kamenshchikov, A.; Karyukhin, A. N.; Kozhin, A. S.; Minaenko, A. A.; Myagkov, A. G.; Nikolaenko, V.; Solodkov, A. A.; Solovyanov, O. V.; Starchenko, E. A.; Zaitsev, A. M.; Zenin, O.] Inst High Energy Phys, State Res Ctr, Protvino, Russia. [Adye, T.; Baines, J. T.; Barnett, B. M.; Burke, S.; Dewhurst, A.; Dopke, J.; Emeliyanov, D.; Gallop, B. J.; Gee, C. N. P.; Hasib, A.; Haywood, S. J.; Kirk, J.; Martin-Haugh, S.; McCubbin, N. A.; McMahon, S. J.; Middleton, R. P.; Murray, W. J.; Phillips, P. W.; Pilcher, J. E.; Sankey, D. P. C.; Sawyer, C.; Tyndel, M.; Wickens, F. J.; Wielers, M.] Rutherford Appleton Lab, Particle Phys Dept, Didcot OX11 0QX, Oxon, England. [Anulli, F.; Bagiacchi, P.; Bagnaia, P.; Baroncelli, A.; Bauce, M.; Bini, C.; Ciapetti, G.; De Pedis, D.; De Salvo, A.; Di Domenico, A.; Falciano, S.; Gabrielli, A.; Gauzzi, P.; Gentile, S.; Giagu, S.; Gustavino, G.; Kuna, M.; Lacava, F.; Luci, C.; Luminari, L.; Marzano, F.; Messina, A.; Monzani, S.; Nisati, A.; Pasqualucci, E.; Petrolo, E.; Pontecorvo, L.; Rescigno, M.; Rosati, S.; Tehrani, F. Safai; Vanadia, M.; Vari, R.; Veneziano, S.; Verducci, M.; Zanello, L.] Ist Nazl Fis Nucl, Sez Roma, Rome, Italy. [Bagiacchi, P.; Bagnaia, P.; Bauce, M.; Bini, C.; Ciapetti, G.; Di Domenico, A.; Gabrielli, A.; Gauzzi, P.; Gentile, S.; Giagu, S.; Gustavino, G.; Kuna, M.; Lacava, F.; Luci, C.; Messina, A.; Monzani, S.; Vanadia, M.; Verducci, M.; Zanello, L.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Aielli, G.; Camarri, P.; Cardarelli, R.; Di Ciaccio, A.; Iuppa, R.; Liberti, B.; Mazzaferro, L.; Salamon, A.; Santonico, R.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, Rome, Italy. [Aielli, G.; Camarri, P.; Di Ciaccio, A.; Iuppa, R.; Mazzaferro, L.; Santonico, R.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy. [Bacci, C.; Baroncelli, A.; Biglietti, M.; Ceradini, F.; Di Micco, B.; Farilla, A.; Graziani, E.; Iodice, M.; Orestano, D.; Pastore, F.; Petrucci, F.; Puddu, D.; Salamanna, G.; Sessa, M.; Stanescu, C.; Taccini, C.; White, S.] Univ Roma Tor Vergata, Sez Roma Tre, Rome, Italy. [Bacci, C.; Ceradini, F.; Di Micco, B.; Orestano, D.; Pastore, F.; Petrucci, F.; Puddu, D.; Salamanna, G.; Sessa, M.; Taccini, C.; White, S.] Univ Rome Tre, Dipartimento Matemat & Fis, I-00146 Rome, Italy. [Benchekroun, D.; Chafaq, A.; Hoummada, A.] Univ Hassan 2, Reseau Univ Phys Hautes Energies, Fac Sci Ain Chock, Casablanca, Morocco. [Ghazlane, H.] Ctr Natl Energie Sci Tech Nucl, Rabat, Morocco. [El Kacimi, M.; Goujdami, D.] Univ Cadi Ayyad, LPHEA, Fac Sci Semlalia, Marrakech, Morocco. [Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] Univ Mohamed Premier, Fac Sci, Oujda, Morocco. [Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] LPTPM, Oujda, Morocco. [El Moursli, R. Cherkaoui; Fassi, F.; Haddad, N.; Idrissi, Z.] Univ Mohammed V Agdal, Fac Sci, Rabat, Morocco. [Bachacou, H.; Bauer, F.; Besson, N.; Blanchard, J. -B.; Boonekamp, M.; Calandri, A.; Chevalier, L.; Hoffmann, M. Dano; Deliot, F.; Etienvre, A. I.; Formica, A.; Giraud, P. F.; Da Costa, J. Goncalves Pinto Firmino; Guyot, C.; Hanna, R.; Hassani, S.; Kivernyk, O.; Kozanecki, W.; Lancon, E.; Laporte, J. F.; Maiani, C.; Mansoulie, B.; Meyer, J-P.; Nicolaidou, R.; Ouraou, A.; Protopapadaki, E.; Royon, C. R.; Saimpert, M.; Schoeffel, L.; Schune, Ph.; Schwemling, Ph.; Schwindling, J.] CEA Saclay, Commissariat Energie Atom & Energies Alternatives, DSM IRFU, Inst Rech Lois Fondament Univers, F-91191 Gif Sur Yvette, France. [Battaglia, M.; Costa, M. J.; Debenedetti, C.; Grabas, H. M. X.; Grillo, A. A.; Jimenez, Y. Hernandez; Kuhl, A.; Law, A. T.; Liang, Z.; Litke, A. M.; Lockman, W. S.; Manning, P. M.; Nielsen, J.; Reece, R.; Rose, P.; Sadrozinski, H. F-W.; Schumm, B. A.; Seiden, A.; Vos, M.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Blackburn, D.; Coccaro, A.; Fedorko, W.; Gecse, Z.; Goussiou, A. G.; Hsu, S. -C.; Lubatti, H. J.; Marx, M.; Rompotis, N.; Rosten, R.; Rothberg, J.; Russell, H. L.; De Bruin, P. H. Sales; Watts, G.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Anastopoulos, C.; Costanzo, D.; Donszelmann, T. Cuhadar; Dawson, I.; Fletcher, G. T.; Hodgkinson, M. C.; Hodgson, P.; Johansson, P.; Klinger, J. A.; Korolkova, E. V.; Kyriazopoulos, D.; Paredes, B. Lopez; Macdonald, C. M.; Miyagawa, P. S.; Paganis, E.; Parker, K. A.; Tovey, D. R.; Vickey, T.; Boeriu, O. E. Vickey] Univ Sheffield, Dept Phys & Astron, Sheffield, S Yorkshire, England. [Hasegawa, Y.; Takeshita, T.] Shinshu Univ, Dept Phys, Nagano, Japan. [Atlay, N. B.; Buchholz, P.; Czirr, H.; Fleck, I.; Gaur, B.; Ibragimov, I.; Ikematsu, K.; Rosenthal, O.; Walkowiak, W.; Ziolkowski, M.] Univ Siegen, Fachbereich Phys, D-57068 Siegen, Germany. [Buat, Q.; Horton, A. J.; O'Neil, D. C.; Pachal, K.; Stelzer, B.; Torres, H.; Van Nieuwkoop, J.; Vetterli, M. C.] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada. [Barklow, T.; Bartoldus, R.; Bawa, H. S.; Black, J. E.; Cogan, J. G.; Fulsom, B. G.; Gao, Y. S.; Garelli, N.; Grenier, P.; Ilic, N.; Kagan, M.; Kocian, M.; Koi, T.; Malone, C.; Mount, R.; Nef, P. D.; Piacquadio, G.; Rubbo, F.; Salnikov, A.; Schwartzman, A.; Strauss, E.; Su, D.; Swiatlowski, M.; Tompkins, L.; Wittgen, M.; Young, C.] SLAC Natl Accelerator Lab, Stanford, CA USA. [Astalos, R.; Bartos, P.; Blazek, T.; Federic, P.; Plazak, L.; Stavina, P.; Sykora, I.; Tokar, S.; Zenis, T.] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia. [Antos, J.; Kladiva, E.; Strizenec, P.; Urban, J.] Slovak Acad Sci, Inst Expt Phys, Dept Subnucl Phys, Kosice 04353, Slovakia. [Hamilton, A.; Meehan, S.] Univ Cape Town, Dept Phys, ZA-7925 Cape Town, South Africa. [Aurousseau, M.; Castaneda-Miranda, E.; Govender, N.; Lee, C. A.; Yacoob, S.] Univ Johannesburg, Dept Phys, Johannesburg, South Africa. [Bristow, K.; Hamity, G. N.; Hsu, C.; March, L.; Garcia, B. R. Mellado; Ruan, X.] Univ Witwatersrand, Sch Phys, Johannesburg, South Africa. [Abulaiti, Y.; Akerstedt, H.; Asman, B.; Bendtz, K.; Bertoli, G.; Bylund, O. Bessidskaia; Bohm, C.; Clement, C.; Cribbs, W. A.; Hellman, S.; Jon-And, K.; Khandanyan, H.; Kim, H.; Klimek, P.; Lundberg, O.; Milstead, D. A.; Moa, T.; Molander, S.; Petridis, A.; Plucinski, P.; Poettgen, R.; Rossetti, V.; Shcherbakova, A.; Silverstein, S. B.; Sjolin, J.; Strandberg, S.; Ughetto, M.] Stockholm Univ, Dept Phys, S-10691 Stockholm, Sweden. [Abulaiti, Y.; Akerstedt, H.; Asman, B.; Bendtz, K.; Bertoli, G.; Bylund, O. Bessidskaia; Clement, C.; Connell, S. H.; Cribbs, W. A.; Hellman, S.; Jon-And, K.; Khandanyan, H.; Kim, H.; Klimek, P.; Lundberg, O.; Milstead, D. A.; Moa, T.; Molander, S.; Pani, P.; Petridis, A.; Plucinski, P.; Poettgen, R.; Rossetti, V.; Shcherbakova, A.; Sjolin, J.; Strandberg, S.; Tylmad, M.; Ughetto, M.] Oskar Klein Ctr, Stockholm, Sweden. [Lund-Jensen, B.; Morley, A. K.; Strandberg, J.] Royal Inst Technol, Dept Phys, S-10044 Stockholm, Sweden. [Balestri, T.; Bee, C. P.; Campoverde, A.; Chen, K.; Grassi, V.; Hobbs; Jia, J.; Li, H.; Lindquist, B. E.; Mastrandrea, P.; McCarthy, R. L.; Puldon, D.; Radhakrishnan, S. K.; Rijssenbeek, M.; Schamberger, R. D.; Tsybychev, D.; Zaman, A.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Balestri, T.; Bee, C. P.; Campoverde, A.; Chen, K.; Grassi, V.; Hobbs; Jia, J.; Li, H.; Lindquist, B. E.; Mastrandrea, P.; McCarthy, R. L.; Puldon, D.; Radhakrishnan, S. K.; Rijssenbeek, M.; Schamberger, R. D.; Tsybychev, D.; Zaman, A.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Asquith, L.; Cerri, A.; Barajas, C. A. Chavez; De Sanctis, U.; De Santo, A.; Grout, Z. J.; Potter, C. J.; Salvatore, F.; Castillo, I. Santoyo; Shehu, C. Y.; Suruliz, K.; Sutton, M. R.; Vivarelli, I.] Univ Sussex, Dept Phys & Astron, Brighton, E Sussex, England. [Black, C. W.; Cuthbert, C.; Finelli, K. D.; Jeng, G. -Y.; Limosani, A.; Patel, N. D.; Saavedra, A. F.; Scarcella, M.; Varvell, K. E.; Watson, I. J.; Yabsley, B.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. [Abdallah, J.; Hou, S.; Hsu, P. J.; Jamin, D. O.; Lee, S. C.; Li, B.; Lin, S. C.; Liu, B.; Liu, D.; Lo Sterzo, F.; Mazini, R.; Shi, L.; Soh, D. A.; Teng, P. K.; Wang, S. M.; Yang, Y.] Acad Sinica, Inst Phys, Taipei, Taiwan. [Abreu, H.; Cheatham, S.; Gozani, E.; Kopeliansky, R.; Musto, E.; Rozen, Y.; Tarem, S.; van Eldik, N.] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel. [Abramowicz, H.; Alexander, G.; Amram, N.; Ashkenazi, A.; Bella, G.; Benary, O.; Benhammou, Y.; Davies, M.; Di Mattia, A.; Etzion, E.; Gershon, A.; Gueta, O.; Munwes, Y.; Oren, Y.; Silver, Y.; Soffer, A.; Taiblum, N.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, Tel Aviv, Israel. [Bachas, K.; Gkaitatzis, S.; Gkialas, I.; Iliadis, D.; Kimura, N.; Kordas, K.; Kourkoumeli-Charalampidi, A.; Leisos, A.; Orlando, N.; Papageorgiou, K.; Hernandez, D. Paredes; Petridou, C.; Sampsonidis, D.; Tsionou, D.] Aristotle Univ Thessaloniki, Dept Phys, GR-54006 Thessaloniki, Greece. [Akimoto, G.; Asai, S.; Dohmae, T.; Enari, Y.; Hanawa, K.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kazama, S.; Kobayashi, A.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Minami, Y.; Morinaga, M.; Nakamura, T.; Ninomiya, Y.; Okuyama, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamamoto, S.; Yamanaka, T.] Univ Tokyo, Int Ctr Elementary Particle Phys, Tokyo, Japan. [Akimoto, G.; Asai, S.; Dohmae, T.; Enari, Y.; Hanawa, K.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kazama, S.; Kobayashi, A.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Minami, Y.; Morinaga, M.; Nakamura, T.; Ninomiya, Y.; Okuyama, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamamoto, S.; Yamanaka, T.] Univ Tokyo, Dept Phys, Tokyo 113, Japan. [Bratzler, U.; Fukunaga, C.] Tokyo Metropolitan Univ, Grad Sch Sci & Technol, Tokyo 158, Japan. [Hirose, M.; Ishitsuka, M.; Jinnouchi, O.; Kobayashi, D.; Kuze, M.; Motohashi, K.; Nagai, R.; Nobe, T.; Pettersson, N. E.] Tokyo Inst Technol, Dept Phys, Tokyo 152, Japan. [AbouZeid, O. S.; Batista, S. J.; Chau, C. C.; DeMarco, D. A.; Di Sipio, R.; Diamond, M.; Krieger, P.; Liblong, A.; Mc Goldrick, G.; Orr, R. S.; Polifka, R.; Rudolph, M. S.; Savard, P.; Schramm, S.; Sinervo, P.; Spreitzer, T.; Taenzer, J.; Teuscher, R. J.; Trischuk, W.; Veloce, L. M.; Venturi, N.] Univ Toronto, Dept Phys, Toronto, ON, Canada. [Azuelos, G.; Canepa, A.; Chekulaev, S. V.; Jovicevic, J.; Koutsman, A.; Oakham, F. G.; Oram, C. J.; Codina, E. Perez; Savard, P.; Schneider, B.; Schouten, D.; Seuster, R.; Stelzer-Chilton, O.; Tafirout, R.; Trigger, I. M.; Vetterli, M. C.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Garcia, J. A. Benitez; Ramos, J. Manjarres; Palacino, G.; Taylor, W.] York Univ, Dept Phys & Astron, Toronto, ON M3J 2R7, Canada. [Hara, K.; Hayashi, T.; Kim, S. H.; Kiuchi, K.; Nagata, K.; Okawa, H.; Sato, K.; Ukegawa, F.] Univ Tsukuba, Fac Pure & Appl Sci, Tsukuba, Ibaraki, Japan. [Beauchemin, P. H.; Meoni, E.; Rolli, S.; Sliwa, K.; Wetter, J.] Tufts Univ, Dept Phys & Astron, Medford, MA 02155 USA. [Losada, M.; Moreno, D.; Navarro, G.; Sandoval, C.] Univ Antonio Narino, Ctr Invest, Bogota, Colombia. [Corso-Radu, A.; Frate, M.; Gerbaudo, D.; Lankford, A. J.; Mete, A. S.; Nelson, A.; Relich, M.; Scannicchio, D. A.; Schernau, M.; Shimmin, C. O.; Taffard, A.; Unel, G.; Whiteson, D.; Zhou, N.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA USA. [Acharya, B. S.; Barisonzi, M.; Brazzale, S. F.; Cobal, M.; Giordani, M. P.; Miglioranzi, S.; Pinamonti, M.; Quayle, W. B.; Serkin, L.; Shaw, K.; Soualah, R.; Truong, L.] INFN, Grp Coll Udine, Sez Trieste, Udine, Italy. [Acharya, B. S.; Barisonzi, M.; Giordani, M. P.; Quayle, W. B.; Serkin, L.; Shaw, K.] Abdus Salaam Int Ctr Theoret Phys, Trieste, Italy. [Brazzale, S. F.; Cobal, M.; Miglioranzi, S.; Pinamonti, M.; Soualah, R.; Truong, L.] Univ Udine, Dipartimento Chim Fis & Ambiente, I-33100 Udine, Italy. [Atkinson, M.; Basye, A.; Armadans, R. Caminal; Cavaliere, V.; Chang, P.; Errede, S.; Lie, K.; Liss, T. M.; Liu, L.; Neubauer, M. S.; Shang, R.; Vichou, I.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Kuutmann, E. Bergeaas; Brenner, R.; Ekelof, T.; Ellert, M.; Ferrari, A.; Isaksson, C.; Madsen, A.; Ohman, H.; Pelikan, D.; Rangel-Smith, C.] Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden. [Alvarez Piqueras, D.; Cabrera Urban, S.; Castillo Gimenez, V.; Fernandez Martinez, P.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; Gonzalez de la Hoz, S.; Higon-Rodriguez, E.; Irles Quiles, A.; Jimenez Pena, J.; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Oliver Garcia, E.; Pedraza Lopez, S.; Garcia-Estan, M. T. Perez; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J. A.] Univ Valencia, Inst Fis Corpuscular IFIC, Valencia, Spain. [Alvarez Piqueras, D.; Cabrera Urban, S.; Castillo Gimenez, V.; Fernandez Martinez, P.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; Gonzalez de la Hoz, S.; Higon-Rodriguez, E.; Irles Quiles, A.; Jimenez Pena, J.; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Oliver Garcia, E.; Pedraza Lopez, S.; Garcia-Estan, M. T. Perez; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J. A.] Univ Valencia, Dept Fis Atom Mol & Nucl, Valencia, Spain. [Alvarez Piqueras, D.; Cabrera Urban, S.; Castillo Gimenez, V.; Fernandez Martinez, P.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; Gonzalez de la Hoz, S.; Higon-Rodriguez, E.; Irles Quiles, A.; Jimenez Pena, J.; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Oliver Garcia, E.; Pedraza Lopez, S.; Garcia-Estan, M. T. Perez; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J. A.] Univ Valencia, Dept Ingn Elect, Valencia, Spain. [Alvarez Piqueras, D.; Cabrera Urban, S.; Castillo Gimenez, V.; Fernandez Martinez, P.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; Gonzalez de la Hoz, S.; Higon-Rodriguez, E.; Irles Quiles, A.; Jimenez Pena, J.; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Oliver Garcia, E.; Pedraza Lopez, S.; Garcia-Estan, M. T. Perez; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J. A.] Univ Valencia, Inst Microelect Barcelona IMB CNM, Valencia, Spain. [Alvarez Piqueras, D.; Cabrera Urban, S.; Castillo Gimenez, V.; Fernandez Martinez, P.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; Gonzalez de la Hoz, S.; Higon-Rodriguez, E.; Irles Quiles, A.; Jimenez Pena, J.; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Oliver Garcia, E.; Pedraza Lopez, S.; Garcia-Estan, M. T. Perez; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J. A.] CSIC, Valencia, Spain. [Danninger, M.; Gay, C.; King, S. B.; Lister, A.; Swedish, S.] Univ British Columbia, Dept Phys, Vancouver, BC, Canada. [Albert, J.; Berghaus, F.; David, C.; Elliot, A. A.; Fincke-Keeler, M.; Hamano, K.; Hill, E.; Keeler, R.; Kowalewski, R.; Kuwertz, E. S.; Kwan, T.; LeBlanc, M.; Lefebvre, M.; Marino, C. P.; McPherson, R. A.; Ouellette, E. A.; Pearce, J.; Sobie, R.; Trovatelli, M.; Venturi, M.] Univ Victoria, Dept Phys & Astron, Victoria, BC, Canada. [Beckingham, M.; Farrington, S. M.; Janus, M.; Jeske, C.; Jones, G.; Martin, T. A.; Murray, W. J.; Pianori, E.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Iizawa, T.; Mitani, T.; Sakurai, Y.; Yorita, K.] Waseda Univ, Tokyo, Japan. [Bressler, S.; Citron, Z. H.; Duchovni, E.; Gross, E.; Harrison, P. F.; Lellouch, D.; Levinson, L. J.; Mikenberg, G.; Milov, A.; Pitt, M.; Roth, I.; Schaarschmidt, J.; Smakhtin, V.] Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel. [Banerjee, Sw.; Hard, A. S.; Heng, Y.; Ji, H.; Ju, X.; Kashif, L.; Kruse, A.; Ming, Y.; Pan, Y. B.; Wang, F.; Wu, S. L.; Yang, H.; Zhang, F.; Zobernig, G.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Kuger, F.; Redelbach, A.; Schreyer, M.; Sidiropoulou, O.; Siragusa, G.; Stroehmer, R.; Tam, J. Y. C.; Trefzger, T.; Weber, S. W.; Zibell, A.] Univ Wurzburg, Fak Phys & Astron, D-97070 Wurzburg, Germany. [Bannoura, A. A. E.; Beermann, T. A.; Braun, H. M.; Cornelissen, T.; Duda, D.; Ernis, G.; Fischer, J.; Fleischmann, S.; Flick, T.; Gabizon, O.; Hamacher, K.; Harenberg, T.; Heim, T.; Hirschbuehl, D.; Kersten, S.; Kohlmann, S.; Maettig, P.; Neumann, M.; Pataraia, S.; Riegel, C. J.; Sandhoff, M.; Tepel, F.; Wagner, W.; Zeitnitz, C.] Berg Univ Wuppertal, Fachbereich C Phys, Wuppertal, Germany. [Baker, O. K.; Cummings, J.; Demers, S.; Garberson, F.; Guest, D.; Henrichs, A.; Ideal, E.; Lagouri, T.; Leister, A. G.; Loginov, A.; Thomsen, L. A.; Tipton, P.; Wang, X.] Yale Univ, Dept Phys, New Haven, CT USA. [Hakobyan, H.; Vardanyan, G.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Rahal, G.] Inst Natl Phys Nucl & Phys Particule IN2P3, Ctr Calcul, Villeurbanne, France. [Acharya, B. S.] Kings Coll London, Dept Phys, London, England. [Ahmadov, F.; Huseynov, N.; Javadov, N.] Azerbaijan Acad Sci, Inst Phys, Baku 370143, Azerbaijan. [Anisenkov, V.; Buzykaev, A. R.; Kazanin, V. F.; Kharlamov, A. G.; Korol, A. A.; Maslennikov, A. L.; Maximov, D. A.; Peleganchuk, S. V.; Rezanova, O. L.; Soukharev, A. M.; Talyshev, A. A.; Tikhonov, Yu. A.] Novosibirsk State Univ, Novosibirsk 630090, Russia. [Bawa, H. S.; Bobrovnikov, V. S.; Gao, Y. S.; Gingrich, D. M.] Calif State Univ Fresno, Dept Phys, Fresno, CA 93740 USA. [Beck, H. P.] Univ Fribourg, Dept Phys, CH-1700 Fribourg, Switzerland. [Castro, N. F.] Univ Porto, Fac Ciencias, Dept Fis & Astron, P-4100 Oporto, Portugal. [Chelkov, G. A.] Tomsk State Univ, Tomsk 634050, Russia. [Conventi, F.; Della Pietra, M.] Univ Napoli Parthenope, Naples, Italy. [Davies, E.] Rutherford Appleton Lab, Particle Phys Dept, Didcot OX11 0QX, Oxon, England. [Fedin, O. L.] St Petersburg State Polytech Univ, Dept Phys, St Petersburg, Russia. [Greenwood, Z. D.; Sawyer, L.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Grinstein, S.; Rozas, A. Juste; Martinez, M.] ICREA, Barcelona, Spain. [Hsu, P. J.] Natl Tsing Hua Univ, Dept Phys, Hsinchu 30013, Taiwan. [Ilchenko, Y.; Onyisi, P. U. E.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. [Jejelava, J.] Ilia State Univ, Inst Theoret Phys, Tbilisi, Rep of Georgia. [Jenni, P.] CERN, Geneva, Switzerland. [Khubua, J.] Georgian Tech Univ, Tbilisi, Rep of Georgia. [Kono, T.] Ochanomizu Univ, Ochadai Acad Prod, Tokyo 112, Japan. [Konoplich, R.] Manhattan Coll, New York, NY USA. [Lin, S. C.] Acad Sinica, Inst Phys, Acad Sinica Grid Comp, Taipei, Taiwan. [Liu, B.] Shandong Univ, Sch Phys, Jinan, Shandong, Peoples R China. [Nikolaenko, V.; Zaitsev, A. M.] State Univ, Moscow Inst Phys & Technol, Dolgoprudnyi, Russia. [Nessi, M.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Pinamonti, M.; Soh, D. A.] Int Sch Adv Studies SISSA, Trieste, Italy. [Purohit, M.] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. [Shi, L.] Sun Yat Sen Univ, Sch Phys & Engn, Guangzhou 510275, Guangdong, Peoples R China. [Smirnova, L. N.; Turchikhin, S.] Moscow MV Lomonosov State Univ, Fac Phys, Moscow, Russia. [Tompkins, L.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Toth, J.] Wigner Res Ctr Phys, Inst Particle & Nucl Phys, Budapest, Hungary. [Yacoob, S.] Univ KwaZulu Natal, Discipline Phys, Durban, South Africa. [Yusuff, I.] Univ Malaya, Dept Phys, Kuala Lumpur 59100, Malaysia. RP Aad, G (reprint author), Aix Marseille Univ, CPPM, Marseille, France. RI Monzani, Simone/D-6328-2017; Kuday, Sinan/C-8528-2014; White, Ryan/E-2979-2015; Carvalho, Joao/M-4060-2013; Warburton, Andreas/N-8028-2013; Gladilin, Leonid/B-5226-2011; Livan, Michele/D-7531-2012; spagnolo, stefania/A-6359-2012; Buttar, Craig/D-3706-2011; Mitsou, Vasiliki/D-1967-2009; Tripiana, Martin/H-3404-2015; Smirnova, Oxana/A-4401-2013; Tikhomirov, Vladimir/M-6194-2015; Savarala, Hari Krishna/A-3516-2015; Gavrilenko, Igor/M-8260-2015; Gauzzi, Paolo/D-2615-2009; Maleev, Victor/R-4140-2016; Camarri, Paolo/M-7979-2015; Mindur, Bartosz/A-2253-2017; Mashinistov, Ruslan/M-8356-2015; Fabbri, Laura/H-3442-2012; Gutierrez, Phillip/C-1161-2011; Solodkov, Alexander/B-8623-2017; Zaitsev, Alexandre/B-8989-2017; Martinez, Mario /I-3549-2015; Peleganchuk, Sergey/J-6722-2014; Li, Liang/O-1107-2015; Nechaeva, Polina/N-1148-2015; Vykydal, Zdenek/H-6426-2016; Fedin, Oleg/H-6753-2016; Snesarev, Andrey/H-5090-2013; Ventura, Andrea/A-9544-2015; Kantserov, Vadim/M-9761-2015; Nevski, Pavel/M-6292-2015; Villa, Mauro/C-9883-2009; Vanadia, Marco/K-5870-2016; Ippolito, Valerio/L-1435-2016; Maneira, Jose/D-8486-2011; Prokoshin, Fedor/E-2795-2012; Staroba, Pavel/G-8850-2014; Doyle, Anthony/C-5889-2009; Di Domenico, Antonio/G-6301-2011; Gonzalez de la Hoz, Santiago/E-2494-2016; Guo, Jun/O-5202-2015; Aguilar Saavedra, Juan Antonio/F-1256-2016; Leyton, Michael/G-2214-2016; Jones, Roger/H-5578-2011; Boyko, Igor/J-3659-2013; Vranjes Milosavljevic, Marija/F-9847-2016; Chekulaev, Sergey/O-1145-2015; Zhukov, Konstantin/M-6027-2015; SULIN, VLADIMIR/N-2793-2015; Brooks, William/C-8636-2013 OI Monzani, Simone/0000-0002-0479-2207; Kuday, Sinan/0000-0002-0116-5494; White, Ryan/0000-0003-3589-5900; Carvalho, Joao/0000-0002-3015-7821; Warburton, Andreas/0000-0002-2298-7315; Gladilin, Leonid/0000-0001-9422-8636; Livan, Michele/0000-0002-5877-0062; spagnolo, stefania/0000-0001-7482-6348; Mitsou, Vasiliki/0000-0002-1533-8886; Smirnova, Oxana/0000-0003-2517-531X; Tikhomirov, Vladimir/0000-0002-9634-0581; Savarala, Hari Krishna/0000-0001-6593-4849; Gauzzi, Paolo/0000-0003-4841-5822; Camarri, Paolo/0000-0002-5732-5645; Mindur, Bartosz/0000-0002-5511-2611; Mashinistov, Ruslan/0000-0001-7925-4676; Fabbri, Laura/0000-0002-4002-8353; Solodkov, Alexander/0000-0002-2737-8674; Zaitsev, Alexandre/0000-0002-4961-8368; Peleganchuk, Sergey/0000-0003-0907-7592; Li, Liang/0000-0001-6411-6107; Vykydal, Zdenek/0000-0003-2329-0672; Ventura, Andrea/0000-0002-3368-3413; Kantserov, Vadim/0000-0001-8255-416X; Villa, Mauro/0000-0002-9181-8048; Vanadia, Marco/0000-0003-2684-276X; Ippolito, Valerio/0000-0001-5126-1620; Maneira, Jose/0000-0002-3222-2738; Prokoshin, Fedor/0000-0001-6389-5399; Doyle, Anthony/0000-0001-6322-6195; Di Domenico, Antonio/0000-0001-8078-2759; Gonzalez de la Hoz, Santiago/0000-0001-5304-5390; Guo, Jun/0000-0001-8125-9433; Aguilar Saavedra, Juan Antonio/0000-0002-5475-8920; Leyton, Michael/0000-0002-0727-8107; Jones, Roger/0000-0002-6427-3513; Boyko, Igor/0000-0002-3355-4662; Vranjes Milosavljevic, Marija/0000-0003-4477-9733; SULIN, VLADIMIR/0000-0003-3943-2495; Brooks, William/0000-0001-6161-3570 FU ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW, Austria; FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq, Brazil; FAPESP, Brazil; NSERC, Canada; NRC, Canada; CFI, Canada; CERN; CONICYT, Chile; CAS, China; MOST, China; NSFC, China; COLCIENCIAS, Colombia; MSMT CR, Czech Republic; MPO CR, Czech Republic; VSC CR, Czech Republic; DNRF, Denmark; DNSRC, Denmark; Lundbeck Foundation, Denmark; IN2P3-CNRS, France; CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, Germany; HGF, Germany; MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, Israel; I-CORE, Israel; Benoziyo Center, Israel; INFN, Italy; MEXT, Japan; JSPS, Japan; CNRST, Morocco; FOM, Netherlands; NWO, Netherlands; RCN, Norway; MNiSW, Poland; NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia, Russian Federation; NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS, Slovenia; MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC, Sweden; Wallenberg Foundation, Sweden; SERI, Switzerland; SNSF, Switzerland; Canton of Bern, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE, United States of America; NSF, United States of America; BCKDF, Canada; Canada Council, Canada; CANARIE, Canada; CRC, Canada; Compute Canada, Canada; FQRNT, Canada; Ontario Innovation Trust, Canada; EPLANET, European Union; ERC, European Union; FP7, European Union; Horizon, European Union; Marie Sklodowska-Curie Actions, European Union; Investissements d'Avenir Labex and Idex, France; ANR, France; Region Auvergne, France; Fondation Partager le Savoir, France; DFG, Germany; AvH Foundation, Germany; Herakleitos programme - EU-ESF; Thales programme - EU-ESF; Aristeia programme - EU-ESF; Greek NSRF; BSF, Israel; GIF, Israel; Minerva, Israel; BRF, Norway; Royal Society, United Kingdom; Canton of Geneva, Switzerland; Leverhulme Trust, United Kingdom FX We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, the Canada Council, CANARIE, CRC, Compute Canada, FQRNT, and the Ontario Innovation Trust, Canada; EPLANET, ERC, FP7, Horizon 2020 and Marie Sklodowska-Curie Actions, European Union; Investissements d'Avenir Labex and Idex, ANR, Region Auvergne and Fondation Partager le Savoir, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF; BSF, GIF and Minerva, Israel; BRF, Norway; the Royal Society and Leverhulme Trust, United Kingdom. NR 57 TC 49 Z9 49 U1 24 U2 87 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD DEC 10 PY 2015 IS 12 AR 055 DI 10.1007/JHEP12(2015)055 PG 39 WC Physics, Particles & Fields SC Physics GA CZ0YC UT WOS:000366831400001 ER PT J AU Apblett, CA Stewart, DM Fryer, RT Sell, JC Harry, DP Anderson, TM Meulenberg, RW AF Apblett, Christopher A. Stewart, David M. Fryer, Robert T. Sell, Julia C. Harry, Pratt D., III Anderson, Travis M. Meulenberg, Robert W. TI In situ XANES and EXAFS Analysis of Redox Active Fe Center Ionic Liquids SO ELECTROCHIMICA ACTA LA English DT Article DE Electrochemistry; in situ XANES; in situ EXAFS; Redox active Ionic Liquids; Flow Batteries ID RAY-ABSORPTION-SPECTROSCOPY; FLOW BATTERIES; COMPLEXES; COPPER AB In situ X-Ray Absorption Near Edge Spectroscopy (XANES) and Extended X-Ray Absorption Fine Structure (EXAFS) techniques are applied to a metal center ionic liquid undergoing oxidation and reduction in a three electrode spectroscopic cell. Determination of the extent of reduction under negative bias on the working electrode and the extent of oxidation are determined after pulse voltammetry to quiescence. While the ionic liquid undergoes full oxidation, it undergoes only partial reduction, likely due to transport issues on the timescale of the experiment. Nearest neighbor Fe-O distances in the fully oxidized state match well to expected values for similarly coordinated solids, but reduction does not result in an extension of the Fe-O bond length, as would be expected from comparisons to the solid phase. Instead, little change in bond length is observed. We suggest that this may be due to a more complex interaction between the monodentate ligands of the metal center anion and the surrounding charge cloud, rather than straightforward electrostatics between the metal center and the nearest neighbor grouping. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Apblett, Christopher A.] Joint Ctr Energy Storage Res, Albuquerque, NM 87185 USA. [Apblett, Christopher A.; Harry, Pratt D., III; Anderson, Travis M.] Sandia Natl Labs, Power Sources Technol Grp, Albuquerque, NM 87185 USA. [Stewart, David M.; Fryer, Robert T.; Sell, Julia C.; Meulenberg, Robert W.] Univ Maine, Lab Surface Sci & Technol, Orono, ME 04469 USA. [Stewart, David M.; Fryer, Robert T.; Sell, Julia C.; Meulenberg, Robert W.] Univ Maine, Dept Phys & Astron, Orono, ME 04469 USA. RP Apblett, CA (reprint author), Sandia Natl Labs, Power Sources Technol Grp, POB 5800, Albuquerque, NM 87185 USA. EM caapble@sandia.gov OI Meulenberg, Robert/0000-0003-2696-8792 FU Joint Center for Energy Storage Research, an Energy Innovation Hub - U.S. Department of Energy, Office of Science, Basic Energy Sciences; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-98CH10886]; U.S. Department of Energy, Office of Electricity Delivery and Energy Reliability; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The authors would like to thank the following organizations for their support of this research. The beamline studies and analysis was supported as part of the Joint Center for Energy Storage Research, an Energy Innovation Hub funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences. The authors would like to thank S. Khalid and N. Marinkovic for beamline assistance. Use of the National Synchrotron Light Source, Brookhaven National Laboratory, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. Synthesis work was supported by the U.S. Department of Energy, Office of Electricity Delivery and Energy Reliability (Dr. Imre Gyuk, Energy Storage Program). Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 20 TC 1 Z9 1 U1 9 U2 34 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0013-4686 EI 1873-3859 J9 ELECTROCHIM ACTA JI Electrochim. Acta PD DEC 10 PY 2015 VL 185 BP 156 EP 161 DI 10.1016/j.electacta.2015.09.093 PG 6 WC Electrochemistry SC Electrochemistry GA CX9IK UT WOS:000366018700019 ER PT J AU Yang, L Wang, WH Fu, Q Zhang, JY Xiang, B AF Yang, Lei Wang, Wenhui Fu, Qi Zhang, Jingyu Xiang, Bin TI MoS2(1-x)Se2x Nanobelts for Enhanced Hydrogen Evolution SO ELECTROCHIMICA ACTA LA English DT Article DE MoS2(1-x)Se2x nanobelts; Tunable band-gap; Active edge sites; Electrocatalytic hydrogen evolution ID ACTIVE EDGE SITES; TRANSITION-METAL DICHALCOGENIDES; MOS2 NANOSHEETS; MOLYBDENUM-DISULFIDE; VAPOR-DEPOSITION; BAND-GAP; GROWTH; GRAPHENE; CHEMISTRY; CATALYSTS AB Molybdenum disulfide (MoS2) has attracted considerable attentions in the application of catalysis. However, the chemically inert property of the basal plane in MoS2 retards the catalytic efficiency. Highly exposing active edge sites and optimizing the electronic structure are the two effective ways to improve MoS2 electrocatalytic activity. Here, we report the synthesis of one dimensional (1D) single-crystal MoS2(1-x)Se2x nanobelts with controllable Se and S content, formed by the vertically aligned basal planes perpendicular to the substrate. The top and bottom surfaces of this 1D structure are fully covered by the active edge sites. The single crystalline nanobelt was characterized by high resolution transmission electron microscopy, atomic force microscopy, Raman, photoluminescence and X-ray photoemission spectroscopy. The introduction of Se into MoS2 optimizes the electronic structures of MoS2(1-x)Se2x nanobelts by tuning the oxidation state of Mo. As a result, the enhanced catalytic activity for hydrogen generation was obtained in the 1D MoS(2(1-x))Se(2)x nanobelts (a low onset overpotential of 139 mV at an electrocatalytic current density of 20 mA/cm(2) and a Tafel slope of 65 mV/decade). (C) 2015 Elsevier Ltd. All rights reserved. C1 [Yang, Lei; Wang, Wenhui; Fu, Qi; Xiang, Bin] Univ Sci & Technol China, Synerget Innovat Ctr Quantum Informat & Quantum P, CAS Key Lab Mat Energy Convers, Dept Mat Sci & Engn, Hefei 230026, Anhui, Peoples R China. [Zhang, Jingyu] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. RP Xiang, B (reprint author), Univ Sci & Technol China, Synerget Innovat Ctr Quantum Informat & Quantum P, CAS Key Lab Mat Energy Convers, Dept Mat Sci & Engn, Hefei 230026, Anhui, Peoples R China. EM binxiang@ustc.edu.cn FU National Natural Science Foundation of China [21373196, 11434009]; National Program for Thousand Young Talents of China; Fundamental Research Funds for the Central Universities [WK2340000050, WK2060140014] FX This work was supported by the National Natural Science Foundation of China (21373196,11434009), the National Program for Thousand Young Talents of China and the Fundamental Research Funds for the Central Universities (WK2340000050, WK2060140014) NR 43 TC 3 Z9 3 U1 24 U2 73 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0013-4686 EI 1873-3859 J9 ELECTROCHIM ACTA JI Electrochim. Acta PD DEC 10 PY 2015 VL 185 BP 236 EP 241 DI 10.1016/j.electacta.2015.10.153 PG 6 WC Electrochemistry SC Electrochemistry GA CX9IK UT WOS:000366018700029 ER PT J AU Miskowiec, A Kirkegaard, MC Huq, A Mamontov, E Herwig, KW Trowbridge, L Rondinone, A Anderson, B AF Miskowiec, Andrew Kirkegaard, Marie C. Huq, Ashfia Mamontov, Eugene Herwig, Kenneth W. Trowbridge, Lee Rondinone, Adam Anderson, Brian TI Structural Phase Transitions and Water Dynamics in Uranyl Fluoride Hydrates SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID ELECTRONIC-STRUCTURE; ROTATIONAL-DYNAMICS; VIBRATIONAL-SPECTRA; NEUTRON-SCATTERING; CRYSTAL-STRUCTURE; UO2F2; COORDINATION; SPECTROSCOPY; COMPLEXES; EXCHANGE AB We report a novel production method for uranium oxyfluoride [(UO2)(7)F-14(H2O)(7)]center dot 4H(2)O, referred to as structure D. Structure D is produced as a product of hydrating anhydrous uranyl fluoride, UO2F2, through the gas phase at ambient temperatures followed by desiccation by equilibration with a dry environment. We follow the structure of [(UO2)(7)F-14(H2O)(7)]center dot 4H(2)O through an intermediate, liquid-like phase, wherein the coordination number of the uranyl ion is reduced to 5 (from 6 in the anhydrous structure), and a water molecule binds as an equatorial ligand to the uranyl ion. Quasielastic neutron scattering results compare well with previous measurements of mineral hydrates. The two groups of structurally distinct water molecules in D perform restricted motion on a length scale commensurate with the O-H bond (r = 0.92 angstrom). The more tightly bound equatorial ligand Waters rotate slower (D-r = 2.2 ps(-1)) than their hydrogen-bonded partners (D-r = 28.7 ps(-1)). C1 [Miskowiec, Andrew; Kirkegaard, Marie C.; Trowbridge, Lee; Anderson, Brian] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Kirkegaard, Marie C.] Univ Tennessee, Knoxville, TN 37996 USA. [Huq, Ashfia; Mamontov, Eugene; Herwig, Kenneth W.] Oak Ridge Natl Lab, Spallat Neutron Source, Oak Ridge, TN 37831 USA. [Rondinone, Adam] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Miskowiec, A (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM miskowiecaj@ornl.gov RI Huq, Ashfia/J-8772-2013; Mamontov, Eugene/Q-1003-2015; Rondinone, Adam/F-6489-2013; OI Huq, Ashfia/0000-0002-8445-9649; Mamontov, Eugene/0000-0002-5684-2675; Rondinone, Adam/0000-0003-0020-4612; Trowbridge, Lee/0000-0002-3271-7618; Anderson, Brian/0000-0002-0675-9750 FU Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy; Laboratory Directed Research and Development Program of Oak Ridge National Laboratory FX Research conducted at Oak Ridge National Laboratory's Spallation Neutron Source was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy. Research sponsored by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the US Department of Energy. A portion of this research was conducted at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility. NR 47 TC 2 Z9 2 U1 3 U2 10 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD DEC 10 PY 2015 VL 119 IS 49 BP 11900 EP 11910 DI 10.1021/acs.jpca.5b09296 PG 11 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA CY3WA UT WOS:000366339400015 PM 26575434 ER PT J AU Qiao, RM Wray, LA Kim, JH Pieczonka, NPW Harris, SJ Yang, WL AF Qiao, Ruimin Wray, L. Andrew Kim, Jung-Hyun Pieczonka, Nicholas P. W. Harris, Stephen J. Yang, Wanli TI Direct Experimental Probe of the Ni(II)/Ni(III)/Ni(IV) Redox Evolution in LiNi0.5Mn1.5O4 Electrodes SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID LITHIUM-ION BATTERIES; HIGH-VOLTAGE SPINEL; X-RAY-ABSORPTION; CHARGE-TRANSFER; CATHODE; OXIDES; ELECTROCHEMISTRY; SPECTROSCOPY; PERFORMANCE; BEHAVIOR AB The LiNi0.5Mn1.5O4 spinel is an appealing cathode material for next generation rechargeable Li-ion batteries due to its high operating voltage of similar to 4.7 V (vs Li/Li+). Although it is widely believed that the full range of electrochemical cycling involves the redox of Ni(II)/(IV), it has not been experimentally clarified whether Ni(III) exists as the intermediate state or a double-electron transfer takes place. Here, combined with theoretical calculations, we show unambiguous spectroscopic evidence of the Ni(III) state when the LiNi0.5Mn1.5O4 electrode is half charged. This provides a direct verification of single-electron-transfer reactions in LiNi0.5Mn1.5O4 upon cycling, namely, from Ni(II) to then to Ni(IV). Additionally, by virtue of its surface sensitivity, soft Xray absorption spectroscopy also reveals the electrochemically inactive Ni2+ and Mn2+ phases on the electrode surface. Our work provides the long-awaited clarification of the single-electron transfer mechanism in LiNi0.5Mn1.5O4 electrodes. Furthermore, the experimental results serve as a benchmark for further spectroscopic characterizations of Ni-based battery electrodes. C1 [Qiao, Ruimin; Yang, Wanli] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Wray, L. Andrew] NYU, Dept Phys, New York, NY 10003 USA. [Kim, Jung-Hyun] Gen Motors Global R&D Ctr, Chem & Mat Syst Lab, Warren, MI 48090 USA. [Pieczonka, Nicholas P. W.] Optimal CAE Inc, Plymouth, MI 48170 USA. [Harris, Stephen J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Sci Mat, Berkeley, CA 94720 USA. RP Wray, LA (reprint author), NYU, Dept Phys, 4 Washington Pl, New York, NY 10003 USA. EM lawray@nyu.edu; wlyang@lbl.gov RI Yang, Wanli/D-7183-2011; Qiao, Ruimin/E-9023-2013; Kim, Jung-Hyun/I-5273-2013 OI Yang, Wanli/0000-0003-0666-8063; Kim, Jung-Hyun/0000-0002-4598-4686 FU Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; LDRD program at the Lawrence Berkeley National Laboratory; MRSEC Program of the National Science Foundation [DMR-1420073]; Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the U.S. Department of Energy under the Advanced Battery Material Research (BMR) Program [DE-AC02-05CH11231] FX The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Ruimin Qiao is supported by the LDRD program at the Lawrence Berkeley National Laboratory. This work was supported partially by the MRSEC Program of the National Science Foundation under Award Number DMR-1420073. Steve Harris is supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231, under the Advanced Battery Material Research (BMR) Program. NR 38 TC 7 Z9 7 U1 5 U2 33 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD DEC 10 PY 2015 VL 119 IS 49 BP 27228 EP 27233 DI 10.1021/acs.jpcc.5b07479 PG 6 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA CY3VW UT WOS:000366339000006 ER PT J AU Cresce, AV Gobet, M Borodin, O Peng, J Russell, SM Wikner, E Fu, A Hu, LB Lee, HS Zhang, ZC Yang, XQ Greenbaum, S Amine, K Xu, K AF Cresce, Arthur von Wald Gobet, Mallory Borodin, Oleg Peng, Jing Russell, Selena M. Wikner, Emily Fu, Adele Hu, Libo Lee, Hung-Sui Zhang, Zhengcheng Yang, Xiao-Qing Greenbaum, Steven Amine, Khalil Xu, Kang TI Anion Solvation in Carbonate-Based Electrolytes SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID HIGHLY ASSOCIATED SALTS; LITHIUM-ION BATTERIES; PROPYLENE CARBONATE; MOLECULAR-DYNAMICS; TRIS(PENTAFLUOROPHENYL) BORANE; STRUCTURAL INTERACTIONS; ORGANIC ELECTROLYTES; GRAPHITIC ANODE; SOLVENT; INTERPHASE AB With the correlation between Li+ solvation and interphasial chemistry on anodes firmly established in Li-ion batteries, the effect of cation-solvent interaction has gone beyond bulk thermodynamic and transport properties and become an essential element that determines the reversibility of electrochemistry and kinetics of Li-ion intercalation chemistries. As of now, most studies are dedicated to the solvation of Li+, and the solvation of anions in carbonate-based electrolytes and its possible effect on the electrochemical stability of such electrolytes remains little understood. As a mirror effort to prior Li+ solvation studies, this work focuses on the interactions between carbonate-based solvents and two anions (hexafluorophosphate, PF6-, and tetrafluoroborate, BF4-) that are most frequently used in Li-ion batteries. The possible correlation between such interaction and the interphasial chemistry on cathode surface is also explored. C1 [Cresce, Arthur von Wald; Borodin, Oleg; Russell, Selena M.; Wikner, Emily; Fu, Adele; Xu, Kang] US Army, Res Lab, Electrochem Branch, Sensors & Electron Devices, Adelphi, MD 20783 USA. [Gobet, Mallory; Peng, Jing; Greenbaum, Steven] CUNY, Dept Phys & Astron, New York, NY 10065 USA. [Peng, Jing] CUNY, Chem Doctorate Program, New York, NY 10065 USA. [Hu, Libo; Zhang, Zhengcheng; Amine, Khalil] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Lee, Hung-Sui; Yang, Xiao-Qing] Brookhaven Natl Lab, Dept Chem, Long Isl City, NY 11973 USA. RP Cresce, AV (reprint author), US Army, Res Lab, Electrochem Branch, Sensors & Electron Devices, Adelphi, MD 20783 USA. EM arthur.v.cresce.civ@mail.mil RI Borodin, Oleg/B-6855-2012; Gobet, Mallory/I-2498-2013 OI Borodin, Oleg/0000-0002-9428-5291; Gobet, Mallory/0000-0001-9735-0741 FU US Department of Energy [DE-EE0006543]; American Society for Engineer Education under summer internship at ARL FX This work is partially funded by US Department of Energy under the Interagency Agreement No. DE-EE0006543. Dr. Selena Russell was supported by an appointment to the US Army Research Laboratory (ARL) Fellowship Program administered by the Oak Ridge Associated Universities through a cooperative agreement with ARL. The authors also thank Yue Li from Department of Chemistry at University of Maryland College Park for his assistance with the mass spectrometry experiments. Ms. Emily Wilmer and Ms. Adele Fu were supported by American Society for Engineer Education under summer internship at ARL. NR 49 TC 6 Z9 6 U1 9 U2 55 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD DEC 10 PY 2015 VL 119 IS 49 BP 27255 EP 27264 DI 10.1021/acs.jpcc.5b08895 PG 10 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA CY3VW UT WOS:000366339000009 ER PT J AU Park, IJ Park, MA Kim, DH Park, GD Kim, BJ Son, HJ Ko, MJ Lee, DK Park, T Shin, H Park, NG Jung, HS Kim, JY AF Park, Ik Jae Park, Min Ah Kim, Dong Hoe Park, Gyeong Do Kim, Byeong Jo Son, Hae Jung Ko, Min Jae Lee, Doh-Kwon Park, Taiho Shin, Hyunjung Park, Nam-Gyu Jung, Hyun Suk Kim, Jin Young TI New Hybrid Hole Extraction Layer of Perovskite Solar Cells with a Planar p-i-n Geometry SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID POWER CONVERSION EFFICIENCY; NICKEL-OXIDE; HIGH-PERFORMANCE; THIN-FILM; CH3NH3PBI3; TRIHALIDE; DEPOSITION; HYSTERESIS; IODIDE; COPPER AB We report a highly efficient p-i-n type planar perovskite solar cell with a hybrid PEDOT/NiOx hole-extraction layer. It has been found that the perovskite solar cell with a NiOx thin film as a hole-extraction layer generally exhibits lower fill factor compared to the conventionally used PEDOT:PSS thin film, whereas it shows higher photocurrent and photovoltage. The fill factor of the NiOx-based perovskite solar cell can be significantly improved by treating the NiOx surface with a dilute PEDOT solution. The photoluminescence quenching study and impedance spectroscopic (IS) analysis have revealed that the hole injection at the perovskite/NiOx interface is significantly facilitated with the PEDOT treatment, which should lead to the increased fill factor. As a result, the p-i-n type planar perovskite solar cell with the new hybrid hole-extraction layer exhibits a high conversion efficiency of 15.1% without the hysteresis effect. C1 [Park, Ik Jae; Park, Gyeong Do; Kim, Jin Young] Seoul Natl Univ, Dept Mat Sci & Engn, Seoul 151742, South Korea. [Park, Min Ah; Son, Hae Jung; Lee, Doh-Kwon] Korea Inst Sci & Technol, Photoelect Hybrids Res Ctr, Seoul 136791, South Korea. [Kim, Dong Hoe] Natl Renewable Energy Lab, Chem & Mat Sci Ctr, Golden, CO 80401 USA. [Kim, Byeong Jo; Jung, Hyun Suk] Sungkyunkwan Univ, Sch Adv Mat Sci & Engn, Suwon 440746, South Korea. [Ko, Min Jae] Korea Univ, KIST Grad Sch Converging Sci & Technol, Seoul 136701, South Korea. [Park, Taiho] Pohang Univ Sci & Technol POSTECH, Pohang 37673, Gyeongbuk, South Korea. [Shin, Hyunjung] Sungkyunkwan Univ, Dept Energy Sci, Suwon 440746, South Korea. [Park, Nam-Gyu] Sungkyunkwan Univ, Sch Chem Engn, Suwon 440746, South Korea. [Park, Nam-Gyu] Sungkyunkwan Univ, Dept Energy Sci, Suwon 440746, South Korea. RP Son, HJ (reprint author), Korea Inst Sci & Technol, Photoelect Hybrids Res Ctr, Seoul 136791, South Korea. EM hjson@ldst.re.kr; jykim.mse@snu.ac.kr RI Shin, Hyunjung/D-5107-2009; Kim, Jin Young/B-7077-2012; Park, Nam-Gyu/F-2477-2014; Jung, Hyun Suk/H-3659-2015; OI Shin, Hyunjung/0000-0003-1284-9098; Kim, Jin Young/0000-0001-7728-3182; Jung, Hyun Suk/0000-0002-7803-6930 FU Nano.Material Technology Development Program through the National Research Foundation of Korea (NRF) - Ministry of Science, ICT & Future Planning [2012M3A7B4049989]; KIST internal fund FX This work was supported by the Nano.Material Technology Development Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (Grant 2012M3A7B4049989). The work done at KIST was also supported by the KIST internal fund. NR 40 TC 8 Z9 8 U1 8 U2 104 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD DEC 10 PY 2015 VL 119 IS 49 BP 27285 EP 27290 DI 10.1021/acs.jpcc.5b09322 PG 6 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA CY3VW UT WOS:000366339000012 ER PT J AU Maughan, B Zahl, P Sutter, P Monti, OLA AF Maughan, Bret Zahl, Percy Sutter, Peter Monti, Oliver L. A. TI Selective Cooperative Self-Assembly between an Organic Semiconductor and Native Adatoms on Cu(110) SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID SCANNING-TUNNELING-MICROSCOPY; DENSITY-FUNCTIONAL THEORY; ENERGY-LEVEL ALIGNMENT; CHARGE-TRANSFER; PHTHALOCYANINE MONOLAYER; OXYGEN-CHEMISORPTION; METAL-SURFACES; VANADYL PHTHALOCYANINE; ELECTRONIC-PROPERTIES; ATOMISTIC SIMULATION AB We investigate molecular adsorption, film growth, and self-assembly for titanyl phthalocyanine (TiOPc) on Cu(110) in ultrahigh vacuum using low-temperature scanning tunneling microscopy (LT-STM). Three unique molecular adsorption configurations are identified, two of which are referred to as "O-down" and one as "O-up", each differing in the molecular registry with the surface. Even though disorder dominates film growth to coverages in excess of 1 monolayer in the native thin film, extended self-assembled 1D configuration-dependent nanoribbons form upon annealing of the film. The STM data reveal that the nanoribbons consist of "O-down" TiOPc and a Cu skeleton, anchoring cooperatively on the Cu(110) terraces. Agent-based simulations show that nanoribbons grow and elongate due to anisotropic adatom attachment rates along the two major surface directions. The study reveals the importance of molecule adatom interactions for novel approaches toward nanostructuring organic semiconductor/metal interfaces. C1 [Maughan, Bret; Monti, Oliver L. A.] Univ Arizona, Dept Chem & Biochem, Tucson, AZ 85721 USA. [Zahl, Percy; Sutter, Peter] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Monti, Oliver L. A.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. RP Monti, OLA (reprint author), Univ Arizona, Dept Chem & Biochem, 1306 East Univ Blvd, Tucson, AZ 85721 USA. EM monti@u.arizona.edu FU National Science Foundation [CHE-1213243]; U.S. DOE Office of Science Facility, at Brookhaven National Laboratory [DE-SC0012704] FX This research was supported by the National Science Foundation under grant # CHE-1213243. This research also used resources of the Center for Functional Nanomaterials, which is a U.S. DOE Office of Science Facility, at Brookhaven National Laboratory under Contract No. DE-SC0012704. NR 87 TC 1 Z9 1 U1 3 U2 29 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD DEC 10 PY 2015 VL 119 IS 49 BP 27416 EP 27425 DI 10.1021/acs.jpcc.5b07436 PG 10 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA CY3VW UT WOS:000366339000028 ER PT J AU Ning, YX Wei, MM Yu, L Yang, F Chang, R Liu, Z Fu, Q Bao, XH AF Ning, Yanxiao Wei, Mingming Yu, Liang Yang, Fan Chang, Rui Liu, Zhi Fu, Qiang Bao, Xinhe TI Nature of Interface Confinement Effect in Oxide/Metal Catalysts SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID METAL-SUPPORT INTERACTIONS; CO OXIDATION; OXIDE SURFACES; FILMS; NANOPARTICLES; GROWTH; GOLD; FE; NANOSTRUCTURES; NUCLEATION AB Metastable oxide phases containing coordinatively unsaturated metal sites are highly active in many catalytic reactions. The stabilization of these nanostructures during reactions remains a major challenge. Here, we show that metastable two-dimensional (2D) FeO structures can be grown on Pt(111) and Au(111), but not on the graphene surface. The well-defined 2D structure is achieved by an interface confinement effect originating from the strong interfacial bonding between Fe atoms and substrate surface atoms. The stabilization effect has been described by the interface confinement energy (Econfinement), which is the energy difference lowered by interfacing the 2D structure with a substrate and decreases in the sequence of Pt(111) > Au(111) > graphene. This interface effect is widely present in many metal=-oxide composite catalysts and can be used to guide the rational design of catalytically active sites. C1 [Ning, Yanxiao; Wei, Mingming; Yu, Liang; Yang, Fan; Fu, Qiang; Bao, Xinhe] Chinese Acad Sci, Dalian Inst Chem Phys, State Key Lab Catalysis, IChEM, Dalian 116023, Peoples R China. [Chang, Rui; Liu, Zhi] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Fu, Q (reprint author), Chinese Acad Sci, Dalian Inst Chem Phys, State Key Lab Catalysis, IChEM, Dalian 116023, Peoples R China. EM qfu@dicp.ac.cn; xhbao@dicp.ac.cn RI YANG, FAN/J-2706-2012; Fu, Qiang/E-7109-2015; Liu, Zhi/B-3642-2009 OI YANG, FAN/0000-0002-1406-9717; Fu, Qiang/0000-0001-5316-6758; Liu, Zhi/0000-0002-8973-6561 FU National Natural Science Foundation of China [21222305, 21103171]; Ministry of Science and Technology of China [2013CB834603, 2013CB933100, 2011CBA00503]; Chinese Academy of Science [KGZD-EW-T05]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was financially supported by the National Natural Science Foundation of China (21222305 and 21103171), Ministry of Science and Technology of China (2013CB834603, 2013CB933100, and 2011CBA00503), and the Key Research Programme of the Chinese Academy of Science (Grant KGZD-EW-T05). The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract DE-AC02-05CH11231. NR 36 TC 4 Z9 4 U1 15 U2 89 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD DEC 10 PY 2015 VL 119 IS 49 BP 27556 EP 27561 DI 10.1021/acs.jpcc.5b09498 PG 6 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA CY3VW UT WOS:000366339000045 ER PT J AU Pushparaj, SSC Forano, C Prevot, V Lipton, AS Rees, GJ Hanna, JV Nielsen, UG AF Pushparaj, Suraj Shiv Charan Forano, Claude Prevot, Vanessa Lipton, Andrew S. Rees, Gregory J. Hanna, John V. Nielsen, Ulla Gro TI How the Method of Synthesis Governs the Local and Global Structure of Zinc Aluminum Layered Double Hydroxides SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID HYDROTALCITE-LIKE COMPOUNDS; SOLID-STATE NMR; NUCLEAR-MAGNETIC-RESONANCE; NEUTRON POWDER DIFFRACTION; QUADRUPOLAR SPIN SYSTEMS; ANION-EXCHANGE; X-RAY; COHERENCE TRANSFER; CRYSTAL-CHEMISTRY; AQUEOUS-SOLUTION AB Seven zinc aluminum layered double hydroxides (ZnAl LDHs), [Zn1-xAlx(OH)(2)A(x)center dot nH(2)O], A = NO3-, Cl-, or CO32-, prepared by the urea and coprecipitation synthesis methods were investigated to determine how the synthesis parameters (pH, metal ion concentration, and postsynthesis treatment) affect the local (atomic) and long (global) range structure of the LDH product. Sample composition, purity, crystal defects, and other structural aspects of the LDH products were obtained from powder X-ray diffraction (PXRD), transmission electron microscopy (TEM), micro-Raman, elemental analysis, and solid state H-1, Al-27, and Zn-67 NMR spectroscopy. The urea method results in LDHs, which on the global scale are highly crystalline LDHs but disordered on the local scale. The disorder is correlated with the presence of Al-rich phases, which are undetected by bulk techniques (TEM, PXRD), as they are either defects within the LDH particles or separate phase(s) associated with LDHs. In contrast, samples prepared by coprecipitation with careful pH control and hydrothermal treatment have high local order and good crystallinity (large particle size). Our results show that both local (NMR) and bulk techniques are needed to assess the composition of LDHs, as the conventional PXRD and TEM analysis of LDHs failed to identify the many structural defects and/or amorphous phases present. C1 [Pushparaj, Suraj Shiv Charan; Nielsen, Ulla Gro] Univ Southern Denmark, Dept Phys Chem & Pharm, DK-5230 Odense M, Denmark. [Forano, Claude; Prevot, Vanessa] Univ Clermont Ferrand, Univ Clermont Auvergne, Inst Chim Clermont Ferrand, F-63000 Clermont Ferrand, France. [Forano, Claude; Prevot, Vanessa] CNRS, UMR 6296, F-63178 Aubiere, France. [Lipton, Andrew S.