FN Thomson Reuters Web of Science™ VR 1.0 PT J AU Calafiore, G Koshelev, A Dhuey, S Sassolini, S Messerschmidt, M Schleunitz, A Goltsov, A Pina-Hernandez, C Pirri, FC Yankov, V Cabrini, S Peroz, C AF Calafiore, Giuseppe Koshelev, Alexander Dhuey, Scott Sassolini, Simone Messerschmidt, Martin Schleunitz, Ame Goltsov, Alexander Pina-Hernandez, Carlos Pirri, Fabrizio C. Yankov, Vladimir Cabrini, Stefano Peroz, Christophe TI Step-and-repeat nanoimprint on pre-spin coated film for the fabrication of integrated optical devices SO JOURNAL OF MICRO-NANOLITHOGRAPHY MEMS AND MOEMS LA English DT Article DE nanoimprint lithography; integrated optics; digital planar hologram; nanoimprint resist ID LITHOGRAPHY AB A step-and-repeat nanoimprint lithography (SR-NIL) process on a pre-spin-coated film is employed for the fabrication of an integrated optical device for on-chip spectroscopy. The complex device geometry has a footprint of about 3 cm(2) and comprises several integrated optical components with different pattern size and density. Here, a new resist formulation for SR-NIL was tested for the first time and proved effective at dramatically reducing the occurrence of systematic defects due to film dewetting, trapped bubbles, and resist peel-off. A batch of 180 dies were imprinted, and statistics on the imprint success rate is discussed. Devices were optically characterized and benchmarked to an identical chip that was fabricated by electron-beam lithography. The overall performance of the imprinted nanospectrometers is well-aligned with that of the reference chip, which demonstrates the great potential of our SR-NIL for the low-cost manufacturing of integrated optical devices. (C) 2015 Society of Photo-Optical Instrumentation Engineers (SPIE) C1 [Calafiore, Giuseppe; Koshelev, Alexander; Pina-Hernandez, Carlos; Peroz, Christophe] aBeam Technol Inc, Hayward, CA 94541 USA. [Calafiore, Giuseppe; Pirri, Fabrizio C.] Polytech Univ Turin, I-10129 Turin, Italy. [Calafiore, Giuseppe; Dhuey, Scott; Sassolini, Simone; Cabrini, Stefano] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. [Koshelev, Alexander] Moscow Inst Phys & Technol, Moscow 141700, Russia. [Messerschmidt, Martin; Schleunitz, Ame] Micro Resist Technol GmbH, D-12555 Berlin, Germany. [Goltsov, Alexander; Yankov, Vladimir] Nanoopt Devices, Santa Clara, CA 95054 USA. RP Calafiore, G (reprint author), aBeam Technol Inc, 22290 Foothill Blvd,St 2 Hayward, Hayward, CA 94541 USA. EM gc@abeamtech.com; scabrini@lbl.gov RI Foundry, Molecular/G-9968-2014 FU Office of Science, Office of Basic Energy Sciences, of the United States Department of Energy [DEAC02-05CH11231]; Air Force Office of Scientific Research, Air Force Material Command, USAF [FA9550-12-C-0077] FX The authors would like to thank Dr. D. Olynick for her useful discussion. Work at the Molecular Foundry was supported by the Office of Science, Office of Basic Energy Sciences, of the United States Department of Energy under contract DEAC02-05CH11231. This study is supported by the Air Force Office of Scientific Research, Air Force Material Command, USAF, under grant/contract FA9550-12-C-0077. NR 20 TC 2 Z9 2 U1 3 U2 10 PU SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98225 USA SN 1932-5150 EI 1932-5134 J9 J MICRO-NANOLITH MEM JI J. Micro-Nanolithogr. MEMS MOEMS PD JUL PY 2015 VL 14 IS 3 AR 033506 DI 10.1117/1.JMM.14.3.033506 PG 7 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Optics SC Engineering; Science & Technology - Other Topics; Materials Science; Optics GA CR4PG UT WOS:000361317500023 ER PT J AU Mojsoska, B Zuckermann, RN Jenssen, H AF Mojsoska, Biljana Zuckermann, Ronald N. Jenssen, Havard TI Structure-Activity Relationship Study of Novel Peptoids That Mimic the Structure of Antimicrobial Peptides SO ANTIMICROBIAL AGENTS AND CHEMOTHERAPY LA English DT Article ID ANTIBACTERIAL PEPTIDES; DESIGN; MECHANISM; MODEL; AMPHIPHILICITY; HYDROPHOBICITY; RICH AB The constant emergence of new bacterial strains that resist the effectiveness of marketed antimicrobials has led to an urgent demand for and intensive research on new classes of compounds to combat bacterial infections. Antimicrobial peptoids comprise one group of potential candidates for antimicrobial drug development. The present study highlights a library of 22 cationic amphipathic peptoids designed to target bacteria. All the peptoids share an overall net charge of +4 and are 8 to 9 residues long; however, the hydrophobicity and charge distribution along the abiotic backbone varied, thus allowing an examination of the structure-activity relationship within the library. In addition, the toxicity profiles of all peptoids were assessed in human red blood cells (hRBCs) and HeLa cells, revealing the low toxicity exerted by the majority of the peptoids. The structural optimization also identified two peptoid candidates, 3 and 4, with high selectivity ratios of 4 to 32 and 8 to 64, respectively, and a concentration- dependent bactericidal mode of action against Gram-negative Escherichia coli. C1 [Mojsoska, Biljana; Jenssen, Havard] Roskilde Univ, Dept Sci Syst & Models, Roskilde, Denmark. [Zuckermann, Ronald N.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. RP Jenssen, H (reprint author), Roskilde Univ, Dept Sci Syst & Models, Roskilde, Denmark. EM jenssen@ruc.dk RI Foundry, Molecular/G-9968-2014 FU Danish Council for Independent Research [10-085287]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was funded by The Danish Council for Independent Research (grant 10-085287).; We also acknowledge the Molecular Foundry, whose work was supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under contract DE-AC02-05CH11231. NR 38 TC 15 Z9 16 U1 8 U2 48 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0066-4804 EI 1098-6596 J9 ANTIMICROB AGENTS CH JI Antimicrob. Agents Chemother. PD JUL PY 2015 VL 59 IS 7 BP 4112 EP 4120 DI 10.1128/AAC.00237-15 PG 9 WC Microbiology; Pharmacology & Pharmacy SC Microbiology; Pharmacology & Pharmacy GA CQ8YF UT WOS:000360896000051 PM 25941221 ER PT J AU Smalley, NE Taipale, S De Marco, P Doronina, NV Kyrpides, N Shapiro, N Woyke, T Kalyuzhnaya, MG AF Smalley, Nicole E. Taipale, Sami De Marco, Paolo Doronina, Nina V. Kyrpides, Nikos Shapiro, Nicole Woyke, Tanja Kalyuzhnaya, Marina G. TI Functional and genomic diversity of methylotrophic Rhodocyclaceae: description of Methyloversatilis discipulorum sp nov. SO INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY LA English DT Article ID PHOSPHORUS REMOVAL; SEQUENCE; BACTERIA; PLANTS AB Three strains of methylotrophic Rhodocyclaceae (FAM1(T), RZ18-153 and RZ94) isolated from Lake Washington sediment samples were characterized. Based on phylogenetic analysis of 16S rRNA gene sequences the strains should be assigned to the genus Methyloversatilis. Similarly to other members of the family, the strains show broad metabolic capabilities and are able to utilize a number of organic acids, alcohols and aromatic compounds in addition to methanol and methylamine. The main fatty acids were 16:1 omega 7c (49-59%) and 16:0 (32-29%). Genomes of all isolates were sequenced, assembled and annotated in collaboration with the DOE Joint Genome Institute (JGI). Genome comparison revealed that the strains FAM1(T), RZ18-153 and RZ94 are closely related to each other and almost equally distant from two previously described species of the genus Methyloversatilis, Methyloversatilis universalis and Methyloversatilis thermotolerans. Like other methylotrophic species of the genus Methyloversatilis, all three strains possess one-subunit PQQ-dependent ethanol/methanol dehydrogenase (Mdh-2), the N-methylglutamate pathway and the serine cycle (isocitrate lyase/malate synthase, lcl/ms(+) variant). Like M. universalis, strains FAM1(T), RZ18-153 and RZ94 have a quinohemoprotein amine dehydrogenase, a tungsten-containing formaldehyde ferredoxin oxidoreductase, phenol hydroxylase, and the complete Calvin cycle. Similarly to M. thermotolerans, the three strains possess two-subunit methanol dehydrogenase (MxaFI), monoamine oxidase (MAO) and nitrogenase. Based on the phenotypic and genomic data, the strains FAM1(T), RZ18-153 and RZ94 represent a novel species of the genus Methyloversatilis, for which the name Methyloversatilis discipulorum sp. nov. is proposed. The type strain is FAM1(T) (=JCM 30542(T)=VKM=B-2888(T)). C1 [Smalley, Nicole E.; Kalyuzhnaya, Marina G.] Univ Washington, Dept Microbiol, Seattle, WA 98195 USA. [Taipale, Sami] Univ Jyvaskyla, Dept Biol & Environm Sci, Jyvaskyla 40014, Finland. [De Marco, Paolo] Univ Porto, IBMC, P-4100 Oporto, Portugal. [De Marco, Paolo] IINFACTS, CESPU, Gandra Prd, Portugal. [Doronina, Nina V.] Russian Acad Sci, Skryabin GK Inst Biochem & Physiol Microorganisms, Moscow 142290, Russia. [Kyrpides, Nikos; Shapiro, Nicole; Woyke, Tanja] US DOE Joint Genome Inst, Walnut Creek, CA 94598 USA. [Kalyuzhnaya, Marina G.] San Diego State Univ, Dept Biol, San Diego, CA 92182 USA. RP Kalyuzhnaya, MG (reprint author), Univ Washington, Dept Microbiol, Seattle, WA 98195 USA. EM mkalyuzhnaya@mail.sdsu.edu RI De Marco, Paolo/B-4281-2008; Kyrpides, Nikos/A-6305-2014; OI De Marco, Paolo/0000-0002-9322-6986; Kyrpides, Nikos/0000-0002-6131-0462; Kalyuzhnaya, Marina/0000-0002-9058-7794 FU NSF [MCB-0604269]; [DE-AC02-05CH11231] FX This research was supported by a grant from the NSF (grant no. MCB-0604269). The work conducted by the US Department of Energy Joint Genome Institute, a DOE Office of Science User Facility, is supported under contract no. DE-AC02-05CH11231. NR 24 TC 5 Z9 5 U1 3 U2 18 PU SOC GENERAL MICROBIOLOGY PI READING PA MARLBOROUGH HOUSE, BASINGSTOKE RD, SPENCERS WOODS, READING RG7 1AG, BERKS, ENGLAND SN 1466-5026 EI 1466-5034 J9 INT J SYST EVOL MICR JI Int. J. Syst. Evol. Microbiol. PD JUL PY 2015 VL 65 BP 2227 EP 2233 DI 10.1099/ijs.0.000190 PN 7 PG 7 WC Microbiology SC Microbiology GA CQ8QN UT WOS:000360873600033 PM 26231539 ER PT J AU Muwamba, A Amatya, DM Ssegane, H Chescheir, GM Appelboom, T Tollner, EW Nettles, JE Youssef, MA Birgand, F Skaggs, RW Tian, S AF Muwamba, A. Amatya, D. M. Ssegane, H. Chescheir, G. M. Appelboom, T. Tollner, E. W. Nettles, J. E. Youssef, M. A. Birgand, F. Skaggs, R. W. Tian, S. TI Effects of Site Preparation for Pine Forest/Switchgrass Intercropping on Water Quality SO JOURNAL OF ENVIRONMENTAL QUALITY LA English DT Article ID THINNING LOBLOLLY-PINE; NORTH-CAROLINA; MANAGEMENT-PRACTICES; CONTROLLED DRAINAGE; COASTAL-PLAIN; SOUTH-CAROLINA; TAEDA L.; FOREST; SOIL; PLANTATION AB A study was initiated to investigate the sustainability effects of intercropping switchgrass (Panicum virgatum L.) in a loblolly pine (Pinus taeda L.) plantation. This forest-based biofuel system could possibly provide biomass from the perennial energy grass while maintaining the economics and environmental benefits of a forest managed for sawtimber. Operations necessary for successful switchgrass establishment and growth, such as site preparation, planting, fertilizing, mowing and baling, may affect hydrology and nutrient runoff. The objectives of this study were (i) to characterize the temporal effects of management on nutrient concentrations and loadings and (ii) to use pretreatment data to predict those treatment effects. The study watersheds (similar to 25 ha each) in the North Carolina Atlantic Coastal Plain were a pine/switchgrass intercropped site (D1), a midrotation thinned pine site with natural understory (D2), and a switchgrass-only site (D3). Rainfall, drainage, water table elevation, nitrogen (total Kjedahl N, NH4-N, and NO3-N), and phosphate were monitored for the 2007-2008 pretreatment and the 2009-2012 treatment periods. From 2010 to 2011 in site D1, the average NO3-N concentration effects decreased from 0.18 to -0.09 mg L-1, and loads effects decreased from 0.86 to 0.49 kg ha(-1). During the same period in site D3, the average NO3 -N concentration effects increased from 0.03 to 0.09 mg L-1, and loads effects increased from -0.26 to 1.24 kg ha(-1). This study shows the importance of considering water quality effects associated with intensive management operations required for switchgrass establishment or other novel forest-based biofuel systems. C1 [Muwamba, A.; Tollner, E. W.] Univ Georgia, Athens, GA 30602 USA. [Amatya, D. M.] USDA Forest Serv, Ctr Forested Wetlands Res, Cordesville, SC 29434 USA. [Ssegane, H.] Argonne Natl Lab, Argonne, IL 60439 USA. [Chescheir, G. M.; Appelboom, T.; Youssef, M. A.; Birgand, F.; Skaggs, R. W.; Tian, S.] N Carolina State Univ, Raleigh, NC 27695 USA. [Nettles, J. E.] Weyerhaeuser Co, Columbus, MS 39701 USA. RP Amatya, DM (reprint author), USDA Forest Serv, Ctr Forested Wetlands Res, Cordesville, SC 29434 USA. EM damatya@fs.fed.us FU Weyerhauser Company; Catch light Energy LLC (A Chevron/Weyerhaeuser Joint Venture); US Department of Energy FX The authors thank Weyerhauser Company, Catch light Energy LLC (A Chevron/Weyerhaeuser Joint Venture), and the US Department of Energy for logistical and financial support for this work; Tyson Cliff for helping in field data collection; and the peer and anonymous reviewers for their review and suggestions. NR 49 TC 0 Z9 0 U1 0 U2 4 PU AMER SOC AGRONOMY PI MADISON PA 677 S SEGOE RD, MADISON, WI 53711 USA SN 0047-2425 EI 1537-2537 J9 J ENVIRON QUAL JI J. Environ. Qual. PD JUL-AUG PY 2015 VL 44 IS 4 BP 1263 EP 1272 DI 10.2134/jeq2014.11.0505 PG 10 WC Environmental Sciences SC Environmental Sciences & Ecology GA CQ8JC UT WOS:000360852600025 PM 26437108 ER PT J AU Mahajan, D Chai, XL Holuj, B Wu, HL Novelli, CA AF Mahajan, Devinder Chai Xiaoli Holuj, Brian Wu Hongliang Novelli, Catherine A. TI Preface to Special Topic: US-China EcoPartnerships: Approaches to Challenges in Energy and Environment SO JOURNAL OF RENEWABLE AND SUSTAINABLE ENERGY LA English DT Editorial Material C1 [Mahajan, Devinder] SUNY Stony Brook, Low Carbon Energy Management L CEM Lab, Chem & Mol Engn, Stony Brook, NY 11790 USA. [Chai Xiaoli] Tongji Univ, Sch Environm Sci & Engn, State Key Lab Pollut Control, Shanghai 200092, Peoples R China. [Holuj, Brian] US DOE, Int Sci & Technol Collaborat, Off Int Affairs, Washington, DC 20585 USA. [Wu Hongliang] Natl Dev Reform Commiss, Beijing, Peoples R China. [Novelli, Catherine A.] US Dept State, Washington, DC 20520 USA. RP Mahajan, D (reprint author), SUNY Stony Brook, Low Carbon Energy Management L CEM Lab, Chem & Mol Engn, Stony Brook, NY 11790 USA. NR 0 TC 1 Z9 1 U1 1 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1941-7012 J9 J RENEW SUSTAIN ENER JI J. Renew. Sustain. Energy PD JUL PY 2015 VL 7 IS 4 AR 041301 DI 10.1063/1.4929547 PG 3 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels SC Science & Technology - Other Topics; Energy & Fuels GA CQ5OS UT WOS:000360655500001 ER PT J AU Mirocha, JD Rajewski, DA Marjanovic, N Lundquist, JK Kosovic, B Draxl, C Churchfield, MJ AF Mirocha, Jeffrey D. Rajewski, Daniel A. Marjanovic, Nikola Lundquist, Julie K. Kosovic, Branko Draxl, Caroline Churchfield, Matthew J. TI Investigating wind turbine impacts on near-wake flow using profiling lidar data and large-eddy simulations with an actuator disk model SO JOURNAL OF RENEWABLE AND SUSTAINABLE ENERGY LA English DT Article ID COMPUTATIONAL FLUID-DYNAMICS; BOUNDARY-LAYERS; TURBULENCE; FARM; AERODYNAMICS; SODAR; HEAT; IOWA AB Wind turbine impacts on the atmospheric flow are investigated using data from the Crop Wind Energy Experiment (CWEX-11) and large-eddy simulations (LESs) utilizing a generalized actuator disk (GAD) wind turbine model. CWEX-11 employed velocity-azimuth display (VAD) data from two Doppler lidar systems to sample vertical profiles of flow parameters across the rotor depth both upstream and in the wake of an operating 1.5MW wind turbine. Lidar and surface observations obtained during four days of July 2011 are analyzed to characterize the turbine impacts on wind speed and flow variability, and to examine the sensitivity of these changes to atmospheric stability. Significant velocity deficits (VD) are observed at the downstream location during both convective and stable portions of four diurnal cycles, with large, sustained deficits occurring during stable conditions. Variances of the streamwise velocity component, sigma(u), likewise show large increases downstream during both stable and unstable conditions, with stable conditions supporting sustained small increases of sigma(u), while convective conditions featured both larger magnitudes and increased variability, due to the large coherent structures in the background flow. Two representative case studies, one stable and one convective, are simulated using LES with a GAD model at 6m resolution to evaluate the compatibility of the simulation framework with validation using vertically profiling lidar data in the near wake region. Virtual lidars were employed to sample the simulated flow field in a manner consistent with the VAD technique. Simulations reasonably reproduced aggregated wake VD characteristics, albeit with smaller magnitudes than observed, while sigma(u) values in the wake are more significantly underestimated. The results illuminate the limitations of using a GAD in combination with coarse model resolution in the simulation of near wake physics, and validation thereof using VAD data. (C) 2015 Author(s). C1 [Mirocha, Jeffrey D.; Marjanovic, Nikola] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Rajewski, Daniel A.] Iowa State Univ, Dept Agron, Ames, IA 50011 USA. [Marjanovic, Nikola] Univ Calif Berkeley, Dept Civil & Environm Engn, Berkeley, CA 94770 USA. [Lundquist, Julie K.] Univ Colorado, Dept Atmospher & Ocean Sci, Boulder, CO 80309 USA. [Lundquist, Julie K.; Kosovic, Branko; Churchfield, Matthew J.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Kosovic, Branko] Natl Ctr Atmospher Res, Boulder, CO 80307 USA. RP Mirocha, JD (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94551 USA. EM jmirocha@llnl.gov RI Draxl, Caroline/O-6206-2016; OI Draxl, Caroline/0000-0001-5532-6268; Rajewski, Daniel/0000-0002-9609-2303 FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; U.S. DOE Office of Energy Efficiency and Renewable Energy; LLNL Graduate Scholars Program; National Science Foundation under the State of Iowa EPSCoR [1101284] FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344, and was supported by the U.S. DOE Office of Energy Efficiency and Renewable Energy, and the LLNL Graduate Scholars Program. NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Data analysis was supported in part by the National Science Foundation under the State of Iowa EPSCoR Grant No. 1101284. The authors thank Sven Schmitz of Penn State University for the parameters of the 1.5 MW turbine used in the simulations. We also thank the team who collected the CWEX-11 dataset, including Matthew Aitken, Russell Doorenbos, Thomas Horst, Steven Oncley, Michael Rhodes, Eugene Takle, and Kristopher Spoth. NR 41 TC 5 Z9 5 U1 1 U2 14 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1941-7012 J9 J RENEW SUSTAIN ENER JI J. Renew. Sustain. Energy PD JUL PY 2015 VL 7 IS 4 AR 043143 DI 10.1063/1.4928873 PG 21 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels SC Science & Technology - Other Topics; Energy & Fuels GA CQ5OS UT WOS:000360655500062 ER PT J AU Hadjithomas, M Chen, IMA Chu, K Ratner, A Palaniappan, K Szeto, E Huang, JH Reddy, TBK Cimermancic, P Fischbach, MA Ivanova, NN Markowitz, VM Kyrpides, NC Pati, A AF Hadjithomas, Michalis Chen, I-Min Amy Chu, Ken Ratner, Anna Palaniappan, Krishna Szeto, Ernest Huang, Jinghua Reddy, T. B. K. Cimermancic, Peter Fischbach, Michael A. Ivanova, Natalia N. Markowitz, Victor M. Kyrpides, Nikos C. Pati, Amrita TI IMG-ABC: A Knowledge Base To Fuel Discovery of Biosynthetic Gene Clusters and Novel Secondary Metabolites SO MBIO LA English DT Article ID COMPARATIVE-ANALYSIS SYSTEM; PSEUDOMONAS-FLUORESCENS; INFORMATION-SYSTEM; MICROBIAL GENOMES; NATURAL-PRODUCTS; DRUG DISCOVERY; 4 VERSION; INSIGHTS; DATABASE; POLYKETIDE AB In the discovery of secondary metabolites, analysis of sequence data is a promising exploration path that remains largely underutilized due to the lack of computational platforms that enable such a systematic approach on a large scale. In this work, we present IMG-ABC (https://img.jgi.doe.gov/abc), an atlas of biosynthetic gene clusters within the Integrated Microbial Genomes (IMG) system, which is aimed at harnessing the power of "big" genomic data for discovering small molecules. IMG-ABC relies on IMG's comprehensive integrated structural and functional genomic data for the analysis of biosynthetic gene clusters (BCs) and associated secondary metabolites (SMs). SMs and BCs serve as the two main classes of objects in IMG-ABC, each with a rich collection of attributes. A unique feature of IMG-ABC is the incorporation of both experimentally validated and computationally predicted BCs in genomes as well as metagenomes, thus identifying BCs in uncultured populations and rare taxa. We demonstrate the strength of IMG-ABC's focused integrated analysis tools in enabling the exploration of microbial secondary metabolism on a global scale, through the discovery of phenazine-producing clusters for the first time in Alphaproteobacteria. IMG-ABC strives to fill the long-existent void of resources for computational exploration of the secondary metabolism universe; its underlying scalable framework enables traversal of uncovered phylogenetic and chemical structure space, serving as a doorway to a new era in the discovery of novel molecules. IMPORTANCE IMG-ABC is the largest publicly available database of predicted and experimental biosynthetic gene clusters and the secondary metabolites they produce. The system also includes powerful search and analysis tools that are integrated with IMG's extensive genomic/metagenomic data and analysis tool kits. As new research on biosynthetic gene clusters and secondary metabolites is published and more genomes are sequenced, IMG-ABC will continue to expand, with the goal of becoming an essential component of any bioinformatic exploration of the secondary metabolism world. C1 [Hadjithomas, Michalis; Reddy, T. B. K.; Ivanova, Natalia N.; Kyrpides, Nikos C.; Pati, Amrita] DOE Joint Genome Inst, Prokaryot Super Program, Walnut Creek, CA 94598 USA. [Chen, I-Min Amy; Chu, Ken; Ratner, Anna; Palaniappan, Krishna; Szeto, Ernest; Huang, Jinghua; Markowitz, Victor M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Res Div, Biosci Comp, Berkeley, CA 94720 USA. [Cimermancic, Peter; Fischbach, Michael A.] Univ Calif San Francisco, Dept Bioengn & Therapeut Sci, San Francisco, CA 94143 USA. RP Pati, A (reprint author), DOE Joint Genome Inst, Prokaryot Super Program, Walnut Creek, CA 94598 USA. EM nckyrpides@lbl.gov; apati@lbl.gov RI Kyrpides, Nikos/A-6305-2014; OI Kyrpides, Nikos/0000-0002-6131-0462; Ivanova, Natalia/0000-0002-5802-9485 FU Office of Science, Office of Biological and Environmental Research, Life Sciences Division, U.S. Department of Energy [DE-AC02-05CH11231]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]; University of California; Howard Hughes Medical Institute Predoctoral Fellowship FX The Director, Office of Science, Office of Biological and Environmental Research, Life Sciences Division, U.S. Department of Energy under contract number DE-AC02-05CH11231; this research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under contract number DE-AC02-05CH11231. Funding for open access charges was provided by the: University of California. P.C. was supported by a Howard Hughes Medical Institute Predoctoral Fellowship. NR 39 TC 17 Z9 18 U1 3 U2 8 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 2150-7511 J9 MBIO JI mBio PD JUL-AUG PY 2015 VL 6 IS 4 AR e00932-15 DI 10.1128/mBio.00932-15 PG 10 WC Microbiology SC Microbiology GA CQ8EN UT WOS:000360839400025 PM 26173699 ER PT J AU Kourist, R Bracharz, F Lorenzen, J Kracht, ON Chovatia, M Daum, C Deshpande, S Lipzen, A Nolan, M Ohm, RA Grigoriev, IV Sun, S Heitman, J Bruck, T Nowrousian, M AF Kourist, Robert Bracharz, Felix Lorenzen, Jan Kracht, Octavia N. Chovatia, Mansi Daum, Chris Deshpande, Shweta Lipzen, Anna Nolan, Matt Ohm, Robin A. Grigoriev, Igor V. Sun, Sheng Heitman, Joseph Brueck, Thomas Nowrousian, Minou TI Genomics and Transcriptomics Analyses of the Oil-Accumulating Basidiomycete Yeast Trichosporon oleaginosus: Insights into Substrate Utilization and Alternative Evolutionary Trajectories of Fungal Mating Systems SO MBIO LA English DT Article ID PATHOGEN CRYPTOCOCCUS-NEOFORMANS; FATTY-ACID SYNTHASE; SEXUAL REPRODUCTION; YARROWIA-LIPOLYTICA; LIPID-ACCUMULATION; SEQUENCE; VIRULENCE; PROTEIN; ALIGNMENT; STRAIN AB Microbial fermentation of agro-industrial waste holds great potential for reducing the environmental impact associated with the production of lipids for industrial purposes from plant biomass. However, the chemical complexity of many residues currently prevents efficient conversion into lipids, creating a high demand for strains with the ability to utilize all energy-rich components of agricultural residues. Here, we present results of genome and transcriptome analyses of Trichosporon oleaginosus. This oil-accumulating yeast is able to grow on a wide variety of substrates, including pentoses and N-acetylglucosamine, making it an interesting candidate for biotechnological applications. Transcriptomics shows specific changes in gene expression patterns under lipid-accumulating conditions. Furthermore, gene content and expression analyses indicate that T. oleaginosus is well-adapted for the utilization of chitin-rich biomass. We also focused on the T. oleaginosus mating type, because this species is a member of the Tremellomycetes, a group that has been intensively analyzed as a model for the evolution of sexual development, the best-studied member being Cryptococcus neoformans. The structure of the T. oleaginosus mating-type regions differs significantly from that of other Tremellomycetes and reveals a new evolutionary trajectory paradigm. Comparative analysis shows that recruitment of developmental genes to the ancestral tetrapolar mating-type loci occurred independently in the Trichosporon and Cryptococcus lineages, supporting the hypothesis of a trend toward larger mating-type regions in fungi. IMPORTANCE Finite fossil fuel resources pose sustainability challenges to society and industry. Microbial oils are a sustainable feedstock for biofuel and chemical production that does not compete with food production. We describe genome and transcriptome analyses of the oleaginous yeast Trichosporon oleaginosus, which can accumulate up to 70% of its dry weight as lipids. In contrast to conventional yeasts, this organism not only shows an absence of diauxic effect while fermenting hexoses and pentoses but also effectively utilizes xylose and N-acetylglucosamine, which are building blocks of lignocellulose and chitin, respectively. Transcriptome analysis revealed metabolic networks that govern conversion of xylose or N-acetylglucosamine as well as lipid accumulation. These data form the basis for a targeted strain optimization strategy. Furthermore, analysis of the mating type of T. oleaginosus supports the hypothesis of a trend toward larger mating-type regions in fungi, similar to the evolution of sex chromosomes in animals and plants. C1 [Kourist, Robert; Kracht, Octavia N.] Ruhr Univ Bochum, Jr Res Grp Microbial Biotechnol, Bochum, Germany. [Bracharz, Felix; Lorenzen, Jan; Brueck, Thomas] Tech Univ Munich, Fachgebiet Ind Biokatalyse, Garching, Germany. [Chovatia, Mansi; Daum, Chris; Deshpande, Shweta; Lipzen, Anna; Nolan, Matt; Ohm, Robin A.; Grigoriev, Igor V.] US DOE, Joint Genome Inst, Walnut Creek, CA USA. [Ohm, Robin A.] Univ Utrecht, Dept Microbiol, Utrecht, Netherlands. [Sun, Sheng; Heitman, Joseph] Duke Univ, Med Ctr, Dept Mol Genet & Microbiol, Durham, NC USA. [Nowrousian, Minou] Ruhr Univ Bochum, Lehrstuhl Allgemeine & Mol Bot, Bochum, Germany. RP Kourist, R (reprint author), Ruhr Univ Bochum, Jr Res Grp Microbial Biotechnol, Univ Str 150, Bochum, Germany. EM robert.kourist@rub.de; brueck@tum.de; minou.nowrousian@rub.de RI Bruck, Prof.Dr. Thomas/B-6018-2016; Ohm, Robin/I-6689-2016; OI Bruck, Prof.Dr. Thomas/0000-0002-2113-6957; Nowrousian, Minou/0000-0003-0075-6695; Kourist, Robert/0000-0002-2853-3525 FU Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]; German Research Foundation (DFG); NIAID/NIH R37 merit award [AI39115-17]; Federal Ministry for Education and Research (BMBF) project "Advance Biomass Value" [03SF0446A]; Ministry for Innovation, Science and Investigation of the State of North Rhine-Westphalia [005-1503-0006] FX The work conducted by the U.S. Department of Energy Joint Genome Institute was supported by the Office of Science of the U.S. Department of Energy under contract no. DE-AC02-05CH11231. Minou Nowrousian acknowledges funding by the German Research Foundation (DFG) and would like to thank Ulrich Kuck for his support at the Department of General and Molecular Botany. Sheng Sun and Joseph Heitman were supported by NIAID/NIH R37 merit award AI39115-17. Thomas Bruck, Felix Bracharz, and Jan Lorenzen acknowledge funding through the Federal Ministry for Education and Research (BMBF) project "Advance Biomass Value" (award 03SF0446A). Robert Kourist gratefully acknowledges financial support from the Ministry for Innovation, Science and Investigation of the State of North Rhine-Westphalia (grant 005-1503-0006). NR 75 TC 7 Z9 7 U1 6 U2 22 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 2150-7511 J9 MBIO JI mBio PD JUL-AUG PY 2015 VL 6 IS 4 AR e00918-15 DI 10.1128/mBio.00918-15 PG 13 WC Microbiology SC Microbiology GA CQ8EN UT WOS:000360839400029 PM 26199329 ER PT J AU Shi, SJ Nuccio, E Herman, DJ Rijkers, R Estera, K Li, JB da Rocha, UN He, ZL Pett-Ridge, J Brodie, EL Zhou, JZ Firestone, M AF Shi, Shengjing Nuccio, Erin Herman, Donald J. Rijkers, Ruud Estera, Katerina Li, Jiabao da Rocha, Ulisses Nunes He, Zhili Pett-Ridge, Jennifer Brodie, Eoin L. Zhou, Jizhong Firestone, Mary TI Successional Trajectories of Rhizosphere Bacterial Communities over Consecutive Seasons SO MBIO LA English DT Article ID SOIL MICROBIAL COMMUNITY; DIVERSITY; ECOLOGY; MICROORGANISMS; CARBON; ROOTS; RNA; PHYLOGENIES; GENERATION; MAGNITUDE AB It is well known that rhizosphere microbiomes differ from those of surrounding soil, and yet we know little about how these root-associated microbial communities change through the growing season and between seasons. We analyzed the response of soil bacteria to roots of the common annual grass Avena fatua over two growing seasons using high-throughput sequencing of 16S rRNA genes. Over the two periods of growth, the rhizosphere bacterial communities followed consistent successional patterns as plants grew, although the starting communities were distinct. Succession in the rhizosphere was characterized by a significant decrease in both taxonomic and phylogenetic diversity relative to background soil communities, driven by reductions in both richness and evenness of the bacterial communities. Plant roots selectively stimulated the relative abundance of Alphaproteobacteria, Betaproteobacteria, and Bacteroidetes but reduced the abundance of Acidobacteria, Actinobacteria, and Firmicutes. Taxa that increased in relative abundance in the rhizosphere soil displayed phylogenetic clustering, suggesting some conservation and an evolutionary basis for the response of complex soil bacterial communities to the presence of plant roots. The reproducibility of rhizosphere succession and the apparent phylogenetic conservation of rhizosphere competence traits suggest adaptation of the indigenous bacterial community to this common grass over the many decades of its presence. IMPORTANCE We document the successional patterns of rhizosphere bacterial communities associated with a "wild" annual grass, Avena fatua, which is commonly a dominant plant in Mediterranean-type annual grasslands around the world; the plant was grown in its grassland soil. Most studies documenting rhizosphere microbiomes address "domesticated" plants growing in soils to which they are introduced. Rhizosphere bacterial communities exhibited a pattern of temporal succession that was consistent and repeatable over two growing seasons. There are few studies assessing the reproducibility over multiple seasons. Through the growing season, the rhizosphere community became progressively less diverse, likely reflecting root homogenization of soil microniches. Phylogenetic clustering of the rhizosphere dynamic taxa suggests evolutionary adaptation to Avena roots. The reproducibility of rhizosphere succession and the apparent phylogenetic conservation of rhizosphere competence traits suggest adaptation of the indigenous bacterial community to this common grass over the many decades of its presence. C1 [Shi, Shengjing; Nuccio, Erin; Herman, Donald J.; Rijkers, Ruud; Estera, Katerina; Brodie, Eoin L.; Firestone, Mary] Univ Calif Berkeley, Dept Environm Sci Policy & Management, Berkeley, CA 94720 USA. [Shi, Shengjing; Li, Jiabao; He, Zhili; Zhou, Jizhong] Univ Oklahoma, Inst Environm Genom, Dept Microbiol & Plant Biol, Norman, OK 73019 USA. [Nuccio, Erin; Pett-Ridge, Jennifer] Lawrence Livermore Natl Lab, Nucl & Chem Sci Div, Livermore, CA USA. [Herman, Donald J.; da Rocha, Ulisses Nunes; Brodie, Eoin L.; Zhou, Jizhong; Firestone, Mary] Lawrence Livermore Natl Lab, Div Earth Sci, Livermore, CA USA. [Zhou, Jizhong] Tsinghua Univ, Sch Environm, State Key Joint Lab Environm Simulat & Pollut Con, Beijing 100084, Peoples R China. RP Firestone, M (reprint author), Univ Calif Berkeley, Dept Environm Sci Policy & Management, Berkeley, CA 94720 USA. EM mkfstone@berkeley.edu RI Brodie, Eoin/A-7853-2008 OI Brodie, Eoin/0000-0002-8453-8435 FU U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research Genomic Science Program [DE-SC0004730, DE-SC0010570]; DOE under UC [00008322]; Department of Energy [DE-AC02-05CH11231]; U.S. Department of Energy at Lawrence Livermore National Laboratory [SA-DOE-29318] FX This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research Genomic Science Program, under award no. DE-SC0004730 and DE-SC0010570. Part of this work was performed at the University of Oklahoma, funded by the DOE under UC subcontract no. 00008322. Part of this work (E.L.B. and U.N.D.) was performed at Lawrence Berkeley National Laboratory under Department of Energy contract no. DE-AC02-05CH11231; the work of J.P.