FN Thomson Reuters Web of Science™ VR 1.0 PT J AU Economy, DR Cordill, MJ Payzant, EA Kennedy, MS AF Economy, D. R. Cordill, M. J. Payzant, E. A. Kennedy, M. S. TI Residual stress within nanoscale metallic multilayer systems during thermal cycling SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article DE Copper-Niobium; Thin films; Nanoscale metallic multilayers; Thermomechanical processing; Residual stresses; Thermal expansion mismatch ID COPPER THIN-FILMS; NANOLAYERED COMPOSITES; TEMPERATURE DEPENDENCE; MECHANICAL-PROPERTIES; ELASTIC-CONSTANTS; HIGH-STRENGTH; INTERFACES; HARDNESS; NANOINDENTATION; STABILITY AB Projected applications for nanoscale metallic multilayers will include wide temperature ranges. Since film residual stress has been known to alter system reliability, stress development within new film structures with high interfacial densities should be characterized to identify potential long-term performance barriers. To understand factors contributing to thermal stress evolution within nanoscale metallic multilayers, stress in Cu/Nb systems adhered to Si substrates was calculated from curvature measurements collected during cycling between 25 degrees C and 400 degrees C. Additionally, stress within each type of component layers was calculated from shifts in the primary peak position from in-situ heated X-ray diffraction. The effects of both film architecture (layer thickness) and layer order in metallic multilayers were tracked and compared with monolithic Cu and Nb films (1 mu m total thickness). Analysis indicated that the thermoelastic slope of nanoscale metallic multilayer films (with 20 nm and 100 nm individual layer thicknesses) depends on thermal expansion mismatch, elastic modulus of the components, and also interfacial density. The layer thickness (i.e. interfacial density) affected thermoelastic slope magnitude (-1.23 +/- 0.09 MPa/degrees C for 20 nm Cu/Nb vs. -0.89 +/- 0.03 MPa/degrees C for 100 nm Cu/Nb) while layer order had minimal impact on stress responses after the initial thermal cycle (-0.82 +/- 0.07 MPa/degrees C for 100 nm Cu/Nb). When comparing stress responses of monolithic Cu and Nb films to those of the Cu/Nb systems, the nanoscale metallic multilayers show a similar increase in stress above 200 degrees C to the Nb monolithic films, indicating that Nb components play a larger role in stress development than Cu. Phase specific stress calculations (Cu vs. Nb) from X-ray diffraction peak shifts in 20 nm Cu/Nb collected during heating reveal that the component layers within a rnultilayer film respond similarly to their monolithic counterparts. (C) 2015 Elsevier B.V. All rights reserved. C1 [Economy, D. R.; Kennedy, M. S.] Clemson Univ, Dept Mat Sci & Engn, Clemson, SC 29634 USA. [Cordill, M. J.] Austrian Acad Sci, Erich Schmid Inst, A-8700 Leoben, Austria. [Cordill, M. J.] Univ Leoben, Dept Materialphys, A-8700 Leoben, Austria. [Payzant, E. A.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Kennedy, M. S.] Clemson Univ, Ctr Opt Mat Sci & Engn Technol COMSET, Clemson, SC 29634 USA. RP Economy, DR (reprint author), Clemson Univ, Dept Mat Sci & Engn, Clemson, SC 29634 USA. EM deconom@g.clemson.edu RI Payzant, Edward/B-5449-2009; Economy, David Ross/F-4877-2015 OI Payzant, Edward/0000-0002-3447-2060; Economy, David Ross/0000-0003-1378-9488 FU Austrian Marshall Plan Foundation FX In-situ heated XRD measurements were performed at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility. The authors wish to acknowledge the assistance of Dr. W. Heinz (K-AI GmbH), Dr. J. E. Harriss (Clemson University), Dr. L. V. Saraf (Clemson University), Mr. B. M. Schultz (Clemson University), Dipl.-Ing. S. P. Bigl (Montanuniversitaet Leoben), and Dr. T. Schoberl (Erich Schmid Institute) for their helpful discussions and guidance. This work was partially supported by funding from the Austrian Marshall Plan Foundation. NR 50 TC 1 Z9 1 U1 4 U2 31 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 EI 1873-4936 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD NOV 11 PY 2015 VL 648 BP 289 EP 298 DI 10.1016/j.msea.2015.09.082 PG 10 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA CU8UX UT WOS:000363820700038 ER PT J AU Livescu, V Bingert, JF Liu, C Lovato, ML Patterson, BM AF Livescu, V. Bingert, J. F. Liu, C. Lovato, M. L. Patterson, B. M. TI Biaxial deformation in high purity aluminum SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article DE Aluminum; Plasticity; Digital image correlation; Damage localization; Bulge test ID SHEAR; MICROSTRUCTURE; BEHAVIOR; GROWTH AB The convergence of multiple characterization tools has been applied to investigate the relationship of microstructure on damage evolution in high purity aluminum. The extremely coarse grain size of the disc-shaped sample provided a quasi-two dimensional structure from which the location of surface-measured features could be inferred. In particular, the role of pre-existing defects on damage growth was accessible due to the presence of casting porosity in the aluminum. Micro tomography, electron back-scatter diffraction, and digital image correlation were applied to interrogate the sample in three dimensions. A recently developed micro-bulge testing apparatus was used to deform the pre-characterized disc of aluminum in biaxial tension, and related analysis techniques were applied to map local strain fields. Subsequent post-mortem characterization of the failed sample was performed to correlate structure to damaged regions. It was determined that strain localization and associated damage was most strongly correlated with grain boundary intersections and plastic anisotropy gradients between grains. Pre-existing voids played less of an apparent role than was perhaps initially expected. These combined techniques provide insight to the mechanism of damage initiation, propagation, and failure, along with a test bed for predictive damage models incorporating anisotropic microstructural effects. Published by Elsevier B.V. C1 [Livescu, V.; Liu, C.; Lovato, M. L.; Patterson, B. M.] Los Alamos Natl Lab, Mat Sci & Technol Div, Los Alamos, NM 87545 USA. [Bingert, J. F.] OUSD AT&L, TWS, LW&M, Washington, DC 20301 USA. RP Livescu, V (reprint author), Mail Stop G755, Los Alamos, NM 87545 USA. EM vlivescu@lanl.gov OI Patterson, Brian/0000-0001-9244-7376 FU NNSA of the US Department of Energy [DE-AC52-06NA25396]; United States Department of Energy; Joint Department of Defense (DoD); Department of Energy (DOE) Munitions Technology Development Program FX Los Alamos National Laboratory is operated by LANS, LLC, for the NNSA of the US Department of Energy under contract DE-AC52-06NA25396. This work has been performed under the auspices of the United States Department of Energy and was supported by the Joint Department of Defense (DoD) and Department of Energy (DOE) Munitions Technology Development Program. We thank Michael FitzGibbon, US Naval Academy and LANL Service Academy Research Associate, for his insight and assistance with data analysis. NR 17 TC 0 Z9 0 U1 3 U2 7 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 EI 1873-4936 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD NOV 11 PY 2015 VL 648 BP 330 EP 339 DI 10.1016/j.msea.2015.09.086 PG 10 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA CU8UX UT WOS:000363820700042 ER PT J AU de Gasperin, F Intema, HT van Weeren, RJ Dawson, WA Golovich, N Wittman, D Bonafede, A Bruggen, M AF de Gasperin, F. Intema, H. T. van Weeren, R. J. Dawson, W. A. Golovich, N. Wittman, D. Bonafede, A. Brueggen, M. TI A powerful double radio relic system discovered in PSZ1 G108.18-11.53: evidence for a shock with non-uniform Mach number? SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE galaxies: clusters: individual: PSZ1 G108.18-11.53; large-scale structure of Universe; radio continuum: general ID MERGING GALAXY CLUSTER; MAGNETIC-FIELD AMPLIFICATION; LARGE-SCALE STRUCTURE; X-RAY; PARTICLE-ACCELERATION; CIZA J2242.8+5301; LOW-FREQUENCY; SKY SURVEY; SAUSAGE CLUSTER; ENERGY-SPECTRA AB Diffuse radio emission in the form of radio haloes and relics has been found in a number of merging galaxy clusters. These structures indicate that shock and turbulence associated with the merger accelerate electrons to relativistic energies. We report the discovery of a radio relic + radio halo system in PSZ1 G108.18-11.53 (z = 0.335). This cluster hosts the second most powerful double radio relic system ever discovered. We observed PSZ1 G108.18-11.53 with the Giant Meterwave Radio Telescope and the Westerbork Synthesis Radio Telescope. We obtained radio maps at 147, 323, 607 and 1380 MHz. We also observed the cluster with the Keck telescope, obtaining the spectroscopic redshift for 42 cluster members. From the injection index, we obtained the Mach number of the shocks generating the two radio relics. For the southern shock, we found M = 2.33(-0.26)(+0.19), while the northern shock Mach number goes from M=2.20(-0.14)(+0.07) in the north part down to M = 2.00(-0.08)(+0.03) in the southern region. If the relation between the injection index and the Mach number predicted by diffusive shock acceleration theory holds, this is the first observational evidence for a gradient in the Mach number along a galaxy cluster merger shock. C1 [de Gasperin, F.; Bonafede, A.; Brueggen, M.] Univ Hamburg, Hamburger Sternwarte, D-21029 Hamburg, Germany. [Intema, H. T.] Natl Radio Astron Observ, Socorro, NM 87801 USA. [van Weeren, R. J.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Dawson, W. A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Golovich, N.; Wittman, D.] Univ Calif Davis, Davis, CA 95616 USA. RP de Gasperin, F (reprint author), Univ Hamburg, Hamburger Sternwarte, Gojenbergsweg 112, D-21029 Hamburg, Germany. EM fdg@hs.uni-hamburg.de OI Wittman, David/0000-0002-0813-5888; van Weeren, Reinout/0000-0002-0587-1660 FU Deutsche Forschungsgemeinschaft [FOR 1254]; NASA through the Einstein Postdoctoral grant - Chandra X-ray Center [PF2-130104]; NASA [NAS8-03060]; US DOE [DE-AC52-07NA27344 (LLNL-JRNL-671211)]; NSF [AST-0071048]; CARA (Keck Observatory); UCO/Lick Observatory; NSF Facilities and Infrastructure grant [ARI92-14621]; Center for Particle Astrophysics FX AB and MB acknowledge support by the research group FOR 1254 funded by the Deutsche Forschungsgemeinschaft.; RJW is supported by NASA through the Einstein Postdoctoral grant number PF2-130104 awarded by the Chandra X-ray Center, which is operated by the Smithsonian Astrophysical Observatory for NASA under contract NAS8-03060.; Part of this work performed under the auspices of the US DOE by LLNL under Contract DE-AC52-07NA27344 (LLNL-JRNL-671211).; Funding for the DEEP2/DEIMOS pipelines has been provided by NSF grant AST-0071048. The DEIMOS spectrograph was funded by grants from CARA (Keck Observatory) and UCO/Lick Observatory, an NSF Facilities and Infrastructure grant (ARI92-14621), the Center for Particle Astrophysics, and by gifts from Sun Microsystems and the Quantum Corporation. NR 67 TC 5 Z9 5 U1 0 U2 0 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD NOV 11 PY 2015 VL 453 IS 4 BP 3483 EP 3498 DI 10.1093/mnras/stv1873 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CU6OJ UT WOS:000363651600011 ER PT J AU Arzamasskiy, L Philippov, A Tchekhovskoy, A AF Arzamasskiy, Lev Philippov, Alexander Tchekhovskoy, Alexander TI Evolution of non-spherical pulsars with plasma-filled magnetospheres SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE stars: magnetic field; stars: neutron; pulsars: general; stars: rotation ID IN-CELL SIMULATIONS; NEUTRON-STARS; OBLIQUE ROTATORS; SPIN-DOWN; PRECESSION; ALIGNMENT; ELECTRODYNAMICS AB Pulsars are famous for their rotational stability. Most of them steadily spin-down and display a highly repetitive pulse shape. But some pulsars experience timing irregularities such as nulling, intermittency, mode changing and timing noise. As changes in the pulse shape are often correlated with timing irregularities, precession is a possible cause of these phenomena. Whereas pulsar magnetospheres are filled with plasma, most pulsar precession studies were carried out within the vacuum approximation and neglected the effects of magnetospheric currents and charges. Recent numerical simulations of plasma-filled pulsar magnetospheres provide us with a detailed quantitative description of magnetospheric torques exerted on the pulsar surface. In this paper, we present the study of neutron star evolution using these new torque expressions. We show that they lead to (1) much slower long-term evolution of pulsar parameters and (2) much less extreme solutions for these parameters than the vacuum magnetosphere models. To facilitate the interpretation of observed pulsar timing residuals, we derive an analytic model that (1) describes the time evolution of non-spherical pulsars and (2) translates the observed pulsar timing residuals into the geometrical parameters of the pulsar. We apply this model to two pulsars with very different temporal behaviours. For the pulsar B1828-11, we demonstrate that the timing residual curves allow two pulsar geometries: one with stellar deformation pointing along the magnetic axis and one along the rotational axis. For the Crab pulsar, we use the model show that the recent observation of its magnetic and rotational axes moving away from each other can be explained by precession. C1 [Arzamasskiy, Lev] Moscow Inst Phys & Technol, Dolgoprudnyi 141700, Moscow Region, Russia. [Philippov, Alexander] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Tchekhovskoy, Alexander] Univ Calif Berkeley, Dept Astron, Theoret Astrophys Ctr, Berkeley, CA 94720 USA. [Tchekhovskoy, Alexander] Univ Calif Berkeley, Dept Phys, Theoret Astrophys Ctr, Berkeley, CA 94720 USA. [Tchekhovskoy, Alexander] Lawrence Livermore Natl Lab, Berkeley, CA 94720 USA. RP Arzamasskiy, L (reprint author), Moscow Inst Phys & Technol, Inst Per 9, Dolgoprudnyi 141700, Moscow Region, Russia. EM leva@princeton.edu; sashaph@princeton.edu OI Arzamasskiy, Lev/0000-0002-5263-9274 FU Russian Foundation for Basic Research [14-02-00831]; NASA through Einstein Postdoctoral Fellowship - Chandra X-ray Center [PF3-140131]; NASA [NAS8-03060] FX We thank V.S.Beskin and A.Biryukov for useful comments and discussion. The work was partially supported by Russian Foundation for Basic Research (Grant no. 14-02-00831). AP acknowledges PICSciE-OIT High Performance Computing Center and Visualization Laboratory for access to computational resources used for this work. AT was supported by NASA through Einstein Postdoctoral Fellowship grant number PF3-140131 awarded by the Chandra X-ray Center, which is operated by the Smithsonian Astrophysical Observatory for NASA under contract NAS8-03060, and NSF through an XSEDE computational time allocation TG-AST100040 on NICS Kraken and Nautilus, and TACC Stampede, Maverick, and Ranch where the simulations used in this work were carried out. NR 37 TC 8 Z9 8 U1 0 U2 1 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD NOV 11 PY 2015 VL 453 IS 4 BP 3540 EP 3553 DI 10.1093/mnras/stv1818 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CU6OJ UT WOS:000363651600015 ER PT J AU Pastorello, A Prieto, JL Elias-Rosa, N Bersier, D Hosseinzadeh, G Morales-Garoffolo, A Noebauer, UM Taubenberger, S Tomasella, L Kochanek, CS Falco, E Basu, U Beacom, JF Benetti, S Brimacombe, J Cappellaro, E Danilet, AB Dong, SB Fernandez, JM Goss, N Granata, V Harutyunyan, A Holoien, TWS Ishida, EEO Kiyota, S Krannich, G Nicholls, B Ochner, P Pojmanski, G Shappee, BJ Simonian, GV Stanek, KZ Starrfield, S Szczygiel, D Tartaglia, L Terreran, G Thompson, TA Turatto, M Wagner, RM Wiethoff, WS Wilber, A Wozniak, PR AF Pastorello, A. Prieto, J. L. Elias-Rosa, N. Bersier, D. Hosseinzadeh, G. Morales-Garoffolo, A. Noebauer, U. M. Taubenberger, S. Tomasella, L. Kochanek, C. S. Falco, E. Basu, U. Beacom, J. F. Benetti, S. Brimacombe, J. Cappellaro, E. Danilet, A. B. Dong, Subo Fernandez, J. M. Goss, N. Granata, V. Harutyunyan, A. Holoien, T. W. -S. Ishida, E. E. O. Kiyota, S. Krannich, G. Nicholls, B. Ochner, P. Pojmanski, G. Shappee, B. J. Simonian, G. V. Stanek, K. Z. Starrfield, S. Szczygiel, D. Tartaglia, L. Terreran, G. Thompson, T. A. Turatto, M. Wagner, R. M. Wiethoff, W. S. Wilber, A. Wozniak, P. R. TI Massive stars exploding in a He-rich circumstellar medium - VII. The metamorphosis of ASASSN-15ed from a narrow line Type Ibn to a normal Type Ib Supernova SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE supernovae: general; supernovae: individual: ASASSN-15ed; supernovae: individual: SN 1991D; supernovae: individual: SN 2006jc; supernovae: individual: SN 2010al ID WOLF-RAYET STARS; DIGITAL SKY SURVEY; CORE-COLLAPSE SUPERNOVAE; SN 2006JC; FUNDAMENTAL PARAMETERS; DUST FORMATION; WNL STARS; EXPLOSION; SPECTROSCOPY; EXTINCTION AB We present the results of the spectroscopic and photometric monitoring campaign of ASASSN-15ed. The transient was discovered quite young by the All Sky Automated Survey for Super-Novae (ASAS-SN) survey. Amateur astronomers allowed us to sample the photometric SN evolution around maximum light, which we estimate to have occurred on JD=2457087.4 +/- 0.6 in the r band. Its apparent r-band magnitude at maximum was r = 16.91 +/- 0.10, providing an absolute magnitude M-r approximate to -20.04 +/- 0.20, which is slightly more luminous than the typical magnitudes estimated for Type Ibn SNe. The post-peak evolution was well monitored, and the decline rate (being in most bands around 0.1 mag d(-1) during the first 25 d after maximum) is marginally slower than the average decline rates of SNe Ibn during the same time interval. The object was initially classified as a Type Ibn SN because early-time spectra were characterized by a blue continuum with superimposed narrow P-Cygni lines of He I, suggesting the presence of a slowly moving (1200-1500 km s(-1)), He-rich circumstellar medium. Later on, broad P-Cygni He I lines became prominent. The inferred velocities, as measured from the minimum of the broad absorption components, were between 6000 and 7000 km s(-1). As we attribute these broad features to the SN ejecta, this is the first time we have observed the transition of a Type Ibn SN to a Type Ib SN. C1 [Pastorello, A.; Elias-Rosa, N.; Tomasella, L.; Benetti, S.; Cappellaro, E.; Granata, V.; Ochner, P.; Tartaglia, L.; Terreran, G.; Turatto, M.] INAF Osservatorio Astron Padova, I-35122 Padua, Italy. [Prieto, J. L.] Univ Diego Portales, Fac Ingn, Nucleo Astron, Santiago, Chile. [Prieto, J. L.] Millennium Inst Astrophys, Santiago, Chile. [Bersier, D.] Liverpool John Moores Univ, Astrophys Res Inst, Liverpool L3 5RF, Merseyside, England. [Hosseinzadeh, G.] Las Cumbres Observ, Global Telescope Network, Goleta, CA 93117 USA. [Hosseinzadeh, G.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Morales-Garoffolo, A.] CSIC IEEC, Inst Ciencies Espai, E-08193 Cerdanyola Del Valles, Spain. [Noebauer, U. M.; Taubenberger, S.; Ishida, E. E. O.] Max Planck Inst Astrophys, D-85748 Garching, Germany. [Taubenberger, S.] European Org Astron Res Southern Hemisphere ESO, D-85748 Garching, Germany. [Kochanek, C. S.; Basu, U.; Beacom, J. F.; Goss, N.; Holoien, T. W. -S.; Simonian, G. V.; Stanek, K. Z.; Thompson, T. A.; Wagner, R. M.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Kochanek, C. S.; Beacom, J. F.; Stanek, K. Z.; Thompson, T. A.] Ohio State Univ, Ctr Cosmol & Astro Particle Phys, Columbus, OH 43210 USA. [Falco, E.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Basu, U.; Goss, N.] Grove City High Sch, Grove City, OH 43123 USA. [Beacom, J. F.; Danilet, A. B.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Brimacombe, J.] Coral Towers Observ, Unit Coral Towers 38, Cairns CAIRNS, Australia. [Dong, Subo] Peking Univ, Kavli Inst Astron & Astrophys, Beijing 100871, Peoples R China. [Fernandez, J. M.] Observ Inmaculada Molino, E-41640 Osuna, Spain. [Granata, V.; Tartaglia, L.] Univ Padua, Dipartimento Fis & Astron, I-35122 Padua, Italy. [Harutyunyan, A.] Fdn Galileo Galilei INAF, Telescopio Nazl Galileo, E-38712 Brena Baja, TF, Spain. [Kiyota, S.] Variable Star Observers League Japan, Chiba 2730126, Japan. [Krannich, G.] Roof Observ Kaufering, D-86916 Kaufering, Germany. [Nicholls, B.] Mt Vernon Observ, Nelson 7010, New Zealand. [Pojmanski, G.; Szczygiel, D.] Warsaw Univ, Astron Observ, PL-00478 Warsaw, Poland. [Shappee, B. J.] Observ Carnegie Inst Sci, Pasadena, CA 91101 USA. [Starrfield, S.] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA. [Terreran, G.; Wilber, A.] Queens Univ Belfast, Sch Math & Phys, Astrophys Res Ctr, Belfast BT7 1NN, Antrim, North Ireland. [Wagner, R. M.] Univ Arizona, Large Binocular Telescope Observ, Tucson, AZ 85721 USA. [Wiethoff, W. S.] SOLO Observ, Port Wing, WI 54865 USA. [Wiethoff, W. S.] Univ Minnesota, Dept Geol Sci, Duluth, MN 55812 USA. [Wozniak, P. R.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Pastorello, A (reprint author), INAF Osservatorio Astron Padova, Vicolo Osservatorio 5, I-35122 Padua, Italy. EM andrea.pastorello@oapd.inaf.it RI Elias-Rosa, Nancy/D-3759-2014; OI Elias-Rosa, Nancy/0000-0002-1381-9125; Ishida, Emille/0000-0002-0406-076X; Noebauer, Ulrich/0000-0002-2453-853X; GRANATA, Valentina/0000-0002-1425-4541; Cappellaro, Enrico/0000-0001-5008-8619; Benetti, Stefano/0000-0002-3256-0016; lina, tomasella/0000-0002-3697-2616; Hosseinzadeh, Griffin/0000-0002-0832-2974; Wozniak, Przemyslaw/0000-0002-9919-3310; Beacom, John/0000-0002-0005-2631 FU PRIN-INAF; project 'Transient Universe: unveiling new types of stellar explosions with PESSTO'; FONDECYT [1151445]; Ministry of Economy, Development, and Tourisms Millennium Science Initiative [IC120009]; European Union Seventh Framework Programme (FP7), 'Astronomy Fellowships in Italy' (AstroFIt) [267251]; Spanish Ministerio de Economia y Competitividad (MINECO) [ESP2013-41268-R]; German Research Foundation (DFG) [TRR33]; NSF [PHY-1404311, AST-0908816]; 'Strategic Priority Research Program - The Emergence of Cosmological Structures' of the Chinese Academy of Sciences [XDB09000000]; DOE Computational Science Graduate Fellowship [DE-FG02-97ER25308]; Brazilian agency CAPES [9229-13-2]; NASA through Hubble Fellowship - Space Telescope Science Institute [HF-51348.001]; NASA [NAS 5-26555]; Laboratory Directed Research and Development program at LANL; UK Science and Technology Facilities Council FX AP, SB, NER, AH, LT, GT and MT are partially supported by the PRIN-INAF 2014 with the project 'Transient Universe: unveiling new types of stellar explosions with PESSTO'. Support for JLP is in part by FONDECYT through the grant 1151445 and by the Ministry of Economy, Development, and Tourisms Millennium Science Initiative through grant IC120009, awarded to The Millennium Institute of Astrophysics, MAS. NER acknowledges the support from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 267251 'Astronomy Fellowships in Italy' (AstroFIt). AMG acknowledges financial support by the Spanish Ministerio de Economia y Competitividad (MINECO) grant ESP2013-41268-R. ST and UMN acknowledge support by TRR33 'The Dark Universe' of the German Research Foundation (DFG). JFB is supported by NSF Grant PHY-1404311. SD is supported by the 'Strategic Priority Research Program - The Emergence of Cosmological Structures' of the Chinese Academy of Sciences (grant no. XDB09000000). TW-SH is supported by the DOE Computational Science Graduate Fellowship, grant number DE-FG02-97ER25308. EEOI is partially supported by the Brazilian agency CAPES (grant number 9229-13-2). BJS is supported by NASA through Hubble Fellowship grant HF-51348.001 awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract NAS 5-26555. SS and AW acknowledge support from NSF and NASA grants to ASU. This work was supported by the Laboratory Directed Research and Development program at LANL. We thank LCOGT and its staff for their continued support of ASAS-SN.; Development of ASAS-SN has been supported by NSF grant AST-0908816 and the Center for Cosmology and AstroParticle Physics at the Ohio State University.; This paper is based on observations made with the Italian Telescopio Nazionale Galileo (TNG) operated on the island of La Palma by the Fundacion Galileo Galilei of the INAF (Istituto Nazionale di Astrofisica) and the 1.82-m Copernico Telescope of INAF-Asiago Observatory. This work also makes use of observations from the LCOGT network; it is also based on observations made with the Gran Telescopio Canarias (GTC), installed in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias, in the Island of La Palma; on observations made with the Nordic Optical Telescope (NOT), operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway, and Sweden, in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias; on observations obtained at the MDM Observatory, operated by Dartmouth College, Columbia University, Ohio State University, Ohio University, and the University of Michigan. The LT is operated on the island of La Palma by Liverpool John Moores University in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias with financial support from the UK Science and Technology Facilities Council. Data presented in this paper are also based on observations with the Fred Lawrence Whipple Observatory 1.5-m Telescope of SAO. This paper uses data products produced by the OIR Telescope Data Center, supported by the Smithsonian Astrophysical Observatory. NR 45 TC 4 Z9 4 U1 0 U2 4 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD NOV 11 PY 2015 VL 453 IS 4 BP 3649 EP 3661 DI 10.1093/mnras/stv1812 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CU6OJ UT WOS:000363651600023 ER PT J AU Stark, CW Font-Ribera, A White, M Lee, KG AF Stark, Casey W. Font-Ribera, Andreu White, Martin Lee, Khee-Gan TI Finding high-redshift voids using Lyman alpha forest tomography SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE gravitation; cosmological parameters; large-scale structure of Universe ID LARGE-SCALE STRUCTURE; DIGITAL SKY SURVEY; COSMIC VOIDS; DARK ENERGY; LUMINOSITY FUNCTIONS; INTERGALACTIC MEDIUM; POWER SPECTRUM; GALAXIES; SDSS; SIMULATIONS AB We present a new method of finding cosmic voids using tomographic maps of Lya forest flux. We identify cosmological voids with radii of 2-12 h(-1) Mpc in a large N-body simulation at z= 2.5, and characterize the signal of the high-redshift voids in density and Lya forest flux. The void properties are similar to what has been found at lower redshifts, but they are smaller and have steeper radial density profiles. Similarly to what has been found for low-redshift voids, the radial velocity profiles have little scatter and agree very well with the linear theory prediction. We run the same void finder on an ideal Ly alpha flux field and tomographic reconstructions at various spatial samplings. We compare the tomographic map void catalogues to the density void catalogue and find good agreement even with modest-sized voids (r > 6 h(-1) Mpc). Using our simple void-finding method, the configuration of the ongoing COSMOS Lyman Alpha Mapping And Tomography Observations (CLAMATO) survey covering 1 deg(2) would provide a sample of about 100 high-redshift voids. We also provide void-finding forecasts for larger area surveys, and discuss how these void samples can be used to test modified gravity models, study high-redshift void galaxies, and to make an Alcock-Paczynski measurement. To aid future work in this area, we provide public access to our simulation products, catalogues, and sample tomographic flux maps. C1 [Stark, Casey W.; White, Martin] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Font-Ribera, Andreu; White, Martin] Lawrence Livermore Natl Lab, Berkeley, CA 93720 USA. [White, Martin] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Lee, Khee-Gan] Max Planck Inst Astron, D-69117 Heidelberg, Germany. RP Stark, CW (reprint author), Univ Calif Berkeley, Dept Astron, 601 Campbell Hall, Berkeley, CA 94720 USA. EM caseywstark@berkeley.edu; afont@lbl.gov; lee@mpia.de RI White, Martin/I-3880-2015 OI White, Martin/0000-0001-9912-5070 FU Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX We thank Kathryn Kreckel for useful discussions. The simulation, mock surveys, and reconstructions discussed in this work were performed on the Edison Cray XC30 system at the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. This research has made use of NASA's Astrophysics Data System and of the astro-ph preprint archive at arXiv.org. NR 68 TC 2 Z9 2 U1 0 U2 1 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD NOV 11 PY 2015 VL 453 IS 4 BP 4311 EP 4323 DI 10.1093/mnras/stv1868 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CU6OJ UT WOS:000363651600070 ER PT J AU Seidl, PA Persaud, A Waldron, WL Barnard, JJ Davidson, RC Friedman, A Gilson, EP Greenway, WG Grote, DP Kaganovich, ID Lidia, SM Stettler, M Takakuwa, JH Schenkel, T AF Seidl, Peter A. Persaud, Arun Waldron, William L. Barnard, John J. Davidson, Ronald C. Friedman, Alex Gilson, Erik P. Greenway, Wayne G. Grote, David P. Kaganovich, Igor D. Lidia, Steven M. Stettler, Matthew Takakuwa, Jeffrey H. Schenkel, Thomas TI Short intense ion pulses for materials and warm dense matter research SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Ion accelerator; Induction accelerator; Warm dense matter; High-energy density physics; Radiation; Luminescence ID NDCX-II; SCINTILLATORS; SIMULATIONS; DYNAMICS; DEFECT; BEAMS AB We have commenced experiments with intense short pulses of ion beams on the Neutralized Drift Compression Experiment-II at Lawrence Berkeley National Laboratory, by generating beam spots size with radius r < 1 mm within 2 ns FWHM and approximately 1010 ions/pulse. To enable the short pulse durations and mm-scale focal spot radii, the 1.2 MeV Li+ ion beam is neutralized in a 1.6-meter drift compression section located after the last accelerator magnet. An 8-Tesla short focal length solenoid compresses the beam in the presence of the large volume plasma near the end of this section before the target. The scientific topics to be explored are warm dense matter, the dynamics of radiation damage in materials, and intense beam and beam-plasma physics including selected topics of relevance to the development of heavy-ion drivers for inertial fusion energy. Here we describe the accelerator commissioning and time-resolved ionoluminescence measurements of yttrium aluminum perovskite using the fully integrated accelerator and neutralized drift compression components. (C) 2015 Elsevier B.V. All rights reserved. C1 [Seidl, Peter A.; Persaud, Arun; Waldron, William L.; Greenway, Wayne G.; Lidia, Steven M.; Stettler, Matthew; Takakuwa, Jeffrey H.; Schenkel, Thomas] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Barnard, John J.; Friedman, Alex; Grote, David P.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Davidson, Ronald C.; Gilson, Erik P.; Kaganovich, Igor D.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Seidl, PA (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM PASeidl@lbl.gov FU Office of Science, Office of Fusion Energy Sciences, of the U.S. Department of Energy [DE-AC02-2 05CH11231] FX We are grateful to Thomas Lipton, Chip Kozy, Takeshi Katayanagi and Ahmet Pekedis for their technical support. Their efforts on the recent enhancements to NDCX-II included the final installation of the Blumlein pulsed power 37 system which quadrupled the ion kinetic energy. The neutralized drift compression section, target chamber and 38 diagnostics enabled the generation of nanosecond and millimeter pulses. This work was supported by the Director, Office of Science, Office of Fusion Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-2 05CH11231. NR 27 TC 4 Z9 4 U1 2 U2 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD NOV 11 PY 2015 VL 800 BP 98 EP 103 DI 10.1016/j.nima.2015.08.013 PG 6 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA CS2DO UT WOS:000361878200014 ER PT J AU Qian, P Zhao, N Chen, F Guo, H AF Qian Ping Zhao Nan Chen Feng Guo Hong TI Understanding Substrate Specificity of Related Plant Methylesterases (MESs) from Computational Investigations SO CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE LA English DT Article DE Enzyme catalysis; Substrate specificity; Computer modeling; Protein structure prediction; Methylesterase ID FREE-ENERGY SIMULATIONS; CATALYTIC MECHANISM; ASSISTED CATALYSIS; MOLECULAR-DYNAMICS; INNATE IMMUNITY; METHYLTRANSFERASE; ESTERASE; QM/MM; EXPRESSION; SABP2 AB One of enzyme's hallmarks is the high specificity to their natural substrates. But our understanding is still lacking concerning how enzymes could achieve high specificity and substrate discrimination. This is the case for a group of related methylesterases(MESs) identified in plants that catalyze reactions of different substrates, including methyl salicylate (MeSA), methyl jasmonate (MeJA) and methyl indole-3-acetate (MeIAA). In this work, a homology model was built for AtMES10(a MeJA esterase), and this model along with the X-ray structure of SABP2(a MeSA esterase) was used to understand their substrate specificity. It is shown that the specificity may be explained based on the simple Lock-and-Key Model (that is, the active site being complementary in shape to the substrate) along with the requirement that the -COO moiety involved in the reaction occupies a position allowing the nucleophilic attack by the catalytic serine(that is, in a reactive configuration). The active site of SABP2 appears not to be complementary in shape to MeJA, and this may lead to a low activity on MeJA. For AtMES10, certain bulky residues in SABP2 are replaced by relatively small residues, allowing the substrate to bind to the active site and to be catalyzed by the enzyme. The results are consistent with the substrate specificity of these two enzymes observed experimentally. Explanations are also provided for the lack of the activities of AtMES10 and SABP2 on MeIAA and the lack of the activity of AtMES10 on MeSA. C1 [Qian Ping] Shandong Agr Univ, Chem & Mat Sci Fac, Tai An 271018, Shandong, Peoples R China. [Qian Ping; Guo Hong] Univ Tennessee, Dept Biochem & Cellular & Mol Biol, Knoxville, TN 37996 USA. [Qian Ping; Guo Hong] Oak Ridge Natl Lab, UT ORNL Ctr Mol Biophys, Oak Ridge, TN 37830 USA. [Zhao Nan; Chen Feng] Univ Tennessee, Dept Plant Sci, Knoxville, TN 37996 USA. RP Qian, P (reprint author), Shandong Agr Univ, Chem & Mat Sci Fac, Tai An 271018, Shandong, Peoples R China. EM qianp@sdau.edu.cn; hguo1@utk.edu FU National Natural Science Foundation of USA [0817940]; Foundation of China Scholarship Council [201408370020]; National Natural Science Foundation of China [20903063]; Postdoctoral Foundation of Shandong Agricultural University of China [76335] FX This paper is supported by the National Natural Science Foundation(H. G.) of USA(No. 0817940), the Foundation of China Scholarship Council (No. 201408370020), the National Natural Science Foundation of China (No. 20903063) and the Postdoctoral Foundation of Shandong Agricultural University of China (No. 76335). NR 24 TC 0 Z9 0 U1 3 U2 6 PU HIGHER EDUCATION PRESS PI BEIJING PA NO 4 DEWAI DAJIE, BEIJING 100120, PEOPLES R CHINA SN 0251-0790 J9 CHEM J CHINESE U JI Chem. J. Chin. Univ.-Chin. PD NOV 10 PY 2015 VL 36 IS 11 BP 2283 EP 2291 DI 10.7503/cjcu20150674 PG 9 WC Chemistry, Multidisciplinary SC Chemistry GA CZ3UO UT WOS:000367029700025 ER PT J AU Colgate, SA Fowler, TK Li, H Hooper, EB McClenaghan, J Lin, ZH AF Colgate, Stirling A. Fowler, T. Kenneth Li, Hui Hooper, E. Bickford McClenaghan, Joseph Lin, Zhihong TI QUASI-STATIC MODEL OF MAGNETICALLY COLLIMATED JETS AND RADIO LOBES. II. JET STRUCTURE AND STABILITY SO ASTROPHYSICAL JOURNAL LA English DT Article DE accretion, accretion disks; galaxies: active; galaxies: jets; magnetic fields; magnetohydrodynamics (MHD); stars: black holes ID ACTIVE GALACTIC NUCLEI; RELATIVISTIC MAGNETOHYDRODYNAMIC SIMULATIONS; ALPHA-OMEGA-DYNAMO; PARSEC-SCALE JET; FORCE-FREE JETS; ACCRETION DISKS; BLACK-HOLES; ASTROPHYSICAL JETS; TEARING-MODE; ASYMPTOTIC STRUCTURE AB This is the second in a series of companion papers showing that when an efficient dynamo can be maintained by accretion disks around supermassive black holes in active galactic nuclei, it can lead to the formation of a powerful, magnetically driven, and mediated helix that could explain both the observed radio jet/lobe structures and ultimately the enormous power inferred from the observed ultrahigh-energy cosmic rays. In the first paper, we showed self-consistently that minimizing viscous dissipation in the disk naturally leads to jets of maximum power with boundary conditions known to yield jets as a low-density, magnetically collimated tower, consistent with observational constraints of wire-like currents at distances far from the black hole. In this paper we show that these magnetic towers remain collimated as they grow in length at nonrelativistic velocities. Differences with relativistic jet models are explained by three-dimensional magnetic structures derived from a detailed examination of stability properties of the tower model, including a broad diffuse pinch with current profiles predicted by a detailed jet solution outside the collimated central column treated as an electric circuit. We justify our model in part by the derived jet dimensions in reasonable agreement with observations. Using these jet properties, we also discuss the implications for relativistic particle acceleration in nonrelativistically moving jets. The appendices justify the low jet densities yielding our results and speculate how to reconcile our nonrelativistic treatment with general relativistic MHD simulations. C1 [Colgate, Stirling A.; Li, Hui] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Fowler, T. Kenneth] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Hooper, E. Bickford] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [McClenaghan, Joseph; Lin, Zhihong] Univ Calif Irvine, Irvine, CA 92697 USA. RP Colgate, SA (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. FU U. S. Department of Energy Office of Science through the Center for Magnetic Self-Organization; U. S. Department of Energy Office of Science through LANL/LDRD Program; U. S. Department of Energy [DE-AC52-07NA27344] FX T.K.F. and H.L. report with sadness that our coauthor Stirling Colgate, who instigated this work and contributed seminal ideas, passed away 2013 December 1. We thank the referee whose comments have helped to clarify many key issues. We also thank Alexander Tchekhovskoy for extensive and informative discussions comparing our model to GRMHD simulations. We gratefully acknowledge the support of the U. S. Department of Energy Office of Science through the Center for Magnetic Self-Organization and through the LANL/LDRD Program for this work. E.B.H. acknowledges support at LLNL under U. S. Department of Energy contract DE-AC52-07NA27344. NR 107 TC 2 Z9 2 U1 1 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD NOV 10 PY 2015 VL 813 IS 2 AR 136 DI 10.1088/0004-637X/813/2/136 PG 18 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CW8ZU UT WOS:000365288900056 ER PT J AU Drlica-Wagner, A Bechtol, K Rykoff, ES Luque, E Queiroz, A Mao, YY Wechsler, RH Simon, JD Santiago, B Yanny, B Balbinot, E Dodelson, S Neto, AF James, DJ Li, TS Maia, MAG Marshall, JL Pieres, A Stringer, K Walker, AR Abbott, TMC Abdalla, FB Allam, S Benoit-Levy, A Bernstein, GM Bertin, E Brooks, D Buckley-Geer, E Burke, DL Rosell, AC Kind, MC Carretero, J Crocce, M da Costa, LN Desai, S Diehl, HT Dietrich, JP Doel, P Eifler, TF Evrard, AE Finley, DA Flaugher, B Fosalba, P Frieman, J Gaztanaga, E Gerdes, DW Gruen, D Gruendl, RA Gutierrez, G Honscheid, K Kuehn, K Kuropatkin, N Lahav, O Martini, P Miquel, R Nord, B Ogando, R Plazas, AA Reil, K Roodman, A Sako, M Sanchez, E Scarpine, V Schubnell, M Sevilla-Noarbe, I Smith, RC Soares-Santos, M Sobreira, F Suchyta, E Swanson, MEC Tarle, G Tucker, D Vikram, V Wester, W Zhang, Y Zuntz, J AF Drlica-Wagner, A. Bechtol, K. Rykoff, E. S. Luque, E. Queiroz, A. Mao, Y. -Y. Wechsler, R. H. Simon, J. D. Santiago, B. Yanny, B. Balbinot, E. Dodelson, S. Neto, A. Fausti James, D. J. Li, T. S. Maia, M. A. G. Marshall, J. L. Pieres, A. Stringer, K. Walker, A. R. Abbott, T. M. C. Abdalla, F. B. Allam, S. Benoit-Levy, A. Bernstein, G. M. Bertin, E. Brooks, D. Buckley-Geer, E. Burke, D. L. Rosell, A. Carnero Kind, M. Carrasco Carretero, J. Crocce, M. da Costa, L. N. Desai, S. Diehl, H. T. Dietrich, J. P. Doel, P. Eifler, T. F. Evrard, A. E. Finley, D. A. Flaugher, B. Fosalba, P. Frieman, J. Gaztanaga, E. Gerdes, D. W. Gruen, D. Gruendl, R. A. Gutierrez, G. Honscheid, K. Kuehn, K. Kuropatkin, N. Lahav, O. Martini, P. Miquel, R. Nord, B. Ogando, R. Plazas, A. A. Reil, K. Roodman, A. Sako, M. Sanchez, E. Scarpine, V. Schubnell, M. Sevilla-Noarbe, I. Smith, R. C. Soares-Santos, M. Sobreira, F. Suchyta, E. Swanson, M. E. C. Tarle, G. Tucker, D. Vikram, V. Wester, W. Zhang, Y. Zuntz, J. CA DES Collaboration TI EIGHT ULTRA-FAINT GALAXY CANDIDATES DISCOVERED IN YEAR TWO OF THE DARK ENERGY SURVEY SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: dwarf; Local Group ID MILKY-WAY SATELLITE; DISTANCES PUBLICATION BIAS; DWARF SPHEROIDAL GALAXIES; TELESCOPE LENSING SURVEY; DIGITAL SKY SURVEY; LOCAL GROUP; GLOBULAR-CLUSTERS; STAR CLUSTER; URSA-MAJOR; SPECTROSCOPIC CONFIRMATION AB We report the discovery of eight new ultra-faint dwarf galaxy candidates in the second year of optical imaging data from the Dark Energy Survey (DES). Six of these candidates are detected at high confidence, while two lower-confidence candidates are identified in regions of non-uniform survey coverage. The new stellar systems are found by three independent automated search techniques and are identified as overdensities of stars, consistent with the isochrone and luminosity function of an old and metal-poor simple stellar population. The new systems are faint (M-V > -4.7mag) and span a range of physical sizes (17 pc < r(1/2) < 181 pc) and heliocentric distances (25 kpc < D-circle dot < 214 kpc). All of the new systems have central surface brightnesses consistent with known ultra-faint dwarf galaxies (mu greater than or similar to 27.5 mag arcsec(-2)). Roughly half of the DES candidates are more distant, less luminous, and/or have lower surface brightnesses than previously known Milky Way satellite galaxies. Most of the candidates are found in the southern part of the DES footprint close to the Magellanic Clouds. We find that the DES data alone exclude (p < 10(-3)) a spatially isotropic distribution of Milky Way satellites and that the observed distribution can be well, though not uniquely, described by an association between several of the DES satellites and the Magellanic system. Our model predicts that the full sky may hold similar to 100 ultra-faint galaxies with physical properties comparable to the DES satellites and that 20%-30% of these would be spatially associated with the Magellanic Clouds. C1 [Drlica-Wagner, A.; Yanny, B.; Dodelson, S.; Allam, S.; Buckley-Geer, E.; Diehl, H. T.; Finley, D. A.; Flaugher, B.; Frieman, J.; Gutierrez, G.; Kuropatkin, N.; Nord, B.; Scarpine, V.; Soares-Santos, M.; Sobreira, F.; Tucker, D.; Wester, W.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Bechtol, K.] Wisconsin IceCube Particle Astrophys Ctr WIPAC, Madison, WI 53703 USA. [Bechtol, K.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Rykoff, E. S.; Mao, Y. -Y.; Wechsler, R. H.; Burke, D. L.; Roodman, A.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. [Rykoff, E. S.; Mao, Y. -Y.; Wechsler, R. H.; Burke, D. L.; Reil, K.; Roodman, A.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Luque, E.; Queiroz, A.; Santiago, B.; Pieres, A.] Univ Fed Rio Grande do Sul, Inst Fis, BR-91501970 Porto Alegre, RS, Brazil. [Luque, E.; Queiroz, A.; Santiago, B.; Balbinot, E.; Neto, A. Fausti; Maia, M. A. G.; Pieres, A.; Rosell, A. Carnero; da Costa, L. N.; Ogando, R.; Sobreira, F.] Lab Interinst E Astron LIneA, BR-20921400 Rio De Janeiro, RJ, Brazil. [Mao, Y. -Y.; Wechsler, R. H.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Simon, J. D.] Carnegie Observ, Pasadena, CA 91101 USA. [Balbinot, E.] Univ Surrey, Dept Phys, Guildford GU2 7XH, Surrey, England. [Dodelson, S.; Frieman, J.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [James, D. J.; Walker, A. R.; Abbott, T. M. C.; Smith, R. C.] Natl Opt Astron Observ, Cerro Tololo Inter Amer Observ, La Serena, Chile. [Li, T. S.; Marshall, J. L.; Stringer, K.] Texas A&M Univ, George P & Cynthia Woods Mitchell Inst Fundamenta, College Stn, TX 77843 USA. [Li, T. S.; Marshall, J. L.; Stringer, K.] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA. [Maia, M. A. G.; Rosell, A. Carnero; da Costa, L. N.; Ogando, R.] Observ Nacl, BR-20921400 Rio De Janeiro, RJ, Brazil. [Abdalla, F. B.; Benoit-Levy, A.; Brooks, D.; Doel, P.; Lahav, O.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Abdalla, F. B.] Rhodes Univ, Dept Phys & Elect, ZA-6140 Grahamstown, South Africa. [Bernstein, G. M.; Eifler, T. F.; Sako, M.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Bertin, E.] Inst Astrophys, UMR 7095, CNRS, F-75014 Paris, France. [Bertin, E.] UPMC, Univ Paris 04, UMR 7095, Inst Astrophys, F-75014 Paris, France. [Kind, M. Carrasco; Gruendl, R. A.; Sevilla-Noarbe, I.] Univ Illinois, Dept Astron, Urbana, IL 61801 USA. [Kind, M. Carrasco; Gruendl, R. A.; Swanson, M. E. C.] Natl Ctr Supercomp Applicat, Urbana, IL 61801 USA. [Carretero, J.; Crocce, M.; Fosalba, P.; Gaztanaga, E.] IEEC CSIC, Inst Ciencies Espai, E-08193 Barcelona, Spain. [Carretero, J.; Miquel, R.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Desai, S.; Dietrich, J. P.] Excellence Cluster Universe, D-85748 Garching, Germany. [Desai, S.; Dietrich, J. P.] Univ Munich, Fac Phys, D-81679 Munich, Germany. [Eifler, T. F.; Plazas, A. A.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Evrard, A. E.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Evrard, A. E.; Gerdes, D. W.; Schubnell, M.; Tarle, G.; Zhang, Y.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Gruen, D.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Gruen, D.] Univ Munich, Fac Phys, Univ Sternwarte, D-81679 Munich, Germany. [Honscheid, K.; Martini, P.; Suchyta, E.] Ohio State Univ, Ctr Cosmol & Astro Particle Phys, Columbus, OH 43210 USA. [Honscheid, K.; Suchyta, E.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Kuehn, K.] Australian Astron Observ, N Ryde, NSW 2113, Australia. [Martini, P.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Miquel, R.] Inst Catalana Recerca & Estudis Avancats, E-08010 Barcelona, Spain. [Sanchez, E.; Sevilla-Noarbe, I.] CIEMAT, E-28040 Madrid, Spain. [Vikram, V.] Argonne Natl Lab, Lemont, IL 60439 USA. [Zuntz, J.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Manchester M13 9PL, Lancs, England. RP Drlica-Wagner, A (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. EM kadrlica@fnal.gov; keith.bechtol@icecube.wisc.edu RI Ogando, Ricardo/A-1747-2010; Sanchez, Eusebio/H-5228-2015; Fosalba Vela, Pablo/I-5515-2016; Sobreira, Flavia/F-4168-2015; Gaztanaga, Enrique/L-4894-2014; Balbinot, Eduardo/E-8019-2015; OI Tucker, Douglas/0000-0001-7211-5729; Ogando, Ricardo/0000-0003-2120-1154; Sanchez, Eusebio/0000-0002-9646-8198; Sobreira, Flavia/0000-0002-7822-0658; Gaztanaga, Enrique/0000-0001-9632-0815; Balbinot, Eduardo/0000-0002-1322-3153; Carrasco Kind, Matias/0000-0002-4802-3194; Mao, Yao-Yuan/0000-0002-1200-0820; Abdalla, Filipe/0000-0003-2063-4345 FU European Research Council [ERC-StG-335936]; U.S. Department of Energy; U.S. National Science Foundation; Ministry of Science and Education of Spain; Science and Technology Facilities Council of the United Kingdom; Higher Education Funding Council for England; National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign; Kavli Institute of Cosmological Physics at the University of Chicago; Center for Cosmology and Astro-Particle Physics at the Ohio State University; Mitchell Institute for Fundamental Physics and Astronomy at Texas AM University; Financiadora de Estudos e Projetos; Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico; Ministerio da Ciencia, Tecnologia e Inovacao; Deutsche Forschungsgemeinschaft; Argonne National Laboratory; University of California at Santa Cruz; University of Cambridge; Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas-Madrid; University of Chicago; University College London; DES-Brazil Consortium; University of Edinburgh; Eidgenossische Technische Hochschule (ETH) Zurich; Fermi National Accelerator Laboratory; University of Illinois at Urbana-Champaign; Institut de Ciencies de l'Espai (IEEC/CSIC); Institut de Fisica d'Altes Energies; Lawrence Berkeley National Laboratory; Ludwig-Maximilians Universitat Munchen; associated Excellence Cluster universe; University of Michigan; National Optical Astronomy Observatory; University of Nottingham; Ohio State University; University of Pennsylvania; University of Portsmouth; SLAC National Accelerator Laboratory; Stanford University; University of Sussex; Texas AM University; National Science Foundation [AST-1138766]; MINECO [AYA2012-39559, ESP2013-48274, FPA2013-47986]; Centro de Excelencia Severo Ochoa [SEV-2012-0234]; European Research Council under the European Union [240672, 291329, 306478] FX This work made use of computational resources at SLAC National Accelerator Laboratory and the University of Chicago Research Computing Center. Some of the results in this paper have been derived using the HEALPix (Gorski et al. 2005) package. This research made use of Astropy, a community-developed core Python package for Astronomy (Astropy Collaboration et al. 2013). We thank the anonymous referee for helpful suggestions. A.D.W. thanks Ellen Bechtol for her generous hospitality during the preparation of this manuscript. E.B. acknowledges financial support from the European Research Council (ERC-StG-335936, CLUSTERS).; Funding for the DES Projects has been provided by the U.S. Department of Energy, the U.S. National Science Foundation, the Ministry of Science and Education of Spain, the Science and Technology Facilities Council of the United Kingdom, the Higher Education Funding Council for England, the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign, the Kavli Institute of Cosmological Physics at the University of Chicago, the Center for Cosmology and Astro-Particle Physics at the Ohio State University, the Mitchell Institute for Fundamental Physics and Astronomy at Texas A&M University, Financiadora de Estudos e Projetos, Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Cientifico e Tecnologico and the Ministerio da Ciencia, Tecnologia e Inovacao, the Deutsche Forschungsgemeinschaft and the Collaborating Institutions in the Dark Energy Survey.; The Collaborating Institutions are Argonne National Laboratory, the University of California at Santa Cruz, the University of Cambridge, Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas-Madrid, the University of Chicago, University College London, the DES-Brazil Consortium, the University of Edinburgh, the Eidgenossische Technische Hochschule (ETH) Zurich, Fermi National Accelerator Laboratory, the University of Illinois at Urbana-Champaign, the Institut de Ciencies de l'Espai (IEEC/CSIC), the Institut de Fisica d'Altes Energies, Lawrence Berkeley National Laboratory, the Ludwig-Maximilians Universitat Munchen and the associated Excellence Cluster universe, the University of Michigan, the National Optical Astronomy Observatory, the University of Nottingham, The Ohio State University, the University of Pennsylvania, the University of Portsmouth, SLAC National Accelerator Laboratory, Stanford University, the University of Sussex, and Texas A&M University.; The DES data management system is supported by the National Science Foundation under grant Number AST-1138766. The DES participants from Spanish institutions are partially supported by MINECO under grants AYA2012-39559, ESP2013-48274, FPA2013-47986, and Centro de Excelencia Severo Ochoa SEV-2012-0234. Research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013), including ERC grant agreements 240672, 291329, and 306478. NR 126 TC 56 Z9 56 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD NOV 10 PY 2015 VL 813 IS 2 AR 109 DI 10.1088/0004-637X/813/2/109 PG 20 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CW8ZU UT WOS:000365288900029 ER PT J AU Fu, W Lubow, SH Martin, RG AF Fu, Wen Lubow, Stephen H. Martin, Rebecca G. TI THE KOZAI-LIDOV MECHANISM IN HYDRODYNAMICAL DISKS. III. EFFECTS OF DISK MASS AND SELF-GRAVITY SO ASTROPHYSICAL JOURNAL LA English DT Article DE accretion, accretion disks; binaries: general; hydrodynamics; planets and satellites: formation ID HIERARCHICAL 3-BODY SYSTEMS; BINARY STAR SYSTEMS; ACCRETION DISCS; PLANETARY ORBITS; PROTOPLANETARY DISKS; TIDAL FRICTION; TEST PARTICLE; ECCENTRICITY; EVOLUTION; PERTURBATIONS AB Previously we showed that a substantially misaligned viscous accretion disk with pressure that orbits around one component of a binary system can undergo global damped Kozai-Lidov (KL) oscillations. These oscillations produce periodic exchanges of the disk eccentricity with inclination. The disk KL mechanism is quite robust and operates over a wide range of binary and disk parameters. However, the effects of self-gravity, which are expected to suppress the KL oscillations for sufficiently massive disks, were ignored. Here, we analyze the effects of disk self-gravity by means of hydrodynamic simulations and compare the results with the expectations of analytic theory. The disk mass required for suppression in the simulations is a few percent of the mass of the central star and this roughly agrees with an analytical estimate. The conditions for suppression of the KL oscillations in the simulations are close to requiring that the disk be gravitationally unstable. We discuss some implications of our results for the dynamics of protoplanetary disks and the related planet formation. C1 [Fu, Wen] Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA. [Fu, Wen] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Lubow, Stephen H.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Martin, Rebecca G.] Univ Nevada, Dept Phys & Astron, Las Vegas, NV 89154 USA. RP Fu, W (reprint author), Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA. EM wf5@rice.edu FU NASA [NNX11AK61G] FX W.F. and S.H.L. acknowledge support from NASA grant NNX11AK61G. Computing resources supporting this work were provided by the institutional computing program at Los Alamos National Laboratory. We thank Daniel Price for providing the PHANTOM code for SPH simulations and SPLASH code (Price 2007) for data analysis and rendering of figures. NR 44 TC 4 Z9 4 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD NOV 10 PY 2015 VL 813 IS 2 AR 105 DI 10.1088/0004-637X/813/2/105 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CW8ZU UT WOS:000365288900025 ER PT J AU Innes, DE Guo, LJ Huang, YM Bhattacharjee, A AF Innes, D. E. Guo, L. -J. Huang, Y. -M. Bhattacharjee, A. TI IRIS Si IV LINE PROFILES: AN INDICATION FOR THE PLASMOID INSTABILITY DURING SMALL-SCALE MAGNETIC RECONNECTION ON THE SUN SO ASTROPHYSICAL JOURNAL LA English DT Article DE magnetic reconnection; Sun: activity; Sun: transition region; Sun: UV radiation ID EXPLOSIVE EVENTS; SOLAR-FLARE; QUIET SUN; PARTICLE-ACCELERATION; TRANSITION REGION; ASTROPHYSICAL MHD; SUMER; JETS; ATMOSPHERE AB Our understanding of the process of fast reconnection has undergone a dramatic change in the last 10 years driven, in part, by the availability of high-resolution numerical simulations that have consistently demonstrated the break-up of current sheets into magnetic islands, with reconnection rates that become independent of Lundquist number, challenging the belief that fast magnetic reconnection in flares proceeds via the Petschek mechanism which invokes pairs of slow-mode shocks connected to a compact diffusion region. The reconnection sites are too small to be resolved with images, but these reconnection mechanisms, Petschek and the plasmoid instability, have reconnection sites with very different density and velocity structures and so can be distinguished by high-resolution line-profile observations. Using IRIS spectroscopic observations we obtain a survey of typical line profiles produced by small-scale events thought to be reconnection sites on the Sun. Slit-jaw images are used to investigate the plasma heating and re-configuration at the sites. A sample of 15 events from 2 active regions is presented. The line profiles are complex with bright cores and broad wings extending to over 300 km s(-1). The profiles can be reproduced with the multiple magnetic islands and acceleration sites that characterize the plasmoid instability but not by bi-directional jets that characterize the Petschek mechanism. This result suggests that if these small-scale events are reconnection sites, then fast reconnection proceeds via the plasmoid instability, rather than the Petschek mechanism during small-scale reconnection on the Sun. C1 [Innes, D. E.; Guo, L. -J.] Max Planck Inst Solar Syst Res, D-37077 Gottingen, Germany. [Innes, D. E.; Guo, L. -J.; Huang, Y. -M.; Bhattacharjee, A.] Max Planck Princeton Ctr Plasma Phys, Princeton, NJ 08540 USA. [Huang, Y. -M.; Bhattacharjee, A.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08540 USA. [Huang, Y. -M.; Bhattacharjee, A.] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08540 USA. [Bhattacharjee, A.] Princeton Univ, Ctr Heliophys, Princeton, NJ 08540 USA. RP Innes, DE (reprint author), Max Planck Inst Solar Syst Res, D-37077 Gottingen, Germany. EM innes@mps.mpg.de RI Huang, Yi-Min/G-6926-2011 OI Huang, Yi-Min/0000-0002-4237-2211 FU Max-Planck/Princeton Center for Plasma Physics; NSF; NASA FX We would like to thank the referee for constructive comments. This work was supported by the Max-Planck/Princeton Center for Plasma Physics, NSF, and NASA. NR 49 TC 6 Z9 6 U1 1 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD NOV 10 PY 2015 VL 813 IS 2 AR 86 DI 10.1088/0004-637X/813/2/86 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CW8ZU UT WOS:000365288900006 ER PT J AU Rubin, D Aldering, G Barbary, K Boone, K Chappell, G Currie, M Deustua, S Fagrelius, P Fruchter, A Hayden, B Lidman, C Nordin, J Perlmutter, S Saunders, C Sofiatti, C AF Rubin, D. Aldering, G. Barbary, K. Boone, K. Chappell, G. Currie, M. Deustua, S. Fagrelius, P. Fruchter, A. Hayden, B. Lidman, C. Nordin, J. Perlmutter, S. Saunders, C. Sofiatti, C. CA Supernova Cosmology Project TI UNITY: CONFRONTING SUPERNOVA COSMOLOGY'S STATISTICAL AND SYSTEMATIC UNCERTAINTIES IN A UNIFIED BAYESIAN FRAMEWORK SO ASTROPHYSICAL JOURNAL LA English DT Article DE dark energy; methods: statistical; supernovae: general ID HUBBLE-SPACE-TELESCOPE; DARK ENERGY SURVEY; IA SUPERNOVAE; LEGACY SURVEY; LIGHT CURVES; SDSS-II; EJECTA VELOCITY; STAR-FORMATION; HOST GALAXIES; CONSTRAINTS AB While recent supernova (SN) cosmology research has benefited from improved measurements, current analysis approaches are not statistically optimal and will prove insufficient for future surveys. This paper discusses the limitations of current SN cosmological analyses in treating outliers, selection effects, shape-and color-standardization relations, unexplained dispersion, and heterogeneous observations. We present a new Bayesian framework, called UNITY (Unified Nonlinear Inference for Type-Ia cosmologY), that incorporates significant improvements in our ability to confront these effects. We apply the framework to real SN observations and demonstrate smaller statistical and systematic uncertainties. We verify earlier results that SNe Ia require nonlinear shape and color standardizations, but we now include these nonlinear relations in a statistically well-justified way. This analysis was primarily performed blinded, in that the basic framework was first validated on simulated data before transitioning to real data. We also discuss possible extensions of the method. C1 [Rubin, D.; Chappell, G.; Currie, M.] Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA. [Rubin, D.; Aldering, G.; Barbary, K.; Boone, K.; Fagrelius, P.; Hayden, B.; Perlmutter, S.; Saunders, C.; Sofiatti, C.] EO Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Boone, K.; Fagrelius, P.; Perlmutter, S.; Saunders, C.; Sofiatti, C.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Deustua, S.; Fruchter, A.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Lidman, C.] Australian Astron Observ, Epping, NSW 1710, Australia. [Nordin, J.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. RP Rubin, D (reprint author), Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA. OI Boone, Kyle/0000-0002-5828-6211 FU Office of Science, Office of High Energy Physics, of the U.S. Department of Energy [DE-AC02-05CH11231]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX We thank Alex Kim, Marisa March, Masao Sako, Rachel Wolf, and the Referee for their feedback on this manuscript. This work was supported in part by the Director, Office of Science, Office of High Energy Physics, of the U.S. Department of Energy under contract No. DE-AC02-05CH11231. This research used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 62 TC 14 Z9 14 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD NOV 10 PY 2015 VL 813 IS 2 AR 137 DI 10.1088/0004-637X/813/2/137 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CW8ZU UT WOS:000365288900057 ER PT J AU Zhu, ZH Dong, RB Stone, JM Rafikov, RR AF Zhu, Zhaohuan Dong, Ruobing Stone, James M. Rafikov, Roman R. TI THE STRUCTURE OF SPIRAL SHOCKS EXCITED BY PLANETARY-MASS COMPANIONS SO ASTROPHYSICAL JOURNAL LA English DT Article DE accretion, accretion disks; planet-disk interactions; protoplanetary disks; stars: protostars ID UNSPLIT GODUNOV METHOD; PROTOPLANETARY DISKS; ACCRETION DISCS; CONSTRAINED TRANSPORT; VERTICAL STRUCTURE; DENSITY WAVES; IDEAL MHD; SIMULATIONS; PROPAGATION; INSTABILITY AB Direct imaging observations have revealed spiral structures in protoplanetary disks. Previous studies have suggested that planet-induced spiral arms cannot explain some of these spiral patterns, due to the large pitch angle and high contrast of the spiral arms in observations. We have carried out three-dimensional (3D) hydrodynamical simulations to study spiral wakes/shocks excited by young planets. We find that, in contrast with linear theory, the pitch angle of spiral arms does depend on the planet mass, which can be explained by the nonlinear density wave theory. A secondary (or even a tertiary) spiral arm, especially for inner arms, is also excited by a massive planet. With a more massive planet in the disk, the excited spiral arms have larger pitch angle and the separation between the primary and secondary arms in the azimuthal direction is also larger. We also find that although the arms in the outer disk do not exhibit much vertical motion, the inner arms have significant vertical motion, which boosts the density perturbation at the disk atmosphere. Combining hydrodynamical models with Monte-Carlo radiative transfer calculations, we find that the inner spiral arms are considerably more prominent in synthetic near-IR images using full 3D hydrodynamical models than images based on two-dimensional models assuming vertical hydrostatic equilibrium, indicating the need to model observations with full 3D hydrodynamics. Overall, companion-induced spiral arms not only pinpoint the companion's position but also provide three independent ways (pitch angle, separation between two arms, and contrast of arms) to constrain the companion's mass. C1 [Zhu, Zhaohuan; Stone, James M.; Rafikov, Roman R.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Dong, Ruobing] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Dong, Ruobing] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. RP Zhu, ZH (reprint author), Princeton Univ, Dept Astrophys Sci, 4 Ivy Lane,Peyton Hall, Princeton, NJ 08544 USA. EM zhzhu@astro.princeton.edu; rdong2013@berkeley.edu FU Texas Advanced Computing Center (TACC) at The University of Texas at Austin through XSEDE [TG-AST130002]; NASA - Space Telescope Science Institute [HST-HF-51333.01-A, HST-HF-51320.01-A]; NASA [NAS 5-26555] FX We thank the anonymous referee for a thorough report that improved the initial manuscript. All hydrodynamical simulations are carried out using computer supported by the Princeton Institute of Computational Science and Engineering, and the Texas Advanced Computing Center (TACC) at The University of Texas at Austin through XSEDE grant TG-AST130002. This project is supported by NASA through Hubble Fellowship grants HST-HF-51333.01-A (Z.Z.) and HST-HF-51320.01-A (R.D.) awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract NAS 5-26555. NR 40 TC 2 Z9 2 U1 1 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD NOV 10 PY 2015 VL 813 IS 2 AR 88 DI 10.1088/0004-637X/813/2/88 PG 20 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CW8ZU UT WOS:000365288900008 ER PT J AU Kazakov, AE Rajeev, L Chen, A Luning, EG Dubchak, I Mukhopadhyay, A Novichkov, PS AF Kazakov, Alexey E. Rajeev, Lara Chen, Amy Luning, Eric G. Dubchak, Inna Mukhopadhyay, Aindrila Novichkov, Pavel S. TI sigma(54)-dependent regulome in Desulfovibrio vulgaris Hildenborough SO BMC GENOMICS LA English DT Article DE Transcription factor; Transcriptional regulation; Sigma factor; Desulfovibrio vulgaris; Enhancer binding proteins ID SULFATE-REDUCING BACTERIUM; ENHANCER-BINDING PROTEINS; L-ALANINE DEHYDROGENASE; TRANSCRIPTION FACTOR; ESCHERICHIA-COLI; COMPARATIVE GENOMICS; MYXOCOCCUS-XANTHUS; ENERGY-METABOLISM; RPON REGULON; SIGMA(54) AB Background: The sigma(54) subunit controls a unique class of promoters in bacteria. Such promoters, without exception, require enhancer binding proteins (EBPs) for transcription initiation. Desulfovibrio vulgaris Hildenborough, a model bacterium for sulfate reduction studies, has a high number of EBPs, more than most sequenced bacteria. The cellular processes regulated by many of these EBPs remain unknown. Results: To characterize the sigma(54)-dependent regulome of D. vulgaris Hildenborough, we identified EBP binding motifs and regulated genes by a combination of computational and experimental techniques. These predictions were supported by our reconstruction of sigma(54)-dependent promoters by comparative genomics. We reassessed and refined the results of earlier studies on regulation in D. vulgaris Hildenborough and consolidated them with our new findings. It allowed us to reconstruct the sigma(54) regulome in D. vulgaris Hildenborough. This regulome includes 36 regulons that consist of 201 coding genes and 4 non-coding RNAs, and is involved in nitrogen, carbon and energy metabolism, regulation, transmembrane transport and various extracellular functions. To the best of our knowledge, this is the first report of direct regulation of alanine dehydrogenase, pyruvate metabolism genes and type III secretion system by sigma(54)-dependent regulators. Conclusions: The sigma(54)-dependent regulome is an important component of transcriptional regulatory network in D. vulgaris Hildenborough and related free-living Deltaproteobacteria. Our study provides a representative collection of sigma(54)-dependent regulons that can be used for regulation prediction in Deltaproteobacteria and other taxa. C1 [Kazakov, Alexey E.; Rajeev, Lara; Chen, Amy; Luning, Eric G.; Dubchak, Inna; Mukhopadhyay, Aindrila; Novichkov, Pavel S.] Lawrence Berkeley Natl Lab, Berkeley, CA 94710 USA. [Dubchak, Inna] Joint Genome Inst, Dept Energy, Walnut Creek, CA 94598 USA. RP Novichkov, PS (reprint author), Lawrence Berkeley Natl Lab, Berkeley, CA 94710 USA. EM psnovichkov@lbl.gov OI Rajeev, Lara/0000-0002-0106-9195 FU U.S. Department of Energy, Office of Science, Office of Biological & Environmental Research [DE-AC02-05CH11231] FX The authors are grateful to Dmitry Rodionov for useful discussions. This material by ENIGMA-Ecosystems and Networks Integrated with Genes and Molecular Assemblies (http://enigma.lbl.gov), a Scientific Focus Area Program at Lawrence Berkeley National Laboratory is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Biological & Environmental Research under contract number DE-AC02-05CH11231. NR 50 TC 0 Z9 0 U1 1 U2 5 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1471-2164 J9 BMC GENOMICS JI BMC Genomics PD NOV 10 PY 2015 VL 16 AR 919 DI 10.1186/s12864-015-2176-y PG 16 WC Biotechnology & Applied Microbiology; Genetics & Heredity SC Biotechnology & Applied Microbiology; Genetics & Heredity GA CW8XE UT WOS:000365281900005 PM 26555820 ER PT J AU Ugarte, F Sousae, R Cinquin, B Martin, EW Krietsch, J Sanchez, G Inman, M Tsang, H Warr, M Passegue, E Larabell, CA Forsberg, EC AF Ugarte, Fernando Sousae, Rebekah Cinquin, Bertrand Martin, Eric W. Krietsch, Jana Sanchez, Gabriela Inman, Margaux Tsang, Herman Warr, Matthew Passegue, Emmanuelle Larabell, Carolyn A. Forsberg, E. Camilla TI Progressive Chromatin Condensation and H3K9 Methylation Regulate the Differentiation of Embryonic and Hematopoietic Stem Cells SO STEM CELL REPORTS LA English DT Article ID PROGENITOR CELLS; LINEAGE COMMITMENT; RECEPTOR CXCR4; PLURIPOTENCY; G9A; PROLIFERATION; TRANSCRIPTION; LOCALIZATION; MAINTENANCE; EXPRESSION AB Epigenetic regulation serves as the basis for stem cell differentiation into distinct cell types, but it is unclear how global epigenetic changes are regulated during this process. Here, we tested the hypothesis that global chromatin organization affects the lineage potential of stem cells and that manipulation of chromatin dynamics influences stem cell function. Using nuclease sensitivity assays, we found a progressive decrease in chromatin digestion among pluripotent embryonic stem cells (ESCs), multipotent hematopoietic stem cells (HSCs), and mature hematopoietic cells. Quantitative high-resolution microscopy revealed that ESCs contain significantly more euchromatin than HSCs, with a further reduction in mature cells. Increased cellular maturation also led to heterochromatin localization to the nuclear periphery. Functionally, prevention of heterochromatin formation by inhibition of the histone methyltransferase G9A resulted in delayed HSC differentiation. Our results demonstrate global chromatin rearrangements during stem cell differentiation and that heterochromatin formation by H3K9 methylation regulates HSC differentiation. C1 [Ugarte, Fernando; Sousae, Rebekah; Martin, Eric W.; Krietsch, Jana; Sanchez, Gabriela; Inman, Margaux; Tsang, Herman; Forsberg, E. Camilla] Univ Calif Santa Cruz, Dept Biomol Engn, Inst Biol Stem Cells, Santa Cruz, CA 95064 USA. [Cinquin, Bertrand; Larabell, Carolyn A.] UCSF, Natl Ctr Xray Tomog, San Francisco, CA 94143 USA. [Cinquin, Bertrand; Larabell, Carolyn A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Warr, Matthew; Passegue, Emmanuelle] Univ Calif San Francisco, Eli & Edythe Broad Ctr Regenerat Med & Stem Cell, Dept Med, Hem Onc Div, San Francisco, CA 94143 USA. RP Forsberg, EC (reprint author), Univ Calif Santa Cruz, Dept Biomol Engn, Inst Biol Stem Cells, Santa Cruz, CA 95064 USA. EM cforsber@soe.ucsc.edu FU NIH/NHLBI award [R01HL115158]; Santa Cruz Cancer Benefit group; UCSC startup funds; Gordon and Betty Moore Foundation [3497]; NIH/NIGMS [P41GM103445]; US DOE/BER [DE-AC02-05CH11231]; CIRM Training grant [TG2-01157]; UCSC IMSD award from NIH/NIGMS [R25GM058903]; CIRM SCILL grant via San Jose State University [TB1-01195]; California Institute for Regenerative Medicine (CIRM) New Faculty Award [RN1-00540]; American Cancer Society Research Scholar Award [RSG-13-193-01-DDC]; CIRM Shared Stem Cell Facilities Award [CL1-00506]; CIRM Major Facilities Award [FA1-00617-1] FX We thank Drs. Kateri Moore for the AFT024 cells and Jeremy Sanford and Sol Katzman for advice on gene expression analysis; Santa Cruz Biotechnology for antibodies; and Rohinton Kamakaka and Forsberg lab members for comments on the manuscript. This work was supported by an NIH/NHLBI award (R01HL115158), the Santa Cruz Cancer Benefit group, and UCSC startup funds to E.C.F.; by the Gordon and Betty Moore Foundation (3497) to C.A.L.; by NIH/NIGMS (P41GM103445) and US DOE/BER (DE-AC02-05CH11231) to The National Center for X-ray Tomography by CIRM Training grant TG2-01157 to F.U. and J.K.; by a UCSC IMSD award from NIH/NIGMS to R.S. (R25GM058903); by CIRM SCILL grant TB1-01195 to E.W.M. via San Jose State University; and by CIRM Shared Stem Cell Facilities (CL1-00506) and CIRM Major Facilities (FA1-00617-1) awards to UCSC. E.C.F. is the recipient of a California Institute for Regenerative Medicine (CIRM) New Faculty Award (RN1-00540) and an American Cancer Society Research Scholar Award (RSG-13-193-01-DDC). NR 46 TC 11 Z9 11 U1 2 U2 6 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 2213-6711 J9 STEM CELL REP JI Stem Cell Rep. PD NOV 10 PY 2015 VL 5 IS 5 BP 728 EP 740 DI 10.1016/j.stemcr.2015.09.009 PG 13 WC Cell & Tissue Engineering; Cell Biology SC Cell Biology GA CW4UM UT WOS:000364991000006 PM 26489895 ER PT J AU Tyrakowski, CM Shamirian, A Rowland, CE Shen, HY Das, A Schaller, RD Snee, PT AF Tyrakowski, Christina M. Shamirian, Armen Rowland, Clare E. Shen, Hongyan Das, Adita Schaller, Richard D. Snee, Preston T. TI Bright Type II Quantum Dots SO CHEMISTRY OF MATERIALS LA English DT Article ID CORE/SHELL SEMICONDUCTOR NANOCRYSTALS; PHOTOVOLTAIC APPLICATIONS; CDSE NANOCRYSTALS; CELLS; FUNCTIONALIZATION; HETEROSTRUCTURES; POLYMER; ZNSE AB It is a paradigm that the exciton splitting characteristics of type II quantum dots (QDs) result in low quantum yield materials. However, reported herein is the synthesis of ZnSe/CdS/ZnS type II QDs with quantum yields as high as 61%. Most interesting is the fact that the enhancement in brightness is due to an increase in the radiative rate, rather than the suppression of surface trap-related nonradiative processes, which was found to be minimal. These QDs have been water-solubilized using two different methods and retain a substantial fraction of their brightness. The water-soluble type II QDs were conjugated to a dye to examine their potential as fluorescence resonance energy transfer (FRET) donors. A significant FRET efficiency of 61 +/- 3% was measured using time-correlated single photon counting, which demonstrates the potential for these materials to be used in FRET-based chemical and biological sensing applications. C1 [Tyrakowski, Christina M.; Shamirian, Armen; Shen, Hongyan; Das, Adita; Snee, Preston T.] Univ Illinois, Dept Chem, Chicago, IL 60607 USA. [Rowland, Clare E.; Schaller, Richard D.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Schaller, Richard D.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Snee, PT (reprint author), Univ Illinois, Dept Chem, Chicago, IL 60607 USA. EM sneep@uic.edu FU ACS PRF [50859-ND10]; University of Illinois at Chicago; UIC Chancellors Discovery Fund; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences User Facility under DOE [DE-AC02-06CH11357] FX P.T.S. would like to thank the University of Illinois at Chicago, UIC Chancellors Discovery Fund, and the ACS PRF under Contract 50859-ND10 for support of this work. Also Jordi Cabana for assistance with XRD measurements. This work was performed, in part, at the Center for Nanoscale Materials, a U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences User Facility, under DOE Contract No. DE-AC02-06CH11357. NR 47 TC 8 Z9 8 U1 15 U2 55 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 EI 1520-5002 J9 CHEM MATER JI Chem. Mat. PD NOV 10 PY 2015 VL 27 IS 21 BP 7276 EP 7281 DI 10.1021/acs.chemmater.5b02040 PG 6 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA CV9NT UT WOS:000364614600010 ER PT J AU Huang, J Zhou, X Lamprou, A Maya, F Svec, F Turner, SR AF Huang, Jing Zhou, Xu Lamprou, Alexandros Maya, Fernando Svec, Frantisek Turner, S. Richard TI Nanoporous Polymers from Cross-Linked Polymer Precursors via tert-Butyl Group Deprotection and Their Carbon Dioxide Capture Properties SO CHEMISTRY OF MATERIALS LA English DT Article ID COVALENT ORGANIC FRAMEWORKS; HIGH-SURFACE-AREA; CO2 CAPTURE; HYDROGEN STORAGE; ALTERNATING COPOLYMERS; MICROPOROUS CARBONS; BLOCK-COPOLYMERS; MALEIC-ANHYDRIDE; ADSORPTION; STILBENE AB A two-step synthetic strategy has been developed to achieve functionalized nanoporous polymers via the deprotection of the cross-linked polymer precursors containing tert-butyl carboxylate-functionalized stilbene or styrene and N-phenylmaleimide alternating sequences. Three different deprotection methods to generate nanoporosity were examined in this work. The resulting nanoporous polymers showed a significant increase in BET surface area. The effects of cross-linking density and the stiffness of the alternating sequences on the nanoporosity of these polymers were studied. The resulting nanoporous polymers were also investigated as potential CO2 sorbents. C1 [Huang, Jing; Zhou, Xu; Turner, S. Richard] Virginia Tech, Dept Chem, Blacksburg, VA 24061 USA. [Huang, Jing; Zhou, Xu; Turner, S. Richard] Virginia Tech, Macromol & Interfaces Inst, Blacksburg, VA 24061 USA. [Lamprou, Alexandros; Maya, Fernando; Svec, Frantisek] EO Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. RP Turner, SR (reprint author), Virginia Tech, Dept Chem, Blacksburg, VA 24061 USA. EM srturner@vt.edu RI Maya, Fernando/I-3355-2012 OI Maya, Fernando/0000-0003-1458-736X FU National Science Foundation (NSF) [DMR-0905231, DMR-1206409, DMR-1310258]; Department of Chemistry at Virginia Tech.; Office of Science, Office of Basic Energy Sciences, Scientific User Facilities Division of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the National Science Foundation (NSF) under grant number DMR-0905231, DMR-1206409, and DMR-1310258, and the Department of Chemistry at Virginia Tech. The BET surface area and CO2 capture measurements were performed at the Molecular Foundry, Lawrence Berkeley National Laboratory. This work as well as Prof. F. Svec were supported by the Office of Science, Office of Basic Energy Sciences, Scientific User Facilities Division of the U.S. Department of Energy, under Contract No. DE-AC02-05CH11231. We thank Prof. Timothy Long's group for TGA instrument assistance, and Steve McCartney for assistance with SEM. NR 66 TC 5 Z9 5 U1 7 U2 47 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 EI 1520-5002 J9 CHEM MATER JI Chem. Mat. PD NOV 10 PY 2015 VL 27 IS 21 BP 7388 EP 7394 DI 10.1021/acs.chemmater.5b03114 PG 7 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA CV9NT UT WOS:000364614600023 ER PT J AU Yang, PF Zheng, JM Kuppan, S Li, QY Lv, DP Xiao, J Chen, GY Zhang, JG Wang, CM AF Yang, Pengfei Zheng, Jianming Kuppan, Saravanan Li, Qiuyan Lv, Dongping Xiao, Jie Chen, Guoying Zhang, Ji-Guang Wang, Chong-Min TI Phosphorus Enrichment as a New Composition in the Solid Electrolyte Interphase of High-Voltage Cathodes and Its Effects on Battery Cycling SO CHEMISTRY OF MATERIALS LA English DT Article ID LITHIUM-ION BATTERIES; ATOMIC-FORCE MICROSCOPY; IN-SITU TEM; SURFACE RECONSTRUCTION; LI; OXIDES; PERFORMANCE; STABILITY; EVOLUTION; KINETICS AB Immersion of a solid into liquid often leads to the modification of both the structure and chemistry of surface of the solid, which subsequently affects the chemical and physical properties of the system. For the case of the rechargeable lithium ion battery, consquence of such a surface modification is termed as solid electrolyte interphase (SET) layer, which has been perceived to play a critical role in the stable operation of the batteries. However, the structure and chemical composition of the SET layer and its spatial distribution and dependence on the battery operating conditions remain unclear. Using aberration-corrected scanning transmission electron microscopy, coupled with ultrahigh-sensitivity energy-dispersive X-ray spectroscopy, we probed the structure and chemistry of the SET layer on several high-voltage cathodes. We show that layer-structured cathodes, when cycled at a high cut-off voltage, can form a Phosphorus-rich SET layer on their surface, which is a direct evidence of Li-salt (LiPF6) decomposition. Our systematical investigations indicate that such a cathode/Li-salt side reaction shows strong dependence on the structure of the cathode materials, the operating voltage, and the temperature, indicating the feasibility of SET engineering. These findings provide valuable insights on the interaction between the high-voltage cathode and the electrolyte, as well as the interface evolution upon battery cycling. C1 [Yang, Pengfei; Wang, Chong-Min] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. [Zheng, Jianming; Li, Qiuyan; Lv, Dongping; Xiao, Jie; Zhang, Ji-Guang] Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA. [Kuppan, Saravanan; Chen, Guoying] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Energy Storage & Distributed Resources Div, Berkeley, CA 94720 USA. RP Zhang, JG (reprint author), Pacific NW Natl Lab, Energy & Environm Directorate, 902 Battelle Blvd, Richland, WA 99352 USA. EM jiguang.zhang@pnnl.gov; Chongmin.wang@pnnl.gov RI yan, pengfei/E-4784-2016; Zheng, Jianming/F-2517-2014; OI yan, pengfei/0000-0001-6387-7502; Zheng, Jianming/0000-0002-4928-8194; kuppan, saravanan/0000-0003-4976-4514 FU Office of Vehicle Technologies of the U.S. Department of Energy under Advanced Battery Materials Research (BMR) program [DE-AC02-05CH11231, 6951379] FX This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231, Subcontract No. 6951379 under the Advanced Battery Materials Research (BMR) program. NR 34 TC 5 Z9 5 U1 8 U2 28 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 EI 1520-5002 J9 CHEM MATER JI Chem. Mat. PD NOV 10 PY 2015 VL 27 IS 21 BP 7447 EP 7451 DI 10.1021/acs.chemmater.5b03510 PG 5 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA CV9NT UT WOS:000364614600030 ER PT J AU Bizien, T Ameline, JC Yager, KG Marchi, V Artzner, F AF Bizien, Thomas Ameline, Jean-Claude Yager, Kevin G. Marchi, Valerie Artzner, Franck TI Self-Organization of Quantum Rods Induced by Lipid Membrane Corrugations SO LANGMUIR LA English DT Article ID DNA COMPLEXES; CYLINDRICAL MICROCAVITY; ENERGY-TRANSFER; PHASE; CRYSTALLIZATION; SUPERRADIANCE; NANOPARTICLES; NANOCRYSTALS; SUPERLATTICE; TEMPLATE AB Self-organization of fluorescent nanoparticles, using biological molecules such as phospholipids to control assembly distances, is a promising method for creating hybrid nanostructures. We report here the formation of hybrid condensed phases made of anisotropic nanoparticles and phospholipids. Such structure formation is driven by electrostatic interaction between the nanoparticles and the phospholipids, and results in the formation of a 2D rectangular liquid crystal, as confirmed by high-resolution Small-Angle Xray Scattering (SAXS). Moreover, we show that the fluorescent properties of the NPs are not modified by the self-assembly process. C1 [Bizien, Thomas; Marchi, Valerie] Univ Rennes 1, CNRS UMR 6226, Inst Sci Chim Rennes, F-35042 Rennes, France. [Bizien, Thomas; Ameline, Jean-Claude; Artzner, Franck] Univ Rennes 1, CNRS UMR 6251, Inst Phys Rennes, F-35042 Rennes, France. [Bizien, Thomas] Synchrotron SOLEIL Orme Merisiers St Aubin, F-91192 Gif Sur Yvette, France. [Yager, Kevin G.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Artzner, F (reprint author), Univ Rennes 1, CNRS UMR 6251, Inst Phys Rennes, Ave Gen Leclerc, F-35042 Rennes, France. EM franck.artzner@univ-rennes1.fr FU Region Bretagne; FEDER; U.S. DOE Office of Science Facilities, at Brookhaven National Laboratory (BNL) [DE-SC0012704] FX F.A. and V.M. thank the Region Bretagne for TB Ph.D. fellowship. F.A. aknowledges FEDER for financial support. We would like to thank Chiara Coronna for the first X-ray experiments. This research used resources of the Center for Functional Nanomaterials (CFN), and the National Synchrotron Light Source (NSLS), which are U.S. DOE Office of Science Facilities, at Brookhaven National Laboratory (BNL), supported under Contract No. DE-SC0012704. CFN and BNL are acknowledged for guest fellowships. NR 37 TC 0 Z9 0 U1 4 U2 26 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD NOV 10 PY 2015 VL 31 IS 44 BP 12148 EP 12154 DI 10.1021/acs.langmuir.5b03335 PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA CV9NY UT WOS:000364615100023 PM 26467312 ER PT J AU Timachova, K Watanabe, H Balsara, NP AF Timachova, Ksenia Watanabe, Hiroshi Balsara, Nitash P. TI Effect of Molecular Weight and Salt Concentration on Ion Transport and the Transference Number in Polymer Electrolytes SO MACROMOLECULES LA English DT Article ID POLY(ETHYLENE OXIDE); DYNAMICS SIMULATIONS; DIMETHYL ETHERS; DIFFUSION; CONDUCTIVITY; COMPLEXES; MECHANISM; LIQUID; BEHAVIOR; CATION AB Transport of ions in polymer electrolytes is of significant practical interest, however, differences in the transport of anions and cations have not been comprehensively addressed. We present measurements of the electrochemical transport properties of lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) in poly(ethylene oxide) (PEO) over a wide range of PEO molecular weights and salt concentrations. Individual self-diffusion coefficients of the Li+ and TFSI- ions, D+ and D-, were measured using pulsed-field gradient nuclear magnetic resonance both in the dilute limit and at high salt concentrations. Conductivities calculated from the measured D+ and D- values based on the Nernst-Einstein equation were in agreement with experimental measurements reported in the literature, indicating that the salt is fully dissociated in these PEO/LiTFSI mixtures. This enables determination of the molecular weight dependence of the cation transference number in both dilute and concentrated solutions. We introduce a new parameter, s, the number of lithium ions per polymer chain, that allows us to account for both the effect of salt concentration and molecular weight on cation and anion diffusion. Expressing cation and anion diffusion coefficients as functions of s results in a collapse of D+ and D- onto a single master curve. C1 [Timachova, Ksenia; Balsara, Nitash P.] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94702 USA. [Watanabe, Hiroshi] Kyoto Univ, Inst Chem Res, Uji, Kyoto 6110011, Japan. [Timachova, Ksenia] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Timachova, Ksenia] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Energy Storage & Distributed Resources Div, Berkeley, CA 94720 USA. RP Balsara, NP (reprint author), Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94702 USA. EM nbalsara@berkeley.edu FU Division of Chemistry, National Science Foundation [NSF-CHE-1333736] FX This work was supported by the Division of Chemistry, National Science Foundation under grant NSF-CHE-1333736 in the Designing Materials to Revolutionize and Engineer our Future Program. We thank John Newman for educational discussions and Chris Canlas for help with NMR instrument and facilities support. NR 36 TC 11 Z9 11 U1 26 U2 72 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 EI 1520-5835 J9 MACROMOLECULES JI Macromolecules PD NOV 10 PY 2015 VL 48 IS 21 BP 7882 EP 7888 DI 10.1021/acs.macromol.5b01724 PG 7 WC Polymer Science SC Polymer Science GA CV9NW UT WOS:000364614900016 ER PT J AU Bhattacharya, T Cirigliano, V Cohen, SD Gupta, R Joseph, A Lin, HW Yoon, B AF Bhattacharya, Tanmoy Cirigliano, Vincenzo Cohen, Saul D. Gupta, Rajan Joseph, Anosh Lin, Huey-Wen Yoon, Boram TI Isovector and isoscalar tensor charges of the nucleon from lattice QCD SO PHYSICAL REVIEW D LA English DT Article ID ESTIMATOR; DIMENSION; OPERATORS AB We present results for the isovector and flavor diagonal tensor charges g(T)(u-d), g(T)(u), g(T)(d), and g(T)(s) needed to probe novel tensor interactions at the TeV scale in neutron and nuclear beta-decays and the contribution of the quark electric dipole moment (EDM) to the neutron EDM. The lattice QCD calculations were done using nine ensembles of gauge configurations generated by the MILC collaboration using the HISQ action with 2 + 1 + 1 dynamical flavors. These ensembles span three lattice spacings a approximate to 0.06, 0.09 and 0.12 fm and three quark masses corresponding to the pion masses M-pi approximate to 130, 220 and 310 MeV. Using estimates from these ensembles, we quantify all systematic uncertainties and perform a simultaneous extrapolation in the lattice spacing, volume and light quark masses for the connected contributions. The final estimates of the connected nucleon (proton) tensor charge for the isovector combination is g(T)(u-d) = 1.020(76) in the (MS) over bar scheme at 2 GeV. The additional disconnected quark loop contributions needed for the flavor-diagonal matrix elements are calculated using a stochastic estimator employing the truncated solver method with the all-mode-averaging technique. We find that the size of the disconnected contribution is smaller than the statistical error in the connected contribution. This allows us to bound the disconnected contribution and include it as an additional uncertainty in the flavor-diagonal charges. After a continuum extrapolation, we find g(T)(u) = 0.774(66), g(T)(d) = -0.233(28) and g(T)(u+d) = 0.541(67). The strangeness tensor charge, that can make a significant contribution to the neutron EDM due to the large ratio m(s)/m(u,d), is g(T)(s) = 0.008(9) in the continuum limit. C1 [Bhattacharya, Tanmoy; Cirigliano, Vincenzo; Gupta, Rajan; Yoon, Boram] Los Alamos Natl Lab, Theoret Div T 2, Los Alamos, NM 87545 USA. [Cohen, Saul D.] Univ Washington, Inst Nucl Theory, Seattle, WA 98195 USA. [Joseph, Anosh] DESY, John Neumann Inst Comp, D-15738 Zeuthen, Germany. [Lin, Huey-Wen] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RP Bhattacharya, T (reprint author), Los Alamos Natl Lab, Theoret Div T 2, Los Alamos, NM 87545 USA. EM tanmoy@lanl.gov; cirigliano@lanl.gov; saul.cohen@gmail.com; rajan@lanl.gov; anosh.joseph@desy.de; hueywenlin@lbl.gov; boram@lanl.gov RI Joseph, Anosh/F-9283-2012; OI Joseph, Anosh/0000-0003-4288-8207; Bhattacharya, Tanmoy/0000-0002-1060-652X; Gupta, Rajan/0000-0003-1784-3058 FU Office of Science of the U.S. Department of Energy; National Science Foundation [ACI-1053575]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]; U.S. Department of Energy, Office of Science of High Energy Physics [DE-KA-1401020]; LANL LDRD program; DOE [DE-FG02-97ER4014] FX We thank the MILC Collaboration for providing the 2 + 1 + 1 flavor HISQ lattices used in our calculations. Simulations were carried out on computer facilities of (i) the USQCD Collaboration, which are funded by the Office of Science of the U.S. Department of Energy, (ii) the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation Grant No. ACI-1053575, (iii) the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231; and (iv) Institutional Computing at Los Alamos National Laboratory. The calculations used the Chroma software suite [12]. This material is based upon work supported by the U.S. Department of Energy, Office of Science of High Energy Physics under Contract No. DE-KA-1401020 and the LANL LDRD program. The work of H. W. L. and S. D. C. was supported by DOE Grant No. DE-FG02-97ER4014. We thank Gunnar Bali, Martha Constantinou and Jeremy Green for providing their latest data, and Emanuele Mereghatti for discussions on the chiral extrapolation. We thank Constantia Alexandrou, Gunnar Bali, Tom Blum, Shigemi Ohta, Dirk Pleiter and the LHP collaboration for discussions on the FLAG analysis. NR 48 TC 13 Z9 13 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD NOV 10 PY 2015 VL 92 IS 9 AR 094511 DI 10.1103/PhysRevD.92.094511 PG 21 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CV6WD UT WOS:000364411600004 ER PT J AU Asgari, E Mofrad, MRK AF Asgari, Ehsaneddin Mofrad, Mohammad R. K. TI Continuous Distributed Representation of Biological Sequences for Deep Proteomics and Genomics SO PLOS ONE LA English DT Article ID DISORDERED PROTEINS; LANGUAGE; CLASSIFICATION; VISUALIZATION; DATABASE; GENES AB We introduce a new representation and feature extraction method for biological sequences. Named bio-vectors (BioVec) to refer to biological sequences in general with protein-vectors (ProtVec) for proteins (amino-acid sequences) and gene-vectors (GeneVec) for gene sequences, this representation can be widely used in applications of deep learning in proteomics and genomics. In the present paper, we focus on protein-vectors that can be utilized in a wide array of bioinformatics investigations such as family classification, protein visualization, structure prediction, disordered protein identification, and protein-protein interaction prediction. In this method, we adopt artificial neural network approaches and represent a protein sequence with a single dense n-dimensional vector. To evaluate this method, we apply it in classification of 324,018 protein sequences obtained from Swiss-Prot belonging to 7,027 protein families, where an average family classification accuracy of 93% +/- 0.06% is obtained, outperforming existing family classification methods. In addition, we use ProtVec representation to predict disordered proteins from structured proteins. Two databases of disordered sequences are used: the DisProt database as well as a database featuring the disordered regions of nucleoporins rich with phenylalanine-glycine repeats (FG-Nups). Using support vector machine classifiers, FG-Nup sequences are distinguished from structured protein sequences found in Protein Data Bank (PDB) with a 99.8% accuracy, and unstructured DisProt sequences are differentiated from structured DisProt sequences with 100.0% accuracy. These results indicate that by only providing sequence data for various proteins into this model, accurate information about protein structure can be determined. Importantly, this model needs to be trained only once and can then be applied to extract a comprehensive set of information regarding proteins of interest. Moreover, this representation can be considered as pre-training for various applications of deep learning in bioinformatics. The related data is available at Life Language Processing Website: http://llp.berkeley.edu and Harvard Dataverse: http://dx.doi.org/10.7910/DVN/JMFHTN. C1 [Asgari, Ehsaneddin; Mofrad, Mohammad R. K.] Univ Calif Berkeley, Mol Cell Biomech Lab, Dept Bioengn, Berkeley, CA 94720 USA. [Asgari, Ehsaneddin; Mofrad, Mohammad R. K.] Univ Calif Berkeley, Mol Cell Biomech Lab, Dept Mech Engn, Berkeley, CA 94720 USA. [Mofrad, Mohammad R. K.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Mofrad, MRK (reprint author), Univ Calif Berkeley, Mol Cell Biomech Lab, Dept Bioengn, Berkeley, CA 94720 USA. EM mofrad@berkeley.edu FU National Science Foundation through CAREER Award [CBET-0955291] FX Financial support from National Science Foundation through a CAREER Award (CBET-0955291) is gratefully acknowledged. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 39 TC 1 Z9 1 U1 4 U2 18 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD NOV 10 PY 2015 VL 10 IS 11 AR e0141287 DI 10.1371/journal.pone.0141287 PG 15 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CV7CT UT WOS:000364430700024 PM 26555596 ER PT J AU Moore, JC Grinsted, A Guo, XR Yu, XY Jevrejeva, S Rinke, A Cui, XF Kravitz, B Lenton, A Watanabe, S Ji, DY AF Moore, John C. Grinsted, Aslak Guo, Xiaoran Yu, Xiaoyong Jevrejeva, Svetlana Rinke, Annette Cui, Xuefeng Kravitz, Ben Lenton, Andrew Watanabe, Shingo Ji, Duoying TI Atlantic hurricane surge response to geoengineering SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE extremes; flooding; climate engineering ID SOLAR-RADIATION MANAGEMENT; QUASI-BIENNIAL OSCILLATION; EARTH SYSTEM MODEL; TROPICAL CYCLONES; CLIMATE-CHANGE; STRATOSPHERIC AEROSOL; TEMPERATURE; RAINFALL; ERUPTION; THREAT AB Devastating floods due to Atlantic hurricanes are relatively rare events. However, the frequency of the most intense storms is likely to increase with rises in sea surface temperatures. Geoengineering by stratospheric sulfate aerosol injection cools the tropics relative to the polar regions, including the hurricane Main Development Region in the Atlantic, suggesting that geoengineering may mitigate hurricanes. We examine this hypothesis using eight earth system model simulations of climate under the Geoengineering Model Intercomparison Project (GeoMIP) G3 and G4 schemes that use stratospheric aerosols to reduce the radiative forcing under the Representative Concentration Pathway (RCP) 4.5 scenario. Global mean temperature increases are greatly ameliorated by geoengineering, and tropical temperature increases are at most half of those temperature increases in the RCP4.5. However, sulfate injection would have to double (to nearly 10 teragrams of SO2 per year) between 2020 and 2070 to balance the RCP4.5, approximately the equivalent of a 1991 Pinatubo eruption every 2 y, with consequent implications for stratospheric ozone. We project changes in storm frequencies using a temperature-dependent generalized extreme value statistical model calibrated by historical storm surges and observed temperatures since 1923. The number of storm surge events as big as the one caused by the 2005 Katrina hurricane are reduced by about 50% compared with no geoengineering, but this reduction is only marginally statistically significant. Nevertheless, when sea level rise differences in 2070 between the RCP4.5 and geoengineering are factored into coastal flood risk, we find that expected flood levels are reduced by about 40 cm for 5-y events and about halved for 50-y surges. C1 [Moore, John C.; Grinsted, Aslak; Guo, Xiaoran; Yu, Xiaoyong; Jevrejeva, Svetlana; Rinke, Annette; Cui, Xuefeng; Ji, Duoying] Beijing Normal Univ, Coll Global Change & Earth Syst Sci, Joint Ctr Global Change Studies, Beijing 100875, Peoples R China. [Moore, John C.] Univ Lapland, Arctic Ctr, Rovaniemi 96101, Finland. [Grinsted, Aslak] Univ Copenhagen, Niels Bohr Inst, Ctr Ice & Climate, DK-2100 Copenhagen O, Denmark. [Jevrejeva, Svetlana] Natl Oceanog Ctr, Liverpool L3 5DA, Merseyside, England. [Rinke, Annette] Helmholtz Ctr Polar & Marine Res, Alfred Wegener Inst, D-14473 Potsdam, Germany. [Kravitz, Ben] Pacific NW Natl Lab, Atmospher Sci & Global Change Div, Richland, WA 99352 USA. [Lenton, Andrew] CSIRO, Oceans & Atmosphere Flagship, Hobart, Tas 7004, Australia. [Watanabe, Shingo] Japan Agcy Marine Earth Sci & Technol, Yokohama, Kanagawa 2370061, Japan. RP Ji, DY (reprint author), Beijing Normal Univ, Coll Global Change & Earth Syst Sci, Joint Ctr Global Change Studies, Beijing 100875, Peoples R China. EM john.moore.bnu@gmail.com; duoyingji@bnu.edu.cn RI Rinke, Annette/B-4922-2014; Moore, John/B-2868-2013; Watanabe, Shingo/L-9689-2014; Lenton, Andrew/D-2077-2012 OI Rinke, Annette/0000-0002-6685-9219; Moore, John/0000-0001-8271-5787; Watanabe, Shingo/0000-0002-2228-0088; Lenton, Andrew/0000-0001-9437-8896 FU National Basic Research Program of China [2015CB953600]; US Department of Energy by Battelle Memorial Institute [DE-AC05-76RL01830]; National Aeronautics and Space Administration (NASA) High-End Computing Program through the NASA Center for Climate Simulation at the Goddard Space Flight Center; European Union [FP7-ENV-2013-Two-Stage-603396- RISES-AM]; Commonwealth Scientific and Industrial Research Organisation Oceans, Atmosphere Flagship; SOUSEI Program, Ministry of Education, Culture, Sports, Science and Technology, Japan FX We thank J. Haywood and A. Jones, the editor, and two anonymous referees for suggesting improvements to the manuscript; all participants of the GeoMIP and their model development teams; the CLIVAR/WCRP Working Group on Coupled Modeling for endorsing the GeoMIP; and the scientists managing the earth system grid data nodes who have assisted with making GeoMIP output available. This research was funded by the National Basic Research Program of China (Grant 2015CB953600). The Pacific Northwest National Laboratory is operated for the US Department of Energy by Battelle Memorial Institute under Contract DE-AC05-76RL01830. GISS ModelE2 simulations were supported by the National Aeronautics and Space Administration (NASA) High-End Computing Program through the NASA Center for Climate Simulation at the Goddard Space Flight Center. S.J. was funded by the European Union's Seventh Programme for Research, Technological Development and Demonstration under Grant FP7-ENV-2013-Two-Stage-603396- RISES-AM. A.L. was supported by the Commonwealth Scientific and Industrial Research Organisation Oceans, Atmosphere Flagship, and S.W. was supported by the SOUSEI Program, Ministry of Education, Culture, Sports, Science and Technology, Japan. NR 49 TC 5 Z9 5 U1 2 U2 27 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD NOV 10 PY 2015 VL 112 IS 45 BP 13794 EP 13799 DI 10.1073/pnas.1510530112 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CV7QY UT WOS:000364470300040 PM 26504210 ER PT J AU Lee, CC Fay, AW Weng, TC Krest, CM Hedman, B Hodgson, KO Hu, YL Ribbe, MW AF Lee, Chi Chung Fay, Aaron W. Weng, Tsu-Chien Krest, Courtney M. Hedman, Britt Hodgson, Keith O. Hu, Yilin Ribbe, Markus W. TI Uncoupling binding of substrate CO from turnover by vanadium nitrogenase SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE nitrogenase; vanadium; carbon monoxide; turnover; substrate binding ID FEMO-COFACTOR; AZOTOBACTER-VINELANDII; MO-NITROGENASE; PROTEIN; CARBON; REDUCTION; FIXATION AB Biocatalysis by nitrogenase, particularly the reduction of N-2 and CO by this enzyme, has tremendous significance in environmentand energy-related areas. Elucidation of the detailed mechanism of nitrogenase has been hampered by the inability to trap substrates or intermediates in a well-defined state. Here, we report the capture of substrate CO on the resting-state vanadium-nitrogenase in a catalytically competent conformation. The close resemblance of this active CO-bound conformation to the recently described structure of CO-inhibited molybdenum-nitrogenase points to the mechanistic relevance of sulfur displacement to the activation of iron sites in the cofactor for CO binding. Moreover, the ability of vanadium-nitrogenase to bind substrate in the resting-state uncouples substrate binding from subsequent turnover, providing a platform for generation of defined intermediate(s) of both CO and N-2 reduction. C1 [Lee, Chi Chung; Fay, Aaron W.; Hu, Yilin; Ribbe, Markus W.] Univ Calif Irvine, Dept Mol Biol & Biochem, Irvine, CA 92697 USA. [Weng, Tsu-Chien; Krest, Courtney M.; Hedman, Britt; Hodgson, Keith O.] Stanford Univ, Stanford Synchrotron Radiat Lightsource, SLAC, Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Weng, Tsu-Chien] Ctr High Pressure Sci & Technol Adv Res, Shanghai 201203, Peoples R China. [Hodgson, Keith O.] Stanford Univ, Dept Chem, Stanford, CA 94305 USA. [Ribbe, Markus W.] Univ Calif Irvine, Dept Chem, Irvine, CA 92697 USA. RP Hodgson, KO (reprint author), Stanford Univ, Stanford Synchrotron Radiat Lightsource, SLAC, Natl Accelerator Lab, Menlo Pk, CA 94025 USA. EM hodgsonk@stanford.edu; yilinh@uci.edu; mribbe@uci.edu FU NIH [R01 GM67626, P41GM103393]; Department of Energy (DOE) Basic Energy Sciences; NIH National Institute of General Medical Sciences [P41GM103393]; DOE Basic Environmental Research FX We thank K. Tanifuji, J. G. Rebelein, and D. Sokaras for technical and experimental support. This work was supported by NIH Grants R01 GM67626 (to M.W.R.) and P41GM103393 (to K.O.H.). Stanford Synchrotron Radiation Lightsource (SSRL) operations are funded by the Department of Energy (DOE) Basic Energy Sciences and the SSRL Structural Molecular Biology Program is funded by NIH National Institute of General Medical Sciences P41GM103393 and DOE Basic Environmental Research. NR 24 TC 6 Z9 6 U1 8 U2 41 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD NOV 10 PY 2015 VL 112 IS 45 BP 13845 EP 13849 DI 10.1073/pnas.1519696112 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CV7QY UT WOS:000364470300049 PM 26515097 ER PT J AU Singh, MR Clark, EL Bell, AT AF Singh, Meenesh R. Clark, Ezra L. Bell, Alexis T. TI Thermodynamic and achievable efficiencies for solar-driven electrochemical reduction of carbon dioxide to transportation fuels SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE artificial photosynthesis; electrochemical CO2 reduction; solar-to-fuel efficiency; photoelectrochemical cells; photovoltaic-electrolyzer ID HYDROGEN-PRODUCTION; CO2 CAPTURE; ENERGY; CELLS; WATER; CONVERSION; PERFORMANCE; SURFACES; INSIGHTS; MONOXIDE AB Thermodynamic, achievable, and realistic efficiency limits of solar-driven electrochemical conversion of water and carbon dioxide to fuels are investigated as functions of light-absorber composition and configuration, and catalyst composition. The maximum thermodynamic efficiency at 1-sun illumination for adiabatic electrochemical synthesis of various solar fuels is in the range of 32-42%. Single-, double-, and triple-junction light absorbers are found to be optimal for electrochemical load ranges of 0-0.9 V, 0.9-1.95 V, and 1.95-3.5 V, respectively. Achievable solar-to-fuel (STF) efficiencies are determined using ideal double-and triple-junction light absorbers and the electrochemical load curves for CO2 reduction on silver and copper cathodes, and water oxidation kinetics over iridium oxide. The maximum achievable STF efficiencies for synthesis gas (H-2 and CO) and Hythane (H-2 and CH4) are 18.4% and 20.3%, respectively. Whereas the realistic STF efficiency of photoelectrochemical cells (PECs) can be as low as 0.8%, tandem PECs and photovoltaic (PV)-electrolyzers can operate at 7.2% under identical operating conditions. We show that the composition and energy content of solar fuels can also be adjusted by tuning the band-gaps of triple-junction light absorbers and/or the ratio of catalyst-to-PV area, and that the synthesis of liquid products and C2H4 have high profitability indices. C1 [Singh, Meenesh R.; Clark, Ezra L.; Bell, Alexis T.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Joint Ctr Artificial Photosynth, Berkeley, CA 94720 USA. [Clark, Ezra L.; Bell, Alexis T.] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. RP Bell, AT (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Joint Ctr Artificial Photosynth, Berkeley, CA 94720 USA. EM alexbell@berkeley.edu OI Singh, Meenesh/0000-0002-3638-8866 FU Office of Science of the US DOE [DE-SC0004993] FX We acknowledge Dr. Joel W. Ager III for his valuable suggestions and comments, and thank Karl Walczak for providing current-voltage (JV) characteristics for the InGaP/GaAs/Ge triple-junction light absorber. This material is based on the work performed by the Joint Center for Artificial Photosynthesis, a United States Department of Energy (DOE) Energy Innovation Hub, supported through the Office of Science of the US DOE under Award DE-SC0004993. NR 40 TC 10 Z9 10 U1 14 U2 73 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD NOV 10 PY 2015 VL 112 IS 45 BP E6111 EP E6118 DI 10.1073/pnas.1519212112 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CV7QY UT WOS:000364470300008 PM 26504215 ER PT J AU Aidhy, DS Sachan, R Zarkadoula, E Pakarinen, O Chisholm, MF Zhang, YW Weber, WJ AF Aidhy, Dilpuneet S. Sachan, Ritesh Zarkadoula, Eva Pakarinen, Olli Chisholm, Matthew F. Zhang, Yanwen Weber, William J. TI Fast ion conductivity in strained defect-fluorite structure created by ion tracks in Gd2Ti2O7 SO SCIENTIFIC REPORTS LA English DT Article ID RADIATION TOLERANCE; MOLECULAR-DYNAMICS; OXIDES; PYROCHLORES; SIMULATIONS; INTERFACES; DIFFUSION; DISORDER AB The structure and ion-conducting properties of the defect-fluorite ring structure formed around amorphous ion-tracks by swift heavy ion irradiation of Gd2Ti2O7 pyrochlore are investigated. High angle annular dark field imaging complemented with ion-track molecular dynamics simulations show that the atoms in the ring structure are disordered, and have relatively larger cation-cation interspacing than in the bulk pyrochlore, illustrating the presence of tensile strain in the ring region. Density functional theory calculations show that the non-equilibrium defect-fluorite structure can be stabilized by tensile strain. The pyrochlore to defect-fluorite structure transformation in the ring region is predicted to be induced by recrystallization during a melt-quench process and stabilized by tensile strain. Static pair-potential calculations show that planar tensile strain lowers oxygen vacancy migration barriers in pyrochlores, in agreement with recent studies on fluorite and perovskite materials. In view of these results, it is suggested that strain engineering could be simultaneously used to stabilize the defect-fluorite structure and gain control over its high ion-conducting properties. C1 [Aidhy, Dilpuneet S.; Sachan, Ritesh; Zarkadoula, Eva; Pakarinen, Olli; Chisholm, Matthew F.; Zhang, Yanwen; Weber, William J.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Zhang, Yanwen; Weber, William J.] Univ Tennessee, Mat Sci & Engn, Knoxville, TN 37996 USA. RP Aidhy, DS (reprint author), Univ Wyoming, Dept Mech Engn, Laramie, WY 82071 USA. EM daidhy@uwyo.edu; sachanr@ornl.gov; wjweber@utk.edu RI Weber, William/A-4177-2008; Pakarinen, Olli/G-8028-2016; OI Weber, William/0000-0002-9017-7365; Pakarinen, Olli/0000-0002-5535-3941; Zarkadoula, Eva/0000-0002-6886-9664 FU US Department of Energy, Office of Science, Basic Energy Sciences, Materials Science and Engineering Division; Office of Science, US Department of Energy [DEAC02-05CH11231]; USDOE FX This research was supported by the US Department of Energy, Office of Science, Basic Energy Sciences, Materials Science and Engineering Division. This research used resources of the National Energy Research Scientific Computing Center, supported by the Office of Science, US Department of Energy under Contract No. DEAC02-05CH11231 for the DFT calculations and MD simulations of ion track formation. The MD simulations of oxygen diffusivity were carried out using the Cascade computer cluster at EMSL, a national scientific used facility sponsored by USDOE, located at PNNL. NR 31 TC 6 Z9 6 U1 7 U2 46 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD NOV 10 PY 2015 VL 5 AR 16297 DI 10.1038/srep16297 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CV7JN UT WOS:000364448600001 PM 26555848 ER PT J AU Wardle, KE AF Wardle, Kent E. TI LIQUID-LIQUID MIXING STUDIES IN ANNULAR CENTRIFUGAL CONTACTORS COMPARING STATIONARY MIXING VANE OPTIONS SO SOLVENT EXTRACTION AND ION EXCHANGE LA English DT Article DE Annular centrifugal contactors; liquid-liquid extraction; nuclear fuel cycle; nuclear separations ID DROP-SIZE DISTRIBUTIONS; INTERFACIAL AREA; FLOW; TOMOGRAPHY AB Comparative studies of multiphase operation of an annular centrifugal contactor show the impact of housing stationary mixing vane configuration. A number of experimental results for several different mixing vane options are reported for operation of a 12.5 cm engineering-scale contactor unit. Fewer straight vanes give greater mixing-zone hold-up compared to curved vanes. Quantitative comparison of droplet size distribution also showed a significant decrease in mean diameter for four straight vanes versus eight curved vanes. This set of measurements gives a compelling case for careful consideration of mixing vane geometry when evaluating hydraulic operation and extraction process efficiency of annular centrifugal contactors. C1 [Wardle, Kent E.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL USA. Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Wardle, KE (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM kwardle@anl.gov FU U.S. Department of Energy, Office of Nuclear Energy [DE-AC02-06CH11357] FX This work was supported by the U.S. Department of Energy, Office of Nuclear Energy, under Contract DE-AC02-06CH11357. NR 23 TC 0 Z9 0 U1 2 U2 5 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA SN 0736-6299 EI 1532-2262 J9 SOLVENT EXTR ION EXC JI Solvent Extr. Ion Exch. PD NOV 10 PY 2015 VL 33 IS 7 BP 671 EP 690 DI 10.1080/07366299.2015.1082835 PG 20 WC Chemistry, Multidisciplinary SC Chemistry GA CV3WR UT WOS:000364197700004 ER PT J AU Bufford, DC Abdeljawad, FF Foiles, SM Hattar, K AF Bufford, D. C. Abdeljawad, F. F. Foiles, S. M. Hattar, K. TI Unraveling irradiation induced grain growth with in situ transmission electron microscopy and coordinated modeling SO APPLIED PHYSICS LETTERS LA English DT Article ID ION-IRRADIATION; THIN-FILMS; NANOCRYSTALLINE MATERIALS; BOUNDARY PROPERTIES; METALS; EVOLUTION; MOTION; TEM; HE; DEFORMATION AB Nanostructuring has been proposed as a method to enhance radiation tolerance, but many metallic systems are rejected due to significant concerns regarding long term grain boundary and interface stability. This work utilized recent advancements in transmission electron microscopy (TEM) to quantitatively characterize the grain size, texture, and individual grain boundary character in a nanocrystalline gold model system before and after in situ TEM ion irradiation with 10MeV Si. The initial experimental measurements were fed into a mesoscale phase field model, which incorporates the role of irradiation-induced thermal events on boundary properties, to directly compare the observed and simulated grain growth with varied parameters. The observed microstructure evolution deviated subtly from previously reported normal grain growth in which some boundaries remained essentially static. In broader terms, the combined experimental and modeling techniques presented herein provide future avenues to enhance quantification and prediction of the thermal, mechanical, or radiation stability of grain boundaries in nanostructured crystalline systems. (C) 2015 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License. C1 [Bufford, D. C.; Abdeljawad, F. F.; Foiles, S. M.; Hattar, K.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Bufford, DC (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. FU Division of Materials Science and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX We thank A. Darbal (AppFive LLC), D. Kaoumi (University of South Carolina), A. Leff (Drexel University), for valuable discussions, and B. L. Boyce, D. L. Buller, C. Gong, H. Lim, M. T. Marshall, and B. R. Muntifering (Sandia National Laboratories). This work was fully supported by the Division of Materials Science and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 39 TC 3 Z9 3 U1 8 U2 26 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD NOV 9 PY 2015 VL 107 IS 19 AR 191901 DI 10.1063/1.4935238 PG 5 WC Physics, Applied SC Physics GA CW5NC UT WOS:000365041300018 ER PT J AU Chen, Z Dames, C AF Chen, Zhen Dames, Chris TI An anisotropic model for the minimum thermal conductivity SO APPLIED PHYSICS LETTERS LA English DT Article ID SOLIDS AB The Cahill-Pohl/Einstein model of minimum phonon thermal conductivity (kappa(min)), which assumes isotropic material properties, is widely successful as the lower limit for fully dense amorphous and disordered materials. However, measurements of disordered highly anisotropic layered WSe2 [Chiritescu et al., Science 315, 351 (2007)] fall below the isotropic kappa(min) limit by at least a factor of four. Here, we generalize the isotropic kappa(min) to be anisotropic, suitable for both layered and chain-like materials with any anisotropy ratio. We obtain compact algebraic expressions in limiting temperature regimes for heat transfer along both c-axis (kappa(min-c)) and ab-plane (kappa(min-ab)). Applying this framework to the disordered layered WSe2 with no free parameters brings the theoretical kappa(min-c) back in line with the experimental results. The anisotropic corrections result from both a phonon focusing effect and a first Brillouin zone truncation effect. (C) 2015 AIP Publishing LLC. C1 [Chen, Zhen; Dames, Chris] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. [Dames, Chris] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Chen, Z (reprint author), Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA. EM zchen23@stanford.edu; cdames@berkeley.edu RI Chen, Zhen/M-2072-2015 OI Chen, Zhen/0000-0002-5422-8807 FU multidisciplinary research initiative (MRI) from the High Energy Lasers-Joint Technology Office (HEL-JTO) FX This work was supported in part by a multidisciplinary research initiative (MRI) from the High Energy Lasers-Joint Technology Office (HEL-JTO) administered by the Army Research Office (ARO). NR 23 TC 6 Z9 6 U1 4 U2 18 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD NOV 9 PY 2015 VL 107 IS 19 AR 193104 DI 10.1063/1.4935467 PG 5 WC Physics, Applied SC Physics GA CW5NC UT WOS:000365041300054 ER PT J AU Leroux, M Kihlstrom, KJ Holleis, S Rupich, MW Sathyamurthy, S Fleshler, S Sheng, HP Miller, DJ Eley, S Kayani, LCA Kayani, A Niraula, PM Welp, U Kwok, WK AF Leroux, M. Kihlstrom, K. J. Holleis, S. Rupich, M. W. Sathyamurthy, S. Fleshler, S. Sheng, H. P. Miller, D. J. Eley, S. Civale, L. Kayani, A. Niraula, P. M. Welp, U. Kwok, W. -K. TI Rapid doubling of the critical current of YBa2Cu3O7-delta coated conductors for viable high-speed industrial processing SO APPLIED PHYSICS LETTERS LA English DT Article ID HIGH-TEMPERATURE SUPERCONDUCTORS; CRITICAL-CURRENT-DENSITY; CU-O CRYSTALS; COLUMNAR DEFECTS; ION IRRADIATION; HEAVY-IONS; WIRES; FILMS; ENHANCEMENT AB We demonstrate that 3.5-MeV oxygen irradiation can markedly enhance the in-field critical current of commercial second generation superconducting tapes with an exposure time of just 1 s per 0.8 cm(2). The speed demonstrated here is now at the level required for an industrial reel-to-reel post-processing. The irradiation is made on production line samples through the protective silver coating and does not require any modification of the growth process. From TEM imaging, we identify small clusters as the main source of increased vortex pinning. (C) 2015 AIP Publishing LLC. C1 [Leroux, M.; Kihlstrom, K. J.; Holleis, S.; Welp, U.; Kwok, W. -K.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Kihlstrom, K. J.] Univ Illinois, Dept Phys, Chicago, IL 60607 USA. [Holleis, S.] TU Wien, Atominst, A-1020 Vienna, Austria. [Rupich, M. W.; Sathyamurthy, S.; Fleshler, S.] Amer Superconductor Corp, Devens, MA 01434 USA. [Sheng, H. P.; Miller, D. J.] Argonne Natl Lab, Elect Microscopy Ctr, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Eley, S.; Civale, L.] Mat Phys & Applicat Div MPA, Los Alamos, NM 87545 USA. [Eley, S.; Civale, L.] CMMS, Los Alamos, NM 87545 USA. [Kayani, A.; Niraula, P. M.] Western Michigan Univ, Dept Phys, Kalamazoo, MI 49008 USA. RP Leroux, M (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. RI Leroux, Maxime/E-8703-2016; OI Leroux, Maxime/0000-0001-9778-323X; Civale, Leonardo/0000-0003-0806-3113; Eley, Serena/0000-0002-2928-5316 FU Center for Emergent Superconductivity, an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; TOP Stipendium Niederoesterreich; KUWI Program at the TU Wien; U.S. Department of Energy, Office of Nuclear Physics [DE-AC02-06CH11357] FX This work was supported as part of the Center for Emergent Superconductivity, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. Patterning of the samples and their microstructural characterization were performed at the Center for Nanoscale Materials. Use of the Center for Nanoscale Materials, an Office of Science user facility, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. S.H. acknowledges a TOP Stipendium Niederoesterreich and support from the KUWI Program at the TU Wien. We acknowledge J. Greene at the Accelerator Target Laboratory of the Physics Division, Argonne National Laboratory, which is supported by the U.S. Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357, for providing the composite gold/carbon thin foils used in this study. NR 57 TC 7 Z9 7 U1 8 U2 25 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD NOV 9 PY 2015 VL 107 IS 19 AR 192601 DI 10.1063/1.4935335 PG 5 WC Physics, Applied SC Physics GA CW5NC UT WOS:000365041300040 ER PT J AU Chase, ZA Kasakov, S Shi, H Vjunov, A Fulton, JL Camaioni, DM Balasubramanian, M Zhao, C Wang, Y Lercher, JA AF Chase, Zizwe A. Kasakov, Stanislav Shi, Hui Vjunov, Aleksei Fulton, John L. Camaioni, Donald M. Balasubramanian, Mahalingam Zhao, Chen Wang, Yong Lercher, Johannes A. TI State of Supported Nickel Nanoparticles during Catalysis in Aqueous Media SO CHEMISTRY-A EUROPEAN JOURNAL LA English DT Article DE hydrogenation; EXAFS; nanoparticles; nickel; XANES ID BIO-OIL; PHENOL HYDRODEOXYGENATION; DEPOSITION-PRECIPITATION; XAFS ANALYSIS; PHASE; CONVERSION; CLEAVAGE; NI; SPECTROSCOPY; NI/HZSM-5 AB The state of Ni supported on HZSM-5 zeolite, silica, and sulfonated carbon was studied during aqueous-phase catalysis of phenol hydrodeoxygenation using in situ extended X-ray absorption fine structure spectroscopy. On sulfonated carbon and HZSM-5 supports, NiO and Ni(OH)(2) were readily reduced to Ni-0 under reaction conditions (approximate to 35bar H-2 in aqueous phenol solutions containing up to 0.5wt.% phosphoric acid at 473K). In contrast, Ni supported on SiO2 was not stable in a fully reduced Ni-0 state. Water enables the formation of Ni-II phyllosilicate, which is more stable, that is, difficult to reduce, than either -Ni(OH)(2) or NiO. Leaching of Ni from the supports was not observed over a broad range of reaction conditions. Ni-0 particles on HZSM-5 were stable even in presence of 15wt.% acetic acid at 473K and 35bar H-2. C1 [Chase, Zizwe A.; Shi, Hui; Vjunov, Aleksei; Fulton, John L.; Camaioni, Donald M.; Zhao, Chen; Wang, Yong; Lercher, Johannes A.] Pacific NW Natl Lab, Inst Integrated Catalysis, Richland, WA 99352 USA. [Chase, Zizwe A.; Zhao, Chen; Wang, Yong] Washington State Univ, Sch Chem & Biol Engn, Pullman, WA 99364 USA. [Kasakov, Stanislav; Lercher, Johannes A.] Tech Univ Munich, Dept Chem, D-85748 Garching, Germany. [Kasakov, Stanislav; Lercher, Johannes A.] Tech Univ Munich, Catalysis Res Inst, D-85748 Garching, Germany. [Balasubramanian, Mahalingam] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Fulton, JL (reprint author), Pacific NW Natl Lab, Inst Integrated Catalysis, POB 999, Richland, WA 99352 USA. EM john.fulton@pnnl.gov; donald.camaioni@pnnl.gov; johannes.lercher@pnnl.gov RI Shi, Hui/J-7083-2014 FU U.S. Department of Energy (DOE) Office of Science, Office of Basic Energy Sciences (BES), Division of Chemical Sciences, Geosciences Biosciences; DOE [DE-AC05-76L01830, DE-AC02-06CH11357]; Office of Biological and Environmental Research; University of Washington; Advanced Photon Source; DOE/BES FX The authors would like to thank Pinghong Xu for STEM images, Dr. Tamas Varga for XRD measurements, and Sebastian Foraita, Jiayue He, and Wenji Song for sample preparation. This work was supported by the U.S. Department of Energy (DOE) Office of Science, Office of Basic Energy Sciences (BES), Division of Chemical Sciences, Geosciences & Biosciences. The STEM was supported under the Laboratory Directed Research and Development Program: Chemical Imaging Initiative at Pacific Northwest National Laboratory (PNNL), a multi-program national laboratory operated for DOE by Battelle under Contract DE-AC05-76L01830. STEM and XRD were performed at EMSL, a DOE Office of Science user facility sponsored by the Office of Biological and Environmental Research and located at PNNL. PNC/XSD facilities at the Advanced Photon Source, and research at these facilities, are supported by DOE/BES, the Canadian Light Source and its funding partners, the University of Washington, and the Advanced Photon Source. Use of the Advanced Photon Source, an Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory, was supported by the DOE under Contract No. DE-AC02-06CH11357. NR 36 TC 4 Z9 4 U1 11 U2 55 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 0947-6539 EI 1521-3765 J9 CHEM-EUR J JI Chem.-Eur. J. PD NOV 9 PY 2015 VL 21 IS 46 BP 16541 EP 16546 DI 10.1002/chem.201502723 PG 6 WC Chemistry, Multidisciplinary SC Chemistry GA CW6TY UT WOS:000365132100033 PM 26407246 ER PT J AU Dhayal, RS Liao, JH Wang, XP Liu, YC Chiang, MH Kahlal, S Saillard, JY Liu, CW AF Dhayal, Rajendra S. Liao, Jian-Hong Wang, Xiaoping Liu, Yu-Chiao Chiang, Ming-His Kahlal, Samia Saillard, Jean-Yves Liu, C. W. TI Diselenophosphate-Induced Conversion of an Achiral [Cu20H11{S2P(OiPr)(2)}(9)] into a Chiral [Cu20H11{Se2P(OiPr)(2)}(9)] Polyhydrido Nanocluster SO ANGEWANDTE CHEMIE-INTERNATIONAL EDITION LA English DT Article DE copper; density functional calculations; hydrides; intrinsic chirality; neutron diffraction ID NEUTRON-DIFFRACTION ANALYSIS; PROTECTED GOLD CLUSTERS; LIGAND-EXCHANGE; RARE-EARTH; TRANSITION-METALS; HYDRIDE COMPLEXES; DONOR LIGANDS; NANOPARTICLES; SELENOLATE; REACTIVITY AB A polyhydrido copper nanocluster, [Cu20H11{Se2P(OiPr)(2)}(9)] (2(H)), which exhibits an intrinsically chiral inorganic core of C-3 symmetry, was synthesized from achiral [Cu20H11{S2P(OiPr)(2)}(9)] (1(H)) of C-3h symmetry by a ligand-exchange method. The structure has a distorted cuboctahedral Cu-13 core, two triangular faces of which are capped along the C-3 axis, one by a Cu-6 cupola and the other by a single Cu atom. The Cu-20 framework is further stabilized by 9 diselenophosphate and 11 hydride ligands. The number of hydride, phosphorus, and selenium resonances and their splitting patterns in multinuclear NMR spectra of 2(H) indicate that the chiral Cu20H11 core retains its C-3 symmetry in solution. The 11 hydride ligands were located by neutron diffraction experiments and shown to be capping (3)-H and interstitial (5)-H ligands (in square-pyramidal and trigonal-bipyramidal cavities), as supported by DFT calculations on [Cu20H11(Se2PH2)(9)] (2(H)) as a simplified model. C1 [Dhayal, Rajendra S.; Liao, Jian-Hong; Liu, C. W.] Natl Dong Hwa Univ, Dept Chem, Shoufeng 97401, Hualien, Taiwan. [Dhayal, Rajendra S.] Cent Univ Punjab, Ctr Chem Sci, Sch Basic & Appl Sci, Bathinda 151001, India. [Kahlal, Samia; Saillard, Jean-Yves] Univ Rennes 1, UMR CNRS, Inst Sci Chim Rennes 6226, F-35042 Rennes, France. [Wang, Xiaoping] Oak Ridge Natl Lab, Neutron Sci Directorate, Chem & Engn Mat Div, Oak Ridge, TN 37831 USA. [Liu, Yu-Chiao; Chiang, Ming-His] Acad Sinica, Inst Chem, Taipei 115, Taiwan. RP Liu, CW (reprint author), Natl Dong Hwa Univ, Dept Chem, 1,Sec 2,Da Hsueh Rd, Shoufeng 97401, Hualien, Taiwan. EM chenwei@mail.ndhu.edu.tw RI Chiang, Ming-Hsi/E-2044-2015; Wang, Xiaoping/E-8050-2012; liu, chenwei/B-6730-2016 OI Chiang, Ming-Hsi/0000-0002-7632-9369; Wang, Xiaoping/0000-0001-7143-8112; liu, chenwei/0000-0003-0801-6499 FU Ministry of Science and Technology of Taiwan [MOST 103-2113-M-259-003, 103-2739-M-213-001-MY3]; Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy FX This research was supported by the Ministry of Science and Technology of Taiwan (MOST 103-2113-M-259-003, 103-2739-M-213-001-MY3). Studies performed with the TOPAZ instrument of the ORNL Spallation Neutron Source were sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy. CCDC 1411898 (2H, X-ray), 1411337 (2H, neutron) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre. NR 76 TC 8 Z9 8 U1 9 U2 50 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 1433-7851 EI 1521-3773 J9 ANGEW CHEM INT EDIT JI Angew. Chem.-Int. Edit. PD NOV 9 PY 2015 VL 54 IS 46 BP 13604 EP 13608 DI 10.1002/anie.201506736 PG 5 WC Chemistry, Multidisciplinary SC Chemistry GA CV6QM UT WOS:000364395100019 PM 26387572 ER PT J AU Boota, M Paranthaman, MP Naskar, AK Li, YC Akato, K Gogotsi, Y AF Boota, M. Paranthaman, M. Parans Naskar, Amit K. Li, Yunchao Akato, Kokouvi Gogotsi, Y. TI Waste Tire Derived Carbon-Polymer Composite Paper as Pseudocapacitive Electrode with Long Cycle Life SO CHEMSUSCHEM LA English DT Article DE activated carbon; electrodes; polyaniline; supercapacitor; recycled carbon ID HIGH-PERFORMANCE SUPERCAPACITOR; ENERGY DENSITY SUPERCAPACITORS; POLYANILINE NANOWIRE ARRAYS; GRAPHENE OXIDE SHEETS; HIERARCHICAL NANOCOMPOSITES; HYDROTHERMAL CARBONIZATION; SUSPENSION ELECTRODES; FLOWABLE ELECTRODES; ION BATTERIES; STORAGE AB Recycling hazardous wastes to produce value-added products is becoming essential for the sustainable progress of our society. Herein, highly porous carbon (1625m(2)g(-1)) is synthesized using waste tires as the precursor and used as a supercapacitor electrode material. The narrow pore-size distribution and high surface area led to good charge storage capacity, especially when used as a three-dimensional nanoscaffold to polymerize polyaniline (PANI). The composite paper was highly flexible, conductive, and exhibited a capacitance of 480Fg(-1) at 1mVs(-1) with excellent capacitance retention of up to 98% after 10000 charge/discharge cycles. The high capacitance and long cycle life were ascribed to the short diffusional paths, uniform PANI coating, and tight confinement of the PANI in the inner pores of the tire-derived carbon through - interactions, which minimized the degradation of the PANI upon cycling. We anticipate that the same strategy can be applied to deposit other pseudocapacitive materials to achieve even higher electrochemical performance and longer cycle lifea key challenge for redox active polymers. C1 [Boota, M.; Gogotsi, Y.] Drexel Univ, AJ Drexel Nanomat Inst, Philadelphia, PA 19104 USA. [Boota, M.; Gogotsi, Y.] Drexel Univ, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA. [Paranthaman, M. Parans; Li, Yunchao] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Paranthaman, M. Parans; Naskar, Amit K.; Li, Yunchao] Univ Tennessee, Bredesen Ctr Interdisciplinary Res & Grad Educ, Knoxville, TN 37996 USA. [Naskar, Amit K.; Akato, Kokouvi] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Boota, M (reprint author), Drexel Univ, AJ Drexel Nanomat Inst, Philadelphia, PA 19104 USA. EM gogotsi@drexel.edu OI Li, Yunchao/0000-0001-5460-5855; Paranthaman, Mariappan/0000-0003-3009-8531 FU Laboratory Directed R&D Program and Technology Innovation Program of Oak Ridge National Laboratory; U.S. Department of Energy [DE-AC05-00OR22725]; Materials Sciences and Engineering Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy; Fluid Interface Reactions, Structures and Transport (FIRST) Center, an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences FX Recovery of carbon from the tire research was sponsored by the Laboratory Directed R&D Program and Technology Innovation Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. Department of Energy under Contract No. DE-AC05-00OR22725. The research (M.P.P., Y.L.) on modifying the carbon suitable for energy storage applications was sponsored by the Materials Sciences and Engineering Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy. Dr. Alexey Glushenkov is acknowledged for the TEM analysis. Kelsey B. Hatzell is thanked for useful discussion. Electrochemical characterization work at Drexel University was supported as part of the Fluid Interface Reactions, Structures and Transport (FIRST) Center, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. NR 41 TC 9 Z9 9 U1 12 U2 86 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 1864-5631 EI 1864-564X J9 CHEMSUSCHEM JI ChemSusChem PD NOV 9 PY 2015 VL 8 IS 21 BP 3576 EP 3581 DI 10.1002/cssc.201500866 PG 6 WC Chemistry, Multidisciplinary; GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY SC Chemistry; Science & Technology - Other Topics GA CV8IF UT WOS:000364525800005 PM 26404735 ER PT J AU Hong, T Niu, ZB Hu, XX Gmernicki, K Cheng, SW Fan, F Johnson, JC Hong, E Mahurin, S Jiang, DE Long, B Mays, J Sokolov, A Saito, T AF Hong, Tao Niu, Zhenbin Hu, Xunxiang Gmernicki, Kevin Cheng, Shiwang Fan, Fei Johnson, J. Casey Hong, Eunice Mahurin, Shannon Jiang, De-en Long, Brian Mays, Jimmy Sokolov, Alexei Saito, Tomonori TI Effect of Cross-Link Density on Carbon Dioxide Separation in Polydimethylsiloxane-Norbornene Membranes SO CHEMSUSCHEM LA English DT Article DE carbon dioxide; membranes; permeability; polymers; ring-opening metathesis polymerization ID GAS SEPARATION; POLY(DIMETHYLSILOXANE) NETWORKS; POSITRON-ANNIHILATION; SILICONE POLYMERS; PDMS MEMBRANES; FREE-VOLUME; PERMEABILITY; PERMEATION; PERFORMANCE; PERVAPORATION AB The development of high-performance materials for carbon dioxide separation and capture will significantly contribute to a solution for climate change. Herein, (bicycloheptenyl)ethyl-terminated polydimethylsiloxane (PDMSPNB) membranes with varied cross-link densities were synthesized via ring-opening metathesis polymerization. The developed polymer membranes show higher permeability and better selectivity than those of conventional cross-linked PDMS membrane. The achieved performance (CO2 permeability approximate to 6800Barrer; CO2/N-2 selectivity approximate to 14) is very promising for practical applications. The key to achieving this high performance is the use of an insitu cross-linking method for difunctional PDMS macromonomers, which provides lightly cross-linked membranes. By combining positron annihilation lifetime spectroscopy, broadband dielectric spectroscopy, and gas solubility measurements, key parameters necessary for achieving excellent performance have been elucidated. C1 [Hong, Tao; Gmernicki, Kevin; Fan, Fei; Hong, Eunice; Long, Brian; Mays, Jimmy; Sokolov, Alexei] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. [Niu, Zhenbin; Cheng, Shiwang; Johnson, J. Casey; Mahurin, Shannon; Mays, Jimmy; Sokolov, Alexei; Saito, Tomonori] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Hu, Xunxiang] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Jiang, De-en] Univ Calif, Dept Chem, Riverside, CA 92521 USA. RP Hong, T (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RI Cheng, Shiwang/F-8371-2016; Saito, Tomonori/M-1735-2016; Hu, Xunxiang/N-3267-2016; Jiang, De-en/D-9529-2011 OI Saito, Tomonori/0000-0002-4536-7530; Hu, Xunxiang/0000-0002-4271-2327; Jiang, De-en/0000-0001-5167-0731 FU Laboratory Directed Research and Development Program of Oak Ridge National Laboratory; U.S. Department of Energy [DE-AC05-00OR22725] FX This research was sponsored by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. Department of Energy. We also thank Dr. Sabornie Chatterjee, Dr. Nam-goo Kang, Hongbo Feng, and Wei Lu for discussions of the experimental results, and we thank Sophia Lai for designing the graphical abstract figure. This manuscript has been authored by UT-Battelle, LLC under contract no. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan(http://energy.gov/downloads/doe-public-access-plan). NR 52 TC 2 Z9 2 U1 2 U2 18 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 1864-5631 EI 1864-564X J9 CHEMSUSCHEM JI ChemSusChem PD NOV 9 PY 2015 VL 8 IS 21 BP 3595 EP 3604 DI 10.1002/cssc.201500903 PG 10 WC Chemistry, Multidisciplinary; GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY SC Chemistry; Science & Technology - Other Topics GA CV8IF UT WOS:000364525800009 PM 26482115 ER PT J AU Mathias, PM Zheng, F Heldebrant, DJ Zwoster, A Whyatt, G Freeman, CM Bearden, MD Koech, P AF Mathias, Paul M. Zheng, Feng Heldebrant, David J. Zwoster, Andy Whyatt, Greg Freeman, Charles M. Bearden, Mark D. Koech, Phillip TI Measuring the Absorption Rate of CO2 in Nonaqueous CO2-Binding Organic Liquid Solvents with a Wetted-Wall Apparatus SO CHEMSUSCHEM LA English DT Article DE absorption; carbon dioxide; ionic liquids; kinetics; solvent effects ID IONIC LIQUIDS; CARBON-DIOXIDE; LOW-VISCOSITY; CAPTURE; ALKANOLAMINES; PIPERAZINE; SOLUBILITY; DESIGN AB The kinetics of the absorption of CO2 into two nonaqueous CO2-binding organic liquid (CO2BOL) solvents were measured at T=35, 45, and 55 degrees C with a wetted-wall column. Selected CO2 loadings were run with a so-called first-generation CO2BOL, comprising an independent base and alcohol, and a second-generation CO2BOL, in which the base and alcohol were conjoined. Liquid-film mass-transfer coefficient (k(g)) values for both solvents were measured to be comparable to values for monoethanolamine and piperazine aqueous solvents under a comparable driving force, in spite of far higher solution viscosities. An inverse temperature dependence of the k(g) value was also observed, which suggests that the physical solubility of CO2 in organic liquids may be making CO2 mass transfer faster than expected. Aspen Plus software was used to model the kinetic data and compare the CO2 absorption behavior of nonaqueous solvents with that of aqueous solvent platforms. This work continues our development of the CO2BOL solvents. Previous work established the thermodynamic properties related to CO2 capture. The present paper quantitatively studies the kinetics of CO2 capture and develops a rate-based model. C1 [Zheng, Feng; Heldebrant, David J.; Zwoster, Andy; Whyatt, Greg; Freeman, Charles M.; Bearden, Mark D.; Koech, Phillip] Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA. [Mathias, Paul M.] Fluor Corp, Proc Technol, Aliso Viejo, CA 92698 USA. RP Mathias, PM (reprint author), Fluor Corp, Proc Technol, 3 Polaris Way, Aliso Viejo, CA 92698 USA. EM david.heldebrant@pnnl.gov RI Zheng, Feng/C-7678-2009 OI Zheng, Feng/0000-0002-5427-1303 FU Department of Energy's Office of Fossil Energy [FWP-65872] FX The authors would like to acknowledge the Department of Energy's Office of Fossil Energy for funding, award number FWP-65872, and Aboyjit Bhown (Electric Power Research Institute) for fruitful discussions. Pacific Northwest National Laboratory is proudly operated by Battelle for the United States Department of Energy. NR 30 TC 6 Z9 6 U1 7 U2 26 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 1864-5631 EI 1864-564X J9 CHEMSUSCHEM JI ChemSusChem PD NOV 9 PY 2015 VL 8 IS 21 BP 3617 EP 3625 DI 10.1002/cssc.201500288 PG 9 WC Chemistry, Multidisciplinary; GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY SC Chemistry; Science & Technology - Other Topics GA CV8IF UT WOS:000364525800011 PM 26377774 ER PT J AU Li, MJ Tumuluri, U Wu, ZL Dai, S AF Li, Meijun Tumuluri, Uma Wu, Zili Dai, Sheng TI Effect of Dopants on the Adsorption of Carbon Dioxide on Ceria Surfaces SO CHEMSUSCHEM LA English DT Article DE cerium; copper; doping; raman spectroscopy; surface chemistry ID CO2 CAPTURE; CATALYTIC-ACTIVITY; CEO2 NANOCRYSTALS; ACID-BASE; STRUCTURE DEPENDENCE; REDOX PROPERTIES; SEPARATION; OXIDATION; SITES; SPECTROSCOPY AB High-surface-area nanosized CeO2 and M-doped CeO2 (M=Cu, La, Zr, and Mg) prepared by a surfactant-templated method were tested for CO2 adsorption. Cu, La, and Zr are doped into the lattice of CeO2, whereas Mg is dispersed on the CeO2 surface. The doping of Cu and La into CeO2 leads to an increase of the CO2 adsorption capacity, whereas the doping of Zr has little or no effect. The addition of Mg causes a decrease of the CO2 adsorption capacity at a low Mg content and a gradual increase at a higher content. The CO2 adsorption capacity follows the sequence Cu-CeO2>La-CeO2>Zr-CeO2 approximate to CeO2>Mg-CeO2 at low dopant contents, in line with the relative amount of defect sites in the samples. It is the defect sites on the surface, not in the bulk of CeO2, modified by the dopants that play the vital role in CO2 chemisorption. The role of surface oxygen vacancies is further supported by an insitu IR spectroscopic study of the surface chemistry during CO2 adsorption on the doped CeO2. C1 [Tumuluri, Uma; Wu, Zili; Dai, Sheng] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Li, Meijun; Dai, Sheng] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. RP Wu, ZL (reprint author), Oak Ridge Natl Lab, Div Chem Sci, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM wuz1@ornl.gov; dais@ornl.gov RI Dai, Sheng/K-8411-2015 OI Dai, Sheng/0000-0002-8046-3931 FU Center for Understanding and Control of Acid Gas-Induced Evolution of Materials for Energy (UNCAGE-ME), an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Basic Energy Sciences FX This work is supported by the Center for Understanding and Control of Acid Gas-Induced Evolution of Materials for Energy (UNCAGE-ME), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences. Part of the work including the IR and Raman was conducted at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility. NR 44 TC 5 Z9 5 U1 16 U2 53 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 1864-5631 EI 1864-564X J9 CHEMSUSCHEM JI ChemSusChem PD NOV 9 PY 2015 VL 8 IS 21 BP 3651 EP 3660 DI 10.1002/cssc.201500899 PG 10 WC Chemistry, Multidisciplinary; GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY SC Chemistry; Science & Technology - Other Topics GA CV8IF UT WOS:000364525800015 PM 26403156 ER PT J AU Liu, B Xu, W Yan, PF Bhattacharya, P Cao, RG Bowden, ME Engelhard, MH Wang, CM Zhang, JG AF Liu, Bin Xu, Wu Yan, Pengfei Bhattacharya, Priyanka Cao, Ruiguo Bowden, Mark E. Engelhard, Mark H. Wang, Chong-Min Zhang, Ji-Guang TI InSitu-Grown ZnCo2O4 on Single-Walled Carbon Nanotubes as Air Electrode Materials for Rechargeable Lithium-Oxygen Batteries SO CHEMSUSCHEM LA English DT Article DE carbon; electrochemistry; heterogeneous catalysis; lithium; nanostructures ID NONAQUEOUS LI-O-2 BATTERIES; X-RAY PHOTOELECTRON; BIFUNCTIONAL CATALYST; PERFORMANCE; SPECTROSCOPY; REDUCTION; ELECTROCATALYST; NANOPARTICLES; NANOFLAKES; STABILITY AB The development of highly efficient catalysts is critical for the practical application of lithium-oxygen (Li-O-2) batteries. Nanosheet-assembled ZnCo2O4 (ZCO) microspheres and thin films grown insitu on single-walled carbon nanotube (ZCO/SWCNT) composites as high-performance air electrode materials for Li-O-2 batteries are reported. The insitu grown ZCO/SWCNT electrodes delivered high discharge capacities, decreased the onset of the oxygen evolution reaction by 0.9V during the charging process, and led to longer cycling stability. These results indicate that insitu grown ZCO/SWCNT composites can be used as highly efficient air electrode materials for oxygen reduction and evolution reactions. The enhanced catalytic activity displayed by the uniformly dispersed ZCO catalyst on nanostructured electrodes is expected to inspire further development of other catalyzed electrodes for Li-O-2 batteries and other applications. C1 [Liu, Bin; Xu, Wu; Bhattacharya, Priyanka; Cao, Ruiguo; Zhang, Ji-Guang] Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99354 USA. [Yan, Pengfei; Bowden, Mark E.; Engelhard, Mark H.; Wang, Chong-Min] Pacific NW Natl Lab, Environm & Mol Sci Lab, Richland, WA 99354 USA. RP Liu, B (reprint author), Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99354 USA. EM wu.xu@pnnl.gov; jiguang.zhang@pnnl.gov RI yan, pengfei/E-4784-2016; Cao, Ruiguo/O-7354-2016; Liu, Bin/J-6942-2012; OI yan, pengfei/0000-0001-6387-7502; Liu, Bin/0000-0001-8797-3275; Engelhard, Mark/0000-0002-5543-0812 FU Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies, of the U.S. Department of Energy (DOE) as part of Battery Materials Research (BMR) program; DOE's Office of Biological and Environmental Research (BER); Linus Pauling Distinguished Postdoctoral Fellowship of PNNL; DOE [DE-AC05-76RLO1830] FX This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies, of the U.S. Department of Energy (DOE) as part of Battery Materials Research (BMR) program. The microscopy and electrospectroscopy characterizations were conducted in the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL)-a national scientific user facility located at PNNL, which is sponsored by the DOE's Office of Biological and Environmental Research (BER). P.B. gratefully acknowledges support from the Linus Pauling Distinguished Postdoctoral Fellowship of PNNL. PNNL is operated by Battelle for the DOE under contract DE-AC05-76RLO1830. NR 43 TC 8 Z9 8 U1 10 U2 89 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 1864-5631 EI 1864-564X J9 CHEMSUSCHEM JI ChemSusChem PD NOV 9 PY 2015 VL 8 IS 21 BP 3697 EP 3703 DI 10.1002/cssc.201500636 PG 7 WC Chemistry, Multidisciplinary; GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY SC Chemistry; Science & Technology - Other Topics GA CV8IF UT WOS:000364525800020 PM 26457378 ER PT J AU Burakovsky, L Burakovsky, N Preston, DL AF Burakovsky, L. Burakovsky, N. Preston, D. L. TI Ab initio melting curve of osmium SO PHYSICAL REVIEW B LA English DT Article ID EQUATION-OF-STATE; GOLD AB The melting curve of osmium up to a pressure P of 500 GPa is obtained from an extensive suite of ab initio quantum molecular dynamics (QMD) simulations using the Z method. The ab initio P = 0 melting point of Os is 3370 +/- 75 K; this range encompasses all of the available data in the literature and corroborates the conclusion of J. W. Arblaster [Platinum Metals Rev. 49, 166 (2005)] that the melting temperature of pure Os is 3400 +/- 50 K and that the 3300 K typically quoted in the literature is the melting point of impure Os. The T = 0 equation of state (EOS) of Os and the P dependence of the optimized c/a ratio for the hexagonal unit cell, both to pressures similar to 900 GPa, are obtained in the ab initio approach as validation of its use. Although excellent agreement with the available experimental data (P less than or similar to 80 GPa) is found, it is the third-order Birch-Murnaghan EOS with B-0' = 5 rather than the more widely accepted B-0' = 4 that describes the QMD data to higher pressures, in agreement with the more recent experimental EOS by Godwal et al. The theoretical melting curve of Os obtained earlier by Joshi et al. is shown to be inconsistent with our QMD results, and the possible reason for this discrepancy is suggested. Regularities in the melting curves of Os and five other third-row transition metals (Ta, W, Re, Pt, Au) could be used to estimate the currently unknown melting curves of Hf and Ir. C1 [Burakovsky, L.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Burakovsky, N.; Preston, D. L.] Los Alamos Natl Lab, Computat Phys Div, Los Alamos, NM 87545 USA. RP Burakovsky, L (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. FU U.S. DOE/NNSA FX The work was done under the auspices of the U.S. DOE/NNSA. The QMD calculations were performed on the LANL clusters Conejo and Mapache. NR 36 TC 2 Z9 2 U1 3 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD NOV 9 PY 2015 VL 92 IS 17 AR 174105 DI 10.1103/PhysRevB.92.174105 PG 7 WC Physics, Condensed Matter SC Physics GA CV6TA UT WOS:000364402400001 ER PT J AU Matters, DA Fotiades, N Carroll, JJ Chiara, CJ McClory, JW Kawano, T Nelson, RO Devlin, M AF Matters, D. A. Fotiades, N. Carroll, J. J. Chiara, C. J. McClory, J. W. Kawano, T. Nelson, R. O. Devlin, M. TI New transitions and feeding of the J(pi) = (8(+)) isomer in Re-186 SO PHYSICAL REVIEW C LA English DT Article ID NUCLEAR-DATA SHEETS; NEUTRON; NUCLEOSYNTHESIS; TA-180(M) AB The spallation neutron source at the Los Alamos Neutron Science Center Weapons Neutron Research facility was used to populate excited states in Re-186 via (n, 2n gamma) reactions on an enriched Re-187 target. Gamma rays were detected with the GErmanium Array for Neutron Induced Excitations spectrometer, a Compton-suppressed array of 18 HPGe detectors. Incident neutron energies were determined by the time-of-flight technique and used to obtain gamma-ray excitation functions for the purpose of identifying. rays by reaction channel. Analysis of the singles gamma-ray spectrum gated on the neutron energy range 10 <= E-n <= 25 MeV resulted in five transitions and one level added to the 186Re level scheme. The additions include the placement of three. rays at 266.7, 381.2, and 647.7 keV which have been identified as feeding the 2.0x10(5) yr, J(pi) = (8(+)) isomer and yield an improved value of 148.2(5) keV for the isomer energy. These transitions may have astrophysical implications related to the use of the Re-Os cosmochronometer. C1 [Matters, D. A.; McClory, J. W.] Air Force Inst Technol, Wright Patterson AFB, OH 45433 USA. [Fotiades, N.; Kawano, T.; Nelson, R. O.; Devlin, M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Carroll, J. J.] US Army Res Lab, Adelphi, MD 20783 USA. [Chiara, C. J.] US Army Res Lab, Oak Ridge Associated Univ Fellowship Program, Adelphi, MD 20783 USA. RP Matters, DA (reprint author), Air Force Inst Technol, Wright Patterson AFB, OH 45433 USA. EM david.matters@afit.edu RI Devlin, Matthew/B-5089-2013; OI Devlin, Matthew/0000-0002-6948-2154; Fotiadis, Nikolaos/0000-0003-1410-3871 FU U.S. Department of Energy [DE-AC52-06NA25396]; Army Research Laboratory [W911NF-12-2-0019]; Ecopulse, Inc. under ARL [W911QX09D0016-0004]; Defense Threat Reduction Agency; Domestic Nuclear Detection Office of the Department of Homeland Security FX This work was supported by the U.S. Department of Energy and has benefited from use of the LANSCE accelerator facility under Contract No. DE-AC52-06NA25396. This work was also supported by the Army Research Laboratory under Cooperative Agreement No. W911NF-12-2-0019. Target samples were provided by Ecopulse, Inc. under ARL Contract No. W911QX09D0016-0004. Additional funding was provided by the Defense Threat Reduction Agency and the Domestic Nuclear Detection Office of the Department of Homeland Security. NR 26 TC 2 Z9 2 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 EI 1089-490X J9 PHYS REV C JI Phys. Rev. C PD NOV 9 PY 2015 VL 92 IS 5 AR 054304 DI 10.1103/PhysRevC.92.054304 PG 7 WC Physics, Nuclear SC Physics GA CV6VL UT WOS:000364409600006 ER PT J AU Krog, J Hill, CT AF Krog, Jens Hill, Christopher T. TI Is the Higgs boson composed of neutrinos? SO PHYSICAL REVIEW D LA English DT Article ID ELECTROWEAK SYMMETRY-BREAKING; TOP-QUARK CONDENSATION; STANDARD MODEL; FIXED-POINTS; MASS; PREDICTIONS; COLLIDER AB We show that conventional Higgs compositeness conditions can be achieved by the running of large Higgs-Yukawa couplings involving right-handed neutrinos that become active at similar to 10(13)-10(14) GeV. Together with a somewhat enhanced quartic coupling arising by a Higgs portal interaction to a dark matter sector, we can obtain a Higgs boson composed of neutrinos. This is a "next-to-minimal" dynamical electroweak symmetry breaking scheme. C1 [Krog, Jens] Univ Southern Denmark, Origins CP3, DK-5230 Odense M, Denmark. [Hill, Christopher T.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Krog, J (reprint author), Univ Southern Denmark, Origins CP3, Campusvej 55, DK-5230 Odense M, Denmark. EM krog@cp3-origins.net; hill@fnal.gov FU United States Department of Energy [DE-AC02-07CH11359]; Danish National Research Foundation [DNRF:90] FX This work was done at Fermilab operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy. J. K. is partially supported by the Danish National Research Foundation under Grant No. DNRF:90. NR 71 TC 1 Z9 1 U1 4 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD NOV 9 PY 2015 VL 92 IS 9 AR 093005 DI 10.1103/PhysRevD.92.093005 PG 9 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CV6WA UT WOS:000364411300002 ER PT J AU Taverniers, S Haut, TS Barros, K Alexander, FJ Lookman, T AF Taverniers, Soren Haut, Terry S. Barros, Kipton Alexander, Francis J. Lookman, Turab TI Physics-based statistical learning approach to mesoscopic model selection SO PHYSICAL REVIEW E LA English DT Article ID ISING-MODEL; EQUATION; SYSTEMS; ERROR AB In materials science and many other research areas, models are frequently inferred without considering their generalization to unseen data. We apply statistical learning using cross-validation to obtain an optimally predictive coarse-grained description of a two-dimensional kinetic nearest-neighbor Ising model with Glauber dynamics (GD) based on the stochastic Ginzburg-Landau equation (sGLE). The latter is learned from GD "training" data using a log-likelihood analysis, and its predictive ability for various complexities of the model is tested on GD "test" data independent of the data used to train the model on. Using two different error metrics, we perform a detailed analysis of the error between magnetization time trajectories simulated using the learned sGLE coarse-grained description and those obtained using the GD model. We show that both for equilibrium and out-of-equilibrium GD training trajectories, the standard phenomenological description using a quartic free energy does not always yield the most predictive coarse-grained model. Moreover, increasing the amount of training data can shift the optimal model complexity to higher values. Our results are promising in that they pave the way for the use of statistical learning as a general tool for materials modeling and discovery. C1 [Taverniers, Soren] Univ Calif San Diego, Dept Mech & Aerosp Engn, La Jolla, CA 92093 USA. [Haut, Terry S.; Alexander, Francis J.] Los Alamos Natl Lab, Comp Computat & Stat Sci Div, Los Alamos, NM 87545 USA. [Barros, Kipton; Lookman, Turab] Los Alamos Natl Lab, Theoret Div, Los Alamos, NM 87545 USA. RP Taverniers, S (reprint author), Univ Calif San Diego, Dept Mech & Aerosp Engn, 9500 Gilman Dr, La Jolla, CA 92093 USA. OI Barros, Kipton/0000-0002-1333-5972 FU U.S. Department of Energy by Los Alamos National Laboratory (LANL) [LA-UR-15-23538, DE-AC52-06NA25396]; Laboratory Directed Research and Development (LDRD) [20140013DR] FX This work, LA-UR-15-23538, was carried out under the auspices of the U.S. Department of Energy by Los Alamos National Laboratory (LANL) under Contract No. DE-AC52-06NA25396, and was supported by Laboratory Directed Research and Development (LDRD) Project No. 20140013DR. Numerical simulations were performed using a hybrid C++/Python code run on LANL computing facilities. The authors would also like to thank Avadh Saxena for helpful discussions. NR 17 TC 1 Z9 1 U1 1 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 EI 1550-2376 J9 PHYS REV E JI Phys. Rev. E PD NOV 9 PY 2015 VL 92 IS 5 AR 053301 DI 10.1103/PhysRevE.92.053301 PG 11 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA CV6WQ UT WOS:000364412900020 PM 26651810 ER PT J AU Petit, L Paudyal, D Mudryk, Y Gschneidner, KA Pecharsky, VK Luders, M Szotek, Z Banerjee, R Staunton, JB AF Petit, L. Paudyal, D. Mudryk, Y. Gschneidner, K. A. Pecharsky, V. K. Lueders, M. Szotek, Z. Banerjee, R. Staunton, J. B. TI Complex Magnetism of Lanthanide Intermetallics and the Role of their Valence Electrons: Ab Initio Theory and Experiment SO PHYSICAL REVIEW LETTERS LA English DT Article ID SELF-INTERACTION CORRECTION; CSCL TYPE COMPOUNDS; 1ST-PRINCIPLES THEORY; FERMI SURFACES; GDM COMPOUNDS; RARE-EARTHS; METALS; EXCHANGE; SYSTEMS; TEMPERATURES AB We explain a profound complexity of magnetic interactions of some technologically relevant gadolinium intermetallics using an ab initio electronic structure theory which includes disordered local moments and strong f-electron correlations. The theory correctly finds GdZn and GdCd to be simple ferromagnets and predicts a remarkably large increase of Curie temperature with a pressure of +1.5Kkbar(-1) for GdCd confirmed by our experimental measurements of +1.6 Kkbar(-1). Moreover, we find the origin of a ferromagnetic-antiferromagnetic competition in GdMg manifested by noncollinear, canted magnetic order at low temperatures. Replacing 35% of the Mg atoms with Zn removes this transition, in excellent agreement with long-standing experimental data. C1 [Petit, L.; Lueders, M.; Szotek, Z.] SERC, Daresbury Lab, Warrington WA4 4AD, Cheshire, England. [Paudyal, D.; Mudryk, Y.; Gschneidner, K. A.; Pecharsky, V. K.] Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. [Gschneidner, K. A.; Pecharsky, V. K.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. [Banerjee, R.; Staunton, J. B.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. RP Petit, L (reprint author), SERC, Daresbury Lab, Warrington WA4 4AD, Cheshire, England. EM j.b.staunton@warwick.ac.uk RI Petit, Leon/B-5255-2008 FU United Kingdom EPSRC [EP/J06750/1]; EPSRC; Scientific Computing Department of STFC; Materials Sciences and Engineering Division of the Office of Basic Energy Sciences of the U.S. Department of Energy [DE-AC02-07CH11358]; Iowa State University FX We acknowledge the late W. M. Temmerman for valuable and insightful discussions during the early stages of this work. The work was supported by the United Kingdom EPSRC by Grant No. EP/J06750/1 and an EPSRC service level agreement with the Scientific Computing Department of STFC. Work at Ames Laboratory was supported by the Materials Sciences and Engineering Division of the Office of Basic Energy Sciences of the U.S. Department of Energy under Contract No. DE-AC02-07CH11358 with Iowa State University. NR 46 TC 1 Z9 1 U1 4 U2 29 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 9 PY 2015 VL 115 IS 20 AR 207201 DI 10.1103/PhysRevLett.115.207201 PG 5 WC Physics, Multidisciplinary SC Physics GA CV6XA UT WOS:000364413900017 PM 26613466 ER PT J AU Karve, AA Alexoff, D Kim, D Schueller, MJ Ferrieri, RA Babst, BA AF Karve, Abhijit A. Alexoff, David Kim, Dohyun Schueller, Michael J. Ferrieri, Richard A. Babst, Benjamin A. TI In vivo quantitative imaging of photoassimilate transport dynamics and allocation in large plants using a commercial positron emission tomography (PET) scanner SO BMC PLANT BIOLOGY LA English DT Article DE Carbon allocation; Positron emission tomography (PET); Transport; Imaging; Carbon 11 (C-11) ID CARBON-DIOXIDE; LEAF PHOTOSYNTHESIS; SYSTEM; PERFORMANCE; METABOLISM; DESIGN; TRACER; TISSUE; IMAGER; EXPORT AB Background: Although important aspects of whole-plant carbon allocation in crop plants (e.g., to grain) occur late in development when the plants are large, techniques to study carbon transport and allocation processes have not been adapted for large plants. Positron emission tomography (PET), developed for dynamic imaging in medicine, has been applied in plant studies to measure the transport and allocation patterns of carbohydrates, nutrients, and phytohormones labeled with positron-emitting radioisotopes. However, the cost of PET and its limitation to smaller plants has restricted its use in plant biology. Here we describe the adaptation and optimization of a commercial clinical PET scanner to measure transport dynamics and allocation patterns of C-11-photoassimilates in large crops. Results: Based on measurements of a phantom, we optimized instrument settings, including use of 3-D mode and attenuation correction to maximize the accuracy of measurements. To demonstrate the utility of PET, we measured C-11-photoassimilate transport and allocation in Sorghum bicolor, an important staple crop, at vegetative and reproductive stages (40 and 70 days after planting; DAP). The C-11-photoassimilate transport speed did not change over the two developmental stages. However, within a stem, transport speeds were reduced across nodes, likely due to higher C-11-photoassimilate unloading in the nodes. Photosynthesis in leaves and the amount of C-11 that was exported to the rest of the plant decreased as plants matured. In young plants, exported C-11 was allocated mostly (88 %) to the roots and stem, but in flowering plants (70 DAP) the majority of the exported C-11 (64 %) was allocated to the apex. Conclusions: Our results show that commercial PET scanners can be used reliably to measure whole-plant C-allocation in large plants nondestructively including, importantly, allocation to roots in soil. This capability revealed extreme changes in carbon allocation in sorghum plants, as they advanced to maturity. Further, our results suggest that nodes may be important control points for photoassimilate distribution in crops of the family Poaceae. Quantifying real-time carbon allocation and photoassimilate transport dynamics, as demonstrated here, will be important for functional genomic studies to unravel the mechanisms controlling phloem transport in large crop plants, which will provide crucial insights for improving yields. C1 [Karve, Abhijit A.; Alexoff, David; Kim, Dohyun; Schueller, Michael J.; Ferrieri, Richard A.; Babst, Benjamin A.] Brookhaven Natl Lab, Biol Environm & Climate Sci Dept, Upton, NY 11973 USA. RP Karve, AA (reprint author), Purdue Res Fdn, W Lafayette, IN 47906 USA. EM abhikarve@gmail.com OI Babst, Benjamin/0000-0001-5657-0633 FU U.S. Department of Energy (DOE) [DE-AC02-98CH10886, MO094] FX We thank Ismail Dweikat for providing the grain sorghum seeds. We would also like to thank James Anselmini and Jeff Hoogsteden for help with building the tube for whole plant PET imaging system. This article has been authored by Brookhaven Science Associates, LLC under contracts DE-AC02-98CH10886 (Radiochemistry SFA) and MO094 (a Plant Feedstock Genomics for Bioenergy grant) with the U.S. Department of Energy (DOE), which supported the authors in this effort, and a Goldhaber Distinguished Fellowship [to B.A.B.]. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. NR 39 TC 2 Z9 2 U1 9 U2 22 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1471-2229 J9 BMC PLANT BIOL JI BMC Plant Biol. PD NOV 9 PY 2015 VL 15 AR 273 DI 10.1186/s12870-015-0658-3 PG 11 WC Plant Sciences SC Plant Sciences GA CV5AP UT WOS:000364277900001 PM 26552889 ER PT J AU Lau, C Moehlenbrock, MJ Arechederra, RL Falase, A Garcia, K Rincon, R Minteer, SD Banta, S Gupta, G Babanova, S Atanassov, P AF Lau, Carolin Moehlenbrock, Michael J. Arechederra, Robert L. Falase, Akinbayowa Garcia, Kristen Rincon, Rosalba Minteer, Shelley D. Banta, Scott Gupta, Gautam Babanova, Sofia Atanassov, Plamen TI Paper based biofuel cells: Incorporating enzymatic cascades for ethanol and methanol oxidation SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY LA English DT Article; Proceedings Paper CT 2nd Euro-Mediterranean-Hydrogen-Technologies-Conference (EmHyTeC 2014) CY DEC 09-12, 2014 CL Taormina, ITALY DE Enzymatic fuel cells; Methanol; Ethanol; Enzyme cascade; Paper-based fuel cells ID BUCKY PAPERS; MEMBRANES; GLYCEROL; ENZYMES AB Here we developed a flow-based system resulting in improved performance of enzyme cascade-based biofuel cells. A paper-based biofuel cell with passive laminar flow was build to show the impact of flow on the performance of two different enzyme cascades methanol and ethanol cascade. Both cascades demonstrated enhanced electrochemical output as a consequence of the decreased diffusion path of reaction intermediates identifying the intermediates diffusion in between enzymatic active sites as the rate limiting step in cascade operating systems. Copyright (C) 2015, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved. C1 [Lau, Carolin; Falase, Akinbayowa; Garcia, Kristen; Rincon, Rosalba; Babanova, Sofia; Atanassov, Plamen] Univ New Mexico, Ctr Microengn Mat, Dept Chem & Biol Engn, Adv Mat Lab, Albuquerque, NM 87131 USA. [Minteer, Shelley D.] Univ Utah, Dept Chem & Mat Sci, Salt Lake City, UT 84112 USA. [Moehlenbrock, Michael J.; Arechederra, Robert L.] St Louis Univ, Dept Chem, St Louis, MO 63103 USA. [Banta, Scott] Columbia Univ, Dept Chem Engn, New York, NY 10027 USA. [Gupta, Gautam] Los Alamos Natl Lab, Ctr Integrated Nanoechnol, Los Alamos, NM USA. [Gupta, Gautam] Los Alamos Natl Lab, MPA 11, Los Alamos, NM USA. RP Atanassov, P (reprint author), Univ New Mexico, Ctr Microengn Mat, Dept Chem & Biol Engn, Adv Mat Lab, Albuquerque, NM 87131 USA. EM plamen@unm.edu RI Minteer, Shelley/C-4751-2014 OI Minteer, Shelley/0000-0002-5788-2249 FU Air Force Office of Scientific Research [FA9550-12-1-0112] FX The authors would like to thank the Air Force Office of Scientific Research (Grant #FA9550-12-1-0112) for funding this collaborative project. NR 23 TC 2 Z9 2 U1 10 U2 35 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-3199 EI 1879-3487 J9 INT J HYDROGEN ENERG JI Int. J. Hydrog. Energy PD NOV 9 PY 2015 VL 40 IS 42 SI SI BP 14661 EP 14666 DI 10.1016/j.ijhydene.2015.06.108 PG 6 WC Chemistry, Physical; Electrochemistry; Energy & Fuels SC Chemistry; Electrochemistry; Energy & Fuels GA CV4SH UT WOS:000364256300025 ER PT J AU Mao, JH Langley, SA Huang, YR Hang, M Bouchard, KE Celniker, SE Brown, JB Jansson, JK Karpen, GH Snijders, AM AF Mao, Jian-Hua Langley, Sasha A. Huang, Yurong Hang, Michael Bouchard, Kristofer E. Celniker, Susan E. Brown, James B. Jansson, Janet K. Karpen, Gary H. Snijders, Antoine M. TI Identification of genetic factors that modify motor performance and body weight using Collaborative Cross mice SO SCIENTIFIC REPORTS LA English DT Article ID GENOME-WIDE ASSOCIATION; ALZHEIMERS-DISEASE; PARKINSONS-DISEASE; SEQUENCE VARIANTS; NORTH INDIANS; LOCI; OBESITY; SUSCEPTIBILITY; TRAITS; POPULATION AB Evidence has emerged that suggests a link between motor deficits, obesity and many neurological disorders. However, the contributing genetic risk factors are poorly understood. Here we used the Collaborative Cross (CC), a large panel of newly inbred mice that captures 90% of the known variation among laboratory mice, to identify the genetic loci controlling rotarod performance and its relationship with body weight in a cohort of 365 mice across 16 CC strains. Body weight and rotarod performance varied widely across CC strains and were significantly negatively correlated. Genetic linkage analysis identified 14 loci that were associated with body weight. However, 45 loci affected rotarod performance, seven of which were also associated with body weight, suggesting a strong link at the genetic level. Lastly, we show that genes identified in this study overlap significantly with those related to neurological disorders and obesity found in human GWA studies. In conclusion, our results provide a genetic framework for studies of the connection between body weight, the central nervous system and behavior. C1 [Mao, Jian-Hua; Langley, Sasha A.; Huang, Yurong; Hang, Michael; Bouchard, Kristofer E.; Celniker, Susan E.; Brown, James B.; Karpen, Gary H.; Snijders, Antoine M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. [Jansson, Janet K.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. [Snijders, Antoine M.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. RP Mao, JH (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. EM JHMao@lbl.gov; AMSnijders@lbl.gov FU Low Dose Scientific Focus Area, Office of Biological and Environmental Research, U.S. Department of Energy [DE AC02-05CH11231]; Lawrence Berkeley National Laboratory Directed Research and Development (LDRD) program [DE AC02-05CH11231]; Office of Naval Research under ONR [N0001415IP00021] FX This work was supported by the Low Dose Scientific Focus Area, Office of Biological and Environmental Research, U.S. Department of Energy under Contract No. DE AC02-05CH11231 to G.H.K. (principle investigator) and J.H.M., A.M.S. (co-principle investigators), Lawrence Berkeley National Laboratory Directed Research and Development (LDRD) program funding under Contract No. DE AC02-05CH11231 to S.E.C. and J.B.B. (co-principle investigators), G.H.K., J.H.M., A.M.S. and funding from the Office of Naval Research under ONR contract N0001415IP00021 to J.K.J. (principle investigator) and J.H.M., A.M.S. (co-principle investigators). NR 40 TC 2 Z9 2 U1 2 U2 5 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD NOV 9 PY 2015 VL 5 AR 16247 DI 10.1038/srep16247 PG 9 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CV5GX UT WOS:000364298200001 PM 26548763 ER PT J AU Song, G Sun, ZQ Li, L Xu, XD Rawlings, M Liebscher, CH Clausen, B Poplawsky, J Leonard, DN Huang, SY Teng, ZK Liu, CT Asta, MD Gao, YF Dunand, DC Ghosh, G Chen, MW Fine, ME Liaw, PK AF Song, Gian Sun, Zhiqian Li, Lin Xu, Xiandong Rawlings, Michael Liebscher, Christian H. Clausen, Bjorn Poplawsky, Jonathan Leonard, Donovan N. Huang, Shenyan Teng, Zhenke Liu, Chain T. Asta, Mark D. Gao, Yanfei Dunand, David C. Ghosh, Gautam Chen, Mingwei Fine, Morris E. Liaw, Peter K. TI Ferritic Alloys with Extreme Creep Resistance via Coherent Hierarchical Precipitates SO SCIENTIFIC REPORTS LA English DT Article ID LONG-TERM CREEP; GRAIN-BOUNDARY DIFFUSION; HIGH-TEMPERATURE CREEP; COAL POWER-PLANTS; NI-CR ALLOYS; DEFORMATION MECHANISMS; NEUTRON-DIFFRACTION; ELEVATED-TEMPERATURES; STRENGTHENED ALLOYS; RUPTURE STRENGTH AB There have been numerous efforts to develop creep-resistant materials strengthened by incoherent particles at high temperatures and stresses in response to future energy needs for steam turbines in thermal-power plants. However, the microstructural instability of the incoherent-particle-strengthened ferritic steels limits their application to temperatures below 900 K. Here, we report a novel ferritic alloy with the excellent creep resistance enhanced by coherent hierarchical precipitates, using the integrated experimental (transmission-electron microscopy/scanning-transmission-electron microscopy, in-situ neutron diffraction, and atom-probe tomography) and theoretical (crystalplasticity finite-element modeling) approaches. This alloy is strengthened by nano-scaled L2(1)-Ni2TiAl (Heusler phase)-based precipitates, which themselves contain coherent nano-scaled B2 zones. These coherent hierarchical precipitates are uniformly distributed within the Fe matrix. Our hierarchical structure material exhibits the superior creep resistance at 973 K in terms of the minimal creep rate, which is four orders of magnitude lower than that of conventional ferritic steels. These results provide a new alloy-design strategy using the novel concept of hierarchical precipitates and the fundamental science for developing creep-resistant ferritic alloys. The present research will broaden the applications of ferritic alloys to higher temperatures. C1 [Song, Gian; Sun, Zhiqian; Li, Lin; Huang, Shenyan; Teng, Zhenke; Gao, Yanfei; Liaw, Peter K.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Xu, Xiandong; Chen, Mingwei] Tohoku Univ, WPI Adv Inst Mat Res, Sendai, Miyagi 9808577, Japan. [Rawlings, Michael; Dunand, David C.; Ghosh, Gautam; Fine, Morris E.] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. [Liebscher, Christian H.; Asta, Mark D.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Clausen, Bjorn] Los Alamos Natl Lab, Lujan Ctr, Los Alamos, NM 87545 USA. [Poplawsky, Jonathan; Leonard, Donovan N.] Oak Ridge Natl Lab, Ctr Nano Phase Mat Sci, Oak Ridge, TN 37831 USA. [Liu, Chain T.] City Univ Hong Kong, Dept Mech & Biomed Engn, Ctr Adv Struct Mat, Kowloon, Hong Kong, Peoples R China. RP Liaw, PK (reprint author), Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. EM pliaw@utk.edu RI Chen, Mingwei/A-4855-2010; Gao, Yanfei/F-9034-2010; Poplawsky, Jonathan/Q-2456-2015; Dunand, David/B-7515-2009; Clausen, Bjorn/B-3618-2015; Song, Gian/F-8880-2016 OI Chen, Mingwei/0000-0002-2850-8872; Gao, Yanfei/0000-0003-2082-857X; Poplawsky, Jonathan/0000-0002-4272-7043; Clausen, Bjorn/0000-0003-3906-846X; Song, Gian/0000-0001-7462-384X FU Department of Energy (DOE), Office of Fossil Energy Program [DE-09NT0008089, DE-FE0005868, DE-FE-0011194, DE-FE-0024054]; Office of Basic Energy Sciences (DOE); Los Alamos National Security LLC under the DOE [DE-AC52-06NA-25396]; Center for Nanophase Materials Sciences (CNMS) at the Oak Ridge National Laboratory (ORNL); Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy; US Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division FX The research is supported by the Department of Energy (DOE), Office of Fossil Energy Program, under Grants of DE-09NT0008089, DE-FE0005868, DE-FE-0011194, and DE-FE-0024054 with Mr. Richard Dunst, Mr. Vito Cedro, Dr. Patricia Rawls, Mr. Steven Markovich, and Dr. Jessica Mullen as the program managers. The work has been benefitted from the use of the Lujan Neutron Scattering Center at the Los Alamos Neutron Science Center (LANSCE), which is funded by the Office of Basic Energy Sciences (DOE). Los Alamos National Laboratory is operated by the Los Alamos National Security LLC under the DOE Contract number of DE-AC52-06NA-25396. This research was supported by the Center for Nanophase Materials Sciences (CNMS) at the Oak Ridge National Laboratory (ORNL), which is sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. YFG was supported by the US Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division. NR 74 TC 5 Z9 5 U1 7 U2 43 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD NOV 9 PY 2015 VL 5 AR 16327 DI 10.1038/srep16327 PG 14 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CV5IL UT WOS:000364303000001 PM 26548303 ER PT J AU Stewart, RD Streitmatter, SW Argento, DC Kirkby, C Goorley, JT Moffitt, G Jevremovic, T Sandison, GA AF Stewart, Robert D. Streitmatter, Seth W. Argento, David C. Kirkby, Charles Goorley, John T. Moffitt, Greg Jevremovic, Tatjana Sandison, George A. TI Rapid MCNP simulation of DNA double strand break (DSB) relative biological effectiveness (RBE) for photons, neutrons, and light ions SO PHYSICS IN MEDICINE AND BIOLOGY LA English DT Article DE RBE; DSB; MCNP; MCDS; ions; neutron; photon biology ID MONTE-CARLO-SIMULATION; LOCAL EFFECT MODEL; MICRODOSIMETRIC-KINETIC-MODEL; INDUCED GENOMIC INSTABILITY; NUCLEOTIDE EXCISION-REPAIR; POTENTIALLY LETHAL DAMAGE; IONIZING-RADIATION; CHROMOSOMAL-ABERRATIONS; HUMAN-FIBROBLASTS; MAMMALIAN-CELLS AB To account for particle interactions in the extracellular (physical) environment, information from the cell-level Monte Carlo damage simulation (MCDS) for DNA double strand break (DSB) induction has been integrated into the general purpose Monte Carlo N-particle (MCNP) radiation transport code system. The effort to integrate these models is motivated by the need for a computationally efficient model to accurately predict particle relative biological effectiveness (RBE) in cell cultures and in vivo. To illustrate the approach and highlight the impact of the larger scale physical environment (e.g. establishing charged particle equilibrium), we examined the RBE for DSB induction (RBEDSB) of x-rays, Cs-137 gamma-rays, neutrons and light ions relative to gamma-rays from Co-60 in monolayer cell cultures at various depths in water. Under normoxic conditions, we found that Cs-137 gamma-rays are about 1.7% more effective at creating DSB than gamma-rays from Co-60 (RBEDSB = 1.017) whereas 60-250 kV x-rays are 1.1 to 1.25 times more efficient at creating DSB than Co-60. Under anoxic conditions, kV x-rays may have an RBEDSB up to 1.51 times as large as Co-60 gamma-rays. Fission neutrons passing through monolayer cell cultures have an RBEDSB that ranges from 2.6 to 3.0 in normoxic cells, but may be as large as 9.93 for anoxic cells. For proton pencil beams, Monte Carlo simulations suggest an RBEDSB of about 1.2 at the tip of the Bragg peak and up to 1.6 a few mm beyond the Bragg peak. Bragg peak RBEDSB increases with decreasing oxygen concentration, which may create opportunities to apply proton dose painting to help address tumor hypoxia. Modeling of the particle RBE for DSB induction across multiple physical and biological scales has the potential to aid in the interpretation of laboratory experiments and provide useful information to advance the safety and effectiveness of hadron therapy in the treatment of cancer. C1 [Stewart, Robert D.; Argento, David C.; Sandison, George A.] Univ Washington, Sch Med, Dept Radiat Oncol, Seattle, WA 98195 USA. [Streitmatter, Seth W.; Moffitt, Greg; Jevremovic, Tatjana] Univ Utah, Nucl Engn Program UNEP, Salt Lake City, UT 84112 USA. [Kirkby, Charles] Jack Ady Canc Ctr, Lethbridge, AB, Canada. [Kirkby, Charles] Univ Calgary, Dept Phys & Astron, Tom Baker Canc Ctr, Calgary, AB T2N 1N4, Canada. [Kirkby, Charles] Univ Calgary, Dept Oncol, Tom Baker Canc Ctr, Calgary, AB, Canada. [Goorley, John T.] Los Alamos Natl Lab, Computat Phys Div 10, Los Alamos, NM 87505 USA. RP Stewart, RD (reprint author), Univ Washington, Sch Med, Dept Radiat Oncol, 1959 NE Pacific St,Box 356043, Seattle, WA 98195 USA. EM trawets@uw.edu RI Stewart, Robert/A-3609-2013 OI Stewart, Robert/0000-0001-5946-0595 FU US Department of Energy (DOE) Integrated University Program FX Research supported in part by funding received by one of us (GM) from the US Department of Energy (DOE) Integrated University Program. NR 83 TC 8 Z9 8 U1 1 U2 11 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0031-9155 EI 1361-6560 J9 PHYS MED BIOL JI Phys. Med. Biol. PD NOV 7 PY 2015 VL 60 IS 21 BP 8249 EP 8274 DI 10.1088/0031-9155/60/21/8249 PG 26 WC Engineering, Biomedical; Radiology, Nuclear Medicine & Medical Imaging SC Engineering; Radiology, Nuclear Medicine & Medical Imaging GA CY0PR UT WOS:000366108500006 PM 26449929 ER PT J AU Shrestha, UM Seo, Y Botvinick, EH Gullberg, GT AF Shrestha, Uttam M. Seo, Youngho Botvinick, Elias H. Gullberg, Grant T. TI Image reconstruction in higher dimensions: myocardial perfusion imaging of tracer dynamics with cardiac motion due to deformation and respiration SO PHYSICS IN MEDICINE AND BIOLOGY LA English DT Article DE myocardial perfusion imaging; dynamic SPECT; motion correction; higher dimensional reconstruction ID CORONARY-ARTERY-DISEASE; RIGID-BODY; SPECT IMAGES; PET IMAGES; BLOOD-FLOW; TOMOGRAPHY; REGISTRATION; HEART AB Myocardial perfusion imaging (MPI) using slow rotating large field of view cameras requires spatiotemporal reconstruction of dynamically acquired data to capture the time variation of the radiotracer concentration. In vivo, MPI contains additional degrees of freedom involving unavoidable motion of the heart due to quasiperiodic beating and the effects of respiration, which can severely degrade the quality of the images. This work develops a technique for a single photon emission computed tomography (SPECT) that reconstructs the distribution of the radiotracer concentration in the myocardium using a tensor product of different sets of basis functions that approximately describe the spatiotemporal variation of the radiotracer concentration and the motion of the heart. In this study the temporal B-spline basis functions are chosen to reflect the dynamics of the radiotracer, while the intrinsic deformation and the extrinsic motion of the heart are described by a product of a discrete set of Gaussian basis functions. Reconstruction results are presented showing the dynamics of the tracer in the myocardium as it deforms due to cardiac beating, and is displaced due to respiratory motion. These results are compared with the conventional 4D-spatiotemporal reconstruction method that models only the temporal changes of the tracer activity. The higher dimensional reconstruction method proposed here improves bias, yet the signal-to-noise ratio (SNR) decreases slightly due to redistribution of the counts over the cardiac-respiratory gates. Additionally, there is a trade-off between the number of gates and the number of projections per gate to achieve high contrast images. C1 [Shrestha, Uttam M.; Seo, Youngho; Botvinick, Elias H.; Gullberg, Grant T.] Univ Calif San Francisco, Dept Radiol & Biomed Imaging, San Francisco, CA 94143 USA. [Shrestha, Uttam M.; Gullberg, Grant T.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Struct Biol & Imaging Dept, Berkeley, CA 94720 USA. [Botvinick, Elias H.] Univ Calif San Francisco, Div Cardiol, San Francisco, CA USA. RP Shrestha, UM (reprint author), Univ Calif San Francisco, Dept Radiol & Biomed Imaging, San Francisco, CA 94143 USA. EM uttam.shrestha@ucsf.edu FU National Institutes of the Heart, Lung, and Blood [R01HL50663]; Office of Science, Office of Biological and Environmental Research, Medical Sciences Division of the US Department of Energy [DE-AC02-05CH11231] FX This work was supported by the National Institutes of the Heart, Lung, and Blood under grant R01HL50663, and by the Director, Office of Science, Office of Biological and Environmental Research, Medical Sciences Division of the US Department of Energy under contract DE-AC02-05CH11231. NR 50 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0031-9155 EI 1361-6560 J9 PHYS MED BIOL JI Phys. Med. Biol. PD NOV 7 PY 2015 VL 60 IS 21 BP 8275 EP 8301 DI 10.1088/0031-9155/60/21/8275 PG 27 WC Engineering, Biomedical; Radiology, Nuclear Medicine & Medical Imaging SC Engineering; Radiology, Nuclear Medicine & Medical Imaging GA CY0PR UT WOS:000366108500007 PM 26450115 ER PT J AU Albaugh, A Demerdash, O Head-Gordon, T AF Albaugh, Alex Demerdash, Omar Head-Gordon, Teresa TI An efficient and stable hybrid extended Lagrangian/self-consistent field scheme for solving classical mutual induction SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID MULTIPOLE WATER MODEL; MOLECULAR-DYNAMICS; SIMULATION METHOD; FORCE-FIELDS; MECHANICS; POLARIZABILITIES; POLARIZATION; INTEGRATORS; INCLUSION; ENERGY AB We have adapted a hybrid extended Lagrangian self-consistent field (EL/SCF) approach, developed for time reversible Born Oppenheimer molecular dynamics for quantum electronic degrees of freedom, to the problem of classical polarization. In this context, the initial guess for the mutual induction calculation is treated by auxiliary induced dipole variables evolved via a time-reversible velocity Verlet scheme. However, we find numerical instability, which is manifested as an accumulation in the auxiliary velocity variables, that in turn results in an unacceptable increase in the number of SCF cycles to meet even loose convergence tolerances for the real induced dipoles over the course of a 1 ns trajectory of the AMOEBA14 water model. By diagnosing the numerical instability as a problem of resonances that corrupt the dynamics, we introduce a simple thermostating scheme, illustrated using Berendsen weak coupling and Nose-Hoover chain thermostats, applied to the auxiliary dipole velocities. We find that the inertial EL/SCF (iEL/SCF) method provides superior energy conservation with less stringent convergence thresholds and a correspondingly small number of SCF cycles, to reproduce all properties of the polarization model in the NVT and NVE ensembles accurately. Our iEL/SCF approach is a clear improvement over standard SCF approaches to classical mutual induction calculations and would be worth investigating for application to ab initio molecular dynamics as well. (C) 2015 AIP Publishing LLC. C1 [Albaugh, Alex; Head-Gordon, Teresa] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. [Demerdash, Omar; Head-Gordon, Teresa] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Head-Gordon, Teresa] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. [Head-Gordon, Teresa] Univ Calif Berkeley, Div Chem Sci, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Head-Gordon, T (reprint author), Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. EM thg@berkeley.edu FU National Science Foundation [CHE-1363320] FX We thank the National Science Foundation Grant No. CHE-1363320 for support of this work. We would like to thank Mark Tuckerman for helpful discussions and enjoyable collaboration. NR 32 TC 8 Z9 8 U1 7 U2 24 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD NOV 7 PY 2015 VL 143 IS 17 AR 174104 DI 10.1063/1.4933375 PG 13 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA CV9CP UT WOS:000364585200008 PM 26547155 ER PT J AU Zhao, XJ Xue, XL Guo, ZX Jia, Y Li, SF Zhang, ZY Gao, YF AF Zhao, X. J. Xue, X. L. Guo, Z. X. Jia, Yu Li, S. F. Zhang, Zhenyu Gao, Y. F. TI Intriguing structures and magic sizes of heavy noble metal nanoclusters around size 55 governed by relativistic effect and covalent bonding SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID MOLECULAR-DYNAMICS; GOLD NANOCLUSTERS; CLUSTERS; TRANSITION; OXIDATION; SPECTROSCOPY; CATALYST; PT-2; C-60; GAS AB Nanoclusters usually display exotic physical and chemical properties due to their intriguing geometric structures in contrast to their bulk counterparts. By means of first-principles calculations within density functional theory, we find that heavy noble metal Pt-N nanoclusters around the size N = 55 begin to prefer an open configuration, rather than previously reported close-packed icosahedron or core-shell structures. Particularly, for Pt-N, the widely supposed icosahedronal magic cluster is changed to a three-atomic-layered structure with D-6h symmetry, which can be well addressed by our recently established generalized Wulff construction principle (GWCP). However, the magic number of Pt-N clusters around 55 is shifted to a new odd number of 57. The high symmetric three-layered Pt-57 motif is mainly stabilized by the enhanced covalent bonding contributed by both spin-orbital coupling effect and the open d orbital (5d(9)6s(1)) of Pt, which result in a delicate balance between the enhanced Pt-Pt covalent bonding of the interlayers and negligible d dangling bonds on the cluster edges. These findings about PtN clusters are also applicable to IrN clusters, but qualitatively different from their earlier neighboring element Os and their later neighboring element Au. The magic numbers for Os and Au are even, being 56 and 58, respectively. The findings of the new odd magic number 57 are the important supplementary of the recently established GWCP. (C) 2015 AIP Publishing LLC. C1 [Zhao, X. J.; Xue, X. L.; Guo, Z. X.; Jia, Yu; Li, S. F.] Zhengzhou Univ, Int Lab Quantum Funct Mat Henan, Zhengzhou 450001, Peoples R China. [Zhao, X. J.; Xue, X. L.; Guo, Z. X.; Jia, Yu; Li, S. F.] Zhengzhou Univ, Sch Phys & Engn, Zhengzhou 450001, Peoples R China. [Guo, Z. X.] UCL, Dept Chem, London WC1H, England. [Guo, Z. X.] UCL, London Ctr Nanotechnol, London WC1H, England. [Li, S. F.; Zhang, Zhenyu] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, ICQD, Hefei 230026, Anhui, Peoples R China. [Zhang, Zhenyu] Univ Sci & Technol China, Synerget Innovat Ctr Quantum Informat & Quantum P, Hefei 230026, Anhui, Peoples R China. [Gao, Y. F.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Gao, Y. F.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Zhao, XJ (reprint author), Zhengzhou Univ, Int Lab Quantum Funct Mat Henan, Zhengzhou 450001, Peoples R China. EM sflizzu@zzu.edu.cn; zhangzy@ustc.edu.cn; ygao7@utk.edu RI Gao, Yanfei/F-9034-2010; Guo, Zheng Xiao/C-1706-2009 OI Gao, Yanfei/0000-0003-2082-857X; Guo, Zheng Xiao/0000-0001-5404-3215 FU Natural Science Foundation of China [11074223, 11034006]; US National Science Foundation [CMMI 0900027, CMMI 1300223, DMR 0906025] FX This work was supported by the Natural Science Foundation of China (Nos. 11074223 and 11034006) and the US National Science Foundation (Nos. CMMI 0900027, CMMI 1300223, and DMR 0906025). NR 49 TC 0 Z9 0 U1 5 U2 27 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD NOV 7 PY 2015 VL 143 IS 17 AR 174302 DI 10.1063/1.4934798 PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA CV9CP UT WOS:000364585200018 PM 26547165 ER PT J AU Sen, S Moazzen, E Aryal, S Segre, CU Timofeeva, EV AF Sen, Sujat Moazzen, Elahe Aryal, Shankar Segre, Carlo U. Timofeeva, Elena V. TI Engineering nanofluid electrodes: controlling rheology and electrochemical activity of gamma-Fe2O3 nanoparticles SO JOURNAL OF NANOPARTICLE RESEARCH LA English DT Article DE Nanofluid; Nanoelectrofuel; Viscosity; Surface modification; Iron (III) oxide; Flow battery ID MAGNETIC NANOPARTICLES; SUSPENSION ELECTRODE; OXIDE NANOPARTICLES; FERROFLUIDS; WATER; BATTERY AB Nanofluid electrodes or nanoelectrofuels have significant potential in the field of flow batteries, as at high loadings of solid battery active nanoparticles, their energy density can be orders of magnitude higher than in traditional redox flow battery electrolytes. Nanofluid electrodes must have a manageable viscosity at high particle concentrations (i.e., easily pumpable) and exhibit good electrochemical activity toward charge and discharge reactions. Engineering of such nanofluid electrodes involves development of new and unique approaches to stabilization of nanoparticle suspensions. In this work, we demonstrate a surface modification approach that allows controlling the viscosity of nanofluids at high solid loading, while simultaneously retaining electrochemical activity of the nanoparticles. A scalable single step procedure for the surface grafting of small organic molecules onto iron (III) oxide nanoparticles (gamma-Fe2O3, maghemite, 40-150 nm) is demonstrated. Modified iron oxide nanoparticles reported here have similar to 5 wt% of the grafting moiety on the surface, which helps forming stable dispersions with up to 40 wt% of solid loading in alkali aqueous electrolytes with a maximum viscosity of 12 cP at room temperature. The maximum particle concentration achievable in the same electrolyte with pristine nanoparticles is 15 wt%. Electrochemical testing of the pristine and modified nanomaterials in the form of solid-casted electrodes showed a maximum reversible discharge capacity of 280 and 155 mAh/g, respectively, indicating that electrochemical activity of modified nanoparticles is partially suppressed due to the surface grafted moiety. C1 [Sen, Sujat; Timofeeva, Elena V.] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. [Moazzen, Elahe; Aryal, Shankar; Segre, Carlo U.] IIT, Dept Phys, Chicago, IL 60616 USA. [Moazzen, Elahe; Aryal, Shankar; Segre, Carlo U.] IIT, CSRRI, Chicago, IL 60616 USA. RP Timofeeva, EV (reprint author), Argonne Natl Lab, Div Energy Syst, 9700 S Cass Ave, Argonne, IL 60439 USA. EM etimofeeva@gmail.com RI Segre, Carlo/B-1548-2009 OI Segre, Carlo/0000-0001-7664-1574 FU US Department of Energy, Advanced Research Funding Agency-Energy (ARPA-E); U.S. Department of Energy [DE-AC02-06CH11357] FX The project is supported by US Department of Energy, Advanced Research Funding Agency-Energy (ARPA-E). Use of the Argonne National Laboratory, Center for Nanoscale Materials including facilities at Electron Microscopy Center is supported by the U.S. Department of Energy, under Contract No. DE-AC02-06CH11357. NR 28 TC 2 Z9 2 U1 9 U2 32 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1388-0764 EI 1572-896X J9 J NANOPART RES JI J. Nanopart. Res. PD NOV 7 PY 2015 VL 17 IS 11 AR 437 DI 10.1007/s11051-015-3242-8 PG 10 WC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA CV8XK UT WOS:000364571400002 ER PT J AU Deputy, NP Sharma, AJ Kim, SY AF Deputy, Nicholas P. Sharma, Andrea J. Kim, Shin Y. TI Gestational Weight Gain - United States, 2012 and 2013 SO MMWR-MORBIDITY AND MORTALITY WEEKLY REPORT LA English DT Article C1 [Deputy, Nicholas P.; Sharma, Andrea J.; Kim, Shin Y.] CDC, Div Reprod Hlth, Natl Ctr Chron Dis Prevent & Hlth Promot, Atlanta, GA 30333 USA. [Deputy, Nicholas P.] Emory Univ, Nutr & Hlth Sci Program, Laney Grad Sch, Atlanta, GA 30322 USA. [Deputy, Nicholas P.] US DOE, Oak Ridge Inst Sci Educ Fellowship, Washington, DC USA. RP Sharma, AJ (reprint author), CDC, Div Reprod Hlth, Natl Ctr Chron Dis Prevent & Hlth Promot, Atlanta, GA 30333 USA. EM ajsharma@cdc.gov OI Sharma, Andrea/0000-0003-0385-0011 FU NIDDK NIH HHS [T32 DK007734] NR 10 TC 10 Z9 10 U1 0 U2 0 PU CENTERS DISEASE CONTROL PI ATLANTA PA 1600 CLIFTON RD, ATLANTA, GA 30333 USA SN 0149-2195 EI 1545-861X J9 MMWR-MORBID MORTAL W JI MMWR-Morb. Mortal. Wkly. Rep. PD NOV 6 PY 2015 VL 64 IS 43 BP 1215 EP 1220 PG 6 WC Public, Environmental & Occupational Health SC Public, Environmental & Occupational Health GA DA5CQ UT WOS:000367820100002 PM 26540367 ER PT J AU Filippova, EV Weigand, S Osipiuk, J Kiryukhina, O Joachimiak, A Anderson, WF AF Filippova, Ekaterina V. Weigand, Steven Osipiuk, Jerzy Kiryukhina, Olga Joachimiak, Andrzej Anderson, Wayne F. TI Substrate-Induced Allosteric Change in the Quaternary Structure of the Spermidine N-Acetyltransferase SpeG SO JOURNAL OF MOLECULAR BIOLOGY LA English DT Article DE dodecameric enzyme; asymmetric structure; allosteric site; spermidine/spermine; GNAT acetyltransferase ID SMALL-ANGLE SCATTERING; DYNEIN MOTOR DOMAIN; PROTEIN DATA-BANK; ESCHERICHIA-COLI; MOLECULAR-GRAPHICS; MODEL; DIFFRACTION; SOFTWARE; SYSTEM; IMAGE AB The spermidine N-acetyltransferase SpeG is a dodecameric enzyme that catalyzes the transfer of an acetyl group from acetyl coenzyme A to polyamines such as spermidine and spermine. SpeG has an allosteric polyamine-binding site and acetylating polyamines regulate their intracellular concentrations. The structures of SpeG from Vibrio cholerae in complexes with polyamines and cofactor have been characterized earlier. Here, we present the dodecameric structure of SpeG from V. cholerae in a ligand-free form in three different conformational states: open, intermediate and closed. All structures were crystallized in C2 space group symmetry and contain six monomers in the asymmetric unit cell. Two hexamers related by crystallographic 2-fold symmetry form the SpeG dodecamer. The open and intermediate states have a unique open dodecameric ring. This SpeG dodecamer is asymmetric except for the one 2-fold axis and is unlike any known dodecameric structure. Using a fluorescence thermal shift assay, size-exclusion chromatography with multi-angle light scattering, small-angle X-ray scattering analysis, negative-stain electron microscopy and structural analysis, we demonstrate that this unique open dodecameric state exists in solution. Our combined results indicate that polyamines trigger conformational changes and induce the symmetric closed dodecameric state of the protein when they bind to their allosteric sites. (C) 2015 Published by Elsevier Ltd. C1 [Filippova, Ekaterina V.; Kiryukhina, Olga; Anderson, Wayne F.] Northwestern Univ, Ctr Struct Genom Infect Dis, Feinberg Sch Med, Dept Biochem & Mol Genet, Chicago, IL 60611 USA. [Weigand, Steven] Northwestern Univ, Synchrotron Res Ctr, DuPont Northwesterm Dow Collaborat Access Team, Argonne, IL 60439 USA. [Osipiuk, Jerzy; Joachimiak, Andrzej] Argonne Natl Lab, Biosci Div, Argonne, IL 60439 USA. RP Anderson, WF (reprint author), Northwestern Univ, Ctr Struct Genom Infect Dis, Feinberg Sch Med, Dept Biochem & Mol Genet, Chicago, IL 60611 USA. EM wf-anderson@northwestern.edu FU Searle Leadership Fund for the Life Sciences at Northwestern University; Searle Funds at The Chicago Community Trust; U.S. Department of Energy [DE-AC02-06CH11357]; National Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Services [HHSN272200700058C, HHSN272201200026C]; National Science Foundation [MCB 1024945] FX We would like to thank Corey M. Janczak and the Keck Biophysics Facility at Northwestern University (Evanston, IL) for assistance with SEC-MALS data collection. We would like to thank Chi-Hao Luan and the High-Throughput Analysis Laboratory at Northwestern University (Evanston, IL) for assistance with FTS assay. The negative-stain EM analysis was performed at CryoEM Facility at Northwestern University (Evanston, IL). The EM research was supported in part by the Searle Leadership Fund for the Life Sciences at Northwestern University, established by the Searle Funds at The Chicago Community Trust. The SAXS and X-ray data collection for crystal structures was performed at the DND-CAT, LS-CAT and SBC-CAT beamlines, respectively, at the Advanced Photon Source Science User Facility operated for the U.S. Department of Energy, supported by the U.S. Department of Energy under Contract No. DE-AC02-06CH11357. This project has been funded with Federal funds from the National Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Services, under Contract Nos. HHSN272200700058C and HHSN272201200026C (W.F.A.) and the National Science Foundation grant MCB 1024945 (M.A.B.). NR 48 TC 2 Z9 2 U1 3 U2 13 PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0022-2836 EI 1089-8638 J9 J MOL BIOL JI J. Mol. Biol. PD NOV 6 PY 2015 VL 427 IS 22 BP 3538 EP 3553 DI 10.1016/j.jmb.2015.09.013 PG 16 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA CW3MJ UT WOS:000364896100009 PM 26410587 ER PT J AU Zhang, Y Terletska, H Moore, C Ekuma, C Tam, KM Berlijn, T Ku, W Moreno, J Jarrell, M AF Zhang, Yi Terletska, Hanna Moore, C. Ekuma, Chinedu Tam, Ka-Ming Berlijn, Tom Ku, Wei Moreno, Juana Jarrell, Mark TI Study of multiband disordered systems using the typical medium dynamical cluster approximation SO PHYSICAL REVIEW B LA English DT Article ID ELECTRONIC-STRUCTURE; ANDERSON LOCALIZATION; SCALING THEORY; TRANSITION; LATTICE; SUPERCONDUCTIVITY; INSULATOR; SOLIDS AB We generalize the typical medium dynamical cluster approximation to multiband disordered systems. Using our extended formalism, we perform a systematic study of the nonlocal correlation effects induced by disorder on the density of states and the mobility edge of the three-dimensional two-band Anderson model. We include interband and intraband hopping and an intraband disorder potential. Our results are consistent with those obtained by the transfer matrix and the kernel polynomial methods. We apply the method to KxFe2-ySe2 with Fe vacancies. Despite the strong vacancy disorder and anisotropy, we find the material is not an Anderson insulator. Our results demonstrate the application of the typical medium dynamical cluster approximation method to study Anderson localization in real materials. C1 [Zhang, Yi; Moore, C.; Ekuma, Chinedu; Tam, Ka-Ming; Moreno, Juana; Jarrell, Mark] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA. [Zhang, Yi; Moore, C.; Ekuma, Chinedu; Tam, Ka-Ming; Moreno, Juana; Jarrell, Mark] Louisiana State Univ, Ctr Computat & Technol, Baton Rouge, LA 70803 USA. [Terletska, Hanna] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Berlijn, Tom] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Berlijn, Tom] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. [Ku, Wei] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Ku, Wei] SUNY Stony Brook, Phys Dept, Stony Brook, NY 11790 USA. RP Zhang, Y (reprint author), Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA. EM zhangyiphys@gmail.com RI Berlijn, Tom/A-3859-2016; Moreno, Juana/D-5882-2012 OI Berlijn, Tom/0000-0002-1001-2238; FU National Science Foundation under the NSF EPSCoR [EPS-1003897]; Louisiana Board of Regents; U.S. Department of Energy [DE-AC05-00OR22725]; U.S. Department of Energy, Office of Basic Energy Science [DEAC02-98CH10886] FX This work is supported in part by the National Science Foundation under the NSF EPSCoR Cooperative Agreement No. EPS-1003897 with additional support from the Louisiana Board of Regents (Y.Z., H.T., C.M., C.E., K.T., J.M., and M.J.). Work by T.B. was performed at the Center for Nanophase Materials Sciences, a DOE Office of Science user facility. This paper has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. W.K. acknowledges support from U.S. Department of Energy, Office of Basic Energy Science, Contract No. DEAC02-98CH10886. This work used the high performance computational resources provided by the Louisiana Optical Network Initiative (http://www.loni.org), and HPC@LSU computing. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this paper, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doepublic-access-plan). NR 50 TC 0 Z9 0 U1 3 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD NOV 6 PY 2015 VL 92 IS 20 AR 205111 DI 10.1103/PhysRevB.92.205111 PG 9 WC Physics, Condensed Matter SC Physics GA CV4DD UT WOS:000364215000003 ER PT J AU Proulx, C Yoo, S Connolly, MD Zuckermann, RN AF Proulx, Caroline Yoo, Stan Connolly, Michael D. Zuckermann, Ronald N. TI Accelerated Submonomer Solid-Phase Synthesis of Peptoids Incorporating Multiple Substituted N-Aryl Glycine Monomers SO JOURNAL OF ORGANIC CHEMISTRY LA English DT Article ID NUCLEOPHILIC-SUBSTITUTION; ELECTROPHILIC CATALYSIS; SIDE-CHAINS; SECONDARY STRUCTURE; 2-OCTYL BROMIDE; DIMETHYL-SULFOXIDE; SILVER NITRATES; ELIMINATION; KINETICS; HALIDES AB N-Aryl glycines are a chemically diverse class of peptoid monomers that have strong structure-inducing propensities. Yet their use has been limited due to the sluggish reactivity of the weakly nucleophilic aniline submonomers. Here, we report up to a 76-fold rate acceleration of the displacement reaction using aniline submonomers in solid-phase peptoid synthesis. This is achieved by adding halophilic silver salts to the displacement reaction, facilitating bromide abstraction and AgBr precipitation. Mechanistic insight derived from analysis of a series of 15 substituted anilines reveals that the silver-mediated reaction proceeds through a transition state that has considerably less positive charge buildup on the incoming nucleophile and an enhanced leaving group. This straightforward enhancement to the submonomer method enables the rapid room temperature synthesis of a wide variety of N-aryl glycine-rich peptoid oligomers, possessing both electron-withdrawing and -donating substituents, in good yields. C1 [Proulx, Caroline; Yoo, Stan; Connolly, Michael D.; Zuckermann, Ronald N.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. RP Zuckermann, RN (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM rnzuckermann@lbl.gov RI Foundry, Molecular/G-9968-2014 FU Defense Threat Reduction Agency [DTRA10027-15875]; DARPA Fold F(x) program; Office of Science, Office of Basic Energy Sciences, U.S. Department of Energy [DE-AC02-05CH11231]; Natural Sciences and Engineering Council of Canada (NSERC) FX The authors thank J. W. Keillor, E. J. Robertson, and C. Tajon for helpful discussions. This work was supported by the Defense Threat Reduction Agency under Contract No. DTRA10027-15875, and the DARPA Fold F(x) program. The work was conducted at the Molecular Foundry with support by the Office of Science, Office of Basic Energy Sciences, U.S. Department of Energy, under Contract No. DE-AC02-05CH11231. C. P. is grateful for a postdoctoral fellowship from the Natural Sciences and Engineering Council of Canada (NSERC). NR 55 TC 9 Z9 9 U1 4 U2 14 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0022-3263 J9 J ORG CHEM JI J. Org. Chem. PD NOV 6 PY 2015 VL 80 IS 21 BP 10490 EP 10497 DI 10.1021/acs.joc.5b01449 PG 8 WC Chemistry, Organic SC Chemistry GA CV7EK UT WOS:000364435000008 PM 26280152 ER PT J AU Feng, X Tomiyasu, H Hu, JY Wei, X Redshaw, C Elsegood, MRJ Horsburgh, L Teat, SJ Yamato, T AF Feng, Xing Tomiyasu, Hirotsugu Hu, Jian-Yong Wei, Xianfu Redshaw, Carl Elsegood, Mark R. J. Horsburgh, Lynne Teat, Simon J. Yamato, Takehiko TI Regioselective Substitution at the 1,3-and 6,8-Positions of Pyrene for the Construction of Small Dipolar Molecules SO JOURNAL OF ORGANIC CHEMISTRY LA English DT Article ID INTRAMOLECULAR-CHARGE-TRANSFER; PHOTOPHYSICAL PROPERTIES; ORGANIC ELECTRONICS; FUSED AZAACENES; DONOR; PHOTOLUMINESCENCE; DERIVATIVES; DESIGN AB This article presents a novel asymmetrical functionalization strategy for the construction of dipolar molecules via efficient regioselective functionalization along the Z-axis of pyrene at both the 1,3- and 6,8-positions. Three asymmetrically substituted 1,3-diphenyl-6,8-R-disubsituted pyrenes were fully characterized by X-ray crystallography, photophysical properties, electrochemistry, and density functional theory calculations. C1 [Feng, Xing; Wei, Xianfu] Beijing Inst Graph Commun, Beijing 102600, Peoples R China. [Feng, Xing; Tomiyasu, Hirotsugu; Yamato, Takehiko] Saga Univ, Fac Sci & Engn, Dept Appl Chem, Saga 8408502, Japan. [Hu, Jian-Yong] Shannxi Normal Univ, Sch Mat Sci & Engn, Xian 710062, Shannxi, Peoples R China. [Redshaw, Carl] Univ Hull, Dept Chem, Kingston Upon Hull HU6 7RX, N Humberside, England. [Elsegood, Mark R. J.; Horsburgh, Lynne] Univ Loughborough, Dept Chem, Loughborough LE11 3TU, Leics, England. [Teat, Simon J.] Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Hu, JY (reprint author), Shannxi Normal Univ, Sch Mat Sci & Engn, Xian 710062, Shannxi, Peoples R China. EM yamatot@cc.saga-u.ac.jp; hujianyong@snnu.edu.cn RI Redshaw, Carl/C-5644-2009 OI Redshaw, Carl/0000-0002-2090-1688 FU EPSRC; Royal Society of Chemistry; Scientific Research Foundation for the Returened Overseas Chinese Scholars, the State Education Ministry; Scientific Research Common Program of Beijing Municipal Commission of Education [18190115/008]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was performed under the Cooperative Research Program of "Network Joint Research Center for Materials and Devices (Institute for Materials Chemistry and Engineering, Kyushu University)". We thank the EPSRC (travel grants to C.R.), The Royal Society of Chemistry, The Scientific Research Foundation for the Returened Overseas Chinese Scholars, the State Education Ministry, and The Scientific Research Common Program of Beijing Municipal Commission of Education (18190115/008) for financial support. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract DE-AC02-05CH11231. NR 35 TC 7 Z9 7 U1 1 U2 14 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0022-3263 J9 J ORG CHEM JI J. Org. Chem. PD NOV 6 PY 2015 VL 80 IS 21 BP 10973 EP 10978 DI 10.1021/acs.joc.5b02128 PG 6 WC Chemistry, Organic SC Chemistry GA CV7EK UT WOS:000364435000053 PM 26436921 ER PT J AU Hossain, F Arnold, J Beighley, E Brown, C Burian, S Chen, J Mitra, A Niyogi, D Pielke, R Tidwell, V Wegner, D AF Hossain, Faisal Arnold, Jeffrey Beighley, Ed Brown, Casey Burian, Steve Chen, Ji Mitra, Anindita Niyogi, Dev Pielke, Roger, Sr. Tidwell, Vincent Wegner, Dave TI What Do Experienced Water Managers Think of Water Resources of Our Nation and Its Management Infrastructure? SO PLoS One LA English DT Article AB This article represents the second report by an ASCE Task Committee "Infrastructure Impacts of Landscape-drivenWeather Change" under the ASCE Watershed Management Technical Committee and the ASCE Hydroclimate Technical Committee. Herein, the 'infrastructure impacts" are referred to as infrastructure-sensitive changes in weather and climate patterns (extremes and non-extremes) that are modulated, among other factors, by changes in landscape, land use and land cover change. In this first report, the article argued for explicitly considering the well-established feedbacks triggered by infrastructure systems to the land-atmosphere system via landscape change. In this report by the ASCE Task Committee (TC), we present the results of this ASCE TC's survey of a cross section of experienced water managers using a set of carefully crafted questions. These questions covered water resources management, infrastructure resiliency and recommendations for inclusion in education and curriculum. We describe here the specifics of the survey and the results obtained in the formof statistical averages on the 'perception' of thesemanagers. Finally, we discuss what these 'perception' averages may indicate to the ASCE TC and community as a whole for stewardship of the civil engineering profession. The survey and the responses gathered are not exhaustive nor do they represent the ASCE-endorsed viewpoint. However, the survey provides a critical first step to developing the framework of a research and education plan for ASCE. Given the Water Resources Reform and Development Act passed in 2014, we must now take into account the perceived concerns of the water management community. C1 [Hossain, Faisal] Univ Washington, Dept Civil & Environm Engn, Seattle, WA 98195 USA. [Arnold, Jeffrey] US Army Corps Engineers, Inst Water Resources, Seattle, WA USA. [Beighley, Ed] Northeastern Univ, Dept Civil & Environm Engn, Boston, MA 02115 USA. [Brown, Casey] Univ Massachusetts Amherst, Dept Civil & Environm Engn, Amherst, MA 01003 USA. [Burian, Steve] Univ Utah, Dept Civil & Environm Engn, Salt Lake City, UT 84112 USA. [Chen, Ji] Univ Hong Kong, Dept Civil Engn, Hong Kong, Hong Kong, Peoples R China. [Mitra, Anindita] CREA Affiliates, Seattle, WA 98103 USA. [Niyogi, Dev] Purdue Univ, Earth & Atmospher Sci, W Lafayette, IN 47907 USA. [Pielke, Roger, Sr.] Univ Colorado, CIRES, Boulder, CO 80309 USA. [Tidwell, Vincent] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Wegner, Dave] US House Representatives, Washington, DC 20515 USA. RP Hossain, F (reprint author), Univ Washington, Dept Civil & Environm Engn, More Hall 201, Seattle, WA 98195 USA. EM fhossain@uw.edu RI Chen, Ji/C-1795-2009; OI Burian, Steven/0000-0003-0523-4968 FU ASCE Headquarters; ASCE Environment and Water Institute (EWRI) FX The authors acknowledge the support received from the ASCE Headquarters for conducting the survey using surveymonkey subscription. In particular, Gabrielle Dunkley at ASCE headquarters in Reston, Virginia is gratefully appreciated in setting up the survey. The Watershed Management Technical Council (WMTC) under the auspices of ASCE Environment and Water Institute (EWRI) is also acknowledged for approving the survey. NR 5 TC 0 Z9 0 U1 1 U2 10 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD NOV 6 PY 2015 VL 10 IS 11 AR e0142073 DI 10.1371/journal.pone.0142073 PG 10 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CV6RT UT WOS:000364398700077 PM 26544045 ER PT J AU Hudson, BD Hum, NR Thomas, CB Kohlgruber, A Sebastian, A Collette, NM Coleman, MA Christiansen, BA Loots, GG AF Hudson, Bryan D. Hum, Nicholas R. Thomas, Cynthia B. Kohlgruber, Ayano Sebastian, Aimy Collette, Nicole M. Coleman, Matthew A. Christiansen, Blaine A. Loots, Gabriela G. TI SOST Inhibits Prostate Cancer Invasion SO PLOS ONE LA English DT Article ID RECEPTOR-RELATED PROTEIN-5; SECRETED WNT ANTAGONIST; VAN-BUCHEM-DISEASE; IN-VITRO; BETA-CATENIN; SIGNALING PATHWAY; BONE METASTASIS; COLON-CANCER; CELL-GROWTH; GENE AB Inhibitors of Wnt signaling have been shown to be involved in prostate cancer (PC) metastasis; however the role of Sclerostin (Sost) has not yet been explored. Here we show that elevated Wnt signaling derived from Sost deficient osteoblasts promotes PC invasion, while rhSOST has an inhibitory effect. In contrast, rhDKK1 promotes PC elongation and filopodia formation, morphological changes characteristic of an invasive phenotype. Furthermore, rhDKK1 was found to activate canonical Wnt signaling in PC3 cells, suggesting that SOST and DKK1 have opposing roles on Wnt signaling in this context. Gene expression analysis of PC3 cells co-cultured with OBs exhibiting varying amounts of Wnt signaling identified CRIM1 as one of the transcripts upregulated under highly invasive conditions. We found CRIM1 overexpression to also promote cell-invasion. These findings suggest that bonederived Wnt signaling may enhance PC tropism by promoting CRIM1 expression and facilitating cancer cell invasion and adhesion to bone. We concluded that SOST and DKK1 have opposing effects on PC3 cell invasion and that bone-derived Wnt signaling positively contributes to the invasive phenotypes of PC3 cells by activating CRIM1 expression and facilitating PC-OB physical interaction. As such, we investigated the effects of high concentrations of SOST in vivo. We found that PC3-cells overexpressing SOST injected via the tail vein in NSG mice did not readily metastasize, and those injected intrafemorally had significantly reduced osteolysis, suggesting that targeting the molecular bone environment may influence bone metastatic prognosis in clinical settings. C1 [Hudson, Bryan D.; Hum, Nicholas R.; Thomas, Cynthia B.; Kohlgruber, Ayano; Sebastian, Aimy; Collette, Nicole M.; Coleman, Matthew A.; Loots, Gabriela G.] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Biol & Biotechnol Div, Livermore, CA 94550 USA. [Sebastian, Aimy; Loots, Gabriela G.] Univ Calif Merced, Sch Nat Sci, Merced, CA USA. [Coleman, Matthew A.] Univ Calif Davis, Med Ctr, Dept Radiat Oncol, Sacramento, CA 95817 USA. [Christiansen, Blaine A.] Univ Calif Davis, Med Ctr, Dept Orthopaed Surg, Sacramento, CA 95817 USA. RP Loots, GG (reprint author), Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Biol & Biotechnol Div, Livermore, CA 94550 USA. EM loots1@llnl.gov OI Coleman, Matthew/0000-0003-1389-4018; Sebastian, Aimy/0000-0002-7822-7040 FU National Institute of Health [DK075730, P41MI03483]; Lawrence Livermore National Laboratory [LDRD-10-ERD-020] FX This work was supported by National Institute of Health Grant No. DK075730 and P41MI03483 Lawrence Livermore National Laboratory Grant No. LDRD-10-ERD-020. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 56 TC 2 Z9 2 U1 0 U2 4 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD NOV 6 PY 2015 VL 10 IS 11 AR e0142058 DI 10.1371/journal.pone.0142058 PG 17 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CV6RT UT WOS:000364398700075 PM 26545120 ER PT J AU Furukawa, Y AF Furukawa, Yuji TI Frustrating a quantum magnet SO SCIENCE LA English DT Editorial Material ID KAGOME ANTIFERROMAGNET C1 [Furukawa, Yuji] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Furukawa, Yuji] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Furukawa, Y (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. EM furukawa@ameslab.gov NR 11 TC 1 Z9 1 U1 5 U2 21 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 EI 1095-9203 J9 SCIENCE JI Science PD NOV 6 PY 2015 VL 350 IS 6261 BP 631 EP 632 DI 10.1126/science.aad3556 PG 2 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CV3MH UT WOS:000364162800026 PM 26542555 ER PT J AU Soderquist, C AF Soderquist, Chuck TI How to isolate americium SO SCIENCE LA English DT Editorial Material C1 Pacific NW Natl Lab, Richland, WA 99352 USA. RP Soderquist, C (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM chuck.soderquist@pnnl.gov NR 6 TC 0 Z9 0 U1 1 U2 8 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 EI 1095-9203 J9 SCIENCE JI Science PD NOV 6 PY 2015 VL 350 IS 6261 BP 635 EP 636 DI 10.1126/science.aad5131 PG 2 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CV3MH UT WOS:000364162800029 PM 26542558 ER PT J AU Dares, CJ Lapides, AM Mincher, BJ Meyer, TJ AF Dares, Christopher J. Lapides, Alexander M. Mincher, Bruce J. Meyer, Thomas J. TI Electrochemical oxidation of Am-243(III) in nitric acid by a terpyridyl-derivatized electrode SO SCIENCE LA English DT Article ID AMERICIUM; EXTRACTION; COMPLEXATION; DISPOSAL; AM(III); AM(VI); LIGAND; STATES AB Selective oxidation of trivalent americium (Am) could facilitate its separation from lanthanides in nuclear waste streams. Here, we report the application of a high-surface-area, tin-doped indium oxide electrode surface-derivatized with a terpyridine ligand to the oxidation of Am(III) to Am(V) and Am(VI) in nitric acid. Potentials as low as 1.8 volts (V) versus the saturated calomel electrode were applied, 0.7 V lower than the 2.6 V potential for one-electron oxidation of Am(III) to Am(IV) in 1 molar acid. This simple electrochemical procedure provides a method to access the higher oxidation states of Am in noncomplexing media for the study of the associated coordination chemistry and, more important, for more efficient separation protocols. C1 [Dares, Christopher J.; Lapides, Alexander M.; Meyer, Thomas J.] Univ N Carolina, Dept Chem, Chapel Hill, NC 27599 USA. [Mincher, Bruce J.] Idaho Natl Lab, Aqueous Separat & Radiochem Dept, Idaho Falls, ID 83415 USA. RP Meyer, TJ (reprint author), Univ N Carolina, Dept Chem, CB 3290, Chapel Hill, NC 27599 USA. EM tjmeyer@unc.edu RI Mincher, Bruce/C-7758-2017 FU U.S. Department of Energy (DOE) Office of Nuclear Energy, Fuel Cycle Research and Development Program under DOE Idaho Operations Office [DE-AC07-99ID13727]; U.S. DOE Office of Science, Office of Basic Energy Sciences [DE-SC0001011]; U.S. Department of Defense; Air Force Office of Scientific Research through National Defense Science and Engineering Graduate Fellowship [FA9550-11-C-0028] FX This research was supported by the U.S. Department of Energy (DOE) Office of Nuclear Energy, Fuel Cycle Research and Development Program, under DOE Idaho Operations Office contract DE-AC07-99ID13727. This research made use of equipment for electrode fabrication including homogenizer, spin-coater, and annealing furnaces funded by the University of North Carolina Energy Frontier Research Center: Center for Solar Fuels, supported by the U.S. DOE Office of Science, Office of Basic Energy Sciences, under award number DE-SC0001011. A.M.L. thanks the U.S. Department of Defense, Air Force Office of Scientific Research, for funding through National Defense Science and Engineering Graduate Fellowship award FA9550-11-C-0028. Authors C.J.D., A.M.L., and T.J.M. at University of North Carolina at Chapel Hill and B.J.M. at Idaho National Laboratory have filed for a provisional patent application with the U.S. Patent and Trademark Office under application no. 62/202,428 on the electrochemical oxidation of americium at derivatized metal oxide electrodes. The authors also thank B. A. Moyer for encouragement and helpful technical discussions. Correspondence and requests for materials should be addressed to T.J.M. Author Contributions: C.J.D., T.J.M., and B.J.M. conceived experiments; A.M.L. synthesized the ligand p-tpy; C.J.D. prepared electrodes, designed and fabricated custom equipment, and conducted all experiments; C.J.D., T.J.M, and B.J.M. analyzed and interpreted data; C.J.D., A.M.L, B.J.M., and T.J.M. wrote the manuscript. NR 37 TC 3 Z9 3 U1 11 U2 34 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 EI 1095-9203 J9 SCIENCE JI Science PD NOV 6 PY 2015 VL 350 IS 6261 BP 652 EP 655 DI 10.1126/science.aac9217 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CV3MH UT WOS:000364162800043 PM 26542564 ER PT J AU Fu, MX Imai, T Han, TH Lee, YS AF Fu, Mingxuan Imai, Takashi Han, Tian-Heng Lee, Young S. TI Evidence for a gapped spin-liquid ground state in a kagome Heisenberg antiferromagnet SO SCIENCE LA English DT Article ID LATTICE; EXCITATIONS; NMR AB The kagome Heisenberg antiferromagnet is a leading candidate in the search for a spin system with a quantum spin-liquid ground state. The nature of its ground state remains a matter of active debate. We conducted oxygen-17 single-crystal nuclear magnetic resonance (NMR) measurements of the spin-1/2 kagome lattice in herbertsmithite [ZnCu3(OH)(6)Cl-2], which is known to exhibit a spinon continuum in the spin excitation spectrum. We demonstrated that the intrinsic local spin susceptibility chi(kagome), deduced from the oxygen-17 NMR frequency shift, asymptotes to zero below temperatures of 0.03J, where J similar to 200 kelvin is the copper-copper superexchange interaction. Combined with the magnetic field dependence of chi(kagome) that we observed at low temperatures, these results imply that the kagome Heisenberg antiferromagnet has a spin-liquid ground state with a finite gap. C1 [Fu, Mingxuan; Imai, Takashi] McMaster Univ, Dept Phys & Astron, Hamilton, ON L8S 4M1, Canada. [Imai, Takashi] Canadian Inst Adv Res, Toronto, ON M5G1Z8, Canada. [Han, Tian-Heng] Univ Chicago, James Franck Inst, Chicago, IL 60637 USA. [Han, Tian-Heng] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. [Han, Tian-Heng] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Lee, Young S.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Lee, Young S.] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA. [Lee, Young S.] Stanford Univ, Dept Photon Sci, Stanford, CA 94305 USA. [Lee, Young S.] SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. RP Imai, T (reprint author), McMaster Univ, Dept Phys & Astron, Hamilton, ON L8S 4M1, Canada. EM imai@mcmaster.ca FU Natural Sciences and Engineering Research Council of Canada; Canadian Institute for Advanced Research; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-FG02-07ER46134]; Grainger Fellowship by Department of Physics at the University of Chicago FX We thank P. A. Lee and T. Sakai for helpful discussions and P. Dube, J. Britten, and V. Jarvis of the Brockhouse Institute for technical assistance. The work at McMaster University was supported by the Natural Sciences and Engineering Research Council of Canada and the Canadian Institute for Advanced Research. The work at the Massachusetts Institute of Technology was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under grant no. DE-FG02-07ER46134. T.-H.H. acknowledges support from a Grainger Fellowship, provided by the Department of Physics at the University of Chicago. NR 28 TC 37 Z9 37 U1 16 U2 62 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 EI 1095-9203 J9 SCIENCE JI Science PD NOV 6 PY 2015 VL 350 IS 6261 BP 655 EP 658 DI 10.1126/science.aab2120 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CV3MH UT WOS:000364162800044 PM 26542565 ER PT J AU Cui, J Roy, B Tanatar, MA Ran, S Bud'ko, SL Prozorov, R Canfield, PC Furukawa, Y AF Cui, J. Roy, B. Tanatar, M. A. Ran, S. Bud'ko, S. L. Prozorov, R. Canfield, P. C. Furukawa, Y. TI Antiferromagnetic spin correlations and pseudogaplike behavior in Ca(Fe1-xCox)(2)As-2 studied by As-75 nuclear magnetic resonance and anisotropic resistivity SO PHYSICAL REVIEW B LA English DT Article ID IRON PNICTIDES; SUPERCONDUCTIVITY; GROWTH AB We report As-75 nuclear magnetic resonance (NMR) measurements of single-crystalline Ca(Fe1-xCox)(2)As-2 (x = 0.023, 0.028, 0.033, and 0.059) annealed at 350 degrees C for 7 days. From the observation of a characteristic shape of As-75 NMR spectra in the stripe-type antiferromagnetic (AFM) state, as in the case of x = 0 (T-N = 170 K), clear evidence for the commensurate AFM phase transition with the concomitant structural phase transition is observed in x = 0.023 (T-N = 106 K) and x = 0.028 (T-N = 53 K). Through the temperature dependence of the Knight shifts and the nuclear spin lattice relaxation rates (1/T-1), although stripe-type AFM spin fluctuations are realized in the paramagnetic state as in the case of other iron pnictide superconductors, we found a gradual decrease of the AFM spin fluctuations below a crossover temperature T* that was nearly independent of Co-substitution concentration, and it is attributed to a pseudogaplike behavior in the spin excitation spectra of these systems. The T* feature finds correlation with features in the temperature-dependent interplane resistivity, rho(c)(T), but not with the in-plane resistivity rho(a) (T). The temperature evolution of anisotropic stripe-type AFM spin fluctuations is tracked in the paramagnetic and pseudogap phases by the 1/T-1 data measured under magnetic fields parallel and perpendicular to the c axis. Based on our NMR data, we have added a pseudogaplike phase to the magnetic and electronic phase diagram of Ca(Fe1-xCox)(2)As-2. C1 [Cui, J.; Roy, B.; Tanatar, M. A.; Ran, S.; Bud'ko, S. L.; Prozorov, R.; Canfield, P. C.; Furukawa, Y.] US DOE, Ames Lab, Ames, IA 50011 USA. [Cui, J.] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. [Roy, B.; Tanatar, M. A.; Ran, S.; Bud'ko, S. L.; Prozorov, R.; Canfield, P. C.; Furukawa, Y.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Cui, J (reprint author), US DOE, Ames Lab, Ames, IA 50011 USA. FU U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Materials Sciences and Engineering; U.S. DOE by Iowa State University [DE-AC02-07CH11358] FX The work was supported by the U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Materials Sciences and Engineering. The research was performed at Ames Laboratory, which is operated for the U.S. DOE by Iowa State University under Contract No. DE-AC02-07CH11358. NR 72 TC 3 Z9 3 U1 1 U2 16 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD NOV 6 PY 2015 VL 92 IS 18 AR 184504 DI 10.1103/PhysRevB.92.184504 PG 13 WC Physics, Condensed Matter SC Physics GA CV4CU UT WOS:000364214000005 ER PT J AU Pramanick, A Wang, XP Hoffmann, C Diallo, SO Jorgensen, MRV Wang, XL AF Pramanick, A. Wang, X. P. Hoffmann, C. Diallo, S. O. Jorgensen, M. R. V. Wang, X. -L. TI Microdomain dynamics in single-crystal BaTiO3 during paraelectric-ferroelectric phase transition measured with time-of-flight neutron scattering SO PHYSICAL REVIEW B LA English DT Article ID CUBIC BATIO3; BARIUM-TITANATE; DIFFRACTION; KNBO3; MODES AB Microscopic polar clusters can play an important role in the phase transition of ferroelectric perovskite oxides such as BaTiO3, which have shown coexistence of both displacive and order-disorder dynamics, although their topological and dynamical characteristics are yet to be clarified. Here, we report sharp increases in the widths and intensities of Bragg peaks from a BaTiO3 single crystal, which are measured in situ during heating and cooling within a few degrees of its phase transition temperature T-C, using the neutron time-of-flight Laue technique. Most significantly sharper and stronger increases in peak widths and peak intensities were found to occur during cooling compared to that during heating through T-C. A closer examination of the Bragg peaks revealed their elongated shapes in both the paraelectric and ferroelectric phases, the analysis of which indicated the presence of microdomains that have correlated < 111 >-type polarization vectors within the {110}-type crystallographic planes. No significant increase in the average size of the microdomains (similar to 10 nm) near T-C could be observed from diffraction measurements, which is also consistent with small changes in the relaxation times for motion of Ti ions measured with quasielastic neutron scattering. The current observations do not indicate that the paraelectric-ferroelectric phase transition in BaTiO3 is primarily caused by an increase in the size of the microscopic polar clusters or critical slowing down of Ti ionic motion. The sharp and strong increases in peak widths and peak intensities during cooling through T-C are explained as a result of microstrains that are developed at microdomain interfaces during paraelectric-ferroelectric phase transition. C1 [Pramanick, A.; Wang, X. -L.] City Univ Hong Kong, Dept Phys & Mat Sci, Kowloon, Hong Kong, Peoples R China. [Wang, X. P.; Hoffmann, C.; Diallo, S. O.] Oak Ridge Natl Lab, Chem & Engn Mat Div, Oak Ridge, TN 37831 USA. [Jorgensen, M. R. V.] Aarhus Univ, Ctr Mat Crystallog iNANO, Aarhus, Denmark. [Jorgensen, M. R. V.] Aarhus Univ, Dept Chem, DK-8000 Aarhus, Denmark. RP Pramanick, A (reprint author), City Univ Hong Kong, Dept Phys & Mat Sci, Kowloon, Hong Kong, Peoples R China. EM abhijit.pramanick@gmail.com RI Wang, Xiaoping/E-8050-2012; Diallo, Souleymane/B-3111-2016; Wang, Xun-Li/C-9636-2010; hoffmann, christina/D-2292-2016; Pramanick, Abhijit/D-9578-2011; Jorgensen, Mads Ry Vogel/C-6109-2017 OI Wang, Xiaoping/0000-0001-7143-8112; Diallo, Souleymane/0000-0002-3369-8391; Wang, Xun-Li/0000-0003-4060-8777; hoffmann, christina/0000-0002-7222-5845; Pramanick, Abhijit/0000-0003-0687-4967; Jorgensen, Mads Ry Vogel/0000-0001-5507-9615 FU Division of Scientific User Facilities, Office of Basic Energy Sciences, US Department of Energy [DE-AC05-00OR22725]; UT-Battelle, LLC; City University of Hong Kong; Danish National Research Foundation [DNRF93]; Danish Agency for Science, Technology and Innovation (DANSCATT); Research Grants Council of Hong Kong Special Administrative Region [CityU 122713] FX The neutron scattering measurements were carried out at the Spallation Neutron Source, which is sponsored by the Division of Scientific User Facilities, Office of Basic Energy Sciences, US Department of Energy, under Contract No. DE-AC05-00OR22725 with UT-Battelle, LLC. A.P. greatly acknowledges funding support from City University of Hong Kong. M.R.V.J. is grateful for the support by the Danish National Research Foundation (DNRF93) and Danish Agency for Science, Technology and Innovation (DANSCATT). A.P. and X.L.W. gratefully acknowledge funding support by a grant from the Research Grants Council of Hong Kong Special Administrative Region (Project No. CityU 122713). Technical assistance from Matthew Frost and Junhong Helen He is gratefully acknowledged. NR 38 TC 3 Z9 3 U1 3 U2 23 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD NOV 6 PY 2015 VL 92 IS 17 AR 174103 DI 10.1103/PhysRevB.92.174103 PG 10 WC Physics, Condensed Matter SC Physics GA CV4CP UT WOS:000364213500002 ER PT J AU Sklenar, J Zhang, W Jungfleisch, MB Jiang, WJ Chang, HC Pearson, JE Wu, MZ Ketterson, JB Hoffmann, A AF Sklenar, Joseph Zhang, Wei Jungfleisch, Matthias B. Jiang, Wanjun Chang, Houchen Pearson, John E. Wu, Mingzhong Ketterson, John B. Hoffmann, Axel TI Driving and detecting ferromagnetic resonance in insulators with the spin Hall effect SO PHYSICAL REVIEW B LA English DT Article AB We demonstrate the generation and detection of spin-torque ferromagnetic resonance in Pt/Y3Fe5O12 (YIG) bilayers. A unique attribute of this system is that the spin Hall effect lies at the heart of both the generation and detection processes and no charge current is passing through the insulating magnetic layer. When the YIG undergoes resonance, a dc voltage is detected longitudinally along the Pt that can be described by two components. One is the mixing of the spin Hall magnetoresistance with the microwave current. The other results from spin pumping into the Pt being converted to a dc current through the inverse spin Hall effect. The voltage is measured with applied magnetic field directions that range from in plane to nearly perpendicular. When compared with theory, we find that the real and imaginary parts of the spin mixing conductance have out-of-plane angular dependences. C1 [Sklenar, Joseph; Zhang, Wei; Jungfleisch, Matthias B.; Jiang, Wanjun; Pearson, John E.; Hoffmann, Axel] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Sklenar, Joseph; Ketterson, John B.] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. [Chang, Houchen; Wu, Mingzhong] Colorado State Univ, Dept Phys, Ft Collins, CO 80523 USA. RP Sklenar, J (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. RI Hoffmann, Axel/A-8152-2009; Jungfleisch, Matthias Benjamin/G-1069-2015; Jiang, Wanjun/E-6994-2011 OI Hoffmann, Axel/0000-0002-1808-2767; Jungfleisch, Matthias Benjamin/0000-0001-8204-3677; Jiang, Wanjun/0000-0003-0918-3862 FU U.S. Department of Energy, Office of Science, Materials Science and Engineering Division; DOE, Office of Science, Basic Energy Science [DE-AC02-06CH11357]; NSF [DMR-1121262]; U. S. Army Research Office [W911NF-14-1-0501]; U. S. National Science Foundation [ECCS-1231598]; C-SPIN (SRC STARnet Center - MARCO); C-SPIN (SRC STARnet Center - DARPA); U. S. Department of Energy [DE-SC0012670] FX We acknowledge Stephen Wu for assistance with ion milling used for sample preparation. The work at Argonne was supported by the U.S. Department of Energy, Office of Science, Materials Science and Engineering Division. Lithography was carried out at the Center for Nanoscale Materials, which is supported by DOE, Office of Science, Basic Energy Science under Contract No. DE-AC02-06CH11357. Work at Northwestern utilized facilities maintained by the NSF supported Northwestern Materials Research Center under Contract No. DMR-1121262. The work at Colorado State University was supported by the U. S. Army Research Office (W911NF-14-1-0501), the U. S. National Science Foundation (ECCS-1231598), C-SPIN (one of the SRC STARnet Centers sponsored by MARCO and DARPA), and the U. S. Department of Energy (DE-SC0012670). NR 45 TC 10 Z9 10 U1 5 U2 51 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD NOV 6 PY 2015 VL 92 IS 17 AR 174406 DI 10.1103/PhysRevB.92.174406 PG 8 WC Physics, Condensed Matter SC Physics GA CV4CP UT WOS:000364213500005 ER PT J AU Song, Y Lu, XY Abernathy, DL Tam, DW Niedziela, JL Tian, W Luo, HQ Si, QM Dai, PC AF Song, Yu Lu, Xingye Abernathy, D. L. Tam, David W. Niedziela, J. L. Tian, Wei Luo, Huiqian Si, Qimiao Dai, Pengcheng TI Energy dependence of the spin excitation anisotropy in uniaxial-strained BaFe1.9Ni0.1As2 SO PHYSICAL REVIEW B LA English DT Article ID IRON-BASED SUPERCONDUCTORS; ARSENIDE SUPERCONDUCTOR; ORDER; TRANSITION AB We use inelastic neutron scattering to study the temperature and energy dependence of the spin excitation anisotropy in uniaxial-strained electron-doped iron pnictide BaFe1.9Ni0.1As2 near optimal superconductivity (T-c = 20 K). Our work has been motivated by the observation of in-plane resistivity anisotropy in the paramagnetic tetragonal phase of electron-underdoped iron pnictides under uniaxial pressure, which has been attributed to a spin-driven Ising-nematic state or orbital ordering. Here we show that the spin excitation anisotropy, a signature of the spin-driven Ising-nematic phase, exists for energies below similar to 60 meV in uniaxial-strained BaFe1.9Ni0.1As2. Since this energy scale is considerably larger than the energy splitting of the d(xz) and d(yz) bands of uniaxial-strained Ba(Fe1-xCox)(2)As-2 near optimal superconductivity, spin Ising-nematic correlations are likely the driving force for the resistivity anisotropy and associated electronic nematic correlations. C1 [Song, Yu; Lu, Xingye; Tam, David W.; Si, Qimiao; Dai, Pengcheng] Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA. [Lu, Xingye; Luo, Huiqian] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China. [Abernathy, D. L.; Tian, Wei] Oak Ridge Natl Lab, Quantum Condensed Matter Div, Oak Ridge, TN 37831 USA. [Niedziela, J. L.] Oak Ridge Natl Lab, Instrument & Source Div, Oak Ridge, TN 37831 USA. RP Song, Y (reprint author), Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA. EM pdai@rice.edu RI Dai, Pengcheng /C-9171-2012; Abernathy, Douglas/A-3038-2012; BL18, ARCS/A-3000-2012; Tian, Wei/C-8604-2013 OI Dai, Pengcheng /0000-0002-6088-3170; Abernathy, Douglas/0000-0002-3533-003X; Tian, Wei/0000-0001-7735-3187 FU U.S. NSF [DMR-1362219, DMR-1436006, DMR-1309531]; Robert A. Welch Foundation [C-1839, C-1411]; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy; NSFC Program [11374011]; CAS [SPRP-B: XDB07020300] FX The neutron scattering work at Rice is supported by the U.S. NSF DMR-1362219 and DMR-1436006 (P.D.). This work is also supported by the Robert A. Welch Foundation Grants No. C-1839 (P.D.) and No. C-1411 (Q.S.). Q.S. is supported by the U.S. NSF DMR-1309531. The neutron scattering work at ORNL's HFIR and SNS was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. The work at IOP, CAS in China is supported by the NSFC Program (No. 11374011) and CAS (SPRP-B: XDB07020300). NR 46 TC 5 Z9 5 U1 0 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD NOV 6 PY 2015 VL 92 IS 18 AR 180504 DI 10.1103/PhysRevB.92.180504 PG 6 WC Physics, Condensed Matter SC Physics GA CV4CU UT WOS:000364214000002 ER PT J AU Adams, CS Moser, AL Hsu, SC AF Adams, Colin S. Moser, Auna L. Hsu, Scott C. TI Observation of Rayleigh-Taylor-instability evolution in a plasma with magnetic and viscous effects SO PHYSICAL REVIEW E LA English DT Article AB We present time-resolved observations of Rayleigh-Taylor-instability (RTI) evolution at the interface between an unmagnetized plasma jet colliding with a stagnated, magnetized plasma. The observed instability growth time (similar to 10 mu s) is consistent with the estimated linear RTI growth rate calculated using experimentally inferred values of density (similar to 10(14) cm(-3)) and deceleration (similar to 10(9) m/s(2)). The observed mode wavelength (greater than or similar to 1 cm) nearly doubles within a linear growth time. Theoretical estimates of magnetic and viscous stabilization and idealized magnetohydrodynamic simulations including a physical viscosity model both suggest that the observed instability evolution is subject to magnetic and/or viscous effects. C1 [Adams, Colin S.; Moser, Auna L.; Hsu, Scott C.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Adams, Colin S.] Univ New Mexico, Albuquerque, NM 87131 USA. RP Adams, CS (reprint author), Virginia Polytech Inst & State Univ, Blacksburg, VA 24061 USA. EM scotthsu@lanl.gov OI Hsu, Scott/0000-0002-6737-4934 FU Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Laboratory under DOE [DE-AC52-06NA25396] FX We acknowledge J. Dunn for experimental support, G. Wurden for loaning and assistingwith the multiple-frame CCD camera, and B. Srinivasan for assistance with simulations. This work was supported by the Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Laboratory under DOE Contract No. DE-AC52-06NA25396. NR 31 TC 2 Z9 2 U1 1 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 EI 1550-2376 J9 PHYS REV E JI Phys. Rev. E PD NOV 6 PY 2015 VL 92 IS 5 AR 051101 DI 10.1103/PhysRevE.92.051101 PG 5 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA CV4DO UT WOS:000364216400002 PM 26651638 ER PT J AU Pino, M Tsvelik, AM Ioffe, LB AF Pino, M. Tsvelik, A. M. Ioffe, L. B. TI Unpaired Majorana Modes in Josephson-Junction Arrays with Gapless Bulk Excitations SO PHYSICAL REVIEW LETTERS LA English DT Article ID 2-CHANNEL KONDO MODEL AB The search for Majorana bound states in solid-state physics has been limited to materials that display a gap in their bulk spectrum. We show that such unpaired states appear in certain quasi-one-dimensional Josephson-junction arrays with gapless bulk excitations. The bulk modes mediate a coupling between Majorana bound states via the Ruderman-Kittel-Yosida-Kasuya mechanism. As a consequence, the lowest energy doublet acquires a finite energy difference. For a realistic set of parameters this energy splitting remains much smaller than the energy of the bulk eigenstates even for short chains of length L similar to 10. C1 [Pino, M.; Ioffe, L. B.] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. [Tsvelik, A. M.] Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA. [Ioffe, L. B.] LPTHE, CNRS, UMR 7589, F-75005 Paris, France. RP Pino, M (reprint author), Rutgers State Univ, Dept Phys & Astron, 136 Frelinghuysen Rd, Piscataway, NJ 08854 USA. FU ARO [W911NF-13-1-0431]; ANR QuDec; U.S. Department of Energy (DOE), Division of Materials Science [DE-AC02-98CH10886] FX M. P. and L. B. I. acknowledge support from ARO (W911NF-13-1-0431) and ANR QuDec. A. M. T. was supported by the U.S. Department of Energy (DOE), Division of Materials Science, under Contract No. DE-AC02-98CH10886. NR 21 TC 1 Z9 1 U1 2 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 6 PY 2015 VL 115 IS 19 AR 197001 DI 10.1103/PhysRevLett.115.197001 PG 5 WC Physics, Multidisciplinary SC Physics GA CV4DQ UT WOS:000364216600005 PM 26588406 ER PT J AU Kravchenko, AN Negassa, WC Guber, AK Rivers, ML AF Kravchenko, Alexandra N. Negassa, Wakene C. Guber, Andrey K. Rivers, Mark L. TI Protection of soil carbon within macro-aggregates depends on intra-aggregate pore characteristics SO SCIENTIFIC REPORTS LA English DT Article ID PARTICULATE ORGANIC-MATTER; SELF-ORGANIZATION; MICROBE SYSTEM; DECOMPOSITION; TURNOVER; CULTIVATION; ECOSYSTEM; COMPLEX; QUALITY; CYCLE AB Soil contains almost twice as much carbon (C) as the atmosphere and 5-15% of soil C is stored in a form of particulate organic matter (POM). Particulate organic matter C is regarded as one of the most labile components of the soil C, such that can be easily lost under right environmental settings. Conceptually, micro-environmental conditions are understood to be responsible for protection of soil C. However, quantitative knowledge of the specific mechanisms driving micro-environmental effects is still lacking. Here we combined CO2 respiration measurements of intact soil samples with X-ray computed micro-tomography imaging and investigated how micro-environmental conditions, represented by soil pores, influence decomposition of POM. We found that atmosphere-connected soil pores influenced soil C's, and especially POM's, decomposition. In presence of such pores losses in POM were 3-15 times higher than in their absence. Moreover, we demonstrated the presence of a feed-forward relationship between soil C decomposition and pore connections that enhance it. Since soil hydrology and soil pores are likely to be affected by future climate changes, our findings indicate that not-accounting for the influence of soil pores can add another sizable source of uncertainty to estimates of future soil C losses. C1 [Kravchenko, Alexandra N.; Guber, Andrey K.] Michigan State Univ, Dept Plant Soil & Microbial Sci, E Lansing, MI 48824 USA. [Negassa, Wakene C.] Inst Adv Sustainabil Studies, IASS Global Soil Forum, Potsdam, Germany. [Rivers, Mark L.] Univ Chicago, Argonne Natl Lab, Ctr Adv Radiat Sources, Argonne, IL USA. RP Guber, AK (reprint author), Michigan State Univ, Dept Plant Soil & Microbial Sci, E Lansing, MI 48824 USA. EM kravche1@msu.edu FU United States Department of Agriculture (USDA) National Institute of Food and Agriculture (NIFA) award [2011-68002-301907]; U.S. National Science Foundation Long-Term Ecological Research (LTER) Program at the Kellogg Biological Station [DEB 1027253]; Kellogg Biological Station; Michigan State University's "Project GREEEN" Program; Michigan State University's "Discretionary Fund Initiative" Program FX Support for this research was provided in parts by the United States Department of Agriculture (USDA) National Institute of Food and Agriculture (NIFA) award No. 2011-68002-301907 cropping systems Coordinated Agricultural Project (CAP); by the U.S. National Science Foundation Long-Term Ecological Research (LTER) Program at the Kellogg Biological Station (DEB 1027253); by Kellogg Biological Station; by Michigan State University's "Project GREEEN" Program; and by Michigan State University's "Discretionary Fund Initiative" Program. NR 42 TC 3 Z9 3 U1 16 U2 56 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD NOV 6 PY 2015 VL 5 AR 16261 DI 10.1038/srep16261 PG 10 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CV4LH UT WOS:000364237900001 PM 26541265 ER PT J AU Wee, SH Huang, PS Lee, JK Goyal, A AF Wee, Sung Hun Huang, Po-Shun Lee, Jung-Kun Goyal, Amit TI Heteroepitaxial Cu2O thin film solar cell on metallic substrates SO SCIENTIFIC REPORTS LA English DT Article ID 2-STEP ELECTRODEPOSITION; DEPOSITION; OPPORTUNITY; GROWTH; RABITS; CUO AB Heteroepitaxial, single-crystal-like Cu2O films on inexpensive, flexible, metallic substrates can potentially be used as absorber layers for fabrication of low-cost, high-performance, non-toxic, earth-abundant solar cells. Here, we report epitaxial growth of Cu2O films on low cost, flexible, textured metallic substrates. Cu2O films were deposited on the metallic templates via pulsed laser deposition under various processing conditions to study the influence of processing parameters on the structural and electronic properties of the films. It is found that pure, epitaxial Cu2O phase without any trace of CuO phase is only formed in a limited deposition window of P(O-2) - temperature. The (00l) single-oriented, highly textured, Cu2O films deposited under optimum P(O-2) - temperature conditions exhibit excellent electronic properties with carrier mobility in the range of 40-60 cm(2) V-1 s(-1) and carrier concentration over 1016 cm(-3). The power conversion efficiency of 1.65% is demonstrated from a proof-of-concept Cu2O solar cell based on epitaxial Cu2O film prepared on the textured metal substrate. C1 [Wee, Sung Hun; Goyal, Amit] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Huang, Po-Shun; Lee, Jung-Kun] Univ Pittsburgh, Dept Mech Engn & Mat Sci, Pittsburgh, PA 15261 USA. [Goyal, Amit] SUNY Buffalo, Res & Educ Energy Environm & Water RENEW, Buffalo, NY 14260 USA. [Goyal, Amit] SUNY Buffalo, Dept Chem & Biol Engn, Buffalo, NY 14260 USA. [Goyal, Amit] SUNY Buffalo, Dept Mat Design & Innovat, Buffalo, NY 14260 USA. [Goyal, Amit] SUNY Buffalo, Dept Elect Engn & Phys, Buffalo, NY 14260 USA. RP Wee, SH (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. EM sunghunwee@gmail.com; agoyal@buffalo.edu FU Laboratory Directed Research & Development (LDRD) funds; Oak Ridge National Laboratory; RENEW(Research and Education in Energy; Environment & Water) Institute at SUNY-Buffalo; National Science Foundation [CMMI-1333182] FX Research partially sponsored by the Laboratory Directed Research & Development (LDRD) funds, Oak Ridge National Laboratory and the RENEW(Research and Education in Energy; Environment & Water) Institute at SUNY-Buffalo. Jung-Kun Lee acknowledges the support from National Science Foundation (Grant No. CMMI-1333182). NR 37 TC 3 Z9 3 U1 10 U2 43 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD NOV 6 PY 2015 VL 5 AR 16272 DI 10.1038/srep16272 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CV4KT UT WOS:000364236400001 PM 26541499 ER PT J AU Kroll, JH Lim, CY Kessler, SH Wilson, KR AF Kroll, Jesse H. Lim, Christopher Y. Kessler, Sean H. Wilson, Kevin R. TI Heterogeneous Oxidation of Atmospheric Organic Aerosol: Kinetics of Changes to the Amount and Oxidation State of Particle-Phase Organic Carbon SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID OH-INITIATED OXIDATION; FATTY-ACID PARTICLES; VOLATILITY BASIS-SET; HYDROXYL RADICALS; HIGH-RESOLUTION; MOLECULAR-STRUCTURE; CHEMICAL EVOLUTION; MASS-SPECTROMETER; REACTIVE UPTAKE; RELATIVE-HUMIDITY AB Atmospheric oxidation reactions are known to affect the chemical composition of organic aerosol (OA) particles over timescales of several days, but the details of such oxidative aging reactions are poorly understood. In this study we examine the rates and products of a key class of aging reaction, the heterogeneous oxidation of particle-phase organic species by the gas-phase hydroxyl radical (OH). We compile and reanalyze a number of previous studies from our laboratories involving the oxidation of single-component organic particles. All kinetic and product data are described on a common basis, enabling a straightforward comparison among different chemical systems and experimental conditions. Oxidation chemistry is described in terms of changes to key ensemble properties of the OA, rather than to its detailed molecular composition, focusing on two quantities in particular, the amount and the oxidation state of the particle-phase carbon. Heterogeneous oxidation increases the oxidation state of particulate carbon, with the rate of increase determined by the detailed chemical mechanism. At the same time, the amount of particle-phase carbon decreases with oxidation, due to fragmentation (C-C scission) reactions that form small, volatile products that escape to the gas phase. In contrast to the oxidation state increase, the rate of carbon loss is nearly uniform among most systems studied. Extrapolation of these results to atmospheric conditions indicates that heterogeneous oxidation can have a substantial effect on the amount and composition of atmospheric OA over timescales of several days, a prediction that is broadly in line with available measurements of OA evolution over such long timescales. In particular, 3-13% of particle-phase carbon is lost to the gas phase after one week of heterogeneous oxidation. Our results indicate that oxidative aging represents an important sink for particulate organic carbon, and more generally that fragmentation reactions play a major role in the lifecycle of atmospheric OA. C1 [Kroll, Jesse H.; Lim, Christopher Y.; Kessler, Sean H.] MIT, Dept Civil & Environm Engn, Cambridge, MA 02139 USA. [Kroll, Jesse H.] MIT, Dept Chem Engn, Cambridge, MA 02139 USA. [Wilson, Kevin R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Kroll, JH (reprint author), MIT, Dept Civil & Environm Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA. EM jhkroll@mit.edu OI Lim, Christopher/0000-0003-0030-2191 FU National Science Foundation [AGS-1056225, CHE-1307664]; Department of Energy, Office of Science Early Career Research Program; Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences Division of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the National Science Foundation under Grant Nos. AGS-1056225 and CHE-1307664. K.R.W. is supported by the Department of Energy, Office of Science Early Career Research Program and by the Director, Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences Division of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The authors are grateful to the numerous colleagues involved in the original experiments, including J. Smith, T. Nah, D. Che, M. N. Chan, K. Daumit, C.-l. Liu, H. Zhang, M. Ahmed, C. Cappa, A. Goldstein, and S. Leone; J.H.K. and K.R.W. would especially like to acknowledge D. Worsnop for initiating and fostering the collaboration that led to this work. NR 101 TC 14 Z9 14 U1 7 U2 43 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD NOV 5 PY 2015 VL 119 IS 44 BP 10767 EP 10783 DI 10.1021/acs.jpca.5b06946 PG 17 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA DB2EX UT WOS:000368322200001 PM 26381466 ER PT J AU Nguyen, TL Baraban, JH Ruscic, B Stanton, JF AF Nguyen, Thanh L. Baraban, Joshua H. Ruscic, Branko Stanton, John F. TI On the HCN - HNC Energy Difference SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID ACTIVE THERMOCHEMICAL TABLES; DIPOLE-BOUND ANIONS; PHOTOELECTRON-PHOTOION COINCIDENCE; COUPLED-CLUSTER THEORY; COMPUTATIONAL THERMOCHEMISTRY; ELECTRONIC-STRUCTURE; HYDROGEN-CYANIDE; DRUDE-MODEL; HEAT; SPECTROSCOPY AB The value for the HCN -> HNC 0 K isomerization energy has been investigated by combining state-of-the-art electronic structure methods with the Active Thermochemical Tables (ATcT) approach. The directly computed energy difference between HCN and HNC at the HEAT-456QP level of theory is 5236 +/- 50 cm(-1). This is substantially lower (by similar to 470 cm(-1) or similar to 1.3 kcal/mol) than the recently proposed high-level multireference configuration interaction value of 5705 +/- 20 cm(-1) of Barber et al. (Mon. Not. R Astron. Soc. 2014, 437, 1828-1835). The discrepancy was analyzed by the ATcT approach, using several distinct steps, which (a) independently corroborated the current single-reference HEAT-456QP result, (b) independently found that the recent multireference-based value is highly unlikely to be correct within its originally stated uncertainty, and (c) produced a recommended value of 5212 +/- 30 cm(-1) for the HCN -> HNC isomerization energy at 0 K, based on all currently available knowledge. The ATcT standard enthalpies of formation at 0 and 298 K for HCN, HNC, and their cations and anions are also presented. C1 [Nguyen, Thanh L.; Baraban, Joshua H.; Stanton, John F.] Univ Texas Austin, Dept Chem, Inst Theoret Chem, Austin, TX 78712 USA. [Ruscic, Branko] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Ruscic, Branko] Univ Chicago, Computat Inst, Chicago, IL 60637 USA. RP Ruscic, B (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM ruscic@anl.gov; jfstanton@mail.utexas.edu RI Ruscic, Branko/A-8716-2008 OI Ruscic, Branko/0000-0002-4372-6990 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences [DE-AC02-06CH11357, DE-FG02-07ER15884]; Robert A. Welch Foundation [F-1283] FX This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contracts DE-AC02-06CH11357 (Argonne) and DE-FG02-07ER15884 (U. Texas). J.F.S. and T.L.N. also acknowledge support from the Robert A. Welch Foundation (Grant F-1283). NR 44 TC 6 Z9 6 U1 14 U2 22 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD NOV 5 PY 2015 VL 119 IS 44 BP 10929 EP 10934 DI 10.1021/acs.jpca.5b08406 PG 6 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA DB2EX UT WOS:000368322200017 PM 26447346 ER PT J AU Ma, EB Harrington, LB O'Connell, MR Zhou, KH Doudna, JA AF Ma, Enbo Harrington, Lucas B. O'Connell, Mitchell R. Zhou, Kaihong Doudna, Jennifer A. TI Single-Stranded DNA Cleavage by Divergent CRISPR-Cas9 Enzymes SO MOLECULAR CELL LA English DT Article ID CAS SYSTEMS; BACTERIAL IMMUNITY; TARGET DNA; GUIDE RNA; DUAL-RNA; COMPLEX; ENDONUCLEASE; RECOGNITION; PROTEINS AB Double-stranded DNA (dsDNA) cleavage by Cas9 is a hallmark of type II CRISPR-Cas immune systems. Cas9-guide RNA complexes recognize 20-base-pair sequences in DNA and generate a site-specific double-strand break, a robust activity harnessed for genome editing. DNA recognition by all studied Cas9 enzymes requires a protospacer adjacent motif (PAM) next to the target site. We show that Cas9 enzymes from evolutionarily divergent bacteria can recognize and cleave single-stranded DNA (ssDNA) by an RNA-guided, PAM-independent recognition mechanism. Comparative analysis shows that in contrast to the type II-A S. pyogenes Cas9 that is widely used for genome engineering, the smaller type II-C Cas9 proteins have limited dsDNA binding and unwinding activity and promiscuous guide RNA specificity. These results indicate that inefficiency of type II-C Cas9 enzymes for genome editing results from a limited ability to cleave dsDNA and suggest that ssDNA cleavage was an ancestral function of the Cas9 enzyme family. C1 [Ma, Enbo; Harrington, Lucas B.; O'Connell, Mitchell R.; Doudna, Jennifer A.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Zhou, Kaihong; Doudna, Jennifer A.] Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA. [Doudna, Jennifer A.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [O'Connell, Mitchell R.; Doudna, Jennifer A.] Univ Calif Berkeley, Ctr RNA Syst Biol, Berkeley, CA 94720 USA. [Doudna, Jennifer A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Doudna, Jennifer A.] Univ Calif Berkeley, Innovat Genom Initiat, Berkeley, CA 94720 USA. RP Doudna, JA (reprint author), Univ Calif Berkeley, Dept Mol & Cell Biol, 229 Stanley Hall, Berkeley, CA 94720 USA. EM doudna@berkeley.edu FU Center for RNA Systems Biology (NIH P50); Howard Hughes Medical Institute; National Science Foundation FX We thank Doudna Lab members and Rodolphe Barrangou for helpful discussions. This work was supported by the Center for RNA Systems Biology (NIH P50, J. Cate, P.I.) and the Howard Hughes Medical Institute. L.H. is supported by a graduate fellowship from the National Science Foundation. J.A.D. is a Howard Hughes Medical Institute Investigator. The authors have filed a related patent; J.A.D. is a co-founder of Caribou Biosciences, Editas Medicine, and Intellia Therapeutics. NR 25 TC 7 Z9 7 U1 4 U2 31 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 1097-2765 EI 1097-4164 J9 MOL CELL JI Mol. Cell PD NOV 5 PY 2015 VL 60 IS 3 BP 398 EP 407 DI 10.1016/j.molcel.2015.10.030 PG 10 WC Biochemistry & Molecular Biology; Cell Biology SC Biochemistry & Molecular Biology; Cell Biology GA DB1RH UT WOS:000368286000010 PM 26545076 ER PT J AU Wang, TP Yang, ZQ AF Wang, Taiping Yang, Zhaoqing TI Understanding the flushing capability of Bellingham Bay and its implication on bottom water hypoxia SO ESTUARINE COASTAL AND SHELF SCIENCE LA English DT Article DE flushing capability; Bellingham Bay; FVCOM; residence time; hypoxia ID SOUND OCEANOGRAPHIC PROPERTIES; TRANSPORT TIME SCALES; PUGET-SOUND; RESIDENCE TIME; OCEAN MODEL; NUTRIENT ENRICHMENT; CHESAPEAKE BAY; COASTAL OCEAN; RIVER ESTUARY; BOX MODEL AB In this study, an unstructured-grid finite-volume coastal ocean model (FVCOM) was used to simulate hydrodynamic circulation and assess the flushing capability in Bellingham Bay, Washington, USA. The model was reasonably calibrated against field observations for water level, velocity and salinity, and was further used to calculate water residence time in the study site. The model results suggest that, despite the large tidal ranges (similar to 4 m during spring tide), tidal currents are relatively weak in Bellingham Bay with surface currents generally below 0.5 m/s. The local water residence time in Bellingham Bay varies from near zero to as long as 15 days, depending on the location and river flow conditions. In general, Bellingham Bay is a well-flushed coastal embayment affected by freshwater discharge, tides, wind, and density-driven circulation. The basin-wide global residence time ranges from 5 to 7 days. The model results also provide useful information on possible causes of the emerging summertime hypoxia problem in the north central region of Bellingham Bay. Model results suggest that the formation of hypoxia in bottom water results from an enhanced oxygen consumption rate in the oceanic bottom water inflow with low dissolved oxygen by organic matters accumulated at the regions characterized with relatively long residence time in summer months. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Wang, Taiping; Yang, Zhaoqing] Pacific NW Natl Lab, Battelle Seattle Res Ctr, Seattle, WA 98109 USA. RP Yang, ZQ (reprint author), Pacific NW Natl Lab, Battelle Seattle Res Ctr, 1100 Dexter Ave North,Suite 400, Seattle, WA 98109 USA. EM zhaoqing.yang@pnnl.gov FU Washington State Department of Ecology [DE-AC05-76RL01830] FX We would like to thank Washington State Department of Ecology for funding support (Contract # DE-AC05-76RL01830) and our colleague Dr. Tarang Khangaonkar for his management support to the development of the Bellingham Bay hydrodynamic model used for this study. We also want to thank three anonymous reviewers for many valuable suggestions and corrections on improving the quality of this manuscript. Lastly, special thanks go to our colleague Dr. Gary Gill for his thorough technical review of the manuscript. NR 55 TC 1 Z9 1 U1 2 U2 11 PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0272-7714 EI 1096-0015 J9 ESTUAR COAST SHELF S JI Estuar. Coast. Shelf Sci. PD NOV 5 PY 2015 VL 165 BP 279 EP 290 DI 10.1016/j.ecss.2015.04.010 PG 12 WC Marine & Freshwater Biology; Oceanography SC Marine & Freshwater Biology; Oceanography GA CZ5CH UT WOS:000367119500032 ER PT J AU Lin, CH Pelissier, FA Zhang, H Lakins, J Weaver, VM Park, C LaBarge, MA AF Lin, Chun-Han Pelissier, Fanny A. Zhang, Hui Lakins, Jon Weaver, Valerie M. Park, Catherine LaBarge, Mark A. TI Microenvironment rigidity modulates responses to the HER2 receptor tyrosine kinase inhibitor lapatinib via YAP and TAZ transcription factors SO MOLECULAR BIOLOGY OF THE CELL LA English DT Article ID GROWTH-FACTOR RECEPTOR; CANCER CELL-LINES; BREAST-CANCER; HIPPO PATHWAY; DUAL INHIBITOR; PROTEIN YAP; RESISTANCE; TUMOR; AMPHIREGULIN; ACTIVATION AB Stiffness is a biophysical property of the extracellular matrix that modulates cellular functions, including proliferation, invasion, and differentiation, and it also may affect therapeutic responses. Therapeutic durability in cancer treatments remains a problem for both chemotherapies and pathway-targeted drugs, but the reasons for this are not well understood. Tumor progression is accompanied by changes in the biophysical properties of the tissue, and we asked whether matrix rigidity modulated the sensitive versus resistant states in HER2-amplified breast cancer cell responses to the HER2-targeted kinase inhibitor lapatinib. The antiproliferative effect of lapatinib was inversely proportional to the elastic modulus of the adhesive substrata. Down-regulation of the mechanosensitive transcription coactivators YAP and TAZ, either by siRNA or with the small-molecule YAP/TEAD inhibitor verteporfin, eliminated modulus-dependent lapatinib resistance. Reduction of YAP in vivo in mice also slowed the growth of implanted HER2-amplified tumors, showing a trend of increasing sensitivity to lapatinib as YAP decreased. Thus we address the role of stiffness in resistance to and efficacy of a HER2 pathway-targeted therapeutic via the mechanotransduction arm of the Hippo pathway. C1 [Lin, Chun-Han; Pelissier, Fanny A.; LaBarge, Mark A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Biol Syst & Engn Div, Berkeley, CA 94720 USA. [Lin, Chun-Han] Univ Calif Berkeley, Program Comparat Biochem, Berkeley, CA 94720 USA. [Pelissier, Fanny A.] Univ Bergen, Dept Biomed, N-5009 Bergen, Norway. [Zhang, Hui; Park, Catherine] Univ Calif San Francisco, Dept Radiat Oncol, San Francisco, CA 94143 USA. [Lakins, Jon; Weaver, Valerie M.] Univ Calif San Francisco, Dept Surg, Ctr Bioengn, Tissue Regenerat, San Francisco, CA 94143 USA. RP LaBarge, MA (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Biol Syst & Engn Div, Berkeley, CA 94720 USA. EM malabarge@lbl.gov FU National Institutes of Health [NIA R00AG033176, R01AG040081]; U.S. Department of Energy [DE-AC02-05CH11231]; Congressionally Directed Medical Research Programs/Breast Cancer Research Program Era of Hope Scholar Award; California Breast Cancer Research Program; Anita Tarr Turk Fund for Breast Cancer Research [20IB-0109] FX M.L. is supported by National Institutes of Health Grants NIA R00AG033176 and R01AG040081, the U.S. Department of Energy (DE-AC02-05CH11231), a Congressionally Directed Medical Research Programs/Breast Cancer Research Program Era of Hope Scholar Award, and the California Breast Cancer Research Program and Anita Tarr Turk Fund for Breast Cancer Research (20IB-0109). NR 50 TC 10 Z9 10 U1 2 U2 8 PU AMER SOC CELL BIOLOGY PI BETHESDA PA 8120 WOODMONT AVE, STE 750, BETHESDA, MD 20814-2755 USA SN 1059-1524 EI 1939-4586 J9 MOL BIOL CELL JI Mol. Biol. Cell PD NOV 5 PY 2015 VL 26 IS 22 BP 3946 EP 3953 DI 10.1091/mbc.E15-07-0456 PG 8 WC Cell Biology SC Cell Biology GA CY3QO UT WOS:000366324900011 PM 26337386 ER PT J AU Valley, CC Arndt-Jovin, DJ Karedla, N Steinkamp, MP Chizhik, AI Hlavacek, WS Wilson, BS Lidke, KA Lidke, DS AF Valley, Christopher C. Arndt-Jovin, Donna J. Karedla, Narain Steinkamp, Mara P. Chizhik, Alexey I. Hlavacek, William S. Wilson, Bridget S. Lidke, Keith A. Lidke, Diane S. TI Enhanced dimerization drives ligand-independent activity of mutant epidermal growth factor receptor in lung cancer SO MOLECULAR BIOLOGY OF THE CELL LA English DT Article ID LIFETIME IMAGING MICROSCOPY; TYROSINE KINASE INHIBITOR; FACTOR EGF RECEPTOR; CELL-SURFACE; STRUCTURAL BASIS; PLASMA-MEMBRANE; LIVING CELLS; CORRELATION SPECTROSCOPY; NEGATIVE COOPERATIVITY; MEDIATED DIMERIZATION AB Mutations within the epidermal growth factor receptor (EGFR/erbB1/Her1) are often associated with tumorigenesis. In particular, a number of EGFR mutants that demonstrate ligand-independent signaling are common in non-small cell lung cancer (NSCLC), including kinase domain mutations L858R (also called L834R) and exon 19 deletions (e.g., Delta L747-P753insS), which collectively make up nearly 90% of mutations in NSCLC. The molecular mechanisms by which these mutations confer constitutive activity remain unresolved. Using multiple subdiffraction-limit imaging modalities, we reveal the altered receptor structure and interaction kinetics of NSCLC-associated EGFR mutants. We applied two-color single quantum dot tracking to quantify receptor dimerization kinetics on living cells and show that, in contrast to wild-type EGFR, mutants are capable of forming stable, ligand-independent dimers. Two-color superresolution localization microscopy confirmed ligand-independent aggregation of EGFR mutants. Live-cell Forster resonance energy transfer measurements revealed that the L858R kinase mutation alters ectodomain structure such that unliganded mutant EGFR adopts an extended, dimerization-competent conformation. Finally, mutation of the putative dimerization arm confirmed a critical role for ectodomain engagement in ligand-independent signaling. These data support a model in which dysregulated activity of NSCLC-associated kinase mutants is driven by coordinated interactions involving both the kinase and extracellular domains that lead to enhanced dimerization. C1 [Valley, Christopher C.; Steinkamp, Mara P.; Wilson, Bridget S.; Lidke, Diane S.] Univ New Mexico, Dept Pathol, Albuquerque, NM 87131 USA. [Valley, Christopher C.; Steinkamp, Mara P.; Wilson, Bridget S.; Lidke, Diane S.] Univ New Mexico, Canc Res & Treatment Ctr, Albuquerque, NM 87131 USA. [Lidke, Keith A.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Arndt-Jovin, Donna J.] Max Planck Inst Biophys Chem, Lab Cellular Dynam, D-37077 Gottingen, Germany. [Karedla, Narain; Chizhik, Alexey I.] Univ Gottingen, Inst Phys 3, D-37077 Gottingen, Germany. [Hlavacek, William S.] Los Alamos Natl Lab, Div Theoret, Theoret Biol & Biophys Grp, Los Alamos, NM 87545 USA. RP Lidke, DS (reprint author), Univ New Mexico, Dept Pathol, Albuquerque, NM 87131 USA. EM DLidke@salud.unm.edu OI Hlavacek, William/0000-0003-4383-8711 FU National Science Foundation (NSF) [MCB-0845062]; Oxnard Foundation; National Institutes of Health (NIH) [P50GM085273]; NSF [0954836]; Max Planck Society; Deutsche Forschungsgemeinschaft [SFB 937]; NIH FX This study was supported by National Science Foundation (NSF) grant MCB-0845062 (D.S.L.), the Oxnard Foundation (D.S.L.), National Institutes of Health (NIH) grant P50GM085273 (B.S.W.), and NSF grant 0954836 (K.A.L.). D.J.A.-J. received financial support from the Max Planck Society. Financial support by the Deutsche Forschungsgemeinschaft is gratefully acknowledged (SFB 937, project A5). N.K. is grateful to the Niedersachsisches Ministerium fur Wissenschaft and Kultur for a Ministerium fur Wissneshcart und Kultur stipend. Use of the University of New Mexico Cancer Center Microscopy and Flow Cytometry facilities and NIH support for these cores is acknowledged (http://hsc.unm.edu/crtc/microscopy/acknowledgement.shtml). We thank Thomas Jovin for analysis of FRET/FLIM data, input regarding the equilibrium modeling (Supplementary Note), and insightful discussions. We thank Shalini T. Low-Nam, Samantha L. Schwartz, and Patrick J. Cutler for assistance with SPT development and analysis. Additionally, we thank Jorg Enderlein for providing the TCSPC facilities for FLIM measurements, Andrey Klymchenko for the gift of the NR12S membrane probe, and Reinhard Klement for MD calculations. NR 89 TC 5 Z9 5 U1 3 U2 11 PU AMER SOC CELL BIOLOGY PI BETHESDA PA 8120 WOODMONT AVE, STE 750, BETHESDA, MD 20814-2755 USA SN 1059-1524 EI 1939-4586 J9 MOL BIOL CELL JI Mol. Biol. Cell PD NOV 5 PY 2015 VL 26 IS 22 BP 4087 EP 4099 DI 10.1091/mbc.E15-05-0269 PG 13 WC Cell Biology SC Cell Biology GA CY3QO UT WOS:000366324900022 PM 26337388 ER PT J AU Pryor, MM Steinkamp, MP Halasz, AM Chen, Y Yang, SJ Smith, MS Zahoransky-Kohalmi, G Swift, M Xu, XP Hanien, D Volkmann, N Lidke, DS Edwards, JS Wilson, BS AF Pryor, Meghan McCabe Steinkamp, Mara P. Halasz, Adam M. Chen, Ye Yang, Shujie Smith, Marilyn S. Zahoransky-Kohalmi, Gergely Swift, Mark Xu, Xiao-Ping Hanien, Dorit Volkmann, Niels Lidke, Diane S. Edwards, Jeremy S. Wilson, Bridget S. TI Orchestration of ErbB3 signaling through heterointeractions and homointeractions SO MOLECULAR BIOLOGY OF THE CELL LA English DT Article ID GROWTH-FACTOR RECEPTOR; SINGLE-PARTICLE TRACKING; TYROSINE KINASES; EXTRACELLULAR DOMAINS; ONCOGENIC UNIT; EGF RECEPTOR; CANCER-CELLS; BREAST; ACTIVATION; RESISTANCE AB Members of the ErbB family of receptor tyrosine kinases are capable of both homointeractions and heterointeractions. Because each receptor has a unique set of binding sites for downstream signaling partners and differential catalytic activity, subtle shifts in their combinatorial interplay may have a large effect on signaling outcomes. The overexpression and mutation of ErbB family members are common in numerous human cancers and shift the balance of activation within the signaling network. Here we report the development of a spatial stochastic model that addresses the dynamics of ErbB3 homodimerization and heterodimerization with ErbB2. The model is based on experimental measures for diffusion, dimer off-rates, kinase activity, and dephosphorylation. We also report computational analysis of ErbB3 mutations, generating the prediction that activating mutations in the intracellular and extracellular domains may be subdivided into classes with distinct underlying mechanisms. We show experimental evidence for an ErbB3 gain-of-function point mutation located in the C-lobe asymmetric dimerization interface, which shows enhanced phosphorylation at low ligand dose associated with increased kinase activity. C1 [Pryor, Meghan McCabe; Edwards, Jeremy S.] Univ New Mexico, Dept Chem & Biol Engn, Albuquerque, NM 87131 USA. [Steinkamp, Mara P.; Zahoransky-Kohalmi, Gergely; Lidke, Diane S.; Wilson, Bridget S.] Univ New Mexico, Dept Pathol, Albuquerque, NM 87131 USA. [Steinkamp, Mara P.; Lidke, Diane S.; Edwards, Jeremy S.; Wilson, Bridget S.] Univ New Mexico, Hlth Sci Ctr, Canc Ctr, Albuquerque, NM 87131 USA. [Edwards, Jeremy S.] Univ New Mexico, Dept Chem & Chem Biol, Albuquerque, NM 87131 USA. [Pryor, Meghan McCabe] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Halasz, Adam M.; Chen, Ye] W Virginia Univ, Dept Math, Morgantown, WV 25606 USA. [Yang, Shujie] Univ Iowa, Carver Coll Med, Dept OB GYN, Iowa City, IA 52242 USA. [Smith, Marilyn S.] Viracor IBT Labs, Lees Summit, MO 64086 USA. [Swift, Mark; Xu, Xiao-Ping; Hanien, Dorit; Volkmann, Niels] Sanford Burnham Med Res Inst, Bioinformat & Syst Biol Program, La Jolla, CA 92037 USA. RP Wilson, BS (reprint author), Univ New Mexico, Dept Pathol, Albuquerque, NM 87131 USA. EM bwilson@salud.unm.edu FU National Institutes of Health [CA119232, P50GM085273, R01GM104973, K25CA131558, P30CA118100]; National Science Foundation [MCB-0845062]; U.S. Department of Energy through the LANL/LDRD Program FX This study was supported by National Institutes of Health Grants CA119232 (B.S.W.), P50GM085273 (B.S.W.), R01GM104973 (J.S.E. and A.M.H.), and K25CA131558 (A.M.H.) and National Science Foundation Grant MCB-0845062 (D.S.L.). M.M.P. was supported in part by the U.S. Department of Energy through the LANL/LDRD Program. Use of the University of New Mexico Cancer Center Microscopy Facility and other shared resources, and National Institutes of Health Grant P30CA118100 support for these cores, is gratefully acknowledged. NR 60 TC 0 Z9 0 U1 1 U2 8 PU AMER SOC CELL BIOLOGY PI BETHESDA PA 8120 WOODMONT AVE, STE 750, BETHESDA, MD 20814-2755 USA SN 1059-1524 EI 1939-4586 J9 MOL BIOL CELL JI Mol. Biol. Cell PD NOV 5 PY 2015 VL 26 IS 22 BP 4109 EP 4123 DI 10.1091/mbc.E14-06-1114 PG 15 WC Cell Biology SC Cell Biology GA CY3QO UT WOS:000366324900024 ER PT J AU Torres, PJ Fletcher, EM Gibbons, SM Bouvet, M Doran, KS Kelley, ST AF Torres, Pedro J. Fletcher, Erin M. Gibbons, Sean M. Bouvet, Michael Doran, Kelly S. Kelley, Scott T. TI Characterization of the salivary microbiome in patients with pancreatic cancer SO PEERJ LA English DT Article DE Pancreatic cancer; 16S rRNA; Early detection biomarker; Salivary microbiome; High-throughput sequencing ID CIGARETTE-SMOKING; PERIODONTAL-DISEASE; RISK; SEQUENCES; PCR; INFLAMMATION; INFECTIONS; BACTERIA; SEARCH AB Clinical manifestations of pancreatic cancer often do not occur until the cancer has undergone metastasis, resulting in a very low survival rate. In this study, we investigated whether salivary bacterial profiles might provide useful biomarkers for early detection of pancreatic cancer. Using high-throughput sequencing of bacterial small subunit ribosomal RNA (16S rRNA) gene, we characterized the salivary microbiota of patients with pancreatic cancer and compared them to healthy patients and patients with other diseases, including pancreatic disease, non-pancreatic digestive disease/cancer and non-digestive disease/cancer. A total of 146 patients were enrolled at the UCSD Moores Cancer Center where saliva and demographic data were collected from each patient. Of these, we analyzed the salivary microbiome of 108 patients: 8 had been diagnosed with pancreatic cancer, 78 with other diseases and 22 were classified as non-diseased (healthy) controls. Bacterial 16S rRNA sequences were amplified directly from salivary DNA extractions and subjected to high-throughput sequencing (HTS). Several bacterial genera differed in abundance in patients with pancreatic cancer. We found a significantly higher ratio of Leptotrichia to Porphyromonas in the saliva of patients with pancreatic cancer than in the saliva of healthy patients or those with other disease (Kruskal-Wallis Test; P < 0.001). Leptotrichia abundances were confirmed using real-time qPCR with Leptotrichia specific primers. Similar to previous studies, we found lower relative abundances of Neisseria and Aggregatibacter in the saliva of pancreatic cancer patients, though these results were not significant at the P < 0.05 level (K-W Test; P = 0.07 and P = 0.09 respectively). However, the relative abundances of other previously identified bacterial biomarkers, e.g., Streptococcus mitis and Granulicatella adiacens, were not significantly different in the saliva of pancreatic cancer patients. Overall, this study supports the hypothesis that bacteria abundance profiles in saliva are useful biomarkers for pancreatic cancer though much larger patient studies are needed to verify their predictive utility. C1 [Torres, Pedro J.; Doran, Kelly S.; Kelley, Scott T.] San Diego State Univ, Dept Biol, San Diego, CA 92182 USA. [Fletcher, Erin M.] Harvard Univ, Dept Med Sci, Boston, MA 02115 USA. [Gibbons, Sean M.] Univ Chicago, Grad Program Biophys Sci, Chicago, IL 60637 USA. [Gibbons, Sean M.] Argonne Natl Lab, Inst Genom & Syst Biol, Lemont, IL USA. [Bouvet, Michael] Univ Calif San Diego, Dept Surg, La Jolla, CA 92093 USA. [Doran, Kelly S.] Univ Calif San Diego, Sch Med, Dept Pediat, La Jolla, CA 92093 USA. RP Kelley, ST (reprint author), San Diego State Univ, Dept Biol, San Diego, CA 92182 USA. EM skelley@mail.sdsu.edu FU NIH Public Health Service grant [U54CA132384, U54CA132379]; NIH [R25GM058906]; EPA STAR Graduate Fellowship; NIH Training Grant [5T-32EB-009412] FX This study was supported by NIH Public Health Service grants U54CA132384 and U54CA132379. EMF was supported by NIH R25GM058906. SMG was supported by an EPA STAR Graduate Fellowship and by NIH Training Grant 5T-32EB-009412. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 53 TC 5 Z9 5 U1 2 U2 13 PU PEERJ INC PI LONDON PA 341-345 OLD ST, THIRD FLR, LONDON, EC1V 9LL, ENGLAND SN 2167-8359 J9 PEERJ JI PeerJ PD NOV 5 PY 2015 VL 3 AR e1373 DI 10.7717/peerj.1373 PG 16 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CX6HX UT WOS:000365802900004 PM 26587342 ER PT J AU Redding, S Sternberg, SH Marshall, M Gibb, B Bhat, P Guegler, CK Wiedenheft, B Doudna, JA Greene, EC AF Redding, Sy Sternberg, Samuel H. Marshall, Myles Gibb, Bryan Bhat, Prashant Guegler, Chantal K. Wiedenheft, Blake Doudna, Jennifer A. Greene, Eric C. TI Surveillance and Processing of Foreign DNA by the Escherichia coli CRISPR-Cas System SO CELL LA English DT Article ID ADAPTIVE BACTERIAL IMMUNITY; SPACER ACQUISITION; RNA; TARGET; INTERFERENCE; DEGRADATION; PROKARYOTES; PROTEIN; MECHANISMS; NUCLEASE AB CRISPR-Cas adaptive immune systems protect bacteria and archaea against foreign genetic elements. In Escherichia coli, Cascade (CRISPR-associated complex for antiviral defense) is an RNA-guided surveillance complex that binds foreign DNA and recruits Cas3, a trans-acting nuclease helicase for target degradation. Here, we use single-molecule imaging to visualize Cascade and Cas3 binding to foreign DNA targets. Our analysis reveals two distinct pathways dictated by the presence or absence of a protospacer-adjacent motif (PAM). Binding to a protospacer flanked by a PAM recruits a nuclease-active Cas3 for degradation of short single-stranded regions of target DNA, whereas PAM mutations elicit an alternative pathway that recruits a nuclease-inactive Cas3 through a mechanism that is dependent on the Cas1 and Cas2 proteins. These findings explain how target recognition by Cascade can elicit distinct outcomes and support a model for acquisition of new spacer sequences through a mechanism involving processive, ATP-dependent Cas3 translocation along foreign DNA. C1 [Redding, Sy] Columbia Univ, Dept Chem, New York, NY 10027 USA. [Sternberg, Samuel H.; Guegler, Chantal K.; Doudna, Jennifer A.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Bhat, Prashant; Doudna, Jennifer A.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Wiedenheft, Blake] Montana State Univ, Dept Microbiol & Immunol, Bozeman, MT 59717 USA. [Doudna, Jennifer A.] Univ Calif Berkeley, Innovat Genom Initiat, Berkeley, CA 94720 USA. [Doudna, Jennifer A.] Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA. [Doudna, Jennifer A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Marshall, Myles; Gibb, Bryan; Greene, Eric C.] Columbia Univ, Dept Biochem & Mol Biophys, New York, NY 10032 USA. RP Doudna, JA (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM doudna@berkeley.edu; ecg2108@cumc.columbia.edu FU NSF; National Defense Science & Engineering Graduate Research Fellowship programs; NIH [GM074739, GM108888]; HHMI Early Career Scientist Award; NSF [MCB-1154511, MCB-1244557] FX We thank Alison Marie Smith and Kaihong Zhou for technical assistance and members of the J.A.D. and E.C.G. laboratories for their helpful discussions and critical reading of the manuscript. S.H.S. acknowledges support from the NSF and National Defense Science & Engineering Graduate Research Fellowship programs. Funding was provided by the NIH (GM074739 to E.C.G.; GM108888 to B.W.), an HHMI Early Career Scientist Award (to E.C.G.), and the NSF (MCB-1154511 to E.C.G.; MCB-1244557 to J.A.D.). J.A.D. is an HHMI Investigator. NR 34 TC 24 Z9 24 U1 4 U2 51 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0092-8674 EI 1097-4172 J9 CELL JI Cell PD NOV 5 PY 2015 VL 163 IS 4 BP 854 EP 865 DI 10.1016/j.cell.2015.10.003 PG 12 WC Biochemistry & Molecular Biology; Cell Biology SC Biochemistry & Molecular Biology; Cell Biology GA CW2NS UT WOS:000364829700012 PM 26522594 ER PT J AU Mazur, PO Mottola, E AF Mazur, Pawel O. Mottola, Emil TI Surface tension and negative pressure interior of a non-singular 'black hole' SO CLASSICAL AND QUANTUM GRAVITY LA English DT Article DE black hole; gravitational waves; dark energy ID COVARIANT CONSERVATION LAWS; GENERAL-RELATIVITY; GRAVITATIONAL COLLAPSE; COSMOLOGICAL CONSTANT; DARK ENERGY; THIN SHELLS; RESONANCE PHYSICS; CONDENSATE STARS; QUANTUM-GRAVITY; FLUID SPHERES AB The constant density interior Schwarzschild solution for a static, spherically symmetric collapsed star has a divergent pressure when its radius R <= 9/8R(s) = 9/4GM. We show that this divergence is integrable, and induces a non-isotropic transverse stress with a finite redshifted surface tension on a spherical surface of radius R-0 = 3R root 1 - 8R/9R(s). For r < R-0 the interior Schwarzschild solution exhibits negative pressure. When R = R-s, the surface is localized at the Schwarzschild radius itself, R-0 = R-s, and the solution has constant negative pressure p = -<(rho)over bar> everywhere in the interior r < R-s, thereby describing a gravitational condensate star, a fully collapsed non-singular state already inherent in and predicted by classical general relativity. The redshifted surface tension of the condensate star surface is given by tau(s) = Delta k/8 pi G, where Delta k = k(+) - k(-) = 2k(+) = 1/R-s is the difference of equal and opposite surface gravities between the exterior and interior Schwarzschild solutions. The First Law, dM = dE(V) + tau(s) dA is recognized as a purely mechanical classical relation at zero temperature and zero entropy, describing the volume energy and surface energy change respectively. The Schwarzschild time t of such a non-singular gravitational condensate star is a global time, fully consistent with unitary time evolution in quantum theory. A clear observational test of gravitational condensate stars with a physical surface versus black holes is the discrete surface modes of oscillation which should be detectable by their gravitational wave signatures. C1 [Mazur, Pawel O.] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. [Mottola, Emil] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Mazur, PO (reprint author), Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. EM mazur@caprine.physics.sc.edu; emil@lanl.gov OI Mottola, Emil/0000-0003-1067-1388 NR 75 TC 4 Z9 4 U1 2 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0264-9381 EI 1361-6382 J9 CLASSICAL QUANT GRAV JI Class. Quantum Gravity PD NOV 5 PY 2015 VL 32 IS 21 AR 215024 DI 10.1088/0264-9381/32/21/215024 PG 36 WC Astronomy & Astrophysics; Physics, Multidisciplinary; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CW3VV UT WOS:000364921200027 ER PT J AU Zhou, B Cao, C Li, CB Cao, YJ Chen, C Li, Y Zeng, L AF Zhou, Bin Cao, Chi Li, Canbing Cao, Yijia Chen, Chen Li, Yong Zeng, Long TI Hybrid islanding detection method based on decision tree and positive feedback for distributed generations SO IET GENERATION TRANSMISSION & DISTRIBUTION LA English DT Article DE distributed power generation; power distribution faults; feedback; decision trees; power grids; hybrid islanding detection method; decision tree; distributed generation; DG; DT; voltage positive feedback scheme; frequency positive feedback scheme; grid-connected mode; power system disturbance; load consumption ID RECOGNITION; SCHEMES; DESIGN AB Islanding detection plays an important role in operation and control of distributed generations (DGs). In this study, a novel hybrid method is proposed, which combines decision tree (DT) with voltage and frequency positive feedbacks for islanding detection in DGs. In the proposed method, the feature indices of prescribed events are captured and recorded in a target location to train a DT classifier, and the classifier can then be used for categorising islanding mode or grid-connected mode. The voltage and frequency positive feedback schemes are employed to regulate the DG power outputs based on voltage and frequency deviation between DG outputs and rated values. Furthermore, the disturbances are introduced to change the feature indices significantly when DG is switched to islanding mode, which can increase the sensitivities of feature indices and improve detection accuracy. The proposed hybrid method has been fully evaluated and tested on a representative DG system with two DGs. Simulation studies demonstrate that the proposed method can detect the islanding more accurately in situations where the power is balanced between DG output and load consumption, and can also improve detection accuracy in situations where DG system operates in minimum or maximum loading states. C1 [Zhou, Bin; Cao, Chi; Li, Canbing; Cao, Yijia; Li, Yong; Zeng, Long] Hunan Univ, Coll Elect & Informat Engn, Changsha 410082, Hunan, Peoples R China. [Chen, Chen] Argonne Natl Lab, Decis & Informat Sci Div, Argonne, IL 60439 USA. RP Li, CB (reprint author), Hunan Univ, Coll Elect & Informat Engn, Changsha 410082, Hunan, Peoples R China. EM licanbing@qq.com FU National High Technology Research and Development of China (863 Program) [2011AA050203] FX This work was supported by the National High Technology Research and Development of China (863 Program) under grant 2011AA050203. NR 25 TC 1 Z9 1 U1 1 U2 7 PU INST ENGINEERING TECHNOLOGY-IET PI HERTFORD PA MICHAEL FARADAY HOUSE SIX HILLS WAY STEVENAGE, HERTFORD SG1 2AY, ENGLAND SN 1751-8687 EI 1751-8695 J9 IET GENER TRANSM DIS JI IET Gener. Transm. Distrib. PD NOV 5 PY 2015 VL 9 IS 14 BP 1819 EP 1825 DI 10.1049/iet-gtd.2015.0069 PG 7 WC Engineering, Electrical & Electronic SC Engineering GA CV3YS UT WOS:000364203200002 ER PT J AU Fang, X Li, FX Wei, YL Azim, R Xu, Y AF Fang, Xin Li, Fangxing Wei, Yanli Azim, Riyasat Xu, Yan TI Reactive power planning under high penetration of wind energy using Benders decomposition SO IET GENERATION TRANSMISSION & DISTRIBUTION LA English DT Article DE reactive power; wind power plants; power generation planning; load flow; power system stability; stochastic programming; investment; power generation economics; reactive power planning; wind energy penetration; Benders decomposition; VAR sources; reactive power source optimal allocation; wind power characteristic; wind generation uncertainty model; multiscenario framework optimal power flow; voltage stability constraint; transmission N-1 contingency; VAR investment cost; expected generation cost; two-stage stochastic programming problem; fuel cost minimization; global optimal RPP; upper level problem; VAR allocation optimisation; generation cost minimisation; DFIG; IEEE bus systems ID FED INDUCTION GENERATOR; SYSTEMS; OPTIMIZATION; ENHANCEMENT; CONSTRAINTS; DEVICES; TURBINE; FARMS; MODEL; RIDE AB This study addresses the optimal allocation of reactive power volt-ampere reactive (VAR) sources under the paradigm of high penetration of wind energy. Reactive power planning (RPP) in this particular condition involves a high level of uncertainty because of wind power characteristic. To properly model wind generation uncertainty, a multi-scenario framework optimal power flow that considers the voltage stability constraint under the worst wind scenario and transmission N - 1 contingency is developed. The objective of RPP in this study is to minimise the total cost including the VAR investment cost and the expected generation cost. Therefore RPP under this condition is modelled as a two-stage stochastic programming problem to optimise the VAR location and size in one stage, then to minimise the fuel cost in the other stage, and eventually, to find the global optimal RPP results iteratively. Benders decomposition is used to solve this model with an upper level problem (master problem) for VAR allocation optimisation and a lower problem (sub-problem) for generation cost minimisation. Impact of the potential reactive power support from doubly-fed induction generator (DFIG) is also analysed. Case studies on the IEEE 14-bus and 118-bus systems are provided to verify the proposed method. C1 [Fang, Xin; Li, Fangxing; Azim, Riyasat] Univ Tennessee, Dept Elect Engn & Comp Sci, Knoxville, TN 37996 USA. [Li, Fangxing; Xu, Yan] Oak Ridge Natl Lab, Power & Energy Syst Grp, Oak Ridge, TN USA. [Wei, Yanli] Southern Calif Edison, Power Supply Dept, Rosemead, CA USA. RP Li, FX (reprint author), Univ Tennessee, Dept Elect Engn & Comp Sci, Knoxville, TN 37996 USA. EM fli6@utk.edu FU CURENT; Engineering Research Center (ERC) of the NSF; DOE under NSF [EEC-1041877]; Oak Ridge National Laboratory FX The authors acknowledge Oak Ridge National Laboratory for the financial support in part to accomplish this paper. They also acknowledge the support from the Shared Facilities and the Industry Partnership Program by CURENT, an Engineering Research Center (ERC) of the NSF and DOE under NSF grant EEC-1041877. NR 36 TC 3 Z9 3 U1 1 U2 7 PU INST ENGINEERING TECHNOLOGY-IET PI HERTFORD PA MICHAEL FARADAY HOUSE SIX HILLS WAY STEVENAGE, HERTFORD SG1 2AY, ENGLAND SN 1751-8687 EI 1751-8695 J9 IET GENER TRANSM DIS JI IET Gener. Transm. Distrib. PD NOV 5 PY 2015 VL 9 IS 14 BP 1835 EP 1844 DI 10.1049/iet-gtd.2014.1117 PG 10 WC Engineering, Electrical & Electronic SC Engineering GA CV3YS UT WOS:000364203200004 ER PT J AU Singh, SP Montgomery, BL AF Singh, Shailendra P. Montgomery, Beronda L. TI Regulation of BolA abundance mediates morphogenesis in Fremyella diplosiphon SO Frontiers in Microbiology LA English DT Article DE BolA; cellular morphology; complementary chromatic acclimation (CCA); cyanobacteria; light signaling; photomorphogenesis ID COMPLEMENTARY CHROMATIC ADAPTATION; CYANOBACTERIUM ANABAENA SP; VARIABILIS PCC 7937; OXYGEN SPECIES ROS; ESCHERICHIA-COLI; CELLULAR MORPHOLOGY; TEMPORAL DYNAMICS; BIOFILM FORMATION; LIGHT; ACCLIMATION AB Filamentous cyanobacterium Frernyella diplosiphon is known to alter its pigmentation and morphology during complementary chromatic acclimation (CCA) to efficiently harvest available radiant energy for photosynthesis. F diplosiphon cells are rectangular and filaments are longer under green light (GL), whereas smaller, spherical cells and short filaments are prevalent under red light (RL). Light regulation of bolA morphogene expression is correlated with photoregulation of cellular morphology in F diplosiphon. Here, we investigate a role for quantitative regulation of cellular BolA protein levels in morphology determination. Overexpression of bolA in WT was associated with induction of RL-characteristic spherical morphology even when cultures were grown under GL Overexpression of bolA in a ArcaE background, which lacks cyanobacteriochrome photosensor RcaE and accumulates lower levels of BolA than WT, partially reverted the cellular morphology of the strain to a WT-like state. Overexpression of BolA in WT and ArcaE backgrounds was associated with decreased cellular reactive oxygen species (ROS) levels and an increase in filament length under both GL and RL. Morphological defects and high ROS levels commonly observed in ArcaE could, thus, be in part due to low accumulation of BolA. Together, these findings support an emerging model for RcaE-dependent photoregulation of BolA in controlling the cellular morphology of E diplosiphon during CCA. C1 [Singh, Shailendra P.; Montgomery, Beronda L.] Michigan State Univ, MSU DOE Plant Res Lab, E Lansing, MI 48824 USA. [Montgomery, Beronda L.] Michigan State Univ, Dept Biochem & Mol Biol, E Lansing, MI 48824 USA. RP Montgomery, BL (reprint author), Michigan State Univ, MSU DOE Plant Res Lab, E Lansing, MI 48824 USA. EM montg133@msu.edu FU National Science Foundation [MCB-1243983]; US Department of Energy (Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science) [DE-FG02-91ER20021] FX This work was supported by the National Science Foundation (grant no MCB-1243983 to BM). Confocal analyses of cells were supported in part by the US Department of Energy (Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, grant no. DE-FG02-91ER20021 to BM). NR 62 TC 1 Z9 1 U1 1 U2 4 PU FRONTIERS MEDIA SA PI LAUSANNE PA PO BOX 110, EPFL INNOVATION PARK, BUILDING I, LAUSANNE, 1015, SWITZERLAND SN 1664-302X J9 FRONT MICROBIOL JI Front. Microbiol. PD NOV 5 PY 2015 VL 6 AR 1215 DI 10.3389/fmicb.2015.01215 PG 13 WC Microbiology SC Microbiology GA CV7BF UT WOS:000364426200001 PM 26594203 ER PT J AU Gandhi, R Kayser, B Masud, M Prakash, S AF Gandhi, Raj Kayser, Boris Masud, Mehedi Prakash, Suprabh TI The impact of sterile neutrinos on CP measurements at long baselines SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE Neutrino Physics; CP violation ID OSCILLATION EXPERIMENTS; EXPERIMENT-SIMULATOR AB With the Deep Underground Neutrino Experiment (DUNE) as an example, we show that the presence of even one sterile neutrino of mass similar to 1 eV can significantly impact the measurements of CP violation in long baseline experiments. Using a probability level analysis and neutrino-antineutrino asymmetry calculations, we discuss the large magnitude of these effects, and show how they translate into significant event rate deviations at DUNE. Our results demonstrate that measurements which, when interpreted in the context of the standard three family paradigm, indicate CP conservation at long baselines, may, in fact hide large CP violation if there is a sterile state. Similarly, any data indicating the violation of CP cannot be properly interpreted within the standard paradigm unless the presence of sterile states of mass O(1eV) can be conclusively ruled out. Our work underscores the need for a parallel and linked short baseline oscillation program and a highly capable near detector for DUNE, in order that its highly anticipated results on CP violation in the lepton sector may be correctly interpreted. C1 [Gandhi, Raj; Masud, Mehedi; Prakash, Suprabh] Harish Chandra Res Inst, Allahabad 211019, Uttar Pradesh, India. [Kayser, Boris] Fermilab Natl Accelerator Lab, Dept Theoret Phys, Batavia, IL 60510 USA. [Gandhi, Raj] Fermilab Natl Accelerator Lab, Neutrino Div, Batavia, IL 60510 USA. RP Gandhi, R (reprint author), Harish Chandra Res Inst, Chhatnag Rd, Allahabad 211019, Uttar Pradesh, India. EM raj@hri.res.in; boris@fnal.gov; masud@hri.res.in; suprabhprakash@hri.res.in OI Masud, Mehedi/0000-0002-7014-3520 FU Kavli Institute for Theoretical Physics; Fermilab Neutrino Division; DUNE Project at Fermilab; XII Plan Neutrino Project of the Indian DAE; Mainz Institute for Theoretical Physics; US National Science Foundation [NSF PHY11-25915]; US Department of Energy [DE-AC02-07CH11359] FX We thank Mary Bishai for help with DUNE fluxes and for patiently answering questions related to DUNE. RG and BK thank William Louis for very useful discussions. RG acknowledges useful discussions with Sandhya Choubey, Amol Dighe and S. Uma Sankar. MM thanks Animesh Chatterjee for very helpful discussions. RG and BK are grateful to the Kavli Institute for Theoretical Physics for support and hospitality. RG acknowledges support from the Fermilab Neutrino Division and the DUNE Project at Fermilab while this work was in progress in the form of an Intensity Frontier Fellowship in 2014 and a Guest Scientist position in 2015. RG, MM and SP also acknowledge support from the XII Plan Neutrino Project of the Indian DAE. BK thanks the Mainz Institute for Theoretical Physics for its hospitality and support while this paper was completed. This research was supported in part by the US National Science Foundation under Grant No. NSF PHY11-25915. Fermilab is operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the US Department of Energy. NR 40 TC 12 Z9 12 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD NOV 5 PY 2015 IS 11 AR 039 DI 10.1007/JHEP11(2015)039 PG 16 WC Physics, Particles & Fields SC Physics GA CV8VV UT WOS:000364567100003 ER PT J AU Hemmatifar, A Stadermann, M Santiago, JG AF Hemmatifar, Ali Stadermann, Michael Santiago, Juan G. TI Two-Dimensional Porous Electrode Model for Capacitive Deionization SO Journal of Physical Chemistry C LA English DT Article ID EFFECTIVE DIFFUSION-COEFFICIENT; MICROPOROUS CARBON ELECTRODES; DOUBLE-LAYER CAPACITORS; MICROBIAL FUEL-CELLS; WATER DESALINATION; ACTIVATED CARBON; ENERGY-CONSUMPTION; RENEWABLE ENERGY; CONSTANT-CURRENT; FLOW-ELECTRODES AB Ion transport in porous conductive materials is of great importance in a variety of electrochemical systems including batteries and supercapacitors. We here analyze the coupling of flow and charge transport and charge capacitance in capacitive deionization (CDI). In CDI, a pair of porous carbon electrodes is employed to electrostatically retain and remove ionic species from aqueous solutions. We here develop and solve a novel unsteady two-dimensional model for capturing the ion adsorption/desorption dynamics in a flow-between CDI system. We use this model to study the complex, nonlinear coupling between electromigration, diffusion, and advection of ions. We also fabricated a laboratory-scale CDI cell which we use to measure the near-equilibrium, cumulative adsorbed salt, and electric charge as a function of applied external voltage. We use these integral measures to validate and calibrate this model. We further present a detailed computational study of the spatiotemporal adsorption/desorption dynamics under constant voltage and constant flow conditions. We show results for low (20 mM KCl) and relatively high (200 mM KCl) inlet ion concentrations and identify effects of ion starvation on desalination. We show that in both cases electromigrative transport eventually becomes negligible and diffusive ion transport reduces the desalination rate. C1 [Hemmatifar, Ali; Santiago, Juan G.] Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA. [Stadermann, Michael] Lawrence Livermore Natl Lab, Livermore, CA USA. RP Santiago, JG (reprint author), Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA. EM juan.santiago@stanford.edu FU LLNL LDRD project [15-ERD-068]; US DOE by LLNL [DE-AC52-07NA27344]; Krishna Kolluri Engineering Graduate Fellowship; Stanford Graduate Fellowship program FX This work was supported by LLNL LDRD project 15-ERD-068. Work at LLNL was performed under the auspices of the US DOE by LLNL under Contract DE-AC52-07NA27344. A.H. gratefully acknowledges the support from Krishna Kolluri Engineering Graduate Fellowship as well as the Stanford Graduate Fellowship program. NR 73 TC 8 Z9 8 U1 14 U2 60 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD NOV 5 PY 2015 VL 119 IS 44 BP 24681 EP 24694 DI 10.1021/acs.jpcc.5b05847 PG 14 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA CV7EM UT WOS:000364435200001 ER PT J AU Kinsinger, CL Liu, Y Liu, FL Yang, Y Seifert, S Knauss, DM Herring, AM Maupin, CM AF Kinsinger, Corey L. Liu, Yuan Liu, Feilong Yang, Yuan Seifert, Soenke Knauss, Daniel M. Herring, Andrew M. Maupin, C. Mark TI Random and Block Sulfonated Polyaramides as Advanced Proton Exchange Membranes SO Journal of Physical Chemistry C LA English DT Article ID POLYMER ELECTROLYTE MEMBRANES; X-RAY-SCATTERING; MOLECULAR-DYNAMICS SIMULATIONS; POLY(ETHER ETHER KETONE); FUEL-CELL TECHNOLOGIES; TRANSPORT-PROPERTIES; NAFION MEMBRANES; HETEROPOLY ACIDS; WATER; MORPHOLOGY AB Presented here is the experimental and computational characterization of two novel copolyaramide proton exchange membranes (PEMs) with higher conductivity than Nafion at relatively high temperatures, good mechanical properties, high thermal stability, and the capability to operate in low humidity conditions. The random and block copolyaramide PEMs are found to possess different ion exchange capacities (IEC) in addition to subtle structural and morphological differences, which impact the stability and conductivity of the membranes. SAXS patterns indicate the ionomer peak for the dry block copolymer resides at q = 0.1 A(-1), which increases in amplitude when initially hydrated to 25% relative humidity, but then decrease in amplitude with additional hydration. This pattern is hypothesized to signal the transport of water into the polymer matrix resulting in a reduced degree of phase separation. Coupled to these morphological changes, the enhanced proton transport characteristics and structural/mechanical stability for the block copolymer are hypothesized to be primarily due to the ordered structure of ionic clusters that create connected proton transport pathways while reducing swelling upon hydration. Interestingly, the random copolymer did not possess an ionomer peak at any of the hydration levels investigated, indicating a lack of any significant ionomer structure. The random copolymer also demonstrated higher proton conductivity than the block copolymer, which is opposite to the trend normally seen in polymer membranes. However, it has reduced structural/mechanical stability as compared to the block copolymer. This reduction in stability is due to the random morphology formed by entanglements of polymer chains and the adverse swelling characteristics upon hydration. Therefore, the block copolymer with its enhanced proton conductivity characteristics, as compared to Nafion, and favorable structural/mechanical stability, as compared to the random copolymer, represents a viable alternative to current proton exchange membranes. C1 [Kinsinger, Corey L.; Liu, Yuan; Herring, Andrew M.; Maupin, C. Mark] Colorado Sch Mines, Dept Chem & Biol Engn, Golden, CO 80401 USA. [Liu, Feilong; Yang, Yuan; Knauss, Daniel M.] Colorado Sch Mines, Dept Chem & Geochem, Golden, CO 80401 USA. [Seifert, Soenke] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Herring, AM (reprint author), Colorado Sch Mines, Dept Chem & Biol Engn, Golden, CO 80401 USA. EM aherring@mines.edu; cmmaupin@mines.edu OI Herring, Andrew/0000-0001-7318-5999 FU U.S. Department of Energy (DOE); EERE [DE-FG36-07G017006]; NSF [DMR-0820518, CHE-0923537]; Golden Energy Computing Organization at the Colorado School of Mines; Advanced Photon Source, a DOE Office of Science by Argonne National Laboratory [DE-AC02-06CH11357] FX This research was supported by the U.S. Department of Energy (DOE), by EERE Cooperative Agreement No. DE-FG36-07G017006, and in part by the Renewable energy MRSEC funded by the NSF under grant DMR-0820518. The authors would like to acknowledge support from the Golden Energy Computing Organization at the Colorado School of Mines for the use of computational resources. NMR spectroscopy was made possible through a grant from the NSF MRI program (grant no. CHE-0923537). This research used resources of the Advanced Photon Source, a DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. DOE support does not constitute an endorsement by DOE of the views expressed in this presentation. NR 62 TC 6 Z9 6 U1 5 U2 34 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD NOV 5 PY 2015 VL 119 IS 44 BP 24724 EP 24732 DI 10.1021/acs.jpcc.5b06857 PG 9 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA CV7EM UT WOS:000364435200005 ER PT J AU Nijem, N Fursich, K Bluhrn, H Leone, SR Gilles, MK AF Nijem, Nour Fuersich, Katrin Bluhrn, Hendrik Leone, Stephen R. Gilles, Mary K. TI Ammonia Adsorption and Co-adsorption with Water in HKUST-1: Spectroscopic Evidence for Cooperative Interactions SO Journal of Physical Chemistry C LA English DT Article ID METAL-ORGANIC FRAMEWORK; REACTIVE ADSORPTION; MOLECULAR-HYDROGEN; THERMAL-STABILITY; GROWTH; COORDINATION; CU-3(BTC)(2); COMPOSITES; MICROSCOPY; SITES AB Ammonia interactions and competition with water at the interface of nanoporous metal organic framework thin films of HKUST-1 (Cu(3)Btc(2), Btc = 1,3,5-benzenedicarboxylate) are investigated with ambient pressure X-ray photoelectron spectroscopy (APXPS). In the absence of water, ammonia adsorption at the Cu2+ metal center weakens the metal linker bond of the framework. In the presence of water, due to the higher binding energy (adsorption strength) of ammonia compared to water, ammonia replaces water at the unsaturated Cu2+ metal centers. The water molecules remaining in the pores are stabilized by hydrogen bonding to ammonia. Hydrogen bonding between the water and ammonia strengthens the metal ammonia interaction due to cooperative interactions. Cooperative interactions result in a reduction in the metal center oxidation state facilitating linker replacement by other species explaining the previously reported structure degradation. C1 [Nijem, Nour; Fuersich, Katrin; Leone, Stephen R.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Nijem, Nour; Fuersich, Katrin; Leone, Stephen R.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Nijem, Nour; Fuersich, Katrin; Bluhrn, Hendrik; Leone, Stephen R.; Gilles, Mary K.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Nijem, N (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM nour.nijem@yahoo.com FU Condensed Phase and Interfacial Molecular Science Program of DOE; Office of the Secretary of Defense National Security Science and Engineering Faculty Fellowship; German Academic Exchange Service (DAAD); U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences and Biosciences Division at Lawrence Berkeley National Laboratory [DE-AC02-05CH11231] FX M.K.G., H.B., and beamline 11.0.2 at the Advanced Light Source (ALS) are supported through the Condensed Phase and Interfacial Molecular Science Program of DOE. N.N. and S.R.L. were supported by the Office of the Secretary of Defense National Security Science and Engineering Faculty Fellowship. K.F. was supported by The German Academic Exchange Service (DAAD). The ALS is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences and Biosciences Division at Lawrence Berkeley National Laboratory under Contract No. DE-AC02-05CH11231. The authors thank Dr. Martin Kunz and Dr. Kei Nakamura at the ALS micro diffraction facility on beamline 12.3.2. NR 47 TC 5 Z9 5 U1 7 U2 37 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD NOV 5 PY 2015 VL 119 IS 44 BP 24781 EP 24788 DI 10.1021/acs.jpcc.5b05716 PG 8 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA CV7EM UT WOS:000364435200012 ER PT J AU Senanayake, SD Mudiyanselage, K Burrell, AK Sadowski, JT Idriss, H AF Senanayake, S. D. Mudiyanselage, K. Burrell, A. K. Sadowski, J. T. Idriss, H. TI Surface Reactions of Ethanol over UO2(100) Thin Film SO Journal of Physical Chemistry C LA English DT Article ID UO2(111) SINGLE-CRYSTAL; POLYCRYSTALLINE URANIUM SURFACES; WATER-VAPOR; OXIDATION-STATES; ADSORPTION; UO2(001); DECOMPOSITION; SPECTROSCOPY; PATHWAYS; ALCOHOLS AB The study of the reactions of oxygenates on well-defined oxide surfaces is important for the fundamental understanding of heterogeneous chemical pathways that are influenced by atomic geometry, electronic structure, and chemical composition. In this work, an ordered uranium oxide thin film surface terminated in the (100) orientation is prepared on a LaAlO3 substrate and studied for its reactivity with a C-2 oxygenate, ethanol (CH3CH2OH). With the use of synchrotron X-ray photoelectron spectroscopy (XPS), we have probed the adsorption and desorption processes observed in the valence band, C 1s, O 1s, and U 4f to investigate the bonding mode, surface composition, electronic structure, and probable chemical changes to the stoichiometric-UO2(100) [smooth-UO2(100)] and Ar+-sputtered UO2(100) [roughUO(2)(100)] surfaces. Unlike UO2(111) single crystal and UO2 thin film, Ar-ion-sputtering of this UO2(100) did not result in noticeable reduction of U cations. Upon ethanol adsorption (saturation occurred at 0.5 ML), only the ethoxy (CH3CH2O-) spdcies is formed on smooth-UO2(100) whereas initially formed ethoxy species are partially oxidized to surface acetate (CH3COO-) on the Ar+-sputtered UO2(100) surface. All ethoxy and acetate species are removed from the surface between 600 and 700 K. C1 [Senanayake, S. D.; Mudiyanselage, K.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Burrell, A. K.] Argonne Natl Lab, CSE Electrochem Energy Storage Dept, Argonne, IL 60439 USA. [Sadowski, J. T.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Idriss, H.] KAUST, SABIC, Fundamental Catalysis, Res Ctr, Thuwal, Saudi Arabia. RP Senanayake, SD (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. EM ssenanay@bnl.gov; idrissh@sabic.com RI Mudiyanselage, Kumudu/B-2277-2013; Senanayake, Sanjaya/D-4769-2009; OI Mudiyanselage, Kumudu/0000-0002-3539-632X; Senanayake, Sanjaya/0000-0003-3991-4232; Sadowski, Jerzy/0000-0002-4365-7796 FU U.S. Department of Energy, Office of Science and Office of Basic Energy Sciences [DE-SC0012704] FX The research carried out at Brookhaven National Laboratory was supported by the U.S. Department of Energy, Office of Science and Office of Basic Energy Sciences, under Contract DE-SC0012704. This work used resources of the National Synchrotron Light Source (NSLS) and Center for Functional Nanomaterials (CFN) which are DOE Office of Science User Facilities. NR 31 TC 0 Z9 0 U1 8 U2 26 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD NOV 5 PY 2015 VL 119 IS 44 BP 24895 EP 24901 DI 10.1021/acs.jpcc.5b08577 PG 7 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA CV7EM UT WOS:000364435200025 ER PT J AU Medina-Plaza, C Rodriguez-Mendez, ML Sutter, P Tong, X Sutter, E AF Medina-Plaza, C. Rodriguez-Mendez, M. L. Sutter, P. Tong, X. Sutter, E. TI Nanoscale Au-In Alloy-Oxide Core-Shell Particles as Electrocatalysts for Efficient Hydroquinone Detection SO Journal of Physical Chemistry C LA English DT Article ID ROOM-TEMPERATURE OXIDATION; CARBON ELECTRODE; GOLD CLUSTERS; NANOPARTICLES; PHENOL; ELECTROCHEMISTRY; QUINONES; POLYMER; SYSTEM AB The presence of hydroquinone (HQ), a phenol ubiquitous in nature and widely used in industry, needs to be monitored because of its toxicity to the environment. Here we demonstrate efficient detection of HQ using simple, fast, and noninvasive electrochemical measurements on indium tin oxide (ITO) electrodes modified with nanopartides comprising bimetallic Au-In cores and mixed Au-In oxide shells. Whereas bare ITO electrodes show very low activity for the detection of HQ their modification with Au-In core shell nanoparticles induces a pronounced shift of the oxidation peak to lower potentials, i.e., facilitated oxidation. The response of the different electrodes was correlated with the initial composition of the bimetallic nanopartide cores, which in turn determined the amount of Au and In stabilized on the surface of the amorphous Au-In oxide shells available for the electrochemical reaction. While adding core-shell nanostructures with different compositions of the alloy core facilitates the electrocatalytic (reduction-) oxidation of HQ the activity is highest for particles with AuIn cores (i.e., a Audn ratio of 1). This optimal system is found to follow a single pathway, the two-electron oxidation of the quinone-hydroquinone couple, which gives rise to high oxidation peaks and is most effective in facilitating the electrode-to-analyte charge transfer and thus detection. The limits of detection (LOD) decreased when increasing the amount of Au exposed on the surface of the amorphous Au-In oxide shells. The LODs were in the range of 10(-5)-10(-6) M and were lower than those obtained using bulk Au. C1 [Medina-Plaza, C.; Rodriguez-Mendez, M. L.] Univ Valladolid, Engineers Sch, Dept Inorgan Chem, E-47011 Valladolid, Spain. [Sutter, P.] Univ Nebraska, Dept Elect & Comp Engn, Lincoln, NE 68588 USA. [Medina-Plaza, C.; Tong, X.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11978 USA. [Sutter, E.] Univ Nebraska, Dept Mech & Mat Engn, Lincoln, NE 68588 USA. RP Rodriguez-Mendez, ML (reprint author), Univ Valladolid, Engineers Sch, Dept Inorgan Chem, E-47011 Valladolid, Spain. EM mluz@eii.uva.es; esutter@unl.edu RI Rodriguez-Mendez, Maria Luz/A-8059-2015 OI Rodriguez-Mendez, Maria Luz/0000-0002-9760-362X FU U.S. Department of Energy, Office of Basic Energy Sciences [DE-SC0012704]; CICYT [AGL2012-33535] FX Research carried out in part at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract DE-SC0012704. PIF-Uva, EB-14, CICYT (Grant AGL2012-33535) are gratefully acknowledged. NR 29 TC 2 Z9 2 U1 5 U2 31 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD NOV 5 PY 2015 VL 119 IS 44 BP 25100 EP 25107 DI 10.1021/acs.jpcc.5b07960 PG 8 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA CV7EM UT WOS:000364435200050 ER PT J AU Narula, CK Yang, XF Li, C Lupini, AR Pennycook, SJ AF Narula, Chaitanya K. Yang, Xiaofan Li, Chen Lupini, Andrew R. Pennycook, Stephen J. TI A Pathway for the Growth of Core-Shell Pt-Pd Nanoparticles SO Journal of Physical Chemistry C LA English DT Article ID ELECTROCATALYTIC ACTIVITY; ATOMIC-RESOLUTION; OXYGEN REDUCTION; CARBON-MONOXIDE; BIMETALLIC NANODENDRITES; PREFERENTIAL OXIDATION; PLATINUM NANOCRYSTALS; ELECTRON-MICROSCOPY; NO OXIDATION; CATALYSTS AB The aging of both Pt-Pd nanoparticles and core-shell Pt-Pd nanoparticles has been reported to result in alloying of Pt with Pd. In comparison to monometallic Pt catalysts, the growth of Pd-Pt bimetallics is slower; however, the mechanism of growth of particles and the mechanism by which Pd improves the hydrothermal durability of bimetallic Pd-Pt particles remains uncertain. In our work on hydrothermal aging of core-shell Pt-Pd nanoparticles, synthesized by solution methods, with varying Pd:Pt ratio of 1:4, 1:1, and 4:1, we compare the growth of core shell Pt -Pd nanoparticles and find that particles grow by migrating and joining together. The unique feature of the observed growth is that Pd shells from both particles open up and join, thereby allowing the cores to merge. At high temperatures, alloying occurs in good agreement with reports by other workers. C1 [Narula, Chaitanya K.; Yang, Xiaofan; Li, Chen; Lupini, Andrew R.; Pennycook, Stephen J.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Narula, CK (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, One Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM narulack@ornl.gov FU U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office, Propulsion Materials Program [DE-AC05-ooOR22725]; UT-Battelle, LLC; Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division; Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy; U.S. Department of Energy [DE-AC05-00OR22725] FX The research was sponsored by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office, Propulsion Materials Program (XY, CKN) under contract DE-AC05-ooOR22725 with UT-Battelle, LLC. The STEM and EELS work on UltraSTEM 200 was supported by the Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division (CL, ARL, SJP). The Hitachi HD-2000 work was carried out at Oak Ridge National Laboratory's Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. This manuscript has been authored by UT-Battelle, LLC under contract no. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan). NR 41 TC 2 Z9 2 U1 7 U2 47 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD NOV 5 PY 2015 VL 119 IS 44 BP 25114 EP 25121 DI 10.1021/acs.jpcc.5b08119 PG 8 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA CV7EM UT WOS:000364435200052 ER PT J AU Brandt, RE Kurchin, RC Hoye, RLZ Poindexter, JR Wilson, MWB Sulekar, S Lenahan, F Yen, PXT Stevanovic, V Nino, JC Bawendi, MG Buonassisi, T AF Brandt, Riley E. Kurchin, Rachel C. Hoye, Robert L. Z. Poindexter, Jeremy R. Wilson, Mark W. B. Sulekar, Soumitra Lenahan, Frances Yen, Patricia X. T. Stevanovic, Vladan Nino, Juan C. Bawendi, Moungi G. Buonassisi, Tonio TI Investigation of Bismuth Triiodide (Bil(3)) for Photovoltaic Applications SO JOURNAL OF PHYSICAL CHEMISTRY LETTERS LA English DT Article ID HALIDE PEROVSKITES; SOLAR-CELLS; SEMICONDUCTORS; TEMPERATURE AB Guided by predictive discovery framework, we investigate bismuth triiodide (BiI3) as a candidate thin-film photovoltaic (PV) absorber. BiI3 was chosen for its optical properties and the potential for "defect-tolerant" charge transport properties, which we test experimentally by measuring optical absorption and recombination lifetimes. We synthesize phase-pure BiI3 thin films by physical vapor transport and solution processing and single-crystals by an electrodynamic gradient vertical Bridgman method. The bandgap of these materials is similar to 4.8 eV, and they demonstrate room-temperature band-edge photo-luminescence. We measure monoexponential recombination lifetimes in the range of 180-240 Ps for thin films, and longer, multiexponential dynamics for single crystals, with time constants up to 1.3 to 1.5 ns. We discuss the outstanding challenges to developing BiI3 PVs, including mechanical and electrical properties, which can also inform future selection of candidate PV absorbers. C1 [Brandt, Riley E.; Kurchin, Rachel C.; Hoye, Robert L. Z.; Poindexter, Jeremy R.; Wilson, Mark W. B.; Lenahan, Frances; Yen, Patricia X. T.; Bawendi, Moungi G.; Buonassisi, Tonio] MIT, Cambridge, MA 02139 USA. [Hoye, Robert L. Z.; Stevanovic, Vladan] Colorado Sch Mines, Golden, CO 80401 USA. [Stevanovic, Vladan] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Sulekar, Soumitra; Nino, Juan C.] Univ Florida, Gainesville, FL 32611 USA. RP Brandt, RE (reprint author), MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA. EM rbrandt@alum.mit.edu; buonassisi@mit.du RI Nino, Juan/A-6496-2008 OI Nino, Juan/0000-0001-8256-0535 FU Center for Next Generation Materials by Design (CNGMD), an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Basic Energy Sciences; Center for Excitonics, an Energy Frontier Research Center - DOE BES [DE-SC0001088]; DOE through NNSA Grant [DE-FG52-09NA29358, NEUP NE-0000730]; National Science Foundation Graduate Research Fellowship [1122374]; MRSEC Program of the National Science Foundation [DMR-1419807] FX This work was primarily supported as part of the Center for Next Generation Materials by Design (CNGMD), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, which supported film synthesis, theory, and basic materials characterization. In addition, M.W.B.W. and M.G.B. acknowledge support from the Center for Excitonics, an Energy Frontier Research Center funded by the DOE BES under Award # DE-SC0001088 (MIT) for photoluminescence measurements. S.S. and J.C.N. acknowledge funding from the DOE through NNSA Grant DE-FG52-09NA29358 and NEUP NE-0000730 for Bridgman single-crystal growth. R.E.B. and P.X.T.Y. acknowledge support from the National Science Foundation Graduate Research Fellowship under Grant No. 1122374. This work made use of the Shared Experimental Facilities supported in part by the MRSEC Program of the National Science Foundation under award number DMR-1419807. NR 28 TC 21 Z9 21 U1 9 U2 42 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1948-7185 J9 J PHYS CHEM LETT JI J. Phys. Chem. Lett. PD NOV 5 PY 2015 VL 6 IS 21 BP 4297 EP 4302 DI 10.1021/acs.jpclett.5b02022 PG 6 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Atomic, Molecular & Chemical SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA CV7ES UT WOS:000364435800028 PM 26538045 ER PT J AU Park, JS Choi, S Yan, Y Yang, Y Luther, JM Wei, SH Parilla, P Zhu, K AF Park, Ji-Sang Choi, Sukgeun Yan, Yong Yang, Ye Luther, Joseph M. Wei, Su-Huai Parilla, Philip Zhu, Kai TI Electronic Structure and Optical Properties of alpha-CH3NH3PbBr3 Perovskite Single Crystal SO Journal of Physical Chemistry Letters LA English DT Article ID SOLAR-CELLS; SPECTROSCOPIC ELLIPSOMETRY; THIN-FILMS; CH3NH3PBI3; EFFICIENT; ENERGY AB The electronic structure and related optical properties of an emerging thin-film photovoltaic material CH3NH3PbBr3 are studied. A block-shaped alpha-phase CH3NH3PbBr3 single crystal with the natural < 100 > surface is synthesized solvothermally. The room-temperature dielectric function epsilon = epsilon(1) + i epsilon(2) spectrum of CH3NH3PbBr3 is determined by spectroscopic ellipsometry from 0.73 to 6.45 eV. Data are modeled with a series of Tauc-Lorentz oscillators, which show the absorption edge with a strong excitonic transition at similar to 2.3 eV and several above-bandgap optical structures associated with the electronic interband transitions. The energy band structure and epsilon data of CH3NH3PbBr3 for the CH3NH3+ molecules oriented in the < 111 > and < 100 > directions are obtained from first-principles calculations. The overall shape of epsilon data shows a qualitatively good agreement with experimental results. Electronic origins of major optical structures are discussed. C1 [Park, Ji-Sang; Choi, Sukgeun; Yan, Yong; Yang, Ye; Luther, Joseph M.; Wei, Su-Huai; Parilla, Philip; Zhu, Kai] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Choi, S (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM feelingmn@gmail.com RI Yang, Ye/D-5675-2015; Park, Ji-Sang/F-9944-2010 OI Park, Ji-Sang/0000-0002-1374-8793 FU U.S. Department of Energy [DE-AC36-08-GO28308] FX This work was supported by the U.S. Department of Energy under Contract No. DE-AC36-08-GO28308. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes. NR 34 TC 18 Z9 18 U1 8 U2 116 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1948-7185 J9 J PHYS CHEM LETT JI J. Phys. Chem. Lett. PD NOV 5 PY 2015 VL 6 IS 21 BP 4304 EP 4308 DI 10.1021/acs.jpclett.5b01699 PG 5 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Atomic, Molecular & Chemical SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA CV7ES UT WOS:000364435800029 PM 26722966 ER PT J AU Aad, G Abbott, B Abdallah, J Abdinov, O Aben, R Abolins, M AbouZeid, OS Abramowicz, H Abreu, H Abreu, R Abulaiti, Y Acharya, BS Adamczyk, L Adams, DL Adelman, J Adomeit, S Adye, T Affolder, AA Agatonovic-Jovin, T Agricola, J Aguilar-Saavedra, JA Ahlen, SP Ahmadov, F Aielli, G Akerstedt, H Akesson, TP Akimov, AV Alberghi, GL Albert, J Albrand, S Verzini, MJA Aleksa, M Aleksandrov, IN Alexa, C Alexander, G Alexopoulos, T Alhroob, M Alimonti, G Alio, L Alison, J Alkire, SP Allbrooke, BMM Allport, PP Aloisio, A Alonso, A Alonso, F Alpigiani, C Altheimer, A Gonzalez, BA Piqueras, DA Alviggi, MG Amadio, BT Amako, K Coutinho, YA Amelung, C Amidei, D Dos Santos, SPA Amorim, A Amoroso, S Amram, N Amundsen, G Anastopoulos, C Ancu, LS Andari, N Andeen, T Anders, CF Anders, G Anders, JK Anderson, KJ Andreazza, A Andrei, V Angelidakis, S Angelozzi, I Anger, P Angerami, A Anghinolfi, F Anisenkov, AV Anjos, N Annovi, A Antonelli, M Antonov, A Antos, J Anulli, F Aoki, M Bella, LA Arabidze, G Arai, Y Araque, JP Arce, ATH Arduh, FA Arguin, JF Argyropoulos, S Arik, M Armbruster, AJ Arnaez, O Arnold, H Arratia, M Arslan, O Artamonov, A Artoni, G Asai, S Asbah, N Ashkenazi, A Asman, B Asquith, L Assamagan, K Astalos, R Atkinson, M Atlay, NB Augsten, K Aurousseau, M Avolio, G Axen, B Ayoub, MK Azuelos, G Baak, MA Baas, AE Baca, MJ Bacci, C Bachacou, H Bachas, K Backes, M Backhaus, M Bagiacchi, P Bagnaia, P Bai, Y Bain, T Baines, JT Baker, OK Baldin, EM Balek, P Balestri, T Balli, F Balunas, WK Banas, E Banerjee, S Bannoura, AAE Barak, L Barberio, EL Barberis, D Barbero, M Barillari, T Barisonzi, M Barklow, T Barlow, N Barnes, SL Barnett, BM Barnett, RM Barnovska, Z Baroncelli, A Barone, G Barr, AJ Barreiro, F da Costa, JBG Bartoldus, R Barton, AE Bartos, P Basalaev, A Bassalat, A Basye, A Bates, RL Batista, SJ Batley, JR Battaglia, M Bauce, M Bauer, F Bawa, HS Beacham, JB Beattie, MD Beau, T Beauchemin, PH Beccherle, R Bechtle, P Beck, HP Becker, K Becker, M Beckingham, M Becot, C Beddall, AJ Beddall, A Bednyakov, VA Bee, CP Beemster, LJ Beermann, TA Begel, M Behr, JK Belanger-Champagne, C Bell, WH Bella, G Bellagamba, L Bellerive, A Bellomo, M Belotskiy, K Beltramello, O Benary, O Benchekroun, D Bender, M Bendtz, K Benekos, N Benhammou, Y Noccioli, EB Garcia, JAB Benjamin, DP Bensinger, JR Bentvelsen, S Beresford, L Beretta, M Berge, D Kuutmann, EB Berger, N Berghaus, F Beringer, J Bernard, C Bernard, NR Bernius, C Bernlochner, FU Berry, T Berta, P Bertella, C Bertoli, G Bertolucci, F Bertsche, C Bertsche, D Besana, MI Besjes, GJ Bylund, OB Bessner, M Besson, N Betancourt, C Bethke, S Bevan, AJ Bhimji, W Bianchi, RM Bianchini, L Bianco, M Biebel, O Biedermann, D Bieniek, SP Biesuz, NV Biglietti, M De Mendizabal, JB Bilokon, H Bindi, M Binet, S Bingul, A Bini, C Biondi, S Bjergaard, DM Black, CW Black, JE Black, KM Blackburn, D Blair, RE Blanchard, JB Blanco, JE Blazek, T Bloch, I Blocker, C Blum, W Blumenschein, U Blunier, S Bobbink, GJ Bobrovnikov, VS Bocchetta, SS Bocci, A Bock, C Boehler, M Bogaerts, JA Bogavac, D Bogdanchikov, AG Bohm, C Boisvert, V Bold, T Boldea, V Boldyrev, AS Bomben, M Bona, M Boonekamp, M Borisov, A Borissov, G Borroni, S Bortfeldt, J Bortolotto, V Bos, K Boscherini, D Bosman, M Boudreau, J Bouffard, J Bouhova-Thacker, EV Boumediene, D Bourdarios, C Bousson, N Boutle, SK Boveia, A Boyd, J Boyko, IR Bozic, I Bracinik, J Brandt, A Brandt, G Brandt, O Bratzler, U Brau, B Brau, JE Braun, HM Madden, WDB Brendlinger, K Brennan, AJ Brenner, L Brenner, R Bressler, S Bristow, TM Britton, D Britzger, D Brochu, FM Brock, I Brock, R Bronner, J Brooijmans, G Brooks, T Brooks, WK Brosamer, J Brost, E de Renstrom, PAB Bruncko, D Bruneliere, R Bruni, A Bruni, G Bruschi, M Bruscino, N Bryngemark, L Buanes, T Buat, Q Buchholz, P Buckley, AG Buda, SI Budagov, IA Buehrer, F Bugge, L Bugge, MK Bulekov, O Bullock, D Burckhart, H Burdin, S Burgard, CD Burghgrave, B Burke, S Burmeister, I Busato, E Buscher, D Buscher, V Bussey, P Butler, JM Butt, AI Buttar, CM Butterworth, JM Butti, P Buttinger, W Buzatu, A Buzykaev, AR Urban, SC Caforio, D Cairo, VM Cakir, O Calace, N Calafiura, P Calandri, A Calderini, G Calfayan, P Caloba, LP Calvet, D Calvet, S Toro, RC Camarda, S Camarri, P Cameron, D Armadans, RC Campana, S Campanelli, M Campoverde, A Canale, V Canepa, A Bret, MC Cantero, J Cantrill, R Cao, T Garrido, MDMC Caprini, I Caprini, M Capua, M Caputo, R Carbone, RM Cardarelli, R Cardillo, F Carli, T Carlino, G Carminati, L Caron, S Carquin, E Carrillo-Montoya, GD Carter, JR Carvalho, J Casadei, D Casado, MP Casolino, M Castaneda-Miranda, E Castelli, A Gimenez, VC Castro, NF Catastini, P Catinaccio, A Catmore, JR Cattai, A Caudron, J Cavaliere, V Cavalli, D Cavalli-Sforza, M Cavasinni, V Ceradini, F Cerio, BC Cerny, K Cerqueira, AS Cerri, A Cerrito, L Cerutti, F Cerv, M Cervelli, A Cetin, SA Chafaq, A Chakraborty, D Chalupkova, I Chan, YL Chang, P Chapman, JD Charlton, DG Chau, CC Barajas, CAC Cheatham, S Chegwidden, A Chekanov, S Chekulaev, SV Chelkov, GA Chelstowska, MA Chen, C Chen, H Chen, K Chen, L Chen, S Chen, S Chen, X Chen, Y Cheng, HC Cheng, Y Cheplakov, A Cheremushkina, E El Moursli, RC Chernyatin, V Cheu, E Chevalier, L Chiarella, V Chiarelli, G Chiodini, G Chisholm, AS Chislett, RT Chitan, A Chizhov, MV Choi, K Chouridou, S Chow, BKB Christodoulou, V Chromek-Burckhart, D Chudoba, J Chuinard, AJ Chwastowski, JJ Chytka, L Ciapetti, G Ciftci, AK Cinca, D Cindro, V Cioara, IA Ciocio, A Cirotto, F Citron, ZH Ciubancan, M Clark, A Clark, BL Clark, PJ Clarke, RN Clement, C Coadou, Y Cobal, M Coccaro, A Cochran, J Coffey, L Cogan, JG Colasurdo, L Cole, B Cole, S Colijn, AP Collot, J Colombo, T Compostella, G Muino, PC Coniavitis, E Connell, SH Connelly, IA Consorti, V Constantinescu, S Conta, C Conti, G Conventi, F Cooke, M Cooper, BD Cooper-Sarkar, AM Cornelissen, T Corradi, M Corriveau, F Corso-Radu, A Cortes-Gonzalez, A Cortiana, G Costa, G Costa, MJ Costanzo, D Cote, D Cottin, G Cowan, G Cox, BE Cranmer, K Cree, G Crepe-Renaudin, S Crescioli, F Cribbs, WA Ortuzar, MC Cristinziani, M Croft, V Crosetti, G Donszelmann, TC Cummings, J Curatolo, M Cuth, J Cuthbert, C Czirr, H Czodrowski, P D'Auria, S D'Onofrio, M De Sousa, MJDS Da Via, C Dabrowski, W Dafinca, A Dai, T Dale, O Dallaire, F Dallapiccola, C Dam, M Dandoy, JR Dang, NP Daniells, AC Danninger, M Hoffmann, MD Dao, V Darbo, G Darmora, S Dassoulas, J Dattagupta, A Davey, W David, C Davidek, T Davies, E Davies, M Davison, P Davygora, Y Dawe, E Dawson, I Daya-Ishmukhametova, RK De, K de Asmundis, R De Benedetti, A De Castro, S De Cecco, S De Groot, N de Jong, P De la Torre, H De Lorenzi, F De Pedis, D De Salvo, A De Sanctis, U De Santo, A De Regie, JBD Dearnaley, WJ Debbe, R Debenedetti, C Dedovich, DV Deigaard, I Del Peso, J Del Prete, T Delgove, D Deliot, F Delitzsch, CM Deliyergiyev, M Dell'Acqua, A Dell'Asta, L Dell'Orso, M Della Pietra, M della Volpe, D Delmastro, M Delsart, PA Deluca, C DeMarco, DA Demers, S Demichev, M Demilly, A Denisov, SP Derendarz, D Derkaoui, JE Derue, F Dervan, P Desch, K Deterre, C Dette, K Deviveiros, PO Dewhurst, A Dhaliwal, S Di Ciaccio, A Di Ciaccio, L Di Domenico, A Di Donato, C Di Girolamo, A Di Girolamo, B Di Mattia, A Di Micco, B Di Nardo, R Di Simone, A Di Sipio, R Di Valentino, D Diaconu, C Diamond, M Dias, FA Diaz, MA Diehl, EB Dietrich, J Diglio, S Dimitrievska, A Dingfelder, J Dita, P Dita, S Dittus, F Djama, F Djobava, T Djuvsland, JI do Vale, MAB Dobos, D Dobre, M Doglioni, C Dohmae, T Dolejsi, J Dolezal, Z Dolgoshein, BA Donadelli, M Donati, S Dondero, P Donini, J Dopke, J Doria, A Dova, MT Doyle, AT Drechsler, E Dris, M Dubreuil, E Duchovni, E Duckeck, G Ducu, OA Duda, D Dudarev, A Duflot, L Duguid, L Duhrssen, M Dunford, M Yildiz, HD Duren, M Durglishvili, A Duschinger, D Dutta, B Dyndal, M Eckardt, C Ecker, KM Edgar, RC Edson, W Edwards, NC Ehrenfeld, W Eifert, T Eigen, G Einsweiler, K Ekelof, T El Kacimi, M Ellert, M Elles, S Ellinghaus, F Elliot, AA Ellis, N Elmsheuser, J Elsing, M Emeliyanov, D Enari, Y Endner, OC Endo, M Erdmann, J Ereditato, A Ernis, G Ernst, J Ernst, M Errede, S Ertel, E Escalier, M Esch, H Escobar, C Esposito, B Etienvre, AI Etzion, E Evans, H Ezhilov, A Fabbri, L Facini, G Fakhrutdinov, RM Falciano, S Falla, RJ Faltova, J Fang, Y Fanti, M Farbin, A Farilla, A Farooque, T Farrell, S Farrington, SM Farthouat, P Fassi, F Fassnacht, P Fassouliotis, D Giannelli, MF Favareto, A Fayard, L Fedin, OL Fedorko, W Feigl, S Feligioni, L Feng, C Feng, EJ Feng, H Fenyuk, AB Feremenga, L Martinez, PF Perez, SF Ferrando, J Ferrari, A Ferrari, P Ferrari, R de Lima, DEF Ferrer, A Ferrere, D Ferretti, C Parodi, AF Fiascaris, M Fiedler, F Filipcic, A Filipuzzi, M Filthaut, F Fincke-Keeler, M Finelli, KD Fiolhais, MCN Fiorini, L Firan, A Fischer, A Fischer, C Fischer, J Fisher, WC Flaschel, N Fleck, I Fleischmann, P Fletcher, GT Fletcher, G Fletcher, RRM Flick, T Floderus, A Castillo, LRF Flowerdew, MJ Formica, A Forti, A Fournier, D Fox, H Fracchia, S Francavilla, P Franchini, M Francis, D Franconi, L Franklin, M Frate, M Fraternali, M Freeborn, D French, ST Friedrich, F Froidevaux, D Frost, JA Fuchi, R Fukunaga, C Torregrosa, EF Fulsom, BG Fusayasu, T Fuster, J Gabaldon, C Gabizon, O Gabrielli, A Gabrielli, A Gach, GP Gadatsch, S Gadomski, S Gagliardi, G Gagnon, P Galea, C Galhardo, B Gallas, EJ Gallop, BJ Gallus, P Galster, G Gan, KK Gao, J Gao, Y Gao, YS Walls, FMG Garberson, F Garcia, C Navarro, JEG Garcia-Sciveres, M Gardner, RW Garelli, N Garonne, V Gatti, C Gaudiello, A Gaudio, G Gaur, B Gauthier, L Gauzzi, P Gavrilenko, IL Gay, C Gaycken, G Gazis, EN Ge, P Gecse, Z Gee, CNP Geich-Gimbel, C Geisler, MP Gemme, C Genest, MH Gentile, S George, M George, S Gerbaudo, D Gershon, A Ghasemi, S Ghazlane, H Giacobbe, B Giagu, S Giangiobbe, V Giannetti, P Gibbard, B Gibson, SM Gignac, M Gilchriese, M Gillam, TPS Gillberg, D Gilles, G Gingrich, DM Giokaris, N Giordani, MP Giorgi, FM Giorgi, FM Giraud, PF Giromini, P Giugni, D Giuliani, C Giulini, M Gjelsten, BK Gkaitatzis, S Gkialas, I Gkougkousis, EL Gladilin, LK Glasman, C Glatzer, J Glaysher, PCF Glazov, A Goblirsch-Kolb, M Goddard, JR Godlewski, J Goldfarb, S Golling, T Golubkov, D Gomes, A Goncalo, R Da Costa, JGPF Gonella, L de la Hoz, SG Parra, GG Gonzalez-Sevilla, S Goossens, L Gorbounov, PA Gordon, HA Gorelov, I Gorini, B Gorini, E Gorisek, A Gornicki, E Goshaw, AT Gossling, C Gostkin, MI Goujdami, D Goussiou, AG Govender, N Gozani, E Grabas, HMX Graber, L Grabowska-Bold, I Gradin, POJ Grafstrom, P Gramling, J Gramstad, E Grancagnolo, S Gratchev, V Gray, HM Graziani, E Greenwood, ZD Grefe, C Gregersen, K Gregor, IM Grenier, P Griffiths, J Grillo, AA Grimm, K Grinstein, S Gris, P Grivaz, JF Grohs, JP Grohsjean, A Gross, E Grosse-Knetter, J Grossi, GC Grout, ZJ Guan, L Guenther, J Guescini, F Guest, D Gueta, O Guido, E Guillemin, T Guindon, S Gul, U Gumpert, C Guo, J Guo, Y Gupta, S Gustavino, G Gutierrez, P Ortiz, NGG Gutschow, C Guyot, C Gwenlan, C Gwilliam, CB Haas, A Haber, C Hadavand, HK Haddad, N Haefner, P Hagebock, S Hajduk, Z Hakobyan, H Haleem, M Haley, J Hall, D Halladjian, G Hallewell, GD Hamacher, K Hamal, P Hamano, K Hamilton, A Hamity, GN Hamnett, PG Han, L Hanagaki, K Hanawa, K Hance, M Haney, B Hanke, P Hanna, R Hansen, JB Hansen, JD Hansen, MC Hansen, PH Hara, K Hard, AS Harenberg, T Hariri, F Harkusha, S Harrington, RD Harrison, PF Hartjes, F Hasegawa, M Hasegawa, Y Hasib, A Hassani, S Haug, S Hauser, R Hauswald, L Havranek, M Hawkes, CM Hawkings, RJ Hawkins, AD Hayashi, T Hayden, D Hays, CP Hays, JM Hayward, HS Haywood, SJ Head, SJ Heck, T Hedberg, V Heelan, L Heim, S Heim, T Heinemann, B Heinrich, L Hejbal, J Helary, L Hellman, S Hellmich, D Helsens, C Henderson, J Henderson, RCW Heng, Y Hengler, C Henkelmann, S Henrichs, A Correia, AMH Henrot-Versille, S Herbert, GH Jimenez, YH Herten, G Hertenberger, R Hervas, L Hesketh, GG Hessey, NP Hetherly, JW Hickling, R Higon-Rodriguez, E Hill, E Hill, JC Hiller, KH Hillier, SJ Hinchliffe, I Hines, E Hinman, RR Hirose, M Hirschbuehl, D Hobbs, J Hod, N Hodgkinson, MC Hodgson, P Hoecker, A Hoeferkamp, MR Hoenig, F Hohlfeld, M Hohn, D Holmes, R Homann, M Hong, M Hopkins, WH Horii, Y Horton, AJ Hostachy, JY Hou, S Hoummada, A Howard, J Howarth, J Hrabovsky, M Hristova, I Hrivnac, J Hryn'ova, T Hrynevich, A Hsu, C Hsu, PJ Hsu, SC Hu, D Hu, Q Hu, X Huang, Y Hubacek, Z Hubaut, F Huegging, F Huffman, TB Hughes, EW Hughes, G Huhtinen, M Hulsing, TA Huseynov, N Huston, J Huth, J Iacobucci, G Iakovidis, G Ibragimov, I Iconomidou-Fayard, L Ideal, E Idrissi, Z Iengo, P Igonkina, O Iizawa, T Ikegami, Y Ikematsu, K Ikeno, M Ilchenko, Y Iliadis, D Ilic, N Ince, T Introzzi, G Ioannou, P Iodice, M Iordanidou, K Ippolito, V Quiles, AI Isaksson, C Ishino, M Ishitsuka, M Ishmukhametov, R Issever, C Istin, S Ponce, JMI Iuppa, R Ivarsson, J Iwanski, W Iwasaki, H Izen, JM Izzo, V Jabbar, S Jackson, B Jackson, M Jackson, P Jaekel, MR Jain, V Jakobs, K Jakobsen, S Jakoubek, T Jakubek, J Jamin, DO Jana, DK Jansen, E Jansky, R Janssen, J Janus, M Jarlskog, G Javadov, N Javurek, T Jeanty, L Jejelava, J Jeng, GY Jennens, D Jenni, P Jentzsch, J Jeske, C Jezequel, S Ji, H Jia, J Jiang, Y Jiggins, S Pena, JJ Jin, S Jinaru, A Jinnouchi, O Joergensen, MD Johansson, P Johns, KA Johnson, WJ Jon-And, K Jones, G Jones, RWL Jones, TJ Jongmanns, J Jorge, PM Joshi, KD Jovicevic, J Ju, X Jussel, P Rozas, AJ Kaci, M Kaczmarska, A Kado, M Kagan, H Kagan, M Kahn, SJ Kajomovitz, E Kalderon, CW Kama, S Kamenshchikov, A Kanaya, N Kaneti, S Kantserov, VA Kanzaki, J Kaplan, B Kaplan, LS Kapliy, A Kar, D Karakostas, K Karamaoun, A Karastathis, N Kareem, MJ Karentzos, E Karnevskiy, M Karpov, SN Karpova, ZM Karthik, K Kartvelishvili, V Karyukhin, AN Kasahara, K Kashif, L Kass, RD Kastanas, A Kataoka, Y Kato, C Katre, A Katzy, J Kawade, K Kawagoe, K Kawamoto, T Kawamura, G Kazama, S Kazanin, VF Keeler, R Kehoe, R Keller, JS Kempster, JJ Keoshkerian, H Kepka, O Kersevan, BP Kersten, S Keyes, RA Khalil-zada, F Khandanyan, H Khanov, A Kharlamov, AG Khoo, TJ Khovanskiy, V Khramov, E Khubua, J Kido, S Kim, HY Kim, SH Kim, YK Kimura, N Kind, OM King, BT King, M King, SB Kirk, J Kiryunin, AE Kishimoto, T Kisielewska, D Kiss, F Kiuchi, K Kivernyk, O Kladiva, E Klein, MH Klein, M Klein, U Kleinknecht, K Klimek, P Klimentov, A Klingenberg, R Klinger, JA Klioutchnikova, T Kluge, EE Kluit, P Kluth, S Knapik, J Kneringer, E Knoops, EBFG Knue, A Kobayashi, A Kobayashi, D Kobayashi, T Kobel, M Kocian, M Kodys, P Koffas, T Koffeman, E Kogan, LA Kohlmann, S Kohout, Z Kohriki, T Koi, T Kolanoski, H Kolb, M Koletsou, I Komar, AA Komori, Y Kondo, T Kondrashova, N Koneke, K Konig, AC Kono, T Konoplich, R Konstantinidis, N Kopeliansky, R Koperny, S Kopke, L Kopp, AK Korcyl, K Kordas, K Korn, A Korol, AA Korolkov, I Korolkova, EV Kortner, O Kortner, S Kosek, T Kostyukhin, VV Kotov, VM Kotwal, A Kourkoumeli-Charalampidi, A Kourkoumelis, C Kouskoura, V Koutsman, A Kowalewski, R Kowalski, TZ Kozanecki, W Kozhin, AS Kramarenko, VA Kramberger, G Krasnopevtsev, D Krasny, MW Krasznahorkay, A Kraus, JK Kravchenko, A Kreiss, S Kretz, M Kretzschmar, J Kreutzfeldt, K Krieger, P Krizka, K Kroeninger, K Kroha, H Kroll, J Kroseberg, J Krstic, J Kruchonak, U Kruger, H Krumnack, N Kruse, A Kruse, MC Kruskal, M Kubota, T Kucuk, H Kuday, S Kuehn, S Kugel, A Kuger, F Kuhl, A Kuhl, T Kukhtin, V Kukla, R Kulchitsky, Y Kuleshov, S Kuna, M Kunigo, T Kupco, A Kurashige, H Kurochkin, YA Kus, V Kuwertz, ES Kuze, M Kvita, J Kwan, T Kyriazopoulos, D La Rosa, A Navarro, JLLR La Rotonda, L Lacasta, C Lacava, F Lacey, J Lacker, H Lacour, D Lacuesta, VR Ladygin, E Lafaye, R Laforge, B Lagouri, T Lai, S Lambourne, L Lammers, S Lampen, CL Lampl, W Lancon, E Landgraf, U Landon, MPJ Lang, VS Lange, JC Lankford, AJ Lanni, F Lantzsch, K Lanza, A Laplace, S Lapoire, C Laporte, JF Lari, T Manghi, FL Lassnig, M Laurelli, P Lavrijsen, W Law, AT Laycock, P Lazovich, T Le Dortz, O Le Guirriec, E Le Menedeu, E LeBlanc, M LeCompte, T Ledroit-Guillon, F Lee, CA Lee, SC Lee, L Lefebvre, G Lefebvre, M Legger, F Leggett, C Lehan, A Miotto, GL Lei, X Leight, WA Leisos, A Leister, AG Leite, MAL Leitner, R Lellouch, D Lemmer, B Leney, KJC Lenz, T Lenzi, B Leone, R Leone, S Leonidopoulos, C Leontsinis, S Leroy, C Lester, CG Levchenko, M Leveque, J Levin, D Levinson, LJ Levy, M Lewis, A Leyko, AM Leyton, M Li, B Li, H Li, HL Li, L Li, L Li, S Li, X Li, Y Liang, Z Liao, H Liberti, B Liblong, A Lichard, P Lie, K Liebal, J Liebig, W Limbach, C Limosani, A Lin, SC Lin, TH Linde, F Lindquist, BE Linnemann, JT Lipeles, E Lipniacka, A Lisovyi, M Liss, TM Lissauer, D Lister, A Litke, AM Liu, B Liu, D Liu, H Liu, J Liu, JB Liu, K Liu, L Liu, M Liu, M Liu, Y Livan, M Lleres, A Merino, JL Lloyd, SL Lo Sterzo, F Lobodzinska, E Loch, P Lockman, WS Loebinger, FK Loevschall-Jensen, AE Loew, KM Loginov, A Lohse, T Lohwasser, K Lokajicek, M Long, BA Long, JD Long, RE Looper, KA Lopes, L Mateos, DL Paredes, BL Paz, IL Lorenz, J Martinez, NL Losada, M Losel, PJ Lou, X Lounis, A Love, J Love, PA Lu, H Lu, N Lubatti, HJ Luci, C Lucotte, A Luedtke, C Luehring, F Lukas, W Luminari, L Lundberg, O Lund-Jensen, B Lynn, D Lysak, R Lytken, E Ma, H Ma, LL Maccarrone, G Macchiolo, A Macdonald, CM Macek, B Miguens, JM Macina, D Madaffari, D Madar, R Maddocks, HJ Mader, WF Madsen, A Maeda, J Maeland, S Maeno, T Maevskiy, A Magradze, E Mahboubi, K Mahlstedt, J Maiani, C Maidantchik, C Maier, AA Maier, T Maio, A Majewski, S Makida, Y Makovec, N Malaescu, B Malecki, P Maleev, VP Malek, F Mallik, U Malon, D Malone, C Maltezos, S Malyshev, VM Malyukov, S Mamuzic, J Mancini, G Mandelli, B Mandelli, L Mandic, I Mandrysch, R Maneira, J Manfredini, A de Andrade, LM Ramos, JM Mann, A Manousakis-Katsikakis, A Mansoulie, B Mantifel, R Mantoani, M Mapelli, L March, L Marchiori, G Marcisovsky, M Marino, CP Marjanovic, M Marley, DE Marroquim, F Marsden, SP Marshall, Z Marti, LF Marti-Garcia, S Martin, B Martin, TA Martin, VJ Latour, BMD Martinez, M Martin-Haugh, S Martoiu, VS Martyniuk, AC Marx, M Marzano, F Marzin, A Masetti, L Mashimo, T Mashinistov, R Masik, J Maslennikov, AL Massa, I Massa, L Mastrandrea, P Mastroberardino, A Masubuchi, T Mattig, P Mattmann, J Maurer, J Maxfield, SJ Maximov, DA Mazini, R Mazza, SM Mc Goldrick, G Mc Kee, SP McCarn, A McCarthy, RL McCarthy, TG McCubbin, NA McFarlane, KW Mcfayden, JA Mchedlidze, G McMahon, SJ McPherson, RA Medinnis, M Meehan, S Mehlhase, S Mehta, A Meier, K Meineck, C Meirose, B Garcia, BRM Meloni, F Mengarelli, A Menke, S Meoni, E Mercurio, KM Mergelmeyer, S Mermod, P Merola, L Meroni, C Merritt, FS Messina, A Metcalfe, J Mete, AS Meyer, C Meyer, C Meyer, JP Meyer, J Theenhausen, HMZ Middleton, RP Miglioranzi, S Mijovic, L Mikenberg, G Mikestikova, M Mikuz, M Milesi, M Milic, A Miller, DW Mills, C Milov, A Milstead, DA Minaenko, AA Minami, Y Minashvili, IA Mincer, AI Mindur, B Mineev, M Ming, Y Mir, LM Mistry, KP Mitani, T Mitrevski, J Mitsou, VA Miucci, A Miyagawa, PS Mjornmark, JU Moa, T Mochizuki, K Mohapatra, S Mohr, W Molander, S Moles-Valls, R Monden, R Monig, K Monini, C Monk, J Monnier, E Montalbano, A Berlingen, JM Monticelli, F Monzani, S Moore, RW Morange, N Moreno, D Llacer, MM Morettini, P Mori, D Mori, T Morii, M Morinaga, M Morisbak, V Moritz, S Morley, AK Mornacchi, G Morris, JD Mortensen, SS Morton, A Morvaj, L Mosidze, M Moss, J Motohashi, K Mount, R Mountricha, E Mouraviev, SV Moyse, EJW Muanza, S Mudd, RD Mueller, F Mueller, J Mueller, RSP Mueller, T Muenstermann, D Mullen, P Mullier, GA Quijada, JAM Murray, WJ Musheghyan, H Musto, E Myagkov, AG Myska, M Nachman, BP Nackenhorst, O Nadal, J Nagai, K Nagai, R Nagai, Y Nagano, K Nagarkar, A Nagasaka, Y Nagata, K Nagel, M Nagy, E Nairz, AM Nakahama, Y Nakamura, K Nakamura, T Nakano, I Namasivayam, H Garcia, RFN Narayan, R Villar, DIN Naumann, T Navarro, G Nayyar, R Neal, HA Nechaeva, PY Neep, TJ Nef, PD Negri, A Negrini, M Nektarijevic, S Nellist, C Nelson, A Nemecek, S Nemethy, P Nepomuceno, AA Nessi, M Neubauer, MS Neumann, M Neves, RM Nevski, P Newman, PR Nguyen, DH Nickerson, RB Nicolaidou, R Nicquevert, B Nielsen, J Nikiforou, N Nikiforov, A Nikolaenko, V Nikolic-Audit, I Nikolopoulos, K Nilsen, JK Nilsson, P Ninomiya, Y Nisati, A Nisius, R Nobe, T Nomachi, M Nomidis, I Nooney, T Norberg, S Nordberg, M Novgorodova, O Nowak, S Nozaki, M Nozka, L Ntekas, K Hanninger, GN Nunnemann, T Nurse, E Nuti, F O'Brien, BJ O'grady, F O'Neil, DC O'Shea, V Oakham, FG Oberlack, H Obermann, T Ocariz, J Ochi, A Ochoa, I Ochoa-Ricoux, JP Oda, S Odaka, S Ogren, H Oh, A Oh, SH Ohm, CC Ohman, H Oide, H Okamura, W Okawa, H Okumura, Y Okuyama, T Olariu, A Pino, SAO Damazio, DO Olszewski, A Olszowska, J Onofre, A Onogi, K Onyisi, PUE Oram, CJ Oreglia, MJ Oren, Y Orestano, D Orlando, N Barrera, CO Orr, RS Osculati, B Ospanov, R Garzon, GOY Otono, H Ouchrif, M Ould-Saada, F Ouraou, A Oussoren, KP Ouyang, Q Ovcharova, A Owen, M Owen, RE Ozcan, VE Ozturk, N Pachal, K Pages, AP Aranda, CP Pagacova, M Griso, SP Paganis, E Paige, F Pais, P Pajchel, K Palacino, G Palestini, S Palka, M Pallin, D Palma, A Pan, YB St Panagiotopoulou, E Pandini, CE Vazquez, JGP Pani, P Panitkin, S Pantea, D Paolozzi, L Papadopoulou, TD Papageorgiou, K Paramonov, A Hernandez, DP Parker, MA Parker, KA Parodi, F Parsons, JA Parzefall, U Pasqualucci, E Passaggio, S Pastore, F Pastore, F Pasztor, G Pataraia, S Patel, ND Pater, JR Pauly, T Pearce, J Pearson, B Pedersen, LE Pedersen, M Lopez, SP Pedro, R Peleganchuk, SV Pelikan, D Penc, O Peng, C Peng, H Penning, B Penwell, J Perepelitsa, DV Codina, EP Garcia-Estan, MTP Perini, L Pernegger, H Perrella, S Peschke, R Peshekhonov, VD Peters, K Peters, RFY Petersen, BA Petersen, TC Petit, E Petridis, A Petridou, C Petroff, P Petrolo, E Petrucci, F Pettersson, NE Pezoa, R Phillips, PW Piacquadio, G Pianori, E Picazio, A Piccaro, E Piccinini, M Pickering, MA Piegaia, R Pignotti, DT Pilcher, JE Pilkington, AD Pin, AWJ Pina, J Pinamonti, M Pinfold, JL Pingel, A Pires, S Pirumov, H Pitt, M Pizio, C Plazak, L Pleier, MA Pleskot, V Plotnikova, E Plucinski, P Pluth, D Poettgen, R Poggioli, L Pohl, D Polesello, G Poley, A Policicchio, A Polifka, R Polini, A Pollard, CS Polychronakos, V Pommes, K Pontecorvo, L Pope, BG Popeneciu, GA Popovic, DS Poppleton, A Pospisil, S Potamianos, K Potrap, IN Potter, CJ Potter, CT Poulard, G Poveda, J Pozdnyakov, V Pralavorio, P Pranko, A Prasad, S Prell, S Price, D Price, LE Primavera, M Prince, S Proissl, M Prokofiev, K Prokoshin, F Protopapadaki, E Protopopescu, S Proudfoot, J Przybycien, M Ptacek, E Puddu, D Pueschel, E Puldon, D Purohit, M Puzo, P Qian, J Qin, G Qin, Y Quadt, A Quarrie, DR Quayle, WB Queitsch-Maitland, M Quilty, D Raddum, S Radeka, V Radescu, V Radhakrishnan, SK Radloff, P Rados, P Ragusa, F Rahal, G Rajagopalan, S Rammensee, M Rangel-Smith, C Rauscher, F Rave, S Ravenscroft, T Raymond, M Read, AL Readioff, NP Rebuzzi, DM Redelbach, A Redlinger, G Reece, R Reeves, K Rehnisch, L Reichert, J Reisin, H Rembser, C Ren, H Renaud, A Rescigno, M Resconi, S Rezanova, OL Reznicek, P Rezvani, R Richter, R Richter, S Richter-Was, E Ricken, O Ridel, M Rieck, P Riegel, CJ Rieger, J Rifki, O Rijssenbeek, M Rimoldi, A Rinaldi, L Ristic, B Ritsch, E Riu, I Rizatdinova, F Rizvi, E Robertson, SH Robichaud-Veronneau, A Robinson, D Robinson, JEM Robson, A Roda, C Roe, S Rohne, O Rolli, S Romaniouk, A Romano, M Saez, SMR Adam, ER Rompotis, N Ronzani, M Roos, L Ros, E Rosati, S Rosbach, K Rose, P Rosendahl, PL Rosenthal, O Rossetti, V Rossi, E Rossi, LP Rosten, JHN Rosten, R Rotaru, M Roth, I Rothberg, J Rousseau, D Royon, CR Rozanov, A Rozen, Y Ruan, X Rubbo, F Rubinskiy, I Rud, VI Rudolph, C Rudolph, MS Ruhr, F Ruiz-Martinez, A Rurikova, Z Rusakovich, NA Ruschke, A Russell, HL Rutherfoord, JP Ruthmann, N Ryabov, YF Rybar, M Rybkin, G Ryder, NC Ryzhov, A Saavedra, AF Sabato, G Sacerdoti, S Saddique, A Sadrozinski, HFW Sadykov, R Tehrani, FS Saha, P Sahinsoy, M Saimpert, M Saito, T Sakamoto, H Sakurai, Y Salamanna, G Salamon, A Loyola, JES Saleem, M Salek, D De Bruin, PHS Salihagic, D Salnikov, A Salt, J Salvatore, D Salvatore, F Salvucci, A Salzburger, A Sammel, D Sampsonidis, D Sanchez, A Sanchez, J Martinez, VS Sandaker, H Sandbach, RL Sander, HG Sanders, MP Sandhoff, M Sandoval, C Sandstroem, R Sankey, DPC Sannino, M Sansoni, A Santoni, C Santonico, R Santos, H Castillo, IS Sapp, K Sapronov, A Saraiva, JG Sarrazin, B Sasaki, O Sasaki, Y Sato, K Sauvage, G Sauvan, E Savage, G Savard, P Sawyer, C Sawyer, L Saxon, J Sbarra, C Sbrizzi, A Scanlon, T Scannicchio, DA Scarcella, M Scarfone, V Schaarschmidt, J Schacht, P Schaefer, D Schaefer, R Schaeffer, J Schaepe, S Schaetzel, S Schafer, U Schaffer, AC Schaile, D Schamberger, RD Scharf, V Schegelsky, VA Scheirich, D Schernau, M Schiavi, C Schillo, C Schioppa, M Schlenker, S Schmieden, K Schmitt, C Schmitt, S Schmitt, S Schneider, B Schnellbach, YJ Schnoor, U Schoeffel, L Schoening, A Schoenrock, BD Schopf, E Schorlemmer, ALS Schott, M Schouten, D Schovancova, J Schramm, S Schreyer, M Schuh, N Schultens, MJ Schultz-Coulon, HC Schulz, H Schumacher, M Schumm, BA Schune, P Schwanenberger, C Schwartzman, A Schwarz, TA Schwegler, P Schweiger, H Schwemling, P Schwienhorst, R Schwindling, J Schwindt, T Sciacca, FG Scifo, E Sciolla, G Scuri, F Scutti, F Searcy, J Sedov, G Sedykh, E Seema, P Seidel, SC Seiden, A Seifert, F Seixas, JM Sekhniaidze, G Sekhon, K Sekula, SJ Seliverstov, DM Semprini-Cesari, N Serfon, C Serin, L Serkin, L Serre, T Sessa, M Seuster, R Severini, H Sfiligoj, T Sforza, F Sfyrla, A Shabalina, E Shamim, M Shan, LY Shang, R Shank, JT Shapiro, M Shatalov, PB Shaw, K Shaw, SM Shcherbakova, A Shehu, CY Sherwood, P Shi, L Shimizu, S Shimmin, CO Shimojima, M Shiyakova, M Shmeleva, A Saadi, DS Shochet, MJ Shojaii, S Shrestha, S Shulga, E Shupe, MA Shushkevich, S Sicho, P Sidebo, PE Sidiropoulou, O Sidorov, D Sidoti, A Siegert, F Sijacki, D Silva, J Silver, Y Silverstein, SB Simak, V Simard, O Simic, L Simion, S Simioni, E Simmons, B Simon, D Sinervo, P Sinev, NB Sioli, M Siragusa, G Sisakyan, AN Sivoklokov, SY Sjolin, J Sjursen, TB Skinner, MB Skottowe, HP Skubic, P Slater, M Slavicek, T Slawinska, M Sliwa, K Smakhtin, V Smart, BH Smestad, L Smirnov, SY Smirnov, Y Smirnova, LN Smirnova, O Smith, MNK Smith, RW Smizanska, M Smolek, K Snesarev, AA Snidero, G Snyder, S Sobie, R Socher, F Soffer, A Soh, DA Sokhrannyi, G Solans, CA Solar, M Solc, J Soldatov, EY Soldevila, U Solodkov, AA Soloshenko, A Solovyanov, OV Solovyev, V Sommer, P Song, HY Soni, N Sood, A Sopczak, A Sopko, B Sopko, V Sorin, V Sosa, D Sosebee, M Sotiropoulou, CL Soualah, R Soukharev, AM South, D Sowden, BC Spagnolo, S Spalla, M Spangenberg, M Spano, F Spearman, WR Sperlich, D Spettel, F Spighi, R Spigo, G Spiller, LA Spousta, M St Denis, RD Stabile, A Staerz, S Stahlman, J Stamen, R Stamm, S Stanecka, E Stanescu, C Stanescu-Bellu, M Stanitzki, MM Stapnes, S Starchenko, EA Stark, J Staroba, P Starovoitov, P Staszewski, R Steinberg, P Stelzer, B Stelzer, HJ Stelzer-Chilton, O Stenzel, H Stewart, GA Stillings, JA Stockton, MC Stoebe, M Stoicea, G Stolte, P Stonjek, S Stradling, AR Straessner, A Stramaglia, ME Strandberg, J Strandberg, S Strandlie, A Strauss, E Strauss, M Strizenec, P Strohmer, R Strom, DM Stroynowski, R Strubig, A Stucci, SA Stugu, B Styles, NA Su, D Su, J Subramaniam, R Succurro, A Suchek, S Sugaya, Y Suk, M Sulin, VV Sultansoy, S Sumida, T Sun, S Sun, X Sundermann, JE Suruliz, K Susinno, G Sutton, MR Suzuki, S Svatos, M Swiatlowski, M Sykora, I Sykora, T Ta, D Taccini, C Tackmann, K Taenzer, J Taffard, A Tafirout, R Taiblum, N Takai, H Takashima, R Takeda, H Takeshita, T Takubo, Y Talby, M Talyshev, AA Tam, JYC Tan, KG Tanaka, J Tanaka, R Tanaka, S Tannenwald, BB Tannoury, N Araya, ST Tapprogge, S Tarem, S Tarrade, F Tartarelli, GF Tas, P Tasevsky, M Tashiro, T Tassi, E Delgado, AT Tayalati, Y Taylor, FE Taylor, GN Taylor, PTE Taylor, W Teischinger, FA Castanheira, MTD Teixeira-Dias, P Temming, KK Temple, D Ten Kate, H Teng, PK Teoh, JJ Tepel, F Terada, S Terashi, K Terron, J Terzo, S Testa, M Teuscher, RJ Theveneaux-Pelzer, T Thomas, JP Thomas-Wilsker, J Thompson, EN Thompson, PD Thompson, RJ Thompson, AS Thomsen, LA Thomson, E Thomson, M Thun, RP Tibbetts, MJ Torres, RET Tikhomirov, VO Tikhonov, YA Timoshenko, S Tiouchichine, E Tipton, P Tisserant, S Todome, K Todorov, T Todorova-Nova, S Tojo, J Tokar, S Tokushuku, K Tollefson, K Tolley, E Tomlinson, L Tomoto, M Tompkins, L Toms, K Torrence, E Torres, H Pastor, ET Toth, J Touchard, F Tovey, DR Trefzger, T Tremblet, L Tricoli, A Trigger, IM Trincaz-Duvoid, S Tripiana, MF Trischuk, W Trocme, B Troncon, C Trottier-McDonald, M Trovatelli, M Truong, L Trzebinski, M Trzupek, A Tsarouchas, C Tseng, JCL Tsiareshka, PV Tsionou, D Tsipolitis, G Tsirintanis, N Tsiskaridze, S Tsiskaridze, V Tskhadadze, EG Tsui, KM Tsukerman, II Tsulaia, V Tsuno, S Tsybychev, D Tudorache, A Tudorache, V Tuna, AN Tupputi, SA Turchikhin, S Turecek, D Turra, R Turvey, AJ Tuts, PM Tykhonov, A Tylmad, M Tyndel, M Ueda, I Ueno, R Ughetto, M Ugland, M Ukegawa, F Unal, G Undrus, A Unel, G Ungaro, FC Unno, Y Unverdorben, C Urban, J Urquijo, P Urrejola, P Usai, G Usanova, A Vacavant, L Vacek, V Vachon, B Valderanis, C Valencic, N Valentinetti, S Valero, A Valery, L Valkar, S Vallecorsa, S Ferrer, JAV Van den Wollenberg, W Van der Deijl, PC Van der Geer, R van der Graaf, H van Eldik, N van Gemmeren, P Van Nieuwkoop, J van Vulpen, I van Woerden, MC Vanadia, M Vandelli, W Vanguri, R Vaniachine, A Vannucci, F Vardanyan, G Vari, R Varnes, EW Varol, T Varouchas, D Vartapetian, A Varvell, KE Vazeille, F Schroeder, TV Veatch, J Veloce, LM Veloso, F Velz, T Veneziano, S Ventura, A Ventura, D Venturi, M Venturi, N Venturini, A Vercesi, V Verducci, M Verkerke, W Vermeulen, JC Vest, A Vetterli, MC Viazlo, O Vichou, I Vickey, T Boeriu, OEV Viehhauser, GHA Viel, S Vigne, R Villa, M Perez, MV Vilucchi, E Vincter, MG Vinogradov, VB Vivarelli, I Vaque, FV Vlachos, S Vladoiu, D Vlasak, M Vogel, M Vokac, P Volpi, G Volpi, M von der Schmitt, H von Radziewski, H von Toerne, E Vorobel, V Vorobev, K Vos, M Voss, R Vossebeld, JH Vranjes, N Milosavljevic, MV Vrba, V Vreeswijk, M Vuillermet, R Vukotic, I Vykydal, Z Wagner, P Wagner, W Wahlberg, H Wahrmund, S Wakabayashi, J Walder, J Walker, R Walkowiak, W Wang, C Wang, F Wang, H Wang, H Wang, J Wang, J Wang, K Wang, R Wang, SM Wang, T Wang, T Wang, X Wanotayaroj, C Warburton, A Ward, CP Wardrope, DR Washbrook, A Wasicki, C Watkins, PM Watson, AT Watson, IJ Watson, MF Watts, G Watts, S Waugh, BM Webb, S Weber, MS Weber, SW Webster, JS Weidberg, AR Weinert, B Weingarten, J Weiser, C Weits, H Wells, PS Wenaus, T Wengler, T Wenig, S Wermes, N Werner, M Werner, P Wessels, M Wetter, J Whalen, K Wharton, AM White, A White, MJ White, R White, S Whiteson, D Wickens, FJ Wiedenmann, W Wielers, M Wienemann, P Wiglesworth, C Wiik-Fuchs, LAM Wildauer, A Wilkens, HG Williams, HH Williams, S Willis, C Willocq, S Wilson, A Wilson, JA Wingerter-Seez, I Winklmeier, F Winter, BT Wittgen, M Wittkowski, J Wollstadt, SJ Wolter, MW Wolters, H Wosiek, BK Wotschack, J Woudstra, MJ Wozniak, KW Wu, M Wu, M Wu, SL Wu, X Wu, Y Wyatt, TR Wynne, BM Xella, S Xu, D Xu, L Yabsley, B Yacoob, S Yakabe, R Yamada, M Yamaguchi, D Yamaguchi, Y Yamamoto, A Yamamoto, S Yamanaka, T Yamauchi, K Yamazaki, Y Yan, Z Yang, H Yang, H Yang, Y Yao, WM Yap, YC Yasu, Y Yatsenko, E Wong, KHY Ye, J Ye, S Yeletskikh, I Yen, AL Yildirim, E Yorita, K Yoshida, R Yoshihara, K Young, C Young, CJS Youssef, S Yu, DR Yu, J Yu, JM Yu, J Yuan, L Yuen, SPY Yurkewicz, A Yusuff, I Zabinski, B Zaidan, R Zaitsev, AM Zalieckas, J Zaman, A Zambito, S Zanello, L Zanzi, D Zeitnitz, C Zeman, M Zemla, A Zeng, Q Zengel, K Zenin, O Zenis, T Zerwas, D Zhang, D Zhang, F Zhang, G Zhang, H Zhang, J Zhang, L Zhang, R Zhang, X Zhang, Z Zhao, X Zhao, Y Zhao, Z Zhemchugov, A Zhong, J Zhou, B Zhou, C Zhou, L Zhou, L Zhou, M Zhou, N Zhu, CG Zhu, H Zhu, J Zhu, Y Zhuang, X Zhukov, K Zibell, A Zieminska, D Zimine, NI Zimmermann, C Zimmermann, S Zinonos, Z Zinser, M Ziolkowski, M Zivkovic, L Zobernig, G Zoccoli, A Nedden, MZ Zurzolo, G Zwalinski, L AF Aad, G. Abbott, B. Abdallah, J. Abdinov, O. Aben, R. Abolins, M. AbouZeid, O. S. Abramowicz, H. Abreu, H. Abreu, R. Abulaiti, Y. Acharya, B. S. Adamczyk, L. Adams, D. L. Adelman, J. Adomeit, S. Adye, T. Affolder, A. A. Agatonovic-Jovin, T. Agricola, J. Aguilar-Saavedra, J. A. Ahlen, S. P. Ahmadov, F. Aielli, G. Akerstedt, H. Akesson, T. P. Akimov, A. V. Alberghi, G. L. Albert, J. Albrand, S. Verzini, M. J. Alconada Aleksa, M. Aleksandrov, I. N. Alexa, C. Alexander, G. Alexopoulos, T. Alhroob, M. Alimonti, G. Alio, L. Alison, J. Alkire, S. P. Allbrooke, B. M. M. Allport, P. P. Aloisio, A. Alonso, A. Alonso, F. Alpigiani, C. Altheimer, A. Gonzalez, B. Alvarez Piqueras, D. Alvarez Alviggi, M. G. Amadio, B. T. Amako, K. Coutinho, Y. Amaral Amelung, C. Amidei, D. Amor Dos Santos, S. P. Amorim, A. Amoroso, S. Amram, N. Amundsen, G. Anastopoulos, C. Ancu, L. S. Andari, N. Andeen, T. Anders, C. F. Anders, G. Anders, J. K. Anderson, K. J. Andreazza, A. Andrei, V. Angelidakis, S. Angelozzi, I. Anger, P. Angerami, A. Anghinolfi, F. Anisenkov, A. V. Anjos, N. Annovi, A. Antonelli, M. Antonov, A. Antos, J. Anulli, F. Aoki, M. Bella, L. Aperio Arabidze, G. Arai, Y. Araque, J. P. Arce, A. T. H. Arduh, F. A. Arguin, J-F. Argyropoulos, S. Arik, M. Armbruster, A. J. Arnaez, O. Arnold, H. Arratia, M. Arslan, O. Artamonov, A. Artoni, G. Asai, S. Asbah, N. Ashkenazi, A. Asman, B. Asquith, L. Assamagan, K. Astalos, R. Atkinson, M. Atlay, N. B. Augsten, K. Aurousseau, M. Avolio, G. Axen, B. Ayoub, M. K. Azuelos, G. Baak, M. A. Baas, A. E. Baca, M. J. Bacci, C. Bachacou, H. Bachas, K. Backes, M. Backhaus, M. Bagiacchi, P. Bagnaia, P. Bai, Y. Bain, T. Baines, J. T. Baker, O. K. Baldin, E. M. Balek, P. Balestri, T. Balli, F. Balunas, W. K. Banas, E. Banerjee, Sw. Bannoura, A. A. E. Barak, L. Barberio, E. L. Barberis, D. Barbero, M. Barillari, T. Barisonzi, M. Barklow, T. Barlow, N. Barnes, S. L. Barnett, B. M. Barnett, R. M. Barnovska, Z. Baroncelli, A. Barone, G. Barr, A. J. Barreiro, F. Guimaraes da Costa, J. Barreiro Bartoldus, R. Barton, A. E. Bartos, P. Basalaev, A. Bassalat, A. Basye, A. Bates, R. L. Batista, S. J. Batley, J. R. Battaglia, M. Bauce, M. Bauer, F. Bawa, H. S. Beacham, J. B. Beattie, M. D. Beau, T. Beauchemin, P. H. Beccherle, R. Bechtle, P. Beck, H. P. Becker, K. Becker, M. Beckingham, M. Becot, C. Beddall, A. J. Beddall, A. Bednyakov, V. A. Bee, C. P. Beemster, L. J. Beermann, T. A. Begel, M. Behr, J. K. Belanger-Champagne, C. Bell, W. H. Bella, G. Bellagamba, L. Bellerive, A. Bellomo, M. Belotskiy, K. Beltramello, O. Benary, O. Benchekroun, D. Bender, M. Bendtz, K. Benekos, N. Benhammou, Y. Noccioli, E. Benhar Garcia, J. A. Benitez Benjamin, D. P. Bensinger, J. R. Bentvelsen, S. Beresford, L. Beretta, M. Berge, D. Kuutmann, E. Bergeaas Berger, N. Berghaus, F. Beringer, J. Bernard, C. Bernard, N. R. Bernius, C. Bernlochner, F. U. Berry, T. Berta, P. Bertella, C. Bertoli, G. Bertolucci, F. Bertsche, C. Bertsche, D. Besana, M. I. Besjes, G. J. Bylund, O. Bessidskaia Bessner, M. Besson, N. Betancourt, C. Bethke, S. Bevan, A. J. Bhimji, W. Bianchi, R. M. Bianchini, L. Bianco, M. Biebel, O. Biedermann, D. Bieniek, S. P. Biesuz, N. V. Biglietti, M. De Mendizabal, J. Bilbao Bilokon, H. Bindi, M. Binet, S. Bingul, A. Bini, C. Biondi, S. Bjergaard, D. M. Black, C. W. Black, J. E. Black, K. M. Blackburn, D. Blair, R. E. Blanchard, J. -B. Blanco, J. E. Blazek, T. Bloch, I. Blocker, C. Blum, W. Blumenschein, U. Blunier, S. Bobbink, G. J. Bobrovnikov, V. S. Bocchetta, S. S. Bocci, A. Bock, C. Boehler, M. Bogaerts, J. A. Bogavac, D. Bogdanchikov, A. G. Bohm, C. Boisvert, V. Bold, T. Boldea, V. Boldyrev, A. S. Bomben, M. Bona, M. Boonekamp, M. Borisov, A. Borissov, G. Borroni, S. Bortfeldt, J. Bortolotto, V. Bos, K. Boscherini, D. Bosman, M. Boudreau, J. Bouffard, J. Bouhova-Thacker, E. V. Boumediene, D. Bourdarios, C. Bousson, N. Boutle, S. K. Boveia, A. Boyd, J. Boyko, I. R. Bozic, I. Bracinik, J. Brandt, A. Brandt, G. Brandt, O. Bratzler, U. Brau, B. Brau, J. E. Braun, H. M. Madden, W. D. Breaden Brendlinger, K. Brennan, A. J. Brenner, L. Brenner, R. Bressler, S. Bristow, T. M. Britton, D. Britzger, D. Brochu, F. M. Brock, I. Brock, R. Bronner, J. Brooijmans, G. Brooks, T. Brooks, W. K. Brosamer, J. Brost, E. Bruckman de Renstrom, P. A. Bruncko, D. Bruneliere, R. Bruni, A. Bruni, G. Bruschi, M. Bruscino, N. Bryngemark, L. Buanes, T. Buat, Q. Buchholz, P. Buckley, A. G. Buda, S. I. Budagov, I. A. Buehrer, F. Bugge, L. Bugge, M. K. Bulekov, O. Bullock, D. Burckhart, H. Burdin, S. Burgard, C. D. Burghgrave, B. Burke, S. Burmeister, I. Busato, E. Buescher, D. Buescher, V. Bussey, P. Butler, J. M. Butt, A. I. Buttar, C. M. Butterworth, J. M. Butti, P. Buttinger, W. Buzatu, A. Buzykaev, A. R. Urban, S. Cabrera Caforio, D. Cairo, V. M. Cakir, O. Calace, N. Calafiura, P. Calandri, A. Calderini, G. Calfayan, P. Caloba, L. P. Calvet, D. Calvet, S. Toro, R. Camacho Camarda, S. Camarri, P. Cameron, D. Armadans, R. Caminal Campana, S. Campanelli, M. Campoverde, A. Canale, V. Canepa, A. Bret, M. Cano Cantero, J. Cantrill, R. Cao, T. Garrido, M. D. M. Capeans Caprini, I. Caprini, M. Capua, M. Caputo, R. Carbone, R. M. Cardarelli, R. Cardillo, F. Carli, T. Carlino, G. Carminati, L. Caron, S. Carquin, E. Carrillo-Montoya, G. D. Carter, J. R. Carvalho, J. Casadei, D. Casado, M. P. Casolino, M. Castaneda-Miranda, E. Castelli, A. Gimenez, V. Castillo Castro, N. F. Catastini, P. Catinaccio, A. Catmore, J. R. Cattai, A. Caudron, J. Cavaliere, V. Cavalli, D. Cavalli-Sforza, M. Cavasinni, V. Ceradini, F. Cerio, B. C. Cerny, K. Cerqueira, A. S. Cerri, A. Cerrito, L. Cerutti, F. Cerv, M. Cervelli, A. Cetin, S. A. Chafaq, A. Chakraborty, D. Chalupkova, I. Chan, Y. L. Chang, P. Chapman, J. D. Charlton, D. G. Chau, C. C. Barajas, C. A. Chavez Cheatham, S. Chegwidden, A. Chekanov, S. Chekulaev, S. V. Chelkov, G. A. Chelstowska, M. A. Chen, C. Chen, H. Chen, K. Chen, L. Chen, S. Chen, S. Chen, X. Chen, Y. Cheng, H. C. Cheng, Y. Cheplakov, A. Cheremushkina, E. El Moursli, R. Cherkaoui Chernyatin, V. Cheu, E. Chevalier, L. Chiarella, V. Chiarelli, G. Chiodini, G. Chisholm, A. S. Chislett, R. T. Chitan, A. Chizhov, M. V. Choi, K. Chouridou, S. Chow, B. K. B. Christodoulou, V. Chromek-Burckhart, D. Chudoba, J. Chuinard, A. J. Chwastowski, J. J. Chytka, L. Ciapetti, G. Ciftci, A. K. Cinca, D. Cindro, V. Cioara, I. A. Ciocio, A. Cirotto, F. Citron, Z. H. Ciubancan, M. Clark, A. Clark, B. L. Clark, P. J. Clarke, R. N. Clement, C. Coadou, Y. Cobal, M. Coccaro, A. Cochran, J. Coffey, L. Cogan, J. G. Colasurdo, L. Cole, B. Cole, S. Colijn, A. P. Collot, J. Colombo, T. Compostella, G. Muino, P. Conde Coniavitis, E. Connell, S. H. Connelly, I. A. Consorti, V. Constantinescu, S. Conta, C. Conti, G. Conventi, F. Cooke, M. Cooper, B. D. Cooper-Sarkar, A. M. Cornelissen, T. Corradi, M. Corriveau, F. Corso-Radu, A. Cortes-Gonzalez, A. Cortiana, G. Costa, G. Costa, M. J. Costanzo, D. Cote, D. Cottin, G. Cowan, G. Cox, B. E. Cranmer, K. Cree, G. Crepe-Renaudin, S. Crescioli, F. Cribbs, W. A. Ortuzar, M. Crispin Cristinziani, M. Croft, V. Crosetti, G. Donszelmann, T. Cuhadar Cummings, J. Curatolo, M. Cuth, J. Cuthbert, C. Czirr, H. Czodrowski, P. D'Auria, S. D'Onofrio, M. Da Cunha Sargedas De Sousa, M. J. Da Via, C. Dabrowski, W. Dafinca, A. Dai, T. Dale, O. Dallaire, F. Dallapiccola, C. Dam, M. Dandoy, J. R. Dang, N. P. Daniells, A. C. Danninger, M. Hoffmann, M. Dano Dao, V. Darbo, G. Darmora, S. Dassoulas, J. Dattagupta, A. Davey, W. David, C. Davidek, T. Davies, E. Davies, M. Davison, P. Davygora, Y. Dawe, E. Dawson, I. Daya-Ishmukhametova, R. K. De, K. de Asmundis, R. De Benedetti, A. De Castro, S. De Cecco, S. De Groot, N. de Jong, P. De la Torre, H. De Lorenzi, F. De Pedis, D. De Salvo, A. De Sanctis, U. De Santo, A. De Vivie De Regie, J. B. Dearnaley, W. J. Debbe, R. Debenedetti, C. Dedovich, D. V. Deigaard, I. Del Peso, J. Del Prete, T. Delgove, D. Deliot, F. Delitzsch, C. M. Deliyergiyev, M. Dell'Acqua, A. Dell'Asta, L. Dell'Orso, M. Della Pietra, M. della Volpe, D. Delmastro, M. Delsart, P. A. Deluca, C. DeMarco, D. A. Demers, S. Demichev, M. Demilly, A. Denisov, S. P. Derendarz, D. Derkaoui, J. E. Derue, F. Dervan, P. Desch, K. Deterre, C. Dette, K. Deviveiros, P. O. Dewhurst, A. Dhaliwal, S. Di Ciaccio, A. Di Ciaccio, L. Di Domenico, A. Di Donato, C. Di Girolamo, A. Di Girolamo, B. Di Mattia, A. Di Micco, B. Di Nardo, R. Di Simone, A. Di Sipio, R. Di Valentino, D. Diaconu, C. Diamond, M. Dias, F. A. Diaz, M. A. Diehl, E. B. Dietrich, J. Diglio, S. Dimitrievska, A. Dingfelder, J. Dita, P. Dita, S. Dittus, F. Djama, F. Djobava, T. Djuvsland, J. I. do Vale, M. A. B. Dobos, D. Dobre, M. Doglioni, C. Dohmae, T. Dolejsi, J. Dolezal, Z. Dolgoshein, B. A. Donadelli, M. Donati, S. Dondero, P. Donini, J. Dopke, J. Doria, A. Dova, M. T. Doyle, A. T. Drechsler, E. Dris, M. Dubreuil, E. Duchovni, E. Duckeck, G. Ducu, O. A. Duda, D. Dudarev, A. Duflot, L. Duguid, L. Duehrssen, M. Dunford, M. Yildiz, H. Duran Dueren, M. Durglishvili, A. Duschinger, D. Dutta, B. Dyndal, M. Eckardt, C. Ecker, K. M. Edgar, R. C. Edson, W. Edwards, N. C. Ehrenfeld, W. Eifert, T. Eigen, G. Einsweiler, K. Ekelof, T. El Kacimi, M. Ellert, M. Elles, S. Ellinghaus, F. Elliot, A. A. Ellis, N. Elmsheuser, J. Elsing, M. Emeliyanov, D. Enari, Y. Endner, O. C. Endo, M. Erdmann, J. Ereditato, A. Ernis, G. Ernst, J. Ernst, M. Errede, S. Ertel, E. Escalier, M. Esch, H. Escobar, C. Esposito, B. Etienvre, A. I. Etzion, E. Evans, H. Ezhilov, A. Fabbri, L. Facini, G. Fakhrutdinov, R. M. Falciano, S. Falla, R. J. Faltova, J. Fang, Y. Fanti, M. Farbin, A. Farilla, A. Farooque, T. Farrell, S. Farrington, S. M. Farthouat, P. Fassi, F. Fassnacht, P. Fassouliotis, D. Giannelli, M. Faucci Favareto, A. Fayard, L. Fedin, O. L. Fedorko, W. Feigl, S. Feligioni, L. Feng, C. Feng, E. J. Feng, H. Fenyuk, A. B. Feremenga, L. Martinez, P. Fernandez Perez, S. Fernandez Ferrando, J. Ferrari, A. Ferrari, P. Ferrari, R. de Lima, D. E. Ferreira Ferrer, A. Ferrere, D. Ferretti, C. Parodi, A. Ferretto Fiascaris, M. Fiedler, F. Filipcic, A. Filipuzzi, M. Filthaut, F. Fincke-Keeler, M. Finelli, K. D. Fiolhais, M. C. N. Fiorini, L. Firan, A. Fischer, A. Fischer, C. Fischer, J. Fisher, W. C. Flaschel, N. Fleck, I. Fleischmann, P. Fletcher, G. T. Fletcher, G. Fletcher, R. R. M. Flick, T. Floderus, A. Castillo, L. R. Flores Flowerdew, M. J. Formica, A. Forti, A. Fournier, D. Fox, H. Fracchia, S. Francavilla, P. Franchini, M. Francis, D. Franconi, L. Franklin, M. Frate, M. Fraternali, M. Freeborn, D. French, S. T. Friedrich, F. Froidevaux, D. Frost, J. A. Fuchi, R. Fukunaga, C. Torregrosa, E. Fullana Fulsom, B. G. Fusayasu, T. Fuster, J. Gabaldon, C. Gabizon, O. Gabrielli, A. Gabrielli, A. Gach, G. P. Gadatsch, S. Gadomski, S. Gagliardi, G. Gagnon, P. Galea, C. Galhardo, B. Gallas, E. J. Gallop, B. J. Gallus, P. Galster, G. Gan, K. K. Gao, J. Gao, Y. Gao, Y. S. Walls, F. M. Garay Garberson, F. Garcia, C. Navarro, J. E. Garcia Garcia-Sciveres, M. Gardner, R. W. Garelli, N. Garonne, V. Gatti, C. Gaudiello, A. Gaudio, G. Gaur, B. Gauthier, L. Gauzzi, P. Gavrilenko, I. L. Gay, C. Gaycken, G. Gazis, E. N. Ge, P. Gecse, Z. Gee, C. N. P. Geich-Gimbel, Ch. Geisler, M. P. Gemme, C. Genest, M. H. Gentile, S. George, M. George, S. Gerbaudo, D. Gershon, A. Ghasemi, S. Ghazlane, H. Giacobbe, B. Giagu, S. Giangiobbe, V. Giannetti, P. Gibbard, B. Gibson, S. M. Gignac, M. Gilchriese, M. Gillam, T. P. S. Gillberg, D. Gilles, G. Gingrich, D. M. Giokaris, N. Giordani, M. P. Giorgi, F. M. Giorgi, F. M. Giraud, P. F. Giromini, P. Giugni, D. Giuliani, C. Giulini, M. Gjelsten, B. K. Gkaitatzis, S. Gkialas, I. Gkougkousis, E. L. Gladilin, L. K. Glasman, C. Glatzer, J. Glaysher, P. C. F. Glazov, A. Goblirsch-Kolb, M. Goddard, J. R. Godlewski, J. Goldfarb, S. Golling, T. Golubkov, D. Gomes, A. Goncalo, R. Goncalves Pinto Firmino Da Costa, J. Gonella, L. de la Hoz, S. Gonzalez Gonzalez Parra, G. Gonzalez-Sevilla, S. Goossens, L. Gorbounov, P. A. Gordon, H. A. Gorelov, I. Gorini, B. Gorini, E. Gorisek, A. Gornicki, E. Goshaw, A. T. Goessling, C. Gostkin, M. I. Goujdami, D. Goussiou, A. G. Govender, N. Gozani, E. Grabas, H. M. X. Graber, L. Grabowska-Bold, I. Gradin, P. O. J. Grafstroem, P. Gramling, J. Gramstad, E. Grancagnolo, S. Gratchev, V. Gray, H. M. Graziani, E. Greenwood, Z. D. Grefe, C. Gregersen, K. Gregor, I. M. Grenier, P. Griffiths, J. Grillo, A. A. Grimm, K. Grinstein, S. Gris, Ph. Grivaz, J. -F. Grohs, J. P. Grohsjean, A. Gross, E. Grosse-Knetter, J. Grossi, G. C. Grout, Z. J. Guan, L. Guenther, J. Guescini, F. Guest, D. Gueta, O. Guido, E. Guillemin, T. Guindon, S. Gul, U. Gumpert, C. Guo, J. Guo, Y. Gupta, S. Gustavino, G. Gutierrez, P. Ortiz, N. G. Gutierrez Gutschow, C. Guyot, C. Gwenlan, C. Gwilliam, C. B. Haas, A. Haber, C. Hadavand, H. K. Haddad, N. Haefner, P. Hageboeck, S. Hajduk, Z. Hakobyan, H. Haleem, M. Haley, J. Hall, D. Halladjian, G. Hallewell, G. D. Hamacher, K. Hamal, P. Hamano, K. Hamilton, A. Hamity, G. N. Hamnett, P. G. Han, L. Hanagaki, K. Hanawa, K. Hance, M. Haney, B. Hanke, P. Hanna, R. Hansen, J. B. Hansen, J. D. Hansen, M. C. Hansen, P. H. Hara, K. Hard, A. S. Harenberg, T. Hariri, F. Harkusha, S. Harrington, R. D. Harrison, P. F. Hartjes, F. Hasegawa, M. Hasegawa, Y. Hasib, A. Hassani, S. Haug, S. Hauser, R. Hauswald, L. Havranek, M. Hawkes, C. M. Hawkings, R. J. Hawkins, A. D. Hayashi, T. Hayden, D. Hays, C. P. Hays, J. M. Hayward, H. S. Haywood, S. J. Head, S. J. Heck, T. Hedberg, V. Heelan, L. Heim, S. Heim, T. Heinemann, B. Heinrich, L. Hejbal, J. Helary, L. Hellman, S. Hellmich, D. Helsens, C. Henderson, J. Henderson, R. C. W. Heng, Y. Hengler, C. Henkelmann, S. Henrichs, A. Henriques Correia, A. M. Henrot-Versille, S. Herbert, G. H. Jimenez, Y. Hernandez Herten, G. Hertenberger, R. Hervas, L. Hesketh, G. G. Hessey, N. P. Hetherly, J. W. Hickling, R. Higon-Rodriguez, E. Hill, E. Hill, J. C. Hiller, K. H. Hillier, S. J. Hinchliffe, I. Hines, E. Hinman, R. R. Hirose, M. Hirschbuehl, D. Hobbs, J. Hod, N. Hodgkinson, M. C. Hodgson, P. Hoecker, A. Hoeferkamp, M. R. Hoenig, F. Hohlfeld, M. Hohn, D. Holmes, R. Homann, M. Hong, M. Hopkins, W. H. Horii, Y. Horton, A. J. Hostachy, J-Y. Hou, S. Hoummada, A. Howard, J. Howarth, J. Hrabovsky, M. Hristova, I. Hrivnac, J. Hryn'ova, T. Hrynevich, A. Hsu, C. Hsu, P. J. Hsu, S. -C. Hu, D. Hu, Q. Hu, X. Huang, Y. Hubacek, Z. Hubaut, F. Huegging, F. Huffman, T. B. Hughes, E. W. Hughes, G. Huhtinen, M. Huelsing, T. A. Huseynov, N. Huston, J. Huth, J. Iacobucci, G. Iakovidis, G. Ibragimov, I. Iconomidou-Fayard, L. Ideal, E. Idrissi, Z. Iengo, P. Igonkina, O. Iizawa, T. Ikegami, Y. Ikematsu, K. Ikeno, M. Ilchenko, Y. Iliadis, D. Ilic, N. Ince, T. Introzzi, G. Ioannou, P. Iodice, M. Iordanidou, K. Ippolito, V. Irles Quiles, A. Isaksson, C. Ishino, M. Ishitsuka, M. Ishmukhametov, R. Issever, C. Istin, S. Ponce, J. M. Iturbe Iuppa, R. Ivarsson, J. Iwanski, W. Iwasaki, H. Izen, J. M. Izzo, V. Jabbar, S. Jackson, B. Jackson, M. Jackson, P. Jaekel, M. R. Jain, V. Jakobs, K. Jakobsen, S. Jakoubek, T. Jakubek, J. Jamin, D. O. Jana, D. K. Jansen, E. Jansky, R. Janssen, J. Janus, M. Jarlskog, G. Javadov, N. Javurek, T. Jeanty, L. Jejelava, J. Jeng, G. -Y. Jennens, D. Jenni, P. Jentzsch, J. Jeske, C. Jezequel, S. Ji, H. Jia, J. Jiang, Y. Jiggins, S. Pena, J. Jimenez Jin, S. Jinaru, A. Jinnouchi, O. Joergensen, M. D. Johansson, P. Johns, K. A. Johnson, W. J. Jon-And, K. Jones, G. Jones, R. W. L. Jones, T. J. Jongmanns, J. Jorge, P. M. Joshi, K. D. Jovicevic, J. Ju, X. Jussel, P. Rozas, A. Juste Kaci, M. Kaczmarska, A. Kado, M. Kagan, H. Kagan, M. Kahn, S. J. Kajomovitz, E. Kalderon, C. W. Kama, S. Kamenshchikov, A. Kanaya, N. Kaneti, S. Kantserov, V. A. Kanzaki, J. Kaplan, B. Kaplan, L. S. Kapliy, A. Kar, D. Karakostas, K. Karamaoun, A. Karastathis, N. Kareem, M. J. Karentzos, E. Karnevskiy, M. Karpov, S. N. Karpova, Z. M. Karthik, K. Kartvelishvili, V. Karyukhin, A. N. Kasahara, K. Kashif, L. Kass, R. D. Kastanas, A. Kataoka, Y. Kato, C. Katre, A. Katzy, J. Kawade, K. Kawagoe, K. Kawamoto, T. Kawamura, G. Kazama, S. Kazanin, V. F. Keeler, R. Kehoe, R. Keller, J. S. Kempster, J. J. Keoshkerian, H. Kepka, O. Kersevan, B. P. Kersten, S. Keyes, R. A. Khalil-zada, F. Khandanyan, H. Khanov, A. Kharlamov, A. G. Khoo, T. J. Khovanskiy, V. Khramov, E. Khubua, J. Kido, S. Kim, H. Y. Kim, S. H. Kim, Y. K. Kimura, N. Kind, O. M. King, B. T. King, M. King, S. B. Kirk, J. Kiryunin, A. E. Kishimoto, T. Kisielewska, D. Kiss, F. Kiuchi, K. Kivernyk, O. Kladiva, E. Klein, M. H. Klein, M. Klein, U. Kleinknecht, K. Klimek, P. Klimentov, A. Klingenberg, R. Klinger, J. A. Klioutchnikova, T. Kluge, E. -E. Kluit, P. Kluth, S. Knapik, J. Kneringer, E. Knoops, E. B. F. G. Knue, A. Kobayashi, A. Kobayashi, D. Kobayashi, T. Kobel, M. Kocian, M. Kodys, P. Koffas, T. Koffeman, E. Kogan, L. A. Kohlmann, S. Kohout, Z. Kohriki, T. Koi, T. Kolanoski, H. Kolb, M. Koletsou, I. Komar, A. A. Komori, Y. Kondo, T. Kondrashova, N. Koeneke, K. Koenig, A. C. Kono, T. Konoplich, R. Konstantinidis, N. Kopeliansky, R. Koperny, S. Koepke, L. Kopp, A. K. Korcyl, K. Kordas, K. Korn, A. Korol, A. A. Korolkov, I. Korolkova, E. V. Kortner, O. Kortner, S. Kosek, T. Kostyukhin, V. V. Kotov, V. M. Kotwal, A. Kourkoumeli-Charalampidi, A. Kourkoumelis, C. Kouskoura, V. Koutsman, A. Kowalewski, R. Kowalski, T. Z. Kozanecki, W. Kozhin, A. S. Kramarenko, V. A. Kramberger, G. Krasnopevtsev, D. Krasny, M. W. Krasznahorkay, A. Kraus, J. K. Kravchenko, A. Kreiss, S. Kretz, M. Kretzschmar, J. Kreutzfeldt, K. Krieger, P. Krizka, K. Kroeninger, K. Kroha, H. Kroll, J. Kroseberg, J. Krstic, J. Kruchonak, U. Krueger, H. Krumnack, N. Kruse, A. Kruse, M. C. Kruskal, M. Kubota, T. Kucuk, H. Kuday, S. Kuehn, S. Kugel, A. Kuger, F. Kuhl, A. Kuhl, T. Kukhtin, V. Kukla, R. Kulchitsky, Y. Kuleshov, S. Kuna, M. Kunigo, T. Kupco, A. Kurashige, H. Kurochkin, Y. A. Kus, V. Kuwertz, E. S. Kuze, M. Kvita, J. Kwan, T. Kyriazopoulos, D. La Rosa, A. Navarro, J. L. La Rosa La Rotonda, L. Lacasta, C. Lacava, F. Lacey, J. Lacker, H. Lacour, D. Lacuesta, V. R. Ladygin, E. Lafaye, R. Laforge, B. Lagouri, T. Lai, S. Lambourne, L. Lammers, S. Lampen, C. L. Lampl, W. Lancon, E. Landgraf, U. Landon, M. P. J. Lang, V. S. Lange, J. C. Lankford, A. J. Lanni, F. Lantzsch, K. Lanza, A. Laplace, S. Lapoire, C. Laporte, J. F. Lari, T. Lasagni Manghi, F. Lassnig, M. Laurelli, P. Lavrijsen, W. Law, A. T. Laycock, P. Lazovich, T. Le Dortz, O. Le Guirriec, E. Le Menedeu, E. LeBlanc, M. LeCompte, T. Ledroit-Guillon, F. Lee, C. A. Lee, S. C. Lee, L. Lefebvre, G. Lefebvre, M. Legger, F. Leggett, C. Lehan, A. Miotto, G. Lehmann Lei, X. Leight, W. A. Leisos, A. Leister, A. G. Leite, M. A. L. Leitner, R. Lellouch, D. Lemmer, B. Leney, K. J. C. Lenz, T. Lenzi, B. Leone, R. Leone, S. Leonidopoulos, C. Leontsinis, S. Leroy, C. Lester, C. G. Levchenko, M. Leveque, J. Levin, D. Levinson, L. J. Levy, M. Lewis, A. Leyko, A. M. Leyton, M. Li, B. Li, H. Li, H. L. Li, L. Li, L. Li, S. Li, X. Li, Y. Liang, Z. Liao, H. Liberti, B. Liblong, A. Lichard, P. Lie, K. Liebal, J. Liebig, W. Limbach, C. Limosani, A. Lin, S. C. Lin, T. H. Linde, F. Lindquist, B. E. Linnemann, J. T. Lipeles, E. Lipniacka, A. Lisovyi, M. Liss, T. M. Lissauer, D. Lister, A. Litke, A. M. Liu, B. Liu, D. Liu, H. Liu, J. Liu, J. B. Liu, K. Liu, L. Liu, M. Liu, M. Liu, Y. Livan, M. Lleres, A. Llorente Merino, J. Lloyd, S. L. Lo Sterzo, F. Lobodzinska, E. Loch, P. Lockman, W. S. Loebinger, F. K. Loevschall-Jensen, A. E. Loew, K. M. Loginov, A. Lohse, T. Lohwasser, K. Lokajicek, M. Long, B. A. Long, J. D. Long, R. E. Looper, K. A. Lopes, L. Mateos, D. Lopez Paredes, B. Lopez Paz, I. Lopez Lorenz, J. Martinez, N. Lorenzo Losada, M. Loesel, P. J. Lou, X. Lounis, A. Love, J. Love, P. A. Lu, H. Lu, N. Lubatti, H. J. Luci, C. Lucotte, A. Luedtke, C. Luehring, F. Lukas, W. Luminari, L. Lundberg, O. Lund-Jensen, B. Lynn, D. Lysak, R. Lytken, E. Ma, H. Ma, L. L. Maccarrone, G. Macchiolo, A. Macdonald, C. M. Macek, B. Machado Miguens, J. Macina, D. Madaffari, D. Madar, R. Maddocks, H. J. Mader, W. F. Madsen, A. Maeda, J. Maeland, S. Maeno, T. Maevskiy, A. Magradze, E. Mahboubi, K. Mahlstedt, J. Maiani, C. Maidantchik, C. Maier, A. A. Maier, T. Maio, A. Majewski, S. Makida, Y. Makovec, N. Malaescu, B. Malecki, Pa. Maleev, V. P. Malek, F. Mallik, U. Malon, D. Malone, C. Maltezos, S. Malyshev, V. M. Malyukov, S. Mamuzic, J. Mancini, G. Mandelli, B. Mandelli, L. Mandic, I. Mandrysch, R. Maneira, J. Manfredini, A. Manhaes de Andrade Filho, L. Ramos, J. Manjarres Mann, A. Manousakis-Katsikakis, A. Mansoulie, B. Mantifel, R. Mantoani, M. Mapelli, L. March, L. Marchiori, G. Marcisovsky, M. Marino, C. P. Marjanovic, M. Marley, D. E. Marroquim, F. Marsden, S. P. Marshall, Z. Marti, L. F. Marti-Garcia, S. Martin, B. Martin, T. A. Martin, V. J. Latour, B. Martin dit Martinez, M. Martin-Haugh, S. Martoiu, V. S. Martyniuk, A. C. Marx, M. Marzano, F. Marzin, A. Masetti, L. Mashimo, T. Mashinistov, R. Masik, J. Maslennikov, A. L. Massa, I. Massa, L. Mastrandrea, P. Mastroberardino, A. Masubuchi, T. Maettig, P. Mattmann, J. Maurer, J. Maxfield, S. J. Maximov, D. A. Mazini, R. Mazza, S. M. Mc Goldrick, G. Mc Kee, S. P. McCarn, A. McCarthy, R. L. McCarthy, T. G. McCubbin, N. A. McFarlane, K. W. Mcfayden, J. A. Mchedlidze, G. McMahon, S. J. McPherson, R. A. Medinnis, M. Meehan, S. Mehlhase, S. Mehta, A. Meier, K. Meineck, C. Meirose, B. Garcia, B. R. Mellado Meloni, F. Mengarelli, A. Menke, S. Meoni, E. Mercurio, K. M. Mergelmeyer, S. Mermod, P. Merola, L. Meroni, C. Merritt, F. S. Messina, A. Metcalfe, J. Mete, A. S. Meyer, C. Meyer, C. Meyer, J-P. Meyer, J. Theenhausen, H. Meyer Zu Middleton, R. P. Miglioranzi, S. Mijovic, L. Mikenberg, G. Mikestikova, M. Mikuz, M. Milesi, M. Milic, A. Miller, D. W. Mills, C. Milov, A. Milstead, D. A. Minaenko, A. A. Minami, Y. Minashvili, I. A. Mincer, A. I. Mindur, B. Mineev, M. Ming, Y. Mir, L. M. Mistry, K. P. Mitani, T. Mitrevski, J. Mitsou, V. A. Miucci, A. Miyagawa, P. S. Mjoernmark, J. U. Moa, T. Mochizuki, K. Mohapatra, S. Mohr, W. Molander, S. Moles-Valls, R. Monden, R. Moenig, K. Monini, C. Monk, J. Monnier, E. Montalbano, A. Berlingen, J. Montejo Monticelli, F. Monzani, S. Moore, R. W. Morange, N. Moreno, D. Moreno Llacer, M. Morettini, P. Mori, D. Mori, T. Morii, M. Morinaga, M. Morisbak, V. Moritz, S. Morley, A. K. Mornacchi, G. Morris, J. D. Mortensen, S. S. Morton, A. Morvaj, L. Mosidze, M. Moss, J. Motohashi, K. Mount, R. Mountricha, E. Mouraviev, S. V. Moyse, E. J. W. Muanza, S. Mudd, R. D. Mueller, F. Mueller, J. Mueller, R. S. P. Mueller, T. Muenstermann, D. Mullen, P. Mullier, G. A. Murillo Quijada, J. A. Murray, W. J. Musheghyan, H. Musto, E. Myagkov, A. G. Myska, M. Nachman, B. P. Nackenhorst, O. Nadal, J. Nagai, K. Nagai, R. Nagai, Y. Nagano, K. Nagarkar, A. Nagasaka, Y. Nagata, K. Nagel, M. Nagy, E. Nairz, A. M. Nakahama, Y. Nakamura, K. Nakamura, T. Nakano, I. Namasivayam, H. Garcia, R. F. Naranjo Narayan, R. Villar, D. I. Narrias Naumann, T. Navarro, G. Nayyar, R. Neal, H. A. Nechaeva, P. Yu. Neep, T. J. Nef, P. D. Negri, A. Negrini, M. Nektarijevic, S. Nellist, C. Nelson, A. Nemecek, S. Nemethy, P. Nepomuceno, A. A. Nessi, M. Neubauer, M. S. Neumann, M. Neves, R. M. Nevski, P. Newman, P. R. Nguyen, D. H. Nickerson, R. B. Nicolaidou, R. Nicquevert, B. Nielsen, J. Nikiforou, N. Nikiforov, A. Nikolaenko, V. Nikolic-Audit, I. Nikolopoulos, K. Nilsen, J. K. Nilsson, P. Ninomiya, Y. Nisati, A. Nisius, R. Nobe, T. Nomachi, M. Nomidis, I. Nooney, T. Norberg, S. Nordberg, M. Novgorodova, O. Nowak, S. Nozaki, M. Nozka, L. Ntekas, K. Hanninger, G. Nunes Nunnemann, T. Nurse, E. Nuti, F. O'Brien, B. J. O'grady, F. O'Neil, D. C. O'Shea, V. Oakham, F. G. Oberlack, H. Obermann, T. Ocariz, J. Ochi, A. Ochoa, I. Ochoa-Ricoux, J. P. Oda, S. Odaka, S. Ogren, H. Oh, A. Oh, S. H. Ohm, C. C. Ohman, H. Oide, H. Okamura, W. Okawa, H. Okumura, Y. Okuyama, T. Olariu, A. Olivares Pino, S. A. Oliveira Damazio, D. Olszewski, A. Olszowska, J. Onofre, A. Onogi, K. Onyisi, P. U. E. Oram, C. J. Oreglia, M. J. Oren, Y. Orestano, D. Orlando, N. Barrera, C. Oropeza Orr, R. S. Osculati, B. Ospanov, R. Otero y Garzon, G. Otono, H. Ouchrif, M. Ould-Saada, F. Ouraou, A. Oussoren, K. P. Ouyang, Q. Ovcharova, A. Owen, M. Owen, R. E. Ozcan, V. E. Ozturk, N. Pachal, K. Pages, A. Pacheco Padilla Aranda, C. Pagacova, M. Griso, S. Pagan Paganis, E. Paige, F. Pais, P. Pajchel, K. Palacino, G. Palestini, S. Palka, M. Pallin, D. Palma, A. Pan, Y. B. St. Panagiotopoulou, E. Pandini, C. E. Vazquez, J. G. Panduro Pani, P. Panitkin, S. Pantea, D. Paolozzi, L. Papadopoulou, Th. D. Papageorgiou, K. Paramonov, A. Hernandez, D. Paredes Parker, M. A. Parker, K. A. Parodi, F. Parsons, J. A. Parzefall, U. Pasqualucci, E. Passaggio, S. Pastore, F. Pastore, Fr. Pasztor, G. Pataraia, S. Patel, N. D. Pater, J. R. Pauly, T. Pearce, J. Pearson, B. Pedersen, L. E. Pedersen, M. Lopez, S. Pedraza Pedro, R. Peleganchuk, S. V. Pelikan, D. Penc, O. Peng, C. Peng, H. Penning, B. Penwell, J. Perepelitsa, D. V. Codina, E. Perez Garcia-Estan, M. T. Perez Perini, L. Pernegger, H. Perrella, S. Peschke, R. Peshekhonov, V. D. Peters, K. Peters, R. F. Y. Petersen, B. A. Petersen, T. C. Petit, E. Petridis, A. Petridou, C. Petroff, P. Petrolo, E. Petrucci, F. Pettersson, N. E. Pezoa, R. Phillips, P. W. Piacquadio, G. Pianori, E. Picazio, A. Piccaro, E. Piccinini, M. Pickering, M. A. Piegaia, R. Pignotti, D. T. Pilcher, J. E. Pilkington, A. D. Pin, A. W. J. Pina, J. Pinamonti, M. Pinfold, J. L. Pingel, A. Pires, S. Pirumov, H. Pitt, M. Pizio, C. Plazak, L. Pleier, M. -A. Pleskot, V. Plotnikova, E. Plucinski, P. Pluth, D. Poettgen, R. Poggioli, L. Pohl, D. Polesello, G. Poley, A. Policicchio, A. Polifka, R. Polini, A. Pollard, C. S. Polychronakos, V. Pommes, K. Pontecorvo, L. Pope, B. G. Popeneciu, G. A. Popovic, D. S. Poppleton, A. Pospisil, S. Potamianos, K. Potrap, I. N. Potter, C. J. Potter, C. T. Poulard, G. Poveda, J. Pozdnyakov, V. Pralavorio, P. Pranko, A. Prasad, S. Prell, S. Price, D. Price, L. E. Primavera, M. Prince, S. Proissl, M. Prokofiev, K. Prokoshin, F. Protopapadaki, E. Protopopescu, S. Proudfoot, J. Przybycien, M. Ptacek, E. Puddu, D. Pueschel, E. Puldon, D. Purohit, M. Puzo, P. Qian, J. Qin, G. Qin, Y. Quadt, A. Quarrie, D. R. Quayle, W. B. Queitsch-Maitland, M. Quilty, D. Raddum, S. Radeka, V. Radescu, V. Radhakrishnan, S. K. Radloff, P. Rados, P. Ragusa, F. Rahal, G. Rajagopalan, S. Rammensee, M. Rangel-Smith, C. Rauscher, F. Rave, S. Ravenscroft, T. Raymond, M. Read, A. L. Readioff, N. P. Rebuzzi, D. M. Redelbach, A. Redlinger, G. Reece, R. Reeves, K. Rehnisch, L. Reichert, J. Reisin, H. Rembser, C. Ren, H. Renaud, A. Rescigno, M. Resconi, S. Rezanova, O. L. Reznicek, P. Rezvani, R. Richter, R. Richter, S. Richter-Was, E. Ricken, O. Ridel, M. Rieck, P. Riegel, C. J. Rieger, J. Rifki, O. Rijssenbeek, M. Rimoldi, A. Rinaldi, L. Ristic, B. Ritsch, E. Riu, I. Rizatdinova, F. Rizvi, E. Robertson, S. H. Robichaud-Veronneau, A. Robinson, D. Robinson, J. E. M. Robson, A. Roda, C. Roe, S. Rohne, O. Rolli, S. Romaniouk, A. Romano, M. Saez, S. M. Romano Adam, E. Romero Rompotis, N. Ronzani, M. Roos, L. Ros, E. Rosati, S. Rosbach, K. Rose, P. Rosendahl, P. L. Rosenthal, O. Rossetti, V. Rossi, E. Rossi, L. P. Rosten, J. H. N. Rosten, R. Rotaru, M. Roth, I. Rothberg, J. Rousseau, D. Royon, C. R. Rozanov, A. Rozen, Y. Ruan, X. Rubbo, F. Rubinskiy, I. Rud, V. I. Rudolph, C. Rudolph, M. S. Ruehr, F. Ruiz-Martinez, A. Rurikova, Z. Rusakovich, N. A. Ruschke, A. Russell, H. L. Rutherfoord, J. P. Ruthmann, N. Ryabov, Y. F. Rybar, M. Rybkin, G. Ryder, N. C. Ryzhov, A. Saavedra, A. F. Sabato, G. Sacerdoti, S. Saddique, A. Sadrozinski, H. F-W. Sadykov, R. Tehrani, F. Safai Saha, P. Sahinsoy, M. Saimpert, M. Saito, T. Sakamoto, H. Sakurai, Y. Salamanna, G. Salamon, A. Loyola, J. E. Salazar Saleem, M. Salek, D. De Bruin, P. H. Sales Salihagic, D. Salnikov, A. Salt, J. Salvatore, D. Salvatore, F. Salvucci, A. Salzburger, A. Sammel, D. Sampsonidis, D. Sanchez, A. Sanchez, J. Martinez, V. Sanchez Sandaker, H. Sandbach, R. L. Sander, H. G. Sanders, M. P. Sandhoff, M. Sandoval, C. Sandstroem, R. Sankey, D. P. C. Sannino, M. Sansoni, A. Santoni, C. Santonico, R. Santos, H. Castillo, I. Santoyo Sapp, K. Sapronov, A. Saraiva, J. G. Sarrazin, B. Sasaki, O. Sasaki, Y. Sato, K. Sauvage, G. Sauvan, E. Savage, G. Savard, P. Sawyer, C. Sawyer, L. Saxon, J. Sbarra, C. Sbrizzi, A. Scanlon, T. Scannicchio, D. A. Scarcella, M. Scarfone, V. Schaarschmidt, J. Schacht, P. Schaefer, D. Schaefer, R. Schaeffer, J. Schaepe, S. Schaetzel, S. Schaefer, U. Schaffer, A. C. Schaile, D. Schamberger, R. D. Scharf, V. Schegelsky, V. A. Scheirich, D. Schernau, M. Schiavi, C. Schillo, C. Schioppa, M. Schlenker, S. Schmieden, K. Schmitt, C. Schmitt, S. Schmitt, S. Schneider, B. Schnellbach, Y. J. Schnoor, U. Schoeffel, L. Schoening, A. Schoenrock, B. D. Schopf, E. Schorlemmer, A. L. S. Schott, M. Schouten, D. Schovancova, J. Schramm, S. Schreyer, M. Schuh, N. Schultens, M. J. Schultz-Coulon, H. -C. Schulz, H. Schumacher, M. Schumm, B. A. Schune, Ph. Schwanenberger, C. Schwartzman, A. Schwarz, T. A. Schwegler, Ph. Schweiger, H. Schwemling, Ph. Schwienhorst, R. Schwindling, J. Schwindt, T. Sciacca, F. G. Scifo, E. Sciolla, G. Scuri, F. Scutti, F. Searcy, J. Sedov, G. Sedykh, E. Seema, P. Seidel, S. C. Seiden, A. Seifert, F. Seixas, J. M. Sekhniaidze, G. Sekhon, K. Sekula, S. J. Seliverstov, D. M. Semprini-Cesari, N. Serfon, C. Serin, L. Serkin, L. Serre, T. Sessa, M. Seuster, R. Severini, H. Sfiligoj, T. Sforza, F. Sfyrla, A. Shabalina, E. Shamim, M. Shan, L. Y. Shang, R. Shank, J. T. Shapiro, M. Shatalov, P. B. Shaw, K. Shaw, S. M. Shcherbakova, A. Shehu, C. Y. Sherwood, P. Shi, L. Shimizu, S. Shimmin, C. O. Shimojima, M. Shiyakova, M. Shmeleva, A. Saadi, D. Shoaleh Shochet, M. J. Shojaii, S. Shrestha, S. Shulga, E. Shupe, M. A. Shushkevich, S. Sicho, P. Sidebo, P. E. Sidiropoulou, O. Sidorov, D. Sidoti, A. Siegert, F. Sijacki, Dj. Silva, J. Silver, Y. Silverstein, S. B. Simak, V. Simard, O. Simic, Lj. Simion, S. Simioni, E. Simmons, B. Simon, D. Sinervo, P. Sinev, N. B. Sioli, M. Siragusa, G. Sisakyan, A. N. Sivoklokov, S. Yu. Sjoelin, J. Sjursen, T. B. Skinner, M. B. Skottowe, H. P. Skubic, P. Slater, M. Slavicek, T. Slawinska, M. Sliwa, K. Smakhtin, V. Smart, B. H. Smestad, L. Smirnov, S. Yu. Smirnov, Y. Smirnova, L. N. Smirnova, O. Smith, M. N. K. Smith, R. W. Smizanska, M. Smolek, K. Snesarev, A. A. Snidero, G. Snyder, S. Sobie, R. Socher, F. Soffer, A. Soh, D. A. Sokhrannyi, G. Solans, C. A. Solar, M. Solc, J. Soldatov, E. Yu. Soldevila, U. Solodkov, A. A. Soloshenko, A. Solovyanov, O. V. Solovyev, V. Sommer, P. Song, H. Y. Soni, N. Sood, A. Sopczak, A. Sopko, B. Sopko, V. Sorin, V. Sosa, D. Sosebee, M. Sotiropoulou, C. L. Soualah, R. Soukharev, A. M. South, D. Sowden, B. C. Spagnolo, S. Spalla, M. Spangenberg, M. Spano, F. Spearman, W. R. Sperlich, D. Spettel, F. Spighi, R. Spigo, G. Spiller, L. A. Spousta, M. St. Denis, R. D. Stabile, A. Staerz, S. Stahlman, J. Stamen, R. Stamm, S. Stanecka, E. Stanescu, C. Stanescu-Bellu, M. Stanitzki, M. M. Stapnes, S. Starchenko, E. A. Stark, J. Staroba, P. Starovoitov, P. Staszewski, R. Steinberg, P. Stelzer, B. Stelzer, H. J. Stelzer-Chilton, O. Stenzel, H. Stewart, G. A. Stillings, J. A. Stockton, M. C. Stoebe, M. Stoicea, G. Stolte, P. Stonjek, S. Stradling, A. R. Straessner, A. Stramaglia, M. E. Strandberg, J. Strandberg, S. Strandlie, A. Strauss, E. Strauss, M. Strizenec, P. Stroehmer, R. Strom, D. M. Stroynowski, R. Strubig, A. Stucci, S. A. Stugu, B. Styles, N. A. Su, D. Su, J. Subramaniam, R. Succurro, A. Suchek, S. Sugaya, Y. Suk, M. Sulin, V. V. Sultansoy, S. Sumida, T. Sun, S. Sun, X. Sundermann, J. E. Suruliz, K. Susinno, G. Sutton, M. R. Suzuki, S. Svatos, M. Swiatlowski, M. Sykora, I. Sykora, T. Ta, D. Taccini, C. Tackmann, K. Taenzer, J. Taffard, A. Tafirout, R. Taiblum, N. Takai, H. Takashima, R. Takeda, H. Takeshita, T. Takubo, Y. Talby, M. Talyshev, A. A. Tam, J. Y. C. Tan, K. G. Tanaka, J. Tanaka, R. Tanaka, S. Tannenwald, B. B. Tannoury, N. Araya, S. Tapia Tapprogge, S. Tarem, S. Tarrade, F. Tartarelli, G. F. Tas, P. Tasevsky, M. Tashiro, T. Tassi, E. Delgado, A. Tavares Tayalati, Y. Taylor, F. E. Taylor, G. N. Taylor, P. T. E. Taylor, W. Teischinger, F. A. Castanheira, M. Teixeira Dias Teixeira-Dias, P. Temming, K. K. Temple, D. Ten Kate, H. Teng, P. K. Teoh, J. J. Tepel, F. Terada, S. Terashi, K. Terron, J. Terzo, S. Testa, M. Teuscher, R. J. Theveneaux-Pelzer, T. Thomas, J. P. Thomas-Wilsker, J. Thompson, E. N. Thompson, P. D. Thompson, R. J. Thompson, A. S. Thomsen, L. A. Thomson, E. Thomson, M. Thun, R. P. Tibbetts, M. J. Torres, R. E. Ticse Tikhomirov, V. O. Tikhonov, Yu. A. Timoshenko, S. Tiouchichine, E. Tipton, P. Tisserant, S. Todome, K. Todorov, T. Todorova-Nova, S. Tojo, J. Tokar, S. Tokushuku, K. Tollefson, K. Tolley, E. Tomlinson, L. Tomoto, M. Tompkins, L. Toms, K. Torrence, E. Torres, H. Pastor, E. Torro Toth, J. Touchard, F. Tovey, D. R. Trefzger, T. Tremblet, L. Tricoli, A. Trigger, I. M. Trincaz-Duvoid, S. Tripiana, M. F. Trischuk, W. Trocme, B. Troncon, C. Trottier-McDonald, M. Trovatelli, M. Truong, L. Trzebinski, M. Trzupek, A. Tsarouchas, C. Tseng, J. C-L. Tsiareshka, P. V. Tsionou, D. Tsipolitis, G. Tsirintanis, N. Tsiskaridze, S. Tsiskaridze, V. Tskhadadze, E. G. Tsui, K. M. Tsukerman, I. I. Tsulaia, V. Tsuno, S. Tsybychev, D. Tudorache, A. Tudorache, V. Tuna, A. N. Tupputi, S. A. Turchikhin, S. Turecek, D. Turra, R. Turvey, A. J. Tuts, P. M. Tykhonov, A. Tylmad, M. Tyndel, M. Ueda, I. Ueno, R. Ughetto, M. Ugland, M. Ukegawa, F. Unal, G. Undrus, A. Unel, G. Ungaro, F. C. Unno, Y. Unverdorben, C. Urban, J. Urquijo, P. Urrejola, P. Usai, G. Usanova, A. Vacavant, L. Vacek, V. Vachon, B. Valderanis, C. Valencic, N. Valentinetti, S. Valero, A. Valery, L. Valkar, S. Vallecorsa, S. Ferrer, J. A. Valls Van den Wollenberg, W. Van der Deijl, P. C. Van der Geer, R. van der Graaf, H. van Eldik, N. van Gemmeren, P. Van Nieuwkoop, J. van Vulpen, I. van Woerden, M. C. Vanadia Vandelli, W. Vanguri, R. Vaniachine, A. Vannucci, F. Vardanyan, G. Vari, R. Varnes, E. W. Varol, T. Varouchas, D. Vartapetian, A. Varvell, K. E. Vazeille, F. Schroeder, T. Vazquez Veatch, J. Veloce, L. M. Veloso, F. Velz, T. Veneziano, S. Ventura, A. Ventura, D. Venturi, M. Venturi, N. Venturini, A. Vercesi, V. Verducci, M. Verkerke, W. Vermeulen, J. C. Vest, A. Vetterli, M. C. Viazlo, O. Vichou, I. Vickey, T. Boeriu, O. E. Vickey Viehhauser, G. H. A. Viel, S. Vigne, R. Villa, M. Perez, M. Villaplana Vilucchi, E. Vincter, M. G. Vinogradov, V. B. Vivarelli, I. Vaque, F. Vives Vlachos, S. Vladoiu, D. Vlasak, M. Vogel, M. Vokac, P. Volpi, G. Volpi, M. von der Schmitt, H. von Radziewski, H. von Toerne, E. Vorobel, V. Vorobev, K. Vos, M. Voss, R. Vossebeld, J. H. Vranjes, N. Milosavljevic, M. Vranjes Vrba, V. Vreeswijk, M. Vuillermet, R. Vukotic, I. Vykydal, Z. Wagner, P. Wagner, W. Wahlberg, H. Wahrmund, S. Wakabayashi, J. Walder, J. Walker, R. Walkowiak, W. Wang, C. Wang, F. Wang, H. Wang, H. Wang, J. Wang, J. Wang, K. Wang, R. Wang, S. M. Wang, T. Wang, T. Wang, X. Wanotayaroj, C. Warburton, A. Ward, C. P. Wardrope, D. R. Washbrook, A. Wasicki, C. Watkins, P. M. Watson, A. T. Watson, I. J. Watson, M. F. Watts, G. Watts, S. Waugh, B. M. Webb, S. Weber, M. S. Weber, S. W. Webster, J. S. Weidberg, A. R. Weinert, B. Weingarten, J. Weiser, C. Weits, H. Wells, P. S. Wenaus, T. Wengler, T. Wenig, S. Wermes, N. Werner, M. Werner, P. Wessels, M. Wetter, J. Whalen, K. Wharton, A. M. White, A. White, M. J. White, R. White, S. Whiteson, D. Wickens, F. J. Wiedenmann, W. Wielers, M. Wienemann, P. Wiglesworth, C. Wiik-Fuchs, L. A. M. Wildauer, A. Wilkens, H. G. Williams, H. H. Williams, S. Willis, C. Willocq, S. Wilson, A. Wilson, J. A. Wingerter-Seez, I. Winklmeier, F. Winter, B. T. Wittgen, M. Wittkowski, J. Wollstadt, S. J. Wolter, M. W. Wolters, H. Wosiek, B. K. Wotschack, J. Woudstra, M. J. Wozniak, K. W. Wu, M. Wu, M. Wu, S. L. Wu, X. Wu, Y. Wyatt, T. R. Wynne, B. M. Xella, S. Xu, D. Xu, L. Yabsley, B. Yacoob, S. Yakabe, R. Yamada, M. Yamaguchi, D. Yamaguchi, Y. Yamamoto, A. Yamamoto, S. Yamanaka, T. Yamauchi, K. Yamazaki, Y. Yan, Z. Yang, H. Yang, H. Yang, Y. Yao, W-M. Yap, Y. C. Yasu, Y. Yatsenko, E. Wong, K. H. Yau Ye, J. Ye, S. Yeletskikh, I. Yen, A. L. Yildirim, E. Yorita, K. Yoshida, R. Yoshihara, K. Young, C. Young, C. J. S. Youssef, S. Yu, D. R. Yu, J. Yu, J. M. Yu, J. Yuan, L. Yuen, S. P. Y. Yurkewicz, A. Yusuff, I. Zabinski, B. Zaidan, R. Zaitsev, A. M. Zalieckas, J. Zaman, A. Zambito, S. Zanello, L. Zanzi, D. Zeitnitz, C. Zeman, M. Zemla, A. Zeng, Q. Zengel, K. Zenin, O. Zenis, T. Zerwas, D. Zhang, D. Zhang, F. Zhang, G. Zhang, H. Zhang, J. Zhang, L. Zhang, R. Zhang, X. Zhang, Z. Zhao, X. Zhao, Y. Zhao, Z. Zhemchugov, A. Zhong, J. Zhou, B. Zhou, C. Zhou, L. Zhou, L. Zhou, M. Zhou, N. Zhu, C. G. Zhu, H. Zhu, J. Zhu, Y. Zhuang, X. Zhukov, K. Zibell, A. Zieminska, D. Zimine, N. I. Zimmermann, C. Zimmermann, S. Zinonos, Z. Zinser, M. Ziolkowski, M. Zivkovic, L. Zobernig, G. Zoccoli, A. Nedden, M. zur Zurzolo, G. Zwalinski, L. CA ATLAS Collaboration TI Searches for Higgs boson pair production in the hh -> bb tau tau, gamma gamma WW*, gamma gamma bb, bbbb channels with the ATLAS detector SO PHYSICAL REVIEW D LA English DT Article ID STANDARD MODEL; LHC; MSSM; PROGRAM; EXTENSION; DECAYS AB Searches for both resonant and nonresonant Higgs boson pair production are performed in the hh -> bb tau tau, gamma gamma WW* final states using 20.3 fb(-1) of pp collision data at a center-of-mass energy of 8 TeV recorded with the ATLAS detector at the Large Hadron Collider. No evidence of their production is observed and 95% confidence-level upper limits on the production cross sections are set. These results are then combined with the published results of the hh -> gamma gamma bb, bbbb analyses. An upper limit of 0.69 (0.47) pb on the nonresonant hh production is observed (expected), corresponding to 70 (48) times the SM gg -> hh cross section. For production via narrow resonances, cross-section limits of hh production from a heavy Higgs boson decay are set as a function of the heavy Higgs boson mass. The observed (expected) limits range from 2.1 (1.1) pb at 260 GeV to 0.011 (0.018) pb at 1000 GeV. These results are interpreted in the context of two simplified scenarios of the Minimal Supersymmetric Standard Model. C1 [Jackson, P.; Lee, L.; McPherson, R. A.; Petridis, A.; Robertson, S. H.; Sobie, R.; Soni, N.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia. [Bouffard, J.; Edson, W.; Ernst, J.; Fischer, A.; Guindon, S.; Jain, V.] SUNY Albany, Dept Phys, Albany, NY 12222 USA. [Butt, A. I.; Czodrowski, P.; Dassoulas, J.; Gingrich, D. M.; Jabbar, S.; Karamaoun, A.; Moore, R. W.; Pinfold, J. L.; Saddique, A.; Vaque, F. Vives] Univ Alberta, Dept Phys, Edmonton, AB, Canada. [Cakir, O.; Ciftci, A. K.; Yildiz, H. Duran] Ankara Univ, Dept Phys, TR-06100 Ankara, Turkey. [Kuday, S.] Istanbul Aydin Univ, Istanbul, Turkey. [Sultansoy, S.] TOBB Univ Econ & Technol, Div Phys, Ankara, Turkey. [Barnovska, Z.; Berger, N.; Delmastro, M.; Di Ciaccio, L.; Elles, S.; Hryn'ova, T.; Jezequel, S.; Koletsou, I.; Lafaye, R.; Leveque, J.; Mastrandrea, P.; Sauvage, G.; Sauvan, E.; Simard, O.; Todorov, T.; Wingerter-Seez, I.; Yatsenko, E.] CNRS IN2P3, LAPP, Annecy Le Vieux, France. [Barnovska, Z.; Berger, N.; Delmastro, M.; Di Ciaccio, L.; Elles, S.; Hryn'ova, T.; Jezequel, S.; Koletsou, I.; Lafaye, R.; Leveque, J.; Mastrandrea, P.; Sauvage, G.; Sauvan, E.; Simard, O.; Todorov, T.; Wingerter-Seez, I.; Yatsenko, E.] Univ Savoie Mont Blanc, Annecy Le Vieux, France. [Blair, R. E.; Chekanov, S.; LeCompte, T.; Love, J.; Malon, D.; Nguyen, D. H.; Paramonov, A.; Price, L. E.; Proudfoot, J.; van Gemmeren, P.; Vaniachine, A.; Wang, R.; Yoshida, R.; Zhang, J.] Argonne Natl Lab, High Energy Phys Div, Argonne, IL 60439 USA. [Cheu, E.; Johns, K. A.; Lampen, C. L.; Lampl, W.; Lei, X.; Leone, R.; Loch, P.; Nayyar, R.; O'grady, F.; Rutherfoord, J. P.; Shupe, M. A.; Varnes, E. W.; Veatch, J.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Brandt, A.; Bullock, D.; Cote, D.; Darmora, S.; De, K.; Farbin, A.; Feremenga, L.; Griffiths, J.; Hadavand, H. K.; Heelan, L.; Kim, H. Y.; Ozturk, N.; Schovancova, J.; Sosebee, M.; Stradling, A. R.; Usai, G.; Vartapetian, A.; White, A.; Yu, J.] Univ Texas Arlington, Dept Phys, Arlington, TX USA. [Angelidakis, S.; Chouridou, S.; Fassouliotis, D.; Giokaris, N.; Ioannou, P.; Kourkoumelis, C.; Manousakis-Katsikakis, A.; Tsirintanis, N.] Univ Athens, Dept Phys, Athens, Greece. [Alexopoulos, T.; Benekos, N.; Dris, M.; Gazis, E. N.; Karakostas, K.; Karastathis, N.; Karentzos, E.; Leontsinis, S.; Maltezos, S.; Ntekas, K.; St. Panagiotopoulou, E.; Papadopoulou, Th. D.; Tsipolitis, G.; Vlachos, S.] Natl Tech Univ Athens, Dept Phys, Zografos, Greece. [Abdinov, O.; Khalil-zada, F.] Azerbaijan Acad Sci, Inst Phys, Baku, Azerbaijan. [Anjos, N.; Bosman, M.; Casado, M. P.; Casolino, M.; Cavalli-Sforza, M.; Cortes-Gonzalez, A.; Farooque, T.; Fischer, C.; Fracchia, S.; Giangiobbe, V.; Gonzalez Parra, G.; Grinstein, S.; Helsens, C.; Rozas, A. Juste; Korolkov, I.; Lange, J. C.; Le Menedeu, E.; Martinez, M.; Mir, L. M.; Berlingen, J. Montejo; Pages, A. Pacheco; Padilla Aranda, C.; Riu, I.; Sorin, V.; Succurro, A.; Tripiana, M. F.; Tsiskaridze, S.; Valery, L.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Anjos, N.; Bosman, M.; Casado, M. P.; Casolino, M.; Cavalli-Sforza, M.; Cortes-Gonzalez, A.; Farooque, T.; Fischer, C.; Fracchia, S.; Giangiobbe, V.; Gonzalez Parra, G.; Grinstein, S.; Helsens, C.; Rozas, A. Juste; Korolkov, I.; Lange, J. C.; Le Menedeu, E.; Martinez, M.; Mir, L. M.; Berlingen, J. Montejo; Pages, A. Pacheco; Padilla Aranda, C.; Riu, I.; Sorin, V.; Succurro, A.; Tripiana, M. F.; Tsiskaridze, S.; Valery, L.] Univ Autonoma Barcelona, Dept Fis, E-08193 Barcelona, Spain. [Agatonovic-Jovin, T.; Bogavac, D.; Bozic, I.; Dimitrievska, A.; Etienvre, A. I.; Krstic, J.; Marjanovic, M.; Popovic, D. S.; Sijacki, Dj.; Simic, Lj.; Vranjes, N.; Milosavljevic, M. Vranjes; Zivkovic, L.] Univ Belgrade, Inst Phys, Belgrade, Serbia. [Buanes, T.; Dale, O.; Eigen, G.; Kastanas, A.; Liebig, W.; Lipniacka, A.; Maeland, S.; Latour, B. Martin dit; Rosendahl, P. L.; Sjursen, T. B.; Smestad, L.; Stugu, B.; Ugland, M.; Zalieckas, J.] Univ Bergen, Dept Phys & Technol, Bergen, Norway. [Amadio, B. T.; Axen, B.; Barnett, R. M.; Beringer, J.; Bhimji, W.; Calafiura, P.; Cerutti, F.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Einsweiler, K.; Farrell, S.; Gabrielli, A.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Heinemann, B.; Hinchliffe, I.; Hinman, R. R.; Holmes, R.; Jeanty, L.; Lavrijsen, W.; Leggett, C.; Marshall, Z.; Ohm, C. C.; Ovcharova, A.; Griso, S. Pagan; Potamianos, K.; Pranko, A.; Quarrie, D. R.; Shapiro, M.; Sood, A.; Tibbetts, M. J.; Trottier-McDonald, M.; Tsulaia, V.; Viel, S.; Wang, H.; Yao, W-M.; Yu, D. R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [Amadio, B. T.; Axen, B.; Barnett, R. M.; Beringer, J.; Bhimji, W.; Calafiura, P.; Cerutti, F.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Einsweiler, K.; Farrell, S.; Gabrielli, A.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Heinemann, B.; Hinchliffe, I.; Hinman, R. R.; Holmes, R.; Jeanty, L.; Lavrijsen, W.; Leggett, C.; Marshall, Z.; Ohm, C. C.; Ovcharova, A.; Griso, S. Pagan; Potamianos, K.; Pranko, A.; Quarrie, D. R.; Shapiro, M.; Sood, A.; Tibbetts, M. J.; Trottier-McDonald, M.; Tsulaia, V.; Viel, S.; Wang, H.; Yao, W-M.; Yu, D. R.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Biedermann, D.; Dietrich, J.; Giorgi, F. M.; Grancagnolo, S.; Herbert, G. H.; Hristova, I.; Kind, O. M.; Kolanoski, H.; Lacker, H.; Lohse, T.; Nikiforov, A.; Rehnisch, L.; Rieck, P.; Schulz, H.; Sperlich, D.; Stamm, S.; Nedden, M. zur] Humboldt Univ, Dept Phys, D-10099 Berlin, Germany. [Beck, H. P.; Cervelli, A.; Ereditato, A.; Haug, S.; Marti, L. F.; Meloni, F.; Mullier, G. A.; Stramaglia, M. E.; Stucci, S. A.; Weber, M. S.] Univ Bern, Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Beck, H. P.; Cervelli, A.; Ereditato, A.; Haug, S.; Marti, L. F.; Meloni, F.; Mullier, G. A.; Stramaglia, M. E.; Stucci, S. A.; Weber, M. S.] Univ Bern, High Energy Phys Lab, Bern, Switzerland. [Allport, P. P.; Aloisio, A.; Bella, L. Aperio; Baca, M. J.; Bracinik, J.; Charlton, D. G.; Chisholm, A. S.; Daniells, A. C.; Gach, G. P.; Hawkes, C. M.; Head, S. J.; Hillier, S. J.; Levy, M.; Mudd, R. D.; Murillo Quijada, J. A.; Newman, P. R.; Nikolopoulos, K.; Owen, R. E.; Slater, M.; Thomas, J. P.; Thompson, P. D.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Wilson, J. A.] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England. [Arabidze, G.; Arik, M.; Istin, S.; Ozcan, V. E.] Bogazici Univ, Dept Phys, Istanbul, Turkey. [Beddall, A. J.; Beddall, A.; Bingul, A.] Gaziantep Univ, Dept Phys Engn, Gaziantep, Turkey. [Cetin, S. A.] Dogus Univ, Dept Phys, Istanbul, Turkey. [Alberghi, G. L.; Aloisio, A.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruschi, M.; Corradi, M.; De Castro, S.; Fabbri, L.; Franchini, M.; Gabrielli, A.; Giacobbe, B.; Giorgi, F. M.; Grafstroem, P.; Lasagni Manghi, F.; Massa, I.; Massa, L.; Mengarelli, A.; Negrini, M.; Piccinini, M.; Polini, A.; Rinaldi, L.; Romano, M.; Sbarra, C.; Sbrizzi, A.; Semprini-Cesari, N.; Sidoti, A.; Sioli, M.; Spighi, R.; Tupputi, S. A.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Ist Nazl Fis Nucl, Sez Bologna, Bologna, Italy. [Alberghi, G. L.; Aloisio, A.; Biondi, S.; De Castro, S.; Fabbri, L.; Franchini, M.; Gabrielli, A.; Grafstroem, P.; Lasagni Manghi, F.; Massa, I.; Massa, L.; Mengarelli, A.; Piccinini, M.; Romano, M.; Sbrizzi, A.; Semprini-Cesari, N.; Sidoti, A.; Sioli, M.; Tupputi, S. A.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Univ Bologna, Dipartimento Fis & Astron, Bologna, Italy. [Arduh, F. A.; Arslan, O.; Bechtle, P.; Bernlochner, F. U.; Brock, I.; Bruscino, N.; Cioara, I. A.; Cristinziani, M.; Davey, W.; Desch, K.; Dingfelder, J.; Ehrenfeld, W.; Gaycken, G.; Geich-Gimbel, Ch.; Gonella, L.; Grefe, C.; Haefner, P.; Hageboeck, S.; Hansen, M. C.; Hellmich, D.; Hohn, D.; Huegging, F.; Janssen, J.; Kostyukhin, V. V.; Kraus, J. K.; Kroseberg, J.; Krueger, H.; Lantzsch, K.; Lenz, T.; Leyko, A. M.; Liebal, J.; Limbach, C.; Mergelmeyer, S.; Mijovic, L.; Moles-Valls, R.; Obermann, T.; Pohl, D.; Ricken, O.; Sarrazin, B.; Schaepe, S.; Schopf, E.; Schultens, M. J.; Schwindt, T.; Scutti, F.; Seema, P.; Stillings, J. A.; Tannoury, N.; Velz, T.; von Toerne, E.; Wagner, P.; Wang, T.; Wermes, N.; Wienemann, P.; Wiik-Fuchs, L. A. M.; Winter, B. T.; Wong, K. H. Yau; Yuen, S. P. Y.] Univ Bonn, Inst Phys, Bonn, Germany. [Ahlen, S. P.; Aloisio, A.; Alonso, A.; Bernard, C.; Black, K. M.; Butler, J. M.; Dell'Asta, L.; Helary, L.; Kruskal, M.; Long, B. A.; Shank, J. T.; Yan, Z.; Youssef, S.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Amelung, C.; Amundsen, G.; Artoni, G.; Barone, G.; Bensinger, J. R.; Bianchini, L.; Blocker, C.; Coffey, L.; Loew, K. M.; Sciolla, G.; Venturini, A.; Zengel, K.] Brandeis Univ, Dept Phys, Waltham, MA 02254 USA. [Coutinho, Y. Amaral; Caloba, L. P.; Maidantchik, C.; Marroquim, F.; Nepomuceno, A. A.; Seixas, J. M.] Univ Fed Rio De Janeiro COPPE EE IF, Rio De Janeiro, Brazil. [Cerqueira, A. S.; Manhaes de Andrade Filho, L.] Fed Univ Juiz de Fora UFJF, Elect Circuits Dept, Juiz De Fora, Brazil. [do Vale, M. A. B.] Fed Univ Sao Joao del Rei UFSJ, Sao Joao Del Rei, Brazil. [Donadelli, M.; Navarro, J. L. La Rosa; Leite, M. A. L.] Univ Sao Paulo, Inst Fis, BR-01498 Sao Paulo, Brazil. [Adams, D. L.; Aloisio, A.; Assamagan, K.; Begel, M.; Buttinger, W.; Chen, H.; Chernyatin, V.; Debbe, R.; Ernst, M.; Gibbard, B.; Gordon, H. A.; Iakovidis, G.; Klimentov, A.; Kouskoura, V.; Kravchenko, A.; Lanni, F.; Lissauer, D.; Lynn, D.; Ma, H.; Maeno, T.; Metcalfe, J.; Mountricha, E.; Nevski, P.; Nilsson, P.; Oliveira Damazio, D.; Paige, F.; Panitkin, S.; Perepelitsa, D. V.; Pleier, M. -A.; Polychronakos, V.; Protopopescu, S.; Purohit, M.; Radeka, V.; Rajagopalan, S.; Redlinger, G.; Snyder, S.; Steinberg, P.; Takai, H.; Undrus, A.; Wenaus, T.; Xu, L.; Ye, S.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. Transilvania Univ Brasov, Brasov, Romania. [Alexa, C.; Aloisio, A.; Boldea, V.; Buda, S. I.; Caprini, I.; Caprini, M.; Chitan, A.; Ciubancan, M.; Constantinescu, S.; Dita, P.; Dita, S.; Dobre, M.; Ducu, O. A.; Jinaru, A.; Martoiu, V. S.; Maurer, J.; Olariu, A.; Pantea, D.; Rotaru, M.; Stoicea, G.; Tudorache, A.; Tudorache, V.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Popeneciu, G. A.] Natl Inst Res & Dev Isotop & Mol Technol, Dept Phys, Cluj Napoca, Romania. Univ Politeh Bucharest, Bucharest, Romania. West Univ Timisoara, Timisoara, Romania. [Otero y Garzon, G.; Piegaia, R.; Reisin, H.; Sacerdoti, S.] Univ Buenos Aires, Dept Fis, Buenos Aires, DF, Argentina. [Arce, A. T. H.; Arratia, M.; Barlow, N.; Batley, J. R.; Brochu, F. M.; Carter, J. R.; Chapman, J. D.; Cottin, G.; French, S. T.; Gillam, T. P. S.; Hill, J. C.; Kaneti, S.; Khoo, T. J.; Lester, C. G.; Mueller, T.; Parker, M. A.; Robinson, D.; Rosten, J. H. N.; Thomson, M.; Ward, C. P.; Yusuff, I.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Bellerive, A.; Cree, G.; Di Valentino, D.; Koffas, T.; Lacey, J.; Leight, W. A.; McCarthy, T. G.; Nomidis, I.; Oakham, F. G.; Pasztor, G.; Tarrade, F.; Ueno, R.; Vincter, M. G.] Carleton Univ, Dept Phys, Ottawa, ON K1S 5B6, Canada. [Aleksa, M.; Aloisio, A.; Gonzalez, B. Alvarez; Anders, G.; Anghinolfi, F.; Arai, Y.; Araque, J. P.; Armbruster, A. J.; Arnaez, O.; Avolio, G.; Baak, M. A.; Backes, M.; Backhaus, M.; Barak, L.; Beermann, T. A.; Beltramello, O.; Bianco, M.; Bogaerts, J. A.; Boveia, A.; Boyd, J.; Burckhart, H.; Campana, S.; Garrido, M. D. M. Capeans; Carli, T.; Carrillo-Montoya, G. D.; Catinaccio, A.; Cattai, A.; Cerv, M.; Chromek-Burckhart, D.; Conti, G.; Dell'Acqua, A.; Deviveiros, P. O.; Di Girolamo, A.; Di Girolamo, B.; Dittus, F.; Dobos, D.; Dudarev, A.; Duehrssen, M.; Eifert, T.; Ellis, N.; Elsing, M.; Farthouat, P.; Fassnacht, P.; Feigl, S.; Feng, E. J.; Perez, S. Fernandez; Francis, D.; Froidevaux, D.; Gadatsch, S.; Gillberg, D.; Glatzer, J.; Goossens, L.; Gorini, B.; Gray, H. M.; Hawkings, R. J.; Henriques Correia, A. M.; Hervas, L.; Hoecker, A.; Huhtinen, M.; Iengo, P.; Jaekel, M. R.; Jakobsen, S.; Jenni, P.; Klioutchnikova, T.; Krasznahorkay, A.; Lapoire, C.; Lassnig, M.; Miotto, G. Lehmann; Lenzi, B.; Lichard, P.; Macina, D.; Malyukov, S.; Mandelli, B.; Mapelli, L.; Marzin, A.; Milic, A.; Mornacchi, G.; Nairz, A. M.; Nakahama, Y.; Nessi, M.; Nicquevert, B.; Nordberg, M.; Oide, H.; Palestini, S.; Pauly, T.; Pernegger, H.; Peters, K.; Petersen, B. A.; Pommes, K.; Poppleton, A.; Poulard, G.; Poveda, J.; Prasad, S.; Rammensee, M.; Raymond, M.; Rembser, C.; Ritsch, E.; Roe, S.; Ruiz-Martinez, A.; Ruthmann, N.; Salzburger, A.; Schaefer, D.; Schlenker, S.; Schmieden, K.; Serfon, C.; Sforza, F.; Sfyrla, A.; Solans, C. A.; Spigo, G.; Stelzer, H. J.; Teischinger, F. A.; Ten Kate, H.; Tremblet, L.; Tricoli, A.; Tsarouchas, C.; Unal, G.; van Woerden, M. C.; Vandelli, W.; Voss, R.; Vuillermet, R.; Wells, P. S.; Wengler, T.; Wenig, S.; Werner, P.; Wilkens, H. G.; Wotschack, J.; Young, C. J. S.; Zwalinski, L.] CERN, Geneva, Switzerland. [Alison, J.; Aloisio, A.; Alonso, A.; Altheimer, A.; Anderson, K. J.; Toro, R. Camacho; Cheng, Y.; Dandoy, J. R.; Facini, G.; Fiascaris, M.; Gardner, R. W.; Ilchenko, Y.; Kapliy, A.; Kim, Y. K.; Krizka, K.; Li, H. L.; Merritt, F. S.; Miller, D. W.; Narayan, R.; Okumura, Y.; Onyisi, P. U. E.; Oreglia, M. J.; Penning, B.; Pilcher, J. E.; Saxon, J.; Shochet, M. J.; Vukotic, I.; Webster, J. S.; Wu, M.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Blunier, S.; Carquin, E.; Diaz, M. A.; Ochoa-Ricoux, J. P.; Vogel, M.] Pontificia Univ Catolica Chile, Dept Fis, Santiago, Chile. [Brooks, W. K.; Kuleshov, S.; Pezoa, R.; Prokoshin, F.; Loyola, J. E. Salazar; Araya, S. Tapia; White, R.] Univ Tecn Federico Santa Maria, Dept Fis, Valparaiso, Chile. [Bai, Y.; Fang, Y.; Jin, S.; Lou, X.; Ouyang, Q.; Peng, C.; Ren, H.; Shan, L. Y.; Sun, X.; Xu, D.; Zhu, H.; Zhuang, X.] Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China. [Gao, J.; Guo, Y.; Han, L.; Hu, Q.; Jiang, Y.; Li, B.; Liu, J. B.; Liu, M.; Liu, Y.; Peng, H.; Song, H. Y.; Zhang, G.; Zhang, R.; Zhao, Z.; Zhu, Y.] Univ Sci & Technol China, Dept Modern Phys, Hefei, Anhui, Peoples R China. [Chen, S.; Li, Y.; Yang, H.; Zhang, H.] Nanjing Univ, Dept Phys, Nanjing, Jiangsu, Peoples R China. [Chen, L.; Feng, C.; Ge, P.; Liu, B.; Ma, L. L.; Zhang, X.; Zhao, Y.; Zhu, C. G.] Shandong Univ, Sch Phys, Jinan, Shandong, Peoples R China. [Bret, M. Cano; Guo, J.; Li, L.] Shanghai Jiao Tong Univ, Shanghai Key Lab Particle Phys & Cosmol, Dept Phys & Astron, Shanghai 200030, Peoples R China. [Chen, X.; Zhou, N.] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Gilles, G.; Gris, Ph.; Liao, H.; Madar, R.; Pallin, D.; Saez, S. M. Romano; Santoni, C.; Simon, D.; Theveneaux-Pelzer, T.; Vazeille, F.] Clermont Univ, Lab Phys Corpusculaire, Clermont Ferrand, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Gilles, G.; Gris, Ph.; Liao, H.; Madar, R.; Pallin, D.; Saez, S. M. Romano; Santoni, C.; Simon, D.; Theveneaux-Pelzer, T.; Vazeille, F.] Univ Clermont Ferrand, Clermont Ferrand, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Gilles, G.; Gris, Ph.; Liao, H.; Madar, R.; Pallin, D.; Saez, S. M. Romano; Santoni, C.; Simon, D.; Theveneaux-Pelzer, T.; Vazeille, F.] CNRS IN2P3, Clermont Ferrand, France. [Alkire, S. P.; Altheimer, A.; Andeen, T.; Angerami, A.; Bain, T.; Carbone, R. M.; Cole, B.; Hu, D.; Hughes, E. W.; Iordanidou, K.; Klein, M. H.; Mohapatra, S.; Nikiforou, N.; Ochoa, I.; Parsons, J. A.; Smith, M. N. K.; Smith, R. W.; Thompson, E. N.; Tuts, P. M.; Wang, T.; Zhou, L.] Columbia Univ, Nevis Lab, Irvington, NY USA. [Alonso, A.; Besjes, G. J.; Dam, M.; Galster, G.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Joergensen, M. D.; Loevschall-Jensen, A. E.; Monk, J.; Mortensen, S. S.; Pedersen, L. E.; Petersen, T. C.; Pingel, A.; Wiglesworth, C.; Xella, S.] Univ Copenhagen, Niels Bohr Inst, Copenhagen, Denmark. [Cairo, V. M.; Capua, M.; Crosetti, G.; La Rotonda, L.; Mastroberardino, A.; Policicchio, A.; Salvatore, D.; Scarfone, V.; Schioppa, M.; Susinno, G.; Tassi, E.] INFN Grp Collegato Cosenza, Lab Nazl Frascati, Cosenza, Italy. [Cairo, V. M.; Capua, M.; Crosetti, G.; La Rotonda, L.; Mastroberardino, A.; Policicchio, A.; Salvatore, D.; Scarfone, V.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dept Fis, I-870360 Arcavacata Di Rende, Italy. [Adamczyk, L.; Bold, T.; Dabrowski, W.; Dyndal, M.; Grabowska-Bold, I.; Kisielewska, D.; Koperny, S.; Kowalski, T. Z.; Mindur, B.; Przybycien, M.; Zemla, A.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, Krakow, Poland. [Palka, M.; Richter-Was, E.] Jagiellonian Univ, Marian Smoluchowski Inst Phys, Krakow, Poland. [Banas, E.; Bruckman de Renstrom, P. A.; Chwastowski, J. J.; Derendarz, D.; Godlewski, J.; Gornicki, E.; Hajduk, Z.; Iwanski, W.; Kaczmarska, A.; Knapik, J.; Korcyl, K.; Malecki, Pa.; Olszewski, A.; Olszowska, J.; Stanecka, E.; Staszewski, R.; Trzebinski, M.; Trzupek, A.; Wolter, M. W.; Wosiek, B. K.; Wozniak, K. W.; Zabinski, B.] Polish Acad Sci, Inst Nucl Phys, Krakow, Poland. [Cao, T.; Firan, A.; Hetherly, J. W.; Kama, S.; Kehoe, R.; Sekula, S. J.; Stroynowski, R.; Turvey, A. J.; Varol, T.; Wang, H.; Ye, J.; Zhao, X.; Zhou, L.] So Methodist Univ, Dept Phys, Dallas, TX 75275 USA. [Izen, J. M.; Leyton, M.; Meirose, B.; Namasivayam, H.; Reeves, K.] Univ Texas Dallas, Dept Phys, Richardson, TX 75083 USA. [Asbah, N.; Bessner, M.; Bloch, I.; Borroni, S.; Britzger, D.; Camarda, S.; Deterre, C.; Dutta, B.; Eckardt, C.; Filipuzzi, M.; Flaschel, N.; Glazov, A.; Gregor, I. M.; Grohsjean, A.; Haleem, M.; Hamnett, P. G.; Hengler, C.; Hiller, K. H.; Howarth, J.; Huang, Y.; Katzy, J.; Keller, J. S.; Kondrashova, N.; Kuhl, T.; Lobodzinska, E.; Lohwasser, K.; Mamuzic, J.; Medinnis, M.; Moenig, K.; Garcia, R. F. Naranjo; Naumann, T.; Peschke, R.; Petit, E.; Pirumov, H.; Poley, A.; Radescu, V.; Robinson, J. E. M.; Rubinskiy, I.; Schaefer, R.; Schmitt, S.; Sedov, G.; Shushkevich, S.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Styles, N. A.; Tackmann, K.; Wang, J.; Wasicki, C.; Yildirim, E.] DESY, Hamburg Zeuthen, Germany. [Burmeister, I.; Dette, K.; Erdmann, J.; Esch, H.; Goessling, C.; Homann, M.; Jentzsch, J.; Klingenberg, R.; Kroeninger, K.] Tech Univ Dortmund, Inst Expt Phys 4, Dortmund, Germany. [Anger, P.; Duschinger, D.; Friedrich, F.; Grohs, J. P.; Gumpert, C.; Gutschow, C.; Hauswald, L.; Kobel, M.; Mader, W. F.; Novgorodova, O.; Rudolph, C.; Schnoor, U.; Siegert, F.; Socher, F.; Staerz, S.; Straessner, A.; Vest, A.; Wahrmund, S.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-010620 Dresden, Germany. [Benjamin, D. P.; Bjergaard, D. M.; Bocci, A.; Cerio, B. C.; Goshaw, A. T.; Kajomovitz, E.; Kotwal, A.; Kruse, M. C.; Li, L.; Li, S.; Liu, M.; Oh, S. H.; Zhou, C.] Duke Univ, Dept Phys, Durham, NC 27706 USA. [Bristow, T. M.; Brooks, T.; Clark, P. J.; Dias, F. A.; Edwards, N. C.; Gao, Y.; Walls, F. M. Garay; Glaysher, P. C. F.; Harrington, R. D.; Leonidopoulos, C.; Martin, V. J.; Mills, C.; O'Brien, B. J.; Olivares Pino, S. A.; Proissl, M.; Smart, B. H.; Washbrook, A.; Wynne, B. M.] Univ Edinburgh, SUPA Sch Phys & Astron, Edinburgh, Midlothian, Scotland. [Antonelli, M.; Beretta, M.; Bilokon, H.; Chiarella, V.; Curatolo, M.; Di Nardo, R.; Esposito, B.; Gatti, C.; Giromini, P.; Laurelli, P.; Maccarrone, G.; Mancini, G.; Sansoni, A.; Testa, M.; Vilucchi, E.] INFN Lab Nazl Frascati, Frascati, Italy. [Amoroso, S.; Araque, J. P.; Arnold, H.; Betancourt, C.; Boehler, M.; Bruneliere, R.; Buehrer, F.; Burgard, C. D.; Buescher, D.; Cardillo, F.; Coniavitis, E.; Consorti, V.; Dang, N. P.; Dao, V.; Di Simone, A.; Herten, G.; Jakobs, K.; Javurek, T.; Jenni, P.; Kiss, F.; Koeneke, K.; Kopp, A. K.; Kuehn, S.; Landgraf, U.; Luedtke, C.; Mahboubi, K.; Mohr, W.; Pagacova, M.; Parzefall, U.; Ronzani, M.; Rosbach, K.; Ruehr, F.; Rurikova, Z.; Sammel, D.; Schillo, C.; Schumacher, M.; Sommer, P.; Sundermann, J. E.; Ta, D.; Temming, K. K.; Tsiskaridze, V.; Ungaro, F. C.; von Radziewski, H.; Weiser, C.; Werner, M.; Zhang, L.; Zimmermann, S.] Univ Freiburg, Fak Math & Phys, Freiburg, Germany. [Ancu, L. S.; Bell, W. H.; Noccioli, E. Benhar; De Mendizabal, J. Bilbao; Calace, N.; Clark, A.; Coccaro, A.; Delitzsch, C. M.; della Volpe, D.; Ferrere, D.; Gadomski, S.; Golling, T.; Gonzalez-Sevilla, S.; Gramling, J.; Guescini, F.; Iacobucci, G.; Katre, A.; Mermod, P.; Miucci, A.; Muenstermann, D.; Nessi, M.; Paolozzi, L.; Picazio, A.; Ristic, B.; Schramm, S.; Tykhonov, A.; Vallecorsa, S.; Wu, X.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Barberis, D.; Darbo, G.; Favareto, A.; Parodi, A. Ferretto; Gagliardi, G.; Gaudiello, A.; Gemme, C.; Guido, E.; Morettini, P.; Osculati, B.; Parodi, F.; Passaggio, S.; Rossi, L. P.; Sannino, M.; Schiavi, C.] INFN Sez Genova, Genoa, Italy. [Barberis, D.; Favareto, A.; Parodi, A. Ferretto; Gagliardi, G.; Gaudiello, A.; Guido, E.; Osculati, B.; Parodi, F.; Sannino, M.; Schiavi, C.] Univ Genoa, Dipartimento Fis, Genoa, Italy. [Jejelava, J.; Tskhadadze, E. G.] Iv Javakhishvili Tbilisi State Univ, E Andronikashvili Inst Phys, Tbilisi, Rep of Georgia. [Djobava, T.; Durglishvili, A.; Khubua, J.; Mosidze, M.] Tbilisi State Univ, High Energy Phys Inst, GE-380086 Tbilisi, Rep of Georgia. [Dueren, M.; Kreutzfeldt, K.; Stenzel, H.] Univ Giessen, Inst Phys 2, D-35390 Giessen, Germany. [Bates, R. L.; Boutle, S. K.; Madden, W. D. Breaden; Britton, D.; Buckley, A. G.; Bussey, P.; Buttar, C. M.; Buzatu, A.; Cinca, D.; D'Auria, S.; Doyle, A. T.; Ferrando, J.; de Lima, D. E. Ferreira; Gul, U.; Knue, A.; Morton, A.; Mullen, P.; O'Shea, V.; Barrera, C. Oropeza; Owen, M.; Pollard, C. S.; Qin, G.; Quilty, D.; Ravenscroft, T.; Robson, A.; St. Denis, R. D.; Stewart, G. A.; Thompson, A. S.] Univ Glasgow, SUPA Sch Phys & Astron, Glasgow, Lanark, Scotland. [Agricola, J.; Bindi, M.; Blumenschein, U.; Brandt, G.; Drechsler, E.; George, M.; Graber, L.; Grosse-Knetter, J.; Janus, M.; Kareem, M. J.; Kawamura, G.; Lai, S.; Lemmer, B.; Magradze, E.; Mantoani, M.; Mchedlidze, G.; Moreno Llacer, M.; Musheghyan, H.; Nackenhorst, O.; Nadal, J.; Quadt, A.; Rieger, J.; Schorlemmer, A. L. S.; Shabalina, E.; Stolte, P.; Weingarten, J.; Zinonos, Z.] Univ Gottingen, Inst Phys 2, D-37073 Gottingen, Germany. [Albrand, S.; Aloisio, A.; Collot, J.; Crepe-Renaudin, S.; Delsart, P. A.; Gabaldon, C.; Genest, M. H.; Hostachy, J-Y.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Monini, C.; Stark, J.; Trocme, B.; Wu, M.] Univ Grenoble Alpes, Lab Phys Subatom & Cosmol, CNRS IN2P3, Grenoble, France. [McFarlane, K. W.] Hampton Univ, Dept Phys, Hampton, VA 23668 USA. [Guimaraes da Costa, J. Barreiro; Catastini, P.; Clark, B. L.; Franklin, M.; Huth, J.; Ippolito, V.; Lazovich, T.; Mateos, D. Lopez; Mercurio, K. M.; Morii, M.; Skottowe, H. P.; Spearman, W. R.; Sun, S.; Tolley, E.; Tuna, A. N.; Yen, A. L.; Zambito, S.] Harvard Univ, Lab Particle Phys & Cosmol, Cambridge, MA 02138 USA. [Andrei, V.; Baas, A. E.; Brandt, O.; Davygora, Y.; Djuvsland, J. I.; Dunford, M.; Geisler, M. P.; Hanke, P.; Jongmanns, J.; Kluge, E. -E.; Lang, V. S.; Meier, K.; Theenhausen, H. Meyer Zu; Villar, D. I. Narrias; Sahinsoy, M.; Scharf, V.; Schultz-Coulon, H. -C.; Stamen, R.; Starovoitov, P.; Suchek, S.; Wessels, M.] Heidelberg Univ, Kirchhoff Inst Phys, Heidelberg, Germany. [Anders, C. F.; Giulini, M.; Kolb, M.; Lisovyi, M.; Schaetzel, S.; Schmitt, S.; Schoening, A.; Sosa, D.] Heidelberg Univ, Inst Phys, Heidelberg, Germany. [Colombo, T.; Kretz, M.; Kugel, A.] Heidelberg Univ, ZITI Inst Tech Informat, Mannheim, Germany. [Nagasaka, Y.] Hiroshima Inst Technol, Fac Appl Informat Sci, Hiroshima, Japan. [Bortolotto, V.; Chan, Y. L.; Castillo, L. R. Flores; Lu, H.; Salvucci, A.; Tsui, K. M.] Chinese Univ Hong Kong, Dept Phys, Shatin, Hong Kong, Peoples R China. [Bortolotto, V.] Univ Hong Kong, Dept Phys, Hong Kong, Hong Kong, Peoples R China. [Bortolotto, V.; Prokofiev, K.] Hong Kong Univ Sci & Technol, Dept Phys, Kowloon, Hong Kong, Peoples R China. [Choi, K.; Dattagupta, A.; Evans, H.; Gagnon, P.; Lammers, S.; Martinez, N. Lorenzo; Luehring, F.; Ogren, H.; Penwell, J.; Weinert, B.; Zieminska, D.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Jansky, R.; Jussel, P.; Kneringer, E.; Lukas, W.; Usanova, A.; Vigne, R.] Leopold Franzens Univ, Inst Astro & Teilchenphys, Innsbruck, Austria. [Argyropoulos, S.; Mallik, U.; Mandrysch, R.; Zaidan, R.] Univ Iowa, Iowa City, IA USA. [Chen, C.; Cochran, J.; De Lorenzi, F.; Krumnack, N.; Pluth, D.; Prell, S.] Iowa State Univ, Dept Phys & Astron, Ames, IA USA. [Ahmadov, F.; Aleksandrov, I. N.; Bednyakov, V. A.; Boyko, I. R.; Budagov, I. A.; Chelkov, G. A.; Cheplakov, A.; Chizhov, M. V.; Dedovich, D. V.; Demichev, M.; Gostkin, M. I.; Huseynov, N.; Javadov, N.; Karpov, S. N.; Karpova, Z. M.; Khramov, E.; Kotov, V. M.; Kruchonak, U.; Kukhtin, V.; Ladygin, E.; Minashvili, I. A.; Mineev, M.; Peshekhonov, V. D.; Plotnikova, E.; Potrap, I. N.; Pozdnyakov, V.; Rusakovich, N. A.; Sadykov, R.; Sapronov, A.; Shiyakova, M.; Sisakyan, A. N.; Soloshenko, A.; Vinogradov, V. B.; Yeletskikh, I.; Zhemchugov, A.; Zimine, N. I.] JINR Dubna, Joint Inst Nucl Res, Dubna, Russia. [Amako, K.; Aoki, M.; Hanagaki, K.; Ikegami, Y.; Ikeno, M.; Iwasaki, H.; Kanzaki, J.; Kohriki, T.; Kondo, T.; Kono, T.; Makida, Y.; Nagano, K.; Nakamura, K.; Nozaki, M.; Odaka, S.; Okuyama, T.; Sasaki, O.; Suzuki, S.; Takubo, Y.; Tanaka, S.; Terada, S.; Tokushuku, K.; Tsuno, S.; Unno, Y.; Yamada, M.; Yamamoto, A.; Yasu, Y.] High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki, Japan. [Chen, Y.; Hasegawa, M.; Kido, S.; Kishimoto, T.; Kurashige, H.; Maeda, J.; Ochi, A.; Shimizu, S.; Takeda, H.; Yakabe, R.; Yamazaki, Y.; Yuan, L.] Kobe Univ, Grad Sch Sci, Kobe, Hyogo 657, Japan. [Ishino, M.; Kunigo, T.; Monden, R.; Sumida, T.; Tashiro, T.] Kyoto Univ, Fac Sci, Kyoto, Japan. [Takashima, R.] Kyoto Univ, Kyoto 612, Japan. [Kawagoe, K.; Oda, S.; Otono, H.; Tojo, J.] Kyushu Univ, Dept Phys, Fukuoka 812, Japan. [Verzini, M. J. Alconada; Alonso, F.; Dova, M. T.; Monticelli, F.; Wahlberg, H.] Univ Nacl La Plata, Inst Fis La Plata, La Plata, Argentina. [Verzini, M. J. Alconada; Alonso, F.; Dova, M. T.; Monticelli, F.; Wahlberg, H.] Consejo Nacl Invest Cient & Tecn, La Plata, Argentina. [Barton, A. E.; Beattie, M. D.; Borissov, G.; Bouhova-Thacker, E. V.; Dearnaley, W. J.; Fox, H.; Grimm, K.; Henderson, R. C. W.; Hughes, G.; Jones, R. W. L.; Kartvelishvili, V.; Long, R. E.; Love, P. A.; Maddocks, H. J.; Skinner, M. B.; Smizanska, M.; Walder, J.; Wharton, A. M.] Univ Lancaster, Dept Phys, Lancaster, England. [Chiodini, G.; Gorini, E.; Primavera, M.; Spagnolo, S.; Ventura, A.] INFN Sez Lecce, Lecce, Italy. [Gorini, E.; Spagnolo, S.; Ventura, A.] Univ Salento, Dipartimento Matemat & Fis, Lecce, Italy. [Affolder, A. A.; Anders, J. K.; Burdin, S.; D'Onofrio, M.; Dervan, P.; Gwilliam, C. B.; Hayward, H. S.; Jackson, M.; Jones, T. J.; King, B. T.; Klein, M.; Klein, U.; Kretzschmar, J.; Laycock, P.; Lehan, A.; Maxfield, S. J.; Mehta, A.; Readioff, N. P.; Schnellbach, Y. J.; Vossebeld, J. H.] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 3BX, Merseyside, England. [Cindro, V.; Deliyergiyev, M.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Sfiligoj, T.; Sokhrannyi, G.] Jozef Stefan Inst, Dept Phys, Ljubljana, Slovenia. [Cindro, V.; Deliyergiyev, M.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Sfiligoj, T.; Sokhrannyi, G.] Univ Ljubljana, Ljubljana, Slovenia. [Bevan, A. J.; Bona, M.; Cerrito, L.; Fletcher, G.; Goddard, J. R.; Hays, J. M.; Hickling, R.; Landon, M. P. J.; Lloyd, S. L.; Morris, J. D.; Nooney, T.; Piccaro, E.; Rizvi, E.; Sandbach, R. L.; Snidero, G.; Castanheira, M. Teixeira Dias] Queen Mary Univ London, Sch Phys & Astron, London, England. [Berry, T.; Blanco, J. E.; Boisvert, V.; Connelly, I. A.; Cowan, G.; Duguid, L.; Giannelli, M. Faucci; George, S.; Gibson, S. M.; Kempster, J. J.; Vazquez, J. G. Panduro; Pastore, Fr.; Savage, G.; Sowden, B. C.; Spano, F.; Teixeira-Dias, P.; Thomas-Wilsker, J.] Royal Holloway Univ London, Dept Phys, Surrey, England. [Bieniek, S. P.; Butterworth, J. M.; Campanelli, M.; Casadei, D.; Chislett, R. T.; Christodoulou, V.; Cooper, B. D.; Davison, P.; Falla, R. J.; Freeborn, D.; Gregersen, K.; Ortiz, N. G. Gutierrez; Hesketh, G. G.; Jiggins, S.; Konstantinidis, N.; Korn, A.; Kucuk, H.; Lambourne, L.; Leney, K. J. C.; Martyniuk, A. C.; Mcfayden, J. A.; Nurse, E.; Richter, S.; Scanlon, T.; Sherwood, P.; Simmons, B.; Wardrope, D. R.; Waugh, B. M.] UCL, Dept Phys & Astron, London, England. [Greenwood, Z. D.; Grossi, G. C.; Jana, D. K.; Sawyer, L.; Subramaniam, R.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pandini, C. E.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.; Varouchas, D.; Yap, Y. C.] UPMC, Lab Phys Nucl & Hautes Energies, Paris, France. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pandini, C. E.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.; Varouchas, D.; Yap, Y. C.] Univ Paris Diderot, Paris, France. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pandini, C. E.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.; Varouchas, D.; Yap, Y. C.] CNRS IN2P3, Paris, France. [Akesson, T. P.; Bocchetta, S. S.; Bryngemark, L.; Doglioni, C.; Floderus, A.; Hawkins, A. D.; Hedberg, V.; Ivarsson, J.; Jarlskog, G.; Lytken, E.; Mjoernmark, J. U.; Smirnova, O.; Viazlo, O.] Lund Univ, Fys Inst, Lund, Sweden. [Barreiro, F.; Cantero, J.; De la Torre, H.; Del Peso, J.; Glasman, C.; Llorente Merino, J.; Terron, J.] Univ Autonoma Madrid, Dept Fis Teor C 15, Madrid, Spain. [Becker, M.; Bertella, C.; Blum, W.; Buescher, V.; Caputo, R.; Caudron, J.; Cuth, J.; Endner, O. C.; Ertel, E.; Fiedler, F.; Torregrosa, E. Fullana; Heck, T.; Hohlfeld, M.; Huelsing, T. A.; Karnevskiy, M.; Kleinknecht, K.; Koepke, L.; Lin, T. H.; Masetti, L.; Mattmann, J.; Meyer, C.; Moritz, S.; Rave, S.; Sander, H. G.; Schaeffer, J.; Schaefer, U.; Schmitt, C.; Schott, M.; Schuh, N.; Simioni, E.; Tapprogge, S.; Urrejola, P.; Valderanis, C.; Wollstadt, S. J.; Zimmermann, C.; Zinser, M.] Johannes Gutenberg Univ Mainz, Inst Phys, D-55122 Mainz, Germany. [Balli, F.; Barnes, S. L.; Cox, B. E.; Da Via, C.; Forti, A.; Ponce, J. M. Iturbe; Joshi, K. D.; Keoshkerian, H.; Li, X.; Loebinger, F. K.; Marsden, S. P.; Masik, J.; Neep, T. J.; Oh, A.; Ospanov, R.; Pater, J. R.; Peters, R. F. Y.; Pilkington, A. D.; Pin, A. W. J.; Price, D.; Qin, Y.; Queitsch-Maitland, M.; Schwanenberger, C.; Schweiger, H.; Shaw, S. M.; Thompson, R. J.; Tomlinson, L.; Watts, S.; Webb, S.; Woudstra, M. J.; Wyatt, T. R.] Univ Manchester, Sch Phys & Astron, Manchester, Lancs, England. [Aad, G.; Alio, L.; Barbero, M.; Chen, L.; Coadou, Y.; Diaconu, C.; Diglio, S.; Djama, F.; Ducu, O. A.; Feligioni, L.; Gao, J.; Hallewell, G. D.; Hubaut, F.; Kahn, S. J.; Knoops, E. B. F. G.; Le Guirriec, E.; Liu, J.; Liu, K.; Madaffari, D.; Mochizuki, K.; Monnier, E.; Muanza, S.; Nagai, Y.; Nagy, E.; Pralavorio, P.; Rozanov, A.; Serre, T.; Talby, M.; Torres, R. E. Ticse; Tiouchichine, E.; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.; Zhang, R.] Aix Marseille Univ, CPPM, Marseille, France. [Aad, G.; Alio, L.; Aloisio, A.; Alonso, A.; Barbero, M.; Chen, L.; Coadou, Y.; Diaconu, C.; Diglio, S.; Djama, F.; Ducu, O. A.; Feligioni, L.; Gao, J.; Hallewell, G. D.; Hubaut, F.; Kahn, S. J.; Knoops, E. B. F. G.; Le Guirriec, E.; Liu, J.; Liu, K.; Madaffari, D.; Mochizuki, K.; Monnier, E.; Muanza, S.; Nagai, Y.; Nagy, E.; Pralavorio, P.; Rozanov, A.; Serre, T.; Talby, M.; Torres, R. E. Ticse; Tiouchichine, E.; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.; Zhang, R.] CNRS IN2P3, Marseille, France. [Bellomo, M.; Bernard, N. R.; Brau, B.; Dallapiccola, C.; Daya-Ishmukhametova, R. K.; Moyse, E. J. W.; Pais, P.; Pueschel, E.; Ventura, D.; Willocq, S.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Belanger-Champagne, C.; Chuinard, A. J.; Corriveau, F.; Keyes, R. A.; Mantifel, R.; Prince, S.; Robertson, S. H.; Robichaud-Veronneau, A.; Stockton, M. C.; Stoebe, M.; Vachon, B.; Schroeder, T. Vazquez; Wang, K.; Warburton, A.] McGill Univ, Dept Phys, Montreal, PQ, Canada. [Barberio, E. L.; Brennan, A. J.; Dawe, E.; Jennens, D.; Kubota, T.; Milesi, M.; Hanninger, G. Nunes; Nuti, F.; Rados, P.; Spiller, L. A.; Tan, K. G.; Taylor, G. N.; Taylor, P. T. E.; Urquijo, P.; Volpi, M.; Zanzi, D.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. [Amidei, D.; Chelstowska, M. A.; Cheng, H. C.; Dai, T.; Diehl, E. B.; Edgar, R. C.; Feng, H.; Ferretti, C.; Fleischmann, P.; Goldfarb, S.; Guan, L.; Guo, Y.; Hu, X.; Levin, D.; Liu, H.; Lu, N.; Marley, D. E.; Mc Kee, S. P.; McCarn, A.; Neal, H. A.; Qian, J.; Schwarz, T. A.; Searcy, J.; Sekhon, K.; Thun, R. P.; Wilson, A.; Wu, Y.; Yu, J. M.; Zhang, D.; Zhou, B.; Zhu, J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Abolins, M.; Brock, R.; Chegwidden, A.; Fisher, W. C.; Halladjian, G.; Hauser, R.; Hayden, D.; Huston, J.; Linnemann, J. T.; Martin, B.; Pope, B. G.; Schoenrock, B. D.; Schwienhorst, R.; Tollefson, K.; Turra, R.; Willis, C.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Alimonti, G.; Andreazza, A.; Besana, M. I.; Carminati, L.; Cavalli, D.; Costa, G.; Fanti, M.; Giugni, D.; Lari, T.; Mandelli, L.; Mazza, S. M.; Meroni, C.; Perini, L.; Pizio, C.; Ragusa, F.; Resconi, S.; Shojaii, S.; Stabile, A.; Tartarelli, G. F.; Troncon, C.; Turra, R.; Perez, M. Villaplana] INFN Sez Milano, Milan, Italy. [Andreazza, A.; Carminati, L.; Fanti, M.; Mazza, S. M.; Perini, L.; Pizio, C.; Ragusa, F.; Shojaii, S.; Perez, M. Villaplana] Univ Milan, Dipartimento Fis, Milan, Italy. [Harkusha, S.; Kulchitsky, Y.; Kurochkin, Y. A.; Tsiareshka, P. V.] Natl Acad Sci Belarus, BI Stepanov Inst Phys, Minsk, Byelarus. [Hrynevich, A.] Natl Sci & Educ Ctr Particle & High Energy Phys, Minsk, Byelarus. [Taylor, F. E.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Arguin, J-F.; Azuelos, G.; Dallaire, F.; Gauthier, L.; Leroy, C.; Rezvani, R.; Saadi, D. Shoaleh] Univ Montreal, Grp Particle Phys, Montreal, PQ, Canada. [Akimov, A. V.; Gavrilenko, I. L.; Komar, A. A.; Mashinistov, R.; Mouraviev, S. V.; Nechaeva, P. Yu.; Shmeleva, A.; Snesarev, A. A.; Sulin, V. V.; Tikhomirov, V. O.; Zhukov, K.] Acad Sci, PN Lebedev Inst Phys, Moscow, Russia. [Artamonov, A.; Gorbounov, P. A.; Khovanskiy, V.; Shatalov, P. B.; Tsukerman, I. I.] ITEP, Moscow, Russia. [Antonov, A.; Belotskiy, K.; Bulekov, O.; Dolgoshein, B. A.; Kantserov, V. A.; Krasnopevtsev, D.; Romaniouk, A.; Shulga, E.; Smirnov, S. Yu.; Smirnov, Y.; Soldatov, E. Yu.; Tikhomirov, V. O.; Timoshenko, S.; Vorobev, K.] Natl Res Nucl Univ, MEPhI, Moscow, Russia. [Boldyrev, A. S.; Gladilin, L. K.; Kramarenko, V. A.; Maevskiy, A.; Rud, V. I.; Sivoklokov, S. Yu.; Smirnova, L. N.; Turchikhin, S.] Moscow MV Lomonosov State Univ, DV Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Adomeit, S.; Bender, M.; Biebel, O.; Bock, C.; Bortfeldt, J.; Calfayan, P.; Chow, B. K. B.; Duckeck, G.; Elmsheuser, J.; Hertenberger, R.; Hoenig, F.; Legger, F.; Lorenz, J.; Loesel, P. J.; Maier, T.; Mann, A.; Mehlhase, S.; Meineck, C.; Mitrevski, J.; Mueller, R. S. P.; Nunnemann, T.; Rauscher, F.; Ruschke, A.; Sanders, M. P.; Schaile, D.; Unverdorben, C.; Vladoiu, D.; Walker, R.; Wittkowski, J.] Univ Munich, Fak Phys, Munich, Germany. [Barillari, T.; Bethke, S.; Bronner, J.; Compostella, G.; Cortiana, G.; Ecker, K. M.; Flowerdew, M. J.; Giuliani, C.; Goblirsch-Kolb, M.; Ince, T.; Kiryunin, A. E.; Kluth, S.; Kortner, O.; Kortner, S.; Kroha, H.; Macchiolo, A.; Maier, A. A.; Manfredini, A.; Menke, S.; Mueller, F.; Nagel, M.; Nisius, R.; Nowak, S.; Oberlack, H.; Richter, R.; Salihagic, D.; Sandstroem, R.; Schacht, P.; Schwegler, Ph.; Spettel, F.; Stonjek, S.; Terzo, S.; von der Schmitt, H.; Wildauer, A.] Werner Heisenberg Inst, Max Planck Inst Phys, Munich, Germany. [Fusayasu, T.; Paz, I. Lopez; Shimojima, M.] Nagasaki Inst Appl Sci, Nagasaki, Japan. [Horii, Y.; Kawade, K.; Morvaj, L.; Onogi, K.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Grad Sch Sci, Nagoya, Aichi 4648601, Japan. [Horii, Y.; Kawade, K.; Morvaj, L.; Onogi, K.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Kobayashi Maskawa Inst, Nagoya, Aichi 4648601, Japan. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Carlino, G.; Cirotto, F.; Conventi, F.; de Asmundis, R.; Della Pietra, M.; Doria, A.; Izzo, V.; Merola, L.; Perrella, S.; Rossi, E.; Sanchez, A.; Sekhniaidze, G.; Zurzolo, G.] INFN Sez Napoli, Naples, Italy. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Cirotto, F.; Merola, L.; Perrella, S.; Rossi, E.; Sanchez, A.; Zurzolo, G.] Univ Naples Federico II, Dipartimento Fis, Naples, Italy. [Gorelov, I.; Hoeferkamp, M. R.; Seidel, S. C.; Toms, K.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Caron, S.; Colasurdo, L.; Croft, V.; De Groot, N.; Filthaut, F.; Galea, C.; Koenig, A. C.; Nektarijevic, S.; Strubig, A.] Radboud Univ Nijmegen, Nikhef, Inst Math Astrophys & Particle Phys, NL-6525 ED Nijmegen, Netherlands. [Aben, R.; Aloisio, A.; Angelozzi, I.; Beemster, L. J.; Bentvelsen, S.; Berge, D.; Bobbink, G. J.; Bos, K.; Brenner, L.; Butti, P.; Castelli, A.; Colijn, A. P.; de Jong, P.; Deigaard, I.; Deluca, C.; Duda, D.; Ferrari, P.; Hartjes, F.; Hessey, N. P.; Hod, N.; Igonkina, O.; Karastathis, N.; Kluit, P.; Koffeman, E.; Linde, F.; Mahlstedt, J.; Meyer, J.; Oussoren, K. P.; Sabato, G.; Salek, D.; Slawinska, M.; Valencic, N.; Van den Wollenberg, W.; Van der Deijl, P. C.; Van der Geer, R.; van der Graaf, H.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.; Weits, H.; Williams, S.] Nikhef Natl Inst Subat Phys, Amsterdam, Netherlands. [Aben, R.; Angelozzi, I.; Beemster, L. J.; Bentvelsen, S.; Berge, D.; Bobbink, G. J.; Bos, K.; Brenner, L.; Butti, P.; Castelli, A.; Colijn, A. P.; de Jong, P.; Deigaard, I.; Deluca, C.; Duda, D.; Ferrari, P.; Hartjes, F.; Hessey, N. P.; Hod, N.; Igonkina, O.; Karastathis, N.; Kluit, P.; Koffeman, E.; Linde, F.; Mahlstedt, J.; Meyer, J.; Oussoren, K. P.; Sabato, G.; Salek, D.; Slawinska, M.; Valencic, N.; Van den Wollenberg, W.; Van der Deijl, P. C.; Van der Geer, R.; van der Graaf, H.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.; Weits, H.; Williams, S.] Univ Amsterdam, Amsterdam, Netherlands. [Adelman, J.; Andari, N.; Burghgrave, B.; Chakraborty, D.; Cole, S.; Saha, P.; Yurkewicz, A.] No Illinois Univ, Dept Phys, De Kalb, IL USA. [Anisenkov, A. V.; Baldin, E. M.; Bobrovnikov, V. S.; Bogdanchikov, A. G.; Buzykaev, A. R.; Kazanin, V. F.; Kharlamov, A. G.; Korol, A. A.; Malyshev, V. M.; Maslennikov, A. L.; Maximov, D. A.; Peleganchuk, S. V.; Rezanova, O. L.; Soukharev, A. M.; Talyshev, A. A.; Tikhonov, Yu. A.] SB RAS, Budker Inst Nucl Phys, Novosibirsk, Russia. [Bernius, C.; Cranmer, K.; Haas, A.; Heinrich, L.; Kaplan, B.; Karthik, K.; Konoplich, R.; Kreiss, S.; Mincer, A. I.; Nemethy, P.; Neves, R. M.] NYU, Dept Phys, New York, NY 10003 USA. [Beacham, J. B.; Gan, K. K.; Ishmukhametov, R.; Kagan, H.; Kass, R. D.; Looper, K. A.; Nagarkar, A.; Pignotti, D. T.; Shrestha, S.; Tannenwald, B. B.; Winklmeier, F.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Fac Sci, Okayama 700, Japan. [Abbott, B.; Alhroob, M.; Bertsche, C.; Bertsche, D.; De Benedetti, A.; Gutierrez, P.; Hasib, A.; Norberg, S.; Pearson, B.; Rifki, O.; Saleem, M.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA. [Bousson, N.; Haley, J.; Jamin, D. O.; Khanov, A.; Rizatdinova, F.; Sidorov, D.; Yu, J.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA. [Chytka, L.; Hamal, P.; Hrabovsky, M.; Kvita, J.; Nozka, L.] Palacky Univ, RCPTM, CR-77147 Olomouc, Czech Republic. [Abreu, R.; Brau, J. E.; Brost, E.; Hopkins, W. H.; Majewski, S.; Potter, C. T.; Ptacek, E.; Radloff, P.; Shamim, M.; Sinev, N. B.; Strom, D. M.; Torrence, E.; Wanotayaroj, C.; Whalen, K.; Winklmeier, F.] Univ Oregon, Ctr High Energy Phys, Eugene, OR 97403 USA. [Ayoub, M. K.; Bassalat, A.; Becot, C.; Binet, S.; Bourdarios, C.; De Vivie De Regie, J. B.; Delgove, D.; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Gkougkousis, E. L.; Grivaz, J. -F.; Guillemin, T.; Hariri, F.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Kado, M.; Li, Y.; Lounis, A.; Makovec, N.; Morange, N.; Nellist, C.; Petroff, P.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Rybkin, G.; Schaffer, A. C.; Sciacca, F. G.; Scifo, E.; Serin, L.; Simion, S.; Tanaka, R.; Zerwas, D.; Zhang, Z.; Zhao, Y.] Univ Paris 11, LAL, Orsay, France. [Ayoub, M. K.; Bassalat, A.; Becot, C.; Binet, S.; Bourdarios, C.; De Vivie De Regie, J. B.; Delgove, D.; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Gkougkousis, E. L.; Grivaz, J. -F.; Guillemin, T.; Hariri, F.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Kado, M.; Li, Y.; Lounis, A.; Makovec, N.; Morange, N.; Nellist, C.; Petroff, P.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Rybkin, G.; Schaffer, A. C.; Sciacca, F. G.; Scifo, E.; Serin, L.; Simion, S.; Tanaka, R.; Zerwas, D.; Zhang, Z.; Zhao, Y.] CNRS IN2P3, Orsay, France. [Endo, M.; Hanagaki, K.; Nomachi, M.; Okamura, W.; Sugaya, Y.; Teoh, J. J.; Yamaguchi, Y.] Osaka Univ, Grad Sch Sci, Osaka, Japan. [Bugge, L.; Bugge, M. K.; Cameron, D.; Catmore, J. R.; Franconi, L.; Garonne, V.; Gjelsten, B. K.; Gramstad, E.; Morisbak, V.; Nilsen, J. K.; Ould-Saada, F.; Pajchel, K.; Pedersen, M.; Raddum, S.; Read, A. L.; Rohne, O.; Sandaker, H.; Stapnes, S.; Strandlie, A.] Univ Oslo, Dept Phys, Oslo, Norway. [Barr, A. J.; Becker, K.; Behr, J. K.; Beresford, L.; Cooper-Sarkar, A. M.; Ortuzar, M. Crispin; Dafinca, A.; Davies, E.; Frost, J. A.; Gallas, E. J.; Gupta, S.; Gwenlan, C.; Hall, D.; Hays, C. P.; Henderson, J.; Howard, J.; Huffman, T. B.; Issever, C.; Kalderon, C. W.; Kogan, L. A.; Lewis, A.; Nagai, K.; Nickerson, R. B.; Pickering, M. A.; Ryder, N. C.; Tseng, J. C-L.; Viehhauser, G. H. A.; Weidberg, A. R.; Zhong, J.] Univ Oxford, Dept Phys, Oxford, England. [Conta, C.; Dondero, P.; Ferrari, R.; Fraternali, M.; Gaudio, G.; Introzzi, G.; Lanza, A.; Livan, M.; Negri, A.; Polesello, G.; Rimoldi, A.; Vercesi, V.] INFN Sez Pavia, Pavia, Italy. [Conta, C.; Dondero, P.; Fraternali, M.; Introzzi, G.; Livan, M.; Negri, A.; Rebuzzi, D. M.; Rimoldi, A.] Univ Pavia, Dipartimento Fis, I-27100 Pavia, Italy. [Balunas, W. K.; Brendlinger, K.; Fletcher, R. R. M.; Haney, B.; Heim, S.; Hines, E.; Jackson, B.; Kroll, J.; Lipeles, E.; Machado Miguens, J.; Meyer, C.; Mistry, K. P.; Reichert, J.; Stahlman, J.; Thomson, E.; Vanguri, R.; Williams, H. H.; Yoshihara, K.] Univ Penn, Dept Phys, Philadelphia, PA 19104 USA. [Basalaev, A.; Ezhilov, A.; Fedin, O. L.; Gratchev, V.; Levchenko, M.; Maleev, V. P.; Ryabov, Y. F.; Schegelsky, V. A.; Sedykh, E.; Seliverstov, D. M.; Solovyev, V.] BP Konstantinov Petersburg Nucl Phys Inst, Kurchatov Inst, Natl Res Ctr, St Petersburg, Russia. [Annovi, A.; Beccherle, R.; Bertolucci, F.; Biesuz, N. V.; Cavasinni, V.; Chiarelli, G.; Del Prete, T.; Dell'Orso, M.; Donati, S.; Giannetti, P.; Leone, S.; Roda, C.; Scuri, F.; Sotiropoulou, C. L.; Spalla, M.; Volpi, G.; White, S.] INFN Sez Pisa, Pisa, Italy. [Annovi, A.; Beccherle, R.; Bertolucci, F.; Biesuz, N. V.; Cavasinni, V.; Chiarelli, G.; Del Prete, T.; Dell'Orso, M.; Donati, S.; Giannetti, P.; Leone, S.; Roda, C.; Scuri, F.; Sotiropoulou, C. L.; Spalla, M.; Volpi, G.; White, S.] Univ Pisa, Dipartimento Fis E Fermi, Pisa, Italy. [Bianchi, R. M.; Boudreau, J.; Hong, M.; Mueller, J.; Sapp, K.; Su, J.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Aguilar-Saavedra, J. A.; Amor Dos Santos, S. P.; Amorim, A.; Cantrill, R.; Carvalho, J.; Castro, N. F.; Muino, P. Conde; Da Cunha Sargedas De Sousa, M. J.; Fiolhais, M. C. N.; Galhardo, B.; Gomes, A.; Goncalo, R.; Jorge, P. M.; Lopes, L.; Maio, A.; Maneira, J.; Onofre, A.; Palma, A.; Pedro, R.; Pina, J.; Santos, H.; Saraiva, J. G.; Silva, J.; Delgado, A. Tavares; Veloso, F.; Wolters, H.] Lab Instrumentacao & Fis Expt Particulas LIP, Lisbon, Portugal. [Amorim, A.; Muino, P. Conde; Da Cunha Sargedas De Sousa, M. J.; Gomes, A.; Jorge, P. M.; Machado Miguens, J.; Maio, A.; Maneira, J.; Palma, A.; Pedro, R.; Pina, J.; Delgado, A. Tavares] Univ Lisbon, Fac Ciencias, P-1699 Lisbon, Portugal. [Amor Dos Santos, S. P.; Carvalho, J.; Fiolhais, M. C. N.; Galhardo, B.; Veloso, F.; Wolters, H.] Univ Coimbra, Dept Phys, Coimbra, Portugal. [Gomes, A.; Maio, A.; Pina, J.; Saraiva, J. G.; Silva, J.] Univ Lisbon, Ctr Fis Nucl, P-1699 Lisbon, Portugal. [Onofre, A.] Univ Minho, Dept Fis, Braga, Portugal. [Aguilar-Saavedra, J. A.] Univ Granada, Dept Fis Teor & Cosmos, Granada, Spain. [Aguilar-Saavedra, J. A.] Univ Granada, CAFPE, Granada, Spain. Univ Nova Lisboa, Dept Fis, Caparica, Portugal. Univ Nova Lisboa, CEFITEC, Fac Ciencias & Tecnol, Caparica, Portugal. [Chudoba, J.; Havranek, M.; Hejbal, J.; Jakoubek, T.; Kepka, O.; Kupco, A.; Kus, V.; Lokajicek, M.; Lysak, R.; Marcisovsky, M.; Mikestikova, M.; Nemecek, S.; Penc, O.; Sicho, P.; Staroba, P.; Svatos, M.; Tasevsky, M.; Vrba, V.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Annovi, A.; Augsten, K.; Caforio, D.; Gallus, P.; Guenther, J.; Hubacek, Z.; Jakubek, J.; Kohout, Z.; Myska, M.; Pospisil, S.; Seifert, F.; Simak, V.; Slavicek, T.; Smolek, K.; Solar, M.; Solc, J.; Sopczak, A.; Sopko, B.; Sopko, V.; Suk, M.; Turecek, D.; Vacek, V.; Vlasak, M.; Vokac, P.; Vykydal, Z.; Zeman, M.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Balek, P.; Berta, P.; Cerny, K.; Chalupkova, I.; Davidek, T.; Dolejsi, J.; Dolezal, Z.; Faltova, J.; Kodys, P.; Kosek, T.; Leitner, R.; Pleskot, V.; Reznicek, P.; Scheirich, D.; Spousta, M.; Sykora, T.; Tas, P.; Todorova-Nova, S.; Valkar, S.; Vorobel, V.] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic. [Borisov, A.; Cheremushkina, E.; Denisov, S. P.; Fakhrutdinov, R. M.; Fenyuk, A. B.; Golubkov, D.; Kamenshchikov, A.; Karyukhin, A. N.; Kozhin, A. S.; Minaenko, A. A.; Myagkov, A. G.; Nikolaenko, V.; Ryzhov, A.; Solodkov, A. A.; Solovyanov, O. V.; Starchenko, E. A.; Zaitsev, A. M.; Zenin, O.] State Res Ctr Inst High Energy Phys Protvino, Nrc Ki, Russia. [Adye, T.; Baines, J. T.; Barnett, B. M.; Burke, S.; Davies, E.; Dewhurst, A.; Dopke, J.; Emeliyanov, D.; Gallop, B. J.; Gee, C. N. P.; Haywood, S. J.; Kirk, J.; Martin-Haugh, S.; McCubbin, N. A.; McMahon, S. J.; Middleton, R. P.; Murray, W. J.; Phillips, P. W.; Sankey, D. P. C.; Sawyer, C.; Tyndel, M.; Wickens, F. J.; Wielers, M.] Rutherford Appleton Lab, Particle Phys Dept, Didcot OX11 0QX, Oxon, England. [Anulli, F.; Bagiacchi, P.; Bagnaia, P.; Bauce, M.; Bini, C.; Ciapetti, G.; De Pedis, D.; De Salvo, A.; Di Domenico, A.; Di Donato, C.; Falciano, S.; Gauzzi, P.; Gentile, S.; Giagu, S.; Gustavino, G.; Kuna, M.; Lacava, F.; Luci, C.; Luminari, L.; Marzano, F.; Messina, A.; Monzani, S.; Nisati, A.; Pasqualucci, E.; Petrolo, E.; Pontecorvo, L.; Rescigno, M.; Rosati, S.; Tehrani, F. Safai; Vanadia; Vari, R.; Veneziano, S.; Verducci, M.; Zanello, L.] INFN Sez Roma, Rome, Italy. [Bagiacchi, P.; Bagnaia, P.; Bauce, M.; Bini, C.; Ciapetti, G.; Di Domenico, A.; Di Donato, C.; Gauzzi, P.; Gentile, S.; Giagu, S.; Gustavino, G.; Kuna, M.; Lacava, F.; Luci, C.; Messina, A.; Monzani, S.; Vanadia; Verducci, M.; Zanello, L.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Aielli, G.; Camarri, P.; Cardarelli, R.; Di Ciaccio, A.; Iuppa, R.; Liberti, B.; Salamon, A.; Santonico, R.] INFN Sez Roma Tor Vergata, Rome, Italy. [Aielli, G.; Camarri, P.; Di Ciaccio, A.; Iuppa, R.; Santonico, R.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy. [Bacci, C.; Baroncelli, A.; Biglietti, M.; Ceradini, F.; Di Micco, B.; Farilla, A.; Graziani, E.; Iodice, M.; Orestano, D.; Pastore, F.; Petrucci, F.; Puddu, D.; Salamanna, G.; Sessa, M.; Stanescu, C.; Taccini, C.] INFN Sez Roma Tre, Rome, Italy. [Bacci, C.; Ceradini, F.; Di Micco, B.; Orestano, D.; Pastore, F.; Petrucci, F.; Puddu, D.; Salamanna, G.; Sessa, M.] Univ Roma Tre, Dipartimento Matemat & Fis, Rome, Italy. [Benchekroun, D.; Chafaq, A.; Hoummada, A.] Univ Hassan 2, Reseau Univ Phys Hautes Energies, Fac Sci Ain Chock, Casablanca, Morocco. [Ghazlane, H.] Ctr Natl Energie Sci Tech Nucl, Rabat, Morocco. [El Moursli, R. Cherkaoui; El Kacimi, M.; Goujdami, D.] Univ Cadi Ayyad, LPHEA, Fac Sci Semlalia, Marrakech, Morocco. [Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] Univ Mohamed Premier, Fac Sci, Oujda, Morocco. [Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] LPTPM, Oujda, Morocco. [Fassi, F.; Haddad, N.; Idrissi, Z.] Univ Mohammed 5, Fac Sci, Rabat, Morocco. [Bachacou, H.; Bauer, F.; Besson, N.; Blanchard, J. -B.; Boonekamp, M.; Calandri, A.; Chevalier, L.; Hoffmann, M. Dano; Deliot, F.; Etienvre, A. I.; Formica, A.; Giraud, P. F.; Goncalves Pinto Firmino Da Costa, J.; Guyot, C.; Hanna, R.; Hassani, S.; Kivernyk, O.; Kozanecki, W.; Kukla, R.; Lancon, E.; Laporte, J. F.; Maiani, C.; Mansoulie, B.; Meyer, J-P.; Nicolaidou, R.; Ouraou, A.; Protopapadaki, E.; Royon, C. R.; Saimpert, M.; Schoeffel, L.; Schune, Ph.; Schwemling, Ph.; Schwindling, J.] CEA Saclay Commissariat Energie Atom & Energie Al, DSM IRFU Inst Rech les Lois Fondament Univers, Gif Sur Yvette, France. [Battaglia, M.; Debenedetti, C.; Grabas, H. M. X.; Grillo, A. A.; Hance, M.; Kuhl, A.; La Rosa, A.; Law, A. T.; Liang, Z.; Litke, A. M.; Lockman, W. S.; Nielsen, J.; Reece, R.; Rose, P.; Sadrozinski, H. F-W.; Schumm, B. A.; Seiden, A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Alpigiani, C.; Blackburn, D.; Goussiou, A. G.; Hsu, S. -C.; Johnson, W. J.; Lubatti, H. J.; Marx, M.; Rompotis, N.; Rosten, R.; Rothberg, J.; Russell, H. L.; De Bruin, P. H. Sales; Pastor, E. Torro; Watts, G.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Anastopoulos, C.; Costanzo, D.; Donszelmann, T. Cuhadar; Dawson, I.; Fletcher, G. T.; Hamity, G. N.; Hodgkinson, M. C.; Hodgson, P.; Johansson, P.; Klinger, J. A.; Korolkova, E. V.; Kyriazopoulos, D.; Paredes, B. Lopez; Macdonald, C. M.; Miyagawa, P. S.; Paganis, E.; Parker, K. A.; Tovey, D. R.; Vickey, T.; Boeriu, O. E. Vickey] Univ Sheffield, Dept Phys & Astron, Sheffield, S Yorkshire, England. [Hasegawa, Y.; Takeshita, T.] Shinshu Univ, Dept Phys, Nagano, Japan. [Atlay, N. B.; Buchholz, P.; Czirr, H.; Fleck, I.; Gaur, B.; Ghasemi, S.; Ibragimov, I.; Ikematsu, K.; Rosenthal, O.; Walkowiak, W.; Ziolkowski, M.] Univ Siegen, Fachbereich Phys, D-57068 Siegen, Germany. [Buat, Q.; Horton, A. J.; Mori, D.; O'Neil, D. C.; Pachal, K.; Stelzer, B.; Temple, D.; Torres, H.; Van Nieuwkoop, J.; Vetterli, M. C.] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada. [Barklow, T.; Bartoldus, R.; Bawa, H. S.; Black, J. E.; Cogan, J. G.; Fulsom, B. G.; Gao, Y. S.; Garelli, N.; Grenier, P.; Ilic, N.; Kagan, M.; Kocian, M.; Koi, T.; Malone, C.; Moss, J.; Mount, R.; Nachman, B. P.; Nef, P. D.; Piacquadio, G.; Rubbo, F.; Salnikov, A.; Schwartzman, A.; Strauss, E.; Su, D.; Swiatlowski, M.; Tompkins, L.; Wittgen, M.; Young, C.; Zeng, Q.] SLAC Natl Accelerator Lab, Stanford, CA USA. [Astalos, R.; Bartos, P.; Blazek, T.; Plazak, L.; Sykora, I.; Tokar, S.; Zenis, T.] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia. [Antos, J.; Bruncko, D.; Kladiva, E.; Strizenec, P.; Taccini, C.; Urban, J.] Slovak Acad Sci, Inst Expt Phys, Dept Subnucl Phys, Kosice 04353, Slovakia. [Castaneda-Miranda, E.; Hamilton, A.; Lee, C. A.; Meehan, S.; Yacoob, S.] Univ Cape Town, Dept Phys, ZA-7925 Cape Town, South Africa. [Aurousseau, M.; Connell, S. H.; Govender, N.] Univ Johannesburg, Dept Phys, Johannesburg, South Africa. [Hsu, C.; Kar, D.; March, L.; Garcia, B. R. Mellado; Ruan, X.] Univ Witwatersrand, Sch Phys, Johannesburg, South Africa. [Abulaiti, Y.; Akerstedt, H.; Asman, B.; Bendtz, K.; Bertoli, G.; Bylund, O. Bessidskaia; Bohm, C.; Clement, C.; Cribbs, W. A.; Hellman, S.; Jon-And, K.; Khandanyan, H.; Klimek, P.; Lundberg, O.; Milstead, D. A.; Moa, T.; Molander, S.; Pani, P.; Plucinski, P.; Poettgen, R.; Rossetti, V.; Shcherbakova, A.; Silverstein, S. B.; Sjoelin, J.; Strandberg, S.; Tylmad, M.; Ughetto, M.] Stockholm Univ, Dept Phys, Stockholm, Sweden. [Abulaiti, Y.; Akerstedt, H.; Asman, B.; Bendtz, K.; Bertoli, G.; Bylund, O. Bessidskaia; Clement, C.; Cribbs, W. A.; Hellman, S.; Jon-And, K.; Khandanyan, H.; Klimek, P.; Lundberg, O.; Milstead, D. A.; Moa, T.; Molander, S.; Pani, P.; Plucinski, P.; Poettgen, R.; Rossetti, V.; Shcherbakova, A.; Sjoelin, J.; Strandberg, S.; Tylmad, M.; Ughetto, M.] Oskar Klein Ctr, Stockholm, Sweden. [Lund-Jensen, B.; Sidebo, P. E.; Strandberg, J.] Royal Inst Technol, Dept Phys, S-10044 Stockholm, Sweden. [Balestri, T.; Bee, C. P.; Campoverde, A.; Chen, K.; Hobbs, J.; Jia, J.; Li, H.; Lindquist, B. E.; McCarthy, R. L.; Montalbano, A.; Puldon, D.; Radhakrishnan, S. K.; Rijssenbeek, M.; Schamberger, R. D.; Tsybychev, D.; Zaman, A.; Zhou, M.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Balestri, T.; Bee, C. P.; Campoverde, A.; Chen, K.; Hobbs, J.; Jia, J.; Li, H.; Lindquist, B. E.; McCarthy, R. L.; Montalbano, A.; Puldon, D.; Radhakrishnan, S. K.; Rijssenbeek, M.; Schamberger, R. D.; Tsybychev, D.; Zaman, A.; Zhou, M.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Allbrooke, B. M. M.; Asquith, L.; Cerri, A.; Barajas, C. A. Chavez; De Sanctis, U.; De Santo, A.; Grout, Z. J.; Potter, C. J.; Salvatore, F.; Castillo, I. Santoyo; Shehu, C. Y.; Suruliz, K.; Sutton, M. R.; Vivarelli, I.] Univ Sussex, Dept Phys & Astron, Brighton, E Sussex, England. [Black, C. W.; Cuthbert, C.; Finelli, K. D.; Jeng, G. -Y.; Limosani, A.; Morley, A. K.; Patel, N. D.; Saavedra, A. F.; Scarcella, M.; Varvell, K. E.; Wang, J.; Watson, I. J.; Yabsley, B.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. [Abdallah, J.; Hou, S.; Hsu, P. J.; Lee, S. C.; Li, B.; Lin, S. C.; Liu, B.; Liu, D.; Lo Sterzo, F.; Mazini, R.; Shi, L.; Soh, D. A.; Song, H. Y.; Teng, P. K.; Wang, C.; Wang, S. M.; Yang, Y.] Acad Sinica, Inst Phys, Taipei 115, Taiwan. [Abreu, H.; Cheatham, S.; Di Mattia, A.; Gozani, E.; Kopeliansky, R.; Musto, E.; Rozen, Y.; Tarem, S.; van Eldik, N.] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel. [Abramowicz, H.; Alexander, G.; Amram, N.; Ashkenazi, A.; Bella, G.; Benary, O.; Benhammou, Y.; Davies, M.; Etzion, E.; Gershon, A.; Gueta, O.; Oren, Y.; Silver, Y.; Soffer, A.; Taiblum, N.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Bachas, K.; Gkaitatzis, S.; Gkialas, I.; Iliadis, D.; Kimura, N.; Kordas, K.; Kourkoumeli-Charalampidi, A.; Leisos, A.; Orlando, N.; Papageorgiou, K.; Hernandez, D. Paredes; Petridou, C.; Sampsonidis, D.; Tsionou, D.] Aristotle Univ Thessaloniki, Dept Phys, Thessaloniki, Greece. [Asai, S.; Chen, S.; Dohmae, T.; Enari, Y.; Hanawa, K.; Kanaya, N.; Kataoka, Y.; Kato, C.; Kawamoto, T.; Kazama, S.; Kobayashi, A.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Minami, Y.; Mori, T.; Morinaga, M.; Nakamura, T.; Ninomiya, Y.; Nobe, T.; Saito, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamamoto, S.; Yamanaka, T.] Univ Tokyo, Int Ctr Elementary Particle Phys, Tokyo, Japan. [Asai, S.; Chen, S.; Dohmae, T.; Enari, Y.; Hanawa, K.; Kanaya, N.; Kataoka, Y.; Kato, C.; Kawamoto, T.; Kazama, S.; Kobayashi, A.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Minami, Y.; Mori, T.; Morinaga, M.; Nakamura, T.; Ninomiya, Y.; Nobe, T.; Saito, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamamoto, S.; Yamanaka, T.] Univ Tokyo, Dept Phys, Tokyo 113, Japan. [Bratzler, U.; Fukunaga, C.] Tokyo Metropolitan Univ, Grad Sch Sci & Technol, Tokyo 158, Japan. [Hirose, M.; Ishitsuka, M.; Jinnouchi, O.; Kobayashi, D.; Kuze, M.; Motohashi, K.; Nagai, R.; Pettersson, N. E.; Todome, K.; Yamaguchi, D.] Tokyo Inst Technol, Dept Phys, Tokyo 152, Japan. [AbouZeid, O. S.; Batista, S. J.; Chau, C. C.; DeMarco, D. A.; Di Sipio, R.; Diamond, M.; Krieger, P.; Liblong, A.; Mc Goldrick, G.; Orr, R. S.; Polifka, R.; Rudolph, M. S.; Savard, P.; Sinervo, P.; Taenzer, J.; Teuscher, R. J.; Trischuk, W.; Veloce, L. M.; Venturi, N.] Univ Toronto, Dept Phys, Toronto, ON, Canada. [Azuelos, G.; Canepa, A.; Chekulaev, S. V.; Gingrich, D. M.; Jovicevic, J.; Koutsman, A.; Oakham, F. G.; Oram, C. J.; Codina, E. Perez; Savard, P.; Schneider, B.; Schouten, D.; Seuster, R.; Stelzer-Chilton, O.; Tafirout, R.; Trigger, I. M.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Garcia, J. A. Benitez; Ramos, J. Manjarres; Palacino, G.; Taylor, W.] York Univ, Dept Phys & Astron, Toronto, ON M3J 2R7, Canada. [Fuchi, R.; Hara, K.; Hayashi, T.; Kasahara, K.; Kim, S. H.; Kiuchi, K.; Nagata, K.; Okawa, H.; Sato, K.; Ukegawa, F.] Univ Tsukuba, Fac Pure & Appl Sci, Tsukuba, Ibaraki, Japan. [Fuchi, R.; Hara, K.; Hayashi, T.; Kasahara, K.; Kim, S. H.; Kiuchi, K.; Nagata, K.; Okawa, H.; Sato, K.; Ukegawa, F.] Univ Tsukuba, Ctr Integrated Res Fundamental Sci & Engn, Tsukuba, Ibaraki, Japan. [Beauchemin, P. H.; Meoni, E.; Rolli, S.; Sliwa, K.; Wetter, J.] Tufts Univ, Dept Phys & Astron, Medford, MA 02155 USA. [Losada, M.; Moreno, D.; Sandoval, C.] Univ Antonio Narino, Ctr Invest, Bogota, Colombia. [Corso-Radu, A.; Frate, M.; Gerbaudo, D.; Guest, D.; Lankford, A. J.; Mete, A. S.; Nelson, A.; Scannicchio, D. A.; Schernau, M.; Shimmin, C. O.; Taffard, A.; Unel, G.; Whiteson, D.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA USA. [Acharya, B. S.; Barisonzi, M.; Cobal, M.; Giordani, M. P.; Miglioranzi, S.; Pinamonti, M.; Quayle, W. B.; Serkin, L.; Shaw, K.; Soualah, R.; Truong, L.] Ist Nazl Fis Nucl, Grp Collegato Udine, Sez Trieste, Udine, Italy. [Acharya, B. S.; Barisonzi, M.; Cobal, M.; Quayle, W. B.; Serkin, L.; Shaw, K.] Abdus Salaam Int Ctr Theoret Phys, Trieste, Italy. [Giordani, M. P.; Miglioranzi, S.; Pinamonti, M.; Soualah, R.; Truong, L.] Univ Udine, Dipartimento Chim Fis & Ambiente, I-33100 Udine, Italy. [Atkinson, M.; Basye, A.; Armadans, R. Caminal; Cavaliere, V.; Chang, P.; Errede, S.; Lie, K.; Liss, T. M.; Liu, L.; Long, J. D.; Neubauer, M. S.; Rybar, M.; Shang, R.; Vichou, I.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Kuutmann, E. Bergeaas; Brenner, R.; Ekelof, T.; Ellert, M.; Ferrari, A.; Gradin, P. O. J.; Isaksson, C.; Madsen, A.; Navarro, G.; Ohman, H.; Pelikan, D.; Rangel-Smith, C.] Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden. [Piqueras, D. Alvarez; Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Martinez, P. Fernandez; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; de la Hoz, S. Gonzalez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Irles Quiles, A.; Pena, J. Jimenez; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Mitsou, V. A.; Lopez, S. Pedraza; Garcia-Estan, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Valero, A.; Ferrer, J. A. Valls; Vos, M.] Univ Valencia, Inst Fis Corpuscular IFIC, Valencia, Spain. [Piqueras, D. Alvarez; Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Martinez, P. Fernandez; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; de la Hoz, S. Gonzalez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Irles Quiles, A.; Pena, J. Jimenez; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Mitsou, V. A.; Lopez, S. Pedraza; Garcia-Estan, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Valero, A.; Ferrer, J. A. Valls; Vos, M.] Univ Valencia, Dept Fis Atom Mol & Nucl, Valencia, Spain. [Piqueras, D. Alvarez; Annovi, A.; Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Martinez, P. Fernandez; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; de la Hoz, S. Gonzalez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Irles Quiles, A.; Pena, J. Jimenez; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Mitsou, V. A.; Lopez, S. Pedraza; Garcia-Estan, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Valero, A.; Ferrer, J. A. Valls; Vos, M.] Univ Valencia, Dept Ingn Elect, Valencia, Spain. [Piqueras, D. Alvarez; Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Martinez, P. Fernandez; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; de la Hoz, S. Gonzalez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Irles Quiles, A.; Pena, J. Jimenez; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Mitsou, V. A.; Lopez, S. Pedraza; Garcia-Estan, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Valero, A.; Ferrer, J. A. Valls; Vos, M.] Univ Valencia, IMB CNM, Valencia, Spain. [Piqueras, D. Alvarez; Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Martinez, P. Fernandez; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; de la Hoz, S. Gonzalez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Irles Quiles, A.; Pena, J. Jimenez; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Mitsou, V. A.; Lopez, S. Pedraza; Garcia-Estan, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Valero, A.; Ferrer, J. A. Valls; Vos, M.] CSIC, Valencia, Spain. [Danninger, M.; Fedorko, W.; Gay, C.; Gecse, Z.; Gignac, M.; Henkelmann, S.; King, S. B.; Lister, A.] Univ British Columbia, Dept Phys, Vancouver, BC V5Z 1M9, Canada. [Albert, J.; Berghaus, F.; David, C.; Elliot, A. A.; Fincke-Keeler, M.; Hamano, K.; Hill, E.; Keeler, R.; Kowalewski, R.; Kuwertz, E. S.; Kwan, T.; LeBlanc, M.; Lefebvre, M.; Marino, C. P.; McPherson, R. A.; Pearce, J.; Sobie, R.; Trovatelli, M.; Venturi, M.] Univ Victoria, Dept Phys & Astrophys, Victoria, BC, Canada. [Beckingham, M.; Farrington, S. M.; Harrison, P. F.; Jeske, C.; Jones, G.; Martin, T. A.; Murray, W. J.; Pianori, E.; Spangenberg, M.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Iizawa, T.; Mitani, T.; Sakurai, Y.; Yorita, K.] Waseda Univ, Tokyo, Japan. [Bressler, S.; Brooijmans, G.; Citron, Z. H.; Duchovni, E.; Gross, E.; Lellouch, D.; Levinson, L. J.; Mikenberg, G.; Milov, A.; Pitt, M.; Roth, I.; Schaarschmidt, J.; Smakhtin, V.] Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel. [Banerjee, Sw.; Hard, A. S.; Heng, Y.; Ji, H.; Ju, X.; Kaplan, L. S.; Kashif, L.; Kruse, A.; Ming, Y.; Pan, Y. B.; Wang, F.; Wiedenmann, W.; Wu, S. L.; Yang, H.; Zhang, F.; Zobernig, G.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Kuger, F.; Redelbach, A.; Schreyer, M.; Sidiropoulou, O.; Siragusa, G.; Stroehmer, R.; Tam, J. Y. C.; Trefzger, T.; Weber, S. W.; Zibell, A.] Univ Wurzburg, Fak Phys & Astron, D-97070 Wurzburg, Germany. [Bannoura, A. A. E.; Braun, H. M.; Cornelissen, T.; Ellinghaus, F.; Ernis, G.; Fischer, J.; Flick, T.; Gabizon, O.; Hamacher, K.; Harenberg, T.; Heim, T.; Hirschbuehl, D.; Kersten, S.; Kohlmann, S.; Maettig, P.; Neumann, M.; Pataraia, S.; Riegel, C. J.; Sandhoff, M.; Tepel, F.; Wagner, W.; Zeitnitz, C.] Berg Univ Wuppertal, Fachbereich C Phys, Wuppertal, Germany. [Baker, O. K.; Cummings, J.; Demers, S.; Garberson, F.; Henrichs, A.; Ideal, E.; Lagouri, T.; Leister, A. G.; Loginov, A.; Thomsen, L. A.; Tipton, P.; Wang, X.] Yale Univ, Dept Phys, New Haven, CT USA. [Hakobyan, H.; Vardanyan, G.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Jansen, E.; Rahal, G.] Nucl & Phys Particules IN2P3, Ctr Calcul, Inst Natl Phys, Villeurbanne, France. [Acharya, B. S.] Kings Coll London, Dept Phys, London, England. [Ahmadov, F.; Chernyatin, V.; Huseynov, N.; Javadov, N.; Vetterli, M. C.] Azerbaijan Acad Sci, Inst Phys, Baku, Azerbaijan. [Anisenkov, A. V.; Baldin, E. M.; Bobrovnikov, V. S.; Buzykaev, A. R.; Kazanin, V. F.; Kharlamov, A. G.; Korol, A. A.; Maslennikov, A. L.; Maximov, D. A.; Peleganchuk, S. V.; Rezanova, O. L.; Soukharev, A. M.; Talyshev, A. A.; Tikhonov, Yu. A.] Novosibirsk State Univ, Novosibirsk 630090, Russia. [Gao, Y. S.] Calif State Univ Fresno, Dept Phys, Fresno, CA 93740 USA. [Beck, H. P.] Univ Fribourg, Dept Phys, CH-1700 Fribourg, Switzerland. [Castro, N. F.] Univ Porto, Fac Ciencias, Dept Fis & Astron, P-4100 Oporto, Portugal. [Chelkov, G. A.] Tomsk State Univ, Tomsk 634050, Russia. [Conventi, F.; Della Pietra, M.] Univ Napoli Parthenope, Naples, Italy. [Corriveau, F.; Teuscher, R. J.] Inst Particle Phys, Toronto, ON, Canada. [Fedin, O. L.] St Petersburg State Polytech Univ, Dept Phys, St Petersburg, Russia. [Greenwood, Z. D.; Sawyer, L.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Grinstein, S.; Rozas, A. Juste; Martinez, M.] ICREA, Barcelona, Spain. [Hsu, P. J.] Natl Tsing Hua Univ, Dept Phys, Taipei, Taiwan. [Ilchenko, Y.; Onyisi, P. U. E.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. [Jejelava, J.] Ilia State Univ, Inst Theoret Phys, Tbilisi, Rep of Georgia. [Khubua, J.] GTU, Tbilisi, Rep of Georgia. [Konoplich, R.] Manhattan Coll, New York, NY USA. [Leisos, A.] Hellenic Open Univ, Patras, Greece. Acad Sinica, Inst Phys, Acad Sinica Grid Comp, Taipei 115, Taiwan. [Myagkov, A. G.; Nikolaenko, V.; Zaitsev, A. M.] State Univ, Moscow Inst Phys & Technol, Dolgoprudnyi, Russia. Univ Geneva, Sect Phys, Geneva, Switzerland. [Pinamonti, M.] Int Sch Adv Studies SISSA, Trieste, Italy. [Purohit, M.] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. [Shi, L.; Soh, D. A.] Sun Yat Sen Univ, Sch Phys & Engn, Guangzhou 510275, Guangdong, Peoples R China. [Smirnova, L. N.; Turchikhin, S.] Moscow MV Lomonosov State Univ, Fac Phys, Moscow, Russia. [Tompkins, L.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Toth, J.] Wigner Res Ctr Phys, Inst Particle & Nucl Phys, Budapest, Hungary. [Yusuff, I.] Univ Malaya, Dept Phys, Kuala Lumpur 59100, Malaysia. RP Aad, G (reprint author), Univ Adelaide, Dept Phys, Adelaide, SA, Australia. RI Prokoshin, Fedor/E-2795-2012; Stabile, Alberto/L-3419-2016; Staroba, Pavel/G-8850-2014; Kukla, Romain/P-9760-2016; Gavrilenko, Igor/M-8260-2015; Gauzzi, Paolo/D-2615-2009; Maleev, Victor/R-4140-2016; Camarri, Paolo/M-7979-2015; Mindur, Bartosz/A-2253-2017; Fabbri, Laura/H-3442-2012; Gutierrez, Phillip/C-1161-2011; Gerbaudo, Davide/J-4536-2012; Solodkov, Alexander/B-8623-2017; Brooks, William/C-8636-2013; Nechaeva, Polina/N-1148-2015; Vykydal, Zdenek/H-6426-2016; Fedin, Oleg/H-6753-2016; Snesarev, Andrey/H-5090-2013; Ventura, Andrea/A-9544-2015; Kantserov, Vadim/M-9761-2015; Villa, Mauro/C-9883-2009; Chiarelli, Giorgio/E-8953-2012; BESSON, NATHALIE/L-6250-2015; Vanadia, Marco/K-5870-2016; Ippolito, Valerio/L-1435-2016; Maneira, Jose/D-8486-2011; Savarala, Hari Krishna/A-3516-2015; Doyle, Anthony/C-5889-2009; Di Domenico, Antonio/G-6301-2011; Gonzalez de la Hoz, Santiago/E-2494-2016; Guo, Jun/O-5202-2015; Aguilar Saavedra, Juan Antonio/F-1256-2016; Leyton, Michael/G-2214-2016; Jones, Roger/H-5578-2011; Boyko, Igor/J-3659-2013; Vranjes Milosavljevic, Marija/F-9847-2016; Chekulaev, Sergey/O-1145-2015; Zhukov, Konstantin/M-6027-2015; SULIN, VLADIMIR/N-2793-2015; Smirnova, Oxana/A-4401-2013; Gladilin, Leonid/B-5226-2011; Tikhomirov, Vladimir/M-6194-2015; Livan, Michele/D-7531-2012; Carvalho, Joao/M-4060-2013; White, Ryan/E-2979-2015; Mashinistov, Ruslan/M-8356-2015; Warburton, Andreas/N-8028-2013; spagnolo, stefania/A-6359-2012; Buttar, Craig/D-3706-2011; Mitsou, Vasiliki/D-1967-2009; Tripiana, Martin/H-3404-2015; Zaitsev, Alexandre/B-8989-2017; Martinez, Mario /I-3549-2015; Peleganchuk, Sergey/J-6722-2014; Li, Liang/O-1107-2015; Monzani, Simone/D-6328-2017; Kuday, Sinan/C-8528-2014; OI Prokoshin, Fedor/0000-0001-6389-5399; Stabile, Alberto/0000-0002-6868-8329; Kukla, Romain/0000-0002-1140-2465; Gauzzi, Paolo/0000-0003-4841-5822; Camarri, Paolo/0000-0002-5732-5645; Mindur, Bartosz/0000-0002-5511-2611; Fabbri, Laura/0000-0002-4002-8353; Gerbaudo, Davide/0000-0002-4463-0878; Solodkov, Alexander/0000-0002-2737-8674; Brooks, William/0000-0001-6161-3570; Vykydal, Zdenek/0000-0003-2329-0672; Ventura, Andrea/0000-0002-3368-3413; Kantserov, Vadim/0000-0001-8255-416X; Villa, Mauro/0000-0002-9181-8048; Chiarelli, Giorgio/0000-0001-9851-4816; Vanadia, Marco/0000-0003-2684-276X; Ippolito, Valerio/0000-0001-5126-1620; Maneira, Jose/0000-0002-3222-2738; Savarala, Hari Krishna/0000-0001-6593-4849; Doyle, Anthony/0000-0001-6322-6195; Di Domenico, Antonio/0000-0001-8078-2759; Gonzalez de la Hoz, Santiago/0000-0001-5304-5390; Guo, Jun/0000-0001-8125-9433; Aguilar Saavedra, Juan Antonio/0000-0002-5475-8920; Leyton, Michael/0000-0002-0727-8107; Jones, Roger/0000-0002-6427-3513; Boyko, Igor/0000-0002-3355-4662; Vranjes Milosavljevic, Marija/0000-0003-4477-9733; SULIN, VLADIMIR/0000-0003-3943-2495; Smirnova, Oxana/0000-0003-2517-531X; Gladilin, Leonid/0000-0001-9422-8636; Tikhomirov, Vladimir/0000-0002-9634-0581; Livan, Michele/0000-0002-5877-0062; Carvalho, Joao/0000-0002-3015-7821; White, Ryan/0000-0003-3589-5900; Mashinistov, Ruslan/0000-0001-7925-4676; Warburton, Andreas/0000-0002-2298-7315; spagnolo, stefania/0000-0001-7482-6348; Mitsou, Vasiliki/0000-0002-1533-8886; Zaitsev, Alexandre/0000-0002-4961-8368; Peleganchuk, Sergey/0000-0003-0907-7592; Li, Liang/0000-0001-6411-6107; Monzani, Simone/0000-0002-0479-2207; Kuday, Sinan/0000-0002-0116-5494; Prokofiev, Kirill/0000-0002-2177-6401 FU ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW, Austria; FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq, Brazil; FAPESP, Brazil; NSERC, Canada; NRC, Canada; CFI, Canada; CERN; CONICYT, Chile; CAS, China; MOST, China; NSFC, China; COLCIENCIAS, Colombia; MSMT CR, Czech Republic; MPO CR, Czech Republic; VSC CR, Czech Republic; DNRF, Denmark; DNSRC, Denmark; Lundbeck Foundation, Denmark; IN2P3-CNRS, France; CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, Germany; HGF, Germany; MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, Israel; I-CORE, Israel; Benoziyo Center, Israel; INFN, Italy; MEXT, Japan; JSPS, Japan; CNRST, Morocco; FOM, Netherlands; NWO, Netherlands; RCN, Norway; MNiSW, Poland; NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia, Russian Federation; NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS, Slovenia; MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC, Sweden; Wallenberg Foundation, Sweden; SERI, Switzerland; SNSF, Switzerland; Canton of Bern, Switzerland; Canton of Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE, United States of America; NSF, United States of America; BCKDF, Canada; Canada Council, Canada; CANARIE, Canada; CRC, Canada; Compute Canada, Canada; FQRNT, Canada; Ontario Innovation Trust, Canada; EPLANET, European Union; ERC, European Union; FP7, European Union; Horizon, European Union; Marie Sklodowska-Curie Actions, European Union; Investissements d'Avenir Labex, France; Idex, France; ANR, France; Region Auvergne, France; Fondation Partager le Savoir, France; DFG, Germany; AvH Foundation, Germany; Herakleitos program - EU-ESF; Thales program - EU-ESF; Aristeia program - EU-ESF; Greek NSRF; BSF, Israel; GIF, Israel; Minerva, Israel; BRF, Norway; Royal Society, United Kingdom; Leverhulme Trust, United Kingdom FX We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC, Denmark and Lundbeck Foundation, Denmark; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, the Canada Council, CANARIE, CRC, Compute Canada, FQRNT, and the Ontario Innovation Trust, Canada; EPLANET, ERC, FP7, Horizon 2020 and Marie Sklodowska-Curie Actions, European Union; Investissements d'Avenir Labex and Idex, ANR, Region Auvergne and Fondation Partager le Savoir, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF; BSF, GIF and Minerva, Israel; BRF, Norway; the Royal Society and Leverhulme Trust, United Kingdom. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide. NR 83 TC 23 Z9 23 U1 19 U2 92 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD NOV 5 PY 2015 VL 92 IS 9 AR 092004 DI 10.1103/PhysRevD.92.092004 PG 30 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CV3LM UT WOS:000364160700001 ER PT J AU Berges, J Boguslavski, K Schlichting, S Venugopalan, R AF Berges, J. Boguslavski, K. Schlichting, S. Venugopalan, R. TI Nonequilibrium fixed points in longitudinally expanding scalar theories: Infrared cascade, Bose condensation, and a challenge for kinetic theory SO PHYSICAL REVIEW D LA English DT Article ID HEAVY-ION COLLISIONS; GLUON DISTRIBUTION-FUNCTIONS; BOTTOM-UP THERMALIZATION; COLOR GLASS CONDENSATE; QUANTUM-FIELD THEORY; EINSTEIN CONDENSATION; TRANSVERSE-MOMENTUM; BOLTZMANN-EQUATION; NUCLEAR COLLISIONS; BESSEL-FUNCTIONS AB In [Phys. Rev. Lett. 114, 061601 (2015)], we reported on a new universality class for longitudinally expanding systems, encompassing strongly correlated non-Abelian plasmas and N-component self-interacting scalar field theories. Using classical-statistical methods, we showed that these systems share the same self-similar scaling properties for a wide range of momenta in a limit where particles are weakly coupled but their occupancy is high. Here we significantly expand on our previous work and delineate two further self-similar regimes. One of these occurs in the deep infrared (IR) regime of very high occupancies, where the nonequilibrium dynamics leads to the formation of a Bose-Einstein condensate. The universal IR scaling exponents and the spectral index characterizing the isotropic IR distributions are described by an effective theory derived from a systematic large-N expansion at next-to-leading order. Remarkably, this effective theory can be cast as a vertex-resummed kinetic theory. The other novel self-similar regime occurs close to the hard physical scale of the theory, and sets in only at later times. We argue that the important role of the infrared dynamics ensures that key features of our results for scalar and gauge theories cannot be reproduced consistently in conventional kinetic theory frameworks. C1 [Berges, J.; Boguslavski, K.] Heidelberg Univ, Inst Theoret Phys, D-69120 Heidelberg, Germany. [Berges, J.] GSI Helmholtzzentrum Schwerionenforsch GmbH, EMMI, D-64291 Darmstadt, Germany. [Schlichting, S.; Venugopalan, R.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Boguslavski, K (reprint author), Heidelberg Univ, Inst Theoret Phys, Philosophenweg 16, D-69120 Heidelberg, Germany. EM k.boguslavski@thphys.uni-heidelberg.de FU HGS-HIRe for FAIR; HGSFP; Department of Energy; German Research Foundation (DFG); U.S. Department of Energy under DOE [DE-SC0012704]; Brookhaven Science Associates; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]; Ministry of Science, Research and the Arts Baden-Wurttemberg; Universities of the State of Baden-Wurttemberg, Germany FX K. B. thanks HGS-HIRe for FAIR and HGSFP for support, and Brookhaven National Laboratory and its Nuclear Theory group for hospitality during part of this work. R. V. thanks Heidelberg University for hospitality and support as an Excellence Professor, and the ExtreMe Matter Institute EMMI for support as an EMMI Visiting Professor. K. B., S. S. and R. V. thank the Institute for Nuclear Theory at the University of Washington for its hospitality and the Department of Energy for partial support during the completion of this work.; This work was supported in part by the German Research Foundation (DFG). S. S. and R. V. are supported by the U.S. Department of Energy under DOE Contract No. DE-SC0012704. S. S. gratefully acknowledges a Goldhaber Distinguished Fellowship from Brookhaven Science Associates. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. This work was also performed on the computational resource bwUniCluster funded by the Ministry of Science, Research and the Arts Baden-Wurttemberg and the Universities of the State of Baden-Wurttemberg, Germany, within the framework program bwHPC. We gratefully acknowledge their support. NR 100 TC 7 Z9 7 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD NOV 5 PY 2015 VL 92 IS 9 AR 096006 DI 10.1103/PhysRevD.92.096006 PG 25 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CV3LM UT WOS:000364160700011 ER PT J AU DiFranzo, A Hooper, D AF DiFranzo, Anthony Hooper, Dan TI Searching for MeV-scale gauge bosons with IceCube SO PHYSICAL REVIEW D LA English DT Article ID GAMMA-RAY BURSTS; ELECTROWEAK SYMMETRY-BREAKING; PEV NEUTRINOS; PHYSICS; MODELS; PHENOMENOLOGY; VIOLATION; Z'; E6 AB Light gauge bosons can lead to resonant interactions between high-energy astrophysical neutrinos and the cosmic neutrino background. We study this possibility in detail, considering the ability of IceCube to probe such scenarios. We find the most dramatic effects in models with a very light Z' (m(Z') less than or similar to 10 MeV), which can induce a significant absorption feature at E-nu similar to 5-10 TeV x (m(Z')/MeV)(2). In the case of the inverted hierarchy and a small sum of neutrino masses, such a light Z' can result in a broad and deep spectral feature at similar to 0.1-10 PeV x (m(Z')/MeV)(2). Current IceCube data already excludes this case for a Z' lighter than a few MeVand couplings greater than g similar to 10(-4). We emphasize that the ratio of neutrino flavors observed by IceCube can be used to further increase their sensitivity to Z' models and to other exotic physics scenarios. C1 [DiFranzo, Anthony; Hooper, Dan] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. [DiFranzo, Anthony] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Hooper, Dan] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. RP DiFranzo, A (reprint author), Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. OI DiFranzo, Anthony/0000-0002-3151-9150 FU US Department of Energy [DE-FG02-13ER41958]; U.S. Department of Energy [DE-AC02-07CH11359]; Fermilab Graduate Student Research Program in Theoretical Physics; NSF [PHY-1316792] FX This work has been supported by the US Department of Energy under Contract No. DE-FG02-13ER41958. Fermilab is operated by Fermi Research Alliance, LLC, under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy. A. D. is supported by the Fermilab Graduate Student Research Program in Theoretical Physics and in part by NSF Grant No. PHY-1316792. NR 125 TC 8 Z9 8 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD NOV 5 PY 2015 VL 92 IS 9 AR 095007 DI 10.1103/PhysRevD.92.095007 PG 10 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CV3LM UT WOS:000364160700008 ER PT J AU Sternberg, SH LaFrance, B Kaplan, M Doucina, JA AF Sternberg, Samuel H. LaFrance, Benjamin Kaplan, Matias Doucina, Jennifer A. TI Conformational control of DNA target cleavage by CRISPR-Cas9 SO NATURE LA English DT Article ID STAPHYLOCOCCUS-AUREUS CAS9; R-LOOP FORMATION; CRYSTAL-STRUCTURE; ENDONUCLEASE CAS9; ADAPTIVE IMMUNITY; GUIDE RNA; COMPLEX; RECOGNITION; SPECIFICITY; SYSTEMS AB Cas9 is an RNA-guided DNA endonuclease that targets foreign DNA for destruction as part of a bacterial adaptive immune system mediated by clustered regularly interspaced short palindromic repeats (CRISPR)(1,2). Together with single-guide RNAs3, Cas9 also functions as a powerful genome engineering tool in plants and animals(4-6), and efforts are underway to increase the efficiency and specificity of DNA targeting for potential therapeutic applicatione(7,8). Studies of off-target effects have shown that DNA binding is far more promiscuous than DNA cleavage(9-11), yet the molecular cues that govern strand scission have not been elucidated. Here we show that the conformational state of the HNH nuclease domain directly controls DNA cleavage activity. Using intramolecular Forster resonance energy transfer experiments to detect relative orientations of the Cas9 catalytic domains when associated with on- and off-target DNA, we find that DNA cleavage efficiencies scale with the extent to which the HNH domain samples an activated conformation. We furthermore uncover a surprising mode of allosteric communication that ensures concerted firing of both Cas9 nuclease domains. Our results highlight a proofreading mechanism beyond initial protospacer adjacent motif (PAM) recognition(12) and RNA-DNA base-pairing(3) that serves as a final specificity checkpoint before DNA double-strand break formation. C1 [Sternberg, Samuel H.; Doucina, Jennifer A.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [LaFrance, Benjamin; Doucina, Jennifer A.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Kaplan, Matias; Doucina, Jennifer A.] Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA. [Doucina, Jennifer A.] Univ Calif Berkeley, Innovat Genom Initiat, Berkeley, CA 94720 USA. [Doucina, Jennifer A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Doucina, JA (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM doudna@berkeley.edu FU National Science Foundation; National Defense Science & Engineering Graduate Research Fellowship programs; National Institutes of Health National Research Service Award Training Grant [T32GM007232] FX We thank D. Taylor and J. Chen for discussions, M. O'Connell, L. Ma, N. Ma, and K. Zhou for technical assistance, and members of the Doudna laboratory for reading the manuscript. S.H.S. acknowledges support from the National Science Foundation and National Defense Science & Engineering Graduate Research Fellowship programs. B.L. acknowledges support from a National Institutes of Health National Research Service Award Training Grant (T32GM007232). J.A.D. is an Investigator of the Howard Hughes Medical Institute. NR 29 TC 42 Z9 42 U1 12 U2 92 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 EI 1476-4687 J9 NATURE JI Nature PD NOV 5 PY 2015 VL 527 IS 7576 BP 110 EP 113 DI 10.1038/nature15544 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CV4XV UT WOS:000364270700053 PM 26524520 ER PT J AU Yip, FL Palacios, A Martin, F Rescigno, TN McCurdy, CW AF Yip, F. L. Palacios, A. Martin, F. Rescigno, T. N. McCurdy, C. W. TI Two-photon double ionization of atomic beryllium with ultrashort laser pulses SO PHYSICAL REVIEW A LA English DT Article ID ELECTRON DYNAMICS AB We investigate the two-photon double ionization of beryllium atom induced by ultrashort pulses. We use a time-dependent formalism to evaluate the ionization amplitudes and generalized cross sections for the ejection of the 2s(2) valence shell electrons in the presence of a fully occupied 1s(2) frozen core shell. The relative contributions of the two-photon direct and sequential process are systematically explored by varying both pulse duration and central frequency. The energy and angular differential ionization yields reveal the signatures of both mechanisms, as well as the role of electron correlation in both the single and double ionization continua. In contrast with previous results on the helium atom, the presence of an electronic core strongly affects the final state leading to back-to-back electron emission even in the a priori less correlated two-photon sequential mechanism. In particular, a dominant pathway via excitation ionization through the Be+(2p) determines the profiles and pulse-duration dependencies of the energy and angle differential yields. C1 [Yip, F. L.] Calif Maritime Acad, Dept Sci & Math, Vallejo, CA 94590 USA. [Palacios, A.; Martin, F.] Univ Autonoma Madrid, Dept Quim, E-28049 Madrid, Spain. [Martin, F.] Inst Madrileno Estudios Avanzados Nanociencia, Madrid 28049, Spain. [Martin, F.] Univ Autonoma Madrid, Condensed Matter Phys Ctr IFIMAC, E-28049 Madrid, Spain. [Rescigno, T. N.; McCurdy, C. W.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Chem Sci, Berkeley, CA 94720 USA. [McCurdy, C. W.] Univ Calif Davis, Dept Chem, Davis, CA 95616 USA. RP Yip, FL (reprint author), Calif Maritime Acad, Dept Sci & Math, Vallejo, CA 94590 USA. RI Palacios, Alicia/J-6823-2012; Martin, Fernando/C-3972-2014 OI Palacios, Alicia/0000-0001-6531-9926; Martin, Fernando/0000-0002-7529-925X FU US Department of Energy Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences [DE-AC02-05CH11231]; US Department of Energy [DESC0007182]; National Science Foundation [PHY-1509971]; European Research Council XCHEM [290853]; European grant MC-ITN CORINF; European grant MC-RG ATTOTREND FP7-PEOPLE-268284; European COST Action XLIC CM1204; MINECO Project [FIS2013-42002-R]; ERA-Chemistry Project [PIM2010EEC-00751] FX This material contains work performed at Lawrence Berkeley National Laboratory supported by the US Department of Energy Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences Contract DE-AC02-05CH11231, and work at the University of California Davis supported by US Department of Energy Grant No. DESC0007182. Work at Cal Maritime is supported by the National Science Foundation, Grant No. PHY-1509971. Work at the Autonoma de Madrid was supported by the Advanced Grant of the European Research Council XCHEM 290853, the European grants MC-ITN CORINF and MC-RG ATTOTREND FP7-PEOPLE-268284, the European COST Action XLIC CM1204, the MINECO Project No. FIS2013-42002-R and the ERA-Chemistry Project PIM2010EEC-00751. We acknowledge computer time at the Centro de Computacion Cientifica CCC-UAM and MareNostrum from Barcelona Supercomputing Center. NR 37 TC 2 Z9 2 U1 2 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 EI 1094-1622 J9 PHYS REV A JI Phys. Rev. A PD NOV 5 PY 2015 VL 92 IS 5 AR 053404 DI 10.1103/PhysRevA.92.053404 PG 11 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA CV3JU UT WOS:000364156300005 ER PT J AU Fritsch, K Ehlers, G Rule, KC Habicht, K Ramazanoglu, M Dabkowska, HA Gaulin, BD AF Fritsch, K. Ehlers, G. Rule, K. C. Habicht, K. Ramazanoglu, M. Dabkowska, H. A. Gaulin, B. D. TI Quantum phase transitions and decoupling of magnetic sublattices in the quasi-two-dimensional Ising magnet Co3V2O8 in a transverse magnetic field SO PHYSICAL REVIEW B LA English DT Article ID KAGOME-STAIRCASE LATTICE AB The application of a magnetic field transverse to the easy axis, Ising direction in the quasi-two-dimensional kagome staircase magnet, Co3V2O8, induces three quantum phase transitions at low temperatures, ultimately producing a novel high field polarized state, with two distinct sublattices. New time-of-flight neutron scattering techniques, accompanied by large angular access, high magnetic field infrastructure allow the mapping of a sequence of ferromagnetic and incommensurate phases and their accompanying spin excitations. At least one of the transitions to incommensurate phases at mu H-0(c1) similar to 6.25 T and mu H-0(c2) similar to 7 T is discontinuous, while the final quantum critical point at mu H-0(c3) similar to 13 T is continuous. C1 [Fritsch, K.; Ramazanoglu, M.; Gaulin, B. D.] McMaster Univ, Dept Phys & Astron, Hamilton, ON L8S 4M1, Canada. [Fritsch, K.; Rule, K. C.; Habicht, K.] Helmholtz Zentrum Berlin Mat & Energie GmbH, D-14109 Berlin, Germany. [Ehlers, G.] Oak Ridge Natl Lab, Quantum Condensed Matter Div, Oak Ridge, TN 37831 USA. [Dabkowska, H. A.; Gaulin, B. D.] Brockhouse Inst Mat Res, Hamilton, ON L8S 4M1, Canada. [Gaulin, B. D.] Canadian Inst Adv Res, Toronto, ON M5G 1Z8, Canada. RP Fritsch, K (reprint author), McMaster Univ, Dept Phys & Astron, Hamilton, ON L8S 4M1, Canada. RI Instrument, CNCS/B-4599-2012; Ehlers, Georg/B-5412-2008; Habicht, Klaus/K-3636-2013 OI Ehlers, Georg/0000-0003-3513-508X; Habicht, Klaus/0000-0002-9915-7221 FU NSERC of Canada; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy FX We wish to thank L. Balents, M. J. P. Gingras, P. Henelius, O. Petrenko, and L. Savary for helpful discussions. Work at McMaster University was supported by NSERC of Canada. The research at Oak Ridge National Laboratory's Spallation Neutron Source was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. The data were reduced using Mantid [33] and analysed using the HORACE software package [34]. NR 32 TC 3 Z9 3 U1 5 U2 29 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD NOV 5 PY 2015 VL 92 IS 18 AR 180404 DI 10.1103/PhysRevB.92.180404 PG 5 WC Physics, Condensed Matter SC Physics GA CV3KU UT WOS:000364158900003 ER PT J AU Vogel, T Perez, D AF Vogel, Thomas Perez, Danny TI Towards an Optimal Flow: Density-of-States-Informed Replica-Exchange Simulations SO PHYSICAL REVIEW LETTERS LA English DT Article ID PARALLEL TEMPERING SIMULATIONS; TEMPERATURE MOLECULAR-DYNAMICS; COOLING RATE DEPENDENCE; FREE-ENERGY; ALGORITHM; CRYSTALLIZATION; SOLIDIFICATION; LANDSCAPE; SILVER AB Replica exchange (RE) is one of the most popular enhanced-sampling simulations technique in use today. Despite widespread successes, RE simulations can sometimes fail to converge in practical amounts of time, e.g., when sampling around phase transitions, or when a few hard-to-find configurations dominate the statistical averages. We introduce a generalized RE scheme, density-of-states-informed RE, that addresses some of these challenges. The key feature of our approach is to inform the simulation with readily available, but commonly unused, information on the density of states of the system as the RE simulation proceeds. This enables two improvements, namely, the introduction of resampling moves that actively move the system towards equilibrium and the continual adaptation of the optimal temperature set. As a consequence of these two innovations, we show that the configuration flow in temperature space is optimized and that the overall convergence of RE simulations can be dramatically accelerated. C1 [Vogel, Thomas; Perez, Danny] Los Alamos Natl Lab, Theoret Div T 1, Los Alamos, NM 87545 USA. RP Vogel, T (reprint author), Stetson Univ, Dept Phys, Deland, FL 32723 USA. EM tvogel@lanl.gov; danny_perez@lanl.gov FU U.S. Department of Energy through the Los Alamos National Laboratory (LANL)/LDRD Program; National Nuclear Security administration of the U.S. DOE [DE-AC52-06NA25396] FX This work was supported by the U.S. Department of Energy through the Los Alamos National Laboratory (LANL)/LDRD Program and used computing resources provided by the Los Alamos National Laboratory Institutional Computing Program. Los Alamos National Laboratory is operated by Los Alamos National Security, LLC, for the National Nuclear Security administration of the U.S. DOE under Contract No. DE-AC52-06NA25396. NR 45 TC 2 Z9 2 U1 2 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 5 PY 2015 VL 115 IS 19 AR 190602 DI 10.1103/PhysRevLett.115.190602 PG 5 WC Physics, Multidisciplinary SC Physics GA CV3MG UT WOS:000364162700002 PM 26588368 ER PT J AU Bolmatov, D Zhernenkov, M Zav'yalov, D Tkachev, SN Cunsolo, A Cai, YQ AF Bolmatov, Dima Zhernenkov, Mikhail Zav'yalov, Dmitry Tkachev, Sergey N. Cunsolo, Alessandro Cai, Yong Q. TI The Frenkel Line: a direct experimental evidence for the new thermodynamic boundary SO SCIENTIFIC REPORTS LA English DT Article ID GLASS-FORMING LIQUIDS; CRITICAL-POINT; DYNAMICS; BEHAVIOR; UNIVERSAL; VISCOSITY; CROSSOVER; PRESSURE; SYSTEM; MATTER AB Supercritical fluids play a significant role in elucidating fundamental aspects of liquid matter under extreme conditions. They have been extensively studied at pressures and temperatures relevant to various industrial applications. However, much less is known about the structural behaviour of supercritical fluids and no structural crossovers have been observed in static compression experiments in any temperature and pressure ranges beyond the critical point. The structure of supercritical state is currently perceived to be uniform everywhere on the pressure-temperature phase diagram, and to change only in a monotonic way even moving around the critical point, not only along isotherms or isobars. Conversely, we observe structural crossovers for the first time in a deeply supercritical sample through diffraction measurements in a diamond anvil cell and discover a new thermodynamic boundary on the pressure-temperature diagram. We explain the existence of these crossovers in the framework of the phonon theory of liquids using molecular dynamics simulations. The obtained results are of prime importance since they imply a global reconsideration of the mere essence of the supercritical phase. Furthermore, this discovery may pave the way to new unexpected applications and to the exploration of exotic behaviour of confined fluids relevant to geo- and planetary sciences. C1 [Bolmatov, Dima; Zhernenkov, Mikhail; Cunsolo, Alessandro; Cai, Yong Q.] Brookhaven Natl Lab, Natl Synchrotron Light Source 2, Upton, NY 11973 USA. [Zav'yalov, Dmitry] Volgograd State Tech Univ, Volgograd 400005, Russia. [Tkachev, Sergey N.] Univ Chicago, Ctr Adv Radiat Sources, Chicago, IL 60637 USA. RP Bolmatov, D (reprint author), Brookhaven Natl Lab, Natl Synchrotron Light Source 2, Upton, NY 11973 USA. EM d.bolmatov@gmail.com; zherne@bnl.gov RI Zavyalov, Dmitriy/N-7609-2015; OI Zhernenkov, Mikhail/0000-0003-3604-0672 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0012704, DE-AC02-06CH11357]; National Science Foundation - Earth Sciences [EAR-0622171]; Department of Energy - Geosciences [DE-FG02-94ER14466]; State of Illinois FX The work at the National Synchrotron Light Source-II, Brookhaven National Laboratory, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-SC0012704. Synchrotron experiment was performed at GeoSoilEnviroCARS (Sector 13), Advanced Photon Source (APS), Argonne National Laboratory. GeoSoilEnviroCARS is supported by the National Science Foundation - Earth Sciences (EAR-0622171), Department of Energy - Geosciences (DE-FG02-94ER14466) and the State of Illinois. Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357 We are grateful to Neil Ashcroft, Joel Lebowitz, Giovanni Jona-Lasinio, Jerome Percus, John Wheeler, Edvard Musaev, Oleg Kogan, Gilberto Fabbris, Ivar Martin, Colin Wilson and Zeb Kramer for inspiring discussions. NR 56 TC 4 Z9 4 U1 7 U2 22 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD NOV 5 PY 2015 VL 5 AR 15850 DI 10.1038/srep15850 PG 10 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CV3IA UT WOS:000364151300001 PM 26537668 ER PT J AU Li, N Yadav, SK Liu, XY Wang, J Hoagland, RG Mara, N Misra, A AF Li, N. Yadav, S. K. Liu, X. -Y. Wang, J. Hoagland, R. G. Mara, N. Misra, A. TI Quantification of dislocation nucleation stress in TiN through high-resolution in situ indentation experiments and first principles calculations SO SCIENTIFIC REPORTS LA English DT Article ID MINIMUM ENERGY PATHS; ELASTIC BAND METHOD; INCIPIENT PLASTICITY; SINGLE-CRYSTAL; CRACK-TIP; DEFORMATION MECHANISMS; ATOMISTIC SIMULATIONS; BIMETAL INTERFACES; TITANIUM NITRIDE; TEM OBSERVATIONS AB Through in situ indentation of TiN in a high-resolution transmission electron microscope, the nucleation of full as well as partial dislocations has been observed from {001} and {111} surfaces, respectively. The critical elastic strains associated with the nucleation of the dislocations were analyzed from the recorded atomic displacements, and the nucleation stresses corresponding to the measured critical strains were computed using density functional theory. The resolved shear stress was estimated to be 13.8 GPa for the partial dislocation 1/6 <110> {111} and 6.7 GPa for the full dislocation 1/2 <110> {110}. Such an approach of quantifying nucleation stresses for defects via in situ high-resolution experiment coupled with density functional theory calculation may be applied to other unit processes. C1 [Li, N.; Mara, N.] Los Alamos Natl Lab, MPA CINT, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA. [Yadav, S. K.; Liu, X. -Y.; Hoagland, R. G.] Los Alamos Natl Lab, MST 8, Mat Sci & Technol Div, Los Alamos, NM 87545 USA. [Wang, J.] Univ Nebraska, Dept Mech & Mat Engn, Lincoln, NE 68583 USA. [Misra, A.] Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA. RP Li, N (reprint author), Los Alamos Natl Lab, MPA CINT, Mat Phys & Applicat Div, POB 1663, Los Alamos, NM 87545 USA. EM nanli@lanl.gov; xyliu@lanl.gov; jianwang@unl.edu RI Wang, Jian/F-2669-2012; Li, Nan /F-8459-2010; Yadav, Satyesh/M-6588-2014 OI Wang, Jian/0000-0001-5130-300X; Li, Nan /0000-0002-8248-9027; FU US Department of Energy, Office of Science, Office of Basic Energy Sciences; U.S. Department of Energy [DE-AC52-06NA25396]; U.S. Department of Energy (DOE) Office of Science by Los Alamos National Laboratory [DE-AC52-06NA25396]; Sandia National Laboratories [DE-AC04-94AL85000] FX The authors thank insightful discussions with Prof. J.P. Hirth. This work was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences. LANL is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under Contract No. DE-AC52-06NA25396. This work was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science by Los Alamos National Laboratory (Contract DE-AC52-06NA25396) and Sandia National Laboratories (Contract DE-AC04-94AL85000). NR 54 TC 0 Z9 0 U1 7 U2 24 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD NOV 5 PY 2015 VL 5 AR 15813 DI 10.1038/srep15813 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CV3FY UT WOS:000364145500001 PM 26537338 ER PT J AU Sun, ZQ Song, G Ilavsky, J Ghosh, G Liaw, PK AF Sun, Zhiqian Song, Gian Ilavsky, Jan Ghosh, Gautam Liaw, Peter K. TI Nano-sized precipitate stability and its controlling factors in a NiAl-strengthened ferritic alloy SO SCIENTIFIC REPORTS LA English DT Article ID COAL POWER-PLANTS; CREEP-RESISTANT STEELS; MULTICOMPONENT ALLOYS; COARSENING KINETICS; HIGH-TEMPERATURES; ALPHA-IRON; IMPURITY DIFFUSIVITIES; MECHANICAL-PROPERTIES; X-RAY; FE AB Coherent B2-ordered NiAl-type precipitates have been used to reinforce solid-solution body-centered-cubic iron for high-temperature application in fossil-energy power plants. In this study, we investigate the stability of nano-sized precipitates in a NiAl-strengthened ferritic alloy at 700950 degrees C using ultra-small angle X-ray scattering and electron microscopies. Here we show that the coarsening kinetics of NiAl-type precipitates is in excellent agreement with the ripening model in multicomponent alloys. We further demonstrate that the interfacial energy between the matrix and NiAl-type precipitates is strongly dependent on differences in the matrix/precipitate compositions. Our results profile the ripening process in multicomponent alloys by illustrating controlling factors of interfacial energy, diffusivities, and element partitioning. The study provides guidelines to design and develop high-temperature alloys with stable microstructures for long-term service. C1 [Sun, Zhiqian; Song, Gian; Liaw, Peter K.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Ilavsky, Jan] Argonne Natl Lab, Xray Sci Div, Lemont, IL 60439 USA. [Ghosh, Gautam] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. RP Liaw, PK (reprint author), Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. EM pliaw@utk.edu RI Song, Gian/F-8880-2016; Ilavsky, Jan/D-4521-2013 OI Song, Gian/0000-0001-7462-384X; Ilavsky, Jan/0000-0003-1982-8900 FU Department of Energy (DOE), Office of Fossil Energy Program [DE-09NT0008089, DE-FE0005868, DE-FE-0011194, DE-FE-0024054]; National Science Foundation [NSF/CHE-1346572]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX The research is supported by the Department of Energy (DOE), Office of Fossil Energy Program, under Grants DE-09NT0008089, DE-FE0005868, DE-FE-0011194, and DE-FE-0024054 with Mr. Richard Dunst, Mr. Vito Cedro, Dr. Patricia Rawls, Mr. Steven Markovich, and Dr. Jessica Mullen as the program managers. The ChemMatCARS Sector 15, located at the Advanced Photon Source of the Argonne National Laboratory, is principally supported by the National Science Foundation under grant number NSF/CHE-1346572. The use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 65 TC 4 Z9 4 U1 1 U2 14 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD NOV 5 PY 2015 VL 5 AR 16081 DI 10.1038/srep16081 PG 9 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CV3IG UT WOS:000364152000001 PM 26537060 ER PT J AU Ye, JC Ong, MT Heo, TW Campbell, PG Worsley, MA Liu, YY Shin, SJ Charnvanichborikarn, S Matthews, MJ Bagge-Hansen, M Lee, JRI Wood, BC Wang, YM AF Ye, Jianchao Ong, Mitchell T. Heo, Tae Wook Campbell, Patrick G. Worsley, Marcus A. Liu, Yuanyue Shin, Swanee J. Charnvanichborikarn, Supakit Matthews, Manyalibo J. Bagge-Hansen, Michael Lee, Jonathan R. I. Wood, Brandon C. Wang, Y. Morris TI Universal roles of hydrogen in electrochemical performance of graphene: high rate capacity and atomistic origins SO SCIENTIFIC REPORTS LA English DT Article ID LITHIUM ION BATTERIES; ENERGY-STORAGE; CARBON MATERIALS; GRAPHITE; ABSORPTION; DEFECTS; INTERCALATION; ADSORPTION; AEROGELS; OXIDE AB Atomic hydrogen exists ubiquitously in graphene materials made by chemical methods. Yet determining the effect of hydrogen on the electrochemical performance of graphene remains a significant challenge. Here we report the experimental observations of high rate capacity in hydrogen-treated 3-dimensional (3D) graphene nanofoam electrodes for lithium ion batteries. Structural and electronic characterization suggests that defect sites and hydrogen play synergistic roles in disrupting sp2 graphene to facilitate fast lithium transport and reversible surface binding, as evidenced by the fast charge-transfer kinetics and increased capacitive contribution in hydrogen-treated 3D graphene. In concert with experiments, multiscale calculations reveal that defect complexes in graphene are prerequisite for low-temperature hydrogenation, and that the hydrogenation of defective or functionalized sites at strained domain boundaries plays a beneficial role in improving rate capacity by opening gaps to facilitate easier Li penetration. Additional reversible capacity is provided by enhanced lithium binding near hydrogen-terminated edge sites. These findings provide qualitative insights in helping the design of graphene-based materials for high-power electrodes. C1 [Ye, Jianchao; Ong, Mitchell T.; Heo, Tae Wook; Campbell, Patrick G.; Worsley, Marcus A.; Liu, Yuanyue; Shin, Swanee J.; Charnvanichborikarn, Supakit; Matthews, Manyalibo J.; Bagge-Hansen, Michael; Lee, Jonathan R. I.; Wood, Brandon C.; Wang, Y. Morris] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA. RP Wood, BC (reprint author), Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA. EM brandonwood@llnl.gov; ymwang@llnl.gov RI Wang, Yinmin (Morris)/F-2249-2010; OI Worsley, Marcus/0000-0002-8012-7727; Campbell, Patrick/0000-0003-0167-4624 FU US Department of Energy by LLNL [DE-AC52-07NA27344]; Laboratory Directed Research and Development (LDRD) programs of LLNL [12-ERD-053, 15-ERD-022] FX The work was performed under the auspices of the US Department of Energy by LLNL under contract No. DE-AC52-07NA27344. The project was supported by the Laboratory Directed Research and Development (LDRD) programs of LLNL (12-ERD-053 and 15-ERD-022). The authors wish to thank Drs. J. Biener, S.O. Kucheyev, J. Lewicki, and H.E. Mason for helpful discussion. NR 49 TC 4 Z9 4 U1 6 U2 32 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD NOV 5 PY 2015 VL 5 AR 16190 DI 10.1038/srep16190 PG 13 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CV3CJ UT WOS:000364135500001 PM 26536830 ER PT J AU Sutter, M Roberts, EW Gonzalez, RC Bates, C Dawoud, S Landry, K Cannon, GC Heinhorst, S Kerfeld, CA AF Sutter, Markus Roberts, Evan W. Gonzalez, Raul C. Bates, Cassandra Dawoud, Salma Landry, Kimberly Cannon, Gordon C. Heinhorst, Sabine Kerfeld, Cheryl A. TI Structural Characterization of a Newly Identified Component of alpha-Carboxysomes: The AAA plus Domain Protein CsoCbbQ SO SCIENTIFIC REPORTS LA English DT Article ID BISPHOSPHATE CARBOXYLASE/OXYGENASE RUBISCO; FORM II RUBISCO; THIOBACILLUS-NEAPOLITANUS; CARBONIC-ANHYDRASE; RIBULOSE-1,5-BISPHOSPHATE CARBOXYLASE/OXYGENASE; HALOTHIOBACILLUS-NEAPOLITANUS; LOCATED DOWNSTREAM; ESCHERICHIA-COLI; INORGANIC CARBON; SHELL PROTEIN AB Carboxysomes are bacterial microcompartments that enhance carbon fixation by concentrating ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) and its substrate CO2 within a proteinaceous shell. They are found in all cyanobacteria, some purple photoautotrophs and many chemoautotrophic bacteria. Carboxysomes consist of a protein shell that encapsulates several hundred molecules of RuBisCO, and contain carbonic anhydrase and other accessory proteins. Genes coding for carboxysome shell components and the encapsulated proteins are typically found together in an operon. The a-carboxysome operon is embedded in a cluster of additional, conserved genes that are presumably related to its function. In many chemoautotrophs, products of the expanded carboxysome locus include CbbO and CbbQ, a member of the AAA+ domain superfamily. We bioinformatically identified subtypes of CbbQ proteins and show that their genes frequently co-occur with both Form IA and Form II RuBisCO. The alpha-carboxysome-associated ortholog, CsoCbbQ, from Halothiobacillus neapolitanus forms a hexamer in solution and hydrolyzes ATP. The crystal structure shows that CsoCbbQ is a hexamer of the typical AAA+ domain; the additional C-terminal domain, diagnostic of the CbbQ subfamily, structurally fills the inter-monomer gaps, resulting in a distinctly hexagonal shape. We show that CsoCbbQ interacts with CsoCbbO and is a component of the carboxysome shell, the first example of ATPase activity associated with a bacterial microcompartment. C1 [Sutter, Markus; Kerfeld, Cheryl A.] Michigan State Univ, MSU DOE Plant Res Lab, E Lansing, MI 48824 USA. [Sutter, Markus; Gonzalez, Raul C.; Kerfeld, Cheryl A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Roberts, Evan W.; Bates, Cassandra; Dawoud, Salma; Landry, Kimberly; Cannon, Gordon C.; Heinhorst, Sabine] Univ So Mississippi, Dept Chem & Biochem, Hattiesburg, MS 39406 USA. [Kerfeld, Cheryl A.] Univ Calif Berkeley, Dept Plant & Microbial Biol, Berkeley, CA 94720 USA. [Kerfeld, Cheryl A.] Michigan State Univ, Dept Biochem & Mol Biol, E Lansing, MI 48824 USA. RP Kerfeld, CA (reprint author), Michigan State Univ, MSU DOE Plant Res Lab, E Lansing, MI 48824 USA. EM ckerfeld@lbl.gov FU US Department of Energy, Basic Energy Sciences [DE-FG02-91ER20021]; National Science Foundation [MCB-1244534]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX Support for this work was provided by the US Department of Energy, Basic Energy Sciences, DE-FG02-91ER20021 with infrastructure support from MSU AgBio Research (CAK, CRG and MS) and by National Science Foundation grant MCB-1244534 (SH and GCC). The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 54 TC 4 Z9 4 U1 3 U2 10 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD NOV 5 PY 2015 VL 5 AR 16243 DI 10.1038/srep16243 PG 14 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CV3EG UT WOS:000364140700001 PM 26538283 ER PT J AU Zhang, GM Zhou, ZJ Mo, K Wang, PH Miao, YB Li, SF Wang, M Liu, X Gong, MQ Almer, J Stubbins, JF AF Zhang, Guangming Zhou, Zhangjian Mo, Kun Wang, Pinghuai Miao, Yinbin Li, Shaofu Wang, Man Liu, Xiang Gong, Mengqiang Almer, Jonathan Stubbins, James F. TI The microstructure and mechanical properties of Al-containing 9Cr ODS ferritic alloy SO JOURNAL OF ALLOYS AND COMPOUNDS LA English DT Article DE Synchrotron; Tensile deformation; Nanoscale particles; Microstructure ID DISPERSION-STRENGTHENED STEELS; OXIDE DISPERSION; FERRITIC/MARTENSITIC STEELS; MARTENSITIC STEEL; PRESSURIZED-WATER; PHASE-SEPARATION; DEGREES-C; TEMPERATURE; IRRADIATION; STABILITY AB In this study, a 9Cr oxide-dispersion strengthened (ODS) alloy with additional corrosion resistant element Al was fabricated by mechanical alloying (MA) and hot pressing (HP) to explore the impact of Al on the microstructure and mechanical property of a 9Cr ODS alloy. It is found that the Al completely dissolved into the Fe-Cr matrix after milling for 30 h. The minor phases in the Al-containing 9Cr ODS ferritic alloy were investigated by a high-energy X-ray, and were identified to be orthorhombic-YAlO3 (YAP), bcc-Y3Al5O12 (YAG), monoclinic-Al2Y4O9 (YAM), and hexagonal-YAlO3 (YAH). These phases were further confirmed by selected area diffraction pattern (SADP), energy dispersive spectroscopy (EDS), and high resolution transmission electron microscopy (HRTEM). In addition, their volume fractions were also calculated from the integrated intensities. According to the analysis of the particles and their formation sequences, the larger particles (greater than 100 nm) are identified as mainly YAG and Al2O3 particles, while the particles with small size (less than 30 nm) are likely primarily YAM, YAH, and YAP particles. The yielding strength (YS) and ultimate tensile strength (UTS) at RT are 563 MPa and 744 MPa, respectively, while the YS and UTS at 700 degrees C are 245 MPa and 276 MPa, respectively. Although the addition Al in ODS alloys decreases the strength at RT, the values at high temperature are similar to those obtained for 9Cr ODS alloys strengthened by fine Y-Ti-O particles. (C) 2015 Elsevier B.V. All rights reserved. C1 [Zhang, Guangming; Zhou, Zhangjian; Li, Shaofu; Wang, Man; Gong, Mengqiang] Univ Sci & Technol Beijing, Sch Mat Sci & Engn, Beijing 100083, Peoples R China. [Zhang, Guangming; Miao, Yinbin; Liu, Xiang; Stubbins, James F.] Univ Illinois, Dept Nucl Plasma & Radiol Engn, Urbana, IL 61801 USA. [Mo, Kun] Argonne Natl Lab, Nucl Engn Div, Argonne, IL 60439 USA. [Wang, Pinghuai] Southwestern Inst Phys, Fus Reactor & Mat Div, Chengdu 610041, Sichuan, Peoples R China. [Almer, Jonathan] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. RP Zhou, ZJ (reprint author), Univ Sci & Technol Beijing, Sch Mat Sci & Engn, Lab Special Ceram & Powder Met, Beijing 100083, Peoples R China. EM zhouzhj@mater.ustb.edu.cn OI Miao, Yinbin/0000-0002-3128-4275 FU National Magnetic Confinement Fusion Program of China [2015GB121006]; International S&T Cooperation Program of China [2013DFG62090]; U.S. DOE [DE-AC02-06CH11357] FX This work was supported by the National Magnetic Confinement Fusion Program of China under Grant No. 2015GB121006 and the International S&T Cooperation Program of China (No. 2013DFG62090). The authors also would like to express their thanks for Argonne National Laboratory's work supported by U.S. DOE under Contract No. DE-AC02-06CH11357. NR 42 TC 1 Z9 1 U1 5 U2 43 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-8388 EI 1873-4669 J9 J ALLOY COMPD JI J. Alloy. Compd. PD NOV 5 PY 2015 VL 648 BP 223 EP 228 DI 10.1016/j.jallcom.2015.06.214 PG 6 WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering GA CR2KN UT WOS:000361158300035 ER PT J AU Caro, M Beland, LK Samolyuk, GD Stoller, RE Caro, A AF Caro, M. Beland, L. K. Samolyuk, G. D. Stoller, R. E. Caro, A. TI Lattice thermal conductivity of multi-component alloys SO JOURNAL OF ALLOYS AND COMPOUNDS LA English DT Article DE High entropy alloys; Thermal transport; Thermal properties; Radiation resistance; Molecular dynamics simulations ID HIGH-ENTROPY ALLOY; MOLECULAR-DYNAMICS; PHASE AB High entropy alloys (HEA) have unique properties including the potential to be radiation tolerant. These materials with extreme disorder could resist damage because disorder, stabilized by entropy, is the equilibrium thermodynamic state. Disorder also reduces electron and phonon conductivity keeping the damage energy longer at the deposition locations, eventually favoring defect recombination. In the short time-scales related to thermal spikes induced by collision cascades, phonons become the relevant energy carrier. In this work, we perform a systematic study of phonon thermal conductivity in multiple component solid solutions represented by Lennard-Jones (LJ) potentials. We explore the conditions that minimize phonon mean free path via extreme alloy complexity, by varying the composition and the elements (differing in mass, atomic radii, and cohesive energy). We show that alloy complexity can be tailored to modify the scattering mechanisms that control energy transport in the phonon subsystem. Our analysis provides a qualitative guidance for the selection criteria used in the design of HEA alloys with low phonon thermal conductivity. (C) 2015 Elsevier B.V. All rights reserved. C1 [Caro, M.; Caro, A.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. [Beland, L. K.; Samolyuk, G. D.; Stoller, R. E.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN USA. RP Caro, M (reprint author), Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. EM magda@lanl.gov FU Project Energy Dissipation to Defect Evolution Center (EDDE), an Energy Frontier Research Center - U.S. Department of Energy, Office of Science [ERKCM99] FX Fruitful discussions with R.B. Schwarz are gratefully acknowledged. Work supported by the ERKCM99 Project Energy Dissipation to Defect Evolution Center (EDDE), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science. NR 23 TC 12 Z9 12 U1 10 U2 56 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-8388 EI 1873-4669 J9 J ALLOY COMPD JI J. Alloy. Compd. PD NOV 5 PY 2015 VL 648 BP 408 EP 413 DI 10.1016/j.jallcom.2015.06.035 PG 6 WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering GA CR2KN UT WOS:000361158300062 ER PT J AU Alsmadi, AM Bsoul, I Mahmood, SH Alnawashi, G Al-Dweri, FM Maswadeh, Y Welp, U AF Alsmadi, A. M. Bsoul, I. Mahmood, S. H. Alnawashi, G. Al-Dweri, F. M. Maswadeh, Y. Welp, U. TI Magnetic study of M-type Ru-Ti doped strontium hexaferrite nanocrystalline particles SO JOURNAL OF ALLOYS AND COMPOUNDS LA English DT Article DE Strontium hexaferrite; Ru-Ti substitution; ZFC and FC curves; Magnetic properties; Rietveld refinement; Ball milling ID M-TYPE BARIUM; FERRITE NANOPARTICLES; FE/BA RATIO; CO; POWDERS; COMBUSTION; CITRATE; MICROSTRUCTURE; TEMPERATURE; DEPENDENCE AB We carried out a systematic study on the effect of the substitution of Ti2+ and Ru4+ ions for Fe3+ ions on the structural and magnetic properties of the strontium ferrite SrFe12-2xRuxTixO19 nanoparticles with (0 <= x <= 0: 3), using x-ray diffraction, Quantum Design PPMS-9 magnetometry, and electrical resistivity. A clear irreversibility between the zero-field-cooled and field-cooled curves was observed below room temperature and the zero-field-cooled magnetization curves displayed a broad peak at a temperature TM. These results were discussed within the framework of random particle assembly model and associated with the magnetic domain wall motion. The resistivity data showed some kind of a transition from insulator to perfect insulator around TM. The high-temperature magnetization measurements exhibited sharp peaks just below T-c indicating a superparamagnetic behavior. With Ru-Ti substitution, the saturation magnetization at 5 K showed small variations were it slightly increased with increasing x up to 0.2, and then decrease for x = 0.3, while the coercivity decreased monotonically, recording a reduction of about 78% at x = 0.3. These results were discussed in light of the cationic distributions based on the results of the structural refinements. (C) 2015 Elsevier B.V. All rights reserved. C1 [Alsmadi, A. M.] Kuwait Univ, Dept Phys, Safat 13060, Kuwait. [Alsmadi, A. M.; Alnawashi, G.; Al-Dweri, F. M.] Hashemite Univ, Dept Phys, Zarqa 13115, Jordan. [Bsoul, I.] Al Al Bayt Univ, Dept Phys, Mafraq 13040, Jordan. [Mahmood, S. H.; Maswadeh, Y.] Univ Jordan, Dept Phys, Amman 11942, Jordan. [Welp, U.