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99354 USA. [Rees, Gregory J.; Hanna, John V.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. RP Nielsen, UG (reprint author), Univ Southern Denmark, Dept Phys Chem & Pharm, Campusvej 55, DK-5230 Odense M, Denmark. EM ugn@sdu.dk OI Nielsen, Ulla Gro/0000-0002-2336-3061 FU Villum Foundation via the "Villum Young Investigator Programme" (UGN, SSCP, SSNMR equipment); Office of Biological and Environmental Research; UGN, SSCP, CF; Clay Mineral Society (USA); EPSRC; University of Warwick; Birmingham Science City Program; Advantage West Midlands (AWM); European Regional Development Fund (ERDF) FX Ms. E. Petit (Universite Blaise Pascal) and Ms. Carina K. Lohmann (Biology Institute, University of Southern Denmark) are thanked for recording the Raman spectra and ICP analysis, respectively. The authors gratefully appreciate financial support from the Villum Foundation via the "Villum Young Investigator Programme" (UGN, SSCP, SSNMR equipment) and for the 600 MHz NMR spectrometer (Villum Center for Bioanalytical Services). High-field NMR studies were performed at EMSL, a DOE Office of Science User Facility sponsored by the Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. Institut Francais du Danemark is acknowledged for financial support (UGN, SSCP, CF). S.S.C.P. sincerely thanks the Clay Mineral Society (USA) for its valuable support through the award of a student research grant (2014). J.V.H. thanks the EPSRC, the University of Warwick, and the Birmingham Science City Program for partial funding of the solid state NMR infrastructure at Warwick. The latter program accessed the Birmingham Science City Advanced Materials Project 1: Creating and Characterizing Next Generation Advanced Materials, which derived support from Advantage West Midlands (AWM) and the European Regional Development Fund (ERDF). NR 79 TC 6 Z9 6 U1 13 U2 73 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD DEC 10 PY 2015 VL 119 IS 49 BP 27695 EP 27707 DI 10.1021/acs.jpcc.5b09490 PG 13 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA CY3VW UT WOS:000366339000062 ER PT J AU Busby, E Anderson, NC Owen, JS Sfeir, MY AF Busby, Erik Anderson, Nicholas C. Owen, Jonathan S. Sfeir, Matthew Y. TI Effect of Surface Stoichiometry on Blinking and Hole Trapping Dynamics in CdSe Nanocrystals SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID COLLOIDAL QUANTUM DOTS; EXTINCTION COEFFICIENT; SELENIDE NANOCRYSTALS; LIGAND-EXCHANGE; FLUORESCENCE; PHOTOLUMINESCENCE; LUMINESCENCE; CHEMISTRY; EMISSION; SOLIDS AB We measure the photoinduced carrier dynamics as the surface composition of CdSe nanocrystals is systematically varied from metal rich (similar to 80% surface Cd) to nearly stoichiometric (similar to 50% surface Cd). Using time-resolved optical spectroscopy, we determine that the luminescence lifetime is controlled by the rate of hole trapping at the newly exposed surface selenium atoms. However, the increased rate of the photoluminescence decay is not sufficient to explain the decreased photoluminescence quantum yield, and requires a growing proportion of nanocrystals in a dark or "OFF" state to explain the data. A global kinetic model is proposed that relates the fraction of selenium sites to the rate of hole trapping. A linear relationship between the rate of hole trapping and the fraction of exposed Se sites (x(Se)) is observed within the range of accessible stoichiometries (x(Se) = 0.5.-0.2). Extrapolation to higher surface cadmium fractions suggests that not all Se sites serve as effective hole traps. These results explain the strong nonlinear dependence of the fluorescence yield on the nanocrystal stoichiometry. C1 [Busby, Erik; Sfeir, Matthew Y.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Busby, Erik; Anderson, Nicholas C.; Owen, Jonathan S.] Columbia Univ, Dept Chem, New York, NY 10027 USA. RP Owen, JS (reprint author), Columbia Univ, Dept Chem, New York, NY 10027 USA. EM jso2115@columbia.edu; msfeir@bnl.gov OI Owen, Jonathan/0000-0001-5502-3267; Anderson, Nicholas/0000-0001-8161-5303 FU Center for Re-Defining Photovoltaic Efficiency Through Molecular-Scale Control, an Energy Frontier Research Center - U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences [DE-SC0001085]; Empire State Development's Division of Science, Technology, and Innovation (NYSTAR); National Science Foundation [DGE07-07425]; Department of Energy [DE-SC0006410]; Brookhaven National Laboratory [DE-SC0012704] FX We thank Kannatassen Appavoo and John L. Lyons for assistance with figure preparation. This project was supported as part of the Center for Re-Defining Photovoltaic Efficiency Through Molecular-Scale Control, an Energy Frontier Research Center funded by the U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, under award DE-SC0001085. This work is also supported by a grant from the Empire State Development's Division of Science, Technology, and Innovation (NYSTAR). N.C.A. acknowledges support from the National Science Foundation under grant no. DGE07-07425. The preparation of nanocrystals with known stoichiometries was funded by the Department of Energy under grant no. DE-SC0006410. Photophysical measurements were carried out in part at the Center for Functional Nanomaterials, which is a U.S. DOE Office of Science User Facility, at Brookhaven National Laboratory, under contract no. DE-SC0012704. NR 45 TC 9 Z9 9 U1 8 U2 39 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD DEC 10 PY 2015 VL 119 IS 49 BP 27797 EP 27803 DI 10.1021/acs.jpcc.5b08243 PG 7 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA CY3VW UT WOS:000366339000071 ER PT J AU Ganguly, M Bradsher, C Goodwin, P Petty, JT AF Ganguly, Mainak Bradsher, Cara Goodwin, Peter Petty, Jeffrey T. TI DNA-Directed Fluorescence Switching of Silver Clusters SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID NUCLEAR-MAGNETIC-RESONANCE; PROTECTED GOLD CLUSTERS; METAL NANOCLUSTERS; BASE-PAIRS; DEOXYRIBONUCLEIC-ACID; FLUOROPHORES; ION; POLYNUCLEOTIDES; CONFORMATIONS; HYBRIDIZATION AB Silver clusters with;5,30 atoms are molecules with diverse electronic spectra and wide-ranging emission intensities. Specific cluster chromophores form within DNA strands, and we consider a DNA scaffold that transforms a pair of silver clusters. This similar to 20-nucleotide strand has two components, a cluster domain (Si) that stabilizes silver clusters and a recognition site (S2) that hybridizes with complementary oligonucleotides (S2C). The single-stranded S1-S2 exclusively develops clusters with violet absorption and low emission. This conjugate hybridizes with S2C to form S1-S2:S2C, and the violet chromophore transforms to a fluorescent counterpart with pi(ex) approximate to 490 nm/pi(em) approximate to 550 nm and with similar to 100-fold stronger emission. Our studies focus on both the Si sequence and structure that direct this violet blue-green cluster transformation. From the sequence perspective, C4X sequences with X = adenine, thymine, and/or guanine favor the blue-green cluster, and the specificity of the binding site depends on three factors: the number of C4X repeats, the identity of the X nucleobase, and the number of contiguous cytosines. A systematic series of oligonudeotides identified the optimal Si sequence C(4)AC(4)T and discerned distinct roles for the adenine, thymine, and cytosines. From the structure perspective, two factors guide the conformation of the C(4)AC(4)T sequence: hybridization with the S2C complement and coordination by the cluster adduct. Spectroscopic and chromatographic studies show that the single-stranded C(4)AC(4)T is folded by its blue-green cluster adduct. We propose a structural model in which the two C4X motifs within C(4)AC(4)T are cross-linked by the encapsulated cluster. These studies suggest that the structures of the DNA host and the cluster adduct are interdependent. C1 [Ganguly, Mainak; Bradsher, Cara; Petty, Jeffrey T.] Furman Univ, Dept Chem, Greenville, SC 29613 USA. [Goodwin, Peter] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. RP Petty, JT (reprint author), Furman Univ, Dept Chem, Greenville, SC 29613 USA. EM jeff.petty@furman.edu FU National Institutes of Health [1R15GM102818]; Furman Advantage program; Henry Keith and Ellen Hard Townes Professorship; U.S. Department of Energy (DOE) Office of Science [DE-AC52-06NA25396]; Sandia National Laboratories [DE-AC04-94AL85000] FX We thank the National Institutes of Health (1R15GM102818) for support of this work. C.B. was supported by undergraduate research fellowships provided through the Furman Advantage program. J.T.P. is grateful for the support provided by the Henry Keith and Ellen Hard Townes Professorship. This work was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science by Los Alamos National Laboratory (Contract DE-AC52-06NA25396) and Sandia National Laboratories (Contract DE-AC04-94AL85000). NR 67 TC 4 Z9 4 U1 9 U2 39 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD DEC 10 PY 2015 VL 119 IS 49 BP 27829 EP 27837 DI 10.1021/acs.jpcc.5b08834 PG 9 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA CY3VW UT WOS:000366339000075 ER PT J AU Wu, LJ Aguiar, JA Dholabhai, PP Holesinger, T Aoki, T Uberuaga, BP Castro, RHR AF Wu, Longjia Aguiar, Jeffery A. Dholabhai, Pratik P. Holesinger, Terry Aoki, Toshihiro Uberuaga, Blas P. Castro, Ricardo H. R. TI Interface Energies of Nanocrystalline Doped Ceria: Effects of Manganese Segregation SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID HIGH-TEMPERATURE CALORIMETRY; GRAIN-BOUNDARY SEGREGATION; WATER-ADSORPTION; CEO2; GROWTH; OXIDE; NANOPARTICLES; CONDUCTIVITY; DIRECTIONS; ENERGETICS AB The thermodynamics of nanoparticles is strongly dependent on their surface energy as it accounts for a large fraction of the total atomic volume. Grain boundary energies are equally important as the formation of this solid solid interface is inevitable during synthesis, processing, and application via agglomeration or sintering. The objective of this work is to apply microcalorimetric techniques and atomistic modeling to understand the role of manganese as a dopant and its impact on the interface energies of ceria nanopartides. Based on the collection of microcalorimetric data, manganese decreases both grain boundary and surface energies with a particularly remarkable effect on the grain boundary energy (0.87 J m(-2) for CeO2 and 0.30 J m(-2) for 10 mol % Mn). This was attributed to segregation of Mn to both grain boundaries and surfaces, as evidenced by electron microscopy and atomistic modeling examining the segregation of Mn to the (111) surface and to grain boundaries (GB) in CeO2. Noteworthy, the segregation was generally greater to grain boundaries than to surfaces, consistently with the larger energy decrease, which suggest that doped nanopartides have stronger driving force for aggregation. C1 [Wu, Longjia; Castro, Ricardo H. R.] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. [Wu, Longjia; Castro, Ricardo H. R.] Univ Calif Davis, NEAT ORU, Davis, CA 95616 USA. [Aguiar, Jeffery A.] Natl Renewable Energy Lab, Microscopy & Imaging Grp, Golden, CO 80401 USA. [Dholabhai, Pratik P.; Uberuaga, Blas P.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. [Holesinger, Terry] Los Alamos Natl Lab, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA. [Aoki, Toshihiro] Arizona State Univ, LeRoy Eyring Ctr Solid State Sci, Tempe, AZ 85287 USA. RP Castro, RHR (reprint author), Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. EM rhrcastro@ucdavis.edu OI Aguiar, Jeffery/0000-0001-6101-4762 FU UC Lab Fees Research Program [12-LF-239032]; U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division; National Nuclear Security Administration of the U.S. DOE [DE-AC52-06NA25396] FX This work was also partially supported by UC Lab Fees Research Program 12-LF-239032. B.P.U. acknowledges support by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division. Los Alamos National Laboratory, an affirmative action equal opportunity employer, is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. DOE under contract DE-AC52-06NA25396. NR 54 TC 4 Z9 4 U1 3 U2 28 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD DEC 10 PY 2015 VL 119 IS 49 BP 27855 EP 27864 DI 10.1021/acs.jpcc.5b09255 PG 10 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA CY3VW UT WOS:000366339000078 ER PT J AU DeAngelis, AM Qu, X Zelinka, MD Hall, A AF DeAngelis, Anthony M. Qu, Xin Zelinka, Mark D. Hall, Alex TI An observational radiative constraint on hydrologic cycle intensification SO NATURE LA English DT Article ID GENERAL-CIRCULATION MODEL; EARTH SYSTEM MODEL; K-DISTRIBUTION; PART I; CLIMATE-CHANGE; INHOMOGENEOUS ATMOSPHERES; GASEOUS ABSORPTION; SOLAR-RADIATION; COUPLED MODEL; CMIP5 AB Intensification of the hydrologic cycle is a key dimension of climate change, with substantial impacts on human and natural systems(1,2). A basic measure of hydrologic cycle intensification is the increase in global-mean precipitation per unit surface warming, which varies by a factor of three in current-generation climate models (about 1-3 per cent per kelvin)(3-5). Part of the uncertainty may originate from atmosphere-radiation interactions. As the climate warms, increases in shortwave absorption from atmospheric moistening will suppress the precipitation increase. This occurs through a reduction of the latent heating increase required to maintain a balanced atmospheric energy budget(6,7). Using an ensemble of climate models, here we show that such models tend to underestimate the sensitivity of solar absorption to variations in atmospheric water vapour, leading to an underestimation in the shortwave absorption increase and an overestimation in the precipitation increase. This sensitivity also varies considerably among models due to differences in radiative transfer parameterizations, explaining a substantial portion of model spread in the precipitation response. Consequently, attaining accurate shortwave absorption responses through improvements to the radiative transfer schemes could reduce the spread in the predicted global precipitation increase per degree warming for the end of the twenty-first century by about 35 per cent, and reduce the estimated ensemble-mean increase in this quantity by almost 40 per cent. C1 [DeAngelis, Anthony M.; Qu, Xin; Hall, Alex] Univ Calif Los Angeles, Dept Atmospher & Ocean Sci, Los Angeles, CA 90095 USA. [Zelinka, Mark D.] Lawrence Livermore Natl Lab, Program Climate Model Diag & Intercomparison, Livermore, CA 94550 USA. RP DeAngelis, AM (reprint author), Univ Calif Los Angeles, Dept Atmospher & Ocean Sci, Los Angeles, CA 90095 USA. EM adeangelis@ucla.edu RI Hall, Alex/D-8175-2014; Zelinka, Mark/C-4627-2011 OI Zelinka, Mark/0000-0002-6570-5445 FU Regional and Global Climate Modeling Program of the Office of Science of the US Department of Energy; US Department of Energy [DE-AC52-07NA27344] FX All authors were supported by the Regional and Global Climate Modeling Program of the Office of Science of the US Department of Energy. The work of M.D.Z. was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. We acknowledge the World Climate Research Programme's Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modelling groups (listed in Extended Data Table 1) for producing and making available their model output. For CMIP, the US Department of Energy's Program for Climate Model Diagnosis and Intercomparison provided coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals. We acknowledge use of the CERES-EBAF flux data obtained from the National Aeronautics and Space Administration (NASA) Langley Research Center (http://ceres.larc.nasa.gov/order_data.php), the ISCCP-FD data obtained from the NASA Goddard Institute for Space Studies (http://isccp.giss.nasa.gov/projects/flux.html), the SSM/I data obtained from the National Oceanic and Atmospheric Administration (NOAA) National Climatic Data Center (http://www.ncdc.noaa.gov/oa/rsad/ssmi/gridded/index.php), and the RSS data obtained from Remote Sensing Systems (http://www.remss.com/measurements/atmospheric-water-vapor/tpw-1-deg-pro duct). We thank M. Previdi for providing the radiative kernels. We also thank S. A. Klein, K. E. Taylor, P. M. Caldwell, A. A. Lacis, R. Pincus and A. J. Broccoli for discussion on the topic. NR 80 TC 14 Z9 14 U1 8 U2 38 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 EI 1476-4687 J9 NATURE JI Nature PD DEC 10 PY 2015 VL 528 IS 7581 BP 249 EP + DI 10.1038/nature15770 PG 17 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CX9VH UT WOS:000366053300038 PM 26659186 ER PT J AU Martin, L Motzoi, F Li, HH Sarovar, M Whaley, KB AF Martin, Leigh Motzoi, Felix Li, Hanhan Sarovar, Mohan Whaley, K. Birgitta TI Deterministic generation of remote entanglement with active quantum feedback SO PHYSICAL REVIEW A LA English DT Article ID HERALDED ENTANGLEMENT; QUBIT PURIFICATION; STATE; TRAJECTORIES; SYSTEMS; ATOMS AB We consider the task of deterministically entangling two remote qubits using joint measurement and feedback, but no directly entangling Hamiltonian. In order to formulate the most effective experimentally feasible protocol, we introduce the notion of average-sense locally optimal feedback protocols, which do not require real-time quantum state estimation, a difficult component of real-time quantum feedback control. We use this notion of optimality to construct two protocols that can deterministically create maximal entanglement: a semiclassical feedback protocol for low-efficiency measurements and a quantum feedback protocol for high-efficiency measurements. The latter reduces to direct feedback in the continuous-time limit, whose dynamics can be modeled by a Wiseman-Milburn feedback master equation, which yields an analytic solution in the limit of unit measurement efficiency. Our formalism can smoothly interpolate between continuous-time and discrete-time descriptions of feedback dynamics and we exploit this feature to derive a superior hybrid protocol for arbitrary nonunit measurement efficiency that switches between quantum and semiclassical protocols. Finally, we show using simulations incorporating experimental imperfections that deterministic entanglement of remote superconducting qubits may be achieved with current technology using the continuous-time feedback protocol alone. C1 [Martin, Leigh; Motzoi, Felix; Li, Hanhan; Whaley, K. Birgitta] Berkeley Ctr Quantum Informat & Computat, Berkeley, CA 94720 USA. [Martin, Leigh; Motzoi, Felix; Li, Hanhan] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Motzoi, Felix; Whaley, K. Birgitta] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Sarovar, Mohan] Sandia Natl Labs, Digital & Quantum Informat Syst, Livermore, CA 94550 USA. RP Martin, L (reprint author), Berkeley Ctr Quantum Informat & Computat, Berkeley, CA 94720 USA. EM Leigh@Berkeley.edu FU National Science Foundation [1106400]; Berkeley Fellowship; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL8] FX We thank Mollie Schwartz and Irfan Siddiqi for many useful discussions. The work of L.M. was supported by the National Science Foundation Graduate Fellowship Grant No. 1106400 and the Berkeley Fellowship for Graduate Study. Sandia is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the United States Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL8. NR 52 TC 2 Z9 2 U1 4 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 EI 1094-1622 J9 PHYS REV A JI Phys. Rev. A PD DEC 10 PY 2015 VL 92 IS 6 AR 062321 DI 10.1103/PhysRevA.92.062321 PG 12 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA CY0FZ UT WOS:000366083100007 ER PT J AU Enamullah Venkateswara, Y Gupta, S Varma, MR Singh, P Suresh, KG Alam, A AF Enamullah Venkateswara, Y. Gupta, Sachin Varma, Manoj Raama Singh, Prashant Suresh, K. G. Alam, Aftab TI Electronic structure, magnetism, and antisite disorder in CoFeCrGe and CoMnCrAl quaternary Heusler alloys SO PHYSICAL REVIEW B LA English DT Article ID CO2FESI/GAAS(001) HYBRID STRUCTURES; TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; METALS AB We present a combined theoretical and experimental study of two quaternary Heusler alloys CoFeCrGe (CFCG) and CoMnCrAl (CMCA), promising candidates for spintronics applications. Magnetization measurement shows the saturation magnetization and transition temperature to be 3 mu B, 866 K and 0.9 mu B, 358 K for CFCG and CMCA respectively. The magnetization values agree fairly well with our theoretical results and also obey the Slater-Pauling rule, a prerequisite for half metallicity. A striking difference between the two systems is their structure; CFCG crystallizes in fully ordered Y-type structure while CMCA has L2(1) disordered structure. The antisite disorder adds a somewhat unique property to the second compound, which arises due to the probabilistic mutual exchange of Al positions with Cr/Mn and such an effect is possibly expected due to comparable electronegativities of Al and Cr/Mn. Ab initio simulation predicted a unique transition from half metallic ferromagnet to metallic antiferromagnet beyond a critical excess concentration of Al in the alloy. C1 [Enamullah; Venkateswara, Y.; Gupta, Sachin; Suresh, K. G.; Alam, Aftab] Indian Inst Technol, Dept Phys, Bombay 400076, Maharashtra, India. [Gupta, Sachin] Tohoku Univ, Adv Inst Mat Res, Sendai, Miyagi 9808577, Japan. [Varma, Manoj Raama] CSIR, Natl Inst Interdisciplinary Sci & Technol, Thiruvananthapuram, Kerala, India. [Singh, Prashant] Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. RP Enamullah (reprint author), Indian Inst Technol, Dept Phys, Bombay 400076, Maharashtra, India. EM enamullah@phy.iitb.ac.in; aftab@phy.iitb.ac.in RI TVM, NIIST/E-5132-2012; Varma, Manoj/N-4918-2015; OI TVM, NIIST/0000-0002-5814-466X; Gupta, Sachin/0000-0002-2407-5555 FU IIT Bombay; U.S. Department of Energy (DOE), Office of Science, Materials Science and Engineering Division FX Enamullah acknowledges IIT Bombay for providing financial assistance to carry out postdoctoral research. P.S. would like to thank U.S. Department of Energy (DOE), Office of Science, Materials Science and Engineering Division for support. NR 32 TC 0 Z9 0 U1 14 U2 35 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD DEC 10 PY 2015 VL 92 IS 22 AR 224413 DI 10.1103/PhysRevB.92.224413 PG 7 WC Physics, Condensed Matter SC Physics GA CY0HA UT WOS:000366085900004 ER PT J AU Johnson, RD Williams, SC Haghighirad, AA Singleton, J Zapf, V Manuel, P Mazin, II Li, Y Jeschke, HO Valenti, R Coldea, R AF Johnson, R. D. Williams, S. C. Haghighirad, A. A. Singleton, J. Zapf, V. Manuel, P. Mazin, I. I. Li, Y. Jeschke, H. O. Valenti, R. Coldea, R. TI Monoclinic crystal structure of alpha-RuCl3 and the zigzag antiferromagnetic ground state SO PHYSICAL REVIEW B LA English DT Article ID DIFFRACTION; BETA-RUCL3 AB The layered honeycomb magnet alpha-RuCl3 has been proposed as a candidate to realize a Kitaev spin model with strongly frustrated, bond-dependent, anisotropic interactions between spin-orbit entangled j(eff) = 1/2 Ru3+ magnetic moments. Here, we report a detailed study of the three-dimensional crystal structure using x-ray diffraction on untwinned crystals combined with structural relaxation calculations. We consider several models for the stacking of honeycomb layers and find evidence for a parent crystal structure with a monoclinic unit cell corresponding to a stacking of layers with a unidirectional in-plane offset, with occasional in-plane sliding stacking faults, in contrast with the currently assumed trigonal three-layer stacking periodicity. We report electronic band-structure calculations for the monoclinic structure, which find support for the applicability of the j(eff) = 1/2 picture once spin-orbit coupling and electron correlations are included. Of the three nearest-neighbor Ru-Ru bonds that comprise the honeycomb lattice, the monoclinic structure makes the bond parallel to the b axis nonequivalent to the other two, and we propose that the resulting differences in the magnitude of the anisotropic exchange along these bonds could provide a natural mechanism to explain the previously reported spin gap in powder inelastic neutron scattering measurements, in contrast to spin models based on the three-fold symmetric trigonal structure, which predict a gapless spectrum within linear spin wave theory. Our susceptibility measurements on both powders and stacked crystals, as well as magnetic neutron powder diffraction, show a single magnetic transition upon cooling below T-N approximate to 13 K. The analysis of our neutron powder diffraction data provides evidence for zigzag magnetic order in the honeycomb layers with an antiferromagnetic stacking between layers. Magnetization measurements on stacked single crystals in pulsed field up to 60 T show a single transition around 8 T for in-plane fields followed by a gradual, asymptotic approach to magnetization saturation, as characteristic of strongly anisotropic exchange interactions. C1 [Johnson, R. D.; Williams, S. C.; Haghighirad, A. A.; Coldea, R.] Univ Oxford, Dept Phys, Clarendon Lab, Oxford OX1 3PU, England. [Johnson, R. D.; Manuel, P.] Rutherford Appleton Lab STFC, ISIS Facil, Didcot OX11 0QX, Oxon, England. [Singleton, J.; Zapf, V.] Los Alamos Natl Lab, Natl High Magnet Field Lab MPA NHMFL, Los Alamos, NM 87545 USA. [Mazin, I. I.] US Navy, Res Lab, Washington, DC 20375 USA. [Li, Y.; Jeschke, H. O.; Valenti, R.] Goethe Univ Frankfurt, Inst Theoret Phys, D-60438 Frankfurt, Germany. RP Johnson, RD (reprint author), Univ Oxford, Dept Phys, Clarendon Lab, Parks Rd, Oxford OX1 3PU, England. EM roger.johnson@physics.ox.ac.uk RI Jeschke, Harald/C-3507-2009; OI Jeschke, Harald/0000-0002-8091-7024; Williams, Stephanie/0000-0001-5370-5408 FU EPSRC [EP/H014934/1, EP/J003557/1, EP/M020517/1]; Deutsche Forschungsgemeinschaft [SFB/TR49]; Royal Society; China Scholarship Council (CSC) Fellowship; Office of Naval Research through the Naval Research Laboratory's Basic Research Program; KITP under NSF [PHY11-25915]; U. S. Department of Energy (DoE) Basic Energy Science Field Work Proposal "Science in 100 T"; National Science Foundation [DMR-1157490]; State of Florida; U. S. DoE FX We acknowledge useful discussions regarding pulsed field magnetometry with P. A. Goddard, and regarding electronic structure with G. Khaliullin and S. Winter. Work in Oxford was supported by EPSRC under Grants No. EP/H014934/1, No. EP/J003557/1, and No. EP/M020517/1, and in Frankfurt by the Deutsche Forschungsgemeinschaft through Grant No. SFB/TR49. A.A.H. acknowledges support from the Royal Society through an International Newton Fellowship and Y.L. acknowledges support from a China Scholarship Council (CSC) Fellowship. I.I.M. was supported by the Office of Naval Research through the Naval Research Laboratory's Basic Research Program. R.C. and R.V. were supported in part by KITP under NSF Grant No. PHY11-25915. Work at LANL was supported by the U. S. Department of Energy (DoE) Basic Energy Science Field Work Proposal "Science in 100 T." The NHMFL facility at LANL is funded by the National Science Foundation Cooperative Agreement No. DMR-1157490, the State of Florida, and the U. S. DoE. In accordance with the EPSRC policy framework on research data, access to the data will be made available from Ref. [47]. NR 46 TC 24 Z9 24 U1 13 U2 48 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD DEC 10 PY 2015 VL 92 IS 23 AR 235119 DI 10.1103/PhysRevB.92.235119 PG 12 WC Physics, Condensed Matter SC Physics GA CY0IU UT WOS:000366090600002 ER PT J AU Pervan, P Lazic, P Petrovic, M Rakic, IS Pletikosic, I Kralj, M Milun, M Valla, T AF Pervan, P. Lazic, P. Petrovic, M. Rakic, I. Srut Pletikosic, I. Kralj, M. Milun, M. Valla, T. TI Li adsorption versus graphene intercalation on Ir(111): From quenching to restoration of the Ir surface state SO PHYSICAL REVIEW B LA English DT Article ID PHOTOEMISSION; INTERFACE AB It is common knowledge that even a trace amount of a chemisorbed species can strongly perturb the surface electronic structure, in particular the surface states, to the point of their complete eradication. We have confirmed this behavior by adsorbing Li on the Ir(111), but surprisingly, we have discovered that in the presence of graphene Li does not suppress the Ir surface state. By combining the results of the low-energy electron diffraction and angle-resolved photoemission spectroscopy with the density functional theory for modeling of the studied systems we can provide a detailed explanation for the observed phenomena. The quenching of the surface state by the electronic states of disordered Li layer on a bare Ir surface is efficiently deactivated by the presence of graphene which shifts the Li states to lower energies thereby leading to the unexpected reappearance of the surface state. Such protection of the surface state coherence from disorder upon intercalation could be used as a benchmark in the toolbox of surface science. C1 [Pervan, P.; Petrovic, M.; Rakic, I. Srut; Pletikosic, I.; Kralj, M.; Milun, M.] Inst Fiziku, HR-10000 Zagreb, Croatia. [Lazic, P.] Rudjer Boskovic Inst, Zagreb 10000, Croatia. [Valla, T.] Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA. [Lazic, P.; Kralj, M.] Ctr Excellence Adv Mat & Sensing Devices, HR-10000 Zagreb, Croatia. RP Pervan, P (reprint author), Inst Fiziku, Bijenicka 46, HR-10000 Zagreb, Croatia. EM pervan@ifs.hr; plazic@irb.hr RI Petrovic, Marin/N-2473-2013; Kralj, Marko/A-8232-2008; Pletikosic, Ivo/A-5683-2010 OI Petrovic, Marin/0000-0002-2234-1207; Kralj, Marko/0000-0002-9786-3130; Pletikosic, Ivo/0000-0003-4697-8912 FU Croatian Science Foundation [IP-11-2013-2727]; foundation L'Oreal: For Women in Science FX P.P. and P.L thank B. Gumhalter and M. C. Asensio for fruitful discussions. We kindly acknowledge the experimental assistance of J. Avila at the ANTARES station of the SOLEIL synchrotron. Financial support of the Croatian Science Foundation (IP-11-2013-2727) is acknowledged. I.S.R. would like to thank the foundation L'Oreal: For Women in Science for financial support. NR 34 TC 4 Z9 4 U1 4 U2 19 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD DEC 10 PY 2015 VL 92 IS 24 AR 245415 DI 10.1103/PhysRevB.92.245415 PG 6 WC Physics, Condensed Matter SC Physics GA CY0JZ UT WOS:000366093700008 ER PT J AU Spataru, CD Shulenburger, L Benedict, LX AF Spataru, Catalin D. Shulenburger, Luke Benedict, Lorin X. TI Ab initio many-body Green's function calculations of optical properties of LiF at high pressures SO PHYSICAL REVIEW B LA English DT Article ID ELECTRON-HOLE EXCITATIONS; LITHIUM-FLUORIDE; QUASI-PARTICLE; BAND-GAPS; INSULATORS; PSEUDOPOTENTIALS; SEMICONDUCTORS AB We present density functional theory (DFT) + quasiparticle self-energy (G(0)W(0)) + Bethe-Salpeter calculations of the real and imaginary parts of the long-wavelength dielectric function of LiF between ambient pressure and P = 5 Mbars. While the optical absorption spectrum is predicted to show dramatic pressure-dependent features above the optical gap, the index of refraction well below the gap is shown to exhibit the same trends as that seen in both DFT calculations and experiment: a roughly linear increase with density. This increase does not result from a decrease in the band gap, but rather follows from the increase in oscillator strength which counteracts a smaller increase in band gap with P. Our calculations also suggest that the index of refraction (for visible and near-UV light) of the higher-T B-2 phase should be quite close to that of the B-1 (ambient crystalline) phase. These findings may be of interest to researchers who use LiF as a window material in dynamic compression experiments. C1 [Spataru, Catalin D.] Sandia Natl Labs, Livermore, CA 94551 USA. [Shulenburger, Luke] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Benedict, Lorin X.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Spataru, CD (reprint author), Sandia Natl Labs, Livermore, CA 94551 USA. FU ASC/PEM program at SNL; U.S. DOE [DE-AC04-94AL85000, DE-AC52-07NA27344] FX We thank R. E. Rudd, D. E. Fratanduono, N. Marzari, M. Millo, N. C. Holmes, B. Sadigh, and J. H. Eggert for helpful discussions. This work was supported by the ASC/PEM program at SNL. SNL is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Co., for the U.S. DOE under Contract No. DE-AC04-94AL85000. Work at LLNL was performed under the auspices of the U.S. DOE under Contract No. DE-AC52-07NA27344. NR 32 TC 2 Z9 2 U1 3 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD DEC 10 PY 2015 VL 92 IS 24 AR 245117 DI 10.1103/PhysRevB.92.245117 PG 8 WC Physics, Condensed Matter SC Physics GA CY0JZ UT WOS:000366093700004 ER PT J AU van Veenendaal, M AF van Veenendaal, Michel TI Interaction between x-ray and magnetic vortices SO PHYSICAL REVIEW B LA English DT Article ID ORBITAL ANGULAR-MOMENTUM; VORTEX; BEAMS AB The interaction between two topological objects, an x-ray beam carrying orbital angular momentum (OAM) and a magnetic vortex, is studied theoretically. The resonant x-ray scattering intensity is calculated as a function of the relative position of the magnetic and x-ray vortices. For a homogeneous system, the charge scattering is zero. For magnetic scattering, the intensity profile strongly depends on the relative topological indices of the x-ray and magnetic singularities. A strong enhancement in the intensity profile is observed for equal winding factors. Additionally, the profile displays edge effects, which depend on the scattering conditions, the radial dependence of the magnetic vortex, and the Laguerre-Gaussian mode of the OAM x-ray beam. The potential of resonant OAM x-ray scattering from magnetic vortices opens the door to study the dynamics and switching of magnetic vortices. C1 [van Veenendaal, Michel] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [van Veenendaal, Michel] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP van Veenendaal, M (reprint author), No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. FU U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DE-FG02-03ER46097]; time-dependent x-ray spectroscopy collaboration as part of the Computational Materials Science Network (CMSCN) [DE-FG02-08ER46540, DE-SC0007091]; NIU Institute for Nanoscience, Engineering, and Technology; U.S. DOE, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX Discussions with Ian McNulty and Shigemi Sasaki are acknowledged. This work was supported by the U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award No. DE-FG02-03ER46097, the time-dependent x-ray spectroscopy collaboration as part of the Computational Materials Science Network (CMSCN) under Grants No. DE-FG02-08ER46540 and No. DE-SC0007091, and NIU Institute for Nanoscience, Engineering, and Technology. Work at Argonne National Laboratory was supported by the U.S. DOE, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 24 TC 0 Z9 0 U1 3 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD DEC 10 PY 2015 VL 92 IS 24 AR 245116 DI 10.1103/PhysRevB.92.245116 PG 5 WC Physics, Condensed Matter SC Physics GA CY0JZ UT WOS:000366093700003 ER PT J AU Edge, JM Kedem, Y Aschauer, U Spaldin, NA Balatsky, AV AF Edge, Jonathan M. Kedem, Yaron Aschauer, Ulrich Spaldin, Nicola A. Balatsky, Alexander V. TI Quantum Critical Origin of the Superconducting Dome in SrTiO3 SO PHYSICAL REVIEW LETTERS LA English DT Article ID INITIO MOLECULAR-DYNAMICS; TOTAL-ENERGY CALCULATIONS; OXYGEN-ISOTOPE EXCHANGE; WAVE BASIS-SET; SEMICONDUCTING SRTIO3; PHASE-TRANSITION; FERROELECTRICITY; METALS; TEMPERATURE; OXIDES AB We expand the well-known notion that quantum criticality can induce superconductivity by proposing a concrete mechanism for superconductivity due to quantum ferroelectric fluctuations. To this end, we investigate the origin of superconductivity in doped SrTiO3 using a combination of density functional and strong coupling theories within the framework of quantum criticality. Our density functional calculations of the ferroelectric soft mode frequency as a function of doping reveal a crossover related to quantum paraelectricity at a doping level coincident with the experimentally observed top of the superconducting dome. Thus, we suggest a model in which the soft mode fluctuations provide the pairing interaction for superconductivity carriers. Within our model, the low doping limit of the superconducting dome is explained by the emergence of the Fermi surface, and the high doping limit by departure from the quantum critical regime. We predict that the highest critical temperature will increase and shift to lower carrier doping with increasing O-18 isotope substitution, a scenario that is experimentally verifiable. Our model is applicable to other quantum paraelectrics, such as KTaO3. C1 [Edge, Jonathan M.; Kedem, Yaron; Balatsky, Alexander V.] KTH Royal Inst Technol, Ctr Quantum Mat, NORDITA, S-10691 Stockholm, Sweden. [Edge, Jonathan M.; Kedem, Yaron; Balatsky, Alexander V.] Stockholm Univ, S-10691 Stockholm, Sweden. [Aschauer, Ulrich; Spaldin, Nicola A.] ETH, Mat Theory, CH-8093 Zurich, Switzerland. [Balatsky, Alexander V.] Los Alamos Natl Lab, Inst Mat Sci, Los Alamos, NM 87545 USA. RP Kedem, Y (reprint author), KTH Royal Inst Technol, Ctr Quantum Mat, NORDITA, Roslagstullsbacken 23, S-10691 Stockholm, Sweden. EM kedem@kth.se; avb@lanl.gov RI Aschauer, Ulrich/C-1023-2009 OI Aschauer, Ulrich/0000-0002-1165-6377 FU U.S. DOE [BES E304]; ETH Zurich; ERC [291151, 321031]; KAW; LDRD FX We are grateful to D. Abergel, K. Behnia, J. Haraldsen, R. Fernandes, S. Raghu, P. Wolfle, and Y. Iwasa for useful discussions. This work was supported by U.S. DOE BES E304, by the ETH Zurich (N. A. S. and U. A.) and by the ERC Advanced Grant Program, No. 291151 (N. A. S. and U. A.), No. 321031, KAW and LDRD (A. V. B. and Y. K.). NR 40 TC 10 Z9 10 U1 7 U2 35 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD DEC 10 PY 2015 VL 115 IS 24 AR 247002 DI 10.1103/PhysRevLett.115.247002 PG 5 WC Physics, Multidisciplinary SC Physics GA CY0PH UT WOS:000366107500007 PM 26705650 ER PT J AU Pham, AN Lee, SY Ng, KY AF Pham, Alfonse N. Lee, S. Y. Ng, K. Y. TI Method of phase space beam dilution utilizing bounded chaos generated by rf phase modulation SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article ID SYSTEM; DIFFUSION; MOTION AB This paper explores the physics of chaos in a localized phase-space region produced by rf phase modulation applied to a double rf system. The study can be exploited to produce rapid particle bunch broadening exhibiting longitudinal particle distribution uniformity. Hamiltonian models and particle-tracking simulations are introduced to understand the mechanism and applicability of controlled particle diffusion. When phase modulation is applied to the double rf system, regions of localized chaos are produced through the disruption and overlapping of parametric resonant islands and configured to be bounded by well-behaved invariant tori to prevent particle loss. The condition of chaoticity and the degree of particle dilution can be controlled by the rf parameters. The method has applications in alleviating adverse space-charge effects in high-intensity beams, particle bunch distribution uniformization, and industrial radiation-effects experiments. C1 [Pham, Alfonse N.; Lee, S. Y.] Indiana Univ, Ctr Explorat Energy & Matter, Bloomington, IN 47408 USA. [Ng, K. Y.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Pham, AN (reprint author), Indiana Univ, Ctr Explorat Energy & Matter, Bloomington, IN 47408 USA. EM alfonse@msu.edu; shylee@indiana.edu; ng@fnal.gov FU U.S. Department of Energy [DE-FG02-12ER41800, DE-AC02-76CH030000]; National Science Foundation (NSF) [PHY-1504778] FX We would like to thank members of the Accelerator Physics Group at Indiana University, especially X. Shen, M. Ng, and P. McChesney, for their helpful suggestions and fruitful discussions. This work is supported in part by grants from the U.S. Department of Energy under Contracts No. DE-FG02-12ER41800, No. DE-AC02-76CH030000, and the National Science Foundation (NSF) No. PHY-1504778. NR 23 TC 0 Z9 0 U1 1 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD DEC 10 PY 2015 VL 18 IS 12 DI 10.1103/PhysRevSTAB.18.124001 PG 16 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA CY0PQ UT WOS:000366108400001 ER PT J AU Nimusiima, J Koberl, M Tumuhairwe, JB Kubiriba, J Staver, C Berg, G AF Nimusiima, Jean Koeberl, Martina Tumuhairwe, John Baptist Kubiriba, Jerome Staver, Charles Berg, Gabriele TI Transgenic banana plants expressing Xanthomonas wilt resistance genes revealed a stable non-target bacterial colonization structure SO SCIENTIFIC REPORTS LA English DT Article ID MICROBIAL COMMUNITIES; HYPERSENSITIVE RESPONSE; GM CROPS; ENHANCES RESISTANCE; SOILBORNE PATHOGENS; XYLELLA-FASTIDIOSA; CITRUS PLANTS; HRAP GENE; RHIZOSPHERE; DIVERSITY AB Africa is among the continents where the battle over genetically modified crops is currently being played out. The impact of GM in Africa could potentially be very positive. In Uganda, researchers have developed transgenic banana lines resistant to banana Xanthomonas wilt. The transgenic lines expressing hrap and pflp can provide a timely solution to the pandemic. However, the impact of the transgenes expression on non-target microorganisms has not yet been investigated. To study this effect, transgenic and control lines were grown under field conditions and their associated microbiome was investigated by 16S rRNA gene profiling combining amplicon sequencing and molecular fingerprinting. Three years after sucker planting, no statistically significant differences between transgenic lines and their non-modified predecessors were detected for their associated bacterial communities. The overall gammaproteobacterial rhizosphere microbiome was highly dominated by Xanthomonadales, while Pseudomonadales and Enterobacteriales were accumulated in the pseudostem. Shannon indices revealed much higher diversity in the rhizosphere than in the pseudostem endosphere. However, the expression of the transgenes did not result in changes in the diversity of Gammaproteobacteria, the closest relatives of the target pathogen. In this field experiment, the expression of the resistance genes appears to have no consequences for non-target rhizobacteria and endophytes. C1 [Nimusiima, Jean; Kubiriba, Jerome] Natl Agr Res Org, Natl Agr Res Labs, Kampala, Uganda. [Nimusiima, Jean; Tumuhairwe, John Baptist] Makerere Univ, Coll Agr & Environm Sci, Dept Agr Prod, Kampala, Uganda. [Koeberl, Martina; Berg, Gabriele] Graz Univ Technol, Inst Environm Biotechnol, A-8010 Graz, Austria. [Staver, Charles] Biovers Int, Montpellier, France. RP Koberl, M (reprint author), Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. EM martina.koeberl@tugraz.at FU Federal Ministry for Europe, Integration and Foreign Affairs (BMEIA) of the Republic of Austria through the Austrian Development Agency (ADA) FX We thank the National Banana Research Program and the International Institute of Tropical Agriculture (Uganda) for conducting the confined field trial. This study was supported by the Federal Ministry for Europe, Integration and Foreign Affairs (BMEIA) of the Republic of Austria through the Austrian Development Agency (ADA). NR 49 TC 1 Z9 1 U1 8 U2 22 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD DEC 10 PY 2015 VL 5 AR 18078 DI 10.1038/srep18078 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CY0XU UT WOS:000366131000001 PM 26657016 ER PT J AU Martinez, NE Sharp, JL Kuhne, WW Johnson, TE Stafford, CT Duff, MC AF Martinez, N. E. Sharp, J. L. Kuhne, W. W. Johnson, T. E. Stafford, C. T. Duff, M. C. TI Assessing the use of reflectance spectroscopy in determining CsCl stress in the model species Arabidopsis thaliana SO INTERNATIONAL JOURNAL OF REMOTE SENSING LA English DT Article ID LEAF OPTICAL-PROPERTIES; NEAR-INFRARED SPECTROSCOPY; CHLOROPHYLL CONTENT; SPECTRAL REFLECTANCE; PLANT STRESS; RED EDGE; BIOCHEMICAL-PROPERTIES; SOYBEAN PLANTS; CESIUM UPTAKE; LEAVES AB Reflectance spectroscopy is a rapid and non-destructive analytical technique that may be used for assessing plant stress, and has potential applications for use in remediation. Changes in reflectance such as that due to metal stress may occur before damage is visible, and existing studies have shown that metal stress does cause changes in plant reflectance. To further investigate the potential use of reflectance spectroscopy as a method for assessing metal stress in plants, an exploratory study was conducted in which Arabidopsis thaliana plants were treated twice weekly in a laboratory setting with varying levels (0, 0.5, or 5 mM (millimolar)) of caesium chloride (CsCl) solution, and reflectance spectra were collected every week for three weeks using an Analytical Spectral Devices FieldSpec Pro spectroradiometer with both a contact probe (CP) and a field of view (FOV) probe at 36.8 and 66.7 cm, respectively, above the plant. Plants were harvested each week after spectra collection for determination of relative water content and chlorophyll content. A visual assessment of the plants was also conducted using point observations on a uniform grid of 81 points. A mixed-effects model analysis was conducted for each vegetation index (VI) considered to determine the effects of length of treatment, treatment level, view with which spectra were acquired, and the interactions of these terms. Two-way analyses of variance (ANOVAs) were performed on the aforementioned endpoints (e.g. chlorophyll content) to determine the significance of the effects of treatment level and length of treatment. Multiple linear regression (MLR) was used to develop a predictive model for each endpoint, considering VI acquired at each view (CP, high FOV, and low FOV). Of the 14 VI considered, 8 were included in the MLR models. Contact probe readings and FOV readings differed significantly, but FOV measurements were generally consistent at each height. C1 [Martinez, N. E.] Clemson Univ, Dept Environm Engn & Earth Sci, Clemson, SC 29634 USA. [Martinez, N. E.; Kuhne, W. W.; Stafford, C. T.; Duff, M. C.] Savannah River Natl Lab, Aiken, SC USA. [Sharp, J. L.] Clemson Univ, Dept Math Sci, Clemson, SC USA. [Johnson, T. E.] Colorado State Univ, Dept Environm & Radiol Hlth Sci, Ft Collins, CO 80523 USA. RP Martinez, NE (reprint author), Clemson Univ, Dept Environm Engn & Earth Sci, Clemson, SC 29634 USA. EM nmarti3@clemson.edu RI Martinez, Nicole/M-7538-2015 OI Martinez, Nicole/0000-0002-7184-3043 FU U.S. Department of Energy [DE-AC09-08SR22470]; U.S. DOE-National Nuclear Security Administration through the Office of Defense Nuclear Non proliferation Research and Development-NA-22 [DE-FG52-05NA27035] FX This project was conducted in conjunction with work accomplished under Contract No. DE-AC09-08SR22470 with the U.S. Department of Energy. This work is supported by U.S. DOE-National Nuclear Security Administration through the Office of Defense Nuclear Non proliferation Research and Development-NA-22 [grant number DE-FG52-05NA27035]. NR 81 TC 2 Z9 2 U1 3 U2 17 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 0143-1161 EI 1366-5901 J9 INT J REMOTE SENS JI Int. J. Remote Sens. PD DEC 10 PY 2015 VL 36 IS 23 BP 5887 EP 5915 DI 10.1080/01431161.2015.1110258 PG 29 WC Remote Sensing; Imaging Science & Photographic Technology SC Remote Sensing; Imaging Science & Photographic Technology GA CX7ET UT WOS:000365865600006 ER PT J AU Ferenbaugh, CR AF Ferenbaugh, Charles R. TI PENNANT: an unstructured mesh mini-app for advanced architecture research SO CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE LA English DT Article DE unstructured mesh; Lagrangian hydrodynamics; advanced architectures; multicore; GPU ID ARTIFICIAL VISCOSITY; HARDWARE AB This paper describes PENNANT, a mini-app that operates on general unstructured meshes (meshes with arbitrary polygons), and is designed for advanced architecture research. It contains mesh data structures and physics algorithms adapted from the Los Alamos National Laboratory radiation-hydrodynamics code FLAG and gives a sample of the typical memory access patterns of FLAG. The basic capabilities and optimization approaches of PENNANT are presented. Results are shown from sample performance experiments run on serial, multicore, and graphics processing unit implementations, giving an indication of how PENNANT can be a useful tool for studies of new architectures and programming models. Copyright (c) 2014 John Wiley & Sons, Ltd. C1 Los Alamos Natl Lab, Los Alamos, NM 87544 USA. RP Ferenbaugh, CR (reprint author), Los Alamos Natl Lab, Mail Stop B295, Los Alamos, NM 87544 USA. EM cferenba@lanl.gov FU US Department of Energy (DOE) National Nuclear Security Administration by Los Alamos National Security, LLC, at LANL [DE-AC52-06NA25396]; US DOE Office of Science (ASCR 'Mimetic Methods for PDEs' project); NNSA Advanced Simulation and Computing (ASC) Program (Hydrodynamics project) FX This work was performed under the auspices of the US Department of Energy (DOE) National Nuclear Security Administration by Los Alamos National Security, LLC, at LANL, under contract DE-AC52-06NA25396. The author gratefully acknowledges the support of the US DOE Office of Science (ASCR 'Mimetic Methods for PDEs' project) and the NNSA Advanced Simulation and Computing (ASC) Program (Hydrodynamics project) for this work. The ASC Programming Models project provided additional support for development of the MPI version. NR 24 TC 2 Z9 2 U1 0 U2 3 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1532-0626 EI 1532-0634 J9 CONCURR COMP-PRACT E JI Concurr. Comput.