-R. was conducted under the auspices of the U.S. Department of Energy at Lawrence Livermore National Laboratory under contract SA-DOE-29318. NR 59 TC 6 Z9 6 U1 15 U2 50 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 2150-7511 J9 MBIO JI mBio PD JUL-AUG PY 2015 VL 6 IS 4 AR e00746-15 DI 10.1128/mBio.00746-15 PG 8 WC Microbiology SC Microbiology GA CQ8EN UT WOS:000360839400048 PM 26242625 ER PT J AU Maze, I Wenderski, W Noh, KM Bagot, RC Tzavaras, N Purushothaman, I Elsasser, SJ Guo, Y Ionete, C Hurd, YL Tamminga, CA Halene, T Farrelly, L Soshnev, AA Wen, DC Rafii, S Birtwistle, MR Akbarian, S Buchholz, BA Blitzer, RD Nestler, EJ Yuan, ZF Garcia, BA Shen, L Molina, H Allis, CD AF Maze, Ian Wenderski, Wendy Noh, Kyung-Min Bagot, Rosemary C. Tzavaras, Nikos Purushothaman, Immanuel Elsaesser, Simon J. Guo, Yin Ionete, Carolina Hurd, Yasmin L. Tamminga, Carol A. Halene, Tobias Farrelly, Lorna Soshnev, Alexey A. Wen, Duancheng Rafii, Shahin Birtwistle, Marc R. Akbarian, Schahram Buchholz, Bruce A. Blitzer, Robert D. Nestler, Eric J. Yuan, Zuo-Fei Garcia, Benjamin A. Shen, Li Molina, Henrik Allis, C. David TI Critical Role of Histone Turnover in Neuronal Transcription and Plasticity SO NEURON LA English DT Article ID H3 VARIANTS; RAT-BRAIN; CHROMATIN; DYNAMICS; RECRUITMENT; PROTEASOME; PROTEINS; MEMORY; CELLS AB Turnover and exchange of nucleosomal histones and their variants, a process long believed to be static in post-replicative cells, remains largely unexplored in brain. Here, we describe a novel mechanistic role for HIRA (histone cell cycle regulator) and proteasomal degradation-associated histone dynamics in the regulation of activity-dependent transcription, synaptic connectivity, and behavior. We uncover a dramatic developmental profile of nucleosome occupancy across the lifespan of both rodents and humans, with the histone variant H3.3 accumulating to near-saturating levels throughout the neuronal genome by mid-adolescence. Despite such accumulation, H3.3-containing nucleosomes remain highly dynamic-in a modification-independent manner-to control neuronal- and glial-specific gene expression patterns throughout life. Manipulating H3.3 dynamics in both embryonic and adult neurons confirmed its essential role in neuronal plasticity and cognition. Our findings establish histone turnover as a critical and previously undocumented regulator of cell type-specific transcription and plasticity in mammalian brain. C1 [Maze, Ian; Wenderski, Wendy; Noh, Kyung-Min; Elsaesser, Simon J.; Soshnev, Alexey A.; Allis, C. David] Rockefeller Univ, Lab Chromatin Biol & Epigenet, New York, NY 10065 USA. [Maze, Ian; Tzavaras, Nikos; Hurd, Yasmin L.; Farrelly, Lorna; Birtwistle, Marc R.; Blitzer, Robert D.; Nestler, Eric J.] Icahn Sch Med Mt Sinai, Dept Pharmacol & Syst Therapeut, New York, NY 10029 USA. [Maze, Ian; Bagot, Rosemary C.; Purushothaman, Immanuel; Hurd, Yasmin L.; Akbarian, Schahram; Nestler, Eric J.; Shen, Li] Icahn Sch Med Mt Sinai, Dept Neurosci, New York, NY 10029 USA. [Guo, Yin; Ionete, Carolina] UMass Mem Med Ctr, Dept Neurol, Worcester, MA 01605 USA. [Hurd, Yasmin L.; Halene, Tobias; Akbarian, Schahram; Blitzer, Robert D.; Nestler, Eric J.] Icahn Sch Med Mt Sinai, Dept Psychiat, New York, NY 10029 USA. [Tamminga, Carol A.] Univ Texas SW Med Ctr Dallas, Dept Psychiat, Dallas, TX 75235 USA. [Wen, Duancheng] Ronald O Perleman & Claudia Cohen Ctr Reprod Med, New York, NY 10021 USA. [Wen, Duancheng; Rafii, Shahin] Weill Cornell Med Coll, Ansary Stem Cell Inst, New York, NY 10065 USA. [Buchholz, Bruce A.] Lawrence Livermore Natl Lab, Ctr Accelerator Mass Spectrometry, Livermore, CA 94550 USA. [Yuan, Zuo-Fei; Garcia, Benjamin A.] Univ Penn, Dept Biochem & Biophys, Philadelphia, PA 19104 USA. [Molina, Henrik] Rockefeller Univ, Rockefeller Univ Prote Resource Ctr, New York, NY 10065 USA. RP Maze, I (reprint author), Rockefeller Univ, Lab Chromatin Biol & Epigenet, New York, NY 10065 USA. EM ian.maze@mssm.edu; c.david.allis@rockefeller.edu RI Elsasser, Simon/B-8911-2014; OI Elsasser, Simon/0000-0001-8724-4849; Maze, Ian/0000-0003-1490-7781 FU National Institute of Mental Health (NIMH) [5R01 MH094698, P50 MH096890]; NIH [R21MH102679, RO1GM110174, 8P41GM103483]; US Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344, LLNL-JRNL-653296] FX We would like to thank members of the C.D.A. laboratory for critical readings of the manuscript and contribution of reagents (particularly Dr. Ronen Sadeh). We would also like to thank Dr. Kunihiro Uryu (The Rockefeller University Electron Microscopy Resource Center) for assistance with TEM experiments, Ms. Kelly Gleason for help with human postmortem brain dissections, and Mr. Charlie Li for assistance with mESC FACS. This work was supported by grants from the National Institute of Mental Health (NIMH): 5R01 MH094698 and P50 MH096890. B.A.G. gratefully acknowledges funding from the following NIH grants: R21MH102679 and RO1GM110174. Support for accelerator mass spectrometry analyses was provided by NIH 8P41GM103483. This work was performed, in part, under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under contracts DE-AC52-07NA27344 and LLNL-JRNL-653296. NR 22 TC 29 Z9 29 U1 4 U2 19 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0896-6273 EI 1097-4199 J9 NEURON JI Neuron PD JUL 1 PY 2015 VL 87 IS 1 BP 77 EP 94 DI 10.1016/j.neuron.2015.06.014 PG 18 WC Neurosciences SC Neurosciences & Neurology GA CQ9ZQ UT WOS:000360977400010 PM 26139371 ER PT J AU Bucksbaum, PH Berrah, N AF Bucksbaum, Philip H. Berrah, Nora TI BRIGHTER AND FASTER The promise and challenge of the x-ray free-electron laser SO PHYSICS TODAY LA English DT Article ID DYNAMICS C1 [Bucksbaum, Philip H.] Stanford Univ, Nat Sci, Stanford, CA 94305 USA. [Bucksbaum, Philip H.] SLAC, Stanford, CA USA. [Berrah, Nora] Univ Connecticut, Dept Phys, Storrs, CT USA. RP Bucksbaum, PH (reprint author), Stanford Univ, Nat Sci, Stanford, CA 94305 USA. NR 16 TC 2 Z9 2 U1 4 U2 14 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0031-9228 EI 1945-0699 J9 PHYS TODAY JI Phys. Today PD JUL PY 2015 VL 68 IS 7 BP 26 EP 32 DI 10.1063/PT.3.2845 PG 7 WC Physics, Multidisciplinary SC Physics GA CQ9HO UT WOS:000360924700015 ER PT J AU Fowler, TK Ryutov, D AF Fowler, T. Kenneth Ryutov, Dmitri TI Richard Freeman Post obituary SO PHYSICS TODAY LA English DT Biographical-Item C1 [Fowler, T. Kenneth] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Ryutov, Dmitri] Lawrence Livermore Natl Lab, Livermore, CA USA. RP Fowler, TK (reprint author), Univ Calif Berkeley, Berkeley, CA 94720 USA. NR 1 TC 1 Z9 1 U1 1 U2 3 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0031-9228 EI 1945-0699 J9 PHYS TODAY JI Phys. Today PD JUL PY 2015 VL 68 IS 7 BP 56 EP + PG 2 WC Physics, Multidisciplinary SC Physics GA CQ9HO UT WOS:000360924700020 ER PT J AU Field, RV Grigoriu, M Emery, JM AF Field, R. V., Jr. Grigoriu, M. Emery, J. M. TI On the efficacy of stochastic collocation, stochastic Galerkin, and stochastic reduced order models for solving stochastic problems SO PROBABILISTIC ENGINEERING MECHANICS LA English DT Article DE Approximation theory; Monte Carlo simulation; Random variables and fields; Stochastic differential equations; Uncertainty propagation ID PARTIAL-DIFFERENTIAL-EQUATIONS; RANDOM INPUT DATA; APPROXIMATIONS AB The stochastic collocation (SC) and stochastic Galerkin (SG) methods are two well-established and successful approaches for solving general stochastic problems. A recently developed method based on stochastic reduced order models (SROMs) can also be used. Herein we provide a comparison of the three methods for some numerical examples; our evaluation only holds for the examples considered in the paper. The purpose of the comparisons is not to criticize the SC or SG methods, which have proven very useful for a broad range of applications, nor is it to provide overall ratings of these methods as compared to the SROM method. Rather, our objectives are to present the SROM method as an alternative approach to solving stochastic problems and provide information on the computational effort required by the implementation of each method, while simultaneously assessing their performance for a collection of specific problems. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Field, R. V., Jr.; Emery, J. M.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Grigoriu, M.] Cornell Univ, Ithaca, NY 14853 USA. RP Field, RV (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM rvfield@sandia.gov; mdg12@cornell.edu; jmemery@sandia.gov OI Emery, John /0000-0001-6671-4952 NR 21 TC 3 Z9 3 U1 0 U2 1 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0266-8920 EI 1878-4275 J9 PROBABILIST ENG MECH JI Probab. Eng. Eng. Mech. PD JUL PY 2015 VL 41 BP 60 EP 72 DI 10.1016/j.probengmech.2015.05.002 PG 13 WC Engineering, Mechanical; Mechanics; Statistics & Probability SC Engineering; Mechanics; Mathematics GA CQ9RO UT WOS:000360952900006 ER PT J AU Shen, TM Ye, LY Turrioni, D Li, P AF Shen, Tengming Ye, Liyang Turrioni, Daniele Li, Pei TI High-field quench behavior and dependence of hot spot temperature on quench detection voltage threshold in a Bi2Sr2CaCu2Ox coil SO SUPERCONDUCTOR SCIENCE & TECHNOLOGY LA English DT Article DE Bi-2212 magnet; quench detection; quench protection; quench behavior; superconducting magnets ID WIRES; MAGNET; PROTECTION; STABILITY AB Small insert solenoids have been built using a multifilamentary Ag/Bi2Sr2CaCu2Ox round wire insulated with a mullite sleeve (similar to 100 mu m in thickness) and characterized in background fields to explore the quench behaviors and limits of Bi2Sr2CaCu2Ox superconducting magnets, with an emphasis on assessing the impact of slow normal zone propagation on quench detection. Using heaters of various lengths to initiate a small normal zone, a coil was quenched safely more than 70 times without degradation, with the maximum coil temperature reaching 280 K. Coils withstood a resistive voltage of tens of mV for seconds without quenching, showing the high stability of these coils and suggesting that the quench detection voltage should be greater than 50 mV in order not to falsely trigger protection. The hot spot temperature for the resistive voltage of the normal zone to reach 100 mV increased from similar to 40-similar to 80 K while increasing the operating wire current density J(o) from 89 A mm(-2) to 354 A mm(-2), whereas for the voltage to reach 1 V, it increased from similar to 60-similar to 140 K. This shows the increasing negative impact of slow normal zone propagation on quench detection with increasing Jo and the need to limit the quench detection voltage to <1 V. These measurements, coupled with an analytical quench model, were used to assess the impact of the maximum allowable detection voltage and temperature upon quench detection on the quench protection, assuming a limit of the hot spot temperature to <300 K. C1 [Shen, Tengming; Ye, Liyang; Turrioni, Daniele; Li, Pei] Fermilab Natl Accelerator Lab, Magnet Syst Dept, Batavia, IL 60510 USA. [Ye, Liyang] N Carolina State Univ, Dept Mat Sci & Engn, Raleigh, NC 27695 USA. RP Shen, TM (reprint author), Fermilab Natl Accelerator Lab, Magnet Syst Dept, POB 500, Batavia, IL 60510 USA. EM tshen@fnal.gov FU Office of High Energy Physics at the U S Department of Energy (DOE) through the Fermi Research Alliance [DE-AC02-07CH11359] FX This work was supported by the Office of High Energy Physics at the U S Department of Energy (DOE) through the Fermi Research Alliance (DE-AC02-07CH11359) and an Early Career Award to T S We would like to thank Xiaorong Wang with Lawrence Berkeley National Laboratory for useful discussion and reading the manuscript. NR 40 TC 6 Z9 6 U1 1 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-2048 EI 1361-6668 J9 SUPERCOND SCI TECH JI Supercond. Sci. Technol. PD JUL PY 2015 VL 28 IS 7 AR 075014 DI 10.1088/0953-2048/28/7/075014 PG 11 WC Physics, Applied; Physics, Condensed Matter SC Physics GA CQ9JH UT WOS:000360930000022 ER PT J AU Sung, ZH Dzyuba, A Lee, PJ Larbalestier, DC Cooley, LD AF Sung, Z-H Dzyuba, A. Lee, P. J. Larbalestier, D. C. Cooley, L. D. TI Evidence of incomplete annealing at 800 degrees C and the effects of 120 degrees C baking on the crystal orientation and the surface superconducting properties of cold-worked and chemically polished Nb SO SUPERCONDUCTOR SCIENCE & TECHNOLOGY LA English DT Article DE superconducting radio frequency; niobium; surface superconductivity; ac susceptibility; cold-work deformation ID NIOBIUM; CAVITIES; HYDROGEN; DIFFRACTION; TANTALUM; PAIR AB High-purity niobium rods were cold-worked by wire-drawing, followed by various combinations of chemical polishing and high-vacuum baking at 120 degrees C or annealing at 800 degrees C in order to better understand changes to the surface superconducting properties resulting from typical superconducting radio-frequency cavity processing. AC susceptibility measurements revealed an enhanced upper transition T-c at similar to 9.3-9.4 K in all samples that was stable through all annealing steps, a value significantly above the accepted Tc of 9.23 K for pure annealed niobium. Corresponding elevations were seen in the critical fields, the ratio of the surface critical field H-c3 to the bulk upper critical field H-c2 rising to 2.3, well above the Ginzburg-Landau value of 1.695. Orientation imaging revealed an extensive dislocation rich sub-grain structure in the as-drawn rods, a small reduction of the surface strain after baking at 120 degrees C, and a substantial but incomplete recrystallization near the surface after annealing at 800 degrees C. We interpret these changes in surface superconducting and structural properties to extensive changes in the near-surface interstitial contamination produced by baking and annealing and to synergistic interactions between H and surface O introduced during electropolishing and buffered chemical polishing. C1 [Sung, Z-H; Lee, P. J.; Larbalestier, D. C.] Natl High Magnet Field Lab, Ctr Appl Superconduct, Tallahassee, FL 32310 USA. [Dzyuba, A.; Cooley, L. D.] Fermilab Natl Accelerator Lab, Superconducting Mat Dept, Tech Div, Batavia, IL 60510 USA. [Dzyuba, A.] Novosibirsk State Univ, Novosibirsk 630090, Russia. RP Sung, ZH (reprint author), Natl High Magnet Field Lab, Ctr Appl Superconduct, Tallahassee, FL 32310 USA. EM zsung@asc.magnet.fsu.edu RI Larbalestier, David/B-2277-2008; OI Larbalestier, David/0000-0001-7098-7208; Lee, Peter/0000-0002-8849-8995 FU US DOE [DE-SC0009960]; FNAL, Fermi Research Alliance [DE-AC02-07CH11359]; United States Department of Energy; National Science Foundation [DMR-1157490] FX This work was supported by the US DOE under awards DE-SC0009960 and FNAL, Fermi Research Alliance, DE-AC02-07CH11359 with the United States Department of Energy. The National High Magnetic Field Laboratory is supported in part by the National Science Foundation Cooperative Agreement DMR-1157490. The authors would like to thank W Starch for Nb wire-drawing in the Applied Superconductivity Center, National High Magnetic Field Laboratory, Florida State University. NR 56 TC 4 Z9 4 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-2048 EI 1361-6668 J9 SUPERCOND SCI TECH JI Supercond. Sci. Technol. PD JUL PY 2015 VL 28 IS 7 AR 075003 DI 10.1088/0953-2048/28/7/075003 PG 12 WC Physics, Applied; Physics, Condensed Matter SC Physics GA CQ9JH UT WOS:000360930000011 ER PT J AU Sanchez, JL Cooper, MJ Myers, CA Cummings, JF Vest, KG Russell, KL Sanchez, JL Hiser, MJ Gaydos, CA AF Sanchez, Jose L. Cooper, Michael J. Myers, Christopher A. Cummings, James F. Vest, Kelly G. Russell, Kevin L. Sanchez, Joyce L. Hiser, Michelle J. Gaydos, Charlotte A. TI Respiratory Infections in the US Military: Recent Experience and Control SO CLINICAL MICROBIOLOGY REVIEWS LA English DT Review ID INFLUENZA-A H1N1; COMMUNITY-ACQUIRED PNEUMONIA; HEALTH-CARE WORKERS; REAL-TIME PCR; DEPARTMENT-OF-DEFENSE; BACTEREMIC PNEUMOCOCCAL PNEUMONIA; IMMUNIZATION PRACTICES ACIP; DRUG-RESISTANT TUBERCULOSIS; RANDOMIZED CONTROLLED-TRIAL; SYNCYTIAL VIRUS-INFECTION AB This comprehensive review outlines the impact of military-relevant respiratory infections, with special attention to recruit training environments, influenza pandemics in 1918 to 1919 and 2009 to 2010, and peacetime operations and conflicts in the past 25 years. Outbreaks and epidemiologic investigations of viral and bacterial infections among high-risk groups are presented, including (i) experience by recruits at training centers, (ii) impact on advanced trainees in special settings, (iii) morbidity sustained by shipboard personnel at sea, and (iv) experience of deployed personnel. Utilizing a pathogen-by-pathogen approach, we examine (i) epidemiology, (ii) impact in terms of morbidity and operational readiness, (iii) clinical presentation and outbreak potential, (iv) diagnostic modalities, (v) treatment approaches, and (vi) vaccine and other control measures. We also outline military-specific initiatives in (i) surveillance, (ii) vaccine development and policy, (iii) novel influenza and coronavirus diagnostic test development and surveillance methods, (iv) influenza virus transmission and severity prediction modeling efforts, and (v) evaluation and implementation of nonvaccine, nonpharmacologic interventions. C1 [Sanchez, Jose L.; Cooper, Michael J.; Cummings, James F.; Vest, Kelly G.; Russell, Kevin L.; Hiser, Michelle J.] Armed Forces Hlth Surveillance Ctr, Silver Spring, MD 20910 USA. [Myers, Christopher A.] Naval Hlth Res Ctr, San Diego, CA USA. [Sanchez, Joyce L.] Mayo Clin, Div Gen Internal Med, Rochester, MN USA. [Hiser, Michelle J.] US Army Publ Hlth Command, Oak Ridge Inst Sci & Educ, Postgrad Res Participat Program, Aberdeen, MD USA. [Gaydos, Charlotte A.] Johns Hopkins Univ, Div Infect Dis, Int STD Resp & Biothreat Res Lab, Baltimore, MD USA. RP Sanchez, JL (reprint author), Armed Forces Hlth Surveillance Ctr, Silver Spring, MD 20910 USA. EM jose.l.sanchez76.ctr@mail.mil FU Global Emerging Infections Surveillance and Response Division at the Armed Forces Health Surveillance Center FX Michelle J. Hiser's work in collating routine surveillance data, reports, and publications included in this project was partially supported by an appointment to the Postgraduate Research Participation Program administered by the Oak Ridge Institute for Science and Education through an interagency agreement between the U.S. Department of Energy and USAPHC. This work was funded by the Global Emerging Infections Surveillance and Response Division at the Armed Forces Health Surveillance Center. NR 703 TC 6 Z9 6 U1 6 U2 28 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0893-8512 EI 1098-6618 J9 CLIN MICROBIOL REV JI Clin. Microbiol. Rev. PD JUL PY 2015 VL 28 IS 3 BP 743 EP 800 DI 10.1128/CMR.00039-14 PG 58 WC Microbiology SC Microbiology GA CQ3IH UT WOS:000360495000008 PM 26085551 ER PT J AU Thompson-Paul, AM Wei, SC Mattson, CL Robertson, M Hernandez-Romieu, AC Bell, TK Skarbinski, J AF Thompson-Paul, Angela M. Wei, Stanley C. Mattson, Christine L. Robertson, McKaylee Hernandez-Romieu, Alfonso C. Bell, Tanvir K. Skarbinski, Jacek TI Obesity Among HIV-Infected Adults Receiving Medical Care in the United States: Data From the Cross-Sectional Medical Monitoring Project and National Health and Nutrition Examination Survey SO MEDICINE LA English DT Article ID BODY-MASS INDEX; ANTIRETROVIRAL THERAPY; GENERAL-POPULATION; WEIGHT-GAIN; MORTALITY; COHORT; PREVALENCE; DISEASE; RISK; DEATH AB Our objective was to compare obesity prevalence among human immunodeficiency virus (HIV)-infected adults receiving care and the U.S. general population and identify obesity correlates among HIV-infected men and women. Cross-sectional data was collected in 2009 to 2010 from 2 nationally representative surveys: Medical Monitoring Project (MMP) and National Health and Nutrition Examination Survey (NHANES). Weighted prevalence estimates of obesity, defined as body mass index >= 30.0 kg/m(2), were compared using prevalence ratios (PR, 95% confidence interval [CI]). Correlates of obesity in HIV-infected adults were examined using multivariable logistic regression. Demographic characteristics of the 4006 HIV-infected adults in MMP differed from the 5657 adults from the general U.S. population in NHANES, including more men (73.2% in MMP versus 49.4% in NHANES, respectively), black or African Americans (41.5% versus 11.6%), persons with annual incomes <$20,000 (64.5% versus 21.9%), and homosexuals or bisexuals (50.9% versus 3.9%). HIV-infected men were less likely to be obese (PR 0.5, CI 0.5-0.6) and HIV-infected women were more likely to be obese (PR1.2, CI 1.1-1.3) compared with men and women in the general population, respectively. Among HIV-infected women, younger age was associated with obesity (60 years). Among HIV-infected men, correlates of obesity included black or African American race/ethnicity, annual income >$20,000 and <$50,000, heterosexual orientation, and geometric mean CD4+ T-lymphocyte cell count >200 cells/mu L. Obesity is common, affecting 2 in 5 HIV-infected women and 1 in 5 HIV-infected men. Correlates of obesity differ for HIV-infected men and women; therefore, different strategies may be needed for the prevention and treatment. C1 [Thompson-Paul, Angela M.; Wei, Stanley C.; Mattson, Christine L.; Robertson, McKaylee; Hernandez-Romieu, Alfonso C.; Skarbinski, Jacek] Ctr Dis Control & Prevent, Div HIV AIDS Prevent, Atlanta, GA USA. [Thompson-Paul, Angela M.] Ctr Dis Control & Prevent, Epidem Intelligence Serv, Atlanta, GA USA. [Thompson-Paul, Angela M.; Wei, Stanley C.] US PHS, Rockville, MD USA. [Robertson, McKaylee] Emory Univ, Rollins Sch Publ Hlth, Oak Ridge Inst Sci & Educ, Atlanta, GA 30322 USA. [Hernandez-Romieu, Alfonso C.] Emory Univ, Rollins Sch Publ Hlth, Dept Epidemiol, Atlanta, GA 30322 USA. [Bell, Tanvir K.] Univ Texas Med Sch Houston, Dept Internal Med, Div Infect Dis, Houston, TX USA. RP Skarbinski, J (reprint author), CDC OID NCHHSTP, Div HIV AIDS Prevent, 1600 Clifton Rd NE,Mail Stop E-46, Atlanta, GA 30329 USA. EM jskarbinski@cdc.gov FU CDC; [PS09-937] FX The CDC provides funds to all states and the District of Columbia, through a Cooperative Agreement (PS09-937), to conduct the HIV surveillance used in this study and to selected areas to conduct the MMP, and provides technical assistance to all funded areas. NR 56 TC 5 Z9 5 U1 2 U2 2 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA TWO COMMERCE SQ, 2001 MARKET ST, PHILADELPHIA, PA 19103 USA SN 0025-7974 EI 1536-5964 J9 MEDICINE JI Medicine (Baltimore) PD JUL PY 2015 VL 94 IS 27 AR e1081 DI 10.1097/MD.0000000000001081 PG 10 WC Medicine, General & Internal SC General & Internal Medicine GA CQ8SP UT WOS:000360879100001 PM 26166086 ER PT J AU Aquila, A Barty, A Bostedt, C Boutet, S Carini, G dePonte, D Drell, P Doniach, S Downing, KH Earnest, T Elmlund, H Elser, V Guhr, M Hajdu, J Hastings, J Hau-Riege, SP Huang, Z Lattman, EE Maia, FRNC Marchesini, S Ourmazd, A Pellegrini, C Santra, R Schlichting, I Schroer, C Spence, JCH Vartanyants, IA Wakatsuki, S Weis, WI Williams, GJ AF Aquila, A. Barty, A. Bostedt, C. Boutet, S. Carini, G. dePonte, D. Drell, P. Doniach, S. Downing, K. H. Earnest, T. Elmlund, H. Elser, V. Guehr, M. Hajdu, J. Hastings, J. Hau-Riege, S. P. Huang, Z. Lattman, E. E. Maia, F. R. N. C. Marchesini, S. Ourmazd, A. Pellegrini, C. Santra, R. Schlichting, I. Schroer, C. Spence, J. C. H. Vartanyants, I. A. Wakatsuki, S. Weis, W. I. Williams, G. J. TI The linac coherent light source single particle imaging road map SO STRUCTURAL DYNAMICS LA English DT Article ID X-RAY LASER; FREE-ELECTRON LASER; IN-FLIGHT AB Intense femtosecond x-ray pulses from free-electron laser sources allow the imaging of individual particles in a single shot. Early experiments at the Linac Coherent Light Source (LCLS) have led to rapid progress in the field and, so far, coherent diffractive images have been recorded from biological specimens, aerosols, and quantum systems with a few-tens-of-nanometers resolution. In March 2014, LCLS held a workshop to discuss the scientific and technical challenges for reaching the ultimate goal of atomic resolution with single-shot coherent diffractive imaging. This paper summarizes the workshop findings and presents the roadmap toward reaching atomic resolution, 3D imaging at free-electron laser sources. (C) 2015 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License. C1 [Aquila, A.; Bostedt, C.; Boutet, S.; Carini, G.; dePonte, D.; Drell, P.; Doniach, S.; Elser, V.; Hastings, J.; Huang, Z.; Pellegrini, C.; Wakatsuki, S.; Williams, G. J.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Aquila, A.; Hajdu, J.] European XFEL GmbH, D-22671 Hamburg, Germany. [Barty, A.; Santra, R.] DESY, Ctr Free Electron Laser Sci, D-22607 Hamburg, Germany. [Drell, P.] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA. [Drell, P.; Doniach, S.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Downing, K. H.; Maia, F. R. N. C.; Marchesini, S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Earnest, T.] Chinese Acad Sci, Shanghai Inst Appl Phys, Shanghai 201204, Peoples R China. [Earnest, T.] ShanghaiTech Univ, Shanghai 201210, Peoples R China. [Elmlund, H.] Monash Univ, Dept Biochem Mol Biol, Clayton, Vic 3800, Australia. [Elmlund, H.] ARC Ctr Excellence Adv Mol Imaging, Clayton, Vic 3800, Australia. [Elser, V.] Cornell Univ, Dept Phys, Ithaca, NY 14853 USA. [Guehr, M.] SLAC Natl Accelerator Lab, PULSE Inst, Menlo Pk, CA 94025 USA. [Hajdu, J.; Maia, F. R. N. C.] Uppsala Univ, Dept Cell & Mol Biol, Lab Mol Biophys, S-75124 Uppsala, Sweden. [Hau-Riege, S. P.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Lattman, E. E.] SUNY Buffalo, BioXFEL Ctr, Buffalo, NY 14203 USA. [Lattman, E. E.] SUNY Buffalo, Dept Biol Struct, Buffalo, NY 14203 USA. [Lattman, E. E.] Hauptman Woodward Inst, Buffalo, NY 14203 USA. [Ourmazd, A.] Univ Wisconsin, Dept Phys, Milwaukee, WI 53211 USA. [Pellegrini, C.] UCLA, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Santra, R.] Univ Hamburg, Dept Phys, D-20355 Hamburg, Germany. [Schlichting, I.] Max Planck Inst Med Res, D-69120 Heidelberg, Germany. [Schroer, C.; Vartanyants, I. A.] DESY, D-22607 Hamburg, Germany. [Spence, J. C. H.] Arizona State Univ, Dept Phys, Tempe, AZ 85287 USA. [Vartanyants, I. A.] Moscow Engn Phys Inst, Natl Res Nucl Univ MEPhI, Moscow 115409, Russia. [Wakatsuki, S.; Weis, W. I.] Stanford Univ, Sch Med, Stanford, CA 94305 USA. [Williams, G. J.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Bostedt, C (reprint author), SLAC Natl Accelerator Lab, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA. EM bostedt@slac.stanford.edu RI Santra, Robin/E-8332-2014; Barty, Anton/K-5137-2014 OI Santra, Robin/0000-0002-1442-9815; Barty, Anton/0000-0003-4751-2727 FU U.S. National Science Foundation [STC 1231306]; PULSE Institute at SLAC National Accelerator Laboratory - U.S. DOE Office of Basic Energy Sciences [DE-AC02-76SF00515]; U.S. Department of Energy, Office of Science, Basic Energy Sciences [DE-FG02-09ER16114]; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Helmholtz Association; BMBF [05K2012]; Hamburg Ministry of Science and Research; Swedish Research Councils; Swedish Foundation for Strategic Research; Knut and Alice Wallenberg Foundation; European Research Council; Rontgen-Angstrom cluster; Monash University FX The Linac Coherent Light Source (LCLS) at the SLAC National Accelerator Laboratory is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Stanford University. This work was: supported by the U.S. National Science Foundation under Award No. STC 1231306; supported through the PULSE Institute at SLAC National Accelerator Laboratory funded by the U.S. DOE Office of Basic Energy Sciences under Contract No. DE-AC02-76SF00515; was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under Award No. DE-FG02-09ER16114; performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344; supported by The Helmholtz Association and BMBF Grant No. 05K2012 and the Hamburg Ministry of Science and Research; supported by the Swedish Research Councils, the Swedish Foundation for Strategic Research, the Knut and Alice Wallenberg Foundation, the European Research Council, and the Rontgen-Angstrom cluster. H.E. was supported by funds from Monash University. NR 28 TC 21 Z9 22 U1 5 U2 28 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 2329-7778 J9 STRUCT DYNAM-US JI Struct. Dyn.-US PD JUL PY 2015 VL 2 IS 4 AR 041701 DI 10.1063/1.4918726 PG 13 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA CQ5MQ UT WOS:000360649200003 PM 26798801 ER PT J AU Coughlan, HD Darmanin, C Phillips, NW Hofmann, F Clark, JN Harder, RJ Vine, DJ Abbey, B AF Coughlan, H. D. Darmanin, C. Phillips, N. W. Hofmann, F. Clark, J. N. Harder, R. J. Vine, D. J. Abbey, B. TI Radiation damage in a micron-sized protein crystal studied via reciprocal space mapping and Bragg coherent diffractive imaging SO STRUCTURAL DYNAMICS LA English DT Article ID MACROMOLECULAR CRYSTALS; X-RAYS; CRYSTALLOGRAPHY; LYSOZYME; CRYOCRYSTALLOGRAPHY; TOMOGRAPHY; TOPOGRAPHY; RESOLUTION; NANOSCALE AB For laboratory and synchrotron based X-ray sources, radiation damage has posed a significant barrier to obtaining high-resolution structural data from biological macromolecules. The problem is particularly acute for micron-sized crystals where the weaker signal often necessitates the use of higher intensity beams to obtain the relevant data. Here, we employ a combination of techniques, including Bragg coherent diffractive imaging to characterise the radiation induced damage in a micron-sized protein crystal over time. The approach we adopt here could help screen for potential protein crystal candidates for measurement at X-ray free election laser sources. (C) 2015 Author(s). C1 [Coughlan, H. D.; Darmanin, C.; Phillips, N. W.; Abbey, B.] La Trobe Univ, Dept Chem & Phys, Australian Res Council Ctr Excellence Adv Mol Ima, Melbourne, Vic 3086, Australia. [Coughlan, H. D.; Phillips, N. W.] CSIRO Mfg Flagship, Parkville, Vic 3052, Australia. [Hofmann, F.] Univ Oxford, Dept Engn Sci, Oxford OX1 3PJ, England. [Clark, J. N.] SLAC Natl Accelerator Lab, Stanford PULSE Inst, Menlo Pk, CA 94025 USA. [Clark, J. N.] Deutsch Elektronensynchrotron DESY, Ctr Free Electron Laser Sci CFEL, D-22607 Hamburg, Germany. [Harder, R. J.; Vine, D. J.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Abbey, B.] Melbourne Ctr Nanofabricat, Melbourne, Vic 3168, Australia. RP Darmanin, C (reprint author), La Trobe Univ, Dept Chem & Phys, Australian Res Council Ctr Excellence Adv Mol Ima, Melbourne, Vic 3086, Australia. EM C.Darmanin@latrobe.edu.au; B.Abbey@latrobe.edu.au RI Abbey, Brian/D-3274-2011; OI Abbey, Brian/0000-0001-6504-0503; Phillips, Nicholas/0000-0002-9742-7937 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; CSIRO Materials Science and Engineering Capability Development Fund; Volkswagen Foundation FX The software implementation of the phase retrieval algorithms used in this work was developed by J. N. Clark. Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. Part of this research was undertaken on the MX1 and MX2 beamlines at the Australian Synchrotron, Victoria, Australia. With the help and expertise of Eugeniu Balaur, this work was also performed in part at the Melbourne Centre for Nanofabrication (MCN) in the Victorian Node of the Australian National Fabrication Facility (ANFF). This work was partly funded by the CSIRO Materials Science and Engineering Capability Development Fund. The work was carried out in collaboration with the ARC centre of excellence in Coherent X-ray Science and the ARC centre of excellence in Advanced Molecular Imaging. J. N. Clark gratefully acknowledges financial support from the Volkswagen Foundation. NR 43 TC 5 Z9 5 U1 1 U2 7 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 2329-7778 J9 STRUCT DYNAM-US JI Struct. Dyn.