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Alsmadi, AM (reprint author), Kuwait Univ, Dept Phys, Safat 13060, Kuwait. EM abdel.alsmadi@ku.edu.kw NR 48 TC 11 Z9 11 U1 0 U2 19 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-8388 EI 1873-4669 J9 J ALLOY COMPD JI J. Alloy. Compd. PD NOV 5 PY 2015 VL 648 BP 419 EP 427 DI 10.1016/j.jallcom.2015.06.274 PG 9 WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering GA CR2KN UT WOS:000361158300064 ER PT J AU Bauer, M Carena, M Gemmler, K AF Bauer, Martin Carena, Marcela Gemmler, Katrin TI Flavor from the electroweak scale SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE Higgs Physics; Beyond Standard Model; Quark Masses and SM Parameters; Global Symmetries ID CP VIOLATION; HIGGS-BOSON; PP COLLISIONS; ROOT-S=8 TEV; SEARCH; QUARK; PARTICLES; CURRENTS; MODEL AB We discuss the possibility that flavor hierarchies arise from the electroweak scale in a two Higgs doublet model, in which the two Higgs doublets jointly act as the flavon. Quark masses and mixing angles are explained by effective Yukawa couplings, generated by higher dimensional operators involving quarks and Higgs doublets. Modi filed Higgs couplings yield important effects on the production cross sections and decay rates of the light Standard Model like Higgs. In addition, flavor changing neutral currents arise at tree-level and lead to strong constraints from meson-antimeson mixing. Remarkably, flavor constraints turn out to prefer a region in parameter space that is in excellent agreement with the one preferred by recent Higgs precision measurements at the Large Hadron Collider (LHC). Direct searches for extra scalars at the LHC lead to further constraints. Precise predictions for the production and decay modes of the additional Higgs bosons are derived, and we present benchmark scenarios for searches at the LHC Run II. Flavor breaking at the electroweak scale as well as strong coupling effects demand a UV completion at the scale of a few TeV, possibly within the reach of the LHC. C1 [Bauer, Martin; Carena, Marcela; Gemmler, Katrin] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Carena, Marcela] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Carena, Marcela] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Bauer, Martin] Heidelberg Univ, Inst Theoret Phys, D-69120 Heidelberg, Germany. RP Bauer, M (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. EM m.bauer@thyphys.uni-heidelberg.de; carena@fnal.gov; katrin@fnal.gov FU Deutsche Forschungsgemeinschaft (DFG) [GE 2541/1-1]; Alexander von Humboldt Foundation; Fermi Research Alliance, LLC [DE-AC02-07CH11359] FX We thank Prateek Agrawal, Wolfgang Altmannshofer, Andrzej Buras, Thorsten Feldmann, Elisabetta Furlan, Joerg Jaeckel, Matthias Neubert, Tilman Plehn, Raoul Rontsch and Carlos Wagner for useful comments and discussions. We specially thank Zhen Liu for very helpful comments about the Higgs boson phenomenology and Mikolaj Misiak for private discussions on the bound of charged Higgs masses from Br(Bs -> Xsgamma) in two Higgs doublet models. KG was supported by the Deutsche Forschungsgemeinschaft (DFG), grant number GE 2541/1-1. MB acknowledges the support of the Alexander von Humboldt Foundation. Fermilab is operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy. NR 95 TC 9 Z9 9 U1 0 U2 6 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD NOV 4 PY 2015 IS 11 AR 016 DI 10.1007/JHEP11(2015)016 PG 57 WC Physics, Particles & Fields SC Physics GA DA8TD UT WOS:000368078100001 ER PT J AU Alivisatos, AP Chun, MY Church, GM Greenspan, RJ Roukes, ML Yuste, R AF Alivisatos, A. Paul Chun, Miyoung Church, George M. Greenspan, Ralph J. Roukes, Michael L. Yuste, Rafael TI A National Network of Neurotechnology Centers for the BRAIN Initiative SO NEURON LA English DT Editorial Material AB We propose the creation of a national network of neurotechnology centers to enhance and accelerate the BRAIN Initiative and optimally leverage the effort and creativity of individual laboratories involved in it. As "brain observatories,'' these centers could provide the critical interdisciplinary environment both for realizing ambitious and complex technologies and for providing individual investigators with access to them. C1 [Alivisatos, A. Paul] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Kavli Energy NanoSci Inst, Berkeley, CA 94720 USA. [Alivisatos, A. Paul] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Chun, Miyoung] Kavli Fdn, Oxnard, CA 93030 USA. [Church, George M.] Harvard Univ, Sch Med, Dept Genet, Boston, MA 02115 USA. [Church, George M.] Harvard Univ, Sch Med, Wyss Inst, Boston, MA 02115 USA. [Greenspan, Ralph J.] Univ Calif San Diego, Kavli Inst Brain & Mind, La Jolla, CA 92093 USA. [Greenspan, Ralph J.] Univ Calif San Diego, Div Biol, Neurobiol Sect, La Jolla, CA 92093 USA. [Roukes, Michael L.] CALTECH, Phys Appl Phys & Bioengn, La Jolla, CA 92093 USA. [Roukes, Michael L.] CALTECH, Kavli Nanosci Inst, Pasadena, CA 92093 USA. [Yuste, Rafael] Columbia Univ, Neurotechnol Ctr, Kavli Inst Brain Sci, Dept Biol Sci, New York, NY 10027 USA. [Yuste, Rafael] Columbia Univ, Kavli Inst Brain Sci, Dept Neurosci, Neurotechnol Ctr, New York, NY 10027 USA. RP Roukes, ML (reprint author), CALTECH, Phys Appl Phys & Bioengn, La Jolla, CA 92093 USA. EM roukes@caltech.edu; rmy5@columbia.edu FU NEI NIH HHS [DP1 EY024503]; NIGMS NIH HHS [DP1 GM105376] NR 16 TC 2 Z9 2 U1 5 U2 13 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0896-6273 EI 1097-4199 J9 NEURON JI Neuron PD NOV 4 PY 2015 VL 88 IS 3 BP 445 EP 448 DI 10.1016/j.neuron.2015.10.015 PG 4 WC Neurosciences SC Neurosciences & Neurology GA CX5TM UT WOS:000365765400005 PM 26481036 ER PT J AU Li, GR Ling, M Ye, YF Li, ZP Guo, JH Yao, YF Zhu, JF Lin, Z Zhang, SQ AF Li, Gaoran Ling, Min Ye, Yifan Li, Zhoupeng Guo, Jinghua Yao, Yingfang Zhu, Junfa Lin, Zhan Zhang, Shanqing TI Acacia Senegal-Inspired Bifunctional Binder for Longevity of Lithium-Sulfur Batteries SO ADVANCED ENERGY MATERIALS LA English DT Article ID HIGH-PERFORMANCE SILICON; ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY; ION BATTERIES; HIGH-CAPACITY; ENHANCED CYCLABILITY; BETA-CYCLODEXTRIN; CATHODE; ANODES; GRAPHENE; GUM AB The sulfur cathode in traditional lithium-sulfur batteries suffers from poor cyclability due to polysulfide shuttling effect as well as large volume change during charge/discharge processes. Gum arabic (GA), a low cost, nontoxic, and sustainable natural polymer from Acacia senegal, is adopted as a binder for the sulfur cathode to address these issues. The excellent mechanical properties of GA endow the cathode with high binding strength and suitable ductility to buffer volume change, while the functional groups chemically and physically confine sulfur species within the cathode to inhibit the shuttling effect of polysulfides. Additionally, GA shifts the electrode fabrication process from the organic solvent process to an aqueous process, eliminates the use of toxic organic solvents, and achieves uniformly distributed electrode with lower impedance. A remarkable cycling performance, i.e., 841 mAh g(-1) at low current rate of C/5, is achieved throughout 500 cycles due to the bifunctions of the GA binder. C1 [Li, Gaoran; Li, Zhoupeng; Lin, Zhan] Zhejiang Univ, Coll Chem & Biol Engn, Minist Educ, Key Lab Biomass Chem Engn, Hangzhou 310027, Zhejiang, Peoples R China. [Ling, Min; Zhang, Shanqing] Griffith Univ, Ctr Clean Environm & Energy, Environm Futures Res Inst, Brisbane, Qld 4222, Australia. [Ling, Min; Zhang, Shanqing] Griffith Univ, Griffith Sch Environm, Brisbane, Qld 4222, Australia. [Ye, Yifan; Zhu, Junfa] Univ Sci & Technol China, Natl Synchrotron Radiat Lab, Hefei 230029, Peoples R China. [Ye, Yifan; Guo, Jinghua] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Guo, Jinghua] Univ Calif Santa Cruz, Dept Chem & Biochem, Santa Cruz, CA 95064 USA. [Yao, Yingfang] Nanjing Univ, Ecomat & Renewable Energy Res Ctr, Dept Phys, Natl Lab Solid State Microstruct, Nanjing 210093, Jiangsu, Peoples R China. RP Lin, Z (reprint author), Zhejiang Univ, Coll Chem & Biol Engn, Minist Educ, Key Lab Biomass Chem Engn, Hangzhou 310027, Zhejiang, Peoples R China. EM zhanlin@zju.edu.cn; s.zhang@griffith.edu.au RI Li, Gaoran/D-6886-2016; Zhang, Shanqing/C-2590-2008; Zhu, Junfa/E-4020-2010; Lin, Zhan/C-6806-2011 OI Li, Gaoran/0000-0002-9336-6137; Zhu, Junfa/0000-0003-0888-4261; Lin, Zhan/0000-0001-5009-8198 FU Chinese government under the "Thousand Youth Talents Program"; National Basic Research Program of China [2013CB834605]; National Natural Science Foundation of China [21173200]; Office of Science, Office of Basic Energy Sciences, of U.S. Department of Energy [DE-AC02-05CH11231] FX G.L. and M.L. contributed equally to this work. The authors thank Dr. Cheng Yan and Ms. Hansinee Sitinamaluwa from School of Chemistry, Physics and Mechanical Engineering at Queensland University of Technology for their supports in the nanoscratch and nanoindentation tests. Z.L. thanks the funding support from Chinese government under the "Thousand Youth Talents Program." J.F.Z. acknowledges the financial support from the National Basic Research Program of China (2013CB834605) and the National Natural Science Foundation of China (21173200). The work at the Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 44 TC 25 Z9 25 U1 39 U2 157 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 1614-6832 EI 1614-6840 J9 ADV ENERGY MATER JI Adv. Energy Mater. PD NOV 4 PY 2015 VL 5 IS 21 AR UNSP 1500878 DI 10.1002/aenm.201500878 PG 8 WC Chemistry, Physical; Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Energy & Fuels; Materials Science; Physics GA CW8TZ UT WOS:000365273500006 ER PT J AU Khachatryan, V Sirunyan, AM Tumasyan, A Adam, W Asilar, E Bergauer, T Brandstetter, J Brondolin, E Dragicevic, M Ero, J Flechl, M Friedl, M Fruhwirth, R Ghete, VM Hartl, C Hormann, N Hrubec, J Jeitler, M Knunz, V Konig, A Krammer, M Kratschmer, I Liko, D Matsushita, T Mikulec, I Rabady, D Rahbaran, B Rohringer, H Schieck, J Schofbeck, R Strauss, J Treberer-Treberspurg, W Waltenberger, W Wulz, CE Mossolov, V Shumeiko, N Gonzalez, JS Alderweireldt, S Cornelis, T De Wolf, EA Janssen, X Knutsson, A Lauwers, J Luyckx, S Rougny, R Van De Klundert, M Van Haevermaet, H Van Mechelen, P Van Remortel, N Van Spilbeeck, A Abu Zeid, S Blekman, F D'Hondt, J Daci, N De Bruyn, I Deroover, K Heracleous, N Keaveney, J Lowette, S Moreels, L Olbrechts, A Python, Q Strom, D Tavernier, S Van Doninck, W Van Mulders, P Van Onsem, GP Van Parijs, I Barria, P Brun, H Caillol, C Clerbaux, B De Lentdecker, G Fasanella, G Favart, L Grebenyuk, A Karapostoli, G Lenzi, T Leonard, A Maerschalk, T Marinov, A Pernie, L Randle-conde, A Reis, T Seva, T Vander Velde, C Vanlaer, P Yonamine, R Zenoni, F Zhang, F Beernaert, K Benucci, L Cimmino, A Crucy, S Dobur, D Fagot, A Garcia, G Gul, M Mccartin, J Rios, AAO Poyraz, D Ryckbosch, D Salva, S Sigamani, M Strobbe, N Tytgat, M Van Driessche, W Yazgan, E Zaganidis, N Basegmez, S Beluffi, C Bondu, O Brochet, S Bruno, G Caudron, A Ceard, L Da Silveira, GG Delaere, C Favart, D Forthomme, L Giammanco, A Hollar, J Jafari, A Jez, P Komm, M Lemaitre, V Mertens, A Nuttens, C Perrini, L Pin, A Piotrzkowski, K Popov, A Quertenmont, L Selvaggi, M Marono, MV Beliy, N Hammad, GH Alda, WL Alves, GA Brito, L Martins, MC Hamer, M Hensel, C Herrera, CM Moraes, A Pol, ME Teles, PR Das Chagas, EBB Carvalho, W Chinellato, J Custodio, A Da Costa, EM Damiao, DD Martins, CD De Souza, SF Guativa, LMH Malbouisson, H Figueiredo, DM Mundim, L Nogima, H Da Silva, WLP Santoro, A Sznajder, A Manganote, EJT Pereira, AV Ahuja, S Bernardes, CA Santos, AD Dogra, S Tomei, TRFP Gregores, EM Mercadante, PG Moon, CS Novaes, SF Padula, SS Abad, DR Vargas, JCR Aleksandrov, A Hadjiiska, R Iaydjiev, P Rodozov, M Stoykova, S Sultanov, G Vutova, M Dimitrov, A Glushkov, I Litov, L Pavlov, B Petkov, P Ahmad, M Bian, JG Chen, GM Chen, HS Chen, M Cheng, T Du, R Jiang, CH Plestina, R Romeo, F Shaheen, SM Tao, J Wang, C Wang, Z Zhang, H Asawatangtrakuldee, C Ban, Y Li, Q Liu, S Mao, Y Qian, SJ Wang, D Xu, Z Avila, C Cabrera, A Sierra, LFC Florez, C Gomez, JP Moreno, BG Sanabria, JC Godinovic, N Lelas, D Puljak, I Cipriano, PMR Antunovic, Z Kovac, M Brigljevic, V Kadija, K Luetic, J Micanovic, S Sudic, L Attikis, A Mavromanolakis, G Mousa, J Nicolaou, C Ptochos, F Razis, PA Rykaczewski, H Bodlak, M Finger, M Finger, M El-khateeb, E Elkafrawy, T Mohamed, A Radi, A Salama, E Calpas, B Kadastik, M Murumaa, M Raidal, M Tiko, A Veelken, C Eerola, P Pekkanen, J Voutilainen, M Harkonen, J Karimaki, V Kinnunen, R Lampen, T Lassila-Perini, K Laurila, S Lehti, S Linden, T Luukka, P Maenpaa, T Peltola, T Tuominen, E Tuominiemi, J Tuovinen, E Wendland, L Talvitie, J Tuuva, T Besancon, M Couderc, F Dejardin, M Denegri, D Fabbro, B Faure, JL Favaro, C Ferri, F Ganjour, S Givernaud, A Gras, P de Monchenault, GH Jarry, P Locci, E Machet, M Malcles, J Rander, J Rosowsky, A Titov, M Zghiche, A Antropov, I Baffioni, S Beaudette, F Busson, P Cadamuro, L Chapon, E Charlot, C Dahms, T Davignon, O Filipovic, N Florent, A de Cassagnac, RG Lisniak, S Mastrolorenzo, L Mine, P Naranjo, IN Nguyen, M Ochando, C Ortona, G Paganini, P Pigard, P Regnard, S Salerno, R Sauvan, JB Sirois, Y Strebler, T Yilmaz, Y Zabi, A Agram, JL Andrea, J Aubin, A Bloch, D Brom, JM Buttignol, M Chabert, EC Chanon, N Collard, C Conte, E Coubez, X Fontaine, JC Gele, D Goerlach, U Goetzmann, C Le Bihan, AC Merlin, JA Skovpen, K Van Hove, P Gadrat, S Beauceron, S Bernet, C Boudoul, G Bouvier, E Montoya, CAC Chierici, R Contardo, D Courbon, B Depasse, P El Mamouni, H Fan, J Fay, J Gascon, S Gouzevitch, M Ille, B Lagarde, F Laktineh, IB Lethuillier, M Mirabito, L Pequegnot, AL Perries, S Alvarez, JDR Sabes, D Sgandurra, L Sordini, V Vander Donckt, M Verdier, P Viret, S Toriashvili, T Tsamalaidze, Z Autermann, C Beranek, S Edelhoff, M Feld, L Heister, A Kiesel, MK Klein, K Lipinski, M Ostapchuk, A Preuten, M Raupach, F Schael, S Schulte, JF Verlage, T Weber, H Wittmer, B Zhukov, V Ata, M Brodski, M Dietz-Laursonn, E Duchardt, D Endres, M Erdmann, M Erdweg, S Esch, T Fischer, R Guth, A Hebbeker, T Heidemann, C Hoepfner, K Klingebiel, D Knutzen, S Kreuzer, P Merschmeyer, M Meyer, A Millet, P Olschewski, M Padeken, K Papacz, P Pook, T Radziej, M Reithler, H Rieger, M Scheuch, F Sonnenschein, L Teyssier, D Thuer, S Cherepanov, V Erdogan, Y Flugge, G Geenen, H Geisler, M Hoehle, F Kargoll, B Kress, T Kuessel, Y Kunsken, A Lingemann, J Nehrkorn, A Nowack, A Nugent, IM Pistone, C Pooth, O Stahl, A Martin, MA Asin, I Bartosik, N Behnke, O Behrens, U Bell, AJ Borras, K Burgmeier, A Cakir, A Calligaris, L Campbell, A Choudhury, S Costanza, F Pardos, CD Dolinska, G Dooling, S Dorland, T Eckerlin, G Eckstein, D Eichhorn, T Flucke, G Gallo, E Garcia, JG Geiser, A Gizhko, A Gunnellini, P Hauk, J Hempel, M Jung, H Kalogeropoulos, A Karacheban, O Kasemann, M Katsas, P Kieseler, J Kleinwort, C Korol, I Lange, W Leonard, J Lipka, K Lobanov, A Lohmann, W Mankel, R Marfin, I Melzer-Pellmann, IA Meyer, AB Mittag, G Mnich, J Mussgiller, A Naumann-Emme, S Nayak, A Ntomari, E Perrey, H Pitzl, D Placakyte, R Raspereza, A Roland, B Sahin, MO Saxena, P Schoerner-Sadenius, T Schroder, M Seitz, C Spannagel, S Trippkewitz, KD Walsh, R Wissing, C Blobel, V Vignali, MC Draeger, AR Erfle, J Garutti, E Goebel, K Gonzalez, D Gorner, M Haller, J Hoffmann, M Hoing, RS Junkes, A Klanner, R Kogler, R Lapsien, T Lenz, T Marchesini, I Marconi, D Meyer, M Nowatschin, D Ott, J Pantaleo, F Peiffer, T Perieanu, A Pietsch, N Poehlsen, J Rathjens, D Sander, C Schettler, H Schleper, P Schlieckau, E Schmidt, A Schwandt, J Seidel, M Sola, V Stadie, H Steinbruck, G Tholen, H Troendle, D Usai, E Vanelderen, L Vanhoefer, A Vormwald, B Akbiyik, M Barth, C Baus, C Berger, J Boser, C Butz, E Chwalek, T Colombo, F De Boer, W Descroix, A Dierlamm, A Fink, S Frensch, F Giffels, M Gilbert, A Hartmann, F Heindl, SM Husemann, U Katkov, I Kornmayer, A Pardo, PL Maier, B Mildner, H Mozer, MU Muller, T Muller, T Plagge, M Quast, G Rabbertz, K Rocker, S Roscher, F Simonis, HJ Stober, FM Ulrich, R Wagner-Kuhr, J Wayand, S Weber, M Weiler, T Wohrmann, C Wolf, R Anagnostou, G Daskalakis, G Geralis, T Giakoumopoulou, VA Kyriakis, A Loukas, D Psallidas, A Topsis-Giotis, I Agapitos, A Kesisoglou, S Panagiotou, A Saoulidou, N Tziaferi, E Evangelou, I Flouris, G Foudas, C Kokkas, P Loukas, N Manthos, N Papadopoulos, I Paradas, E Strologas, J Bencze, G Hajdu, C Hazi, A Hidas, P Horvath, D Sikler, F Veszpremi, V Vesztergombi, G Zsigmond, AJ Beni, N Czellar, S Karancsi, J Molnar, J Szillasi, Z Bartok, M Makovec, A Raics, P Trocsanyi, ZL Ujvari, B Mal, P Mandal, K Sahoo, DK Sahoo, N Swain, SK Bansal, S Beri, SB Bhatnagar, V Chawla, R Gupta, R Bhawandeep, U Kalsi, AK Kaur, A Kaur, M Kumar, R Mehta, A Mittal, M Singh, JB Walia, G Kumar, A Bhardwaj, A Choudhary, BC Garg, RB Kumar, A Malhotra, S Naimuddin, M Nishu, N Ranjan, K Sharma, R Sharma, V Bhattacharya, S Chatterjee, K Dey, S Dutta, S Jain, S Majumdar, N Modak, A Mondal, K Mukherjee, S Mukhopadhyay, S Roy, A Roy, D Chowdhury, SR Sarkar, S Sharan, M Abdulsalam, A Chudasama, R Dutta, D Jha, V Kumar, V Mohanty, AK Pant, LM Shukla, P Topkar, A Aziz, T Banerjee, S Bhowmik, S Chatterjee, RM Dewanjee, RK Dugad, S Ganguly, S Ghosh, S Guchait, M Gurtu, A Kole, G Kumar, S Mahakud, B Maity, M Majumder, G Mazumdar, K Mitra, S Mohanty, GB Parida, B Sarkar, T Sudhakar, K Sur, N Sutar, B Wickramage, N Chauhan, S Dube, S Sharma, S Bakhshiansohi, H Behnamian, H Etesami, SM Fahim, A Goldouzian, R Khakzad, M Najafabadi, MM Naseri, M Mehdiabadi, SP Hosseinabadi, FR Safarzadeh, B Zeinali, M Felcini, M Grunewald, M Abbrescia, M Calabria, C Caputo, C Colaleo, A Creanza, D Cristella, L De Filippis, N De Palma, M Fiore, L Iaselli, G Maggi, G Maggi, M Miniello, G My, S Nuzzo, S Pompili, A Pugliese, G Radogna, R Ranieri, A Selvaggi, G Silvestris, L Venditti, R Verwilligen, P Abbiendi, G Battilana, C Benvenuti, AC Bonacorsi, D Braibant-Giacomelli, S Brigliadori, L Campanini, R Capiluppi, P Castro, A Cavallo, FR Chhibra, SS Codispoti, G Cuffiani, M Dallavalle, GM Fabbri, F Fanfani, A Fasanella, D Giacomelli, P Grandi, C Guiducci, L Marcellini, S Masetti, G Montanari, A Navarria, FL Perrotta, A Rossi, AM Rovelli, T Siroli, GP Tosi, N Travaglini, R Cappello, G Chiorboli, M Costa, S Giordano, F Potenza, R Tricomi, A Tuve, C Barbagli, G Ciulli, V Civinini, C D'Alessandro, R Focardi, E Gonzi, S Gori, V Lenzi, P Meschini, M Paoletti, S Sguazzoni, G Tropiano, A Viliani, L Benussi, L Bianco, S Fabbri, F Piccolo, D Primavera, F Calvelli, V Ferro, F Lo Vetere, M Monge, MR Robutti, E Tosi, S Brianza, L Dinardo, ME Fiorendi, S Gennai, S Gerosa, R Ghezzi, A Govoni, P Malvezzi, S Manzoni, RA Marzocchi, B Menasce, D Moroni, L Paganoni, M Pedrini, D Ragazzi, S Redaelli, N de Fatis, TT Buontempo, S Cavallo, N Di Guida, S Esposito, M Fabozzi, F Iorio, AOM Lanza, G Lista, L Meola, S Merola, M Paolucci, P Sciacca, C Thyssen, F Azzi, P Bacchetta, N Benato, L Bisello, D Boletti, A Branca, A Carlin, R Checchia, P Dall'Osso, M Dorigo, T Dosselli, U Gasparini, F Gasparini, U Gozzelino, A Lacaprara, S Margoni, M Meneguzzo, AT Montecassiano, F Passaseo, M Pazzini, J Pozzobon, N Ronchese, P Simonetto, F Torassa, E Tosi, M Zanetti, M Zotto, P Zucchetta, A Zumerle, G Braghieri, A Magnani, A Montagna, P Ratti, SP Re, V Riccardi, C Salvini, P Vai, I Vitulo, P Solestizi, LA Biasini, M Bilei, GM Ciangottini, D Fano, L Lariccia, P Mantovani, G Menichelli, M Saha, A Santocchia, A Spiezia, A Androsov, K Azzurri, P Bagliesi, G Bernardini, J Boccali, T Broccolo, G Castaldi, R Ciocci, MA Dell'Orso, R Donato, S Fedi, G Foa, L Giassi, A Grippo, MT Ligabue, F Lomtadze, T Martini, L Messineo, A Palla, F Rizzi, A Savoy-Navarro, A Serban, AT Spagnolo, P Squillacioti, P Tenchini, R Tonelli, G Venturi, A Verdini, PG Barone, L Cavallari, F D'imperio, G Del Re, D Diemoz, M Gelli, S Jorda, C Longo, E Margaroli, F Meridiani, P Organtini, G Paramatti, R Preiato, F Rahatlou, S Rovelli, C Santanastasio, F Traczyk, P Amapane, N Arcidiacono, R Argiro, S Arneodo, M Bellan, R Biino, C Cartiglia, N Costa, M Covarelli, R Degano, A Demaria, N Finco, L Kiani, B Mariotti, C Maselli, S Migliore, E Monaco, V Monteil, E Musich, M Obertino, MM Pacher, L Pastrone, N Pelliccioni, M Angioni, GLP Ravera, F Romero, A Ruspa, M Sacchi, R Solano, A Staiano, A Tamponi, U Belforte, S Candelise, V Casarsa, M Cossutti, F Della Ricca, G Gobbo, B La Licata, C Marone, M Schizzi, A Zanetti, A Kropivnitskaya, A Nam, SK Kim, DH Kim, GN Kim, MS Kong, DJ Lee, S Oh, YD Sakharov, A Son, DC Cifuentes, JAB Kim, H Kim, TJ Ryu, MS Song, S Choi, S Go, Y Gyun, D Hong, B Jo, M Kim, H Kim, Y Lee, B Lee, K Lee, KS Lee, S Park, SK Roh, Y Yoo, HD Choi, M Kim, H Kim, JH Lee, JSH Park, IC Ryu, G Choi, Y Goh, J Kim, D Kwon, E Lee, J Yu, I Juodagalvis, A Vaitkus, J Ahmed, I Ibrahim, ZA Komaragiri, JR Ali, MABM Idris, FM Abdullah, WATW Yusli, MN Linares, EC Castilla-Valdez, H De La Cruz-Burelo, E Heredia-de La Cruz, I Hernandez-Almada, A Lopez-Fernandez, R Sanchez-Hernandez, A Moreno, SC Valencia, FV Pedraza, I Ibarguen, HAS Pineda, AM Krofcheck, D Butler, PH Ahmad, A Ahmad, M Hassan, Q Hoorani, HR Khan, WA Khurshid, T Shoaib, M Bialkowska, H Bluj, M Boimska, B Frueboes, T Gorski, M Kazana, M Nawrocki, K Romanowska-Rybinska, K Szleper, M Zalewski, P Brona, G Bunkowski, K Byszuk, A Doroba, K Kalinowski, A Konecki, M Krolikowski, J Misiura, M Olszewski, M Walczak, M Bargassa, P Silva, CBDE Di Francesco, A Faccioli, P Parracho, PGF Gallinaro, M Leonardo, N Iglesias, LL Nguyen, F Antunes, JR Seixas, J Toldaiev, O Vadruccio, D Varela, J Vischia, P Afanasiev, S Bunin, P Gavrilenko, M Golutvin, I Gorbunov, I Kamenev, A Karjavin, V Konoplyanikov, V Lanev, A Malakhov, A Matveev, V Moisenz, P Palichik, V Perelygin, V Shmatov, S Shulha, S Skatchkov, N Smirnov, V Zarubin, A Golovtsov, V Ivanov, Y Kim, V Kuznetsova, E Levchenko, P Murzin, V Oreshkin, V Smirnov, I Sulimov, V Uvarov, L Vavilov, S Vorobyev, A Andreev, Y Dermenev, A Gninenko, S Golubev, N Karneyeu, A Kirsanov, M Krasnikov, N Pashenkov, A Tlisov, D Toropin, A Epshteyn, V Gavrilov, V Lychkovskaya, N Popov, V Pozdnyakov, I Safronov, G Spiridonov, A Vlasov, E Zhokin, A Bylinkin, A Andreev, V Azarkin, M Dremin, I Kirakosyan, M Leonidov, A Mesyats, G Rusakov, SV Vinogradov, A Baskakov, A Belyaev, A Boos, E Bunichev, V Dubinin, M Dudko, L Ershov, A Klyukhin, V Kodolova, O Lokhtin, I Myagkov, I Obraztsov, S Perfilov, M Petrushanko, S Savrin, V Azhgirey, I Bayshev, I Bitioukov, S Kachanov, V Kalinin, A Konstantinov, D Krychkine, V Petrov, V Ryutin, R Sobol, A Tourtchanovitch, L Troshin, S Tyurin, N Uzunian, A Volkov, A Adzic, P Ekmedzic, M Milosevic, J Rekovic, V Maestre, JA Calvo, E Cerrada, M Llatas, MC Colino, N De La Cruz, B Peris, AD Vazquez, DD Del Valle, AE Bedoya, CF Ramos, JPF Flix, J Fouz, MC Garcia-Abia, P Lopez, OG Lopez, SG Hernandez, JM Josa, MI De Martino, EN Yzquierdo, APC Pelayo, JP Olmeda, AQ Redondo, I Romero, L Soares, MS Albajar, C de Troconiz, JF Missiroli, M Moran, D Cuevas, J Menendez, JF Folgueras, S Caballero, IG Cortezon, EP Garcia, JMV Cabrillo, IJ Calderon, A De Saa, JRC Manzano, PDC Campderros, JD Fernandez, M Garcia-Ferrero, J Gomez, G Virto, AL Marco, J Marco, R Rivero, CM Matorras, F Sanchez, FJM Gomez, JP Rodrigo, T Rodriguez-Marrero, AY Ruiz-Jimeno, A Scodellaro, L Vila, I Cortabitarte, RV Abbaneo, D Auffray, E Auzinger, G Bachtis, M Baillon, P Ball, AH Barney, D Benaglia, A Bendavid, J Benhabib, L Benitez, JF Berruti, GM Bloch, P Bocci, A Bonato, A Botta, C Breuker, H Camporesi, T Castello, R Cerminara, G Colafranceschi, S D'Alfonso, M d'Enterria, D Dabrowski, A Daponte, V David, A De Gruttola, M De Guio, F De Roeck, A De Visscher, S Di Marco, E Dobson, M Dordevic, M Dorney, B du Pree, T Dunser, M Dupont, N Elliott-Peisert, A Franzoni, G Funk, W Gigi, D Gill, K Giordano, D Girone, M Glege, F Guida, R Gundacker, S Guthoff, M Hammer, J Harris, P Hegeman, J Innocente, V Janot, P Kirschenmann, H Kortelainen, MJ Kousouris, K Krajczar, K Lecoq, P Lourenco, C Lucchini, MT Magini, N Malgeri, L Mannelli, M Martelli, A Masetti, L Meijers, F Mersi, S Meschi, E Moortgat, F Morovic, S Mulders, M Nemallapudi, MV Neugebauer, H Orfanelli, S Orsini, L Pape, L Perez, E Peruzzi, M Petrilli, A Petrucciani, G Pfeiffer, A Piparo, D Racz, A Rolandi, G Rovere, M Ruan, M Sakulin, H Schafer, C Schwick, C Sharma, A Silva, P Simon, M Sphicas, P Spiga, D Steggemann, J Stieger, B Stoye, M Takahashi, Y Treille, D Triossi, A Tsirou, A Veres, GI Wardle, N Wohri, HK Zagozdzinska, A Zeuner, WD Bertl, W Deiters, K Erdmann, W Horisberger, R Ingram, Q Kaestli, HC Kotlinski, D Langenegger, U Renker, D Rohe, T Bachmair, F Bani, L Bianchini, L Buchmann, MA Casal, B Dissertori, G Dittmar, M Donega, M Eller, P Grab, C Heidegger, C Hits, D Hoss, J Kasieczka, G Lustermann, W Mangano, B Marionneau, M del Arbol, PMR Masciovecchio, M Meister, D Micheli, F Musella, P Nessi-Tedaldi, F Pandolfi, F Pata, J Pauss, F Perrozzi, L Quittnat, M Rossini, M Starodumov, A Takahashi, M Tavolaro, VR Theofilatos, K Wallny, R Aarrestad, TK Amsler, C Caminada, L Canelli, MF Chiochia, V De Cosa, A Galloni, C Hinzmann, A Hreus, T Kilminster, B Lange, C Ngadiuba, J Pinna, D Robmann, P Ronga, FJ Salerno, D Yang, Y Cardaci, M Chen, KH Doan, TH Jain, S Khurana, R Konyushikhin, M Kuo, CM Lin, W Lu, YJ Yu, SS Kumar, A Bartek, R Chang, P Chang, YH Chang, YW Chao, Y Chen, KF Chen, PH Dietz, C Fiori, F Grundler, U Hou, WS Hsiung, Y Liu, YF Lu, RS Moya, MM Petrakou, E Tsai, JF Tzeng, YM Asavapibhop, B Kovitanggoon, K Singh, G Srimanobhas, N Suwonjandee, N Adiguzel, A Cerci, S Demiroglu, ZS Dozen, C Dumanoglu, I Girgis, S Gokbulut, G Guler, Y Gurpinar, E Hos, I Kangal, EE Topaksu, AK Onengut, G Ozdemir, K Ozturk, S Tali, B Topakli, H Vergili, M Zorbilmez, C Akin, IV Bilin, B Bilmis, S Isildak, B Karapinar, G Yalvac, M Zeyrek, M Albayrak, EA Gulmez, E Kaya, M Kaya, O Yetkin, T Cankocak, K Sen, S Vardarli, FI Grynyov, B Levchuk, L Sorokin, P Aggleton, R Ball, F Beck, L Brooke, JJ Clement, E Cussans, D Flacher, H Goldstein, J Grimes, M Heath, GP Heath, HF Jacob, J Kreczko, L Lucas, C Meng, Z Newbold, DM Paramesvaran, S Poll, A Sakuma, T El Nasr-Storey, SS Senkin, S Smith, D Smith, VJ Bell, KW Belyaev, A Brew, C Brown, RM Cieri, D Cockerill, DJA Coughlan, JA Harder, K Harper, S Olaiya, E Petyt, D Shepherd-Themistocleous, CH Thea, A Tomalin, IR Williams, T Womersley, WJ Worm, SD Baber, M Bainbridge, R Buchmuller, O Bundock, A Burton, D Casasso, S Citron, M Colling, D Corpe, L Cripps, N Dauncey, P Davies, G De Wit, A Della Negra, M Dunne, P Elwood, A Ferguson, W Fulcher, J Futyan, D Hall, G Iles, G Kenzie, M Lane, R Lucas, R Lyons, L Magnan, AM Malik, S Nash, J Nikitenko, A Pela, J Pesaresi, M Petridis, K Raymond, DM Richards, A Rose, A Seez, C Tapper, A Uchida, K Acosta, MV Virdee, T Zenz, SC Cole, JE Hobson, PR Khan, A Kyberd, P Leggat, D Leslie, D Reid, ID Symonds, P Teodorescu, L Turner, M Borzou, A Call, K Dittmann, J Hatakeyama, K Kasmi, A Liu, H Pastika, N Charaf, O Cooper, SI Henderson, C Rumerio, P Avetisyan, A Bose, T Fantasia, C Gastler, D Lawson, P Rankin, D Richardson, C Rohlf, J St John, J Sulak, L Zou, D Alimena, J Berry, E Bhattacharya, S Cutts, D Dhingra, N Ferapontov, A Garabedian, A Hakala, J Heintz, U Laird, E Landsberg, G Mao, Z Narain, M Piperov, S Sagir, S Sinthuprasith, T Syarif, R Breedon, R Breto, G Sanchez, MCD Chauhan, S Chertok, M Conway, J Conway, R Cox, PT Erbacher, R Gardner, M Ko, W Lander, R Mulhearn, M Pellett, D Pilot, J Ricci-Tam, F Shalhout, S Smith, J Squires, M Stolp, D Tripathi, M Wilbur, S Yohay, R Cousins, R Everaerts, P Farrell, C Hauser, J Ignatenko, M Saltzberg, D Takasugi, E Valuev, V Weber, M Burt, K Clare, R Ellison, J Gary, JW Hanson, G Heilman, J Paneva, MI Jandir, P Kennedy, E Lacroix, F Long, OR Luthra, A Malberti, M Negrete, MO Shrinivas, A Wei, H Wimpenny, S Yates, BR Branson, JG Cerati, GB Cittolin, S D'Agnolo, RT Holzner, A Kelley, R Klein, D Letts, J Macneill, I Olivito, D Padhi, S Pieri, M Sani, M Sharma, V Simon, S Tadel, M Vartak, A Wasserbaech, S Welke, C Wuerthwein, F Yagil, A Della Porta, GZ Barge, D Bradmiller-Feld, J Campagnari, C Dishaw, A Dutta, V Flowers, K Sevilla, MF Geffert, P George, C Golf, F Gouskos, L Gran, J Incandela, J Justus, C Mccoll, N Mullin, SD Richman, J Stuart, D Suarez, I To, W West, C Yoo, J Anderson, D Apresyan, A Bornheim, A Bunn, J Chen, Y Duarte, J Mott, A Newman, HB Pena, C Pierini, M Spiropulu, M Vlimant, JR Xie, S Zhu, RY Andrews, MB Azzolini, V Calamba, A Carlson, B Ferguson, T Paulini, M Russ, J Sun, M Vogel, H Vorobiev, I Cumalat, JP Ford, WT Gaz, A Jensen, F Johnson, A Krohn, M Mulholland, T Nauenberg, U Stenson, K Wagner, SR Alexander, J Chatterjee, A Chaves, J Chu, J Dittmer, S Eggert, N Mirman, N Kaufman, GN Patterson, JR Rinkevicius, A Ryd, A Skinnari, L Soffi, L Sun, W Tan, SM Teo, WD Thom, J Thompson, J Tucker, J Weng, Y Wittich, P Abdullin, S Albrow, M Anderson, J Apollinari, G Banerjee, S Bauerdick, LAT Beretvas, A Berryhill, J Bhat, PC Bolla, G Burkett, K Butler, JN Cheung, HWK Chlebana, F Cihangir, S Elvira, VD Fisk, I Freeman, J Gottschalk, E Gray, L Green, D Gruenendahl, S Gutsche, O Hanlon, J Hare, D Harris, RM Hasegawa, S Hirschauer, J Hu, Z Jindariani, S Johnson, M Joshi, U Jung, AW Klima, B Kreis, B Kwan, S Lammel, S Linacre, J Lincoln, D Lipton, R Liu, T De Sa, RL Lykken, J Maeshima, K Marraffino, JM Outschoorn, VIM Maruyama, S Mason, D McBride, P Merkel, P Mishra, K Mrenna, S Nahn, S Newman-Holmes, C O'Dell, V Pedro, K Prokofyev, O Rakness, G Sexton-Kennedy, E Soha, A Spalding, WJ Spiegel, L Taylor, L Tkaczyk, S Tran, NV Uplegger, L Vaandering, EW Vernieri, C Verzocchi, M Vidal, R Weber, HA Whitbeck, A Yang, F Acosta, D Avery, P Bortignon, P Bourilkov, D Carnes, A Carver, M Curry, D Das, S Di Giovanni, GP Field, RD Furic, IK Hugon, J Konigsberg, J Korytov, A Low, JF Ma, P Matchev, K Mei, H Milenovic, P Mitselmakher, G Rank, D Rossin, R Shchutska, L Snowball, M Sperka, D Terentyev, N Thomas, L Wang, J Wang, S Yelton, J Hewamanage, S Linn, S Markowitz, P Martinez, G Rodriguez, JL Ackert, A Adams, JR Adams, T Askew, A Bochenek, J Diamond, B Haas, J Hagopian, S Hagopian, V Johnson, KF Khatiwada, A Prosper, H Weinberg, M Baarmand, MM Bhopatkar, V Hohlmann, M Kalakhety, H Noonan, D Roy, T Yumiceva, F Adams, MR Apanasevich, L Berry, D Betts, RR Bucinskaite, I Cavanaugh, R Evdokimov, O Gauthier, L Gerber, CE Hofman, DJ Kurt, P O'Brien, C Gonzalez, IDS Silkworth, C Turner, P Varelas, N Wu, Z Zakaria, M Bilki, B Clarida, W Dilsiz, K Durgut, S Gandrajula, RP Haytmyradov, M Khristenko, V Merlo, JP Mermerkaya, H Mestvirishvili, A Moeller, A Nachtman, J Ogul, H Onel, Y Ozok, F Penzo, A Snyder, C Tan, P Tiras, E Wetzel, J Yi, K Anderson, I Barnett, BA Blumenfeld, B Fehling, D Feng, L Gritsan, AV Maksimovic, P Martin, C Osherson, M Swartz, M Xiao, M Xin, Y You, C Baringer, P Bean, A Benelli, G Bruner, C Kenny, RP Majumder, D Malek, M Murray, M Sanders, S Stringer, R Wang, Q Ivanov, A Kaadze, K Khalil, S Makouski, M Maravin, Y Mohammadi, A Saini, LK Skhirtladze, N Toda, S Lange, D Rebassoo, F Wright, D Anelli, C Baden, A Baron, O Belloni, A Calvert, B Eno, SC Ferraioli, C Gomez, JA Hadley, NJ Jabeen, S Kellogg, RG Kolberg, T Kunkle, J Lu, Y Mignerey, AC Shin, YH Skuja, A Tonjes, MB Tonwar, SC Apyan, A Barbieri, R Baty, A Bierwagen, K Brandt, S Busza, W Cali, IA Demiragli, Z Di Matteo, L Ceballos, GG Goncharov, M Gulhan, D Iiyama, Y Innocenti, GM Klute, M Kovalskyi, D Lai, YS Lee, YJ Levin, A Luckey, PD Marini, AC Mcginn, C Mironov, C Niu, X Paus, C Ralph, D Roland, C Roland, G Salfeld-Nebgen, J Stephans, GSF Sumorok, K Varma, M Velicanu, D Veverka, J Wang, J Wang, TW Wyslouch, B Yang, M Zhukova, V Dahmes, B Evans, A Finkel, A Gude, A Hansen, P Kalafut, S Kao, SC Klapoetke, K Kubota, Y Lesko, Z Mans, J Nourbakhsh, S Ruckstuhl, N Rusack, R Tambe, N Turkewitz, J Acosta, JG Oliveros, S Avdeeva, E Bloom, K Bose, S Claes, DR Dominguez, A Fangmeier, C Suarez, RG Kamalieddin, R Keller, J Knowlton, D Kravchenko, I Lazo-Flores, J Meier, F Monroy, J Ratnikov, F Siado, JE Snow, GR Alyari, M Dolen, J George, J Godshalk, A Harrington, C Iashvili, I Kaisen, J Kharchilava, A Kumar, A Rappoccio, S Alverson, G Barberis, E Baumgartel, D Chasco, M Hortiangtham, A Massironi, A Morse, DM Nash, D Orimoto, T De Lima, RT Trocino, D Wang, RJ Wood, D Zhang, J Hahn, KA Kubik, A Mucia, N Odell, N Pollack, B Pozdnyakov, A Schmitt, M Stoynev, S Sung, K Trovato, M Velasco, M Brinkerhoff, A Dev, N Hildreth, M Jessop, C Karmgard, DJ Kellams, N Lannon, K Lynch, S Marinelli, N Meng, F Mueller, C Musienko, Y Pearson, T Planer, M Reinsvold, A Ruchti, R Smith, G Taroni, S Valls, N Wayne, M Wolf, M Woodard, A Antonelli, L Brinson, J Bylsma, B Durkin, LS Flowers, S Hart, A Hill, C Hughes, R Ji, W Kotov, K Ling, TY Liu, B Luo, W Puigh, D Rodenburg, M Winer, BL Wulsin, HW Driga, O Elmer, P Hardenbrook, J Hebda, P Koay, SA Lujan, P Marlow, D Medvedeva, T Mooney, M Olsen, J Palmer, C Piroue, P Quan, X Saka, H Stickland, D Tully, C Werner, JS Zuranski, A Malik, S Barnes, VE Benedetti, D Bortoletto, D Gutay, L Jha, MK Jones, M Jung, K Miller, DH Neumeister, N Radburn-Smith, BC Shi, X Shipsey, I Silvers, D Sun, J Svyatkovskiy, A Wang, F Xie, W Xu, L Parashar, N Stupak, J Adair, A Akgun, B Chen, Z Ecklund, KM Geurts, FJM Guilbaud, M Li, W Michlin, B Northup, M Padley, BP Redjimi, R Roberts, J Rorie, J Tu, Z Zabel, J Betchart, B Bodek, A de Barbaro, P Demina, R Eshaq, Y Ferbel, T Galanti, M Garcia-Bellido, A Han, J Harel, A Hindrichs, O Khukhunaishvili, A Petrillo, G Verzetti, M Demortier, L Arora, S Barker, A Chou, JP Contreras-Campana, C Contreras-Campana, E Duggan, D Ferencek, D Gershtein, Y Gray, R Halkiadakis, E Hidas, D Hughes, E Kaplan, S Elayavalli, RK Lath, A Nash, K Panwalkar, S Park, M Salur, S Schnetzer, S Sheffield, D Somalwar, S Stone, R Thomas, S Thomassen, P Walker, M Foerster, M Riley, G Rose, K Spanier, S York, A Bouhali, O Hernandez, AC Dalchenko, M De Mattia, M Delgado, A Dildick, S Eusebi, R Flanagan, W Gilmore, J Kamon, T Krutelyov, V Mueller, R Osipenkov, I Pakhotin, Y Patel, R Perloff, A Rose, A Safonov, A Tatarinov, A Ulmer, KA Akchurin, N Cowden, C Damgov, J Dragoiu, C Dudero, PR Faulkner, J Kunori, S Lamichhane, K Lee, SW Libeiro, T Undleeb, S Volobouev, I Appelt, E Delannoy, AG Greene, S Gurrola, A Janjam, R Johns, W Maguire, C Mao, Y Melo, A Ni, H Sheldon, P Snook, B Tuo, S Velkovska, J Xu, Q Arenton, MW Boutle, S Cox, B Francis, B Goodell, J Hirosky, R Ledovskoy, A Li, H Lin, C Neu, C Sun, X Wang, Y Wolfe, E Wood, J Xia, F Clarke, C Harr, R Karchin, PE Don, CKK Lamichhane, P Sturdy, J Belknap, DA Carlsmith, D Cepeda, M Christian, A Dasu, S Dodd, L Duric, S Friis, E Gomber, B Grothe, M Hall-Wilton, R Herndon, M Herve, A Klabbers, P Lanaro, A Levine, A Long, K Loveless, R Mohapatra, A Ojalvo, I Perry, T Pierro, GA Polese, G Ruggles, T Sarangi, T Savin, A Sharma, A Smith, N Smith, WH Taylor, D Woods, N AF Khachatryan, V. Sirunyan, A. M. Tumasyan, A. Adam, W. Asilar, E. Bergauer, T. Brandstetter, J. Brondolin, E. Dragicevic, M. Eroe, J. Flechl, M. Friedl, M. Fruehwirth, R. Ghete, V. M. Hartl, C. Hoermann, N. Hrubec, J. Jeitler, M. Knuenz, V. Koenig, A. Krammer, M. Kraetschmer, I. Liko, D. Matsushita, T. Mikulec, I. Rabady, D. Rahbaran, B. Rohringer, H. Schieck, J. Schoefbeck, R. Strauss, J. Treberer-Treberspurg, W. Waltenberger, W. Wulz, C. -E. Mossolov, V. Shumeiko, N. Gonzalez, J. Suarez Alderweireldt, S. Cornelis, T. De Wolf, E. A. Janssen, X. Knutsson, A. Lauwers, J. Luyckx, S. Rougny, R. Van De Klundert, M. Van Haevermaet, H. Van Mechelen, P. Van Remortel, N. Van Spilbeeck, A. Abu Zeid, S. Blekman, F. D'Hondt, J. Daci, N. De Bruyn, I. Deroover, K. Heracleous, N. Keaveney, J. Lowette, S. Moreels, L. Olbrechts, A. Python, Q. Strom, D. Tavernier, S. Van Doninck, W. Van Mulders, P. Van Onsem, G. P. Van Parijs, I. Barria, P. Brun, H. Caillol, C. Clerbaux, B. De Lentdecker, G. Fasanella, G. Favart, L. Grebenyuk, A. Karapostoli, G. Lenzi, T. Leonard, A. Maerschalk, T. Marinov, A. Pernie, L. Randle-conde, A. Reis, T. Seva, T. Vander Velde, C. Vanlaer, P. Yonamine, R. Zenoni, F. Zhang, F. Beernaert, K. Benucci, L. Cimmino, A. Crucy, S. Dobur, D. Fagot, A. Garcia, G. Gul, M. Mccartin, J. Rios, A. A. Ocampo Poyraz, D. Ryckbosch, D. Salva, S. Sigamani, M. Strobbe, N. Tytgat, M. Van Driessche, W. Yazgan, E. Zaganidis, N. Basegmez, S. Beluffi, C. Bondu, O. Brochet, S. Bruno, G. Caudron, A. Ceard, L. Da Silveira, G. G. Delaere, C. Favart, D. Forthomme, L. Giammanco, A. Hollar, J. Jafari, A. Jez, P. Komm, M. Lemaitre, V. Mertens, A. Nuttens, C. Perrini, L. Pin, A. Piotrzkowski, K. Popov, A. Quertenmont, L. Selvaggi, M. Marono, M. Vidal Beliy, N. Hammad, G. H. Alda Junior, W. L. Alves, G. A. Brito, L. Martins Junior, M. Correa Hamer, M. Hensel, C. Herrera, C. Mora Moraes, A. Pol, M. E. Teles, P. Rebello Batista Das Chagas, E. Belchior Carvalho, W. Chinellato, J. Custodio, A. Da Costa, E. M. Damiao, D. De Jesus Martins, C. De Oliveira De Souza, S. Fonseca Huertas Guativa, L. M. Malbouisson, H. Figueiredo, D. Matos Mundim, L. Nogima, H. Prado Da Silva, W. L. Santoro, A. Sznajder, A. Tonelli Manganote, E. J. Pereira, A. Vilela Ahuja, S. Bernardes, C. A. Santos, A. De Souza Dogra, S. Fernandez Perez Tomei, T. R. Gregores, E. M. Mercadante, P. G. Moon, C. S. Novaes, S. F. Padula, Sandra S. Abad, D. Romero Ruiz Vargas, J. C. Aleksandrov, A. Hadjiiska, R. Iaydjiev, P. Rodozov, M. Stoykova, S. Sultanov, G. Vutova, M. Dimitrov, A. Glushkov, I. Litov, L. Pavlov, B. Petkov, P. Ahmad, M. Bian, J. G. Chen, G. M. Chen, H. S. Chen, M. Cheng, T. Du, R. Jiang, C. H. Plestina, R. Romeo, F. Shaheen, S. M. Tao, J. Wang, C. Wang, Z. Zhang, H. Asawatangtrakuldee, C. Ban, Y. Li, Q. Liu, S. Mao, Y. Qian, S. J. Wang, D. Xu, Z. Avila, C. Cabrera, A. Chaparro Sierra, L. F. Florez, C. Gomez, J. P. Gomez Moreno, B. Sanabria, J. C. Godinovic, N. Lelas, D. Puljak, I. Cipriano, P. M. Ribeiro Antunovic, Z. Kovac, M. Brigljevic, V. Kadija, K. Luetic, J. Micanovic, S. Sudic, L. Attikis, A. Mavromanolakis, G. Mousa, J. Nicolaou, C. Ptochos, F. Razis, P. A. Rykaczewski, H. Bodlak, M. Finger, M. Finger, M., Jr. El-khateeb, E. Elkafrawy, T. Mohamed, A. Radi, A. Salama, E. Calpas, B. Kadastik, M. Murumaa, M. Raidal, M. Tiko, A. Veelken, C. Eerola, P. Pekkanen, J. Voutilainen, M. Harkonen, J. Karimaki, V. Kinnunen, R. Lampen, T. Lassila-Perini, K. Laurila, S. Lehti, S. Linden, T. Luukka, P. Maenpaa, T. Peltola, T. Tuominen, E. Tuominiemi, J. Tuovinen, E. Wendland, L. Talvitie, J. Tuuva, T. Besancon, M. Couderc, F. Dejardin, M. Denegri, D. Fabbro, B. Faure, J. L. Favaro, C. Ferri, F. Ganjour, S. Givernaud, A. Gras, P. de Monchenault, G. Hamel Jarry, P. Locci, E. Machet, M. Malcles, J. Rander, J. Rosowsky, A. Titov, M. Zghiche, A. Antropov, I. Baffioni, S. Beaudette, F. Busson, P. Cadamuro, L. Chapon, E. Charlot, C. Dahms, T. Davignon, O. Filipovic, N. Florent, A. de Cassagnac, R. Granier Lisniak, S. Mastrolorenzo, L. Mine, P. Naranjo, I. N. Nguyen, M. Ochando, C. Ortona, G. Paganini, P. Pigard, P. Regnard, S. Salerno, R. Sauvan, J. B. Sirois, Y. Strebler, T. Yilmaz, Y. Zabi, A. Agram, J. -L. Andrea, J. Aubin, A. Bloch, D. Brom, J. -M. Buttignol, M. Chabert, E. C. Chanon, N. Collard, C. Conte, E. Coubez, X. Fontaine, J. -C. Gele, D. Goerlach, U. Goetzmann, C. Le Bihan, A. -C. Merlin, J. A. Skovpen, K. Van Hove, P. Gadrat, S. Beauceron, S. Bernet, C. Boudoul, G. Bouvier, E. Montoya, C. A. Carrillo Chierici, R. Contardo, D. Courbon, B. Depasse, P. El Mamouni, H. Fan, J. Fay, J. Gascon, S. Gouzevitch, M. Ille, B. Lagarde, F. Laktineh, I. B. Lethuillier, M. Mirabito, L. Pequegnot, A. L. Perries, S. Alvarez, J. D. Ruiz Sabes, D. Sgandurra, L. Sordini, V. Vander Donckt, M. Verdier, P. Viret, S. Toriashvili, T. Tsamalaidze, Z. Autermann, C. Beranek, S. Edelhoff, M. Feld, L. Heister, A. Kiesel, M. K. Klein, K. Lipinski, M. Ostapchuk, A. Preuten, M. Raupach, F. Schael, S. Schulte, J. F. Verlage, T. Weber, H. Wittmer, B. Zhukov, V. Ata, M. Brodski, M. Dietz-Laursonn, E. Duchardt, D. Endres, M. Erdmann, M. Erdweg, S. Esch, T. Fischer, R. Gueth, A. Hebbeker, T. Heidemann, C. Hoepfner, K. Klingebiel, D. Knutzen, S. Kreuzer, P. Merschmeyer, M. Meyer, A. Millet, P. Olschewski, M. Padeken, K. Papacz, P. Pook, T. Radziej, M. Reithler, H. Rieger, M. Scheuch, F. Sonnenschein, L. Teyssier, D. Thueer, S. Cherepanov, V. Erdogan, Y. Fluegge, G. Geenen, H. Geisler, M. Hoehle, F. Kargoll, B. Kress, T. Kuessel, Y. Kuensken, A. Lingemann, J. Nehrkorn, A. Nowack, A. Nugent, I. M. Pistone, C. Pooth, O. Stahl, A. Martin, M. Aldaya Asin, I. Bartosik, N. Behnke, O. Behrens, U. Bell, A. J. Borras, K. Burgmeier, A. Cakir, A. Calligaris, L. Campbell, A. Choudhury, S. Costanza, F. Pardos, C. Diez Dolinska, G. Dooling, S. Dorland, T. Eckerlin, G. Eckstein, D. Eichhorn, T. Flucke, G. Gallo, E. Garcia, J. Garay Geiser, A. Gizhko, A. Gunnellini, P. Hauk, J. Hempel, M. Jung, H. Kalogeropoulos, A. Karacheban, O. Kasemann, M. Katsas, P. Kieseler, J. Kleinwort, C. Korol, I. Lange, W. Leonard, J. Lipka, K. Lobanov, A. Lohmann, W. Mankel, R. Marfin, I. Melzer-Pellmann, I. -A. Meyer, A. B. Mittag, G. Mnich, J. Mussgiller, A. Naumann-Emme, S. Nayak, A. Ntomari, E. Perrey, H. Pitzl, D. Placakyte, R. Raspereza, A. Roland, B. Sahin, M. Oe. Saxena, P. Schoerner-Sadenius, T. Schroeder, M. Seitz, C. Spannagel, S. Trippkewitz, K. D. Walsh, R. Wissing, C. Blobel, V. Vignali, M. Centis Draeger, A. R. Erfle, J. Garutti, E. Goebel, K. Gonzalez, D. Goerner, M. Haller, J. Hoffmann, M. Hoeing, R. S. Junkes, A. Klanner, R. Kogler, R. Lapsien, T. Lenz, T. Marchesini, I. Marconi, D. Meyer, M. Nowatschin, D. Ott, J. Pantaleo, F. Peiffer, T. Perieanu, A. Pietsch, N. Poehlsen, J. Rathjens, D. Sander, C. Schettler, H. Schleper, P. Schlieckau, E. Schmidt, A. Schwandt, J. Seidel, M. Sola, V. Stadie, H. Steinbrueck, G. Tholen, H. Troendle, D. Usai, E. Vanelderen, L. Vanhoefer, A. Vormwald, B. Akbiyik, M. Barth, C. Baus, C. Berger, J. Boeser, C. Butz, E. Chwalek, T. Colombo, F. De Boer, W. Descroix, A. Dierlamm, A. Fink, S. Frensch, F. Giffels, M. Gilbert, A. Hartmann, F. Heindl, S. M. Husemann, U. Katkov, I. Kornmayer, A. Pardo, P. Lobelle Maier, B. Mildner, H. Mozer, M. U. Mueller, T. Mueller, Th. Plagge, M. Quast, G. Rabbertz, K. Roecker, S. Roscher, F. Simonis, H. J. Stober, F. M. Ulrich, R. Wagner-Kuhr, J. Wayand, S. Weber, M. Weiler, T. Woehrmann, C. Wolf, R. Anagnostou, G. Daskalakis, G. Geralis, T. Giakoumopoulou, V. A. Kyriakis, A. Loukas, D. Psallidas, A. Topsis-Giotis, I. Agapitos, A. Kesisoglou, S. Panagiotou, A. Saoulidou, N. Tziaferi, E. Evangelou, I. Flouris, G. Foudas, C. Kokkas, P. Loukas, N. Manthos, N. Papadopoulos, I. Paradas, E. Strologas, J. Bencze, G. Hajdu, C. Hazi, A. Hidas, P. Horvath, D. Sikler, F. Veszpremi, V. Vesztergombi, G. Zsigmond, A. J. Beni, N. Czellar, S. Karancsi, J. Molnar, J. Szillasi, Z. Bartok, M. Makovec, A. Raics, P. Trocsanyi, Z. L. Ujvari, B. Mal, P. Mandal, K. Sahoo, D. K. Sahoo, N. Swain, S. K. Bansal, S. Beri, S. B. Bhatnagar, V. Chawla, R. Gupta, R. Bhawandeep, U. Kalsi, A. K. Kaur, A. Kaur, M. Kumar, R. Mehta, A. Mittal, M. Singh, J. B. Walia, G. Kumar, Ashok Bhardwaj, A. Choudhary, B. C. Garg, R. B. Kumar, A. Malhotra, S. Naimuddin, M. Nishu, N. Ranjan, K. Sharma, R. Sharma, V. Bhattacharya, S. Chatterjee, K. Dey, S. Dutta, S. Jain, Sa. Majumdar, N. Modak, A. Mondal, K. Mukherjee, S. Mukhopadhyay, S. Roy, A. Roy, D. Chowdhury, S. Roy Sarkar, S. Sharan, M. Abdulsalam, A. Chudasama, R. Dutta, D. Jha, V. Kumar, V. Mohanty, A. K. Pant, L. M. Shukla, P. Topkar, A. Aziz, T. Banerjee, S. Bhowmik, S. Chatterjee, R. M. Dewanjee, R. K. Dugad, S. Ganguly, S. Ghosh, S. Guchait, M. Gurtu, A. Kole, G. Kumar, S. Mahakud, B. Maity, M. Majumder, G. Mazumdar, K. Mitra, S. Mohanty, G. B. Parida, B. Sarkar, T. Sudhakar, K. Sur, N. Sutar, B. Wickramage, N. Chauhan, S. Dube, S. Sharma, S. Bakhshiansohi, H. Behnamian, H. Etesami, S. M. Fahim, A. Goldouzian, R. Khakzad, M. Najafabadi, M. Mohammadi Naseri, M. Mehdiabadi, S. Paktinat Hosseinabadi, F. Rezaei Safarzadeh, B. Zeinali, M. Felcini, M. Grunewald, M. Abbrescia, M. Calabria, C. Caputo, C. Colaleo, A. Creanza, D. Cristella, L. De Filippis, N. De Palma, M. Fiore, L. Iaselli, G. Maggi, G. Maggi, M. Miniello, G. My, S. Nuzzo, S. Pompili, A. Pugliese, G. Radogna, R. Ranieri, A. Selvaggi, G. Silvestris, L. Venditti, R. Verwilligen, P. Abbiendi, G. Battilana, C. Benvenuti, A. C. Bonacorsi, D. Braibant-Giacomelli, S. Brigliadori, L. Campanini, R. Capiluppi, P. Castro, A. Cavallo, F. R. Chhibra, S. S. Codispoti, G. Cuffiani, M. Dallavalle, G. M. Fabbri, F. Fanfani, A. Fasanella, D. Giacomelli, P. Grandi, C. Guiducci, L. Marcellini, S. Masetti, G. Montanari, A. Navarria, F. L. Perrotta, A. Rossi, A. M. Rovelli, T. Siroli, G. P. Tosi, N. Travaglini, R. Cappello, G. Chiorboli, M. Costa, S. Giordano, F. Potenza, R. Tricomi, A. Tuve, C. Barbagli, G. Ciulli, V. Civinini, C. D'Alessandro, R. Focardi, E. Gonzi, S. Gori, V. Lenzi, P. Meschini, M. Paoletti, S. Sguazzoni, G. Tropiano, A. Viliani, L. Benussi, L. Bianco, S. Fabbri, F. Piccolo, D. Primavera, F. Calvelli, V. Ferro, F. Lo Vetere, M. Monge, M. R. Robutti, E. Tosi, S. Brianza, L. Dinardo, M. E. Fiorendi, S. Gennai, S. Gerosa, R. Ghezzi, A. Govoni, P. Malvezzi, S. Manzoni, R. A. Marzocchi, B. Menasce, D. Moroni, L. Paganoni, M. Pedrini, D. Ragazzi, S. Redaelli, N. de Fatis, T. Tabarelli Buontempo, S. Cavallo, N. Di Guida, S. Esposito, M. Fabozzi, F. Iorio, A. O. M. Lanza, G. Lista, L. Meola, S. Merola, M. Paolucci, P. Sciacca, C. Thyssen, F. Azzi, P. Bacchetta, N. Benato, L. Bisello, D. Boletti, A. Branca, A. Carlin, R. Checchia, P. Dall'Osso, M. Dorigo, T. Dosselli, U. Gasparini, F. Gasparini, U. Gozzelino, A. Lacaprara, S. Margoni, M. Meneguzzo, A. T. Montecassiano, F. Passaseo, M. Pazzini, J. Pozzobon, N. Ronchese, P. Simonetto, F. Torassa, E. Tosi, M. Zanetti, M. Zotto, P. Zucchetta, A. Zumerle, G. Braghieri, A. Magnani, A. Montagna, P. Ratti, S. P. Re, V. Riccardi, C. Salvini, P. Vai, I. Vitulo, P. Solestizi, L. Alunni Biasini, M. Bilei, G. M. Ciangottini, D. Fano, L. Lariccia, P. Mantovani, G. Menichelli, M. Saha, A. Santocchia, A. Spiezia, A. Androsov, K. Azzurri, P. Bagliesi, G. Bernardini, J. Boccali, T. Broccolo, G. Castaldi, R. Ciocci, M. A. Dell'Orso, R. Donato, S. Fedi, G. Foa, L. Giassi, A. Grippo, M. T. Ligabue, F. Lomtadze, T. Martini, L. Messineo, A. Palla, F. Rizzi, A. Savoy-Navarro, A. Serban, A. T. Spagnolo, P. Squillacioti, P. Tenchini, R. Tonelli, G. Venturi, A. Verdini, P. G. Barone, L. Cavallari, F. D'imperio, G. Del Re, D. Diemoz, M. Gelli, S. Jorda, C. Longo, E. Margaroli, F. Meridiani, P. Organtini, G. Paramatti, R. Preiato, F. Rahatlou, S. Rovelli, C. Santanastasio, F. Traczyk, P. Amapane, N. Arcidiacono, R. Argiro, S. Arneodo, M. Bellan, R. Biino, C. Cartiglia, N. Costa, M. Covarelli, R. Degano, A. Demaria, N. Finco, L. Kiani, B. Mariotti, C. Maselli, S. Migliore, E. Monaco, V. Monteil, E. Musich, M. Obertino, M. M. Pacher, L. Pastrone, N. Pelliccioni, M. Angioni, G. L. Pinna Ravera, F. Romero, A. Ruspa, M. Sacchi, R. Solano, A. Staiano, A. Tamponi, U. Belforte, S. Candelise, V. Casarsa, M. Cossutti, F. Della Ricca, G. Gobbo, B. La Licata, C. Marone, M. Schizzi, A. Zanetti, A. Kropivnitskaya, A. Nam, S. K. Kim, D. H. Kim, G. N. Kim, M. S. Kong, D. J. Lee, S. Oh, Y. D. Sakharov, A. Son, D. C. Cifuentes, J. A. Brochero Kim, H. Kim, T. J. Ryu, M. S. Song, S. Choi, S. Go, Y. Gyun, D. Hong, B. Jo, M. Kim, H. Kim, Y. Lee, B. Lee, K. Lee, K. S. Lee, S. Park, S. K. Roh, Y. Yoo, H. D. Choi, M. Kim, H. Kim, J. H. Lee, J. S. H. Park, I. C. Ryu, G. Choi, Y. Goh, J. Kim, D. Kwon, E. Lee, J. Yu, I. Juodagalvis, A. Vaitkus, J. Ahmed, I. Ibrahim, Z. A. Komaragiri, J. R. Ali, M. A. B. Md Idris, F. Mohamad Abdullah, W. A. T. Wan Yusli, M. N. Casimiro Linares, E. Castilla-Valdez, H. De La Cruz-Burelo, E. Heredia-de La Cruz, I. Hernandez-Almada, A. Lopez-Fernandez, R. Sanchez-Hernandez, A. Carrillo Moreno, S. Vazquez Valencia, F. Pedraza, I. Salazar Ibarguen, H. A. Morelos Pineda, A. Krofcheck, D. Butler, P. H. Ahmad, A. Ahmad, M. Hassan, Q. Hoorani, H. R. Khan, W. A. Khurshid, T. Shoaib, M. Bialkowska, H. Bluj, M. Boimska, B. Frueboes, T. Gorski, M. Kazana, M. Nawrocki, K. Romanowska-Rybinska, K. Szleper, M. Zalewski, P. Brona, G. Bunkowski, K. Byszuk, A. Doroba, K. Kalinowski, A. Konecki, M. Krolikowski, J. Misiura, M. Olszewski, M. Walczak, M. Bargassa, P. Da Cruz E Silva, C. Beirao Di Francesco, A. Faccioli, P. Ferreira Parracho, P. G. Gallinaro, M. Leonardo, N. Iglesias, L. Lloret Nguyen, F. Antunes, J. Rodrigues Seixas, J. Toldaiev, O. Vadruccio, D. Varela, J. Vischia, P. Afanasiev, S. Bunin, P. Gavrilenko, M. Golutvin, I. Gorbunov, I. Kamenev, A. Karjavin, V. Konoplyanikov, V. Lanev, A. Malakhov, A. Matveev, V. Moisenz, P. Palichik, V. Perelygin, V. Shmatov, S. Shulha, S. Skatchkov, N. Smirnov, V. Zarubin, A. Golovtsov, V. Ivanov, Y. Kim, V. Kuznetsova, E. Levchenko, P. Murzin, V. Oreshkin, V. Smirnov, I. Sulimov, V. Uvarov, L. Vavilov, S. Vorobyev, A. Andreev, Yu. Dermenev, A. Gninenko, S. Golubev, N. Karneyeu, A. Kirsanov, M. Krasnikov, N. Pashenkov, A. Tlisov, D. Toropin, A. Epshteyn, V. Gavrilov, V. Lychkovskaya, N. Popov, V. Pozdnyakov, I. Safronov, G. Spiridonov, A. Vlasov, E. Zhokin, A. Bylinkin, A. Andreev, V. Azarkin, M. Dremin, I. Kirakosyan, M. Leonidov, A. Mesyats, G. Rusakov, S. V. Vinogradov, A. Baskakov, A. Belyaev, A. Boos, E. Bunichev, V. Dubinin, M. Dudko, L. Ershov, A. Klyukhin, V. Kodolova, O. Lokhtin, I. Myagkov, I. Obraztsov, S. Perfilov, M. Petrushanko, S. Savrin, V. Azhgirey, I. Bayshev, I. Bitioukov, S. Kachanov, V. Kalinin, A. Konstantinov, D. Krychkine, V. Petrov, V. Ryutin, R. Sobol, A. Tourtchanovitch, L. Troshin, S. Tyurin, N. Uzunian, A. Volkov, A. Adzic, P. Ekmedzic, M. Milosevic, J. Rekovic, V. Alcaraz Maestre, J. Calvo, E. Cerrada, M. Chamizo Llatas, M. Colino, N. De La Cruz, B. Delgado Peris, A. Dominguez Vazquez, D. Escalante Del Valle, A. Fernandez Bedoya, C. Fernandez Ramos, J. P. Flix, J. Fouz, M. C. Garcia-Abia, P. Gonzalez Lopez, O. Goy Lopez, S. Hernandez, J. M. Josa, M. I. Navarro De Martino, E. Perez-Calero Yzquierdo, A. Puerta Pelayo, J. Quintario Olmeda, A. Redondo, I. Romero, L. Soares, M. S. Albajar, C. de Troconiz, J. F. Missiroli, M. Moran, D. Cuevas, J. Fernandez Menendez, J. Folgueras, S. Gonzalez Caballero, I. Palencia Cortezon, E. Vizan Garcia, J. M. Cabrillo, I. J. Calderon, A. Castineiras De Saa, J. R. De Castro Manzano, P. Duarte Campderros, J. Fernandez, M. Garcia-Ferrero, J. Gomez, G. Lopez Virto, A. Marco, J. Marco, R. Martinez Rivero, C. Matorras, F. Munoz Sanchez, F. J. Piedra Gomez, J. Rodrigo, T. Rodriguez-Marrero, A. Y. Ruiz-Jimeno, A. Scodellaro, L. Vila, I. Vilar Cortabitarte, R. Abbaneo, D. Auffray, E. Auzinger, G. Bachtis, M. Baillon, P. Ball, A. H. Barney, D. Benaglia, A. Bendavid, J. Benhabib, L. Benitez, J. F. Berruti, G. M. Bloch, P. Bocci, A. Bonato, A. Botta, C. Breuker, H. Camporesi, T. Castello, R. Cerminara, G. Colafranceschi, S. D'Alfonso, M. d'Enterria, D. Dabrowski, A. Daponte, V. David, A. De Gruttola, M. De Guio, F. De Roeck, A. De Visscher, S. Di Marco, E. Dobson, M. Dordevic, M. Dorney, B. du Pree, T. Duenser, M. Dupont, N. Elliott-Peisert, A. Franzoni, G. Funk, W. Gigi, D. Gill, K. Giordano, D. Girone, M. Glege, F. Guida, R. Gundacker, S. Guthoff, M. Hammer, J. Harris, P. Hegeman, J. Innocente, V. Janot, P. Kirschenmann, H. Kortelainen, M. J. Kousouris, K. Krajczar, K. Lecoq, P. Lourenco, C. Lucchini, M. T. Magini, N. Malgeri, L. Mannelli, M. Martelli, A. Masetti, L. Meijers, F. Mersi, S. Meschi, E. Moortgat, F. Morovic, S. Mulders, M. Nemallapudi, M. V. Neugebauer, H. Orfanelli, S. Orsini, L. Pape, L. Perez, E. Peruzzi, M. Petrilli, A. Petrucciani, G. Pfeiffer, A. Piparo, D. Racz, A. Rolandi, G. Rovere, M. Ruan, M. Sakulin, H. Schaefer, C. Schwick, C. Sharma, A. Silva, P. Simon, M. Sphicas, P. Spiga, D. Steggemann, J. Stieger, B. Stoye, M. Takahashi, Y. Treille, D. Triossi, A. Tsirou, A. Veres, G. I. Wardle, N. Woehri, H. K. Zagozdzinska, A. Zeuner, W. D. Bertl, W. Deiters, K. Erdmann, W. Horisberger, R. Ingram, Q. Kaestli, H. C. Kotlinski, D. Langenegger, U. Renker, D. Rohe, T. Bachmair, F. Baeni, L. Bianchini, L. Buchmann, M. A. Casal, B. Dissertori, G. Dittmar, M. Donega, M. Eller, P. Grab, C. Heidegger, C. Hits, D. Hoss, J. Kasieczka, G. Lustermann, W. Mangano, B. Marionneau, M. del Arbol, P. Martinez Ruiz Masciovecchio, M. Meister, D. Micheli, F. Musella, P. Nessi-Tedaldi, F. Pandolfi, F. Pata, J. Pauss, F. Perrozzi, L. Quittnat, M. Rossini, M. Starodumov, A. Takahashi, M. Tavolaro, V. R. Theofilatos, K. Wallny, R. Aarrestad, T. K. Amsler, C. Caminada, L. Canelli, M. F. Chiochia, V. De Cosa, A. Galloni, C. Hinzmann, A. Hreus, T. Kilminster, B. Lange, C. Ngadiuba, J. Pinna, D. Robmann, P. Ronga, F. J. Salerno, D. Yang, Y. Cardaci, M. Chen, K. H. Doan, T. H. Jain, Sh. Khurana, R. Konyushikhin, M. Kuo, C. M. Lin, W. Lu, Y. J. Yu, S. S. Kumar, Arun Bartek, R. Chang, P. Chang, Y. H. Chang, Y. W. Chao, Y. Chen, K. F. Chen, P. H. Dietz, C. Fiori, F. Grundler, U. Hou, W. -S. Hsiung, Y. Liu, Y. F. Lu, R. -S. Moya, M. Minano Petrakou, E. Tsai, J. F. Tzeng, Y. M. Asavapibhop, B. Kovitanggoon, K. Singh, G. Srimanobhas, N. Suwonjandee, N. Adiguzel, A. Cerci, S. Demiroglu, Z. S. Dozen, C. Dumanoglu, I. Girgis, S. Gokbulut, G. Guler, Y. Gurpinar, E. Hos, I. Kangal, E. E. Topaksu, A. Kayis Onengut, G. Ozdemir, K. Ozturk, S. Tali, B. Topakli, H. Vergili, M. Zorbilmez, C. Akin, I. V. Bilin, B. Bilmis, S. Isildak, B. Karapinar, G. Yalvac, M. Zeyrek, M. Albayrak, E. A. Gulmez, E. Kaya, M. Kaya, O. Yetkin, T. Cankocak, K. Sen, S. Vardarli, F. I. Grynyov, B. Levchuk, L. Sorokin, P. Aggleton, R. Ball, F. Beck, L. Brooke, J. J. Clement, E. Cussans, D. Flacher, H. Goldstein, J. Grimes, M. Heath, G. P. Heath, H. F. Jacob, J. Kreczko, L. Lucas, C. Meng, Z. Newbold, D. M. Paramesvaran, S. Poll, A. Sakuma, T. El Nasr-Storey, S. Seif Senkin, S. Smith, D. Smith, V. J. Bell, K. W. Belyaev, A. Brew, C. Brown, R. M. Cieri, D. Cockerill, D. J. A. Coughlan, J. A. Harder, K. Harper, S. Olaiya, E. Petyt, D. Shepherd-Themistocleous, C. H. Thea, A. Tomalin, I. R. Williams, T. Womersley, W. J. Worm, S. D. Baber, M. Bainbridge, R. Buchmuller, O. Bundock, A. Burton, D. Casasso, S. Citron, M. Colling, D. Corpe, L. Cripps, N. Dauncey, P. Davies, G. De Wit, A. Della Negra, M. Dunne, P. Elwood, A. Ferguson, W. Fulcher, J. Futyan, D. Hall, G. Iles, G. Kenzie, M. Lane, R. Lucas, R. Lyons, L. Magnan, A. -M. Malik, S. Nash, J. Nikitenko, A. Pela, J. Pesaresi, M. Petridis, K. Raymond, D. M. Richards, A. Rose, A. Seez, C. Tapper, A. Uchida, K. Acosta, M. Vazquez Virdee, T. Zenz, S. C. Cole, J. E. Hobson, P. R. Khan, A. Kyberd, P. Leggat, D. Leslie, D. Reid, I. D. Symonds, P. Teodorescu, L. Turner, M. Borzou, A. Call, K. Dittmann, J. Hatakeyama, K. Kasmi, A. Liu, H. Pastika, N. Charaf, O. Cooper, S. I. Henderson, C. Rumerio, P. Avetisyan, A. Bose, T. Fantasia, C. Gastler, D. Lawson, P. Rankin, D. Richardson, C. Rohlf, J. St John, J. Sulak, L. Zou, D. Alimena, J. Berry, E. Bhattacharya, S. Cutts, D. Dhingra, N. Ferapontov, A. Garabedian, A. Hakala, J. Heintz, U. Laird, E. Landsberg, G. Mao, Z. Narain, M. Piperov, S. Sagir, S. Sinthuprasith, T. Syarif, R. Breedon, R. Breto, G. Sanchez, M. Calderon De La Barca Chauhan, S. Chertok, M. Conway, J. Conway, R. Cox, P. T. Erbacher, R. Gardner, M. Ko, W. Lander, R. Mulhearn, M. Pellett, D. Pilot, J. Ricci-Tam, F. Shalhout, S. Smith, J. Squires, M. Stolp, D. Tripathi, M. Wilbur, S. Yohay, R. Cousins, R. Everaerts, P. Farrell, C. Hauser, J. Ignatenko, M. Saltzberg, D. Takasugi, E. Valuev, V. Weber, M. Burt, K. Clare, R. Ellison, J. Gary, J. W. Hanson, G. Heilman, J. Paneva, M. Ivova Jandir, P. Kennedy, E. Lacroix, F. Long, O. R. Luthra, A. Malberti, M. Negrete, M. Olmedo Shrinivas, A. Wei, H. Wimpenny, S. Yates, B. R. Branson, J. G. Cerati, G. B. Cittolin, S. D'Agnolo, R. T. Holzner, A. Kelley, R. Klein, D. Letts, J. Macneill, I. Olivito, D. Padhi, S. Pieri, M. Sani, M. Sharma, V. Simon, S. Tadel, M. Vartak, A. Wasserbaech, S. Welke, C. Wuerthwein, F. Yagil, A. Della Porta, G. Zevi Barge, D. Bradmiller-Feld, J. Campagnari, C. Dishaw, A. Dutta, V. Flowers, K. Sevilla, M. Franco Geffert, P. George, C. Golf, F. Gouskos, L. Gran, J. Incandela, J. Justus, C. Mccoll, N. Mullin, S. D. Richman, J. Stuart, D. Suarez, I. To, W. West, C. Yoo, J. Anderson, D. Apresyan, A. Bornheim, A. Bunn, J. Chen, Y. Duarte, J. Mott, A. Newman, H. B. Pena, C. Pierini, M. Spiropulu, M. Vlimant, J. R. Xie, S. Zhu, R. Y. Andrews, M. B. Azzolini, V. Calamba, A. Carlson, B. Ferguson, T. Paulini, M. Russ, J. Sun, M. Vogel, H. Vorobiev, I. Cumalat, J. P. Ford, W. T. Gaz, A. Jensen, F. Johnson, A. Krohn, M. Mulholland, T. Nauenberg, U. Stenson, K. Wagner, S. R. Alexander, J. Chatterjee, A. Chaves, J. Chu, J. Dittmer, S. Eggert, N. Mirman, N. Kaufman, G. Nicolas Patterson, J. R. Rinkevicius, A. Ryd, A. Skinnari, L. Soffi, L. Sun, W. Tan, S. M. Teo, W. D. Thom, J. Thompson, J. Tucker, J. Weng, Y. Wittich, P. Abdullin, S. Albrow, M. Anderson, J. Apollinari, G. Banerjee, S. Bauerdick, L. A. T. Beretvas, A. Berryhill, J. Bhat, P. C. Bolla, G. Burkett, K. Butler, J. N. Cheung, H. W. K. Chlebana, F. Cihangir, S. Elvira, V. D. Fisk, I. Freeman, J. Gottschalk, E. Gray, L. Green, D. Gruenendahl, S. Gutsche, O. Hanlon, J. Hare, D. Harris, R. M. Hasegawa, S. Hirschauer, J. Hu, Z. Jindariani, S. Johnson, M. Joshi, U. Jung, A. W. Klima, B. Kreis, B. Kwan, S. Lammel, S. Linacre, J. Lincoln, D. Lipton, R. Liu, T. De Sa, R. Lopes Lykken, J. Maeshima, K. Marraffino, J. M. Outschoorn, V. I. Martinez Maruyama, S. Mason, D. McBride, P. Merkel, P. Mishra, K. Mrenna, S. Nahn, S. Newman-Holmes, C. O'Dell, V. Pedro, K. Prokofyev, O. Rakness, G. Sexton-Kennedy, E. Soha, A. Spalding, W. J. Spiegel, L. Taylor, L. Tkaczyk, S. Tran, N. V. Uplegger, L. Vaandering, E. W. Vernieri, C. Verzocchi, M. Vidal, R. Weber, H. A. Whitbeck, A. Yang, F. Acosta, D. Avery, P. Bortignon, P. Bourilkov, D. Carnes, A. Carver, M. Curry, D. Das, S. Di Giovanni, G. P. Field, R. D. Furic, I. K. Hugon, J. Konigsberg, J. Korytov, A. Low, J. F. Ma, P. Matchev, K. Mei, H. Milenovic, P. Mitselmakher, G. Rank, D. Rossin, R. Shchutska, L. Snowball, M. Sperka, D. Terentyev, N. Thomas, L. Wang, J. Wang, S. Yelton, J. Hewamanage, S. Linn, S. Markowitz, P. Martinez, G. Rodriguez, J. L. Ackert, A. Adams, J. R. Adams, T. Askew, A. Bochenek, J. Diamond, B. Haas, J. Hagopian, S. Hagopian, V. Johnson, K. F. Khatiwada, A. Prosper, H. Weinberg, M. Baarmand, M. M. Bhopatkar, V. Hohlmann, M. Kalakhety, H. Noonan, D. Roy, T. Yumiceva, F. Adams, M. R. Apanasevich, L. Berry, D. Betts, R. R. Bucinskaite, I. Cavanaugh, R. Evdokimov, O. Gauthier, L. Gerber, C. E. Hofman, D. J. Kurt, P. O'Brien, C. Gonzalez, I. D. Sandoval Silkworth, C. Turner, P. Varelas, N. Wu, Z. Zakaria, M. Bilki, B. Clarida, W. Dilsiz, K. Durgut, S. Gandrajula, R. P. Haytmyradov, M. Khristenko, V. Merlo, J. -P. Mermerkaya, H. Mestvirishvili, A. Moeller, A. Nachtman, J. Ogul, H. Onel, Y. Ozok, F. Penzo, A. Snyder, C. Tan, P. Tiras, E. Wetzel, J. Yi, K. Anderson, I. Barnett, B. A. Blumenfeld, B. Fehling, D. Feng, L. Gritsan, A. V. Maksimovic, P. Martin, C. Osherson, M. Swartz, M. Xiao, M. Xin, Y. You, C. Baringer, P. Bean, A. Benelli, G. Bruner, C. Kenny, R. P., III Majumder, D. Malek, M. Murray, M. Sanders, S. Stringer, R. Wang, Q. Ivanov, A. Kaadze, K. Khalil, S. Makouski, M. Maravin, Y. Mohammadi, A. Saini, L. K. Skhirtladze, N. Toda, S. Lange, D. Rebassoo, F. Wright, D. Anelli, C. Baden, A. Baron, O. Belloni, A. Calvert, B. Eno, S. C. Ferraioli, C. Gomez, J. A. Hadley, N. J. Jabeen, S. Kellogg, R. G. Kolberg, T. Kunkle, J. Lu, Y. Mignerey, A. C. Shin, Y. H. Skuja, A. Tonjes, M. B. Tonwar, S. C. Apyan, A. Barbieri, R. Baty, A. Bierwagen, K. Brandt, S. Busza, W. Cali, I. A. Demiragli, Z. Di Matteo, L. Ceballos, G. Gomez Goncharov, M. Gulhan, D. Iiyama, Y. Innocenti, G. M. Klute, M. Kovalskyi, D. Lai, Y. S. Lee, Y. -J. Levin, A. Luckey, P. D. Marini, A. C. Mcginn, C. Mironov, C. Niu, X. Paus, C. Ralph, D. Roland, C. Roland, G. Salfeld-Nebgen, J. Stephans, G. S. F. Sumorok, K. Varma, M. Velicanu, D. Veverka, J. Wang, J. Wang, T. W. Wyslouch, B. Yang, M. Zhukova, V. Dahmes, B. Evans, A. Finkel, A. Gude, A. Hansen, P. Kalafut, S. Kao, S. C. Klapoetke, K. Kubota, Y. Lesko, Z. Mans, J. Nourbakhsh, S. Ruckstuhl, N. Rusack, R. Tambe, N. Turkewitz, J. Acosta, J. G. Oliveros, S. Avdeeva, E. Bloom, K. Bose, S. Claes, D. R. Dominguez, A. Fangmeier, C. Suarez, R. Gonzalez Kamalieddin, R. Keller, J. Knowlton, D. Kravchenko, I. Lazo-Flores, J. Meier, F. Monroy, J. Ratnikov, F. Siado, J. E. Snow, G. R. Alyari, M. Dolen, J. George, J. Godshalk, A. Harrington, C. Iashvili, I. Kaisen, J. Kharchilava, A. Kumar, A. Rappoccio, S. Alverson, G. Barberis, E. Baumgartel, D. Chasco, M. Hortiangtham, A. Massironi, A. Morse, D. M. Nash, D. Orimoto, T. De Lima, R. Teixeira Trocino, D. Wang, R. -J. Wood, D. Zhang, J. Hahn, K. A. Kubik, A. Mucia, N. Odell, N. Pollack, B. Pozdnyakov, A. Schmitt, M. Stoynev, S. Sung, K. Trovato, M. Velasco, M. Brinkerhoff, A. Dev, N. Hildreth, M. Jessop, C. Karmgard, D. J. Kellams, N. Lannon, K. Lynch, S. Marinelli, N. Meng, F. Mueller, C. Musienko, Y. Pearson, T. Planer, M. Reinsvold, A. Ruchti, R. Smith, G. Taroni, S. Valls, N. Wayne, M. Wolf, M. Woodard, A. Antonelli, L. Brinson, J. Bylsma, B. Durkin, L. S. Flowers, S. Hart, A. Hill, C. Hughes, R. Ji, W. Kotov, K. Ling, T. Y. Liu, B. Luo, W. Puigh, D. Rodenburg, M. Winer, B. L. Wulsin, H. W. Driga, O. Elmer, P. Hardenbrook, J. Hebda, P. Koay, S. A. Lujan, P. Marlow, D. Medvedeva, T. Mooney, M. Olsen, J. Palmer, C. Piroue, P. Quan, X. Saka, H. Stickland, D. Tully, C. Werner, J. S. Zuranski, A. Malik, S. Barnes, V. E. Benedetti, D. Bortoletto, D. Gutay, L. Jha, M. K. Jones, M. Jung, K. Miller, D. H. Neumeister, N. Radburn-Smith, B. C. Shi, X. Shipsey, I. Silvers, D. Sun, J. Svyatkovskiy, A. Wang, F. Xie, W. Xu, L. Parashar, N. Stupak, J. Adair, A. Akgun, B. Chen, Z. Ecklund, K. M. Geurts, F. J. M. Guilbaud, M. Li, W. Michlin, B. Northup, M. Padley, B. P. Redjimi, R. Roberts, J. Rorie, J. Tu, Z. Zabel, J. Betchart, B. Bodek, A. de Barbaro, P. Demina, R. Eshaq, Y. Ferbel, T. Galanti, M. Garcia-Bellido, A. Han, J. Harel, A. Hindrichs, O. Khukhunaishvili, A. Petrillo, G. Verzetti, M. Demortier, L. Arora, S. Barker, A. Chou, J. P. Contreras-Campana, C. Contreras-Campana, E. Duggan, D. Ferencek, D. Gershtein, Y. Gray, R. Halkiadakis, E. Hidas, D. Hughes, E. Kaplan, S. Elayavalli, R. Kunnawalkam Lath, A. Nash, K. Panwalkar, S. Park, M. Salur, S. Schnetzer, S. Sheffield, D. Somalwar, S. Stone, R. Thomas, S. Thomassen, P. Walker, M. Foerster, M. Riley, G. Rose, K. Spanier, S. York, A. Bouhali, O. Hernandez, A. Castaneda Dalchenko, M. De Mattia, M. Delgado, A. Dildick, S. Eusebi, R. Flanagan, W. Gilmore, J. Kamon, T. Krutelyov, V. Mueller, R. Osipenkov, I. Pakhotin, Y. Patel, R. Perloff, A. Rose, A. Safonov, A. Tatarinov, A. Ulmer, K. A. Akchurin, N. Cowden, C. Damgov, J. Dragoiu, C. Dudero, P. R. Faulkner, J. Kunori, S. Lamichhane, K. Lee, S. W. Libeiro, T. Undleeb, S. Volobouev, I. Appelt, E. Delannoy, A. G. Greene, S. Gurrola, A. Janjam, R. Johns, W. Maguire, C. Mao, Y. Melo, A. Ni, H. Sheldon, P. Snook, B. Tuo, S. Velkovska, J. Xu, Q. Arenton, M. W. Boutle, S. Cox, B. Francis, B. Goodell, J. Hirosky, R. Ledovskoy, A. Li, H. Lin, C. Neu, C. Sun, X. Wang, Y. Wolfe, E. Wood, J. Xia, F. Clarke, C. Harr, R. Karchin, P. E. Don, C. Kottachchi Kankanamge Lamichhane, P. Sturdy, J. Belknap, D. A. Carlsmith, D. Cepeda, M. Christian, A. Dasu, S. Dodd, L. Duric, S. Friis, E. Gomber, B. Grothe, M. Hall-Wilton, R. Herndon, M. Herve, A. Klabbers, P. Lanaro, A. Levine, A. Long, K. Loveless, R. Mohapatra, A. Ojalvo, I. Perry, T. Pierro, G. A. Polese, G. Ruggles, T. Sarangi, T. Savin, A. Sharma, A. Smith, N. Smith, W. H. Taylor, D. Woods, N. CA CMS Collaboration TI Search for a charged Higgs boson in pp collisions at root s=8 TeV SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE Hadron-Hadron Scattering; Higgs physics; Supersymmetry ID CROSS-SECTION; FINAL-STATES; TAU-LEPTON; LHC; SUPERSYMMETRY; MODEL; DECAY; PARAMETERS; PARTICLE; PROGRAM AB A search for a charged Higgs boson is performed with a data sample corresponding to an integrated luminosity of 19.7 +/- 0.5 fb(-1) collected with the CMS detector in proton-proton collisions at root s = 8,TeV. The charged Higgs boson is searched for in top quark decays for m(H +/-) < m(t) - m(b), and in the direct production pp -> t(b)H-+/- for m(H +/-) > m(t) - m(b). The H-+/- -> tau(+/-)nu(tau) and H-+/- -> tb decay modes in the final states tau(h)+jets, mu tau(h), l+jets, and ll' (l =e, mu) are considered in the search. No signal is observed and 95% confidence level upper limits are set on the charged Higgs boson production. A model-independent upper limit on the product branching fraction B(t -> H(+/-)b) B(H-+/- -> tau(+/-)nu(tau)) = 1.2-0.15% is obtained in the mass range m(H +/-) = 80-160 GeV, while the upper limit on the cross section times branching fraction sigma(pp -> t(b)H-+/-) B(H-+/- -> tau(+/-)nu(tau)) = 0.38-0.025 pb is set in the mass range m(H)+ = 180-600 GeV. Here, sigma(pp -> t(b)H-+/-) stands for the cross section sum sigma(pp -> (t) over bar H+) + sigma(pp -> t (b) over bar H-). Assuming B(t -> H(+/-)b) = 1, an upper limit on sigma(pp -> t(b)H-+/-) of 2.0-0.13 pb is set for m(H +/-) = 180-600 GeV. The combination of all considered decay modes and final states is used to set exclusion limits in the m(H +/-)-tan beta parameter space in different MSSM benchmark scenarios. C1 [Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Adam, W.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Eroe, J.; Flechl, M.; Friedl, M.; Fruehwirth, R.; Ghete, V. M.; Hartl, C.; Hoermann, N.; Hrubec, J.; Jeitler, M.; Knuenz, V.; Koenig, A.; Krammer, M.; Kraetschmer, I.; Liko, D.; Matsushita, T.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, H.; Schieck, J.; Schoefbeck, R.; Strauss, J.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C. -E.] Inst Hochenergiephys OeAW, Vienna, Austria. [Mossolov, V.; Shumeiko, N.; Gonzalez, J. Suarez] Natl Ctr Particle & High Energy Phys, Minsk, Byelarus. [Alderweireldt, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Knutsson, A.; Lauwers, J.; Luyckx, S.; Rougny, R.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.] Univ Antwerp, B-2020 Antwerp, Belgium. [Abu Zeid, S.; Blekman, F.; D'Hondt, J.; Daci, N.; De Bruyn, I.; Deroover, K.; Heracleous, N.; Keaveney, J.; Lowette, S.; Moreels, L.; Olbrechts, A.; Python, Q.; Strom, D.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Van Parijs, I.] Vrije Univ Brussel, Brussels, Belgium. [Barria, P.; Brun, H.; Caillol, C.; Clerbaux, B.; De Lentdecker, G.; Fasanella, G.; Favart, L.; Grebenyuk, A.; Karapostoli, G.; Lenzi, T.; Leonard, A.; Maerschalk, T.; Marinov, A.; Pernie, L.; Randle-conde, A.; Reis, T.; Seva, T.; Vander Velde, C.; Vanlaer, P.; Yonamine, R.; Zenoni, F.; Zhang, F.] Univ Libre Bruxelles, Brussels, Belgium. [Beernaert, K.; Benucci, L.; Cimmino, A.; Crucy, S.; Dobur, D.; Fagot, A.; Garcia, G.; Gul, M.; Mccartin, J.; Rios, A. A. Ocampo; Poyraz, D.; Ryckbosch, D.; Salva, S.; Sigamani, M.; Strobbe, N.; Tytgat, M.; Van Driessche, W.; Yazgan, E.; Zaganidis, N.] Univ Ghent, B-9000 Ghent, Belgium. [Basegmez, S.; Beluffi, C.; Bondu, O.; Brochet, S.; Bruno, G.; Caudron, A.; Ceard, L.; Da Silveira, G. G.; Delaere, C.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Jafari, A.; Jez, P.; Komm, M.; Lemaitre, V.; Mertens, A.; Nuttens, C.; Perrini, L.; Pin, A.; Piotrzkowski, K.; Popov, A.; Quertenmont, L.; Selvaggi, M.; Marono, M. Vidal] Catholic Univ Louvain, Louvain, Belgium. [Beliy, N.; Hammad, G. H.] Univ Mons, B-7000 Mons, Belgium. [Alda Junior, W. L.; Alves, G. A.; Brito, L.; Martins Junior, M. Correa; Hamer, M.; Hensel, C.; Herrera, C. Mora; Moraes, A.; Pol, M. E.; Teles, P. Rebello] Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil. [Batista Das Chagas, E. Belchior; Carvalho, W.; Chinellato, J.; Custodio, A.; Da Costa, E. M.; Damiao, D. De Jesus; Martins, C. De Oliveira; De Souza, S. Fonseca; Huertas Guativa, L. M.; Malbouisson, H.; Figueiredo, D. Matos; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Pereira, A. Vilela] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Ahuja, S.; Dogra, S.; Fernandez Perez Tomei, T. R.; Moon, C. S.; Novaes, S. F.; Padula, Sandra S.] Univ Estadual Paulista, Sao Paulo, Brazil. [Bernardes, C. A.; Santos, A. De Souza; Gregores, E. M.; Mercadante, P. G.] Univ Fed ABC, Sao Paulo, Brazil. [Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.] Bulgarian Acad Sci, Inst Nucl Res & Nucl Energy, Sofia, Bulgaria. [Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.] Univ Sofia, BU-1126 Sofia, Bulgaria. [Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Cheng, T.; Du, R.; Jiang, C. H.; Plestina, R.; Romeo, F.; Shaheen, S. M.; Tao, J.; Wang, C.; Wang, Z.; Zhang, H.] Inst High Energy Phys, Beijing 100039, Peoples R China. [Zhang, F.; Asawatangtrakuldee, C.; Ban, Y.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.] Peking Univ, State Key Lab Nucl Phys & Technol, Beijing 100871, Peoples R China. [Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; Gomez Moreno, B.; Sanabria, J. C.] Univ Los Andes, Bogota, Colombia. [Godinovic, N.; Lelas, D.; Puljak, I.; Cipriano, P. M. Ribeiro] Univ Split, Fac Elect Engn Mech Engn & Naval Architecture, Split, Croatia. [Antunovic, Z.; Kovac, M.] Univ Split, Fac Sci, Split, Croatia. [Brigljevic, V.; Kadija, K.; Luetic, J.; Micanovic, S.; Sudic, L.] Rudjer Boskovic Inst, Zagreb, Croatia. [Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.] Univ Cyprus, CY-1678 Nicosia, Cyprus. [Bodlak, M.; Finger, M.; Finger, M., Jr.] Charles Univ Prague, Prague, Czech Republic. [El-khateeb, E.; Elkafrawy, T.; Mohamed, A.; Radi, A.; Salama, E.] Acad Sci Res & Technol Arab Republ Egypt, Egyptian Network High Energy Phys, Cairo, Egypt. [Giammanco, A.; Calpas, B.; Kadastik, M.; Murumaa, M.; Raidal, M.; Tiko, A.; Veelken, C.] NICPB, Tallinn, Estonia. [Eerola, P.; Pekkanen, J.; Voutilainen, M.] Univ Helsinki, Dept Phys, Helsinki, Finland. [Harkonen, J.; Karimaki, V.; Kinnunen, R.; Lampen, T.; Lassila-Perini, K.; Laurila, S.; Lehti, S.; Linden, T.; Luukka, P.; Maenpaa, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.] Helsinki Inst Phys, Helsinki, Finland. [Talvitie, J.; Tuuva, T.] Lappeenranta Univ Technol, Lappeenranta, Finland. [Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; de Monchenault, G. Hamel; Jarry, P.; Locci, E.; Machet, M.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Zghiche, A.] CEA Saclay, DSM IRFU, F-91191 Gif Sur Yvette, France. [Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Chapon, E.; Charlot, C.; Dahms, T.; Davignon, O.; Filipovic, N.; Florent, A.; de Cassagnac, R. Granier; Lisniak, S.; Mastrolorenzo, L.; Mine, P.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Pigard, P.; Regnard, S.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Strebler, T.; Yilmaz, Y.; Zabi, A.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Beluffi, C.; Agram, J. -L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J. -M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J. -C.; Gele, D.; Goerlach, U.; Goetzmann, C.; Le Bihan, A. -C.; Merlin, J. A.; Skovpen, K.; Van Hove, P.] Univ Strasbourg, Inst Pluridisciplinaire Hubert Curien, Univ Haute Alsace Mulhouse, CNRS,IN2P3, Strasbourg, France. [Gadrat, S.] CNRS, IN2P3, Ctr Calcul, Inst Natl Phys Nucl & Phys Particules, Villeurbanne, France. [Beauceron, S.; Bernet, C.; Boudoul, G.; Bouvier, E.; Montoya, C. A. Carrillo; Chierici, R.; Contardo, D.; Courbon, B.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Lagarde, F.; Laktineh, I. B.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Alvarez, J. D. Ruiz; Sabes, D.; Sgandurra, L.; Sordini, V.; Vander Donckt, M.; Verdier, P.; Viret, S.] Univ Lyon 1, Univ Lyon, CNRS, IN2P3,Inst Phys Nucl Lyon, Villeurbanne, France. [Toriashvili, T.] Georgian Tech Univ, Tbilisi, Rep of Georgia. [Toriashvili, T.; Tsamalaidze, Z.] Tbilisi State Univ, GE-380086 Tbilisi, Rep of Georgia. [Autermann, C.; Beranek, S.; Edelhoff, M.; Feld, L.; Heister, A.; Kiesel, M. K.; Klein, K.; Lipinski, M.; Ostapchuk, A.; Preuten, M.; Raupach, F.; Schael, S.; Schulte, J. F.; Verlage, T.; Weber, H.; Wittmer, B.; Zhukov, V.] Rhein Westfal TH Aachen, Inst Phys 1, Aachen, Germany. [Ata, M.; Brodski, M.; Dietz-Laursonn, E.; Duchardt, D.; Endres, M.; Erdmann, M.; Erdweg, S.; Esch, T.; Fischer, R.; Gueth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Klingebiel, D.; Knutzen, S.; Kreuzer, P.; Merschmeyer, M.; Meyer, A.; Millet, P.; Olschewski, M.; Padeken, K.; Papacz, P.; Pook, T.; Radziej, M.; Reithler, H.; Rieger, M.; Scheuch, F.; Sonnenschein, L.; Teyssier, D.; Thueer, S.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany. [Cherepanov, V.; Erdogan, Y.; Fluegge, G.; Geenen, H.; Geisler, M.; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Kuensken, A.; Lingemann, J.; Nehrkorn, A.; Nowack, A.; Nugent, I. M.; Pistone, C.; Pooth, O.; Stahl, A.] Rhein Westfal TH Aachen, Phys Inst B 3, Aachen, Germany. [Martin, M. Aldaya; Asin, I.; Bartosik, N.; Behnke, O.; Behrens, U.; Bell, A. J.; Borras, K.; Burgmeier, A.; Cakir, A.; Calligaris, L.; Campbell, A.; Choudhury, S.; Costanza, F.; Pardos, C. Diez; Dolinska, G.; Dooling, S.; Dorland, T.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Flucke, G.; Gallo, E.; Garcia, J. Garay; Geiser, A.; Gizhko, A.; Gunnellini, P.; Hauk, J.; Hempel, M.; Jung, H.; Kalogeropoulos, A.; Karacheban, O.; Kasemann, M.; Katsas, P.; Kieseler, J.; Kleinwort, C.; Korol, I.; Lange, W.; Leonard, J.; Lipka, K.; Lobanov, A.; Lohmann, W.; Mankel, R.; Marfin, I.; Melzer-Pellmann, I. -A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Nayak, A.; Ntomari, E.; Perrey, H.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Roland, B.; Sahin, M. Oe.; Saxena, P.; Schoerner-Sadenius, T.; Schroeder, M.; Seitz, C.; Spannagel, S.; Trippkewitz, K. D.; Walsh, R.; Wissing, C.] DESY, Hamburg, Germany. [Gallo, E.; Blobel, V.; Vignali, M. Centis; Draeger, A. R.; Erfle, J.; Garutti, E.; Goebel, K.; Gonzalez, D.; Goerner, M.; Haller, J.; Hoffmann, M.; Hoeing, R. S.; Junkes, A.; Klanner, R.; Kogler, R.; Lapsien, T.; Lenz, T.; Marchesini, I.; Marconi, D.; Meyer, M.; Nowatschin, D.; Ott, J.; Pantaleo, F.; Peiffer, T.; Perieanu, A.; Pietsch, N.; Poehlsen, J.; Rathjens, D.; Sander, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Schwandt, J.; Seidel, M.; Sola, V.; Stadie, H.; Steinbrueck, G.; Tholen, H.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.; Vormwald, B.] Univ Hamburg, Hamburg, Germany. [Akbiyik, M.; Barth, C.; Baus, C.; Berger, J.; Boeser, C.; Butz, E.; Chwalek, T.; Colombo, F.; De Boer, W.; Descroix, A.; Dierlamm, A.; Fink, S.; Frensch, F.; Giffels, M.; Gilbert, A.; Hartmann, F.; Heindl, S. M.; Husemann, U.; Katkov, I.; Kornmayer, A.; Pardo, P. Lobelle; Maier, B.; Mildner, H.; Mozer, M. U.; Mueller, T.; Mueller, Th.; Plagge, M.; Quast, G.; Rabbertz, K.; Roecker, S.; Roscher, F.; Simonis, H. J.; Stober, F. M.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weber, M.; Weiler, T.; Woehrmann, C.; Wolf, R.] Univ Karlsruhe, Inst Expt Kernphys, Karlsruhe, Germany. [Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Psallidas, A.; Topsis-Giotis, I.] NCSR Demokritos, INPP, Aghia Paraskevi, Greece. [Agapitos, A.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Tziaferi, E.; Sphicas, P.] Univ Athens, Athens, Greece. [Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Loukas, N.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Strologas, J.] Univ Ioannina, GR-45110 Ioannina, Greece. [Bencze, G.; Hajdu, C.; Hazi, A.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Bartok, M.] Wigner Res Ctr Phys, Budapest, Hungary. [Horvath, D.; Beni, N.; Czellar, S.; Karancsi, J.; Molnar, J.; Szillasi, Z.] Inst Nucl Res ATOMKI, Debrecen, Hungary. [Karancsi, J.; Bartok, M.; Makovec, A.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.] Univ Debrecen, Debrecen, Hungary. [Mal, P.; Mandal, K.; Sahoo, D. K.; Sahoo, N.; Swain, S. K.] Natl Inst Sci Educ & Res, Bhubaneswar, Orissa, India. [Bansal, S.; Beri, S. B.; Bhatnagar, V.; Chawla, R.; Gupta, R.; Bhawandeep, U.; Kalsi, A. K.; Kaur, A.; Kaur, M.; Kumar, R.; Mehta, A.; Mittal, M.; Singh, J. B.; Walia, G.] Panjab Univ, Chandigarh 160014, India. [Kumar, Ashok; Bhardwaj, A.; Choudhary, B. C.; Garg, R. B.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Nishu, N.; Ranjan, K.; Sharma, R.; Sharma, V.] Univ Delhi, Delhi 110007, India. [Bhattacharya, S.; Chatterjee, K.; Dey, S.; Dutta, S.; Jain, Sa.; Majumdar, N.; Modak, A.; Mondal, K.; Mukherjee, S.; Mukhopadhyay, S.; Roy, A.; Roy, D.; Chowdhury, S. Roy; Sarkar, S.; Sharan, M.] Saha Inst Nucl Phys, Kolkata, India. [Abdulsalam, A.; Chudasama, R.; Dutta, D.; Jha, V.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Topkar, A.] Bhabha Atom Res Ctr, Mumbai 400085, Maharashtra, India. [Aziz, T.; Banerjee, S.; Bhowmik, S.; Chatterjee, R. M.; Dewanjee, R. K.; Dugad, S.; Ganguly, S.; Ghosh, S.; Guchait, M.; Gurtu, A.; Kole, G.; Kumar, S.; Mahakud, B.; Maity, M.; Majumder, G.; Mazumdar, K.; Mitra, S.; Mohanty, G. B.; Parida, B.; Sarkar, T.; Sudhakar, K.; Sur, N.; Sutar, B.; Wickramage, N.] Tata Inst Fundamental Res, Mumbai 400005, Maharashtra, India. [Chauhan, S.; Dube, S.; Sharma, S.] IISER, Pune, Maharashtra, India. [Bakhshiansohi, H.; Behnamian, H.; Etesami, S. M.; Fahim, A.; Goldouzian, R.; Khakzad, M.; Najafabadi, M. Mohammadi; Naseri, M.; Mehdiabadi, S. Paktinat; Hosseinabadi, F. Rezaei; Safarzadeh, B.; Zeinali, M.] Inst Res Fundamental Sci IPM, Tehran, Iran. [Felcini, M.; Grunewald, M.] Univ Coll Dublin, Dublin 2, Ireland. [Abbrescia, M.; Calabria, C.; Caputo, C.; Colaleo, A.; Creanza, D.; Cristella, L.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Ranieri, A.; Selvaggi, G.; Silvestris, L.; Venditti, R.; Verwilligen, P.] INFN Sez Bari, Bari, Italy. [Abbrescia, M.; Calabria, C.; Caputo, C.; Cristella, L.; De Palma, M.; Miniello, G.; Nuzzo, S.; Pompili, A.; Radogna, R.; Selvaggi, G.; Venditti, R.] Univ Bari, Bari, Italy. [Creanza, D.; De Filippis, N.; Iaselli, G.; Maggi, G.; My, S.; Pugliese, G.] Politecn Bari, Bari, Italy. [Abbiendi, G.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Chhibra, S. S.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.] INFN Sez Bologna, Bologna, Italy. [Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Chhibra, S. S.; Codispoti, G.; Cuffiani, M.; Fanfani, A.; Fasanella, D.; Guiducci, L.; Navarria, F. L.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.] Univ Bologna, Bologna, Italy. [Cappello, G.; Chiorboli, M.; Costa, S.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.] INFN Sez Catania, Catania, Italy. [Chiorboli, M.; Costa, S.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.] Univ Catania, Catania, Italy. CSFNSM, Catania, Italy. [Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Gonzi, S.; Gori, V.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.; Viliani, L.] INFN Sez Firenze, Florence, Italy. [Ciulli, V.; D'Alessandro, R.; Focardi, E.; Gonzi, S.; Gori, V.; Lenzi, P.; Tropiano, A.; Viliani, L.] Univ Florence, Florence, Italy. [Fabbri, F.; Benussi, L.; Bianco, S.; Piccolo, D.; Primavera, F.] INFN Lab Nazl Frascati, Frascati, Italy. [Calvelli, V.; Ferro, F.; Lo Vetere, M.; Monge, M. R.; Robutti, E.; Tosi, S.] INFN Sez Genova, Genoa, Italy. [Calvelli, V.; Lo Vetere, M.; Monge, M. R.; Tosi, S.] Univ Genoa, Genoa, Italy. [Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Gerosa, R.; Ghezzi, A.; Govoni, P.; Malvezzi, S.; Manzoni, R. A.; Marzocchi, B.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; de Fatis, T. Tabarelli] INFN Sez Milano Bicocca, Milan, Italy. [Dinardo, M. E.; Fiorendi, S.; Gerosa, R.; Ghezzi, A.; Govoni, P.; Manzoni, R. A.; Marzocchi, B.; Paganoni, M.; Ragazzi, S.; de Fatis, T. Tabarelli] Univ Milano Bicocca, Milan, Italy. [Buontempo, S.; Cavallo, N.; Di Guida, S.; Esposito, M.; Fabozzi, F.; Iorio, A. O. M.; Lanza, G.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.; Sciacca, C.] INFN Sez Napoli, Naples, Italy. [Esposito, M.; Iorio, A. O. M.; Sciacca, C.] Univ Naples Federico II, Naples, Italy. [Cavallo, N.; Fabozzi, F.] Univ Basilicata, I-85100 Potenza, Italy. [Di Guida, S.; Meola, S.] Univ G Marconi, Rome, Italy. [Azzi, P.; Bacchetta, N.; Benato, L.; Bisello, D.; Boletti, A.; Branca, A.; Carlin, R.; Checchia, P.; Dall'Osso, M.; Dorigo, T.; Dosselli, U.; Gasparini, F.; Gasparini, U.; Gozzelino, A.; Lacaprara, S.; Margoni, M.; Meneguzzo, A. T.; Montecassiano, F.; Passaseo, M.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Zotto, P.; Zucchetta, A.; Zumerle, G.] INFN Sez Padova, Padua, Italy. [Benato, L.; Bisello, D.; Boletti, A.; Branca, A.; Carlin, R.; Dall'Osso, M.; Gasparini, F.; Gasparini, U.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Tosi, M.; Zotto, P.; Zucchetta, A.; Zumerle, G.] Univ Padua, Padua, Italy. Univ Trent, Trento, Italy. [Braghieri, A.; Magnani, A.; Montagna, P.; Ratti, S. P.; Re, V.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.] INFN Sez Pavia, Pavia, Italy. [Montagna, P.; Ratti, S. P.; Riccardi, C.; Vitulo, P.] Univ Pavia, I-27100 Pavia, Italy. [Solestizi, L. Alunni; Biasini, M.; Bilei, G. M.; Ciangottini, D.; Fano, L.; Lariccia, P.; Mantovani, G.; Menichelli, M.; Saha, A.; Santocchia, A.; Spiezia, A.] INFN Sez Perugia, Perugia, Italy. [Solestizi, L. Alunni; Biasini, M.; Ciangottini, D.; Fano, L.; Lariccia, P.; Mantovani, G.; Santocchia, A.; Spiezia, A.] Univ Perugia, I-06100 Perugia, Italy. [Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Broccolo, G.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Foa, L.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Serban, A. T.; Spagnolo, P.; Squillacioti, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.] INFN Sez Pisa, Pisa, Italy. [Martini, L.; Messineo, A.; Rizzi, A.; Tonelli, G.] Univ Pisa, Pisa, Italy. [Broccolo, G.; Donato, S.; Foa, L.; Ligabue, F.] Scuola Normale Super Pisa, Pisa, Italy. [Barone, L.; Cavallari, F.; D'imperio, G.; Del Re, D.; Diemoz, M.; Gelli, S.; Jorda, C.; Longo, E.; Margaroli, F.; Meridiani, P.; Organtini, G.; Paramatti, R.; Preiato, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Traczyk, P.] INFN Sez Roma, Rome, Italy. [Barone, L.; D'imperio, G.; Del Re, D.; Gelli, S.; Longo, E.; Margaroli, F.; Organtini, G.; Preiato, F.; Rahatlou, S.; Santanastasio, F.; Traczyk, P.] Univ Rome, Rome, Italy. [Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bellan, R.; Biino, C.; Cartiglia, N.; Costa, M.; Covarelli, R.; Degano, A.; Demaria, N.; Finco, L.; Kiani, B.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Monteil, E.; Musich, M.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Angioni, G. L. Pinna; Ravera, F.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Tamponi, U.] INFN Sez Torino, Turin, Italy. [Amapane, N.; Argiro, S.; Bellan, R.; Costa, M.; Covarelli, R.; Degano, A.; Finco, L.; Kiani, B.; Migliore, E.; Monaco, V.; Monteil, E.; Obertino, M. M.; Pacher, L.; Angioni, G. L. Pinna; Ravera, F.; Romero, A.; Sacchi, R.; Solano, A.] Univ Turin, Turin, Italy. [Arcidiacono, R.; Arneodo, M.; Ruspa, M.] Univ Piemonte Orientale, Novara, Italy. [Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; La Licata, C.; Marone, M.; Schizzi, A.; Zanetti, A.] INFN Sez Trieste, Trieste, Italy. [Candelise, V.; Della Ricca, G.; La Licata, C.; Marone, M.; Schizzi, A.] Univ Trieste, Trieste, Italy. [Kropivnitskaya, A.; Nam, S. K.] Kangwon Natl Univ, Chunchon, South Korea. [Kim, D. H.; Kim, G. N.; Kim, M. S.; Kong, D. J.; Lee, S.; Oh, Y. D.; Sakharov, A.; Son, D. C.; Kamon, T.] Kyungpook Natl Univ, Taegu, South Korea. [Cifuentes, J. A. Brochero; Kim, H.; Kim, T. J.; Ryu, M. S.] Chonbuk Natl Univ, Jeonju 561756, South Korea. [Song, S.] Chonnam Natl Univ, Inst Universe & Elementary Particles, Kwangju, South Korea. [Lee, S.; Kim, H.; Choi, S.; Go, Y.; Gyun, D.; Hong, B.; Jo, M.; Kim, Y.; Lee, B.; Lee, K.; Lee, K. S.; Park, S. K.; Roh, Y.] Korea Univ, Seoul, South Korea. [Yoo, H. D.] Seoul Natl Univ, Seoul, South Korea. [Kim, H.; Choi, M.; Kim, J. H.; Lee, J. S. H.; Park, I. C.; Ryu, G.] Univ Seoul, Seoul, South Korea. [Choi, Y.; Goh, J.; Kim, D.; Kwon, E.; Lee, J.; Yu, I.] Sungkyunkwan Univ, Suwon, South Korea. [Juodagalvis, A.; Vaitkus, J.] Vilnius Univ, Vilnius, Lithuania. [Ahmed, I.; Ibrahim, Z. A.; Komaragiri, J. R.; Ali, M. A. B. Md; Idris, F. Mohamad; Abdullah, W. A. T. Wan; Yusli, M. N.] Univ Malaya, Natl Ctr Particle Phys, Kuala Lumpur, Malaysia. [Casimiro Linares, E.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-de La Cruz, I.; Hernandez-Almada, A.; Lopez-Fernandez, R.; Sanchez-Hernandez, A.] IPN, Ctr Invest & Estudios Avanzados, Mexico City 07738, DF, Mexico. [Carrillo Moreno, S.; Vazquez Valencia, F.] Univ Iberoamer, Mexico City, DF, Mexico. [Pedraza, I.; Salazar Ibarguen, H. A.] Benemerita Univ Autonoma Puebla, Puebla, Mexico. [Morelos Pineda, A.] Univ Autonoma San Luis Potosi, San Luis Potosi, Mexico. [Krofcheck, D.] Univ Auckland, Auckland 1, New Zealand. [Butler, P. H.] Univ Canterbury, Christchurch 1, New Zealand. [Ahmad, M.; Ahmad, A.; Hassan, Q.; Hoorani, H. R.; Khan, W. A.; Khurshid, T.; Shoaib, M.] Quaid I Azam Univ, Natl Ctr Phys, Islamabad, Pakistan. [Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Gorski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Zalewski, P.] Natl Ctr Nucl Res, Otwock, Poland. [Brona, G.; Bunkowski, K.; Byszuk, A.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Walczak, M.] Univ Warsaw, Inst Expt Phys, Fac Phys, Warsaw, Poland. [Bargassa, P.; Da Cruz E Silva, C. Beirao; Di Francesco, A.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Leonardo, N.; Iglesias, L. Lloret; Nguyen, F.; Antunes, J. Rodrigues; Seixas, J.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Vischia, P.] Lab Instrumentacao & Fis Expt Particulas, Lisbon, Portugal. [Finger, M.; Finger, M., Jr.; Tsamalaidze, Z.; Afanasiev, S.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Konoplyanikov, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Zarubin, A.] Joint Inst Nucl Res, Dubna, Russia. [Golovtsov, V.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Matveev, V.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Karneyeu, A.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Musienko, Y.] Russian Acad Sci, Inst Nucl Res, Moscow 117312, Russia. [Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Spiridonov, A.; Vlasov, E.; Zhokin, A.; Starodumov, A.; Nikitenko, A.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Bylinkin, A.; Azarkin, M.; Dremin, I.; Leonidov, A.] Natl Res Nucl Univ, Moscow Engn Phys Inst MEPhI, Moscow, Russia. [Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Vinogradov, A.] PN Lebedev Phys Inst, Moscow 117924, Russia. [Popov, A.; Zhukov, V.; Katkov, I.; Baskakov, A.; Belyaev, A.; Boos, E.; Bunichev, V.; Dubinin, M.; Dudko, L.; Ershov, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Myagkov, I.; Obraztsov, S.; Perfilov, M.; Petrushanko, S.; Savrin, V.] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.] State Res Ctr Russian Federat, Inst High Energy Phys, Protvino, Russia. [Adzic, P.; Ekmedzic, M.; Milosevic, J.; Rekovic, V.; Milenovic, P.] Univ Belgrade, Fac Phys, Belgrade 11001, Serbia. [Adzic, P.; Ekmedzic, M.; Milosevic, J.; Rekovic, V.; Milenovic, P.] Vinca Inst Nucl Sci, Belgrade, Serbia. [Alcaraz Maestre, J.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Dominguez Vazquez, D.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernandez Ramos, J. P.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Navarro De Martino, E.; Perez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.] CIEMAT, E-28040 Madrid, Spain. [Albajar, C.; de Troconiz, J. F.; Missiroli, M.; Moran, D.] Univ Autonoma Madrid, Madrid, Spain. [Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Palencia Cortezon, E.; Vizan Garcia, J. M.] Univ Oviedo, Oviedo, Spain. [Cabrillo, I. J.; Calderon, A.; Castineiras De Saa, J. R.; De Castro Manzano, P.; Duarte Campderros, J.; Fernandez, M.; Garcia-Ferrero, J.; Gomez, G.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Munoz Sanchez, F. J.; Piedra Gomez, J.; Rodrigo, T.; Rodriguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Vila, I.; Vilar Cortabitarte, R.] Univ Cantabria, CSIC, Inst Fis Cantabria IFCA, E-39005 Santander, Spain. [Rabady, D.; Merlin, J. A.; Lingemann, J.; Pantaleo, F.; Hartmann, F.; Kornmayer, A.; Mohanty, A. K.; Silvestris, L.; Battilana, C.; Marzocchi, B.; Di Guida, S.; Meola, S.; Paolucci, P.; Azzi, P.; Dall'Osso, M.; Zucchetta, A.; Ciangottini, D.; Donato, S.; D'imperio, G.; Traczyk, P.; Arcidiacono, R.; Finco, L.; Candelise, V.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Benaglia, A.; Bendavid, J.; Benhabib, L.; Benitez, J. F.; Berruti, G. M.; Bloch, P.; Bocci, A.; Bonato, A.; Botta, C.; Breuker, H.; Camporesi, T.; Castello, R.; Cerminara, G.; Colafranceschi, S.; D'Alfonso, M.; d'Enterria, D.; Dabrowski, A.; Daponte, V.; David, A.; De Gruttola, M.; De Guio, F.; De Roeck, A.; De Visscher, S.; Di Marco, E.; Dobson, M.; Dordevic, M.; Dorney, B.; du Pree, T.; Duenser, M.; Dupont, N.; Elliott-Peisert, A.; Franzoni, G.; Funk, W.; Gigi, D.; Gill, K.; Giordano, D.; Girone, M.; Glege, F.; Guida, R.; Gundacker, S.; Guthoff, M.; Hammer, J.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Kirschenmann, H.; Kortelainen, M. J.; Kousouris, K.; Krajczar, K.; Lecoq, P.; Lourenco, C.; Lucchini, M. T.; Magini, N.; Malgeri, L.; Mannelli, M.; Martelli, A.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moortgat, F.; Morovic, S.; Mulders, M.; Nemallapudi, M. V.; Neugebauer, H.; Orfanelli, S.; Orsini, L.; Pape, L.; Perez, E.; Peruzzi, M.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Piparo, D.; Racz, A.; Rolandi, G.; Rovere, M.; Ruan, M.; Sakulin, H.; Schaefer, C.; Schwick, C.; Sharma, A.; Silva, P.; Simon, M.; Sphicas, P.; Spiga, D.; Steggemann, J.; Stieger, B.; Stoye, M.; Takahashi, Y.; Treille, D.; Triossi, A.; Tsirou, A.; Veres, G. I.; Wardle, N.; Woehri, H. K.; Zagozdzinska, A.; Zeuner, W. D.; Ulmer, K. A.] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland. [Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Renker, D.; Rohe, T.] Paul Scherrer Inst, Villigen, Switzerland. [Bachmair, F.; Baeni, L.; Bianchini, L.; Buchmann, M. A.; Casal, B.; Dissertori, G.; Dittmar, M.; Donega, M.; Eller, P.; Grab, C.; Heidegger, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Lustermann, W.; Mangano, B.; Marionneau, M.; del Arbol, P. Martinez Ruiz; Masciovecchio, M.; Meister, D.; Micheli, F.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pata, J.; Pauss, F.; Perrozzi, L.; Quittnat, M.; Rossini, M.; Starodumov, A.; Takahashi, M.; Tavolaro, V. R.; Theofilatos, K.; Wallny, R.] ETH, Inst Particle Phys, Zurich, Switzerland. [Aarrestad, T. K.; Amsler, C.; Caminada, L.; Canelli, M. F.; Chiochia, V.; De Cosa, A.; Galloni, C.; Hinzmann, A.; Hreus, T.; Kilminster, B.; Lange, C.; Ngadiuba, J.; Pinna, D.; Robmann, P.; Ronga, F. J.; Salerno, D.; Yang, Y.] Univ Zurich, Zurich, Switzerland. [Cardaci, M.; Chen, K. H.; Doan, T. H.; Jain, Sh.; Khurana, R.; Konyushikhin, M.; Kuo, C. M.; Lin, W.; Lu, Y. J.; Yu, S. S.] Natl Cent Univ, Chungli 32054, Taiwan. [Kumar, Arun; Bartek, R.; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Chen, P. H.; Dietz, C.; Fiori, F.; Grundler, U.; Hou, W. -S.; Hsiung, Y.; Liu, Y. F.; Lu, R. -S.; Moya, M. Minano; Petrakou, E.; Tsai, J. F.; Tzeng, Y. M.] Natl Taiwan Univ, Taipei 10764, Taiwan. [Asavapibhop, B.; Kovitanggoon, K.; Singh, G.; Srimanobhas, N.; Suwonjandee, N.] Chulalongkorn Univ, Fac Sci, Dept Phys, Bangkok, Thailand. [Adiguzel, A.; Cerci, S.; Demiroglu, Z. S.; Dozen, C.; Dumanoglu, I.; Girgis, S.; Gokbulut, G.; Guler, Y.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Topaksu, A. Kayis; Onengut, G.; Ozdemir, K.; Ozturk, S.; Tali, B.; Topakli, H.; Vergili, M.; Zorbilmez, C.] Cukurova Univ, Adana, Turkey. [Akin, I. V.; Bilin, B.; Bilmis, S.; Isildak, B.; Karapinar, G.; Yalvac, M.; Zeyrek, M.] Middle E Tech Univ, Dept Phys, TR-06531 Ankara, Turkey. [Albayrak, E. A.; Gulmez, E.; Kaya, M.; Kaya, O.; Yetkin, T.] Bogazici Univ, Istanbul, Turkey. [Cankocak, K.; Sen, S.; Vardarli, F. I.] Istanbul Tech Univ, TR-80626 Istanbul, Turkey. [Grynyov, B.] Natl Acad Sci Ukraine, Inst Scintillat Mat, Kharkov, Ukraine. [Levchuk, L.; Sorokin, P.] Kharkov Inst Phys & Technol, Natl Sci Ctr, Kharkov, Ukraine. [Aggleton, R.; Ball, F.; Beck, L.; Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Meng, Z.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Sakuma, T.; El Nasr-Storey, S. Seif; Senkin, S.; Smith, D.; Smith, V. J.] Univ Bristol, Bristol, Avon, England. [Newbold, D. M.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Cieri, D.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Williams, T.; Womersley, W. J.; Worm, S. D.; Lucas, R.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Baber, M.; Bainbridge, R.; Buchmuller, O.; Bundock, A.; Burton, D.; Casasso, S.; Citron, M.; Colling, D.; Corpe, L.; Cripps, N.; Dauncey, P.; Davies, G.; De Wit, A.; Della Negra, M.; Dunne, P.; Elwood, A.; Ferguson, W.; Fulcher, J.; Futyan, D.; Hall, G.; Iles, G.; Kenzie, M.; Lane, R.; Lucas, R.; Lyons, L.; Magnan, A. -M.; Malik, S.; Nash, J.; Nikitenko, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Raymond, D. M.; Richards, A.; Rose, A.; Seez, C.; Tapper, A.; Uchida, K.; Acosta, M. Vazquez; Virdee, T.; Zenz, S. C.] Univ London Imperial Coll Sci Technol & Med, London, England. [Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Borzou, A.; Call, K.; Dittmann, J.; Hatakeyama, K.; Kasmi, A.; Liu, H.; Pastika, N.] Baylor Univ, Waco, TX 76798 USA. [Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.] Univ Alabama, Tuscaloosa, AL USA. [Avetisyan, A.; Bose, T.; Fantasia, C.; Gastler, D.; Lawson, P.; Rankin, D.; Richardson, C.; Rohlf, J.; St John, J.; Sulak, L.; Zou, D.] Boston Univ, Boston, MA 02215 USA. [Bhattacharya, S.; Alimena, J.; Berry, E.; Cutts, D.; Dhingra, N.; Ferapontov, A.; Garabedian, A.; Hakala, J.; Heintz, U.; Laird, E.; Landsberg, G.; Mao, Z.; Narain, M.; Piperov, S.; Sagir, S.; Sinthuprasith, T.; Syarif, R.] Brown Univ, Providence, RI 02912 USA. [Chauhan, S.; Breedon, R.; Breto, G.; Sanchez, M. Calderon De La Barca; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Gardner, M.; Ko, W.; Lander, R.; Mulhearn, M.; Pellett, D.; Pilot, J.; Ricci-Tam, F.; Shalhout, S.; Smith, J.; Squires, M.; Stolp, D.; Tripathi, M.; Wilbur, S.; Yohay, R.] Univ Calif Davis, Davis, CA 95616 USA. [Weber, M.; Cousins, R.; Everaerts, P.; Farrell, C.; Hauser, J.; Ignatenko, M.; Saltzberg, D.; Takasugi, E.; Valuev, V.] Univ Calif Los Angeles, Los Angeles, CA USA. [Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Hanson, G.; Heilman, J.; Paneva, M. Ivova; Jandir, P.; Kennedy, E.; Lacroix, F.; Long, O. R.; Luthra, A.; Malberti, M.; Negrete, M. Olmedo; Shrinivas, A.; Wei, H.; Wimpenny, S.; Yates, B. R.] Univ Calif Riverside, Riverside, CA 92521 USA. [Sharma, V.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; D'Agnolo, R. T.; Holzner, A.; Kelley, R.; Klein, D.; Letts, J.; Macneill, I.; Olivito, D.; Padhi, S.; Pieri, M.; Sani, M.; Simon, S.; Tadel, M.; Vartak, A.; Wasserbaech, S.; Welke, C.; Wuerthwein, F.; Yagil, A.; Della Porta, G. Zevi] Univ Calif San Diego, La Jolla, CA 92093 USA. [Barge, D.; Bradmiller-Feld, J.; Campagnari, C.; Dishaw, A.; Dutta, V.; Flowers, K.; Sevilla, M. Franco; Geffert, P.; George, C.; Golf, F.; Gouskos, L.; Gran, J.; Incandela, J.; Justus, C.; Mccoll, N.; Mullin, S. D.; Richman, J.; Stuart, D.; Suarez, I.; To, W.; West, C.; Yoo, J.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Dubinin, M.; Anderson, D.; Apresyan, A.; Bornheim, A.; Bunn, J.; Chen, Y.; Duarte, J.; Mott, A.; Newman, H. B.; Pena, C.; Pierini, M.; Spiropulu, M.; Vlimant, J. R.; Xie, S.; Zhu, R. Y.] CALTECH, Pasadena, CA 91125 USA. [Andrews, M. B.; Azzolini, V.; Calamba, A.; Carlson, B.; Ferguson, T.; Paulini, M.; Russ, J.; Sun, M.; Vogel, H.; Vorobiev, I.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Cumalat, J. P.; Ford, W. T.; Gaz, A.; Jensen, F.; Johnson, A.; Krohn, M.; Mulholland, T.; Nauenberg, U.; Stenson, K.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Alexander, J.; Chatterjee, A.; Chaves, J.; Chu, J.; Dittmer, S.; Eggert, N.; Mirman, N.; Kaufman, G. Nicolas; Patterson, J. R.; Rinkevicius, A.; Ryd, A.; Skinnari, L.; Soffi, L.; Sun, W.; Tan, S. M.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Weng, Y.; Wittich, P.] Cornell Univ, Ithaca, NY USA. [Banerjee, S.; Abdullin, S.; Albrow, M.; Anderson, J.; Apollinari, G.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gottschalk, E.; Gray, L.; Green, D.; Gruenendahl, S.; Gutsche, O.; Hanlon, J.; Hare, D.; Harris, R. M.; Hasegawa, S.; Hirschauer, J.; Hu, Z.; Jindariani, S.; Johnson, M.; Joshi, U.; Jung, A. W.; Klima, B.; Kreis, B.; Kwan, S.; Lammel, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, T.; De Sa, R. Lopes; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Outschoorn, V. I. Martinez; Maruyama, S.; Mason, D.; McBride, P.; Merkel, P.; Mishra, K.; Mrenna, S.; Nahn, S.; Newman-Holmes, C.; O'Dell, V.; Pedro, K.; Prokofyev, O.; Rakness, G.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vernieri, C.; Verzocchi, M.; Vidal, R.; Weber, H. A.; Whitbeck, A.; Yang, F.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Carnes, A.; Carver, M.; Curry, D.; Das, S.; Di Giovanni, G. P.; Field, R. D.; Furic, I. K.; Hugon, J.; Konigsberg, J.; Korytov, A.; Low, J. F.; Ma, P.; Matchev, K.; Mei, H.; Milenovic, P.; Mitselmakher, G.; Rank, D.; Rossin, R.; Shchutska, L.; Snowball, M.; Sperka, D.; Terentyev, N.; Thomas, L.; Wang, J.; Wang, S.; Yelton, J.] Univ Florida, Gainesville, FL USA. [Hewamanage, S.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.] Florida Int Univ, Miami, FL 33199 USA. [Ackert, A.; Adams, J. R.; Adams, T.; Askew, A.; Bochenek, J.; Diamond, B.; Haas, J.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Khatiwada, A.; Prosper, H.; Weinberg, M.] Florida State Univ, Tallahassee, FL 32306 USA. [Baarmand, M. M.; Bhopatkar, V.; Hohlmann, M.; Kalakhety, H.; Noonan, D.; Roy, T.; Yumiceva, F.] Florida Inst Technol, Melbourne, FL 32901 USA. [Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Kurt, P.; O'Brien, C.; Gonzalez, I. D. Sandoval; Silkworth, C.; Turner, P.; Varelas, N.; Wu, Z.; Zakaria, M.] Univ Illinois, Chicago, IL USA. [Bilki, B.; Clarida, W.; Dilsiz, K.; Durgut, S.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J. -P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Snyder, C.; Tan, P.; Tiras, E.; Wetzel, J.; Yi, K.] Univ Iowa, Iowa City, IA USA. [Anderson, I.; Barnett, B. A.; Blumenfeld, B.; Fehling, D.; Feng, L.; Gritsan, A. V.; Maksimovic, P.; Martin, C.; Osherson, M.; Swartz, M.; Xiao, M.; Xin, Y.; You, C.] Johns Hopkins Univ, Baltimore, MD USA. [Baringer, P.; Bean, A.; Benelli, G.; Bruner, C.; Kenny, R. P., III; Majumder, D.; Malek, M.; Murray, M.; Sanders, S.; Stringer, R.; Wang, Q.] Univ Kansas, Lawrence, KS 66045 USA. [Ivanov, A.; Kaadze, K.; Khalil, S.; Makouski, M.; Maravin, Y.; Mohammadi, A.; Saini, L. K.; Skhirtladze, N.; Toda, S.] Kansas State Univ, Manhattan, KS 66506 USA. [Lange, D.; Rebassoo, F.; Wright, D.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Anelli, C.; Baden, A.; Baron, O.; Belloni, A.; Calvert, B.; Eno, S. C.; Ferraioli, C.; Gomez, J. A.; Hadley, N. J.; Jabeen, S.; Kellogg, R. G.; Kolberg, T.; Kunkle, J.; Lu, Y.; Mignerey, A. C.; Shin, Y. H.; Skuja, A.; Tonjes, M. B.; Tonwar, S. C.] Univ Maryland, College Pk, MD 20742 USA. [Wang, J.; Apyan, A.; Barbieri, R.; Baty, A.; Bierwagen, K.; Brandt, S.; Busza, W.; Cali, I. A.; Demiragli, Z.; Di Matteo, L.; Ceballos, G. Gomez; Goncharov, M.; Gulhan, D.; Iiyama, Y.; Innocenti, G. M.; Klute, M.; Kovalskyi, D.; Lai, Y. S.; Lee, Y. -J.; Levin, A.; Luckey, P. D.; Marini, A. C.; Mcginn, C.; Mironov, C.; Niu, X.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Salfeld-Nebgen, J.; Stephans, G. S. F.; Sumorok, K.; Varma, M.; Velicanu, D.; Veverka, J.; Wang, T. W.; Wyslouch, B.; Yang, M.; Zhukova, V.] MIT, Cambridge, MA 02139 USA. [Dahmes, B.; Evans, A.; Finkel, A.; Gude, A.; Hansen, P.; Kalafut, S.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Lesko, Z.; Mans, J.; Nourbakhsh, S.; Ruckstuhl, N.; Rusack, R.; Tambe, N.; Turkewitz, J.] Univ Minnesota, Minneapolis, MN USA. [Acosta, J. G.; Oliveros, S.] Univ Mississippi, Oxford, MS USA. [Avdeeva, E.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Fangmeier, C.; Suarez, R. Gonzalez; Kamalieddin, R.; Keller, J.; Knowlton, D.; Kravchenko, I.; Lazo-Flores, J.; Meier, F.; Monroy, J.; Ratnikov, F.; Siado, J. E.; Snow, G. R.] Univ Nebraska, Lincoln, NE USA. [Kumar, A.; Alyari, M.; Dolen, J.; George, J.; Godshalk, A.; Harrington, C.; Iashvili, I.; Kaisen, J.; Kharchilava, A.; Rappoccio, S.] SUNY Buffalo, Buffalo, NY 14260 USA. [Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Hortiangtham, A.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; De Lima, R. Teixeira; Trocino, D.; Wang, R. -J.; Wood, D.; Zhang, J.] Northeastern Univ, Boston, MA 02115 USA. [Hahn, K. A.; Kubik, A.; Mucia, N.; Odell, N.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Sung, K.; Trovato, M.; Velasco, M.] Northwestern Univ, Evanston, IL USA. [Brinkerhoff, A.; Dev, N.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Lynch, S.; Marinelli, N.; Meng, F.; Mueller, C.; Musienko, Y.; Pearson, T.; Planer, M.; Reinsvold, A.; Ruchti, R.; Smith, G.; Taroni, S.; Valls, N.; Wayne, M.; Wolf, M.; Woodard, A.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Antonelli, L.; Brinson, J.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Hart, A.; Hill, C.; Hughes, R.; Ji, W.; Kotov, K.; Ling, T. Y.; Liu, B.; Luo, W.; Puigh, D.; Rodenburg, M.; Winer, B. L.; Wulsin, H. W.] Ohio State Univ, Columbus, OH 43210 USA. [Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Koay, S. A.; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Palmer, C.; Piroue, P.; Quan, X.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zuranski, A.] Princeton Univ, Princeton, NJ 08544 USA. [Malik, S.] Univ Puerto Rico, Mayaguez, PR USA. [Savoy-Navarro, A.; Barnes, V. E.; Benedetti, D.; Bortoletto, D.; Gutay, L.; Jha, M. K.; Jones, M.; Jung, K.; Miller, D. H.; Neumeister, N.; Radburn-Smith, B. C.; Shi, X.; Shipsey, I.; Silvers, D.; Sun, J.; Svyatkovskiy, A.; Wang, F.; Xie, W.; Xu, L.] Purdue Univ, W Lafayette, IN 47907 USA. [Parashar, N.; Stupak, J.] Purdue Univ Calumet, Hammond, LA USA. [Adair, A.; Akgun, B.; Chen, Z.; Ecklund, K. M.; Geurts, F. J. M.; Guilbaud, M.; Li, W.; Michlin, B.; Northup, M.; Padley, B. P.; Redjimi, R.; Roberts, J.; Rorie, J.; Tu, Z.; Zabel, J.] Rice Univ, Houston, TX USA. [Betchart, B.; Bodek, A.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Han, J.; Harel, A.; Hindrichs, O.; Khukhunaishvili, A.; Petrillo, G.; Verzetti, M.] Univ Rochester, Rochester, NY 14627 USA. [Demortier, L.] Rockefeller Univ, New York, NY 10021 USA. [Arora, S.; Barker, A.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Duggan, D.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Hughes, E.; Kaplan, S.; Elayavalli, R. Kunnawalkam; Lath, A.; Nash, K.; Panwalkar, S.; Park, M.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.] Rutgers State Univ, Piscataway, NJ USA. [Foerster, M.; Riley, G.; Rose, K.; Spanier, S.; York, A.] Univ Tennessee, Knoxville, TN USA. [Rose, A.; Bouhali, O.; Hernandez, A. Castaneda; Dalchenko, M.; De Mattia, M.; Delgado, A.; Dildick, S.; Eusebi, R.; Flanagan, W.; Gilmore, J.; Kamon, T.; Krutelyov, V.; Mueller, R.; Osipenkov, I.; Pakhotin, Y.; Patel, R.; Perloff, A.; Safonov, A.; Tatarinov, A.; Ulmer, K. A.] Texas A&M Univ, College Stn, TX USA. [Akchurin, N.; Cowden, C.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Libeiro, T.; Undleeb, S.; Volobouev, I.] Texas Tech Univ, Lubbock, TX 79409 USA. [Mao, Y.; Appelt, E.; Delannoy, A. G.; Greene, S.; Gurrola, A.; Janjam, R.; Johns, W.; Maguire, C.; Melo, A.; Ni, H.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.; Xu, Q.] Vanderbilt Univ, Nashville, TN 37235 USA. [Arenton, M. W.; Boutle, S.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Li, H.; Lin, C.; Neu, C.; Sun, X.; Wang, Y.; Wolfe, E.; Wood, J.; Xia, F.] Univ Virginia, Charlottesville, VA USA. [Clarke, C.; Harr, R.; Karchin, P. E.; Don, C. Kottachchi Kankanamge; Lamichhane, P.; Sturdy, J.] Wayne State Univ, Detroit, MI USA. [Sharma, A.; Belknap, D. A.; Carlsmith, D.; Cepeda, M.; Christian, A.; Dasu, S.; Dodd, L.; Duric, S.; Friis, E.; Gomber, B.; Grothe, M.; Hall-Wilton, R.; Herndon, M.; Herve, A.; Klabbers, P.; Lanaro, A.; Levine, A.; Long, K.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Perry, T.; Pierro, G. A.; Polese, G.; Ruggles, T.; Sarangi, T.; Savin, A.; Smith, N.; Smith, W. H.; Taylor, D.; Woods, N.] Univ Wisconsin, Madison, WI 53706 USA. [Fruehwirth, R.; Jeitler, M.; Krammer, M.; Schieck, J.; Wulz, C. -E.] Vienna Univ Technol, A-1040 Vienna, Austria. [Chinellato, J.; Tonelli Manganote, E. J.] Univ Estadual Campinas, Campinas, SP, Brazil. [Moon, C. S.] CNRS, IN2P3, Paris, France. [Plestina, R.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [El-khateeb, E.; Elkafrawy, T.; Radi, A.; Salama, E.] Ain Shams Univ, Cairo, Egypt. [Mohamed, A.] Zewail City Sci & Technol, Zewail, Egypt. [Radi, A.; Salama, E.] British Univ Egypt, Cairo, Egypt. [Agram, J. -L.; Conte, E.; Fontaine, J. -C.] Univ Haute Alsace, Mulhouse, France. [Hempel, M.; Karacheban, O.; Lohmann, W.; Marfin, I.] Brandenburg Tech Univ Cottbus, Cottbus, Germany. [Vesztergombi, G.; Veres, G. I.] Eotvos Lorand Univ, Budapest, Hungary. [Bhowmik, S.; Maity, M.; Sarkar, T.] Visva Bharati Univ, Santini Ketan, W Bengal, India. [Gurtu, A.] King Abdulaziz Univ, Jeddah 21413, Saudi Arabia. [Wickramage, N.] Univ Ruhuna, Matara, Sri Lanka. [Etesami, S. M.] Isfahan Univ Technol, Esfahan, Iran. [Fahim, A.] Univ Tehran, Dept Engn Sci, Tehran, Iran. [Safarzadeh, B.] Islamic Azad Univ, Sci & Res Branch, Plasma Phys Res Ctr, Tehran, Iran. [Androsov, K.; Ciocci, M. A.; Grippo, M. T.; Squillacioti, P.] Univ Siena, I-53100 Siena, Italy. [Ali, M. A. B. Md] Int Islamic Univ Malaysia, Kuala Lumpur, Malaysia. [Idris, F. Mohamad] Agensi Nuklear Malaysia, MOSTI, Kajang, Malaysia. [Heredia-de La Cruz, I.] Consejo Nacl Ciencia & Technol, Mexico City, DF, Mexico. [Byszuk, A.; Zagozdzinska, A.] Warsaw Univ Technol, Inst Elect Syst, Warsaw, Poland. [Kim, V.] St Petersburg State Polytech Univ, St Petersburg, Russia. [Colafranceschi, S.] Univ Rome, Fac Ingn, Rome, Italy. [Orfanelli, S.] Natl Tech Univ Athens, Athens, Greece. [Rolandi, G.] Ist Nazl Fis Nucl, Scuola Normale & Sez, Pisa, Italy. [Amsler, C.] Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Cerci, S.; Tali, B.] Adiyaman Univ, Adiyaman, Turkey. [Kangal, E. E.] Mersin Univ, Mersin, Turkey. [Onengut, G.] Cag Univ, Mersin, Turkey. [Ozdemir, K.] Piri Reis Univ, Istanbul, Turkey. [Ozturk, S.; Topakli, H.] Gaziosmanpasa Univ, Tokat, Turkey. [Isildak, B.] Ozyegin Univ, Istanbul, Turkey. [Karapinar, G.] Izmir Inst Technol, Izmir, Turkey. [Albayrak, E. A.; Ozok, F.] Mimar Sinan Univ, Istanbul, Turkey. [Kaya, M.] Marmara Univ, Istanbul, Turkey. [Kaya, O.] Kafkas Univ, Kars, Turkey. [Yetkin, T.] Yildiz Tech Univ, Istanbul, Turkey. [Sen, S.] Hacettepe Univ, Ankara, Turkey. [Belyaev, A.] Univ Southampton, Sch Phys & Astron, Southampton, Hants, England. [Acosta, M. Vazquez] Inst Astrofis Canarias, San Cristobal la Laguna, Spain. [Wasserbaech, S.] Utah Valley Univ, Orem, UT USA. [Bilki, B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Mermerkaya, H.] Erzincan Univ, Erzincan, Turkey. [Bouhali, O.; Hernandez, A. Castaneda] Texas A&M Univ Qatar, Doha, Qatar. RP Khachatryan, V (reprint author), Yerevan Phys Inst, Yerevan 375036, Armenia. RI Paulini, Manfred/N-7794-2014; Inst. of Physics, Gleb Wataghin/A-9780-2017; Dremin, Igor/K-8053-2015; ciocci, maria agnese /I-2153-2015; Mundim, Luiz/A-1291-2012; Konecki, Marcin/G-4164-2015; Vogel, Helmut/N-8882-2014; Benussi, Luigi/O-9684-2014; Xie, Si/O-6830-2016; Leonardo, Nuno/M-6940-2016; Goh, Junghwan/Q-3720-2016; Flix, Josep/G-5414-2012; Ruiz, Alberto/E-4473-2011; Petrushanko, Sergey/D-6880-2012; Govoni, Pietro/K-9619-2016; Tuominen, Eija/A-5288-2017; Yazgan, Efe/C-4521-2014; Tomei, Thiago/E-7091-2012; Dubinin, Mikhail/I-3942-2016; Kirakosyan, Martin/N-2701-2015; Gulmez, Erhan/P-9518-2015; Tinoco Mendes, Andre David/D-4314-2011; Seixas, Joao/F-5441-2013; Verwilligen, Piet/M-2968-2014; Sznajder, Andre/L-1621-2016; Vilela Pereira, Antonio/L-4142-2016; Da Silveira, Gustavo Gil/N-7279-2014; Mora Herrera, Maria Clemencia/L-3893-2016; TUVE', Cristina/P-3933-2015; Dudko, Lev/D-7127-2012; Moraes, Arthur/F-6478-2010; Manganote, Edmilson/K-8251-2013; Lokhtin, Igor/D-7004-2012; VARDARLI, Fuat Ilkehan/B-6360-2013; Menasce, Dario/A-2168-2016; Paganoni, Marco/A-4235-2016; Ferguson, Thomas/O-3444-2014; de Jesus Damiao, Dilson/G-6218-2012; Matorras, Francisco/I-4983-2015; Dogra, Sunil /B-5330-2013; Leonidov, Andrey/M-4440-2013; Calvo Alamillo, Enrique/L-1203-2014; Hernandez Calama, Jose Maria/H-9127-2015; Cerrada, Marcos/J-6934-2014; Andreev, Vladimir/M-8665-2015; Perez-Calero Yzquierdo, Antonio/F-2235-2013; Novaes, Sergio/D-3532-2012; Della Ricca, Giuseppe/B-6826-2013; Montanari, Alessandro/J-2420-2012; Azarkin, Maxim/N-2578-2015; Chinellato, Jose Augusto/I-7972-2012 OI Paulini, Manfred/0000-0002-6714-5787; ciocci, maria agnese /0000-0003-0002-5462; Boccali, Tommaso/0000-0002-9930-9299; Gerosa, Raffaele/0000-0001-8359-3734; Bilki, Burak/0000-0001-9515-3306; Demaria, Natale/0000-0003-0743-9465; Ciulli, Vitaliano/0000-0003-1947-3396; Androsov, Konstantin/0000-0003-2694-6542; Mundim, Luiz/0000-0001-9964-7805; Konecki, Marcin/0000-0001-9482-4841; Vogel, Helmut/0000-0002-6109-3023; Benussi, Luigi/0000-0002-2363-8889; Xie, Si/0000-0003-2509-5731; Leonardo, Nuno/0000-0002-9746-4594; Goh, Junghwan/0000-0002-1129-2083; Flix, Josep/0000-0003-2688-8047; Ruiz, Alberto/0000-0002-3639-0368; Govoni, Pietro/0000-0002-0227-1301; Tuominen, Eija/0000-0002-7073-7767; Yazgan, Efe/0000-0001-5732-7950; Tomei, Thiago/0000-0002-1809-5226; Dubinin, Mikhail/0000-0002-7766-7175; Gulmez, Erhan/0000-0002-6353-518X; Tinoco Mendes, Andre David/0000-0001-5854-7699; Seixas, Joao/0000-0002-7531-0842; Sznajder, Andre/0000-0001-6998-1108; Vilela Pereira, Antonio/0000-0003-3177-4626; Da Silveira, Gustavo Gil/0000-0003-3514-7056; Mora Herrera, Maria Clemencia/0000-0003-3915-3170; TUVE', Cristina/0000-0003-0739-3153; Dudko, Lev/0000-0002-4462-3192; Moraes, Arthur/0000-0002-5157-5686; Menasce, Dario/0000-0002-9918-1686; Paganoni, Marco/0000-0003-2461-275X; Ferguson, Thomas/0000-0001-5822-3731; de Jesus Damiao, Dilson/0000-0002-3769-1680; Matorras, Francisco/0000-0003-4295-5668; Calvo Alamillo, Enrique/0000-0002-1100-2963; Hernandez Calama, Jose Maria/0000-0001-6436-7547; Cerrada, Marcos/0000-0003-0112-1691; Perez-Calero Yzquierdo, Antonio/0000-0003-3036-7965; Novaes, Sergio/0000-0003-0471-8549; Della Ricca, Giuseppe/0000-0003-2831-6982; Montanari, Alessandro/0000-0003-2748-6373; Chinellato, Jose Augusto/0000-0002-3240-6270 FU Austrian Federal Ministry of Science, Research and Economy; Austrian Science Fund; Belgian Fonds de la Recherche Scientifique; Fonds voor Wetenschappelijk Onderzoek; Brazilian Funding Agency (CNPq); Brazilian Funding Agency (CAPES); Brazilian Funding Agency (FAPERJ); Brazilian Funding Agency (FAPESP); Bulgarian Ministry of Education and Science; CERN; Chinese Academy of Sciences; Ministry of Science and Technology; National Natural Science Foundation of China; Colombian Funding Agency (COLCIENCIAS); Croatian Ministry of Science, Education and Sport; Croatian Science Foundation; Research Promotion Foundation, Cyprus; Ministry of Education and Research, Estonia; Estonian Research Council, Estonia [IUT23-4, IUT23-6]; European Regional Development Fund, Estonia; Academy of Finland; Finnish Ministry of Education and Culture; Helsinki Institute of Physics; Institut National de Physique Nucleaire et de Physique des Particules / CNRS, France; Commissariat a l'Energie Atomique et aux Energies Alternatives / CEA, France; Bundesministerium fur Bildung und Forschung, Germany; Deutsche Forschungsgemeinschaft, Germany; Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany; General Secretariat for Research and Technology, Greece; National Scientific Research Foundation, Hungary; National Innovation Office, Hungary; Department of Atomic Energy, India; Department of Science and Technology, India; Institute for Studies in Theoretical Physics and Mathematics, Iran; Science Foundation, Ireland; Istituto Nazionale di Fisica Nucleare, Italy; Ministry of Science, ICT and Future Planning, Republic of Korea; National Research Foundation (NRF), Republic of Korea; Lithuanian Academy of Sciences; Ministry of Education (Malaysia); University of Malaya (Malaysia); Mexican Funding Agency (CINVESTAV); Mexican Funding Agency (CONACYT); Mexican Funding Agency (SEP); Mexican Funding Agency (UASLP-FAI); Ministry of Business, Innovation and Employment, New Zealand; Pakistan Atomic Energy Commission; Ministry of Science and Higher Education, Poland; National Science Centre, Poland; Fundacao para a Ciencia e a Tecnologia, Portugal; JINR, Dubna; Ministry of Education and Science of the Russian Federation; Federal Agency of Atomic Energy of the Russian Federation; Russian Academy of Sciences; Russian Foundation for Basic Research; Ministry of Education, Science and Technological Development of Serbia; Secretaria de Estado de Investigacion, Desarrollo e Innovacion and Programa Consolider-Ingenio, Spain; Swiss Funding Agency (ETH Board); Swiss Funding Agency (ETH Zurich); Swiss Funding Agency (PSI); Swiss Funding Agency (SNF); Swiss Funding Agency (UniZH); Swiss Funding Agency (Canton Zurich); Swiss Funding Agency (SER); Ministry of Science and Technology, Taipei; Thailand Center of Excellence in Physics; Institute for the Promotion of Teaching Science and Technology of Thailand; Special Task Force for Activating Research; National Science and Technology Development Agency of Thailand; Scientific and Technical Research Council of Turkey; Turkish Atomic Energy Authority; National Academy of Sciences of Ukraine, Ukraine; State Fund for Fundamental Researches, Ukraine; Science and Technology Facilities Council, U.K.; US Department of Energy; US National Science Foundation; Marie-Curie programme; European Research Council (European Union); EPLANET (European Union); Leventis Foundation; A. P. Sloan Foundation; Alexander von Humboldt Foundation; Belgian Federal Science Policy Office; Fonds pour la Formation a la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium); Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; Council of Science and Industrial Research, India; HOMING PLUS programme of the Foundation for Polish Science - European Union, Regional Development Fund; OPUS programme of the National Science Center (Poland); Compagnia di San Paolo (Torino); Consorzio per la Fisica (Trieste); MIUR project (Italy) [20108T4XTM]; Thalis programme; Aristeia programme - EU-ESF; Greek NSRF; National Priorities Research Program by Qatar National Research Fund; Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University (Thailand); Welch Foundation [C-1845]; Estado de Investigacion, Desarrollo e Innovacion and Programa Consolider-Ingenio, Spain FX We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staff sat CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: the Austrian Federal Ministry of Science, Research and Economy and the Austrian Science Fund; the Belgian Fonds de la Recherche Scientifique, and Fonds voor Wetenschappelijk Onderzoek; the Brazilian Funding Agencies (CNPq, CAPES, FAPERJ, and FAPESP); the Bulgarian Ministry of Education and Science; CERN; the Chinese Academy of Sciences, Ministry of Science and Technology, and National Natural Science Foundation of China; the Colombian Funding Agency (COLCIENCIAS); the Croatian Ministry of Science, Education and Sport, and the Croatian Science Foundation; the Research Promotion Foundation, Cyprus; the Ministry of Education and Research, Estonian Research Council via IUT23-4 and IUT23-6 and European Regional Development Fund, Estonia; the Academy of Finland, Finnish Ministry of Education and Culture, and Helsinki Institute of Physics; the Institut National de Physique Nucleaire et de Physique des Particules / CNRS, and Commissariat a l'Energie Atomique et aux Energies Alternatives / CEA, France; the Bundesministerium fur Bildung und Forschung, Deutsche Forschungsgemeinschaft, and Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany; the General Secretariat for Research and Technology, Greece; the National Scientific Research Foundation, and National Innovation Office, Hungary; the Department of Atomic Energy and the Department of Science and Technology, India; the Institute for Studies in Theoretical Physics and Mathematics, Iran; the Science Foundation, Ireland; the Istituto Nazionale di Fisica Nucleare, Italy; the Ministry of Science, ICT and Future Planning, and National Research Foundation (NRF), Republic of Korea; the Lithuanian Aca We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centres and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses.; Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: the Austrian Federal Ministry of Science, Research and Economy and the Austrian Science Fund; the Belgian Fonds de la Recherche Scientifique, and Fonds voor Wetenschappelijk Onderzoek; the Brazilian Funding Agencies (CNPq, CAPES, FAPERJ, and FAPESP); the Bulgarian Ministry of Education and Science; CERN; the Chinese Academy of Sciences, Ministry of Science and Technology, and National Natural Science Foundation of China; the Colombian Funding Agency (COLCIENCIAS); the Croatian Ministry of Science, Education and Sport, and the Croatian Science Foundation; the Research Promotion Foundation, Cyprus; the Ministry of Education and Research, Estonian Research Council via IUT23-4 and IUT23-6 and European Regional Development Fund, Estonia; the Academy of Finland, Finnish Ministry of Education and Culture, and Helsinki Institute of Physics; the Institut National de Physique Nucleaire et de Physique des Particules / CNRS, and Commissariat a l' Energie Atomique et aux Energies Alternatives / CEA, France; the Bundesministerium fur Bildung und Forschung, Deutsche Forschungsgemeinschaft, and Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany; the General Secretariat for Research and Technology, Greece; the National Scientific Research Foundation, and National Innovation Office, Hungary; the Department of Atomic Energy and the Department of Science and Technology, India; the Institute for Studies in Theoretical Physics and Mathematics, Iran; the Science Foundation, Ireland; the Istituto Nazionale di Fisica Nucleare, Italy; the Ministry of Science, ICT and Future Planning, and National Research Foundation (NRF), Republic of Korea; the Lithuanian Academy of Sciences; the Ministry of Education, and University of Malaya (Malaysia); the Mexican Funding Agencies (CINVESTAV, CONACYT, SEP, and UASLP-FAI); the Ministry of Business, Innovation and Employment, New Zealand; the Pakistan Atomic Energy Commission; the Ministry of Science and Higher Education and the National Science Centre, Poland; the Fundacao para a Ciencia e a Tecnologia, Portugal; JINR, Dubna; the Ministry of Education and Science of the Russian Federation, the Federal Agency of Atomic Energy of the Russian Federation, Russian Academy of Sciences, and the Russian Foundation for Basic Research; the Ministry of Education, Science and Technological Development of Serbia; the Secretaria de Estado de Investigacion, Desarrollo e Innovacion and Programa Consolider-Ingenio 2010, Spain; the Swiss Funding Agencies (ETH Board, ETH Zurich, PSI, SNF, UniZH, Canton Zurich, and SER); the Ministry of Science and Technology, Taipei; the Thailand Center of Excellence in Physics, the Institute for the Promotion of Teaching Science and Technology of Thailand, Special Task Force for Activating Research and the National Science and Technology Development Agency of Thailand; the Scientific and Technical Research Council of Turkey, and Turkish Atomic Energy Authority; the National Academy of Sciences of Ukraine, and State Fund for Fundamental Researches, Ukraine; the Science and Technology Facilities Council, U.K.; the US Department of Energy, and the US National Science Foundation.; Individuals have received support from the Marie-Curie programme and the European Research Council and EPLANET (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation a la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Council of Science and Industrial Research, India; the HOMING PLUS programme of the Foundation for Polish Science, cofinanced from European Union, Regional Development Fund; the OPUS programme of the National Science Center (Poland); the Compagnia di San Paolo (Torino); the Consorzio per la Fisica (Trieste); MIUR project 20108T4XTM (Italy); the Thalis and Aristeia programmes cofinanced by EU-ESF and the Greek NSRF; the National Priorities Research Program by Qatar National Research Fund; the Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University (Thailand); and the Welch Foundation, contract C-1845.demy of Sciences; the Ministry of Education, and University of Malaya (Malaysia); the Mexican Funding Agencies (CIN-VESTAV, CONACYT, SEP, and UASLP-FAI); the Ministry of Business, Innovation and Employment, New Zealand; the Pakistan Atomic Energy Commission; the Ministry of Science and Higher Education and the National Science Centre, Poland; the Fundacao para a Ciencia e a Tecnologia, Portugal; JINR, Dubna; the Ministry of Education and Science of the Russian Federation, the Federal Agency of Atomic Energy of the Russian Federation, Russian Academy of Sciences, and the Russian Foundation for Basic Research; the Estado de Investigacion, Desarrollo e Innovacion and Programa Consolider-Ingenio 2010, Spain; the Swiss Funding Agencies (ETH Board, ETH Zurich, PSI, SNF, UniZH, Canton Zurich, and SER); the Ministry of Science and Technology, Taipei; the Thailand Center of Excellence in Physics, the Institute for the Promotion of Teaching Science and Technology of Thailand, Special Task Force for Activating Research and the National Science and Technology Development Agency of Thailand; the Scientific and Technical Research Council of Turkey, and Turkish Atomic Energy Authority; the National Academy of Sciences of Ukraine, and State Fund for Fundamental Researches, Ukraine; the Science and Technology Facilities Council, U.K.; the US Department of Energy, and the US National Science Foundation. Individuals have received support from the Marie-Curie programme and the European Research Council and EPLANET (European Union); the Leventis Foundation; the A. P.; Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation a la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Council of Science and Industrial Research, India; the HOMING PLUS programme of the Foundation for Polish Science, cofinanced from European Union, Regional Development Fund; the OPUS programme of the National Science Center (Poland); the Compagnia di San Paolo (Torino); the Consorzio per la Fisica (Trieste); MIUR project 20108T4XTM (Italy); the Thalis and Aristeia programmes cofinanced by EU-ESF and the Greek NSRF; the National Priorities Research Program by Qatar National Research Fund; the Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University (Thailand); and the Welch Foundation, contract C-1845. NR 99 TC 8 Z9 8 U1 9 U2 47 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD NOV 4 PY 2015 IS 11 AR 018 DI 10.1007/JHEP11(2015)018 PG 64 WC Physics, Particles & Fields SC Physics GA CW4ZY UT WOS:000365006400001 ER PT J AU Yang, MJ Zhou, YY Zeng, YN Jiang, CS Padture, NP Zhu, K AF Yang, Mengjin Zhou, Yuanyuan Zeng, Yining Jiang, Chun-Sheng Padture, Nitin P. Zhu, Kai TI Square-Centimeter Solution-Processed Planar CH3NH3PbI3 Perovskite Solar Cells with Efficiency Exceeding 15% SO ADVANCED MATERIALS LA English DT Article ID ORGANOMETAL HALIDE PEROVSKITES; POWER CONVERSION EFFICIENCY; TRIHALIDE PEROVSKITES; FILM FORMATION; THIN-FILMS; PERFORMANCE; CRYSTALLIZATION; HYSTERESIS; TEMPERATURE; GROWTH AB The preparation of uniform, high-crystallinity planar perovskite films with high-aspect-ratio grains over a square-inch area is demonstrated. The best power conversion efficiency (PCE) of 16.3% (stabilized output of approximate to 15.6%) is obtained for a planar perovskite solar cell (PSC) with 1.2 cm(2) active area, and the PCE jumps to 18.3% ( stabilized output of approximate to 17.5%) for a PSC with a 0.12 cm(2) active area. C1 [Yang, Mengjin; Zhou, Yuanyuan; Jiang, Chun-Sheng; Zhu, Kai] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Zhou, Yuanyuan; Padture, Nitin P.] Brown Univ, Sch Engn, Providence, RI 02912 USA. RP Padture, NP (reprint author), Brown Univ, Sch Engn, Providence, RI 02912 USA. EM nitin_padture@brown.edu; kai.zhu@nrel.gov RI Zhou, Yuanyuan/G-2173-2011; Padture, Nitin/A-9746-2009; OI Zhou, Yuanyuan/0000-0002-8364-4295; Padture, Nitin/0000-0001-6622-8559; Yang, Mengjin/0000-0003-2019-4298 FU U.S. Department of Energy [DE-AC36-08-GO28308]; U.S. Department of Energy (DOE) SunShot Initiative under the Next Generation Photovoltaics 3 program [DE-FOA-0000990]; National Science Foundation [DMR-1305913] FX M.Y. and Y.Z. contributed equally to this work. The work at the National Renewable Energy Laboratory was supported by the U.S. Department of Energy under Contract No. DE-AC36-08-GO28308. M.Y. and K.Z. acknowledge support by the U.S. Department of Energy (DOE) SunShot Initiative under the Next Generation Photovoltaics 3 program (DE-FOA-0000990). Y.Z. and N.P.P. acknowledge the support from the National Science Foundation (Grant No. DMR-1305913) for the work conducted at Brown University. The authors thank Dr. M. O. Reese (National Renewable Energy Laboratory) and Dr. W. Wu (Brown University) for experimental assistance. NR 53 TC 68 Z9 71 U1 38 U2 174 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 0935-9648 EI 1521-4095 J9 ADV MATER JI Adv. Mater. PD NOV 4 PY 2015 VL 27 IS 41 BP 6363 EP + DI 10.1002/adma.201502586 PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA CV5XB UT WOS:000364343700008 PM 26414514 ER PT J AU Chen, F Goodfellow, J Liu, S Grinberg, I Hoffmann, MC Damodaran, AR Zhu, Y Zalden, P Zhang, XH Takeuchi, I Rappe, AM Martin, LW Wen, HD Lindenberg, AM AF Chen, Frank Goodfellow, John Liu, Shi Grinberg, Ilya Hoffmann, Matthias C. Damodaran, Anoop R. Zhu, Yi Zalden, Peter Zhang, Xiaohang Takeuchi, Ichiro Rappe, Andrew M. Martin, Lane W. Wen, Haidan Lindenberg, Aaron M. TI Ultrafast Terahertz Gating of the Polarization and Giant Nonlinear Optical Response in BiFeO3 Thin Films SO ADVANCED MATERIALS LA English DT Article ID HARMONIC-GENERATION; 2ND-HARMONIC GENERATION; FIELD; FERROELECTRICS; LIGHT; TRANSITION; AMPLITUDE; DYNAMICS; DRIVEN; PLZT AB Terahertz pulses are applied as an all-optical bias to ferroelectric thin-film BiFeO3 while monitoring the time-dependent ferroelectric polarization through its nonlinear optical response. Modulations in the intensity of the second harmonic light generated by the film correspond to on-off ratios of 220x gateable on femtosecond timescales. Polarization modulations comparable to the built-in static polarization are observed. C1 [Chen, Frank; Goodfellow, John; Zalden, Peter; Lindenberg, Aaron M.] SLAC, Natl Accelerator Lab, SIMES Inst Mat & Energy Sci, Menlo Pk, CA 94025 USA. [Chen, Frank] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA. [Goodfellow, John; Lindenberg, Aaron M.] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA. [Liu, Shi; Grinberg, Ilya; Rappe, Andrew M.] Univ Penn, Dept Chem, Makineni Theoret Labs, Philadelphia, PA 19104 USA. [Hoffmann, Matthias C.] SLAC, Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Damodaran, Anoop R.; Martin, Lane W.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Zhu, Yi; Wen, Haidan] Argonne Natl Lab, Adv Photon Source, Lemont, IL 60439 USA. [Zhang, Xiaohang; Takeuchi, Ichiro] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA. [Martin, Lane W.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Lindenberg, Aaron M.] SLAC, Natl Accelerator Lab, PULSE Inst, Menlo Pk, CA 94025 USA. RP Lindenberg, AM (reprint author), SLAC, Natl Accelerator Lab, SIMES Inst Mat & Energy Sci, Menlo Pk, CA 94025 USA. EM aaronl@stanford.edu RI Hoffmann, Matthias/B-3893-2009; LIU, SHI/I-5494-2013; Martin, Lane/H-2409-2011 OI Hoffmann, Matthias/0000-0002-3596-9853; LIU, SHI/0000-0002-8488-4848; Martin, Lane/0000-0003-1889-2513 FU Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-76SF00515, DE-AC02-06CH11357]; Army Research Office [W911NF-14-1-0104]; Department of Energy [DE-SC0012375, DE-FG02-07ER46431]; Maryland Nanocenter; National Science Foundation [DMR-1124696]; Office of Naval Research [N00014-12-1-1033] FX F.C. and J.G. contributed equally to this work. This work was supported by the Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division. Use of the Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-76SF00515. A.R.D. acknowledges support from the Army Research Office under Grant No. W911NF-14-1-0104. L.W.M. and H.W. acknowledge support from the Department of Energy under Grant No. DE-SC0012375. I.T. acknowledges the support from Maryland Nanocenter. Work at Argonne was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. S.L. acknowledges the support of National Science Foundation, under grant DMR-1124696. I.G. acknowledges the support of the Office of Naval Research, under grant N00014-12-1-1033. A.M.R. acknowledges the support of the Department of Energy, under grant DE-FG02-07ER46431. S.L., I.G., and A.M.R. thank the HPCMO of the DoD and the NERSC of the DoE for computational support. NR 45 TC 8 Z9 8 U1 10 U2 47 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 0935-9648 EI 1521-4095 J9 ADV MATER JI Adv. Mater. PD NOV 4 PY 2015 VL 27 IS 41 BP 6371 EP + DI 10.1002/adma.201502975 PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA CV5XB UT WOS:000364343700009 PM 26389651 ER PT J AU Rafailovic, LD Gammer, C Rentenberger, C Trisovic, T Kleber, C Karnthaler, HP AF Rafailovic, Lidija D. Gammer, Christoph Rentenberger, Christian Trisovic, Tomislav Kleber, Christoph Karnthaler, Hans Peter TI Functionalizing Aluminum Oxide by Ag Dendrite Deposition at the Anode during Simultaneous Electrochemical Oxidation of Al SO ADVANCED MATERIALS LA English DT Article ID ELECTRODEPOSITION; SILVER; ANODIZATION; SURFACES; BEHAVIOR; ALLOY; PORES; FILMS; ACID; FOIL AB A novel synthesis strategy is presented for depositing metallic Ag at the anode during simultaneous electrochemical oxidation of Al. This unexpected result is achieved based on galvanic coupling. Metallic dendritic nanostructures well-anchored in a high surface area supporting matrix are envisioned to open up a new avenue of applications. C1 [Rafailovic, Lidija D.; Kleber, Christoph] CEST, A-2700 Wiener Neustadt, Austria. [Gammer, Christoph] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, NCEM, Mol Foundry, Berkeley, CA 94720 USA. [Gammer, Christoph; Rentenberger, Christian; Karnthaler, Hans Peter] Fac Phys, Phys Nanostruct Mat, A-1090 Vienna, Austria. [Trisovic, Tomislav] Serbian Acad Arts & Sci, Inst Tech Sci, Belgrade 11000, Serbia. RP Rafailovic, LD (reprint author), CEST, Viktor Kaplan Str 2, A-2700 Wiener Neustadt, Austria. EM lidija.rafailovic@cest.at RI Trisovic, Tomislav/F-9994-2010; OI Trisovic, Tomislav/0000-0003-2400-5984; Rentenberger, Christian/0000-0002-3385-8850; Gammer, Christoph/0000-0003-1917-4978 FU Austrian Research Promotion Agency (FFG); Government of Lower Austria; Austrian Science Fund (FWF) [J3397, I1309]; NCEM, Molecular Foundry, Lawrence Berkeley National Laboratory; U.S. Department of Energy [DE-AC02-05CH11231] FX The authors would like to thank Prof. B. Grgur for stimulating discussions and Dr. J. Wosik for help with in situ SEM resistivity measurements. The work at CEST was supported within the COMET program by the Austrian Research Promotion Agency (FFG) and the Government of Lower Austria. The authors acknowledge support from the Austrian Science Fund (FWF; Nos. J3397 and I1309) and NCEM, Molecular Foundry, Lawrence Berkeley National Laboratory, which is supported by the U.S. Department of Energy under contract No. DE-AC02-05CH11231. NR 33 TC 2 Z9 2 U1 12 U2 42 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 0935-9648 EI 1521-4095 J9 ADV MATER JI Adv. Mater. PD NOV 4 PY 2015 VL 27 IS 41 BP 6438 EP + DI 10.1002/adma.201502451 PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA CV5XB UT WOS:000364343700019 PM 26398487 ER PT J AU Demir, M Kahveci, Z Ahoy, B Palapati, NKR Subramanian, A Cullinan, HT El-Kaderi, HM Harris, CT Gupta, RB AF Demir, Muslum Kahveci, Zafer Ahoy, Burak Palapati, Naveen K. R. Subramanian, Arunkumar Cullinan, Harry T. El-Kaderi, Hani M. Harris, Charles T. Gupta, Ram B. TI Graphitic Biocarbon from Metal-Catalyzed Hydrothermal Carbonization of Lignin SO INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH LA English DT Article ID CARBON AEROGELS; BIOMASS; SPECTROSCOPY; PERFORMANCE; CONVERSION; CHEMISTRY AB Lignin is a high-volume byproduct from the pulp and paper industry and is currently burned to generate electricity and process heat. The industry has been searching for high value-added uses of lignin to improve the process economics. In addition, battery manufacturers are seeking nonfossil sources of graphitic carbon for environmental sustainability. In this work, lignin (which is a cross-linked polymer of phenols, a component of biomass) is converted into graphitic porous carbon using a two-step conversion. Lignin is first carbonized in water at 300 degrees C and 1500 psi to produce biochar, which is then graphitized using a metal nitrate catalyst at 900-1100 degrees C in an inert gas at 15 psi. Graphitization effectiveness of three different catalysts-iron, cobalt, and manganese nitrates-is examined. The product is analyzed for morphology, thermal stability, surface properties, and electrical conductivity. Both temperature and catalyst type influenced the degree of graphitization. A good quality graphitic carbon was obtained using catalysis by Mn(NO3)(2) at 900 degrees C and Co(NO3)(2) at 1100 degrees C. C1 [Demir, Muslum; Gupta, Ram B.] Virginia Commonwealth Univ, Dept Chem & Life Sci Engn, Richmond, VA 23284 USA. [Palapati, Naveen K. R.; Subramanian, Arunkumar] Virginia Commonwealth Univ, Dept Mech & Nucl Engn, Richmond, VA 23284 USA. [Kahveci, Zafer; El-Kaderi, Hani M.] Virginia Commonwealth Univ, Dept Chem, Richmond, VA 23284 USA. [Ahoy, Burak; Cullinan, Harry T.] Auburn Univ, Dept Chem Engn, Alabama Ctr Paper & Bioresource Engn, Auburn, AL 36849 USA. [Harris, Charles T.] Sandia Natl Labs, Ctr Integrated Nanotechnol, Albuquerque, NM 87185 USA. RP Gupta, RB (reprint author), Virginia Commonwealth Univ, Dept Chem & Life Sci Engn, Richmond, VA 23284 USA. EM rbgupta@vcu.edu OI Kahveci, Zafer/0000-0002-9799-7294; demir, muslum/0000-0001-6842-8124 FU Ministry of National Educational of Republic of Turkey; National Science Foundation [1266438]; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; U.S. Department of Energy, Office of Basic Energy Sciences [DE-SC0002576] FX M.D. thanks the Ministry of National Educational of Republic of Turkey for his graduate fellowship. Experimental assistance from Dr. Gokul Vasudevamurty is appreciated. This work was partly supported by the National Science Foundation under Grant 1266438. This work was performed, in part, at the Sandia-Los Alamos Center for Integrated Nanotechnologies (CINT), a U.S. Department of Energy, and Office of Basic Energy Sciences user facility. The chip nanofabrication activities were performed at CINT under the user proposal U2014A0084. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. H.M.E acknowledges research support by the U.S. Department of Energy, Office of Basic Energy Sciences under award number (DE-SC0002576). NR 49 TC 4 Z9 4 U1 19 U2 66 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0888-5885 J9 IND ENG CHEM RES JI Ind. Eng. Chem. Res. PD NOV 4 PY 2015 VL 54 IS 43 BP 10731 EP 10739 DI 10.1021/acs.iecr.5b02614 PG 9 WC Engineering, Chemical SC Engineering GA CV6BR UT WOS:000364356200021 ER PT J AU Li, JC Zhang, QL Xiao, XC Cheng, YT Liang, CD Dudney, NJ AF Li, Juchuan Zhang, Qinglin Xiao, Xingcheng Cheng, Yang-Tse Liang, Chengdu Dudney, Nancy J. TI Unravelling the Impact of Reaction Paths on Mechanical Degradation of Intercalation Cathodes for Lithium-Ion Batteries SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID HIGH-CAPACITY; ELECTROCHEMICAL SHOCK; 2-PHASE REACTIONS; LI-INTERCALATION; SOLID-SOLUTION; CYCLE LIFE; ELECTRODE; SPINEL; ANODES; P4(3)32 AB The intercalation compounds are generally considered as ideal electrode materials for lithium-ion batteries thanks to their minimum volume expansion and fast lithium ion diffusion. However, cracking still occurs in those compounds and has been identified as one of the critical issues responsible for their capacity decay and short cycle life, although the diffusion-induced stress and volume expansion are much smaller than those in alloying-type electrodes. Here, we designed a thin-film model system that enables us to tailor the cation ordering in LiNi0.5Mn1.5O4 spinels and correlate the stress patterns, phase evolution, and cycle performances. Surprisingly, we found that distinct reaction paths cause negligible difference in the overall stress patterns but significantly different cracking behaviors and cycling performances: 95% capacity retention for disordered LiNi0.5Mn1.5O4 and 48% capacity retention for ordered LiNi0.5Mn1.5O4 after 2000 cycles. We were able to pinpoint that the extended solid-solution region with suppressed phase transformation attributed to the superior electrochemical performance of disordered spinel. This work envisions a strategy for rationally designing stable cathodes for lithium-ion batteries through engineering the atomic structure that extends the solid-solution region and suppresses phase transformation. C1 [Li, Juchuan; Dudney, Nancy J.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Liang, Chengdu] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Zhang, Qinglin; Xiao, Xingcheng] Gen Motors Res & Dev Ctr, Chem & Mat Syst Lab, Warren, MI 48090 USA. [Zhang, Qinglin; Cheng, Yang-Tse] Univ Kentucky, Dept Chem & Mat Engn, Lexington, KY 40506 USA. RP Xiao, XC (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. EM Xingcheng.xiao@gm.com; dudneynj@ornl.gov RI Li, Juchuan/A-2992-2009; Cheng, Yang-Tse/B-5424-2012; Zhang, Qinglin/D-9258-2013; Dudney, Nancy/I-6361-2016 OI Li, Juchuan/0000-0002-6587-5591; Zhang, Qinglin/0000-0001-5933-4361; Dudney, Nancy/0000-0001-7729-6178 FU U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division; Energy Efficiency and Renewable Energy, Vehicle Technologies Office of the U.S. DOE [DE-AC02-05CH11231, 7056410] FX J.L., N.J.D., and C.L. acknowledge the support from U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division. Q. Z., X. X., and Y.T. C. acknowledge the support by the Assistant Secretary for Energy Efficiency and Renewable Energy, Vehicle Technologies Office of the U.S. DOE under contract no. DE-AC02-05CH11231, subcontract no. 7056410 under the Batteries for Advanced Transportation Technologies (BATT) Program. The authors appreciate Rose Ruther and Robert Sacci for their help with Raman and FTIR measurement. NR 40 TC 10 Z9 10 U1 12 U2 103 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD NOV 4 PY 2015 VL 137 IS 43 BP 13732 EP 13735 DI 10.1021/jacs.5b06178 PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA CV6BO UT WOS:000364355900003 PM 26477353 ER PT J AU Sun, P Yuan, CP Yuan, F AF Sun, Peng Yuan, C. -P. Yuan, Feng TI Transverse momentum resummation for dijet correlation in hadronic collisions SO PHYSICAL REVIEW D LA English DT Article ID BOSON PRODUCTION; QCD; SCATTERING AB We study transverse momentum resummation for the azimuthal angular correlation in dijet production in hadron collisions based on the Collins-Soper-Sterman formalism. The complete one-loop calculations are carried out in the collinear framework for the differential cross sections at low imbalance transverse momentum between the two jets. Important cross-checks are performed to demonstrate that the soft divergences are canceled out between different diagrams and, in particular, for those associated with the final state jets. The leading and subleading logarithms are identified. All order resummation is derived following the transverse momentum dependent factorization at this order. Its phenomenological applications are also presented. C1 [Sun, Peng; Yuan, Feng] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. [Yuan, C. -P.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. RP Sun, P (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Nucl Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. FU U.S. Department of Energy, Office of Science, Office of Nuclear Physics [DE-AC02-05CH11231]; U.S. National Science Foundation [PHY-1417326] FX This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under Contract No. DE-AC02-05CH11231 and by the U.S. National Science Foundation under Grant No. PHY-1417326. NR 35 TC 3 Z9 3 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD NOV 4 PY 2015 VL 92 IS 9 AR 094007 DI 10.1103/PhysRevD.92.094007 PG 33 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CV1LV UT WOS:000364020300004 ER PT J AU Nelson, R Berlijn, T Moreno, J Jarrell, M Ku, W AF Nelson, Ryky Berlijn, Tom Moreno, Juana Jarrell, Mark Ku, Wei TI What is the Valence of Mn in Ga1-xMnxN? SO PHYSICAL REVIEW LETTERS LA English DT Article ID MAGNETIC SEMICONDUCTORS; OPTICAL-PROPERTIES; LOCAL-STRUCTURE; DOPED GAN; FERROMAGNETISM; SPINTRONICS; ACCEPTOR; GROWTH; GAMNN; HETEROSTRUCTURE AB We investigate the current debate on the Mn valence in Ga1-xMnxN, a diluted magnetic semiconductor (DMS) with a potentially high Curie temperature. From a first-principles Wannier-function analysis, we unambiguously find the Mn valence to be close to 2+(d(5)), but in a mixed spin configuration with average magnetic moments of 4 mu(B). By integrating out high-energy degrees of freedom differently, we further derive for the first time from first-principles two low-energy pictures that reflect the intrinsic dual nature of the doped holes in the DMS: (1) an effective d(4) picture ideal for local physics, and (2) an effective d(5) picture suitable for extended properties. In the latter, our results further reveal a few novel physical effects, and pave the way for future realistic studies of magnetism. Our study not only resolves one of the outstanding key controversies of the field, but also exemplifies the general need for multiple effective descriptions to account for the rich low-energy physics in many-body systems in general. C1 [Nelson, Ryky; Moreno, Juana; Jarrell, Mark] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA. [Nelson, Ryky; Moreno, Juana; Jarrell, Mark] Louisiana State Univ, Ctr Computat & Technol, Baton Rouge, LA 70803 USA. [Berlijn, Tom] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Berlijn, Tom] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. [Ku, Wei] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Ku, Wei] SUNY Stony Brook, Dept Phys, Stony Brook, NY 11790 USA. RP Nelson, R (reprint author), Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA. RI Berlijn, Tom/A-3859-2016; Moreno, Juana/D-5882-2012 OI Berlijn, Tom/0000-0002-1001-2238; FU NSF [DMR-1237565]; NSF EPSCoR [EPS-1003897]; Louisiana Board of Regents; DOE CMCSN [DE-AC02-98CH10886]; Wigner Fellowship of Oak Ridge National Laboratory FX We thank P. Derosa for useful feedback on our Letter. This work is supported by NSF DMR-1237565 and NSF EPSCoR Cooperative Agreement No. EPS-1003897 with additional support from the Louisiana Board of Regents. W. K. and T. B. were supported by DOE CMCSN DE-AC02-98CH10886. T. B. also acknowledges additional support from the Wigner Fellowship of Oak Ridge National Laboratory. Work by T. B. was partly performed at the Center for Nanophase Materials Sciences, a DOE Office of Science user facility. Supercomputer support is provided by the Louisiana Optical Network Initiative (LONI) and HPC@LSU computing resources. NR 66 TC 2 Z9 2 U1 3 U2 18 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 4 PY 2015 VL 115 IS 19 AR 197203 DI 10.1103/PhysRevLett.115.197203 PG 6 WC Physics, Multidisciplinary SC Physics GA CV1NK UT WOS:000364024800019 PM 26588410 ER PT J AU Root, S Shulenburger, L Lemke, RW Dolan, DH Mattsson, TR Desjarlais, MP AF Root, Seth Shulenburger, Luke Lemke, Raymond W. Dolan, Daniel H. Mattsson, Thomas R. Desjarlais, Michael P. TI Shock Response and Phase Transitions of MgO at Planetary Impact Conditions SO PHYSICAL REVIEW LETTERS LA English DT Article ID EQUATION-OF-STATE; HIGH-PRESSURE EXPERIMENTS; AUGMENTED-WAVE METHOD; FORMING GIANT IMPACT; MAGNESIUM-OXIDE; LOWER MANTLE; TEMPERATURE; EARTH; MOON; ORIGIN AB The moon- forming impact and the subsequent evolution of the proto-Earth is strongly dependent on the properties of materials at the extreme conditions generated by this violent collision. We examine the high pressure behavior of MgO, one of the dominant constituents in Earth's mantle, using high-precision, plate impact shock compression experiments performed on Sandia National Laboratories' Z Machine and extensive quantum calculations using density functional theory (DFT) and quantum Monte Carlo (QMC) methods. The combined data span from ambient conditions to 1.2 TPa and 42 000 K, showing solid-solid and solid-liquid phase boundaries. Furthermore our results indicate that under impact the solid and liquid phases coexist for more than 100 GPa, pushing complete melting to pressures in excess of 600 GPa. The high pressure required for complete shock melting has implications for a broad range of planetary collision events. C1 [Root, Seth; Shulenburger, Luke; Lemke, Raymond W.; Dolan, Daniel H.; Mattsson, Thomas R.; Desjarlais, Michael P.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Root, S (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM sroot@sandia.gov FU Predictive Theory and Modeling for Materials and Chemical Science program by the Office of Basic Energy Science (BES), Department of Energy (DOE); U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The authors thank the Z Operations and Fabrication team for assembling targets and fielding the Z experiments. The authors also thank K. Cochrane and R. Kraus for insightful discussions. We also thank O. Fat'yanov for sharing his unpublished data. Quantum Monte Carlo calculations by L. S. were supported through the Predictive Theory and Modeling for Materials and Chemical Science program by the Office of Basic Energy Science (BES), Department of Energy (DOE). Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 64 TC 7 Z9 7 U1 5 U2 23 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 4 PY 2015 VL 115 IS 19 AR 198501 DI 10.1103/PhysRevLett.115.198501 PG 6 WC Physics, Multidisciplinary SC Physics GA CV1NK UT WOS:000364024800024 PM 26588422 ER PT J AU Liu, P Dong, S Liu, F Hu, XW Liu, LQ Jin, YC Liu, SJ Gong, X Russell, TP Huang, F Cao, Y AF Liu, Peng Dong, Sheng Liu, Feng Hu, Xiaowen Liu, Liqian Jin, Yaocheng Liu, Shengjian Gong, Xiong Russell, Thomas P. Huang, Fei Cao, Yong TI Optimizing Light-Harvesting Polymers via Side Chain Engineering SO ADVANCED FUNCTIONAL MATERIALS LA English DT Article ID THIN-FILM TRANSISTORS; ACCEPTOR CONJUGATED POLYMER; SOLAR-CELL APPLICATIONS; HIGHLY EFFICIENT; PHOTOVOLTAIC PROPERTIES; SIGNIFICANT IMPACT; HOLE MOBILITIES; PERFORMANCE; COPOLYMERS; MORPHOLOGY AB A series of conjugated polymers using naphtho[1,2-c: 5,6-c]bis[1,2,5]thiadiazole and benzodithiophene alternating backbone is synthesized to investigate the effect of side chain substitution on conjugated donor-acceptor polymer on electronic, morphological, and photovoltaic properties. It is found that light absorption and frontier energy levels of the resultant polymers are strongly affected by the side chains. The thin film morphology, crystal structure, crystallinity, and orientation also depend on the side chains; the side chain type affects more in the pi-pi stacking direction, while the side chain density plays a significant role in the lamellar packing direction. The thickness of the active layer also influences the performance of the solar cells with some materials showing enhanced performance with thicker active layers. The best solar cell device in this study has power conversion efficiencies of 8.14%, among the highest in materials of similar structure. C1 [Liu, Peng; Dong, Sheng; Hu, Xiaowen; Liu, Liqian; Jin, Yaocheng; Liu, Shengjian; Huang, Fei; Cao, Yong] S China Univ Technol, Inst Polymer Optoelect Mat & Devices, State Key Lab Luminescent Mat & Devices, Guangzhou 510640, Guangdong, Peoples R China. [Liu, Feng] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Hu, Xiaowen; Gong, Xiong] Univ Akron, Dept Polymer Engn, Akron, OH 44325 USA. [Russell, Thomas P.] Univ Massachusetts, Dept Polymer Sci & Engn, Amherst, MA 01003 USA. RP Liu, P (reprint author), S China Univ Technol, Inst Polymer Optoelect Mat & Devices, State Key Lab Luminescent Mat & Devices, Guangzhou 510640, Guangdong, Peoples R China. EM iamfengliu@gmail.com; russell@mail.pse.umass.edu; msfhuang@scut.edu.cn RI Liu, Feng/J-4361-2014; OI Liu, Feng/0000-0002-5572-8512; Huang, Fei/0000-0001-9665-6642 FU Ministry of Science and Technology [2014CB643501]; Natural Science Foundation of China [21125419, 51361165301, 21490573]; Guangdong Natural Science Foundation [S2012030006232]; DOE, Office of Science; DOE, Office of Basic Energy Sciences FX The authors thank the financial support from the Ministry of Science and Technology (No. 2014CB643501), the Natural Science Foundation of China (Grant Nos. 21125419, 51361165301 and 21490573), and the Guangdong Natural Science Foundation (Grant No. S2012030006232). Portions of this research were carried out at beamline 7.3.3 and 11.0.1.2 at the Advanced Light Source, and Molecular Foundary, Lawrence Berkeley National Laboratory, which was supported by the DOE, Office of Science, and Office of Basic Energy Sciences. NR 53 TC 9 Z9 9 U1 18 U2 85 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 1616-301X EI 1616-3028 J9 ADV FUNCT MATER JI Adv. Funct. Mater. PD NOV 4 PY 2015 VL 25 IS 41 BP 6458 EP 6469 DI 10.1002/adfm.201501878 PG 12 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA CV5WP UT WOS:000364342400003 ER PT J AU Wang, ZC Dunn, JB Han, JW Wang, MQ AF Wang, Zhichao Dunn, Jennifer B. Han, Jeongwoo Wang, Michael Q. TI Influence of corn oil recovery on life-cycle greenhouse gas emissions of corn ethanol and corn oil biodiesel SO BIOTECHNOLOGY FOR BIOFUELS LA English DT Article DE Corn ethanol; Corn oil recovery; Biodiesel; Life cycle analysis; GHG emissions ID DISTILLERS DRIED GRAINS; PERFORMANCE; FUEL; SOLUBLES; QUALITY; PIGS; PORK AB Background: Corn oil recovery and conversion to biodiesel has been widely adopted at corn ethanol plants recently. The US EPA has projected 2.6 billion liters of biodiesel will be produced from corn oil in 2022. Corn oil biodiesel may qualify for federal renewable identification number (RIN) credits under the Renewable Fuel Standard, as well as for low greenhouse gas (GHG) emission intensity credits under California's Low Carbon Fuel Standard. Because multiple products [ethanol, biodiesel, and distiller's grain with solubles (DGS)] are produced from one feedstock (corn), however, a careful co-product treatment approach is required to accurately estimate GHG intensities of both ethanol and corn oil biodiesel and to avoid double counting of benefits associated with corn oil biodiesel production. Results: This study develops four co-product treatment methods: (1) displacement, (2) marginal, (3) hybrid allocation, and (4) process-level energy allocation. Life-cycle GHG emissions for corn oil biodiesel were more sensitive to the choice of co-product allocation method because significantly less corn oil biodiesel is produced than corn ethanol at a dry mill. Corn ethanol life-cycle GHG emissions with the displacement, marginal, and hybrid allocation approaches are similar (61, 62, and 59 g CO(2)e/MJ, respectively). Although corn ethanol and DGS share upstream farming and conversion burdens in both the hybrid and process-level energy allocation methods, DGS bears a higher burden in the latter because it has lower energy content per selling price as compared to corn ethanol. As a result, with the process-level allocation approach, ethanol's life-cycle GHG emissions are lower at 46 g CO(2)e/MJ. Corn oil biodiesel life-cycle GHG emissions from the marginal, hybrid allocation, and process-level energy allocation methods were 14, 59, and 45 g CO(2)e/MJ, respectively. Sensitivity analyses were conducted to investigate the influence corn oil yield, soy biodiesel, and defatted DGS displacement credits, and energy consumption for corn oil production and corn oil biodiesel production. Conclusions: This study's results demonstrate that co-product treatment methodology strongly influences corn oil biodiesel life-cycle GHG emissions and can affect how this fuel is treated under the Renewable Fuel and Low Carbon Fuel Standards. C1 [Wang, Zhichao] EcoEngineers, Des Moines, IA 50309 USA. [Dunn, Jennifer B.; Han, Jeongwoo; Wang, Michael Q.] Argonne Natl Lab, Div Energy Syst, Syst Assessment Grp, Argonne, IL 60439 USA. RP Dunn, JB (reprint author), Argonne Natl Lab, Div Energy Syst, Syst Assessment Grp, 9700 S Cass Ave, Argonne, IL 60439 USA. EM jdunn@anl.gov FU Bioenergy Technologies Office (BETO) of the Office of Energy Efficiency and Renewable Energy of the United States Department of Energy [DE-AC02-06CH11357] FX This work was supported by the Bioenergy Technologies Office (BETO) of the Office of Energy Efficiency and Renewable Energy of the United States Department of Energy, under Contract DE-AC02-06CH11357. The authors acknowledge Christina Canter for a technical review of the analysis. They also thank Alicia Lindauer, Kristen Johnson, and Zia Haq of the Bioenergy Technologies Office for their support and guidance. NR 36 TC 2 Z9 2 U1 4 U2 23 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1754-6834 J9 BIOTECHNOL BIOFUELS JI Biotechnol. Biofuels PD NOV 4 PY 2015 VL 8 AR 178 DI 10.1186/s13068-015-0350-8 PG 10 WC Biotechnology & Applied Microbiology; Energy & Fuels SC Biotechnology & Applied Microbiology; Energy & Fuels GA CV4ZU UT WOS:000364275800002 PM 26543502 ER PT J AU Fan, WJ Lawrie, BJ Pooser, RC AF Fan, Wenjiang Lawrie, Benjamin J. Pooser, Raphael C. TI Quantum plasmonic sensing SO PHYSICAL REVIEW A LA English DT Article ID SURFACE; PHASE; LIMIT; INTERFERENCE; SENSITIVITY; SENSORS; NOISE; LIGHT AB Surface plasmon resonance (SPR) sensors can reach the quantum noise limit of the optical readout field in various configurations. We demonstrate that two-mode intensity squeezed states produce a further enhancement in sensitivity compared with a classical optical readout when the quantum noise is used to transduce an SPR sensor signal in the Kretschmann configuration. The quantum noise reduction between the twin beams when incident at an angle away from the plasmonic resonance, combined with quantum noise resulting from quantum anticorrelations when on resonance, results in an effective SPR-mediated modulation that yields a measured sensitivity 5 dB better than that with a classical optical readout in this configuration. The theoretical potential of this technique points to resolving particle concentrations with more accuracy than is possible via classical approaches to optical transduction. C1 [Fan, Wenjiang] Univ Virginia, Dept Phys, Charlottesville, VA 22903 USA. [Fan, Wenjiang; Lawrie, Benjamin J.; Pooser, Raphael C.] Oak Ridge Natl Lab, Quantum Informat Sci Grp, Oak Ridge, TN 37830 USA. RP Fan, WJ (reprint author), Univ Virginia, Dept Phys, Charlottesville, VA 22903 USA. EM pooserrc@ornl.gov RI Lawrie, Benjamin/B-7182-2016; OI Lawrie, Benjamin/0000-0003-1431-066X; Pooser, Raphael/0000-0002-2922-453X FU U.S. Department of Energy [DE-AC05-00OR22725]; Department of Energy; Laboratory Directed Research and Development program FX This work was performed at Oak Ridge National Laboratory, operated by UT-Battelle for the U.S. Department of Energy. This paper has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The U.S. government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this paper, or allow others to do so, for U.S. government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan. B.L. and R.C.P. acknowledge support from the Laboratory Directed Research and Development program. The gold films used in the SPR sensor were fabricated at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility. The authors acknowledge R. Davidson and J. Schaake for metal deposition support. NR 32 TC 0 Z9 0 U1 9 U2 23 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9926 EI 2469-9934 J9 PHYS REV A JI Phys. Rev. A PD NOV 4 PY 2015 VL 92 IS 5 AR 053812 DI 10.1103/PhysRevA.92.053812 PG 5 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA CV1JU UT WOS:000364012200011 ER PT J AU Zhao, K Lv, B Xue, YY Zhu, XY Deng, LZ Wu, Z Chu, CW AF Zhao, Kui Lv, Bing Xue, Yu-Yi Zhu, Xi-Yu Deng, L. Z. Wu, Zheng Chu, C. W. TI Chemical doping and high-pressure studies of layered beta-PdBi2 single crystals SO PHYSICAL REVIEW B LA English DT Article ID CHARGE-DENSITY WAVES; SUPERCONDUCTIVITY; MAGNETORESISTANCE; LA1-XCAXMNO3; BI2SE3 AB We have systematically grown large single crystals of the layered compounds beta-PdBi2, and both the hole-doped PdBi2-xPbx and the electron-doped NaxPdBi2, and studied their magnetic and transport properties. Hall effect measurements on PdBi2, PdBi1.8Pb0.2, and Na0.057PdBi2 show that the charge transport is dominated by electrons in all of the samples. The electron concentration is substantially reduced upon Pb doping in PdBi2-xPbx and increased upon Na intercalation in NaxPdBi2, indicating effective hole doping by Pb and electron doping by Na. We observed a monotonic decrease of the superconducting transition temperature (T-c) from 5.4 K in undoped PdBi2 to less than 2 K for x > 0.35 in hole-doped PdBi2-xPbx. Meanwhile, a rapid decrease of T-c with Na intercalation is also observed in the electron-doped NaxPdBi2, which is in disagreement with the theoretical expectation. In addition, both the magnetoresistance and Hall resistance further reveal evidence for a possible spin excitation associated with Fermi surface reconstruction at similar to 50 K in the Na-intercalated PdBi2 sample. The complete phase diagram is thus established from hole doping to electron doping. Meanwhile, a high-pressure study of the undoped PdBi2 shows that the T-c is linearly suppressed under pressure with a dT(c)/dP coefficient of -0.28 K/GPa. C1 [Zhao, Kui; Lv, Bing; Xue, Yu-Yi; Zhu, Xi-Yu; Deng, L. Z.; Wu, Zheng; Chu, C. W.] Univ Houston, Texas Ctr Superconduct, Houston, TX 77204 USA. [Zhao, Kui; Lv, Bing; Xue, Yu-Yi; Zhu, Xi-Yu; Deng, L. Z.; Wu, Zheng; Chu, C. W.] Univ Houston, Dept Phys, Houston, TX 77204 USA. [Zhu, Xi-Yu] Nanjing Univ, Dept Phys, Nanjing 210008, Jiangsu, Peoples R China. [Chu, C. W.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Zhao, K (reprint author), Univ Houston, Texas Ctr Superconduct, Houston, TX 77204 USA. EM blv@utdallas.edu FU U.S. Air Force Office of Scientific Research Grant [FA9550-09-1-0656]; T.L.L. Temple Foundation; John J. and Rebecca Moores Endowment; State of Texas through the Texas Center for Superconductivity at the University of Houston FX The work in Houston, Texas, is supported, in part, by U.S. Air Force Office of Scientific Research Grant No. FA9550-09-1-0656, the T.L.L. Temple Foundation, the John J. and Rebecca Moores Endowment, and the State of Texas through the Texas Center for Superconductivity at the University of Houston. NR 18 TC 0 Z9 0 U1 6 U2 23 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD NOV 4 PY 2015 VL 92 IS 17 AR 174404 DI 10.1103/PhysRevB.92.174404 PG 6 WC Physics, Condensed Matter SC Physics GA CV1KC UT WOS:000364013400001 ER PT J AU Ota, S Burke, JT Casperson, RJ Escher, JE Hughes, RO Ressler, JJ Scielzo, ND Thompson, IJ Austin, RAE Abromeit, B Foley, NJ McCleskey, E McCleskey, M Park, HI Saastamoinen, A Ross, TJ AF Ota, S. Burke, J. T. Casperson, R. J. Escher, J. E. Hughes, R. O. Ressler, J. J. Scielzo, N. D. Thompson, I. J. Austin, R. A. E. Abromeit, B. Foley, N. J. McCleskey, E. McCleskey, M. Park, H. I. Saastamoinen, A. Ross, T. J. TI Spin differences in the Zr-90 compound nucleus induced by (p, p '), (p, d), and (p, t) surrogate reactions SO PHYSICAL REVIEW C LA English DT Article ID FISSION CROSS-SECTIONS; S-PROCESS AB The effect of the production mechanism on the decay of a compound nucleus is investigated. The nucleus Zr-90 was produced by three different reactions, namely Zr-90(p, p') Zr-90, Zr-91(p, d) Zr-90, and Zr-92(p, t) Zr-90, which served as surrogate reactions for Zr-89(n, gamma). The spin-parity (J(pi)) distributions of the states populated by these reactions were studied to investigate the surrogate reaction approach, which aims at indirectly determining cross sections for compound-nuclear reactions involving unstable targets such as Zr-89. Discrete. rays, associated with transitions in Zr-90 and Zr-89, were measured in coincidence with light ions for scattering angles of 25 degrees-60 degrees and Zr-90 excitation energies extending above the neutron separation energy. The measured transition systematics were used to gain insights into the J(pi) distributions of Zr-90. The Zr-90(p, p') reaction was found to produce fewer. rays associated with transitions involving high spin states (J = 6-8 (h) over bar) than the other two reactions, suggesting that inelastic scattering preferentially populates states in Zr-90 that have lower spins than those populated in the transfer reactions investigated. The gamma-ray productionwas also observed to vary by factors of 2-3 with the angle at which the outgoing particle was detected. These findings are relevant to the application of the surrogate reaction approach. C1 [Ota, S.; Burke, J. T.; Casperson, R. J.; Escher, J. E.; Hughes, R. O.; Ressler, J. J.; Scielzo, N. D.; Thompson, I. J.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Austin, R. A. E.] St Marys Univ, Halifax, NS B3H 3C3, Canada. [Abromeit, B.; Foley, N. J.; McCleskey, E.; McCleskey, M.; Park, H. I.; Saastamoinen, A.] Texas A&M Univ, Inst Cyclotron, College Stn, TX 77840 USA. [Ross, T. J.] Univ Kentucky, Dept Chem, Lexington, KY 40506 USA. RP Ota, S (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. EM ota2@llnl.gov FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; JSPS Postdoctoral Fellowship; U.S. Department of Energy's Topical Collaboration TORUS FX We express our thanks to the cyclotron staff at Texas A&M University. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. One of the authors, S.O. is supported by a JSPS Postdoctoral Fellowship for Research Abroad. Partial support through the U.S. Department of Energy's Topical Collaboration TORUS is acknowledged. We also thank Dr. T. Kawano (Los Alamos National Laboratory) for discussions regarding the interpretation of the particle spectrum. NR 32 TC 3 Z9 3 U1 1 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 EI 1089-490X J9 PHYS REV C JI Phys. Rev. C PD NOV 4 PY 2015 VL 92 IS 5 AR 054603 DI 10.1103/PhysRevC.92.054603 PG 10 WC Physics, Nuclear SC Physics GA CV1LM UT WOS:000364019000002 ER PT J AU Wu, B Iwashita, T Egami, T AF Wu, Bin Iwashita, Takuya Egami, Takeshi TI Anisotropy of stress correlation in two-dimensional liquids and a pseudospin model SO PHYSICAL REVIEW E LA English DT Article ID MOLECULAR-DYNAMICS; COMPUTER-SIMULATION; TRIPLE-POINT; VISCOSITY; ARGON AB Liquids are condensed matter in which atoms are strongly correlated in position and momentum. The atomic pair density function (PDF) is used often in describing such correlation. However, elucidation of many properties requires higher degrees of correlation than the pair correlation. For instance, viscosity depends upon the stress correlations in space and time. In this paper, we examine the cross correlation between the stress correlation at the atomic level and the PDF for two-dimensional liquids. We introduce the concept of the stress-resolved pair distribution function (SRPDF) that uses the sign of atomic-level stress as a selection rule to include particles from density correlations. The connection between SRPDFs and stress correlation function is explained through an approximation in which the shear stress is replaced by a pseudospin. We further assess the possibility of interpreting the long-range stress correlation as a consequence of short-range Ising-like pseudospin interactions. C1 [Wu, Bin; Egami, Takeshi] Univ Tennessee, Dept Phys & Astron, Joint Inst Neutron Sci, Knoxville, TN 37996 USA. [Iwashita, Takuya; Egami, Takeshi] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Egami, Takeshi] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Egami, T (reprint author), Univ Tennessee, Dept Phys & Astron, Joint Inst Neutron Sci, Knoxville, TN 37996 USA. EM egami@utk.edu RI Iwashita, Takuya/D-2724-2009 FU U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Science and Engineering Division FX The authors thank J. S. Langer, J. R. Morris, and J. Bellissard for useful discussions. This research has been supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Science and Engineering Division. NR 33 TC 0 Z9 0 U1 1 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 EI 1550-2376 J9 PHYS REV E JI Phys. Rev. E PD NOV 4 PY 2015 VL 92 IS 5 AR 052303 DI 10.1103/PhysRevE.92.052303 PG 8 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA CV1MQ UT WOS:000364022800005 PM 26651691 ER PT J AU Ida, K Kobayashi, T Evans, TE Inagaki, S Austin, ME Shafer, MW Ohdachi, S Suzuki, Y Itoh, SI Itoh, K AF Ida, K. Kobayashi, T. Evans, T. E. Inagaki, S. Austin, M. E. Shafer, M. W. Ohdachi, S. Suzuki, Y. Itoh, S. -I. Itoh, K. TI Self-regulated oscillation of transport and topology of magnetic islands in toroidal plasmas SO SCIENTIFIC REPORTS LA English DT Article ID DIII-D TOKAMAK; TEARING MODES; PERTURBATIONS; RECONNECTION; FIELD AB The coupling between the transport and magnetic topology is an important issue because the structure of magnetic islands, embedded in a toroidal equilibrium field, depends on the nature of the transport at the edge of the islands. Measurements of modulated heat pulse propagation in the DIII-D tokamak have revealed the existence of self-regulated oscillations in the radial energy transport into magnetic islands that are indicative of bifurcations in the island structure and transport near the q = 2 surface. Large amplitude heat pulses are seen in one state followed by small amplitude pulses later in the discharge resulting in a repeating cycle of island states. These two states are interpreted as a bifurcation of magnetic island with high and low heat pulse accessibility. This report describes the discovery of a bifurcation in the coupled dynamics between the transport and topology of magnetic islands in tokamak plasmas. C1 [Ida, K.; Kobayashi, T.; Ohdachi, S.; Suzuki, Y.; Itoh, K.] Natl Inst Nat Sci, Natl Inst Fus Sci, Toki, Gifu 5095292, Japan. [Evans, T. E.] Gen Atom Co, San Diego, CA 92186 USA. [Inagaki, S.; Itoh, S. -I.] Kyushu Univ, Appl Mech Res Inst, Kasuga, Fukuoka 8168580, Japan. [Austin, M. E.] Univ Texas Austin, Austin, TX 78712 USA. [Shafer, M. W.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Ida, K (reprint author), Natl Inst Nat Sci, Natl Inst Fus Sci, 322-6 Oroshicho, Toki, Gifu 5095292, Japan. EM ida@nifs.ac.jp RI U-ID, Kyushu/C-5291-2016; Ida, Katsumi/E-4731-2016; Kyushu, RIAM/F-4018-2015 OI Ida, Katsumi/0000-0002-0585-4561; FU NIFS/NINS under project of Formation of International Scientific Base and Network [KEIN1111, KEIN1113]; JSPS Japan [15H02336, 21224014, 23360414]; collaboration programmes of RIAM Kyushu University; National Institute for Fusion Science [NIFS13KOCT001]; US Department of Energy [DE-FC02-04ER54698, DE-FG03-97ER54415, DE-AC05-00OR22725] FX This work is supported by NIFS/NINS under the project of Formation of International Scientific Base and Network and Grant-in-Aid for Scientific Research (No. 15H02336, 21224014, 23360414) of JSPS Japan. This work is supported by NIFS/NINS under the project of Formation of International Scientific Base and Network (KEIN1111, KEIN1113). This works is also supported in part by the collaboration programmes of RIAM Kyushu University and of the National Institute for Fusion Science (NIFS13KOCT001), and by the US Department of Energy under DE-FC02-04ER54698, DE-FG03-97ER54415 & DE-AC05-00OR22725. NR 26 TC 3 Z9 3 U1 1 U2 7 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD NOV 4 PY 2015 VL 5 AR 16165 DI 10.1038/srep16165 PG 10 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CV2MO UT WOS:000364091000002 PM 26530273 ER PT J AU Geng, T Bredeweg, EL Szymanski, CJ Liu, BW Baker, SE Orr, G Evans, JE Kelly, RT AF Geng, Tao Bredeweg, Erin L. Szymanski, Craig J. Liu, Bingwen Baker, Scott E. Orr, Galya Evans, James E. Kelly, Ryan T. TI Compartmentalized microchannel array for high-throughput analysis of single cell polarized growth and dynamics SO SCIENTIFIC REPORTS LA English DT Article ID NEUROSPORA-CRASSA; MICROFLUIDIC CHEMOSTAT; GENE-EXPRESSION; HYPHAE; PLATFORM; FUNGI; YEAST; TIP; POPULATION; BACTERIAL AB Interrogating polarized growth is technologically challenging due to extensive cellular branching and uncontrollable environmental conditions in conventional assays. Here we present a robust and high-performance microfluidic system that enables observations of polarized growth with enhanced temporal and spatial control over prolonged periods. The system has built-in tunability and versatility to accommodate a variety of scientific applications requiring precisely controlled environments. Using the model filamentous fungus, Neurospora crassa, our microfluidic system enabled direct visualization and analysis of cellular heterogeneity in a clonal fungal cell population, nuclear distribution and dynamics at the subhyphal level, and quantitative dynamics of gene expression with single hyphal compartment resolution in response to carbon source starvation and exchange. Although the microfluidic device is demonstrated on filamentous fungi, the technology is immediately extensible to a wide array of other biosystems that exhibit similar polarized cell growth, with applications ranging from bioenergy production to human health. C1 [Geng, Tao; Bredeweg, Erin L.; Szymanski, Craig J.; Liu, Bingwen; Baker, Scott E.; Orr, Galya; Evans, James E.; Kelly, Ryan T.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. RP Kelly, RT (reprint author), Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. EM ryan.kelly@pnnl.gov RI Kelly, Ryan/B-2999-2008; OI Kelly, Ryan/0000-0002-3339-4443; Bredeweg, Erin/0000-0001-7827-8342 FU DOE-BER Mesoscale to Molecules Project [66382]; Department of Energy's Office of Biological and Environmental Research FX This work was supported by DOE-BER Mesoscale to Molecules Project #66382. The authors are grateful to Professor Michael Freitag from Oregon State University for providing us with the Neurospora crassa strain expressing histone H1-RFP NMF617. This research was performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at PNNL. NR 46 TC 2 Z9 2 U1 4 U2 13 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD NOV 4 PY 2015 VL 5 AR 16111 DI 10.1038/srep16111 PG 12 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CV1SR UT WOS:000364038900001 PM 26530004 ER PT J AU Liu, B Yuan, FL Jin, K Zhang, YW Weber, WJ AF Liu, Bin Yuan, Fenglin Jin, Ke Zhang, Yanwen Weber, William J. TI Ab initio molecular dynamics investigations of low-energy recoil events in Ni and NiCo SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article DE Ni; NiCo; ab initio molecular dynamics; low-energy recoil; alloying effect ID DISPLACEMENT THRESHOLD ENERGIES; MULTICOMPONENT ALLOYS; MECHANICAL-PROPERTIES; ELECTRON-IRRADIATION; SOLID-SOLUTION; POINT-DEFECT; NICKEL; SIMULATIONS; TEMPERATURE; DAMAGE AB Low-energy recoil events in pure Ni and the equiatomic NiCo alloy are studied using ab initio molecular dynamics simulations. We found that the threshold displacement energies are strongly dependent on orientation and weakly dependent on composition. The minimum threshold displacement energies are along the [110] direction in both pure Ni and the NiCo alloy. Compared to pure Ni, the threshold displacement energies increase slightly in the NiCo alloy due to the stronger bonds in the alloy, irrespective of the element type of the PKA. A single Ni interstitial occupying the center of a tetrahedron formed by four Ni atoms and a <100> split interstitial is produced in pure Ni by the recoils, while only the <100> split interstitial is formed in the NiCo alloy. Compared to the replacement sequences in pure Ni, anti-site defect sequences are observed in the alloy, which have high efficiency for both producing defects and transporting energy outside of the cascade core. These results provide insights into energy transfer processes occurring in equiatomic alloys under irradiation. C1 [Liu, Bin; Yuan, Fenglin; Weber, William J.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Jin, Ke; Zhang, Yanwen; Weber, William J.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Liu, B (reprint author), Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. EM bliu19@utk; wjweber@utk.edu RI Weber, William/A-4177-2008; Liu, Bin/N-9955-2014; Yuan, Fenglin/A-9194-2015 OI Weber, William/0000-0002-9017-7365; Yuan, Fenglin/0000-0003-3071-9182 FU University of Tennessee Governor's Chair program; Energy Dissipation to Defect Evolution (EDDE); Energy Frontier Research Center - US Department of Energy, Office of Science, Basic Energy Sciences; Office of Science, US Department of Energy [DEAC02-05CH11231] FX BL are FY were supported by the University of Tennessee Governor's Chair program. KJ, YZ and WJW were supported by Energy Dissipation to Defect Evolution (EDDE), an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Basic Energy Sciences. This research used resources of the National Energy Research Scientific Computing Center, supported by the Office of Science, US Department of Energy under Contract No. DEAC02-05CH11231. NR 32 TC 3 Z9 3 U1 3 U2 19 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 EI 1361-648X J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD NOV 4 PY 2015 VL 27 IS 43 AR 435006 DI 10.1088/0953-8984/27/43/435006 PG 7 WC Physics, Condensed Matter SC Physics GA CT1QC UT WOS:000362574000007 PM 26439166 ER PT J AU Nguyen, VS Jobichen, C Tan, KW Tan, YW Chan, SL Ramesh, K Yuan, YM Hong, YH Seetharaman, J Leung, KY Sivaraman, J Mok, YK AF Nguyen, Van Sang Jobichen, Chacko Tan, Kang Wei Tan, Yih Wan Chan, Siew Leong Ramesh, Karthik Yuan, Yongming Hong, Yunhan Seetharaman, Jayaraman Leung, Ka Yin Sivaraman, J. Mok, Yu Keung TI Structure of AcrH-AopB Chaperone-Translocator Complex Reveals a Role for Membrane Hairpins in Type III Secretion System Translocon Assembly SO STRUCTURE LA English DT Article ID COILED-COIL DOMAINS; COLICIN E1 CHANNEL; CRYSTAL-STRUCTURE; PSEUDOMONAS-AERUGINOSA; PROTEIN TRANSLOCATION; AEROMONAS-HYDROPHILA; FORMING DOMAIN; IA; PEPTIDE; STATE AB Type III secretion systems (T3SSs) are adopted by pathogenic bacteria for the transport of effector proteins into host cells through the translocon pore composed of major and minor translocator proteins. Both translocators require a dedicated chaperone for solubility. Despite tremendous efforts in the past, structural information regarding the chaperone-translocator complex and the topology of the translocon pore have remained elusive. Here, we report the crystal structure of the major translocator, AopB, from Aeromonas hydrophila AH-1 in complex with its chaperone, AcrH. Overall, the structure revealed unique interactions between the various interfaces of AopB and AcrH, with the N-terminal "molecular anchor" of AopB crossing into the "N-terminal arm" of AcrH. AopB adopts a novel fold, and its transmembrane regions form two pairs of helical hairpins. From these structural studies and associated cellular assays, we deduced the topology of the assembled T3SS translocon; both termini remain extracellular after membrane insertion. C1 [Nguyen, Van Sang; Jobichen, Chacko; Tan, Kang Wei; Tan, Yih Wan; Chan, Siew Leong; Ramesh, Karthik; Yuan, Yongming; Hong, Yunhan; Sivaraman, J.; Mok, Yu Keung] Natl Univ Singapore, Dept Biol Sci, Singapore 117543, Singapore. [Seetharaman, Jayaraman] Brookhaven Natl Lab, Beamline X4, Upton, NY 11973 USA. [Leung, Ka Yin] Trinity Western Univ, Fac Nat & Appl Sci, Dept Biol, Langley, BC V2Y 1Y1, Canada. RP Mok, YK (reprint author), Natl Univ Singapore, Dept Biol Sci, 14 Sci Dr 4, Singapore 117543, Singapore. EM dbsmokh@nus.edu.sg RI Yuan, Yongming/H-7240-2016; OI Yuan, Yongming/0000-0002-2057-2204; Jobichen, Chacko/0000-0001-5927-1815 FU Academic Research Fund (ARF); National University of Singapore (NUS) [R-154-000-498-112, R-154-000-657-112]; ARF-NUS grant [R-154-000-563-112]; Natural Science and Engineering Research Council (NSERC) Discovery Grant, Canada [372373-2010]; Open Funding Project of the State Key Laboratory of Bioreactor Engineering of China FX We thank Prof. Juan Magana Tomas, Department of Microbiology, University of Barcelona, for providing the bacterial strain A. hydrophila AH-1. This work was supported by the Academic Research Fund (ARF), National University of Singapore (NUS) to Y.K.M. (R-154-000-498-112 and R-154-000-657-112). J.S. was supported by an ARF-NUS grant (R-154-000-563-112). K.Y.L. was supported by a grant from the Natural Science and Engineering Research Council (NSERC) Discovery Grant (372373-2010), Canada and Open Funding Project of the State Key Laboratory of Bioreactor Engineering of China. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 46 TC 3 Z9 3 U1 1 U2 5 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0969-2126 EI 1878-4186 J9 STRUCTURE JI Structure PD NOV 3 PY 2015 VL 23 IS 11 BP 2022 EP 2031 DI 10.1016/j.str.2015.08.014 PG 10 WC Biochemistry & Molecular Biology; Biophysics; Cell Biology SC Biochemistry & Molecular Biology; Biophysics; Cell Biology GA CY1MF UT WOS:000366170300009 PM 26439768 ER PT J AU Aggarwal, M Chua, TK Pinard, MA Szebenyi, DM McKenna, R AF Aggarwal, Maya Chua, Teck Khiang Pinard, Melissa A. Szebenyi, Doletha M. McKenna, Robert TI Carbon Dioxide "Trapped" in a beta-Carbonic Anhydrase SO BIOCHEMISTRY LA English DT Article ID PSEUDOMONAS-AERUGINOSA; ESCHERICHIA-COLI; ACTIVE-SITE; CATALYTIC MECHANISM; CRYSTAL-STRUCTURE; PROTEIN CRYSTALS; PISUM-SATIVUM; AMBIENT AIR; GROWTH; ROLES AB Carbonic anhydrases (CAs) are enzymes that catalyze the hydration/ dehydration of CO2/HCO3- with rates approaching diffusion-controlled limits (k(cat)/K-m similar to 10(8) M(-1)s(-1) ). This family of enzymes has evolved disparate protein folds that all perform the same reaction at near catalytic perfection. Presented here is a structural study of a beta-CA (psCA3) expressed in Pseudomonas aeruginosa, in complex with CO2, using pressurized cryocooled crystallography. The structure has been refined to 1.6 angstrom resolution with R-cryst and R-free values of 17.3 and 19.9%, respectively, and is compared with the alpha-CA, human CA isoform II (hCA II), the only other CA to have CO2, captured in its active site. Despite the lack of structural similarity between psCA3 and hCA II, the CO2, binding orientation relative to the zinc-bound solvent is identical. In addition, a second CO2, binding site was located at the dimer interface of psCA3. Interestingly, all beta-CAs function as dirners or higher-order oligomeric states, and the CO2, bound at the interface may contribute to the allosteric nature of this family of enzymes or may be a convenient alternative binding site as this pocket has been previously shown to be a promiscuous site for a variety of ligands, including bicarbonate, sulfate, and phosphate ions. C1 [Aggarwal, Maya] Oak Ridge Natl Lab, Div Biol & Soft Matter, Oak Ridge, TN 37831 USA. [Chua, Teck Khiang; Szebenyi, Doletha M.] Cornell Univ, Cornell High Energy Synchrotron Source CHESS, Ithaca, NY 14853 USA. [McKenna, Robert] Univ Florida, Coll Med, Dept Biochem & Mol Biol, Gainesville, FL 32610 USA. RP McKenna, R (reprint author), Univ Florida, Coll Med, Dept Biochem & Mol Biol, Gainesville, FL 32610 USA. EM rmckenna@ufl.edu FU Shull Fellowship; National Institutes of Health [GM25154] FX This work has been funded by a Shull Fellowship awarded to M.A. at Oak Ridge National Laboratory and National Institutes of Health Grant GM25154. NR 41 TC 2 Z9 2 U1 1 U2 10 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0006-2960 J9 BIOCHEMISTRY-US JI Biochemistry PD NOV 3 PY 2015 VL 54 IS 43 BP 6631 EP 6638 DI 10.1021/acs.biochem.5b00987 PG 8 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA CV6BC UT WOS:000364354700008 PM 26457866 ER PT J AU Zhang, P Van Nostrand, JD He, ZL Chakraborty, R Deng, Y Curtis, D Fields, MW Hazen, TC Arkin, AP Zhou, JZ AF Zhang, Ping Van Nostrand, Joy D. He, Zhili Chakraborty, Romy Deng, Ye Curtis, Daniel Fields, Matthew W. Hazen, Terry C. Arkin, Adam P. Zhou, Jizhong TI A Slow-Release Substrate Stimulates Groundwater Microbial Communities for Long-Term in Situ Cr(VI) Reduction SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID SULFATE-REDUCING BACTERIA; FUNCTIONAL GENE DIVERSITY; CONTAMINATED AQUIFER; SP-NOV; DESULFOVIBRIO-VULGARIS; CHROMATE REDUCTION; URANIUM REDUCTION; ELECTRON-DONOR; SP. NOV.; BIOREMEDIATION AB Cr(VI) is a widespread environmental contaminant that is highly toxic and soluble. Previous work indicated that a one-time amendment of polylactate hydrogen-release compound (HRC) reduced groundwater Cr(VI) concentrations for >3.5 years at a contaminated aquifer; however, microbial communities responsible for Cr(VI) reduction are poorly understood. In this study, we hypothesized that HRC amendment would significantly change the composition and structure of groundwater microbial communities, and that the abundance of key functional genes involved in HRC degradation and electron acceptor reduction would increase long-term in response to this slowly degrading complex substrate. To test these hypotheses, groundwater microbial communities were monitored after HRC amendment for >1 year using a comprehensive functional gene microarray. The results showed that the overall functional composition and structure of groundwater microbial communities underwent sequential shifts after HRC amendment. Particularly, the abundance of functional genes involved in acetate oxidation, denitrification, dissimilatory nitrate reduction, metal reduction, and sulfate reduction significantly increased. The overall community dynamics was significantly correlated with changes in groundwater concentrations of microbial biomass, acetate, NO3-, Cr(VI), Fe(II) and SO42-. Our results suggest that HRC amendment primarily stimulated key functional processes associated with HRC degradation and reduction of multiple electron acceptors in the aquifer toward long-term Cr(VI) reduction. C1 [Van Nostrand, Joy D.; He, Zhili; Deng, Ye; Curtis, Daniel; Zhou, Jizhong] Univ Oklahoma, Inst Environm Genom, Norman, OK 73019 USA. [Zhang, Ping; Van Nostrand, Joy D.; He, Zhili; Deng, Ye; Curtis, Daniel; Zhou, Jizhong] Univ Oklahoma, Dept Microbiol & Plant Biol, Norman, OK 73019 USA. [Chakraborty, Romy; Zhou, Jizhong] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Deng, Ye] Chinese Acad Sci, Res Ctr Ecoenvironm Sci, CAS Key Lab Environm Biotechnol, Beijing 100085, Peoples R China. [Fields, Matthew W.] Montana State Univ, Ctr Biofilm Engn, Bozeman, MT 59717 USA. [Hazen, Terry C.] Univ Tennessee, Dept Civil & Environm Engn, Knoxville, TN 37996 USA. [Hazen, Terry C.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. [Arkin, Adam P.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Zhou, Jizhong] Tsinghua Univ, Sch Environm, State Key Joint Lab Environm Simulat & Pollut Con, Beijing 100084, Peoples R China. RP Zhou, JZ (reprint author), Univ Oklahoma, Inst Environm Genom, Norman, OK 73019 USA. EM jzhou@ou.edu RI Van Nostrand, Joy/F-1740-2016; Arkin, Adam/A-6751-2008; Hazen, Terry/C-1076-2012; Chakraborty, Romy/D-9230-2015; OI Van Nostrand, Joy/0000-0001-9548-6450; Arkin, Adam/0000-0002-4999-2931; Hazen, Terry/0000-0002-2536-9993; Chakraborty, Romy/0000-0001-9326-554X; ?, ?/0000-0002-7584-0632 FU Subsurface Biogeochemical Research Program; ENIGMA-Ecosystems and Networks Integrated with Genes and Molecular Assemblies under the Office of Science, Office of Biological and Environmental Research, of the U.S. Department of Energy [DE-AC02-05CH11231]; Collaborative Innovation Center for Regional Environmental Quality; Office of the Vice President for Research at the University of Oklahoma FX The field sampling was supported by the Subsurface Biogeochemical Research Program and the microbial community analysis was supported by ENIGMA-Ecosystems and Networks Integrated with Genes and Molecular Assemblies under Contract No. DE-AC02-05CH11231, through the Office of Science, Office of Biological and Environmental Research, of the U.S. Department of Energy, and by the Office of the Vice President for Research at the University of Oklahoma, and by the Collaborative Innovation Center for Regional Environmental Quality. NR 59 TC 3 Z9 3 U1 8 U2 53 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X EI 1520-5851 J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD NOV 3 PY 2015 VL 49 IS 21 BP 12922 EP 12931 DI 10.1021/acs.est.5b00024 PG 10 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA CV6BI UT WOS:000364355300037 PM 25835088 ER PT J AU Steinruck, HG Will, J Magerl, A Ocko, BM AF Steinrueck, H. -G. Will, J. Magerl, A. Ocko, B. M. TI Structure of n-Alkyltrichlorosilane Mono layers on Si(100)/SiO2 SO LANGMUIR LA English DT Article ID SELF-ASSEMBLED MONOLAYERS; X-RAY-DIFFRACTION; GRAZING-INCIDENCE; OCTADECYLTRICHLOROSILANE MONOLAYERS; OCTADECANOL MONOLAYERS; LANGMUIR MONOLAYERS; SILANE MONOLAYERS; MIXED MONOLAYERS; LIQUID INTERFACE; SILICA SURFACES AB The structure of n-alkyltrichlorosilane self-assembled monolayers (SAMs) of alkyl chain lengths n = 12, 14, 18, and 22 formed on the amorphous native oxide of silicon (100) has been investigated via angstrom-resolution surface X-ray scattering techniques, with particular focus on the proliferation of lateral order along the molecules' long axis. Grazing incidence diffraction shows that the monolayer is composed of hexagonally packed crystalline-like domains for n = 14, 18, and 22 with a lateral size of about 60 A. However, Bragg rod analysis shows that similar to 12 of the CH, units are not included in the crystalline-like domains. We assign this, and the limited lateral crystallites' size, to strain induced by the size mismatch between the optimal chain-chain and headgroup-headgroup spacings. Analysis of X-ray reflectivity profiles for n = 12, 14, and 22 shows that the density profile used to successfully model n = 18 provides an excellent fit where the analysis-derived parameters provide complementary structural information to the grazing incidence results. C1 [Steinrueck, H. -G.; Will, J.] Univ Erlangen Nurnberg, Crystallog & Struct Phys, D-91058 Erlangen, Germany. [Steinrueck, H. -G.] SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA. [Magerl, A.] Univ Erlangen Nurnberg, Dept Phys, D-91058 Erlangen, Germany. [Ocko, B. M.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. RP Steinruck, HG (reprint author), Univ Erlangen Nurnberg, Crystallog & Struct Phys, D-91058 Erlangen, Germany. EM hgs@slac.stanford.edu; ocko@bnl.gov RI Steinruck, Hans-Georg/A-6382-2015 FU DFG [1878]; Division of Materials Sciences (DOE) [DE-AC02-76CH0016] FX We thank Moshe Deutsch and Julia Haddad (Bar-Ilan University, Israel) for fruitful discussions. Beamtime at bean-dines X22A and X22B, NSLS, and 1D1, ESRF, is gratefully acknowledged, as is support by the DFG research unit 1878, Functional Molecular Structures on Complex Oxide Surfaces (H.-G.S., AM.). Work at BNL (B.M.O.) and at the NSLS is supported by the Division of Materials Sciences (DOE) under Contract DE-AC02-76CH0016. NR 60 TC 3 Z9 3 U1 6 U2 22 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD NOV 3 PY 2015 VL 31 IS 43 BP 11774 EP 11780 DI 10.1021/acs.langmuir.5b03091 PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA CV6BD UT WOS:000364354800004 PM 26436472 ER PT J AU Cahill, JF Kertesz, V Van Berkel, GJ AF Cahill, John F. Kertesz, Vilmos Van Berkel, Gary J. TI Characterization and Application of a Hybrid Optical Microscopy/Laser Ablation Liquid Vortex Capture/Electrospray Ionization System for Mass Spectrometry Imaging with Sub-micrometer Spatial Resolution SO ANALYTICAL CHEMISTRY LA English DT Article ID LMD-ICP-MS; DESORPTION ELECTROSPRAY-IONIZATION; LASER MICRODISSECTION; CLINICAL-RESEARCH; SURFACE-ANALYSIS; SINGLE CELLS; TISSUE; SIMS; BRAIN; PROBE AB A commercial optical microscope, laser microdissection instrument was coupled with an electrospray ionization mass spectrometer via a low profile liquid vortex capture probe to yield a hybrid optical microscopy/mass spectrometry imaging system. The instrument has bright-field and fluorescence microscopy capabilities in addition to a highly focused UV laser beam that is utilized for laser ablation of samples. With this system, material laser ablated from a sample using the microscope was caught by a liquid vortex capture probe and transported in solution for analysis by electrospray ionization mass spectrometry. Both lane scanning and spot sampling mass spectral imaging modes were used. The smallest area the system was able to ablate was similar to 0.544 mu m x similar to 0.544 mu m, achieved by oversampling of the smallest laser ablation spot size that could be obtained (similar to 1.9 mu m). With use of a model photoresist surface, known features as small as similar to 1.5 mu m were resolved. The capabilities of the system with real world samples were demonstrated first with a blended polymer thin film containing poly(2-vinylpyridine) and poly(N-vinylcarbazole). Using spot sampling imaging, sub-micrometer sized features (0.62, 0.86, and 0.98 mu m) visible by optical microscopy were clearly distinguished in the mass spectral images. A second real world example showed the imaging of trace amounts of cocaine in mouse brain thin tissue sections. With use of a lane scanning mode with similar to 6 mu m x similar to 6 mu m data pixels, features in the tissue as small as 15 mu m in size could be distinguished in both the mass spectral and optical images. C1 [Cahill, John F.; Kertesz, Vilmos; Van Berkel, Gary J.] Oak Ridge Natl Lab, Organ & Biol Mass Spectrometry Grp, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Van Berkel, GJ (reprint author), Oak Ridge Natl Lab, Organ & Biol Mass Spectrometry Grp, Div Chem Sci, Oak Ridge, TN 37831 USA. EM vanberkelgj@ornl.gov RI Kertesz, Vilmos/M-8357-2016; OI Kertesz, Vilmos/0000-0003-0186-5797; Cahill, John/0000-0002-9866-4010 FU U.S. Department of Energy, Office of Science, Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division FX Amina S. Woods, Shelley Jackson, and Aurelie Roux (National Institute of Drug Abuse-Intramural Research Program, National Institutes of Health) are thanked for supplying the mouse brain tissue. The tissue imaging work at Oak Ridge National Laboratory (ORNL) was supported by, and the QTRAP 5500 and TripleTOF 5600+ mass spectrometers used in this work were provided on loan by, SCIEX through a Cooperative Research and Development Agreement (CRADA NFE-10-02966). Julian Burke (Leica Microsystems) is thanked for the loan of the LMD7000 instrument, Leslie L. Wilson (ORNL) is thanked for preparing the photoresist coated substrates, and Vera Bocharova is thanked for help with polymer film preparation. The instrument advancement, fundamental metric studies, and polymer imaging work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division. NR 39 TC 5 Z9 5 U1 5 U2 28 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 EI 1520-6882 J9 ANAL CHEM JI Anal. Chem. PD NOV 3 PY 2015 VL 87 IS 21 BP 11113 EP 11121 DI 10.1021/acs.analchem.5b03293 PG 9 WC Chemistry, Analytical SC Chemistry GA CV6BE UT WOS:000364354900065 PM 26492186 ER PT J AU Lin, SZ Saxena, A AF Lin, Shi-Zeng Saxena, Avadh TI Noncircular skyrmion and its anisotropic response in thin films of chiral magnets under a tilted magnetic field SO PHYSICAL REVIEW B LA English DT Article ID MOTION; CRYSTAL AB We study the equilibrium and dynamical properties of skyrmions in thin films of chiral magnets with oblique magnetic field. The shape of an individual skyrmion is noncircular and the skyrmion density decreases with the tilt angle from the normal of films. As a result, the interaction between two skyrmions depends on the relative angle between them in addition to their separation. The triangular lattice of skyrmions under a perpendicular magnetic field is distorted into a centered rectangular lattice for a tilted magnetic field. For a low skyrmion density, skyrmions form a chainlike structure. The dynamical response of the noncircular skyrmions depends on the direction of external currents. C1 [Lin, Shi-Zeng; Saxena, Avadh] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Lin, SZ (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM szl@lanl.gov RI Lin, Shi-Zeng/B-2906-2008 OI Lin, Shi-Zeng/0000-0002-4368-5244 FU Institutional Computing Program at LANL; NNSA of the USDOE at LANL [DE-AC52-06NA25396]; U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering FX Computer resources for numerical calculations were supported by the Institutional Computing Program at LANL. This work was carried out under the auspices of the NNSA of the USDOE at LANL under Contract No. DE-AC52-06NA25396, and was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering. NR 28 TC 2 Z9 2 U1 5 U2 17 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD NOV 3 PY 2015 VL 92 IS 18 AR 180401 DI 10.1103/PhysRevB.92.180401 PG 5 WC Physics, Condensed Matter SC Physics GA CV1KI UT WOS:000364014400001 ER PT J AU Mei, AB Hellman, O Schleputz, CM Rockett, A Chiang, TC Hultman, L Petrov, I Greene, JE AF Mei, A. B. Hellman, O. Schlepuetz, C. M. Rockett, A. Chiang, T. -C. Hultman, L. Petrov, I. Greene, J. E. TI Reflection thermal diffuse x-ray scattering for quantitative determination of phonon dispersion relations SO PHYSICAL REVIEW B LA English DT Article ID MAGNETRON SPUTTER-DEPOSITION; PHYSICAL-PROPERTIES; TRANSMISSION SCATTERING; LATTICE-DYNAMICS; MAGNESIUM-OXIDE; HEAT-CAPACITIES; GROWTH; ALLOYS; MGO(001); VIBRATIONS AB Synchrotron reflection x-ray thermal diffuse scattering (TDS) measurements, rather than previously reported transmission TDS, are carried out at room temperature and analyzed using a formalism based upon second-order interatomic force constants and long-range Coulomb interactions to obtain quantitative determinations of MgO phonon dispersion relations (h) over bar omega(j) (q), phonon densities of states g((h) over bar omega), and isochoric temperature-dependent vibrational heat capacities c(v) (T). We use MgO as a model system for investigating reflection TDS due to its harmonic behavior as well as its mechanical and dynamic stability. Resulting phonon dispersion relations and densities of states are found to be in good agreement with independent reports from inelastic neutron and x-ray scattering experiments. Temperature-dependent isochoric heat capacities cv (T), computed within the harmonic approximation from (h) over bar omega(j) (q) values, increase with temperature from 0.4 x 10(-4) eV/atom K at 100 K to 1.4 x 10(-4) eV/atom K at 200 K and 1.9 x 10(-4) eV/atom K at 300 K, in excellent agreement with isobaric heat capacity values c(p) (T) between 4 and 300 K. We anticipate that the experimental approach developed here will be valuable for determining vibrational properties of heteroepitaxial thin films since the use of grazing-incidence (theta less than or similar to theta(c), where theta(c) is the density-dependent critical angle) allows selective tuning of x-ray penetration depths to less than or similar to 10 nm. C1 [Mei, A. B.; Rockett, A.; Petrov, I.; Greene, J. E.] Univ Illinois, Dept Mat Sci, Urbana, IL 61801 USA. [Mei, A. B.; Rockett, A.; Chiang, T. -C.; Petrov, I.; Greene, J. E.] Univ Illinois, Mat Res Lab, Urbana, IL 61801 USA. [Hellman, O.] CALTECH, Dept Appl Phys & Mat Sci, Pasadena, CA 91125 USA. [Schlepuetz, C. M.] Argonne Natl Lab, Xray Sci Div, Adv Photon Source, Argonne, IL 60439 USA. [Schlepuetz, C. M.] Paul Scherrer Inst, Swiss Light Source, CH-5232 Villigen, Switzerland. [Chiang, T. -C.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Hultman, L.; Petrov, I.; Greene, J. E.] Linkoping Univ, Dept Phys IFM, Thin Film Phys Div, SE-58183 Linkoping, Sweden. RP Mei, AB (reprint author), Univ Illinois, Dept Mat Sci, 104 South Goodwin, Urbana, IL 61801 USA. RI Schleputz, Christian/C-4696-2008; OI Schleputz, Christian/0000-0002-0485-2708; Hellman, Olle/0000-0002-3453-2975 FU Swedish Research Council (VR) [2014-5790, 2013-4018]; Swedish Government Strategic Research Area (SFO) in Materials Science on Advanced Functional Material (MatLiU AFM) [2009-00971]; US Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences [DE-FG02-07ER46383]; DOE Office of Science, Argonne National Laboratory [DE-AC02-06CH11357] FX The authors thank Dr. Mauro Sardela for valuable discussions. The financial support of the Swedish Research Council (VR) Grant No. 2014-5790 (Greene) and No. 2013-4018 (Hultman), the Swedish Government Strategic Research Area (SFO) Grant No. 2009-00971 in Materials Science on Advanced Functional Material (MatLiU AFM), and the US Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences (TCC under Grant No. DE-FG02-07ER46383) is greatly appreciated. This research used resources of the Advanced Photon Source, a US DOE Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. NR 47 TC 1 Z9 1 U1 3 U2 21 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD NOV 3 PY 2015 VL 92 IS 17 AR 174301 DI 10.1103/PhysRevB.92.174301 PG 7 WC Physics, Condensed Matter SC Physics GA CV1KA UT WOS:000364013100002 ER PT J AU Ophus, C Shekhawat, A Rasool, H Zettl, A AF Ophus, Colin Shekhawat, Ashivni Rasool, Haider Zettl, Alex TI Large-scale experimental and theoretical study of graphene grain boundary structures SO PHYSICAL REVIEW B LA English DT Article ID POLYCRYSTALLINE GRAPHENE; INTRINSIC STRENGTH; ATOMISTIC SIMULATIONS; TRANSPORT; FRACTURE; DISLOCATION; GRAPHITE AB We have characterized the structure of 176 different single-layer graphene grain boundaries grown with chemical vapor deposition using >1000 experimental high-resolution transmission electron microscopy images using a semiautomated structure processing routine. We introduce an algorithm for generating grain boundary structures for a class of hexagonal two-dimensional materials and use this algorithm and molecular dynamics to simulate the structure of >79 000 linear graphene grain boundaries covering 4122 unique orientations distributed over the entire parameter space. The dislocation content and structural properties are extracted from all experimental and simulated boundaries, and various trends are explored. We find excellent agreement between the simulated and experimentally observed grain boundaries. Our analysis demonstrates the power of a statistically significant number of measurements as opposed to a small number of observations in atomic science. C1 [Ophus, Colin] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Natl Ctr Electron Microscopy, Mol Foundry, Berkeley, CA 94720 USA. [Shekhawat, Ashivni] Miller Inst Basic Res Sci, Berkeley, CA 94720 USA. [Shekhawat, Ashivni; Rasool, Haider; Zettl, Alex] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Rasool, Haider; Zettl, Alex] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RP Ophus, C (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Natl Ctr Electron Microscopy, Mol Foundry, Berkeley, CA 94720 USA. EM cophus@gmail.com; shekhawat.ashivni@gmail.com RI Zettl, Alex/O-4925-2016 OI Zettl, Alex/0000-0001-6330-136X FU Office of Science, Office of Basic Energy Sciences, of the US Department of Energy [DE-AC02-05CH11231]; Miller Institute for Basic Research in Science, at University of California, Berkeley; Director, Office of Energy Research, Materials Sciences and Engineering Division, of the US Department of Energy [DE-AC02-05CH11231]; Office of Naval Research [N00014-12-1-1008]; US National Science Foundation [DMR-1206512] FX Work at the Molecular Foundry was supported by the Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under Contract No. DE-AC02-05CH11231. C.O. thanks M. Bowers, U. Dahmen, and J. Kacher for useful discussions. A.S. acknowledges financial support from the Miller Institute for Basic Research in Science, at University of California, Berkeley, in the form of a Miller Research Fellowship, and thanks R. O. Ritchie for hosting him at the Lawrence Berkeley National Laboratory. A.Z. and H.R. acknowledge support from the Director, Office of Energy Research, Materials Sciences and Engineering Division, of the US Department of Energy under Grant No. DE-AC02-05CH11231 which provided for postdoctoral support and analysis; the Office of Naval Research under Grant No. N00014-12-1-1008 which provided for sample synthesis; and the US National Science Foundation under Grant No. DMR-1206512 which provided for preliminary TEM characterization. NR 52 TC 8 Z9 8 U1 11 U2 56 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD NOV 3 PY 2015 VL 92 IS 20 AR 205402 DI 10.1103/PhysRevB.92.205402 PG 12 WC Physics, Condensed Matter SC Physics GA CV1LD UT WOS:000364017900004 ER PT J AU Wang, YL Thoutam, LR Xiao, ZL Hu, J Das, S Mao, ZQ Wei, J Divan, R Luican-Mayer, A Crabtree, GW Kwok, WK AF Wang, Y. L. Thoutam, L. R. Xiao, Z. L. Hu, J. Das, S. Mao, Z. Q. Wei, J. Divan, R. Luican-Mayer, A. Crabtree, G. W. Kwok, W. K. TI Origin of the turn-on temperature behavior in WTe2 SO PHYSICAL REVIEW B LA English DT Article ID GIANT MAGNETORESISTANCE; ULTRAHIGH MOBILITY; INSULATOR AB A hallmark of materials with extremely large magnetoresistance (XMR) is the transformative turn-on temperature behavior: when the applied magnetic field H is above certain value, the resistivity versus temperature rho(T) curve shows a minimum at a field dependent temperature T*, which has been interpreted as a magnetic-field-driven metal-insulator transition or attributed to an electronic structure change. Here, we demonstrate that rho(T) curves with turn-on behavior in the newly discovered XMR material WTe2 can be scaled as MR similar to (H/rho(0))(m) with m approximate to 2 and rho(0) being the resistivity at zero field. We obtained experimentally and also derived from the observed scaling the magnetic field dependence of the turn-on temperature T* similar to (H - H-c)(nu) with nu approximate to 1/2, which was earlier used as evidence for a predicted metal-insulator transition. The scaling also leads to a simple quantitative expression for the resistivity rho* approximate to 2 rho(0) at the onset of the XMR behavior, which fits the data remarkably well. These results exclude the possible existence of a magnetic-field-driven metal-insulator transition or significant contribution of an electronic structure change to the low-temperature XMR in WTe2. This work resolves the origin of the turn-on behavior observed in several XMR materials and also provides a general route for a quantitative understanding of the temperature dependence of MR in both XMR and non-XMR materials. C1 [Wang, Y. L.; Thoutam, L. R.; Xiao, Z. L.; Crabtree, G. W.; Kwok, W. K.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Wang, Y. L.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. [Thoutam, L. R.; Xiao, Z. L.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Hu, J.; Mao, Z. Q.; Wei, J.] Tulane Univ, Dept Phys & Engn Phys, New Orleans, LA 70118 USA. [Das, S.; Divan, R.; Luican-Mayer, A.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Crabtree, G. W.] Univ Illinois, Dept Phys, Chicago, IL 60607 USA. [Crabtree, G. W.] Univ Illinois, Dept Elect Engn, Chicago, IL 60607 USA. [Crabtree, G. W.] Univ Illinois, Dept Mech Engn, Chicago, IL 60607 USA. RP Wang, YL (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM xiao@anl.gov RI Hu, Jin/C-4141-2014; OI Hu, Jin/0000-0003-0080-4239; Wang, Yong-Lei/0000-0003-0391-7757 FU U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; NSF [DMR-1407175, DMR-1205469]; Louisiana Board of Regents [LEQSF(2014-15)-ENH-TR-24] FX This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division. Use of the Center for Nanoscale Materials, an Office of Science user facility, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. L.R.T. and Z.L.X. acknowledge NSF Grant No. DMR-1407175. The work at Tulane University was supported by the NSF under Grant DMR-1205469 and Louisiana Board of Regents under Grant LEQSF(2014-15)-ENH-TR-24. NR 49 TC 15 Z9 15 U1 14 U2 84 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD NOV 3 PY 2015 VL 92 IS 18 AR 180402 DI 10.1103/PhysRevB.92.180402 PG 5 WC Physics, Condensed Matter SC Physics GA CV1KI UT WOS:000364014400002 ER PT J AU Defurne, M Amaryan, M Aniol, KA Beaumel, M Benaoum, H Bertin, P Brossard, M Camsonne, A Chen, JP Chudakov, E Craver, B Cusanno, F de Jager, CW Deur, A Feuerbach, R Ferdi, C Fieschi, JM Frullani, S Fuchey, E Garcon, M Garibaldi, F Gayou, O Gavalian, G Gilman, R Gomez, J Gueye, P Guichon, PAM Guillon, B Hansen, O Hayes, D Higinbotham, D Holmstrom, T Hyde, CE Ibrahim, H Igarashi, R Jiang, X Jo, HS Kaufman, LJ Kelleher, A Keppel, C Kolarkar, A Kuchina, E Kumbartzki, G Laveissiere, G LeRose, JJ Lindgren, R Liyanage, N Lu, HJ Margaziotis, DJ Mazouz, M Meziani, ZE McCormick, K Michaels, R Michel, B Moffit, B Monaghan, P Camacho, CM Nanda, S Nelyubin, V Paremuzyan, R Potokar, M Qiang, Y Ransome, RD Real, JS Reitz, B Roblin, Y Roche, J Sabatie, F Saha, A Sirca, S Slifer, K Solvignon, P Subedi, R Sulkosky, V Ulmer, PE Voutier, E Wang, K Weinstein, LB Wojtsekhowski, B Zheng, X Zhu, L AF Defurne, M. Amaryan, M. Aniol, K. A. Beaumel, M. Benaoum, H. Bertin, P. Brossard, M. Camsonne, A. Chen, J. -P. Chudakov, E. Craver, B. Cusanno, F. de Jager, C. W. Deur, A. Feuerbach, R. Ferdi, C. Fieschi, J. -M. Frullani, S. Fuchey, E. Garcon, M. Garibaldi, F. Gayou, O. Gavalian, G. Gilman, R. Gomez, J. Gueye, P. Guichon, P. A. M. Guillon, B. Hansen, O. Hayes, D. Higinbotham, D. Holmstrom, T. Hyde, C. E. Ibrahim, H. Igarashi, R. Jiang, X. Jo, H. S. Kaufman, L. J. Kelleher, A. Keppel, C. Kolarkar, A. Kuchina, E. Kumbartzki, G. Laveissiere, G. LeRose, J. J. Lindgren, R. Liyanage, N. Lu, H. -J. Margaziotis, D. J. Mazouz, M. Meziani, Z. -E. McCormick, K. Michaels, R. Michel, B. Moffit, B. Monaghan, P. Camacho, C. Munoz Nanda, S. Nelyubin, V. Paremuzyan, R. Potokar, M. Qiang, Y. Ransome, R. D. Real, J. -S. Reitz, B. Roblin, Y. Roche, J. Sabatie, F. Saha, A. Sirca, S. Slifer, K. Solvignon, P. Subedi, R. Sulkosky, V. Ulmer, P. E. Voutier, E. Wang, K. Weinstein, L. B. Wojtsekhowski, B. Zheng, X. Zhu, L. CA Jefferson Lab Hall A Collaboration TI E00-110 experiment at Jefferson Lab Hall A: Deeply virtual Compton scattering off the proton at 6 GeV SO PHYSICAL REVIEW C LA English DT Article ID ANALOG RING SAMPLER; PARTON DISTRIBUTIONS; HERA; NUCLEON; ELECTROPRODUCTION; ANTARES; SPIN; QCD AB We present final results on the photon electroproduction ((e) over right arrowp -> ep gamma) cross section in the deeply virtual Compton scattering (DVCS) regime and the valence quark region from Jefferson Lab experiment E00-110. Results from an analysis of a subset of these data were published before, but the analysis has been improved, which is described here at length, together with details on the experimental setup. Furthermore, additional data have been analyzed, resulting in photon electroproduction cross sections at new kinematic settings for a total of 588 experimental bins. Results of the Q(2) and x(B) dependencies of both the helicity-dependent and the helicity-independent cross sections are discussed. The Q(2) dependence illustrates the dominance of the twist-2 handbag amplitude in the kinematics of the experiment, as previously noted. Thanks to the excellent accuracy of this high-luminosity experiment, it becomes clear that the unpolarized cross section shows a significant deviation from the Bethe-Heitler process in our kinematics, compatible with a large contribution from the leading twist-2 C1 [Defurne, M.; Beaumel, M.; Fuchey, E.; Garcon, M.; Guichon, P. A. M.; Kolarkar, A.; Camacho, C. Munoz; Sabatie, F.] CEA, Ctr Saclay, Irfu Serv Phys Nucl, F-91191 Gif Sur Yvette, France. [Amaryan, M.; Gavalian, G.; Hayes, D.; Hyde, C. E.; Ibrahim, H.; Ulmer, P. E.; Weinstein, L. B.] Old Dominion Univ, Norfolk, VA 23508 USA. [Aniol, K. A.; Margaziotis, D. J.] Calif State Univ Los Angeles, Los Angeles, CA 90032 USA. [Benaoum, H.] Syracuse Univ, Syracuse, NY 13244 USA. [Benaoum, H.] Univ Sharjah, Dept Appl Phys, Sharjah, U Arab Emirates. [Bertin, P.; Brossard, M.; Camsonne, A.; Ferdi, C.; Fieschi, J. -M.; Fuchey, E.; Laveissiere, G.; Michel, B.] Univ Clermont Ferrand, CNRS, IN2P3, F-63177 Aubiere, France. [Bertin, P.; Camsonne, A.; Chen, J. -P.; Chudakov, E.; de Jager, C. W.; Deur, A.; Feuerbach, R.; Gomez, J.; Hansen, O.; Higinbotham, D.; Keppel, C.; LeRose, J. J.; Michaels, R.; Nanda, S.; Reitz, B.; Roblin, Y.; Roche, J.; Saha, A.; Wojtsekhowski, B.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Craver, B.; de Jager, C. W.; Lindgren, R.; Liyanage, N.; Nelyubin, V.; Slifer, K.; Wang, K.] Univ Virginia, Charlottesville, VA 22904 USA. [Cusanno, F.; Frullani, S.; Garibaldi, F.] Ist Nazl Fis Nucl, Sez Sanita, I-00161 Rome, Italy. [Gayou, O.; Monaghan, P.; Qiang, Y.] MIT, Cambridge, MA 02139 USA. [Gilman, R.; Jiang, X.; Kumbartzki, G.; McCormick, K.; Ransome, R. D.] Rutgers State Univ, Piscataway, NJ 08854 USA. [Gueye, P.] Hampton Univ, Hampton, VA 23668 USA. [Guillon, B.; Mazouz, M.; Real, J. -S.; Voutier, E.] Lab Phys Subatom & Cosmol, F-38026 Grenoble, France. [Holmstrom, T.; Kelleher, A.; Moffit, B.; Sulkosky, V.] Coll William & Mary, Williamsburg, VA 23187 USA. [Ibrahim, H.] Cairo Univ, Dept Phys, Giza 12613, Egypt. [Igarashi, R.] Univ Saskatchewan, Saskatoon, SK S7N 5C6, Canada. [Jo, H. S.; Camacho, C. Munoz; Paremuzyan, R.] CNRS, IN2P3, Inst Phys Nucl, F-91405 Orsay, France. [Kaufman, L. J.] Univ Massachusetts, Amherst, MA 01003 USA. [Kaufman, L. J.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Kaufman, L. J.] CEEM, Bloomington, IN USA. [Kuchina, E.] Univ Kentucky, Lexington, KY 40506 USA. [Lu, H. -J.] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Peoples R China. [Mazouz, M.] Fac Sci Monastir, Monastir 5000, Tunisia. [Meziani, Z. -E.; Solvignon, P.] Temple Univ, Philadelphia, PA 19122 USA. [Potokar, M.; Sirca, S.] Univ Ljubljana, Jozef Stefan Inst, Ljubljana, Slovenia. [Roche, J.] Ohio Univ, Athens, OH 45701 USA. [Slifer, K.] Univ New Hampshire, Durham, NH 03824 USA. [Subedi, R.] Kent State Univ, Kent, OH 44242 USA. [Zheng, X.] Argonne Natl Lab, Argonne, IL 60439 USA. [Zhu, L.] Univ Illinois, Urbana, IL 61801 USA. RP Defurne, M (reprint author), CEA, Ctr Saclay, Irfu Serv Phys Nucl, F-91191 Gif Sur Yvette, France. EM maxime.defurne@cea.fr FU Department of Energy (DOE); National Science Foundation; French Centre National de la Recherche Scientifique; Agence Nationale de la Recherche; Commissariat a l'energie atomique et auxenergies alternatives; P2IO Laboratory of Excellence; US DOE [DOE-AC05-06OR23177] FX We acknowledge essential work of the JLab accelerator staff and the Hall A technical staff. We also thank V. Braun for many informative discussions and B. M. Pirnay for the access to his TMC code. This work was supported by the Department of Energy (DOE), the National Science Foundation, the French Centre National de la Recherche Scientifique, the Agence Nationale de la Recherche, the Commissariat a l'energie atomique et auxenergies alternatives and P2IO Laboratory of Excellence. Jefferson Science Associates, LLC, operates Jefferson Lab for the US DOE under US DOE Contract No. DOE-AC05-06OR23177. NR 71 TC 9 Z9 9 U1 1 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 EI 1089-490X J9 PHYS REV C JI Phys. Rev. C PD NOV 3 PY 2015 VL 92 IS 5 AR 055202 DI 10.1103/PhysRevC.92.055202 PG 36 WC Physics, Nuclear SC Physics GA CV1LL UT WOS:000364018800003 ER PT J AU Aad, G Abbott, B Abdallah, J Abdinov, O Aben, R Abolins, M AbouZeid, OS Abramowicz, H Abreu, H Abreu, R Abulaiti, Y Acharya, BS Adamczyk, L Adams, DL Adelman, J Adomeit, S Adye, T Affolder, AA Agatonovic-Jovin, T Aguilar-Saavedra, JA Ahlen, SP Ahmadov, F Aielli, G Akerstedt, H Aring;kesson, TPA Akimoto, G Akimov, AV Alberghi, GL Albert, J Albrand, S Verzini, MJA Aleksa, M Aleksandrov, IN Alexa, C Alexander, G Alexopoulos, T Alhroob, M Alimonti, G Alio, L Alison, J Alkire, SP Allbrooke, BMM Allport, PP Aloisio, A Alonso, A Alonso, F Alpigiani, C Altheimer, A Gonzalez, BA Piqueras, DA Alviggi, MG Amadio, BT Amako, K Coutinho, YA Amelung, C Amidei, D Dos Santos, SPA Amorim, A Amoroso, S Amram, N Amundsen, G Anastopoulos, C Ancu, LS Andari, N Andeen, T Anders, CF Anders, G Anders, JK Anderson, KJ Andreazza, A Andrei, V Angelidakis, S Angelozzi, I Anger, P Angerami, A Anghinolfi, F Anisenkov, AV Anjos, N Annovi, A Antonelli, M Antonov, A Antos, J Anulli, F Aoki, M Bella, LA Arabidze, G Arai, Y Araque, JP Arce, ATH Arduh, FA Arguin, JF Argyropoulos, S Arik, M Armbruster, AJ Arnaez, O Arnal, V Arnold, H Arratia, M Arslan, O Artamonov, A Artoni, G Asai, S Asbah, N Ashkenazi, A Aring;sman, B Asquith, L Assamagan, K Astalos, R Atkinson, M Atlay, NB Auerbach, B Augsten, K Aurousseau, M Avolio, G Axen, B Ayoub, MK Azuelos, G Baak, MA Baas, AE Bacci, C Bachacou, H Bachas, K Backes, M Backhaus, M Bagiacchi, P Bagnaia, P Bai, Y Bain, T Baines, JT Baker, OK Balek, P Balestri, T Balli, F Banas, E Banerjee, S Bannoura, AAE Bansil, HS Barak, L Barberio, EL Barberis, D Barbero, M Barillari, T Barisonzi, M Barklow, T Barlow, N Barnes, SL Barnett, BM Barnett, RM Barnovska, Z Baroncelli, A Barone, G Barr, AJ Barreiro, F da Costa, JBG Bartoldus, R Barton, AE Bartos, P Basalaev, A Bassalat, A Basye, A Bates, RL Batista, SJ Batley, JR Battaglia, M Bauce, M Bauer, F Bawa, HS Beacham, JB Beattie, MD Beau, T Beauchemin, PH Beccherle, R Bechtle, P Beck, HP Becker, K Becker, M Becker, S Beckingham, M Becot, C Beddall, AJ Beddall, A Bednyakov, VA Bee, CP Beemster, LJ Beermann, TA Begel, M Behr, JK Belanger-Champagne, C Bell, WH Bella, G Bellagamba, L Bellerive, A Bellomo, M Belotskiy, K Beltramello, O Benary, O Benchekroun, D Bender, M Bendtz, K Benekos, N Benhammou, Y Noccioli, EB Garcia, JAB Benjamin, DP Bensinger, JR Bentvelsen, S Beresford, L Beretta, M Berge, D Kuutmann, EB Berger, N Berghaus, F Beringer, J Bernard, C Bernard, NR Bernius, C Bernlochner, FU Berry, T Berta, P Bertella, C Bertoli, G Bertolucci, F Bertsche, C Bertsche, D Besana, MI Besjes, GJ Bylund, OB Bessner, M Besson, N Betancourt, C Bethke, S Bevan, AJ Bhimji, W Bianchi, RM Bianchini, L Bianco, M Biebel, O Bieniek, SP Biglietti, M De Mendizabal, JB Bilokon, H Bindi, M Binet, S Bingul, A Bini, C Black, CW Black, JE Black, KM Blackburn, D Blair, RE Blanchard, JB Blanco, JE Blazek, T Bloch, I Blocker, C Blum, W Blumenschein, U Bobbink, GJ Bobrovnikov, VS Bocchetta, SS Bocci, A Bock, C Boehler, M Bogaerts, JA Bogdanchikov, AG Bohm, C Boisvert, V Bold, T Boldea, V Boldyrev, AS Bomben, M Bona, M Boonekamp, M Borisov, A Borissov, G Borroni, S Bortfeldt, J Bortolotto, V Bos, K Boscherini, D Bosman, M Boudreau, J Bouffard, J Bouhova-Thacker, EV Boumediene, D Bourdarios, C Bousson, N Boveia, A Boyd, J Boyko, IR Bozic, I Bracinik, J Brandt, A Brandt, G Brandt, O Bratzler, U Brau, B Brau, JE Braun, HM Brazzale, SF Brendlinger, K Brennan, AJ Brenner, L Brenner, R Bressler, S Bristow, K Bristow, TM Britton, D Britzger, D Brochu, FM Brock, I Brock, R Bronner, J Brooijmans, G Brooks, T Brooks, WK Brosamer, J Brost, E Brown, J de Renstrom, PAB Bruncko, D Bruneliere, R Bruni, A Bruni, G Bruschi, M Bryngemark, L Buanes, T Buat, Q Buchholz, P Buckley, AG Buda, SI Budagov, IA Buehrer, F Bugge, L Bugge, MK Bulekov, O Bullock, D Burckhart, H Burdin, S Burghgrave, B Burke, S Burmeister, I Busato, E Buscher, D Buscher, V Bussey, P Butler, JM Butt, AI Buttar, CM Butterworth, JM Butti, P Buttinger, W Buzatu, A Buzykaev, AR Urban, SC Caforio, D Cairo, VM Cakir, O Calafiura, P Calandri, A Calderini, G Calfayan, P Caloba, LP Calvet, D Calvet, S Toro, RC Camarda, S Camarri, P Cameron, D Caminada, LM Armadans, RC Campana, S Campanelli, M Campoverde, A Canale, V Canepa, A Bret, MC Cantero, J Cantrill, R Cao, T Garrido, MDMC Caprini, I Caprini, M Capua, M Caputo, R Cardarelli, R Carli, T Carlino, G Carminati, L Caron, S Carquin, E Carrillo-Montoya, GD Carter, JR Carvalho, J Casadei, D Casado, MP Casolino, M Castaneda-Miranda, E Castelli, A Gimenez, VC Castro, NF Catastini, P Catinaccio, A Catmore, JR Cattai, A Caudron, J Cavaliere, V Cavalli, D Cavalli-Sforza, M Cavasinni, V Ceradini, F Cerio, BC Cerny, K Cerqueira, AS Cerri, A Cerrito, L Cerutti, F Cerv, M Cervelli, A Cetin, SA Chafaq, A Chakraborty, D Chalupkova, I Chang, P Chapleau, B Chapman, JD Charlton, DG Chau, CC Barajas, CAC Cheatham, S Chegwidden, A Chekanov, S Chekulaev, SV Chelkov, GA Chelstowska, MA Chen, C Chen, H Chen, K Chen, L Chen, S Chen, X Chen, Y Cheng, HC Cheng, Y Cheplakov, A Cheremushkina, E El Moursli, RC Chernyatin, V Cheu, E Chevalier, L Chiarella, V Childers, JT Chiodini, G Chisholm, AS Chislett, RT Chitan, A Chizhov, MV Choi, K Chouridou, S Chow, BKB Christodoulou, V Chromek-Burckhart, D Chu, ML Chudoba, J Chuinard, AJ Chwastowski, JJ Chytka, L Ciapetti, G Ciftci, AK Cinca, D Cindro, V Cioara, IA Ciocio, A Citron, ZH Ciubancan, M Clark, A Clark, BL Clark, PJ Clarke, RN Cleland, W Clement, C Coadou, Y Cobal, M Coccaro, A Cochran, J Coffey, L Cogan, JG Cole, B Cole, S Colijn, AP Collot, J Colombo, T Compostella, G Muino, PC Coniavitis, E Connell, SH Connelly, IA Consonni, SM Consorti, V Constantinescu, S Conta, C Conti, G Conventi, F Cooke, M Cooper, BD Cooper-Sarkar, AM Cornelissen, T Corradi, M Corriveau, F Corso-Radu, A Cortes-Gonzalez, A Cortiana, G Costa, G Costa, MJ Costanzo, D Cote, D Cottin, G Cowan, G Cox, BE Cranmer, K Cree, G Crepe-Renaudin, S Crescioli, F Cribbs, WA Ortuzar, MC Cristinziani, M Croft, V Crosetti, G Donszelmann, TC Cummings, J Curatolo, M Cuthbert, C Czirr, H Czodrowski, P D'Auria, S D'Onofrio, M De Sousa, MJDS Da Via, C Dabrowski, W Dafinca, A Dai, T Dale, O Dallaire, F Dallapiccola, C Dam, M Dandoy, JR Dang, NP Daniells, AC Danninger, M Hoffmann, MD Dao, V Darbo, G Darmora, S Dassoulas, J Dattagupta, A Davey, W David, C Davidek, T Davies, E Davies, M Davison, P Davygora, Y Dawe, E Dawson, I Daya-Ishmukhametova, RK De, K de Asmundis, R De Castro, S De Cecco, S De Groot, N de Jong, P De la Torre, H De Lorenzi, F De Nooij, L De Pedis, D De Salvo, A De Sanctis, U De Santo, A De Regie, JBDV Dearnaley, WJ Debbe, R Debenedetti, C Dedovich, DV Deigaard, I Del Peso, J Del Prete, T Delgove, D Deliot, F Delitzsch, CM Deliyergiyev, M Dell'Acqua, A Dell'Asta, L Dell'Orso, M Della Pietra, M della Volpe, D Delmastro, M Delsart, PA Deluca, C DeMarco, DA Demers, S Demichev, M Demilly, A Denisov, SP Derendarz, D Derkaoui, JE Derue, F Dervan, P Desch, K Deterre, C Deviveiros, PO Dewhurst, A Dhaliwal, S Di Ciaccio, A Di Ciaccio, L Di Domenico, A Di Donato, C Di Girolamo, A Di Girolamo, B Di Mattia, A Di Micco, B Di Nardo, R Di Simone, A Di Sipio, R Di Valentino, D Diaconu, C Diamond, M Dias, FA Diaz, MA Diehl, EB Dietrich, J Diglio, S Dimitrievska, A Dingfelder, J Dita, P Dita, S Dittus, F Djama, F Djobava, T Djuvsland, JI do Vale, MAB Dobos, D Dobre, M Doglioni, C Dohmae, T Dolejsi, J Dolezal, Z Dolgoshein, BA Donadelli, M Donati, S Dondero, P Donini, J Dopke, J Doria, A Dova, MT Doyle, AT Drechsler, E Dris, M Dubreuil, E Duchovni, E Duckeck, G Ducu, OA Duda, D Dudarev, A Duflot, L Duguid, L Duehrssen, M Dunford, M Yildiz, HD Duren, M Durglishvili, A Duschinger, D Dyndal, M Eckardt, C Ecker, KM Edgar, RC Edson, W Edwards, NC Ehrenfeld, W Eifert, T Eigen, G Einsweiler, K Ekelof, T El Kacimi, M Ellert, M Elles, S Ellinghaus, F Elliot, AA Ellis, N Elmsheuser, J Elsing, M Emeliyanov, D Enari, Y Endner, OC Endo, M Erdmann, J Ereditato, A Ernis, G Ernst, J Ernst, M Errede, S Ertel, E Escalier, M Esch, H Escobar, C Esposito, B Etienvre, AI Etzion, E Evans, H Ezhilov, A Fabbri, L Facini, G Fakhrutdinov, RM Falciano, S Falla, RJ Faltova, J Fang, Y Fanti, M Farbin, A Farilla, A Farooque, T Farrell, S Farrington, SM Farthouat, P Fassi, F Fassnacht, P Fassouliotis, D Giannelli, MF Favareto, A Fayard, L Federic, P Fedin, OL Fedorko, W Feigl, S Feligioni, L Feng, C Feng, EJ Feng, H Fenyuk, AB Martinez, PF Perez, SF Ferrando, J Ferrari, A Ferrari, P Ferrari, R de Lima, DEF Ferrer, A Ferrere, D Ferretti, C Parodi, AF Fiascaris, M Fiedler, F Filipcic, A Filipuzzi, M Filthaut, F Fincke-Keeler, M Finelli, KD Fiolhais, MCN Fiorini, L Firan, A Fischer, A Fischer, C Fischer, J Fisher, WC Fitzgerald, EA Flechl, M Fleck, I Fleischmann, P Fleischmann, S Fletcher, GT Fletcher, G Flick, T Floderus, A Castillo, LRF Flowerdew, MJ Formica, A Forti, A Fournier, D Fox, H Fracchia, S Francavilla, P Franchini, M Francis, D Franconi, L Franklin, M Fraternali, M Freeborn, D French, ST Friedrich, F Froidevaux, D Frost, JA Fukunaga, C Torregrosa, EF Fulsom, BG Fuster, J Gabaldon, C Gabizon, O Gabrielli, A Gabrielli, A Gadatsch, S Gadomski, S Gagliardi, G Gagnon, P Galea, C Galhardo, B Gallas, EJ Gallop, BJ Gallus, P Galster, G Gan, KK Gao, J Gao, Y Gao, YS Walls, FMG Garberson, F Garcia, C Navarro, JEG Garcia-Sciveres, M Gardner, RW Garelli, N Garonne, V Gatti, C Gaudiello, A Gaudio, G Gaur, B Gauthier, L Gauzzi, P Gavrilenko, IL Gay, C Gaycken, G Gazis, EN Ge, P Gecse, Z Gee, CNP Geerts, DAA Geich-Gimbel, C Geisler, MP Gemme, C Genest, MH Gentile, S George, M George, S Gerbaudo, D Gershon, A Ghazlane, H Giacobbe, B Giagu, S Giangiobbe, V Giannetti, P Gibbard, B Gibson, SM Gilchriese, M Gillam, TPS Gillberg, D Gilles, G Gingrich, DM Giokaris, N Giordani, MP Giorgi, FM Giorgi, FM Giraud, PF Giromini, P Giugni, D Giuliani, C Giulini, M Gjelsten, BK Gkaitatzis, S Gkialas, I Gkougkousis, EL Gladilin, LK Glasman, C Glatzer, J Glaysher, PCF Glazov, A Goblirsch-Kolb, M Goddard, JR Godlewski, J Goldfarb, S Golling, T Golubkov, D Gomes, A Goncalo, R Da Costa, JGPF Gonella, L de la Hoz, SG Parra, GG Gonzalez-Sevilla, S Goossens, L Gorbounov, PA Gordon, HA Gorelov, I Gorini, B Gorini, E Gorisek, A Gornicki, E Goshaw, AT Gossling, C Gostkin, MI Goujdami, D Goussiou, AG Govender, N Grabas, HMX Graber, L Grabowska-Bold, I Grafstrom, P Grahn, KJ Gramling, J Gramstad, E Grancagnolo, S Grassi, V Gratchev, V Gray, HM Graziani, E Greenwood, ZD Gregersen, K Gregor, IM Grenier, P Griffiths, J Grillo, AA Grimm, K Grinstein, S Gris, P Grivaz, JF Grohs, JP Grohsjean, A Gross, E Grosse-Knetter, J Grossi, GC Grout, ZJ Guan, L Guenther, J Guescini, F Guest, D Gueta, O Guido, E Guillemin, T Guindon, S Gul, U Gumpert, C Guo, J Gupta, S Gutierrez, P Ortiz, NGG Gutschow, C Guyot, C Gwenlan, C Gwilliam, CB Haas, A Haber, C Hadavand, HK Haddad, N Haefner, P Hagebock, S Hajduk, Z Hakobyan, H Haleem, M Haley, J Hall, D Halladjian, G Hallewell, GD Hamacher, K Hamal, P Hamano, K Hamer, M Hamilton, A Hamity, GN Hamnett, PG Han, L Hanagaki, K Hanawa, K Hance, M Hanke, P Hanna, R Hansen, JB Hansen, JD Hansen, MC Hansen, PH Hara, K Hard, AS Harenberg, T Hariri, F Harkusha, S Harrington, RD Harrison, PF Hartjes, F Hasegawa, M Hasegawa, S Hasegawa, Y Hasib, A Hassani, S Haug, S Hauser, R Hauswald, L Havranek, M Hawkes, CM Hawkings, RJ Hawkins, AD Hayashi, T Hayden, D Hays, CP Hays, JM Hayward, HS Haywood, SJ Head, SJ Heck, T Hedberg, V Heelan, L Heim, S Heim, T Heinemann, B Heinrich, L Hejbal, J Helary, L Hellman, S Hellmich, D Helsens, C Henderson, J Henderson, RCW Heng, Y Hengler, C Henrichs, A Correia, AMH Henrot-Versille, S Herbert, GH Jimenez, YH Herrberg-Schubert, R Herten, G Hertenberger, R Hervas, L Hesketh, GG Hessey, NP Hetherly, JW Hickling, R Higon-Rodriguez, E Hill, E Hill, JC Hiller, KH Hillier, SJ Hinchliffe, I Hines, E Hinman, RR Hirose, M Hirschbuehl, D Hobbs, J Hod, N Hodgkinson, MC Hodgson, P Hoecker, A Hoeferkamp, MR Hoenig, F Hohlfeld, M Hohn, D Holmes, TR Homann, M Hong, TM van Huysduynen, LH Hopkins, WH Horii, Y Horton, AJ Hostachy, JY Hou, S Hoummada, A Howard, J Howarth, J Hrabovsky, M Hristova, I Hrivnac, J Hryn'ova, T Hrynevich, A Hsu, C Hsu, PJ Hsu, SC Hu, D Hu, Q Hu, X Huang, Y Hubacek, Z Hubaut, F Huegging, F Huffman, TB Hughes, EW Hughes, G Huhtinen, M Hulsing, TA Huseynov, N Huston, J Huth, J Iacobucci, G Iakovidis, G Ibragimov, I Iconomidou-Fayard, L Ideal, E Idrissi, Z Iengo, P Igonkina, O Iizawa, T Ikegami, Y Ikematsu, K Ikeno, M Ilchenko, Y Iliadis, D Ilic, N Inamaru, Y Ince, T Ioannou, P Iodice, M Iordanidou, K Ippolito, V Quiles, AI Isaksson, C Ishino, M Ishitsuka, M Ishmukhametov, R Issever, C Istin, S Ponce, JMI Iuppa, R Ivarsson, J Iwanski, W Iwasaki, H Izen, JM Izzo, V Jabbar, S Jackson, B Jackson, M Jackson, P Jaekel, MR Jain, V Jakobs, K Jakobsen, S Jakoubek, T Jakubek, J Jamin, DO Jana, DK Jansen, E Jansky, RW Janssen, J Janus, M Jarlskog, G Javadov, N Javurek, T Jeanty, L Jejelava, J Jeng, GY Jennens, D Jenni, P Jentzsch, J Jeske, C Jezequel, S Ji, H Jia, J Jiang, Y Jiggins, S Pena, JJ Jin, S Jinaru, A Jinnouchi, O Joergensen, MD Johansson, P Johns, KA Jon-And, K Jones, G Jones, RWL Jones, TJ Jongmanns, J Jorge, PM Joshi, KD Jovicevic, J Ju, X Jung, CA Jussel, P Rozas, AJ Kaci, M Kaczmarska, A Kado, M Kagan, H Kagan, M Kahn, SJ Kajomovitz, E Kalderon, CW Kama, S Kamenshchikov, A Kanaya, N Kaneda, M Kaneti, S Kantserov, VA Kanzaki, J Kaplan, B Kapliy, A Kar, D Karakostas, K Karamaoun, A Karastathis, N Kareem, MJ Karnevskiy, M Karpov, SN Karpova, ZM Karthik, K Kartvelishvili, V Karyukhin, AN Kashif, L Kass, RD Kastanas, A Kataoka, Y Katre, A Katzy, J Kawagoe, K Kawamoto, T Kawamura, G Kazama, S Kazanin, VF Kazarinov, MY Keeler, R Kehoe, R Keller, JS Kempster, JJ Keoshkerian, H Kepka, O Kersevan, BP Kersten, S Keyes, RA Khalil-zada, F Khandanyan, H Khanov, A Kharlamov, AG Khoo, TJ Khovanskiy, V Khramov, E Khubua, J Kim, HY Kim, H Kim, SH Kim, Y Kimura, N Kind, OM King, BT King, M King, RSB King, SB Kirk, J Kiryunin, AE Kishimoto, T Kisielewska, D Kiss, F Kiuchi, K Kivernyk, O Kladiva, E Klein, MH Klein, M Klein, U Kleinknecht, K Klimek, P Klimentov, A Klingenberg, R Klinger, JA Klioutchnikova, T Kluge, EE Kluit, P Kluth, S Kneringer, E Knoops, EBFG Knue, A Kobayashi, A Kobayashi, D Kobayashi, T Kobel, M Kocian, M Kodys, P Koffas, T Koffeman, E Kogan, LA Kohlmann, S Kohout, Z Kohriki, T Koi, T Kolanoski, H Koletsou, I Komar, AA Komori, Y Kondo, T Kondrashova, N Koneke, K Konig, AC Konig, S Kono, T Konoplich, R Konstantinidis, N Kopeliansky, R Koperny, S Kopke, L Kopp, AK Korcyl, K Kordas, K Korn, A Korol, AA Korolkov, I Korolkova, EV Kortner, O Kortner, S Kosek, T Kostyukhin, VV Kotov, VM Kotwal, A Kourkoumeli-Charalampidi, A Kourkoumelis, C Kouskoura, V Koutsman, A Kowalewski, R Kowalski, TZ Kozanecki, W Kozhin, AS Kramarenko, VA Kramberger, G Krasnopevtsev, D Krasny, MW Krasznahorkay, A Kraus, JK Kravchenko, A Kreiss, S Kretz, M Kretzschmar, J Kreutzfeldt, K Krieger, P Krizka, K Kroeninger, K Kroha, H Kroll, J Kroseberg, J Krstic, J Kruchonak, U Kruger, H Krumnack, N Krumshteyn, ZV Kruse, A Kruse, MC Kruskal, M Kubota, T Kucuk, H Kuday, S Kuehn, S Kugel, A Kuger, F Kuhl, A Kuhl, T Kukhtin, V Kulchitsky, Y Kuleshov, S Kuna, M Kunigo, T Kupco, A Kurashige, H Kurochkin, YA Kurumida, R Kus, V Kuwertz, ES Kuze, M Kvita, J Kwan, T Kyriazopoulos, D La Rosa, A Navarro, JLL La Rotonda, L Lacasta, C Lacava, F Lacey, J Lacker, H Lacour, D Lacuesta, VR Ladygin, E Lafaye, R Laforge, B Lagouri, T Lai, S Lambourne, L Lammers, S Lampen, CL Lampl, W Lancon, E Landgraf, U Landon, MPJ Lang, VS Lange, JC Lankford, AJ Lanni, F Lantzsch, K Laplace, S Lapoire, C Laporte, JF Lari, T Manghi, FL Lassnig, M Laurelli, P Lavrijsen, W Law, AT Laycock, P Le Dortz, O Le Guirriec, E Le Menedeu, E LeBlanc, M LeCompte, T Ledroit-Guillon, F Lee, CA Lee, SC Lee, L Lefebvre, G Lefebvre, M Legger, F Leggett, C Lehan, A Miotto, GL Lei, X Leight, WA Leisos, A Leister, AG Leite, MAL Leitner, R Lellouch, D Lemmer, B Leney, KJC Lenz, T Lenzi, B Leone, R Leone, S Leonidopoulos, C Leontsinis, S Leroy, C Lester, CG Levchenko, M Leveque, J Levin, D Levinson, LJ Levy, M Lewis, A Leyko, AM Leyton, M Li, B Li, H Li, HL Li, L Li, L Li, S Li, Y Liang, Z Liao, H Liberti, B Liblong, A Lichard, P Lie, K Liebal, J Liebig, W Limbach, C Limosani, A Lin, SC Lin, TH Linde, F Lindquist, BE Linnemann, JT Lipeles, E Lipniacka, A Lisovyi, M Liss, TM Lissauer, D Lister, A Litke, AM Liu, B Liu, D Liu, J Liu, JB Liu, K Liu, L Liu, M Liu, M Liu, Y Livan, M Lleres, A Merino, JL Lloyd, SL Lo Sterzo, F Lobodzinska, E Loch, P Lockman, WS Loebinger, FK Loevschall-Jensen, AE Loginov, A Lohse, T Lohwasser, K Lokajicek, M Long, BA Long, JD Long, RE Looper, KA Lopes, L Mateos, DL Paredes, BL Paz, IL Lorenz, J Martinez, NL Losada, M Loscutoff, P Losel, PJ Lou, X Lounis, A Love, J Love, PA Lu, N Lubatti, HJ Luci, C Lucotte, A Luehring, F Lukas, W Luminari, L Lundberg, O Lund-Jensen, B Lynn, D Lysak, R Lytken, E Ma, H Ma, LL Maccarrone, G Macchiolo, A Macdonald, CM Miguens, JM Macina, D Madaffari, D Madar, R Maddocks, HJ Mader, WF Madsen, A Maeland, S Maeno, T Maevskiy, A Magradze, E Mahboubi, K Mahlstedt, J Maiani, C Maidantchik, C Maier, AA Maier, T Maio, A Majewski, S Makida, Y Makovec, N Malaescu, B Malecki, P Maleev, VP Malek, F Mallik, U Malon, D Malone, C Maltezos, S Malyshev, VM Malyukov, S Mamuzic, J Mancini, G Mandelli, B Mandelli, L Mandic, I Mandrysch, R Maneira, J Manfredini, A de Andrade, LM Ramos, JM Mann, A Manning, PM Manousakis-Katsikakis, A Mansoulie, B Mantifel, R Mantoani, M Mapelli, L March, L Marchiori, G Marcisovsky, M Marino, CP Marjanovic, M Marroquim, F Marsden, SP Marshall, Z Marti, LF Marti-Garcia, S Martin, B Martin, TA Martin, VJ Latour, BMD Martinez, M Martin-Haugh, S Martoiu, VS Martyniuk, AC Marx, M Marzano, F Marzin, A Masetti, L Mashimo, T Mashinistov, R Masik, J Maslennikov, AL Massa, I Massa, L Massol, N Mastrandrea, P Mastroberardino, A Masubuchi, T Mattig, P Mattmann, J Maurer, J Maxfield, SJ Maximov, DA Mazini, R Mazza, SM Mazzaferro, L Mc Goldrick, G Mc Kee, SP McCarn, A McCarthy, RL McCarthy, TG McCubbin, NA McFarlane, KW Mcfayden, JA Mchedlidze, G McMahon, SJ McPherson, RA Medinnis, M Meehan, S Mehlhase, S Mehta, A Meier, K Meineck, C Meirose, B Garcia, BRM Meloni, F Mengarelli, A Menke, S Meoni, E Mercurio, KM Mergelmeyer, S Mermod, P Merola, L Meroni, C Merritt, FS Messina, A Metcalfe, J Mete, AS Meyer, C Meyer, C Meyer, JP Meyer, J Middleton, RP Miglioranzi, S Mijovic, L Mikenberg, G Mikestikova, M Mikuz, M Milesi, M Milic, A Miller, DW Mills, C Milov, A Milstead, DA Minaenko, AA Minami, Y Minashvili, IA Mincer, AI Mindur, B Mineev, M Ming, Y Mir, LM Mitani, T Mitrevski, J Mitsou, VA Miucci, A Miyagawa, PS Mjornmark, JU Moa, T Mochizuki, K Mohapatra, S Mohr, W Molander, S Moles-Valls, R Monig, K Monini, C Monk, J Monnier, E Berlingen, JM Monticelli, F Monzani, S Moore, RW Morange, N Moreno, D Llacer, MM Morettini, P Morgenstern, M Morii, M Morinaga, M Morisbak, V Moritz, S Morley, AK Mornacchi, G Morris, JD Mortensen, SS Morton, A Morvaj, L Mosidze, M Moss, J Motohashi, K Mount, R Mountricha, E Mouraviev, SV Moyse, EJW Muanza, S Mudd, RD Mueller, F Mueller, J Mueller, K Mueller, RSP Mueller, T Muenstermann, D Mullen, P Munwes, Y Quijada, JAM Murray, WJ Musheghyan, H Musto, E Myagkov, AG Myska, M Nackenhorst, O Nadal, J Nagai, K Nagai, R Nagai, Y Nagano, K Nagarkar, A Nagasaka, Y Nagata, K Nagel, M Nagy, E Nairz, AM Nakahama, Y Nakamura, K Nakamura, T Nakano, I Namasivayam, H Garcia, RFN Narayan, R Naumann, T Navarro, G Nayyar, R Neal, HA Nechaeva, PY Neep, TJ Nef, PD Negri, A Negrini, M Nektarijevic, S Nellist, C Nelson, A Nemecek, S Nemethy, P Nepomuceno, AA Nessi, M Neubauer, MS Neumann, M Neves, RM Nevski, P Newman, PR Nguyen, DH Nickerson, RB Nicolaidou, R Nicquevert, B Nielsen, J Nikiforou, N Nikiforov, A Nikolaenko, V Nikolic-Audit, I Nikolopoulos, K Nilsen, JK Nilsson, P Ninomiya, Y Nisati, A Nisius, R Nobe, T Nomachi, M Nomidis, I Nooney, T Norberg, S Nordberg, M Novgorodova, O Nowak, S Nozaki, M Nozka, L Ntekas, K Hanninger, GN Nunnemann, T Nurse, E Nuti, F O'Brien, BJ O'grady, F O'Neil, DC O'Shea, V Oakham, FG Oberlack, H Obermann, T Ocariz, J Ochi, A Ochoa, I Ochoa-Ricoux, JP Oda, S Odaka, S Ogren, H Oh, A Oh, SH Ohm, CC Ohman, H Oide, H Okamura, W Okawa, H Okumura, Y Okuyama, T Olariu, A Pino, SAO Damazio, DO Garcia, EO Olszewski, A Olszowska, J Onofre, A Onyisi, PUE Oram, CJ Oreglia, MJ Oren, Y Orestano, D Orlando, N Barrera, CO Orr, RS Osculati, B Ospanov, R Garzon, GOY Otono, H Ouchrif, M Ouellette, EA Ould-Saada, F Ouraou, A Oussoren, KP Ouyang, Q Ovcharova, A Owen, M Owen, RE Ozcan, VE Ozturk, N Pachal, K Pages, AP Aranda, CP Pagacova, M Griso, SP Paganis, E Pahl, C Paige, F Pais, P Pajchel, K Palacino, G Palestini, S Palka, M Pallin, D Palma, A Pan, YB Panagiotopoulou, E Pandini, CE Vazquez, JGP Pani, P Panitkin, S Pantea, D Paolozzi, L Papadopoulou, TD Papageorgiou, K Paramonov, A Hernandez, DP Parker, MA Parker, KA Parodi, F Parsons, JA Parzefall, U Pasqualucci, E Passaggio, S Pastore, F Pastore, F Pasztor, G Pataraia, S Patel, ND Pater, JR Pauly, T Pearce, J Pearson, B Pedersen, LE Pedersen, M Lopez, SP Pedro, R Peleganchuk, SV Pelikan, D Peng, H Penning, B Penwell, J Perepelitsa, DV Codina, EP Garcia-Estan, MTP Perini, L Pernegger, H Perrella, S Peschke, R Peshekhonov, VD Peters, K Peters, RFY Petersen, BA Petersen, TC Petit, E Petridis, A Petridou, C Petrolo, E Petrucci, F Pettersson, NE Pezoa, R Phillips, PW Piacquadio, G Pianori, E Picazio, A Piccaro, E Piccinini, M Pickering, MA Piegaia, R Pignotti, DT Pilcher, JE Pilkington, AD Pina, J Pinamonti, M Pinfold, JL Pingel, A Pinto, B Pires, S Pitt, M Pizio, C Plazak, L Pleier, MA Pleskot, V Plotnikova, E Plucinski, P Pluth, D Poettgen, R Poggioli, L Pohl, D Polesello, G Policicchio, A Polifka, R Polini, A Pollard, CS Polychronakos, V Pommes, K Pontecorvo, L Pope, BG Popeneciu, GA Popovic, DS Poppleton, A Pospisil, S Potamianos, K Potrap, IN Potter, CJ Potter, CT Poulard, G Poveda, J Pozdnyakov, V Pralavorio, P Pranko, A Prasad, S Prell, S Price, D Price, LE Primavera, M Prince, S Proissl, M Prokofiev, K Prokoshin, F Protopapadaki, E Protopopescu, S Proudfoot, J Przybycien, M Ptacek, E Puddu, D Pueschel, E Puldon, D Purohit, M Puzo, P Qian, J Qin, G Qin, Y Quadt, A Quarrie, DR Quayle, WB Queitsch-Maitland, M Quilty, D Raddum, S Radeka, V Radescu, V Radhakrishnan, SK Radloff, P Rados, P Ragusa, F Rahal, G Rajagopalan, S Rammensee, M Rangel-Smith, C Rauscher, F Rave, S Ravenscroft, T Raymond, M Read, AL Readioff, NP Rebuzzi, DM Redelbach, A Redlinger, G Reece, R Reeves, K Rehnisch, L Reisin, H Relich, M Rembser, C Ren, H Renaud, A Rescigno, M Resconi, S Rezanova, OL Reznicek, P Rezvani, R Richter, R Richter, S Richter-Was, E Ricken, O Ridel, M Rieck, P Riegel, CJ Rieger, J Rijssenbeek, M Rimoldi, A Rinaldi, L Ristic, B Ritsch, E Riu, I Rizatdinova, F Rizvi, E Robertson, SH Robichaud-Veronneau, A Robinson, D Robinson, JEM Robson, A Roda, C Roe, S Rohne, O Rolli, S Romaniouk, A Romano, M Saez, SMR Adam, ER Rompotis, N Ronzani, M Roos, L Ros, E Rosati, S Rosbach, K Rose, P Rosendahl, PL Rosenthal, O Rossetti, V Rossi, E Rossi, LP Rosten, R Rotaru, M Roth, I Rothberg, J Rousseau, D Royon, CR Rozanov, A Rozen, Y Ruan, X Rubbo, F Rubinskiy, I Rud, VI Rudolph, C Rudolph, MS Ruhr, F Ruiz-Martinez, A Rurikova, Z Rusakovich, NA Ruschke, A Russell, HL Rutherfoord, JP Ruthmann, N Ryabov, YF Rybar, M Rybkin, G Ryder, NC Saavedra, AF Sabato, G Sacerdoti, S Saddique, A Sadrozinski, HFW Sadykov, R Tehrani, FS Saimpert, M Sakamoto, H Sakurai, Y Salamanna, G Salamon, A Saleem, M Salek, D De Bruin, PHS Salihagic, D Salnikov, A Salt, J Salvatore, D Salvatore, F Salvucci, A Salzburger, A Sampsonidis, D Sanchez, A Sanchez, J Martinez, VS Sandaker, H Sandbach, RL Sander, HG Sanders, MP Sandhoff, M Sandoval, C Sandstroem, R Sankey, DPC Sannino, M Sansoni, A Santoni, C Santonico, R Santos, H Castillo, IS Sapp, K Sapronov, A Saraiva, JG Sarrazin, B Sasaki, O Sasaki, Y Sato, K Sauvage, G Sauvan, E Savage, G Savard, P Sawyer, C Sawyer, L Saxon, J Sbarra, C Sbrizzi, A Scanlon, T Scannicchio, DA Scarcella, M Scarfone, V Schaarschmidt, J Schacht, P Schaefer, D Schaefer, R Schaeffer, J Schaepe, S Schaetzel, S Schafer, U Schaffer, AC Schaile, D Schamberger, RD Scharf, V Schegelsky, VA Scheirich, D Schernau, M Schiavi, C Schillo, C Schioppa, M Schlenker, S Schmidt, E Schmieden, K Schmitt, C Schmitt, S Schmitt, S Schneider, B Schnellbach, YJ Schnoor, U Schoeffel, L Schoening, A Schoenrock, BD Schopf, E Schorlemmer, ALS Schott, M Schouten, D Schovancova, J Schramm, S Schreyer, M Schroeder, C Schuh, N Schultens, MJ Schultz-Coulon, HC Schulz, H Schumacher, M Schumm, BA Schune, P Schwanenberger, C Schwartzman, A Schwarz, TA Schwegler, P Schwemling, P Schwienhorst, R Schwindling, J Schwindt, T Schwoerer, M Sciacca, FG Scifo, E Sciolla, G Scuri, F Scutti, F Searcy, J Sedov, G Sedykh, E Seema, P Seidel, SC Seiden, A Seifert, F Seixas, JM Sekhniaidze, G Sekhon, K Sekula, SJ Selbach, KE Seliverstov, DM Semprini-Cesari, N Serfon, C Serin, L Serkin, L Serre, T Sessa, M Seuster, R Severini, H Sfiligoj, T Sforza, F Sfyrla, A Shabalina, E Shamim, M Shan, LY Shang, R Shank, JT Shapiro, M Shatalov, PB Shaw, K Shaw, SM Shcherbakova, A Shehu, CY Sherwood, P Shi, L Shimizu, S Shimmin, CO Shimojima, M Shiyakova, M Shmeleva, A Saadi, DS Shochet, MJ Shojaii, S Shrestha, S Shulga, E Shupe, MA Shushkevich, S Sicho, P Sidiropoulou, O Sidorov, D Sidoti, A Siegert, F Sijacki, D Silva, J Silver, Y Silverstein, SB Simak, V Simard, O Simic, L Simion, S Simioni, E Simmons, B Simon, D Simoniello, R Sinervo, P Sinev, NB Siragusa, G Sisakyan, AN Sivoklokov, SY Sjolin, J Sjursen, TB Skinner, MB Skottowe, HP Skubic, P Slater, M Slavicek, T Slawinska, M Sliwa, K Smakhtin, V Smart, BH Smestad, L Smirnov, SY Smirnov, Y Smirnova, LN Smirnova, O Smith, MNK Smith, RW Smizanska, M Smolek, K Snesarev, AA Snidero, G Snyder, S Sobie, R Socher, F Soffer, A Soh, DA Solans, CA Solar, M Solc, J Soldatov, EY Soldevila, U Solodkov, AA Soloshenko, A Solovyanov, OV Solovyev, V Sommer, P Song, HY Soni, N Sood, A Sopczak, A Sopko, B Sopko, V Sorin, V Sosa, D Sosebee, M Sotiropoulou, CL Soualah, R Soueid, P Soukharev, AM South, D Sowden, BC Spagnolo, S Spalla, M Spano, F Spearman, WR Spettel, F Spighi, R Spigo, G Spiller, LA Spousta, M Spreitzer, T St Denis, RD Staerz, S Stahlman, J Stamen, R Stamm, S Stanecka, E Stanescu, C Stanescu-Bellu, M Stanitzki, MM Stapnes, S Starchenko, EA Stark, J Staroba, P Starovoitov, P Staszewski, R Stavina, P Steinberg, P Stelzer, B Stelzer, HJ Stelzer-Chilton, O Stenzel, H Stern, S Stewart, GA Stillings, JA Stockton, MC Stoebe, M Stoicea, G Stolte, P Stonjek, S Stradling, AR Straessner, A Stramaglia, ME Strandberg, J Strandberg, S Strandlie, A Strauss, E Strauss, M Strizenec, P Strohmer, R Strom, DM Stroynowski, R Strubig, A Stucci, SA Stugu, B Styles, NA Su, D Su, J Subramaniam, R Succurro, A Sugaya, Y Suhr, C Suk, M Sulin, VV Sultansoy, S Sumida, T Sun, S Sun, X Sundermann, JE Suruliz, K Susinno, G Sutton, MR Suzuki, S Suzuki, Y Svatos, M Swedish, S Swiatlowski, M Sykora, I Sykora, T Ta, D Taccini, C Tackmann, K Taenzer, J Taffard, A Tafirout, R Taiblum, N Takai, H Takashima, R Takeda, H Takeshita, T Takubo, Y Talby, M Talyshev, AA Tam, JYC Tan, KG Tanaka, J Tanaka, R Tanaka, S Tannenwald, BB Tannoury, N Tapprogge, S Tarem, S Tarrade, F Tartarelli, GF Tas, P Tasevsky, M Tashiro, T Tassi, E Delgado, AT Tayalati, Y Taylor, FE Taylor, GN Taylor, W Teischinger, FA Castanheira, MTD Teixeira-Dias, P Temming, KK Ten Kate, H Teng, PK Teoh, JJ Tepel, F Terada, S Terashi, K Terron, J Terzo, S Testa, M Teuscher, RJ Therhaag, J Theveneaux-Pelzer, T Thomas, JP Thomas-Wilsker, J Thompson, EN Thompson, PD Thompson, RJ Thompson, AS Thomsen, LA Thomson, E Thomson, M Thun, RP Tibbetts, MJ Torres, RET Tikhomirov, VO Tikhonov, YA Timoshenko, S Tiouchichine, E Tipton, P Tisserant, S Todorov, T Todorova-Nova, S Tojo, J Tokar, S Tokushuku, K Tollefson, K Tolley, E Tomlinson, L Tomoto, M Tompkins, L Toms, K Torrence, E Torres, H Pastor, ET Toth, J Touchard, F Tovey, DR Trefzger, T Tremblet, L Tricoli, A Trigger, IM Trincaz-Duvoid, S Tripiana, MF Trischuk, W Trocme, B Troncon, C Trottier-McDonald, M Trovatelli, M True, P Truong, L Trzebinski, M Trzupek, A Tsarouchas, C Tseng, JCL Tsiareshka, PV Tsionou, D Tsipolitis, G Tsirintanis, N Tsiskaridze, S Tsiskaridze, V Tskhadadze, EG Tsukerman, II Tsulaia, V Tsuno, S Tsybychev, D Tudorache, A Tudorache, V Tuna, AN Tupputi, SA Turchikhin, S Turecek, D Turra, R Turvey, AJ Tuts, PM Tykhonov, A Tylmad, M Tyndel, M Ueda, I Ueno, R Ughetto, M Ugland, M Uhlenbrock, M Ukegawa, F Unal, G Undrus, A Unel, G Ungaro, FC Unno, Y Unverdorben, C Urban, J Urquijo, P Urrejola, P Usai, G Usanova, A Vacavant, L Vacek, V Vachon, B Valderanis, C Valencic, N Valentinetti, S Valero, A Valery, L Valkar, S Gallego, EV Vallecorsa, S Ferrer, JAV Van den Wollenberg, W Van der Deijl, PC van der Geer, R van der Graaf, H Van der Leeuw, R van Eldik, N van Gemmeren, P Van Nieuwkoop, J van Vulpen, I van Woerden, MC Vanadia, M Vandelli, W Vanguri, R Vaniachine, A Vannucci, F Vardanyan, G Vari, R Varnes, EW Varol, T Varouchas, D Vartapetian, A Varvell, KE Vazeille, F Schroeder, TV Veatch, J Veloce, LM Veloso, F Velz, T Veneziano, S Ventura, A Ventura, D Venturi, M Venturi, N Venturini, A Vercesi, V Verducci, M Verkerke, W Vermeulen, JC Vest, A Vetterli, MC Viazlo, O Vichou, I Vickey, T Boeriu, OEV Viehhauser, GHA Viel, S Vigne, R Villa, M Perez, MV Vilucchi, E Vincter, MG Vinogradov, VB Vivarelli, I Vaque, FV Vlachos, S Vladoiu, D Vlasak, M Vogel, M Vokac, P Volpi, G Volpi, M von der Schmitt, H von Radziewski, H von Toerne, E Vorobel, V Vorobev, K Vos, M Voss, R Vossebeld, JH Vranjes, N Milosavljevic, MV Vrba, V Vreeswijk, M Vuillermet, R Vukotic, I Vykydal, Z Wagner, P Wagner, W Wahlberg, H Wahrmund, S Wakabayashi, J Walder, J Walker, R Walkowiak, W Wang, C Wang, F Wang, H Wang, H Wang, J Wang, J Wang, K Wang, R Wang, SM Wang, T Wang, X Wanotayaroj, C Warburton, A Ward, CP Wardrope, DR Warsinsky, M Washbrook, A Wasicki, C Watkins, PM Watson, AT Watson, IJ Watson, MF Watts, G Watts, S Waugh, BM Webb, S Weber, MS Weber, SW Webster, JS Weidberg, AR Weinert, B Weingarten, J Weiser, C Weits, H Wells, PS Wenaus, T Wengler, T Wenig, S Wermes, N Werner, M Werner, P Wessels, M Wetter, J Whalen, K Wharton, AM White, A White, MJ White, R White, S Whiteson, D Wickens, FJ Wiedenmann, W Wielers, M Wienemann, P Wiglesworth, C Wiik-Fuchs, LAM Wildauer, A Wilkens, HG Williams, HH Williams, S Willis, C Willocq, S Wilson, A Wilson, JA Wingerter-Seez, I Winklmeier, F Winter, BT Wittgen, M Wittkowski, J Wollstadt, SJ Wolter, MW Wolters, H Wosiek, BK Wotschack, J Woudstra, MJ Wozniak, KW Wu, M Wu, M Wu, SL Wu, X Wu, Y Wyatt, TR Wynne, BM Xella, S Xu, D Xu, L Yabsley, B Yacoob, S Yakabe, R Yamada, M Yamaguchi, Y Yamamoto, A Yamamoto, S Yamanaka, T Yamauchi, K Yamazaki, Y Yan, Z Yang, H Yang, H Yang, Y Yao, L Yao, WM Yasu, Y Yatsenko, E Wong, KHY Ye, J Ye, S Yeletskikh, I Yen, AL Yildirim, E Yorita, K Yoshida, R Yoshihara, K Young, C Young, CJS Youssef, S Yu, DR Yu, J Yu, JM Yu, J Yuan, L Yurkewicz, A Yusuff, I Zabinski, B Zaidan, R Zaitsev, AM Zalieckas, J Zaman, A Zambito, S Zanello, L Zanzi, D Zeitnitz, C Zeman, M Zemla, A Zengel, K Zenin, O Zenis, T Zerwas, D Zhang, D Zhang, F Zhang, J Zhang, L Zhang, R Zhang, X Zhang, Z Zhao, X Zhao, Y Zhao, Z Zhemchugov, A Zhong, J Zhou, B Zhou, C Zhou, L Zhou, L Zhou, N Zhu, CG Zhu, H Zhu, J Zhu, Y Zhuang, X Zhukov, K Zibell, A Zieminska, D Zimine, NI Zimmermann, C Zimmermann, S Zinonos, Z Zinser, M Ziolkowski, M Zivkovic, L Zobernig, G Zoccoli, A zur Nedden, M Zurzolo, G Zwalinski, L AF Aad, G. Abbott, B. Abdallah, J. Abdinov, O. Aben, R. Abolins, M. AbouZeid, O. S. Abramowicz, H. Abreu, H. Abreu, R. Abulaiti, Y. Acharya, B. S. Adamczyk, L. Adams, D. L. Adelman, J. Adomeit, S. Adye, T. Affolder, A. A. Agatonovic-Jovin, T. Aguilar-Saavedra, J. A. Ahlen, S. P. Ahmadov, F. Aielli, G. Akerstedt, H. Akesson, T. P. A. Akimoto, G. Akimov, A. V. Alberghi, G. L. Albert, J. Albrand, S. Alconada Verzini, M. J. Aleksa, M. Aleksandrov, I. N. Alexa, C. Alexander, G. Alexopoulos, T. Alhroob, M. Alimonti, G. Alio, L. Alison, J. Alkire, S. P. Allbrooke, B. M. M. Allport, P. P. Aloisio, A. Alonso, A. Alonso, F. Alpigiani, C. Altheimer, A. Gonzalez, B. Alvarez Alvarez Piqueras, D. Alviggi, M. G. Amadio, B. T. Amako, K. Amaral Coutinho, Y. Amelung, C. Amidei, D. Amor Dos Santos, S. P. Amorim, A. Amoroso, S. Amram, N. Amundsen, G. Anastopoulos, C. Ancu, L. S. Andari, N. Andeen, T. Anders, C. F. Anders, G. Anders, J. K. Anderson, K. J. Andreazza, A. Andrei, V. Angelidakis, S. Angelozzi, I. Anger, P. Angerami, A. Anghinolfi, F. Anisenkov, A. V. Anjos, N. Annovi, A. Antonelli, M. Antonov, A. Antos, J. Anulli, F. Aoki, M. Bella, L. Aperio Arabidze, G. Arai, Y. Araque, J. P. Arce, A. T. H. Arduh, F. A. Arguin, J-F. Argyropoulos, S. Arik, M. Armbruster, A. J. Arnaez, O. Arnal, V. Arnold, H. Arratia, M. Arslan, O. Artamonov, A. Artoni, G. Asai, S. Asbah, N. Ashkenazi, A. Asman, B. Asquith, L. Assamagan, K. Astalos, R. Atkinson, M. Atlay, N. B. Auerbach, B. Augsten, K. Aurousseau, M. Avolio, G. Axen, B. Ayoub, M. K. Azuelos, G. Baak, M. A. Baas, A. E. Bacci, C. Bachacou, H. Bachas, K. Backes, M. Backhaus, M. Bagiacchi, P. Bagnaia, P. Bai, Y. Bain, T. Baines, J. T. Baker, O. K. Balek, P. Balestri, T. Balli, F. Banas, E. Banerjee, Sw. Bannoura, A. A. E. Bansil, H. S. Barak, L. Barberio, E. L. Barberis, D. Barbero, M. Barillari, T. Barisonzi, M. Barklow, T. Barlow, N. Barnes, S. L. Barnett, B. M. Barnett, R. M. Barnovska, Z. Baroncelli, A. Barone, G. Barr, A. J. Barreiro, F. da Costa, J. Barreiro Guimaraes Bartoldus, R. Barton, A. E. Bartos, P. Basalaev, A. Bassalat, A. Basye, A. Bates, R. L. Batista, S. J. Batley, J. R. Battaglia, M. Bauce, M. Bauer, F. Bawa, H. S. Beacham, J. B. Beattie, M. D. Beau, T. Beauchemin, P. H. Beccherle, R. Bechtle, P. Beck, H. P. Becker, K. Becker, M. Becker, S. Beckingham, M. Becot, C. Beddall, A. J. Beddall, A. Bednyakov, V. A. Bee, C. P. Beemster, L. J. Beermann, T. A. Begel, M. Behr, J. K. Belanger-Champagne, C. Bell, W. H. Bella, G. Bellagamba, L. Bellerive, A. Bellomo, M. Belotskiy, K. Beltramello, O. Benary, O. Benchekroun, D. Bender, M. Bendtz, K. Benekos, N. Benhammou, Y. Noccioli, E. Benhar Garcia, J. A. Benitez Benjamin, D. P. Bensinger, J. R. Bentvelsen, S. Beresford, L. Beretta, M. Berge, D. Kuutmann, E. Bergeaas Berger, N. Berghaus, F. Beringer, J. Bernard, C. Bernard, N. R. Bernius, C. Bernlochner, F. U. Berry, T. Berta, P. Bertella, C. Bertoli, G. Bertolucci, F. Bertsche, C. Bertsche, D. Besana, M. I. Besjes, G. J. Bylund, O. Bessidskaia Bessner, M. Besson, N. Betancourt, C. Bethke, S. Bevan, A. J. Bhimji, W. Bianchi, R. M. Bianchini, L. Bianco, M. Biebel, O. Bieniek, S. P. Biglietti, M. De Mendizabal, J. Bilbao Bilokon, H. Bindi, M. Binet, S. Bingul, A. Bini, C. Black, C. W. Black, J. E. Black, K. M. Blackburn, D. Blair, R. E. Blanchard, J. -B. Blanco, J. E. Blazek, T. Bloch, I. Blocker, C. Blum, W. Blumenschein, U. Bobbink, G. J. Bobrovnikov, V. S. Bocchetta, S. S. Bocci, A. Bock, C. Boehler, M. Bogaerts, J. A. Bogdanchikov, A. G. Bohm, C. Boisvert, V. Bold, T. Boldea, V. Boldyrev, A. S. Bomben, M. Bona, M. Boonekamp, M. Borisov, A. Borissov, G. Borroni, S. Bortfeldt, J. Bortolotto, V. Bos, K. Boscherini, D. Bosman, M. Boudreau, J. Bouffard, J. Bouhova-Thacker, E. V. Boumediene, D. Bourdarios, C. Bousson, N. Boveia, A. Boyd, J. Boyko, I. R. Bozic, I. Bracinik, J. Brandt, A. Brandt, G. Brandt, O. Bratzler, U. Brau, B. Brau, J. E. Braun, H. M. Brazzale, S. F. Brendlinger, K. Brennan, A. J. Brenner, L. Brenner, R. Bressler, S. Bristow, K. Bristow, T. M. Britton, D. Britzger, D. Brochu, F. M. Brock, I. Brock, R. Bronner, J. Brooijmans, G. Brooks, T. Brooks, W. K. Brosamer, J. Brost, E. Brown, J. de Renstrom, P. A. Bruckman Bruncko, D. Bruneliere, R. Bruni, A. Bruni, G. Bruschi, M. Bryngemark, L. Buanes, T. Buat, Q. Buchholz, P. Buckley, A. G. Buda, S. I. Budagov, I. A. Buehrer, F. Bugge, L. Bugge, M. K. Bulekov, O. Bullock, D. Burckhart, H. Burdin, S. Burghgrave, B. Burke, S. Burmeister, I. Busato, E. Buescher, D. Buescher, V. Bussey, P. Butler, J. M. Butt, A. I. Buttar, C. M. Butterworth, J. M. Butti, P. Buttinger, W. Buzatu, A. Buzykaev, A. R. Cabrera Urban, S. Caforio, D. Cairo, V. M. Cakir, O. Calafiura, P. Calandri, A. Calderini, G. Calfayan, P. Caloba, L. P. Calvet, D. Calvet, S. Toro, R. Camacho Camarda, S. Camarri, P. Cameron, D. Caminada, L. M. Caminal Armadans, R. Campana, S. Campanelli, M. Campoverde, A. Canale, V. Canepa, A. Bret, M. Cano Cantero, J. Cantrill, R. Cao, T. Garrido, M. D. M. Capeans Caprini, I. Caprini, M. Capua, M. Caputo, R. Cardarelli, R. Carli, T. Carlino, G. Carminati, L. Caron, S. Carquin, E. Carrillo-Montoya, G. D. Carter, J. R. Carvalho, J. Casadei, D. Casado, M. P. Casolino, M. Castaneda-Miranda, E. Castelli, A. Castillo Gimenez, V. Castro, N. F. Catastini, P. Catinaccio, A. Catmore, J. R. Cattai, A. Caudron, J. Cavaliere, V. Cavalli, D. Cavalli-Sforza, M. Cavasinni, V. Ceradini, F. Cerio, B. C. Cerny, K. Cerqueira, A. S. Cerri, A. Cerrito, L. Cerutti, F. Cerv, M. Cervelli, A. Cetin, S. A. Chafaq, A. Chakraborty, D. Chalupkova, I. Chang, P. Chapleau, B. Chapman, J. D. Charlton, D. G. Chau, C. C. Barajas, C. A. Chavez Cheatham, S. Chegwidden, A. Chekanov, S. Chekulaev, S. V. Chelkov, G. A. Chelstowska, M. A. Chen, C. Chen, H. Chen, K. Chen, L. Chen, S. Chen, X. Chen, Y. Cheng, H. C. Cheng, Y. Cheplakov, A. Cheremushkina, E. Cherkaoui El Moursli, R. Chernyatin, V. Cheu, E. Chevalier, L. Chiarella, V. Childers, J. T. Chiodini, G. Chisholm, A. S. Chislett, R. T. Chitan, A. Chizhov, M. V. Choi, K. Chouridou, S. Chow, B. K. B. Christodoulou, V. Chromek-Burckhart, D. Chu, M. L. Chudoba, J. Chuinard, A. J. Chwastowski, J. J. Chytka, L. Ciapetti, G. Ciftci, A. K. Cinca, D. Cindro, V. Cioara, I. A. Ciocio, A. Citron, Z. H. Ciubancan, M. Clark, A. Clark, B. L. Clark, P. J. Clarke, R. N. Cleland, W. Clement, C. Coadou, Y. Cobal, M. Coccaro, A. Cochran, J. Coffey, L. Cogan, J. G. Cole, B. Cole, S. Colijn, A. P. Collot, J. Colombo, T. Compostella, G. Conde Muino, P. Coniavitis, E. Connell, S. H. Connelly, I. A. Consonni, S. M. Consorti, V. Constantinescu, S. Conta, C. Conti, G. Conventi, F. Cooke, M. Cooper, B. D. Cooper-Sarkar, A. M. Cornelissen, T. Corradi, M. Corriveau, F. Corso-Radu, A. Cortes-Gonzalez, A. Cortiana, G. Costa, G. Costa, M. J. Costanzo, D. Cote, D. Cottin, G. Cowan, G. Cox, B. E. Cranmer, K. Cree, G. Crepe-Renaudin, S. Crescioli, F. Cribbs, W. A. Ortuzar, M. Crispin Cristinziani, M. Croft, V. Crosetti, G. Donszelmann, T. Cuhadar Cummings, J. Curatolo, M. Cuthbert, C. Czirr, H. Czodrowski, P. D'Auria, S. D'Onofrio, M. Da Cunha Sargedas De Sousa, M. J. Da Via, C. Dabrowski, W. Dafinca, A. Dai, T. Dale, O. Dallaire, F. Dallapiccola, C. Dam, M. Dandoy, J. R. Dang, N. P. Daniells, A. C. Danninger, M. Hoffmann, M. Dano Dao, V. Darbo, G. Darmora, S. Dassoulas, J. Dattagupta, A. Davey, W. David, C. Davidek, T. Davies, E. Davies, M. Davison, P. Davygora, Y. Dawe, E. Dawson, I. Daya-Ishmukhametova, R. K. De, K. de Asmundis, R. De Castro, S. De Cecco, S. De Groot, N. de Jong, P. De la Torre, H. De Lorenzi, F. De Nooij, L. De Pedis, D. De Salvo, A. De Sanctis, U. De Santo, A. De Regie, J. B. De Vivie Dearnaley, W. J. Debbe, R. Debenedetti, C. Dedovich, D. V. Deigaard, I. Del Peso, J. Del Prete, T. Delgove, D. Deliot, F. Delitzsch, C. M. Deliyergiyev, M. Dell'Acqua, A. Dell'Asta, L. Dell'Orso, M. Della Pietra, M. della Volpe, D. Delmastro, M. Delsart, P. A. Deluca, C. DeMarco, D. A. Demers, S. Demichev, M. Demilly, A. Denisov, S. P. Derendarz, D. Derkaoui, J. E. Derue, F. Dervan, P. Desch, K. Deterre, C. Deviveiros, P. O. Dewhurst, A. Dhaliwal, S. Di Ciaccio, A. Di Ciaccio, L. Di Domenico, A. Di Donato, C. Di Girolamo, A. Di Girolamo, B. Di Mattia, A. Di Micco, B. Di Nardo, R. Di Simone, A. Di Sipio, R. Di Valentino, D. Diaconu, C. Diamond, M. Dias, F. A. Diaz, M. A. Diehl, E. B. Dietrich, J. Diglio, S. Dimitrievska, A. Dingfelder, J. Dita, P. Dita, S. Dittus, F. Djama, F. Djobava, T. Djuvsland, J. I. do Vale, M. A. B. Dobos, D. Dobre, M. Doglioni, C. Dohmae, T. Dolejsi, J. Dolezal, Z. Dolgoshein, B. A. Donadelli, M. Donati, S. Dondero, P. Donini, J. Dopke, J. Doria, A. Dova, M. T. Doyle, A. T. Drechsler, E. Dris, M. Dubreuil, E. Duchovni, E. Duckeck, G. Ducu, O. A. Duda, D. Dudarev, A. Duflot, L. Duguid, L. Duehrssen, M. Dunford, M. Yildiz, H. Duran Dueren, M. Durglishvili, A. Duschinger, D. Dyndal, M. Eckardt, C. Ecker, K. M. Edgar, R. C. Edson, W. Edwards, N. C. Ehrenfeld, W. Eifert, T. Eigen, G. Einsweiler, K. Ekelof, T. El Kacimi, M. Ellert, M. Elles, S. Ellinghaus, F. Elliot, A. A. Ellis, N. Elmsheuser, J. Elsing, M. Emeliyanov, D. Enari, Y. Endner, O. C. Endo, M. Erdmann, J. Ereditato, A. Ernis, G. Ernst, J. Ernst, M. Errede, S. Ertel, E. Escalier, M. Esch, H. Escobar, C. Esposito, B. Etienvre, A. I. Etzion, E. Evans, H. Ezhilov, A. Fabbri, L. Facini, G. Fakhrutdinov, R. M. Falciano, S. Falla, R. J. Faltova, J. Fang, Y. Fanti, M. Farbin, A. Farilla, A. Farooque, T. Farrell, S. Farrington, S. M. Farthouat, P. Fassi, F. Fassnacht, P. Fassouliotis, D. Giannelli, M. Faucci Favareto, A. Fayard, L. Federic, P. Fedin, O. L. Fedorko, W. Feigl, S. Feligioni, L. Feng, C. Feng, E. J. Feng, H. Fenyuk, A. B. Fernandez Martinez, P. Perez, S. Fernandez Ferrando, J. Ferrari, A. Ferrari, P. Ferrari, R. de Lima, D. E. Ferreira Ferrer, A. Ferrere, D. Ferretti, C. Parodi, A. Ferretto Fiascaris, M. Fiedler, F. Filipcic, A. Filipuzzi, M. Filthaut, F. Fincke-Keeler, M. Finelli, K. D. Fiolhais, M. C. N. Fiorini, L. Firan, A. Fischer, A. Fischer, C. Fischer, J. Fisher, W. C. Fitzgerald, E. A. Flechl, M. Fleck, I. Fleischmann, P. Fleischmann, S. Fletcher, G. T. Fletcher, G. Flick, T. Floderus, A. Castillo, L. R. Flores Flowerdew, M. J. Formica, A. Forti, A. Fournier, D. Fox, H. Fracchia, S. Francavilla, P. Franchini, M. Francis, D. Franconi, L. Franklin, M. Fraternali, M. Freeborn, D. French, S. T. Friedrich, F. Froidevaux, D. Frost, J. A. Fukunaga, C. Torregrosa, E. Fullana Fulsom, B. G. Fuster, J. Gabaldon, C. Gabizon, O. Gabrielli, A. Gabrielli, A. Gadatsch, S. Gadomski, S. Gagliardi, G. Gagnon, P. Galea, C. Galhardo, B. Gallas, E. J. Gallop, B. J. Gallus, P. Galster, G. Gan, K. K. Gao, J. Gao, Y. Gao, Y. S. Walls, F. M. Garay Garberson, F. Garcia, C. Garcia Navarro, J. E. Garcia-Sciveres, M. Gardner, R. W. Garelli, N. Garonne, V. Gatti, C. Gaudiello, A. Gaudio, G. Gaur, B. Gauthier, L. Gauzzi, P. Gavrilenko, I. L. Gay, C. Gaycken, G. Gazis, E. N. Ge, P. Gecse, Z. Gee, C. N. P. Geerts, D. A. A. Geich-Gimbel, Ch. Geisler, M. P. Gemme, C. Genest, M. H. Gentile, S. George, M. George, S. Gerbaudo, D. Gershon, A. Ghazlane, H. Giacobbe, B. Giagu, S. Giangiobbe, V. Giannetti, P. Gibbard, B. Gibson, S. M. Gilchriese, M. Gillam, T. P. S. Gillberg, D. Gilles, G. Gingrich, D. M. Giokaris, N. Giordani, M. P. Giorgi, F. M. Giorgi, F. M. Giraud, P. F. Giromini, P. Giugni, D. Giuliani, C. Giulini, M. Gjelsten, B. K. Gkaitatzis, S. Gkialas, I. Gkougkousis, E. L. Gladilin, L. K. Glasman, C. Glatzer, J. Glaysher, P. C. F. Glazov, A. Goblirsch-Kolb, M. Goddard, J. R. Godlewski, J. Goldfarb, S. Golling, T. Golubkov, D. Gomes, A. Goncalo, R. Da Costa, J. Goncalves Pinto Firmino Gonella, L. de la Hoz, S. Gonzalez Gonzalez Parra, G. Gonzalez-Sevilla, S. Goossens, L. Gorbounov, P. A. Gordon, H. A. Gorelov, I. Gorini, B. Gorini, E. Gorisek, A. Gornicki, E. Goshaw, A. T. Goessling, C. Gostkin, M. I. Goujdami, D. Goussiou, A. G. Govender, N. Grabas, H. M. X. Graber, L. Grabowska-Bold, I. Grafstroem, P. Grahn, K-J. Gramling, J. Gramstad, E. Grancagnolo, S. Grassi, V. Gratchev, V. Gray, H. M. Graziani, E. Greenwood, Z. D. Gregersen, K. Gregor, I. M. Grenier, P. Griffiths, J. Grillo, A. A. Grimm, K. Grinstein, S. Gris, Ph. Grivaz, J. -F. Grohs, J. P. Grohsjean, A. Gross, E. Grosse-Knetter, J. Grossi, G. C. Grout, Z. J. Guan, L. Guenther, J. Guescini, F. Guest, D. Gueta, O. Guido, E. Guillemin, T. Guindon, S. Gul, U. Gumpert, C. Guo, J. Gupta, S. Gutierrez, P. Ortiz, N. G. Gutierrez Gutschow, C. Guyot, C. Gwenlan, C. Gwilliam, C. B. Haas, A. Haber, C. Hadavand, H. K. Haddad, N. Haefner, P. Hageboeck, S. Hajduk, Z. Hakobyan, H. Haleem, M. Haley, J. Hall, D. Halladjian, G. Hallewell, G. D. Hamacher, K. Hamal, P. Hamano, K. Hamer, M. Hamilton, A. Hamity, G. N. Hamnett, P. G. Han, L. Hanagaki, K. Hanawa, K. Hance, M. Hanke, P. Hanna, R. Hansen, J. B. Hansen, J. D. Hansen, M. C. Hansen, P. H. Hara, K. Hard, A. S. Harenberg, T. Hariri, F. Harkusha, S. Harrington, R. D. Harrison, P. F. Hartjes, F. Hasegawa, M. Hasegawa, S. Hasegawa, Y. Hasib, A. Hassani, S. Haug, S. Hauser, R. Hauswald, L. Havranek, M. Hawkes, C. M. Hawkings, R. J. Hawkins, A. D. Hayashi, T. Hayden, D. Hays, C. P. Hays, J. M. Hayward, H. S. Haywood, S. J. Head, S. J. Heck, T. Hedberg, V. Heelan, L. Heim, S. Heim, T. Heinemann, B. Heinrich, L. Hejbal, J. Helary, L. Hellman, S. Hellmich, D. Helsens, C. Henderson, J. Henderson, R. C. W. Heng, Y. Hengler, C. Henrichs, A. Correia, A. M. Henriques Henrot-Versille, S. Herbert, G. H. Hernandez Jimenez, Y. Herrberg-Schubert, R. Herten, G. Hertenberger, R. Hervas, L. Hesketh, G. G. Hessey, N. P. Hetherly, J. W. Hickling, R. Higon-Rodriguez, E. Hill, E. Hill, J. C. Hiller, K. H. Hillier, S. J. Hinchliffe, I. Hines, E. Hinman, R. R. Hirose, M. Hirschbuehl, D. Hobbs, J. Hod, N. Hodgkinson, M. C. Hodgson, P. Hoecker, A. Hoeferkamp, M. R. Hoenig, F. Hohlfeld, M. Hohn, D. Holmes, T. R. Homann, M. Hong, T. M. van Huysduynen, L. Hooft Hopkins, W. H. Horii, Y. Horton, A. J. Hostachy, J-Y. Hou, S. Hoummada, A. Howard, J. Howarth, J. Hrabovsky, M. Hristova, I. Hrivnac, J. Hryn'ova, T. Hrynevich, A. Hsu, C. Hsu, P. J. Hsu, S. -C. Hu, D. Hu, Q. Hu, X. Huang, Y. Hubacek, Z. Hubaut, F. Huegging, F. Huffman, T. B. Hughes, E. W. Hughes, G. Huhtinen, M. Huelsing, T. A. Huseynov, N. Huston, J. Huth, J. Iacobucci, G. Iakovidis, G. Ibragimov, I. Iconomidou-Fayard, L. Ideal, E. Idrissi, Z. Iengo, P. Igonkina, O. Iizawa, T. Ikegami, Y. Ikematsu, K. Ikeno, M. Ilchenko, Y. Iliadis, D. Ilic, N. Inamaru, Y. Ince, T. Ioannou, P. Iodice, M. Iordanidou, K. Ippolito, V. Irles Quiles, A. Isaksson, C. Ishino, M. Ishitsuka, M. Ishmukhametov, R. Issever, C. Istin, S. Ponce, J. M. Iturbe Iuppa, R. Ivarsson, J. Iwanski, W. Iwasaki, H. Izen, J. M. Izzo, V. Jabbar, S. Jackson, B. Jackson, M. Jackson, P. Jaekel, M. R. Jain, V. Jakobs, K. Jakobsen, S. Jakoubek, T. Jakubek, J. Jamin, D. O. Jana, D. K. Jansen, E. Jansky, R. W. Janssen, J. Janus, M. Jarlskog, G. Javadov, N. Javurek, T. Jeanty, L. Jejelava, J. Jeng, G. -Y. Jennens, D. Jenni, P. Jentzsch, J. Jeske, C. Jezequel, S. Ji, H. Jia, J. Jiang, Y. Jiggins, S. Jimenez Pena, J. Jin, S. Jinaru, A. Jinnouchi, O. Joergensen, M. D. Johansson, P. Johns, K. A. Jon-And, K. Jones, G. Jones, R. W. L. Jones, T. J. Jongmanns, J. Jorge, P. M. Joshi, K. D. Jovicevic, J. Ju, X. Jung, C. A. Jussel, P. Juste Rozas, A. Kaci, M. Kaczmarska, A. Kado, M. Kagan, H. Kagan, M. Kahn, S. J. Kajomovitz, E. Kalderon, C. W. Kama, S. Kamenshchikov, A. Kanaya, N. Kaneda, M. Kaneti, S. Kantserov, V. A. Kanzaki, J. Kaplan, B. Kapliy, A. Kar, D. Karakostas, K. Karamaoun, A. Karastathis, N. Kareem, M. J. Karnevskiy, M. Karpov, S. N. Karpova, Z. M. Karthik, K. Kartvelishvili, V. Karyukhin, A. N. Kashif, L. Kass, R. D. Kastanas, A. Kataoka, Y. Katre, A. Katzy, J. Kawagoe, K. Kawamoto, T. Kawamura, G. Kazama, S. Kazanin, V. F. Kazarinov, M. Y. Keeler, R. Kehoe, R. Keller, J. S. Kempster, J. J. Keoshkerian, H. Kepka, O. Kersevan, B. P. Kersten, S. Keyes, R. A. Khalil-zada, F. Khandanyan, H. Khanov, A. Kharlamov, A. G. Khoo, T. J. Khovanskiy, V. Khramov, E. Khubua, J. Kim, H. Y. Kim, H. Kim, S. H. Kim, Y. Kimura, N. Kind, O. M. King, B. T. King, M. King, R. S. B. King, S. B. Kirk, J. Kiryunin, A. E. Kishimoto, T. Kisielewska, D. Kiss, F. Kiuchi, K. Kivernyk, O. Kladiva, E. Klein, M. H. Klein, M. Klein, U. Kleinknecht, K. Klimek, P. Klimentov, A. Klingenberg, R. Klinger, J. A. Klioutchnikova, T. Kluge, E. -E. Kluit, P. Kluth, S. Kneringer, E. Knoops, E. B. F. G. Knue, A. Kobayashi, A. Kobayashi, D. Kobayashi, T. Kobel, M. Kocian, M. Kodys, P. Koffas, T. Koffeman, E. Kogan, L. A. Kohlmann, S. Kohout, Z. Kohriki, T. Koi, T. Kolanoski, H. Koletsou, I. Komar, A. A. Komori, Y. Kondo, T. Kondrashova, N. Koeneke, K. Konig, A. C. Koenig, S. Kono, T. Konoplich, R. Konstantinidis, N. Kopeliansky, R. Koperny, S. Koepke, L. Kopp, A. K. Korcyl, K. Kordas, K. Korn, A. Korol, A. A. Korolkov, I. Korolkova, E. V. Kortner, O. Kortner, S. Kosek, T. Kostyukhin, V. V. Kotov, V. M. Kotwal, A. Kourkoumeli-Charalampidi, A. Kourkoumelis, C. Kouskoura, V. Koutsman, A. Kowalewski, R. Kowalski, T. Z. Kozanecki, W. Kozhin, A. S. Kramarenko, V. A. Kramberger, G. Krasnopevtsev, D. Krasny, M. W. Krasznahorkay, A. Kraus, J. K. Kravchenko, A. Kreiss, S. Kretz, M. Kretzschmar, J. Kreutzfeldt, K. Krieger, P. Krizka, K. Kroeninger, K. Kroha, H. Kroll, J. Kroseberg, J. Krstic, J. Kruchonak, U. Krueger, H. Krumnack, N. Krumshteyn, Z. V. Kruse, A. Kruse, M. C. Kruskal, M. Kubota, T. Kucuk, H. Kuday, S. Kuehn, S. Kugel, A. Kuger, F. Kuhl, A. Kuhl, T. Kukhtin, V. Kulchitsky, Y. Kuleshov, S. Kuna, M. Kunigo, T. Kupco, A. Kurashige, H. Kurochkin, Y. A. Kurumida, R. Kus, V. Kuwertz, E. S. Kuze, M. Kvita, J. Kwan, T. Kyriazopoulos, D. La Rosa, A. La Rosa Navarro, J. L. La Rotonda, L. Lacasta, C. Lacava, F. Lacey, J. Lacker, H. Lacour, D. Lacuesta, V. R. Ladygin, E. Lafaye, R. Laforge, B. Lagouri, T. Lai, S. Lambourne, L. Lammers, S. Lampen, C. L. Lampl, W. Lancon, E. Landgraf, U. Landon, M. P. J. Lang, V. S. Lange, J. C. Lankford, A. J. Lanni, F. Lantzsch, K. Laplace, S. Lapoire, C. Laporte, J. F. Lari, T. Manghi, F. Lasagni Lassnig, M. Laurelli, P. Lavrijsen, W. Law, A. T. Laycock, P. Le Dortz, O. Le Guirriec, E. Le Menedeu, E. LeBlanc, M. LeCompte, T. Ledroit-Guillon, F. Lee, C. A. Lee, S. C. Lee, L. Lefebvre, G. Lefebvre, M. Legger, F. Leggett, C. Lehan, A. Miotto, G. Lehmann Lei, X. Leight, W. A. Leisos, A. Leister, A. G. Leite, M. A. L. Leitner, R. Lellouch, D. Lemmer, B. Leney, K. J. C. Lenz, T. Lenzi, B. Leone, R. Leone, S. Leonidopoulos, C. Leontsinis, S. Leroy, C. Lester, C. G. Levchenko, M. Leveque, J. Levin, D. Levinson, L. J. Levy, M. Lewis, A. Leyko, A. M. Leyton, M. Li, B. Li, H. Li, H. L. Li, L. Li, L. Li, S. Li, Y. Liang, Z. Liao, H. Liberti, B. Liblong, A. Lichard, P. Lie, K. Liebal, J. Liebig, W. Limbach, C. Limosani, A. Lin, S. C. Lin, T. H. Linde, F. Lindquist, B. E. Linnemann, J. T. Lipeles, E. Lipniacka, A. Lisovyi, M. Liss, T. M. Lissauer, D. Lister, A. Litke, A. M. Liu, B. Liu, D. Liu, J. Liu, J. B. Liu, K. Liu, L. Liu, M. Liu, M. Liu, Y. Livan, M. Lleres, A. Llorente Merino, J. Lloyd, S. L. Lo Sterzo, F. Lobodzinska, E. Loch, P. Lockman, W. S. Loebinger, F. K. Loevschall-Jensen, A. E. Loginov, A. Lohse, T. Lohwasser, K. Lokajicek, M. Long, B. A. Long, J. D. Long, R. E. Looper, K. A. Lopes, L. Mateos, D. Lopez Paredes, B. Lopez Lopez Paz, I. Lorenz, J. Martinez, N. Lorenzo Losada, M. Loscutoff, P. Loesel, P. J. Lou, X. Lounis, A. Love, J. Love, P. A. Lu, N. Lubatti, H. J. Luci, C. Lucotte, A. Luehring, F. Lukas, W. Luminari, L. Lundberg, O. Lund-Jensen, B. Lynn, D. Lysak, R. Lytken, E. Ma, H. Ma, L. L. Maccarrone, G. Macchiolo, A. Macdonald, C. M. Miguens, J. Machado Macina, D. Madaffari, D. Madar, R. Maddocks, H. J. Mader, W. F. Madsen, A. Maeland, S. Maeno, T. Maevskiy, A. Magradze, E. Mahboubi, K. Mahlstedt, J. Maiani, C. Maidantchik, C. Maier, A. A. Maier, T. Maio, A. Majewski, S. Makida, Y. Makovec, N. Malaescu, B. Malecki, Pa. Maleev, V. P. Malek, F. Mallik, U. Malon, D. Malone, C. Maltezos, S. Malyshev, V. M. Malyukov, S. Mamuzic, J. Mancini, G. Mandelli, B. Mandelli, L. Mandic, I. Mandrysch, R. Maneira, J. Manfredini, A. Manhaes de Andrade Filho, L. Ramos, J. Manjarres Mann, A. Manning, P. M. Manousakis-Katsikakis, A. Mansoulie, B. Mantifel, R. Mantoani, M. Mapelli, L. March, L. Marchiori, G. Marcisovsky, M. Marino, C. P. Marjanovic, M. Marroquim, F. Marsden, S. P. Marshall, Z. Marti, L. F. Marti-Garcia, S. Martin, B. Martin, T. A. Martin, V. J. Latour, B. Martin Dit Martinez, M. Martin-Haugh, S. Martoiu, V. S. Martyniuk, A. C. Marx, M. Marzano, F. Marzin, A. Masetti, L. Mashimo, T. Mashinistov, R. Masik, J. Maslennikov, A. L. Massa, I. Massa, L. Massol, N. Mastrandrea, P. Mastroberardino, A. Masubuchi, T. Maettig, P. Mattmann, J. Maurer, J. Maxfield, S. J. Maximov, D. A. Mazini, R. Mazza, S. M. Mazzaferro, L. Mc Goldrick, G. Mc Kee, S. P. McCarn, A. McCarthy, R. L. McCarthy, T. G. McCubbin, N. A. McFarlane, K. W. Mcfayden, J. A. Mchedlidze, G. McMahon, S. J. McPherson, R. A. Medinnis, M. Meehan, S. Mehlhase, S. Mehta, A. Meier, K. Meineck, C. Meirose, B. Garcia, B. R. Mellado Meloni, F. Mengarelli, A. Menke, S. Meoni, E. Mercurio, K. M. Mergelmeyer, S. Mermod, P. Merola, L. Meroni, C. Merritt, F. S. Messina, A. Metcalfe, J. Mete, A. S. Meyer, C. Meyer, C. Meyer, J-P. Meyer, J. Middleton, R. P. Miglioranzi, S. Mijovic, L. Mikenberg, G. Mikestikova, M. Mikuz, M. Milesi, M. Milic, A. Miller, D. W. Mills, C. Milov, A. Milstead, D. A. Minaenko, A. A. Minami, Y. Minashvili, I. A. Mincer, A. I. Mindur, B. Mineev, M. Ming, Y. Mir, L. M. Mitani, T. Mitrevski, J. Mitsou, V. A. Miucci, A. Miyagawa, P. S. Mjornmark, J. U. Moa, T. Mochizuki, K. Mohapatra, S. Mohr, W. Molander, S. Moles-Valls, R. Moenig, K. Monini, C. Monk, J. Monnier, E. Montejo Berlingen, J. Monticelli, F. Monzani, S. Moore, R. W. Morange, N. Moreno, D. Llacer, M. Moreno Morettini, P. Morgenstern, M. Morii, M. Morinaga, M. Morisbak, V. Moritz, S. Morley, A. K. Mornacchi, G. Morris, J. D. Mortensen, S. S. Morton, A. Morvaj, L. Mosidze, M. Moss, J. Motohashi, K. Mount, R. Mountricha, E. Mouraviev, S. V. Moyse, E. J. W. Muanza, S. Mudd, R. D. Mueller, F. Mueller, J. Mueller, K. Mueller, R. S. P. Mueller, T. Muenstermann, D. Mullen, P. Munwes, Y. Quijada, J. A. Murillo Murray, W. J. Musheghyan, H. Musto, E. Myagkov, A. G. Myska, M. Nackenhorst, O. Nadal, J. Nagai, K. Nagai, R. Nagai, Y. Nagano, K. Nagarkar, A. Nagasaka, Y. Nagata, K. Nagel, M. Nagy, E. Nairz, A. M. Nakahama, Y. Nakamura, K. Nakamura, T. Nakano, I. Namasivayam, H. Garcia, R. F. Naranjo Narayan, R. Naumann, T. Navarro, G. Nayyar, R. Neal, H. A. Nechaeva, P. Yu. Neep, T. J. Nef, P. D. Negri, A. Negrini, M. Nektarijevic, S. Nellist, C. Nelson, A. Nemecek, S. Nemethy, P. Nepomuceno, A. A. Nessi, M. Neubauer, M. S. Neumann, M. Neves, R. M. Nevski, P. Newman, P. R. Nguyen, D. H. Nickerson, R. B. Nicolaidou, R. Nicquevert, B. Nielsen, J. Nikiforou, N. Nikiforov, A. Nikolaenko, V. Nikolic-Audit, I. Nikolopoulos, K. Nilsen, J. K. Nilsson, P. Ninomiya, Y. Nisati, A. Nisius, R. Nobe, T. Nomachi, M. Nomidis, I. Nooney, T. Norberg, S. Nordberg, M. Novgorodova, O. Nowak, S. Nozaki, M. Nozka, L. Ntekas, K. Hanninger, G. Nunes Nunnemann, T. Nurse, E. Nuti, F. O'Brien, B. J. O'grady, F. O'Neil, D. C. O'Shea, V. Oakham, F. G. Oberlack, H. Obermann, T. Ocariz, J. Ochi, A. Ochoa, I. Ochoa-Ricoux, J. P. Oda, S. Odaka, S. Ogren, H. Oh, A. Oh, S. H. Ohm, C. C. Ohman, H. Oide, H. Okamura, W. Okawa, H. Okumura, Y. Okuyama, T. Olariu, A. Pino, S. A. Olivares Damazio, D. Oliveira Oliver Garcia, E. Olszewski, A. Olszowska, J. Onofre, A. Onyisi, P. U. E. Oram, C. J. Oreglia, M. J. Oren, Y. Orestano, D. Orlando, N. Barrera, C. Oropeza Orr, R. S. Osculati, B. Ospanov, R. Otero y Garzon, G. Otono, H. Ouchrif, M. Ouellette, E. A. Ould-Saada, F. Ouraou, A. Oussoren, K. P. Ouyang, Q. Ovcharova, A. Owen, M. Owen, R. E. Ozcan, V. E. Ozturk, N. Pachal, K. Pacheco Pages, A. Padilla Aranda, C. Pagacova, M. Griso, S. Pagan Paganis, E. Pahl, C. Paige, F. Pais, P. Pajchel, K. Palacino, G. Palestini, S. Palka, M. Pallin, D. Palma, A. Pan, Y. B. Panagiotopoulou, E. Pandini, C. E. Vazquez, J. G. Panduro Pani, P. Panitkin, S. Pantea, D. Paolozzi, L. Papadopoulou, Th. D. Papageorgiou, K. Paramonov, A. Hernandez, D. Paredes Parker, M. A. Parker, K. A. Parodi, F. Parsons, J. A. Parzefall, U. Pasqualucci, E. Passaggio, S. Pastore, F. Pastore, Fr. Pasztor, G. Pataraia, S. Patel, N. D. Pater, J. R. Pauly, T. Pearce, J. Pearson, B. Pedersen, L. E. Pedersen, M. Pedraza Lopez, S. Pedro, R. Peleganchuk, S. V. Pelikan, D. Peng, H. Penning, B. Penwell, J. Perepelitsa, D. V. Codina, E. Perez Perez Garcia-Estan, M. T. Perini, L. Pernegger, H. Perrella, S. Peschke, R. Peshekhonov, V. D. Peters, K. Peters, R. F. Y. Petersen, B. A. Petersen, T. C. Petit, E. Petridis, A. Petridou, C. Petrolo, E. Petrucci, F. Pettersson, N. E. Pezoa, R. Phillips, P. W. Piacquadio, G. Pianori, E. Picazio, A. Piccaro, E. Piccinini, M. Pickering, M. A. Piegaia, R. Pignotti, D. T. Pilcher, J. E. Pilkington, A. D. Pina, J. Pinamonti, M. Pinfold, J. L. Pingel, A. Pinto, B. Pires, S. Pitt, M. Pizio, C. Plazak, L. Pleier, M. -A. Pleskot, V. Plotnikova, E. Plucinski, P. Pluth, D. Poettgen, R. Poggioli, L. Pohl, D. Polesello, G. Policicchio, A. Polifka, R. Polini, A. Pollard, C. S. Polychronakos, V. Pommes, K. Pontecorvo, L. Pope, B. G. Popeneciu, G. A. Popovic, D. S. Poppleton, A. Pospisil, S. Potamianos, K. Potrap, I. N. Potter, C. J. Potter, C. T. Poulard, G. Poveda, J. Pozdnyakov, V. Pralavorio, P. Pranko, A. Prasad, S. Prell, S. Price, D. Price, L. E. Primavera, M. Prince, S. Proissl, M. Prokofiev, K. Prokoshin, F. Protopapadaki, E. Protopopescu, S. Proudfoot, J. Przybycien, M. Ptacek, E. Puddu, D. Pueschel, E. Puldon, D. Purohit, M. Puzo, P. Qian, J. Qin, G. Qin, Y. Quadt, A. Quarrie, D. R. Quayle, W. B. Queitsch-Maitland, M. Quilty, D. Raddum, S. Radeka, V. Radescu, V. Radhakrishnan, S. K. Radloff, P. Rados, P. Ragusa, F. Rahal, G. Rajagopalan, S. Rammensee, M. Rangel-Smith, C. Rauscher, F. Rave, S. Ravenscroft, T. Raymond, M. Read, A. L. Readioff, N. P. Rebuzzi, D. M. Redelbach, A. Redlinger, G. Reece, R. Reeves, K. Rehnisch, L. Reisin, H. Relich, M. Rembser, C. Ren, H. Renaud, A. Rescigno, M. Resconi, S. Rezanova, O. L. Reznicek, P. Rezvani, R. Richter, R. Richter, S. Richter-Was, E. Ricken, O. Ridel, M. Rieck, P. Riegel, C. J. Rieger, J. Rijssenbeek, M. Rimoldi, A. Rinaldi, L. Ristic, B. Ritsch, E. Riu, I. Rizatdinova, F. Rizvi, E. Robertson, S. H. Robichaud-Veronneau, A. Robinson, D. Robinson, J. E. M. Robson, A. Roda, C. Roe, S. Rohne, O. Rolli, S. Romaniouk, A. Romano, M. Saez, S. M. Romano Romero Adam, E. Rompotis, N. Ronzani, M. Roos, L. Ros, E. Rosati, S. Rosbach, K. Rose, P. Rosendahl, P. L. Rosenthal, O. Rossetti, V. Rossi, E. Rossi, L. P. Rosten, R. Rotaru, M. Roth, I. Rothberg, J. Rousseau, D. Royon, C. R. Rozanov, A. Rozen, Y. Ruan, X. Rubbo, F. Rubinskiy, I. Rud, V. I. Rudolph, C. Rudolph, M. S. Ruehr, F. Ruiz-Martinez, A. Rurikova, Z. Rusakovich, N. A. Ruschke, A. Russell, H. L. Rutherfoord, J. P. Ruthmann, N. Ryabov, Y. F. Rybar, M. Rybkin, G. Ryder, N. C. Saavedra, A. F. Sabato, G. Sacerdoti, S. Saddique, A. Sadrozinski, H. F-W. Sadykov, R. Tehrani, F. Safai Saimpert, M. Sakamoto, H. Sakurai, Y. Salamanna, G. Salamon, A. Saleem, M. Salek, D. De Bruin, P. H. Sales Salihagic, D. Salnikov, A. Salt, J. Salvatore, D. Salvatore, F. Salvucci, A. Salzburger, A. Sampsonidis, D. Sanchez, A. Sanchez, J. Sanchez Martinez, V. Sandaker, H. Sandbach, R. L. Sander, H. G. Sanders, M. P. Sandhoff, M. Sandoval, C. Sandstroem, R. Sankey, D. P. C. Sannino, M. Sansoni, A. Santoni, C. Santonico, R. Santos, H. Castillo, I. Santoyo Sapp, K. Sapronov, A. Saraiva, J. G. Sarrazin, B. Sasaki, O. Sasaki, Y. Sato, K. Sauvage, G. Sauvan, E. Savage, G. Savard, P. Sawyer, C. Sawyer, L. Saxon, J. Sbarra, C. Sbrizzi, A. Scanlon, T. Scannicchio, D. A. Scarcella, M. Scarfone, V. Schaarschmidt, J. Schacht, P. Schaefer, D. Schaefer, R. Schaeffer, J. Schaepe, S. Schaetzel, S. Schaefer, U. Schaffer, A. C. Schaile, D. Schamberger, R. D. Scharf, V. Schegelsky, V. A. Scheirich, D. Schernau, M. Schiavi, C. Schillo, C. Schioppa, M. Schlenker, S. Schmidt, E. Schmieden, K. Schmitt, C. Schmitt, S. Schmitt, S. Schneider, B. Schnellbach, Y. J. Schnoor, U. Schoeffel, L. Schoening, A. Schoenrock, B. D. Schopf, E. Schorlemmer, A. L. S. Schott, M. Schouten, D. Schovancova, J. Schramm, S. Schreyer, M. Schroeder, C. Schuh, N. Schultens, M. J. Schultz-Coulon, H. -C. Schulz, H. Schumacher, M. Schumm, B. A. Schune, Ph. Schwanenberger, C. Schwartzman, A. Schwarz, T. A. Schwegler, Ph. Schwemling, Ph. Schwienhorst, R. Schwindling, J. Schwindt, T. Schwoerer, M. Sciacca, F. G. Scifo, E. Sciolla, G. Scuri, F. Scutti, F. Searcy, J. Sedov, G. Sedykh, E. Seema, P. Seidel, S. C. Seiden, A. Seifert, F. Seixas, J. M. Sekhniaidze, G. Sekhon, K. Sekula, S. J. Selbach, K. E. Seliverstov, D. M. Semprini-Cesari, N. Serfon, C. Serin, L. Serkin, L. Serre, T. Sessa, M. Seuster, R. Severini, H. Sfiligoj, T. Sforza, F. Sfyrla, A. Shabalina, E. Shamim, M. Shan, L. Y. Shang, R. Shank, J. T. Shapiro, M. Shatalov, P. B. Shaw, K. Shaw, S. M. Shcherbakova, A. Shehu, C. Y. Sherwood, P. Shi, L. Shimizu, S. Shimmin, C. O. Shimojima, M. Shiyakova, M. Shmeleva, A. Saadi, D. Shoaleh Shochet, M. J. Shojaii, S. Shrestha, S. Shulga, E. Shupe, M. A. Shushkevich, S. Sicho, P. Sidiropoulou, O. Sidorov, D. Sidoti, A. Siegert, F. Sijacki, Dj. Silva, J. Silver, Y. Silverstein, S. B. Simak, V. Simard, O. Simic, Lj. Simion, S. Simioni, E. Simmons, B. Simon, D. Simoniello, R. Sinervo, P. Sinev, N. B. Siragusa, G. Sisakyan, A. N. Sivoklokov, S. Yu. Sjolin, J. Sjursen, T. B. Skinner, M. B. Skottowe, H. P. Skubic, P. Slater, M. Slavicek, T. Slawinska, M. Sliwa, K. Smakhtin, V. Smart, B. H. Smestad, L. Smirnov, S. Yu. Smirnov, Y. Smirnova, L. N. Smirnova, O. Smith, M. N. K. Smith, R. W. Smizanska, M. Smolek, K. Snesarev, A. A. Snidero, G. Snyder, S. Sobie, R. Socher, F. Soffer, A. Soh, D. A. Solans, C. A. Solar, M. Solc, J. Soldatov, E. Yu. Soldevila, U. Solodkov, A. A. Soloshenko, A. Solovyanov, O. V. Solovyev, V. Sommer, P. Song, H. Y. Soni, N. Sood, A. Sopczak, A. Sopko, B. Sopko, V. Sorin, V. Sosa, D. Sosebee, M. Sotiropoulou, C. L. Soualah, R. Soueid, P. Soukharev, A. M. South, D. Sowden, B. C. Spagnolo, S. Spalla, M. Spano, F. Spearman, W. R. Spettel, F. Spighi, R. Spigo, G. Spiller, L. A. Spousta, M. Spreitzer, T. St Denis, R. D. Staerz, S. Stahlman, J. Stamen, R. Stamm, S. Stanecka, E. Stanescu, C. Stanescu-Bellu, M. Stanitzki, M. M. Stapnes, S. Starchenko, E. A. Stark, J. Staroba, P. Starovoitov, P. Staszewski, R. Stavina, P. Steinberg, P. Stelzer, B. Stelzer, H. J. Stelzer-Chilton, O. Stenzel, H. Stern, S. Stewart, G. A. Stillings, J. A. Stockton, M. C. Stoebe, M. Stoicea, G. Stolte, P. Stonjek, S. Stradling, A. R. Straessner, A. Stramaglia, M. E. Strandberg, J. Strandberg, S. Strandlie, A. Strauss, E. Strauss, M. Strizenec, P. Stroehmer, R. Strom, D. M. Stroynowski, R. Strubig, A. Stucci, S. A. Stugu, B. Styles, N. A. Su, D. Su, J. Subramaniam, R. Succurro, A. Sugaya, Y. Suhr, C. Suk, M. Sulin, V. V. Sultansoy, S. Sumida, T. Sun, S. Sun, X. Sundermann, J. E. Suruliz, K. Susinno, G. Sutton, M. R. Suzuki, S. Suzuki, Y. Svatos, M. Swedish, S. Swiatlowski, M. Sykora, I. Sykora, T. Ta, D. Taccini, C. Tackmann, K. Taenzer, J. Taffard, A. Tafirout, R. Taiblum, N. Takai, H. Takashima, R. Takeda, H. Takeshita, T. Takubo, Y. Talby, M. Talyshev, A. A. Tam, J. Y. C. Tan, K. G. Tanaka, J. Tanaka, R. Tanaka, S. Tannenwald, B. B. Tannoury, N. Tapprogge, S. Tarem, S. Tarrade, F. Tartarelli, G. F. Tas, P. Tasevsky, M. Tashiro, T. Tassi, E. Tavares Delgado, A. Tayalati, Y. Taylor, F. E. Taylor, G. N. Taylor, W. Teischinger, F. A. Castanheira, M. Teixeira Dias Teixeira-Dias, P. Temming, K. K. Ten Kate, H. Teng, P. K. Teoh, J. J. Tepel, F. Terada, S. Terashi, K. Terron, J. Terzo, S. Testa, M. Teuscher, R. J. Therhaag, J. Theveneaux-Pelzer, T. Thomas, J. P. Thomas-Wilsker, J. Thompson, E. N. Thompson, P. D. Thompson, R. J. Thompson, A. S. Thomsen, L. A. Thomson, E. Thomson, M. Thun, R. P. Tibbetts, M. J. Torres, R. E. Ticse Tikhomirov, V. O. Tikhonov, Yu. A. Timoshenko, S. Tiouchichine, E. Tipton, P. Tisserant, S. Todorov, T. Todorova-Nova, S. Tojo, J. Tokar, S. Tokushuku, K. Tollefson, K. Tolley, E. Tomlinson, L. Tomoto, M. Tompkins, L. Toms, K. Torrence, E. Torres, H. Torro Pastor, E. Toth, J. Touchard, F. Tovey, D. R. Trefzger, T. Tremblet, L. Tricoli, A. Trigger, I. M. Trincaz-Duvoid, S. Tripiana, M. F. Trischuk, W. Trocme, B. Troncon, C. Trottier-McDonald, M. Trovatelli, M. True, P. Truong, L. Trzebinski, M. Trzupek, A. Tsarouchas, C. Tseng, J. C-L. Tsiareshka, P. V. Tsionou, D. Tsipolitis, G. Tsirintanis, N. Tsiskaridze, S. Tsiskaridze, V. Tskhadadze, E. G. Tsukerman, I. I. Tsulaia, V. Tsuno, S. Tsybychev, D. Tudorache, A. Tudorache, V. Tuna, A. N. Tupputi, S. A. Turchikhin, S. Turecek, D. Turra, R. Turvey, A. J. Tuts, P. M. Tykhonov, A. Tylmad, M. Tyndel, M. Ueda, I. Ueno, R. Ughetto, M. Ugland, M. Uhlenbrock, M. Ukegawa, F. Unal, G. Undrus, A. Unel, G. Ungaro, F. C. Unno, Y. Unverdorben, C. Urban, J. Urquijo, P. Urrejola, P. Usai, G. Usanova, A. Vacavant, L. Vacek, V. Vachon, B. Valderanis, C. Valencic, N. Valentinetti, S. Valero, A. Valery, L. Valkar, S. Valladolid Gallego, E. Vallecorsa, S. Valls Ferrer, J. A. Van den Wollenberg, W. Van der Deijl, P. C. van der Geer, R. van der Graaf, H. Van der Leeuw, R. van Eldik, N. van Gemmeren, P. Van Nieuwkoop, J. van Vulpen, I. van Woerden, M. C. Vanadia, M. Vandelli, W. Vanguri, R. Vaniachine, A. Vannucci, F. Vardanyan, G. Vari, R. Varnes, E. W. Varol, T. Varouchas, D. Vartapetian, A. Varvell, K. E. Vazeille, F. Schroeder, T. Vazquez Veatch, J. Veloce, L. M. Veloso, F. Velz, T. Veneziano, S. Ventura, A. Ventura, D. Venturi, M. Venturi, N. Venturini, A. Vercesi, V. Verducci, M. Verkerke, W. Vermeulen, J. C. Vest, A. Vetterli, M. C. Viazlo, O. Vichou, I. Vickey, T. Boeriu, O. E. Vickey Viehhauser, G. H. A. Viel, S. Vigne, R. Villa, M. Perez, M. Villaplana Vilucchi, E. Vincter, M. G. Vinogradov, V. B. Vivarelli, I. Vaque, F. Vives Vlachos, S. Vladoiu, D. Vlasak, M. Vogel, M. Vokac, P. Volpi, G. Volpi, M. von der Schmitt, H. von Radziewski, H. von Toerne, E. Vorobel, V. Vorobev, K. Vos, M. Voss, R. Vossebeld, J. H. Vranjes, N. Milosavljevic, M. Vranjes Vrba, V. Vreeswijk, M. Vuillermet, R. Vukotic, I. Vykydal, Z. Wagner, P. Wagner, W. Wahlberg, H. Wahrmund, S. Wakabayashi, J. Walder, J. Walker, R. Walkowiak, W. Wang, C. Wang, F. Wang, H. Wang, H. Wang, J. Wang, J. Wang, K. Wang, R. Wang, S. M. Wang, T. Wang, X. Wanotayaroj, C. Warburton, A. Ward, C. P. Wardrope, D. R. Warsinsky, M. Washbrook, A. Wasicki, C. Watkins, P. M. Watson, A. T. Watson, I. J. Watson, M. F. Watts, G. Watts, S. Waugh, B. M. Webb, S. Weber, M. S. Weber, S. W. Webster, J. S. Weidberg, A. R. Weinert, B. Weingarten, J. Weiser, C. Weits, H. Wells, P. S. Wenaus, T. Wengler, T. Wenig, S. Wermes, N. Werner, M. Werner, P. Wessels, M. Wetter, J. Whalen, K. Wharton, A. M. White, A. White, M. J. White, R. White, S. Whiteson, D. Wickens, F. J. Wiedenmann, W. Wielers, M. Wienemann, P. Wiglesworth, C. Wiik-Fuchs, L. A. M. Wildauer, A. Wilkens, H. G. Williams, H. H. Williams, S. Willis, C. Willocq, S. Wilson, A. Wilson, J. A. Wingerter-Seez, I. Winklmeier, F. Winter, B. T. Wittgen, M. Wittkowski, J. Wollstadt, S. J. Wolter, M. W. Wolters, H. Wosiek, B. K. Wotschack, J. Woudstra, M. J. Wozniak, K. W. Wu, M. Wu, M. Wu, S. L. Wu, X. Wu, Y. Wyatt, T. R. Wynne, B. M. Xella, S. Xu, D. Xu, L. Yabsley, B. Yacoob, S. Yakabe, R. Yamada, M. Yamaguchi, Y. Yamamoto, A. Yamamoto, S. Yamanaka, T. Yamauchi, K. Yamazaki, Y. Yan, Z. Yang, H. Yang, H. Yang, Y. Yao, L. Yao, W-M. Yasu, Y. Yatsenko, E. Wong, K. H. Yau Ye, J. Ye, S. Yeletskikh, I. Yen, A. L. Yildirim, E. Yorita, K. Yoshida, R. Yoshihara, K. Young, C. Young, C. J. S. Youssef, S. Yu, D. R. Yu, J. Yu, J. M. Yu, J. Yuan, L. Yurkewicz, A. Yusuff, I. Zabinski, B. Zaidan, R. Zaitsev, A. M. Zalieckas, J. Zaman, A. Zambito, S. Zanello, L. Zanzi, D. Zeitnitz, C. Zeman, M. Zemla, A. Zengel, K. Zenin, O. Zenis, T. Zerwas, D. Zhang, D. Zhang, F. Zhang, J. Zhang, L. Zhang, R. Zhang, X. Zhang, Z. Zhao, X. Zhao, Y. Zhao, Z. Zhemchugov, A. Zhong, J. Zhou, B. Zhou, C. Zhou, L. Zhou, L. Zhou, N. Zhu, C. G. Zhu, H. Zhu, J. Zhu, Y. Zhuang, X. Zhukov, K. Zibell, A. Zieminska, D. Zimine, N. I. Zimmermann, C. Zimmermann, S. Zinonos, Z. Zinser, M. Ziolkowski, M. Zivkovic, L. Zobernig, G. Zoccoli, A. zur Nedden, M. Zurzolo, G. Zwalinski, L. CA ATLAS Collaboration TI Search for new light gauge bosons in Higgs boson decays to four-lepton final states in pp collisions at root s=8 TeV with the ATLAS detector at the LHC SO PHYSICAL REVIEW D LA English DT Article ID HADRON COLLIDERS; QCD CORRECTIONS; CROSS-SECTIONS; NNLO QCD; ENERGIES; MASS AB This paper presents a search for Higgs bosons decaying to four leptons, either electrons or muons, via one or two light exotic gauge bosons Z(d), H -> ZZ(d) -> 4l or H -> Z(d)Z(d) -> 4l. The search was performed using pp collision data corresponding to an integrated luminosity of about 20 fb(-1) at the center-of-mass energy of root s = 8 TeV recorded with the ATLAS detector at the Large Hadron Collider. The observed data are well described by the Standard Model prediction. Upper bounds on the branching ratio of H -> ZZ(d) -> 4l and on the kinetic mixing parameter between the Z(d) and the Standard Model hypercharge gauge boson are set in the range (1-9) x 10(-5) and (4-17) x 10(-2) respectively, at 95% confidence level assuming the Standard Model branching ratio of H -> ZZ* -> 4l, for Z(d) masses between 15 and 55 GeV. Upper bounds on the effective mass mixing parameter between the Z and the Z(d) are also set using the branching ratio limits in the H -> ZZ(d) -> 4l search, and are in the range (1.5-8.7) x 10(-4) for 15 < m(Zd) < 35 GeV. Upper bounds on the branching ratio of H -> Z(d)Z(d) -> 4l and on the Higgs portal coupling parameter, controlling the strength of the coupling of the Higgs boson to dark vector bosons are set in the range (2-3) x 10(-5) and (1-10) x 10(-4) respectively, at 95% confidence level assuming the Standard Model Higgs boson production cross sections, for Z(d) masses between 15 and 60 GeV. C1 [Jackson, P.; Lee, L.; Soni, N.