-Pract. Exp. PD DEC 10 PY 2015 VL 27 IS 17 BP 4555 EP 4572 DI 10.1002/cpe.3422 PG 18 WC Computer Science, Software Engineering; Computer Science, Theory & Methods SC Computer Science GA CU8BR UT WOS:000363766600003 ER PT J AU Sankaran, R Angel, J Brown, WM AF Sankaran, Ramanan Angel, Jordan Brown, W. Michael TI Genetic algorithm based task reordering to improve the performance of batch scheduled massively parallel scientific applications SO CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE LA English DT Article DE performance variability; task mapping; genetic algorithm; optimization; communication topology ID LARGE-EDDY SIMULATION; MAPPING PROBLEM; MOLECULAR-DYNAMICS; MULTICOMPUTERS; OPTIMIZATION; ASSIGNMENT; HEURISTICS; PROCESSOR AB The growth in size of networked high performance computers along with novel accelerator-based node architectures has further emphasized the importance of communication efficiency in high performance computing. The world's largest high performance computers are usually operated as shared user facilities due to the costs of acquisition and operation. Applications are scheduled for execution in a shared environment and are placed on nodes that are not necessarily contiguous on the interconnect. Furthermore, the placement of tasks on the nodes allocated by the scheduler is sub-optimal, leading to performance loss and variability. Here, we investigate the impact of task placement on the performance of two massively parallel application codes on the Titan supercomputer, a turbulent combustion flow solver (S3D) and a molecular dynamics code (LAMMPS). Benchmark studies show a significant deviation from ideal weak scaling and variability in performance. The inter-task communication distance was determined to be one of the significant contributors to the performance degradation and variability. A genetic algorithm-based parallel optimization technique was used to optimize the task ordering. This technique provides an improved placement of the tasks on the nodes, taking into account the application's communication topology and the system interconnect topology. Application benchmarks after task reordering through genetic algorithm show a significant improvement in performance and reduction in variability, thereby enabling the applications to achieve better time to solution and scalability on Titan during production. Copyright (c) 2015 John Wiley & Sons, Ltd. C1 [Sankaran, Ramanan; Angel, Jordan; Brown, W. Michael] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Sankaran, R (reprint author), Oak Ridge Natl Lab, Ctr Computat Sci, POB 2008,MS 6008, Oak Ridge, TN 37831 USA. EM sankaranr@ornl.gov RI Sankaran, Ramanan/D-9254-2015 OI Sankaran, Ramanan/0000-0002-5352-9915 FU Oak Ridge Leadership Computing Facility at Oak Ridge National Laboratory; Office of Science of US Department of Energy [DE-AC05-00OR22725]; US Department of Energy, Office of Science, Office of Workforce Development for Teachers and Scientists (WDTS) under Science Undergraduate Laboratory Internships Program (SULI) FX This research was supported by and used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of the US Department of Energy under Contract No. DE-AC05-00OR22725. This work was supported in part by the US Department of Energy, Office of Science, Office of Workforce Development for Teachers and Scientists (WDTS) under the Science Undergraduate Laboratory Internships Program (SULI). Thanks to Carl Albing (Cray) for his help in understanding the system characteristics. NR 32 TC 0 Z9 0 U1 0 U2 12 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1532-0626 EI 1532-0634 J9 CONCURR COMP-PRACT E JI Concurr. Comput.-Pract. Exp. PD DEC 10 PY 2015 VL 27 IS 17 BP 4763 EP 4783 DI 10.1002/cpe.3457 PG 21 WC Computer Science, Software Engineering; Computer Science, Theory & Methods SC Computer Science GA CU8BR UT WOS:000363766600014 ER PT J AU Oryspayev, D Aktulga, HM Sosonkina, M Maris, P Vary, JP AF Oryspayev, Dossay Aktulga, Hasan Metin Sosonkina, Masha Maris, Pieter Vary, James P. TI Performance analysis of distributed symmetric sparse matrix vector multiplication algorithm for multi-core architectures SO CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE LA English DT Article DE distributed symmetric SpMVM; hybrid MPI/OpenMP parallelism; topology-aware mapping; reduced data movement ID SPECTRAL METHODS AB Sparse matrix vector multiply (SpMVM) is an important kernel that frequently arises in high performance computing applications. Due to its low arithmetic intensity, several approaches have been proposed in literature to improve its scalability and efficiency in large scale computations. In this paper, our target systems are high end multi-core architectures and we use messaging passing interface + open multiprocessing hybrid programming model for parallelism. We analyze the performance of recently proposed implementation of the distributed symmetric SpMVM, originally developed for large sparse symmetric matrices arising in ab initio nuclear structure calculations. We study important features of this implementation and compare with previously reported implementations that do not exploit underlying symmetry. Our SpMVM implementations leverage the hybrid paradigm to efficiently overlap expensive communications with computations. Our main comparison criterion is the CPU core hours' metric, which is the main measure of resource usage on supercomputers. We analyze the effects of topology-aware mapping heuristic using simplified network load model. We have tested the different SpMVM implementations on two large clusters with 3D Torus and Dragonfly topology. Our results show that the distributed SpMVM implementation that exploits matrix symmetry and hides communication yields the best value for the CPU core hours' metric and significantly reduces data movement overheads. Copyright (c) 2015John Wiley & Sons, Ltd. C1 [Oryspayev, Dossay; Sosonkina, Masha] Iowa State Univ, Ames Lab DOE, Ames, IA 50011 USA. [Aktulga, Hasan Metin] Michigan State Univ, Dept Comp Sci & Engn, E Lansing, MI 48824 USA. [Aktulga, Hasan Metin] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA. [Sosonkina, Masha] Old Dominion Univ, Dept Modeling Simulat & Visualizat Engn, Norfolk, VA 23529 USA. [Maris, Pieter; Vary, James P.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Oryspayev, D (reprint author), Iowa State Univ, Ames Lab DOE, Ames, IA 50011 USA. EM dossayo@iastate.edu FU Iowa State University; US Department of Energy (DOE) [DE-AC02-07CH11358]; SciDAC/NUCLEI [DESC0008485]; National Science Foundation [NSF/OCI-0941434, 0904782, 1047772]; Office of Science of the US Department of Energy [DE-AC02-05CH11231]; Division of Nuclear Physics [DE-FG02-87ER40371] FX This work was supported in part by Iowa State University with the US Department of Energy (DOE) under the contract DE-AC02-07CH11358 and the grants DESC0008485 (SciDAC/NUCLEI) and DE-FG02-87ER40371 (Division of Nuclear Physics) and in part by the National Science Foundation grant NSF/OCI-0941434, 0904782, 1047772. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the US Department of Energy under Contract No. DE-AC02-05CH11231. NR 37 TC 1 Z9 1 U1 1 U2 12 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1532-0626 EI 1532-0634 J9 CONCURR COMP-PRACT E JI Concurr. Comput.-Pract. Exp. PD DEC 10 PY 2015 VL 27 IS 17 BP 5019 EP 5036 DI 10.1002/cpe.3499 PG 18 WC Computer Science, Software Engineering; Computer Science, Theory & Methods SC Computer Science GA CU8BR UT WOS:000363766600026 ER PT J AU Jain, A Ong, SP Chen, W Medasani, B Qu, XH Kocher, M Brafman, M Petretto, G Rignanese, GM Hautier, G Gunter, D Persson, KA AF Jain, Anubhav Ong, Shyue Ping Chen, Wei Medasani, Bharat Qu, Xiaohui Kocher, Michael Brafman, Miriam Petretto, Guido Rignanese, Gian-Marco Hautier, Geoffroy Gunter, Daniel Persson, Kristin A. TI FireWorks: a dynamic workflow system designed for high-throughput applications SO CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE LA English DT Article DE scientific workflows; high-throughput computing; fault-tolerant computing ID PYTHON AB This paper introduces FireWorks, a workflow software for running high-throughput calculation workflows at supercomputing centers. FireWorks has been used to complete over 50 million CPU-hours worth of computational chemistry and materials science calculations at the National Energy Research Supercomputing Center. It has been designed to serve the demanding high-throughput computing needs of these applications, with extensive support for (i) concurrent execution through job packing, (ii) failure detection and correction, (iii) provenance and reporting for long-running projects, (iv) automated duplicate detection, and (v) dynamic workflows (i.e., modifying the workflow graph during runtime). We have found that these features are highly relevant to enabling modern data-driven and high-throughput science applications, and we discuss our implementation strategy that rests on Python and NoSQL databases (MongoDB). Finally, we present performance data and limitations of our approach along with planned future work. Copyright (c) 2015 John Wiley & Sons, Ltd. C1 [Jain, Anubhav; Chen, Wei; Qu, Xiaohui; Kocher, Michael; Persson, Kristin A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy & Technol Div, Berkeley, CA 94720 USA. [Ong, Shyue Ping] Univ Calif San Diego, Dept Nanoengn, La Jolla, CA 92093 USA. [Medasani, Bharat; Brafman, Miriam; Gunter, Daniel] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA. [Petretto, Guido; Rignanese, Gian-Marco; Hautier, Geoffroy] Catholic Univ Louvain, European Theoret Spect Facil ETSF, Inst Condensed Matter & Nanosci IMCN, Louvain La Neuve, Belgium. RP Jain, A (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy & Technol Div, Berkeley, CA 94720 USA. EM ajain@lbl.gov RI Rignanese, Gian-Marco/A-7435-2008; Chen, Wei/B-3045-2012; Ong, Shyue Ping/D-7573-2014; OI Rignanese, Gian-Marco/0000-0002-1422-1205; Chen, Wei/0000-0002-1135-7721; Ong, Shyue Ping/0000-0001-5726-2587; Medasani, Bharat/0000-0002-2073-4162 FU Materials Project (DOE Basic Energy Sciences) [EDCBEE]; Joint Center for Energy Storage Research (JCESR), an Energy Innovation Hub - US Department of Energy, Office of Science, Basic Energy Sciences; Universite catholique de Louvain through "Fonds d'appui a l'internationalisation"; European Union Marie Curie Career Integration (CIG) grant HTforTCOs [PCIG11-GA-2012-321988]; Office of Science of US Department of Energy [DE-AC02-05CH11231] FX Work at the Lawrence Berkeley National Laboratory was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, under Contract No. DE-AC02-05CH11231. The FWS software was funded by the Materials Project (DOE Basic Energy Sciences Grant No. EDCBEE). Further funding was provided by the Joint Center for Energy Storage Research (JCESR), an Energy Innovation Hub funded by the US Department of Energy, Office of Science, Basic Energy Sciences. Additional work was supported by the Universite catholique de Louvain through the "Fonds d'appui a l'internationalisation". G. H. acknowledges support by the European Union Marie Curie Career Integration (CIG) grant HTforTCOs PCIG11-GA-2012-321988. This research used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the US Department of Energy under Contract No. DE-AC02-05CH11231. We thank M. Hargrove, D. Waroquiers, W. D. Richards, F. Brockherde, B. Foster, and W. Scullin for their contributions to the project. We thank L. Ramakrishnan and M. Haranczyk for their helpful comments on the manuscript. NR 41 TC 24 Z9 24 U1 10 U2 46 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1532-0626 EI 1532-0634 J9 CONCURR COMP-PRACT E JI Concurr. Comput.-Pract. Exp. PD DEC 10 PY 2015 VL 27 IS 17 BP 5037 EP 5059 DI 10.1002/cpe.3505 PG 23 WC Computer Science, Software Engineering; Computer Science, Theory & Methods SC Computer Science GA CU8BR UT WOS:000363766600027 ER PT J AU Anzt, H Haugen, B Kurzak, J Luszczek, P Dongarra, J AF Anzt, Hartwig Haugen, Blake Kurzak, Jakub Luszczek, Piotr Dongarra, Jack TI Experiences in autotuning matrix multiplication for energy minimization on GPUs SO CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE LA English DT Article DE automatic software tuning; hardware accelerators; matrix multiplication; power; energy ID PROCESSORS; ALGORITHMS AB In this paper, we report extensive results and analysis of autotuning the computationally intensive graphics processing units kernel for dense matrix-matrix multiplication in double precision. In contrast to traditional autotuning and/or optimization for runtime performance only, we also take the energy efficiency into account. For kernels achieving equal performance, we show significant differences in their energy balance. We also identify the memory throughput as the most influential metric that trades off performance and energy efficiency. As a result, the performance optimal case ends up not being the most efficient kernel in overall resource use. Copyright (c) 2015John Wiley & Sons, Ltd. C1 [Anzt, Hartwig; Haugen, Blake; Kurzak, Jakub; Luszczek, Piotr; Dongarra, Jack] Univ Tennessee, Dept Elect Engn & Comp Sci EECS, Knoxville, TN 37996 USA. [Dongarra, Jack] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Dongarra, Jack] Univ Manchester, Manchester M13 9PL, Lancs, England. RP Anzt, H (reprint author), Univ Tennessee, Innovat Comp Lab ICL, Knoxville, TN 37996 USA. EM hanzt@icl.utk.edu OI Luszczek, Piotr/0000-0002-0089-6965 FU Bench-testing Environment for Automated Software Tuning (BEAST)' from National Science Foundation [SHF-1320603]; Russian Scientific Fund [N14-11-00190]; NVIDIA, Intel; AMD corporations FX This work is supported by grant #SHF-1320603: 'Bench-testing Environment for Automated Software Tuning (BEAST)' from the National Science Foundation, the Russian Scientific Fund, Agreement N14-11-00190, and also in part by the NVIDIA, Intel and AMD corporations. We would like to thank the Oak Ridge National Laboratory (ORNL) for access to the Titan supercomputer, where development of the BEAST project takes place. We would also like to thank the Swiss National Computing Centre (CSCS) for granting access to their system and support in deploying the energy measurements. NR 39 TC 0 Z9 0 U1 0 U2 0 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1532-0626 EI 1532-0634 J9 CONCURR COMP-PRACT E JI Concurr. Comput.-Pract. Exp. PD DEC 10 PY 2015 VL 27 IS 17 BP 5096 EP 5113 DI 10.1002/cpe.3516 PG 18 WC Computer Science, Software Engineering; Computer Science, Theory & Methods SC Computer Science GA CU8BR UT WOS:000363766600030 ER PT J AU Lin, PT Heroux, MA Barrett, RF Williams, AB AF Lin, Paul T. Heroux, Michael A. Barrett, Richard F. Williams, Alan B. TI Assessing a mini-application as a performance proxy for a finite element method engineering application SO CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE LA English DT Article DE miniapps; proxy application; performance proxy; validation; finite element method; co-design ID NONSYMMETRIC LINEAR-SYSTEMS AB The performance of a large-scale, production-quality science and engineering application (app') is often dominated by a small subset of the code. Even within that subset, computational and data access patterns are often repeated, so that an even smaller portion can represent the performance-impacting features. If application developers, parallel computing experts, and computer architects can together identify this representative subset and then develop a small mini-application (miniapp') that can capture these primary performance characteristics, then this miniapp can be used to both improve the performance of the app as well as provide a tool for co-design for the high-performance computing community. However, a critical question is whether a miniapp can effectively capture key performance behavior of an app. This study provides a comparison of an implicit finite element semiconductor device modeling app on unstructured meshes with an implicit finite element miniapp on unstructured meshes. The goal is to assess whether the miniapp is predictive of the performance of the app. Single compute node performance will be compared, as well as scaling up to 16,000 cores. Results indicate that the miniapp can be reasonably predictive of the performance characteristics of the app for a single iteration of the solver on a single compute node. Published 2015. This article is a U.S. Government work and is in the public domain in the USA. C1 [Lin, Paul T.; Heroux, Michael A.; Barrett, Richard F.; Williams, Alan B.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Lin, PT (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM ptlin@sandia.gov FU DOE NNSA ASC program at Sandia Labs; Lockheed Martin Corporation for US Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The authors are grateful to Michael Davis for assistance on the Cray XE6 and with PAPI, to Gary Hennigan for providing the 2D and 3D test cases, and to Doug Doerfler for helpful discussion. We thank the LLNL BG/Q team for assistance, especially Scott Futral, John Gyllenhaal, Jeff Fier, and Tom Spelce. We also thank Gary Hennigan (Charon PI), Robert Hoekstra, Joseph Castro, Deborah Fixel, Roger Pawlowski, Eric Phipps, Lawrence Musson, and John Shadid for their collaborative effort in developing the Charon code. The authors gratefully acknowledge the generous support of the the DOE NNSA ASC program at Sandia Labs. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 28 TC 0 Z9 0 U1 0 U2 2 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1532-0626 EI 1532-0634 J9 CONCURR COMP-PRACT E JI Concurr. Comput.-Pract. Exp. PD DEC 10 PY 2015 VL 27 IS 17 BP 5374 EP 5389 DI 10.1002/cpe.3587 PG 16 WC Computer Science, Software Engineering; Computer Science, Theory & Methods SC Computer Science GA CU8BR UT WOS:000363766600044 ER PT J AU Hu, MS Wang, Y Rutqvist, J AF Hu, Mengsu Wang, Yuan Rutqvist, Jonny TI Development of a discontinuous approach for modeling fluid flow in heterogeneous media using the numerical manifold method SO INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS LA English DT Article DE heterogeneous media; refraction law; Lagrange multiplier method; fluid flow; numerical manifold method ID FINITE-ELEMENT-METHOD; GALERKIN METHODS; POROUS-MEDIA; COVER METHOD; LAGRANGIAN-MULTIPLIERS; DIFFUSION-PROBLEMS; SIMULATION; FORMULATIONS; COMPUTATIONS; DISPERSION AB In the numerical modeling of fluid flow in heterogeneous geological media, large material contrasts associated with complexly intersected material interfaces are challenging, not only related to mesh discretization but also for the accurate realization of the corresponding boundary constraints. To address these challenges, we developed a discontinuous approach for modeling fluid flow in heterogeneous media using the numerical manifold method (NMM) and the Lagrange multiplier method (LMM) for modeling boundary constraints. The advantages of NMM include meshing efficiency with fixed mathematical grids (covers), the convenience of increasing the approximation precision, and the high integration precision provided by simplex integration. In this discontinuous approach, the elements intersected by material interfaces are divided into different elements and linked together using the LMM. We derive and compare different forms of LMMs and arrive at a new LMM that is efficient in terms of not requiring additional Lagrange multiplier topology, yet stringently derived by physical principles, and accurate in numerical performance. To demonstrate the accuracy and efficiency of the NMM with the developed LMM for boundary constraints, we simulate a number of verification and demonstration examples, involving a Dirichlet boundary condition and dense and intersected material interfaces. Last, we applied the developed model for modeling fluid flow in heterogeneous media with several material zones containing a fault and an opening. We show that the developed discontinuous approach is very suitable for modeling fluid flow in strongly heterogeneous media with good accuracy for large material contrasts, complex Dirichlet boundary conditions, or complexly intersected material interfaces. Copyright (c) 2015 John Wiley & Sons, Ltd. C1 [Hu, Mengsu; Wang, Yuan] Hohai Univ, Coll Civil & Transportat Engn, Nanjing 210098, Jiangsu, Peoples R China. [Hu, Mengsu; Wang, Yuan; Rutqvist, Jonny] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Wang, Y (reprint author), Hohai Univ, Coll Civil & Transportat Engn, Nanjing 210098, Jiangsu, Peoples R China. EM wangyuan@hhu.edu.cn RI Rutqvist, Jonny/F-4957-2015; Hu, Mengsu/O-6202-2016 OI Rutqvist, Jonny/0000-0002-7949-9785; Hu, Mengsu/0000-0002-8853-2022 FU National Natural Science Foundation [51179060]; Education Ministry Foundation of China [20110094130002]; Graduates Science Innovation Research Project of Jiangsu Province [CXZZ12_0230]; China Scholarship Council; Program for Changjiang Scholars and Innovative Research Team in University [IRT1125]; 111 Project [B13024]; U.S. Department of Energy [DE-AC02-05CH11231] FX The research was supported by the National Natural Science Foundation (No. 51179060), the Education Ministry Foundation of China (No. 20110094130002), Graduates Science Innovation Research Project of Jiangsu Province (No. CXZZ12_0230), and China Scholarship Council and in part supported by the Program for Changjiang Scholars and Innovative Research Team in University (No. IRT1125), the 111 Project (No. B13024), and the U.S. Department of Energy under contract No.DE-AC02-05CH11231. NR 46 TC 1 Z9 2 U1 3 U2 14 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0363-9061 EI 1096-9853 J9 INT J NUMER ANAL MET JI Int. J. Numer. Anal. Methods Geomech. PD DEC 10 PY 2015 VL 39 IS 17 BP 1932 EP 1952 DI 10.1002/nag.2390 PG 21 WC Engineering, Geological; Materials Science, Multidisciplinary; Mechanics SC Engineering; Materials Science; Mechanics GA CT6AD UT WOS:000362891700005 ER PT J AU Choi, WI Wood, BC Schwegler, E Ogitsu, T AF Choi, Woon Ih Wood, Brandon C. Schwegler, Eric Ogitsu, Tadashi TI Combinatorial Search for High-Activity Hydrogen Catalysts Based on Transition-Metal-Embedded Graphitic Carbons SO ADVANCED ENERGY MATERIALS LA English DT Article ID DENSITY-FUNCTIONAL THEORY; OXYGEN-REDUCTION REACTION; ELECTROLYTE FUEL-CELLS; EVOLUTION REACTION; DOPED GRAPHENE; RECENT PROGRESS; SURFACE; CO; ELECTROCATALYSTS; SIZE AB Transition metal (TM) atoms in porphyrin-like complexes play important roles in many protein and enzymetic systems, where crystal-field effects are used to modify d-orbital levels. Inspired by the tunable electronic structure of these motifs, a high-throughput computational search for synthetic hydrogen catalysts is performed based on a similar motif of TM atoms embedded into the lattice of graphene. Based on an initial list of 300 possible embedding geometries, binders, and host atoms, descriptors for stability and catalytic activity are applied to extract ten promising candidates for hydrogen evolution, two of which are expected to exhibit high activity for hydrogen oxidation. In several instances, the active TM atoms are earth-abundant elements that show no activity in the bulk phase, highlighting the importance of the coordination environment in tuning the d-orbitals. In addition, it is found that the most active candidates involve a hitherto unreported surface reaction pathway that involves a Kubas-complex intermediate, which significantly lowers the kinetic barrier associated with hydrogen dissociation and association C1 [Choi, Woon Ih; Wood, Brandon C.; Schwegler, Eric; Ogitsu, Tadashi] Lawrence Livermore Natl Lab, Quantum Simulat Grp, Livermore, CA 94550 USA. RP Choi, WI (reprint author), Samsung Adv Inst Technol, 130 Samsung Ro, Suwon 443803, Gyeonggi Do, South Korea. EM choi12@llnl.gov OI Choi, Woon Ih/0000-0002-7183-3400 FU Laboratory Directed Research and Development (LDRD) program [11-ERD-73]; EERE hydrogen and Fuel Cells program of US Department of Energy; U.S. Department of Energy by LLNL [DE-AC52-07NA27344] FX The authors acknowledge helpful discussions with Joel Varley (LLNL). The authors also gratefully acknowledge funding support from the Laboratory Directed Research and Development (LDRD) program (11-ERD-73) at LLNL. This work was partially supported by EERE hydrogen and Fuel Cells program of US Department of Energy. Computing support came from the Lawrence Livermore National Laboratory (LLNL) Institutional Computing Grand Challenge program. This work was performed under the auspices of the U.S. Department of Energy by LLNL under Contract DE-AC52-07NA27344. NR 74 TC 2 Z9 2 U1 14 U2 55 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 1614-6832 EI 1614-6840 J9 ADV ENERGY MATER JI Adv. Energy Mater. PD DEC 9 PY 2015 VL 5 IS 23 AR 1501423 DI 10.1002/aenm.201501423 PG 8 WC Chemistry, Physical; Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Energy & Fuels; Materials Science; Physics GA CZ6GQ UT WOS:000367199600015 ER PT J AU Ma, W Yang, GF Jiang, K Carpenter, JH Wu, Y Meng, XY McAfee, T Zhao, JB Zhu, CH Wang, C Ade, H Yan, H AF Ma, Wei Yang, Guofang Jiang, Kui Carpenter, Joshua H. Wu, Yang Meng, Xiangyi McAfee, Terry Zhao, Jingbo Zhu, Chenhui Wang, Cheng Ade, Harald Yan, He TI Influence of Processing Parameters and Molecular Weight on the Morphology and Properties of High-Performance PffBT4T-2OD:PC71BM Organic Solar Cells SO ADVANCED ENERGY MATERIALS LA English DT Article ID X-RAY-SCATTERING; HIGH-EFFICIENCY; DOMAIN PURITY; POLYMER; PHOTOVOLTAICS; CRYSTALLINITY; ORIENTATION; MISCIBILITY; BLENDS; DONOR AB The influences of various processing parameters and polymer molecular weight on the morphology and properties of poly[(5,6-difluoro-2,1,3-benzothiadiazol-4,7-diyl)-alt-(3,3'''-di(2-octyldodecyl) 2,2';5',2 '';5 '',2'''-quaterthiophen-5,5'''-diyl)] (PffBT4T-2OD)-based polymer solar cells (PSCs) are investigated. High spin rate/high temperature conditions are found to significantly reduce polymer crystallinity and change polymer backbone orientation from face-on to edge-on. Most surprisingly, it is found that the median domain sizes of PffBT4T-2OD:PC71BM blends processed at different temperatures/spin rates are nearly identical, while the average domain purity and the molecular orientation relative to polymer: fullerene interfaces can be significantly changed by the processing conditions. A systematic study is carried out to identify the roles of individual processing parameters including processing temperature, spin rate, concentration, and solvent mixtures. Furthermore, the effect of molecular weight on morphology control is also examined. These detailed studies provide important guidance to control and optimize various morphological parameters and thus electrical properties of PffBT4T-2OD-type materials for the application in PSC. C1 [Ma, Wei; Yang, Guofang; Wu, Yang; Meng, Xiangyi] Xi An Jiao Tong Univ, State Key Lab Mech Behav Mat, Xian 710049, Peoples R China. [Yang, Guofang; Jiang, Kui; Zhao, Jingbo; Yan, He] Hong Kong Univ Sci & Technol, Dept Chem, Kowloon, Hong Kong, Peoples R China. [Carpenter, Joshua H.; McAfee, Terry; Ade, Harald] N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA. [Zhu, Chenhui; Wang, Cheng] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Ma, W (reprint author), Xi An Jiao Tong Univ, State Key Lab Mech Behav Mat, Xian 710049, Peoples R China. EM msewma@mail.xjtu.edu.cn; harald_ade@ncsu.edu; hyan@ust.hk RI MA, Wei/E-1254-2013; McAfee, Terry/J-6460-2014; Wang, Cheng/A-9815-2014; OI MA, Wei/0000-0001-6926-1960; McAfee, Terry/0000-0003-3970-2846; ZHAO, Jingbo/0000-0002-1143-482X; Ma, Wei/0000-0002-7239-2010; Yan, He/0000-0003-1780-8308 FU NSFC of China [21504006, 21534003]; Office of Science, Office of Basic Energy Sciences of U.S. Department of Energy [DE-AC02-05CH11231]; ONR Grant [N000141410531]; National Basic Research Program of China (973 Program) [2013CB834705] FX W.M. thanks the support fron NSFC of China (21504006, 21534003). X-ray data were acquired at beamlines 7.3.3 and 11.0.1.2 at the Advanced Light Source, which was supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Work by J.H.C. and H.A. was supported by ONR Grant No. N000141410531. This work was partially supported by the National Basic Research Program of China (973 Program; 2013CB834705). NR 55 TC 21 Z9 21 U1 24 U2 103 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 1614-6832 EI 1614-6840 J9 ADV ENERGY MATER JI Adv. Energy Mater. PD DEC 9 PY 2015 VL 5 IS 23 AR 1501400 DI 10.1002/aenm.201501400 PG 9 WC Chemistry, Physical; Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Energy & Fuels; Materials Science; Physics GA CZ6GQ UT WOS:000367199600014 ER PT J AU Phillips, PJ Bareno, J Li, Y Abraham, DP Klie, RF AF Phillips, Patrick J. Bareno, Javier Li, Yan Abraham, Daniel P. Klie, Robert F. TI On the Localized Nature of the Structural Transformations of Li2MnO3 Following Electrochemical Cycling SO ADVANCED ENERGY MATERIALS LA English DT Article ID LI-ION BATTERIES; TRANSMISSION ELECTRON-MICROSCOPY; DARK-FIELD STEM; CATHODE MATERIALS; MANGANESE OXIDES; LITHIUM BATTERIES; RICH; PHASE; CELLS; MN AB Although the Li-excess layered-oxide Li2MnO3 has a high theoretical capacity, structural transformations within the oxide during electrochemical cycling lead to relatively low experimental capacities, hindering its use in practical applications. Here, aberration-corrected scanning transmission electron microscopy/electron energy loss spectroscopy and high-resolution X-ray diffraction are used to characterize the oxide following electrochemical cycling. Microscopy reveals the coexistence of regions with local monoclinic, spinel, and rock-salt symmetries, indicating localized and inhomogeneous structural evolutions. Crystal structure transformations are observed both at the particle surface and in the bulk. At the surface, these transformed regions resemble spinel Mn3O4 or rock-salt MnO, consistent with oxygen loss. In the bulk, the regions resemble defect spinels, such as the layered-spinel LixMn4/3O4, which suggest a partial phase transformation consistent with oxygen retention. Both microscopy and diffraction data of the cycled sample indicate areas of pristine Li2MnO3; the presence of such areas, in close proximity to LixMn4/3O4 areas, suggests that the layered to spinel structure transformation is partially reversible. Spinel, disordered rock salt, and pristine areas are also observed in Li2MnO3 samples intentionally damaged by electron beam irradiation. This observation indicates that the dynamic processes resulting in phase transformations can be studied for a variety of oxide systems by a judicious selection of irradiation conditions. C1 [Phillips, Patrick J.; Klie, Robert F.] Univ Illinois, Dept Phys, Chicago, IL 60607 USA. [Phillips, Patrick J.; Klie, Robert F.] Argonne Natl Lab, Joint Ctr Energy Storage Res, Argonne, IL 60439 USA. [Bareno, Javier; Li, Yan; Abraham, Daniel P.] Argonne Natl Lab, Chem Sci & Engn, Argonne, IL 60439 USA. RP Phillips, PJ (reprint author), Univ Illinois, Dept Phys, 845 West Taylor St, Chicago, IL 60607 USA. EM pjphil@uic.edu; abraham@anl.gov RI Li, Yan/H-2957-2012 OI Li, Yan/0000-0002-9801-7243 FU Joint Center for Energy Storage Research (JCESR) an Energy Innovation Hub - U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences; U.S. Department of Energy's Vehicle Technologies Program; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; National Science Foundation [DMR-0959470] FX The authors acknowledge A. Nicholls of the UIC Research Resources Center, J. Croy (Argonne) for providing the oxide material used in this study and for his comments to improve the manuscript, M. Balasubramanian (APS, Argonne) for several enlightening discussions, and Matt Suchomel at APS beam line 11-BM for help with the high-resolution X-ray powder diffraction experiments. P.J.P. and R.F.K. acknowledge financial support from the Joint Center for Energy Storage Research (JCESR), an Energy Innovation Hub funded by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences. Support from the U.S. Department of Energy's Vehicle Technologies Program, specifically from Peter Faguy and Dave Howell, is gratefully acknowledged. Use of the Advanced Photon Source (APS) at Argonne was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. This work made use of instruments in the Research Resources Center, UIC; the UIC JEOL JEM-ARM 200CF was supported by an MRI-R2 grant from the National Science Foundation (Grant No. DMR-0959470). NR 40 TC 5 Z9 5 U1 21 U2 90 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 1614-6832 EI 1614-6840 J9 ADV ENERGY MATER JI Adv. Energy Mater. PD DEC 9 PY 2015 VL 5 IS 23 AR 1501252 DI 10.1002/aenm.201501252 PG 12 WC Chemistry, Physical; Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Energy & Fuels; Materials Science; Physics GA CZ6GQ UT WOS:000367199600009 ER PT J AU Yang, ZZ Dixon, MC Erck, RA Trahey, L AF Yang, Zhenzhen Dixon, Matthew C. Erck, Robert A. Trahey, Lynn TI Quantification of the Mass and Viscoelasticity of Interfacial Films on Tin Anodes Using EQCM-D SO ACS APPLIED MATERIALS & INTERFACES LA English DT Article DE electrochemical quartz crystal microbalance; EQCM-D; tin anode; FEC additive; SEI viscoelasticity; Voigt model ID LITHIUM-ION BATTERIES; SOLID-ELECTROLYTE INTERPHASE; QUARTZ-CRYSTAL MICROBALANCE; IN-SITU; FLUOROETHYLENE CARBONATE; QCM-D; SPECTROSCOPIC ELLIPSOMETRY; VINYLENE CARBONATE; PASSIVE FILM; SEI AB Electrochemical quartz crystal microbalance coupled with dissipation (EQCM-D) is employed to investigate the solid electrolyte interphase (SEI) formation and Li insertion/deinsertion into thin film electrodes of tin. Based on the frequency change we find that the initial SEI formation process is rapid before Li insertion but varies significantly with increasing concentration of the additive fluoroethylene carbonate (FEC) in the electrolyte. The extent of dissipation, which represents the film rigidity, increases with cycle number, reflecting film thickening and softening. Dissipation values are almost twice as large in the baseline electrolyte (1.2 M LiPF6 in 3:7 wt % ethylene carbonate:ethyl methyl carbonate), indicating the film in baseline electrolyte is roughly twice as soft as in the FEC-containing cells. More importantly, we detail how quantitative data about mass, thickness, shear elastic modulus, and shear viscosity in a time-resolved manner can be obtained from the EQCM-D response. These parameters were extracted from the frequency and dissipation results at multiple harmonics using the Sauerbrey and Voigt viscoelastic models. From these modeled results we show the dynamic mass changes for each half cycle. We also demonstrate that different amounts of FEC additive influence the SEI formation behavior and result in differences in the estimated mass, shear modulus and viscosity. After three cycles, the film in baseline electrolyte exhibits a 1.2 times larger mass change compared with the film in the FEC-containing electrolyte. The shear elastic modulus of films formed in the presence of FEC is larger than in the baseline electrolyte at early stages of lithiation. Also with lithiation is a marked increase in film viscosity, which together point to a much stiffer and more homogeneous SEI formed in the presence of FEC. C1 [Yang, Zhenzhen] Argonne Natl Lab, Chem Sci & Engn Div, Lemont, IL 60439 USA. [Erck, Robert A.] Argonne Natl Lab, Div Energy Syst, Lemont, IL 60439 USA. [Trahey, Lynn] Argonne Natl Lab, Joint Ctr Energy Storage Res, Lemont, IL 60439 USA. [Dixon, Matthew C.] Biolin Sci Inc, Linthicum Hts, MD 21090 USA. RP Trahey, L (reprint author), Argonne Natl Lab, Joint Ctr Energy Storage Res, 9700 South Cass Ave, Lemont, IL 60439 USA. EM trahey@anl.gov FU Center for Electrochemical Energy Science, an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences FX Thank you for Dr. Zhenxing Feng for the grazing incidence Xray diffraction measurement on Sn films. This work was supported by the Center for Electrochemical Energy Science, an Energy Frontier Research Center funded by U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. NR 52 TC 3 Z9 3 U1 11 U2 49 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1944-8244 J9 ACS APPL MATER INTER JI ACS Appl. Mater. Interfaces PD DEC 9 PY 2015 VL 7 IS 48 BP 26585 EP 26594 DI 10.1021/acsami.5b07966 PG 10 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA CY3VX UT WOS:000366339100030 PM 26600393 ER PT J AU White, JL Baruch, MF Pander, JE Hu, Y Fortmeyer, IC Park, JE Zhang, T Liao, K Gu, J Yan, Y Shaw, TW Abelev, E Bocarsly, AB AF White, James L. Baruch, Maor F. Pander, James E., III Hu, Yuan Fortmeyer, Ivy C. Park, James Eujin Zhang, Tao Liao, Kuo Gu, Jing Yan, Yong Shaw, Travis W. Abelev, Esta Bocarsly, Andrew B. TI Light-Driven Heterogeneous Reduction of Carbon Dioxide: Photocatalysts and Photoelectrodes SO CHEMICAL REVIEWS LA English DT Review ID METAL-ORGANIC FRAMEWORKS; ELECTROCHEMICAL CO2 REDUCTION; TITANIUM-OXIDE CATALYSTS; GEL DERIVED TITANIA; SILICON SEMICONDUCTING ELECTRODES; INDIUM-PHOSPHIDE ELECTRODES; ANATASE TIO2 NANOSHEETS; LOW-DIMENSIONAL SYSTEMS; PARA-GALLIUM ARSENIDE; JUNCTION SOLAR-CELLS C1 [White, James L.; Baruch, Maor F.; Pander, James E., III; Hu, Yuan; Fortmeyer, Ivy C.; Park, James Eujin; Zhang, Tao; Liao, Kuo; Shaw, Travis W.; Abelev, Esta; Bocarsly, Andrew B.] Princeton Univ, Dept Chem, Princeton, NJ 08544 USA. [Gu, Jing; Yan, Yong] Natl Renewable Energy Lab, Chem & Mat Sci Ctr, Golden, CO 80401 USA. RP Bocarsly, AB (reprint author), Princeton Univ, Dept Chem, Princeton, NJ 08544 USA. EM bocarsly@princeton.edu OI White, James/0000-0002-8216-7212 FU U.S. Department of Energy Office of Basic Energy Sciences; U.S. National Science Foundation [CHE-1308652] FX We acknowledge the financial support provided by the U.S. Department of Energy Office of Basic Energy Sciences through Grant DE-SC0002133 for the photoelectrochemical aspects of this paper and the financial support provided by the U.S. National Science Foundation through Grant CHE-1308652 for the electrochemical and molecular catalysis aspects of this paper. NR 423 TC 99 Z9 99 U1 144 U2 461 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0009-2665 EI 1520-6890 J9 CHEM REV JI Chem. Rev. PD DEC 9 PY 2015 VL 115 IS 23 SI SI BP 12888 EP 12935 DI 10.1021/acs.chemrev.5b00370 PG 48 WC Chemistry, Multidisciplinary SC Chemistry GA CY3VY UT WOS:000366339200008 PM 26444652 ER PT J AU Wang, WH Himeda, Y Muckerman, JT Manbeck, GF Fujita, E AF Wang, Wan-Hui Himeda, Yuichiro Muckerman, James T. Manbeck, Gerald F. Fujita, Etsuko TI CO2 Hydrogenation to Formate and Methanol as an Alternative to Photo- and Electrochemical CO2 Reduction SO CHEMICAL REVIEWS LA English DT Review ID FORMIC-ACID DEHYDROGENATION; CARBON-DIOXIDE HYDROGENATION; METAL-LIGAND COOPERATION; SELECTIVE ELECTROCATALYTIC REDUCTION; HOMOGENEOUS CATALYTIC-HYDROGENATION; ASYMMETRIC TRANSFER HYDROGENATION; RUTHENIUM COMPLEXES BEARING; HALF-SANDWICH COMPLEXES; DEFINED IRON CATALYST; AQUEOUS-SOLUTION C1 [Wang, Wan-Hui] Dalian Univ Technol, Sch Petr & Chem Engn, Panjin 124221, Peoples R China. [Himeda, Yuichiro] Natl Inst Adv Ind Sci & Technol, Tsukuba, Ibaraki 3058565, Japan. [Himeda, Yuichiro] ACT C, JST, Kawaguchi, Saitama 3320012, Japan. [Muckerman, James T.; Manbeck, Gerald F.; Fujita, Etsuko] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Wang, WH (reprint author), Dalian Univ Technol, Sch Petr & Chem Engn, Panjin 124221, Peoples R China. EM chem_wangwh@dlut.edu.cn; himeda.y@aist.go.jp; fujita@bnl.gov RI Wang, Wan-Hui/J-8773-2012 OI Wang, Wan-Hui/0000-0002-5943-4589 FU Dalian University of Technology (Xinghai Scholars Program; the Fundamental Research Funds for the Central Universities) [DUT14RC(3)082]; National Natural Science Foundation of China [21402019]; Japan Science and Technology Agency (JST); U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC00112704] FX W.-H.W. is thankful for financial support from the Dalian University of Technology (Xinghai Scholars Program; the Fundamental Research Funds for the Central Universities, Grant no. DUT14RC(3)082) and the National Natural Science Foundation of China (Grant no. 21402019). Y.H. thanks the Japan Science and Technology Agency (JST), ACT-C, for financial support. The work at BNL was carried out under contract DE-SC00112704 with the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. NR 289 TC 101 Z9 102 U1 148 U2 525 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0009-2665 EI 1520-6890 J9 CHEM REV JI Chem. Rev. PD DEC 9 PY 2015 VL 115 IS 23 SI SI BP 12936 EP 12973 DI 10.1021/acs.chemrev.5b00197 PG 38 WC Chemistry, Multidisciplinary SC Chemistry GA CY3VY UT WOS:000366339200009 PM 26335851 ER PT J AU Guo, SJ Fidler, AF He, K Su, D Chen, G Lin, QL Pietryga, JM Klimov, VI AF Guo, Shaojun Fidler, Andrew F. He, Kai Su, Dong Chen, Gen Lin, Qianglu Pietryga, Jeffrey M. Klimov, Victor I. TI Shape-Controlled Narrow-Gap SnTe Nanostructures: From Nanocubes to Nanorods and Nanowires SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID PBSE QUANTUM DOTS; NANOCRYSTALS; SEMICONDUCTORS; PERFORMANCE; GENERATION; SIZE AB The rational design and synthesis of narrow-gap colloidal semiconductor nanocrystals (NCs) is an important step toward the next generation of solution-processable photovoltaics, photodetectors, and thermoelectric devices. SnTe NCs are particularly attractive as a Pb-free alternative to NCs of narrow-gap lead chalcogenides. Previous synthetic efforts on SnTe NCs have focused on spherical nanoparticles. Here we report new strategies for synthesis of SnTe NCs with shapes tunable from highly monodisperse nanocubes, to nanorods (NRs) with variable aspect ratios, and finally to long, straight nanowires (NWS). Reaction at high temperature quickly forms thermodynamically favored nanocubes, but low temperatures lead to elongated particles. Transmission electron microscopy studies of reaction products at various stages of the synthesis reveal that the growth and shape-focusing of monodisperse SnTe nanocubes likely involves interparticle ripening, while directional growth of NRs and NWs may be initiated by particle dimerization via oriented attachment. C1 [Guo, Shaojun; Fidler, Andrew F.; Lin, Qianglu; Pietryga, Jeffrey M.; Klimov, Victor I.] Los Alamos Natl Lab, Div Chem, Ctr Adv Solar Photophys, Los Alamos, NM 87545 USA. [He, Kai; Su, Dong] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Chen, Gen] New Mexico State Univ, Dept Chem & Mat Engn, Las Cruces, NM 88003 USA. RP Guo, SJ (reprint author), Los Alamos Natl Lab, Div Chem, Ctr Adv Solar Photophys, POB 1663, Los Alamos, NM 87545 USA. EM sguo@lanl.gov; pietryga@lanl.gov; klimov@lanl.gov RI Guo, Shaojun/A-8449-2011; CHEN, GEN/K-9436-2014; He, Kai/B-9535-2011; Su, Dong/A-8233-2013; OI Guo, Shaojun/0000-0002-5941-414X; CHEN, GEN/0000-0003-3504-3572; He, Kai/0000-0003-4666-1800; Su, Dong/0000-0002-1921-6683; Klimov, Victor/0000-0003-1158-3179 FU Center for Advanced Solar Photophysics (CASP), an Energy Frontier Research Center - U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences; LANL Oppenheimer Distinguished Postdoctoral Fellowship; LANL Director's Postdoctoral Fellowship; DOE, Office of Basic Energy Sciences [DESC0012704] FX This work was supported by the Center for Advanced Solar Photophysics (CASP), an Energy Frontier Research Center funded by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences. S.G. is a CASP member supported by a LANL Oppenheimer Distinguished Postdoctoral Fellowship. A.F.F. is a CASP member supported by a LANL Director's Postdoctoral Fellowship. TEM work was carried out in part at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the DOE, Office of Basic Energy Sciences, under Contract No. DESC0012704. NR 29 TC 8 Z9 8 U1 22 U2 132 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD DEC 9 PY 2015 VL 137 IS 48 BP 15074 EP 15077 DI 10.1021/jacs.5b09490 PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA CY3WF UT WOS:000366339900004 PM 26545157 ER PT J AU Chen, JYC Dang, LN Liang, HF Bi, WL Gerken, JB Jin, S Alp, EE Stahl, SS AF Chen, Jamie Y. C. Dang, Lianna Liang, Hanfeng Bi, Wenli Gerken, James B. Jin, Song Alp, E. Ercan Stahl, Shannon S. TI Operando Analysis of NiFe and Fe Oxyhydroxide Electrocatalysts for Water Oxidation: Detection of Fe4+ by Mossbauer Spectroscopy SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID OXYGEN EVOLUTION REACTION; OXIDE FILMS; ELECTROCHEMICAL-BEHAVIOR; ALKALINE ELECTROLYTES; HYDROXIDE ELECTRODE; NICKEL-HYDROXIDE; METAL; IRON; CATALYSIS; NANOSHEETS AB Nickel-iron oxides/hydroxides are among the most active electrocatalysts for the oxygen evolution reaction. In an effort to gain insight into the role of Fe in these catalysts, we have performed operando Mossbauer spectroscopic studies of a 3:1 Ni:Fe layered hydroxide and a hydrous Fe oxide electrocatalyst. The catalysts were prepared by a hydrothermal precipitation method that enabled catalyst growth directly on carbon paper electrodes. Fe4+ species were detected in the NiFe hydroxide catalyst during steady-state water oxidation, accounting for up to 21% of the total Fe. In contrast, no Fe's was detected in the Fe oxide catalyst. The observed Fe4+ species are not kinetically competent to serve as the active site in water oxidation; however, their presence has important implications for the role of Fe in NiFe oxide electrocatalysts. C1 [Chen, Jamie Y. C.; Dang, Lianna; Liang, Hanfeng; Gerken, James B.; Jin, Song; Stahl, Shannon S.] Univ Wisconsin, Dept Chem, Madison, WI 53706 USA. [Bi, Wenli; Alp, E. Ercan] Argonne Natl Lab, Adv Photon Source, Lemont, IL 60439 USA. RP Jin, S (reprint author), Univ Wisconsin, Dept Chem, 1101 Univ Ave, Madison, WI 53706 USA. EM jin@chem.wisc.edu; eea@aps.anl.gov; stahl@chem.wisc.edu RI Jin, Song/B-4300-2008 FU NSF CCI grant [CHE-1305124]; DOE [DE-AC02-06CH11357, COMPRES]; NSF [DMR-1508558]; China Scholarship Council FX We thank Dr. Dennis Brown (Northern Illinois Univ.) for help during preliminary Mossbauer experiments. This research is supported by the NSF CCI grant CHE-1305124. Work at ANL was supported by DOE (DE-AC02-06CH11357 and COMPRES). S.J. thanks NSF DMR-1508558 for support. H.L. thanks the China Scholarship Council for support. NR 47 TC 33 Z9 33 U1 24 U2 126 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD DEC 9 PY 2015 VL 137 IS 48 BP 15090 EP 15093 DI 10.1021/jacs.5b10699 PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA CY3WF UT WOS:000366339900008 PM 26601790 ER PT J AU DeMartini, JD Foston, M Meng, XZ Jung, S Kumar, R Ragauskas, AJ Wyman, CE AF DeMartini, Jaclyn D. Foston, Marcus Meng, Xianzhi Jung, Seokwon Kumar, Rajeev Ragauskas, Arthur J. Wyman, Charles E. TI How chip size impacts steam pretreatment effectiveness for biological conversion of poplar wood into fermentable sugars SO BIOTECHNOLOGY FOR BIOFUELS LA English DT Article DE Biofuels; Enzymes; Digestibility; Woody biomass; Pretreatment; Wood chip; Particle size ID NUCLEAR-MAGNETIC-RESONANCE; MOISTURE-CONTENT DETERMINATION; CELLULOSE FIBER WALL; ENZYMATIC-HYDROLYSIS; HYDROTHERMAL PRETREATMENT; WATER INTERACTIONS; ACID-HYDROLYSIS; PARTICLE-SIZE; H-2 NMR; BIOMASS AB Background: Woody biomass is highly recalcitrant to enzymatic sugar release and often requires significant size reduction and severe pretreatments to achieve economically viable sugar yields in biological production of sustainable fuels and chemicals. However, because mechanical size reduction of woody biomass can consume significant amounts of energy, it is desirable to minimize size reduction and instead pretreat larger wood chips prior to biological conversion. To date, however, most laboratory research has been performed on materials that are significantly smaller than applicable in a commercial setting. As a result, there is a limited understanding of the effects that larger biomass particle size has on the effectiveness of steam explosion pretreatment and subsequent enzymatic hydrolysis of wood chips. Results: To address these concerns, novel downscaled analysis and high throughput pretreatment and hydrolysis (HTPH) were applied to examine whether differences exist in the composition and digestibility within a single pre-treated wood chip due to heterogeneous pretreatment across its thickness. Heat transfer modeling, Simons' stain testing, magnetic resonance imaging (MRI), and scanning electron microscopy (SEM) were applied to probe the effects of pretreatment within and between pretreated wood samples to shed light on potential causes of variation, pointing to enzyme accessibility (i.e., pore size) distribution being a key factor dictating enzyme digestibility in these samples. Application of these techniques demonstrated that the effectiveness of pretreatment of Populus tremuloides can vary substantially over the chip thickness at short pretreatment times, resulting in spatial digestibility effects and overall lower sugar yields in subsequent enzymatic hydrolysis. Conclusions: These results indicate that rapid decompression pretreatments (e.g., steam explosion) that specifically alter accessibility at lower temperature conditions are well suited for larger wood chips due to the non-uniformity in temperature and digestibility profiles that can result from high temperature and short pretreatment times. Furthermore, this study also demonstrated that wood chips were hydrated primarily through the natural pore structure during pretreatment, suggesting that preserving the natural grain and transport systems in wood during storage and chipping processes could likely promote pretreatment efficacy and uniformity. C1 [DeMartini, Jaclyn D.; Kumar, Rajeev; Wyman, Charles E.] Univ Calif Riverside, Dept Chem & Environm Engn, Riverside, CA 92507 USA. [DeMartini, Jaclyn D.; Kumar, Rajeev; Wyman, Charles E.] Univ Calif Riverside, Bourns Coll Engn, Ctr Environm Res & Technol, Riverside, CA 92507 USA. [DeMartini, Jaclyn D.; Foston, Marcus; Meng, Xianzhi; Jung, Seokwon; Kumar, Rajeev; Ragauskas, Arthur J.; Wyman, Charles E.] Oak Ridge Natl Lab, BESC BioEnergy Sci Ctr, Oak Ridge, TN 37831 USA. [Foston, Marcus; Meng, Xianzhi; Jung, Seokwon] Georgia Inst Technol, Inst Paper Sci & Technol, Sch Chem & Biochem, Atlanta, GA 30332 USA. [Foston, Marcus] Washington Univ, Dept Energy Environm & Chem Engn, St Louis, MO 63130 USA. [Ragauskas, Arthur J.] Univ Tennessee, Dept Chem & Biomol Engn, Ctr Renewable Carbon, Knoxville, TN 37996 USA. [Ragauskas, Arthur J.] Univ Tennessee, Dept Forestry Wildlife & Fisheries, Ctr Renewable Carbon, Knoxville, TN 37996 USA. RP Wyman, CE (reprint author), Univ Calif Riverside, Dept Chem & Environm Engn, Riverside, CA 92507 USA. EM charles.wyman@ucr.edu OI Ragauskas, Arthur/0000-0002-3536-554X FU Office of Biological and Environmental Research in the DOE Office of Science through the BioEnergy Science Center (BESC); Ford Motor Company of the Chair in Environmental Engineering at the University of California Riverside (UCR); US Department of Energy [DE-AC05-00OR22725] FX We gratefully acknowledge support for this research by the Office of Biological and Environmental Research in the DOE Office of Science through the BioEnergy Science Center (BESC). We also appreciate support by the Ford Motor Company of the Chair in Environmental Engineering at the University of California Riverside (UCR) that augments our ability to perform such research. The authors would also like to extend their appreciation to Benchmark Environmental for providing the biomass materials used in this study. This manuscript has been authored by UT-Battelle, LLC under contract no. DE-AC05-00OR22725 with the US Department of Energy. The publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan). NR 50 TC 2 Z9 2 U1 15 U2 36 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1754-6834 J9 BIOTECHNOL BIOFUELS JI Biotechnol. Biofuels PD DEC 9 PY 2015 VL 8 AR 209 DI 10.1186/s13068-015-0373-1 PG 16 WC Biotechnology & Applied Microbiology; Energy & Fuels SC Biotechnology & Applied Microbiology; Energy & Fuels GA CY2VE UT WOS:000366265500001 PM 26664502 ER PT J AU Monazam, ER Breault, RW Tian, HJ Siriwardane, R AF Monazam, Esmail R. Breault, Ronald W. Tian, Hanjing Siriwardane, Ranjani TI Reaction Kinetics of Mixed CuO-Fe2O3 with Methane as Oxygen Carriers for Chemical Looping Combustion SO INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH LA English DT Article ID IRON-OXIDE; CRYSTALLIZATION