-US PD JUL PY 2015 VL 2 IS 4 AR 041704 DI 10.1063/1.4919641 PG 13 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA CQ5MQ UT WOS:000360649200006 PM 26798804 ER PT J AU Dao, EH Sierra, RG Laksmono, H Lemke, HT Alonso-Mori, R Coey, A Larsen, K Baxter, EL Cohen, AE Soltis, SM DeMirci, H AF Dao, E. Han Sierra, Raymond G. Laksmono, Hartawan Lemke, Henrik T. Alonso-Mori, Roberto Coey, Aaron Larsen, Kevin Baxter, Elizabeth L. Cohen, Aina E. Soltis, S. Michael DeMirci, Hasan TI Goniometer-based femtosecond X-ray diffraction of mutant 30S ribosomal subunit crystals SO STRUCTURAL DYNAMICS LA English DT Article ID FREE-ELECTRON LASERS; PHOTOSYSTEM-II; MACROMOLECULAR CRYSTALLOGRAPHY; THERMUS-THERMOPHILUS; PROTEIN CRYSTALS; ROOM-TEMPERATURE; RADIATION-DAMAGE; DATA-COLLECTION; SOFTWARE; PULSES AB In this work, we collected radiation-damage-free data from a set of cryo-cooled crystals for a novel 30S ribosomal subunit mutant using goniometer-based femtosecond crystallography. Crystal quality assessment for these samples was conducted at the X-ray Pump Probe end-station of the Linac Coherent Light Source (LCLS) using recently introduced goniometer-based instrumentation. These 30S subunit crystals were genetically engineered to omit a 26-residue protein, Thx, which is present in the wild-type Thermus thermophilus 30S ribosomal subunit. We are primarily interested in elucidating the contribution of this ribosomal protein to the overall 30S subunit structure. To assess the viability of this study, femtosecond X-ray diffraction patterns from these crystals were recorded at the LCLS during a protein crystal screening beam time. During our data collection, we successfully observed diffraction from these difficult-to-grow 30S ribosomal subunit crystals. Most of our crystals were found to diffract to low resolution, while one crystal diffracted to 3.2 angstrom resolution. These data suggest the feasibility of pursuing high-resolution data collection as well as the need to improve sample preparation and handling in order to collect a complete radiation-damage-free data set using an X-ray Free Electron Laser. (C) 2015 Author(s). C1 [Dao, E. Han; Sierra, Raymond G.; Laksmono, Hartawan; DeMirci, Hasan] SLAC Natl Accelerator Lab, Stanford PULSE Inst, Menlo Pk, CA 94025 USA. [Lemke, Henrik T.; Alonso-Mori, Roberto] SLAC Natl Accelerator Lab, LCLS, Menlo Pk, CA 94025 USA. [Coey, Aaron; Larsen, Kevin] Stanford Univ, Sch Med, Biophys Program, Stanford, CA 94305 USA. [Baxter, Elizabeth L.; Cohen, Aina E.; Soltis, S. Michael; DeMirci, Hasan] SLAC Natl Accelerator Lab, SSRL, Menlo Pk, CA 94025 USA. RP DeMirci, H (reprint author), SLAC Natl Accelerator Lab, Stanford PULSE Inst, Menlo Pk, CA 94025 USA. EM Hasan_DeMirci@Stanford.edu RI Lemke, Henrik Till/N-7419-2016 OI Lemke, Henrik Till/0000-0003-1577-8643 FU Office of Basic Energy Sciences (BES) through the AMOS program within the Chemical Sciences, Geosciences, and Biosciences Division of the Office of Basic Energy Sciences; Department of Energy through the SLAC Laboratory Directed Research and Development Program; Stanford University Dean of Research; joint Stanford ChEM-H and SLAC National Accelerator Laboratory seed grant program. FX The authors thank Dr. Steven Gregory and Dr. Albert E. Dahlberg for the T. thermophilus Delta Thx 30S mutant strain. Portions of this research were carried out at the Linac Coherent Light Source (LCLS) at the SLAC National Accelerator Laboratory. LCLS is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Stanford University. The LCLS was acknowledged for beam time access under Experiment No. xppe8814. E.H.D., H.L., R.G.S., and H.D. acknowledge the support of the Office of Basic Energy Sciences (BES) through the AMOS program within the Chemical Sciences, Geosciences, and Biosciences Division of the Office of Basic Energy Sciences, and the Department of Energy through the SLAC Laboratory Directed Research and Development Program. E.H.D. acknowledges financial support from the Stanford University Dean of Research. H.D. and S.M.S. acknowledge support from the joint Stanford ChEM-H and SLAC National Accelerator Laboratory seed grant program. H.D. also acknowledges valuable discussions with Aiko Takeuchi, Kenji Dursuncan, and Emi Satunaz. NR 47 TC 1 Z9 1 U1 2 U2 8 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 2329-7778 J9 STRUCT DYNAM-US JI Struct. Dyn.-US PD JUL PY 2015 VL 2 IS 4 AR 041706 DI 10.1063/1.4919407 PG 10 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA CQ5MQ UT WOS:000360649200008 PM 26798805 ER PT J AU Ibrahim, M Chatterjee, R Hellmich, J Tran, R Bommer, M Yachandra, VK Yano, J Kern, J Zouni, A AF Ibrahim, Mohamed Chatterjee, Ruchira Hellmich, Julia Tran, Rosalie Bommer, Martin Yachandra, Vittal K. Yano, Junko Kern, Jan Zouni, Athina TI Improvements in serial femtosecond crystallography of photosystem II by optimizing crystal uniformity using microseeding procedures SO STRUCTURAL DYNAMICS LA English DT Article ID THERMOSYNECHOCOCCUS-ELONGATUS; ROOM-TEMPERATURE; RESOLUTION; PROTEIN; CRYSTALLIZATION; CYANOBACTERIAL; DIFFRACTION; MECHANISM AB In photosynthesis, photosystem II (PSII) is the multi-subunit membrane protein complex that catalyzes photo-oxidation of water into dioxygen through the oxygen evolving complex (OEC). To understand the water oxidation reaction, it is important to get structural information about the transient and intermediate states of the OEC in the dimeric PSII core complex (dPSIIcc). In recent times, femtosecond X-ray pulses from the free electron laser (XFEL) are being used to obtain X-ray diffraction (XRD) data of dPSIIcc microcrystals at room temperature that are free of radiation damage. In our experiments at the XFEL, we used an electrospun liquid microjet setup that requires microcrystals less than 40 mu m in size. In this study, we explored various microseeding techniques to get a high yield of monodisperse uniform-sized microcrystals. Monodisperse microcrystals of dPSIIcc of uniform size were a key to improve the stability of the jet and the quality of XRD data obtained at the XFEL. This was evident by an improvement of the quality of the datasets obtained, from 6.5 angstrom, using crystals grown without the micro seeding approach, to 4.5 angstrom using crystals generated with the new method. (C) 2015 Author(s). C1 [Ibrahim, Mohamed; Hellmich, Julia; Bommer, Martin; Zouni, Athina] Humboldt Univ, Inst Biol, D-10099 Berlin, Germany. [Ibrahim, Mohamed; Hellmich, Julia; Zouni, Athina] Tech Univ Berlin, Max Volmer Lab Biophys Chem, D-10623 Berlin, Germany. [Chatterjee, Ruchira; Tran, Rosalie; Yachandra, Vittal K.; Yano, Junko; Kern, Jan] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Kern, Jan] SLAC Natl Accelerator Lab, LCLS, Menlo Pk, CA 94025 USA. RP Ibrahim, M (reprint author), Humboldt Univ, Inst Biol, D-10099 Berlin, Germany. EM jyano@lbl.gov; jfkern@lbl.gov; athina.zouni@hu-berlin.de FU NIH Grant [GM055302]; Office of Science, Office of Basic Energy Sciences (OBES), Division of Chemical Sciences, Geosciences, and Biosciences (CSGB) of the Department of Energy (DOE) [DE-AC02-05CH11231]; DFG-Cluster of Excellence "UniCat" [Sfb1078] FX This work was supported by NIH Grant No. GM055302 (V.K.Y) for PSII biochemistry, structure, and mechanism; the Director, Office of Science, Office of Basic Energy Sciences (OBES), Division of Chemical Sciences, Geosciences, and Biosciences (CSGB) of the Department of Energy (DOE) under Contract No. DE-AC02-05CH11231 (J.Y. and V.K.Y) for X-ray methodology and instrumentation. The DFG-Cluster of Excellence "UniCat" coordinated by the Technische Universitat Berlin and Sfb1078, TP A5 (A.Z., M.I., and M.B.); the Alexander von Humboldt Foundation (J.K.); and the Human Frontiers Science Project Award No. RGP0063/2013 (J.Y. and A.Z.). We thank the staff at LCLS/SLAC and the staff at ALS (BL5.0.2) and BESSY for support of synchrotron experiments. Portions of this research were carried out at the Linac Coherent Light Source (LCLS) at the SLAC National Accelerator Laboratory. LCLS is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Stanford University. We thank I. Seuffert and D. DiFiore (Sfb1078, project A5) for their excellent technical assistance. NR 30 TC 6 Z9 6 U1 1 U2 19 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 2329-7778 J9 STRUCT DYNAM-US JI Struct. Dyn.-US PD JUL PY 2015 VL 2 IS 4 AR 041705 DI 10.1063/1.4919741 PG 11 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA CQ5MQ UT WOS:000360649200007 ER PT J AU Angyal, A Ilyas, Z Hadadi, E Johnston, J Ariaans, M Kraus, R Wilson, H Bauer, R Rader, D Francis, S Kiss-Toth, E AF Angyal, A. Ilyas, Z. Hadadi, E. Johnston, J. Ariaans, M. Kraus, R. Wilson, H. Bauer, R. Rader, D. Francis, S. Kiss-Toth, E. TI DOES MYELOID EXPRESSION OF TRIB1 REGULATE PLASMA LIPID LEVELS? SO ATHEROSCLEROSIS LA English DT Meeting Abstract CT 83rd Congress of the European-Atherosclerosis-Society (EAS) CY MAR 22-25, 2015 CL Glasgow, SCOTLAND SP European Atherosclerosis Soc C1 [Angyal, A.; Ilyas, Z.; Hadadi, E.; Johnston, J.; Ariaans, M.; Wilson, H.; Francis, S.; Kiss-Toth, E.] Univ Sheffield, Cardiovasc Dept, Sheffield, S Yorkshire, England. [Kraus, R.] Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA USA. [Bauer, R.; Rader, D.] Univ Penn, Cardiovasc Inst, Philadelphia, PA 19104 USA. [Bauer, R.; Rader, D.] Univ Penn, Inst Translat Med & Therapeut, Philadelphia, PA 19104 USA. RI Kiss-Toth, Endre/A-8596-2014 OI Kiss-Toth, Endre/0000-0003-4406-4017 NR 0 TC 0 Z9 0 U1 0 U2 1 PU ELSEVIER IRELAND LTD PI CLARE PA ELSEVIER HOUSE, BROOKVALE PLAZA, EAST PARK SHANNON, CO, CLARE, 00000, IRELAND SN 0021-9150 EI 1879-1484 J9 ATHEROSCLEROSIS JI Atherosclerosis PD JUL PY 2015 VL 241 IS 1 MA EAS-0387 BP E34 EP E34 PG 1 WC Cardiac & Cardiovascular Systems; Peripheral Vascular Disease SC Cardiovascular System & Cardiology GA CP7WS UT WOS:000360100600105 ER PT J AU Li, T Wang, L Ku, X Guell, BM Lovas, T Shaddix, CR AF Li, Tian Wang, Liang Ku, Xiaoke Guell, Berta Matas Lovas, Terese Shaddix, Christopher R. TI Experimental and Modeling Study of the Effect of Torrefaction on the Rapid Devolatilization of Biomass SO ENERGY & FUELS LA English DT Article; Proceedings Paper CT 2nd International Conference Biogas Science CY 2014 CL Vienna, AUSTRIA ID COAL DEVOLATILIZATION; PYROLYSIS CONDITIONS; HEATING RATE; KINETICS; PARTICLE; WOOD; PREDICTIONS; COMBUSTION; FLASHCHAIN; REACTOR AB In the present work, experimental and computational fluid dynamics (CFD) approaches were proposed and applied to assess rapid devolatilization behaviors of four types of biomass (forest residue, torrefied forest residue, Norwegian spruce, and torrefied Norwegian spruce). Biomass particles were subjected to devolatilization experiments at 1073 and 1473 K in a drop-tube reactor. Torrefaction was found to have consistent effects on the size reduction of studied biomass. In addition, similar behaviors of char fragmentation were observed for tested torrefied biomass after rapid devolatilization at 1473 K. Mass loss during devolatilization of biomass was highly dependent on heating condition. Both rates and extents of devolatilization of biomass were increased at elevated temperatures and heating rates. In comparison with raw feedstock, high char yields were realized with the torrefied biomass after devolatilization experiments. Evolution of elemental composition of studied biomass was found to be insensitive to tested conditions. However, organic composition of char was strongly affected by elemental composition of fuel, thus also influenced by torrefaction. CFD simulation showed that sizes of fuel particles had decisive effects on residence time of them in the reactor, especially particles with diameter larger than 355 mu m. Particle temperature, in contrast, depended on both particle diameter and particle density. A modified two-competing-rates devolatilization model was also presented in the present work. On the basis of experimental data, one optimal set of kinetic parameters was obtained following a proposed procedure. The model predicted well the mass loss of all tested fuel and the evolution of each organic element in char at all operation conditions. C1 [Li, Tian; Ku, Xiaoke; Lovas, Terese] Norwegian Univ Sci & Technol, Dept Energy & Proc Engn, N-7491 Trondheim, Norway. [Wang, Liang; Guell, Berta Matas] SINTEF Energy Res, N-7465 Trondheim, Norway. [Shaddix, Christopher R.] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94550 USA. RP Li, T (reprint author), Norwegian Univ Sci & Technol, Dept Energy & Proc Engn, Kolbjorn Hejes Vei 1b, N-7491 Trondheim, Norway. EM tian.li@ntnu.no OI Li, Tian/0000-0002-4248-8396; Wang, Liang/0000-0002-1458-7653 FU Research Council of Norway; Sandia Laboratory's Directed Research and Development (LDRD) program; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was carried out within the GasBio project, funded by Research Council of Norway and industry partners. Support was also provided through Sandia Laboratory's Directed Research and Development (LDRD) program. We thank Manfred Geier for his assistance with the experiments at Sandia. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 34 TC 5 Z9 5 U1 3 U2 25 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 EI 1520-5029 J9 ENERG FUEL JI Energy Fuels PD JUL PY 2015 VL 29 IS 7 BP 4328 EP 4338 DI 10.1021/acs.energyfuels.5b00348 PG 11 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA CP6VS UT WOS:000360026900036 ER PT J AU Engebretson, MJ Posch, JL Wygant, JR Kletzing, CA Lessard, MR Huang, CL Spence, HE Smith, CW Singer, HJ Omura, Y Horne, RB Reeves, GD Baker, DN Gkioulidou, M Oksavik, K Mann, IR Raita, T Shiokawa, K AF Engebretson, M. J. Posch, J. L. Wygant, J. R. Kletzing, C. A. Lessard, M. R. Huang, C. -L. Spence, H. E. Smith, C. W. Singer, H. J. Omura, Y. Horne, R. B. Reeves, G. D. Baker, D. N. Gkioulidou, M. Oksavik, K. Mann, I. R. Raita, T. Shiokawa, K. TI Van Allen probes, NOAA, GOES, and ground observations of an intense EMIC wave event extending over 12 h in magnetic local time SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article DE EMIC waves; radiation belts; magnetospheric compressions ID ION-CYCLOTRON WAVES; RELATIVISTIC ELECTRON-PRECIPITATION; SUBAURORAL PROTON PRECIPITATION; PITCH-ANGLE SCATTERING; EQUATORIAL MAGNETOSPHERE; ENERGETIC PARTICLE; GEOMAGNETIC STORMS; RADIATION BELTS; PULSATIONS; EMISSIONS AB Although most studies of the effects of electromagnetic ion cyclotron (EMIC) waves on Earth's outer radiation belt have focused on events in the afternoon sector in the outer plasmasphere or plume region, strong magnetospheric compressions provide an additional stimulus for EMIC wave generation across a large range of local times and L shells. We present here observations of the effects of a wave event on 23 February 2014 that extended over 8h in UT and over 12h in local time, stimulated by a gradual 4h rise and subsequent sharp increases in solar wind pressure. Large-amplitude linearly polarized hydrogen band EMIC waves (up to 25nT p-p) appeared for over 4h at both Van Allen Probes, from late morning through local noon, when these spacecraft were outside the plasmapause, with densities similar to 5-20cm(-3). Waves were also observed by ground-based induction magnetometers in Antarctica (near dawn), Finland (near local noon), Russia (in the afternoon), and in Canada (from dusk to midnight). Ten passes of NOAA-POES and METOP satellites near the northern foot point of the Van Allen Probes observed 30-80keV subauroral proton precipitation, often over extended L shell ranges; other passes identified a narrow L shell region of precipitation over Canada. Observations of relativistic electrons by the Van Allen Probes showed that the fluxes of more field-aligned and more energetic radiation belt electrons were reduced in response to both the emission over Canada and the more spatially extended emission associated with the compression, confirming the effectiveness of EMIC-induced loss processes for this event. C1 [Engebretson, M. J.; Posch, J. L.] Augsburg Coll, Dept Phys, Minneapolis, MN 55454 USA. [Wygant, J. R.] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA. [Kletzing, C. A.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. [Lessard, M. R.; Huang, C. -L.; Spence, H. E.; Smith, C. W.] Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA. [Singer, H. J.] NOAA, Boulder, CO USA. [Omura, Y.] Kyoto Univ, Res Inst Sustainable Humanosphere, Kyoto, Japan. [Horne, R. B.] British Antarctic Survey, Cambridge CB3 0ET, England. [Reeves, G. D.] Los Alamos Natl Lab, Space Sci & Applicat Grp, Los Alamos, NM USA. [Baker, D. N.] Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80309 USA. [Gkioulidou, M.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA. [Oksavik, K.] Univ Bergen, Birkeland Ctr Space Sci, Dept Phys & Technol, Bergen, Norway. [Oksavik, K.] Univ Ctr Svalbard, Longyearbyen, Norway. [Mann, I. R.] Univ Alberta, Dept Phys, Edmonton, AB, Canada. [Mann, I. R.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Raita, T.] Univ Oulu, Sodankyla Geophys Observ, Sodankyla, Finland. [Shiokawa, K.] Nagoya Univ, STELAB, Toyokawa, Japan. RP Engebretson, MJ (reprint author), Augsburg Coll, Dept Phys, Minneapolis, MN 55454 USA. EM engebret@augsburg.edu RI Reeves, Geoffrey/E-8101-2011; Gkioulidou, Matina/G-9009-2015; Omura, Yoshiharu/P-8565-2014; OI Reeves, Geoffrey/0000-0002-7985-8098; Gkioulidou, Matina/0000-0001-9979-2164; Omura, Yoshiharu/0000-0002-6683-3940; Horne, Richard/0000-0002-0412-6407; Kletzing, Craig/0000-0002-4136-3348; Oksavik, Kjellmar/0000-0003-4312-6992 FU NSF [ANT-1142045, PLR-1341493, ANT-1141987, PLR-1341677]; Van Allen Probes mission; NASA [NAS5-01072]; Research Council of Norway [223252, 212014] FX This research was supported by NSF grants ANT-1142045 and PLR-1341493 to Augsburg College and NSF grants ANT-1141987 and PLR-1341677 to the University of New Hampshire. Work performed by M.J.E. at NASA/GSFC was supported by the Van Allen Probes mission. Van Allen Probes research at the University of Minnesota, University of Iowa, University of New Hampshire, and Los Alamos National Laboratory was supported by NASA prime contract NAS5-01072 to The Johns Hopkins University Applied Physics Laboratory. Work performed by K.O. at the University of Bergen was supported by the Research Council of Norway under contracts 223252 and 212014. We thank David Sibeck, Brian Anderson, Shrikanth Kanekal, Sasha Ukhorskiy, Yuri Shprits, Viacheslav Pilipenko, Finn Soraas, and Barry Mauk for helpful comments The Halley research station in Antarctica is operated by the British Antarctic Survey. We thank R.A. Rakhmatulin for providing Mondy induction magnetometer data, we thank the referees for their helpful comments, and we gratefully acknowledge use of NASA/GSFC's Space Physics Data Facility's OMNIWeb, SSCweb, and CDAWeb data. NR 76 TC 24 Z9 24 U1 3 U2 9 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD JUL PY 2015 VL 120 IS 7 BP 5465 EP 5488 DI 10.1002/2015JA021227 PG 24 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CQ1TF UT WOS:000360381400018 ER PT J AU Allen, RC Zhang, JC Kistler, LM Spence, HE Lin, RL Klecker, B Dunlop, MW Andre, M Jordanova, VK AF Allen, R. C. Zhang, J. -C. Kistler, L. M. Spence, H. E. Lin, R. -L. Klecker, B. Dunlop, M. W. Andre, M. Jordanova, V. K. TI A statistical study of EMIC waves observed by Cluster: 1. Wave properties SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article DE magnetosphere; EMIC waves; Cluster; Shabansky orbits ID ION-CYCLOTRON WAVES; 1-2 MAGNETIC PULSATIONS; DAWN-DUSK ASYMMETRY; EQUATORIAL MAGNETOSPHERE; GLOBAL CHARACTERISTICS; EARTHS MAGNETOSPHERE; SOURCE REGION; HEAVY-IONS; INSTABILITY; MODEL AB Electromagnetic ion cyclotron (EMIC) waves are an important mechanism for particle energization and losses inside the magnetosphere. In order to better understand the effects of these waves on particle dynamics, detailed information about the occurrence rate, wave power, ellipticity, normal angle, energy propagation angle distributions, and local plasma parameters are required. Previous statistical studies have used in situ observations to investigate the distribution of these parameters in the magnetic local time versus L-shell (MLT-L) frame within a limited magnetic latitude (MLAT) range. In this study, we present a statistical analysis of EMIC wave properties using 10years (2001-2010) of data from Cluster, totaling 25,431min of wave activity. Due to the polar orbit of Cluster, we are able to investigate EMIC waves at all MLATs and MLTs. This allows us to further investigate the MLAT dependence of various wave properties inside different MLT sectors and further explore the effects of Shabansky orbits on EMIC wave generation and propagation. The statistical analysis is presented in two papers. This paper focuses on the wave occurrence distribution as well as the distribution of wave properties. The companion paper focuses on local plasma parameters during wave observations as well as wave generation proxies. C1 [Allen, R. C.; Zhang, J. -C.; Kistler, L. M.; Spence, H. E.] Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA. [Lin, R. -L.] Chinese Acad Sci, Natl Space Sci Ctr, Beijing, Peoples R China. [Klecker, B.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Dunlop, M. W.] Rutherford Appleton Lab, Div Space Sci, Harwell, Oxon, England. [Andre, M.] Swedish Inst Space Phys IRF, Uppsala, Sweden. [Jordanova, V. K.] Los Alamos Natl Lab, Los Alamos, NM USA. RP Allen, RC (reprint author), Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA. EM robert.allen@swri.edu RI Allen, Robert/F-5187-2011 OI Jordanova, Vania/0000-0003-0475-8743; Allen, Robert/0000-0003-2079-5683 FU NASA [NNX11AO82G, NNX11AB65G]; RBSP-ECT - JHU/APL Contract under NASA's Prime Contract [967399, NAS5-01072] FX NASA supported work at UNH under grants NNX11AO82G and NNX11AB65G. This work was also supported by RBSP-ECT funding provided by JHU/APL Contract 967399 under NASA's Prime Contract NAS5-01072. The authors thank the Cluster team for their data and software. C. Torrence and G. Compo at University of Colorado and the THEMIS Science Support Team supplied IDL routines for the polarization and normal angle analysis, which are available at URL: http://themis.ssl.berkeley.edu/software.shtml. N. A. Tsyganenko of University of St.-Petersburg in the Russian Federation and H. Korth of JHU/APL provided the Tsyganenko magnetic field model and the IDL/Geopack module. Solar wind plasma/IMF data, Dst, and Kp indices were obtained from the GSFC/SPDF OMNIWeb interface at URL: http://omniweb.gsfc.nasa.gov. The authors would also like to thank the Cluster instrument teams (FGM and EFW) along with the Cluster Science Archive URL: http://www.cosmos.esa.int/web/csa. Finally, we would like to thank UCLA for the website on statistical analysis methods URL: http://statistics.ats.ucla.edu/stat/mult_pkg/whatstat/. NR 71 TC 24 Z9 24 U1 1 U2 5 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD JUL PY 2015 VL 120 IS 7 BP 5574 EP 5592 DI 10.1002/2015JA021333 PG 19 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CQ1TF UT WOS:000360381400024 ER PT J AU Damiano, PA Johnson, JR Chaston, CC AF Damiano, P. A. Johnson, J. R. Chaston, C. C. TI Ion temperature effects on magnetotail Alfven wave propagation and electron energization SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article DE electron acceleration; kinetic Alfven waves; kinetic simulations; magnetosphere-ionosphere coupling; ion gyroradius effects ID PLASMA SHEET; SMALL-SCALE; MAGNETOSPHERIC PLASMA; AURORAL ELECTRONS; R-E; ACCELERATION; SIMULATIONS; DISPERSION AB A new 2-D self-consistent hybrid gyrofluid-kinetic electron model in dipolar coordinates is presented and used to simulate dispersive-scale Alfven wave pulse propagation from the equator to the ionosphere along an L = 10 magnetic field line. The model is an extension of the hybrid MHD-kinetic electron model that incorporates ion Larmor radius corrections via the kinetic fluid model of Cheng and Johnson (1999). It is found that consideration of a realistic ion to electron temperature ratio decreases the propagation time of the wave from the plasma sheet to the ionosphere by several seconds relative to a (i)=0 case (which also implies shorter timing for a substorm onset signal) and leads to significant dispersion of wave energy perpendicular to the ambient magnetic field. Additionally, ion temperature effects reduce the parallel current and electron energization all along the field line for the same magnitude perpendicular electric field perturbation. C1 [Damiano, P. A.; Johnson, J. R.] Princeton Univ, Princeton Plasma Phys Lab, Princeton Ctr Heliophys, Princeton, NJ 08543 USA. [Chaston, C. C.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Chaston, C. C.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. RP Damiano, PA (reprint author), Princeton Univ, Princeton Plasma Phys Lab, Princeton Ctr Heliophys, POB 451, Princeton, NJ 08543 USA. EM pdamiano@pppl.gov FU NASA [NNH11AR071, NNX14AM27G, NNH14AY20I, NNX13XAE12G, NNX15AJ01G]; NSF [AGS1203299]; Australian Research Council [FT110100316]; U.S. Department of Energy [DE-AC02-09CH11466]; CISL project [UPR10002] FX The authors thank the referees for many comments which significantly improved the manuscript. P.A.D. also acknowledges useful discussions with Will Fox regarding nonlinear trapping effects. The authors acknowledge support from NASA grants (NNH11AR071, NNX14AM27G, NNH14AY20I, NNX13XAE12G, and NNX15AJ01G) and NSF grant (AGS1203299). C. Chaston also acknowledges support from Australian Research Council grant FT110100316. This manuscript was authored by Princeton University under contract DE-AC02-09CH11466 with the U.S. Department of Energy. This work was facilitated by the Max-Planck/Princeton Center for Plasma Physics. The numerical data used in the figures may be obtained by contacting the corresponding author. Computing resources were provided by the Princeton Plasma Physics Laboratory and the National Center for Atmospheric Research (under CISL project UPR10002). NR 41 TC 3 Z9 3 U1 0 U2 2 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD JUL PY 2015 VL 120 IS 7 BP 5623 EP 5632 DI 10.1002/2015JA021074 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CQ1TF UT WOS:000360381400028 ER PT J AU Claudepierre, SG O'Brien, TP Blake, JB Fennell, JF Roeder, JL Clemmons, JH Looper, MD Mazur, JE Mulligan, TM Spence, HE Reeves, GD Friedel, RHW Henderson, MG Larsen, BA AF Claudepierre, S. G. O'Brien, T. P. Blake, J. B. Fennell, J. F. Roeder, J. L. Clemmons, J. H. Looper, M. D. Mazur, J. E. Mulligan, T. M. Spence, H. E. Reeves, G. D. Friedel, R. H. W. Henderson, M. G. Larsen, B. A. TI A background correction algorithm for Van Allen Probes MagEIS electron flux measurements SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article DE radiation belt; inner radiation belt; background contamination; spacecraft engineering; outer radiation belt; particle measurements ID RELATIVISTIC ELECTRONS; RADIATION BELT; SLOT REGION; ENVIRONMENT; PARTICLE; MODEL AB We describe an automated computer algorithm designed to remove background contamination from the Van Allen Probes Magnetic Electron Ion Spectrometer (MagEIS) electron flux measurements. We provide a detailed description of the algorithm with illustrative examples from on-orbit data. We find two primary sources of background contamination in the MagEIS electron data: inner zone protons and bremsstrahlung X-rays generated by energetic electrons interacting with the spacecraft material. Bremsstrahlung X-rays primarily produce contamination in the lower energy MagEIS electron channels (approximate to 30-500keV) and in regions of geospace where multi-MeV electrons are present. Inner zone protons produce contamination in all MagEIS energy channels at roughly L < 2.5. The background-corrected MagEIS electron data produce a more accurate measurement of the electron radiation belts, as most earlier measurements suffer from unquantifiable and uncorrectable contamination in this harsh region of the near-Earth space environment. These background-corrected data will also be useful for spacecraft engineering purposes, providing ground truth for the near-Earth electron environment and informing the next generation of spacecraft design models (e.g., AE9). C1 [Claudepierre, S. G.; O'Brien, T. P.; Blake, J. B.; Fennell, J. F.; Roeder, J. L.; Clemmons, J. H.; Looper, M. D.; Mazur, J. E.; Mulligan, T. M.] Aerosp Corp, Dept Space Sci, El Segundo, CA 90245 USA. [Spence, H. E.] Univ New Hampshire, Inst Study Earth Oceans & Space, Durham, NH 03824 USA. [Reeves, G. D.; Friedel, R. H. W.; Henderson, M. G.; Larsen, B. A.] Los Alamos Natl Lab, Space & Atmospher Sci Grp, Los Alamos, NM USA. RP Claudepierre, SG (reprint author), Aerosp Corp, Dept Space Sci, El Segundo, CA 90245 USA. EM seth@aero.org RI Reeves, Geoffrey/E-8101-2011; Henderson, Michael/A-3948-2011; Claudepierre, Seth/A-6109-2012; OI Reeves, Geoffrey/0000-0002-7985-8098; Henderson, Michael/0000-0003-4975-9029; Clemmons, James/0000-0002-5298-5222 FU RBSP-ECT - JHU/APL contract under NASA [967399, NAS5-01072]; NASA [NNX10AK93G]; U.S. Department of Energy; NASA Van Allen Probes mission FX This work was supported by RBSP-ECT funding provided by JHU/APL contract 967399 under NASA's prime contract NAS5-01072. Work at JHU/APL was supported by NASA grant NNX10AK93G. Work at Los Alamos National Laboratory was performed under the auspices of the U.S. Department of Energy, with support from the NASA Van Allen Probes mission. All of the level 2+ Van Allen Probes data used in this manuscript are in the public domain and accessible from the Van Allen Probes Science Gateway (www.rbsp-ect.lanl.gov/data_pub/). Level 1 MagEIS histogram data can be made available by contacting the lead author (S.G.C.). One author (S.G.C.) would like to thank Jeremy Faden and all of the developers of Autoplot. NR 24 TC 13 Z9 13 U1 1 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD JUL PY 2015 VL 120 IS 7 BP 5703 EP 5727 DI 10.1002/2015JA021171 PG 25 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CQ1TF UT WOS:000360381400035 ER PT J AU Lay, EH Shao, XM Kendrick, AK Carrano, CS AF Lay, Erin H. Shao, Xuan-Min Kendrick, Alexander K. Carrano, Charles S. TI Ionospheric acoustic and gravity waves associated with midlatitude thunderstorms SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article DE ionosphere; thunderstorms; acoustic waves; gravity waves; troposphere; ionosphere coupling ID TOTAL ELECTRON-CONTENT; SEVERE WEATHER; DISTURBANCES; INFRASOUND; CONVECTION; RESPONSES; SPRITES AB Acoustic waves with periods of 2-4min and gravity waves with periods of 6-16min have been detected at ionospheric heights (250-350km) using GPS total electron content measurements. The area disturbed by these waves and the wave amplitudes have been associated with underlying thunderstorm activity. A statistical study comparing Next Generation Weather Radar thunderstorm measurements with ionospheric acoustic and gravity waves in the midlatitude U.S. Great Plains region was performed for the time period of May-July 2005. An increase of ionospheric acoustic wave disturbed area and amplitude is primarily associated with large thunderstorms (mesoscale convective systems). Ionospheric gravity wave disturbed area and amplitude scale with thunderstorm activity, with even small storms (i.e., individual storm cells) producing an increase of gravity waves. C1 [Lay, Erin H.; Shao, Xuan-Min; Kendrick, Alexander K.] Los Alamos Natl Lab, Space & Remote Sensing Grp, Los Alamos, NM 87545 USA. [Carrano, Charles S.] Boston Coll, Inst Sci Res, Boston, MA USA. RP Lay, EH (reprint author), Los Alamos Natl Lab, Space & Remote Sensing Grp, Los Alamos, NM 87545 USA. EM elay@lanl.gov OI Kendrick, Alexander/0000-0002-0472-2575; Lay, Erin/0000-0002-1310-9035 FU Los Alamos National Laboratory's Laboratory Directed Research and Development (LDRD) project [20130737ECR] FX This research was supported by the Los Alamos National Laboratory's Laboratory Directed Research and Development (LDRD) project 20130737ECR. Ground-based GPS receiver data used in this study were downloaded from http://geodesy.noaa.gov/CORS/. NEXRAD radar data were downloaded from http://www.roc.noaa.gov/WSR88D/. Los Alamos Sferic Array data used in the analysis can be released through official Los Alamos National Laboratory's release policy after a request is made to authors E.H.L. or X.-M.S. NR 28 TC 3 Z9 3 U1 1 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD JUL PY 2015 VL 120 IS 7 BP 6010 EP 6020 DI 10.1002/2015JA021334 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CQ1TF UT WOS:000360381400057 ER PT J AU Mittal, S Vetter, JS AF Mittal, Sparsh Vetter, Jeffrey S. TI A Survey of CPU-GPU Heterogeneous Computing Techniques SO ACM COMPUTING SURVEYS LA English DT Article DE Experimentation; Management; Measurement; Performance; Analysis; CPU-GPU heterogeneous/hybrid/collaborative computing; workload division/partitioning; dynamic/static load balancing; pipelining; programming frameworks; fused CPU-GPU chip ID MULTI-GPU; SYSTEMS; MODEL; ARCHITECTURES; COMPUTATION; SIMULATIONS; PERFORMANCE; EXECUTION; TIME; IMPLEMENTATION AB As both CPUs and GPUs become employed in a wide range of applications, it has been acknowledged that both of these Processing Units (PUs) have their unique features and strengths and hence, CPU-GPU collaboration is inevitable to achieve high-performance computing. This has motivated a significant amount of research on heterogeneous computing techniques, along with the design of CPU-GPU fused chips and petascale heterogeneous supercomputers. In this article, we survey Heterogeneous Computing Techniques (HCTs) such as workload partitioning that enable utilizing both CPUs and GPUs to improve performance and/or energy efficiency. We review heterogeneous computing approaches at runtime, algorithm, programming, compiler, and application levels. Further, we review both discrete and fused CPU-GPU systems and discuss benchmark suites designed for evaluating Heterogeneous Computing Systems (HCSs). We believe that this article will provide insights into the workings and scope of applications of HCTs to researchers and motivate them to further harness the computational powers of CPUs and GPUs to achieve the goal of exascale performance. C1 [Mittal, Sparsh; Vetter, Jeffrey S.] Oak Ridge Natl Lab, Oak Ridge, TN 37830 USA. [Vetter, Jeffrey S.] Georgia Tech, Atlanta, GA USA. RP Mittal, S (reprint author), Oak Ridge Natl Lab, 1 Bethel Valley Rd,Bldg 5100,MS-6173, Oak Ridge, TN 37830 USA. EM mittals@ornl.gov; vetter@ornl.gov FU U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research FX Support for this work was provided by U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research. NR 190 TC 4 Z9 4 U1 2 U2 15 PU ASSOC COMPUTING MACHINERY PI NEW YORK PA 2 PENN PLAZA, STE 701, NEW YORK, NY 10121-0701 USA SN 0360-0300 EI 1557-7341 J9 ACM COMPUT SURV JI ACM Comput. Surv. PD JUL PY 2015 VL 47 IS 4 AR 69 DI 10.1145/2788396 PG 35 WC Computer Science, Theory & Methods SC Computer Science GA CP6NY UT WOS:000360005500015 ER PT J AU Hegerl, GC Black, E Allan, RP Ingram, WJ Polson, D Trenberth, KE Chadwick, RS Arkin, PA Sarojini, BB Becker, A Dai, AG Durack, PJ Easterling, D Fowler, HJ Kendon, EJ Huffman, GJ Liu, CL Marsh, R New, M Osborn, TJ Skliris, N Stott, PA Vidale, PL Wijffels, SE Wilcox, LJ Willett, KM Zhang, XB AF Hegerl, Gabriele C. Black, Emily Allan, Richard P. Ingram, William J. Polson, Debbie Trenberth, Kevin E. Chadwick, Robin S. Arkin, Phillip A. Sarojini, Beena Balan Becker, Andreas Dai, Aiguo Durack, Paul J. Easterling, David Fowler, Hayley J. Kendon, Elizabeth J. Huffman, George J. Liu, Chunlei Marsh, Robert New, Mark Osborn, Timothy J. Skliris, Nikolaos Stott, Peter A. Vidale, Pier-Luigi Wijffels, Susan E. Wilcox, Laura J. Willett, Kate M. Zhang, Xuebin TI CHALLENGES IN QUANTIFYING CHANGES IN THE GLOBAL WATER CYCLE SO BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY LA English DT Article ID EXPLAINING EXTREME EVENTS; CLIMATE-CHANGE; PRECIPITATION EXTREMES; ANTHROPOGENIC AEROSOLS; TROPICAL PRECIPITATION; HYDROLOGICAL CYCLE; SURFACE HUMIDITY; INTENSE PRECIPITATION; REGIONAL PERSPECTIVE; NORTHERN-HEMISPHERE C1 [Hegerl, Gabriele C.; Polson, Debbie] Univ Edinburgh, Sch GeoSci, Grant Inst, Edinburgh EH8 9YL, Midlothian, Scotland. [Black, Emily; Allan, Richard P.; Sarojini, Beena Balan; Liu, Chunlei; Vidale, Pier-Luigi; Wilcox, Laura J.] Univ Reading, Dept Meteorol, Natl Ctr Atmospher Sci Climate, Reading, Berks, England. [Ingram, William J.; Chadwick, Robin S.; Kendon, Elizabeth J.; Stott, Peter A.; Willett, Kate M.] Hadley Ctr, Met Off, Exeter, Devon, England. [Ingram, William J.] Univ Oxford, Dept Phys, Oxford, England. [Trenberth, Kevin E.; Dai, Aiguo] Natl Ctr Atmospher Res, Boulder, CO 80307 USA. [Arkin, Phillip A.] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA. [Becker, Andreas] Deutsch Wetterdienst, Offenbach, Germany. [Dai, Aiguo] SUNY Albany, Dept Atmospher & Environm Sci, Albany, NY 12222 USA. [Durack, Paul J.] Lawrence Livermore Natl Lab, Program Climate Model Diag & Intercomparison, Livermore, CA USA. [Durack, Paul J.; Wijffels, Susan E.] CSIRO, Hobart, Tas, Australia. [Easterling, David] NOAA, Natl Climat Data Ctr, Asheville, NC USA. [Fowler, Hayley J.] Newcastle Univ, Sch Civil Engn & Geosci, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England. [Huffman, George J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Marsh, Robert; Skliris, Nikolaos] Univ Southampton, Ocean & Earth Sci, Southampton, Hants, England. [New, Mark] Univ Cape Town, ZA-7700 Cape Town, South Africa. [Osborn, Timothy J.] Univ E Anglia, Sch Environm Sci, Climat Res Unit, Norwich NR4 7TJ, Norfolk, England. [Zhang, Xuebin] Environm Canada, Div Climate Res, Toronto, ON, Canada. RP Hegerl, GC (reprint author), Grant Inst, GeoSci, Kings Bldg,James Hutton Rd, Edinburgh EH9 3FE, Midlothian, Scotland. EM gabi.hegerl@ed.ac.uk RI Trenberth, Kevin/A-5683-2012; Allan, Richard/B-5782-2008; Dai, Aiguo/D-3487-2009; New, Mark/A-7684-2008; Huffman, George/F-4494-2014; Durack, Paul/A-8758-2010; Stott, Peter/N-1228-2016; OI Trenberth, Kevin/0000-0002-1445-1000; Allan, Richard/0000-0003-0264-9447; Fowler, Hayley/0000-0001-8848-3606; New, Mark/0000-0001-6082-8879; Huffman, George/0000-0003-3858-8308; Durack, Paul/0000-0003-2835-1438; Stott, Peter/0000-0003-4853-7686; Vidale, Pier Luigi/0000-0002-1800-8460; Marsh, Robert/0000-0002-1051-8749 FU U.K. Natural Environment Research Council (NERC) [NE/I006672/1]; DECC/Defra Met Office Hadley Centre Climate Programme [GA01101]; Lawrence Livermore National Laboratory - U.S. Department of Energy [DE-AC52-07NA27344]; NERC [NE/I00680X/1]; NCAS; NASA [NNX11AG69G]; PAGODA project of the Changing Water Cycle programme of NERC [NE/I006672/1]; ERC [EC320691]; NSF [AGS-1353740]; Wolfson Foundation; Royal Society as Royal Society Wolfson Research Merit Award [WM140025, WM130060]; European Research Council (TITAN) [ERC-2012-AdG 320691]; CONVEX project of the Changing Water Cycle programme of NERC [NE/I006680/1]; European Research Council FX We thank several anonymous reviewers for their helpful and perceptive suggestions. The workshop that formed the basis for this paper was funded by the U.K. Natural Environment Research Council (NERC Grant NE/I006672/1). We thank Eleanor Blyth and David Parker for comments. Robin Chadwick, Kate Willett, William Ingram, Lizzie Kendon, and Peter Stott were supported by the Joint DECC/Defra Met Office Hadley Centre Climate Programme (GA01101). Paul Durack is supported by the Lawrence Livermore National Laboratory that is funded by the U.S. Department of Energy under Contract DE-AC52-07NA27344, and William Ingram is partly supported by NERC Grant NE/I00680X/1. Gabi Hegerl and Richard Allan are partly supported by NCAS. Kevin Trenberth is supported by NASA Grant NNX11AG69G. P. L. Vidale, R. P. Allan, B. Balan Sarojini, C. Liu, E. Black, P. Stott, G. Hegerl, D. Polson, R. Marsh, N. Skliris, and Laura Wilcox are supported by the PAGODA project of the Changing Water Cycle programme of NERC under Grant NE/I006672/1. G. Hegerl and D. Polson are supported by the ERC Grant EC320691. A. Dai acknowledges the support of NSF Grant AGS-1353740. H. J. Fowler and G. Hegerl are funded by the Wolfson Foundation and the Royal Society as Royal Society Wolfson Research Merit Award (WM140025 and WM130060, respectively) holders. G. Hegerl is further supported by the European Research Council (TITAN, ERC-2012-AdG 320691). H. J. Fowler is supported by the CONVEX project of the Changing Water Cycle programme of NERC under Grant NE/I006680/1 and European Research Council funded INTENSE (ERC-2013-CoG). NR 164 TC 16 Z9 16 U1 14 U2 62 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0003-0007 EI 1520-0477 J9 B AM METEOROL SOC JI Bull. Amer. Meteorol. Soc. PD JUL PY 2015 VL 96 IS 7 BP 1097 EP 1115 PG 19 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CP4LX UT WOS:000359854600004 ER PT J AU Pelletier, JD Murray, AB Pierce, JL Bierman, PR Breshears, DD Crosby, BT Ellis, M Foufoula-Georgiou, E Heimsath, AM Houser, C Lancaster, N Marani, M Merritts, DJ Moore, LJ Pederson, JL Poulos, MJ Rittenour, TM Rowland, JC Ruggiero, P Ward, DJ Wickert, AD Yager, EM AF Pelletier, Jon D. Murray, A. Brad Pierce, Jennifer L. Bierman, Paul R. Breshears, David D. Crosby, Benjamin T. Ellis, Michael Foufoula-Georgiou, Efi Heimsath, Arjun M. Houser, Chris Lancaster, Nick Marani, Marco Merritts, Dorothy J. Moore, Laura J. Pederson, Joel L. Poulos, Michael J. Rittenour, Tammy M. Rowland, Joel C. Ruggiero, Peter Ward, Dylan J. Wickert, Andrew D. Yager, Elowyn M. TI Forecasting the response of Earth's surface to future climatic and land use changes: A review of methods and research needs SO EARTHS FUTURE LA English DT Review DE global change; Earth-surface processes; forecasting ID SEA-LEVEL RISE; LAST GLACIAL MAXIMUM; SOUTHWESTERN UNITED-STATES; LANDSCAPE EVOLUTION MODEL; BEDROCK RIVER INCISION; CANADIAN ARCTIC ARCHIPELAGO; YELLOWSTONE-NATIONAL-PARK; STRATH-TERRACE FORMATION; FLUVIAL THERMAL EROSION; UPPER MISSISSIPPI RIVER AB In the future, Earth will be warmer, precipitation events will be more extreme, global mean sea level will rise, and many arid and semiarid regions will be drier. Human modifications of landscapes will also occur at an accelerated rate as developed areas increase in size and population density. We now have gridded global forecasts, being continually improved, of the climatic and land use changes (C&LUC) that are likely to occur in the coming decades. However, besides a few exceptions, consensus forecasts do not exist for how these C&LUC will likely impact Earth-surface processes and hazards. In some cases, we have the tools to forecast the geomorphic responses to likely future C&LUC. Fully exploiting these models and utilizing these tools will require close collaboration among Earth-surface scientists and Earth-system modelers. This paper assesses the state-of-the-art tools and data that are being used or could be used to forecast changes in the state of Earth's surface as a result of likely future C&LUC. We also propose strategies for filling key knowledge gaps, emphasizing where additional basic research and/or collaboration across disciplines are necessary. The main body of the paper addresses cross-cutting issues, including the importance of nonlinear/threshold-dominated interactions among topography, vegetation, and sediment transport, as well as the importance of alternate stable states and extreme, rare events for understanding and forecasting Earth-surface response to C&LUC. Five supplements delve into different scales or process zones (global-scale assessments and fluvial, aeolian, glacial/periglacial, and coastal process zones) in detail. C1 [Pelletier, Jon D.] Univ Arizona, Dept Geosci, Tucson, AZ 85721 USA. [Murray, A. Brad; Marani, Marco] Duke Univ, Nicholas Sch Environm, Div Earth & Ocean Sci, Durham, NC 27708 USA. [Pierce, Jennifer L.; Poulos, Michael J.] Boise State Univ, Dept Geosci, Boise, ID 83725 USA. [Bierman, Paul R.] Univ Vermont, Dept Geol, Burlington, VT USA. [Breshears, David D.] Univ Arizona, Sch Nat Resources & Environm, Tucson, AZ USA. [Crosby, Benjamin T.] Idaho State Univ, Dept Geosci, Pocatello, ID 83209 USA. [Ellis, Michael] British Geol Survey, Ctr Environm Sci, Nottingham NG12 5GG, England. [Foufoula-Georgiou, Efi] Univ Minnesota, St Anthony Falls Lab, Dept Civil Engn, Minneapolis, MN USA. [Heimsath, Arjun M.] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ USA. [Houser, Chris] Texas A&M Univ, Dept Geog, College Stn, TX USA. [Lancaster, Nick] Univ Nevada, Desert Res Inst, Reno, NV 89506 USA. [Marani, Marco] Duke Univ, Dept Civil & Environm Engn, Durham, NC 27706 USA. [Marani, Marco] Univ Padua, Dept Civil Architectural & Environm Engn, Padua, Italy. [Merritts, Dorothy J.] Franklin & Marshall Coll, Dept Earth & Environm, Lancaster, PA 17604 USA. [Moore, Laura J.] Univ N Carolina, Dept Geol Sci, Chapel Hill, NC USA. [Pederson, Joel L.; Rittenour, Tammy M.] Utah State Univ, Dept Geol, Logan, UT 84322 USA. [Rowland, Joel C.] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. [Ruggiero, Peter] Oregon State Univ, Coll Earth Ocean & Atmospher Sci, Corvallis, OR 97331 USA. [Ward, Dylan J.] Univ Cincinnati, Dept Geol, Cincinnati, OH USA. [Wickert, Andrew D.] Univ Colorado, Dept Geol Sci, Boulder, CO 80309 USA. [Yager, Elowyn M.] Univ Idaho, Dept Civil Engn, Boise, ID USA. RP Pelletier, JD (reprint author), Univ Arizona, Dept Geosci, Tucson, AZ 85721 USA. EM jdpellet@email.arizona.edu RI Marani, Marco/F-9451-2016; OI Marani, Marco/0000-0002-1493-6913; Ruggiero, Peter/0000-0001-7425-9953 FU NSF Geomorphology and Land-Use Dynamics program [1250358] FX We wish to thank the NSF Geomorphology and Land-Use Dynamics program and its manager Paul Cutler for supporting this effort intellectually and financially through award #1250358. We also thank the many members of the broader Working Group on Predicting Landscape Response to Climatic and Land-Use Changes that commented on drafts of the manuscript at http://geomorphicprediction.geo.arizona.edu/. Data used to make any of the figures can be obtained upon request from J.D.P. NR 634 TC 12 Z9 12 U1 18 U2 77 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 2328-4277 J9 EARTHS FUTURE JI Earth Future PD JUL PY 2015 VL 3 IS 7 BP 220 EP 251 DI 10.1002/2014EF000290 PG 32 WC Environmental Sciences; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Geology; Meteorology & Atmospheric Sciences GA CP5DT UT WOS:000359902200002 ER PT J AU Wang, JL Kotamarthi, VR AF Wang, Jiali Kotamarthi, Veerabhadra R. TI High-resolution dynamically downscaled projections of precipitation in the mid and late 21st century over North America SO EARTHS FUTURE LA English DT Article DE high-resolution; dynamic downscaling; precipitation; projection; North America ID REGIONAL CLIMATE-CHANGE; CONTIGUOUS UNITED-STATES; GCM BIAS CORRECTIONS; PART I; SURFACE-TEMPERATURE; MODEL SIMULATION; EXTREMES INDEXES; AIR-QUALITY; FUTURE; REANALYSIS AB This study performs high-spatial-resolution (12km) Weather Research and Forecasting (WRF) simulations over a very large domain (7200kmx6180km, covering much of North America) to explore changes in mean and extreme precipitation in the mid and late 21st century under Representative Concentration Pathways 4.5 (RCP 4.5) and 8.5 (RCP 8.5). We evaluate WRF model performance for a historical simulation and future projections, applying the Community Climate System Model version 4 (CCSM4) as initial and boundary conditions with and without a bias correction. WRF simulations using boundary and initial conditions from both versions of CCSM4 show smaller biases versus evaluation data sets than does CCSM4 over western North America. WRF simulations also improve spatial details of precipitation over much of North America. However, driving the WRF with the bias-corrected CCSM4 does not always reduce the bias. WRF-projected changes in precipitation include decreasing intensity over the southwestern United States, increasing intensity over the eastern United Sates and most of Canada, and an increase in the number of days with heavy precipitation over much of North America. Projected precipitation changes are more evident in the late 21st century than the mid 21st century, and they are more evident under RCP 8.5 than under RCP 4.5 in the late 21st century. Uncertainties in the projected changes in precipitation due to different warming scenarios are non-negligible. Differences in summer precipitation changes between WRF and CCSM4 are significant over most of the United States. C1 [Wang, Jiali; Kotamarthi, Veerabhadra R.] Argonne Natl Lab, Environm Sci Div, Argonne, IL 60439 USA. RP Wang, JL (reprint author), Argonne Natl Lab, Environm Sci Div, Argonne, IL 60439 USA. EM jialiwang@anl.gov FU U.S. Department of Energy (DOE) [RC-2242, DE-AC02-06CH11357] FX This work is supported under a military interdepartmental purchase request from the Strategic Environmental Research and Development Program, RC-2242, through U.S. Department of Energy (DOE) contract DE-AC02-06CH11357. The PRISM data are available at http://www.prism.oregonstate.edu/. The NARR data (in NetCDF format) are provided by the NOAA-ESRL Physical Sciences Division, Boulder, Colorado, at http://www.esrl.noaa.gov/psd/. The CCSM4 data are downloaded from https://www.earthsystemgrid.org/home.htm. Computational resources are provided by the DOE-supported Argonne Leadership Computing Facility and the National Energy Research Scientific Computing Center. All the model outputs generated in this study will be available online. We are in the process of setting up access to the data archive. NR 86 TC 3 Z9 3 U1 4 U2 19 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 2328-4277 J9 EARTHS FUTURE JI Earth Future PD JUL PY 2015 VL 3 IS 7 BP 268 EP 288 DI 10.1002/2015EF000304 PG 21 WC Environmental Sciences; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Geology; Meteorology & Atmospheric Sciences GA CP5DT UT WOS:000359902200004 ER PT J AU Wise, M Hodson, EL Mignone, BK Clarke, L Waldhoff, S Luckow, P AF Wise, Marshall Hodson, Elke L. Mignone, Bryan K. Clarke, Leon Waldhoff, Stephanie Luckow, Patrick TI An approach to computing marginal land use change carbon intensities for bioenergy in policy applications SO ENERGY ECONOMICS LA English DT Article DE Bioenergy crops; Land use change; Carbon intensity; Integrated assessment modeling ID GREENHOUSE-GAS EMISSIONS; ENERGY; CROPLANDS; ETHANOL AB Accurately characterizing the emissions implications of bioenergy is increasingly important to the design of regional and global greenhouse gas mitigation policies. Market-based policies, in particular, often use information about carbon intensity to adjust relative deployment incentives for different energy sources. However, the carbon intensity of bioenergy is difficult to quantify because carbon emissions can occur when land use changes to expand production of bioenergy crops rather than simply when the fuel is consumed as for fossil fuels. Using a long-term, integrated assessment model, this paper develops an approach for computing the carbon intensity of bioenergy production that isolates the marginal impact of increasing production of a specific bioenergy crop in a specific region, taking into account economic competition among land uses. We explore several factors that affect emissions intensity and explain these results in the context of previous studies that use different approaches. Among the factors explored, our results suggest that the carbon intensity of bioenergy production from land use change (LUC) differs by a factor of two depending on the region in which the bioenergy crop is grown in the United States. Assumptions about international land use policies (such as those related to forest protection) and crop yields also significantly impact carbon intensity. Finally, we develop and demonstrate a generalized method for considering the varying time profile of LUC emissions from bioenergy production, taking into account the time path of future carbon prices, the discount rate and the time horizon. When evaluated in the context of power sector applications, we found electricity from bioenergy crops to be less carbon-intensive than conventional coal-fired electricity generation and often less carbon-intensive than natural-gas fired generation. (C) 2015 Elsevier B.V. All rights reserved. C1 [Wise, Marshall; Clarke, Leon; Waldhoff, Stephanie; Luckow, Patrick] Pacific NW Natl Lab, Joint Global Change Res Inst, College Pk, MD 20740 USA. [Hodson, Elke L.; Mignone, Bryan K.] US DOE, Off Climate & Environm Anal, Washington, DC 20585 USA. RP Wise, M (reprint author), Pacific NW Natl Lab, Joint Global Change Res Inst, College Pk, MD 20740 USA. EM Marshall.Wise@pnnl.gov FU U.S. Department of Energy (DOE) Office of Climate and Environmental Analysis [DE-AC05-76RL01830] FX The PNNL authors are grateful for research support provided by the U.S. Department of Energy (DOE) Office of Climate and Environmental Analysis under prime contract DE-AC05-76RL01830. The authors thank Liwayway Adkins, Aaron Bergman, and Kate Calvin for helpful comments on the manuscript. This work does not reflect the official views or policies of the United States Government or any agency thereof, including the funding entities. NR 39 TC 1 Z9 2 U1 1 U2 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0140-9883 EI 1873-6181 J9 ENERG ECON JI Energy Econ. PD JUL PY 2015 VL 50 BP 337 EP 347 DI 10.1016/j.eneco.2015.05.009 PG 11 WC Economics SC Business & Economics GA CP4TZ UT WOS:000359876800032 ER PT J AU Gunduz, A Morita, H Rossi, PJ Allen, WL Alterman, RL Bronte-Stewart, H Butson, CR Charles, D Deckers, S de Hemptinne, C DeLong, M Dougherty, D Ellrich, J Foote, KD Giordano, J Goodman, W Greenberg, BD Greene, D Gross, R Judy, JW Karst, E Kent, A Kopell, B Lang, A Lozano, A Lungu, C Lyon, KE Machado, A Martens, H McIntyre, C Min, HK Neimat, J Ostrem, J Pannu, S Ponce, F Pouratian, N Reymers, D Schrock, L Sheth, S Shih, L Stanslaski, S Steinke, GK Stypulkowski, P Troster, AI Verhagen, L Walker, H Okun, MS AF Gunduz, Aysegul Morita, Hokuto Rossi, P. Justin Allen, William L. Alterman, Ron L. Bronte-Stewart, Helen Butson, Christopher R. Charles, David Deckers, Sjaak de Hemptinne, Coralie DeLong, Mahlon Dougherty, Darin Ellrich, Jens Foote, Kelly D. Giordano, James Goodman, Wayne Greenberg, Benjamin D. Greene, David Gross, Robert Judy, Jack W. Karst, Edward Kent, Alexander Kopell, Brian Lang, Anthony Lozano, Andres Lungu, Codrin Lyon, Kelly E. Machado, Andre Martens, Hubert McIntyre, Cameron Min, Hoon-Ki Neimat, Joseph Ostrem, Jill Pannu, Sat Ponce, Francisco Pouratian, Nader Reymers, Donnie Schrock, Lauren Sheth, Sameer Shih, Ludy Stanslaski, Scott Steinke, G. Karl Stypulkowski, Paul Troester, Alexander I. Verhagen, Leo Walker, Harrison Okun, Michael S. TI Proceedings of the Second Annual Deep Brain Stimulation Think Tank: What's in the Pipeline SO INTERNATIONAL JOURNAL OF NEUROSCIENCE LA English DT Review DE deep brain stimulation; Movement disorders; Neuroethics; Electrophysiology; neurotechnology ID HIGH-FREQUENCY STIMULATION; HUMAN SUBTHALAMIC NUCLEUS; SHORT-LATENCY ACTIVATION; PRIMARY MOTOR CORTEX; PARKINSONS-DISEASE; NONMOTOR SYMPTOMS; GLOBUS-PALLIDUS; THALAMIC SEGMENTATION; CLINICAL ARTICLE; BOLD ACTIVATION AB The proceedings of the 2nd Annual Deep Brain Stimulation Think Tank summarize the most contemporary clinical, electrophysiological, and computational work on DBS for the treatment of neurological and neuropsychiatric disease and represent the insights of a unique multidisciplinary ensemble of expert neurologists, neurosurgeons, neuropsychologists, psychiatrists, scientists, engineers and members of industry. Presentations and discussions covered a broad range of topics, including advocacy for DBS, improving clinical outcomes, innovations in computational models of DBS, understanding of the neurophysiology of Parkinson's disease (PD) and Tourette syndrome (TS) and evolving sensor and device technologies. C1 [Gunduz, Aysegul; Morita, Hokuto; Rossi, P. Justin; Allen, William L.; Foote, Kelly D.; Judy, Jack W.; Okun, Michael S.] Univ Florida, Gainesville, FL USA. [Alterman, Ron L.; Shih, Ludy] Beth Israel Deaconess Med Ctr, Boston, MA 02215 USA. [Bronte-Stewart, Helen] Stanford Univ, Stanford, CA 94305 USA. [Butson, Christopher R.; Schrock, Lauren] Univ Utah, Salt Lake City, UT USA. [Charles, David; Neimat, Joseph] Vanderbilt Univ, Nashville, TN 37235 USA. [Deckers, Sjaak; Ellrich, Jens; Martens, Hubert] Sapiens Steering Brain Stimulat, Eindhoven, Netherlands. [de Hemptinne, Coralie; Ostrem, Jill] Univ Calif San Francisco, San Francisco, CA 94143 USA. [DeLong, Mahlon; Gross, Robert] Emory Univ, Atlanta, GA 30322 USA. [Dougherty, Darin] Massachusetts Gen Hosp, Boston, MA 02114 USA. [Giordano, James] Georgetown Univ, Med Ctr, Washington, DC 20007 USA. [Goodman, Wayne; Kopell, Brian] Mt Sinai Hosp, New York, NY 10029 USA. [Greenberg, Benjamin D.] Brown Univ, Providence, RI 02912 USA. [Greene, David] Neuropace Univ, Mountain View, CA USA. [Karst, Edward] St Jude Med, Sylmar, CA USA. [Kent, Alexander] St Jude Med, Sunnyvale, CA USA. [Lang, Anthony; Lozano, Andres] Univ Toronto, Toronto, ON, Canada. [Lungu, Codrin] NIH, Bethesda, MD 20892 USA. [Lyon, Kelly E.] Univ Kansas, Med Ctr, Kansas City, KS 66103 USA. [Machado, Andre] Cleveland Clin, Cleveland, OH 44106 USA. [McIntyre, Cameron] Case Western Reserve Univ, Cleveland, OH 44106 USA. [Min, Hoon-Ki] Mayo Clin, Rochester, MN USA. [Pannu, Sat] Lawrence Livermore Natl Lab, Livermore, CA USA. [Ponce, Francisco; Troester, Alexander I.] Barrow Neurol Inst, Phoenix, AZ 85013 USA. [Pouratian, Nader] Univ Calif Los Angeles, Los Angeles, CA USA. [Reymers, Donnie] Funct Neuromodulat Ltd, Toronto, ON, Canada. [Sheth, Sameer] Columbia Univ, New York, NY USA. [Stanslaski, Scott; Stypulkowski, Paul] Medtronic, Minneapolis, MN USA. [Steinke, G. Karl] Boston Sci Neuromodulat, Valencia, CA USA. [Verhagen, Leo] Rush Univ, Med Ctr, Chicago, IL 60612 USA. [Walker, Harrison] Univ Alabama Birmingham, Birmingham, AL USA. RP Okun, MS (reprint author), Univ Florida, Dept Neurol, Gainesville, FL 32611 USA. EM okun@neurology.ufl.edu RI Gunduz, Aysegul/Q-2336-2016; OI Okun, Michael/0000-0002-6247-9358 FU Medtronic, Inc.; Allergan; Ipsen; Merz; Medtronic; Alliance for Patient Access for education or consulting services; Cyberonics; Eli Lilly; Roche; St. Jude; Boston Scientific; Neuropace; Brain Canada; Canadian Institutes of Health Research; Edmond J Safra Philanthropic Foundation; Michael J. Fox Foundation; Ontario Brain Institute; National Parkinson Foundation; Parkinson Society Canada; Tourette Syndrome Association; W. Garfield Weston Foundation; MRI Interventions; St Jude Medical; Glaxo Smith Kone; NIH; NPF; Parkinson Alliance; Smallwood Foundation; Bachmann-Strauss Foundation; UP Foundation FX AG: Grant support from Medtronic, Inc.; HK: None; PJR: None; WLA: None; RLA: Consultant for Medtronic, Inc.; HB-S: None; CRB: Consultant for St Jude Medical, Boston Scientific; IP related to DBS; DC: Vanderbilt receives income from grants or contracts from Allergan, Ipsen, Merz and Medtronic for research led by DC; DC receives income from Allergan, Ipsen, Medtronic and, the Alliance for Patient Access for education or consulting services; SD: Employee and shareholder of Sapiens Steering Brain Stimulation GmbH (Medtronic Eindhoven Design Center); CDH: None; MDL: None; DD: Grant support from Medtronic, Cyberonics, Eli Lilly, Roche, Honoraria from Medtronic, Insys, Johnson & Johnson; JE: Chief Medical Officer at Sapiens Steering Brain Stimulation GmbH; KDF: Grant support from Medtronic, St. Jude, Boston Scientific, Neuropace; Consultant for Medtronic, Neuropace; JG: None; WG: None; BDG: None; DG: Employee of Neuropace; RG: None; JJ: None; EK. Employee of St. Jude Medical; AK: Employee of St. Jude Medical; BK. Consultant for Medtronic, St Jude Neuromodulation, MRI Interventions; ALang: Consultant for Abbvie, Allon Therapeutics, Avanir Pharmaceuticals, Biogen Idec, Boerhinger-Ingelheim, Ceregene, Lilly, Medtronic, Merck, Novartis, NeuroPhage Pharmaceuticals, Teva, UCB; Honoraria from Medtronic, Teva, UCB, AbbVie; Grant support from Brain Canada, Canadian Institutes of Health Research, Edmond J Safra Philanthropic Foundation, Michael J. Fox Foundation, the Ontario Brain Institute, National Parkinson Foundation, Parkinson Society Canada, Tourette Syndrome Association, W. Garfield Weston Foundation; Publishing royalties from Saunders, Wiley-Blackwell, Johns Hopkins Press, Cambridge University Press; ALozano: Consultant for Medtronic, St Jude and Boston Scientific, Co-Founder of Functional Neuromodulation; CL: None; KL: Consultant for Medtronic, St. Jude Medical; AM: IP in Enspire, ATI, Cardionomics, Grant support from Medtronic, Inc., Consultant for Functional Neuromodulation, Spinal Modulation; HM: Employee and shareholder of Sapiens Steering Brain Stimulation GmbH (Medtronic Eindhoven Design Center); CM: IP in Boston Scientific Neuromodulation; Consultant for Boston Scientific Neuromodulation; Shareholder in Autonomic Technologies, Inc., Cardionomics, Inc., Neuros Medical, Inc., Surgical Information Sciences, Inc.; BM: None; HKM: None; JN: Grant support from Medtronic, Inc.; Consultant for Medtronic, Inc., Montens Inc.; JO: Grant support from Boston Scientific, MRI Interventions, St Jude Medical, Medtronic; SP: None; FP: Consultant for Medtronic, Inc; NP: None; DR: Employee of Neuromodulation, Inc; LSchrock: Site PI for the Boston Scientific INTREPID DBS trial; SSheth: None; LShih: None; SStanslanski: Employee of Medtronic, Inc.; GKS: Employee of Boston Scientific Neuromodulation; PS: Employee of Medtronic, Inc.; AT: Consultant for St Jude Medical, Boston Scientific, Theravance, Teva; Grant support from Glaxo Smith Kone, Speaker for Medtronic; Royalties from Oxford University Press; LV: None; HW: None; MSO: Consultant for National Parkinson Foundation; Grant support from NIH, NPF, Michael J. Fox Foundation, Parkinson Alliance, Smallwood Foundation, Bachmann-Strauss Foundation, Tourette Syndrome Association, UP Foundation. NR 79 TC 5 Z9 5 U1 2 U2 19 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND SN 0020-7454 EI 1563-5279 J9 INT J NEUROSCI JI Int. J. Neurosci. PD JUL PY 2015 VL 125 IS 7 BP 475 EP 485 DI 10.3109/00207454.2014.999268 PG 11 WC Neurosciences SC Neurosciences & Neurology GA CP4WV UT WOS:000359884200001 PM 25526555 ER PT J AU Xu, XF Elias, DA Graham, DE Phelps, TJ Carroll, SL Wullschleger, SD Thornton, PE AF Xu, Xiaofeng Elias, Dwayne A. Graham, David E. Phelps, Tommy J. Carroll, Sue L. Wullschleger, Stan D. Thornton, Peter E. TI A microbial functional group-based module for simulating methane production and consumption: Application to an incubated permafrost soil SO JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES LA English DT Article DE carbon dioxide; methane; methanogen; methanotroph; microbial functional group ID TEMPERATURE SENSITIVITY; TERRESTRIAL ECOSYSTEMS; BIOGEOCHEMISTRY MODEL; ANAEROBIC OXIDATION; NATURAL WETLANDS; CARBON RELEASE; NORTH-AMERICA; TRACE GASES; METHANOGENESIS; FLUXES AB Accurately estimating methane (CH4) flux in terrestrial ecosystems is critically important for investigating and predicting biogeochemistry-climate feedbacks. Improved simulations of CH4 flux require explicit representations of the microbial processes that account for CH4 dynamics. A microbial functional group-based module was developed, building on the decomposition subroutine of the Community Land Model 4.5. This module considers four key mechanisms for CH4 production and consumption: methanogenesis from acetate or from single-carbon compounds and CH4 oxidation using molecular oxygen or other inorganic electron acceptors. Four microbial functional groups perform these processes: acetoclastic methanogens, hydrogenotrophic methanogens, aerobic methanotrophs, and anaerobic methanotrophs. This module was used to simulate dynamics of carbon dioxide (CO2) and CH4 concentrations from an incubation experiment with permafrost soils. The results show that the model captures the dynamics of CO2 and CH4 concentrations in microcosms with top soils, mineral layer soils, and permafrost soils under natural and saturated moisture conditions and three temperature conditions of -2 degrees C, 3 degrees C, and 5 degrees C (R-2>0.67; P<0.001). The biases for modeled results are less than 30% across the soil samples and moisture and temperature conditions. Sensitivity analysis confirmed the importance of acetic acid's direct contribution as substrate and indirect effects through pH feedback on CO2 and CH4 production and consumption. This study suggests that representing the microbial mechanisms is critical for modeling CH4 production and consumption; it is urgent to incorporate microbial mechanisms into Earth system models for better predicting trace gas dynamics and the behavior of the climate system. C1 [Xu, Xiaofeng; Elias, Dwayne A.; Wullschleger, Stan D.; Thornton, Peter E.] Oak Ridge Natl Lab, Climate Change Sci Inst, Oak Ridge, TN USA. [Xu, Xiaofeng; Elias, Dwayne A.; Wullschleger, Stan D.; Thornton, Peter E.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Elias, Dwayne A.; Graham, David E.; Phelps, Tommy J.; Carroll, Sue L.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN USA. RP Xu, XF (reprint author), Univ Texas El Paso, Dept Biol Sci, El Paso, TX 79968 USA. EM xxu2@utep.edu; thorntonpe@ornl.gov RI Graham, David/F-8578-2010; Thornton, Peter/B-9145-2012; Xu, Xiaofeng/B-2391-2008; Wullschleger, Stan/B-8297-2012 OI Graham, David/0000-0001-8968-7344; Thornton, Peter/0000-0002-4759-5158; Xu, Xiaofeng/0000-0002-6553-6514; Wullschleger, Stan/0000-0002-9869-0446 FU Laboratory Directed Research and Development program at ORNL; U.S. Department of Energy [DE-AC05-00OR22725] FX We are grateful for Guoping Tang and Fengming Yuan at Oak Ridge National Laboratory (ORNL) for their comments on an early version of the manuscript. Special thanks to Anna Wagner and Mark Beede, USACE Cold Regions Research and Engineering Laboratory (CRREL), Fairbanks, AK, for collecting soil samples. Three anonymous reviewers, Dennis Baldocchi, and Miguel Goni made valuable comments which significantly improve the manuscript. This research was sponsored in part by the Laboratory Directed Research and Development program at ORNL. Additional support for model development was provided by the Next-Generation Ecosystem Experiments (NGEE-Arctic) project, which is supported by the Office of Biological and Environmental Research in the U.S. Department of Energy, Office of Science. ORNL is managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725. The data used in this study will be available upon request. NR 89 TC 6 Z9 6 U1 8 U2 49 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-8953 EI 2169-8961 J9 J GEOPHYS RES-BIOGEO JI J. Geophys. Res.-Biogeosci. PD JUL PY 2015 VL 120 IS 7 BP 1315 EP 1333 DI 10.1002/2015JG002935 PG 19 WC Environmental Sciences; Geosciences, Multidisciplinary SC Environmental Sciences & Ecology; Geology GA CP4QU UT WOS:000359868200009 ER PT J AU Lee, T Oh, T Yang, S Shin, J Hwang, S Kim, CY Kim, H Shim, H Shim, JE Ronald, PC Lee, I AF Lee, Tak Oh, Taeyun Yang, Sunmo Shin, Junha Hwang, Sohyun Kim, Chan Yeong Kim, Hyojin Shim, Hongseok Shim, Jung Eun Ronald, Pamela C. Lee, Insuk TI RiceNet v2: an improved network prioritization server for rice genes SO NUCLEIC ACIDS RESEARCH LA English DT Article ID GENOMICS DATA SETS; SACCHAROMYCES-CEREVISIAE; DATABASE; INFORMATION; DISSECTION; GENETICS; SEQUENCE; PLANTS; TOOL; V3 AB Rice is the most important staple food crop and a model grass for studies of bioenergy crops. We previously published a genome-scale functional network server called RiceNet, constructed by integrating diverse genomics data and demonstrated the use of the network in genetic dissection of rice biotic stress responses and its usefulness for other grass species. Since the initial construction of the network, there has been a significant increase in the amount of publicly available rice genomics data. Here, we present an updated network prioritization server for Oryza sativa ssp. japonica, RiceNet v2 (http://www.inetbio.org/ricenet), which provides a network of 25 765 genes (70.1% of the coding genome) and 1 775 000 co-functional links. Ricenet v2 also provides two complementary methods for network prioritization based on: (i) network direct neighborhood and (ii) context-associated hubs. RiceNet v2 can use genes of the related subspecies O. sativa ssp. indica and the reference plant Arabidopsis for versatility in generating hypotheses. We demonstrate that RiceNet v2 effectively identifies candidate genes involved in rice root/shoot development and defense responses, demonstrating its usefulness for the grass research community. C1 [Lee, Tak; Yang, Sunmo; Shin, Junha; Hwang, Sohyun; Kim, Chan Yeong; Kim, Hyojin; Shim, Hongseok; Shim, Jung Eun; Lee, Insuk] Yonsei Univ, Coll Life Sci & Biotechnol, Dept Biotechnol, Seoul 120749, South Korea. [Oh, Taeyun; Ronald, Pamela C.] Joint Bioenergy Inst, Emeryville, CA USA. [Oh, Taeyun; Ronald, Pamela C.] Univ Calif Davis, Dept Plant Pathol, Davis, CA 95616 USA. [Oh, Taeyun; Ronald, Pamela C.] Univ Calif Davis, Genome Ctr, Davis, CA 95616 USA. RP Lee, I (reprint author), Yonsei Univ, Coll Life Sci & Biotechnol, Dept Biotechnol, Seoul 120749, South Korea. EM pcronald@ucdavis.edu; insuklee@yonsei.ac.kr FU National Research Foundation of Korea [2010-0017649, 2012M3A9B4028641, 2012M3A9C7050151]; Joint BioEnergy Institute; Office of Science, Office of Biological and Environmental Research, U.S. Department of Energy [DE-AC02-05CH11231]; Department of Energy Systems Biology Knowledgebase [KBase] FX National Research Foundation of Korea [2010-0017649, 2012M3A9B4028641, 2012M3A9C7050151] to I.L.; The Joint BioEnergy Institute, the Office of Science, Office of Biological and Environmental Research, U.S. Department of Energy [DE-AC02-05CH11231]; Department of Energy Systems Biology Knowledgebase [KBase] to P.C.R. Funding for open access charge: National Research Foundation of Korea [2010-0017649]. NR 27 TC 9 Z9 9 U1 2 U2 5 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0305-1048 EI 1362-4962 J9 NUCLEIC ACIDS RES JI Nucleic Acids Res. PD JUL 1 PY 2015 VL 43 IS W1 BP W122 EP W127 DI 10.1093/nar/gkv253 PG 6 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA CP3IP UT WOS:000359772700019 PM 25813048 ER PT J AU Sahraeian, SM Luo, KR Brenner, SE AF Sahraeian, Sayed M. Luo, Kevin R. Brenner, Steven E. TI SIFTER search: a web server for accurate phylogeny-based protein function prediction SO NUCLEIC ACIDS RESEARCH LA English DT Article ID HETEROGENEOUS DATA SOURCES; GENE-FUNCTION; INTERACTION NETWORKS; ANNOTATION; FAMILIES; ONTOLOGY; TOOL AB We are awash in proteins discovered through high-throughput sequencing projects. As only a minuscule fraction of these have been experimentally characterized, computational methods are widely used for automated annotation. Here, we introduce a user-friendly web interface for accurate protein function prediction using the SIFTER algorithm. SIFTER is a state-of-the-art sequence-based gene molecular function prediction algorithm that uses a statistical model of function evolution to incorporate annotations throughout the phylogenetic tree. Due to the resources needed by the SIFTER algorithm, running SIFTER locally is not trivial for most users, especially for large-scale problems. The SIFTER web server thus provides access to precomputed predictions on 16 863 537 proteins from 232 403 species. Users can explore SIFTER predictions with queries for proteins, species, functions, and homologs of sequences not in the precomputed prediction set. The SIFTER web server is accessible at http://sifter.berkeley.edu/ and the source code can be downloaded. C1 [Sahraeian, Sayed M.; Brenner, Steven E.] Univ Calif Berkeley, Dept Plant & Microbial Biol, Berkeley, CA 94720 USA. [Luo, Kevin R.; Brenner, Steven E.