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia. [Bouffard, J.; Edson, W.; Ernst, J.; Fisher, W. C.; Guindon, S.; Jain, V.] SUNY Albany, Dept Phys, Albany, NY 12222 USA. [Butt, A. I.; Czodrowski, P.; Dassoulas, J.; Gingrich, D. M.; Jabbar, S.; Karamaoun, A.; Moore, R. W.; Pinfold, J. L.; Saddique, A.; Vaque, F. Vives] Univ Alberta, Dept Phys, Edmonton, AB, Canada. [Cakir, O.; Ciftci, A. K.; Yildiz, H. Duran] Ankara Univ, Dept Phys, TR-06100 Ankara, Turkey. [Kuday, S.] Istanbul Aydin Univ, Istanbul, Turkey. [Sultansoy, S.] TOBB Univ Econ & Technol, Div Phys, Ankara, Turkey. [Barnovska, Z.; Berger, N.; Delmastro, M.; Di Ciaccio, L.; Elles, S.; Hryn'ova, T.; Jezequel, S.; Koletsou, I.; Lafaye, R.; Leveque, J.; Massol, N.; Sauvage, G.; Sauvan, E.; Schwoerer, M.; Simard, O.; Todorov, T.; Wingerter-Seez, I.; Yatsenko, E.] CNRS, IN2P3, LAPP, Annecy Le Vieux, France. [Barnovska, Z.; Berger, N.; Delmastro, M.; Di Ciaccio, L.; Elles, S.; Hryn'ova, T.; Jezequel, S.; Koletsou, I.; Lafaye, R.; Leveque, J.; Massol, N.; Sauvage, G.; Sauvan, E.; Schwoerer, M.; Simard, O.; Todorov, T.; Wingerter-Seez, I.; Yatsenko, E.] Univ Savoie Mont Blanc, Annecy Le Vieux, France. [Auerbach, B.; Blair, R. E.; Chekanov, S.; Childers, J. T.; Feng, E. J.; LeCompte, T.; Love, J.; Malon, D.; Nguyen, D. H.; Paramonov, A.; Price, L. E.; Proudfoot, J.; van Gemmeren, P.; Vaniachine, A.; Wang, R.; Yoshida, R.; Zhang, J.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Cheu, E.; Johns, K. A.; Lampen, C. L.; Lampl, W.; Lei, X.; Leone, R.; Loch, P.; Nayyar, R.; O'grady, F.; Rutherfoord, J. P.; Shupe, M. A.; Varnes, E. W.; Veatch, J.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Brandt, A.; Bullock, D.; Carrillo-Montoya, G. D.; Cote, D.; Darmora, S.; De, K.; Farbin, A.; Griffiths, J.; Hadavand, H. K.; Heelan, L.; Kim, H. Y.; Ozturk, N.; Schovancova, J.; Sosebee, M.; Stradling, A. R.; Usai, G.; Vartapetian, A.; White, A.; Yu, J.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. [Angelidakis, S.; Chouridou, S.; Fassouliotis, D.; Giokaris, N.; Ioannou, P.; Kourkoumelis, C.; Manousakis-Katsikakis, A.; Tsirintanis, N.] Univ Athens, Dept Phys, Athens, Greece. [Alexopoulos, T.; Benekos, N.; Dris, M.; Gazis, E. N.; Karakostas, K.; Karastathis, N.; Leontsinis, S.; Maltezos, S.; Ntekas, K.; Panagiotopoulou, E.; Tsipolitis, G.; Vlachos, S.] Natl Tech Univ Athens, Dept Phys, GR-15773 Zografos, Greece. [Abdinov, O.; Ahmadov, F.; Huseynov, N.; Javadov, N.; Khalil-zada, F.] Azerbaijan Acad Sci, Inst Phys, Baku 370143, Azerbaijan. [Anjos, N.; Bosman, M.; Caminal Armadans, R.; Casado, M. P.; Casolino, M.; Cavalli-Sforza, M.; Cortes-Gonzalez, A.; Farooque, T.; Fischer, C.; Giangiobbe, V.; Gonzalez Parra, G.; Grinstein, S.; Juste Rozas, A.; Korolkov, I.; Lange, J. C.; Le Menedeu, E.; Lopez Paz, I.; Martinez, M.; Mir, L. M.; Montejo Berlingen, J.; Pacheco Pages, A.; Padilla Aranda, C.; Riu, I.; Sorin, V.; Succurro, A.; Tripiana, M. F.; Tsiskaridze, S.; Valery, L.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Anjos, N.; Bosman, M.; Caminal Armadans, R.; Casado, M. P.; Casolino, M.; Cavalli-Sforza, M.; Cortes-Gonzalez, A.; Farooque, T.; Fischer, C.; Fracchia, S.; Giangiobbe, V.; Gonzalez Parra, G.; Grinstein, S.; Juste Rozas, A.; Korolkov, I.; Lange, J. C.; Le Menedeu, E.; Lopez Paz, I.; Martinez, M.; Mir, L. M.; Montejo Berlingen, J.; Pacheco Pages, A.; Padilla Aranda, C.; Riu, I.; Sorin, V.; Succurro, A.; Tripiana, M. F.; Tsiskaridze, S.; Valery, L.] Univ Autonoma Barcelona, Dept Fis, E-08193 Barcelona, Spain. [Agatonovic-Jovin, T.; Bozic, I.; Dimitrievska, A.; Krstic, J.; Marjanovic, M.; Popovic, D. S.; Sijacki, Dj.; Simic, Lj.; Vranjes, N.; Milosavljevic, M. Vranjes; Zivkovic, L.] Univ Belgrade, Inst Phys, Belgrade, Serbia. [Buanes, T.; Dale, O.; Eigen, G.; Kastanas, A.; Liebig, W.; Lipniacka, A.; Maeland, S.; Latour, B. Martin Dit; Rosendahl, P. L.; Sandaker, H.; Sjursen, T. B.; Smestad, L.; Stugu, B.; Ugland, M.; Zalieckas, J.] Univ Bergen, Dept Phys & Technol, Bergen, Norway. [Amadio, B. T.; Axen, B.; Barnett, R. M.; Beringer, J.; Brosamer, J.; Calafiura, P.; Caminada, L. M.; Cerutti, F.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Einsweiler, K.; Farrell, S.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Hance, M.; Heinemann, B.; Holmes, T. R.; Jeanty, L.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Marshall, Z.; Ohm, C. C.; Ovcharova, A.; Griso, S. Pagan; Potamianos, K.; Pranko, A.; Quarrie, D. R.; Shapiro, M.; Sood, A.; Tibbetts, M. J.; Trottier-McDonald, M.; Tsulaia, V.; Viel, S.; Wang, H.; Yao, W-M.; Yu, D. R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [Amadio, B. T.; Axen, B.; Barnett, R. M.; Beringer, J.; Brosamer, J.; Calafiura, P.; Caminada, L. M.; Cerutti, F.; Ciocio, A.; Clarke, R. N.; Einsweiler, K.; Farrell, S.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Hance, M.; Heinemann, B.; Hinchliffe, I.; Hinman, R. R.; Holmes, T. R.; Jeanty, L.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Marshall, Z.; Ohm, C. C.; Ovcharova, A.; Griso, S. Pagan; Potamianos, K.; Pranko, A.; Quarrie, D. R.; Shapiro, M.; Sood, A.; Tibbetts, M. J.; Trottier-McDonald, M.; Tsulaia, V.; Viel, S.; Wang, H.; Yao, W-M.; Yu, D. R.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Dietrich, J.; Giorgi, F. M.; Grancagnolo, S.; Herbert, G. H.; Herrberg-Schubert, R.; Hristova, I.; Kind, O. M.; Kolanoski, H.; Lacker, H.; Lohse, T.; Nikiforov, A.; Rehnisch, L.; Rieck, P.; Schulz, H.; Stamm, S.; zur Nedden, M.] Humboldt Univ, Dept Phys, Berlin, Germany. [Beck, H. P.; Cervelli, A.; Ereditato, A.; Haug, S.; Marti, L. F.; Meloni, F.; Sciacca, F. G.; Stramaglia, M. E.; Stucci, S. A.; Weber, M. S.] Univ Bern, Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Beck, H. P.; Cervelli, A.; Ereditato, A.; Haug, S.; Marti, L. F.; Meloni, F.; Sciacca, F. G.; Stramaglia, M. E.; Stucci, S. A.; Weber, M. S.] Univ Bern, High Energy Phys Lab, Bern, Switzerland. [Allbrooke, B. M. M.; Bella, L. Aperio; Bansil, H. S.; Bracinik, J.; Charlton, D. G.; Chisholm, A. S.; Daniells, A. C.; Hawkes, C. M.; Head, S. J.; Hillier, S. J.; Levy, M.; Mudd, R. D.; Quijada, J. A. Murillo; Newman, P. R.; Nikolopoulos, K.; Owen, R. E.; Slater, M.; Thomas, J. P.; Thompson, P. D.; Watkins, P. M.; Watson, M. F.; Wilson, J. A.] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England. [Arik, M.; Istin, S.; Ozcan, V. E.] Bogazici Univ, Dept Phys, Istanbul, Turkey. [Cetin, S. A.] Dogus Univ, Dept Phys, Istanbul, Turkey. [Beddall, A. J.; Beddall, A.; Bingul, A.] Gaziantep Univ, Dept Engn Phys, Gaziantep, Turkey. [Alberghi, G. L.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruschi, M.; Corradi, M.; De Castro, S.; Fabbri, L.; Franchini, M.; Gabrielli, A.; Giacobbe, B.; Giorgi, F. M.; Grafstroem, P.; Manghi, F. Lasagni; Massa, I.; Massa, L.; Mengarelli, A.; Negrini, M.; Piccinini, M.; Polini, A.; Rinaldi, L.; Romano, M.; Sbarra, C.; Sbrizzi, A.; Semprini-Cesari, N.; Sidoti, A.; Spighi, R.; Tupputi, S. A.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Ist Nazl Fis Nucl, Sez Bologna, Bologna, Italy. [Alberghi, G. L.; De Castro, S.; Fabbri, L.; Franchini, M.; Gabrielli, A.; Grafstroem, P.; Manghi, F. Lasagni; Massa, I.; Massa, L.; Mengarelli, A.; Piccinini, M.; Romano, M.; Sbrizzi, A.; Semprini-Cesari, N.; Sidoti, A.; Tupputi, S. A.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Univ Bologna, Dipartimento Fis & Astron, Bologna, Italy. [Arslan, O.; Bechtle, P.; Bernlochner, F. U.; Brock, I.; Cioara, I. A.; Cristinziani, M.; Davey, W.; Desch, K.; Dingfelder, J.; Ehrenfeld, W.; Gaycken, G.; Geich-Gimbel, Ch.; Gonella, L.; Haefner, P.; Hageboeck, S.; Hansen, M. C.; Hellmich, D.; Hohn, D.; Huegging, F.; Janssen, J.; Kostyukhin, V. V.; Kraus, J. K.; Kroseberg, J.; Krueger, H.; Lenz, T.; Leyko, A. M.; Liebal, J.; Limbach, C.; Mergelmeyer, S.; Mijovic, L.; Mueller, K.; Obermann, T.; Pohl, D.; Ricken, O.; Sarrazin, B.; Schaepe, S.; Schopf, E.; Schultens, M. J.; Schwindt, T.; Scutti, F.; Seema, P.; Stillings, J. A.; Tannoury, N.; Therhaag, J.; Uhlenbrock, M.; Velz, T.; von Toerne, E.; Wagner, P.; Wang, T.; Wermes, N.; Wienemann, P.; Wiik-Fuchs, L. A. M.; Winter, B. T.; Wong, K. H. Yau] Univ Bonn, Inst Phys, Bonn, Germany. [Ahlen, S. P.; Bernard, C.; Black, K. M.; Butler, J. M.; Dell'Asta, L.; Helary, L.; Kruskal, M.; Long, B. A.; Shank, J. T.; Yan, Z.; Youssef, S.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Amelung, C.; Amundsen, G.; Artoni, G.; Bensinger, J. R.; Bianchini, L.; Blocker, C.; Coffey, L.; Dhaliwal, S.; Fitzgerald, E. A.; Sciolla, G.; Venturini, A.; Zengel, K.] Brandeis Univ, Dept Phys, Waltham, MA 02254 USA. [Amaral Coutinho, Y.; Caloba, L. P.; Maidantchik, C.; Marroquim, F.; Nepomuceno, A. A.; Seixas, J. M.] Univ Fed Rio de Janeiro, COPPE EE IF, Rio De Janeiro, Brazil. [Cerqueira, A. S.; Manhaes de Andrade Filho, L.] Fed Univ Juiz de Fora UFJF, Elect Circuits Dept, Juiz De Fora, Brazil. [do Vale, M. A. B.] Fed Univ Sao Joao del Rei UFSJ, Sao Joao Del Rei, Brazil. [Donadelli, M.; La Rosa Navarro, J. L.; Leite, M. A. L.] Univ Sao Paulo, Inst Fis, BR-01498 Sao Paulo, Brazil. [Adams, D. L.; Assamagan, K.; Begel, M.; Buttinger, W.; Chen, H.; Chernyatin, V.; Debbe, R.; Ernst, M.; Gibbard, B.; Gordon, H. A.; Iakovidis, G.; Klimentov, A.; Kouskoura, V.; Kravchenko, A.; Lanni, F.; Lissauer, D.; Lynn, D.; Ma, H.; Maeno, T.; Metcalfe, J.; Mountricha, E.; Nevski, P.; Nilsson, P.; Damazio, D. Oliveira; Paige, F.; Panitkin, S.; Perepelitsa, D. V.; Pleier, M. -A.; Polychronakos, V.; Protopopescu, S.; Purohit, M.; Radeka, V.; Rajagopalan, S.; Redlinger, G.; Snyder, S.; Steinberg, P.; Takai, H.; Undrus, A.; Wenaus, T.; Ye, S.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Alexa, C.; Boldea, V.; Buda, S. I.; Caprini, I.; Chitan, A.; Ciubancan, M.; Constantinescu, S.; Dita, P.; Dobre, M.; Ducu, O. A.; Jinaru, A.; Martoiu, V. S.; Maurer, J.; Olariu, A.; Pantea, D.; Rotaru, M.; Stoicea, G.; Tudorache, A.; Tudorache, V.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Popeneciu, G. A.] Natl Inst Res & Dev Isotop & Mol Technol, Dept Phys, Cluj Napoca, Romania. Univ Politehn Bucuresti, Bucharest, Romania. West Univ Timisoara, Timisoara, Romania. [Otero y Garzon, G.; Piegaia, R.; Reisin, H.; Sacerdoti, S.] Univ Buenos Aires, Dept Fis, Buenos Aires, DF, Argentina. [Arratia, M.; Barlow, N.; Batley, J. R.; Brochu, F. M.; Carter, J. R.; Chapman, J. D.; Cottin, G.; French, S. T.; Gillam, T. P. S.; Hill, J. C.; Kaneti, S.; Khoo, T. J.; Lester, C. G.; Mueller, T.; Parker, M. A.; Robinson, D.; Thomson, M.; Ward, C. P.; Yusuff, I.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Bellerive, A.; Cree, G.; Di Valentino, D.; Koffas, T.; Lacey, J.; Leight, W. A.; McCarthy, T. G.; Nomidis, I.; Oakham, F. G.; Pasztor, G.; Tarrade, F.; Ueno, R.; Vincter, M. G.; Whalen, K.] Carleton Univ, Dept Phys, Ottawa, ON K1S 5B6, Canada. [Abreu, R.; Aleksa, M.; Gonzalez, B. Alvarez; Andari, N.; Anders, G.; Anghinolfi, F.; Armbruster, A. J.; Arnaez, O.; Avolio, G.; Baak, M. A.; Backes, M.; Backhaus, M.; Barak, L.; Bogaerts, J. A.; Boveia, A.; Boyd, J.; Burckhart, H.; Campana, S.; Garrido, M. D. M. Capeans; Carli, T.; Catinaccio, A.; Cattai, A.; Cerv, M.; Chromek-Burckhart, D.; Conti, G.; Dell'Acqua, A.; Deviveiros, P. O.; Di Girolamo, A.; Di Girolamo, B.; Dittus, F.; Dobos, D.; Dudarev, A.; Eifert, T.; Ellis, N.; Elsing, M.; Farthouat, P.; Fassnacht, P.; Feigl, S.; Perez, S. Fernandez; Francis, D.; Froidevaux, D.; Gillberg, D.; Glatzer, J.; Goossens, L.; Gorini, B.; Gray, H. M.; Hawkings, R. J.; Helsens, C.; Correia, A. M. Henriques; Hervas, L.; Hoecker, A.; Hubacek, Z.; Huhtinen, M.; Iengo, P.; Jaekel, M. R.; Jakobsen, S.; Jenni, P.; Kaneda, M.; Klioutchnikova, T.; Krasznahorkay, A.; Lantzsch, K.; Lapoire, C.; Lassnig, M.; Miotto, G. Lehmann; Lenzi, B.; Lichard, P.; Macina, D.; Malyukov, S.; Mandelli, B.; Mapelli, L.; Marzin, A.; Milic, A.; Mornacchi, G.; Nairz, A. M.; Nakahama, Y.; Nessi, M.; Nicquevert, B.; Norberg, S.; Oide, H.; Palestini, S.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Pommes, K.; Poppleton, A.; Poulard, G.; Poveda, J.; Prasad, S.; Rammensee, M.; Raymond, M.; Rembser, C.; Roe, S.; Ruiz-Martinez, A.; Salzburger, A.; Schaefer, D.; Schlenker, S.; Schmieden, K.; Serfon, C.; Sfyrla, A.; Solans, C. A.; Spigo, G.; Stelzer, H. J.; Teischinger, F. A.; Ten Kate, H.; Tremblet, L.; Tricoli, A.; Tsarouchas, C.; Unal, G.; van Woerden, M. C.; Vandelli, W.; Vigne, R.; Voss, R.; Vuillermet, R.; Wells, P. S.; Wengler, T.; Wenig, S.; Werner, P.; Wilkens, H. G.; Wotschack, J.; Young, C. J. S.; Zwalinski, L.] CERN, Geneva, Switzerland. [Alison, J.; Anderson, K. J.; Toro, R. Camacho; Cheng, Y.; Dandoy, J. R.; Facini, G.; Fiascaris, M.; Gardner, R. W.; Ilchenko, Y.; Kapliy, A.; Kim, Y.; Krizka, K.; Li, H. L.; Merritt, F. S.; Miller, D. W.; Narayan, R.; Onyisi, P. U. E.; Oreglia, M. J.; Penning, B.; Pilcher, J. E.; Saxon, J.; Shochet, M. J.; Vukotic, I.; Webster, J. S.; Wu, M.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Carquin, E.; Diaz, M. A.; Ochoa-Ricoux, J. P.; Vogel, M.] Pontificia Univ Catolica Chile, Dept Fis, Santiago, Chile. [Brooks, W. K.; Kuleshov, S.; Pezoa, R.; Prokoshin, F.; White, R.] Univ Tecn Federico Santa Maria, Dept Fis, Valparaiso, Chile. [Bai, Y.; Fang, Y.; Jin, S.; Lou, X.; Ouyang, Q.; Ren, H.; Shan, L. Y.; Sun, X.; Wang, J.; Xu, D.; Yao, L.; Zhu, H.; Zhuang, X.] Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China. [Gao, J.; Guan, L.; Han, L.; Hu, Q.; Jiang, Y.; Li, B.; Liu, J. B.; Liu, M.; Liu, Y.; Peng, H.; Song, H. Y.; Xu, L.; Zhang, R.; Zhao, Z.; Zhu, Y.] Univ Sci & Technol China, Dept Modern Phys, Hefei, Anhui, Peoples R China. [Chen, S.; Li, Y.; Wang, C.] Nanjing Univ, Dept Phys, Nanjing, Jiangsu, Peoples R China. [Chen, L.; Feng, C.; Liu, B.; Ma, L. L.; Zhang, X.; Zhao, Y.; Zhu, C. G.] Shandong Univ, Sch Phys, Jinan, Shandong, Peoples R China. [Guo, J.; Li, L.; Yang, H.] Shanghai Jiao Tong Univ, Dept Phys & Astron, Shanghai Key Lab Particle Phys & Cosmol, Shanghai 200030, Peoples R China. [Chen, X.] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Gilles, G.; Gris, Ph.; Liao, H.; Madar, R.; Pallin, D.; Saez, S. M. Romano; Santoni, C.; Simon, D.; Theveneaux-Pelzer, T.; Vazeille, F.] Univ Clermont Ferrand, Phys Corpusculaire Lab, Clermont Ferrand, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Gilles, G.; Gris, Ph.; Liao, H.; Madar, R.; Pallin, D.; Saez, S. M. Romano; Santoni, C.; Simon, D.; Theveneaux-Pelzer, T.; Vazeille, F.] Univ Clermont Ferrand, Clermont Ferrand, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Gilles, G.; Gris, Ph.; Liao, H.; Madar, R.; Pallin, D.; Saez, S. M. Romano; Santoni, C.; Simon, D.; Theveneaux-Pelzer, T.; Vazeille, F.] Univ Clermont Ferrand, Photochim Mol & Macromol Lab, CNRS, IN2P3, F-63177 Clermont Ferrand, France. [Alkire, S. P.; Altheimer, A.; Andeen, T.; Angerami, A.; Bain, T.; Brooijmans, G.; Cole, B.; Hu, D.; Hughes, E. W.; Iordanidou, K.; Klein, M.; Mohapatra, S.; Nikiforou, N.; Parsons, J. A.; Smith, M. N. K.; Smith, R. W.; Thompson, E. N.; Tuts, P. M.; Zhou, L.] Columbia Univ, Nevis Lab, New York, NY USA. [Alonso, A.; Dam, M.; Galster, G.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Joergensen, M. D.; Loevschall-Jensen, A. E.; Monk, J.; Mortensen, S. S.; Pedersen, L. E.; Petersen, T. C.; Pingel, A.; Wiglesworth, C.; Xella, S.] Univ Copenhagen, Niels Bohr Inst, Copenhagen, Denmark. [Cairo, V. M.; Capua, M.; Crosetti, G.; La Rotonda, L.; Mastroberardino, A.; Policicchio, A.; Salvatore, D.; Scarfone, V.; Schioppa, M.; Susinno, G.; Tassi, E.] Ist Nazl Fis Nucl, Lab Nazl Frascati, Grp Collegato Cosenza, Frascati, Italy. [Cairo, V. M.; Capua, M.; Crosetti, G.; La Rotonda, L.; Mastroberardino, A.; Policicchio, A.; Salvatore, D.; Scarfone, V.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dipartimento Fis, I-87036 Arcavacata Di Rende, Italy. [Adamczyk, L.; Bold, T.; Dabrowski, W.; Dyndal, M.; Grabowska-Bold, I.; Kisielewska, D.; Koperny, S.; Kowalski, T. Z.; Mindur, B.; Przybycien, M.; Zemla, A.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, Krakow, Poland. [Palka, M.; Richter-Was, E.] Jagiellonian Univ, Marian Smoluchowski Inst Phys, Krakow, Poland. [Banas, E.; de Renstrom, P. A. Bruckman; Chwastowski, J. J.; Derendarz, D.; Godlewski, J.; Gornicki, E.; Hajduk, Z.; Iwanski, W.; Kaczmarska, A.; Korcyl, K.; Malecki, Pa.; Olszewski, A.; Olszowska, J.; Stanecka, E.; Staszewski, R.; Trzebinski, M.; Trzupek, A.; Wolter, M. W.; Wosiek, B. K.; Wozniak, K. W.; Zabinski, B.] Polish Acad Sci, Inst Nucl Phys, Krakow, Poland. [Cao, T.; Firan, A.; Hetherly, J. W.; Kama, S.; Kehoe, R.; Sekula, S. J.; Stroynowski, R.; Turvey, A. J.; Varol, T.; Wang, H.; Ye, J.; Zhao, X.; Zhou, L.] So Methodist Univ, Dept Phys, Dallas, TX 75275 USA. [Izen, J. M.; Leyton, M.; Meirose, B.; Namasivayam, H.; Reeves, K.] Univ Texas Dallas, Dept Phys, Richardson, TX 75083 USA. [Argyropoulos, S.; Asbah, N.; Bessner, M.; Bloch, I.; Borroni, S.; Britzger, D.; Camarda, S.; Deterre, C.; Eckardt, C.; Filipuzzi, M.; Glazov, A.; Grahn, K-J.; Gregor, I. M.; Grohsjean, A.; Haleem, M.; Hamnett, P. G.; Hengler, C.; Hiller, K. H.; Howarth, J.; Huang, Y.; Katzy, J.; Keller, J. S.; Kondrashova, N.; Kuhl, T.; Lobodzinska, E.; Lohwasser, K.; Mamuzic, J.; Medinnis, M.; Moenig, K.; Garcia, R. F. Naranjo; Naumann, T.; Peschke, R.; Petit, E.; Rubinskiy, I.; Schaefer, R.; Schmitt, S.; Sedov, G.; Shushkevich, S.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Starovoitov, P.; Styles, N. A.; Tackmann, K.; Wang, J.; Wasicki, C.; Yildirim, E.] DESY, Hamburg, Germany. [Argyropoulos, S.; Asbah, N.; Bessner, M.; Bloch, I.; Borroni, S.; Britzger, D.; Camarda, S.; Deterre, C.; Eckardt, C.; Filipuzzi, M.; Glazov, A.; Grahn, K-J.; Gregor, I. M.; Grohsjean, A.; Haleem, M.; Hamnett, P. G.; Hengler, C.; Hiller, K. H.; Howarth, J.; Huang, Y.; Katzy, J.; Keller, J. S.; Kondrashova, N.; Kuhl, T.; Lobodzinska, E.; Lohwasser, K.; Mamuzic, J.; Medinnis, M.; Moenig, K.; Garcia, R. F. Naranjo; Naumann, T.; Peschke, R.; Petit, E.; Radescu, V.; Rubinskiy, I.; Schaefer, R.; Schmitt, S.; Sedov, G.; Shushkevich, S.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Starovoitov, P.; Styles, N. A.; Tackmann, K.; Wang, J.; Wasicki, C.; Yildirim, E.] DESY, Zeuthen, Germany. [Burmeister, I.; Erdmann, J.; Esch, H.; Goessling, C.; Homann, M.; Jentzsch, J.; Jung, C. A.; Klingenberg, R.; Kroeninger, K.] Tech Univ Dortmund, Inst Expt Phys 4, Dortmund, Germany. [Anger, P.; Duschinger, D.; Friedrich, F.; Grohs, J. P.; Gumpert, C.; Gutschow, C.; Hauswald, L.; Kobel, M.; Mader, W. F.; Morgenstern, M.; Novgorodova, O.; Rudolph, C.; Schnoor, U.; Siegert, F.; Socher, F.; Staerz, S.; Straessner, A.; Vest, A.; Wahrmund, S.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Arce, A. T. H.; Benjamin, D. P.; Bocci, A.; Cerio, B. C.; Goshaw, A. T.; Kajomovitz, E.; Kotwal, A.; Kruse, M. C.; Li, L.; Liu, M.; Oh, S. H.; Zhou, C.] Duke Univ, Dept Phys, Durham, NC 27706 USA. [Bhimji, W.; Bristow, T. M.; Clark, P. J.; Dias, F. A.; Edwards, N. C.; Gao, Y.; Walls, F. M. Garay; Glaysher, P. C. F.; Harrington, R. D.; Leonidopoulos, C.; Martin, V. J.; Mills, C.; O'Brien, B. J.; Pino, S. A. Olivares; Proissl, M.; Selbach, K. E.; Smart, B. H.; Washbrook, A.; Wynne, B. M.] Univ Edinburgh, SUPA Sch Phys & Astron, Edinburgh, Midlothian, Scotland. [Antonelli, M.; Beretta, M.; Bilokon, H.; Chiarella, V.; Curatolo, M.; Di Nardo, R.; Esposito, B.; Gatti, C.; Giromini, P.; Laurelli, P.; Maccarrone, G.; Mancini, G.; Sansoni, A.; Testa, M.; Vilucchi, E.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Amoroso, S.; Arnold, H.; Betancourt, C.; Boehler, M.; Bruneliere, R.; Buehrer, F.; Buescher, D.; Coniavitis, E.; Consorti, V.; Dang, N. P.; Dao, V.; Di Simone, A.; Flechl, M.; Giuliani, C.; Herten, G.; Jakobs, K.; Javurek, T.; Jenni, P.; Kiss, F.; Koeneke, K.; Kopp, A. K.; Kuehn, S.; Lai, S.; Landgraf, U.; Mahboubi, K.; Mohr, W.; Pagacova, M.; Parzefall, U.; Ronzani, M.; Rosbach, K.; Ruehr, F.; Rurikova, Z.; Ruthmann, N.; Schillo, C.; Schmidt, E.; Schumacher, M.; Sommer, P.; Sundermann, J. E.; Temming, K. K.; Tsiskaridze, V.; Ungaro, F. C.; von Radziewski, H.; Warsinsky, M.; Weiser, C.; Werner, M.; Zhang, L.; Zimmermann, S.] Univ Freiburg, Fak Mathemat & Phys, D-79106 Freiburg, Germany. [Ancu, L. S.; Barone, G.; Bell, W. H.; Noccioli, E. Benhar; De Mendizabal, J. Bilbao; Clark, A.; Delitzsch, C. M.; della Volpe, D.; Doglioni, C.; Ferrere, D.; Gadomski, S.; Golling, T.; Gonzalez-Sevilla, S.; Gramling, J.; Guescini, F.; Iacobucci, G.; Katre, A.; La Rosa, A.; Mermod, P.; Miucci, A.; Muenstermann, D.; Nessi, M.; Paolozzi, L.; Picazio, A.; Ristic, B.; Tykhonov, A.; Vallecorsa, S.; Wu, X.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Barberis, D.; Darbo, G.; Favareto, A.; Parodi, A. Ferretto; Gagliardi, G.; Gaudiello, A.; Gemme, C.; Guido, E.; Morettini, P.; Osculati, B.; Parodi, F.; Passaggio, S.; Rossi, L. P.; Sannino, M.; Schiavi, C.] Ist Nazl Fis Nucl, Sez Genova, Genoa, Italy. [Barberis, D.; Favareto, A.; Parodi, A. Ferretto; Gagliardi, G.; Gaudiello, A.; Guido, E.; Osculati, B.; Parodi, F.; Sannino, M.; Schiavi, C.] Univ Genoa, Dipartimento Fis, Genoa, Italy. [Jejelava, J.; Tskhadadze, E. G.] Ivane Javakhishvili Tbilisi State Univ, E Andronikashvili Inst Phys, Tbilisi, Rep of Georgia. [Djobava, T.; Durglishvili, A.; Khubua, J.; Mosidze, M.] Tbilisi State Univ, Inst High Energy Phys, Tbilisi, Rep of Georgia. [Dueren, M.; Kreutzfeldt, K.; Stenzel, H.] Univ Giessen, Inst Phys 2, Giessen, Germany. [Bates, R. L.; Britton, D.; Buckley, A. G.; Bussey, P.; Buttar, C. M.; Buzatu, A.; Cinca, D.; D'Auria, S.; Doyle, A. T.; Ferrando, J.; de Lima, D. E. Ferreira; Gul, U.; Ortiz, N. G. Gutierrez; Kar, D.; Knue, A.; Morton, A.; Mullen, P.; O'Shea, V.; Barrera, C. Oropeza; Owen, M.; Pollard, C. S.; Qin, G.; Quilty, D.; Ravenscroft, T.; Robson, A.; St Denis, R. D.; Stewart, G. A.; Thompson, A. S.] Univ Glasgow, SUPA Sch Phys & Astron, Glasgow, Lanark, Scotland. [Bindi, M.; Blumenschein, U.; Brandt, G.; Drechsler, E.; George, M.; Graber, L.; Grosse-Knetter, J.; Hamer, M.; Kareem, M. J.; Kawamura, G.; Lemmer, B.; Magradze, E.; Mantoani, M.; Mchedlidze, G.; Llacer, M. Moreno; Musheghyan, H.; Nackenhorst, O.; Nadal, J.; Quadt, A.; Rieger, J.; Schorlemmer, A. L. S.; Shabalina, E.; Stolte, P.; Weingarten, J.; Zinonos, Z.] Univ Gottingen, Inst Phys 2, Gottingen, Germany. [Albrand, S.; Brown, J.; Collot, J.; Crepe-Renaudin, S.; Delsart, P. A.; Gabaldon, C.; Genest, M. H.; Hostachy, J-Y.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Monini, C.; Stark, J.; Trocme, B.; Wu, M.] Univ Grenoble Alpes, CNRS, IN2P3, Lab Phys Subat & Cosmol, Grenoble, France. [McFarlane, K. W.] Hampton Univ, Dept Phys, Hampton, VA 23668 USA. [da Costa, J. Barreiro Guimaraes; Catastini, P.; Clark, B. L.; Franklin, M.; Huth, J.; Ippolito, V.; Mateos, D. Lopez; Mercurio, K. M.; Morii, M.; Skottowe, H. P.; Spearman, W. R.; Sun, S.; Tolley, E.; Yen, A. L.; Zambito, S.] Harvard Univ, Lab Particle Phys & Cosmol, Cambridge, MA 02138 USA. [Andrei, V.; Baas, A. E.; Brandt, O.; Davygora, Y.; Djuvsland, J. I.; Dunford, M.; Geisler, M. P.; Hanke, P.; Jongmanns, J.; Kluge, E. -E.; Lang, V. S.; Meier, K.; Scharf, V.; Schultz-Coulon, H. -C.; Stamen, R.; Wessels, M.] Heidelberg Univ, Kirchhoff Inst Phys, Heidelberg, Germany. [Anders, C. F.; Giulini, M.; Lisovyi, M.; Schaetzel, S.; Schmitt, S.; Schoening, A.; Sosa, D.] Heidelberg Univ, Inst Phys, Heidelberg, Germany. [Colombo, T.; Kretz, M.; Kugel, A.] Heidelberg Univ, ZITI Inst Tech Informat, Mannheim, Germany. [Nagasaka, Y.] Hiroshima Inst Technol, Fac Appl Informat Sci, Hiroshima, Japan. [Bortolotto, V.; Castillo, L. R. Flores] Chinese Univ Hong Kong, Dept Phys, Shatin, Hong Kong, Peoples R China. [Bortolotto, V.] Univ Hong Kong, Dept Phys, Hong Kong, Hong Kong, Peoples R China. [Bortolotto, V.; Prokofiev, K.] Hong Kong Univ Sci & Technol, Dept Phys, Kowloon, Hong Kong, Peoples R China. [Choi, K.; Dattagupta, A.; Evans, H.; Gagnon, P.; Lammers, S.; Martinez, N. Lorenzo; Luehring, F.; Ogren, H.; Penwell, J.; Weinert, B.; Zieminska, D.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Jansky, R. W.; Jussel, P.; Kneringer, E.; Lukas, W.; Usanova, A.] Leopold Franzens Univ, Inst Astro & Teilchenphys, Innsbruck, Austria. [Mallik, U.; Mandrysch, R.; Zaidan, R.] Univ Iowa, Iowa City, IA USA. [Chen, C.; Cochran, J.; De Lorenzi, F.; Krumnack, N.; Pluth, D.; Prell, S.] Iowa State Univ, Dept Phys & Astron, Ames, IA USA. [Ahmadov, F.; Aleksandrov, I. N.; Bednyakov, V. A.; Boyko, I. R.; Budagov, I. A.; Chelkov, G. A.; Cheplakov, A.; Chizhov, M. V.; Dedovich, D. V.; Demichev, M.; Gostkin, M. I.; Huseynov, N.; Javadov, N.; Karpov, S. N.; Karpova, Z. M.; Kazarinov, M. Y.; Khramov, E.; Kotov, V. M.; Kruchonak, U.; Krumshteyn, Z. V.; Kukhtin, V.; Ladygin, E.; Minashvili, I. A.; Mineev, M.; Peshekhonov, V. D.; Plotnikova, E.; Potrap, I. N.; Pozdnyakov, V.; Rusakovich, N. A.; Sadykov, R.; Sapronov, A.; Shiyakova, M.; Sisakyan, A. N.; Soloshenko, A.; Vinogradov, V. B.; Yeletskikh, I.; Zhemchugov, A.; Zimine, N. I.] Joint Inst Nucl Res Dubna, Dubna, Russia. [Amako, K.; Aoki, M.; Arai, Y.; Ikeno, M.; Iwasaki, H.; Kanzaki, J.; Kohriki, T.; Kondo, T.; Kono, T.; Makida, Y.; Nagano, K.; Nakamura, K.; Nozaki, M.; Odaka, S.; Sasaki, O.; Suzuki, S.; Suzuki, Y.; Takubo, Y.; Tanaka, S.; Terada, S.; Tokushuku, K.; Tsuno, S.; Unno, Y.; Yamada, M.; Yamamoto, A.; Yasu, Y.] High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki, Japan. [Chen, Y.; Hasegawa, M.; Inamaru, Y.; Kishimoto, T.; Kurashige, H.; Kurumida, R.; Ochi, A.; Shimizu, S.; Takeda, H.; Yakabe, R.; Yamazaki, Y.; Yuan, L.] Kobe Univ, Grad Sch Sci, Kobe, Hyogo 657, Japan. [Ishino, M.; Kunigo, T.; Sumida, T.; Tashiro, T.] Kyoto Univ, Fac Sci, Kyoto, Japan. [Takashima, R.] Kyoto Univ, Kyoto 612, Japan. [Kawagoe, K.; Oda, S.; Otono, H.; Tojo, J.] Kyushu Univ, Dept Phys, Fukuoka 812, Japan. [Alconada Verzini, M. J.; Alonso, A.; Arduh, F. A.; Dova, M. T.; Monticelli, F.; Wahlberg, H.] Univ Nacl La Plata, Inst Fis La Plata, La Plata, Buenos Aires, Argentina. [Alconada Verzini, M. J.; Alonso, F.; Arduh, F. A.; Dova, M. T.; Monticelli, F.; Wahlberg, H.] Consejo Nacl Invest Cient & Tecn, La Plata, Buenos Aires, Argentina. [Barton, A. E.; Beattie, M. D.; Borissov, G.; Bouhova-Thacker, E. V.; Dearnaley, W. J.; Fox, H.; Grimm, K.; Henderson, R. C. W.; Hughes, G.; Jones, R. W. L.; Kartvelishvili, V.; Long, R. E.; Love, P. A.; Maddocks, H. J.; Skinner, M. B.; Smizanska, M.; Walder, J.; Wharton, A. M.] Univ Lancaster, Dept Phys, Lancaster, England. [Chiodini, G.; Gorini, E.; Primavera, M.; Spagnolo, S.; Ventura, A.] Ist Nazl Fis Nucl, Sez Lecce, Lecce, Italy. [Gorini, E.; Spagnolo, S.; Ventura, A.] Univ Salento, Dipartimento Matemat & Fis, Lecce, Italy. [Affolder, A. A.; Allport, P. P.; Anders, J. K.; Burdin, S.; D'Onofrio, M.; Dervan, P.; Gwilliam, C. B.; Hayward, H. S.; Jackson, M.; Jones, T. J.; King, B. T.; Klein, M.; Klein, U.; Kretzschmar, J.; Laycock, P.; Lehan, A.; Maxfield, S. J.; Mehta, A.; Readioff, N. P.; Schnellbach, Y. J.; Vossebeld, J. H.] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 3BX, Merseyside, England. [Cindro, V.; Deliyergiyev, M.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Mandic, I.; Mikuz, M.; Sfiligoj, T.] Jozef Stefan Inst, Dept Phys, Ljubljana, Slovenia. [Cindro, V.; Deliyergiyev, M.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Mandic, I.; Mikuz, M.; Sfiligoj, T.] Univ Ljubljana, Ljubljana, Slovenia. [Alpigiani, C.; Bevan, A. J.; Bona, M.; Bret, M. Cano; Cerrito, L.; Fletcher, G.; Goddard, J. R.; Hays, J. M.; Hickling, R.; Landon, M. P. J.; Lloyd, S. L.; Morris, J. D.; Nooney, T.; Piccaro, E.; Rizvi, E.; Sandbach, R. L.; Snidero, G.; Castanheira, M. Teixeira Dias] Queen Mary Univ London, Sch Phys & Astron, London, England. [Berry, T.; Blanco, J. E.; Boisvert, V.; Brooks, T.; Connelly, I. A.; Cowan, G.; Duguid, L.; Giannelli, M. Faucci; George, S.; Gibson, S. M.; Vazquez, J. G. Panduro; Pastore, Fr.; Savage, G.; Spano, F.; Teixeira-Dias, P.; Thomas-Wilsker, J.] Royal Holloway Univ London, Dept Phys, Surrey, England. [Bieniek, S. P.; Butterworth, J. M.; Campanelli, M.; Casadei, D.; Chislett, R. T.; Christodoulou, V.; Cooper, B. D.; Davison, P.; Falla, R. J.; Freeborn, D.; Gregersen, K.; Hesketh, G. G.; Jansen, E.; Jiggins, S.; Konstantinidis, N.; Korn, A.; Kucuk, H.; Lambourne, L.; Leney, K. J. C.; Martyniuk, A. C.; Mcfayden, J. A.; Nurse, E.; Ochoa, I.; Richter, S.; Scanlon, T.; Sherwood, P.; Simmons, B.; Wardrope, D. R.; Waugh, B. M.] UCL, Dept Phys & Astron, London, England. [Greenwood, Z. D.; Grossi, G. C.; Jana, D. K.; Sawyer, L.; Subramaniam, R.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Beau, T.; Bomben, M.; Calderini, G.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pandini, C. E.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.; Varouchas, D.] UPMC, Lab Phys Nucl & Hautes Energies, Paris, France. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pandini, C. E.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.; Varouchas, D.] Univ Paris Diderot, Paris, France. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pandini, C. E.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.; Varouchas, D.] CNRS, IN2P3, Paris, France. [Akesson, T. P. A.; Bocchetta, S. S.; Bryngemark, L.; Floderus, A.; Hawkins, A. D.; Hedberg, V.; Ivarsson, J.; Jarlskog, G.; Mjornmark, J. U.; Smirnova, O.; Viazlo, O.] Lund Univ, Inst Fys, Lund, Sweden. [Arnal, V.; Barreiro, F.; Cantero, J.; De la Torre, H.; Del Peso, J.; Glasman, C.; Llorente Merino, J.; Terron, J.] Univ Autonoma Madrid, Dept Fis Teor C15, Madrid, Spain. [Becker, M.; Bertella, C.; Blum, W.; Buescher, V.; Caputo, R.; Caudron, J.; Ellinghaus, F.; Endner, O. C.; Ertel, E.; Fiedler, F.; Torregrosa, E. Fullana; Heck, T.; Hohlfeld, M.; Huelsing, T. A.; Karnevskiy, M.; Kleinknecht, K.; Koenig, S.; Koepke, L.; Lin, T. H.; Masetti, L.; Mattmann, J.; Meyer, C.; Moritz, S.; Poettgen, R.; Rave, S.; Sander, H. G.; Schaeffer, J.; Schaefer, U.; Schmitt, C.; Schott, M.; Schroeder, C.; Schuh, N.; Simioni, E.; Tapprogge, S.; Urrejola, P.; Valderanis, C.; Wollstadt, S. J.; Zimmermann, C.; Zinser, M.] Johannes Gutenberg Univ Mainz, Inst Phys, Mainz, Germany. [Balli, F.; Barnes, S. L.; Cox, B. E.; Da Via, C.; Forti, A.; Ponce, J. M. Iturbe; Joshi, K. D.; Keoshkerian, H.; Klinger, J. A.; Loebinger, F. K.; Marsden, S. P.; Masik, J.; Neep, T. J.; Oh, A.; Ospanov, R.; Pater, J. R.; Peters, R. F. Y.; Pilkington, A. D.; Price, D.; Qin, Y.; Queitsch-Maitland, M.; Robinson, J. E. M.; Schwanenberger, C.; Shaw, S. M.; Thompson, R. J.; Tomlinson, L.; Watts, S.; Webb, S.; Woudstra, M. J.; Wyatt, T. R.] Univ Manchester, Sch Phys & Astron, Manchester, Lancs, England. [Aad, G.; Alio, L.; Barbero, M.; Chen, L.; Coadou, Y.; Diaconu, C.; Diglio, S.; Djama, F.; Ducu, O. A.; Feligioni, L.; Gao, J.; Hallewell, G. D.; Hubaut, F.; Kahn, S. J.; Knoops, E. B. F. G.; Le Guirriec, E.; Liu, J.; Liu, K.; Madaffari, D.; Mochizuki, K.; Monnier, E.; Muanza, S.; Nagai, Y.; Nagy, E.; Pralavorio, P.; Rozanov, A.; Serre, T.; Talby, M.; Torres, R. E. Ticse; Tiouchichine, E.; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.] Aix Marseille Univ, CPPM, Marseille, France. [Aad, G.; Alio, L.; Barbero, M.; Chen, L.; Coadou, Y.; Diaconu, C.; Diglio, S.; Djama, F.; Ducu, O. A.; Feligioni, L.; Gao, J.; Hallewell, G. D.; Hubaut, F.; Kahn, S. J.; Knoops, E. B. F. G.; Le Guirriec, E.; Liu, J.; Liu, K.; Madaffari, D.; Mochizuki, K.; Monnier, E.; Muanza, S.; Nagai, Y.; Nagy, E.; Pralavorio, P.; Rozanov, A.; Serre, T.; Talby, M.; Torres, R. E. Ticse; Tiouchichine, E.; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.] CNRS, IN2P3, Marseille, France. [Bellomo, M.; Bernard, N. R.; Brau, B.; Dallapiccola, C.; Daya-Ishmukhametova, R. K.; Moyse, E. J. W.; Pais, P.; Pueschel, E.; Ventura, D.; Willocq, S.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Belanger-Champagne, C.; Chapleau, B.; Chuinard, A. J.; Corriveau, F.; Keyes, R. A.; Mantifel, R.; Prince, S.; Robertson, S. H.; Robichaud-Veronneau, A.; Stockton, M. C.; Stoebe, M.; Vachon, B.; Schroeder, T. Vazquez; Wang, K.; Warburton, A.] McGill Univ, Dept Phys, Montreal, PQ, Canada. [Barberio, E. L.; Brennan, A. J.; Dawe, E.; Jennens, D.; Kubota, T.; Milesi, M.; Hanninger, G. Nunes; Nuti, F.; Rados, P.; Spiller, L. A.; Tan, K. G.; Taylor, G. N.; Urquijo, P.; Volpi, M.; Zanzi, D.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. [Amidei, D.; Chelstowska, M. A.; Cheng, H. C.; Dai, T.; Diehl, E. B.; Edgar, R. C.; Feng, H.; Ferretti, C.; Fleischmann, P.; Goldfarb, S.; Hu, X.; Levin, D.; Long, J. D.; Lu, N.; Mc Kee, S. P.; McCarn, A.; Neal, H. A.; Qian, J.; Schwarz, T. A.; Searcy, J.; Sekhon, K.; Thun, R. P.; Wilson, A.; Wu, Y.; Xu, L.; Yu, J. M.; Zhang, D.; Zhou, B.; Zhu, J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Abolins, M.; Arabidze, G.; Brock, R.; Chegwidden, A.; Fisher, W. C.; Halladjian, G.; Hauser, R.; Hayden, D.; Huston, J.; Linnemann, J. T.; Martin, B.; Pope, B. G.; Schoenrock, B. D.; Schwienhorst, R.; Ta, D.; Tollefson, K.; True, P.; Willis, C.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Alimonti, G.; Andreazza, A.; Besana, M. I.; Carminati, L.; Cavalli, D.; Consonni, S. M.; Costa, G.; Fanti, M.; Giugni, D.; Lari, T.; Mandelli, L.; Mazza, S. M.; Meroni, C.; Perini, L.; Pizio, C.; Ragusa, F.; Resconi, S.; Shojaii, S.; Simoniello, R.; Tartarelli, G. F.; Troncon, C.; Turra, R.; Perez, M. Villaplana] Ist Nazl Fis Nucl, Sez Milano, Milan, Italy. [Andreazza, A.; Carminati, L.; Consonni, S. M.; Fanti, M.; Mazza, S. M.; Perini, L.; Pizio, C.; Ragusa, F.; Shojaii, S.; Simoniello, R.; Turra, R.; Perez, M. Villaplana] Univ Milan, Dipartimento Fis, Milan, Italy. [Harkusha, S.; Kulchitsky, Y.; Kurochkin, Y. A.; Tsiareshka, P. V.] Natl Acad Sci Belarus, BI Stepanov Phys Inst, Minsk, Byelarus. [Hrynevich, A.] Natl Sci & Educ Ctr Particle & High Energy Phys, Minsk, Byelarus. [Taylor, F. E.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Arguin, J-F.; Azuelos, G.; Dallaire, F.; Gauthier, L.; Leroy, C.; Rezvani, R.; Saadi, D. Shoaleh; Soueid, P.] Univ Montreal, Grp Particle Phys, Montreal, PQ, Canada. [Akimov, A. V.; Gavrilenko, I. L.; Komar, A. A.; Mashinistov, R.; Mouraviev, S. V.; Nechaeva, P. Yu.; Shmeleva, A.; Snesarev, A. A.; Sulin, V. V.; Tikhomirov, V. O.; Zhukov, K.] Acad Sci, PN Lebedev Phys Inst, Moscow, Russia. [Artamonov, A.; Gorbounov, P. A.; Khovanskiy, V.; Shatalov, P. B.; Tsukerman, I. I.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Antonov, A.; Belotskiy, K.; Bulekov, O.; Dolgoshein, B. A.; Kantserov, V. A.; Krasnopevtsev, D.; Romaniouk, A.; Shulga, E.; Smirnov, S. Yu.; Soldatov, E. Yu.; Tikhomirov, V. O.; Timoshenko, S.; Vorobev, K.] Natl Res Nucl Univ, MEPhI, Moscow, Russia. [Boldyrev, A. S.; Gladilin, L. K.; Kramarenko, V. A.; Maevskiy, A.; Rud, V. I.; Sivoklokov, S. Yu.; Smirnova, L. N.; Turchikhin, S.] Moscow MV Lomonosov State Univ, DV Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Adomeit, S.; Becker, S.; Bender, M.; Biebel, O.; Bock, C.; Bortfeldt, J.; Calfayan, P.; Chow, B. K. B.; Duckeck, G.; Elmsheuser, J.; Hertenberger, R.; Hoenig, F.; Legger, F.; Lorenz, J.; Loesel, P. J.; Maier, T.; Mann, A.; Mehlhase, S.; Meineck, C.; Mitrevski, J.; Mueller, R. S. P.; Nunnemann, T.; Rauscher, F.; Ruschke, A.; Sanders, M. P.; Schaile, D.; Unverdorben, C.; Vladoiu, D.; Walker, R.; Wittkowski, J.] Univ Munich, Fak Phys, Munich, Germany. [Barillari, T.; Bethke, S.; Bronner, J.; Compostella, G.; Cortiana, G.; Ecker, K. M.; Flowerdew, M. J.; Goblirsch-Kolb, M.; Ince, T.; Kiryunin, A. E.; Kluth, S.; Kortner, S.; Kroha, H.; Macchiolo, A.; Maier, A. A.; Manfredini, A.; Menke, S.; Mueller, F.; Nagel, M.; Nisius, R.; Nowak, S.; Oberlack, H.; Pahl, C.; Richter, R.; Salihagic, D.; Sandstroem, R.; Schacht, P.; Schwegler, Ph.; Sforza, F.; Spettel, F.; Stern, S.; Stonjek, S.; Terzo, S.; von der Schmitt, H.; Wildauer, A.] Werner Heisenberg Inst, Max Planck Inst Phys, Munich, Germany. [Shimojima, M.] Nagasaki Inst Appl Sci, Nagasaki, Japan. [Hasegawa, S.; Horii, Y.; Morvaj, L.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Grad Sch Sci, Nagoya, Aichi 4648601, Japan. [Hasegawa, S.; Horii, Y.; Morvaj, L.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Kobayashi Maskawa Inst, Nagoya, Aichi 4648601, Japan. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Carlino, G.; Conventi, F.; de Asmundis, R.; Della Pietra, M.; Di Donato, C.; Doria, A.; Izzo, V.; Merola, L.; Perrella, S.; Rossi, E.; Sanchez, A.; Sekhniaidze, G.; Zurzolo, G.] Ist Nazl Fis Nucl, Sez Napoli, Naples, Italy. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Di Donato, C.; Merola, L.; Perrella, S.; Rossi, E.; Sanchez, A.; Zurzolo, G.] Univ Naples Federico II, Dipartimento Fis, Naples, Italy. [Gorelov, I.; Hoeferkamp, M. R.; Seidel, S. C.; Toms, K.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Besjes, G. J.; Caron, S.; Croft, V.; De Groot, N.; Filthaut, F.; Galea, C.; Koenig, S.; Nektarijevic, S.; Salvucci, A.; Strubig, A.] Radboud Univ Nijmegen, Nikhef, Inst Math Astrophys & Particle Phys, NL-6525 ED Nijmegen, Netherlands. [Aben, R.; Angelozzi, I.; Beemster, L. J.; Bentvelsen, S.; Berge, D.; Bobbink, G. J.; Bos, K.; Brenner, L.; Butti, P.; Castelli, A.; Colijn, A. P.; de Jong, P.; De Nooij, L.; Deigaard, I.; Deluca, C.; Ferrari, P.; Gadatsch, S.; Geerts, D. A. A.; Hartjes, F.; Hessey, N. P.; Hod, N.; Igonkina, O.; Karastathis, N.; Kluit, P.; Koffeman, E.; Linde, F.; Mahlstedt, J.; Meyer, J.; Oussoren, K. P.; Sabato, G.; Salek, D.; Slawinska, M.; Valencic, N.; Van den Wollenberg, W.; Van der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; Van der Leeuw, R.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.; Weits, H.; Williams, S.] Nikhef Natl Inst Subat Phys, Amsterdam, Netherlands. [Aben, R.; Angelozzi, I.; Beemster, L. J.; Bentvelsen, S.; Berge, D.; Bobbink, G. J.; Bos, K.; Brenner, L.; Butti, P.; Castelli, A.; Colijn, A. P.; de Jong, P.; De Nooij, L.; Deigaard, I.; Deluca, C.; Ferrari, P.; Gadatsch, S.; Geerts, D. A. A.; Hartjes, F.; Hessey, N. P.; Hod, N.; Igonkina, O.; Karastathis, N.; Kluit, P.; Koffeman, E.; Linde, F.; Mahlstedt, J.; Meyer, J.; Oussoren, K. P.; Sabato, G.; Salek, D.; Slawinska, M.; Valencic, N.; Van den Wollenberg, W.; Van der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; Van der Leeuw, R.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.; Weits, H.; Williams, S.] Univ Amsterdam, Amsterdam, Netherlands. [Adelman, J.; Burghgrave, B.; Chakraborty, D.; Cole, S.; Suhr, C.; Yurkewicz, A.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Anisenkov, A. V.; Bobrovnikov, V. S.; Bogdanchikov, A. G.; Buzykaev, A. R.; Kazanin, V. F.; Kharlamov, A. G.; Korol, A. A.; Malyshev, V. M.; Maslennikov, A. L.; Maximov, D. A.; Peleganchuk, S. V.; Rezanova, O. L.; Soukharev, A. M.; Talyshev, A. A.; Tikhonov, Yu. A.] SB RAS, Budker Inst Nucl Phys, Novosibirsk, Russia. [Bernius, C.; Cranmer, K.; Haas, A.; Heinrich, L.; van Huysduynen, L. Hooft; Kaplan, B.; Karthik, K.; Konoplich, R.; Kreiss, S.; Mincer, A. I.; Nemethy, P.; Neves, R. M.] NYU, Dept Phys, New York, NY 10003 USA. [Beacham, J. B.; Gan, K. K.; Ishmukhametov, R.; Kagan, H.; Kass, R. D.; Moss, J.; Nagarkar, A.; Pignotti, D. T.; Shrestha, S.; Tannenwald, B. B.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Fac Sci, Okayama 700, Japan. [Abbott, B.; Alhroob, M.; Bertsche, C.; Bertsche, D.; Gutierrez, P.; Hasib, A.; Norberg, S.; Pearson, B.; Saleem, M.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA. [Bousson, N.; Haley, J.; Khanov, A.; Rizatdinova, F.; Sidorov, D.; Yu, J.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA. [Chytka, L.; Hamal, P.; Hrabovsky, M.; Kvita, J.; Nozka, L.] Palacky Univ, RCPTM, CR-77147 Olomouc, Czech Republic. [Brau, J. E.; Brost, E.; Hopkins, W. H.; Majewski, S.; Potter, C. T.; Ptacek, E.; Radloff, P.; Shamim, M.; Sinev, N. B.; Strom, D. M.; Torrence, E.; Wanotayaroj, C.; Winklmeier, F.] Univ Oregon, Ctr High Energy Phys, Eugene, OR 97403 USA. [Ayoub, M. K.; Bassalat, A.; Becot, C.; Binet, S.; Bourdarios, C.; De Regie, J. B. De Vivie; Delgove, D.; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Gkougkousis, E. L.; Grivaz, J. -F.; Guillemin, T.; Hariri, F.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Kado, M.; Li, Y.; Lounis, A.; Makovec, N.; Morange, N.; Nellist, C.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Rybkin, G.; Schaffer, A. C.; Scifo, E.; Serin, L.; Simion, S.; Tanaka, R.; Zerwas, D.; Zhang, Z.; Zhao, Y.] Univ Paris 11, LAL, Orsay, France. [Ayoub, M. K.; Bassalat, A.; Becot, C.; Binet, S.; Bourdarios, C.; De Regie, J. B. De Vivie; Delgove, D.; Duflot, L.; Escalier, M.; Fayard, L.; Gkougkousis, E. L.; Grivaz, J. -F.; Guillemin, T.; Hariri, F.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Kado, M.; Li, Y.; Lounis, A.; Makovec, N.; Morange, N.; Nellist, C.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Rybkin, G.; Schaffer, A. C.; Scifo, E.; Serin, L.; Simion, S.; Tanaka, R.; Zerwas, D.; Zhao, Y.] CNRS, IN2P3, F-91405 Orsay, France. [Endo, M.; Hanagaki, K.; Nomachi, M.; Okamura, W.; Sugaya, Y.; Teoh, J. J.; Yamaguchi, Y.] Osaka Univ, Grad Sch Sci, Osaka, Japan. [Bugge, L.; Bugge, M. K.; Cameron, D.; Catmore, J. R.; Franconi, L.; Garonne, V.; Gjelsten, B. K.; Gramstad, E.; Morisbak, V.; Nilsen, J. K.; Ould-Saada, F.; Pajchel, K.; Pedersen, L. E.; Raddum, S.; Read, A. L.; Rohne, O.; Stapnes, S.; Strandlie, A.] Univ Oslo, Dept Phys, Oslo, Norway. [Barr, A. J.; Becker, K.; Behr, J. K.; Beresford, L.; Cooper-Sarkar, A. M.; Ortuzar, M. Crispin; Dafinca, A.; Davies, E.; Frost, J. A.; Gallas, E. J.; Gupta, S.; Gwenlan, C.; Hall, D.; Hays, C. P.; Henderson, J.; Howard, J.; Huffman, T. B.; Issever, C.; Kalderon, C. W.; King, R. S. B.; Kogan, L. A.; Lewis, A.; Nagai, K.; Nickerson, R. B.; Pickering, M. A.; Ryder, N. C.; Sawyer, C.; Tseng, J. C-L.; Viehhauser, G. H. A.; Weidberg, A. R.; Zhong, J.] Univ Oxford, Dept Phys, Oxford, England. [Conta, C.; Dondero, P.; Ferrari, R.; Fraternali, M.; Gaudio, G.; Livan, M.; Negri, A.; Polesello, G.; Rebuzzi, D. M.; Rimoldi, A.; Vercesi, V.] Ist Nazl Fis Nucl, Sez Pavia, Pavia, Italy. [Conta, C.; Dondero, P.; Fraternali, M.; Livan, M.; Negri, A.; Rebuzzi, D. M.; Rimoldi, A.] Univ Pavia, Dipartimento Fis, I-27100 Pavia, Italy. [Brendlinger, K.; Heim, S.; Hines, E.; Jackson, B.; Kroll, J.; Lipeles, E.; Miguens, J. Machado; Meyer, C.; Stahlman, J.; Thomson, E.; Tuna, A. N.; Vanguri, R.; Williams, H. H.; Yoshihara, K.] Univ Penn, Dept Phys, Philadelphia, PA 19104 USA. [Basalaev, A.; Ezhilov, A.; Fedin, O. L.; Gratchev, V.; Levchenko, M.; Maleev, V. P.; Ryabov, Y. F.; Schegelsky, V. A.; Sedykh, E.; Seliverstov, D. M.; Solovyev, V.] BP Konstantinov Petersburg Nucl Phys Inst, Kurchatov Inst, Natl Res Ctr, St Petersburg, Russia. [Annovi, A.; Beccherle, R.; Bertolucci, F.; Cavasinni, V.; Del Prete, T.; Dell'Orso, M.; Donati, S.; Giannetti, P.; Leone, R.; Roda, C.; Scuri, F.; Sotiropoulou, C. L.; Spalla, M.; Volpi, G.; White, S.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy. [Annovi, A.; Beccherle, R.; Bertolucci, F.; Cavasinni, V.; Del Prete, T.; Dell'Orso, M.; Donati, S.; Giannetti, P.; Leone, S.; Roda, C.; Scuri, F.; Sotiropoulou, C. L.; Spalla, M.; Volpi, G.; White, S.] Univ Pisa, Dipartimento Fis E Fermi, Pisa, Italy. [Bianchini, L.; Boudreau, J.; Cleland, W.; Escobar, C.; Hong, T. M.; Mueller, J.; Sapp, K.; Su, J.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Aguilar-Saavedra, J. A.; Amor Dos Santos, S. P.; Amorim, A.; Araque, J. P.; Cantrill, R.; Carvalho, J.; Castro, N. F.; Conde Muino, P.; Da Cunha Sargedas De Sousa, M. J.; Fiolhais, M. C. N.; Galhardo, B.; Gomes, A.; Goncalo, R.; Jorge, P. M.; Lopes, L.; Maio, A.; Maneira, J.; Onofre, A.; Palma, A.; Pedro, R.; Pina, J.; Pinto, B.; Santos, H.; Saraiva, J. G.; Silva, J.; Tavares Delgado, A.; Veloso, F.; Wolters, H.] Lab Instrumentacao & Fis Expt Particulas LIP, Lisbon, Portugal. [Amorim, A.; Conde Muino, P.; Da Cunha Sargedas De Sousa, M. J.; Gomes, A.; Jorge, P. M.; Miguens, J. Machado; Maio, A.; Maneira, J.; Palma, A.; Pedro, R.; Pina, J.; Tavares Delgado, A.] Univ Lisbon, Fac Ciencias, Lisbon, Portugal. [Amor Dos Santos, S. P.; Carvalho, J.; Fiolhais, M. C. N.; Galhardo, B.; Veloso, F.; Wolters, H.] Univ Coimbra, Dept Phys, Coimbra, Portugal. [Gomes, A.; Maio, A.; Pina, J.; Saraiva, J. G.; Silva, J.] Univ Lisbon, Ctr Fis Nucl, P-1699 Lisbon, Portugal. [Onofre, A.] Univ Minho, Dept Fis, Braga, Portugal. [Aguilar-Saavedra, J. A.] Univ Granada, Dept Fis Teor & Cosmos, Granada, Spain. [Aguilar-Saavedra, J. A.] Univ Granada, CAFPE, Granada, Spain. Univ Nova Lisboa, Dept Fis, Caparica, Portugal. Univ Nova Lisboa, Fac Ciencias & Tecnol, CEFITEC, Caparica, Portugal. [Chudoba, J.; Havranek, M.; Hejbal, J.; Jakoubek, T.; Kepka, O.; Kupco, A.; Kus, V.; Lokajicek, M.; Lysak, R.; Marcisovsky, M.; Mikestikova, M.; Nemecek, S.; Sicho, P.; Staroba, P.; Svatos, M.; Tasevsky, M.; Vrba, V.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Augsten, K.; Caforio, D.; Gallus, P.; Guenther, J.; Jakubek, J.; Kohout, Z.; Myska, M.; Pospisil, S.; Seifert, F.; Simak, V.; Slavicek, T.; Solar, M.; Solc, J.; Sopczak, A.; Sopko, B.; Sopko, V.; Suk, M.; Turecek, D.; Vacek, V.; Vlasak, M.; Vokac, P.; Vykydal, Z.; Zeman, M.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Balek, P.; Berta, P.; Cerny, K.; Chalupkova, I.; Davidek, T.; Dolejsi, J.; Dolezal, Z.; Faltova, J.; Kodys, P.; Kosek, T.; Leitner, R.; Pleskot, V.; Reznicek, P.; Rybar, M.; Scheirich, D.; Spousta, M.; Sykora, T.; Tas, P.; Todorova-Nova, S.; Valkar, S.; Vorobel, V.] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic. [Borisov, A.; Cheremushkina, E.; Denisov, S. P.; Fakhrutdinov, R. M.; Fenyuk, A. B.; Golubkov, D.; Kamenshchikov, A.; Karyukhin, A. N.; Kozhin, A. S.; Minaenko, A. A.; Myagkov, A. G.; Nikolaenko, V.; Solodkov, A. A.; Solovyanov, O. V.; Starchenko, E. A.; Zaitsev, A. M.; Zenin, O.] State Res Ctr, Inst High Energy Phys, Protvino, Russia. [Adye, T.; Baines, J. T.; Barnett, B. M.; Burke, S.; Davies, E.; Dewhurst, A.; Dopke, J.; Emeliyanov, D.; Gallop, B. J.; Gee, C. N. P.; Haywood, S. J.; Kirk, J.; Martin-Haugh, S.; McCubbin, N. A.; McMahon, S. J.; Middleton, R. P.; Murray, W. J.; Phillips, P. W.; Sankey, D. P. C.; Tyndel, M.; Wickens, F. J.; Wielers, M.] Rutherford Appleton Lab, Particle Phys Dept, Didcot OX11 0QX, Oxon, England. [Anulli, F.; Bagiacchi, P.; Bagnaia, P.; Bauce, M.; Bini, C.; Ciapetti, G.; De Pedis, D.; De Salvo, A.; Di Domenico, A.; Falciano, S.; Gabrielli, A.; Gauzzi, P.; Gentile, S.; Giagu, S.; Kuna, M.; Lacava, F.; Luci, C.; Luminari, L.; Marzano, F.; Messina, A.; Monzani, S.; Nisati, A.; Pasqualucci, E.; Petrolo, E.; Pontecorvo, L.; Rescigno, M.; Rosati, S.; Tehrani, F. Safai; Vanadia, M.; Vari, R.; Veneziano, S.; Verducci, M.; Zanello, L.] Ist Nazl Fis Nucl, Sez Roma, Rome, Italy. [Aloisio, A.; Bagiacchi, P.; Bagnaia, P.; Bauce, M.; Bini, C.; Ciapetti, G.; Di Domenico, A.; Gabrielli, A.; Gauzzi, P.; Gentile, S.; Giagu, S.; Kuna, M.; Lacava, F.; Luci, C.; Messina, A.; Monzani, S.; Vanadia, M.; Verducci, M.; Zanello, L.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Aielli, G.; Camarri, P.; Cardarelli, R.; Di Ciaccio, A.; Iuppa, R.; Liberti, B.; Mazzaferro, L.; Salamon, A.; Santonico, R.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, Rome, Italy. [Aielli, G.; Camarri, P.; Di Ciaccio, A.; Iuppa, R.; Mazzaferro, L.; Santonico, R.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy. [Bacci, C.; Baroncelli, A.; Biglietti, M.; Ceradini, F.; Di Micco, B.; Farilla, A.; Graziani, E.; Iodice, M.; Orestano, D.; Pastore, F.; Petrucci, F.; Puddu, D.; Salamanna, G.; Sessa, M.; Stanescu, C.; Taccini, C.; Trovatelli, M.] Ist Nazl Fis Nucl, Sez Roma, Rome, Italy. [Bacci, C.; Ceradini, F.; Di Micco, B.; Orestano, D.; Pastore, F.; Petrucci, F.; Puddu, D.; Salamanna, G.; Sessa, M.; Taccini, C.; Trovatelli, M.] Univ Roma Tre, Dipartimento Matemat, Rome, Italy. [Benchekroun, D.; Chafaq, A.; Hoummada, A.] Univ Hassan 2, Reseau Univ Phys Hautes Energies, Fac Sci Ain Chock, Casablanca, Morocco. [Ghazlane, H.] Ctr Natl Energie Sci Tech Nucl, Rabat, Morocco. [El Kacimi, M.; Goujdami, D.] Univ Cadi Ayyad, LPHEA, Fac Sci Semlalia, Marrakech, Morocco. [Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] Univ Mohamed Premier, Fac Sci, Oujda, Morocco. [Cherkaoui El Moursli, R.; Fassi, F.; Haddad, N.; Idrissi, Z.] Univ Mohammed V Agdal, Fac Sci, Rabat, Morocco. [Bachacou, H.; Bauer, F.; Besson, N.; Blanchard, J. -B.; Boonekamp, M.; Calandri, A.; Chevalier, L.; Hoffmann, M. Dano; Deliot, F.; Etienvre, A. I.; Formica, A.; Giraud, P. F.; Da Costa, J. Goncalves Pinto Firmino; Guyot, C.; Hanna, R.; Hassani, S.; Kivernyk, O.; Lancon, E.; Laporte, J. F.; Maiani, C.; Mansoulie, B.; Meyer, J-P.; Nicolaidou, R.; Ouraou, A.; Protopapadaki, E.; Royon, C. R.; Saimpert, M.; Schoeffel, L.; Schune, Ph.; Schwemling, Ph.; Schwindling, J.] CEA Saclay, DSM IRFU Inst Rech Lois Fondament Univers, F-91191 Gif Sur Yvette, France. [Battaglia, M.; Debenedetti, C.; Grabas, H. M. X.; Grillo, A. A.; Kuhl, A.; Law, A. T.; Liang, Z.; Litke, A. M.; Lockman, W. S.; Manning, P. M.; Nielsen, J.; Reece, R.; Rose, P.; Sadrozinski, H. F-W.; Schumm, B. A.; Seiden, A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Blackburn, D.; Coccaro, A.; Goussiou, A. G.; Hsu, S. -C.; Lubatti, H. J.; Marx, M.; Rompotis, N.; Rosten, R.; Rothberg, J.; Russell, H. L.; De Bruin, P. H. Sales; Watts, G.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Anastopoulos, C.; Costanzo, D.; Donszelmann, T. Cuhadar; Dawson, I.; Fletcher, G. T.; Hodgkinson, M. C.; Hodgson, P.; Johansson, P.; Korolkova, E. V.; Kyriazopoulos, D.; Paredes, B. Lopez; Macdonald, C. M.; Miyagawa, P. S.; Paganis, E.; Parker, K. A.; Tovey, D. R.; Vickey, T.; Boeriu, O. E. Vickey] Univ Sheffield, Dept Phys & Astron, Sheffield, S Yorkshire, England. [Hasegawa, Y.; Takeshita, T.] Shinshu Univ, Dept Phys, Nagano, Japan. [Atlay, N. B.; Buchholz, P.; Czirr, H.; Fleck, I.; Gaur, B.; Ibragimov, I.; Ikematsu, K.; Rosenthal, O.; Walkowiak, W.; Ziolkowski, M.] Univ Siegen, Fachbereich Phys, D-57068 Siegen, Germany. [Buat, Q.; Horton, A. J.; O'Neil, D. C.; Pachal, K.; Stelzer, B.; Torres, H.; Van Nieuwkoop, J.; Vetterli, M. C.] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada. [Barklow, T.; Bartoldus, R.; Bawa, H. S.; Black, J. E.; Cogan, J. G.; Fulsom, B. G.; Gao, Y. S.; Garelli, N.; Grenier, P.; Ilic, N.; Kagan, M.; Kocian, M.; Koi, T.; Malone, C.; Mount, R.; Nef, P. D.; Piacquadio, G.; Rubbo, F.; Salnikov, A.; Schwartzman, A.; Strauss, E.; Su, D.; Swiatlowski, M.; Tompkins, L.; Wittgen, M.; Young, C.] Natl Accelerator Lab, SLAC, Stanford, CA USA. [Astalos, R.; Bartos, P.; Blazek, T.; Federic, P.; Plazak, L.; Stavina, P.; Sykora, I.; Tokar, S.; Zenis, T.] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia. [Antos, J.; Bruncko, D.; Kladiva, E.; Strizenec, P.; Urban, J.] Slovak Acad Sci, Inst Expt Phys, Dept Subnucl Phys, Kosice 04353, Slovakia. [Hamilton, A.; Meehan, S.] Univ Cape Town, Dept Phys, ZA-7925 Cape Town, South Africa. [Aurousseau, M.; Castaneda-Miranda, E.; Connell, S. H.; Govender, N.; Lee, C. A.; Yacoob, S.] Univ Johannesburg, Dept Phys, Johannesburg, South Africa. [Bristow, K.; Hamity, G. N.; Hsu, C.; March, L.; Garcia, B. R. Mellado; Ruan, X.] Univ Witwatersrand, Sch Phys, Johannesburg, South Africa. [Abulaiti, Y.; Akerstedt, H.; Asman, B.; Bendtz, K.; Bertoli, G.; Bylund, O. Bessidskaia; Bohm, C.; Clement, C.; Cribbs, W. A.; Hellman, S.; Jon-And, K.; Khandanyan, H.; Kim, H.; Klimek, P.; Lundberg, O.; Milstead, D. A.; Moa, T.; Molander, S.; Pani, P.; Petridis, A.; Plucinski, P.; Rossetti, V.; Shcherbakova, A.; Silverstein, S. B.; Sjolin, J.; Strandberg, S.; Tylmad, M.; Ughetto, M.] Stockholm Univ, Dept Phys, Stockholm, Sweden. [Abulaiti, Y.; Akerstedt, H.; Asman, B.; Bendtz, K.; Bertoli, G.; Bylund, O. Bessidskaia; Clement, C.; Cribbs, W. A.; Grosse-Knetter, J.; Hellman, S.; Jon-And, K.; Khandanyan, H.; Kim, H.; Klimek, P.; Lundberg, O.; Milstead, D. A.; Moa, T.; Molander, S.; Pani, P.; Petridis, A.; Plucinski, P.; Rossetti, V.; Shcherbakova, A.; Sjolin, J.; Strandberg, S.; Tylmad, M.; Ughetto, M.] Oskar Klein Ctr, Stockholm, Sweden. [Lund-Jensen, B.; Morley, A. K.; Strandberg, J.] Royal Inst Technol, Dept Phys, S-10044 Stockholm, Sweden. [Balestri, T.; Bee, C. P.; Campoverde, A.; Chen, K.; Grassi, V.; Hobbs, J.; Jia, J.; Li, H.; Lindquist, B. E.; Mastrandrea, P.; McCarthy, R. L.; Puldon, D.; Radhakrishnan, S. K.; Rijssenbeek, M.; Schamberger, R. D.; Tsybychev, D.; Zaman, A.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Balestri, T.; Bee, C. P.; Campoverde, A.; Chen, K.; Grassi, V.; Hobbs, J.; Jia, J.; Li, H.; Lindquist, B. E.; Mastrandrea, P.; McCarthy, R. L.; Puldon, D.; Radhakrishnan, S. K.; Rijssenbeek, M.; Schamberger, R. D.; Tsybychev, D.; Zaman, A.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Asquith, L.; Cerri, A.; Barajas, C. A. Chavez; De Sanctis, U.; De Santo, A.; Grout, Z. J.; Potter, C. J.; Salvatore, F.; Castillo, I. Santoyo; Shehu, C. Y.; Suruliz, K.; Sutton, M. R.; Vivarelli, I.] Univ Sussex, Dept Phys & Astron, Brighton, E Sussex, England. [Black, C. W.; Cuthbert, C.; Finelli, K. D.; Jeng, G. -Y.; Limosani, A.; Patel, N. D.; Saavedra, A. F.; Scarcella, M.; Varvell, K. E.; Watson, I. J.; Yabsley, B.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. [Abdallah, J.; Chu, M. L.; Hou, S.; Hsu, P. J.; Jamin, D. O.; Lee, S. C.; Li, B.; Lin, S. C.; Liu, B.; Liu, D.; Lo Sterzo, F.; Mazini, R.; Shi, L.; Soh, D. A.; Teng, P. K.; Wang, S. M.; Yang, Y.] Acad Sinica, Inst Phys, Taipei, Taiwan. [Abreu, H.; Cheatham, S.; Di Mattia, A.; Kopeliansky, R.; Musto, E.; Rozen, Y.; Tarem, S.; van Eldik, N.] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel. [Abramowicz, H.; Alexander, G.; Amram, N.; Ashkenazi, A.; Bella, G.; Benary, O.; Benhammou, Y.; Davies, M.; Etzion, E.; Gershon, A.; Gueta, O.; Munwes, Y.; Oren, Y.; Silver, Y.; Soffer, A.; Taiblum, N.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Bachas, K.; Gkaitatzis, S.; Iliadis, D.; Kimura, N.; Kordas, K.; Kourkoumeli-Charalampidi, A.; Leisos, A.; Orlando, N.; Papageorgiou, K.; Hernandez, D. Paredes; Petridou, C.; Sampsonidis, D.; Tsionou, D.] Aristotle Univ Thessaloniki, Dept Phys, GR-54006 Thessaloniki, Greece. [Akimoto, G.; Asai, S.; Dohmae, T.; Enari, Y.; Hanawa, K.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kazama, S.; Kobayashi, A.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Minami, Y.; Morinaga, M.; Nakamura, T.; Ninomiya, Y.; Okuyama, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamamoto, S.; Yamanaka, T.] Univ Tokyo, Int Ctr Elementary Particle Phys, Tokyo, Japan. [Akimoto, G.; Asai, S.; Dohmae, T.; Enari, Y.; Hanawa, K.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kazama, S.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Minami, Y.; Morinaga, M.; Nakamura, T.; Ninomiya, Y.; Okuyama, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamamoto, S.; Yamanaka, T.] Univ Tokyo, Dept Phys, Tokyo 113, Japan. [Bratzler, U.; Fukunaga, C.] Tokyo Metropolitan Univ, Grad Sch Sci & Technol, Tokyo 158, Japan. [Hirose, M.; Ishitsuka, M.; Jinnouchi, O.; Kobayashi, D.; Kuze, M.; Motohashi, K.; Nagai, R.; Nobe, T.; Pettersson, N. E.] Tokyo Inst Technol, Dept Phys, Tokyo 152, Japan. [AbouZeid, O. S.; Batista, S. J.; Chau, C. C.; DeMarco, D. A.; Di Sipio, R.; Diamond, M.; Krieger, P.; Liblong, A.; Mc Goldrick, G.; Orr, R. S.; Polifka, R.; Rudolph, M. S.; Savard, P.; Schramm, S.; Sinervo, P.; Spreitzer, T.; Taenzer, J.; Teuscher, R. J.; Trischuk, W.; Veloce, L. M.; Venturi, N.] Univ Toronto, Dept Phys, Toronto, ON, Canada. [Azuelos, G.; Canepa, A.; Chekulaev, S. V.; Gingrich, D. M.; Jovicevic, J.; Koutsman, A.; Oakham, F. G.; Oram, C. J.; Codina, E. Perez; Savard, P.; Schneider, B.; Schouten, D.; Seuster, R.; Stelzer-Chilton, O.; Tafirout, R.; Trigger, I. M.; Vetterli, M. C.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Garcia, J. A. Benitez; Ramos, J. Manjarres; Palacino, G.; Taylor, W.] York Univ, Dept Phys & Astron, Toronto, ON M3J 2R7, Canada. [Hara, K.; Hayashi, T.; Kim, S. H.; Kiuchi, K.; Nagata, K.; Okawa, H.; Sato, K.; Ukegawa, F.] Univ Tsukuba, Fac Pure & Appl Sci, Tsukuba, Ibaraki, Japan. [Beauchemin, P. H.; Meoni, E.; Rolli, S.; Sliwa, K.; Wetter, J.] Tufts Univ, Dept Phys & Astron, Medford, MA 02155 USA. [Losada, M.; Moreno, D.; Navarro, G.; Sandoval, C.] Univ Antonio Narino, Ctr Invest, Bogota, Colombia. [Corso-Radu, A.; Gerbaudo, D.; Lankford, A. J.; Mete, A. S.; Nelson, A.; Relich, M.; Scannicchio, D. A.; Schernau, M.; Shimmin, C. O.; Taffard, A.; Unel, G.; Whiteson, D.; Zhou, N.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA USA. [Acharya, B. S.; Barisonzi, M.; Brazzale, S. F.; Cobal, M.; Giordani, M. P.; Miglioranzi, S.; Pinamonti, M.; Quayle, W. B.; Serkin, L.; Shaw, K.; Soualah, R.; Truong, L.] Ist Nazl Fis Nucl, Sez Trieste, Grp Collegato Udine, Udine, Italy. [Acharya, B. S.; Barisonzi, M.; Quayle, W. B.; Serkin, L.; Shaw, K.] Abdus Salaam Int Ctr Theoret Phys, Trieste, Italy. [Brazzale, S. F.; Cobal, M.; Giordani, M. P.; Miglioranzi, S.; Pinamonti, M.; Soualah, R.; Truong, L.] Univ Udine, Dipartimento Chim Fis & Ambiente, I-33100 Udine, Italy. [Atkinson, M.; Basye, A.; Cavaliere, V.; Chang, P.; Errede, S.; Lie, K.; Liss, T. M.; Liu, L.; Neubauer, M. S.; Shang, R.; Vichou, I.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Kuutmann, E. Bergeaas; Brenner, R.; Ekelof, T.; Ellert, M.; Ferrari, A.; Isaksson, C.; Madsen, A.; Ohman, H.; Pelikan, D.; Rangel-Smith, C.] Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden. [Gonzalez, B. Alvarez; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, G.; Fernandez Martinez, P.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; de la Hoz, S. Gonzalez; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Jimenez Pena, J.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Vos, M.] Univ Valencia, Inst Fis Corpuscular, Valencia, Spain. [Alvarez Piqueras, D.; Borisov, A.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Fernandez Martinez, P.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; de la Hoz, S. Gonzalez; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Jimenez Pena, J.; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Vos, M.] Univ Valencia, Dept Fis Atom Mol & Nucl, Valencia, Spain. [Alvarez Piqueras, D.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, G.; Fernandez Martinez, P.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; de la Hoz, S. Gonzalez; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Jimenez Pena, J.; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Vos, M.] Univ Valencia, Dept Ingn Elect, Valencia, Spain. [Alvarez Piqueras, D.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, G.; Fernandez Martinez, P.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; de la Hoz, S. Gonzalez; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Jimenez Pena, J.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Navarro, G.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Vos, M.] Univ Valencia, Inst Microelect Barcelona IMB CNM, Valencia, Spain. [Alvarez Piqueras, D.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Fernandez Martinez, P.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; de la Hoz, S. Gonzalez; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Jimenez Pena, J.; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Oliver Garcia, E.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Vos, M.] CSIC, Valencia, Spain. [Danninger, M.; Fedorko, W.; Gay, C.; Gecse, Z.; King, S. B.; Lister, A.; Swedish, S.] Univ British Columbia, Dept Phys, Vancouver, BC, Canada. [Albert, J.; Berghaus, F.; David, C.; Elliot, A. A.; Fincke-Keeler, M.; Hamano, K.; Hill, E.; Keeler, R.; Kowalewski, R.; Kuwertz, E. S.; Kwan, T.; Lefebvre, M.; Marino, C. P.; McPherson, R. A.; Ouellette, E. A.; Pearce, J.; Sobie, R.; Venturi, M.] Univ Victoria, Dept Phys & Astron, Victoria, BC, Canada. [Beckingham, M.; Farrington, S. M.; Harrington, R. D.; Harrison, P. F.; Janus, M.; Jeske, C.; Martin, T. A.; Murray, W. J.; Pianori, E.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Iizawa, T.; Mitani, T.; Sakurai, Y.; Yorita, K.] Waseda Univ, Tokyo, Japan. [Bressler, S.; Citron, Z. H.; Duchovni, E.; Gross, E.; Lellouch, D.; Mikenberg, G.; Milov, A.; Pitt, M.; Roth, I.; Schaarschmidt, J.; Smakhtin, V.] Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel. [Banerjee, Sw.; Hard, A. S.; Heng, Y.; Ji, H.; Ju, X.; Kashif, L.; Kruse, A.; Ming, Y.; Pan, Y. B.; Wang, F.; Wiedenmann, W.; Wu, S. L.; Yang, H.; Zhang, F.; Zobernig, G.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Kuger, F.; Redelbach, A.; Sandstroem, R.; Schreyer, M.; Sidiropoulou, O.; Siragusa, G.; Tam, J. Y. C.; Trefzger, T.; Weber, S. W.; Zibell, A.] Univ Wurzburg, Fak Phys & Astron, D-97070 Wurzburg, Germany. [Bannoura, A. A. E.; Beermann, T. A.; Braun, H. M.; Cornelissen, T.; Duda, D.; Ernis, G.; Fischer, J.; Fleischmann, S.; Flick, T.; Gabizon, O.; Hamacher, K.; Harenberg, T.; Heim, T.; Hirschbuehl, D.; Kersten, S.; Kohlmann, S.; Maettig, P.; Neumann, M.; Pataraia, S.; Riegel, C. J.; Sandhoff, M.; Tepel, F.; Wagner, W.; Zeitnitz, C.] Berg Univ Wuppertal, Fachbereich Phys C, Wuppertal, Germany. [Baker, O. K.; Cummings, J.; Demers, S.; Garberson, F.; Guest, D.; Henrichs, A.; Ideal, E.; Lagouri, T.; Leister, A. G.; Loginov, A.; Thomsen, L. A.; Tipton, P.; Wang, X.] Yale Univ, Dept Phys, New Haven, CT USA. [Hakobyan, H.; Vardanyan, G.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Rahal, G.] IN2P3, Ctr Calcul, Villeurbanne, France. [Acharya, B. S.] Kings Coll London, Dept Phys, London, England. [Anisenkov, A. V.; Bobrovnikov, V. S.; Buzykaev, A. R.; Kazanin, V. F.; Kharlamov, A. G.; Korol, A. A.; Maslennikov, A. L.; Maximov, D. A.; Peleganchuk, S. V.; Rezanova, O. L.; Soukharev, A. M.; Talyshev, A. A.; Tikhonov, Yu. A.] Novosibirsk State Univ, Novosibirsk 630090, Russia. [Bawa, H. S.; Gao, Y. S.] Calif State Univ Fresno, Dept Phys, Fresno, CA 93740 USA. [Beck, H. P.] Univ Fribourg, Dept Phys, CH-1700 Fribourg, Switzerland. [Castro, N. F.] Univ Porto, Fac Ciencias, Dept Fis & Astron, P-4100 Oporto, Portugal. [Chelkov, G. A.] Tomsk State Univ, Tomsk 634050, Russia. [Conventi, F.; Della Pietra, M.] Univ Napoli Parthenope, Naples, Italy. [Fedin, O. L.] St Petersburg State Polytech Univ, Dept Phys, St Petersburg, Russia. [Grinstein, S.; Juste Rozas, A.; Martinez, M.] ICREA, Inst Catalana Rec & Estud Avancats, Barcelona, Spain. [Hsu, P. J.] Natl Tsing Hua Univ, Dept Phys, Hsinchu, Taiwan. [Ilchenko, Y.; Onyisi, P. U. E.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. [Jejelava, J.] Ilia State Univ, Inst Theoret Phys, Tbilisi, Rep of Georgia. [Khubua, J.] Georgian Tech Univ, Tbilisi, Rep of Georgia. [Kono, T.] Ochanomizu Univ, Ochadai Acad Prod, Tokyo 112, Japan. [Konoplich, R.] Manhattan Coll, New York, NY USA. [Leisos, A.] Hellen Open Univ, Patras, Greece. [Lin, S. C.] Acad Sinica, Inst Phys, Acad Sinica Grid Comp, Taipei, Taiwan. [Myagkov, A. G.; Nikolaenko, V.; Zaitsev, A. M.] State Univ, Moscow Inst Phys & Technol, Dolgoprudnyi, Russia. [Pinamonti, M.] SISSA, Int Sch Adv Studies, I-34014 Trieste, Italy. [Purohit, M.] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. [Shi, L.; Soh, D. A.] Sun Yat Sen Univ, Sch Phys & Engn, Guangzhou 510275, Guangdong, Peoples R China. [Smirnova, L. N.; Turchikhin, S.] Moscow MV Lomonosov State Univ, Fac Phys, Moscow, Russia. [Tompkins, L.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Toth, J.] Wigner Res Ctr Phys, Inst Particle & Nucl Phys, Budapest, Hungary. [Yacoob, S.] Univ KwaZulu Natal, Discipline Phys, Durban, South Africa. [Yusuff, I.] Univ Malaya, Dept Phys, Kuala Lumpur 59100, Malaysia. RP Aad, G (reprint author), Aix Marseille Univ, CPPM, Marseille, France. RI Martinez, Mario /I-3549-2015; Peleganchuk, Sergey/J-6722-2014; Li, Liang/O-1107-2015; Monzani, Simone/D-6328-2017; Kuday, Sinan/C-8528-2014; Garcia, Jose /H-6339-2015; Tartarelli, Giuseppe Francesco/A-5629-2016; la rotonda, laura/B-4028-2016; Maneira, Jose/D-8486-2011; Prokoshin, Fedor/E-2795-2012; Staroba, Pavel/G-8850-2014; Gavrilenko, Igor/M-8260-2015; Gauzzi, Paolo/D-2615-2009; Maleev, Victor/R-4140-2016; Camarri, Paolo/M-7979-2015; Mindur, Bartosz/A-2253-2017; Fabbri, Laura/H-3442-2012; Gutierrez, Phillip/C-1161-2011; Gerbaudo, Davide/J-4536-2012; Solodkov, Alexander/B-8623-2017; Zaitsev, Alexandre/B-8989-2017; SULIN, VLADIMIR/N-2793-2015; Brooks, William/C-8636-2013; Nechaeva, Polina/N-1148-2015; Vykydal, Zdenek/H-6426-2016; Fedin, Oleg/H-6753-2016; Snesarev, Andrey/H-5090-2013; Ventura, Andrea/A-9544-2015; Kantserov, Vadim/M-9761-2015; Villa, Mauro/C-9883-2009; BESSON, NATHALIE/L-6250-2015; La Rosa Navarro, Jose Luis/K-4221-2016; Vanadia, Marco/K-5870-2016; Ippolito, Valerio/L-1435-2016; Tripiana, Martin/H-3404-2015; Smirnova, Oxana/A-4401-2013; Savarala, Hari Krishna/A-3516-2015; Doyle, Anthony/C-5889-2009; Gonzalez de la Hoz, Santiago/E-2494-2016; Guo, Jun/O-5202-2015; Aguilar Saavedra, Juan Antonio/F-1256-2016; Leyton, Michael/G-2214-2016; Jones, Roger/H-5578-2011; Boyko, Igor/J-3659-2013; Vranjes Milosavljevic, Marija/F-9847-2016; Chekulaev, Sergey/O-1145-2015; Zhukov, Konstantin/M-6027-2015; Tikhomirov, Vladimir/M-6194-2015; Carvalho, Joao/M-4060-2013; White, Ryan/E-2979-2015; Mashinistov, Ruslan/M-8356-2015; Warburton, Andreas/N-8028-2013; spagnolo, stefania/A-6359-2012; Buttar, Craig/D-3706-2011; Mitsou, Vasiliki/D-1967-2009; Di Domenico, Antonio/G-6301-2011; Livan, Michele/D-7531-2012; Gladilin, Leonid/B-5226-2011; Andreazza, Attilio/E-5642-2011; OI Peleganchuk, Sergey/0000-0003-0907-7592; Li, Liang/0000-0001-6411-6107; Monzani, Simone/0000-0002-0479-2207; Kuday, Sinan/0000-0002-0116-5494; Sannino, Mario/0000-0001-7700-8383; Tartarelli, Giuseppe Francesco/0000-0002-4244-502X; la rotonda, laura/0000-0002-6780-5829; Amorim, Antonio/0000-0003-0638-2321; Coccaro, Andrea/0000-0003-2368-4559; Della Volpe, Domenico/0000-0001-8530-7447; Maneira, Jose/0000-0002-3222-2738; Prokoshin, Fedor/0000-0001-6389-5399; Gauzzi, Paolo/0000-0003-4841-5822; Camarri, Paolo/0000-0002-5732-5645; Mindur, Bartosz/0000-0002-5511-2611; Fabbri, Laura/0000-0002-4002-8353; Gerbaudo, Davide/0000-0002-4463-0878; Solodkov, Alexander/0000-0002-2737-8674; Zaitsev, Alexandre/0000-0002-4961-8368; SULIN, VLADIMIR/0000-0003-3943-2495; Brooks, William/0000-0001-6161-3570; Vykydal, Zdenek/0000-0003-2329-0672; Ventura, Andrea/0000-0002-3368-3413; Kantserov, Vadim/0000-0001-8255-416X; Villa, Mauro/0000-0002-9181-8048; Vanadia, Marco/0000-0003-2684-276X; Ippolito, Valerio/0000-0001-5126-1620; Smirnova, Oxana/0000-0003-2517-531X; Savarala, Hari Krishna/0000-0001-6593-4849; Doyle, Anthony/0000-0001-6322-6195; Gonzalez de la Hoz, Santiago/0000-0001-5304-5390; Guo, Jun/0000-0001-8125-9433; Aguilar Saavedra, Juan Antonio/0000-0002-5475-8920; Leyton, Michael/0000-0002-0727-8107; Jones, Roger/0000-0002-6427-3513; Boyko, Igor/0000-0002-3355-4662; Vranjes Milosavljevic, Marija/0000-0003-4477-9733; Tikhomirov, Vladimir/0000-0002-9634-0581; Carvalho, Joao/0000-0002-3015-7821; White, Ryan/0000-0003-3589-5900; Mashinistov, Ruslan/0000-0001-7925-4676; Warburton, Andreas/0000-0002-2298-7315; spagnolo, stefania/0000-0001-7482-6348; Mitsou, Vasiliki/0000-0002-1533-8886; Di Domenico, Antonio/0000-0001-8078-2759; Livan, Michele/0000-0002-5877-0062; Gladilin, Leonid/0000-0001-9422-8636; Andreazza, Attilio/0000-0001-5161-5759; Pina, Joao /0000-0001-8959-5044; Sotiropoulou, Calliope-Louisa/0000-0001-9851-1658; Veneziano, Stefano/0000-0002-2598-2659; Lacasta, Carlos/0000-0002-2623-6252; Price, Darren/0000-0003-2750-9977; Belanger-Champagne, Camille/0000-0003-2368-2617 FU ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW, Austria; FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq, Brazil; FAPESP, Brazil; NSERC, Canada; NRC, Canada; CFI, Canada; CERN; CONICYT, Chile; CAS, China; MOST, China; NSFC, China; COLCIENCIAS, Colombia; MSMT CR, Czech Republic; MPO CR, Czech Republic; VSC CR, Czech Republic; DNRF, Denmark; DNSRC, Denmark; Lundbeck Foundation, Denmark; EPLANET, European Union; ERC, European Union; NSRF, European Union; IN2P3-CNRS, France; CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, Germany; DFG, Germany; HGF, Germany; MPG, Germany; AvH Foundation, Germany; GSRT, Greece; NSRF, Greece; ISF, Israel; MINERVA, Israel; GIF, Israel; I-CORE, Israel; Benoziyo Center, Israel; INFN, Italy; MEXT, Japan; JSPS, Japan; CNRST, Morocco; FOM, Netherlands; NWO, Netherlands; BRF, Norway; RCN, Norway; MNiSW, Poland; NCN, Poland; GRICES, Portugal; FCT, Portugal; MNE/IFA, Romania; MES of Russia, Russian Federation; ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS, Slovenia; MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC, Sweden; Wallenberg Foundation, Sweden; SER, Switzerland; SNSF, Switzerland; Canton of Bern, Switzerland; Canton of Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, United Kingdom; Royal Society, United Kingdom; Leverhulme Trust, United Kingdom; DOE, United States of America; NSF, United States of America FX We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; EPLANET, ERC and NSRF, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT and NSRF, Greece; ISF, MINERVA, GIF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNiSW and NCN, Poland; GRICES and FCT, Portugal; MNE/IFA, Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide. NR 93 TC 3 Z9 3 U1 14 U2 80 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD NOV 3 PY 2015 VL 92 IS 9 AR 092001 DI 10.1103/PhysRevD.92.092001 PG 30 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CV1LT UT WOS:000364019900001 ER PT J AU Mamo, KA Yee, HU AF Mamo, Kiminad A. Yee, Ho-Ung TI Thermalization of quark-gluon plasma in magnetic field at strong coupling SO PHYSICAL REVIEW D LA English DT Article AB We study thermalization of strongly coupled gauge theory plasma in the presence of a magnetic field using the AdS/CFT correspondence. We utilize the falling energy-shell model as a holographic description of gauge theory plasma undergoing thermalization, and find the effect of the magnetic field on thermalization time in various space-time dimensions. Our results demonstrate that the magnetic field universally hastens thermalization of strongly coupled gauge theory plasma. C1 [Mamo, Kiminad A.] Univ Illinois, Dept Phys, Chicago, IL 60607 USA. [Yee, Ho-Ung] Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. RP Mamo, KA (reprint author), Univ Illinois, Dept Phys, Chicago, IL 60607 USA. NR 22 TC 5 Z9 5 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD NOV 3 PY 2015 VL 92 IS 10 AR 105005 DI 10.1103/PhysRevD.92.105005 PG 6 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CV1MA UT WOS:000364021000009 ER PT J AU Jin, DF Hu, Q Neuhauser, D von Cube, F Yang, YY Sachan, R Luk, TS Bell, DC Fang, NX AF Jin, Dafei Hu, Qing Neuhauser, Daniel von Cube, Felix Yang, Yingyi Sachan, Ritesh Luk, Ting S. Bell, David C. Fang, Nicholas X. TI Quantum-Spillover-Enhanced Surface-Plasmonic Absorption at the Interface of Silver and High-Index Dielectrics SO PHYSICAL REVIEW LETTERS LA English DT Article ID METAL-SURFACES; LIGHT-ABSORPTION; THIN-FILMS; ENERGY; RUTILE; NANOSTRUCTURES; EXCITATIONS; NANODIODES; DENSITY; ANATASE AB We demonstrate an unexpectedly strong surface-plasmonic absorption at the interface of silver and high-index dielectrics based on electron and photon spectroscopy. The measured bandwidth and intensity of absorption deviate significantly from the classical theory. Our density-functional calculation well predicts the occurrence of this phenomenon. It reveals that due to the low metal-to-dielectric work function at such interfaces, conduction electrons can display a drastic quantum spillover, causing the interfacial electron-hole pair production to dominate the decay of surface plasmons. This finding can be of fundamental importance in understanding and designing quantum nanoplasmonic devices that utilize noble metals and high-index dielectrics. C1 [Jin, Dafei; Hu, Qing; Yang, Yingyi; Fang, Nicholas X.] MIT, Dept Mech Engn, Cambridge, MA 02139 USA. [Neuhauser, Daniel] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA. [von Cube, Felix; Bell, David C.] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA. [Sachan, Ritesh] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Luk, Ting S.] Sandia Natl Labs, Albuquerque, NM 87123 USA. RP Jin, DF (reprint author), MIT, Dept Mech Engn, Cambridge, MA 02139 USA. EM nicfang@mit.edu RI Jin, Dafei/Q-1054-2015; Fang, Nicholas/A-5856-2008 OI Jin, Dafei/0000-0002-8035-3580; Fang, Nicholas/0000-0001-5713-629X FU NSF [CMMI-1120724, CHE-1112500, DMR-1231319]; AFOSR MURI [FA9550-12-1-0488]; STC Center for Integrated Quantum Materials FX D. J., Q. H., Y. Y., and N. X. F. acknowledge financial support by the NSF (Award No. CMMI-1120724) and AFOSR MURI (Grant No. FA9550-12-1-0488). D. N. acknowledges support by the NSF (Grant No. CHE-1112500). F. V. C. acknowledges support by the STC Center for Integrated Quantum Materials and NSF (Grant No. DMR-1231319). D. J. wish to thank Patrick. A. Lee, Fan Wang, Sang Hoon Nam, Miguel A. Mendez Polanco, and Alexie M. Kolpak for helpful discussions. NR 44 TC 5 Z9 5 U1 6 U2 32 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 3 PY 2015 VL 115 IS 19 AR 193901 DI 10.1103/PhysRevLett.115.193901 PG 5 WC Physics, Multidisciplinary SC Physics GA CV1NC UT WOS:000364024000007 PM 26588382 ER PT J AU Zhang, Z Ohl, M Diallo, SO Jalarvo, NH Hong, K Han, Y Smith, GS Do, C AF Zhang, Zhe Ohl, Michael Diallo, Souleymane O. Jalarvo, Niina H. Hong, Kunlun Han, Youngkyu Smith, Gregory S. Do, Changwoo TI Dynamics of Water Associated with Lithium Ions Distributed in Polyethylene Oxide SO PHYSICAL REVIEW LETTERS LA English DT Article ID POLY(ETHYLENE OXIDE)/WATER SOLUTIONS; ELASTIC NEUTRON-SCATTERING; MOLECULAR-DYNAMICS; AQUEOUS-SOLUTION; TEMPERATURE-DEPENDENCE; POLYMER ELECTROLYTES; SUPERCOOLED WATER; HYDRATION WATER; CARBON NANOTUBE; DRUG-DELIVERY AB The dynamics of water in polyethylene oxide (PEO)/LiCl solution has been studied with quasielastic neutron scattering experiments and molecular dynamics (MD) simulations. Two different time scales of water diffusion representing interfacial water and bulk water dynamics have been identified. The measured diffusion coefficient of interfacial water remained 5-10 times smaller than that of bulk water, but both were slowed by approximately 50% in the presence of Li+. Detailed analysis of MD trajectories suggests that Li+ is favorably found at the surface of the hydration layer, and the probability to find the caged Li+ configuration formed by the PEO is lower than for the noncaged Li+ - PEO configuration. In both configurations, however, the slowing down of water molecules is driven by reorienting water molecules and creating water-Li+ hydration complexes. Performing the MD simulation with different ions (Na+ and K+) revealed that smaller ionic radius of the ions is a key factor in disrupting the formation of PEO cages by allowing spaces for water molecules to come in between the ion and PEO. C1 [Zhang, Zhe; Han, Youngkyu; Smith, Gregory S.; Do, Changwoo] Oak Ridge Natl Lab, Biol & Soft Matter Div, Oak Ridge, TN 37831 USA. [Zhang, Zhe; Ohl, Michael; Jalarvo, Niina H.] Forschungszentrum Julich, Julich Ctr Neutron Sci, Outstat Spallat Neutron Source SNS, Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Diallo, Souleymane O.] Oak Ridge Natl Lab, Quantum Condensed Matter Div, Oak Ridge, TN 37831 USA. [Jalarvo, Niina H.] Oak Ridge Natl Lab, Neutron Sci Directorate, Chem & Engn Mat Div, Oak Ridge, TN 37831 USA. [Hong, Kunlun] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci Div, Oak Ridge, TN 37831 USA. RP Zhang, Z (reprint author), Oak Ridge Natl Lab, Biol & Soft Matter Div, Oak Ridge, TN 37831 USA. EM doc1@ornl.gov RI Diallo, Souleymane/B-3111-2016; Smith, Gregory/D-1659-2016; Han, Youngkyu/D-2271-2016; Jalarvo, Niina/Q-1320-2015; Do, Changwoo/A-9670-2011; Hong, Kunlun/E-9787-2015 OI Diallo, Souleymane/0000-0002-3369-8391; Smith, Gregory/0000-0001-5659-1805; Han, Youngkyu/0000-0002-2021-8520; Jalarvo, Niina/0000-0003-0644-6866; Do, Changwoo/0000-0001-8358-8417; Hong, Kunlun/0000-0002-2852-5111 FU Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy; Julich Center for Neutron Science, Research center Julich FX The research at Oak Ridge National Laboratory's Spallation Neutron Source was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. Z. Z. gratefully acknowledges financial support from Julich Center for Neutron Science, Research center Julich. The authors gratefully thank Dr. E. Mamontov and Dr. W.-R. Chen for their input and valuable discussions. NR 72 TC 0 Z9 0 U1 4 U2 42 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 3 PY 2015 VL 115 IS 19 AR 198301 DI 10.1103/PhysRevLett.115.198301 PG 6 WC Physics, Multidisciplinary SC Physics GA CV1NC UT WOS:000364024000012 PM 26588420 ER PT J AU Zong, LQ Zhu, B Lu, ZD Tan, YL Jin, Y Liu, NA Hu, Y Gu, S Zhu, J Cui, Y AF Zong, Linqi Zhu, Bin Lu, Zhenda Tan, Yingling Jin, Yan Liu, Nian Hu, Yue Gu, Shuai Zhu, Jia Cui, Yi TI Nanopurification of silicon from 84% to 99.999% purity with a simple and scalable process SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE Si; purification; nanoparticles; low grade; Li ion battery ID METALLURGICAL-GRADE-SILICON; LITHIUM BATTERY ANODES; SOLAR-CELLS; HYDROMETALLURGICAL PURIFICATION; PERFORMANCE; NANOWIRES; PHOTOVOLTAICS; CHALLENGES; LITHIATION; REMOVAL AB Silicon, with its great abundance and mature infrastructure, is a foundational material for a range of applications, such as electronics, sensors, solar cells, batteries, and thermoelectrics. These applications rely on the purification of Si to different levels. Recently, it has been shown that nanosized silicon can offer additional advantages, such as enhanced mechanical properties, significant absorption enhancement, and reduced thermal conductivity. However, current processes to produce and purify Si are complex, expensive, and energy-intensive. Here, we show a nanopurification process, which involves only simple and scalable ball milling and acid etching, to increase Si purity drastically [up to 99.999% (wt %)] directly from low-grade and low-cost ferrosilicon [84% (wt %) Si; similar to$1/kg]. It is found that the impurity-rich regions are mechanically weak as breaking points during ball milling and thus, exposed on the surface, and they can be conveniently and effectively removed by chemical etching. We discovered that the purity goes up with the size of Si particles going down, resulting in high purity at the sub-100-nm scale. The produced Si nanoparticles with high purity and small size exhibit high performance as Li ion battery anodes, with high reversible capacity (1,755 mAh g(-1)) and long cycle life (73% capacity retention over 500 cycles). This nanopurification process provides a complimentary route to produce Si, with finely controlled size and purity, in a diverse set of applications. C1 [Zong, Linqi; Zhu, Bin; Tan, Yingling; Jin, Yan; Hu, Yue; Gu, Shuai; Zhu, Jia] Nanjing Univ, Coll Engn & Appl Sci, Natl Lab Solid State Microstruct, Nanjing 210093, Jiangsu, Peoples R China. [Zong, Linqi; Zhu, Bin; Tan, Yingling; Jin, Yan; Hu, Yue; Gu, Shuai; Zhu, Jia] Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Nanjing 210093, Jiangsu, Peoples R China. [Lu, Zhenda; Liu, Nian; Cui, Yi] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA. [Cui, Yi] Stanford Inst Mat & Energy Sci, Stanford Linear Accelerator Ctr, Natl Accelerator Lab, Menlo Pk, CA 94025 USA. RP Zhu, J (reprint author), Nanjing Univ, Coll Engn & Appl Sci, Natl Lab Solid State Microstruct, Nanjing 210093, Jiangsu, Peoples R China. EM jiazhu@nju.edu.cn; yicui@stanford.edu RI Lu, Zhenda/B-2346-2010 FU State Key Program for Basic Research of China [2015CB659300]; National Natural Science Foundation of China [11321063, 11574143]; Natural Science Foundation of Jiangsu Province [BK20150056]; Priority Academic Program Development of Jiangsu Higher Education Institutions; Fundamental Research Funds for the Central Universities FX This work is jointly supported by State Key Program for Basic Research of China Grant 2015CB659300, National Natural Science Foundation of China Grants 11321063 and 11574143, Natural Science Foundation of Jiangsu Province Grant BK20150056, the Priority Academic Program Development of Jiangsu Higher Education Institutions, and the Fundamental Research Funds for the Central Universities. NR 39 TC 8 Z9 9 U1 19 U2 113 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD NOV 3 PY 2015 VL 112 IS 44 BP 13473 EP 13477 DI 10.1073/pnas.1513012112 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CV3NC UT WOS:000364164900040 PM 26483490 ER PT J AU Luo, YK Ronning, F Wakeham, N Lu, X Park, T Xu, ZA Thompson, JD AF Luo, Yongkang Ronning, F. Wakeham, N. Lu, Xin Park, Tuson Xu, Z. -A. Thompson, J. D. TI Pressure-tuned quantum criticality in the antiferromagnetic Kondo semimetal CeNi2-delta As2 SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE Kondo effect; quantum criticality; heavy Fermion; Nozieres exhaustion; anomalous Hall effect ID PERIODIC ANDERSON MODEL; FERMION SYSTEMS; RESISTIVITY; TRANSITION; METALS AB The easily tuned balance among competing interactions in Kondo-lattice metals allows access to a zero-temperature, continuous transition between magnetically ordered and disordered phases, a quantum-critical point (QCP). Indeed, these highly correlated electron materials are prototypes for discovering and exploring quantum-critical states. Theoretical models proposed to account for the strange thermodynamic and electrical transport properties that emerge around the QCP of a Kondo lattice assume the presence of an indefinitely large number of itinerant charge carriers. Here, we report a systematic transport and thermodynamic investigation of the Kondo-lattice system CeNi2-delta As2 (delta approximate to 0.28) as its antiferromagnetic order is tuned by pressure and magnetic field to zero-temperature boundaries. These experiments show that the very small but finite carrier density of similar to 0.032 e(-)/formular unit in CeNi2-delta As2 leads to un-expected transport signatures of quantum criticality and the delayed development of a fully coherent Kondo-lattice state with decreasing temperature. The small carrier density and associated semimetallicity of this Kondo-lattice material favor an unconventional, local-moment type of quantum criticality and raises the specter of the Nozieres exhaustion idea that an insufficient number of conduction- electron spins to separately screen local moments requires collective Kondo screening. C1 [Luo, Yongkang; Ronning, F.; Wakeham, N.; Thompson, J. D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Lu, Xin] Zhejiang Univ, Ctr Correlated Matter, Hangzhou 310058, Zhejiang, Peoples R China. [Park, Tuson] Sungkyunkwan Univ, Dept Phys, Suwon 440746, South Korea. [Xu, Z. -A.] Zhejiang Univ, Dept Phys, Hangzhou 310027, Zhejiang, Peoples R China. RP Luo, YK (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM mpzslyk@gmail.com RI Lu, Xin/B-7358-2012; OI Ronning, Filip/0000-0002-2679-7957 FU Los Alamos Laboratory Directed Research and Development (LDRD) program; National Science Foundation of China [11374257, 11190023]; Fundamental Research Funds for the Central Universities; National Research Foundation (NRF) - Ministry of Science, Information and Communications Technology (ICT) and Future Planning of Korea [2012R1A3A2048816]; US Department of Energy, Division of Materials Sciences and Engineering FX We thank E. D. Bauer, R. Movshovich, and M. Janoschek for helpful discussions. Work at Los Alamos was performed under the auspices of the US Department of Energy, Division of Materials Sciences and Engineering. Y.L. acknowledges a Director's Postdoctoral Fellowship supported through the Los Alamos Laboratory Directed Research and Development (LDRD) program. Work at Zhejiang University was supported by the National Science Foundation of China (Grants 11374257 and 11190023) and the Fundamental Research Funds for the Central Universities. T.P. acknowledges support from a National Research Foundation (NRF) grant funded by the Ministry of Science, Information and Communications Technology (ICT) and Future Planning of Korea (no. 2012R1A3A2048816). NR 28 TC 2 Z9 2 U1 6 U2 25 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD NOV 3 PY 2015 VL 112 IS 44 BP 13520 EP 13524 DI 10.1073/pnas.1509581112 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CV3NC UT WOS:000364164900048 PM 26483465 ER PT J AU Bernstein, HC Charania, MA McClure, RS Sadler, NC Melnicki, MR Hill, EA Markillie, LM Nicora, CD Wright, AT Romine, MF Beliaev, AS AF Bernstein, Hans C. Charania, Moiz A. McClure, Ryan S. Sadler, Natalie C. Melnicki, Matthew R. Hill, Eric A. Markillie, Lye Meng Nicora, Carrie D. Wright, Aaron T. Romine, Margaret F. Beliaev, Alexander S. TI Multi-Omic Dynamics Associate Oxygenic Photosynthesis with Nitrogenase-Mediated H-2 Production in Cyanothece sp ATCC 51142 SO SCIENTIFIC REPORTS LA English DT Article ID PHOTOBIOLOGICAL HYDROGEN-PRODUCTION; LIGHT-GROWN CULTURES; TRANSLATIONAL REGULATION; AEROBIC CONDITIONS; GENUS CYANOTHECE; CYANOBACTERIUM; FIXATION; RHYTHMS AB To date, the proposed mechanisms of nitrogenase-driven photosynthetic H-2 production by the diazotrophic unicellular cyanobacterium Cyanothece sp. ATCC 51142 have assumed that reductant and ATP requirements are derived solely from glycogen oxidation and cyclic-electron flow around photosystem I. Through genome-scale transcript and protein profiling, this study presents and tests a new hypothesis on the metabolic relationship between oxygenic photosynthesis and nitrogenase-mediated H-2 production in Cyanothece 51142. Our results show that net-positive rates of oxygenic photosynthesis and increased expression of photosystem II reaction centers correspond and are synchronized with nitrogenase expression and H-2 production. These findings provide a new and more complete view on the metabolic processes contributing to the energy budget of photosynthetic H2 production and highlight the role of concurrent photocatalytic H2O oxidation as a participating process. C1 [Bernstein, Hans C.] Pacific NW Natl Lab, Chem & Biol Signature Sci, Richland, WA 99352 USA. [Bernstein, Hans C.; Charania, Moiz A.; McClure, Ryan S.; Sadler, Natalie C.; Melnicki, Matthew R.; Hill, Eric A.; Markillie, Lye Meng; Nicora, Carrie D.; Wright, Aaron T.; Romine, Margaret F.; Beliaev, Alexander S.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. RP Bernstein, HC (reprint author), Pacific NW Natl Lab, Chem & Biol Signature Sci, Richland, WA 99352 USA. EM hans.bernstein@pnnl.gov; alex.beliaev@pnnl.gov RI Beliaev, Alexander/E-8798-2016; OI Beliaev, Alexander/0000-0002-6766-4632; Romine, Margaret/0000-0002-0968-7641; Wright, Aaron/0000-0002-3172-5253; Bernstein, Hans/0000-0003-2913-7708 FU Linus Pauling Distinguished Postdoctoral Fellowship, a Laboratory Directed Research and Development Program of PNNL; Genomic Science Program (GSP), Office of Biological and Environmental Research (BER), U.S. Department of Energy (DOE); Foundational Scientific Focus Area at PNNL; DOE BER; DOE [DE-AC05-76RLO 1830] FX The authors would like to thank Allan Konopka, Jim Fredrickson, Lindsey Anderson and Bobbi-Jo Webb-Robertson for helpful discussions and technical assistance. Author HCB is grateful for support given by the Linus Pauling Distinguished Postdoctoral Fellowship, a Laboratory Directed Research and Development Program of PNNL. This research was supported by the Genomic Science Program (GSP), Office of Biological and Environmental Research (BER), U.S. Department of Energy (DOE), and is a contribution of the Pacific Northwest National Laboratory (PNNL) Biofuels Scientific Focus Area (BSFA). The genome annotation efforts used customized processes and resources developed and supported by the Foundational Scientific Focus Area at PNNL. MS-based proteomic measurements used capabilities developed partially under the GSP Panomics project. A significant portion of the research was performed using the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by DOE BER and located at PNNL. PNNL is operated for the DOE by Battelle Memorial Institute under Contract DE-AC05-76RLO 1830. NR 28 TC 2 Z9 2 U1 5 U2 12 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD NOV 3 PY 2015 VL 5 AR 16004 DI 10.1038/srep16004 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CV0TZ UT WOS:000363967600001 PM 26525576 ER PT J AU Rickey, KM Nian, Q Zhang, GQ Chen, LL Suslov, S Bhat, SV Wu, Y Cheng, GJ Ruan, XL AF Rickey, Kelly M. Nian, Qiong Zhang, Genqiang Chen, Liangliang Suslov, Sergey Bhat, S. Venkataprasad Wu, Yue Cheng, Gary J. Ruan, Xiulin TI Welding of Semiconductor Nanowires by Coupling Laser-Induced Peening and Localized Heating SO SCIENTIFIC REPORTS LA English DT Article ID SOLAR-CELLS; THIN-FILMS; TRANSPARENT; PERCOLATION; SURFACE AB We demonstrate that laser peening coupled with sintering of CdTe nanowire films substantially enhances film quality and charge transfer while largely maintaining basic particle morphology. During the laser peening phase, a shockwave is used to compress the film. Laser sintering comprises the second step, where a nanosecond pulse laser beam welds the nanowires. Microstructure, morphology, material content, and electrical conductivities of the films are characterized before and after treatment. The morphology results show that laser peening can decrease porosity and bring nanowires into contact, and pulsed laser heating fuses those contacts. Multiphysics simulations coupling electromagnetic and heat transfer modules demonstrate that during pulsed laser heating, local EM field enhancement is generated specifically around the contact areas between two semiconductor nanowires, indicating localized heating. The characterization results indicate that solely laser peening or sintering can only moderately improve the thin film quality; however, when coupled together as laser peen sintering (LPS), the electrical conductivity enhancement is dramatic. LPS can decrease resistivity up to a factor of similar to 10,000, resulting in values on the order of similar to 10(5) Omega-cm in some cases, which is comparable to CdTe thin films. Our work demonstrates that LPS is an effective processing method to obtain high-quality semiconductor nanocrystal films. C1 [Rickey, Kelly M.; Chen, Liangliang; Bhat, S. Venkataprasad; Cheng, Gary J.; Ruan, Xiulin] Purdue Univ, Sch Mech Engn, W Lafayette, IN 47907 USA. [Rickey, Kelly M.; Nian, Qiong; Chen, Liangliang; Suslov, Sergey; Bhat, S. Venkataprasad; Cheng, Gary J.; Ruan, Xiulin] Purdue Univ, Birck Nanotechnol Ctr, W Lafayette, IN 47906 USA. [Nian, Qiong; Cheng, Gary J.] Purdue Univ, Sch Ind Engn, W Lafayette, IN 47907 USA. [Zhang, Genqiang] Ctr Integrated Nanotechnol, Div Mat Phys & Applicat, Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Suslov, Sergey] Qatar Fdn, Qatar Environm & Energy Res Inst, Doha, Qatar. [Bhat, S. Venkataprasad] SRM Univ, SRM Res Inst, Chennai 603203, Tamil Nadu, India. [Wu, Yue] Iowa State Univ, Dept Chem & Biol Engn, Ames, IA 50010 USA. RP Ruan, XL (reprint author), Purdue Univ, Sch Mech Engn, W Lafayette, IN 47907 USA. EM ruan@purdue.edu RI Ruan, Xiulin/C-6166-2009; Zhang, Genqiang/H-4512-2016; OI Ruan, Xiulin/0000-0001-7611-7449; Bhat, S Venkataprasad/0000-0002-6546-3968 FU NSF [0933559]; NSF CAREER Award [1150948]; School of Mechanical Engineering at Purdue University; AFOSR [FA9550-12-1-0061]; ACRI Award from the College of Engineering of Iowa State University FX This work has been partially supported by NSF award 0933559 and NSF CAREER Award 1150948. K.M. Rickey also acknowledges the Winkelman Fellowship and Cordier Fellowship from the School of Mechanical Engineering at Purdue University. Y. Wu also would like to acknowledge the AFOSR Award FA9550-12-1-0061, as well as the support from the ACRI Award from the College of Engineering of Iowa State University. The assistance of Dr. Dmitry Zemlyanov on XPS is greatly appreciated. NR 28 TC 1 Z9 1 U1 7 U2 37 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD NOV 3 PY 2015 VL 5 AR 16052 DI 10.1038/srep16052 PG 10 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CV0SA UT WOS:000363961600002 PM 26527570 ER PT J AU Hsu, W Sutter-Fella, CM Hettick, M Cheng, LT Chan, SW Chen, YF Zeng, YP Zheng, M Wang, HP Chiang, CC Javey, A AF Hsu, Weitse Sutter-Fella, Carolin M. Hettick, Mark Cheng, Lungteng Chan, Shengwen Chen, Yunfeng Zeng, Yuping Zheng, Maxwell Wang, Hsin-Ping Chiang, Chien-Chih Javey, Ali TI Electron-Selective TiO2 Contact for Cu(In,Ga)Se-2 Solar Cells SO SCIENTIFIC REPORTS LA English DT Article ID ATOMIC LAYER DEPOSITION; HIGH-EFFICIENCY; BUFFER LAYERS; FILM; MODULES AB The non-toxic and wide bandgap material TiO2 is explored as an n-type buffer layer on p-type Cu(In,Ga)Se-2 (CIGS) absorber layer for thin film solar cells. The amorphous TiO2 thin film deposited by atomic layer deposition process at low temperatures shows conformal coverage on the CIGS absorber layer. Solar cells from non-vacuum deposited CIGS absorbers with TiO2 buffer layer result in a high short-circuit current density of 38.9 mA/cm(2) as compared to 36.9 mA/cm(2) measured in the reference cell with CdS buffer layer, without compromising open-circuit voltage. The significant photocurrent gain, mainly in the UV part of the spectrum, can be attributed to the low parasitic absorption loss in the ultrathin TiO2 layer (similar to 10 nm) with a larger bandgap of 3.4 eV compared to 2.4 eV of the traditionally used CdS. Overall the solar cell conversion efficiency was improved from 9.5% to 9.9% by substituting the CdS by TiO2 on an active cell area of 10.5 mm(2). Optimized TiO2/CIGS solar cells show excellent long-term stability. The results imply that TiO2 is a promising buffer layer material for CIGS solar cells, avoiding the toxic CdS buffer layer with added performance advantage. C1 [Hsu, Weitse; Sutter-Fella, Carolin M.; Hettick, Mark; Zeng, Yuping; Zheng, Maxwell; Wang, Hsin-Ping; Javey, Ali] Univ Calif Berkeley, Elect Engn & Comp Sci Dept, Berkeley, CA 94720 USA. [Hsu, Weitse; Sutter-Fella, Carolin M.; Hettick, Mark; Zheng, Maxwell; Wang, Hsin-Ping; Javey, Ali] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Hsu, Weitse; Cheng, Lungteng; Chan, Shengwen; Chen, Yunfeng; Chiang, Chien-Chih] Ind Technol Res Inst, Green Energy & Environm Res Lab, Hsinchu 31040, Taiwan. RP Javey, A (reprint author), Univ Calif Berkeley, Elect Engn & Comp Sci Dept, Berkeley, CA 94720 USA. EM ajavey@eecs.berkeley.edu RI Javey, Ali/B-4818-2013; OI Sutter-Fella, Carolin/0000-0002-7769-0869 FU ITRI; Bay Area Photovoltaics Consortium (BAPVC); Office of Science, Office of Basic Energy Sciences, Material Sciences and Engineering Division of the U.S. Department of Energy [DE-AC02-05CH11231] FX W.H. acknowledges funding from ITRI. TiO2/CIGS solar cell fabrication and characterization was funded by the Bay Area Photovoltaics Consortium (BAPVC). Materials characterization part of this work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Material Sciences and Engineering Division of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 23 TC 6 Z9 6 U1 1 U2 30 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD NOV 3 PY 2015 VL 5 AR 16028 DI 10.1038/srep16028 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CV0NO UT WOS:000363947700001 PM 26526426 ER PT J AU Narula, CK Li, Z Casbeer, EM Geiger, RA Moses-Debusk, M Keller, M Buchanan, MV Davison, BH AF Narula, Chaitanya K. Li, Zhenglong Casbeer, Erik M. Geiger, Robert A. Moses-Debusk, Melanie Keller, Martin Buchanan, Michelle V. Davison, Brian H. TI Heterobimetallic Zeolite, InV-ZSM-5, Enables Efficient Conversion of Biomass Derived Ethanol to Renewable Hydrocarbons SO SCIENTIFIC REPORTS LA English DT Article ID HZSM-5 ZEOLITE; CATALYTIC CONVERSION; FERMENTATION BROTHS; AQUEOUS-ETHANOL; ZSM-5 ZEOLITES; TRANSFORMATION; SPECTROSCOPY; PROPYLENE; OLEFINS; ALCOHOLS AB Direct catalytic conversion of ethanol to hydrocarbon blend-stock can increase biofuels use in current vehicles beyond the ethanol blend-wall of 10-15%. Literature reports describe quantitative conversion of ethanol over zeolite catalysts but high C-2 hydrocarbon formation renders this approach unsuitable for commercialization. Furthermore, the prior mechanistic studies suggested that ethanol conversion involves endothermic dehydration step. Here, we report the complete conversion of ethanol to hydrocarbons over InV-ZSM-5 without added hydrogen and which produces lower C-2 (<13%) as compared to that over H-ZSM-5. Experiments with C2H5OD and in situ DRIFT suggest that most of the products come from the hydrocarbon pool type mechanism and dehydration step is not necessary. Thus, our method of direct conversion of ethanol offers a pathway to produce suitable hydrocarbon blend-stock that may be blended at a refinery to produce fuels such as gasoline, diesel, JP-8, and jet fuel, or produce commodity chemicals such as BTX. C1 [Narula, Chaitanya K.; Li, Zhenglong; Casbeer, Erik M.; Geiger, Robert A.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Moses-Debusk, Melanie; Keller, Martin; Davison, Brian H.] Oak Ridge Natl Lab, Energy & Environm Sci Directorate, Oak Ridge, TN 37831 USA. [Buchanan, Michelle V.] Oak Ridge Natl Lab, Phys Sci Directorate, Oak Ridge, TN 37831 USA. RP Narula, CK (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. EM narulack@ornl.gov RI Davison, Brian/D-7617-2013; Buchanan, Michelle/J-1562-2016; OI Davison, Brian/0000-0002-7408-3609; Buchanan, Michelle/0000-0002-8078-4575; Moses-DeBusk, Melanie/0000-0003-0382-0824 FU U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, BioEnergy Technologies Office [DE-AC05-00OR22725]; UT-Battelle, LLC; ORNL Laboratory Directed Research and Development funds; BioEnergy Science Center - U.S. DOE Office of Biological and Environmental Research in the Office of Science; Center for Nanophase Materials Sciences at Oak Ridge National Laboratory by Scientific User Facilities Division, Office of Basic Energy Sciences; U.S. Department of Energy FX This research is sponsored by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, BioEnergy Technologies Office under contract DE-AC05-00OR22725 with UT-Battelle, LLC. Initial funds were from the ORNL Laboratory Directed Research and Development funds and from the BioEnergy Science Center which is supported by the U.S. DOE Office of Biological and Environmental Research in the Office of Science. The DRIFTS work was performed at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, and U.S. Department of Energy. We thank Dr. Zili Wu for help with DRIFTS experiments and Mr. Andrew Lepore for assistance with some of the experimental work. Authors thank Drs. Jagjit Nanda and Rose Ruther for recording Raman spectra of zeolites. NR 54 TC 4 Z9 4 U1 10 U2 58 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD NOV 3 PY 2015 VL 5 AR 16039 DI 10.1038/srep16039 PG 9 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CV0RI UT WOS:000363959100002 PM 26526963 ER PT J AU Yang, S Wang, Y Ni, XJ Zhang, X AF Yang, Sui Wang, Yuan Ni, Xingjie Zhang, Xiang TI Optical modulation of aqueous metamaterial properties at large scale SO OPTICS EXPRESS LA English DT Article ID NEGATIVE REFRACTIVE-INDEX; SYMMETRY-BREAKING; DNA; TRANSITION; PHASE AB Dynamical control of metamaterials by adjusting their shape and structures has been developed to achieve desired optical functionalities and to enable modulation and selection of spectra responses. However it is still challenging to realize such a manipulation at large scale. Recently, it has been shown that the desired high (or low) symmetry metamaterials structure in solution can be self-assembled under external light stimuli. Using the this approach, we systematically investiagted the optical controlling process and report here a dynamical manipulation of magnetic properties of metamaterials. Under external laser excitations, we demonstrated that selected magnetic properties of metamaterials can be tuned with the freedom of chosen wavelength ranges. The magnetic dipole selectivity and tunability were further quantified by in situ spectral measurement. (C) 2015 Optical Society of America C1 [Yang, Sui; Wang, Yuan; Ni, Xingjie; Zhang, Xiang] Univ Calif Berkeley, NSF Nanoscale Sci & Engn Ctr NSEC, Berkeley, CA 94720 USA. [Yang, Sui; Wang, Yuan; Zhang, Xiang] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Zhang, Xiang] King Abdulaziz Univ, Dept Phys, Jeddah 21589, Saudi Arabia. RP Zhang, X (reprint author), Univ Calif Berkeley, NSF Nanoscale Sci & Engn Ctr NSEC, 3112 Etcheverry Hall, Berkeley, CA 94720 USA. EM xiang@berkeley.edu RI Zhang, Xiang/F-6905-2011; Wang, Yuan/F-7211-2011; Yang, Sui /H-4417-2016 FU National Science Foundation [DMR-1344290]; Gordon and Betty Moore Foundation FX This research was supported by the National Science Foundation (Grant no. DMR-1344290) and the Gordon and Betty Moore Foundation. NR 27 TC 1 Z9 1 U1 1 U2 10 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD NOV 2 PY 2015 VL 23 IS 22 BP 28736 EP 28741 DI 10.1364/OE.23.028736 PG 6 WC Optics SC Optics GA CY7HJ UT WOS:000366578900062 PM 26561142 ER PT J AU Jones, AM DeRose, CT Lentine, AL Starbuck, A Pomerene, ATS Norwood, RA AF Jones, Adam M. DeRose, Christopher T. Lentine, Anthony L. Starbuck, Andrew Pomerene, Andrew T. S. Norwood, Robert A. TI Racetrack resonator as a loss measurement platform for photonic components SO OPTICS EXPRESS LA English DT Article ID WIRE WAVE-GUIDES; PROPAGATION LOSS; SILICON; MODULATORS; SCATTERING; CONVERTER; CROSSINGS; FIBER; INDEX AB This work represents the first complete analysis of the use of a racetrack resonator to measure the insertion loss of efficient, compact photonic components. Beginning with an in-depth analysis of potential error sources and a discussion of the calibration procedure, the technique is used to estimate the insertion loss of waveguide width tapers of varying geometry with a resulting 95% confidence interval of 0.007 dB. The work concludes with a performance comparison of the analyzed tapers with results presented for four taper profiles and three taper lengths. (C) 2015 Optical Society of America C1 [Jones, Adam M.; DeRose, Christopher T.; Lentine, Anthony L.; Starbuck, Andrew; Pomerene, Andrew T. S.] Sandia Natl Labs, Appl Photon Micosyst, Albuquerque, NM 87123 USA. [Jones, Adam M.; Norwood, Robert A.] Univ Arizona, Photon Mat & Devices Lab, Tucson, AZ 85721 USA. RP Jones, AM (reprint author), Sandia Natl Labs, Appl Photon Micosyst, Albuquerque, NM 87123 USA. EM adajone@sandia.gov NR 32 TC 0 Z9 0 U1 1 U2 2 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD NOV 2 PY 2015 VL 23 IS 22 BP 28883 EP 28895 DI 10.1364/OE.23.028883 PG 13 WC Optics SC Optics GA CY7HJ UT WOS:000366578900077 PM 26561157 ER PT J AU Zhou, JY AF Zhou, Joey Y. TI Re: Bias in the proportionate mortality ratio analysis of small study populations: A case on analyses of radiation and mesothelioma Response SO INTERNATIONAL JOURNAL OF RADIATION BIOLOGY LA English DT Letter C1 [Zhou, Joey Y.] US DOE, Off Domest & Int Hlth Studies, Washington, DC 20585 USA. RP Zhou, JY (reprint author), US DOE, Off Domest & Int Hlth Studies, Washington, DC 20585 USA. EM joey.zhou@hq.doe.gov RI WSU, USTUR/I-1056-2013 NR 2 TC 0 Z9 0 U1 0 U2 2 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 0955-3002 EI 1362-3095 J9 INT J RADIAT BIOL JI Int. J. Radiat. Biol. PD NOV 2 PY 2015 VL 91 IS 11 BP 911 EP 912 DI 10.3109/09553002.2015.1092848 PG 2 WC Biology; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Life Sciences & Biomedicine - Other Topics; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA CZ0ZO UT WOS:000366835600008 PM 26690265 ER PT J AU Vrba, L Garbe, JC Stampfer, MR Futscher, BW AF Vrba, Lukas Garbe, James C. Stampfer, Martha R. Futscher, Bernard W. TI A lincRNA connected to cell mortality and epigenetically-silenced in most common human cancers SO EPIGENETICS LA English DT Article DE breast cancer; DNA methylation; epigenetics; immortality; HMEC; lncRNA; lincRNA; MORT; mammary epithelia; ncRNA; ZNF667-AS1 ID X-CHROMOSOME INACTIVATION; LONG NONCODING RNAS; MAMMARY EPITHELIAL-CELLS; SENESCENCE BARRIERS; GENE; METHYLATION; EXPRESSION; INTEGRINS; EVOLUTION; IMMORTALIZATION AB Immortality is an essential characteristic of human carcinoma cells. We recently developed an efficient, reproducible method that immortalizes human mammary epithelial cells (HMEC) in the absence of gross genomic changes by targeting 2 critical senescence barriers. Consistent transcriptomic changes associated with immortality were identified using microarray analysis of isogenic normal finite pre-stasis, abnormal finite post-stasis, and immortal HMECs from 4 individuals. A total of 277 genes consistently changed in cells that transitioned from post-stasis to immortal. Gene ontology analysis of affected genes revealed biological processes significantly altered in the immortalization process. These immortalization-associated changes showed striking similarity to the gene expression changes seen in The Cancer Genome Atlas (TCGA) clinical breast cancer data. The most dramatic change in gene expression seen during the immortalization step was the downregulation of an unnamed, incompletely annotated transcript that we called MORT, for mortality, since its expression was closely associated with the mortal, finite lifespan phenotype. We show here that MORT (ZNF667-AS1) is expressed in all normal finite lifespan human cells examined to date and is lost in immortalized HMEC. MORT gene silencing at the mortal/immortal boundary was due to DNA hypermethylation of its CpG island promoter. This epigenetic silencing is also seen in human breast cancer cell lines and in a majority of human breast tumor tissues. The functional importance of DNA hypermethylation in MORT gene silencing is supported by the ability of 5-aza-2-deoxycytidine to reactivate MORT expression. Analysis of TCGA data revealed deregulation of MORT expression due to DNA hypermethylation in 15 out of the 17 most common human cancers. The epigenetic silencing of MORT in a large majority of the common human cancers suggests a potential fundamental role in cellular immortalization during human carcinogenesis. C1 [Vrba, Lukas; Stampfer, Martha R.; Futscher, Bernard W.] Univ Arizona, Arizona Canc Ctr, Tucson, AZ 85721 USA. [Garbe, James C.; Stampfer, Martha R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. [Futscher, Bernard W.] Univ Arizona, Coll Pharm, Dept Pharmacol & Toxicol, Tucson, AZ 85721 USA. RP Futscher, BW (reprint author), Univ Arizona, Arizona Canc Ctr, Tucson, AZ 85721 USA. EM bfutscher@uacc.arizona.edu RI Vrba, Lukas/J-9268-2015 OI Vrba, Lukas/0000-0003-3042-6275 FU Margaret E. and Fenton L. Maynard Endowment for Breast Cancer Research and Center [ES006694, CA23074, CA65662, P42 ES04940]; LBNL DOE: the US. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Margaret E. and Fenton L. Maynard Endowment for Breast Cancer Research and Center grants ES006694, CA23074, CA65662, P42 ES04940, LBNL DOE: the US. Department of Energy (DE-AC02-05CH11231). NR 44 TC 2 Z9 3 U1 0 U2 4 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA SN 1559-2294 EI 1559-2308 J9 EPIGENETICS-US JI Epigenetics PD NOV 2 PY 2015 VL 10 IS 11 BP 1074 EP 1083 DI 10.1080/15592294.2015.1106673 PG 10 WC Biochemistry & Molecular Biology; Genetics & Heredity SC Biochemistry & Molecular Biology; Genetics & Heredity GA CY2NY UT WOS:000366246600009 PM 26646903 ER PT J AU Knope, KE Skanthakumar, S Soderholm, L AF Knope, Karah E. Skanthakumar, S. Soderholm, L. TI Two Dihydroxo-Bridged Plutonium(IV) Nitrate Dimers and Their Relevance to Trends in Tetravalent Ion Hydrolysis and Condensation SO INORGANIC CHEMISTRY LA English DT Article ID THORIUM(IV) MOLECULAR CLUSTERS; X-RAY-SCATTERING; CRYSTAL-STRUCTURE; AQUEOUS-SOLUTION; CHEMISTRY; HEXANUCLEAR; PRODUCTS; SULFATE; COMPLEXES; CORE AB We report the room temperature synthesis and structural characterization of a mu(2)-hydroxo-bridged Pu-IV dimer obtained from an acidic nitric acid solution. The discrete Pu-2(OH)(2)(NO3)(6)(H2O)(4) moiety crystallized with two distinct crystal structures, [Pu-2(OH)(2)(NO3)(6)(H2O)(4)](2)11H(2)O (1) and Pu-2(OH)(2)(NO3)(6)(H2O)(4)2H(2)O (2), which differ primarily in the number of incorporated water molecules. High-energy X-ray scattering (HEXS) data obtained from the mother liquor showed evidence of a correlation at 3.7(1) A but only after concentration of the stock solution. This distance is consistent with the dihydroxo-bridged distance of 3.799(1) A seen in the solid-state structure as well as with the known Pu-Pu distance in PuO2. The structural characterization of a dihydroxo-bridged Pu moiety is discussed in terms of its relevance to the underlying mechanisms of tetravalent metal-ion condensation. C1 [Knope, Karah E.; Skanthakumar, S.; Soderholm, L.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Soderholm, L (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM LS@anl.gov FU University of Chicago at Argonne, LLC (Argonne National Laboratory); U.S. Department of Energy; BES Heavy Elements Program [DE-ACO2-06CH11357] FX This work is supported at University of Chicago at Argonne, LLC (Argonne National Laboratory), by the U.S. Department of Energy, BES Heavy Elements Program, under Contract DE-ACO2-06CH11357. The APS, a U.S. DOE Office of Science User Facility, is operated at Argonne National Laboratory under the same contract number. NR 59 TC 1 Z9 1 U1 4 U2 25 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 EI 1520-510X J9 INORG CHEM JI Inorg. Chem. PD NOV 2 PY 2015 VL 54 IS 21 BP 10192 EP 10196 DI 10.1021/acs.inorgchem5b01242 PG 5 WC Chemistry, Inorganic & Nuclear SC Chemistry GA CV3QT UT WOS:000364175000010 PM 26460785 ER PT J AU Wilson, RE AF Wilson, Richard E. TI Structure, Phase Transitions, and Isotope Effects in [(CH3)(4)N](2)PuCl6 SO INORGANIC CHEMISTRY LA English DT Article ID TEMPERATURE VIBRATIONAL SPECTROSCOPY; CRYSTAL-STRUCTURES; MAGNETIC-PROPERTIES; STARTING MATERIALS; TETRAMETHYLAMMONIUM HEXACHLOROPLATINATE(IV); VIBRONIC TRANSITIONS; ELECTRONIC-STRUCTURE; CHLORIDE COMPLEXES; RAMAN-SPECTROSCOPY; AQUEOUS-SOLUTION AB The single-crystal X-ray diffraction structure of [(CH3)(4)N](2)PuCl6 is presented for the first time, resolving long-standing confusion and speculation regarding the structure of this compound in the literature. A temperature-dependent study of this compound shows that the structure of [(CH3)(4)N](2)PuCl6 undergoes no fewer than two phase transitions between 100 and 360 K. The phase of [(CH3)(4)N](2)PuCl6 at room temperature is Fd (3) over barc a = 26.012(3) A. At 360 K, the structure is in space group Fm (3) over barm, with a = 13.088(1) A. The plutonium octahedra and tetramethylammonium cations undergo a rotative displacement, and the degree of rotation varies with temperature, giving rise to the phase transition from Fm (3) over barm to Fd (3) over barc as the crystal is cooled. Synthesis and structural studies of the deuterated salt [(CD3)(4)N](2)PuCl6 suggest that there is an isotopic effect associated with this phase transition, as revealed by a changing transition temperature in the deuterated versus protonated compound, indicating that the donor-acceptor interactions between the tetramethylammonium cations and the hexachloroplutonate anions are driving the phase transformation. C1 Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Wilson, RE (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. EM rewilson@anl.gov RI Wilson, Richard/H-1763-2011 OI Wilson, Richard/0000-0001-8618-5680 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX This material is based upon work performed at Argonne National Laboratory, supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract no. DE-AC02-06CH11357. NR 66 TC 1 Z9 1 U1 3 U2 12 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 EI 1520-510X J9 INORG CHEM JI Inorg. Chem. PD NOV 2 PY 2015 VL 54 IS 21 BP 10208 EP 10213 DI 10.1021/acs.inorgchem.5b01288 PG 6 WC Chemistry, Inorganic & Nuclear SC Chemistry GA CV3QT UT WOS:000364175000012 PM 26225472 ER PT J AU Kumar, RS Svane, A Vaitheeswaran, G Kanchana, V Antonio, D Cornelius, AL Bauer, ED Xiao, YM Chow, P AF Kumar, Ravhi S. Svane, Axel Vaitheeswaran, Ganapathy Kanchana, Venkatakrishnan Antonio, Daniel Cornelius, Andrew L. Bauer, Eric D. Xiao, Yuming Chow, Paul TI Effect of Pressure on Valence and Structural Properties of YbFe2Ge2 Heavy Fermion Compound-A Combined Inelastic X-ray Spectroscopy, X-ray Diffraction, and Theoretical Investigation SO INORGANIC CHEMISTRY LA English DT Article ID SPIN-DENSITY APPROXIMATION; QUANTUM PHASE-TRANSITIONS; ELECTRON SYSTEMS; LUFE2GE2; RFE2GE2; YB AB The crystal structure and the Yb valence of the YbFe2Ge2 heavy fermion compound was measured at room temperature and under high pressures using high-pressure powder X-ray diffraction and X-ray absorption spectroscopy via both partial fluorescence yield and resonant inelastic X-ray emission techniques. The measurements are complemented by first-principles density functional theoretical calculations using the self-interaction corrected local spin density approximation investigating in particular the magnetic structure and the Yb valence. While the ThCr2Si2-type tetragonal (I4/mmm) structure is stable up to 53 GPa, the X-ray emission results show an increase of the Yb valence from v = 2.72(2) at ambient pressure to v = 2.93(3) at similar to 9 GPa, where at low temperature a pressure-induced quantum critical state was reported. C1 [Kumar, Ravhi S.; Antonio, Daniel; Cornelius, Andrew L.] Univ Nevada, Dept Phys & Astron, Las Vegas, NV 89154 USA. [Kumar, Ravhi S.; Antonio, Daniel; Cornelius, Andrew L.] Univ Nevada, HiPSEC, Las Vegas, NV 89154 USA. [Bauer, Eric D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Svane, Axel] Aarhus Univ, Dept Phys & Astron, DK-8000 Aarhus C, Denmark. [Vaitheeswaran, Ganapathy] Univ Hyderabad, Adv Ctr Res High Energy Mat, Hyderabad 500046, Telengana, India. [Kanchana, Venkatakrishnan] Indian Inst Technol Hyderabad, Dept Phys, Yeddumailaram 502205, Telengana, India. [Xiao, Yuming; Chow, Paul] Argonne Natl Lab, Carnegie Inst Washington, HPCAT, Argonne, IL 60439 USA. [Xiao, Yuming; Chow, Paul] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Kumar, RS (reprint author), Univ Nevada, Dept Phys & Astron, Las Vegas, NV 89154 USA. EM ravhi@physics.unlv.edu OI Bauer, Eric/0000-0003-0017-1937 FU U.S. Department of Energy [DE-SC0001928]; DOE-NNSA [DE-NA0001974]; DOE-BES [DE-FG02-99ER45775]; NSF; DOE Office of Science [DE-AC02-06CH11357]; U.S. DOE, OBES, Division of Materials Sciences and Engineering FX Work at the Univ. of Nevada Las Vegas (ALC) is funded by U.S. Department of Energy Award No. DE-SC0001928. Portions of this work were performed at HPCAT (Sector 16), Advanced PhotonSource (APS), Argonne National Laboratory. HPCAT operations are supported by DOE-NNSA under Award No. DE-NA0001974 and DOE-BES under Award No. DE-FG02-99ER45775, with partial instrumentation funding by NSF. The Advanced Photon Source is a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. Sample preparation at Los Alamos National Laboratory (LANL) was performed under the auspices of the U.S. DOE, OBES, Division of Materials Sciences and Engineering. NR 39 TC 3 Z9 3 U1 3 U2 16 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 EI 1520-510X J9 INORG CHEM JI Inorg. Chem. PD NOV 2 PY 2015 VL 54 IS 21 BP 10250 EP 10255 DI 10.1021/acs.inorgchem.5b01534 PG 6 WC Chemistry, Inorganic & Nuclear SC Chemistry GA CV3QT UT WOS:000364175000018 PM 26479903 ER PT J AU Smetana, V Steinberg, S Mudryk, Y Pecharsky, V Miller, GJ Mudring, AV AF Smetana, Volodymyr Steinberg, Simon Mudryk, Yaroslav Pecharsky, Vitalij Miller, Gordon J. Mudring, Anja-Verena TI Cation-Poor Complex Metallic Alloys in Ba(Eu)-Au-Al(Ga) Systems: Identifying the Keys that Control Structural Arrangements and Atom Distributions at the Atomic Level SO INORGANIC CHEMISTRY LA English DT Article ID ICOSAHEDRAL QUASI-CRYSTAL; AU-GA SYSTEM; AUGMENTED-WAVE METHOD; INTERMETALLIC PHASES; ELECTRONIC-STRUCTURE; PHYSICAL-PROPERTIES; HAMILTON POPULATIONS; POLAR INTERMETALLICS; MAGNETIC-PROPERTIES; EARTH-METALS AB Four complex intermetallic compounds BaAu6 Ga-x(6) (y) (x = 1, y = 0 9) (I), BaAu6 Al-x(6) (y) (x = 0 9, y = 0 6) (II), EuAu6 Ga-2(5) (8) (III), and EuAu6 Al-1(5) (9) (IV) have been synthesized, and their structures and homogeneity ranges have been determined by single crystal and powder X-ray diffraction Whereas I and II originate from the NaZn13-type structure (cF104-112, Fm (3) over barc), III (tP52, P4/nbm) is derived from the tetragonal Ce2Ni17Si9-type, and IV (oP104, Pbcm) crystallizes in a new orthorhombic structure type Both I and II feature formally anionic networks with completely mixed site occupation by Au and triel (Tr = Al, Ga) atoms, while a successive decrease of local symmetry from the parental structures of I and II to III and, ultimately, to IV correlates with increasing separation of Au and Tr on individual crystallographic sites Density functional theory-based calculations were employed to determine the crystallographic site preferences of Au and the respective triel element to elucidate reasons for the atom distribution (coloring scheme) Chemical bonding analyses for two different EuAu6Tr6 models reveal maximization of the number of heteroatomic AuTr bonds as the driving force for atom organization The Fermi levels fall in broad pseudogaps for both models allowing some electronic flexibility Spin-polarized band structure calculations on the EuAu6Tr6 models hint to singlet ground states for europium and long-range magnetic coupling for both EuAu6 Ga-2(5) (8) (III) and EuAu6 Al-1(5) (9) (IV) This is substantiated by experimental evidence because both compounds show nearly identical magnetic behavior with ferromagnetic transitions at T-C = 6 K and net magnetic moments of 7 35 mu(B)/f u at 2 K The effective moments of 8 3 mu(B)/f u , determined from Curie-Weiss fits, point to divalent oxidation states for europium in both III and IV C1 [Smetana, Volodymyr; Steinberg, Simon; Mudryk, Yaroslav; Pecharsky, Vitalij; Miller, Gordon J.; Mudring, Anja-Verena] US DOE, Ames Lab, Ames, IA 50011 USA. [Pecharsky, Vitalij; Mudring, Anja-Verena] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. [Miller, Gordon J.] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. RP Mudring, AV (reprint author), US DOE, Ames Lab, Ames, IA 50011 USA. EM mudring@iastate.edu RI Smetana, Volodymyr/C-1340-2015; OI Smetana, Volodymyr/0000-0003-0763-1457 FU Critical Materials Institute, an Energy Innovation Hub of the U.S. Department of Energy (DOE), the Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office; Office of the Basic Energy Sciences, Materials Sciences Division of the U.S. DOE; Department of Materials Science and Engineering at Iowa State University; U.S. DOE [DE-AC02-07CH11358] FX This research was supported by the Critical Materials Institute, an Energy Innovation Hub of the U.S. Department of Energy (DOE), the Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office (A.V.M. and V.S. sample preparation and data analysis), the Office of the Basic Energy Sciences, Materials Sciences Division of the U.S. DOE (G.J.M, A.V.M, V.S., and S.S. conducting research and manuscript preparation; V.K.P. and Ya.M., measurements of magnetic properties and manuscript preparation) and the Department of Materials Science and Engineering at Iowa State University (A.V.M. and S.S. sample preparation and data analysis). Ames Laboratory is operated for U.S. DOE by Iowa State University under Contract No. DE-AC02-07CH11358. NR 88 TC 4 Z9 4 U1 2 U2 8 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 EI 1520-510X J9 INORG CHEM JI Inorg. Chem. PD NOV 2 PY 2015 VL 54 IS 21 BP 10296 EP 10308 DI 10.1021/acs.inorgchem.5b01633 PG 13 WC Chemistry, Inorganic & Nuclear SC Chemistry GA CV3QT UT WOS:000364175000023 PM 26479308 ER PT J AU Rettenwander, D Welzl, A Cheng, L Fleig, J Musso, M Suard, E Doeff, MM Redhammer, GJ Amthauer, G AF Rettenwander, Daniel Welzl, Andreas Cheng, Lei Fleig, Juergen Musso, Maurizio Suard, Emmanuelle Doeff, Marca M. Redhammer, Guenther J. Amthauer, Georg TI Synthesis, Crystal Chemistry, and Electrochemical Properties of Li7-2xLa3Zr2-xMoxO12 (x=0.1-0.4): Stabilization of the Cubic Garnet Polymorph via Substitution of Zr4+ by Mo6+ SO INORGANIC CHEMISTRY LA English DT Article ID SOLID ELECTROLYTES; CONDUCTORS LI7LA3ZR2O12; GRAIN-BOUNDARIES; ION CONDUCTORS; IMPEDANCE; CONDUCTIVITY; TA; AL; GA AB Cubic Li7La3Zr2O12 (LLZO) garnets are exceptionally well suited to be used as solid electrolytes or protecting layers in Beyond Li-ion Battery concepts. Unfortunately, cubic LLZO is not stable at room temperature (RT) and has to be stabilized by supervalent dopants. In this study we demonstrate a new possibility to stabilize the cubic phase at RT via substitution of Zr4+ by Mo6+. A Mo6+ content of 0.25 per formula unit (pfu) stabilizes the cubic LLZO phase, and the solubility limit is about 0.3 Mo6+ pfu. Based on the results of neutron powder diffraction and Raman spectroscopy, Mo6+ is located at the octahedrally coordinated 16a site of the cubic garnet structure (space group Ia-3d). Since Mo6+ has a smaller ionic radius compared to Zr4+ the lattice parameter a(0) decreases almost linearly as a function of the Mo6+ content. The highest bulk Li-ion conductivity is found for the 0.25 pfu composition, with a typical RT value of 3.4 x 10(-4) S cm(-1). An additional significant resistive contribution originating from the sample interior (most probably from grain boundaries) could be identified in impedance spectra. The latter strongly depends on the prehistory and increases significantly after annealing at 700 C in ambient air. Cyclic voltammetry experiments on cells containing Mo6+ substituted LLZO indicate that the material is stable up to 6 V. C1 [Rettenwander, Daniel; Musso, Maurizio; Redhammer, Guenther J.; Amthauer, Georg] Salzburg Univ, Dept Mat Res & Phys, A-5020 Salzburg, Austria. [Welzl, Andreas] Vienna Univ Technol, Inst Chem Technol & Analyt, A-1060 Vienna, Austria. [Cheng, Lei; Doeff, Marca M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. [Cheng, Lei] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Suard, Emmanuelle] Inst Max Von Laue Paul Langevin, Diffract Grp, F-38000 Grenoble, France. RP Rettenwander, D (reprint author), Salzburg Univ, Dept Mat Res & Phys, A-5020 Salzburg, Austria. EM daniel.rettenwander@sbg.ac.at RI Musso, Maurizio/F-7832-2013; Rettenwander, Daniel/H-5662-2012; Redhammer, Guenther/J-9069-2012 OI Musso, Maurizio/0000-0001-6631-5206; Rettenwander, Daniel/0000-0002-2074-941X; Redhammer, Guenther/0000-0003-0996-3930 FU Austrian Science Fund (FWF) [P25702] FX The research was supported by Austrian Science Fund (FWF): Project No. P25702. NR 24 TC 6 Z9 6 U1 14 U2 73 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 EI 1520-510X J9 INORG CHEM JI Inorg. Chem. PD NOV 2 PY 2015 VL 54 IS 21 BP 10440 EP 10449 DI 10.1021/acs.inorgchem.5b01895 PG 10 WC Chemistry, Inorganic & Nuclear SC Chemistry GA CV3QT UT WOS:000364175000038 PM 26452048 ER PT J AU Le Bas, PY Remillieux, MC Pieczonka, L Ten Cate, JA Anderson, BE Ulrich, TJ AF Le Bas, P. -Y. Remillieux, M. C. Pieczonka, L. Ten Cate, J. A. Anderson, B. E. Ulrich, T. J. TI Damage imaging in a laminated composite plate using an air-coupled time reversal mirror SO APPLIED PHYSICS LETTERS LA English DT Article ID WAVE; EXCITATION; SOLIDS; WEDGES AB We demonstrate the possibility of selectively imaging the features of a barely visible impact damage in a laminated composite plate by using an air-coupled time reversal mirror. The mirror consists of a number of piezoelectric transducers affixed to wedges of power law profiles, which act as unconventional matching layers. The transducers are enclosed in a hollow reverberant cavity with an opening to allow progressive emission of the ultrasonic wave field towards the composite plate. The principle of time reversal is used to focus elastic waves at each point of a scanning grid spanning the surface of the plate, thus allowing localized inspection at each of these points. The proposed device and signal processing removes the need to be in direct contact with the plate and reveals the same features as vibrothermography and more features than a C-scan. More importantly, this device can decouple the features of the defect according to their orientation, by selectively focusing vector components of motion into the object, through air. For instance, a delamination can be imaged in one experiment using out-of-plane focusing, whereas a crack can be imaged in a separate experiment using in-plane focusing. This capability, inherited from the principle of time reversal, cannot be found in conventional air-coupled transducers. (C) 2015 AIP Publishing LLC. C1 [Le Bas, P. -Y.; Remillieux, M. C.; Ten Cate, J. A.; Anderson, B. E.; Ulrich, T. J.] Los Alamos Natl Lab, Geophys Grp EES 17, Los Alamos, NM 87545 USA. [Pieczonka, L.] AGH Univ Sci & Technol, Dept Robot & Mechatron, PL-30059 Krakow, Poland. RP Remillieux, MC (reprint author), Los Alamos Natl Lab, Geophys Grp EES 17, Los Alamos, NM 87545 USA. EM mcr1@lanl.gov RI Pieczonka, Lukasz/C-9685-2011 OI Pieczonka, Lukasz/0000-0003-3623-3984 FU U.S. Department of Energy through the LANL/LDRD Program; Foundation for Polish Science (FNP) within the scope of the WELCOME Programme [2010-3/2] FX We gratefully acknowledge the support of the U.S. Department of Energy through the LANL/LDRD Program and the Foundation for Polish Science (FNP) within the scope of the WELCOME Programme - Project No. 2010-3/2. In addition, we would like to acknowledge Professor Francesco Aymerich, at Universita degli Studi di Cagliari, for providing the test sample and laboratory facilities to perform C-scan testing. NR 23 TC 3 Z9 3 U1 0 U2 12 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD NOV 2 PY 2015 VL 107 IS 18 AR 184102 DI 10.1063/1.4935210 PG 4 WC Physics, Applied SC Physics GA CV9AX UT WOS:000364580800070 ER PT J AU Li, Y Qian, D Xue, JW Wan, JC Zhang, AF Tamura, N Song, ZX Chen, K AF Li, Yao Qian, Dan Xue, Jiawei Wan, Jingchun Zhang, Anfeng Tamura, Nobumichi Song, Zhongxiao Chen, Kai TI A synchrotron study of defect and strain inhomogeneity in laser-assisted three-dimensionally-printed Ni-based superalloy SO APPLIED PHYSICS LETTERS LA English DT Article ID LAUE MICRODIFFRACTION; SINGLE-CRYSTAL; MICROSTRUCTURE AB Synchrotron X-ray microdiffraction was employed to investigate the inhomogeneous distribution of defect and residual strain in the transitional region between the dendritic and stray grains in a laser-assisted 3D printed Ni-based superalloy. The dendritic region was found to be under tensile strain transversely to the primary dendrite arm directions. The dendrite edges, where high level of strains and geometrically necessary dislocations were detected, were discerned as low angle grain boundaries. High angle grain boundaries were observed in the stray grain region, and the orientation of the strain tensor in this region varied dramatically at the micron scale, in contrast with the more or less homogeneous distribution in the dendritic region. (C) 2015 AIP Publishing LLC. C1 [Li, Yao; Chen, Kai] Xi An Jiao Tong Univ, State Key Lab Mech Behav Mat, Ctr Adv Mat Performance Nanoscale CAMP Nano, Xian 710049, Shaanxi, Peoples R China. [Li, Yao; Qian, Dan; Xue, Jiawei; Wan, Jingchun; Song, Zhongxiao; Chen, Kai] Xi An Jiao Tong Univ, State Key Lab Mech Behav Mat, Xian 710049, Shaanxi, Peoples R China. [Zhang, Anfeng] Xi An Jiao Tong Univ, State Key Lab Mfg Syst Engn, Xian 710049, Shaanxi, Peoples R China. [Tamura, Nobumichi] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Zhang, AF (reprint author), Xi An Jiao Tong Univ, State Key Lab Mfg Syst Engn, Xian 710049, Shaanxi, Peoples R China. EM zhangaf@mail.xjtu.edu.cn; zhongxiaosong@mail.xjtu.edu.cn; kchenlbl@gmail.com RI xjtu, campnano/Q-1904-2015; Chen, Kai/O-5662-2014; OI Chen, Kai/0000-0002-4917-4445; Li, Yao/0000-0002-2680-4408; Tamura, Nobumichi/0000-0002-3698-2611 FU National Natural Science Foundation of China [51302207, 51275392, 51271140]; National Basic Research Program of China ("973" Program) [2015CB057400]; Fundamental Research Funds for the Central Universities [2015gjhz03]; National Young 1000 Talents Program of China; Office of Science, Office of Basic Energy Sciences, Materials Science Division, of the U.S. Department of Energy at LBNL [DE-AC02-05CH11231] FX This work was supported by the National Natural Science Foundation of China (Grant Nos. 51302207, 51275392, and 51271140), the National Basic Research Program of China ("973" Program) (Grant No. 2015CB057400), and the Fundamental Research Funds for the Central Universities (Grant No. 2015gjhz03). K.C. was supported by the National Young 1000 Talents Program of China. The ALS was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Science Division, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 at LBNL. NR 21 TC 0 Z9 0 U1 8 U2 29 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD NOV 2 PY 2015 VL 107 IS 18 AR 181902 DI 10.1063/1.4934839 PG 5 WC Physics, Applied SC Physics GA CV9AX UT WOS:000364580800018 ER PT J AU Luo, YK Li, H Dai, YM Miao, H Shi, YG Ding, H Taylor, AJ Yarotski, DA Prasankumar, RP Thompson, JD AF Luo, Yongkang Li, H. Dai, Y. M. Miao, H. Shi, Y. G. Ding, H. Taylor, A. J. Yarotski, D. A. Prasankumar, R. P. Thompson, J. D. TI Hall effect in the extremely large magnetoresistance semimetal WTe2 SO APPLIED PHYSICS LETTERS LA English DT Article ID COLOSSAL MAGNETORESISTANCE; GIANT MAGNETORESISTANCE; ULTRAHIGH MOBILITY AB We systematically measured the Hall effect in the extremely large magnetoresistance semimetal WTe2. By carefully fitting the Hall resistivity to a two-band model, the temperature dependencies of the carrier density and mobility for both electron-and hole-type carriers were determined. We observed a sudden increase in the hole density below similar to 160 K, which is likely associated with the temperature-induced Lifshitz transition reported by a previous photoemission study. In addition, a more pronounced reduction in electron density occurs below 50 K, giving rise to comparable electron and hole densities at low temperature. Our observations indicate a possible electronic structure change below 50 K, which might be the direct driving force of the electron-hole "compensation" and the extremely large magnetoresistance as well. Numerical simulations imply that this material is unlikely to be a perfectly compensated system. (C) 2015 AIP Publishing LLC. C1 [Luo, Yongkang; Dai, Y. M.; Taylor, A. J.; Yarotski, D. A.; Prasankumar, R. P.; Thompson, J. D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Li, H.; Miao, H.; Shi, Y. G.; Ding, H.] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China. [Ding, H.] Collaborat Innovat Ctr Quantum Matter, Beijing 100084, Peoples R China. RP Luo, YK (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM ykluo@lanl.gov RI Dai, Yaomin/E-4259-2016 OI Dai, Yaomin/0000-0002-2464-3161 FU U.S. Department of Energy, Division of Materials Science and Engineering, Center for Intergrated Nanotechnologies; UC Office of the President under the UC Lab Fees Research Program; Chinese Academy of Sciences [XDB07020100]; National Natural Science Foundation of China [11274367, 11474330]; LANL LDRD program FX We thank John Bowlan, Pamela Bowlan, Brian McFarland, and F. Ronning for insightful discussions. Work at Los Alamos was performed under the auspices of the U.S. Department of Energy, Division of Materials Science and Engineering, Center for Intergrated Nanotechnologies, and UC Office of the President under the UC Lab Fees Research Program. Work at IOP CAS was supported by the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB07020100) and the National Natural Science Foundation of China (Nos. 11274367 and 11474330). Y. Luo acknowledges a Director's Postdoctoral Fellowship supported through the LANL LDRD program. NR 29 TC 2 Z9 2 U1 20 U2 108 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD NOV 2 PY 2015 VL 107 IS 18 AR 182411 DI 10.1063/1.4935240 PG 5 WC Physics, Applied SC Physics GA CV9AX UT WOS:000364580800038 ER PT J AU Olson, BV Kim, JK Kadlec, EA Klem, JF Hawkins, SD Leonhardt, D Coon, WT Fortune, TR Cavaliere, MA Tauke-Pedretti, A Shaner, EA AF Olson, B. V. Kim, J. K. Kadlec, E. A. Klem, J. F. Hawkins, S. D. Leonhardt, D. Coon, W. T. Fortune, T. R. Cavaliere, M. A. Tauke-Pedretti, A. Shaner, E. A. TI Minority carrier lifetime and dark current measurements in mid-wavelength infrared InAs0.91Sb0.09 alloy nBn photodetectors SO APPLIED PHYSICS LETTERS LA English DT Article ID SEMICONDUCTORS AB Carrier lifetime and dark current measurements are reported for a mid-wavelength infrared InAs0.91Sb0.09 alloy nBn photodetector. Minority carrier lifetimes are measured using a non-contact time-resolved microwave technique on unprocessed portions of the nBn wafer and the Auger recombination Bloch function parameter is determined to be vertical bar F1F2 vertical bar = 0.292. The measured lifetimes are also used to calculate the expected diffusion dark current of the nBn devices and are compared with the experimental dark current measured in processed photodetector pixels from the same wafer. Excellent agreement is found between the two, highlighting the important relationship between lifetimes and diffusion currents in nBn photodetectors. (C) 2015 AIP Publishing LLC. C1 [Olson, B. V.; Kim, J. K.; Kadlec, E. A.; Klem, J. F.; Hawkins, S. D.; Leonhardt, D.; Coon, W. T.; Fortune, T. R.; Cavaliere, M. A.; Tauke-Pedretti, A.; Shaner, E. A.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Olson, BV (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM benolso@sandia.gov OI Olson, Benjamin/0000-0003-1421-2541 FU Intelligence Community Postdoctoral Research Fellowship Program through Office of the Director of National Intelligence; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; DOE Office of Basic Energy Science FX This project was supported by a grant from the Intelligence Community Postdoctoral Research Fellowship Program through funding from the Office of the Director of National Intelligence. All statements of fact, opinion, or analysis expressed are those of the author and do not reflect the official positions or views of the Intelligence Community or any other U.S. Government agency. Nothing in the contents should be construed as asserting or implying U.S. Government authentication of information or Intelligence Community endorsement of the authors views. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. This work was supported in part by the DOE Office of Basic Energy Science. The authors thank Professor Michael Flatte for use of his k . p software. NR 19 TC 6 Z9 6 U1 2 U2 16 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD NOV 2 PY 2015 VL 107 IS 18 AR 183504 DI 10.1063/1.4935159 PG 4 WC Physics, Applied SC Physics GA CV9AX UT WOS:000364580800060 ER PT J AU Binder, AJ Toops, TJ Unocic, RR Parks, JE Dai, S AF Binder, Andrew J. Toops, Todd J. Unocic, Raymond R. Parks, James E., II Dai, Sheng TI Low-Temperature CO Oxidation over a Ternary Oxide Catalyst with High Resistance to Hydrocarbon Inhibition SO ANGEWANDTE CHEMIE-INTERNATIONAL EDITION LA English DT Article DE CO oxidation; emissions control; heterogeneous catalysis; IR spectroscopy; transition metals ID CONTROLLED COMPRESSION IGNITION; CO3O4-CEO2; OXYGEN; EXHAUST; IDENTIFICATION; COMBUSTION; PROPYLENE; CUO-CEO2; PROPENE; METALS AB Platinum group metal (PGM) catalysts are the current standard for control of pollutants in automotive exhaust streams. Aside from their high cost, PGM catalysts struggle with CO oxidation at low temperatures (<200 degrees C) due to inhibition by hydrocarbons in exhaust streams. Here we present a ternary mixed oxide catalyst composed of copper oxide, cobalt oxide, and ceria (dubbed CCC) that outperforms synthesized and commercial PGM catalysts for CO oxidation in simulated exhaust streams while showing no signs of inhibition by propene. Diffuse reflectance IR (DRIFTS) and light-off data both indicate low interaction between propene and the CO oxidation active site on this catalyst, and a separation of adsorption sites is proposed as the cause of this inhibition resistance. This catalyst shows great potential as a low-cost component for low temperature exhaust streams that are expected to be a characteristic of future automotive systems. C1 [Binder, Andrew J.; Toops, Todd J.; Parks, James E., II] Oak Ridge Natl Lab, Energy & Transportat Sci Div, Oak Ridge, TN 37831 USA. [Dai, Sheng] Univ Tennessee, Dept Chem, Knoxville, TN 37966 USA. [Unocic, Raymond R.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Binder, AJ (reprint author), Oak Ridge Natl Lab, Energy & Transportat Sci Div, Oak Ridge, TN 37831 USA. EM binderaj@ornl.gov; toopstj@ornl.gov; dais@ornl.gov RI Dai, Sheng/K-8411-2015; OI Dai, Sheng/0000-0002-8046-3931; Binder, Andrew/0000-0003-3221-2887 FU U.S. Department of Energy (DOE); U.S. Department of Energy [DE-AC0500OR22725]; Department of Energy FX This research was sponsored by the U.S. Department of Energy (DOE); both the Office of Energy Efficiency and Renewable Energy-Vehicle Technologies Office (A.J.B., T.J.T., and J.E.P.) and the Office of Basic Energy Sciences-Division of Chemical Sciences, Geosciences, and Biosciences (A.J.B. and S.D.) contributed to the support. Microscopy was conducted as part of a user proposal at ORNL's Center for Nanophase Materials Sciences (CNMS), which is an Office of Science User Facility. (RRU) This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC0500OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for the United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan). NR 28 TC 9 Z9 9 U1 24 U2 121 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 1433-7851 EI 1521-3773 J9 ANGEW CHEM INT EDIT JI Angew. Chem.-Int. Edit. PD NOV 2 PY 2015 VL 54 IS 45 BP 13263 EP 13267 DI 10.1002/anie.201506093 PG 5 WC Chemistry, Multidisciplinary SC Chemistry GA CU7BY UT WOS:000363691500017 PM 26360804 ER PT J AU Mouat, AR George, C Kobayashi, T Pruski, M van Duyne, RP Marks, TJ Stair, PC AF Mouat, Aidan R. George, Cassandra Kobayashi, Takeshi Pruski, Marek van Duyne, Richard P. Marks, Tobin J. Stair, Peter C. TI Highly Dispersed SiOx/Al2O3 Catalysts Illuminate the Reactivity of Isolated Silanol Sites SO ANGEWANDTE CHEMIE-INTERNATIONAL EDITION LA English DT Article DE alcohol dehydration; atomic layer deposition; heterogeneous catalysis; silica-alumina; solid acid ID ATOMIC LAYER DEPOSITION; BRONSTED ACID SITES; CHEMICAL-VAPOR-DEPOSITION; SURFACE HYDROXYL-GROUPS; SILICA-ALUMINA; AMORPHOUS ALUMINOSILICATES; INFRARED-SPECTROSCOPY; XYLENE ISOMERIZATION; NMR-SPECTROSCOPY; GAMMA-ALUMINA AB The reaction of -alumina with tetraethylorthosilicate (TEOS) vapor at low temperatures selectively yields monomeric SiOx species on the alumina surface. These isolated (-AlO)(3)Si(OH) sites are characterized by PXRD, XPS, DRIFTS of adsorbed NH3, CO, and pyridine, and Si-29 and Al-27 DNP-enhanced solid-state NMR spectroscopy. The formation of isolated sites suggests that TEOS reacts preferentially at strong Lewis acid sites on the -Al2O3 surface, functionalizing the surface with mild BrOnsted acid sites. For liquid-phase catalytic cyclohexanol dehydration, these SiOx sites exhibit up to 3.5-fold higher specific activity than the parent alumina with identical selectivity. C1 [Mouat, Aidan R.; George, Cassandra; van Duyne, Richard P.; Marks, Tobin J.; Stair, Peter C.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Mouat, Aidan R.; George, Cassandra; van Duyne, Richard P.; Marks, Tobin J.; Stair, Peter C.] Northwestern Univ, Ctr Catalysis & Surface Sci, Evanston, IL 60208 USA. [Kobayashi, Takeshi; Pruski, Marek] Iowa State Univ, US DOE, Ames Lab, Ames, IA 50011 USA. [Kobayashi, Takeshi; Pruski, Marek] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. RP Marks, TJ (reprint author), Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA. EM t-marks@northwestern.edu; pstair@northwestern.edu FU NSF [CHE-1213235, CHE-0923236]; IACT [DE-AC02-06CH11357]; ICEP [DE-FG02-03ER15457]; MRSEC program at the Materials Research Center, The Nanoscale Science and Engineering Center [NSF DMR-1121262, EEC-0118025/003]; National Science Foundation; State of Illinois; Northwestern University; DOE [DE-SC0001329]; U.S. DOE, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences through the Ames Laboratory [DE-AC02-07CH11358] FX Financial support from the NSF (CHE-1213235), IACT (DE-AC02-06CH11357), and ICEP (DE-FG02-03ER15457) is gratefully acknowledged. GC-TOF instrumentation at the Integrated Molecular Structure and Research Center (IMSERC) was supported by the NSF (CHE-0923236). This work made use of the Epic Facility (NUANCE Center-Northwestern University), which has received support from the MRSEC program (NSF DMR-1121262) at the Materials Research Center, The Nanoscale Science and Engineering Center (EEC-0118025/003), both programs of the National Science Foundation; the State of Illinois; and Northwestern University. The Clean Catalysis Facility of the Northwestern University Center for Catalysis and Surface Science is supported by a grant from the DOE (DE-SC0001329). Solid-state NMR studies at Ames Laboratory were supported by the U.S. DOE, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences through the Ames Laboratory under Contract No. DE-AC02-07CH11358. We thank A. Weingarten for helpful contributions. NR 53 TC 9 Z9 9 U1 22 U2 76 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 1433-7851 EI 1521-3773 J9 ANGEW CHEM INT EDIT JI Angew. Chem.-Int. Edit. PD NOV 2 PY 2015 VL 54 IS 45 BP 13346 EP 13351 DI 10.1002/anie.201505452 PG 6 WC Chemistry, Multidisciplinary SC Chemistry GA CU7BY UT WOS:000363691500034 PM 26398359 ER PT J AU Robinson, DB Luo, WF Cai, TY Stewart, KD AF Robinson, David B. Luo, Weifang Cai, Trevor Y. Stewart, Kenneth D. TI Metal hydride differential scanning calorimetry as an approach to compositional determination of mixtures of hydrogen isotopologues and helium SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY LA English DT Article DE H2; D2; He; Pd; DSC; Desorption ID ISOTOPIC-SUBSTITUTION; THERMAL-ANALYSIS; PALLADIUM; DESORPTION; ALLOYS; PD; SOLUBILITY; KINETICS; SYSTEM; DECOMPOSITION AB Gaseous mixtures of diatomic hydrogen isotopologues and helium are often encountered in the nuclear energy industry and in analytical chemistry. Compositions of stored mixtures can vary due to interactions with storage and handling materials. When tritium is present, it decays to form ions and helium-3, both of which can lead to further compositional variation. Monitoring of composition is typically achieved by mass spectrometry, a method that is bulky and energy-intensive. Mass spectrometers disperse sample material through vacuum pumps, which is especially troublesome if tritium is present. Our ultimate goal is to create a compact, fast, low-power sensor that can determine composition with minimal gas consumption and waste generation, as a complement to mass spectrometry that can be instantiated more widely. We propose calorimetry of metal hydrides as an approach to this, due to the strong isotope effect on gas absorption, and demonstrate the sensitivity of measured heat flow to atomic composition of the gas. Peak shifts are discernible when mole fractions change by at least 1%. A mass flow restriction results in a unique dependence of the measurement on helium concentration. A mathematical model is presented as a first step toward prediction of the peak shapes and positions. The model includes a useful method to compute estimates of phase diagrams for palladium in the presence of arbitrary mixtures of hydrogen isotopologues. We expect that this approach can be used to deduce unknown atomic compositions from measured calorimetric data over a useful range of partial pressures of each component. Copyright (C) 2015, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved. C1 [Robinson, David B.; Luo, Weifang; Cai, Trevor Y.; Stewart, Kenneth D.] Sandia Natl Labs, Livermore, CA 94550 USA. RP Robinson, DB (reprint author), Sandia Natl Labs, POB 969 MS 9291, Livermore, CA 94550 USA. EM drobins@sandia.gov FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The authors thank W. G. Wolfer for helpful advice on the use of chemical potentials to derive the pressure-composition isotherms. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 42 TC 0 Z9 0 U1 3 U2 13 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-3199 EI 1879-3487 J9 INT J HYDROGEN ENERG JI Int. J. Hydrog. Energy PD NOV 2 PY 2015 VL 40 IS 41 BP 14257 EP 14270 DI 10.1016/j.ijhydene.2015.08.033 PG 14 WC Chemistry, Physical; Electrochemistry; Energy & Fuels SC Chemistry; Electrochemistry; Energy & Fuels GA CV4SG UT WOS:000364256200016 ER PT J AU Pandey, A Johnston, DC AF Pandey, Abhishek Johnston, D. C. TI Ba0.4Rb0.6Mn2As2: A prototype half-metallic ferromagnet SO PHYSICAL REVIEW B LA English DT Article ID HIGH-TEMPERATURE SUPERCONDUCTIVITY; NIMNSB; STATE AB Half-metallic ferromagnetism (FM) in single-crystal Ba0.39(1)Rb0.61(1)Mn2As2 below its Curie temperature T-C = 103(2) K is reported. The magnetization M versus applied magnetic field H isotherm data at 1.8 K show complete polarization of the itinerant doped-hole magnetic moments that are introduced by substituting Rb for Ba. The material exhibits extremely soft FM, with unobservably small remanent magnetization and coercive field. Surprisingly, and contrary to typical itinerant FMs, the M(H) data follow the Arrott-plot paradigm that is based on a mean-field theory of local-moment FMs. The in-plane electrical resistivity data are fitted well by an activated-T-2 expression for T <= TC, whereas the data sharply deviate from this model for T > T-C. Hence the activated-T 2 resistivity model is an excellent diagnostic for determining the onset of half-metallic FM in this compound, which in turn demonstrates the presence of a strong correlation between the electronic transport and magnetic properties of the material. Together with previous data on 40% hole-doped Ba0.6K0.4Mn2As2, these measurements establish 61%-doped Ba0.39Rb0.61Mn2As2 as a prototype for a class of half-metallic ferromagnets in which all the itinerant carriers in the material are ferromagnetic. C1 [Pandey, Abhishek] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Pandey, A (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. EM abhishek.phy@gmail.com; johnston@ameslab.gov RI Pandey, Abhishek /M-5679-2015 OI Pandey, Abhishek /0000-0003-2839-1720 FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering; Iowa State University [DE-AC02-07CH11358] FX The work at Ames Laboratory was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering. Ames Laboratory is operated for the U.S. Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358. NR 36 TC 3 Z9 3 U1 4 U2 17 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD NOV 2 PY 2015 VL 92 IS 17 AR 174401 DI 10.1103/PhysRevB.92.174401 PG 5 WC Physics, Condensed Matter SC Physics GA CV1JW UT WOS:000364012600001 ER PT J AU Yildirim, Y Ku, W AF Yildirim, Yucel Ku, Wei TI Weak phase stiffness and nature of the quantum critical point in underdoped cuprates SO PHYSICAL REVIEW B LA English DT Article ID SUPERCONDUCTOR-INSULATOR TRANSITION; HIGH-TEMPERATURE SUPERCONDUCTORS; TRANSPORT-PROPERTIES; SUPERFLUID DENSITY; LA2-XSRXCUO4; FLUCTUATIONS; STATE; BI2SR2CACU2O8+DELTA; PSEUDOGAP; CRYSTALS AB We demonstrate that the zero-temperature superconducting phase diagram of underdoped cuprates can be quantitatively understood in the strong binding limit, using only the experimental spectral function of the "normal" pseudogap phase without any free parameter. In the prototypical (La1-xSrx)(2)CuO4, a kinetics-driven d-wave superconductivity is obtained above the critical doping delta(c) similar to 5.2%, below which complete loss of superfluidity results from local quantum fluctuation involving local p-wave pairs. Near the critical doping, an enormous mass enhancement of the local pairs is found responsible for the observed rapid decrease of phase stiffness. Finally, a striking mass divergence is predicted at delta(c) that dictates the occurrence of the observed quantum critical point and the abrupt suppression of the Nernst effects in the nearby region. C1 [Yildirim, Yucel; Ku, Wei] Brookhaven Natl Lab, CMPMSD, Upton, NY 11973 USA. [Ku, Wei] SUNY Stony Brook, Dept Phys, Stony Brook, NY 11790 USA. RP Ku, W (reprint author), Brookhaven Natl Lab, CMPMSD, Upton, NY 11973 USA. EM weiku@bnl.gov FU U.S. Department of Energy, Office of Basic Energy Science [DE-AC02-98CH10886] FX We acknowledge useful discussions with M. Khodas and C. Homes, and comments from A. Tsvelik and W. Yin. This work was supported by the U.S. Department of Energy, Office of Basic Energy Science, under Contract No. DE-AC02-98CH10886. NR 58 TC 1 Z9 1 U1 1 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD NOV 2 PY 2015 VL 92 IS 18 AR 180501 DI 10.1103/PhysRevB.92.180501 PG 5 WC Physics, Condensed Matter SC Physics GA CV1KE UT WOS:000364013700001 ER PT J AU Guler, N Fersch, RG Kuhn, SE Bosted, P Griffioen, KA Keith, C Minehart, R Prok, Y Adhikari, KP Adikaram, D Amaryan, MJ Anderson, MD Pereira, SA Avakian, H Ball, J Battaglieri, M Batourine, V Bedlinskiy, I Biselli, A Briscoe, WJ Brooks, WK Bultmann, S Burkert, VD Carman, DS Celentano, A Chandavar, S Charles, G Colaneri, L Cole, PL Contalbrigo, M Crabb, D Crede, V D'Angelo, A Dashyan, N Deur, A Djalali, C Dodge, GE Dupre, R El Alaoui, A El Fassi, L Elouadrhiri, L Eugenio, P Fedotov, G Fegan, S Filippi, A Fleming, JA Forest, TA Garillon, B Garcon, M Gevorgyan, N Gilfoyle, GP Giovanetti, KL Girod, FX Goetz, JT Golovatch, E Gothe, RW Guidal, M Guo, L Hafidi, K Hakobyan, H Harrison, N Hattawy, M Hicks, K Ho, D Holtrop, M Hughes, SM Hyde, CE Ireland, DG Ishkhanov, BS Isupov, EL Jo, HS Joo, K Joosten, S Keller, D Khandaker, M Kim, A Kim, W Klein, A Klein, FJ Kubarovsky, V Kuleshov, SV Livingston, K Lu, HY Mayer, M MacGregor, IJD McKinnon, B Mirazita, M Mokeev, V Montgomery, RA Movsisyan, A Camacho, CM Nadel-Turonski, P Net, LA Niculescu, I Osipenko, M Ostrovidov, AI Park, K Pasyuk, E Pisano, S Pogorelko, O Price, JW Procureur, S Ripani, M Rizzo, A Rosner, G Rossi, P Roy, P Sabatie, F Salgado, C Schott, D Schumacher, RA Seder, E Simonyan, A Skorodumina, I Sokhan, D Sparveris, N Strakovsky, II Strauch, S Sytnik, V Tian, Y Tkachenko, S Ungaro, M Voutier, E Walford, NK Wei, X Weinstein, LB Wood, MH Zachariou, N Zana, L Zhang, J Zhao, ZW Zonta, I AF Guler, N. Fersch, R. G. Kuhn, S. E. Bosted, P. Griffioen, K. A. Keith, C. Minehart, R. Prok, Y. Adhikari, K. P. Adikaram, D. Amaryan, M. J. Anderson, M. D. Pereira, S. Anefalos Avakian, H. Ball, J. Battaglieri, M. Batourine, V. Bedlinskiy, I. Biselli, A. Briscoe, W. J. Brooks, W. K. Bueltmann, S. Burkert, V. D. Carman, D. S. Celentano, A. Chandavar, S. Charles, G. Colaneri, L. Cole, P. L. Contalbrigo, M. Crabb, D. Crede, V. D'Angelo, A. Dashyan, N. Deur, A. Djalali, C. Dodge, G. E. Dupre, R. El Alaoui, A. El Fassi, L. Elouadrhiri, L. Eugenio, P. Fedotov, G. Fegan, S. Filippi, A. Fleming, J. A. Forest, T. A. Garillon, B. Garcon, M. Gevorgyan, N. Gilfoyle, G. P. Giovanetti, K. L. Girod, F. X. Goetz, J. T. Golovatch, E. Gothe, R. W. Guidal, M. Guo, L. Hafidi, K. Hakobyan, H. Harrison, N. Hattawy, M. Hicks, K. Ho, D. Holtrop, M. Hughes, S. M. Hyde, C. E. Ireland, D. G. Ishkhanov, B. S. Isupov, E. L. Jo, H. S. Joo, K. Joosten, S. Keller, D. Khandaker, M. Kim, A. Kim, W. Klein, A. Klein, F. J. Kubarovsky, V. Kuleshov, S. V. Livingston, K. Lu, H. Y. Mayer, M. MacGregor, I. J. D. McKinnon, B. Mirazita, M. Mokeev, V. Montgomery, R. A. Movsisyan, A. Camacho, C. Munoz Nadel-Turonski, P. Net, L. A. Niculescu, I. Osipenko, M. Ostrovidov, A. I. Park, K. Pasyuk, E. Pisano, S. Pogorelko, O. Price, J. W. Procureur, S. Ripani, M. Rizzo, A. Rosner, G. Rossi, P. Roy, P. Sabatie, F. Salgado, C. Schott, D. Schumacher, R. A. Seder, E. Simonyan, A. Skorodumina, Iu. Sokhan, D. Sparveris, N. Strakovsky, I. I. Strauch, S. Sytnik, V. Tian, Ye Tkachenko, S. Ungaro, M. Voutier, E. Walford, N. K. Wei, X. Weinstein, L. B. Wood, M. H. Zachariou, N. Zana, L. Zhang, J. Zhao, Z. W. Zonta, I. CA CLAS Collaboration TI Precise determination of the deuteron spin structure at low to moderate Q(2) with CLAS and extraction of the neutron contribution SO PHYSICAL REVIEW C LA English DT Article ID DEEP-INELASTIC-SCATTERING; DEPENDENT STRUCTURE FUNCTIONS; STRUCTURE-FUNCTION G(1)(N); SUM-RULE; POWER CORRECTIONS; POLARIZED TARGET; QUANTUM CHROMODYNAMICS; MAGNETIC MOMENTS; RESONANCE REGION; NUCLEON AB We present the final results for the deuteron spin structure functions obtained from the full data set collected in 2000-2001 with Jefferson Lab's continuous electron beam accelerator facility (CEBAF) using the CEBAF large acceptance spectrometer (CLAS). Polarized electrons with energies of 1.6, 2.5, 4.2, and 5.8 GeV were scattered from deuteron ((ND3)-N-15) targets, dynamically polarized along the beam direction, and detected with CLAS. From the measured double-spin asymmetry, the virtual photon absorption asymmetry A(1)(d) and the polarized structure function g(1)(d) were extracted over a wide kinematic range (0.05 GeV2 < Q(2) < 5 GeV2 and 0.9 GeV < W < 3 GeV). We use an unfolding procedure and a parametrization of the corresponding proton results to extract from these data the polarized structure functions A(1)(n) and g(1)(n) of the (bound) neutron, which are so far unknown in the resonance region, W < 2 GeV. We compare our final results, including several moments of the deuteron and neutron spin structure functions, with various theoretical models and expectations, as well as parametrizations of the world data. The unprecedented precision and dense kinematic coverage of these data can aid in future extractions of polarized parton distributions, tests of perturbative QCD predictions for the quark polarization at large x, a better understanding of quark-hadron duality, and more precise values for higher-twist matrix elements in the framework of the operator product expansion. C1 [Guler, N.; Kuhn, S. E.; Prok, Y.; Adhikari, K. P.; Adikaram, D.; Amaryan, M. J.; Bueltmann, S.; Dodge, G. E.; El Fassi, L.; Hyde, C. E.; Klein, A.; Weinstein, L. B.; Zhang, J.; Zhao, Z. W.] Old Dominion Univ, Norfolk, VA 23529 USA. [Hafidi, K.] Argonne Natl Lab, Argonne, IL 60439 USA. [Zhang, J.] Arizona State Univ, Tempe, AZ 85287 USA. [Price, J. W.] Calif State Univ Dominguez Hills, Carson, CA 90747 USA. [Wood, M. H.] Canisius Coll, Buffalo, NY 14208 USA. [Ho, D.; Schumacher, R. A.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Klein, F. J.; Walford, N. K.] Catholic Univ Amer, Washington, DC 20064 USA. [Ball, J.; Garcon, M.; Girod, F. X.; Procureur, S.; Sabatie, F.] CEA, Ctr Saclay, Irfu Serv Phys Nucl, F-91191 Gif Sur Yvette, France. [Harrison, N.; Joo, K.; Kim, A.; Seder, E.; Ungaro, M.] Univ Connecticut, Storrs, CT 06269 USA. [Biselli, A.] Fairfield Univ, Fairfield, CT 06824 USA. [Guo, L.] Florida Int Univ, Miami, FL 33199 USA. [Crede, V.; Eugenio, P.; Ostrovidov, A. I.; Roy, P.] Florida State Univ, Tallahassee, FL 32306 USA. [Briscoe, W. J.; Nadel-Turonski, P.; Niculescu, I.; Schott, D.; Strakovsky, I. I.; Strauch, S.] George Washington Univ, Washington, DC 20052 USA. [Cole, P. L.; Forest, T. A.; Khandaker, M.] Idaho State Univ, Pocatello, ID 83209 USA. [Contalbrigo, M.; Movsisyan, A.] Ist Nazl Fis Nucl, Sez Ferrara, I-44100 Ferrara, Italy. [Pereira, S. Anefalos; Mirazita, M.; Montgomery, R. A.; Pisano, S.; Rossi, P.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Battaglieri, M.; Celentano, A.; Fegan, S.; Osipenko, M.; Ripani, M.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Colaneri, L.; D'Angelo, A.; Rizzo, A.; Zonta, I.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Filippi, A.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Charles, G.; Dupre, R.; Garillon, B.; Guidal, M.; Hattawy, M.; Jo, H. S.; Camacho, C. Munoz; Voutier, E.] CNRS, IN2P3, Inst Phys Nucl, Orsay, France. [Charles, G.; Dupre, R.; Garillon, B.; Guidal, M.; Hattawy, M.; Jo, H. S.; Joo, K.; Camacho, C. Munoz; Voutier, E.] Univ Paris 11, Orsay, France. [Bedlinskiy, I.; Kuleshov, S. V.; Pogorelko, O.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Giovanetti, K. L.; Niculescu, I.] James Madison Univ, Harrisonburg, VA 22807 USA. [Batourine, V.; Kim, A.; Park, K.] Kyungpook Natl Univ, Taegu 702701, South Korea. [Holtrop, M.; Zana, L.] Univ New Hampshire, Durham, NH 03824 USA. [Khandaker, M.; Salgado, C.] Norfolk State Univ, Norfolk, VA 23504 USA. [Chandavar, S.; Goetz, J. T.; Hicks, K.] Ohio Univ, Athens, OH 45701 USA. [Kubarovsky, V.] Rensselaer Polytech Inst, Troy, NY 12180 USA. [Gilfoyle, G. P.] Univ Richmond, Richmond, VA 23173 USA. [Colaneri, L.; D'Angelo, A.; Rizzo, A.; Zonta, I.] Univ Roma Tor Vergata, I-00133 Rome, Italy. [Fedotov, G.; Golovatch, E.; Ishkhanov, B. S.; Isupov, E. L.; Mokeev, V.; Skorodumina, Iu.] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow 119234, Russia. [Djalali, C.; Fedotov, G.; Gothe, R. W.; Lu, H. Y.; Net, L. A.; Skorodumina, Iu.; Strauch, S.; Tian, Ye; Wood, M. H.; Zachariou, N.] Univ S Carolina, Columbia, SC 29208 USA. [Joosten, S.; Sparveris, N.] Temple Univ, Philadelphia, PA 19122 USA. [Bosted, P.; Keith, C.; Prok, Y.; Batourine, V.; Brooks, W. K.; Burkert, V. D.; Carman, D. S.; Cole, P. L.; Deur, A.; Elouadrhiri, L.; Girod, F. X.; Guo, L.; Kubarovsky, V.; Mokeev, V.; Nadel-Turonski, P.; Park, K.; Pasyuk, E.; Rossi, P.; Ungaro, M.; Wei, X.; Zhao, Z. W.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Brooks, W. K.; El Alaoui, A.; Hakobyan, H.; Kuleshov, S. V.; Sytnik, V.] Univ Tecn Federico Santa Maria, Valparaiso, Chile. [Fleming, J. A.; Hughes, S. M.; Zana, L.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Anderson, M. D.; Ireland, D. G.; Livingston, K.; MacGregor, I. J. D.; McKinnon, B.; Rosner, G.; Sokhan, D.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Minehart, R.; Crabb, D.; Keller, D.; Tkachenko, S.] Univ Virginia, Charlottesville, VA 22901 USA. [Fersch, R. G.; Bosted, P.; Griffioen, K. A.] Coll William & Mary, Williamsburg, VA 23187 USA. [Dashyan, N.; Gevorgyan, N.; Hakobyan, H.; Simonyan, A.] Yerevan Phys Inst, Yerevan 375036, Armenia. RP Guler, N (reprint author), Spectral Sci Inc, Burlington, MA 01803 USA. EM skuhn@odu.edu RI Zhang, Jixie/A-1461-2016; Adikaram, Dasuni/D-1539-2016; Brooks, William/C-8636-2013; Adikaram, D/H-7128-2016; Celentano, Andrea/J-6190-2012; Schumacher, Reinhard/K-6455-2013; D'Angelo, Annalisa/A-2439-2012; OI Brooks, William/0000-0001-6161-3570; Celentano, Andrea/0000-0002-7104-2983; Schumacher, Reinhard/0000-0002-3860-1827; D'Angelo, Annalisa/0000-0003-3050-4907; Mayer, Michael/0000-0001-7600-0873 FU US Department of Energy, Office of Science, Office of Nuclear Physics [DE-AC05-06OR23177, DE-FG02-96ER40960]; US National Science Foundation; Italian Instituto Nazionale di Fisica Nucleare; French Centre National de la Recherche Scientifique; French Commissariat a l'Energie Atomique; Emmy Noether grant from the Deutsche Forschungs Gemeinschaft; Scottish Universities Physics Alliance (SUPA); United Kingdom's Science and Technology Facilities Council; Chilean Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT); National Research Foundation of Korea FX This material is based upon work supported by the US Department of Energy, Office of Science, Office of Nuclear Physics under Contracts No. DE-AC05-06OR23177 and No. DE-FG02-96ER40960 and other contracts. Jefferson Science Associates (JSA) operates the Thomas Jefferson National Accelerator Facility for the United States Department of Energy. We would like to acknowledge the outstanding efforts of the staff of the Accelerator and the Physics Divisions at Jefferson Lab that made this experiment possible. This work was supported in part by the US National Science Foundation, the Italian Instituto Nazionale di Fisica Nucleare, the French Centre National de la Recherche Scientifique, the French Commissariat a l'Energie Atomique, the Emmy Noether grant from the Deutsche Forschungs Gemeinschaft, the Scottish Universities Physics Alliance (SUPA), the United Kingdom's Science and Technology Facilities Council, the Chilean Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT), and the National Research Foundation of Korea. NR 101 TC 3 Z9 3 U1 3 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 EI 1089-490X J9 PHYS REV C JI Phys. Rev. C PD NOV 2 PY 2015 VL 92 IS 5 AR 055201 DI 10.1103/PhysRevC.92.055201 PG 21 WC Physics, Nuclear SC Physics GA CV1LJ UT WOS:000364018600002 ER PT J AU Boughezal, R Focke, C Liu, XH AF Boughezal, Radja Focke, Christfried Liu, Xiaohui TI Jet vetoes versus giant K factors in the exclusive Z+1-jet cross section SO PHYSICAL REVIEW D LA English DT Article ID MODEL HIGGS-BOSON; LHC; SEARCH AB We perform a detailed study of the exclusive Z + 1-jet cross section at the 13 TeV LHC, motivated by the importance of similar exclusive cross sections in understanding the production of the Higgs boson in the W+W- final state. We point out a feature of the ATLAS analysis that has significant impact on the theoretical predictions: the jet isolation criterion implemented by ATLAS effectively allows dijet events where an energetic jet is collinear to a final-state lepton. This process contains a giant K factor arising from the collinear emission of a Z boson from the dijet configuration. This overwhelms the effect of the jet-veto logarithms, making it difficult to test their resummation in this process. We provide numerical results that demonstrate the interplay between the jet-veto logarithms and the giant K factor in the theoretical prediction. We study several observables, including the transverse momentum distributions of the leading jet and the Z boson, in the exclusive Z + 1-jet process, and discuss their sensitivity to both the giant K factor and the jet-veto logarithms. We suggest a modified isolation criterion that removes the giant K factor and allows for a direct test of the jet-veto resummation framework in the exclusive Z + 1-jet process. C1 [Boughezal, Radja] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Focke, Christfried] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. [Liu, Xiaohui] Univ Maryland, Maryland Ctr Fundamental Phys, College Pk, MD 20742 USA. [Liu, Xiaohui] Peking Univ, Ctr High Energy Phys, Beijing 100871, Peoples R China. RP Boughezal, R (reprint author), Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. EM rboughezal@anl.gov; christfried.focke@gmail.com; xhliu@umd.edu FU U.S. Department of Energy, Division of High Energy Physics [DE-AC02-06CH11357, DE-SC0010143]; U.S. Department of Energy Office of Science [DE-FG02-93ER-40762] FX We thank Joey Huston for many useful communications. We are grateful to Daniel Maitre for providing cross checks of our 7 TeV fixed-order predictions. We are indebted to Sergei Chekanov for providing local computing resources. The work of R. B. was supported by the U.S. Department of Energy, Division of High Energy Physics, under Contract No. DE-AC02-06CH11357. The work of C. F. was supported by the U.S. Department of Energy, Division of High Energy Physics, under Grant No. DE-SC0010143. The work of X. L. was supported by the U.S. Department of Energy Office of Science under Award Number DE-FG02-93ER-40762. NR 47 TC 3 Z9 3 U1 1 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD NOV 2 PY 2015 VL 92 IS 9 AR 094002 DI 10.1103/PhysRevD.92.094002 PG 12 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CV1LS UT WOS:000364019700003 ER PT J AU Wilson, DJ Briceno, RA Dudek, JJ Edwards, RG Thomas, CE AF Wilson, David J. Briceno, Raul A. Dudek, Jozef J. Edwards, Robert G. Thomas, Christopher E. CA Hadron Spectrum Collaboration TI Coupled pi pi, K(K)over-bar scattering in P-wave and the rho resonance from lattice QCD SO PHYSICAL REVIEW D LA English DT Article ID CHROMA SOFTWARE SYSTEM; MATRIX; STATES AB We determine elastic and coupled-channel amplitudes for isospin-1 meson-meson scattering in P wave, by calculating correlation functions using lattice QCD with light quark masses such that m(pi) = 236 MeV in a cubic volume of similar to(4 fm)(3). Variational analyses of large matrices of correlation functions computed using operator constructions resembling pi pi, K (K) over bar and q (q) over bar, in several moving frames and several lattice irreducible representations, lead to discrete energy spectra from which scattering amplitudes are extracted. In the elastic pp scattering region we obtain a detailed energy dependence for the phase shift, corresponding to a. resonance, and we extend the analysis into the coupled-channel K (K) over bar region for the first time, finding a small coupling between the channels. C1 [Wilson, David J.; Dudek, Jozef J.] Old Dominion Univ, Dept Phys, Norfolk, VA 23529 USA. [Briceno, Raul A.; Dudek, Jozef J.; Edwards, Robert G.] Jefferson Lab, Ctr Theory, Newport News, VA 23606 USA. [Thomas, Christopher E.] Univ Cambridge, Ctr Math Sci, Dept Appl Math & Theoret Phys, Cambridge CB3 0WA, England. RP Wilson, DJ (reprint author), Old Dominion Univ, Dept Phys, Norfolk, VA 23529 USA. EM djwilson@jlab.org; briceno@jlab.org; dudek@jlab.org; edwards@jlab.org; c.e.thomas@damtp.cam.ac.uk FU ALCC award; Office of Science of the U.S. Department of Energy [DE-AC05-00OR22725, DE-AC02-05CH11231]; National Science Foundation [OCI-0725070, ACI-1238993]; state of Illinois; U.S. Department of Energy [DE-AC05-06OR23177]; U.S. Department of Energy Early Career award [DE-SC0006765]; U.K. Science and Technology Facilities Council [ST/L000385/1] FX We thank our colleagues within the Hadron Spectrum Collaboration, and in particular, we thank Balint Joo for his help. The software codes Chroma [43], QUDA [34,35], QPhiX [44], and QOPQDP [32,33] were used to compute the propagators required for this project. The contractions were performed on clusters at Jefferson Laboratory under the USQCD Initiative and the LQCD ARRA project. This research was supported in part under an ALCC award, and used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725. This research is also part of the Blue Waters sustained-petascale computing project, which is supported by the National Science Foundation (Grants No. OCI-0725070 and No. ACI-1238993) and the state of Illinois. Blue Waters is a joint effort of the University of Illinois at Urbana-Champaign and its National Center for Supercomputing Applications. This work is also part of the PRAC "Lattice QCD on Blue Waters." This research used resources of the National Energy Research Scientific Computing Center (NERSC), a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The authors acknowledge the Texas Advanced Computing Center (TACC) at The University of Texas at Austin for providing HPC resources that have contributed to the research results reported within this paper. Gauge configurations were generated using resources awarded from the U.S. Department of Energy INCITE program at Oak Ridge National Lab, and also resources awarded at NERSC. R. A. B., R. G. E. and J. J. D. acknowledge support from U.S. Department of Energy Contract No. DE-AC05-06OR23177, under which Jefferson Science Associates, LLC, manages and operates Jefferson Laboratory. J. J. D. acknowledges support from the U.S. Department of Energy Early Career award Contract No. DE-SC0006765. C. E. T. acknowledges partial support from the U.K. Science and Technology Facilities Council (Grant No. ST/L000385/1). NR 45 TC 28 Z9 28 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD NOV 2 PY 2015 VL 92 IS 9 AR 094502 DI 10.1103/PhysRevD.92.094502 PG 14 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CV1LS UT WOS:000364019700005 ER PT J AU Squire, J Bhattacharjee, A AF Squire, J. Bhattacharjee, A. TI Electromotive force due to magnetohydrodynamic fluctuations in sheared rotating turbulence SO PHYSICAL REVIEW E LA English DT Article ID MEAN-FIELD DYNAMO; MAGNETIC-FIELDS; ACCRETION DISKS; MAGNETOROTATIONAL TURBULENCE; CROSS-HELICITY; ALPHA; DRIVEN; FLOW; BUOYANCY; SPECTRUM AB This article presents a calculation of the mean electromotive force arising from general small-scale magnetohydrodynamical turbulence, within the framework of the second-order correlation approximation. With the goal of improving understanding of the accretion disk dynamo, effects arising through small-scale magnetic fluctuations, velocity gradients, density and turbulence stratification, and rotation, are included. The primary result, which supplements numerical findings, is that an off-diagonal turbulent resistivity due to magnetic fluctuations can produce large-scale dynamo action-the magnetic analog of the "shear-current" effect. In addition, consideration of alpha effects in the stratified regions of disks gives the puzzling result that there is no strong prediction for a sign of alpha, since the effects due to kinetic and magnetic fluctuations, as well as those due to shear and rotation, are each of opposing signs and tend to cancel each other. C1 [Squire, J.; Bhattacharjee, A.] Princeton Univ, Dept Astrophys Sci, Max Planck Princeton Ctr Plasma Phys, Princeton, NJ 08543 USA. [Squire, J.; Bhattacharjee, A.] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Squire, J.] CALTECH, TAPIR, Pasadena, CA 91125 USA. RP Squire, J (reprint author), Princeton Univ, Dept Astrophys Sci, Max Planck Princeton Ctr Plasma Phys, Princeton, NJ 08543 USA. EM jsquire@caltech.edu FU Procter Fellowship at Princeton University; U.S. Department of Energy [DE-AC02-09-CH11466] FX This work was supported by a Procter Fellowship at Princeton University and U.S. Department of Energy Grant No. DE-AC02-09-CH11466. The authors would like to thank I. Rogachevskii, A. Schekochihin, and J. Krommes for enlightening discussion and useful suggestions. NR 53 TC 4 Z9 4 U1 4 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0045 EI 2470-0053 J9 PHYS REV E JI Phys. Rev. E PD NOV 2 PY 2015 VL 92 IS 5 AR 053101 DI 10.1103/PhysRevE.92.053101 PG 15 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA CV1ML UT WOS:000364022300009 PM 26651796 ER PT J AU Yu, ZH Wang, L Hu, QY Zhao, JG Yan, S Yang, K Sinogeikin, S Gu, GD Mao, HK AF Yu, Zhenhai Wang, Lin Hu, Qingyang Zhao, Jinggeng Yan, Shuai Yang, Ke Sinogeikin, Stanislav Gu, Genda Mao, Ho-kwang TI Structural phase transitions in Bi2Se3 under high pressure SO SCIENTIFIC REPORTS LA English DT Article ID AUGMENTED-WAVE METHOD; SINGLE DIRAC CONE; TOPOLOGICAL INSULATORS; BI2TE3; SB2TE3; SURFACE; PSEUDOPOTENTIALS; ENERGY; RAMAN AB Raman spectroscopy and angle dispersive X-ray diffraction (XRD) experiments of bismuth selenide (Bi2Se3) have been carried out to pressures of 35.6 and 81.2 GPa, respectively, to explore its pressure-induced phase transformation. The experiments indicate that a progressive structural evolution occurs from an ambient rhombohedra phase (Space group (SG): R-3m) to monoclinic phase (SG: C2/m) and eventually to a high pressure body-centered tetragonal phase (SG: I4/mmm). Evidenced by our XRD data up to 81.2 GPa, the Bi2Se3 crystallizes into body-centered tetragonal structures rather than the recently reported disordered body-centered cubic (BCC) phase. Furthermore, first principles theoretical calculations favor the viewpoint that the I4/mmm phase Bi2Se3 can be stabilized under high pressure (>30 GPa). Remarkably, the Raman spectra of Bi2Se3 from this work (two independent runs) are still Raman active up to similar to 35 GPa. It is worthy to note that the disordered BCC phase at 27.8 GPa is not observed here. The remarkable difference in atomic radii of Bi and Se in Bi2Se3 may explain why Bi2Se3 shows different structural behavior than isocompounds Bi2Te3 and Sb2Te3. C1 [Yu, Zhenhai; Wang, Lin; Mao, Ho-kwang] Ctr High Pressure Sci & Technol Adv Res, Shanghai 201203, Peoples R China. [Wang, Lin] Jilin Univ, State Key Lab Superhard Mat, Changchun 130012, Peoples R China. [Zhao, Jinggeng] Harbin Inst Technol, Nat Sci Res Ctr, Acad Fundamental & Interdisciplinary Sci, Harbin 150080, Peoples R China. [Yan, Shuai; Yang, Ke] Chinese Acad Sci, Shanghai Inst Appl Phys, Shanghai 201203, Peoples R China. [Sinogeikin, Stanislav; Mao, Ho-kwang] Carnegie Inst Sci, Geophys Lab, High Pressure Collaborat Access Team, Argonne, IL 60439 USA. [Gu, Genda] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Wang, Lin; Hu, Qingyang; Mao, Ho-kwang] Carnegie Inst Sci, Geophys Lab, Washington, DC 20015 USA. RP Wang, L (reprint author), Ctr High Pressure Sci & Technol Adv Res, Shanghai 201203, Peoples R China. EM wanglin@hpstar.ac.cn FU CIW; CDAC; UNLV; LLNL through DOE-NNSA; LLNL through DOE-BES; LLNL through NSF; US DOE [DE-AC02-06CH11357]; Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, U.S. Department of Energy [DE-SC00112704]; NSAF [U1530402]; Natural Science Foundation of China [10904022] FX We thank Matthew Suchomel (11-BM-B, APS, ANL) for experimental help. Portions of this work were performed at HPCAT (Sector 16), Advanced Photon Source (APS), Argonne National Laboratory. HPCAT is supported by CIW, CDAC, UNLV, and LLNL through funding from DOE-NNSA, DOE-BES, and NSF. Use of the Advanced Photon Source, an Office of Science User Facility operated for the US DOE Office of Science by Argonne National Laboratory, was supported by the US DOE under Contract No. DE-AC02-06CH11357. Work at Brookhaven is supported by the Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, U.S. Department of Energy under Contract No. DE-SC00112704. We thank R. D. Zhong and John Schneeloch (Brookhaven National Laboratory) for sample preparation help. The computational work was conducted on the SR10000-K1/52 supercomputing facilities of the Institute for Materials Research, Tohoku University. We acknowledge the support of NSAF (Grant No. U1530402) This work was partially supported by Natural Science Foundation of China (Grant No. 10904022). Portions of this work were performed at the BL15U1 beamline, shanghai synchrotron radiation facility (SSRF) in China. The authors would like to thank Shanghai Synchrotron Radiation Facility for use of the synchrotron radiation facilities. NR 37 TC 7 Z9 7 U1 8 U2 62 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD NOV 2 PY 2015 VL 5 AR 15939 DI 10.1038/srep15939 PG 9 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CU9OW UT WOS:000363875000001 PM 26522818 ER PT J AU Parren, PWHI Burton, DR Bradbury, A Huston, JS Carter, PJ Veldman, T Chester, KA Larrick, JW Alfenito, MR Scott, JK Weiner, LM Adams, GP Reichert, JM AF Parren, Paul W. H. I. Burton, Dennis R. Bradbury, Andrew Huston, James S. Carter, Paul J. Veldman, Trudi Chester, Kerry A. Larrick, James W. Alfenito, Mark R. Scott, Jamie K. Weiner, Louis M. Adams, Gregory P. Reichert, Janice M. TI Antibody Engineering & Therapeutics 2015: The Antibody Society's annual meeting December 7-10, 2015, San Diego, CA SO MABS LA English DT Article DE antibody engineering; antibody-drug conjugates; antibody repertoire; bispecific antibodies; computational design; next-generation sequencing; reproducibility AB Antibody Engineering & Therapeutics, the annual meeting of The Antibody Society, will be held in San Diego, CA in early December 2015. In this meeting preview, the chairs provide their thoughts on the importance of their session topics, which include antibody effector functions, reproducibility of research and diagnostic antibodies, new developments in antibody-drug conjugates (ADCs), preclinical and clinical ADC data, new technologies and applications for bispecific antibodies, antibody therapeutics for non-cancer and orphan indications, antibodies to harness the cellular immune system, overcoming resistance to clinical immunotherapy, and building comprehensive IGVH-gene repertoires through discovering, confirming and cataloging new germline IGVH genes. The Antibody Society's special session will focus on Antibodies to watch in 2016, which are a subset of the nearly 50 antibodies currently in Phase 3 clinical studies. Featuring over 100 speakers in total, the meeting will commence with keynote presentations by Erica Ollmann Saphire (The Scripps Research Institute), Wayne A. Marasco (Dana-Farber Cancer Institute/Harvard Medical School), Joe W. Gray (Oregon Health & Science University), and Anna M. Wu (University of California Los Angeles), and it will conclude with workshops on the promise and challenges of using next-generation sequencing for antibody discovery and engineering from synthetic and in vivo libraries and on computational antibody design. C1 [Parren, Paul W. H. I.] Genmab, Utrecht, Netherlands. [Parren, Paul W. H. I.] Leiden Univ, Med Ctr, Leiden, Netherlands. [Burton, Dennis R.] Scripps Res Inst, La Jolla, CA 92037 USA. [Bradbury, Andrew] Los Alamos Natl Lab, Los Alamos, NM USA. [Huston, James S.] Huston BioConsulting LLC, Newton Lower Falls, MA USA. [Carter, Paul J.] Genentech Inc, San Francisco, CA 94080 USA. [Veldman, Trudi] AbbVie, Worcester, MA USA. [Chester, Kerry A.] UCL, London, England. [Larrick, James W.] Panorama Res Inst, San Francisco, CA USA. [Larrick, James W.] Veloc Pharmaceut Dev, San Francisco, CA USA. [Alfenito, Mark R.] EnGen Bio Inc, San Mateo, CA USA. [Scott, Jamie K.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Weiner, Louis M.] Georgetown Univ, Med Ctr, Washington, DC 20007 USA. [Adams, Gregory P.] Viventia Bio Inc, Philadelphia, PA USA. [Reichert, Janice M.] Reichert Biotechnol Consulting LLC, Framingham, MA 01701 USA. RP Reichert, JM (reprint author), Reichert Biotechnol Consulting LLC, Framingham, MA 01701 USA. EM janice@reichertbiotechconsulting.com OI Bradbury, Andrew/0000-0002-5567-8172; Reichert, Janice/0000-0003-0400-1951; Parren, Paul/0000-0002-4365-3859 NR 0 TC 0 Z9 0 U1 0 U2 19 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA SN 1942-0862 EI 1942-0870 J9 MABS-AUSTIN JI mAbs PD NOV 2 PY 2015 VL 7 IS 6 BP 981 EP 988 DI 10.1080/19420862.2015.1089707 PG 8 WC Medicine, Research & Experimental SC Research & Experimental Medicine GA CU1QA UT WOS:000363295200001 PM 26421752 ER PT J AU Berry, JW Fostvedt, LA Nordman, DJ Phillips, CA Seshadhri, C Wilson, AG AF Berry, Jonathan W. Fostvedt, Luke A. Nordman, Daniel J. Phillips, Cynthia A. Seshadhri, C. Wilson, Alyson G. TI WHY DO SIMPLE ALGORITHMS FOR TRIANGLE ENUMERATION WORK IN THE REAL WORLD? SO INTERNET MATHEMATICS LA English DT Article ID POWER-LAW GRAPHS; DEGREE SEQUENCE; NETWORKS AB Listing all triangles is a fundamental graph operation. Triangles can have important interpretations in real-world graphs, especially social and other interaction networks. Despite the lack of provably efficient (linear, or slightly super linear) worst-case algorithms for this problem, practitioners run simple, efficient heuristics to find all triangles in graphs with millions of vertices. How are these heuristics exploiting the structure of these special graphs to provide major speedups in running time?We study one of the most prevalent algorithms used by practitioners. A trivial algorithm enumerates all paths of length 2, and checks if each such path is incident to a triangle. A good heuristic is to enumerate only those paths of length 2 in which the middle vertex has the lowest degree. It is easily implemented and is empirically known to give remarkable speedups over the trivial algorithm.We study the behavior of this algorithm over graphs with heavy-tailed degree distributions, a defining feature of real-world graphs. The erased configuration model (ECM) efficiently generates a graph with asymptotically (almost) any desired degree sequence. We show that the expected running time of this algorithm over the distribution of graphs created by the ECM is controlled by the (4/3)-norm of the degree sequence. Norms of the degree sequence are a measure of the heaviness of the tail, and it is precisely this feature that allows non trivial speedups of simple triangle enumeration algorithms. As a corollary of our main theorem, we prove expected linear-time performance for degree sequences following a power law with exponent 7/3, and non trivial speedup whenever (2, 3). C1 [Berry, Jonathan W.; Nordman, Daniel J.; Phillips, Cynthia A.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Fostvedt, Luke A.] Iowa State Univ, Ames, IA USA. [Seshadhri, C.] Sandia Natl Labs, Livermore, CA USA. [Wilson, Alyson G.] N Carolina State Univ, Raleigh, NC 27695 USA. RP Seshadhri, C (reprint author), Univ Calif Santa Cruz, Baskin Sch Engn, 1156 High St,Engn 2,Mail Stop 310, Santa Cruz, CA 95064 USA. EM csesha@gmail.com OI Wilson, Alyson/0000-0003-1461-6212 NR 38 TC 0 Z9 0 U1 0 U2 0 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA SN 1542-7951 EI 1944-9488 J9 INTERNET MATH JI Internet Math. PD NOV 2 PY 2015 VL 11 IS 6 BP 555 EP 571 DI 10.1080/15427951.2015.1037030 PG 17 WC Computer Science, Theory & Methods SC Computer Science GA CT6VC UT WOS:000362949500003 ER PT J AU Chen, Y Grossmann, IE Miller, DC AF Chen, Yang Grossmann, Ignacio E. Miller, David C. TI Computational strategies for large-scale MILP transshipment models for heat exchanger network synthesis SO COMPUTERS & CHEMICAL ENGINEERING LA English DT Article DE Heat exchanger network synthesis (HENS); Transshipment model; Mixed integer linear programming; Computational strategies; Model reformulation ID SIMULTANEOUS-OPTIMIZATION; TRANSPORTATION PROBLEM; INTEGRATION; DESIGN; DECOMPOSITION; SYSTEMS AB Determining the minimum number of units is an important step in heat exchanger network synthesis (HENS). The MILP transshipment model (Papoulias and Grossmann, 1983) and transportation model (Cerda and Westerberg, 1983) were developed for this purpose. However, they are computationally expensive when solving for large-scale problems. Several approaches are studied in this paper to enable the fast solution of large-scale MILP transshipment models. Model reformulation techniques are developed for tighter formulations with reduced LP relaxation gaps. Solution strategies are also proposed for improving the efficiency of the branch and bound method. Both approaches aim at finding the exact global optimal solution with reduced solution times. Several approximation approaches are also developed for finding good approximate solutions in relatively short times. Case study results show that the MILP transshipment model can be solved for relatively large-scale problems in reasonable times by applying the approaches proposed in this paper. (C) 2015 Published by Elsevier Ltd. C1 [Chen, Yang; Grossmann, Ignacio E.] Carnegie Mellon Univ, Dept Chem Engn, Pittsburgh, PA 15213 USA. [Chen, Yang; Miller, David C.] Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. RP Chen, Y (reprint author), Natl Energy Technol Lab, 626 Cochrans Mill Rd, Pittsburgh, PA 15236 USA. EM yang.chen@netl.doe.gov FU U.S. Department of Energy, Office of Fossil Energy, National Energy Technology Laboratory (NETL) [4000.2.673.062.001.641.000.004] FX The authors acknowledge financial support through U.S. Department of Energy, Office of Fossil Energy, National Energy Technology Laboratory (NETL) (grant number: 4000.2.673.062.001.641.000.004). This project was conducted as a part of the Carbon Capture Simulation Initiative (CCSI) program. NR 37 TC 2 Z9 2 U1 1 U2 18 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0098-1354 EI 1873-4375 J9 COMPUT CHEM ENG JI Comput. Chem. Eng. PD NOV 2 PY 2015 VL 82 BP 68 EP 83 DI 10.1016/j.compchemeng.2015.05.015 PG 16 WC Computer Science, Interdisciplinary Applications; Engineering, Chemical SC Computer Science; Engineering GA CR3QZ UT WOS:000361249300007 ER PT J AU Lawder, MT Ramadesigan, V Suthar, B Subramanian, VR AF Lawder, Matthew T. Ramadesigan, Venkatasailanathan Suthar, Bharatkumar Subramanian, Venkat R. TI Extending explicit and linearly implicit ODE solvers for index-1 DAEs SO COMPUTERS & CHEMICAL ENGINEERING LA English DT Article DE Differential algebraic equations; Initialization Explicit solvers; Consistent initial conditions; Single-step solution ID DIFFERENTIAL-ALGEBRAIC EQUATIONS; INITIAL-VALUE PROBLEMS; LITHIUM-ION BATTERIES; RUNGE-KUTTA METHODS; CONSISTENT INITIALIZATION; NUMERICAL-SOLUTION; SYSTEMS; SIMULATION; INTEGRATION; SOFTWARE AB Nonlinear differential-algebraic equations (DAE) are typically solved using implicit stiff solvers based on backward difference formula or RADAU formula, requiring a Newton-Raphson approach for the nonlinear equations or using Rosenbrock methods specifically designed for DAEs. Consistent initial conditions are essential for determining numeric solutions for systems of DAEs. Very few systems of DAEs can be solved using explicit ODE solvers. This paper applies a single-step approach to system initialization and simulation allowing for systems of DAEs to be solved using explicit (and linearly implicit) ODE solvers without a priori knowledge of the exact initial conditions for the algebraic variables. Along with using a combined process for initialization and simulation, many physical systems represented through large systems of DAEs can be solved in a more robust and efficient manner without the need for nonlinear solvers. The proposed approach extends the usability of explicit and linearly implicit ODE solvers and removes the requirement of Newton-Raphson type iteration. Published by Elsevier Ltd. C1 [Lawder, Matthew T.; Suthar, Bharatkumar] Washington Univ, St Louis, MO 63130 USA. [Ramadesigan, Venkatasailanathan] Indian Inst Technol, Bombay 400076, Maharashtra, India. [Subramanian, Venkat R.] Univ Washington, Seattle, WA 98195 USA. [Subramanian, Venkat R.] Pacific NW Natl Lab, Richland, WA 99354 USA. RP Subramanian, VR (reprint author), Univ Washington, 105 Benson Hall, Seattle, WA 98195 USA. EM mtlawder@wustl.edu; venkatr@iitb.ac.in; b.suthar@wustl.edu; vsubram@uw.edu FU United States Department of Energy (DOE) [DE-AR0000275] FX The authors thank the United States Department of Energy (DOE) for the financial support for this work though the Advanced Research Projects Agency - Energy (ARPA-E) award #DE-AR0000275. Venkat R Subramanian would like to dedicate this article to Professor Ralph White at the University of South Carolina. NR 55 TC 1 Z9 1 U1 2 U2 9 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0098-1354 EI 1873-4375 J9 COMPUT CHEM ENG JI Comput. Chem. Eng. PD NOV 2 PY 2015 VL 82 BP 283 EP 292 DI 10.1016/j.compchemeng.2015.07.002 PG 10 WC Computer Science, Interdisciplinary Applications; Engineering, Chemical SC Computer Science; Engineering GA CR3QZ UT WOS:000361249300021 ER PT J AU Zhang, W Sumer, A Jellinek, J Cheng, DJ AF Zhang, Wei Sumer, Aslihan Jellinek, Julius Cheng, Daojian TI Morphology Tailoring of Pt Nanocatalysts for the Oxygen Reduction Reaction: The Paradigm of Pt-13 SO CHEMNANOMAT LA English DT Article DE CO oxidation; oxygen reduction reaction; platinum; proton exchange membrane fuel cells; nanocatalysts ID PREFERENTIAL OXIDATION; METAL-SURFACES; CATALYSTS; CLUSTERS; CO; ADSORPTION; PLATINUM; DESIGN; ELECTROCATALYSTS; 1ST-PRINCIPLES AB Understanding the relationship between the morphology of Pt nanocatalysts and their catalytic performance towards the oxygen reduction reaction (ORR) is important for their applications as electrocatalysts. In this work, using density functional theory calculations, we investigate structural properties, ORR activity, and CO tolerance of five morphological forms of the Pt-13 cluster. Four of these are lowenergy, lower symmetry conformations (Pt13-1 and Pt13-4 have C-S symmetry, Pt13-2 and Pt-13 (3) are of C-2v symmetry) and the fifth (Pt-13 (5)) is a higher energy, icosahedral structure. Our results indicate that of the five considered, Pt13-1 and Pt13-2 possesses the best, overall comparable, combination of catalytic characteristics-activity and CO tolerance-relevant to the ORR. Computational characterization of morphology-dependent catalytic properties of sub-nano and nanosized particles herein can inform the design and synthesis of nanocatalysts with superior targeted functionalities. C1 [Zhang, Wei; Cheng, Daojian] Beijing Univ Chem Technol, State Key Lab Organ Inorgan Composites, Beijing 100029, Peoples R China. [Sumer, Aslihan; Jellinek, Julius] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Cheng, DJ (reprint author), Beijing Univ Chem Technol, State Key Lab Organ Inorgan Composites, Beijing 100029, Peoples R China. EM jellinek@anl.gov; chengdj@mail.buct.edu.cn RI Cheng, Daojian/F-4878-2010 FU National Natural Science Foundation of China [91334203]; Beijing Higher Education Young Elite Teacher Project; Beijing Novel Program [Z12111000250000]; "Chemical Grid Project" of BUCT; Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences, U.S. Department of Energy [DE-AC02-06CH11357]; Institute for Atom-efficient Chemical Transformations (IACT), an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences FX D.C. and W.Z. were supported by the National Natural Science Foundation of China (91334203), Beijing Higher Education Young Elite Teacher Project, Beijing Novel Program (Z12111000250000), and the "Chemical Grid Project" of BUCT. J.J. was supported by the Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences, U.S. Department of Energy under Contract No. DE-AC02-06CH11357. A.S. was supported by the Institute for Atom-efficient Chemical Transformations (IACT), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. The computations were performed using the facilities of the Supercomputing Center of Chinese Academy of Sciences (SCCAS), ANL's Laboratory Computing Resource Center (LCRC), and National Energy Research Scientific Computing Center (NERSC). NR 41 TC 0 Z9 0 U1 5 U2 5 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY EI 2199-692X J9 CHEMNANOMAT JI ChemNanoMat PD NOV PY 2015 VL 1 IS 7 BP 482 EP 488 DI 10.1002/cnma.201500107 PG 7 WC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA DW6NL UT WOS:000383767800003 ER PT J AU Chen, BS Meng, GW Li, XD Li, AP Zhu, XG AF Chen, Bensong Meng, Guowen Li, Xiangdong Li, An-Ping Zhu, Xiaoguang TI Growth kinetics controlled rational synthesis of germanium nanotowers in chemical vapor deposition SO SCIENCE CHINA-MATERIALS LA English DT Article ID LIQUID-SOLID GROWTH; BIOLOGICAL APPLICATIONS; EUTECTIC TEMPERATURE; NANOWIRE GROWTH; NANOCRYSTALS; TRANSISTORS; NANOTUBES; SILICON; SCALE AB This study demonstrated a simple method for gold (Au) catalyzed atmospheric pressure chemical vapor deposition (CVD) of tower-like germanium (Ge) nanostructures (denoted as Ge nanotowers) on silicon substrate. The Ge nanotowers have quasi-hexagonal cross-section with a diameter gradually decreasing from the bottom to the top end and sawtooth-faceted sidewalls. The Ge nanotowers are formed in a competitive growth process involving an Au-catalyzed axial growth and lateral growth, which can be controlled by the varied reagent vapor pressure in the CVD growth. The relationship between CVD growth kinetics and the complex morphologies was carefully examined for Ge nanostructures ranging from cylindrical and tapered nanowires to moniliform-shaped and sawtooth faceted hexagonal nanotowers in different deposition zones. The resultant complex Ge nanotowers not only enrich the family of Ge-based nanostructures, but also have potentials as building blocks for Ge-based functional nanodevices. C1 [Chen, Bensong; Meng, Guowen; Li, Xiangdong; Zhu, Xiaoguang] Chinese Acad Sci, Inst Solid State Phys, Key Lab Mat Phys, Hefei 230031, Peoples R China. [Chen, Bensong; Meng, Guowen; Li, Xiangdong; Zhu, Xiaoguang] Chinese Acad Sci, Inst Solid State Phys, Anhui Key Lab Nanomat & Nanotechnol, Hefei 230031, Peoples R China. [Meng, Guowen] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Li, An-Ping] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Meng, GW (reprint author), Chinese Acad Sci, Inst Solid State Phys, Key Lab Mat Phys, Hefei 230031, Peoples R China. EM gwmeng@issp.ac.cn; apli@ornl.gov RI Li, An-Ping/B-3191-2012 OI Li, An-Ping/0000-0003-4400-7493 NR 32 TC 0 Z9 0 U1 5 U2 5 PU SCIENCE PRESS PI BEIJING PA 16 DONGHUANGCHENGGEN NORTH ST, BEIJING 100717, PEOPLES R CHINA SN 2095-8226 EI 2199-4501 J9 SCI CHINA MATER JI Sci. China-Mater. PD NOV PY 2015 VL 58 IS 11 BP 877 EP 883 DI 10.1007/s40843-015-0097-x PG 7 WC Materials Science, Multidisciplinary SC Materials Science GA DV7EU UT WOS:000383099800006 ER PT J AU Friedl, KE AF Friedl, Karl E. TI US ARMY RESEARCH ON PHARMACOLOGICAL ENHANCEMENT OF SOLDIER PERFORMANCE: STIMULANTS, ANABOLIC HORMONES, AND BLOOD DOPING SO JOURNAL OF STRENGTH AND CONDITIONING RESEARCH LA English DT Review DE human performance enhancement; military personnel; World War II; amphetamine; androgens; erythropoietin ID SLEEP-DEPRIVATION; MEN; DEXTROAMPHETAMINE; TESTOSTERONE; AMPHETAMINE; MODAFINIL; MILITARY; FATIGUE; SCIENCE; WORK AB The level playing field of competitive sports is an irrelevant concern in asymmetrical warfare. However, there is a common theme of pressure to use performance-enhancing drugs because athletic or military opponents may be using them to advantage. This interest is fueled by personal anecdotes, misconceptions, and myths, and decisions to use or not to use pharmacological interventions may ignore available scientific data. The U.S. Army has led research in this area, with an abundance of published data extending back to World War II. Behavioral effects have been a consistent concern. A key conclusion to be drawn from this research is that although there may be specialized applications for some of these interventions, the majority of soldiers will gain the greatest performance benefits from effective physical and mental training programs combined with good principles of rest and nutrition. Furthermore, the perceived need to improve human biology with drugs may be solving the wrong problem, trying to fit the human to the demands of poorly conceived tactics, tasks, and equipments instead of capitalizing on human capabilities. C1 [Friedl, Karl E.] Oak Ridge Inst Sci & Educ, Knowledge Preservat Program, Oak Ridge, TN USA. [Friedl, Karl E.] Univ Calif San Francisco, Dept Neurol, San Francisco, CA USA. RP Friedl, KE (reprint author), Oak Ridge Inst Sci & Educ, Knowledge Preservat Program, Oak Ridge, TN USA. EM friedlke@gmail.com NR 15 TC 1 Z9 1 U1 5 U2 11 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA TWO COMMERCE SQ, 2001 MARKET ST, PHILADELPHIA, PA 19103 USA SN 1064-8011 EI 1533-4287 J9 J STRENGTH COND RES JI J. Strength Cond. Res. PD NOV PY 2015 VL 29 SU 11 BP S71 EP S76 PG 6 WC Sport Sciences SC Sport Sciences GA DN5KB UT WOS:000377104500012 PM 26506202 ER PT J AU Skorodumina, IA Burkert, VD Golovach, EN Gothe, RW Isupov, EL Ishkhanov, BS Mokeev, VI Fedotov, GV AF Skorodumina, Iu A. Burkert, V. D. Golovach, E. N. Gothe, R. W. Isupov, E. L. Ishkhanov, B. S. Mokeev, V. I. Fedotov, G. V. TI Nucleon Resonances in Exclusive Reactions of Photo- and Electroproduction of Mesons SO MOSCOW UNIVERSITY PHYSICS BULLETIN LA English DT Article DE nucleon resonances; meson photo-and electroproduction; helicity amplitudes; amplitudes of photo- and electroexcitation of resonances; structure functions ID PARTIAL-WAVE ANALYSIS; BARYON RESONANCES; PHOTOPRODUCTION AB Methods for extracting nucleon resonance parameters from experimental data are reviewed. The formalism for the description of exclusive reactions of meson photo-and electroproduction off nucleons is discussed. Recent experimental data on exclusive meson production in the scattering of electrons and photons off protons are analyzed. C1 [Skorodumina, Iu A.; Ishkhanov, B. S.] Moscow MV Lomonosov State Univ, Dept Phys, Moscow 119991, Russia. [Burkert, V. D.; Mokeev, V. I.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Skorodumina, Iu A.; Gothe, R. W.; Fedotov, G. V.] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. [Golovach, E. N.; Isupov, E. L.; Ishkhanov, B. S.; Mokeev, V. I.; Fedotov, G. V.] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow 119991, Russia. RP Skorodumina, IA (reprint author), Moscow MV Lomonosov State Univ, Dept Phys, Moscow 119991, Russia.; Skorodumina, IA (reprint author), Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. EM skorodumina@gmail.com NR 35 TC 0 Z9 0 U1 0 U2 0 PU ALLERTON PRESS INC PI NEW YORK PA 18 WEST 27TH ST, NEW YORK, NY 10001 USA SN 0027-1349 EI 1934-8460 J9 MOSC U PHYS B+ JI Mosc. Univ. Phys. Bull. PD NOV PY 2015 VL 70 IS 6 BP 429 EP 447 DI 10.3103/S002713491506017X PG 19 WC Physics, Multidisciplinary SC Physics GA DJ7LQ UT WOS:000374393300001 ER PT J AU Kempe, MD Miller, DC Wohlgemuth, JH Kurtz, SR Moseley, JM Shah, QA Tamizhmani, G Sakurai, K Inoue, M Doi, T Masuda, A Samuels, SL Vanderpan, CE AF Kempe, Michael D. Miller, David C. Wohlgemuth, John H. Kurtz, Sarah R. Moseley, John M. Shah, Qurat A. Tamizhmani, Govindasamy Sakurai, Keiichiro Inoue, Masanao Doi, Takuya Masuda, Atsushi Samuels, Sam L. Vanderpan, Crystal E. TI Field testing of thermoplastic encapsulants in high-temperature installations SO ENERGY SCIENCE & ENGINEERING LA English DT Article DE Adhesives; creep; encapsulant; polymer; qualification standards; thermoplastic ID ETHYLENE-VINYL-ACETATE; DEGRADATION AB Recently there has been increased interest in using thermoplastic encapsulant materials in photovoltaic modules, but concerns have been raised about whether these would be mechanically stable at high temperatures in the field. Recently, this has become a significant topic of discussion in the development of IEC 61730 and IEC 61215. We constructed eight pairs of crystalline-silicon modules and eight pairs of glass/encapsulation/glass thin-film mock modules using different encapsulant materials, of which only two were formulated to chemically crosslink. One module set was exposed outdoors with thermal insulation on the back side in Mesa, Arizona, in the summer (hot-dry), and an identical module set was exposed in environmental chambers. High-precision creep measurements (+/- 20 mu m) and electrical performance measurements indicate that despite many of these polymeric materials operating in the melt or rubbery state during outdoor deployment, no significant creep was seen because of their high viscosity, lower operating temperature at the edges, and/or the formation of chemical crosslinks in many of the encapsulants with age despite the absence of a crosslinking agent. Only an ethylene-vinyl acetate (EVA) encapsulant formulated without a peroxide crosslinking agent crept significantly. In the case of the crystalline-silicon modules, the physical restraint of the backsheet reduced creep further and was not detectable even for the EVA without peroxide. Because of the propensity of some polymeric materials to crosslink as they age, typical thermoplastic encapsulants would be unlikely to result in creep in the vast majority of installations. C1 [Kempe, Michael D.; Miller, David C.; Wohlgemuth, John H.; Kurtz, Sarah R.; Moseley, John M.; Sakurai, Keiichiro] Natl Renewable Energy Lab, 15013 Denver West Pkwy, Golden, CO 80401 USA. [Shah, Qurat A.; Tamizhmani, Govindasamy] Arizona State Univ, Photovolta Reliabil Lab, Mesa, AZ USA. [Sakurai, Keiichiro] Natl Inst Adv Ind Sci & Technol, Tsukuba, Ibaraki 3058568, Japan. [Inoue, Masanao; Doi, Takuya; Masuda, Atsushi] Natl Inst Adv Ind Sci & Technol, Tosu, Saga 8410052, Japan. [Samuels, Sam L.] DuPont Co Inc, Wilmington, DE 19803 USA. [Vanderpan, Crystal E.] Underwriters Labs, San Jose, CA USA. RP Kempe, MD (reprint author), Natl Renewable Energy Lab, 15013 Denver West Pkwy, Golden, CO 80401 USA. EM michael.kempe@nrel.gov FU U.S. Department of Energy [DE-AC36-08-GO28308]; National Renewable Energy Laboratory FX This work was part of a collaborative effort of a number of people contributing to test standard development at many institutions. The authors gratefully acknowledge the support of the following individuals: Adam Stokes, Alain Blosse, Ann Norris, Bernd Koll, Bret Adams, Casimir Kotarba (Chad), David Trudell, Dylan Nobles, Ed Gelak, Greg Perrin, Hirofumi Zenkoh, James Galica, Jayesh Bokria, John Pern, Jose Cano, Kartheek Koka, Kate Stika, Keith Emery, Kent Terwilliger, Kolapo Olakonu, Masaaki Yamamichi, Mowafak Al-Jassim, Nick Powell, Niki Nickel, Pedro Gonzales, Peter Hacke, Ryan Smith, Ryan Tucker, Steve Glick, Steve Rummel, Tsuyoshi Shioda, and Yefim Brun. This work was supported by the U.S. Department of Energy under Contract No. DE-AC36-08-GO28308 with the National Renewable Energy Laboratory. NR 26 TC 0 Z9 0 U1 2 U2 2 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 2050-0505 J9 ENERGY SCI ENG JI Energy Sci. Eng. PD NOV PY 2015 VL 3 IS 6 BP 565 EP 580 DI 10.1002/ese3.104 PG 16 WC Energy & Fuels SC Energy & Fuels GA DJ8CV UT WOS:000374441000008 ER PT J AU White, RB AF White, R. B. TI Determination of broken KAM surfaces for particle orbits in toroidal confinement systems SO PLASMA PHYSICS AND CONTROLLED FUSION LA English DT Article DE broken KAM surfaces; particle orbits; toroidal confinement; guiding center motion ID DIFFUSION; PLASMAS AB The destruction of Kolmogorov-Arnold-Moser surfaces in a Hamiltonian system is an important topic in nonlinear dynamics, and in particular in the theory of particle orbits in toroidal magnetic confinement systems. Analytic models for transport due to mode-particle resonances are not sufficiently correct to give the effect of these resonances on transport. In this paper we compare three different methods for the detection of the loss of stability of orbits in the dynamics of charged particles in a toroidal magnetic confinement device in the presence of time dependent magnetic perturbations. C1 [White, R. B.] Princeton Univ, Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. RP White, RB (reprint author), Princeton Univ, Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. FU U.S. Department of Energy [DE-AC02-09CH11466] FX The author acknowledges useful discussions with J Laskar. This work was partially supported by the U.S. Department of Energy Grant DE-AC02-09CH11466. NR 19 TC 2 Z9 2 U1 1 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0741-3335 EI 1361-6587 J9 PLASMA PHYS CONTR F JI Plasma Phys. Control. Fusion PD NOV PY 2015 VL 57 IS 11 AR 115008 DI 10.1088/0741-3335/57/11/115008 PG 10 WC Physics, Fluids & Plasmas SC Physics GA DJ9MR UT WOS:000374538100009 ER PT J AU Toga, AW Foster, I Kesselman, C Madduri, R Chard, K Deutsch, EW Price, ND Glusman, G Heavner, BD Dinov, ID Ames, J Van Horn, J Kramer, R Hood, L AF Toga, Arthur W. Foster, Ian Kesselman, Carl Madduri, Ravi Chard, Kyle Deutsch, Eric W. Price, Nathan D. Glusman, Gustavo Heavner, Benjamin D. Dinov, Ivo D. Ames, Joseph Van Horn, John Kramer, Roger Hood, Leroy TI Big biomedical data as the key resource for discovery science SO JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION LA English DT Article DE big; biomedical; data; resource; discovery; science; neuroscience (ja); big data; analytics; BD2K; discovery science; Parkinson's disease; Alzheimer's disease (ID) ID STATISTICAL-MODEL; VISUALIZATION; SYSTEM AB Modern biomedical data collection is generating exponentially more data in a multitude of formats. This flood of complex data poses significant opportunities to discover and understand the critical interplay among such diverse domains as genomics, proteomics, metabolomics, and phenomics, including imaging, biometrics, and clinical data. The Big Data for Discovery Science Center is taking an-ome to home" approach to discover linkages between these disparate data sources by mining existing databases of proteomic and genomic data, brain images, and clinical assessments. In support of this work, the authors developed new technological capabilities that make it easy for researchers to manage, aggregate, manipulate, integrate, and model large amounts of distributed data. Guided by biological domain expertise, the Center's computational resources and software will reveal relationships and patterns, aiding researchers in identifying biomarkers for the most confounding conditions and diseases, such as Parkinson's and Alzheimer's. C1 [Toga, Arthur W.; Ames, Joseph; Van Horn, John] Univ So Calif, Lab Neuro Imaging, USC Stevens Neuroimaging & Informat Inst, Los Angeles, CA USA. [Foster, Ian; Madduri, Ravi; Chard, Kyle] Univ Chicago, Computat Inst, Chicago, IL 60637 USA. [Foster, Ian; Madduri, Ravi; Chard, Kyle] Argonne Natl Lab, Chicago, IL USA. [Kesselman, Carl] Univ So Calif, Inst Informat Sci, Los Angeles, CA USA. [Deutsch, Eric W.; Price, Nathan D.; Glusman, Gustavo; Heavner, Benjamin D.; Kramer, Roger; Hood, Leroy] Inst Syst Biol, Seattle, WA USA. [Dinov, Ivo D.] Univ Michigan, SOCR, UMSN, Ann Arbor, MI 48109 USA. RP Toga, AW (reprint author), Univ So Calif, Lab Neuro Imaging, USC Stevens Neuroimaging & Informat Inst, Keck Sch Med, 2001 North Soto St,Room 102, Los Angeles, CA 90032 USA. EM toga@loni.usc.edu OI Glusman, Gustavo/0000-0001-8060-5955 FU National Institutes of Health [1U54EB020406-01] FX This work was supported by National Institutes of Health grant 1U54EB020406-01. NR 28 TC 9 Z9 9 U1 5 U2 18 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 1067-5027 EI 1527-974X J9 J AM MED INFORM ASSN JI J. Am. Med. Inf. Assoc. PD NOV PY 2015 VL 22 IS 6 BP 1126 EP 1131 DI 10.1093/jamia/ocv077 PG 6 WC Computer Science, Information Systems; Computer Science, Interdisciplinary Applications; Health Care Sciences & Services; Information Science & Library Science; Medical Informatics SC Computer Science; Health Care Sciences & Services; Information Science & Library Science; Medical Informatics GA DI8AF UT WOS:000373722400005 PM 26198305 ER PT J AU Smol'nikov, AG Ogloblichev, VV Verkhovskii, SV Mikhalev, KN Yakubovskii, AY Kumagai, K Furukawa, Y Sadykov, AF Piskunov, YV Gerashchenko, AP Barilo, SN Shiryaev, SV AF Smol'nikov, A. G. Ogloblichev, V. V. Verkhovskii, S. V. Mikhalev, K. N. Yakubovskii, A. Yu. Kumagai, K. Furukawa, Y. Sadykov, A. F. Piskunov, Yu. V. Gerashchenko, A. P. Barilo, S. N. Shiryaev, S. V. TI Cr-53 NMR study of CuCrO2 multiferroic SO JETP LETTERS LA English DT Article ID MAGNETIC-RESONANCE AB The magnetically ordered phase of the CuCrO2 single crystal has been studied by the nuclear magnetic resonance (NMR) method on Cr-53 nuclei in the absence of an external magnetic field. The Cr-53 NMR spectrum is observed in the frequency range nu(res) = 61-66 MHz. The shape of the spectrum depends on the delay tdel between pulses in the pulse sequence tau(pi/2)-t (del-)tau(pi)-t (del)-echo. The spin-spin and spin-lattice relaxation times have been measured. Components of the electric field gradient, hyperfine fields, and the magnetic moment on chromium atoms have been estimated. C1 [Smol'nikov, A. G.; Ogloblichev, V. V.; Verkhovskii, S. V.; Mikhalev, K. N.; Sadykov, A. F.; Piskunov, Yu. V.; Gerashchenko, A. P.] Russian Acad Sci, Mikheev Inst Met Phys, Ural Branch, Ekaterinburg 620990, Russia. [Ogloblichev, V. V.; Furukawa, Y.] Iowa State Univ, Dept Phys & Astron, Ames Lab, Ames, IA 50011 USA. [Ogloblichev, V. V.; Yakubovskii, A. Yu.; Kumagai, K.] Hokkaido Univ, Fac Sci, Dept Phys, Sapporo, Hokkaido 0600810, Japan. [Yakubovskii, A. Yu.] Kurchatov Inst, Natl Res Ctr, Moscow 123182, Russia. [Barilo, S. N.; Shiryaev, S. V.] Natl Acad Sci Belarus, Inst Solid State Phys & Semicond, Minsk 220072, Byelarus. RP Smol'nikov, AG (reprint author), Russian Acad Sci, Mikheev Inst Met Phys, Ural Branch, Ekaterinburg 620990, Russia. EM ogloblichev@imp.uran.ru RI Piskunov, Yuri/J-7799-2013; Verkhovskii, Stanislav/K-2863-2013; Ogloblichev, Vasily/K-3399-2013; Sadykov, Almaz/J-3528-2013; Mikhalev, Konstantin/K-3069-2013; Smolnikov, Alex/J-9285-2013; Gerashenko, Alexander/J-9321-2013 OI Piskunov, Yuri/0000-0002-6115-6207; Verkhovskii, Stanislav/0000-0002-8035-9544; Ogloblichev, Vasily/0000-0003-0520-7521; Sadykov, Almaz/0000-0003-1742-278X; Mikhalev, Konstantin/0000-0001-5726-4427; Smolnikov, Alex/0000-0001-6295-9530; Gerashenko, Alexander/0000-0002-9114-7141 FU Russian Foundation for Basic Research [15-02-02000, 14-02-00203, 14-02-90027]; Iowa State University; Division of Materials Sciences and Engineering, Office of Science, the U.S. Department of Energy; U.S. Department of Energy [DE-AC02-07CH11358] FX This work was performed within the state task no. 01201463330 on the theme "Spin" and was supported by the Russian Foundation for Basic Research (project nos. 15-02-02000, 14-02-00203, and 14-02-90027). V.O. and A.Ya. are grateful to the administration of the Hokkaido University for support and hospitality. V.O. and K.M. are grateful to the administration of the Ames Laboratory and the Iowa State University for support and hospitality. The work at the Ames Laboratory was supported by Division of Materials Sciences and Engineering, Office of Science, the U.S. Department of Energy. The Ames Laboratory operates at Iowa State University for the U.S. Department of Energy (contract no. DE-AC02-07CH11358). NR 24 TC 1 Z9 1 U1 5 U2 12 PU MAIK NAUKA/INTERPERIODICA/SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013-1578 USA SN 0021-3640 EI 1090-6487 J9 JETP LETT+ JI Jetp Lett. PD NOV PY 2015 VL 102 IS 10 BP 674 EP 677 DI 10.1134/S0021364015220105 PG 4 WC Physics, Multidisciplinary SC Physics GA DE6SC UT WOS:000370762900008 ER PT J AU Nadzjieka, D AF Nadzjieka, David TI Scientific Writing and Communication: Papers, Proposals, and Presentations SO TECHNICAL COMMUNICATION LA English DT Book Review C1 [Nadzjieka, David] Van Andel Res Inst, Grand Rapids, MI USA. [Nadzjieka, David] STC, Riyadh, Saudi Arabia. [Nadzjieka, David] Inst Paper Chem, Tech Commun, Appleton, WI USA. [Nadzjieka, David] Argonne Natl Lab, Tech Commun, Argonne, IL 60439 USA. [Nadzjieka, David] IIT, Tech Commun, Chicago, IL 60616 USA. RP Nadzjieka, D (reprint author), Van Andel Res Inst, Grand Rapids, MI USA. NR 1 TC 0 Z9 0 U1 1 U2 3 PU SOC TECHNICAL COMMUNICATION PI FAIRFAX PA 9401 LEE HIGHWAY, STE 300, FAIRFAX, VA 22031 USA SN 0049-3155 J9 TECH COMMUN-STC JI Tech. Commun. PD NOV PY 2015 VL 62 IS 4 BP 292 EP 293 PG 2 WC Communication SC Communication GA DE6GO UT WOS:000370732200014 ER PT J AU Liu, TC Feng, YC Duan, YD Cui, SH Lin, LP Hu, JT Guo, H Zhuo, ZQ Zheng, JX Lin, Y Yang, WL Amine, K Pan, F AF Liu, Tongchao Feng, Yancong Duan, Yandong Cui, Suihan Lin, Lingpiao Hu, Jiangtao Guo, Hua Zhuo, Zengqing Zheng, Jiaxin Lin, Yuan Yang, Wanli Amine, Khalil Pan, Feng TI Formation of mono/bi-layer iron phosphate and nucleation of LiFePO4 nano-crystals from amorphous 2D sheets in charge/discharge process for cathode in high-performance Li-ion batteries SO NANO ENERGY LA English DT Article DE 2D-sheets; H-bond network; Nano-crystals; Transmission line model ID ULTRATHIN NANOSHEETS; MOS2; CARBON; TEMPERATURE; COMPOSITES; PHOTOLUMINESCENCE; REDUCTION; OLIVINES; HYBRID; SOLAR AB We prepared mono/bi-layer iron phosphate two-dimensional (2D) materials with 0.74 nm/1.52 nm thickness by means of a simple chemically induced precipitation method and post-processing. The mechanism of growth of the atomically thin 2D-sheet crystals was investigated by experimental measurements and theoretical calculations. The crystalline 2D sheets were easily oxidized to the amorphous phase in air, and LiFePO4 nano-crystals self-nucleated from amorphous 2D sheets in the charge/discharge process. The 2D sheets show excellent performance properties as cathode materials: high initial discharge capacity of 185 mAh g(-1) at 0.1 C, stable cycling (98% capacity retention over 400 cycles), and high rate capability (107 mAh g(-1) at 20 C) for Li-ion storage. A model for self-nucleation of the LiFePO4 nano-crystals involving double-center diffusion is discussed. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Liu, Tongchao; Feng, Yancong; Duan, Yandong; Cui, Suihan; Lin, Lingpiao; Hu, Jiangtao; Guo, Hua; Zhuo, Zengqing; Zheng, Jiaxin; Lin, Yuan; Yang, Wanli; Amine, Khalil; Pan, Feng] Peking Univ, Shenzhen Grad Sch, Sch Adv Mat, Shenzhen 518055, Peoples R China. [Amine, Khalil] Argonne Natl Lab, Chem Sci & Engn Div, Electrochem Technol Program, Argonne, IL 60439 USA. [Yang, Wanli] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Pan, F (reprint author), Peking Univ, Shenzhen Grad Sch, Sch Adv Mat, Shenzhen 518055, Peoples R China. EM panfeng@pkusz.edu.cn RI Yang, Wanli/D-7183-2011; Duan, Yandong/I-4206-2013; lin, yuan/G-9390-2013 OI Yang, Wanli/0000-0003-0666-8063; lin, yuan/0000-0003-3410-3588 FU Guangdong Innovation Team Project [2013N080]; Shenzhen Science and Technology Research Grant [ZDSY20130331145131323, KYPT20141016105435850] FX The work was financially supported by Guangdong Innovation Team Project (No. 2013N080), Shenzhen Science and Technology Research Grant (ZDSY20130331145131323, KYPT20141016105435850). NR 38 TC 5 Z9 5 U1 25 U2 55 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2211-2855 EI 2211-3282 J9 NANO ENERGY JI Nano Energy PD NOV PY 2015 VL 18 BP 187 EP 195 DI 10.1016/j.nanoen.2015.10.016 PG 9 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA DD4UO UT WOS:000369918500020 ER PT J AU Xu, GL Li, Y Ma, TY Ren, Y Wang, HH Wang, LF Wen, JG Miller, D Amine, K Chen, ZH AF Xu, Gui-Liang Li, Yan Ma, Tianyuan Ren, Yang Wang, Hsien-Hau Wang, Lifen Wen, Jianguo Miller, Dean Amine, Khalil Chen, Zonghai TI PEDOT-PSS coated ZnO/C hierarchical porous nanorods as ultralong-life anode material for lithium ion batteries SO NANO ENERGY LA English DT Article DE In-situ HEXRD; PEDOT-PSS; ZnO; Hierarchical porous nanorods; Anode; Lithium ion batteries ID SENSITIZED SOLAR-CELLS; ENHANCED ELECTROCHEMICAL PERFORMANCE; ATOMIC LAYER DEPOSITION; STORAGE CAPABILITY; FACILE SYNTHESIS; HYDROTHERMAL SYNTHESIS; NANOSTRUCTURED ZNO; COMPOSITE; CAPACITY; MICROSPHERES AB ZnO/C hierarchical porous nanorods were synthesized through one-pot wet-chemical reaction followed by thermal calcination. It was found that ZnO/C porous nanorods are composed of numerous nanograins, exhibiting a hierarchical micro/nanostructure. In-situ synchrotron high energy X-ray diffraction study revealed that ZnO/C hierarchical porous nanorods involve a two-step reversible lithiation mechanism during charge/discharge; and part of ZnO and Zn remains at the end of the first discharge and charge process, respectively, leading to a low coulombic efficiency in the initial few cycles. The electrochemical test demonstrated that the reversible capacity and the rate performance of ZnO/C hierarchical porous nanorods anode have been greatly improved by PEDOT-PSS coating, which could maintain a reversible capacity of 623.94 mA h g(-1) after 1500 cycles at 1 C. Its excellent high rate capability and long cycle stability were attributed to the high electronic conductivity of PEDOT-PSS coating layer and the hierarchical structures of ZnO/C porous nanorods. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Xu, Gui-Liang; Li, Yan; Ma, Tianyuan; Amine, Khalil; Chen, Zonghai] Argonne Natl Lab, Chem Sci & Engn Div, Lemont, IL 60439 USA. [Ma, Tianyuan] Univ Rochester, Mat Sci Program, Rochester, NY 14627 USA. [Ren, Yang] Argonne Natl Lab, Xray Sci Div, Lemont, IL 60439 USA. [Wang, Hsien-Hau] Argonne Natl Lab, Mat Sci Div, Lemont, IL 60439 USA. [Wang, Lifen; Wen, Jianguo; Miller, Dean] Argonne Natl Lab, Elect Microscopy Ctr, Lemont, IL 60439 USA. RP Amine, K (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, Lemont, IL 60439 USA. EM amine@anl.gov; zonghai.chen@anl.gov RI Li, Yan/H-2957-2012; XU, GUILIANG/F-3804-2017 OI Li, Yan/0000-0002-9801-7243; FU U.S. Department of Energy, Vehicle Technologies Office; U.S. Department of Energy by UChicago Argonne, LLC [DE-AC02-06CH11357]; U.S. Department of Energy, Office of Science and Office of Basic Energy Sciences FX Research at the Argonne National Laboratory was funded by U.S. Department of Energy, Vehicle Technologies Office. Argonne National Laboratory is operated for the U.S. Department of Energy by UChicago Argonne, LLC, under Contract DE-AC02-06CH11357. The authors also acknowledge the use of the Advanced Photon Source of the Argonne National Laboratory supported by the U.S. Department of Energy, Office of Science and Office of Basic Energy Sciences. NR 63 TC 20 Z9 20 U1 27 U2 69 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2211-2855 EI 2211-3282 J9 NANO ENERGY JI Nano Energy PD NOV PY 2015 VL 18 BP 253 EP 264 DI 10.1016/j.nanoen.2015.10.020 PG 12 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA DD4UO UT WOS:000369918500027 ER PT J AU Odumosu, T Tsao, JY Narayanamurti, V AF Odumosu, Toluwalogo Tsao, Jeffrey Y. Narayanamurti, Venkatesh TI The social science of creativity and research practice: Physical scientists, take notice SO PHYSICS TODAY LA English DT Editorial Material C1 [Odumosu, Toluwalogo] Univ Virginia, Charlottesville, VA USA. [Tsao, Jeffrey Y.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Narayanamurti, Venkatesh] Harvard Univ, Cambridge, MA 02138 USA. RP Odumosu, T (reprint author), Univ Virginia, Charlottesville, VA USA. EM todumosu@virginia.edu; jytsao@sandia.gov; venky@seas.harvard.edu NR 7 TC 0 Z9 0 U1 5 U2 5 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0031-9228 EI 1945-0699 J9 PHYS TODAY JI Phys. Today PD NOV PY 2015 VL 68 IS 11 BP 8 EP 9 DI 10.1063/PT.3.2959 PG 2 WC Physics, Multidisciplinary SC Physics GA DC7OX UT WOS:000369411000001 ER PT J AU Dadfarnia, M Nagao, A Wang, S Martin, ML Somerday, BP Sofronis, P AF Dadfarnia, Mohsen Nagao, Akihide Wang, Shuai Martin, May L. Somerday, Brian P. Sofronis, Petros TI Recent advances on hydrogen embrittlement of structural materials SO INTERNATIONAL JOURNAL OF FRACTURE LA English DT Article DE Hydrogen embrittlement; Fracture; Fatigue; Plasticity; Dislocation; Microstructure ID LATH MARTENSITIC STEEL; THERMAL-DESORPTION; GRAIN-BOUNDARY; SOLUTE SEGREGATION; ASSISTED CRACKING; PURE IRON; FRACTURE; METALS; DEFORMATION; DISLOCATIONS AB This paper presents a critical review of current understanding of the effect of hydrogen on fracture and fatigue of metals and alloys. First, microstructures found immediately beneath hydrogen-induced fracture surfaces in various materials are presented. Then, recent progress toward the fundamentals of hydrogen-induced fracture is reported. Lastly, a recent attempt to model hydrogen embrittlement by linking the macroscale (e.g. applied load and hydrogen content) and the operating microscopic degradation mechanism at the local microstructural defect level is reviewed. C1 [Dadfarnia, Mohsen; Sofronis, Petros] Univ Illinois, Dept Mech Sci & Engn, 1206 W Green St, Urbana, IL 61801 USA. [Nagao, Akihide] JFE Steel Corp, Mat Surface & Interface Sci Res Dept, Steel Res Lab, Kawasaki Ku, Kawasaki, Kanagawa 2100855, Japan. [Wang, Shuai] Univ Wisconsin, Dept Mat Sci & Engn, Madison, WI 53706 USA. [Martin, May L.] Univ Gottingen, Inst Mat Phys, D-37077 Gottingen, Germany. [Somerday, Brian P.] Sandia Natl Labs, Livermore, CA 94551 USA. [Dadfarnia, Mohsen; Nagao, Akihide; Wang, Shuai; Somerday, Brian P.; Sofronis, Petros] Kyushu Univ, Int Inst Carbon Neutral Energy Res WPI I2CNER, Nishi Ku, Fukuoka, Fukuoka 8190395, Japan. RP Sofronis, P (reprint author), Univ Illinois, Dept Mech Sci & Engn, 1206 W Green St, Urbana, IL 61801 USA. EM dadfarni@illinois.edu; sofronis@illinois.edu RI U-ID, Kyushu/C-5291-2016; Wang, Shuai/D-7212-2017 FU DOE EERE Fuel Cells program [GO 15045]; World Premier International Research Center Initiative (WPI), MEXT, Japan, through the International Institute for Carbon-Neutral Energy Research (I2CNER) of Kyushu University; National Science Foundation [CMMI-1406462] FX This work was supported by the DOE EERE Fuel Cells program through Grant GO 15045. M.D., A.N., S.W., B.P.S., and P.S. acknowledge the support from the World Premier International Research Center Initiative (WPI), MEXT, Japan, through the International Institute for Carbon-Neutral Energy Research (I2CNER) of Kyushu University. S.W. acknowledges support from the National Science Foundation through Award No. CMMI-1406462. The authors would also like to acknowledge Prof. I.M. Robertson at the University of Wisconsin-Madison for his guidance, support and discussions. Also, the authors acknowledge K.E. Nygren at the University of Wisconsin-Madison for fruitful discussions. NR 78 TC 4 Z9 4 U1 14 U2 38 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0376-9429 EI 1573-2673 J9 INT J FRACTURE JI Int. J. Fract. PD NOV PY 2015 VL 196 IS 1-2 BP 223 EP 243 DI 10.1007/s10704-015-0068-4 PG 21 WC Materials Science, Multidisciplinary; Mechanics SC Materials Science; Mechanics GA DC7XE UT WOS:000369433300009 ER PT J AU Edmundson, SJ Huesemann, MH AF Edmundson, Scott J. Huesemann, Michael H. TI The dark side of algae cultivation: Characterizing night biomass loss in three photosynthetic algae, Chlorella sorokiniana, Nannochloropsis salina and Picochlorum sp. SO ALGAL RESEARCH-BIOMASS BIOFUELS AND BIOPRODUCTS LA English DT Article DE Microalgae; Respiration; Metabolism; Photosynthetic productivity; Predictive modeling; Strain characterization; Biomass decay ID PLATENSIS GROWN OUTDOORS; HYDROTHERMAL LIQUEFACTION; SPIRULINA-PLATENSIS; TUBULAR PHOTOBIOREACTORS; CYCLIC CULTURE; RACEWAY PONDS; TEMPERATURE; RESPIRATION; LIGHT; PRODUCTIVITY AB Night biomass loss in photosynthetic algae is an essential parameter that is often overlooked when modeling or optimizing biomass productivities. Night respiration acts as a tax on daily biomass gains and has not been well characterized in the context of biomass production for biofuels. We examined the night biomass loss in three algae strains that may have potential for commercial biomass production (Nannochloropsis salina - CCMP1776, Chlorella sorokiniana - DOE1412, and Picochlorum sp. LANL-WT). Biomass losses were monitored by ash free dry weight (AFDW mg L-1) and optical density (OD750) on a thermal-gradient incubator. Specific night biomass loss rates were highly variable (ranging from -0.006 to -0.59 day(-1)), species-specific, and dependent on both culture growth phase prior to the dark period and night pond temperature. In general, the fraction of biomass lost over a 10 h dark period, which ranged from ca. 1 to 22% in our experiments, was positively correlated with temperature and declined as the culture transitioned from late exponential to linear to late linear phase. The dynamics of biomass loss should be taken into consideration in algae strain selection, are critical in predictive modeling of biomass production based on geographic location, and can influence the net productivity of photosynthetic cultures used for bio-based fuels or products. (C) 2015 The Authors. Published by Elsevier B.V. C1 [Edmundson, Scott J.; Huesemann, Michael H.] Pacific NW Natl Lab, Marine Sci Lab, Sequim, WA 98382 USA. RP Huesemann, MH (reprint author), Pacific NW Natl Lab, 1529 West Sequim Bay Rd, Sequim, WA 98382 USA. EM michael.huesemann@pnnl.gov FU Office of Energy Efficiency and Renewable Energy of the Department of Energy [DE-EE0006269]; Department of Energy Science Undergraduate Laboratory Internship Program FX This work was supported by the Office of Energy Efficiency and Renewable Energy of the Department of Energy as part of the Regional Algal Fuels Testbed Partnership #DE-EE0006269. Additional support by the Department of Energy Science Undergraduate Laboratory Internship Program was provided to Alex Dodwell, Boris Chubukov, and V.J. Tocco, whose early work on method development and validation is greatly appreciated. NR 48 TC 6 Z9 6 U1 6 U2 22 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2211-9264 J9 ALGAL RES JI Algal Res. PD NOV PY 2015 VL 12 BP 470 EP 476 DI 10.1016/j.algal.2015.10.012 PG 7 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA DB9IL UT WOS:000368829500058 ER PT J AU Throckmorton, HM Heikoop, JM Newman, BD Altmann, GL Conrad, MS Muss, JD Perkins, GB Smith, LJ Torn, MS Wullschleger, SD Wilson, CJ AF Throckmorton, Heather M. Heikoop, Jeffrey M. Newman, Brent D. Altmann, Garrett L. Conrad, Mark S. Muss, Jordan D. Perkins, George B. Smith, Lydia J. Torn, Margaret S. Wullschleger, Stan D. Wilson, Cathy J. TI Pathways and transformations of dissolved methane and dissolved inorganic carbon in Arctic tundra watersheds: Evidence from analysis of stable isotopes SO GLOBAL BIOGEOCHEMICAL CYCLES LA English DT Article ID THAW-LAKE BASINS; COASTAL-PLAIN; PEATLAND COMPLEX; WETLAND COMPLEX; CLIMATE-CHANGE; CO2 PRODUCTION; CH4 OXIDATION; FOREST SOILS; RICE FIELDS; ALASKA AB Arctic soils contain a large pool of terrestrial C and are of interest due to their potential for releasing significant carbon dioxide (CO2) and methane (CH4) to the atmosphere. Due to substantial landscape heterogeneity, predicting ecosystem-scale CH4 and CO2 production is challenging. This study assessed dissolved inorganic carbon (DIC = Sigma (total) dissolved CO2) and CH4 in watershed drainages in Barrow, Alaska as critical convergent zones of regional geochemistry, substrates, and nutrients. In July and September of 2013, surface waters and saturated subsurface pore waters were collected from 17 drainages. Based on simultaneous DIC and CH4 cycling, we synthesized isotopic and geochemical methods to develop a subsurface CH4 and DIC balance by estimating mechanisms of CH4 and DIC production and transport pathways and oxidation of subsurface CH4. We observed a shift from acetoclastic (July) toward hydrogenotropic (September) methanogenesis at sites located toward the end of major freshwater drainages, adjacent to salty estuarine waters, suggesting an interesting landscape-scale effect on CH4 production mechanism. The majority of subsurface CH4 was transported upward by plant-mediated transport and ebullition, predominantly bypassing the potential for CH4 oxidation. Thus, surprisingly, CH4 oxidation only consumed approximately 2.51 +/- 0.82% (July) and 0.79 +/- 0.79% (September) of CH4 produced at the frost table, contributing to <0.1% of DIC production. DIC was primarily produced from respiration, with iron and organic matter serving as likely e- acceptors. This work highlights the importance of spatial and temporal variability of CH4 production at the watershed scale and suggests broad scale investigations are required to build better regional or pan-Arctic representations of CH4 and CO2 production. C1 [Throckmorton, Heather M.; Heikoop, Jeffrey M.; Newman, Brent D.; Altmann, Garrett L.; Muss, Jordan D.; Perkins, George B.; Wilson, Cathy J.] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. [Conrad, Mark S.; Smith, Lydia J.; Torn, Margaret S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Wullschleger, Stan D.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. RP Throckmorton, HM (reprint author), Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. EM hthrockmorton@lanl.gov RI Torn, Margaret/D-2305-2015; Heikoop, Jeffrey/C-1163-2011; Vaughn, Lydia/I-9108-2016; Conrad, Mark/G-2767-2010; Wullschleger, Stan/B-8297-2012; OI Vaughn, Lydia/0000-0001-9337-464X; Wullschleger, Stan/0000-0002-9869-0446; Muss, Jordan/0000-0003-2856-7810; Heikoop, Jeffrey/0000-0001-7648-3385 FU Office of Biological and Environmental Research in the DOE Office of Science; U.S. Department of Energy [DE-AC52-06NA25396] FX The data for this paper are available as auxiliary materials and in Throckmorton et al. [2015]. The Next-Generation Ecosystem Experiments (NGEE Arctic) project is supported by the Office of Biological and Environmental Research in the DOE Office of Science. Logistical support is provided by UMIAQ, LLC. The authors wish to thank Marvin Gard, Lily Cohen, and Michael Hudak for their support and assistance in fieldwork and preparation, and Emily Kluk, Mike Rearick, and Zackary Vance for their assistance in sample analyses and laboratory management. This work has been authored by an employee of Los Alamos National Security, LLC, operator of the Los Alamos National Laboratory under contract DE-AC52-06NA25396 with the U.S. Department of Energy. The publisher, by accepting this work for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce this work or allow others to do so for the United States Government purposes. NR 78 TC 5 Z9 5 U1 10 U2 34 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0886-6236 EI 1944-9224 J9 GLOBAL BIOGEOCHEM CY JI Glob. Biogeochem. Cycle PD NOV PY 2015 VL 29 IS 11 BP 1893 EP 1910 DI 10.1002/2014GB005044 PG 18 WC Environmental Sciences; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Geology; Meteorology & Atmospheric Sciences GA DC0LA UT WOS:000368907500003 ER PT J AU Wang, SL Elliott, S Maltrud, M Cameron-Smith, P AF Wang, Shanlin Elliott, Scott Maltrud, Mathew Cameron-Smith, Philip TI Influence of explicit Phaeocystis parameterizations on the global distribution of marine dimethyl sulfide SO JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES LA English DT Article; Proceedings Paper CT 2nd International Conference on Arctic Research Planning CY NOV 10-12, 2005 CL Copenhagen, DENMARK ID ATMOSPHERIC CARBONYL SULFIDE; CLOUD CONDENSATION NUCLEI; EMILIANIA-HUXLEYI; OCEANIC PHYTOPLANKTON; SULFUR EMISSIONS; ARCTIC-OCEAN; ROSS SEA; ECOSYSTEM MODEL; PACIFIC-OCEAN; GAS-EXCHANGE AB Dimethyl sulfide (DMS) is a biogenic organosulfur compound which contributes strongly to marine aerosol mass and the determination of cloud condensation nuclei over the remote oceans. Since uncertainties in DMS flux to the atmosphere lead to large variations in climate forcing, the global DMS distribution has been the subject of increasingly complex dynamic simulations. DMS concentrations are directly controlled by marine ecosystems. Phaeocystis is a major DMS producer but is often omitted from global reduced sulfur mechanisms. Here we incorporate this phytoplankton group into the marine ecosystem-biogeochemical module of the Community Earth System Model. To examine its role in the ocean sulfur cycle, an earlier DMS model has been enhanced to include new knowledge gained over the last few years. Results from the baseline run show that simulated Phaeocystis biomass generally agrees with observations, with high concentrations near the Antarctic continent and between 50 degrees and 60 degrees north. Given the new explicit Phaeocystis representation, the DMS distribution shows significant improvements, especially regarding the amplitude and location of high-latitude peaks. The simulated global mean surface DMS value is 2.26 nM, comparable to an estimate of 2.34 nM from the latest climatology extrapolated based on observations. The total oceanic DMS source to the atmosphere is 20.4 Tg S/yr, on the low side of previous estimates. Comparisons with and without Phaeocystis show that the group dominates DMS distributions in temperate and cold waters, contributing 13% of the global flux. The proportion may increase as sea ice declines and should be considered in climate projections. C1 [Wang, Shanlin; Elliott, Scott; Maltrud, Mathew] Los Alamos Natl Lab, Climate Ocean & Sea Ice Modeling Grp, Los Alamos, NM USA. [Cameron-Smith, Philip] Lawrence Livermore Natl Lab, Atmospher Earth & Energy Div, Livermore, CA USA. RP Wang, SL (reprint author), Los Alamos Natl Lab, Climate Ocean & Sea Ice Modeling Grp, Los Alamos, NM USA. EM shanlinw@lanl.gov RI Cameron-Smith, Philip/E-2468-2011; Wang, Shanlin/A-2576-2017 OI Cameron-Smith, Philip/0000-0002-8802-8627; Wang, Shanlin/0000-0002-7677-4745 FU U.S. Department of Energy Office of Biological and Environmental Research (DOE OBER); U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; National Science Foundation FX We thank Vogt and coworkers for their compilation of the Phaeocystis biomass shown in Figure 2 (available at http://doi.pangaea.de/10.1594/PANGAEA.779101). We also thank Lana and coworkers for the DMS concentration climatology products (available at http://www.bodc.ac.uk/solas_integration). This research has been supported by several grants from the U.S. Department of Energy Office of Biological and Environmental Research (DOE OBER). These include a Regional and Global Climate Modeling Science Focus Area project (RGCM SFA) administered by COSIM (Climate Ocean Sea Ice Modeling) at Los Alamos National Laboratory and the SciDAC (Scientific Discovery through Advanced Computing) study ACES4BGC (Applying Computationally Efficient Schemes for Biogeochemical Cycles). The work by P. Cameron-Smith was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Computational facilities for some of this work have been provided by the Climate Simulation Laboratory, which is managed by Computational and Information Systems Laboratory at NCAR. NCAR is sponsored by the National Science Foundation. Additional computational facilities were provided by Institutional Computing resources at Los Alamos National Laboratory. NR 105 TC 0 Z9 0 U1 4 U2 13 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-8953 EI 2169-8961 J9 J GEOPHYS RES-BIOGEO JI J. Geophys. Res.-Biogeosci. PD NOV PY 2015 VL 120 IS 11 BP 2158 EP 2177 DI 10.1002/2015JG003017 PG 20 WC Environmental Sciences; Geosciences, Multidisciplinary SC Environmental Sciences & Ecology; Geology GA DC0LM UT WOS:000368908700004 ER PT J AU Huang, N Gu, LH Black, TA Wang, L Niu, Z AF Huang, Ni Gu, Lianhong Black, T. Andrew Wang, Li Niu, Zheng TI Remote sensing-based estimation of annual soil respiration at two contrasting forest sites SO JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES LA English DT Article; Proceedings Paper CT 2nd International Conference on Arctic Research Planning CY NOV 10-12, 2005 CL Copenhagen, DENMARK ID DOUGLAS-FIR FOREST; LEAF-AREA INDEX; SPECTRAL VEGETATION INDEXES; TOTAL ECOSYSTEM RESPIRATION; GROSS PRIMARY PRODUCTION; MODIS LST DATA; SURFACE-TEMPERATURE; EDDY COVARIANCE; INTERANNUAL VARIATION; AIR TEMPERATURES AB Soil respiration (R-s), an important component of the global carbon cycle, can be estimated using remotely sensed data, but the accuracy of this technique has not been thoroughly investigated. In this study, we proposed a methodology for the remote estimation of annual R-s at two contrasting FLUXNET forest sites (a deciduous broadleaf forest and an evergreen needleleaf forest). A version of the Akaike's information criterion was used to select the best model from a range of models for annual R-s estimation based on the remotely sensed data products from the Moderate Resolution Imaging Spectroradiometer and root-zone soil moisture product derived from assimilation of the NASA Advanced Microwave Scanning Radiometer soil moisture products and a two-layer Palmer water balance model. We found that the Arrhenius-type function based on nighttime land surface temperature (LST-night) was the best model by comprehensively considering the model explanatory power and model complexity at the Missouri Ozark and BC-Campbell River 1949 Douglas-fir sites. In addition, a multicollinearity problem among LST-night, root-zone soil moisture, and plant photosynthesis factor was effectively avoided by selecting the LST-night-drivenmodel. Cross validation showed that temporal variation in R-s was captured by the LST-night-driven model with a mean absolute error below 1 mu mol CO2 m(-2) s(-1) at both forest sites. An obvious overestimation that occurred in 2005 and 2007 at the Missouri Ozark site reduced the evaluation accuracy of cross validation because of summer drought. However, no significant difference was found between the Arrhenius-type function driven by LST-night and the function considering LST-night and root-zone soil moisture. This finding indicated that the contribution of soil moisture to R-s was relatively small at our multiyear data set. To predict intersite R-s, maximum leaf area index (LAI(max)) was used as an upscaling factor to calibrate the site-specific reference respiration rates. Independent validation demonstrated that the model incorporating LST-night and LAI(max) efficiently predicted the spatial and temporal variabilities of R-s. Based on the Arrhenius-type function using LST-night as an input parameter, the rates of annual C release from R-s were 894-1027 g Cm-2 yr(-1) at the BC-Campbell River 1949 Douglas-fir site and 818-943 g Cm-2 yr(-1) at the Missouri Ozark site. The ratio between annual R-s estimates based on remotely sensed data and the total annual ecosystem respiration from eddy covariance measurements fell within the range reported in previous studies. Our results demonstrated that estimating annual R-s based on remote sensing data products was possible at deciduous and evergreen forest sites. C1 [Huang, Ni; Wang, Li; Niu, Zheng] Chinese Acad Sci, Inst Remote Sensing & Digital Earth, State Key Lab Remote Sensing Sci, Beijing, Peoples R China. [Gu, Lianhong] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN USA. [Gu, Lianhong] Oak Ridge Natl Lab, Climate Change Sci Inst, Oak Ridge, TN USA. [Black, T. Andrew] Univ British Columbia, Fac Land & Food Syst, Biometeorol & Soil Phys Grp, Vancouver, BC V5Z 1M9, Canada. RP Wang, L (reprint author), Chinese Acad Sci, Inst Remote Sensing & Digital Earth, State Key Lab Remote Sensing Sci, Beijing, Peoples R China. EM wangli@radi.ac.cn RI Gu, Lianhong/H-8241-2014 OI Gu, Lianhong/0000-0001-5756-8738 FU National Natural Science Foundation of China [41301498]; Youth Innovation Promotion Association CAS [2014052]; Special Foundation for Young Scientists from Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences; Special Foundation for Young Scientists of the State Laboratory of Remote Sensing Science [13RC-07]; Major State Basic Research Development Program of China [2013CB733405] FX We sincerely thank the America FLUXNET (http://public.ornl.gov/ameriflux/) and Canadian Carbon Program (http://fluxnet.ornl.gov/site_list/Network/3) for providing the data for our analysis. We would like to sincerely thank Ankur Desai, Ben Bond-Lamberty, Rachhpal S. Jassal, and one anonymous reviewer for their important and constructive suggestions regarding the manuscript. This work was supported by the National Natural Science Foundation of China (41301498), the Youth Innovation Promotion Association CAS (2014052), the Special Foundation for Young Scientists from the director of the Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, the Special Foundation for Young Scientists of the State Laboratory of Remote Sensing Science (13RC-07), and the Major State Basic Research Development Program of China (2013CB733405). NR 90 TC 1 Z9 1 U1 0 U2 11 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-8953 EI 2169-8961 J9 J GEOPHYS RES-BIOGEO JI J. Geophys. Res.