KINETICS; REDUCTION; CATALYSTS; HEMATITE; SPINEL; THERMOGRAVIMETRY; COMPOSITE; HYDROGEN; CUFE2O4 AB Reduction kinetics of alumina supported mixed Cu ferrite oxide by methane was investigated for chemical looping combustion by the thermogravimetric analyzer (TGA) in the temperature range of 750-900 degrees C using continuous streams of 10%, 20%, and 30% CH4 concentrations balanced by helium. The rate of reduction was determined by weight change. The variations of activation energies and n values (JMA exponent) during the reduction conversion indicate that the methane combustion with CuO and Fe2O3 proceeds via a multistage reaction process. A kinetic model based on three parallel reactions was applied to the reduction data. The analysis of reduction showed that three reduction steps proceed simultaneously with the activation energies of 55.32 +/- 3.11, 70.0 +/- 2.0, and 165.0 +/- 5.4 kJ/mol, respectively. C1 [Monazam, Esmail R.; Breault, Ronald W.; Siriwardane, Ranjani] US DOE, Natl Energy Technol Lab, Morgantown, WV 26507 USA. [Monazam, Esmail R.] REM Engn Serv PLLC, Morgantown, WV 26505 USA. [Tian, Hanjing] W Virginia Univ, Dept Chem Engn, Morgantown, WV 26506 USA. RP Breault, RW (reprint author), US DOE, Natl Energy Technol Lab, 3610 Collins Ferry Rd, Morgantown, WV 26507 USA. EM ronald.breault@netl.doe.gov FU Department of Energy through the office of Fossil Energy's Gasification Technology and Advanced Research funding programs FX The authors acknowledge the Department of Energy for funding the research through the office of Fossil Energy's Gasification Technology and Advanced Research funding programs. Special thanks go to Duane D. Miller and Thomas Simonyi of URS Energy & Construction, Inc. for their assistance with experimental work and data. NR 33 TC 3 Z9 3 U1 10 U2 58 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0888-5885 J9 IND ENG CHEM RES JI Ind. Eng. Chem. Res. PD DEC 9 PY 2015 VL 54 IS 48 BP 11966 EP 11974 DI 10.1021/acs.iecr.5b02848 PG 9 WC Engineering, Chemical SC Engineering GA CY3WY UT WOS:000366341800005 ER PT J AU Du, CH Lee, I Adur, R Obukhov, Y Hamann, C Buchner, B McCord, J Pelekhov, DV Hammel, PC AF Du, Chunhui Lee, Inhee Adur, Rohan Obukhov, Yuri Hamann, Christine Buchner, Bernd McCord, Jeffrey Pelekhov, Denis V. Hammel, P. Chris TI Imaging interfaces defined by abruptly varying internal magnetic fields by means of scanned nanoscale spin wave modes SO PHYSICAL REVIEW B LA English DT Article AB Nanoscale devices fabricated out of magnetic heterostructures are central to the emerging field of spintronics, so understanding of magnetization dynamics at interfaces between dissimilar materials is essential. Here we report local imaging of magnetization dynamics at the interface formed by a sharp discontinuity in the magnetic properties of a ferromagnetic thin film using localized mode ferromagnetic resonance force microscopy (FMRFM). The behavior of the localized modes near the interface evolves with increasing magnitude of the FMRFM probe field due to its competition with the steplike internal demagnetizing field. We use micromagnetic modeling to visualize the evolution of the localized mode as the magnetic probe is scanned across the interface. Our results demonstrate the ability to image sharp changes in internal magnetic properties in nanoscale devices and provide insights into the mechanisms underlying the generation and manipulation of localized modes near the interface, thus providing a new tool for microscopic studies of spin transport across magnetic interfaces and spin dynamics in their vicinity. C1 [Du, Chunhui; Lee, Inhee; Adur, Rohan; Pelekhov, Denis V.; Hammel, P. Chris] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Lee, Inhee] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Lee, Inhee] Cornell Univ, Lab Atom & Solid State Phys, Dept Phys, Ithaca, NY 14853 USA. [Obukhov, Yuri] HGST, San Jose, CA 95135 USA. [Hamann, Christine; Buchner, Bernd] IFW Dresden, Inst Metall Mat, D-01171 Dresden, Germany. [McCord, Jeffrey] Univ Kiel, Inst Mat Sci, D-24143 Kiel, Germany. RP Du, CH (reprint author), Ohio State Univ, Dept Phys, 174 W 18th Ave, Columbus, OH 43210 USA. EM pelekhov.1@osu.edu; hammel@physics.osu.edu RI Buchner, Bernd/E-2437-2016; Hammel, P Chris/O-4845-2014; OI Buchner, Bernd/0000-0002-3886-2680; Hammel, P Chris/0000-0002-4138-4798; Du, Chunhui/0000-0001-8063-7711 FU US Department of Energy (DOE), Office of Science, Basic Energy Sciences [DE-FG02-03ER46054]; Center for Emergent Materials (CEM), an NSF [DMR-1420451]; German Science Foundation (DFG) [MC9/7-2]; CEM FX This work was primarily supported by the US Department of Energy (DOE), Office of Science, Basic Energy Sciences, under Award No. DE-FG02-03ER46054 (FMRFM characterization and modeling). This work was also supported in part by the Center for Emergent Materials (CEM), an NSF-funded MRSEC under Award No. DMR-1420451 (development and implementation of materials growth, structural, and magnetic characterization). This work was further supported in part by the German Science Foundation (DFG) under Grant No. MC9/7-2. This work was supported in part by an allocation of computing time from the Ohio Supercomputer Center (micromagnetics calculations). We also acknowledge technical support and assistance provided by the NanoSystems Laboratory at the Ohio State University which is partially supported by the CEM. NR 25 TC 0 Z9 0 U1 0 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD DEC 9 PY 2015 VL 92 IS 21 AR 214413 DI 10.1103/PhysRevB.92.214413 PG 5 WC Physics, Condensed Matter SC Physics GA CY0GH UT WOS:000366083900002 ER PT J AU Geilhufe, M Nayak, SK Thomas, S Dane, M Tripathi, GS Entel, P Hergert, W Ernst, A AF Geilhufe, Matthias Nayak, Sanjeev K. Thomas, Stefan Daene, Markus Tripathi, Gouri S. Entel, Peter Hergert, Wolfram Ernst, Arthur TI Effect of hydrostatic pressure and uniaxial strain on the electronic structure of Pb1-xSnxTe SO PHYSICAL REVIEW B LA English DT Article ID COHERENT-POTENTIAL APPROXIMATION; DILUTED MAGNETIC SEMICONDUCTORS; QUASI-RANDOM STRUCTURES; BAND-STRUCTURE; THERMOELECTRIC-MATERIALS; ELECTRICAL-PROPERTIES; ELASTIC-CONSTANTS; AB-INITIO; ALLOYS; PBTE AB The electronic structure of Pb1-xSnxTe is studied by using the relativistic Korringa-Kohn-Rostoker Green function method in the framework of density functional theory. For all concentrations x, Pb1-xSnxTe is a direct semiconductor with a narrow band gap. In contrast to pure lead telluride, tin telluride shows an inverted band characteristic close to the Fermi energy. It will be shown that this particular property can be tuned, first, by alloying PbTe and SnTe and, second, by applying hydrostatic pressure or uniaxial strain. Furthermore, the magnitude of strain needed to switch between the regular and inverted band gap can be tuned by the alloy composition. Thus there is a range of potential usage of Pb1-xSnxTe for spintronic applications. C1 [Geilhufe, Matthias; Thomas, Stefan; Ernst, Arthur] Max Planck Inst Microstruct Phys, D-06120 Halle, Germany. [Nayak, Sanjeev K.; Hergert, Wolfram] Martin Luther Univ Halle Wittenberg, Inst Phys, D-06120 Halle, Germany. [Daene, Markus] Lawrence Livermore Natl Lab, Phys & Life Sci, Livermore, CA 94551 USA. [Tripathi, Gouri S.] Berhampur Univ, Phys Dept, Berhampur 760007, Odisha, India. [Entel, Peter] Univ Duisburg Essen, Fac Phys, D-47048 Duisburg, Germany. [Entel, Peter] Univ Duisburg Essen, CENIDE, D-47048 Duisburg, Germany. RP Geilhufe, M (reprint author), Max Planck Inst Microstruct Phys, Weinberg 2, D-06120 Halle, Germany. EM sanjeev.nayak@physik.uni-halle.de FU Deutsche Forschungsgemeinschaft [SFB762, SPP 1666]; U.S. Department of Energy, National Nuclear Security Administration [DE-AC52-07NA27344] FX The financial support from Deutsche Forschungsgemeinschaft through the framework of SFB762 "Functionality of Oxide Interfaces" and through the priority program SPP 1666 "Topological Insulators" is acknowledged. Lawrence Livermore National Laboratory is operated by Lawrence Livermore National Security, LLC, for the U.S. Department of Energy, National Nuclear Security Administration under Contract No. DE-AC52-07NA27344. NR 61 TC 2 Z9 2 U1 7 U2 28 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD DEC 9 PY 2015 VL 92 IS 23 AR 235203 DI 10.1103/PhysRevB.92.235203 PG 6 WC Physics, Condensed Matter SC Physics GA CY0IO UT WOS:000366090000001 ER PT J AU Chang, E Detmold, W Orginos, K Parreno, A Savage, MJ Tiburzi, BC Beane, SR AF Chang, Emmanuel Detmold, William Orginos, Kostas Parreno, Assumpta Savage, Martin J. Tiburzi, Brian C. Beane, Silas R. CA NPLQCD Collaboration TI Magnetic structure of light nuclei from lattice QCD SO PHYSICAL REVIEW D LA English DT Article ID CHIRAL PERTURBATION-THEORY; EFFECTIVE-FIELD THEORY; COMPTON-SCATTERING; GAUGE-THEORIES; CROSS-SECTION; POLARIZABILITIES; PROTON; MOMENTS; DEUTERON; NEUTRON AB Lattice QCD with background magnetic fields is used to calculate the magnetic moments and magnetic polarizabilities of the nucleons and of light nuclei with A <= 4, along with the cross section for the M1 transition np -> d gamma, at the flavor SU(3)-symmetric point where the pion mass is m(pi) similar to 806 MeV. These magnetic properties are extracted from nucleon and nuclear energies in six uniform magnetic fields of varying strengths. The magnetic moments are presented in a recent article [S. Beane et al., Phys. Rev. Lett. 113, 252001 (2014)]. For the charged states, the extraction of the polarizability requires careful treatment of Landau levels, which enter nontrivially in the method that is employed. The nucleon polarizabilities are found to be of similar magnitude to their physical values, with beta(p) = 5.22((+0.66)(-0.45))(0.23) x 10(-4) fm(3) and beta(n) = 1.253((+0.056)(-0.067))(0.055) x 10(-4) fm(3), exhibiting a significant isovector component. The dineutron is bound at these heavy quark masses, and its magnetic polarizability, beta(nn) = 1.872((+0.121)(-0.113))(0.082) x 10(-4) fm(3), differs significantly from twice that of the neutron. A linear combination of deuteron scalar and tensor polarizabilities is determined by the energies of the j(z) = +/- 1 deuteron states and is found to be beta(d,+/- 1) = 4.4((+1.6)(-1.5))(0.2) x 10(-4) fm(3). The magnetic polarizabilities of the three-nucleon and four-nucleon systems are found to be positive and similar in size to those of the proton, beta(3He) = 5.4((+2.2)(-2.1))(0.2) x 10(-4) fm(3), beta(3H) = 2.6(1.7)(0.1) x 10(-4) fm(3), and beta(4He) = 3.4((+2.0)(-1.9))(0.2) x 10(-4) fm(3). Mixing between the j(z) = 0 deuteron state and the spin-singlet np state induced by the background magnetic field is used to extract the short-distance two-nucleon counterterm, (L) over bar (1), of the pionless effective theory for NN systems (equivalent to the meson-exchange current contribution in nuclear potential models) that dictates the cross section for the np -> d gamma process near threshold. Combined with previous determinations of NN scattering parameters, this enables an ab initio determination of the threshold cross section at these unphysical masses. C1 [Chang, Emmanuel; Savage, Martin J.] Univ Washington, Inst Nucl Theory, Seattle, WA 98195 USA. [Detmold, William] MIT, Ctr Theoret Phys, Cambridge, MA 02139 USA. [Orginos, Kostas] Coll William & Mary, Dept Phys, Williamsburg, VA 23187 USA. [Orginos, Kostas] Jefferson Lab, Newport News, VA 23606 USA. [Parreno, Assumpta] Univ Barcelona, ICC, Dept Estruct & Constituents Mat, E-08028 Barcelona, Spain. [Tiburzi, Brian C.] CUNY City Coll, Dept Phys, New York, NY 10031 USA. [Tiburzi, Brian C.] CUNY Grad Sch & Univ Ctr, New York, NY 10016 USA. [Tiburzi, Brian C.] Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. [Beane, Silas R.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. RP Chang, E (reprint author), Univ Washington, Inst Nucl Theory, Seattle, WA 98195 USA. FU National Science Foundation [OCI-1053575]; NERSC (U.S. Department of Energy) [DE-AC02-05CH11231]; USQCD Collaboration; Office of Science of the U.S. Department of Energy [DE-AC05-00OR22725]; NSF [PHY1206498]; U.S. Department of Energy Early Career Research Award [DE-SC0010495]; MEC (Spain) [FIS2011-24154]; FEDER; DOE [DE-FG02-00ER41132]; City College of New York-RIKEN/Brookhaven Research Center fellowship; Professional Staff Congress of the CUNY; U.S. National Science Foundation [PHY12-05778]; U.S. Department of Energy [DE-FG02-04ER41302, DE-AC05-06OR23177] FX We would like to thank Zohreh Davoudi, Harald Grie beta hammer, Daekyoung Kang, David B. Kaplan, Daniel Phillips, and Sanjay Reddy for several interesting discussions, and in particular Zohreh Davoudi for exchanges leading to clarifications of the Appendix. Calculations were performed using computational resources provided by the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation Grant No. OCI-1053575, NERSC (supported by U.S. Department of Energy Grant No. DE-AC02-05CH11231), and by the USQCD Collaboration. This research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725. The PRACE Research Infrastructure resources Curie based in France at the Tres Grand Centre de Calcul and MareNostrum-III based in Spain at the Barcelona Supercomputing Center were also used. Parts of the calculations used the Chroma software suite [ 79]. S. R. B. was partially supported by NSF continuing Grant No. PHY1206498. W. D. was supported by the U.S. Department of Energy Early Career Research Award No. DE-SC0010495. K. O. was supported by the U.S. Department of Energy through Grant No. DE-FG02-04ER41302 and through Grant No. DE-AC05-06OR23177 under which JSA operates the Thomas Jefferson National Accelerator Facility. The work of A. P. was supported by Contract No. FIS2011-24154 from MEC (Spain) and FEDER. M. J. S. was supported by DOE Grant No. DE-FG02-00ER41132. B. C. T. was supported in part by a joint City College of New York-RIKEN/Brookhaven Research Center fellowship, a grant from the Professional Staff Congress of the CUNY, and by the U.S. National Science Foundation, under Grant No. PHY12-05778. NR 85 TC 13 Z9 13 U1 1 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD DEC 9 PY 2015 VL 92 IS 11 AR 114502 DI 10.1103/PhysRevD.92.114502 PG 33 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CY0KY UT WOS:000366096200003 ER PT J AU Francis, A Kaczmarek, O Laine, M Neuhaus, T Ohno, H AF Francis, A. Kaczmarek, O. Laine, M. Neuhaus, T. Ohno, H. TI Nonperturbative estimate of the heavy quark momentum diffusion coefficient SO PHYSICAL REVIEW D LA English DT Article ID ELECTRICAL-CONDUCTIVITY; COLLISIONS; PLASMA AB We estimate the momentum diffusion coefficient of a heavy quark within a pure SU(3) plasma at a temperature of about 1.5Tc. Large-scale Monte Carlo simulations on a series of lattices extending up to 192(3) x 48 permit us to carry out a continuum extrapolation of the so-called color-electric imaginary-time correlator. The extrapolated correlator is analyzed with the help of theoretically motivated models for the corresponding spectral function. Evidence for a nonzero transport coefficient is found and, incorporating systematic uncertainties reflecting model assumptions, we obtain kappa = (1.8- 3.4)T-3. This implies that the "drag coefficient," characterizing the time scale at which heavy quarks adjust to hydrodynamic flow, is eta(-1)(D) eta(-1)(D) = (1.8-3.4) (T-c/T)(2) (M/1.5 GeV) fm/c, where M is the heavy quark kinetic mass. The results apply to bottom and, with somewhat larger systematic uncertainties, to charm quarks. C1 [Francis, A.] York Univ, Dept Phys & Astron, Toronto, ON M3J 1P3, Canada. [Kaczmarek, O.] Univ Bielefeld, Fac Phys, D-33501 Bielefeld, Germany. [Laine, M.] Univ Bern, ITP, AEC, CH-3012 Bern, Switzerland. [Laine, M.] Univ Helsinki, Helsinki Inst Phys, FIN-00014 Helsinki, Finland. [Neuhaus, T.] FZ Julich, Inst Adv Simulat, D-52425 Julich, Germany. [Ohno, H.] Univ Tsukuba, Ctr Computat Sci, Ibaraki 3058577, Japan. [Ohno, H.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Francis, A (reprint author), York Univ, Dept Phys & Astron, Toronto, ON M3J 1P3, Canada. OI Laine, Mikko/0000-0002-2680-4213 FU DFG [GRK881]; SNF [200020-155935]; European Union through HadronPhysics3 [283286]; Vaisala Foundation; JSC Julich [JARA0039, JARA0108]; European Union through ITN STRONGnet [238353] FX We thank J. Langelage and M. Muller for collaboration at initial stages of this project and H. Sandmeyer for his work on the 803 x 20 ensemble. M. L. is grateful to H. B. Meyer for helpful discussions. Our work has been supported in part by the DFG under Grant No. GRK881, by the SNF under Grant No. 200020-155935, by the European Union through HadronPhysics3 (Grant No. 283286) and ITN STRONGnet (Grant No. 238353), and by the Vaisala Foundation. Simulations were performed using JARA-HPC resources at the RWTH Aachen and JSC Julich (projects JARA0039 and JARA0108), JUDGE/JUROPA at the JSC Julich, the OCuLUS Cluster at the Paderborn Center for Parallel Computing, and the Bielefeld GPU cluster. NR 60 TC 12 Z9 12 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD DEC 9 PY 2015 VL 92 IS 11 AR 116003 DI 10.1103/PhysRevD.92.116003 PG 9 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CY0KY UT WOS:000366096200006 ER PT J AU Tacik, N Foucart, F Pfeiffer, HP Haas, R Ossokine, S Kaplan, J Muhlberger, C Duez, MD Kidder, LE Scheel, MA Szilagyi, B AF Tacik, Nick Foucart, Francois Pfeiffer, Harald P. Haas, Roland Ossokine, Serguei Kaplan, Jeff Muhlberger, Curran Duez, Matt D. Kidder, Lawrence E. Scheel, Mark A. Szilagyi, Bela TI Binary neutron stars with arbitrary spins in numerical relativity SO PHYSICAL REVIEW D LA English DT Article ID GENERAL-RELATIVITY; GLOBULAR-CLUSTERS; COMPACT BINARIES; SPECTRAL METHOD; SYSTEM; SCHEMES; PHYSICS; PULSAR AB We present a code to construct initial data for binary neutron star systems in which the stars are rotating. Our code, based on a formalism developed by Tichy, allows for arbitrary rotation axes of the neutron stars and is able to achieve rotation rates near rotational breakup. We compute the neutron star angular momentum through quasilocal angular momentum integrals. When constructing irrotational binary neutron stars, we find a very small residual dimensionless spin of similar to 2 x 10(-4). Evolutions of rotating neutron star binaries show that the magnitude of the stars' angular momentum is conserved, and that the spin and orbit precession of the stars is well described by post-Newtonian approximation. We demonstrate that orbital eccentricity of the binary neutron stars can be controlled to similar to 0.1%. The neutron stars show quasinormal mode oscillations at an amplitude which increases with the rotation rate of the stars. C1 [Tacik, Nick; Foucart, Francois; Pfeiffer, Harald P.; Ossokine, Serguei] Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, ON M5S 3H8, Canada. [Tacik, Nick; Ossokine, Serguei] Univ Toronto, Dept Astron & Astrophys, Toronto, ON M5S 3H4, Canada. [Foucart, Francois] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Pfeiffer, Harald P.] Canadian Inst Adv Res, Toronto, ON M5G 1Z8, Canada. [Haas, Roland; Kaplan, Jeff; Scheel, Mark A.; Szilagyi, Bela] CALTECH, Theoret Astrophys 350 17, Pasadena, CA 91125 USA. [Haas, Roland] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-14476 Potsdam, Germany. [Muhlberger, Curran; Kidder, Lawrence E.] Cornell Univ, Ctr Radiophys & Space Res, Ithaca, NY 14853 USA. [Duez, Matt D.] Washington State Univ, Dept Phys & Astron, Pullman, WA 99164 USA. RP Tacik, N (reprint author), Univ Toronto, Canadian Inst Theoret Astrophys, 60 St George St, Toronto, ON M5S 3H8, Canada. FU NSERC of Canada; Canada Research Chairs Program; Canadian Institute for Advanced Research; Vincent and Beatrice Tremaine Postdoctoral Fellowship; NASA through Einstein Postdoctoral Fellowship - Chandra X-ray Center [PF4-150122]; NASA [NAS8-03060]; NSF [PHY-1440083, PHY-1404569, PHY-1068881, CAREER PHY-1151197, PHY-1306125, AST-1333129, PHY-0960291, PHY-1402916]; TCAN [AST-1333520]; NASA ATP Grant [NNX11AC37G]; Canada Foundation for Innovation (CFI) under Compute Canada; Government of Ontario; Ontario Research Fund (ORF)-Research Excellence; University of Toronto; Canada Foundation for Innovation (CFI); Ministere de l'Economie, de l'Innovation et des Exportations du Quebec (MEIE); RMGA; Fonds de recherche du Quebec-Nature et Technologies (FRQ-NT); Sherman Fairchild Foundation; NSF XSEDE network [TG-PHY990007N]; NSF PRAC Award [ACI-1440083] FX We thank Rob Owen and Geoffrey Lovelace for discussions on quasilocal spins. Calculations were performed with the Spectral Einstein Code (SpEC) [83]. We gratefully acknowledge support for this research at CITA from NSERC of Canada, the Canada Research Chairs Program, the Canadian Institute for Advanced Research, and the Vincent and Beatrice Tremaine Postdoctoral Fellowship (F. F.); at LBNL from NASA through Einstein Postdoctoral Fellowship Grant No. PF4-150122 (F. F.) awarded by the Chandra X-ray Center, which is operated by the Smithsonian Astrophysical Observatory for NASA under Contract No. NAS8-03060; at Caltech from the Sherman Fairchild Foundation and NSF Grants No. PHY-1440083, No. PHY-1404569, No. PHY-1068881, No. CAREER PHY-1151197, TCAN No. AST-1333520, and NASA ATP Grant No. NNX11AC37G; at Cornell from the Sherman Fairchild Foundation and NSF Grants No. PHY-1306125 and No. AST-1333129; and at WSU from NSF Grant No. PHY-1402916. Calculations were performed at the GPC supercomputer at the SciNet HPC Consortium [84]; SciNet is funded by the Canada Foundation for Innovation (CFI) under the auspices of Compute Canada; the Government of Ontario; Ontario Research Fund (ORF)-Research Excellence; and the University of Toronto. Further calculations were performed on the Briaree cluster at Sherbrooke University, managed by Calcul Quebec and Compute Canada and with operation funded by the Canada Foundation for Innovation (CFI), Ministere de l'Economie, de l'Innovation et des Exportations du Quebec (MEIE), RMGA and the Fonds de recherche du Quebec-Nature et Technologies (FRQ-NT); on the Zwicky cluster at Caltech, which is supported by the Sherman Fairchild Foundation and by NSF Award No. PHY-0960291; on the NSF XSEDE network under Grant No. TG-PHY990007N; on the NSF/NCSA Blue Waters at the University of Illinois with allocation jr6 under NSF PRAC Award No. ACI-1440083. NR 82 TC 12 Z9 12 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD DEC 9 PY 2015 VL 92 IS 12 AR 124012 DI 10.1103/PhysRevD.92.124012 PG 20 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CY0LM UT WOS:000366097600004 ER PT J AU Sjostrom, T Daligault, J AF Sjostrom, Travis Daligault, Jerome TI Ionic and electronic transport properties in dense plasmas by orbital-free density functional theory SO PHYSICAL REVIEW E LA English DT Article ID LIQUID ALUMINUM; ELECTRICAL-RESISTIVITY; VISCOSITY; DYNAMICS; SYSTEMS AB We validate the application of our recent orbital-free density functional theory (DFT) approach [Phys. Rev. Lett. 113, 155006 (2014);] for the calculation of ionic and electronic transport properties of dense plasmas. To this end, we calculate the self-diffusion coefficient, the viscosity coefficient, the electrical and thermal conductivities, and the reflectivity coefficient of hydrogen and aluminum plasmas. Very good agreement is found with orbital-based Kohn-Sham DFT calculations at lower temperatures. Because the computational costs of the method do not increase with temperature, we can produce results at much higher temperatures than is accessible by the Kohn-Sham method. Our results for warm dense aluminum at solid density are inconsistent with the recent experimental results reported by Sperling et al. C1 [Sjostrom, Travis; Daligault, Jerome] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Sjostrom, T (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. FU National Nuclear Security Administration of the U.S. Department of Energy (DOE) at Los Alamos [DE-AC52-06NA25396]; DOE Office of Fusion Energy Sciences FX This work was carried out under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy (DOE) at Los Alamos under Contract No. DE-AC52-06NA25396. The work was supported by the DOE Office of Fusion Energy Sciences. NR 35 TC 6 Z9 6 U1 4 U2 15 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 EI 1550-2376 J9 PHYS REV E JI Phys. Rev. E PD DEC 9 PY 2015 VL 92 IS 6 AR 063304 DI 10.1103/PhysRevE.92.063304 PG 8 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA CY0MP UT WOS:000366100500018 PM 26764850 ER PT J AU Griffin, T Grosvenor, KT Horava, P Yan, ZQ AF Griffin, Tom Grosvenor, Kevin T. Horava, Petr Yan, Ziqi TI Cascading Multicriticality in Nonrelativistic Spontaneous Symmetry Breaking SO PHYSICAL REVIEW LETTERS LA English DT Article ID GOLDSTONE BOSONS; 2 DIMENSIONS AB Without Lorentz invariance, spontaneous global symmetry breaking can lead to multicritical Nambu-Goldstone modes with a higher-order low-energy dispersion omega similar to k(n) ( n = 2, 3, ...), whose naturalness is protected by polynomial shift symmetries. Here, we investigate the role of infrared divergences and the nonrelativistic generalization of the Coleman-Hohenberg-Mermin-Wagner (CHMW) theorem. We find novel cascading phenomena with large hierarchies between the scales at which the value of n changes, leading to an evasion of the "no-go" consequences of the relativistic CHMW theorem. C1 [Griffin, Tom] Univ London Imperial Coll Sci Technol & Med, Dept Phys, Blackett Lab, London SW7 2AZ, England. [Grosvenor, Kevin T.; Horava, Petr; Yan, Ziqi] Univ Calif Berkeley, Berkeley Ctr Theoret Phys, Berkeley, CA 94720 USA. [Grosvenor, Kevin T.; Horava, Petr; Yan, Ziqi] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Grosvenor, Kevin T.; Horava, Petr; Yan, Ziqi] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. RP Griffin, T (reprint author), Univ London Imperial Coll Sci Technol & Med, Dept Phys, Blackett Lab, London SW7 2AZ, England. OI Griffin, Tom/0000-0002-5783-0473; Grosvenor, Kevin/0000-0002-8383-1998; Yan, Ziqi/0000-0002-9434-5397 FU NSF Grant [PHY-1214644]; Berkeley Center for Theoretical Physics FX We wish to thank Christopher Mogni and Rikard von Unge for useful discussions. This work has been supported by NSF Grant No. PHY-1214644 and by Berkeley Center for Theoretical Physics. NR 26 TC 2 Z9 2 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD DEC 9 PY 2015 VL 115 IS 24 AR 241601 DI 10.1103/PhysRevLett.115.241601 PG 5 WC Physics, Multidisciplinary SC Physics GA CY0PD UT WOS:000366107100006 PM 26705623 ER PT J AU Hong, XG Duffy, TS Ehm, L Weidner, DJ AF Hong, Xinguo Duffy, Thomas S. Ehm, Lars Weidner, Donald J. TI Pressure-induced stiffness of Au nanoparticles to 71 GPa under quasi-hydrostatic loading SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article DE nano materials; high pressure DAC; x-ray diffraction ID X-RAY-DIFFRACTION; EQUATION-OF-STATE; ELASTIC-CONSTANTS; NONHYDROSTATIC COMPRESSION; NANOCRYSTALLINE NICKEL; EARTHS MANTLE; NOBLE-METALS; GOLD; SIZE; TRANSITION AB The compressibility of nanocrystalline gold (n-Au, 20 nm) has been studied by x-ray total scattering using high-energy monochromatic x-rays in the diamond anvil cell under quasi-hydrostatic conditions up to 71 GPa. The bulk modulus, K-0, of the n-Au obtained from fitting to a Vinet equation of state is similar to 196(3) GPa, which is about 17% higher than for the corresponding bulk materials (K-0: 167 GPa). At low pressures (< 7 GPa), the compression behavior of n-Au shows little difference from that of bulk Au. With increasing pressure, the compressive behavior of n-Au gradually deviates from the equation of state (EOS) of bulk gold. Analysis of the pair distribution function, peak broadening and Rietveld refinement reveals that the microstructure of n-Au is nearly a single-grain/domain at ambient conditions, but undergoes substantial pressure-induced reduction in grain size until 10 GPa. The results indicate that the nature of the internal microstructure in n-Au is associated with the observed EOS difference from bulk Au at high pressure. Full-pattern analysis confirms that significant changes in grain size, stacking faults, grain orientation and texture occur in n-Au at high pressure. We have observed direct experimental evidence of a transition in compressional mechanism for n-Au at similar to 20 GPa, i.e. from a deformation dominated by nucleation and motion of lattice dislocations (dislocation-mediated) to a prominent grain boundary mediated response to external pressure. The internal microstructure inside the nanoparticle (nanocrystallinity) plays a critical role for the macro-mechanical properties of nano-Au. C1 [Hong, Xinguo; Ehm, Lars; Weidner, Donald J.] SUNY Stony Brook, Inst Mineral Phys, Stony Brook, NY 11794 USA. [Duffy, Thomas S.] Princeton Univ, Dept Geosci, Princeton, NJ 08544 USA. [Ehm, Lars] Brookhaven Natl Lab, Photon Sci Directorate, Upton, NY 11973 USA. RP Hong, XG (reprint author), SUNY Stony Brook, Inst Mineral Phys, Stony Brook, NY 11794 USA. EM xhong@bnl.gov RI Duffy, Thomas/C-9140-2017 OI Duffy, Thomas/0000-0002-5357-1259 FU COMPRES under NSF [EAR 11-57758]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX We would like to thank S Merkel (Lille), Z Zhong (BNL), X M Yu, S Ghose (BNL) and S Lin for discussion and assistance. L Assoufid (ANL) and C Liu (ANL) are acknowledged for their help with the KB mirrors. This research was supported by COMPRES under NSF EAR 11-57758. Use of the National Synchroton Light Source, Brookhaven National Laboratory, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract no. DE-AC02-98CH10886. NR 65 TC 2 Z9 2 U1 7 U2 18 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 EI 1361-648X J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD DEC 9 PY 2015 VL 27 IS 48 AR 485303 DI 10.1088/0953-8984/27/48/485303 PG 11 WC Physics, Condensed Matter SC Physics GA CW9VS UT WOS:000365346900005 PM 26570982 ER PT J AU Opacic, M Lazarevic, N Scepanovic, M Ryu, H Lei, HC Petrovic, C Popovic, ZV AF Opacic, M. Lazarevic, N. Scepanovic, M. Ryu, Hyejin Lei, Hechang Petrovic, C. Popovic, Z. V. TI Evidence of superconductivity-induced phonon spectra renormalization in alkali-doped iron selenides SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article DE iron selenides; Raman scattering; superconductivity AB Polarized Raman scattering spectra of superconducting KxFe2-ySe2 and non-superconducting K0.8Fe1.8Co0.2Se2 single crystals were measured in the temperature range from 10 K up to 300 K. Two Raman active modes from the I4/mmm phase and seven from the I4/m phase are observed in the frequency range from 150 to 325 cm(-1) in both compounds, suggesting that the K0.8Fe1.8Co0.2Se2 single crystal also has a two-phase nature. The temperature dependence of the Raman mode energy is analyzed in terms of lattice thermal expansion and phonon-phonon interaction. The temperature dependence of the Raman mode linewidth is dominated by temperature-induced anharmonic effects. It is shown that the change in Raman mode energy with temperature is dominantly driven by thermal expansion of the crystal lattice. An abrupt change of the A(1g) mode energy near T-C was observed in KxFe2-ySe2, whereas it is absent in non-superconducting K0.8Fe1.8Co0.2Se2. Phonon energy hardening at low temperatures in the superconducting sample is a consequence of superconductivity-induced redistribution of the electronic states below the critical temperature. C1 [Opacic, M.; Lazarevic, N.; Scepanovic, M.; Popovic, Z. V.] Univ Belgrade, Inst Phys Belgrade, Ctr Solid State Phys & New Mat, Belgrade 11080, Serbia. [Ryu, Hyejin; Lei, Hechang; Petrovic, C.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Ryu, Hyejin; Petrovic, C.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. RP Opacic, M (reprint author), Univ Belgrade, Inst Phys Belgrade, Ctr Solid State Phys & New Mat, Pregrevica 118, Belgrade 11080, Serbia. EM nenadl@ipb.ac.rs RI LEI, Hechang/H-3278-2016 FU Serbian Ministry of Education, Science and Technological Development [ON171032, III45018]; Serbian-Germany bilateral project; US Department of Energy [DE-SC00112704]; Center for Emergent Superconductivity, an Energy Frontier Research Center - US DOE, Office for Basic Energy Science FX We gratefully acknowledge discussions with R Hackl. This work was supported by the Serbian Ministry of Education, Science and Technological Development under Projects ON171032 and III45018, as well as the Serbian-Germany bilateral project 'Competition between s-wave and d-wave pairing in FeSe'. Work at Brookhaven is supported by the US Department of Energy under contract no DE-SC00112704 and in part by the Center for Emergent Superconductivity, an Energy Frontier Research Center funded by the US DOE, Office for Basic Energy Science (HL and CP). NR 33 TC 2 Z9 2 U1 1 U2 14 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 EI 1361-648X J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD DEC 9 PY 2015 VL 27 IS 48 AR 485701 DI 10.1088/0953-8984/27/48/485701 PG 7 WC Physics, Condensed Matter SC Physics GA CW9VS UT WOS:000365346900017 PM 26569081 ER PT J AU Schmeltzer, D Saxena, A AF Schmeltzer, D. Saxena, A. TI Surface state photoelectrons in topological insulators: Green's function approach SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article DE photoemisision; surface states; chiral electrons ID SPIN; MANIPULATION; TEXTURE AB We compute the photoemission intensity and polarization for the surface states in topological insulators. Due to the chirality and linear energy dispersion the effective electron-photon coupling is normalized by the tunneling amplitude (t) into the vacuum. We investigate a chiral Dirac Hamiltonian for different cases: helical, Zeeman and warping, allowing us to study spin textures. Using the Green's function formalism we obtain exact results for the emitted photoelectrons to second order in the laser field. The number of emitted photoelectrons is sensitive to the laser coherent state intensity whereas the photoelectron polarization is sensitive to the surface topology of electronic states and incoming photon polarization. C1 [Schmeltzer, D.] CUNY City Coll, Dept Phys, New York, NY 10031 USA. [Saxena, A.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Schmeltzer, D (reprint author), CUNY City Coll, Dept Phys, New York, NY 10031 USA. EM david@sci.ccny.cuny.edu; avadh@lanl.gov NR 26 TC 0 Z9 0 U1 1 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 EI 1361-648X J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD DEC 9 PY 2015 VL 27 IS 48 AR 485601 DI 10.1088/0953-8984/27/48/485601 PG 8 WC Physics, Condensed Matter SC Physics GA CW9VS UT WOS:000365346900013 PM 26565417 ER PT J AU Hong, YJ Lee, CH Yoo, J Kim, YJ Jeong, J Kim, M Yi, GC AF Hong, Young Joon Lee, Chul-Ho Yoo, Jinkyoung Kim, Yong-Jin Jeong, Junseok Kim, Miyoung Yi, Gyu-Chul TI Emission color-tuned light-emitting diode microarrays of nonpolar InxGa1-xN/GaN multishell nanotube heterostructures SO SCIENTIFIC REPORTS LA English DT Article ID MULTIPLE-QUANTUM-WELLS; NANOROD HETEROSTRUCTURES; NANOWIRE ARRAYS; BEAM EPITAXY; SOLAR-CELLS; GAN; GROWTH; SINGLE; EFFICIENCY; MULTICOLOR AB Integration of nanostructure lighting source arrays with well-defined emission wavelengths is of great importance for optoelectronic integrated monolithic circuitry. We report on the fabrication and optical properties of GaN-based p-n junction multishell nanotube microarrays with composition-modulated nonpolar m-plane InxGa1-xN/GaN multiple quantum wells (MQWs) integrated on c-sapphire or Si substrates. The emission wavelengths were controlled in the visible spectral range of green to violet by varying the indium mole fraction of the InxGa1-xN MQWs in the range 0.13 <= x <= 0.36. Homogeneous emission from the entire area of the nanotube LED arrays was achieved via the formation of MQWs with uniform QW widths and composition by heteroepitaxy on the well-ordered nanotube arrays. Importantly, the wavelength-invariant electroluminescence emission was observed above a turn-on of 3.0 V because both the quantum-confinement Stark effect and band filling were suppressed due to the lack of spontaneous inherent electric field in the m-plane nanotube nonpolar MQWs. The method of fabricating the multishell nanotube LED microarrays with controlled emission colors has potential applications in monolithic nonpolar photonic and optoelectronic devices on commonly used c-sapphire and Si substrates. C1 [Hong, Young Joon; Jeong, Junseok] Sejong Univ, Graphene Res Inst, Fac Nanotechnol & Adv Mat Engn, Seoul 143747, South Korea. [Hong, Young Joon; Jeong, Junseok] Sejong Univ, Hybrid Mat Res Ctr, Seoul 143747, South Korea. [Lee, Chul-Ho] Korea Univ, KU KIST Grad Sch Converging Sci & Technol, Seoul 136701, South Korea. [Yoo, Jinkyoung] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. [Kim, Yong-Jin; Yi, Gyu-Chul] Seoul Natl Univ, Dept Phys & Astron, Seoul 151747, South Korea. [Kim, Yong-Jin; Yi, Gyu-Chul] Seoul Natl Univ, Inst Appl Phys, Seoul 151747, South Korea. [Kim, Miyoung] Seoul Natl Univ, Res Inst Adv Mat RIAM, Dept Mat Sci & Engn, Seoul 151744, South Korea. RP Hong, YJ (reprint author), Sejong Univ, Graphene Res Inst, Fac Nanotechnol & Adv Mat Engn, Seoul 143747, South Korea. EM yjhong@sejong.ac.kr; gcyi@snu.ac.kr RI Kim, Yong-Jin/D-2550-2009; Hong, Young Joon/A-2792-2011; Yoo, Jinkyoung/B-5291-2008; Kim, Miyoung/C-8316-2012; Yi, Gyu-Chul/F-1326-2011 OI Yoo, Jinkyoung/0000-0002-9578-6979; FU National Research Foundation of Korea (NRF) - Ministry of Education, Science and Technology (MEST) [NRF-2013R1A1A2058744]; Human Resources Development of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant - Korea government Ministry of Trade, Industry Energy [20154030200630]; NRF - MEST [NRF-2014M3A7B4051589]; U.S. Department of Energy, Office of Basic Energy Sciences User Facility at Los Alamos National Laboratory [DE-AC52-06NA25396]; Sandia National Laboratories [DE-AC04-94AL85000] FX This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (MEST) (Grant No. NRF-2013R1A1A2058744) and by the Human Resources Development of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government Ministry of Trade, Industry & Energy (No. 20154030200630). The work of Seoul National University was supported by Future-based Technology Development Program (Nano Fields) through the NRF funded by the MEST (NRF-2014M3A7B4051589). The experiments were partly performed at CINT, a U.S. Department of Energy, Office of Basic Energy Sciences User Facility at Los Alamos National Laboratory (Contract DE-AC52-06NA25396) and Sandia National Laboratories (Contract DE-AC04-94AL85000). NR 63 TC 2 Z9 2 U1 8 U2 59 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD DEC 9 PY 2015 VL 5 AR 18020 DI 10.1038/srep18020 PG 9 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CX9OA UT WOS:000366033800001 PM 26648564 ER PT J AU Harris, GG Lombardi, PM Pemberton, TA Matsui, T Weiss, TM Cole, KE Koksal, M Murphy, FV Vedula, LS Chou, WKW Cane, DE Christianson, DW AF Harris, Golda G. Lombardi, Patrick M. Pemberton, Travis A. Matsui, Tsutomu Weiss, Thomas M. Cole, Kathryn E. Koeksal, Mustafa Murphy, Frank V. Vedula, L. Sangeetha Chou, Wayne K. W. Cane, David E. Christianson, David W. TI Structural Studies of Geosmin Synthase, a Bifunctional Sesquiterpene Synthase with alpha alpha Domain Architecture That Catalyzes a Unique Cyclization-Fragmentation Reaction Sequence SO BIOCHEMISTRY LA English DT Article ID FARNESYL DIPHOSPHATE SYNTHASE; STREPTOMYCES-COELICOLOR A3(2); TERPENE BIOSYNTHESIS; PENTALENENE SYNTHASE; STRUCTURE PREDICTION; PROTEIN-STRUCTURE; CRYSTAL-STRUCTURE; SERVER; MECHANISM; CYCLASE AB Geosmin synthase from Streptomyces coelicolor (ScGS) catalyzes an unusual, metal-dependent terpenoid cyclization and fragmentation reaction sequence. Two distinct active sites are required for catalysis: the N-terminal domain catalyzes the ionization and cyclization of farnesyl diphosphate to form germacradienol and inorganic pyrophosphate (PP), and the C-terminal domain catalyzes the protonation, cyclization, and fragmentation of germacradienol to form geosmin and acetone through a retro-Prins reaction. A unique alpha alpha domain architecture is predicted for ScGS based on amino acid sequence: each domain contains the metal-binding motifs typical of a class I terpenoid cyclase, and each domain requires Mg2+ for catalysis. Here, we report the X-ray crystal structure of the unliganded N-terminal domain of ScGS and the structure of its complex with three Mer ions and alendronate. These structures highlight conformational changes required for active site closure and catalysis. Although neither full-length ScGS nor constructs of the C-terminal domain could be crystallized, homology models of the C-terminal domain were constructed on the basis of similar to 36% sequence identity with the N-terminal domain. Small-angle X-ray scattering experiments yield low-resolution molecular envelopes into which the N-terminal domain crystal structure and the C-terminal domain homology model were fit, suggesting possible alpha alpha domain architectures as frameworks for bifunctional catalysis. C1 [Harris, Golda G.; Lombardi, Patrick M.; Pemberton, Travis A.; Cole, Kathryn E.; Koeksal, Mustafa; Vedula, L. Sangeetha; Christianson, David W.] Univ Penn, Dept Chem, Roy & Diana Vagelos Labs, Philadelphia, PA 19104 USA. [Chou, Wayne K. W.; Cane, David E.] Brown Univ, Dept Chem, Providence, RI 02912 USA. [Christianson, David W.] Harvard Univ, Radcliffe Inst Adv Study, Cambridge, MA 02138 USA. [Murphy, Frank V.] Cornell Univ, Northeastern Collaborat Access Team, Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Matsui, Tsutomu; Weiss, Thomas M.] SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, Stanford, CA 94309 USA. RP Christianson, DW (reprint author), Univ Penn, Dept Chem, Roy & Diana Vagelos Labs, Philadelphia, PA 19104 USA. EM chris@sas.upenn.edu FU National Institutes of Health (NIH) [GM56838, GM30301]; NIH Structural Biology and Molecular Biophysics Training Grant; Radcliffe Institute for Advanced Study FX Supported by National Institutes of Health (NIH) Grants GM56838 to D.W.C. and GM30301 to D.E.C., and an NIH Structural Biology and Molecular Biophysics Training Grant to G.G.H. D.W.C. thanks the Radcliffe Institute for Advanced Study for the Elizabeth S. and Richard M. Cashin Fellowship. NR 79 TC 5 Z9 5 U1 3 U2 22 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0006-2960 J9 BIOCHEMISTRY-US JI Biochemistry PD DEC 8 PY 2015 VL 54 IS 48 BP 7142 EP 7155 DI 10.1021/acs.biochem.5b01143 PG 14 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA CY3VZ UT WOS:000366339300010 PM 26598179 ER PT J AU Andaraarachchi, HP Thompson, MJ White, MA Fan, HJ Vela, J AF Andaraarachchi, Himashi P. Thompson, Michelle J. White, Miles A. Fan, Hua-Jun Vela, Javier TI Phase-Programmed Nanofabrication: Effect of Organophosphite Precursor Reactivity on the Evolution of Nickel and Nickel Phosphide Nanocrystals SO CHEMISTRY OF MATERIALS LA English DT Article ID TRANSITION-METAL PHOSPHIDES; MOLECULAR-ORBITAL METHODS; HYDROGEN-EVOLUTION; THERMAL-DECOMPOSITION; NI2P NANOPARTICLES; SOLVOTHERMAL ROUTE; LOW-TEMPERATURE; NI12P5 NANOPARTICLES; HOLLOW NANOCRYSTALS; WHITE PHOSPHORUS AB A better understanding of the chemistry of molecular precursors is useful in achieving more predictable and reproducible nanocrystal preparations. Recently, an efficient approach was introduced that consists of fine-tuning the chemical reactivity of the synthetic molecular precursors used, while keeping all other reaction conditions constant. Using nickel phosphides as a research platform, we have studied how the chemical structure and reactivity of a family of commercially available organophosphite precursors (P(OR)(3), R = alkyl or aryl) alter the preparation of metallic and metal phosphide nanocrystals. Organophosphites are a versatile addition to the pnictide synthetic toolbox, nicely complementing other available precursors such as elemental phosphorus or trioctylphosphine (TOP). Experimental and computational data show that different organophosphite precursors selectively yield N-i, Ni12P5, and Ni2P and that these phases evolve over time through separate mechanistic pathways. Based on our observations, we propose that nickel phosphide formation requires organophosphite coordination to a nickel precursor, followed by intramolecular rearrangement. We also propose that metallic nickel formation involves outer sphere reduction by uncoordinated organophosphite. These two independent pathways are supported by the fact that preformed Ni nanocrystals do not react with some of the most reactive phosphide-forming organophosphites, failing to evolve into nickel phosphide nanocrystals. Overall, the rate at which organophosphites react with nickel(II) chloride or acetate to form nickel phosphides increases in the order P(OMe)(3) < P(OEt)(3) < P(OnBu)(3) < P(OCH(2)tBu)(3) < P(OiPr)(3) < P(OPh)(3). Some organophosphites, such as P(OMe)(3) or P(OiPr)(3), transiently form zerovalent, metallic nickel, while this is the only persistent product observed with the bulky organophosphite P(O-2,4-tBu(2)C(6)H(4))(3). We expect that these results will alleviate the need for time-consuming testing and random optimization of several different reaction conditions, thus enabling a faster development of these and similar pnictide nanomaterials for practical applications. C1 [Andaraarachchi, Himashi P.; Thompson, Michelle J.; White, Miles A.; Vela, Javier] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. [Fan, Hua-Jun] Prairie View A&M Univ, Dept Chem, Prairie View, TX 77446 USA. [Vela, Javier] Ames Lab, Ames, IA 50011 USA. RP Vela, J (reprint author), Iowa State Univ, Dept Chem, Ames, IA 50011 USA. EM vela@iastate.edu RI Vela, Javier/I-4724-2014 OI Vela, Javier/0000-0001-5124-6893 FU National Science Foundation through the Division of Materials Research, Solid State and Materials Chemistry program [NSF-DMR-1309510]; Summer Research mini-grant [115103-00011]; U.S. Department of Energy, NNSA [DE-NA0002630, DE-NA0001861]; Welch Foundation [L0002] FX J.V. gratefully acknowledges the National Science Foundation for funding of this work through the Division of Materials Research, Solid State and Materials Chemistry program (NSF-DMR-1309510). H.-J.F. thanks the Department of Chemistry at Prairie View A&M University for release time, and partial financial support from a 2014 Summer Research mini-grant (115103-00011), the U.S. Department of Energy, NNSA (#DE-NA0002630 and DE-NA0001861), and the Welch Foundation (#L0002). The authors thank Gordie Miller, Irmi Schewe-Miller, Brandi Cossairt, and Yuemei Zhang for comments and valuable discussions. NR 126 TC 4 Z9 4 U1 16 U2 62 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 EI 1520-5002 J9 CHEM MATER JI Chem. Mat. PD DEC 8 PY 2015 VL 27 IS 23 BP 8021 EP 8031 DI 10.1021/acs.chemmater.5b03506 PG 11 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA CY2FC UT WOS:000366223200022 ER PT J AU Stehle, Y Meyer, HM Unocic, RR Kidder, M Polizos, G Datskos, PG Jackson, R Smirnov, SN Vlassiouk, IV AF Stehle, Yijing Meyer, Harry M., III Unocic, Raymond R. Kidder, Michelle Polizos, Georgios Datskos, Panos G. Jackson, Roderick Smirnov, Sergei N. Vlassiouk, Ivan V. TI Synthesis of Hexagonal Boron Nitride Mono layer: Control of Nucleation and Crystal Morphology SO CHEMISTRY OF MATERIALS LA English DT Article ID CHEMICAL-VAPOR-DEPOSITION; N-H COMPOUNDS; THERMAL-DECOMPOSITION; GRAPHENE ELECTRONICS; METAL-SURFACES; MONOLAYER; GROWTH; COPPER; FILMS; CAPACITANCE AB Mono layer hexagonal boron nitride (hBN) attracts significant attention due to the potential to be used as a complementary two-dimensional dielectric in fabrication of functional 2D heterostructures. Here we investigate the growth stages of the hBN single crystals and show that hBN crystals change their shape from triangular to truncated triangular and further to hexagonal depending on copper substrate distance from the precursor. We suggest that the observed hBN crystal shape variation is affected by the ratio of boron to nitrogen active species concentrations on the copper surface inside the CVD reactor. Strong temperature dependence reveals the activation energies for the hBN nucleation process of similar to 5 eV and crystal growth of similar to 3.5 eV. We also show that the resulting h-BN film morphology is strongly affected by the heating method of borazane precursor and the buffer gas. Elucidation of these details facilitated synthesis of high quality large area monolayer hexagonal boron nitride by atmospheric pressure chemical vapor deposition on copper using borazane as a precursor. C1 [Stehle, Yijing; Meyer, Harry M., III; Unocic, Raymond R.; Kidder, Michelle; Polizos, Georgios; Datskos, Panos G.; Jackson, Roderick; Vlassiouk, Ivan V.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Smirnov, Sergei N.] New Mexico State Univ, Dept Chem & Biochem, Las Cruces, NM 88003 USA. RP Smirnov, SN (reprint author), New Mexico State Univ, Dept Chem & Biochem, Las Cruces, NM 88003 USA. EM snsm@nmsu.edu; vlassioukiv@ornl.gov RI Smirnov, Sergei/H-8774-2016; Jackson, Roderick/H-6940-2016; Vlassiouk, Ivan/F-9587-2010; OI Vlassiouk, Ivan/0000-0002-5494-0386; Unocic, Raymond/0000-0002-1777-8228 FU Laboratory Directed Research and Development Program of ORNL; Scientific User Facilities Division, U.S. Department of Energy; U.S. Department of Energy [DE-AC05-00OR22725] FX This research was supported by the Laboratory Directed Research and Development Program of ORNL, managed by UT-Battelle, LLC, for the U.S. Department of Energy. A portion of this research was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, U.S. Department of Energy. The Oak Ridge National Laboratory is operated for the U.S. Department of Energy by UT-Battelle under Contract No. DE-AC05-00OR22725. NR 38 TC 14 Z9 14 U1 19 U2 115 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 EI 1520-5002 J9 CHEM MATER JI Chem. Mat. PD DEC 8 PY 2015 VL 27 IS 23 BP 8041 EP 8047 DI 10.1021/acs.chemmater.5b03607 PG 7 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA CY2FC UT WOS:000366223200024 ER PT J AU Rickert, K Huq, A Lapidus, SH Wustrow, A Ellis, DE Poeppelmeier, KR AF Rickert, Karl Huq, Ashfia Lapidus, Saul. H. Wustrow, Allison Ellis, Donald E. Poeppelmeier, Kenneth R. TI Site Dependency of the High Conductivity of Ga2In6Sn2O16: The Role of the 7-Coordinate Site SO CHEMISTRY OF MATERIALS LA English DT Article ID INITIO MOLECULAR-DYNAMICS; TOTAL-ENERGY CALCULATIONS; DOPED INDIUM OXIDE; WAVE BASIS-SET; TRANSPARENT CONDUCTORS; ELECTRICAL-PROPERTIES; CRYSTAL; SEMICONDUCTORS; METALS; SYSTEM AB The 6-coordinated cation site is the fundamental building block of the most effective transparent conducting oxides. Ga2In6SnO16, however, maintains 4-, 6-, 7-, and 8-coordinated cation sites and still exhibits desirable transparency and high conductivity. To investigate the potential impact of these alternative sites, we partially replace the Sn in Ga2In6Sn2O16 with Ti, Zr, or Hf and use a combined approach of density functional theory-based calculations, X-ray diffraction, and neutron diffraction to establish that the substitution occurs preferentially on the 7-coordinate site. In contrast to Sn, the empty d orbitals of Ti, Zr, and Hf promote spd covalency with the surrounding oxygen, which decreases the conductivity. Pairing the substitutional site preference with the magnitude of this decrease demonstrates that the 7-coordinate site is the V major contributor to conductivity. The optical band gaps, in contrast, are shown to be site-independent and composition-dependent. After all 7-coordinate Sn has been replaced, the continued substitution of Sn results in the formation of a 7-coordinate In antisite or replacement of 6-coordinate Sn, depending on the identity of the d(0) substitute. C1 [Rickert, Karl; Wustrow, Allison; Poeppelmeier, Kenneth R.