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Brenner, Steven E.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Brenner, SE (reprint author), Univ Calif Berkeley, Dept Plant & Microbial Biol, Berkeley, CA 94720 USA. EM brenner@compbio.berkeley.edu RI Brenner, Steven/A-8729-2008 OI Brenner, Steven/0000-0001-7559-6185 FU U.S. Department of Energy, Office of Science, Office of Biological & Environmental Research [DE-AC02-05CH11231]; NIH [R01 GM071749] FX This material by ENIGMA-Ecosystems and Networks Integrated with Genes and Molecular Assemblies (http://enigma.lbl.gov), a Scientific Focus Area Program at Lawrence Berkeley National Laboratory is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Biological & Environmental Research [DE-AC02-05CH11231]. This work was a Technology Development effort for ENIGMA. This work was also supported by grant NIH R01 GM071749. Funding for open access charge: U.S. Department of Energy, Office of Science, Office of Biological & Environmental Research [DE-AC02-05CH11231]. NR 35 TC 2 Z9 3 U1 1 U2 3 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0305-1048 EI 1362-4962 J9 NUCLEIC ACIDS RES JI Nucleic Acids Res. PD JUL 1 PY 2015 VL 43 IS W1 BP W141 EP W147 DI 10.1093/nar/gkv461 PG 7 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA CP3IP UT WOS:000359772700022 PM 25979264 ER PT J AU Smedley, D Haider, S Durinck, S Pandini, L Provero, P Allen, J Arnaiz, O Awedh, MH Baldock, R Barbiera, G Bardou, P Beck, T Blake, A Bonierbale, M Brookes, AJ Bucci, G Buetti, I Burge, S Cabau, C Carlson, JW Chelala, C Chrysostomou, C Cittaro, D Collin, O Cordova, R Cutts, RJ Dassi, E Di Genova, A Djari, A Esposito, A Estrella, H Eyras, E Fernandez-Banet, J Forbes, S Free, RC Fujisawa, T Gadaleta, E Garcia-Manteiga, JM Goodstein, D Gray, K Guerra-Assuncao, JA Haggarty, B Han, DJ Han, BW Harris, T Harshbarger, J Hastings, RK Hayes, RD Hoede, C Hu, S Hu, ZL Hutchins, L Kan, ZY Kawaji, H Keliet, A Kerhornou, A Kim, S Kinsella, R Klopp, C Kong, L Lawson, D Lazarevic, D Lee, JH Letellier, T Li, CY Lio, P Liu, CJ Luo, J Maass, A Mariette, J Maurel, T Merella, S Mohamed, AM Moreews, F Nabihoudine, I Ndegwa, N Noirot, C Perez-Llamas, C Primig, M Quattrone, A Quesneville, H Rambaldi, D Reecy, J Riba, M Rosanoff, S Saddiq, AA Salas, E Sallou, O Shepherd, R Simon, R Sperling, L Spooner, W Staines, DM Steinbach, D Stone, K Stupka, E Teague, JW Ullah, AZD Wang, J Ware, D Wong-Erasmus, M Youens-Clark, K Zadissa, A Zhang, SJ Kasprzyk, A AF Smedley, Damian Haider, Syed Durinck, Steffen Pandini, Luca Provero, Paolo Allen, James Arnaiz, Olivier Awedh, Mohammad Hamza Baldock, Richard Barbiera, Giulia Bardou, Philippe Beck, Tim Blake, Andrew Bonierbale, Merideth Brookes, Anthony J. Bucci, Gabriele Buetti, Iwan Burge, Sarah Cabau, Cedric Carlson, Joseph W. Chelala, Claude Chrysostomou, Charalambos Cittaro, Davide Collin, Olivier Cordova, Raul Cutts, Rosalind J. Dassi, Erik Di Genova, Alex Djari, Anis Esposito, Anthony Estrella, Heather Eyras, Eduardo Fernandez-Banet, Julio Forbes, Simon Free, Robert C. Fujisawa, Takatomo Gadaleta, Emanuela Garcia-Manteiga, Jose M. Goodstein, David Gray, Kristian Guerra-Assuncao, JoseE Afonso Haggarty, Bernard Han, Dong-Jin Han, Byung Woo Harris, Todd Harshbarger, Jayson Hastings, Robert K. Hayes, Richard D. Hoede, Claire Hu, Shen Hu, Zhi-Liang Hutchins, Lucie Kan, Zhengyan Kawaji, Hideya Keliet, Aminah Kerhornou, Arnaud Kim, Sunghoon Kinsella, Rhoda Klopp, Christophe Kong, Lei Lawson, Daniel Lazarevic, Dejan Lee, Ji-Hyun Letellier, Thomas Li, Chuan-Yun Lio, Pietro Liu, Chu-Jun Luo, Jie Maass, Alejandro Mariette, Jerome Maurel, Thomas Merella, Stefania Mohamed, Azza Mostafa Moreews, Francois Nabihoudine, Ibounyamine Ndegwa, Nelson Noirot, Celine Perez-Llamas, Cristian Primig, Michael Quattrone, Alessandro Quesneville, Hadi Rambaldi, Davide Reecy, James Riba, Michela Rosanoff, Steven Saddiq, Amna Ali Salas, Elisa Sallou, Olivier Shepherd, Rebecca Simon, Reinhard Sperling, Linda Spooner, William Staines, Daniel M. Steinbach, Delphine Stone, Kevin Stupka, Elia Teague, Jon W. Ullah, Abu Z. Dayem Wang, Jun Ware, Doreen Wong-Erasmus, Marie Youens-Clark, Ken Zadissa, Amonida Zhang, Shi-Jian Kasprzyk, Arek TI The BioMart community portal: an innovative alternative to large, centralized data repositories SO NUCLEIC ACIDS RESEARCH LA English DT Article ID BIOLOGICAL DATA; BIOINFORMATICS; GENOMICS; ACCESS; BIOCONDUCTOR; RESOURCE; PLATFORM AB The BioMart Community Portal (www.biomart.org) is a community-driven effort to provide a unified interface to biomedical databases that are distributed worldwide. The portal provides access to numerous database projects supported by 30 scientific organizations. It includes over 800 different biological datasets spanning genomics, proteomics, model organisms, cancer data, ontology information and more. All resources available through the portal are independently administered and funded by their host organizations. The BioMart data federation technology provides a unified interface to all the available data. The latest version of the portal comes with many new databases that have been created by our ever-growing community. It also comes with better support and extensibility for data analysis and visualization tools. A new addition to our toolbox, the enrichment analysis tool is now accessible through graphical and web service interface. The BioMart community portal averages over one million requests per day. Building on this level of service and the wealth of information that has become available, the BioMart Community Portal has introduced a new, more scalable and cheaper alternative to the large data stores maintained by specialized organizations. C1 [Smedley, Damian; Forbes, Simon; Shepherd, Rebecca; Teague, Jon W.] Wellcome Trust Sanger Inst, Hinxton CB10 1SD, England. [Haider, Syed] Univ Oxford, Weatherall Inst Mol Med, Oxford OX3 9DS, England. [Durinck, Steffen] Genentech Inc, San Francisco, CA 94080 USA. [Pandini, Luca; Provero, Paolo; Barbiera, Giulia; Bucci, Gabriele; Buetti, Iwan; Cittaro, Davide; Garcia-Manteiga, Jose M.; Lazarevic, Dejan; Merella, Stefania; Rambaldi, Davide; Riba, Michela; Stupka, Elia; Kasprzyk, Arek] Ist Sci San Raffaele, Ctr Translat Genom & Bioinformat, I-20132 Milan, Italy. [Provero, Paolo] Univ Turin, Dept Mol Biotechnol & Hlth Sci, Turin, Italy. [Allen, James; Burge, Sarah; Kerhornou, Arnaud; Kinsella, Rhoda; Luo, Jie; Maurel, Thomas; Rosanoff, Steven; Staines, Daniel M.; Zadissa, Amonida] European Bioinformat Inst, European Mol Biol Lab, Cambridge CB10 1SD, England. [Arnaiz, Olivier; Sperling, Linda] Univ Paris 11, CNRS, CEA, I2BC, F-91198 Gif Sur Yvette, France. [Awedh, Mohammad Hamza] King Abdulaziz Univ, Fac Engn, Dept Elect & Comp Engn, Jeddah 21413, Saudi Arabia. [Baldock, Richard; Haggarty, Bernard] Western Gen Hosp, Inst Genet & Mol Med, MRC Human Genet Unit, Edinburgh EH4 2XU, Midlothian, Scotland. [Bardou, Philippe; Cabau, Cedric] Sigenae, INRA, Castanet Tolosan, France. [Beck, Tim; Brookes, Anthony J.; Chrysostomou, Charalambos; Free, Robert C.; Hastings, Robert K.] Univ Leicester, Dept Genet, Leicester LE1 7RH, Leics, England. [Blake, Andrew] MRC Harwell, Didcot OX11 0RD, Oxon, England. [Bonierbale, Merideth; Cordova, Raul; Salas, Elisa; Simon, Reinhard] CIP, Lima 1558, Peru. [Carlson, Joseph W.; Goodstein, David; Hayes, Richard D.] Joint Genome Inst, Dept Energy, Walnut Creek, CA USA. [Chelala, Claude; Cutts, Rosalind J.; Gadaleta, Emanuela; Guerra-Assuncao, JoseE Afonso; Ullah, Abu Z. Dayem] Queen Mary Univ London, Barts Canc Inst, Ctr Mol Oncol, London EC1M 6BQ, England. [Collin, Olivier; Sallou, Olivier] INRIA, IRISA, F-35042 Rennes, France. [Dassi, Erik; Quattrone, Alessandro] Univ Trento, Ctr Integrat Biol, Lab Translat Genom, Trento, Italy. [Di Genova, Alex; Maass, Alejandro] Univ Chile, Ctr Math Modeling, Beauchef 851, Chile. [Di Genova, Alex; Maass, Alejandro] Univ Chile, Ctr Genome Regulat, Beauchef 851, Chile. [Djari, Anis; Hoede, Claire; Klopp, Christophe; Mariette, Jerome; Nabihoudine, Ibounyamine; Noirot, Celine] INRA, Plate Forme Bioinformat Genotoul Math & Informat, F-31326 Castanet Tolosan, France. [Esposito, Anthony; Estrella, Heather; Fernandez-Banet, Julio; Kan, Zhengyan] Pfizer, Oncol Computat Biol, La Jolla, CA USA. [Eyras, Eduardo] Passeig Lluis Co, Catalan Inst Res & Adv Studies ICREA, E-08010 Barcelona, Spain. [Eyras, Eduardo; Perez-Llamas, Cristian] Univ Pompeu Fabra, E-08003 Barcelona, Spain. [Fujisawa, Takatomo] Kasuza DNA Res Inst, Chiba 2920818, Japan. [Gray, Kristian] European Bioinformat Inst EMBL EBI, HUGO Gene Nomenclature Comm HGNC, Hinxton CB10 1SD, England. [Han, Dong-Jin; Kim, Sunghoon; Lee, Ji-Hyun] Seoul Natl Univ, Coll Pharm, Med Bioconvergence Res Ctr, Seoul 151742, South Korea. [Han, Dong-Jin; Kim, Sunghoon] Seoul Natl Univ, Dept Mol Med & Biopharmaceut Sci, Seoul 151742, South Korea. [Han, Byung Woo; Lee, Ji-Hyun] Seoul Natl Univ, Coll Pharm, Res Inst Pharmaceut Sci, Seoul 151742, South Korea. [Han, Byung Woo; Lee, Ji-Hyun] Seoul Natl Univ, Informat Ctr Biopharmacol Network, Suwon 443270, South Korea. [Harris, Todd] Ontario Inst Canc Res, Toronto, ON M5G 0A3, Canada. [Harshbarger, Jayson; Kawaji, Hideya] RIKEN Ctr Life Sci Technol CLST, DGT, Yokohama, Kanagawa 2300045, Japan. [Hu, Shen] Univ Calif Los Angeles, Sch Dent, Los Angeles, CA 90095 USA. [Hu, Shen] Univ Calif Los Angeles, Dent Res Inst, Los Angeles, CA 90095 USA. [Hu, Zhi-Liang; Reecy, James] Iowa State Univ, Iowa City, IA USA. [Hutchins, Lucie; Stone, Kevin] Jackson Lab, Mouse Genom Informat Grp, Bar Harbor, ME 04609 USA. [Kawaji, Hideya] RIKEN Prevent Med & Diag Innovat Program, Wako, Saitama 3510198, Japan. [Keliet, Aminah; Letellier, Thomas; Quesneville, Hadi; Steinbach, Delphine] INRA URGI Ctr Versailles, F-78026 Versailles, France. [Kong, Lei; Wang, Jun] Peking Univ, Coll Life Sci, State Key Lab Prot & Plant Gene Res, Ctr Bioinformat, Beijing 100871, Peoples R China. [Lawson, Daniel] European Bioinformat Inst, VectorBase, Hinxton CB10 1SD, England. [Li, Chuan-Yun; Liu, Chu-Jun; Zhang, Shi-Jian] Peking Univ, Inst Mol Med, Beijing 100871, Peoples R China. [Lio, Pietro] Univ Cambridge, Comp Lab, Cambridge CB3 0FD, England. [Maass, Alejandro] Univ Chile, Dept Engn Math, Santiago, Chile. [Mohamed, Azza Mostafa] King Abdulaziz Univ, Fac Sci Girls, Dept Biochem, Jeddah 21413, Saudi Arabia. [Ndegwa, Nelson] Karolinska Inst, Dept Med Epidemiol & Biostat, S-17177 Stockholm, Sweden. [Primig, Michael] Univ Rennes 1, Inserm IRSET U1085, F-35042 Rennes, France. [Saddiq, Amna Ali] King Abdulaziz Univ, Fac Sci Girls, Dept Biol Sci, Jeddah 21413, Saudi Arabia. [Spooner, William; Ware, Doreen; Youens-Clark, Ken] Cold Spring Harbor Lab, Cold Spring Harbor, NY 11724 USA. [Spooner, William] Eagle Genom Ltd, Cambridge CB22 3AT, England. [Wong-Erasmus, Marie] Human Longev Inc, San Diego, CA 92121 USA. [Kasprzyk, Arek] King Abdulaziz Univ, Fac Sci, Dept Biol Sci, Jeddah, Saudi Arabia. RP Kasprzyk, A (reprint author), Ist Sci San Raffaele, Ctr Translat Genom & Bioinformat, Via Olgettina 58, I-20132 Milan, Italy. EM Arek.Kasprzyk@gmail.com RI mohamed, azza/I-5066-2012; primig, michael/G-3175-2013; Eyras, Eduardo/L-1053-2014; Kawaji, Hideya/N-5116-2015; Awedh, Mohammad/P-7168-2014; Maass, Alejandro/D-5848-2012; Gasull, Martina/A-6630-2013; Fac Sci, KAU, Biol Sci Dept/L-4228-2013; Faculty of, Sciences, KAU/E-7305-2017; Allen, James/B-2457-2009; OI Rosanoff, Steven/0000-0002-4216-4674; Maurel, Thomas/0000-0003-0247-3971; Quattrone, Alessandro/0000-0003-3333-7630; Eyras, Eduardo/0000-0003-0793-6218; Kawaji, Hideya/0000-0002-0575-0308; Awedh, Mohammad/0000-0002-7055-010X; Maass, Alejandro/0000-0002-7038-4527; Allen, James/0000-0002-3894-4854; Christophe, KLOPP/0000-0001-7126-5477; chelala, claude/0000-0002-2488-0669; Cittaro, Davide/0000-0003-0384-3700; Lawson, Daniel/0000-0001-7765-983X; Hastings, Robert/0000-0001-8703-127X; Staines, Daniel/0000-0002-7564-9125; Dassi, Erik/0000-0003-4487-0449; Guerra-Assuncao, Jose Afonso/0000-0001-6593-403X; Collin, Olivier/0000-0002-8959-8402; Baldock, Richard/0000-0003-0332-6877; Fernandez Banet, Julio/0000-0003-0901-1286; Sperling, Linda/0000-0002-7772-4774 FU Wellcome Trust [077012/Z/05/Z, WT095908, WT098051]; Spanish Government [BIO2011-23920, CSD2009-00080]; Sandra Ibarra Foundation for Cancer [FSI2013]; Breast Cancer Campaign Tissue Bank [09TBBAR]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]; Global Frontier Project - Ministry of Science, ICT and Future Planning through National Research Foundation of Korea [NRF-2013M3A6A4043695]; Agence National de la Recherche [ANR-10-BLAN-1122, ANR-12-BSV6-0017-03, ANR-14-CE10-0005-03]; Centre National de la Recherche Scientifique; Center for Genome Regulation [SalmonDB] [Fondap-1509007]; Center for Mathematical Modelling [Basal-PFB 03]; European Molecular Biology Laboratory; Japanese Ministry of Education, Culture, Sports, Science and Technology [FANTOM5 BioMart]; Deanship of Scientific Research (DSR) King Abdulaziz University [96-130-35-HiCi]; King Abdulaziz University FX The BioMart Community Portal is a collaborative, community effort and as such it is the product of the efforts of dozens of different groups and organizations. The individual data sources that the portal comprises are funded separately and independently. In particular: Wellcome Trust [077012/Z/05/Z to COSMIC mart]; Spanish Government [BIO2011-23920 and CSD2009-00080 to BioMart database of the Regulatory Genomics group at Pompeu Fabra University]; Sandra Ibarra Foundation for Cancer [FSI2013]; Breast Cancer Campaign Tissue Bank [09TBBAR to BCCTB bioinformatics portal]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231 to Phytozome]; Global Frontier Project (to i-Pharm research) funded by the Ministry of Science, ICT and Future Planning through the National Research Foundation of Korea (NRF-2013M3A6A4043695); Agence National de la Recherche [ANR-10-BLAN-1122, ANR-12-BSV6-0017-03, ANR-14-CE10-0005-03 to ParameciumDB and cilDB]; Centre National de la Recherche Scientifique; Center for Genome Regulation [SalmonDB; Fondap-1509007 to A.M. and A.D.G.]; Center for Mathematical Modelling [Basal-PFB 03 to A.M. and A.D.G.]; Wellcome Trust (WT095908 and WT098051 to R.K., T.M. and A.Z.); European Molecular Biology Laboratory; Japanese Ministry of Education, Culture, Sports, Science and Technology [FANTOM5 BioMart; for RIKEN OSC and RIKEN PMI to Yoshihide Hayashizaki, and for RIKEN CLST]. Deanship of Scientific Research (DSR) King Abdulaziz University (96-130-35-HiCi to M.H.A., A.M.M., A.A.S. and A.K.). Funding for open access charge: King Abdulaziz University. NR 53 TC 69 Z9 69 U1 6 U2 29 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0305-1048 EI 1362-4962 J9 NUCLEIC ACIDS RES JI Nucleic Acids Res. PD JUL 1 PY 2015 VL 43 IS W1 BP W589 EP W598 DI 10.1093/nar/gkv350 PG 10 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA CP3IP UT WOS:000359772700095 PM 25897122 ER PT J AU Yoon, H Macke, J West, AP Foley, B Bjorkman, PJ Korber, B Yusim, K AF Yoon, Hyejin Macke, Jennifer West, Anthony P., Jr. Foley, Brian Bjorkman, Pamela J. Korber, Bette Yusim, Karina TI CATNAP: a tool to compile, analyze and tally neutralizing antibody panels SO NUCLEIC ACIDS RESEARCH LA English DT Article ID HIV-1 GP120; SEQUENCE-ANALYSIS; VIRAL STRAINS; BINDING-SITE; CD4 BINDING; BROAD; EPITOPE; POTENT; DOMAIN; GLYCOPROTEIN AB CATNAP (Compile, Analyze and Tally NAb Panels) is a new web server at Los Alamos HIV Database, created to respond to the newest advances in HIV neutralizing antibody research. It is a comprehensive platform focusing on neutralizing antibody potencies in conjunction with viral sequences. CATNAP integrates neutralization and sequence data from published studies, and allows users to analyze that data for each HIV Envelope protein sequence position and each antibody. The tool has multiple data retrieval and analysis options. As input, the user can pick specific antibodies and viruses, choose a panel from a published study, or supply their own data. The output superimposes neutralization panel data, virus epidemiological data, and viral protein sequence alignments on one page, and provides further information and analyses. The user can highlight alignment positions, or select antibody contact residues and view position-specific information from the HIV databases. The tool calculates tallies of amino acids and N-linked glycosylation motifs, counts of antibody-sensitive and -resistant viruses in conjunction with each amino acid or N-glycosylation motif, and performs Fisher's exact test to detect potential positive or negative amino acid associations for the selected antibody. Website name: CATNAP (Compile, Analyze and Tally NAb Panels). Website address: http://hiv.lanl.gov/catnap. C1 [Yoon, Hyejin; Macke, Jennifer; Foley, Brian; Korber, Bette; Yusim, Karina] Los Alamos Natl Lab, Los Alamos, NM 87544 USA. [West, Anthony P., Jr.; Bjorkman, Pamela J.] CALTECH, Pasadena, CA 91125 USA. RP Yusim, K (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87544 USA. EM kyusim@lanl.gov OI Foley, Brian/0000-0002-1086-0296 FU National Institutes of Health (NIH) [AGRAAI1200700101000, HIVRAD P01 AI100148]; Bill & Melinda Gates Foundation [1032144, 1040753]; NIH through Los Alamos National Laboratory [AGRAAI1200700101000] FX National Institutes of Health (NIH) [contract AGRAAI1200700101000 HIV/SIV, Database and Analysis Unit (B.T.K., H.Y., J.M., B.F., K.Y.) and grant HIVRAD P01 AI100148 (P.J.B., A.P.W.)]; Bill & Melinda Gates Foundation [Collaboration for AIDS Vaccine Discovery, grant 1032144 (B.T.K., H.Y.) and grant 1040753 (P.J.B., A.P.W.)]. Funding for open access charge: NIH contract AGRAAI1200700101000 through Los Alamos National Laboratory. NR 31 TC 4 Z9 4 U1 1 U2 1 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0305-1048 EI 1362-4962 J9 NUCLEIC ACIDS RES JI Nucleic Acids Res. PD JUL 1 PY 2015 VL 43 IS W1 BP W213 EP W219 DI 10.1093/nar/gkv404 PG 7 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA CP3IP UT WOS:000359772700033 PM 26044712 ER PT J AU Birch, GC Griffin, JC AF Birch, Gabriel C. Griffin, John C. TI Sinusoidal Siemens star spatial frequency response measurement errors due to misidentified target centers SO OPTICAL ENGINEERING LA English DT Article DE spatial frequency response; modulation transfer function; resolution; image quality evaluation; Siemens star AB Numerous methods are available to measure the spatial frequency response (SFR) of an optical system. A recent change to the ISO 12233 photography resolution standard includes a sinusoidal Siemens star test target. We take the sinusoidal Siemens star proposed by the ISO 12233 standard, measure system SFR, and perform an analysis of errors induced by incorrectly identifying the center of a test target. We show a closed-form solution for the radial profile intensity measurement given an incorrectly determined center and describe how this error reduces the measured SFR of the system. Using the closed-form solution, we propose a two-step process by which test target centers are corrected and the measured SFR is restored to the nominal, correctly centered values. (C) The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. C1 [Birch, Gabriel C.; Griffin, John C.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Birch, GC (reprint author), Sandia Natl Labs, POB 5800 MS 0781, Albuquerque, NM 87185 USA. EM gcbirch@sandia.gov FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000. SAND2015-3823 J] FX Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2015-3823 J. NR 12 TC 1 Z9 1 U1 0 U2 4 PU SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98225 USA SN 0091-3286 EI 1560-2303 J9 OPT ENG JI Opt. Eng. PD JUL PY 2015 VL 54 IS 7 AR 074104 DI 10.1117/1.OE.54.7.074104 PG 8 WC Optics SC Optics GA CP3ZZ UT WOS:000359823100021 ER PT J AU Denisov, DS AF Denisov, D. S. TI Future Particle-Physics Projects in the United States SO PHYSICS OF ATOMIC NUCLEI LA English DT Article AB Basic proposals of experiments aimed at precision measurements of Standard Model parameters and at searches for new particles, including dark-matter particles, are described along with future experimental projects considered by American Physical Society at the meeting in the summer of 2013 and intended for implementation within the next ten to twenty years. C1 Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Denisov, DS (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. EM denisovd@fnal.gov NR 1 TC 0 Z9 0 U1 0 U2 0 PU MAIK NAUKA/INTERPERIODICA/SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013-1578 USA SN 1063-7788 EI 1562-692X J9 PHYS ATOM NUCL+ JI Phys. Atom. Nuclei PD JUL PY 2015 VL 78 IS 5 BP 586 EP 590 DI 10.1134/S1063778815050038 PG 5 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA CP7MQ UT WOS:000360072700007 ER PT J AU Lovelace, E Wagoner, J MacDonald, J Bammler, T Kim, YM Robertson, BJ Metz, T Farin, F Oberlies, NH Polyak, S AF Lovelace, E. Wagoner, J. MacDonald, J. Bammler, T. Kim, Y. M. Robertson, B. J. Metz, T. Farin, F. Oberlies, N. H. Polyak, S. TI Silymarin suppresses cellular inflammation by inducing reparative stress signaling SO PLANTA MEDICA LA English DT Meeting Abstract CT Annual Meeting of the American-Society-of-Pharmacognosy CY JUL 25-29, 2015 CL CO SP Amer Soc Pharmacognosy C1 [Lovelace, E.; Wagoner, J.; Polyak, S.] Univ Washington, Dept Lab Med, Seattle, WA 98104 USA. [MacDonald, J.; Bammler, T.; Farin, F.] Univ Washington, Dept Environm & Occupat Hlth Sci, Seattle, WA 98104 USA. [Kim, Y. M.; Robertson, B. J.; Metz, T.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99354 USA. [Oberlies, N. H.] Univ N Carolina, Dept Chem & Biochem, Greensboro, NC 27412 USA. RI Kim, Young-Mo/D-3282-2009 OI Kim, Young-Mo/0000-0002-8972-7593 NR 0 TC 0 Z9 0 U1 0 U2 2 PU GEORG THIEME VERLAG KG PI STUTTGART PA RUDIGERSTR 14, D-70469 STUTTGART, GERMANY SN 0032-0943 EI 1439-0221 J9 PLANTA MED JI Planta Med. PD JUL PY 2015 VL 81 IS 11 MA PE14 BP 884 EP 884 PG 1 WC Plant Sciences; Chemistry, Medicinal; Integrative & Complementary Medicine; Pharmacology & Pharmacy SC Plant Sciences; Pharmacology & Pharmacy; Integrative & Complementary Medicine GA CP6AP UT WOS:000359967000138 ER PT J AU Lohman, JR Joachimiak, A Phillips, GN Shen, B AF Lohman, J. R. Joachimiak, A. Phillips, G. N., Jr. Shen, B. TI Structural and evolutionary relationships of ketosynthase domains from modular polyketide synthases SO PLANTA MEDICA LA English DT Meeting Abstract CT Annual Meeting of the American-Society-of-Pharmacognosy CY JUL 25-29, 2015 CL CO SP Amer Soc Pharmacognosy C1 [Lohman, J. R.] Purdue Univ, Dept Biochem, W Lafayette, IN 47907 USA. [Joachimiak, A.] Argonne Natl Lab, Midwest Ctr Struct Genom, Argonne, IL 60439 USA. [Joachimiak, A.] Argonne Natl Lab, Struct Biol Ctr, Biosci Div, Argonne, IL 60439 USA. [Phillips, G. N., Jr.] Rice Univ, Dept Biochem & Cell Biol, Houston, TX 77251 USA. [Shen, B.] Scripps Res Inst, Dept Chem, Jupiter, FL 33458 USA. NR 0 TC 0 Z9 0 U1 0 U2 1 PU GEORG THIEME VERLAG KG PI STUTTGART PA RUDIGERSTR 14, D-70469 STUTTGART, GERMANY SN 0032-0943 EI 1439-0221 J9 PLANTA MED JI Planta Med. PD JUL PY 2015 VL 81 IS 11 MA PF5 BP 886 EP 886 PG 1 WC Plant Sciences; Chemistry, Medicinal; Integrative & Complementary Medicine; Pharmacology & Pharmacy SC Plant Sciences; Pharmacology & Pharmacy; Integrative & Complementary Medicine GA CP6AP UT WOS:000359967000147 ER PT J AU Sica, VP Raja, HA El-Elimat, T Kertesz, V Van Berke, GJ Pearce, CJ Oberlies, NH AF Sica, V. P. Raja, H. A. El-Elimat, T. Kertesz, V Van Berke, G. J. Pearce, C. J. Oberlies, N. H. TI Profiling fungal cultures in situ via the droplet-LMJ-SSP coupled with UPLC-PDA-HRMS-MS/MS SO PLANTA MEDICA LA English DT Meeting Abstract CT Annual Meeting of the American-Society-of-Pharmacognosy CY JUL 25-29, 2015 CL CO SP Amer Soc Pharmacognosy C1 [Sica, V. P.; Raja, H. A.; El-Elimat, T.; Oberlies, N. H.] Univ N Carolina, Dept Chem & Biochem, Greensboro, NC 27402 USA. [Kertesz, V; Van Berke, G. J.] Oak Ridge Natl Lab, Div Chem Sci, Organ & Biol Mass Spectrometry Grp, Oak Ridge, TN 37831 USA. [Pearce, C. J.] Mycosynthetix Inc, Hillsborough, NC 27278 USA. RI Kertesz, Vilmos/M-8357-2016 OI Kertesz, Vilmos/0000-0003-0186-5797 NR 0 TC 0 Z9 0 U1 0 U2 0 PU GEORG THIEME VERLAG KG PI STUTTGART PA RUDIGERSTR 14, D-70469 STUTTGART, GERMANY SN 0032-0943 EI 1439-0221 J9 PLANTA MED JI Planta Med. PD JUL PY 2015 VL 81 IS 11 MA PR1 BP 915 EP 915 PG 1 WC Plant Sciences; Chemistry, Medicinal; Integrative & Complementary Medicine; Pharmacology & Pharmacy SC Plant Sciences; Pharmacology & Pharmacy; Integrative & Complementary Medicine GA CP6AP UT WOS:000359967000285 ER PT J AU Lovelace, ES Kline, T Olivas, K Wagoner, J Oberlies, NH Combet, C Anderson, LN Smith, RD Wright, AT Polyak, SJ AF Lovelace, E. S. Kline, T. Olivas, K. Wagoner, J. Oberlies, N. H. Combet, C. Anderson, L. N. Smith, R. D. Wright, A. T. Polyak, S. J. TI Identification of cellular protein targets of silymarin-derived flavonolignans SO PLANTA MEDICA LA English DT Meeting Abstract CT Annual Meeting of the American-Society-of-Pharmacognosy CY JUL 25-29, 2015 CL CO SP Amer Soc Pharmacognosy C1 [Lovelace, E. S.; Wagoner, J.; Polyak, S. J.] Univ Washington, Dept Lab Med, Seattle, WA 98104 USA. [Kline, T.; Olivas, K.; Polyak, S. J.] Univ Washington, Dept Microbiol, Seattle, WA 98104 USA. [Polyak, S. J.] Univ Washington, Dept Global Hlth, Seattle, WA 98104 USA. [Oberlies, N. H.] Univ N Carolina, Dept Chem, Greensboro, NC 27412 USA. [Combet, C.] INSERM, F-69008 Lyon, France. [Anderson, L. N.; Smith, R. D.; Wright, A. T.] Pacific NW Natl Lab, Richland, WA 99354 USA. RI Smith, Richard/J-3664-2012; Anderson, Lindsey /S-6375-2016 OI Smith, Richard/0000-0002-2381-2349; Anderson, Lindsey /0000-0002-8741-7823 NR 0 TC 0 Z9 0 U1 0 U2 2 PU GEORG THIEME VERLAG KG PI STUTTGART PA RUDIGERSTR 14, D-70469 STUTTGART, GERMANY SN 0032-0943 EI 1439-0221 J9 PLANTA MED JI Planta Med. PD JUL PY 2015 VL 81 IS 11 MA PX79 BP 946 EP 946 PG 1 WC Plant Sciences; Chemistry, Medicinal; Integrative & Complementary Medicine; Pharmacology & Pharmacy SC Plant Sciences; Pharmacology & Pharmacy; Integrative & Complementary Medicine GA CP6AP UT WOS:000359967000437 ER PT J AU Lu, ZM Vesselinov, VV AF Lu, Zhiming Vesselinov, Velimir V. TI Analytical sensitivity analysis of transient groundwater flow in a bounded model domain using the adjoint method SO WATER RESOURCES RESEARCH LA English DT Article DE sensitivity analysis; adjoint method; analytical solutions; transient flow ID TRAVEL-TIME PROBABILITIES; VARIABLY SATURATED FLOW; PUMPING TESTS; INVERSE PROBLEM; PARAMETER-IDENTIFICATION; HYDRAULIC TOMOGRAPHY; UNCONFINED AQUIFERS; NONUNIFORM AQUIFERS; POROUS-MEDIA; CONTAMINANT AB Sensitivity analyses are an important component of any modeling exercise. We have developed an analytical methodology based on the adjoint method to compute sensitivities of a state variable (hydraulic head) to model parameters (hydraulic conductivity and storage coefficient) for transient groundwater flow in a confined and randomly heterogeneous aquifer under ambient and pumping conditions. For a special case of two-dimensional rectangular domains, these sensitivities are represented in terms of the problem configuration (the domain size, boundary configuration, medium properties, pumping schedules and rates, and observation locations and times), and there is no need to actually solve the adjoint equations. As an example, we present analyses of the obtained solution for typical groundwater flow conditions. Analytical solutions allow us to calculate sensitivities efficiently, which can be useful for model-based analyses such as parameter estimation, data-worth evaluation, and optimal experimental design related to sampling frequency and locations of observation wells. The analytical approach is not limited to groundwater applications but can be extended to any other mathematical problem with similar governing equations and under similar conceptual conditions. C1 [Lu, Zhiming; Vesselinov, Velimir V.] Los Alamos Natl Lab, Computat Earth Sci Grp EES 16, Los Alamos, NM 87544 USA. RP Lu, ZM (reprint author), Los Alamos Natl Lab, Computat Earth Sci Grp EES 16, MS T003, Los Alamos, NM 87544 USA. EM zhiming@lanl.gov RI Vesselinov, Velimir/P-4724-2016; OI Vesselinov, Velimir/0000-0002-6222-0530; Lu, Zhiming/0000-0001-5800-3368 FU Environmental Programs Directorate of the Los Alamos National Laboratory FX This research was funded by the Environmental Programs Directorate of the Los Alamos National Laboratory. The data to support this paper are available, and can be obtained by contacting Zhiming Lu at zhiming@lanl.gov. The authors wish to thank the associated editor and three anonymous reviewers for comments that substantially improved the manuscript. The authors are grateful to Daniel O'Malley for his thorough review on the paper. NR 37 TC 0 Z9 0 U1 3 U2 13 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 EI 1944-7973 J9 WATER RESOUR RES JI Water Resour. Res. PD JUL PY 2015 VL 51 IS 7 BP 5060 EP 5080 DI 10.1002/2014WR016819 PG 21 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA CP7PM UT WOS:000360080200010 ER PT J AU Rodriguez, JA AF Rodriguez, Jose A. TI Accessible atomic structures from sub-micron protein crystals SO ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES LA English DT Editorial Material DE MicroED; nanocrystals; electron diffraction ID FREE-ELECTRON LASER; FEMTOSECOND CRYSTALLOGRAPHY; DIFFRACTION DATA; MODEL C1 Univ Calif Los Angeles, Dept Biol Chem, DOE Inst Genom & Prote, Los Angeles, CA 90024 USA. RP Rodriguez, JA (reprint author), Univ Calif Los Angeles, Dept Biol Chem, DOE Inst Genom & Prote, Los Angeles, CA 90024 USA. NR 24 TC 0 Z9 0 U1 3 U2 4 PU INT UNION CRYSTALLOGRAPHY PI CHESTER PA 2 ABBEY SQ, CHESTER, CH1 2HU, ENGLAND SN 2053-2733 J9 ACTA CRYSTALLOGR A JI Acta Crystallogr. Sect. A PD JUL PY 2015 VL 71 BP 351 EP 352 DI 10.1107/S2053273315012206 PN 4 PG 2 WC Chemistry, Multidisciplinary; Crystallography SC Chemistry; Crystallography GA CO5NF UT WOS:000359205100001 PM 26131893 ER PT J AU Granlund, L Billinge, SJL Duxbury, PM AF Granlund, L. Billinge, S. J. L. Duxbury, P. M. TI Algorithm for systematic peak extraction from atomic pair distribution functions SO ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES LA English DT Article DE pair distribution function; peak extraction; model selection; Akaike information criterion; computer program ID AKAIKES INFORMATION CRITERION; SMALL-ANGLE SCATTERING; RADIAL-DISTRIBUTION FUNCTION; AB-INITIO DETERMINATION; MODEL SELECTION; POWDER DIFFRACTION; CRYSTAL-STRUCTURE; METALLIC GLASSES; NANOPARTICLES; REFINEMENT AB The study presents an algorithm, ParSCAPE, for model-independent extraction of peak positions and intensities from atomic pair distribution functions (PDFs). It provides a statistically motivated method for determining parsimony of extracted peak models using the information-theoretic Akaike information criterion (AIC) applied to plausible models generated within an iterative framework of clustering and chi-square fitting. All parameters the algorithm uses are in principle known or estimable from experiment, though careful judgment must be applied when estimating the PDF baseline of nanostructured materials. ParSCAPE has been implemented in the Python program SrMise. Algorithm performance is examined on synchrotron X-ray PDFs of 16 bulk crystals and two nanoparticles using AIC-based multimodeling techniques, and particularly the impact of experimental uncertainties on extracted models. It is quite resistant to misidentification of spurious peaks coming from noise and termination effects, even in the absence of a constraining structural model. Structure solution from automatically extracted peaks using the Liga algorithm is demonstrated for 14 crystals and for C-60. Special attention is given to the information content of the PDF, theory and practice of the AIC, as well as the algorithm's limitations. C1 [Granlund, L.; Duxbury, P. M.