-Biogeosci. PD NOV PY 2015 VL 120 IS 11 BP 2306 EP 2325 DI 10.1002/2015JG003060 PG 20 WC Environmental Sciences; Geosciences, Multidisciplinary SC Environmental Sciences & Ecology; Geology GA DC0LM UT WOS:000368908700014 ER PT J AU Herndon, EM Mann, BF Chowdhury, TR Yang, ZM Wullschleger, SD Graham, D Liang, LY Gu, BH AF Herndon, Elizabeth M. Mann, Benjamin F. Chowdhury, Taniya Roy Yang, Ziming Wullschleger, Stan D. Graham, David Liang, Liyuan Gu, Baohua TI Pathways of anaerobic organic matter decomposition in tundra soils from Barrow, Alaska SO JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES LA English DT Article; Proceedings Paper CT 2nd International Conference on Arctic Research Planning CY NOV 10-12, 2005 CL Copenhagen, DENMARK ID ARCTIC TUNDRA; CLIMATE-CHANGE; METHANE PRODUCTION; CARBON-CYCLE; PERMAFROST CARBON; CO2 PRODUCTION; TEMPERATURE; THAW; METHANOGENESIS; PEAT AB Arctic tundra soils store a large quantity of organic carbon that is susceptible to decomposition and release to the atmosphere as methane (CH4) and carbon dioxide (CO2) under a warming climate. Anaerobic processes that generate CH4 and CO2 remain unclear because previous studies have focused on aerobic decomposition pathways. To predict releases of CO2 and CH4 from tundra soils, it is necessary to identify pathways of soil organic matter decomposition under the anoxic conditions that are prevalent in Arctic ecosystems. Here molecular and spectroscopic techniques were used to monitor biological degradation of water-extractable organic carbon (WEOC) during anoxic incubation of tundra soils from a region of continuous permafrost in northern Alaska. Organic and mineral soils from the tundra active layer were incubated at -2, +4, or +8 degrees C for up to 60 days to mimic the short-term thaw season. Results suggest that, under anoxic conditions, fermentation converted complex organic molecules into simple organic acids that were used in concomitant Fe-reduction and acetoclastic methanogenesis reactions. Nonaromatic compounds increased over time as WEOC increased. Organic acid metabolites initially accumulated in soils but were mostly depleted by day 60 because organic acids were consumed to produce Fe(II), CO2, and CH4. We conclude that fermentation of nonprotected organic matter facilitates methanogenesis and Fe reduction reactions, and that the proportion of organic acids consumed by methanogenesis increases relative to Fe reduction with increasing temperature. The decomposition pathways observed in this study are important to consider in numerical modeling of greenhouse gas production in the Arctic. C1 [Herndon, Elizabeth M.; Mann, Benjamin F.; Yang, Ziming; Wullschleger, Stan D.; Liang, Liyuan; Gu, Baohua] Oak Ridge Natl Lab, Div Environm Sci, POB 2008, Oak Ridge, TN 37831 USA. [Chowdhury, Taniya Roy; Graham, David] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN USA. RP Herndon, EM (reprint author), Kent State Univ, Dept Geol, Kent, OH 44242 USA. EM eherndo1@kent.edu; gub1@ornl.gov RI Graham, David/F-8578-2010; Wullschleger, Stan/B-8297-2012 OI Graham, David/0000-0001-8968-7344; Wullschleger, Stan/0000-0002-9869-0446 FU U.S. Department of Energy (DOE) Office of Biological and Environmental Research; DOE [DE-AC05-00OR22725] FX The authors would like to thank Kenneth Lowe for core sample collection, Xiangping Yin, Tonia Mehlhorn, and Deanne Brice for technical assistance and chemical analyses, and Lauren Kinsman-Costello and an anonymous reviewer for helpful discussion and comments. All data are available in the supporting information for this manuscript and in an online data repository (NGEE-Arctic Data Portal). The Next Generation Ecosystem Experiments (NGEE Arctic) project is supported by the U.S. Department of Energy (DOE) Office of Biological and Environmental Research. Oak Ridge National Laboratory is managed by UT-Battelle LLC for DOE under contract DE-AC05-00OR22725. Logistical support while working on the Barrow Environmental Observatory (BEO) was provided by Umiaq, LLC. NR 62 TC 5 Z9 5 U1 7 U2 24 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-8953 EI 2169-8961 J9 J GEOPHYS RES-BIOGEO JI J. Geophys. Res.-Biogeosci. PD NOV PY 2015 VL 120 IS 11 BP 2345 EP 2359 DI 10.1002/2015JG003147 PG 15 WC Environmental Sciences; Geosciences, Multidisciplinary SC Environmental Sciences & Ecology; Geology GA DC0LM UT WOS:000368908700016 ER PT J AU Sun, Y Fu, R Dickinson, R Joiner, J Frankenberg, C Gu, LH Xia, YL Fernando, N AF Sun, Ying Fu, Rong Dickinson, Robert Joiner, Joanna Frankenberg, Christian Gu, Lianhong Xia, Youlong Fernando, Nelun TI Drought onset mechanisms revealed by satellite solar-induced chlorophyll fluorescence: Insights from two contrasting extreme events SO JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES LA English DT Article; Proceedings Paper CT 2nd International Conference on Arctic Research Planning CY NOV 10-12, 2005 CL Copenhagen, DENMARK ID GREAT-PLAINS; WATER-STRESS; VEGETATION; PHOTOSYNTHESIS; INDEX; SPACE; SIMULATIONS; UNCERTAINTY; TEMPERATURE; NLDAS-2 AB This study uses the droughts of 2011 in Texas and 2012 over the central Great Plains as case studies to explore the potential of satellite-observed solar-induced chlorophyll fluorescence (SIF) for monitoring drought dynamics. We find that the spatial patterns of negative SIF anomalies from the Global Ozone Monitoring Experiment 2 (GOME-2) closely resembled drought intensity maps from the U.S. Drought Monitor for both events. The drought-induced suppression of SIF occurred throughout 2011 but was exacerbated in summer in the Texas drought. This event was characterized by a persistent depletion of root zone soil moisture caused by yearlong below-normal precipitation. In contrast, for the central Great Plains drought, warmer temperatures and relatively normal precipitation boosted SIF in the spring of 2012; however, a sudden drop in precipitation coupled with unusually high temperatures rapidly depleted soil moisture through evapotranspiration, leading to a rapid onset of drought in early summer. Accordingly, SIF reversed from above to below normal. For both regions, the GOME-2 SIF anomalies were significantly correlated with those of root zone soil moisture, indicating that the former can potentially be used as proxy of the latter for monitoring agricultural droughts with different onset mechanisms. Further analyses indicate that the contrasting dynamics of SIF during these two extreme events were caused by changes in both fraction of absorbed photosynthetically active radiation fPAR and fluorescence yield, suggesting that satellite SIF is sensitive to both structural and physiological/biochemical variations of vegetation. We conclude that the emerging satellite SIF has excellent potential for dynamic drought monitoring. C1 [Sun, Ying; Fu, Rong; Dickinson, Robert] Univ Texas Austin, Jackson Sch Geosci, Dept Geol Sci, Austin, TX 78712 USA. [Joiner, Joanna] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Frankenberg, Christian] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Gu, Lianhong] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN USA. [Gu, Lianhong] Oak Ridge Natl Lab, Climate Change Sci Inst, Oak Ridge, TN USA. [Xia, Youlong] Natl Ctr Environm Predict, Environm Modeling Ctr, IM Syst Grp, College Pk, MD USA. [Fernando, Nelun] Texas Water Dev Board, Austin, TX USA. RP Sun, Y (reprint author), Univ Texas Austin, Jackson Sch Geosci, Dept Geol Sci, Austin, TX 78712 USA. EM suny@jsg.utexas.edu RI Sun, Ying/G-6611-2016; Gu, Lianhong/H-8241-2014; Frankenberg, Christian/A-2944-2013 OI Gu, Lianhong/0000-0001-5756-8738; Frankenberg, Christian/0000-0002-0546-5857 FU NASA [NNX13AN39G]; U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research Program, Climate and Environmental Sciences Division; U.S. Department of Energy [DE-AC05-00OR22725] FX We thank John Michael Wallace, Kingtse Mo, Ranga Myneni, and Kevin Bowman for helpful discussions, Yasuko Yoshida for providing SIF model products and Xitian Cai for clarification of NLDAS-2 soil moisture datasets. The support for this research came from NASA the Development and Testing of Potential Indicators for the National Climate Assessment Program (grant NNX13AN39G awarded to The University of Texas at Austin). L.Gu was supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research Program, Climate and Environmental Sciences Division. ORNL is managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725. The GOME-2 v26 level 3 SIF data are publicly available at http://avdc.gsfc.nasa.gov. The GOSAT SIF product is available in Frankenberg et al. [2011b]. The NLDAS-2 products and MODIS fPAR are obtained from http://ldas.gsfc.nasa.gov/nldas/ and https://lpdaac.usgs.gov/, respectively. NR 56 TC 4 Z9 4 U1 9 U2 23 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-8953 EI 2169-8961 J9 J GEOPHYS RES-BIOGEO JI J. Geophys. Res.-Biogeosci. PD NOV PY 2015 VL 120 IS 11 BP 2427 EP 2440 DI 10.1002/2015JG003150 PG 14 WC Environmental Sciences; Geosciences, Multidisciplinary SC Environmental Sciences & Ecology; Geology GA DC0LM UT WOS:000368908700020 ER PT J AU Rachek, IA Arrington, J Dmitriev, VF Gauzshtein, VV Gramolin, AV Holt, RJ Kaminskiy, VV Lazarenko, BA Mishnev, SI Muchnoi, NY Neufeld, VV Nikolenko, DM Sadykov, RS Shestakov, YV Stibunov, VN Toporkov, DK de Vries, H Zevakov, SA Zhilich, VN AF Rachek, I. A. Arrington, J. Dmitriev, V. F. Gauzshtein, V. V. Gramolin, A. V. Holt, R. J. Kaminskiy, V. V. Lazarenko, B. A. Mishnev, S. I. Muchnoi, N. Yu Neufeld, V. V. Nikolenko, D. M. Sadykov, R. Sh Shestakov, Yu V. Stibunov, V. N. Toporkov, D. K. de Vries, H. Zevakov, S. A. Zhilich, V. N. TI Two-photon exchange contribution to elastic electron-proton scattering: measurements at the VEPP-3 storage ring SO PHYSICA SCRIPTA LA English DT Article; Proceedings Paper CT 9th International Conference on Nuclear Physics at Storage Rings (STORI) CY SEP 29-OCT 03, 2014 CL Sankt Goar, GERMANY DE two-photon exchange; proton form factors; elastic scattering ID POSITRONS AB A striking discrepancy between the results for the ratio of electric and magnetic form factors of the proton obtained by two approaches: the Rosenbluth extraction from the unpolarized cross section and the double-polarization measurements has led to a serious re-examination of the role played by two-photon exchange diagrams. The evaluation of such diagrams could not be done in model-independent way, which means an experimental verification is required. One of the direct ways to do this is to measure the ratio of positron-proton and electron-proton elastic scattering cross-sections for identical kinematics. Such a measurement has been performed at the VEPP-3 storage ring at Novosibirsk. There were two runs at beam energies of 1.6 and 1.0 GeV at several ranges of scattering angle. The measurements covered the transferred momentum Q(2) up to 1.5 GeV2 and the virtual photon polarization parameter is an element of down to 0.2. The VEPP-3 experimental approach is described and the results of the measurements are presented. C1 [Rachek, I. A.; Dmitriev, V. F.; Gramolin, A. V.; Kaminskiy, V. V.; Lazarenko, B. A.; Mishnev, S. I.; Muchnoi, N. Yu; Neufeld, V. V.; Nikolenko, D. M.; Sadykov, R. Sh; Shestakov, Yu V.; Toporkov, D. K.; Zevakov, S. A.; Zhilich, V. N.] Budker Inst Nucl Phys SB RAS, Novosibirsk, Russia. [Arrington, J.; Holt, R. J.] Argonne Natl Lab, Argonne, IL 60439 USA. [Dmitriev, V. F.; Muchnoi, N. Yu; Toporkov, D. K.; Zhilich, V. N.] Novosibirsk State Univ, Novosibirsk 630090, Russia. [Gauzshtein, V. V.] Tomsk Polytech Univ, Inst Nucl Phys, Tomsk, Russia. [de Vries, H.] NIKHEF, Amsterdam, Netherlands. RP Rachek, IA (reprint author), Budker Inst Nucl Phys SB RAS, Novosibirsk, Russia. EM rachek@inp.nsk.su RI Gramolin, Alexander/C-1218-2011 OI Gramolin, Alexander/0000-0001-5436-7375 FU Ministry of Education and Science of the Russian Federation; Russian Federal Agency for Education [P522]; Russian Federal Agency for Science and Innovation [02.740.11.0245.1]; US DOE [DE-AC02-06CH11357] FX This work was supported by Ministry of Education and Science of the Russian Federation; by Russian Federal Agency for Education, State Contract P522; by Russian Federal Agency for Science and Innovation, Contract 02.740.11.0245.1; by US DOE, grant DE-AC02-06CH11357. NR 14 TC 0 Z9 0 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0031-8949 EI 1402-4896 J9 PHYS SCRIPTA JI Phys. Scr. PD NOV PY 2015 VL T166 AR 014017 DI 10.1088/0031-8949/2015/T166/014017 PG 5 WC Physics, Multidisciplinary SC Physics GA DC0IY UT WOS:000368901600018 ER PT J AU Fu, KS Allen, MR Archibald, RK AF Fu, Katherine S. Allen, Melissa R. Archibald, Richard K. TI Evaluating the Relationship between the Population Trends, Prices, Heat Waves, and the Demands of Energy Consumption in Cities SO SUSTAINABILITY LA English DT Article DE climate change; the demands of energy consumption; sustainable business and cities ID CLIMATE-CHANGE; MORTALITY; IMPACTS; TEMPERATURE AB The demands of energy consumption have been projected as a key factor that affects an economy at the city, national, and international level. Contributions to total U.S. greenhouse gas emissions in 2012 by various urban sectors include electricity (31%), transportation (28%), industry (20%), agriculture (10%), and commercial and residential (10%). Yet the heavy demands of energy consumption in the cities by residents, commercial businesses, industries, and transportation are important for maintaining and sustaining sufficient economic growth. The purpose of this study is to investigate the relationships between population trends, historical energy consumptions, the changes of average electricity price, average annual temperature, and extreme weather events for three selected cities: New York, Chicago, and Los Angeles. These cities are exemplary of, metropolitan areas in the East, Middle, and the Western regions of the U.S. We find that the total energy consumptions of New York, Chicago, and Los Angeles are influenced to various degrees by changes in population, temperature and the average price of electricity and that only one city, Los Angeles, does price significantly affect electricity use. This finding has implications for policy making, suggesting that each city's climate, size and general economic priorities must be considered in developing climate change mitigation strategies and incentives. C1 [Fu, Katherine S.; Allen, Melissa R.] Oak Ridge Natl Lab, Comp Sci & Engn Div, Oak Ridge, TN 37831 USA. [Fu, Katherine S.; Archibald, Richard K.] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. RP Fu, KS (reprint author), Oak Ridge Natl Lab, Comp Sci & Engn Div, Oak Ridge, TN 37831 USA.; Fu, KS (reprint author), Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. EM fu.katherine@gmail.com; allenmr@ornl.gov; archibaldrk@ornl.gov RI Archibald, Rick/I-6238-2016 OI Archibald, Rick/0000-0002-4538-9780 FU U.S. Department of Energy, Office of Science, and office of Advanced Scientific Computing Research, Applied Mathematics program FX The submitted manuscript is based upon work, authored in part by contractors [UT-Battelle LLC, manager of Oak Ridge National Laboratory (ORNL)], and supported by the U.S. Department of Energy, Office of Science, and office of Advanced Scientific Computing Research, Applied Mathematics program. Accordingly, the U.S. Government retains a non-exclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes. In addition, we would like to thank the external reviewers' for their insightful comments. NR 47 TC 0 Z9 0 U1 2 U2 12 PU MDPI AG PI BASEL PA POSTFACH, CH-4005 BASEL, SWITZERLAND SN 2071-1050 J9 SUSTAINABILITY-BASEL JI Sustainability PD NOV PY 2015 VL 7 IS 11 BP 15284 EP 15301 DI 10.3390/su71115284 PG 18 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Environmental Sciences; Environmental Studies SC Science & Technology - Other Topics; Environmental Sciences & Ecology GA DC2ZR UT WOS:000369088600044 ER PT J AU Zgurskaya, HI Lopez, CA Gnanakaran, S AF Zgurskaya, Helen I. Lopez, Cesar A. Gnanakaran, S. TI Permeability Barrier of Gram-Negative Cell Envelopes and Approaches To Bypass It SO ACS INFECTIOUS DISEASES LA English DT Review DE Gram-negative resistance; permeability barrier; outer membrane; multidrug efflux ID MULTIDRUG EFFLUX PUMP; PSEUDOMONAS-AERUGINOSA ACTIVITY; BURKHOLDERIA-CEPACIA COMPLEX; OUTER-MEMBRANE PERMEABILITY; ACINETOBACTER-BAUMANNII; ESCHERICHIA-COLI; DRUG DISCOVERY; STRUCTURAL BASIS; PHYSICOCHEMICAL PROPERTIES; ANTIBIOTIC SUSCEPTIBILITY AB Gram-negative bacteria are intrinsically resistant to many antibiotics. Species that have acquired multidrug resistance and cause infections that are effectively untreatable present a serious threat to public health. The problem is broadly recognized and tackled at both the fundamental and applied levels. This paper summarizes current advances in understanding the molecular bases of the low permeability barrier of Gram-negative pathogens, which is the major obstacle in discovery and development of antibiotics effective against such pathogens. Gaps in knowledge and specific strategies to break this barrier and to achieve potent activities against difficult Gram-negative bacteria are also discussed. C1 [Zgurskaya, Helen I.] Univ Oklahoma, Dept Chem & Biochem, 101 Stephenson Pkwy, Norman, OK 73019 USA. [Lopez, Cesar A.; Gnanakaran, S.] Los Alamos Natl Lab, Theoret Biol & Biophys Grp, Los Alamos, NM 87545 USA. RP Zgurskaya, HI (reprint author), Univ Oklahoma, Dept Chem & Biochem, 101 Stephenson Pkwy, Norman, OK 73019 USA. EM elenaz@ou.edu OI Gnanakaran, S/0000-0002-9368-3044 FU Department of the Defense, Defense Threat Reduction Agency; National Institute of Health [AI052293]; DOE/LANL-DR project; Center of Nonlinear Studies at LANL FX Studies in H.I.Z.'s laboratory are sponsored by the Department of the Defense, Defense Threat Reduction Agency and by the National Institute of Health (Grant AI052293). S.G. is supported by DOE/LANL-DR project on drug resistance. C.A.L. is supported by a fellowship from the Center of Nonlinear Studies at LANL. The content of this paper does not necessarily reflect the position or the policy of the federal government, and no official endorsement should be inferred. NR 122 TC 14 Z9 14 U1 11 U2 29 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2373-8227 J9 ACS INFECT DIS JI ACS Infect. Dis. PD NOV PY 2015 VL 1 IS 11 SI SI BP 512 EP 522 DI 10.1021/acsinfecdis.5b00097 PG 11 WC Chemistry, Medicinal; Infectious Diseases SC Pharmacology & Pharmacy; Infectious Diseases GA DB4DS UT WOS:000368464300003 PM 26925460 ER PT J AU Gratton, C Casler, M Groves, R Kim, TN AF Gratton, Claudio Casler, Michael Groves, Russell Kim, Tania N. TI Insecticide Applications have Minor Effects on Switchgrass Biomass Yield SO AGRONOMY JOURNAL LA English DT Article ID CONSERVATION BIOLOGICAL-CONTROL; MIDWESTERN UNITED-STATES; STEM-BORING CATERPILLARS; MISCANTHUS X GIGANTEUS; NITROGEN; LANDSCAPE; DIVERSITY; MANAGEMENT; CROPS; ESTABLISHMENT AB Large-scale production of switchgrass (Panicum virgatum L.) as a bioenergy crop will depend on producing abundant yields without significant loss to insects. Despite the fact that crop losses to insect pests are observed in virtually every crop grown, we know little of how insects affect switchgrass biomass yield. We performed two multi-year experiments in South-Central Wisconsin where we measured Hiawatha switchgrass biomass responses to insecticides targeting aboveground and belowground insects. Experiment 1 was repeated for 3 yr in one location and Exp. 2 was repeated for 2 yr at a separate location. In Exp. 2, we also manipulated N levels to increase crop yields and potentially off set biomass loss by herbivores. We expect similar management practices to be used by farmers to reduce insect populations and increase crop yields as biomass crops become widely adopted. In the first year of Exp. 1, we found approximately 6.8% increase in yield in insecticidetreated switchgrass but the effect was not significant in subsequent years, likely due to increased variance in crop yields across plots. In Exp. 2, N application resulted in a doubling of switchgrass yield (4.65 Mg ha(-1) compared to 9.18 Mg ha(-1) in unfertilized vs. fertilized plots, respectively), but insecticide treatments had no effect in both years. We conclude that if insect herbivory on switchgrass is occurring aboveground or belowground, this negative impact is small relative to other sources of variation in yield and it will not likely be a source of management concern for growers in the near term. C1 [Gratton, Claudio; Groves, Russell] Univ Wisconin, Dept Entomol, 1630 Linden Dr, Madison, WI 53706 USA. [Gratton, Claudio; Casler, Michael; Kim, Tania N.] Wisconsin Energy Inst, Great Lakes Bioenergy Res Ctr, Madison, WI 53726 USA. [Casler, Michael] Univ Wisconsin, USDA Dairy Forage Res Ctr, Madison, WI 53706 USA. RP Gratton, C (reprint author), Univ Wisconin, Dept Entomol, 1630 Linden Dr, Madison, WI 53706 USA. EM cgratton@wisc.edu FU DOE Great Lakes Bioenergy Research Center (DOE BER Office of Science) [DE-FC02-07ER64494]; DOE OBP Office of Energy Efficiency and Renewable Energy [DE-AC05-76RL01830] FX This work was funded in part by the DOE Great Lakes Bioenergy Research Center (DOE BER Office of Science DE-FC02-07ER64494) and the DOE OBP Office of Energy Efficiency and Renewable Energy (DE-AC05-76RL01830). NR 36 TC 0 Z9 0 U1 2 U2 2 PU AMER SOC AGRONOMY PI MADISON PA 677 S SEGOE RD, MADISON, WI 53711 USA SN 0002-1962 EI 1435-0645 J9 AGRON J JI Agron. J. PD NOV-DEC PY 2015 VL 107 IS 6 BP 2031 EP 2037 DI 10.2134/agronj15.0066 PG 7 WC Agronomy SC Agriculture GA DB2ML UT WOS:000368342900008 ER PT J AU Lynch, TMH Barth, S Dix, PJ Grogan, D Grant, J Grant, OM AF Lynch, Tiina M. H. Barth, Susanne Dix, Philip J. Grogan, Dermot Grant, Jim Grant, Olga M. TI Ground Cover Assessment of Perennial Ryegrass Using Digital Imaging SO AGRONOMY JOURNAL LA English DT Article ID PLANT COVER; VEGETATION COVER AB Ground-cover assessments of grassland swards provide information on durability and persistence, which in turn relate to disease resistance and competitive ability. These assessments are traditionally performed visually, but digital imaging can provide a more accurate method of ground-cover scoring. Differences in ground cover between late-heading perennial ryegrass (Lolium perenne L.) cultivars in four trials (2 yr of sowing and two sites) were determined using both digital imaging and visual scoring. Ground-cover percentages were calculated from digital images with public-domain soft ware on the basis of color separation of grass leaves from bare soil. For both years of sowing, highly significant interactions of cultivar and site were detected. Significant differences between cultivars were detected in three out of four trials, with diploid cultivars having greater cover than tetraploids in the older trials. Thus digital image analysis of ground cover may be a useful tool in crop improvement and provision of guidelines regarding suitability of a particular cultivar for a particular site. C1 [Lynch, Tiina M. H.; Barth, Susanne] Oak Pk Res Ctr, Environm & Land Use Programme, Teagasc Crops, Carlow, Ireland. [Lynch, Tiina M. H.; Dix, Philip J.; Grant, Olga M.] Maynooth Univ, Dept Biol, Co Kildare, Ireland. [Grogan, Dermot] Backweston Farm, Dept Agr Food & Marine, Leixlip, Co Kildare, Ireland. [Grant, Jim] Teagasc Res Operat Grp, Stat & Appl Phys Dept, Dublin 15, Ireland. [Grant, Olga M.] Univ Coll Dublin, Sch Agr & Food Sci, Dublin 4, Ireland. RP Grant, OM (reprint author), Maynooth Univ, Dept Biol, Co Kildare, Ireland. EM olga.grant@ucd.ie FU Teagasc Walsh Fellow PhD studentship; Marie Curie IEF Grant [252196] FX Tiina Lynch was supported through a Teagasc Walsh Fellow PhD studentship. Olga Grant benefitted from Marie Curie IEF Grant 252196, "Imaging of Plant Responses to Environmental Stresses" (EMPRESS). We thank Liam Donnelly and Phillip Glombik for advice regarding imaging analysis, and Asa Gallegos Torell for provision of test images. NR 23 TC 1 Z9 1 U1 2 U2 10 PU AMER SOC AGRONOMY PI MADISON PA 677 S SEGOE RD, MADISON, WI 53711 USA SN 0002-1962 EI 1435-0645 J9 AGRON J JI Agron. J. PD NOV-DEC PY 2015 VL 107 IS 6 BP 2347 EP 2352 DI 10.2134/agronj15.0185 PG 6 WC Agronomy SC Agriculture GA DB2ML UT WOS:000368342900037 ER PT J AU Reitsma, KD Dunn, BH Mishra, U Clay, SA DeSutter, T Clay, DE AF Reitsma, K. D. Dunn, B. H. Mishra, U. Clay, S. A. DeSutter, T. Clay, D. E. TI Land-Use Change Impact on Soil Sustainability in a Climate and Vegetation Transition Zone SO AGRONOMY JOURNAL LA English DT Article ID CARBON SEQUESTRATION; CROP PRODUCTION; CORN; TILLAGE; AGRICULTURE; DEGRADATION; DECISIONS; AFRICA; YIELDS AB A growing world population and climate change are expected to influence future agricultural productivity and land use. This study determined the impact of land-use change on soil sustainability and discussed the factors contributing to these changes. South Dakota was selected as a model system because corn (Zea mays L.) grain prices tripled between 2006 and 2012 and it is located in a climate and grassland/cropland transition zone. High resolution imagery was used to visually determine land uses (cropland, grassland, nonagricultural, habitat, and water) at 14,400 points in 2006 and 2012. At each point, land-use change and the USDA land capability class (LCC) were determined. Over the 6-yr study period, 6.87% of the grasslands (730,000 ha) were converted to cropland, with 93% occurring on lands generally considered suitable for crop production (LCC <= IV) if appropriate practices are followed. Converted grasslands, however, had higher LCC values than existing croplands and lower LCC values than remaining grasslands. In addition, 4.2% of the croplands (250,000 ha) were converted to grasslands, and statewide, 20,000 ha of croplands were converted to grasslands in areas limited by excess water (LCC V). The conversion of grasslands could not be linked to one specific factor and may be related to: (i) a desire to increase financial returns, (ii) changes in the land ownership structure, (iii) technology improvements, (iv) governmental policies, (v) climate change, and (vi) an aging workforce. Research and outreach programs that balance the goods and services of different land uses are needed to maintain sustainable agroecosystems. C1 [Reitsma, K. D.] Encirca Serv, Tea, SD 57064 USA. [Clay, S. A.; Clay, D. E.] S Dakota State Univ, Dept Plant Sci, Brookings, SD 57007 USA. [Dunn, B. H.] S Dakota State Univ, ABS Coll, Brookings, SD 57007 USA. [Mishra, U.] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. [DeSutter, T.] N Dakota State Univ, Dept Soil Sci, Fargo, ND 58105 USA. RP Clay, DE (reprint author), S Dakota State Univ, Dept Plant Sci, Brookings, SD 57007 USA. EM david.clay@sdstate.edu FU South Dakota State University, Brookings, SD; USDA-NRCS-CIG [69-3A75-12-185, 11-174] FX Funding was provided by South Dakota State University, Brookings, SD, and USDA-NRCS-CIG Grants 69-3A75-12-185 and 11-174. NR 66 TC 4 Z9 4 U1 2 U2 5 PU AMER SOC AGRONOMY PI MADISON PA 677 S SEGOE RD, MADISON, WI 53711 USA SN 0002-1962 EI 1435-0645 J9 AGRON J JI Agron. J. PD NOV-DEC PY 2015 VL 107 IS 6 BP 2363 EP 2372 DI 10.2134/agronj15.0152 PG 10 WC Agronomy SC Agriculture GA DB2ML UT WOS:000368342900039 ER PT J AU Grayver, AV Kolev, TV AF Grayver, Alexander V. Kolev, Tzanio V. TI Large-scale 3D geoelectromagnetic modeling using parallel adaptive high-order finite element method SO GEOPHYSICS LA English DT Article ID MAXWELLS EQUATIONS; ELECTROMAGNETIC DIFFUSION; MULTIGRID SOLVER; CONVERGENCE; H(CURL); FIELDS AB We have investigated the use of the adaptive high-order finite-element method (FEM) for geoelectromagnetic modeling. Because high-order FEM is challenging from the numerical and computational points of view, most published finite-element studies in geoelectromagnetics use the lowest order formulation. Solution of the resulting large system of linear equations poses the main practical challenge. We have developed a fully parallel and distributed robust and scalable linear solver based on the optimal block-diagonal and auxiliary space preconditioners. The solver was found to be efficient for high finite element orders, unstructured and non-conforming locally refined meshes, a wide range of frequencies, large conductivity contrasts, and number of degrees of freedom (DoFs). Furthermore, the presented linear solver is in essence algebraic; i.e., it acts on the matrix-vector level and thus requires no information about the discretization, boundary conditions, or physical source used, making it readily efficient for a wide range of electromagnetic modeling problems. To get accurate solutions at reduced computational cost, we have also implemented goal-oriented adaptive mesh refinement. The numerical tests indicated that if highly accurate modeling results were required, the high-order FEM in combination with the goal-oriented local mesh refinement required less computational time and DoFs than the lowest order adaptive FEM. C1 [Grayver, Alexander V.] ETH, Inst Geophys, CH-8093 Zurich, Switzerland. [Kolev, Tzanio V.] Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Livermore, CA USA. RP Grayver, AV (reprint author), ETH, Inst Geophys, CH-8093 Zurich, Switzerland. EM agrayver@erdw.ethz.ch; tzanio@llnl.gov FU U.S. Department of Energy by the Lawrence Livermore National Laboratory [DE-AC52-07NA27344, LLNL-JRNL-665742] FX A. V. Grayver is appreciative of A. Kuvshinov for providing insightful feedback and support for this work. The authors acknowledge the constructive comments by editor X. Garcia, Z. Ren, and two anonymous reviewers. This work was performed under the auspices of the U.S. Department of Energy by the Lawrence Livermore National Laboratory under contract nos. DE-AC52-07NA27344 and LLNL-JRNL-665742. NR 51 TC 3 Z9 3 U1 3 U2 8 PU SOC EXPLORATION GEOPHYSICISTS PI TULSA PA 8801 S YALE ST, TULSA, OK 74137 USA SN 0016-8033 EI 1942-2156 J9 GEOPHYSICS JI Geophysics PD NOV-DEC PY 2015 VL 80 IS 6 BP E277 EP E291 DI 10.1190/GEO2015-0013.1 PG 15 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA DB2OB UT WOS:000368347800037 ER PT J AU Ambrosino, F Anastasio, A Bross, A Bene, S Boivin, P Bonechi, L Carloganu, C Ciaranfi, R Cimmino, L Combaret, C D'Alessandro, R Durand, S Fehr, F Francais, V Garufi, F Gailler, L Labazuy, P Laktineh, I Lenat, JF Masone, V Miallier, D Mirabito, L Morel, L Mori, N Niess, V Noli, P Pla-Dalmau, A Portal, A Rubinov, P Saracino, G Scarlini, E Strolin, P Vulpescu, B AF Ambrosino, F. Anastasio, A. Bross, A. Bene, S. Boivin, P. Bonechi, L. Carloganu, C. Ciaranfi, R. Cimmino, L. Combaret, Ch. D'Alessandro, R. Durand, S. Fehr, F. Francais, V. Garufi, F. Gailler, L. Labazuy, Ph. Laktineh, I. Lenat, J. -F. Masone, V. Miallier, D. Mirabito, L. Morel, L. Mori, N. Niess, V. Noli, P. Pla-Dalmau, A. Portal, A. Rubinov, P. Saracino, G. Scarlini, E. Strolin, P. Vulpescu, B. TI Joint measurement of the atmospheric muon flux through the Puy de Dome volcano with plastic scintillators and Resistive Plate Chambers detectors SO JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH LA English DT Article ID COSMIC-RAY MUONS; UNZEN VOLCANO; INNER-STRUCTURE; GRAVITY-DATA; RADIOGRAPHY; ERUPTION; JAPAN; TEV; SPECTROMETER; GUATEMALA AB The muographic imaging of volcanoes relies on the measured transmittance of the atmospheric muon flux through the target. An important bias affecting the result comes from background contamination mimicking a higher transmittance. The MU-RAY and TOMUVOL collaborations measured independently in 2013 the atmospheric muon flux transmitted through the Puy de Dome volcano using their early prototype detectors, based on plastic scintillators and on Glass Resistive Plate Chambers, respectively. These detectors had three (MU-RAY) or four (TOMUVOL) detection layers of 1 m(2) each, tens (MU-RAY) or hundreds (TOMUVOL) of nanosecond time resolution, a few millimeter position resolution, an energy threshold of few hundreds MeV, and no particle identification capabilities. The prototypes were deployed about 1.3 km away from the summit, where they measured, behind rock depths larger than 1000 m, remnant fluxes of 1.83+/-0.50(syst)+/-0.07(stat) m(-2) d(-1) deg(-2) (MU-RAY) and 1.95+/-0.16(syst)+/-0.05(stat) m(-2) d(-1) deg(-2) (TOMUVOL), that roughly correspond to the expected flux of high-energy atmospheric muons crossing 600 meters water equivalent (mwe) at 18 degrees elevation. This implies that imaging depths larger than 500 mwe from 1 km away using such prototype detectors suffer from an overwhelming background. These measurements confirm that a new generation of detectors with higher momentum threshold, time-of-flight measurement, and/or particle identification is needed. The MU-RAY and TOMUVOL collaborations expect shortly to operate improved detectors, suitable for a robust muographic imaging of kilometer-scale volcanoes. C1 [Ambrosino, F.; Cimmino, L.; Garufi, F.; Saracino, G.; Strolin, P.] Univ Naples Federico II, Dipartimento Fis, Naples, Italy. [Ambrosino, F.; Anastasio, A.; Cimmino, L.; Garufi, F.; Masone, V.; Noli, P.; Saracino, G.; Strolin, P.] Ist Nazl Fis Nucl, I-80125 Naples, Italy. [Bross, A.; Pla-Dalmau, A.; Rubinov, P.] Fermilab Natl Accelerator Lab, Batavia, IL USA. [Bene, S.; Carloganu, C.; Fehr, F.; Francais, V.; Miallier, D.; Niess, V.; Vulpescu, B.] Univ Clermont Ferrand, Clermont Univ, Phys Corpusculaire Lab, CNRS,IN2P3, Clermont Ferrand, France. [Boivin, P.; Gailler, L.; Labazuy, Ph.; Lenat, J. -F.; Portal, A.] Univ Clermont Ferrand, CNRS, Lab Magmas & Volcans, IRD,OPGC, Clermont Ferrand, France. [Bonechi, L.; D'Alessandro, R.; Mori, N.; Scarlini, E.] Univ Florence, Dipartimento Fis, Florence, Italy. [Ciaranfi, R.; D'Alessandro, R.; Mori, N.; Scarlini, E.] Ist Nazl Fis Nucl, I-50125 Florence, Italy. [Combaret, Ch.; Laktineh, I.; Mirabito, L.] Univ Lyon 1, CNRS, IN2P3, IPNL, F-69622 Villeurbanne, France. [Durand, S.; Morel, L.] Ecole Super Geometres & Topographes Mans, Le Mans, France. RP Carloganu, C (reprint author), Univ Clermont Ferrand, Clermont Univ, Phys Corpusculaire Lab, CNRS,IN2P3, Clermont Ferrand, France. EM Cristina.Carloganu@in2p3.fr; noli@na.infn.it RI Mori, Nicola/D-9459-2016; Garufi, Fabio/K-3263-2015; Labazuy, Philippe/H-1838-2012; OI Mori, Nicola/0000-0003-2138-3787; Garufi, Fabio/0000-0003-1391-6168; Labazuy, Philippe/0000-0002-4518-3328; Gailler, Lydie-Sarah/0000-0002-8132-2428 FU University Blaise Pascal of Clermont-Ferrand; CNRS; Region Auvergne; Conseil General du Puy-de-Dome; European Funds for Regional Development (FEDER); Blaise Pascal University of Clermont-Ferrand (UBP); Clervolc Labex program [ANR-10-LABX-0006] FX The TOMUVOL collaboration acknowledges funding from the University Blaise Pascal of Clermont-Ferrand, CNRS, Region Auvergne, and Conseil General du Puy-de-Dome. During the data-taking campaign, the TOMUVOL detector was kindly hosted in a building belonging to TDF Rhone Auvergne, thanks to Luc Lecoeuvre, head of the TDF Housing Wealth department. The MU-RAY detector was graciously hosted by M. Framit in his "Gros Manaux" Inn. The LiDAR data used in this study have been provided through a collective project driven by the Centre Regional Auvergnat de l'Information Geographique (CRAIG) which has been financially supported by the Conseil General du Puy-de-Dome, the European Funds for Regional Development (FEDER), and the Blaise Pascal University of Clermont-Ferrand (UBP). Two of the authors of this article (L. Gailler and A. Portal) were supported by Clervolc Labex program (ANR-10-LABX-0006). This is Clervolc contribution 138. NR 63 TC 4 Z9 4 U1 5 U2 11 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9313 EI 2169-9356 J9 J GEOPHYS RES-SOL EA JI J. Geophys. Res.-Solid Earth PD NOV PY 2015 VL 120 IS 11 BP 7290 EP 7307 DI 10.1002/2015JB011969 PG 18 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA DB3UL UT WOS:000368437800002 ER PT J AU Wolf, AS Jackson, JM Dera, P Prakapenka, VB AF Wolf, Aaron S. Jackson, Jennifer M. Dera, Przemeslaw Prakapenka, Vitali B. TI The thermal equation of state of (Mg, Fe)SiO3 bridgmanite (perovskite) and implications for lower mantle structures SO JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH LA English DT Article ID EARTHS LOWER MANTLE; X-RAY-DIFFRACTION; SYNCHROTRON MOSSBAUER-SPECTROSCOPY; ADVANCED PHOTON SOURCE; DEEP LOWER MANTLE; MGSIO3-PEROVSKITE; SILICATE PEROVSKITE; HIGH-PRESSURE; (MG,FE)SIO3 PEROVSKITE; THERMOELASTIC PROPERTIES AB The high-pressure/high-temperature equation of state (EOS) of synthetic 13% Fe-bearing bridgmanite (Mg silicate perovskite) is measured using powder X-ray diffraction in a laser-heated diamond anvil cell with a quasi-hydrostatic neon pressure medium. We compare these results, which are consistent with previous 300 K sound speed and compression studies, with a reanalysis of Fe-free Mg end-member data from Tange et al. (2012) to determine the effect of iron on bridgmanite's thermoelastic properties. EOS parameters are incorporated into an ideal lattice mixing model to probe the behavior of bridgmanite at deep mantle conditions. With this model, a nearly pure bridgmanite mantle composition is shown to be inconsistent with density and compressibility profiles of the lower mantle. We also explore the buoyant stability of bridgmanite over a range of temperatures and compositions expected for Large Low-Shear Velocity Provinces, concluding that bridgmanite-dominated thermochemical piles are more likely to be passive dense layers externally supported by convection, rather than internally supported metastable domes. The metastable dome scenario is estimated to have a relative likelihood of only 4-7%, given the narrow range of compositions and temperatures consistent with seismic constraints. If buoyantly supported, such structures could not have remained stable with greater thermal contrast early in Earth's history, ruling out formation scenarios involving a large concentration of heat producing elements. C1 [Wolf, Aaron S.] Univ Michigan, Dept Earth & Environm Sci, Ann Arbor, MI 48109 USA. [Wolf, Aaron S.; Jackson, Jennifer M.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [Dera, Przemeslaw] Univ Hawaii, Hawaii Inst Geophys & Planetol, Honolulu, HI 96822 USA. [Dera, Przemeslaw] Univ Chicago, Argonne Natl Lab, Ctr Adv Radiat Sources, GeoSoilEnviroCARS, Argonne, IL USA. [Prakapenka, Vitali B.] Univ Chicago, Ctr Adv Radiat Sources, Chicago, IL 60637 USA. RP Wolf, AS (reprint author), Univ Michigan, Dept Earth & Environm Sci, Ann Arbor, MI 48109 USA. EM aswolf@umich.edu FU National Science Foundation [CSEDI EAR-1161046, EAR-0956166]; Turner Postdoctoral Fellowship at the University of Michigan; National Science Foundation-Earth Sciences [EAR-1128799]; Department of Energy-Geosciences [DE-FG02-94ER14466]; U.S. D.O.E. [DE-AC02-06CH11357]; COMPRES under NSF [EAR 11-57758] FX The authors would like to thank Wolfgang Sturhahn, June K. Wicks, Dan J. Bower, Mike Gurnis, Jeroen Ritsema, and John Johnson for useful conversations throughout the development of this study, as well as both reviewers for their detailed and helpful comments. The authors would like to thank the National Science Foundation CSEDI EAR-1161046, CAREER EAR-0956166, and the Turner Postdoctoral Fellowship at the University of Michigan for support of this work. The X-ray diffraction experiments were performed at GeoSoilEnviroCARS (GSE-CARS, Sector 13) and the synchrotron Mossbauer experiments at X-ray Science Division (Sector 3), both located at the Advanced Photon Source (APS), Argonne National Laboratory. GeoSoilEnviroCARS is supported by the National Science Foundation-Earth Sciences (EAR-1128799) and Department of Energy-Geosciences (DE-FG02-94ER14466). Use of the APS is supported by the U.S. D.O.E., O.S., and O.B.E.S. (DE-AC02-06CH11357). Sector 3 operations and the gas-loading system at GSECARS are supported in part by COMPRES under NSF Cooperative Agreement EAR 11-57758. The data analyzed in this study are included in the tables; any additional data may be obtained from Aaron S. Wolf (aswolf@umich.edu). NR 111 TC 7 Z9 7 U1 9 U2 14 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9313 EI 2169-9356 J9 J GEOPHYS RES-SOL EA JI J. Geophys. Res.-Solid Earth PD NOV PY 2015 VL 120 IS 11 BP 7460 EP 7489 DI 10.1002/2015JB012108 PG 30 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA DB3UL UT WOS:000368437800012 ER PT J AU Jeanne, P Rutqvist, J Rinaldi, AP Dobson, PF Walters, M Hartline, C Garcia, J AF Jeanne, Pierre Rutqvist, Jonny Rinaldi, Antonio Pio Dobson, Patrick F. Walters, Mark Hartline, Craig Garcia, Julio TI Seismic and aseismic deformations and impact on reservoir permeability: The case of EGS stimulation at The Geysers, California, USA SO JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH LA English DT Article ID ENHANCED GEOTHERMAL SYSTEM; FLUID-INJECTION; INDUCED MICROSEISMICITY; ROCK MASSES; STRESS; MODEL; CRUST; FIELD; PRESSURE AB In this paper, we use the Seismicity-Based Reservoir Characterization approach to study the spatiotemporal dynamics of an injection-induced microseismic cloud, monitored during the stimulation of an enhanced geothermal system, and associated with the Northwest Geysers Enhanced Geothermal System (EGS) Demonstration project (California). We identified the development of a seismically quiet domain around the injection well surrounded by a seismically active domain. Then we compare these observations with the results of 3-D Thermo-Hydro-Mechanical simulations of the EGS, which accounts for changes in permeability as a function of the effective normal stress and the plastic strain. The results of our modeling show that (1) the aseismic domain is caused by both the presence of the injected cold water and by thermal processes. These thermal processes cause a cooling-stress reduction, which prevent shear reactivation and favors fracture opening by reducing effective normal stress and locally increasing the permeability. This process is accompanied by aseismic plastic shear strain. (2) In the seismic domain, microseismicity is caused by the reactivation of the preexisting fractures, resulting from an increase in injection-induced pore pressure. Our modeling indicates that in this domain, permeability evolves according to the effective normal stress acting on the shear zones, whereas shearing of preexisting fractures may have a low impact on permeability. We attribute this lack of permeability gain to the fact that the initial permeabilities of these preexisting fractures are already high (up to 2 orders of magnitude higher than the host rock) and may already be fully dilated by past tectonic straining. C1 [Jeanne, Pierre; Rutqvist, Jonny; Dobson, Patrick F.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Rinaldi, Antonio Pio] ETHZ, Swiss Fed Inst Technol, Swiss Seismol Serv, Zurich, Switzerland. [Walters, Mark; Hartline, Craig; Garcia, Julio] Calpine Corp, Middletown, CA USA. RP Jeanne, P (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. EM pjeanne@lbl.gov RI Dobson, Patrick/D-8771-2015; Rutqvist, Jonny/F-4957-2015; Jeanne, Pierre/I-2996-2015; Rinaldi, Antonio Pio/N-3284-2013 OI Dobson, Patrick/0000-0001-5031-8592; Rutqvist, Jonny/0000-0002-7949-9785; Jeanne, Pierre/0000-0003-1487-8378; Rinaldi, Antonio Pio/0000-0001-7052-8618 FU Geothermal Technologies Program of the U.S. Department under U.S. Department of Energy [DE-AC02-05CH11231]; Swiss National Science Foundation (SNSF) Ambizione Energy grant [PZENP2_160555] FX This work was conducted with funding provided by the Assistant Secretary for Energy Efficiency and Renewable Energy, Geothermal Technologies Program, of the U.S. Department under the U.S. Department of Energy contract DE-AC02-05CH11231. A. P. Rinaldi is currently supported by Swiss National Science Foundation (SNSF) Ambizione Energy grant (PZENP2_160555). The seismic and injection data are available online at http://www.ncedc.org/egs/catalog-search.html and http://geosteam.conservation.ca.gov/WellSearch/GeoWellSearch.aspx, respectively. The authors are grateful for the constructive comments made by the two reviewers, who helped to improve this paper. NR 47 TC 2 Z9 2 U1 3 U2 14 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9313 EI 2169-9356 J9 J GEOPHYS RES-SOL EA JI J. Geophys. Res.-Solid Earth PD NOV PY 2015 VL 120 IS 11 BP 7863 EP 7882 DI 10.1002/2015JB012142 PG 20 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA DB3UL UT WOS:000368437800032 ER PT J AU Bessho, N Chen, LJ Germaschewski, K Bhattacharjee, A AF Bessho, N. Chen, L. -J. Germaschewski, K. Bhattacharjee, A. TI Electron acceleration by parallel and perpendicular electric fields during magnetic reconnection without guide field SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID ISLANDS AB Electron acceleration due to the electric field parallel to the background magnetic field during magnetic reconnection with no guide field is investigated by theory and two-dimensional electromagnetic particle-in-cell simulations and compared with acceleration due to the electric field perpendicular to the magnetic field. The magnitude of the parallel electric potential shows dependence on the ratio of the plasma frequency to the electron cyclotron frequency as (omega(pe)/Omega(e))(-2) and on the background plasma density as n(b)(-1/2). In the Earth's magnetotail, the parameter omega(pe)/Omega(e) similar to 9 and the background (lobe) density can be of the order of 0.01 cm(-3), and it is expected that the parallel electric potential is not large enough to accelerate electrons up to 100 keV. Therefore, we must consider the effect of the perpendicular electric field to account for electron energization in excess of 100 keV in the Earth's magnetotail. Trajectories for high-energy electrons are traced in a simulation to demonstrate that acceleration due to the perpendicular electric field in the diffusion region is the dominant acceleration mechanism, rather than acceleration due to the parallel electric fields in the exhaust regions. For energetic electrons accelerated near the X line due to the perpendicular electric field, pitch angle scattering converts the perpendicular momentum to the parallel momentum. On the other hand, for passing electrons that are mainly accelerated by the parallel electric field, pitch angle scattering converting the parallel momentum to the perpendicular momentum occurs. In this way, particle acceleration and pitch angle scattering will generate heated electrons in the exhaust regions. C1 [Bessho, N.; Chen, L. -J.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Bessho, N.; Chen, L. -J.] NASA, Goddard Space Flight Ctr, Heliophys Sci Div, Greenbelt, MD 20771 USA. [Germaschewski, K.] Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA. [Bhattacharjee, A.] Princeton Univ, Ctr Heliophys, Princeton, NJ 08544 USA. [Bhattacharjee, A.] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Bessho, N (reprint author), Univ Maryland, Dept Astron, College Pk, MD 20742 USA. EM naoki.bessho@nasa.gov RI NASA MMS, Science Team/J-5393-2013 OI NASA MMS, Science Team/0000-0002-9504-5214 FU Theory and Modeling Program of the Magnetospheric Multiscale mission at UNH - NSF [AGS-1338944, PHY-0903923, AGS-1202537, AGS-1056898]; NASA [NNX11AH03G, NNX13AK31G]; NASA at UMCP [AGS-1543598]; NSF MRI program [PHY-1229408] FX The work at NASA GSFC was supported by the Theory and Modeling Program of the Magnetospheric Multiscale mission at UNH supported in part by NSF grants AGS-1338944, PHY-0903923, AGS-1202537, and AGS-1056898 and NASA grants NNX11AH03G and NNX13AK31G, and at UMCP by AGS-1543598. We acknowledge the use of computer resources at the National Energy Research Scientific Computing Center, the use of Titan at Oak Ridge Leadership Computing Facility, and also the use of Trillian, a Cray XE6m-200 supercomputer at UNH supported by the NSF MRI program under grant PHY-1229408. The simulation data are available upon request from the authors. NR 27 TC 3 Z9 3 U1 3 U2 15 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD NOV PY 2015 VL 120 IS 11 BP 9355 EP 9367 DI 10.1002/2015JA021548 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DB1EZ UT WOS:000368252100010 ER PT J AU Ozaki, M Yagitani, S Sawai, K Shiokawa, K Miyoshi, Y Kataoka, R Ieda, A Ebihara, Y Connors, M Schofield, I Katoh, Y Otsuka, Y Sunagawa, N Jordanova, VK AF Ozaki, Mitsunori Yagitani, Satoshi Sawai, Kaoru Shiokawa, Kazuo Miyoshi, Yoshizumi Kataoka, Ryuho Ieda, Akimasa Ebihara, Yusuke Connors, Martin Schofield, Ian Katoh, Yuto Otsuka, Yuichi Sunagawa, Naoki Jordanova, Vania K. TI A direct link between chorus emissions and pulsating aurora on timescales from milliseconds to minutes: A case study at subauroral latitudes SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID WHISTLER-MODE CHORUS; DAWN-DUSK ASYMMETRY; FINE-STRUCTURE; WAVES; MAGNETOSPHERE; ORIGIN; PROPAGATION; ELECTRONS; FREQUENCY; DISCRETE AB A correlation was observed between chorus emissions and pulsating aurora (PA) from observations at Athabasca (L approximate to 4.3) in Canada at 9: 00-9: 20 UT on 7 February 2013, using an electron multiplying charge-coupled device camera and a VLF loop antenna with sampling rates of 110 Hz and 100 kHz, respectively. Pulsating aurora having a quasiperiodic variation in luminosity and a few hertz modulation was observed together with chorus emissions consisting of a group of successive rising-tone elements. The repetition period and modulation frequency of the PA are in good agreement with those of the modulated chorus. After 9: 11 UT, the temporal features of the aurora became aperiodic PA of indistinct modulation. Simultaneously, the rising-tone chorus turned into chorus emissions consisting of numerous rising-tone elements. The equatorial geomagnetic field inhomogeneity calculated using the Tsyganenko 2002 model shows a decreasing trend during the period. This result is consistent with nonlinear wave growth theory having a small geomagnetic field inhomogeneity, which contributes to a decrease in the threshold amplitude to trigger discrete chorus elements. These observations show a close connection between chorus emissions and PA on timescales from milliseconds for generation of discrete chorus elements on the microphysics of wave-particle interaction to minutes for the variations of the geomagnetic field inhomogeneity related with the substorm activity. C1 [Ozaki, Mitsunori; Yagitani, Satoshi; Sawai, Kaoru] Kanazawa Univ, Grad Sch Nat Sci & Technol, Kanazawa, Ishikawa 9201192, Japan. [Shiokawa, Kazuo; Miyoshi, Yoshizumi; Ieda, Akimasa; Otsuka, Yuichi; Sunagawa, Naoki] Nagoya Univ, Inst Space Earth Environm Res, Nagoya, Aichi 4648601, Japan. [Kataoka, Ryuho] Natl Inst Polar Res, Tachikawa, Tokyo, Japan. [Kataoka, Ryuho] Grad Univ Adv Studies SOKENDAI, Dept Polar Sci, Tachikawa, Tokyo, Japan. [Ebihara, Yusuke] Kyoto Univ, Res Inst Sustainable Humanosphere, Uji, Kyoto, Japan. [Connors, Martin; Schofield, Ian] Athabasca Univ, Ctr Sci, Athabasca, ON, Canada. [Katoh, Yuto] Tohoku Univ, Grad Sch Sci, Sendai, Miyagi 980, Japan. [Jordanova, Vania K.] Los Alamos Natl Lab, Los Alamos, NM USA. RP Ozaki, M (reprint author), Kanazawa Univ, Grad Sch Nat Sci & Technol, Kanazawa, Ishikawa 9201192, Japan. EM ozaki@is.t.kanazawa-u.ac.jp RI Katoh, Yuto/B-8007-2015; Ebihara, Yusuke/D-1638-2013; OZAKI, Mitsunori/E-7076-2015; Miyoshi, Yoshizumi/B-5834-2015; OI Katoh, Yuto/0000-0002-4318-0633; Ebihara, Yusuke/0000-0002-2293-1557; Miyoshi, Yoshizumi/0000-0001-7998-1240; Jordanova, Vania/0000-0003-0475-8743 FU Japan Society for the Promotion of Science [23403009, 25247080, 25302006, 15H03732, 15H05747, 15H05815]; Canada Foundation for Innovation; LDRD; NASA [NNG13PJ05I]; U.S. DOE FX The Dst, AE, AL, and Kp indices were provided by the WDC for Geomagnetism in Kyoto (http://wdc.kugi.kyoto-u.ac.jp/). The OMNI data for the T02 model were provided by GSFC/SPDF OMNIWeb (http://omniweb.gsfc.nasa.gov/). The VLF data at ATH are available at http://stdb2.stelab.nagoya-u.ac.jp/vlf/.The narrow-FOV EMCCD data observed at ATH are available through ISEE, Nagoya University.. The all-sky EMCCD data observed at ATH were obtained from http://autumn.athabascau.ca/magdata/. This work was supported by Grants-in-Aid for Scientific Research (23403009, 25247080, 25302006, 15H03732, 15H05747, and 15H05815) from the Japan Society for the Promotion of Science. This work was partially carried out by the joint research program of the Solar-Terrestrial Environment Laboratory, Nagoya University. Start-up and operating of the Athabasca University GeoSpace Observatory were supported by the Canada Foundation for Innovation, and the authors thank Kyle Reiter of Athabasca University Geospace Observatory for his helpful support of the ground-based VLF and optical observations. Work at LANL was conducted under the auspices of the U.S. DOE with partial support by LDRD and NASA grant NNG13PJ05I. NR 64 TC 0 Z9 0 U1 1 U2 5 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD NOV PY 2015 VL 120 IS 11 BP 9617 EP 9631 DI 10.1002/2015JA021381 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DB1EZ UT WOS:000368252100026 ER PT J AU Campbell, PG Worsley, MA Hiszpanski, AM Baumann, TF Biener, J AF Campbell, Patrick G. Worsley, Marcus A. Hiszpanski, Anna M. Baumann, Theodore F. Biener, Juergen TI Synthesis and Functionalization of 3D Nano-graphene Materials: Graphene Aerogels and Graphene Macro Assemblies SO JOVE-JOURNAL OF VISUALIZED EXPERIMENTS LA English DT Article DE Engineering; Issue 105; Graphene; sol-gel; aerogel; carbon nanotube; supercapacitor; battery; electrode; low density; high surface area ID HIGH-SURFACE-AREA; CARBON AEROGELS; MONOLITHS AB Efforts to assemble graphene into three-dimensional monolithic structures have been hampered by the high cost and poor processability of graphene. Additionally, most reported graphene assemblies are held together through physical interactions (e.g., van der Waals forces) rather than chemical bonds, which limit their mechanical strength and conductivity. This video method details recently developed strategies to fabricate mass-producible, graphene-based bulk materials derived from either polymer foams or single layer graphene oxide. These materials consist primarily of individual graphene sheets connected through covalently bound carbon linkers. They maintain the favorable properties of graphene such as high surface area and high electrical and thermal conductivity, combined with tunable pore morphology and exceptional mechanical strength and elasticity. This flexible synthetic method can be extended to the fabrication of polymer/carbon nanotube (CNT) and polymer/graphene oxide (GO) composite materials. Furthermore, additional post-synthetic functionalization with anthraquinone is described, which enables a dramatic increase in charge storage performance in supercapacitor applications. C1 [Campbell, Patrick G.; Worsley, Marcus A.; Hiszpanski, Anna M.; Baumann, Theodore F.; Biener, Juergen] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Campbell, PG (reprint author), Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM campbell82@llnl.gov OI Worsley, Marcus/0000-0002-8012-7727; Campbell, Patrick/0000-0003-0167-4624 FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. IM release LLNL-JRNL-667016. NR 21 TC 0 Z9 0 U1 23 U2 67 PU JOURNAL OF VISUALIZED EXPERIMENTS PI CAMBRIDGE PA 1 ALEWIFE CENTER, STE 200, CAMBRIDGE, MA 02140 USA SN 1940-087X J9 JOVE-J VIS EXP JI J. Vis. Exp. PD NOV PY 2015 IS 105 AR e53235 DI 10.3791/53235 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DB5SM UT WOS:000368573900045 PM 26574930 ER PT J AU Quirke, J Henderson, CMB Pattrick, RAD Rosso, KM Dent, A Sharples, JW Pearce, CI AF Quirke, J. Henderson, C. M. B. Pattrick, R. A. D. Rosso, K. M. Dent, A. Sharples, J. W. Pearce, C. I. TI Characterizing mineralogy and redox reactivity in potential host rocks for a UK geological disposal facility SO MINERALOGICAL MAGAZINE LA English DT Article; Proceedings Paper CT 1st Conference on Implementing Geological Disposal - Technology Platform (IGD-TP) CY JUN 24-26, 2014 CL Univ Manchester, Manchester, ENGLAND HO Univ Manchester DE geosphere; iron-bearing minerals; Fe(II)/Fe(III) ratio; reducing potential; X-ray absorption spectroscopy; granitoids; andesite; mudstone; clay-rich carbonate ID REDUCTION; TC(VII) AB Geological disposal facilities (GDF) are intended to isolate and contain radioactive waste within multiple protective barriers, deep underground, to ensure that no harmful quantities of radioactivity reach the surface environment. The last line of defense in a multi-barrier GDF is the geosphere, where iron is present in the host rock mineralogy as either Fe(II) or Fe(III), and in groundwater as Fe(II) under reducing conditions. The mobility of risk-driving radionuclides, including uranium and technetium, in the environment is affected significantly by their valence state. Due to its low redox potential, Fe(II) can mediate reduction of these radionuclides from their oxidized, highly mobile, soluble state to their reduced, insoluble state, preventing them from reaching the biosphere. Here a study of five types of potential host rocks, two granitoids, an andesite, a mudstone and a clay-rich carbonate, is reported. The bulk rocks and their minerals were analysed for iron content, Fe(II/III) ratio, and for the speciation and fine-grained nature of alteration product minerals that might have important controls on groundwater interaction. Total iron content varies between 0.9% in clays to 5.6% in the andesite. X-ray absorption spectroscopy reveals that Fe in the granitoids and andesite is predominantly Fe(II), and in mudstones, argillaceous limestone and terrestrial sandstone is predominantly Fe(III). The redox reactivity of the potential host rocks both in the presence and absence of Fe(II)-containing 'model' groundwater was investigated using an azo dye as a probe molecule. Reduction rates as determined by reactivity with the azo dye were correlated with the ability of the rocks to uptake Fe(II) from groundwater rather than with initial Fe(II) content. Potential GDF host rocks must be characterized in terms of mineralogy, texture, grain size and bulk geochemistry to assess how they might interact with groundwater. This study highlights the importance of redox reactivity, not just total iron and Fe(II)/(III) ratio, when considering the host rock performance as a barrier material to limit transport of radionuclides from the GDF. C1 [Quirke, J.; Pearce, C. I.] Univ Manchester, Sch Chem, Manchester M13 9PL, Lancs, England. [Quirke, J.; Pearce, C. I.] Univ Manchester, Dalton Nucl Inst, Manchester M13 9PL, Lancs, England. [Henderson, C. M. B.; Pattrick, R. A. D.; Rosso, K. M.] Univ Manchester, Sch Earth Atmospher & Environm Sci, Manchester M13 9PL, Lancs, England. [Rosso, K. M.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Dent, A.] Diamond Light Source, Didcot OX11 0DE, Oxon, England. [Sharples, J. W.] Univ Manchester, Photon Sci Inst, Manchester M13 9PL, Lancs, England. [Henderson, C. M. B.] ASTeC, STFC Daresbury Lab, Warrington WA4 4AD, Cheshire, England. RP Quirke, J (reprint author), Univ Manchester, Sch Chem, Oxford Rd, Manchester M13 9PL, Lancs, England. EM Carolyn.Pearce@manchester.ac.uk NR 28 TC 2 Z9 2 U1 3 U2 7 PU MINERALOGICAL SOC PI TWICKENHAM PA 12 BAYLIS MEWS, AMYAND PARK ROAD,, TWICKENHAM TW1 3HQ, MIDDLESEX, ENGLAND SN 0026-461X EI 1471-8022 J9 MINERAL MAG JI Mineral. Mag. PD NOV PY 2015 VL 79 IS 6 BP 1353 EP 1367 DI 10.1180/minmag.2015.079.6.11 PG 15 WC Mineralogy SC Mineralogy GA DB3ZV UT WOS:000368453400012 ER PT J AU Cassingham, N Corkhill, CL Backhouse, DJ Hand, RJ Ryan, JV Vienna, JD Hyatt, NC AF Cassingham, N. Corkhill, C. L. Backhouse, D. J. Hand, R. J. Ryan, J. V. Vienna, J. D. Hyatt, N. C. TI The initial dissolution rates of simulated UK Magnox-ThORP blend nuclear waste glass as a function of pH, temperature and waste loading SO MINERALOGICAL MAGAZINE LA English DT Article; Proceedings Paper CT 1st Conference on Implementing Geological Disposal - Technology Platform (IGD-TP) CY JUN 24-26, 2014 CL Univ Manchester, Manchester, ENGLAND HO Univ Manchester DE glass; dissolution mechanism; geological disposal ID SODIUM-CHLORIDE SOLUTIONS; FLOW-THROUGH EXPERIMENTS; BOROSILICATE GLASSES; CHEMICAL DURABILITY; GEOLOGICAL DISPOSAL; ALKALINE MEDIA; RATE LAW; KINETICS; TERM; STATE AB The first comprehensive assessment of the dissolution kinetics of simulant Magnox-ThORP blended UK high-level waste glass, obtained by performing a range of single-pass flow-through experiments, is reported here. Inherent forward rates of glass dissolution were determined over a temperature range of 23 to 70 degrees C and an alkaline pH range of 8.0 to 12.0. Linear regression techniques were applied to the TST kinetic rate law to obtain fundamental parameters necessary to model the dissolution kinetics of UK high-level waste glass (the activation energy (E-a), pH power law coefficient (eta) and the intrinsic rate constant (k(0))), which is of importance to the post-closure safety case for the geological disposal of vitreous products. The activation energies based on B release ranged from 55 +/- 3 to 83 +/- 9 kJ mol (1), indicating that Magnox-THORP blend glass dissolution has a surface-controlled mechanism, similar to that of other high-level waste simulant glass compositions such as the French SON68 and LAW in the US. Forward dissolution rates, based on Si, B and Na release, suggested that the dissolution mechanism under dilute conditions, and pH and temperature ranges of this study, was not sensitive to composition as defined by HLW-incorporation rate. C1 [Cassingham, N.; Corkhill, C. L.; Backhouse, D. J.; Hand, R. J.; Hyatt, N. C.] Univ Sheffield, Dept Mat Sci & Engn, Immobilisat Sci Lab, Sheffield S10 2TN, S Yorkshire, England. [Ryan, J. V.; Vienna, J. D.] Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA. RP Cassingham, N (reprint author), Univ Sheffield, Dept Mat Sci & Engn, Immobilisat Sci Lab, Sheffield S10 2TN, S Yorkshire, England. EM c.corkhill@sheffield.ac.uk; n.c.hyatt@sheffield.ac.uk RI Corkhill, Claire/E-3729-2016; OI Corkhill, Claire/0000-0002-7488-3219; Hyatt, Neil/0000-0002-2491-3897 NR 37 TC 2 Z9 2 U1 4 U2 12 PU MINERALOGICAL SOC PI TWICKENHAM PA 12 BAYLIS MEWS, AMYAND PARK ROAD,, TWICKENHAM TW1 3HQ, MIDDLESEX, ENGLAND SN 0026-461X EI 1471-8022 J9 MINERAL MAG JI Mineral. Mag. PD NOV PY 2015 VL 79 IS 6 BP 1529 EP 1542 DI 10.1180/minmag.2015.079.6.28 PG 14 WC Mineralogy SC Mineralogy GA DB3ZV UT WOS:000368453400029 ER PT J AU McKone, TE Feng, L AF McKone, Thomas E. Feng, Lydia TI Building a Human Health Risk Assessment Ontology (RsO): A Proposed Framework SO RISK ANALYSIS LA English DT Article DE Dose response; exposure; measure of risk; ontology; receptor; stressor; uncertainty ID GLOBAL ASSESSMENT; SALMON AB Over the last decade the health and environmental research communities have made significant progress in collecting and improving access to genomic, toxicology, exposure, health, and disease data useful to health risk assessment. One of the barriers to applying these growing volumes of information in fields such as risk assessment is the lack of informatics tools to organize, curate, and evaluate thousands of journal publications and hundreds of databases to provide new insights on relationships among exposure, hazard, and disease burden. Many fields are developing ontologies as a way of organizing and analyzing large amounts of complex information from multiple scientific disciplines. Ontologies include a vocabulary of terms and concepts with defined logical relationships to each other. Building from the recently published exposure ontology and other relevant health and environmental ontologies, this article proposes an ontology for health risk assessment (RsO) that provides a structural framework for organizing risk assessment information and methods. The RsO is anchored by eight major concepts that were either identified by exploratory curations of the risk literature or the exposure-ontology working group as key for describing the risk assessment domain. These concepts are: (1) stressor, (2) receptor, (3) outcome, (4) exposure event, (5) dose-response approach, (6) dose-response metric, (7) uncertainty, and (8) measure of risk. We illustrate the utility of these concepts for the RsO with example curations of published risk assessments for ionizing radiation, arsenic in drinking water, and persistent pollutants in salmon. C1 [McKone, Thomas E.; Feng, Lydia] Univ Calif Berkeley, Sch Publ Hlth, Berkeley, CA 94720 USA. [McKone, Thomas E.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP McKone, TE (reprint author), 50 Univ Hall 7360, Berkeley, CA 94720 USA. EM temckone@lbl.gov FU American Chemistry Council Long Range Research Initiative [4749]; U.S. Department of Energy (DOE) [DE-AC03-76SF00098] FX The preparation of this article was made possible by support from the American Chemistry Council Long Range Research Initiative through grant 4749 awarded to the University of California, Berkeley. This work was carried out in part at the Lawrence Berkeley National Laboratory, which is operated for the U.S. Department of Energy (DOE) under contract grant no. DE-AC03-76SF00098. The authors also acknowledge the work of three anonymous reviewers whose careful reading of earlier versions of this article along with many constructive suggestions have improved the focus and quality of this article. NR 29 TC 1 Z9 1 U1 1 U2 6 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0272-4332 EI 1539-6924 J9 RISK ANAL JI Risk Anal. PD NOV PY 2015 VL 35 IS 11 BP 2087 EP 2101 DI 10.1111/risa.12414 PG 15 WC Public, Environmental & Occupational Health; Mathematics, Interdisciplinary Applications; Social Sciences, Mathematical Methods SC Public, Environmental & Occupational Health; Mathematics; Mathematical Methods In Social Sciences GA DB2MR UT WOS:000368343500010 PM 25977145 ER PT J AU Trevisan, L Pini, R Cihan, A Birkholzer, JT Zhou, QL Illangasekare, TH AF Trevisan, Luca Pini, Ronny Cihan, Abdullah Birkholzer, Jens T. Zhou, Quanlin Illangasekare, Tissa H. TI Experimental analysis of spatial correlation effects on capillary trapping of supercritical CO2 at the intermediate laboratory scale in heterogeneous porous media SO WATER RESOURCES RESEARCH LA English DT Article ID RELATIVE PERMEABILITY; MULTIPHASE FLOW; SALINE AQUIFERS; SURROGATE FLUIDS; STORAGE; BEHAVIOR; SEQUESTRATION; MODEL; INFILTRATION; ADVECTION AB Several numerical studies have demonstrated that the heterogeneous nature of typical sedimentary formations can favorably dampen the accumulation of mobile CO2 phase underneath the caprock. Core flooding experiments have also shown that contrasts in capillary entry pressure can lead to buildup of nonwetting fluid phase (NWP) at interfaces between facies. Explicit representation of geological heterogeneity at the intermediate (cm-to-m) scale is a powerful approach to identify the key mechanisms that control multiphase flow dynamics in porous media. The ability to carefully control flow regime and permeability contrast at a scale that is relevant to CO2 plume dynamics in saline formations offers valuable information to understand immiscible displacement processes and provides a benchmark for mathematical models. To provide insight into the impact of capillary heterogeneity on flow dynamics and trapping efficiency of supercritical CO2 under successive drainage and imbibition conditions, we present an experimental investigation conducted in a synthetic sand reservoir. By mimicking the interplay of governing forces at reservoir conditions via application of surrogate fluids, we performed three immiscible displacement experiments to observe the entrapment of NWP in heterogeneous porous media. Capillary trapping performance is evaluated for each scenario through spatial and temporal variations of NWP saturation; for this reason we adopted X-ray attenuation to precisely measure phase saturation throughout the flow domain and apply spatial moment analysis. The sweeping performance of two different permeability fields with comparable variance but distinct spatial correlation was compared against a homogeneous base case with equivalent mean permeability by means of spatial moment analysis. C1 [Trevisan, Luca; Illangasekare, Tissa H.] Colorado Sch Mines, Dept Civil & Environm Engn, Ctr Expt Study Subsurface Environm Proc, Golden, CO 80401 USA. [Pini, Ronny] Colorado Sch Mines, Dept Petr Engn, Golden, CO 80401 USA. [Cihan, Abdullah; Birkholzer, Jens T.; Zhou, Quanlin] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Earth Sci Div, Berkeley, CA 94720 USA. RP Trevisan, L (reprint author), Univ Texas Austin, Jackson Sch Geosci, Bur Econ Geol, Austin, TX 78712 USA. EM luca.trevisan@gmail.com RI Birkholzer, Jens/C-6783-2011; Zhou, Quanlin/B-2455-2009; Cihan, Abdullah/D-3704-2015; OI Birkholzer, Jens/0000-0002-7989-1912; Zhou, Quanlin/0000-0001-6780-7536; Trevisan, Luca/0000-0002-7172-5020 FU U.S. Department of Energy through National Energy Technology Laboratory's CO2 sequestration RD Program [DE-FE0004630]; National Science Foundation award through Hydrologic Sciences Program [EAR-1045282] FX Funding for this research is provided by the U.S. Department of Energy through the National Energy Technology Laboratory's CO2 sequestration R&D Program under grant DE-FE0004630 and National Science Foundation award EAR-1045282 through the Hydrologic Sciences Program. Supporting information is included as two Figures in an SI file and as three separate Excel spreadsheets; any additional data may be obtained from Luca Trevisan (email: luca.trevisan@gmail.com). NR 48 TC 3 Z9 3 U1 3 U2 13 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 EI 1944-7973 J9 WATER RESOUR RES JI Water Resour. Res. PD NOV PY 2015 VL 51 IS 11 BP 8791 EP 8805 DI 10.1002/2015WR017440 PG 15 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA DB3OC UT WOS:000368420000008 ER PT J AU Frans, C Istanbulluoglu, E Lettenmaier, DP Naz, BS Clarke, GKC Condom, T Burns, P Nolin, AW AF Frans, Chris Istanbulluoglu, Erkan Lettenmaier, Dennis P. Naz, Bibi S. Clarke, Garry K. C. Condom, Thomas Burns, Pat Nolin, Anne W. TI Predicting glacio-hydrologic change in the headwaters of the Zongo River, Cordillera Real, Bolivia SO WATER RESOURCES RESEARCH LA English DT Article ID TROPICAL ANDEAN GLACIERS; SEA-LEVEL RISE; CLIMATE-CHANGE; WATER-RESOURCES; ENERGY-BALANCE; MASS-BALANCE; VEGETATION MODEL; NUMERICAL-MODEL; 20-1ST CENTURY; NORTH-AMERICA AB In many partially glacierized watersheds glacier recession driven by a warming climate could lead to complex patterns of streamflow response over time, often marked with rapid increases followed by sharp declines, depending on initial glacier ice cover and rate of climate change. Capturing such "phases'' of hydrologic response is critical in regions where communities rely on glacier meltwater, particularly during low flows. In this paper, we investigate glacio-hydrologic response in the headwaters of the Zongo River, Bolivia, under climate change using a distributed glacio-hydrological model over the period of 1987-2100. Model predictions are evaluated through comparisons with satellite-derived glacier extent estimates, glacier surface velocity, in situ glacier mass balance, surface energy flux, and stream discharge measurements. Historically (1987-2010) modeled glacier melt accounts for 27% of annual runoff, and 61% of dry season (JJA) runoff on average. During this period the relative glacier cover was observed to decline from 35 to 21% of the watershed. In the future, annual and dry season discharge is projected to decrease by 4% and 27% by midcentury and 25% and 57% by the end of the century, respectively, following the loss of 81% of the ice in the watershed. Modeled runoff patterns evolve through the interplay of positive and negative trends in glacier melt and increased evapotranspiration as the climate warms. Sensitivity analyses demonstrate that the selection of model surface energy balance parameters greatly influences the trajectory of hydrological change projected during the first half of the 21st century. These model results underscore the importance of coupled glacio-hydrology modeling. C1 [Frans, Chris; Istanbulluoglu, Erkan] Univ Washington, Dept Civil & Environm Engn, Seattle, WA 98195 USA. [Lettenmaier, Dennis P.] Univ Calif Los Angeles, Dept Geog, Los Angeles, CA 90024 USA. [Naz, Bibi S.] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Clarke, Garry K. C.] Univ British Columbia, Dept Earth Ocean & Atmospher Sci, Vancouver, BC V5Z 1M9, Canada. [Condom, Thomas] Univ Grenoble Alpes, IRD, CNRS, G INP,LTHE UMR 5564, Grenoble, France. [Burns, Pat; Nolin, Anne W.] Oregon State Univ, Coll Earth Ocean & Atmospher Sci, Corvallis, OR 97331 USA. RP Frans, C (reprint author), Univ Washington, Dept Civil & Environm Engn, Seattle, WA 98195 USA. EM chrisf2@uw.edu OI Naz, Bibi/0000-0001-9888-1384 FU NASA Interdisciplinary Research in Earth Science Program grant [NNX10AP90G] FX The Modern Era Retrospective-analysis for Research and Applications (MERRA) reanalysis meteorological data can be downloaded from the Goddard Earth Sciences Data and Information Services Center (GES-DISC, http://disc.sci.gsfc.nasa.gov). Most of the glaciological and meteorological data measured in the watershed that were utilized in this study can be downloaded from the Glacioclim database (http://www-lgge.ujfgrenoble.fr/ServiceObs/). Nonpublic glaciological and meteorological data can be obtained with agreement from the Institute of Research for Development (IRD). The CMIP5 general circulation model output can be downloaded from the World Climate Research Program (WCRP, http://cmippcmdi.llnl.gov/cmip5/). The Landsat Thematic Mapper scenes can be downloaded from the United States Geological Survey (USGS, http://earthexplorer.usgs.gov/). All glacio-hydrological model data presented in this manuscript are available by request through the corresponding author (chrisf2@uw.edu). Surface energy balance observations were provided by Jean Emmanuel Sicart (jean-emmanuel.sicart@ird.fr). This research was supported by the NASA Interdisciplinary Research in Earth Science Program grant NNX10AP90G. NR 86 TC 1 Z9 1 U1 7 U2 23 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 EI 1944-7973 J9 WATER RESOUR RES JI Water Resour. Res. PD NOV PY 2015 VL 51 IS 11 BP 9029 EP 9052 DI 10.1002/2014WR016728 PG 24 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA DB3OC UT WOS:000368420000021 ER PT J AU Sadegh, M Vrugt, JA Xu, CG Volpi, E AF Sadegh, Mojtaba Vrugt, Jasper A. Xu, Chonggang Volpi, Elena TI The stationarity paradigm revisited: Hypothesis testing using diagnostics, summary metrics, and DREAM((ABC)) SO WATER RESOURCES RESEARCH LA English DT Article ID APPROXIMATE BAYESIAN COMPUTATION; FLOOD FREQUENCY-ANALYSIS; CONTIGUOUS UNITED-STATES; MONTE-CARLO-SIMULATION; RAINFALL-RUNOFF MODELS; CLIMATE-CHANGE; ANNUAL MAXIMUM; STREAMFLOW TRENDS; RIVER-BASIN; DIFFERENTIAL EVOLUTION AB Many watershed models used within the hydrologic research community assume (by default) stationary conditions, that is, the key watershed properties that control water flow are considered to be time invariant. This assumption is rather convenient and pragmatic and opens up the wide arsenal of (multivariate) statistical and nonlinear optimization methods for inference of the (temporally fixed) model parameters. Several contributions to the hydrologic literature have brought into question the continued usefulness of this stationary paradigm for hydrologic modeling. This paper builds on the likelihood-free diagnostics approach of Vrugt and Sadegh (2013) and uses a diverse set of hydrologic summary metrics to test the stationary hypothesis and detect changes in the watersheds response to hydroclimatic forcing. Models with fixed parameter values cannot simulate adequately temporal variations in the summary statistics of the observed catchment data, and consequently, the DREAM((ABC)) algorithm cannot find solutions that sufficiently honor the observed metrics. We demonstrate that the presented methodology is able to differentiate successfully between watersheds that are classified as stationary and those that have undergone significant changes in land use, urbanization, and/or hydroclimatic conditions, and thus are deemed nonstationary. C1 [Sadegh, Mojtaba; Vrugt, Jasper A.] Univ Calif Irvine, Dept Civil & Environm Engn, Irvine, CA USA. [Vrugt, Jasper A.] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA USA. [Xu, Chonggang] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. [Volpi, Elena] Univ Rome Tre, Dept Engn, I-00146 Rome, Italy. RP Vrugt, JA (reprint author), Univ Calif Irvine, Dept Civil & Environm Engn, Irvine, CA USA.; Vrugt, JA (reprint author), Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA USA. EM jasper@uci.edu OI Xu, Chonggang/0000-0002-0937-5744 FU UC-Lab Fees Research Program [237825]; Italian Ministry of University and Research through project PRIN [20102AXKAJ] FX The comments of Seth Westra and three anonymous reviewers are greatly appreciated and have helped to significantly enhance the current manuscript. The first and second author appreciate the support and funding from the UC-Lab Fees Research Program award 237825. The contribution of the last author was made possible by the Italian Ministry of University and Research through project PRIN 20102AXKAJ. We would also like to thank Guillaume Thirel and George Kuczera for kindly sharing with us the data of the watersheds used herein. The data of these watersheds can be found at ftp://hydrology.nws.noaa.gov/pub/gcip/mopex/US_Data/ and http://non-stationarities.irstea.fr/. NR 112 TC 2 Z9 2 U1 3 U2 12 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 EI 1944-7973 J9 WATER RESOUR RES JI Water Resour. Res. PD NOV PY 2015 VL 51 IS 11 BP 9207 EP 9231 DI 10.1002/2014WR016805 PG 25 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA DB3OC UT WOS:000368420000031 ER PT J AU Unger, SD Williams, RN AF Unger, Shem D. Williams, Rod N. TI Genetic Analysis Reveals Multiple Parentage in Captive Reared Eastern Hellbender Salamanders (Cryptobranchus alleganiensis) SO ZOO BIOLOGY LA English DT Article DE captive management; amphibian breeding; Cryptobranchidae; head-starting; microsatellite DNA ID PATERNITY; POPULATIONS; MARKERS; SUCCESS AB Information on the parentage of captive reared clutches is vital for conservation head-starting programs. Molecular methods, such as genotyping individuals with hyper-variable markers, can elucidate the genealogical contribution of captive-reared, reintroduced individuals to native populations. In this study, we used 12 polymorphic microsatellite loci to infer parentage of a clutch of 18 eastern hellbenders collected from a single nest from Buffalo Creek, West Virginia, subsequently reared in captivity, and used for translocations in Indiana. Collectively, these markers successfully detected the presence of multiple parentage for this species of conservation concern presently used in captive management programs in zoos across many states. This study highlights the need for genetic analysis of captive reared clutches used in translocations to minimize the loss of genetic diversity and potential for genetic swamping at release sites. (C) 2015 Wiley Periodicals, Inc. C1 [Unger, Shem D.] Univ Georgia, Savannah River Ecol Lab, Aiken, SC USA. [Williams, Rod N.] Purdue Univ, Dept Forestry & Nat Resources, W Lafayette, IN 47907 USA. RP Unger, SD (reprint author), Univ Georgia, Savannah River Ecol Lab, Aiken, SC USA.; Unger, SD (reprint author), Savannah River Ecol Lab, PO Drawer E Aiken, Aiken, SC 29802 USA. EM cryptobranchus11@gmail.com FU Indiana Department of Natural Resources, Division of Fish and Wildlife, Wildlife Diversity Section, State Wildlife Improvement [E2-11-WDP1]; Department of Forestry, and Natural Resources, Purdue University FX We thank Joe Greathouse for providing eastern hellbender individuals used in Indiana captive rearing programs. Support was provided by the Indiana Department of Natural Resources, Division of Fish and Wildlife, Wildlife Diversity Section, State Wildlife Improvement Grant E2-11-WDP1, and the Department of Forestry, and Natural Resources, Purdue University. Hellbenders were reared following standard procedures outlined in our protocol from the Purdue Animal Care and Use Committee (PACUC 08025-11). NR 21 TC 0 Z9 0 U1 11 U2 23 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0733-3188 EI 1098-2361 J9 ZOO BIOL JI Zoo Biol. PD NOV-DEC PY 2015 VL 34 IS 6 BP 535 EP 537 DI 10.1002/zoo.21242 PG 3 WC Veterinary Sciences; Zoology SC Veterinary Sciences; Zoology GA DB3QF UT WOS:000368425700006 PM 26301598 ER PT J AU Xie, Z Terracciano, AC Cullen, DA Blair, RG Orlovskaya, N AF Xie, Z. Terracciano, A. C. Cullen, D. A. Blair, R. G. Orlovskaya, N. TI High temperature Ir segregation in Ir-B ceramics: effect of oxygen presence on stability of IrB2 and other Ir-B phases SO ADVANCES IN APPLIED CERAMICS LA English DT Article DE Iridium diboride; Mechanochemistry; Ceramics; Ir segregation; metal clustering; catalyst ID SUPERHARD RHENIUM DIBORIDE; MECHANICAL-PROPERTIES; AMBIENT-PRESSURE; HEXAGONAL OSB2; HARD AB The formation of IrB2, IrB1.35, IrB1.1 and IrB monoboride phases in the Ir-B ceramic nanopowder was confirmed during mechanochemical reaction between metallic Ir and elemental B powders. The Ir-B phases were analysed after 90 h of high energy ball milling and after annealing of the powder for 72 h at 1050 degrees C in vacuo. The iridium monoboride (IrB) orthorhombic phase was synthesised experimentally for the first time and identified by powder X-ray diffraction. Additionally, the ReB2 type IrB2 hexagonal phase was also produced for the first time and identified by high resolution transmission electron microscope. Ir segregation along disordered domains of the boron lattice was found to occur during high temperature annealing. These nanodomains may have useful catalytic properties. C1 [Xie, Z.; Terracciano, A. C.; Blair, R. G.; Orlovskaya, N.] Univ Cent Florida, Dept Mech & Aerosp Engn, Orlando, FL 32816 USA. [Cullen, D. A.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Blair, R. G.] Univ Cent Florida, Dept Phys, Orlando, FL 32816 USA. RP Orlovskaya, N (reprint author), Univ Cent Florida, Dept Mech & Aerosp Engn, Orlando, FL 32816 USA. EM Nina.Orlovskaya@ucf.edu RI Cullen, David/A-2918-2015 OI Cullen, David/0000-0002-2593-7866 FU NSF [DMR-0748364]; ORNL's Center for Nanophase Materials Sciences (CNMS) FX This work was supported by NSF project DMR-0748364. Electron microscopy was performed as part of a user project supported by ORNL's Center for Nanophase Materials Sciences (CNMS), which is a DOE Office of Science User Facility. NR 22 TC 1 Z9 1 U1 1 U2 7 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND SN 1743-6753 EI 1743-6761 J9 ADV APPL CERAM JI Adv. Appl. Ceram. PD NOV PY 2015 VL 114 IS 8 BP 429 EP 435 DI 10.1179/1743676115Y.0000000002 PG 7 WC Materials Science, Ceramics SC Materials Science GA DB2KI UT WOS:000368336500004 ER PT J AU Gamwo, IK Kabir, MA AF Gamwo, Isaac K. Kabir, Mohd A. TI Impact of drilling fluid rheology and wellbore pressure on rock cuttings removal performance: numerical investigation SO ASIA-PACIFIC JOURNAL OF CHEMICAL ENGINEERING LA English DT Article DE drilling fluid rheology; multiphase flow; filter cake formation; CFD; deep drilling ID NONUNIFORM MUDCAKES; GRANULAR FLOW; FILTER CAKE; PARTICLES; EQUATIONS; MOTION AB Drilling fluids exhibits non-Newtonian behavior that is generally described in the literature by two rheological models: Power Law and Herschel-Bulkley models. We have used Eulerian-Eulerian multiphase flow model to evaluate the drilling fluid flow patterns and filter cake formation patterns for both models for ultra-deep drilling conditions. Simulated drilling fluid flow patterns clearly show that the Herschel-Bulkley model exhibits fewer vortices around the drilling pipe, indicating better rock cuttings removal performance. In addition to mud rheology, we have analyzed the pressure drop variation with the filter cake formation on the wellbore during ultra-deep drilling process. We have shown that filter cake thickness at the wall linearly increases with differential pressure between the well and formation. This implies that the differential pressure needs to be optimized. Very thin filter cake may lead to excessive fluid seepage into the permeable subterranean vertical zone resulting in a loss of fluid circulation and hence in a loss of rock cuttings removal. Yet, very thick filter cake reduces the effective diameter of the hole, which may lead to a poor rock cuttings removal performance and stuck pipe. The mathematical model presented here needs to be experimentally validated when filter cake thickness data in deep drilling conditions become available. The model could be useful to provide drilling engineers insight on the filter cake formation and drilling fluid flow pattern and give guidelines to optimize the filter cake as field experimental data are scarce. (C) 2015 Curtin University of Technology and John Wiley & Sons, Ltd. C1 [Gamwo, Isaac K.; Kabir, Mohd A.] US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. RP Gamwo, IK (reprint author), US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. EM gamwo@netl.doe.gov FU National Energy Technology Laboratory Research Participation Program - US Department of Energy FX This research was supported in part by an appointment to the National Energy Technology Laboratory Research Participation Program, sponsored by the US Department of Energy and administrated by the Oak Ridge Institute for Science and Education. NR 36 TC 0 Z9 0 U1 3 U2 8 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1932-2135 EI 1932-2143 J9 ASIA-PAC J CHEM ENG JI Asia-Pac. J. Chem. Eng. PD NOV-DEC PY 2015 VL 10 IS 6 BP 809 EP 822 DI 10.1002/apj.1917 PG 14 WC Engineering, Chemical SC Engineering GA DA9MX UT WOS:000368134600002 ER PT J AU Harper, JC Carson, BD Bachand, GD Arndt, WD Finley, MR Brinker, CJ Edwards, TL AF Harper, Jason C. Carson, Bryan D. Bachand, George D. Arndt, William D. Finley, Melissa R. Brinker, C. Jeffrey Edwards, Thayne L. TI Laser Machined Plastic Laminates: Towards Portable Diagnostic Devices for Use in Low Resource Environments SO ELECTROANALYSIS LA English DT Review DE Low-resource environment bioanalytics; laser ablated plastic laminates; electrode arrays; DNA detection; orthogonal biosensor ID GLOBAL HEALTH; INFECTIOUS-DISEASES; DEVELOPING-WORLD; DIAZONIUM SALTS; ELECTROCHEMILUMINESCENCE; BIOSENSORS; CARBON AB Despite significant progress in development of bioanalytical devices cost, complexity, access to reagents and lack of infrastructure have prevented use of these technologies in resource-limited regions. To provide a sustainable tool in the global effort to combat infectious diseases the diagnostic device must be low cost, simple to operate and read, robust, and have sensitivity and specificity comparable to laboratory analysis. In this mini-review we describe recent work using laser machined plastic laminates to produce diagnostic devices that are capable of a wide variety of bioanalytical measurements and show great promise towards future use in low-resource environments. C1 [Harper, Jason C.; Carson, Bryan D.] Sandia Natl Labs, Bioenergy & Biodef Technol, Albuquerque, NM 87185 USA. [Bachand, George D.] Sandia Natl Labs, Ctr Integrated Nanotechnol, Albuquerque, NM 87185 USA. [Arndt, William D.; Finley, Melissa R.] Sandia Natl Labs, Int Biol Threat Reduct, Albuquerque, NM 87185 USA. [Brinker, C. Jeffrey] Sandia Natl Labs, Self Assembled Mat, Albuquerque, NM 87106 USA. [Brinker, C. Jeffrey] Univ New Mexico, Chem & Nucl Engn, Mol Genet & Microbiol, Albuquerque, NM 87106 USA. [Edwards, Thayne L.] Sandia Natl Labs, Biosensors & Nanomat, Albuquerque, NM 87185 USA. RP Harper, JC (reprint author), Sandia Natl Labs, Bioenergy & Biodef Technol, POB 5800, Albuquerque, NM 87185 USA. EM Jason.Harper@sandia.gov; tledwar@sandia.gov FU Sandia Lab Directed Research and Development (LDRD) Program; Defense Treat Reduction Agency (DTRA) Chem. Bio. Basic Research Program [B084467I, B094732I, B0114453I]; U.S. Department of Energy (DOE) Office of Science [U2012A0083]; Air Force Office of Scientific Research [FA 9550-10-1-0054]; U.S. Department of Energy Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX We thank Jacklyn Murton (Sandia) and Prof. Julie Lovchik (University of New Mexico) for magnetic-adhesive valve testing. This work was funded by the Sandia Lab Directed Research and Development (LDRD) Program and the Defense Treat Reduction Agency (DTRA) Chem. Bio. Basic Research Program (grants B084467I, B094732I, B0114453I). This work was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science (user project U2012A0083, PI: JCH). CJB acknowledges funding from the Air Force Office of Scientific Research grant FA 9550-10-1-0054, and the U.S. Department of Energy Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 24 TC 1 Z9 1 U1 1 U2 3 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 1040-0397 EI 1521-4109 J9 ELECTROANAL JI Electroanalysis PD NOV PY 2015 VL 27 IS 11 BP 2503 EP 2512 DI 10.1002/elan.201500359 PG 10 WC Chemistry, Analytical; Electrochemistry SC Chemistry; Electrochemistry GA DB2LI UT WOS:000368339700001 ER PT J AU Reu, P AF Reu, Phillip TI DIC: A Revolution in Experimental Mechanics SO EXPERIMENTAL TECHNIQUES LA English DT Editorial Material C1 [Reu, Phillip] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Reu, P (reprint author), Sandia Natl Labs, Albuquerque, NM 87185 USA. EM Phillip.Reu.DIC@gmail.com NR 0 TC 0 Z9 0 U1 7 U2 11 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0732-8818 EI 1747-1567 J9 EXP TECHNIQUES JI Exp. Tech. PD NOV-DEC PY 2015 VL 39 IS 6 BP 1 EP 2 PG 2 WC Engineering, Mechanical; Mechanics; Materials Science, Characterization & Testing SC Engineering; Mechanics; Materials Science GA DA7GO UT WOS:000367972800001 ER PT J AU Myshakin, E Siriwardane, H Hulcher, C Lindner, E Sams, N King, S McKoy, M AF Myshakin, Evgeniy Siriwardane, Herna Hulcher, Carter Lindner, Ernest Sams, Neal King, Seth McKoy, Mark TI Numerical simulations of vertical growth of hydraulic fractures and brine migration in geological formations above the Marcellus shale SO JOURNAL OF NATURAL GAS SCIENCE AND ENGINEERING LA English DT Article DE Underground source of drinking water; Marcellus shale; Hydraulic fracture propagation; Brine migration; Numerical simulations AB One of the critical environmental questions about hydraulic fracturing in shales is the potential for contamination of ground and surface water. There are two specific concerns arising from hydraulic treatments: 1) whether hydraulic fractures extend upward through overlying strata to reach overlying aquifers containing drinking water, and 2) whether injected fluids push native fluids upward into these overlying aquifers. In this work, the extent of likely fracture growth through overlying layers during hydraulic treatment of the Marcellus shale was estimated using a hydraulic fracture model. A wide range of material and fluid flow properties in a multi-layered geologic model was considered. The model was based on conditions and characteristics applicable to the Marcellus shale in that part of the Appalachian basin within southwestern Pennsylvania. Predictions of vertical termination frequencies for hydraulic fractures were used in a multi-layer model of the strata and natural fractures for studying brine migration through the natural and induced fracture network. NFFLOW, the software for explicitly modeling flow within networks of fractures, was utilized to compute transient flow rates according to the schedule of injected fluid during hydraulic fracturing. To aid our analysis, the modeled sequence of geologic strata was capped with a fictitious unfractured, but moderately-permeable layer, which serves as a monitoring zone. The analysis assumes one well lateral was placed in the middle of the Marcellus shale with hydraulic fractures penetrating layers in the model. The newly-developed geomechanical module within NFFLOW was used to represent stress-sensitivity of the fractures. This allows the opening and closing of fracture apertures with changes in fluid pressures within fracture segments. Pressure increases in the formations overlying the Tully limestone, indicating fluid flow, was observed due to the hydraulic stimulation; and the impact of these increased pressures on brine migration towards the surface was considered. (C) 2015 Elsevier B.V. All rights reserved. C1 [Myshakin, Evgeniy; Lindner, Ernest; Sams, Neal; King, Seth; McKoy, Mark] Natl Energy Technol Lab, Morgantown, WV 26507 USA. [Myshakin, Evgeniy; Lindner, Ernest; Sams, Neal; King, Seth] AECOM, Pittsburgh, PA 15236 USA. [Siriwardane, Herna; Hulcher, Carter] W Virginia Univ, Civil & Environm Engn, Morgantown, WV 26506 USA. RP Myshakin, E (reprint author), Natl Energy Technol Lab, 3610 Collins Ferry Rd,POB 880, Morgantown, WV 26507 USA. EM Evgeniy.Myshakin@netI.doe.gov FU National Energy Technology Laboratory's under RES contract [DE-FE0004000] FX The authors are thankful to Dr. Dustin Crandall and Dr. Grant Bromhal for fruitful discussions and comments provided on this paper. This technical effort was performed in support of the National Energy Technology Laboratory's ongoing research under the RES contract DE-FE0004000. The simulations were carried out on NETL's High-Performance Computer for Energy and the Environment (HPCEE) and on computers in the Department of Civil and Environmental Engineering of West Virginia University. NR 45 TC 1 Z9 1 U1 1 U2 16 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1875-5100 EI 2212-3865 J9 J NAT GAS SCI ENG JI J. Nat. Gas Sci. Eng. PD NOV PY 2015 VL 27 BP 531 EP 544 DI 10.1016/j.jngse.2015.08.030 PN 2 PG 14 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA DA4FS UT WOS:000367756100014 ER PT J AU Taveira-Pinto, F Iglesias, G Rosa-Santos, P Deng, ZD AF Taveira-Pinto, Francisco Iglesias, Gregorio Rosa-Santos, Paulo Deng, Zhiqun Daniel TI Preface to Special Topic: Marine Renewable Energy SO JOURNAL OF RENEWABLE AND SUSTAINABLE ENERGY LA English DT Editorial Material ID RESOURCES; WAVE C1 [Taveira-Pinto, Francisco; Rosa-Santos, Paulo] Univ Porto, Fac Engn, Dept Civil Engn, P-4200 Oporto, Portugal. [Taveira-Pinto, Francisco; Rosa-Santos, Paulo] Interdisciplinary Ctr Marine & Environm Res CIIMA, P-4200 Oporto, Portugal. [Iglesias, Gregorio] Univ Plymouth, Sch Marine Sci & Engn, Plymouth PL4 8AA, Devon, England. [Deng, Zhiqun Daniel] Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA. RP Taveira-Pinto, F (reprint author), Univ Porto, Fac Engn, Dept Civil Engn, Rua Dr Roberto Frias S-N, P-4200 Oporto, Portugal. EM fpinto@fe.up.pt; gregorio.iglesias@plymouth.ac.uk; pjrsantos@fe.up.pt; Zhiqun.deng@pnnl.gov RI Deng, Daniel/A-9536-2011 OI Deng, Daniel/0000-0002-8300-8766 NR 17 TC 1 Z9 1 U1 1 U2 4 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1941-7012 J9 J RENEW SUSTAIN ENER JI J. Renew. Sustain. Energy PD NOV PY 2015 VL 7 IS 6 AR 061601 DI 10.1063/1.4939086 PG 4 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels SC Science & Technology - Other Topics; Energy & Fuels GA DA8DZ UT WOS:000368036500001 ER PT J AU Gehan, MA Park, S Gilmour, SJ An, CF Lee, CM Thomashow, MF AF Gehan, Malia A. Park, Sunchung Gilmour, Sarah J. An, Chuanfu Lee, Chin-Mei Thomashow, Michael F. TI Natural variation in the C-repeat binding factor cold response pathway correlates with local adaptation of Arabidopsis ecotypes SO PLANT JOURNAL LA English DT Article DE C-repeat binding factor regulatory pathway; natural variation; freezing tolerance; Arabidopsis thaliana ID REGULATED GENE-EXPRESSION; FREEZING TOLERANCE; LOW-TEMPERATURE; TRANSCRIPTION FACTORS; THALIANA; ACCLIMATION; ACCESSIONS; DROUGHT; PLANT; CBF2 AB The natural range of Arabidopsis thaliana (Arabidopsis) encompasses geographical regions that have greatly differing local climates, including harshness of winter temperatures. A question thus raised is whether differences in freezing tolerance might contribute to local adaptation in Arabidopsis. Consistent with this possibility is that Arabidopsis accessions differ in freezing tolerance and that those collected from colder northern latitudes are generally more tolerant to freezing than those collected from warmer southern latitudes. Moreover, recent studies with Arabidopsis genotypes collected from sites in Sweden (SW) and Italy (IT) have established that the two accessions are locally adapted, that the SW ecotype is more tolerant of freezing than the IT ecotype, and that genetic differences between the two ecotypes that condition local adaptation and freezing tolerance map to a region that includes the C-repeat binding factor (CBF) locus. The CBF locus includes three genes -CBF1, CBF2 and CBF3 - that are induced by low temperature and encode transcription factors that regulate a group of more than 100 genes, the CBF regulon, which impart freezing tolerance. Here we show that cold induction of most CBF regulon genes is lower in IT plants compared with SW plants, and that this is due to the IT CBF2 gene encoding a non-functional CBF2 protein. The non-functional IT CBF2 protein also contributes to the lower freezing tolerance of the IT plants compared with the SW plants. Taken together, studies on the SW and IT ecotypes provide evidence that natural variation in the CBF pathway has contributed to adaptive evolution in these Arabidopsis populations. C1 [Gehan, Malia A.; Park, Sunchung; Gilmour, Sarah J.; An, Chuanfu; Lee, Chin-Mei; Thomashow, Michael F.] Michigan State Univ, MSU DOE Plant Res Lab, E Lansing, MI 48824 USA. [Gehan, Malia A.] Michigan State Univ, Dept Plant Biol, E Lansing, MI 48824 USA. [Lee, Chin-Mei] Michigan State Univ, Dept Biochem, E Lansing, MI 48824 USA. [Thomashow, Michael F.] Michigan State Univ, Dept Plant Soil & Microbial Sci, E Lansing, MI 48824 USA. RP Thomashow, MF (reprint author), Michigan State Univ, MSU DOE Plant Res Lab, E Lansing, MI 48824 USA. EM thomash6@msu.edu OI Gehan, Malia/0000-0002-3238-2627 FU National Science Foundation [DEB 1022202]; MSU AgBioResearch FX We thank Douglas Schemske and Christopher Oakley for informative discussions on natural variation and adaptation and for suggestions on improving this manuscript. We also thank Pingsha Hu for help with alignment and assembly of the RNAseq data generated in this study. This research was funded by a grant from the National Science Foundation (DEB 1022202; awarded to D. Schemske and MFT) with infrastructure support from the Department of Energy (DE-FG02-91ER20021) and MSU AgBioResearch. NR 41 TC 11 Z9 11 U1 8 U2 27 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0960-7412 EI 1365-313X J9 PLANT J JI Plant J. PD NOV PY 2015 VL 84 IS 4 BP 682 EP 693 DI 10.1111/tpj.13027 PG 12 WC Plant Sciences SC Plant Sciences GA DB1HM UT WOS:000368259100004 PM 26369909 ER PT J AU Evans, J Crisovan, E Barry, K Daum, C Jenkins, J Kunde-Ramamoorthy, G Nandety, A Ngan, CY Vaillancourt, B Wei, CL Schmutz, J Kaeppler, SM Casler, MD Buell, CR AF Evans, Joseph Crisovan, Emily Barry, Kerrie Daum, Chris Jenkins, Jerry Kunde-Ramamoorthy, Govindarajan Nandety, Aruna Ngan, Chew Yee Vaillancourt, Brieanne Wei, Chia-Lin Schmutz, Jeremy Kaeppler, Shawn M. Casler, Michael D. Buell, Carol Robin TI Diversity and population structure of northern switchgrass as revealed through exome capture sequencing SO PLANT JOURNAL LA English DT Article DE Panicum virgatum; exome capture; switchgrass; polyploid; genomics; PRJNA280418 ID DIFFERENTIAL EXPRESSION ANALYSIS; NUCLEAR-DNA CONTENT; COPY NUMBER; PANICUM-VIRGATUM; GENE-EXPRESSION; CHLOROPLAST DNA; ICE AGES; GENOME; PLANT; RICE AB Panicum virgatum L. (switchgrass) is a polyploid, perennial grass species that is native to North America, and is being developed as a future biofuel feedstock crop. Switchgrass is present primarily in two ecotypes: a northern upland ecotype, composed of tetraploid and octoploid accessions, and a southern lowland ecotype, composed of primarily tetraploid accessions. We employed high-coverage exome capture sequencing (similar to 2.4 Tb) to genotype 537 individuals from 45 upland and 21 lowland populations. From these data, we identified similar to 27 million single-nucleotide polymorphisms (SNPs), of which 1 590 653 high-confidence SNPs were used in downstream analyses of diversity within and between the populations. From the 66 populations, we identified five primary population groups within the upland and lowland ecotypes, a result that was further supported through genetic distance analysis. We identified conserved, ecotype-restricted, non-synonymous SNPs that are predicted to affect the protein function of CONSTANS (CO) and EARLY HEADING DATE 1 (EHD1), key genes involved in flowering, which may contribute to the phenotypic differences between the two ecotypes. We also identified, relative to the near-reference Kanlow population, 17 228 genes present in more copies than in the reference genome (up-CNVs), 112 630 genes present in fewer copies than in the reference genome (down-CNVs) and 14 430 presence/absence variants (PAVs), affecting a total of 9979 genes, including two upland-specific CNV clusters. In total, 45 719 genes were affected by an SNP, CNV, or PAV across the panel, providing a firm foundation to identify functional variation associated with phenotypic traits of interest for biofuel feedstock production. C1 [Evans, Joseph; Crisovan, Emily; Vaillancourt, Brieanne; Buell, Carol Robin] Michigan State Univ, DOE Great Lakes Bioenergy Res Ctr, E Lansing, MI 48824 USA. [Evans, Joseph; Crisovan, Emily; Vaillancourt, Brieanne; Buell, Carol Robin] Michigan State Univ, Dept Plant Biol, E Lansing, MI 48824 USA. [Barry, Kerrie; Daum, Chris; Kunde-Ramamoorthy, Govindarajan; Ngan, Chew Yee; Wei, Chia-Lin; Schmutz, Jeremy] Joint Genome Inst, Dept Energy, Walnut Creek, CA 94598 USA. [Jenkins, Jerry; Schmutz, Jeremy] HudsonAlpha Inst Biotechnol, Huntsville, AL 35806 USA. [Nandety, Aruna] Univ Oklahoma, Dept Microbiol & Plant Biol, Norman, OK 73019 USA. [Kaeppler, Shawn M.; Casler, Michael D.] Univ Wisconsin, DOE Great Lakes Bioenergy Res Ctr, Madison, WI 53706 USA. [Kaeppler, Shawn M.] Univ Wisconsin, Dept Agron, Madison, WI 53706 USA. [Casler, Michael D.] USDA ARS, US Dairy Forage Res Ctr, Madison, WI 53706 USA. RP Buell, CR (reprint author), Michigan State Univ, DOE Great Lakes Bioenergy Res Ctr, E Lansing, MI 48824 USA. EM buell@msu.edu RI Schmutz, Jeremy/N-3173-2013; OI Schmutz, Jeremy/0000-0001-8062-9172; Kaeppler, Shawn/0000-0002-5964-1668 FU DOE Great Lakes Bioenergy Research Center (DOE BER Office of Science) [DE-FC02-07ER64494]; Office of Science of the US Department of Energy [DE-AC02-05CH11231] FX This work was funded by the DOE Great Lakes Bioenergy Research Center (DOE BER Office of Science DE-FC02-07ER64494). The work conducted by the US Department of Energy Joint Genome Institute is supported by the Office of Science of the US Department of Energy under contract no. DE-AC02-05CH11231. NR 76 TC 4 Z9 4 U1 10 U2 26 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0960-7412 EI 1365-313X J9 PLANT J JI Plant J. PD NOV PY 2015 VL 84 IS 4 BP 800 EP 815 DI 10.1111/tpj.13041 PG 16 WC Plant Sciences SC Plant Sciences GA DB1HM UT WOS:000368259100013 PM 26426343 ER PT J AU Lai, YT Jiang, L Chen, WY Yeates, TO AF Lai, Yen-Ting Jiang, Lin Chen, Wuyang Yeates, Todd O. TI On the predictability of the orientation of protein domains joined by a spanning alpha-helical linker SO PROTEIN ENGINEERING DESIGN & SELECTION LA English DT Article DE flexibility; protein design; protein fusion; symmetry; synthetic biology ID FUSION PROTEIN; WEB SERVER; ASSEMBLIES; DESIGN; BINDING; SYMMETRY; CAGES; ORGANIZATION; STRATEGIES; INTERFACES AB Connecting proteins together in prescribed geometric arrangements is an important element in new areas of biomolecular design. In this study, we characterize the degree of three-dimensional orientational control that can be achieved when two protein domains that have alpha-helical termini are joined using an alpha-helical linker. A fusion between naturally oligomeric protein domains was designed in this fashion with the intent of creating a self-assembling 12-subunit tetrahedral protein cage. While the designed fusion protein failed to assemble into a tetrahedral cage in high yield, a series of crystal structures showed that the two fused components were indeed bridged by an intact alpha helix, although the fusion protein was distorted from the intended ideal configuration by bending of the helix, ranging from 7 to 35 degrees. That range of deviation in orientation creates challenges for designing large, perfectly symmetric protein assemblies, although it should offer useful outcomes for other less geometrically demanding applications in synthetic biology. C1 [Lai, Yen-Ting; Chen, Wuyang; Yeates, Todd O.] Univ Calif Los Angeles, DOE Inst Genom & Prote, 611 Charles Young Dr East, Los Angeles, CA 90095 USA. [Jiang, Lin] Univ Calif Los Angeles, Easton Ctr Alzheimers Dis Res, Dept Neurol, 611 Charles Young Dr East, Los Angeles, CA 90095 USA. [Yeates, Todd O.] Univ Calif Los Angeles, Dept Chem & Biochem, 611 Charles Young Dr East, Los Angeles, CA 90095 USA. RP Yeates, TO (reprint author), Univ Calif Los Angeles, DOE Inst Genom & Prote, 611 Charles Young Dr East, Los Angeles, CA 90095 USA. EM yeates@mbi.ucla.edu OI Yeates, Todd/0000-0001-5709-9839 FU NSF [CHE-1332907]; BER program of the Department of Energy Office of Science FX This work was supported by NSF grant CHE-1332907 and by the BER program of the Department of Energy Office of Science. NR 46 TC 5 Z9 5 U1 3 U2 7 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 1741-0126 EI 1741-0134 J9 PROTEIN ENG DES SEL JI Protein Eng. Des. Sel. PD NOV PY 2015 VL 28 IS 11 BP 491 EP 499 DI 10.1093/protein/gzv035 PG 9 WC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology GA DB3NU UT WOS:000368419200001 PM 26243886 ER PT J AU Smith, RL Sengupta, D Takkellapati, S Lee, CC AF Smith, R. L. Sengupta, D. Takkellapati, S. Lee, C. C. TI An industrial ecology approach to municipal solid waste management: I. Methodology SO RESOURCES CONSERVATION AND RECYCLING LA English DT Article DE Industrial ecology; Municipal solid waste; MSW; Energy; Sustainability ID LCA AB Municipal solid waste (MSW) can be viewed as a feedstock for industrial ecology inspired conversions of wastes to valuable products and energy. The industrial ecology principle of symbiotic processes using waste streams for creating value-added products is applied to MSW, with examples suggested for various residual streams. A methodology is presented to consider individual waste-to-energy or waste-to-product system synergies, evaluating the economic and environmental issues associated with each system. Steps included in the methodology include identifying waste streams, specific waste components of interest, and conversion technologies, plus steps for determining the economic and environmental effects of using wastes and changes due to transport, administrative handling, and processing. In addition to presenting the methodology, technologies for various MSW input streams are categorized as commercialized or demonstrated to provide organizations that are considering processes for MSW with summarized information. The organization can also follow the methodology to analyze interesting processes. Published by Elsevier B.V. C1 [Smith, R. L.; Sengupta, D.; Takkellapati, S.; Lee, C. C.] US EPA, Natl Risk Management Res Lab, Sustainable Technol Div, Cincinnati, OH 45268 USA. [Sengupta, D.] ORISE, Oak Ridge, TN 37830 USA. RP Smith, RL (reprint author), US EPA, Natl Risk Management Res Lab, Sustainable Technol Div, Cincinnati, OH 45268 USA. EM smith.raymond@epa.gov NR 28 TC 1 Z9 1 U1 3 U2 22 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-3449 EI 1879-0658 J9 RESOUR CONSERV RECY JI Resour. Conserv. Recycl. PD NOV PY 2015 VL 104 BP 311 EP 316 DI 10.1016/j.resconrec.2015.04.005 PN A PG 6 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA DA5SD UT WOS:000367861900030 ER PT J AU Smith, RL Sengupta, D Takkellapati, S Lee, CC AF Smith, R. L. Sengupta, D. Takkellapati, S. Lee, C. C. TI An industrial ecology approach to municipal solid waste management: II. Case studies for recovering energy from the organic fraction of MSW SO RESOURCES CONSERVATION AND RECYCLING LA English DT Article DE Industrial ecology; Municipal solid waste; MSW; Energy; Sustainability ID CONVERSION; ETHANOL; SYNGAS; FERMENTATION; PRETREATMENT AB The organic fraction of municipal solid waste provides abundant opportunities for industrial ecology-based symbiotic use. Energy production, economics, and environmental aspects are analyzed for four alternatives based on different technologies: incineration with energy recovery, gasification, anaerobic digestion, and fermentation. In these cases electricity and ethanol are the products considered, but other products and attempts at symbiosis can be made. The four technologies are in various states of commercial development. To highlight their relative complexities some adjustable parameters which are important for the operability of each process are discussed. While these technologies need to be considered for specific locations and circumstances, generalized economic and environmental information suggests relative comparisons for newly conceptualized processes. The results of industrial ecology-based analysis suggest that anaerobic digestion may improve seven emission categories, while fermentation, gasification, and incineration successively improve fewer emissions. A conceptual level analysis indicates that gasification, anaerobic digestion, and fermentation alternatives lead to positive economic results. In each case the alternatives and their assumptions need further analysis for any particular community. Published by Elsevier B.V. C1 [Smith, R. L.; Takkellapati, S.; Lee, C. C.] US EPA, Natl Risk Management Res Lab, Sustainable Technol Div, Cincinnati, OH 45268 USA. [Sengupta, D.] ORISE, Oak Ridge, TN 37830 USA. RP Smith, RL (reprint author), US EPA, Natl Risk Management Res Lab, Sustainable Technol Div, Cincinnati, OH 45268 USA. EM smith.raymond@epa.gov NR 60 TC 2 Z9 3 U1 2 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-3449 EI 1879-0658 J9 RESOUR CONSERV RECY JI Resour. Conserv. Recycl. PD NOV PY 2015 VL 104 BP 317 EP 326 DI 10.1016/j.resconrec.2015.05.016 PN A PG 10 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA DA5SD UT WOS:000367861900031 ER PT J AU Kim, S Dale, BE AF Kim, Seungdo Dale, Bruce E. TI Potential job creation in the cellulosic biofuel industry: the effect of feedstock price SO BIOFUELS BIOPRODUCTS & BIOREFINING-BIOFPR LA English DT Article DE biorefinery; cellulosic feedstock; ethanol fuel; feedstock supply chain; job creation ID LOGISTICS AB A large-scale biofuel industry based on cellulosic materials would provide many new job opportunities. We model potential direct jobs generated by a cellulosic ethanol industry in the United States. These job projections are estimated via a bottom-up approach based on the cellulosic feedstock supply chain systems as a function of the price farmers receive for the feedstock. The cellulosic feedstock types involved in the feedstock supply chain system are crop residues, perennial grasses, annual energy crops, and coppiced and non-coppiced woody crops. Results show that the feedstock transportation sector is where most of the jobs are created, followed by the feedstock production sector. Jobs generated by the feedstock transportation sector account for around one-third of total new jobs generated, while jobs generated by cellulosic feedstock production account for about one-quarter of the new jobs. In the United States, most of the new jobs are created in Iowa, Kansas, Missouri, Oklahoma, and Texas. At feedstock prices over US$ 55 per dry ton, more than 100 000 new direct full-time equivalent jobs are potentially generated. The number of jobs potentially generated by the cellulosic ethanol fuel production system is highly sensitive to the feedstock price. At $60 per ton, a 50% increase in feedstock price, the system generates over 6 times more jobs than it does at a feedstock price of $40 per ton. Many more farmers produce cellulosic feedstock for ethanol production at higher feedstock prices, and thus more ethanol production leads to more job creation. (C) 2015 Society of Chemical Industry and John Wiley & Sons, Ltd C1 [Kim, Seungdo; Dale, Bruce E.] Michigan State Univ, Lansing, MI 48910 USA. RP Dale, BE (reprint author), Michigan State Univ, DOE Great Lakes Bioenergy Res Ctr, 3815 Technol Blvd, Lansing, MI 48910 USA. EM bdale@egr.msu.edu FU DOE Great Lakes Bioenergy Research Center (DOE BER Office of Science) [DE-FC02-07ER64494]; DOE Great Lakes Bioenergy Research Center (DOE OBP Office of Energy Efficiency and Renewable Energy) [DE-AC05-76RL01830]; AgBioResearch; USDA National Institute of Food and Agriculture FX This work was funded in part by the DOE Great Lakes Bioenergy Research Center (DOE BER Office of Science DE-FC02-07ER64494) and DOE OBP Office of Energy Efficiency and Renewable Energy (DE-AC05-76RL01830)). This project was also supported by AgBioResearch and the USDA National Institute of Food and Agriculture. NR 13 TC 1 Z9 1 U1 4 U2 8 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1932-104X EI 1932-1031 J9 BIOFUEL BIOPROD BIOR JI Biofuels Bioprod. Biorefining PD NOV-DEC PY 2015 VL 9 IS 6 BP 639 EP 647 DI 10.1002/bbb.1616 PG 9 WC Biotechnology & Applied Microbiology; Energy & Fuels SC Biotechnology & Applied Microbiology; Energy & Fuels GA DA3ZC UT WOS:000367738900012 ER PT J AU Lamers, P Tan, ECD Searcy, EM Scarlata, CJ Cafferty, KG Jacobson, JJ AF Lamers, Patrick Tan, Eric C. D. Searcy, Erin M. Scarlata, Christopher J. Cafferty, Kara G. Jacobson, Jacob J. TI Strategic supply system design - a holistic evaluation of operational and production cost for a biorefinery supply chain SO BIOFUELS BIOPRODUCTS & BIOREFINING-BIOFPR LA English DT Article DE biorefinery; feedstock logistics; depot; bioeconomy; biofuel; advanced feedstock supply system ID BIOMASS PROCESSING DEPOTS; CORN STOVER COMPOSITION AB Pioneer cellulosic biorefineries across the United States rely on a conventional feedstock supply system based on one-year contracts with local growers, who harvest, locally store, and deliver feedstock in low-density format to the conversion facility. While the conventional system is designed for high biomass yield areas, pilot scale operations have experienced feedstock supply shortages and price volatilities due to reduced harvests and competition from other industries. Regional supply dependency and the inability to actively manage feedstock stability and quality, provide operational risks to the biorefinery, which translate into higher investment risk. The advanced feedstock supply system based on a network of depots can mitigate many of these risks and enable wider supply system benefits. This paper compares the two concepts from a system-level perspective beyond mere logistic costs. It shows that while processing operations at the depot increase feedstock supply costs initially, they enable wider system benefits including supply risk reduction (leading to lower interest rates on loans), industry scale-up, conversion yield improvements, and reduced handling equipment and storage costs at the biorefinery. When translating these benefits into cost reductions per liter of gasoline equivalent (LGE), we find that total cost reductions between -$0.46 to -$0.21 per LGE for biochemical and -$0.32 to -$0.12 per LGE for thermochemical conversion pathways are possible. Naturally, these system level benefits will differ between individual actors along the feedstock supply chain. Further research is required with respect to depot sizing, location, and ownership structures. Published 2015. This article is a U.S. Government work and is in the public domain in the USA. Biofuels, Bioproducts and Biorefining published by Society of Industrial Chemistry and John Wiley & Sons Ltd. C1 [Lamers, Patrick; Searcy, Erin M.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Tan, Eric C. D.; Scarlata, Christopher J.] Natl Renewable Energy Lab, Golden, CO USA. [Cafferty, Kara G.] CH2M, Corvallis, OR USA. [Jacobson, Jacob J.] MindsEye Comp LLC, Idaho Falls, ID USA. RP Lamers, P (reprint author), NREL, Idaho Natl Engn Lab, Natl Bioenergy Ctr, 15013 Denver W Pkwy, Golden, CO 80401 USA. EM patrick.lamers@inl.gov FU US Department of Energy [DE-AC07-05ID14517, DE-AC36-08GO28308] FX This work is supported by the US Department of Energy under Contract No. DE-AC07-05ID14517 (INL) and DE-AC36-08GO28308 (NREL). The US Government retains and the publisher, by accepting the article for publication, acknowledges that the US Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for US Government purposes. The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed. No writing assistance was utilized in the production of this manuscript. NR 24 TC 6 Z9 6 U1 3 U2 9 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1932-104X EI 1932-1031 J9 BIOFUEL BIOPROD BIOR JI Biofuels Bioprod. Biorefining PD NOV-DEC PY 2015 VL 9 IS 6 BP 648 EP 660 DI 10.1002/bbb.1575 PG 13 WC Biotechnology & Applied Microbiology; Energy & Fuels SC Biotechnology & Applied Microbiology; Energy & Fuels GA DA3ZC UT WOS:000367738900013 ER PT J AU Ha, M Wu, M AF Ha, Miae Wu, May TI Simulating and evaluating best management practices for integrated landscape management scenarios in biofuel feedstock production SO BIOFUELS BIOPRODUCTS & BIOREFINING-BIOFPR LA English DT Article DE riparian buffer; vegetative barrier; landscape design and management; bioenergy production; switchgrass; sediment; nutrient; nitrogen; phosphorus; South Fork Iowa River ID NONPOINT-SOURCE POLLUTION; VEGETATIVE FILTER STRIPS; WATER ASSESSMENT-TOOL; RIPARIAN BUFFERS; NITROGEN REMOVAL; RIVER-BASIN; QUALITY; SEDIMENT; HYDROLOGY; SOIL AB Sound crop and land management strategies can maintain land productivity and improve the environmental sustainability of agricultural crop and feedstock production. This study evaluates a strategy of incorporating landscape design and management concepts into bioenergy feedstock production. It examines the effect of land conversion and agricultural best management practices (BMPs) on water quality (nutrients and suspended sediments) and hydrology. The strategy was applied to the watershed of the South Fork Iowa River in Iowa, where the focus was on converting low-productivity land to provide cellulosic biomass and implementing riparian buffers. The Soil and Water Assessment Tool (SWAT) was employed to simulate the impact at watershed and sub-basin scales. The study compared the representation of buffers by using trapping efficiency and area ratio methods in SWAT. Landscape design and management scenarios were developed to quantify water quality under (i) current land use, (ii) partial land conversion to switchgrass, and (iii) riparian buffer implementation. Results show that implementation of vegetative barriers and riparian buffer can trap the loss of total nitrogen, total phosphorus, and sediment significantly. The effect increases with the increase of buffer area coverage. Implementing riparian buffer at 30 m width is able to produce 4 million liters of biofuels. When low-productivity land (15.2% of total watershed land area) is converted to grow switchgrass, suspended sediment, total nitrogen, total phosphorus, and nitrate loadings are reduced by 69.3%, 55.5%, 46.1%, and 13.4%, respectively. Results highlight the significant role of lower-productivity land and buffers in cellulosic biomass and provide insights into the design of an integrated landscape with a conservation buffer for future bioenergy feedstock production. Published 2015. This article is a U.S. Government work and is in the public domain in the USA. Biofuels, Bioproducts and Biorefining published by Society of Industrial Chemistry and John Wiley & Sons Ltd. C1 [Ha, Miae] Argonne Natl Lab, Div Energy Syst, Lemont, IL 60439 USA. [Wu, May] Argonne Natl Lab, Lemont, IL 60439 USA. RP Wu, M (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Lemont, IL 60439 USA. EM mwu@anl.gov FU US Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office (BETO); US Department of Energy Office of Science [DE-AC02-06CH11357] FX This work was funded by the US Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office (BETO). The authors would like to thank Ian Bonner, Kara Cafferty, and Jacob Jacobson from Idaho National Laboratory for developing the land use change scenarios. We also thank Kristen Johnson of BETO for the encouragement and support throughout the study. The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory (Argonne). Argonne, a US Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The US government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government. NR 45 TC 0 Z9 0 U1 5 U2 16 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1932-104X EI 1932-1031 J9 BIOFUEL BIOPROD BIOR JI Biofuels Bioprod. Biorefining PD NOV-DEC PY 2015 VL 9 IS 6 BP 709 EP 721 DI 10.1002/bbb.1579 PG 13 WC Biotechnology & Applied Microbiology; Energy & Fuels SC Biotechnology & Applied Microbiology; Energy & Fuels GA DA3ZC UT WOS:000367738900017 ER PT J AU Timm, CM Hansen, RR Doktycz, MJ Retterer, ST Pelletier, DA AF Timm, Collin M. Hansen, Ryan R. Doktycz, Mitchel J. Retterer, Scott T. Pelletier, Dale A. TI Microstencils to generate defined, multi-species patterns of bacteria SO BIOMICROFLUIDICS LA English DT Article ID SPATIAL DYNAMICS; COMMUNITIES; BIOFILMS; RESOLUTION; EVOLUTION; SURFACE; ARRAYS; CELL; INK AB Microbial communities are complex heterogeneous systems that are influenced by physical and chemical interactions with their environment, host, and community members. Techniques that facilitate the quantitative evaluation of how microscale organization influences the morphogenesis of multispecies communities could provide valuable insights into the dynamic behavior and organization of natural communities, the design of synthetic environments for multispecies culture, and the engineering of artificial consortia. In this work, we demonstrate a method for patterning microbes into simple arrangements that allow the quantitative measurement of growth dynamics as a function of their proximity to one another. The method combines parylene-based liftoff techniques with microfluidic delivery to simultaneously pattern multiple bacterial species with high viability using low-cost, customizable methods. Quantitative measurements of bacterial growth for two competing isolates demonstrate that spatial coordination can play a critical role in multispecies growth and structure. (C) 2015 AIP Publishing LLC. C1 [Timm, Collin M.; Doktycz, Mitchel J.; Retterer, Scott T.; Pelletier, Dale A.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. [Hansen, Ryan R.] Kansas State Univ, Dept Chem Engn, Manhattan, KS 66506 USA. [Doktycz, Mitchel J.; Retterer, Scott T.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Doktycz, Mitchel J.; Retterer, Scott T.] Univ Tennessee, Knoxville, TN 37996 USA. RP Retterer, ST (reprint author), Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. EM rettererst@ornl.gov; pelletierda@ornl.gov RI Doktycz, Mitchel/A-7499-2011; OI Doktycz, Mitchel/0000-0003-4856-8343; Pelletier, Dale/0000-0002-4321-7918 FU U.S. DOE Office of Biological and Environmental Research, Genomic Science Program; Laboratory Directed Research and Development Program of Oak Ridge National Laboratory; Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy; U.S. Department of Energy [DEAC05-00OR22725, DE-AC05-00OR22725]; Department of Energy FX The authors would like to acknowledge Amber Bible for creating the fluorescent E. coli K12 strains used in this study. This research was funded by the U.S. DOE Office of Biological and Environmental Research, Genomic Science Program and the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory. A portion of this research was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the U.S. Department of Energy under Contract No. DEAC05-00OR22725. This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains, and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan). NR 34 TC 1 Z9 1 U1 4 U2 6 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1932-1058 J9 BIOMICROFLUIDICS JI Biomicrofluidics PD NOV PY 2015 VL 9 IS 6 AR 064103 DI 10.1063/1.4935938 PG 8 WC Biochemical Research Methods; Biophysics; Nanoscience & Nanotechnology; Physics, Fluids & Plasmas SC Biochemistry & Molecular Biology; Biophysics; Science & Technology - Other Topics; Physics GA DA5CZ UT WOS:000367821100007 PM 26594264 ER PT J AU Bell, SM Edwards, SW AF Bell, Shannon M. Edwards, Stephen W. TI Identification and Prioritization of Relationships between Environmental Stressors and Adverse Human Health Impacts SO ENVIRONMENTAL HEALTH PERSPECTIVES LA English DT Article ID FALSE DISCOVERY RATE; ASSOCIATION; CHEMICALS AB Background: There are > 80,000 chemicals in commerce with few data available describing their impacts on human health. Biomonitoring surveys, such as the NHANES (National Health and Nutrition Examination Survey), offer one route to identifying possible relationships between environmental chemicals and health impacts, but sparse data and the complexity of traditional models make it difficult to leverage effectively. Objective: We describe a workflow to efficiently and comprehensively evaluate and prioritize chemicalhealth impact relationships from the NHANES biomonitoring survey studies. Methods: Using a frequent itemset mining (FIM) approach, we identified relationships between chemicals and health biomarkers and diseases. Results: The FIM method identified 7,848 relationships between 219 chemicals and 93 health outcomes/biomarkers. Two case studies used to evaluate the FIM rankings demonstrate that the FIM approach is able to identify published relationships. Because the relationships are derived from the vast majority of the chemicals monitored by NHANES, the resulting list of associations is appropriate for evaluating results from targeted data mining or identifying novel candidate relationships for more detailed investigation. Conclusions: Because of the computational efficiency of the FIM method, all chemicals and health effects can be considered in a single analysis. The resulting list provides a comprehensive summary of the chemical/health co-occurrences from NHANES that are higher than expected by chance. This information enables ranking and prioritization on chemicals or health effects of interest for evaluation of published results and design of future studies. C1 [Bell, Shannon M.] Oak Ridge Inst Sci & Educ, Oak Ridge, TN USA. [Bell, Shannon M.; Edwards, Stephen W.] US EPA, Integrated Syst Toxicol Div, Natl Hlth & Environm Effects Res Lab, Off Res & Dev, Res Triangle Pk, NC 27709 USA. RP Edwards, SW (reprint author), US EPA, 109 TW Alexander Dr,Mail Code B105-01, Res Triangle Pk, NC 27709 USA. EM edwards.stephen@epa.gov FU U. S. Environmental Protection Agency (EPA); Internship/Research Participation Program at the Office of Research and Development, U.S. EPA FX The information in this document was funded wholly by the U. S. Environmental Protection Agency (EPA). S.M.B was supported by an appointment to the Internship/Research Participation Program at the Office of Research and Development, U.S. EPA, administrered by the Oak Ridge Institute for Science and Education through an interagency agreement between the U.S. Department of Energy and the U.S. EPA. NR 24 TC 4 Z9 4 U1 1 U2 6 PU US DEPT HEALTH HUMAN SCIENCES PUBLIC HEALTH SCIENCE PI RES TRIANGLE PK PA NATL INST HEALTH, NATL INST ENVIRONMENTAL HEALTH SCIENCES, PO BOX 12233, RES TRIANGLE PK, NC 27709-2233 USA SN 0091-6765 EI 1552-9924 J9 ENVIRON HEALTH PERSP JI Environ. Health Perspect. PD NOV PY 2015 VL 123 IS 11 BP 1193 EP 1199 DI 10.1289/ehp.1409138 PG 7 WC Environmental Sciences; Public, Environmental & Occupational Health; Toxicology SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Toxicology GA DA1VW UT WOS:000367584600023 PM 25859761 ER PT J AU Marino, R Rosenberg, D Herbert, C Pouquet, A AF Marino, Raffaele Rosenberg, Duane Herbert, Corentin Pouquet, Annick TI Interplay of waves and eddies in rotating stratified turbulence and the link with kinetic-potential energy partition SO EPL LA English DT Article ID INVERSE CASCADES; ASPECT-RATIO; LARGE SCALES; FLOWS; SPECTRA; RESOLUTION; FLUID; TRANSITION; MODES AB The interplay between waves and eddies in stably stratified rotating flows is investigated by means of world-class direct numerical simulations using up to 3072(3) grid points. Strikingly, we find that the shift from vortex-to wave-dominated dynamics occurs at a wave number k(R) which does not depend on the Reynolds number, suggesting that the partition of energy between wave and vortical modes is not sensitive to the development of turbulence at the smaller scales. We also show that k(R) is comparable to the wave number at which exchanges between kinetic and potential modes stabilize at close to equipartition, emphasizing the role of potential energy, as conjectured in the atmosphere and the oceans. Moreover, k(R) varies as the inverse of the Froude number as explained by the scaling prediction proposed, consistently with recent observations and modeling of the Mesosphere-Lower Thermosphere and of the ocean. editor's choice Copyright (C) EPLA, 2015 C1 [Marino, Raffaele] Univ Lyon, Ecole Normale Super Lyon, F-69007 Lyon, France. [Marino, Raffaele] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Rosenberg, Duane] Oak Ridge Natl Lab, Natl Ctr Computat Sci, Oak Ridge, TN 37831 USA. [Rosenberg, Duane] SciTec Inc, Princeton, NJ 08540 USA. [Herbert, Corentin] Weizmann Inst Sci, Dept Phys Complex Syst, IL-76100 Rehovot, Israel. [Pouquet, Annick] Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80309 USA. [Pouquet, Annick] Natl Ctr Atmospher Res, Boulder, CO 80307 USA. RP Marino, R (reprint author), Univ Lyon, Ecole Normale Super Lyon, F-69007 Lyon, France. RI Marino, Raffaele/M-5130-2015; Herbert, Corentin/C-4306-2012 OI Marino, Raffaele/0000-0002-7372-8620; Herbert, Corentin/0000-0001-8705-624X FU Regional Operative Program Calabria; DLR from the Oak Ridge Leadership Computing Facility at ORNL via the Office of Science under DOE [DE-AC05-00OR22725]; LASP; NSF; [FP7PIRSES-2010-269297-Turbo-plasmas] FX RM received support from the Regional Operative Program Calabria ESF2007-13 and Marie Curie FP7PIRSES-2010-269297-Turbo-plasmas, and DLR from the Oak Ridge Leadership Computing Facility at ORNL via the Office of Science under DOE Contract No. DE-AC05-00OR22725. AP is thankful for support from LASP. Computer time was also provided by the National Science Foundation on kraken, the Advanced Scientific Discovery initiative and by the Geophysical Turbulence Program at the National Center for Atmospheric Research. NCAR is sponsored by NSF. NR 44 TC 2 Z9 2 U1 3 U2 6 PU EPL ASSOCIATION, EUROPEAN PHYSICAL SOCIETY PI MULHOUSE PA 6 RUE DES FRERES LUMIERE, MULHOUSE, 68200, FRANCE SN 0295-5075 EI 1286-4854 J9 EPL-EUROPHYS LETT JI EPL PD NOV PY 2015 VL 112 IS 4 AR 49001 DI 10.1209/0295-5075/112/49001 PG 6 WC Physics, Multidisciplinary SC Physics GA CZ5TO UT WOS:000367165100030 ER PT J AU Happs, RM Guan, XY Resch, MG Davis, MF Beckham, GT Tan, ZP Crowley, MF AF Happs, Renee M. Guan, Xiaoyang Resch, Michael G. Davis, Mark F. Beckham, Gregg T. Tan, Zhongping Crowley, Michael F. TI O-glycosylation effects on family 1 carbohydrate-binding module solution structures SO FEBS JOURNAL LA English DT Article DE carbohydrate-binding modules; cellulose; glycosylation; molecular dynamics; nuclear magnetic resonance ID REESEI CELLOBIOHYDROLASE-I; CELLULOSE-BINDING; TRICHODERMA-REESEI; MICROCRYSTALLINE CELLULOSE; POLYSACCHARIDE RECOGNITION; CRYSTALLINE CELLULOSE; LIMITED PROTEOLYSIS; MOLECULAR-DYNAMICS; FUNCTIONAL DOMAINS; NMR-SPECTROSCOPY AB Family 1 carbohydrate-binding modules (CBMs) are ubiquitous components of multimodular fungal enzymes that degrade plant cell wall polysaccharides and bind specifically to cellulose. Native glycosylation of family 1 CBMs has been shown to substantially impact multiple physical properties, including thermal and proteolytic stability and cellulose binding affinity. To gain molecular insights into the changes in CBM properties upon glycosylation, solution structures of two glycoforms of a Trichoderma reesei family 1 CBM were studied by NMR spectroscopy: a glycosylated family 1 CBM with a mannose group attached to both Thr1 and Ser3 and a second family 1 CBM with single mannose groups attached to Thr1, Ser3 and Ser14. The structures clearly reveal that monosaccharides at both Ser3 and Ser14 on family 1 CBMs present additional cellulose binding platforms, similar to well-characterized aromatic residues at the binding interface, which align to the cellulose surface. These results are in agreement with previous experimental work demonstrating that glycans at Ser3 and Ser14 impart significant improvements in binding affinity. Additionally, detailed analysis of the NMR structures and molecular simulations indicates that the protein backbone of the CBM is not significantly altered by attachment of monosaccharides, and that the mannose attached to Ser14 may be more flexible than the mannose at Ser3. Overall, the present study reveals how family 1 CBM structures are affected by covalent attachment of monosaccharides, which are likely important post-translational modifications of these common subdomains of fungal plant cell wall degrading enzymes. C1 [Happs, Renee M.; Resch, Michael G.; Davis, Mark F.; Beckham, Gregg T.] Natl Bioenergy Ctr, Natl Renewable Energy Lab, Golden, CO USA. [Guan, Xiaoyang; Tan, Zhongping] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA. [Guan, Xiaoyang; Tan, Zhongping] Univ Colorado, BioFrontiers Inst, Boulder, CO 80309 USA. [Crowley, Michael F.] Natl Renewable Energy Lab, Biosci Ctr, Golden, CO 80401 USA. RP Crowley, MF (reprint author), Natl Renewable Energy Lab, Biosci Ctr, 15013 Denver West Pkwy, Golden, CO 80401 USA. EM zhongping.tan@colorado.edu; michael.crowley@nrel.gov OI davis, mark/0000-0003-4541-9852 FU US Department of Energy's Bioenergy Technologies Office (DOE-BETO) [DE-AC36-08GO28308]; National Renewable Energy Laboratory; National Science Foundation [CHE - 1454925] FX This work was supported by the US Department of Energy's Bioenergy Technologies Office (DOE-BETO), Contract No. DE-AC36-08GO28308 with the National Renewable Energy Laboratory. XG and ZT thank the National Science Foundation under CHE - 1454925 for funding. We thank Dr Lisa Warner for helpful discussions and for critically reading the manuscript. NR 72 TC 2 Z9 2 U1 7 U2 17 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1742-464X EI 1742-4658 J9 FEBS J JI FEBS J. PD NOV PY 2015 VL 282 IS 22 BP 4341 EP 4356 DI 10.1111/febs.13500 PG 16 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA DA4AK UT WOS:000367742300008 PM 26307003 ER PT J AU Spotts, R Chumbley, LS AF Spotts, Ryan Chumbley, L. Scott TI Objective Analysis of Impressed Chisel Toolmarks SO JOURNAL OF FORENSIC SCIENCES LA English DT Article DE forensic science; statistical comparison; chisel; impression; algorithm; toolmark ID STATISTICAL ALGORITHM AB Historical and recent challenges to the practice of comparative forensic examination have created a driving force for the formation of objective methods for toolmark identification. In this study, fifty sequentially manufactured chisels were used to create impression toolmarks in lead (500 toolmarks total). An algorithm previously used to statistically separate known matching and nonmatching striated screwdriver marks and quasi-striated plier marks was used to evaluate the chisel marks. Impression toolmarks, a more complex form of toolmark, pose a more difficult test for the algorithm that was originally designed for striated toolmarks. Results show in this instance that the algorithm can separate matching and nonmatching impression marks, providing further validation of the assumption that toolmarks are identifiably unique. C1 [Spotts, Ryan; Chumbley, L. Scott] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. RP Chumbley, LS (reprint author), Iowa State Univ, Mat Sci & Engn Dept, 214 Wilhelm Hall, Ames, IA 50010 USA. EM chumbley@iastate.edu FU National Institute of Justice; U.S. Department of Energy, DOE, Office of Science, Basic Energy Sciences, Materials Science and Engineering Division; U.S. DOE by Iowa State University [DE-AC02-07CH11358]; National Institute of Justice [2011-DNR-0230] FX Supported by the National Institute of Justice and the U.S. Department of Energy, DOE, Office of Science, Basic Energy Sciences, Materials Science and Engineering Division. The research was performed at the Ames Laboratory, which is operated for the U.S. DOE by Iowa State University under contract number DE-AC02-07CH11358. Funding was provided by award number 2011-DNR-0230 from the National Institute of Justice NR 10 TC 1 Z9 1 U1 1 U2 2 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0022-1198 EI 1556-4029 J9 J FORENSIC SCI JI J. Forensic Sci. PD NOV PY 2015 VL 60 IS 6 BP 1436 EP 1440 DI 10.1111/1556-4029.12863 PG 5 WC Medicine, Legal SC Legal Medicine GA DA3CA UT WOS:000367672300006 PM 26250933 ER PT J AU Ashenfelter, J Balantekin, B Band, HR Barclay, G Bass, CD Berish, D Bowden, NS Bowes, A Brodsky, JP Bryan, CD Cherwinka, JJ Chu, R Classen, T Commeford, K Davee, D Dean, D Deichert, G Diwan, MV Dolinski, MJ Dolph, J Dwyer, DA Gaison, JK Galindo-Uribarri, A Gilje, K Glenn, A Goddard, BW Green, M Han, K Hans, S Heeger, KM Heffron, B Jaffe, DE Langford, TJ Littlejohn, BR Caicedo, DAM McKeown, RD Mendenhall, MP Mueller, P Mumm, HP Napolitano, J Neilson, R Norcini, D Pushin, D Qian, X Romero, E Rosero, R Saldana, L Seilhan, BS Sharma, R Sheets, S Stemen, NT Surukuchi, PT Varner, RL Viren, B Wang, W White, B White, C Wilhelmi, J Williams, C Wise, T Yao, H Yeh, M Yen, YR Zangakis, G Zhang, C Zhang, X AF Ashenfelter, J. Balantekin, B. Band, H. R. Barclay, G. Bass, C. D. Berish, D. Bowden, N. S. Bowes, A. Brodsky, J. P. Bryan, C. D. Cherwinka, J. J. Chu, R. Classen, T. Commeford, K. Davee, D. Dean, D. Deichert, G. Diwan, M. V. Dolinski, M. J. Dolph, J. Dwyer, D. A. Gaison, J. K. Galindo-Uribarri, A. Gilje, K. Glenn, A. Goddard, B. W. Green, M. Han, K. Hans, S. Heeger, K. M. Heffron, B. Jaffe, D. E. Langford, T. J. Littlejohn, B. R. Caicedo, D. A. Martinez McKeown, R. D. Mendenhall, M. P. Mueller, P. Mumm, H. P. Napolitano, J. Neilson, R. Norcini, D. Pushin, D. Qian, X. Romero, E. Rosero, R. Saldana, L. Seilhan, B. S. Sharma, R. Sheets, S. Stemen, N. T. Surukuchi, P. T. Varner, R. L. Viren, B. Wang, W. White, B. White, C. Wilhelmi, J. Williams, C. Wise, T. Yao, H. Yeh, M. Yen, Y. R. Zangakis, G. Zhang, C. Zhang, X. TI Light collection and pulse-shape discrimination in elongated scintillator cells for the PROSPECT reactor antineutrino experiment SO JOURNAL OF INSTRUMENTATION LA English DT Article DE Neutrino detectors; Particle identification methods; Calorimeters ID NEUTRON DETECTION; LIQUID SCINTILLATORS; DETECTOR AB A meter-long, 23-liter EJ-309 liquid scintillator detector has been constructed to study the light collection and pulse-shape discrimination performance of elongated scintillator cells for the PROSPECT reactor antineutrino experiment. The magnitude and uniformity of light collection and neutron-gamma discrimination power in the energy range of antineutrino inverse beta decay products have been studied using gamma and spontaneous fission calibration sources deployed along the cell axis. We also study neutron-gamma discrimination and light collection abilities for differing PMT and reflector configurations. Key design features for optimizing MeV-scale response and background rejection capabilities are identified. C1 [Ashenfelter, J.; Band, H. R.; Gaison, J. K.; Han, K.; Heeger, K. M.; Langford, T. J.; Norcini, D.; Saldana, L.; Stemen, N. T.; Wise, T.] Yale Univ, Dept Phys, Wright Lab, New Haven, CT 06520 USA. [Balantekin, B.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Barclay, G.; Bryan, C. D.; Deichert, G.] Oak Ridge Natl Lab, High Flux Isotope Reactor, Oak Ridge, TN USA. [Bass, C. D.] Le Moyne Coll, Dept Chem & Phys, Syracuse, NY USA. [Berish, D.; Napolitano, J.; Wilhelmi, J.; Zangakis, G.] Temple Univ, Dept Phys, Philadelphia, PA 19122 USA. [Bowden, N. S.; Brodsky, J. P.; Classen, T.; Glenn, A.; Seilhan, B. S.; Sheets, S.] Lawrence Livermore Natl Lab, Div Phys, Livermore, CA USA. [Bowes, A.; Gilje, K.; Littlejohn, B. R.; Caicedo, D. A. Martinez; Surukuchi, P. T.; White, C.; Zhang, X.] IIT, Dept Phys, Chicago, IL 60616 USA. [Cherwinka, J. J.] Univ Wisconsin, Phys Sci Lab, Madison, WI USA. [Chu, R.; Dean, D.; Galindo-Uribarri, A.; Green, M.; Heffron, B.; Mueller, P.; Romero, E.; Varner, R. L.; Wang, W.; White, B.; Williams, C.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Chu, R.; Galindo-Uribarri, A.; Heffron, B.; Romero, E.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Commeford, K.; Dolinski, M. J.; Goddard, B. W.; Neilson, R.; Yen, Y. R.] Drexel Univ, Dept Phys, Philadelphia, PA 19104 USA. [Davee, D.; McKeown, R. D.; Yao, H.] Coll William & Mary, Dept Phys, Williamsburg, VA 23185 USA. [Diwan, M. V.; Dolph, J.; Jaffe, D. E.; Qian, X.; Sharma, R.; Viren, B.; Zhang, C.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Dwyer, D. A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [Hans, S.; Rosero, R.; Yeh, M.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Mendenhall, M. P.; Mumm, H. P.] NIST, Gaithersburg, MD 20899 USA. [Pushin, D.] Univ Waterloo, Inst Quantum Comp, Waterloo, ON N2L 3G1, Canada. [Pushin, D.] Univ Waterloo, Dept Phys, Waterloo, ON N2L 3G1, Canada. RP Han, K (reprint author), Yale Univ, Dept Phys, Wright Lab, New Haven, CT 06520 USA. EM ke.han@yale.edu; thomas.langford@yale.edu; blittlej@iit.edu; danielle.norcini@yale.edu RI Han, Ke/D-3697-2017; OI Han, Ke/0000-0002-1609-7367; Surukuchi, Pranava Teja/0000-0002-7858-0370; Pushin, Dmitry/0000-0002-4594-3403; Norcini, Danielle/0000-0003-0075-5326; Zhang, Chao/0000-0003-2298-6272 FU U.S. Department of Energy Office of Science; National Science Foundation; Yale University; Illinois Institute of Technology; High Flux Isotope Reactor FX This material is based upon work supported by the U.S. Department of Energy Office of Science and the National Science Foundation. Additional support for this work is provided by Yale University and the Illinois Institute of Technology. We gratefully acknowledge the support and hospitality of the High Flux Isotope Reactor, managed by UT-Battelle for the U.S. Department of Energy. NR 45 TC 2 Z9 2 U1 3 U2 10 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD NOV PY 2015 VL 10 AR P11004 DI 10.1088/1748-0221/10/11/P11004 PG 22 WC Instruments & Instrumentation SC Instruments & Instrumentation GA DA3DH UT WOS:000367676000014 ER PT J AU Price, MN Arkin, AP AF Price, Morgan N. Arkin, Adam P. TI Weakly Deleterious Mutations and Low Rates of Recombination Limit the Impact of Natural Selection on Bacterial Genomes SO MBIO LA English DT Article ID ESCHERICHIA-COLI; MOLECULAR EVOLUTION; GENE GENEALOGIES; POPULATION; DRIFT; PROCHLOROCOCCUS; SPECIATION; MODEL; PATTERNS; RATCHET AB Free-living bacteria are usually thought to have large effective population sizes, and so tiny selective differences can drive their evolution. However, because recombination is infrequent, "background selection" against slightly deleterious alleles should reduce the effective population size (N-e) by orders of magnitude. For example, for a well-mixed population with 10(12) individuals and a typical level of homologous recombination (r/m = 3, i.e., nucleotide changes due to recombination [r] occur at 3 times the mutation rate [m]), we predict that Ne is < 10(7). An argument for high N-e values for bacteria has been the high genetic diversity within many bacterial "species," but this diversity may be due to population structure: diversity across subpopulations can be far higher than diversity within a subpopulation, which makes it difficult to estimate N-e correctly. Given an estimate of N-e, standard population genetics models imply that selection should be sufficient to drive evolution if N-e x s is >1, where s is the selection coefficient. We found that this remains approximately correct if background selection is occurring or when population structure is present. Overall, we predict that even for free-living bacteria with enormous populations, natural selection is only a significant force if s is above 10(-7) or so. IMPORTANCE Because bacteria form huge populations with trillions of individuals, the simplest theoretical prediction is that the better allele at a site would predominate even if its advantage was just 10(-9) per generation. In other words, virtually every nucleotide would be at the local optimum in most individuals. A more sophisticated theory considers that bacterial genomes have millions of sites each and selection events on these many sites could interfere with each other, so that only larger effects would be important. However, bacteria can exchange genetic material, and in principle, this exchange could eliminate the interference between the evolution of the sites. We used simulations to confirm that during multisite evolution with realistic levels of recombination, only larger effects are important. We propose that advantages of less than 10(-7) are effectively neutral. C1 [Price, Morgan N.; Arkin, Adam P.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Price, MN (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. EM morgannprice@yahoo.com RI Arkin, Adam/A-6751-2008 OI Arkin, Adam/0000-0002-4999-2931 FU U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research [DE-AC02-05CH11231] FX This material by ENIGMA-Ecosystems and Networks Integrated with Genes and Molecular Assemblies (http://enigma.lbl.gov), a Scientific Focus Area Program at Lawrence Berkeley National Laboratory, is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research under contract DE-AC02-05CH11231. NR 43 TC 2 Z9 2 U1 2 U2 11 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 2150-7511 J9 MBIO JI mBio PD NOV-DEC PY 2015 VL 6 IS 6 AR e01302-15 DI 10.1128/mBio.01302-15 PG 10 WC Microbiology SC Microbiology GA DA0YY UT WOS:000367524700009 PM 26670382 ER PT J AU Maltz, JS Tison, GH Alley, HF Budinger, TF Owens, CD Olgin, J AF Maltz, Jonathan S. Tison, Geoffrey H. Alley, Hugh F. Budinger, Thomas F. Owens, Christopher D. Olgin, Jeffrey TI Measurement of brachial artery endothelial function using a standard blood pressure cuff SO PHYSIOLOGICAL MEASUREMENT LA English DT Article DE endothelial function; arterial function; cardiovascular disease; smooth muscle; reactive hyperemia; atherosclerosis ID FLOW-MEDIATED DILATION; SMOOTH-MUSCLE RELAXATION; CARDIOVASCULAR EVENTS; NITRIC-OXIDE; CORONARY ATHEROSCLEROSIS; DEPENDENT DILATION; VASCULAR-DISEASE; EUROPEAN-SOCIETY; PREDICTIVE-VALUE; TRANSIT TIMES AB The integrity of endothelial function in major arteries (EFMA) is a powerful independent predictor of heart attack and stroke. Existing ultrasound-based non-invasive assessment methods are technically challenging and suitable only for laboratory settings. EFMA, like blood pressure (BP), is both acutely and chronically affected by factors such as lifestyle and medication. Consequently, laboratory-based measurements cannot fully gauge the effects of medical interventions on EFMA. EFMA and BP have, arguably, comparable (but complementary) value in the assessment of cardiovascular health. Widespread deployment of EFMA assessment is thus a desirable clinical goal. To this end, we propose a device based on modifying the measurement protocol of a standard electronic sphygmomanometer. The protocol involves inflating the cuff to sub-diastolic levels to enable recording of the pulse waveform before and after vasodilatory stimulus. The mechanical unloading of the arterial wall provided by the cuff amplifies the distension that occurs with each pulse, which is measured as a pressure variation in the cuff. We show that the height of the rising edge of each pulse is proportional to the change in lumen area between diastole and systole. This allows the effect of vasodilatory stimuli on the artery to be measured with high sensitivity. We compare the proposed cuff flow-mediated dilation (cFMD) method to ultrasound flow-mediated dilation (uFMD). We find significant correlation (r = 0.55, p = 0.003, N = 27) between cFMD- and uFMD-based metrics obtained when the release of a 5 min cuff occlusion is employed to induce endothelial stimulus via reactive hyperemia. cFMD is approximately proportional to the square of uFMD, representing a typical increase in sensitivity to vasodilation of 300-600%. This study illustrates the potential for an individual to conveniently measure his/her EFMA by using a low-cost reprogrammed home sphygmomanometer. C1 [Maltz, Jonathan S.; Budinger, Thomas F.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Dept Struct Biol & Imaging, Berkeley, CA 94720 USA. [Tison, Geoffrey H.; Olgin, Jeffrey] Univ Calif San Francisco, Div Cardiol, San Francisco, CA 94143 USA. [Tison, Geoffrey H.; Olgin, Jeffrey] Univ Calif San Francisco, Cardiovasc Res Inst, San Francisco, CA 94143 USA. [Alley, Hugh F.; Owens, Christopher D.] San Francisco VA Med Ctr, Div Vasc & Endovasc Surg, San Francisco, CA 94143 USA. [Alley, Hugh F.; Owens, Christopher D.] Univ Calif San Francisco, San Francisco, CA 94143 USA. RP Maltz, JS (reprint author), Cyclotron Rd,Mail Stop 55R0121, Berkeley, CA 94720 USA. EM jon@eecs.berkeley.edu FU US Department of Energy [DE-AC02-05CH11231]; Berkeley Lab Innovation Grant; Office of Science, Office of Basic Energy Sciences of the US Department of Energy [DE-AC02-05CH11231]; United States Government FX Funding for this work was provided, in part, by a Berkeley Lab Innovation Grant. The support and advice of Pam Seidenman and Bill Shelander of the Innovation and Partnerships Office is greatly appreciated.; This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under Contract No. DE-AC02-05CH11231.; this document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.; This manuscript has been authored by an author at Lawrence Berkeley National Laboratory under Contract No. DE-AC02-05CH11231 with the US Department of Energy. The US Government retains, and the publisher, by accepting the article for publication, acknowledges, that the US Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for US Government purposes. NR 50 TC 0 Z9 0 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0967-3334 EI 1361-6579 J9 PHYSIOL MEAS JI Physiol. Meas. PD NOV PY 2015 VL 36 IS 11 BP 2247 EP 2268 DI 10.1088/0967-3334/36/11/2247 PG 22 WC Biophysics; Engineering, Biomedical; Physiology SC Biophysics; Engineering; Physiology GA DA5LK UT WOS:000367844400003 PM 26393958 ER PT J AU Weaver, WW Robinett, RD Parker, GG Wilson, DG AF Weaver, Wayne W. Robinett, Rush D., III Parker, Gordon G. Wilson, David G. TI Distributed control and energy storage requirements of networked Dc microgrids SO CONTROL ENGINEERING PRACTICE LA English DT Article DE Microgrid; Distributed control; Energy storage; Optimization; Power electronics ID SYSTEMS; PENETRATION; DESIGN; DROOP AB Microgrids are a key technology to help improve the reliability of electric power systems and increase the integration of renewable energy sources. Interconnection and networking of smaller microgrids into larger systems have potential for even further improvements. This paper presents a novel approach to a distributed droop control and energy storage in networked dc microgrids. Distributed control is necessary to prevent single points of failure along with flexibility and adaptability to changing energy resources. The results show that systems with random sources and fast update rates, a networked microgrid structure can minimize required energy storage requirements. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Weaver, Wayne W.; Robinett, Rush D., III; Parker, Gordon G.] Michigan Technol Univ, Houghton, MI 49931 USA. [Wilson, David G.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Weaver, WW (reprint author), Michigan Technol Univ, 1400 Townsend Dr, Houghton, MI 49931 USA. EM wwweaver@mtu.edu; rdrobine@mtu.edu; ggparker@mtu.edu; dwilso@sandia.gov FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 24 TC 8 Z9 8 U1 2 U2 7 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0967-0661 EI 1873-6939 J9 CONTROL ENG PRACT JI Control Eng. Practice PD NOV PY 2015 VL 44 BP 10 EP 19 DI 10.1016/j.conengprac.2015.06.008 PG 10 WC Automation & Control Systems; Engineering, Electrical & Electronic SC Automation & Control Systems; Engineering GA CZ9HG UT WOS:000367408000002 ER PT J AU China, S Kulkarni, G Scarnato, BV Sharma, N Pekour, M Shilling, JE Wilson, J Zelenyuk, A Chand, D Liu, S Aiken, AC Dubey, M Laskin, A Zaveri, RA Mazzoleni, C AF China, Swarup Kulkarni, Gourihar Scarnato, Barbara V. Sharma, Noopur Pekour, Mikhail Shilling, John E. Wilson, Jacqueline Zelenyuk, Alla Chand, Duli Liu, Shang Aiken, Allison C. Dubey, Manvendra Laskin, Alexander Zaveri, Rahul A. Mazzoleni, Claudio TI Morphology of diesel soot residuals from supercooled water droplets and ice crystals: implications for optical properties SO ENVIRONMENTAL RESEARCH LETTERS LA English DT Article DE soot; morphology; ice cloud processing; optical properties; radiative forcing ID DISCRETE-DIPOLE APPROXIMATION; CIRRUS CLOUD FORMATION; BLACK-CARBON; FLAME SOOT; AEROSOL-PARTICLES; RADIATION BUDGET; MINERAL DUST; NUCLEATION; DEPENDENCE; MODEL AB Freshly emitted soot particles are fractal-like aggregates, but atmospheric processes often transform their morphology. Morphology of soot particles plays an important role in determining their optical properties, life cycle and hence their effect on Earth's radiative balance. However, little is known about the morphology of soot particles that participated in cold cloud processes. Here we report results from laboratory experiments that simulate cold cloud processing of diesel soot particles by allowing them to form supercooled droplets and ice crystals at -20 and -40 degrees C, respectively. Electron microscopy revealed that soot residuals from ice crystals were more compact (roundness similar to 0.55) than those from supercooled droplets (roundness similar to 0.45), while nascent soot particles were the least compact (roundness similar to 0.41). Optical simulations using the discrete dipole approximation showed that the more compact structure enhances soot single scattering albedo by a factor up to 1.4, thereby reducing the top-of-the-atmosphere direct radiative forcing by similar to 63%. These results underscore that climate models should consider the morphological evolution of soot particles due to cold cloud processing to improve the estimate of direct radiative forcing of soot. C1 [China, Swarup; Sharma, Noopur; Mazzoleni, Claudio] Michigan Technol Univ, Atmospher Sci Program, Houghton, MI 49931 USA. [China, Swarup; Sharma, Noopur; Mazzoleni, Claudio] Michigan Technol Univ, Dept Phys, Houghton, MI 49931 USA. [Kulkarni, Gourihar; Pekour, Mikhail; Shilling, John E.; Chand, Duli; Zaveri, Rahul A.] Pacific NW Natl Lab, Atmospher Sci & Global Change Div, Richland, WA 99352 USA. [Scarnato, Barbara V.] Naval Postgrad Sch, Dept Meteorol, Monterey, CA USA. [Wilson, Jacqueline; Zelenyuk, Alla] Pacific NW Natl Lab, Chem Phys & Anal, Richland, WA 99352 USA. [Liu, Shang; Aiken, Allison C.; Dubey, Manvendra] Los Alamos Natl Lab, Earth & Environm Sci Div, Los Alamos, NM USA. [Laskin, Alexander] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. RP China, S (reprint author), Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. EM schina@mtu.edu; cmazzoleni@mtu.edu RI Dubey, Manvendra/E-3949-2010; Liu, Shang/F-9085-2011; Shilling, John/L-6998-2015; Zaveri, Rahul/G-4076-2014; Laskin, Alexander/I-2574-2012; Aiken, Allison/B-9659-2009 OI Dubey, Manvendra/0000-0002-3492-790X; Liu, Shang/0000-0002-3403-8651; Shilling, John/0000-0002-3728-0195; Zaveri, Rahul/0000-0001-9874-8807; Laskin, Alexander/0000-0002-7836-8417; Aiken, Allison/0000-0001-5749-7626 FU US Department of Energy's Atmospheric System Research [DE-SC0010019]; US National Science Foundation [AGS-1119164]; Research Initiation Grant from Department of Defense; NASA Earth and Space Science Graduate Fellowship [NNX13AN68H]; US DOE Office of Biological and Environmental Research, Atmospheric System Research Program [F265]; US DOE Office of Biological and Environmental Research (OBER), Atmospheric System Research Program; Environmental Molecular Sciences Laboratory (EMSL); DOE's OBER at Pacific Northwest National Laboratory (PNNL); Battelle Memorial Institute [DE-AC0576RL01830] FX This work was funded by the US Department of Energy's Atmospheric System Research (grant no DE-SC0010019), the US National Science Foundation grant (grant no AGS-1119164) and the Research Initiation Grant from Department of Defense. S China and C Mazzoleni acknowledge a NASA Earth and Space Science Graduate Fellowship (grant no NNX13AN68H). We thank Owen P Mills for helping with the TEM work. BS would like to acknowledge Denis Richard for providing the aggregation code. MD, AA and SL acknowledge support by US DOE Office of Biological and Environmental Research, Atmospheric System Research Program, F265 to LANL. GK, MP, JS, JW, AZ, DC, AL and RZ acknowledge support by US DOE Office of Biological and Environmental Research (OBER), Atmospheric System Research Program. Support was also provided by the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOE's OBER at Pacific Northwest National Laboratory (PNNL). PNNL is operated for DOE by Battelle Memorial Institute under contract DE-AC0576RL01830. NR 88 TC 4 Z9 4 U1 6 U2 27 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-9326 J9 ENVIRON RES LETT JI Environ. Res. Lett. PD NOV PY 2015 VL 10 IS 11 AR 114010 DI 10.1088/1748-9326/10/11/114010 PG 10 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA CZ6ZO UT WOS:000367249900014 ER PT J AU Fyke, J Matthews, HD AF Fyke, Jeremy Matthews, H. Damon TI A probabilistic analysis of cumulative carbon emissions and longterm planetary warming SO ENVIRONMENTAL RESEARCH LETTERS LA English DT Article DE cumulative carbon; probabalistic projections; climate change ID INTEGRATED ASSESSMENT MODELS; CLIMATE-CHANGE MITIGATION; 2 DEGREES-C; POLICY; STABILIZATION; UNCERTAINTY; SENSITIVITY; TARGETS; WORLD; CO2 AB Efforts to mitigate and adapt to long-term climate change could benefit greatly from probabilistic estimates of cumulative carbon emissions due to fossil fuel burning and resulting CO2-induced planetary warming. Here we demonstrate the use of a reduced-form model to project these variables. We performed simulations using a large-ensemble framework with parametric uncertainty sampled to produce distributions of future cumulative emissions and consequent planetary warming. A hind-cast ensemble of simulations captured 1980-2012 historical CO2 emissions trends and an ensemble of future projection simulations generated a distribution of emission scenarios that qualitatively resembled the suite of Representative and Extended Concentration Pathways. The resulting cumulative carbon emission and temperature change distributions are characterized by 5-95th percentile ranges of 0.96-4.9 teratonnes C(TtC) and 1.4 degrees C-8.5 degrees C, respectively, with 50th percentiles at 3.1 TtC and 4.7 degrees C. Within the wide range of policy-related parameter combinations that produced these distributions, we found that low-emission simulations were characterized by both high carbon prices and low costs of non-fossil fuel energy sources, suggesting the importance of these two policy levers in particular for avoiding dangerous levels of climate warming. With this analysis we demonstrate a probabilistic approach to the challenge of identifying strategies for limiting cumulative carbon emissions and assessing likelihoods of surpassing dangerous temperature thresholds. C1 [Fyke, Jeremy] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Matthews, H. Damon] Concordia Univ, Montreal, PQ, Canada. RP Fyke, J (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. EM fyke@lanl.gov FU United States Department of Energy Earth System Modeling Program; National Science and Engineering Research Council of Canada; Ouranos Research Consortium [LANLLA-UR-15-28788] FX We thank two anonymous reviewers for highly insightful and productive criticisms. In addition, we thank Neil Swart (Canadian Centre for Climate Modelling and Analysis), Ramon de Elia and David Huard (Ouranos Research Consortium) and Jean-Sebastian Landry (McGill University) for valuable comments. Jeremy Fyke is supported by the United States Department of Energy Earth System Modeling Program; Damon Matthews is supported by a National Science and Engineering Research Council of Canada Discovery grant and the Ouranos Research Consortium LANLLA-UR-15-28788. NR 49 TC 0 Z9 0 U1 3 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-9326 J9 ENVIRON RES LETT JI Environ. Res. Lett. PD NOV PY 2015 VL 10 IS 11 AR 115007 DI 10.1088/1748-9326/10/11/115007 PG 10 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA CZ6ZO UT WOS:000367249900035 ER PT J AU Chen, Q Luan, ZJ Yu, HL Cheng, XL Xu, JH AF Chen, Qi Luan, Zheng-Jiao Yu, Hui-Lei Cheng, Xiaolin Xu, Jian-He TI Rational design of a carboxylic esterase RhEst1 based on computational analysis of substrate binding SO JOURNAL OF MOLECULAR GRAPHICS & MODELLING LA English DT Article DE Carboxylic esterase; Molecular dynamics simulation; Rational design; Structural mechanism; Catalytic efficiency ID CONTAINING NATURAL-PRODUCTS; SITE-DIRECTED MUTAGENESIS; MOLECULAR-DYNAMICS; RACEMIC ETHYL-2,2-DIMETHYLCYCLOPROPANECARBOXYLATE; ENANTIOSELECTIVE HYDROLYSIS; CRYSTAL-STRUCTURE; ACID; CARBOXYLESTERASE; CILASTATIN; INTERMEDIATE AB A new carboxylic esterase RhEst1 which catalyzes the hydrolysis of (S)-(+)-2,2-dimethylcyclopropanecarboxylate (S-DmCpCe), the key chiral building block of cilastatin, was identified and subsequently crystallized in our previous work. Mutant RhEst1(A147I/V148F/G254A) was found to show a 5-fold increase in the catalytic activity. In this work, molecular dynamic simulations were performed to elucidate the molecular determinant of the enzyme activity. Our simulations show that the substrate binds much more strongly in the A147I/V148F/G254A mutant than in wild type, with more hydrogen bonds formed between the substrate and the catalytic triad and the oxyanion hole. The OH group of the catalytic residue Ser101 in the mutant is better positioned to initiate the nucleophilic attack on S-DmCpCe. Interestingly, the "170-179" loop which is involved in shaping the catalytic sites and facilitating the product release shows remarkable dynamic differences in the two systems. Based on the simulation results, six residues were identified as potential "hot-spots" for further experimental testing. Consequently, the G126S and R133L mutants show higher catalytic efficiency as compared with the wild type. This work provides molecular-level insights into the substrate binding mechanism of carboxylic esterase RhEst1, facilitating future experimental efforts toward developing more efficient RhEst1 variants for industrial applications. (C) 2015 Elsevier Inc. All rights reserved. C1 [Chen, Qi; Luan, Zheng-Jiao; Yu, Hui-Lei; Xu, Jian-He] E China Univ Sci & Technol, State Key Lab Bioreactor Engn, Shanghai 200237, Peoples R China. [Cheng, Xiaolin] Oak Ridge Natl Lab, UT ORNL Ctr Mol Biophys, Oak Ridge, TN 37831 USA. [Cheng, Xiaolin] Univ Tennessee, Dept Biochem & Cellular & Mol Biol, Knoxville, TN USA. [Xu, Jian-He] E China Univ Sci & Technol, Shanghai Collaborat Innovat Ctr Biomfg, Shanghai 200237, Peoples R China. RP Cheng, XL (reprint author), Oak Ridge Natl Lab, Ctr Biophys Mol, POB 2008, Oak Ridge, TN 37831 USA. EM chengx@ornl.gov; jianhexu@ecust.edu.cn FU Fundamental Research Funds for the Central Universities [22A201514041]; National Natural Science Foundation of China [21276082, 31500592]; Ministry of Science and Technology, China [2011CB710800, 2011AA02A210]; Computer Science and Mathematics Division at the Oak Ridge National Laboratory; US DOE [De-AC05-00OR22725] FX This work was supported by The Fundamental Research Funds for the Central Universities (Grant No. 22A201514041), National Natural Science Foundation of China (Nos. 21276082 and 31500592), and Ministry of Science and Technology, China (Nos. 2011CB710800 and 2011AA02A210). X.C. is partially supported by Computer Science and Mathematics Division at the Oak Ridge National Laboratory, which is managed by UT-Battelle, LLC under US DOE Contract No. De-AC05-00OR22725. NR 38 TC 1 Z9 1 U1 2 U2 13 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1093-3263 EI 1873-4243 J9 J MOL GRAPH MODEL JI J. Mol. Graph. PD NOV PY 2015 VL 62 BP 319 EP 324 DI 10.1016/j.jmgm.2015.10.015 PG 6 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Computer Science, Interdisciplinary Applications; Crystallography; Mathematical & Computational Biology SC Biochemistry & Molecular Biology; Computer Science; Crystallography; Mathematical & Computational Biology GA CZ4ZN UT WOS:000367112000034 PM 26556053 ER PT J AU Yang, Y Munz, J Cass, C Zienkiewicz, A Kong, Q Ma, W Sanjaya Sedbrook, J Benning, C AF Yang, Yang Munz, Jacob Cass, Cynthia Zienkiewicz, Agnieszka Kong, Que Ma, Wei Sanjaya Sedbrook, John Benning, Christoph TI Ectopic Expression of WRINKLED1 Affects Fatty Acid Homeostasis in Brachypodium distachyon Vegetative Tissues SO PLANT PHYSIOLOGY LA English DT Article ID ACETYL-COA CARBOXYLASE; SEED OIL PRODUCTION; CELL-DEATH; TRIACYLGLYCEROL LIPASE; ARABIDOPSIS-THALIANA; PALMITOLEIC ACID; BETA-OXIDATION; SYNTHESIS PATHWAYS; GROWTH-INHIBITION; CARRIER PROTEIN AB Triacylglycerol (TAG) is a storage lipid used for food purposes and as a renewable feedstock for biodiesel production. WRINKLED1 (WRI1) is a transcription factor that governs fatty acid (FA) synthesis and, indirectly, TAG accumulation in oil-storing plant tissues, and its ectopic expression has led to TAG accumulation in vegetative tissues of different dicotyledonous plants. The ectopic expression of BdWRI1 in the grass Brachypodium distachyon induced the transcription of predicted genes involved in glycolysis and FA biosynthesis, and TAG content was increased up to 32.5-fold in 8-week-old leaf blades. However, the ectopic expression of BdWRI1 also caused cell death in leaves, which has not been observed previously in dicotyledonous plants such as Arabidopsis (Arabidopsis thaliana). Lipid analysis indicated that the free FA content was 2-fold elevated in BdWRI1-expressing leaf blades of B. distachyon. The transcription of predicted genes involved in b-oxidation was induced. In addition, linoleic FA treatment caused cell death in B. distachyon leaf blades, an effect that was reversed by the addition of the FA biosynthesis inhibitor cerulenin. Taken together, ectopic expression of BdWRI1 in B. distachyon enhances FA biosynthesis and TAG accumulation in leaves, as expected, but also leads to increased free FA content, which has cytotoxic effects leading to cell death. Thus, while WRI appears to ubiquitously affect FA biosynthesis and TAG accumulation in diverse plants, its ectopic expression can lead to undesired side effects depending on the context of the specific lipid metabolism of the respective plant species. C1 [Yang, Yang; Zienkiewicz, Agnieszka; Kong, Que; Benning, Christoph] Michigan State Univ, Dept Biochem & Mol Biol, E Lansing, MI 48824 USA. [Yang, Yang; Munz, Jacob; Cass, Cynthia; Zienkiewicz, Agnieszka; Kong, Que; Ma, Wei; Sanjaya; Sedbrook, John; Benning, Christoph] Michigan State Univ, Great Lakes Bioenergy Res Ctr, E Lansing, MI 48824 USA. [Ma, Wei] Michigan State Univ, Dept Plant Biol, E Lansing, MI 48824 USA. [Munz, Jacob; Cass, Cynthia; Sedbrook, John] Illinois State Univ, Sch Biol Sci, Normal, IL 61790 USA. [Yang, Yang; Zienkiewicz, Agnieszka; Kong, Que; Ma, Wei; Benning, Christoph] Michigan State Univ, Dept Energy, Plant Res Lab, E Lansing, MI 48824 USA. RP Benning, C (reprint author), Michigan State Univ, Dept Biochem & Mol Biol, E Lansing, MI 48824 USA. EM benning@msu.edu FU U.S. Department of Energy Great Lakes Bioenergy Research Center [DE-FC02-07ER64494]; Michigan State University AgBioResearch FX This work was supported by the U.S. Department of Energy Great Lakes Bioenergy Research Center Cooperative (grant no. DE-FC02-07ER64494) and by Michigan State University AgBioResearch. NR 100 TC 9 Z9 11 U1 7 U2 23 PU AMER SOC PLANT BIOLOGISTS PI ROCKVILLE PA 15501 MONONA DRIVE, ROCKVILLE, MD 20855 USA SN 0032-0889 EI 1532-2548 J9 PLANT PHYSIOL JI Plant Physiol. PD NOV PY 2015 VL 169 IS 3 BP 1836 EP 1847 DI 10.1104/pp.15.01236 PG 12 WC Plant Sciences SC Plant Sciences GA CZ9BX UT WOS:000367393900032 PM 26419778 ER PT J AU Li, XW Mao, XL Wang, Z Russo, RE AF Li Xiongwei Mao Xianglei Wang Zhe Russo, Richard E. TI Quantitative Analysis of Carbon Content in Bituminous Coal by Laser-Induced Breakdown Spectroscopy Using UV Laser Radiation SO PLASMA SCIENCE & TECHNOLOGY LA English DT Article DE LIBS; coal; carboncontent; PLS; quantitative measurement ID SPECTRUM STANDARDIZATION; ANALYTICAL-CHEMISTRY; ELEMENTAL ANALYSIS; INDUCED PLASMAS; ABLATION; MODEL AB The carbon content of bituminous coal samples was analyzed by laser-induced breakdown spectroscopy. The 266 nm laser radiation was utilized for laser ablation and plasma generation in air. The partial least square method and the dominant factor based PLS method were used to improve the measurement accuracy of the carbon content of coal. The results showed that the PLS model could achieve good measurement accuracy, and the dominant factor based PLS model could further improve the measurement accuracy. The coefficient of determination and the root-mean-square error of prediction of the PLS model were 0.97 and 2.19%, respectively; and those values for the dominant factor based PLS model were 0.99 and 1.51%, respectively. The results demonstrated that the 266 nm wavelength could accurately measure the carbon content of bituminous coal. C1 [Li Xiongwei; Wang Zhe] Tsinghua Univ, Dept Thermal Engn, State Key Lab Power Syst, Tsinghua BP Clean Energy Ctr, Beijing 100084, Peoples R China. [Mao Xianglei; Russo, Richard E.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Li Xiongwei] Guodian New Energy Technol Res Inst, Beijing 100084, Peoples R China. RP Li, XW (reprint author), Tsinghua Univ, Dept Thermal Engn, State Key Lab Power Syst, Tsinghua BP Clean Energy Ctr, Beijing 100084, Peoples R China. EM lixiongwei@cgdc.com.cn RI Wang, Zhe/E-1705-2011; Hou, Zongyu/L-9293-2016 OI Wang, Zhe/0000-0001-6857-7672; FU National Natural Science Foundation of China [51276100]; National Basic Research Program of China (973 Program) [2013CB228501]; U. S. Department of Energy, Office of Basic Energy Sciences, Chemical Science Division at Lawrence Berkeley National Laboratory [2013CB228501] FX supported by National Natural Science Foundation of China (No. 51276100) and the National Basic Research Program of China (973 Program) (No. 2013CB228501). The authors also thank the financial funding from the U. S. Department of Energy, Office of Basic Energy Sciences, Chemical Science Division at Lawrence Berkeley National Laboratory (No. 2013CB228501). NR 20 TC 2 Z9 2 U1 1 U2 15 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1009-0630 J9 PLASMA SCI TECHNOL JI Plasma Sci. Technol. PD NOV PY 2015 VL 17 IS 11 BP 928 EP 932 DI 10.1088/1009-0630/17/11/07 PG 5 WC Physics, Fluids & Plasmas SC Physics GA DA0VG UT WOS:000367515100007 ER PT J AU Heberle, FA Myles, DAA Katsaras, J AF Heberle, F. A. Myles, D. A. A. Katsaras, J. TI Biomembranes research using thermal and cold neutrons SO CHEMISTRY AND PHYSICS OF LIPIDS LA English DT Article ID PHOSPHATIDYLCHOLINE MODEL MEMBRANES; BILAYER STRUCTURE DETERMINATION; MOLECULAR-DYNAMICS SIMULATIONS; CRYSTAL DIFFRACTOMETER IBIX; WHEAT-GERM OIL; X-RAY; LIPID-BILAYERS; PROTEIN-STRUCTURE; ALPHA-TOCOPHEROL; JOINT REFINEMENT AB In 1932 James Chadwick discovered the neutron using a polonium source and a beryllium target (Chadwick, 1932). In a letter to Niels Bohr dated February 24, 1932, Chadwick wrote: "whatever the radiation from Be may be, it has most remarkable properties." Where it concerns hydrogen-rich biological materials, the "most remarkable" property is the neutron's differential sensitivity for hydrogen and its isotope deuterium. Such differential sensitivity is unique to neutron scattering, which unlike X-ray scattering, arises from nuclear forces. Consequently, the coherent neutron scattering length can experience a dramatic change in magnitude and phase as a result of resonance scattering, imparting sensitivity to both light and heavy atoms, and in favorable cases to their isotopic variants. This article describes recent biomembranes research using a variety of neutron scattering techniques. Published by Elsevier Ireland Ltd. C1 [Heberle, F. A.; Myles, D. A. A.; Katsaras, J.] Neutron Sci Directorate, Biol & Soft Matter Div, Oak Ridge, TN 37831 USA. [Heberle, F. A.; Katsaras, J.] Oak Ridge Natl Lab, Joint Inst Neutron Sci, Oak Ridge, TN 37831 USA. [Katsaras, J.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. RP Katsaras, J (reprint author), Oak Ridge Natl Lab, Biol & Soft Matter Div, Oak Ridge, TN 37831 USA. EM katsarasj@ornl.gov RI myles, dean/D-5860-2016; OI myles, dean/0000-0002-7693-4964; Katsaras, John/0000-0002-8937-4177 FU Scientific User Facilities Division of the DOE Office of Basic Energy Sciences (BES) [DE-AC05 00OR2275] FX FH, DAAM and JK are supported through the Scientific User Facilities Division of the DOE Office of Basic Energy Sciences (BES), under contract no. DE-AC05 00OR2275. NR 119 TC 0 Z9 0 U1 3 U2 11 PU ELSEVIER IRELAND LTD PI CLARE PA ELSEVIER HOUSE, BROOKVALE PLAZA, EAST PARK SHANNON, CO, CLARE, 00000, IRELAND SN 0009-3084 EI 1873-2941 J9 CHEM PHYS LIPIDS JI Chem. Phys. Lipids PD NOV PY 2015 VL 192 SI SI BP 41 EP 50 DI 10.1016/j.chemphyslip.2015.07.020 PG 10 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA CZ4YJ UT WOS:000367108800006 PM 26241882 ER PT J AU Whited, AM Johs, A AF Whited, A. M. Johs, A. TI The interactions of peripheral membrane proteins with biological membranes SO CHEMISTRY AND PHYSICS OF LIPIDS LA English DT Article DE Peripheral membrane proteins; Membrane; Lipids; Electrostatic interactions; Hydrophobic interactions; Fatty acid modification ID GPI-ANCHORED PROTEINS; MULTIPLE SEQUENCE ALIGNMENT; ESCHERICHIA-COLI; CELL-DIVISION; LIPID MODIFICATIONS; CYTOCHROME-C; HYDROPHOBIC INTERACTIONS; BACTERIAL LIPOPROTEINS; ACIDIC PHOSPHOLIPIDS; NEUTRON-SCATTERING AB The interactions of peripheral proteins with membrane surfaces are critical to many biological processes, including signaling, recognition, membrane trafficking, cell division and cell structure. On a molecular level, peripheral membrane proteins can modulate lipid composition, membrane dynamics and protein-protein interactions. Biochemical and biophysical studies have shown that these interactions are in fact highly complex, dominated by several different types of interactions, and have an interdependent effect on both the protein and membrane. Here we examine three major mechanisms underlying the interactions between peripheral membrane proteins and membranes: electrostatic interactions, hydrophobic interactions, and fatty acid modification of proteins. While experimental approaches continue to provide critical insights into specific interaction mechanisms, emerging bioinformatics resources and tools contribute to a systems-level picture of protein-lipid interactions. Through these recent advances, we begin to understand the pivotal role of protein-lipid interactions underlying complex biological functions at membrane interfaces. (C) 2015 Elsevier Ireland Ltd. All rights reserved. C1 [Whited, A. M.; Johs, A.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. RP Johs, A (reprint author), Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. EM johsa@ornl.gov FU Laboratory Directed Research and Development Program of the Oak Ridge National Laboratory (ORNL); US Department of Energy [DE-AC05-00OR22725]; Department of Energy FX This research was supported by the Laboratory Directed Research and Development Program of the Oak Ridge National Laboratory (ORNL). ORNL is managed by UT-Battelle, LLC under contract no. DE-AC05-00OR22725 with the US Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan). NR 119 TC 4 Z9 4 U1 14 U2 25 PU ELSEVIER IRELAND LTD PI CLARE PA ELSEVIER HOUSE, BROOKVALE PLAZA, EAST PARK SHANNON, CO, CLARE, 00000, IRELAND SN 0009-3084 EI 1873-2941 J9 CHEM PHYS LIPIDS JI Chem. Phys. Lipids PD NOV PY 2015 VL 192 SI SI BP 51 EP 59 DI 10.1016/j.chemphyslip.2015.07.015 PG 9 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA CZ4YJ UT WOS:000367108800007 PM 26232665 ER PT J AU Collier, CP AF Collier, C. Patrick TI Bilayer membrane interactions with nanofabricated scaffolds SO CHEMISTRY AND PHYSICS OF LIPIDS LA English DT Article DE Biomembranes; Nanofabrication; Cytoskeleton; Lipids ID SUPPORTED LIPID-BILAYERS; DROPLET INTERFACE BILAYERS; ATOMIC-FORCE MICROSCOPY; SINGLE-ION CHANNELS; LANGMUIR-BLODGETT; PLASMA-MEMBRANE; CELL-MEMBRANES; PHOSPHOLIPID-BILAYER; NEUTRON REFLECTIVITY; VESICLE ADSORPTION AB Membrane function is facilitated by lateral organization within the lipid bilayer, includingphase-separation of lipids into more ordered domains (lipid rafts) and anchoring of the membrane to a cytoskeleton. These features have proven difficult to reproduce in model membrane systems such as black lipid membranes, unilamellar vesicles and supported bilayers. However, advances in micro/nanofabrication have resulted in more realistic synthetic models of membrane-cytoskeleton interactions that can help uncover the design rules responsible for biological membrane formation and organization. This review will focus on describing micro-/nanostructured scaffolds that can emulate the connections of a cellular membrane to an underlying "cytoskeleton". Examples include molecular-based scaffolds anchored to a solid substrate through surface chemistry, solid-state supports modified by material deposition, lithography and etching, the creation of micro/nanoporous arrays, integration with microfluidics, and droplet-based bilayers at interfaces. Model systems such as these are increasing our understanding of structure and organization in cell membranes, and how they result in the emergence of functionality at the nanoscale. (C) 2015 Elsevier Ireland Ltd. All rights reserved. C1 [Collier, C. Patrick] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Collier, CP (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. EM colliercp@ornl.gov RI Collier, Charles/C-9206-2016 OI Collier, Charles/0000-0002-8198-793X FU U.S. Department of Energy [DE-AC0500OR22725] FX This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC0500OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for the United States Government purposes. NR 141 TC 0 Z9 0 U1 7 U2 29 PU ELSEVIER IRELAND LTD PI CLARE PA ELSEVIER HOUSE, BROOKVALE PLAZA, EAST PARK SHANNON, CO, CLARE, 00000, IRELAND SN 0009-3084 EI 1873-2941 J9 CHEM PHYS LIPIDS JI Chem. Phys. Lipids PD NOV PY 2015 VL 192 SI SI BP 75 EP 86 DI 10.1016/j.chemphyslip.2015.07.013 PG 12 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA CZ4YJ UT WOS:000367108800009 PM 26232663 ER PT J AU Nickels, JD Smith, JC Cheng, XL AF Nickels, Jonathan D. Smith, Jeremy C. Cheng, Xiaolin TI Lateral organization, bilayer asymmetry, and inter-leaflet coupling of biological membranes SO CHEMISTRY AND PHYSICS OF LIPIDS LA English DT Article DE Lateral organization; Bilayer asymmetry; Inter-leaflet coupling; Neutron scattering; Molecular dynamics ID MOLECULAR-DYNAMICS SIMULATIONS; ATOMIC-FORCE MICROSCOPY; PHOSPHATIDYLCHOLINE MODEL MEMBRANES; SUPPORTED LIPID-MEMBRANES; ANGLE NEUTRON-SCATTERING; CHOLESTEROL FLIP-FLOP; COARSE-GRAINED MODEL; FLUID-MOSAIC MODEL; PLASMA-MEMBRANE; CELL-MEMBRANES AB Understanding of cell membrane organization has evolved significantly from the classic fluid mosaic model. It is now recognized that biological membranes are highly organized structures, with differences in lipid compositions between inner and outer leaflets and in lateral structures within the bilayer plane, known as lipid rafts. These organizing principles are important for protein localization and function as well as cellular signaling. However, the mechanisms and biophysical basis of lipid raft formation, structure, dynamics and function are not clearly understood. One key question, which we focus on in this review, is how lateral organization and leaflet compositional asymmetry are coupled. Detailed information elucidating this question has been sparse because of the small size and transient nature of rafts and the experimental challenges in constructing asymmetric bilayers. Resolving this mystery will require advances in both experimentation and modeling. We discuss here the preparation of model systems along with experimental and computational approaches that have been applied in efforts to address this key question in membrane biology. We seek to place recent and future advances in experimental and computational techniques in context, providing insight into in-plane and transverse organization of biological membranes. (C) 2015 Elsevier Ireland Ltd. All rights reserved. C1 [Nickels, Jonathan D.] Oak Ridge Natl Lab, Joint Inst Neutron Sci, Oak Ridge, TN USA. [Nickels, Jonathan D.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Smith, Jeremy C.; Cheng, Xiaolin] Oak Ridge Natl Lab, Ctr Biophys Mol, Oak Ridge, TN USA. [Smith, Jeremy C.; Cheng, Xiaolin] Univ Tennessee, Dept Biochem & Cellular & Mol Biol, Knoxville, TN USA. RP Cheng, XL (reprint author), Oak Ridge Natl Lab, POB 2008,MS 6309, Oak Ridge, TN 37830 USA. EM chengx@ornl.gov RI smith, jeremy/B-7287-2012; Nickels, Jonathan/I-1913-2012 OI smith, jeremy/0000-0002-2978-3227; Nickels, Jonathan/0000-0001-8351-7846 FU U.S. DOE BES through the EPSCoR [DE-FG02-08ER46528]; Laboratory Directed R&D (LDRD) fund at the Oak Ridge National Laboratory [P7394]; Office of Science of the U.S. Department of Energy [DE-AC05-00OR22725] FX JDN is partially supported by the U.S. DOE BES through the EPSCoR Grant No. DE-FG02-08ER46528. XC is partially supported by the Laboratory Directed R&D (LDRD) fund P7394 at the Oak Ridge National Laboratory. This research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725. NR 186 TC 7 Z9 7 U1 12 U2 35 PU ELSEVIER IRELAND LTD PI CLARE PA ELSEVIER HOUSE, BROOKVALE PLAZA, EAST PARK SHANNON, CO, CLARE, 00000, IRELAND SN 0009-3084 EI 1873-2941 J9 CHEM PHYS LIPIDS JI Chem. Phys. Lipids PD NOV PY 2015 VL 192 SI SI BP 87 EP 99 DI 10.1016/j.chemphyslip.2015.07.012 PG 13 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA CZ4YJ UT WOS:000367108800010 PM 26232661 ER PT J AU Lee, DH AF Lee, Dung-Hai TI What makes the T-c of FeSe/SrTiO3 so high? SO CHINESE PHYSICS B LA English DT Review DE high temperature superconductivity ID SINGLE-LAYER FESE; HIGH-TEMPERATURE SUPERCONDUCTIVITY; IRON PNICTIDES; THIN-FILMS; SRTIO3; SPECTROSCOPY; ORIGIN AB This paper reviews some of the recent progresses in the study of high temperature superconductivity in the interface between a single unit cell FeSe and SrTiO3. It offers the author's personal view of why T-c is high and how to further increase it. C1 [Lee, Dung-Hai] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Lee, Dung-Hai] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Lee, DH (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM dunghai@berkeley.edu FU U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division [DE-AC02-05CH11231] FX Project supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division (Grant No. DE-AC02-05CH11231). NR 36 TC 21 Z9 21 U1 15 U2 45 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1674-1056 EI 1741-4199 J9 CHINESE PHYS B JI Chin. Phys. B PD NOV PY 2015 VL 24 IS 11 AR 117405 DI 10.1088/1674-1056/24/11/117405 PG 7 WC Physics, Multidisciplinary SC Physics GA CZ2OH UT WOS:000366944000073 ER PT J AU Pasyanos, M AF Pasyanos, Michael TI Validation of Attenuation Models for Ground Motion Applications in Central and Eastern North America SO EARTHQUAKE SPECTRA LA English DT Article AB Recently developed attenuation models are incorporated into standard one-dimensional (1-D) ground motion prediction equations (GMPEs), effectively making them two-dimensional (2-D) and eliminating the need to create different GMPEs for an increasing number of sub-regions. The model is tested against a data set of over 10,000 recordings from 81 earthquakes in North America. The use of attenuation models in GMPEs improves our ability to fit observed ground motions and should be incorporated into future national hazard maps. The improvement is most significant at higher frequencies and longer distances which have a greater number of wave cycles. This has implications for the rare high-magnitude earthquakes, which produce potentially damaging ground motions over wide areas, and drive the seismic hazards. Because the attenuation models can be created using weak ground motions, they could be developed for regions of low seismicity where empirical recordings of ground motions are uncommon and do not span the full range of magnitudes and distances. C1 [Pasyanos, Michael] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Pasyanos, M (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave,L-046, Livermore, CA 94550 USA. RI Pasyanos, Michael/C-3125-2013 FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX We thank Arben Pitarka for his input and comments on the manuscript. We thank editor Jonathan Stewart, reviewer David Boore, and two anonymous reviewers for their comments and suggestions. We kindly thank Christine Goulet for the NGA-East strong ground motion parameter data set that she provided for this study. We thank Norm Abrahamson for his suggestion to include scenario earthquakes. This was prepared under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. This is LLNL contribution LLNL-JRNL-654350. NR 15 TC 3 Z9 3 U1 1 U2 2 PU EARTHQUAKE ENGINEERING RESEARCH INST PI OAKLAND PA 499 14TH ST, STE 320, OAKLAND, CA 94612-1934 USA SN 8755-2930 EI 1944-8201 J9 EARTHQ SPECTRA JI Earthq. Spectra PD NOV PY 2015 VL 31 IS 4 BP 2281 EP 2300 DI 10.1193/052714EQS074M PG 20 WC Engineering, Civil; Engineering, Geological SC Engineering GA CZ5FQ UT WOS:000367128300019 ER PT J AU Matzner, S Cullinan, VI Duberstein, CA AF Matzner, Shari Cullinan, Valerie I. Duberstein, Corey A. TI Two-dimensional thermal video analysis of offshore bird and bat flight SO ECOLOGICAL INFORMATICS LA English DT Article DE Thermal imaging; Biological assessment; Image processing; Object tracking ID MIGRATION; CAMERA; RADAR AB Thermal infrared video can provide essential information about bird and bat activity for risk assessment studies, but the analysis of recorded video can be time-consuming and may not extract all of the available information. Automated processing makes continuous monitoring over extended periods of time feasible, and maximizes the information provided by video. This is especially important for collecting data in remote locations that are difficult for human observers to access, such as proposed offshore wind turbine sites. We developed new processing algorithms for single camera thermal video that automate the extraction of two-dimensional bird and bat flight tracks, and that characterize the extracted tracks to support animal identification and behavior inference. The algorithms consist of video peak store followed by background masking and perceptual grouping to extract flight tracks. The extracted tracks are automatically quantified in terms that could then be used to infer animal taxonomy and possibly behavior, as described in the companion article from Cullinan, et al. ("Classification of birds and bats using flight tracks." Ecological Informatics, 27:55-63]. The developed automated processing was evaluated using six video clips containing a total of 184 flight tracks. The detection rate was 81% and the false positive rate was 17%. In addition to describing the details of the algorithms, we suggest models for interpreting thermal imaging information. (C) 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). C1 [Matzner, Shari; Cullinan, Valerie I.] Pacific NW Natl Lab, Marine Sci Lab, Sequim, WA 98382 USA. [Duberstein, Corey A.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Matzner, S (reprint author), Pacific NW Natl Lab, Marine Sci Lab, 1529 W Sequim Bay Rd, Sequim, WA 98382 USA. EM Shari.Matzner@pnnl.gov; Valerie.Cullinan@pnnl.gov; Corey.Duberstein@pnnl.gov FU Wind and Water Power Technologies Office within the U.S. Department of Energy-Office of Energy Efficiency and Renewable Energy FX This work was funded by the Wind and Water Power Technologies Office within the U.S. Department of Energy-Office of Energy Efficiency and Renewable Energy. NR 28 TC 1 Z9 1 U1 7 U2 26 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1574-9541 EI 1878-0512 J9 ECOL INFORM JI Ecol. Inform. PD NOV PY 2015 VL 30 SI SI BP 20 EP 28 DI 10.1016/j.ecoinf.2015.09.001 PG 9 WC Ecology SC Environmental Sciences & Ecology GA CZ1OY UT WOS:000366876400004 ER PT J AU Zhang, R Vasco, D Daley, TM AF Zhang, Rui Vasco, Donald Daley, Thomas M. TI Study of seismic diffractions caused by a fracture zone at In Salah carbon dioxide storage project SO INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL LA English DT Article DE Geological CO2 sequestration; In Salah project; Finite difference; Seismic wave propagation; Fracture ID PERFECTLY MATCHED LAYER; FINITE-DIFFERENCE METHOD; GRAZING-INCIDENCE; WAVE-EQUATION; CO2 SEQUESTRATION; DATA REGISTRATION; MEDIA; PROPAGATION; CRANFIELD; INVERSION AB The In Salah CO2 storage project in Algeria has injected over 3 million tonnes of carbon dioxide into a water filled tight sand formation. Interferometric Synthetic Aperture Radar (InSAR) range change data revealed a double lobbed pattern of deformation that has been modeled as the opening of a sub-vertical fracture, or damage, zone. The location and geometry of the linear feature were subsequently verified using a seismic reflection survey. The elastic properties of the fracture zone, including anisotropic Poisson ratio (v), Young's (E) and shear (G) moduli, were estimated from coupled geomechanical and hydrological modeling of surface deformation and pressure variations in the injection well. The elastic moduli reflect the fracture properties after CO2 flow through the fracture zone. Thus, the seismic signature of the fracture zone could be used for monitoring the CO2 plume. Using the estimated fracture model, we built two and three dimensional models consisting of an anisotropic fracture zone embedded within an isotropic background. Finite-difference modeling of seismic shot gathers allows us to estimate the effects of scattering from the fracture zone, potentially further constraining the geomechanical model. From the seismic modeling results, we find diffracted waves, induced by the fracture zone, which behave similar to point source diffractions. This modeling is intended to guide a search for diffraction events in the 3D surface seismic field data. The modeling results indicate that using the moduli estimated from geomechanical modeling, fracture scattered events would be 100 times lower amplitude than the interface reflections, and thus would be hard to detect. While diffracted waves are observed in the field data, which may imply the need for revision of the fracture model, including shape and elastic moduli, we are not able to match the field observation with our modeled events. This work presents a frontier study on the integration of geomechanical and geophysical methods at the In Salah site as a means to test the estimate of the subsurface CO2 flooded fracture properties. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Zhang, Rui] Univ SW Louisiana, Lafayette, LA 70504 USA. [Zhang, Rui; Vasco, Donald; Daley, Thomas M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Zhang, R (reprint author), Univ SW Louisiana, Lafayette, LA 70504 USA. EM ruizhang@louisiana.edu RI Daley, Thomas/G-3274-2015; Vasco, Donald/I-3167-2016; Vasco, Donald/G-3696-2015 OI Daley, Thomas/0000-0001-9445-0843; Vasco, Donald/0000-0003-1210-8628; Vasco, Donald/0000-0003-1210-8628 FU InSalah Joint Industry Project (JIP); GEOSEQ project for the Assistant Secretary for Fossil Energy; Office of Coal and Power Systems through National Energy Technology Laboratory U.S. Department of Energy [DE-ACO2-05CH11231]; partnership of BP; Statoil and Sonatrach FX This work was supported by the InSalah Joint Industry Project (JIP), a partnership of BP, Statoil and Sonatrach, from 2011 to 2013. This work was partially supported by the GEOSEQ project for the Assistant Secretary for Fossil Energy, Office of Coal and Power Systems through the National Energy Technology Laboratory, of the U.S. Department of Energy, under contract No. DE-ACO2-05CH11231. Some of the seismic data processing in this report was performed using the VISTA software package provided by GEDCO, now a Schlumberger company, potentially allowing further constraints on fracture properties, and also providing input to design of future monitoring surveys. NR 35 TC 0 Z9 0 U1 3 U2 8 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1750-5836 EI 1878-0148 J9 INT J GREENH GAS CON JI Int. J. Greenh. Gas Control PD NOV PY 2015 VL 42 BP 75 EP 86 DI 10.1016/j.ijggc.2015.07.033 PG 12 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Engineering, Environmental SC Science & Technology - Other Topics; Energy & Fuels; Engineering GA CZ2PP UT WOS:000366947400007 ER PT J AU Varre, SBK Siriwardane, HJ Gondle, RK Bromhal, GS Chandrasekar, V Sams, N AF Varre, Sai B. K. Siriwardane, Hema J. Gondle, Raj K. Bromhal, Grant S. Chandrasekar, Vikram Sams, Neal TI Influence of geochemical processes on the geomechanical response of the overburden due to CO2 storage in saline aquifers SO INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL LA English DT Article DE CO2 storage; Numerical modeling; Geomechanics; Multiphase flow; Geochemistry ID AQUEOUS NACL SOLUTIONS; EQUATION-OF-STATE; REACTIVE-TRANSPORT; NORTH-SEA; GEOLOGICAL SEQUESTRATION; RELATIVE PERMEABILITY; CARBON SEQUESTRATION; RESERVOIR CHARACTERIZATION; INDUCED SEISMICITY; BUNTER SANDSTONE AB The objective of the study is to investigate the influence of geochemical processes on the geomechanical response of overburden during and after CO2 injection. In the current study, coupled multiphase fluid flow and geomechanical modeling with geochemical processes were performed to simulate large-scale injection of CO2 (up to 10 million metric tonnes per year) into a deep saline aquifer over the long-term (up to 1000 years). The geochemical modeling results show that geochemical processes, such as mineral dissolution and precipitation, do not have a significant influence on reservoir rock porosity (about 2% reduction). Modeling results show that the inclusion of geochemical reactions in the coupled fluid flow and geomechanical models do not have any significant influence on the computed pressure and ground displacements due to CO2 injection for the typical mineralogical composition considered in this study. In other words, a coupled single-phase fluid flow and geomechanical model would give similar results at a significantly lower computational effort. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Varre, Sai B. K.; Siriwardane, Hema J.; Gondle, Raj K.] W Virginia Univ, Dept Civil & Environm Engn, Morgantown, WV 26506 USA. [Bromhal, Grant S.] US DOE, Natl Energy Technol Lab NETL, Morgantown, WV 26507 USA. [Chandrasekar, Vikram] Comp Modelling Grp Inc, Houston, TX 77067 USA. [Sams, Neal] AECOM, Morgantown, WV 26505 USA. RP Siriwardane, HJ (reprint author), W Virginia Univ, Dept Civil & Environm Engn, Morgantown, WV 26506 USA. EM Hema.Siriwardane@mail.wvu.edu FU RS Energy & Construction, Inc. under RES [RES1000023] FX The work presented in this paper was performed with the funding provided by URS Energy & Construction, Inc. under the RES contract RES1000023 to support National Energy Technology Laboratory's ongoing research in CO2 sequestration. Also, the authors greatly acknowledge the Computer Modeling Group (CMG) for their technical support. NR 140 TC 5 Z9 5 U1 2 U2 12 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1750-5836 EI 1878-0148 J9 INT J GREENH GAS CON JI Int. J. Greenh. Gas Control PD NOV PY 2015 VL 42 BP 138 EP 156 DI 10.1016/j.ijggc.2015.07.029 PG 19 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Engineering, Environmental SC Science & Technology - Other Topics; Energy & Fuels; Engineering GA CZ2PP UT WOS:000366947400014 ER PT J AU Cihan, A Birkholzer, JT Bianchi, M AF Cihan, Abdullah Birkholzer, Jens T. Bianchi, Marco TI Optimal well placement and brine extraction for pressure management during CO2 sequestration SO INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL LA English DT Article DE Geologic carbon storage; Pressure management; Brine extraction; Optimization; Differential evolution algorithm ID GEOLOGIC CARBON SEQUESTRATION; DEEP SALINE AQUIFERS; VERTICAL-EQUILIBRIUM; GLOBAL OPTIMIZATION; STORAGE CAPACITY; SCALE; SIMULATION; INJECTION; MODEL; SENSITIVITY AB Large-scale pressure increases resulting from carbon dioxide (CO2) injection in the subsurface can potentially impact caprock integrity, induce reactivation of critically stressed faults, and drive CO2 or brine through conductive features into shallow groundwater. Pressure management involving the extraction of native fluids from storage formations can be used to reduce such pressure increases. However, dealing with large volumes of extracted brine can be technically challenging and expensive. Selection of optimal well locations and pumping rates are critical for maximizing CO2 storage and minimizing brine extraction during geologic CO2 sequestration (GCS). Robust and efficient computerized algorithms combining reservoir models and optimization methods are needed to make proper decisions on well placement and pumping rates. This study presents a constrained differential evolution (CDE) algorithm for solving global optimization problems involving pressure management of GCS projects. Application of the CDE optimization methodology was demonstrated for a hypothetical CO2 storage scenario in a deep sandstone reservoir in the Southern San Joaquin Basin in California, USA. Industrial-scale storage of CO2 would generate significant pressure buildup in this formation, which in turn would raise concerns about induced seismicity due to presence of multiple faults surrounding the injection site. Through the CDE optimization algorithm coupled to a vertically-averaged reservoir simulator, we successfully estimated optimal solutions for brine extraction wells in the reservoir that would limit the local pressure along the faults to a prescribed threshold. Multiple realizations of the reservoir permeability field were created to understand the impact of reservoir heterogeneity on optimization results. Our results indicate that the reservoir slope and heterogeneity have significant impact on optimum extraction rates. Reservoir heterogeneity is also a significant factor for extraction well locations, suggesting that in practice decisions about extraction well placement through optimization should be made at later project stages when data from a few years of CO2 injection have allowed iterative updating and refining of the reservoir forward models. Although the study focused on optimization of brine extraction, the CDE optimization methodology presented in this paper has also potential to solve other complex optimization problems related to GCS, such as increasing storage efficiency by enhancing injectivity and capillary and dissolution trapping. Published by Elsevier Ltd. C1 [Cihan, Abdullah; Birkholzer, Jens T.; Bianchi, Marco] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Cihan, A (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. EM acihan@lbl.gov; jtbirkholzer@lbl.gov; marcob@bgs.ac.uk RI Birkholzer, Jens/C-6783-2011; Cihan, Abdullah/D-3704-2015 OI Birkholzer, Jens/0000-0002-7989-1912; FU Office of Sequestration, Hydrogen, and Clean Coal Fuels, National Energy Technology Laboratory (NETL), of the U.S. Department of Energy [DE-AC02-05CH11231] FX The authors wish to thank the two anonymous reviewers, as well as Dr. Stefan Finsterle of Lawrence Berkeley National Laboratory (LBNL), for their careful review of the manuscript and the suggestions for improvements. The work was funded by the Assistant Secretary for Fossil Energy, Office of Sequestration, Hydrogen, and Clean Coal Fuels, National Energy Technology Laboratory (NETL), of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 57 TC 4 Z9 4 U1 1 U2 5 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1750-5836 EI 1878-0148 J9 INT J GREENH GAS CON JI Int. J. Greenh. Gas Control PD NOV PY 2015 VL 42 BP 175 EP 187 DI 10.1016/j.ijggc.2015.07.025 PG 13 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Engineering, Environmental SC Science & Technology - Other Topics; Energy & Fuels; Engineering GA CZ2PP UT WOS:000366947400017 ER PT J AU Li, LW Khorsandi, S Johns, RT Dilmore, RM AF Li, Liwei Khorsandi, Saeid Johns, Russell T. Dilmore, Robert M. TI CO2 enhanced oil recovery and storage using a gravity-enhanced process SO INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL LA English DT Article DE CO2 storage; Enhanced oil recovery (EOR); Heterogeneity; Horizontal wells; Gravity enhanced; Inspectional analysis ID SCREENING CRITERIA; CARBON-DIOXIDE; FLOW; PERMEABILITY; SIMULATIONS; CAPTURE; MODEL AB CO2 flooding offers a means to recover significant amounts of oil while simultaneously sequestering CO2. Recent methods for CO2 geological storage have focused on CO2 injection into deep brine aquifers, or by water-alternating-gas (WAG) injection in a miscible gas flooding process using vertical wells. There is significant uncertainty in the amount of CO2 that can be stored using these methods owing to reservoir heterogeneity and variations in reservoir/fluid parameters. It would be useful therefore to have a more robust process that can also increase both CO2 storage and oil recovery in a symbiotic relationship, where increased storage leads to greater oil recovery. This paper considers an alternative process that maximizes both storage and oil recovery simultaneously using only horizontal wells in a gravity-enhanced miscible process. A reduced-order model (ROM) is developed to consider a wide range of reservoir heterogeneities and fluid properties. Monte-Carlo simulations using the ROM show that achieving very high storage and oil recovery is possible using the gravity-enhanced process and that the approach is very robust. For example, after 2.0 moveable pore volumes injected (MPVI), probabilistic forecasts show that CO2 storage efficiency across two standard deviations ranges from about 81% to 93%, indicating that nearly all of the available pore space (excluding immobile water) at the end of injection is occupied by CO2. Oil recoveries after 2.0 MPVI varied from 79% to 93% of the original mass of oil-in-place (OOIP). These storage and recovery efficiencies are significantly greater than any process reported to date. Response functions developed can also be used to estimate the maximum amount of stored CO2 and corresponding oil recoveries for a wide range of reservoir and fluid properties. Such estimates are critical for regional and national assessment of CO2 storage potential. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Li, Liwei; Khorsandi, Saeid; Johns, Russell T.] Penn State Univ, Dept Energy & Mineral Engn, University Pk, PA 16802 USA. [Dilmore, Robert M.] US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. RP Li, LW (reprint author), Penn State Univ, Dept Energy & Mineral Engn, 119 Hosier Bldg, University Pk, PA 16802 USA. EM lql5131@psu.edu; sxk482@psu.edu; rjohns@psu.edu; Robert.Dilmore@netl.doe.gov OI Khorsandi, Saeid/0000-0002-2375-584X FU United States Department of Energy; Enhanced Oil Recovery consortium in the EMS Energy Institute at The Pennsylvania State University, University Park, PA FX We would like to acknowledge the funding support by the United States Department of Energy and the Enhanced Oil Recovery consortium in the EMS Energy Institute at The Pennsylvania State University, University Park, PA. Dr. Russell T. Johns is Chair of the Petroleum and Natural Gas Engineering program and holds the Victor and Anna Mae Beghini Faculty Fellowship in Petroleum and Natural Gas Engineering at The Pennsylvania State University. Dr. Johns is also the director of the Enhanced Oil Recovery consortium at the EMS Energy Institute. NR 54 TC 3 Z9 3 U1 3 U2 12 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1750-5836 EI 1878-0148 J9 INT J GREENH GAS CON JI Int. J. Greenh. Gas Control PD NOV PY 2015 VL 42 BP 502 EP 515 DI 10.1016/j.ijggc.2015.09.006 PG 14 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Engineering, Environmental SC Science & Technology - Other Topics; Energy & Fuels; Engineering GA CZ2PP UT WOS:000366947400045 ER PT J AU Yang, XJ Lassen, RN Jensen, KH Looms, MC AF Yang, Xianjin Lassen, Rune N. Jensen, Karsten H. Looms, Majken C. TI Monitoring CO2 migration in a shallow sand aquifer using 3D crosshole electrical resistivity tomography SO INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL LA English DT Article DE Monitoring Electrical resistivity tomography (ERT); Electrical conductivity (EC); Dissolved CO2; Gaseous CO2; Shallow aquifer; Crosshole ID CARBON SEQUESTRATION; GROUNDWATER SYSTEM; GEOLOGICAL STORAGE; OCCAMS INVERSION; KETZIN GERMANY; DISSOLVED CO2; WATER-CONTENT; LEAKAGE; SITE; CONDUCTIVITY AB Three-dimensional (3D) crosshole electrical resistivity tomography (ERT) was used to monitor a pilot CO2 injection experiment at Vrogum, western Denmark. The purpose was to evaluate the effectiveness of the ERT method for detection of small electrical conductivity (EC) changes during the first 2 days of CO2 injection in a shallow siliciclastic aquifer and to study the early-time behavior of a controlled small gaseous CO2 release. 45 kg of CO2 was injected over a 50-h period at 9.85 m depth. ERT data were collected using horizontal bipole-bipole (HBB) and vertical bipole-bipole (VBB) arrays. The combined HBB and VBB data sets were inverted using a difference inversion algorithm for cancellation of coherent noises and enhanced resolution of small changes. ERT detected the small bulk EC changes (<10%) from conductive dissolved CO2 and resistive gaseous CO2. The primary factors that control the migration of a CO2 plume consist of buoyancy of gaseous CO2, local heterogeneity, groundwater flow and external pressure exerted by the injector. The CO2 plume at the Vrogum site migrated mostly upward due to buoyancy and it also skewed toward northeastern region by overcoming local groundwater flow. The conductive eastern part is more porous and becomes the preferential pathway for the CO2 plume, which was trapped within the slightly more porous glacial sand layer between 5 m and 10 m depths. The gaseous and dissolved CO2 plumes are collocated and grow in tandem for the first 24 h and their opposite effects resulted in a small bulk EC increase. After raising the injection rate from 10 g/min to 20 g/min at the 24-h mark, the CO2 plume grew quickly. The bulk EC changes from ERT agreed partially with water sample EC and GPR data. The apparent disagreement between high CO2 gas saturation and prevailing positive bulk EC changes may be caused by limited and variable ERT resolution, low ERT sensitivity to resistive anomalies and uncalibrated CO2 gas saturation. ERT data show a broader CO2 plume while water sample EC had higher fine-scale variability. Our ERT electrode configuration can be optimized for more efficient data acquisition and better spatial resolution. (C) 2015 The Authors. Published by Elsevier Ltd. C1 [Yang, Xianjin] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Lassen, Rune N.; Jensen, Karsten H.; Looms, Majken C.] Univ Copenhagen, Dept Geosci & Nat Resource Management, DK-1350 Copenhagen, Denmark. RP Yang, XJ (reprint author), POB 808,L-231, Livermore, CA 94551 USA. EM yang25@llnl.gov RI Jensen, Karsten/E-3469-2015; Looms, Majken/N-7471-2014 OI Jensen, Karsten/0000-0003-4020-0050; Looms, Majken/0000-0002-3831-6305 FU U.S. Department of Energy by Lawrence Livermore National Laboratory (LLNL) [DE-AC52-07NA27344]; Danish Strategic Research Council [09-067246] FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory (LLNL) under Contract DE-AC52-07NA27344. LLNL IM release number is LLNL-JRNL-653565. The study was funded partially by a grant from the Danish Strategic Research Council for the project Environmental Technology for Geological Storage of Carbon Dioxide, under contract no.: 09-067246. Special thanks to the many helpers who assisted in the field data collection. NR 44 TC 5 Z9 5 U1 1 U2 7 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1750-5836 EI 1878-0148 J9 INT J GREENH GAS CON JI Int. J. Greenh. Gas Control PD NOV PY 2015 VL 42 BP 534 EP 544 DI 10.1016/j.ijggc.2015.09.005 PG 11 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Engineering, Environmental SC Science & Technology - Other Topics; Energy & Fuels; Engineering GA CZ2PP UT WOS:000366947400048 ER PT J AU Chen, C Wan, JM Li, WZ Song, YC AF Chen, Cong Wan, Jiamin Li, Weizhong Song, Yongchen TI Water contact angles on quartz surfaces under supercritical CO2 sequestration conditions: Experimental and molecular dynamics simulation studies SO INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL LA English DT Article DE Contact angle; Molecular dynamics simulation; Supercritical CO2; Quartz; Wettability; Geological carbon sequestration ID GEOLOGIC CARBON SEQUESTRATION; SILICA SURFACES; INTERFACIAL-TENSION; RESERVOIR CONDITIONS; GEO-SEQUESTRATION; WETTING BEHAVIOR; HYDROXYL-GROUPS; PORE-SCALE; WETTABILITY; DIOXIDE AB The ambiguity of contact angle experimental measurements due to surface chemistry changes resulted from sample contamination and/or the degrees of reaction with supercritical CO2 has resulted in great difficulties to precisely understand the wetting behavior of CO2 under the geological carbon sequestration (GCS) conditions. In this study, water contact angles on quartz surface under GCS conditions were investigated through the combined experimental and molecular dynamics simulation (MDS) methods. The experimental results show that water contact angles increases as ionic strength increases. The effects of pressure and temperature are very weak. The dependence of ionic strength, pressure and temperature is same for monovalent and divalent ions solutions. In the MDS, a hydroxylated quartz surface was used as the base point. A good agreement between the MDS and experimental results were obtained. Using the MDS method, a clean mineral surface with a desired surface chemistry can be constructed, which is difficult in experiments. So by comparing MDS and experimental results, the mechanisms of the reservoir wettability can be better understood. Further investigation can be made on quartz surface with different functional groups to better understand wettability alteration caused by contamination and/or CO2 reaction. (c) 2015 Elsevier Ltd. All rights reserved. C1 [Chen, Cong; Li, Weizhong; Song, Yongchen] Dalian Univ Technol, Dept Energy & Power Engn, Dalian 116024, Liaoning, Peoples R China. [Wan, Jiamin] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Chen, C (reprint author), Dalian Univ Technol, Dept Energy & Power Engn, Dalian 116024, Liaoning, Peoples R China. EM congchen@dlut.edu.cn RI Chen, Cong/B-8810-2012; Wan, Jiamin/H-6656-2014 FU National Natural Science Foundation of China (NSFC) [51206016]; Doctoral Startup Funds of Liaoning Province [20121021]; Fundamental Research Funds for the Central Universities [DUT14LAB13]; China Scholarship Council; U.S. Department of Energy, Office of Science [DE-AC02-05CH11231]; U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-05CH11231] FX This research was supported by the following projects: project 51206016 funded by National Natural Science Foundation of China (NSFC), the Doctoral Startup Funds of Liaoning Province (20121021) and the Fundamental Research Funds for the Central Universities (DUT14LAB13). Grateful acknowledge should be sent to China Scholarship Council for the financial support for Dr. Chen during staying in U.S.A. Dr. Wan's involvement in this work and the laboratory facility were supported by the Center for Nanoscale Control of Geologic CO2, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, and Office of Basic Energy Sciences under Award Number DE-AC02-05CH11231. Thank Tetsu K. Tokunaga (Lawrence Berkeley National Lab) for reading this manuscript and helpful comments. We thank Drs. Yongman Kim, Shibo Wang, Prem Bikkina and Wenming Dong. (Lawrence Berkeley National Lab) for the kind help during experiments, and the fruitful discussion on contact angle experiments. We also thank Computing Center in Department of Energy and Power Engineering of Dalian University of Technology for providing parallel computing environment. NR 49 TC 6 Z9 6 U1 10 U2 25 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1750-5836 EI 1878-0148 J9 INT J GREENH GAS CON JI Int. J. Greenh. Gas Control PD NOV PY 2015 VL 42 BP 655 EP 665 DI 10.1016/j.ijggc.2015.09.019 PG 11 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Engineering, Environmental SC Science & Technology - Other Topics; Energy & Fuels; Engineering GA CZ2PP UT WOS:000366947400059 ER PT J AU Tobin, JG Shuh, DK AF Tobin, J. G. Shuh, D. K. TI Electron spectroscopy of the oxidation and aging of U and Pu SO JOURNAL OF ELECTRON SPECTROSCOPY AND RELATED PHENOMENA LA English DT Article DE Actinides; Electron spectroscopy; X-rays ID X-RAY PHOTOELECTRON; URANIUM-COMPOUNDS; PLUTONIUM INTERMETALLICS; INVERSE-PHOTOEMISSION; EMISSION SPECTROSCOPY; FINE-STRUCTURE; 5F ORBITALS; OXIDES; SPECIATION; ACTINIDES AB Uranium and Plutonium are highly reactive elements that undergo not only chemical reactions but also nuclear reactions. This can lead to possibly significant materials degradation, a matter of potentially great concern. Here, the issue of the electronic structure changes that occur with oxidation and radiological aging will be addressed, in a fairly empirical manner. In essence, the sensitivity of various electron spectroscopic techniques to oxidation and aging will be surveyed and discussed, including the apparent limitations. It will be found that 5d and 4d X-ray absorption and electron energy loss are essentially blind to the changes corresponding to oxidation and aging in U and Pu. (C) 2015 Elsevier B.V. All rights reserved. C1 [Tobin, J. G.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Shuh, D. K.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Tobin, JG (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM Tobin1@LLNL.Gov FU U.S. Department of Energy, National Nuclear Security Administration [DE-AC52-07NA27344]; DOE Office of Nuclear Materials Disposition FX Lawrence Livermore National Laboratory is operated by Lawrence Livermore National Security, LLC, for the U.S. Department of Energy, National Nuclear Security Administration under Contract DE-AC52-07NA27344. The Stanford Synchrotron Radiation Light-source is a national user facility operated by Stanford University on behalf of the DOE, Office of Basic Energy Sciences. JGT wishes to thank (1) Glenn Fox and the PRT Program at LLNL for support during his sabbatical at LBNL; (2) DKS for his hosting of the sabbatical at GTSC/LBNL; and (3) CHB for the opportunity to learn new hard X-ray skills and collect data in the middle of the night again. We thank Steve Conradson for providing the spectra from Ref. [19] and Kirk Veirs for the PuO2 sample. This high-purity Plutonium oxide was provided by the Surveillance and Monitoring Program at Los Alamos National Laboratory supported by DOE Office of Nuclear Materials Disposition. NR 53 TC 0 Z9 0 U1 1 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0368-2048 EI 1873-2526 J9 J ELECTRON SPECTROSC JI J. Electron Spectrosc. Relat. Phenom. PD NOV PY 2015 VL 205 BP 83 EP 91 DI 10.1016/j.elspec.2015.09.001 PG 9 WC Spectroscopy SC Spectroscopy GA CZ7MB UT WOS:000367282400010 ER PT J AU Sun, X Liu, JL Schmah, A Shi, SS Zhang, JB Jiang, HZ Huo, L AF Sun, Xu Liu, Jianli Schmah, Alexander Shi, Shusu Zhang, Jingbo Jiang, Hanzhi Huo, Lei TI Elliptic and triangular flow of identified particles from the AMPT model at RHIC energies SO JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS LA English DT Article DE AMPT; v(2); v(3); v(2)/v(3) ratio ID HEAVY-ION COLLISIONS; RELATIVISTIC NUCLEAR COLLISIONS; ANISOTROPIC FLOW; PARTON CASCADE; COLLABORATION; SPECTRA; MATTER AB The elliptic flow (v(2)) at root s(NN) = 11.5, 39 and 200 GeV and triangular flow (v(3)) at root s(NN) = 200 GeV of identified particles (pi(+/-), K-+/-, K-S(0), p, (p) over bar, phi, Lambda and (Lambda) over bar) from 0-80% central Au+Au collisions are analyzed using a multiphase transport (AMPT) model. It is shown that the experimental results from the eta-sub event plane method can be reproduced with a parton scattering crosssection between 1.5 and 3 mb. We also studied the differential and integrated v(2)/v(3) ratios and conclude that they are anti-correlated with the parton scattering cross-section. C1 [Sun, Xu; Liu, Jianli; Zhang, Jingbo; Huo, Lei] Harbin Inst Technol, Dept Phys, Harbin 150001, Peoples R China. [Schmah, Alexander] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. [Shi, Shusu] Cent China Normal Univ, Key Lab Quarks & Lepton Phys MOE, Wuhan 430079, Peoples R China. [Shi, Shusu] Cent China Normal Univ, Inst Particle Phys, Wuhan 430079, Peoples R China. [Jiang, Hanzhi] Harbin Inst Technol, Sch Astronaut, Harbin 150001, Peoples R China. RP Sun, X (reprint author), Harbin Inst Technol, Dept Phys, Harbin 150001, Peoples R China. EM lhuo@hit.edu.cn FU National Natural Science Foundation of China [11475070, U1332125]; Program for Innovation Research of Science in Harbin Institute of Technology [PIRS OF HIT B201408] FX We thank Dr. Nu Xu for his great ideas and important discussions, and Dr. Guoliang Ma for his help on the AMPT model calculations. This work was supported by the National Natural Science Foundation of China under grant No. 11475070 and U1332125 and the Program for Innovation Research of Science in Harbin Institute of Technology (PIRS OF HIT B201408). NR 37 TC 2 Z9 2 U1 1 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0954-3899 EI 1361-6471 J9 J PHYS G NUCL PARTIC JI J. Phys. G-Nucl. Part. Phys. PD NOV PY 2015 VL 42 IS 11 AR 115101 DI 10.1088/0954-3899/42/11/115101 PG 12 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA CZ4PU UT WOS:000367086000006 ER PT J AU Li, KN Jacobsen, C AF Li, Kenan Jacobsen, Chris TI Rapid calculation of paraxial wave propagation for cylindrically symmetric optics SO JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION LA English DT Article ID FRESNEL ZONE PLATES; DISCRETE HANKEL TRANSFORM; BEAM-PROPAGATION; X-RAYS; LANCZOS REDUCTION; ARNOLDI METHOD; LENSES; FIELDS AB When calculating the focusing properties of cylindrically symmetric focusing optics, numerical wave propagation calculations can be carried out using the quasi-discrete Hankel transform (QDHT). We describe here an implementation of the QDHT where a partial transform matrix can be stored to speed up repeated wave propagations over specified distances, with reduced computational memory requirements. The accuracy of the approach is then verified by comparison with analytical results, over propagation distances with both small and large Fresnel numbers. We then demonstrate the utility of this approach for calculating the focusing properties of Fresnel zone plate optics that are commonly used for x-ray imaging applications and point to future applications of this approach. (C) 2015 Optical Society of America C1 [Li, Kenan; Jacobsen, Chris] Northwestern Univ, Appl Phys, Evanston, IL 60208 USA. [Jacobsen, Chris] Argonne Natl Lab, Xray Sci Div, Adv Photon Source, Argonne, IL 60439 USA. [Jacobsen, Chris] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. [Jacobsen, Chris] Northwestern Univ, Chem Life Proc Inst, Evanston, IL 60208 USA. RP Jacobsen, C (reprint author), Northwestern Univ, Appl Phys, Evanston, IL 60208 USA. EM cjacobsen@anl.gov OI Jacobsen, Chris/0000-0001-8562-0353 FU Basic Energy Sciences (BES) [DE-AC02-06CH11357] FX Basic Energy Sciences (BES) (DE-AC02-06CH11357). NR 33 TC 2 Z9 2 U1 4 U2 6 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1084-7529 EI 1520-8532 J9 J OPT SOC AM A JI J. Opt. Soc. Am. A-Opt. Image Sci. Vis. PD NOV 1 PY 2015 VL 32 IS 11 BP 2074 EP 2081 DI 10.1364/JOSAA.32.002074 PG 8 WC Optics SC Optics GA CZ6HK UT WOS:000367201600019 PM 26560922 ER PT J AU Staszczak, A Wong, CY AF Staszczak, A. Wong, Cheuk-Yin TI Toroidal high-spin isomers in light nuclei with N not equal Z SO PHYSICA SCRIPTA LA English DT Article; Proceedings Paper CT 21st Nuclear Physics Workshop on Marie and Pierre Curie CY SEP 23-28, 2014 CL Kazimierz Dolny, POLAND SP Maria Curie Sklodowska Univ, Dept Theoret Phys DE toroidal high-K isomeric states; light nuclei; even-even nuclei ID SKYRMES INTERACTION; BOUND-STATES; CONTINUUM AB The combined considerations of both the bulk liquid-drop-type behavior and the quantized aligned rotation with cranked Skyrme-Hartree-Fock approach revealed previously (Staszczak and Wong 2014 Phys. Lett. B 738 401) that even-even, N = Z, toroidal high-spin isomeric states have general occurrences for light nuclei with 28 <= A <= 52. We find that in this mass region there are in addition N 1 Z toroidal high-spin isomers when the single-particle shells for neutrons and protons occur at the same cranked frequency hw. Examples of N not equal Z toroidal high-spin isomers, S-36(16)20(I = 74h) and Ar-40(18)22(I = 80,102h), are located and examined. The systematic properties of these N 1 Z toroidal high-spin isomers fall into the same regular (multi-particle)( multi-hole) patterns as other N = Z toroidal high-spin isomers. C1 [Staszczak, A.] Marie Curie Sklodowska Univ, Inst Phys, PL-20031 Lublin, Poland. [Wong, Cheuk-Yin] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. RP Staszczak, A (reprint author), Marie Curie Sklodowska Univ, Inst Phys, PL-20031 Lublin, Poland. EM stas@tytan.umcs.lublin.pl; wongc@ornl.gov FU Division of Nuclear Physics, U.S. Department of Energy [DE-AC05-00OR22725] FX This work was supported in part by the Division of Nuclear Physics, U.S. Department of Energy, Contract No. DE-AC05-00OR22725. NR 24 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0031-8949 EI 1402-4896 J9 PHYS SCRIPTA JI Phys. Scr. PD NOV PY 2015 VL 90 IS 11 AR 114006 DI 10.1088/0031-8949/90/11/114006 PG 10 WC Physics, Multidisciplinary SC Physics GA CZ1MY UT WOS:000366871100007 ER PT J AU Flaugher, B Diehl, HT Honscheid, K Abbott, TMC Alvarez, O Angstadt, R Annis, JT Antonik, M Ballester, O Beaufore, L Bernstein, GM Bernsteing, RA Bigelow, B Bonati, M Boprie, D Brooks, D Buckley-Geer, EJ Campa, J Cardiel-Sas, L Castander, FJ Castilla, J Cease, H Cela-Ruiz, JM Chappa, S Chi, E Cooper, C da Costa, LN Dede, E Derylo, G Depoy, DL de Vicente, J Doel, P Drlica-Wagner, A Eiting, J Elliott, AE Emes, J Estrada, J Neto, AF Finley, DA Flores, R Frieman, J Gerdes, D Gladders, MD Gregory, B Gutierrez, GR Hao, J Holland, SE Holm, S Huffman, D Jackson, C James, DJ Jonas, M Karcher, A Karliner, I Kent, S Kessler, R Kozlovsky, M Kron, RG Kubik, D Kuehn, K Kuhlmann, S Kuk, K Lahav, O Lathrop, A Lee, J Levi, ME Lewis, P Li, TS Mandrichenko, I Marshall, JL Martinez, G Merritt, KW Miquel, R Munoz, F Neilsen, EH Nichol, RC Nord, B Ogando, R Olsen, J Palaio, N Patton, K Peoples, J Plazas, AA Rauch, J Reil, K Rheault, JP Roe, NA Rogers, H Roodman, A Sanchez, E Scarpine, V Schindler, RH Schmidt, R Schmitt, R Schubnell, M Schultz, K Schurter, P Scott, L Serrano, S Shaw, TM Smith, RC Soares-Santos, M Stefanik, A Stuermer, W Suchyta, E Sypniewski, A Tarle, G Thaler, J Tighe, R Tran, C Tucker, D Walker, AR Wang, G Watson, M Weaverdyck, C Wester, W Woods, R Yanny, B AF Flaugher, B. Diehl, H. T. Honscheid, K. Abbott, T. M. C. Alvarez, O. Angstadt, R. Annis, J. T. Antonik, M. Ballester, O. Beaufore, L. Bernstein, G. M. Bernsteing, R. A. Bigelow, B. Bonati, M. Boprie, D. Brooks, D. Buckley-Geer, E. J. Campa, J. Cardiel-Sas, L. Castander, F. J. Castilla, J. Cease, H. Cela-Ruiz, J. M. Chappa, S. Chi, E. Cooper, C. da Costa, L. N. Dede, E. Derylo, G. DePoy, D. L. de Vicente, J. Doel, P. Drlica-Wagner, A. Eiting, J. Elliott, A. E. Emes, J. Estrada, J. Neto, A. Fausti Finley, D. A. Flores, R. Frieman, J. Gerdes, D. Gladders, M. D. Gregory, B. Gutierrez, G. R. Hao, J. Holland, S. E. Holm, S. Huffman, D. Jackson, C. James, D. J. Jonas, M. Karcher, A. Karliner, I. Kent, S. Kessler, R. Kozlovsky, M. Kron, R. G. Kubik, D. Kuehn, K. Kuhlmann, S. Kuk, K. Lahav, O. Lathrop, A. Lee, J. Levi, M. E. Lewis, P. Li, T. S. Mandrichenko, I. Marshall, J. L. Martinez, G. Merritt, K. W. Miquel, R. Munoz, F. Neilsen, E. H. Nichol, R. C. Nord, B. Ogando, R. Olsen, J. Palaio, N. Patton, K. Peoples, J. Plazas, A. A. Rauch, J. Reil, K. Rheault, J-P Roe, N. A. Rogers, H. Roodman, A. Sanchez, E. Scarpine, V. Schindler, R. H. Schmidt, R. Schmitt, R. Schubnell, M. Schultz, K. Schurter, P. Scott, L. Serrano, S. Shaw, T. M. Smith, R. C. Soares-Santos, M. Stefanik, A. Stuermer, W. Suchyta, E. Sypniewski, A. Tarle, G. Thaler, J. Tighe, R. Tran, C. Tucker, D. Walker, A. R. Wang, G. Watson, M. Weaverdyck, C. Wester, W. Woods, R. Yanny, B. CA DES Collaboration TI THE DARK ENERGY CAMERA SO ASTRONOMICAL JOURNAL LA English DT Article DE atlases; catalogs; cosmology: observations; instrumentation: detectors; instrumentation: photometers; surveys ID CHARGE-COUPLED-DEVICES; DATA RELEASE; TELESCOPE; SYSTEM; DECAM; CCDS AB The Dark Energy Camera is a new imager with a 2 degrees.2 diameter field of view mounted at the prime focus of the Victor M. Blanco 4 m telescope on Cerro Tololo near La Serena, Chile. The camera was designed and constructed by the Dark Energy Survey Collaboration. and meets or exceeds the stringent requirements designed for the wide-field and supernova surveys for which the collaboration uses it. The camera consists of a five-element optical corrector, seven filters, a shutter with a 60 cm aperture, and a charge-coupled device (CCD) focal plane of 250 mu m thick fully depleted CCDs cooled inside a vacuum Dewar. The 570 megapixel focal plane comprises 62 2k x 4k CCDs for imaging and 12 2k x 2k CCDs for guiding and focus. The CCDs have 15 mu m x 15 mu m pixels with a plate scale of 0 ''.263 pixel(-1). A hexapod system provides state-of-the-art focus and alignment capability. The camera is read out in 20 s with 6-9 electron. readout noise. This paper provides a technical description of the camera's engineering, construction, installation, and current status. C1 [Flaugher, B.; Diehl, H. T.; Alvarez, O.; Angstadt, R.; Annis, J. T.; Buckley-Geer, E. J.; Cease, H.; Chappa, S.; Chi, E.; Derylo, G.; Drlica-Wagner, A.; Estrada, J.; Finley, D. A.; Flores, R.; Frieman, J.; Gutierrez, G. R.; Hao, J.; Holm, S.; Huffman, D.; Jackson, C.; Jonas, M.; Kent, S.; Kozlovsky, M.; Kubik, D.; Kuk, K.; Lathrop, A.; Mandrichenko, I.; Merritt, K. W.; Neilsen, E. H.; Nord, B.; Olsen, J.; Peoples, J.; Rauch, J.; Scarpine, V.; Schmitt, R.; Schultz, K.; Scott, L.; Shaw, T. M.; Soares-Santos, M.; Stefanik, A.; Stuermer, W.; Tucker, D.; Watson, M.; Wester, W.; Woods, R.; Yanny, B.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Honscheid, K.; Patton, K.; Suchyta, E.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Honscheid, K.; Beaufore, L.; Eiting, J.; Elliott, A. E.; Patton, K.; Suchyta, E.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Abbott, T. M. C.; Bonati, M.; Gregory, B.; James, D. J.; Munoz, F.; Schmidt, R.; Schurter, P.; Smith, R. C.; Tighe, R.; Walker, A. R.] Cerro Tololo Interamer Observ, Natl Opt Astron Observ, La Serena, Chile. [Antonik, M.; Brooks, D.; Doel, P.; Lahav, O.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Ballester, O.; Cardiel-Sas, L.; Miquel, R.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Bernstein, G. M.] Univ Penn, Dept Astron & Astrophys, Philadelphia, PA 19104 USA. [Bernsteing, R. A.] Carnegie Inst Washington Observ, Pasadena, CA 91101 USA. [Bigelow, B.; Boprie, D.; Cooper, C.; Dede, E.; Gerdes, D.; Schubnell, M.; Sypniewski, A.; Tarle, G.; Weaverdyck, C.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Campa, J.; Castilla, J.; Cela-Ruiz, J. M.; de Vicente, J.; Martinez, G.; Sanchez, E.] CIEMAT, E-28040 Madrid, Spain. [Castander, F. J.; Serrano, S.] Fac Ciencies, Campus UAB, IEEC CSIC, Inst Ciencies lEspai, E-08193 Barcelona, Spain. [da Costa, L. N.; Neto, A. Fausti; Ogando, R.] Lab Interinstituc eAstron LIneA, BR-20921400 Rio De Janeiro, Brazil. [da Costa, L. N.; Ogando, R.] Obser Nacl, BR-20921400 Rio De Janeiro, Brazil. [DePoy, D. L.; Li, T. S.; Marshall, J. L.; Palaio, N.; Rheault, J-P] Texas A&M Univ, George P & Cynthia Woods Mitchell Inst Fundamenta, College Stn, TX 77843 USA. [DePoy, D. L.; Li, T. S.; Marshall, J. L.; Palaio, N.; Rheault, J-P] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA. [Emes, J.; Holland, S. E.; Karcher, A.; Lee, J.; Levi, M. E.; Roe, N. A.; Tran, C.; Wang, G.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Frieman, J.; Gladders, M. D.; Kessler, R.; Kron, R. G.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Karliner, I.; Thaler, J.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Kuehn, K.] Australian Astron Observ, N Ryde, NSW 2113, Australia. [Kuhlmann, S.] Argonne Natl Lab, Lemont, IL 60439 USA. [Lewis, P.; Reil, K.; Rogers, H.; Roodman, A.; Schindler, R. H.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Miquel, R.] Inst Catalana Recerca & Estudis Avancats, Barcelona E-08010, Spain. [Nichol, R. C.] Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 3FX, Hants, England. [Plazas, A. A.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Plazas, A. A.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Roodman, A.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. RP Flaugher, B (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. EM diehl@fnal.gov RI Ogando, Ricardo/A-1747-2010; Sanchez, Eusebio/H-5228-2015; OI Ogando, Ricardo/0000-0003-2120-1154; Sanchez, Eusebio/0000-0002-9646-8198; Cela Ruiz, Jose Manuel/0000-0002-5364-9466; Tucker, Douglas/0000-0001-7211-5729; Neilsen, Eric/0000-0002-7357-0317 FU U.S. Department of Energy; U.S. National Science Foundation; Ministry of Science and Education of Spain; Science and Technology Facilities Council of the United Kingdom; Higher Education Funding Council for England; National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign; Kavli Institute of Cosmological Physics at the University of Chicago; Center for Cosmology and Astro-Particle Physics at the Ohio State University; Mitchell Institute for Fundamental Physics and Astronomy at Texas AM University; Financiadora de Estudos e Projetos; Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico; Ministerio da Ciencia e Tecnologia; Deutsche Forschungsgemeinschaft; MINECO [AYA2012-39559, ESP2013-48274, FPA2013-47986]; Centro de Excelencia Severo Ochoa [SEV-2012-0234]; European Union; Argonne National Laboratory; University of California at Santa Cruz; University of Cambridge; Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas-Madrid; University of Chicago; University College London; DES-Brazil Consortium; Eidgenossische Technische Hochschule (ETH) Zurich; Fermi National Accelerator Laboratory; University of Edinburgh; University of Illinois at Urbana-Champaign; Institut de Ciencies de l'Espai (IEEC/CSIC); Institut de Fisica d'Altes Energies; Lawrence Berkeley National Laboratory; Ludwig-Maximilians Universitat; associated Excellence Cluster Universe; University of Michigan; National Optical Astronomy Observatory; University of Nottingham; Ohio State University; University of Pennsylvania; University of Portsmouth; SLAC National Accelerator Laboratory; Stanford University; University of Sussex; Texas AM University FX Funding for the DES Projects has been provided by the U.S. Department of Energy, the U.S. National Science Foundation, the Ministry of Science and Education of Spain, the Science and Technology Facilities Council of the United Kingdom, the Higher Education Funding Council for England, the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign, the Kavli Institute of Cosmological Physics at the University of Chicago, the Center for Cosmology and Astro-Particle Physics at the Ohio State University, the Mitchell Institute for Fundamental Physics and Astronomy at Texas A&M University, Financiadora de Estudos e Projetos, Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Cientifico e Tecnologico and the Ministerio da Ciencia e Tecnologia, the Deutsche Forschungsgemeinschaft, and the Collaborating Institutions in the Dark Energy Survey. The DES participants from Spanish institutions are partially supported by MINECO under grants AYA2012-39559, ESP2013-48274, FPA2013-47986, and Centro de Excelencia Severo Ochoa SEV-2012-0234, some of which include ERDF funds from the European Union.; The Collaborating Institutions are Argonne National Laboratory, the University of California at Santa Cruz, the University of Cambridge, Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas-Madrid, the University of Chicago, University College London, the DES-Brazil Consortium, the Eidgenossische Technische Hochschule (ETH) Zurich, Fermi National Accelerator Laboratory, the University of Edinburgh, the University of Illinois at Urbana-Champaign, the Institut de Ciencies de l'Espai (IEEC/CSIC), the Institut de Fisica d'Altes Energies, Lawrence Berkeley National Laboratory, the Ludwig-Maximilians Universitat and the associated Excellence Cluster Universe, the University of Michigan, the National Optical Astronomy Observatory, the University of Nottingham, the Ohio State University, the University of Pennsylvania, the University of Portsmouth, SLAC National Accelerator Laboratory, Stanford University, the University of Sussex, and Texas A&M University. NR 73 TC 64 Z9 62 U1 2 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 EI 1538-3881 J9 ASTRON J JI Astron. J. PD NOV PY 2015 VL 150 IS 5 AR 150 DI 10.1088/0004-6256/150/5/150 PG 43 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CY5PV UT WOS:000366460500012 ER PT J AU Goldstein, DA D'Andrea, CB Fischer, JA Foley, RJ Gupta, RR Kessler, R Kim, AG Nichol, RC Nugent, PE Papadopoulos, A Sako, M Smith, M Sullivan, M Thomas, RC Wester, W Wolf, RC Abdalla, FB Banerji, M Benoit-Levy, A Bertin, E Brooks, D Rosell, AC Castander, FJ da Costa, LN Covarrubias, R DePoy, DL Desai, S Diehl, HT Doel, P Eifler, TF Neto, AF Finley, DA Flaugher, B Fosalba, P Frieman, J Gerdes, D Gruen, D Gruendl, RA James, D Kuehn, K Kuropatkin, N Lahav, O Li, TS Maia, MAG Makler, M March, M Marshall, JL Martini, P Merritt, KW Miquel, R Nord, B Ogando, R Plazas, AA Romer, AK Roodman, A Sanchez, E Scarpine, V Schubnell, M Sevilla-Noarbe, I Smith, RC Soares-Santos, M Sobreira, F Suchyta, E Swanson, MEC Tarle, G Thaler, J Walker, AR AF Goldstein, D. A. D'Andrea, C. B. Fischer, J. A. Foley, R. J. Gupta, R. R. Kessler, R. Kim, A. G. Nichol, R. C. Nugent, P. E. Papadopoulos, A. Sako, M. Smith, M. Sullivan, M. Thomas, R. C. Wester, W. Wolf, R. C. Abdalla, F. B. Banerji, M. Benoit-Levy, A. Bertin, E. Brooks, D. Carnero Rosell, A. Castander, F. J. da Costa, L. N. Covarrubias, R. DePoy, D. L. Desai, S. Diehl, H. T. Doel, P. Eifler, T. F. Fausti Neto, A. Finley, D. A. Flaugher, B. Fosalba, P. Frieman, J. Gerdes, D. Gruen, D. Gruendl, R. A. James, D. Kuehn, K. Kuropatkin, N. Lahav, O. Li, T. S. Maia, M. A. G. Makler, M. March, M. Marshall, J. L. Martini, P. Merritt, K. W. Miquel, R. Nord, B. Ogando, R. Plazas, A. A. Romer, A. K. Roodman, A. Sanchez, E. Scarpine, V. Schubnell, M. Sevilla-Noarbe, I. Smith, R. C. Soares-Santos, M. Sobreira, F. Suchyta, E. Swanson, M. E. C. Tarle, G. Thaler, J. Walker, A. R. TI AUTOMATED TRANSIENT IDENTIFICATION IN THE DARK ENERGY SURVEY (vol 150, 82, 2015) SO ASTRONOMICAL JOURNAL LA English DT Correction C1 [Goldstein, D. A.; Nugent, P. E.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Goldstein, D. A.; Kim, A. G.; Nugent, P. E.; Thomas, R. C.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [D'Andrea, C. B.; Nichol, R. C.; Papadopoulos, A.] Univ Portsmouth, Inst Cosmol & Gravitat, Burnaby, BC PO1 3FX, Canada. [Fischer, J. A.; Sako, M.; Wolf, R. C.; Eifler, T. F.; March, M.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Foley, R. J.; Gruendl, R. A.; Sevilla-Noarbe, I.] Univ Illinois, Dept Astron, Urbana, IL 61801 USA. [Foley, R. J.; Thaler, J.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Gupta, R. R.] Argonne Natl Lab, Lemont, IL 60439 USA. [Kessler, R.; Frieman, J.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Kessler, R.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Smith, M.; Sullivan, M.] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England. [Wester, W.; Diehl, H. T.; Finley, D. A.; Flaugher, B.; Frieman, J.; Kuropatkin, N.; Merritt, K. W.; Nord, B.; Scarpine, V.; Soares-Santos, M.; Sobreira, F.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Abdalla, F. B.; Benoit-Levy, A.; Brooks, D.; Doel, P.; Lahav, O.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Banerji, M.] Univ Cambridge, Kavli Inst Cosmol, Cambridge CB3 0HA, England. [Banerji, M.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Bertin, E.] Univ Paris 06, Inst Astrophys Paris, F-75014 Paris, France. [Bertin, E.] CNRS, UMR7095, F-75014 Paris, France. [Carnero Rosell, A.; da Costa, L. N.; Fausti Neto, A.; Maia, M. A. G.; Ogando, R.; Sobreira, F.] Lab Interinst & Astron LIneA, BR-20921400 Rio De Janeiro, RJ, Brazil. [Carnero Rosell, A.; da Costa, L. N.; Maia, M. A. G.; Ogando, R.] Observ Nacl, BR-20921400 Rio De Janeiro, RJ, Brazil. [Castander, F. J.; Fosalba, P.] IEEC CSIC, Inst Ciencies Espai, E-08193 Barcelona, Spain. [Covarrubias, R.; Gruendl, R. A.; Swanson, M. E. C.] Univ Illinois, Natl Ctr Supercomp Applicat, Urbana, IL 61801 USA. [DePoy, D. L.; Li, T. S.; Marshall, J. L.] Texas A&M Univ, George P & Cynthia Woods Mitchell Inst Fundamenta, College Stn, TX 77843 USA. [DePoy, D. L.; Li, T. S.; Marshall, J. L.] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA. [Desai, S.] Univ Munich, Dept Phys, D-81679 Munich, Germany. [Eifler, T. F.; Plazas, A. A.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Gerdes, D.; Schubnell, M.; Tarle, G.; Walker, A. R.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Gruen, D.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Gruen, D.] Univ Observ Munich, D-81679 Munich, Germany. [James, D.; Smith, R. C.] Natl Opt Astron Observ, Cerro Tololo Inter Amer Observ, La Serena, Chile. [Kuehn, K.] Australian Astron Observ, N Ryde, NSW 2113, Australia. [Makler, M.] Ctr Brasileiro Pesquisas Fis, ICRA, BR-22290180 Rio De Janeiro, RJ, Brazil. [Martini, P.; Suchyta, E.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Martini, P.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Miquel, R.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Miquel, R.] Inst Catalana Recerca & Estudis Avancats, E-08010 Barcelona, Spain. [Plazas, A. A.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Romer, A. K.] Univ Sussex, Ctr Astron, Brighton BN1 9QH, E Sussex, England. [Roodman, A.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. [Sanchez, E.; Sevilla-Noarbe, I.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Suchyta, E.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. RP Goldstein, DA (reprint author), Univ Calif Berkeley, Dept Astron, 501 Campbell Hall 3411, Berkeley, CA 94720 USA. RI Ogando, Ricardo/A-1747-2010; Fosalba Vela, Pablo/I-5515-2016; Sobreira, Flavia/F-4168-2015; OI Ogando, Ricardo/0000-0003-2120-1154; Sobreira, Flavia/0000-0002-7822-0658; Goldstein, Daniel/0000-0003-3461-8661 FU Science and Technology Facilities Council [ST/H001581/1, ST/I000976/1, ST/L000652/1, ST/L006529/1, ST/M003574/1, ST/N001087/1] NR 1 TC 0 Z9 0 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 EI 1538-3881 J9 ASTRON J JI Astron. J. PD NOV PY 2015 VL 150 IS 5 AR 165 DI 10.1088/0004-6256/150/5/165 PG 1 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CY5PV UT WOS:000366460500027 ER PT J AU Rodney, SA Riess, AG Scolnic, DM Jones, DO Hemmati, S Molino, A McCully, C Mobasher, B Strolger, LG Graur, O Hayden, B Casertano, S AF Rodney, Steven A. Riess, Adam G. Scolnic, Daniel M. Jones, David O. Hemmati, Shoubaneh Molino, Alberto McCully, Curtis Mobasher, Bahram Strolger, Louis-Gregory Graur, Or Hayden, Brian Casertano, Stefano TI TWO SNe Ia AT REDSHIFT similar to 2: IMPROVED CLASSIFICATION AND REDSHIFT DETERMINATION WITH MEDIUM-BAND INFRARED IMAGING SO ASTRONOMICAL JOURNAL LA English DT Article DE cosmology: observations; methods: observational; supernovae: general ID HUBBLE-SPACE-TELESCOPE; SUBARU DEEP FIELD; EXTRAGALACTIC LEGACY SURVEY; DARK-ENERGY CONSTRAINTS; PHOTOMETRY DATA RELEASE; ACTIVE GALACTIC NUCLEI; II SUPERNOVA SURVEY; LIGHT CURVES; COSMOLOGICAL CONSTRAINTS; STAR-FORMATION AB We present two supernovae (SNe) discovered with the Hubble Space Telescope (HST) in the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey, an HST multi-cycle treasury program. We classify both objects as SNe Ia and find redshifts of z = 1.80 +/- 0.02 and 2.26(-0.10)(+0.02) , the latter of which is the highest redshift SN Ia yet seen. Using light curve fitting we determine luminosity distances and find that both objects are consistent with a standard Lambda CDM cosmological model. These SNe were observed using the HST Wide Field Camera 3 infrared detector, with imaging in both wide-and medium-band filters. We demonstrate that the classification and redshift estimates are significantly improved by the inclusion of single-epoch medium-band observations. This medium-band imaging approximates a very low resolution spectrum (lambda/Delta lambda less than or similar to 100) which can isolate broad spectral absorption features that differentiate SNe Ia from their most common core collapse cousins. This medium-band method is also insensitive to dust extinction and (unlike grism spectroscopy) it is not affected by contamination from the SN host galaxy or other nearby sources. As such, it can provide a more efficient-though less precise-alternative to IR spectroscopy for high-z SNe. C1 [Rodney, Steven A.; Riess, Adam G.; Jones, David O.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Rodney, Steven A.] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. [Riess, Adam G.; Strolger, Louis-Gregory; Casertano, Stefano] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Scolnic, Daniel M.] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. [Hemmati, Shoubaneh; Mobasher, Bahram] Univ Calif Riverside, Dept Phys & Astron, Riverside, CA 92521 USA. [Molino, Alberto] Inst Astrofis Andalucia CSIC, E-18080 Granada, Spain. [Molino, Alberto] Univ Sao Paulo, Inst Astron Geofis & Ciencias Atmosfer, BR-05508090 Sao Paulo, Brazil. [McCully, Curtis] Las Cumbres Observ Global Telescope Network, Goleta, CA 93117 USA. [McCully, Curtis] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Strolger, Louis-Gregory] Western Kentucky Univ, Dept Phys, Bowling Green, KY 42101 USA. [Graur, Or] NYU, Ctr Cosmol & Particle Phys, New York, NY 10003 USA. [Graur, Or] Amer Museum Nat Hist, Dept Astrophys, New York, NY 10024 USA. [Hayden, Brian] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. [Hayden, Brian] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Rodney, SA (reprint author), Johns Hopkins Univ, Dept Phys & Astron, 3400 N Charles St, Baltimore, MD 21218 USA. EM srodney@sc.edu OI Graur, Or/0000-0002-4391-6137 FU NASA [NAS 5-26555, NAS5-26555, HST-HF-51312]; NASA Office of Space Science [NNX13AC07G]; CANDELS-SN team through Space Telescope Science Institute [HST-GO-12060, HST-GO-12099]; [12060]; [12061]; [12062]; [12442]; [12443]; [12444]; [12445]; [12099]; [12461]; [13063] FX This work was principally based on observations made with the NASA/ESA Hubble Space Telescope, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program IDs 12060, 12061, 12062, 12442, 12443, 12444, 12445, 12099, 12461, and 13063. The analysis presented here made extensive use of the Mikulski Archive for Space Telescopes (MAST). STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. Support for MAST for non-HST data is provided by the NASA Office of Space Science via grant NNX13AC07G and by other grants and contracts. Financial support was provided by NASA to SAR through grant HST-HF-51312, and to the CANDELS-SN team through grants HST-GO-12060 and HST-GO-12099 from the Space Telescope Science Institute. NR 104 TC 3 Z9 3 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 EI 1538-3881 J9 ASTRON J JI Astron. J. PD NOV PY 2015 VL 150 IS 5 AR 156 DI 10.1088/0004-6256/150/5/156 PG 20 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CY5PV UT WOS:000366460500018 ER PT J AU Kartaltepe, JS Mozena, M Kocevski, D McIntosh, DH Lotz, J Bell, EF Faber, S Ferguson, H Koo, D Bassett, R Bernyk, M Blancato, K Bournaud, F Cassata, P Castellano, M Cheung, E Conselice, CJ Croton, D Dahlen, T De Mello, DF DeGroot, L Donley, J Guedes, J Grogin, N Hathi, N Hilton, M Hollon, B Koekemoer, A Liu, N Lucas, RA Martig, M McGrath, E McPartland, C Mobasher, B Morlock, A O'Leary, E Peth, M Pforr, J Pillepich, A Rosario, D Soto, E Straughn, A Telford, O Sunnquist, B Trump, J Weiner, B Wuyts, S AF Kartaltepe, Jeyhan S. Mozena, Mark Kocevski, Dale McIntosh, Daniel H. Lotz, Jennifer Bell, Eric F. Faber, Sandy Ferguson, Harry Koo, David Bassett, Robert Bernyk, Maksym Blancato, Kirsten Bournaud, Frederic Cassata, Paolo Castellano, Marco Cheung, Edmond Conselice, Christopher J. Croton, Darren Dahlen, Tomas De Mello, Duilia F. DeGroot, Laura Donley, Jennifer Guedes, Javiera Grogin, Norman Hathi, Nimish Hilton, Matt Hollon, Brett Koekemoer, Anton Liu, Nick Lucas, Ray A. Martig, Marie McGrath, Elizabeth McPartland, Conor Mobasher, Bahram Morlock, Alice O'Leary, Erin Peth, Mike Pforr, Janine Pillepich, Annalisa Rosario, David Soto, Emmaris Straughn, Amber Telford, Olivia Sunnquist, Ben Trump, Jonathan Weiner, Benjamin Wuyts, Stijn TI CANDELS VISUAL CLASSIFICATIONS: SCHEME, DATA RELEASE, AND FIRST RESULTS SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article DE cosmology: observations; galaxies: evolution; galaxies: high-redshift ID SIMILAR-TO 2; DIGITAL-SKY-SURVEY; SPACE-TELESCOPE OBSERVATIONS; EXTRAGALACTIC LEGACY SURVEY; STAR-FORMING GALAXIES; LESS-THAN 3; MASSIVE GALAXIES; HUBBLE SEQUENCE; MORPHOLOGICAL CLASSIFICATIONS; QUIESCENT GALAXIES AB We have undertaken an ambitious program to visually classify all galaxies in the five CANDELS fields down to H < 24.5 involving the dedicated efforts of over 65 individual classifiers. Once completed, we expect to have detailed morphological classifications for over 50,000 galaxies spanning 0 < z < 4 over all the fields, with classifications from 3 to 5 independent classifiers for each galaxy. Here, we present our detailed visual classification scheme, which was designed to cover a wide range of CANDELS science goals. This scheme includes the basic Hubble sequence types, but also includes a detailed look at mergers and interactions, the clumpiness of galaxies, k-corrections, and a variety of other structural properties. In this paper, we focus on the first field to be completed-GOODS-S, which has been classified at various depths. The wide area coverage spanning the full field (wide+deep+ERS) includes 7634 galaxies that have been classified by at least three different people. In the deep area of the field, 2534 galaxies have been classified by at least five different people at three different depths. With this paper, we release to the public all of the visual classifications in GOODS-S along with the Perl/Tk GUI that we developed to classify galaxies. We present our initial results here, including an analysis of our internal consistency and comparisons among multiple classifiers as well as a comparison to the Sersic index. We find that the level of agreement among classifiers is quite good (>70% across the full magnitude range) and depends on both the galaxy magnitude and the galaxy type, with disks showing the highest level of agreement (>50%) and irregulars the lowest (<10%). A comparison of our classifications with the Sersic index and rest-frame colors shows a clear separation between disk and spheroid populations. Finally, we explore morphological k-corrections between the V-band and H-band observations and find that a small fraction (84 galaxies in total) are classified as being very different between these two bands. These galaxies typically have very clumpy and extended morphology or are very faint in the V-band. C1 [Kartaltepe, Jeyhan S.] Rochester Inst Technol, Sch Phys & Astron, Rochester, NY 14623 USA. [Kartaltepe, Jeyhan S.; Blancato, Kirsten; O'Leary, Erin; Pforr, Janine] Natl Opt Astron Observ, Tucson, AZ 85719 USA. [Mozena, Mark; Faber, Sandy; Koo, David; Cheung, Edmond] Univ Calif Santa Cruz, Univ Calif Observ Lick Observ, Santa Cruz, CA 95064 USA. [Kocevski, Dale] Univ Kentucky, Dept Phys & Astron, Lexington, KY 40506 USA. [McIntosh, Daniel H.; Hollon, Brett] Univ Missouri, Dept Phys, Kansas City, MO 64110 USA. [Lotz, Jennifer; Ferguson, Harry; Grogin, Norman; Koekemoer, Anton] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Bell, Eric F.