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Ellis, Donald E.] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. [Huq, Ashfia] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. [Lapidus, Saul. H.] Argonne Natl Lab, X Ray Sci Div, Adv Photon Source, Argonne, IL 60439 USA. RP Poeppelmeier, KR (reprint author), Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. EM krp@northwestern.edu RI Huq, Ashfia/J-8772-2013 OI Huq, Ashfia/0000-0002-8445-9649 FU National Science Foundation Graduate Research Fellowship [DGE-1324585]; Department of Energy Basic Energy Sciences Grant [DE-FG02-08ER46536]; Ryan Fellowship; Northwestern University (NU) International Institute for Nanotechnology; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; MRSEC program of the National Science Foundation at the Materials Research Center of Northwestern University [DMR-1121262]; Northwestern University Keck Biophysics Facility; Cancer Center Support Grant (National Cancer Institute) [CA060553] FX K.R. acknowledges that this material is based upon work supported by the National Science Foundation Graduate Research Fellowship Program under Grant DGE-1324585. K.R. and K.R.P. gratefully acknowledge additional support from Department of Energy Basic Energy Sciences Grant DE-FG02-08ER46536. A.W. gratefully acknowledges support from the Ryan Fellowship and the Northwestern University (NU) International Institute for Nanotechnology. A portion of this research was performed at POWGEN at Oak Ridge National Laboratory's Spallation Neutron Source and was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. Use of 11-BM on the Advanced Photon Source at Argonne National Laboratory (ANL) was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract DE-AC02-06CH11357. This work made use of the J. B. Cohen X-ray Diffraction Facility supported by the MRSEC program of the National Science Foundation (DMR-1121262) at the Materials Research Center of Northwestern University. A portion of this work was supported by the Northwestern University Keck Biophysics Facility and a Cancer Center Support Grant (National Cancer Institute Grant CA060553). We thank Michael Holland (NU) for helpful discussions. NR 42 TC 1 Z9 1 U1 0 U2 7 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 EI 1520-5002 J9 CHEM MATER JI Chem. Mat. PD DEC 8 PY 2015 VL 27 IS 23 BP 8084 EP 8093 DI 10.1021/acs.chemmater.5b03790 PG 10 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA CY2FC UT WOS:000366223200029 ER PT J AU Andre, A Zherebetskyy, D Hanifi, D He, B Khoshkhoo, MS Jankowski, M Chasse, T Wang, LW Schreiber, F Salleo, A Liu, Y Scheele, M AF Andre, Alexander Zherebetskyy, Danylo Hanifi, David He, Bo Khoshkhoo, Mandi Samadi Jankowski, Maciej Chasse, Thomas Wang, Lin-Wang Schreiber, Frank Salleo, Alberto Liu, Yi Scheele, Marcus TI Toward Conductive Mesocrystalline Assemblies: PbS Nanocrystals Cross-Linked with Tetrathiafulvalene Dicarboxylate SO CHEMISTRY OF MATERIALS LA English DT Article ID QUANTUM-DOT SOLIDS; FIELD-EFFECT TRANSISTORS; HIGH CHARGE MOBILITY; LIGAND-EXCHANGE; PHOTOELECTRON-SPECTROSCOPY; COLLOIDAL NANOCRYSTALS; INTERFACE STRUCTURE; AMORPHOUS-SILICON; CARRIER TRANSPORT; HOLE MOBILITY AB We use the organic semiconductor tetrathiafulvalene dicarboxylate (TTFDA) to assemble PbS nanocrystals into conductive mesocrystals. Density functional theory calculations predict a size-tunable, near-resonant alignment between the PbS 1S(h) state and the TTFDA HOMO with the potential to form a conductive channel for holes. We test this hypothesis with transport measurements on TTFDA-functionalized PbS nano crystals of different sizes and find a pronounced modulation of the field-effect hole mobilities. Photothermal deflection spectroscopy reveals unchanged Urbach energies after ligand exchange, whereas further surface modification by colloidal-atomic layer deposition leads to a strong increase in the density of in-gap states. Hole transport in PbS-TTFDA is unusually robust against such surface modification. Our structural analysis of the mesocrystals suggests that TTFDA induces a defined interparticle spacing, the orientation of atomic lattices, and the angle within the mesocrystal unit cell. The results of this work pave the way toward conductive mesocrystalline assemblies of hybrid semiconductor nanostructures with size-tunable transport properties. C1 [Andre, Alexander; Khoshkhoo, Mandi Samadi; Chasse, Thomas; Scheele, Marcus] Univ Tubingen, Inst Phys & Theoret Chem, D-72076 Tubingen, Germany. [Chasse, Thomas; Schreiber, Frank; Scheele, Marcus] Univ Tubingen, Ctr Light Matter Interact Sensors & Analyt LISA, D-72076 Tubingen, Germany. [Schreiber, Frank] Univ Tubingen, Inst Appl Phys, D-72076 Tubingen, Germany. [Zherebetskyy, Danylo; Wang, Lin-Wang] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Hanifi, David; He, Bo; Liu, Yi] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. [Hanifi, David; Salleo, Alberto] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA. [Jankowski, Maciej] ESRF, Beamline ID03, F-38043 Grenoble, France. RP Scheele, M (reprint author), Univ Tubingen, Inst Phys & Theoret Chem, D-72076 Tubingen, Germany. EM marcus.scheele@uni.tuebingen.de RI Schreiber, Frank/J-3311-2014; Liu, yi/A-3384-2008; Samadi Khoshkhoo, Mahdi/M-7940-2015 OI Schreiber, Frank/0000-0003-3659-6718; Liu, yi/0000-0002-3954-6102; Samadi Khoshkhoo, Mahdi/0000-0003-0393-4768 FU Institutional Strategy of the University of Tubingen (Deutsche Forschungsgemeinschaft) [ZUK 63]; Baden-Wurttemberg Stiftung by the Eliteprogram for Postdocs; Self-Assembly of Organic/Inorganic Nanocomposite Materials program; Office of Science, Office of Basic Energy Sciences, U.S. Department of Energy [DE-AC02-05CH11231]; Paul and Daisy Soros Fellowship for New Americans; NSF-GFRP; Ministry for Science, Research, and the Arts, Baden-Wurttemberg FX Financial support of A.A., M.S.K., and M.S. has been provided in equal parts by the Institutional Strategy of the University of Tubingen (Deutsche Forschungsgemeinschaft, ZUK 63) and the Baden-Wurttemberg Stiftung by the Eliteprogram for Postdocs. Y.L. and B.H. acknowledge the support from the Self-Assembly of Organic/Inorganic Nanocomposite Materials program, and the synthesis of TTFDA and optical spectroscopy were performed as a User Project at the Molecular Foundry, Lawrence Berkeley National Laboratory, all supported by the Office of Science, Office of Basic Energy Sciences, U.S. Department of Energy, under Contract No. DE-AC02-05CH11231. D.H. was supported in part by an award from The Paul and Daisy Soros Fellowship for New Americans and NSF-GFRP. We are grateful to Horst Weller for allowance to use a JEM-Jeol-1011 microscope. Rupak Banerjee and Jiri Novak are acknowledged for help with the GIXD measurements. PDS experiments were partially supported by the Ministry for Science, Research, and the Arts, Baden-Wurttemberg. NR 57 TC 6 Z9 6 U1 19 U2 62 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 EI 1520-5002 J9 CHEM MATER JI Chem. Mat. PD DEC 8 PY 2015 VL 27 IS 23 BP 8105 EP 8115 DI 10.1021/acs.chemmater.5b03821 PG 11 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA CY2FC UT WOS:000366223200031 ER PT J AU Liang, WI Zhang, X Bustillo, K Chiu, CH Wu, WW Xu, J Chu, YH Zheng, H AF Liang, Wen-I Zhang, Xiaowei Bustillo, Karen Chiu, Chung-Hua Wu, Wen-Wei Xu, Jun Chu, Ying-Hao Zheng, Haimei TI In Situ Study of Spinel Ferrite Nanocrystal Growth Using Liquid Cell Transmission Electron Microscopy SO CHEMISTRY OF MATERIALS LA English DT Article ID IRON-OXIDE NANOPARTICLES; SHAPE CONTROL; OLEYLAMINE; KINETICS; AU; FE; CO; NANOMATERIALS; MECHANISMS; NUCLEATION AB We report transition metal oxide nanocrystal formation in a liquid cell using. transmission electron microscopy (TEM). The growth of M-Fe-oxide (M = Ni, Mn, Co, or Zn) nanoparticles from a growth solution of metal acetylacetonates dissolved in oleylamine, oleic acid, and benzyl ether was studied. Nickel iron oxide nanocrystals with spinel structure were obtained under electron beam irradiation of the Ni-Fe growth solution, whereas iron oxide nanocrystals were achieved with Mn remaining in the Mn-Fe growth solution. Similarly, we achieved cobalt iron oxide nanocrystals in the Co-Fe precursor solution, while iron oxide nanoparticles were obtained in the Zn-Fe solution. By tracking nanoparticle size evolution as a function of time along the Ni-Fe oxide nanoparticle growth trajectories, we found the growth kinetics follow a Lifshitz-Slyozov-Wagner (LSW) model suggesting surface reaction-limited growth. Ex situ characterization shows elemental distribution and structural and valence state of the different nanoparticles. The trend of nanoparticle growth in a liquid cell shares many similarities with those in "one-pot" flask synthesis by thermal heating. We compare reduction potentials (E-r) of the metal ions and thermal decomposition temperatures (T-d) of the precursors and correlate them with nanoparticle growth in a liquid cell under TEM. We found a tendency to form mixed metal ion oxide nanoparticles instead of single metal ion (iron) oxides when the two precursors have similar values of T-d and metal ion reduction potential. The higher T-d and smaller E-r values of Mn and Zn precursors than those of Fe precursor, as well as Ni and Co precursors, may have resulted in the single metal ion (iron) oxide formation in M-Fe (M = Mn and Zn) precursor systems. This study sheds light on nanoparticle growth mechanisms by liquid cell TEM. In situ study of oxide nanocrystal growth using liquid cell TEM provides the opportunity to explore solution chemistry during nanocrystal growth beyond the nanoparticle growth that occurs in a TEM cell. C1 [Liang, Wen-I; Chiu, Chung-Hua; Wu, Wen-Wei; Chu, Ying-Hao] Natl Chiao Tung Univ, Dept Mat Sci & Engn, Hsinchu 300, Taiwan. [Liang, Wen-I; Zhang, Xiaowei; Chiu, Chung-Hua; Zheng, Haimei] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Bustillo, Karen] Lawrence Berkeley Natl Lab, Nat Ctr Elect Microscopy Mol Foundry, Berkeley, CA 94720 USA. [Zhang, Xiaowei; Xu, Jun] Nanjing Univ, Ctr Adv Microstruct, Natl Lab Solid State Microstruct, Sch Elect Sci & Engn & Collaborat Innovat, Nanjing 210093, Jiangsu, Peoples R China. [Chu, Ying-Hao] Acad Sinica, Inst Phys, Taipei 105, Taiwan. [Zheng, Haimei] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. RP Chu, YH (reprint author), Natl Chiao Tung Univ, Dept Mat Sci & Engn, Hsinchu 300, Taiwan. EM yhc@nctu.edu.tw; hmzheng@lbl.gov RI Ying-Hao, Chu/A-4204-2008 OI Ying-Hao, Chu/0000-0002-3435-9084 FU U.S. Department of Energy (DOE) [DE-AC02-05CH11231]; Ministry of Science and Technology (MOST) in Taiwan [NSC 102-2119-I-009-502, 103-2917-I-009-185]; National Basic Research Program of China [2013CB632101]; China Scholarship Council [201406190080]; U.S. DOE Office of Science Early Career Research Program FX We used TEM facilities at the Molecular Foundry of Lawrence Berkeley National Laboratory, which is supported by the U.S. Department of Energy (DOE) under Contract DE-AC02-05CH11231. W.-I.L. and Y.-H.C. acknowledge funding support from the Ministry of Science and Technology (MOST) in Taiwan (NSC 102-2119-I-009-502). X.Z. and J.X. acknowledge the support of National Basic Research Program of China (2013CB632101) and China Scholarship Council (201406190080). C.-H.C. acknowledges funding support from the Ministry of Science and Technology (MOST) in Taiwan (Grant 103-2917-I-009-185). This project was supported by U.S. DOE Office of Science Early Career Research Program under H.Z. NR 50 TC 3 Z9 3 U1 16 U2 62 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 EI 1520-5002 J9 CHEM MATER JI Chem. Mat. PD DEC 8 PY 2015 VL 27 IS 23 BP 8146 EP 8152 DI 10.1021/acs.chemmater.5b03930 PG 7 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA CY2FC UT WOS:000366223200035 ER PT J AU Liu, QQ Tong, X Zhou, GW AF Liu, Qianqian Tong, Xiao Zhou, Guangwen TI H2O Dissociation-Induced Aluminum Oxide Growth on Oxidized Al(111) Surfaces SO LANGMUIR LA English DT Article ID CRYSTAL ALPHA-AL2O3(0001) SURFACE; WATER-VAPOR; THERMAL-OXIDATION; FUNDAMENTAL-ASPECTS; ULTRATHIN FILMS; HYDROXYL-GROUPS; SOLID-SURFACES; NIAL(100); AL2O3; THIN AB The interaction of water vapor with amorphous aluminum oxide films on Al(111) is studied using X-ray photoelectron spectroscopy to elucidate the passivation mechanism of the oxidized Al(111) surfaces. Exposure of the aluminum oxide film to water vapor results in self-limiting Al2O3/Al(OH)(3) bilayer film growth via counter-diffusion of both ions, Al outward and OH inward, where a thinner starting aluminum oxide film is more reactive toward H2O dissociation-induced oxide growth because of the thickness-dependent ionic transport in the aluminum oxide film. The aluminum oxide film exhibits reactivity toward H2O dissociation in both low-vapor pressure [p(H2O) = 1 x 10(-6) Tord and intermediate-vapor pressure [p(H2O) = 5 Torr] regimes. Compared to the oxide film growth by exposure to a p(H2O) of 1 x 10(-6) Torr, the exposure to a p(H2O) of 5 Ton results in the formation of a more open structure of the inner Al(OH)(3) layer and a more compact outer Al2O3 layer, demonstrating the vapor-pressure-dependent atomic structure in the passivating layer. C1 [Liu, Qianqian; Zhou, Guangwen] SUNY Binghamton, Dept Mech Engn, Binghamton, NY 13902 USA. [Liu, Qianqian; Zhou, Guangwen] SUNY Binghamton, Multidisciplinary Program Mat Sci & Engn, Binghamton, NY 13902 USA. [Tong, Xiao] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Zhou, GW (reprint author), SUNY Binghamton, Dept Mech Engn, Binghamton, NY 13902 USA. EM gzhou@binghamton.edu FU National Science Foundation via CAREER Award [CMMI-1056611]; U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX We acknowledge the support from the National Science Foundation via CAREER Award Grant CMMI-1056611. Research in part was conducted in the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract DE-AC02-98CH10886. NR 48 TC 1 Z9 1 U1 2 U2 13 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD DEC 8 PY 2015 VL 31 IS 48 BP 13117 EP 13126 DI 10.1021/acs.langmuir.5b02769 PG 10 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA CY2FD UT WOS:000366223300008 PM 26550986 ER PT J AU Bai, W Yager, KG Ross, CA AF Bai, W. Yager, K. G. Ross, C. A. TI In Situ Characterization of the Self-Assembly of a Polystyrene-Polydimethylsiloxane Block Copolymer during Solvent Vapor Annealing SO MACROMOLECULES LA English DT Article ID THIN-FILMS; PERPENDICULAR ORIENTATION; NANOSTRUCTURES; EVAPORATION; MECHANISM; APPROXIMATION; MICRODOMAINS; TEMPERATURE; TRANSITION; MEMBRANES AB Grazing incidence X-ray scattering was used to follow the microphase separation during room-temperature solvent annealing of films of high interaction parameter cylinder-forming 16 kg/mol polystyrene-b-polydimethylsiloxane block copolymer in a toluene heptane mixed solvent vapor. Microphase separation was observed for swelling ratios above 1.2, but swelling ratios above 1.9 caused the films to disorder. The films exhibited a thickness-dependent microdomain reorientation during annealing, with the initial out-of-plane cylinder orientation converting to an in-plane orientation as a result of preferential surface interactions. Drying led to a reduction in the out-of-plane cylinder spacing, with slower drying leading to greater deswelling and larger distortion of the hexagonal lattice. C1 [Bai, W.; Ross, C. A.] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA. [Yager, K. G.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Ross, CA (reprint author), MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA. EM caross@mit.edu RI Bai, Wubin/B-6317-2017 OI Bai, Wubin/0000-0003-2872-5559 FU U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886]; C-SPIN, a STARnet Center of the SRC - DARPA; MARCO; Taiwan Semiconductor Manufacturing Corp.; Tokyo Electron; MRSEC [DMR1419807] FX We thank Benjamin Ocko for use of the in situ sample cell. Research was carried out in part at the Center for Functional Nanomaterials and the National Synchrotron Light Source, Brookhaven National Laboratory, which are supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract DE-AC02-98CH10886. This work was funded by C-SPIN, a STARnet Center of the SRC supported by DARPA and MARCO, and by Taiwan Semiconductor Manufacturing Corp. and Tokyo Electron. Facilities from the Nano Structures Laboratory and the MIT Center for Materials Science and Engineering (MRSEC Award DMR1419807) were used in this work. NR 64 TC 11 Z9 11 U1 11 U2 50 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 EI 1520-5835 J9 MACROMOLECULES JI Macromolecules PD DEC 8 PY 2015 VL 48 IS 23 BP 8574 EP 8584 DI 10.1021/acs.macromol.5b02174 PG 11 WC Polymer Science SC Polymer Science GA CY2FF UT WOS:000366223500020 ER PT J AU Kozlovskaya, V Zavgorodnya, O Ankner, JF Kharlampieva, E AF Kozlovskaya, Veronika Zavgorodnya, Oleksandra Ankner, John F. Kharlampieva, Eugenia TI Controlling Internal Organization of Multilayer Poly(methacrylic acid) Hydrogels with Polymer Molecular Weight SO MACROMOLECULES LA English DT Article ID POLYELECTROLYTE MULTILAYERS; NEUTRON REFLECTIVITY; CONTROLLED-RELEASE; THIN-FILMS; MEMBRANE HYDROGELS; BONDED MULTILAYERS; IONIC-STRENGTH; CAPSULES; FABRICATION; GROWTH AB We report on tailoring the internal architecture of multilayer-derived poly(methacrylic acid) (PMAA) hydrogels by controlling the molecular weight of poly(N-vinylpyrrolidone) (PVPON) in hydrogen-bonded (PMAA/PVPON) layer-by-layer precursor films. The hydrogels are produced by cross-linking PMAA in the spin-assisted multilayers followed by PVPON release. We found that the thickness, morphology, and architecture of hydrogen-bonded films and the corresponding hydrogels are significantly affected by PVPON chain length. For all systems, an increase in PVPON molecular weight from M-w = 2.5 to 1300 kDa resulted in increased total film thickness. We also show that increasing polymer M-w smooths the hydrogen-bonded film surfaces but roughens those of the hydrogels. Using deuterated dPMAA marker layers in neutron reflectometry measurements, we found that hydrogen-bonded films reveal a high degree of stratification which is preserved in the cross-linked films. We observed dPMAA to be distributed more widely in the hydrogen-bonded films prepared with small M-w PVPON due to the greater mobility of short-chain PVPON. These variations in the distribution of PMAA are erased after cross-linking, resulting in a distribution of dPMAA over about two bilayers for all M-w but being somewhat more widely distributed in the films templated with higher M-w PVPON. Our results yield new insights into controlling the organization of nanostructured polymer networks using polymer molecular weight and open opportunities for fabrication of thin films with well-organized architecture and controllable function. C1 [Kozlovskaya, Veronika; Zavgorodnya, Oleksandra; Kharlampieva, Eugenia] Univ Alabama Birmingham, Dept Chem, Birmingham, AL 35294 USA. [Kharlampieva, Eugenia] Univ Alabama Birmingham, Ctr Nanoscale Mat & Biointegrat, Birmingham, AL 35294 USA. [Ankner, John F.] Oak Ridge Natl Lab, Spallat Neutron Source, Oak Ridge, TN 37831 USA. RP Ankner, JF (reprint author), Oak Ridge Natl Lab, Spallat Neutron Source, Oak Ridge, TN 37831 USA. EM anknerjf@ornl.gov; ekharlam@uab.edu OI Ankner, John/0000-0002-6737-5718; Zavgorodnya, Oleksandra/0000-0001-8296-6340 FU NSF [1350370]; EPSCoR DOE/JINS; US Department of Energy (DOE) [DE-AC05- 00OR22725] FX This work was supported by NSF Career Award #1350370 (E.K.) and by EPSCoR DOE/JINS Travel Fellowship. ORNL is managed by UT-Battelle, LLC, for the US Department of Energy (DOE) under Contract DE-AC05- 00OR22725. NR 75 TC 1 Z9 1 U1 10 U2 26 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 EI 1520-5835 J9 MACROMOLECULES JI Macromolecules PD DEC 8 PY 2015 VL 48 IS 23 BP 8585 EP 8593 DI 10.1021/acs.macromol.5b02019 PG 9 WC Polymer Science SC Polymer Science GA CY2FF UT WOS:000366223500021 ER PT J AU Weinmaier, T Probst, AJ La Duc, MT Ciobanu, D Cheng, JF Ivanova, N Rattei, T Vaishampayan, P AF Weinmaier, Thomas Probst, Alexander J. La Duc, Myron T. Ciobanu, Doina Cheng, Jan-Fang Ivanova, Natalia Rattei, Thomas Vaishampayan, Parag TI A viability-linked metagenomic analysis of cleanroom environments: eukarya, prokaryotes, and viruses SO MICROBIOME LA English DT Article DE Indoor microbiome; PMA; Viability; Comparative metagenomics; Spacecraft; Cleanroom; Viruses; Bacteria; Fungi ID PROPIDIUM MONOAZIDE; BACTERIAL COMMUNITIES; SEQUENCING DATA; WATER SAMPLES; SEARCH TOOL; SPACECRAFT; DIVERSITY; ROOMS; PCR; DISTINGUISH AB Background: Recent studies posit a reciprocal dependency between the microbiomes associated with humans and indoor environments. However, none of these metagenome surveys has considered the viability of constituent microorganisms when inferring impact on human health. Results: Reported here are the results of a viability-linked metagenomics assay, which (1) unveil a remarkably complex community profile for bacteria, fungi, and viruses and (2) bolster the detection of underrepresented taxa by eliminating biases resulting from extraneous DNA. This approach enabled, for the first time ever, the elucidation of viral genomes from a cleanroom environment. Upon comparing the viable biomes and distribution of phylotypes within a cleanroom and adjoining (uncontrolled) gowning enclosure, the rigorous cleaning and stringent control countermeasures of the former were observed to select for a greater presence of anaerobes and spore-forming microflora. Sequence abundance and correlation analyses suggest that the viable indoor microbiome is influenced by both the human microbiome and the surrounding ecosystem(s). Conclusions: The findings of this investigation constitute the literature's first ever account of the indoor metagenome derived from DNA originating solely from the potential viable microbial population. Results presented in this study should prove valuable to the conceptualization and experimental design of future studies on indoor microbiomes aimed at inferring impact on human health. C1 [Weinmaier, Thomas; Rattei, Thomas] Univ Vienna, Dept Microbiol & Ecosyst Sci, Div Computat Syst Biol, Vienna, Austria. [Probst, Alexander J.] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. [La Duc, Myron T.; Vaishampayan, Parag] CALTECH, Jet Prop Lab, Biotechnol & Planetary Protect Grp, Pasadena, CA 91109 USA. [La Duc, Myron T.] Precis Sci, Scottsdale, AZ USA. [Ciobanu, Doina; Cheng, Jan-Fang; Ivanova, Natalia] DOE Joint Genome Inst, Walnut Creek, CA USA. RP Vaishampayan, P (reprint author), CALTECH, Jet Prop Lab, Biotechnol & Planetary Protect Grp, Pasadena, CA 91109 USA. EM vaishamp@jpl.nasa.gov RI Rattei, Thomas/F-1366-2011; Probst, Alexander/K-2813-2016; OI Rattei, Thomas/0000-0002-0592-7791; Weinmaier, Thomas/0000-0002-9552-3220; Ivanova, Natalia/0000-0002-5802-9485 FU NASA FX Part of the research described in this study was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. This research was funded by NASA Research Announcement (NRA) ROSES 2011 awarded to PV and NI. NR 55 TC 6 Z9 7 U1 8 U2 20 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 2049-2618 J9 MICROBIOME JI Microbiome PD DEC 8 PY 2015 VL 3 AR 62 DI 10.1186/s40168-015-0129-y PG 14 WC Microbiology SC Microbiology GA CY4BW UT WOS:000366354600001 PM 26642878 ER PT J AU Jayasekara, WT Kaluarachchi, US Ueland, BG Pandey, A Lee, YB Taufour, V Sapkota, A Kothapalli, K Sangeetha, NS Fabbris, G Veiga, LSI Feng, YJ dos Santos, AM Bud'ko, SL Harmon, BN Canfield, PC Johnston, DC Kreyssig, A Goldman, AI AF Jayasekara, W. T. Kaluarachchi, U. S. Ueland, B. G. Pandey, Abhishek Lee, Y. B. Taufour, V. Sapkota, A. Kothapalli, K. Sangeetha, N. S. Fabbris, G. Veiga, L. S. I. Feng, Yejun dos Santos, A. M. Bud'ko, S. L. Harmon, B. N. Canfield, P. C. Johnston, D. C. Kreyssig, A. Goldman, A. I. TI Pressure-induced collapsed-tetragonal phase in SrCo2As2 SO PHYSICAL REVIEW B LA English DT Article ID HIGH-TEMPERATURE SUPERCONDUCTIVITY; IRON; GPA AB We present high-energy x-ray diffraction data under applied pressures up to p = 29 GPa, neutron diffraction measurements up to p = 1.1GPa, and electrical resistance measurements up to p = 5.9GPa, on SrCo2As2. Our x-ray diffraction data demonstrate that there is a first-order transition between the tetragonal (T) and collapsed-tetragonal (cT) phases, with an onset above approximately 6 GPa at T = 7K. The pressure for the onset of the cT phase and the range of coexistence between the T and cT phases appears to be nearly temperature independent. The compressibility along the a axis is the same for the T and cT phases, whereas, along the c axis, the cT phase is significantly stiffer, which may be due to the formation of an As-As bond in the cT phase. Our resistivity measurements found no evidence of superconductivity in SrCo2As2 for p <= 5.9 GPa and T >= 1.8 K. The resistivity data also show signatures consistent with a pressure-induced phase transition for p greater than or similar to 5.5 GPa. Single-crystal neutron diffraction measurements performed up to 1.1 GPa in the T phase found no evidence of stripe-type or A-type antiferromagnetic ordering down to 10 K. Spin-polarized total-energy calculations demonstrate that the cT phase is the stable phase at high pressure with a c/a ratio of 2.54. Furthermore, these calculations indicate that the cT phase of SrCo2As2 should manifest either A-type antiferromagnetic or ferromagnetic order. C1 [Jayasekara, W. T.; Kaluarachchi, U. S.; Ueland, B. G.; Pandey, Abhishek; Lee, Y. B.; Taufour, V.; Sapkota, A.; Kothapalli, K.; Sangeetha, N. S.; Bud'ko, S. L.; Harmon, B. N.; Canfield, P. C.; Johnston, D. C.; Kreyssig, A.; Goldman, A. I.] Iowa State Univ, US DOE, Ames Lab, Ames, IA 50011 USA. [Jayasekara, W. T.; Kaluarachchi, U. S.; Ueland, B. G.; Pandey, Abhishek; Lee, Y. B.; Taufour, V.; Sapkota, A.; Kothapalli, K.; Sangeetha, N. S.; Bud'ko, S. L.; Harmon, B. N.; Canfield, P. C.; Johnston, D. C.; Kreyssig, A.; Goldman, A. I.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Fabbris, G.; Veiga, L. S. I.; Feng, Yejun] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [dos Santos, A. M.] Oak Ridge Natl Lab, Quantum Condensed Matter Div, Oak Ridge, TN 37831 USA. RP Jayasekara, WT (reprint author), Iowa State Univ, US DOE, Ames Lab, Ames, IA 50011 USA. RI Feng, Yejun/A-5417-2009; dos Santos, Antonio/A-5602-2016; Fabbris, Gilberto/F-3244-2011; Ueland, Benjamin/B-2312-2008; Pandey, Abhishek /M-5679-2015 OI Feng, Yejun/0000-0003-3667-056X; dos Santos, Antonio/0000-0001-6900-0816; Fabbris, Gilberto/0000-0001-8278-4985; Ueland, Benjamin/0000-0001-9784-6595; Pandey, Abhishek /0000-0003-2839-1720 FU Department of Energy, Basic Energy Sciences, Division of Materials Sciences Engineering [DE-AC02-07CH11358]; DOE Office of Science [DE-AC02-06CH11357]; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy; COMPRES under NSF [EAR 11-57758]; GSECARS through NSF Grant [EAR-1128799]; DOE [DE-FG02-94ER14466]; DOE-NNSA [DE-NA0001974]; DOE-BES [DE-FG02-99ER45775]; NSF FX The authors gratefully acknowledge the assistance of D. Robinson, B. Lavina, S. Tkachev, C. Kenney-Benson, and S. Sinogeiken with the HE-XRD measurements and useful discussions with D. Haskel and J. C. Lang. Work at the Ames Laboratory was supported by the Department of Energy, Basic Energy Sciences, Division of Materials Sciences & Engineering, under Contract No. DE-AC02-07CH11358. This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. Research conducted at the ORNL Spallation Neutron Source was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. Use of the COMPRES-GSECARS gas loading system was supported by COMPRES under NSF Cooperative Agreement No. EAR 11-57758, and by the GSECARS through NSF Grant No. EAR-1128799 and DOE Grant No. DE-FG02-94ER14466. Portions of this work were performed at HPCAT (Sector 16), Advanced Photon Source (APS), Argonne National Laboratory. HPCAT operations are supported by DOE-NNSA under Award No. DE-NA0001974 and DOE-BES under Award No. DE-FG02-99ER45775, with partial instrumentation funding by the NSF. NR 40 TC 3 Z9 3 U1 12 U2 27 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD DEC 8 PY 2015 VL 92 IS 22 AR 224103 DI 10.1103/PhysRevB.92.224103 PG 6 WC Physics, Condensed Matter SC Physics GA CY0GV UT WOS:000366085400002 ER PT J AU Rainville, MG Wagenbach, C Ulbrandt, JG Narayanan, S Sandy, AR Zhou, H Headrick, RL Ludwig, KF AF Rainville, Meliha G. Wagenbach, Christa Ulbrandt, Jeffrey G. Narayanan, Suresh Sandy, Alec R. Zhou, Hua Headrick, Randall L. Ludwig, Karl F., Jr. TI Co-GISAXS technique for investigating surface growth dynamics SO PHYSICAL REVIEW B LA English DT Article ID PHOTON-CORRELATION SPECTROSCOPY; X-RAY-BEAM; SLOW DYNAMICS; SOFT MATTER; DIFFRACTION; SCATTERING; GEOMETRY; MODEL; ZONE AB Detailed quantitative measurement of surface dynamics during thin film growth is a major experimental challenge. Here x-ray photon correlation spectroscopy with coherent hard x rays is used in a grazing-incidence small-angle x-ray scattering (i.e., Co-GISAXS) geometry as a tool to investigate nanoscale surface dynamics during sputter deposition of a-Si and a-WSi2 thin films. For both films, kinetic roughening during surface growth reaches a dynamic steady state at late times in which the intensity autocorrelation function g(2)(q, t) becomes stationary. The g(2)(q, t) functions exhibit compressed exponential behavior at all wavenumbers studied. The overall dynamics are complex, but the most surface sensitive sections of the structure factor and correlation time exhibit power law behaviors consistent with dynamical scaling. C1 [Rainville, Meliha G.; Wagenbach, Christa; Ludwig, Karl F., Jr.] Boston Univ, Div Mat Sci & Engn, Boston, MA 02215 USA. [Ulbrandt, Jeffrey G.; Headrick, Randall L.] Univ Vermont, Dept Phys, Burlington, VT 05405 USA. [Ulbrandt, Jeffrey G.; Headrick, Randall L.] Univ Vermont, Mat Sci Program, Burlington, VT 05405 USA. [Narayanan, Suresh; Sandy, Alec R.; Zhou, Hua] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Ludwig, Karl F., Jr.] Boston Univ, Dept Phys, Boston, MA 02215 USA. RP Ludwig, KF (reprint author), Boston Univ, Div Mat Sci & Engn, Boston, MA 02215 USA. EM ludwig@bu.edu FU U.S. Department of Energy (DOE) Office of Science, Office of Basic Energy Sciences (BES) [DE-FG02-03ER46037]; DOE BES Grant [DE-FG02-07ER46380]; DOE Office of Science [DE-AC02-06CH11357] FX We thank Ray Ziegler for beamline support and Alex DeMasi for experimental support. M.R., K.L., and C.W. were supported by the U.S. Department of Energy (DOE) Office of Science, Office of Basic Energy Sciences (BES) under DE-FG02-03ER46037; R.H. and J.U. were supported by DOE BES Grant No. DE-FG02-07ER46380. This research used resources of the APS, a U.S. DOE Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. NR 40 TC 0 Z9 0 U1 3 U2 16 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD DEC 8 PY 2015 VL 92 IS 21 AR 214102 DI 10.1103/PhysRevB.92.214102 PG 8 WC Physics, Condensed Matter SC Physics GA CY0GE UT WOS:000366083600001 ER PT J AU Wang, JC Aswartham, S Ye, F Terzic, J Zheng, H Haskel, D Chikara, S Choi, Y Schlottmann, P Custelcean, R Yuan, SJ Cao, G AF Wang, J. C. Aswartham, S. Ye, Feng Terzic, J. Zheng, H. Haskel, Daniel Chikara, Shalinee Choi, Yong Schlottmann, P. Custelcean, Radu Yuan, S. J. Cao, G. TI Decoupling of the antiferromagnetic and insulating states in Tb-doped Sr2IrO4 SO PHYSICAL REVIEW B LA English DT Article ID TRANSITION; SR2IR1-XRUXO4 AB Sr2IrO4 is a spin-orbit-coupled insulator with an antiferromagnetic (AFM) transition at T-N = 240 K. We report results of a comprehensive study of single-crystal Sr2Ir1-xTbxO4 (0 <= x <= 0.03). This study found that a mere 3% (x = 0.03) of tetravalent Tb4+ (4f(7)) substituting for Ir4+ (rather than Sr2+) completely suppresses the long-range collinear AFM transition but retains the insulating state, leading to a phase diagram featuring a decoupling of the magnetic interactions and charge gap. The insulating state at x = 0.03 is characterized by an unusually large specific heat at low temperatures and an incommensurate magnetic state having magnetic peaks at (0.95,0,0) and (0,0.95,0) in the neutron diffraction, suggesting a spiral or spin-density-wave order. It is apparent that Tb doping effectively changes the relative strength of the spin-orbit interaction (SOI) and the tetragonal crystal electric field and enhances the Hund's rule coupling that competes with the SOI, and destabilizes the AFM state. However, the disappearance of the AFM is accompanied by no metallic state chiefly because an energy level mismatch for the Ir and Tb sites weakens charge carrier hopping and causes a persistent insulating state. This work highlights an unconventional correlation between the AFM and insulating states in which the magnetic transition plays no critical role in the formation of the charge gap in the iridate. C1 [Wang, J. C.; Aswartham, S.; Ye, Feng; Terzic, J.; Zheng, H.; Yuan, S. J.; Cao, G.] Univ Kentucky, Ctr Adv Mat, Lexington, KY 40506 USA. [Wang, J. C.; Aswartham, S.; Ye, Feng; Terzic, J.; Zheng, H.; Yuan, S. J.; Cao, G.] Univ Kentucky, Dept Phys & Astron, Lexington, KY 40506 USA. [Wang, J. C.; Ye, Feng] Oak Ridge Natl Lab, Quantum Condensed Matter Div, Oak Ridge, TN 37831 USA. [Wang, J. C.] Renmin Univ China, Dept Phys, Beijing, Peoples R China. [Haskel, Daniel; Choi, Yong] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Chikara, Shalinee] Los Alamos Natl Lab, Natl High Magnet Field Lab, Los Alamos, NM 87545 USA. [Schlottmann, P.] Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA. [Custelcean, Radu] Oak Ridge Natl Lab, Chem Sci Div, Oak Ridge, TN 37831 USA. RP Cao, G (reprint author), Univ Kentucky, Ctr Adv Mat, Lexington, KY 40506 USA. EM cao@uky.edu RI Ye, Feng/B-3210-2010; SNS, Corelli/O-8443-2015; Custelcean, Radu/C-1037-2009; Chikara, Shalinee/E-4654-2017 OI Ye, Feng/0000-0001-7477-4648; SNS, Corelli/0000-0001-5563-3292; Custelcean, Radu/0000-0002-0727-7972; FU NSF [DMR-1265162]; Department of Energy (BES) [DE-FG02-98ER45707]; U.S. DOE, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; Scientific User Facilities Division, Office of Basic Energy Sciences, the U.S. Department of Energy; Chinese Scholarship Council FX G.C. is grateful to Dr. Ribhu Kaul and Dr. Daniel Khomskii for useful discussions. This work was supported by NSF through Grant No. DMR-1265162 and by the Department of Energy (BES) through Grant No. DE-FG02-98ER45707 (P.S.). Work at Argonne National Laboratory was supported by the U.S. DOE, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-06CH11357. Work at ORNL was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, the U.S. Department of Energy. J.C.W. is grateful for support from the Chinese Scholarship Council. NR 44 TC 6 Z9 6 U1 8 U2 39 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD DEC 8 PY 2015 VL 92 IS 21 AR 214411 DI 10.1103/PhysRevB.92.214411 PG 9 WC Physics, Condensed Matter SC Physics GA CY0GE UT WOS:000366083600005 ER PT J AU Zemlicka, M Neilinger, P Trgala, M Rehak, M Manca, D Grajcar, M Szabo, P Samuely, P Gazi, S Hubner, U Vinokur, VM Il'ichev, E AF Zemlicka, M. Neilinger, P. Trgala, M. Rehak, M. Manca, D. Grajcar, M. Szabo, P. Samuely, P. Gazi, S. Huebner, U. Vinokur, V. M. Il'ichev, E. TI Finite quasiparticle lifetime in disordered superconductors SO PHYSICAL REVIEW B LA English DT Article ID QUANTUM PHASE-SLIP; SHEET RESISTANCE; FILMS; TRANSITION; SUPERINSULATOR; SUPPRESSION; JUNCTIONS; SYSTEMS AB We investigate the complex conductivity of a highly disordered MoC superconducting film with k(F)l approximate to 1, where k(F) is the Fermi wave number and l is the mean free path, derived from experimental transmission characteristics of coplanar waveguide resonators in a wide temperature range below the superconducting transition temperature T-c. We find that the original Mattis-Bardeen model with a finite quasiparticle lifetime, tau, offers a perfect description of the experimentally observed complex conductivity. We show that iota is appreciably reduced by scattering effects. Characteristics of the scattering centers are independently found by scanning tunneling spectroscopy and agree with those determined from the complex conductivity. C1 [Zemlicka, M.; Neilinger, P.; Trgala, M.; Rehak, M.; Manca, D.; Grajcar, M.] Comenius Univ, Dept Expt Phys, SK-84248 Bratislava, Slovakia. [Zemlicka, M.; Neilinger, P.; Trgala, M.; Rehak, M.; Manca, D.; Grajcar, M.] Slovak Acad Sci, Inst Phys, Bratislava, Slovakia. [Szabo, P.; Samuely, P.] Slovak Acad Sci, Inst Expt Phys, Ctr Low Temp Phys, SK-04001 Kosice, Slovakia. [Szabo, P.; Samuely, P.] Safarik Univ, Inst Phys, SK-04001 Kosice, Slovakia. [Gazi, S.] Slovak Acad Sci, Inst Elect Engn, SK-84104 Bratislava, Slovakia. [Huebner, U.; Il'ichev, E.] Leibniz Inst Photon Technol, D-07702 Jena, Germany. [Vinokur, V. M.] Argonne Natl Lab, Argonne, IL 60439 USA. [Il'ichev, E.] Novosibirsk State Tech Univ, Novosibirsk 630092, Russia. RP Zemlicka, M (reprint author), Comenius Univ, Dept Expt Phys, SK-84248 Bratislava, Slovakia. EM grajcar@fmph.uniba.sk FU European Community's Seventh Framework Programme (FP7) [270843 (iQIT)]; MP-1201 COST Action; Slovak Research and Development Agency [DO7RP003211, APVV-0515-10, APVV-0036-11, APVV-0088-12, APVV-14-0605, VEGA 2/0135/13, VEGA 1/0409/15]; U.S. Department of Energy, Office of Science, Materials Sciences and Engineering Division; Russian Ministry of Science and Education [8.337.2014/K] FX This work was supported by the European Community's Seventh Framework Programme (FP7/2007-2013) under Grant No. 270843 (iQIT), by the MP-1201 COST Action, by the Slovak Research and Development Agency under the Contract Nos. DO7RP003211, APVV-0515-10, APVV-0036-11, APVV-0088-12, APVV-14-0605, VEGA 2/0135/13 and VEGA 1/0409/15 and by the U.S. Department of Energy, Office of Science, Materials Sciences and Engineering Division. E.I. acknowledges partial support from Russian Ministry of Science and Education Contract No. 8.337.2014/K. NR 33 TC 4 Z9 4 U1 4 U2 16 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD DEC 8 PY 2015 VL 92 IS 22 AR 224506 DI 10.1103/PhysRevB.92.224506 PG 7 WC Physics, Condensed Matter SC Physics GA CY0GV UT WOS:000366085400007 ER PT J AU Ade, PAR Arnold, K Atlas, M Baccigalupi, C Barron, D Boettger, D Borrill, J Chapman, S Chinone, Y Cukierman, A Dobbs, M Ducout, A Dunner, R Elleflot, T Errard, J Fabbian, G Feeney, S Feng, C Gilbert, A Goeckner-Wald, N Groh, J Hall, G Halverson, NW Hasegawa, M Hattori, K Hazumi, M Hill, C Holzapfel, WL Hori, Y Howe, L Inoue, Y Jaehnig, GC Jaffe, AH Jeong, O Katayama, N Kaufman, JP Keating, B Kermish, Z Keskitalo, R Kisner, T Kusaka, A Le Jeune, M Lee, AT Leitch, EM Leon, D Li, Y Linder, E Lowry, L Matsuda, F Matsumura, T Miller, N Montgomery, J Myers, MJ Navaroli, M Nishino, H Okamura, T Paar, H Peloton, J Pogosian, L Poletti, D Puglisi, G Raum, C Rebeiz, G Reichardt, CL Richards, PL Ross, C Rotermund, KM Schenck, DE Sherwin, BD Shimon, M Shirley, I Siritanasak, P Smecher, G Stebor, N Steinbach, B Suzuki, A Suzuki, J Tajima, O Takakura, S Tikhomirov, A Tomaru, T Whitehorn, N Wilson, B Yadav, A Zahn, A Zahn, O AF Ade, Peter A. R. Arnold, Kam Atlas, Matt Baccigalupi, Carlo Barron, Darcy Boettger, David Borrill, Julian Chapman, Scott Chinone, Yuji Cukierman, Ari Dobbs, Matt Ducout, Anne Dunner, Rolando Elleflot, Tucker Errard, Josquin Fabbian, Giulio Feeney, Stephen Feng, Chang Gilbert, Adam Goeckner-Wald, Neil Groh, John Hall, Grantland Halverson, Nils W. Hasegawa, Masaya Hattori, Kaori Hazumi, Masashi Hill, Charles Holzapfel, William L. Hori, Yasuto Howe, Logan Inoue, Yuki Jaehnig, Gregory C. Jaffe, Andrew H. Jeong, Oliver Katayama, Nobuhiko Kaufman, Jonathan P. Keating, Brian Kermish, Zigmund Keskitalo, Reijo Kisner, Theodore Kusaka, Akito Le Jeune, Maude Lee, Adrian T. Leitch, Erik M. Leon, David Li, Yun Linder, Eric Lowry, Lindsay Matsuda, Frederick Matsumura, Tomotake Miller, Nathan Montgomery, Josh Myers, Michael J. Navaroli, Martin Nishino, Haruki Okamura, Takahiro Paar, Hans Peloton, Julien Pogosian, Levon Poletti, Davide Puglisi, Giuseppe Raum, Christopher Rebeiz, Gabriel Reichardt, Christian L. Richards, Paul L. Ross, Colin Rotermund, Kaja M. Schenck, David E. Sherwin, Blake D. Shimon, Meir Shirley, Ian Siritanasak, Praween Smecher, Graeme Stebor, Nathan Steinbach, Bryan Suzuki, Aritoki Suzuki, Jun-ichi Tajima, Osamu Takakura, Satoru Tikhomirov, Alexei Tomaru, Takayuki Whitehorn, Nathan Wilson, Brandon Yadav, Amit Zahn, Alex Zahn, Oliver TI POLARBEAR constraints on cosmic birefringence and primordial magnetic fields SO PHYSICAL REVIEW D LA English DT Article ID MICROWAVE BACKGROUND POLARIZATION; LARGE-SCALE STRUCTURE; B-MODE POLARIZATION; 100 SQUARE DEGREES; FARADAY-ROTATION; GRAVITY-WAVES; TEV BLAZARS; SPTPOL DATA; ANISOTROPIES; SIGNATURE AB We constrain anisotropic cosmic birefringence using four-point correlations of even-parity E-mode and odd-parity B-mode polarization in the cosmic microwave background measurements made by the POLARization of the Background Radiation (POLARBEAR) experiment in its first season of observations. We find that the anisotropic cosmic birefringence signal from any parity-violating processes is consistent with zero. The Faraday rotation from anisotropic cosmic birefringence can be compared with the equivalent quantity generated by primordial magnetic fields if they existed. The POLARBEAR non-detection translates into a 95% confidence level (C.L.) upper limit of 93 nanogauss (nG) on the amplitude of an equivalent primordial magnetic field inclusive of systematic uncertainties. This four-point correlation constraint on Faraday rotation is about 15 times tighter than the upper limit of 1380 nG inferred from constraining the contribution of Faraday rotation to two-point correlations of B-modes measured by Planck in 2015. Metric perturbations sourced by primordial magnetic fields would also contribute to the B-mode power spectrum. Using the POLARBEAR measurements of the B-mode power spectrum (two-point correlation), we set a 95% C.L. upper limit of 3.9 nG on primordial magnetic fields assuming a flat prior on the field amplitude. This limit is comparable to what was found in the Planck 2015 two-point correlation analysis with both temperature and polarization. We perform a set of systematic error tests and find no evidence for contamination. This work marks the first time that anisotropic cosmic birefringence or primordial magnetic fields have been constrained from the ground at subdegree scales. C1 [Ade, Peter A. R.] Cardiff Univ, Sch Phys & Astron, Cardiff CF10 3XQ, S Glam, Wales. [Arnold, Kam; Atlas, Matt; Elleflot, Tucker] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. [Baccigalupi, Carlo; Fabbian, Giulio; Puglisi, Giuseppe] SISSA, I-34136 Trieste, Italy. [Barron, Darcy; Chinone, Yuji; Cukierman, Ari; Goeckner-Wald, Neil; Groh, John; Hall, Grantland; Hill, Charles; Holzapfel, William L.; Hori, Yasuto; Jeong, Oliver; Lee, Adrian T.; Myers, Michael J.; Raum, Christopher; Richards, Paul L.; Sherwin, Blake D.; Shirley, Ian; Steinbach, Bryan; Whitehorn, Nathan; Zahn, Oliver] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Boettger, David; Dunner, Rolando] Pontificia Univ Catolica Chile, Dept Astron, Santiago, Chile. [Borrill, Julian; Errard, Josquin; Keskitalo, Reijo; Kisner, Theodore] Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA. [Borrill, Julian; Errard, Josquin; Keskitalo, Reijo; Kisner, Theodore] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Chapman, Scott; Ross, Colin; Rotermund, Kaja M.; Tikhomirov, Alexei] Dalhousie Univ, Dept Phys & Atmospher Sci, Halifax, NS B3H 4R2, Canada. [Dobbs, Matt; Gilbert, Adam; Montgomery, Josh; Smecher, Graeme] McGill Univ, Dept Phys, Montreal, PQ H3A 0G4, Canada. [Ducout, Anne; Feeney, Stephen; Jaffe, Andrew H.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Dept Phys, London SW7 2AZ, England. [Feng, Chang] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Halverson, Nils W.; Jaehnig, Gregory C.; Schenck, David E.] Univ Colorado, Ctr Astrophys & Space Astron, Boulder, CO 80309 USA. [Halverson, Nils W.; Schenck, David E.] Univ Colorado, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA. [Halverson, Nils W.; Jaehnig, Gregory C.] Univ Colorado, Dept Phys, Boulder, CO 80309 USA. [Hasegawa, Masaya; Hattori, Kaori; Hazumi, Masashi; Inoue, Yuki; Nishino, Haruki; Okamura, Takahiro; Suzuki, Jun-ichi; Tajima, Osamu; Takakura, Satoru; Tomaru, Takayuki] High Energy Accelerator Res Org KEK, Tsukuba, Ibaraki 3050801, Japan. [Hasegawa, Masaya; Hazumi, Masashi; Inoue, Yuki; Tajima, Osamu] SOKENDAI Grad Univ Adv Studies, Miura, Kanagawa 2400115, Japan. [Hazumi, Masashi; Katayama, Nobuhiko] Univ Tokyo, UTIAS, Kavli IPMU WPI, Kashiwa, Chiba 2778583, Japan. [Kermish, Zigmund] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Kusaka, Akito; Lee, Adrian T.; Linder, Eric] Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [Le Jeune, Maude; Peloton, Julien; Poletti, Davide] Univ Paris Diderot, AstroParticule & Cosmol, Ctr Natl Rech Sci,Inst Rech Lois Fondamentales Un, Inst Natl Phys Nucl & Phys Particules,Commissaria, Paris, France. [Leitch, Erik M.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Leitch, Erik M.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Li, Yun; Pogosian, Levon] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada. [Matsumura, Tomotake] Japan Aerosp Explorat Agcy JAXA, Inst Space & Astronaut Sci, Sagamihara, Kanagawa 2525210, Japan. [Miller, Nathan] NASA, Goddard Space Flight Ctr, Observat Cosmol Lab, Greenbelt, MD 20771 USA. [Rebeiz, Gabriel] Univ Calif San Diego, Dept Elect & Comp Engn, La Jolla, CA 92093 USA. [Reichardt, Christian L.