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Billinge, S. J. L.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. [Billinge, S. J. L.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. RP Granlund, L (reprint author), Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. EM luke.r.granlund@gmail.com; sb2896@columbia.edu FU Center of Research Excellence in Complex Materials at Michigan State University; US Department of Energy, Office of Basic Energy Sciences (DOE-BES) at Brookhaven National Laboratory [DE-AC02-98CH10886]; US DOE-BES [W-31-109-Eng-38] FX We thank Dr Chris Farrow and Dr Pavol Juhas for productive conversations, particularly regarding the PDF baseline and uncertainties. We gratefully acknowledge the preceding as well as Dr Saurabh Gujarathi, Dr Peng Tian, Max Terban and Soham Banerjee for help testing SrMise. We appreciate the efforts of Dr Emil Bozin, Dr Ahmad Masadeh and Dr Douglas Robinson for assistance with the X-ray measurements at the Advanced Photon Source, Argonne National Laboratory (APS, ANL). We thank Dr Christos Malliakas for providing the NaCl, PbTe nanoparticle and ZnS wurtzite samples, as well as Professor Harry Dorn for the C60 sample. Work at MSU was supported by the Center of Research Excellence in Complex Materials at Michigan State University. Work in the Billinge group was supported by the US Department of Energy, Office of Basic Energy Sciences (DOE-BES), as the complex modeling laboratory directed research and development grant at Brookhaven National Laboratory through contract DE-AC02-98CH10886. The Advanced Photon Source is supported by the US DOE-BES under contract No. W-31-109-Eng-38. NR 78 TC 3 Z9 3 U1 5 U2 30 PU INT UNION CRYSTALLOGRAPHY PI CHESTER PA 2 ABBEY SQ, CHESTER, CH1 2HU, ENGLAND SN 2053-2733 J9 ACTA CRYSTALLOGR A JI Acta Crystallogr. Sect. A PD JUL PY 2015 VL 71 BP 392 EP 409 DI 10.1107/S2053273315005276 PN 4 PG 18 WC Chemistry, Multidisciplinary; Crystallography SC Chemistry; Crystallography GA CO5NF UT WOS:000359205100006 PM 26131896 ER PT J AU Yan, LH Wu, RT Bao, DL Ren, JH Zhang, YF Zhang, HG Huang, L Wang, YL Du, SX Huan, Q Gao, HJ AF Yan Ling-Hao Wu Rong-Ting Bao De-Liang Ren Jun-Hai Zhang Yan-Fang Zhang Hai-Gang Huang Li Wang Ye-Liang Du Shi-Xuan Huan Qing Gao Hong-Jun TI Adsorption behavior of Fe atoms on a naphthalocyanine monolayer on Ag(111) surface SO CHINESE PHYSICS B LA English DT Article DE naphthalocyanine; Fe atoms; Ag(111) surface; adsorption behavior ID SCANNING-TUNNELING-MICROSCOPY; METAL-FREE NAPHTHALOCYANINE; SUBMONOLAYER COVERAGE; MAGNETIC-ANISOTROPY; IRON PHTHALOCYANINE; AU(111) SURFACE; SPECTROSCOPY; MOLECULES; NANOSTRUCTURES; CLUSTERS AB Adsorption behavior of Fe atoms on a metal-free naphthalocyanine (H(2)Nc) monolayer on Ag(111) surface at room temperature has been investigated using scanning tunneling microscopy combined with density functional theory (DFT) based calculations. We found that the Fe atoms were adsorbed on the centers of H(2)Nc molecules and formed Fe-H(2)Nc complexes at low coverage. DFT calculations show that Fe sited in the center of the molecule is the most stable configuration, in good agreement with the experimental observations. After an Fe-H(2)Nc complex monolayer was formed, the extra Fe atoms self-assembled to Fe clusters of uniform size and adsorbed dispersively at the interstitial positions of Fe-H(2)Nc complex monolayer. Therefore, the H(2)Nc monolayer grown on Ag(111) could be a good template to grow dispersed magnetic metal atoms and clusters at room temperature for further investigation of their magnetism-related properties. C1 [Yan Ling-Hao; Wu Rong-Ting; Ren Jun-Hai; Zhang Yan-Fang; Huang Li; Wang Ye-Liang; Du Shi-Xuan; Huan Qing; Gao Hong-Jun] Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Inst Phys, Beijing 100190, Peoples R China. [Bao De-Liang; Wang Ye-Liang; Du Shi-Xuan; Huan Qing; Gao Hong-Jun] Univ Chinese Acad Sci, Beijing 100049, Peoples R China. [Zhang Hai-Gang] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Du, SX (reprint author), Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Inst Phys, Beijing 100190, Peoples R China. EM sxdu@iphy.ac.cn; huanq@iphy.ac.cn RI Du, Shixuan/K-7145-2012; WANG, Yeliang/D-9643-2012 OI Du, Shixuan/0000-0001-9323-1307; FU National Natural Science Foundation of China [61390501, 51325204, 11204361]; National Basic Research Program of China [2011CB808401, 2011CB921702]; National Key Scientific Instrument and Equipment Development Project of China [2013YQ1203451]; National Supercomputing Center in Tianjin, China; Chinese Academy of Sciences FX Project supported by the National Natural Science Foundation of China (Grant Nos. 61390501, 51325204, and 11204361), the National Basic Research Program of China (Grant Nos. 2011CB808401 and 2011CB921702), the National Key Scientific Instrument and Equipment Development Project of China (Grant No. 2013YQ1203451), the National Supercomputing Center in Tianjin, China, and the Chinese Academy of Sciences. NR 48 TC 1 Z9 1 U1 3 U2 20 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1674-1056 EI 1741-4199 J9 CHINESE PHYS B JI Chin. Phys. B PD JUL PY 2015 VL 24 IS 7 AR 076802 DI 10.1088/1674-1056/24/7/076802 PG 5 WC Physics, Multidisciplinary SC Physics GA CP1UU UT WOS:000359662600057 ER PT J AU Aad, G Abbott, B Abdallah, J Khalek, SA Abdinov, O Aben, R Abi, B Abolins, M AbouZeid, OS Abramowicz, H Abreu, H Abreu, R Abulaiti, Y Acharya, BS Adamczyk, L Adams, DL Adelman, J Adomeit, S Adye, T Agatonovic-Jovin, T Aguilar-Saavedra, JA Agustoni, M Ahlen, SP Ahmadov, F Aielli, G Akerstedt, H Akesson, TP Akimoto, G Akimov, AV Alberghi, GL Albert, J Albrand, S Verzini, MJA Aleksa, M Aleksandrov, IN Alexa, C Alexander, G Alexandre, G Alexopoulos, T Alhroob, M Alimonti, G Alio, L Alison, J Allbrooke, BMM Allison, LJ Allport, PP Aloisio, A Alonso, A Alonso, F Alpigiani, C Altheimer, A Gonzalez, BA Alviggi, MG Amako, K Coutinho, YA Amelung, C Amidei, D Dos Santos, SPA Amorim, A Amoroso, S Amram, N Amundsen, G Anastopoulos, C Ancu, LS Andari, N Andeen, T Anders, CF Anders, G Anderson, KJ Andreazza, A Andrei, V Anduaga, XS Angelidakis, S Angelozzi, I Anger, P Angerami, A Anghinolfi, F Anisenkov, AV Anjos, N Annovi, A Antonelli, M Antonov, A Antos, J Anulli, F Aoki, M Bella, LA Arabidze, G Arai, Y Araque, JP Arce, ATH Arduh, FA Arguin, JF Argyropoulos, S Arik, M Armbruster, AJ Arnaez, O Arnal, V Arnold, H Arratia, M Arslan, O Artamonov, A Artoni, G Asai, S Asbah, N Ashkenazi, A Asman, B Asquith, L Assamagan, K Astalosa, R Atkinson, M Atlay, NB Auerbach, B Augsten, K Aurousseau, M Avolio, G Axen, B Ayoub, MK Azuelos, G Baak, MA Baas, AE Bacci, C Bachacou, H Bachas, K Backes, M Backhaus, M Bagiacchi, P Bagnaia, P Bai, Y Bain, T Baines, JT Baker, OK Balek, P Balestri, T Balli, F Banas, E Banerjee, S Bannoura, AAE Bansil, HS Barak, L Baranov, SP Barberio, EL Barberis, D Barbero, M Barillari, T Barisonzi, M Barklow, T Barlow, N Barnes, SL Barnett, BM Barnett, RM Barnovska, Z Baroncelli, A Barone, G Barr, AJ Barreiro, F da Costa, JBG Bartoldus, R Barton, AE Bartos, P Bassalat, A Basye, A Bates, RL Batista, SJ Batley, JR Battaglia, M Bauce, M Bauer, F Bawa, HS Beacham, JB Beattie, MD Beau, T Beauchemin, PH Beccherle, R Bechtle, P Beck, HP Becker, K Becker, S Beckingham, M Becot, C Beddall, AJ Beddall, A Bednyakov, VA Bee, CP Beemster, LJ Beermann, TA Begel, M Behr, K Belanger-Champagne, C Bell, PJ Bell, WH Bella, G Bellagamba, L Bellerive, A Bellomo, M Belotskiy, K Beltramello, O Benary, O Benchekroun, D Bender, M Bendtz, K Benekos, N Benhammou, Y Noccioli, EB Garcia, JAB Benjamin, DP Bensinger, JR Bentvelsen, S Beresford, L Beretta, M Berge, D Kuutmann, EB Berger, N Berghaus, F Beringer, J Bernard, C Bernard, NR Bernius, C Bernlochner, FU Berry, T Berta, P Bertella, C Bertoli, G Bertolucci, F Bertsche, C Bertsche, D Besana, MI Besjes, GJ Bylund, OB Bessner, M Besson, N Betancourt, C Bethke, S Bevan, AJ Bhimji, W Bianchi, RM Bianchini, L Bianco, M Biebel, O Bieniek, SP Biglietti, M De Mendizabal, JB Bilokon, H Bindi, M Binet, S Bingul, A Bini, C Black, CW Black, JE Black, KM Blackburn, D Blair, RE Blanchard, JB Blanco, JE Blazek, T Bloch, I Blocker, C Blum, W Blumenschein, U Bobbink, GJ Bobrovnikov, VS Bocchetta, SS Bocci, A Bock, C Boddy, CR Boehler, M Bogaerts, JA Bogdanchikov, AG Bohm, C Boisvert, V Bold, T Boldea, V Boldyrev, AS Bomben, M Bona, M Boonekamp, M Borisov, A Borissov, G Borroni, S Bortfeldt, J Bortolotto, V Bos, K Boscherini, D Bosman, M Boterenbrood, H Boudreau, J Bouffard, J Bouhova-Thacker, EV Boumediene, D Bourdarios, C Bousson, N Boutouil, S Boveia, A Boyd, J Boyko, IR Bozic, I Bracinik, J Brandt, A Brandt, G Brandt, O Bratzler, U Brau, B Brau, JE Braun, HM Brazzale, SF Brendlinger, K Brennan, AJ Brenner, L Brenner, R Bressler, S Bristow, K Bristow, TM Britton, D Brochu, FM Brock, I Brock, R Bronner, J Brooijmans, G Brooks, T Brooks, WK Brosamer, J Brost, E Brown, J de Renstrom, PAB Bruncko, D Bruneliere, R Bruni, A Bruni, G Bruschi, M Bryngemark, L Buanes, T Buat, Q Bucci, F Buchholz, P Buckley, AG Buda, SI Budagov, IA Buehrer, F Bugge, L Bugge, MK Bulekov, O Burckhart, H Burdin, S Burghgrave, B Burke, S Burmeister, I Busato, E Buscher, D Buscher, V Bussey, P Buszello, CP Butler, JM Butt, AI Buttar, CM Butterworth, JM Butti, P Buttinger, W Buzatu, A Urban, SC Caforio, D Cakir, O Calafiura, P Calandri, A Calderini, G Calfayan, P Caloba, LP Calvet, D Calvet, S Toro, RC Camarda, S Cameron, D Caminada, LM Armadans, RC Campana, S Campanelli, M Campoverde, A Canale, V Canepa, A Bret, MC Cantero, J Cantrill, R Cao, T Garrido, MDMC Caprini, I Caprini, M Capua, M Caputo, R Cardarelli, R Carli, T Carlino, G Carminati, L Caron, S Carquin, E Carrillo-Montoya, D Carter, JR Carvalho, J Casadei, D Casado, MP Casolino, M Castaneda-Miranda, E Castelli, A Gimenez, VC Castro, NF Catastini, P Catinaccio, A Catmore, JR Cattai, A Cattani, G Caudron, J Cavaliere, V Cavalli, D Cavalli-Sforza, M Cavasinni, V Ceradini, F Cerio, BC Cerny, K Cerqueira, AS Cerri, A Cerrito, L Cerutti, F Cerv, M Cervelli, A Cetin, SA Chafaq, A Chakraborty, D Chalupkova, I Chang, P Chapleau, B Chapman, JD Charfeddine, D Charlton, DG Chau, CC Barajas, CAC Cheatham, S Chegwidden, A Chekanov, S Chekulaev, SV Chelkov, GA Chelstowska, MA Chen, C Chen, H Chen, K Chen, L Chen, S Chen, X Chen, Y Cheng, HC Cheng, Y Cheplakov, A Cheremushkina, E El Moursli, RC Chernyatin, V Cheu, E Chevalier, L Chiarella, V Childers, JT Chilingarov, A Chiodini, G Chisholm, AS Chislett, RT Chitan, A Chizhov, MV Chouridou, S Chow, BKB Chromek-Burckhart, D Chu, ML Chudoba, J Chwastowski, JJ Chytka, L Ciapetti, G Ciftci, AK Cinca, D Chu, ML Chudoba, J Chwastowski, JJ Chytka, L Ciapetti, G Ciftci, AK Cinca, D Cindro, V Ciocio, A Citron, ZH Ciubancan, M Clark, A Clark, PJ Clarke, RN Cleland, W Clement, C Coadou, Y Cobal, M Coccaro, A Cochran, J Coffey, L Cogan, JG Cole, B Cole, S Colijn, AP Collot, J Colombo, T Compostella, G Muino, PC Coniavitis, E Connell, SH Connelly, IA Consonni, SM Consorti, V Constantinescu, S Conta, C Conti, G Conventi, F Cooke, M Cooper, BD Cooper-Sarkar, AM Copic, K Cornelissen, T Corradi, M Corriveau, F Corso-Radu, A Cortes-Gonzalez, A Cortiana, G Costa, G Costa, MJ Costanzo, D Cote, D Cottin, G Cowan, G Cranmer, BECK Cranmer, K Cree, G Crepe-Renaudin, S Crescioli, F Cribbs, WA Ortuzar, MC Cristinziani, M Croft, V Crosetti, G Donszelmann, TC Cummings, J Curatolo, M Cuthbert, C Czirr, H Czodrowski, P D'Auria, S D'Onofrio, M de Sousa, MJDS Da Via, C Dabrowski, W Dafinca, A Dai, T Dale, O Dallaire, F Dallapiccola, C Dam, M Dandoy, JR Daniells, AC Danninger, M Hoffmann, MD Dao, V Darbo, G Darmora, S Dassoulas, J Dattagupta, A Davey, W David, C Davidek, T Davies, E Davies, M Davignon, O Davison, P Davygora, Y Dawe, E Dawson, I Daya-Ishmukhametova, RK De, K De Asmundis, R De Castro, S De Cecco, S De Groot, N de Jong, P De La Torre, H De Lorenzi, F De Nooij, L De Pedis, D De Salvo, A De Sanctis, U De Santo, A De Simone, A De Regie, JBD Dearnaley, WJ Debbe, R Debenedetti, C Dedovich, DV Deigaard, I Del Peso, J Del Prete, T Delgove, D Deliot, F Delitzsch, CM Deliyergiyev, M Dell'Acqua, A Dell'Asta, L Dell'Orso, M Della Pietra, M della Volpe, D Delmastro, M Delsart, PA Deluca, C DeMarco, DA Demers, S Demichev, M Demilly, A Denisov, SP Derendarz, D Derkaoui, JE Derue, F Dervan, P Desch, K Deterre, C Deviveiros, PO Dewhurst, A Dhaliwal, S Di Ciaccio, A Di Ciaccio, L Di Domenico, A Di Donato, C Di Girolamo, A Di Girolamo, B Di Mattia, A Di Micco, B Di Nardo, R Di Simone, A Di Sipio, R Di Valentino, D Diaconu, C Diamond, M Dias, FA Diaz, MA Diehl, EB Dietrich, J Dietzsch, TA Diglio, S Dimitrievska, A Dingfelder, J Dittus, F Djama, F Djobava, T Djuvsland, JI do Vale, MAB Dobos, D Dobre, M Doglioni, C Doherty, T Dohmae, T Dolejsi, J Dolezal, Z Dolgoshein, BA Donadelli, M Donati, S Dondero, P Donini, J Dopke, J Doria, A Dova, MT Doyle, AT Dris, M Dubreuil, E Duchovni, E Duckeck, G Ducu, OA Duda, D Dudarev, A Duflot, L Duguid, L Durssen, M Dunford, M Yildiz, HD Duren, M Durglishvilib, A Duschinger, D Dwuznik, M Dyndal, M Ecker, KM Edson, W Edwards, NC Ehrenfeld, W Eifert, T Eigen, G Einsweiler, K Ekelof, T El Kacimi, M Ellert, M Elles, S Ellinghaus, F Elliot, AA Ellis, N Elmsheuser, J Elsing, M Emeliyanov, D Enari, Y Endner, OC Endo, M Engelmann, R Erdmann, J Ereditato, A Eriksson, D Ernis, G Ernst, J Ernst, M Errede, S Ertel, E Escalier, M Esch, H Escobar, C Esposito, B Etienvre, AI Etzion, E Evans, H Ezhilov, A Fabbri, L Facini, G Fakhrutdinov, RM Falciano, S Falla, RJ Faltova, J Fang, Y Fanti, M Farbin, A Farilla, A Farooque, T Farrell, S Farrington, SM Farthouat, P Fassi, F Fassnacht, P Fassouliotis, D Favareto, A Fayard, L Federic, P Fedin, OL Fedorko, W Feigl, S Feligioni, L Feng, C Feng, EJ Feng, H Fenyuk, AB Martinez, PF Perez, SF Ferrag, S Ferrando, J Ferrari, A Ferrari, P Ferrari, R de Lima, DEF Ferrer, A Ferrere, D Ferretti, C Parodi, AF Fiascaris, M Fiedler, F Filipcic, A Filipuzzi, M Filthaut, F Fincke-Keeler, M Finelli, KD Fiolhais, MCN Fiorini, L Firan, A Fischer, A Fischer, C Fischer, J Fisher, WC Fitzgerald, EA Flechl, M Fleck, I Fleischmann, P Fleischmann, S Fletcher, GT Fletcher, G Flick, T Floderus, A Castillo, LRF Flowerdew, MJ Formica, A Forti, A Fournier, D Fox, H Fracchia, S Francavilla, P Franchini, M Francis, D Franconi, L Franklin, M Fraternali, M Freeborn, D French, ST Friedrich, F Froidevaux, D Frost, JA Fukunaga, C Torregrosa, EF Fulsom, BG Fuster, J Gabaldon, C Gabizon, O Gabrielli, A Gabrielli, A Gadatsch, S Gadomski, S Gagliardi, G Gagnon, P Galea, C Galhardo, B Gallas, EJ Gallop, BJ Gallus, P Galster, G Gan, KK Gao, J Gao, YS Walls, FMG Garberson, F Garcia, C Navarro, JEG Garcia-Sciveres, M Gardner, RW Garelli, N Garonne, V Gatti, C Gaudio, G Gaur, B Gauthier, L Gauzzi, P Gavrilenko, IL Gay, C Gaycken, G Gazis, EN Ge, P Gecse, Z Gee, CNP Geerts, DAA Geich-Gimbel, C Gemme, C Genest, MH Gentile, S George, M George, S Gerbaudo, D Gershon, A Ghazlane, H Ghodbane, N Giacobbe, B Giagu, S Giangiobbe, V Giannetti, P Gianotti, F Gibbard, B Gibson, SM Gilchriese, M Gillam, TPS Gillberg, D Gilles, G Gingrich, DM Giokaris, N Giordani, MP Giorgi, FM Giorgi, FM Giraud, PF Giugni, D Giuliani, C Giulini, M Gjelsten, BK Gkaitatzis, S Gkialas, I Gkougkousis, EL Gladilin, LK Glasman, C Glatzer, J Glaysher, PCF Glazov, A Glonti, GL Goblirsch-Kolb, M Goddard, JR Godlewski, J Goldfarb, S Golling, T Golubkov, D Gomes, A Goncalo, R Da Costa, JGPF Gonella, L de la Hoz, SG Parra, GG Gonzalez-Sevilla, S Goossens, L Gorbounov, PA Gordon, HA Gorelov, I Gorini, B Gorini, E Gorisek, A Gornicki, E Goshaw, AT Gossling, C Gostkin, MI Gouighri, M Goujdami, D Goussiou, AG Grabas, HMX Graber, L Grabowska-Bold, I Grafstrm, P Grahn, KJ Gramling, J Gramstad, E Grancagnolo, S Grassi, V Gratchev, V Gray, HM Graziani, E Greenwood, ZD Gregersen, K Gregor, IM Grenier, P Griffiths, J Grillo, AA Grimm, K Grinstein, S Gris, P Grishkevich, YV Grivaz, JF Grohs, JP Grohsjean, A Gross, E Grosse-Knetter, J Grossi, GC Grout, ZJ Guan, L Guenther, J Guescini, F Guest, D Gueta, O Guido, E Guillemin, T Guindon, S Gul, U Gumpert, C Guo, J Gupta, S Gutierrez, P Ortiz, NGG Gutschow, C Guttman, N Guyot, C Gwenlan, C Gwilliam, CB Haas, A Haber, C Hadavand, HK Haddad, N Haefner, P Hagebock, S Hajduk, Z Hakobyan, H Haleem, M Haley, J Hall, D Halladjian, G Hallewell, GD Hamacher, K Hamal, P Hamano, K Hamer, M Hamilton, A Hamilton, S Hamity, GN Hamnett, PG Han, L Hanagaki, K Hanawa, K Hance, M Hanke, P Hanna, R Hansen, JB Hansen, JD Hansen, PH Hara, K Hard, AS Harenberg, T Hariri, F Harkusha, S Harrington, RD Harrison, PF Hartjes, F Hasegawa, M Hasegawa, S Hasegawa, Y Hasib, A Hassani, S Haug, S Hauser, R Hauswald, L Havranek, M Hawkes, CM Hawkings, RJ Hawkins, AD Hayashi, T Hayden, D Hays, CP Hays, JM Hayward, HS Haywood, SJ Head, SJ Heck, T Hedberg, V Heelan, L Heim, S Heim, T Heinemann, B Heinrich, L Hejbal, J Helary, L Heller, M Hellman, S Hellmich, D Helsens, C Henderson, J Henderson, RCW Heng, Y Hengler, C Henrichs, A Correia, AMH Henrot-Versille, S Herbert, GH Jimenez, YH Herrberg-Schubert, R Herten, G Hertenberger, R Hervas, L Hesketh, GG Hessey, NP Hickling, R Higon-Rodriguez, E Hill, E Hill, JC Hiller, KH Hillier, SJ Hinchliffe, I Hines, E Hinman, RR Hirose, M Hirschbuehl, D Hobbs, J Hod, N Hodgkinson, MC Hodgson, P Hoecker, A Hoeferkamp, MR Hoenig, F Hohlfeld, M Holmes, TR Hong, TM van Huysduynen, LH Hopkins, WH Horii, Y Horton, AJ Hostachy, JY Hou, S Hoummada, A Howard, J Howarth, J Hrabovsky, M Hristova, I Hrivnac, J Hryn'ova, T Hrynevich, A Hsu, C Hsu, PJ Hsu, SC Hu, D Hu, Q Hu, X Huang, Y Hubacek, Z Hubaut, F Huegging, F Huffman, TB Hughes, EW Hughes, G Huhtinen, M Hulsing, TA Huseynov, N Huston, J Huth, J Iacobucci, G Iakovidis, G Ibragimov, I Iconomidou-Fayard, L Ideal, E Idrissi, Z Iengo, P Igonkina, O Iizawa, T Ikegami, Y Ikematsu, K Ikeno, M Ilchenko, Y Iliadis, D Ilic, N Inamaru, Y Ince, T Ioannou, P Iodice, M Iordanidou, K Ippolito, V Quiles, AI Isaksson, C Ishino, M Ishitsuka, M Ishmukhametov, R Issever, C Istin, S Ponce, JMI Iuppa, R Ivarsson, J Iwanski, W Iwasaki, H Izen, JM Izzo, V Jabbar, S Jackson, B Jackson, M Jackson, P Jacquess, TD Jaekel, MR Jain, V Jakobs, K Jakobsen, S Jakoubek, T Jakubek, J Jamin, DO Jana, DK Jansen, E Jansky, RW Janssen, J Janus, M Jarlskog, G Javadov, N Javurek, T Jeanty, L Jejelava, J Jeng, GY Jennens, D Jenni, P Jentzsch, J Jeske, C Jezqeuel, S Ji, H Jia, J Jiang, Y Pena, JJ Jin, S Jinaru, A Jinnouchi, O Joergensen, MD Johansson, P Johns, KA Jon-And, K Jones, G Jones, RWL Jones, TJ Jongmanns, J Jorge, PM Joshi, KD Jovicevic, J Ju, X Jung, CA Jussel, P Roza, AJ Kaci, M Kaczmarska, A Kado, M Kagan, H Kagan, M Kahn, SJ Kajomovitz, E Kalderon, CW Kama, S Kamenshchikov, A Kanaya, N Kaneda, M Kaneti, S Kantserov, VA Kanzaki, J Kaplan, B Kapliy, A Kar, D Karakostas, K Karamaoun, A Karastathis, N Kareem, MJ Karnevskiy, M Karpov, SN Karpova, ZM Karthik, K Kartvelishvili, V Karyukhin, AN Kashif, L Kass, RD Kastanas, A Kataoka, Y Katre, A Katzy, J Kawagoe, K Kawamoto, T Kawamura, G Kazama, S Kazanin, VF Kazarinov, MY Keeler, R Kehoe, R Keil, M Keller, JS Kempster, JJ Keoshkerian, H Kepka, O Kersevan, BP Kersten, S Keyes, RA Khalil-Zada, F Khandanyan, H Khanov, A Kharlamov, AG Khodinov, A Khomich, A Khoo, TJ Khoriauli, G Khovanskiy, V Khramov, E Khubua, J Kim, HY Kim, H Kim, SH Kimura, N Kind, OM King, BT King, M King, RSB King, SB Kirk, J Kiryunin, AE Kishimoto, T Kisielewska, D Kiss, F Kiuchi, K Kladiva, E Klein, MH Klein, M Klein, U Kleinknecht, K Klimek, P Klimentov, A Klingenberg, R Klinger, JA Klioutchnikova, T Klok, PF Kluge, EE Kluit, P Kluth, S Kneringer, E Knoops, EBFG Knue, A Kobayashi, D Kobayashi, T Kobel, M Kocian, M Kodys, P Koffas, T Koffeman, E Kogan, LA Kohlmann, S Kohout, Z Kohriki, T Koi, T Kolanoski, H Koletsou, I Komar, AA Komori, Y Kondo, T Kondrashova, N Koneke, K Konig, AC Konig, S Kono, T Konoplich, R Konstantinidis, N Kopeliansky, R Koperny, S Kpke, L Kopp, AK Korcyl, K Kordas, K Korn, A Korol, AA Korolkov, I Korolkova, EV Kortner, O Kortner, S Kosek, T Kostyukhin, VV Kotov, VM Kotwal, A Kourkoumeli-Charalampidi, A Kourkoumelis, C Kouskoura, V Koutsman, A Kowalewski, R Kowalski, TZ Kozanecki, W Kozhin, AS Kramarenko, VA Kramberger, G Krasnopevtsev, D Krasny, MW Krasznahorkay, A Kraus, JK Kravchenko, A Kreiss, S Kretz, M Kretzschmar, J Kreutzfeldt, K Krieger, P Krizka, K Kroeninger, K Kroha, H Kroll, J Kroseberg, J Krstic, J Kruchonak, U Kruger, H Krumnack, N Krumshteyn, ZV Kruse, A Kruse, MC Kruskal, M Kubota, T Kucuk, H Kudayb, S Kuehn, S Kugel, A Kuger, F Kuhl, A Kuhl, T Kukhtin, V Kulchitsky, Y Kuleshov, S Kuna, M Kunigo, T Kupco, A Kurashige, H Kurochkin, YA Kurumida, R Kus, V Kuwertz, ES Kuze, M Kunigo, T Kupco, A Kurashige, H Kurochkin, YA Kurumida, R Kus, V Kuwertz, ES Kuze, M Kvita, J Kwan, T Kyriazopoulos, D La Rosa, A Navarro, JLL La Rotonda, L Lacasta, C Lacava, F Lacey, J Lacker, H Lacour, D Lacuesta, VR Ladygin, E Lafaye, R Laforge, B Lagouri, T Lai, S Lambourne, L Lammers, S Lampen, CL Lampl, W Lancon, E Landgraf, U Landon, MPJ Lang, VS Lankford, AJ Lanni, F Lantzsch, K Laplace, S Lapoire, C Laporte, JF Lari, T Manghi, FL Lassnig, M Laurelli, P Lavrijsen, W Law, AT Laycock, P Le Dortz, O Le Guirriec, E Le Menedeu, E LeCompte, T Ledroit-Guillon, F Lee, CA Lee, SC Lee, L Lefebvre, G Lefebvre, M Legger, F Leggett, C Lehan, A Miotto, GL Lei, X Leight, WA Leisos, A Leister, AG Leite, MAL Leitner, R Lellouch, D Lemmer, B Leney, KJC Lenz, T Lenzen, G Lenzi, B Leone, R Leone, S Leonidopoulos, C Leontsinis, S Leroy, C Lester, CG Levchenko, M Leveque, J Levin, D Levinson, LJ Levy, M Lewis, A Leyko, AM Leyton, M Li, B Li, B Li, H Li, HL Li, L Li, L Li, S Li, Y Liang, Z Liao, H Liberti, B Lichard, P Lie, K Liebal, J Liebig, W Limbach, C Limosani, A Lin, SC Lin, TH Linde, F Lindquist, BE Linnemann, JT Lipeles, E Lipniacka, A Lisovyi, M Liss, TM Lissauer, D Lister, A Litke, AM Liu, B Liu, D Liu, J Liu, JB Liu, K Liu, L Liu, M Liu, M Liu, Y Livan, M Lleres, A Merino, JL Lloyd, SL LoSterzo, F Lobodzinska, E Loch, P Lockman, WS Loebinger, FK Loevschall-Jensen, AE Loginov, A Lohse, T Lohwasser, K Lokajicek, M Long, BA Long, JD Long, RE Looper, KA Lopes, L Mateos, DL Paredes, BL Paz, IL Lorenz, J Martinez, NL Losada, M Loscutoff, P Losel, PJ Lou, X Lounis, A Love, J Love, PA Lu, N Lubatti, HJ Luci, C Lucotte, A Luehring, F Lukas, W Luminari, L Lundberg, O Lund-Jensen, B Lungwitz, M Lynn, D Lysak, R Lytken, E Ma, H Ma, LL Maccarrone, G Macchiolo, A Miguens, JM Macina, D Madaffari, D Madar, R Maddocks, HJ Mader, WF Madsen, A Maeno, T Maevskiy, A Magradze, E Mahboubi, K Mahlstedt, J Mahmoud, S Maiani, C Maidantchik, C Maier, AA Maioa, A Majewski, S Makida, Y Makovec, N Malaescu, B Malecki, P Maleev, VP Malek, F Mallik, U Malon, D Malone, C Maltezos, S Malyshev, VM Malyukov, S Mamuzic, J Mandelli, B Mandelli, L Mandic, I Mandrysch, R Maneira, J Manfredini, A de Andrade, LM Ramosb, JM Mann, A Manning, PM Manousakis-Katsikakis, A Mansoulie, B Mantifel, R Mantoani, M Mapelli, L March, L Marchiori, G Marcisovsky, M Marino, CP Marjanovic, M Marroquim, F Marsden, SP Marshall, Z Marti, LF Marti-Garcia, S Martin, B Martin, TA Martin, VJ dit Latour, BM Martinez, H Martinez, M Martin-Haugh, S Martyniuk, AC Marx, M Marzano, F Marzin, A Masetti, L Mashimo, T Mashinistov, R Masik, J Maslennikov, AL Massa, I Massa, L Massol, N Mastrandrea, P Mastroberardino, A Masubuchi, T Matig, P Mattmann, J Maurer, J Maxfield, SJ Maximov, DA Mazini, R Mazza, SM Mazzaferro, L Mc Goldrick, G Mckee, SP McCarn, A McCarthy, RL McCarthy, TG McCubbin, NA McFarlane, KW Mcfayden, JA Mchedlidze, G McMahon, SJ McPherson, RA Mechnich, J Medinnis, M Meehan, S Mehlhase, S Mehta, A Meier, K Meineck, C Meirose, B Melachrinos, C Garcia, BRM Meloni, F Mengarelli, A Menke, S Meoni, E Mercurio, KM Mergelmeyer, S Meric, N Mermod, P Merola, L Meroni, C Merritt, FS Merritt, H Messina, A Metcalfe, J Mete, AS Meyer, C Meyer, C Meyer, JP Meyer, J Middleton, RP Migas, S Miglioranzi, S Mijovic, L Mikenberg, G Mikestikova, M Mikuz, M Milic, A Miller, DW Mills, C Milov, A Milstead, DA Minaenko, AA Minami, Y Minashvili, IA Mincer, AI Mindur, B Mineev, M Ming, Y Mir, LM Mirabelli, G Mitani, T Mitrevski, J Mitsou, VA Miucci, A Miyagawa, PS Mjornmark, JU Moa, T Mochizuki, K Mohapatra, S Mohr, W Molander, S Moles-Valls, R Monig, K Monini, C Monk, J Monnier, E Berlingen, JM Monticelli, F Monzani, S Moore, RW Morange, N Moreno, D Llacer, MM Morettini, P Morgenstern, M Morii, M Morisbak, V Moritz, S Morley, AK Mornacchi, G Morris, JD Morton, A Morvaj, L Moser, HG Mosidze, M Moss, J Motohashi, K Mount, R Mountricha, E Mouraviev, SV Moyse, EJW Muanza, S Mudd, RD Mueller, F Mueller, J Mueller, K Mueller, RSP Mueller, T Muenstermann, D Mullen, P Munwes, Y Quijada, JAM Murray, WJ Musheghyan, H Musto, E Myagkov, AG Myska, M Nackenhorst, O Nadal, J Nagai, K Nagai, R Nagai, Y Nagano, K Nagarkar, A Nagasaka, Y Nagata, K Nagel, M Nagy, E Nairz, AM Nakahama, Y Nakamura, K Nakamura, T Nakano, I Namasivayam, H Nanava, G Garcia, RFN Narayan, R Nattermann, T Naumann, T Navarro, G Nayyar, R Neal, HA Nechaeva, PY Neep, TJ Nef, PD Negri, A Negrini, M Nektarijevic, S Nellist, C Nelson, A Nemecek, S Nemethy, P Nepomuceno, AA Nessi, M Neubauer, MS Neumann, M Neves, RM Nevski, P Newman, PR Nguyen, DH Nickerson, RB Nicolaidou, R Nicquevert, B Nielsen, J Nikiforou, N Nikiforov, A Nikolaenko, V Nikolic-Audit, I Nikolopoulos, K Nilsson, P Ninomiya, Y Nisati, A Nisius, R Nobe, T Nomachi, M Nomidis, I Norberg, S Nordberg, M Novgorodova, O Nowak, S Nozaki, M Nozka, L Ntekas, K Hanninger, GN Nunnemann, T Nurse, E Nuti, F O'Brien, BJ O'grady, F O'Neil, DC O'Shea, V Oakham, FG Oberlack, H Obermann, T Ocariz, J Ochi, A Ochoa, I Oda, S Odaka, S Ogren, H Oh, A Oh, SH Ohm, CC Ohman, H Oide, H Okamura, W Okawa, H Okumura, Y Okuyama, T Olariu, A Olchevski, AG Pino, SAO Damazio, DO Garcia, EO Olszewski, A Olszowska, J Onofre, A Onyisi, PUE Oram, CJ Oreglia, MJ Oren, Y Orestano, D Orlando, N Barrera, CO Orr, RS Osculati, B Ospanov, R Garzon, GOY Otono, H Ouchrif, M Ouellette, EA Ould-Saada, F Ouraou, A Oussoren, KP Ouyang, Q Ovcharova, A Owen, M Owen, RE Ozcan, VE Ozturk, N Pachal, K Pages, AP Aranda, CP Pagacova, M Griso, SP Paganis, E Pahl, C Paige, F Pais, P Pajchel, K Palacino, G Palestini, S Palka, M Pallin, D Palma, A Pan, YB Panagiotopoulou, E Pandini, CE Vazquez, JGP Pani, P Panikashvili, N Panitkin, S Paolozzi, L Papadopoulou, TD Papageorgiou, K Paramonov, A Hernandez, DP Parker, MA Parker, KA Parodi, F Parsons, JA Parzefall, U Pasqualucci, E Passaggio, S Pastore, F Pastore, F Pasztor, G Pataraia, S Patel, ND Pater, JR Pauly, T Pearce, J Pedersen, LE Pedersen, M Lopez, SP Pedro, R Peleganchuk, SV Pelikan, D Peng, H Penning, B Penwell, J Perepelitsa, DV Codina, EP Garcia-Estan, MTP Perini, L Pernegger, H Perrella, S Peschke, R Peshekhonov, VD Peters, K Peters, RFY Petersen, BA Petersen, TC Petit, E Petridis, A Petridou, C Petrolo, E Petrucci, F Pettersson, NE Pezoa, R Phillips, PW Piacquadio, G Pianori, E Picazio, A Piccaro, E Piccinini, M Pickering, MA Piegaia, R Pignotti, DT Pilcher, JE Pilkington, AD Pina, J Pinamonti, M Pinfold, JL Pingel, A Pinto, B Pires, S Pitt, M Pizio, C Plazak, L Pleier, MA Pleskot, V Plotnikova, E Plucinski, P Pluth, D Poettgen, R Poggioli, L Pohl, D Polesello, G Policicchio, A Polifka, R Polini, A Pollard, CS Polychronakos, V Pommes, K Pontecorvo, L Pope, BG Popeneciu, GA Popovic, DS Poppleton, A Pospisil, S Potamianos, K Potrap, IN Potter, CJ Potter, CT Poulard, G Poveda, J Pozdnyakov, V Pralavorio, P Pranko, A Prasad, S Prell, S Price, D Price, J Price, LE Primavera, M Prince, S Proissl, M Prokofiev, K Prokoshin, F Protopapadaki, E Protopopescu, S Proudfoot, J Przybycien, M Ptacek, E Puddu, D Pueschel, E Puldon, D Purohit, M Puzo, P Qian, J Qin, G Qin, Y Quadt, A Quarrie, DR Quayle, WB Queitsch-Maitland, M Quilty, D Qureshi, A Radeka, V Radescu, V Radhakrishnan, SK Radloff, P Rados, P Ragusa, F Rahal, G Rajagopalan, S Rammensee, M Rangel-Smith, C Rauscher, F Rave, S Rave, TC Ravenscroft, T Raymond, M Read, AL Readioff, NP Rebuzzi, DM Redelbach, A Redlinger, G Reece, R Reeves, K Rehnisch, L Reisin, H Relich, M Rembser, C Ren, H Renaud, A Rescigno, M Resconi, S Rezanova, OL Reznicek, P Rezvani, R Richter, R Richter-Was, E Ridel, M Rieck, P Riegel, CJ Rieger, J Rijssenbeek, M Rimoldi, A Rinaldi, L Riottos, AW Ritsch, E Riu, I Rizatdinova, F Rizvi, E Robertson, SH Robichaud-Veronneau, A Robinson, D Robinson, JEM Robson, A Roda, C Rodrigues, L Roe, S Rohne, O Rolli, S Romaniouk, A Romano, M Saez, SMR Adam, ER Rompotis, N Ronzani, M Roos, L Ros, E Rosati, S Rosbach, K Rose, P Rosendahl, PL Rosenthal, O Rossetti, V Rossi, E Rossi, LP Rosten, R Rotaru, M Roth, I Rothberg, J Rousseau, D Royon, CR Rozanov, A Rozen, Y Ruan, X Rubbo, F Rubinskiy, I Rud, VI Rudolph, C Rudolph, MS Ruhr, F Ruiz-Martinez, A Rurikova, Z Rusakovich, NA Ruschke, A Russell, HL Rutherfoord, JP Ruthmann, N Ryabov, YF Rybar, M Rybkin, G Ryder, NC Saavedra, AF Sabato, G Sacerdoti, S Saddique, A Sadrozinski, HFW Sadykov, R Tehrani, FS Saimpert, M Sakamoto, H Sakurai, Y Salamanna, G Salamon, A Saleem, M Salek, D De Bruin, PHS Salihagic, D Salnikov, A Salt, J Salvatore, D Salvatore, F Salvucci, A Salzburger, A Sampsonidis, D Sanchez, A Sanchez, J Martinez, VS Sandaker, H Sandbach, RL Sander, HG Sanders, MP Sandhoff, M Sandoval, C Sandstroem, R Sankey, DPC Sansoni, A Santoni, C Santonico, R Santos, H Castillo, IS Sapp, K Sapronov, A Saraiva, JG Sarrazin, B Sasaki, O Sasaki, Y Sato, K Sauvage, G Sauvan, E Savage, G Savard, P Sawyer, C Sawyer, L Saxon, DH Saxon, J Sbarra, C Sbrizzi, A Scanlon, T Scannicchio, DA Scarcella, M Scarfone, V Schaarschmidt, J Schacht, P Schaefer, D Schaefer, R Schaeffer, J Schaepe, S Schaetzel, S Schafer, U Schaffer, AC Schaile, D Schamberger, RD Scharf, V Schegelsky, VA Scheirich, D Schernau, M Schiavi, C Schillo, C Schioppa, M Schlenker, S Schmidt, E Schmieden, K Schmitt, C Schmitt, S Schneider, B Schnellbach, YJ Schnoor, U Schoeffel, L Schoening, A Schoenrock, BD Schorlemmer, ALS Schott, M Schouten, D Schovancova, J Schramm, S Schreyer, M Schroeder, C Schuh, N Schultens, MJ Schultz-Coulon, HC Schulz, H Schumacher, M Schumm, BA Schune, P Schwanenberger, C Schwartzman, A Schwarz, TA Schwegler, P Schwemling, P Schwienhorst, R Schwindling, J Schwindt, T Schwoerer, M Sciacca, FG Scifo, E Sciolla, G Scuri, F Scutti, F Searcy, J Sedov, G Sedykh, E Seema, P Seidel, SC Seiden, A Seifert, F Seixas, JM Sekhniaidze, G Sekula, SJ Selbach, KE Seliverstov, DM Semprini-Cesari, N Serfon, C Serin, L Serkin, L Serre, T Seuster, R Severini, H Sfiligoj, T Sforza, F Sfyrla, A Shabalina, E Shamim, M Shan, LY Shang, R Shank, JT Shapiro, M Shatalov, PB Shaw, K Shcherbakova, A Shehu, CY Sherwood, P Shi, L Shimizu, S Shimmin, CO Shimojima, M Shiyakova, M Shmeleva, A Saadi, DS Shochet, MJ Shojaii, S Shrestha, S Shulga, E Shupe, MA Shushkevich, S Sicho, P Sidiropoulou, O Sidorov, D Sidoti, A Siegert, F Sijacki, D Silva, J Silver, Y Silverstein, D Silverstein, SB Simak, V Simard, O Simic, L Simion, S Simioni, E Simmons, B Simon, D Simoniello, R Sinervo, P Sinev, NB Siragusa, G Sircar, A Sisakyan, AN Sivoklokov, SY Sjolin, J Sjursen, TB Skinner, MB Skottowe, HP Skubic, P Slater, M Slavicek, T Slawinska, M Sliwa, K Smakhtin, V Smart, BH Smestad, L Smirnov, SY Smirnov, Y Smirnova, LN Smirnova, O Smith, KM Smith, MNK Smizanska, M Smolek, K Snesarev, AA Snidero, G Snyder, S Sobie, R Socher, F Soffer, A Soh, DA Solans, CA Solar, M Solc, J Soldatov, EY Soldevila, U Solodkov, AA Soloshenko, A Solovyanov, OV Solovyev, V Sommer, P Song, HY Soni, N Sood, A Sopczak, A Sopko, B Sopko, V Sorin, V Sosa, D Sosebee, M Sotiropoulou, CL Soualah, R Soueid, P Soukharev, AM South, D Spagnolo, S Spano, F Spearman, WR Spettel, F Spighi, R Spigo, G Spiller, LA Spousta, M Spreitzer, T Denis, RDS Staerz, S Stahlman, J Stamen, R Stamm, S Stanecka, E Stanescu, C Stanescu-Bellu, M Stanitzki, MM Stapnes, S Starchenko, EA Stark, J Staroba, P Starovoitov, P Staszewski, R Stavina, P Steinberg, P Stelzer, B Stelzer, HJ Stelzer-Chilton, O Stenzel, H Stern, S Stewart, GA Stillings, JA Stockton, MC Stoebe, M Stoicea, G Stolte, P Stonjek, S Stradling, AR Straessner, A Stramaglia, ME Strandberg, J Strandberg, S Strandlie, A Strauss, E Strauss, M Strizenec, P Strohmer, R Strom, DM Stroynowski, R Strubig, A Stucci, SA Stugu, B Styles, NA Su, D Su, J Subramaniam, R Succurro, A Sugaya, Y Suhr, C Suk, M Sulin, VV Sultansoy, S Sumida, T Sun, S Sun, X Sundermann, JE Suruliz, K Susinno, G Sutton, MR Suzuki, Y Svatos, M Swedish, S Swiatlowski, M Sykora, I Sykora, T Ta, D Taccini, C Tackmann, K Taenzer, J Taffard, A Tafirout, R Taiblum, N Takai, H Takashima, R Takeda, H Takeshita, T Takubo, Y Talby, M Talyshev, AA Tam, JYC Tan, KG Tanaka, J Tanaka, R Tanaka, S Tanaka, S Tanasijczuk, AJ Tannenwald, BB Tannoury, N Tapprogge, S Tarem, S Tarrade, F Tartarelli, GF Tas, P Tasevsky, M Tashiro, T Tassi, E Delgado, AT Tayalati, Y Taylor, FE Taylor, GN Taylor, W Teischinger, FA Castanheira, MTD Teixeira-Dias, P Temming, KK TenKate, H Teng, PK Teoh, JJ Tepel, F Terada, S Terashi, K Terron, J Terzo, S Testa, M Teuscher, RJ Therhaag, J Theveneaux-Pelzer, T Thomas, JP Thomas-Wilsker, J Thompson, EN Thompson, PD Thompson, RJ Thompson, AS Thomsen, LA Thomson, E Thomson, M Thong, WM Thun, RP Tian, F Tibbetts, MJ Torres, RET Tikhomirov, VO Tikhonov, YA Timoshenko, S Tiouchichine, E Tipton, P Tisserant, S Todorov, T Todorova-Nova, S Tojo, J Tokar, S Tokushuku, K Tollefson, K