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Bassett, Robert; Bernyk, Maksym; Croton, Darren; Martig, Marie] Swinburne Univ Technol, Ctr Astrophys & Supercomp, Hawthorn, Vic 3122, Australia. [Blancato, Kirsten] Wellesley Coll, Dept Astron, Wellesley, MA 02481 USA. [Bournaud, Frederic] Univ Paris Diderot, CE Saclay, CEA DSM Irfu CNRS, Lab AIM Paris Saclay, F-91191 Gif Sur Yvette, France. [Cassata, Paolo] Aix Marseille Univ, CNRS, LAM UMR 7326, F-13388 Marseille, France. [Castellano, Marco] IINAFOsserv Astron Roma, I-00040 Monte Porzio Catone, Italy. [Conselice, Christopher J.; Morlock, Alice] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England. [De Mello, Duilia F.; Soto, Emmaris] Catholic Univ Amer, Washington, DC 20064 USA. [DeGroot, Laura; Donley, Jennifer; Hathi, Nimish; Mobasher, Bahram] Univ Calif Riverside, Dept Phys & Astron, Riverside, CA 92521 USA. [Donley, Jennifer] Los Alamos Natl Lab, Los Alamos, NM USA. [Guedes, Javiera] ETH, Inst Astron, CH-8093 Zurich, Switzerland. [Hilton, Matt] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Astrophys & Cosmol Res Unit, ZA-4041 Durban, South Africa. [Liu, Nick] Pioneer High Sch, Ann Arbor, MI 48103 USA. [McGrath, Elizabeth] Colby Coll, Dept Phys & Astron, Waterville, ME 04901 USA. [McPartland, Conor] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA. [O'Leary, Erin] Macalester Coll, Dept Phys & Astron, St Paul, MN 55105 USA. [Peth, Mike] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Pillepich, Annalisa] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Rosario, David] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Straughn, Amber] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Telford, Olivia] Univ Washington, Dept Astron, Seattle, WA 98195 USA. [Trump, Jonathan] Penn State, State Coll, PA USA. [Weiner, Benjamin] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Wuyts, Stijn] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. RP Kartaltepe, JS (reprint author), Rochester Inst Technol, Sch Phys & Astron, 84 Lomb Mem Dr, Rochester, NY 14623 USA. EM jeyhan@astro.rit.edu RI Hathi, Nimish/J-7092-2014; OI Hathi, Nimish/0000-0001-6145-5090; Cheung, Edmond/0000-0001-8546-1428; Martig, Marie/0000-0001-5454-1492; Bell, Eric/0000-0002-5564-9873; Koekemoer, Anton/0000-0002-6610-2048 FU NASA through Hubble Fellowship - Space Telescope Science Institute [HST-HF-51292.01A]; NASA [NAS 5-26555, NAS5-26555]; NASA through a grant from the Space Telescope Science Institute [HST-GO-12060]; NOAO/KPNO Research Experiences for Undergraduates (REU) Program from the National Science Foundation Research Experiences for Undergraduates Program [AST-0754223, AST-1262829] FX Support for this work was provided by NASA through Hubble Fellowship grant # HST-HF-51292.01A awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract NAS 5-26555. Support for Program number HST-GO-12060 was provided by NASA through a grant from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Incorporated, under NASA contract NAS5-26555. O'Leary and Blancato were supported by the NOAO/KPNO Research Experiences for Undergraduates (REU) Program with two grants from the National Science Foundation Research Experiences for Undergraduates Program (AST-0754223, AST-1262829). NR 72 TC 16 Z9 16 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 EI 1538-4365 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD NOV PY 2015 VL 221 IS 1 AR 11 DI 10.1088/0067-0049/221/1/11 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CY7WS UT WOS:000366620600011 ER PT J AU Romero, NA Nakano, A Riley, KM Shimojo, F Kalia, RK Vashishta, P Messina, PC AF Romero, Nichols A. Nakano, Aiichiro Riley, Katherine M. Shimojo, Fuyuki Kalia, Rajiv K. Vashishta, Priya Messina, Paul C. TI Quantum Molecular Dynamics in the Post-Petaflops Era SO COMPUTER LA English DT Article ID TOTAL-ENERGY CALCULATIONS; DENSITY-FUNCTIONAL THEORY; RECONSTRUCTION; FORMALISM AB As the scale of quantum molecular dynamics simulations has grown in time and system size, QMD codes must increase intranode and instruction-level parallelism to take advantage of emerging supercomputer architectures. The authors present one promising parallelization approach and illustrate its success on one of the world's most powerful systems. C1 [Romero, Nichols A.] Argonne Natl Lab, Argonne Leadership Comp Facil, Argonne, IL 60439 USA. [Nakano, Aiichiro] Univ So Calif, Comp Sci Phys & Astron Chem Engn & Mat Sci, Los Angeles, CA 90089 USA. [Nakano, Aiichiro] Univ So Calif, Biol Sci, Los Angeles, CA 90089 USA. [Riley, Katherine M.; Messina, Paul C.] Argonne Natl Lab, Argonne, IL 60439 USA. [Shimojo, Fuyuki] Kumamoto Univ, Phys, Kumamoto 860, Japan. [Kalia, Rajiv K.] Univ So Calif, Phys & astron, Los Angeles, CA 90089 USA. [Kalia, Rajiv K.; Vashishta, Priya] Univ So Calif, Phys & Astron, Los Angeles, CA 90089 USA. [Kalia, Rajiv K.; Vashishta, Priya] Univ So Calif, Chem Engn & Mat Sci, Los Angeles, CA 90089 USA. RP Romero, NA (reprint author), Argonne Natl Lab, Argonne Leadership Comp Facil, Argonne, IL 60439 USA. EM naromero@alcf.anl.gov; anakano@usc.edu; riley@alcf.anl.gov; shimojo@kumamoto-u.ac.jp; rkalia@usc.edu; priyav@usc.edu; messina@anl.gov FU US Department of Energy (DOE) Office of Science [DE-FG02-04ER-46130]; DOE Office of Science User Facility [DE-AC02-06CH11357] FX This research was partially supported by grant DE-FG02-04ER-46130 from the US Department of Energy (DOE) Office of Science. An award of computer time was provided by the Innovative and Novel Computational Impact on Theory and Experiment (INCITE) program. This research used resources of the Argonne Leadership Computing Facility, which is a DOE Office of Science User Facility supported under contract DE-AC02-06CH11357. NR 24 TC 2 Z9 2 U1 1 U2 7 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 0018-9162 EI 1558-0814 J9 COMPUTER JI Computer PD NOV PY 2015 VL 48 IS 11 BP 33 EP 41 PG 9 WC Computer Science, Hardware & Architecture; Computer Science, Software Engineering SC Computer Science GA CY6FV UT WOS:000366504900006 ER PT J AU Strohmaier, E Meuer, HW Dongarra, J Simon, HD AF Strohmaier, Erich Meuer, Hans W. Dongarra, Jack Simon, Horst D. TI The TOP500 List and Progress in High-Performance Computing SO COMPUTER LA English DT Article ID MARKETPLACE AB For more than two decades, the TOP500 list has enjoyed incredible success as a metric for supercomputing performance and as a source of data for identifying technological trends. The project's editors reflect on its usefulness and limitations for guiding large-scale scientific computing into the exascale era. C1 [Strohmaier, Erich] Lawrence Berkeley Natl Lab, Performance & Algorithms Res Grp, Berkeley, CA 94720 USA. [Meuer, Hans W.] Univ Mannheim, Math & Comp Sci, Mannheim, Germany. [Dongarra, Jack] Univ Tennessee, Innovat Comp Lab, Knoxville, TN 37996 USA. [Dongarra, Jack] Univ Tennessee, Ctr Informat Technol Res, Knoxville, TN 37996 USA. [Simon, Horst D.] Lawrence Berkeley Natl Lab, Berkeley, CA USA. RP Strohmaier, E (reprint author), Lawrence Berkeley Natl Lab, Performance & Algorithms Res Grp, Berkeley, CA 94720 USA. EM estrohmaier@lbl.gov; dongarra@eecs.utk.edu; hdsimon@lbl.gov NR 7 TC 1 Z9 1 U1 3 U2 7 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 0018-9162 EI 1558-0814 J9 COMPUTER JI Computer PD NOV PY 2015 VL 48 IS 11 BP 42 EP 49 PG 8 WC Computer Science, Hardware & Architecture; Computer Science, Software Engineering SC Computer Science GA CY6FV UT WOS:000366504900007 ER PT J AU Xiao, QF Gu, M Yang, H Li, B Zhang, CM Liu, Y Liu, F Dai, F Yang, L Liu, ZY Xiao, XC Liu, G Zhao, P Zhang, SL Wang, CM Lu, YF Cai, M AF Xiao, Qiangfeng Gu, Meng Yang, Hui Li, Bing Zhang, Cunman Liu, Yang Liu, Fang Dai, Fang Yang, Li Liu, Zhongyi Xiao, Xingcheng Liu, Gao Zhao, Peng Zhang, Sulin Wang, Chongmin Lu, Yunfeng Cai, Mei TI Inward lithium-ion breathing of hierarchically porous silicon anodes SO NATURE COMMUNICATIONS LA English DT Article ID IN-SITU TEM; BATTERY ANODES; CRYSTALLINE SILICON; LITHIATION; NANOPARTICLES; PERFORMANCE; NANOSPHERES; ELECTRODES; NANOWIRES; FRACTURE AB Silicon has been identified as a highly promising anode for next-generation lithium-ion batteries (LIBs). The key challenge for Si anodes is large volume change during the lithiation/delithiation cycle that results in chemomechanical degradation and subsequent rapid capacity fading. Here we report a novel fabrication method for hierarchically porous Si nanospheres (hp-SiNSs), which consist of a porous shell and a hollow core. On charge/discharge cycling, the hp-SiNSs accommodate the volume change through reversible inward Li breathing with negligible particle-level outward expansion. Our mechanics analysis revealed that such inward expansion is enabled by the much stiffer lithiated layer than the unlithiated porous layer. LIBs assembled with the hp-SiNSs exhibit high capacity, high power and long cycle life, which is superior to the current commercial Si-based anode materials. The low-cost synthesis approach provides a new avenue for the rational design of hierarchically porous structures with unique materials properties. C1 [Xiao, Qiangfeng; Dai, Fang; Yang, Li; Liu, Zhongyi; Xiao, Xingcheng; Cai, Mei] Gereral Motors Res & Dev Ctr, Warren, MI 48090 USA. [Gu, Meng; Wang, Chongmin] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. [Yang, Hui; Zhao, Peng; Zhang, Sulin] Penn State Univ, Dept Engn Sci & Mech, University Pk, PA 16802 USA. [Li, Bing; Zhang, Cunman] Tongji Univ, Clean Energy Automot Engn Ctr, Shanghai 201804, Peoples R China. [Liu, Yang; Liu, Fang; Lu, Yunfeng] Univ Calif Los Angeles, Dept Chem & Biomol Engn, Los Angeles, CA 90095 USA. [Liu, Gao] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. RP Zhang, SL (reprint author), Penn State Univ, Dept Engn Sci & Mech, 227 Hammond Bldg, University Pk, PA 16802 USA. EM suz10@psu.edu; Chongmin.Wang@pnnl.gov; luucla@ucla.edu; mei.cai@gm.com RI Gu, Meng/B-8258-2013; Zhang, Sulin /E-6457-2010; Dai, Fang/O-2626-2013; YANG, HUI/H-6996-2012 OI Dai, Fang/0000-0002-9229-5576; YANG, HUI/0000-0002-2628-4676 FU GM internal funds; Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the U.S. Department of Energy [DE_AC02-05CH11231, 6951379]; Chemical Imaging Initiative at Pacific Northwest National Laboratory (PNNL); DOE's Office of Biological and Environmental Research; NSF-CMMI [0900692] FX This work is supported by GM internal funds. The in situ TEM work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the U.S. Department of Energy under Contract No. DE_AC02-05CH11231, Subcontract No. 6951379 under the advanced Battery Materials Research program and the Chemical Imaging Initiative at Pacific Northwest National Laboratory (PNNL), which was conducted in the William R. Wiley Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by DOE's Office of Biological and Environmental Research and located at PNNL. The authors also thank XG science for providing the graphene nanoplatelets. H.Y. and S.Z. acknowledge the support by the NSF-CMMI (Grant No. 0900692). NR 50 TC 9 Z9 9 U1 48 U2 189 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD NOV PY 2015 VL 6 AR 8844 DI 10.1038/ncomms9844 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CY3GC UT WOS:000366295800011 PM 26538181 ER PT J AU Gerasimov, SN Abreu, P Baruzzo, M Drozdov, V Dvornova, A Havlicek, J Hender, TC Hronova, O Kruezi, U Li, X Markovic, T Panek, R Rubinacci, G Tsalas, M Ventre, S Villone, F Zakharov, LE AF Gerasimov, S. N. Abreu, P. Baruzzo, M. Drozdov, V. Dvornova, A. Havlicek, J. Hender, T. C. Hronova, O. Kruezi, U. Li, X. Markovic, T. Panek, R. Rubinacci, G. Tsalas, M. Ventre, S. Villone, F. Zakharov, L. E. CA Jet Contributors TI JET and COMPASS asymmetrical disruptions SO NUCLEAR FUSION LA English DT Article DE tokamak; asymmetrical disruption; JET; COMPASS ID VERTICAL DISPLACEMENT EVENTS; DIII-D TOKAMAK; HALO CURRENTS; FORCES; VESSEL; PLASMA AB Asymmetrical disruptions may occur during ITER operation and they may be accompanied by large sideways forces and rotation of the asymmetry. This is of particular concern because resonance of the rotating asymmetry with the natural frequencies of the vacuum vessel (and other in-vessel components) could lead to large dynamic amplification of the forces. A significant fraction of non-mitigated JET disruptions have toroidally asymmetric currents that flow partially inside the plasma and partially inside the surrounding vacuum vessel ('wall'). The toroidal asymmetries (otherwise known as the appearance of 3D structures) are clearly visible in the plasma current (I-p) and the first plasma current moments. For the first time we present here the asymmetries in toroidal flux measured by the diamagnetic loops and also propose a physical interpretation. The presented data covers the period of JET operation with a C-wall (JET-C from 2005 until late 2009) and with an ITER-like wall (JET-ILW from 2011 until late 2014), during which pick-up coil and saddle loop data at four toroidally orthogonal locations were routinely recorded. The observed rotations of the Ip asymmetries are in the range from -5 turns to +10 turns (a negative value is counted to the negative plasma current). Initial observations on COMPASS of asymmetric disruptions are presented, which are in line with JET data. The whole of the JET-ILW disruption database and the limited number of COMPASS disruptions examined confirm that the development of the toroidal asymmetry precedes the drop to unity of q95. It is shown that massive gas injection (MGI), which is routinely used to mitigate disruptions, significantly reduces the I-p asymmetries in JET. However, MGI produces fast plasma current quench and consequently high vessel eddy currents, which expose the machine to additional stresses. The effect of the large gas quantity used during the injection is of particular concern as well. C1 Culham Sci Ctr, JET, EUROfus Consortium, Abingdon OX14 3DB, Oxon, England. [Gerasimov, S. N.; Drozdov, V.; Hender, T. C.; Kruezi, U.] Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England. [Abreu, P.] Univ Lisbon, Inst Super Tecn, Inst Plasmas & Fusao Nucl, Lisbon, Portugal. [Baruzzo, M.] ENEA, Frascati, Italy. [Dvornova, A.] NRNU MEPhI, Moscow, Russia. [Havlicek, J.; Hronova, O.; Markovic, T.; Panek, R.] Inst Plasma Phys AS CR, Prague 18221 8, Czech Republic. [Havlicek, J.; Markovic, T.] Charles Univ Prague, Fac Math & Phys, CR-12116 Prague 2, Czech Republic. [Li, X.] Chinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math & Sci Engn Comp, Beijing 100190, Peoples R China. [Rubinacci, G.] Univ Naples Federico II, DIETI, ENEA CREATE, Naples, Italy. [Tsalas, M.] FOM Inst DIFFER, Nieuwegein, Netherlands. [Ventre, S.; Villone, F.] Univ Cassino, DIEI, ENEA CREATE, Cassino, Italy. [Zakharov, L. E.] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Gerasimov, SN (reprint author), Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England. RI Havlicek, Josef/G-2897-2014; Gerasimov, Sergei/O-4881-2015 OI Havlicek, Josef/0000-0002-7047-5007; Gerasimov, Sergei/0000-0002-6249-2931 FU Euratom research and training programme [633053]; RCUK Energy Programme [EP/I501045]; CR Ministry of Education, Youth and Sports grant [LM2011021]; US DoE [DE-AC02-09-CH11466]; Italian MIUR under PRIN grant [2010SPS9B3]; Chinese National Magnetic Confinement Fusion Science Program [2011GB105003]; Coordinated Research Project on 'Utilization of the Network of Small Magnetic Confinement Fusion Devices for Mainstream Fusion Research' [F13014] FX This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under grant agreement no. 633053 and from the RCUK Energy Programme (grant no. EP/I501045). To obtain further information on the data and models underlying this paper please contact PublicationsManager@ccfe.ac.uk. The views and opinions expressed herein do not necessarily reflect those of the European Commission. This work was also part-funded by the CR Ministry of Education, Youth and Sports grant #LM2011021, by US DoE contract no. DE-AC02-09-CH11466, by Italian MIUR under PRIN grant 2010SPS9B3 and by the Chinese National Magnetic Confinement Fusion Science Program 2011GB105003. The authors would like to acknowledge that some of the data presented were obtained during the IAEA's Joint Experiments on the COMPASS tokamak in 2013 that were organised within the framework of the Coordinated Research Project F13014 on 'Utilization of the Network of Small Magnetic Confinement Fusion Devices for Mainstream Fusion Research'. The authors are grateful to R. Albanese, R. Lobel and V. Riccardo for fruitful discussions during the course of this work, and to S. Newton and N. Gerasimov for proof reading. Conversations with H. Strauss and A. Boozer provided inspiration for JET and COMPASS data analysis. NR 53 TC 5 Z9 5 U1 5 U2 14 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 EI 1741-4326 J9 NUCL FUSION JI Nucl. Fusion PD NOV PY 2015 VL 55 IS 11 AR 113006 DI 10.1088/0029-5515/55/11/113006 PG 18 WC Physics, Fluids & Plasmas SC Physics GA CY6OM UT WOS:000366528700009 ER PT J AU Liu, F Huijsmans, GTA Loarte, A Garofalo, AM Solomon, WM Snyder, PB Hoelzl, M Zeng, L AF Liu, F. Huijsmans, G. T. A. Loarte, A. Garofalo, A. M. Solomon, W. M. Snyder, P. B. Hoelzl, M. Zeng, L. TI Nonlinear MHD simulations of Quiescent H-mode plasmas in DIII-D SO NUCLEAR FUSION LA English DT Article DE JOREK; QH-mode; DIII-D; ELM control ID TRANSPORT BARRIER; ELMS; INSTABILITIES; STABILITY; PEDESTAL; ROTATION; REGIME; ENERGY; JT-60U; ITER AB In the Quiescent H-mode (QH-mode) regime, the edge harmonic oscillation (EHO), thought to be a saturated kink-peeling mode (KPM) driven unstable by current and rotation, is found in experiment to provide sufficient stationary edge particle transport to avoid the periodic expulsion of particles and energy by edge localized modes (ELMs). In this paper, both linear and nonlinear MHD modelling of QH-mode plasmas from the DIII-D tokamak have been investigated to understand the mechanism leading to the appearance of the EHO in QH-mode plasmas. For the first time nonlinear MHD simulations with low-n modes both with ideal wall and resistive wall boundary conditions have been carried out with the 3D non-linear MHD code JOREK. The results show, in agreement with the original conjectures, that in the nonlinear phase, kink peeling modes are the main unstable modes in QH-mode plasmas of DIII-D and that the kink-peeling modes saturate non-linearly leading to a 3D stationary state. The characteristics of the kink-peeling modes, in terms of mode structure and associated decrease of the edge plasma density associated with them, are in good agreement with experimental measurements of the EHO in DIII-D. The effect of plasma resistivity, the role of plasma parallel rotation as well as the effect of the conductivity of the vacuum vessel wall on the destabilization and saturation of kink-peeling modes have been evaluated for experimental QH-mode plasma conditions in DIII-D. C1 [Liu, F.; Huijsmans, G. T. A.; Loarte, A.] ITER Org, F-13067 St Paul Les Durance, France. [Garofalo, A. M.; Snyder, P. B.] Gen Atom Co, San Diego, CA 92186 USA. [Solomon, W. M.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Hoelzl, M.] Max Planck Inst Plasma Phys, D-85748 Garching, Germany. [Zeng, L.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. RP Liu, F (reprint author), Univ Nice Sophia Antipolis, Lab JA Dieudonne, CNRS, UMR UNS 7351, F-06108 Nice 2, France. EM aixis.liu@gmail.com OI Solomon, Wayne/0000-0002-0902-9876 FU US Department of Energy [DE-FC02-04ER54698, DE-AC03-09CH11466] FX This work was supported in part by the US Department of Energy under DE-FC02-04ER54698 and DE-AC03-09CH11466. The views and opinions expressed herein do not necessarily reflect those of the ITER Organization. NR 35 TC 8 Z9 8 U1 1 U2 15 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 EI 1741-4326 J9 NUCL FUSION JI Nucl. Fusion PD NOV PY 2015 VL 55 IS 11 AR 113002 DI 10.1088/0029-5515/55/11/113002 PG 14 WC Physics, Fluids & Plasmas SC Physics GA CY6OM UT WOS:000366528700005 ER PT J AU Mordijck, S Wang, X Doyle, EJ Rhodes, TL Schmitz, L Zeng, L Staebler, GM Petty, CC Groebner, RJ Ko, WH Grierson, BA Solomon, WM Tala, T Salmi, A Chrystal, C Diamond, PH Mckee, GR AF Mordijck, S. Wang, X. Doyle, E. J. Rhodes, T. L. Schmitz, L. Zeng, L. Staebler, G. M. Petty, C. C. Groebner, R. J. Ko, W. -H. Grierson, B. A. Solomon, W. M. Tala, T. Salmi, A. Chrystal, C. Diamond, P. H. Mckee, G. R. TI Particle transport in low-collisionality H-mode plasmas on DIII-D SO NUCLEAR FUSION LA English DT Article DE transport properties; particle flux; Tokamaks ID MODULATION; COEFFICIENTS; ASDEX AB In this paper we show that changing from an ion temperature gradient (ITG) to a trapped electron mode (TEM) dominant turbulence regime (based on linear gyrokinetic simulations) results experimentally in a strong density pump-out (defined as a reduction in line-averaged density) in low collisionality, low power H-mode plasmas. We vary the turbulence drive by changing the heating from predominantly ion heated using neutral beam injection to electron heated using electron cyclotron heating, which changes the T-e/T-i ratio and the temperature gradients. Perturbed gas puff experiments show an increase in transport outside rho = 0.6, through a strong increase in the perturbed diffusion coefficient and a decrease in the inward pinch. Linear gyrokinetic simulations with TGLF show an increase in the particle flux outside the mid-radius. In conjunction an increase in intermediate-scale length density fluctuations is observed, which indicates an increase in turbulence intensity at typical TEM wavelengths. However, although the experimental changes in particle transport agree with a change from ITG to TEM turbulence regimes, we do not observe a reduction in the core rotation at mid-radius, nor a rotation reversal. C1 [Mordijck, S.; Wang, X.] Coll William & Mary, Dept Comp Sci, Williamsburg, VA 23187 USA. [Doyle, E. J.; Rhodes, T. L.; Schmitz, L.; Zeng, L.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Staebler, G. M.; Petty, C. C.; Groebner, R. J.] Gen Atom Co, San Diego, CA 92186 USA. [Ko, W. -H.] Natl Fus Res Inst, KSTAR, Daejeon 305806, South Korea. [Grierson, B. A.; Solomon, W. M.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Tala, T.; Salmi, A.] VTT Tech Res Ctr Finland, FI-02044 Espoo, Finland. [Chrystal, C.; Diamond, P. H.] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. [Mckee, G. R.] Univ Wisconsin, Dept Engn, Madison, WI 53706 USA. RP Mordijck, S (reprint author), Coll William & Mary, Dept Comp Sci, Williamsburg, VA 23187 USA. EM mordijck@cs.wm.edu OI Solomon, Wayne/0000-0002-0902-9876 FU U.S. Department of Energy, the Office of Science, the Office of Fusion Energy Sciences, using the DIII-D National Fusion Facility, a DOE Office of Science user facility [DE-FC02-04ER54698, DE-SC0007880, DE-FG02-08ER54984, DE-AC02-09CH11466, DE-FG02-07ER54917, DE-FG02-89ER53296, DE-FG02-08ER54999] FX This material is based on work supported by the U.S. Department of Energy, the Office of Science, the Office of Fusion Energy Sciences, using the DIII-D National Fusion Facility, a DOE Office of Science user facility, under Awards DE-FC02-04ER54698, DE-SC0007880, DE-FG02-08ER54984, DE-AC02-09CH11466, DE-FG02-07ER54917, DE-FG02-89ER53296, and DE-FG02-08ER54999. DIII-D data shown in this paper can be obtained in digital format by following the links at https://fusion.gat.com/global/D3D_DMP. We would like to thank Pieter Peers for childcare assistance to make these experiments possible and Mumford and Sons for providing the soundtrack. NR 26 TC 1 Z9 1 U1 3 U2 18 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 EI 1741-4326 J9 NUCL FUSION JI Nucl. Fusion PD NOV PY 2015 VL 55 IS 11 AR 113025 DI 10.1088/0029-5515/55/11/113025 PG 8 WC Physics, Fluids & Plasmas SC Physics GA CY6OM UT WOS:000366528700028 ER PT J AU Nagaoka, K Takahashi, H Murakami, S Nakano, H Takeiri, Y Tsuchiya, H Osakabe, M Ida, K Yokoyama, M Yoshinuma, M Morita, S Goto, M Oishi, T Pablant, N Fujii, K Tanaka, K Tamura, N Nakamura, Y Du, X Ido, T Shimizu, A Kubo, S Igami, H Seki, R Suzuki, C Suzuki, Y Tsumori, K Ikeda, K Kisaki, M Yoshimura, Y Shimozuma, T Seki, T Saito, K Kasahara, H Kamio, S Mutoh, T Kaneko, O Yamada, H Komori, A AF Nagaoka, K. Takahashi, H. Murakami, S. Nakano, H. Takeiri, Y. Tsuchiya, H. Osakabe, M. Ida, K. Yokoyama, M. Yoshinuma, M. Morita, S. Goto, M. Oishi, T. Pablant, N. Fujii, K. Tanaka, K. Tamura, N. Nakamura, Y. Du, X. Ido, T. Shimizu, A. Kubo, S. Igami, H. Seki, R. Suzuki, C. Suzuki, Y. Tsumori, K. Ikeda, K. Kisaki, M. Yoshimura, Y. Shimozuma, T. Seki, T. Saito, K. Kasahara, H. Kamio, S. Mutoh, T. Kaneko, O. Yamada, H. Komori, A. CA LHD Expt Grp TI Integrated discharge scenario for high-temperature helical plasma in LHD SO NUCLEAR FUSION LA English DT Article DE helical plasma; ITB; discharge scenario; impurity hole; radial electric field ID INTERNAL TRANSPORT BARRIER; HIGH ION TEMPERATURE; HELIOTRON/TORSATRON; DEVICE AB The discharge scenario of high temperature plasma with a helical configuration has significantly progressed. The increase of central ion temperature due to the reduction of wall recycling was clearly observed. The peaking of the ion heating profile and the reduction of charge exchange loss of energetic ions play an important role for further improvement of ion heat transport in the ion internal transport barrier (ITB) core. The ion ITB and electron ITB have been successfully integrated due to the superposition of centrally focused electron cyclotron heating to the ion ITB plasma, and the high temperature regime of the ion temperature comparable to the electron temperature (T-i similar to T-e) has been significantly extended. The width of the ion ITB formed with electron ITB is wider than the width of electron ITB. The positive radial electric field was observed in the integrated ITB plasma by a heavy ion beam probe, while the negative radial electric field was observed in ion ITB plasmas. The ion temperature gradient decreases with the increase of the temperature ratio (T-e/T-i). C1 [Nagaoka, K.; Takahashi, H.; Nakano, H.; Takeiri, Y.; Tsuchiya, H.; Osakabe, M.; Ida, K.; Yokoyama, M.; Yoshinuma, M.; Morita, S.; Goto, M.; Oishi, T.; Tanaka, K.; Tamura, N.; Nakamura, Y.; Ido, T.; Shimizu, A.; Kubo, S.; Igami, H.; Seki, R.; Suzuki, C.; Suzuki, Y.; Tsumori, K.; Ikeda, K.; Kisaki, M.; Yoshimura, Y.; Shimozuma, T.; Seki, T.; Saito, K.; Kasahara, H.; Kamio, S.; Mutoh, T.; Kaneko, O.; Yamada, H.; Komori, A.] Natl Inst Nat Sci, Natl Inst Fus Sci, Toki, Gifu 5095292, Japan. [Nagaoka, K.; Takeiri, Y.; Ida, K.; Morita, S.; Goto, M.; Oishi, T.; Nakamura, Y.; Du, X.; Suzuki, Y.; Tsumori, K.; Mutoh, T.; Kaneko, O.; Yamada, H.; Komori, A.] SOKENDAI Grad Sch Adv Studies, Toki, Gifu 5095292, Japan. [Murakami, S.] Kyoto Univ, Dept Nucl Engn, Kyoto 6068501, Japan. [Pablant, N.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Fujii, K.] Kyoto Univ, Dept Mech Engn & Sci, Kyoto 6158540, Japan. RP Nagaoka, K (reprint author), Natl Inst Nat Sci, Natl Inst Fus Sci, 322-6 Oroshicho, Toki, Gifu 5095292, Japan. EM nagaoka@nifs.ac.jp RI Murakami, Sadayoshi/A-2191-2016; Ida, Katsumi/E-4731-2016 OI Murakami, Sadayoshi/0000-0002-2526-7137; Ida, Katsumi/0000-0002-0585-4561 FU [NIFS13-KLPR017] FX The authors wish to thank all of the engineering staff and operators for their excellent support and operation of the LHD. They also thank Prof H Sugama, Prof S Satake and Prof K Itoh (NIFS), and Dr Y Kamada (JAEA) for their fruitful discussions. This research was supported by NIFS13-KLPR017. NR 28 TC 8 Z9 8 U1 0 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 EI 1741-4326 J9 NUCL FUSION JI Nucl. Fusion PD NOV PY 2015 VL 55 IS 11 AR 113020 DI 10.1088/0029-5515/55/11/113020 PG 8 WC Physics, Fluids & Plasmas SC Physics GA CY6OM UT WOS:000366528700023 ER PT J AU Xia, TY Xu, XQ AF Xia, T. Y. Xu, X. Q. TI Nonlinear fluid simulation of particle and heat fluxes during burst of ELMs on DIII-D with BOUT plus plus code SO NUCLEAR FUSION LA English DT Article DE ELM; heat flux; DIIID; simulation ID TOKAMAKS AB In order to study the distribution and evolution of the transient particle and heat fluxes during edge-localized mode (ELM) bursts, a BOUT++ six-field two-fluid model based on the Braginskii equations with non-ideal physics effects is used to simulate pedestal collapse in divertor geometry. The profiles from the DIII-D H-mode discharge #144382 with fast target heat flux measurements are used as the initial conditions for the simulations. A flux-limited parallel thermal conduction is used with three values of the flux-limiting coefficient alpha(j), free streaming model with alpha(j) = 1, sheath-limit with alpha(j) = 0.05, and one value in between. The studies show that a 20 times increase in alpha(j) leads to similar to 6 times increase in the heat flux amplitude to both the inner and outer targets, and the widths of the fluxes are also expanded. The sheath-limit model of flux-limiting coefficient is found to be the most appropriate one, which shows ELM sizes close to the measurements. The evolution of the density profile during the burst of ELMs of DIII-D discharge #144382 is simulated, and the collapse in width and depth of ne are reproduced at different time steps. The growing process of the profiles for the heat flux at divertor targets during the burst of ELMs measured by IRTV (infrared television) is also reproduced by this model. The widths of heat fluxes towards targets are a little narrower, and the peak amplitudes are twice the measurements possibly due to the lack of a model of divertor radiation which can effectively reduce the heat fluxes. The magnetic flutter combined with parallel thermal conduction is found to be able to increase the total heat loss by around 33% since the magnetic flutter terms provide the additional conductive heat transport in the radial direction. The heat flux profile at both the inner and outer targets is obviously broadened by magnetic flutter. The lobe structures near the X-point at LFS are both broadened and elongated due to the magnetic flutter. C1 [Xia, T. Y.] Chinese Acad Sci, Inst Plasma Phys, Hefei 230031, Peoples R China. [Xia, T. Y.; Xu, X. Q.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Xia, TY (reprint author), Chinese Acad Sci, Inst Plasma Phys, Hefei 230031, Peoples R China. EM xiaty@ipp.ac.cn FU US Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; LLNL LDRD project [12-ERD-022]; LDRD project [11-ERD-058]; US Department of Energy, Office of Science, Office of Fusion Energy Sciences; Fusion Reactor Physics and Digital Tokamak; CAS 'One-Three-Five' Strategic Planning?; JSPS-NRF-NSFC A3 Foresight Program in the field of Plasma Physics (NSFC) [11261140328]; JSPS-NRF-NSFC A3 Foresight Program in the field of Plasma Physics (NRF) [2012K2A2A6000443]; China Natural Science Foundation [11405215, 11405217]; National Magnetic Confinement Fusion Science Program of China [2014GB106001, 2013GB111002. LLNL-JRNL-665624] FX We gratefully acknowledge Max Fenstermacher, C Lasnier and L Zeng (UCLA) for providing the pedestal profiles, IRTV heat flux and fast reflectometer profile data used in this work. This work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, LLNL LDRD project 12-ERD-022, and LDRD project 11-ERD-058, This material is based upon work supported by the US Department of Energy, Office of Science, Office of Fusion Energy Sciences. This work was supported by program of? Fusion Reactor Physics and Digital Tokamak with the CAS 'One-Three-Five' Strategic Planning? and the JSPS-NRF-NSFC A3 Foresight Program in the field of Plasma Physics (NSFC: No. 11261140328 and NRF: No. 2012K2A2A6000443). It was supported by the China Natural Science Foundation under Contract No. 11405215 and 11405217, the National Magnetic Confinement Fusion Science Program of China under Contracts No. 2014GB106001 and 2013GB111002. LLNL-JRNL-665624. NR 28 TC 3 Z9 3 U1 6 U2 11 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 EI 1741-4326 J9 NUCL FUSION JI Nucl. Fusion PD NOV PY 2015 VL 55 IS 11 AR 113030 DI 10.1088/0029-5515/55/11/113030 PG 15 WC Physics, Fluids & Plasmas SC Physics GA CY6OM UT WOS:000366528700033 ER PT J AU Burdiak, GC Lebedev, SV Harvey-Thompson, AJ Hall, GN Swadling, GF Suzuki-Vidal, F Khoory, E Bland, SN Pickworth, L de Grouchy, P Skidmore, J Suttle, L Waisman, EM AF Burdiak, G. C. Lebedev, S. V. Harvey-Thompson, A. J. Hall, G. N. Swadling, G. F. Suzuki-Vidal, F. Khoory, E. Bland, S. N. Pickworth, L. de Grouchy, P. Skidmore, J. Suttle, L. Waisman, E. M. TI Characterisation of the current switch mechanism in two-stage wire array Z-pinches SO PHYSICS OF PLASMAS LA English DT Article ID EROSION OPENING SWITCH; PLASMA-FLOW SWITCH; IMPLOSION; GENERATOR; DYNAMICS AB In this paper, we describe the operation of a two-stage wire array z-pinch driven by the 1.4 MA, 240 ns rise-time Magpie pulsed-power device at Imperial College London. In this setup, an inverse wire array acts as a fast current switch, delivering a current pre-pulse into a cylindrical load wire array, before rapidly switching the majority of the generator current into the load after a 100-150 ns dwell time. A detailed analysis of the evolution of the load array during the pre-pulse is presented. Measurements of the load resistivity and energy deposition suggest significant bulk heating of the array mass occurs. The similar to 5 kA pre-pulse delivers similar to 0.8 J of energy to the load, leaving it in a mixed, predominantly liquid-vapour state. The main current switch occurs as the inverse array begins to explode and plasma expands into the load region. Electrical and imaging diagnostics indicate that the main current switch may evolve in part as a plasma flow switch, driven by the expansion of a magnetic cavity and plasma bubble along the length of the load array. Analysis of implosion trajectories suggests that approximately 1 MA switches into the load in 100 ns, corresponding to a doubling of the generator dI/dt. Potential scaling of the device to higher current machines is discussed. (C) 2015 AIP Publishing LLC. C1 [Burdiak, G. C.; Lebedev, S. V.; Harvey-Thompson, A. J.; Hall, G. N.; Swadling, G. F.; Suzuki-Vidal, F.; Khoory, E.; Bland, S. N.; Pickworth, L.; de Grouchy, P.; Skidmore, J.; Suttle, L.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London SW7 2BW, England. [Waisman, E. M.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Burdiak, GC (reprint author), Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London SW7 2BW, England. RI Swadling, George/S-5980-2016; OI Swadling, George/0000-0001-8370-8837; Suzuki Vidal, Francisco/0000-0002-7792-4960 FU AWE Aldermaston; EPSRC [EP/G001324/1]; DOE [DE-F03-02NA00057, DE-SC-0001063] FX The authors would like to thank Dr. Michael Cuneo from Sandia National Laboratories for his support and interest in these experiments, and Dr. John Greenly of Cornell University for sharing his know-how and designs for miniature B-dot probes. This work was supported by AWE Aldermaston, by EPSRC Grant No. EP/G001324/1 and by DOE Cooperative Agreement Nos. DE-F03-02NA00057 and DE-SC-0001063. NR 34 TC 2 Z9 2 U1 1 U2 5 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD NOV PY 2015 VL 22 IS 11 AR 112710 DI 10.1063/1.4936278 PG 14 WC Physics, Fluids & Plasmas SC Physics GA CX9VX UT WOS:000366054900048 ER PT J AU Craxton, RS Anderson, KS Boehly, TR Goncharov, VN Harding, DR Knauer, JP McCrory, RL McKenty, PW Meyerhofer, DD Myatt, JF Schmitt, AJ Sethian, JD Short, RW Skupsky, S Theobald, W Kruer, WL Tanaka, K Betti, R Collins, TJB Delettrez, JA Hu, SX Marozas, JA Maximov, AV Michel, DT Radha, PB Regan, SP Sangster, TC Seka, W Solodov, AA Soures, JM Stoeckl, C Zuegel, JD AF Craxton, R. S. Anderson, K. S. Boehly, T. R. Goncharov, V. N. Harding, D. R. Knauer, J. P. McCrory, R. L. McKenty, P. W. Meyerhofer, D. D. Myatt, J. F. Schmitt, A. J. Sethian, J. D. Short, R. W. Skupsky, S. Theobald, W. Kruer, W. L. Tanaka, K. Betti, R. Collins, T. J. B. Delettrez, J. A. Hu, S. X. Marozas, J. A. Maximov, A. V. Michel, D. T. Radha, P. B. Regan, S. P. Sangster, T. C. Seka, W. Solodov, A. A. Soures, J. M. Stoeckl, C. Zuegel, J. D. TI Direct-drive inertial confinement fusion: A review SO PHYSICS OF PLASMAS LA English DT Review ID LASER-PRODUCED PLASMAS; RAYLEIGH-TAYLOR INSTABILITY; STIMULATED RAMAN-SCATTERING; INDUCED SPATIAL INCOHERENCE; NATIONAL-IGNITION-FACILITY; EQUATION-OF-STATE; IRRADIATED SPHERICAL TARGETS; 2-PLASMON DECAY INSTABILITY; POLAR-DIRECT-DRIVE; STEEP TEMPERATURE-GRADIENTS AB The direct-drive, laser-based approach to inertial confinement fusion (ICF) is reviewed from its inception following the demonstration of the first laser to its implementation on the present generation of high-power lasers. The review focuses on the evolution of scientific understanding gained from target-physics experiments in many areas, identifying problems that were demonstrated and the solutions implemented. The review starts with the basic understanding of laser-plasma interactions that was obtained before the declassification of laser-induced compression in the early 1970s and continues with the compression experiments using infrared lasers in the late 1970s that produced thermonuclear neutrons. The problem of suprathermal electrons and the target preheat that they caused, associated with the infrared laser wavelength, led to lasers being built after 1980 to operate at shorter wavelengths, especially 0.35 mu m-the third harmonic of the Nd: glass laser-and 0.248 mu m (the KrF gas laser). The main physics areas relevant to direct drive are reviewed. The primary absorption mechanism at short wavelengths is classical inverse bremsstrahlung. Nonuniformities imprinted on the target by laser irradiation have been addressed by the development of a number of beam-smoothing techniques and imprint-mitigation strategies. The effects of hydrodynamic instabilities are mitigated by a combination of imprint reduction and target designs that minimize the instability growth rates. Several coronal plasma physics processes are reviewed. The two-plasmon-decay instability, stimulated Brillouin scattering (together with cross-beam energy transfer), and (possibly) stimulated Raman scattering are identified as potential concerns, placing constraints on the laser intensities used in target designs, while other processes (self-focusing and filamentation, the parametric decay instability, and magnetic fields), once considered important, are now of lesser concern for mainline direct-drive target concepts. Filamentation is largely suppressed by beam smoothing. Thermal transport modeling, important to the interpretation of experiments and to target design, has been found to be nonlocal in nature. Advances in shock timing and equation-of-state measurements relevant to direct-drive ICF are reported. Room-temperature implosions have provided an increased understanding of the importance of stability and uniformity. The evolution of cryogenic implosion capabilities, leading to an extensive series carried out on the 60-beam OMEGA laser [Boehly et al., Opt. Commun. 133, 495 (1997)], is reviewed together with major advances in cryogenic target formation. A polar-drive concept has been developed that will enable direct-drive-ignition experiments to be performed on the National Ignition Facility [Haynam et al., Appl. Opt. 46(16), 3276 (2007)]. The advantages offered by the alternative approaches of fast ignition and shock ignition and the issues associated with these concepts are described. The lessons learned from target-physics and implosion experiments are taken into account in ignition and high-gain target designs for laser wavelengths of 1/3 mu m and 1/4 mu m. Substantial advances in direct-drive inertial fusion reactor concepts are reviewed. Overall, the progress in scientific understanding over the past five decades has been enormous, to the point that inertial fusion energy using direct drive shows significant promise as a future environmentally attractive energy source. (C) 2015 Author(s). C1 [Craxton, R. S.; Anderson, K. S.; Boehly, T. R.; Goncharov, V. N.; Harding, D. R.; Knauer, J. P.; McCrory, R. L.; McKenty, P. W.; Meyerhofer, D. D.; Myatt, J. F.; Short, R. W.; Skupsky, S.; Theobald, W.; Betti, R.; Collins, T. J. B.; Delettrez, J. A.; Hu, S. X.; Marozas, J. A.; Maximov, A. V.; Michel, D. T.; Radha, P. B.; Regan, S. P.; Sangster, T. C.; Seka, W.; Solodov, A. A.; Soures, J. M.; Stoeckl, C.; Zuegel, J. D.] Univ Rochester, Laser Energet Lab, Rochester, NY 14623 USA. [McCrory, R. L.; Meyerhofer, D. D.; Betti, R.] Univ Rochester, Dept Phys & Astron, Rochester, NY 14623 USA. [McCrory, R. L.; Meyerhofer, D. D.; Betti, R.] Univ Rochester, Dept Mech Engn, Rochester, NY 14623 USA. [Schmitt, A. J.; Sethian, J. D.] US Navy, Res Lab, Div Plasma Phys, Washington, DC 20375 USA. [Kruer, W. L.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Tanaka, K.] Osaka Univ, Grad Sch Engn, Dept Elect Elect & Informat, Osaka, Japan. RP Craxton, RS (reprint author), Univ Rochester, Laser Energet Lab, 250 E River Rd, Rochester, NY 14623 USA. RI Hu, Suxing/A-1265-2007 OI Hu, Suxing/0000-0003-2465-3818 FU Department of Energy National Nuclear Security Administration [DE-NA0001944]; University of Rochester; New York State Energy Research and Development Authority; DOE FX This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944, the University of Rochester, and the New York State Energy Research and Development Authority. The support of the DOE does not constitute an endorsement by the DOE of the views expressed in this article. NR 914 TC 24 Z9 24 U1 43 U2 99 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD NOV PY 2015 VL 22 IS 11 AR 110501 DI 10.1063/1.4934714 PG 153 WC Physics, Fluids & Plasmas SC Physics GA CX9VX UT WOS:000366054900001 ER PT J AU Delzanno, GL Tang, XZ AF Delzanno, Gian Luca Tang, Xian-Zhu TI Comparison of dust charging between orbital-motion-limited theory and particle-in-cell simulations SO PHYSICS OF PLASMAS LA English DT Article ID PLASMA; PERFORMANCE; TRANSPORT; TOKAMAKS; DYNAMICS AB The Orbital-Motion-Limited (OML) theory has been modified to predict the dust charge and the results were contrasted with the Whipple approximation [X. Z. Tang and G. L. Delzanno, Phys. Plasmas 21, 123708 (2014)]. To further establish its regime of applicability, in this paper, the OML predictions (for a non-electron-emitting, spherical dust grain at rest in a collisionless, unmagnetized plasma) are compared with particle-in-cell simulations that retain the absorption radius effect. It is found that for large dust grain radius r(d) relative to the plasma Debye length lambda(D), the revised OML theory remains a very good approximation as, for the parameters considered (r(d)/lambda(D) <= 10, equal electron and ion temperatures), it yields the dust charge to within 20% accuracy. This is a substantial improvement over the Whipple approximation. The dust collected currents and energy fluxes, which remain the same in the revised and standard OML theories, are accurate to within 15%-30%. (C) 2015 AIP Publishing LLC. C1 [Delzanno, Gian Luca; Tang, Xian-Zhu] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Delzanno, GL (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM delzanno@lanl.gov; xtang@lanl.gov OI Delzanno, Gian Luca/0000-0002-7030-2683 FU U.S. Department of Energy Office of Science, Office of Fusion Energy Sciences, under National Nuclear Security Administration of the U.S. Department of Energy by the Los Alamos National Laboratory FX G.L.D. wishes to thank L. Vignitchouk for discussions. This research was supported by the U.S. Department of Energy Office of Science, Office of Fusion Energy Sciences, under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy by the Los Alamos National Laboratory, operated by Los Alamos National Security LLC under Contract No. DE-AC52-06NA25396. NR 31 TC 3 Z9 3 U1 1 U2 11 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD NOV PY 2015 VL 22 IS 11 AR 113703 DI 10.1063/1.4935697 PG 6 WC Physics, Fluids & Plasmas SC Physics GA CX9VX UT WOS:000366054900085 ER PT J AU Eldon, D Boivin, RL Chrystal, C Groebner, RJ McKee, GR Schmitz, L Tynan, GR Yan, Z Boedo, JA Burrell, KH King, JD Kolemen, E Luhmann, NC Muscatello, CM Osborne, TH Snyder, PB AF Eldon, D. Boivin, R. L. Chrystal, C. Groebner, R. J. McKee, G. R. Schmitz, L. Tynan, G. R. Yan, Z. Boedo, J. A. Burrell, K. H. King, J. D. Kolemen, E. Luhmann, N. C., Jr. Muscatello, C. M. Osborne, T. H. Snyder, P. B. TI Evolution of E x B shear and coherent fluctuations prior to H-L transitions in DIII-D and control strategies for H-L transitions SO PHYSICS OF PLASMAS LA English DT Article ID EDGE LOCALIZED MODES; D TOKAMAK; PLASMA EDGE; HIGH-BETA; CONFINEMENT; DISCHARGES; TURBULENCE; STABILIZATION; SPECTROSCOPY; SUPPRESSION AB While operating a magnetic fusion device in H-mode has many advantages, care must be taken to understand and control the release of energy during the H-L back transition, as the extra energy stored within the H-mode transport barrier will have the potential to cause damage to material components of a large future tokamak such as ITER. Examining a scenario where the H-L back transition sequence begins before the E x B shearing layer decays on its own, we identify a long-lived precursor mode that is tied to the events of the H-L sequence and we develop a robust control strategy for ensuring gradual release of energy during the transition sequence. Back transitions in this scenario commonly begin with a rapid relaxation of the pedestal, which was previously shown to be inconsistent with ideal peeling-ballooning instability as the trigger [ Eldon et al., Phys. Plasmas 22, 052109 (2015)], despite being otherwise similar to a large type-I Edge Localized Mode (ELM). This so-called transient occurs when the E x B shearing rate omega(E) x B is significantly larger than the turbulence decorrelation rate omega(T), indicating that this is not the result of runaway turbulence recovery. The transient is always synchronous with amplitude and propagation velocity modulations of the precursor mode, which has been dubbed the Modulating Pedestal Mode (MPM). The MPM is a coherent density fluctuation, which, in our scenario at least, reliably appears in the steep gradient region with f approximate to 70 kHz, k(theta) approximate to 0: 3 cm(-1), and it exists for greater than or similar to 100 ms before the onset of back transitions. The transient may be reliably eliminated by reducing toroidal rotation in the co-current direction by the application of torque from counter-injecting neutral beams. The transient in these " soft" H-L transitions is then replaced by a small type-III ELM, which is also always synchronous with the MPM, and MPM shows the same behavior in both hard and soft cases. (C) 2015 AIP Publishing LLC. C1 [Eldon, D.; Kolemen, E.] Princeton Univ, Princeton, NJ 08543 USA. [Eldon, D.; Tynan, G. R.; Boedo, J. A.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Boivin, R. L.; Groebner, R. J.; Burrell, K. H.; King, J. D.; Muscatello, C. M.; Osborne, T. H.; Snyder, P. B.] Gen Atom Co, San Diego, CA 92186 USA. [Chrystal, C.] Oak Ridge Associated Univ, Oak Ridge, TN 37830 USA. [McKee, G. R.; Yan, Z.] Univ Wisconsin, Madison, WI 53706 USA. [Schmitz, L.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. [Luhmann, N. C., Jr.] Univ Calif Davis, Davis, CA 95616 USA. RP Eldon, D (reprint author), Princeton Univ, Princeton, NJ 08543 USA. EM deldon@princeton.edu OI Eldon, David/0000-0003-1895-0648 FU U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences [DE-FG02-07ER54917, DE-FC02-04ER54698, DE-AC05-06OR23100, DE-FG02-89ER53296, DE-AC02-09CH11466] FX This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences, using the DIII-D National Fusion Facility, a DOE Office of Science user facility, under Award Nos. DE-FG02-07ER54917, DE-FC02-04ER54698, DE-AC05-06OR23100, DE-FG02-89ER53296, and DE-AC02-09CH11466. DIII-D data shown in this paper can be obtained in digital format by following the links at https://fusion.gat.com/global/D3D_DMP. NR 57 TC 1 Z9 1 U1 4 U2 17 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD NOV PY 2015 VL 22 IS 11 AR 112506 DI 10.1063/1.4935919 PG 15 WC Physics, Fluids & Plasmas SC Physics GA CX9VX UT WOS:000366054900035 ER PT J AU Hay, MJ Fisch, NJ AF Hay, Michael J. Fisch, Nathaniel J. TI Ignition threshold for non-Maxwellian plasmas SO PHYSICS OF PLASMAS LA English DT Article ID ENERGETIC ALPHA-PARTICLES; FUSION BURNING WAVES; ION-BERNSTEIN WAVES; LOWER-HYBRID WAVES; CURRENT DRIVE; POWER; TOKAMAKS; PHYSICS AB An optically thin p-B-11 plasma loses more energy to bremsstrahlung than it gains from fusion reactions, unless the ion temperature can be elevated above the electron temperature. In thermal plasmas, the temperature differences required are possible in small Coulomb logarithm regimes, characterized by high density and low temperature. Ignition could be reached more easily if the fusion reactivity can be improved with nonthermal ion distributions. To establish an upper bound for the potential utility of a nonthermal distribution, we consider a monoenergetic beam with particle energy selected to maximize the beam-thermal reactivity. Comparing deuterium-tritium (DT) and p-B-11, the minimum Lawson criteria and minimum rho R required for inertial confinement fusion (ICF) volume ignition are calculated with and without the nonthermal feature. It turns out that channeling fusion alpha energy to maintain such a beam facilitates ignition at lower densities and rho R, improves reactivity at constant pressure, and could be used to remove helium ash. On the other hand, the reactivity gains that could be realized in DT plasmas are significant, the excess electron density in p-B-11 plasmas increases the recirculated power cost to maintain a nonthermal feature and thereby constrains its utility to ash removal. (C) 2015 AIP Publishing LLC. C1 [Hay, Michael J.; Fisch, Nathaniel J.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Fisch, Nathaniel J.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Hay, MJ (reprint author), Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. EM hay@princeton.edu OI Fisch, Nathaniel/0000-0002-0301-7380 FU DOE [DE-AC02-09CH11466]; DOE NNSA SSAA [DE274-FG52-08NA28553]; DOE NNSA SSGF [DE-FC52-08NA28752] FX This work was supported by DOE Contract No. DE-AC02-09CH11466 and DOE NNSA SSAA Grant No. DE274-FG52-08NA28553. M.J.H. was supported in part by the DOE NNSA SSGF under Grant No. DE-FC52-08NA28752. NR 42 TC 3 Z9 3 U1 2 U2 9 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD NOV PY 2015 VL 22 IS 11 AR 112116 DI 10.1063/1.4936346 PG 12 WC Physics, Fluids & Plasmas SC Physics GA CX9VX UT WOS:000366054900021 ER PT J AU King, JD Strait, EJ Nazikian, R Paz-Soldan, C Eldon, D Fenstermacher, ME Ferraro, NM Hanson, JM Haskey, SR La Haye, RJ Lanctot, MJ Lazerson, SA Logan, NC Liu, YQ Okabayashi, M Park, JK Shiraki, D Turnbull, AD AF King, J. D. Strait, E. J. Nazikian, R. Paz-Soldan, C. Eldon, D. Fenstermacher, M. E. Ferraro, N. M. Hanson, J. M. Haskey, S. R. La Haye, R. J. Lanctot, M. J. Lazerson, S. A. Logan, N. C. Liu, Y. Q. Okabayashi, M. Park, J. -K. Shiraki, D. Turnbull, A. D. TI Three-dimensional equilibria and island energy transport due to resonant magnetic perturbation edge localized mode suppression on DIII-D SO PHYSICS OF PLASMAS LA English DT Article ID D TOKAMAK; TEARING MODES; HIGH-BETA; STABILITY; CONFINEMENT; DIVERTOR; PLASMAS; ONSET AB Experiments in the DIII-D tokamak show that the plasma responds to resonant magnetic perturbations (RMPs) with toroidal mode numbers of n = 2 and n = 3 without field line reconnection, consistent with resistive magnetohydrodynamic predictions, while a strong nonlinear bifurcation is apparent when edge localized modes (ELMs) are suppressed. The magnetic response associated with this bifurcation is localized to the high field side of the machine and exhibits a dominant n = 1 component despite the application of a constant amplitude, slowly toroidally rotating, n = 2 applied field. The n = 1 mode is born locked to the vacuum vessel wall, while the n = 2 mode is entrained to the rotating field. Based on these magnetic response measurements and Thomson scattering measurements of flattening of the electron temperature profile, it is likely that these modes are magnetic island chains near the H-mode pedestal. The reduction in del T-e occurs near the q = 4 and 5 rational surfaces, suggesting five unique islands are possible (m = 8, 9, or 10 for n = 2) and (m = 4 or 5 for n = 1). In all cases, the island width is estimated to be 2-3 cm. The Chang-Callen calculated confinement degradation due to the presence of an individual island of this size is 8%-12%, which is close to the 13%-14% measured between the ELMs and suppressed states. This suggests that edge tearing modes may alter the pedestal causing peeling-ballooning stability during RMP induced ELM suppression. (C) 2015 AIP Publishing LLC. C1 [King, J. D.; Strait, E. J.; Paz-Soldan, C.; Ferraro, N. M.; La Haye, R. J.; Lanctot, M. J.; Turnbull, A. D.] Gen Atom Co, San Diego, CA 92121 USA. [Nazikian, R.; Haskey, S. R.; Lazerson, S. A.; Logan, N. C.; Okabayashi, M.; Park, J. -K.] Princeton Plasma Phys Lab, Princeton, NJ 08536 USA. [Eldon, D.] Princeton Univ, Princeton, NJ 08544 USA. [Fenstermacher, M. E.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Hanson, J. M.] Columbia Univ, New York, NY 10027 USA. [Liu, Y. Q.] Culham Sci Ctr, Culham Ctr Fus Energy, Abingdon OX14 3DB, Oxon, England. [Shiraki, D.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP King, JD (reprint author), Gen Atom Co, San Diego, CA 92121 USA. EM kingjd@fusion.gat.com RI Lanctot, Matthew J/O-4979-2016; Lazerson, Samuel/E-4816-2014 OI Lanctot, Matthew J/0000-0002-7396-3372; Lazerson, Samuel/0000-0001-8002-0121 FU U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences, DIII-D National Fusion Facility, a DOE Office of Science [DE-FC02-04ER54698, DE-AC02-09CH11466, DE-AC52-07NA27344, DE-FG02-04ER54761, DE-AC05-00OR22725] FX This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences, using the DIII-D National Fusion Facility, a DOE Office of Science user facility, under Award Nos. DE-FC02-04ER54698, DE-AC02-09CH11466, DE-AC52-07NA27344, DE-FG02-04ER54761, and DE-AC05-00OR22725. DIII-D data shown in this paper can be obtained in digital format by following the links at https://fusion.gat.com/global/D3D_DMP. The authors wish to thank R. Buttery for suggesting the possibility that both mode responses could be due to a single island structure. We also wish to acknowledge A. Rieman for many fruitful model validation discussions. NR 54 TC 1 Z9 1 U1 2 U2 15 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD NOV PY 2015 VL 22 IS 11 AR 112502 DI 10.1063/1.4935486 PG 10 WC Physics, Fluids & Plasmas SC Physics GA CX9VX UT WOS:000366054900031 ER PT J AU Ng, J Huang, YM Hakim, A Bhattacharjee, A Stanier, A Daughton, W Wang, L Germaschewski, K AF Ng, Jonathan Huang, Yi-Min Hakim, Ammar Bhattacharjee, A. Stanier, Adam Daughton, William Wang, Liang Germaschewski, Kai TI The island coalescence problem: Scaling of reconnection in extended fluid models including higher-order moments SO PHYSICS OF PLASMAS LA English DT Article ID MEDIATED MAGNETIC RECONNECTION; COLLISIONLESS RECONNECTION; CURRENT SHEETS; INSTABILITY; SIMULATIONS; ANTIPARALLEL; TRANSITION; EQUATIONS; HYBRID; FIELDS AB As modeling of collisionless magnetic reconnection in most space plasmas with realistic parameters is beyond the capability of today's simulations, due to the separation between global and kinetic length scales, it is important to establish scaling relations in model problems so as to extrapolate to realistic scales. Recently, large scale particle-in-cell simulations of island coalescence have shown that the time averaged reconnection rate decreases with system size, while fluid systems at such large scales in the Hall regime have not been studied. Here, we perform the complementary resistive magnetohydrodynamic (MHD), Hall MHD, and two fluid simulations using a ten-moment model with the same geometry. In contrast to the standard Harris sheet reconnection problem, Hall MHD is insufficient to capture the physics of the reconnection region. Additionally, motivated by the results of a recent set of hybrid simulations which show the importance of ion kinetics in this geometry, we evaluate the efficacy of the ten-moment model in reproducing such results. (C) 2015 AIP Publishing LLC. C1 [Ng, Jonathan; Huang, Yi-Min; Hakim, Ammar; Bhattacharjee, A.] Princeton Plasma Phys Lab, Ctr Heliophys, Princeton, NJ 08540 USA. [Stanier, Adam; Daughton, William] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Wang, Liang; Germaschewski, Kai] Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA. [Wang, Liang; Germaschewski, Kai] Univ New Hampshire, Dept Phys, Durham, NH 03824 USA. RP Ng, J (reprint author), Princeton Plasma Phys Lab, Ctr Heliophys, Princeton, NJ 08540 USA. RI Huang, Yi-Min/G-6926-2011; Daughton, William/L-9661-2013; OI Huang, Yi-Min/0000-0002-4237-2211; Germaschewski, Kai/0000-0002-8495-6354 FU NSF [AGS-138944, AGS-1056898, AGS-14606169]; DOE [DE-AC02-09CH11466, DESC0006670]; NASA [NNX13AK31G]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]; NSF MRI program [PHY-1229408] FX This work was supported by NSF Grant Nos. AGS-138944, AGS-1056898, AGS-14606169, DOE Contract No. DE-AC02-09CH11466, DOE Award No. DESC0006670, and NASA Grant No. NNX13AK31G. This research used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231, and Trillian, a Cray XE6m-200 supercomputer at UNH supported by the NSF MRI program under Grant No. PHY-1229408. NR 39 TC 5 Z9 6 U1 1 U2 7 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD NOV PY 2015 VL 22 IS 11 AR 112104 DI 10.1063/1.4935302 PG 7 WC Physics, Fluids & Plasmas SC Physics GA CX9VX UT WOS:000366054900009 ER PT J AU Ochs, IE Bertelli, N Fisch, NJ AF Ochs, I. E. Bertelli, N. Fisch, N. J. TI Alpha channeling with high-field launch of lower hybrid waves SO PHYSICS OF PLASMAS LA English DT Article ID ION-BERNSTEIN WAVES; CURRENT DRIVE; ELECTRON-CYCLOTRON; TOKAMAK PLASMAS; PARTICLES; ABSORPTION AB Although lower hybrid waves are effective at driving currents in present-day tokamaks, they are expected to interact strongly with high-energy particles in extrapolating to reactors. In the presence of a radial alpha particle birth gradient, this interaction can take the form of wave amplification rather than damping. While it is known that this amplification more easily occurs when launching from the tokamak high-field side, the extent of this amplification has not been made quantitative. Here, by tracing rays launched from the high-field-side of a tokamak, the required radial gradients to achieve amplification are calculated for a temperature and density regime consistent with a hot-ion-mode fusion reactor. These simulations, while valid only in the linear regime of wave amplification, nonetheless illustrate the possibilities for wave amplification using high-field launch of the lower hybrid wave. (C) 2015 AIP Publishing LLC. C1 [Ochs, I. E.; Fisch, N. J.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08540 USA. [Bertelli, N.; Fisch, N. J.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Ochs, IE (reprint author), Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08540 USA. OI Ochs, Ian/0000-0002-6002-9169; Fisch, Nathaniel/0000-0002-0301-7380 FU U.S. DOE [DE-AC02-09CH11466]; National Undergraduate Fellowship Program in Plasma Physics and Fusion Energy Sciences FX This work was performed under U.S. DOE Contract No. DE-AC02-09CH11466. The authors are grateful to P. Bonoli for providing a GENRAY input file for an ARC-like equilibrium. One of us (I.E.O.) thanks the support of the National Undergraduate Fellowship Program in Plasma Physics and Fusion Energy Sciences. NR 35 TC 3 Z9 3 U1 3 U2 9 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD NOV PY 2015 VL 22 IS 11 AR 112103 DI 10.1063/1.4935123 PG 7 WC Physics, Fluids & Plasmas SC Physics GA CX9VX UT WOS:000366054900008 ER PT J AU Perez, F Colvin, JD May, MJ Charnvanichborikarn, S Kucheyev, SO Felter, TE Fournier, KB AF Perez, F. Colvin, J. D. May, M. J. Charnvanichborikarn, S. Kucheyev, S. O. Felter, T. E. Fournier, K. B. TI High-power laser interaction with low-density C-Cu foams SO PHYSICS OF PLASMAS LA English DT Article ID OMEGA LASER; PLASMA AB We study the propagation of high-power laser beams in micro-structured carbon foams by monitoring the x-ray output from deliberately introduced Cu content. In particular, we characterize this phenomenon measuring absolute time-resolved x-ray yields, time-resolved x-ray imaging, and x-ray spectroscopy. New experimental results for C-Cu foams show a faster heat front velocity than simulation that assumed homogeneous plasma. We suggest the foam micro-structure may explain this trend. (C) 2015 AIP Publishing LLC. C1 [Perez, F.; Colvin, J. D.; May, M. J.; Charnvanichborikarn, S.; Kucheyev, S. O.; Fournier, K. B.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Felter, T. E.] Sandia Natl Labs, Livermore, CA 94550 USA. RP Perez, F (reprint author), Ecole Polytech, LULI, F-91128 Palaiseau, France. EM fournier2@llnl.gov FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; DTRA Basic Research [BRCALL08-PR3-C-2-0006] FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344, with partial support from the DTRA Basic Research Grant No. BRCALL08-PR3-C-2-0006. NR 28 TC 2 Z9 2 U1 5 U2 12 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD NOV PY 2015 VL 22 IS 11 AR 113112 DI 10.1063/1.4935911 PG 7 WC Physics, Fluids & Plasmas SC Physics GA CX9VX UT WOS:000366054900064 ER PT J AU Ren, Y Wang, WX LeBlanc, BP Guttenfelder, W Kaye, SM Ethier, S Mazzucato, E Lee, KC Domier, CW Bell, R Smith, DR Yuh, H AF Ren, Y. Wang, W. X. LeBlanc, B. P. Guttenfelder, W. Kaye, S. M. Ethier, S. Mazzucato, E. Lee, K. C. Domier, C. W. Bell, R. Smith, D. R. Yuh, H. TI Fast response of electron-scale turbulence to auxiliary heating cessation in National Spherical Torus Experiment SO PHYSICS OF PLASMAS LA English DT Article ID NSTX; TRANSPORT; CONFINEMENT; SCATTERING; TOKAMAKS; WAVES AB In this letter, we report the first observation of the fast response of electron-scale turbulence to auxiliary heating cessation in National Spherical Torus eXperiment [Ono et al., Nucl. Fusion 40, 557 (2000)]. The observation was made in a set of RF-heated L-mode plasmas with toroidal magnetic field of 0.55 T and plasma current of 300 kA. It is observed that electron-scale turbulence spectral power (measured with a high-k collective microwave scattering system) decreases significantly following fast cessation of RF heating that occurs in less than 200 mu s. The large drop in the turbulence spectral power has a short time delay of about 1-2 ms relative to the RF cessation and happens on a time scale of 0.5-1 ms, much smaller than the energy confinement time of about 10 ms. Power balance analysis shows a factor of about 2 decrease in electron thermal diffusivity after the sudden drop of turbulence spectral power. Measured small changes in equilibrium profiles across the RF cessation are unlikely able to explain this sudden reduction in the measured turbulence and decrease in electron thermal transport, supported by local linear stability analysis and both local and global nonlinear gyrokinetic simulations. The observations imply that nonlocal flux-driven mechanism may be important for the observed turbulence and electron thermal transport. (C) 2015 AIP Publishing LLC. C1 [Ren, Y.; Wang, W. X.; LeBlanc, B. P.; Guttenfelder, W.; Kaye, S. M.; Ethier, S.; Mazzucato, E.; Bell, R.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Lee, K. C.] Natl Fus Res Inst, Taejon 305806, South Korea. [Domier, C. W.] Univ Calif Davis, Davis, CA 95616 USA. [Smith, D. R.] Univ Wisconsin, Madison, WI 53706 USA. [Yuh, H.] Nova Photon Inc, Princeton, NJ 08540 USA. RP Ren, Y (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. FU U.S. Department of Energy [DE-AC02-76CH03073, DE-FG03-95ER54295, DE-FG03-99ER54518] FX The authors would like to thank the NSTX team for the excellent technical support for this work. This work was supported by the U.S. Department of Energy under Contract Nos. DE-AC02-76CH03073, DE-FG03-95ER54295, and DE-FG03-99ER54518. Nonlinear simulations were carried out at the National Energy Research Scientific Computing Center. NR 29 TC 1 Z9 1 U1 2 U2 5 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD NOV PY 2015 VL 22 IS 11 AR 110701 DI 10.1063/1.4935113 PG 6 WC Physics, Fluids & Plasmas SC Physics GA CX9VX UT WOS:000366054900002 ER PT J AU Ryutov, DD Soukhanovskii, VA AF Ryutov, D. D. Soukhanovskii, V. A. TI The snowflake divertor SO PHYSICS OF PLASMAS LA English DT Article ID SCRAPE-OFF LAYER; HIGH-BETA; X-POINT; PARTICLE CONTROL; CODE SIMULATION; MAGNETIC-FIELD; TOKAMAK EDGE; PLASMA EDGE; POWER-PLANT; CHAPTER 4 AB The snowflake magnetic configuration is characterized by the presence of two closely spaced poloidal field nulls that create a characteristic hexagonal (reminiscent of a snowflake) separatrix structure. The magnetic field properties and the plasma behaviour in the snowflake are determined by the simultaneous action of both nulls, this generating a lot of interesting physics, as well as providing a chance for improving divertor performance. Among potential beneficial effects of this geometry are: increased volume of a low poloidal field around the null, increased connection length, and the heat flux sharing between multiple divertor channels. The authors summarise experimental results obtained with the snowflake configuration on several tokamaks. Wherever possible, relation to the existing theoretical models is described. (C) 2015 AIP Publishing LLC. C1 [Ryutov, D. D.; Soukhanovskii, V. A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Ryutov, DD (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences. NR 113 TC 1 Z9 1 U1 3 U2 18 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD NOV PY 2015 VL 22 IS 11 AR 110901 DI 10.1063/1.4935115 PG 34 WC Physics, Fluids & Plasmas SC Physics GA CX9VX UT WOS:000366054900005 ER PT J AU Schaeffer, DB Everson, ET Bondarenko, AS Clark, SE Constantin, CG Winske, D Gekelman, W Niemann, C AF Schaeffer, D. B. Everson, E. T. Bondarenko, A. S. Clark, S. E. Constantin, C. G. Winske, D. Gekelman, W. Niemann, C. TI Experimental study of subcritical laboratory magnetized collisionless shocks using a laser-driven magnetic piston SO PHYSICS OF PLASMAS LA English DT Article ID PLASMA; WAVES; PHYSICS; DESIGN; WAVELENGTHS; EXPANSION; ABLATION; FIELD AB Recent experiments at the University of California, Los Angeles have successfully generated subcritical magnetized collisionless shocks, allowing new laboratory studies of shock formation relevant to space shocks. The characteristics of these shocks are compared with new data in which no shock or a pre-shock formed. The results are consistent with theory and 2D hybrid simulations and indicate that the observed shock or shock-like structures can be organized into distinct regimes by coupling strength. With additional experiments on the early time parameters of the laser plasma utilizing Thomson scattering, spectroscopy, and fast-gate filtered imaging, these regimes are found to be in good agreement with theoretical shock formation criteria. (C) 2015 AIP Publishing LLC. C1 [Schaeffer, D. B.; Everson, E. T.; Bondarenko, A. S.; Clark, S. E.; Constantin, C. G.; Gekelman, W.; Niemann, C.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Winske, D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Schaeffer, DB (reprint author), Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. EM dschaeffer@physics.ucla.edu FU DTRA [HDTRA1-12-1-0024]; DOE [DE-SC0006538:0003, DE-NA0001995]; NSF [1414591]; DOE; NSF FX We would like to thank the staff of the Basic Plasma Science Facility (BaPSF), Z. Lucky, and M. Drandell for their help in carrying out these experiments. This work was supported by DTRA under Contract No. HDTRA1-12-1-0024, DOE under Contract Nos. DE-SC0006538:0003 and DE-NA0001995, and NSF Award No. 1414591. The experiments were performed at the UCLA BaPSF, supported by the DOE and NSF. NR 44 TC 2 Z9 2 U1 3 U2 8 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD NOV PY 2015 VL 22 IS 11 AR 113101 DI 10.1063/1.4934983 PG 9 WC Physics, Fluids & Plasmas SC Physics GA CX9VX UT WOS:000366054900053 ER PT J AU Vold, EL Joglekar, AS Ortega, MI Moll, R Fenn, D Molvig, K AF Vold, E. L. Joglekar, A. S. Ortega, M. I. Moll, R. Fenn, D. Molvig, K. TI Plasma viscosity with mass transport in spherical inertial confinement fusion implosion simulations SO PHYSICS OF PLASMAS LA English DT Article ID LASER-FUSION; DIRECT-DRIVE; OMEGA AB The effects of viscosity and small-scale atomic-level mixing on plasmas in inertial confinement fusion (ICF) currently represent challenges in ICF research. Many current ICF hydrodynamic codes ignore the effects of viscosity though recent research indicates viscosity and mixing by classical transport processes may have a substantial impact on implosion dynamics. We have implemented a Lagrangian hydrodynamic code in one-dimensional spherical geometry with plasma viscosity and mass transport and including a three temperature model for ions, electrons, and radiation treated in a gray radiation diffusion approximation. The code is used to study ICF implosion differences with and without plasma viscosity and to determine the impacts of viscosity on temperature histories and neutron yield. It was found that plasma viscosity has substantial impacts on ICF shock dynamics characterized by shock burn timing, maximum burn temperatures, convergence ratio, and time history of neutron production rates. Plasma viscosity reduces the need for artificial viscosity to maintain numerical stability in the Lagrangian formulation and also modifies the flux-limiting needed for electron thermal conduction. (C) 2015 AIP Publishing LLC. C1 [Vold, E. L.; Molvig, K.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Joglekar, A. S.] Univ Michigan, Ann Arbor, MI 48109 USA. [Ortega, M. I.] Univ New Mexico, Albuquerque, NM 87131 USA. [Moll, R.] Univ Calif Santa Cruz, Santa Cruz, CA 95064 USA. [Fenn, D.] Florida State Univ, Tallahassee, FL 32306 USA. RP Vold, EL (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. FU U.S. Department of Energy NNSA [DE-AC52-06NA25396] FX Much of this work was performed in the Los Alamos Summer Students Computational Physics Workshops during the summers of 2013 and 2014. The workshops are directed by Dr. S. Runnels, and the authors thank him for providing this opportunity. Los Alamos National Laboratory is operated by Los Alamos National Security, LLC for the U.S. Department of Energy NNSA under Contract No. DE-AC52-06NA25396. NR 48 TC 3 Z9 3 U1 1 U2 5 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD NOV PY 2015 VL 22 IS 11 AR 112708 DI 10.1063/1.4935906 PG 11 WC Physics, Fluids & Plasmas SC Physics GA CX9VX UT WOS:000366054900046 ER PT J AU Wang, P Zhou, Y MacLaren, SA Huntington, CM Raman, KS Doss, FW Flippo, KA AF Wang, Ping Zhou, Ye MacLaren, Stephan A. Huntington, Channing M. Raman, Kumar S. Doss, Forrest W. Flippo, Kirk A. TI Three- and two-dimensional simulations of counter-propagating shear experiments at high energy densities at the National Ignition Facility SO PHYSICS OF PLASMAS LA English DT Article ID RICHTMYER-MESHKOV INSTABILITIES; RAYLEIGH-TAYLOR; LAYERS; FLOWS; DRIVEN AB Three- and two-dimensional numerical studies have been carried out to simulate recent counter-propagating shear flow experiments on the National Ignition Facility. A multi-physics three-dimensional, time-dependent radiation hydrodynamics simulation code is used. Using a Reynolds Averaging Navier-Stokes model, we show that the evolution of the mixing layer width obtained from the simulations agrees well with that measured from the experiments. A sensitivity study is conducted to illustrate a 3D geometrical effect that could confuse the measurement at late times, if the energy drives from the two ends of the shock tube are asymmetric. Implications for future experiments are discussed. (C) 2015 AIP Publishing LLC. C1 [Wang, Ping; Zhou, Ye; MacLaren, Stephan A.; Huntington, Channing M.; Raman, Kumar S.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Doss, Forrest W.; Flippo, Kirk A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Zhou, Y (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM yezhou@llnl.gov RI Flippo, Kirk/C-6872-2009 OI Flippo, Kirk/0000-0002-4752-5141 FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; U.S. Department of Energy; Los Alamos National Security [DE-AC52-06NA25396] FX The authors are indebted to John L. Kline and Barbara DeVolder for their contributions to the experimental work, as well as the LLNL colliding shock experiment group and LLNL ASC code group for their assistance. We would like to thank Mark S. Ulitsky for his suggestion on the parameter setting of the K-L-a mix model. We thank Brett C. Friedman, Tanim S. Islam, Ivan J. Otero, and Oleg Schilling for stimulating discussions. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. This work was also supported by the U.S. Department of Energy and performed by Los Alamos National Laboratory, operated by Los Alamos National Security under Contract No. DE-AC52-06NA25396. NR 50 TC 1 Z9 1 U1 0 U2 7 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD NOV PY 2015 VL 22 IS 11 AR 112701 DI 10.1063/1.4934612 PG 10 WC Physics, Fluids & Plasmas SC Physics GA CX9VX UT WOS:000366054900039 ER PT J AU Xiao, JY Qin, H Liu, J He, Y Zhang, RL Sun, YJ AF Xiao, Jianyuan Qin, Hong Liu, Jian He, Yang Zhang, Ruili Sun, Yajuan TI Explicit high-order non-canonical symplectic particle-in-cell algorithms for Vlasov-Maxwell systems SO PHYSICS OF PLASMAS LA English DT Article ID CONTINUOUS HAMILTONIAN SYSTEM; PLASMA SIMULATIONS; EQUATIONS; INTEGRATION; SCHEMES AB Explicit high-order non-canonical symplectic particle-in-cell algorithms for classical particle-field systems governed by the Vlasov-Maxwell equations are developed. The algorithms conserve a discrete non-canonical symplectic structure derived from the Lagrangian of the particle-field system, which is naturally discrete in particles. The electromagnetic field is spatially discretized using the method of discrete exterior calculus with high-order interpolating differential forms for a cubic grid. The resulting time-domain Lagrangian assumes a non-canonical symplectic structure. It is also gauge invariant and conserves charge. The system is then solved using a structure-preserving splitting method discovered by He et al. [preprint arXiv: 1505.06076 (2015)], which produces five exactly soluble sub-systems, and high-order structure-preserving algorithms follow by combinations. The explicit, high-order, and conservative nature of the algorithms is especially suitable for long-term simulations of particle-field systems with extremely large number of degrees of freedom on massively parallel supercomputers. The algorithms have been tested and verified by the two physics problems, i.e., the nonlinear Landau damping and the electron Bernstein wave. (C) 2015 AIP Publishing LLC. C1 [Xiao, Jianyuan; Qin, Hong; Liu, Jian; He, Yang; Zhang, Ruili] Univ Sci & Technol China, Sch Nucl Sci & Technol, Hefei 230026, Anhui, Peoples R China. [Xiao, Jianyuan; Qin, Hong; Liu, Jian; He, Yang; Zhang, Ruili] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China. [Xiao, Jianyuan; Liu, Jian; He, Yang; Zhang, Ruili] Chinese Acad Sci, Key Lab Geospace Environm, Hefei 230026, Anhui, Peoples R China. [Qin, Hong] Princeton Univ, Plasma Phys Lab, Princeton, NJ 08543 USA. [Sun, Yajuan] Chinese Acad Sci, Acad Math & Syst Sci, LSEC, Beijing 100190, Peoples R China. RP Qin, H (reprint author), Univ Sci & Technol China, Sch Nucl Sci & Technol, Hefei 230026, Anhui, Peoples R China. EM hongqin@ustc.edu.cn OI Liu, Jian/0000-0001-7484-401X FU ITER-China Program [2015GB111003, 2014GB124005, 2013GB111000]; JSPS-NRF-NSFC [NSFC-11261140328]; National Science Foundation of China [11575186, 11575185, 11505185, 11505186]; CAS Program for Interdisciplinary Collaboration Team; Geo-Algorithmic Plasma Simulator (GAPS) Project; U.S. Department of Energy [DE-AC02-09CH11466] FX This research was supported by ITER-China Program (2015GB111003, 2014GB124005, and 2013GB111000), JSPS-NRF-NSFC A3 Foresight Program in the field of Plasma Physics (NSFC-11261140328), the National Science Foundation of China (11575186, 11575185, 11505185, and 11505186), the CAS Program for Interdisciplinary Collaboration Team, the Geo-Algorithmic Plasma Simulator (GAPS) Project, and the U.S. Department of Energy (DE-AC02-09CH11466). NR 57 TC 0 Z9 0 U1 17 U2 47 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD NOV PY 2015 VL 22 IS 11 AR 112504 DI 10.1063/1.4935904 PG 8 WC Physics, Fluids & Plasmas SC Physics GA CX9VX UT WOS:000366054900033 ER PT J AU Jau, YY Hunker, JD Schwindt, PDD AF Jau, Y. -Y. Hunker, J. D. Schwindt, P. D. D. TI F-state quenching with CH4 for buffer-gas cooled Yb-171(+) frequency standard SO AIP ADVANCES LA English DT Article ID IONS AB We report that methane, CH4, can be used as an efficient F-state quenching gas for trapped ytterbium ions. The quenching rate coefficient is measured to be (2.8 +/- 0.3) x 10(6) s(-1) Torr(-1). For applications that use microwave hyperfine transitions of the ground-state Yb-171 ions, the CH4 induced frequency shift coefficient and the decoherence rate coefficient are measured as delta nu/nu = (-3.6 +/- 0.1) x 10(-6) Torr(-1) and 1/T-2 = (1.5 +/- 0.2) x 10(5) s(-1) Torr(-1). In our buffer-gas cooled Yb-171(+) microwave clock system, we find that only <= 10(-8) Torr of CH4 is required under normal operating conditions to efficiently clear the F-state and maintain >= 85% of trapped ions in the ground state with insignificant pressure shift and collisional decoherence of the clock resonance. (C) 2015 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License. C1 [Jau, Y. -Y.; Hunker, J. D.; Schwindt, P. D. D.] Sandia Natl Labs, Albuquerque, NM 87123 USA. RP Jau, YY (reprint author), Sandia Natl Labs, Albuquerque, NM 87123 USA. EM yjau@sandia.gov FU DARPA under the Integrated Micro Primary Atomic Clock Technology program (IMPACT); U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX We would like to thank Dr. John Prestage for useful discussions. This work is supported by DARPA under the Integrated Micro Primary Atomic Clock Technology program (IMPACT). The views, opinions, and/or findings contained in this article are those of the authors and should not be interpreted as representing the official views or policies, either expressed or implied, of the Defense Advanced Research Projects Agency or the Department of Defense. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 13 TC 1 Z9 1 U1 7 U2 9 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 2158-3226 J9 AIP ADV JI AIP Adv. PD NOV PY 2015 VL 5 IS 11 AR 117209 DI 10.1063/1.4935562 PG 8 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA CX9WB UT WOS:000366055300061 ER PT J AU Kowarik, S Hinderhofer, A Wang, C Weber, C Gerlach, A Hexemer, A Leone, SR Schreiber, F AF Kowarik, S. Hinderhofer, A. Wang, C. Weber, C. Gerlach, A. Hexemer, A. Leone, S. R. Schreiber, F. TI Identification of an organic semiconductor superlattice structure of pentacene and perfluoro-pentacene through resonant and non-resonant X-ray scattering SO AIP ADVANCES LA English DT Article ID MOLECULAR-BEAM DEPOSITION; QUANTUM-WELL STRUCTURES; THIN-FILMS; SILICON-OXIDE; REAL-TIME; GROWTH; HETEROSTRUCTURES; DIFFRACTION; MONOLAYERS; SUBSTRATE AB Highly crystalline and stable molecular superlattices are grown with the smallest possible stacking period using monolayers (MLs) of the organic semiconductors pentacene (PEN) and perfluoro-pentacene (PFP). Superlattice reflections in X-ray reflectivity and their energy dependence in resonant soft X-ray reflectivity measurements showthat PFP and PEN MLs indeed alternate even though the coherent ordering is lost after similar to 4 ML. The observed lattice spacing of 15.9 angstrom in the superlattice is larger than in pure PEN and PFP films, presumably because of more upright standing molecules and lack of interdigitation between the incommensurate crystalline PEN and PFP layers. The findings are important for the development of novel organic quantum optoelectronic devices. (C) 2015 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License. C1 [Kowarik, S.; Weber, C.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Hinderhofer, A.; Gerlach, A.; Schreiber, F.] Univ Tubingen, Inst Angew Phys, D-72076 Tubingen, Germany. [Wang, C.; Hexemer, A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Leone, S. R.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Leone, S. R.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Leone, S. R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Kowarik, S (reprint author), Humboldt Univ, Inst Phys, Newtonstr 15, D-12489 Berlin, Germany. RI Schreiber, Frank/J-3311-2014; Kowarik, Stefan/C-7676-2014; Wang, Cheng/A-9815-2014 OI Schreiber, Frank/0000-0003-3659-6718; FU German research foundation (DFG) [SFB 951]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division through Lawrence Berkeley National Laboratory [DE-AC02-05CH11231] FX We would like to acknowledge help from T. Hosokai, H. Frank, N. Llobera, and discussions with I. Salzmann. SK acknowledges funding from the German research foundation (DFG via SFB 951). SRL acknowledges the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division through Lawrence Berkeley National Laboratory under Contract No. DE-AC02-05CH11231. NR 31 TC 2 Z9 2 U1 4 U2 20 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 2158-3226 J9 AIP ADV JI AIP Adv. PD NOV PY 2015 VL 5 IS 11 AR 117241 DI 10.1063/1.4936884 PG 7 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA CX9WB UT WOS:000366055300092 ER PT J AU Khadilkar, AB Rozelle, PL Pisupati, SV AF Khadilkar, Aditi B. Rozelle, Peter L. Pisupati, Sarma V. TI Effect of Heterogeneity in Coal Ash Chemical Composition on the Onset of Conditions Favorable for Agglomeration in Fluid Beds SO ENERGIES LA English DT Article DE fluidized bed combustors (FBCs); oxidizing; reducing; deposition; mineral matter transformations; computational thermodynamics ID FLY-ASH; COMBUSTION; SLAG; TRANSFORMATIONS; GASIFICATION; TEMPERATURE; PARTICLES; BEHAVIOR; LIGNITES; MATTER AB Ash agglomeration issues that arise due to the sticking of slag-wetted, colliding particles have been creating operational difficulties and monetary losses for the fluidized bed combustion (FBC) industry. Difficulties have been experienced in the detection of slag-liquid at the low operating temperatures in fluidized bed combustors (FBCs) and predicting the agglomeration behavior of fuel. This study aims to study the effect of heterogeneity in ash composition on the detection of slag-liquid in FBCs. It quantifies the slag-liquid amounts at the particle-level, under oxidizing environments, by dividing the bulk fuel into density classes. FactSage thermodynamic simulations of each of the particle classes, along with experimental validation of the trends with thermo-mechanical analysis (TMA) and high temperature X-ray diffraction (HT-XRD) were performed. The results obtained can be used to estimate the stickiness of particles in the development of ash agglomeration models based on particle collisions. The study of these particle classes shows that particle classes with specific minerals can form low temperature eutectics and lead to onset of slag-liquid formation at temperatures below those predicted by bulk analysis alone. Comparison of the differences in slag-liquid formation tendencies under reducing and oxidizing environments is also presented. C1 [Khadilkar, Aditi B.; Pisupati, Sarma V.] Penn State Univ, Dept Energy & Mineral Engn, John & Willie Leone Family, University Pk, PA 16802 USA. [Khadilkar, Aditi B.; Pisupati, Sarma V.] Penn State Univ, EMS Energy Inst, University Pk, PA 16802 USA. [Rozelle, Peter L.] US DOE, Off Fossil Energy, Washington, DC 20585 USA. RP Pisupati, SV (reprint author), Penn State Univ, Dept Energy & Mineral Engn, John & Willie Leone Family, University Pk, PA 16802 USA. EM abk165@psu.edu; peter.rozelle@hq.doe.gov; sxp17@psu.edu FU National Energy Technology Laboratory (USDOE) under the RES [0004000] FX Financial support for this work was partially provided by National Energy Technology Laboratory (USDOE) under the RES contract 0004000. NR 39 TC 1 Z9 1 U1 3 U2 8 PU MDPI AG PI BASEL PA POSTFACH, CH-4005 BASEL, SWITZERLAND SN 1996-1073 J9 ENERGIES JI Energies PD NOV PY 2015 VL 8 IS 11 BP 12530 EP 12545 DI 10.3390/en81112329 PG 16 WC Energy & Fuels SC Energy & Fuels GA CX4RA UT WOS:000365686800014 ER PT J AU Ye, B Jiang, JJ Miao, LX Yang, P Li, J Shen, B AF Ye, Bin Jiang, Jingjing Miao, Lixin Yang, Peng Li, Ji Shen, Bo TI Feasibility Study of a Solar-Powered Electric Vehicle Charging Station Model SO ENERGIES LA English DT Article DE photovoltaic (PV) power; electric vehicle; carbon reduction; Shenzhen; China ID ENERGY-SYSTEMS; PV-SYSTEMS; CHINA; OPTIMIZATION; BATTERIES; SCHEMES; IMPACTS; DESIGN; TARGET; ISLAND AB In China, the power sector is currently the largest carbon emitter and the transportation sector is the fastest-growing carbon emitter. This paper proposes a model of solar-powered charging stations for electric vehicles to mitigate problems encountered in China's renewable energy utilization processes and to cope with the increasing power demand by electric vehicles for the near future. This study applies the proposed model to Shenzhen City to verify its technical and economic feasibility. Modeling results showed that the total net present value of a photovoltaic power charging station that meets the daily electricity demand of 4500 kWh is $3,579,236 and that the cost of energy of the combined energy system is $0.098/kWh. In addition, the photovoltaic powered electric vehicle model has pollutant reduction potentials of 99.8%, 99.7% and 100% for carbon dioxide, sulfur dioxide, and nitrogen oxides, respectively, compared with a traditional gasoline-fueled car. Sensitivity analysis results indicated that interest rate has a relatively strong influence on COE (Cost of Energy). An increase in the interest rate from 0% to 6% increases COE from $0.027/kWh to $0.097/kWh. This analysis also suggests that carbon pricing promotes renewable energy only when the price of carbon is above $20/t. C1 [Ye, Bin; Miao, Lixin; Yang, Peng] Tsinghua Univ, Grad Sch Shenzhen, Res Ctr Modern Logist, Shenzhen 518055, Peoples R China. [Jiang, Jingjing] South Univ Sci & Technol China, Sch Financial Math & Engn, Shenzhen 518055, Peoples R China. [Jiang, Jingjing; Li, Ji] Harbin Inst Technol, Environm Sci & Engn Ctr, Shenzhen Grad Sch, Shenzhen 518055, Peoples R China. [Shen, Bo] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Energy Anal & Environm Impacts Div, Berkeley, CA 94720 USA. RP Miao, LX (reprint author), Tsinghua Univ, Grad Sch Shenzhen, Res Ctr Modern Logist, Shenzhen 518055, Peoples R China. EM ye.bin@sz.tsinghua.edu.cn; Jiangjj@sustc.edu.cn; lxmiao@tsinghua.edu.cn; yang.peng@sz.tsinghua.edu.cn; liji98@tsinghua.org.cn; boshen@lbl.gov RI LI, JI/A-1432-2009 FU Natural Science Foundation of Guang Dong Province, China [2014A030310404]; Shenzhen city Special Strategic Emerging Industry Development Foundation [JCYJ20150331151358130] FX This work was supported by the Natural Science Foundation of Guang Dong Province, China (Grant No. 2014A030310404) and Shenzhen city Special Strategic Emerging Industry Development Foundation (Grant No. JCYJ20150331151358130). NR 56 TC 3 Z9 3 U1 8 U2 27 PU MDPI AG PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND SN 1996-1073 J9 ENERGIES JI Energies PD NOV PY 2015 VL 8 IS 11 BP 13265 EP 13283 DI 10.3390/en81112368 PG 19 WC Energy & Fuels SC Energy & Fuels GA CX4RA UT WOS:000365686800054 ER PT J AU Hawk, JA Cheng, TL Sears, JS Jablonski, PD Wen, YH AF Hawk, Jeffrey A. Cheng, Tian-Le Sears, John S. Jablonski, Paul D. Wen, You-Hai TI Gamma Prime Stability in Haynes 282: Theoretical and Experimental Considerations SO JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE LA English DT Article DE advanced ultra-supercritical; coarsening; gamma prime; Haynes 282; phase field; steam turbine; superalloy ID NICKEL-BASED SUPERALLOY; BASE SUPERALLOYS; DIFFUSION AB The life cycle requirements for advanced Ni alloys are very demanding and can be on the order of several hundreds of thousands of hours. Results are presented on a wrought Ni-based superalloy designed within the nominal chemistry range of Haynes 282 with a fixed amount of gamma' strengthening phase, and either low Al or Ti (within the alloy specification) to give different ratios of Ti/Al, and thus, different gamma' misfit with the gamma matrix. The effect that these changes have on the gamma' misfit and its relevance to long-term microstructural stability is being explored both experimentally as well as with computational modeling with results through almost 10,000 h. The basics of the modeling approach are presented as are the procedures for evaluating the gamma' volume fractions from transmission electron microscopy (TEM) micrographs and correcting these volume fractions for truncation error due to TEM foil thickness. Results on each alloy formulation are compared and discussed with respect to possible gamma' coarsening due to the different Ti/Al ratio and what this might mean for the long-term stability of the alloy. C1 [Hawk, Jeffrey A.; Cheng, Tian-Le; Sears, John S.; Jablonski, Paul D.; Wen, You-Hai] Natl Energy Technol Lab, Albany, OR 97321 USA. [Cheng, Tian-Le] Natl Energy Technol Lab, ORISE, Albany, OR 97321 USA. [Sears, John S.] Natl Energy Technol Lab, AECOM, Albany, OR 97321 USA. RP Hawk, JA (reprint author), Natl Energy Technol Lab, 1450 Queen Ave SW, Albany, OR 97321 USA. EM jeffhawk4@comcast.net NR 27 TC 1 Z9 1 U1 3 U2 12 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1059-9495 EI 1544-1024 J9 J MATER ENG PERFORM JI J. Mater. Eng. Perform. PD NOV PY 2015 VL 24 IS 11 BP 4171 EP 4181 DI 10.1007/s11665-015-1711-y PG 11 WC Materials Science, Multidisciplinary SC Materials Science GA CY0OY UT WOS:000366106600001 ER PT J AU Bruillard, P Chang, L Hong, SM Plavnik, JY Rowell, EC Sun, MY AF Bruillard, Paul Chang, Liang Hong, Seung-Moon Plavnik, Julia Yael Rowell, Eric C. Sun, Michael Yuan TI Low-dimensional representations of the three component loop braid group SO JOURNAL OF MATHEMATICAL PHYSICS LA English DT Article ID QUANTUM COMPUTATION; VIRTUAL KNOT AB Motivated by physical and topological applications, we study representations of the group LB3 of motions of 3 unlinked oriented circles in R-3. Our point of view is to regard the three strand braid group B-3 as a subgroup of LB3 and study the problem of extending B-3 representations. We introduce the notion of a standard extension and characterize B-3 representations admitting such an extension. In particular we show, using a classification result of Tuba and Wenzl [Pacific J. Math. 197, 491-510 (2001)], that every irreducible B-3 representation of dimension at most 5 has a (standard) extension. We show that this result is sharp by exhibiting an irreducible 6-dimensional B-3 representation that has no extensions (standard or otherwise). We obtain complete classifications of (1) irreducible 2-dimensional LB3 representations, (2) extensions of irreducible 3-dimensional B-3 representations, and (3) irreducible LB3 representations whose restriction to B-3 has abelian image. (C) 2015 AIP Publishing LLC. C1 [Bruillard, Paul] Pacific NW Natl Lab, Richland, WA 99354 USA. [Chang, Liang; Plavnik, Julia Yael; Rowell, Eric C.] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA. [Hong, Seung-Moon] Univ Toledo, Dept Math & Stat, Toledo, OH 43606 USA. [Sun, Michael Yuan] Univ Munster, Inst Math, Munster, Germany. RP Bruillard, P (reprint author), Pacific NW Natl Lab, 902 Battelle Blvd, Richland, WA 99354 USA. EM pjb2357@gmail.com; changliang996@gmail.com; seungmoon.hong@utoledo.edu; julia@math.tamu.edu; rowell@math.tamu.edu; sunm@uni-muenster.de OI Rowell, Eric/0000-0002-2338-9819 FU AMS; CONICET; ANPCyT; Secyt (UNC); NSF [DMS-1108725]; GIF; Laboratory Directed Research and Development Program at PNNL (PNNL Information Release) [PNNL-SA-111814]; Universidad de Buenos Aires; Universidad Nacional de Cordoba; [SFB878] FX This paper began while the authors were participating in an AMS Mathematics Research Community workshop in Snowbird, Utah. The continued support of the AMS is gratefully acknowledged. J.Y.P was partially supported by CONICET, ANPCyT, and Secyt (UNC). E.C.R. was partially supported by NSF No. DMS-1108725. M.Y.S. acknowledges the support of SFB878 and GIF. The research described in this paper was, in part, conducted under the Laboratory Directed Research and Development Program at PNNL (PNNL Information Release: PNNL-SA-111814), a multi-program national laboratory operated by Battelle for the U.S. Department of Energy. This project was developed while J.Y.P. was at Universidad de Buenos Aires and Universidad Nacional de Cordoba, and the support of these institutions is gratefully acknowledged. NR 24 TC 0 Z9 0 U1 0 U2 5 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0022-2488 EI 1089-7658 J9 J MATH PHYS JI J. Math. Phys. PD NOV PY 2015 VL 56 IS 11 AR 111707 DI 10.1063/1.4935361 PG 15 WC Physics, Mathematical SC Physics GA CX9WO UT WOS:000366056700012 ER PT J AU Khare, A Saxena, A AF Khare, Avinash Saxena, Avadh TI Response to "Comment on 'Superposition of elliptic functions as solutions for a large number of nonlinear equations'" [J. Math. Phys. 56, 084101 (2015)] SO JOURNAL OF MATHEMATICAL PHYSICS LA English DT Editorial Material AB In a recent paper, Zhang and Li [J. Math. Phys. 56, 084101 (2015)] have doubted our claim that whenever a nonlinear equation has solutions in terms of the Jacobi elliptic functions cn(x, m) and dn(x, m), then the same nonlinear equation will necessarily also have solutions in terms of dn(x, m) +/- root mcn(x, m). We point out the flaw in their argument and show why our assertion is indeed valid. (C) 2015 AIP Publishing LLC. C1 [Khare, Avinash] Savitribai Phule Pune Univ, Dept Phys, Pune 411007, Maharashtra, India. [Saxena, Avadh] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Saxena, Avadh] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. RP Khare, A (reprint author), Savitribai Phule Pune Univ, Dept Phys, Pune 411007, Maharashtra, India. NR 5 TC 0 Z9 0 U1 1 U2 3 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0022-2488 EI 1089-7658 J9 J MATH PHYS JI J. Math. Phys. PD NOV PY 2015 VL 56 IS 11 AR 113510 DI 10.1063/1.4936076 PG 2 WC Physics, Mathematical SC Physics GA CX9WO UT WOS:000366056700036 ER PT J AU Babin, S Calafiore, G Peroz, C Conley, R Bouet, N Cabrini, S Chan, E Lacey, I McKinney, WR Yashchuk, VV Vladar, AE AF Babin, Sergey Calafiore, Giuseppe Peroz, Christophe Conley, Raymond Bouet, Nathalie Cabrini, Stefano Chan, Elaine Lacey, Ian McKinney, Wayne R. Yashchuk, Valeriy V. Vladar, Andras E. TI 1.5 nm fabrication of test patterns for characterization of metrological systems SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B LA English DT Article AB Any metrology tool is only as good as it is calibrated. The characterization of metrology systems requires test patterns at a scale about ten times smaller than the measured features. The fabrication of patterns with linewidths down to 1.5 nm is described. The test sample was designed in such a way that the distribution of linewidths appears to be random at any location. This pseudorandom test pattern is used to characterize dimensional metrology equipment over its entire dynamic range by extracting the modulation transfer function of the system. The test pattern contains alternating lines of silicon and tungsten silicide, each according to its designed width. The fabricated test samples were imaged using a transmission electron microscope, a scanning electron microscope, and an atomic force microscope. (C) 2015 American Vacuum Society. C1 [Babin, Sergey; Calafiore, Giuseppe; Peroz, Christophe] Abeam Technol Inc, Hayward, CA 94541 USA. [Conley, Raymond] Argonne Natl Lab, Argonne, IL 60439 USA. [Conley, Raymond; Bouet, Nathalie] Brookhaven Natl Lab, Upton, NY 11973 USA. [Cabrini, Stefano; Chan, Elaine; Lacey, Ian; McKinney, Wayne R.; Yashchuk, Valeriy V.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Vladar, Andras E.] NIST, Gaithersburg, MD 20899 USA. RP Babin, S (reprint author), Abeam Technol Inc, 22290 Foothill Blvd,St 2, Hayward, CA 94541 USA. EM sb@abeamtech.com OI Bouet, Nathalie/0000-0002-5816-9429 FU U.S. Department of Energy Office of Science, Office of Basic Energy Sciences; Office of Science, Office of Basic Energy Sciences, and Material Science Division of the U.S. Department of Energy [DE-AC02-05CH11231]; U.S. Department of Energy [DE-AC02-98CH10886]; U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-06CH11357]; UC Office of the President [268826]; Small Business Technology Transfer (STTR) Programs [DE-SC0011352] FX This work was supported by the U.S. Department of Energy Office of Science, Office of Basic Energy Sciences, and Small Business Technology Transfer (STTR) Programs under Award No. DE-SC0011352. Research at the Advanced Light Source and the Molecular Foundry at Lawrence Berkeley National Laboratory is supported by the Office of Science, Office of Basic Energy Sciences, and Material Science Division of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Research at Brookhaven National Laboratory is sponsored by the U.S. Department of Energy under Contract No. DE-AC02-98CH10886. Research at Argonne National Laboratory is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. This work was also supported in part by the UC Office of the President, Proof of Concept Grant ID No. 268826. NR 10 TC 1 Z9 1 U1 1 U2 6 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 1071-1023 J9 J VAC SCI TECHNOL B JI J. Vac. Sci. Technol. B PD NOV PY 2015 VL 33 IS 6 AR 06FL01 DI 10.1116/1.4935253 PG 5 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA CX9WE UT WOS:000366055600040 ER PT J AU Benk, MP Goldberg, KA Wojdyla, A Anderson, CN Salmassi, F Naulleau, PP Kocsis, M AF Benk, Markus P. Goldberg, Kenneth A. Wojdyla, Antoine Anderson, Christopher N. Salmassi, Farhad Naulleau, Patrick P. Kocsis, Michael TI Demonstration of 22-nm half pitch resolution on the SHARP EUV microscope SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B LA English DT Article AB The Semiconductor High-Numerical-aperture (NA) Actinic Reticle Review Project (SHARP) is an extreme ultraviolet (EUV)-wavelength, synchrotron-based microscope dedicated to advanced EUV photomask research. The instrument is designed to emulate current and future generations of EUV lithography (EUVL). The performance of the SHARP microscope has been well characterized for its low-NA lenses, emulating imaging in 0.25 and 0.33 NA lithography scanners. Evaluating the resolution of its higher-NA lenses, intended to emulate future generations of EUV lithography, requires a photomask with features down to 22-nm half pitch. The authors fabricated a sample with features down to 20-nm half pitch, exposing a wafer with a standard multilayer coating in the Berkeley microfield exposure tool, and used it to demonstrate real-space imaging down to 22-nm half pitch on the SHARP microscope. The demonstrated performance of SHARP's high-NA zone-plates, together with the extended capabilities of the tool, provide a platform that is available today, suited for research targeted at upcoming generations of EUVL many years into the future. (C) 2015 American Vacuum Society. C1 [Benk, Markus P.; Goldberg, Kenneth A.; Wojdyla, Antoine; Anderson, Christopher N.; Salmassi, Farhad; Naulleau, Patrick P.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Kocsis, Michael] Inpria Corp, Corvallis, OR 97330 USA. RP Benk, MP (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM mpbenk@lbl.gov FU SEMATECH; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX The authors are grateful for the support of Andrew Grenville and Jason Stowers of Inpria for use of the experimental metal-oxide photoresist, and for BMET technical staff for exposing and processing the resolution-test target. The creation of the SHARP microscope was funded by SEMATECH. The Advanced light source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 19 TC 5 Z9 5 U1 0 U2 11 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 1071-1023 J9 J VAC SCI TECHNOL B JI J. Vac. Sci. Technol. B PD NOV PY 2015 VL 33 IS 6 AR 06FE01 DI 10.1116/1.4929509 PG 6 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA CX9WE UT WOS:000366055600031 ER PT J AU Cummings, KD Bunday, B Malloy, M Hartley, J Banu, L Mellish, M Chao, WL Bleier, AR Banerjee, A AF Cummings, Kevin D. Bunday, Ben Malloy, Matt Hartley, John Banu, Laila Mellish, M. Chao, Weilun Bleier, A. R. Banerjee, A. TI Patterning of defect arrays with e-beam lithography used to develop a high throughput e-beam defect inspection tool SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B LA English DT Article ID PROXIMITY EFFECT CORRECTION; EXTENSION; EXPOSURE; RESISTS AB SUNY Poly SEMATECH has established an infrastructure development program to ensure that needed beam based metrology tools and techniques are available for leading edge semiconductor processes and devices. The design, development, and fabrication of high quality dense array samples with <= 16 nm defects at known locations is a key requirement to assessing new inspection technologies. Due to the technical difficulties of creating high quality programmed defect samples at the required sizes, the authors have undertaken multiple paths of electron beam lithographic development, supporting organizations and processing techniques to optimize and deliver the needed samples. In doing so, this program has created a snapshot of electron beam lithographic capability. This paper discusses our experience with electron beam lithography used to create the arrays samples. (C) 2015 American Vacuum Society. C1 [Cummings, Kevin D.; Bunday, Ben; Malloy, Matt] SUNY Poly SEMATECH, Albany, NY 12203 USA. [Hartley, John; Banu, Laila; Mellish, M.] SUNY Polytech Inst, Coll Nanoscale Sci, Albany, NY 12203 USA. [Hartley, John; Banu, Laila; Mellish, M.] SUNY Polytech Inst, Coll Engn, Albany, NY 12203 USA. [Chao, Weilun] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Ctr Xray Opt, Berkeley, CA 94720 USA. [Bleier, A. R.; Banerjee, A.] Cornell Univ, Cornell NanoScale Sci & Technol Facil, Ithaca, NY 14853 USA. RP Cummings, KD (reprint author), SUNY Poly SEMATECH, Albany, NY 12203 USA. EM Kevin.Cummings@SEMATECH.org FU National Science Foundation [ECCS-0335765] FX This work was performed in part at the Cornell NanoScale Facility, a member of the National Nanotechnology Infrastructure Network, and this Network is supported by the National Science Foundation (Grant No. ECCS-0335765). NR 16 TC 2 Z9 2 U1 0 U2 1 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 1071-1023 J9 J VAC SCI TECHNOL B JI J. Vac. Sci. Technol. B PD NOV PY 2015 VL 33 IS 6 AR 06FD03 DI 10.1116/1.4934052 PG 5 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA CX9WE UT WOS:000366055600026 ER PT J AU Grzeskowiak, S Narasimhan, A Ostrander, J Schad, J Earley, W Brainard, RL Denbeaux, G Ocola, LE Neisser, M AF Grzeskowiak, Steven Narasimhan, Amrit Ostrander, Jonathan Schad, Jonathon Earley, William Brainard, Robert L. Denbeaux, Greg Ocola, Leonidas E. Neisser, Mark TI Cross sections of photoacid generators at low electron energies SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B LA English DT Article ID CHEMICAL AMPLIFICATION RESISTS AB Optimizing the photochemistry in extreme ultraviolet (EUV) photoresists due to EUV exposures may enable faster, more efficient resists, leading to a greater throughput in manufacturing. Since the fundamental reaction mechanisms in EUV resists are believed to be due to electron interactions after incident 92 eV photons (13.5 nm) generate photoelectrons during ionization events, understanding how these photoelectrons interact with resist components is critical for optimizing the performance of EUV resists and EUV lithography as a whole. The authors will present an experimental method to measure the cross section of incident electron induced decomposition of three different photoacid generators (PAGs). To study the photoelectrons generated by the EUV absorption and measure their effect within resists, photoresists were exposed to electron beams at electron energies between 80 and 250 eV. The reactions between PAG molecules and electrons were measured by using a mass spectrometer to monitor the levels of small molecules produced by PAG decomposition that outgassed from the photoresist. This methodology allowed us to determine the number of PAG molecules decomposed per incident electron. By combining this result with the average penetration depth of an electron at a given energy, the cross sections of PAG molecules were determined for energies ranging between 80 and 250 eV. Comparing the cross sections of PAG molecules can provide insight into the relationship between chemical structure, reactivity to the electrons, and trends in cross section versus electron energy. This research is a part of a larger SEMATECH research program to understand the fundamentals of resist exposures to help in the development of new, better performing EUV resists. (C) 2015 American Vacuum Society. C1 [Grzeskowiak, Steven; Narasimhan, Amrit; Ostrander, Jonathan; Schad, Jonathon; Earley, William; Brainard, Robert L.; Denbeaux, Greg] SUNY Polytech Inst, Coll Nanoscale Sci & Engn, Albany, NY 12203 USA. [Ocola, Leonidas E.] Argonne Natl Labs, Lemont, IL 60439 USA. [Neisser, Mark] SUNY Polytech Inst SEMATECH, Albany, NY 12203 USA. RP Grzeskowiak, S (reprint author), SUNY Polytech Inst, Coll Nanoscale Sci & Engn, 257 Fuller Rd, Albany, NY 12203 USA. EM sgrzeskowiak@sunypoly.edu OI Ocola, Leonidas/0000-0003-4990-1064 FU SEMATECH; SUNY Polytechnic FX The authors gratefully acknowledge SEMATECH and SUNY Polytechnic for financial support of this work. The authors would also like to acknowledge former group members Justin Torok and Bharath Srivats for their previous work in this area, as well as Steven Novak and his research group at the College of Nanoscale Science and Engineering who performed the TOF SIMS measurements. NR 7 TC 1 Z9 1 U1 3 U2 15 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 1071-1023 J9 J VAC SCI TECHNOL B JI J. Vac. Sci. Technol. B PD NOV PY 2015 VL 33 IS 6 AR 06FH01 DI 10.1116/1.4935954 PG 5 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA CX9WE UT WOS:000366055600037 ER PT J AU Hossain, T Wei, DM Edgar, JH Garces, NY Nepal, N Hite, JK Mastro, MA Eddy, CR Meyer, HM AF Hossain, Tashfin Wei, Daming Edgar, James H. Garces, Nelson Y. Nepal, Neeraj Hite, Jennifer K. Mastro, Michael A. Eddy, Charles R., Jr. Meyer, Harry M., III TI Effect of GaN surface treatment on Al2O3/n-GaN MOS capacitors SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B LA English DT Article ID SEMICONDUCTOR; VOLTAGE; OXIDATION; OXIDES; ALN AB The surface preparation for depositing Al2O3 for fabricating Au/Ni/Al2O3/n-GaN (0001) metal oxide semiconductor (MOS) capacitors was optimized as a step toward realization of high performance GaN MOSFETs. The GaN surface treatments studied included cleaning with piranha (H2O2:H2SO4 = 1:5), (NH4)(2)S, and 30% HF etches. By several metrics, the MOS capacitor with the piranha-etched GaN had the best characteristics. It had the lowest capacitance-voltage hysteresis, the smoothest Al2O3 surface as determined by atomic force microscopy (0.2nm surface roughness), the lowest carbon concentration (similar to 0.78%) at the Al2O3/n-GaN interface (from x-ray photoelectron spectroscopy), and the lowest oxide-trap charge (Q(T) = 1.6 x 10(11) cm(-2) eV(-1)). Its interface trap density (D-it = 3.7 x 10(12) cm(-2) eV(-1)), as measured with photon-assisted capacitance- voltage method, was the lowest from conduction band-edge to midgap. (C) 2015 American Vacuum Society. C1 [Hossain, Tashfin; Wei, Daming; Edgar, James H.] Kansas State Univ, Dept Chem Engn, Manhattan, KS 66506 USA. [Garces, Nelson Y.; Nepal, Neeraj; Hite, Jennifer K.; Mastro, Michael A.; Eddy, Charles R., Jr.] Naval Res Lab, Div Elect Sci & Technol, Washington, DC 20375 USA. [Meyer, Harry M., III] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Hossain, T (reprint author), Kansas State Univ, Dept Chem Engn, Manhattan, KS 66506 USA. EM edgarjh@ksu.edu FU Office of Naval Research [N00014-09-1-1160]; U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program FX The Office of Naval Research supported this project, Grant No. N00014-09-1-1160 (Paul Maki, the program manager). XPS was conducted through High Temperature Laboratory User Program of the Oak Ridge National Laboratory, sponsored by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program. T. Hossain would like to acknowledge the support of Andrew Rys and Vikas Berry. NR 25 TC 2 Z9 3 U1 7 U2 18 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 1071-1023 J9 J VAC SCI TECHNOL B JI J. Vac. Sci. Technol. B PD NOV PY 2015 VL 33 IS 6 AR 061201 DI 10.1116/1.4931793 PG 6 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA CX9WE UT WOS:000366055600054 ER PT J AU Humayun, MT Divan, R Stan, L Gupta, A Rosenmann, D Gundel, L Solomon, PA Paprotny, I AF Humayun, Md Tanim Divan, Ralu Stan, Liliana Gupta, Ashu Rosenmann, Daniel Gundel, Lara Solomon, Paul A. Paprotny, Igor TI ZnO functionalization of multiwalled carbon nanotubes for methane sensing at single parts per million concentration levels SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B LA English DT Article ID ATOMIC LAYER DEPOSITION; VANADIUM-OXIDE; GAS-DETECTION; THIN-FILMS; SENSORS; HETEROSTRUCTURES AB This paper presents a novel atomic layer deposition (ALD) based ZnO functionalization of surface pretreated multiwalled carbon nanotubes (MWCNTs) for highly sensitive methane chemoresistive sensors. The temperature optimization of the ALD process leads to enhanced ZnO nanoparticle functionalization and improvement in their crystalline quality as shown by energy dispersive x-ray and Raman spectroscopy. The behavior of ZnO-MWCNT sensors in presence of methane concentrations down to 2 ppm level has been compared with that of pristine MWCNTs demonstrating that ZnO functionalization is an essential factor behind the highly sensitive chemoresistive nature of the ZnO-MWCNT heterostructures. The sensor is currently being tested under a range of conditions that include potentially interfering gases and changes to relative humidity. (C) 2015 American Vacuum Society. C1 [Humayun, Md Tanim; Paprotny, Igor] Univ Illinois, Dept Elect & Comp Engn, Chicago, IL 60607 USA. [Divan, Ralu; Stan, Liliana; Rosenmann, Daniel] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Gupta, Ashu] Illinois Math & Sci Acad, Aurora, IL 60506 USA. [Gundel, Lara] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Solomon, Paul A.] US EPA, Las Vegas, NV 89199 USA. RP Humayun, MT (reprint author), Univ Illinois, Dept Elect & Comp Engn, Chicago, IL 60607 USA. EM paprotny@uic.edu FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; College of Engineering, University of Illinois, Chicago, IL FX The authors would like to thank David Gosztola, CNM, Argonne National Laboratory, for helping with the Raman spectroscopy. Use of the Center for Nanoscale Materials, an Office of Science user facility, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. College of Engineering, University of Illinois, Chicago, IL, in part funded the project. The U.S. Environmental Protection Agency, through its Office of Research and Development, collaborated in the research described here. It has been subjected to Agency review and approved for publication. NR 25 TC 3 Z9 3 U1 3 U2 33 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 1071-1023 J9 J VAC SCI TECHNOL B JI J. Vac. Sci. Technol. B PD NOV PY 2015 VL 33 IS 6 AR 06FF01 DI 10.1116/1.4931694 PG 7 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA CX9WE UT WOS:000366055600033 ER PT J AU Li, KN Wojcik, MJ Ocola, LE Divan, R Jacobsen, C AF Li, Kenan Wojcik, Michael J. Ocola, Leonidas E. Divan, Ralu Jacobsen, Chris TI Multilayer on-chip stacked Fresnel zone plates: Hard x-ray fabrication and soft x-ray simulations SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B LA English DT Article ID DISCRETE HANKEL TRANSFORM; NM SPATIAL-RESOLUTION; HIGH-EFFICIENCY; MICROSCOPY; NANOFABRICATION; SPECTROSCOPY; DIFFRACTION; OPTICS; FIELDS AB Fresnel zone plates are widely used as x-ray nanofocusing optics. To achieve high spatial resolution combined with good focusing efficiency, high aspect ratio nanolithography is required, and one way to achieve that is through multiple e-beam lithography writing steps to achieve on-chip stacking. A two-step writing process producing 50 nm finest zone width at a zone thickness of 1.14 mu m for possible hard x-ray applications is shown here. The authors also consider in simulations the case of soft x-ray focusing where the zone thickness might exceed the depth of focus. In this case, the authors compare on-chip stacking with, and without, adjustment of zone positions and show that the offset zones lead to improved focusing efficiency. The simulations were carried out using a multislice propagation method employing Hankel transforms. (C) 2015 American Vacuum Society. C1 [Li, Kenan; Jacobsen, Chris] Northwestern Univ, Appl Phys, Evanston, IL 60208 USA. [Wojcik, Michael J.; Jacobsen, Chris] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA. [Ocola, Leonidas E.; Divan, Ralu] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Jacobsen, Chris] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. [Jacobsen, Chris] Northwestern Univ, Appl Phys, Evanston, IL 60208 USA. [Jacobsen, Chris] Northwestern Univ, Chem Life Proc Inst, Evanston, IL 60208 USA. RP Jacobsen, C (reprint author), Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA. EM cjacobsen@anl.gov OI Jacobsen, Chris/0000-0001-8562-0353; Ocola, Leonidas/0000-0003-4990-1064 FU Office of Science, Department of Energy [DE-AC02-06CH11357]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX The authors gratefully acknowledge Daniel Rosenmann of Argonne National Laboratory for his valuable support. The authors thank the Office of Science, Department of Energy, for support of this work at the Advanced Photon Source at Argonne National Laboratory under Contract No. DE-AC02-06CH11357. Use of the Center for Nanoscale Materials, an Office of Science user facility, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 27 TC 0 Z9 0 U1 4 U2 12 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 1071-1023 J9 J VAC SCI TECHNOL B JI J. Vac. Sci. Technol. B PD NOV PY 2015 VL 33 IS 6 AR 06FD04 DI 10.1116/1.4935252 PG 6 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA CX9WE UT WOS:000366055600027 ER PT J AU Millet, LJ Doktycz, MJ Retterer, ST AF Millet, Larry J. Doktycz, Mitchel J. Retterer, Scott T. TI Nanofluidic interfaces in microfluidic networks SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B LA English DT Article ID PEPTIDE RELEASE; MASS-SPECTROMETRY; NEURONS; DEVICES; PERSPECTIVES; NANOCHANNELS; CHALLENGES; CAPTURE; VOLUME; CELLS AB The integration of nano-and microfluidic technologies enables the construction of tunable interfaces to physical and biological systems across relevant length scales. The ability to perform chemical manipulations of miniscule sample volumes is greatly enhanced through these technologies and extends the ability to manipulate and sample local fluidic environments at subcellular, cellular, and community or tissue scales. Here, the authors describe the development of a flexible surface micromachining process for the creation of nanofluidic channel arrays integrated within SU-8 microfluidic networks. The use of a semiporous, silicon rich, silicon nitride structural layer allows for a rapid removal of the sacrificial silicon dioxide during the nanochannel fabrication. Nanochannel openings that form the interface to biological samples are customized using focused ion beam milling. The compatibility of these interfaces with on-chip microbial culture is demonstrated. (C) 2015 American Vacuum Society. C1 [Millet, Larry J.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Millet, LJ (reprint author), Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. EM milletlj@ornl.gov RI Doktycz, Mitchel/A-7499-2011; Retterer, Scott/A-5256-2011 OI Doktycz, Mitchel/0000-0003-4856-8343; Millet, Larry /0000-0001-6443-2505; Retterer, Scott/0000-0001-8534-1979 FU U.S. Department of Energy [DE-AC05-00OR22725]; Office of Science/Biological and Environmental Research (BER) [ERKP851]; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy FX This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan). This work was supported by Office of Science/Biological and Environmental Research (BER), Project No. ERKP851. The views expressed are those of the authors and do not reflect the official policy or position of the Department of Energy or the U.S. Government. This research was performed at Oak Ridge National Laboratory (ORNL). ORNL is managed by UT-Battelle, LLC, for the U.S. Department of Energy Under Contract No. DE-AC05-00OR22725. Nanofluidic platforms were fabricated and SEM imaging was performed at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. NR 35 TC 0 Z9 0 U1 4 U2 16 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 1071-1023 J9 J VAC SCI TECHNOL B JI J. Vac. Sci. Technol. B PD NOV PY 2015 VL 33 IS 6 AR 06FM01 DI 10.1116/1.4931590 PG 7 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA CX9WE UT WOS:000366055600042 ER PT J AU Nam, CY Stein, A Kisslinger, K AF Nam, Chang-Yong Stein, Aaron Kisslinger, Kim TI Direct fabrication of high aspect-ratio metal oxide nanopatterns via sequential infiltration synthesis in lithographically defined SU-8 templates SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B LA English DT Article ID VAPOR INFILTRATION; BLOCK-COPOLYMERS; LAYER; TEMPERATURE; NANOWIRES; RESISTS; FIBERS; ROUTE; SILK AB Nanopatterning high aspect-ratio metal oxide structures remains challenging for conventional nanofabrication methods based on reactive ion etching due to marginal etch selectivity between target oxides and typical mask materials. Here, the authors report the application of sequential infiltration synthesis (SIS) on lithographically defined SU-8 polymer templates for patterning arbitrarily designed, high aspect-ratio metal oxide nanostructures with sub-50 nm linewidths, smooth vertical profiles, and three-dimensional (3D) morphologies difficult to achieve by the conventional fabrication methods. As examples, various AlOx nanostructures with similar to 40 nm linewidths and up to 16 aspect ratios were demonstrated, along with TiOx in-plane nanowire arrays of controlled positional registrations. Detailed scanning and transmission electron microscopy studies revealed nanocrystalline and amorphous internal structures of respective AlOx and TiOx, as well as the swelling and contraction behaviors of polymer templates during the SIS process, which allowed the facile fabrication of high aspect-ratio, sub-50 nm-featured oxide nanopatterns with 3D morphologies. These results confirm the potential of vapor-phase material infiltration in directly nanopatterning complexly structured metal oxides. (C) 2015 American Vacuum Society. C1 [Nam, Chang-Yong; Stein, Aaron; Kisslinger, Kim] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Nam, CY (reprint author), Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. EM cynam@bnl.gov RI Kisslinger, Kim/F-4485-2014; OI Nam, Chang-Yong/0000-0002-9093-4063 FU U.S. Department of Energy, Office of Basic Energy Sciences [DE-SC0012704] FX This research was carried out at the Center for Functional Nanomaterials, Brookhaven National Laboratory (BNL), which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-SC0012704. The authors thank Ming Lu, Mingzhao Liu, and Charles Black for helpful discussions. NR 27 TC 2 Z9 2 U1 2 U2 5 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 1071-1023 J9 J VAC SCI TECHNOL B JI J. Vac. Sci. Technol. B PD NOV PY 2015 VL 33 IS 6 AR 06F201 DI 10.1116/1.4929508 PG 7 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA CX9WE UT WOS:000366055600001 ER PT J AU Ocola, LE Gosztola, DJ Rosenmann, D Lopez, G AF Ocola, Leonidas E. Gosztola, David J. Rosenmann, Daniel Lopez, Gerald TI Automated geometry assisted proximity effect correction for electron beam direct write nanolithography SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B LA English DT Article ID RULE-BASED APPROACH; LITHOGRAPHY; PATTERN; SCHEME; SHAPE AB Nanoscale geometry assisted proximity effect correction (NanoPEC) is demonstrated to improve proximity effect correction (PEC) for nanoscale structures over standard methods, in terms of feature sharpness for sub-100 nm structures. NanoPEC was implemented onto an existing commercially available PEC software. Plasmonic arrays of crosses were fabricated using regular PEC and NanoPEC, and optical absorbance was measured. Results confirm that the improved sharpness of the structures leads to increased sharpness in the optical absorbance spectrum features. The authors also demonstrated that this method of PEC is applicable to arbitrary shaped structures beyond crosses. (C) 2015 American Vacuum Society. C1 [Ocola, Leonidas E.; Gosztola, David J.; Rosenmann, Daniel] Argonne Natl Lab, Nanosci & Technol Div, Argonne, IL 60439 USA. [Lopez, Gerald] GenISys Inc, San Francisco, CA 94141 USA. RP Ocola, LE (reprint author), Argonne Natl Lab, Nanosci & Technol Div, Argonne, IL 60439 USA. EM ocola@anl.gov RI Gosztola, David/D-9320-2011; OI Gosztola, David/0000-0003-2674-1379; Ocola, Leonidas/0000-0003-4990-1064 FU Department of Energy [DE-AC02-06CH11357]; U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX This work was supported by the Department of Energy under Contract No. DE-AC02-06CH11357. Use of the Center for Nanoscale Materials was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 13 TC 0 Z9 0 U1 0 U2 4 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 1071-1023 J9 J VAC SCI TECHNOL B JI J. Vac. Sci. Technol. B PD NOV PY 2015 VL 33 IS 6 AR 06FD02 DI 10.1116/1.4931691 PG 6 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA CX9WE UT WOS:000366055600025 ER PT J AU Shankles, PG Timm, AC Doktycz, MJ Retterer, ST AF Shankles, Peter G. Timm, Andrea C. Doktycz, Mitchel J. Retterer, Scott T. TI Fabrication of nanoporous membranes for tuning microbial interactions and biochemical reactions SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B LA English DT Article ID CARBON NANOFIBER MEMBRANES; MICROFLUIDIC CELL-CULTURE; TRANSPORT; ARRAYS; SEPARATION; DIFFUSION; ASSAYS AB New strategies for combining conventional photo- and soft-lithographic techniques with high-resolution patterning and etching strategies are needed in order to produce multiscale fluidic platforms that address the full range of functional scales seen in complex biological and chemical systems. The smallest resolution required for an application often dictates the fabrication method used. Micromachining and micropowder blasting yield higher throughput, but lack the resolution needed to fully address biological and chemical systems at the cellular and molecular scales. In contrast, techniques such as electron beam lithography or nanoimprinting allow nanoscale resolution, but are traditionally considered costly and slow. Other techniques such as photolithography or soft lithography have characteristics between these extremes. Combining these techniques to fabricate multiscale or hybrid fluidics allows fundamental biological and chemical questions to be answered. In this study, a combination of photolithography and electron beam lithography are used to produce two multiscale fluidic devices that incorporate porous membranes into complex fluidic networks in order to control the flow of energy, information, and materials in chemical form. In the first device, materials and energy were used to support chemical reactions. A nanoporous membrane fabricated with e-beam lithography separates two parallel, serpentine channels. Photolithography was used to pattern microfluidic channels around the membrane. The pores were written at 150nm and reduced in size with silicon dioxide deposition from plasma enhanced chemical vapor deposition and atomic layer deposition. Using this method, the molecular weight cutoff of the membrane can be adapted to the system of interest. In the second approach, photolithography was used to fabricate 200nm thin pores. The pores confined microbes and allowed energy replenishment from a media perfusion channel. The same device can be used for study of intercellular communication via the secretion and uptake of signal molecules. Pore size was tested with 750nm fluorescent polystyrene beads and fluorescein dye. The 200nm polydimethylsiloxane pores were shown to be robust enough to hold 750 nm beads while under pressure, but allow fluorescein to diffuse across the barrier. Further testing showed that extended culture of bacteria within the chambers was possible. These two examples show how lithographically defined porous membranes can be adapted to two unique situations and used to tune the flow of chemical energy, materials, and information within a microfluidic network. (C) 2015 American Vacuum Society. C1 [Shankles, Peter G.; Timm, Andrea C.; Doktycz, Mitchel J.; Retterer, Scott T.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. [Shankles, Peter G.; Doktycz, Mitchel J.; Retterer, Scott T.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Shankles, Peter G.; Doktycz, Mitchel J.; Retterer, Scott T.] Univ Tennessee, Bredesen Ctr, Knoxville, TN 37996 USA. RP Shankles, PG (reprint author), Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. EM rettererst@ornl.gov RI Doktycz, Mitchel/A-7499-2011; Retterer, Scott/A-5256-2011 OI Doktycz, Mitchel/0000-0003-4856-8343; Retterer, Scott/0000-0001-8534-1979 FU DARPA [HR001134005]; NIH [1R01DE024463-01]; U.S. Department of Energy [DE-AC05-00OR22725] FX A portion of this work was supported by DARPA Award No. HR001134005. The views expressed are those of the authors and do not reflect the official policy or position of the Department of Defense or the U.S. Government. A portion of this work was supported by NIH Award No. 1R01DE024463-01 Culturing of the Uncultured. This research was performed at Oak Ridge National Laboratory (ORNL). ORNL is managed by UT-Battelle, LLC, for the U.S. Department of Energy Under Contract No. DE-AC05-00OR22725. The fabrication of nano- and microfluidic devices was conducted at the Center for Nanophase Materials Sciences, which is DOE Office of Science User Facilities. NR 33 TC 1 Z9 1 U1 6 U2 19 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 1071-1023 J9 J VAC SCI TECHNOL B JI J. Vac. Sci. Technol. B PD NOV PY 2015 VL 33 IS 6 AR 06FM03 DI 10.1116/1.4932671 PG 8 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA CX9WE UT WOS:000366055600044 PM 26543684 ER PT J AU Timm, AC Shankles, PG Foster, CM Doktycz, MJ Retterer, ST AF Timm, Andrea C. Shankles, Peter G. Foster, Carmen M. Doktycz, Mitchel J. Retterer, Scott T. TI Characterization of extended channel bioreactors for continuous-flow protein production SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B LA English DT Article ID ESCHERICHIA-COLI; EXTRACT PREPARATION; TRANSLATION SYSTEM; REGENERATION; EXPRESSION; MEMBRANE AB Protein based therapeutics are an important class of drugs, used to treat a variety of medical conditions including cancer and autoimmune diseases. Requiring continuous cold storage, and having a limited shelf life, the ability to produce such therapeutics at the point-of-care would open up new opportunities in distributing medicines and treating patients in more remote locations. Here, the authors describe the first steps in the development of a microfluidic platform that can be used for point-of-care protein synthesis. While biologic medicines, including therapeutic proteins, are commonly produced using recombinant deoxyribonucleic acid (DNA) technology in large batch cell cultures, the system developed here utilizes cell-free protein synthesis (CFPS) technology. CFPS is a scalable technology that uses cell extracts containing the biological machinery required for transcription and translation and combines those extracts with DNA, encoding a specific gene, and the additional metabolites required to produce proteins in vitro. While CFPS reactions are typically performed in batch or fed-batch reactions, a well-engineered reaction scheme may improve both the rate of protein production and the economic efficiency of protein synthesis reactions, as well as enable a more streamlined method for subsequent purification of the protein product-all necessary requirements for point-of-care protein synthesis. In this work, the authors describe a new bioreactor design capable of continuous production of protein using cell-free protein synthesis. The bioreactors were designed with three inlets to separate reactive components prior to on-chip mixing, which lead into a long, narrow, serpentine channel. These multiscale, serpentine channel bioreactors were designed to take advantage of microscale diffusion distances across narrow channels in reactors containing enough volume to produce a therapeutic dose of protein, and open the possibility of performing these reactions continuously and in line with downstream purification modules. Here, the authors demonstrate the capability to produce protein over time with continuous-flow reactions and examine basic design features and operation specifications fundamental to continuous microfluidic protein synthesis. (C) 2015 American Vacuum Society. C1 [Timm, Andrea C.; Shankles, Peter G.; Foster, Carmen M.; Doktycz, Mitchel J.; Retterer, Scott T.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. [Shankles, Peter G.; Doktycz, Mitchel J.; Retterer, Scott T.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Shankles, Peter G.; Retterer, Scott T.] Univ Tennessee, Bredesen Ctr, Knoxville, TN 37996 USA. RP Timm, AC (reprint author), Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. EM rettererst@ornl.gov RI Doktycz, Mitchel/A-7499-2011; Retterer, Scott/A-5256-2011 OI Doktycz, Mitchel/0000-0003-4856-8343; Retterer, Scott/0000-0001-8534-1979 FU DARPA [HR001134005]; U.S. Department of Energy [DE-AC05-00OR22725] FX The authors are grateful to the Jewett lab (Northwestern) for providing assistance with cell extract preparations and for providing the sfGFP standards. This work was supported by DARPA Award No. HR001134005. The views expressed are those of the authors and do not reflect the official policy or position of the Department of Defense or the U.S. Government. The microfabrication of the bioreactors described here was conducted at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility. Oak Ridge National Laboratory is managed by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. NR 36 TC 2 Z9 2 U1 3 U2 17 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 1071-1023 J9 J VAC SCI TECHNOL B JI J. Vac. Sci. Technol. B PD NOV PY 2015 VL 33 IS 6 AR 06FM02 DI 10.1116/1.4932155 PG 8 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA CX9WE UT WOS:000366055600043 ER PT J AU Yang, D Greer, CM Jones, BP Jennings, AD Retterer, ST Mannik, J AF Yang, Da Greer, Clayton M. Jones, Branndon P. Jennings, Anna D. Retterer, Scott T. Maennik, Jaan TI Characterization of small microfluidic valves for studies of mechanical properties of bacteria SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B LA English DT Article ID ESCHERICHIA-COLI; CELL-DIVISION; SINGLE; MICROBES; PROTEINS; DYNAMICS; DEVICE AB Lab-on-a-chip platforms present many new opportunities to study bacterial cells and cellular assemblies. Here, a new platform is described that allows application of uniaxial stress to individual bacterial cells while observing the cell and its subcellular assemblies using a high resolution optical microscope. The microfluidic chip consists of arrays of miniature pressure actuated valves. By placing a bacterium under one of such valves and partially closing the valve by externally applied pressure, the cell can be deformed. Although large pressure actuated valves used in integrated fluidic circuits have been extensively studied previously, here those microfluidic valves are downsized and flow channels with rectangular cross-sections are used to maintain the bacteria in contact with cell culture medium during the experiments. The closure of these valves has not been characterized before. First, these valves are modeled using finite element analysis, and then the modeling results are compared to the actual closing profiles of the valves, which is determined from absorption measurements. The measurements and modeling show with good agreement that the deflection of valves is a linear function of externally applied pressure and the deflection scales proportionally to the width of the flow channel. In addition to characterizing the valve, the report also demonstrates at a proof-of-principle level that the device can be used to deform a bacterial cell at considerable magnitude. The largest deformations are found in 5 mu m wide channels where the bacterial width and length increase by 1.6 and 1.25 times, respectively. Narrower and broader channels are less optimal for these studies. The platform presents a promising approach to probe, in a quantitative and systematic way, the mechanical properties of not only bacterial cells but possibly also yeast and other single-celled organisms. (C) 2015 American Vacuum Society. C1 [Yang, Da; Jennings, Anna D.; Maennik, Jaan] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Greer, Clayton M.; Jones, Branndon P.] Univ Tennessee, Dept Mech Aerosp & Biomed Engn, Knoxville, TN 37996 USA. [Retterer, Scott T.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Yang, D (reprint author), Univ Tennessee, Dept Phys & Astron, 401 Nielsen Phys Bldg, Knoxville, TN 37996 USA. EM jmannik@utk.edu RI Yang, Da/C-5076-2015; Retterer, Scott/A-5256-2011 OI Retterer, Scott/0000-0001-8534-1979 FU Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy; University of Tennessee; NSF [MCB-1252890] FX The authors thank Ryan Hefti for technical assistance at the initial stages of this work. A part of this research was conducted at the Center for Nanophase Materials Sciences, which was sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. This work has been supported in part by the University of Tennessee start-up funds and by NSF research Grant No. MCB-1252890. NR 33 TC 1 Z9 1 U1 4 U2 11 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 1071-1023 J9 J VAC SCI TECHNOL B JI J. Vac. Sci. Technol. B PD NOV PY 2015 VL 33 IS 6 AR 06F202 DI 10.1116/1.4929883 PG 8 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA CX9WE UT WOS:000366055600002 ER PT J AU Bonetti, S Kukreja, R Chen, Z Macia, F Hernandez, JM Eklund, A Backes, D Frisch, J Katine, J Malm, G Urazhdin, S Kent, AD Stohr, J Ohldag, H Durr, HA AF Bonetti, S. Kukreja, R. Chen, Z. Macia, F. Hernandez, J. M. Eklund, A. Backes, D. Frisch, J. Katine, J. Malm, G. Urazhdin, S. Kent, A. D. Stoehr, J. Ohldag, H. Duerr, H. A. TI Direct observation and imaging of a spin-wave soliton with p-like symmetry SO NATURE COMMUNICATIONS LA English DT Article ID MAGNETIC DROPLET SOLITONS; TORQUE; OSCILLATORS AB Spin waves, the collective excitations of spins, can emerge as nonlinear solitons at the nanoscale when excited by an electrical current from a nanocontact. These solitons are expected to have essentially cylindrical symmetry (that is, s-like), but no direct experimental observation exists to confirm this picture. Using a high-sensitivity time-resolved magnetic X-ray microscopy with 50 ps temporal resolution and 35nm spatial resolution, we are able to create a real-space spin-wave movie and observe the emergence of a localized soliton with a nodal line, that is, with p-like symmetry. Micromagnetic simulations explain the measurements and reveal that the symmetry of the soliton can be controlled by magnetic fields. Our results broaden the understanding of spin-wave dynamics at the nanoscale, with implications for the design of magnetic nanodevices. C1 [Bonetti, S.; Chen, Z.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Bonetti, S.; Kukreja, R.; Chen, Z.; Stoehr, J.; Duerr, H. A.] SLAC Natl Accelerator Lab, Stanford Inst Mat & Energy Sci, Menlo Pk, CA 94025 USA. [Kukreja, R.] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA. [Macia, F.; Hernandez, J. M.] Univ Barcelona, Dept Fis Fonamental, Grp Magnetisme, Barcelona 08028, Spain. [Eklund, A.; Malm, G.] KTH Royal Inst Technol, Sch Informat & Commun Technol, Integrated Devices & Circuits, S-16440 Kista, Sweden. [Backes, D.] NYU, Dept Phys, New York, NY 10003 USA. [Frisch, J.] SLAC Natl Accelerator Lab, Adv Instrumentat Res Div, Menlo Pk, CA 94025 USA. [Katine, J.] HGST, San Jose, CA 95135 USA. [Urazhdin, S.] Emory Univ, Dept Phys, Atlanta, GA 30322 USA. [Ohldag, H.] SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lab, Menlo Pk, CA 94025 USA. RP Bonetti, S (reprint author), Stanford Univ, Dept Phys, Stanford, CA 94305 USA. EM bonetti@slac.stanford.edu; hdurr@slac.stanford.edu RI Backes, Dirk/K-3570-2012; Bonetti, Stefano/A-9737-2009; Ohldag, Hendrik/F-1009-2014; Hernandez Ferras, Joan Manel/C-2606-2008; Macia, Ferran/B-6457-2014; Eklund, Anders/L-5152-2016 OI Backes, Dirk/0000-0002-1019-3323; Bonetti, Stefano/0000-0001-9352-2411; Hernandez Ferras, Joan Manel/0000-0002-5165-0199; Macia, Ferran/0000-0001-5972-4810; Eklund, Anders/0000-0003-1271-1814 FU Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division [DE-AC02-76SF00515]; US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-76SF00515]; Knut and Alice Wallenberg Foundation; Swedish Research Council; Catalan Government through COFUND-FP7; Swedish Research Council (VR) [2012-5372]; Aforsk Foundation; Travel Stipends in Honour of Nils and Hans Backmark; [MAT2011-23698]; [NSF-DMR-1309202] FX We are grateful to the accelerator physicists at SSRL, in particular to James Safranek, Xiaobiao Huang, Jim Sebek and Jeff Corbett for the invaluable help and support provided towards the realization of this experiment. We acknowledge Fred B. Mancoff and Renu Whig at the Everspin Technologies for the help provided with samples fabrication. We acknowledge useful discussions with Andrei Slavin, Vasyl Tyberkevich, Randy Dumas and Johan Akerman. This work is supported by the Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division, under Contract DE-AC02-76SF00515. Use of the Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, is supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-76SF00515. S.B. acknowledges support from the Knut and Alice Wallenberg Foundation and from the Swedish Research Council. F.M. acknowledges support from the Catalan Government through COFUND-FP7. J.M.H. and F.M. also acknowledge support from MAT2011-23698. Research at NYU was supported by NSF-DMR-1309202. A.E. and G.M. acknowledge support from the Swedish Research Council (VR) under contract 2012-5372. A.E. also acknowledges support from the Aforsk Foundation and the Travel Stipends in Honour of Nils and Hans Backmark. NR 31 TC 9 Z9 9 U1 6 U2 16 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD NOV PY 2015 VL 6 AR 8889 DI 10.1038/ncomms9889 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CY3GK UT WOS:000366296800003 PM 26567699 ER PT J AU Calder, S Lee, JH Stone, MB Lumsden, MD Lang, JC Feygenson, M Zhao, Z Yan, JQ Shi, YG Sun, YS Tsujimoto, Y Yamaura, K Christianson, AD AF Calder, S. Lee, J. H. Stone, M. B. Lumsden, M. D. Lang, J. C. Feygenson, M. Zhao, Z. Yan, J. -Q. Shi, Y. G. Sun, Y. S. Tsujimoto, Y. Yamaura, K. Christianson, A. D. TI Enhanced spin-phonon-electronic coupling in a 5d oxide SO NATURE COMMUNICATIONS LA English DT Article ID STATE AB Enhanced coupling of material properties offers new fundamental insights and routes to multifunctional devices. In this context 5d oxides provide new paradigms of cooperative interactions that drive novel emergent behaviour. This is exemplified in osmates that host metal-insulator transitions where magnetic order appears intimately entwined. Here we consider such a material, the 5d perovskite NaOsO3, and observe a coupling between spin and phonon manifested in a frequency shift of 40 cm(-1), the largest measured in any material. The anomalous modes are shown to involve solely Os-O interactions and magnetism is revealed as the driving microscopic mechanism for the phonon renormalization. The magnitude of the coupling in NaOsO3 is primarily due to a property common to all 5d materials: the large spatial extent of the ion. This allows magnetism to couple to phonons on an unprecedented scale and in general offers multiple new routes to enhanced coupled phenomena in 5d materials. C1 [Calder, S.; Stone, M. B.; Lumsden, M. D.; Christianson, A. D.] Oak Ridge Natl Lab, Quantum Condensed Matter Div, Oak Ridge, TN 37831 USA. [Lee, J. H.; Zhao, Z.; Yan, J. -Q.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Lee, J. H.] Ulsan Natl Inst Sci & Technol, Sch Energy & Chem Engn, Ulsan 689798, South Korea. [Lang, J. C.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Feygenson, M.] Oak Ridge Natl Lab, Chem & Engn Mat Div, Oak Ridge, TN 37831 USA. [Zhao, Z.; Yan, J. -Q.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Shi, Y. G.] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China. [Shi, Y. G.; Sun, Y. S.; Yamaura, K.] Natl Inst Mat Sci, Superconducting Properties Unit, Tsukuba, Ibaraki 3050044, Japan. [Tsujimoto, Y.] Natl Inst Mat Sci, Mat Proc Unit, Tsukuba, Ibaraki 3050047, Japan. [Yamaura, K.] Hokkaido Univ, Grad Sch Chem Sci & Engn, Kita Ku, Sapporo, Hokkaido 0600810, Japan. [Christianson, A. D.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. RP Calder, S (reprint author), Oak Ridge Natl Lab, Quantum Condensed Matter Div, Oak Ridge, TN 37831 USA. EM caldersa@ornl.gov; junhee@unist.ac.kr RI christianson, andrew/A-3277-2016; Stone, Matthew/G-3275-2011; Feygenson, Mikhail /H-9972-2014; BL18, ARCS/A-3000-2012; Sun, Ying/P-1453-2016; Lumsden, Mark/F-5366-2012; Tsujimoto, Yoshihiro/H-6034-2012; OI christianson, andrew/0000-0003-3369-5884; Stone, Matthew/0000-0001-7884-9715; Feygenson, Mikhail /0000-0002-0316-3265; Lumsden, Mark/0000-0002-5472-9660; Tsujimoto, Yoshihiro/0000-0003-2140-3362; Calder, Stuart/0000-0001-8402-3741 FU Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy; Scientific User Facilities Division; Materials Sciences and Engineering Division; U.S. DOE [DE-AC02-06CH11357]; JSPS [22246083, 22850019, 25289233]; JST; Ministry of Science and Technology of China (973 Project) [2011CBA00110]; National Natural Science Foundation of China [11274367]; CEM; NSF MRSEC [DMR-1420451] FX Research conducted at ORNL's Spallation Neutron Source was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy. Part of the research at ORNL was sponsored by the Scientific User Facilities Division and Materials Sciences and Engineering Division (J.H.L. and J.-Q.Y). Z.Z. was partially supported by the CEM and NSF MRSEC under Grant No. DMR-1420451. Use of the Advanced Photon Source, an Office of Science User Facility operated for the U.S. DOE Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under Contract No. DE-AC02-06CH11357. Research was supported in part by Grant-in-Aid for Scientific Research (22246083, 22850019, 25289233) from JSPS and FIRST Program from JSPS and ALCA program from JST and the Ministry of Science and Technology of China (973 Project No. 2011CBA00110). This research was supported by National Natural Science Foundation of China (No. 11274367)). NR 27 TC 7 Z9 7 U1 7 U2 35 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD NOV PY 2015 VL 6 AR 8916 DI 10.1038/ncomms9916 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CY4LF UT WOS:000366378900018 PM 26608626 ER PT J AU Chen, P Chan, YH Fang, XY Zhang, Y Chou, MY Mo, SK Hussain, Z Fedorov, AV Chiang, TC AF Chen, P. Chan, Y. -H. Fang, X. -Y. Zhang, Y. Chou, M. Y. Mo, S. -K. Hussain, Z. Fedorov, A. -V. Chiang, T. -C. TI Charge density wave transition in single-layer titanium diselenide SO NATURE COMMUNICATIONS LA English DT Article ID TOTAL-ENERGY CALCULATIONS; BASIS-SET; TISE2; SUPERCONDUCTIVITY; METALS AB A single molecular layer of titanium diselenide (TiSe2) is a promising material for advanced electronics beyond graphene-a strong focus of current research. Such molecular layers are at the quantum limit of device miniaturization and can show enhanced electronic effects not realizable in thick films. We show that single-layer TiSe2 exhibits a charge density wave (CDW) transition at critical temperature T-C = 232 +/- 5 K, which is higher than the bulk T-C = 200 +/- 5 K. Angle-resolved photoemission spectroscopy measurements reveal a small absolute bandgap at room temperature, which grows wider with decreasing temperature T below TC in conjunction with the emergence of (2 x 2) ordering. The results are rationalized in terms of first-principles calculations, symmetry breaking and phonon entropy effects. The observed Bardeen-Cooper-Schrieffer (BCS) behaviour of the gap implies a mean-field CDW order in the single layer and an anisotropic CDW order in the bulk. C1 [Chen, P.; Fang, X. -Y.; Chiang, T. -C.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Chen, P.; Fang, X. -Y.; Chiang, T. -C.] Univ Illinois, Frederick Seitz Mat Res Lab, Urbana, IL 61801 USA. [Chen, P.; Zhang, Y.; Mo, S. -K.; Hussain, Z.; Fedorov, A. -V.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Chan, Y. -H.; Chou, M. Y.] Acad Sinica, Inst Atom & Mol Sci, Taipei 10617, Taiwan. [Zhang, Y.] Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Sch Phys, Natl Lab Solid State Microstruct, Nanjing 210093, Jiangsu, Peoples R China. [Zhang, Y.] SLAC Natl Accelerator Lab, Stanford Inst Mat & Energy Sci, Menlo Pk, CA 94025 USA. [Chou, M. Y.] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA. [Chou, M. Y.; Chiang, T. -C.] Natl Taiwan Univ, Dept Phys, Taipei 10617, Taiwan. RP Chiang, TC (reprint author), Univ Illinois, Dept Phys, 1110 West Green St, Urbana, IL 61801 USA. EM mychou6@sinica.edu.tw; tcchiang@illinois.edu RI Mo, Sung-Kwan/F-3489-2013; Zhang, Yi/J-9025-2013; Chou, Mei-Yin/D-3898-2012 OI Mo, Sung-Kwan/0000-0003-0711-8514; Zhang, Yi/0000-0003-1204-8717; FU U.S. Department of Energy (DOE), Office of Science (OS), Office of Basic Energy Sciences, Division of Materials Science and Engineering [DE-FG02-07ER46383, DE-FG02-97ER45632]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; Thematic Project at Academia Sinica FX This work is supported by the U.S. Department of Energy (DOE), Office of Science (OS), Office of Basic Energy Sciences, Division of Materials Science and Engineering, under Grant No. DE-FG02-07ER46383 (T.C.C.) and DE-FG02-97ER45632 (M.Y.C.). The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Y.H.C. is supported by a Thematic Project at Academia Sinica. NR 28 TC 13 Z9 13 U1 24 U2 87 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD NOV PY 2015 VL 6 AR 8943 DI 10.1038/ncomms9943 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CY4LU UT WOS:000366380400002 PM 26568512 ER PT J AU Chi, MF Wang, C Lei, YK Wang, GF Li, DG More, KL Lupini, A Allard, LF Markovic, NM Stamenkovic, VR AF Chi, Miaofang Wang, Chao Lei, Yinkai Wang, Guofeng Li, Dongguo More, Karren L. Lupini, Andrew Allard, Lawrence F. Markovic, Nenad M. Stamenkovic, Vojislav R. TI Surface faceting and elemental diffusion behaviour at atomic scale for alloy nanoparticles during in situ annealing SO NATURE COMMUNICATIONS LA English DT Article ID OXYGEN REDUCTION REACTION; FUEL-CELLS; SEGREGATION; ELECTROCATALYSIS; NANOCATALYSTS; TRANSITION; METALS; SYSTEM; ORDER; PD AB The catalytic performance of nanoparticles is primarily determined by the precise nature of the surface and near-surface atomic configurations, which can be tailored by post-synthesis annealing effectively and straightforwardly. Understanding the complete dynamic response of surface structure and chemistry to thermal treatments at the atomic scale is imperative for the rational design of catalyst nanoparticles. Here, by tracking the same individual Pt3Co nanoparticles during in situ annealing in a scanning transmission electron microscope, we directly discern five distinct stages of surface elemental rearrangements in Pt3Co nanoparticles at the atomic scale: initial random (alloy) elemental distribution; surface platinum-skin-layer formation; nucleation of structurally ordered domains; ordered framework development and, finally, initiation of amorphization. Furthermore, a comprehensive interplay among phase evolution, surface faceting and elemental inter-diffusion is revealed, and supported by atomistic simulations. This work may pave the way towards designing catalysts through post-synthesis annealing for optimized catalytic performance. C1 [Chi, Miaofang; More, Karren L.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Wang, Chao] Johns Hopkins Univ, Dept Chem & Biomol Engn, Baltimore, MD 21218 USA. [Lei, Yinkai; Wang, Guofeng] Univ Pittsburgh, Dept Mech Engn & Mat Sci, Pittsburgh, PA 15260 USA. [Li, Dongguo; Markovic, Nenad M.; Stamenkovic, Vojislav R.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Lupini, Andrew; Allard, Lawrence F.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Chi, MF (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, One Bethel Valley Rd,Bldg 4515, Oak Ridge, TN 37831 USA. EM chim@ornl.gov RI Chi, Miaofang/Q-2489-2015; More, Karren/A-8097-2016; Wang, Chao/F-4558-2012; Li, Dongguo/O-6253-2016; OI Chi, Miaofang/0000-0003-0764-1567; More, Karren/0000-0001-5223-9097; Wang, Chao/0000-0001-7398-2090; Li, Dongguo/0000-0001-7578-7811; Lei, Yinkai/0000-0002-0200-1491 FU US Department of Energy, Office of Energy Efficiency and Renewable Energy, Fuel Cell Technologies Office; US Department of Energy [DE-FG02-09ER16093]; National Science Foundation [DMR-1410597]; Argonne National Laboratory, a U.S. Department of Energy, Office of Science Laboratory [DE-AC02-06CH11357] FX This research was performed at ORNL's Center for Nanophase Materials Sciences, which is a US Department of Energy, Office of Science User Facility, and was supported by the US Department of Energy, Office of Energy Efficiency and Renewable Energy, Fuel Cell Technologies Office. G.F. Wang thanks the support from the US Department of Energy (Grant No. DE-FG02-09ER16093) and the National Science Foundation (Grant No. DMR-1410597). This synthesis of NPs was conducted at Argonne National Laboratory, a U.S. Department of Energy, Office of Science Laboratory, operated by UChicago Argonne, LLC, under contract no. DE-AC02-06CH11357. NR 32 TC 14 Z9 14 U1 34 U2 105 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD NOV PY 2015 VL 6 AR 8925 DI 10.1038/ncomms9925 PG 9 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CY4LK UT WOS:000366379400007 PM 26576477 ER PT J AU Li, Q Cao, Y Yu, P Vasudevan, RK Laanait, N Tselev, A Xue, F Chen, LQ Maksymovych, P Kalinin, SV Balke, N AF Li, Q. Cao, Y. Yu, P. Vasudevan, R. K. Laanait, N. Tselev, A. Xue, F. Chen, L. Q. Maksymovych, P. Kalinin, S. V. Balke, N. TI Giant elastic tunability in strained BiFeO3 near an electrically induced phase transition SO NATURE COMMUNICATIONS LA English DT Article ID FERROELECTRIC SINGLE-CRYSTALS; CHARGED DOMAIN-WALLS; THIN-FILMS; ELECTROMECHANICAL RESPONSE; POLARIZATION ROTATION; FIELD; BOUNDARIES; CERAMICS; OXIDE AB Elastic anomalies are signatures of phase transitions in condensed matters and have traditionally been studied using various techniques spanning from neutron scattering to static mechanical testing. Here, using band-excitation elastic/piezoresponse spectroscopy, we probed sub-MHz elastic dynamics of a tip bias-induced rhombohedral - tetragonal phase transition of strained (001)-BiFeO3 (rhombohedral) ferroelectric thin films from similar to 10(3)nm(3) sample volumes. Near this transition, we observed that the Young's modulus intrinsically softens by over 30% coinciding with two- to three-fold enhancement of local piezoresponse. Coupled with phase-field modelling, we also addressed the influence of polarization switching and mesoscopic structural heterogeneities (for example, domain walls) on the kinetics of this phase transition, thereby providing fresh insights into the morphotropic phase boundary in ferroelectrics. Furthermore, the giant electrically tunable elastic stiffness and corresponding electromechanical properties observed here suggest potential applications of BiFeO3 in next-generation frequency-agile electroacoustic devices, based on the utilization of the soft modes underlying successive ferroelectric phase transitions. C1 [Li, Q.; Cao, Y.; Vasudevan, R. K.; Laanait, N.; Tselev, A.; Maksymovych, P.; Kalinin, S. V.; Balke, N.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Li, Q.; Cao, Y.; Vasudevan, R. K.; Laanait, N.; Tselev, A.; Maksymovych, P.; Kalinin, S. V.; Balke, N.] Oak Ridge Natl Lab, Inst Funct Imaging Mat, Oak Ridge, TN 37831 USA. [Yu, P.] Tsinghua Univ, Dept Phys, State Key Lab Low Dimens Quantum Phys, Beijing 100084, Peoples R China. [Yu, P.] Tsinghua Univ, Collaborat Innovat Ctr Quantum Matter, Beijing 100084, Peoples R China. [Yu, P.] RIKEN Ctr Emergent Matter Sci CEMS, Wako, Saitama 3510198, Japan. [Xue, F.; Chen, L. Q.] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. RP Balke, N (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. EM balken@ornl.gov RI Balke, Nina/Q-2505-2015; Vasudevan, Rama/Q-2530-2015; Laanait, Nouamane/A-2498-2016; Kalinin, Sergei/I-9096-2012; Maksymovych, Petro/C-3922-2016; Cao, Ye/L-1271-2016; OI Balke, Nina/0000-0001-5865-5892; Vasudevan, Rama/0000-0003-4692-8579; Laanait, Nouamane/0000-0001-7100-4250; Kalinin, Sergei/0000-0001-5354-6152; Maksymovych, Petro/0000-0003-0822-8459; Cao, Ye/0000-0002-7365-7447; Tselev, Alexander/0000-0002-0098-6696 FU US DOE, Basic Energy Sciences, Materials Sciences and Engineering Division through the Office of Science Early Career Research Program; ORNL by the Scientific User Facilities Division, Office of Basic Energy Sciences, US DOE; National Basic Research Program of China [2015CB921700]; National Natural Science Foundation of China [11274194]; US DOE, Office of Basic Energy Sciences, Materials Sciences and Engineering Division [DE-FG02-07ER46417]; NSF MRSEC [DMR-1420620]; US DOE [DE-AC02-06CH11357] FX This work was supported by the US DOE, Basic Energy Sciences, Materials Sciences and Engineering Division through the Office of Science Early Career Research Program (N.B., Q.L.). The experiments were performed at the Center for Nanophase Materials Sciences, which is sponsored at ORNL by the Scientific User Facilities Division, Office of Basic Energy Sciences, US DOE. P.Y. was supported by the National Basic Research Program of China (Grant No. 2015CB921700) and National Natural Science Foundation of China (Grant No. 11274194). L.Q.C. was supported by the US DOE, Office of Basic Energy Sciences, Materials Sciences and Engineering Division under Award No. DE-FG02-07ER46417. F.X. was supproted by NSF MRSEC under Grant No. DMR-1420620. Use of the Advanced Photon Source, an Office of Science User Facility operated for the US DOE Office of Science by Argonne National Laboratory, was supported by the US DOE under Contract No. DE-AC02-06CH11357. Q.L. acknowledges helpful discussions with Michael A. Carpenter and Anna N. Morozovska. NR 64 TC 3 Z9 3 U1 17 U2 70 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD NOV PY 2015 VL 6 AR 8985 DI 10.1038/ncomms9985 PG 9 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CY4NF UT WOS:000366384100002 PM 26597483 ER PT J AU Nicholl, RJT Conley, HJ Lavrik, NV Vlassiouk, I Puzyrev, YS Sreenivas, VP Pantelides, ST Bolotin, KI AF Nicholl, Ryan J. T. Conley, Hiram J. Lavrik, Nickolay V. Vlassiouk, Ivan Puzyrev, Yevgeniy S. Sreenivas, Vijayashree Parsi Pantelides, Sokrates T. Bolotin, Kirill I. TI The effect of intrinsic crumpling on the mechanics of free-standing graphene SO NATURE COMMUNICATIONS LA English DT Article ID CHEMICAL-VAPOR-DEPOSITION; SUSPENDED GRAPHENE; RAMAN-SPECTROSCOPY; THIN-FILMS; BULGE TEST; MEMBRANES; GRAPHITE; STRENGTH; SHEETS; STIFFNESS AB Free-standing graphene is inherently crumpled in the out-of-plane direction due to dynamic flexural phonons and static wrinkling. We explore the consequences of this crumpling on the effective mechanical constants of graphene. We develop a sensitive experimental approach to probe stretching of graphene membranes under low applied stress at cryogenic to room temperatures. We find that the in-plane stiffness of graphene is 20-100 N m(-1) at room temperature, much smaller than 340 N m(-1) (the value expected for flat graphene). Moreover, while the in-plane stiffness only increases moderately when the devices are cooled down to 10 K, it approaches 300 N m(-1) when the aspect ratio of graphene membranes is increased. These results indicate that softening of graphene at temperatures <400 K is caused by static wrinkling, with only a small contribution due to flexural phonons. Together, these results explain the large variation in reported mechanical constants of graphene devices and pave the way towards controlling their mechanical properties. C1 [Nicholl, Ryan J. T.; Conley, Hiram J.; Puzyrev, Yevgeniy S.; Sreenivas, Vijayashree Parsi; Pantelides, Sokrates T.; Bolotin, Kirill I.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. [Lavrik, Nickolay V.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Vlassiouk, Ivan] Oak Ridge Natl Lab, Energy & Transportat Sci Div, Oak Ridge, TN 37831 USA. [Bolotin, Kirill I.] Free Univ Berlin, Dept Phys, D-14195 Berlin, Germany. RP Bolotin, KI (reprint author), Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. EM kirill.bolotin@vanderbilt.edu RI Lavrik, Nickolay/B-5268-2011; Vlassiouk, Ivan/F-9587-2010; Bolotin, Kirill/O-5101-2016 OI Lavrik, Nickolay/0000-0002-9543-5634; Vlassiouk, Ivan/0000-0002-5494-0386; FU NSF [4-20-632-3391]; Defense Threat Reduction Agency Basic Research Award [HDTRA1-15-1-0036]; Sloan Foundation; Office of Science of the US Department of Energy [DE-FG02-09ER46554, DE-AC05-00OR22725]; Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory FX We acknowledge enlightening conversations with Paul McEuen, Isaac Storch and Caglar Oskay as well as financial support from NSF CAREER 4-20-632-3391, Defense Threat Reduction Agency Basic Research Award # HDTRA1-15-1-0036 and the Sloan Foundation. A part of this research was conducted at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the US Department of Energy under Contract No. DE-FG02-09ER46554 as well as resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of the US Department of Energy under Contract No. DE-AC05-00OR22725. NR 41 TC 12 Z9 12 U1 23 U2 75 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD NOV PY 2015 VL 6 AR 8789 DI 10.1038/ncomms9789 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CY3FT UT WOS:000366294800007 PM 26541811 ER PT J AU Park, J Reid, OG Blackburn, JL Rumbles, G AF Park, Jaehong Reid, Obadiah G. Blackburn, Jeffrey L. Rumbles, Garry TI Photoinduced spontaneous free-carrier generation in semiconducting single-walled carbon nanotubes SO NATURE COMMUNICATIONS LA English DT Article ID RESOLVED MICROWAVE CONDUCTIVITY; CHARGE SEPARATION EFFICIENCY; NEAT CONJUGATED POLYMERS; SOLAR-CELLS; NANOSCALE SYSTEMS; BINDING-ENERGY; EXCITONS; DYNAMICS; TIO2; PHOTOCONDUCTIVITY AB Strong quantum confinement and low dielectric screening impart single-walled carbon nanotubes with exciton-binding energies substantially exceeding k(B)T at room temperature. Despite these large binding energies, reported photoluminescence quantum yields are typically low and some studies suggest that photoexcitation of carbon nanotube excitonic transitions can produce free charge carriers. Here we report the direct measurement of long-lived free-carrier generation in chirality-pure, single-walled carbon nanotubes in a low dielectric solvent. Time-resolved microwave conductivity enables contactless and quantitative measurement of the real and imaginary photoconductance of individually suspended nanotubes. The conditions of the microwave conductivity measurement allow us to avoid the complications of most previous measurements of nanotube free-carrier generation, including tube-tube/tube-electrode contact, dielectric screening by nearby excitons and many-body interactions. Even at low photon fluence (approximately 0.05 excitons per mu m length of tubes), we directly observe free carriers on excitation of the first and second carbon nanotube exciton transitions. C1 [Park, Jaehong; Reid, Obadiah G.; Blackburn, Jeffrey L.; Rumbles, Garry] Natl Renewable Energy Lab, Chem & Nanosci Ctr, Golden, CO 80401 USA. [Reid, Obadiah G.; Rumbles, Garry] Univ Colorado, Renewable & Sustainable Energy Inst, Boulder, CO 80309 USA. [Rumbles, Garry] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA. RP Rumbles, G (reprint author), Natl Renewable Energy Lab, Chem & Nanosci Ctr, 15013 Denver West Pkwy, Golden, CO 80401 USA. EM Garry.Rumbles@nrel.gov RI Park, Jaehong/C-1598-2014; OI Park, Jaehong/0000-0002-0509-3934; Rumbles, Garry/0000-0003-0776-1462; REID, OBADIAH/0000-0003-0646-3981 FU Solar Photochemistry Program of the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences [DE-AC36-08GO28308] FX This work was supported by the Solar Photochemistry Program of the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences, under Contract Number DE-AC36-08GO28308 to NREL. NR 51 TC 12 Z9 12 U1 13 U2 48 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD NOV PY 2015 VL 6 AR 8809 DI 10.1038/ncomms9809 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CY3FY UT WOS:000366295400007 PM 26531728 ER PT J AU Regev, I Weber, J Reichhardt, C Dahmen, KA Lookman, T AF Regev, Ido Weber, John Reichhardt, Charles Dahmen, Karin A. Lookman, Turab TI Reversibility and criticality in amorphous solids SO NATURE COMMUNICATIONS LA English DT Article ID RANDOM ORGANIZATION; METALLIC GLASSES; DRIVEN; DEFORMATION; TRANSFORMATIONS; TRANSITION; THRESHOLD; DYNAMICS; DENSITY; SYSTEMS AB The physical processes governing the onset of yield, where a material changes its shape permanently under external deformation, are not yet understood for amorphous solids that are intrinsically disordered. Here, using molecular dynamics simulations and mean-field theory, we show that at a critical strain amplitude the sizes of clusters of atoms undergoing cooperative rearrangements of displacements (avalanches) diverges. We compare this nonequilibrium critical behaviour to the prevailing concept of a 'front depinning' transition that has been used to describe steady-state avalanche behaviour in different materials. We explain why a depinning-like process can result in a transition from periodic to chaotic behaviour and why chaotic motion is not possible in pinned systems. These findings suggest that, at least for highly jammed amorphous systems, the irreversibility transition may be a side effect of depinning that occurs in systems where the disorder is not quenched. C1 [Regev, Ido] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA. [Regev, Ido; Reichhardt, Charles; Lookman, Turab] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Regev, Ido; Reichhardt, Charles; Lookman, Turab] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Weber, John; Dahmen, Karin A.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Weber, John; Dahmen, Karin A.] Univ Illinois, Inst Condensed Matter Theory, Urbana, IL 61801 USA. RP Regev, I (reprint author), Harvard Univ, Sch Engn & Appl Sci, 29 Oxford St, Cambridge, MA 02138 USA. EM txl@lanl.gov; dahmen@illinois.edu FU US Department of Energy at Los Alamos National Laboratory [DE-AC52-06NA25396]; NSF [DMR 10-05209, DMS 10-69224] FX We thank LANL institutional computing for resources. The work of T.L., C.R. and partly I.R. was carried out under the auspices of the US Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396. K.D. gratefully acknowledges grants (NSF) DMR 10-05209 and DMS 10-69224. NR 52 TC 11 Z9 11 U1 5 U2 25 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD NOV PY 2015 VL 6 AR 8805 DI 10.1038/ncomms9805 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CY3FY UT WOS:000366295400003 PM 26564783 ER PT J AU Walter, AL Schiller, F Corso, M Merte, LR Bertram, F Lobo-Checa, J Shipilin, M Gustafson, J Lundgren, E Brion-Rios, AX Cabrera-Sanfelix, P Sanchez-Portal, D Ortega, JE AF Walter, Andrew L. Schiller, Frederik Corso, Martina Merte, Lindsay R. Bertram, Florian Lobo-Checa, Jorge Shipilin, Mikhail Gustafson, Johan Lundgren, Edvin Brion-Rios, Anton X. Cabrera-Sanfelix, Pepa Sanchez-Portal, Daniel Enrique Ortega, J. TI X-ray photoemission analysis of clean and carbon monoxide-chemisorbed platinum(111) stepped surfaces using a curved crystal SO NATURE COMMUNICATIONS LA English DT Article ID CATALYTIC-OXIDATION; CO; DESORPTION; ATOMS; LEED; AU AB Surface chemistry and catalysis studies could significantly gain from the systematic variation of surface active sites, tested under the very same conditions. Curved crystals are excellent platforms to perform such systematics, which may in turn allow to better resolve fundamental properties and reveal new phenomena. This is demonstrated here for the carbon monoxide/platinum system. We curve a platinum crystal around the high-symmetry (111) direction and carry out photoemission scans on top. This renders the spatial core-level imaging of carbon monoxide adsorbed on a 'tunable' vicinal surface, allowing a straightforward visualization of the rich chemisorption phenomenology at steps and terraces. Through such photoemission images we probe a characteristic elastic strain variation at stepped surfaces, and unveil subtle stress-release effects on clean and covered vicinal surfaces. These results offer the prospect of applying the curved surface approach to rationally investigate the chemical activity of surfaces under real pressure conditions. C1 [Walter, Andrew L.; Brion-Rios, Anton X.; Cabrera-Sanfelix, Pepa; Sanchez-Portal, Daniel; Enrique Ortega, J.] Donostia Int Phys Ctr, San Sebastian 20018, Spain. [Walter, Andrew L.] Brookhaven Natl Lab, Photon Sci Directorate, NSLS 2, New York, NY 11973 USA. [Schiller, Frederik; Corso, Martina; Lobo-Checa, Jorge; Sanchez-Portal, Daniel; Enrique Ortega, J.] UPV, CSIC, Ctr Fis Mat, EHU,Mat Phys Ctr, San Sebastian 20018, Spain. [Corso, Martina; Cabrera-Sanfelix, Pepa] Ikerbasque, Basque Fdn Sci, E-48011 Bilbao, Spain. [Merte, Lindsay R.; Bertram, Florian; Shipilin, Mikhail; Gustafson, Johan; Lundgren, Edvin] Lund Univ, Dept Phys, S-22100 Lund, Sweden. [Brion-Rios, Anton X.] Univ Basque Country, Dept Fis Mat, San Sebastian 20080, Spain. [Enrique Ortega, J.] Univ Basque Country, Dept Fis Aplicada 1, San Sebastian 20018, Spain. RP Walter, AL (reprint author), Donostia Int Phys Ctr, Paseo Manuel de Lardizabal 4, San Sebastian 20018, Spain. EM awalter@bnl.gov; enrique.ortega@ehu.es RI Sanchez-Portal, Daniel /E-5858-2010; Corso, Martina/B-7768-2014; Lobo-Checa, Jorge/D-3570-2009; Lundgren, Edvin/F-5551-2010; ortega, enrique/I-4445-2012; DONOSTIA INTERNATIONAL PHYSICS CTR., DIPC/C-3171-2014; Walter, Andrew/B-9235-2011; Schiller, Frederik/F-5990-2012; CSIC-UPV/EHU, CFM/F-4867-2012; OI Lobo-Checa, Jorge/0000-0003-2698-2543; Schiller, Frederik/0000-0003-1727-3542; Bertram, Florian/0000-0001-9002-4118 FU Spanish Ministry of Economy [MAT2013-46593-C6-4-P, MAT2013-46593-C6-2-P]; Basque Government [IT621-13, IT756-13]; US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0012704]; Basque Departamento de Educacion; UPV/EHU through the Zabalduz program FX We acknowledge financial support from the Spanish Ministry of Economy (Grants MAT2013-46593-C6-4-P and MAT2013-46593-C6-2-P), Basque Government (Grants IT621-13 and IT756-13). A.L.W. acknowledges support from the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-SC0012704. AXBR acknowledges support from the Basque Departamento de Educacion and the UPV/EHU through the Zabalduz program. AXBR, PCS and DSP acknowledge the Deutsche Forschungsgemeinschaft through the Sonderforschungsbereich 1083. NR 36 TC 6 Z9 6 U1 6 U2 33 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD NOV PY 2015 VL 6 AR 8903 DI 10.1038/ncomms9903 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CY4LF UT WOS:000366378900005 PM 26561388 ER PT J AU Chakraborty, R Serdy, J West, B Stuckelberger, M Lai, B Maser, J Bertoni, MI Culpepper, ML Buonassisi, T AF Chakraborty, R. Serdy, J. West, B. Stuckelberger, M. Lai, B. Maser, J. Bertoni, M. I. Culpepper, M. L. Buonassisi, T. TI Development of an in situ temperature stage for synchrotron X-ray spectromicroscopy SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID MICROSCOPY; PRESSURE; SILICON; HOLDER; CELL AB In situ characterization of micro- and nanoscale defects in polycrystalline thin-film materials is required to elucidate the physics governing defect formation and evolution during photovoltaic device fabrication and operation. X-ray fluorescence spectromicroscopy is particularly well-suited to study defects in compound semiconductors, as it has a large information depth appropriate to study thick and complex materials, is sensitive to trace amounts of atomic species, and provides quantitative elemental information, non-destructively. Current in situ methods using this technique typically require extensive sample preparation. In this work, we design and build an in situ temperature stage to study defect kinetics in thin-film solar cells under actual processing conditions, requiring minimal sample preparation. Careful selection of construction materials also enables controlled non-oxidizing atmospheres inside the sample chamber such as H2Se and H2S. Temperature ramp rates of up to 300 degrees C/min are achieved, with a maximum sample temperature of 600 degrees C. As a case study, we use the stage for synchrotron X-ray fluorescence spectromicroscopy of CuInxGa1-xSe2 (CIGS) thin-films and demonstrate predictable sample thermal drift for temperatures 25-400 degrees C, allowing features on the order of the resolution of the measurement technique (125 nm) to be tracked while heating. The stage enables previously unattainable in situ studies of nanoscale defect kinetics under industrially relevant processing conditions, allowing a deeper understanding of the relationship between material processing parameters, materials properties, and device performance. (C) 2015 AIP Publishing LLC. C1 [Chakraborty, R.; Serdy, J.; Culpepper, M. L.; Buonassisi, T.] MIT, Dept Mech Engn, Cambridge, MA 02139 USA. [West, B.; Stuckelberger, M.; Bertoni, M. I.] Arizona State Univ, Sch Elect Comp & Energy Engn, Tempe, AZ 85287 USA. [Lai, B.; Maser, J.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Chakraborty, R (reprint author), MIT, Dept Mech Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA. EM rupak@alum.mit.edu; buonassisi@mit.edu RI Stuckelberger, Michael/L-7207-2016; OI Stuckelberger, Michael/0000-0002-8244-5235; Chakraborty, Rupak/0000-0002-1786-4716 FU U.S. Department of Energy [DE-EE0005848]; U.S. DOE [DE-AC02-06CH11357]; IGERT-SUN fellowship - National Science Foundation [1144616] FX The authors thank Marcel Thomas, Aaron Ramirez, Austin Akey, and Rafael Jaramillo for helpful discussions. The authors also thank L. Chen and W. Shafarman from the University of Delaware for providing CIGS solar cells. Funding was provided by the U.S. Department of Energy under Contract No. DE-EE0005848. Use of the Advanced Photon Source, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under Contract No. DE-AC02-06CH11357. B. West is supported by an IGERT-SUN fellowship funded by the National Science Foundation (Award No. 1144616). NR 17 TC 2 Z9 2 U1 2 U2 10 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2015 VL 86 IS 11 AR 113705 DI 10.1063/1.4935807 PG 6 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA CX9VR UT WOS:000366054300028 PM 26628142 ER PT J AU Geissel, M Smith, IC Shores, JE Porter, JL AF Geissel, Matthias Smith, Ian C. Shores, Jonathon E. Porter, John L. TI Dynamic granularity of imaging systems SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article AB Imaging systems that include a specific source, imaging concept, geometry, and detector have unique properties such as signal-to-noise ratio, dynamic range, spatial resolution, distortions, and contrast. Some of these properties are inherently connected, particularly dynamic range and spatial resolution. It must be emphasized that spatial resolution is not a single number but must be seen in the context of dynamic range and consequently is better described by a function or distribution. We introduce the "dynamic granularity" Gdyn as a standardized, objective relation between a detector's spatial resolution (granularity) and dynamic range for complex imaging systems in a given environment rather than the widely found characterization of detectors such as cameras or films by themselves. This relation can partly be explained through consideration of the signal's photon statistics, background noise, and detector sensitivity, but a comprehensive description including some unpredictable data such as dust, damages, or an unknown spectral distribution will ultimately have to be based on measurements. Measured dynamic granularities can be objectively used to assess the limits of an imaging system's performance including all contributing noise sources and to qualify the influence of alternative components within an imaging system. This article explains the construction criteria to formulate a dynamic granularity and compares measured dynamic granularities for different detectors used in the X-ray backlighting scheme employed at Sandia's Z-Backlighter facility. (C) 2015 AIP Publishing LLC. C1 [Geissel, Matthias; Smith, Ian C.; Shores, Jonathon E.; Porter, John L.] Sandia Natl Labs, Z Backlighter Facil, Albuquerque, NM 87185 USA. RP Geissel, M (reprint author), Sandia Natl Labs, Z Backlighter Facil, POB 5800, Albuquerque, NM 87185 USA. EM mgeisse@sandia.gov OI Geissel, Matthias/0000-0002-6207-7615 FU United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 11 TC 1 Z9 1 U1 1 U2 3 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2015 VL 86 IS 11 AR 113701 DI 10.1063/1.4934543 PG 8 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA CX9VR UT WOS:000366054300024 PM 26628138 ER PT J AU Jacobsen, MK Velisavljevic, N AF Jacobsen, M. K. Velisavljevic, N. TI Containment system for experiments on radioactive and other hazardous materials in a Paris-Edinburgh press SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID URANIUM; STATE AB Recent technical developments using the large volume Paris-Edinburgh press platform have enabled x-ray synchrotron studies at high pressure and temperature conditions. However, its application to some materials of interest, such as high hazard materials that require special handling due to safety issues, reactivity, or other challenges, has not been feasible without the introduction of special containment systems to eliminate the hazards. However, introduction of a containment system is challenging due to the requirement to provide full safety containment for operation in the variety of environments available, while not hindering any of the experimental probes that are available for inert sample measurement. In this work, we report on the development and implementation of a full safety enclosure for a Paris-Edinburgh type press. During the initial development and subsequent application stage of work, experiments were performed on both cerium dioxide (CeO2) and uranium (U). This device allows for full implementation of all currently available experimental probes involving the Paris-Edinburgh press at the High Pressure Collaborative Access Team sector of the Advanced Photon Source. (C) 2015 Author(s). C1 [Jacobsen, M. K.; Velisavljevic, N.] Los Alamos Natl Lab, Shock & Detonat Phys Grp M 9, Los Alamos, NM 87544 USA. RP Jacobsen, MK (reprint author), Los Alamos Natl Lab, Shock & Detonat Phys Grp M 9, POB 1663, Los Alamos, NM 87544 USA. EM mjacobsen@lanl.gov FU DOE-NNSA [DE-AC52-06NA25396, DE-NA0001974]; LANL Science Campaign 2; DOE-BES [DE-FG02-99ER45775]; NSF; US DOE [DE-AC02-06CH11357]; US DOE through LANL/LDRD Program; G.T. Seaborg Institute FX Los Alamos National Laboratory (LANL) is operated by LANS, LLC for the DOE-NNSA under Contract No. DE-AC52-06NA25396. Work was in part supported by LANL Science Campaign 2. Portions of this work were performed at HPCAT (Sector 16), Advanced Photon Source (APS), Argonne National Laboratory. HPCAT operations are supported by DOE-NNSA under Award No. DE-NA0001974 and DOE-BES under Award No. DE-FG02-99ER45775, with partial instrumentation funding by NSF. Use of the Advanced Photon Source, an Office of Science User Facility operated for the US Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the US DOE under Contract No. DE-AC02-06CH11357. M.K.J. gratefully acknowledges the support of the US DOE through the LANL/LDRD Program and the G.T. Seaborg Institute for this work. The authors also thank Professor Baosheng Li for the use of his pulse-echo overlap software for determination of transit times. NR 20 TC 0 Z9 0 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2015 VL 86 IS 11 AR 113904 DI 10.1063/1.4935830 PG 5 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA CX9VR UT WOS:000366054300034 PM 26628148 ER PT J AU Klug, JA Weimer, MS Emery, JD Yanguas-Gil, A Seifert, S Schleputz, CM Martinson, ABF Elam, JW Hock, AS Proslier, T AF Klug, Jeffrey A. Weimer, Matthew S. Emery, Jonathan D. Yanguas-Gil, Angel Seifert, Soenke Schlepuetz, Christian M. Martinson, Alex B. F. Elam, Jeffrey W. Hock, Adam S. Proslier, Thomas TI A modular reactor design for in situ synchrotron x-ray investigation of atomic layer deposition processes SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID THIN-FILM; LOCAL-STRUCTURE; GROWTH; NUCLEATION; IFEFFIT; XAFS; H2O AB Synchrotron characterization techniques provide some of the most powerful tools for the study of film structure and chemistry. The brilliance and tunability of the Advanced Photon Source allow access to scattering and spectroscopic techniques unavailable with in-house laboratory setups and provide the opportunity to probe various atomic layer deposition (ALD) processes in situ starting at the very first deposition cycle. Here, we present the design and implementation of a portable ALD instrument which possesses a modular reactor scheme that enables simple experimental switchover between various beamlines and characterization techniques. As first examples, we present in situ results for (1) X-ray surface scattering and reflectivity measurements of epitaxial ZnO ALD on sapphire, (2) grazing-incidence small angle scattering of MnO nucleation on silicon, and (3) grazing-incidence X-ray absorption spectroscopy of nucleation-regime Er2O3 ALD on amorphous ALD alumina and single crystalline sapphire. (C) 2015 AIP Publishing LLC. C1 [Klug, Jeffrey A.; Weimer, Matthew S.; Emery, Jonathan D.; Martinson, Alex B. F.; Proslier, Thomas] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Weimer, Matthew S.; Hock, Adam S.] IIT, Dept Chem, Chicago, IL 60616 USA. [Yanguas-Gil, Angel] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. [Seifert, Soenke; Schlepuetz, Christian M.] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. [Hock, Adam S.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Klug, JA (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM jklug@anl.gov; prolier@anl.gov RI Schleputz, Christian/C-4696-2008; Hock, Adam/D-7660-2012; OI Schleputz, Christian/0000-0002-0485-2708; Hock, Adam/0000-0003-1440-1473; Yanguas-Gil, Angel/0000-0001-8207-3825 FU U.S. Department of Energy, Office of Science by UChicago Argonne, LLC [DE-AC02-06CH11357]; Department of Energy, Office of Sciences, Office of High Energy Physics [FWP 50335]; ANSER Center, an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001059]; ARCS Foundation; U.S. Department of Energy; Canadian Light Source; University of Washington FX This work, including use of the advanced photon source was supported by the U.S. Department of Energy, Office of Science, operated under Contract No. DE-AC02-06CH11357 by UChicago Argonne, LLC. T.P. was supported by the Department of Energy, Office of Sciences, Office of High Energy Physics, Early Career Award No. FWP 50335. J.D.E. and A.B.F.M. were supported as part of the ANSER Center, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award No. DE-SC0001059. M.S.W. acknowledges support from the ARCS Foundation. Sector 20 operations are supported by the U.S. Department of Energy and the Canadian Light Source, with additional support from the University of Washington. We thank Dale Brewe and Steve Heald for user support during GIXAS measurements at beamline 20-ID-B, and Joshua Kas and Carlos Segre for help with FEFF modeling and XAFS analysis. We thank Byeongdu Lee for helpful discussions and assistance during the GISAXS measurements and analysis. NR 35 TC 1 Z9 1 U1 8 U2 24 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2015 VL 86 IS 11 AR 113901 DI 10.1063/1.4934807 PG 11 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA CX9VR UT WOS:000366054300031 PM 26628145 ER PT J AU Nagayama, T Mancini, RC Mayes, D Tommasini, R Florido, R AF Nagayama, T. Mancini, R. C. Mayes, D. Tommasini, R. Florido, R. TI Understanding reliability and some limitations of the images and spectra reconstructed from a multi-monochromatic x-ray imager SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID PLASMAS AB Temperature and density asymmetry diagnosis is critical to advance inertial confinement fusion (ICF) science. A multi-monochromatic x-ray imager (MMI) is an attractive diagnostic for this purpose. The MMI records the spectral signature from an ICF implosion core with time resolution, 2-D space resolution, and spectral resolution. While narrow-band images and 2-D space-resolved spectra from the MMI data constrain temperature and density spatial structure of the core, the accuracy of the images and spectra depends not only on the quality of the MMI data but also on the reliability of the post-processing tools. Here, we synthetically quantify the accuracy of images and spectra reconstructed from MMI data. Errors in the reconstructed images are less than a few percent when the space-resolution effect is applied to the modeled images. The errors in the reconstructed 2-D space-resolved spectra are also less than a few percent except those for the peripheral regions. Spectra reconstructed for the peripheral regions have slightly but systematically lower intensities by similar to 6% due to the instrumental spatial-resolution effects. However, this does not alter the relative line ratios and widths and thus does not affect the temperature and density diagnostics. We also investigate the impact of the pinhole size variation on the extracted images and spectra. A 10% pinhole size variation could introduce spatial bias to the images and spectra of similar to 10%. A correction algorithm is developed, and it successfully reduces the errors to a few percent. It is desirable to perform similar synthetic investigations to fully understand the reliability and limitations of each MMI application. (C) 2015 AIP Publishing LLC. C1 [Nagayama, T.; Mancini, R. C.; Mayes, D.] Univ Nevada, Dept Phys, Reno, NV 89557 USA. [Tommasini, R.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Florido, R.] Univ Las Palmas Gran Canaria, Dept Fis, Las Palmas Gran Canaria 35017, Spain. RP Nagayama, T (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. RI Florido, Ricardo/H-5513-2015; Tommasini, Riccardo/A-8214-2009 OI Florido, Ricardo/0000-0001-7428-6273; Tommasini, Riccardo/0000-0002-1070-3565 FU DOE/NLUF [DE-NA0000859, DE-NA0002267]; LLNL; EUROfusion ToIFE project FX This work was supported by DOE/NLUF Grant Nos. DE-NA0000859 and DE-NA0002267, and LLNL. T. Nagayama thanks R. E. Falcon for his help in refining the manuscript. R. Florido thanks support from EUROfusion ToIFE project. NR 19 TC 2 Z9 2 U1 0 U2 7 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2015 VL 86 IS 11 AR 113505 DI 10.1063/1.4935828 PG 11 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA CX9VR UT WOS:000366054300019 PM 26628133 ER PT J AU Roth, EJ Mont-Eton, ME Gilbert, B Lei, TC Mays, DC AF Roth, Eric J. Mont-Eton, Michael E. Gilbert, Benjamin Lei, Tim C. Mays, David C. TI Measurement of colloidal phenomena during flow through refractive index matched porous media SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID STATIC LIGHT-SCATTERING; SMALL-ANGLE SCATTERING; FRACTAL DIMENSION; MULTIPLE-SCATTERING; MORPHOLOGY; AGGREGATION; DISPERSIONS; LATEX; GELS AB Colloidal phenomena in porous media, natural or engineered, are important in a breadth of science and technology applications, but fundamental understanding is hampered by the difficulty in measuring colloid deposit morphology in situ. To partially address this need, this paper describes a static light scattering apparatus using a flow cell filled with refractive index matched (RIM) porous media, allowing real-time measurement of colloidal phenomena as a function of depth within the flow cell. A laser interacts with the colloids in the pore space and their structures, but not with the RIM media. The intensity of scattered light is measured as a function of scattering angle, which allows characterization of colloid deposit morphology as a fractal dimension and a radius of gyration. In parallel, fluid discharge rate and pressure drop are recorded to determine permeability, a key parameter for any application involving flow through porous media. This apparatus should prove useful in any application requiring characterization of colloidal phenomena within porous media. Additionally, this paper describes how to use granular Nafion as RIM porous media. (C) 2015 AIP Publishing LLC. C1 [Roth, Eric J.; Mont-Eton, Michael E.; Mays, David C.] Univ Colorado, Dept Civil Engn, Denver, CO 80217 USA. [Gilbert, Benjamin] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Lei, Tim C.] Univ Colorado, Dept Elect Engn, Denver, CO 80217 USA. RP Mays, DC (reprint author), Univ Colorado, Dept Civil Engn, Campus Box 113,POB 173364, Denver, CO 80217 USA. EM david.mays@ucdenver.edu RI Mays, David/D-9366-2016; Gilbert, Benjamin/E-3182-2010 OI Mays, David/0000-0002-5218-1670; FU U.S. Department of Energy, Subsurface Biogeochemistry Research Program [DE-SC0006962]; U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research [DE-AC02-05CH11231] FX The authors thank Katerina Kechris for guidance on the bootstrap and two anonymous referees whose comments helped to clarify the presentation. This research was supported by the U.S. Department of Energy, Subsurface Biogeochemistry Research Program (Award No. DE-SC0006962). B.G. was supported as part of the Subsurface Science Scientific Focus Area funded by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research (Award No. DE-AC02-05CH11231). NR 45 TC 0 Z9 0 U1 3 U2 5 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2015 VL 86 IS 11 AR 113103 DI 10.1063/1.4935576 PG 8 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA CX9VR UT WOS:000366054300003 PM 26628117 ER PT J AU Rygg, JR Zylstra, AB Seguin, FH LePape, S Bachmann, B Craxton, RS Garcia, EM Kong, YZ Gatu-Johnson, M Khan, SF Lahmann, BJ McKenty, PW Petrasso, RD Rinderknecht, HG Rosenberg, MJ Sayre, DB Sio, HW AF Rygg, J. R. Zylstra, A. B. Seguin, F. H. LePape, S. Bachmann, B. Craxton, R. S. Garcia, E. M. Kong, Y. Z. Gatu-Johnson, M. Khan, S. F. Lahmann, B. J. McKenty, P. W. Petrasso, R. D. Rinderknecht, H. G. Rosenberg, M. J. Sayre, D. B. Sio, H. W. TI Note: A monoenergetic proton backlighter for the National Ignition Facility SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID FUSION IMPLOSIONS; RADIOGRAPHY; PLASMAS; FIELD AB A monoenergetic, isotropic proton source suitable for proton radiography applications has been demonstrated at the National Ignition Facility (NIF). A deuterium and helium-3 gas-filled glass capsule was imploded with 39 kJ of laser energy from 24 of NIF's 192 beams. Spectral, spatial, and temporal measurements of the 15-MeV proton product of the He-3(d,p)He-4 nuclear reaction reveal a bright (10(10) protons/sphere), monoenergetic (Delta E/E = 4%) spectrum with a compact size (80 mu m) and isotropic emission (similar to 13% proton fluence variation and <0.4% mean energy variation). Simultaneous measurements of products produced by the D(d,p)T and D(d,n)He-3 reactions also show 2 x 10(10) isotropically distributed 3-MeV protons. (C) 2015 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License. C1 [Rygg, J. R.; LePape, S.; Bachmann, B.; Khan, S. F.; Rinderknecht, H. G.; Sayre, D. B.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Zylstra, A. B.; Seguin, F. H.; Gatu-Johnson, M.; Lahmann, B. J.; Petrasso, R. D.; Rinderknecht, H. G.; Rosenberg, M. J.; Sio, H. W.] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. [Craxton, R. S.; Garcia, E. M.; Kong, Y. Z.; McKenty, P. W.; Rosenberg, M. J.] Univ Rochester, Lab Laser Energet, Rochester, NY 14623 USA. RP Rygg, JR (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX The authors thank the NIF scientific, engineering, and operational staff for critical assistance in fielding this experiment and for these first steps in commissioning a proton radiography platform for the NIF. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. NR 39 TC 6 Z9 6 U1 2 U2 11 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2015 VL 86 IS 11 AR 116104 DI 10.1063/1.4935581 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA CX9VR UT WOS:000366054300071 PM 26628185 ER PT J AU Li, H Jung, KW Deng, ZD AF Li, H. Jung, K. W. Deng, Z. D. TI Piezoelectric transducer design for a miniaturized injectable acoustic transmitter SO SMART MATERIALS AND STRUCTURES LA English DT Article DE acoustic transducer; piezoelectric; PZT; underwater acoustic transmitter; fish tag; source level; beam pattern ID FINITE-ELEMENT MODEL; TELEMETRY SYSTEM; JUVENILE SALMON; SCATTERING; OBJECTS AB Implantable acoustic transmitters have been used in the last 20 years to track fish movement for fish survival and migration behavior studies. However, the relatively large weights and sizes of commercial transmitters limit the populations of studied fish. The surgical implantation procedures may also affect fish adversely and incur a significant amount of labor. Therefore, a smaller, lighter, and injectable transmitter was needed, and similar or better acoustic performance and service life over those provided by existing commercial transmitters was desired. To develop such a small transmitter, a number of technical challenges, including design optimization of the piezoelectric transducer, needed to be overcome. Our efforts to optimize the transducer focused on improving the average source level in the 180 degrees range in which the signal was not blocked by the transmitter body. We found that a novel off-center tube transducer improved the average source level by 1.5 dB. An acoustic reflector attached to the back of the transducer also improved the source level by 1.3 dB. We found that too small a gap between the transducer and the component placed behind it resulted in distortion of the beam pattern. Lastly, a tuning inductor in series with the transducer was used to help optimize the source level. The findings and techniques developed in this work contributed to the successful development and implementation of a new injectable transmitter. C1 [Li, H.; Jung, K. W.; Deng, Z. D.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Li, H (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM zhiqun.deng@pnnl.gov RI Deng, Daniel/A-9536-2011; OI Deng, Daniel/0000-0002-8300-8766; Jung, Ki Won/0000-0001-9847-3532 FU US Army Corps of Engineers, Portland District FX This study was funded by the US Army Corps of Engineers, Portland District. Brad Eppard was the technical point of contact for USACE-Portland, and we greatly appreciate his involvement and oversight. The authors would like to thank Jun Lu, Chuan Tian, and Yong Yuan for their assistance in electrical and source-level measurements and Jayson Martinez for his help in creating CAD models. NR 20 TC 1 Z9 1 U1 2 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0964-1726 EI 1361-665X J9 SMART MATER STRUCT JI Smart Mater. Struct. PD NOV PY 2015 VL 24 IS 11 AR 115010 DI 10.1088/0964-1726/24/11/115010 PG 9 WC Instruments & Instrumentation; Materials Science, Multidisciplinary SC Instruments & Instrumentation; Materials Science GA CY0QU UT WOS:000366111400012 ER PT J AU Shipra, R Idrobo, JC Sefat, AS AF Shipra, R. Idrobo, Juan C. Sefat, Athena S. TI Structural and superconducting features of Tl-1223 prepared at ambient pressure SO SUPERCONDUCTOR SCIENCE & TECHNOLOGY LA English DT Article DE Tl-1223; ambient pressure; annealing ID CU-O SYSTEM; HGBA2CA2CU3O8+DELTA; DIFFRACTION; CRYSTALS; STATES; HEAT AB This study provides an account of the bulk preparation of TlBa2Ca2Cu3O9-delta (Tl-1223) superconductor at ambient pressure, and the critical temperature (T-c) features under thermal-annealing conditions. The 'as-prepared' Tl-1223 (T-c = 106 K) presents a significantly higher T-c = 125 K after annealing the polycrystalline material in either flowing Ar + 4% H-2, or N-2 gases. In order to understand the fundamental reasons for a particular Tc, we refined the average bulk structures using powder x-ray diffraction data. Although Ar. +. 4% H2 annealed Tl-1223 shows an increased 'c' lattice parameter, it shrinks by 0.03% (approximately unchanged) upon N2 anneal. Due to such indeterminate conclusions on the average structural changes, local structures were investigated at using aberration-corrected scanning-transmission electron microscopy technique. Similar compositional changes in the atomic arrangements of both annealed-samples of Tl-1223 were detected in which the plane containing a Ca atomic layer gives a non-uniform contrast, due to substitution of some heavier Tl. In this report, extensive bulk properties are summarized through temperature-dependent resistivity, and shielding and Meissner fractions of magnetic susceptibility results; the bulk and local structures are investigated to correlate to properties. C1 [Shipra, R.; Idrobo, Juan C.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. [Shipra, R.; Sefat, Athena S.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Idrobo, Juan C.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Shipra, R (reprint author), Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. EM sefata@ornl.gov RI Sefat, Athena/R-5457-2016; OI Sefat, Athena/0000-0002-5596-3504; Idrobo, Juan Carlos/0000-0001-7483-9034 FU National Science Foundation (NSF) [DMR-0938330]; Center for Nanophase Materials Sciences (CNMS) - ORNL by the Scientific User Facilities Division, Office of Basic Energy Sciences, US DOE; US Department of Energy, Office of Science, Basic Energy Sciences, Materials Science and Engineering Division FX This research was supported by the National Science Foundation (NSF) through grant number of DMR-0938330 (RS), and also the Center for Nanophase Materials Sciences (CNMS), which is sponsored at ORNL by the Scientific User Facilities Division, Office of Basic Energy Sciences, US DOE (JI). In addition, the partial work was carried out as part of funding through US Department of Energy, Office of Science, Basic Energy Sciences, Materials Science and Engineering Division (AS and RS). NR 37 TC 0 Z9 0 U1 2 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-2048 EI 1361-6668 J9 SUPERCOND SCI TECH JI Supercond. Sci. Technol. PD NOV PY 2015 VL 28 IS 11 AR 115006 DI 10.1088/0953-2048/28/11/115006 PG 8 WC Physics, Applied; Physics, Condensed Matter SC Physics GA CY1UI UT WOS:000366193000015 ER PT J AU Quentin, AG Pinkard, EA Ryan, MG Tissue, DT Baggett, LS Adams, HD Maillard, P Marchand, J Landhausser, SM Lacointe, A Gibon, Y Anderegg, WRL Asao, S Atkin, OK Bonhomme, M Claye, C Chow, PS Clement-Vidal, A Davies, NW Dickman, LT Dumbur, R Ellsworth, DS Falk, K Galiano, L Grunzweig, JM Hartmann, H Hoch, G Hood, S Jones, JE Koike, T Kuhlmann, I Lloret, F Maestro, M Mansfield, SD Martinez-Vilalta, J Maucourt, M McDowell, NG Moing, A Muller, B Nebauer, SG Niinemets, U Palacio, S Piper, F Raveh, E Richter, A Rolland, G Rosas, T St Joanis, B Sala, A Smith, RA Sterck, F Stinziano, JR Tobias, M Unda, F Watanabe, M Way, DA Weerasinghe, LK Wild, B Wiley, E Woodruff, DR AF Quentin, Audrey G. Pinkard, Elizabeth A. Ryan, Michael G. Tissue, David T. Baggett, L. Scott Adams, Henry D. Maillard, Pascale Marchand, Jacqueline Landhaeusser, Simon M. Lacointe, Andre Gibon, Yves Anderegg, William R. L. Asao, Shinichi Atkin, Owen K. Bonhomme, Marc Claye, Caroline Chow, Pak S. Clement-Vidal, Anne Davies, Noel W. Dickman, L. Turin Dumbur, Rita Ellsworth, David S. Falk, Kristen Galiano, Lucia Grunzweig, Jose M. Hartmann, Henrik Hoch, Guenter Hood, Sharon Jones, Joanna E. Koike, Takayoshi Kuhlmann, Iris Lloret, Francisco Maestro, Melchor Mansfield, Shawn D. Martinez-Vilalta, Jordi Maucourt, Mickael McDowell, Nathan G. Moing, Annick Muller, Bertrand Nebauer, Sergio G. Niinemets, Ulo Palacio, Sara Piper, Frida Raveh, Eran Richter, Andreas Rolland, Gaelle Rosas, Teresa St Joanis, Brigitte Sala, Anna Smith, Renee A. Sterck, Frank Stinziano, Joseph R. Tobias, Mari Unda, Faride Watanabe, Makoto Way, Danielle A. Weerasinghe, Lasantha K. Wild, Birgit Wiley, Erin Woodruff, David R. TI Non-structural carbohydrates in woody plants compared among laboratories SO TREE PHYSIOLOGY LA English DT Article DE extraction and quantification consistency; non-structural carbohydrate chemical analysis; particle size; reference method; soluble sugars; standardization; starch ID EUCALYPTUS-GLOBULUS SAPLINGS; TEMPERATE FOREST TREES; PEACH-TREES; CARBON LIMITATION; QUANTITATIVE-DETERMINATION; PHOTOSYNTHETIC RESPONSES; LIQUID-CHROMATOGRAPHY; STOMATAL CONDUCTANCE; RESOURCE LIMITATION; SEASONAL-CHANGES AB Non-structural carbohydrates (NSC) in plant tissue are frequently quantified to make inferences about plant responses to environmental conditions. Laboratories publishing estimates of NSC of woody plants use many different methods to evaluate NSC. We asked whether NSC estimates in the recent literature could be quantitatively compared among studies. We also asked whether any differences among laboratories were related to the extraction and quantification methods used to determine starch and sugar concentrations. These questions were addressed by sending sub-samples collected from five woody plant tissues, which varied in NSC content and chemical composition, to 29 laboratories. Each laboratory analyzed the samples with their laboratory-specific protocols, based on recent publications, to determine concentrations of soluble sugars, starch and their sum, total NSC. Laboratory estimates differed substantially for all samples. For example, estimates for Eucalyptus globulus leaves (EGL) varied from 23 to 116 (mean = 56) mg g(-1) for soluble sugars, 6-533 (mean = 94) mg g-1 for starch and 53-649 (mean = 153) mg g-1 for total NSC. Mixed model analysis of variance showed that much of the variability among laboratories was unrelated to the categories we used for extraction and quantification methods (method category R-2 = 0.05-0.12 for soluble sugars, 0.10-0.33 for starch and 0.01-0.09 for total NSC). For EGL, the difference between the highest and lowest least squares means for categories in the mixed model analysis was 33 mg g-1 for total NSC, compared with the range of laboratory estimates of 596 mg g-1. Laboratories were reasonably consistent in their ranks of estimates among tissues for starch (r = 0.41-0.91), but less so for total NSC (r = 0.45-0.84) and soluble sugars (r = 0.11-0.83). Our results show that NSC estimates for woody plant tissues cannot be compared among laboratories. The relative changes in NSC between treatments measured within a laboratory may be comparable within and between laboratories, especially for starch. To obtain comparable NSC estimates, we suggest that users can either adopt the reference method given in this publication, or report estimates for a portion of samples using the reference method, and report estimates for a standard reference material. Researchers interested in NSC estimates should work to identify and adopt standard methods. C1 [Quentin, Audrey G.; Pinkard, Elizabeth A.] CSIRO, Land & Water, Hobart, Tas 7001, Australia. [Quentin, Audrey G.; Tissue, David T.; Ellsworth, David S.; Smith, Renee A.] Univ Western Sydney, Hawkesbury Inst Environm, Richmond, NSW 2753, Australia. [Ryan, Michael G.; Asao, Shinichi] Colorado State Univ, Nat Resources Ecol Lab, Ft Collins, CO 80523 USA. [Ryan, Michael G.; Asao, Shinichi] Colorado State Univ, Grad Degree Program Ecol, Ft Collins, CO 80523 USA. [Ryan, Michael G.; Baggett, L. Scott] USDA Forest Serv, Rocky Mt Res Stn, Ft Collins, CO 80521 USA. [Adams, Henry D.; Dickman, L. Turin; McDowell, Nathan G.] Los Alamos Natl Lab, Earth & Environm Sci Div, Los Alamos, NM 87545 USA. [Maillard, Pascale] Ctr Nancy, INRA, UMR 1137, Ecol & Ecophysiol Forestieres, F-54280 Champenoux, France. [Marchand, Jacqueline] Ctr Nancy, INRA, UMR 1137, Plateforme Tech Ecol Fonct OC 081,Ecol & Ecophysi, F-54280 Champenoux, France. [Landhaeusser, Simon M.; Chow, Pak S.; Wiley, Erin] Univ Alberta, Dept Renewable Resources, Edmonton, AB T6G 2E3, Canada. [Lacointe, Andre; Bonhomme, Marc; St Joanis, Brigitte] INRA, UMR PIAF 0547, F-63100 Clermont Ferrand, France. [Lacointe, Andre; Bonhomme, Marc; St Joanis, Brigitte] Univ Clermont Ferrand, Univ Clermont Ferrand 2, UMR PIAF 0547, F-6310 Clermont Ferrand, France. [Gibon, Yves; Moing, Annick] Bordeaux Univ, UMR1332, Biol Fruit & Pathol, INRA, F-33140 Villenave Dornon, France. [Gibon, Yves; Maucourt, Mickael; Moing, Annick] Ctr INRA, Plateforme Metabolome Ctr Genom Fonct Bordeaux, Ctr INRA, MetaboHUB,IBVM, F-33140 Villenave Dornon, France. [Anderegg, William R. L.] Princeton Univ, Princeton Environm Inst, Princeton, NJ 08540 USA. [Atkin, Owen K.; Weerasinghe, Lasantha K.] Australian Natl Univ, Res Sch Biol, Div Plant Biol, Canberra, ACT 2601, Australia. [Atkin, Owen K.] Australian Natl Univ, ARC Ctr Excellence Plant Energy Biol, Canberra, ACT 2601, Australia. [Claye, Caroline; Jones, Joanna E.] Univ Tasmania, Tasmanian Inst Agr, Sch Land & Food, Hobart, Tas 7001, Australia. [Clement-Vidal, Anne] CIRAD, UMR AGAP, F-34398 Montpellier, France. [Davies, Noel W.] Univ Tasmania, Cent Sci Lab, Hobart, Tas 7001, Australia. [Dumbur, Rita; Grunzweig, Jose M.] Hebrew Univ Jerusalem, Robert H Smith Fac Agr Food & Environm, IL-7610001 Rehovot, Israel. [Falk, Kristen] Oregon State Univ, Dept Forest Ecosyst & Soc, Corvallis, OR 97331 USA. [Galiano, Lucia] Swiss Fed Res Inst WSL, CH-8903 Birmensdorf, Switzerland. [Galiano, Lucia] Univ Freiburg, Inst Hydrol, D-79098 Freiburg, Germany. [Hartmann, Henrik; Kuhlmann, Iris] Max Planck Inst Biogeochem, D-07745 Jena, Germany. [Hoch, Guenter] Univ Basel, Dept Environm Sci Bot, CH-4056 Basel, Switzerland. [Hood, Sharon; Sala, Anna] Univ Montana, Div Biol Sci, Missoula, MT 59812 USA. [Koike, Takayoshi] Hokkaido Univ, Silviculture & Forest Ecol Studies, Sapporo, Hokkaido 0608589, Japan. [Lloret, Francisco; Martinez-Vilalta, Jordi; Rosas, Teresa] CREAF, E-08193 Barcelona, Spain. [Lloret, Francisco; Martinez-Vilalta, Jordi] Univ Autonoma Barcelona, E-08193 Barcelona, Spain. [Maestro, Melchor; Palacio, Sara] CSIC, IPE, Jaca 22700, Huesca, Spain. [Mansfield, Shawn D.; Unda, Faride] Univ British Columbia, Dept Wood Sci, Vancouver, BC V6T 1Z4, Canada. [Maucourt, Mickael] Univ Bordeaux, UMR 1332, Biol Fruit & Pathol, F-33140 Villenave Dornon, France. [Muller, Bertrand; Rolland, Gaelle] INRA, UMR LEPSE 759, F-34060 Montpellier, France. [Nebauer, Sergio G.] Univ Politecn Valencia, Plant Prod Dept, Valencia 46022, Spain. [Niinemets, Ulo; Tobias, Mari] Estonian Univ Life Sci, Dept Plant Physiol, EE-51014 Tartu, Estonia. [Piper, Frida] CIEP, Coyhaique, Chile. [Raveh, Eran] Gilat Res Ctr, Inst Plant Sci, Dept Fruit Trees Sci, ARO, IL-85289 Dn Negev, Israel. [Richter, Andreas; Wild, Birgit] Univ Vienna, Dept Microbiol & Ecosyst Sci, A-1090 Vienna, Austria. [Sterck, Frank] Wageningen Univ, Forest Ecol & Forest Management Grp, NL-6700 AA Wageningen, Netherlands. [Stinziano, Joseph R.; Way, Danielle A.] Univ Western Ontario, Dept Biol, London, ON N6A 5B7, Canada. [Watanabe, Makoto] Tokyo Univ Agr & Technol, Inst Agr, Fuchu, Tokyo 1838509, Japan. [Way, Danielle A.] Duke Univ, Nicholas Sch Environm, Durham, NC 27708 USA. [Weerasinghe, Lasantha K.] Univ Peradeniya, Fac Agr, Peradeniya 20400, Sri Lanka. [Wild, Birgit] Univ Gothenburg, Dept Earth Sci, S-40530 Gothenburg, Sweden. [Woodruff, David R.] USDA Forest Serv, Forestry Sci Lab, Corvallis, OR 97331 USA. RP Quentin, AG (reprint author), CSIRO, Land & Water, Private Bag 12, Hobart, Tas 7001, Australia. EM audrey.quentin@csiro.au RI Atkin, Owen/C-8415-2009; Asao, Shinichi/R-9514-2016; Rosas, Teresa/I-3861-2016; Davies, Noel/J-7714-2014; Wild, Birgit/E-6476-2012; Pinkard, Elizabeth /C-5804-2011; Quentin, Audrey/B-8459-2016; Richter, Andreas/D-8483-2012; Hood, Sharon/E-5209-2015; Watanabe, Makoto/B-7464-2015; Ryan, Michael/A-9805-2008; Nebauer, Sergio G/L-2904-2014; Galiano, Lucia/P-1818-2016; Landhausser, Simon/F-9910-2016; Niinemets, Ulo/A-3816-2008; Martinez-Vilalta, Jordi/D-3385-2014; Lloret, Francisco/H-2711-2015 OI Atkin, Owen/0000-0003-1041-5202; Asao, Shinichi/0000-0002-0334-5464; Stinziano, Joseph/0000-0002-7628-4201; Rosas, Teresa/0000-0002-8734-9752; Davies, Noel/0000-0002-9624-0935; Wild, Birgit/0000-0002-9611-0815; Pinkard, Elizabeth /0000-0002-3410-0099; Quentin, Audrey/0000-0002-6441-6545; Richter, Andreas/0000-0003-3282-4808; Hood, Sharon/0000-0002-9544-8208; Watanabe, Makoto/0000-0003-2328-3990; Ryan, Michael/0000-0002-2500-6738; Nebauer, Sergio G/0000-0001-7978-6680; Galiano, Lucia/0000-0003-0123-1882; Landhausser, Simon/0000-0002-4466-1607; Niinemets, Ulo/0000-0002-3078-2192; Martinez-Vilalta, Jordi/0000-0002-2332-7298; Lloret, Francisco/0000-0002-9836-4069 FU McMaster fellowship [1158.C]; Juan de la Cierva contract (MCI project); OPAN, MAAMA, Spain [ARBALMONT/786-2012]; Fondecyt [11121175]; Estonian Ministry of Education and Science [IUT-8-3]; DOE-BER; LANL-LDRD; Spanish Government [CGL 2010-16376]; Montana Institute on Ecosystems' Graduate Enhancement Award from NSF EPSCoR Track-1 [NSF-IIA-1443108] FX M.G.R. was funded by McMaster fellowship (1158.C). S.P. was funded by Juan de la Cierva contract (MCI project) and project ARBALMONT/786-2012 (OPAN, MAAMA, Spain). F.P. was funded by Fondecyt 11121175. U.N. and M.T. were funded by the Estonian Ministry of Education and Science, grant IUT-8-3. N.G.M. and L.T.D. were funded by DOE-BER. H.D.A. was funded by LANL-LDRD. J.M.-V. was funded by the Spanish Government (CGL 2010-16376). S.H. was funded by the Montana Institute on Ecosystems' Graduate Enhancement Award from NSF EPSCoR Track-1 NSF-IIA-1443108. Valuable comments from Dr Mauricio Mencuccini (University of Edinburgh), Dan Binkley (Colorado State University) and two anonymous reviewers were also greatly appreciated. NR 113 TC 19 Z9 19 U1 26 U2 108 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0829-318X EI 1758-4469 J9 TREE PHYSIOL JI Tree Physiol. PD NOV PY 2015 VL 35 IS 11 BP 1146 EP 1165 DI 10.1093/treephys/tpv073 PG 20 WC Forestry SC Forestry GA CY6MV UT WOS:000366524100002 PM 26423132 ER PT J AU Mosher, JJ Fortner, AM Phillips, JR Bevelhimer, MS Stewart, AJ Troia, MJ AF Mosher, Jennifer J. Fortner, Allison M. Phillips, Jana R. Bevelhimer, Mark S. Stewart, Arthur J. Troia, Matthew J. TI Spatial and Temporal Correlates of Greenhouse Gas Diffusion from a Hydropower Reservoir in the Southern United States SO WATER LA English DT Article DE climate change; CH4; CO2; hydropower; random forests model; reservoir ID METHANE PRODUCTION; BOREAL LAKES; EMISSIONS; CARBON; FLUXES; HETEROGENEITY; SEDIMENT; DAMS AB Emissions of CO2 and CH4 from freshwater reservoirs constitute a globally significant source of atmospheric greenhouse gases ( GHGs), but knowledge gaps remain with regard to spatiotemporal drivers of emissions. We document the spatial and seasonal variation in surface diffusion of CO2 and CH4 from Douglas Lake, a hydropower reservoir in Tennessee, USA. Monthly estimates across 13 reservoir sites from January to November 2010 indicated that surface diffusions ranged from 236 to 18,806 mg . m- 2 . day- 1 for CO2 and 0 to 0.95 mg . m- 2 . day- 1 for CH4. Next, we developed statistical models using spatial and physicochemical variables to predict surface diffusions of CO2 and CH4. Models explained 22.7% and 20.9% of the variation in CO2 and CH4 diffusions respectively, and identified pH, temperature, dissolved oxygen, and Julian day as the most informative predictors. These findings provide baseline estimates of GHG emissions from a reservoir in eastern temperate North America, a region for which estimates of reservoir GHGs emissions are limited. Our statistical models effectively characterized non-linear and threshold relationships between physicochemical predictors and GHG emissions. Further refinement of such modeling approaches will aid in predicting current GHG emissions from unsampled reservoirs and forecasting future GHG emissions. C1 [Mosher, Jennifer J.; Fortner, Allison M.; Phillips, Jana R.; Bevelhimer, Mark S.; Troia, Matthew J.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Stewart, Arthur J.] Xcel Engn Inc, Oak Ridge, TN 37830 USA. RP Mosher, JJ (reprint author), Oak Ridge Natl Lab, Div Environm Sci, POB 2008, Oak Ridge, TN 37831 USA. EM Mosher@marshall.edu; fortneram@ornl.gov; randolphjd1@ornl.gov; bevelhimerms@ornl.gov; stewartaj@ornl.gov; troiamj@ornl.gov RI Phillips, Jana/G-4755-2016; OI Phillips, Jana/0000-0001-9319-2336; Mosher, Jennifer/0000-0001-6976-2036; stewart, arthur/0000-0003-1968-5997 FU US Department of Energy [DE-AC05-00OR22725]; United States Department of Energy's Office of Energy Efficiency and Renewable Energy, Wind and Water Power Technologies Program FX This manuscript is dedicated to the memory of our colleague, Pat Mulholland, who was instrumental in the conception and design of this project. This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the US Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan). The research was supported by the United States Department of Energy's Office of Energy Efficiency and Renewable Energy, Wind and Water Power Technologies Program. We thank Natalie Griffiths, Brenda Pracheil, Glenn Cada, Walter Hill, and numerous anonymous reviewers for thoughtful and constructive comments on the manuscript, and Boualem Hadjerioua for providing data on Douglas Lake operations. NR 46 TC 2 Z9 2 U1 2 U2 20 PU MDPI AG PI BASEL PA POSTFACH, CH-4005 BASEL, SWITZERLAND SN 2073-4441 J9 WATER-SUI JI Water PD NOV PY 2015 VL 7 IS 11 BP 5910 EP 5927 DI 10.3390/w7115910 PG 18 WC Water Resources SC Water Resources GA CX8AF UT WOS:000365923400003 ER PT J AU Huang, Y Sutter, E Shi, NN Zheng, JB Yang, TZ Englund, D Gao, HJ Sutter, P AF Huang, Yuan Sutter, Eli Shi, Norman N. Zheng, Jiabao Yang, Tianzhong Englund, Dirk Gao, Hong-Jun Sutter, Peter TI Reliable Exfoliation of Large-Area High-Quality Flakes of Graphene and Other Two-Dimensional Materials SO ACS NANO LA English DT Article DE 2D materials; graphene; exfoliation; van der Waals force; processing ID FIELD-EFFECT TRANSISTORS; HIGH-YIELD PRODUCTION; MOS2 TRANSISTORS; SINGLE-LAYER; HETEROSTRUCTURES; TRANSPARENT; DEPOSITION; ADHESION; PHASE; FILMS AB Mechanical exfoliation has been a key enabler of the exploration of the properties of two-dimensional materials, such as graphene, by providing routine access to high-quality material. The original exfoliation method, which remained largely unchanged during the past decade, provides relatively small flakes with moderate yield. Here, we report a modified approach for exfoliating thin monolayer and few-layer flakes from layered crystals. Our method introduces two process steps that enhance and homogenize the adhesion force between the outermost sheet in contact with a substrate: Prior to exfoliation, ambient adsorbates are effectively removed from the substrate by oxygen plasma cleaning, and an additional heat treatment maximizes the uniform contact area at the interface between the source crystal and the substrate. For graphene exfoliation, these simple process steps increased the yield and the area of the transferred flakes by more than 50 times compared to the established exfoliation methods. Raman and AFM characterization shows that the graphene flakes are of similar high quality as those obtained in previous reports. Graphene field-effect devices were fabricated and measured with back-gating and solution top-gating, yielding mobilities of similar to 4000 and 12 000 cm(2)/(V s), respectively, and thus demonstrating excellent electrical properties. Experiments with other layered crystals, e.g., a bismuth strontium calcium copper oxide (BSCCO) superconductor, show enhancements in exfoliation yield and flake area similar to those for graphene, suggesting that our modified exfoliation method provides an effective way for producing large area, high-quality flakes of a wide range of 2D materials. C1 [Huang, Yuan] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Sutter, Eli] Univ Nebraska, Dept Mech & Mat Engn, Lincoln, NE 68588 USA. [Shi, Norman N.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. [Zheng, Jiabao; Englund, Dirk] MIT, Elect Engn & Comp Sci, Cambridge, MA 02139 USA. [Yang, Tianzhong; Gao, Hong-Jun] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China. [Sutter, Peter] Univ Nebraska, Dept Elect & Comp Engn, Lincoln, NE 68588 USA. RP Sutter, P (reprint author), Univ Nebraska, Dept Elect & Comp Engn, Lincoln, NE 68588 USA. EM psutter@unl.edu RI Zheng, Jiabao/Q-5231-2016 OI Zheng, Jiabao/0000-0003-2099-7015 FU U.S. DOE Office of Science Facility, at Brookhaven National Laboratory [DE-SC0012704] FX This research used resources of the Center for Functional Nanomaterials, which is a U.S. DOE Office of Science Facility, at Brookhaven National Laboratory under Contract No. DE-SC0012704. NR 43 TC 24 Z9 24 U1 42 U2 186 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD NOV PY 2015 VL 9 IS 11 BP 10612 EP 10620 DI 10.1021/acsnano.5b04258 PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA CX1OF UT WOS:000365464800009 PM 26336975 ER PT J AU Jiang, GM Zhu, HY Zhang, X Shen, B Wu, LH Zhang, S Lu, G Wu, ZB Sun, SH AF Jiang, Guangming Zhu, Huiyuan Zhang, Xu Shen, Bo Wu, Liheng Zhang, Sen Lu, Gang Wu, Zhongbiao Sun, Shouheng TI Core/Shell Face-Centered Tetragonal FePd/Pd Nanoparticles as an Efficient Non-Pt Catalyst for the Oxygen Reduction Reaction SO ACS NANO LA English DT Article DE FePd; face-centered tetragonal structure; core/shell nanoparticles; electrocatalysis; oxygen reduction reaction ID PALLADIUM ALLOY ELECTROCATALYSTS; FORMIC-ACID OXIDATION; FUEL-CELL CATALYSTS; FEPT NANOPARTICLES; NANOCOMPOSITE MAGNETS; PD; NANOCRYSTALS; GRAPHENE; DESIGN; CO AB We report the synthesis of core/shell face-centered tetragonal (fct)-FePd/Pd nanoparticles (NPs) via reductive annealing of core/shell Pd/Fe3O4 NPs followed by temperature-controlled Fe etching in acetic acid. Among three different kinds of core/shell FePd/Pd NPs studied (FePd core at similar to 8 nm and Pd shell at 0.27, 0.65, or 0.81 nm), the fct-FePd/Pd-0.65 NPs are the most efficient catalyst for the oxygen reduction reaction (ORR) in 0.1 M HClO4 with Pt-like activity and durability. This enhanced ORR catalysis arises from the desired Pd lattice compression in the 0.65 nm Pd shell induced by the fct-FePd core. Our study offers a general approach to enhance Pd catalysis in acid for ORB. C1 [Jiang, Guangming; Zhu, Huiyuan; Shen, Bo; Wu, Liheng; Zhang, Sen; Sun, Shouheng] Brown Univ, Dept Chem, Providence, RI 02912 USA. [Jiang, Guangming; Wu, Zhongbiao] Zhejiang Univ, Dept Environm Engn, Hangzhou 310058, Zhejiang, Peoples R China. [Zhang, Xu; Lu, Gang] Calif State Univ Northridge, Dept Phys & Astron, Northridge, CA 91330 USA. RP Zhu, HY (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. EM zhuh@ornl.gov; zbwu@zju.edu.cn; ssun@brown.edu RI WU, Zhongbiao/D-2634-2009; Wu, Liheng/L-1279-2016 FU U.S. Army Research Laboratory; U.S. Army Research Office under the Multi University Research Initiative (MURI) [W911NF-11-1-0353]; National Natural Science Foundation of China [51508055] FX This work was supported by U.S. Army Research Laboratory and the U.S. Army Research Office under the Multi University Research Initiative (MURI, grant number W911NF-11-1-0353) on "Stress-Controlled Catalysis via Engineered Nanostructures" and National Natural Science Foundation of China (Project 51508055). NR 45 TC 20 Z9 20 U1 49 U2 221 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD NOV PY 2015 VL 9 IS 11 BP 11014 EP 11022 DI 10.1021/acsnano.5b04361 PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA CX1OF UT WOS:000365464800049 PM 26434498 ER PT J AU Gao, P Wang, LP Zhang, YY Huang, Y Liu, KH AF Gao, Peng Wang, Liping Zhang, Yuyang Huang, Yuan Liu, Kaihui TI Atomic-Scale Probing of the Dynamics of Sodium Transport and Intercalation-Induced Phase Transformations in MoS2 SO ACS NANO LA English DT Article DE sodium-ion battery; in situ TEM; phase transition; molybdenum disulfide; transition metal dichalcogenide ID IN-SITU OBSERVATION; MOLYBDENUM-DISULFIDE; ELECTROCHEMICAL LITHIATION; ION BATTERIES; TRANSITION; MONOLAYER; STORAGE; ADSORPTION; MECHANISM; ELECTRODE AB For alkali-metal-ion batteries, probing the dynamic processes of ion transport in electrodes is critical to gain insights into understanding how the electrode functions and thus how we can improve it. Here, by using in situ high-resolution transmission electron microscopy, we probe the dynamics of Na transport in MoS2 nanostructures in real-time and compare the intercalation kinetics with previous lithium insertion. We find that Na intercalation follows the two-phase reaction mechanism, that is, trigonal prismatic 2H-MoS2 -> octahedral 11-NaMoS2, and the phase boundary is similar to 2 nm thick. The velocity of the phase boundary at <10 nm/s is 1 order smaller than that of lithium diffusion, suggesting sluggish kinetics for sodium intercalation. The newly formed 1T-NaMoS2 contains a high density of defects and series superstructure domains with typical sizes of similar to 3-5 nm. Our results provide valuable insights into finding suitable Na electrode materials and understanding the properties of transition metal dichalcogenide MoS2. C1 [Gao, Peng; Liu, Kaihui] Peking Univ, Sch Phys, Ctr Nanochem, Beijing 100871, Peoples R China. [Gao, Peng; Liu, Kaihui] Peking Univ, Collaborat Innovat Ctr Quantum Matter, Beijing 100871, Peoples R China. [Wang, Liping] Univ Elect Sci & Technol China, State Key Lab Elect Thin Films & Integrated Devic, Chengdu 610054, Peoples R China. [Zhang, Yuyang] Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China. [Zhang, Yuyang] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China. [Huang, Yuan] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Gao, P (reprint author), Peking Univ, Sch Phys, Ctr Nanochem, Beijing 100871, Peoples R China. EM p-gao@pku.edu.cn RI Zhang, Yu-Yang/F-2078-2011; Gao, Peng/B-4675-2012; Liu, Kaihui/A-9938-2014 OI Zhang, Yu-Yang/0000-0002-9548-0021; FU National Natural Science Foundation of China [51502007, 51522201, 11474006, 91433102]; National Program for Thousand Young Talents of China; University of Electronic Science and Technology of China [Y02002010301080] FX This work was supported by the National Natural Science Foundation of China (51502007, 51522201, 11474006, 91433102) and the National Program for Thousand Young Talents of China. L.P.W. was supported by the University of Electronic Science and Technology of China (Y02002010301080). NR 35 TC 16 Z9 16 U1 41 U2 174 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD NOV PY 2015 VL 9 IS 11 BP 11296 EP 11301 DI 10.1021/acsnano.5b04950 PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA CX1OF UT WOS:000365464800078 PM 26389724 ER PT J AU Parzinger, E Miller, B Blaschke, B Garrido, JA Ager, JW Holleitner, A Wurstbauer, U AF Parzinger, Eric Miller, Bastian Blaschke, Benno Garrido, Jose A. Ager, Joel W. Holleitner, Alexander Wurstbauer, Ursula TI Photocatalytic Stability of Single- and Few-Layer MoS2 SO ACS NANO LA English DT Article DE two-dimensional materials; MoS2; photocatalytic stability; photocatalytic selectivity; solar water splitting; Raman spectroscopy ID HYDROGEN EVOLUTION REACTION; ACTIVE EDGE SITES; MONOLAYER MOS2; H-2 EVOLUTION; PHOTOLUMINESCENCE; NANOSHEETS; ELECTROCATALYSIS; OPTOELECTRONICS; NANOPARTICLES; CATALYST AB MoS2 crystals exhibit excellent catalytic properties and great potential for photocatalytic production of solar fuels such as hydrogen gas. In this regard, the photocatalytic stability of exfoliated single- and few-layer MoS2 immersed in water is investigated by mu-Raman spectroscopy. We find that while the basal plane of MoS2 can be treated as stable under photocatalytic conditions, the edge sites and presumably also defect sites are highly affected by a photoinduced corrosion process. The edge sites of MoS2 monolayers are significantly more resistant to photocatalytic degradation compared to MoS2 multilayer edge sites. The photostability of MoS2 edge sites depends on the photon energy with respect to the band gap in MoS2 and also on the presence of oxygen in the electrolyte. These findings are interpreted in the framework of an oxidation process converting MoS2 into MoOx in the presence of oxygen and photoinduced charge carriers. The high stability of the MoS2 basal plane under photocatalytic treatment under visible light irradiation of extreme light intensities on the order of P approximate to 10 mW/mu m(2) substantiates MoS2's potential as photocatalyst for solar hydrogen production. C1 [Parzinger, Eric; Miller, Bastian; Blaschke, Benno; Garrido, Jose A.; Holleitner, Alexander; Wurstbauer, Ursula] Tech Univ Munich, Walter Schottky Inst, D-85748 Garching, Germany. [Parzinger, Eric; Miller, Bastian; Blaschke, Benno; Garrido, Jose A.; Holleitner, Alexander; Wurstbauer, Ursula] Tech Univ Munich, Dept Phys, D-85748 Garching, Germany. [Parzinger, Eric; Miller, Bastian; Holleitner, Alexander; Wurstbauer, Ursula] Nanosyst Initiat Munich, D-80799 Munich, Germany. [Ager, Joel W.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Joint Ctr Artificial Photosynthesis, Berkeley, CA 94720 USA. [Ager, Joel W.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Parzinger, E (reprint author), Tech Univ Munich, Walter Schottky Inst, Coulombwall 4a, D-85748 Garching, Germany. EM eric.parzinger@wsi.tum.de; ursula.wurstbauer@wsi.tum.de RI Garrido, Jose A./K-7491-2015 OI Garrido, Jose A./0000-0001-5621-1067 FU DFG via excellence cluster Nanosystems Initiative Munich (NIM); BaCaTeC; [Ho 3324/8-1] FX We acknowledge financial support by the DFG via excellence cluster Nanosystems Initiative Munich (NIM) and project Ho 3324/8-1 as well as BaCaTeC. NR 45 TC 15 Z9 15 U1 43 U2 210 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD NOV PY 2015 VL 9 IS 11 BP 11302 EP 11309 DI 10.1021/acsnano.5b04979 PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA CX1OF UT WOS:000365464800079 PM 26536283 ER PT J AU Jakociunas, T Rajkumar, AS Zhang, J Arsovska, D Rodriguez, A Jendresen, CB Skjodt, ML Nielsen, AT Borodina, I Jensen, MK Keasling, JD AF Jakociunas, Tadas Rajkumar, Arun S. Zhang, Jie Arsovska, Dushica Rodriguez, Angelica Jendresen, Christian Bille Skjodt, Mette L. Nielsen, Alex T. Borodina, Irina Jensen, Michael K. Keasling, Jay D. TI CasEMBLR: Cas9-Facilitated Multiloci Genomic Integration of in Vivo Assembled DNA Parts in Saccharomyces cerevisiae SO ACS SYNTHETIC BIOLOGY LA English DT Article DE DNA assembly; CRISPR/Cas9; double-strand break; metabolic engineering ID CHROMOSOMAL INTEGRATION; YEAST TRANSFORMATION; CHORISMATE MUTASE; ESCHERICHIA-COLI; GENE; OLIGONUCLEOTIDES; CLONING; REPAIR; RECOMBINATION; CONSTRUCTION AB Homologous recombination (HR) in Saccharomyces cerevisiae has been harnessed for both plasmid construction and chromosomal integration of foreign DNA. Still, native HR machinery is not efficient enough for complex and marker-free genome engineering required for modern metabolic engineering. Here, we present a method for marker-free multiloci integration of in vivo assembled DNA parts. By the use of CRISPR/Cas9-mediated one-step double-strand breaks at single, double and triple integration sites we report the successful in vivo assembly and chromosomal integration of DNA parts. We call our method CasEMBLR and validate its applicability for genome engineering and cell factory development in two ways: (i) introduction of the carotenoid pathway from 15 DNA parts into three targeted loci, and (ii) creation of a tyrosine production strain using ten parts into two loci, simultaneously knocking out two genes. This method complements and improves the current set of tools available for genome engineering in S. cerevisiae. C1 [Jakociunas, Tadas; Rajkumar, Arun S.; Zhang, Jie; Arsovska, Dushica; Rodriguez, Angelica; Jendresen, Christian Bille; Skjodt, Mette L.; Nielsen, Alex T.; Borodina, Irina; Jensen, Michael K.; Keasling, Jay D.] Tech Univ Denmark, Novo Nordisk Fdn, Ctr Biosustainabil, DK-2800 Lyngby, Denmark. [Keasling, Jay D.] Joint BioEnergy Inst, Emeryville, CA 94608 USA. [Keasling, Jay D.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Keasling, Jay D.] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. [Keasling, Jay D.] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. RP Jensen, MK (reprint author), Tech Univ Denmark, Novo Nordisk Fdn, Ctr Biosustainabil, DK-2800 Lyngby, Denmark. EM mije@biosustain.dtu.dk RI Jakociunas, Tadas/J-3549-2016; OI Jakociunas, Tadas/0000-0003-1264-173X; Jensen, Michael Krogh/0000-0001-7574-4707; Borodina, Irina/0000-0002-8452-1393; Nielsen, Alex Toftgaard/0000-0001-6616-0187 FU Novo Nordisk Foundation FX This work was supported by the Novo Nordisk Foundation. Authors would like to acknowledge Prof. Gerhard Sandmann for plasmid sharing. NR 43 TC 17 Z9 19 U1 3 U2 22 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2161-5063 J9 ACS SYNTH BIOL JI ACS Synth. Biol. PD NOV PY 2015 VL 4 IS 11 BP 1226 EP 1234 DI 10.1021/acssynbio.5b00007 PG 9 WC Biochemical Research Methods SC Biochemistry & Molecular Biology GA CX1MV UT WOS:000365461200008 PM 25781611 ER PT J AU Klesmith, JR Bacik, JP Michalczyk, R Whitehead, TA AF Klesmith, Justin R. Bacik, John-Paul Michalczyk, Ryszard Whitehead, Timothy A. TI Comprehensive Sequence-Flux Mapping of a Levoglucosan Utilization Pathway in E. coli SO ACS SYNTHETIC BIOLOGY LA English DT Article DE deep mutational scanning; protein design; metabolic engineering; fast pyrolysis; biomass conversion ID ESCHERICHIA-COLI; EXPANDING METABOLISM; PROTEIN; OPTIMIZATION; STABILITY; BIOSYNTHESIS; EVOLVABILITY; TRANSLATION; EVOLUTION; OIL AB Synthetic metabolic pathways often suffer from low specific productivity, and new methods that quickly assess pathway functionality for many thousands of variants are urgently needed. Here we present an approach that enables the rapid and parallel determination of sequence effects on flux for complete gene-encoding sequences. We show that this method can be used to determine the effects of over 8000 single point mutants of a pyrolysis oil catabolic pathway implanted in Escherichia coli. Experimental sequence-function data sets predicted whether fitness-enhancing mutations to the enzyme levoglucosan kinase resulted from enhanced catalytic efficiency or enzyme stability. A structure of one design incorporating 38 mutations elucidated the structural basis of high fitness mutations. One design incorporating 15 beneficial mutations supported a 15-fold improvement in growth rate and greater than 24-fold improvement in enzyme activity relative to the starting pathway. This technique can be extended to improve a wide variety of designed pathways. C1 [Klesmith, Justin R.] Michigan State Univ, Dept Biochem & Mol Biol, E Lansing, MI 48824 USA. [Bacik, John-Paul; Michalczyk, Ryszard] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87545 USA. [Whitehead, Timothy A.] Michigan State Univ, Dept Chem Engn & Mat Sci, E Lansing, MI 48824 USA. [Whitehead, Timothy A.] Michigan State Univ, Dept Biosyst & Agr Engn, E Lansing, MI 48824 USA. RP Whitehead, TA (reprint author), Michigan State Univ, Dept Chem Engn & Mat Sci, E Lansing, MI 48824 USA. EM taw@egr.msu.edu OI Klesmith, Justin/0000-0003-2908-9355; Michalczyk, Ryszard/0000-0001-8839-6473 FU NSF CAREER Award [CBET-1254238]; Protein Crystallography Station from Department of Energy Office of Biological and Environmental Research FX This work was funded by a NSF CAREER Award to T.A.W. (Award #CBET-1254238). J.P.B. was partially funded through the Protein Crystallography Station from the Department of Energy Office of Biological and Environmental Research. NR 48 TC 6 Z9 6 U1 3 U2 9 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2161-5063 J9 ACS SYNTH BIOL JI ACS Synth. Biol. PD NOV PY 2015 VL 4 IS 11 BP 1235 EP 1243 DI 10.1021/acssynbio.5b00131 PG 9 WC Biochemical Research Methods SC Biochemistry & Molecular Biology GA CX1MV UT WOS:000365461200009 PM 26369947 ER PT J AU Freed, EF Winkler, JD Weiss, SJ Garst, AD Mutalik, VK Arkin, AP Knight, R Gill, RT AF Freed, Emily F. Winkler, James D. Weiss, Sophie J. Garst, Andrew D. Mutalik, Vivek K. Arkin, Adam P. Knight, Rob Gill, Ryan T. TI Genome-Wide Tuning of Protein Expression Levels to Rapidly Engineer Microbial Traits SO ACS SYNTHETIC BIOLOGY LA English DT Article DE recombineering; Illumina sequencing; directed evolution; genome-wide expression library; genotype-phenotype mapping ID ESCHERICHIA-COLI K-12; FURFURAL TOLERANCE; GENE-EXPRESSION; ONE-STEP; PLASMID; RECOMBINATION; AMPLIFICATION; PROTEOMICS; SEQUENCE; PCR AB The reliable engineering of biological systems requires quantitative mapping of predictable and context-independent expression over a broad range of protein expression levels. However, current techniques for modifying expression levels are cumbersome and are not amenable to high-throughput approaches. Here we present major improvements to current techniques through the design and construction of E. coli genome-wide libraries using synthetic DNA cassettes that can tune expression over a similar to 10(4) range. The cassettes also contain molecular barcodes that are optimized for next-generation sequencing, enabling rapid and quantitative tracking of alleles that have the highest fitness advantage. We show these libraries can be used to determine which genes and expression levels confer greater fitness to E. coli under different growth conditions. C1 [Freed, Emily F.; Winkler, James D.; Weiss, Sophie J.; Garst, Andrew D.; Gill, Ryan T.] Univ Colorado Boulder, Dept Chem & Biol Engn, Boulder, CO 80309 USA. [Mutalik, Vivek K.; Arkin, Adam P.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Mutalik, Vivek K.; Arkin, Adam P.] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. [Knight, Rob] Univ Calif San Diego, Dept Pediat, La Jolla, CA 92093 USA. [Knight, Rob] Univ Calif San Diego, Dept Comp Sci & Engn, La Jolla, CA 92093 USA. RP Gill, RT (reprint author), Univ Colorado Boulder, Dept Chem & Biol Engn, Boulder, CO 80309 USA. EM rtg@colorado.edu RI Arkin, Adam/A-6751-2008; Knight, Rob/D-1299-2010; OI Arkin, Adam/0000-0002-4999-2931; Mutalik, Vivek/0000-0001-7934-0400 FU Office of Science (BER), U.S. Department of Energy [DE-SC0008812] FX We thank the Gill lab and J. Warner for helpful discussions. We thank W.A. Walters for the barcode generation software. We also thank D. Court (NIH) for providing the pSIM5 plasmid. This research was supported by the Office of Science (BER), U.S. Department of Energy, DE-SC0008812. NR 37 TC 0 Z9 0 U1 2 U2 6 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2161-5063 J9 ACS SYNTH BIOL JI ACS Synth. Biol. PD NOV PY 2015 VL 4 IS 11 BP 1244 EP 1253 DI 10.1021/acssynbio.5b00133 PG 10 WC Biochemical Research Methods SC Biochemistry & Molecular Biology GA CX1MV UT WOS:000365461200010 PM 26478262 ER PT J AU Martino, MM Briquez, PS Maruyama, K Hubbell, JA AF Martino, Mikael M. Briquez, Priscilla S. Maruyama, Kenta Hubbell, Jeffrey A. TI Extracellular matrix-inspired growth factor delivery systems for bone regeneration SO ADVANCED DRUG DELIVERY REVIEWS LA English DT Review DE Controlled delivery; Bone morphogenetic protein; Vascular endothelial growth factor; Platelet-derived growth factor; Fibroblast growth factor; Extracellular matrix; Integrins; Clinical translation ID HEPARIN-CONJUGATED FIBRIN; MESENCHYMAL STEM-CELLS; FACTOR-BINDING DOMAIN; SPINE SURGERY CURRENT; HUMAN TRABECULAR BONE; PLATELET-RICH PLASMA; SIZE DEFECT MODEL; MORPHOGENETIC PROTEIN-2; FRACTURE REPAIR; CLINICAL-APPLICATIONS AB Growth factors are very promising molecules to enhance bone regeneration. However, their translation to clinical use has been seriously limited, facing issues related to safety and cost-effectiveness. These problems derive from the vastly supra-physiological doses of growth factor used without optimized delivery systems. Therefore, these issues have motivated the development of new delivery systems allowing better control of the spatiotemporal release and signaling of growth factors. Because the extracellular matrix (ECM) naturally plays a fundamental role in coordinating growth factor activity in vivo, a number of novel delivery systems have been inspired by the growth factor regulatory function of the ECM. After introducing the role of growth factors during the bone regeneration process, this review exposes different issues that growth factor-based therapies have encountered in the clinic and highlights recent delivery approaches based on the natural interaction between growth factor and the ECM. (C) 2015 Elsevier B.V. All rights reserved. C1 [Martino, Mikael M.; Maruyama, Kenta] Osaka Univ, Immunol Frontier Res Ctr, Suita, Osaka 5650871, Japan. [Briquez, Priscilla S.; Hubbell, Jeffrey A.] Ecole Polytech Fed Lausanne, Sch Life Sci, Inst Bioengn, Lausanne, Switzerland. [Briquez, Priscilla S.; Hubbell, Jeffrey A.] Ecole Polytech Fed Lausanne, Sch Engn, Lausanne, Switzerland. [Hubbell, Jeffrey A.] Univ Chicago, Inst Mol Engn, Chicago, IL 60637 USA. [Hubbell, Jeffrey A.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Martino, MM (reprint author), Osaka Univ, Immunol Frontier Res Ctr, 3-1 Yamadaoka, Suita, Osaka 5650871, Japan. EM mmartino@ifrec.osaka-u.ac.jp; jhubbell@uchicago.edu RI Martino, Mikael/N-9345-2013 OI Martino, Mikael/0000-0002-5012-4605 FU European Research Council under the Advanced Grant Cytrix; Swiss National Science Foundation [P300P3-151198]; International Joint Research Promotion Program of Osaka University FX This work was supported in part by the European Research Council under the Advanced Grant Cytrix, by the Swiss National Science Foundation (P300P3-151198), and the International Joint Research Promotion Program of Osaka University. NR 167 TC 14 Z9 14 U1 7 U2 25 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0169-409X EI 1872-8294 J9 ADV DRUG DELIVER REV JI Adv. Drug Deliv. Rev. PD NOV 1 PY 2015 VL 94 BP 41 EP 52 DI 10.1016/j.addr.2015.04.007 PG 12 WC Pharmacology & Pharmacy SC Pharmacology & Pharmacy GA CY0BR UT WOS:000366071700005 PM 25895621 ER PT J AU Yin, YW Huang, WC Liu, YK Yang, SW Dong, SN Tao, J Zhu, YM Li, Q Li, XG AF Yin, Yue-Wei Huang, Wei-Chuan Liu, Yu-Kuai Yang, Sheng-Wei Dong, Si-Ning Tao, Jing Zhu, Yi-Mei Li, Qi Li, Xiao-Guang TI Octonary Resistance States in La0.7Sr0.3MnO3/BaTiO3/La0.7Sr0.3MnO3 Multiferroic Tunnel Junctions SO ADVANCED ELECTRONIC MATERIALS LA English DT Article ID LA0.67SR0.33MNO3 THIN-FILMS; FERROELECTRIC CONTROL; MAGNETIC-ANISOTROPY; SPIN POLARIZATION; ROOM-TEMPERATURE; MAGNETORESISTANCE; ELECTRORESISTANCE; HETEROSTRUCTURES; INTERFACE; MEMRISTOR AB General drawbacks of current electronic/spintronic devices are high power consumption and low density storage. A multiferroic tunnel junction (MFTJ), employing a ferroelectric barrier layer sandwiched between two ferromagnetic layers, presents four resistance states in a single device and therefore provides an alternative way to achieve high density memories. Here, an MFTJ device with eight nonvolatile resistance states by further integrating the design of noncollinear magnetization alignments between the ferromagnetic layers is demonstrated. Through the angle-resolved tunneling magnetoresistance investigations on La0.7Sr0.3MnO3/BaTiO3/La0.7Sr0.3MnO3 junctions, it is found that, besides collinear parallel/antiparallel magnetic configurations, the MFTJ shows at least two other stable noncollinear (45 degrees and 90 degrees) magnetic confi gurations. Combining the tunneling electroresistance effect caused by the ferroelectricity reversal of the BaTiO3 barrier, an octonary memory device is obtained, representing potential applications in high density nonvolatile storage in the future. C1 [Yin, Yue-Wei; Huang, Wei-Chuan; Liu, Yu-Kuai; Yang, Sheng-Wei; Dong, Si-Ning; Li, Xiao-Guang] Univ Sci & Technol China, Dept Phys, Hefei Natl Lab Phys Sci Microscale, Hefe 230026, Peoples R China. [Yin, Yue-Wei; Li, Qi] Penn State Univ, Dept Phys, University Pk, PA 16802 USA. [Tao, Jing; Zhu, Yi-Mei] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Li, Xiao-Guang] Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Nanjing 210093, Jiangsu, Peoples R China. RP Li, XG (reprint author), Univ Sci & Technol China, Dept Phys, Hefei Natl Lab Phys Sci Microscale, Hefe 230026, Peoples R China. EM qil1@psu.edu; lixg@ustc.edu.cn RI Li, Xiao-Guang/J-9469-2014; Yin, Yuewei/A-2966-2013; Huang, Weichuan/E-9050-2017 OI Yin, Yuewei/0000-0003-0965-4951; FU NSFC; NBRPC [2012CB922003, 2015CB921201]; FRFCU [WK2030020026]; CPSF [2014T70590]; DOE [DE-FG02-08ER4653, DE-AC02-98CH10886]; NSF [DMR-1207474, DMR-1411166] FX This work at USTC was supported in part by the NSFC, the NBRPC (2012CB922003, 2015CB921201), the FRFCU (WK2030020026), and the CPSF (2014T70590). The work at PSU was supported in part by the DOE (DE-FG02-08ER4653) and the NSF (DMR-1207474 and DMR-1411166). The PSU NNIN Nanofabrication facilities are acknowledged. Work done at BNL was supported by the DOE (DE-AC02-98CH10886). NR 40 TC 1 Z9 1 U1 12 U2 50 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 2199-160X J9 ADV ELECTRON MATER JI Adv. Electron. Mater. PD NOV PY 2015 VL 1 IS 11 AR 1500183 DI 10.1002/aelm.201500183 PG 7 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA CX1DF UT WOS:000365435800006 ER PT J AU Maksud, M Yoo, J Harris, CT Palapati, NKR Subramanian, A AF Maksud, M. Yoo, J. Harris, C. T. Palapati, N. K. R. Subramanian, A. TI Young's modulus of [111] germanium nanowires SO APL MATERIALS LA English DT Article ID BATTERY ANODES; SILICON NANOWIRES; GE NANOWIRES; CAPACITY; STRENGTH AB This paper reports a diameter-independent Young's modulus of 91.9 +/- 8.2 GPa for [111] Germanium nanowires (Ge NWs). When the surface oxide layer is accounted for using a core-shell NW approximation, the YM of the Ge core approaches a near theoretical value of 147.6 +/- 23.4 GPa. The ultimate strength of a NW device was measured at 10.9 GPa, which represents a very high experimental-to-theoretical strength ratio of similar to 75%. With increasing interest in this material system as a high-capacity lithium-ion battery anode, the presented data provide inputs that are essential in predicting its lithiation-induced stress fields and fracture behavior. (C) 2015 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License. C1 [Maksud, M.; Palapati, N. K. R.; Subramanian, A.] Virginia Commonwealth Univ, Dept Mech & Nucl Engn, Richmond, VA 23284 USA. [Yoo, J.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. [Harris, C. T.] Sandia Natl Labs, Ctr Integrated Nanotechnol, Albuquerque, NM 87185 USA. RP Subramanian, A (reprint author), Virginia Commonwealth Univ, Dept Mech & Nucl Engn, Med Coll Virginia Campus, Richmond, VA 23284 USA. EM asubramanian@vcu.edu RI Yoo, Jinkyoung/B-5291-2008 OI Yoo, Jinkyoung/0000-0002-9578-6979 FU National Science Foundation [1453966]; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was partly supported by the National Science Foundation under Grant No. 1453966. This work was performed, in part, at the Sandia-Los Alamos Center for Integrated Nanotechnologies (CINT), a U.S. Department of Energy, Office of Basic Energy Sciences user facility. This involved chip nanofabrication activities at CINT, which were performed under the user Proposal No. U2014A0084. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin company, for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 28 TC 2 Z9 2 U1 2 U2 12 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 2166-532X J9 APL MATER JI APL Mater. PD NOV PY 2015 VL 3 IS 11 AR 116101 DI 10.1063/1.4935060 PG 6 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA CX5TN UT WOS:000365765500002 ER PT J AU Ogunro, OO Burrows, SM Elliott, S Frossard, AA Hoffman, F Letscher, RT Moore, JK Russell, LM Wang, SL Wingenter, OW AF Ogunro, Oluwaseun O. Burrows, Susannah M. Elliott, Scott Frossard, Amanda A. Hoffman, Forrest Letscher, Robert T. Moore, J. Keith Russell, Lynn M. Wang, Shanlin Wingenter, Oliver W. TI Global distribution and surface activity of macromolecules in offline simulations of marine organic chemistry SO BIOGEOCHEMISTRY LA English DT Article DE Organic macromolecules; Mixed layer distributions; Langmuir adsorption; Fractional coverage; Bubble films; Air-water interface ID AIR-WATER-INTERFACE; SEA-SPRAY AEROSOL; AMINO-ACIDS; FATTY-ACIDS; AQUEOUS-SOLUTIONS; OCEAN; SEAWATER; MATTER; PACIFIC; MODEL AB Organic macromolecules constitute a high percentage of remote sea spray. They enter the atmosphere through adsorption onto bubbles followed by bursting at the ocean surface, and go on to influence the chemistry of the fine mode aerosol. We present a global estimate of mixed-layer macromolecular distributions, driven by offline marine systems model output. The approach permits estimation of oceanic concentrations and bubble film surface coverages for several classes of organic compound. Mixed layer levels are computed from the output of a global ocean ecodynamics model by relating the macromolecules to standard biogeochemical tracers. Steady state is assumed for labile forms, and for longer-lived components we rely on ratios to existing transported variables. Adsorption is then represented through conventional Langmuir isotherms, with equilibria deduced from laboratory analogs. Open water concentrations locally exceed one micromolar carbon for the total of proteins, polysaccharides and refractory heteropolycondensates. The shorter-lived lipids remain confined to regions of strong biological activity. Results are evaluated against available measurements for all compound types, and agreement is generally well within an order of magnitude. Global distributions are further estimated for both fractional coverage of bubble films at the air-water interface and the two-dimensional concentration excess. Overall, we show that macromolecular mapping provides a novel tool for the comprehension of oceanic surfactant patterns. These results may prove useful in planning field experiments and assessing the potential response of surface chemical behaviors to global change. C1 [Ogunro, Oluwaseun O.; Wingenter, Oliver W.] New Mexico Inst Min & Technol, Socorro, NM 87801 USA. [Burrows, Susannah M.] Pacific NW Natl Lab, Richland, WA 99354 USA. [Elliott, Scott; Wang, Shanlin] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Frossard, Amanda A.; Russell, Lynn M.] Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USA. [Frossard, Amanda A.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Hoffman, Forrest] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Letscher, Robert T.; Moore, J. Keith] Univ Calif Irvine, Irvine, CA 92617 USA. RP Elliott, S (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. EM sme@lanl.gov RI Burrows, Susannah/A-7429-2011; Hoffman, Forrest/B-8667-2012; Wang, Shanlin/A-2576-2017; OI Burrows, Susannah/0000-0002-0745-7252; Hoffman, Forrest/0000-0001-5802-4134; Wang, Shanlin/0000-0002-7677-4745; Letscher, Robert/0000-0002-3768-9003 FU Office of Science Biological and Environmental Research division of the U.S. Department of Energy, as part of an Earth System Modeling Program; NSF [OCE-1129580, AGS-1360645]; DOE Office of Biological and Environmental Research [ER65358] FX Participants at Los Alamos National Laboratory and New Mexico Tech thank the U.S. Department of Energy SciDAC program (Scientific Discovery for Advanced Computing), and specifically its ACES4BGC project (Applying Computationally Efficient Schemes for Biogeochemical Cycles). SMB was supported by the Office of Science Biological and Environmental Research division of the U.S. Department of Energy, as part of an Earth System Modeling Program. Additionally, contributions by AAF and LMR were supported by NSF grants OCE-1129580 and AGS-1360645. JKM and RTL acknowledge support from the DOE Office of Biological and Environmental Research, Grant ER65358. Validation exercises were conducted as part of the DOE marine biogeochemistry Benchmarking and Feedbacks effort. NR 91 TC 1 Z9 1 U1 9 U2 23 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0168-2563 EI 1573-515X J9 BIOGEOCHEMISTRY JI Biogeochemistry PD NOV PY 2015 VL 126 IS 1-2 BP 25 EP 56 DI 10.1007/s10533-015-0136-x PG 32 WC Environmental Sciences; Geosciences, Multidisciplinary SC Environmental Sciences & Ecology; Geology GA CX7FU UT WOS:000365868400003 ER PT J AU Lam, RK Gamlieli, Z Harris, SJ Saykally, RJ AF Lam, Royce K. Gamlieli, Zach Harris, Stephen J. Saykally, Richard J. TI Thermally driven electrokinetic energy conversion with liquid water microjets SO CHEMICAL PHYSICS LETTERS LA English DT Article ID STREAMING CURRENT MEASUREMENTS; NANOFLUIDIC CHANNELS; POWER-GENERATION; INTERFACES AB A goal of current energy research is to design systems and devices that can efficiently exploit waste heat and utilize solar or geothermal heat energy for electrical power generation. We demonstrate a novel technique exploiting water's large coefficient of thermal expansion, wherein modest thermal gradients produce the requisite high pressure for driving fast-flowing liquid water microjets, which can effect the direct conversion of the kinetic energy into electricity and gaseous hydrogen. Waste heat in thermoelectric generating plants and combustion engines, as well as solar and geothermal energy could be used to drive these systems. Published by Elsevier B.V. C1 [Lam, Royce K.; Gamlieli, Zach; Saykally, Richard J.] Univ Calif Berkeley, Dept Chem, D31 Hildebrand Hall, Berkeley, CA 94720 USA. [Lam, Royce K.; Saykally, Richard J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Harris, Stephen J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Saykally, RJ (reprint author), Univ Calif Berkeley, Dept Chem, D31 Hildebrand Hall, Berkeley, CA 94720 USA. EM saykally@berkeley.edu OI Lam, Royce/0000-0003-2878-038X FU Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy (DOE) [DE-AC02-05CH11231] FX This work was supported by the Director, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy (DOE) under Contract No. DE-AC02-05CH11231, through LBNL Chemical Sciences Division. The data presented are available upon request to saykally@berkeley,edu. NR 19 TC 0 Z9 0 U1 6 U2 25 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0009-2614 EI 1873-4448 J9 CHEM PHYS LETT JI Chem. Phys. Lett. PD NOV 1 PY 2015 VL 640 BP 172 EP 174 DI 10.1016/j.cplett.2015.10.027 PG 3 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA CX6MG UT WOS:000365814500032 ER PT J AU Baumgardner, ME Vaughn, TL Lakshminarayanan, A Olsen, D Ratcliff, MA McCormick, RL Marchese, AJ AF Baumgardner, Marc E. Vaughn, Timothy L. Lakshminarayanan, Arunachalam Olsen, Daniel Ratcliff, Matthew A. McCormick, Robert L. Marchese, Anthony J. TI Combustion of Lignocellulosic Biomass Based Oxygenated Components in a Compression Ignition Engine SO ENERGY & FUELS LA English DT Article ID DUTY DIESEL-ENGINE; EMISSION EVALUATION; VEGETABLE-OIL; PYROLYSIS OIL; LIQUID FUELS; BIO-FUELS; PERFORMANCE; BIODIESEL; STRATEGIES; LIGNIN AB Processes such as fast pyrolysis of whole biomass or base-catalyzed depolymerization of lignin produce complex mixtures Of oxygenated compounds that must be upgraded to be suitable for blending with petroleum and processing in a refinery. Complete removal of these oxygenated Compounds is exceedingly energy intensive, and it is likely that upgraded pyrolysis oils will contain up to 2% oxygen content to be economically viable. The purpose of this study was to evaluate the effect of the presence of oxygenated chemical components representative of those present in upgraded pyrolysis oil on diesel engine performance and emissions. Engine testing was performed by blending seven different oxygenated components and one multicomponent blend with certification ultralow sulfur diesel fuel and quantifying the performance and emissions from the combustion of these fuels in a four-cylinder, turbocharged, 4.5 L John Deere PowerTech Plus common rail, direct injection diesel engine that meets Tier 3 off-highway emissions specifications. The properties of the oxygenated fuel components were fully characterized in accordance with ASTM diesel fuel standards. Gaseous emissions measurements included CO, CO2, NO, NO2, and total hydrocarbons; particulate measurements were performed on a PM10 basis. The residual oxygenate blends exhibited very few statistically significant differences compared to diesel at lower blend levels (2 vol %) but negative effects were observed at higher blend levels (5-6 vol %). C1 [Baumgardner, Marc E.] Gonzaga Univ, Dept Mech Engn, Spokane, WA 99258 USA. [Vaughn, Timothy L.; Lakshminarayanan, Arunachalam; Olsen, Daniel; Marchese, Anthony J.] Colorado State Univ, Dept Mech Engn, Ft Collins, CO 80523 USA. [Ratcliff, Matthew A.; McCormick, Robert L.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Marchese, AJ (reprint author), Colorado State Univ, Dept Mech Engn, Ft Collins, CO 80523 USA. EM marchese@colostate.edu RI McCormick, Robert/B-7928-2011 FU Kevin Stork of U.S. Department of Energy, Vehicle Technologies Office [DE347-AC36-99GO10337]; National Renewable Energy Laboratory [DE-FOA-0000239]; Colorado Energy Research Collaboratory FX This work was supported by Kevin Stork of the U.S. Department of Energy, Vehicle Technologies Office, under Contract No. DE347-AC36-99GO10337 with the National Renewable Energy Laboratory and was awarded under Funding Opportunity Announcement DE-FOA-0000239. Funding was also provided to Colorado State University by the Colorado Energy Research Collaboratory. NR 31 TC 4 Z9 4 U1 2 U2 7 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 EI 1520-5029 J9 ENERG FUEL JI Energy Fuels PD NOV PY 2015 VL 29 IS 11 BP 7317 EP 7326 DI 10.1021/acs.energyfuels.5b01595 PG 10 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA CX1NH UT WOS:000365462400048 ER PT J AU Watkins, JD Siefert, NS Zhou, X Myers, CR Kitchin, JR Hopkinson, DP Nulwala, HB AF Watkins, John D. Siefert, Nicholas S. Zhou, Xu Myers, Christina R. Kitchin, John R. Hopkinson, David P. Nulwala, Hunaid B. TI Redox-Mediated Separation of Carbon Dioxide from Flue Gas SO ENERGY & FUELS LA English DT Article ID FLOW BATTERY; REDUCTIVE ADDITION; QUINONES; CO2; ELECTROCHEMISTRY; CAPTURE AB The proton-coupled electron transfer (PCET) reaction of a quinone has been used to create a pH gradient capable of the active pumping of CO2 through a liquid membrane. The quinone redox couples, hydroquinone/benzoquinone and 2,6-dimethylbenzoquinone/2,6-dimethylhydroquinone, have been investigated in the proton transfer mechanisms associated with electron transfer in sodium bicarbonate solutions. These same conditions have then been applied to an active liquid membrane for proton pumping across a membrane electrode assembly under potential bias, acting as an active membrane for CO2 separation. Qualitative results are reported toward the development of an active redox membrane for CO2 separation from flue gas. C1 [Watkins, John D.; Siefert, Nicholas S.; Myers, Christina R.; Hopkinson, David P.] US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. [Zhou, Xu; Nulwala, Hunaid B.] Liquid Ion Solut LLC, Pittsburgh, PA 15205 USA. [Kitchin, John R.] Carnegie Mellon Univ, Dept Chem Engn, Pittsburgh, PA 15213 USA. [Nulwala, Hunaid B.] Carnegie Mellon Univ, Dept Chem, Pittsburgh, PA 15213 USA. RP Watkins, JD (reprint author), US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. EM dr.j.d.watkins@gmail.com OI Nulwala, Hunaid/0000-0001-7481-3723 FU U.S. Department of Energy through the FY15 Carbon Capture Field Work Proposal at the National Energy Technology Laboratory in Pittsburgh, PA; U.S. Department of Energy FX This work was funded from the U.S. Department of Energy through the FY15 Carbon Capture Field Work Proposal at the National Energy Technology Laboratory in Pittsburgh, PA. This research was supported in part by an appointment to the National Energy Technology Laboratory Research Participation Program, sponsored by the U.S. Department of Energy and administered by the Oak Ridge Institute for Science and Education. NR 27 TC 1 Z9 1 U1 7 U2 17 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 EI 1520-5029 J9 ENERG FUEL JI Energy Fuels PD NOV PY 2015 VL 29 IS 11 BP 7508 EP 7515 DI 10.1021/acs.energyfuels.5b01807 PG 8 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA CX1NH UT WOS:000365462400068 ER PT J AU Dumitrescu, CE Polonowski, CJ Fisher, BT Lilik, GK Mueller, CJ AF Dumitrescu, Cosmin E. Polonowski, Christopher J. Fisher, Brian T. Lilik, Gregory K. Mueller, Charles J. TI Diesel Fuel Property Effects on In-Cylinder Liquid Penetration Length: Impact on Smoke Emissions and Equivalence Ratio Estimates at the Flame Lift-Off Length SO ENERGY & FUELS LA English DT Article ID INTERNAL NOZZLE-FLOW; SPRAY BEHAVIOR AB In this study, elastic scattering was employed to investigate diesel fuel property effects on the liquid length (i.e., the maximum extent of in-cylinder liquid-phase fuel penetration) using select research fuels: an ultralow-sulfur #2 diesel emissions-certification fuel (CF) and four of the Coordinating Research Council (CRC) Fuels for Advanced Combustion Engines (FACE) diesel fuels (F1, F2, F6, and F8). The experiments were performed in a single-cylinder heavy-duty optical compression-ignition engine under time-varying, noncombusting conditions to minimize the influence of chemical heat release on the liquid-length measurement. The FACE diesel fuel and CF liquid lengths under combusting conditions were also predicted using Siebers scaling law and pressure data from previous work using the same fuels at similar in-cylinder conditions. The objective was to observe if the liquid length under noncombusting or combusting conditions provides additional insights into the relationships among the main fuel properties (i.e., cetane number (CN), the 90 vol % distillation recovery temperature (T90), and aromatic content) and smoke emissions. Results suggest that liquid-length values are best correlated to fuel distillation characteristics measured with ASTM D2887 (simulated distillation method). This work also studied the relationship between liquid length and lift-off length, H (i.e., distance from the fuel-injector orifice exit to the position where the standing premixed autoignition zone stabilizes during mixing-controlled combustion). Two possible cases were identified based on the relative magnitudes of liquid length under combusting conditions (L-c) and H. The low-CN fuels are representative of the first case, L-c < H, in which the fuel is always fully vaporized at H. The high-CN fuels are mostly representative of the second case, L-c >= H, in which there is still liquid fuel at H. L-c >= H would suggest higher smoke emissions, but there is not enough evidence in this work to support a compounding effect of a longer liquid length on top of the aromatic-content effect on smoke emissions for fuels with similar CN, supporting previous findings in the literature that lift-off length plays a more important role than liquid-length on diesel combustion. At the same time, the experimental results suggest a decrease in the fuel-jet spreading angle, i.e., a decrease in the entrainment rate into the jet at and downstream of H, under combusting conditions, that is not accounted for in the model used to predict the values of phi(H). As a result, L-c may be of interest for accurate predictions of phi(H), especially for combustion strategies designed to lower in-cylinder soot by operating near or below the nonsooting phi(H)-value (i.e., phi(H)approximate to 2). C1 [Dumitrescu, Cosmin E.] W Virginia Univ, Morgantown, WV 26506 USA. [Polonowski, Christopher J.] Ford Motor Co, Dearborn, MI 48125 USA. [Fisher, Brian T.] Naval Res Lab, Washington, DC 20375 USA. [Lilik, Gregory K.; Mueller, Charles J.] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94550 USA. RP Dumitrescu, CE (reprint author), W Virginia Univ, Dept Mech & Aerosp Engn, POB 6106,275 Engn Sci Bldg, Morgantown, WV 26506 USA. EM cosmin.dumitrescu@mail.wvu.edu FU U.S. Department of Energy (DOE); Office of Naval Research FX Data was taken while authors were employed by Sandia National Laboratories and funded by U.S. Department of Energy (DOE). Preparation of this manuscript was performed while C.E.D. was employed and funded by West Virginia University and B.T.F. was employed by the Naval Research Laboratory and funded by the Office of Naval Research. NR 40 TC 3 Z9 3 U1 6 U2 14 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 EI 1520-5029 J9 ENERG FUEL JI Energy Fuels PD NOV PY 2015 VL 29 IS 11 BP 7689 EP 7704 DI 10.1021/acs.energyfuels.5b01754 PG 16 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA CX1NH UT WOS:000365462400086 ER PT J AU Ellis, RJ Rapp, J AF Ellis, Ronald J. Rapp, Juergen TI NEUTRON-IRRADIATED SAMPLES AS TEST MATERIALS FOR MPEX SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article DE plasma-material interaction; material displacement damage; Material Plasma Exposure eXperiment (MPEX) AB Plasma-material interaction is a major concern in fusion reactor design and analysis. The Material Plasma Exposure eXperiment (MPEX) will explore plasma-material interaction under fusion reactor plasma conditions. Samples with accumulated displacement damage (characterized by displacements per atom) produced by fast neutron irradiations in the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory will be studied in the MPEX facility. This paper presents assessments of the calculated induced radioactivity and resulting radiation dose rates of a variety of potential fusion reactor plasma-facing materials, e.g., tungsten. The scientific code packages Monte Carlo N-Particle (MCNP) and Standardized Computer Analyses for Licensing Evaluation (SCALE) were used to simulate irradiation of the samples in HFIR. This included the generation and depletion of nuclides in the material and the subsequent composition, activity levels, gamma radiation fields, and resultant dose rates as a function of cooling time. A challenge of the MPEX project is to minimize the radioactive inventory in the preparation of the samples and the sample dose rates for inclusion in the MPEX facility. C1 [Ellis, Ronald J.] Oak Ridge Natl Lab, Reactor & Nucl Syst Div, Reactor Phys Grp, Oak Ridge, TN 37831 USA. [Rapp, Juergen] Oak Ridge Natl Lab, Fus & Mat Nucl Syst Div, Oak Ridge, TN 37831 USA. RP Ellis, RJ (reprint author), Oak Ridge Natl Lab, Reactor & Nucl Syst Div, Reactor Phys Grp, MS 6172,POB 2008,1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM ellisrj@onil.gov OI Ellis, Ronald/0000-0002-2800-2644; Rapp, Juergen/0000-0003-2785-9280 FU U.S. Department of Energy (DOE) Office of Nuclear Energy; Laboratory Directed Research and Development Program of ORNL; DOE [DE-AC05-00OR22725]; UT-Battelle, LLC FX This work was sponsored by the U.S. Department of Energy (DOE) Office of Nuclear Energy and the Laboratory Directed Research and Development Program of ORNL, managed by UT-Battelle, LLC, for the DOE. This work was supported in part by the DOE under contract DE-AC05-00OR22725 with UT-Battelle, LLC. It was also part of the overall effort in developing the proposal to build MPEX at ORNL. The authors would like to thank colleagues who consulted and advised on topics in radiation transport, displacement damage theory, and related aspects of the work reported, especially E. Read (University of New Mexico), D. Peplow, J. Risner, C. Daily, P. Edmondson, D. Chandler (all from ORNL), and M. Okuniewski (Idaho National Laboratory). NR 29 TC 0 Z9 0 U1 0 U2 6 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 EI 1943-7641 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD NOV PY 2015 VL 68 IS 4 BP 750 EP 757 PG 8 WC Nuclear Science & Technology SC Nuclear Science & Technology GA CX3YA UT WOS:000365634200003 ER PT J AU Miles, R Havstad, M LeBlanc, M Golosker, I Chang, A Rosso, P AF Miles, Robin Havstad, Mark LeBlanc, Mary Golosker, Ilya Chang, Allan Rosso, Paul TI EXTERNAL HEAT TRANSFER COEFFICIENT MEASUREMENTS ON A SURROGATE INDIRECT INERTIAL CONFINEMENT FUSION TARGET SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article DE inertial confinement fusion targets; thermal analysis; laser inertial fusion energy ID ENERGY LIFE; CHAMBER; INJECTION; WALL AB External heat transfer coefficients were measured around a surrogate indirect inertial confinement fusion target based on the laser inertial fusion energy (LIFE) target to validate thermal models of the LIFE target during flight through a fusion chamber. Results indicated that heat transfer coefficients for this target, in the range of 25 to 50 W/m(2).K, were consistent with theoretically derived heat transfer coefficients and are valid for use in the calculation of target heating during flight through a fusion chamber. C1 [Miles, Robin; Havstad, Mark; LeBlanc, Mary; Golosker, Ilya; Chang, Allan; Rosso, Paul] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Miles, R (reprint author), Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94551 USA. EM miles7@llnl.gov FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344, Lawrence Livermore National Security, LLC. NR 13 TC 0 Z9 0 U1 2 U2 2 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 EI 1943-7641 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD NOV PY 2015 VL 68 IS 4 BP 780 EP 787 PG 8 WC Nuclear Science & Technology SC Nuclear Science & Technology GA CX3YA UT WOS:000365634200007 ER PT J AU Raman, R Jarboe, TR Menard, JE Gerhardt, SP Ono, M Baylor, L Lay, WS AF Raman, R. Jarboe, T. R. Menard, J. E. Gerhardt, S. P. Ono, M. Baylor, L. Lay, W. -S. TI FAST TIME RESPONSE ELECTROMAGNETIC DISRUPTION MITIGATION CONCEPT SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article DE electromagnetic particle injector; disruption; mitigation ID INDUCTANCE GRADIENT; ITER; RAILGUNS AB An important and urgent issue for ITER is predicting and controlling disruptions. Tokamaks and spherical tokamaks have the potential to disrupt. Methods to rapidly quench the discharge after an impending disruption is detected are essential to protect the vessel and internal components. The warning time for the onset of some disruptions in tokamaks could be <10 ms, which poses stringent requirements on the disruption mitigation system for reactor systems. In this proposed method, a cylindrical boron nitride projectile containing a radiative payload composed of boron, boron nitride, or beryllium particulate matter and weighing similar to 15 g is accelerated to velocities on the order of 1 to 2 km/s in <2 ms in a linear rail gun accelerator. A partially fragmented capsule is then injected into the tokamak discharge in the 3- to 6-ms timescale, where the radiative payload is dispersed. The device referred to as an electromagnetic particle injector has the potential to meet the short warning timescales for which a reactor disruption mitigation system must be built. The system is fully electromagnetic, with no mechanical moving parts, which ensures high reliability after a period of long standby. C1 [Raman, R.; Jarboe, T. R.; Lay, W. -S.] Univ Washington, William E Boeing Dept Aeronaut & Astronaut, Seattle, WA 98195 USA. [Menard, J. E.; Gerhardt, S. P.; Ono, M.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Baylor, L.] Oak Ridge Natl Lab, Oak Ridge, TN USA. RP Raman, R (reprint author), Univ Washington, William E Boeing Dept Aeronaut & Astronaut, Seattle, WA 98195 USA. EM raman@aa.washington.edu OI Menard, Jonathan/0000-0003-1292-3286 FU U.S. Department of Energy [DE-SC0006757, DE-AC02-09CH11466] FX We are grateful to M. Lehnen of the ITER Organization for providing information related to materials that are suitable for use in an ITER DMS. Many thanks to R. Feder [Princeton Plasma Physics Laboratory (PPPL)], G. Loesser (PPPL), J. Kiabacha (PPPL), L. Konkel (PPPL), V. Barabash (ITER), and M. Raphael (ITER) for providing drawings of the ITER port plug, for providing information on materials allowed in ITER, and for other help. We would like to thank E. Hollmann of the University of California, San Diego, and the DIII-D Team for providing information on the shell pellet being considered for use on DIII-D. This work is supported by U.S. Department of Energy contract numbers DE-SC0006757 and DE-AC02-09CH11466. NR 25 TC 0 Z9 0 U1 0 U2 3 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 EI 1943-7641 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD NOV PY 2015 VL 68 IS 4 BP 797 EP 805 PG 9 WC Nuclear Science & Technology SC Nuclear Science & Technology GA CX3YA UT WOS:000365634200009 ER PT J AU Qin, GY Wang, XN AF Qin, Guang-You Wang, Xin-Nian TI Jet quenching in high-energy heavy-ion collisions SO INTERNATIONAL JOURNAL OF MODERN PHYSICS E-NUCLEAR PHYSICS LA English DT Article DE Heavy-ion collisions; quark-gluon plasma; jet quenching ID PLUS PB COLLISIONS; MULTIPLE PARTON SCATTERING; ROOT-S(NN)=2.76 TEV; FRAGMENTATION FUNCTIONS; SHOWER EVOLUTION; GLUON RADIATION; COLOR COHERENCE; INCLUSIVE JET; QCD MATTER; LHC AB Jet quenching in high-energy heavy-ion collisions can be used to probe properties of hot and dense quark-gluon plasma. We provide a brief introduction to the concept and framework for the study of jet quenching. Different approaches and implementation of multiple scattering and parton energy loss are discussed. Recent progresses in the theoretical and phenomenological studies of jet quenching in heavy-ion collisions at RHIC and LHC are reviewed. C1 [Qin, Guang-You; Wang, Xin-Nian] Cent China Normal Univ, Inst Particle Phys, MOE, Wuhan 430079, Peoples R China. [Qin, Guang-You; Wang, Xin-Nian] Cent China Normal Univ, Key Lab Quark & Lepton Phys, MOE, Wuhan 430079, Peoples R China. [Wang, Xin-Nian] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. RP Qin, GY (reprint author), Cent China Normal Univ, Inst Particle Phys, MOE, Wuhan 430079, Peoples R China. EM xnwang@lbl.gov FU Natural Science Foundation of China [11375072, 11221504, 11175232]; Chinese Ministry of Science and Technology [2014DFG02050]; Office of Energy Research, Office of High Energy and Nuclear Physics, Division of Nuclear Physics, of the U.S. Department of Energy [DE-AC02-05CH11231]; JET Collaboration FX This work is supported in part by Natural Science Foundation of China Under Grant Nos. 11375072, 11221504 and 11175232, Chinese Ministry of Science and Technology Under Grant No. 2014DFG02050, by the Director, Office of Energy Research, Office of High Energy and Nuclear Physics, Division of Nuclear Physics, of the U.S. Department of Energy Under Contract No. DE-AC02-05CH11231 and within the framework of the JET Collaboration. NR 165 TC 11 Z9 11 U1 1 U2 10 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0218-3013 EI 1793-6608 J9 INT J MOD PHYS E JI Int. J. Mod. Phys. E-Nucl. Phys. PD NOV PY 2015 VL 24 IS 11 AR 1530014 DI 10.1142/S0218301315300143 PG 64 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA CX4VU UT WOS:000365699200003 ER PT J AU Thorsen, TJ Fu, Q Newsom, RK Turner, DD Comstock, JM AF Thorsen, Tyler J. Fu, Qiang Newsom, Rob K. Turner, David D. Comstock, Jennifer M. TI Automated Retrieval of Cloud and Aerosol Properties from the ARM Raman Lidar. Part I: Feature Detection SO JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY LA English DT Article ID SPECTRAL-RESOLUTION LIDAR; TROPICAL CIRRUS CLOUDS; SOUTHERN GREAT-PLAINS; WATER-VAPOR; POLARIZATION LIDAR; REMOTE SENSORS; THIN CLOUDS; A-TRAIN; MICROPULSE; PROFILES AB A feature detection and extinction retrieval (FEX) algorithm for the Atmospheric Radiation Measurement Program's (ARM) Raman lidar (RL) has been developed. Presented here is Part I of the FEX algorithm: the detection of features including both clouds and aerosols. The approach of FEX is to use multiple quantities scattering ratios derived using elastic and nitrogen channel signals from two fields of view, the scattering ratio derived using only the elastic channel, and the total volume depolarization ratioto identify features using range-dependent detection thresholds. FEX is designed to be context sensitive with thresholds determined for each profile by calculating the expected clear-sky signal and noise. The use of multiple quantities provides complementary depictions of cloud and aerosol locations and allows for consistency checks to improve the accuracy of the feature mask. The depolarization ratio is shown to be particularly effective at detecting optically thin features containing nonspherical particles, such as cirrus clouds. Improvements over the existing ARM RL cloud mask are shown. The performance of FEX is validated against a collocated micropulse lidar and observations from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite over the ARM Darwin, Australia, site. While the focus is on a specific lidar system, the FEX framework presented here is suitable for other Raman or high spectral resolution lidars. C1 [Thorsen, Tyler J.; Fu, Qiang] Univ Washington, Dept Atmospher Sci, Seattle, WA 98195 USA. [Newsom, Rob K.; Comstock, Jennifer M.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Turner, David D.] NOAA, Natl Severe Storms Lab, Norman, OK 73069 USA. RP Thorsen, TJ (reprint author), Univ Washington, Dept Atmospher Sci, ATG 408,Box 351640, Seattle, WA 98195 USA. EM tylert@atmos.washington.edu FU Office of Science (BER), U.S. Department of Energy [DE-SC0010557, DE-SC0006898]; NASA [NNX14AB28G, NNX13AN49G]; DOE ASR; DOE ARM FX The Raman lidar, radiosonde, sun photometer, microwave radiometer, and micropulse lidar datasets were obtained from the ARM data archive (www.archive.arm.gov). The CALIPSO data sets were obtained from the NASA Langley Research Center Atmospheric Science Data Center. This work was greatly improved by the excellent reviews of J. Campbell, M. Vaughan, and one anonymous reviewer. This research was supported by the Office of Science (BER), U.S. Department of Energy through Grants DE-SC0010557 (T.J. Thorsen and Q. Fu) and DE-SC0006898 (D.D. Turner). It was also supported by NASA Grants NNX14AB28G (Q. Fu) and NNX13AN49G (T.J. Thorsen and Q. Fu). J.M. Comstock and R.K. Newsom were supported by both DOE ASR and ARM. NR 63 TC 2 Z9 2 U1 6 U2 12 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0739-0572 EI 1520-0426 J9 J ATMOS OCEAN TECH JI J. Atmos. Ocean. Technol. PD NOV PY 2015 VL 32 IS 11 BP 1977 EP 1998 DI 10.1175/JTECH-D-14-00150.1 PG 22 WC Engineering, Ocean; Meteorology & Atmospheric Sciences SC Engineering; Meteorology & Atmospheric Sciences GA CX3MO UT WOS:000365603300001 ER PT J AU Wang, H Barthelmie, RJ Clifton, A Pryor, SC AF Wang, H. Barthelmie, R. J. Clifton, A. Pryor, S. C. TI Wind Measurements from Arc Scans with Doppler Wind Lidar SO JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY LA English DT Article DE Data processing; Lidars; Lidar observations ID LOW-LEVEL JET; BOUNDARY-LAYER; ENERGY; VELOCITY; PERFORMANCE; STATISTICS; FLOW AB Defining optimal scanning geometries for scanning lidars for wind energy applications remains an active field of research. This paper evaluates uncertainties associated with arc scan geometries and presents recommendations regarding optimal configurations in the atmospheric boundary layer. The analysis is based on arc scan data from a Doppler wind lidar with one elevation angle and seven azimuth angles spanning 30 degrees and focuses on an estimation of 10-min mean wind speed and direction. When flow is horizontally uniform, this approach can provide accurate wind measurements required for wind resource assessments in part because of its high resampling rate. Retrieved wind velocities at a single range gate exhibit good correlation to data from a sonic anemometer on a nearby meteorological tower, and vertical profiles of horizontal wind speed, though derived from range gates located on a conical surface, match those measured by mast-mounted cup anemometers. Uncertainties in the retrieved wind velocity are related to high turbulent wind fluctuation and an inhomogeneous horizontal wind field. The radial velocity variance is found to be a robust measure of the uncertainty of the retrieved wind speed because of its relationship to turbulence properties. It is further shown that the standard error of wind speed estimates can be minimized by increasing the azimuthal range beyond 30 degrees and using five to seven azimuth angles. C1 [Wang, H.; Barthelmie, R. J.] Cornell Univ, Sibley Sch Mech & Aerosp Engn, Ithaca, NY 14853 USA. [Clifton, A.] Natl Renewable Energy Lab, Natl Wind Technol Ctr, Golden, CO USA. [Pryor, S. C.] Cornell Univ, Dept Earth & Atmospher Sci, Ithaca, NY 14853 USA. RP Wang, H (reprint author), Cornell Univ, Sibley Sch Mech & Aerosp Engn, 105 Upson Hall, Ithaca, NY 14853 USA. EM hw524@cornell.edu OI Wang, Hui/0000-0002-2589-988X FU U.S. Department of Energy [DE-EE0005379, DE-AC36-08GO28308]; U.S. National Science Foundation [1067007]; National Renewable Energy Laboratory; DOE Office of Energy Efficiency and Renewable Energy's Wind and Water Power Technologies Office; National Wind Technology Center at NREL [CRADA CRD-09-343]; Indiana University FX This work was funded by the U.S. Department of Energy (Award DE-EE0005379) and the U.S. National Science Foundation (Award 1067007). This work was also supported by the U.S. Department of Energy under Contract DE-AC36-08GO28308 with the National Renewable Energy Laboratory. Funding for the work was provided by the DOE Office of Energy Efficiency and Renewable Energy's Wind and Water Power Technologies Office. The National Wind Technology Center at NREL supported this research under CRADA CRD-09-343 with Indiana University. We also thank Nick Capaldo and Dr. Peter Clive at SgurrEnergy for their assistance with the Galion lidar. NR 43 TC 3 Z9 3 U1 1 U2 9 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0739-0572 EI 1520-0426 J9 J ATMOS OCEAN TECH JI J. Atmos. Ocean. Technol. PD NOV PY 2015 VL 32 IS 11 BP 2024 EP 2040 DI 10.1175/JTECH-D-14-00059.1 PG 17 WC Engineering, Ocean; Meteorology & Atmospheric Sciences SC Engineering; Meteorology & Atmospheric Sciences GA CX3MO UT WOS:000365603300003 ER PT J AU Fernandez, N Katipamula, S Wang, WM Huang, YZ Liu, GP AF Fernandez, Nick Katipamula, Srinivas Wang, Weimin Huang, Yunzhi Liu, Guopeng TI Energy savings modelling of re-tuning energy conservation measures in large office buildings SO JOURNAL OF BUILDING PERFORMANCE SIMULATION LA English DT Article DE re-tuning; HVAC; EnergyPlus; modelling AB Today, many large commercial buildings use building automation systems to manage a wide range of equipment. This paper investigates the energy savings potential of several common heating, ventilation, and air conditioning (HVAC) system re-tuning measures on a typical large office building using the EnergyPlus software. Individual re-tuning measures simulated include automatic schedule adjustments, damper minimum flow adjustments, thermostat adjustments, as well as dynamic resets to static pressure, supply-air temperature, condenser chilled- and hot-water temperatures, and chilled and hot water differential pressure set points. All individual measures and combinations were simulated in 16 locations representative of different climates in the USA. Many of the demand-side individual measures were capable of reducing annual HVAC energy consumption by over 20% in most cities. Supply-side measures affecting HVAC plant conditions were only modestly successful (less than 5% annual HVAC energy savings). Some of the combinations revealed between 35% and 75% HVAC energy savings. C1 [Fernandez, Nick; Katipamula, Srinivas; Wang, Weimin; Huang, Yunzhi; Liu, Guopeng] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Katipamula, S (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM srinivas.katipamula@pnnl.gov FU Office of the Washington State Attorney General; Buildings Technologies Office of the US Department of Energy Office of Energy Efficiency and Renewable Energy FX The authors would like to acknowledge the Office of the Washington State Attorney General and the Buildings Technologies Office of the US Department of Energy Office of Energy Efficiency and Renewable Energy for supporting the research and development effort. NR 5 TC 0 Z9 0 U1 3 U2 10 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 1940-1493 EI 1940-1507 J9 J BUILD PERFORM SIMU JI J. Build. Perf. Simul. PD NOV PY 2015 VL 8 IS 6 BP 391 EP 407 DI 10.1080/19401493.2014.961032 PG 17 WC Construction & Building Technology SC Construction & Building Technology GA CX4GM UT WOS:000365657200002 ER PT J AU Blomqvist, M Kirby, D Bautista, JE Arinyo-i-Prats, A Busca, NG Miralda-Escude, J Slosar, A Font-Ribera, A Margala, D Schneider, DP Vazquez, JA AF Blomqvist, Michael Kirby, David Bautista, Julian E. Arinyo-i-Prats, Andreu Busca, Nicolas G. Miralda-Escude, Jordi Slosar, Anze Font-Ribera, Andreu Margala, Daniel Schneider, Donald P. Vazquez, Jose A. TI Broadband distortion modeling in Lyman-alpha forest BAO fitting SO JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS LA English DT Article DE dark energy experiments; Lyman alpha forest; cosmological parameters from LSS; baryon acoustic oscillations ID BARYON ACOUSTIC-OSCILLATIONS; DIGITAL SKY SURVEY; SDSS-III; SPECTROSCOPIC SURVEY; POWER-SPECTRUM; GALAXY SAMPLE; DATA RELEASES; DARK ENERGY; FINAL DATA; PEAK AB In recent years, the Lyman-a absorption observed in the spectra of high-redshift quasars has been used as a tracer of large-scale structure by means of the three-dimensional Lyman-a forest auto-correlation function at redshift z similar or equal to 2.3, but the need to fit the quasar continuum in every absorption spectrum introduces a broadband distortion that is difficult to correct and causes a systematic error for measuring any broadband properties. We describe a k-space model for this broadband distortion based on a multiplicative correction to the power spectrum of the transmitted flux fraction that suppresses power on scales corresponding to the typical length of a Lyman-alpha forest spectrum. Implementing the distortion model in fits for the baryon acoustic oscillation (BAO) peak position in the Lyman-alpha forest auto-correlation, we find that the fitting method recovers the input values of the linear bias parameter b(F) and the redshift-space distortion parameter beta(F) for mock data sets with a systematic error of less than 0.5%. Applied to the auto-correlation measured for BOSS Data Release 11, our method improves on the previous treatment of broadband distortions in BAO fitting by providing a better fit to the data using fewer parameters and reducing the statistical errors on 13F and the combination b(F)(1 + beta(F)) by more than a factor of seven. The measured values at redshift z = 2.3 are beta(F) = 1.39(-0.10)(+0.11) (+0.24)(-0.19) (+0.38)(-0.28) and b(F)(1 + beta(F)) = -0.374(-0.007)(+0.007) (+0.013)(-0.014) (+0.020)(-0.022) (1 sigma, 2 sigma and 3 sigma statistical errors). Our fitting software and the input files needed to reproduce our main results are publicly available. C1 [Blomqvist, Michael; Kirby, David; Margala, Daniel] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Bautista, Julian E.] Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA. [Arinyo-i-Prats, Andreu; Miralda-Escude, Jordi] Univ Barcelona, Inst Ciencies Cosmos, IEEC UB, E-08028 Barcelona, Catalonia, Spain. [Busca, Nicolas G.] Univ Paris Diderot, Observ Paris, Sorbonne Paris Cite, APC,CEA,IRFU,CNRS,IN2P3, F-75205 Paris, France. [Busca, Nicolas G.] Observ Nacl, BR-20921400 Rio De Janeiro, RJ, Brazil. [Busca, Nicolas G.] Lab Interinst E Astron LIneA, BR-20921400 Rio De Janeiro, RJ, Brazil. [Miralda-Escude, Jordi] Inst Catalana Recerca & Estudis Avancats, Barcelona 08010, Catalonia, Spain. [Slosar, Anze; Vazquez, Jose A.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Font-Ribera, Andreu] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Schneider, Donald P.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Schneider, Donald P.] Penn State Univ, Inst Gravitat & Cosmos, University Pk, PA 16802 USA. RP Blomqvist, M (reprint author), Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. EM cblomqvi@uci.edu; dkirkby@uci.edu; bautista@astro.utah.edu; andreuaprats@icc.ub.edu; ngbusca@apc.in2p3.fr; miralda@icc.ub.edu; anze@bnl.gov; afont@lbl.gov; dmargala@uci.edu; dps7@psu.edu; jvazquez@bnl.gov OI Kirkby, David/0000-0002-8828-5463 FU Alfred P. Sloan Foundation; National Science Foundation; U.S. Department of Energy Office of Science; University of Arizona; Brazilian Participation Group; Brookhaven National Laboratory; Carnegie Mellon University; University of Florida; French Participation Group; German Participation Group; Harvard University; Instituto de Astrofisica de Canarias; Michigan State/Notre Dame/JINA Participation Group; Johns Hopkins University; Lawrence Berkeley National Laboratory; Max Planck Institute for Astrophysics; Max Planck Institute for Extraterrestrial Physics; New Mexico State University; New York University; Ohio State University; Pennsylvania State University; University of Portsmouth; Princeton University; Spanish Participation Group; University of Tokyo; University of Utah; Vanderbilt University; University of Virginia; University of Washington; Yale University FX Funding for SDSS-III has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, and the U.S. Department of Energy Office of Science. The SDSS-III web site is http://www.sdss3.org/.; SDSS-III is managed by the Astrophysical Research Consortium for the Participating Institutions of the SDSS-III Collaboration including the University of Arizona, the Brazilian Participation Group, Brookhaven National Laboratory, Carnegie Mellon University, University of Florida, the French Participation Group, the German Participation Group, Harvard University, the Instituto de Astrofisica de Canarias, the Michigan State/Notre Dame/JINA Participation Group, Johns Hopkins University, Lawrence Berkeley National Laboratory, Max Planck Institute for Astrophysics, Max Planck Institute for Extraterrestrial Physics, New Mexico State University, New York University, Ohio State University, Pennsylvania State University, University of Portsmouth, Princeton University, the Spanish Participation Group, University of Tokyo, University of Utah, Vanderbilt University, University of Virginia, University of Washington, and Yale University. NR 42 TC 3 Z9 3 U1 1 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1475-7516 J9 J COSMOL ASTROPART P JI J. Cosmol. Astropart. Phys. PD NOV PY 2015 IS 11 AR 034 DI 10.1088/1475-7516/2015/11/034 PG 27 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CX6OU UT WOS:000365821200035 ER PT J AU Senatore, L AF Senatore, Leonardo TI Bias in the effective field theory of large scale structures SO JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS LA English DT Article DE cosmological perturbation theory; power spectrum; cosmological parameters from LSS; baryon acoustic oscillations AB We study how to describe collapsed objects, such as galaxies, in the context of the Effective Field Theory of Large Scale Structures. The overdensity of galaxies at a given location and time is determined by the initial tidal tensor, velocity gradients and spatial derivatives of the regions of dark matter that, during the evolution of the universe, ended up at that given location. Similarly to what was recently done for dark matter, we show how this Lagrangian space description can be recovered by upgrading simpler Eulerian calculations. We describe the Eulerian theory. We show that it is perturbatively local in space, but non-local in time, and we explain the observational consequences of this fact. We give an argument for why to a certain degree of accuracy the theory can be considered as quasi time-local and explain what the operator structure is in this case. We describe renormalization of the bias coefficients so that, after this and after upgrading the Eulerian calculation to a Lagrangian one, the perturbative series for galaxies correlation functions results in a manifestly convergent expansion in powers of k/k(NL) and k/k(M), where k is the wavenumber of interest, k(NL) is the wavenumber associated to the non-linear scale, and k(M) is the comoving wavenumber enclosing the mass of a galaxy. C1 [Senatore, Leonardo] Stanford Univ, Stanford Inst Theoret Phys, Stanford, CA 94306 USA. [Senatore, Leonardo] SLAC, Kavli Inst Particle Astrophys & Cosmol, Menlo Pk, CA 94025 USA. [Senatore, Leonardo] Stanford Univ, Menlo Pk, CA 94025 USA. RP Senatore, L (reprint author), Stanford Univ, Stanford Inst Theoret Phys, Stanford, CA 94306 USA. EM senatore@stanford.edu FU DOE [DE-FG02-12ER41854]; NSF [PHY-1068380] FX We thank Matias Zaldarriaga for discussions. We thank Zvonimir Vlah and the Referee for pointing out some typos in the first version of this paper. L.S. is supported by DOE Early Career Award DE-FG02-12ER41854 and by NSF grant PHY-1068380. NR 26 TC 11 Z9 11 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1475-7516 J9 J COSMOL ASTROPART P JI J. Cosmol. Astropart. Phys. PD NOV PY 2015 IS 11 AR 007 DI 10.1088/1475-7516/2015/11/007 PG 47 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CX6OU UT WOS:000365821200008 ER PT J AU Rodgers, TM Zhao, HB Wadley, HNG AF Rodgers, Theron M. Zhao, Hengbei Wadley, Haydn N. G. TI Vapor deposition on doublet airfoil substrates: Control of coating thickness and microstructure SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A LA English DT Article ID THERMAL-BARRIER COATINGS; YTTRIA-STABILIZED ZIRCONIA; PVD; CONDUCTIVITY; DURABILITY; MECHANISMS; MORPHOLOGY; POROSITY AB Gas jet assisted vapor deposition processes for depositing coatings are conducted at higher pressures than conventional physical vapor deposition methods, and have shown promise for coating complex shaped substrates including those with non-line-of-sight (NLS) regions on their surface. These regions typically receive vapor atoms at a lower rate and with a wider incident angular distribution than substrate regions in line-of-sight (LS) of the vapor source. To investigate the coating of such substrates, the thickness and microstructure variation along the inner (curved) surfaces of a model doublet airfoil containing both LS and NLS regions has been investigated. Results from atomistic simulations and experiments confirm that the coating's thickness is thinner in flux-shadowed regions than in other regions for all the coating processes investigated. They also indicated that the coatings columnar microstructure and pore volume fraction vary with surface location through the LS to NLS transition zone. A substrate rotation strategy for optimizing the thickness over the entire doublet airfoil surface was investigated, and led to the identification of a process that resulted in only small variation of coating thickness, columnar growth angle, and pore volume fraction on all doublet airfoil surfaces. (C) 2015 American Vacuum Society. C1 [Rodgers, Theron M.; Zhao, Hengbei; Wadley, Haydn N. G.] Univ Virginia, Dept Mat Sci & Engn, Charlottesville, VA 22904 USA. RP Rodgers, TM (reprint author), Sandia Natl Labs, Computat Mat Sci & Engn Dept, Albuquerque, NM 87185 USA. EM haydn@virginia.edu OI Rodgers, Theron/0000-0003-0440-3985 FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 30 TC 0 Z9 0 U1 2 U2 5 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 0734-2101 EI 1520-8559 J9 J VAC SCI TECHNOL A JI J. Vac. Sci. Technol. A PD NOV PY 2015 VL 33 IS 6 AR 061518 DI 10.1116/1.4934258 PG 17 WC Materials Science, Coatings & Films; Physics, Applied SC Materials Science; Physics GA CX2CY UT WOS:000365503800052 ER PT J AU Tanaka, K Anders, A AF Tanaka, Koichi Anders, Andre TI Temporal evolution of ion energy distribution functions and ion charge states of Cr and Cr-Al pulsed arc plasmas SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A LA English DT Article ID VACUUM-ARC; EXCHANGE COLLISIONS; CATHODE SPOT; ATOMS; TIME AB To study the temporal evolution of ion energy distribution functions, charge-state-resolved ion energy distribution functions of pulsed arc plasmas from Cr and Cr-Al cathodes were recorded with high time resolution by using direct data acquisition from a combined energy and mass analyzer. The authors find increases in intensities of singly charged ions, which is evidence that charge exchange reactions took place in both Cr and Cr-Al systems. In Cr-Al plasmas, the distributions of high-charge-state ions exhibit high energy tails 50 mu s after discharge ignition, but no such tails were observed at 500 mu s. The energy ratios of ions of different charge states at the beginning of the pulse, when less neutral atoms were in the space in front of the cathode, suggest that ions are accelerated by an electric field. The situation is not so clear after 50 mu s due to particle collisions. The initial mean ion charge state of Cr was about the same in Cr and in Cr-Al plasmas, but it decreased more rapidly in Cr-Al plasmas compared to the decay in Cr plasma. The faster decay of the mean ion charge state and ion energy caused by the addition of Al into a pure Cr cathode suggests that the mean ion charge state is determined not only by ionization processes at the cathode spot but also by inelastic collision between different elements. (C) 2015 American Vacuum Society. C1 [Tanaka, Koichi] Mitsubishi Mat Corp, Cent Res Inst, Naka, Ibaraki 3110102, Japan. [Anders, Andre] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Tanaka, K (reprint author), Mitsubishi Mat Corp, Cent Res Inst, 1002-14 Mukohyama, Naka, Ibaraki 3110102, Japan. EM tanak@mmc.co.jp RI Anders, Andre/B-8580-2009; OI Anders, Andre/0000-0002-5313-6505; Tanaka, Koichi/0000-0002-3180-7881 FU Mitsubishi Materials Corporation [WF010678]; U.S. Department of Energy [DE-AC02-05CH11231] FX The authors gratefully acknowledge the Mitsubishi Materials Corporation for supporting this study under Contract No. WF010678. The authors gratefully acknowledge Robert Franz for providing Cr-Al alloy cathodes. Work at Berkeley Lab was supported by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 24 TC 1 Z9 1 U1 1 U2 11 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 0734-2101 EI 1520-8559 J9 J VAC SCI TECHNOL A JI J. Vac. Sci. Technol. A PD NOV PY 2015 VL 33 IS 6 AR 061301 DI 10.1116/1.4926750 PG 9 WC Materials Science, Coatings & Films; Physics, Applied SC Materials Science; Physics GA CX2CY UT WOS:000365503800018 ER PT J AU Upadhyay, J Im, D Popovic, S Vuskovic, L Valente-Feliciano, AM Phillips, L AF Upadhyay, Janardan Im, Do Popovic, Svetozar Vuskovic, Leposava Valente-Feliciano, Anne-Marie Phillips, Larry TI Reversal of the asymmetry in a cylindrical coaxial capacitively coupled Ar/Cl-2 plasma SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A LA English DT Article ID RADIOFREQUENCY DISCHARGES; GLOW-DISCHARGES; ION ENERGY; RF; PRESSURE; VOLTAGE; BIAS AB The reduction of the asymmetry in the plasma sheath voltages of a cylindrical coaxial capacitively coupled discharge is crucial for efficient surface modification of the inner surfaces of concave three-dimensional structures, including superconducting radio frequency cavities. One critical asymmetry effect is the negative dc self-bias, formed across the inner electrode plasma sheath due to its lower surface area compared to the outer electrode. The effect on the self-bias potential with the surface enhancement by geometric modification on the inner electrode structure is studied. The shapes of the inner electrodes are chosen as cylindrical tube, large and small pitch bellows, and disk-loaded corrugated structure (DLCS). The dc self-bias measurements for all these shapes were taken at different process parameters in Ar/Cl-2 discharge. The reversal of the negative dc self-bias potential to become positive for a DLCS inner electrode was observed and the best etch rate is achieved due to the reduction in plasma asymmetry. (C) 2015 American Vacuum Society. C1 [Upadhyay, Janardan; Im, Do; Popovic, Svetozar; Vuskovic, Leposava] Old Dominion Univ, Dept Phys, Ctr Accelerator Sci, Norfolk, VA 23529 USA. [Valente-Feliciano, Anne-Marie; Phillips, Larry] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. RP Upadhyay, J (reprint author), Old Dominion Univ, Dept Phys, Ctr Accelerator Sci, Norfolk, VA 23529 USA. EM jupad001@odu.edu FU Office of High Energy Physics, Office of Science, Department of Energy [DE-SC0007879]; Thomas Jefferson National Accelerator Facility, Accelerator Division through JSA/DOE [DE-AC05-06OR23177] FX This work was supported by the Office of High Energy Physics, Office of Science, Department of Energy under Grant No. DE-SC0007879. Thomas Jefferson National Accelerator Facility, Accelerator Division supports J. Upadhyay through fellowship under JSA/DOE Contract No. DE-AC05-06OR23177. NR 18 TC 0 Z9 0 U1 1 U2 1 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 0734-2101 EI 1520-8559 J9 J VAC SCI TECHNOL A JI J. Vac. Sci. Technol. A PD NOV PY 2015 VL 33 IS 6 AR 061309 DI 10.1116/1.4932562 PG 5 WC Materials Science, Coatings & Films; Physics, Applied SC Materials Science; Physics GA CX2CY UT WOS:000365503800026 ER PT J AU Kim, KS Nakae, LF Prasad, MK Snyderman, NJ Verbeke, JM AF Kim, K. S. Nakae, L. F. Prasad, M. K. Snyderman, N. J. Verbeke, J. M. TI Time Evolving Fission Chain Theory and Fast Neutron and Gamma-Ray Counting Distributions SO NUCLEAR SCIENCE AND ENGINEERING LA English DT Article ID INTERVALS; ISOTOPES; ASSAY AB We solve a simple theoretical model of time evolving fission chains due to Feynman that generalizes and asymptotically approaches the point model theory. The point model theory has been used to analyze thermal neutron counting data. This extension of the theory underlies fast counting data for both neutrons and gamma rays from metal systems. Fast neutron and gamma-ray counting is now possible using liquid scintillator arrays with nanosecond time resolution. For individual fission chains, the differential equations describing three con-elated probability distributions are solved: the time-dependent internal neutron population, accumulation of fissions in time, and accumulation of leaked neutrons in time. Explicit analytic formulas are given for correlated moments of the time evolving chain populations. The equations for random time gate fast neutron and gamma-ray counting distributions, due to randomly initiated chains, are presented. Correlated moment equations are given for both random time gate and triggered time gate counting. Explicit formulas for all correlated moments are given up to triple order, for all combinations of correlated fast neutrons and gamma rays. The nonlinear differential equations for probabilities for time-dependent fission chain populations have a remarkably simple Monte Carlo realization. A Monte Carlo code was developed for this theory and is shown to statistically realize the solutions to the fission chain theory probability distributions. Combined with random initiation of chains and detection of external quanta, the Monte Carlo code generates time tagged data for neutron and gamma-ray counting and from these data the counting distributions. C1 [Kim, K. S.; Nakae, L. F.; Prasad, M. K.; Snyderman, N. J.; Verbeke, J. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Kim, KS (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA. EM kim27@llnl.gov FU U.S. Department of Energy (DOE) by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; DOE FX This work was performed under the auspices of the U.S. Department of Energy (DOE) by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. This work was developed under DOE funding. One of us (N.S.) would like to thank S. Walston for discussions. We would also like to thank R. Wurtz for many inspirational insights, and especially J. Wong for developing significant capabilities based on this work. NR 21 TC 1 Z9 1 U1 3 U2 3 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5639 EI 1943-748X J9 NUCL SCI ENG JI Nucl. Sci. Eng. PD NOV PY 2015 VL 181 IS 3 BP 225 EP 271 PG 47 WC Nuclear Science & Technology SC Nuclear Science & Technology GA CX3XB UT WOS:000365631700001 ER PT J AU Willert, J Park, H Taitano, W AF Willert, Jeffrey Park, H. Taitano, William TI Using Anderson Acceleration to Accelerate the Convergence of Neutron Transport Calculations with An isotropic Scattering SO NUCLEAR SCIENCE AND ENGINEERING LA English DT Article ID K-EIGENVALUE PROBLEM; NONLINEAR ACCELERATION AB In two recent publications, it was demonstrated that the nonlinear diffusion acceleration (NDA) algorithm, a moment-based accelerator, could be modified to accelerate the solution to neutron transport calculations with anisotropic scattering. It was demonstrated, however, that as the scattering became less isotropic, the performance of the algorithm degraded. Furthermore, it has been shown that Anderson acceleration (AA) could be used to speed up neutron transport and plasma physics calculations. In this paper, we combine these ideas to demonstrate that AA can be used to remedy the degraded performance of NDA when scattering is anisotropic. We describe each of the methods in detail and demonstrate the results on a series of fixed-source calculations and a pair of k-eigenvalue calculations. C1 [Willert, Jeffrey; Park, H.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Taitano, William] Los Alamos Natl Lab, Computat Phys 10, Los Alamos, NM 87545 USA. RP Willert, J (reprint author), Los Alamos Natl Lab, Div Theoret, MS B216, Los Alamos, NM 87545 USA. EM jaw@lanl.gov NR 19 TC 1 Z9 1 U1 0 U2 2 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5639 EI 1943-748X J9 NUCL SCI ENG JI Nucl. Sci. Eng. PD NOV PY 2015 VL 181 IS 3 BP 342 EP 350 PG 9 WC Nuclear Science & Technology SC Nuclear Science & Technology GA CX3XB UT WOS:000365631700008 ER PT J AU Willert, J Park, H Taitano, W AF Willert, Jeffrey Park, H. Taitano, William TI Applying Nonlinear Diffusion Acceleration to the Neutron Transport k-Eigenvalue Problem with An isotropic Scattering SO NUCLEAR SCIENCE AND ENGINEERING LA English DT Article AB High-order/low-order (or moment-based acceleration) algorithms have been used to significantly accelerate the solution to the neutron transport k-eigenvalue problem over the past several years. Recently, the nonlinear diffusion acceleration algorithm has been extended to solve fixed-source problems with anisotropic scattering sources. In this paper, we demonstrate that we can extend this algorithm to k-eigenvalue problems in which the scattering source is anisotropic and a significant acceleration can be achieved. Furthermore, we demonstrate that the low-order, diffusion-like eigenvalue problem can be solved efficiently using a technique known as nonlinear elimination. C1 [Willert, Jeffrey; Park, H.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Taitano, William] Los Alamos Natl Lab, Computat Phys 10, Los Alamos, NM 87545 USA. RP Willert, J (reprint author), Los Alamos Natl Lab, Div Theoret, MS B216, Los Alamos, NM 87545 USA. EM jaw@lanl.gov FU U.S. government, U.S. Department of Energy [DE-AC52-06NA25396] FX This work was performed under U.S. government contract DE-AC52-06NA25396 for Los Alamos National Laboratory, which is operated by Los Alamos National Security, LLC, for the U.S. Department of Energy. NR 15 TC 2 Z9 2 U1 0 U2 0 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5639 EI 1943-748X J9 NUCL SCI ENG JI Nucl. Sci. Eng. PD NOV PY 2015 VL 181 IS 3 BP 351 EP 360 PG 10 WC Nuclear Science & Technology SC Nuclear Science & Technology GA CX3XB UT WOS:000365631700009 ER PT J AU Orlicz, GC Balasubramanian, S Vorobieff, P Prestridge, KP AF Orlicz, G. C. Balasubramanian, Sridhar Vorobieff, P. Prestridge, K. P. TI Mixing transition in a shocked variable-density flow SO PHYSICS OF FLUIDS LA English DT Article ID RICHTMYER-MESHKOV INSTABILITY; PARTICLE IMAGE VELOCIMETRY; HIGH REYNOLDS-NUMBER; INITIAL CONDITIONS; TURBULENT FLOWS; FLUID LAYER; DEPENDENCE; VELOCITY; RESHOCK; SIMULATIONS AB We measure two-dimensional velocity and density fluctuations in a shock-driven heavy gas curtain for three different incident Mach numbers (M = 1.21, 1.36, and 1.50) and a fixed initial perturbation. We study the time evolution of the velocity and density fields and observe two different mixing transitions in this unsteady flow. The first transition is caused by small-scale mixing in vortex cores, while the second transition is related to increased homogenization across the mixing layer and a drive towards isotropy. By measuring the anisotropy of the velocity fluctuations and the evolution of the turbulent kinetic energy, we are able to assess the anisotropy of the flow. For the first time in Richtmyer-Meshkov (RM) flows, we measure and compare turbulent length scales derived from both the density and velocity field measurements, and we find ratios of Liepmann-Taylor to inner-viscous scales (lambda(L)/lambda(nu)) that are inconsistent with those found using Reynolds number scaling based on circulation, Re-Gamma, or based on turbulent kinetic energy, Re-K. At late times, Re-K better reflects the decay of the mixing field than Reynolds numbers that are based upon mixing width or circulation. We also estimate the time evolution of dissipation and Kolmogorov scales for the first time in RM flows. When we estimate the Taylor microscale (lambda(T)) for our experiments using both density and velocity, the density microscale agrees well with the relationship lambda(T) = root 10 delta Re-1/2 where Re = Re-K and delta is the mixing layer width, but the velocity-based Taylor microscale follows a new scaling of lambda(T) = 10 delta Re-1/2. (C) 2015 AIP Publishing LLC. C1 [Orlicz, G. C.; Prestridge, K. P.] Los Alamos Natl Lab, Div Phys, Extreme Fluids Team, Los Alamos, NM 87545 USA. [Balasubramanian, Sridhar] Indian Inst Technol, Dept Mech Engn, Mumbai 400076, MH, India. [Vorobieff, P.] Univ New Mexico, Dept Mech Engn, Albuquerque, NM 87131 USA. RP Orlicz, GC (reprint author), Los Alamos Natl Lab, Div Phys, Extreme Fluids Team, P 23, Los Alamos, NM 87545 USA. EM kpp@lanl.gov RI Prestridge, Kathy/C-1137-2012 OI Prestridge, Kathy/0000-0003-2425-5086 NR 49 TC 2 Z9 2 U1 4 U2 13 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-6631 EI 1089-7666 J9 PHYS FLUIDS JI Phys. Fluids PD NOV PY 2015 VL 27 IS 11 AR 114102 DI 10.1063/1.4935183 PG 23 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA CX4RG UT WOS:000365687400021 ER PT J AU St John, PC Doyle, FJ AF St John, Peter C. Doyle, Francis J., III TI Quantifying Stochastic Noise in Cultured Circadian Reporter Cells SO PLOS COMPUTATIONAL BIOLOGY LA English DT Article ID GENE-EXPRESSION; INDIVIDUAL FIBROBLASTS; RHYTHMS; CLOCKS; TIME; OSCILLATIONS; IDENTIFICATION; SYNCHRONY; NEURONS; SYSTEM AB Stochastic noise at the cellular level has been shown to play a fundamental role in circadian oscillations, influencing how groups of cells entrain to external cues and likely serving as the mechanism by which cell-autonomous rhythms are generated. Despite this importance, few studies have investigated how clock perturbations affect stochastic noise-even as increasing numbers of high-throughput screens categorize how gene knockdowns or small molecules can change clock period and amplitude. This absence is likely due to the difficulty associated with measuring cell-autonomous stochastic noise directly, which currently requires the careful collection and processing of single-cell data. In this study, we show that the damping rate of population-level bioluminescence recordings can serve as an accurate measure of overall stochastic noise, and one that can be applied to future and existing high-throughput circadian screens. Using cell-autonomous fibroblast data, we first show directly that higher noise at the single-cell results in faster damping at the population level. Next, we show that the damping rate of cultured cells can be changed in a dose-dependent fashion by small molecule modulators, and confirm that such a change can be explained by single-cell noise using a mathematical model. We further demonstrate the insights that can be gained by applying our method to a genome-wide siRNA screen, revealing that stochastic noise is altered independently from period, amplitude, and phase. Finally, we hypothesize that the unperturbed clock is highly optimized for robust rhythms, as very few gene perturbations are capable of simultaneously increasing amplitude and lowering stochastic noise. Ultimately, this study demonstrates the importance of considering the effect of circadian perturbations on stochastic noise, particularly with regard to the development of small-molecule circadian therapeutics. C1 [St John, Peter C.; Doyle, Francis J., III] Univ Calif Santa Barbara, Dept Chem Engn, Santa Barbara, CA 93106 USA. [St John, Peter C.] Natl Renewable Energy Lab, Biosci Ctr, Golden, CO USA. [Doyle, Francis J., III] Harvard Univ, Paulson Sch Engn & Appl Sci, Cambridge, MA 02138 USA. RP St John, PC (reprint author), Univ Calif Santa Barbara, Dept Chem Engn, Santa Barbara, CA 93106 USA. EM frank_doyle@seas.harvard.edu OI St. John, Peter/0000-0002-7928-3722 FU National Institutes of Health/National Institute of General Medical Sciences [1R01GM096873-01]; Institute for Collaborative Biotechnologies from the U.S. Army Research Office [W911NF-09-0001] FX This work was supported by the National Institutes of Health/National Institute of General Medical Sciences (nih.gov) under award number 1R01GM096873-01 to FJD, and by the Institute for Collaborative Biotechnologies (icb.ucsb.edu) through grant W911NF-09-0001 to FJD from the U.S. Army Research Office. The content of the information does not necessarily reflect the position or the policy of the Government, and no official endorsement should be inferred. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 35 TC 2 Z9 2 U1 0 U2 3 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1553-734X EI 1553-7358 J9 PLOS COMPUT BIOL JI PLoS Comput. Biol. PD NOV PY 2015 VL 11 IS 11 AR e1004451 DI 10.1371/journal.pcbi.1004451 PG 17 WC Biochemical Research Methods; Mathematical & Computational Biology SC Biochemistry & Molecular Biology; Mathematical & Computational Biology GA CX6HK UT WOS:000365801600006 PM 26588000 ER PT J AU Dyck, O Hu, S Das, S Keum, J Xiao, K Khomami, B Duscher, G AF Dyck, Ondrej Hu, Sheng Das, Sanjib Keum, Jong Xiao, Kai Khomami, Bamin Duscher, Gerd TI Quantitative Phase Fraction Detection in Organic Photovoltaic Materials through EELS Imaging SO POLYMERS LA English DT Article DE phase detection; organic photovoltaics; plasmon energy mapping; electron energy loss spectroscopy; EELS Core-loss mapping; EFTEM ID HETEROJUNCTION SOLAR-CELLS; MORPHOLOGY; EFFICIENCY; P3HT/PCBM; CONTRAST; TEM AB Organic photovoltaic materials have recently seen intense interest from the research community. Improvements in device performance are occurring at an impressive rate; however, visualization of the active layer phase separation still remains a challenge. This paper outlines the application of two electron energy-loss spectroscopic (EELS) imaging techniques that can complement and enhance current phase detection techniques. Specifically, the bulk plasmon peak position, often used to produce contrast between phases in energy filtered transmission electron microscopy (EFTEM), is quantitatively mapped across a sample cross section. A complementary spectrum image capturing the carbon and sulfur core loss edges is compared with the plasmon peak map and found to agree quite well, indicating that carbon and sulfur density differences between the two phases also allows phase discrimination. Additionally, an analytical technique for determining absolute atomic areal density is used to produce an absolute carbon and sulfur areal density map. We show how these maps may be re-interpreted as a phase ratio map, giving quantitative information about the purity of the phases within the junction. C1 [Dyck, Ondrej; Hu, Sheng; Khomami, Bamin] Univ Tennessee, Dept Chem & Biomol Engn, Knoxville, TN 37996 USA. [Das, Sanjib] Univ Tennessee, Dept Elect Engn & Comp Sci, Knoxville, TN 37996 USA. [Keum, Jong; Xiao, Kai] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci Spallat Neutron Source, Oak Ridge, TN 37831 USA. [Duscher, Gerd] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. RP Dyck, O (reprint author), Univ Tennessee, Dept Chem & Biomol Engn, Knoxville, TN 37996 USA. EM Odyck@utk.edu; shu@vols.utk.edu; sdas8@vols.utk.edu; keumjk@ornl.gov; xiaok@ornl.gov; bkhomami@utk.edu; gduscher@utk.edu RI Dyck, Ondrej/A-3294-2016; Duscher, Gerd/G-1730-2014; Das, Sanjib/A-9255-2017; Keum, Jong/N-4412-2015 OI Dyck, Ondrej/0000-0001-8200-9874; Duscher, Gerd/0000-0002-2039-548X; Das, Sanjib/0000-0002-5281-4458; Keum, Jong/0000-0002-5529-1373 FU Sustainable Energy and Education Research Center (SEERC); Tennessee Solar Conversion and Storage using Outreach, Research and Education (TN-SCORE); Department of Energy, Basic Energy Sciences (DOE-BES) FX This research has been made possible through funding by the Sustainable Energy and Education Research Center (SEERC), Tennessee Solar Conversion and Storage using Outreach, Research and Education (TN-SCORE), the Department of Energy, Basic Energy Sciences (DOE-BES) Some part of this research was conducted at the Center for Nanophase Materials Sciences (CNMS), a DOE Office of Science User Facility. NR 27 TC 1 Z9 1 U1 6 U2 16 PU MDPI AG PI BASEL PA POSTFACH, CH-4005 BASEL, SWITZERLAND SN 2073-4360 J9 POLYMERS-BASEL JI Polymers PD NOV PY 2015 VL 7 IS 11 BP 2446 EP 2460 DI 10.3390/polym7111523 PG 15 WC Polymer Science SC Polymer Science GA CX4SZ UT WOS:000365691900017 ER PT J AU Judson, RS Magpantay, FM Chickarmane, V Haskell, C Tania, N Taylor, J Xia, MH Huang, RL Rotroff, DM Filer, DL Houck, KA Martin, MT Sipes, N Richard, AM Mansouri, K Setzer, RW Knudsen, TB Crofton, KM Thomas, RS AF Judson, Richard S. Magpantay, Felicia Maria Chickarmane, Vijay Haskell, Cymra Tania, Nessy Taylor, Jean Xia, Menghang Huang, Ruili Rotroff, Daniel M. Filer, Dayne L. Houck, Keith A. Martin, Matthew T. Sipes, Nisha Richard, Ann M. Mansouri, Kamel Setzer, R. Woodrow Knudsen, Thomas B. Crofton, Kevin M. Thomas, Russell S. TI Integrated Model of Chemical Perturbations of a Biological Pathway Using 18 In Vitro High-Throughput Screening Assays for the Estrogen Receptor SO TOXICOLOGICAL SCIENCES LA English DT Article DE estrogen receptor; EDSP; high-throughput screening; In vitro; prioritization; biological modeling ID EPAS TOXCAST PROGRAM; ENVIRONMENTAL CHEMICALS; MOLECULAR-MECHANISMS; SELECTIVE LIGANDS; BREAST-CANCER; TOXICITY; EXPOSURE; PRIORITIZATION; IDENTIFICATION; TRANSCRIPTION AB We demonstrate a computational network model that integrates 18 in vitro, high-throughput screening assays measuring estrogen receptor (ER) binding, dimerization, chromatin binding, transcriptional activation, and ER-dependent cell proliferation. The network model uses activity patterns across the in vitro assays to predict whether a chemical is an ER agonist or antagonist, or is otherwise influencing the assays through a manner dependent on the physics and chemistry of the technology platform ("assay interference"). The method is applied to a library of 1812 commercial and environmental chemicals, including 45 ER positive and negative reference chemicals. Among the reference chemicals, the network model correctly identified the agonists and antagonists with the exception of very weak compounds whose activity was outside the concentration range tested. The model agonist score also correlated with the expected potency class of the active reference chemicals. Of the 1812 chemicals evaluated, 111 (6.1%) were predicted to be strongly ER active in agonist or antagonist mode. This dataset and model were also used to begin a systematic investigation of assay interference. The most prominent cause of false-positive activity (activity in an assay that is likely not due to interaction of the chemical with ER) is cytotoxicity. The model provides the ability to prioritize a large set of important environmental chemicals with human exposure potential for additional in vivo endocrine testing. Finally, this model is generalizable to any molecular pathway for which there are multiple upstream and downstream assays available. C1 [Judson, Richard S.; Houck, Keith A.; Martin, Matthew T.; Richard, Ann M.; Setzer, R. Woodrow; Knudsen, Thomas B.; Crofton, Kevin M.; Thomas, Russell S.] US EPA, Res Triangle Pk, NC 27711 USA. [Magpantay, Felicia Maria] Univ Manitoba, Dept Math, Winnipeg, MB R3T 2N2, Canada. [Chickarmane, Vijay] CALTECH, Div Biol, Pasadena, CA 91125 USA. [Haskell, Cymra] Univ So Calif, Dept Math, Los Angeles, CA 90089 USA. [Tania, Nessy] Smith Coll, Dept Math, Northampton, MA 01063 USA. [Taylor, Jean] NYU, Courant Inst, New York, NY 10012 USA. [Xia, Menghang; Huang, Ruili] NIH, Chem Genom Ctr, Natl Ctr Adv Translat Sci, Rockville, MD 20892 USA. [Rotroff, Daniel M.] N Carolina State Univ, Dept Stat, Raleigh, NC 27607 USA. [Rotroff, Daniel M.] N Carolina State Univ, Bioinformat Res Ctr, Raleigh, NC 27607 USA. [Filer, Dayne L.; Mansouri, Kamel] US EPA, ORISE, Res Triangle Pk, NC 27711 USA. [Sipes, Nisha] NIH, Natl Toxicol Program, Res Triangle Pk, NC 27711 USA. RP Judson, RS (reprint author), US EPA, Res Triangle Pk, NC 27711 USA. EM judson.richard@epa.gov RI Crofton, Kevin/J-4798-2015; OI Crofton, Kevin/0000-0003-1749-9971; Mansouri, Kamel/0000-0002-6426-8036 FU American Institute of Mathematics; National Science Foundation; U.S. EPA FX The authors gratefully acknowledge the American Institute of Mathematics and National Science Foundation for support of this research through the "Modeling Problems Related to Our Environment" workshop held January 14-18, 2013 in Palo Alto, California. All other funding was provided by the U.S. EPA. NR 47 TC 24 Z9 24 U1 7 U2 24 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 1096-6080 EI 1096-0929 J9 TOXICOL SCI JI Toxicol. Sci. PD NOV PY 2015 VL 148 IS 1 BP 137 EP 154 DI 10.1093/toxsci/kfv168 PG 18 WC Toxicology SC Toxicology GA CX2SU UT WOS:000365547900013 PM 26272952 ER PT J AU Croy, JR Balasubramanian, M Gallagher, KG Burrell, AK AF Croy, Jason R. Balasubramanian, Mahalingam Gallagher, Kevin G. Burrell, Anthony K. TI Review of the US Department of Energy's "Deep Dive" Effort to Understand Voltage Fade in Li- and Mn-Rich Cathodes SO ACCOUNTS OF CHEMICAL RESEARCH LA English DT Review ID LITHIUM-ION BATTERIES; LOCAL-STRUCTURE; ELECTROCHEMISTRY; INTERCALATION; HYSTERESIS; DENSITY; PROMISE; LI2MNO3; CELLS AB The commercial introduction of the lithium-ion (Li-ion) battery nearly 25 years ago marked a technological turning point. Portable electronics, dependent on energy storage devices, have permeated our world and profoundly affected our daily lives in a way that cannot be understated. Now, at a time when societies and governments alike are acutely aware of the need for advanced energy solutions, the Li-ion battery may again change the way we do business. With roughly two-thirds of daily oil consumption in the United States allotted for transportation, the possibility of efficient and affordable electric vehicles suggests a way to substantially alleviate the Country's dependence on oil and mitigate the rise of greenhouse gases. Although commercialized Li-ion batteries do not currently meet the stringent demands of a would-be, economically competitive, electrified vehicle fleet, significant efforts are being focused on promising new materials for the next generation of Li-ion batteries. The leading class of materials most suitable for the challenge is the Li- and manganese-rich class of oxides. Denoted as LMR-NMC (Li-manganese-rich, nickel, manganese, cobalt), these materials could significantly improve energy densities, cost, and safety, relative to state-of-the-art Ni- and Co-rich Li-ion cells, if successfully developed.(1) The success or failure of such a development relies heavily on understanding two defining characteristics of LMR-NMC cathodes. The first is a mechanism whereby the average voltage of cells continuously decreases with each successive charge and discharge cycle. This phenomenon, known as voltage fade, decreases the energy output of cells to unacceptable levels too early in cycling. The second characteristic is a pronounced hysteresis, or voltage difference, between charge and discharge cycles. The hysteresis represents not only an energy inefficiency (i.e., energy in vs energy out) but may also complicate the state of charge/depth of discharge management of larger systems, especially when accompanied by voltage fade. In 2012, the United States Department of Energy's Office of Vehicle Technologies, well aware of the inherent potential of LMR-NMC materials for improving the energy density of automotive energy storage systems, tasked a team of scientists across the National Laboratory Complex to investigate the phenomenon of voltage fade. Unique studies using synchrotron X-ray absorption (XAS) and high-resolution diffraction (HR-XRD) were coupled with nuclear magnetic resonance spectroscopy (NMR), neutron diffraction, high-resolution transmission electron microscopy (HR-TEM), first-principles calculations, molecular dynamics simulations, and detailed electrochemical analyses. These studies demonstrated for the first time the atomic-scale, structure property relationships that exist between nanoscale inhomogeneities and defects, and the macroscale, electrochemical performance of these layered oxides. These inhomogeneities and defects have been directly correlated with voltage fade and hysteresis, and a model describing these mechanisms has been proposed. This Account gives a brief summary of the findings of this recently concluded, approximately three-year investigation. The interested reader is directed to the extensive body of work cited in the given references for a more comprehensive review of the subject. C1 [Croy, Jason R.; Gallagher, Kevin G.; Burrell, Anthony K.] Argonne Natl Lab, Chem Sci & Engn Div, Lemont, IL 60439 USA. [Balasubramanian, Mahalingam] Argonne Natl Lab, Xray Sci Div, Lemont, IL 60439 USA. RP Croy, JR (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, Lemont, IL 60439 USA. EM croy@anl.gov FU Vehicle Technologies Program, Hybrid and Electric Systems at U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy; DOE Office of Vehicle Technologies [DE-AC02-06CH11357] FX Support from the Vehicle Technologies Program, Hybrid and Electric Systems, David Howell, Peter Faguy, and Tien Duong at the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, is gratefully acknowledged. Use of Sector 20 facilities at the Advanced Photon Source, computer allocations at the LCRC (ANL), NERSC, and EMSL (PNNL), and support from the members of the Voltage Fade team are gratefully acknowledged. This work was performed under the auspices of the DOE Office of Vehicle Technologies under Contract No. DE-AC02-06CH11357. NR 28 TC 18 Z9 18 U1 40 U2 201 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0001-4842 EI 1520-4898 J9 ACCOUNTS CHEM RES JI Accounts Chem. Res. PD NOV PY 2015 VL 48 IS 11 BP 2813 EP 2821 DI 10.1021/acs.accounts.5b00277 PG 9 WC Chemistry, Multidisciplinary SC Chemistry GA CW7AO UT WOS:000365150500002 PM 26451674 ER PT J AU Hong, K Cho, H Schoenlein, RW Kim, TK Huse, N AF Hong, Kiryong Cho, Hana Schoenlein, Robert W. Kim, Tae Kyu Huse, Nils TI Element-Specific Characterization of Transient Electronic Structure of Solvated Fe(II) Complexes with Time-Resolved Soft X-ray Absorption Spectroscopy SO ACCOUNTS OF CHEMICAL RESEARCH LA English DT Review ID TRANSITION-METAL-COMPLEXES; PHOTOINDUCED SPIN-CROSSOVER; EXCITED-STATES; DYNAMICS; SPECTRA; IRON(II); LIGAND; LASER; RESOLUTION; MOLECULES AB Polypyridyl transition-metal complexes are an intriguing class of compounds due to the relatively facile chemical designs and variations in ligand-field strengths that allow for spin-state changes and hence electronic configurations in response to external perturbations such as pressure and light. Light-activated spin-conversion complexes have possible applications in a variety of molecular-based devices, and ultrafast excited-state evolution in these complexes is of fundamental interest for understanding of the origins of spin-state conversion in metal complexes. Knowledge of the interplay of structure and valence charge distributions is important to understand which degrees of freedom drive spin-conversion and which respond in a favorable (or unfavorable) manner. To track the response of the constituent components, various types of time-resolved X-ray probe methods have been utilized for a broad range of chemical and biological systems relevant to catalysis, solar energy conversions, and functional molecular devices. In particular, transient soft X-ray spectroscopy of solvated molecules can offer complementary information on the detailed electronic structures and valence charge distributions of photoinduced intermediate species: First-row transition-metal L-edges consist of 2p-3d transitions, which directly probe the unoccupied valence density of states and feature lifetime broadening in the range of 100 meV, making them sensitive spectral probes of metal ligand interactions. In this Account, we present some of our recent progress in employing picosecond and femtosecond soft X-ray pulses from synchrotron sources to investigate element specific valence charge distributions and spin-state evolutions in Fe(II) polypyridyl complexes via core-level transitions. Our results on transient L-edge spectroscopy of Fe(II) complexes clearly show that the reduction in sigma-donation is compensated by significant attenuation of pi-backbonding upon spin-crossover. This underscores the important information contained in transient metal L-edge spectroscopy on changes in the 3d orbitals including oxidation states, orbital symmetries, and covalency, which largely define the chemistry of these complexes. In addition, ligand K-edge spectroscopy reveals the "ligand view" of the valence charge density by probing 1s-2p core-level transitions at the K-edge of light elements such as nitrogen, carbon, and oxygen. In the case of Fe(II) spin-conversion complexes, additional details of the metal ligand interactions can be obtained by this type of X-ray spectroscopy. With new initiatives in and construction of X-ray free-electron laser sources, we expect time-resolved soft X-ray spectroscopy to pave a new way to study electronic and molecular dynamics of functional materials, thereby answering many interesting scientific questions in inorganic chemistry and material science. C1 [Hong, Kiryong; Cho, Hana; Kim, Tae Kyu] Pusan Natl Univ, Dept Chem, Busan 609735, South Korea. [Hong, Kiryong; Cho, Hana; Kim, Tae Kyu] Pusan Natl Univ, Chem Inst Funct Mat, Busan 609735, South Korea. [Cho, Hana; Schoenlein, Robert W.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Ultrafast Xray Sci Lab, Berkeley, CA 94720 USA. [Cho, Hana] Korea Res Inst Stand & Sci, Div Metrol Qual Life, Ctr Inorgan Anal, Taejon 305340, South Korea. [Huse, Nils] Univ Hamburg, Max Planck Inst Struct & Dynam Matter, Dept Phys, D-22761 Hamburg, Germany. [Huse, Nils] Ctr Free Electron Laser Sci, D-22761 Hamburg, Germany. RP Schoenlein, RW (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Ultrafast Xray Sci Lab, Berkeley, CA 94720 USA. EM rwschoen@slac.stanford.edu; tkkim@pusan.ac.kr; nils.huse@uni-hamburg.de RI KIM, TAE KYU/A-8737-2016; Huse, Nils/A-5712-2017 OI KIM, TAE KYU/0000-0002-9578-5722; Huse, Nils/0000-0002-3281-7600 FU Office of Science, Office of Basic Energy Sciences, the Chemical Sciences, Geosciences, and Biosciences Division, under the Department of Energy [DE-AC02-05CH11231]; National Research Foundation (NRF) - Korean Government (MEST) [2013S1A2A2035406, 2013R1A1A2009575, 2014R1A4A1001690]; National Research Foundation (NRF) - Korean Government (MSIP) [2013S1A2A2035406, 2013R1A1A2009575, 2014R1A4A1001690]; Max Planck Society; City of Hamburg FX The work at LBNL (H.C. and R.W.S.) was supported by the Director, Office of Science, Office of Basic Energy Sciences, the Chemical Sciences, Geosciences, and Biosciences Division, under the Department of Energy Contract No. DE-AC02-05CH11231. This work was also supported by National Research Foundation (NRF) grants funded by Korean Government (MEST and MSIP; Grants 2013S1A2A2035406, 2013R1A1A2009575, and 2014R1A4A1001690). N.H. acknowledges funding from the Max Planck Society and the City of Hamburg. This research used resources of the Advanced Light Source (LBNL) which is a DOE Office of Science User Facility. NR 73 TC 3 Z9 3 U1 17 U2 52 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0001-4842 EI 1520-4898 J9 ACCOUNTS CHEM RES JI Accounts Chem. Res. PD NOV PY 2015 VL 48 IS 11 BP 2957 EP 2966 DI 10.1021/acs.accounts.5b00154 PG 10 WC Chemistry, Multidisciplinary SC Chemistry GA CW7AO UT WOS:000365150500017 PM 26488127 ER PT J AU Stoerzinger, KA Hong, WT Crumlin, EJ Bluhm, H Shao-Horn, Y AF Stoerzinger, Kelsey A. Hong, Wesley T. Crumlin, Ethan J. Bluhm, Hendrik Shao-Horn, Yang TI Insights into Electrochemical Reactions from Ambient Pressure Photoelectron Spectroscopy SO ACCOUNTS OF CHEMICAL RESEARCH LA English DT Review ID OXIDE FUEL-CELLS; PEROVSKITE THIN-FILMS; OXYGEN EVOLUTION REACTION; TRANSITION-METAL OXIDES; IN-SITU; REDUCTION ACTIVITY; CATALYTIC-ACTIVITY; SURFACE; WATER; ELECTROCATALYSIS AB The understanding of fundamental processes in the bulk and at the interfaces of electrochemical devices is a prerequisite for the development of new technologies with higher efficiency and improved performance. One energy storage scheme of great interest is splitting water to form hydrogen and oxygen gas and converting back to electrical energy by their subsequent recombination with only water as a byproduct. However, kinetic limitations to the rate of oxygen-based electrochemical reactions hamper the efficiency in technologies such as solar fuels, fuel cells, and electrolyzers. For these reactions, the use of metal oxides as electrocatalysts is prevalent due to their stability, low cost, and ability to store oxygen within the lattice. However, due to the inherently convoluted nature of electrochemical and chemical processes in electrochemical systems, it is difficult to isolate and study individual electrochemical processes in a complex system. Therefore, in situ characterization tools are required for observing related physical and chemical processes directly at the places where and while they occur and can help elucidate the mechanisms of charge separation and charge transfer at electrochemical interfaces. X-ray photoelectron spectroscopy (XPS), also known as ESCA (electron spectroscopy for chemical analysis), has been used as a quantitative spectroscopic technique that measures the elemental composition, as well as chemical and electronic state of a material. Building from extensive ex situ characterization of electrochemical systems, initial in situ studies were conducted at or near ultrahigh vacuum (UHV) conditions (<= 10(-6) Torr) to probe solid-state electrochemical systems. However, through the integration of differential-pumping stages, XPS can now operate at pressures in the torr range, comprising a technique called ambient pressure XPS (AP-XPS). In this Account, we briefly review the working principles and current status of AP-XPS. We use several recent in situ studies on model electrochemical components as well as operando studies performed by our groups at the Advanced Light Source (ALS) at Lawrence Berkeley National Laboratory to illustrate that AP-XPS is both a chemically and an electrically specific tool since photoelectrons carry information on both the local chemistry and electrical potentials. The applications of AP-XPS to oxygen electrocatalysis shown in this Account span well-defined studies of (1) the oxide/oxygen gas interface, (2) the oxide/water vapor interface, and (3) operand measurements of half and full electrochemical cells. Using specially designed model devices, we can expose and isolate the electrode or interface of interest to the incident X-ray beam and AP-XPS analyzer to relate the electrical potentials to the composition/chemical state of the key components and interfaces. We conclude with an outlook on new developments of AP-XPS end stations, which may provide significant improvement in the observation of dynamics over a wide range of time scales, higher spatial resolution, and improved characterization of boundary or interface layers (solid/solid and liquid/solid). C1 [Stoerzinger, Kelsey A.; Hong, Wesley T.; Shao-Horn, Yang] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA. [Shao-Horn, Yang] MIT, Dept Mech Engn, Cambridge, MA 02139 USA. [Crumlin, Ethan J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Bluhm, Hendrik] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Bluhm, H (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, 1 Cyclotron Rd,MS6R2100, Berkeley, CA 94720 USA. EM hbluhm@lbl.gov; shaohorn@mit.edu OI Stoerzinger, Kelsey/0000-0002-3431-8290 FU MRSEC Program of the National Science Foundation [DMR-0819762]; Skoltech-MIT Center for Electrochemical Energy; Department of Energy (DOE), National Energy Technology Laboratory (NETL), Solid State Energy Conversion Alliance (SECA) Core Technology Program [DEFE0009435]; US DOE at the Lawrence Berkeley National Laboratory [DE-AC02-05CH11231] FX This work was supported in part by the MRSEC Program of the National Science Foundation under Award Number DMR-0819762 and the Skoltech-MIT Center for Electrochemical Energy. The work was also partially supported by Department of Energy (DOE), National Energy Technology Laboratory (NETL), Solid State Energy Conversion Alliance (SECA) Core Technology Program, Funding Opportunity Number DEFE0009435. The ALS and beamlines 9.3.2 and 11.0.2 are supported by the Director, Office of Science, Office of Basic Energy Sciences, and the Division of Chemical Sciences, Geosciences and Biosciences of the US DOE at the Lawrence Berkeley National Laboratory under Contract No. DE-AC02-05CH11231. NR 65 TC 5 Z9 5 U1 26 U2 143 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0001-4842 EI 1520-4898 J9 ACCOUNTS CHEM RES JI Accounts Chem. Res. PD NOV PY 2015 VL 48 IS 11 BP 2976 EP 2983 DI 10.1021/acs.accounts.5b00275 PG 8 WC Chemistry, Multidisciplinary SC Chemistry GA CW7AO UT WOS:000365150500019 PM 26305627 ER PT J AU Su, NC Buss, HG McCloskey, BD Urban, JJ AF Su, Norman C. Buss, Hilda G. McCloskey, Bryan D. Urban, Jeffrey J. TI Enhancing Separation and Mechanical Performance of Hybrid Membranes through Nanoparticle Surface Modification SO ACS MACRO LETTERS LA English DT Article ID MIXED-MATRIX MEMBRANES; FACILITATED TRANSPORT MEMBRANES; GAS SEPARATION; NANOCOMPOSITE MEMBRANES; CO2/CH4 SEPARATION; CO2 SEPARATION; SILICA; PERMEATION; NANOTUBES; POLYIMIDE AB Membranes with selective gas transport properties and good mechanical integrity are increasingly desired to replace current energy intensive approaches to gas separation. Here, we report on the dual enhancement of transport and mechanical properties of hybrid cross-linked poly(ethylene glycol) membranes with aminopropyl-modified silica nanoparticles. CO2 permeability in hybrid membranes exceeds what can be predicted by Maxwell's equation and surpasses values of the pure polymer. Furthermore, dynamic mechanical and thermogravimetric analyses reveal increases in both the storage modulus and thermal stability in hybrid membranes, with respect to silica nanoparticle loading. C1 [Su, Norman C.; Buss, Hilda G.; McCloskey, Bryan D.] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. [Su, Norman C.; Urban, Jeffrey J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. [Buss, Hilda G.; McCloskey, Bryan D.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. RP Urban, JJ (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM jjurban@lbl.gov RI McCloskey, Bryan/A-6556-2015 OI McCloskey, Bryan/0000-0001-6599-2336 FU Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy [DE-AC02-05CH11231]; Department of Defense (DoD) through National Science and Engineering Graduate Fellowship Program FX We would like to thank B.A. Helms for scientific discussions. Work at the Molecular Foundry was supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. N.C. Su was supported by the Department of Defense (DoD) through the National Science and Engineering Graduate Fellowship Program. NR 31 TC 0 Z9 0 U1 6 U2 26 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2161-1653 J9 ACS MACRO LETT JI ACS Macro Lett. PD NOV PY 2015 VL 4 IS 11 BP 1239 EP 1243 DI 10.1021/acsmacrolett.5b00681 PG 5 WC Polymer Science SC Polymer Science GA CW6ZI UT WOS:000365147000011 ER PT J AU Bronstein, ND Yao, Y Xu, L O'Brien, E Powers, AS Ferry, VE Alivisatos, AP Nuzzo, RG AF Bronstein, Noah D. Yao, Yuan Xu, Lu O'Brien, Erin Powers, Alexander S. Ferry, Vivian E. Alivisatos, A. Paul Nuzzo, Ralph G. TI Quantum Dot Luminescent Concentrator Cavity Exhibiting 30-fold Concentration SO ACS PHOTONICS LA English DT Article DE luminescent solar concentrators; quantum dots; photovoltaics; transfer printing; light trapping ID SILICON SOLAR-CELLS; REABSORPTION; NANOCRYSTALS; EFFICIENCY; ENERGY; OUTPUT AB Luminescent solar concentrators doped with CdSe/CdS quantum dots provide a potentially low-cost and high-performance alternative to costly high-band-gap III-V semiconductor materials to serve as a top junction in multijunction photovoltaic devices for efficient utilization of blue photons. In this study, a photonic mirror was coupled with such a luminescent waveguide to form an optical cavity where emitted luminescence was trapped omnidirectionally. By mitigating escape cone and scattering losses, 82% of luminesced photons travel the length of the waveguide, creating a concentration ratio of 30.3 for blue photons in a waveguide with a geometric gain of 61. Further, we study the photon transport inside the luminescent waveguide, showing unimpeded photon collection across the entire length of the waveguide. C1 [Bronstein, Noah D.; O'Brien, Erin; Powers, Alexander S.; Alivisatos, A. Paul] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Alivisatos, A. Paul] Univ Calif Berkeley, Kavli Energy NanoSci Inst, Berkeley, CA 94720 USA. [Yao, Yuan; Xu, Lu; Nuzzo, Ralph G.] Univ Illinois, Frederick Seitz Mat Res Lab, Dept Chem, Urbana, IL 61801 USA. [Nuzzo, Ralph G.] Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA. [Ferry, Vivian E.] Univ Minnesota, Dept Chem Engn & Mat Sci, Minneapolis, MN 55455 USA. [Alivisatos, A. Paul] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Alivisatos, AP (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM alivis@berkeley.edu; r-nuzzo@illinois.edu RI Alivisatos , Paul /N-8863-2015 OI Alivisatos , Paul /0000-0001-6895-9048 FU National Science Foundation Graduate Research Fellowship Program [DGE 1106400]; Light-Material Interactions in Energy Conversion, an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, EFRC at Caltech [DE-AC02-05CH11231, DE-SC0001293, 67N-1087758, DE- SC0001293]; United States Government; U.S. Department of Energy [DE-AC02-05CH11231] FX N.D.B. was supported by the National Science Foundation Graduate Research Fellowship Program under Grant No. DGE 1106400. Quantum dot synthesis, quantum dot characterization, and device modeling were performed at UC Berkeley and supported by the Light-Material Interactions in Energy Conversion, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract DE-AC02-05CH11231, part of the EFRC at Caltech under DE-SC0001293. Device fabrication and testing at the University of Illinois at Urbana-Champaign were supported by the Light-Material Interactions in Energy Conversion, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract 67N-1087758, part of the EFRC at Caltech under DE- SC0001293. This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California. This article has been authored by an author at Lawrence Berkeley National Laboratory under Contract No. DE-AC02-05CH11231 with the U.S. Department of Energy. The U.S. Government retains, and the publisher, by accepting the article for publication, acknowledges, that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for U.S. Government purposes. NR 33 TC 14 Z9 14 U1 9 U2 38 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2330-4022 J9 ACS PHOTONICS JI ACS Photonics PD NOV PY 2015 VL 2 IS 11 BP 1576 EP 1583 DI 10.1021/acsphotonics.5b00334 PG 8 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Optics; Physics, Applied; Physics, Condensed Matter SC Science & Technology - Other Topics; Materials Science; Optics; Physics GA CW6ZU UT WOS:000365148400010 ER PT J AU Walker, D Li, J Kalkan, B Clark, SM AF Walker, David Li, Jie Kalkan, Bora Clark, Simon M. TI Thermal, compositional, and compressional demagnetization of cementite SO AMERICAN MINERALOGIST LA English DT Article DE Cementite; magnetism; Curie temperature; composition; pressure; stability ID IRON-PLATINUM ALLOYS; EQUATION-OF-STATE; PT INVAR-ALLOYS; EARTHS CORE; FE-NI; CURIE-TEMPERATURE; HIGH-PRESSURES; C SYSTEM; CARBON; GPA AB The 1 bar Curie temperature, T-C, at which cementite (anthropogenic form of the mineral cohenite, nominally Fe3C) abruptly loses ferromagnetism, is found to be sensitive to small deviations from the stoichiometric cementite composition. Stoichiometric Fe3C begins to lose magnetic susceptibility at 187 degrees C. The T-C of ferromagnetic loss in cementite falls by about 13-14 degrees C, in either compositional direction, to the limits at either Fe-saturation or graphite-saturation. Formation of C vacancies in, or C stuffings into, Fe3C produces non-stoichiometry, disrupts and weakens the Fe magnetic ordering, and produces excess configurational entropy that is proportional to the disruption magnitude. C-excess (similar to 0.6 at% C) at graphite-saturation is less than the C-deficiency at Fe-saturation (similar to 2.6 at% C), so the rate at which Curie T-C drops with cementite C% variation is asymmetric about the stoichiometric composition, being steeper on the C-excess side. This asymmetry reflects the higher excess configurational entropy (and consequently greater weakening of Fe magnetic ordering) generated by C excesses than by C vacancies. The application of similar to 6 GPa pressure to stoichiometric Fe3C leads to a drop in T-C, of more than 160 degrees C, to below room T. This large drop in T-C with pressure is shown by loss of ferromagnetism in a specimen compressed in a multi-anvil device at room T. Densely sampled synchrotron XRD cell volumes through the transition pressure interval at room T show that there is also a small drop in compressibility near 6 GPa for non-stoichiometric cementites. C-rich cementite retains its magnetism to similar to 1 GPa higher P than C-poor cementite. The drop in T-C with pressure for stoichiometric cementite was tracked in an externally heated diamond-anvil cell by the jump in thermal expansion experienced when cementite loses its magnetostriction above T-C (Wood et al. 2004; Litasov et al. 2013). T-C drops parabolically with pressure, as do the Invar alloys (Leger et al. 1972; Winterrose et al. 2009). Both high T and P favor the magnetically disordered (Curie) paramagnetic over the ferromagnetic form of cementite. The observed large positive change in thermal expansion and small negative change in compressibility at the T-C transition give a good quantitative account of the negative dT(C)/dP slope mapped by the ferro-paramagnetic phase stability boundary through Ehrenfest's (1933) second relation. Our observations of cementite demagnetization at P similar to 6 GPa, room T confirm the synchrotron Mossbauer work of Gao et al. (2008). The demagnetization pressures based upon experiment are lower than those estimated from existing theoretical treatments by about an order of magnitude. Stability calculations for carbide in the mantle and core are influenced by the choice among ferromagnetic, paramagnetic, and non-magnetic equations of state. Because the ferromagnetic phase is more compressible, the calculated P-T range for cementite stability would be too large under the assumption of ferromagnetism persisting to higher pressures than shown here experimentally. Our results diminish the theoretical P-T range of cementite stability. C1 [Walker, David] Columbia Univ, LDEO, Earth & Environm Sci, Palisades, NY 10964 USA. [Li, Jie] Univ Michigan, Earth & Environm Sci, Ann Arbor, MI 48109 USA. [Kalkan, Bora] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Kalkan, Bora] Hacettepe Univ, Dept Engn Phys, TR-06800 Ankara, Turkey. [Clark, Simon M.] Macquarie Univ, Dept Earth & Planetary Sci, N Ryde, NSW 2109, Australia. [Clark, Simon M.] Australian Nucl Sci & Technol Org, Bragg Inst, Kirrawee Dc, NSW 2232, Australia. RP Walker, D (reprint author), Columbia Univ, LDEO, Earth & Environm Sci, Palisades, NY 10964 USA. EM dwalker@ldeo.columbia.edu RI Clark, Simon/B-2041-2013 OI Clark, Simon/0000-0002-7488-3438 FU NSF [EAR-1219891, AST-1344133]; DOE; U. Michigan APSF and Crosby grants; Scientific and Technological Research Council of Turkey [114C201]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX We thank NSF and DOE for their support. J.L. acknowledges support from NSF grants EAR-1219891 and AST-1344133 and U. Michigan APSF and Crosby grants. Alastair McDowell and Jihyuan Yan are thanked for beamline support. Support for B.K. was provided by a The Scientific and Technological Research Council of Turkey fellowship under contract no. 114C201. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under contract no. DE-AC02-05CH11231. We thank two anonymous reviewers for their constructive comments. LDEO contribution 7934. NR 43 TC 2 Z9 2 U1 5 U2 15 PU MINERALOGICAL SOC AMER PI CHANTILLY PA 3635 CONCORDE PKWY STE 500, CHANTILLY, VA 20151-1125 USA SN 0003-004X EI 1945-3027 J9 AM MINERAL JI Am. Miner. PD NOV-DEC PY 2015 VL 100 IS 11-12 BP 2610 EP 2624 DI 10.2138/am-2015-5306 PG 15 WC Geochemistry & Geophysics; Mineralogy SC Geochemistry & Geophysics; Mineralogy GA CX0GH UT WOS:000365374400025 ER PT J AU Saldi, GD Daval, D Guo, H Guyot, F Bernard, S Le Guillou, C Davis, JA Knauss, KG AF Saldi, Giuseppe D. Daval, Damien Guo, Hua Guyot, Francois Bernard, Sylvain Le Guillou, Corentin Davis, James A. Knauss, Kevin G. TI Mineralogical evolution of Fe-Si-rich layers at the olivine-water interface during carbonation reactions SO AMERICAN MINERALOGIST LA English DT Article DE Olivine carbonation; Fe-Si-rich interfacial layers; redox reactions; passivation; cronstedtite; dissolution/precipitation; Fe-oxides ID FIB-INDUCED DAMAGE; SILICATE MINERALS; FORSTERITE DISSOLUTION; SUPERCRITICAL WATER; CONDITIONS RELEVANT; CRYSTAL-STRUCTURE; AQUEOUS-SOLUTION; KINETICS; TRANSFORMATION; SEQUESTRATION AB Recent studies investigating carbonation of iron-bearing silicates have shown that the rates of these reactions, although formally not depending on oxygen fugacity, are strongly different at different redox states of the system (Saldi et al. 2013; Sissmann et al. 2013). Here we provide a micro- and nanostructural characterization of the olivine/water interface during the carbonation of forsteritic olivine at 150 degrees C and p(CO2) = 100 bar. When the reaction starts under oxic conditions, the observed temporal sequence of interfacial layers consists of: a hematite/SiO2(am) assemblage, Fe-rich phyllosilicates with mixed Fe valence and a non-passivating Fe-free amorphous SiO2 layer, which allows the formation of ferroan magnesite. In contrast, starting at micro-oxic conditions, carbonation rates are much faster, with no real evidence of interfacial layers. Separate deposits of goethite/lepidocrocite in the early stages of the reaction and then formation of magnetite are observed at these conditions, while precipitation of siderite/magnesite proceeds unhindered. The evolution of the redox conditions during the reaction progress controls the sequence of the observed reaction products and the passivating properties of Fe-Si-rich interfacial layers. These findings have important implications for modeling the carbonation of ultramafic rocks under different oxygen fugacity conditions as well as for understanding the technological implications of adding accessory gases to CO2 in carbon capture and storage mineralization processes involving ultrabasic rocks. C1 [Saldi, Giuseppe D.; Guo, Hua; Davis, James A.; Knauss, Kevin G.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Daval, Damien] Univ Strasbourg, EOST CNRS UMR 7517, Lab Hydrol & Geochim Strasbourg, F-67084 Strasbourg, France. [Guyot, Francois; Bernard, Sylvain; Le Guillou, Corentin; Knauss, Kevin G.] UPMC, Univ Paris 04, MNHN,IMPMC,IRD, CNRS,UMR 7590,Inst Mineral Phys Mat & Cosmochim, F-75005 Paris, France. RP Saldi, GD (reprint author), Univ Toulouse 3, CNRS, GET, UMR 5563, 14 Ave E Belin, F-31400 Toulouse, France. EM giuseppe.saldi@get.obs-mip.fr RI Bernard, Sylvain/B-6756-2013; GUYOT, Francois/C-3824-2016; IMPMC, Geobio/F-8819-2016; Davis, James/G-2788-2015 OI GUYOT, Francois/0000-0003-4622-2218; FU Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division, of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The authors thank Tracy Mattox for the technical assistance during ICP-OES analyses at LBNL and Timothy Teague for helping us with sample preparation and for the technical support provided at SEM on UC campus. Martiane Cabie (CP2M, Marseille, France) is warmly thanked for her help with the preparation of FIB thin sections. STXM-based XAS data were acquired at beamline 10ID-1 at the CLS, which is supported by the NSERC, the CIHR, the NRC, and the University of Saskatchewan. Special thanks go to Jian Wang and Jay Dynes for their expert support of the STXM at the CLS. This manuscript benefited from the most helpful comments of an anonymous reviewer. We thank Dionysis Foustoukos for his additional comments and the editorial assistance. NR 73 TC 2 Z9 2 U1 17 U2 39 PU MINERALOGICAL SOC AMER PI CHANTILLY PA 3635 CONCORDE PKWY STE 500, CHANTILLY, VA 20151-1125 USA SN 0003-004X EI 1945-3027 J9 AM MINERAL JI Am. Miner. PD NOV-DEC PY 2015 VL 100 IS 11-12 BP 2655 EP 2669 DI 10.2138/am-2015-5340 PG 15 WC Geochemistry & Geophysics; Mineralogy SC Geochemistry & Geophysics; Mineralogy GA CX0GH UT WOS:000365374400030 ER PT J AU Manginell, RP Mowry, CD Pimentel, AS Mangan, MA Moorman, MW Sparks, ES Allen, A Achyuthan, KE AF Manginell, Ronald P. Mowry, Curtis D. Pimentel, Adam S. Mangan, Michael A. Moorman, Matthew W. Sparks, Elizabeth S. Allen, Amy Achyuthan, Komandoor E. TI Development of a Mesoscale Pulsed Discharge Helium Ionization Detector for Portable Gas Chromatography SO ANALYTICAL SCIENCES LA English DT Article DE Micro-pulsed discharge helium ionization detector (micro-PDHID); mesoscale fabrication; 3-methyl-2-hexenoic acid; gas chromatography; GC; volatile organic compounds; VOC ID SIMION; ACID; GC AB Miniaturization of gas chromatography (GC) instrumentation enables field detection of volatile organic compounds (VOCs) for chembio-applications such as clandestine human transport and disease diagnostics. We fabricated a mesoscale pulsed discharge helium ionization detector (micro-PDHID) for integrating with our previously described mini-GC hardware. Stainless steel electrodes fabricated by photochemical etching and electroforming facilitated rapid prototyping and enabled nesting of inter-electrode insulators for self-alignment of the detector core during assembly. The prototype was similar to 10 cm(3) relative to >400 cm(3) of a commercial PDHID, but with a comparable time to sweep a VOC peak from the detector cell (170 ms and 127 ms, respectively). Electron trajectory modeling, gas flow rate, voltage bias, and GC outlet location were optimized for improving sensitivity. Despite 40-fold miniaturization, the micro-PDHID detected 18 ng of the human emanation, 3-methyl-2-hexenoic acid with <3-fold decrease in sensitivity relative to the commercial detector. The micro-PDHID was rugged and operated for 9 months without failure. C1 [Manginell, Ronald P.; Moorman, Matthew W.; Achyuthan, Komandoor E.] Sandia Natl Labs, Biochemphys Microsensors Dept, Albuquerque, NM 87185 USA. [Mowry, Curtis D.; Pimentel, Adam S.; Sparks, Elizabeth S.; Allen, Amy] Sandia Natl Labs, Mat Characterizat Dept, Albuquerque, NM 87185 USA. [Mangan, Michael A.] Sandia Natl Labs, Photon Microsyst Technol Dept, Albuquerque, NM 87185 USA. RP Manginell, RP (reprint author), Sandia Natl Labs, Biochemphys Microsensors Dept, POB 5800, Albuquerque, NM 87185 USA. EM rpmangi@sandia.gov FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; Sandia's Laboratory Directed Research and Development (LDRD) project [151318]; LDRD Committee FX Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. This work was supported by Sandia's Laboratory Directed Research and Development (LDRD) project # 151318 awarded to Dr. Ronald Manginell. We thank Dianna Blair and the LDRD Committee for supporting this work and Nathaniel Pfeifer for valuable assistance with data analysis and graphics. NR 23 TC 3 Z9 3 U1 4 U2 8 PU JAPAN SOC ANALYTICAL CHEMISTRY PI TOKYO PA 26-2 NISHIGOTANDA 1 CHOME SHINAGAWA-KU, TOKYO, 141, JAPAN SN 0910-6340 EI 1348-2246 J9 ANAL SCI JI Anal. Sci. PD NOV PY 2015 VL 31 IS 11 SI SI BP 1183 EP 1188 PG 6 WC Chemistry, Analytical SC Chemistry GA CX0GU UT WOS:000365375700013 PM 26561264 ER PT J AU Salgado-Salazar, C Rivera, Y Veltri, D Crouch, JA AF Salgado-Salazar, Catalina Rivera, Yazmin Veltri, Daniel Crouch, Jo Anne TI POLYMORPHIC SSR MARKERS FOR PLASMOPARA OBDUCENS (PERONOSPORACEAE), THE NEWLY EMERGENT DOWNY MILDEW PATHOGEN OF IMPATIENS (BALSAMINACEAE) SO APPLICATIONS IN PLANT SCIENCES LA English DT Article DE de novo assembly; high-throughput marker identification; ornamental impatiens; Plasmopara obducens; population genetics; simple sequence repeats ID 1ST REPORT; UK AB Premise of the study: Simple sequence repeat (SSR) markers were developed for Plasmopara obducens, the causal agent of the newly emergent downy mildew disease of Impatiens walleriana. Methods and Results: A 202-Mb draft genome assembly was generated from P. obducens using Illumina technology and mined to identify 13,483 SSR motifs. Primers were synthesized for 62 marker candidates, of which 37 generated reliable PCR products. Testing of the 37 markers using 96 P. obducens samples showed 96% of the markers were polymorphic, with 2-6 alleles observed. Observed and expected heterozygosity ranged from 0.000-0.892 and 0.023-0.746, respectively. Just 17 markers were sufficient to identify all multilocus genotypes. Conclusions: These are the first SSR markers available for this pathogen, and one of the first molecular resources. These markers will be useful in assessing variation in pathogen populations and determining the factors contributing to the emergence of destructive impatiens downy mildew disease. C1 [Salgado-Salazar, Catalina; Rivera, Yazmin; Veltri, Daniel; Crouch, Jo Anne] USDA ARS, Systemat Mycol & Microbiol Lab, Beltsville, MD 20705 USA. [Salgado-Salazar, Catalina; Rivera, Yazmin] Rutgers State Univ, Dept Plant Biol & Pathol, New Brunswick, NJ 08901 USA. [Veltri, Daniel] ARS Res Participat Program, Oak Ridge Inst Sci & Educ, Oak Ridge, TN 37831 USA. RP Crouch, JA (reprint author), USDA ARS, Systemat Mycol & Microbiol Lab, Beltsville, MD 20705 USA. EM Joanne.Crouch@ars.usda.gov OI Crouch, Jo Anne/0000-0001-6886-8090; Veltri, Daniel/0000-0002-6101-6693; Salgado Salazar, Catalina/0000-0002-4156-692X FU U.S. Department of Agriculture-Animal and Plant Health Inspection Service (USDA-APHIS) Farm Bill Programs [10201, 10007]; USDA-Agricultural Research Service (USDA-ARS); Department of Energy (DOE) [DE-AC05-06OR23100]; USDA [DE-AC05-06OR23100] FX Funding was provided by the 2013-2015 U.S. Department of Agriculture-Animal and Plant Health Inspection Service (USDA-APHIS) Farm Bill 10201 and 10007 Programs and USDA-Agricultural Research Service (USDA-ARS); D. V. is supported through the USDA-ARS Research Participation Program administered by the Oak Ridge Institute for Science and Education (ORISE) through an interagency agreement between the U.S. Department of Energy (DOE) and the USDA, managed under DOE contract number DE-AC05-06OR23100. We are grateful to Ed Ismaiel for technical assistance and Sonja Sheffer and Matt Lewis for the use of the ABI 3730xl instrument. All opinions expressed in this paper are the author's and do not necessarily reflect the policies and views of USDA, ARS, DOE, or Oak Ridge Associated Universities (ORAU)/ORISE. Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the USDA. USDA is an equal opportunity provider and employer. NR 14 TC 2 Z9 2 U1 2 U2 5 PU BOTANICAL SOC AMER INC PI ST LOUIS PA PO BOX 299, ST LOUIS, MO 63166-0299 USA SN 2168-0450 J9 APPL PLANT SCI JI Appl. Plant Sci. PD NOV PY 2015 VL 3 IS 11 AR 1500073 DI 10.3732/apps.1500073 PG 6 WC Plant Sciences SC Plant Sciences GA CW9PP UT WOS:000365331000007 ER PT J AU Su, X Liu, CG Yang, DY Wen, J Fu, EG Zhang, J Chen, LJ Xu, DP Wang, YQ Li, YH AF Su, X. Liu, C. G. Yang, D. Y. Wen, J. Fu, E. G. Zhang, J. Chen, L. J. Xu, D. P. Wang, Y. Q. Li, Y. H. TI The structural behavior of SrTiO3 under 400 keV Ne2+ ion irradiation SO APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING LA English DT Article ID TOTAL-ENERGY CALCULATIONS; AUGMENTED-WAVE METHOD; DISPLACEMENT ENERGIES; STRONTIUM-TITANATE; ROOM-TEMPERATURE; CRYSTAL SRTIO3; BASIS-SET; RECRYSTALLIZATION; CRYSTALLIZATION; TRANSITION AB The structural behavior of polycrystalline perovskite SrTiO3 under 400 keV Ne2+ ion irradiation at both liquid nitrogen (LN2) and room temperature (RT) has been investigated. The grazing incident X-ray diffraction technique was applied to examine the radiation-induced structural evolution. The radiation behavior of SrTiO3 depends strongly on the irradiation temperature. At LN2 temperature, the samples exhibit significant lattice swelling and amorphization, whereas at RT, the lattice swelling is much less conspicuous and no amorphization is detected even at the highest irradiation dose of 5.0 dpa. Nevertheless, Ne2+ irradiation induces peak splitting in XRD patterns at both temperatures. Furthermore, first-principle calculations have been performed with VASP, involving possible defect types, to identify which defect is responsible for the radiation effect of SrTiO3. The results reveal that the oxygen vacancy defect is the most likely to contribute to the radiation behavior of SrTiO3. C1 [Su, X.; Liu, C. G.; Yang, D. Y.; Wen, J.; Chen, L. J.; Xu, D. P.; Li, Y. H.] Lanzhou Univ, Sch Nucl Sci & Technol, Lanzhou 730000, Peoples R China. [Fu, E. G.] Peking Univ, State Key Lab Nucl Phys & Technol, Beijing 100871, Peoples R China. [Zhang, J.] Xiamen Univ, Sch Energy Res, Xiamen 361005, Peoples R China. [Wang, Y. Q.] Los Alamos Natl Lab, Mat Sci & Technol Div, Los Alamos, NM 87545 USA. RP Li, YH (reprint author), Lanzhou Univ, Sch Nucl Sci & Technol, Lanzhou 730000, Peoples R China. EM liyuhong@lzu.edu.cn FU National Natural Science Foundation of China [11475076, 11175076, 11135002]; Center for Integrated Nanotechnologies, a DOE FX This work was sponsored by the National Natural Science Foundation of China (11475076, 11175076 and 11135002). Ion Beam Materials Laboratory was partially supported by the Center for Integrated Nanotechnologies, a DOE nanoscience user facility jointly operated by Los Alamos and Sandia National Laboratories. NR 39 TC 0 Z9 0 U1 5 U2 15 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0947-8396 EI 1432-0630 J9 APPL PHYS A-MATER JI Appl. Phys. A-Mater. Sci. Process. PD NOV PY 2015 VL 121 IS 3 BP 1211 EP 1217 DI 10.1007/s00339-015-9492-6 PG 7 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA CW3TF UT WOS:000364914100045 ER PT J AU Richers, S Kasen, D O'Connor, E Fernandez, R Ott, CD AF Richers, Sherwood Kasen, Daniel O'Connor, Evan Fernandez, Rodrigo Ott, Christian D. TI MONTE CARLO NEUTRINO TRANSPORT THROUGH REMNANT DISKS FROM NEUTRON STAR MERGERS SO ASTROPHYSICAL JOURNAL LA English DT Article DE accretion, accretion disks; gamma-ray burst: general; neutrinos; radiative transfer ID COMPACT OBJECT MERGERS; GAMMA-RAY BURSTS; EQUATION-OF-STATE; BLACK-HOLE-TORUS; R-PROCESS; PAIR ANNIHILATION; RADIATION TRANSPORT; BINARY MERGERS; LIGHT CURVES; ELECTROMAGNETIC COUNTERPARTS AB We present Sedonu, a new open source, steady-state, special relativistic Monte Carlo (MC) neutrino transport code, available at bitbucket. org/srichers/sedonu. The code calculates the energy-and angledependent neutrino distribution function on fluid backgrounds of any number of spatial dimensions, calculates the rates of change of fluid internal energy and electron fraction, and solves for the equilibrium fluid temperature and electron fraction. We apply this method to snapshots from two-dimensional simulations of accretion disks left behind by binary neutron star mergers, varying the input physics and comparing to the results obtained with a leakage scheme for the cases of a central black hole and a central hypermassive neutron star. Neutrinos are guided away from the densest regions of the disk and escape preferentially around 45 degrees from the equatorial plane. Neutrino heating is strengthened by MC transport a few scale heights above the disk midplane near the innermost stable circular orbit, potentially leading to a stronger neutrino-driven wind. Neutrino cooling in the dense midplane of the disk is stronger when using MC transport, leading to a globally higher cooling rate by a factor of a few and a larger leptonization rate by an order of magnitude. We calculate neutrino pair annihilation rates and estimate that an energy of 2.8 x 10(46) erg is deposited within 45 degrees of the symmetry axis over 300 ms when a central BH is present. Similarly, 1.9 x 10(48) erg is deposited over 3 s when an HMNS sits at the center, but neither estimate is likely to be sufficient to drive a gamma-ray burst jet. C1 [Richers, Sherwood; Ott, Christian D.] CALTECH, TAPIR, Walter Burke Inst Theoret Phys, Pasadena, CA 91125 USA. [Kasen, Daniel; Fernandez, Rodrigo] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Kasen, Daniel; Fernandez, Rodrigo] Univ Calif Berkeley, Theoret Astrophys Ctr, Berkeley, CA 94720 USA. [Kasen, Daniel; Fernandez, Rodrigo] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Kasen, Daniel] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. [O'Connor, Evan] N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA. RP Richers, S (reprint author), CALTECH, TAPIR, Walter Burke Inst Theoret Phys, Mailcode 350-17, Pasadena, CA 91125 USA. EM srichers@tapir.caltech.edu RI Ott, Christian/G-2651-2011; OI Ott, Christian/0000-0003-4993-2055; O'Connor, Evan/0000-0002-8228-796X FU DOE Computational Science Graduate Fellowship [DE-FG02-97ER25308]; National Science Foundation [AST-1205732, AST-1333520, PHY-1151197]; Sherman Fairchild Foundation; Los Alamos National Laboratory Institute for Geophysics, Planetary Physics and Signatures; NASA through Hubble Fellowship - Space Telescope Science Institute [51344.001-A]; NASA [NAS 5-26555]; University of California Office of the President; NSF [AST-1206097]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]; NSF MRI-R2 award [PHY-0960291]; NSF PRAC award [ACI-1440083] FX We thank A. Burrows, M. Duez, F. Foucart, L. Roberts, J. Lippuner, E. Murchikova, and T. Urbatsch for helpful discussions and Rollin Thomas for an interface to the Lua library. SR is supported by a DOE Computational Science Graduate Fellowship under grant number DE-FG02-97ER25308. S.R. and C.D.O. acknowledge support by the National Science Foundation under awards AST-1205732, AST-1333520, and PHY-1151197, by the Sherman Fairchild Foundation, and by the Los Alamos National Laboratory Institute for Geophysics, Planetary Physics and Signatures. E.O. acknowledges support from NASA through Hubble Fellowship grant #51344.001-A awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract NAS 5-26555. R.F. acknowledges support from the University of California Office of the President, and from NSF award AST-1206097. This research used computing and storage resources (repo m2058) provided by the National Energy Research Scientific Computing Center (NERSC), which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Parts of the computations were also performed on the Caltech compute cluster Zwicky (NSF MRI-R2 award PHY-0960291), on the NSF XSEDE network under allocation TG-PHY100033, and on NSF/NCSA Blue Waters under NSF PRAC award ACI-1440083. NR 92 TC 4 Z9 4 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD NOV 1 PY 2015 VL 813 IS 1 AR 38 DI 10.1088/0004-637X/813/1/38 PG 22 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CW8XZ UT WOS:000365284100038 ER PT J AU Squire, J Bhattacharjee, A AF Squire, J. Bhattacharjee, A. TI COHERENT NONHELICAL SHEAR DYNAMOS DRIVEN BY MAGNETIC FLUCTUATIONS AT LOW REYNOLDS NUMBERS SO ASTROPHYSICAL JOURNAL LA English DT Article DE accretion, accretion disks; dynamo; magnetic fields; magnetohydrodynamics (MHD); turbulence ID LARGE-SCALE DYNAMO; MEAN-FIELD ELECTRODYNAMICS; ALPHA-OMEGA-DYNAMO; ELECTROMOTIVE-FORCE; MAGNETOROTATIONAL INSTABILITY; ACCRETION DISKS; TURBULENCE; HELICITY; FLOW; TRANSPORT AB Nonhelical shear dynamos are studied with a particular focus on the possibility of coherent dynamo action. The primary results-serving as a follow up to the results of Squire & Bhattacharjee-pertain to the "magnetic shear-current effect" as a viable mechanism to drive large-scale magnetic field generation. This effect raises the interesting possibility that the saturated state of the small-scale dynamo could drive large-scale dynamo action, and is likely to be important in the unstratified regions of accretion disk turbulence. In this paper, the effect is studied at low Reynolds numbers, removing the complications of small-scale dynamo excitation and aiding analysis by enabling the use of quasi-linear statistical simulation methods. In addition to the magnetically driven dynamo, new results on the kinematic nonhelical shear dynamo are presented. These illustrate the relationship between coherent and incoherent driving in such dynamos, demonstrating the importance of rotation in determining the relative dominance of each mechanism. C1 [Squire, J.; Bhattacharjee, A.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08543 USA. [Squire, J.; Bhattacharjee, A.] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Squire, J.; Bhattacharjee, A.] Princeton Univ, Max Planck Princeton Ctr Plasma Phys, Dept Astrophys Sci, Princeton, NJ 08543 USA. [Squire, J.] CALTECH, TAPIR, Pasadena, CA 91125 USA. RP Squire, J (reprint author), Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08543 USA. EM jsquire@caltech.edu FU Procter Fellowship at Princeton University; US Department of Energy [DE-AC02-09-CH11466] FX This work was supported by a Procter Fellowship at Princeton University, and the US Department of Energy Grant DE-AC02-09-CH11466. We would like to thank A. Schekochihin, J. Krommes, I. Rogachevskii, and G. Lesur for enlightening discussion and useful suggestions. NR 68 TC 5 Z9 6 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD NOV 1 PY 2015 VL 813 IS 1 AR 52 DI 10.1088/0004-637X/813/1/52 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CW8XZ UT WOS:000365284100052 ER PT J AU Duke, DJ Honnery, D Soria, J AF Duke, Daniel J. Honnery, Damon Soria, Julio TI The growth of instabilities in annular liquid sheets SO EXPERIMENTAL THERMAL AND FLUID SCIENCE LA English DT Article DE Annular liquid sheet instability experimental ID NONLINEAR INSTABILITY; JET BREAKUP; GAS STREAMS; DISINTEGRATION; ATOMIZATION; SPRAYS; NOZZLE; WAVES; MODEL AB An annular liquid sheet surrounded by parallel co-flowing gas is an effective atomiser. However, the initial instabilities which determine the primary break-up of the liquid sheet are not well understood. Lack of agreement on the influence of the boundary conditions and the non-dimension scaling of the initial instability persists between theoretical stability analyses and experiments, since there is little experimental data available on the near-field behaviour of the instability. To address this matter, we have undertaken an experimental parametric study of an aerodynamically-driven, non-swirling annular water sheet. The effects of sheet thickness, inner and outer gas-liquid momentum ratio were investigated over an order of magnitude variation in Reynolds and Weber number. From high-speed image correlation measurements in the near-nozzle region, we propose new empirical correlations for the frequency of the instability as a function of the total gas-liquid momentum ratio, with good non-dimensional collapse. From analysis of the instability velocity probability densities, we find two persistent and distinct superimposed instabilities with different growth rates. The first is a short-lived, rapidly saturating saw-tooth-like instability. The second is a slower-growing stochastic instability which persists through the break-up of the sheet. The presence of multiple instabilities whose growth rates do not strongly correlate with the shear velocities may explain some of the discrepancies between experiments and stability analyses. Published by Elsevier Inc. C1 [Duke, Daniel J.] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. [Duke, Daniel J.; Honnery, Damon; Soria, Julio] Monash Univ, Dept Mech & Aerosp Engn, Lab Turbulence Res Aerosp & Combust, Clayton, Vic 3800, Australia. [Soria, Julio] King Abdulaziz Univ, Dept Aeronaut Engn, Riyadh, Saudi Arabia. RP Duke, DJ (reprint author), Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. EM dduke@anl.gov OI Honnery, Damon/0000-0003-2925-3602 FU Australian Research Council FX The authors wish to acknowledge the support of the Australian Research Council, and the NCI National Facility for access to high-performance computing resources. The first author gratefully acknowledges the support of Dr. Chris Powell (Argonne National Laboratory) and Dr. Vassili Kitsios (Monash University). NR 37 TC 1 Z9 1 U1 5 U2 22 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0894-1777 EI 1879-2286 J9 EXP THERM FLUID SCI JI Exp. Therm. Fluid Sci. PD NOV PY 2015 VL 68 BP 89 EP 99 DI 10.1016/j.expthermflusci.2015.04.013 PG 11 WC Thermodynamics; Engineering, Mechanical; Physics, Fluids & Plasmas SC Thermodynamics; Engineering; Physics GA CX0BL UT WOS:000365361800009 ER PT J AU Park, JS Kwon, S Im, K Kim, K Brown, T Neilson, G AF Park, Jong Sung Kwon, Sungjin Im, Kihak Kim, Keeman Brown, Thomas Neilson, George TI Pre-conceptual design study on K-DEMO ceramic breeder blanket SO FUSION ENGINEERING AND DESIGN LA English DT Article DE K-DEMO; Ceramic breeder blanket; TBR; Neutron shielding; Lithium ortho-silicate; Beryllide ID ARIES-AT AB A pre-conceptual design study has been carried out for the Korean fusion demonstration reactor (K-DEMO) tokamak featured by high magnetic field (B-ro = 7.4T), R=6.8 m, a = 2.1 m, and a steady-state operation. The design concepts of the K-DEMO blanket system considering the cooling in-vessel components with pressurized water and a solid pebble breeder are described herein. The structure of the K-DEMO blanket is toroidally subdivided into 16 inboard and 32 outboard sectors, in order to allow the vertical maintenance. Each blanket module is composed of plasma-facing first wall, layers of breeding parts, shielding and manifolds. A ceramic breeder using Li4SiO4 pebbles with Be12Ti as neuron multiplier is employed for study. MCNP neutronic simulations and thermo-hydraulic analyses are interactively performed in order to satisfy two key aspects: achieving a global Tritium Breeding Ratio (TBR) > 1.05 and operating within the maximum allowable temperature ranges of materials. (C) 2015 Elsevier B.V. All rights reserved. C1 [Park, Jong Sung; Kwon, Sungjin; Im, Kihak; Kim, Keeman] Natl Fus Res Inst, Daejeon 305333, South Korea. [Brown, Thomas; Neilson, George] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Park, JS (reprint author), Natl Fus Res Inst, Daejeon 305333, South Korea. EM jspark@nfri.re.kr FU Ministry of Science, ICT and Future Planning, the Republic of Korea FX The research was supported by the Ministry of Science, ICT and Future Planning, the Republic of Korea. The authors would like to thank the Chinese FDS Team for providing the MCAM code for the neutronics analysis on K-DEMO. NR 17 TC 3 Z9 3 U1 1 U2 6 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0920-3796 EI 1873-7196 J9 FUSION ENG DES JI Fusion Eng. Des. PD NOV PY 2015 VL 100 BP 159 EP 165 DI 10.1016/j.fusengdes.2015.05.018 PG 7 WC Nuclear Science & Technology SC Nuclear Science & Technology GA CW5RZ UT WOS:000365055600016 ER PT J AU Shao, HB Kabilan, S Stephens, S Suresh, N Beck, AN Varga, T Martin, PF Kuprat, A Jung, HB Um, W Bonneville, A Heldebrant, DJ Carroll, KC Moore, J Fernandez, CA AF Shao, Hongbo Kabilan, Senthil Stephens, Sean Suresh, Niraj Beck, Anthon N. Varga, Tamas Martin, Paul F. Kuprat, Andrew Jung, Hun Bok Um, Wooyong Bonneville, Alain Heldebrant, David J. Carroll, Kenneth C. Moore, Joseph Fernandez, Carlos A. TI Environmentally friendly, rheoreversible, hydraulic-fracturing fluids for enhanced geothermal systems SO GEOTHERMICS LA English DT Article DE Environmentally-friendly; Rheoreversible; Fracturing fluid; Expansion; Enhanced geothermal systems ID THERMAL-DEGRADATION; NATURAL-GAS; SIMULATIONS; POLYMER AB Cost-effective creation of high-permeability reservoirs inside deep crystalline bedrock is the primary challenge for the feasibility of enhanced geothermal systems (EGS). Current reservoir stimulation entails adverse environmental impacts and substantial economic costs due to the utilization of large volumes of water "doped" with chemicals including rheology modifiers, scale and corrosion inhibitors, biocides, friction reducers among others where, typically, little or no information of composition and toxicity is disclosed. An environmentally benign, CO2-activated, rheoreversible fracturing fluid has recently been developed that significantly enhances rock permeability at effective stress considerably lower than current technology based on laboratory-scale tests. In the present work we evaluate the potential of this novel fracturing fluid for application at geothermal sites under different chemical and geomechanical conditions, by performing laboratory-scale fracturing experiments with different rock sources under different confining pressures, temperatures, and pH environments. The results demonstrate that CO2-reactive aqueous solutions of environmentally amenable polyallylamine (PAA) represent a highly versatile fracturing fluid technology. This fracturing fluid consistently and reproducibly creates/propagates fracture networks through highly impermeable crystalline rock from Coso EGS and Newberry EGS sites at significantly lower effective stress as compared to conventional fracturing fluids. In addition, permeability was significantly enhanced (several orders of magnitude). This was evident in all laboratory-scale experiments, including variable rock source/type, operation pressure and temperature (over the entire range for EGS applications), as well as over a wide range of formation-water pH values. This effective, versatile, and environmentally-friendly fracturing fluid technology represents a significant advancement compared to industrially available fracturing fluids for cost-effective and competitive geothermal energy production. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Shao, Hongbo; Kabilan, Senthil; Stephens, Sean; Suresh, Niraj; Beck, Anthon N.; Varga, Tamas; Martin, Paul F.; Kuprat, Andrew; Jung, Hun Bok; Um, Wooyong; Bonneville, Alain; Heldebrant, David J.; Fernandez, Carlos A.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Carroll, Kenneth C.] New Mexico State Univ, Las Cruces, NM 88003 USA. [Moore, Joseph] Energy & Geosci Inst, Salt Lake City, UT 84108 USA. RP Fernandez, CA (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM carlos.fernandez@pnnl.gov RI Carroll, Kenneth/H-5160-2011 OI Carroll, Kenneth/0000-0003-2097-9589 FU Geothermal Technology Office of the U.S. Department of Energy; U.S. Department of Energy [DE-AC06-76RLO 1830] FX Funding for this research was provided by the Geothermal Technology Office of the U.S. Department of Energy. XMT analysis was performed in EMSL (Environmental Molecular Sciences Laboratory; EMSL proposal # 47743), a DOE national scientific user facility at Pacific Northwest National Laboratory (PNNL). Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy under contract DE-AC06-76RLO 1830. NR 20 TC 2 Z9 2 U1 6 U2 34 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0375-6505 EI 1879-3576 J9 GEOTHERMICS JI Geothermics PD NOV PY 2015 VL 58 BP 22 EP 31 DI 10.1016/j.geothermics.2015.07.010 PG 10 WC Energy & Fuels; Geosciences, Multidisciplinary SC Energy & Fuels; Geology GA CW3IQ UT WOS:000364886100003 ER PT J AU Meierbachtol, CS Greenwood, AD Verboncoeur, JP Shanker, B AF Meierbachtol, Collin S. Greenwood, Andrew D. Verboncoeur, John P. Shanker, Balasubramaniam TI Conformal Electromagnetic Particle in Cell: A Review SO IEEE TRANSACTIONS ON PLASMA SCIENCE LA English DT Article DE Computational electromagnetics; conformal mesh; particle in cell (PIC); plasma simulation; reviews ID DIFFERENCE TIME-DOMAIN; FINITE-ELEMENT-METHOD; SOLVING MAXWELLS EQUATIONS; DISCONTINUOUS GALERKIN METHOD; PERFECTLY CONDUCTING OBJECTS; STRONGLY INHOMOGENEOUS-MEDIA; TENSOR FDTD-FORMULATION; VLASOV-POISSON SYSTEM; VECTOR WAVE-EQUATION; UNSTRUCTURED GRIDS AB Conformal (or body-fitted) electromagnetic particle-in-cell (EM-PIC) numerical solution schemes are reviewed. Included is a chronological history of relevant particle physics algorithms often employed in these conformal simulations. Brief mathematical descriptions of particle-tracking algorithms and current weighting schemes are provided, along with a brief summary of major time-dependent electromagnetic solution methods. Several research areas are also highlighted for recommended future development of new conformal EM-PIC methods. C1 [Meierbachtol, Collin S.; Greenwood, Andrew D.] Air Force Res Lab, Directed Energy Directorate, Kirtland Air Force Base, NM 87117 USA. [Verboncoeur, John P.; Shanker, Balasubramaniam] Michigan State Univ, Dept Elect & Comp Engn, E Lansing, MI 48824 USA. RP Meierbachtol, CS (reprint author), Los Alamos Natl Lab, Div Theoret, POB 1663, Los Alamos, NM 87545 USA. EM cmeierbachtol@lanl.gov; johnv@egr.msu.edu; bshanker@egr.msu.edu FU National Research Council FX This research was performed while C. S. Meierbachtol held a National Research Council Research Associateship Award at the Air Force Research Laboratory. NR 322 TC 7 Z9 7 U1 4 U2 21 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0093-3813 EI 1939-9375 J9 IEEE T PLASMA SCI JI IEEE Trans. Plasma Sci. PD NOV PY 2015 VL 43 IS 11 BP 3778 EP 3793 DI 10.1109/TPS.2015.2487522 PG 16 WC Physics, Fluids & Plasmas SC Physics GA CW3EW UT WOS:000364875800001 ER PT J AU Capiro, NL Loffler, FE Pennell, KD AF Capiro, Natalie L. Loeffler, Frank E. Pennell, Kurt D. TI Spatial and temporal dynamics of organohalide-respiring bacteria in a heterogeneous PCE-DNAPL source zone SO JOURNAL OF CONTAMINANT HYDROLOGY LA English DT Article DE Source zone heterogeneity; Combined remedies; Dehalococcoides mccartyi; Geobacter lovleyi; Reductive dechlorination; Bioenhanced dissolution ID NONAQUEOUS PHASE LIQUID; MICROBIAL REDUCTIVE DECHLORINATION; DEHALOCOCCOIDES SP STRAIN; VINYL-CHLORIDE REDUCTASE; IN-SOURCE ZONES; CHLORINATED ETHENES; TETRACHLOROETHENE DNAPL; ENHANCED DISSOLUTION; GEOBACTER-LOVLEYI; MASS REMOVAL AB Effective treatment of sites contaminated with dense non-aqueous phase liquids (DNAPLs) requires detailed understanding of the microbial community responses to changes in source zone strength and architecture. Changes in the spatial and temporal distributions of the organohalide-respiring Dehalococcoides mccartyi (Dhc) strains and Geobacter lovleyi strain SZ (GeoSZ) were examined in a heterogeneous tetrachloroethene- (PCE-) DNAPL source zone within a two-dimensional laboratory-scale aquifer flow cell. As part of a combined remedy approach, flushing with 23 pore volumes (PVs) of 4% (w/w) solution of the nonionic, biodegradable surfactant Tween 80 removed 55% of the initial contaminant mass, and resulted in a PCE-DNAPL distribution that contained 51% discrete ganglia and 49% pools (ganglia-to-pool ratio of 1.06). Subsequent bioaugmentation with the PCE-to-ethene-dechlorinating consortium BDI-SZ resulted in cis-1,2-dichloroethene (cis-DCE) formation after 1 PV (ca. 7 days), while vinyl chloride (VC) and ethene were detected 10 PVs after bioaugmentation. Maximum ethene yields (ca. 90 mu M) within DNAPL pool and ganglia regions coincided with the detection of the vcrA reductive dehalogenase (RDase) gene that exceeded the Dhc 16S rRNA genes by 2.0 +/- 13 and 4.0 +/- 1.7 fold in the pool and ganglia regions, respectively. Dhc and GeoSZ cell abundance increased by up to 4 orders-of-magnitude after 28 PVs of steady-state operation, with 1 to 2 orders-of-magnitude increases observed in close proximity to residual PCE-DNAPL. These observations suggest the involvement of these dechlorinators the in observed PCE dissolution enhancements of up to 2.3 and 6.0-fold within pool and ganglia regions, respectively. Analysis of the solid and aqueous samples at the conclusion of the experiment revealed that the highest VC (>= 155 mu M) and ethene (>= 65 mu M) concentrations were measured in zones where Dhc and GeoSZ were predominately attached to the solids. These findings demonstrate dynamic responses of organohalide-respiring bacteria in a heterogeneous DNAPL source zone, and emphasize the influence of source zone architecture on bioremediation performance. (C) 2015 Elsevier B.V. All rights reserved. C1 [Capiro, Natalie L.; Pennell, Kurt D.] Tufts Univ, Dept Civil & Environm Engn, Medford, MA 02155 USA. [Loeffler, Frank E.] Univ Tennessee, Dept Microbiol, Knoxville, TN 37996 USA. [Loeffler, Frank E.] Univ Tennessee, Dept Civil & Environm Engn, Knoxville, TN 37996 USA. [Loeffler, Frank E.] Univ Tennessee, Ctr Environm Biotechnol, Knoxville, TN 37996 USA. [Loeffler, Frank E.] Oak Ridge Natl Lab, Univ Tennessee & Oak Ridge Natl Lab UT ORNL Joint, Oak Ridge, TN 37831 USA. [Loeffler, Frank E.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. RP Capiro, NL (reprint author), Tufts Univ, Dept Civil & Environm Engn, Medford, MA 02155 USA. EM natalie.capiro@tufts.edu; kurt.pennell@tufts.edu FU Strategic Environmental Research and Development Program (SERDP) [ER-2129, W912HQ-11-C-0068, ER-2311, W912HQ-13-C-0011, ER-2312, W912HQ-13-C-0055] FX The authors would like to thank B. Amos, E. Suchomel, E. Chen, J. Costanza, J. Hatt, and K. Ritalahti for advice and assistance with this work. Funding for this study was provided by the Strategic Environmental Research and Development Program (SERDP) under Project ER-2129 (contract W912HQ-11-C-0068), Project ER-2311 (contract W912HQ-13-C-0011), and Project ER-2312 (contract W912HQ-13-C-0055). The content of this manuscript has not been subject to agency review and does not necessarily represent the view of the sponsoring agency. NR 78 TC 2 Z9 2 U1 7 U2 32 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0169-7722 EI 1873-6009 J9 J CONTAM HYDROL JI J. Contam. Hydrol. PD NOV PY 2015 VL 182 BP 78 EP 90 DI 10.1016/j.jconhyd.2015.08.007 PG 13 WC Environmental Sciences; Geosciences, Multidisciplinary; Water Resources SC Environmental Sciences & Ecology; Geology; Water Resources GA CX0HG UT WOS:000365376900007 PM 26348832 ER PT J AU Waugh, WJ Benson, CH Albright, WH Smith, GM Bush, RP AF Waugh, W. Joseph Benson, Craig H. Albright, William H. Smith, Gregory M. Bush, Richard P. TI Evaluation of Soil Manipulation to Prepare Engineered Earthen Waste Covers for Revegetation SO JOURNAL OF ENVIRONMENTAL QUALITY LA English DT Article ID COMPACTED CLAY; WATER-BALANCE; HYDRAULIC CONDUCTIVITY; FIELD PERFORMANCE; GRAVEL; SITES; VARIABLES; BARRIERS; REGIONS; RN-222 AB Seven ripping treatments designed to improve soil physical conditions for revegetation were compared on a test pad simulating an earthen cover for a waste disposal cell. The field test was part of study of methods to convert compacted-soil waste covers into evapotranspiration covers. The test pad consisted of a compacted layer of fine-textured soil simulating a barrier protection layer overlain by a gravelly sand bedding layer and a cobble armor layer. Treatments included combinations of soil-ripping implements (conventional shank [CS], wing-tipped shank [WTS], and parabolic oscillating shank with wings [POS]), ripping depths, and number of passes. Dimensions, dry density, moisture content, and particle size distribution of disturbance zones were determined in two trenches excavated across rip rows. The goal was to create a root-zone dry density between 1.2 and 1.6 Mg m(-3) and a seedbed soil texture ranging from clay loam to sandy loam with low rock content. All treatments created V-shaped disturbance zones as measured on trench faces. Disturbance zone size was most influenced by ripping depth. Winged implements created larger disturbance zones. All treatments lifted fines into the bedding layer, moved gravel and cobble down into the fine-textured protection layer, and thereby disrupted the capillary barrier at the interface. Changes in dry density within disturbance zones were comparable for the CS and WTS treatments but were highly variable among POS treatments. Water content increased in the bedding layer and decreased in the protection layer after ripping. The POS at 1.2-m depth and two passes created the largest zone with a low dry density (1.24 Mg m(-3)) and the most favorable seedbed soil texture (gravely silt loam). However, ripping also created large soil aggregates and voids in the protection layer that may produce preferential flow paths and reduce water storage capacity. C1 [Waugh, W. Joseph] Navarro Res & Engn, Environm Sci Lab, Grand Junction, CO 81503 USA. [Benson, Craig H.] Univ Virginia, Sch Engn & Appl Sci, Charlottesville, VA 22904 USA. [Albright, William H.] Desert Res Inst, Div Hydrol Sci, Reno, NV 89512 USA. [Smith, Gregory M.] Geo Smith Engn, Grand Junction, CO 81503 USA. [Bush, Richard P.] US DOE, Grand Junction, CO 81503 USA. RP Waugh, WJ (reprint author), Navarro Res & Engn, Environm Sci Lab, Grand Junction, CO 81503 USA. EM jody.waugh@lm.doe.gov FU Applied Studies and Technologies, USDOE Office of Legacy Management [DE-LM0000415]; USDOE [DE-FC01-06EW07053] FX Support was provided by Applied Studies and Technologies, USDOE Office of Legacy Management, under Contract No. DE-LM0000415. The USDOE provided additional support under Cooperative Agreement No. DE-FC01-06EW07053, The Consortium for Risk Evaluation with Stakeholder Participation III (CRESP III). NR 52 TC 1 Z9 1 U1 1 U2 3 PU AMER SOC AGRONOMY PI MADISON PA 677 S SEGOE RD, MADISON, WI 53711 USA SN 0047-2425 EI 1537-2537 J9 J ENVIRON QUAL JI J. Environ. Qual. PD NOV-DEC PY 2015 VL 44 IS 6 BP 1911 EP 1922 DI 10.2134/jeq2015.01.0001 PG 12 WC Environmental Sciences SC Environmental Sciences & Ecology GA CW3SO UT WOS:000364912300023 PM 26641343 ER PT J AU Huang, SZ Huang, Q Chang, JX Zhu, YL Leng, GY Xing, L AF Huang, Shengzhi Huang, Qiang Chang, Jianxia Zhu, Yuelu Leng, Guoyong Xing, Li TI Drought structure based on a nonparametric multivariate standardized drought index across the Yellow River basin, China SO JOURNAL OF HYDROLOGY LA English DT Article DE Nonparametric method; Integrated drought index; Drought structure; Cross wavelet analysis; Yellow River basin ID HYDROLOGICAL DROUGHTS; MODEL; COPULAS; WATER; DRY AB Investigation of drought structure in terms of drought onset, termination, and their transition periods as well as drought duration helps to gain a better understanding of drought regime and to establish a reliable drought early warning system. In this study, a Nonparametric Multivariate Standardized Drought Index (NMSDI) combining the information of precipitation and streamflow was introduced to investigate the spatial and temporal characteristics of drought structure in the Yellow River basin (YRB). Furthermore, the correlations between the El Nino-Southern Oscillation (ENSO) events and NMSDI variations were explored using the cross wavelet technique. The results showed that (1) The variations of NMSDI were consistent with those of 6-month SPI (Standardized Precipitation Index) and SSFI (Standardized Streamflow Index), indicating that the proposed nonparametric multivariate drought index was reliable and effective in characterizing droughts. (2) The preferred seasons of drought onset were spring and summer, and winter was the preferred season of drought recovery in the YRB. The long-term average drought duration in the whole basin was nearly 5.8 months, which was clearly longer than the average drought onset and termination transition periods. (3) Overall, the drought structure in terms of drought duration, onset and termination transition periods in the YRB remained stable, and no appreciable change trend was found. (4) ENSO events exhibited a statistically negative correlation with NMSDI variations, suggesting that they showed strong impacts on drought evolutions in the YRB. Although the YRB was selected as a case study in this paper, the approach/indicator can be applied in other regions as well. (C) 2015 Elsevier B.V. All rights reserved. C1 [Huang, Shengzhi; Huang, Qiang; Chang, Jianxia; Zhu, Yuelu] Xian Univ Technol, State Key Lab Base Ecohydraul Engn Arid Area, Xian 710048, Peoples R China. [Leng, Guoyong] Pacific NW Natl Lab, Joint Global Change Res Inst, College Pk, MD 20740 USA. [Xing, Li] Peking Univ, Dept Atmospher & Ocean Sci, Sch Phys, Beijing 100871, Peoples R China. [Xing, Li] Peking Univ, Lab Climate & Ocean Atmosphere Studies, Sch Phys, Beijing 100871, Peoples R China. RP Huang, SZ (reprint author), Xian Univ Technol, State Key Lab Base Ecohydraul Engn Arid Area, Xian 710048, Peoples R China. EM huangshengzhi7788@126.com FU Key Innovation Group of Science and Technology of Shaanxi [2012KCT-10]; National Department Public Benefit Research Foundation of Ministry of Water Resources [201501058]; National Major Fundamental Research Program [2011CB403306-2]; National Natural Fund Major Research Plan [51190093]; Natural Science Foundation of China [51179148, 51179149, 51309188]; Country China Scholarship [201408610067]; China Postdoctoral Science Foundation [2015M570139] FX This research was supported by the Key Innovation Group of Science and Technology of Shaanxi (2012KCT-10), the National Department Public Benefit Research Foundation of Ministry of Water Resources (201501058), the National Major Fundamental Research Program (2011CB403306-2), the National Natural Fund Major Research Plan (51190093), the Natural Science Foundation of China (51179148, 51179149, and 51309188), the Country China Scholarship (201408610067), and China Postdoctoral Science Foundation (2015M570139). NR 46 TC 7 Z9 7 U1 8 U2 25 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-1694 EI 1879-2707 J9 J HYDROL JI J. Hydrol. PD NOV PY 2015 VL 530 BP 127 EP 136 DI 10.1016/j.jhydrol.2015.09.042 PG 10 WC Engineering, Civil; Geosciences, Multidisciplinary; Water Resources SC Engineering; Geology; Water Resources GA CW5QD UT WOS:000365050600011 ER PT J AU Kaiser, BLD Wunschel, DS Sydor, MA Warner, MG Wahl, KL Hutchison, JR AF Kaiser, Brooke L. Deatherage Wunschel, David S. Sydor, Michael A. Warner, Marvin G. Wahl, Karen L. Hutchison, Janine R. TI Improved proteomic analysis following trichloroacetic acid extraction of Bacillus anthracis spore proteins SO JOURNAL OF MICROBIOLOGICAL METHODS LA English DT Article DE Bacillus anthracis spores; Protein extraction; Proteomics; Trichloroacetic acid ID IDENTIFICATION; GERMINATION AB Proteomic analysis of bacterial samples provides valuable information about cellular responses and functions under different environmental pressures. Analysis of cellular proteins is dependent upon efficient extraction from bacterial samples, which can be challenging with increasing complexity and refractory characteristics. While no single method can recover 100% of the bacterial proteins, selected protocols can improve overall protein isolation, peptide recovery, or enrichment for certain classes of proteins. The method presented here is technically simple, does not require specialized equipment such as a mechanical disrupter, and is effective for protein extraction of the particularly challenging sample type of Bacillus anthracis Sterne spores. The ability of Trichloroacetic acid (TCA) extraction to isolate proteins from spores and enrich for spore-specific proteins was compared to the traditional mechanical disruption method of bead beating. TCA extraction improved the total average number of proteins identified within a sample as compared to bead beating (547 vs 495, respectively). Further, TCA extraction enriched for 270 spore proteins, including those typically identified by first isolating the spore coat and exosporium layers. Bead beating enriched for 156 spore proteins more typically identified from whole spore proteome analyses. The total average number of proteins identified was equal using TCA or bead beating for easily lysed samples, such as B. anthracis vegetative cells. As with all assays, supplemental methods such as implementation of an alternative preparation method may simplify sample preparation and provide additional insight to the protein biology of the organism being studied. (C) 2015 Elsevier B.V. All rights reserved. C1 [Kaiser, Brooke L. Deatherage; Wunschel, David S.; Sydor, Michael A.; Warner, Marvin G.; Wahl, Karen L.; Hutchison, Janine R.] Pacific NW Natl Lab, Natl Secur Directorate, Chem & Biol Signature Sci Grp, Richland, WA 99352 USA. RP Kaiser, BLD (reprint author), Pacific NW Natl Lab, 902 Battelle Blvd,POB 999,MSIN P7-50, Richland, WA 99352 USA. EM Brooke.Kaiser@pnnl.gov FU Laboratory Directed Research and Development Program at Pacific Northwest National Laboratory; U.S. DOE [DE-AC06-76RLO] FX The authors would like to thank Dr. Alvin Fox for helpful discussions. We would also like to thank Charlie Doll for his instrumentation expertise. Funding for this work was provided the Laboratory Directed Research and Development Program at Pacific Northwest National Laboratory, a multiprogram national laboratory operated by Battelle for the U.S. Department of Energy. Battelle Memorial Institute operates Pacific Northwest National Laboratory for the U.S. DOE under Contract DE-AC06-76RLO. NR 25 TC 0 Z9 0 U1 3 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-7012 EI 1872-8359 J9 J MICROBIOL METH JI J. Microbiol. Methods PD NOV PY 2015 VL 118 BP 18 EP 24 DI 10.1016/j.mimet.2015.08.008 PG 7 WC Biochemical Research Methods; Microbiology SC Biochemistry & Molecular Biology; Microbiology GA CW3KX UT WOS:000364892300003 ER PT J AU Sarrao, JL Crabtree, GW AF Sarrao, J. L. Crabtree, G. W. TI Progress in mesoscale science SO MRS BULLETIN LA English DT Article AB The domain of mesoscale science, where the discrete granularity of atoms and quantization of energy give way to apparently continuous and infi nitely divisible matter and energy, presents a new frontier of scientifi c opportunity and yields new complex architectures, phenomena, and functionalities. In this article, we describe some hallmarks of mesoscale science and highlight research directions that are described in greater detail in subsequent articles in this issue of MRS Bulletin. The exciting progress of the past several years and the rich unexplored opportunities at the mesoscale offer extraordinary prospects for future advances. C1 [Sarrao, J. L.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Crabtree, G. W.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Sarrao, JL (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. EM sarrao@lanl.gov; crabtree@anl.gov FU Division of Materials Science and Engineering, Office of Basic Energy Sciences FX We thank our colleagues on the Mesoscale Science and Transformative Opportunities Subcommittees of the US Department of Energy Basic Energy Sciences Advisory Committee and acknowledge the authors of the articles that follow for their efforts in advancing the frontiers of mesoscale science and describing their work here. This work was supported in part by the Division of Materials Science and Engineering, Office of Basic Energy Sciences. NR 9 TC 1 Z9 1 U1 3 U2 8 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0883-7694 EI 1938-1425 J9 MRS BULL JI MRS Bull. PD NOV PY 2015 VL 40 IS 11 BP 919 EP 922 DI 10.1557/mrs.2015.265 PG 4 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA CW2WB UT WOS:000364852700012 ER PT J AU Basaran, AC Villegas, JE Jiang, JS Hoffmann, A Schuller, IK AF Basaran, Ali C. Villegas, Javier E. Jiang, J. S. Hoffmann, Axel Schuller, Ivan K. TI Mesoscopic magnetism and superconductivity SO MRS BULLETIN LA English DT Article ID SPIN-POLARIZED SUPERCURRENTS; BOSE-EINSTEIN CONDENSATION; EXCHANGE BIAS; FEF2-FE BILAYERS; CHIRAL MAGNET; DOMAIN-WALLS; THIN-FILMS; GRAIN-SIZE; FERROMAGNET; DYNAMICS AB Superconductivity and magnetism at intermediate ("mesoscopic") length scales between atomic and bulk have a long history of interesting science. New science emerges due to the presence of multiple length scales, especially when these become comparable to relevant geometric sizes. New phenomena may appear due to topological interactions, geometric confinement, proximity between dissimilar materials, dimensional crossover, and collective effects induced by periodicity. In this review, we select a few, recent highlights that illustrate the type of novel science that can be accomplished in superconducting and magnetic structures. These materials can serve as model systems and provide new ideas, which can be extended to other systems such as ferroelectrics and multiferroics. We also highlight general open questions and new directions in which the field may move. C1 [Basaran, Ali C.; Schuller, Ivan K.] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. [Basaran, Ali C.; Schuller, Ivan K.] Univ Calif San Diego, Ctr Adv Nanosci, La Jolla, CA 92093 USA. [Villegas, Javier E.] Univ Paris Saclay, Unite Mixte Phys, CNRS, Univ Paris 11,Thales, Paris, France. [Jiang, J. S.; Hoffmann, Axel] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Basaran, AC (reprint author), Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. EM abasaran@physics.ucsd.edu; javier.villegas@thalesgroup.com; jiang@anl.gov; hoffmann@anl.gov; ischuller@ucsd.edu RI Hoffmann, Axel/A-8152-2009; Villegas, Javier E./C-7200-2011 OI Hoffmann, Axel/0000-0002-1808-2767; Villegas, Javier E./0000-0002-2096-3360 FU Office of Basic Energy Science, US Department of Energy, BES-DMS - Department of Energy's Office of Basic Energy Science, DMR [DE FG02 87ER-45332]; US AFOSR [FA9550-12-1-0381]; US Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division; ERC [647100]; US Department of Defense for a National Security Science and Engineering Faculty Fellowship (NSSEFF) FX The outline of this article was conceived jointly, extensively debated, and the article was written by multiple iterations between all the coauthors. The research at UCSD was supported by the Office of Basic Energy Science, US Department of Energy, BES-DMS funded by the Department of Energy's Office of Basic Energy Science, DMR under grant DE FG02 87ER-45332 and the US AFOSR Grant No. FA9550-12-1-0381. The work at Argonne was supported by the US Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division. Work at CNRS/Thales supported by ERC Grant No. 647100 "SUSPINTRONICS." I.K.S. thanks the US Department of Defense for a National Security Science and Engineering Faculty Fellowship (NSSEFF). We thank Y. Bruynseraede for work on the initial stages of this manuscript. NR 116 TC 2 Z9 2 U1 9 U2 32 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0883-7694 EI 1938-1425 J9 MRS BULL JI MRS Bull. PD NOV PY 2015 VL 40 IS 11 BP 925 EP 932 DI 10.1557/mrs.2015.264 PG 8 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA CW2WB UT WOS:000364852700013 ER PT J AU Bai, F Bian, KF Li, BS Wu, HM Alarid, LJ Schunk, HC Clem, PG Fan, HY AF Bai, Feng Bian, Kaifu Li, Binsong Wu, Huimeng Alarid, Leanne J. Schunk, Hattie C. Clem, Paul G. Fan, Hongyou TI Nanomaterials under stress: A new opportunity for nanomaterials synthesis and engineering SO MRS BULLETIN LA English DT Article ID NANOCRYSTAL-MICELLES; GOLD NANOPARTICLES; STRUCTURAL TRANSFORMATIONS; PLASMONIC PROPERTIES; FEPT NANOPARTICLES; PHASE SYNTHESIS; AU NANOWIRES; ARRAYS; NANOSTRUCTURES; SUPERLATTICES AB Precise control of structural parameters through nanoscale engineering to continuously tailor optical and electronic properties of functional nanomaterials remains an outstanding challenge. Previous work focused largely on chemical or physical interactions that occur under ambient pressures. In this article, we introduce a new pressure-directed assembly and fabrication method that uses a mechanical compressive force applied to nanoparticles (NPs) to induce structural phase transitions and consolidate new nanomaterials with precisely controlled structures and tunable properties. By manipulating NP coupling through external pressure instead of through chemistry, a reversible change in assembly structure and properties can be demonstrated. In addition, over a certain threshold, the external pressure forces these NPs into contact, allowing the formation and consolidation of one-to three-dimensional nanostructures. Through stress-induced NP assembly, unusual materials engineering and synthesis, in which morphology and architecture can be readily tuned to produce desired optical and electrical properties, appear feasible. C1 [Bai, Feng] Henan Univ, Kaifeng, Peoples R China. [Bian, Kaifu; Li, Binsong; Alarid, Leanne J.; Schunk, Hattie C.; Clem, Paul G.; Fan, Hongyou] Sandia Natl Labs, Livermore, CA 94550 USA. [Wu, Huimeng] Olympus Sci Solut Amer, New York, NY USA. [Fan, Hongyou] Univ New Mexico, Albuquerque, NM 87131 USA. RP Bai, F (reprint author), Henan Univ, Kaifeng, Peoples R China. EM baifengsun@gmail.com; kbian@sandia.gov; binsongli@gmail.com; huimengmary.wu@olympus-ossa.com; leannealarid@unm.edu; hcschun@sandia.gov; pgclem@sandia.gov; hfan@sandia.gov RI Bian, Kaifu /P-8369-2015 FU US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering; US Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work is supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering. Sandia is a multiprogram laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. Sandia National Laboratory's lab-directed research and development program is acknowledged. NR 54 TC 0 Z9 0 U1 3 U2 13 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0883-7694 EI 1938-1425 J9 MRS BULL JI MRS Bull. PD NOV PY 2015 VL 40 IS 11 BP 961 EP 968 DI 10.1557/mrs.2015.260 PG 8 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA CW2WB UT WOS:000364852700017 ER PT J AU Anderegg, WRL Hicke, JA Fisher, RA Allen, CD Aukema, J Bentz, B Hood, S Lichstein, JW Macalady, AK McDowell, N Pan, YD Raffa, K Sala, A Shaw, JD Stephenson, NL Tague, C Zeppel, M AF Anderegg, William R. L. Hicke, Jeffrey A. Fisher, Rosie A. Allen, Craig D. Aukema, Juliann Bentz, Barbara Hood, Sharon Lichstein, Jeremy W. Macalady, Alison K. McDowell, Nate Pan, Yude Raffa, Kenneth Sala, Anna Shaw, John D. Stephenson, Nathan L. Tague, Christina Zeppel, Melanie TI Tree mortality from drought, insects, and their interactions in a changing climate SO NEW PHYTOLOGIST LA English DT Review DE biosphere-atmosphere feedbacks; carbon cycle; disturbance; dynamic global vegetation model; trophic interactions ID MOUNTAIN PINE-BEETLE; WESTERN UNITED-STATES; PINYON-JUNIPER WOODLANDS; FOREST DIE-OFF; SPRUCE BUDWORM; BARK BEETLES; SPATIOTEMPORAL PATTERNS; DENDROCTONUS-PONDEROSAE; SOUTHWESTERN COLORADO; VEGETATION MORTALITY AB Climate change is expected to drive increased tree mortality through drought, heat stress, and insect attacks, with manifold impacts on forest ecosystems. Yet, climate-induced tree mortality and biotic disturbance agents are largely absent from process-based ecosystem models. Using data sets from the western USA and associated studies, we present a framework for determining the relative contribution of drought stress, insect attack, and their interactions, which is critical for modeling mortality in future climates. We outline a simple approach that identifies the mechanisms associated with two guilds of insects - bark beetles and defoliators - which are responsible for substantial tree mortality. We then discuss cross-biome patterns of insect-driven tree mortality and draw upon available evidence contrasting the prevalence of insect outbreaks in temperate and tropical regions. We conclude with an overview of tools and promising avenues to address major challenges. Ultimately, a multitrophic approach that captures tree physiology, insect populations, and tree-insect interactions will better inform projections of forest ecosystem responses to climate change. C1 [Anderegg, William R. L.] Princeton Univ, Dept Ecol & Evolutionary Biol, Princeton, NJ 08540 USA. [Hicke, Jeffrey A.] Univ Idaho, Dept Geog, Moscow, ID 83844 USA. [Fisher, Rosie A.] Natl Ctr Atmospher Res, Boulder, CO 80305 USA. [Allen, Craig D.] US Geol Survey, Ft Collins Sci Ctr, Jemez Mt Field Stn, Los Alamos, NM 87544 USA. [Aukema, Juliann] Natl Ctr Ecol Anal & Synth, Santa Barbara, CA 93117 USA. [Bentz, Barbara] US Forest Serv, Rocky Mt Res Stn, Logan, UT 84321 USA. [Hood, Sharon; Sala, Anna] Univ Montana, Div Biol Sci, Missoula, MT 59812 USA. [Lichstein, Jeremy W.] Univ Florida, Dept Biol, Gainesville, FL 32611 USA. [Macalady, Alison K.] Univ Arizona, Sch Geog & Dev, Tucson, AZ 85712 USA. [McDowell, Nate] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM USA. [Pan, Yude] US Forest Serv, No Res Stn, Newtown Sq, PA 19073 USA. [Raffa, Kenneth] Univ Wisconsin, Dept Entomol, Madison, WI 53706 USA. [Shaw, John D.] US Forest Serv, Rocky Mt Res Stn, Ogden, UT 84401 USA. [Stephenson, Nathan L.] US Geol Survey, Western Ecol Res Ctr, Three Rivers, CA 93271 USA. [Tague, Christina] Univ Calif Santa Barbara, Bren Sch Environm Sci & Management, Santa Barbara, CA 93106 USA. [Zeppel, Melanie] Macquarie Univ, Dept Biol Sci, Sydney, NSW 2109, Australia. RP Anderegg, WRL (reprint author), Princeton Univ, Dept Ecol & Evolutionary Biol, Princeton, NJ 08540 USA. EM anderegg@princeton.edu RI Hood, Sharon/E-5209-2015; OI Hood, Sharon/0000-0002-9544-8208; Zeppel, Melanie/0000-0002-5510-0936 FU National Center for Ecological Analysis and Synthesis, a Center - NSF [EF-0553768]; University of California, Santa Barbara; State of California; NCEAS; National Oceanic and Atmospheric Administration; Agriculture and Food Research Initiative of the USDA National institute of Food and Agriculture [2013-67003-20652]; United States Geological Survey (USGS) Climate Research and Development Program through the Western Mountain Initiative; Department of the Interior Northwest Climate Science Center from the USGS [G12AC20481]; US Geological Survey FX This work was conducted as part of the Tree Mortality Working Group supported by the National Center for Ecological Analysis and Synthesis, a Center funded by the NSF (grant no. EF-0553768), the University of California, Santa Barbara, and the State of California. Additional support was also provided for J.A., the NCEAS Postdoctoral Associate in the Group. W.R.L.A. was supported in part by a National Oceanic and Atmospheric Administration Climate and Global Change Postdoctoral fellowship, administered by the University Corporation of Atmospheric Research. J.A.H. was supported by a grant from the Agriculture and Food Research Initiative of the USDA National institute of Food and Agriculture (grant no. 2013-67003-20652), the United States Geological Survey (USGS) Climate Research and Development Program through the Western Mountain Initiative, and the Department of the Interior Northwest Climate Science Center through a Cooperative Agreement (G12AC20481) from the USGS. We also acknowledge the support of the US Geological Survey's Ecosystems and Climate and Land Use Change mission areas. NR 106 TC 43 Z9 44 U1 42 U2 158 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0028-646X EI 1469-8137 J9 NEW PHYTOL JI New Phytol. PD NOV PY 2015 VL 208 IS 3 BP 674 EP 683 DI 10.1111/nph.13477 PG 10 WC Plant Sciences SC Plant Sciences GA CX0MX UT WOS:000365392100007 PM 26058406 ER PT J AU Hurst, AM Summers, NC Szentmiklosi, L Firestone, RB Basunia, MS Escher, JE Sleaford, BW AF Hurst, A. M. Summers, N. C. Szentmiklosi, L. Firestone, R. B. Basunia, M. S. Escher, J. E. Sleaford, B. W. TI Determination of the effective sample thickness via radiative capture SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS LA English DT Article DE Prompt Gamma Activation Analysis (PGAA); gamma-Ray absorption; Neutron attenuation; (n, gamma) radiative capture; Partial gamma-ray production cross sections ID BUDAPEST RESEARCH REACTOR; GAMMA ACTIVATION-ANALYSIS; FACILITY; BEAM AB A procedure for determining the effective thickness of non-uniform irregular-shaped samples via radiative capture is described. In this technique, partial gamma-ray production cross sections of a compound nucleus produced in a neutron-capture reaction are measured using Prompt Gamma Activation Analysis and compared to their corresponding standardized absolute values. For the low-energy transitions, the measured cross sections are lower than their standard values due to significant photoelectric absorption of the gamma rays within the bulk-sample volume itself. Using standard theoretical techniques, the amount of gamma-ray self absorption and neutron self shielding can then be calculated by iteratively varying the sample thickness until the observed cross sections converge with the known standards. The overall attenuation, thus, provides a measure of the effective sample thickness illuminated by the neutron beam. This procedure is illustrated through radiative neutron capture using powdered oxide samples comprising enriched W-186 and W-182 from which their tungsten-equivalent effective thicknesses are deduced to be 0.077(3) mm and 0.042(8) mm, respectively. (C) 2015 Elsevier B.V. All rights reserved. C1 [Hurst, A. M.; Firestone, R. B.; Basunia, M. S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Summers, N. C.; Escher, J. E.; Sleaford, B. W.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Szentmiklosi, L.] Hungarian Acad Sci, Energy Res Ctr, H-1525 Budapest, Hungary. RP Hurst, AM (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM AMHurst@lbl.gov RI Szentmiklosi, Laszlo/F-5362-2015 OI Szentmiklosi, Laszlo/0000-0001-7747-8545 FU University of California - Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy at the Lawrence Berkeley National Laboratory [DE-AC02-05CH11231]; U.S. Department of Energy by the Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; NAP VENEUS08 grant [OMFB-00184/2006] FX This work was performed under the auspices of the University of California, supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy at the Lawrence Berkeley National Laboratory under Contract DE-AC02-05CH11231, and by the U.S. Department of Energy by the Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. The access to the Budapest PGAA facility was financially supported by the NAP VENEUS08 grant under Contract OMFB-00184/2006. The operations staff at the Budapest Research Reactor are gratefully acknowledged. A.H. thanks Dr. W. Younes for insightful physics discussions. NR 27 TC 2 Z9 2 U1 6 U2 16 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-583X EI 1872-9584 J9 NUCL INSTRUM METH B JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms PD NOV 1 PY 2015 VL 362 BP 38 EP 44 DI 10.1016/j.nimb.2015.09.003 PG 7 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical; Physics, Nuclear SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA CW3HW UT WOS:000364883800008 ER PT J AU Hodkinson, TR Klaas, M Jones, MB Prickett, R Barth, S AF Hodkinson, T. R. Klaas, M. Jones, M. B. Prickett, R. Barth, S. TI Miscanthus: a case study for the utilization of natural genetic variation SO PLANT GENETIC RESOURCES-CHARACTERIZATION AND UTILIZATION LA English DT Review DE adaptive variation; association mapping; genome size; genomic selection; Miscanthus; phylogeny; ploidy ID INFLUENCING COMBUSTION QUALITY; CELL-WALL COMPOSITION; NUCLEAR-DNA AMOUNTS; X GIGANTEUS; SINENSIS ANDERSS; GENOTYPIC VARIATION; GENOME SIZE; MICROSATELLITE MARKERS; BIOENERGY PRODUCTION; CYTOGENETIC ANALYSIS AB Cultivars of Miscanthus used as bioenergy crops or tested in trials are largely clonally propagated, wild sourced genotypes or clonally propagated F1 hybrids. One of the most productive taxa is the sterile triploid M. xgiganteus. Little domestication or breeding has been undertaken and there is huge potential to utilize the extensive genetic resources of the genus for crop improvement. The challenge is to generate new highly adapted genotypes suitable for a range of environments. Production on marginal land, not used for food crops, is particularly desirable, but presents many barriers to crop breeders, as these are largely unproductive and/or stressful environments. This article outlines progress made in characterizing natural genetic variation in Miscanthus including next-generation single-nucleotide polymorphism genotyping, quantitative trait locus analysis and association mapping. It also explains how this knowledge is being used to develop novel genotypes suited for growth in a broad range of agricultural and marginal lands by defining breeding pools, generating novel crosses, manipulating polyploidy and applying genomic selection approaches. C1 [Hodkinson, T. R.; Jones, M. B.; Prickett, R.] Univ Dublin Trinity Coll, Sch Nat Sci, D-2 Dublin, Ireland. [Hodkinson, T. R.] Univ Dublin Trinity Coll, Trinity Ctr Biodivers Res, D-2 Dublin, Ireland. [Klaas, M.; Barth, S.] Oak Pk Res Ctr, Teagasc Crops Environm & Land Use Programme, Carlow, Ireland. RP Hodkinson, TR (reprint author), Univ Dublin Trinity Coll, Sch Nat Sci, D-2 Dublin, Ireland. EM Trevor.Hodkinson@tcd.ie RI Hodkinson, Trevor/F-6850-2014; OI Hodkinson, Trevor/0000-0003-1384-7270; Barth, Susanne/0000-0002-4104-5964 FU GrassMargins [289461, KBBE.2011.3.1-02] FX This work was supported by FP7 KBBE.2011.3.1-02 grant number 289461 (GrassMargins). NR 178 TC 4 Z9 4 U1 5 U2 18 PU CAMBRIDGE UNIV PRESS PI CAMBRIDGE PA EDINBURGH BLDG, SHAFTESBURY RD, CB2 8RU CAMBRIDGE, ENGLAND SN 1479-2621 EI 1479-263X J9 PLANT GENET RESOUR-C JI Plant Genet. Resour.-Charact. Util. PD NOV PY 2015 VL 13 IS 3 BP 219 EP 237 DI 10.1017/S147926211400094X PG 19 WC Plant Sciences; Genetics & Heredity SC Plant Sciences; Genetics & Heredity GA CW5KW UT WOS:000365035300004 ER PT J AU Labouriau, A Robison, T Meincke, L Wrobleski, D Taylor, D Gill, J AF Labouriau, Andrea Robison, Tom Meincke, Linda Wrobleski, Debra Taylor, Dean Gill, John TI Aging mechanisms in RTV polysiloxane foams SO POLYMER DEGRADATION AND STABILITY LA English DT Article DE Polysiloxanes; Hydrolysis; Stress relaxation; RTV foams; Tin octoate; Octanoic acid ID THERMAL-DEGRADATION; COMPRESSION SET; PERMANENT SET; CROSS-LINKER; POLY(DIMETHYLSILOXANE); STRESS; POLYDIMETHYLSILOXANE; CONDENSATION; NETWORKS; POLYCONDENSATION AB The long-term use of polysiloxane foams requires a good understanding of the diverse factors that may influence their performance. The aim of the present work was to understand the interplay between in-service environments and reactive species that reside in the foams. Two foams (SX358 and S5370) were thermally aged under compressive strain to gauge the onset of compression set, an indicator of degradation. Experiments were performed by either aging the foams in open air containers or in high humidity environments. Our results indicated that foams aged in open air environments exhibited less compression set than when aged in presence of moisture. These results were analyzed in terms of post-curing reactions, hydrolysis and rearrangement of the network, which are promoted by active residues that are left in the foam from the curing process. In particular, the residues from tin octoate, the catalyst used in the cure of the foams, were identified and their role in promoting aging was determined. Reactions were either catalyzed by tin(II) species or by a combination of trace amounts of water and octanoic acid, a product of the hydrolysis of tin octoate. More precisely, this work demonstrated that reactive residues promote chemical changes in the polymer, which resulted in compression set. On the other hand, the oxidized residues of the tin octoate show no catalytic activity towards promoting condensation reactions between silanol groups. Our work established that, depending on service conditions, certain residues are more harmful to the foam's lifetime than others. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Labouriau, Andrea; Meincke, Linda; Wrobleski, Debra; Taylor, Dean; Gill, John] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Robison, Tom] Honeywell FM&T, Kansas City, MO 64147 USA. RP Labouriau, A (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM andrea@lanl.gov OI Labouriau, Andrea/0000-0001-8033-9132 FU Enhanced Surveillance Campaign; US Department of Energy's National Nuclear Security Administration [DE-AC52-06NA25396] FX This work was funded by the Enhanced Surveillance Campaign, and the US Department of Energy's National Nuclear Security Administration under contract DE-AC52-06NA25396. NR 33 TC 0 Z9 0 U1 5 U2 16 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0141-3910 EI 1873-2321 J9 POLYM DEGRAD STABIL JI Polym. Degrad. Stabil. PD NOV PY 2015 VL 121 BP 60 EP 68 DI 10.1016/j.polymdegradstab.2015.08.013 PG 9 WC Polymer Science SC Polymer Science GA CW5SU UT WOS:000365057700007 ER PT J AU Zhang, P Mishra, B Heasley, KA AF Zhang, Peng Mishra, Brijes Heasley, Keith A. TI Experimental Investigation on the Influence of High Pressure and High Temperature on the Mechanical Properties of Deep Reservoir Rocks SO ROCK MECHANICS AND ROCK ENGINEERING LA English DT Article DE High pressure; High temperature; Reservoir rock; Conventional triaxial compression; Mechanical property; Hydraulic fracturing; Ultra-deep drilling; Brittle; Ductile ID SIMULATION; FRACTURE; STRENGTH; BEHAVIOR; STRESS; MODEL; COAL AB Deep and ultra-deep resources extraction has resulted in the challenge of drilling into high-pressure, high-temperature (HPHT) environments. Drilling challenges at such extreme conditions prompted NETL to develop a specialized ultra-deep drilling simulator (UDS) for investigating drill behavior in such conditions. Using the UDS apparatus, complex laboratory tests were performed on Carthage marble (Warsaw limestone) and Crab Orchard sandstone, which represent the rocks in the basins of the Tuscaloosa trend in southern Louisiana and the Arbuckle play in Oklahoma and North Texas. Additionally, numerical models of the UDS were developed for performing parametric analyses that would be impossible with the UDS alone. Subsequently, it was found that the input properties for these two rock types at such extreme pressure and temperature conditions were unavailable. Therefore, a suite of unconfined compressive strength, indirect tensile strength, and triaxial compression tests (sigma (1) > sigma (2) = sigma (3)) were performed on Carthage marble and Crab Orchard sandstone for investigating their behavior in HPHT environments. The HPHT experiments were performed at confining pressures ranging from atmospheric to 200 MPa, and with temperatures ranging from 25 to 180 A degrees C. The influences of confining pressure and temperature on the mechanical properties of two rocks were investigated. C1 [Zhang, Peng; Mishra, Brijes; Heasley, Keith A.] W Virginia Univ, Reg Univ Alliance, Natl Energy Technol Lab, Morgantown, WV 26506 USA. RP Mishra, B (reprint author), W Virginia Univ, Reg Univ Alliance, Natl Energy Technol Lab, Morgantown, WV 26506 USA. EM Brijes.Mishra@mail.wvu.edu FU National Energy Technology Laboratory's Regional University Alliance (NETL-RUA), a collaborative initiative of the NETL under RES [DE-FE0004000]; Department of Energy, National Energy Technology Laboratory agency of United States Government, through URS Energy & Construction, Inc. FX As part of the National Energy Technology Laboratory's Regional University Alliance (NETL-RUA), a collaborative initiative of the NETL, this technical effort was performed under the RES contract DE-FE0004000. This project was funded by the Department of Energy, National Energy Technology Laboratory, an agency of the United States Government, through a support contract with URS Energy & Construction, Inc. Neither the United States Government nor any agency thereof, nor any of their employees, nor URS Energy & Construction, Inc., nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. NR 50 TC 3 Z9 3 U1 7 U2 40 PU SPRINGER WIEN PI WIEN PA SACHSENPLATZ 4-6, PO BOX 89, A-1201 WIEN, AUSTRIA SN 0723-2632 EI 1434-453X J9 ROCK MECH ROCK ENG JI Rock Mech. Rock Eng. PD NOV PY 2015 VL 48 IS 6 BP 2197 EP 2211 DI 10.1007/s00603-015-0718-x PG 15 WC Engineering, Geological; Geosciences, Multidisciplinary SC Engineering; Geology GA CW9AV UT WOS:000365291600002 ER PT J AU Broome, ST Bauer, SJ Hansen, FD Mills, MM AF Broome, S. T. Bauer, S. J. Hansen, F. D. Mills, M. M. TI Mechanical Response and Microprocesses of Reconsolidating Crushed Salt at Elevated Temperature SO ROCK MECHANICS AND ROCK ENGINEERING LA English DT Article; Proceedings Paper CT 48th US Rock Mechanics/Geomechanics Symposium on Rock Mechanics Across Length and Time Scales CY JUN 01-04, 2014 CL Univ Minnesota, Minneapolis, MN HO Univ Minnesota DE Crushed salt reconsolidation; Mechanical testing; High temperature; Hydrostatic; Triaxial; Salt creep; Elastic properties AB Design, analysis and performance assessment of potential salt repositories for heat-generating nuclear waste require knowledge of thermal, mechanical, and fluid transport properties of reconsolidating granular salt. To inform salt repository evaluations, we have undertaken an experimental program to determine Bulk and Young's moduli and Poisson's ratio of reconsolidated granular salt as a function of porosity and temperature and to establish the deformational processes by which the salt reconsolidates. Tests were conducted at 100, 175, and 250 A degrees C. In hydrostatic tests, confining pressure is increased to 20 MPa with periodic unload/reload loops to determine K. Volume strain increases with increasing temperature. In shear tests at 2.5 and 5 MPa confining pressure, after confining pressure is applied, the crushed salt is subjected to a differential stress, with periodic unload/reload loops to determine E and nu. At predetermined differential stress levels the stress is held constant and the salt consolidates. Displacement gages mounted on the samples show little lateral deformation until the samples reach a porosity of similar to 10 %. Interestingly, vapor is vented only for 250 A degrees C tests and condenses at the vent port. It is hypothesized that the brine originates from fluid inclusions, which were made accessible by heating and intragranular deformational processes including decrepitation. Identification and documentation of consolidation processes are inferred from optical and scanning electron microstructural observations. Densification at low porosity is enhanced by water film on grain boundaries that enables solution-precipitation phenomena. C1 [Broome, S. T.; Bauer, S. J.] Sandia Natl Labs, Geomech Dept, Albuquerque, NM 87185 USA. [Hansen, F. D.] Sandia Natl Labs, Geosci Res & Applicat, Albuquerque, NM 87185 USA. [Mills, M. M.] Sandia Natl Labs, Nucl Waste Disposal Res & Anal, Albuquerque, NM 87185 USA. RP Broome, ST (reprint author), Sandia Natl Labs, Geomech Dept, Albuquerque, NM 87185 USA. EM stbroom@sandia.gov FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000. SAND2015-7324J] FX Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2015-7324J. NR 13 TC 0 Z9 0 U1 0 U2 2 PU SPRINGER WIEN PI WIEN PA SACHSENPLATZ 4-6, PO BOX 89, A-1201 WIEN, AUSTRIA SN 0723-2632 EI 1434-453X J9 ROCK MECH ROCK ENG JI Rock Mech. Rock Eng. PD NOV PY 2015 VL 48 IS 6 BP 2615 EP 2629 DI 10.1007/s00603-015-0840-9 PG 15 WC Engineering, Geological; Geosciences, Multidisciplinary SC Engineering; Geology GA CW9AV UT WOS:000365291600031 ER PT J AU Larsson, E Sennton, G Larson, J AF Larsson, Erik Sennton, Gustav Larson, Jeffrey TI The vehicle platooning problem: Computational complexity and heuristics SO TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES LA English DT Article DE Vehicle platooning; Computational complexity; Vehicle routing AB We create a mathematical framework for modeling trucks traveling in road networks, and we define a routing problem called the platooning problem. We prove that this problem is NP-hard, even when the graph used to represent the road network is planar. We present integer linear programming formulations for instances of the platooning problem where deadlines are discarded, which we call the unlimited platooning problem. These allow us to calculate fuel-optimal solutions to the platooning problem for large-scale, real-world examples. The problems solved are orders of magnitude larger than problems previously solved exactly in the literature. We present several heuristics and compare their performance with the optimal solutions on the German Autobahn road network. The proposed heuristics find optimal or near-optimal solutions in most of the problem instances considered, especially when a final local search is applied. Assuming a fuel reduction factor of 10% from platooning, we find fuel savings from platooning of 1-2% for as few as 10 trucks in the road network; the percentage of savings increases with the number of trucks. If all trucks start at the same point, savings of up to 9% are obtained for only 200 trucks. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Larsson, Erik; Sennton, Gustav] KTH Royal Inst Technol, Dept Automat Control, Stockholm, Sweden. [Larson, Jeffrey] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA. RP Larson, J (reprint author), Argonne Natl Lab, Div Math & Comp Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM jmlarson@anl.gov FU U.S. Department of Energy, Office of Science [DE-AC02-06CH11357]; Swedish Research Council; Swedish Foundation for Strategic Research FX This work was supported by the U.S. Department of Energy, Office of Science, under Contract DE-AC02-06CH11357, the Swedish Research Council, and the Swedish Foundation for Strategic Research. NR 21 TC 7 Z9 7 U1 2 U2 10 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0968-090X J9 TRANSPORT RES C-EMER JI Transp. Res. Pt. C-Emerg. Technol. PD NOV PY 2015 VL 60 BP 258 EP 277 DI 10.1016/j.trc.2015.08.019 PG 20 WC Transportation Science & Technology SC Transportation GA CX0FS UT WOS:000365372900016 ER PT J AU Benedict, JC Smith, SY Collinson, ME Leong-Skornickova, J Specht, CD Marone, F Xiao, XH Parkinson, DY AF Benedict, John C. Smith, Selena Y. Collinson, Margaret E. Leong-Skornickova, Jana Specht, Chelsea D. Marone, Federica Xiao, Xianghui Parkinson, Dilworth Y. TI Seed morphology and anatomy and its utility in recognizing subfamilies and tribes of Zingiberaceae SO AMERICAN JOURNAL OF BOTANY LA English DT Article DE aril; chalaza; embryo; ginger; micropyle; monocotyledon; operculum; seed coat; synchrotron-based x-ray tomographic microscopy (SRXTM); testa ID CURCUMA ZINGIBERACEAE; PHYLOGENY; GENUS; CLASSIFICATION; CAULOKAEMPFERIA; ALPINIOIDEAE; THAILAND; NUCLEAR; GINGERS; EOCENE AB PREMISE OF THE STUDY: Recent phylogenetic analyses based on molecular data suggested that the monocot family Zingiberaceae be separated into four subfamilies and four tribes. Robust morphological characters to support these clades are lacking. Seeds were analyzed in a phylogenetic context to test independently the circumscription of clades and to better understand evolution of seed characters within Zingiberaceae. METHODS: Seventy-five species from three of the four subfamilies were analyzed using synchrotron based x-ray tomographic microscopy (SRXTM) and scored for 39 morphoanatomical characters. KEY RESULTS: Zingiberaceae seeds are some of the most structurally complex seeds in angiosperms. No single seed character was found to distinguish each subfamily, but combinations of characters were found to differentiate between the subfamilies. Recognition of the tribes based on seeds was possible for Globbeae, but not for Alpinieae, Riedelieae, or Zingibereae, due to considerable variation. CONCLUSIONS: SRXTM is an excellent, nondestructive tool to capture morphoanatomical variation of seeds and allows for the study of taxa with limited material available. Alpinioideae, Siphonochiloideae, Tamijioideae, and Zingiberoideae are well supported based on both molecular and morphological data, including multiple seed characters. Globbeae are well supported as a distinctive tribe within the Zingiberoideae, but no other tribe could be differentiated using seeds due to considerable homoplasy when compared with currently accepted relationships based on molecular data. Novel seed characters suggest tribal affinities for two currently unplaced Zingiberaceae taxa: Siliquamomum may be related to Riedelieae and Monolophus to Zingibereae, but further work is needed before formal revision of the family. C1 [Benedict, John C.; Smith, Selena Y.] Univ Michigan, Dept Earth & Environm Sci, Ann Arbor, MI 48109 USA. [Smith, Selena Y.] Univ Michigan, Museum Paleontol, Ann Arbor, MI 48109 USA. [Collinson, Margaret E.] Royal Holloway Univ London, Dept Earth Sci, London TW20 0EX, England. [Leong-Skornickova, Jana] Singapore Bot Gardens, Herbarium, Singapore 259569, Singapore. [Specht, Chelsea D.] Univ Calif Berkeley, Dept Plant & Microbial Biol, Integrat Biol, Berkeley, CA 94750 USA. [Specht, Chelsea D.] Univ Calif Berkeley, Univ & Jepson Herbaria, Berkeley, CA 94750 USA. [Marone, Federica] Paul Scherrer Inst, Swiss Light Source, CH-5232 Villigen, Switzerland. [Xiao, Xianghui] Argonne Natl Labs, Adv Photon Source, Argonne, IL 60439 USA. [Parkinson, Dilworth Y.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Benedict, JC (reprint author), Univ Michigan, Dept Earth & Environm Sci, Ann Arbor, MI 48109 USA. EM jcbenedi@umich.edu RI Marone, Federica/J-4420-2013 FU Heliconia Society International award; National Science Foundation [DEB 1257080, 1257701]; National Parks Board, Singapore; Czech Science Foundation, GACR [P506-14-13541S]; Integrated Infrastructure Initiative (I3); European Community's Seventh Framework Program (FP7) under (CALIPSO) SLS [312284]; Argonne National Laboratory [DE-AC02-06CH11357]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX The authors thank A. Reznicek (MICH), W. J. Kress, I. Lopez, and J. Wen (US), W. Friedrich (Aarhus University), and J. Kallunki and S. Sylva (NY) for facilitating access to material that formed part of this study, and M. Andrew, G. Benson-Martin, S. Brown, J. Defontes, J. Dorey, J. L. Fife, S. Joomun, S. Little, A. Pineyro, S. McKechnie, K. Morioka, M. Ng, B. Robson, N. Sheldon, and R. Yockteng for help at the beamlines. This work was supported by a Heliconia Society International award to J.C.B. and National Science Foundation grants DEB 1257080 (S.Y.S) and 1257701 (C.D.S). Research of J.L.S. is supported by National Parks Board, Singapore and the Czech Science Foundation, GACR P506-14-13541S. A portion of this work was included in the dissertation of J.C.B. mentored by K. B. Pigg, whom J.C.B. thanks. The research at the TOMCAT beamline at the Swiss Light Source, Paul Scherrer Institut, Villigen, Switzerland received funding from Integrated Infrastructure Initiative (I3) on Synchrotrons and FELs and the European Community's Seventh Framework Program (FP7/2007-2013) under grant agreement no312284 (CALIPSO) through SLS to M.E.C. and S.Y.S. This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The authors thank the editor, Linda M. (Prince) MacKechnie, and an anonymous reviewer for constructive and helpful comments. NR 62 TC 1 Z9 1 U1 5 U2 19 PU BOTANICAL SOC AMER INC PI ST LOUIS PA PO BOX 299, ST LOUIS, MO 63166-0299 USA SN 0002-9122 EI 1537-2197 J9 AM J BOT JI Am. J. Bot. PD NOV PY 2015 VL 102 IS 11 BP 1814 EP 1841 DI 10.3732/ajb.1500300 PG 28 WC Plant Sciences SC Plant Sciences GA CW2OA UT WOS:000364830700006 PM 26507111 ER PT J AU Ciapina, EG Lopes, PP Subbaraman, R Ticianelli, EA Stamenkovic, V Strrncnik, D Markovic, NM AF Ciapina, Eduardo G. Lopes, Pietro P. Subbaraman, Ram Ticianelli, Edson A. Stamenkovic, Vojislav Strrncnik, Dusan Markovic, Nenad M. TI Surface spectators and their role in relationships between activity and selectivity of the oxygen reduction reaction in acid environments SO ELECTROCHEMISTRY COMMUNICATIONS LA English DT Article DE Oxygen reduction reaction; Catalyst selectivity; Electrocatalysis; Electrochemical interfaces; Electronic effects; Ensemble effects ID SINGLE-CRYSTAL ELECTRODES; SPECTROSCOPIC IDENTIFICATION; INFRARED-SPECTROSCOPY; HYDROGEN OXIDATION; ADSORBED SULFATE; PT(111); ADSORPTION; PLATINUM; CYANIDE; GOLD AB We use the rotating ring disk (RRDE) method to study activity-selectivity relationships for the oxygen reduction reaction (ORR) on Pt(111) modified by various surface coverages of adsorbed CNad (Theta(CNad)). The results demonstrate that small variations in Theta(CNad) have dramatic effect on the ORR activity and peroxide production, resulting in "volcano-like" dependence with an optimal surface coverage of Theta(CNad) = 0.3 ML These relationships can be simply explained by balancing electronic and ensemble effects of co-adsorbed CNad and adsorbed spectator species from the supporting electrolytes, without the need for intermediate adsorption energy arguments. Although this study has focused on the Pt(111)-CNad/H2SO4 interface, the results and insight gained here are invaluable for controlling another dimension in the properties of electrochemical interfaces. Published by Elsevier B.V. C1 [Ciapina, Eduardo G.; Lopes, Pietro P.; Subbaraman, Ram; Stamenkovic, Vojislav; Strrncnik, Dusan; Markovic, Nenad M.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Ciapina, Eduardo G.] UNESP Univ Estadual Paulista, Fac Engn, Guaratingueta, SP, Brazil. [Ciapina, Eduardo G.; Ticianelli, Edson A.] Univ Sao Paulo, Inst Quim Sao Carlos, Sao Carlos, SP, Brazil. RP Strrncnik, D (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM strmcnik@anl.gov RI Ticianelli, Edson/D-1560-2012; Lopes, Pietro/E-2724-2013; FAPESP, BIOEN/H-6149-2012; OI Ticianelli, Edson/0000-0003-3432-2799; Lopes, Pietro/0000-0003-3211-470X; Ciapina, Eduardo/0000-0002-3718-0493 FU Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences, U.S. Department of Energy [DE-AC02-06CH11357]; FAPESP [2010/02905-2, 2013/16930-7] FX This work was supported by the Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences, U.S. Department of Energy, under contract DE-AC02-06CH11357 (BES-DMSE). E. G. Ciapina acknowledges support from FAPESP (grant numbers 2010/02905-2 and 2013/16930-7). NR 22 TC 2 Z9 2 U1 8 U2 41 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1388-2481 EI 1873-1902 J9 ELECTROCHEM COMMUN JI Electrochem. Commun. PD NOV PY 2015 VL 60 BP 30 EP 33 DI 10.1016/j.elecom.2015.07.020 PG 4 WC Electrochemistry SC Electrochemistry GA CW2CC UT WOS:000364797700008 ER PT J AU Wang, R Li, X Liu, L Lee, J Seo, DH Bo, SH Urban, A Ceder, G AF Wang, Rui Li, Xin Liu, Lei Lee, Jinhyuk Seo, Dong-Hwa Bo, Shou-Hang Urban, Alexander Ceder, Gerbrand TI A disordered rock-salt Li-excess cathode material with high capacity and substantial oxygen redox activity: Li1.25Nb0.25Mn0.5O2 SO ELECTROCHEMISTRY COMMUNICATIONS LA English DT Article DE Lithium ion batteries; Cathode; Disordered rocksalt; Li-excess; High capacity ID RECHARGEABLE LITHIUM BATTERIES; X-RAY-ABSORPTION; LI-O-2 BATTERIES; ION BATTERIES; OXIDES; ELECTRODES; LI2O2 AB A disordered rocksalt Li-excess cathode material, Li1.25Nb0.25Mn0.5O2, was synthesized and investigated. It shows a large initial discharge capacity of 287 mAh g(-1) in the first cycle, which is much higher than the theoretical capacity of 146 mAh g(-1) based on the Mn3+/Mn4+ redox reaction. In situ X-ray diffraction (XRD) demonstrates that the compound remains cation-disordered during the first cycle. Electron energy loss spectroscopy (EELS) suggests that Mn and O are likely to both be redox active, resulting in the large reversible capacity. Our results show that Li1.25Nb0.25Mn0.5O2 is a promising cathode material for high capacity Li-ion batteries and that reversible oxygen redox in the bulk may be a viable way forward to increase the energy density of lithium-ion batteries. Published by Elsevier B.V. C1 [Wang, Rui; Li, Xin; Liu, Lei; Lee, Jinhyuk; Seo, Dong-Hwa; Bo, Shou-Hang; Urban, Alexander] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA. [Li, Xin] Harvard Univ, John A Paulson Sch Engn & Appl Sci, Cambridge, MA 02138 USA. [Ceder, Gerbrand] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Ceder, Gerbrand] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Ceder, G (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. EM gceder@berkeley.edu RI Wang, Rui/B-8840-2012; Seo, Dong-Hwa/D-1446-2011; liu, lei/M-6396-2016 OI Seo, Dong-Hwa/0000-0002-7200-7186; liu, lei/0000-0003-3631-1874 FU Robert Bosch Corporation; Umicore Specialty Oxides and Chemicals FX This work was supported by Robert Bosch Corporation and Umicore Specialty Oxides and Chemicals under Res. Agmt. Dtd. 1/1/07. The authors thank the help from Dr. Nancy Twu for SEM investigation. NR 24 TC 11 Z9 11 U1 17 U2 77 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1388-2481 EI 1873-1902 J9 ELECTROCHEM COMMUN JI Electrochem. Commun. PD NOV PY 2015 VL 60 BP 70 EP 73 DI 10.1016/j.elecom.2015.08.003 PG 4 WC Electrochemistry SC Electrochemistry GA CW2CC UT WOS:000364797700017 ER PT J AU Hadimani, RL Gupta, S Harstad, SM Pecharsky, VK Jiles, DC AF Hadimani, R. L. Gupta, S. Harstad, S. M. Pecharsky, V. K. Jiles, D. C. TI y Investigation of Room Temperature Ferromagnetic Nanoparticles of Gd5Si4 SO IEEE TRANSACTIONS ON MAGNETICS LA English DT Article; Proceedings Paper CT IEEE International Magnetics Conference (Intermag) CY MAY 11-15, 2015 CL Beijing, PEOPLES R CHINA SP IEEE, Tsinghua Univ, Inst Phys, Chinese Acad Sci, Beijing Univ, Chinese Phys Soc, Chinese Inst Elect, Chinese Mat Res Soc DE Contrast agents; gadolinium nanoparticles; magnetocaloric nanoparticles; room temperature ferromagnetic nanoparticles ID GD AB Gd-5(SixGe1-x)(4) compounds undergo first-order phase transitions close to room temperature when x congruent to 0.5, which are accompanied by extreme changes of properties. We report the fabrication of the nanoparticles of one of the parent compounds-Gd5Si4-using high-energy ball milling. Crystal structure, microstructure, and magnetic properties have been investigated. Particles agglomerate at long milling times, and the particles that are milled >20 min lose crystallinity and no longer undergo magnetic phase transition close to 340 K, which is present in a bulk material. The samples milled for >20 min exhibit a slightly increased coercivity. Magnetization at a high temperature of 275 K decreases with the increase in the milling time. C1 [Hadimani, R. L.; Jiles, D. C.] Iowa State Univ, Dept Elect & Comp Engn, Ames, IA 50011 USA. [Hadimani, R. L.; Gupta, S.; Pecharsky, V. K.] US DOE, Ames Lab, Div Mat Sci & Engn, Ames, IA 50011 USA. [Harstad, S. M.; Pecharsky, V. K.; Jiles, D. C.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. RP Hadimani, RL (reprint author), Iowa State Univ, Dept Elect & Comp Engn, Ames, IA 50011 USA. EM hadimani@iastate.edu NR 15 TC 0 Z9 0 U1 3 U2 5 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9464 EI 1941-0069 J9 IEEE T MAGN JI IEEE Trans. Magn. PD NOV PY 2015 VL 51 IS 11 AR 2504104 DI 10.1109/TMAG.2015.2446774 PG 4 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA CW1SB UT WOS:000364770500190 ER PT J AU Liu, LW Ohsasa, K Koyama, T Liang, LY Zhang, LR Ishio, S AF Liu, L. W. Ohsasa, K. Koyama, T. Liang, L. Y. Zhang, L. R. Ishio, S. TI Simulation of L1(0) FePt Columnar Microstructure Using Phase Field Model dfdd SO IEEE TRANSACTIONS ON MAGNETICS LA English DT Article; Proceedings Paper CT IEEE International Magnetics Conference (Intermag) CY MAY 11-15, 2015 CL Beijing, PEOPLES R CHINA SP IEEE, Tsinghua Univ, Inst Phys, Chinese Acad Sci, Beijing Univ, Chinese Phys Soc, Chinese Inst Elect, Chinese Mat Res Soc DE Anisotropy mobility; columnar microstructure; FePt; phase field; thin film ID GRANULAR THIN-FILMS AB The morphological evolutions of FePt-X (segregant) thin films were studied by employing a 3-D phase field model. Numerical simulation results show that in the absence of substrate constraint related with elastic energy, the morphology of the FePt-X thin films significantly depends on the interfacial energy, film thickness, and anisotropic atomic mobility. The large interfacial energy between FePt and X induces the FePt grains to form the nonmultilayers microstructure but it degrades the L1(0) ordering of FePt. The formation of columnar or the bilayer microstructure of FePt largely depends on a critical film thickness. Using the segregant with anisotropic atomic mobility to prepare the columnar FePt grains with high aspect ratio is advantageous in the FePt-X thin films. C1 [Liu, L. W.; Zhang, L. R.; Ishio, S.] Akita Univ, Venture Business Lab, Akita 0108502, Japan. [Ohsasa, K.; Ishio, S.] Akita Univ, Dept Mat Sci & Engn, Akita 0108502, Japan. [Koyama, T.] Nagoya Univ, Grad Sch Engn, Dept Mat Phys & Energy Engn, Nagoya, Aichi 4648603, Japan. [Liang, L. Y.] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA. RP Ishio, S (reprint author), Akita Univ, Venture Business Lab, Akita 0108502, Japan. EM ishio@gipc.akita-u.ac.jp NR 8 TC 1 Z9 1 U1 3 U2 4 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9464 EI 1941-0069 J9 IEEE T MAGN JI IEEE Trans. Magn. PD NOV PY 2015 VL 51 IS 11 AR 3201903 DI 10.1109/TMAG.2015.2442590 PG 3 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA CW1SB UT WOS:000364770500278 ER PT J AU Ni, Y Zhang, Z Nlebedim, IC Hadimani, RL Jiles, DC AF Ni, Y. Zhang, Z. Nlebedim, I. C. Hadimani, R. L. Jiles, D. C. TI Influence of Mn Concentration on Magnetic Topological Insulator MnxBi2-xTe3 Thin-Film Hall-Effect Sensor SO IEEE TRANSACTIONS ON MAGNETICS LA English DT Article; Proceedings Paper CT IEEE International Magnetics Conference (Intermag) CY MAY 11-15, 2015 CL Beijing, PEOPLES R CHINA SP IEEE, Tsinghua Univ, Inst Phys, Chinese Acad Sci, Beijing Univ, Chinese Phys Soc, Chinese Inst Elect, Chinese Mat Res Soc DE Hall-effect (HE) devices; sensitivity; thin films; topological insulators (TIs) ID BI2TE3; FERROMAGNETISM AB Hall-effect (HE) sensors based on high-quality Mn-doped Bi2Te3 topological insulator (TI) thin films have been systematically studied in this paper. Improvement of Hall sensitivity is found after doping the magnetic element Mn into Bi2Te3. The sensors with low Mn concentrations, MnxBi2-xTe3, x = 0.01 and 0.08 show the linear behavior of Hall resistance with sensitivity about 5 Omega/T. And their Hall sensitivity shows weak dependence on temperature. For sensors with high Mn concentration (x = 0.23), the Hall resistance with respect to magnetic field shows a hysteretic behavior. Moreover, its sensitivity shows almost eight times as high as that of the HE sensors with low Mn concentration. The highest sensitivity can reach 43 Omega/T at very low magnetic field. This increase of Hall sensitivity is caused by the occurrence of anomalous HE (AHE) after ferromagnetic phase transition. Our work indicates that the magnetic-element-doped TIs with AHE are good candidates for HE sensors. C1 [Ni, Y.; Zhang, Z.; Nlebedim, I. C.; Hadimani, R. L.; Jiles, D. C.] Iowa State Univ, Dept Elect & Comp Engn, Ames, IA 50011 USA. [Nlebedim, I. C.] US DOE, Ames Lab, Ames, IA 50011 USA. RP Zhang, Z (reprint author), Iowa State Univ, Dept Elect & Comp Engn, Ames, IA 50011 USA. EM zhenn.zhang@gmail.com NR 20 TC 1 Z9 1 U1 3 U2 8 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9464 EI 1941-0069 J9 IEEE T MAGN JI IEEE Trans. Magn. PD NOV PY 2015 VL 51 IS 11 AR 4004704 DI 10.1109/TMAG.2015.2444378 PG 4 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA CW1SB UT WOS:000364770500320 ER PT J AU Tang, W Zhou, L Kassen, AG Palasyuk, A White, EM Dennis, KW Kramer, MJ McCallum, RW Anderson, IE AF Tang, W. Zhou, L. Kassen, A. G. Palasyuk, A. White, E. M. Dennis, K. W. Kramer, M. J. McCallum, R. W. Anderson, I. E. TI New Alnico Magnets Fabricated From Pre-Alloyed Gas-Atomized Powder Through Diverse Consolidation Techniques SO IEEE TRANSACTIONS ON MAGNETICS LA English DT Article; Proceedings Paper CT IEEE International Magnetics Conference (Intermag) CY MAY 11-15, 2015 CL Beijing, PEOPLES R CHINA SP IEEE, Tsinghua Univ, Inst Phys, Chinese Acad Sci, Beijing Univ, Chinese Phys Soc, Chinese Inst Elect, Chinese Mat Res Soc DE Alnico permanent magnets; gas-atomized powder; hot pressing (HP); magnetic properties; sintering AB Fine Alnico 8 spherical powder produced by gas atomization was consolidated through hot pressing (HP), hot isostatic pressing (HIP), and compression molding and subsequent sintering (CMS) techniques. The effects of different fabrication techniques and processing parameters on microstructure and magnetic properties were analyzed and compared. The HP, HIP, and CMS magnets exhibited different features in microstructures and magnetic properties. Magnetically annealed at 840 degrees C for 10 min and subsequently tempered at 650 degrees C for 5 h and 580 degrees C for 15 h, the HIP sample achieved the best coercivity (H-cj = 1845 Oe) due to spinodally decomposed (SD) phases with uniform and well-faceted mosaic morphology. The CMS sample had a lower Hcj than HIP and HP samples, but a higher remanence and thus the best energy product (6.5 MGOe) due to preferential grain alignment induced by abnormal grain growth. C1 [Tang, W.; Zhou, L.; Kassen, A. G.; Palasyuk, A.; White, E. M.; Dennis, K. W.; Kramer, M. J.; McCallum, R. W.; Anderson, I. E.] Iowa State Univ, Dept Energy, Ames Lab, Ames, IA 50011 USA. RP Tang, W (reprint author), Iowa State Univ, Dept Energy, Ames Lab, Ames, IA 50011 USA. EM weitang@ameslab.gov NR 8 TC 0 Z9 0 U1 4 U2 13 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9464 EI 1941-0069 J9 IEEE T MAGN JI IEEE Trans. Magn. PD NOV PY 2015 VL 51 IS 11 AR 2101903 DI 10.1109/TMAG.2015.2437355 PG 3 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA CW1SB UT WOS:000364770500103 ER PT J AU Wang, TX Peng, YJ Jiang, W Divan, R Rosenmann, D Xia, T Wang, G AF Wang, Tengxing Peng, Yujia Jiang, Wei Divan, Ralu Rosenmann, Daniel Xia, Tian Wang, Guoan TI High-Performance Electrically Tunable RF Phase Shifter With the Application of PZT and Permalloy Thin-Film Patterns SO IEEE TRANSACTIONS ON MAGNETICS LA English DT Article; Proceedings Paper CT IEEE International Magnetics Conference (Intermag) CY MAY 11-15, 2015 CL Beijing, PEOPLES R CHINA SP IEEE, Tsinghua Univ, Inst Phys, Chinese Acad Sci, Beijing Univ, Chinese Phys Soc, Chinese Inst Elect, Chinese Mat Res Soc DE Patterned Permalloy (Py) thin film; lead zirconate titanate (PZT) thin film; tunable metal-insulator-metal (MIM) capacitor; tunable phase shifter ID C-BAND; COMPACT; CAPACITORS; ELEMENTS AB A fully electrically tunable RF phase shifter enabled with lead zirconate titanate (PZT) and Permalloy (Py) thin-film patterns based on the step impedance slow wave structure is well designed and fabricated. Tunable metal-insulator-metal structure capacitor enabled with the PZT thin film is integrated into the phase shifter so that the working frequency can be tuned by dc voltage, and the tuning voltage is significantly decreased compared with the previous research. The Py thin film is patterned and is deposited on the signal line of the proposed phase shifter that enables a tunable working frequency by dc current. Both inductive and capacitive tunability of phase shifter are achieved simultaneously. When 200 mA dc current is provided between two ports of phase shifter, the working frequency tuning range is 2% from 1.98 to 2.04 GHz. The tuning range is 5% from 1.98 to 2.08 GHz when 8 V dc voltage is added between the signal line and the ground. When both 8 V dc voltage and 200 mA dc current are applied, the working frequency of the proposed phase shifter is tunable from 1.98 to 2.12 GHz with a tunability of 7.1%. C1 [Wang, Tengxing; Peng, Yujia; Jiang, Wei; Wang, Guoan] Univ S Carolina, Dept Elect Engn, Microwave Applicat Grp, Columbia, SC 29208 USA. [Divan, Ralu; Rosenmann, Daniel] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Xia, Tian] Univ Vermont, Sch Engn, Burlington, VT 05405 USA. RP Wang, G (reprint author), Univ S Carolina, Dept Elect Engn, Microwave Applicat Grp, Columbia, SC 29208 USA. EM gwang@cec.sc.edu OI Wang, Tengxing/0000-0003-0738-7634 NR 21 TC 0 Z9 0 U1 4 U2 7 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9464 EI 1941-0069 J9 IEEE T MAGN JI IEEE Trans. Magn. PD NOV PY 2015 VL 51 IS 11 AR 9100604 DI 10.1109/TMAG.2015.2446520 PG 4 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA CW1SB UT WOS:000364770500587 ER PT J AU Wu, H Zhang, QT Wan, CH Ali, SS Yuan, ZH You, L Wang, JL Choi, YS Han, XF AF Wu, Hao Zhang, Qintong Wan, Caihua Ali, Syed Shahbaz Yuan, Zhonghui You, Lu Wang, Junling Choi, Yongseong Han, Xiufeng TI Spin Hall Magnetoresistance in CoFe2O4/Pt Films SO IEEE TRANSACTIONS ON MAGNETICS LA English DT Article; Proceedings Paper CT IEEE International Magnetics Conference (Intermag) CY MAY 11-15, 2015 CL Beijing, PEOPLES R CHINA SP IEEE, Tsinghua Univ, Inst Phys, Chinese Acad Sci, Beijing Univ, Chinese Phys Soc, Chinese Inst Elect, Chinese Mat Res Soc DE Anomalous Hall effect; ferrimagnetic insulator; spin Hall magnetoresistance (SMR); X-ray magnetic circular dichroism (XMCD) ID MAGNETIC-PROPERTIES; SPINTRONICS AB Pulse laser deposition and magnetron sputtering techniques have been employed to prepare MgO(001)//CoFe2O4/Pt samples. Cross section transmission electron microscope results prove that the CoFe2O4 film epitaxially grew along (001) direction. X-ray magnetic circular dichroism results show that magnetic proximity effect in this sample is negligible. Magnetoresistance (MR) properties confirm that spin Hall MR (SMR) dominates in this system. Spin Hall effect- induced anomalous Hall voltage was also observed in this sample. These results not only demonstrate the universality of SMR effect but also demonstrate the utility in spintronics of CoFe2O4 as a new type of magnetic insulator. C1 [Wu, Hao; Zhang, Qintong; Wan, Caihua; Ali, Syed Shahbaz; Yuan, Zhonghui; Han, Xiufeng] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, State Key Lab Magnetism, Beijing 100190, Peoples R China. [You, Lu; Wang, Junling] Nanyang Technol Univ, Sch Mat Sci & Engn, Singapore 639798, Singapore. [Choi, Yongseong] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Han, XF (reprint author), Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, State Key Lab Magnetism, Beijing 100190, Peoples R China. EM xfhan@iphy.ac.cn RI You, Lu/H-1512-2011; WANG, Junling/B-3596-2009 OI You, Lu/0000-0003-3058-2884; WANG, Junling/0000-0003-3663-7081 NR 15 TC 4 Z9 4 U1 2 U2 13 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9464 EI 1941-0069 J9 IEEE T MAGN JI IEEE Trans. Magn. PD NOV PY 2015 VL 51 IS 11 AR 4100104 DI 10.1109/TMAG.2015.2433060 PG 4 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA CW1SB UT WOS:000364770500330 ER PT J AU Zhou, AF Hillesland, KL He, ZL Schackwitz, W Tu, QC Zane, GM Ma, Q Qu, YY Stahl, DA Wall, JD Hazen, TC Fields, MW Arkin, AP Zhou, JZ AF Zhou, Aifen Hillesland, Kristina L. He, Zhili Schackwitz, Wendy Tu, Qichao Zane, Grant M. Ma, Qiao Qu, Yuanyuan Stahl, David A. Wall, Judy D. Hazen, Terry C. Fields, Matthew W. Arkin, Adam P. Zhou, Jizhong TI Rapid selective sweep of pre-existing polymorphisms and slow fixation of new mutations in experimental evolution of Desulfovibrio vulgaris SO ISME JOURNAL LA English DT Article ID FATTY-ACID BIOSYNTHESIS; ESCHERICHIA-COLI; SACCHAROMYCES-CEREVISIAE; LABORATORY EVOLUTION; SALT STRESS; HILDENBOROUGH; ADAPTATION; IDENTIFICATION; POPULATIONS; MICROORGANISMS AB To investigate the genetic basis of microbial evolutionary adaptation to salt (NaCl) stress, populations of Desulfovibrio vulgaris Hildenborough (DvH), a sulfate-reducing bacterium important for the biogeochemical cycling of sulfur, carbon and nitrogen, and potentially the bioremediation of toxic heavy metals and radionuclides, were propagated under salt stress or non-stress conditions for 1200 generations. Whole-genome sequencing revealed 11 mutations in salt stress-evolved clone ES9-11 and 14 mutations in non-stress-evolved clone EC3-10. Whole-population sequencing data suggested the rapid selective sweep of the pre-existing polymorphisms under salt stress within the first 100 generations and the slow fixation of new mutations. Population genotyping data demonstrated that the rapid selective sweep of pre-existing polymorphisms was common in salt stress-evolved populations. In contrast, the selection of pre-existing polymorphisms was largely random in EC populations. Consistently, at 100 generations, stress-evolved population ES9 showed improved salt tolerance, namely increased growth rate (2.0-fold), higher biomass yield (1.8-fold) and shorter lag phase (0.7-fold) under higher salinity conditions. The beneficial nature of several mutations was confirmed by site-directed mutagenesis. All four tested mutations contributed to the shortened lag phases under higher salinity condition. In particular, compared with the salt tolerance improvement in ES9-11, a mutation in a histidine kinase protein gene lytS contributed 27% of the growth rate increase and 23% of the biomass yield increase while a mutation in hypothetical gene DVU2472 contributed 24% of the biomass yield increase. Our results suggested that a few beneficial mutations could lead to dramatic improvements in salt tolerance. C1 [Zhou, Aifen; He, Zhili; Tu, Qichao; Ma, Qiao; Qu, Yuanyuan; Zhou, Jizhong] Univ Oklahoma, Dept Microbiol & Plant Biol, Inst Environm Genom, Norman, OK 73019 USA. [Hillesland, Kristina L.] Univ Washington Bothell, Biol Sci, Bothell, WA USA. [Schackwitz, Wendy] US DOE, Joint Genome Inst, Walnut Creek, CA USA. [Zane, Grant M.; Wall, Judy D.] Univ Missouri, Dept Biochem, Columbia, MO USA. [Zane, Grant M.; Wall, Judy D.] Univ Missouri, Dept Mol Microbiol & Immunol, Columbia, MO USA. [Ma, Qiao; Qu, Yuanyuan] Dalian Univ Technol, Sch Environm Sci & Technol, Key Lab Ind Ecol & Environm Engn MOE, Dalian, Peoples R China. [Stahl, David A.] Univ Washington, Civil & Environm Engn, Seattle, WA 98195 USA. [Hazen, Terry C.] Univ Tennessee, Dept Civil & Environm Engn, Knoxville, TN USA. [Hazen, Terry C.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN USA. [Fields, Matthew W.] Montana State Univ, Dept Microbiol & Immunol, Bozeman, MT 59717 USA. [Arkin, Adam P.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Zhou, Jizhong] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Zhou, Jizhong] Tsinghua Univ, Sch Environm, State Key Joint Lab Environm Simulat & Pollut Con, Beijing 100084, Peoples R China. RP Zhou, JZ (reprint author), Univ Oklahoma, Dept Microbiol & Plant Biol, IEG, 101 David L Boren Blvd, Norman, OK 73019 USA. EM jzhou@ou.edu RI Arkin, Adam/A-6751-2008; Hazen, Terry/C-1076-2012 OI Arkin, Adam/0000-0002-4999-2931; Hazen, Terry/0000-0002-2536-9993 FU US Department of Energy, Office of Science, Office of Biological & Environmental Research [DE-AC02-05CH11231] FX This material by ENIGMA-Ecosystems and Networks Integrated with Genes and Molecular Assemblies (http://enigma.lbl.gov), a Scientific Focus Area Program at Lawrence Berkeley National Laboratory is based upon work supported by the US Department of Energy, Office of Science, Office of Biological & Environmental Research under contract number DE-AC02-05CH11231. We thank Adam Deutschbauer for his comments on the manuscript, Joel Martin and Anna Lipzen for assistance with sequence data analysis, Kimberly L Keller for providing cloning vectors. NR 48 TC 0 Z9 0 U1 9 U2 24 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1751-7362 EI 1751-7370 J9 ISME J JI ISME J. PD NOV PY 2015 VL 9 IS 11 BP 2360 EP 2372 DI 10.1038/ismej.2015.45 PG 13 WC Ecology; Microbiology SC Environmental Sciences & Ecology; Microbiology GA CW6EZ UT WOS:000365091700004 PM 25848870 ER PT J AU Labonte, JM Swan, BK Poulos, B Luo, HW Koren, S Hallam, SJ Sullivan, MB Woyke, T Wommack, KE Stepanauskas, R AF Labonte, Jessica M. Swan, Brandon K. Poulos, Bonnie Luo, Haiwei Koren, Sergey Hallam, Steven J. Sullivan, Matthew B. Woyke, Tanja Wommack, K. Eric Stepanauskas, Ramunas TI Single-cell genomics-based analysis of virus-host interactions in marine surface bacterioplankton SO ISME JOURNAL LA English DT Article ID VIRAL-INFECTION; TAMPA-BAY; DNA; BACTERIA; SEQUENCES; OCEAN; IDENTIFICATION; SYNECHOCOCCUS; ALIGNMENT; LYSOGENY AB Viral infections dynamically alter the composition and metabolic potential of marine microbial communities and the evolutionary trajectories of host populations with resulting feedback on biogeochemical cycles. It is quite possible that all microbial populations in the ocean are impacted by viral infections. Our knowledge of virus-host relationships, however, has been limited to a minute fraction of cultivated host groups. Here, we utilized single-cell sequencing to obtain genomic blueprints of viruses inside or attached to individual bacterial and archaeal cells captured in their native environment, circumventing the need for host and virus cultivation. A combination of comparative genomics, metagenomic fragment recruitment, sequence anomalies and irregularities in sequence coverage depth and genome recovery were utilized to detect viruses and to decipher modes of virus-host interactions. Members of all three tailed phage families were identified in 20 out of 58 phylogenetically and geographically diverse single amplified genomes (SAGs) of marine bacteria and archaea. At least four phage-host interactions had the characteristics of late lytic infections, all of which were found in metabolically active cells. One virus had genetic potential for lysogeny. Our findings include first known viruses of Thaumarchaeota, Marinimicrobia, Verrucomicrobia and Gammaproteobacteria clusters SAR86 and SAR92. Viruses were also found in SAGs of Alphaproteobacteria and Bacteroidetes. A high fragment recruitment of viral metagenomic reads confirmed that most of the SAG-associated viruses are abundant in the ocean. Our study demonstrates that single-cell genomics, in conjunction with sequence-based computational tools, enable in situ, cultivation-independent insights into host-virus interactions in complex microbial communities. C1 [Labonte, Jessica M.; Swan, Brandon K.; Stepanauskas, Ramunas] Bigelow Lab Ocean Sci, East Boothbay, ME 04544 USA. [Poulos, Bonnie; Sullivan, Matthew B.] Univ Arizona, Dept Ecol & Evolutionary Biol, Tucson, AZ USA. [Luo, Haiwei] Chinese Univ Hong Kong, Sch Life Sci, Hong Kong, Hong Kong, Peoples R China. [Koren, Sergey] Natl Biodef Anal & Countermeasures Ctr, Frederick, MD USA. [Hallam, Steven J.] Univ British Columbia, Dept Microbiol & Immunol, Vancouver, BC V5Z 1M9, Canada. [Woyke, Tanja] US DOE, Joint Genome Inst, Walnut Creek, CA USA. [Wommack, K. Eric] Univ Delaware, Dept Plant & Soil Sci, Newark, DE 19717 USA. RP Stepanauskas, R (reprint author), Bigelow Lab Ocean Sci, Single Cell Genom Ctr, 60 Bigelow Dr, East Boothbay, ME 04544 USA. EM rstepanauskas@bigelow.org FU National Science Foundation [OCE-1148017, OCE-1136488, OCE-1232982]; United States Department of Energy Joint Genome Institute (DOE JGI) Community Science Program [2011-387]; Natural Sciences and Engineering Research Council (NSERC) of Canada; Canada Foundation for Innovation (CFI); Canadian Institute for Advanced Research (CIFAR); U.S. Department of Energy Joint Genome Institute, a DOE Office of Science User Facility [DE-AC02-05CH11231]; Department of Homeland Security Science and Technology Directorate (DHS/ST) [HSHQDC-07-C-00020]; Research and Development Center FX We thank Chris Harris, Ben Tupper and Joe Brown for their assistance in computational tool development, as well as Joaquin Martinez-Martinez and Willie Wilson for valuable comments. This work was supported by the National Science Foundation grants OCE-1148017 (to RS and KEW), OCE-1136488 (to RS) and OCE-1232982 (to RS and BKS), the United States Department of Energy Joint Genome Institute (DOE JGI) Community Science Program grant 2011-387 (to RS and BKS) and the Natural Sciences and Engineering Research Council (NSERC) of Canada, Canada Foundation for Innovation (CFI), and the Canadian Institute for Advanced Research (CIFAR; SJH). The work conducted by the U.S. Department of Energy Joint Genome Institute, a DOE Office of Science User Facility, is supported under Contract No. DE-AC02-05CH11231. The contributions of SK were funded under Agreement No. HSHQDC-07-C-00020 awarded by the Department of Homeland Security Science and Technology Directorate (DHS/S&T) for the management and operation of the National Biodefense Analysis and Countermeasures Center (NBACC), a Federally Funded Research and Development Center. The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the U.S. Department of Homeland Security. In no event shall the DHS, NBACC or Battelle National Biodefense Institute (BNBI) have any responsibility or liability for any use, misuse, inability to use or reliance upon the information contained herein. The Department of Homeland Security does not endorse any products or commercial services mentioned in this publication. NR 83 TC 17 Z9 17 U1 8 U2 28 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1751-7362 EI 1751-7370 J9 ISME J JI ISME J. PD NOV PY 2015 VL 9 IS 11 BP 2386 EP 2399 DI 10.1038/ismej.2015.48 PG 14 WC Ecology; Microbiology SC Environmental Sciences & Ecology; Microbiology GA CW6EZ UT WOS:000365091700006 PM 25848873 ER PT J AU Smith, CCR Snowberg, LK Caporaso, JG Knight, R Bolnick, DI AF Smith, Chris C. R. Snowberg, Lisa K. Caporaso, J. Gregory Knight, Rob Bolnick, Daniel I. TI Dietary input of microbes and host genetic variation shape among-population differences in stickleback gut microbiota SO ISME JOURNAL LA English DT Article ID EARLY-LIFE STAGES; GASTEROSTEUS-ACULEATUS; THREESPINE STICKLEBACK; INTESTINAL MICROBIOTA; GLOBAL PATTERNS; WATER FISH; DIVERSITY; EVOLUTION; COMMUNITIES; COMMENSAL AB To explain differences in gut microbial communities we must determine how processes regulating microbial community assembly (colonization, persistence) differ among hosts and affect microbiota composition. We surveyed the gut microbiota of threespine stickleback (Gasterosteus aculeatus) from 10 geographically clustered populations and sequenced environmental samples to track potential colonizing microbes and quantify the effects of host environment and genotype. Gut microbiota composition and diversity varied among populations. These among-population differences were associated with multiple covarying ecological variables: habitat type (lake, stream, estuary), lake geomorphology and food-(but not water-) associated microbiota. Fish genotype also covaried with gut microbiota composition; more genetically divergent populations exhibited more divergent gut microbiota. Our results suggest that population level differences in stickleback gut microbiota may depend more on internal sorting processes (host genotype) than on colonization processes (transient environmental effects). C1 [Smith, Chris C. R.; Snowberg, Lisa K.; Bolnick, Daniel I.] Univ Texas Austin, Dept Integrat Biol, Austin, TX 78712 USA. [Caporaso, J. Gregory] Univ Arizona, Dept Biol Sci, Flagstaff, AZ USA. [Caporaso, J. Gregory] Argonne Natl Lab, Inst Genom & Syst Biol, Argonne, IL 60439 USA. [Knight, Rob] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA. [Bolnick, Daniel I.] Univ Texas Austin, Howard Hughes Med Inst, Austin, TX 78712 USA. RP Smith, CCR (reprint author), BioFrontiers Inst, 3415 Colorado Ave,596 UCB, Boulder, CO 80308 USA. EM chriscs@colorado.edu RI Knight, Rob/D-1299-2010 FU Howard Hughes Medical Institute; NSF [DEB-1144773] FX This study was supported by funding from the Howard Hughes Medical Institute, and NSF grant DEB-1144773 to DIB. NR 64 TC 15 Z9 15 U1 10 U2 31 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1751-7362 EI 1751-7370 J9 ISME J JI ISME J. PD NOV PY 2015 VL 9 IS 11 BP 2515 EP 2526 DI 10.1038/ismej.2015.64 PG 12 WC Ecology; Microbiology SC Environmental Sciences & Ecology; Microbiology GA CW6EZ UT WOS:000365091700017 PM 25909977 ER PT J AU Bair, J Zaeem, MA Tonks, M AF Bair, Jacob Zaeem, Mohsen Asle Tonks, Michael TI A review on hydride precipitation in zirconium alloys SO JOURNAL OF NUCLEAR MATERIALS LA English DT Review ID PHASE-FIELD MODEL; ZR-H SYSTEM; TERMINAL SOLID SOLUBILITY; BI-CRYSTALLINE ZIRCONIUM; ALPHA-ZIRCONIUM; PRESSURE TUBE; AB-INITIO; MICROSTRUCTURE EVOLUTION; HYDROGEN CONCENTRATIONS; INTERATOMIC POTENTIALS AB Nucleation and formation of hydride precipitates in zirconium alloys have been an important factor in limiting the lifetime of nuclear fuel cladding for over 50 years. This review provides a concise summary of experimental and computational studies performed on hydride precipitation in zirconium alloys since the 1960's. Different computational models, including density functional theory, molecular dynamics, phase field, and finite element models applied to study hydride precipitation are reviewed, with specific consideration given to the phase field model, which has become a popular and powerful computational tool for modeling microstructure evolution. The strengths and weaknesses of these models are discussed in detail. An outline of potential future work in this area is discussed as well. (C) 2015 Elsevier B.V. All rights reserved. C1 [Bair, Jacob; Zaeem, Mohsen Asle] Missouri Univ Sci & Technol, Rolla, MO 65409 USA. [Tonks, Michael] Idaho Natl Lab, Idaho Falls, ID 83401 USA. RP Zaeem, MA (reprint author), Missouri Univ Sci & Technol, 1400 N Bishop Ave, Rolla, MO 65409 USA. EM zaeem@mst.edu OI Bair, Jacob/0000-0003-3327-3323 FU Idaho National Laboratory Directed Research and Development funds FX This work was supported by Idaho National Laboratory Directed Research and Development funds. NR 114 TC 6 Z9 6 U1 10 U2 43 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD NOV PY 2015 VL 466 BP 12 EP 20 DI 10.1016/j.jnucmat.2015.07.014 PG 9 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA CW3HT UT WOS:000364883400002 ER PT J AU Cooper, MWD Middleburgh, SC Grimes, RW AF Cooper, M. W. D. Middleburgh, S. C. Grimes, R. W. TI Modelling the thermal conductivity of (UxTh1-x)O-2 and (UxPu1-x)O-2 SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID MOLECULAR-DYNAMICS SIMULATIONS; HIGH-TEMPERATURES; SOLID-SOLUTIONS; 2000 K; LATTICE; UO2; IMPERFECTIONS; POTENTIALS; TRANSPORT; DEFECTS AB The degradation of thermal conductivity due to the non-uniform cation lattice of (UxTh1-x)O-2 and (UxPu1-x)O-2 solid solutions has been investigated by molecular dynamics, using the non-equilibrium method, from 300 to 2000 K. Degradation of thermal conductivity is predicted in (UxTh1-x)O-2 and (UxPu1-x)O-2 as compositions deviate from the pure end members: UO2, PuO2 and ThO2. The reduction in thermal conductivity is most apparent at low temperatures where phonon-defect scattering dominates over phonon phonon interactions. The effect is greater for (UxTh1-x)O-2 than for (UxPu1-x)O-2 due to the greater mismatch in cation size and mass. Parameters for analytical expressions have been developed that describe the predicted thermal conductivities over the full temperature and compositional ranges. These expressions may be used in higher level fuel performance codes. Published by Elsevier B.V. C1 [Cooper, M. W. D.; Grimes, R. W.] Univ London Imperial Coll Sci Technol & Med, Dept Mat, London SW7 2AZ, England. [Cooper, M. W. D.] Los Alamos Natl Lab, Mat Sci & Technol Div, Los Alamos, NM 87545 USA. [Middleburgh, S. C.] Westinghouse Elect Sweden AB, SE-72163 Vasteras, Sweden. RP Grimes, RW (reprint author), Univ London Imperial Coll Sci Technol & Med, Dept Mat, London SW7 2AZ, England. EM cooper_m@lanl.gov; r.grimes@imperial.ac.uk FU EPSRC [EP/I036400/1]; NDA FX Funding for M.W.D.C was provided through the EPSRC, grant number EP/I036400/1, and the NDA. Computational resources are due to the Imperial College High Performance Computing Service. M.J. Qin and S.R. Phillpot acknowledged for useful discussion. NR 40 TC 9 Z9 9 U1 4 U2 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD NOV PY 2015 VL 466 BP 29 EP 35 DI 10.1016/j.jnucmat.2015.07.022 PG 7 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA CW3HT UT WOS:000364883400004 ER PT J AU Lach, TG Ekiz, EH Averback, RS Mara, NA Bellon, P AF Lach, Timothy G. Ekiz, Elvan H. Averback, Robert S. Mara, Nathan A. Bellon, Pascal TI Role of interfaces on the trapping of He in 2D and 3D Cu-Nb nanocomposites SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article DE Copper; Niobium; Nanocomposite; Interfaces; Radiation effects; He bubbles ID SEVERE PLASTIC-DEFORMATION; HELIUM BUBBLE FORMATION; RADIATION-DAMAGE; METALLIC COMPOSITES; IRRADIATION DAMAGE; IMPLANTATION; MULTILAYERS; MICROSTRUCTURE; REDUCTION; EVOLUTION AB The role of interface structure on the trapping of He in Cu-Nb nanocomposites was investigated by comparing He bubble formation in nano-multilayers grown by PVD, nanolaminates fabricated by accumulative roll bonding (ARB), and 3D nanocomposites obtained by high pressure torsion (HPT). All samples were implanted with 1 MeV He ions at room temperature and characterized by cross section transmission electron microscopy (TEM). The critical He concentration leading to bubble formation was determined by correlating the He bubble depth distribution detected by TEM with the implanted He depth profile obtained by SRIM. The critical He dose per unit interfacial area for bubble formation was largest for the PVD multilayers, lower by a factor of similar to 1.4 in the HPT nanocomposites annealed at 500 degrees C, and lower by a factor of similar to 4.6 in the ARB nanolaminates relative to the PVD multilayers. The results indicate that the (111)FCC parallel to(110)BCC Kurdjumov-Sachs (KS) interfaces predominant in PVD and annealed HPT samples provide more effective traps than the (112)KS interfaces predominant in ARB nanolaminates; however, the good trapping efficiency and high interface area of 3D HPT structures make them most attractive for applications. (C) 2015 Elsevier B.V. All rights reserved. C1 [Lach, Timothy G.; Ekiz, Elvan H.; Averback, Robert S.; Bellon, Pascal] Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA. [Mara, Nathan A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Lach, TG (reprint author), Univ Illinois, Dept Mat Sci & Engn, 1304 W Green St, Urbana, IL 61801 USA. EM tlach2@illinois.edu OI Lach, Timothy/0000-0002-4745-4179 FU Center for Materials at Irradiation and Mechanical Extremes, an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [2008LANL1026] FX This work was supported in part by the Center for Materials at Irradiation and Mechanical Extremes, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number 2008LANL1026. The work was carried out in part in the Frederick Seitz Materials Research Laboratory (FS-MRL) Central Research Facilities, University of Illinois. Stimulating discussions with Drs. A. Misra (LANL, University of Michigan) and I. Beyerlein (LANL) are gratefully acknowledged. We also thank D. Jeffers (FS-MRL) for his assistance with operation of the Van de Graaff accelerator used to irradiate our samples and Dr. M. Sardela (FS-MRL) for his assistance with XRD characterization and texture measurements. NR 35 TC 2 Z9 2 U1 10 U2 30 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD NOV PY 2015 VL 466 BP 36 EP 42 DI 10.1016/j.jnucmat.2015.07.020 PG 7 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA CW3HT UT WOS:000364883400005 ER PT J AU Topbasi, C Kaoumi, D Motta, AT Kirk, MA AF Topbasi, Cem Kaoumi, Djamel Motta, Arthur T. Kirk, Mark A. TI Microstructural evolution in NF616 (P92) and Fe-9Cr-0.1C-model alloy under heavy ion irradiation SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article DE Generation-IV nuclear reactors; Sodium-cooled fast reactor; Heavy ion irradiation; In situ technique; Transmission electron microscopy; Ferritic-martensitic alloys; Model alloys ID IN-SITU; RADIATION-DAMAGE; THIN-FOILS; ALPHA-IRON; STEELS; FE; CLUSTERS AB In this comparative study, in situ investigations of the microstructure evolution in a Fe-9Cr ferritic-martensitic steel, NF616, and a Fe-9Cr-0.1C-model alloy with a similar ferritic martensitic microstructure have been performed. NF616 and Fe-9Cr-0.1C-model alloy were irradiated to high doses (up to similar to 10 dpa) with 1 MeV Kr ions between 50 and 673 K. Defect cluster density increased with dose and saturated in both alloys. The average size of defect clusters in NF616 was constant between 50 and 573 K, on the other hand average defect size increased with dose in Fe-9Cr-0.1C-model alloy around similar to 1 dpa. At low temperatures (50-298 K), alignment of small defect clusters resulted in the formation of extensive defects in Fe-9Cr-0.1C-model alloy around similar to 2-3 dpa, while similar large defects in NF616 started to form at a high temperature of 673 K around similar to 5 dpa. Interaction of defect clusters with the lath boundaries were found to be much more noticeable in Fe-9Cr-0.1C-model alloy. Differences in the microstructural evolution of NF616 and Fe-9Cr-0.1C-model alloy are explained by means of the defect cluster trapping by solute atoms which depends on the solute atom concentrations in the alloys. (C) 2015 Elsevier B.V. All rights reserved. C1 [Topbasi, Cem; Motta, Arthur T.] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. [Kaoumi, Djamel] Univ S Carolina, Dept Mech & Nucl Engn, Columbia, SC 29208 USA. [Motta, Arthur T.] Penn State Univ, Dept Mech & Nucl Engn, University Pk, PA 16802 USA. [Kirk, Mark A.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Topbasi, C (reprint author), Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. EM cempsu@gmail.com FU Nuclear Energy University Programs (NEUP) from the U.S. Department of Energy [DE-FG07-07ID14894]; U.S. Department of Energy, Basic Energy Sciences [W-31-109-ENG-38] FX This work was funded by the Nuclear Energy University Programs (NEUP) under Award number DE-FG07-07ID14894 from the U.S. Department of Energy. The research conducted in the IVEM-Accelerator facility at Argonne National Laboratory, which is supported as a User Facility by the U.S. Department of Energy, Basic Energy Sciences, under contract W-31-109-ENG-38. We thank Pete Baldo and Ed Ryan of Argonne National Lab for his help in performing the irradiations. We also thank Brian Wirth and Aaron Kohnert for helpful discussions. NR 29 TC 0 Z9 0 U1 3 U2 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD NOV PY 2015 VL 466 BP 179 EP 186 DI 10.1016/j.jnucmat.2015.07.003 PG 8 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA CW3HT UT WOS:000364883400023 ER PT J AU Li, ZB Lo, WY Chen, YR Pakarinen, J Wu, YQ Allen, T Yang, Y AF Li, Zhangbo Lo, Wei-Yang Chen, Yiren Pakarinen, Janne Wu, Yaqiao Allen, Todd Yang, Yong TI Irradiation response of delta ferrite in as-cast and thermally aged cast stainless steel SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article DE Thermal aging; Duplex stainless steel; Neutron irradiation; Atom probe tomography; Delta ferrite ID REACTOR PRESSURE-VESSELS; ATOM-PROBE TOMOGRAPHY; SPINODAL DECOMPOSITION; NEUTRON-IRRADIATION; TEMPERATURE AB To enable the life extension of Light Water Reactors (LWRs) beyond 60 years, it is critical to gain adequate knowledge for making conclusive predictions to assure the integrity of duplex stainless steel reactor components, e.g. primary pressure boundary and reactor vessel internal. Microstructural changes in the ferrite of thermally aged, neutron irradiated only, and neutron irradiated after being thermally aged cast austenitic stainless steels (CASS) were investigated using atom probe tomography. The thermal aging was performed at 400 degrees C for 10,000 h and the irradiation was conducted in the Halden reactor at 315 degrees C to 0.08 dpa (5.6 x 10(19) n/cm(2), E > 1 MeV). Low dose neutron irradiation at a dose rate of 5 x 10(-9) dpa/s was found to induce spinodal decomposition in the ferrite of as-cast microstructure, and further to enhance the spinodal decomposition in the thermally aged cast alloys. Regarding the G-phase precipitates, the neutron irradiation dramatically increases the precipitate size, and alters the composition of the precipitates with increased, Mn, Ni, Si and Mo and reduced Fe and Cr contents. The results have shown that low dose neutron irradiation can further accelerate the degradation of ferrite in a duplex stainless steel at the LWR relevant condition. Published by Elsevier B.V. C1 [Li, Zhangbo; Lo, Wei-Yang; Yang, Yong] Univ Florida, Dept Mat Sci & Engn, Nucl Engn Program, Gainesville, FL 32611 USA. [Chen, Yiren] Argonne Natl Lab, Nucl Engn Div, Lemont, IL 60439 USA. [Pakarinen, Janne] Belgian Nucl Res Ctr SCK CEN, B-2400 Mol, Belgium. [Wu, Yaqiao] Boise State Univ, Dept Mat Sci & Engn, Boise, ID 83715 USA. [Wu, Yaqiao] Ctr Adv Energy Studies, Idaho Falls, ID 83401 USA. [Allen, Todd] Univ Wisconsin, Dept Engn Phys, Madison, WI 53706 USA. [Allen, Todd] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Yang, Y (reprint author), Univ Florida, Dept Mat Sci & Engn, Nucl Engn Program, Gainesville, FL 32611 USA. EM yongyang@ufl.edu OI Allen, Todd/0000-0002-2372-7259 FU U. S. NRC [V6454]; Argonne National Laboratory and NRC regulatory research funding [NRC-HQ-14-G-0014]; U.S. Department of Energy, Office of Nuclear Energy under DOE Idaho Operations Office [DE-AC07-051D14517] FX The authors would like to thank the program manager Dr. Rao at the Nuclear Regulatory Commission for his strong support. This research was sponsored by the U. S. NRC under the Job Code V6454 as a subcontract from the Argonne National Laboratory and NRC regulatory research funding NRC-HQ-14-G-0014. This work was supported by the U.S. Department of Energy, Office of Nuclear Energy under DOE Idaho Operations Office Contract DE-AC07-051D14517 as part of a Nuclear Science User Facilities experiment. NR 24 TC 4 Z9 4 U1 5 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD NOV PY 2015 VL 466 BP 201 EP 207 DI 10.1016/j.jnucmat.2015.08.006 PG 7 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA CW3HT UT WOS:000364883400026 ER PT J AU Henager, CH Nguyen, BN Kurtz, RJ Roosendaal, TJ Borlaug, BA Ferraris, M Ventrella, A Katoh, Y AF Henager, C. H., Jr. Nguyen, B. N. Kurtz, R. J. Roosendaal, T. J. Borlaug, B. A. Ferraris, M. Ventrella, A. Katoh, Y. TI Modeling and testing miniature torsion specimens for SiC joining development studies for fusion SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article DE SiC; Fusion materials; Joining; Torsion; Damage model; Finite element ID SILICON-CARBIDE COMPOSITES; INTERLAMINAR SHEAR-STRENGTH; CERAMIC-MATRIX COMPOSITES; ENERGY APPLICATIONS; NUMERICAL-ANALYSIS; REACTOR APPLICATION; CRACK-GROWTH; AV119 EPOXY; JOINTS; RELIABILITY AB The international fusion community has designed a miniature torsion specimen for neutron irradiation studies of joined SiC and SiC/SiC composite materials. Miniature torsion joints based on this specimen design were fabricated using displacement reactions between Si and TiC to produce Ti3SiC2 + SiC joints with SiC and tested in torsion-shear prior to and after neutron irradiation. However, many miniature torsion specimens fail out-of-plane within the SiC specimen body, which makes it problematic to assign a shear strength value to the joints and makes it difficult to compare unirradiated and irradiated strengths to determine irradiation effects. Finite element elastic damage and elastic-plastic damage models of miniature torsion joints are developed that indicate shear fracture is more likely to occur within the body of the joined sample and cause out-of-plane failures for miniature torsion specimens when a certain modulus and strength ratio between the joint material and the joined material exists. The model results are compared and discussed with regard to unirradiated and irradiated test data for a variety of joint materials. The unirradiated data includes Ti3SiC2 + SiC/CVD-SiC joints with tailored joint moduli, and includes steel/epoxy and CVD-SiC/epoxy joints. The implications for joint data based on this sample design are discussed. (C) 2015 Elsevier B.V. All rights reserved. C1 [Henager, C. H., Jr.; Nguyen, B. N.; Kurtz, R. J.; Roosendaal, T. J.; Borlaug, B. A.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Ferraris, M.; Ventrella, A.] Politecn Torino, Turin, Italy. [Katoh, Y.] Oak Ridge Natl Lab, Oak Ridge, TN USA. RP Henager, CH (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM chuck.henager@pnnl.gov OI Henager, Chuck/0000-0002-8600-6803 FU Office of Fusion Energy Sciences, U.S. Department of Energy (DOE) [DE-AC05-76RL01830]; US Department of Energy [DE-AC06-76RLO 1830] FX This research was supported by Office of Fusion Energy Sciences, U.S. Department of Energy (DOE) under Contract DE-AC05-76RL01830. PNNL is a multi-program national laboratory operated by Battelle Memorial Institute for the US Department of Energy under DE-AC06-76RLO 1830. The authors thank Prof. Jacques Lamon for helpful discussions. NR 50 TC 4 Z9 5 U1 6 U2 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD NOV PY 2015 VL 466 BP 253 EP 268 DI 10.1016/j.jnucmat.2015.07.044 PG 16 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA CW3HT UT WOS:000364883400032 ER PT J AU Sooby, ES Nelson, AT White, JT McIntyre, PM AF Sooby, E. S. Nelson, A. T. White, J. T. McIntyre, P. M. TI Measurements of the liquidus surface and solidus transitions of the NaCl-UCl3 and NaCl-UCl3-CeCl3 phase diagrams SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article DE Molten salt reactor; UCl3; Phase diagram; Liquidus surface; NaCl-UCl3; Surrogate fuel salt; Accelerator driven system ID MOLTEN-SALT REACTOR; SYSTEMS AB NaCl-UCl3-PuCl3 is proposed as the fuel salt for a number of molten salt reactor concepts. No experimental data exists for the ternary system, and limited data is available for the binary compositions of this salt system. Differential scanning calorimetry is used in this study to examine the liquidus surface and solidus transition of a surrogate fuel-salt (NaCl-UCl3-CeCl3) and to reinvestigate the NaCl-UCl3 eutectic phase diagram. The results of this study show good agreement with previously reported data for the pure salt compounds used (NaCl, UCl3, and CeCl3) as well as for the eutectic points for the NaCl-UCl3 and NaCl-CeCl3 binary systems. The NaCl-UCl3 liquidus surface produced in this study predicts a 30-40 degrees C increase on the NaCl-rich side of the binary phase diagram. The increase in liquidus temperature could prove significant to molten salt reactor modeling. (C) 2015 Elsevier B.V. All rights reserved. C1 [Sooby, E. S.; Nelson, A. T.; White, J. T.] Los Alamos Natl Lab, Fuels Res Lab, Los Alamos, NM 87544 USA. [Sooby, E. S.; McIntyre, P. M.] Texas A&M Univ, Accelerator Res Lab, College Stn, TX USA. RP Sooby, ES (reprint author), Los Alamos Natl Lab, Fuels Res Lab, MST 7, Los Alamos, NM 87544 USA. EM sooby@lanl.gov FU Los Alamos National Laboratory Seaborg Foundation FX The work presented here was funded by the Los Alamos National Laboratory Seaborg Foundation. The authors thank the technical and scientific support of John Dunwoody, David Wayne, Ph.D, and Gordan Jarvinen, Ph.D. Special thanks are due to John Leckey, Ph.D. and his team at Y-12 for supplying the UCl3. NR 23 TC 0 Z9 0 U1 2 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD NOV PY 2015 VL 466 BP 280 EP 285 DI 10.1016/j.jnucmat.2015.07.050 PG 6 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA CW3HT UT WOS:000364883400034 ER PT J AU Garrison, LM Kulcinski, GL AF Garrison, Lauren M. Kulcinski, Gerald L. TI The effects of tungsten's pre-irradiation surface condition on helium-irradiated morphology SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article DE Plasma-material interaction; Plasma-facing material; Fusion materials; Sample polishing; Tungsten; Helium ion irradiation ID 1ST WALL MATERIALS; PORE FORMATION; IMPLANTATION; ITER; MICROSTRUCTURE; TEMPERATURES; COMPONENTS; FRICTION; METALS; WEAR AB Erosion is a serious concern associated with the use of tungsten as a plasma-facing component in fusion reactors. To compare the damage progression, polycrystalline tungsten (PCW) and (110) single crystal tungsten (SCW) samples were prepared with (1) a mechanical polish (MP) with roughness values in the range of 0.018-0.020 mu m and (2) an MP and electropolish (MPEP) resulting in roughness values of 0.010-0.020 mu m for PCW and 0.003-0.005 mu m for SCW samples. Samples were irradiated with 30 keV He+ at 1173 K to fluences between 3 x 10(21) and 6 x 10(22) He/m(2). The morphologies that developed after low-fluence bombardment were different for each type of sample-MP SCW, MPEP SCW, MP PCW, and MPEP PCW. At the highest fluence, the SCW MPEP sample lost significantly more mass and developed a different morphology than the MP SCW sample. The PCW samples developed a similar morphology and had similar mass loss at the highest fluence. Surface preparation can have a significant effect on postirradiation morphology that should be considered for the design of future fusion reactors such as ITER and DEMO. (C) 2015 Elsevier B.V. All rights reserved. C1 [Garrison, Lauren M.; Kulcinski, Gerald L.] Univ Wisconsin, Madison, WI 53706 USA. RP Garrison, LM (reprint author), Oak Ridge Natl Lab, One Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM garrisonlm@ornl.gov RI Garrison, Lauren/S-2526-2016 OI Garrison, Lauren/0000-0002-5673-8333 FU Office of Fusion Energy Sciences, U.S. Department of Energy (U.S. DOE) [DE-AC05-00OR22725]; UT-Battelle, LLC; U.S. DOE Office of Science Graduate Fellowship Program [DE-AC05-06OR23100]; University of Wisconsin Madison; Grainger Foundation; Greatbatch Foundation FX This research is sponsored in part by the Office of Fusion Energy Sciences, U.S. Department of Energy (U.S. DOE), under contract DE-AC05-00OR22725 with UT-Battelle, LLC and U.S. DOE Office of Science Graduate Fellowship Program, made possible in part by the American Recovery and Reinvestment Act of 2009, administered by ORISE-ORAU under contract no. DE-AC05-06OR23100. Additional financial support was provided by the University of Wisconsin Madison, the Grainger Foundation, and the Greatbatch Foundation. The authors would like to thank Oak Ridge National Laboratory for providing the samples used in these experiments and the UW-IEC team for their assistance. Chad Parish, Yutai Katoh, and Deborah Counce are thanked for their assistance with the manuscript. NR 43 TC 2 Z9 2 U1 4 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD NOV PY 2015 VL 466 BP 302 EP 311 DI 10.1016/j.jnucmat.2015.07.025 PG 10 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA CW3HT UT WOS:000364883400037 ER PT J AU Lund, KR Lynn, KG Weber, MH Macchi, C Somoza, A Juan, A Okuniewski, MA AF Lund, K. R. Lynn, K. G. Weber, M. H. Macchi, C. Somoza, A. Juan, A. Okuniewski, M. A. TI Impurity migration and effects on vacancy formation enthalpy in polycrystalline depleted uranium SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article DE Positrons; Formation enthalpy; Depleted uranium; Antimatter; Materials properties; Annihilation; Positron annihilation spectroscopy ID AUGMENTED-WAVE METHOD; POSITRON-ANNIHILATION; ELECTRON-GAS; OXYGEN DIFFUSION; ALPHA-URANIUM; CRYSTAL; BACKSCATTERING; IMPLANTATION; SPECTROSCOPY; ALUMINUM AB We have used Doppler-broadening of the positron-electron annihilation radiation technique and VASP calculations to verify the previously reported vacancy formation enthalpy H-v(f) in polycrystalline depleted uranium. Experimentally we have confirmed a H-v(f) of (1.6+/-0.2) eV. VASP calculations using GGA and LDA approximations gave vacancy formation enthalpies values of 1.98 eV and 2.22 eV respectively. We found residual oxygen in the sample diminished these values by 50% or more. Our new experimental and theoretical data supports the notion that oxygen impurities in the sample are responsible for lower values of vacancy formation enthalpies. Measured and calculated vacancy formation enthalpies, as well as the obtained oxygen migration enthalpy of (0.6 +/- 0.1) eV, are compared and discussed with values reported in the literature. (C) 2015 Published by Elsevier B.V. C1 [Lund, K. R.; Lynn, K. G.; Weber, M. H.] Washington State Univ, Ctr Mat Res, Pullman, WA 99163 USA. [Macchi, C.; Somoza, A.] CIFICEN CONICET UNCPBA, Inst Fis Mat Tandil, Tandil, Argentina. [Macchi, C.; Juan, A.] Consejo Nacl Invest Cient & Tecn, RA-1033 Buenos Aires, DF, Argentina. [Somoza, A.] CICPBA, Buenos Aires, DF, Argentina. [Juan, A.] UNS CONICET, Inst Fis Sur IFISUR, Bahia Blanca, Buenos Aires, Argentina. [Juan, A.] Univ Nacl Sur, Dept Fis, RA-8000 Bahia Blanca, Buenos Aires, Argentina. [Okuniewski, M. A.] EG&G Idaho Inc, Idaho Natl Engn Lab, Idaho Falls, ID 83401 USA. RP Lund, KR (reprint author), Washington State Univ, Ctr Mat Res, Pullman, WA 99163 USA. EM kasey.lund@email.wsu.edu FU Idaho National Laboratory [00014002] FX We acknowledge Idaho National Laboratory for funding under contract number 00014002, Agencia Nacional de Promocion Cientifica y Tecnologica (Argentina) (PICT 2011-1088), and Consejo Nacional de Investigaciones Cientificas y Tecnicas (Argentina) (PIP 112-201101-00793) as well as Narendra Parmar and Ryan Stewart for their discussions and help in the lab. NR 43 TC 0 Z9 0 U1 3 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD NOV PY 2015 VL 466 BP 343 EP 350 DI 10.1016/j.jnucmat.2015.08.014 PG 8 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA CW3HT UT WOS:000364883400043 ER PT J AU Stafford, DS AF Stafford, D. S. TI Multidimensional simulations of hydrides during fuel rod lifecycle SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article DE Fuel performance analysis; Hydride ID X-RAY-DIFFRACTION; MULTIPHYSICS SIMULATION; HYDROGEN; ZIRCALOY-4; BEHAVIOR; PRECIPITATION; ALLOYS AB In light water reactor fuel rods, waterside corrosion of zirconium-alloy cladding introduces hydrogen into the cladding, where it is slightly soluble. When the solubility limit is reached, the hydrogen precipitates into crystals of zirconium hydride which decrease the ductility of the cladding and may lead to cladding failure during dry storage or transportation events. The distribution Of the hydride phase and the orientation of the crystals depend on the history of the spatial temperature and stress profiles in the cladding. In this work, we have expanded the existing hydride modeling capability in the BISON fuel performance code with the goal of predicting both global and local effects on the radial, azimuthal and axial distribution of the hydride phase. We compare results from 1D simulations to published experimental data. We demonstrate the new capability by simulating in 2D a fuel rod throughout a lifecycle that includes irradiation, short-term storage in the spent fuel pool, drying, and interim storage in a dry cask. Using the 2D simulations, we present qualitative predictions of the effects of the inter-pellet gap and the drying conditions on the growth of a hydride rim. (C) 2015 Published by Elsevier B.V. C1 [Stafford, D. S.] Idaho Natl Lab, Fuel Modeling & Simulat, Idaho Falls, ID 83415 USA. RP Stafford, DS (reprint author), Idaho Natl Lab, Fuel Modeling & Simulat, POB 1625, Idaho Falls, ID 83415 USA. EM shane.stafford@inl.gov NR 32 TC 1 Z9 1 U1 3 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD NOV PY 2015 VL 466 BP 362 EP 372 DI 10.1016/j.jnucmat.2015.06.037 PG 11 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA CW3HT UT WOS:000364883400046 ER PT J AU Gussev, MN Byun, TS Yamamoto, Y Maloy, SA Terrani, KA AF Gussev, M. N. Byun, T. S. Yamamoto, Y. Maloy, S. A. Terrani, K. A. TI In-situ tube burst testing and high-temperature deformation behavior of candidate materials for accident tolerant fuel cladding SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article DE Accident tolerant fuel (ATF); ATF cladding materials; In-situ tube burst testing; Non-contact optic measurement; High temperature deformation ID DIGITAL-IMAGE CORRELATION; NUCLEAR-FUELS AB One of the most essential properties of accident tolerant fuel (ATF) for maintaining structural integrity during a loss-of-coolant accident (LOCA) is high resistance of the cladding to plastic deformation and burst failure, since the deformation and burst behavior governs the cooling efficiency of flow channels and the process of fission product release. To simulate and evaluate the deformation and burst process of thin-walled cladding, an in-situ testing and evaluation method has been developed on the basis of visual imaging and image analysis techniques. The method uses a specialized optics system consisting of a high-resolution video camera, a light filtering unit, and monochromatic light sources. The in-situ testing is performed using a 50 mm long pressurized thin-walled tubular specimen set in a programmable furnace. As the first application, ten (10) candidate cladding materials for ATF, i.e., five FeCrAl alloys and five nanostructured steels, were tested using the newly developed method, and the time-dependent images were analyzed to produce detailed deformation and burst data such as true hoop stress, strain (creep) rate, and failure stress. Relatively soft FeCrAl alloys deformed and burst below 800 w degrees C, while negligible strain rates were measured for higher strength alloys. Published by Elsevier B.V. C1 [Gussev, M. N.; Yamamoto, Y.; Terrani, K. A.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Byun, T. S.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Maloy, S. A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Byun, TS (reprint author), Pacific NW Natl Lab, 902 Battelle Blvd, Richland, WA 99352 USA. EM thaksang.byun@pnnl.gov RI Maloy, Stuart/A-8672-2009 OI Maloy, Stuart/0000-0001-8037-1319 FU Fuel Cycle R&D program of the Office of Nuclear Energy, U.S. Department of Energy [FT-14OR020228] FX This research has been carried out in multiple national laboratories and was sponsored by the Fuel Cycle R&D program of the Office of Nuclear Energy, U.S. Department of Energy (work package#: FT-14OR020228). The authors would like to express special thanks to Drs. R. Montgomery and M. Toloczko of Pacific Northwest National Laboratory for their technical reviews and thoughtful comments. NR 29 TC 0 Z9 0 U1 6 U2 19 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD NOV PY 2015 VL 466 BP 417 EP 425 DI 10.1016/j.jnucmat.2015.08.030 PG 9 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA CW3HT UT WOS:000364883400052 ER PT J AU Collin, BP Petti, DA Demkowicz, PA Maki, JT AF Collin, Blaise P. Petti, David A. Demkowicz, Paul A. Maki, John T. TI Comparison of silver, cesium, and strontium release predictions using PARFUME with results from the AGR-1 irradiation experiment SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article AB The PARFUME (PARticle FUel ModEl) code was used to predict the release of fission products silver, cesium, and "strontium from tristructural isotropic coated fuel particles and compacts during the first irradiation experiment (AGR-1) of the Advanced Gas Reactor Fuel Development and Qualification program. The PARFUME model for the AGR-1 experiment used the fuel compact volume average temperature for each of the 620 days of irradiation to calculate the release of silver, cesium, and strontium from a representative particle for a select number of AGR-1 compacts. Post-irradiation examination (PIE) measurements provided data on release of these fission products from fuel compacts and fuel particles, and retention of silver in the compacts outside of the silicon carbide (SiC) layer. PARFUME-predicted fractional release of silver, cesium, and strontium was determined and compared to the PIE measurements. For silver, comparisons show a trend of over-prediction at low burnup and under-prediction at high burnup. PARFUME has limitations in the modeling of the temporal and spatial distributions of the temperature and burnup across the compacts, which affects the accuracy of its predictions. Nevertheless, the comparisons on silver release lie in the same order of magnitude. Results show an overall over-prediction of the fractional release of cesium by PARFUME. For particles with failed SiC layers, the over-prediction is by a factor of up to 3, corresponding to a potential over-estimation of the diffusivity in uranium oxycarbide (UCO) by a factor of up to 250. For intact particles, whose release is much lower, the over-prediction is by a factor of up to 100, which could be attributed to an over-estimated diffusivity in SiC by about 40% on average. The release of strontium from intact particles is also over-predicted by PARFUME, which also points towards an over-estimated diffusivity of strontium in either SiC or UCO, or possibly both. The measured strontium fractional release from intact particles varied considerably from compact to compact, making it difficult to assess the effective over-estimation of the diffusivities. Furthermore, the release of strontium from particles with failed SiC is difficult to observe experimentally due to the release from intact particles, preventing any conclusions to be made on the accuracy or validity of the PARFUME predictions and the modeled diffusivity of strontium in UCO. (C) 2015 Elsevier B.V. All rights reserved. C1 [Collin, Blaise P.; Petti, David A.; Demkowicz, Paul A.; Maki, John T.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Collin, BP (reprint author), Idaho Natl Lab, 2525 Fremont Ave, Idaho Falls, ID 83415 USA. EM blaise.collin@inl.gov OI Collin, Blaise/0000-0002-1128-7399 FU U.S. Department of Energy, Office of Nuclear Energy under Department of Energy Idaho Operations Office [DE-AC07-05ID14517] FX This work was supported by the U.S. Department of Energy, Office of Nuclear Energy, under Department of Energy Idaho Operations Office Contract DE-AC07-05ID14517. NR 17 TC 2 Z9 2 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD NOV PY 2015 VL 466 BP 426 EP 442 DI 10.1016/j.jnucmat.2015.08.033 PG 17 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA CW3HT UT WOS:000364883400053 ER PT J AU Leonard, KJ Gussev, MN Stevens, JN Busby, JT AF Leonard, Keith J. Gussev, Maxim N. Stevens, Jacqueline N. Busby, Jeremy T. TI Analysis of stress corrosion cracking in alloy 718 following commercial reactor exposure SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article DE Alloy 718; Post-irradiation examination; Stress corrosion cracking ID PWR PRIMARY WATER; MECHANICAL-PROPERTIES; NEUTRON-IRRADIATION; ION-IRRADIATION; INCONEL-718; PROTONS; NICKEL; DAMAGE AB Alloy 718 is generally considered a highly corrosion-resistant material but can still be susceptible to stress corrosion cracking (SCC). The combination of factors leading to SCC susceptibility in the alloy is not always clear enough. In the present work, alloy 718 leaf spring (LS) materials that suffered stress corrosion damage during two 24-month cycles in pressurized water reactor service, operated to >45 MWd/mtU burn-up, was investigated. Compared to archival samples fabricated through the same processing conditions, little microstructural and property changes occurred in the material with in-service irradiation, contrary to high dose rate laboratory-based experiments reported in literature. Though the lack of delta phase formation along grain boundaries would suggest a more SCC resistant microstructure, grain boundary cracking in the material was extensive. Crack propagation routes were explored through focused ion beam milling of specimens near the crack tip for transmission electron microscopy as well as in polished plan view and cross-sectional samples for electron backscatter diffraction analysis. It has been shown in this study that cracks propagated mainly along random high-angle grain boundaries, with the material around cracks displaying a high local density of dislocations. The slip lines were produced through the local deformation of the leaf spring material above their yield strength. The cause for local SCC appears to be related to oxidation of both slip lines and grain boundaries, which under the high in-service stresses resulted in crack development in the material. (C) 2015 Elsevier B.V. All rights reserved. C1 [Leonard, Keith J.; Gussev, Maxim N.; Busby, Jeremy T.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Stevens, Jacqueline N.] AREVA Inc, Lynchburg, VA USA. RP Leonard, KJ (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, POB 2008,MS 6138, Oak Ridge, TN 37831 USA. EM leonardk@ornl.gov OI Stevens, Jacqueline/0000-0002-2240-5231 FU U.S. Department of Energy, Office of Nuclear Energy; U.S. Department of Energy [DE-AC05-00OR22725] FX The authors would like to thank Dr. G.O. Ilevbare (EPRI) and Dr. J.L. Nelson (JLN Consulting) for their helpful discussion of the results. This research supported by the U.S. Department of Energy, Office of Nuclear Energy, for the Light Water Reactor Sustainability Research and Development Effort. This manuscript has been authored by the Oak Ridge National Laboratory, managed by UT-Battelle LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. NR 28 TC 0 Z9 0 U1 4 U2 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD NOV PY 2015 VL 466 BP 443 EP 459 DI 10.1016/j.jnucmat.2015.08.039 PG 17 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA CW3HT UT WOS:000364883400054 ER PT J AU Jeong, GY Kim, YS Sohn, DS AF Jeong, Gwan Yoon Kim, Yeon Soo Sohn, Dong-Seong TI Mechanical analysis of UMo/Al dispersion fuel SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article DE UMo/Al; Dispersion fuel; Fission induced creep; Mass relocation; FEA simulation ID MO ALLOY FUEL; ALUMINUM; IRRADIATION; CREEP; URANIUM; AL AB Deformation of fuel particles and mass transfer from the transverse end of fuel meat toward the meat center was observed. This caused plate thickness peaking at a location between the meat edge and the meat center. The underlying mechanism for this fuel volume transport is believed to be fission induced creep of the U-Mo/Al meat. Fuel meat swelling was measured using optical microscopy images of the cross sections of the irradiated test plates. The time-dependent meat swelling was modeled for use in numerical simulation. A distinctive discrepancy between the predicted and measured meat thickness was found at the meat ends, which was assumed to be due to creep-induced mass relocation from the meat end to the meat center region that was not considered in the meat swelling model. ABAQUS FEA simulation was performed to reproduce the observed phenomenon at the meat ends. Through the simulation, we obtained the effective creep rate constants for the interaction layers (IL) and aluminum matrix. In addition, we obtained the corresponding stress and strain analysis results that can be used to understand mechanical behavior of U-Mo/Al dispersion fuel. (C) 2015 Elsevier B.V. All rights reserved. C1 [Jeong, Gwan Yoon; Sohn, Dong-Seong] Ulsan Natl Inst Sci & Technol, Dept Nucl Engn, Ulsan 689798, South Korea. [Kim, Yeon Soo] Argonne Natl Lab, Argonne, IL 60439 USA. RP Sohn, DS (reprint author), Ulsan Natl Inst Sci & Technol, Dept Nucl Engn, 50 UNIST Gil, Ulsan 689798, South Korea. EM dssohn@unist.ac.kr OI Jeong, Gwan Yoon/0000-0002-3326-3718; Sohn, Dong-Seong/0000-0002-1984-4612 FU National Research Foundation of Korea (NRF) - Korean government (Ministry of Education, Science and Technology) [2011-0031771]; U.S. Department of Energy, Material Management and Minimization (NA-23) Reactor Conversion Program [DE-AC-02-06C H11357] FX This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (Ministry of Education, Science and Technology) (No. 2011-0031771), and in part by the U.S. Department of Energy, Material Management and Minimization (NA-23) Reactor Conversion Program, under Contract No. DE-AC-02-06C H11357 between UChicago Argonne, LLC and the Department of Energy for the ANL contribution. NR 34 TC 2 Z9 2 U1 1 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD NOV PY 2015 VL 466 BP 509 EP 521 DI 10.1016/j.jnucmat.2015.07.033 PG 13 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA CW3HT UT WOS:000364883400062 ER PT J AU Luksic, SA Riley, BJ Schweiger, M Hrma, P AF Luksic, Steven A. Riley, Brian J. Schweiger, Michael Hrma, Pavel TI Incorporating technetium in minerals and other solids: A review SO JOURNAL OF NUCLEAR MATERIALS LA English DT Review DE Technetium; Immobilization; Waste form; Vitrification; Spinel; Sodalite; Rutile; Perovskite; Pyrochlore ID ANATASE-RUTILE TRANSFORMATION; TITANOMAGNETITE FE3-XTIXO4 NANOPARTICLES; SPINEL FERRITE COFE2O4; X-RAY-ABSORPTION; MAGNETIC-PROPERTIES; HYDROTHERMAL SYNTHESIS; ROOM-TEMPERATURE; MECHANOCHEMICAL SYNTHESIS; CRYSTAL-CHEMISTRY; NICKEL FERRITE AB Technetium (Tc) can be incorporated into a number of different solids including spinel, sodalite, rutile, tin dioxide, pyrochlore, perovskite, goethite, layered double hydroxides, cements, and alloys. Synthetic routes are possible for each of these phases, ranging from high-temperature ceramic sintering to ball-milling of constituent oxides. However, in practice, Tc has only been incorporated into solid materials by a limited number of the possible syntheses. A review of the diverse ways in which Tc-immobilizing. materials can be made shows the wide range of options available. Special consideration is given to hypothetical application to the Hanford Tank Waste and Vitrification Plant, such as adding a Tc-bearing mineral to waste glass melter feed. A full survey of solid Tc waste forms, the common synthesis routes to those waste forms, and their potential for application to vitrification processes are presented. The use of tin dioxide or ferrite spinet precursors to reduce Tc(VII) out of solution and into a durable form are shown to be of especially high potential. (C) 2015 Elsevier B.V. All rights reserved. C1 [Luksic, Steven A.; Riley, Brian J.; Schweiger, Michael; Hrma, Pavel] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Luksic, SA (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM steven.luksic@pnnl.gov OI Riley, Brian/0000-0002-7745-6730 FU U.S. Department of Energy's Waste Treatment and Immobilization Plant Federal Project Office; Department of Energy by Battelle Memorial Institute [DE-AC05-76RL01830] FX This work was supported by the U.S. Department of Energy's Waste Treatment and Immobilization Plant Federal Project Office under the direction of Dr. Albert A. Kruger. Pacific Northwest National Laboratory is operated for the Department of Energy by Battelle Memorial Institute under contract DE-AC05-76RL01830. The authors would like to Dong-Sang Kim, Chuck Soderquist, Derek Dixon, and Wooyong Um for their guidance during this work. NR 139 TC 4 Z9 4 U1 10 U2 42 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD NOV PY 2015 VL 466 BP 526 EP 538 DI 10.1016/j.jnucmat.2015.08.052 PG 13 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA CW3HT UT WOS:000364883400064 ER PT J AU Chen, Y Alexandreanu, B Chen, WY Natesan, K Li, Z Yang, Y Rao, AS AF Chen, Y. Alexandreanu, B. Chen, W. -Y. Natesan, K. Li, Z. Yang, Y. Rao, A. S. TI Cracking behavior of thermally aged and irradiated CF-8 cast austenitic stainless steel SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article DE Cast austenitic stainless steel; Environmentally assisted cracking; Irradiation embrittlement; Thermal aging embrittlement ID G-PHASE PRECIPITATION; SPINODAL DECOMPOSITION; EMBRITTLEMENT; KINETICS; FERRITE; GROWTH; MO AB To assess the combined effect of thermal aging and neutron irradiation on the cracking behavior of CF-8 cast austenitic stainless steel, crack growth rate (CGR) and fracture toughness J-R curve tests were carried out on compact-tension specimens in high-purity water with low dissolved oxygen. Both unaged and thermally aged specimens were irradiated at similar to 320 degrees C to 0.08 dpa. Thermal aging at 400 degrees C for 10,000 h apparently had no effect on the corrosion fatigue and stress corrosion cracking behavior in the test environment. The cracking susceptibility of CF-8 was not elevated significantly by neutron irradiation at 0.08 dpa. Transgranular cleavage-like cracking was the main fracture mode during the CGR tests, and a brittle morphology of delta ferrite was often seen on the fracture surfaces at the end of CGR tests. The fracture toughness J-R curve tests showed that both thermal aging and neutron irradiation can induce significant embrittlement. The loss of fracture toughness due to neutron irradiation was more pronounced in the unaged than aged specimens. After neutron irradiation, the fracture toughness values of the unaged and aged specimens were reduced to a similar level. G-phase precipitates were observed in the aged and irradiated specimens with or without prior aging. The similar microstructural changes resulting from thermal aging and irradiation suggest a common microstructural mechanism of inducing embrittlement in CF-8. Published by Elsevier B.V. C1 [Chen, Y.; Alexandreanu, B.; Chen, W. -Y.; Natesan, K.] Argonne Natl Lab, Argonne, IL 60439 USA. [Li, Z.; Yang, Y.] Univ Florida, Gainesville, FL 32611 USA. [Rao, A. S.] US Nucl Regulatory Commiss, Rockville, MD 20852 USA. RP Chen, Y (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM Yiren_Chen@anl.gov OI Chen, Wei-Ying/0000-0002-6583-4204 FU U.S. Nuclear Regulatory Commission [N6519]; U.S. Department of Energy [DE-AC02-06CH11357] FX The authors would like to thank Drs. O. K.. Chopra and W. J. Shack for their contribution to this project. Our special thanks go out to Ms. T. M. Karlsen, OECD Halden Reactor Project, Halden, for assistance with irradiations and specimen transfer. Drs. J. Pakarinen and Y. Huang of University of Wisconsin-Madison are acknowledged for their contributions to the experimental effort. This work is sponsored by the U.S. Nuclear Regulatory Commission, under Job Code N6519, and by the U.S. Department of Energy, under contract # DE-AC02-06CH11357. NR 26 TC 1 Z9 1 U1 1 U2 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD NOV PY 2015 VL 466 BP 560 EP 568 DI 10.1016/j.jnucmat.2015.08.047 PG 9 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA CW3HT UT WOS:000364883400067 ER PT J AU Kim, YS Cho, BJ Sohn, DS Park, JM AF Kim, Yeon Soo Cho, Byoung Jin Sohn, Dong-Seong Park, Jong Man TI Thermal conductivity modeling of U-Mo/Al dispersion fuel SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article DE U-Mo fuel; U-Mo/Al dispersion fuel; Meat thermal conductivity; Composite material thermal conductivity; Modeling ID COMPOSITES; RESISTANCE; LAYER; HEAT; SIZE AB A dataset for the thermal conductivity of U-Mo/Al dispersion fuel made available by KAERI was reanalyzed. Using this dataset, an analytical model was obtained by expanding the Bruggeman model. The newly developed model incorporates thermal resistances at the interface between the U-Mo particles and the Al matrix and the defects within the Al matrix (grain boundaries, cracks, and dislocations). The interfacial resistances are expressed as functions of U-Mo particle size and Al grain size obtained empirically by fitting to measured data from KAERI. The model was then validated against an independently measured dataset from ANL. (C) 2015 Elsevier B.V. All rights reserved. C1 [Kim, Yeon Soo] Argonne Natl Lab, Argonne, IL 60439 USA. [Cho, Byoung Jin; Sohn, Dong-Seong] Ulsan Natl Inst Sci & Technol, Ulsan 689798, South Korea. [Park, Jong Man] Korea Atom Energy Res Inst, Taejon 305353, South Korea. RP Sohn, DS (reprint author), Ulsan Natl Inst Sci & Technol, 50 UNIST Gil, Ulsan 689798, South Korea. EM dssohn@unist.ac.kr OI 조, 병진/0000-0001-8016-1303; Jeong, Gwan Yoon/0000-0002-3326-3718 FU National Research Foundation of Korea (NRF) - Korean government (Ministry of Education, Science and Technology) [2011- 0031771]; U.S. Department of Energy, National Nuclear Safety Administration (NNSA), Office of Material Management and Minimization (NA-23) Reactor Conversion Program [DE-AC-02-06CH11357] FX The authors thank Dr. Ho Jin Ryu of KAIST, South Korea, for providing the image used in Fig. 1 that was taken when he worked at KAERI. Dr. S.H. Lee of KRISS is also acknowledged for the measurement data. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (Ministry of Education, Science and Technology) under contract number 2011- 0031771 and in part by the U.S. Department of Energy, National Nuclear Safety Administration (NNSA), Office of Material Management and Minimization (NA-23) Reactor Conversion Program under Contract No. DE-AC-02-06CH11357 between UChicago Argonne, LLC and the US Department of Energy. NR 22 TC 0 Z9 0 U1 1 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD NOV PY 2015 VL 466 BP 576 EP 582 DI 10.1016/j.jnucmat.2015.08.051 PG 7 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA CW3HT UT WOS:000364883400069 ER PT J AU Ulmer, CJ Motta, AT Kirk, MA AF Ulmer, Christopher J. Motta, Arthur T. Kirk, Mark A. TI In situ ion irradiation of zirconium carbide SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article DE Nuclear materials; Zirconium carbide; Ion irradiation; Defects ID RADIATION-DAMAGE; AMORPHIZATION; MICROSTRUCTURE; EVOLUTION AB Zirconium carbide (ZrC) is a candidate material for use in one of the layers of TRISO coated fuel particles to be used in the Generation IV high-temperature, gas-cooled reactor, and thus it is necessary to study the effects of radiation damage on its structure. The microstructural evolution of ZrCx under irradiation was studied in situ using the Intermediate Voltage Electron Microscope (IVEM) at Argonne National Laboratory. Samples of nominal stoichiometries ZrC0.8 and ZrC0.9 were irradiated in situ using 1 MeV Kr2+ ions at various irradiation temperatures (T = 20 K-1073 K). In situ experiments made it possible to continuously follow the evolution of the microstructure during irradiation using diffraction contrast imaging. Images and diffraction patterns were systematically recorded at selected dose points. After a threshold dose during irradiations conducted at room temperature and below, black-dot defects were observed which accumulated until saturation. Once created, the defect clusters did not move or get destroyed during irradiation so that at the final dose the low temperature microstructure consisted only of a saturation density of small defect clusters. No long-range migration of the visible defects or dynamic defect creation and elimination were observed during irradiation, but some coarsening of the microstructure with the formation of dislocation loops was observed at higher temperatures. The irradiated microstructure was found to be only weakly dependent on the stoichiometry. (C) 2015 Elsevier B.V. All rights reserved. C1 [Ulmer, Christopher J.; Motta, Arthur T.] Penn State Univ, Dept Mech & Nucl Engn, University Pk, PA 16802 USA. [Kirk, Mark A.] Argonne Natl Lab, Nucl Engn Div, Argonne, IL 60439 USA. RP Ulmer, CJ (reprint author), Penn State Univ, Dept Mech & Nucl Engn, University Pk, PA 16802 USA. EM cju5002@psu.edu FU U.S. Department of Energy's Nuclear Engineering University Program [10-679]; DOE Office of Nuclear Energy by UChicago Argonne, LLC [DE-AC02-06CH11357] FX This work was funded by the U.S. Department of Energy's Nuclear Engineering University Program project number 10-679. The electron microscopy with in situ ion irradiation was accomplished at Argonne National Laboratory at the IVEM-Tandem Facility, a U.S. Department of Energy Facility funded by the DOE Office of Nuclear Energy, operated under Contract No. DE-AC02-06CH11357 by UChicago Argonne, LLC. We thank Pete Baldo and Ed Ryan of Argonne National Laboratory for their invaluable assistance in carrying out the irradiations. We also thank Ming-Jie Zheng, Izabela Szlufarska, Dane Morgan and Yina Huang for their insights and discussions. NR 27 TC 0 Z9 0 U1 6 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD NOV PY 2015 VL 466 BP 606 EP 614 DI 10.1016/j.jnucmat.2015.08.009 PG 9 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA CW3HT UT WOS:000364883400073 ER PT J AU Maier, BR Garcia-Diaz, BL Hauch, B Olson, LC Sindelar, RL Sridharan, K AF Maier, Benjamin R. Garcia-Diaz, Brenda L. Hauch, Benjamin Olson, Luke C. Sindelar, Robert L. Sridharan, Kumar TI Cold spray deposition of Ti2AlC coatings for improved nuclear fuel cladding SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article DE Zry-4; Fuel cladding; Oxidation; Cold spray coating; LOCA AB Coatings of Ti2AlC MAX phase compound have been successfully deposited on Zircaloy-4 (Zry-4) test flats, with the goal of enhancing the accident tolerance of LWR fuel cladding. Low temperature powder spray process, also known as cold spray, has been used to deposit coatings similar to 90 mu m in thickness using powder particles of <20 mu m. X-ray diffraction analysis showed the phase-content of the deposited coatings to be identical to the powders indicating that no phase transformation or oxidation had occurred during the coating deposition process. The coating exhibited a high hardness of about 800 H-K and pin-on-disk wear tests using abrasive ruby ball counter-surface showed the wear resistance of the coating to be significantly superior to the Zry-4 substrate. Scratch tests revealed the coatings to be well-adhered to the Zry-4 substrate. Such mechanical integrity is required for claddings from the standpoint of fretting wear resistance and resisting wear handling and insertion. Air oxidation tests at 700 degrees C and simulated LOCA tests at 1005 degrees C in steam environment showed the coatings to be significantly more oxidation resistant compared to Zry-4 suggesting that such coatings can potentially provide accident tolerance to nuclear fuel cladding. (C) 2015 Elsevier B.V. All rights reserved. C1 [Maier, Benjamin R.; Hauch, Benjamin; Sridharan, Kumar] Univ Wisconsin, Madison, WI 53706 USA. [Garcia-Diaz, Brenda L.; Olson, Luke C.; Sindelar, Robert L.] Savannah River Natl Lab, Aiken, SC USA. RP Sridharan, K (reprint author), Univ Wisconsin, Madison, WI 53706 USA. EM kumar@engr.wisc.edu FU UW MRSEC [DMR-1121288]; UW NSEC [DMR-0832760] FX The authors would like to thank Josh Mueller and Elliot Busta at the University of Wisconsin, Madison for their assistance in this work. The authors acknowledge use of instrumentation supported by the UW MRSEC (DMR-1121288) and the UW NSEC (DMR-0832760). NR 12 TC 4 Z9 4 U1 8 U2 28 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD NOV PY 2015 VL 466 BP 712 EP 717 DI 10.1016/j.jnucmat.2015.06.028 PG 6 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA CW3HT UT WOS:000364883400086 ER PT J AU Harp, JM Lessing, PA Hoggan, RE AF Harp, Jason M. Lessing, Paul A. Hoggan, Rita E. TI Uranium suicide pellet fabrication by powder metallurgy for accident tolerant fuel evaluation and irradiation SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID U3SI2 AB In collaboration with industry, Idaho National Laboratory is investigating uranium suicide for use in future light water reactor fuels as a more accident resistant alternative to uranium oxide base fuels. Specifically this project was focused on producing uranium suicide (U3Si2) pellets by conventional powder metallurgy with a density greater than 94% of the theoretical density. This work has produced a process to consistently produce pellets with the desired density through careful optimization of the process. Milling of the U3Si2 has been optimized and high phase purity U3Si2 has been successfully produced. Results are presented from sintering studies and microstructural examinations that illustrate the need for a finely ground reproducible particle size distribution in the source powder. The optimized process was used to produce pellets for the Accident Tolerant Fuel-1 irradiation experiment. The average density of these pellets was 11.54 +/- 0.06 g/cm(3). Additional characterization of the pellets by scanning electron microscopy and X-ray diffraction has also been performed. Pellets produced in this work have been encapsulated for irradiation, and irradiation in the Advanced Test Reactor is expected soon. (C) 2015 Published by Elsevier B.V. C1 [Harp, Jason M.; Lessing, Paul A.; Hoggan, Rita E.