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. [Sherwin, Blake D.] Univ Calif Berkeley, Miller Inst Basic Res Sci, Berkeley, CA 94720 USA. [Shimon, Meir] Tel Aviv Univ, Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Suzuki, Aritoki] Univ Calif Berkeley, Radio Astron Lab, Berkeley, CA 94720 USA. [Takakura, Satoru] Osaka Univ, Toyonaka, Osaka 5600043, Japan. RP Feng, C (reprint author), Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. EM chang.feng@uci.edu OI Fabbian, Giulio/0000-0002-3255-4695; Reichardt, Christian/0000-0003-2226-9169; Chinone, Yuji/0000-0002-3266-857X FU Department of Energy [DE-AC02-05CH11231]; National Science Foundation [AST-0618398, AST-1212230]; MEXT KAKENHI Grants [21111002, 26220709]; KEK Cryogenics Science Center; JSPS Core-to-Core Program (A. Advanced Research Networks); Natural Sciences and Engineering Research Council; Canadian Institute for Advanced Research; NSERC; Comision Nacional de Investigacion Cientifica y Tecnologica de Chile (CONICYT); Simons Foundation; NSF [AST-1313319]; Ax Center for Experimental Cosmology; University of Melbourne; INDARK INFN Network; NSF Astronomy and Astrophysics Postdoctoral Fellowship [AST-1501422] FX Calculations were performed on the Gordon supercomputer operated for the Extreme Science and Engineering Discovery Environment by the San Diego Supercomputer Center and the Edison supercomputer by the National Energy Research Scientific Computing, supported by the Department of Energy under Contract No. DE-AC02-05CH11231. The POLARBEAR project is funded by the National Science Foundation under Grants No. AST-0618398 and No. AST-1212230. The KEK authors were supported by MEXT KAKENHI Grants No. 21111002 and No. 26220709, and acknowledge support from KEK Cryogenics Science Center. This work was supported by the JSPS Core-to-Core Program (A. Advanced Research Networks). The McGill authors acknowledge funding from the Natural Sciences and Engineering Research Council and Canadian Institute for Advanced Research. L. P. and Y. L. are supported by a Discovery Grant from NSERC. The James Ax Observatory operates in the Parque Astronomico Atacama in Northern Chile under the auspices of the Comision Nacional de Investigacion Cientifica y Tecnologica de Chile (CONICYT). K. A. acknowledges support from the Simons Foundation. C. F. acknowledges support from NSF Grant No. AST-1313319 and the Ax Center for Experimental Cosmology. C. R. acknowledges support from the University of Melbourne. C. B., G. F., and G. P. acknowledge partial support from the INDARK INFN Network. D. B. is supported by a NSF Astronomy and Astrophysics Postdoctoral Fellowship under Grant No. AST-1501422. We are grateful to Marc Kamionkowski and Vera Gluscevic for the insights and suggestions that helped inspire this work. NR 79 TC 15 Z9 15 U1 6 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD DEC 8 PY 2015 VL 92 IS 12 AR 123509 DI 10.1103/PhysRevD.92.123509 PG 10 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CY0LH UT WOS:000366097100003 ER PT J AU Baldauf, T Desjacques, V Seljak, U AF Baldauf, Tobias Desjacques, Vincent Seljak, Uros TI Velocity bias in the distribution of dark matter halos SO PHYSICAL REVIEW D LA English DT Article ID EVOLUTION; PEAKS AB The standard formalism for the coevolution of halos and dark matter predicts that any initial halo velocity bias rapidly decays to zero. We argue that, when the purpose is to compute statistics like power spectra etc., the coupling in the momentum conservation equation for the biased tracers must be modified. Our new formulation predicts the constancy in time of any statistical halo velocity bias present in the initial conditions, in agreement with peak theory. We test this prediction by studying the evolution of a conserved halo population in N-body simulations. We establish that the initial simulated halo density and velocity statistics show distinct features of the peak model and, thus, deviate from the simple local Lagrangian bias. We demonstrate, for the first time, that the time evolution of their velocity is in tension with the rapid decay expected in the standard approach. C1 [Baldauf, Tobias] Inst Adv Study, Sch Nat Sci, Princeton, NJ 08540 USA. [Desjacques, Vincent] Univ Geneva, Dept Phys Theor, CH-1221 Geneva 4, Switzerland. [Desjacques, Vincent] Univ Geneva, Ctr Astroparticle Phys, CH-1221 Geneva 4, Switzerland. [Seljak, Uros] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Seljak, Uros] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Dept Phys, Berkeley, CA 94720 USA. RP Baldauf, T (reprint author), Inst Adv Study, Sch Nat Sci, Einstein Dr, Princeton, NJ 08540 USA. EM baldauf@ias.edu FU Institute for Advanced Study through the W. M. Keck Foundation Fund; Swiss National Science Foundation; NASA ATP Grant [NNX12AG71G] FX The authors would like to thank Roman Scoccimarro, Ravi Sheth and Zvonimir Vlah for useful discussions. T. B. gratefully acknowledges support from the Institute for Advanced Study through the W. M. Keck Foundation Fund. V. D. acknowledges support by the Swiss National Science Foundation. U.S. is supported in part by the NASA ATP Grant No. NNX12AG71G. NR 26 TC 10 Z9 10 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD DEC 8 PY 2015 VL 92 IS 12 AR 123507 DI 10.1103/PhysRevD.92.123507 PG 9 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CY0LH UT WOS:000366097100002 ER PT J AU Adamczyk, L Adkins, JK Agakishiev, G Aggarwal, MM Ahammed, Z Alekseev, I Alford, J Aparin, A Arkhipkin, D Aschenauer, EC Averichev, GS Banerjee, A Bellwied, R Bhasin, A Bhati, AK Bhattarai, P Bielcik, J Bielcikova, J Bland, LC Bordyuzhin, IG Bouchet, J Brandin, AV Bunzarov, I Burton, TP Butterworth, J Caines, H Sanchez, MCD Campbell, JM Cebra, D Cervantes, MC Chakaberia, I Chaloupka, P Chang, Z Chattopadhyay, S Chen, JH Chen, X Cheng, J Cherney, M Christie, W Contin, G Crawford, HJ Das, S De Silva, LC Debbe, RR Dedovich, TG Deng, J Derevschikov, AA di Ruzza, B Didenko, L Dilks, C Dong, X Drachenberg, L Draper, JE Du, CM Dunkelberger, LE Dunlop, JC Efimov, LG Engelage, J Eppley, G Esha, R Evdokimov, O Eyser, O Fatemi, R Fazio, S Federic, P Fedorisin, J Feng, Z Filip, P Fisyak, Y Flores, CE Fulek, L Gagliardi, CA Garand, D Geurts, F Gibson, A Girard, M Greiner, L Grosnick, D Gunarathne, DS Guo, Y Gupta, S Gupta, A Guryn, W Hamad, A Hamed, A Haque, R Harris, JW He, L Heppelmann, S Heppelmann, S Hirsch, A Hoffmann, GW Hofman, DJ Horvat, S Huang, B Huang, X Huang, HZ Huck, P Humanic, TJ Igo, G Jacobs, WW Jang, H Jiang, K Judd, EG Kabana, S Kalinkin, D Kang, K Kauder, K Ke, HW Keane, D Kechechyan, A Khan, ZH Kikola, DP Kisel, I Kisiel, A Kochenda, L Koetke, DD Kollegger, T Kosarzewski, LK Kraishan, AF Kravtsov, P Krueger, K Kulakov, I Kumar, L Kycia, RA Lamont, MAC Landgraf, JM Landry, KD Lauret, J Lebedev, A Lednicky, R Lee, JH Li, X Li, C Li, W Li, ZM Li, Y Li, X Lisa, MA Liu, F Ljubicic, T Llope, WJ Lomnitz, M Longacre, RS Luo, X Ma, YG Ma, GL Ma, L Ma, R Magdy, N Majka, R Manion, A Margetis, S Markert, C Masui, H Matis, HS McDonald, D Meehan, K Minaev, NG Mioduszewski, S Mohanty, B Mondal, MM Morozov, D Mustafa, MK Nandi, BK Nasim, M Nayak, TK Nigmatkulov, G Nogach, LV Noh, SY Novak, J Nurushev, SB Odyniec, G Ogawa, A Oh, K Okorokov, V Olvitt, D Page, BS Pak, R Pan, YX Pandit, Y Panebratsev, Y Pawlik, B Pei, H Perkins, C Peterson, A Pile, P Planinic, M Pluta, J Poljak, N Poniatowska, K Porter, J Posik, M Poskanzer, AM Pruthi, NK Putschke, J Qiu, H Quintero, A Ramachandran, S Raniwala, R Raniwala, S Ray, RL Ritter, HG Roberts, JB Rogachevskiy, OV Romero, JL Roy, A Ruan, L Rusnak, J Rusnakova, O Sahoo, NR Sahu, PK Sakrejda, I Salur, S Sandweiss, J Sarkar, A Schambach, J Scharenberg, RP Schmah, AM Schmidke, WB Schmitz, N Seger, J Seyboth, P Shah, N Shahaliev, E Shanmuganathan, PV Shao, M Sharma, MK Sharma, B Shen, WQ Shi, SS Shou, QY Sichtermann, EP Sikora, R Simko, M Skoby, MJ Smirnov, D Smirnov, N Song, L Sorensen, P Spinka, HM Srivastava, B Stanislaus, TDS Stepanov, M Stock, R Strikhanov, M Stringfellow, B Sumbera, M Summa, B Sun, X Sun, Z Sun, XM Sun, Y Surrow, B Svirida, N Szelezniak, MA Tang, AH Tang, Z Tarnowsky, T Tawfik, AN Thomas, JH Timmins, AR Tlusty, D Tokarev, M Trentalange, S Tribble, RE Tribedy, P Tripathy, SK Trzeciak, BA Tsai, OD Ullrich, T Underwood, DG Upsal, I Van Buren, G van Nieuwenhuizen, G Vandenbroucke, M Varma, R Vasiliev, AN Vertesi, R Videbaek, F Viyogi, YP Vokal, S Voloshin, SA Vossen, A Wang, G Wang, Y Wang, F Wang, Y Wang, H Wang, JS Webb, JC Webb, G Wen, L Westfall, GD Wieman, H Wissink, SW Witt, R Wu, YF Xiao, ZG Xie, W Xin, K Xu, QH Xu, Z Xu, H Xu, N Xu, YF Yang, Q Yang, Y Yang, S Yang, Y Yang, C Ye, Z Yepes, P Yi, L Yip, K Yoo, IK Yu, N Zbroszczyk, H Zha, W Zhang, XP Zhang, J Zhang, Y Zhang, J Zhang, JB Zhang, S Zhang, Z Zhao, J Zhong, C Zhou, L Zhu, X Zoulkarneeva, Y Zyzak, M AF Adamczyk, L. Adkins, J. K. Agakishiev, G. Aggarwal, M. M. Ahammed, Z. Alekseev, I. Alford, J. Aparin, A. Arkhipkin, D. Aschenauer, E. C. Averichev, G. S. Banerjee, A. Bellwied, R. Bhasin, A. Bhati, A. K. Bhattarai, P. Bielcik, J. Bielcikova, J. Bland, L. C. Bordyuzhin, I. G. Bouchet, J. Brandin, A. V. Bunzarov, I. Burton, T. P. Butterworth, J. Caines, H. Sanchez, M. Calderon de la Barca Campbell, J. M. Cebra, D. Cervantes, M. C. Chakaberia, I. Chaloupka, P. Chang, Z. Chattopadhyay, S. Chen, J. H. Chen, X. Cheng, J. Cherney, M. Christie, W. Contin, G. Crawford, H. J. Das, S. De Silva, L. C. Debbe, R. R. Dedovich, T. G. Deng, J. Derevschikov, A. A. di Ruzza, B. Didenko, L. Dilks, C. Dong, X. Drachenberg, L. Draper, J. E. Du, C. M. Dunkelberger, L. E. Dunlop, J. C. Efimov, L. G. Engelage, J. Eppley, G. Esha, R. Evdokimov, O. Eyser, O. Fatemi, R. Fazio, S. Federic, P. Fedorisin, J. Feng, Z. Filip, P. Fisyak, Y. Flores, C. E. Fulek, L. Gagliardi, C. A. Garand, D. Geurts, F. Gibson, A. Girard, M. Greiner, L. Grosnick, D. Gunarathne, D. S. Guo, Y. Gupta, S. Gupta, A. Guryn, W. Hamad, A. Hamed, A. Haque, R. Harris, J. W. He, L. Heppelmann, S. Heppelmann, S. Hirsch, A. Hoffmann, G. W. Hofman, D. J. Horvat, S. Huang, B. Huang, X. Huang, H. Z. Huck, P. Humanic, T. J. Igo, G. Jacobs, W. W. Jang, H. Jiang, K. Judd, E. G. Kabana, S. Kalinkin, D. Kang, K. Kauder, K. Ke, H. W. Keane, D. Kechechyan, A. Khan, Z. H. Kikola, D. P. Kisel, I. Kisiel, A. Kochenda, L. Koetke, D. D. Kollegger, T. Kosarzewski, L. K. Kraishan, A. F. Kravtsov, P. Krueger, K. Kulakov, I. Kumar, L. Kycia, R. A. Lamont, M. A. C. Landgraf, J. M. Landry, K. D. Lauret, J. Lebedev, A. Lednicky, R. Lee, J. H. Li, X. Li, C. Li, W. Li, Z. M. Li, Y. Li, X. Lisa, M. A. Liu, F. Ljubicic, T. Llope, W. J. Lomnitz, M. Longacre, R. S. Luo, X. Ma, Y. G. Ma, G. L. Ma, L. Ma, R. Magdy, N. Majka, R. Manion, A. Margetis, S. Markert, C. Masui, H. Matis, H. S. McDonald, D. Meehan, K. Minaev, N. G. Mioduszewski, S. Mohanty, B. Mondal, M. M. Morozov, D. Mustafa, M. K. Nandi, B. K. Nasim, Md. Nayak, T. K. Nigmatkulov, G. Nogach, L. V. Noh, S. Y. Novak, J. Nurushev, S. B. Odyniec, G. Ogawa, A. Oh, K. Okorokov, V. Olvitt, D., Jr. Page, B. S. Pak, R. Pan, Y. X. Pandit, Y. Panebratsev, Y. Pawlik, B. Pei, H. Perkins, C. Peterson, A. Pile, P. Planinic, M. Pluta, J. Poljak, N. Poniatowska, K. Porter, J. Posik, M. Poskanzer, A. M. Pruthi, N. K. Putschke, J. Qiu, H. Quintero, A. Ramachandran, S. Raniwala, R. Raniwala, S. Ray, R. L. Ritter, H. G. Roberts, J. B. Rogachevskiy, O. V. Romero, J. L. Roy, A. Ruan, L. Rusnak, J. Rusnakova, O. Sahoo, N. R. Sahu, P. K. Sakrejda, I. Salur, S. Sandweiss, J. Sarkar, A. Schambach, J. Scharenberg, R. P. Schmah, A. M. Schmidke, W. B. Schmitz, N. Seger, J. Seyboth, P. Shah, N. Shahaliev, E. Shanmuganathan, P. V. Shao, M. Sharma, M. K. Sharma, B. Shen, W. Q. Shi, S. S. Shou, Q. Y. Sichtermann, E. P. Sikora, R. Simko, M. Skoby, M. J. Smirnov, D. Smirnov, N. Song, L. Sorensen, P. Spinka, H. M. Srivastava, B. Stanislaus, T. D. S. Stepanov, M. Stock, R. Strikhanov, M. Stringfellow, B. Sumbera, M. Summa, B. Sun, X. Sun, Z. Sun, X. M. Sun, Y. Surrow, B. Svirida, N. Szelezniak, M. A. Tang, A. H. Tang, Z. Tarnowsky, T. Tawfik, A. N. Thomas, J. H. Timmins, A. R. Tlusty, D. Tokarev, M. Trentalange, S. Tribble, R. E. Tribedy, P. Tripathy, S. K. Trzeciak, B. A. Tsai, O. D. Ullrich, T. Underwood, D. G. Upsal, I. Van Buren, G. van Nieuwenhuizen, G. Vandenbroucke, M. Varma, R. Vasiliev, A. N. Vertesi, R. Videbaek, F. Viyogi, Y. P. Vokal, S. Voloshin, S. A. Vossen, A. Wang, G. Wang, Y. Wang, F. Wang, Y. Wang, H. Wang, J. S. Webb, J. C. Webb, G. wen, L. Westfall, G. D. Wieman, H. Wissink, S. W. Witt, R. Wu, Y. F. Xiao, Z. G. Xie, W. Xin, K. Xu, Q. H. Xu, Z. Xu, H. Xu, N. Xu, Y. F. Yang, Q. Yang, Y. Yang, S. Yang, Y. Yang, C. Ye, Z. Yepes, P. Yi, L. Yip, K. Yoo, I-K. Yu, N. Zbroszczyk, H. Zha, W. Zhang, X. P. Zhang, J. Zhang, Y. Zhang, J. Zhang, J. B. Zhang, S. Zhang, Z. Zhao, J. Zhong, C. Zhou, L. Zhu, X. Zoulkarneeva, Y. Zyzak, M. CA STAR Collaboration TI Observation of Transverse Spin-Dependent Azimuthal Correlations of Charged Pion Pairs in p(up arrow) + p at root s=200 GeV SO PHYSICAL REVIEW LETTERS LA English DT Article ID DISTRIBUTIONS; POLARIZATION; NUCLEON; QCD AB We report the observation of transverse polarization-dependent azimuthal correlations in charged pion pair production with the STAR experiment in p(up arrow) + p collisions at RHIC. These correlations directly probe quark transversity distributions. We measure signals in excess of 5 standard deviations at high transverse momenta, at high pseudorapidities eta > 0.5, and for pair masses around the mass of the rho meson. This is the first direct transversity measurement in p + p collisions. C1 [Adamczyk, L.; Fulek, L.; Sikora, R.] AGH Univ Sci & Technol, PL-30059 Krakow, Poland. [Krueger, K.; Spinka, H. M.; Underwood, D. G.] Argonne Natl Lab, Argonne, IL 60439 USA. [Arkhipkin, D.; Aschenauer, E. C.; Bland, L. C.; Burton, T. P.; Chakaberia, I.; Christie, W.; Debbe, R. R.; di Ruzza, B.; Didenko, L.; Dunlop, J. C.; Eyser, O.; Fazio, S.; Fisyak, Y.; Guryn, W.; Heppelmann, S.; Ke, H. W.; Lamont, M. A. C.; Landgraf, J. M.; Lauret, J.; Lebedev, A.; Lee, J. H.; Li, X.; Ljubicic, T.; Longacre, R. S.; Ma, R.; Ogawa, A.; Page, B. S.; Pak, R.; Pile, P.; Ruan, L.; Schmidke, W. B.; Smirnov, D.; Sorensen, P.; Tang, A. H.; Ullrich, T.; Van Buren, G.; van Nieuwenhuizen, G.; Videbaek, F.; Wang, H.; Webb, J. C.; Webb, G.; Xu, Z.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Crawford, H. J.; Engelage, J.; Judd, E. G.; Perkins, C.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Sanchez, M. Calderon de la Barca; Cebra, D.; Draper, J. E.; Flores, C. E.; Meehan, K.; Romero, J. L.] Univ Calif Davis, Davis, CA 95616 USA. [Dunkelberger, L. E.; Esha, R.; Huang, H. Z.; Igo, G.; Landry, K. D.; Nasim, Md.; Pan, Y. X.; Shah, N.; Trentalange, S.; Tsai, O. D.; Wang, G.; wen, L.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. [Feng, Z.; Huck, P.; Li, Z. M.; Liu, F.; Luo, X.; Pei, H.; Shi, S. S.; Sun, X. M.; Wang, Y.; Wu, Y. F.; Yang, Y.; Yu, N.; Zhang, J. B.; Zhao, J.] Cent China Normal Univ HZNU, Wuhan 430079, Peoples R China. [Evdokimov, O.; Hofman, D. J.; Huang, B.; Khan, Z. H.; Pandit, Y.; Ye, Z.] Univ Illinois, Chicago, IL 60607 USA. [Cherney, M.; De Silva, L. C.; Seger, J.] Creighton Univ, Omaha, NE 68178 USA. [Bielcik, J.; Chaloupka, P.; Rusnakova, O.; Trzeciak, B. A.] Czech Tech Univ, FNSPE, Prague 11519, Czech Republic. [Bielcikova, J.; Federic, P.; Rusnak, J.; Simko, M.; Sumbera, M.; Tlusty, D.; Vertesi, R.] Nucl Phys Inst AS CR, Rez 25068, Czech Republic. [Kisel, I.; Kollegger, T.; Kulakov, I.; Stock, R.; Zyzak, M.] Frankfurt Inst Adv Studies FIAS, D-60438 Frankfurt, Germany. [Das, S.; Sahu, P. K.; Tripathy, S. K.] Inst Phys, Bhubaneswar 751005, Orissa, India. [Nandi, B. K.; Sarkar, A.; Varma, R.] Indian Inst Technol, Bombay 400076, Maharashtra, India. [Jacobs, W. W.; Skoby, M. J.; Vossen, A.; Wissink, S. W.] Indiana Univ, Bloomington, IN 47408 USA. [Alekseev, I.; Bordyuzhin, I. G.; Kalinkin, D.; Svirida, N.] Alikhanov Inst Theoret & Expt Phys, Moscow 117218, Russia. [Bhasin, A.; Gupta, S.; Gupta, A.; Sharma, M. K.] Univ Jammu, Jammu 180001, India. [Agakishiev, G.; Aparin, A.; Averichev, G. S.; Bunzarov, I.; Dedovich, T. G.; Efimov, L. G.; Fedorisin, J.; Filip, P.; Kechechyan, A.; Lednicky, R.; Panebratsev, Y.; Rogachevskiy, O. V.; Shahaliev, E.; Tokarev, M.; Vokal, S.; Zoulkarneeva, Y.] Joint Inst Nucl Res, Dubna 141980, Russia. [Alford, J.; Bouchet, J.; Hamad, A.; Kabana, S.; Keane, D.; Lomnitz, M.; Margetis, S.; Quintero, A.; Shanmuganathan, P. V.] Kent State Univ, Kent, OH 44242 USA. [Adkins, J. K.; Fatemi, R.; Ramachandran, S.] Univ Kentucky, Lexington, KY 40506 USA. [Jang, H.; Noh, S. Y.] Korea Inst Sci & Technol Informat, Daejeon 305701, South Korea. [Chen, X.; Du, C. M.; Sun, Z.; Wang, J. S.; Xu, H.; Yang, Y.; Zhang, J.] Inst Modern Phys, Lanzhou 730000, Peoples R China. [Contin, G.; Dong, X.; Greiner, L.; Manion, A.; Masui, H.; Matis, H. S.; Mustafa, M. K.; Odyniec, G.; Porter, J.; Poskanzer, A. M.; Qiu, H.; Ritter, H. G.; Sakrejda, I.; Salur, S.; Schmah, A. M.; Sichtermann, E. P.; Sun, X.; Szelezniak, M. A.; Thomas, J. H.; Wieman, H.; Xu, N.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Schmitz, N.; Seyboth, P.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Novak, J.; Tarnowsky, T.; Westfall, G. D.] Michigan State Univ, E Lansing, MI 48824 USA. [Brandin, A. V.; Kochenda, L.; Kravtsov, P.; Nigmatkulov, G.; Okorokov, V.; Strikhanov, M.] Moscow Engn Phys Inst, Moscow 115409, Russia. [Haque, R.; Mohanty, B.] Natl Inst Sci Educ & Res, Bhubaneswar 751005, Orissa, India. [Campbell, J. M.; Humanic, T. J.; Lisa, M. A.; Peterson, A.; Upsal, I.] Ohio State Univ, Columbus, OH 43210 USA. [Kycia, R. A.; Pawlik, B.] Inst Nucl Phys PAN, PL-31342 Krakow, Poland. [Aggarwal, M. M.; Bhati, A. K.; Kumar, L.; Pruthi, N. K.; Sharma, B.] Panjab Univ, Chandigarh 160014, India. [Dilks, C.; Heppelmann, S.; Summa, B.] Penn State Univ, University Pk, PA 16802 USA. [Derevschikov, A. A.; Minaev, N. G.; Morozov, D.; Nogach, L. V.; Nurushev, S. B.; Vasiliev, A. N.] Inst High Energy Phys, Protvino 142281, Russia. [Garand, D.; He, L.; Hirsch, A.; Scharenberg, R. P.; Srivastava, B.; Stepanov, M.; Stringfellow, B.; Wang, F.; Xie, W.; Yi, L.] Purdue Univ, W Lafayette, IN 47907 USA. [Oh, K.; Yoo, I-K.] Pusan Natl Univ, Pusan 609735, South Korea. [Raniwala, R.; Raniwala, S.] Univ Rajasthan, Jaipur 302004, Rajasthan, India. [Butterworth, J.; Eppley, G.; Geurts, F.; Roberts, J. B.; Xin, K.; Yepes, P.] Rice Univ, Houston, TX 77251 USA. [Guo, Y.; Jiang, K.; Li, C.; Shao, M.; Sun, Y.; Tang, Z.; Yang, Q.; Yang, S.; Yang, C.; Zha, W.; Zhang, Y.; Zhou, L.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Deng, J.; Xu, Q. H.; Zhang, J.] Shandong Univ, Jinan 250100, Shandong, Peoples R China. [Chen, J. H.; Li, W.; Ma, Y. G.; Ma, G. L.; Ma, L.; Shen, W. Q.; Shou, Q. Y.; Xu, Y. F.; Zhang, S.; Zhang, Z.; Zhong, C.] Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China. [Gunarathne, D. S.; Kraishan, A. F.; Li, X.; Olvitt, D., Jr.; Posik, M.; Surrow, B.; Vandenbroucke, M.] Temple Univ, Philadelphia, PA 19122 USA. [Cervantes, M. C.; Chang, Z.; Gagliardi, C. A.; Hamed, A.; Mioduszewski, S.; Mondal, M. M.; Sahoo, N. R.; Tribble, R. E.] Texas A&M Univ, College Stn, TX 77843 USA. [Bhattarai, P.; Hoffmann, G. W.; Markert, C.; Ray, R. L.; Schambach, J.] Univ Texas Austin, Austin, TX 78712 USA. [Bellwied, R.; McDonald, D.; Song, L.; Timmins, A. R.] Univ Houston, Houston, TX 77204 USA. [Cheng, J.; Huang, X.; Kang, K.; Li, Y.; Wang, Y.; Xiao, Z. G.; Zhang, X. P.; Zhu, X.] Tsinghua Univ, Beijing 100084, Peoples R China. [Witt, R.] US Naval Acad, Annapolis, MD 21402 USA. [Drachenberg, L.; Gibson, A.; Grosnick, D.; Koetke, D. D.; Stanislaus, T. D. S.] Valparaiso Univ, Valparaiso, IN 46383 USA. [Ahammed, Z.; Banerjee, A.; Chattopadhyay, S.; Nayak, T. K.; Roy, A.; Tribedy, P.; Viyogi, Y. P.] Bhabha Atom Res Ctr, Ctr Variable Energy Cyclotron, Kolkata 700064, W Bengal, India. [Girard, M.; Kikola, D. P.; Kisiel, A.; Kosarzewski, L. K.; Pluta, J.; Poniatowska, K.; Zbroszczyk, H.] Warsaw Univ Technol, PL-00661 Warsaw, Poland. [Kauder, K.; Llope, W. J.; Putschke, J.; Voloshin, S. A.] Wayne State Univ, Detroit, MI 48201 USA. [Magdy, N.; Tawfik, A. N.] WLCAPP, Cairo 11571, Egypt. [Caines, H.; Harris, J. W.; Horvat, S.; Majka, R.; Sandweiss, J.; Smirnov, N.] Yale Univ, New Haven, CT 06520 USA. [Planinic, M.; Poljak, N.] Univ Zagreb, Fac Sci, Dept Phys, Bijenicka Cesta 32, Zagreb 10000, Croatia. RP Adamczyk, L (reprint author), AGH Univ Sci & Technol, PL-30059 Krakow, Poland. RI Gunarathne, Devika/C-4903-2017; Yi, Li/Q-1705-2016; Alekseev, Igor/J-8070-2014; Tawfik, Abdel Nasser/M-6220-2013; Okorokov, Vitaly/C-4800-2017; Ma, Yu-Gang/M-8122-2013; Rusnak, Jan/G-8462-2014; Bielcikova, Jana/G-9342-2014; Sumbera, Michal/O-7497-2014; Chaloupka, Petr/E-5965-2012; Huang, Bingchu/H-6343-2015; Fazio, Salvatore /G-5156-2010; Xin, Kefeng/O-9195-2016 OI Gunarathne, Devika/0000-0002-7155-7418; Ke, Hongwei/0000-0003-1463-7291; Yi, Li/0000-0002-7512-2657; Alekseev, Igor/0000-0003-3358-9635; Tawfik, Abdel Nasser/0000-0002-1679-0225; Okorokov, Vitaly/0000-0002-7162-5345; Ma, Yu-Gang/0000-0002-0233-9900; Sumbera, Michal/0000-0002-0639-7323; Huang, Bingchu/0000-0002-3253-3210; Xin, Kefeng/0000-0003-4853-9219 FU Office of Nuclear Physics within the U.S. DOE Office of Science; U.S. NSF; Ministry of Education and Science of the Russian Federation; NNSFC; CAS; MoST; MoE of China; Korean Research Foundation; GA and MSMT of the Czech Republic; FIAS of Germany; DAE; DST; UGC of India; National Science Centre of Poland; National Research Foundation; Ministry of Science, Education and Sports of the Republic of Croatia; RosAtom of Russia FX We thank the RHIC Operations Group and RCF at BNL, the NERSC Center at LBNL, the KISTI Center in Korea, and the Open Science Grid consortium for providing resources and support. This work was supported in part by the Office of Nuclear Physics within the U.S. DOE Office of Science, the U.S. NSF, the Ministry of Education and Science of the Russian Federation, NNSFC, CAS, MoST, and MoE of China, the Korean Research Foundation, GA and MSMT of the Czech Republic, FIAS of Germany, DAE, DST, and UGC of India, the National Science Centre of Poland, National Research Foundation, the Ministry of Science, Education and Sports of the Republic of Croatia, and RosAtom of Russia. NR 35 TC 3 Z9 3 U1 1 U2 23 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD DEC 8 PY 2015 VL 115 IS 24 AR 242501 DI 10.1103/PhysRevLett.115.242501 PG 7 WC Physics, Multidisciplinary SC Physics GA CY0OZ UT WOS:000366106700003 PM 26705627 ER PT J AU Briceno, RA Dudek, JJ Edwards, RG Shultz, CJ Thomas, CE Wilson, DJ AF Briceno, Raul A. Dudek, Jozef J. Edwards, Robert G. Shultz, Christian J. Thomas, Christopher E. Wilson, David J. TI Resonant pi(+)gamma -> pi(+)pi(0) Amplitude from Quantum Chromodynamics SO PHYSICAL REVIEW LETTERS LA English DT Article ID FINITE-VOLUME; LATTICE QCD; SCATTERING; STATES; MATRIX; WIDTH AB We present the first ab initio calculation of a radiative transition of a hadronic resonance within quantum chromodynamics (QCD). We compute the amplitude for pi pi -> pi gamma*, as a function of the energy of the pi pi pair and the virtuality of the photon, in the kinematic regime where pi pi couples strongly to the unstable rho resonance. This exploratory calculation is performed using a lattice discretization of QCD with quark masses corresponding to m(pi) approximate to 400 MeV. We obtain a description of the energy dependence of the transition amplitude, constrained at 48 kinematic points, that we can analytically continue to the rho pole and identify from its residue the rho -> pi gamma* form factor. C1 [Briceno, Raul A.; Dudek, Jozef J.; Edwards, Robert G.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Dudek, Jozef J.; Shultz, Christian J.; Wilson, David J.] Old Dominion Univ, Dept Phys, Norfolk, VA 23529 USA. [Thomas, Christopher E.] Univ Cambridge, Dept Appl Math & Theoret Phys, Ctr Math Sci, Cambridge CB3 0WA, England. RP Briceno, RA (reprint author), Thomas Jefferson Natl Accelerator Facil, 12000 Jefferson Ave, Newport News, VA 23606 USA. EM rbriceno@jlab.org FU U.S. Department of Energy [DE-AC05-06OR23177, DE-SC0006765]; JSA Graduate Fellowship program; U.K. Science and Technology Facilities Council [ST/L000385/1] FX We thank our colleagues within the Hadron Spectrum Collaboration. The software codes Chroma [51] and QUDA [52,53] were used to perform this work on clusters at Jefferson Laboratory under the USQCD Initiative and the LQCD ARRA project. We acknowledge resources used at the Oak Ridge Leadership Computing Facility, the National Center for Supercomputing Applications, the Texas Advanced Computer Center, and the Pittsburgh Supercomputer Center. Support is provided by U.S. Department of Energy Contract No. DE-AC05-06OR23177 under which Jefferson Science Associates manages Jefferson Lab, the Early Career Award No. DE-SC0006765, and the JSA Graduate Fellowship program. Support is also provided by the U.K. Science and Technology Facilities Council (Grant No. ST/L000385/1). R. A. B. would like to thank M. Hansen, A. Rusetsky, S. Sharpe, W. Detmold, I. V. Danilkin, Z. Davoudi, J. Goity, M. Pennington, and S. Meinel for useful discussions. NR 52 TC 12 Z9 12 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD DEC 8 PY 2015 VL 115 IS 24 AR 242001 DI 10.1103/PhysRevLett.115.242001 PG 5 WC Physics, Multidisciplinary SC Physics GA CY0OZ UT WOS:000366106700002 PM 26705626 ER PT J AU Roder, PB Smith, BE Zhou, X Crane, MJ Pauzauskie, PJ AF Roder, Paden B. Smith, Bennett E. Zhou, Xuezhe Crane, Matthew J. Pauzauskie, Peter J. TI Laser refrigeration of hydrothermal nanocrystals in physiological media SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE laser refrigeration; nanocrystal; hydrothermal; physiological; anti-Stokes ID FREQUENCY UP-CONVERSION; CONDENSED-PHASE; OPTICAL REFRIGERATION; TEMPERATURE; NANOPARTICLES; THERMOMETRY; GENERATION; TRANSPORT; PARTICLE; SOLIDS AB Coherent laser radiation has enabled many scientific and technological breakthroughs including Bose-Einstein condensates, ultra-fast spectroscopy, superresolution optical microscopy, photothermal therapy, and long-distance telecommunications. However, it has remained a challenge to refrigerate liquid media (including physiological buffers) during laser illumination due to significant background solvent absorption and the rapid (similar to ps) nonradiative vibrational relaxation of molecular electronic excited states. Here we demonstrate that single-beam laser trapping can be used to induce and quantify the local refrigeration of physiological media by >10 degrees C following the emission of photoluminescence from upconverting yttrium lithium fluoride (YLF) nanocrystals. A simple, low-cost hydrothermal approach is used to synthesize polycrystalline particles with sizes ranging from <200 nm to >1 mu m. A tunable, near-infrared continuous-wave laser is used to optically trap individual YLF crystals with an irradiance on the order of 1 MW/cm(2). Heat is transported out of the crystal lattice (across the solid-liquid interface) by anti-Stokes (blue-shifted) photons following upconversion of Yb3+ electronic excited states mediated by the absorption of optical phonons. Temperatures are quantified through analysis of the cold Brownian dynamics of individual nanocrystals in an inhomogeneous temperature field via forward light scattering in the back focal plane. The cold Brownian motion (CBM) analysis of individual YLF crystals indicates local cooling by >21 degrees C below ambient conditions in D2O, suggesting a range of potential future applications including single-molecule biophysics and integrated photonic, electronic, and microfluidic devices. C1 [Roder, Paden B.; Zhou, Xuezhe; Pauzauskie, Peter J.] Univ Washington, Dept Mat Sci & Engn, Seattle, WA 98195 USA. [Smith, Bennett E.] Univ Washington, Dept Chem, Seattle, WA 98195 USA. [Crane, Matthew J.] Univ Washington, Dept Chem Engn, Seattle, WA 98195 USA. [Pauzauskie, Peter J.] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99354 USA. RP Pauzauskie, PJ (reprint author), Univ Washington, Dept Mat Sci & Engn, Seattle, WA 98195 USA. EM peterpz@uw.edu FU Air Force Office of Scientific Research Young Investigator Program [FA95501210400]; University of Washington; National Science Foundation [DGE-1256082]; Department of Defense through the National Defense Science and Engineering Graduate Fellowship; US Department of Energy's Pacific Northwest National Laboratory (PNNL); Materials Synthesis and Simulation Across Scales (MS3) Initiative, a Laboratory Directed Research and Development (LDRD) program at the PNNL; [DE-AC05-76RL01830] FX The authors thank Klaus Kroy of Leipzig University for discussion of CBM analysis, John W. Cahn for discussion of YLF crystallography, and E. James Davis for manuscript comments and providing an optical spectrometer with LN2-cooled detector. This research was made possible by a grant from the Air Force Office of Scientific Research Young Investigator Program (Contract FA95501210400), start-up funding from the University of Washington, as well as a capital equipment donation from the Lawrence Livermore National Laboratory. P.B.R. thanks the National Science Foundation for a Graduate Research Fellowship under Grant DGE-1256082. M.J.C. was supported by the Department of Defense through the National Defense Science and Engineering Graduate Fellowship Program. P.J.P. gratefully acknowledges support from both the US Department of Energy's Pacific Northwest National Laboratory (PNNL) and the Materials Synthesis and Simulation Across Scales (MS3) Initiative, a Laboratory Directed Research and Development (LDRD) program at the PNNL. The PNNL is operated by Battelle under Contract DE-AC05-76RL01830. NR 53 TC 12 Z9 12 U1 4 U2 34 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD DEC 8 PY 2015 VL 112 IS 49 BP 15024 EP 15029 DI 10.1073/pnas.1510418112 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CX8YA UT WOS:000365989800028 PM 26589813 ER PT J AU Boslough, M Nicoll, K Daulton, TL Scott, AC Claeys, P Gill, JL Marlon, JR Bartlein, PJ AF Boslough, Mark Nicoll, Kathleen Daulton, Tyrone L. Scott, Andrew C. Claeys, Philippe Gill, Jacquelyn L. Marlon, Jennifer R. Bartlein, Patrick J. TI Incomplete Bayesian model rejects contradictory radiocarbon data for being contradictory SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Letter C1 [Boslough, Mark] Sandia Natl Labs, Multiphys Applicat Dept, Albuquerque, NM 87185 USA. [Nicoll, Kathleen] Univ Utah, Dept Geog, Salt Lake City, UT 84112 USA. [Daulton, Tyrone L.] Washington Univ, Dept Phys, St Louis, MO 63130 USA. [Daulton, Tyrone L.] Washington Univ, Ctr Mat Innovat, St Louis, MO 63130 USA. [Scott, Andrew C.] Royal Holloway Univ London, Dept Earth Sci, Egham TW20 0EX, Surrey, England. [Claeys, Philippe] Vrije Univ Brussels, Res Unit Analyt Environm & Geochem, Earth Syst Sci, B-1050 Brussels, Belgium. [Gill, Jacquelyn L.] Univ Maine, Climate Change Inst, Orono, ME 04469 USA. [Gill, Jacquelyn L.] Univ Maine, Sch Biol & Ecol, Orono, ME 04469 USA. [Marlon, Jennifer R.] Yale Univ, Sch Forestry & Environm Studies, New Haven, CT 06511 USA. [Bartlein, Patrick J.] Univ Oregon, Dept Geog, Eugene, OR 97403 USA. RP Boslough, M (reprint author), Sandia Natl Labs, Multiphys Applicat Dept, POB 5800, Albuquerque, NM 87185 USA. EM mbeb@unm.edu RI Claeys, Philippe/B-4895-2008 OI Claeys, Philippe/0000-0002-4585-7687 NR 4 TC 2 Z9 2 U1 1 U2 3 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD DEC 8 PY 2015 VL 112 IS 49 BP E6722 EP E6722 DI 10.1073/pnas.1519917112 PG 1 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CX8YA UT WOS:000365989800002 PM 26604316 ER PT J AU Disseler, SM Chen, Y Yeo, S Gasparovic, G Piccoli, PMB Schultz, AJ Qiu, Y Huang, Q Cheong, SW Ratcliff, W AF Disseler, S. M. Chen, Y. Yeo, S. Gasparovic, G. Piccoli, P. M. B. Schultz, A. J. Qiu, Y. Huang, Q. Cheong, S. -W. Ratcliff, W., II TI One Dimensional(1D)-to-2D Crossover of Spin Correlations in the 3D Magnet ZnMn2O4 SO SCIENTIFIC REPORTS LA English DT Article ID NEUTRON-SCATTERING; PHASE-TRANSITION; MODEL; ANTIFERROMAGNET; FRUSTRATION; SYSTEMS; ORDER AB We report on the intriguing evolution of the dynamical spin correlations of the frustrated spinel ZnMn2O4. Inelastic neutron scattering and magnetization studies reveal that the dynamical correlations at high temperatures are 1D. At lower temperature, these dynamical correlations become 2D. Surprisingly, the dynamical correlations condense into a quasi 2D Ising-like ordered state, making this a rare observation of two dimensional order on the spinel lattice. Remarkably, 3D ordering is not observed down to temperatures as low as 300 mK. This unprecedented dimensional crossover stems from frustrated exchange couplings due to the huge Jahn-Teller distortions around Mn3+ ions on the spinel lattice. C1 [Disseler, S. M.; Chen, Y.; Gasparovic, G.; Qiu, Y.; Huang, Q.; Ratcliff, W., II] Natl Inst Stand & Technol, NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Chen, Y.; Gasparovic, G.; Qiu, Y.] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA. [Yeo, S.; Cheong, S. -W.] Rutgers State Univ, Rutgers Ctr Emergent Mat, Piscataway, NJ 08854 USA. [Yeo, S.; Cheong, S. -W.] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. [Piccoli, P. M. B.; Schultz, A. J.] Argonne Natl Lab, Intense Pulsed Neutron Source, Argonne, IL 60439 USA. [Yeo, S.] Korea Atom Energy Res Inst, Daejeon, South Korea. RP Ratcliff, W (reprint author), Natl Inst Stand & Technol, NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA. EM william.ratcliff@nist.gov FU National Science Foundation [DMR-0454672]; DOE [DE-FG02-07ER46382]; US Department of Energy, BES-Materials Science [DE-AC02-06CH11357] FX We acknowledge useful discussions with C. Broholm, I. Zaliznyak, and D.I. Khomskii. This work utilized facilities supported in part by the National Science Foundation under Agreement No. DMR-0454672. The work at Rutgers was supported by the DOE grant No. DE-FG02-07ER46382. Work at Argonne was supported by the US Department of Energy, BES-Materials Science, under Contract DE-AC02-06CH11357. NR 25 TC 0 Z9 0 U1 9 U2 33 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD DEC 8 PY 2015 VL 5 AR 17771 DI 10.1038/srep17771 PG 9 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CX8NH UT WOS:000365960100001 PM 26644220 ER PT J AU Borysov, SS Roudi, Y Balatsky, AV AF Borysov, Stanislav S. Roudi, Yasser Balatsky, Alexander V. TI US stock market interaction network as learned by the Boltzmann machine SO EUROPEAN PHYSICAL JOURNAL B LA English DT Article ID STATISTICAL-MECHANICS; FINANCIAL-MARKETS; COMPLEX NETWORKS; INFORMATION-THEORY; PHASE AB We study historical dynamics of joint equilibrium distribution of stock returns in the U.S. stock market using the Boltzmann distribution model being parametrized by external fields and pairwise couplings. Within Boltzmann learning framework for statistical inference, we analyze historical behavior of the parameters inferred using exact and approximate learning algorithms. Since the model and inference methods require use of binary variables, effect of this mapping of continuous returns to the discrete domain is studied. The presented results show that binarization preserves the correlation structure of the market. Properties of distributions of external fields and couplings as well as the market interaction network and industry sector clustering structure are studied for different historical dates and moving window sizes. We demonstrate that the observed positive heavy tail in distribution of couplings is related to the sparse clustering structure of the market. We also show that discrepancies between the model's parameters might be used as a precursor of financial instabilities. C1 [Borysov, Stanislav S.; Roudi, Yasser; Balatsky, Alexander V.] KTH Royal Inst Technol, Ctr Quantum Mat, NORDITA, S-10691 Stockholm, Sweden. [Borysov, Stanislav S.; Roudi, Yasser; Balatsky, Alexander V.] Stockholm Univ, S-10691 Stockholm, Sweden. [Borysov, Stanislav S.] KTH Royal Inst Technol, Nanostruct Phys, S-10691 Stockholm, Sweden. [Roudi, Yasser] NTNU, Kavli Inst Syst Neurosci, N-7030 Trondheim, Norway. [Balatsky, Alexander V.] Los Alamos Natl Lab, Inst Mat Sci, Los Alamos, NM 87545 USA. RP Borysov, SS (reprint author), Singapore MIT Alliance Res & Technol, 1 CREATE Way,09-02 Create Tower, Singapore 138602, Singapore. EM stanislav@smart.mit.edu FU Nordita [VR VCB 621-2012-2983]; U.S. DOE; Marie Curie Training Network NETADIS [290038]; Kavli Foundation; Norwegian Research Councils Centre of Excellent Scheme FX This work is supported by Nordita, VR VCB 621-2012-2983, U.S. DOE, the Marie Curie Training Network NETADIS (FP7, Grant 290038), the Kavli Foundation and the Norwegian Research Councils Centre of Excellent Scheme. We are also grateful to the anonymous referees for their valuable suggestions. NR 45 TC 3 Z9 3 U1 3 U2 7 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6028 EI 1434-6036 J9 EUR PHYS J B JI Eur. Phys. J. B PD DEC 7 PY 2015 VL 88 IS 12 DI 10.1140/epjb/e2015-60282-3 PG 14 WC Physics, Condensed Matter SC Physics GA DG2JO UT WOS:000371893400002 ER PT J AU Jaquez, M Yu, KM Ting, M Hettick, M Sanchez-Royo, JF Welna, M Javey, A Dubon, OD Walukiewicz, W AF Jaquez, M. Yu, K. M. Ting, M. Hettick, M. Sanchez-Royo, J. F. Welna, M. Javey, A. Dubon, O. D. Walukiewicz, W. TI Growth and characterization of ZnO1-xSx highly mismatched alloys over the entire composition SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID THIN-FILMS; DEPOSITION METHOD AB Alloys from ZnO and ZnS have been synthesized by radio-frequency magnetron sputtering over the entire alloying range. The ZnO1-xSx films are crystalline for all compositions. The optical absorption edge of these alloys decreases rapidly with small amount of added sulfur (x similar to 0.02) and continues to red shift to a minimum of 2.6 eV at x = 0.45. At higher sulfur concentrations (x > 0.45), the absorption edge shows a continuous blue shift. The strong reduction in the band gap for O-rich alloys is the result of the upward shift of the valence-band edge with x as observed by x-ray photoelectron spectroscopy. As a result, the room temperature bandgap of ZnO1-xSx alloys can be tuned from 3.7 eV to 2.6 eV. The observed large bowing in the composition dependence of the energy bandgap arises from the anticrossing interactions between (1) the valence-band of ZnO and the localized sulfur level at 0.30 eV above the ZnO valence-band maximum for O-rich alloys and (2) the conduction-band of ZnS and the localized oxygen level at 0.20 eV below the ZnS conduction band minimum for the S-rich alloys. The ability to tune the bandgap and knowledge of the location of the valence and conduction-band can be advantageous in applications, such as heterojunction solar cells, where band alignment is crucial. (C) 2015 AIP Publishing LLC. C1 [Jaquez, M.; Yu, K. M.; Ting, M.; Welna, M.; Dubon, O. D.; Walukiewicz, W.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Jaquez, M.; Ting, M.] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. [Yu, K. M.] City Univ Hong Kong, Dept Phys & Mat Sci, Kowloon, Hong Kong, Peoples R China. [Hettick, M.; Javey, A.] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA. [Hettick, M.; Javey, A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Joint Ctr Artificial Photosynth, Berkeley, CA 94720 USA. [Sanchez-Royo, J. F.] Univ Valencia, ICMUV, Inst Ciencia Mat, Valencia 46071, Spain. [Welna, M.] Wroclaw Univ Technol, Dept Expt Phys, PL-50370 Wroclaw, Poland. [Dubon, O. D.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. RP Walukiewicz, W (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM w_walukiewicz@lbl.gov RI Javey, Ali/B-4818-2013 FU Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy [DE-AC02-05CH11231]; NSF Bridge; Mobility Program of VLC-CAMPUS; National Science Centre through grant ETIUDA [2013/08/T/ST3/00400] FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. M.J. acknowledges support from the NSF Bridge to the Doctorate Fellowship and thanks Professor Chris Dames for his feedback on this work. J.F.S.R. acknowledges financial support from the Mobility Program of VLC-CAMPUS. M.W. acknowledges the financial support from the National Science Centre through grant ETIUDA No. 2013/08/T/ST3/00400. NR 29 TC 6 Z9 6 U1 7 U2 20 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD DEC 7 PY 2015 VL 118 IS 21 AR 215702 DI 10.1063/1.4936551 PG 7 WC Physics, Applied SC Physics GA DD4UK UT WOS:000369918100039 ER PT J AU Mannige, RV AF Mannige, Ranjan V. TI Landscape of kinetically trapped binary assemblies SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID ENERGY LANDSCAPE; INHERENT STRUCTURE; PROTEIN; PATHWAYS; FUNNELS; PERSPECTIVE; NUMBER AB For two-component assemblies, an inherent structure diagram (ISD) is the relationship between set inter-subunit energies and the types of kinetic traps (inherent structures) one may obtain from those energies. It has recently been shown that two-component ISDs are apportioned into regions or plateaux within which inherent structures display uniform features (e. g., stoichometries and morphologies). Interestingly, structures from one of the plateaux were also found to be robust outcomes of one type of non-equilibrium growth, which indicates the usefulness of the two-component ISD in predicting outcomes of some types of far-from-equilibrium growth. However, little is known as to how the ISD is apportioned into distinct plateaux. Also, while each plateau displays classes of structures that are morphologically distinct, little is known about the source of these distinct morphologies. This article outlines an analytic treatment of the two-component ISD and shows that the manner in which any ISD is apportioned arises from a single unitless order parameter. Additionally, the analytical framework allows for the characterization of local properties of the trapped structures within each ISD plateau. This work may prove to be useful in the design of novel classes of robust nonequilibrium assemblies. (C) 2015 AIP Publishing LLC. C1 [Mannige, Ranjan V.] Lawrence Berkeley Natl Lab, Mol Foundry, 1 Cyclotron Rd, Berkeley, CA 94720 USA. RP Mannige, RV (reprint author), Lawrence Berkeley Natl Lab, Mol Foundry, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM rvmannige@lbl.gov FU Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX I thank Stephen Whitelam for discussions, and Alana Canfield Mannige and Anthony M. Frachioni for a detailed reading of the manuscript. This work was done at the Molecular Foundry at Lawrence Berkeley National Laboratory (LBNL), supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 24 TC 1 Z9 1 U1 1 U2 2 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD DEC 7 PY 2015 VL 143 IS 21 AR 214902 DI 10.1063/1.4936266 PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA DD3EZ UT WOS:000369806000026 PM 26646886 ER PT J AU Rogers, C Chen, C Pedramrazi, Z Omrani, AA Tsai, HZ Jung, HS Lin, S Crommie, ME Fischer, FR AF Rogers, Cameron Chen, Chen Pedramrazi, Zahra Omrani, Arash A. Tsai, Hsin-Zon Jung, Han Sae Lin, Song Crommie, Michael E. Fischer, Felix R. TI Closing the Nanographene Gap: Surface-Assisted Synthesis of Peripentacene from 6,6'-Bipentacene Precursors SO ANGEWANDTE CHEMIE-INTERNATIONAL EDITION LA English DT Article DE arenes; graphene; non-contact AFM; periacene; surface chemistry ID ATOMIC-FORCE MICROSCOPY; POLYCYCLIC AROMATIC-HYDROCARBON; BIRADICAL GROUND-STATE; QUARTZ TUNING FORK; GRAPHENE NANORIBBONS; SOLID-STATE; BISPENTACENEQUINONE; TRANSISTORS; RESOLUTION; CHARACTER AB The thermally induced cyclodehydrogenation reaction of 6,6'-bipentacene precursors on Au(111) yields peripentacene stabilized by surface interactions with the underlying metallic substrate. STM and atomic-resolution non-contact AFM imaging reveal rectangular flakes of nanographene featuring parallel pairs of zig-zag and armchair edges resulting from the lateral fusion of two pentacene subunits. The synthesis of a novel molecular precursor 6,6'-bipentacene, itself a synthetic target of interest for optical and electronic applications, is also reported. The scalable synthetic strategy promises to afford access to a structurally diverse class of extended periacenes and related polycyclic aromatic hydrocarbons as advanced materials for electronic, spintronic, optical, and magnetic devices. C1 [Rogers, Cameron; Lin, Song; Fischer, Felix R.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Chen, Chen; Pedramrazi, Zahra; Omrani, Arash A.; Tsai, Hsin-Zon; Jung, Han Sae; Crommie, Michael E.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Lin, Song] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Crommie, Michael E.; Fischer, Felix R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Crommie, Michael E.; Fischer, Felix R.] Univ Calif Berkeley, Kavli Energy NanoSci Inst, Berkeley, CA 94720 USA. [Crommie, Michael E.; Fischer, Felix R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Crommie, ME (reprint author), Univ Calif Berkeley, Dept Phys, 345 Birge Hall, Berkeley, CA 94720 USA. EM crommie@berkeley.edu; ffischer@berkeley.edu RI Lin, Song/F-5472-2014; Tsai, Hsin-Zon/J-1682-2016 OI Lin, Song/0000-0002-8880-6476; Tsai, Hsin-Zon/0000-0003-2097-0170 FU U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES) [DE-SC0010409, DE-AC02-05CH11231]; Office of Naval Research BRC Program; National Science Foundation [DMR-1206512]; NIH [SRR023679A]; Swiss National Science Foundation (SNSF) [P2ELP2-151852] FX Research supported by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), under award no. DE-SC0010409 (design, synthesis and characterization of molecules) and Nanomachine Program award no. DE-AC02-05CH11231 (surface reaction characterization), by the Office of Naval Research BRC Program (peripentacene ncAFM imaging), and by the National Science Foundation award no. DMR-1206512 (image analysis); Berkeley NMR Facility is supported in part by NIH grant SRR023679A. A.A.O. acknowledges support from Swiss National Science Foundation (SNSF) Postdoctoral Research Fellowship under Grant No. P2ELP2-151852. NR 43 TC 6 Z9 6 U1 10 U2 34 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 1433-7851 EI 1521-3773 J9 ANGEW CHEM INT EDIT JI Angew. Chem.-Int. Edit. PD DEC 7 PY 2015 VL 54 IS 50 BP 15143 EP 15146 DI 10.1002/anie.201507104 PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA DA8LX UT WOS:000368057400026 PM 26482225 ER PT J AU Huang, ZJ Luo, WJ Ma, L Yu, MZ Ren, XD He, MF Polen, S Click, K Garrett, B Lu, J Amine, K Hadad, C Chen, WL Asthagiri, A Wu, YY AF Huang, Zhongjie Luo, Wenjia Ma, Lu Yu, Mingzhe Ren, Xiaodi He, Mingfu Polen, Shane Click, Kevin Garrett, Benjamin Lu, Jun Amine, Khalil Hadad, Christopher Chen, Weilin Asthagiri, Aravind Wu, Yiying TI Dimeric [Mo2S12](2-) Cluster: A Molecular Analogue of MoS2 Edges for Superior Hydrogen-Evolution Electrocatalysis SO ANGEWANDTE CHEMIE-INTERNATIONAL EDITION LA English DT Article DE electrocatalysis; hydrogen adsorption energy; hydrogen evolution; molecular analogues; molybdenum sulfide ID ULTRATHIN NANOSHEETS; CATALYST; NANOPARTICLES; SITES; GENERATION; DISULFIDE; DESIGN; H-2 AB Proton reduction is one of the most fundamental and important reactions in nature. MoS2 edges have been identified as the active sites for hydrogen evolution reaction (HER) electrocatalysis. Designing molecular mimics of MoS2 edge sites is an attractive strategy to understand the underlying catalytic mechanism of different edge sites and improve their activities. Herein we report a dimeric molecular analogue [Mo2S12](2-), as the smallest unit possessing both the terminal and bridging disulfide ligands. Our electrochemical tests show that [Mo2S12](2-) is a superior heterogeneous HER catalyst under acidic conditions. Computations suggest that the bridging disulfide ligand of [Mo2S12](2-) exhibits a hydrogen adsorption free energy near zero (-0.05 eV). This work helps shed light on the rational design of HER catalysts and biomimetics of hydrogen-evolving enzymes. C1 [Huang, Zhongjie; Ma, Lu; Yu, Mingzhe; Ren, Xiaodi; He, Mingfu; Polen, Shane; Click, Kevin; Garrett, Benjamin; Hadad, Christopher; Wu, Yiying] Ohio State Univ, Dept Chem & Biochem, Columbus, OH 43210 USA. [Luo, Wenjia; Asthagiri, Aravind] Ohio State Univ, William G Lowrie Dept Chem & Biomol Engn, Columbus, OH 43210 USA. [Chen, Weilin] NE Normal Univ, Key Lab Polyoxometalate Sci, Minist Educ, Dept Chem, Changchun 130024, Jilin, Peoples R China. [Lu, Jun; Amine, Khalil] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Chen, WL (reprint author), NE Normal Univ, Key Lab Polyoxometalate Sci, Minist Educ, Dept Chem, Changchun 130024, Jilin, Peoples R China. EM chenwl@nenu.edu.cn; asthagiri.1@osu.edu; wu@chemistry.ohio-state.edu RI Ren, Xiaodi/M-5843-2014; Yu, Mingzhe/N-5907-2016 OI Ren, Xiaodi/0000-0002-2025-7554; FU U.S. Department of Energy (DOE) [DE-FG02-07ER46427]; U.S. DOE, Office of Energy Sciences Materials Sciences Division [DE-AC02-05CH11231]; U.S. Department of Energy [DE-AC0206CH11357]; Vehicle Technologies Office, Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) FX We acknowledge the financial support from the U.S. Department of Energy (DOE) (Award No. DE-FG02-07ER46427). Crystallographic data were collected through the SCrALS program at Beamline 11.3.1 at the Advanced Light Source (ALS), Lawrence Berkeley National Laboratory, which is supported by the U.S. DOE, Office of Energy Sciences Materials Sciences Division, under contract DE-AC02-05CH11231. We thank the Ohio Supercomputer Center for providing computational resources, and Dr. Judith Gallucci for help in single-crystal characterization. L. and K. A acknowledge the support from the U.S. Department of Energy under Contract DE-AC0206CH11357 with the main support provided by the Vehicle Technologies Office, Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE). NR 38 TC 22 Z9 22 U1 26 U2 100 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 1433-7851 EI 1521-3773 J9 ANGEW CHEM INT EDIT JI Angew. Chem.-Int. Edit. PD DEC 7 PY 2015 VL 54 IS 50 BP 15181 EP 15185 DI 10.1002/anie.201507529 PG 5 WC Chemistry, Multidisciplinary SC Chemistry GA DA8LX UT WOS:000368057400034 PM 26482571 ER PT J AU Ramanathan, A Pullum, LL Hobson, TC Steed, CA Quinn, SP Chennubhotla, CS Valkova, S AF Ramanathan, Arvind Pullum, Laura L. Hobson, Tanner C. Steed, Chad A. Quinn, Shannon P. Chennubhotla, Chakra S. Valkova, Silvia TI ORBiT: Oak Ridge biosurveillance toolkit for public health dynamics SO BMC BIOINFORMATICS LA English DT Article; Proceedings Paper CT 4th IEEE International Conference on Computational Advances in Bio and Medical Sciences (ICCABS) CY JUN 02-04, 2014 CL Miami Beach, FL SP IEEE, Univ Connecticut, NSF, UCONN BECAT ID SURVEILLANCE; OUTBREAK; MEDIA; INFLUENZA; RECORDS; SYSTEM; TRENDS AB Background: The digitization of health-related information through electronic health records (EHR) and electronic healthcare reimbursement claims and the continued growth of self-reported health information through social media provides both tremendous opportunities and challenges in developing effective biosurveillance tools. With novel emerging infectious diseases being reported across different parts of the world, there is a need to build systems that can track, monitor and report such events in a timely manner. Further, it is also important to identify susceptible geographic regions and populations where emerging diseases may have a significant impact. Methods: In this paper, we present an overview of Oak Ridge Biosurveillance Toolkit (ORBiT), which we have developed specifically to address data analytic challenges in the realm of public health surveillance. In particular, ORBiT provides an extensible environment to pull together diverse, large-scale datasets and analyze them to identify spatial and temporal patterns for various biosurveillance-related tasks. Results: We demonstrate the utility of ORBiT in automatically extracting a small number of spatial and temporal patterns during the 2009-2010 pandemic H1N1 flu season using claims data. These patterns provide quantitative insights into the dynamics of how the pandemic flu spread across different parts of the country. We discovered that the claims data exhibits multi-scale patterns from which we could identify a small number of states in the United States (US) that act as "bridge regions" contributing to one or more specific influenza spread patterns. Similar to previous studies, the patterns show that the south-eastern regions of the US were widely affected by the H1N1 flu pandemic. Several of these south-eastern states act as bridge regions, which connect the north-east and central US in terms of flu occurrences. Conclusions: These quantitative insights show how the claims data combined with novel analytical techniques can provide important information to decision makers when an epidemic spreads throughout the country. Taken together ORBiT provides a scalable and extensible platform for public health surveillance. C1 [Ramanathan, Arvind; Pullum, Laura L.; Hobson, Tanner C.; Steed, Chad A.] Oak Ridge Natl Lab, Computat Sci & Engn Div, Oak Ridge, TN 37830 USA. [Ramanathan, Arvind; Pullum, Laura L.] Oak Ridge Natl Lab, Hlth Data Sci Inst, Oak Ridge, TN 37830 USA. [Quinn, Shannon P.; Chennubhotla, Chakra S.] Dept Computat & Syst Biol, Pittsburgh, PA 15260 USA. [Valkova, Silvia] IMS Govt Solut, Pittsburgh, PA 15260 USA. RP Ramanathan, A (reprint author), Oak Ridge Natl Lab, Computat Sci & Engn Div, One Bethel Valley Rd,MS6085, Oak Ridge, TN 37830 USA. EM ramanathana@ornl.gov; pullumll@ornl.gov OI Steed, Chad/0000-0002-3501-909X NR 43 TC 0 Z9 0 U1 0 U2 0 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1471-2105 J9 BMC BIOINFORMATICS JI BMC Bioinformatics PD DEC 7 PY 2015 VL 16 SU 17 AR S4 DI 10.1186/1471-2105-16-S17-S4 PG 12 WC Biochemical Research Methods; Biotechnology & Applied Microbiology; Mathematical & Computational Biology SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Mathematical & Computational Biology GA DA5ZI UT WOS:000367880900004 PM 26679008 ER PT J AU Murphy, RD Reeves, RV Yarrington, CD Adams, DP AF Murphy, Ryan D. Reeves, Robert V. Yarrington, Cole D. Adams, David P. TI The dynamics of Al/Pt reactive multilayer ignition via pulsed-laser irradiation SO APPLIED PHYSICS LETTERS LA English DT Article ID COMPRESSION; FOILS AB Reactive multilayers consisting of alternating layers of Al and Pt were irradiated by single laser pulses ranging from 100 mu s to 100 ms in duration, resulting in the initiation of rapid, self-propagating reactions. The threshold intensities for ignition vary with the focused laser beam diameter, bilayer thickness, and pulse length and are affected by solid state reactions and conduction of heat away from the irradiated regions. High-speed photography was used to observe ignition dynamics during irradiation and elucidate the effects of heat transfer into a multilayer foil. For an increasing laser pulse length, the ignition process transitioned from a more uniform to a less uniform temperature profile within the laser-heated zone. A more uniform temperature profile is attributed to rapid heating rates and heat localization for shorter laser pulses, and a less uniform temperature profile is due to slower heating of reactants and conduction during irradiation by longer laser pulses. Finite element simulations of laser heating using measured threshold intensities indicate that micron-scale ignition of Al/Pt occurs at low temperatures, below the melting point of both reactants. (C) 2015 AIP Publishing LLC. C1 [Murphy, Ryan D.; Reeves, Robert V.; Yarrington, Cole D.; Adams, David P.] Sandia Natl Labs, Albuquerque, NM 87123 USA. RP Murphy, RD (reprint author), Sandia Natl Labs, Albuquerque, NM 87123 USA. FU U.S. Depart of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The authors would like to acknowledge C. Sobczak and E. D. Jones, Jr., for the sputter deposition of the Al/Pt multilayers. This work was funded through a Sandia-directed Laboratory Directed Research and Development project. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Depart of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 19 TC 0 Z9 0 U1 6 U2 9 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD DEC 7 PY 2015 VL 107 IS 23 AR 234103 DI 10.1063/1.4937161 PG 5 WC Physics, Applied SC Physics GA CZ3NL UT WOS:000367010800072 ER PT J AU Nemsak, S Conti, G Palsson, GK Conlon, C Cho, S Rault, JE Avila, J Asensio, MC Jackson, CA Moetakef, P Janotti, A Bjaalie, L Himmetoglu, B de Walle, CGV Balents, L Schneider, CM Stemmer, S Fadley, CS AF Nemsak, S. Conti, G. Palsson, G. K. Conlon, C. Cho, S. Rault, J. E. Avila, J. Asensio, M. -C. Jackson, C. A. Moetakef, P. Janotti, A. Bjaalie, L. Himmetoglu, B. de Walle, C. G. Van Balents, L. Schneider, C. M. Stemmer, S. Fadley, C. S. TI Observation by resonant angle-resolved photoemission of a critical thickness for 2-dimensional electron gas formation in SrTiO3 embedded in GdTiO3 SO APPLIED PHYSICS LETTERS LA English DT Article ID SURFACE; INTERFACES AB For certain conditions of layer thickness, the interface between GdTiO3 (GTO) and SrTiO3 (STO) in multilayer samples has been found to form a two-dimensional electron gas (2DEG) with very interesting properties including high mobilities and ferromagnetism. We have here studied two trilayer samples of the form [2 nm GTO/1.0 or 1.5 unit cells STO/10 nm GTO] as grown on (001) (LaAlO3)(0.3)(Sr2AlTaO6)(0.7), with the STO layer thicknesses being at what has been suggested is the critical thickness for 2DEG formation. We have studied these with Ti-resonant angle-resolved and angle-integrated photoemission and find that the spectral feature in the spectra associated with the 2DEG is present in the 1.5 unit cell sample, but not in the 1.0 unit cell sample. We also observe through core-level spectra additional states in Ti and Sr, with the strength of a low-binding-energy state for Sr being associated with the appearance of the 2DEG, and we suggest it to have an origin in final-state core-hole screening. (C) 2015 AIP Publishing LLC. C1 [Nemsak, S.; Conti, G.; Palsson, G. K.; Conlon, C.; Fadley, C. S.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Nemsak, S.; Conti, G.; Palsson, G. K.; Conlon, C.; Fadley, C. S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Nemsak, S.; Schneider, C. M.] Forschungszentrum Julich, Peter Grunberg Inst PGI 6, D-52425 Julich, Germany. [Cho, S.; Rault, J. E.; Avila, J.; Asensio, M. -C.] Synchrotron SOLEIL, F-91192 Gif Sur Yvette, France. [Jackson, C. A.; Moetakef, P.; Janotti, A.; Bjaalie, L.; Himmetoglu, B.; de Walle, C. G. Van; Stemmer, S.] Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA. [Balents, L.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. RP Nemsak, S (reprint author), Univ Calif Davis, Dept Phys, 1 Shields Ave, Davis, CA 95616 USA. RI Stemmer, Susanne/H-6555-2011; Moetakef, Pouya/F-6353-2012; Schneider, Claus/H-7453-2012 OI Stemmer, Susanne/0000-0002-3142-4696; Moetakef, Pouya/0000-0003-0642-4704; Schneider, Claus/0000-0002-3920-6255 FU MURI of the Army Research Office [W911-NF-09-1-0398]; Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy [DEAC02-05CH11231]; U.S. National Science Foundation [DMR-1006640]; Julich Research Center; U.S. Army Research Office [W911-NF-11-1-0232]; NSF MRSEC [DMR-1121053]; Swedish Research Council; Laboratoire d'Excellence Physics Atom Light Matter (LabEx PALM) Investissements d'Avenir [ANR-10-LABX-0039] FX Primary support for this work was from the MURI program of the Army Research Office (Grant No. W911-NF-09-1-0398). The Advanced Light Source, A.B., W.C.S., and C.S.F. are supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy under Contract No. DEAC02-05CH11231. P.M. was supported by the U.S. National Science Foundation (Grant No. DMR-1006640). S.N. received support in the completion of this work from the Julich Research Center. A.J. and C.G.V.d.W. were supported by the U.S. Army Research Office (No. W911-NF-11-1-0232). L.B. was supported by the NSF MRSEC Program (DMR-1121053). Computational resources were provided by XSEDE (No. NSF ACI-1053575). G.K.P. also thanks the Swedish Research Council for financial support. C.S.F. has also been supported during the writing of this paper by "the LabEx PALM program Investissements d'Avenir" overseen by the French National Research Agency (ANR) (Reference No. ANR-10-LABX-0039). NR 23 TC 3 Z9 3 U1 10 U2 35 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD DEC 7 PY 2015 VL 107 IS 23 AR 231602 DI 10.1063/1.4936936 PG 5 WC Physics, Applied SC Physics GA CZ3NL UT WOS:000367010800012 ER PT J AU Sarker, P Al-Jassim, MM Huda, MN AF Sarker, Pranab Al-Jassim, Mowafak M. Huda, Muhammad N. TI Predicting a quaternary tungsten oxide for sustainable photovoltaic application by density functional theory SO APPLIED PHYSICS LETTERS LA English DT Article ID BILBAO-CRYSTALLOGRAPHIC-SERVER AB A quaternary oxide, CuSnW2O8 (CTTO), has been predicted by density functional theory (DFT) to be a suitable material for sustainable photovoltaic applications. CTTO possesses band gaps of 1.25 eV (indirect) and 1.37 eV (direct), which were evaluated using the hybrid functional (HSE06) as a post-DFT method. The hole mobility of CTTO was higher than that of silicon. Further, optical absorption calculations demonstrate that CTTO is a better absorber of sunlight than Cu2ZnSnS4 and CuInxGa1-xSe2 (x = 0.5). In addition, CTTO exhibits rigorous thermodynamic stability comparable to WO3, as investigated by different thermodynamic approaches such as bonding cohesion, fragmentation tendency, and chemical potential analysis. Chemical potential analysis further revealed that CTTO can be synthesized at flexible experimental growth conditions, although the co-existence of at least one secondary phase is likely. Finally, like other Cu-based compounds, the formation of Cu vacancies is highly probable, even at Cu-rich growth condition, which could introduce p-type activity in CTTO. (C) 2015 AIP Publishing LLC. C1 [Sarker, Pranab; Huda, Muhammad N.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. [Al-Jassim, Mowafak M.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Huda, MN (reprint author), Univ Texas Arlington, Dept Phys, POB 19059, Arlington, TX 76019 USA. EM huda@uta.edu OI Huda, Muhammad/0000-0002-2655-498X FU U.S. Department of Energy [DE-AC36-08GO28308] FX This project was partially supported by the U.S. Department of Energy under Contract No. DE-AC36-08GO28308 to the National Renewable Energy Laboratory. All computations were performed using the High Performance Computing Facility (HPCF) at the University of Texas at Arlington and at the Texas Advanced Computing Center (TACC). NR 15 TC 1 Z9 1 U1 2 U2 12 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD DEC 7 PY 2015 VL 107 IS 23 AR 233902 DI 10.1063/1.4936929 PG 5 WC Physics, Applied SC Physics GA CZ3NL UT WOS:000367010800069 ER PT J AU Shimamura, K Misawa, M Li, Y Kalia, RK Nakano, A Shimojo, F Vashishta, P AF Shimamura, Kohei Misawa, Masaaki Li, Ying Kalia, Rajiv K. Nakano, Aiichiro Shimojo, Fuyuki Vashishta, Priya TI A crossover in anisotropic nanomechanochemistry of van der Waals crystals SO APPLIED PHYSICS LETTERS LA English DT Article ID MOLECULAR-DYNAMICS SIMULATIONS; THERMAL-DECOMPOSITION; MECHANOCHEMISTRY; NITROMETHANE; CHEMISTRY; GRAPHENE AB In nanoscale mechanochemistry, mechanical forces selectively break covalent bonds to essentially control chemical reactions. An archetype is anisotropic detonation of layered energetic molecular crystals bonded by van der Waals (vdW) interactions. Here, quantum molecular dynamics simulations reveal a crossover of anisotropic nanomechanochemistry of vdW crystal. Within 10(-13) s from the passage of shock front, lateral collision produces NO2 via twisting and bending of nitro-groups and the resulting inverse Jahn-Teller effect, which is mediated by strong intra-layer hydrogen bonds. Subsequently, as we transition from heterogeneous to homogeneous mechanochemical regimes around 10(-12) s, shock normal to multilayers becomes more reactive, producing H2O assisted by inter-layer N-N bond formation. These time-resolved results provide much needed atomistic understanding of nanomechanochemistry that underlies a wider range of technologies. (C) 2015 AIP Publishing LLC. C1 [Shimamura, Kohei; Misawa, Masaaki; Shimojo, Fuyuki] Kumamoto Univ, Dept Phys, Kumamoto 8608555, Japan. [Shimamura, Kohei; Misawa, Masaaki; Kalia, Rajiv K.; Nakano, Aiichiro; Vashishta, Priya] Univ So Calif, Dept Chem Engn & Mat Sci, Collaboratory Adv Comp & Simulat, Dept Phys & Astron,Dept Comp Sci, Los Angeles, CA 90089 USA. [Shimamura, Kohei] Kobe Univ, Grad Sch Syst Informat, Kobe, Hyogo 6578501, Japan. [Li, Ying] Argonne Natl Lab, Argonne Leadership Comp Facil, Argonne, IL 60439 USA. RP Shimamura, K (reprint author), Kumamoto Univ, Dept Phys, Kumamoto 8608555, Japan. RI Shimamura, Kohei/R-8513-2016 OI Shimamura, Kohei/0000-0003-3235-2599 FU Office of Naval Research [N000014-12-1-0555] FX This work was supported by the Office of Naval Research Grant No. N000014-12-1-0555. NR 24 TC 2 Z9 2 U1 1 U2 14 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD DEC 7 PY 2015 VL 107 IS 23 AR 231903 DI 10.1063/1.4937268 PG 5 WC Physics, Applied SC Physics GA CZ3NL UT WOS:000367010800019 ER PT J AU Gardas, B Luczka, J Ptok, A Dajka, J AF Gardas, B. Luczka, J. Ptok, A. Dajka, J. TI Energetics of an rf SQUID Coupled to Two Thermal Reservoirs SO PLOS ONE LA English DT Article ID JOSEPHSON-JUNCTIONS; HEAT-FLOW; TRANSPORT AB We study energetics of a Josephson tunnel junction connecting a superconducting loop pierced by an external magnetic flux (an rf SQUID) and coupled to two independent thermal reservoirs of different temperature. In the framework of the theory of quantum dissipative systems, we analyze energy currents in stationary states. The stationary energy flow can be periodically modulated by the external magnetic flux exemplifying the rf SQUID as a quantum heat interferometer. We also consider the transient regime and identify three distinct regimes: monotonic decay, damped oscillations and pulse-type behavior of energy currents. The first two regimes can be controlled by the external magnetic flux while the last regime is robust against its variation. C1 [Gardas, B.; Luczka, J.; Dajka, J.] Univ Silesia, PL-40007 Katowice, Poland. [Gardas, B.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Luczka, J.; Dajka, J.] Univ Silesia, Silesian Ctr Educ & Interdisciplinary Res, PL-41500 Chorzow, Poland. [Ptok, A.] Polish Acad Sci, Inst Nucl Phys, PL-31342 Krakow, Poland. RP Dajka, J (reprint author), Univ Silesia, PL-40007 Katowice, Poland. EM jerzy.dajka@us.edu.pl FU National Center for Science (NCN, Poland) [UMO-2011/01/N/ST3/02473, N202 052940, DEC-2013/09/B/ST3/01659]; NCN (Poland) [UMO-2011/01/N/ST3/02473, N202 052940, DEC-2013/09/B/ST3/01659, 1060/MOB/2013/0] FX This work was supported by the National Center for Science (NCN, Poland) under grants UMO-2011/01/N/ST3/02473 (BG), N202 052940 (JL) and DEC-2013/09/B/ST3/01659 (JD). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.; This work was supported by the NCN (Poland) under grants UMO-2011/01/N/ST3/02473 (B.G) and Mobility Plus 1060/MOB/2013/0 (B.G), N202 052940 (J.L.) and DEC-2013/09/B/ST3/01659 (J.D.) NR 30 TC 0 Z9 0 U1 2 U2 7 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD DEC 7 PY 2015 VL 10 IS 12 AR e0143912 DI 10.1371/journal.pone.0143912 PG 10 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CZ1YS UT WOS:000366902700034 PM 26641890 ER PT J AU Chatterjee, S Saito, T AF Chatterjee, Sabornie Saito, Tomonori TI Lignin-Derived Advanced Carbon Materials SO CHEMSUSCHEM LA English DT Review DE biomass; carbon; renewable resources; structure-property relationships; synthesis design ID SOFTWOOD KRAFT LIGNIN; ACTIVATED CARBONS; CHEMICAL ACTIVATION; ION BATTERIES; FIBERS; NANOFIBERS; STEAM; BLACK; FILMS; ACID AB Lignin is a highly abundant source of renewable carbon that can be considered as a valuable sustainable source of biobased materials. By applying specific pretreatments and manufacturing methods, lignin can be converted into a variety of value-added carbon materials. However, the physical and chemical heterogeneities of lignin complicate its use as a feedstock. Herein lignin manufacturing process, the effects of pretreatments and manufacturing methods on the properties of product lignin, and structure-property relationships in various applications of lignin-derived carbon materials, such as carbon fibers, carbon mats, activated carbons, carbon films, and templated carbon, are discussed. C1 [Chatterjee, Sabornie; Saito, Tomonori] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Chatterjee, S (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. EM saitot@ornl.gov RI Saito, Tomonori/M-1735-2016 OI Saito, Tomonori/0000-0002-4536-7530 FU Laboratory Directed Research and Development Program of Oak Ridge National Laboratory; U.S. Department of Energy [DE-AC05-00OR22725]; Department of Energy FX This research was sponsored by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for theUS Department of Energy. This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains, and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan). NR 86 TC 10 Z9 10 U1 21 U2 124 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 1864-5631 EI 1864-564X J9 CHEMSUSCHEM JI ChemSusChem PD DEC 7 PY 2015 VL 8 IS 23 BP 3941 EP 3958 DI 10.1002/cssc.201500692 PG 18 WC Chemistry, Multidisciplinary; GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY SC Chemistry; Science & Technology - Other Topics GA CX9HQ UT WOS:000366016300002 PM 26568373 ER PT J AU Tucker, MC Phillips, A Weber, AZ AF Tucker, Michael C. Phillips, Adam Weber, Adam Z. TI All-Iron Redox Flow Battery Tailored for Off-Grid Portable Applications SO CHEMSUSCHEM LA English DT Article DE batteries; electrochemistry; energy conversion; iron ID ENERGY-STORAGE; PERFORMANCE; EFFICIENCY AB An all-iron redox flow battery is proposed and developed for end users without access to an electricity grid. The concept is a low-cost battery which the user assembles, discharges, and then disposes of the active materials. The design goals are: (1)minimize upfront cost, (2)maximize discharge energy, and (3)utilize non-toxic and environmentally benign materials. These are different goals than typically considered for electrochemical battery technology, which provides the opportunity for a novel solution. The selected materials are: low-carbon-steel negative electrode, paper separator, porous-carbon-paper positive electrode, and electrolyte solution containing 0.5m Fe-2(SO4)(3) active material and 1.2m NaCl supporting electrolyte. With these materials, an average power density around 20mWcm(-2) and a maximum energy density of 11.5WhL(-1) are achieved. A simple cost model indicates the consumable materials cost US$6.45 per kWh(-1), or only US$0.034 per mobile phone charge. C1 [Tucker, Michael C.; Phillips, Adam; Weber, Adam Z.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Energy Storage & Distributed Resources Div, Berkeley, CA 94720 USA. RP Tucker, MC (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Energy Storage & Distributed Resources Div, 1 Cyclotron Rd MS70-108b, Berkeley, CA 94720 USA. EM mctucker@lbl.gov FU U.S. Department of Energy [DE-AC02-05CH11231] FX This work was funded by the U.S. Department of Energy under contract no. DE-AC02-05CH11231. The authors thank Grace Lau and David Lambelet for assistance with creek water experiments. NR 13 TC 3 Z9 3 U1 8 U2 34 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 1864-5631 EI 1864-564X J9 CHEMSUSCHEM JI ChemSusChem PD DEC 7 PY 2015 VL 8 IS 23 BP 3996 EP 4004 DI 10.1002/cssc.201500845 PG 9 WC Chemistry, Multidisciplinary; GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY SC Chemistry; Science & Technology - Other Topics GA CX9HQ UT WOS:000366016300011 PM 26586284 ER PT J AU Wang, J Bao, W Ma, L Tan, GQ Su, YF Chen, S Wu, F Lu, J Amine, K AF Wang, Jing Bao, Wurigumula Ma, Lu Tan, Guoqiang Su, Yuefeng Chen, Shi Wu, Feng Lu, Jun Amine, Khalil TI Scalable Preparation of Ternary Hierarchical Silicon Oxide-Nickel-Graphite Composites for Lithium-Ion Batteries SO CHEMSUSCHEM LA English DT Article DE ball-milling; composite; graphite; lithium-ion batteries; silicon oxides ID NITROGEN-DOPED CARBON; ANODE MATERIAL; ELECTROCHEMICAL PERFORMANCE; SIO; NANOCOMPOSITE; ELECTROLYTE; PHOSPHATE; MONOXIDE; BEHAVIOR; SI/SIOX AB Silicon monoxide is a promising anode candidate because of its high theoretical capacity and good cycle performance. To solve the problems associated with this material, including large volume changes during charge-discharge processes, we report a ternary hierarchical silicon oxide-nickel-graphite composite prepared by a facile two-step ball-milling method. The composite consists of nano-Si dispersed silicon oxides embedded in nano-Ni/graphite matrices (Si@SiOx/Ni/graphite). In the composite, crystalline nano-Si particles are generated by the mechanochemical reduction of SiO by ball milling with Ni. These nano-Si dispersed oxides have abundant electrochemical activity and can provide high Li-ion storage capacity. Furthermore, the milled nano-Ni/graphite matrices stick well to active materials and interconnect to form a crosslinked framework, which functions as an electrical highway and a mechanical backbone so that all silicon oxide particles become electrochemically active. Owing to these advanced structural and electrochemical characteristics, the composite enhances the utilization efficiency of SiO, accommodates its large volume expansion upon cycling, and has good ionic and electronic conductivity. The composite electrodes thus exhibit substantial improvements in electrochemical performance. This ternary hierarchical Si@SiOx/Ni/graphite composite is a promising candidate anode material for high-energy lithium-ion batteries. Additionally, the mechanochemical ball-milling method is low cost and easy to reproduce, indicating potential for the commercial production of the composite materials. C1 [Wang, Jing; Bao, Wurigumula; Tan, Guoqiang; Su, Yuefeng; Chen, Shi; Wu, Feng] Beijing Inst Technol, Beijing Key Lab Environm Sci & Engn, Sch Mat Sci & Engn, Beijing 100081, Peoples R China. [Ma, Lu; Lu, Jun; Amine, Khalil] Argonne Natl Lab, Chem Sci & Engn Div, Lemont, IL 60439 USA. [Wang, Jing; Su, Yuefeng; Chen, Shi; Wu, Feng] Natl Dev Ctr High Technol Green Mat, Beijing 100081, Peoples R China. [Wang, Jing; Su, Yuefeng; Chen, Shi; Wu, Feng] Innovat Ctr Elect Vehicles, Beijing 100081, Peoples R China. RP Wang, J (reprint author), Beijing Inst Technol, Beijing Key Lab Environm Sci & Engn, Sch Mat Sci & Engn, Beijing 100081, Peoples R China. EM tgq1123@sina.cn; wufeng863@bit.edu.cn; junlu@anl.gov FU Special fund of Beijing Co-construction Project, National Natural Science Foundation of China [2113011]; Beijing Institute of Technology [20131042008]; U.S. Department of Energy [DE-AC0206CH11357]; Vehicle Technologies Office, Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) FX This work was financially supported by the Special fund of Beijing Co-construction Project, National Natural Science Foundation of China (Grant No. 2113011) and Beijing Institute of Technology funding (20131042008). This work was also supported by the U.S. Department of Energy under Contract DE-AC0206CH11357 with the main support provided by the Vehicle Technologies Office, Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE). NR 40 TC 3 Z9 4 U1 30 U2 112 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 1864-5631 EI 1864-564X J9 CHEMSUSCHEM JI ChemSusChem PD DEC 7 PY 2015 VL 8 IS 23 BP 4073 EP 4080 DI 10.1002/cssc.201500674 PG 8 WC Chemistry, Multidisciplinary; GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY SC Chemistry; Science & Technology - Other Topics GA CX9HQ UT WOS:000366016300020 PM 26548901 ER PT J AU Dickie, DA Barker, MT Land, MA Hughes, KE Clyburne, JAC Kemp, RA AF Dickie, Diane A. Barker, Madeline T. Land, Michael A. Hughes, Kira E. Clyburne, Jason A. C. Kemp, Richard A. TI Rapid, Reversible, Solid-Gas and Solution-Phase Insertion of CO2 into In-P Bonds SO INORGANIC CHEMISTRY LA English DT Article ID FRUSTRATED LEWIS PAIRS; CARBON-DIOXIDE; NMR-SPECTRA; COMPLEXES; ACTIVATION; REDUCTION; REACTIVITY; CHEMISTRY; CS2; ALUMINUM AB The P,P-chelated heteroleptic complex bis[bis(diisopropylphosphino)amido]indium chloride [(i-Pr2P)(2)N](2)InCl was prepared in high yield by treating InCl3 with 2 equiv of (i-Pr2P)(2)NLi in Et2O/tetrahydrofuran solution. Samples of [(i-Pr2P)(2)N](2)InCl in a pentane slurry, a CH2Cl2 solution, or in the solid state were exposed to CO2, resulting in the insertion of CO2 into two of the four M-P bonds to produce [O2CP(i-Pr-2)NP(i-Pr-2)](2)InCl in each case. Compounds were characterized by multinuclear NMR and IR spectroscopy, as well as single-crystal X-ray diffraction. ReactIR solution studies show that the reaction is complete in less than 1 min at room temperature in solution and in less than 2 h in the solid gas reaction. The CO2 complex is stable up to at least 60 degrees C under vacuum, but the starting material is regenerated with concomitant loss of carbon dioxide upon heating above 75 degrees C. The compound [(i-Pr2P)(2)N](2)InCl also reacts with CS2 to give a complicated mixture of products, one of which was identified as the CS2 cleavage product [S=P(i-Pr-2)NP(i-Pr-2)](2)InCl](2)(mu-Cl)[mu-(iPr(2)P)(2)N)]. C1 [Dickie, Diane A.; Barker, Madeline T.; Hughes, Kira E.; Kemp, Richard A.] Univ New Mexico, Dept Chem & Chem Biol, Albuquerque, NM 87131 USA. [Land, Michael A.; Clyburne, Jason A. C.] St Marys Univ, Dept Chem, Atlant Ctr Green Chem, Halifax, NS B3H 3C3, Canada. [Kemp, Richard A.] Sandia Natl Labs, Adv Mat Lab, Albuquerque, NM 87106 USA. RP Kemp, RA (reprint author), Univ New Mexico, Dept Chem & Chem Biol, Albuquerque, NM 87131 USA. EM rakemp@unm.edu RI Dickie, Diane/B-1647-2010 OI Dickie, Diane/0000-0003-0939-3309 FU National Science Foundation [CHE12-13529, CHE08-40523, CHE09-46690]; Laboratory Directed Research and Development (LDRD) program at Sandia National Laboratories [LDRD 151300]; Natural Sciences and Engineering Research Council of Canada (through the Discovery Grants Program) the Canada Research Chairs Program; Canadian Foundation for Innovation; Nova Scotia Research and Innovation Trust Fund; National Science Foundation CRIF:MU [CHE04-43580]; United States Department of Energy [DE-AC04-94AL85000] FX This work was financially supported by the National Science Foundation (Grant No. CHE12-13529) and the Laboratory Directed Research and Development (LDRD) program at Sandia National Laboratories (LDRD 151300). JA.C.C. thanks the Natural Sciences and Engineering Research Council of Canada (through the Discovery Grants Program) the Canada Research Chairs Program, the Canadian Foundation for Innovation, and the Nova Scotia Research and Innovation Trust Fund. We thank J. Sears and D. Bencoe of Sandia National Laboratories for assisting with TGA data collection and processing. The Bruker X-ray diffractometer was purchased via a National Science Foundation CRIF:MU award to the Univ. of New Mexico (CHE04-43580), and the NMR spectrometers were upgraded via grants from the NSF (CHE08-40523 and CHE09-46690). Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract No. DE-AC04-94AL85000. NR 55 TC 4 Z9 4 U1 4 U2 14 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 EI 1520-510X J9 INORG CHEM JI Inorg. Chem. PD DEC 7 PY 2015 VL 54 IS 23 BP 11121 EP 11126 DI 10.1021/acs.inorgchem.5b02031 PG 6 WC Chemistry, Inorganic & Nuclear SC Chemistry GA CY1FQ UT WOS:000366152500016 PM 26575798 ER PT J AU Li, WL Li, Y Xu, CQ Wang, XB Vorpagel, E Li, J AF Li, Wan-Lu Li, Yong Xu, Cong-Qiao Wang, Xue-Bin Vorpagel, Erich Li, Jun TI Periodicity, Electronic Structures, and Bonding of Gold Tetrahalides [AuX4](-) (X = F, CI, Br, I, At, Uus) SO INORGANIC CHEMISTRY LA English DT Article ID CORRELATED MOLECULAR CALCULATIONS; NATURAL RESONANCE THEORY; SUPERHALOGEN ANIONS X; CONSISTENT BASIS-SETS; CONVERGENT BASIS-SETS; GAUSSIAN-BASIS SETS; AB-INITIO; PHOTOELECTRON-SPECTROSCOPY; VIBRATIONAL-SPECTRA; HYDROGEN-BOND AB Systematic theoretical and experimental investigations have been performed to understand the periodicity, electronic structures, and bonding of gold halides using tetrahalide [AuX4](-) anions (X = F, Cl, Br, I, At, Uus). The [AuX4](-) (X = Cl, Br, I) anions were experimentally produced in the gas phase, and their negative-ion photoelectron spectra were obtained, exhibiting rich and well-resolved spectral peaks. As expected, Au-X bonds in such series contain generally increasing covalency when halogen ligands become heavier. We calculated the adiabatic electron detachment energies as well as vertical electron detachment energies using density functional theory methods with scalar relativistic and spin orbit coupling effects. The computationally simulated photoelectron spectra are in good agreement with the experimental ones. Our results show that the trivalent Au-III oxidation state becomes progressively less stable while Au-I tends to be preferred when the halides become heavier along the Periodic Table. This series of molecules provides an example for manipulating the oxidation state of metals in complexes through ligand design. C1 [Li, Wan-Lu; Li, Yong; Xu, Cong-Qiao; Li, Jun] Tsinghua Univ, Dept Chem, Beijing 100084, Peoples R China. [Li, Wan-Lu; Li, Yong; Xu, Cong-Qiao; Li, Jun] Tsinghua Univ, Lab Organ Optoelect & Mol Engn, Minist Educ, Beijing 100084, Peoples R China. [Wang, Xue-Bin] Pacific NW Natl Lab, Div Phys Sci, Richland, WA 99352 USA. [Vorpagel, Erich; Li, Jun] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. RP Wang, XB (reprint author), Pacific NW Natl Lab, Div Phys Sci, POB 999,MS K8-88, Richland, WA 99352 USA. EM Xuebin.Wang@pnnl.gov; junli@tsinghua.edu.cn RI Li, Wanlu/D-9026-2016; Xu, Congqiao/E-6912-2016; Li, Yong/F-5513-2017 OI Xu, Congqiao/0000-0003-4593-3288; Li, Yong/0000-0002-2774-841X FU National Natural Science Foundation of China [21433005, 91426302]; Department of Energy (DOE)'s Office of Biological and Environmental Research; U.S. DOE, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences FX The theoretical work was supported by the National Natural Science Foundation of China (Grants 21433005 and 91426302). The calculations were done using Tsinghua National Laboratory for Information Science and Technology and using the Molecular Science Computing capability at the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the Department of Energy (DOE)'s Office of Biological and Environmental Research and located at PNNL, which is operated by Battelle Memorial Institute for the DOE. The PES spectral work was supported by the U.S. DOE, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences (to X.-B.W.), and performed using EMSL. NR 90 TC 3 Z9 3 U1 5 U2 15 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 EI 1520-510X J9 INORG CHEM JI Inorg. Chem. PD DEC 7 PY 2015 VL 54 IS 23 BP 11157 EP 11167 DI 10.1021/acs.inorgchem.5b01489 PG 11 WC Chemistry, Inorganic & Nuclear SC Chemistry GA CY1FQ UT WOS:000366152500020 PM 26550845 ER PT J AU Feygenson, M Neuefeind, JC Tyson, TA Schieber, N Han, WQ AF Feygenson, Mikhail Neuefeind, Joerg C. Tyson, Trevor A. Schieber, Natalie Han, Wei-Qiang TI Average and Local Crystal Structures of (Ga1-xZnx)(N1-xOx) Solid Solution Nanoparticles SO INORGANIC CHEMISTRY LA English DT Article ID VISIBLE-LIGHT; PHOTOCATALYTIC ACTIVITY; ELECTRONIC-PROPERTIES; ABSORPTION-SPECTRA; TIO2 NANOPARTICLES; OPTICAL-PROPERTIES; NANOCRYSTALS; WATER; GAN; ZNO AB We report a comprehensive study of the crystal structure of (Ga1-xZnx)(Ni1-xOx) solid solution nanopartides by means of neutron and synchrotron X-ray scattering. In our study, we used four different types of (Ga1-xZnx)(Ni1-xOx) nanopartides, with diameters of 10-27 nm and x = 0.075-0.51, which show energy band gaps from 2.21 to 2.61 eV. Rietveld analysis of the neutron diffraction data revealed that the average crystal structure is hexagonal wurtzite (space group P6(3)mc) for the larger nanopartides, while the crystal structure of smaller nanoparticles is disordered hexagonal. Pair-distribution-function analysis found that the intermediate crystal structure retains a "motif" of the average one; however, the local structure is more disordered. The implications of disorder on the reduced energy band gap are discussed. C1 [Feygenson, Mikhail; Neuefeind, Joerg C.] Oak Ridge Natl Lab, Chem & Engn Mat Div, SNS, Oak Ridge, TN 37831 USA. [Tyson, Trevor A.] New Jersey Inst Technol, Dept Phys, Newark, NJ 07102 USA. [Schieber, Natalie] Vanderbilt Univ, Nashville, TN 37235 USA. [Han, Wei-Qiang] Chinese Acad Sci, Ningbo Inst Mat Technol & Engn, Ningbo 315201, Zhejiang, Peoples R China. RP Feygenson, M (reprint author), Oak Ridge Natl Lab, Chem & Engn Mat Div, SNS, Oak Ridge, TN 37831 USA. EM feygensonm@ornl.gov RI Han, WQ/E-2818-2013; Feygenson, Mikhail /H-9972-2014; Neuefeind, Joerg/D-9990-2015 OI Feygenson, Mikhail /0000-0002-0316-3265; Neuefeind, Joerg/0000-0002-0563-1544 FU Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy; U.S. Department of Energy (DOE), Office of Science User Facility, operated for the DOE Office of Science by Argonne National Laboratory [DE-AC02-06CH11357]; DOE [DE-FG02-07ER46402]; U.S. Department of Energy FX We thank J. Carruth for his help with neutron scattering experiments at SNS. We are grateful to K. Beyer and K. Freeman for helping with the synchrotron X-ray measurements at APS. We also acknowledge Th. Proffen for stimulating discussions. We thank Pamela Whitfield for reading the manuscript and providing her comments. A portion of this research at Oak Ridge National Laboratory's SNS was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. This research was conducted at the Center for Functional Nanomaterials, which is sponsored at Brookhaven National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. This research used resources of the APS, a U.S. Department of Energy (DOE), Office of Science User Facility, operated for the DOE Office of Science by Argonne National Laboratory under Contract DE-AC02-06CH11357. Support for T.A.T. was provided by DOE Grant DE-FG02-07ER46402. X-ray absorption data acquisition was performed at Brookhaven National Laboratory's NSLS, which is funded by the U.S. Department of Energy. NR 45 TC 0 Z9 0 U1 7 U2 29 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 EI 1520-510X J9 INORG CHEM JI Inorg. Chem. PD DEC 7 PY 2015 VL 54 IS 23 BP 11226 EP 11235 DI 10.1021/acs.inorgchem.5b01605 PG 10 WC Chemistry, Inorganic & Nuclear SC Chemistry GA CY1FQ UT WOS:000366152500027 PM 26544911 ER PT J AU Li, K Zheng, HY Hattori, T Sano-Furukawa, A Tulk, CA Moaison, J Feygenson, M Ivanov, IN Yang, W Mao, HK AF Li, Kuo Zheng, Haiyan Hattori, Takanori Sano-Furukawa, Asami Tulk, Christopher A. Moaison, Jamie Feygenson, Mikhail Ivanov, Ilia N. Yang, Wenge Mao, Ho-Kwang TI Synthesis, Structure, and Pressure-Induced Polymerization of Li3Fe(CN)(6) Accompanied with Enhanced Conductivity SO INORGANIC CHEMISTRY LA English DT Article ID SOLID-STATE POLYMERIZATION; HYDROGEN-CYANIDE; NEUTRON SOURCE; LITHIUM; HEXACYANOFERRATE(III); ACETYLENE; SYSTEM AB Pressure-induced polymerization of charged triple-bond monomers like acetylide and cyanide could lead to formation of a conductive metal-carbon network composite, thus providing a new route to synthesize inorganic/organic conductors with tunable composition and properties. The industry application of this promising synthetic method is mainly limited by the reaction pressure needed, which is often too high to be reached for gram amounts of sample. Here we successfully synthesized highly conductive Li3Fe(CN)(6) at maximum pressure around 5 GPa and used in situ diagnostic tools to follow the structural and functional transformations of the sample, including in situ X-ray and neutron diffraction and Raman and impedance spectroscopy, along with the neutron pair distribution function measurement on the recovered sample. The cyanide anions start to react around 1 GPa and bond to each other irreversibly at around 5 GPa, which are the lowest reaction pressures in all known metal cyanides and within the technologically achievable pressure range for industrial production. The conductivity of the polymer is above 10(-3) S.cm(-1), which reaches the range of conductive polymers. This investigation suggests that the pressure-induced polymerization route is practicable for synthesizing some types of functional conductive materials for industrial use, and further research like doping and heating can hence be motivated to synthesize novel materials under lower pressure and with better performances. C1 [Li, Kuo; Zheng, Haiyan; Yang, Wenge; Mao, Ho-Kwang] Ctr High Pressure Sci & Technol Adv Res, Beijing 100094, Peoples R China. [Li, Kuo; Zheng, Haiyan; Mao, Ho-Kwang] Carnegie Inst Sci, Geophys Lab, Washington, DC 20015 USA. [Hattori, Takanori; Sano-Furukawa, Asami] Japan Atom Energy Agcy, Japan Proton Accelerator Res Complex Ctr, Tokai, Ibaraki 3191195, Japan. [Tulk, Christopher A.; Moaison, Jamie; Feygenson, Mikhail] Oak Ridge Natl Lab, Spallat Neutron Source, Oak Ridge, TN 37830 USA. [Ivanov, Ilia N.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37830 USA. [Yang, Wenge] Carnegie Inst Sci, HPSynC, Geophys Lab, Argonne, IL 60439 USA. RP Li, K (reprint author), Ctr High Pressure Sci & Technol Adv Res, Beijing 100094, Peoples R China. EM likuo@hpstar.ac.cn; zhenghy@hpstar.ac.cn RI Feygenson, Mikhail /H-9972-2014; Tulk, Chris/R-6088-2016 OI Feygenson, Mikhail /0000-0002-0316-3265; Tulk, Chris/0000-0003-3400-3878 FU Energy Frontier Research in Extreme Environment (EFree) Center, an Energy Frontier Research Center - Basic Energy Sciences (BES), Department of Energy (DOE) [DE-SC0001057]; DOE-BES X-ray Scattering Core Program [DE-FG02-99ER45775]; NSAF [U1530402] FX This work was partially supported as part of the Energy Frontier Research in Extreme Environment (EFree) Center, an Energy Frontier Research Center funded by Basic Energy Sciences (BES), Department of Energy (DOE), under Award DE-SC0001057. W.Y. and H.-k.M. acknowledge financial support from DOE-BES X-ray Scattering Core Program under Grant DE-FG02-99ER45775. We acknowledge the support of NSAF (Grant U1530402). NR 32 TC 2 Z9 2 U1 1 U2 27 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 EI 1520-510X J9 INORG CHEM JI Inorg. Chem. PD DEC 7 PY 2015 VL 54 IS 23 BP 11276 EP 11282 DI 10.1021/acs.inorgchem.5b01851 PG 7 WC Chemistry, Inorganic & Nuclear SC Chemistry GA CY1FQ UT WOS:000366152500032 PM 26575332 ER PT J AU Cary, SK Silver, MA Liu, GK Wang, JC Bogart, JA Stritzinger, JT Arico, AA Hanson, K Schelter, EJ Albrecht-Schmitt, TE AF Cary, Samantha K. Silver, Mark A. Liu, Guokui Wang, Jamie C. Bogart, Justin A. Stritzinger, Jared T. Arico, Alexandra A. Hanson, Kenneth Schelter, Eric J. Albrecht-Schmitt, Thomas E. TI Spontaneous Partitioning of Californium from Curium: Curious Cases from the Crystallization of Curium Coordination Complexes SO INORGANIC CHEMISTRY LA English DT Article ID ACTINIDE COMPLEXES; SPECTROSCOPIC PROPERTIES; MAGNETIC-SUSCEPTIBILITY; STRUCTURAL CHEMISTRY; OPTICAL-PROPERTIES; ENERGY-TRANSFER; BASIS-SETS; AQUA ION; CRYSTAL; LUMINESCENCE AB The reaction of (CmCl3)-Cm-248 with excess 2,6-pyridinedicarboxylic acid (DPA) under mild solvothermal conditions results in crystallization of the tris-chelate complex Cm(HDPA)(3)center dot H2O. Approximately half of the curium remains in solution at the end of this process, and evaporation of the mother liquor results in crystallization of the bis-chelate complex [Cm(HDPA)(H(2)DPA)(H2O)(2)Cl]Cl center dot 2H(2)O. Cm-248 is the daughter of the alpha decay of Cf-252 and is extracted in high purity from this parent. However, trace amounts of Cf-249,Cf-250,Cf-251 are still present in all samples of Cm-248. During the crystallization of Cm(HDPA)(3)center dot H2O and [Cm(HDPA)(H(2)DPA)(H2O)(2)Cl]Cl center dot 2H(2)O, californium(III) spontaneously separates itself from the curium complexes and is found doped within crystals of DPA in the form of Cf(HDPA)(3). These results add to the growing body of evidence that the chemistry of californium is fundamentally different from that of earlier actinides. C1 [Cary, Samantha K.; Silver, Mark A.; Wang, Jamie C.; Stritzinger, Jared T.; Arico, Alexandra A.; Hanson, Kenneth; Albrecht-Schmitt, Thomas E.] Florida State Univ, Dept Chem & Biochem, Tallahassee, FL 32306 USA. [Liu, Guokui] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Bogart, Justin A.; Schelter, Eric J.] Univ Penn, Dept Chem, P Roy & Diana T Vagelos Labs, Philadelphia, PA 19104 USA. RP Albrecht-Schmitt, TE (reprint author), Florida State Univ, Dept Chem & Biochem, Tallahassee, FL 32306 USA. EM albrecht-schmitt@chem.fsu.edu FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Heavy Elements Chemistry Program [DE-FG02-13ER16414]; U.S. Department of Energy, Office of Science, Early Career Research Program [DE-SC0006518] FX This material is based on work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Heavy Elements Chemistry Program, under Award DE-FG02-13ER16414. E.J.S. acknowledges the U.S. Department of Energy, Office of Science, Early Career Research Program (Grant DE-SC0006518), for support of this work. NR 62 TC 2 Z9 2 U1 2 U2 14 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 EI 1520-510X J9 INORG CHEM JI Inorg. Chem. PD DEC 7 PY 2015 VL 54 IS 23 BP 11399 EP 11404 DI 10.1021/acs.inorgchem.5b02052 PG 6 WC Chemistry, Inorganic & Nuclear SC Chemistry GA CY1FQ UT WOS:000366152500046 PM 26562586 ER PT J AU Thomassen, IK Vazquez-Lima, H Gagnon, KJ Ghosh, A AF Thomassen, Ivar K. Vazquez-Lima, Hugo Gagnon, Kevin J. Ghosh, Abhik TI Octaiodoporphyrin SO INORGANIC CHEMISTRY LA English DT Article ID PORPHYRINS; APPROXIMATION; SPECTRA; LIGANDS; DENSITY; MODEL AB Interaction of 3,4-diiodopyrrole with 4-trifluoromethylbenzaldeyde under carefully optimized, Lindsey-type conditions at -10 degrees C has led to the synthesis of the first beta-octaiodoporphyrin, H-2[I(8)TpCF(3)PP]. The free ligand readily yielded Ni, Cu, and Zn complexes, which all proved amenable to single-crystal X-ray structure analyses. The zinc complex Zn[I8TpCF3PP] exhibits the most saddled porphyrin core for any simple porphyrin known to date and a dramatically red-shifted optical spectrum with a Soret maximum at 495 nm. C1 [Thomassen, Ivar K.; Vazquez-Lima, Hugo; Ghosh, Abhik] Univ Tromso, Dept Chem, N-9037 Tromso, Norway. [Thomassen, Ivar K.; Vazquez-Lima, Hugo; Ghosh, Abhik] Univ Tromso, Ctr Theoret & Computat Chem, N-9037 Tromso, Norway. [Gagnon, Kevin J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Ghosh, A (reprint author), Univ Tromso, Dept Chem, N-9037 Tromso, Norway. EM abhik@chem.uit.no RI Ghosh, Abhik/G-8164-2016 OI Ghosh, Abhik/0000-0003-1161-6364 FU FRINATEK Project of the Research Council of Norway [163054, 231086]; Advanced Light Source, Berkeley, California; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the FRINATEK Project Nos. 163054 and 231086 of the Research Council of Norway (A.G.) and the Advanced Light Source, Berkeley, California (K.J.G.). The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 33 TC 0 Z9 0 U1 2 U2 7 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 EI 1520-510X J9 INORG CHEM JI Inorg. Chem. PD DEC 7 PY 2015 VL 54 IS 23 BP 11493 EP 11497 DI 10.1021/acs.inorgchem.5b02127 PG 5 WC Chemistry, Inorganic & Nuclear SC Chemistry GA CY1FQ UT WOS:000366152500055 PM 26571017 ER PT J AU Bisset, RN Wang, WL Ticknor, C Carretero-Gonzalez, R Frantzeskakis, DJ Collins, LA Kevrekidis, PG AF Bisset, R. N. Wang, Wenlong Ticknor, C. Carretero-Gonzalez, R. Frantzeskakis, D. J. Collins, L. A. Kevrekidis, P. G. TI Robust vortex lines, vortex rings, and hopfions in three-dimensional Bose-Einstein condensates SO PHYSICAL REVIEW A LA English DT Article ID VORTICES; DYNAMICS; OPTICS AB Performing a systematic Bogoliubov-de Gennes spectral analysis, we illustrate that stationary vortex lines, vortex rings, and more exotic states, such as hopfions, are robust in three-dimensional atomic Bose-Einstein condensates, for large parameter intervals. Importantly, we find that the hopfion can be stabilized in a simple parabolic trap, without the need for trap rotation or inhomogeneous interactions. We supplement our spectral analysis by studying the dynamics of such stationary states; we find them to be robust against significant perturbations of the initial state. In the unstable regimes, we not only identify the unstable mode, such as a quadrupolar or hexapolar mode, but we also observe the corresponding instability dynamics. Furthermore, deep in the Thomas-Fermi regime, we investigate the particlelike behavior of vortex rings and hopfions. C1 [Bisset, R. N.; Kevrekidis, P. G.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Bisset, R. N.; Kevrekidis, P. G.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Wang, Wenlong] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Ticknor, C.; Collins, L. A.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Carretero-Gonzalez, R.] San Diego State Univ, Nonlinear Dynam Syst Grp, Computat Sci Res Ctr, San Diego, CA 92182 USA. [Carretero-Gonzalez, R.] San Diego State Univ, Dept Math & Stat, San Diego, CA 92182 USA. [Frantzeskakis, D. J.] Univ Athens, Dept Phys, Athens 15784, Greece. [Kevrekidis, P. G.] Univ Massachusetts, Dept Math & Stat, Amherst, MA 01003 USA. RP Bisset, RN (reprint author), Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. EM rnbisset@gmail.com RI Bisset, Russell/H-1750-2012; Ticknor, Christopher/B-8651-2014; OI Ticknor, Christopher/0000-0001-9972-4524 FU NSF [DMR-1208046, DMS-1312856, DMS-1309035]; ERC under FP7, Marie Curie Actions, People, International Research Staff Exchange Scheme [IRSES-605096]; Special Account for Research Grants of the University of Athens; NNSA of the U.S. Department of Energy [DE-AC52-06NA25396] FX We thank A. J. White for useful discussions. W.W. acknowledges support from the NSF (Grant No. DMR-1208046). P.G.K. gratefully acknowledges the support of NSF Grant No. DMS-1312856, of the ERC under FP7, Marie Curie Actions, People, International Research Staff Exchange Scheme (IRSES-605096) and insightful discussions with Professor I. Danaila and Professor B. Malomed. R.C.G. gratefully acknowledges the support of NSF Grant No. DMS-1309035. The work of D.J.F. was partially supported by the Special Account for Research Grants of the University of Athens. This work was performed under the auspices of the Los Alamos National Laboratory, which is operated by LANS, LLC for the NNSA of the U.S. Department of Energy under Contract No. DE-AC52-06NA25396. NR 36 TC 2 Z9 2 U1 3 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 EI 1094-1622 J9 PHYS REV A JI Phys. Rev. A PD DEC 7 PY 2015 VL 92 IS 6 AR 063611 DI 10.1103/PhysRevA.92.063611 PG 7 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA CY0FU UT WOS:000366082600011 ER PT J AU Bansal, D Li, CW Said, AH Abernathy, DL Yan, JQ Delaire, O AF Bansal, Dipanshu Li, Chen W. Said, Ayman H. Abernathy, Douglas L. Yan, Jiaqiang Delaire, Olivier TI Electron-phonon coupling and thermal transport in the thermoelectric compound Mo3Sb7-xTex SO PHYSICAL REVIEW B LA English DT Article ID AB-INITIO; SCATTERING; PERFORMANCE; SUPERCONDUCTIVITY; DISTORTION; MODES AB Phonon properties ofMo(3)Sb(7-x)Te(x) (x = 0,1.5,1.7), a potential high-temperature thermoelectric material, have been studied with inelastic neutron and x-ray scattering, and with first-principles simulations. The substitution of Te for Sb leads to pronounced changes in the electronic structure, local bonding, phonon density of states, dispersions, and phonon lifetimes. Alloying with tellurium shifts the Fermi level upward, near the top of the valence band, resulting in a strong suppression of electron-phonon screening and a large overall stiffening of interatomic force constants. The suppression in electron-phonon coupling concomitantly increases group velocities and suppresses phonon scattering rates, surpassing the effects of alloy-disorder scattering and resulting in a surprising increased lattice thermal conductivity in the alloy. We also identify that the local bonding environment changes nonuniformly around different atoms, leading to variable perturbation strengths for different optical phonon branches. Changes in phonon group velocities and phonon scattering rates are quantified, highlighting the large effect of electron-phonon coupling in this compound. C1 [Bansal, Dipanshu; Li, Chen W.; Yan, Jiaqiang; Delaire, Olivier] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Said, Ayman H.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Abernathy, Douglas L.] Oak Ridge Natl Lab, Quantum Condensed Matter Div, Oak Ridge, TN 37831 USA. [Yan, Jiaqiang] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. RP Bansal, D (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. EM bansald@ornl.gov; delaireoa@ornl.gov RI Abernathy, Douglas/A-3038-2012; Bansal, Dipanshu/I-7895-2016; BL18, ARCS/A-3000-2012 OI Abernathy, Douglas/0000-0002-3533-003X; Bansal, Dipanshu/0000-0003-1181-1119; FU U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division, through the Office of Science Early Career Research Program; CAMM - U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division; U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy; U.S. DOE Office of Science [DE-AC02-06CH11357]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX We thank Dr. John Tischler for providing software and support to fit the IXS spectra. Neutron and x-ray scattering measurements and analysis were supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division, through the Office of Science Early Career Research Program (O.D.). Computer simulations and analysis were supported through CAMM, funded by the U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division. Sample synthesis was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division. The use of Oak Ridge National Laboratory's Spallation Neutron Source was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the U.S. DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. Theoretical calculations were performed using resources of the National Energy Research Scientific Computing Center, a U.S. DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 52 TC 5 Z9 5 U1 4 U2 17 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD DEC 7 PY 2015 VL 92 IS 21 AR 214301 DI 10.1103/PhysRevB.92.214301 PG 15 WC Physics, Condensed Matter SC Physics GA CY0GC UT WOS:000366083400002 ER PT J AU Harrison, N Sebastian, SE AF Harrison, N. Sebastian, S. E. TI Magnetotransport signatures of a single nodal electron pocket constructed from Fermi arcs SO PHYSICAL REVIEW B LA English DT Article ID HIGH-TEMPERATURE SUPERCONDUCTOR; DENSITY-WAVE ORDER; T-C SUPERCONDUCTOR; QUANTUM OSCILLATIONS; CHARGE ORDER; HALL-COEFFICIENT; NORMAL-STATE; SURFACE; YBA2CU3O6.67; CUPRATE AB Reconstruction of the Fermi surface into small electron pockets in the normal ground state of the underdoped high-temperature superconducting cuprates has been related to charge ordering. It remains an open question, however, as to whether Fermi-surface reconstruction occurs from a more conventional starting large holelike Fermi surface yielding multiple pockets, or whether it occurs by connecting truncated "Fermi arcs" in an unconventional pseudogap state to yield a single pocket per CuO2 plane. Thus far, the observation of an in-plane magnetoresistance, and sign reversals and quantum oscillations in the Hall coefficient have been considered to provide support for the former conventional scenario. Here we show that in fact a single nodal diamond-shaped electron pocket with concave sides produced by the latter unconventional scenario yields the observed experimental signatures in magnetotransport,negative Hall coefficient, and quantum oscillations in the negative Hall effect. Taken in conjunction with complementary signatures such as the experimentally observed low value of heat capacity at high magnetic fields and the experimental observation of a charge ordering wave vector that connects the tips of the truncated Fermi arcs, an origin of Fermi-surface reconstruction from unconventional Fermi arcs is suggested. C1 [Harrison, N.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Sebastian, S. E.] Univ Cambridge, Cavendish Lab, Cambridge CB3 OHE, England. RP Harrison, N (reprint author), Los Alamos Natl Lab, Mail Stop E536, Los Alamos, NM 87545 USA. OI Harrison, Neil/0000-0001-5456-7756 FU U.S. Department of Energy BES "Science at 100 T" Grant [LANLF100]; National Science Foundation [DMR-1157490]; State of Florida; Royal Society; Winton Programme; European Research Council (ERC Grant) [337425] FX We would like to thank L. Taillefer for referring us to his latest Hall effect measurements [41]. This work was supported by the U.S. Department of Energy BES "Science at 100 T" Grant No. LANLF100, the National Science Foundation (Grant No. DMR-1157490) and the State of Florida. S.E.S. acknowledges support from the Royal Society, the Winton Programme, and the European Research Council (ERC Grant Agreement No. 337425). NR 55 TC 2 Z9 2 U1 3 U2 21 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD DEC 7 PY 2015 VL 92 IS 22 AR 224505 DI 10.1103/PhysRevB.92.224505 PG 7 WC Physics, Condensed Matter SC Physics GA CY0GN UT WOS:000366084500008 ER PT J AU Nowadnick, EA Ruf, JP Park, H King, PDC Schlom, DG Shen, KM Millis, AJ AF Nowadnick, E. A. Ruf, J. P. Park, H. King, P. D. C. Schlom, D. G. Shen, K. M. Millis, A. J. TI Quantifying electronic correlation strength in a complex oxide: A combined DMFT and ARPES study of LaNiO3 SO PHYSICAL REVIEW B LA English DT Article ID TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; HUBBARD-MODEL; RNIO3 R; TRANSITIONS; PEROVSKITES AB The electronic correlation strength is a basic quantity that characterizes the physical properties of materials such as transition metal oxides. Determining correlation strengths requires both precise definitions and a careful comparison between experiment and theory. In this paper, we define the correlation strength via the magnitude of the electron self-energy near the Fermi level. For the case of LaNiO3, we obtain both the experimental and theoretical mass enhancements m*/m by considering high resolution angle-resolved photoemission spectroscopy (ARPES) measurements and density functional+dynamical mean field theory (DFT + DMFT) calculations. We use valence-band photoemission data to constrain the free parameters in the theory and demonstrate a quantitative agreement between the experiment and theory when both the realistic crystal structure and strong electronic correlations are taken into account. In addition, by considering DFT + DMFT calculations on epitaxially strained LaNiO3, we find a strain-induced evolution of m*/m in qualitative agreement with trends derived from optics experiments. These results provide a benchmark for the accuracy of the DFT + DMFT theoretical approach, and can serve as a test case when considering other complex materials. By establishing the level of accuracy of the theory, this work also will enable better quantitative predictions when engineering new emergent properties in nickelate heterostructures. C1 [Nowadnick, E. A.] Cornell Univ, Sch Appl & Engn Phys, Ithaca, NY 14853 USA. [Nowadnick, E. A.; Park, H.; Millis, A. J.] Columbia Univ, Dept Phys, New York, NY 10027 USA. [Ruf, J. P.; King, P. D. C.; Shen, K. M.] Cornell Univ, Dept Phys, Ithaca, NY 14853 USA. [Park, H.