Tolley, E Tomlinson, L Tomoto, M Tompkins, L Toms, K Topilin, ND Torrence, E Torres, H Pastor, ET Toth, J Touchard, F Tovey, DR Tran, HL Trefzger, T Tremblet, L Tricoli, A Trigger, IM Trincaz-Duvoid, S Tripiana, MF Trischuk, W Trocme, B Troncon, C Trottier-McDonald, M Trovatelli, M True, P Trzebinski, M Trzupek, A Tsarouchas, C Tseng, JCL Tsiareshka, PV Tsionou, D Tsipolitis, G Tsirintanis, N Tsiskaridze, S Tsiskaridze, V Tskhadadze, EG Tsukerman, II Tsulaia, V Tsuno, S Tsybychev, D Tudorache, A Tudorache, V Tuna, AN Tupputi, SA Turchikhin, S Turecek, D Turra, R Turvey, AJ Tuts, PM Tykhonov, A Tylmad, M Tyndel, M Ueda, I Ueno, R Ughetto, M Ugland, M Uhlenbrock, M Ukegawa, F Unal, G Undrus, A Unel, G Ungaro, FC Unno, Y Unverdorben, C Urban, J Urquijo, P Urrejola, P Usai, G Usanova, A Vacavant, L Vacek, V Vachon, B Valencic, N Valentinetti, S Valero, A Valery, L Valkar, S Gallego, EV Vallecorsa, S Ferrer, JAV Van den Wollenberg, W Van der Deijl, PC van der Geer, R van der Graaf, H Van der Leeuw, R van Eldik, N van Gemmeren, P Van Nieuwkoop, J van Vulpen, I van Woerden, MC Vanadia, M Vandelli, W Vanguri, R Vaniachine, A Vannucci, F Vardanyan, G Vari, R Varnes, EW Varol, T Varouchas, D Vartapetian, A Varvell, KE Vazeille, F Schroeder, TV Veatch, J Veloso, F Velz, T Veneziano, S Ventura, A Ventura, D Venturi, M Venturi, N Venturini, A Vercesi, V Verducci, M Verkerke, W Vermeulen, JC Vest, A Vetterli, MC Viazlo, O Vichou, I Vickey, T Boeriu, OEV Viehhauser, GHA Viel, S Vigne, R Villa, M Perez, MV Vilucchi, E Vincter, MG Vinogradov, VB Virzi, J Vivarelli, I Vaque, FV Vlachos, S Vladoiu, D Vlasak, M Vogel, M Vokac, P Volpi, G Volpi, M von der Schmitt, H von Radziewski, H von Toerne, E Vorobel, V Vorobev, K Vos, M Voss, R Vossebeld, JH Vranjes, N Milosavljevic, MV Vrba, V Vreeswijk, M Vuillermet, R Vukotic, I Vykydal, Z Wagner, P Wagner, W Wahlberg, H Wakabayashi, J Wakabayashi, J Walder, J Walker, R Walkowiak, W Wang, C Wang, F Wang, H Wang, H Wang, J Wang, J Wang, K Wang, R Wang, SM Wang, T Wang, X Wanotayaroj, C Warburton, A Ward, CP Wardrope, DR Warsinsky, M Washbrook, A Wasicki, C Watkins, PM Watson, AT Watson, IJ Watson, MF Watts, G Watts, S Waugh, BM Webb, S Weber, MS Weber, SW Webster, JS Weidberg, AR Weinert, B Weingarten, J Weiser, C Weits, H Wells, PS Wenaus, T Wendland, D Wengler, T Wenig, S Wermes, N Werner, M Werner, P Wessels, M Wetter, J Whalen, K Wharton, AM White, A White, MJ White, R White, S Whiteson, D Wicke, D Wickens, FJ Wiedenmann, W Wielers, M Wienemann, P Wiglesworth, C Wiik-Fuchs, LAM Wildauer, A Wilkens, HG Williams, HH Williams, S Willis, C Willocq, S Wilson, A Wilson, JA Wingerter-Seez, I Winklmeier, F Winter, BT Wittgen, M Wittkowski, J Wollstadt, SJ Wolter, MW Wolters, H Wosiek, BK Wotschack, J Woudstra, MJ Wozniak, KW Wu, M Wu, SL Wu, X Wu, Y Wyatt, TR Wynne, BM Xella, S Xu, D Xu, L Yabsley, B Yacoob, S Yakabe, R Yamada, M Yamaguchi, Y Yamamoto, A Yamamoto, S Yamanaka, T Yamauchi, K Yamazaki, Y Yan, Z Yang, H Yang, H Yang, Y Yanush, S Yao, L Yao, WM Yasu, Y Yatsenko, E Wong, KHY Ye, J Ye, S Yeletskikh, I Yen, AL Yildirim, E Yorita, K Yoshida, R Yoshihara, K Young, C Young, CJS Youssef, S Yu, DR Yu, J Yu, JM Yu, J Yuan, L Yurkewicz, A Yusuff, I Zabinski, B Zaidan, R Zaitsev, AM Zaman, A Zambito, S Zanello, L Zanzi, D Zeitnitz, C Zeman, M Zemla, A Zengel, K Zenin, O Zenis, T Zerwas, D Zhang, D Zhang, F Zhang, J Zhang, L Zhang, R Zhang, X Zhang, Z Zhao, X Zhao, Y Zhao, Z Zhemchugov, A Zhong, J Zhou, B Zhou, C Zhou, L Zhou, L Zhou, N Zhu, CG Zhu, H Zhu, J Zhu, Y Zhuang, X Zhukov, K Zibell, A Zieminska, D Zimine, NI Zimmermann, C Zimmermann, R Zimmermann, S Zinonos, Z Zinser, M Ziolkowski, M Zivkovic, L Zobernig, G Zoccoli, A Zur Nedden, M Zurzolo, G Zwalinski, L AF Aad, G. Abbott, B. Abdallah, J. Khalek, S. Abdel Abdinov, O. Aben, R. Abi, B. Abolins, M. AbouZeid, O. S. Abramowicz, H. Abreu, H. Abreu, R. Abulaiti, Y. Acharya, B. S. Adamczyk, L. Adams, D. L. Adelman, J. Adomeit, S. Adye, T. Agatonovic-Jovin, T. Aguilar-Saavedra, J. A. Agustoni, M. Ahlen, S. P. Ahmadov, F. Aielli, G. Akerstedt, H. Akesson, T. P. Akimoto, G. Akimov, A. V. Alberghi, G. L. Albert, J. Albrand, S. Verzini, M. J. Alconada Aleksa, M. Aleksandrov, I. N. Alexa, C. Alexander, G. Alexandre, G. Alexopoulos, T. Alhroob, M. Alimonti, G. Alio, L. Alison, J. Allbrooke, B. M. M. Allison, L. J. Allport, P. P. Aloisio, A. Alonso, A. Alonso, F. Alpigiani, C. Altheimer, A. Gonzalez, B. Alvarez Alviggi, M. G. Amako, K. Coutinho, Y. Amaral Amelung, C. Amidei, D. Dos Santos, S. P. Amor Amorim, A. Amoroso, S. Amram, N. Amundsen, G. Anastopoulos, C. Ancu, L. S. Andari, N. Andeen, T. Anders, C. F. Anders, G. Anderson, K. J. Andreazza, A. Andrei, V. Anduaga, X. S. Angelidakis, S. Angelozzi, I. Anger, P. Angerami, A. Anghinolfi, F. Anisenkov, A. V. Anjos, N. Annovi, A. Antonelli, M. Antonov, A. Antos, J. Anulli, F. Aoki, M. Bella, L. Aperio Arabidze, G. Arai, Y. Araque, J. P. Arce, A. T. H. Arduh, F. A. Arguin, J-F. Argyropoulos, S. Arik, M. Armbruster, A. J. Arnaez, O. Arnal, V. Arnold, H. Arratia, M. Arslan, O. Artamonov, A. Artoni, G. Asai, S. Asbah, N. Ashkenazi, A. Asman, B. Asquith, L. Assamagan, K. Astalosa, R. Atkinson, M. Atlay, N. B. Auerbach, B. Augsten, K. Aurousseau, M. Avolio, G. Axen, B. Ayoub, M. K. Azuelos, G. Baak, M. A. Baas, A. E. Bacci, C. Bachacou, H. Bachas, K. Backes, M. Backhaus, M. Bagiacchi, P. Bagnaia, P. Bai, Y. Bain, T. Baines, J. T. Baker, O. K. Balek, P. Balestri, T. Balli, F. Banas, E. Banerjee, Sw. Bannoura, A. A. E. Bansil, H. S. Barak, L. Baranov, S. P. Barberio, E. L. Barberis, D. Barbero, M. Barillari, T. Barisonzi, M. Barklow, T. Barlow, N. Barnes, S. L. Barnett, B. M. Barnett, R. M. Barnovska, Z. Baroncelli, A. Barone, G. Barr, A. J. Barreiro, F. da Costa, J. Barreiro Guimaraes Bartoldus, R. Barton, A. E. Bartos, P. Bassalat, A. Basye, A. Bates, R. L. Batista, S. J. Batley, J. R. Battaglia, M. Bauce, M. Bauer, F. Bawa, H. S. Beacham, J. B. Beattie, M. D. Beau, T. Beauchemin, P. H. Beccherle, R. Bechtle, P. Beck, H. P. Becker, K. Becker, S. Beckingham, M. Becot, C. Beddall, A. J. Beddall, A. Bednyakov, V. A. Bee, C. P. Beemster, L. J. Beermann, T. A. Begel, M. Behr, K. Belanger-Champagne, C. Bell, P. J. Bell, W. H. Bella, G. Bellagamba, L. Bellerive, A. Bellomo, M. Belotskiy, K. Beltramello, O. Benary, O. Benchekroun, D. Bender, M. Bendtz, K. Benekos, N. Benhammou, Y. Noccioli, E. Benhar Garcia, J. A. Benitez Benjamin, D. P. Bensinger, J. R. Bentvelsen, S. Beresford, L. Beretta, M. Berge, D. Kuutmann, E. Bergeaas Berger, N. Berghaus, F. Beringer, J. Bernard, C. Bernard, N. R. Bernius, C. Bernlochner, F. U. Berry, T. Berta, P. Bertella, C. Bertoli, G. Bertolucci, F. Bertsche, C. Bertsche, D. Besana, M. I. Besjes, G. J. Bylund, O. Bessidskaia Bessner, M. Besson, N. Betancourt, C. Bethke, S. Bevan, A. J. Bhimji, W. Bianchi, R. M. Bianchini, L. Bianco, M. Biebel, O. Bieniek, S. P. Biglietti, M. De Mendizabal, J. Bilbao Bilokon, H. Bindi, M. Binet, S. Bingul, A. Bini, C. Black, C. W. Black, J. E. Black, K. M. Blackburn, D. Blair, R. E. Blanchard, J-B. Blanco, J. E. Blazek, T. Bloch, I. Blocker, C. Blum, W. Blumenschein, U. Bobbink, G. J. Bobrovnikov, V. S. Bocchetta, S. S. Bocci, A. Bock, C. Boddy, C. R. Boehler, M. Bogaerts, J. A. Bogdanchikov, A. G. Bohm, C. Boisvert, V. Bold, T. Boldea, V. Boldyrev, A. S. Bomben, M. Bona, M. Boonekamp, M. Borisov, A. Borissov, G. Borroni, S. Bortfeldt, J. Bortolotto, V. Bos, K. Boscherini, D. Bosman, M. Boterenbrood, H. Boudreau, J. Bouffard, J. Bouhova-Thacker, E. V. Boumediene, D. Bourdarios, C. Bousson, N. Boutouil, S. Boveia, A. Boyd, J. Boyko, I. R. Bozic, I. Bracinik, J. Brandt, A. Brandt, G. Brandt, O. Bratzler, U. Brau, B. Brau, J. E. Braun, H. M. Brazzale, S. F. Brendlinger, K. Brennan, A. J. Brenner, L. Brenner, R. Bressler, S. Bristow, K. Bristow, T. M. Britton, D. Brochu, F. M. Brock, I. Brock, R. Bronner, J. Brooijmans, G. Brooks, T. Brooks, W. K. Brosamer, J. Brost, E. Brown, J. de Renstrom, P. A. Bruckman Bruncko, D. Bruneliere, R. Bruni, A. Bruni, G. Bruschi, M. Bryngemark, L. Buanes, T. Buat, Q. Bucci, F. Buchholz, P. Buckley, A. G. Buda, S. I. Budagov, I. A. Buehrer, F. Bugge, L. Bugge, M. K. Bulekov, O. Burckhart, H. Burdin, S. Burghgrave, B. Burke, S. Burmeister, I. Busato, E. Buescher, D. Buescher, V. Bussey, P. Buszello, C. P. Butler, J. M. Butt, A. I. Buttar, C. M. Butterworth, J. M. Butti, P. Buttinger, W. Buzatu, A. Urban, S. Cabrera Caforio, D. Cakir, O. Calafiura, P. Calandri, A. Calderini, G. Calfayan, P. Caloba, L. P. Calvet, D. Calvet, S. Toro, R. Camacho Camarda, S. Cameron, D. Caminada, L. M. Armadans, R. Caminal Campana, S. Campanelli, M. Campoverde, A. Canale, V. Canepa, A. Bret, M. Cano Cantero, J. Cantrill, R. Cao, T. Garrido, M. D. M. Capeans Caprini, I. Caprini, M. Capua, M. Caputo, R. Cardarelli, R. Carli, T. Carlino, G. Carminati, L. Caron, S. Carquin, E. Carrillo-Montoya, D. Carter, J. R. Carvalho, J. Casadei, D. Casado, M. P. Casolino, M. Castaneda-Miranda, E. Castelli, A. Gimenez, V. Castillo Castro, N. F. Catastini, P. Catinaccio, A. Catmore, J. R. Cattai, A. Cattani, G. Caudron, J. Cavaliere, V. Cavalli, D. Cavalli-Sforza, M. Cavasinni, V. Ceradini, F. Cerio, B. C. Cerny, K. Cerqueira, A. S. Cerri, A. Cerrito, L. Cerutti, F. Cerv, M. Cervelli, A. Cetin, S. A. Chafaq, A. Chakraborty, D. Chalupkova, I. Chang, P. Chapleau, B. Chapman, J. D. Charfeddine, D. Charlton, D. G. Chau, C. C. Barajas, C. A. Chavez Cheatham, S. Chegwidden, A. Chekanov, S. Chekulaev, S. V. Chelkov, G. A. Chelstowska, M. A. Chen, C. Chen, H. Chen, K. Chen, L. Chen, S. Chen, X. Chen, Y. Cheng, H. C. Cheng, Y. Cheplakov, A. Cheremushkina, E. El Moursli, R. Cherkaoui Chernyatin, V. Cheu, E. Chevalier, L. Chiarella, V. Childers, J. T. Chilingarov, A. Chiodini, G. Chisholm, A. S. Chislett, R. T. Chitan, A. Chizhov, M. V. Chouridou, S. Chow, B. K. B. Chromek-Burckhart, D. Chu, M. L. Chudoba, J. Chwastowski, J. J. Chytka, L. Ciapetti, G. Ciftci, A. K. Cinca, D. Chu, M. L. Chudoba, J. Chwastowski, J. J. Chytka, L. Ciapetti, G. Ciftci, A. K. Cinca, D. Cindro, V. Ciocio, A. Citron, Z. H. Ciubancan, M. Clark, A. Clark, P. J. Clarke, R. N. Cleland, W. Clement, C. Coadou, Y. Cobal, M. Coccaro, A. Cochran, J. Coffey, L. Cogan, J. G. Cole, B. Cole, S. Colijn, A. P. Collot, J. Colombo, T. Compostella, G. Muino, P. Conde Coniavitis, E. Connell, S. H. Connelly, I. A. Consonni, S. M. Consorti, V. Constantinescu, S. Conta, C. Conti, G. Conventi, F. Cooke, M. Cooper, B. D. Cooper-Sarkar, A. M. Copic, K. Cornelissen, T. Corradi, M. Corriveau, F. Corso-Radu, A. Cortes-Gonzalez, A. Cortiana, G. Costa, G. Costa, M. J. Costanzo, D. Cote, D. Cottin, G. Cowan, G. Cox, B. E. Cranmer, K. Cree, G. Crepe-Renaudin, S. Crescioli, F. Cribbs, W. A. Ortuzar, M. Crispin Cristinziani, M. Croft, V. Crosetti, G. Donszelmann, T. Cuhadar Cummings, J. Curatolo, M. Cuthbert, C. Czirr, H. Czodrowski, P. D'Auria, S. D'Onofrio, M. de Sousa, M. J. Da Cunha Sargedas Da Via, C. Dabrowski, W. Dafinca, A. Dai, T. Dale, O. Dallaire, F. Dallapiccola, C. Dam, M. Dandoy, J. R. Daniells, A. C. Danninger, M. Hoffmann, M. Dano Dao, V. Darbo, G. Darmora, S. Dassoulas, J. Dattagupta, A. Davey, W. David, C. Davidek, T. Davies, E. Davies, M. Davignon, O. Davison, P. Davygora, Y. Dawe, E. Dawson, I. Daya-Ishmukhametova, R. K. De, K. De Asmundis, R. De Castro, S. De Cecco, S. De Groot, N. de Jong, P. De la Torre, H. De Lorenzi, F. De Nooij, L. De Pedis, D. De Salvo, A. De Sanctis, U. De Santo, A. De Simone, A. De Regie, J. B. De Vivie Dearnaley, W. J. Debbe, R. Debenedetti, C. Dedovich, D. V. Deigaard, I. Del Peso, J. Del Prete, T. Delgove, D. Deliot, F. Delitzsch, C. M. Deliyergiyev, M. Dell'Acqua, A. Dell'Asta, L. Dell'Orso, M. Della Pietra, M. della Volpe, D. Delmastro, M. Delsart, P. A. Deluca, C. DeMarco, D. A. Demers, S. Demichev, M. Demilly, A. Denisov, S. P. Derendarz, D. Derkaoui, J. E. Derue, F. Dervan, P. Desch, K. Deterre, C. Deviveiros, P. O. Dewhurst, A. Dhaliwal, S. Di Ciaccio, A. Di Ciaccio, L. Di Domenico, A. Di Donato, C. Di Girolamo, A. Di Girolamo, B. Di Mattia, A. Di Micco, B. Di Nardo, R. Di Simone, A. Di Sipio, R. Di Valentino, D. Diaconu, C. Diamond, M. Dias, F. A. Diaz, M. A. Diehl, E. B. Dietrich, J. Dietzsch, T. A. Diglio, S. Dimitrievska, A. Dingfelder, J. Dittus, F. Djama, F. Djobava, T. Djuvsland, J. I. do Vale, M. A. B. Dobos, D. Dobre, M. Doglioni, C. Doherty, T. Dohmae, T. Dolejsi, J. Dolezal, Z. Dolgoshein, B. A. Donadelli, M. Donati, S. Dondero, P. Donini, J. Dopke, J. Doria, A. Dova, M. T. Doyle, A. T. Dris, M. Dubreuil, E. Duchovni, E. Duckeck, G. Ducu, O. A. Duda, D. Dudarev, A. Duflot, L. Duguid, L. Duerssen, M. Dunford, M. Yildiza, H. Duran Dueren, M. Durglishvilib, A. Duschinger, D. Dwuznik, M. Dyndal, M. Ecker, K. M. Edson, W. Edwards, N. C. Ehrenfeld, W. Eifert, T. Eigen, G. Einsweiler, K. Ekelof, T. El Kacimi, M. Ellert, M. Elles, S. Ellinghaus, F. Elliot, A. A. Ellis, N. Elmsheuser, J. Elsing, M. Emeliyanov, D. Enari, Y. Endner, O. C. Endo, M. Engelmann, R. Erdmann, J. Ereditato, A. Eriksson, D. Ernis, G. Ernst, J. Ernst, M. Errede, S. Ertel, E. Escalier, M. Esch, H. Escobar, C. Esposito, B. Etienvre, A. I. Etzion, E. Evans, H. Ezhilov, A. Fabbri, L. Facini, G. Fakhrutdinov, R. M. Falciano, S. Falla, R. J. Faltova, J. Fang, Y. Fanti, M. Farbin, A. Farilla, A. Farooque, T. Farrell, S. Farrington, S. M. Farthouat, P. Fassi, F. Fassnacht, P. Fassouliotis, D. Favareto, A. Fayard, L. Federic, P. Fedin, O. L. Fedorko, W. Feigl, S. Feligioni, L. Feng, C. Feng, E. J. Feng, H. Fenyuk, A. B. Martinez, P. Fernandez Perez, S. Fernandez Ferrag, S. Ferrando, J. Ferrari, A. Ferrari, P. Ferrari, R. de Lima, D. E. Ferreira Ferrer, A. Ferrere, D. Ferretti, C. Parodi, A. Ferretto Fiascaris, M. Fiedler, F. Filipcic, A. Filipuzzi, M. Filthaut, F. Fincke-Keeler, M. Finelli, K. D. Fiolhais, M. C. N. Fiorini, L. Firan, A. Fischer, A. Fischer, C. Fischer, J. Fisher, W. C. Fitzgerald, E. A. Flechl, M. Fleck, I. Fleischmann, P. Fleischmann, S. Fletcher, G. T. Fletcher, G. Flick, T. Floderus, A. Castillo, L. R. Flores Flowerdew, M. J. Formica, A. Forti, A. Fournier, D. Fox, H. Fracchia, S. Francavilla, P. Franchini, M. Francis, D. Franconi, L. Franklin, M. Fraternali, M. Freeborn, D. French, S. T. Friedrich, F. Froidevaux, D. Frost, J. A. Fukunaga, C. Torregrosa, E. Fullana Fulsom, B. G. Fuster, J. Gabaldon, C. Gabizon, O. Gabrielli, A. Gabrielli, A. Gadatsch, S. Gadomski, S. Gagliardi, G. Gagnon, P. Galea, C. Galhardo, B. Gallas, E. J. Gallop, B. J. Gallus, P. Galster, G. Gan, K. K. Gao, J. Gao, Y. S. Wall, F. M. Garay Garberson, F. Garcia, C. Navarro, J. E. Garcia Garcia-Sciveres, M. Gardner, R. W. Garelli, N. Garonne, V. Gatti, C. Gaudio, G. Gaur, B. Gauthier, L. Gauzzi, P. Gavrilenko, I. L. Gay, C. Gaycken, G. Gazis, E. N. Ge, P. Gecse, Z. Gee, C. N. P. Geerts, D. A. A. Geich-Gimbel, Ch. Gemme, C. Genest, M. H. Gentile, S. George, M. George, S. Gerbaudo, D. Gershon, A. Ghazlane, H. Ghodbane, N. Giacobbe, B. Giagu, S. Giangiobbe, V. Giannetti, P. Gianotti, F. Gibbard, B. Gibson, S. M. Gilchriese, M. Gillam, T. P. S. Gillberg, D. Gilles, G. Gingrich, D. M. Giokaris, N. Giordani, M. P. Giorgi, F. M. Giorgi, F. M. Giraud, P. F. Giugni, D. Giuliani, C. Giulini, M. Gjelsten, B. K. Gkaitatzis, S. Gkialas, I. Gkougkousis, E. L. Gladilin, L. K. Glasman, C. Glatzer, J. Glaysher, P. C. F. Glazov, A. Glonti, G. L. Goblirsch-Kolb, M. Goddard, J. R. Godlewski, J. Goldfarb, S. Golling, T. Golubkov, D. Gomes, A. Goncalo, R. Da Costa, J. Goncalves Pinto Firmino Gonella, L. de la Hoz, S. Gonzaez Parra, G. Gonzalez Gonzalez-Sevilla, S. Goossens, L. Gorbounov, P. A. Gordon, H. A. Gorelov, I. Gorini, B. Gorini, E. Gorisek, A. Gornicki, E. Goshaw, A. T. Goessling, C. Gostkin, M. I. Gouighri, M. Goujdami, D. Goussiou, A. G. Grabas, H. M. X. Graber, L. Grabowska-Bold, I. Grafstrm, P. Grahn, K-J. Gramling, J. Gramstad, E. Grancagnolo, S. Grassi, V. Gratchev, V. Gray, H. M. Graziani, E. Greenwood, Z. D. Gregersen, K. Gregor, I. M. Grenier, P. Griffiths, J. Grillo, A. A. Grimm, K. Grinstein, S. Gris, Ph. Grishkevich, Y. V. Grivaz, J-F. Grohs, J. P. Grohsjean, A. Gross, E. Grosse-Knetter, J. Grossi, G. C. Grout, Z. J. Guan, L. Guenther, J. Guescini, F. Guest, D. Gueta, O. Guido, E. Guillemin, T. Guindon, S. Gul, U. Gumpert, C. Guo, J. Gupta, S. Gutierrez, P. Ortiz, N. G. Gutierrez Gutschow, C. Guttman, N. Guyot, C. Gwenlan, C. Gwilliam, C. B. Haas, A. Haber, C. Hadavand, H. K. Haddad, N. Haefner, P. Hageboeck, S. Hajduk, Z. Hakobyan, H. Haleem, M. Haley, J. Hall, D. Halladjian, G. Hallewell, G. D. Hamacher, K. Hamal, P. Hamano, K. Hamer, M. Hamilton, A. Hamilton, S. Hamity, G. N. Hamnett, P. G. Han, L. Hanagaki, K. Hanawa, K. Hance, M. Hanke, P. Hanna, R. Hansen, J. B. Hansen, J. D. Hansen, P. H. Hara, K. Hard, A. S. Harenberg, T. Hariri, F. Harkusha, S. Harrington, R. D. Harrison, P. F. Hartjes, F. Hasegawa, M. Hasegawa, S. Hasegawa, Y. Hasib, A. Hassani, S. Haug, S. Hauser, R. Hauswald, L. Havranek, M. Hawkes, C. M. Hawkings, R. J. Hawkins, A. D. Hayashi, T. Hayden, D. Hays, C. P. Hays, J. M. Hayward, H. S. Haywood, S. J. Head, S. J. Heck, T. Hedberg, V. Heelan, L. Heim, S. Heim, T. Heinemann, B. Heinrich, L. Hejbal, J. Helary, L. Heller, M. Hellman, S. Hellmich, D. Helsens, C. Henderson, J. Henderson, R. C. W. Heng, Y. Hengler, C. Henrichs, A. Correia, A. M. Henriques Henrot-Versille, S. Herbert, G. H. Jimenez, Y. Hernandez Herrberg-Schubert, R. Herten, G. Hertenberger, R. Hervas, L. Hesketh, G. G. Hessey, N. P. Hickling, R. Higon-Rodriguez, E. Hill, E. Hill, J. C. Hiller, K. H. Hillier, S. J. Hinchliffe, I. Hines, E. Hinman, R. R. Hirose, M. Hirschbuehl, D. Hobbs, J. Hod, N. Hodgkinson, M. C. Hodgson, P. Hoecker, A. Hoeferkamp, M. R. Hoenig, F. Hohlfeld, M. Holmes, T. R. Hong, T. M. van Huysduynen, L. Hooft Hopkins, W. H. Horii, Y. Horton, A. J. Hostachy, J-Y. Hou, S. Hoummada, A. Howard, J. Howarth, J. Hrabovsky, M. Hristova, I. Hrivnac, J. Hryn'ova, T. Hrynevich, A. Hsu, C. Hsu, P. J. Hsu, S-C. Hu, D. Hu, Q. Hu, X. Huang, Y. Hubacek, Z. Hubaut, F. Huegging, F. Huffman, T. B. Hughes, E. W. Hughes, G. Huhtinen, M. Huelsing, T. A. Huseynov, N. Huston, J. Huth, J. Iacobucci, G. Iakovidis, G. Ibragimov, I. Iconomidou-Fayard, L. Ideal, E. Idrissi, Z. Iengo, P. Igonkina, O. Iizawa, T. Ikegami, Y. Ikematsu, K. Ikeno, M. Ilchenko, Y. Iliadis, D. Ilic, N. Inamaru, Y. Ince, T. Ioannou, P. Iodice, M. Iordanidou, K. Ippolito, V. Quiles, A. Irles Isaksson, C. Ishino, M. Ishitsuka, M. Ishmukhametov, R. Issever, C. Istin, S. Ponce, J. M. Iturbe Iuppa, R. Ivarsson, J. Iwanski, W. Iwasaki, H. Izen, J. M. Izzo, V. Jabbar, S. Jackson, B. Jackson, M. Jackson, P. Jacquess, T. D. Jaekel, M. R. Jain, V. Jakobs, K. Jakobsen, S. Jakoubek, T. Jakubek, J. Jamin, D. O. Jana, D. K. Jansen, E. Jansky, R. W. Janssen, J. Janus, M. Jarlskog, G. Javadov, N. Javurek, T. Jeanty, L. Jejelava, J. Jeng, G-Y. Jennens, D. Jenni, P. Jentzsch, J. Jeske, C. Jezqeuel, S. Ji, H. Jia, J. Jiang, Y. Pena, J. Jimenez Jin, S. Jinaru, A. Jinnouchi, O. Joergensen, M. D. Johansson, P. Johns, K. A. Jon-And, K. Jones, G. Jones, R. W. L. Jones, T. J. Jongmanns, J. Jorge, P. M. Joshi, K. D. Jovicevic, J. Ju, X. Jung, C. A. Jussel, P. Roza, A. Juste Kaci, M. Kaczmarska, A. Kado, M. Kagan, H. Kagan, M. Kahn, S. J. Kajomovitz, E. Kalderon, C. W. Kama, S. Kamenshchikov, A. Kanaya, N. Kaneda, M. Kaneti, S. Kantserov, V. A. Kanzaki, J. Kaplan, B. Kapliy, A. Kar, D. Karakostas, K. Karamaoun, A. Karastathis, N. Kareem, M. J. Karnevskiy, M. Karpov, S. N. Karpova, Z. M. Karthik, K. Kartvelishvili, V. Karyukhin, A. N. Kashif, L. Kass, R. D. Kastanas, A. Kataoka, Y. Katre, A. Katzy, J. Kawagoe, K. Kawamoto, T. Kawamura, G. Kazama, S. Kazanin, V. F. Kazarinov, M. Y. Keeler, R. Kehoe, R. Keil, M. Keller, J. S. Kempster, J. J. Keoshkerian, H. Kepka, O. Kersevan, B. P. Kersten, S. Keyes, R. A. Khalil-Zada, F. Khandanyan, H. Khanov, A. Kharlamov, A. G. Khodinov, A. Khomich, A. Khoo, T. J. Khoriauli, G. Khovanskiy, V. Khramov, E. Khubua, J. Kim, H. Y. Kim, H. Kim, S. H. Kimura, N. Kind, O. M. King, B. T. King, M. King, R. S. B. King, S. B. Kirk, J. Kiryunin, A. E. Kishimoto, T. Kisielewska, D. Kiss, F. Kiuchi, K. Kladiva, E. Klein, M. H. Klein, M. Klein, U. Kleinknecht, K. Klimek, P. Klimentov, A. Klingenberg, R. Klinger, J. A. Klioutchnikova, T. Klok, P. F. Kluge, E-E. Kluit, P. Kluth, S. Kneringer, E. Knoops, E. B. F. G. Knue, A. Kobayashi, D. Kobayashi, T. Kobel, M. Kocian, M. Kodys, P. Koffas, T. Koffeman, E. Kogan, L. A. Kohlmann, S. Kohout, Z. Kohriki, T. Koi, T. Kolanoski, H. Koletsou, I. Komar, A. A. Komori, Y. Kondo, T. Kondrashova, N. Koeneke, K. Konig, A. C. Koenig, S. Kono, T. Konoplich, R. Konstantinidis, N. Kopeliansky, R. Koperny, S. Kpke, L. Kopp, A. K. Korcyl, K. Kordas, K. Korn, A. Korol, A. A. Korolkov, I. Korolkova, E. V. Kortner, O. Kortner, S. Kosek, T. Kostyukhin, V. V. Kotov, V. M. Kotwal, A. Kourkoumeli-Charalampidi, A. Kourkoumelis, C. Kouskoura, V. Koutsman, A. Kowalewski, R. Kowalski, T. Z. Kozanecki, W. Kozhin, A. S. Kramarenko, V. A. Kramberger, G. Krasnopevtsev, D. Krasny, M. W. Krasznahorkay, A. Kraus, J. K. Kravchenko, A. Kreiss, S. Kretz, M. Kretzschmar, J. Kreutzfeldt, K. Krieger, P. Krizka, K. Kroeninger, K. Kroha, H. Kroll, J. Kroseberg, J. Krstic, J. Kruchonak, U. Krueger, H. Krumnack, N. Krumshteyn, Z. V. Kruse, A. Kruse, M. C. Kruskal, M. Kubota, T. Kucuk, H. Kudayb, S. Kuehn, S. Kugel, A. Kuger, F. Kuhl, A. Kuhl, T. Kukhtin, V. Kulchitsky, Y. Kuleshov, S. Kuna, M. Kunigo, T. Kupco, A. Kurashige, H. Kurochkin, Y. A. Kurumida, R. Kus, V. Kuwertz, E. S. Kuze, M. Kunigo, T. Kupco, A. Kurashige, H. Kurochkin, Y. A. Kurumida, R. Kus, V. Kuwertz, E. S. Kuze, M. Kvita, J. Kwan, T. Kyriazopoulos, D. La Rosa, A. Navarro, J. L. La Rosa La Rotonda, L. Lacasta, C. Lacava, F. Lacey, J. Lacker, H. Lacour, D. Lacuesta, V. R. Ladygin, E. Lafaye, R. Laforge, B. Lagouri, T. Lai, S. Lambourne, L. Lammers, S. Lampen, C. L. Lampl, W. Lancon, E. Landgraf, U. Landon, M. P. J. Lang, V. S. Lankford, A. J. Lanni, F. Lantzsch, K. Laplace, S. Lapoire, C. Laporte, J. F. Lari, T. Manghi, F. Lasagni Lassnig, M. Laurelli, P. Lavrijsen, W. Law, A. T. Laycock, P. Le Dortz, O. Le Guirriec, E. Le Menedeu, E. LeCompte, T. Ledroit-Guillon, F. Lee, C. A. Lee, S. C. Lee, L. Lefebvre, G. Lefebvre, M. Legger, F. Leggett, C. Lehan, A. Miotto, G. Lehmann Lei, X. Leight, W. A. Leisos, A. Leister, A. G. Leite, M. A. L. Leitner, R. Lellouch, D. Lemmer, B. Leney, K. J. C. Lenz, T. Lenzen, G. Lenzi, B. Leone, R. Leone, S. Leonidopoulos, C. Leontsinis, S. Leroy, C. Lester, C. G. Levchenko, M. Leveque, J. Levin, D. Levinson, L. J. Levy, M. Lewis, A. Leyko, A. M. Leyton, M. Li, B. Li, B. Li, H. Li, H. L. Li, L. Li, L. Li, S. Li, Y. Liang, Z. Liao, H. Liberti, B. Lichard, P. Lie, K. Liebal, J. Liebig, W. Limbach, C. Limosani, A. Lin, S. C. Lin, T. H. Linde, F. Lindquist, B. E. Linnemann, J. T. Lipeles, E. Lipniacka, A. Lisovyi, M. Liss, T. M. Lissauer, D. Lister, A. Litke, A. M. Liu, B. Liu, D. Liu, J. Liu, J. B. Liu, K. Liu, L. Liu, M. Liu, M. Liu, Y. Livan, M. Lleres, A. Merino, J. Llorente Lloyd, S. L. LoSterzo, F. Lobodzinska, E. Loch, P. Lockman, W. S. Loebinger, F. K. Loevschall-Jensen, A. E. Loginov, A. Lohse, T. Lohwasser, K. Lokajicek, M. Long, B. A. Long, J. D. Long, R. E. Looper, K. A. Lopes, L. Mateos, D. Lopez Paredes, B. Lopez Paz, I. Lopez Lorenz, J. Martinez, N. Lorenzo Losada, M. Loscutoff, P. Loesel, P. J. Lou, X. Lounis, A. Love, J. Love, P. A. Lu, N. Lubatti, H. J. Luci, C. Lucotte, A. Luehring, F. Lukas, W. Luminari, L. Lundberg, O. Lund-Jensen, B. Lungwitz, M. Lynn, D. Lysak, R. Lytken, E. Ma, H. Ma, L. L. Maccarrone, G. Macchiolo, A. Miguens, J. Machado Macina, D. Madaffari, D. Madar, R. Maddocks, H. J. Mader, W. F. Madsen, A. Maeno, T. Maevskiy, A. Magradze, E. Mahboubi, K. Mahlstedt, J. Mahmoud, S. Maiani, C. Maidantchik, C. Maier, A. A. Maioa, A. Majewski, S. Makida, Y. Makovec, N. Malaescu, B. Malecki, Pa. Maleev, V. P. Malek, F. Mallik, U. Malon, D. Malone, C. Maltezos, S. Malyshev, V. M. Malyukov, S. Mamuzic, J. Mandelli, B. Mandelli, L. Mandic, I. Mandrysch, R. Maneira, J. Manfredini, A. de Andrade Filho, L. Manhaes Ramos, J. Manjarres Mann, A. Manning, P. M. Manousakis-Katsikakis, A. Mansoulie, B. Mantifel, R. Mantoani, M. Mapelli, L. March, L. Marchiori, G. Marcisovsky, M. Marino, C. P. Marjanovic, M. Marroquim, F. Marsden, S. P. Marshall, Z. Marti, L. F. Marti-Garcia, S. Martin, B. Martin, T. A. Martin, V. J. dit Latour, B. Martin Martinez, H. Martinez, M. Martin-Haugh, S. Martyniuk, A. C. Marx, M. Marzano, F. Marzin, A. Masetti, L. Mashimo, T. Mashinistov, R. Masik, J. Maslennikov, A. L. Massa, I. Massa, L. Massol, N. Mastrandrea, P. Mastroberardino, A. Masubuchi, T. Maetig, P. Mattmann, J. Maurer, J. Maxfield, S. J. Maximov, D. A. Mazini, R. Mazza, S. M. Mazzaferro, L. Mc Goldrick, G. Mckee, S. P. McCarn, A. McCarthy, R. L. McCarthy, T. G. McCubbin, N. A. McFarlane, K. W. Mcfayden, J. A. Mchedlidze, G. McMahon, S. J. McPherson, R. A. Mechnich, J. Medinnis, M. Meehan, S. Mehlhase, S. Mehta, A. Meier, K. Meineck, C. Meirose, B. Melachrinos, C. Garcia, B. R. Mellado Meloni, F. Mengarelli, A. Menke, S. Meoni, E. Mercurio, K. M. Mergelmeyer, S. Meric, N. Mermod, P. Merola, L. Meroni, C. Merritt, F. S. Merritt, H. Messina, A. Metcalfe, J. Mete, A. S. Meyer, C. Meyer, C. Meyer, J-P. Meyer, J. Middleton, R. P. Migas, S. Miglioranzi, S. Mijovic, L. Mikenberg, G. Mikestikova, M. Mikuz, M. Milic, A. Miller, D. W. Mills, C. Milov, A. Milstead, D. A. Minaenko, A. A. Minami, Y. Minashvili, I. A. Mincer, A. I. Mindur, B. Mineev, M. Ming, Y. Mir, L. M. Mirabelli, G. Mitani, T. Mitrevski, J. Mitsou, V. A. Miucci, A. Miyagawa, P. S. Mjornmark, J. U. Moa, T. Mochizuki, K. Mohapatra, S. Mohr, W. Molander, S. Moles-Valls, R. Moenig, K. Monini, C. Monk, J. Monnier, E. Berlingen, J. Montejo Monticelli, F. Monzani, S. Moore, R. W. Morange, N. Moreno, D. Llacer, M. Moreno Morettini, P. Morgenstern, M. Morii, M. Morisbak, V. Moritz, S. Morley, A. K. Mornacchi, G. Morris, J. D. Morton, A. Morvaj, L. Moser, H. G. Mosidze, M. Moss, J. Motohashi, K. Mount, R. Mountricha, E. Mouraviev, S. V. Moyse, E. J. W. Muanza, S. Mudd, R. D. Mueller, F. Mueller, J. Mueller, K. Mueller, R. S. P. Mueller, T. Muenstermann, D. Mullen, P. Munwes, Y. Quijada, J. A. Murillo Murray, W. J. Musheghyan, H. Musto, E. Myagkov, A. G. Myska, M. Nackenhorst, O. Nadal, J. Nagai, K. Nagai, R. Nagai, Y. Nagano, K. Nagarkar, A. Nagasaka, Y. Nagata, K. Nagel, M. Nagy, E. Nairz, A. M. Nakahama, Y. Nakamura, K. Nakamura, T. Nakano, I. Namasivayam, H. Nanava, G. Garcia, R. F. Naranjo Narayan, R. Nattermann, T. Naumann, T. Navarro, G. Nayyar, R. Neal, H. A. Nechaeva, P. Yu. Neep, T. J. Nef, P. D. Negri, A. Negrini, M. Nektarijevic, S. Nellist, C. Nelson, A. Nemecek, S. Nemethy, P. Nepomuceno, A. A. Nessi, M. Neubauer, M. S. Neumann, M. Neves, R. M. Nevski, P. Newman, P. R. Nguyen, D. H. Nickerson, R. B. Nicolaidou, R. Nicquevert, B. Nielsen, J. Nikiforou, N. Nikiforov, A. Nikolaenko, V. Nikolic-Audit, I. Nikolopoulos, K. Nilsson, P. Ninomiya, Y. Nisati, A. Nisius, R. Nobe, T. Nomachi, M. Nomidis, I. Norberg, S. Nordberg, M. Novgorodova, O. Nowak, S. Nozaki, M. Nozka, L. Ntekas, K. Hanninger, G. Nunes Nunnemann, T. Nurse, E. Nuti, F. O'Brien, B. J. O'grady, F. O'Neil, D. C. O'Shea, V. Oakham, F. G. Oberlack, H. Obermann, T. Ocariz, J. Ochi, A. Ochoa, I. Oda, S. Odaka, S. Ogren, H. Oh, A. Oh, S. H. Ohm, C. C. Ohman, H. Oide, H. Okamura, W. Okawa, H. Okumura, Y. Okuyama, T. Olariu, A. Olchevski, A. G. Pino, S. A. Olivares Damazio, D. Oliveira Garcia, E. Oliver Olszewski, A. Olszowska, J. Onofre, A. Onyisi, P. U. E. Oram, C. J. Oreglia, M. J. Oren, Y. Orestano, D. Orlando, N. Barrera, C. Oropeza Orr, R. S. Osculati, B. Ospanov, R. Garzon, G. Otero Y. Otono, H. Ouchrif, M. Ouellette, E. A. Ould-Saada, F. Ouraou, A. Oussoren, K. P. Ouyang, Q. Ovcharova, A. Owen, M. Owen, R. E. Ozcan, V. E. Ozturk, N. Pachal, K. Pages, A. Pacheco Aranda, C. Padilla Pagacova, M. Griso, S. Pagan Paganis, E. Pahl, C. Paige, F. Pais, P. Pajchel, K. Palacino, G. Palestini, S. Palka, M. Pallin, D. Palma, A. Pan, Y. B. Panagiotopoulou, E. Pandini, C. E. Vazquez, J. G. Panduro Pani, P. Panikashvili, N. Panitkin, S. Paolozzi, L. Papadopoulou, Th. D. Papageorgiou, K. Paramonov, A. Hernandez, D. Paredes Parker, M. A. Parker, K. A. Parodi, F. Parsons, J. A. Parzefall, U. Pasqualucci, E. Passaggio, S. Pastore, F. Pastore, Fr. Pasztor, G. Pataraia, S. Patel, N. D. Pater, J. R. Pauly, T. Pearce, J. Pedersen, L. E. Pedersen, M. Lopez, S. Pedraza Pedro, R. Peleganchuk, S. V. Pelikan, D. Peng, H. Penning, B. Penwell, J. Perepelitsa, D. V. Codina, E. Perez Garcia-Estan, M. T. Perez Perini, L. Pernegger, H. Perrella, S. Peschke, R. Peshekhonov, V. D. Peters, K. Peters, R. F. Y. Petersen, B. A. Petersen, T. C. Petit, E. Petridis, A. Petridou, C. Petrolo, E. Petrucci, F. Pettersson, N. E. Pezoa, R. Phillips, P. W. Piacquadio, G. Pianori, E. Picazio, A. Piccaro, E. Piccinini, M. Pickering, M. A. Piegaia, R. Pignotti, D. T. Pilcher, J. E. Pilkington, A. D. Pina, J. Pinamonti, M. Pinfold, J. L. Pingel, A. Pinto, B. Pires, S. Pitt, M. Pizio, C. Plazak, L. Pleier, M-A. Pleskot, V. Plotnikova, E. Plucinski, P. Pluth, D. Poettgen, R. Poggioli, L. Pohl, D. Polesello, G. Policicchio, A. Polifka, R. Polini, A. Pollard, C. S. Polychronakos, V. Pommes, K. Pontecorvo, L. Pope, B. G. Popeneciu, G. A. Popovic, D. S. Poppleton, A. Pospisil, S. Potamianos, K. Potrap, I. N. Potter, C. J. Potter, C. T. Poulard, G. Poveda, J. Pozdnyakov, V. Pralavorio, P. Pranko, A. Prasad, S. Prell, S. Price, D. Price, J. Price, L. E. Primavera, M. Prince, S. Proissl, M. Prokofiev, K. Prokoshin, F. Protopapadaki, E. Protopopescu, S. Proudfoot, J. Przybycien, M. Ptacek, E. Puddu, D. Pueschel, E. Puldon, D. Purohit, M. Puzo, P. Qian, J. Qin, G. Qin, Y. Quadt, A. Quarrie, D. R. Quayle, W. B. Queitsch-Maitland, M. Quilty, D. Qureshi, A. Radeka, V. Radescu, V. Radhakrishnan, S. K. Radloff, P. Rados, P. Ragusa, F. Rahal, G. Rajagopalan, S. Rammensee, M. Rangel-Smith, C. Rauscher, F. Rave, S. Rave, T. C. Ravenscroft, T. Raymond, M. Read, A. L. Readioff, N. P. Rebuzzi, D. M. Redelbach, A. Redlinger, G. Reece, R. Reeves, K. Rehnisch, L. Reisin, H. Relich, M. Rembser, C. Ren, H. Renaud, A. Rescigno, M. Resconi, S. Rezanova, O. L. Reznicek, P. Rezvani, R. Richter, R. Richter-Was, E. Ridel, M. Rieck, P. Riegel, C. J. Rieger, J. Rijssenbeek, M. Rimoldi, A. Rinaldi, L. Riottos, A. W. Ritsch, E. Riu, I. Rizatdinova, F. Rizvi, E. Robertson, S. H. Robichaud-Veronneau, A. Robinson, D. Robinson, J. E. M. Robson, A. Roda, C. Rodrigues, L. Roe, S. Rohne, O. Rolli, S. Romaniouk, A. Romano, M. Saez, S. M. Romano Adam, E. Romero Rompotis, N. Ronzani, M. Roos, L. Ros, E. Rosati, S. Rosbach, K. Rose, P. Rosendahl, P. L. Rosenthal, O. Rossetti, V. Rossi, E. Rossi, L. P. Rosten, R. Rotaru, M. Roth, I. Rothberg, J. Rousseau, D. Royon, C. R. Rozanov, A. Rozen, Y. Ruan, X. Rubbo, F. Rubinskiy, I. Rud, V. I. Rudolph, C. Rudolph, M. S. Ruehr, F. Ruiz-Martinez, A. Rurikova, Z. Rusakovich, N. A. Ruschke, A. Russell, H. L. Rutherfoord, J. P. Ruthmann, N. Ryabov, Y. F. Rybar, M. Rybkin, G. Ryder, N. C. Saavedra, A. F. Sabato, G. Sacerdoti, S. Saddique, A. Sadrozinski, H. F-W. Sadykov, R. Tehrani, F. Safai Saimpert, M. Sakamoto, H. Sakurai, Y. Salamanna, G. Salamon, A. Saleem, M. Salek, D. De Bruin, P. H. Sales Salihagic, D. Salnikov, A. Salt, J. Salvatore, D. Salvatore, F. Salvucci, A. Salzburger, A. Sampsonidis, D. Sanchez, A. Sanchez, J. Martinez, V. Sanchez Sandaker, H. Sandbach, R. L. Sander, H. G. Sanders, M. P. Sandhoff, M. Sandoval, C. Sandstroem, R. Sankey, D. P. C. Sansoni, A. Santoni, C. Santonico, R. Santos, H. Castillo, I. Santoyo Sapp, K. Sapronov, A. Saraiva, J. G. Sarrazin, B. Sasaki, O. Sasaki, Y. Sato, K. Sauvage, G. Sauvan, E. Savage, G. Savard, P. Sawyer, C. Sawyer, L. Saxon, D. H. Saxon, J. Sbarra, C. Sbrizzi, A. Scanlon, T. Scannicchio, D. A. Scarcella, M. Scarfone, V. Schaarschmidt, J. Schacht, P. Schaefer, D. Schaefer, R. Schaeffer, J. Schaepe, S. Schaetzel, S. Schaefer, U. Schaffer, A. C. Schaile, D. Schamberger, R. D. Scharf, V. Schegelsky, V. A. Scheirich, D. Schernau, M. Schiavi, C. Schillo, C. Schioppa, M. Schlenker, S. Schmidt, E. Schmieden, K. Schmitt, C. Schmitt, S. Schneider, B. Schnellbach, Y. J. Schnoor, U. Schoeffel, L. Schoening, A. Schoenrock, B. D. Schorlemmer, A. L. S. Schott, M. Schouten, D. Schovancova, J. Schramm, S. Schreyer, M. Schroeder, C. Schuh, N. Schultens, M. J. Schultz-Coulon, H-C. Schulz, H. Schumacher, M. Schumm, B. A. Schune, Ph. Schwanenberger, C. Schwartzman, A. Schwarz, T. A. Schwegler, Ph. Schwemling, Ph. Schwienhorst, R. Schwindling, J. Schwindt, T. Schwoerer, M. Sciacca, F. G. Scifo, E. Sciolla, G. Scuri, F. Scutti, F. Searcy, J. Sedov, G. Sedykh, E. Seema, P. Seidel, S. C. Seiden, A. Seifert, F. Seixas, J. M. Sekhniaidze, G. Sekula, S. J. Selbach, K. E. Seliverstov, D. M. Semprini-Cesari, N. Serfon, C. Serin, L. Serkin, L. Serre, T. Seuster, R. Severini, H. Sfiligoj, T. Sforza, F. Sfyrla, A. Shabalina, E. Shamim, M. Shan, L. Y. Shang, R. Shank, J. T. Shapiro, M. Shatalov, P. B. Shaw, K. Shcherbakova, A. Shehu, C. Y. Sherwood, P. Shi, L. Shimizu, S. Shimmin, C. O. Shimojima, M. Shiyakova, M. Shmeleva, A. Saadi, D. Shoaleh