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Harp, JM (reprint author), Idaho Natl Lab, POB 1625, Idaho Falls, ID 83415 USA. EM jason.harp@inl.gov OI Harp, Jason/0000-0002-5345-8440 FU U.S. Department of Energy, Office of Nuclear Energy FX This work was supported by the U.S. Department of Energy, Office of Nuclear Energy. This work is also part of a collaboration led by Westinghouse Electric Company comprising several national laboratories, vendors, and universities awarded in response to the DE-FOA-0000712 funding opportunity. The authors would like to acknowledge the assistance of the support staff associated with the Fuels Applied Science Building at INL. Several technicians helped to contribute to this work including Blair Park, Jakeob Maupin, Kevin Hays, and Micheal Chapple. The authors would also like to acknowledge Michael Benson, Leah Squires, and Thomas Hartmann for their assistance with XRD analysis. NR 21 TC 8 Z9 8 U1 4 U2 19 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD NOV PY 2015 VL 466 BP 728 EP 738 DI 10.1016/j.jnucmat.2015.06.027 PG 11 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA CW3HT UT WOS:000364883400088 ER PT J AU Jaques, BJ Watkins, J Croteau, JR Alanko, GA Tyburska-Pueschel, B Meyer, M Xu, P Lahoda, EJ Butt, DP AF Jaques, Brian J. Watkins, Jennifer Croteau, Joseph R. Alanko, Gordon A. Tyburska-Pueschel, Beata Meyer, Mitch Xu, Peng Lahoda, Edward J. Butt, Darryl P. TI Synthesis and sintering of UN-UO2 fuel composites SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article DE Uranium nitride; Composite fuel; Nuclear fuel ID ACCIDENT-TOLERANT FUELS; MATERIAL PROPERTY CORRELATIONS; URANIUM NITRIDE; THERMODYNAMIC PROPERTIES; OXYGEN SOLUBILITY; UN; MONONITRIDE; TEMPERATURE; NITROGEN; PERFORMANCE AB The design and development of an economical, accident tolerant fuel (ATF) for use in the current light water reactor (LWR) fleet is highly desirable for the future of nuclear power. Uranium mononitride has been identified as an alternative fuel with higher uranium density and thermal conductivity when compared to the benchmark, UO2, which could also provide significant economic benefits. However, UN by itself reacts with water at reactor operating temperatures. In order to reduce its reactivity, the addition of UO2 to UN has been suggested. In order to avoid carbon impurities, UN was synthesized from elemental uranium using a hydride-dehydride-nitride thermal synthesis route prior to mixing with up to 10 wt% UO2 in a planetary ball mill. UN and UN UO2 composite pellets were sintered in Ar - (0-1 at %) N-2 to study the effects of nitrogen concentration on the evolved phases and microstructure. UN and UN-UO2 composite pellets were also sintered in Ar - 100 ppm N-2 to assess the effects of temperature (1700-2000 degrees C) on the final grain morphology and phase concentration. (C) 2015 Published by Elsevier B.V. C1 [Jaques, Brian J.; Watkins, Jennifer; Croteau, Joseph R.; Alanko, Gordon A.; Butt, Darryl P.] Boise State Univ, Dept Mat Sci & Engn, Boise, ID 83725 USA. [Jaques, Brian J.; Watkins, Jennifer; Croteau, Joseph R.; Alanko, Gordon A.; Butt, Darryl P.] Ctr Adv Energy Studies, Idaho Falls, ID 83401 USA. [Tyburska-Pueschel, Beata] Univ Wisconsin, Dept Engn Phys, Madison, WI 53706 USA. [Meyer, Mitch] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Xu, Peng; Lahoda, Edward J.] Westinghouse Elect Co LLC, Pittsburgh, PA 15235 USA. RP Butt, DP (reprint author), Boise State Univ, 1910 Univ Dr, Boise, ID 83725 USA. EM BrianJaques@BoiseState.edu; DarrylButt@BoiseState.edu OI Alanko, Gordon/0000-0002-5306-7343; Jaques, Brian/0000-0002-5324-555X FU Department of Energy Nuclear Energy University Program (DOE-NEUP) [00120690] FX This project was supported by the Department of Energy Nuclear Energy University Program (DOE-NEUP) grant #00120690. The authors would also like to acknowledge Joshua Heuther and Daniel Osterberg from Boise State University, Todd Allen, Doug Toomer, Curtis Clark, Jason Harp, and Paul Lessing from the Idaho National Laboratory and Ken McClellan from Los Alamos National Laboratory for fruitful discussions, support, and materials procurement. NR 38 TC 2 Z9 2 U1 8 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD NOV PY 2015 VL 466 BP 745 EP 754 DI 10.1016/j.jnucmat.2015.06.029 PG 10 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA CW3HT UT WOS:000364883400090 ER PT J AU Jeong, IK Sung, YS Song, TK Kim, MH Llobet, A AF Jeong, I. -K. Sung, Y. S. Song, T. K. Kim, M. -H. Llobet, A. TI Structural evolution of bismuth sodium titanate induced by a-site non-stoichiometry: Neutron powder diffraction studies SO JOURNAL OF THE KOREAN PHYSICAL SOCIETY LA English DT Article DE Bismuth Sodium Titanate; Non-stoichiometry; Neutron Powder Diffraction; Octahedral Tilting ID NA0.5BI0.5TIO3; TEMPERATURE; PEROVSKITES; PERSPECTIVE; CERAMICS AB We performed neutron powder diffraction measurements on (Bi0.5Na0.5+x )TiO3 and (Bi0.5+y Na-0.5)TiO3 to study the structural evolution induced by the non-stoichiometry. Despite the nonstoichiometry, the local structure (r a parts per thousand currency sign 3.5 ) from the pair distribution function analysis is barely affected by a sodium deficit of up to -5 mol%. With increasing pair distance, however, the atomic pair correlations weaken due to the disorder caused by the sodium deficiency. Although the sodium and the bismuth share the same crystallographic site, their non-stoichiometries have rather opposite effects as revealed from distinctive distortions of the Bragg peaks. In addition, a Rietveld refinement demonstrates that the octahedral tilting is continually suppressed for sodium deficits up to -5 mol%. This is contrary to the effect of the bismuth deficiency, which induces little variation in the octahedral tilting. C1 [Jeong, I. -K.] Pusan Natl Univ, Dept Phys Educ, Busan 46241, South Korea. [Jeong, I. -K.] Pusan Natl Univ, Res Ctr Dielect & Adv Matter Phys, Busan 46241, South Korea. [Sung, Y. S.] POSTECH, Dept Mat Sci & Engn, Pohang 37673, South Korea. [Song, T. K.; Kim, M. -H.] Changwon Natl Univ, Sch Nano & Adv Mat Engn, Gyeongnam 51140, South Korea. [Llobet, A.] Los Alamos Natl Lab, Lujan Neutron Scattering Ctr, Los Alamos, NM 87545 USA. RP Jeong, IK (reprint author), Pusan Natl Univ, Dept Phys Educ, Busan 46241, South Korea. EM Jeong@pusan.ac.kr FU National Research Foundation of Korea - Korean Government [NRF-2013R1A1A2012499]; DOE Office of Basic Energy Sciences; DOE [DE-AC52-06NA25396] FX We are grateful to K. Page and J. Siewenie for helping with the data collection. This work was supported by a National Research Foundation of Korea grant funded by the Korean Government NRF-2013R1A1A2012499. This work has benefited from the use of NPDF at the Lujan Center at Los Alamos Neutron Science Center, funded by DOE Office of Basic Energy Sciences. Los Alamos National Laboratory is operated by Los Alamos National Security LLC under DOE Contract DE-AC52-06NA25396. NR 29 TC 0 Z9 0 U1 11 U2 18 PU KOREAN PHYSICAL SOC PI SEOUL PA 635-4, YUKSAM-DONG, KANGNAM-KU, SEOUL 135-703, SOUTH KOREA SN 0374-4884 EI 1976-8524 J9 J KOREAN PHYS SOC JI J. Korean Phys. Soc. PD NOV PY 2015 VL 67 IS 9 BP 1583 EP 1587 DI 10.3938/jkps.67.1583 PG 5 WC Physics, Multidisciplinary SC Physics GA CW6JM UT WOS:000365103800015 ER PT J AU Papanek, B Biswas, R Rydzak, T Guss, AM AF Papanek, Beth Biswas, Ranjita Rydzak, Thomas Guss, Adam M. TI Elimination of metabolic pathways to all traditional fermentation products increases ethanol yields in Clostridium thermocellum SO METABOLIC ENGINEERING LA English DT Article DE Clostridium thermocellum; Consolidated bioprocessing; Lignocellulose; Biofuels ID ATCC 27405; SWITCHGRASS; BIOMASS; TRANSFORMATION; CELLULOSE; GROWTH AB Clostridium thermocellum has the natural ability to convert cellulose to ethanol, making it a promising candidate for consolidated bioprocessing (CBP) of cellulosic biomass to biofuels. To further improve its CBP capabilities, a mutant strain of C. thermocellum was constructed (strain AG553; C. thermocellum Delta hpt Delta hydG Delta ldh Delta pfl Delta pta-ack) to increase flux to ethanol by removing side product formation. Strain AG553 showed a two- to threefold increase in ethanol yield relative to the wild type on all substrates tested. On defined medium, strain AG553 exceeded 70% of theoretical ethanol yield on lower loadings of the model crystalline cellulose Avicel, effectively eliminating formate, acetate, and lactate production and reducing H-2 production by fivefold. On 5 g/L Avicel, strain AG553 reached an ethanol yield of 63.5% of the theoretical maximum compared with 19.9% by the wild type, and it showed similar yields on pretreated switchgrass and poplar. The elimination of organic acid production suggested that the strain might be capable of growth under higher substrate loadings in the absence of pH control. Final ethanol titer peaked at 73.4 mM in mutant AG553 on 20 g/L Avicel, at which point the pH decreased to a level that does not allow growth of C. thermocellum, likely due to CO2 accumulation. In comparison, the maximum titer of wild type C. thermocellum was 14.1 mM ethanol on 10 g/L Avicel. With the elimination of the metabolic pathways to all traditional fermentation products other than ethanol, AG553 is the best ethanol-yielding CBP strain to date and will serve as a platform strain for further metabolic engineering for the bioconversion of lignocellulosic biomass. (C) 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved. C1 [Papanek, Beth; Biswas, Ranjita; Rydzak, Thomas; Guss, Adam M.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37830 USA. [Papanek, Beth; Biswas, Ranjita; Rydzak, Thomas; Guss, Adam M.] Oak Ridge Natl Lab, BioEnergy Sci Ctr, Oak Ridge, TN 37830 USA. [Papanek, Beth; Guss, Adam M.] Univ Tennessee, Bredesen Ctr Interdisciplinary Res & Grad Educ, Knoxville, TN 37996 USA. RP Guss, AM (reprint author), Oak Ridge Natl Lab, Biosci Div, One Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM gussam@ornl.gov RI Guss, Adam/A-6204-2011; OI Guss, Adam/0000-0001-5823-5329; Rydzak, Thomas/0000-0002-5176-3222 FU BioEnergy Science Center, U.S. DOE Bioenergy Research Center - Office of Biological and Environmental Research in the DOE Office of Science; U.S. DOE [DE-AC05-00OR22725] FX We would like to thank Miguel Rodriguez and Kelsey Yee for providing the pretreated biomass and for helpful discussions. This work was supported by the BioEnergy Science Center, U.S. DOE Bioenergy Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science. Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the U.S. DOE under Contract DE-AC05-00OR22725. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 24 TC 15 Z9 16 U1 2 U2 17 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 1096-7176 EI 1096-7184 J9 METAB ENG JI Metab. Eng. PD NOV PY 2015 VL 32 BP 49 EP 54 DI 10.1016/j.ymben.2015.09.002 PG 6 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA CW5YL UT WOS:000365073100006 PM 26369438 ER PT J AU Thompson, RA Layton, DS Guss, AM Olson, DG Lynd, LR Trinh, CT AF Thompson, R. Adam Layton, Donovan S. Guss, Adam M. Olson, Daniel G. Lynd, Lee R. Trinh, Cong T. TI Elucidating central metabolic redox obstacles hindering ethanol production in Clostridium thermocellum SO METABOLIC ENGINEERING LA English DT Article DE Clostridium thermocellum; Redox metabolism; Energy metabolism; Elementary mode analysis; Minimal metabolic functionality; Ethanol ID FLUX RATIO ANALYSIS; THERMOPHILIC BACTERIA; BIOETHANOL PRODUCTION; GENE DELETION; ATCC 27405; FERMENTATION; CELLULOSE; YIELDS; CELL; SPECTROSCOPY AB Clostridium thermocellum is an anaerobic, Gram-positive, thermophilic bacterium that has generated great interest due to its ability to ferment lignocellulosic biomass to ethanol. However, ethanol production is low due to the complex and poorly understood branched metabolism of C. thermocellum, and in some cases overflow metabolism as well. In this work, we developed a predictive stoichiometric metabolic model for C. thermocellum which incorporates the current state of understanding, with particular attention to cofactor specificity in the atypical glycolytic enzymes and the complex energy, redox, and fermentative pathways with the goal of aiding metabolic engineering efforts. We validated the model's capability to encompass experimentally observed phenotypes for the parent strain and derived mutants designed for significant perturbation of redox and energy pathways. Metabolic flux distributions revealed significant alterations in key metabolic branch points (e.g., phosphoenol pyruvate, pyruvate, acetyl-CoA, and cofactor nodes) in engineered strains for channeling electron and carbon fluxes for enhanced ethanol synthesis, with the best performing strain doubling ethanol yield and titer compared to the parent strain. In silico predictions of a redox-imbalanced genotype incapable of growth were confirmed in vivo, and a mutant strain was used as a platform to probe redox bottlenecks in the central metabolism that hinder efficient ethanol production. The results highlight the robustness of the redox metabolism of C. thermocellum and the necessity of streamlined electron flux from reduced ferredoxin to NAD(P)H for high ethanol production. The model was further used to design a metabolic engineering strategy to phenotypically constrain C. thermocellum to achieve high ethanol yields while requiring minimal genetic manipulations. The model can be applied to design C. thermocellum as a platform microbe for consolidated bioprocessing to produce ethanol and other reduced metabolites. (C) 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved. C1 [Thompson, R. Adam; Guss, Adam M.; Trinh, Cong T.] Univ Tennessee, Bredesen Ctr Interdisciplinary Res & Grad Educ, Knoxville, TN USA. [Thompson, R. Adam; Guss, Adam M.; Trinh, Cong T.] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Thompson, R. Adam; Layton, Donovan S.; Guss, Adam M.; Olson, Daniel G.; Lynd, Lee R.; Trinh, Cong T.] Oak Ridge Natl Lab, BioEnergy Sci Ctr, Oak Ridge, TN USA. [Layton, Donovan S.; Trinh, Cong T.] Univ Tennessee, Dept Chem & Biomol Engn, Knoxville, TN 37996 USA. [Guss, Adam M.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN USA. [Olson, Daniel G.; Lynd, Lee R.] Dartmouth Coll, Thayer Sch Engn, Hanover, NH 03755 USA. RP Trinh, CT (reprint author), Univ Tennessee, Dept Chem & Biomol Engn, Knoxville, TN 37996 USA. EM ctrinh@utk.edu RI Trinh, Cong/H-5300-2012; Guss, Adam/A-6204-2011 OI Guss, Adam/0000-0001-5823-5329 FU BioEnergy Science Center (BESC), a U.S. Department of Energy Bioenergy Research Center - Office of Biological and Environmental Research in the DOE Office of Science [DE-AC05-000R22725] FX This research was supported as a subcontract by the BioEnergy Science Center (BESC), a U.S. Department of Energy Bioenergy Research Center funded by the Office of Biological and Environmental Research in the DOE Office of Science (DE-AC05-000R22725). The authors would like to thank Dr. Joe Bozell (the Center of Renewable Carbon, UTK) for use of the GC/MS instrument and Dr. Gary Sayler (the Center of Environmental Biotechnology, UTK) for use of the SRS UGA-300 Universal Gas Analyzer. We also thank Prof. Hans van Dijken for useful discussion. NR 54 TC 7 Z9 7 U1 3 U2 17 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 1096-7176 EI 1096-7184 J9 METAB ENG JI Metab. Eng. PD NOV PY 2015 VL 32 BP 207 EP 219 DI 10.1016/j.ymben.2015.10.004 PG 13 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA CW5YL UT WOS:000365073100021 PM 26497628 ER PT J AU Trinh, CT Liu, Y Conner, DJ AF Trinh, Cong T. Liu, Yan Conner, David J. TI Rational design of efficient modular cells SO METABOLIC ENGINEERING LA English DT Article DE Modular cell; MODCELL; Minimal metabolic functionality; Elementary mode analysis; Alcohols; Esters ID ELEMENTARY FLUX MODES; SCALE METABOLIC NETWORKS; IN-SILICO DESIGN; MINIMAL CUT SETS; ESCHERICHIA-COLI; MICROBIAL-PRODUCTION; STRAIN OPTIMIZATION; KNOCKOUT STRATEGIES; GENOME; FRAMEWORK AB The modular cell design principle is formulated to devise modular (chassis) cells. These cells can be assembled with exchangeable production modules in a plug-and-play fashion to build microbial cell factories for efficient combinatorial biosynthesis of novel molecules, requiring minimal iterative strain optimization steps. A modular cell is designed to be auxotrophic, containing core metabolic pathways that are necessary but insufficient to support cell growth and maintenance. To be functional, it must tightly couple with an exchangeable production module containing auxiliary metabolic pathways that not only complement cell growth but also enhance production of targeted molecules. We developed a MODCELL (modular cell) framework based on metabolic pathway analysis to implement the modular cell design principle. MODCELL identifies genetic modifications and requirements to construct modular cell candidates and their associated exchangeable production modules. By defining the degree of similarity and coupling metrics, MODCELL can evaluate which exchangeable production module(s) can be tightly coupled with a modular cell candidate. We first demonstrated how MODCELL works in a step-by-step manner for example metabolic networks, and then applied it to design modular Escherichia coli cells for efficient combinatorial biosynthesis of five alcohols (ethanol, propanol, isopropanol, butanol and isobutanol) and five butyrate esters (ethyl butyrate, propyl butyrate, isopropyl butyrate, butyl butyrate and isobutyl butyrate) from pentose sugars (arabinose and xylose) and hexose sugars (glucose, mannose, and galactose) under anaerobic conditions. We identified three modular cells, MODCELL1, MODCELL2 and MODCELL3, that can couple well with Group 1 of modules (ethanol, isobutanol, butanol, ethyl butyrate, isobutyl butyrate, butyl butyrate), Group 2 (isopropanol, isopropyl butyrate), and Group 3 (propanol, isopropanol), respectively. We validated the design of MODCELL1 for anaerobic production of ethanol, butanol, and ethyl butyrate using experimental data available in literature. (C) 2015 International Metabolic Engineering Society. Published by Elsevier Inc. C1 [Trinh, Cong T.; Liu, Yan; Conner, David J.] Dept Biomol & Chem Engn, New York, NY 10010 USA. [Trinh, Cong T.] UTK ORNL Joint Inst Biol Sci, New York, NY USA. [Trinh, Cong T.] Bredesen Ctr Interdisciplinary Res & Grad Educ, Knoxville, TN USA. [Trinh, Cong T.] Univ Tennessee, Inst Biomed Engn, Knoxville, TN USA. [Trinh, Cong T.] Oak Ridge Natl Lab, BioEnergy Sci Ctr, Oak Ridge, TN USA. RP Trinh, CT (reprint author), Dept Biomol & Chem Engn, New York, NY 10010 USA. EM ctrinh@utk.edu RI Trinh, Cong/H-5300-2012 FU University of Tennessee; NSF CAREER award [1553250] FX This research was supported by the laboratory start-up and SEERC seed funds from the University of Tennessee and an NSF CAREER award (NSF#1553250 to CTT). The authors would like to thank Trinh's lab members for proof-reading the manuscript and providing useful input during the manuscript preparation. In addition, critical reviews and comments from anonymous reviewers to improve the quality of this manuscript are truly appreciated. NR 67 TC 6 Z9 6 U1 3 U2 13 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 1096-7176 EI 1096-7184 J9 METAB ENG JI Metab. Eng. PD NOV PY 2015 VL 32 BP 220 EP 231 DI 10.1016/j.ymben.2015.10.005 PG 12 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA CW5YL UT WOS:000365073100022 PM 26497627 ER PT J AU Liu, SL Luo, YM Yang, RJ He, CX Cheng, QS Tao, JJ Ren, B Wang, MH Ma, MD AF Liu, Shiliang Luo, Yiming Yang, Rongjie He, Chengxiang Cheng, Qingsu Tao, Jianjun Ren, Bo Wang, Maohua Ma, Mingdong TI High resource-capture and -use efficiency, and effective antioxidant protection contribute to the invasiveness of Alnus formosana plants SO PLANT PHYSIOLOGY AND BIOCHEMISTRY LA English DT Article DE Antioxidant protection; Biological invasion; Biomass allocation; Light treatment; Photosynthetic traits; Phenotypic plasticity ID PHENOTYPIC PLASTICITY; BIOMASS ALLOCATION; LEAF-AREA; EUPATORIUM-ADENOPHORUM; PHYSIOLOGICAL TRAITS; OSMOTIC ADJUSTMENT; RAIN-FOREST; PHOTOSYNTHESIS; GROWTH; IRRADIANCE AB To investigate the traits contributing to the invasiveness of Alnus formosana and the mechanisms underlying its invasiveness, we compared A. formosana with its native congener (Alnus cremastogyne) under three light treatments (13%, 56%, and 100%). The consistently higher plant height, total leaf area, light-saturated photosynthetic rate (A(max)), light saturation point (LSP), light compensation point (LCP), respiration efficiency (RE), and non-photochemical quenching coefficient (NPQ) but lower root mass fraction (RMF) and specific leaf area (SLA) of the invader than of its native congener contributed to the higher RGR and total biomass of A. formosana across light regimes. The total biomass and RGR of the invader increased markedly with increased RMF, A(max), LSP, LCP, RE, stomatal conductance (G(s)) and total leaf area. Furthermore, compared with the native species, the higher plasticity index in plant height, RMF, leaf mass fraction (LMF), SMF, SLA, A(max) and dark respiration rate (R-d) within the range of total light contributed to the higher performance of the invader. In addition, the activities of antioxidant enzymes were higher in the invader compared to the native, contributing to its invasion success under high/low light via photoprotection. With a decrease in light level, superoxide dismutase (SOD) and catalase (CAT) activities increased significantly, whereas total carotenoid (Car) and total chlorophyll (Chl) decreased; ascorbate peroxidase (APX) and glutathione reductase (GR) activities remained unchanged. These responses may help the invader to spread and invade a wide range of habitats and form dense mono-cultures, displacing native plant species. The results suggest that both resource capture-related traits (morphological and photosynthetic) and adaptation-related traits (antioxidant protection) contribute to the competitive advantage of the invader. (C) 2015 Elsevier Masson SAS. All rights reserved. C1 [Liu, Shiliang; Luo, Yiming; Yang, Rongjie; He, Chengxiang; Tao, Jianjun; Wang, Maohua; Ma, Mingdong] Sichuan Agr Univ, Fac Landscape Architecture, Chengdu 611130, Sichuan, Peoples R China. [Cheng, Qingsu] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. [Ren, Bo] Sichuan Acad Forestry, Inst Forestry Res, Chengdu 610081, Sichuan, Peoples R China. [Wang, Maohua] Chungnam Natl Univ, Fac Agr & Life Sci, Daejeon 305754, South Korea. RP Ma, MD (reprint author), Sichuan Agr Univ, Fac Landscape Architecture, Chengdu 611130, Sichuan, Peoples R China. EM liushiliang9@163.com; 610245498@qq.com FU Forestry Science and Technology Supporting Program in the Eleventh Five-Year Plan of China [2006BA031002] FX This study was partially supported by the Forestry Science and Technology Supporting Program in the Eleventh Five-Year Plan of China (2006BA031002). Special thanks are given to Prof. Y.Z. Pan, Q.B. Chen, H.X. Song and S.P. Gao for their constructive suggestions on this manuscript, and to Dr. W. He, J. Ma and S.R. Pu for assistance in field measurements and statistical analysis. We thank Dr. P. John and K. Black-Mazumdar for their assistance in reviewing the English manuscript. The authors are also grateful to the associate editor and two anonymous reviewers for their comments and suggestions on an earlier manuscript. NR 48 TC 0 Z9 0 U1 3 U2 17 PU ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER PI PARIS PA 23 RUE LINOIS, 75724 PARIS, FRANCE SN 0981-9428 J9 PLANT PHYSIOL BIOCH JI Plant Physiol. Biochem. PD NOV PY 2015 VL 96 BP 436 EP 447 DI 10.1016/j.plaphy.2015.08.022 PG 12 WC Plant Sciences SC Plant Sciences GA CW3GR UT WOS:000364880500049 PM 26433486 ER PT J AU Sanchez-Alfaro, P Sielfeld, G Van Campen, B Dobson, P Fuentes, V Reed, A Palma-Behnke, R Morata, D AF Sanchez-Alfaro, Pablo Sielfeld, Gerd Van Campen, Bart Dobson, Patrick Fuentes, Victor Reed, Andy Palma-Behnke, Rodrigo Morata, Diego TI Geothermal barriers, policies and economics in Chile - Lessons for the Andes SO RENEWABLE & SUSTAINABLE ENERGY REVIEWS LA English DT Review DE Geothermal; Barriers and incentives; LCoE; Chile; Andes; Energy policies; Economy ID ENERGY; ELECTRICITY; EVOLUTION; SYSTEMS; COSTS AB The Andes is the largest undeveloped geothermal region in the world. The Chilean case is the most puzzling because the country is largely dependent on imported fuels causing, among other issues, high energy prices and energy dependency. But even though it has large quantities of geothermal resources which have been explored since the 1920s, no geothermal power plant has been constructed yet. The barriers for geothermal development in Chile have not been studied in detail and limited information is available about the real economic feasibility of geothermal power generation and whether effective incentives are needed for its development. In this study we present an integrated analysis of geoscientific, economic, historical and regulatory aspects of geothermal development in Chile based on the compilation of new and previously published data. Through a survey of key participants from government institutions, industry and academia we identified the main perceived advantages, barriers, and efficient incentives. The absence of clear medium-to-long term energy policies and a lack of government incentives for companies to overcome financial risk are perceived as the main barriers. Additionally, we calculated the estimated average Levelized Costs of Energy (LCoE) of geothermal electricity generation using different scenarios to illustrate the potential impact of possible government policies. At present conditions and without incentives we estimated a base case geothermal LCoE in Chile which would be "near competitive" compared to the average contract prices. Further analysis would be needed to estimate the effect of different policy incentives more rigorously. Finally, we propose some guidelines for geothermal stakeholders to encourage geothermal power development; these might prove useful to other Andean and developing countries as well. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Sanchez-Alfaro, Pablo; Morata, Diego] Univ Chile, Dept Geol, Santiago, Chile. [Sanchez-Alfaro, Pablo; Sielfeld, Gerd; Morata, Diego] Andean Geothermal Ctr Excellence CEGA FONDAP 1509, Santiago, Chile. [Sielfeld, Gerd] Pontificia Univ Catolica Chile, Dept Struct & Geotech Engn, Santiago, Chile. [Van Campen, Bart; Fuentes, Victor] Univ Auckland, Geothermal Inst, Auckland 1, New Zealand. [Dobson, Patrick] Lawrence Berkeley Natl Lab, Div Earth Sci, Los Alamos, NM USA. [Reed, Andy] Univ Pittsburgh, Grad Sch Publ & Int Affairs, Pittsburgh, PA 15260 USA. [Palma-Behnke, Rodrigo] Univ Chile, Sch Engn, Fac Math & Phys Sci, Energy Ctr,CMM,ISCI,DIE, Santiago, Chile. RP Sanchez-Alfaro, P (reprint author), Univ Chile, Dept Geol, Santiago, Chile. EM vsanchez@ing.uchile.cl RI Palma-Behnke, Rodrigo/A-1849-2012; FONDAP, SERC Chile/A-9133-2016; Dobson, Patrick/D-8771-2015; Morata, Diego/G-4871-2016; Energia, Centro/B-6300-2017; OI Dobson, Patrick/0000-0001-5031-8592; Morata, Diego/0000-0002-9751-2429; Sanchez-Alfaro, Pablo/0000-0001-7349-760X; Sielfeld, Gerd/0000-0002-2192-7169; van Campen, Bart/0000-0002-5814-3966 FU CONICYT FONDAP Project "Centro de Excelencia en Geotermia de los Andes, CEGA" [15090013]; CONICYT International Network Program Project [REDES140036]; MECESUP [UCH0708]; CONICYT doctoral Grants; Lawrence Berkeley National Laboratory under U.S. Department of Energy, Assistant Secretary for Energy Efficiency and Renewable Energy, Geothermal Technologies Program, under the U.S. Department of Energy [DE-AC02-05CH11231] FX We acknowledge the support of CONICYT FONDAP Project 15090013 "Centro de Excelencia en Geotermia de los Andes, CEGA" and CONICYT International Network Program Project REDES140036. We thank Alvaro Navarrete, Alfredo Lahsen and Jorge Clavero, who kindly contributed to an early version of this manuscript. P. Sanchez-Alfaro and G. Sielfeld acknowledge the support given by MECESUP UCH0708 and CONICYT doctoral Grants, respectively. P. Dobson was supported by Lawrence Berkeley National Laboratory under U.S. Department of Energy, Assistant Secretary for Energy Efficiency and Renewable Energy, Geothermal Technologies Program, under the U.S. Department of Energy Contract no. DE-AC02-05CH11231. We thank the constructive comments of three anonymous reviewers that helped improve the manuscript. NR 60 TC 2 Z9 2 U1 5 U2 19 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1364-0321 J9 RENEW SUST ENERG REV JI Renew. Sust. Energ. Rev. PD NOV PY 2015 VL 51 BP 1390 EP 1401 DI 10.1016/j.rser.2015.07.001 PG 12 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels SC Science & Technology - Other Topics; Energy & Fuels GA CW1BX UT WOS:000364725700036 ER PT J AU Zorba, V Mao, XL Russo, RE AF Zorba, Vassilia Mao, Xianglei Russo, Richard E. TI Femtosecond laser induced breakdown spectroscopy of Cu at the micron/sub-micron scale SO SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY LA English DT Article; Proceedings Paper CT 8th International Conference on Laser-Induced Breakdown Spectroscopy (LIBS) CY SEP 08-12, 2014 CL Beijing, PEOPLES R CHINA DE LIES; Ukrafast laser; Spatial resolution; Elemental analysis; Laser ablation ID COPPER-BASED-ALLOYS; HIGH-SPATIAL-RESOLUTION; OPTICAL-EMISSION; PLASMA; PULSE; ABLATION; LIBS; NANOSECOND; PLUME; 2ND AB While femtosecond Laser Induced Breakdown Spectroscopy has been studied in the macro-scale (i.e. ablation crater sizes of tens to hundreds of micrometers), the spectral emission mechanisms at the micron/sub-micron scale remain largely unknown, mainly because of the challenges associated with spectral emission acquisition from the limited amounts of ablated mass at these small lengthscales. In this work we study the limits of detection, the laser-induced plasma properties and spectral emission efficiency of Cu at the micron/submicron scale. Although the corresponding number electron densities and temperatures are similar to those reported for macroscale laser ablation, our findings suggest less efficient luminous spectral emission per ablated volume as we scale down in laser energy and crater sizes. These results provide a first insight into fs laser-induced plasma properties at the micron/sub-micron scale regime. (C) 2015 Elsevier B.V. All rights reserved. C1 [Zorba, Vassilia; Mao, Xianglei; Russo, Richard E.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Russo, Richard E.] Appl Spectra, Fremont, CA 94538 USA. RP Zorba, V (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM VZormpa@lbl.gov FU Laboratory Directed Research and Development (LDRD); Berkeley Lab; Chemical Science Division, Office of Basic Energy Sciences; U.S. Department of Energy [DE-AC02-05CH11231] FX This research has been supported by Laboratory Directed Research and Development (LDRD) funding from Berkeley Lab, provided by the Director, Office of Science, of the U.S. Department of Energy. This work also was supported by the Chemical Science Division, Office of Basic Energy Sciences, and the U.S. Department of Energy under Contract No.DE-AC02-05CH11231. NR 36 TC 3 Z9 3 U1 6 U2 30 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0584-8547 J9 SPECTROCHIM ACTA B JI Spectroc. Acta Pt. B-Atom. Spectr. PD NOV 1 PY 2015 VL 113 BP 37 EP 42 DI 10.1016/j.sab.2015.08.011 PG 6 WC Spectroscopy SC Spectroscopy GA CW3NC UT WOS:000364898000005 ER PT J AU Bol'shakov, AA Mao, XL Jain, J McIntyre, DL Russo, RE AF Bol'shakov, Alexander A. Mao, Xianglei Jain, Jinesh McIntyre, Dustin L. Russo, Richard E. TI Laser ablation molecular isotopic spectrometry of carbon isotopes SO SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY LA English DT Article DE Laser ablation molecular isotopic spectrometry; LAMIS; LIBS; Carbon; Isotope ID INDUCED BREAKDOWN SPECTROSCOPY; INDUCED PLASMAS; NITROGEN ATMOSPHERE; SWAN SYSTEM; GRAPHITE; C-2; FEMTOSECOND; COAL; AIR; SIMULATION AB Quantitative determination of carbon isotopes using Laser Ablation Molecular Isotopic Spectrometry (LAMIS) is described. Optical emission of diatomic molecules CN and C-2 is used in these measurements. Two quantification approaches are presented: empirical calibration of spectra using a set of reference standards and numerical fitting of a simulated spectrum to the experimental one. Formation mechanisms of C-2 and CN in laser ablation plasma are briefly reviewed to provide insights for implementation of LAMIS measurements. A simulated spectrum of the C-12(2) Swan system was synthesized using four constituents within 473.5-476.5 nm. Simulation included three branches of C-12(2) (1-0), branches R(0-0) and R(1-1), and branch P(9-8) of C-12(2). Spectral positions of the tail lines in R(0-0) and R(1-1) were experimentally measured, since they were not accurately known before. The Swan band (1-0) of the isotopologue (CC)-C-13-C-12 was also simulated. Fitting to the experimental spectrum yielded the ratio C-13/C-12 = 1.08% in a good agreement with measurements by isotope ratio mass spectrometry. LAIVIIS promises to be useful in coal, oil and shale exploration, carbon sequestration monitoring, and agronomy studies. (C) 2015 Elsevier B.V. All rights reserved. C1 [Bol'shakov, Alexander A.; Russo, Richard E.] Appl Spectra Inc, Fremont, CA 94538 USA. [Mao, Xianglei; Russo, Richard E.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Jain, Jinesh; McIntyre, Dustin L.] Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. RP Bol'shakov, AA (reprint author), Appl Spectra Inc, Fremont, CA 94538 USA. EM alexandb@appliedspectra.com; rerusso@lbl.gov RI Bol'shakov, Alexander/A-9258-2015; OI Bol'shakov, Alexander/0000-0002-6034-7079; McIntyre, Dustin/0000-0003-4907-9576 FU SBIR program by the U.S. Department of Energy [DE-SC0007546]; Defense Nuclear Nonproliferation Research and Development Office; Office of Basic Energy Sciences of the U.S. Department of Energy [DE-AC02-05CH11231] FX This research was funded through SBIR program by the U.S. Department of Energy with the Award No. DE-SC0007546 granted to Applied Spectra, Inc. The work at the Lawrence Berkeley National Laboratory was supported by the Defense Nuclear Nonproliferation Research and Development Office and the Office of Basic Energy Sciences of the U.S. Department of Energy under contract number DE-AC02-05CH11231. NR 39 TC 5 Z9 5 U1 9 U2 34 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0584-8547 J9 SPECTROCHIM ACTA B JI Spectroc. Acta Pt. B-Atom. Spectr. PD NOV 1 PY 2015 VL 113 BP 106 EP 112 DI 10.1016/j.sab.2015.08.007 PG 7 WC Spectroscopy SC Spectroscopy GA CW3NC UT WOS:000364898000014 ER PT J AU Hou, HM Chan, GCY Mao, XL Zheng, RE Zorba, V Russo, RE AF Hou, Huaming Chan, George C. -Y. Mao, Xianglei Zheng, Ronger Zorba, Vassilia Russo, Richard E. TI Femtosecond filament-laser ablation molecular isotopic spectrometry SO SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY LA English DT Article DE Femtosecond Filament-Induced laser Ablation; Molecular Isotopic Spectrometry (F-2-LAMIS); Isotopic analysis; Laser Ablation Molecular Isotopic Spectrometry (IAMIS); Filamentation; Molecular emission spectra ID INDUCED BREAKDOWN SPECTROSCOPY; ZIRCONIUM-OXIDE; PROPAGATION; URANIUM; LIBS; AIR AB A new remote sensing technology for real-time isotopic analysis is introduced: Femtosecond Filament-Induced Laser Ablation Molecular Isotopic Spectrometry (F-2-LAMIS). The technique combines femtosecond (fs) laser filamentation and ablation-based molecular isotopic spectroscopy, thereby enabling isotopic analysis of samples at a distance, in ambient air and at ambient pressure conditions. Isotopic analysis of zirconium (Zr) samples by F(2-)LAMIS is demonstrated, and the molecular and atomic emission intensity, and properties of the filament-induced plasma generated at different filament propagation distances were investigated. Spectral fitting of F-2-LAMIS spectra enabled semi-quantitative isotopic analysis without the use of calibration standards, which was independent of the filament propagation distance for the studied range. This technology provides new capabilities for direct isotopic ratio measurements at remote distances. (C) 2015 Elsevier B.V. All rights reserved. C1 [Hou, Huaming; Chan, George C. -Y.; Mao, Xianglei; Zorba, Vassilia; Russo, Richard E.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Hou, Huaming; Zheng, Ronger] Ocean Univ China, Qingdao 266100, Peoples R China. RP Russo, RE (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM rerusso@lbl.gov FU US Department of Energy, Office of Nuclear Nonproliferation and Office of Basic Energy Sciences at the Lawrence Berkeley National Laboratory [DE-AC02-05CH11231] FX The research was supported by the US Department of Energy, Office of Nuclear Nonproliferation and Office of Basic Energy Sciences, under contract number DE-AC02-05CH11231 at the Lawrence Berkeley National Laboratory. NR 33 TC 10 Z9 10 U1 6 U2 21 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0584-8547 J9 SPECTROCHIM ACTA B JI Spectroc. Acta Pt. B-Atom. Spectr. PD NOV 1 PY 2015 VL 113 BP 113 EP 118 DI 10.1016/j.sab.2015.09.014 PG 6 WC Spectroscopy SC Spectroscopy GA CW3NC UT WOS:000364898000015 ER PT J AU Markowitz, VM Chen, IMA Chu, K Pati, A Ivanova, NN Kyrpides, NC AF Markowitz, Victor M. Chen, I-Min A. Chu, Ken Pati, Amrita Ivanova, Natalia N. Kyrpides, Nikos C. TI Ten Years of Maintaining and Expanding a Microbial Genome and Metagenome Analysis System SO TRENDS IN MICROBIOLOGY LA English DT Review ID BIOSYNTHETIC GENE CLUSTERS; MANAGEMENT-SYSTEM; DATABASE; IMG; INFORMATION; METABOLISM; INSIGHTS; RESOURCE; VERSION AB Launched in March 2005, the Integrated Microbial Genomes (IMG) system is a comprehensive data management system that supports multidimensional comparative analysis of genomic data. At the core of the IMG system is a data warehouse that contains genome and metagenome datasets sequenced at the Joint Genome Institute or provided by scientific users, as well as public genome datasets available at the National Center for Biotechnology Information Genbank sequence data archive. Genomes and metagenome datasets are processed using IMG's microbial genome and metagenome sequence data processing pipelines and are integrated into the data warehouse using IMG's data integration toolkits. Microbial genome and metagenome application specific data marts and user interfaces provide access to different subsets of IMG's data and analysis toolkits. This review article revisits IMG's original aims, highlights key milestones reached by the system during the past 10 years, and discusses the main challenges faced by a rapidly expanding system, in particular the complexity of maintaining such a system in an academic setting with limited budgets and computing and data management infrastructure. C1 [Markowitz, Victor M.; Chen, I-Min A.; Chu, Ken] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Comp Res Div, Biosci Comp, Berkeley, CA 94720 USA. [Pati, Amrita; Ivanova, Natalia N.; Kyrpides, Nikos C.] DOE Joint Genome Inst, Microbial Genome & Metagenome Program, Walnut Creek, CA 94598 USA. RP Markowitz, VM (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Comp Res Div, Biosci Comp, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM vmmarkowitz@lbl.gov RI Kyrpides, Nikos/A-6305-2014; OI Kyrpides, Nikos/0000-0002-6131-0462; Ivanova, Natalia/0000-0002-5802-9485 FU Office of Science, Office of Biological and Environmental Research, Life Sciences Division, US Department of Energy [DE-AC02-05CH11231]; Office of Science of the US Department of Energy [DE-AC02-05CH11231] FX Marcel Huntemann, Ernest Szeto, Krishna Palaniappan, and Manoj Pillay have developed and maintained IMG's data processing pipelines. Jinghua Huang and Anna Ratner have contributed to the development of IMG's analysis tools. Kostas Mavrommatis and lain Anderson had key contributions to the development of methods for IMG's structural and functional annotation pipelines, phenotype prediction, and detecting colocated gene conservation. Neha Vargese devised the organization of the transcriptomic datasets and the tools to analyze them. Michalis Hadjithomas developed the methods for identifying biosynthetic clusters and secondary metabolites and devised the tools for analyzing them. IMG's development and maintenance are funded by Director, Office of Science, Office of Biological and Environmental Research, Life Sciences Division, US Department of Energy (Contract No. DE-AC02-05CH11231); Office of Science of the US Department of Energy (Contract No. DE-AC02-05CH11231). NR 37 TC 5 Z9 6 U1 1 U2 19 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0966-842X EI 1878-4380 J9 TRENDS MICROBIOL JI Trends Microbiol. PD NOV PY 2015 VL 23 IS 11 BP 730 EP 741 DI 10.1016/j.tim.2015.07.012 PG 12 WC Biochemistry & Molecular Biology; Microbiology SC Biochemistry & Molecular Biology; Microbiology GA CW3IA UT WOS:000364884200008 PM 26439299 ER PT J AU Biener, J Biener, MM Madix, RJ Friend, CM AF Biener, Juergen Biener, Monika M. Madix, Robert J. Friend, Cynthia M. TI Nanoporous Gold: Understanding the Origin of the Reactivity of a 21st Century Catalyst Made by Pre-Columbian Technology SO ACS CATALYSIS LA English DT Article DE nanoporous gold; energy-efficient catalysis; selective oxidation; activation; ozone ID ATOMIC LAYER DEPOSITION; HIGH-SURFACE-AREA; TEMPERATURE CO OXIDATION; AG-AU-PT; SUPPORTED GOLD; POROUS GOLD; CHEMICAL REACTIVITY; MOLECULAR-OXYGEN; AU(110) SURFACE; CARBON-MONOXIDE AB Nanoporous gold (np-Au), a three-dimensional nanoporous bulk material, is made by selective corrosion of Ag from Ag-Au alloys, a technique already applied by the pre-Columbian cultures of South America. Nanoporous gold is actually a Au-rich Ag-Au alloy which, specifically the Ag0.03Au0.97 composition, combines high reactivity and selectivity for a wide variety of oxidation reactions, from simple CO oxidation to complex oxygen-assisted coupling reactions. Its catalytic reactivity is surprising because np-Au is a nonsupported Au catalyst with relatively large feature sizes on the order of tens of nanometers, thus breaking the generally accepted notion that gold must be in the form of small particles (about a few nanometers) to be an active catalyst. The ease of sample preparation in combination with high reactivity, selectivity, and long-term stability suggests that nanoporous gold has the potential to bring Au catalysis closer to practical applications. In this perspective, we provide a critical review of the current understanding of the origin of the high catalytic activity of nanoporous gold in context of morphology and surface composition. C1 [Biener, Juergen; Biener, Monika M.] Lawrence Livermore Natl Lab, Nanoscale Synth & Characterizat Lab, Livermore, CA 94550 USA. [Friend, Cynthia M.] Harvard Univ, Dept Chem & Chem Biol, Cambridge, MA 02138 USA. [Madix, Robert J.; Friend, Cynthia M.] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA. RP Biener, J (reprint author), Lawrence Livermore Natl Lab, Nanoscale Synth & Characterizat Lab, Livermore, CA 94550 USA. EM biener2@llnl.gov; friend@fas.harvard.edu FU Integrated Mesoscale Architectures for Sustainable Catalysis, an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Basic Energy Sciences [DE-SC0012573]; U.S. Department of Energy by LLNL [DE-AC52-07NA27344] FX We gratefully acknowledge support by Integrated Mesoscale Architectures for Sustainable Catalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under Award No. DE-SC0012573. Work at LLNL was performed under the auspices of the U.S. Department of Energy by LLNL under Contract DE-AC52-07NA27344. TOG designed by Ryan W. Chen, LLNL. NR 105 TC 16 Z9 16 U1 21 U2 90 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2155-5435 J9 ACS CATAL JI ACS Catal. PD NOV PY 2015 VL 5 IS 11 BP 6263 EP 6270 DI 10.1021/acscatal.5b01586 PG 8 WC Chemistry, Physical SC Chemistry GA CV7GV UT WOS:000364441300004 ER PT J AU Hod, I Sampson, MD Deria, P Kubiak, CP Farha, OK Hupp, JT AF Hod, Idan Sampson, Matthew D. Deria, Pravas Kubiak, Clifford P. Farha, Omar K. Hupp, Joseph T. TI Fe-Porphyrin-Based Metal-Organic Framework Films as High-Surface Concentration, Heterogeneous Catalysts for Electrochemical Reduction of CO2 SO ACS Catalysis LA English DT Article DE CO2 reduction; electrocatalysis; metal organic frameworks; Fe-porphyrin; solar fuel; redox conductivity ID C-O BOND; CARBON-DIOXIDE; ELECTROCATALYTIC REDUCTION; THIN-FILMS; VISIBLE-LIGHT; HOMOGENEOUS CATALYSIS; SELECTIVE REDUCTION; MOLECULAR CATALYSIS; ELECTRON-TRANSFER; WATER OXIDATION AB Realization of heterogeneous electrochemical CO2-to-fuel conversion via molecular catalysis under high-flux conditions requires the assembly of large quantities of reactant-accessible catalysts on conductive surfaces. As a proof of principle, we demonstrate that electrophoretic deposition of thin films of an appropriately chosen metal-organic framework (MOF) material is an effective method for immobilizing the needed quantity of catalyst. For electrocatalytic CO2 reduction, we used a material that contains functionalized Fe-porphyrins as catalytically competent, redox-conductive linkers. The approach yields a high effective surface coverage of electrochemically addressable catalytic sites (similar to 10(15) sites/cm(2)). The chemical products of the reduction, obtained with similar to 100% Faradaic efficiency, are mixtures of CO and H-2. These results validate the strategy of using MOF chemistry to obtain porous, electrode-immobilized, networks of molecular catalysts having competency for energy-relevant electrochemical reactions. C1 [Hod, Idan; Deria, Pravas; Farha, Omar K.; Hupp, Joseph T.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Sampson, Matthew D.; Kubiak, Clifford P.] Univ Calif San Diego, Dept Chem & Biochem, La Jolla, CA 92093 USA. [Farha, Omar K.] King Abdulaziz Univ, Fac Sci, Dept Chem, Jeddah, Saudi Arabia. [Hod, Idan; Farha, Omar K.; Hupp, Joseph T.] Northwestern Univ, Argonne Northwestern Solar Energy Res ANSER Ctr, Evanston, IL 60208 USA. [Hupp, Joseph T.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Kubiak, CP (reprint author), Univ Calif San Diego, Dept Chem & Biochem, 9500 Gilman Dr, La Jolla, CA 92093 USA. EM ckubiak@ucsd.edu; o-farha@northwestern.edu; j-hupp@northwestern.edu RI Faculty of, Sciences, KAU/E-7305-2017; OI Sampson, Matthew/0000-0001-9092-1089 FU ANSER Center, an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001059]; U.S.-Israel Fulbright program; Air Force Office of Scientific Research, MURI Program [FA9550-10-1-0572] FX The work at Northwestern University was supported as part of the ANSER Center, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, via Award DE-SC0001059. I.H. thanks the U.S.-Israel Fulbright program for a postdoctoral fellowship. C.P.K. acknowledges support from a grant from the Air Force Office of Scientific Research, MURI Program (Award FA9550-10-1-0572). NR 64 TC 55 Z9 55 U1 115 U2 381 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2155-5435 J9 ACS CATAL JI ACS Catal. PD NOV PY 2015 VL 5 IS 11 BP 6302 EP 6309 DI 10.1021/acscatal.5b01767 PG 8 WC Chemistry, Physical SC Chemistry GA CV7GV UT WOS:000364441300008 ER PT J AU An, W Liu, P AF An, Wei Liu, Ping TI Rationalization of Au Concentration and Distribution in AuNi@Pt Core-Shell Nanoparticles for Oxygen Reduction Reaction SO ACS CATALYSIS LA English DT Article DE core-shell nanoparticles; ORR; durability; AuNi alloy; Pt shell; density functional theory (DFT) ID DENDRIMER-ENCAPSULATED NANOPARTICLES; TRANSITION-METAL-ALLOYS; MEMBRANE FUEL-CELLS; CARBON-MONOXIDE; SURFACE-COMPOSITION; CATALYTIC-ACTIVITY; ELECTRONIC-STRUCTURE; SKIN SURFACES; ELECTROCATALYSTS; PLATINUM AB Improving the activity and stability of Pt-based core-shell nanocatalysts for proton exchange membrane fuel cells while lowering Pt loading has been one of the big challenges in electrocatalysis. Here, using density functional theory, we report the effect of adding Au as the third element to enhance the durability and activity of Ni@Pt core-shell nanoparticles (NPs) during the oxygen reduction reaction (ORR). Our results show that the durability and activity of a Ni@Pt NP can be finely tuned by controlling Au concentration and distribution. For a NiAu@Pt NP, the durability can be greatly promoted by thermodynamically favorable segregation of Au to replace the Pt atoms at vertex, edge, and (100) facets on the shell, while still keeping the ORR activity on the active Pt(111) shell as high as that of Ni@Pt nanoparticles. Such behavior strongly depends on a direct interaction with the Ni interlayer. Our results not only highlight the importance of interplay between surface strain on the shell and the interlayer-shell interaction in determining the durability and activity but also provide guidance on how to maximize the usage of Au to optimize the performance of core-shell (Pt) nanoparticles. Such understanding has allowed us to discover a novel NiAu@Pt nanocatalyst for the ORR. C1 [An, Wei; Liu, Ping] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [An, Wei] Shanghai Univ Engn Sci, Coll Chem & Chem Engn, Shanghai 201620, Peoples R China. RP Liu, P (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. EM pingliu3@bnl.gov FU US Department of Energy, Division of Chemical Sciences [DE-SC0012704]; Office of Science of the U.S. DOE [DE-AC02-05CH11231] FX This research was carried out at Brookhaven National Laboratory under contract DE-SC0012704 with the US Department of Energy, Division of Chemical Sciences. The DFT calculations were performed using computational resources at the Center for Functional Nanomaterials, a user facility at Brookhaven National Laboratory, and at the National Energy Research Scientific Computing Center (NERSC), which is supported by the Office of Science of the U.S. DOE under Contract No. DE-AC02-05CH11231. The authors thank Dr. R. R. Adzic at Brookhaven National Laboratory for the valuable discussions. NR 76 TC 10 Z9 10 U1 31 U2 116 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2155-5435 J9 ACS CATAL JI ACS Catal. PD NOV PY 2015 VL 5 IS 11 BP 6328 EP 6336 DI 10.1021/acscatal.5b01656 PG 9 WC Chemistry, Physical SC Chemistry GA CV7GV UT WOS:000364441300011 ER PT J AU Wang, X Shi, H Kwak, JH Szanyi, J AF Wang, Xiang Shi, Hui Kwak, Ja Hun Szanyi, Janos TI Mechanism of CO2 Hydrogenation on Pd/Al2O3 Catalysts: Kinetics and Transient DRIFTS-MS Studies SO ACS CATALYSIS LA English DT Article DE CO2 reduction; Pd/Al2O3; particle size; reaction mechanism; CO/CH4 selectivity ID IN-SITU FTIR; CARBON-DIOXIDE; LOW-TEMPERATURE; SUPPORTED PALLADIUM; ZIRCONIA CATALYSTS; GAMMA-ALUMINA; METHANATION; SURFACE; NICKEL; RHODIUM AB The hydrogenation of CO2 was investigated over a wide range of reaction conditions, using two Pd/gamma-Al2O3 catalysts with different Pd loadings (5% and 0.5%) and dispersions (similar to 11% and similar to 100%, respectively). Turnover rates for CO and CH4 formation were both higher over 5% Pd/Al2O3 with a larger average Pd particle size than those over 0.5% Pd/Al2O3 with a smaller average particle size. The selectivity to methane (22-40%) on 5% Pd/Al2O3 was higher by a factor of 2-3 than that on 0.5% Pd/Al2O3. The drastically different rate expressions and apparent energies of activation for CO and CH4 formation led us to conclude that reverse water gas shift and CO2 methanation do not share the same rate-limiting step on Pd and that the two pathways are probably catalyzed at different surface sites. Measured reaction orders in CO2 and H-2 pressures were similar over the two catalysts, suggesting that the reaction mechanism for each pathway does not change with particle size. In accordance, the DRIFTS results reveal that the prevalent surface species and their evolution patterns are comparable on the two catalysts during transient and steady-state experiments, switching feed gases among CO2, H-2 and CO2 + H-2. The DRIFTS and MS results also demonstrate that no direct dissociation of CO2 takes place over the two catalysts and that CO2 has to first react with surface hydroxyls on the oxide support. The thus-formed bicarbonates react with dissociatively adsorbed hydrogen on Pd particles to produce adsorbed formate species (bifunctional catalyst: CO2 activation on the oxide support and H-2 dissociation on the metal particles). Formates near the Pd particles (most likely at the metal/oxide interface) can react rapidly with adsorbed H to produce CO, which then adsorbs on the metallic Pd particles. Two types of Pd sites are identified: one has a weak interaction with CO, which easily desorbs into gas phase at reaction temperatures, whereas the other interacts more strongly with CO, which is mainly in multibound forms and remains stable in He flow at high temperatures, but is reactive toward adsorbed H atoms on Pd leading eventually to CH4 formation. 5% Pd/Al2O3 contains a larger fraction of terrace sites favorable for forming these more multibound and stable CO species than 0.5% Pd/Al2O3. Consequently, we propose that the difference in the formation rate and selectivity to CH4 on different Pd particle sizes stems from the different concentrations of the reactive intermediate for the methanation pathway on the Pd surface. C1 [Wang, Xiang; Shi, Hui; Kwak, Ja Hun; Szanyi, Janos] Pacific NW Natl Lab, Inst Integrated Catalysis, Richland, WA 99352 USA. [Kwak, Ja Hun] UNIST, Sch Energy & Chem Engn, Dept Chem Engn, Ulsan 689798, South Korea. RP Szanyi, J (reprint author), Pacific NW Natl Lab, Inst Integrated Catalysis, Richland, WA 99352 USA. EM janos.szanyi@pnnl.gov RI wang, xiang/F-4901-2014; Shi, Hui/J-7083-2014 FU Laboratory Directed Research and Development (LDRD) project; U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division; UNIST (Ulsan National Institute of Science and Technology, Ulsan, Korea) FX The catalyst preparation and catalytic measurements were supported by a Laboratory Directed Research and Development (LDRD) project. J.S. gratefully acknowledges the financial support of this work by the U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division. J.H.K. also acknowledges the support of this work by the 2015 Research Fund of UNIST (Ulsan National Institute of Science and Technology, Ulsan, Korea). The authors thank Dr. Davide Ferri (Paul Scherrer Institute, Switzerland) for the fruitful discussions on the reaction mechanism of CO2 hydrogenation. NR 41 TC 14 Z9 15 U1 43 U2 166 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2155-5435 J9 ACS CATAL JI ACS Catal. PD NOV PY 2015 VL 5 IS 11 BP 6337 EP 6349 DI 10.1021/acscatal.5b01464 PG 13 WC Chemistry, Physical SC Chemistry GA CV7GV UT WOS:000364441300012 ER PT J AU Zhu, HY Zhang, PF Dai, S AF Zhu, Huiyuan Zhang, Pengfei Dai, Sheng TI Recent Advances of Lanthanum-Based Perovskite Oxides for Catalysis SO ACS CATALYSIS LA English DT Article DE perovskite oxides; electrocatalysis; oxygen reduction/evolution reaction; heterogeneous catalysis; CO oxidation; methane oxidation ID OXYGEN REDUCTION REACTION; HIGH-SURFACE-AREA; LITHIUM-AIR BATTERIES; CO OXIDATION; METHANE COMBUSTION; FUEL-CELLS; ELECTROCATALYTIC ACTIVITY; EVOLUTION REACTION; LACOO3 PEROVSKITE; CITRIC-ACID AB There is a need to reduce the use of noble metal elements-especially in the field of catalysis, where noble metals are ubiquitously applied. To this end, perovskite oxides, an important class of mixed oxide, have been attracting increasing attention for decades as potential replacements. Benefiting from the extraordinary tunability of their compositions and structures, perovskite oxides can be rationally tailored and equipped with targeted physical and chemical properties-for example, redox behavior, oxygen mobility, and ionic conductivity-for enhanced catalysis. Recently, the development of highly efficient perovskite oxide catalysts has been extensively studied. This perspective article summarizes the recent development of lanthanum-based perovskite oxides as advanced catalysts for both energy conversion applications and traditional heterogeneous reactions. C1 [Zhu, Huiyuan; Zhang, Pengfei; Dai, Sheng] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Dai, Sheng] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. RP Zhu, HY (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. EM zhuh@ornl.gov; dais@ornl.gov RI Dai, Sheng/K-8411-2015 OI Dai, Sheng/0000-0002-8046-3931 FU U.S. Department of Energy, Office of Science, Chemical Sciences, Geosciences and Biosciences Division FX P. Z. and S. D. were supported by the U.S. Department of Energy, Office of Science, Chemical Sciences, Geosciences and Biosciences Division. H. Z. acknowledges the Liane B. Russell Fellowship at Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the US Department of Energy. NR 144 TC 21 Z9 21 U1 32 U2 163 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2155-5435 J9 ACS CATAL JI ACS Catal. PD NOV PY 2015 VL 5 IS 11 BP 6370 EP 6385 DI 10.1021/acscatal.5b01667 PG 16 WC Chemistry, Physical SC Chemistry GA CV7GV UT WOS:000364441300016 ER PT J AU Zhang, L Wu, ZL Nelson, NC Sadow, AD Slowing, II Overbury, SH AF Zhang, Li Wu, Zili Nelson, Nicholas C. Sadow, Aaron D. Slowing, Igor I. Overbury, Steven H. TI Role Of CO2 As a Soft Oxidant For Dehydrogenation of Ethylbenzene to Styrene over a High-Surface-Area Ceria Catalyst SO ACS CATALYSIS LA English DT Article DE high-surface-area ceria; oxidative dehydrogenation; ethylbenzene; styrene; CO2; infrared spectroscopy; Raman spectroscopy; coking ID VANADIA-ALUMINA CATALYSTS; PROMOTED IRON-OXIDE; IN-SITU FTIR; CARBON-DIOXIDE; OXIDATIVE DEHYDROGENATION; COKE FORMATION; RAMAN-SPECTROSCOPY; CEO2 NANOCRYSTALS; ADSORPTION; ULTRAVIOLET AB Catalytic performance and the nature of surface adsorbates were investigated for high-surface-area ceria during the ethylbenzene oxidative dehydrogenation (ODH) reaction using CO2 as a soft oxidant. The high surface area ceria material was synthesized using a template-assisted method. The interactions among ethylbenzene, styrene, and CO2 on the surface of ceria and the role of CO2 for the ethylbenzene ODH reaction have been investigated in detail by using activity test, in situ diffuse reflectance infrared and Raman spectroscopy. CO2 as an oxidant not only favored the higher yield of styrene but also inhibited the deposition of coke during the ethylbenzene ODH reaction. Ethylbenzene ODH reaction over ceria followed a two-step pathway: ethylbenzene is first dehydrogenated to styrene with H-2 formed simultaneously, and then CO2 reacts with H-2 via the reverse water gas shift. The produced styrene can easily undergo polymerization to form polystyrene, which is a key intermediate for coke formation. In the absence of CO2 the produced polystyrene transforms into graphite-like coke at temperatures above 500 degrees C, which leads to catalyst deactivation. In the presence of CO2 the coke deposition can be effectively removed via oxidation with CO2. C1 [Zhang, Li; Wu, Zili; Overbury, Steven H.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Wu, Zili; Overbury, Steven H.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Nelson, Nicholas C.; Sadow, Aaron D.; Slowing, Igor I.] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. [Nelson, Nicholas C.; Sadow, Aaron D.; Slowing, Igor I.] US DOE, Chem & Biol Sci, Ames Lab, Ames, IA USA. RP Overbury, SH (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. EM overburysh@ornl.gov RI Overbury, Steven/C-5108-2016 OI Overbury, Steven/0000-0002-5137-3961 FU Critical Materials Institute, an Energy Innovation Hub - U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office FX This research/work is supported by the Critical Materials Institute, an Energy Innovation Hub funded by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office. A portion of this research, including the in situ IR and Raman, was conducted at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility. NR 49 TC 8 Z9 8 U1 13 U2 59 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2155-5435 J9 ACS CATAL JI ACS Catal. PD NOV PY 2015 VL 5 IS 11 BP 6426 EP 6435 DI 10.1021/acscatal.5b01519 PG 10 WC Chemistry, Physical SC Chemistry GA CV7GV UT WOS:000364441300020 ER PT J AU Matsubara, Y Grills, DC Kuwahara, Y AF Matsubara, Yasuo Grills, David C. Kuwahara, Yutaka TI Thermodynamic Aspects of Electrocatalytic CO2 Reduction in Acetonitrile and with an Ionic Liquid as Solvent or Electrolyte SO ACS CATALYSIS LA English DT Editorial Material ID N-HETEROCYCLIC CARBENE; CARBON-DIOXIDE REDUCTION; AB-INITIO MO; SHAM ORBITAL ENERGIES; ELECTROCHEMICAL REDUCTION; HOMOGENEOUS ELECTROCATALYSTS; MOLECULAR ELECTROCATALYSTS; IMIDAZOLIUM CARBOXYLATES; SELECTIVE CONVERSION; RHENIUM(I) COMPLEXES C1 [Matsubara, Yasuo] Kanagawa Univ, Dept Mat & Life Chem, Kanagawa Ku, Yokohama, Kanagawa 2218686, Japan. [Grills, David C.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Kuwahara, Yutaka] Kumamoto Univ, Grad Sch Sci & Technol, Dept Appl Chem & Biochem, Chuo Ku, Kumamoto 8608555, Japan. RP Matsubara, Y (reprint author), Kanagawa Univ, Dept Mat & Life Chem, Kanagawa Ku, 3-27-1 Rokkakubashi, Yokohama, Kanagawa 2218686, Japan. EM ft101936fb@kanagawa-u.ac.jp; dcgrills@bnl.gov RI Grills, David/F-7196-2016; OI Grills, David/0000-0001-8349-9158; Matsubara, Yasuo/0000-0001-9791-7197 NR 117 TC 16 Z9 16 U1 15 U2 80 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2155-5435 J9 ACS CATAL JI ACS Catal. PD NOV PY 2015 VL 5 IS 11 BP 6440 EP 6452 DI 10.1021/acscatal.5b00656 PG 13 WC Chemistry, Physical SC Chemistry GA CV7GV UT WOS:000364441300022 ER PT J AU Wang, ZT Henderson, MA Lyubinetsky, I AF Wang, Zhi-Tao Henderson, Michael A. Lyubinetsky, Igor TI Origin of Coverage Dependence in Photoreactivity of Carboxylate on TiO2(110): Hindering by Charged Coadsorbed Hydroxyls SO ACS CATALYSIS LA English DT Article DE scanning tunneling microscopy; ultraviolet photoelectron spectroscopy; trimethyl acetate; hydroxyl; TiO2 ID PHOTOCATALYTIC OXIDATION; INDUCED DESORPTION; TRIMETHYL ACETATE; TIO2 POWDER; SURFACE; ADSORPTION; O-2; PHOTOCHEMISTRY; PHOTOOXIDATION; SEMICONDUCTOR AB The influence of reactant coverage on photochemical activity was explored using scanning tunneling microscopy (STM) and ultraviolet photoelectron spectroscopy (UPS). We observed diminished reactivity of carboxylate species (trimethyl acetate, TMA) on TiO2(110) as a function of increasing coverage. This effect was not linked to intermolecular interactions of TMA but to the accumulation of the coadsorbed bridging hydroxyls (HOb) deposited during (thermal) dissociative adsorption of the parent, trimethylacetic acid (TMAA). Confirmation of the hindering influence of HOb groups was obtained by the observation that HOb, species originated from H2O dissociation at O-vacancy sites have a similar hindering effect on TMA photochemistry. Though HOb's are photoinactive on TiO2(110) under ultrahigh vacuum conditions, UPS results show that these sites trap photoexcited electrons, which in turn likely (electrostatically) attract and neutralize photoexcited holes, thus suppressing the hole-mediated photoreactivity of TMA. This negative influence of surface hydroxyls on hole-mediated photochemistry is likely a major factor in other anaerobic photochemical processes on reducible oxide surfaces. C1 [Wang, Zhi-Tao; Lyubinetsky, Igor] Inst Integrated Catalysis, EMSL, Richland, WA 99352 USA. [Wang, Zhi-Tao; Henderson, Michael A.; Lyubinetsky, Igor] Pacific NW Natl Lab, Richland, WA 99352 USA. [Henderson, Michael A.] Inst Integrated Catalysis, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. RP Lyubinetsky, I (reprint author), Inst Integrated Catalysis, EMSL, Richland, WA 99352 USA. EM igor.lyubinetsky@pnnl.gov FU US Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences; DOE's Office of Biological and Environmental Research FX This work was supported by the US Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, and performed at Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOE's Office of Biological and Environmental Research and located at PNNL. NR 37 TC 2 Z9 2 U1 9 U2 31 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2155-5435 J9 ACS CATAL JI ACS Catal. PD NOV PY 2015 VL 5 IS 11 BP 6463 EP 6467 DI 10.1021/acscatal.5b01819 PG 5 WC Chemistry, Physical SC Chemistry GA CV7GV UT WOS:000364441300025 ER PT J AU Staszak-Jirkovsky, J Subbaraman, R Strmcnik, D Harrison, KL Diesendruck, CE Assary, R Frank, O Kobr, L Wiberg, GKH Genorio, B Connell, JG Lopes, PP Stamenkovic, VR Curtiss, L Moore, JS Zavadil, KR Markovic, NM AF Staszak-Jirkovsky, Jakub Subbaraman, Ram Strmcnik, Dusan Harrison, Katharine L. Diesendruck, Charles E. Assary, Rajeev Frank, Otakar Kobr, Lukas Wiberg, Gustav K. H. Genorio, Bostjan Connell, Justin G. Lopes, Pietro P. Stamenkovic, Vojislav R. Curtiss, Larry Moore, Jeffrey S. Zavadil, Kevin R. Markovic, Nenad M. TI Water as a Promoter and Catalyst for Dioxygen Electrochemistry in Aqueous and Organic Media SO ACS CATALYSIS LA English DT Article DE electrocatalysis; oxygen reduction reaction; lithium-oxygen; water networks; batteries; activated water ID LI-AIR BATTERIES; OXYGEN REDUCTION REACTION; SPECTROSCOPIC IDENTIFICATION; ELECTRODE SURFACES; ALKALINE-SOLUTIONS; LI-O-2 BATTERIES; GOLD; SUPEROXIDE; PLATINUM; ELECTROREDUCTION AB Water and oxygen electrochemistry lies at the heart of interfacial processes controlling energy transformations in fuel cells, electrolyzers, and batteries. Here, by comparing results for the ORR obtained in alkaline aqueous media to those obtained in ultradry organic electrolytes with known amounts of H2O added intentionally, we propose a new rationale in which water itself plays an important role in determining the reaction kinetics. This effect derives from the formation of HOad center dot center dot center dot H2O (aqueous solutions) and LiO2 center dot center dot center dot H2O (organic solvents) complexes that place water in a configurationally favorable position for proton transfer to weakly adsorbed intermediates. We also find that, even at low concentrations (<10 ppm), water acts simultaneously as a promoter and as a catalyst in the production of Li2O2, regenerating itself through a sequence of steps that include the formation and recombination of H+ and OH-. We conclude that, although the binding energy between metal surfaces and oxygen intermediates is an important descriptor in electrocatalysis, understanding the role of water as a proton-donor reactant may explain many anomalous features in electrocatalysis at metal-liquid interfaces. C1 [Staszak-Jirkovsky, Jakub; Subbaraman, Ram; Strmcnik, Dusan; Assary, Rajeev; Wiberg, Gustav K. H.; Genorio, Bostjan; Connell, Justin G.; Lopes, Pietro P.; Stamenkovic, Vojislav R.; Curtiss, Larry; Markovic, Nenad M.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Harrison, Katharine L.; Zavadil, Kevin R.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Diesendruck, Charles E.; Moore, Jeffrey S.] Univ Illinois, Urbana, IL 61801 USA. [Frank, Otakar] J Heyrovsky Inst Phys Chem, Dept Electrochem Mat, Prague, Czech Republic. [Kobr, Lukas] Northwestern Univ, Evanston, IL 60208 USA. [Genorio, Bostjan] Univ Ljubljana, Fac Chem & Chem Technol, Ljubljana, Slovenia. [Staszak-Jirkovsky, Jakub; Strmcnik, Dusan; Harrison, Katharine L.; Diesendruck, Charles E.; Assary, Rajeev; Genorio, Bostjan; Connell, Justin G.; Lopes, Pietro P.; Stamenkovic, Vojislav R.; Curtiss, Larry; Moore, Jeffrey S.; Zavadil, Kevin R.; Markovic, Nenad M.] Argonne Natl Lab, Joint Ctr Energy Storage Res, Argonne, IL 60439 USA. RP Markovic, NM (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM nmmarkovic@anl.gov RI Frank, Otakar/D-9231-2011; Lopes, Pietro/E-2724-2013; Surendran Assary, Rajeev/E-6833-2012; OI Frank, Otakar/0000-0002-9661-6250; Lopes, Pietro/0000-0003-3211-470X; Surendran Assary, Rajeev/0000-0002-9571-3307; Diesendruck, Charles/0000-0001-5576-1366 FU Joint Center for Energy Storage Research (JCESR), an Energy Innovation Hub - U.S. Department of Energy, Office of Science, Basic Energy Sciences; Argonne, a U.S. Department of Energy Office of Science laboratory [DE-AC02-06CH11357]; U.S. Department of Energy, Basic Energy Science, Materials Science and Engineering Division FX This work was supported as part of the Joint Center for Energy Storage Research (JCESR), an Energy Innovation Hub funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences. The submitted paper has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract no. DE-AC02-06CH11357. Work related to oxygen electrochemistry in alkaline solutions was supported by the U.S. Department of Energy, Basic Energy Science, Materials Science and Engineering Division. NR 45 TC 19 Z9 19 U1 10 U2 83 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2155-5435 J9 ACS CATAL JI ACS Catal. PD NOV PY 2015 VL 5 IS 11 BP 6600 EP 6607 DI 10.1021/acscatal.5b01779 PG 8 WC Chemistry, Physical SC Chemistry GA CV7GV UT WOS:000364441300042 ER PT J AU Jasion, D Barforoush, JM Qiao, Q Zhu, YM Ren, SQ Leonard, KC AF Jasion, Daniel Barforoush, Joseph M. Qiao, Qiao Zhu, Yimei Ren, Shenqiang Leonard, Kevin C. TI Low-Dimensional Hyperthin FeS2 Nanostructures for Efficient and Stable Hydrogen Evolution Electrocatalysis SO ACS CATALYSIS LA English DT Article DE electrocatalysis; hydrogen evolution; water splitting; FeS2; nanomaterials ID SCANNING ELECTROCHEMICAL MICROSCOPY; RAMAN-SPECTRA; NEUTRAL WATER; PYRITE; NANOPARTICLES; MOS2; NANOSHEETS; CATALYST; SURFACES; PLANET AB We report a scalable, solution-processing method for synthesizing low-dimensional hyperthin FeS2 nanostructures, and we show that 2D FeS2 disc nanostructures are an efficient and stable hydrogen evolution electrocatalyst. By changing the Fe:S ratio in the precursor solution, we were able to preferentially synthesize either 1D wire or 2D disc nanostructures. The 2D FeS2 disc structure has the highest electrocatalytic activity for the hydrogen evolution reaction, comparable to platinum in neutral pH conditions. The ability of the FeS2 nanostructures to generate hydrogen was confirmed by scanning electrochemical microscopy, and the 2D disc nanostructures were able to generate hydrogen for over 125 h. C1 [Jasion, Daniel; Ren, Shenqiang] Univ Kansas, Dept Chem, Lawrence, KS 66045 USA. [Barforoush, Joseph M.; Leonard, Kevin C.] Univ Kansas, Dept Chem & Petr Engn, Lawrence, KS 66045 USA. [Barforoush, Joseph M.; Ren, Shenqiang; Leonard, Kevin C.] Univ Kansas, Ctr Environm Beneficial Catalysis, Lawrence, KS 66045 USA. [Ren, Shenqiang] Temple Univ, Dept Mech Engn, Philadelphia, PA 19122 USA. [Ren, Shenqiang] Temple Univ, Temple Mat Inst, Philadelphia, PA 19122 USA. [Qiao, Qiao; Zhu, Yimei] Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA. RP Ren, SQ (reprint author), Univ Kansas, Dept Chem, Lawrence, KS 66045 USA. EM shenqiang.ren@temple.edu; kcleonard@ku.edu FU U.S. National Science Foundation (NSF) [NSF-DMR-1551948]; KU's College of Engineering and Department of Chemical and Petroleum Engineering; DOE-BES, Materials Science and Engineering [DESC0012704]; EFRC [DE-SC0012575] FX D.J. would like to acknowledge the Microscopy and Analytical Imaging Laboratory (MAT) lab at KU for help in TEM and SEM characterization as well as Dr. Victor Day for help with XRD characterization. S.R acknowledges the financial support from the U.S. National Science Foundation (NSF) under Award No: NSF-DMR-1551948 for nanocrystal synthesis, and Army Research Office-Young Investigator Award (W911NF-15-1-0610) for functional material design and self-assembly. K.C.L. thanks the financial support from KU's College of Engineering and Department of Chemical and Petroleum Engineering. Work at BNL was partially supported by DOE-BES, Materials Science and Engineering, under Contract No. DESC0012704, and Q.Q is supported by EFRC (contract number DE-SC0012575) at Temple University. NR 34 TC 16 Z9 16 U1 29 U2 131 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2155-5435 J9 ACS CATAL JI ACS Catal. PD NOV PY 2015 VL 5 IS 11 BP 6653 EP 6657 DI 10.1021/acscatal.5b01637 PG 5 WC Chemistry, Physical SC Chemistry GA CV7GV UT WOS:000364441300050 ER PT J AU Rodriguez, JA Liu, P Stacchiola, DJ Senanayake, SD White, MG Chen, JGG AF Rodriguez, Jose A. Liu, Ping Stacchiola, Dario J. Senanayake, Sanjaya D. White, Michael G. Chen, Jingguang G. TI Hydrogenation of CO2 to Methanol: Importance of Metal-Oxide and Metal-Carbide Interfaces in the Activation of CO2 SO ACS CATALYSIS LA English DT Article DE CO2 activation; CO2 hydrogenation; methanol synthesis; reverse water-gas shift reaction; metal oxides; metal carbides; copper; gold ID CARBON-DIOXIDE; SUPPORT INTERACTIONS; PHOTOELECTRON-SPECTROSCOPY; MODEL CATALYSTS; HIGHER ALCOHOLS; SYNTHESIS GAS; IN-SITU; SURFACES; ADSORPTION; WATER AB The high thermochemical stability of CO, makes it very difficult to achieve the catalytic conversion of the molecule into alcohols or other hydrocarbon compounds, which can be used as fuels or the starting point for the generation of fine chemicals. Pure metals and bimetallic systems used for the CO2 -> CH2OH conversion usually bind CO2 too weakly and, thus, show low catalytic activity. Here, we discuss a series of recent studies that illustrate the advantages of metal oxide and metal carbide interfaces when aiming at the conversion of CO2 into methanol. CeOx/Cu(111), Cu/CeOx/TiO2(110), and Au/CeOx/TiO2(110) exhibit an activity for the CO2 -> CH3OH conversion that is 2-3 orders of magnitude higher than that of a benchmark Cu(111) catalyst. In the Cu-ceria and Au-ceria interfaces, the multifunctional combination of metal and oxide centers leads to complementary chemical properties that open active reaction pathways for methanol synthesis. Efficient catalysts are also generated after depositing Cu and Au on TiC(001). In these cases, strong metal support interactions modify the electronic properties of the admetals and make them active for the binding of CO2 and its subsequent transformation into CH3OH at the metal carbide interfaces. C1 [Rodriguez, Jose A.; Liu, Ping; Stacchiola, Dario J.; Senanayake, Sanjaya D.; White, Michael G.; Chen, Jingguang G.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Rodriguez, JA (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. EM rodrigez@bnl.gov RI Stacchiola, Dario/B-1918-2009; Senanayake, Sanjaya/D-4769-2009 OI Stacchiola, Dario/0000-0001-5494-3205; Senanayake, Sanjaya/0000-0003-3991-4232 FU U.S. Department of Energy [DE-SC0012704] FX Many of the experiments described in the text of this article were done in collaboration with scientists at Brookhaven National Laboratory (A. Baber, J.A. Boscoboinik, J. Hrbek, S. Kattel, K. Mudiyanselage, A. Vidal, F. Xu, X. Yang, Y. Yang), the University of Seville (J. Graciani, J.F. Sanz), the University of Barcelona (L. Feria, S. Posada-Perez, F. Vines, F. Illas), the Universidad Central de Venezuela (P. Ramirez, J. Evans), and Columbia University (M. D. Porosoff). We are grateful to all of them. This manuscript has been authored by employees of Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy. NR 85 TC 21 Z9 21 U1 61 U2 279 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2155-5435 J9 ACS CATAL JI ACS Catal. PD NOV PY 2015 VL 5 IS 11 BP 6696 EP 6706 DI 10.1021/acscatal.5b01755 PG 11 WC Chemistry, Physical SC Chemistry GA CV7GV UT WOS:000364441300056 ER PT J AU Madrahimov, ST Gallagher, JR Zhang, GH Meinhart, Z Garibay, SJ Delferro, M Miller, JT Farha, OK Hupp, JT Nguyen, ST AF Madrahimov, Sherzod T. Gallagher, James R. Zhang, Guanghui Meinhart, Zachary Garibay, Sergio J. Delferro, Massimiliano Miller, Jeffrey T. Farha, Omar K. Hupp, Joseph T. Nguyen, SonBinh T. TI Gas-Phase Dimerization of Ethylene under Mild Conditions Catalyzed by MOF Materials Containing (bpy)Ni-II Complexes SO ACS CATALYSIS LA English DT Article DE metal-organic framework; ethylene dimerization; gas-phase reaction; (bipyridyl)nickel complexes; catalysis ID METAL-ORGANIC FRAMEWORK; ASSISTED LIGAND INCORPORATION; HETEROGENEOUS CATALYSIS; FUNCTIONALIZATION; OLIGOMERIZATION; POLYMERIZATION; OXIDATION; DESIGN; NU-1000; NI(II) AB NU-1000-(bpy)Ni-II, a highly porous MOF material possessing well-defined (bpy)Ni-II moieties, was prepared through solvent-assisted ligand incorporation (SALI). Treatment with Et2AlCl affords a single-site catalyst with excellent catalytic activity for ethylene dimerization (intrinsic activity for butenes that is up to an order of magnitude higher than the corresponding (bpy)NiCl2 homogeneous analogue) and stability (can be reused at least three times). The high porosity of this catalyst results in outstanding levels of activity at ambient temperature in gas-phase ethylene dimerization reactions, both under batch and continuous flow conditions. C1 [Madrahimov, Sherzod T.; Meinhart, Zachary; Garibay, Sergio J.; Delferro, Massimiliano; Farha, Omar K.; Hupp, Joseph T.; Nguyen, SonBinh T.] Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA. [Gallagher, James R.; Zhang, Guanghui; Miller, Jeffrey T.; Nguyen, SonBinh T.] Argonne Natl Lab, Chem Sci & Engn Div, Lemont, IL 60439 USA. [Farha, Omar K.] King Abdulaziz Univ, Fac Sci, Dept Chem, Jeddah, Saudi Arabia. RP Farha, OK (reprint author), Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA. EM o-farha@northwestern.edu; j-hupp@northwestern.edu; stn@northwestern.edu RI Gallagher, James/E-4896-2014; Zhang, Guanghui/C-4747-2008; Nguyen, SonBinh/C-1682-2014; Faculty of, Sciences, KAU/E-7305-2017; OI Gallagher, James/0000-0002-5628-5178; Zhang, Guanghui/0000-0002-5854-6909; Nguyen, SonBinh/0000-0002-6977-3445; Delferro, Massimiliano/0000-0002-4443-165X FU Camille and Henry Dreyfus Postdoctoral Program in Environmental Chemistry; DTRA [HDTRA1-14-1-0014]; Energy Frontier Research Center - U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES) [DE-SC0012702]; U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences [DE-AC02-06CH11357]; International Institute for Nanotechnolog, NSF-MRSEC [DMR-1121262]; Keck Foundation; state of Illinois; Northwestern University; Inorganometallic Catalyst Design Center FX S.T.M. thanks the Camille and Henry Dreyfus Postdoctoral Program in Environmental Chemistry for financial support. Z.M. was supported by DTRA (grant No. HDTRA1-14-1-0014). Work by O.K.F. and J.T.H. was supported as part of the Inorganometallic Catalyst Design Center, an Energy Frontier Research Center funded by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), under award DE-SC0012702 (development of NU-1000 as a catalyst platform). S.T.N. and J.T.M. additionally acknowledge support from the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences, under contract No. DE-AC02-06CH11357 (catalysis measurements and APS studies at Argonne). Experimental facilities at the Integrated Molecular Structure Education and Research Center (IMSERC), J. B. Cohen X-ray Diffraction Facility at the Materials Research Center, Keck II Facility, and the EPIC Facility of the NUANCE Center at Northwestern University are supported by the International Institute for Nanotechnolog, NSF-MRSEC (grant No. DMR-1121262), the Keck Foundation, the state of Illinois, and Northwestern University. We thank the reviewers of an initial version of this manuscript for helpful suggestions that improved it. NR 42 TC 19 Z9 20 U1 22 U2 92 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2155-5435 J9 ACS CATAL JI ACS Catal. PD NOV PY 2015 VL 5 IS 11 BP 6713 EP 6718 DI 10.1021/acscatal.5b01604 PG 6 WC Chemistry, Physical SC Chemistry GA CV7GV UT WOS:000364441300058 ER PT J AU Kandel, K Chaudhary, U Nelson, NC Slowing, II AF Kandel, Kapil Chaudhary, Umesh Nelson, Nicholas C. Slowing, Igor I. TI Synergistic Interaction between Oxides of Copper and Iron for Production of Fatty Alcohols from Fatty Acids SO ACS CATALYSIS LA English DT Article DE fatty alcohols; fatty acids; biorenewables; mesoporous silica; iron oxide; copper oxide ID METHYL-ESTER HYDROGENATION; FISCHER-TROPSCH SYNTHESIS; ACETIC-ACID; SELECTIVE HYDROGENATION; RENEWABLE RESOURCES; CARBOXYLIC-ACIDS; MICROALGAE OIL; ETHYL-ACETATE; CATALYSTS; ACETALDEHYDE AB The selective hydrogenation of fatty acids to fatty alcohols can be achieved under moderate conditions (180 degrees C, 30 bar H-2) by simultaneously supporting copper and iron oxides on mesoporous silica nanoparticles. The activity of the cosupported oxides is significantly higher than that of each supported metal oxide and of a physical mixture of both individually supported metal oxides. A strong interaction between both metal oxides is evident from dispersion, XRD, TPR, and acetic acid TPD measurements, which is likely responsible for the synergistic behavior of the catalyst. Copper oxide is reduced in situ to its metallic form and thereby activates hydrogen. It is proposed that hydrogen spills over to iron oxide where fatty acids bind and are selectively reduced to the alcohol. C1 [Slowing, Igor I.] Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. Iowa State Univ, Dept Chem, Ames, IA 50011 USA. RP Slowing, II (reprint author), Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. EM islowing@iastate.edu OI Slowing, Igor/0000-0002-9319-8639 FU U.S. Department of Energy, Office of Basic Energy Sciences; U.S. Department of Energy [DE-AC02-07CH11358] FX The authors thank James W. Anderegg for the acquisition of XPS spectra of the materials and BASF for the generous donation of Pluronic P104 surfactant. This research is supported by the U.S. Department of Energy, Office of Basic Energy Sciences. The Ames Laboratory is operated for the U.S. Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358. NR 40 TC 5 Z9 5 U1 12 U2 32 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2155-5435 J9 ACS CATAL JI ACS Catal. PD NOV PY 2015 VL 5 IS 11 BP 6719 EP 6723 DI 10.1021/acscatal.5b01664 PG 5 WC Chemistry, Physical SC Chemistry GA CV7GV UT WOS:000364441300059 ER PT J AU Hu, JY Yang, QW Yang, LF Zhang, ZG Su, BG Bao, ZB Ren, QL Xing, HB Dai, S AF Hu, Jingyi Yang, Qiwei Yang, Lifeng Zhang, Zhiguo Su, Baogen Bao, Zongbi Ren, Qilong Xing, Huabin Dai, Sheng TI Confining Noble Metal (Pd, Au, Pt) Nanoparticles in Surfactant Ionic Liquids: Active Non-Mercury Catalysts for Hydrochlorination of Acetylene SO ACS Catalysis LA English DT Article DE nanoparticles; ionic liquid; acetylene; hydrochlorination; nonmercuric; palladium ID SUPPORTED GOLD CATALYST; VINYL-CHLORIDE MONOMER; HECK REACTION; PALLADIUM NANOPARTICLES; REACTION-MECHANISM; REMARKABLE ANION; CARBON; DEACTIVATION; REGENERATION; STABILIZATION AB Metal catalysts often encounter the dilemma of rapid deactivation due to reduction or particle aggregation/ growth during the reaction. Here we reported an active and stable metal nanopartides (NPs)/surfactant ionic liquid (IL) system for the catalytic hydro chlorination of acetylene. The NPs of Pd, Au, and Pt with a narrow size distribution and well-defined lattice fringes experienced in situ generation in the reaction medium of anionic surfactant carboxylate ILs (ASC-ILs). Benefiting from the high reactivity of NPs and the self-assembly property of ASC-ILs, an effective redox cycle between Pd and Pd-II was established to reduce the deactivation of metal catalysts. The Pd NPs/surfactant IL systems showed excellent catalytic activity toward acetylene hydrochlorination. An acetylene conversion of 93% and a selectivity of 99.5% were achieved with no discernible deterioration over a reaction time of SS h. Furthermore, ASC-ILs were endowed with a unique property of the strong hydrogen-bond basicity, which was effective in absorbing and activating acetylene and HCl. This study manifests that metal NPs/surfactant IL systems are promising as substitutes for toxic mercury catalysts in the hydrochlorination of acetylene, and also is instructive for the stabilization of metal NPs. C1 [Hu, Jingyi; Yang, Qiwei; Yang, Lifeng; Zhang, Zhiguo; Su, Baogen; Bao, Zongbi; Ren, Qilong; Xing, Huabin] Zhejiang Univ, Coll Chem & Biol Engn, Minist Educ, Key Lab Biomass Chem Engn, Hangzhou 310027, Zhejiang, Peoples R China. [Dai, Sheng] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Dai, Sheng] Univ Tennessee, Dept Chem, Knoxville, TN 37966 USA. RP Xing, HB (reprint author), Zhejiang Univ, Coll Chem & Biol Engn, Minist Educ, Key Lab Biomass Chem Engn, Hangzhou 310027, Zhejiang, Peoples R China. EM xinghb@zju.edu.cn RI Dai, Sheng/K-8411-2015; OI Dai, Sheng/0000-0002-8046-3931; Yang, Qiwei/0000-0002-6469-5126 FU National Natural Science Foundation of China [21222601, 21476192, 21436010]; Zhejiang Provincial Natural Science Foundation of China [LR13B060001]; Office of Basic Energy Sciences, U.S. Department of Energy FX The research was supported by the National Natural Science Foundation of China (21222601, 21476192, and 21436010), the Zhejiang Provincial Natural Science Foundation of China (LR13B060001), and S.D. was supported by the Office of Basic Energy Sciences, U.S. Department of Energy. NR 65 TC 7 Z9 7 U1 26 U2 97 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2155-5435 J9 ACS CATAL JI ACS Catal. PD NOV PY 2015 VL 5 IS 11 BP 6724 EP 6731 DI 10.1021/acscatal.51301690 PG 8 WC Chemistry, Physical SC Chemistry GA CV7GV UT WOS:000364441300060 ER PT J AU Elbert, K Hu, J Ma, Z Zhang, Y Chen, GY An, W Liu, P Isaacs, HS Adzic, RR Wang, JX AF Elbert, Katherine Hu, Jue Ma, Zhong Zhang, Yu Chen, Guangyu An, Wei Liu, Ping Isaacs, Hugh S. Adzic, Radoslav R. Wang, Jia X. TI Elucidating Hydrogen Oxidation/Evolution Kinetics in Base and Acid by Enhanced Activities at the Optimized Pt Shell Thickness on the Ru Core SO ACS CATALYSIS LA English DT Article DE HOR; HER; alkaline fuel cells; water electrolysis; Ru@Pt core-shell ID OXYGEN REDUCTION CATALYSTS; PROTON-TRANSFER REACTIONS; AUGMENTED-WAVE METHOD; OXIDATION REACTION; EVOLUTION REACTION; FUEL-CELLS; PLATINUM; CARBON; ADSORPTION; ELECTRODES AB Hydrogen oxidation and evolution on Pt in acid are facile processes, while in alkaline electrolytes, they are 2 orders of magnitude slower. Thus, developing catalysts that are more active than Pt for these two reactions is important for advancing the performance of anion exchange membrane fuel cells and water electrolyzers. Herein, we detail a 4-fold enhancement of Pt mass activity that we achieved using single-crystalline Ru@Pt core-shell nanoparticles with two-monolayer-thick Pt shells, which doubles the activity on Pt-Ru alloy nanocatalysts. For Pt specific activity, the two- and one-monolayer-thick Pt shells exhibited enhancement factors of 3.1 and 2.3, respectively, compared to the Pt nanocatalysts in base, differing considerably from the values of 1 and 0.4, respectively, in acid. To explain such behavior and the orders of magnitude difference in activity on going from acid to base, we performed kinetic analyses of polarization curves over a wide range of potential from -250 to 250 mV using the dual-pathway kinetic equation. From acid to base, the activation free energies increase the most for the Volmer reaction, resulting in a switch of the rate-determining step from the Tafel to the Volmer reaction, and a shift to a weaker optimal hydrogen binding energy. The much higher activation barrier for the Volmer reaction in base than in acid is ascribed to one or both of the two catalyst-insensitive factors: slower transport of OH- than H+ in water and a stronger O-H bond in water molecules (HO-H) than in hydrated protons (H2O-H+). C1 [Elbert, Katherine; Hu, Jue; Ma, Zhong; Zhang, Yu; Chen, Guangyu; An, Wei; Liu, Ping; Isaacs, Hugh S.; Adzic, Radoslav R.; Wang, Jia X.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Wang, JX (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. EM jia@bnl.gov RI Wang, Jia/B-6346-2011; OI Zhang, Yu/0000-0002-0814-2965 FU U.S. Department of Energy, Division of Chemical Sciences, Geosciences and Biosciences Division [DE-SC0012704]; U.S. Department of Energy, Office of Science; U.S. Department of Energy, Office of Workforce Development for Teachers and Scientists (WDTS) under the Science Undergraduate Laboratory Internships Program (SULI); Youth Innovation Promotion Association of the Chinese Academy of Sciences [2015265]; Natural Science Foundation of China [21336003]; Major Basic Research Program of China [2014CB239703]; China Scholarship Council FX This research was supported by the U.S. Department of Energy, Division of Chemical Sciences, Geosciences and Biosciences Division, under Contract DE-SC0012704. The DFT calculations were performed using computational resources at the Center for Functional Nanomaterials, a user facility at Brookhaven National Laboratory. K.E. acknowledges the financial support from the U.S. Department of Energy, Office of Science, and Office of Workforce Development for Teachers and Scientists (WDTS) under the Science Undergraduate Laboratory Internships Program (SULI). J.H. acknowledges financial support from the Youth Innovation Promotion Association of the Chinese Academy of Sciences (2015265). Z.M. acknowledges financial support from the Natural Science Foundation of China (21336003) and the Major Basic Research Program of China (2014CB239703). G.C. acknowledges financial support from the China Scholarship Council. NR 42 TC 12 Z9 12 U1 23 U2 124 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2155-5435 J9 ACS CATAL JI ACS Catal. PD NOV PY 2015 VL 5 IS 11 BP 6764 EP 6772 DI 10.1021/acscatal.5b01670 PG 9 WC Chemistry, Physical SC Chemistry GA CV7GV UT WOS:000364441300065 ER PT J AU Gao, F Wang, YL Washton, NM Kollar, M Szanyi, J Peden, CHF AF Gao, Feng Wang, Yilin Washton, Nancy M. Kollar, Marton Szanyi, Janos Peden, Charles H. F. TI Effects of Alkali and Alkaline Earth Cocations on the Activity and Hydrothermal Stability of Cu/SSZ-13 NH3-SCR Catalysts SO ACS Catalysis LA English DT Article DE selective catalytic reduction; chabazite; SSZ-13; diesel engine; emission control ID SSZ-13 ZEOLITE; CU-SSZ-13 CATALYST; REACTION-KINETICS; EXCHANGED SSZ-13; MOLECULAR-SIEVES; REDUCTION; NH3; NOX; AMMONIA; IONS AB Using a three-step aqueous solution ionexchange method, cocation modified Cu/SSZ-13 SCR catalysts were synthesized. These catalysts, in both fresh and hydrothermally aged forms, were characterized with several methods including temperature-programmed reduction by H-2 (H-2-TPR), temperature-programmed desorption of NH3 (NH3-TPD), and Al-27 solid-state nuclear magnetic resonance (NMR) and diffuse reflectance infrared Fourier transform (DRIFT) spectroscopies. Their catalytic performance was probed using steady-state standard NH3-SCR. Characterization results indicate that cocations weaken interactions between Cu ions and the CHA framework making them more readily reducible. By removing a portion of Bronsted acid sites, cocations also help to mitigate hydrolysis of the zeolite catalysts during hydrothermal aging as evidenced from Al-27 NMR Reaction tests show that certain cocations, especially Li+ and Na+, promote low-temperature SCR rates while others show much less pronounced effects. In terms of applications, our results indicate that introducing cocations can be a viable strategy to improve both low- and high-temperature performance of Cu/SSZ-13 SCR catalysts. C1 [Gao, Feng; Wang, Yilin; Washton, Nancy M.; Kollar, Marton; Szanyi, Janos; Peden, Charles H. F.] Pacific NW Natl Lab, Inst Integrated Catalysis, Richland, WA 99352 USA. RP Gao, F (reprint author), Pacific NW Natl Lab, Inst Integrated Catalysis, POB 999, Richland, WA 99352 USA. EM feng.gao@pnnl.gov; chuck.peden@pnnl.gov FU U.S. Department of Energy (DOE), Energy Efficiency and Renewable Energy, Vehicle Technologies Office; DOE's Office of Biological and Environmental Research FX The authors gratefully acknowledge the U.S. Department of Energy (DOE), Energy Efficiency and Renewable Energy, Vehicle Technologies Office for the support of this work. The research described in this paper was performed at the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOE's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated for the U.S. DOE by Battelle. Discussions with Drs. A. Yezerets, K. Kamasamudram, J. H. Li, N. Currier, and J. Y. Luo from Cummins, Inc., and H. Y. Chen and H. Hess from Johnson-Matthey are greatly appreciated. NR 40 TC 10 Z9 10 U1 19 U2 92 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2155-5435 J9 ACS CATAL JI ACS Catal. PD NOV PY 2015 VL 5 IS 11 BP 6780 EP 6791 DI 10.1021/acscatal.5b01621 PG 12 WC Chemistry, Physical SC Chemistry GA CV7GV UT WOS:000364441300067 ER PT J AU Hulley, EB Kumar, N Raugei, S Bullock, RM AF Hulley, Elliott B. Kumar, Neeraj Raugei, Simone Bullock, R. Morris TI Manganese-Based Molecular Electrocatalysts for Oxidation of Hydrogen SO ACS CATALYSIS LA English DT Article DE hydrogen; oxidation; electrocatalysis; proton transfer; quantum chemistry; manganese ID EARTH-ABUNDANT METALS; HETEROLYTIC CLEAVAGE; PENDANT AMINES; H-2 OXIDATION; ACTIVE-SITE; COORDINATION SPHERE; PROTON-TRANSFER; RECENT PROGRESS; IRON COMPLEXES; WATER AB Oxidation of H-2 (1 atm) is catalyzed by the manganese electrocatalysts [(P2N2)(MnH)-H-I(CO)(bppm)](+) and [(PNP)(MnH)-H-I(CO)(bppm)](+) (P2N2 = 1,5-dibenzy1-3,7-dipheny1-1,5-diaza-3,7-diphosphacyclooctane; PNP = (Ph2PCH2)(2)NMe); bppm = (PAr2F)(2)CH2; Ar-F = 3,5-(CF3)(2)C6H3). In fluorobenzene solvent using 2,6-lutidine as the exogeneous base, the turnover frequency for [(P2N2)(MnH)-H-I(CO)(bppm)](+) is 3.5 s(-1), with an estimated overpotential of 700 mV. For [(PNP)(MnH)-H-I(CO)(bppm)](+) in fluorobenzene solvent using N-methylpyrrolidine as the exogeneous base, the turnover frequency is 1.4 s(-1),with an estimated overpotential of 880 mV. Density functional theory calculations suggest that the slow step in the catalytic cycle is proton transfer from the oxidized 17-electron manganese hydride [(P2N2)(MnH)-H-II(CO)(bppm)](+) to the pendant amine. The computed activation barrier for intramolecular proton transfer from the metal to the pendant amine is 20.4 kcal/mol for [(P2N2)(MnH)-H-II(CO)(bppm)](+) and 21.3 kcal/mol for [(PNP)(MnH)-H-II(CO)(bppm)](+). The high barrier appears to result from both the unfavorability of the metal to nitrogen proton transfer (thermodynamically uphill by 9 kcal/mol for [(P2N2)(MnH)-H-II(CO)(bppm)](+) due to a mismatch of 6.6 pK(a) units) and the relatively long manganese-nitrogen separation in the (MnH)-H-II complexes. C1 [Hulley, Elliott B.; Kumar, Neeraj; Raugei, Simone; Bullock, R. Morris] Pacific NW Natl Lab, Div Phys Sci, Ctr Mol Electrocatalysis, Richland, WA 99352 USA. RP Bullock, RM (reprint author), Pacific NW Natl Lab, Div Phys Sci, Ctr Mol Electrocatalysis, POB 999,K2-12, Richland, WA 99352 USA. EM morris.bullock@pnnl.gov RI Bullock, R. Morris/L-6802-2016 OI Bullock, R. Morris/0000-0001-6306-4851 FU Center for Molecular Electrocatalysis, an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences FX This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy. Computing resources were provided by the National Energy Research Computing Center (NERSC) at the Lawrence Berkeley National Laboratory. NR 78 TC 9 Z9 9 U1 4 U2 18 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2155-5435 J9 ACS CATAL JI ACS Catal. PD NOV PY 2015 VL 5 IS 11 BP 6838 EP 6847 DI 10.1021/acscatal.5b01751 PG 10 WC Chemistry, Physical SC Chemistry GA CV7GV UT WOS:000364441300074 ER PT J AU John, SS Atkinson, RW Unocic, KA Unocic, RR Zawodzinski, TA Papandrew, AB AF John, Samuel St. Atkinson, Robert W., III Unocic, Kinga A. Unocic, Raymond R. Zawodzinski, Thomas A., Jr. Papandrew, Alexander B. TI Platinum and Palladium Over layers Dramatically Enhance the Activity of Ruthenium Nanotubes for Alkaline Hydrogen Oxidation SO ACS Catalysis LA English DT Article DE alkaline anode; electrocatalysts; ruthenium-rich; nanoparticle alloy; fuel cell; chemical vapor deposition ID OXYGEN REDUCTION REACTION; X-RAY-ABSORPTION; SURFACE ELECTRONIC-STRUCTURE; CORE-SHELL NANOPARTICLES; ACID FUEL-CELLS; O-2 REDUCTION; ALLOY ELECTROCATALYSTS; CARBON-MONOXIDE; MONOLAYER ELECTROCATALYSTS; CATALYTIC-ACTIVITY AB Templated vapor synthesis and thermal annealing were used to synthesize unsupported metallic Ru nanotubes with Pt or Pd overlayers. By controlling the elemental composition and thickness of these overlayers, we obtain nanostructures with very high alkaline hydrogen oxidation activity. Nanotubes with a nominal atomic composition of Ru0.90Pt0.10 display a surface-specific activity (2.4 mA/cm(2)) that is 35 times greater than that of pure Ru nanotubes at a SO mV overpotential and similar to 2.5 times greater than that of pure Pt nanotubes (0.98 mA/cm(2)). The surface-segregated structure also confers dramatically increased Pt utilization efficiency. We find a platinum-mass-specific activity of 1240 A/g(pt) for the optimized nanotube versus 280 A/g(pt) for carbon-supported Pt nanoparticles and 109 A/g(pt) for monometallic Pt nanotubes. We attribute the enhancement of both area- and platinum-mass-specific activity to the atomic-scale homeomorphism of the nanotube form factor with adlayer-modified polycrystals. In this case, subsurface ligand and bifunctional effects previously observed on segregated, adlayer-modified polycrystals are translated to nanoscale catalysts. C1 [John, Samuel St.; Atkinson, Robert W., III; Zawodzinski, Thomas A., Jr.; Papandrew, Alexander B.] Univ Tennessee, Chem & Biomol Engn, Knoxville, TN 37996 USA. [Unocic, Kinga A.; Zawodzinski, Thomas A., Jr.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN USA. [Unocic, Raymond R.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN USA. RP Papandrew, AB (reprint author), Univ Tennessee, Chem & Biomol Engn, Knoxville, TN 37996 USA. EM apapandrew@utk.edu OI Unocic, Raymond/0000-0002-1777-8228 FU Office of Naval Research [N00014-12-1-0887]; NSF-funded TN-SCORE program under Thrust 2 [EPS-1004083]; Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy; DOE Office of Science [DE-AC02-06CH11357] FX This work was supported by the Office of Naval Research (No. N00014-12-1-0887) and the NSF-funded TN-SCORE program (No. EPS-1004083), under Thrust 2. Microscopy was conducted as part of a user proposal at the Center for Nanophase Materials Sciences (CNMS), which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory (under Contract No. DE-AC02-06CH11357). NR 74 TC 0 Z9 0 U1 22 U2 61 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2155-5435 J9 ACS CATAL JI ACS Catal. PD NOV PY 2015 VL 5 IS 11 BP 7015 EP 7023 DI 10.1021/acscatal.5b01432 PG 9 WC Chemistry, Physical SC Chemistry GA CV7GV UT WOS:000364441300096 ER PT J AU Caes, BR Teixeira, RE Knapp, KG Raines, RT AF Caes, Benjamin R. Teixeira, Rodrigo E. Knapp, Kurtis G. Raines, Ronald T. TI Biomass to Furanics: Renewable Routes to Chemicals and Fuels SO ACS SUSTAINABLE CHEMISTRY & ENGINEERING LA English DT Article DE Cellulose; Chemurgy; 2,5-Dimethylfuran; 5-(Hydroxymethyl)furfural; Ionic liquid; Lignocellulose ID ACID-CATALYZED HYDROLYSIS; IONIC LIQUIDS; LIGNOCELLULOSIC BIOMASS; LEVULINIC ACID; D-FRUCTOSE; SELECTIVE CONVERSION; EFFICIENT PRODUCTION; GAMMA-VALEROLACTONE; LANTHANIDE(III) IONS; HETEROPOLYACID SALT AB The quest to achieve a sustainable supply of both energy and chemicals is one of the great challenges of this century. 5-(Hydroxyrnethyl)furfural (HMF), the long-known dehydration product of hexose carbohydrates, has become an important nexus for access to both liquid fuels and chemicals. One such biofuel is 2,5-dimethylfuran (DMF), which is a product of HMF hydrogenolysis and contains an energy density 40% greater than that of ethanol. In recent years, much work has been done to effect the chemical conversion of fructose, glucose, cellulose, and even lignocellulosic biomass into HMF in high yield. Here, we provide an overview of methods to access HMF from carbohydrates with the highest potential to reach an industrial scale, along with a discussion of unmet technological needs necessary for commercialization. C1 [Caes, Benjamin R.; Raines, Ronald T.] Univ Wisconsin, Dept Chem, Madison, WI 53706 USA. [Caes, Benjamin R.; Teixeira, Rodrigo E.; Raines, Ronald T.] Wisconsin Energy Inst, DOE Great Lakes Bioenergy Res Ctr, Madison, WI 53726 USA. [Teixeira, Rodrigo E.; Knapp, Kurtis G.] Hyrax Energy Inc, Menlo Pk, CA 94025 USA. [Raines, Ronald T.] Univ Wisconsin, Dept Biochem, Madison, WI 53706 USA. RP Raines, RT (reprint author), Univ Wisconsin, Dept Chem, 1101 Univ Ave, Madison, WI 53706 USA. EM rtraines@wisc.edu FU DOE Great Lakes Bioenergy Research Center (DOE Basic Energy Research Office of Science) [DE-FC02-07ER64494]; DOE Office of Energy Efficiency and Renewable Energy [DE-SC0010126]; NSF Industrial Innovation and Partnerships [IIP-1314699] FX Work on biomass conversion at the University of Wisconsin Madison is supported by the DOE Great Lakes Bioenergy Research Center (DOE Basic Energy Research Office of Science DE-FC02-07ER64494). Biorefinery process development at Hyrax Energy is supported by the DOE Office of Energy Efficiency and Renewable Energy (DE-SC0010126) and by the NSF Industrial Innovation and Partnerships (IIP-1314699). NR 156 TC 23 Z9 23 U1 16 U2 83 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2168-0485 J9 ACS SUSTAIN CHEM ENG JI ACS Sustain. Chem. Eng. PD NOV PY 2015 VL 3 IS 11 BP 2591 EP 2605 DI 10.1021/acssuschemeng.5b00473 PG 15 WC Chemistry, Multidisciplinary; GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Engineering, Chemical SC Chemistry; Science & Technology - Other Topics; Engineering GA CV6CO UT WOS:000364358500001 ER PT J AU Saw, WG Tria, G Gruber, A Manimekalai, MSS Zhao, YQ Chandramohan, A Anand, GS Matsui, T Weiss, TM Vasudevan, SG Gruber, G AF Saw, Wuan Geok Tria, Giancarlo Grueber, Ardina Manimekalai, Malathy Sony Subramanian Zhao, Yongqian Chandramohan, Arun Anand, Ganesh Srinivasan Matsui, Tsutomu Weiss, Thomas M. Vasudevan, Subhash G. Grueber, Gerhard TI Structural insight and flexible features of NS5 proteins from all four serotypes of Dengue virus in solution SO ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY LA English DT Article DE flavivirus; dengue; nonstructural proteins; viral polymerase; methyltransferase; small-angle X-ray scattering; protein flexibility ID SMALL-ANGLE SCATTERING; RAY SOLUTION SCATTERING; CRYSTAL-STRUCTURE; BIOLOGICAL MACROMOLECULES; NUCLEAR-LOCALIZATION; POLYMERASE DOMAIN; HIGH-RESOLUTION; RNA-SYNTHESIS; METHYLTRANSFERASE; REPLICATION AB Infection by the four serotypes of Dengue virus (DENV-1 to DENV-4) causes an important arthropod-borne viral disease in humans. The multifunctional DENV nonstructural protein 5 (NS5) is essential for capping and replication of the viral RNA and harbours a methyltransferase (MTase) domain and an RNA-dependent RNA polymerase (RdRp) domain. In this study, insights into the overall structure and flexibility of the entire NS5 of all four Dengue virus serotypes in solution are presented for the first time. The solution models derived revealed an arrangement of the full-length NS5 (NS5FL) proteins with the MTase domain positioned at the top of the RdRP domain. The DENV-1 to DENV-4 NS5 forms are elongated and flexible in solution, with DENV-4 NS5 being more compact relative to NS5 from DENV-1, DENV-2 and DENV-3. Solution studies of the individual MTase and RdRp domains show the compactness of the RdRp domain as well as the contribution of the MTase domain and the ten-residue linker region to the flexibility of the entire NS5. Swapping the ten-residue linker between DENV-4 NS5FL and DENV-3 NS5FL demonstrated its importance in MTase-RdRp communication and in concerted interaction with viral and host proteins, as probed by amide hydrogen/deuterium mass spectrometry. Conformational alterations owing to RNA binding are presented. C1 [Saw, Wuan Geok; Tria, Giancarlo; Grueber, Ardina; Manimekalai, Malathy Sony Subramanian; Grueber, Gerhard] Nanyang Technol Univ, Sch Biol Sci, Singapore 637551, Singapore. [Zhao, Yongqian; Vasudevan, Subhash G.] Duke NUS Grad Med Sch, Program Emerging Infect Dis, Singapore 169857, Singapore. [Zhao, Yongqian; Vasudevan, Subhash G.] Natl Univ Singapore, Grad Sch Integrat Sci & Engn, Singapore 117456, Singapore. [Chandramohan, Arun; Anand, Ganesh Srinivasan] Natl Univ Singapore, Dept Biol Sci, Singapore 117456, Singapore. [Matsui, Tsutomu; Weiss, Thomas M.] Stanford Linear Accelerator Ctr, Natl Laborator, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA USA. RP Gruber, G (reprint author), Nanyang Technol Univ, Sch Biol Sci, 60 Nanyang Dr, Singapore 637551, Singapore. EM ggrueber@ntu.edu.sg FU Nanyang Technological University; Ministry of Education (MOE) Tier 3, Singapore [MOE2012-T3-1-008]; Duke-NUS Signature Research Program; National Medical Research Council, Singapore [NMRC/1315/2011]; DOE Office of Biological and Environmental Research; National Institute of General Medical Sciences [P41GM103393]; National Center for Research Resources [P41RR001209]; Ministry of Health, Singapore; National Institutes of Health FX We thank Mr Abhijeet Ghode (Department of Biological Sciences, NUS, Singapore) for his help in HDX-MS experiments. WGS thanks the authority of Nanyang Technological University for awarding a research scholarship. This work was supported by the Ministry of Education (MOE) Tier 3 (MOE2012-T3-1-008), Singapore to GG and GSA and Duke-NUS Signature Research Program (funded by the Ministry of Health, Singapore), the National Medical Research Council, Singapore (NMRC/1315/2011) to SGV. Portions of this research were carried out at the Stanford Synchrotron Radiation Lightsource, a Directorate of SLAC National Accelerator Laboratory and an Office of Science User Facility operated for the US Department of Energy Office of Science by Stanford University. The SSRL Structural Molecular Biology Program is supported by the DOE Office of Biological and Environmental Research and by the National Institutes of Health, National Institute of General Medical Sciences (including P41GM103393) and the National Center for Research Resources (P41RR001209). The contents of this publication are solely the responsibility of the authors and do not necessarily represent the official views of NIGMS, NCRR or NIH. We thank Drs Feng Gu, Pei Yong Shi and Siew Pheng Lim (Novartis Institute for Tropical Diseases) for providing GpppAGUUGUU and m7 GpppAGUUGUU. NR 57 TC 4 Z9 4 U1 3 U2 11 PU INT UNION CRYSTALLOGRAPHY PI CHESTER PA 2 ABBEY SQ, CHESTER, CH1 2HU, ENGLAND SN 1399-0047 J9 ACTA CRYSTALLOGR D JI Acta Crystallogr. Sect. D-Biol. Crystallogr. PD NOV PY 2015 VL 71 BP 2309 EP 2327 DI 10.1107/S1399004715017721 PN 11 PG 19 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA CV8QT UT WOS:000364553500013 PM 26527147 ER PT J AU Dauter, Z Wlodawer, A AF Dauter, Zbigniew Wlodawer, Alexander TI On the accuracy of unit-cell parameters in protein crystallography SO ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY LA English DT Article DE protein crystallography; unit-cell parameter accuracy; symmetry ID CRYSTAL-STRUCTURE; DIFFRACTION DATA; RADIATION-DAMAGE; STRUCTURAL BASIS; BINDING; INSIGHTS; DIMER; CRYOCRYSTALLOGRAPHY; REFINEMENT; PEPTIDE AB The availability in the Protein Data Bank (PDB) of a number of structures that are presented in space group P1 but in reality possess higher symmetry allowed the accuracy and precision of the unit-cell parameters of the crystals of macromolecules to be evaluated. In addition, diffraction images from crystals of several proteins, previously collected as part of in-house projects, were processed independently with three popular software packages. An analysis of the results, augmented by published serial crystallography data, suggests that the apparent precision of the presentation of unit-cell parameters in the PDB to three decimal points is not justified, since these parameters are subject to errors of not less than 0.2%. It was also noticed that processing data including full crystallographic symmetry does not lead to deterioration of the refinement parameters; thus, it is not beneficial to treat the crystals as belonging to space group P1 when higher symmetry can be seen. C1 [Dauter, Zbigniew] NCI, Synchrotron Radiat Res Sect, MCL, Argonne Natl Lab, Argonne, IL 60439 USA. [Wlodawer, Alexander] NCI, Prot Struct Sect, MCL, Ft Detrick, MD 21702 USA. RP Dauter, Z (reprint author), NCI, Synchrotron Radiat Res Sect, MCL, Argonne Natl Lab, Argonne, IL 60439 USA. EM dauter@anl.gov; wlodawer@nih.gov FU Intramural Research Program of National Cancer Institute, Center for Cancer Research FX This work was supported by the Intramural Research Program of the National Cancer Institute, Center for Cancer Research. NR 42 TC 0 Z9 0 U1 0 U2 6 PU INT UNION CRYSTALLOGRAPHY PI CHESTER PA 2 ABBEY SQ, CHESTER, CH1 2HU, ENGLAND SN 2059-7983 J9 ACTA CRYSTALLOGR D JI Acta Crystallogr. Sect. D-Struct. Biol. PD NOV PY 2015 VL 71 BP 2217 EP 2226 DI 10.1107/S1399004715015503 PN 11 PG 10 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA CV8QT UT WOS:000364553500005 PM 26527139 ER PT J AU Bacik, JP Mekasha, S Forsberg, Z Kovalevsky, A Nix, JC Cuneo, MJ Coates, L Vaaje-Kolstad, G Chen, JCH Eijsink, VGH Unkefer, CJ AF Bacik, John-Paul Mekasha, Sophanit Forsberg, Zarah Kovalevsky, Andrey Nix, Jay C. Cuneo, Matthew J. Coates, Leighton Vaaje-Kolstad, Gustav Chen, Julian C. -H. Eijsink, Vincent G. H. Unkefer, Clifford J. TI Neutron and high-resolution room-temperature X-ray data collection from crystallized lytic polysaccharide monooxygenase SO ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS LA English DT Article DE lytic polysaccharide monooxygenase; chitin; Jonesia denitrificans; biofuel; neutron crystallography ID PROTEIN; CELLULOSE; CRYSTALLOGRAPHY; DEGRADATION; DYNAMICS; CLEAVAGE; INSIGHT AB Bacteria and fungi express lytic polysaccharide monooxgyenase (LPMO) enzymes that act in conjunction with canonical hydrolytic sugar-processing enzymes to rapidly convert polysaccharides such as chitin, cellulose and starch to single monosaccharide products. In order to gain a better understanding of the structure and oxidative mechanism of these enzymes, large crystals (13 mm 3) of a chitin-processing LPMO from the Gram-positive soil bacterium Jonesia denitrificans were grown and screened for their ability to diffract neutrons. In addition to the collection of neutron diffraction data, which were processed to 2.1 angstrom resolution, a high-resolution room-temperature X-ray diffraction data set was collected and processed to 1.1 angstrom resolution in space group P2(1)2(1)2(1). To our knowledge, this work marks the first successful neutron crystallographic experiment on an LPMO. Joint X-ray/neutron refinement of the resulting data will reveal new details of the structure and mechanism of this recently discovered class of enzymes. C1 [Bacik, John-Paul; Chen, Julian C. -H.; Unkefer, Clifford J.] Los Alamos Natl Lab, Prot Crystallog Stn, Biosci Div, Los Alamos, NM 87545 USA. [Mekasha, Sophanit; Forsberg, Zarah; Vaaje-Kolstad, Gustav; Eijsink, Vincent G. H.] Norwegian Univ Life Sci, Dept Chem Biotechnol & Food Sci, N-1430 As, Norway. [Kovalevsky, Andrey; Cuneo, Matthew J.; Coates, Leighton] Oak Ridge Natl Lab, Biol & Soft Matter Div, Oak Ridge, TN 37831 USA. [Nix, Jay C.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Bacik, JP (reprint author), Los Alamos Natl Lab, Prot Crystallog Stn, Biosci Div, TA-03,Bldg 4200,MS T007, Los Alamos, NM 87545 USA. EM jbacik@lanl.gov OI Cuneo, Matthew/0000-0002-1475-6656; Coates, Leighton/0000-0003-2342-049X; Kovalevsky, Andrey/0000-0003-4459-9142 FU Protein Crystallography Station from Department of Energy Office of Biological and Environmental Research; Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy; Oak Ridge National Laboratory's Center for Structural Molecular Biology (CSMB); Research Council of Norway [214138, 221576]; VISTA program of Norwegian Academy of Science and Letters [6510] FX JPB, JCHC and CJU were partially funded through the Protein Crystallography Station from the Department of Energy Office of Biological and Environmental Research. The research at the Spallation Neutron Source at Oak Ridge National Laboratory was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy. The Office of Biological and Environmental Research supported the research at Oak Ridge National Laboratory's Center for Structural Molecular Biology (CSMB) using facilities supported by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy. We thank Claudia Schmidt-Dannert and colleagues at the University of Minnesota for help in enzyme cloning. This work was supported by grants 214138 and 221576 from the Research Council of Norway and by grant 6510 from the VISTA program of the Norwegian Academy of Science and Letters. NR 26 TC 1 Z9 1 U1 6 U2 25 PU INT UNION CRYSTALLOGRAPHY PI CHESTER PA 2 ABBEY SQ, CHESTER, CH1 2HU, ENGLAND SN 2053-230X J9 ACTA CRYSTALLOGR F JI Acta Crystallogr. F-Struct. Biol. Commun. PD NOV PY 2015 VL 71 BP 1448 EP 1452 DI 10.1107/S2053230X15019743 PN 11 PG 5 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA CV8SJ UT WOS:000364557700014 PM 26527275 ER PT J AU Crawford, MH Allerman, AA Armstrong, AM Smith, ML Cross, KC AF Crawford, Mary H. Allerman, Andrew A. Armstrong, Andrew M. Smith, Michael L. Cross, Karen C. TI Laser diodes with 353nm wavelength enabled by reduced- dislocation-density AlGaN templates SO APPLIED PHYSICS EXPRESS LA English DT Article ID WET-ETCHED FACETS; GAN; OVERGROWTH; FABRICATION AB We fabricated optically pumped and electrically injected ultraviolet (UV) lasers on reduced-threading-dislocation-density (reduced-TDD) AlGaN templates. The overgrowth of sub-micron-wide mesas in the Al0.32Ga0.68N templates enabled a tenfold reduction in TDD, to (2-3) x 10(8) cm(-2). Optical pumping of AlGaN hetero-structures grown on the reduced-TDD templates yielded a low lasing threshold of 34 kW/cm(2) at 346 nm. Room-temperature pulsed operation of laser diodes at 353 nm was demonstrated, with a threshold of 22.5 kA/cm(2). Reduced-TDD templates have been developed across the entire range of AlGaN compositions, presenting a promising approach for extending laser diodes into the deep UV. (C) 2015 The Japan Society of Applied Physics C1 [Crawford, Mary H.; Allerman, Andrew A.; Armstrong, Andrew M.; Smith, Michael L.; Cross, Karen C.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Crawford, MH (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM mhcrawf@sandia.gov FU Sandia's Laboratory Directed Research and Development Program; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX We gratefully acknowledge the technical support provided by Len Alessi and Karl Westlake. This work was supported by Sandia's Laboratory Directed Research and Development Program. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 21 TC 2 Z9 2 U1 3 U2 26 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1882-0778 EI 1882-0786 J9 APPL PHYS EXPRESS JI Appl. Phys. Express PD NOV PY 2015 VL 8 IS 11 AR 112702 DI 10.7567/APEX.8.112702 PG 4 WC Physics, Applied SC Physics GA CV8WU UT WOS:000364569700016 ER PT J AU Cardall, CY Budiardja, RD AF Cardall, Christian Y. Budiardja, Reuben D. TI STOCHASTICITY AND EFFICIENCY IN SIMPLIFIED MODELS OF CORE-COLLAPSE SUPERNOVA EXPLOSIONS SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE hydrodynamics; instabilities; stars: evolution; supernovae: general ID ACCRETION SHOCK INSTABILITY; NEUTRINO-HYDRODYNAMICS SIMULATIONS; 3-DIMENSIONAL SIMULATIONS; TURBULENT CONVECTION; DRIVEN CONVECTION; 3 DIMENSIONS; MECHANISM; PROGENITOR; SASI; REVIVAL AB We present an initial report on 160 simulations of a highly simplified model of the post-bounce core-collapse supernova environment in three spatial dimensions (3D). We set different values of a parameter characterizing the impact of nuclear dissociation at the stalled shock in order to regulate the post-shock fluid velocity, thereby determining the relative importance of convection and the stationary accretion shock instability (SASI). While our convection-dominated runs comport with the paradigmatic notion of a "critical neutrino luminosity" for explosion at a given mass accretion rate (albeit with a nontrivial spread in explosion times just above threshold), the outcomes of our SASI-dominated runs are much more stochastic: a sharp threshold critical luminosity is "smeared out" into a rising probability of explosion over a similar to 20% range of luminosity. We also find that the SASI-dominated models are able to explode with 3-4 times less efficient neutrino heating, indicating that progenitor properties, and fluid and neutrino microphysics, conducive to the SASI would make the neutrino-driven explosion mechanism more robust. C1 [Cardall, Christian Y.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Cardall, Christian Y.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Budiardja, Reuben D.] Univ Tennessee, Natl Inst Computat Sci, Knoxville, TN 37996 USA. RP Cardall, CY (reprint author), Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. EM cardallcy@ornl.gov; reubendb@utk.edu OI Cardall, Christian/0000-0002-0086-105X FU U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research; Office of Nuclear Physics FX We thank Rodrigo Fernandez for answering questions about his models. We thank Eirik Endeve and Anthony Mezzacappa for discussions and ongoing collaboration. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research, and Office of Nuclear Physics. This research used resources of the Joint Institute for Computational Sciences at the University of Tennessee. NR 42 TC 6 Z9 6 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD NOV 1 PY 2015 VL 813 IS 1 AR L6 DI 10.1088/2041-8205/813/1/L6 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CV7WG UT WOS:000364486200006 ER PT J AU Bryan, AM Cheng, SJ Ashworth, K Guenther, AB Hardiman, BS Bohrer, G Steiner, AL AF Bryan, Alexander M. Cheng, Susan J. Ashworth, Kirsti Guenther, Alex B. Hardiman, Brady S. Bohrer, Gil Steiner, Allison L. TI Forest-atmosphere BVOC exchange in diverse and structurally complex canopies: 1-D modeling of a mid-successional forest in northern Michigan SO ATMOSPHERIC ENVIRONMENT LA English DT Article DE Biogenic volatile organic compounds; Canopy modeling; Mixed forests; Forest succession; Tropospheric chemistry ID VOLATILE ORGANIC-COMPOUNDS; HARDWOOD FOREST; UNITED-STATES; ISOPRENE PHOTOOXIDATION; BIOGENIC EMISSIONS; DECIDUOUS FOREST; CHEMISTRY; OXIDATION; AEROSOLS; SENSITIVITY AB Foliar emissions of biogenic volatile organic compounds (BVOC) important precursors of tropospheric ozone and secondary organic aerosols vary widely by vegetation type. Modeling studies to date typically represent the canopy as a single dominant tree type or a blend of tree types, yet many forests are diverse with trees of varying height. To assess the sensitivity of biogenic emissions to tree height variation, we compare two 1-D canopy model simulations in which BVOC emission potentials are homogeneous or heterogeneous with canopy depth. The heterogeneous canopy emulates the mid-successional forest at the University of Michigan Biological Station (UMBS). In this case, high-isoprene-emitting foliage (e.g., aspen and oak) is constrained to the upper canopy, where higher sunlight availability increases the light-dependent isoprene emission, leading to 34% more isoprene and its oxidation products as compared to the homogeneous simulation. Isoprene declines from aspen mortality are 10% larger when heterogeneity is considered. Overall, our results highlight the importance of adequately representing complexities of forest canopy structure when simulating light-dependent BVOC emissions and chemistry. Published by Elsevier Ltd. C1 [Bryan, Alexander M.; Ashworth, Kirsti; Steiner, Allison L.] Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA. [Cheng, Susan J.] Univ Michigan, Dept Ecol & Evolutionary Biol, Ann Arbor, MI 48109 USA. [Guenther, Alex B.] Pacific NW Natl Lab, Atmospher Sci & Global Change Div, Richland, WA 99352 USA. [Hardiman, Brady S.] Boston Univ, Dept Earth & Environm, Boston, MA 02215 USA. [Bohrer, Gil] Ohio State Univ, Dept Civil Environm & Geodet Engn, Columbus, OH 43210 USA. RP Bryan, AM (reprint author), Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA. EM ambrya@umich.edu RI Hardiman, Brady/H-7039-2016; Ashworth, Kirsti/N-4550-2013; Steiner, Allison/F-4942-2011; OI Hardiman, Brady/0000-0001-6833-9404; Ashworth, Kirsti/0000-0001-5627-3014; Bohrer, Gil/0000-0002-9209-9540 FU National Science Foundation [AGS-0904128, AGS-1242203]; UM Elizabeth C. Crosby Research Foundation; Michigan Space Grant Consortium; UMBS Marian P. and David M. Gates Graduate Student Research Fund; U.S. DOE Office of Science, Office of Biological and Environmental Research, Terrestrial Ecosystem Sciences program [DE-SC0006708]; AmeriFlux Management project through Lawrence Berkeley National Laboratory [7096915] FX Portions of this work were supported by the National Science Foundation AGS-0904128 and AGS-1242203. Additional support for A. M. Bryan was provided through the UM Elizabeth C. Crosby Research Foundation, the Michigan Space Grant Consortium, and the UMBS Marian P. and David M. Gates Graduate Student Research Fund. The flux towers, meteorological, and canopy structure observations and FASET experiment at UMBS were supported by the U.S. DOE Office of Science, Office of Biological and Environmental Research, Terrestrial Ecosystem Sciences program under Awards No. DE-SC0006708 and the AmeriFlux Management project under Flux Core Site agreement No. 7096915 through Lawrence Berkeley National Laboratory. We thank Chris Vogel (UMBS) for assistance with the canopy height measurements, Barry Lefer (University of Houston) for providing the measurements of photosynthetically active radiation (PAR), and Shelley Pressley (Washington State University) for providing the BVOC and sonic anemometer measurements. NR 44 TC 2 Z9 2 U1 3 U2 20 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1352-2310 EI 1873-2844 J9 ATMOS ENVIRON JI Atmos. Environ. PD NOV PY 2015 VL 120 BP 217 EP 226 DI 10.1016/j.atmosenv.2015.08.094 PG 10 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA CV4SB UT WOS:000364255700023 ER PT J AU Vasudevan, AK Moody, NR Holroyd, NJH Latanision, RM AF Vasudevan, A. K. Moody, N. R. Holroyd, N. J. H. Latanision, R. M. TI International Symposium on Environmental Damage Under Static and Cyclic Loads in Structural Metallic Materials at Ambient Temperatures III (Bergamo, Italy, June 15-20, 2014) SO CORROSION REVIEWS LA English DT Editorial Material C1 [Vasudevan, A. K.] TDA Inc, Falls Church, VA USA. [Moody, N. R.] Sandia Natl Labs, Livermore, CA USA. [Holroyd, N. J. H.] Luxfer Gas Cylinders, Riverside, CA USA. [Latanision, R. M.] Exponent, Boston, MA USA. [Latanision, R. M.] MIT, Mat Sci & Engn, Cambridge, MA 02139 USA. RP Vasudevan, AK (reprint author), TDA Inc, Falls Church, VA USA. EM akruva@gmail.com; rlatanision@exponent.com NR 0 TC 0 Z9 0 U1 1 U2 3 PU WALTER DE GRUYTER GMBH PI BERLIN PA GENTHINER STRASSE 13, D-10785 BERLIN, GERMANY SN 0334-6005 EI 2191-0316 J9 CORROS REV JI Corros. Rev. PD NOV PY 2015 VL 33 IS 6 SI SI BP 283 EP 284 DI 10.1515/corrrev-2015-0072 PG 2 WC Electrochemistry; Metallurgy & Metallurgical Engineering; Materials Science, Coatings & Films SC Electrochemistry; Metallurgy & Metallurgical Engineering; Materials Science GA CV8ZZ UT WOS:000364578400001 ER PT J AU Sochalski-Kolbus, LM Wang, HW Rondinone, AJ Anovitz, LM Wesolowski, DJ Whitfield, PS AF Sochalski-Kolbus, Lindsay M. Wang, Hsui-Wen Rondinone, Adam J. Anovitz, Lawrence M. Wesolowski, David J. Whitfield, Pamela S. TI Solvothermal Synthesis and Surface Chemistry To Control the Size and Morphology of Nanoquartz SO CRYSTAL GROWTH & DESIGN LA English DT Article ID HYDROTHERMAL SYNTHESIS; QUARTZ; GROWTH; MECHANISM; CRYSTALS; NANORODS; BASIN; TIO2 AB In this work, we report a solvothermal synthesis method that allows the crystallization of quartz to occur at a relatively low temperature of 300 degrees C in the form of isolated nanosized euhedral crystals. Transmission electron microscopy (TEM) and small area electron diffraction (SAED) were used to confirm the phases present and their particle sizes, morphologies, and crystallinity of the products. The results show that it is possible to control the size and morphology of the nanoquartz from rough nanospheres to nanorods using fluoride, which templates the nanocrystals and moderates growth. C1 [Sochalski-Kolbus, Lindsay M.; Whitfield, Pamela S.] Oak Ridge Natl Lab, Chem & Engn Mat Div, Oak Ridge, TN 37831 USA. [Wang, Hsui-Wen] Oak Ridge Natl Lab, Joint Inst Neutron Sci, Oak Ridge, TN 37831 USA. [Rondinone, Adam J.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Anovitz, Lawrence M.; Wesolowski, David J.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Rondinone, AJ (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. EM rondinoneaj@ornl.gov RI Rondinone, Adam/F-6489-2013; Whitfield, Pamela/P-1885-2015; Anovitz, Lawrence/P-3144-2016 OI Rondinone, Adam/0000-0003-0020-4612; Whitfield, Pamela/0000-0002-6569-1143; Anovitz, Lawrence/0000-0002-2609-8750 FU Chemical and Engineering Materials Division, Office of Basic Energy Sciences; U.S. Department of Energy; Division of Chemical Sciences, Geosciences and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy FX A portion of this research was conducted at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility. L.M.S.-K. was supported by the Chemical and Engineering Materials Division, Office of Basic Energy Sciences and the U.S. Department of Energy. L.M.A. and D.J.W. were supported by the Division of Chemical Sciences, Geosciences and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy. NR 27 TC 0 Z9 0 U1 3 U2 33 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1528-7483 EI 1528-7505 J9 CRYST GROWTH DES JI Cryst. Growth Des. PD NOV PY 2015 VL 15 IS 11 BP 5327 EP 5331 DI 10.1021/acs.cgd.5b00882 PG 5 WC Chemistry, Multidisciplinary; Crystallography; Materials Science, Multidisciplinary SC Chemistry; Crystallography; Materials Science GA CV6BP UT WOS:000364356000020 ER PT J AU Stappert, K Lipinski, G Kopiec, G Spielberg, ET Mudring, AV AF Stappert, Kathrin Lipinski, Gregor Kopiec, Gabriel Spielberg, Eike T. Mudring, Anja-Verena TI Mesophase Stabilization in Ionic Liquid Crystals through Pairing Equally Shaped Mesogenic Cations and Anions SO CRYSTAL GROWTH & DESIGN LA English DT Article ID THERMAL-BEHAVIOR; SALTS AB The synthesis and properties of a set of novel ionic liquid crystals with congruently shaped cations and anions are reported to check whether pairing mesogenic cations with mesogenic anions leads to a stabilization of a liquid crystalline phase. To that avail 1-alkyl-3-methyl-triazolium cations with an alkyl chain length of 10, 12, and 14 carbon atoms have been combined with p-alkyloxy-benzenesulfonate anions with different alkyl chain lengths (n = 10, 12, and 14). The corresponding triazolium iodides have been synthesized as reference compounds where the cation and anion have strong size and shape mismatch. The mesomorphic behavior of all compounds is studied by differential scanning calorimetry and polarizing optical microscopy. All compounds except 1-methyl-3-decyltriazolium iodide, which qualifies as an ionic liquid, are thermotropic ionic liquid crystals. All other compounds adopt smectic A phases. A comparison of the thermal phase behavior of the 1-methyl-3-decyltriazolium bromides to the corresponding p-alkoxy-benzensulfonates reveals that definitely the mesophase is stabilized by pairing the rod-shaped 1-alkyl-3-methyltriazolium cation with a rod-like anion of similar size. C1 [Stappert, Kathrin; Lipinski, Gregor; Kopiec, Gabriel; Spielberg, Eike T.; Mudring, Anja-Verena] Ruhr Univ Bochum, Fak Chem & Biochem, Anorgan Chem Mat Engn & Characterizat 3, D-44780 Bochum, Germany. [Kopiec, Gabriel; Mudring, Anja-Verena] Ames Lab, Crit Mat Inst, Ames, IA 50011 USA. [Kopiec, Gabriel; Mudring, Anja-Verena] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. [Spielberg, Eike T.] Univ Duisburg Essen, Univ Bibliothek, D-45141 Essen, Germany. RP Mudring, AV (reprint author), Iowa State Univ, Crit Mat Inst, Ames Lab, Ames, IA 50011 USA. EM mudring@iastate.edu OI Spielberg, Eike Torben/0000-0002-3333-5814 FU German Science Foundation DFG; Iowa State University; Critical Materials Institute, an Energy Innovation Hub - U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office FX This work was supported in part by the German Science Foundation DFG, Iowa State University, and the Critical Materials Institute, an Energy Innovation Hub funded by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office. NR 26 TC 3 Z9 3 U1 6 U2 18 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1528-7483 EI 1528-7505 J9 CRYST GROWTH DES JI Cryst. Growth Des. PD NOV PY 2015 VL 15 IS 11 BP 5388 EP 5396 DI 10.1021/acs.cgd.5b01023 PG 9 WC Chemistry, Multidisciplinary; Crystallography; Materials Science, Multidisciplinary SC Chemistry; Crystallography; Materials Science GA CV6BP UT WOS:000364356000029 ER PT J AU Harding, KJ Twine, TE Lu, YQ AF Harding, Keith J. Twine, Tracy E. Lu, Yaqiong TI Effects of Dynamic Crop Growth on the Simulated Precipitation Response to Irrigation SO EARTH INTERACTIONS LA English DT Article DE Vegetation-atmosphere interactions; Precipitation; Physical meteorology and climatology; Water budget; Models and modeling; Coupled models; Applications; Agriculture; Land use ID LOW-LEVEL JET; SOUTHERN GREAT-PLAINS; CENTRAL UNITED-STATES; CLIMATE-CHANGE; OBSERVATIONAL EVIDENCE; ATMOSPHERIC RESPONSE; SURFACE FLUXES; NORTH-AMERICA; SOIL-MOISTURE; WATER AB The rapid expansion of irrigation since the 1950s has significantly depleted the Ogallala Aquifer. This study examines the warmseason climate impacts of irrigation over the Ogallala using high-resolution (6.33 km) simulations of a version of the Weather Research and Forecasting (WRF) Model that has been coupled to the Community Land Model with dynamic crop growth (WRF-CLM4crop). To examine how dynamic crops influence the simulated impact of irrigation, the authors compare simulations with dynamic crops to simulations with a fixed annual cycle of crop leaf area index (static crops). For each crop scheme, simulations were completed with and without irrigation for 9 years that represent the range of observed precipitation. Reduced temperature and precipitation biases occur with dynamic versus static crops. Fundamental differences in the precipitation response to irrigation occur with dynamic crops, as enhanced surface roughness weakens low- level winds, enabling more water from irrigation to remain over the region. Greater simulated rainfall increases (12.42mm) occur with dynamic crops compared to static crops (9.08 mm), with the greatest differences during drought years (+20.1 vs +5.9mm). Water use for irrigation significantly impacts precipitation with dynamic crops (R-2 = 0.29), but no relationship exists with static crops. Dynamic crop growth has the largest effect on the simulated impact of irrigation on precipitation during drought years, with little impact during nondrought years, highlighting the need to simulate the dynamic response of crops to environmental variability within Earth system models to improve prediction of the agroecosystem response to variations in climate. C1 [Harding, Keith J.; Twine, Tracy E.] Univ Minnesota, Dept Soil Water & Climate, St Paul, MN 55108 USA. [Lu, Yaqiong] Univ Calif, Sierra Nevada Res Inst, Merced, CA USA. [Lu, Yaqiong] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Twine, TE (reprint author), Dept Soil Water & Climate, 439 Borlaug Hall,1991 Upper Buford Circle, St Paul, MN 55108 USA. EM twine@umn.edu FU United States Department of Energy [DE-EE0004397] FX Support for this project was provided by the United States Department of Energy under Award DE-EE0004397. This work was carried out in part using computing resources at the University of Minnesota Supercomputing Institute. The WRF Model used herein can be acquired from the WRF home page online (at http://www2.mmm.ucar.edu/wrf/users/download/get_source.html). All other data and programs used to replicate the results in this study are available upon request from the corresponding author at twine@umn.edu. We thank Dr. Mutlu Ozdogan for providing the fractional irrigation dataset, Dr. Shashi Verma for use of the Ameriflux data at the Mead FLUXNET site, and two anonymous reviewers for their thorough and constructive feedback. NR 74 TC 2 Z9 2 U1 5 U2 12 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 1087-3562 J9 EARTH INTERACT JI Earth Interact. PD NOV PY 2015 VL 19 AR 14 DI 10.1175/EI-D-15-0030.s1 PG 31 WC Geosciences, Multidisciplinary SC Geology GA CV7DU UT WOS:000364433400001 ER PT J AU Diefenbach, D Hansen, L Bohling, J Miller-Butterworth, C AF Diefenbach, Duane Hansen, Leslie Bohling, Justin Miller-Butterworth, Cassandra TI Population and genetic outcomes 20years after reintroducing bobcats (Lynx rufus) to Cumberland Island, Georgia USA SO ECOLOGY AND EVOLUTION LA English DT Article DE Fecal DNA; felid; microsatellites; population genetics; population viability; reintroduction; scat; spatially explicit capture-recapture population estimation ID ENDANGERED IBERIAN LYNX; EFFECTIVE NUMBER; INBREEDING DEPRESSION; BIASED DISPERSAL; RELATEDNESS; LANDSCAPE; PREDATOR; TRANSLOCATION; CONSERVATION; WILDLIFE AB In 1988-1989, 32 bobcats Lynx rufus were reintroduced to Cumberland Island (CUIS), Georgia, USA, from which they had previously been extirpated. They were monitored intensively for 3years immediately post-reintroduction, but no estimation of the size or genetic diversity of the population had been conducted in over 20years since reintroduction. We returned to CUIS in 2012 to estimate abundance and effective population size of the present-day population, as well as to quantify genetic diversity and inbreeding. We amplified 12 nuclear microsatellite loci from DNA isolated from scats to establish genetic profiles to identify individuals. We used spatially explicit capture-recapture population estimation to estimate abundance. From nine unique genetic profiles, we estimate a population size of 14.4 (SE=3.052) bobcats, with an effective population size (N-e) of 5-8 breeding individuals. This is consistent with predictions of a population viability analysis conducted at the time of reintroduction, which estimated the population would average 12-13 bobcats after 10years. We identified several pairs of related bobcats (parent-offspring and full siblings), but similar to 75% of the pairwise comparisons were typical of unrelated individuals, and only one individual appeared inbred. Despite the small population size and other indications that it has likely experienced a genetic bottleneck, levels of genetic diversity in the CUIS bobcat population remain high compared to other mammalian carnivores. The reintroduction of bobcats to CUIS provides an opportunity to study changes in genetic diversity in an insular population without risk to this common species. Opportunities for natural immigration to the island are limited; therefore, continued monitoring and supplemental bobcat reintroductions could be used to evaluate the effect of different management strategies to maintain genetic diversity and population viability. The successful reintroduction and maintenance of a bobcat population on CUIS illustrates the suitability of translocation as a management tool for re-establishing felid populations. C1 [Diefenbach, Duane] Penn State Univ, US Geol Survey, Penn Cooperat Fish & Wildlife Res Unit, University Pk, PA 16802 USA. [Hansen, Leslie] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Bohling, Justin] Penn State Univ, Dept Ecosyst Sci & Management, University Pk, PA 16802 USA. [Miller-Butterworth, Cassandra] Penn State Beaver, Monaca, PA 15061 USA. RP Miller-Butterworth, C (reprint author), Penn State Beaver, 100 Univ Dr, Monaca, PA 15061 USA. EM cmm48@psu.edu FU Pennsylvania Game Commission [1434-03HQRU1548]; National Park Service; Penn State Beaver FX Support provided by Pennsylvania Game Commission through Cooperative Agreement Number 1434-03HQRU1548, by the National Park Service, and by Penn State Beaver. NR 74 TC 0 Z9 0 U1 18 U2 47 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 2045-7758 J9 ECOL EVOL JI Ecol. Evol. PD NOV PY 2015 VL 5 IS 21 BP 4885 EP 4895 DI 10.1002/ece3.1750 PG 11 WC Ecology; Evolutionary Biology SC Environmental Sciences & Ecology; Evolutionary Biology GA CV5WF UT WOS:000364341400014 PM 26640668 ER PT J AU Iyer, GC Clarke, LE Edmonds, JA Hultman, NE McJeon, HC AF Iyer, Gokul C. Clarke, Leon E. Edmonds, James A. Hultman, Nathan E. McJeon, Haewon C. TI Long-term payoffs of near-term low-carbon deployment policies SO ENERGY POLICY LA English DT Article DE Technological change; Integrated assessment model; Climate change; Green; Policy; Spillover ID TECHNOLOGICAL-CHANGE; INTEGRATED ASSESSMENT; ENERGY TECHNOLOGIES; NUCLEAR-POWER; EXPERIENCE CURVES; CLIMATE-CHANGE; LOCK-IN; MITIGATION; CO2; TRANSPORTATION AB Recent climate change negotiations indicate that near-term policies to address climate change are likely to vary across countries with countries employing a range of different policy options. One option frequently mooted at the national level is to promote, via policy, the deployment of low-carbon technologies. Promoting the deployment of low-carbon technologies can involve a near-term cost, if such technologies are more expensive overall, or require more upfront capital, than emitting alternatives. However, it lowers future costs of emissions abatement by reducing emissions in the near-term and potentially accelerating rates of improvement in targeted low-carbon technologies. We derive a globally cost-effective, near-term international technology investment strategy to achieve a long-term climate goal and show that it employs a diversified international technology investment portfolio across countries. We also explore the degree to which independent national technology deployment policies align with collaboratively determined regimes. We show that conditions exist under which there are substantial gains to international cooperation in the deployment of diverse low-carbon technologies and also circumstances in which domestic outcomes align with the global outcome. (c) 2015 Elsevier Ltd. All rights reserved. C1 [Iyer, Gokul C.; Hultman, Nathan E.] Univ Maryland, Sch Publ Policy, College Pk, MD 20742 USA. [Iyer, Gokul C.; Clarke, Leon E.; Edmonds, James A.; McJeon, Haewon C.] Pacific NW Natl Lab, Joint Global Change Res Inst, Richland, WA 99352 USA. [Iyer, Gokul C.; Clarke, Leon E.; Edmonds, James A.; McJeon, Haewon C.] Univ Maryland, College Pk, MD USA. RP Iyer, GC (reprint author), Univ Maryland, Sch Publ Policy, College Pk, MD 20742 USA. EM gokul.iyer@pnnl.gov; leon.clarke@pnnl.gov; jae@pnnl.gov; hultman@umd.edu; haewon.mcjeon@pnnl.gov FU Global Technology Strategy Program; National Science Foundation [1056998]; DOE [DE-AC05-76RL01830] FX Research support for G.C.I., L.E.C., J.A.E. and H.C.M. was provided by the Global Technology Strategy Program. N.E.H. was supported by the National Science Foundation under Grant number 1056998. PNNL is operated for DOE by Battelle Memorial Institute under contract DE-AC05-76RL01830. The views and opinions expressed in this paper are those of the authors alone. NR 74 TC 1 Z9 1 U1 5 U2 14 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0301-4215 EI 1873-6777 J9 ENERG POLICY JI Energy Policy PD NOV PY 2015 VL 86 BP 493 EP 505 DI 10.1016/j.enpol.2015.08.004 PG 13 WC Energy & Fuels; Environmental Sciences; Environmental Studies SC Energy & Fuels; Environmental Sciences & Ecology GA CV4OJ UT WOS:000364246100045 ER PT J AU Ding, M Watkins, E Hartl, M Daemen, L AF Ding, Mei Watkins, Erik Hartl, Monika Daemen, Luc TI Water Signatures and Their Thermal Stability in Bedded Salt for Nuclear Waste Storage: An Incoherent Inelastic Neutron Spectroscopy Study SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS LA English DT Article ID ROCK-SALT; SEAWATER CHEMISTRY; FLUID INCLUSIONS; SCATTERING; MIGRATION; REPOSITORY; ZEOLITES; HYDROGEN; HALITE; CREEP AB The forms of water and their thermal stability in bedded salt are crucial in determining the material's suitability for heat-generating nuclear waste storage. Here we show first-of-its-kind incoherent inelastic neutron scattering (IINS) results of bedded salts to distinguish three water environments: intergranular water molecules confined to grain boundaries, water trapped as brine in fluid inclusions, and structural water in intracrystalline hydrous minerals. Sixteen spectral lines can be distinguished unambiguously in the 0-1100 cm(-1) multiphonon and librational domain, yielding an unprecedented high resolution for a natural material. The spectral response to temperature illustrates the bimodality of the technique enabling the intergranular water component to be distinguished from that of brine, shedding light on a nearly 30-year-old problem in characterizing different forms of water in rock salt. This pioneering study shows that IINS provides insight into the cause and effect of moisture migration and its coupling to thermomechanical properties in salt formations. Our results are pertinent to subsurface energy exploration and storage, including nuclear waste storage, in salts. C1 [Ding, Mei] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87544 USA. [Watkins, Erik] Los Alamos Natl Lab, Mat Synth & Integrated Devices, Los Alamos, NM 87544 USA. [Hartl, Monika] European Spallat Source, S-22100 Lund, Sweden. [Daemen, Luc] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Ding, M (reprint author), Los Alamos Natl Lab, Div Earth & Environm Sci, POB 1663, Los Alamos, NM 87544 USA. EM mding@lanl.gov RI Hartl, Monika/N-4586-2016 OI Hartl, Monika/0000-0002-6601-7273 FU Department of Energy, Office of Nuclear Energy, Used Fuel Disposition Campaign (UFD) program; Lujan Neutron Scattering Center at Los Alamos Neutron Science Center; Department of Energy's Office of Basic Energy Science; Director, Civilian Nuclear Program of Los Alamos National Laboratory FX This work was funded by the Department of Energy, Office of Nuclear Energy, Used Fuel Disposition Campaign (UFD) program. It was supported by the Lujan Neutron Scattering Center at Los Alamos Neutron Science Center, which is funded by the Department of Energy's Office of Basic Energy Science. Dr. B. Robinson, Director, Civilian Nuclear Program of Los Alamos National Laboratory, supported this initiative. Dr. J. A. TenCate from Los Alamos National Laboratory shared his expertise in physics studies of the flow of earth material, particularly rock salt. Emily Kluk of Los Alamos National Laboratory performed salt sample separation. Prof. Dr. B. H. W. S. de Jong from Utrecht provided numerous useful comments and analyses pertaining to the concepts presented in this paper. Thoughtful comments by four anonymous reviewers improved this manuscript significantly. NR 50 TC 0 Z9 0 U1 0 U2 13 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2328-8930 J9 ENVIRON SCI TECH LET JI Environ. Sci. Technol. Lett. PD NOV PY 2015 VL 2 IS 11 BP 308 EP 313 DI 10.1021/acs.estlett.5b00186 PG 6 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA CV9QX UT WOS:000364622800003 ER PT J AU Dutta, A Lense, S Roberts, JAS Helm, ML Shaw, WJ AF Dutta, Arnab Lense, Sheri Roberts, John A. S. Helm, Monte L. Shaw, Wendy J. TI The Role of Solvent and the Outer Coordination Sphere on H-2 Oxidation Using [Ni((P2N2Pyz)-N-Cy)(2)](2+) SO EUROPEAN JOURNAL OF INORGANIC CHEMISTRY LA English DT Article DE Hydrogen oxidation; Bidirectional catalysis; Bioinspired catalyst design; Solvent effects ID PROTON TRANSPORT PATHWAYS; MOLECULAR ELECTROCATALYSTS; HYDROGEN-PRODUCTION; CATALYST; OXIDATION/PRODUCTION; TEMPERATURES; ENVIRONMENT; LIGANDS AB Hydrogenase enzymes are reversible catalysts for H-2 production/oxidation, operating with fast rates and minimal overpotentials in water. Many synthetic catalyst mimics of hydrogenase operate in organic solvents. However, recent work has demonstrated the importance of water in the performance of some model complexes. In this work, the H-2 oxidation activity of [Ni((P2N2(3-pyridazyl)methyl)-N-Cy)(2)](2+) (CyPyz) was compared as a function of acetonitrile, methanol, and water. The reactivity was compared under neutral and acidic conditions in all three solvents and improvement in catalytic activity, from 2 to 40 s(-1), was observed with increasing hydrogen bonding ability of the solvent. In addition, the overpotential for catalysis drops significantly in the presence of acid in all solvents, from as high as 600 mV to as low as 70 mV, primarily due to the shift in the equilibrium potential under these conditions. Finally, H-2 production was also observed in the same solution, demonstrating bidirectional (irreversible) homogeneous H-2 production/oxidation. A structurally and electronically similar complex with a benzyl instead of a pyridazyl group was not stable under these conditions, limiting the evaluation of the contributions of the outer coordination sphere. Collectively, we show that by tuning conditions we can promote fast, efficient H-2 oxidation and bidirectional catalysis. C1 [Dutta, Arnab; Lense, Sheri; Roberts, John A. S.; Helm, Monte L.; Shaw, Wendy J.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Helm, ML (reprint author), Pacific NW Natl Lab, 902 Battelle Blvd,POB 999,MSIN K2-57, Richland, WA 99352 USA. EM monte.helm@pnnl.gov; wendy.shaw@pnnl.gov FU Office of Science Early Career Research Program through the US Department of Energy (DOE), Basic Energy Sciences (BES); Center for Molecular Electrocatalysis, an Energy Frontier Research Center - US DOE, Office of Science BES; US DOE's Office of Biological and Environmental Research program located at Pacific Northwest National Laboratory (PNNL) FX We would like to thank Dr. Daniel L. Dubois for useful discussions and Dr. Jon Darmon for preparing the TOC figure. This work was funded by the Office of Science Early Career Research Program through the US Department of Energy (DOE), Basic Energy Sciences (BES) (A. D., S. L., W. J. S.), and the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the US DOE, Office of Science BES (J. A. S. R., M. L. H.). Part of the research was conducted at the W. R. Wiley Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the US DOE's Office of Biological and Environmental Research program located at Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle for the US DOE. NR 39 TC 2 Z9 2 U1 4 U2 16 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 1434-1948 EI 1099-0682 J9 EUR J INORG CHEM JI Eur. J. Inorg. Chem. PD NOV PY 2015 IS 31 BP 5218 EP 5225 DI 10.1002/ejic.201500732 PG 8 WC Chemistry, Inorganic & Nuclear SC Chemistry GA CV5QU UT WOS:000364326900009 ER PT J AU Ruggles, AJ AF Ruggles, Adam J. TI Statistically advanced, self-similar, radial probability density functions of atmospheric and under-expanded hydrogen jets SO EXPERIMENTS IN FLUIDS LA English DT Article ID TURBULENT BUOYANT JETS; HIGH-PRESSURE JETS; CONCENTRATION FIELD; NATURAL-GAS; MODEL; FLOWS; INTERMITTENCY; THERMOMETRY; SCATTERING; IGNITION AB This paper presents improved statistical insight regarding the self-similar scalar mixing process of atmospheric hydrogen jets and the downstream region of under-expanded hydrogen jets. Quantitative planar laser Rayleigh scattering imaging is used to probe both jets. The self-similarity of statistical moments up to the sixth order (beyond the literature established second order) is documented in both cases. This is achieved using a novel self-similar normalization method that facilitated a degree of statistical convergence that is typically limited to continuous, point-based measurements. This demonstrates that image-based measurements of a limited number of samples can be used for self-similar scalar mixing studies. Both jets exhibit the same radial trends of these moments demonstrating that advanced atmospheric self-similarity can be applied in the analysis of under-expanded jets. Self-similar histograms away from the centerline are shown to be the combination of two distributions. The first is attributed to turbulent mixing. The second, a symmetric Poisson-type distribution centered on zero mass fraction, progressively becomes the dominant and eventually sole distribution at the edge of the jet. This distribution is attributed to shot noise-affected pure air measurements, rather than a diffusive superlayer at the jet boundary. This conclusion is reached after a rigorous measurement uncertainty analysis and inspection of pure air data collected with each hydrogen data set. A threshold based upon the measurement noise analysis is used to separate the turbulent and pure air data, and thusly estimate intermittency. Beta-distributions (four parameters) are used to accurately represent the turbulent distribution moments. This combination of measured intermittency and four-parameter beta-distributions constitutes a new, simple approach to model scalar mixing. Comparisons between global moments from the data and moments calculated using the proposed model show excellent agreement. This was attributed to the high quality of the measurements which reduced the width of the correctly identified, noise-affected pure air distribution, with respect to the turbulent mixing distribution. The ignitability of the atmospheric jet is determined using the flammability factor calculated from both kernel density estimated (KDE) PDFs and PDFs generated using the newly proposed model. Agreement between contours from both approaches is excellent. Ignitability of the under-expanded jet is also calculated using KDE PDFs. Contours are compared with those calculated by applying the atmospheric model to the under-expanded jet. Once again, agreement is excellent. This work demonstrates that self-similar scalar mixing statistics and ignitability of atmospheric jets can be accurately described by the proposed model. This description can be applied with confidence to under-expanded jets, which are more realistic of leak and fuel injection scenarios. C1 [Ruggles, Adam J.] Sandia Natl Labs, Livermore, CA 94511 USA. RP Ruggles, AJ (reprint author), Corning Inc, Sullivan Pk Campus, Painted Post, NY 14870 USA. EM rugglesa@corning.com FU U.S. DOE [DE-AC04-94-AL8500] FX Experimental data were collected with support from the United States Department of Energy, Office of Energy Efficiency and Renewable Energy, Fuel Cell Technologies Office, under the Safety, Codes, and Standards subprogram element. Sandia is operated by the Sandia Corporation, a Lockheed Martin Company, for the U.S. DOE under contract No. DE-AC04-94-AL8500. Many insightful discussions were had with Sandia National Laboratory scientists, Robert Barlow in particular. NR 49 TC 1 Z9 1 U1 0 U2 3 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0723-4864 EI 1432-1114 J9 EXP FLUIDS JI Exp. Fluids PD NOV PY 2015 VL 56 IS 11 AR 202 DI 10.1007/s00348-015-2074-8 PG 25 WC Engineering, Mechanical; Mechanics SC Engineering; Mechanics GA CV8FV UT WOS:000364517400007 ER PT J AU Collins, W AF Collins, William TI From research to action on climate change SO FRONTIERS IN ECOLOGY AND THE ENVIRONMENT LA English DT Editorial Material C1 [Collins, William] Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Collins, William] Univ Calif Berkeley, Berkeley, CA 94720 USA. RP Collins, W (reprint author), Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RI Collins, William/J-3147-2014 OI Collins, William/0000-0002-4463-9848 NR 0 TC 0 Z9 0 U1 0 U2 8 PU ECOLOGICAL SOC AMER PI WASHINGTON PA 1990 M STREET NW, STE 700, WASHINGTON, DC 20036 USA SN 1540-9295 EI 1540-9309 J9 FRONT ECOL ENVIRON JI Front. Ecol. Environ. PD NOV PY 2015 VL 13 IS 9 BP 459 EP 459 PG 1 WC Ecology; Environmental Sciences SC Environmental Sciences & Ecology GA CV8CC UT WOS:000364503100001 ER PT J AU Song, QJ Jia, GF Hyten, DL Jenkins, J Hwang, EY Schroeder, SG Osorno, JM Schmutz, J Jackson, SA McClean, PE Cregan, PB AF Song, Qijian Jia, Gaofeng Hyten, David L. Jenkins, Jerry Hwang, Eun-Young Schroeder, Steven G. Osorno, Juan M. Schmutz, Jeremy Jackson, Scott A. McClean, Phillip E. Cregan, Perry B. TI SNP Assay Development for Linkage Map Construction, Anchoring Whole-Genome Sequence, and Other Genetic and Genomic Applications in Common Bean SO G3-GENES GENOMES GENETICS LA English DT Article DE Phaseolus vulgaris; SNP; molecular markers; BARCBean6K BeadChip; linkage map ID PHASEOLUS-VULGARIS L.; REPEAT SSR MARKERS; MICROSATELLITE MARKERS; INTEGRATION; RESISTANCE; WHEAT; DIVERSITY; DISCOVERY; TRAITS; SYSTEM AB A total of 992,682 single-nucleotide polymorphisms (SNPs) was identified as ideal for Illumina Infinium II BeadChip design after sequencing a diverse set of 17 common bean (Phaseolus vulgaris L) varieties with the aid of next-generation sequencing technology. From these, two BeadChips each with >5000 SNPs were designed. The BARCBean6K_1 BeadChip was selected for the purpose of optimizing polymorphism among market classes and, when possible, SNPs were targeted to sequence scaffolds in the Phaseolus vulgaris 14x genome assembly with sequence lengths >10 kb. The BARCBean6K_2 BeadChip was designed with the objective of anchoring additional scaffolds and to facilitate orientation of large scaffolds. Analysis of 267 F-2 plants from a cross of varieties Stampede x Red Hawk with the two BeadChips resulted in linkage maps with a total of 7040 markers including 7015 SNPs. With the linkage map, a total of 432.3 Mb of sequence from 2766 scaffolds was anchored to create the Phaseolus vulgaris v1.0 assembly, which accounted for approximately 89% of the 487 Mb of available sequence scaffolds of the Phaseolus vulgaris v0.9 assembly. A core set of 6000 SNPs (BARCBean6K_3 BeadChip) with high genotyping quality and polymorphism was selected based on the genotyping of 365 dry bean and 134 snap bean accessions with the BARCBean6K_1 and BARCBean6K_2 BeadChips. The BARCBean6K_3 BeadChip is a useful tool for genetics and genomics research and it is widely used by breeders and geneticists in the United States and abroad. C1 [Song, Qijian; Jia, Gaofeng; Hyten, David L.; Cregan, Perry B.] USDA ARS, Soybean Genom & Improvement Lab, Beltsville, MD 20705 USA. [Jenkins, Jerry; Schmutz, Jeremy] HudsonAlpha Inst Biotechnol, Huntsville, AL 35806 USA. [Hwang, Eun-Young] Univ Maryland, Dept Plant Sci & Landscape Architecture, College Pk, MD 20742 USA. [Schroeder, Steven G.] USDA ARS, Bovine Funct Genom Lab, Anim & Nat Resources Inst, Beltsville, MD 20705 USA. [Osorno, Juan M.; McClean, Phillip E.] N Dakota State Univ, Dept Plant Sci, Fargo, ND 58102 USA. [Schmutz, Jeremy] Joint Genome Inst, Walnut Creek, CA 94598 USA. [Jackson, Scott A.] Univ Georgia, Ctr Appl Genet Technol, Athens, GA 30602 USA. RP Song, QJ (reprint author), ARS, Soybean Genom & Improvement Lab, Beltsville Agr Res Ctr W, USDA, Beltsville, MD 20705 USA. EM Qijian.Song@ars.usda.gov RI Schmutz, Jeremy/N-3173-2013 OI Schmutz, Jeremy/0000-0001-8062-9172 FU National Institute of Food and Agriculture, U.S. Department of Agriculture [AFRI 2009-01860, AFRI 2009-01929]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX We thank Rob Parry and Chris Pooley for their technical support in assembling the necessary hardware and software required for the Illumina sequence analysis. The work reported here is based in part upon work supported by the National Institute of Food and Agriculture, U.S. Department of Agriculture, under Agreement Nos. AFRI 2009-01860 and AFRI 2009-01929 to S.A.J and P.E.M, respectively. The work conducted by the U.S. Department of Energy Joint Genome Institute is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 45 TC 12 Z9 12 U1 8 U2 20 PU GENETICS SOCIETY AMERICA PI BETHESDA PA 9650 ROCKVILLE AVE, BETHESDA, MD 20814 USA SN 2160-1836 J9 G3-GENES GENOM GENET JI G3-Genes Genomes Genet. PD NOV PY 2015 VL 5 IS 11 BP 2285 EP 2290 DI 10.1534/g3.115.020594 PG 6 WC Genetics & Heredity SC Genetics & Heredity GA CW0BA UT WOS:000364652700007 PM 26318155 ER PT J AU Stoiber, MH Olson, S May, GE Duff, MO Manent, J Obar, R Guruharsha, KG Bickel, PJ Artavanis-Tsakonas, S Brown, JB Graveley, BR Celniker, SE AF Stoiber, Marcus H. Olson, Sara May, Gemma E. Duff, Michael O. Manent, Jan Obar, Robert Guruharsha, K. G. Bickel, Peter J. Artavanis-Tsakonas, Spyros Brown, James B. Graveley, Brenton R. Celniker, Susan E. TI Extensive cross-regulation of post-transcriptional regulatory networks in Drosophila SO GENOME RESEARCH LA English DT Article ID RNA-BINDING PROTEINS; GENE-REGULATION; SPLICE-SITE; RIP-SEQ; IDENTIFICATION; RECOGNITION; TRANSLATION; EXPRESSION; MOTIFS AB In eukaryotic cells, RNAs exist as ribonucleoprotein particles (RNPs). Despite the importance of these complexes in many biological processes, including splicing, polyadenylation, stability, transportation, localization, and translation, their compositions are largely unknown. We affinity-purified 20 distinct RNA-binding proteins (RBPs) from cultured Drosophila melanogaster cells under native conditions and identified both the RNA and protein compositions of these RNP complexes. We identified "high occupancy target" (HOT) RNAs that interact with the majority of the RBPs we surveyed. HOT RNAs encode components of the nonsense-mediated decay and splicing machinery, as well as RNA-binding and translation initiation proteins. The RNP complexes contain proteins and mRNAs involved in RNA binding and post-transcriptional regulation. Genes with the capacity to produce hundreds of mRNA isoforms, ultracomplex genes, interact extensively with heterogeneous nuclear ribonuclear proteins (hnRNPs). Our data are consistent with a model in which subsets of RNPs include mRNA and protein products from the same gene, indicating the widespread existence of auto-regulatory RNPs. From the simultaneous acquisition and integrative analysis of protein and RNA constituents of RNPs, we identify extensive cross-regulatory and hierarchical interactions in post-transcriptional control. C1 [Stoiber, Marcus H.; Bickel, Peter J.] Univ Calif Berkeley, Dept Biostat, Berkeley, CA 94720 USA. [Stoiber, Marcus H.; Brown, James B.; Celniker, Susan E.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Dept Genome Dynam, Berkeley, CA 94720 USA. [Olson, Sara; May, Gemma E.; Duff, Michael O.; Graveley, Brenton R.] Univ Connecticut, Ctr Hlth, Inst Syst Genom, Dept Genet & Genome Sci, Farmington, CT 06030 USA. [Manent, Jan; Obar, Robert; Guruharsha, K. G.; Artavanis-Tsakonas, Spyros] Harvard Univ, Sch Med, Dept Cell Biol, Boston, MA 02115 USA. [Guruharsha, K. G.; Artavanis-Tsakonas, Spyros] Biogen Inc, Cambridge, MA 02142 USA. [Brown, James B.] Univ Calif Berkeley, Dept Stat, Berkeley, CA 94720 USA. RP Celniker, SE (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Dept Genome Dynam, Berkeley, CA 94720 USA. EM artavanis@hms.harvard.edu; jbbrown@lbnl.gov; graveley@uchc.edu; celniker@fruitfly.org OI Graveley, Brenton/0000-0001-5777-5892 FU National Human Genome Research Institute (NHGRI) modENCODE Project [U01 HG004271, U54 HG006944]; Department of Energy [DE-AC02-05CH11231]; NHGRI [K99 HG006698]; Department of Energy/LDRD [DE-AC02-05CH11231/14-200]; [1U01 HG007031-01] FX We thank the members of the modENCODE transcription consortium. We thank Erwin Frise and Nathan Boley for computer infrastructure for data storage and analysis. We thank the Bickel group for helpful discussions. This work was funded by a contract from the National Human Genome Research Institute (NHGRI) modENCODE Project, contracts U01 HG004271 and U54 HG006944, to S.E.C. (principal investigator) and B.R.G. (coprincipal investigator) both under Department of Energy contract no. DE-AC02-05CH11231. J.B.B. was supported by NHGRI K99 HG006698. M.H.S. was supported by 1U01 HG007031-01 (P.J.B.) and by the Department of Energy/LDRD DE-AC02-05CH11231/14-200 (J.B.B.). NR 50 TC 3 Z9 3 U1 0 U2 10 PU COLD SPRING HARBOR LAB PRESS, PUBLICATIONS DEPT PI COLD SPRING HARBOR PA 1 BUNGTOWN RD, COLD SPRING HARBOR, NY 11724 USA SN 1088-9051 EI 1549-5469 J9 GENOME RES JI Genome Res. PD NOV PY 2015 VL 25 IS 11 BP 1692 EP 1702 DI 10.1101/gr.182675.114 PG 11 WC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Genetics & Heredity SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Genetics & Heredity GA CV6BL UT WOS:000364355600010 PM 26294687 ER PT J AU Brooks, AN Duff, MO May, G Yang, L Bolisetty, M Landolin, J Wan, K Sandler, J Booth, BW Celniker, SE Graveley, BR Brenner, SE AF Brooks, Angela N. Duff, Michael O. May, Gemma Yang, Li Bolisetty, Mohan Landolin, Jane Wan, Ken Sandler, Jeremy Booth, Benjamin W. Celniker, Susan E. Graveley, Brenton R. Brenner, Steven E. TI Regulation of alternative splicing in Drosophila by 56 RNA binding proteins SO GENOME RESEARCH LA English DT Article ID EXON JUNCTION COMPLEX; GENOME-WIDE ANALYSIS; SEQ DATA; GENE; REVEALS; MELANOGASTER; TRANSLATION; NETWORK; MAP; TRANSCRIPTS AB Alternative splicing is regulated by RNA binding proteins (RBPs) that recognize pre-mRNA sequence elements and activate or repress adjacent exons. Here, we used RNA interference and RNA-seq to identify splicing events regulated by 56 Drosophila proteins, some previously unknown to regulate splicing. Nearly all proteins affected alternative first exons, suggesting that RBPs play important roles in first exon choice. Half of the splicing events were regulated by multiple proteins, demonstrating extensive combinatorial regulation. We observed that SR and hnRNP proteins tend to act coordinately with each other, not antagonistically. We also identified a cross-regulatory network where splicing regulators affected the splicing of pre-mRNAs encoding other splicing regulators. This large-scale study substantially enhances our understanding of recent models of splicing regulation and provides a resource of thousands of exons that are regulated by 56 diverse RBPs. C1 [Brooks, Angela N.; Brenner, Steven E.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Brooks, Angela N.] Broad Inst, Cambridge, MA 02142 USA. [Brooks, Angela N.] Dana Farber Canc Inst, Dept Med Oncol, Boston, MA 02215 USA. [Duff, Michael O.; May, Gemma; Yang, Li; Bolisetty, Mohan; Graveley, Brenton R.] Univ Connecticut, Ctr Hlth, Inst Syst Genom, Dept Genet & Genome Sci, Farmington, CT 06030 USA. [Landolin, Jane; Wan, Ken; Sandler, Jeremy; Booth, Benjamin W.; Celniker, Susan E.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Dept Genome Dynam, Berkeley, CA 94720 USA. [Brenner, Steven E.] Univ Calif Berkeley, Dept Plant & Microbial Biol, Berkeley, CA 94720 USA. RP Graveley, BR (reprint author), Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. EM graveley@uchc.edu; brenner@compbio.berkeley.edu RI Brenner, Steven/A-8729-2008; OI Brenner, Steven/0000-0001-7559-6185; Graveley, Brenton/0000-0001-5777-5892 FU National Science Foundation Graduate Research Fellowship; Damon Runyon Cancer Research Foundation [DRG-2138-12]; National Human Genome Research Institute modENCODE Project under Department of Energy [U01 HG004271, DE-AC02-05CH11231] FX We thank Kasper Hansen and Sandrine Dudoit for helpful suggestions in the early design of this work; J.B. Brown for useful conversations regarding the CAGE data; and Courtney French, Nils Gehlenborg, and members of the modENCODE Drosophila Transcriptome Group for helpful suggestions. A.N.B. was supported by a National Science Foundation Graduate Research Fellowship and was a Merck Fellow of the Damon Runyon Cancer Research Foundation (DRG-2138-12). This work was funded by an award from the National Human Genome Research Institute modENCODE Project (U01 HG004271) to S.E.C. (Principal Investigator) and B.R.G. (Coprincipal Investigator) under Department of Energy contract no. DE-AC02-05CH11231. NR 58 TC 5 Z9 5 U1 2 U2 10 PU COLD SPRING HARBOR LAB PRESS, PUBLICATIONS DEPT PI COLD SPRING HARBOR PA 1 BUNGTOWN RD, COLD SPRING HARBOR, NY 11724 USA SN 1088-9051 EI 1549-5469 J9 GENOME RES JI Genome Res. PD NOV PY 2015 VL 25 IS 11 BP 1771 EP 1780 DI 10.1101/gr.192518.115 PG 10 WC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Genetics & Heredity SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Genetics & Heredity GA CV6BL UT WOS:000364355600017 PM 26294686 ER PT J AU Fernandez, M Hamilton, HH Kueppers, LM AF Fernandez, Miguel Hamilton, Healy H. Kueppers, Lara M. TI Back to the future: using historical climate variation to project near-term shifts in habitat suitable for coast redwood SO GLOBAL CHANGE BIOLOGY LA English DT Article DE climate change adaptation; climate change sensitivity; climatic analogs; MaxEnt; range shifts; Sequoia sempervirens ID SPECIES DISTRIBUTION MODELS; SEMPERVIRENS D. DON; ECOLOGICAL IMPLICATIONS; UPWELLING ECOSYSTEMS; CALIFORNIA CURRENT; UNITED-STATES; DISTRIBUTIONS; PATTERNS; SCALE; FOG AB Studies that model the effect of climate change on terrestrial ecosystems often use climate projections from downscaled global climate models (GCMs). These simulations are generally too coarse to capture patterns of fine-scale climate variation, such as the sharp coastal energy and moisture gradients associated with wind-driven upwelling of cold water. Coastal upwelling may limit future increases in coastal temperatures, compromising GCMs' ability to provide realistic scenarios of future climate in these coastal ecosystems. Taking advantage of naturally occurring variability in the high-resolution historic climatic record, we developed multiple fine-scale scenarios of California climate that maintain coherent relationships between regional climate and coastal upwelling. We compared these scenarios against coarse resolution GCM projections at a regional scale to evaluate their temporal equivalency. We used these historically based scenarios to estimate potential suitable habitat for coast redwood (Sequoia sempervirens D. Don) under 'normal' combinations of temperature and precipitation, and under anomalous combinations representative of potential future climates. We found that a scenario of warmer temperature with historically normal precipitation is equivalent to climate projected by GCMs for California by 2020-2030 and that under these conditions, climatically suitable habitat for coast redwood significantly contracts at the southern end of its current range. Our results suggest that historical climate data provide a high-resolution alternative to downscaled GCM outputs for near-term ecological forecasts. This method may be particularly useful in other regions where local climate is strongly influenced by ocean-atmosphere dynamics that are not represented by coarse-scale GCMs. C1 [Fernandez, Miguel; Kueppers, Lara M.] Univ Calif Merced, Sierra Nevada Res Inst, Merced, CA 95343 USA. [Fernandez, Miguel] Univ Calif Berkeley, Dept Integrat Biol, Berkeley, CA 94720 USA. [Fernandez, Miguel] German Ctr Integrat Biodivers Res iDiv, D-04103 Leipzig, Germany. [Hamilton, Healy H.] NatureServe, Arlington, VA 22203 USA. [Kueppers, Lara M.] Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Fernandez, M (reprint author), Univ Calif Merced, Sierra Nevada Res Inst, 5200 North Lake Rd, Merced, CA 95343 USA. EM miguel.fernandez@idiv.de RI iDiv, Deutsches Zentrum/B-5164-2016; Kueppers, Lara/M-8323-2013 OI Kueppers, Lara/0000-0002-8134-3579 FU Save the Redwoods League; Bobcat fellowship FX We thank A. Westerling for guidance on climate data and downscaling; T. Dawson, A. Ambrose and E. Burns for helpful critiques and insights into redwood physiology; C. Koven and Y. Lu for assistance with CMIP5 GCM output; J. Abatzoglou and K. Hegewisch for assistance with downscaled data; S. Veloz for SDM advice; A. Flint and L. Flint for fruitful discussions on climatic water deficit; M. Alvear and S. Blum for providing museum specimens; and R. Coats, M. Jabis, K. Lubetkin, A. Moyes and E. Brown for feedback on earlier versions of the manuscript. We also would like to thank the three anonymous reviewers for their valuable comments and suggestions to improve the manuscript. This work was funded by a research grant from Save the Redwoods League to H.H. and M.F., by financial support from B. O'Kelley, E. Rovere, and H. Johnson to the research lab of H.H., and the Bobcat fellowship to M.F. NR 77 TC 0 Z9 0 U1 22 U2 66 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1354-1013 EI 1365-2486 J9 GLOBAL CHANGE BIOL JI Glob. Change Biol. PD NOV PY 2015 VL 21 IS 11 BP 4141 EP 4152 DI 10.1111/gcb.13027 PG 12 WC Biodiversity Conservation; Ecology; Environmental Sciences SC Biodiversity & Conservation; Environmental Sciences & Ecology GA CW1UM UT WOS:000364777200019 PM 26149607 ER PT J AU Adams, HD Collins, AD Briggs, SP Vennetier, M Dickman, LT Sevanto, SA Garcia-Forner, N Powers, HH Mcdowell, NG AF Adams, Henry D. Collins, Adam D. Briggs, Samuel P. Vennetier, Michel Dickman, L. Turin Sevanto, Sanna A. Garcia-Forner, Nuria Powers, Heath H. Mcdowell, Nate G. TI Experimental drought and heat can delay phenological development and reduce foliar and shoot growth in semiarid trees SO GLOBAL CHANGE BIOLOGY LA English DT Article DE climate change; Juniper; Juniperus monosperma; nonstructural carbohydrate; phenology; pinon pine; Pinus edulis; water potential ID ATMOSPHERIC MOISTURE DEMAND; PINYON-JUNIPER WOODLAND; CLIMATE-CHANGE; LEAF PHENOLOGY; CARBOHYDRATE DYNAMICS; CARBON METABOLISM; TROPICAL FOREST; SCOTS PINE; CO2; MORTALITY AB Higher temperatures associated with climate change are anticipated to trigger an earlier start to the growing season, which could increase the terrestrial C sink strength. Greater variability in the amount and timing of precipitation is also expected with higher temperatures, bringing increased drought stress to many ecosystems. We experimentally assessed the effects of higher temperature and drought on the foliar phenology and shoot growth of mature trees of two semiarid conifer species. We exposed field-grown trees to a similar to 45% reduction in precipitation with a rain-out structure ('drought'), a similar to 4.8 degrees C temperature increase with open-top chambers ('heat'), and a combination of both simultaneously ('drought + heat'). Over the 2013 growing season, drought, heat, and drought + heat treatments reduced shoot and needle growth in pinon pine (Pinus edulis) by >= 39%, while juniper (Juniperus monosperma) had low growth and little response to these treatments. Needle emergence on primary axis branches of pinon pine was delayed in heat, drought, and drought + heat treatments by 19-57 days, while secondary axis branches were less likely to produce needles in the heat treatment, and produced no needles at all in the drought + heat treatment. Growth of shoots and needles, and the timing of needle emergence correlated inversely with xylem water tension and positively with nonstructural carbohydrate concentrations. Our findings demonstrate the potential for delayed phenological development and reduced growth with higher temperatures and drought in tree species that are vulnerable to drought and reveal potential mechanistic links to physiological stress responses. Climate change projections of an earlier and longer growing season with higher temperatures, and consequent increases in terrestrial C sink strength, may be incorrect for regions where plants will face increased drought stress with climate change. C1 [Adams, Henry D.; Collins, Adam D.; Briggs, Samuel P.; Dickman, L. Turin; Sevanto, Sanna A.; Powers, Heath H.; Mcdowell, Nate G.] Los Alamos Natl Lab, Earth & Environm Sci, Los Alamos, NM 87545 USA. [Vennetier, Michel] Irstea, UR Ecosyst Mediterraneens & Risques, F-13182 Aix En Provence, France. [Garcia-Forner, Nuria] Ctr Recerca Ecol & Aplicac Forestals, Cerdanyola Del Valles 08193, Spain. [Garcia-Forner, Nuria] Univ Autonoma Barcelona, Cerdanyola Del Valles 08193, Spain. RP Adams, HD (reprint author), Los Alamos Natl Lab, Earth & Environm Sci, POB 1663, Los Alamos, NM 87545 USA. EM adamshenryd@gmail.com OI Garcia-Forner, Nuria/0000-0002-7788-0718 FU US Department of Energy, Office of Science, Biological and Environmental Research; Los Alamos National Laboratory Directed Research, including the postdoctoral program; US DOE, Office of Science, Science Undergraduate Laboratory Internship program FX The Los Alamos Survival-Mortality Experiment (SUMO) is funded by the US Department of Energy, Office of Science, Biological and Environmental Research. This research was also supported by funding from Los Alamos National Laboratory Directed Research, including the postdoctoral program, and the US DOE, Office of Science, Science Undergraduate Laboratory Internship program. We thank Ariel Mack for assistance with the design of Figure S3, and two anonymous reviewers for their assistance in improving the manuscript. NR 64 TC 6 Z9 6 U1 12 U2 50 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1354-1013 EI 1365-2486 J9 GLOBAL CHANGE BIOL JI Glob. Change Biol. PD NOV PY 2015 VL 21 IS 11 BP 4210 EP 4220 DI 10.1111/gcb.13030 PG 11 WC Biodiversity Conservation; Ecology; Environmental Sciences SC Biodiversity & Conservation; Environmental Sciences & Ecology GA CW1UM UT WOS:000364777200024 PM 26149972 ER PT J AU Smythe, NC Dixon, DA Garner, EB Rickard, MM Mendez, M Scott, BL Zelenay, B Sutton, AD AF Smythe, Nathan C. Dixon, David A. Garner, Edward B., III Rickard, Meredith M. Mendez, Mariano Scott, Brian L. Zelenay, Barbara Sutton, Andrew D. TI Reduction of CO2 to methanol using aluminum ester FLPs SO INORGANIC CHEMISTRY COMMUNICATIONS LA English DT Article DE Frustrated Lewis pair; CO2; MeOH; Ammonia borane ID FRUSTRATED LEWIS PAIRS; CARBON-DIOXIDE; HYDROGENATION; DENSITY; ACTIVATION; CATALYSTS; EXCHANGE; CRYSTAL; ACIDITY; BORANE AB Herein we report the synthesis of Al-based esters containing halogenated benzene rings. These Lewis adds were paired with phosphines to form frustrated Lewis pairs (FLPs) which could subsequently bind CO2. While these FLPs were not sufficiently water-stable to catalyze the reduction of CO2 to MeOH using NH3BH3 as the reductant, we examine the effect of varying Lewis acid strength. Frustrated Lewis pairs (FLPs) are combinations of Lewis acids and Lewis bases where the add and base are either sterically or geometrically restricted from interacting as strongly as their electronic structures would allow. This effect leads to enhanced reactivity towards small molecules and, consequently, interest in their potential as metal-free catalysts [1-5]. To-date, the biggest success has been based around the ability of a myriad of systems to heterolytically cleave H-2 and perform catalytic hydrogenations [2,3]. Published by Elsevier B.V. C1 [Smythe, Nathan C.; Zelenay, Barbara; Sutton, Andrew D.] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. [Dixon, David A.; Garner, Edward B., III; Rickard, Meredith M.; Mendez, Mariano] Univ Alabama, Dept Chem, Tuscaloosa, AL 35487 USA. [Scott, Brian L.] Los Alamos Natl Lab, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA. RP Smythe, NC (reprint author), Los Alamos Natl Lab, Div Chem, POB 1663, Los Alamos, NM 87545 USA. EM nsmythe@lanl.gov; adsutton@lanl.gov RI Sutton, Andrew/D-1047-2015; Scott, Brian/D-8995-2017 OI Sutton, Andrew/0000-0001-7984-1715; Scott, Brian/0000-0003-0468-5396 FU Los Alamos National Laboratory LDRD [LDRD 20120197ER]; Robert Ramsay Chair Endowment, The University of Alabama FX We are grateful to the Los Alamos National Laboratory LDRD program for the financial support (LDRD 20120197ER). DAD thanks the Robert Ramsay Chair Endowment, The University of Alabama, for support. NR 37 TC 0 Z9 0 U1 5 U2 37 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1387-7003 EI 1879-0259 J9 INORG CHEM COMMUN JI Inorg. Chem. Commun. PD NOV PY 2015 VL 61 BP 207 EP 209 DI 10.1016/j.inoche.2015.10.009 PG 3 WC Chemistry, Inorganic & Nuclear SC Chemistry GA CV9NK UT WOS:000364613700051 ER PT J AU Fox, K Cozzi, A Roberts, K Edwards, T AF Fox, Kevin Cozzi, Alex Roberts, Kimberly Edwards, Thomas TI Cast Stone Formulation for Nuclear Waste Immobilization at Higher Sodium Concentrations SO INTERNATIONAL JOURNAL OF APPLIED CERAMIC TECHNOLOGY LA English DT Article AB Low activity radioactive waste at U.S. Department of Energy sites can be immobilized for permanent disposal using cementitious waste forms. This study evaluated waste forms produced with simulated wastes at concentrations up to twice that of currently operating processes. The simulated materials were evaluated for their fresh properties, which determine processability, and cured properties, which determine waste form performance. The results show potential for greatly reducing the volume of material. Fresh properties were sufficient to allow for processing via current practices. Cured properties such as compressive strength meet disposal requirements. Leachability indices provide an indication of expected long-term performance. C1 [Fox, Kevin; Cozzi, Alex; Roberts, Kimberly; Edwards, Thomas] Savannah River Natl Lab, Aiken, SC 29803 USA. RP Fox, K (reprint author), Savannah River Natl Lab, 999-W, Aiken, SC 29803 USA. EM kevin.fox@srnl.doe.gov FU U.S. Department of Energy Office of River Protection; Laboratory Directed Research and Development Program at the Savannah River National Laboratory; U.S. Department of Energy [DE-AC09-08SR22470] FX Funding for this study was provided by the U.S. Department of Energy Office of River Protection, and the Laboratory Directed Research and Development Program at the Savannah River National Laboratory. SRNL is operated by Savannah River Nuclear Solutions for the U.S. Department of Energy under contract number DE-AC09-08SR22470. NR 17 TC 0 Z9 0 U1 1 U2 3 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1546-542X EI 1744-7402 J9 INT J APPL CERAM TEC JI Int. J. Appl. Ceram. Technol. PD NOV-DEC PY 2015 VL 12 IS 6 BP 1112 EP 1123 DI 10.1111/ijac.12348 PG 12 WC Materials Science, Ceramics SC Materials Science GA CW0VV UT WOS:000364708800002 ER PT J AU Abriel, B Ackermann, R Artus, V Calderon, C Chen, F Danbom, S Laake, A Lecomte, I Mongan, J Rector, J AF Abriel, Bill Ackermann, Rolf Artus, Vincent Calderon, Carlos Chen, Feng Danbom, Steve Laake, Andreas Lecomte, Isabelle Mongan, Joe Rector, Jamie TI Introduction to special section: Geophysical modeling for interpreters SO Interpretation-A Journal of Subsurface Characterization LA English DT Editorial Material C1 [Abriel, Bill] Orinda Geophys, Orinda, CA 94563 USA. [Ackermann, Rolf] Rock Solid Images, Houston, TX USA. [Artus, Vincent] Kappa Engn, Houston, TX USA. [Calderon, Carlos] Ion Geophys, Houston, TX USA. [Chen, Feng] CGG, Houston, TX USA. [Danbom, Steve] Rice Univ, Houston, TX USA. [Laake, Andreas] Schlumberger, Houston, TX USA. [Lecomte, Isabelle] NORSAR, Kjeller, Norway. [Mongan, Joe] Tullow Oil, London, England. [Rector, Jamie] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Abriel, B (reprint author), Orinda Geophys, Orinda, CA 94563 USA. EM billabriel@yahoo.com; rolf.ackermann@rocksolidimages.com; artus@kappaeng.com; carlos.calderon@iongeo.com; fchen7799@gmail.com; steved@rice.edu; laake1@exchange.slb.com; Isabelle.Lecomte@norsar.com; joe.mongan@tullowoil.com; jwrector@lbl.gov NR 0 TC 0 Z9 0 U1 0 U2 0 PU SOC EXPLORATION GEOPHYSICISTS PI TULSA PA 8801 S YALE ST, TULSA, OK 74137 USA SN 2324-8858 EI 2324-8866 J9 INTERPRETATION-J SUB JI Interpretation PD NOV PY 2015 VL 3 IS 4 BP SCAI EP SACII DI 10.1190/INT2015-0915-SPSEINTRO.1 PG 2 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA CV6ER UT WOS:000364364000022 ER PT J AU Ntarlagiannis, D Doherty, R Costa, R Williams, KH Zhang, C Soupios, P AF Ntarlagiannis, Dimitrios Doherty, Rory Costa, Ralph Williams, Kenneth H. Zhang, Chi Soupios, Pantelis TI Introduction to special section: Characterization and monitoring of subsurface contamination SO Interpretation-A Journal of Subsurface Characterization LA English DT Editorial Material C1 [Ntarlagiannis, Dimitrios] Rutgers State Univ, Dept Earth & Environm Sci, Newark, NJ 07102 USA. [Doherty, Rory] Queens Univ Belfast, Sch Planning Architecture & Civil Engn, Belfast, Antrim, North Ireland. [Costa, Ralph] Weston Solut Inc, Raleigh, NC USA. [Williams, Kenneth H.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Zhang, Chi] Univ Kansas, Dept Geol, Lawrence, KS 66045 USA. [Soupios, Pantelis] Technol Educ Inst Crete, Dept Environm & Nat Resources Engn, Khania, Greece. RP Ntarlagiannis, D (reprint author), Rutgers State Univ, Dept Earth & Environm Sci, Newark, NJ 07102 USA. EM dimntar@scarletmail.rutgers.edu; r.doherty@qub.ac.uk; Ralph.Costa@WestonSolutions.com; khwilliams@lbl.gov; chizhang@ku.edu; soupios@staff.teicrete.gr RI Williams, Kenneth/O-5181-2014; OI Williams, Kenneth/0000-0002-3568-1155; Soupios, Pantelis/0000-0002-2802-2020; Doherty, Rory/0000-0001-7583-0592 NR 8 TC 0 Z9 0 U1 0 U2 2 PU SOC EXPLORATION GEOPHYSICISTS PI TULSA PA 8801 S YALE ST, TULSA, OK 74137 USA SN 2324-8858 EI 2324-8866 J9 INTERPRETATION-J SUB JI Interpretation PD NOV PY 2015 VL 3 IS 4 BP SABI EP SABII DI 10.1190/INT2015-0917-SPSEINTRO.1 PG 2 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA CV6ER UT WOS:000364364000016 ER PT J AU Ice, G AF Ice, Gene TI Are X-rays the key to integrated computational materials engineering? SO IUCrJ LA English DT Editorial Material DE integrated computational materials engineering; nondestructive crystal structure mapping; stress tensor measurement C1 Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Ice, G (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, POB 2008, Oak Ridge, TN 37831 USA. EM icege@ornl.gov NR 7 TC 0 Z9 0 U1 1 U2 3 PU INT UNION CRYSTALLOGRAPHY PI CHESTER PA 2 ABBEY SQ, CHESTER, CH1 2HU, ENGLAND SN 2052-2525 J9 IUCRJ JI IUCrJ PD NOV PY 2015 VL 2 BP 605 EP 606 DI 10.1107/S205225251501951X PN 6 PG 2 WC Chemistry, Multidisciplinary; Crystallography; Materials Science, Multidisciplinary SC Chemistry; Crystallography; Materials Science GA CV6XS UT WOS:000364415900002 PM 26594365 ER PT J AU Levine, LE Okoro, C Xu, RQ AF Levine, Lyle E. Okoro, Chukwudi Xu, Ruqing TI Full elastic strain and stress tensor measurements from individual dislocation cells in copper through-Si vias SO IUCRJ LA English DT Article DE full elastic strain; stress tensor measurement; copper through-Si vias; microelectronics ID X-RAY MICROBEAM; RANGE INTERNAL-STRESSES; SUBMICROMETER-RESOLUTION; DEFORMATION STRUCTURES; PLASTIC-DEFORMATION; DIFFRACTION; MICROSCOPY AB Nondestructive measurements of the full elastic strain and stress tensors from individual dislocation cells distributed along the full extent of a 50 mm-long polycrystalline copper via in Si is reported. Determining all of the components of these tensors from sub-micrometre regions within deformed metals presents considerable challenges. The primary issues are ensuring that different diffraction peaks originate from the same sample volume and that accurate determination is made of the peak positions from plastically deformed samples. For these measurements, three widely separated reflections were examined from selected, individual grains along the via. The lattice spacings and peak positions were measured for multiple dislocation cell interiors within each grain and the cell-interior peaks were sorted out using the measured included angles. A comprehensive uncertainty analysis using a Monte Carlo uncertainty algorithm provided uncertainties for the elastic strain tensor and stress tensor components. C1 [Levine, Lyle E.] NIST, Mat Sci & Engn Div, Gaithersburg, MD 20899 USA. [Okoro, Chukwudi] NIST, Semicond & Dimens Metrol Div, Gaithersburg, MD 20899 USA. [Xu, Ruqing] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Levine, LE (reprint author), NIST, Mat Sci & Engn Div, 100 Bur Dr,STOP 8553, Gaithersburg, MD 20899 USA. EM lyle.levine@nist.gov FU US DOE [DE-AC02-06CH11357] FX Use of the Advanced Photon Source, an Office of Science User Facility operated for the US Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the US DOE under contract No. DE-AC02-06CH11357. NR 18 TC 6 Z9 6 U1 2 U2 10 PU INT UNION CRYSTALLOGRAPHY PI CHESTER PA 2 ABBEY SQ, CHESTER, CH1 2HU, ENGLAND SN 2052-2525 J9 IUCRJ JI IUCrJ PD NOV PY 2015 VL 2 BP 635 EP 642 DI 10.1107/S2052252515015031 PN 6 PG 8 WC Chemistry, Multidisciplinary; Crystallography; Materials Science, Multidisciplinary SC Chemistry; Crystallography; Materials Science GA CV6XS UT WOS:000364415900008 PM 26594371 ER PT J AU Keipert, K Mitra, G Sunriyal, V Leang, SS Sosonkina, M Rendell, AP Gordon, MS AF Keipert, Kristopher Mitra, Gaurav Sunriyal, Vaibhav Leang, Sarom S. Sosonkina, Masha Rendell, Alistair P. Gordon, Mark S. TI Energy-Efficient Computational Chemistry: Comparison of x86 and ARM Systems SO JOURNAL OF CHEMICAL THEORY AND COMPUTATION LA English DT Article ID DISTRIBUTED DATA INTERFACE; MOLECULAR-ORBITAL METHODS; GAUSSIAN-TYPE BASIS; ORGANIC-MOLECULES; BASIS-SETS; APPROXIMATION; ATOMS AB The computational efficiency and energy-to-solution of several applications using the GAMESS quantum chemistry suite of codes is evaluated for 32-bit and 64-bit ARM-based computers, and compared to an x86 machine. The x86 system completes all benchmark computations more quickly than either ARM system and is the best choice to minimize time to solution. The ARM64 and ARM32 computational performances are similar to each other for Hartree-Fock and density functional theory energy calculations. However, for memory-intensive second-order perturbation theory energy and gradient computations the lower ARM32 read/write memory bandwidth results in computation times as much as 86% longer than on the ARM164 systern. The ARM32 system is more energy efficient than the x86 and ARM64 CPUs for all benchmarked methods, while the ARM64 CPU is more energy efficient than the x86 CPU for some core counts and molecular sizes. C1 [Keipert, Kristopher; Leang, Sarom S.; Gordon, Mark S.] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. [Keipert, Kristopher; Leang, Sarom S.; Gordon, Mark S.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Mitra, Gaurav; Rendell, Alistair P.] Australian Natl Univ, Res Sch Comp Sci, Acton, ACT 0200, Australia. [Sunriyal, Vaibhav; Sosonkina, Masha] Old Dominion Univ, Dept Modeling & Simulat, Norfolk, VA 23529 USA. RP Gordon, MS (reprint author), Iowa State Univ, Dept Chem, Ames, IA 50011 USA. EM mark@si.msg.chem.iastate.edu FU Intel Corp.; NVIDIA Corp.; Air Force Office of Scientific Research under AFOSR Award [FA9550-12-1-0476] FX We thank Intel Corp. and NVIDIA Corp. for their support of this work. K.K, V.S, S.L., M.S., and M.S.G. thank the Air Force Office of Scientific Research for its support of this work under AFOSR Award No. FA9550-12-1-0476. NR 23 TC 2 Z9 2 U1 3 U2 9 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1549-9618 EI 1549-9626 J9 J CHEM THEORY COMPUT JI J. Chem. Theory Comput. PD NOV PY 2015 VL 11 IS 11 BP 5055 EP 5061 DI 10.1021/acs.jctc.5b00713 PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA CV9NN UT WOS:000364614000001 PM 26574303 ER PT J AU Brabec, J Lin, L Shao, MY Govind, N Yang, C Saad, Y Ng, EG AF Brabec, Jiri Lin, Lin Shao, Meiyue Govind, Niranjan Yang, Chao Saad, Yousef Ng, Esmond G. TI Efficient Algorithms for Estimating the Absorption Spectrum within Linear Response TDDFT SO JOURNAL OF CHEMICAL THEORY AND COMPUTATION LA English DT Article ID DENSITY-FUNCTIONAL THEORY; HARTREE-FOCK; MINIMIZATION PRINCIPLES; LARGE MOLECULES; BASIS-SETS; EQUATIONS; KERNEL; ENERGIES; EXCHANGE; STATES AB We present a special symmetric Lanczos algorithm and a kernel polynomial method (KPM) for approximating the absorption spectrum of molecules within the linear response time-dependent density functional theory (TDDFT) framework in the product form. In contrast to existing algorithms, the new algorithms are based on reformulating the original non-Hermitian eigenvalue problem as a product eigenvalue problem and the observation that the product eigenvalue problem is self-adjoint with respect to an appropriately chosen inner product. This allows a simple symmetric Lanczos algorithm to be used to compute the desired absorption spectrum. The use of a symmetric Lanczos algorithm only requires half of the memory compared with the nonsymmetric variant of the Lanczos algorithm. The symmetric Lanczos algorithm is also numerically more stable than the nonsymmetric version. The KPM algorithm is also presented as a low-memory alternative to the Lanczos approach, but the algorithm may require more matrix-vector multiplications in practice. We discuss the pros and cons of these methods in terms of their accuracy as well as their computational and storage cost. Applications to a set of small and medium-sized molecules are also presented. C1 [Brabec, Jiri; Lin, Lin; Shao, Meiyue; Yang, Chao; Ng, Esmond G.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA. [Lin, Lin] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA. [Govind, Niranjan] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. [Saad, Yousef] Univ Minnesota, Dept Comp Sci & Engn, Minneapolis, MN 55455 USA. RP Brabec, J (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA. EM jbrabec@lbl.gov; linlin@lbl.gov; cyang@lbl.gov OI Shao, Meiyue/0000-0002-4914-7666 FU Scientific Discovery through Advanced Computing (SciDAC) program - U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research, and Basic Energy Sciences at Lawrence Berkeley National Laboratory [DE-AC02-05CH1123]; Scientific Discovery through Advanced Computing (SciDAC) program - U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research, and Basic Energy Sciences at Pacific Northwest National Laboratory (PNNL) [KC030102062653]; Office of Biological and Environmental Research; United States Department of Energy [DE-AC05-76RL1830]; Office of Science of U.S. Department of Energy [DE-AC02-05CH11231] FX Support for this work was provided through Scientific Discovery through Advanced Computing (SciDAC) program funded by U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research, and Basic Energy Sciences at the Lawrence Berkeley National Laboratory under Contract No. DE-AC02-05CH1123 and at the Pacific North-west National Laboratory (PNNL) under Award number KC030102062653. A portion of the research was performed using EMSL, a DOE Office of Science User Facility sponsored by the Office of Biological and Environmental Research and located at the PNNL. PNNL is operated by Battelle Memorial Institute for the United States Department of Energy under DOE contract number DE-AC05-76RL1830. The research also benefited from resources provided by the National Energy Research Scientific Computing Center (NERSC), a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 45 TC 2 Z9 2 U1 3 U2 8 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1549-9618 EI 1549-9626 J9 J CHEM THEORY COMPUT JI J. Chem. Theory Comput. PD NOV PY 2015 VL 11 IS 11 BP 5197 EP 5208 DI 10.1021/acs.jctc.5b00887 PG 12 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA CV9NN UT WOS:000364614000015 PM 26894238 ER PT J AU Holmes, ST Iuliucci, RJ Mueller, KT Dybowski, C AF Holmes, Sean T. Iuliucci, Robbie J. Mueller, Karl T. Dybowski, Cecil TI Critical Analysis of Cluster Models and Exchange-Correlation Functionals for Calculating Magnetic Shielding in Molecular Solids SO JOURNAL OF CHEMICAL THEORY AND COMPUTATION LA English DT Article ID CHEMICAL-SHIFT TENSORS; SPIN COUPLING-CONSTANTS; CENTER-DOT-F; GENERALIZED-GRADIENT-APPROXIMATION; ELECTRON-DENSITY DISTRIBUTIONS; CRYSTAL NEUTRON-DIFFRACTION; INCLUDING ATOMIC ORBITALS; WALLED CARBON NANOTUBES; OXALIC-ACID DIHYDRATE; BASIS-SET CONVERGENCE AB Calculations of the principal components of magnetic-shielding tensors in crystalline solids require the inclusion of the effects of lattice structure on the local electronic environment to obtain significant agreement with experimental NMR measurements. We assess periodic (GIPAW) and GIAO/symmetry-adapted cluster (SAC) models for computing magnetic-shielding tensors by calculations on a test set containing 72 insulating molecular solids, with a total of 393 principal components of chemical-shift tensors from C-13, N-15, F-19, and P-31 sites. When clusters are carefully designed to represent the local solid-state environment and when periodic calculations include sufficient variability, both methods predict magnetic-shielding tensors that agree well with experimental chemical-shift values, demonstrating the correspondence of the two computational techniques. At the basis-set limit, we find that the small differences in the computed values have no statistical significance for three of the four nuclides considered. Subsequently, we explore the effects of additional DFT methods available only with the GIAO/duster approach, particularly the use of hybrid-GGA functionals, meta-GGA functionals, and hybrid meta-GGA functionals that demonstrate improved agreement in calculations on symmetry-adapted clusters. We demonstrate that meta-GGA functionals improve computed NMR parameters over those obtained by GGA functionals in all cases, and that hybrid functionals improve computed results over the respective pure DFT functional for all nuclides except N-15. C1 [Holmes, Sean T.; Dybowski, Cecil] Univ Delaware, Dept Chem & Biochem, Newark, DE 19716 USA. [Iuliucci, Robbie J.] Washington & Jefferson Coll, Dept Chem, Washington, PA 15301 USA. [Mueller, Karl T.] Penn State Univ, Dept Chem, University Pk, PA 16802 USA. [Mueller, Karl T.] Pacific NW Natl Lab, Phys & Computat Sci Directorate, Richland, WA 99352 USA. RP Dybowski, C (reprint author), Univ Delaware, Dept Chem & Biochem, Newark, DE 19716 USA. EM dybowski@udel.edu FU National Science Foundation [CHE-0956006, CHE-1213451] FX C.D. acknowledges the support of the National Science Foundation under Grant CHE-0956006, and K.T.M. acknowledges the support of the National Science Foundation under Grant CHE-1213451. NR 209 TC 10 Z9 10 U1 12 U2 59 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1549-9618 EI 1549-9626 J9 J CHEM THEORY COMPUT JI J. Chem. Theory Comput. PD NOV PY 2015 VL 11 IS 11 BP 5229 EP 5241 DI 10.1021/acs.jctc.5b00752 PG 13 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA CV9NN UT WOS:000364614000018 PM 26894239 ER PT J AU Ilawe, NV Zimmerman, JA Wong, BM AF Ilawe, Niranjan V. Zimmerman, Jonathan A. Wong, Bryan M. TI Breaking Badly: DFT-D2 Gives Sizeable Errors for Tensile Strengths in Palladium-Hydride Solids SO JOURNAL OF CHEMICAL THEORY AND COMPUTATION LA English DT Article ID DENSITY-FUNCTIONAL THEORY; HARTREE-FOCK MODEL; INTERMOLECULAR INTERACTIONS; 1ST PRINCIPLES; DISPERSION; HYDROGEN; CONTINUUM; GRAPHENE; 1ST-PRINCIPLES; ADSORPTION AB Dispersion interactions play a crucial role in noncovalently bound molecular systems, and recent studies have shown that dispersion effects are also critical for accurately describing covalently bound solids. While most studies on bulk solids have solely focused on equilibrium properties (lattice constants, bulk moduli, and cohesive energies), there has been little work on assessing the importance of dispersion effects for solid-state properties far from equilibrium. In this work, we present a detailed analysis of both equilibrium and highly nonequilibrium properties (tensile strengths leading to fracture) of various palladium-hydride systems using representative DFT methods within the LDA, GGA, DFT-D2, DFT-D3, and nonlocal vdw-DFT families. Among the various DFT methods, we surprisingly find that the empirically constructed DFT-D2 functional gives extremely anomalous and qualitatively incorrect results for tensile strengths in palladium-hydride bulk solids. We present a detailed analysis of these effects and discuss the ramifications of using these methods for predicting solid-state properties far from equilibrium. Most importantly, we suggest caution in using DFT-D2 (or other coarse-grained parametrizations obtained from DFT-D2) for computing material properties under large stress/strain loads or for evaluating solid-state properties under extreme structural conditions. C1 [Ilawe, Niranjan V.; Wong, Bryan M.] Univ Calif Riverside, Dept Environm Chem & Engn, Riverside, CA 92521 USA. [Ilawe, Niranjan V.; Wong, Bryan M.] Univ Calif Riverside, Mat Sci & Engn Program, Riverside, CA 92521 USA. [Zimmerman, Jonathan A.] Sandia Natl Labs, Hydrogen & Combust Technol Dept, Livermore, CA 94551 USA. RP Wong, BM (reprint author), Univ Calif Riverside, Dept Environm Chem & Engn, Riverside, CA 92521 USA. EM bryan.wong@ucr.edu RI Wong, Bryan/B-1663-2009 OI Wong, Bryan/0000-0002-3477-8043 FU Extreme Science and Engineering Discovery Environment (XSEDE) [TG-CHE150040] FX We acknowledge the National Science Foundation for the use of supercomputing resources through the Extreme Science and Engineering Discovery Environment (XSEDE), Project No. TG-CHE150040. We also gratefully acknowledge Prof. De-en Jiang for his assistance with the VASP 5.3.5 source code. NR 58 TC 6 Z9 6 U1 3 U2 11 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1549-9618 EI 1549-9626 J9 J CHEM THEORY COMPUT JI J. Chem. Theory Comput. PD NOV PY 2015 VL 11 IS 11 BP 5426 EP 5435 DI 10.1021/acs.jctc.5b00653 PG 10 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA CV9NN UT WOS:000364614000035 PM 26574331 ER PT J AU Hinckley, DM de Pablo, JJ AF Hinckley, Daniel M. de Pablo, Juan J. TI Coarse-Grained Ions for Nucleic Acid Modeling SO JOURNAL OF CHEMICAL THEORY AND COMPUTATION LA English DT Article ID MOLECULAR-DYNAMICS SIMULATIONS; SINGLE-STRANDED-DNA; AMBER FORCE-FIELD; MONTE-CARLO; COUNTERION CONDENSATION; PERSISTENCE LENGTH; B-DNA; BINDING; WATER; POLYELECTROLYTE AB We present a general coarse-grained model of sodium, magnesium, spermidine, and chlorine in implicit solvent. The effective potentials between ions are systematically parametrized using a relative entropy coarse-graining approach [Carmichael, S. P. and M. S. Shell, J. Phys. Chem. B, 116, 8383-93 (2012)] that maximizes the information retained in a coarse-grained model. We describe the local distribution of ions in the vicinity of a recently published coarse-grained DNA model and demonstrate a dependence of persistence length on ionic strength that differs from that predicted by Odijk-Skolnick-Fixman theory. Consistent with experimental observations, we show that spermidine induces DNA condensation whereas magnesium and sodium do not. This model can be used alongside any coarse-grained DNA model that has explicit charges and an accurate reproduction of the excluded volume of dsDNA. C1 [Hinckley, Daniel M.] Univ Wisconsin, Dept Chem & Biol Engn, Madison, WI 53706 USA. [de Pablo, Juan J.] Univ Chicago, Inst Mol Engn, Chicago, IL 60637 USA. [de Pablo, Juan J.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP de Pablo, JJ (reprint author), Univ Chicago, Inst Mol Engn, Chicago, IL 60637 USA. EM depablo@uchicago.edu FU UW-Madison; Wisconsin Alumni Research Foundation; National Science Foundation; U.S. Department of Energy's Office of Science; Graduate Research Fellowship from National Science Foundation (NSF) [DGE-1256259]; Department of Energy, Basic Energy Sciences, Materials Science and Engineering Division FX We thank Dr. Jejoong Yoo for providing all-atom topology files of dimethylphosphate and magnesium-hexahydrate and the prepublication NBFIX correction for polyamine nitrogen. We acknowledge the computational support of the University of Chicago Research Computing Center. We also acknowledge the compute resources of the University of Chicago Research Computing Center (RCC), as well as those of University of Wisconsin Madison Center For High Throughput Computing (CHTC) in the Department of Computer Sciences. The CHTC is supported by UW-Madison and the Wisconsin Alumni Research Foundation and is an active member of the Open Science Grid, which is supported by the National Science Foundation and the U.S. Department of Energy's Office of Science. D.M.H. was funded by a Graduate Research Fellowship from the National Science Foundation (NSF) (Grant No. DGE-1256259). This work is supported by the Department of Energy, Basic Energy Sciences, Materials Science and Engineering Division. NR 86 TC 4 Z9 4 U1 3 U2 16 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1549-9618 EI 1549-9626 J9 J CHEM THEORY COMPUT JI J. Chem. Theory Comput. PD NOV PY 2015 VL 11 IS 11 BP 5436 EP 5446 DI 10.1021/acs.jctc.5b00341 PG 11 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA CV9NN UT WOS:000364614000036 PM 26574332 ER PT J AU Frost, SHL Miller, BW Baeck, TA Santos, EB Hamlin, DK Knoblaugh, SE Frayo, SL Kenoyer, AL Storb, R Press, OW Wilbur, DS Pagel, JM Sandmaier, BM AF Frost, Sofia H. L. Miller, Brian W. Baeck, Tom A. Santos, Erlinda B. Hamlin, Donald K. Knoblaugh, Sue E. Frayo, Shani L. Kenoyer, Aimee L. Storb, Rainer Press, Oliver W. Wilbur, D. Scott Pagel, John M. Sandmaier, Brenda M. TI alpha-Imaging Confirmed Efficient Targeting of CD45-Positive Cells After At-211-Radioimmunotherapy for Hematopoietic Cell Transplantation SO JOURNAL OF NUCLEAR MEDICINE LA English DT Article DE radioimmunotherapy; At-211; alpha imaging; CD45; lymphoma ID MARROW GRAFTS; CAMERA; VIVO; DOGS; RADIOIMMUNOTHERAPY; ANTIBODY; THERAPY; CD45 AB alpha-radioimmunotherapy targeting CD45 may substitute for total-body irradiation in hematopoietic cell transplantation (HCT) preparative regimens for lymphoma. Our goal was to optimize the anti-CD45 monoclonal antibody (mAb; CA12.10C12) protein dose for At-211-radioimmunotherapy, extending the analysis to include intraorgan At-211 activity distribution and alpha-imaging-based small-scale dosimetry, along with immunohistochemical staining. Methods: Eight normal dogs were injected with either a 0.75 (n 5) or 1.00 (n = 3) mg/kg dose of At-211-B10-CA12.10C12 (11.5-27.6 MBq/kg). Two were euthanized and necropsied 19-22 h after injection, and 6 received autologous HOT 3 d after At-211-radioimmunotherapy, after lymph node and bone marrow biopsies at 2-4 and/or 19 h after injection. Blood was sampled to study toxicity and clearance; CD45 targeting was evaluated by flow cytometry. At-211 localization and small-scale dosimetry were assessed using two alpha-imaging systems: an a-camera and an ionizing-radiation quantum imaging detector (iQID) camera. Results: At-211 uptake was highest in the spleen (0.31-0.61% injected activity [%IA]/g), lymph nodes (0.02-0.16 %IA/g), liver (0.11-0.12 %IA/g), and marrow (0.06-0.08 %IA/g). Lymphocytes in blood and marrow were efficiently targeted using either mAb dose. Lymph nodes remained unsaturated but displayed targeted At-211 localization in T lymphocyte-rich areas. Absorbed doses to blood, marrow, and lymph nodes were estimated at 3.1, 2.4, and 3.4 Gy/166 MBq, respectively. All transplanted dogs experienced transient hepatic toxicity. Liver enzyme levels were temporarily elevated in 5 of 6 dogs; one treated with 1.00 mg mAb/kg developed ascites and was euthanized 136 d after HOT. Conclusion: At-211-anti-CD45 radioimmunotherapy with 0.75 mg mAb/kg efficiently targeted blood and marrow without severe toxicity. Dosimetry calculations and observed radiation-induced effects indicated that sufficient At-211-B10-CA12.10012 localization was achieved for efficient conditioning for HOT. C1 [Frost, Sofia H. L.; Santos, Erlinda B.; Frayo, Shani L.; Kenoyer, Aimee L.; Storb, Rainer; Press, Oliver W.; Pagel, John M.; Sandmaier, Brenda M.] Fred Hutchinson Canc Res Ctr, Clin Res Div, Seattle, WA 98109 USA. [Miller, Brian W.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Miller, Brian W.] Univ Arizona, Coll Opt Sci, Tucson, AZ USA. [Baeck, Tom A.] Univ Gothenburg, Sahlgrenska Acad, Gothenburg, Sweden. [Hamlin, Donald K.; Wilbur, D. Scott] Univ Washington, Dept Radiat Oncol, Seattle, WA 98195 USA. [Knoblaugh, Sue E.] Fred Hutchinson Canc Res Ctr, Comparat Med Shared Resource, Seattle, WA 98109 USA. [Storb, Rainer; Press, Oliver W.; Pagel, John M.; Sandmaier, Brenda M.] Univ Washington, Dept Med, Seattle, WA USA. RP Frost, SHL (reprint author), Fred Hutchinson Canc Res Ctr, 1100 Fairview Ave N,POB 19024, Seattle, WA 98109 USA. EM sfrost@fredhutch.org OI Back, Tom/0000-0002-3375-9473 FU National Institutes of Health (NIH) [CA 172582, CA044991, CA109663, CA78902]; David and Patricia Giuliani Family Foundation; Doug and Maggie Walker Immunotherapy Fellowship; PNNL Linus Pauling Distinguished Postdoctoral Fellowship; NIH [P41EB002035] FX The costs of publication of this article were defrayed in part by the payment of page charges. Therefore, and solely to indicate this fact, this article is hereby marked "advertisement" in accordance with 18 USC section 1734. Research funding was provided by National Institutes of Health (NIH) grants CA 172582, CA044991, CA109663, and CA78902. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH or its subsidiary Institutes and Centers. Sofia H.L. Frost was supported by the David and Patricia Giuliani Family Foundation and a Doug and Maggie Walker Immunotherapy Fellowship. Brian W. Miller was supported by a PNNL Linus Pauling Distinguished Postdoctoral Fellowship, developing the iQID camera in collaboration with NIH grant P41EB002035 (CGRI). No other potential conflict of interest relevant to this article was reported. NR 21 TC 2 Z9 2 U1 3 U2 10 PU SOC NUCLEAR MEDICINE INC PI RESTON PA 1850 SAMUEL MORSE DR, RESTON, VA 20190-5316 USA SN 0161-5505 EI 1535-5667 J9 J NUCL MED JI J. Nucl. Med. PD NOV PY 2015 VL 56 IS 11 BP 1766 EP 1773 DI 10.2967/jnumed.115.162388 PG 8 WC Radiology, Nuclear Medicine & Medical Imaging SC Radiology, Nuclear Medicine & Medical Imaging GA CV6BQ UT WOS:000364356100025 PM 26338894 ER PT J AU Vyatkina, K Wu, S Dekker, LJM VanDuijn, MM Liu, XW Tolic, N Dvorkin, M Alexandrova, S Luider, TM Pasa-Tolic, L Pevzner, PA AF Vyatkina, Kira Wu, Si Dekker, Lennard J. M. VanDuijn, Martijn M. Liu, Xiaowen Tolic, Nikola Dvorkin, Mikhail Alexandrova, Sonya Luider, Theo M. Pasa-Tolic, Ljiljana Pevzner, Pavel A. TI De Novo Sequencing of Peptides from Top-Down Tandem Mass Spectra SO JOURNAL OF PROTEOME RESEARCH LA English DT Article DE top-down mass spectrometry; de novo sequencing; T-Bruijn graph ID POSTTRANSLATIONAL MODIFICATIONS; PROTEIN IDENTIFICATION; DATABASE SEARCH; SPECTROMETRY; MS/MS; TAGS; ANTIBODIES; PROTEOMICS; ALGORITHM; FRAGMENT AB De novo sequencing of proteins and peptides is one of the most important problems in mass spectrometry-driven proteomics. A variety of methods have been developed to accomplish this task from a set of bottom-up tandem (MS/MS) mass spectra. However, a more recently emerged top-down technology, now gaining more and more popularity, opens new perspectives for protein analysis and characterization, implying a need for efficient algorithms to process this kind of MS/MS data. Here, we describe a method that allows for the retrieval, from a set of top-down MS/MS spectra, of long and accurate sequence fragments of the proteins contained in the sample. To this end, we outline a strategy for generating high-quality sequence tags from top-down spectra, and introduce the concept of a T-Bruijn graph by adapting to the case of tags the notion of an A-Bruijn graph widely used in genomics. The output of the proposed approach represents the set of amino acid strings spelled out by optimal paths in the connected components of a T-Bruijn graph. We illustrate its performance on top-down data sets acquired from carbonic anhydrase 2 (CAH2) and the Fab region of alemtuzumab. C1 [Vyatkina, Kira; Dvorkin, Mikhail; Alexandrova, Sonya] St Petersburg Acad Univ, Algorithm Biol Lab, St Petersburg 194021, Russia. [Vyatkina, Kira; Pevzner, Pavel A.] St Petersburg State Univ, Inst Translat Biomed, Ctr Algorithm Biotechnol, St Petersburg 199034, Russia. [Wu, Si] Univ Oklahoma, Dept Chem & Biochem, Norman, OK 73019 USA. [Dekker, Lennard J. M.; VanDuijn, Martijn M.; Luider, Theo M.] Erasmus Univ, Med Ctr, Dept Neurol, NL-3000 CA Rotterdam, Netherlands. [Liu, Xiaowen] Indiana Univ Purdue Univ, Dept BioHlth Informat, Indianapolis, IN 46202 USA. [Liu, Xiaowen] Indiana Univ Sch Med, Ctr Computat Biol & Bioinformat, Indianapolis, IN 46202 USA. [Tolic, Nikola; Pasa-Tolic, Ljiljana] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. [Pevzner, Pavel A.] Univ Calif San Diego, Dept Comp Sci & Engn, La Jolla, CA 92093 USA. RP Vyatkina, K (reprint author), St Petersburg Acad Univ, Algorithm Biol Lab, 8-3 Khlopina Str, St Petersburg 194021, Russia. EM vyatkina@spbau.ru; ppevzner@cs.ucsd.edu OI van Duijn, Martijn/0000-0002-6654-994X FU Government of Russian Federation [11.G34.31.0018]; Russian Science Foundation [14-50-00069]; Netherlands Organization for Scientific Research (NWO), Zenith [93511034] FX The research by K.V. and P.A.P. was partially supported by Government of Russian Federation (Grant 11.G34.31.0018, until December 2014) and Russian Science Foundation (Grant 14-50-00069, since February 2015). L.D. and M.V. are financially supported by The Netherlands Organization for Scientific Research (NWO), Zenith Grant 93511034. We are grateful to Yury Tsybin for insightful remarks, and to Vitali Boitsov, Ivan Terterov, and Sergey Vyazmin for fruitful discussions. NR 41 TC 6 Z9 6 U1 7 U2 24 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1535-3893 EI 1535-3907 J9 J PROTEOME RES JI J. Proteome Res. PD NOV PY 2015 VL 14 IS 11 BP 4450 EP 4462 DI 10.1021/pr501244v PG 13 WC Biochemical Research Methods SC Biochemistry & Molecular Biology GA CV7EL UT WOS:000364435100002 PM 26412692 ER PT J AU Ciferri, C Lander, GC Nogales, E AF Ciferri, Claudio Lander, Gabriel C. Nogales, Eva TI Protein domain mapping by internal labeling and single particle electron microscopy SO JOURNAL OF STRUCTURAL BIOLOGY LA English DT Article DE Protein labeling; GFP; Electron microscopy; Structure; Domain mapping ID COMPLEXES; VISUALIZATION; MECHANISM; CAPSIDS; VIRUS; PRC2 AB In recent years, electron microscopy (EM) and single particle analysis have emerged as essential tools for investigating the architecture of large biological complexes. When high resolution is achievable, crystal structure docking and de-novo modeling allows for precise assignment of individual protein domain sequences. However, the achievable resolution may limit the ability to do so, especially when small or flexible complexes are under study. In such cases, protein labeling has emerged as an important complementary tool to characterize domain architecture and elucidate functional mechanistic details. All labeling strategies proposed to date are either focused on the identification of the position of protein termini or require multi-step labeling strategies, potentially interfering with the final labeling efficiency. Here we describe a strategy for determining the position of internal protein domains within EM maps using a recombinant one-step labeling approach named Efficient Mapping by Internal Labeling (EMIL). EMIL takes advantage of the close spatial proximity of the GFP's N- and C-termini to generate protein chimeras containing an internal GFP at desired locations along the main protein chain. We apply this method to characterize the subunit domain localization of the human Polycomb Repressive Complex 2. (C) 2015 Elsevier Inc. All rights reserved. C1 [Ciferri, Claudio; Nogales, Eva] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Lander, Gabriel C.; Nogales, Eva] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. [Nogales, Eva] Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA USA. RP Ciferri, C (reprint author), Genentech Inc, 1 DNA Way, San Francisco, CA 94080 USA. EM ciferric@gene.com FU NIGMS [GM63072]; American Italian Cancer Foundation Fellowship; Damon Runyon Cancer Research Foundation Fellowship FX We are grateful to Emily M. Ciferri for contributing to the original design strategy, and Alberto Estevez and Sara Sun for technical support. This project was funded in part by an NIGMS grant to E.N. (GM63072). E.N. is a Howard Hughes Medical Institute investigator. C.C. is a recipient of the American Italian Cancer Foundation Fellowship. G.C.L. is a recipient of the Damon Runyon Cancer Research Foundation Fellowship. NR 20 TC 3 Z9 3 U1 0 U2 12 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 1047-8477 EI 1095-8657 J9 J STRUCT BIOL JI J. Struct. Biol. PD NOV PY 2015 VL 192 IS 2 BP 159 EP 162 DI 10.1016/j.jsb.2015.09.016 PG 4 WC Biochemistry & Molecular Biology; Biophysics; Cell Biology SC Biochemistry & Molecular Biology; Biophysics; Cell Biology GA CV9KZ UT WOS:000364607400004 PM 26431894 ER PT J AU Zhang, R Nogales, E AF Zhang, Rui Nogales, Eva TI A new protocol to accurately determine microtubule lattice seam location SO JOURNAL OF STRUCTURAL BIOLOGY LA English DT Article DE Microtubule; Seam; Cryo-EM ID ALPHA-BETA-TUBULIN; ELECTRON CRYOMICROSCOPY; CRYO-EM; DYNAMIC INSTABILITY; HELICAL STRUCTURES; RESOLUTION; MICROSCOPY; PROTEINS; ALGORITHM; FREALIGN AB Microtubules (MTs) are cylindrical polymers of alpha beta-tubulin that display pseudo-helical symmetry due to the presence of a lattice seam of heterologous lateral contacts. The structural similarity between alpha- and beta-tubulin makes it difficult to computationally distinguish them in the noisy cryo-EM images, unless a marker protein for the tubulin dimer, such as kinesin motor domain, is present. We have developed a new data processing protocol that can accurately determine alpha beta-tubulin register and seam location for MT segments. Our strategy can deal with difficult situations, where the marker protein is relatively small or the decoration of marker protein is sparse. Using this new seam-search protocol, combined with movie processing for data from a direct electron detection camera, we were able to determine the cryo-EM structures of MT at 3.5 angstrom resolution in different functional states. The successful distinction of alpha- and beta-tubulin allowed us to visualize the nucleotide state at the E-site and the configuration of lateral contacts at the seam. (C) 2015 Elsevier Inc. All rights reserved. C1 [Zhang, Rui] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Mol & Cell Biol, Howard Hughes Med Inst, Berkeley, CA 94720 USA. RP Zhang, R (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. EM ruiz@lbl.gov; enogales@lbl.gov FU NIGMS [GM051487] FX We thank Greg Alushin and Gabriel Lander for developing the python script to apply pseudo-helical symmetry and for stimulating discussions. We thank Robert Glaeser for the use of the Titan microscope, Anchi Cheng and Tom Houwelling for assistance with Leginon installation and APPION data processing, and Alexis Rohou and Nikolaus Grigorieff for guidance in the use of FREALIGN. We are also thankful to Nikolaus Grigorieff for his comments on the manuscript. This work was funded by a grant from NIGMS (GM051487 to E.N.). E.N. is a Howard Hughes Medical Institute investigator. NR 43 TC 6 Z9 6 U1 1 U2 7 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 1047-8477 EI 1095-8657 J9 J STRUCT BIOL JI J. Struct. Biol. PD NOV PY 2015 VL 192 IS 2 BP 245 EP 254 DI 10.1016/j.jsb.2015.09.015 PG 10 WC Biochemistry & Molecular Biology; Biophysics; Cell Biology SC Biochemistry & Molecular Biology; Biophysics; Cell Biology GA CV9KZ UT WOS:000364607400015 PM 26424086 ER PT J AU Wang, HX Yoda, Y Ogata, H Tanaka, Y Lubitz, W AF Wang, Hongxin Yoda, Yoshitaka Ogata, Hideaki Tanaka, Yoshihito Lubitz, Wolfgang TI A strenuous experimental journey searching for spectroscopic evidence of a bridging nickel-iron-hydride in [NiFe] hydrogenase SO JOURNAL OF SYNCHROTRON RADIATION LA English DT Article DE nuclear resonance vibrational spectroscopy; NRVS; ultra-weak signal; [NiFe] hydrogenase; Ni-R; Ni-H-Fe wag mode; iron hydride ID RESONANCE VIBRATIONAL SPECTROSCOPY; NORMAL-MODE ANALYSIS; ACTIVE-SITE; ELECTRONIC-STRUCTURE; SCATTERING BEAMLINE; RAMAN-SPECTROSCOPY; ENDOR SPECTROSCOPY; LONG UNDULATOR; SPRING-8; ENZYMES AB Direct spectroscopic evidence for a hydride bridge in the Ni-R form of [NiFe] hydrogenase has been obtained using iron-specific nuclear resonance vibrational spectroscopy (NRVS). The Ni-H-Fe wag mode at 675 cm(-1) is the first spectroscopic evidence for a bridging hydride in Ni-R as well as the first iron-hydride-related NRVS feature observed for a biological system. Although density function theory (DFT) calculation assisted the determination of the Ni-R structure, it did not predict the Ni-H-Fe wag mode at similar to 675 cm(-1) before NRVS. Instead, the observed Ni-H-Fe mode provided a critical reference for the DFT calculations. While the overall science about Ni-R is presented and discussed elsewhere, this article focuses on the long and strenuous experimental journey to search for and experimentally identify the Ni-H-Fe wag mode in a Ni-R sample. As a methodology, the results presented here will go beyond Ni-R and hydrogenase research and will also be of interest to other scientists who use synchrotron radiation for measuring dilute samples or weak spectroscopic features. C1 [Wang, Hongxin] Univ Calif Davis, Dept Chem, Davis, CA 95616 USA. [Wang, Hongxin] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Yoda, Yoshitaka; Tanaka, Yoshihito] SPring 8 JASRI, Res & Utilizat Div, Sayo, Hyogo 6795198, Japan. [Ogata, Hideaki; Lubitz, Wolfgang] Max Planck Inst Chem Energy Convers, D-45470 Mulheim, Germany. [Tanaka, Yoshihito] Univ Hyogo, Grad Sch Mat Sci, Kamigori, Hyogo 6781297, Japan. RP Wang, HX (reprint author), Univ Calif Davis, Dept Chem, 1 Cyclotron Rd, Davis, CA 95616 USA. EM hxwang2@lbl.gov RI Ogata, Hideaki/J-4975-2013 FU NIH [GM-65440]; DOE Office of Biological and Environmental Research; BMBF [03SF0355C]; EU/Energy Network project SOLAR-H2 (FP7) [212508]; DFG - Cluster of Excellence RESOLV [EXC1069]; Max Planck Society; JASRI [2012A0032-2013B0032, 2014B1032]; RIKEN [20120107, 20130022] FX This work was funded by NIH (GM-65440) and DOE Office of Biological and Environmental Research (both to Professor Stephen P. Cramer at UC Davis). We also thank Professor Cramer for his overall support to this research. The work was also supported by BMBF (03SF0355C), EU/Energy Network project SOLAR-H2 (FP7 contract 212508), DFG-funded Cluster of Excellence RESOLV (EXC1069) and Max Planck Society (HO and WL). Use of SPring-8 is supported by JASRI (via proposals 2012A0032-2013B0032 and 2014B1032) and RIKEN (via proposals 20120107 and 20130022). NR 61 TC 3 Z9 3 U1 1 U2 16 PU INT UNION CRYSTALLOGRAPHY PI CHESTER PA 2 ABBEY SQ, CHESTER, CH1 2HU, ENGLAND SN 1600-5775 J9 J SYNCHROTRON RADIAT JI J. Synchrot. Radiat. PD NOV PY 2015 VL 22 BP 1334 EP 1344 DI 10.1107/S1600577515017816 PN 6 PG 11 WC Instruments & Instrumentation; Optics; Physics, Applied SC Instruments & Instrumentation; Optics; Physics GA CV6ZV UT WOS:000364422100002 PM 26524296 ER PT J AU Michalska, K Tan, K Chang, C Li, H Hatzos-Skintges, C Molitsky, M Alkire, R Joachimiak, A AF Michalska, Karolina Tan, Kemin Chang, Changsoo Li, Hui Hatzos-Skintges, Catherine Molitsky, Michael Alkire, Randy Joachimiak, Andrzej TI In situ X-ray data collection and structure phasing of protein crystals at Structural Biology Center 19-ID SO JOURNAL OF SYNCHROTRON RADIATION LA English DT Article DE in situ; synchrotron data collection; crystallization plate ID ROOM-TEMPERATURE; MACROMOLECULAR CRYSTALLOGRAPHY; SERIAL CRYSTALLOGRAPHY; CRYSTALLIZATION SCREEN; ANGSTROM RESOLUTION; DIFFRACTION; MODEL; PURIFICATION; CHIP; OPTIMIZATION AB A prototype of a 96-well plate scanner for in situ data collection has been developed at the Structural Biology Center (SBC) beamline 19-ID, located at the Advanced Photon Source, USA. The applicability of this instrument for protein crystal diffraction screening and data collection at ambient temperature has been demonstrated. Several different protein crystals, including selenium-labeled, were used for data collection and successful SAD phasing. Without the common procedure of crystal handling and subsequent cryo-cooling for data collection at T = 100 K, crystals in a crystallization buffer show remarkably low mosaicity (< 0.1 degrees) until deterioration by radiation damage occurs. Data presented here show that cryo-cooling can cause some unexpected structural changes. Based on the results of this study, the integration of the plate scanner into the 19-ID end-station with automated controls is being prepared. With improvement of hardware and software, in situ data collection will become available for the SBC user program including remote access. C1 [Michalska, Karolina; Tan, Kemin; Chang, Changsoo; Li, Hui; Hatzos-Skintges, Catherine; Joachimiak, Andrzej] Argonne Natl Lab, Midwest Ctr Struct Gen, Biosci Div, Argonne, IL 60439 USA. [Michalska, Karolina; Tan, Kemin; Chang, Changsoo; Molitsky, Michael; Alkire, Randy; Joachimiak, Andrzej] Argonne Natl Lab, Struct Biol Ctr, Biosci Div, Argonne, IL 60439 USA. [Joachimiak, Andrzej] Univ Chicago, Dept Biochem & Mol Biol, Chicago, IL 60637 USA. RP Joachimiak, A (reprint author), Argonne Natl Lab, Midwest Ctr Struct Gen, Biosci Div, Argonne, IL 60439 USA. EM andrzejj@anl.gov FU MCSG; SBC; National Institutes of Health [GM094585]; US Department of Energy, Office of Biological and Environmental Research [DE-AC02-06CH11357] FX The authors would like to thank members of the MCSG and SBC for their support. Specifically we would like to thank Michael Endres and Shonda Clancy for help with gene cloning, Dr Stephen Ginell for initial testing of X-ray absorption and scattering of commercial crystallization plates and Dr Krzysztof Lazarski for help with data collection. This research has been funded in part by a grant from the National Institutes of Health GM094585 (AJ), and by the US Department of Energy, Office of Biological and Environmental Research, under Contract DE-AC02-06CH11357. NR 51 TC 0 Z9 0 U1 0 U2 2 PU INT UNION CRYSTALLOGRAPHY PI CHESTER PA 2 ABBEY SQ, CHESTER, CH1 2HU, ENGLAND SN 1600-5775 J9 J SYNCHROTRON RADIAT JI J. Synchrot. Radiat. PD NOV PY 2015 VL 22 BP 1386 EP 1395 DI 10.1107/S1600577515016598 PN 6 PG 10 WC Instruments & Instrumentation; Optics; Physics, Applied SC Instruments & Instrumentation; Optics; Physics GA CV6ZV UT WOS:000364422100009 PM 26524303 ER PT J AU Zhou, TY Ding, WX Gaowei, MJ De Geronimo, G Bohon, J Smedley, J Muller, E AF Zhou, Tianyi Ding, Wenxiang Gaowei, Mengjia De Geronimo, Gianluigi Bohon, Jen Smedley, John Muller, Erik TI Pixelated transmission-mode diamond X-ray detector SO JOURNAL OF SYNCHROTRON RADIATION LA English DT Article DE X-ray detector; beam position monitor; flux; morphology; diamond ID BEAM POSITION AB Fabrication and testing of a prototype transmission-mode pixelated diamond X-ray detector (pitch size 60-100 mu m), designed to simultaneously measure the flux, position and morphology of an X-ray beam in real time, are described. The pixel density is achieved by lithographically patterning vertical stripes on the front and horizontal stripes on the back of an electronic-grade chemical vapor deposition single-crystal diamond. The bias is rotated through the back horizontal stripes and the current is read out on the front vertical stripes at a rate of similar to 1 kHz, which leads to an image sampling rate of similar to 30 Hz. This novel signal readout scheme was tested at beamline X28C at the National Synchrotron Light Source (white beam, 5-15 keV) and at beamline G3 at the Cornell High Energy Synchrotron Source (monochromatic beam, 11.3 keV) with incident beam flux ranges from 1.8 x 10(-2) to 90 W mm(-2). Test results show that the novel detector provides precise beam position (positional noise within 1%) and morphology information (error within 2%), with an additional software-controlled single channel mode providing accurate flux measurement (fluctuation within 1%). C1 [Zhou, Tianyi] SUNY Stony Brook, Mat Sci & Engn, Stony Brook, NY 11790 USA. [Ding, Wenxiang] SUNY Stony Brook, Elect & Comp Engn, Stony Brook, NY 11790 USA. [Gaowei, Mengjia; De Geronimo, Gianluigi; Smedley, John] Brookhaven Natl Lab, Instrumentat Div, Upton, NY 11973 USA. [Bohon, Jen] Case Western Reserve Univ, Ctr Synchrotron Biosci, Upton, NY 11973 USA. [Muller, Erik] SUNY Stony Brook, Phys & Astron, Stony Brook, NY 11790 USA. RP Muller, E (reprint author), SUNY Stony Brook, Phys & Astron, Stony Brook, NY 11790 USA. EM erik.muller@stonybrook.edu FU National Science Foundation Division of Biological Infrastructure Instrument Development for Biological Research Program [DBI-1255340, DBI-1254804, DBI-1254587]; NSF [DBI-1228549]; National Institute of Biomedical Imaging and Bioengineering [P30-EB-009998]; US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-98CH10886]; NIH/NIGMS via NSF [DMR-1332208] FX The authors wish to thank Donald Abel and John Walsh for design and fabrication of sample mounts, Abdul Rumaiz for mask aligner support, Ming Lu for assistance in metallization and Donald Pinelli for wirebonding work. We would like to thank the Instrumentation Division (BNL) for the design and fabrication of printed circuit boards. The authors would also like to thank all of the NSLS and CHESS staff for their assistance at the beamlines and CFN staff for assistance in the clean room. The authors wish to acknowledge the support by the National Science Foundation Division of Biological Infrastructure Instrument Development for Biological Research Program under DBI-1255340, DBI-1254804 and DBI-1254587 as well as NSF DBI-1228549. Use of the Case Center for Synchrotron Biosciences is supported by the National Institute of Biomedical Imaging and Bioengineering under P30-EB-009998. Use of the National Synchrotron Light Source, Brookhaven National Laboratory, was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract No. DE-AC02-98CH10886. Use of CHESS is supported by the NSF and NIH/NIGMS via NSF award DMR-1332208. NR 15 TC 2 Z9 3 U1 1 U2 4 PU INT UNION CRYSTALLOGRAPHY PI CHESTER PA 2 ABBEY SQ, CHESTER, CH1 2HU, ENGLAND SN 1600-5775 J9 J SYNCHROTRON RADIAT JI J. Synchrot. Radiat. PD NOV PY 2015 VL 22 BP 1396 EP 1402 DI 10.1107/S1600577515014824 PN 6 PG 7 WC Instruments & Instrumentation; Optics; Physics, Applied SC Instruments & Instrumentation; Optics; Physics GA CV6ZV UT WOS:000364422100010 PM 26524304 ER PT J AU Bora, DK Cheng, X Kapilashrami, M Glans, PA Luo, Y Guo, JH AF Bora, D. K. Cheng, X. Kapilashrami, M. Glans, P. A. Luo, Y. Guo, J. -H. TI Influence of crystal structure, ligand environment and morphology on Co L-edge XAS spectral characteristics in cobalt compounds SO JOURNAL OF SYNCHROTRON RADIATION LA English DT Article DE cobalt L-edge; NEXAFS; branching ratio; site symmetry; I(L-3) / I(L-2) ratio ID X-RAY-ABSORPTION; TRANSITION-METAL COMPOUNDS; ELECTRONIC-STRUCTURE; BRANCHING RATIO; SPECTROSCOPY; OXIDES; CATALYSTS; LICOO2; SIZE; PHOTOEMISSION AB The electronic structure of a material plays an important role in its functionality for different applications which can be probed using synchrotron-based spectroscopy techniques. Here, various cobalt-based compounds, differing in crystal structure, ligands surrounding the central metal ion and morphology, have been studied by soft X-ray absorption spectroscopy (XAS) at the Co L-edge in order to measure the effect of these parameters on the electronic structure. A careful qualitative analysis of the spectral branching ratio and relative intensities of the L-3 and L-2 peaks provide useful insight into the electronic properties of compounds such as CoO/Co(OH)(2), CoCl2 center dot 6H(2)O/CoF2 center dot 4H(2)O, CoCl2/CoF2, Co3O4 (bulk/nano/micro). For further detailed analysis of the XAS spectra, quantitative analysis has been performed by fitting the spectral profile with simulated spectra for a number of cobalt compounds using crystal field atomic multiplet calculations. C1 [Bora, D. K.; Cheng, X.; Kapilashrami, M.; Glans, P. A.; Guo, J. -H.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Cheng, X.; Luo, Y.] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Peoples R China. [Cheng, X.; Luo, Y.] Royal Inst Technol, Dept Theoret Chem, Sch Biotechnol, SE-10691 Stockholm, Sweden. [Guo, J. -H.] Univ Calif Santa Cruz, Dept Chem & Biochem, Santa Cruz, CA 95064 USA. RP Bora, DK (reprint author), Empa, Swiss Fed Labs Mat Sci & Technol, Lab High Performance Ceram, CH-8600 Dubendorf, Switzerland. EM debajeet.bora@empa.ch; jguo@lbl.gov RI Bora, Debajeet/C-1951-2009; Luo, Yi/B-1449-2009; Glans, Per-Anders/G-8674-2016; Bora, Debajeet/C-6511-2017 OI Bora, Debajeet/0000-0001-6466-7734; Luo, Yi/0000-0003-0007-0394; Bora, Debajeet/0000-0001-6466-7734 FU LDRD project - Directorate of Berkeley Lab; Director, Office of Science/BES, of US DoE [DE-AC02-05CH11231]; US Department of Energy [DE-AC02-05CH11231] FX The authors would like to acknowledge the funding received from the LDRD project supported by the Directorate of Berkeley Lab. The ALS is supported by the Director, Office of Science/BES, of the US DoE, No. DE-AC02-05CH11231. This research used resources of the National Energy Research Scientific Computing Center, which is endorsed by the Office of Science of the US Department of Energy under contract No. DE-AC02-05CH11231. NR 55 TC 1 Z9 1 U1 12 U2 48 PU INT UNION CRYSTALLOGRAPHY PI CHESTER PA 2 ABBEY SQ, CHESTER, CH1 2HU, ENGLAND SN 1600-5775 J9 J SYNCHROTRON RADIAT JI J. Synchrot. Radiat. PD NOV PY 2015 VL 22 BP 1450 EP 1458 DI 10.1107/S1600577515017178 PN 6 PG 9 WC Instruments & Instrumentation; Optics; Physics, Applied SC Instruments & Instrumentation; Optics; Physics GA CV6ZV UT WOS:000364422100016 PM 26524310 ER PT J AU Qian, Y Feng, H Gallagher, FJ Zhu, QZ Wu, MY Liu, CJ Jones, KW Tappero, RV AF Qian, Yu Feng, Huan Gallagher, Frank J. Zhu, Qingzhi Wu, Meiyin Liu, Chang-Jun Jones, Keith W. Tappero, Ryan V. TI Synchrotron study of metal localization in Typha latifolia L. root sections SO JOURNAL OF SYNCHROTRON RADIATION LA English DT Article DE synchrotron mu XRF; root metal uptake and transportation; iron plaque; Typha latifolia L.; wetland ID RICE ORYZA-SATIVA; IRON PLAQUE; PHRAGMITES-AUSTRALIS; URBAN BROWNFIELD; HEAVY-METALS; MICRO-PIXE; LEAD; ACCUMULATION; TOLERANCE; TRANSLOCATION AB Understanding mechanisms that control plant root metal assimilation in soil is critical to the sustainable management of metal-contaminated land. With the assistance of the synchrotron X-ray fluorescence technique, this study investigated possible mechanisms that control the localization of Fe, Cu, Mn, Pb and Zn in the root tissues of Typha latifolia L. collected from a contaminated wetland. Metal localizations especially in the case of Fe and Pb in the dermal tissue and the vascular bundles were different. Cluster analysis was performed to divide the dermal tissue into iron-plaque-enriched dermal tissue and regular dermal tissue based on the spatial distribution of Pb and Fe. Factor analysis showed that Cu and Zn were closely correlated to each other in the dermal tissues. The association of Cu, Zn and Mn with Fe was strong in both regular dermal tissue and iron-plaque-enriched dermal tissue, while significant ( p < 0.05) correlation of Fe with Pb was only observed in tissues enriched with iron plaque. In the vascular bundles, Zn, Mn and Cu showed strong association, suggesting that the localization of these three elements was controlled by a similar mechanism. Iron plaque in the peripheral dermal tissues acted as a barrier for Pb and a buffer for Zn, Cu and Mn. The Casparian strip regulated the transportation of metals from dermal tissues to the vascular bundles. The results suggested that the mechanisms controlling metal localization in root tissues varied with both tissue types and metals. C1 [Qian, Yu; Feng, Huan] Montclair State Univ, Dept Earth & Environm Studies, Montclair, NJ 07043 USA. [Gallagher, Frank J.] Rutgers State Univ, Dept Landscape Architecture, Environm Planning & Design Program, New Brunswick, NJ 08901 USA. [Zhu, Qingzhi] SUNY Stony Brook, Sch Marine & Atmospher Sci, Stony Brook, NY 11794 USA. [Wu, Meiyin] Montclair State Univ, Dept Biol & Mol Biol, Montclair, NJ 07043 USA. [Liu, Chang-Jun] Brookhaven Natl Lab, Dept Biosci, Upton, NY 11973 USA. [Jones, Keith W.; Tappero, Ryan V.] Brookhaven Natl Lab, Photon Sci Directorate, Upton, NY 11973 USA. RP Feng, H (reprint author), Montclair State Univ, Dept Earth & Environm Studies, Montclair, NJ 07043 USA. EM fengh@mail.montclair.edu FU China Scholarship Council; Margaret and Herman Sokol Foundation; US Department of Energy, Office of Science, Office of Workforce Development for Teachers and Scientists (WDTS) under Visiting Faculty Program (VFP); US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-98CH10886]; US Department of Energy - Geosciences [DE-FG02-92ER14244] FX This work was supported in part by the China Scholarship Council (YQ) and the Margaret and Herman Sokol Foundation (HF). This project was also supported in part by the US Department of Energy, Office of Science, Office of Workforce Development for Teachers and Scientists (WDTS) under the Visiting Faculty Program (VFP) (HF). Use of the NSLS was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. NSLS X27A was supported in part by the US Department of Energy - Geosciences (DE-FG02-92ER14244 to The University of Chicago - CARS). We are also grateful to Dr Steve Heald, Co-editor of Journal of Synchrotron Radiation, and two anonymous reviewers who offered constructive comments and suggestions on an earlier draft of this paper. NR 42 TC 2 Z9 2 U1 7 U2 26 PU INT UNION CRYSTALLOGRAPHY PI CHESTER PA 2 ABBEY SQ, CHESTER, CH1 2HU, ENGLAND SN 1600-5775 J9 J SYNCHROTRON RADIAT JI J. Synchrot. Radiat. PD NOV PY 2015 VL 22 BP 1459 EP 1468 DI 10.1107/S1600577515017269 PN 6 PG 10 WC Instruments & Instrumentation; Optics; Physics, Applied SC Instruments & Instrumentation; Optics; Physics GA CV6ZV UT WOS:000364422100017 PM 26524311 ER PT J AU Nguyen, BM Swartzentruber, B Ro, YG Dayeh, SA AF Nguyen, Binh-Minh Swartzentruber, Brian Ro, Yun Goo Dayeh, Shadi A. TI Facet-Selective Nucleation and Conformal Epitaxy of Ge Shells on Si Nanowires SO NANO LETTERS LA English DT Article DE Si; Ge; core/shell; nanowire; nucleation; facet; misfit dislocation; FET ID FIELD-EFFECT TRANSISTORS; CORE-SHELL; SILICON NANOWIRES; STRAIN RELAXATION; HOLE GAS; HETEROSTRUCTURES; GROWTH; ARRAYS AB Knowledge of nanoscale heteroepitaxy is continually evolving as advances in material synthesis reveal new mechanisms that have not been theoretically predicted and are different than what is known about planar structures. In addition to a wide range of potential applications, core/shell nanowire structures offer a useful template to investigate heteroepitaxy at the atomistic scale. We show that the growth of a Ge shell on a Si core can be tuned from the theoretically predicted island growth mode to a conformal, crystalline, and smooth shell by careful adjustment of growth parameters in a narrow growth window that has not been explored before. In the latter growth mode, Ge adatoms preferentially nucleate islands on the {113} facets of the Si core, which outgrow over the {220} facets. Islands on the low-energy {111} facets appear to have a nucleation delay compared to the {113} islands; however, they eventually coalesce to form a crystalline conformal shell. Synthesis of epitaxial and conformal Si/Ge/Si core/multishell structures enables us to fabricate unique cylindrical ring nanowire field-effect transistors, which we demonstrate to have steeper on/off characteristics than conventional core/shell nanowire transistors. C1 [Nguyen, Binh-Minh; Dayeh, Shadi A.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. [Nguyen, Binh-Minh; Ro, Yun Goo; Dayeh, Shadi A.] Univ Calif San Diego, Dept Elect & Comp Engn, La Jolla, CA 92093 USA. [Swartzentruber, Brian] Sandia Natl Labs, Ctr Integrated Nanotechnol, Albuquerque, NM 87185 USA. [Dayeh, Shadi A.] Univ Calif San Diego, Mat Sci Program, La Jolla, CA 92093 USA. RP Nguyen, BM (reprint author), Los Alamos Natl Lab, Ctr Integrated Nanotechnol, POB 1663, Los Alamos, NM 87545 USA. EM mbnguyen@hrl.com; sdayeh@ece.ucsd.edu FU National Nuclear Security Administration of the U.S. Department of Energy [DE-AC52-06NA25396]; NSF CAREER Award [ECCS-1351980]; NSF [DMR-1503595] FX This work was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science. Los Alamos National Laboratory, an affirmative action equal opportunity employer, is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. The authors would like to acknowledge Dr. Jinkyoung Yoo and Katherine Jungjohann from CINT for the access to their CVD and TEM systems, respectively. B.-M.N. is grateful for a Los Alamos National Lab's Director's postdoctoral fellowship and S.A.D. acknowledges support of NSF CAREER Award under ECCS-1351980 and an NSF DMR-1503595 award. NR 43 TC 4 Z9 4 U1 1 U2 35 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD NOV PY 2015 VL 15 IS 11 BP 7258 EP 7264 DI 10.1021/acs.nanolett.5b02313 PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA CW1BU UT WOS:000364725400014 PM 26447652 ER PT J AU Park, YS Bae, WK Baker, T Lim, J Klimov, VI AF Park, Young-Shin Bae, Wan Ki Baker, Thomas Lim, Jaehoon Klimov, Victor I. TI Effect of Auger Recombination on Lasing in Heterostructured Quantum Dots with Engineered Core/Shell Interfaces SO NANO LETTERS LA English DT Article DE quantum dot; semiconductor nanocrystal; core/shell heterostructure; Auger recombination; optical gain; lasing ID AMPLIFIED SPONTANEOUS EMISSION; STIMULATED-EMISSION; SEMICONDUCTOR NANOCRYSTALS; LOW-THRESHOLD; OPTICAL GAIN; IN-RODS; LASER; SUPPRESSION; CONFINEMENT; WELLS AB Nanocrystal quantum dots (QDs) are attractive materials for applications as laser media because of their bright, size-tunable emission and the flexibility afforded by colloidal synthesis. Nonradiative Auger recombination, however, hampers optical amplification in QDs by rapidly depleting the population of gain-active multiexciton states. In order to elucidate the role of Auger recombination in QD lasing and isolate its influence from other factors that might affect optical gain, we study two types of CdSe/CdS core/shell QDs with the same core radii and the same total sizes but different properties of the core/shell interface ("sharp" vs "smooth"). These samples exhibit distinctly different biexciton Auger lifetimes but are otherwise virtually identical. The suppression of Auger recombination in the sample with a smooth (alloyed) interface results in a notable improvement in the optical gain performance manifested in the reduction of the threshold for amplified spontaneous emission and the ability to produce dual-color lasing involving both the band-edge (1S) and the higher-energy (1P) electronic states. We develop a model, which explicitly accounts for the multiexciton nature of optical gain in QDs, and use it to analyze the competition between stimulated emission from multiexcitons and their decay via Auger recombination. These studies re-emphasize the importance of Auger recombination control for the realization of real-life QD-based lasing technologies and offer practical strategies for suppression of Auger recombination via "interface engineering" in core/shell structures. C1 [Park, Young-Shin; Baker, Thomas; Lim, Jaehoon; Klimov, Victor I.] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. [Park, Young-Shin] Univ New Mexico, Ctr High Technol Mat, Albuquerque, NM 87131 USA. [Bae, Wan Ki] Korea Inst Sci & Technol, Natl Agenda Res Div, Photoelect Hybrids Res Ctr, Seoul 02792, South Korea. RP Klimov, VI (reprint author), Los Alamos Natl Lab, Div Chem, POB 1663, Los Alamos, NM 87545 USA. EM klimov@lanl.gov OI Park, Young-Shin/0000-0003-4204-1305; Klimov, Victor/0000-0003-1158-3179 FU Chemical Sciences, Biosciences and Geosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy FX These studies were supported by the Chemical Sciences, Biosciences and Geosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy. NR 40 TC 18 Z9 18 U1 16 U2 56 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD NOV PY 2015 VL 15 IS 11 BP 7319 EP 7328 DI 10.1021/acs.nanolett.5b02595 PG 10 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA CW1BU UT WOS:000364725400023 PM 26397312 ER PT J AU Loiudice, A Cooper, JK Hess, LH Mattox, TM Sharp, ID Buonsanti, R AF Loiudice, Anna Cooper, Jason K. Hess, Lucas H. Mattox, Tracy M. Sharp, Ian D. Buonsanti, R. TI Assembly and Photocarrier Dynamics of Heterostructured Nanocomposite Photoanodes from Multicomponent Colloidal Nanocrystals SO NANO LETTERS LA English DT Article DE Colloidal synthesis; ternary oxides; assembly; photoelectrochemistry; charge dynamics ID PHOTOELECTROCHEMICAL WATER OXIDATION; EFFICIENT LIGHT-ABSORPTION; BISMUTH VANADATE; PHOTOCATALYTIC PROPERTIES; SPLITTING PHOTOCATALYSTS; PHOTOGENERATED HOLES; CHARGE SEPARATION; BIVO4 PHOTOANODES; METAL-OXIDE; ELECTRODES AB Multicomponent oxides and their heterostructures are rapidly emerging as promising light absorbers to drive oxidative chemistry. To fully exploit their functionality, precise tuning of their composition and structure is crucial. Here, we report a novel solution-based route to nanostructured bismuth vanadate (BiVO4) that facilitates the assembly of BiVO4/metal oxide (TiO2, WO3, and Al2O3) nanocomposites in which the morphology of the metal oxide building blocks is finely tailored. The combination of transient absorption spectroscopy spanning from picoseconds to second time scales-and photoelectrochemical measurements reveals that the achieved structural tunability is key to understanding and directing charge separation, transport, and efficiency in these complex oxide heterostructured films. C1 [Loiudice, Anna; Cooper, Jason K.; Hess, Lucas H.; Sharp, Ian D.; Buonsanti, R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Joint Ctr Artificial Photosynth, Berkeley, CA 94720 USA. [Loiudice, Anna; Cooper, Jason K.; Hess, Lucas H.; Buonsanti, R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Mattox, Tracy M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. [Sharp, Ian D.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Sharp, ID (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Joint Ctr Artificial Photosynth, One Cyclotron Rd, Berkeley, CA 94720 USA. EM idsharp@lbl.gov; rbuonsanti@lbl.gov RI Hess, Lucas/I-1787-2013 FU Office of Science of the U.S. Department of Energy [DE-SC0004993]; Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy [DE-AC02-05CH11231]; Alexander von Humboldt Foundation FX This material is based upon work performed by the Joint Center for Artificial Photosynthesis, a DOE Energy Innovation Hub, supported through the Office of Science of the U.S. Department of Energy under Award Number DE-SC0004993. Work at the Molecular Foundry was supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. L.H.H. acknowledges financial support from the Alexander von Humboldt Foundation. We thank Dr Ajay Singh for helpful discussions and Prof. Delia J. Milliron for critical reading of the manuscript. NR 51 TC 7 Z9 7 U1 12 U2 90 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD NOV PY 2015 VL 15 IS 11 BP 7347 EP 7354 DI 10.1021/acs.nanolett.5b03871 PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA CW1BU UT WOS:000364725400027 PM 26457457 ER PT J AU Lee, S Zhang, WR Khatkhatay, F Wang, HY Jia, QX MacManus-Driscoll, JL AF Lee, Shinbuhm Zhang, Wenrui Khatkhatay, Fauzia Wang, Haiyan Jia, Quanxi MacManus-Driscoll, Judith L. TI Ionic Conductivity Increased by Two Orders of Magnitude in Micrometer-Thick Vertical Yttria-Stabilized ZrO2 Nanocomposite Films SO NANO LETTERS LA English DT Article DE Ion conductivity; nanocomposite; yttria-stabilized ZrO2; samarium-doped CeO2 ID OXIDE FUEL-CELLS; EPITAXIAL ZRO2Y2O3/SRTIO3 HETEROSTRUCTURES; STRAIN CONTROL; FERROELECTRIC-FILMS; INTERFACES; ELECTROLYTES; ENHANCEMENT; DIFFUSION; TEMPERATURES; MODULATION AB We design and create a unique cell geometry of templated micrometer-thick epitaxial nanocomposite films which contain similar to 20 nm diameter yttria-stabilized ZrO2 (YSZ) nanocolumns, strain coupled to a SrTiO3 matrix. The ionic conductivity of these nanocolumns is enhanced by over 2 orders of magnitude compared to plain YSZ films. Concomitant with the higher ionic conduction is the finding that the YSZ nanocolumns in the films have much higher crystallinity and orientation, compared to plain YSZ films. Hence, "oxygen migration highways" are formed in the desired out-of-plane direction. This improved structure is shown to originate from the epitaxial coupling of the YSZ nanocolumns to the SrTiO3 film matrix and from nucleation of the YSZ nanocolumns on an intermediate nanocomposite base layer of highly aligned Sm-doped CeO2 nanocolumns within the SrTiO3 matrix. This intermediate layer reduces the lattice mismatch between the YSZ nanocolumns and the substrate. Vertical ionic conduction values as high as 10(-2) Omega(-1) cm(-1) were demonstrated at 360 degrees C (300 degrees C lower than plain YSZ films), showing the strong practical potential of these nanostructured films for use in much lower operation temperature ionic devices. C1 [Lee, Shinbuhm; MacManus-Driscoll, Judith L.] Univ Cambridge, Dept Mat Sci & Met, Cambridge CB3 0FS, England. [Zhang, Wenrui; Khatkhatay, Fauzia; Wang, Haiyan] Texas A&M Univ, Dept Elect & Comp Engn, College Stn, TX 77843 USA. [Jia, Quanxi] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. RP MacManus-Driscoll, JL (reprint author), Univ Cambridge, Dept Mat Sci & Met, 27 Charles Babbage Rd, Cambridge CB3 0FS, England. EM jld33@cam.ac.uk RI Zhang, Wenrui/D-1892-2015; LEE, SHINBUHM/A-9494-2011 OI Zhang, Wenrui/0000-0002-0223-1924; LEE, SHINBUHM/0000-0002-4907-7362 FU European Research Council (ERC) [ERC-2009-AdG-247276-NOVOX]; UK Engineering and Physical Sciences Research Council (EPSRC); U.S. National Science Foundation [DMR-1401266]; NNSA's Laboratory Directed Research and Development Program FX This work was supported by the European Research Council (ERC) (Advanced Investigator grant ERC-2009-AdG-247276-NOVOX), the UK Engineering and Physical Sciences Research Council (EPSRC) and the U.S. National Science Foundation (grant no. DMR-1401266). The work at Los Alamos was partially supported by the NNSA's Laboratory Directed Research and Development Program and was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science. NR 50 TC 7 Z9 7 U1 8 U2 55 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD NOV PY 2015 VL 15 IS 11 BP 7362 EP 7369 DI 10.1021/acs.nanolett.5b02726 PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA CW1BU UT WOS:000364725400029 PM 26335046 ER PT J AU Mrejen, M Suchowski, H Hatakeyama, T Wang, Y Zhang, X AF Mrejen, Michael Suchowski, Haim Hatakeyama, Taiki Wang, Yuan Zhang, Xiang TI Experimental Realization of Two Decoupled Directional Couplers in a Subwavelength Packing by Adiabatic Elimination SO NANO LETTERS LA English DT Article DE Integrated optics devices; waveguides; quantum computing; nanophotonics; atomic molecular and optical physics; near-field optical microscopy ID WAVE-GUIDES; SILICON; MODULATOR; LATTICES; PASSAGE; COMPACT; SCALE AB On-chip optical data processing and photonic quantum integrated circuits require the integration of densely packed directional couplers at the nanoscale. However, the inherent evanescent coupling at this length scale severely limits the compactness of such on-chip photonic circuits. Here, inspired by the adiabatic elimination in a N-level atomic system, we report an experimental realization of a pair of directional couplers that are effectively isolated from each other despite their subwavelength packing. This approach opens the way to ultradense arrays of waveguide couplers for integrated optical and quantum logic gates. C1 [Mrejen, Michael; Suchowski, Haim; Hatakeyama, Taiki; Wang, Yuan; Zhang, Xiang] Univ Calif Berkeley, NSF Nanoscale Sci & Engn Ctr NSEC, Berkeley, CA 94720 USA. [Mrejen, Michael] Univ Calif Berkeley, Grad Grp Appl Sci & Technol, Berkeley, CA 94720 USA. [Zhang, Xiang] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Zhang, Xiang] King Abdulaziz Univ, Dept Phys, Jeddah 21589, Saudi Arabia. RP Zhang, X (reprint author), Univ Calif Berkeley, NSF Nanoscale Sci & Engn Ctr NSEC, Berkeley, CA 94720 USA. EM xiang@berkeley.edu RI Zhang, Xiang/F-6905-2011; Wang, Yuan/F-7211-2011 FU Office of Naval Research (ONR) MURI [N00014-13-1-0678]; National Science Foundation (NSF) Materials World Network [DMR-1210170] FX This research was supported by the Office of Naval Research (ONR) MURI program under Grant No. N00014-13-1-0678 and the National Science Foundation (NSF) Materials World Network (Grant No. DMR-1210170). NR 32 TC 1 Z9 1 U1 3 U2 11 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD NOV PY 2015 VL 15 IS 11 BP 7383 EP 7387 DI 10.1021/acs.nanolett.5b02790 PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA CW1BU UT WOS:000364725400032 PM 26421374 ER PT J AU Yang, YM Wang, WY Boulesbaa, A Kravchenko, II Briggs, DP Puretzky, A Geohegan, D Valentine, J AF Yang, Yuanmu Wang, Wenyi Boulesbaa, Abdelaziz Kravchenko, Ivan I. Briggs, Dayrl P. Puretzky, Alexander Geohegan, David Valentine, Jason TI Nonlinear Fano-Resonant Dielectric Metasurfaces SO NANO LETTERS LA English DT Article DE Metamaterial; dielectric antenna; Fano resonance; third harmonic generation ID ENHANCED 3RD-HARMONIC GENERATION; ALL-OPTICAL CONTROL; 2ND-HARMONIC GENERATION; HARMONIC-GENERATION; SILICON; METAMATERIALS; NANOSTRUCTURES; LIGHT; LASER AB Strong nonlinear light-matter interaction is highly sought-after for a variety of applications including lasing and all-optical light modulation. Recently, resonant plasmonic structures have been considered promising candidates for enhancing nonlinear optical processes due to their ability to greatly enhance the optical near-field; however, their small mode volumes prevent the inherently large nonlinear susceptibility of the metal from being efficiently exploited. Here, we present an alternative approach that utilizes a Fano-resonant silicon metasurface. The metasurface results in strong near-field enhancement within the volume of the silicon resonator while minimizing two photon absorption. We measure a third harmonic generation enhancement factor of 1.5 x 10(5) with respect to an unpattemed silicon film and an absolute conversion efficiency of 1.2 x 10(-6) with a peak pump intensity of 3.2 GW cm(-2). The enhanced nonlinearity, combined with a sharp linear transmittance spectrum, results in transmission modulation with a modulation depth of 36%. The modulation mechanism is studied by pump-probe experiments. C1 [Yang, Yuanmu] Vanderbilt Univ, Interdisciplinary Mat Sci Program, Nashville, TN 37212 USA. [Wang, Wenyi] Vanderbilt Univ, Dept Elect Engn & Comp Sci, Nashville, TN 37212 USA. [Boulesbaa, Abdelaziz; Kravchenko, Ivan I.; Briggs, Dayrl P.; Puretzky, Alexander; Geohegan, David] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Valentine, Jason] Vanderbilt Univ, Dept Mech Engn, Nashville, TN 37212 USA. RP Valentine, J (reprint author), Vanderbilt Univ, Dept Mech Engn, Nashville, TN 37212 USA. EM jason.g.valentine@vanderbilt.edu RI Kravchenko, Ivan/K-3022-2015; Puretzky, Alexander/B-5567-2016; Boulesbaa, Abdelaziz/J-3314-2016; Yang, Yuanmu/J-3187-2012; Geohegan, David/D-3599-2013; Valentine, Jason/A-6121-2012 OI Kravchenko, Ivan/0000-0003-4999-5822; Puretzky, Alexander/0000-0002-9996-4429; Boulesbaa, Abdelaziz/0000-0003-4519-4403; Yang, Yuanmu/0000-0002-5264-0822; Geohegan, David/0000-0003-0273-3139; FU National Science Foundation [ECCS-1351334]; Office of Naval Research [N00014-14-1-0475] FX This material is based upon work supported by the National Science Foundation under Grant No. ECCS-1351334 and the Office of Naval Research under Grant No. N00014-14-1-0475. Fabrication of the metasurfaces was conducted at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility. NR 34 TC 36 Z9 36 U1 20 U2 97 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD NOV PY 2015 VL 15 IS 11 BP 7388 EP 7393 DI 10.1021/acs.nanolett.5b02802 PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA CW1BU UT WOS:000364725400033 PM 26501777 ER EF