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. [Park, H.] Univ Illinois, Dept Phys, Chicago, IL 60607 USA. [Park, H.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [King, P. D. C.; Schlom, D. G.; Shen, K. M.] Kavli Inst Cornell Nanoscale Sci, Ithaca, NY 14853 USA. [Schlom, D. G.] Cornell Univ, Dept Mat Sci & Engn, Ithaca, NY 14853 USA. RP Nowadnick, EA (reprint author), Cornell Univ, Sch Appl & Engn Phys, Ithaca, NY 14853 USA. EM nowadnick@cornell.edu RI King, Philip/D-3809-2014 OI King, Philip/0000-0002-6523-9034 FU Cornell Center for Materials Research; NSF MRSEC program [DMR-1120296]; Office of Naval Research [N00014-12-1-0791]; NSF IGERT program [DGE-0903653]; Basic Energy Sciences division of the Department of Energy [ER-046169]; University of Illinois at Chicago; Argonne National Laboratory FX This work was supported by the Cornell Center for Materials Research with funding from the NSF MRSEC program (DMR-1120296) and the Office of Naval Research (N00014-12-1-0791). J.P.R. acknowledges support from the NSF IGERT program (DGE-0903653). A.J.M. acknowledges support from the Basic Energy Sciences division of the Department of Energy under Grant ER-046169. H.P. gratefully acknowledges the support of start-up funds from University of Illinois at Chicago and Argonne National Laboratory. Part of the computational work was carried out at computing facilities supported by the Cornell Center for Materials Research. H.P. acknowledges the computing resources provided by Blues, a high-performance computing cluster operated by the Laboratory Computing Resource Center at Argonne National Laboratory. NR 55 TC 5 Z9 5 U1 8 U2 34 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD DEC 7 PY 2015 VL 92 IS 24 AR 245109 DI 10.1103/PhysRevB.92.245109 PG 9 WC Physics, Condensed Matter SC Physics GA CY0JK UT WOS:000366092200009 ER PT J AU Murayama, H Rentala, V Shu, J AF Murayama, Hitoshi Rentala, Vikram Shu, Jing TI Probing strong electroweak symmetry breaking dynamics through quantum interferometry at the LHC SO PHYSICAL REVIEW D LA English DT Article ID BOSON AB We present a new probe of strongly coupled electroweak symmetry breaking at the 14 TeV LHC by measuring a phase shift in the event distribution of the decay azimuthal angles in massive gauge boson scattering. One generically expects a large phase shift in the longitudinal gauge boson scattering amplitude due to the presence of broad resonances. This phase shift is observable as an interference effect between the strongly interacting longitudinal modes and the transverse modes of the gauge bosons. We find that even very broad resonances of masses up to 900 GeV can be probed at 3 sigma significance with a 3000 fb(-1) run of the LHC by using this technique. We also present the estimated reach for a future 50 TeV proton-proton collider. C1 [Murayama, Hitoshi] Univ Calif Berkeley, Dept Phys, Berkeley, CA 85721 USA. [Murayama, Hitoshi] Univ Tokyo, Todai Inst Adv Study, Kavli Inst Phys & Math Universe WPI, Kashiwa, Chiba 2778583, Japan. [Murayama, Hitoshi] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Theoret Phys Grp, Berkeley, CA 94720 USA. [Rentala, Vikram] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Shu, Jing] Chinese Acad Sci, Inst Theoret Phys, State Key Lab Theoret Phys, Beijing 100190, Peoples R China. [Shu, Jing] Chinese Acad Sci, Inst Theoret Phys, KITPC, Beijing 100190, Peoples R China. RP Murayama, H (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 85721 USA. OI Shu, Jing/0000-0001-6569-403X FU U.S. DOE [DEAC03-76SF00098]; NSF [PHY-1002399, PHY-0855561]; JSPS Grant [23540289]; FIRST program Subaru Measurements of Images and Redshifts (SuMIRe); CSTP; WPI, MEXT, Japan FX We would like to thank T. Han, D. Krohn, A. Larkoski, and M. Peskin for useful discussions. H. M. was supported in part by the U.S. DOE under Contract No. DEAC03-76SF00098, by the NSF under Grant No. PHY-1002399, by the JSPS Grant (C) No. 23540289, by the FIRST program Subaru Measurements of Images and Redshifts (SuMIRe), CSTP, and by WPI, MEXT, Japan. V. R. was supported by NSF Grant No. PHY-0855561. NR 21 TC 2 Z9 2 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD DEC 7 PY 2015 VL 92 IS 11 AR 116002 DI 10.1103/PhysRevD.92.116002 PG 7 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CY0KS UT WOS:000366095600005 ER PT J AU Sigillito, AJ Jock, RM Tyryshkin, AM Beeman, JW Haller, EE Itoh, KM Lyon, SA AF Sigillito, A. J. Jock, R. M. Tyryshkin, A. M. Beeman, J. W. Haller, E. E. Itoh, K. M. Lyon, S. A. TI Electron Spin Coherence of Shallow Donors in Natural and Isotopically Enriched Germanium SO PHYSICAL REVIEW LETTERS LA English DT Article ID RESONANCE EXPERIMENTS; LATTICE RELAXATION; DOPED GERMANIUM; SINGLE-CRYSTALS; SILICON; GE; SI AB Germanium is a widely used material for electronic and optoelectronic devices and recently it has become an important material for spintronics and quantum computing applications. Donor spins in silicon have been shown to support very long coherence times (T-2) when the host material is isotopically enriched to remove any magnetic nuclei. Germanium also has nonmagnetic isotopes so it is expected to support long T-2's while offering some new properties. Compared to Si, Ge has a strong spin-orbit coupling, large electron wave function, high mobility, and highly anisotropic conduction band valleys which will all give rise to new physics. In this Letter, the first pulsed electron spin resonance measurements of T-2 and the spin-lattice relaxation (T-1) times for As-75 and P-31 donors in natural and isotopically enriched germanium are presented. We compare samples with various levels of isotopic enrichment and find that spectral diffusion due to Ge-73 nuclear spins limits the coherence in samples with significant amounts of Ge-73. For the most highly enriched samples, we find that T-1 limits T-2 to T-2 = 2T(1). We report an anisotropy in T-1 and the ensemble linewidths for magnetic fields oriented along different crystal axes but do not resolve any angular dependence to the spectral-diffusion-limited T-2 in samples with Ge-73. C1 [Sigillito, A. J.; Jock, R. M.; Tyryshkin, A. M.; Lyon, S. A.] Princeton Univ, Dept Elect Engn, Princeton, NJ 08544 USA. [Beeman, J. W.; Haller, E. E.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA 94720 USA. [Haller, E. E.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Itoh, K. M.] Keio Univ, Sch Fundamental Sci & Technol, Kohuku Ku, Yokohama, Kanagawa 2238522, Japan. RP Sigillito, AJ (reprint author), Princeton Univ, Dept Elect Engn, Princeton, NJ 08544 USA. EM asigilli@princeton.edu RI Sigillito, Anthony/N-5981-2015; Itoh, Kohei/C-5738-2014 OI Sigillito, Anthony/0000-0002-4765-9414; FU NSF through the Materials World Network Program [DMR-1107606, DMR-01420541]; ARO [W911NF-13-1-0179]; JSPS; MEXT; NSF through MRSEC Program [DMR-1107606, DMR-01420541] FX Work at Princeton was supported by the NSF through the Materials World Network and MRSEC Programs (Grants No. DMR-1107606 and No. DMR-01420541), and the ARO (Grant No. W911NF-13-1-0179). The work at Keio has been supported by the Core-to-Core Program by JSPS, and the Grants-in-Aid for Scientific Research, and Project for Developing Innovation Systems by MEXT. NR 38 TC 4 Z9 4 U1 4 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD DEC 7 PY 2015 VL 115 IS 24 AR 247601 DI 10.1103/PhysRevLett.115.247601 PG 5 WC Physics, Multidisciplinary SC Physics GA CY0OT UT WOS:000366106100002 PM 26705654 ER PT J AU Eswaramoorthy, S Sun, JC Li, HL Singh, BR Swaminathan, S AF Eswaramoorthy, Subramaniam Sun, Jingchuan Li, Huilin Singh, Bal Ram Swaminathan, Subramanyam TI Molecular Assembly of Clostridium botulinum progenitor M complex of type E SO SCIENTIFIC REPORTS LA English DT Article ID NEUROTOXIN-ASSOCIATING PROTEIN; NONTOXIC-NONHEMAGGLUTININ; TOXINS; STABILITY; TOXICITY AB Clostridium botulinum neurotoxin (BoNT) is released as a progenitor complex, in association with a non-toxic-non-hemagglutinin protein (NTNH) and other associated proteins. We have determined the crystal structure of M type Progenitor complex of botulinum neurotoxin E [PTC-E(M)], a heterodimer of BoNT and NTNH. The crystal structure reveals that the complex exists as a tight, interlocked heterodimer of BoNT and NTNH. The crystal structure explains the mechanism of molecular assembly of the complex and reveals several acidic clusters at the interface responsible for association at low acidic pH and disassociation at basic/neutral pH. The similarity of the general architecture between the PTC-E(M) and the previously determined PTC-A(M) strongly suggests that the progenitor M complexes of all botulinum serotypes may have similar molecular arrangement, although the neurotoxins apparently can take very different conformation when they are released from the M complex. C1 [Eswaramoorthy, Subramaniam; Sun, Jingchuan; Li, Huilin; Swaminathan, Subramanyam] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. [Singh, Bal Ram] Inst Adv Sci, Botulinum Res Ctr, Dartmouth, MA USA. [Li, Huilin] SUNY Stony Brook, Dept Biochem & Cell Biol, Stony Brook, NY 11794 USA. RP Swaminathan, S (reprint author), Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. EM swami@bnl.gov FU DTRA under DOE [BO742081, DEAC02-98CH10886]; Brookhaven National Laboratory; National Institutes of Health [1U01A1078070-02] FX Research was partly supported by an award from DTRA BO742081 under DOE prime contract No. DEAC02-98CH10886 (PI: SS) with Brookhaven National Laboratory. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The work was in part supported by a National Institutes of Health Grant 1U01A1078070-02 (PI: BRS). NR 23 TC 1 Z9 1 U1 1 U2 5 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD DEC 7 PY 2015 VL 5 AR 17795 DI 10.1038/srep17795 PG 9 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CX7BX UT WOS:000365856900001 PM 26639353 ER PT J AU Menezes, AA Montague, MG Cumbers, J Hogan, JA Arkin, AP AF Menezes, Amor A. Montague, Michael G. Cumbers, John Hogan, John A. Arkin, Adam P. TI Grand challenges in space synthetic biology SO JOURNAL OF THE ROYAL SOCIETY INTERFACE LA English DT Review DE resource utilization; manufacturing; life support; space medicine; space cybernetics; terraforming ID NITROGEN REMOVAL; CIRCUIT; CELLS; MARS AB Space synthetic biology is a branch of biotechnology dedicated to engineering biological systems for space exploration, industry and science. There is significant public and private interest in designing robust and reliable organisms that can assist on long-duration astronaut missions. Recent work has also demonstrated that such synthetic biology is a feasible payload minimization and life support approach as well. This article identifies the challenges and opportunities that lie ahead in the field of space synthetic biology, while highlighting relevant progress. It also outlines anticipated broader benefits from this field, because space engineering advances will drive technological innovation on Earth. C1 [Menezes, Amor A.; Arkin, Adam P.] Univ Calif Berkeley, Calif Inst Quantitat Biosci, Berkeley, CA 94704 USA. [Montague, Michael G.] Applicat Vital Knowledge, Frederick, MD 21702 USA. [Cumbers, John] NASA, Ames Res Ctr, Ames Space Portal, Moffett Field, CA 94035 USA. [Hogan, John A.] NASA, Ames Res Ctr, Bioengn Branch, Moffett Field, CA 94035 USA. [Arkin, Adam P.] EO Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Arkin, Adam P.] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94704 USA. RP Menezes, AA (reprint author), Univ Calif Berkeley, Calif Inst Quantitat Biosci, 2151 Berkeley Way, Berkeley, CA 94704 USA. EM amenezes@berkeley.edu; aparkin@lbl.gov RI Arkin, Adam/A-6751-2008; OI Arkin, Adam/0000-0002-4999-2931; Menezes, Amor/0000-0003-3923-5766 NR 58 TC 4 Z9 4 U1 23 U2 54 PU ROYAL SOC PI LONDON PA 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND SN 1742-5689 EI 1742-5662 J9 J R SOC INTERFACE JI J. R. Soc. Interface PD DEC 6 PY 2015 VL 12 IS 113 AR 20150803 DI 10.1098/rsif.2015.0803 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DA4XV UT WOS:000367807000009 PM 26631337 ER PT J AU Kim, JH Byun, TS Shin, E Seol, JB Young, S Reddy, NS AF Kim, Jeoung Han Byun, Thak Sang Shin, Eunjoo Seol, Jae-Bok Young, Sung Reddy, N. S. TI Small angle neutron scattering analyses and high temperature mechanical properties of nano-structured oxide dispersion-strengthened steels produced via cryomilling SO JOURNAL OF ALLOYS AND COMPOUNDS LA English DT Article DE Oxide dispersion strengthened alloy; Fracture toughness; Small angle neutron scattering; Cryomilling ID NANOSTRUCTURED FERRITIC ALLOY; GRAIN-BOUNDARY DECOHESION; FRACTURE CHARACTERISTICS; MICROSTRUCTURE; NANOCLUSTERS; DEFORMATION; IRRADIATION; TOUGHNESS; BEHAVIOR; 14YWT AB Three oxide dispersion-strengthened (ODS) steels are produced in order to investigate the effect of the mechanical alloying (MA) temperature on the microstructural evolution and high temperature mechanical properties. The microstructural evolution with different MA conditions is examined using small angle neutron scattering. As the MA temperature decreases, the density of the nanoclusters below 10 nm increases and their mean diameter decreases. A low temperature during MA leads to a high strength in the compression tests performed at 500 degrees C; however, this effect disappears in testing at 900 degrees C. The milling process at -70 degrees C exhibits excellent high fracture toughness, which is better than the benchmark material 14YWT-SM10. However, the -150 degrees C milling process results in significantly worse fracture toughness properties. The reasons for this strong temperature dependency are discussed. (C) 2015 Elsevier B.V. All rights reserved. C1 [Kim, Jeoung Han] Hanbat Natl Univ, Dept Adv Mat Engn, Daejeon, South Korea. [Byun, Thak Sang] Pacific NW Natl Lab, Div Nucl Sci, Richland, WA 99352 USA. [Shin, Eunjoo] Korea Atom Energy Res Inst, Div Neutron Sci, Daejeon, South Korea. [Seol, Jae-Bok] POSTECH, Natl Inst Nanomat Technol, Pohang, South Korea. [Young, Sung] Korea Univ Technol & Educ, Sch Mech Engn, Cheonan, South Korea. [Reddy, N. S.] Gyeongsang Natl Univ, Engn Res Inst, Sch Mat Sci & Engn, Jinju, South Korea. RP Kim, JH (reprint author), Hanbat Natl Univ, Dept Adv Mat Engn, Daejeon, South Korea. EM jh.kim@hanbat.ac.kr OI Reddy, N. S./0000-0003-4206-4515 FU National Research Foundation of Korea(NRF) - Ministry of Science, ICT & Future Planning [2015R1C1A1A02036622] FX Thak Sang Byun is co-first author due to equal contribution to this manuscript. The authors wish to thank J.E. Chae (NINT) for TEM characterization. This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Science, ICT & Future Planning (2015R1C1A1A02036622). NR 40 TC 5 Z9 5 U1 1 U2 32 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-8388 EI 1873-4669 J9 J ALLOY COMPD JI J. Alloy. Compd. PD DEC 5 PY 2015 VL 651 BP 363 EP 374 DI 10.1016/j.jallcom.2015.08.100 PG 12 WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering GA CS1MS UT WOS:000361830700055 ER PT J AU Ivanovski, VN Umicevic, A Belosevic-Cavor, J Lei, HC Li, LJ Cekic, B Koteski, V Petrovic, C AF Ivanovski, V. N. Umicevic, A. Belosevic-Cavor, J. Lei, Hechang Li, Lijun Cekic, B. Koteski, V. Petrovic, C. TI Local structure study of Fe dopants in Ni-deficit Ni3Al alloys SO JOURNAL OF ALLOYS AND COMPOUNDS LA English DT Article DE Intermetallics; Electronic properties; Hyperfine interactions; Mossbauer spectroscopy; X-ray diffraction ID TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; SITE OCCUPATION; IRON ADDITIONS; ORDER; FERROMAGNETISM; DUCTILITY; DISORDER; TEMPERATURE; GAMMA-NI3AL AB The local electronic and magnetic structure, hyperfine interactions, and phase composition of polycrystalline Ni-deficient Ni3-xFexAl (x = 0.18 and 0.36) were investigated by means of Fe-57 Mossbauer spectroscopy. The samples were characterized by X-ray diffraction and magnetization measurements. The ab initio calculations performed with the projector augmented wave method and the calculations of the energies of iron point defects were done to elucidate the electronic structure and site preference of Fe doped Ni3Al. The value of calculated electric field gradient tensor V-zz = 1.6 10(21) Vm(-2) matches well with the results of Mossbauer spectroscopy and indicates that the Fe atoms occupy Ni sites. (C) 2015 Elsevier B.V. All rights reserved. C1 [Ivanovski, V. N.; Umicevic, A.; Belosevic-Cavor, J.; Cekic, B.; Koteski, V.] Univ Belgrade, Vinca Inst Nucl Sci, Lab Nucl & Plasma Phys, Belgrade 11001, Serbia. [Lei, Hechang; Li, Lijun; Petrovic, C.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. RP Ivanovski, VN (reprint author), Univ Belgrade, Vinca Inst Nucl Sci, Lab Nucl & Plasma Phys, POB 522, Belgrade 11001, Serbia. EM valiva@vin.bg.ac.rs RI LEI, Hechang/H-3278-2016 FU Ministry of Education, Science and Technological Development of the Republic of Serbia [171001]; US DOE [DE-AC02-98CH10886] FX This work has been supported by the grant No. 171001 from the Ministry of Education, Science and Technological Development of the Republic of Serbia. Work at Brookhaven is supported by the US DOE under contract No. DE-AC02-98CH10886. NR 40 TC 1 Z9 1 U1 0 U2 17 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-8388 EI 1873-4669 J9 J ALLOY COMPD JI J. Alloy. Compd. PD DEC 5 PY 2015 VL 651 BP 705 EP 711 DI 10.1016/j.jallcom.2015.08.171 PG 7 WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering GA CS1MS UT WOS:000361830700103 ER PT J AU Wang, JP Ong, MT Kouznetsova, TB Lenhardt, JM Martinez, TJ Craig, SL AF Wang, Junpeng Ong, Mitchell T. Kouznetsova, Tatiana B. Lenhardt, Jeremy M. Martinez, Todd J. Craig, Stephen L. TI Catch and Release: Orbital Symmetry Guided Reaction Dynamics from a Freed "Tension Trapped Transition State" SO JOURNAL OF ORGANIC CHEMISTRY LA English DT Article ID POLYMER MECHANOCHEMISTRY; MECHANICAL FORCE; COVALENT BONDS; MECHANOPHORES; ACTIVATION; STRESS; STEREOMUTATION; SPECTROSCOPY; EXTENSION; PATHWAYS AB The dynamics of reactions at or in the immediate vicinity of transition states are critical to reaction rates and product distributions, but direct experimental probes of those dynamics are rare. Here, s-trans, s-trans 1,3-diradicaloid transition states are trapped by tension along the backbone of purely cis-substituted gem-difluorocyclopropanated polybutadiene using the extensional forces generated by pulsed sonication of dilute polymer solutions. Once released, the branching ratio between symmetry-allowed disrotatory ring closing (of which the trapped diradicaloid structure is the transition state) and symmetry-forbidden conrotatory ring closing (whose transition state is nearby) can be inferred. Net conrotatory ring closing occurred in 5.0 +/- 0.5% of the released transition states, in excellent agreement with ab Mid molecular dynamics simulations. C1 [Wang, Junpeng; Kouznetsova, Tatiana B.; Craig, Stephen L.] Duke Univ, Dept Chem, Durham, NC 27708 USA. [Ong, Mitchell T.; Lenhardt, Jeremy M.] Lawrence Livermore Natl Lab, Div Mat Sci, Livermore, CA 94550 USA. [Martinez, Todd J.] Stanford Univ, Dept Chem, Stanford, CA 94305 USA. RP Martinez, TJ (reprint author), Stanford Univ, Dept Chem, Stanford, CA 94305 USA. EM todd.martinez@stanford.edu; stephen.craig@duke.edu RI Craig, Stephen/D-3484-2011 OI Craig, Stephen/0000-0002-8810-0369 FU U.S. Army Research Laboratory; Army Research Office [W911NF-07-0409]; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-ACS2-07NA27344] FX This material is based on work supported by the U.S. Army Research Laboratory and the Army Research Office under Grant W911NF-07-0409. Part of this work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-ACS2-07NA27344. NR 38 TC 2 Z9 2 U1 5 U2 17 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0022-3263 J9 J ORG CHEM JI J. Org. Chem. PD DEC 4 PY 2015 VL 80 IS 23 BP 11773 EP 11778 DI 10.1021/acs.joc.5b01493 PG 6 WC Chemistry, Organic SC Chemistry GA CY1FF UT WOS:000366151400014 PM 26322681 ER PT J AU Hu, MZ Zhu, T AF Hu, Michael Z. Zhu, Ting TI Semiconductor Nanocrystal Quantum Dot Synthesis Approaches Towards Large-Scale Industrial Production for Energy Applications SO NANOSCALE RESEARCH LETTERS LA English DT Review DE Quantum dots; QDs; Scale up; Synthesis; Production ID LIGHT-EMITTING-DIODES; ONE-POT SYNTHESIS; CDSE/CDS CORE/SHELL NANOCRYSTALS; SINGLE-SIZED NANOCRYSTALS; ION LAYER ADSORPTION; HIGH-QUALITY; SOLAR-CELLS; CDTE NANOCRYSTALS; AQUEOUS-SOLUTION; HYDROTHERMAL SYNTHESIS AB This paper reviews the experimental synthesis and engineering developments that focused on various green approaches and large-scale process production routes for quantum dots. Fundamental process engineering principles were illustrated. In relation to the small-scale hot injection method, our discussions focus on the non-injection route that could be scaled up with engineering stir-tank reactors. In addition, applications that demand to utilize quantum dots as "commodity" chemicals are discussed, including solar cells and solid-state lightings. C1 [Hu, Michael Z.; Zhu, Ting] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Hu, MZ (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM hum1@ornl.gov OI Hu, Michael/0000-0001-8461-9684 FU Oak Ridge National Laboratory, Laboratory Directed Research and Development (LDRD) program FX Authors thank the sponsorship by the Oak Ridge National Laboratory, Laboratory Directed Research and Development (LDRD) program. NR 95 TC 4 Z9 4 U1 17 U2 96 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1556-276X J9 NANOSCALE RES LETT JI Nanoscale Res. Lett. PD DEC 4 PY 2015 VL 10 AR 469 DI 10.1186/s11671-015-1166-y PG 15 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA CX6JM UT WOS:000365807000001 PM 26637261 ER PT J AU Geller, DA Ecke, RE Dahmen, KA Backhaus, S AF Geller, Drew A. Ecke, Robert E. Dahmen, Karin A. Backhaus, Scott TI Stick-slip behavior in a continuum-granular experiment SO PHYSICAL REVIEW E LA English DT Article ID STATISTICAL PHYSICS; FAULTS; EARTHQUAKES; DYNAMICS; FRICTION; FRACTURE; REGIMES; MODELS AB We report moment distribution results from a laboratory experiment, similar in character to an isolated strikeslip earthquake fault, consisting of sheared elastic plates separated by a narrow gap filled with a two-dimensional granular medium. Local measurement of strain displacements of the plates at 203 spatial points located adjacent to the gap allows direct determination of the event moments and their spatial and temporal distributions. We show that events consist of spatially coherent, larger motions and spatially extended (noncoherent), smaller events. The noncoherent events have a probability distribution of event moment consistent with an M-3/2 power law scaling with Poisson-distributed recurrence times. Coherent events have a log-normal moment distribution and mean temporal recurrence. As the applied normal pressure increases, there are more coherent events and their log-normal distribution broadens and shifts to larger average moment. C1 [Geller, Drew A.; Ecke, Robert E.; Backhaus, Scott] Los Alamos Natl Lab, Condensed Matter & Thermal Phys Grp, Los Alamos, NM 87545 USA. [Geller, Drew A.; Ecke, Robert E.; Backhaus, Scott] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Dahmen, Karin A.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. RP Geller, DA (reprint author), Los Alamos Natl Lab, Condensed Matter & Thermal Phys Grp, POB 1663, Los Alamos, NM 87545 USA. OI Geller, Drew/0000-0001-8046-8495; Backhaus, Scott/0000-0002-0344-6791; Ecke, Robert/0000-0001-7772-5876 FU Laboratory Directed Research and Development program of the National Nuclear Security Administration of the U.S. Department of Energy [DE-AC52-06NA25396]; National Science Foundation [DMR 1005209, DMS 1069224] FX We acknowledge conversations with Karen Daniels and Jonathan Uhl. Work at Los Alamos National Laboratory was funded by the Laboratory Directed Research and Development program of the National Nuclear Security Administration of the U.S. Department of Energy under Contract No. DE-AC52-06NA25396. K.D. acknowledges support from National Science Foundation under Grants No. DMR 1005209 and No. DMS 1069224. NR 28 TC 1 Z9 1 U1 4 U2 15 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 EI 1550-2376 J9 PHYS REV E JI Phys. Rev. E PD DEC 4 PY 2015 VL 92 IS 6 AR 060201 DI 10.1103/PhysRevE.92.060201 PG 5 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA CX7HX UT WOS:000365873900001 PM 26764611 ER PT J AU Kim, E Chaunsali, R Xu, H Jaworski, J Yang, J Kevrekidis, PG Vakakis, AF AF Kim, E. Chaunsali, R. Xu, H. Jaworski, J. Yang, J. Kevrekidis, P. G. Vakakis, A. F. TI Nonlinear low-to-high-frequency energy cascades in diatomic granular crystals SO PHYSICAL REVIEW E LA English DT Article ID SOLITARY WAVE; DIMER CHAINS; RESONANCES AB We study wave propagation in strongly nonlinear one-dimensional diatomic granular crystals under an impact load. Depending on the mass ratio of the "light" to "heavy" beads, this system exhibits rich wave dynamics from highly localized traveling waves to highly dispersive waves featuring strong attenuation. We demonstrate experimentally the nonlinear resonant and antiresonant interactions of particles, and we verify that the nonlinear resonance results in strong wave attenuation, leading to highly efficient nonlinear energy cascading without relying on material damping. In this process, mechanical energy is transferred from low to high frequencies, while propagating waves emerge in both ordered and chaotic waveforms via a distinctive spatial cascading. This energy transfer mechanism from lower to higher frequencies and wave numbers is of particular significance toward the design of novel nonlinear acoustic metamaterials with inherently passive energy redistribution properties. C1 [Kim, E.; Chaunsali, R.; Jaworski, J.; Yang, J.] Univ Washington, Aeronaut & Astronaut, Seattle, WA 98195 USA. [Xu, H.; Kevrekidis, P. G.] Univ Massachusetts, Dept Math & Stat, Amherst, MA 01003 USA. [Kevrekidis, P. G.] Los Alamos Natl Lab, Ctr Nonlinear Studies & Theoret Div, Los Alamos, NM 87544 USA. [Vakakis, A. F.] Univ Illinois, Dept Mech Sci & Engn, Urbana, IL 61822 USA. RP Yang, J (reprint author), Univ Washington, Aeronaut & Astronaut, Seattle, WA 98195 USA. EM jkyang@aa.washington.edu FU Army Research Office (ARO) [W911NF-15-1-0604]; ONR [N000141410388]; ADD of Korea [UD140059JD]; US-AFOSR [FA9550-12-10332]; US Department of Energy; ARO [W911NF0910436] FX We thank Matthew Toles for help with graphical illustrations. J.Y. and P.K. acknowledge the support from the Army Research Office (ARO) (W911NF-15-1-0604). J.Y. acknowledges the support of ONR (N000141410388) and ADD of Korea (UD140059JD). P.G.K. gratefully acknowledges support from the US-AFOSR under Grant No. FA9550-12-10332. P.G.K.'s work at Los Alamos is supported in part by the US Department of Energy. A.F.V. would like to acknowledge the support of ARO (W911NF0910436). NR 30 TC 1 Z9 1 U1 3 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 EI 1550-2376 J9 PHYS REV E JI Phys. Rev. E PD DEC 4 PY 2015 VL 92 IS 6 AR 062201 DI 10.1103/PhysRevE.92.062201 PG 7 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA CX7HX UT WOS:000365873900007 PM 26764676 ER PT J AU Li, HQ Guo, QJ Jiang, J Johnston, DC AF Li, Heqiu Guo, Qiujiang Jiang, Ji Johnston, D. C. TI Thermodynamics of the noninteracting Bose gas in a two-dimensional box SO PHYSICAL REVIEW E LA English DT Article ID EINSTEIN CONDENSATION; PARTICLE NUMBER; FINITE NUMBER; FLUCTUATIONS; STATISTICS; DIMENSIONS AB Bose-Einstein condensation (BEC) of a noninteracting Bose gas of N particles in a two-dimensional box with Dirichlet boundary conditions is studied. Confirming previous work, we find that BEC occurs at finite N at low temperatures T without the occurrence of a phase transition. The conventionally-defined transition temperature T-E for an infinite three-dimensional (3D) system is shown to correspond in a 2D system with finite N to a crossover temperature between a slow and rapid increase in the fractional boson occupation N-0/N of the ground state with decreasing T. We further show that T-E similar to 1/logN at fixed area per boson, so in the thermodynamic limit there is no significant BEC in 2D at finite T. Thus, paradoxically, BEC only occurs in 2D at finite N with no phase transition associated with it. Calculations of thermodynamic properties versus T and area A are presented, including Helmholtz free energy, entropy S, pressure p, ratio of p to the energy density U/A, heat capacity at constant volume (area) CV and at constant pressure C-p, isothermal compressibility kappa(T) and thermal expansion coefficient alpha(p), obtained using both the grand-canonical ensemble (GCE) and canonical ensemble (CE) formalisms. The GCE formalism gives acceptable predictions for S, p, p/(U/A),kappa(T) and alpha(p) at large N, T and A but fails for smaller values of these three parameters for which BEC becomes significant, whereas the CE formalism gives accurate results for all thermodynamic properties of finite systems even at low T and/or A where BEC occurs. C1 [Li, Heqiu; Guo, Qiujiang; Jiang, Ji] Zhejiang Univ, Dept Phys, Hangzhou 310027, Peoples R China. [Johnston, D. C.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Johnston, D. C.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. RP Li, HQ (reprint author), Zhejiang Univ, Dept Phys, Hangzhou 310027, Peoples R China. EM johnston@ameslab.gov NR 39 TC 0 Z9 0 U1 1 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 EI 1550-2376 J9 PHYS REV E JI Phys. Rev. E PD DEC 4 PY 2015 VL 92 IS 6 AR 062109 DI 10.1103/PhysRevE.92.062109 PG 19 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA CX7HX UT WOS:000365873900004 PM 26764634 ER PT J AU Fryer, CL Oliveira, FG Rueda, JA Ruffini, R AF Fryer, Chris L. Oliveira, F. G. Rueda, J. A. Ruffini, R. TI Neutron-Star-Black-Hole Binaries Produced by Binary-Driven Hypernovae SO PHYSICAL REVIEW LETTERS LA English DT Article ID INDUCED GRAVITATIONAL COLLAPSE; GAMMA-RAY BURST; HYPERCRITICAL ACCRETION; X-RAY; SUPERNOVA; RATES; EXPLOSION; MECHANISM; EVOLUTION AB Binary-driven hypernovae (BdHNe) within the induced gravitational collapse paradigm have been introduced to explain energetic (E-iso greater than or similar to 10(52) erg), long gamma-ray bursts (GRBs) associated with type Ic supernovae (SNe). The progenitor is a tight binary composed of a carbon-oxygen (CO) core and a neutronstar (NS) companion, a subclass of the newly proposed "ultrastripped" binaries. The CO-NS short-period orbit causes the NS to accrete appreciable matter from the SN ejecta when the CO core collapses, ultimately causing it to collapse to a black hole (BH) and producing a GRB. These tight binaries evolve through the SN explosion very differently than compact binaries studied in population synthesis calculations. First, the hypercritical accretion onto the NS companion alters both the mass and the momentum of the binary. Second, because the explosion time scale is on par with the orbital period, the mass ejection cannot be assumed to be instantaneous. This dramatically affects the post-SN fate of the binary. Finally, the bow shock created as the accreting NS plows through the SN ejecta transfers angular momentum, braking the orbit. These systems remain bound even if a large fraction of the binary mass is lost in the explosion (well above the canonical 50% limit), and even large kicks are unlikely to unbind the system. Indeed, BdHNe produce a new family of NS-BH binaries unaccounted for in current population synthesis analyses and, although they may be rare, the fact that nearly 100% remain bound implies that they may play an important role in the compact merger rate, important for gravitational waves that, in turn, can produce a new class of ultrashort GRBs. C1 [Fryer, Chris L.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Oliveira, F. G.; Rueda, J. A.; Ruffini, R.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Oliveira, F. G.; Rueda, J. A.; Ruffini, R.] Univ Roma La Sapienza, ICRA, I-00185 Rome, Italy. [Oliveira, F. G.; Rueda, J. A.; Ruffini, R.] ICRANet, I-65122 Pescara, Italy. [Oliveira, F. G.; Rueda, J. A.; Ruffini, R.] Univ Nice, F-06108 Nice, France. [Rueda, J. A.; Ruffini, R.] ICRANet Rio, Ctr Brasileiro Pesquisas Fis, BR-22290180 Rio De Janeiro, RJ, Brazil. RP Fryer, CL (reprint author), Los Alamos Natl Lab, CCS 2, Los Alamos, NM 87545 USA. FU International Cooperation Program CAPES-ICRANet; CAPES-Brazilian Federal Agency; International Relativistic Astrophysics Erasmus Mundus Joint Doctorate Program from EACEA of the European Commission [2012-1710]; U.S. Department of Energy; Los Alamos National Laboratory [W-7405-ENG-36] FX We would like to thank P. Podsiadlowski, T. Tauris, and Y. Suwa for the many useful discussions about ultrastripped binaries. J. A. R. acknowledges the support by the International Cooperation Program CAPES-ICRANet financed by CAPES-Brazilian Federal Agency for Support and Evaluation of Graduate Education within the Ministry of Education of Brazil. F. G. O. acknowledges the support given by the International Relativistic Astrophysics Erasmus Mundus Joint Doctorate Program under Grant No. 2012-1710 from EACEA of the European Commission. The work by C. F. was funded in part under the auspices of the U.S. Department of Energy, and supported by its Contract No. W-7405-ENG-36 to Los Alamos National Laboratory. NR 35 TC 4 Z9 4 U1 0 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD DEC 4 PY 2015 VL 115 IS 23 AR 231102 DI 10.1103/PhysRevLett.115.231102 PG 5 WC Physics, Multidisciplinary SC Physics GA CX7KZ UT WOS:000365882000003 PM 26684106 ER PT J AU Fawcett, AA Iyer, GC Clarke, LE Edmonds, JA Hultman, NE McJeon, HC Rogelj, J Schuler, R Alsalam, J Asrar, GR Creason, J Jeong, M McFarland, J Mundra, A Shi, WJ AF Fawcett, Allen A. Iyer, Gokul C. Clarke, Leon E. Edmonds, James A. Hultman, Nathan E. McJeon, Haewon C. Rogelj, Joeri Schuler, Reed Alsalam, Jameel Asrar, Ghassem R. Creason, Jared Jeong, Minji McFarland, James Mundra, Anupriya Shi, Wenjing TI Can Paris pledges avert severe climate change? SO SCIENCE LA English DT Editorial Material C1 [Fawcett, Allen A.; Alsalam, Jameel; Creason, Jared; McFarland, James] US EPA, Washington, DC 20460 USA. [Iyer, Gokul C.; Clarke, Leon E.; Edmonds, James A.; McJeon, Haewon C.; Asrar, Ghassem R.; Jeong, Minji; Mundra, Anupriya; Shi, Wenjing] Pacific NW Natl Lab, Joint Global Change Res Inst, College Pk, MD 20740 USA. [Iyer, Gokul C.; Clarke, Leon E.; Edmonds, James A.; McJeon, Haewon C.; Asrar, Ghassem R.; Jeong, Minji; Mundra, Anupriya; Shi, Wenjing] Univ Maryland, College Pk, MD 20740 USA. [Hultman, Nathan E.] Univ Maryland, Sch Publ Policy, College Pk, MD 20742 USA. [Rogelj, Joeri] Int Inst Appl Syst Anal, Energy Program, A-2361 Laxenburg, Austria. [Schuler, Reed] US Dept State, Washington, DC 20520 USA. RP Iyer, GC (reprint author), Council Environm Qual, Washington, DC 20506 USA. EM gokul.iyer@pnnl.gov NR 13 TC 18 Z9 19 U1 2 U2 34 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 EI 1095-9203 J9 SCIENCE JI Science PD DEC 4 PY 2015 VL 350 IS 6265 BP 1168 EP 1169 DI 10.1126/science.aad5761 PG 2 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CX4WG UT WOS:000365700500045 PM 26612835 ER PT J AU Popmintchev, D Hernandez-Garcia, C Dollar, F Mancuso, C Perez-Hernandez, JA Chen, MC Hankla, A Gao, XH Shim, B Gaeta, AL Tarazkar, M Romanov, DA Levis, RJ Gaffney, JA Foord, M Libby, SB Jaron-Becker, A Becker, A Plaja, L Murnane, MM Kapteyn, HC Popmintchev, T AF Popmintchev, Dimitar Hernandez-Garcia, Carlos Dollar, Franklin Mancuso, Christopher Perez-Hernandez, Jose A. Chen, Ming-Chang Hankla, Amelia Gao, Xiaohui Shim, Bonggu Gaeta, Alexander L. Tarazkar, Maryam Romanov, Dmitri A. Levis, Robert J. Gaffney, Jim A. Foord, Mark Libby, Stephen B. Jaron-Becker, Agnieszka Becker, Andreas Plaja, Luis Murnane, Margaret M. Kapteyn, Henry C. Popmintchev, Tenio TI Ultraviolet surprise: Efficient soft x-ray high-harmonic generation in multiply ionized plasmas SO SCIENCE LA English DT Article ID HIGH-ORDER HARMONICS; ATTOSECOND PULSES; RARE-GASES; LASER; REGIME; LIGHT; SPECTROSCOPY; RADIATION; DRIVEN; IONS AB High-harmonic generation is a universal response of matter to strong femtosecond laser fields, coherently upconverting light to much shorter wavelengths. Optimizing the conversion of laser light into soft x-rays typically demands a trade-off between two competing factors. Because of reduced quantum diffusion of the radiating electron wave function, the emission from each species is highest when a short-wavelength ultraviolet driving laser is used. However, phase matching-the constructive addition of x-ray waves from a large number of atoms-favors longer-wavelength mid-infrared lasers. We identified a regime of high-harmonic generation driven by 40-cycle ultraviolet lasers in waveguides that can generate bright beams in the soft x-ray region of the spectrum, up to photon energies of 280 electron volts. Surprisingly, the high ultraviolet refractive indices of both neutral atoms and ions enabled effective phase matching, even in a multiply ionized plasma. We observed harmonics with very narrow linewidths, while calculations show that the x-rays emerge as nearly time-bandwidth-limited pulse trains of similar to 100 attoseconds. C1 [Popmintchev, Dimitar; Hernandez-Garcia, Carlos; Dollar, Franklin; Mancuso, Christopher; Hankla, Amelia; Jaron-Becker, Agnieszka; Becker, Andreas; Murnane, Margaret M.; Kapteyn, Henry C.; Popmintchev, Tenio] Univ Colorado, JILA, Boulder, CO 80309 USA. [Hernandez-Garcia, Carlos; Plaja, Luis] Univ Salamanca, Grp Invest Opt Extrema, E-37008 Salamanca, Spain. [Perez-Hernandez, Jose A.] Ctr Laseres Pulsados, E-37008 Salamanca, Spain. [Chen, Ming-Chang] Natl Tsing Hua Univ, Inst Photon Technol, Hsinchu 30013, Taiwan. [Gao, Xiaohui; Shim, Bonggu; Gaeta, Alexander L.] Cornell Univ, Sch Appl & Engn Phys, Ithaca, NY 14853 USA. [Tarazkar, Maryam; Levis, Robert J.] Temple Univ, Dept Chem, Philadelphia, PA 19122 USA. [Romanov, Dmitri A.] Temple Univ, Dept Phys, Philadelphia, PA 19122 USA. [Gaffney, Jim A.; Foord, Mark; Libby, Stephen B.] Lawrence Livermore Natl Lab, Phys & Life Sci, Phys Div, Livermore, CA 94550 USA. RP Popmintchev, T (reprint author), Univ Colorado, JILA, Boulder, CO 80309 USA. EM tenio.popmintchev@jila.colorado.edu RI Plaja, Luis/K-8701-2014; Becker, Andreas/K-4402-2013; Perez-Hernandez, Jose Antonio/N-3254-2014; Popmintchev, Tenio/B-6715-2008; Hernandez-Garcia, Carlos/G-3681-2011; Jaron-Becker, Agnieszka/C-1227-2014 OI Plaja, Luis/0000-0001-8709-7295; Perez-Hernandez, Jose Antonio/0000-0002-1117-0190; Popmintchev, Tenio/0000-0002-2023-2226; Hernandez-Garcia, Carlos/0000-0002-6153-2647; Gaffney, Jim/0000-0002-2408-0047; Gao, Xiaohui/0000-0002-1084-6515; Jaron-Becker, Agnieszka/0000-0003-2339-8544 FU Army Research Office [WN11NF-13-1-0259]; NSF PFI AIR; U.S. Department of Energy (DOE) [DE-SC0008803]; Marie Curie International Outgoing Fellowship within the EU Seventh Framework Programme for Research and Technological Development under REA [328334]; NSF [PHY-1125844, PHY-1068706]; AFOSR MURI "Mathematical Modeling and Experimental Validation of Ultrafast Light-Matter Coupling associated with Filamentation in Transparent Media" grant [FA9550-10-1-0561]; Ministry of Science and Technology, Taiwan [102-2112-M-007-025-MY3]; DOE Office of Fusion Energy, HED Laboratory Plasmas program [AT5015033]; DOE, National Nuclear Security Administration [DE-AC52-07NA27344, LLNL-JRNL-676693]; Junta de Castilla y Leon [SA116U13, UIC016]; MINECO [FIS2013-44174-P]; U.S. Department of Energy, Division of Chemical Sciences, Atomic, Molecular and Optical Sciences Program FX The experimental work was done at JILA, supported by Army Research Office grant WN11NF-13-1-0259, an NSF PFI AIR award, and U.S. Department of Energy (DOE) grant DE-SC0008803 (M.M.M., T.P., and H.C.K.). Theory was supported by a Marie Curie International Outgoing Fellowship within the EU Seventh Framework Programme for Research and Technological Development (2007-2013) under REA grant agreement 328334 (C.H.-G.); Junta de Castilla y Leon (SA116U13, UIC016) and MINECO (FIS2013-44174-P) (C.H.-G. and L.P.); NSF grants PHY-1125844 and PHY-1068706 and AFOSR MURI "Mathematical Modeling and Experimental Validation of Ultrafast Light-Matter Coupling associated with Filamentation in Transparent Media" grant FA9550-10-1-0561 (A.J.-B., R.J.L., X.G., A.L.G., M.M.M., and H.C.K.); Ministry of Science and Technology, Taiwan, grant 102-2112-M-007-025-MY3 (M.-C.C.); U.S. Department of Energy, Division of Chemical Sciences, Atomic, Molecular and Optical Sciences Program (A.B.); and DOE Office of Fusion Energy, HED Laboratory Plasmas program, grant AT5015033 (S.B.L., M.F., and J.A.G.). Lawrence Livermore National Laboratory is operated by Lawrence Livermore National Security LLC for DOE, National Nuclear Security Administration, under contract DE-AC52-07NA27344, LLNL-JRNL-676693. T.P., D.P., M.M.M., and H.C.K. have filed a patent on "Generation of VUV, EUV, X-ray Light Using VUV-UV-VIS Lasers," U.S. patent application 61873794 (2013)/US 20150063385 (2015). NR 44 TC 28 Z9 28 U1 8 U2 69 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 EI 1095-9203 J9 SCIENCE JI Science PD DEC 4 PY 2015 VL 350 IS 6265 BP 1225 EP 1231 DI 10.1126/science.aac9755 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CX4WG UT WOS:000365700500070 PM 26785483 ER PT J AU Kaphan, DM Levin, MD Bergman, RG Raymond, KN Toste, FD AF Kaphan, David M. Levin, Mark D. Bergman, Robert G. Raymond, Kenneth N. Toste, F. Dean TI A supramolecular microenvironment strategy for transition metal catalysis SO SCIENCE LA English DT Article ID REDUCTIVE ELIMINATION; DIELS-ALDER; COMPLEXES; HOST; CYCLIZATION; ACCELERATION; ACTIVATION AB A self-assembled supramolecular complex is reported to catalyze alkyl-alkyl reductive elimination from high-valent transition metal complexes [such as gold(III) and platinum(IV)], the central bond-forming elementary step in many catalytic processes. The catalytic microenvironment of the supramolecular assembly acts as a functional enzyme mimic, applying the concepts of enzymatic catalysis to a reactivity manifold not represented in biology. Kinetic experiments delineate a Michaelis-Menten-type mechanism, with measured rate accelerations (k(cat)/k(uncat)) upto 1.9x10(7) (here k(cat) and k(uncat) are the Michaelis-Menten enzymatic rate constant and observed uncatalyzed rate constant, respectively). This modality has further been incorporated into a dual catalytic cross-coupling reaction, which requires both the supramolecular microenvironment catalyst and the transition metal catalyst operating in concert to achieve efficient turnover. C1 [Kaphan, David M.; Bergman, Robert G.; Raymond, Kenneth N.; Toste, F. Dean] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Kaphan, David M.; Levin, Mark D.; Bergman, Robert G.; Raymond, Kenneth N.; Toste, F. Dean] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. RP Bergman, RG (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. EM rbergman@berkeley.edu; raymond@socrates.berkeley.edu; fdtoste@berkeley.edu FU Division of Chemical Sciences, Geosciences, and Biosciences of the U.S. Department of Energy at Lawrence Berkeley National Laboratory [DE-AC02-05CH11231]; NIH National Institute of General Medical Sciences [R01 GM073932]; NSF Graduate Research Fellowship Program (GRFP) [DGE 1106400]; ARCS Foundation; NSF GRFP FX This research was supported by the Director, Office of Science, Office of Basic Energy Sciences and the Division of Chemical Sciences, Geosciences, and Biosciences of the U.S. Department of Energy at Lawrence Berkeley National Laboratory (grant DE-AC02-05CH11231) and NIH National Institute of General Medical Sciences (grant R01 GM073932). D.M.K. was supported by an NSF Graduate Research Fellowship Program (GRFP) (grant DGE 1106400), and M.D.L. was supported by the ARCS Foundation and an NSF GRFP. We thank J. N. Brantley and M. S. Winston for helpful discussions and C. G. Canlas for assistance with NMR experiments. NR 31 TC 29 Z9 29 U1 40 U2 140 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 EI 1095-9203 J9 SCIENCE JI Science PD DEC 4 PY 2015 VL 350 IS 6265 BP 1235 EP 1238 DI 10.1126/science.aad3087 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CX4WG UT WOS:000365700500072 PM 26785485 ER PT J AU Alexandrov, LB AF Alexandrov, Ludmil B. TI Understanding the origins of human cancer SO SCIENCE LA English DT Editorial Material ID 21 BREAST CANCERS; MUTATIONAL PROCESSES; SOMATIC MUTATIONS; PROSTATE-CANCER; SIGNATURES; GENOMES; HISTORY; BURDEN; REPAIR C1 [Alexandrov, Ludmil B.] Los Alamos Natl Lab, Theoret Biol & Biophys T6, Los Alamos, NM 87545 USA. RP Alexandrov, LB (reprint author), Los Alamos Natl Lab, Theoret Biol & Biophys T6, POB 1663, Los Alamos, NM 87545 USA. EM lba@lanl.gov OI Alexandrov, Ludmil/0000-0003-3596-4515 NR 24 TC 4 Z9 4 U1 4 U2 42 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 EI 1095-9203 J9 SCIENCE JI Science PD DEC 4 PY 2015 VL 350 IS 6265 DI 10.1126/science.aad7363 PG 3 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CX4WG UT WOS:000365700500050 PM 26785464 ER PT J AU Velizhanin, KA Sahu, S Chien, CC Dubi, Y Zwolak, M AF Velizhanin, Kirill A. Sahu, Subin Chien, Chih-Chun Dubi, Yonatan Zwolak, Michael TI Crossover behavior of the thermal conductance and Kramers' transition rate theory SO SCIENTIFIC REPORTS LA English DT Article ID DNA DENATURATION; HEAT-FLOW; NONLINEAR MODEL; FOURIERS LAW AB Kramers' theory frames chemical reaction rates in solution as reactants overcoming a barrier in the presence of friction and noise. For weak coupling to the solution, the reaction rate is limited by the rate at which the solution can restore equilibrium after a subset of reactants have surmounted the barrier to become products. For strong coupling, there are always sufficiently energetic reactants. However, the solution returns many of the intermediate states back to the reactants before the product fully forms. Here, we demonstrate that the thermal conductance displays an analogous physical response to the friction and noise that drive the heat current through a material or structure. A crossover behavior emerges where the thermal reservoirs dominate the conductance at the extremes and only in the intermediate region are the intrinsic properties of the lattice manifest. Not only does this shed new light on Kramers' classic turnover problem, this result is significant for the design of devices for thermal management and other applications, as well as the proper simulation of transport at the nanoscale. C1 [Velizhanin, Kirill A.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Sahu, Subin; Zwolak, Michael] NIST, Ctr Nanoscale Sci & Technol, Gaithersburg, MD 20899 USA. [Sahu, Subin] Univ Maryland, Maryland Nanoctr, College Pk, MD 20742 USA. [Sahu, Subin; Zwolak, Michael] Oregon State Univ, Dept Phys, Corvallis, OR 97331 USA. [Chien, Chih-Chun] Univ Calif, Sch Nat Sci, Merced, CA 95343 USA. [Dubi, Yonatan] Ben Gurion Univ Negev, Dept Chem, IL-84105 Beer Sheva, Israel. [Dubi, Yonatan] Ben Gurion Univ Negev, Ilse Katz Inst Nanoscale Sci & Technol, IL-84105 Beer Sheva, Israel. RP Velizhanin, KA (reprint author), Los Alamos Natl Lab, Div Theoret, POB 1663, Los Alamos, NM 87545 USA. EM kirill@lanl.gov; mpz@nist.gov RI Velizhanin, Kirill/C-4835-2008; Zwolak, Michael/G-2932-2013 OI Zwolak, Michael/0000-0001-6443-7816 FU U.S. Department of Energy through the LANL/LDRD Program; Israel Science Fund [1256/14]; University of Maryland [70NANB10H193]; National Institute of Standards and Technology Center for Nanoscale Science and Technology, through the University of Maryland [70NANB10H193] FX K.A.V. was supported by the U.S. Department of Energy through the LANL/LDRD Program. Y.D. acknowledges support from the Israel Science Fund (grant No. 1256/14). S. Sahu acknowledges support under the Cooperative Research Agreement between the University of Maryland and the National Institute of Standards and Technology Center for Nanoscale Science and Technology, Award 70NANB10H193, through the University of Maryland. NR 37 TC 5 Z9 4 U1 2 U2 4 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD DEC 4 PY 2015 VL 5 AR 17506 DI 10.1038/srep17506 PG 11 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CX6PE UT WOS:000365822200001 PM 26634333 ER PT J AU Nesterov, AI de la Cruz, FA Luchnikov, VA Berman, GP AF Nesterov, Alexander I. Aceves de la Cruz, Fermin Luchnikov, Valeriy A. Berman, Gennady P. TI Superradiance transition in graphene SO PHYSICS LETTERS A LA English DT Article DE Superradiance; Graphene; Transfer rate ID EXCEPTIONAL POINTS AB We study theoretically the conditions required for the appearance of a superradiance transition in graphene. The electron properties of graphene are described in the single p(z)-orbital tight-binding approximation, corresponding to the two interacting sub-lattices. The corresponding model is reduced to the effective two-level pseudo-spin 1/2 system. For each sub-lattice we introduce the electron transfer rate of escape into a continuum. We demonstrate that, under some conditions, the superradiance occurs, and it corresponds to the maximal quantum coherent escape to the continuum. (C) 2015 Elsevier B.V. All rights reserved. C1 [Nesterov, Alexander I.; Aceves de la Cruz, Fermin] Univ Guadalajara, CUCEI, Dept Fis, Guadalajara 44420, Jalisco, Mexico. [Luchnikov, Valeriy A.] UMR 7361 CNRS UHA, Inst Sci Mat Mulhouse, F-68057 Mulhouse, France. [Berman, Gennady P.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87544 USA. [Berman, Gennady P.] New Mexico Consortium, Los Alamos, NM 87544 USA. RP Nesterov, AI (reprint author), Univ Guadalajara, CUCEI, Dept Fis, Av Revoluc 1500, Guadalajara 44420, Jalisco, Mexico. EM nesterov@cencar.udg.mx FU CONACYT [15349]; University of Upper Alsace, Mulhouse FX A.I.N. acknowledges the support from the CONACYT, Grant No. 15349. G.P.B. thanks the University of Upper Alsace, Mulhouse, for hospitality and for financial support during his visit. NR 26 TC 2 Z9 2 U1 2 U2 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9601 EI 1873-2429 J9 PHYS LETT A JI Phys. Lett. A PD DEC 4 PY 2015 VL 379 IS 45-46 BP 2951 EP 2955 DI 10.1016/j.physleta.2015.08.030 PG 5 WC Physics, Multidisciplinary SC Physics GA CV8CD UT WOS:000364503200008 ER PT J AU Pimentel, H Parra, M Gee, S Mohandas, N Pachter, L Conboy, JC AF Pimentel, Harold Parra, Marilyn Gee, Sherry Mohandas, Narla Pachter, Lior Conboy, John C. TI The Erythroid Intron Retention Program Encompasses Developmentally Stable and Dynamic Networks and Regulates Diverse Gene Classes SO BLOOD LA English DT Meeting Abstract CT 57th Annual Meeting of the American-Society-of-Hematology CY DEC 05-08, 2015 CL Orlando, FL SP Amer Soc Hematol C1 [Pimentel, Harold; Pachter, Lior] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Parra, Marilyn; Gee, Sherry; Conboy, John C.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Mohandas, Narla] New York Blood Ctr, Red Cell Physiol Lab, New York, NY 10021 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC HEMATOLOGY PI WASHINGTON PA 2021 L ST NW, SUITE 900, WASHINGTON, DC 20036 USA SN 0006-4971 EI 1528-0020 J9 BLOOD JI Blood PD DEC 3 PY 2015 VL 126 IS 23 PG 3 WC Hematology SC Hematology GA DA7XY UT WOS:000368020104213 ER EF