Shochet, M. J. Shojaii, S. Shrestha, S. Shulga, E. Shupe, M. A. Shushkevich, S. Sicho, P. Sidiropoulou, O. Sidorov, D. Sidoti, A. Siegert, F. Sijacki, Dj. Silva, J. Silver, Y. Silverstein, D. Silverstein, S. B. Simak, V. Simard, O. Simic, Lj. Simion, S. Simioni, E. Simmons, B. Simon, D. Simoniello, R. Sinervo, P. Sinev, N. B. Siragusa, G. Sircar, A. Sisakyan, A. N. Sivoklokov, S. Yu. Sjolin, J. Sjursen, T. B. Skinner, M. B. Skottowe, H. P. Skubic, P. Slater, M. Slavicek, T. Slawinska, M. Sliwa, K. Smakhtin, V. Smart, B. H. Smestad, L. Smirnov, S. Yu. Smirnov, Y. Smirnova, L. N. Smirnova, O. Smith, K. M. Smith, M. N. K. Smizanska, M. Smolek, K. Snesarev, A. A. Snidero, G. Snyder, S. Sobie, R. Socher, F. Soffer, A. Soh, D. A. Solans, C. A. Solar, M. Solc, J. Soldatov, E. Yu. Soldevila, U. Solodkov, A. A. Soloshenko, A. Solovyanov, O. V. Solovyev, V. Sommer, P. Song, H. Y. Soni, N. Sood, A. Sopczak, A. Sopko, B. Sopko, V. Sorin, V. Sosa, D. Sosebee, M. Sotiropoulou, C. L. Soualah, R. Soueid, P. Soukharev, A. M. South, D. Spagnolo, S. Spano, F. Spearman, W. R. Spettel, F. Spighi, R. Spigo, G. Spiller, L. A. Spousta, M. Spreitzer, T. Denis, R. D. St. Staerz, S. Stahlman, J. Stamen, R. Stamm, S. Stanecka, E. Stanescu, C. Stanescu-Bellu, M. Stanitzki, M. M. Stapnes, S. Starchenko, E. A. Stark, J. Staroba, P. Starovoitov, P. Staszewski, R. Stavina, P. Steinberg, P. Stelzer, B. Stelzer, H. J. Stelzer-Chilton, O. Stenzel, H. Stern, S. Stewart, G. A. Stillings, J. A. Stockton, M. C. Stoebe, M. Stoicea, G. Stolte, P. Stonjek, S. Stradling, A. R. Straessner, A. Stramaglia, M. E. Strandberg, J. Strandberg, S. Strandlie, A. Strauss, E. Strauss, M. Strizenec, P. Stroehmer, R. Strom, D. M. Stroynowski, R. Strubig, A. Stucci, S. A. Stugu, B. Styles, N. A. Su, D. Su, J. Subramaniam, R. Succurro, A. Sugaya, Y. Suhr, C. Suk, M. Sulin, V. V. Sultansoy, S. Sumida, T. Sun, S. Sun, X. Sundermann, J. E. Suruliz, K. Susinno, G. Sutton, M. R. Suzuki, Y. Svatos, M. Swedish, S. Swiatlowski, M. Sykora, I. Sykora, T. Ta, D. Taccini, C. Tackmann, K. Taenzer, J. Taffard, A. Tafirout, R. Taiblum, N. Takai, H. Takashima, R. Takeda, H. Takeshita, T. Takubo, Y. Talby, M. Talyshev, A. A. Tam, J. Y. C. Tan, K. G. Tanaka, J. Tanaka, R. Tanaka, S. Tanaka, S. Tanasijczuk, A. J. Tannenwald, B. B. Tannoury, N. Tapprogge, S. Tarem, S. Tarrade, F. Tartarelli, G. F. Tas, P. Tasevsky, M. Tashiro, T. Tassi, E. Delgado, A. Tavares Tayalati, Y. Taylor, F. E. Taylor, G. N. Taylor, W. Teischinger, F. A. Castanheira, M. Teixeira Dias Teixeira-Dias, P. Temming, K. K. TenKate, H. Teng, P. K. Teoh, J. J. Tepel, F. Terada, S. Terashi, K. Terron, J. Terzo, S. Testa, M. Teuscher, R. J. Therhaag, J. Theveneaux-Pelzer, T. Thomas, J. P. Thomas-Wilsker, J. Thompson, E. N. Thompson, P. D. Thompson, R. J. Thompson, A. S. Thomsen, L. A. Thomson, E. Thomson, M. Thong, W. M. Thun, R. P. Tian, F. Tibbetts, M. J. Torres, R. E. Ticse Tikhomirov, V. O. Tikhonov, Yu. A. Timoshenko, S. Tiouchichine, E. Tipton, P. Tisserant, S. Todorov, T. Todorova-Nova, S. Tojo, J. Tokar, S. Tokushuku, K. Tollefson, K. Tolley, E. Tomlinson, L. Tomoto, M. Tompkins, L. Toms, K. Topilin, N. D. Torrence, E. Torres, H. Pastor, E. Torro Toth, J. Touchard, F. Tovey, D. R. Tran, H. L. Trefzger, T. Tremblet, L. Tricoli, A. Trigger, I. M. Trincaz-Duvoid, S. Tripiana, M. F. Trischuk, W. Trocme, B. Troncon, C. Trottier-McDonald, M. Trovatelli, M. True, P. Trzebinski, M. Trzupek, A. Tsarouchas, C. Tseng, J. C-L. Tsiareshka, P. V. Tsionou, D. Tsipolitis, G. Tsirintanis, N. Tsiskaridze, S. Tsiskaridze, V. Tskhadadze, E. G. Tsukerman, I. I. Tsulaia, V. Tsuno, S. Tsybychev, D. Tudorache, A. Tudorache, V. Tuna, A. N. Tupputi, S. A. Turchikhin, S. Turecek, D. Turra, R. Turvey, A. J. Tuts, P. M. Tykhonov, A. Tylmad, M. Tyndel, M. Ueda, I. Ueno, R. Ughetto, M. Ugland, M. Uhlenbrock, M. Ukegawa, F. Unal, G. Undrus, A. Unel, G. Ungaro, F. C. Unno, Y. Unverdorben, C. Urban, J. Urquijo, P. Urrejola, P. Usai, G. Usanova, A. Vacavant, L. Vacek, V. Vachon, B. Valencic, N. Valentinetti, S. Valero, A. Valery, L. Valkar, S. Gallego, E. Valladolid Vallecorsa, S. Ferrer, J. A. Valls Van den Wollenberg, W. Van der Deijl, P. C. van der Geer, R. van der Graaf, H. Van der Leeuw, R. van Eldik, N. van Gemmeren, P. Van Nieuwkoop, J. van Vulpen, I. van Woerden, M. C. Vanadia, M. Vandelli, W. Vanguri, R. Vaniachine, A. Vannucci, F. Vardanyan, G. Vari, R. Varnes, E. W. Varol, T. Varouchas, D. Vartapetian, A. Varvell, K. E. Vazeille, F. Schroeder, T. Vazquez Veatch, J. Veloso, F. Velz, T. Veneziano, S. Ventura, A. Ventura, D. Venturi, M. Venturi, N. Venturini, A. Vercesi, V. Verducci, M. Verkerke, W. Vermeulen, J. C. Vest, A. Vetterli, M. C. Viazlo, O. Vichou, I. Vickey, T. Boeriu, O. E. Vickey Viehhauser, G. H. A. Viel, S. Vigne, R. Villa, M. Perez, M. Villaplana Vilucchi, E. Vincter, M. G. Vinogradov, V. B. Virzi, J. Vivarelli, I. Vaque, F. Vives Vlachos, S. Vladoiu, D. Vlasak, M. Vogel, M. Vokac, P. Volpi, G. Volpi, M. von der Schmitt, H. von Radziewski, H. von Toerne, E. Vorobel, V. Vorobev, K. Vos, M. Voss, R. Vossebeld, J. H. Vranjes, N. Milosavljevic, M. Vranjes Vrba, V. Vreeswijk, M. Vuillermet, R. Vukotic, I. Vykydal, Z. Wagner, P. Wagner, W. Wahlberg, H. Wahrmund, S. Wakabayashi, J. Walder, J. Walker, R. Walkowiak, W. Wang, C. Wang, F. Wang, H. Wang, H. Wang, J. Wang, J. Wang, K. Wang, R. Wang, S. M. Wang, T. Wang, X. Wanotayaroj, C. Warburton, A. Ward, C. P. Wardrope, D. R. Warsinsky, M. Washbrook, A. Wasicki, C. Watkins, P. M. Watson, A. T. Watson, I. J. Watson, M. F. Watts, G. Watts, S. Waugh, B. M. Webb, S. Weber, M. S. Weber, S. W. Webster, J. S. Weidberg, A. R. Weinert, B. Weingarten, J. Weiser, C. Weits, H. Wells, P. S. Wenaus, T. Wendland, D. Wengler, T. Wenig, S. Wermes, N. Werner, M. Werner, P. Wessels, M. Wetter, J. Whalen, K. Wharton, A. M. White, A. White, M. J. White, R. White, S. Whiteson, D. Wicke, D. Wickens, F. J. Wiedenmann, W. Wielers, M. Wienemann, P. Wiglesworth, C. Wiik-Fuchs, L. A. M. Wildauer, A. Wilkens, H. G. Williams, H. H. Williams, S. Willis, C. Willocq, S. Wilson, A. Wilson, J. A. Wingerter-Seez, I. Winklmeier, F. Winter, B. T. Wittgen, M. Wittkowski, J. Wollstadt, S. J. Wolter, M. W. Wolters, H. Wosiek, B. K. Wotschack, J. Woudstra, M. J. Wozniak, K. W. Wu, M. Wu, S. L. Wu, X. Wu, Y. Wyatt, T. R. Wynne, B. M. Xella, S. Xu, D. Xu, L. Yabsley, B. Yacoob, S. Yakabe, R. Yamada, M. Yamaguchi, Y. Yamamoto, A. Yamamoto, S. Yamanaka, T. Yamauchi, K. Yamazaki, Y. Yan, Z. Yang, H. Yang, H. Yang, Y. Yanush, S. Yao, L. Yao, W-M. Yasu, Y. Yatsenko, E. Wong, K. H. Yau Ye, J. Ye, S. Yeletskikh, I. Yen, A. L. Yildirim, E. Yorita, K. Yoshida, R. Yoshihara, K. Young, C. Young, C. J. S. Youssef, S. Yu, D. R. Yu, J. Yu, J. M. Yu, J. Yuan, L. Yurkewicz, A. Yusuff, I. Zabinski, B. Zaidan, R. Zaitsev, A. M. Zaman, A. Zambito, S. Zanello, L. Zanzi, D. Zeitnitz, C. Zeman, M. Zemla, A. Zengel, K. Zenin, O. Zenis, T. Zerwas, D. Zhang, D. Zhang, F. Zhang, J. Zhang, L. Zhang, R. Zhang, X. Zhang, Z. Zhao, X. Zhao, Y. Zhao, Z. Zhemchugov, A. Zhong, J. Zhou, B. Zhou, C. Zhou, L. Zhou, L. Zhou, N. Zhu, C. G. Zhu, H. Zhu, J. Zhu, Y. Zhuang, X. Zhukov, K. Zibell, A. Zieminska, D. Zimine, N. I. Zimmermann, C. Zimmermann, R. Zimmermann, S. Zinonos, Z. Zinser, M. Ziolkowski, M. Zivkovic, L. Zobernig, G. Zoccoli, A. zur Nedden, M. Zurzolo, G. Zwalinski, L. CA ATLAS Collaboration TI Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at root s=8 TeV with the ATLAS detector SO EUROPEAN PHYSICAL JOURNAL C LA English DT Article ID DYNAMICAL SUPERSYMMETRY BREAKING; HIGGS-BOSON PRODUCTION; CARLO EVENT GENERATOR; E(+)E(-) COLLISIONS; HADRON COLLIDERS; DARK-MATTER; SUPERGAUGE TRANSFORMATIONS; ELECTROWEAK CORRECTIONS; CROSS-SECTION; SINGLE-PHOTON AB Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb(-1) of root s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between E-T(miss) > 150 GeV and E-T(miss) > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presented. C1 [ATLAS Collaboration] CERN, CH-1211 Geneva 23, Switzerland. [Jackson, P.; Lee, L.; Soni, N.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia. [Bouffard, J.; Edson, W.; Ernst, J.; Fischer, A.; Guindon, S.; Jain, V.] SUNY Alfred, Dept Phys, Albany, NY USA. [Butt, A. I.; Czodrowski, P.; Dassoulas, J.; Gingrich, D. M.; Jabbar, S.; Karamaoun, A.; Moore, R. W.; Pinfold, J. L.; Saddique, A.; Vaque, F. Vives] Univ Alberta, Dept Phys, Edmonton, AB, Canada. [Cakir, O.; Ciftci, A. K.; Yildiza, H. Duran] Ankara Univ, Dept Phys, TR-06100 Ankara, Turkey. Istanbul Aydin Univ, Istanbul, Turkey. [Cakir, O.; Yildiza, H. Duran] TOBB Univ Econ & Technol, Div Phys, Ankara, Turkey. [Barnovska, Z.; Berger, N.; Delmastro, M.; Di Ciaccio, L.; Elles, S.; George, M.; Hryn'ova, T.; Jezqeuel, S.; Koletsou, I.; Lafaye, R.; Leveque, J.; Massol, N.; Sauvage, G.; Sauvan, E.; Schwoerer, M.; Simard, O.; Todorov, T.; Wingerter-Seez, I.] CNRS, LAPP, IN2P3, Annecy Le Vieux, France. [Barnovska, Z.; Berger, N.; Delmastro, M.; Di Ciaccio, L.; Elles, S.; George, M.; Hryn'ova, T.; Jezqeuel, S.; Koletsou, I.; Lafaye, R.; Leveque, J.; Massol, N.; Sauvage, G.; Sauvan, E.; Schwoerer, M.; Simard, O.; Todorov, T.; Wingerter-Seez, I.] Univ Savoie Mt Blanc, Annecy Le Vieux, France. [Auerbach, B.; Blair, R. E.; Chekanov, S.; Childers, J. T.; Feng, E. J.; LeCompte, T.; Love, J.; Malon, D.; Nguyen, D. H.; Paramonov, A.; Price, L. E.; Proudfoot, J.; van Gemmeren, P.; Vaniachine, A.; Yoshida, R.; Zhang, J.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Cheu, E.; Johns, K. A.; Lampen, C. L.; Lampl, W.; Lei, X.; Leone, R.; Loch, P.; Nayyar, R.; O'grady, F.; Rutherfoord, J. P.; Shupe, M. A.; Varnes, E. W.; Veatch, J.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Brandt, A.; Cote, D.; Darmora, S.; De, K.; Farbin, A.; Griffiths, J.; Hadavand, H. K.; Heelan, L.; Kim, H. Y.; Ozturk, N.; Schovancova, J.; Sosebee, M.; Stradling, A. R.; Usai, G.; Vartapetian, A.; White, A.; Yu, J.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. [Angelidakis, S.; Chouridou, S.; Fassouliotis, D.; Giokaris, N.; Ioannou, P.; Iordanidou, K.; Kourkoumelis, C.; Manousakis-Katsikakis, A.; Tsirintanis, N.] Univ Athens, Dept Phys, Athens, Greece. [Alexopoulos, T.; Benekos, N.; Dris, M.; Gazis, E. N.; Karakostas, K.; Karastathis, N.; Leontsinis, S.; Maltezos, S.; Ntekas, K.; Papadopoulou, Th. D.; Tsipolitis, G.; Vlachos, S.] Natl Tech Univ Athens, Dept Phys, Zografos, Greece. [Abdinov, O.; Khalil-Zada, F.] Azerbaijan Acad Sci, Inst Phys, Baku 370143, Azerbaijan. [Anjos, N.; Bosman, M.; Armadans, R. Caminal; Casado, M. P.; Casolino, M.; Cavalli-Sforza, M.; Cortes-Gonzalez, A.; Farooque, T.; Fischer, C.; Fracchia, S.; Giangiobbe, V.; Parra, G. Gonzalez; Grinstein, S.; Roza, A. Juste; Korolkov, I.; Le Menedeu, E.; Paz, I. Lopez; Martinez, M.; Mir, L. M.; Berlingen, J. Montejo; Pages, A. Pacheco; Aranda, C. Padilla; Riu, I.; Rubbo, F.; Sorin, V.; Succurro, A.; Tripiana, M. F.; Tsiskaridze, S.; Valery, L.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Anjos, N.; Bosman, M.; Armadans, R. Caminal; Casado, M. P.; Casolino, M.; Cavalli-Sforza, M.; Cortes-Gonzalez, A.; Farooque, T.; Fischer, C.; Fracchia, S.; Giangiobbe, V.; Parra, G. Gonzalez; Grinstein, S.; Roza, A. Juste; Korolkov, I.; Le Menedeu, E.; Paz, I. Lopez; Martinez, M.; Mir, L. M.; Berlingen, J. Montejo; Pages, A. Pacheco; Aranda, C. Padilla; Riu, I.; Rubbo, F.; Sorin, V.; Succurro, A.; Tripiana, M. F.; Tsiskaridze, S.; Valery, L.] Univ Autonoma Barcelona, Dept Fis, E-08193 Barcelona, Spain. [Agatonovic-Jovin, T.; Bozic, I.; Dimitrievska, A.; Krstic, J.; Marjanovic, M.; Popovic, D. S.; Sijacki, Dj.; Simic, Lj.; Vranjes, N.; Milosavljevic, M. Vranjes; Zivkovic, L.] Univ Belgrade, Inst Phys, Belgrade, Serbia. [Buanes, T.; Dale, O.; Eigen, G.; Kastanas, A.; Liebig, W.; Lipniacka, A.; dit Latour, B. Martin; Rosendahl, P. L.; Sandaker, H.; Sjursen, T. B.; Smestad, L.; Stugu, B.; Ugland, M.] Univ Bergen, Dept Phys & Technol, Bergen, Norway. [Brandt, G.; Brosamer, J.; Calafiura, P.; Caminada, L. M.; Cerutti, F.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Copic, K.; Einsweiler, K.; Farrell, S.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Hance, M.; Heinemann, B.; Hinchliffe, I.; Hinman, R. R.; Holmes, T. R.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Marshall, Z.; Ohm, C. C.; Ovcharova, A.; Griso, S. Pagan; Potamianos, K.; Pranko, A.; Quarrie, D. R.; Shapiro, M.; Sood, A.; Tibbetts, M. J.; Trottier-McDonald, M.; Tsulaia, V.; Viel, S.; Virzi, J.; Wang, H.; Yao, W-M.; Yu, D. R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [Axen, B.; Barnett, R. M.; Beringer, J.; Brandt, G.; Brosamer, J.; Calafiura, P.; Caminada, L. M.; Cerutti, F.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Copic, K.; Einsweiler, K.; Farrell, S.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Hance, M.; Heinemann, B.; Hinchliffe, I.; Hinman, R. R.; Holmes, T. R.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Marshall, Z.; Ohm, C. C.; Ovcharova, A.; Griso, S. Pagan; Potamianos, K.; Pranko, A.; Quarrie, D. R.; Shapiro, M.; Sood, A.; Tibbetts, M. J.; Trottier-McDonald, M.; Tsulaia, V.; Viel, S.; Virzi, J.; Wang, H.; Yao, W-M.; Yu, D. R.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Dietrich, J.; Giorgi, F. M.; Grancagnolo, S.; Herbert, G. H.; Herrberg-Schubert, R.; Hristova, I.; Kind, O. M.; Kolanoski, H.; Lacker, H.; Lohse, T.; Nikiforov, A.; Rehnisch, L.; Rieck, P.; Schulz, H.; Stamm, S.; zur Nedden, M.] Humboldt Univ, Dept Phys, Berlin, Germany. [Agustoni, M.; Beck, H. P.; Cervelli, A.; Ereditato, A.; Haug, S.; Marti, L. F.; Meloni, F.; Sciacca, F. G.; Stramaglia, M. E.; Stucci, S. A.; Weber, M. S.] Univ Bern, Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Agustoni, M.; Beck, H. P.; Cervelli, A.; Ereditato, A.; Haug, S.; Marti, L. F.; Meloni, F.; Sciacca, F. G.; Stramaglia, M. E.; Stucci, S. A.; Weber, M. S.] Univ Bern, High Energy Phys Lab, Bern, Switzerland. [Allbrooke, B. M. M.; Bella, L. Aperio; Bansil, H. S.; Bracinik, J.; Charlton, D. G.; Chisholm, A. S.; Daniells, A. C.; Hawkes, C. M.; Head, S. J.; Hillier, S. J.; Levy, M.; Mudd, R. D.; Quijada, J. A. Murillo; Newman, P. R.; Nikolopoulos, K.; Owen, R. E.; Slater, M.; Thomas, J. P.; Thompson, P. D.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Wilson, J. A.] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England. [Istin, S.; Ozcan, V. E.] Bogazici Univ, Dept Phys, Istanbul, Turkey. Dogus Univ, Dept Phys, Istanbul, Turkey. [Beddall, A. J.; Beddall, A.; Bingul, A.] Gaziantep Univ, Dept Engn Phys, Gaziantep, Turkey. [Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruschi, M.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Franchini, M.; Gabrielli, A.; Giacobbe, B.; Giorgi, F. M.; Grafstrm, P.; Manghi, F. Lasagni; Massa, I.; Massa, L.; Mengarelli, A.; Piccinini, M.; Polini, A.; Rinaldi, L.; Romano, M.; Sbarra, C.; Sbrizzi, A.; Semprini-Cesari, N.; Sidoti, A.; Spighi, R.; Valentinetti, S.; Villa, M.; Zoccoli, A.] INFN Sez Bologna, Bologna, Italy. [De Castro, S.; Di Sipio, R.; Fabbri, L.; Franchini, M.; Gabrielli, A.; Grafstrm, P.; Manghi, F. Lasagni; Massa, I.; Massa, L.; Mengarelli, A.; Piccinini, M.; Romano, M.; Sbrizzi, A.; Semprini-Cesari, N.; Sidoti, A.; Tupputi, S. A.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Univ Bologna, Dipartimento Fis & Astron, Bologna, Italy. [Arslan, O.; Bechtle, P.; Bernlochner, F. U.; Brock, I.; Cristinziani, M.; Davey, W.; Desch, K.; Dingfelder, J.; Ehrenfeld, W.; Gaycken, G.; Geich-Gimbel, Ch.; Gonella, L.; Haefner, P.; Hageboeck, S.; Hellmich, D.; Huegging, F.; Janssen, J.; Khoriauli, G.; Kostyukhin, V. V.; Kraus, J. K.; Kroseberg, J.; Krueger, H.; Lenz, T.; Leyko, A. M.; Liebal, J.; Limbach, C.; Mergelmeyer, S.; Mijovic, L.; Mueller, K.; Nanava, G.; Nattermann, T.; Obermann, T.; Pohl, D.; Sarrazin, B.; Schaepe, S.; Schultens, M. J.; Schwindt, T.; Scutti, F.; Seema, P.; Stillings, J. A.; Tannoury, N.; Therhaag, J.; Uhlenbrock, M.; Velz, T.; von Toerne, E.; Wagner, P.; Wang, T.; Wermes, N.; Wienemann, P.; Wiik-Fuchs, L. A. M.; Winter, B. T.; Wong, K. H. Yau; Zimmermann, R.] Univ Bonn, Phys Inst, Bonn, Germany. [Ahlen, S. P.; Bernard, C.; Black, K. M.; Butler, J. M.; Dell'Asta, L.; Helary, L.; Kruskal, M.; Long, B. A.; Shank, J. T.; Yan, Z.; Youssef, S.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Amelung, C.; Amundsen, G.; Artoni, G.; Bensinger, J. R.; Bianchini, L.; Blocker, C.; Coffey, L.; Fitzgerald, E. A.; Sciolla, G.; Venturini, A.; Zambito, S.; Zengel, K.] Brandeis Univ, Dept Phys, Waltham, MA 02254 USA. [Caloba, L. P.; Maidantchik, C.; Marroquim, F.; Seixas, J. M.] Univ Fed Rio de Janeiro, COPPE EE IF, Rio De Janeiro, Brazil. [Cerqueira, A. S.; de Andrade Filho, L. Manhaes] Univ Fed Juiz de Fora, Elect Circuits Dept, Juiz de Fora, Brazil. [do Vale, M. A. B.] Fed Univ Sao Joao Rei UFSJ, Sao Joao Del Rei, Brazil. [Donadelli, M.; Leite, M. A. L.] Univ Sao Paulo, Inst Fis, BR-01498 Sao Paulo, Brazil. [Adams, D. L.; Assamagan, K.; Begel, M.; Buttinger, W.; Chen, H.; Chernyatin, V.; Debbe, R.; Ernst, M.; Gibbard, B.; Gordon, H. A.; Iakovidis, G.; Klimentov, A.; Kouskoura, V.; Kravchenko, A.; Lanni, F.; Lissauer, D.; Lynn, D.; Ma, H.; Maeno, T.; Metcalfe, J.; Mountricha, E.; Nevski, P.; Nilsson, P.; Damazio, D. Oliveira; Paige, F.; Panitkin, S.; Perepelitsa, D. V.; Pleier, M-A.; Polychronakos, V.; Protopopescu, S.; Purohit, M.; Radeka, V.; Rajagopalan, S.; Redlinger, G.; Snyder, S.; Steinberg, P.; Takai, H.; Undrus, A.; Wenaus, T.; Ye, S.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Alexa, C.; Boldea, V.; Buda, S. I.; Caprini, I.; Caprini, M.; Dobre, M.; Ducu, O. A.; Jinaru, A.; Maurer, J.; Olariu, A.; Rotaru, M.; Stoicea, G.; Tudorache, A.; Tudorache, V.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Popeneciu, G. A.] Natl Inst Res & Dev Isotop & Mol Technol, Dept Phys, Cluj Napoca, Romania. Univ Politehn Bucuresti, Bucharest, Romania. West Univ Timisoara, Timisoara, Romania. [Garzon, G. Otero Y.; Piegaia, R.; Reisin, H.; Sacerdoti, S.] Univ Buenos Aires, Dept Fis, Buenos Aires, DF, Argentina. [Arratia, M.; Barlow, N.; Batley, J. R.; Brochu, F. M.; Carter, J. R.; Chapman, J. D.; Cottin, G.; French, S. T.; Gillam, T. P. S.; Hill, J. C.; Kaneti, S.; Khoo, T. J.; Lester, C. G.; Mueller, T.; Parker, M. A.; Robinson, D.; Thomson, M.; Ward, C. P.; Yusuff, I.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Bellerive, A.; Cree, G.; Di Valentino, D.; Koffas, T.; Lacey, J.; Leight, W. A.; McCarthy, T. G.; Nomidis, I.; Oakham, F. G.; Pasztor, G.; Tarrade, F.; Ueno, R.; Vincter, M. G.; Whalen, K.] Carleton Univ, Dept Phys, Ottawa, ON K1S 5B6, Canada. [Abreu, R.; Aleksa, M.; Andari, N.; Anders, G.; Anghinolfi, F.; Armbruster, A. J.; Arnaez, O.; Avolio, G.; Baak, M. A.; Backes, M.; Backhaus, M.; Beltramello, O.; Bianco, M.; Bogaerts, J. A.; Boveia, A.; Boyd, J.; Burckhart, H.; Campana, S.; Garrido, M. D. M. Capeans; Carli, T.; Catinaccio, A.; Cattai, A.; Cerv, M.; Chromek-Burckhart, D.; Conti, G.; Dell'Acqua, A.; Deviveiros, P. O.; Di Girolamo, A.; Di Girolamo, B.; Dittus, F.; Dobos, D.; Dudarev, A.; Duerssen, M.; Eifert, T.; Ellis, N.; Elsing, M.; Farthouat, P.; Fassnacht, P.; Feigl, S.; Perez, S. Fernandez; Francis, D.; Froidevaux, D.; Garonne, V.; Gianotti, F.; Gillberg, D.; Glatzer, J.; Goossens, L.; Gorini, B.; Gray, H. M.; Hawkings, R. J.; Heller, M.; Helsens, C.; Correia, A. M. Henriques; Hervas, L.; Hoecker, A.; Hubacek, Z.; Huhtinen, M.; Jaekel, M. R.; Jakobsen, S.; Kaneda, M.; Klioutchnikova, T.; Krasznahorkay, A.; Lantzsch, K.; Lapoire, C.; Lassnig, M.; Miotto, G. Lehmann; Lenzi, B.; Lichard, P.; Macina, D.; Malyukov, S.; Mandelli, B.; Mapelli, L.; Marzin, A.; Messina, A.; Milic, A.; Mornacchi, G.; Nairz, A. M.; Nakahama, Y.; Nicquevert, B.; Nordberg, M.; Oide, H.; Palestini, S.; Pauly, T.; Pernegger, H.; Peters, K.; Petersen, B. A.; Pommes, K.; Poppleton, A.; Poulard, G.; Poveda, J.; Prasad, S.; Rammensee, M.; Raymond, M.; Rembser, C.; Rodrigues, L.; Roe, S.; Ruiz-Martinez, A.; Salzburger, A.; Schaefer, D.; Schlenker, S.; Schmieden, K.; Serfon, C.; Sfyrla, A.; Solans, C. A.; Spigo, G.; Stelzer, H. J.; Teischinger, F. A.; TenKate, H.; Tremblet, L.; Tricoli, A.; Tsarouchas, C.; Unal, G.; van Eldik, N.; van Woerden, M. C.; Vandelli, W.; Vigne, R.; Voss, R.; Vuillermet, R.; Wells, P. S.; Wengler, T.; Wenig, S.; Werner, P.; Wilkens, H. G.; Wotschack, J.; Young, C. J. S.; Zwalinski, L.] CERN, Geneva, Switzerland. [Alison, J.; Anderson, K. J.; Cheng, Y.; Dandoy, J. R.; Facini, G.; Fiascaris, M.; Gardner, R. W.; Ilchenko, Y.; Kapliy, A.; Krizka, K.; Li, H. L.; Melachrinos, C.; Merritt, F. S.; Miller, D. W.; Okumura, Y.; Onyisi, P. U. E.; Oreglia, M. J.; Penning, B.; Pilcher, J. E.; Saxon, J.; Vukotic, I.; Webster, J. S.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Carquin, E.; Diaz, M. A.; Vogel, M.] Pontificia Univ Catolica Chile, Fac Fis, Santiago 22, Chile. [Brooks, W. K.; Kuleshov, S.; Prokoshin, F.; White, R.] Univ Tecn Federico Santa Maria, Dept Fis, Valparaiso, Chile. [Bai, Y.; Fang, Y.; Jin, S.; Lou, X.; Ouyang, Q.; Ren, H.; Shan, L. Y.; Sun, X.; Wang, J.; Xu, D.; Yao, L.; Zhu, H.; Zhuang, X.] Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China. [Gao, J.; Guan, L.; Han, L.; Hu, Q.; Jiang, Y.; Li, B.; Liu, J. B.; Liu, M.; Liu, Y.; Song, H. Y.; Xu, L.; Zhang, R.; Zhao, Z.; Zhu, Y.] Univ Sci & Technol China, Dept Modern Phys, Hefei, Anhui, Peoples R China. [Chen, S.; Li, Y.; Wang, C.] Nanjing Univ, Dept Phys, Nanjing, Jiangsu, Peoples R China. [Chen, L.; Feng, C.; Ge, P.; Ma, L. L.; Zhang, X.; Zhu, C. G.] Shandong Univ, Sch Phys, Shandong, Peoples R China. [Guo, J.; Li, L.; Yang, H.] Shanghai Jiao Tong Univ, Dept Phys & Astron, Shanghai Key Lab Particle Phys & Cosmol, Shanghai 200030, Peoples R China. [Chen, X.] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Ghodbane, N.; Gilles, G.; Gris, Ph.; Liao, H.; Madar, R.; Pallin, D.; Saez, S. M. Romano; Santoni, C.; Simon, D.; Theveneaux-Pelzer, T.; Vazeille, F.] Clermont Univ, Lab Phys Corpusculaire, Clermont Ferrand, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Ghodbane, N.; Gilles, G.; Gris, Ph.; Liao, H.; Madar, R.; Pallin, D.; Saez, S. M. Romano; Santoni, C.; Simon, D.; Theveneaux-Pelzer, T.; Vazeille, F.] Univ Blaise Pascal, Clermont Ferrand, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Ghodbane, N.; Gilles, G.; Gris, Ph.; Liao, H.; Madar, R.; Pallin, D.; Saez, S. M. Romano; Santoni, C.; Simon, D.; Theveneaux-Pelzer, T.; Vazeille, F.] CNRS, IN2P3, Clermont Ferrand, France. [Altheimer, A.; Andeen, T.; Angerami, A.; Bain, T.; Brooijmans, G.; Cole, B.; Hu, D.; Hughes, E. W.; Klein, M. H.; Mohapatra, S.; Nikiforou, N.; Parsons, J. A.; Smith, M. N. K.; Thompson, E. N.; Tian, F.; Tuts, P. M.; Zhou, L.] Columbia Univ, Nevis Lab, Irvington, NY USA. [Alonso, A.; Dam, M.; Galster, G.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Joergensen, M. D.; Loevschall-Jensen, A. E.; Pedersen, L. E.; Petersen, T. C.; Pingel, A.; Thomsen, L. A.; Wiglesworth, C.; Xella, S.] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Capua, M.; Crosetti, G.; La Rotonda, L.; Mastroberardino, A.; Policicchio, A.; Salvatore, D.; Scarfone, V.; Schioppa, M.; Susinno, G.; Tassi, E.] INFN Grp Coll Cosenza, Lab Nazl Frascati, Frascati, Italy. [Capua, M.; Crosetti, G.; La Rotonda, L.; Mastroberardino, A.; Policicchio, A.; Salvatore, D.; Scarfone, V.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dipartmento Fis, I-87036 Arcavacata Di Rende, Italy. [Adamczyk, L.; Bold, T.; Dabrowski, W.; Dwuznik, M.; Dyndal, M.; Grabowska-Bold, I.; Kisielewska, D.; Koperny, S.; Kowalski, T. Z.; Mindur, B.; Przybycien, M.; Zemla, A.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, Krakow, Poland. [Palka, M.; Richter-Was, E.] Jagiellonian Univ, Marian Smoluchowski Inst Phys, Krakow, Poland. [Banas, E.; de Renstrom, P. A. Bruckman; Chwastowski, J. J.; Derendarz, D.; Godlewski, J.; Gornicki, E.; Hajduk, Z.; Iwanski, W.; Kaczmarska, A.; Korcyl, K.; Malecki, Pa.; Olszewski, A.; Olszowska, J.; Stanecka, E.; Staszewski, R.; Trzebinski, M.; Trzupek, A.; Wolter, M. W.; Wosiek, B. K.; Wozniak, K. W.; Zabinski, B.] Polish Acad Sci, Inst Nucl Phys, Krakow, Poland. [Cao, T.; Firan, A.; Kama, S.; Kehoe, R.; Sekula, S. J.; Stroynowski, R.; Turvey, A. J.; Varol, T.; Wang, H.; Ye, J.; Zhao, X.; Zhou, L.] So Methodist Univ, Dept Phys, Dallas, TX 75275 USA. [Izen, J. M.; Leyton, M.; Meirose, B.; Namasivayam, H.; Reeves, K.] Univ Texas Dallas, Dept Phys, Richardson, TX 75083 USA. [Argyropoulos, S.; Asbah, N.; Bessner, M.; Bloch, I.; Borroni, S.; Camarda, S.; Deterre, C.; Filipuzzi, M.; Glazov, A.; Grahn, K-J.; Gregor, I. M.; Grohsjean, A.; Haleem, M.; Hamnett, P. G.; Hengler, C.; Howarth, J.; Huang, Y.; Katzy, J.; Keller, J. S.; Kondrashova, N.; Kuhl, T.; Lisovyi, M.; Lobodzinska, E.; Lohwasser, K.; Mamuzic, J.; Medinnis, M.; Garcia, R. F. Naranjo; Naumann, T.; Peschke, R.; Petit, E.; Radescu, V.; Rubinskiy, I.; Schaefer, R.; Sedov, G.; Shushkevich, S.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Starovoitov, P.; Styles, N. A.; Tackmann, K.; Wang, J.; Wasicki, C.; Yatsenko, E.; Yildirim, E.] DESY, Hamburg, Germany. [Burmeister, I.; Erdmann, J.; Esch, H.; Goessling, C.; Jentzsch, J.; Jung, C. A.; Klingenberg, R.; Kroeninger, K.] Tech Univ Dortmund, Inst Experimentelle Phys 4, Dortmund, Germany. [Anger, P.; Duschinger, D.; Friedrich, F.; Grohs, J. P.; Gumpert, C.; Gutschow, C.; Hauswald, L.; Kobel, M.; Mader, W. F.; Morgenstern, M.; Novgorodova, O.; Rudolph, C.; Schnoor, U.; Siegert, F.; Socher, F.; Staerz, S.; Straessner, A.; Vest, A.; Wahrmund, S.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Arce, A. T. H.; Benjamin, D. P.; Bocci, A.; Goshaw, A. T.; Kajomovitz, E.; Kotwal, A.; Kruse, M. C.; Li, L.; Li, S.; Liu, M.; Oh, S. H.; Zhou, C.] Duke Univ, Dept Phys, Durham, NC 27706 USA. [Bhimji, W.; Bristow, T. M.; Clark, P. J.; Dias, F. A.; Edwards, N. C.; Wall, F. M. Garay; Glaysher, P. C. F.; Harrington, R. D.; Leonidopoulos, C.; Martin, V. J.; Mills, C.; O'Brien, B. J.; Pino, S. A. Olivares; Proissl, M.; Selbach, K. E.; Smart, B. H.; Washbrook, A.; Wynne, B. M.] Univ Edinburgh, SUPA Sch Phys & Astron, Edinburgh, Midlothian, Scotland. [Antonelli, M.; Beretta, M.; Bilokon, H.; Chiarella, V.; Curatolo, M.; Di Nardo, R.; Esposito, B.; Gatti, C.; Laurelli, P.; Maccarrone, G.; Sansoni, A.; Testa, M.; Vilucchi, E.] INFN Lab Nazl Frascati, Frascati, Italy. [Amoroso, S.; Arnold, H.; Betancourt, C.; Boehler, M.; Bruneliere, R.; Buehrer, F.; Buescher, D.; Coniavitis, E.; Consorti, V.; Dao, V.; Di Simone, A.; Flechl, M.; Giuliani, C.; Herten, G.; Jakobs, K.; Javurek, T.; Jenni, P.; Kiss, F.; Koeneke, K.; Kopp, A. K.; Kuehn, S.; Lai, S.; Landgraf, U.; Mahboubi, K.; Mohr, W.; Pagacova, M.; Parzefall, U.; Rave, T. C.; Ronzani, M.; Rosbach, K.; Ruehr, F.; Rurikova, Z.; Ruthmann, N.; Schillo, C.; Schmidt, E.; Schumacher, M.; Sommer, P.; Sundermann, J. E.; Temming, K. K.; Tsiskaridze, V.; Ungaro, F. C.; von Radziewski, H.; Warsinsky, M.; Weiser, C.; Werner, M.; Zimmermann, S.] Univ Freiburg, Fak Math & Phys, D-79106 Freiburg, Germany. [Alexandre, G.; Ancu, L. S.; Barone, G.; Bell, P. J.; Bell, W. H.; Noccioli, E. Benhar; De Mendizabal, J. Bilbao; Bucci, F.; Toro, R. Camacho; Clark, A.; Delitzsch, C. M.; della Volpe, D.; Doglioni, C.; Ferrere, D.; Gadomski, S.; Golling, T.; Gonzalez-Sevilla, S.; Gramling, J.; Guescini, F.; Iacobucci, G.; Katre, A.; La Rosa, A.; Mermod, P.; Miucci, A.; Muenstermann, D.; Picazio, A.; Tykhonov, A.; Vallecorsa, S.; Wu, X.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Barberis, D.; Darbo, G.; Favareto, A.; Parodi, A. Ferretto; Gagliardi, G.; Gemme, C.; Guido, E.; Morettini, P.; Osculati, B.; Parodi, F.; Rossi, L. P.; Schiavi, C.] INFN Sez Genova, Genoa, Italy. [Barberis, D.; Favareto, A.; Parodi, A. Ferretto; Gagliardi, G.; Guido, E.; Osculati, B.; Parodi, F.; Schiavi, C.] Univ Genoa, Dipartimento Fis, Genoa, Italy. [Jejelava, J.; Tskhadadze, E. G.] Iv Javakhishvili Tbilisi State Univ, E Andronikashvili Inst Phys, Tbilisi, Rep of Georgia. [Djobava, T.; Durglishvilib, A.; Khubua, J.] Tbilisi State Univ, Inst High Energy Phys, Tbilisi, Rep of Georgia. [Dueren, M.; Kreutzfeldt, K.; Stenzel, H.] Univ Giessen, Inst Phys 2, Giessen, Germany. [Bates, R. L.; Britton, D.; Buckley, A. G.; Bussey, P.; Buttar, C. M.; Buzatu, A.; Cinca, D.; D'Auria, S.; Doherty, T.; Doyle, A. T.; Ferrag, S.; Ferrando, J.; de Lima, D. E. Ferreira; Gul, U.; Ortiz, N. G. Gutierrez; Kar, D.; Knue, A.; Morton, A.; Mullen, P.; O'Shea, V.; Barrera, C. Oropeza; Owen, M.; Pollard, C. S.; Qin, G.; Quilty, D.; Ravenscroft, T.; Robson, A.; Saxon, D. H.; Smith, K. M.; Denis, R. D. St.; Stewart, G. A.; Thompson, A. S.] Univ Glasgow, SUPA Sch Phys & Astron, Glasgow, Lanark, Scotland. [Bindi, M.; Blumenschein, U.; Graber, L.; Grosse-Knetter, J.; Hamer, M.; Kareem, M. J.; Kawamura, G.; Keil, M.; Lemmer, B.; Magradze, E.; Mantoani, M.; Mchedlidze, G.; Llacer, M. Moreno; Musheghyan, H.; Nackenhorst, O.; Nadal, J.; Quadt, A.; Rieger, J.; Schorlemmer, A. L. S.; Serkin, L.; Shabalina, E.; Stolte, P.; Schroeder, T. Vazquez; Weingarten, J.; Zinonos, Z.] Univ Gottingen, Inst Phys 2, Gottingen, Germany. [Albrand, S.; Brown, J.; Collot, J.; Crepe-Renaudin, S.; Delsart, P. A.; Gabaldon, C.; Genest, M. H.; Hostachy, J-Y.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Monini, C.; Stark, J.; Trocme, B.; Wu, M.] Univ Grenoble Alpes, Lab Phys Subatom & Cosmol, CNRS, IN2P3, Grenoble, France. [McFarlane, K. W.] Hampton Univ, Dept Phys, Hampton, VA 23668 USA. [da Costa, J. Barreiro Guimaraes; Catastini, P.; Franklin, M.; Huth, J.; Ippolito, V.; Mateos, D. Lopez; Mercurio, K. M.; Morii, M.; Skottowe, H. P.; Spearman, W. R.; Sun, S.; Tolley, E.; Yen, A. L.] Harvard Univ, Lab Particle Phys & Cosmol, Cambridge, MA 02138 USA. [Andrei, V.; Baas, A. E.; Davygora, Y.; Dietzsch, T. A.; Djuvsland, J. I.; Dunford, M.; Hanke, P.; Jongmanns, J.; Khomich, A.; Kluge, E-E.; Lang, V. S.; Meier, K.; Scharf, V.; Schultz-Coulon, H-C.; Stamen, R.; Wessels, M.] Heidelberg Univ, Kirchhoff Inst Phys, Heidelberg, Germany. [Anders, C. F.; Giulini, M.; Narayan, R.; Schaetzel, S.; Schmitt, S.; Schoening, A.; Sosa, D.] Heidelberg Univ, Inst Phys, Heidelberg, Germany. [Colombo, T.; Kretz, M.; Kugel, A.] Heidelberg Univ, ZITI Inst Tech Informat, Mannheim, Germany. [Nagasaka, Y.] Hiroshima Inst Technol, Fac Appl Informat Sci, Hiroshima, Japan. [Bortolotto, V.; Castillo, L. R. Flores] Chinese Univ Hong Kong, Dept Phys, Shatin, NT, Peoples R China. Univ Hong Kong, Dept Phys, Hong Kong, Hong Kong, Peoples R China. [Prokofiev, K.] Hong Kong Univ Sci & Technol, Dept Phys, Kowloon, Hong Kong, Peoples R China. [Dattagupta, A.; Evans, H.; Gagnon, P.; Lammers, S.; Martinez, N. Lorenzo; Luehring, F.; Ogren, H.; Penwell, J.; Weinert, B.; Zieminska, D.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Glonti, G. L.; Jansky, R. W.; Jussel, P.; Kneringer, E.; Lukas, W.; Ritsch, E.; Usanova, A.] Leopold Franzens Univ, Inst Astro & Teilchenphys, Innsbruck, Austria. [Mallik, U.; Mandrysch, R.; Zaidan, R.] Univ Iowa, Iowa City, IA USA. [Chen, C.; Cochran, J.; De Lorenzi, F.; Krumnack, N.; Pluth, D.; Prell, S.] Iowa State Univ, Dept Phys & Astron, Ames, IA USA. [Ahmadov, F.; Aleksandrov, I. N.; Bednyakov, V. A.; Boyko, I. R.; Budagov, I. A.; Chelkov, G. A.; Cheplakov, A.; Chizhov, M. V.; Dedovich, D. V.; Demichev, M.; Gostkin, M. I.; Huseynov, N.; Javadov, N.; Karpov, S. N.; Karpova, Z. M.; Kazarinov, M. Y.; Khramov, E.; Kotov, V. M.; Kruchonak, U.; Krumshteyn, Z. V.; Kukhtin, V.; Ladygin, E.; Minashvili, I. A.; Mineev, M.; Olchevski, A. G.; Peshekhonov, V. D.; Plotnikova, E.; Potrap, I. N.; Pozdnyakov, V.; Rusakovich, N. A.; Sadykov, R.; Sapronov, A.; Shiyakova, M.; Sisakyan, A. N.; Soloshenko, A.; Topilin, N. D.; Vinogradov, V. B.; Yeletskikh, I.; Zhemchugov, A.; Zimine, N. I.] JINR Dubna, Joint Inst Nucl Res, Dubna, Russia. [Amako, K.; Aoki, M.; Arai, Y.; Ikegami, Y.; Ikeno, M.; Iwasaki, H.; Kanzaki, J.; Kohriki, T.; Kondo, T.; Kono, T.; Makida, Y.; Nagano, K.; Nakamura, K.; Nozaki, M.; Odaka, S.; Sasaki, O.; Suzuki, Y.; Takubo, Y.; Tanaka, S.; Terada, S.; Tokushuku, K.; Tsuno, S.; Unno, Y.; Yamada, M.; Yamamoto, A.; Yasu, Y.] KEK, High Energy Accelerator Res Org, Tsukuba, Ibaraki, Japan. [Chen, Y.; Hasegawa, M.; Inamaru, Y.; Kurashige, H.; Kurumida, R.; Ochi, A.; Shimizu, S.; Takeda, H.; Yakabe, R.; Yamazaki, Y.; Yuan, L.] Kobe Univ, Grad Sch Sci, Kobe, Hyogo 657, Japan. [Ishino, M.; Kunigo, T.; Sumida, T.; Tashiro, T.] Kyoto Univ, Fac Sci, Kyoto 606, Japan. [Takashima, R.] Kyoto Univ, Kyoto 612, Japan. [Kawagoe, K.; Oda, S.; Otono, H.; Tojo, J.] Kyushu Univ, Dept Phys, Fukuoka 812, Japan. [Verzini, M. J. Alconada; Alonso, F.; Anduaga, X. S.; Arduh, F. A.; Dova, M. T.; Monticelli, F.; Wahlberg, H.] Univ Nacl La Plata, Inst Fis La Plata, La Plata, Argentina. [Verzini, M. J. Alconada; Alonso, F.; Anduaga, X. S.; Arduh, F. A.; Dova, M. T.; Monticelli, F.; Wahlberg, H.] Consejo Nacl Invest Cient & Tecn, La Plata, Argentina. [Allison, L. J.; Barton, A. E.; Beattie, M. D.; Borissov, G.; Bouhova-Thacker, E. V.; Chilingarov, A.; Dearnaley, W. J.; Fox, H.; Grimm, K.; Henderson, R. C. W.; Hughes, G.; Jones, R. W. L.; Kartvelishvili, V.; Long, R. E.; Love, P. A.; Maddocks, H. J.; Skinner, M. B.; Smizanska, M.; Walder, J.; Wharton, A. M.] Univ Lancaster, Dept Phys, Lancaster, England. [Chiodini, G.; Gorini, E.; Primavera, M.; Spagnolo, S.; Ventura, A.] INFN Sez Lecce, Lecce, Italy. [Gorini, E.; Spagnolo, S.; Ventura, A.] Univ Salento, Dipartimento Matemat & Fis, Lecce, Italy. [Allport, P. P.; Burdin, S.; D'Onofrio, M.; Dervan, P.; Gwilliam, C. B.; Hayward, H. S.; Jackson, M.; Jones, T. J.; King, B. T.; Klein, M.; Klein, U.; Kretzschmar, J.; Laycock, P.; Lehan, A.; Mahmoud, S.; Maxfield, S. J.; Mehta, A.; Migas, S.; Price, J.; Readioff, N. P.; Schnellbach, Y. J.; Vossebeld, J. H.] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 3BX, Merseyside, England. [Cindro, V.; Deliyergiyev, M.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Mandic, I.; Mikuz, M.; Sfiligoj, T.] Univ Ljubljana, Dept Phys, Jozef Stefan Inst, Ljubljana, Slovenia. [Cindro, V.; Deliyergiyev, M.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Mandic, I.; Mikuz, M.; Sfiligoj, T.] Univ Ljubljana, Ljubljana, Slovenia. [Alpigiani, C.; Bevan, A. J.; Bona, M.; Bret, M. Cano; Cerrito, L.; Fletcher, G.; Goddard, J. R.; Hays, J. M.; Hickling, R.; Landon, M. P. J.; Lloyd, S. L.; Morris, J. D.; Piccaro, E.; Rizvi, E.; Sandbach, R. L.; Snidero, G.; Castanheira, M. Teixeira Dias] Queen Mary Univ London, Sch Phys & Astron, London, England. [Berry, T.; Blanco, J. E.; Boisvert, V.; Brooks, T.; Connelly, I. A.; Cowan, G.; Duguid, L.; George, S.; Gibson, S. M.; Kempster, J. J.; Vazquez, J. G. Panduro; Pastore, Fr.; Savage, G.; Spano, F.; Teixeira-Dias, P.; Thomas-Wilsker, J.] Royal Holloway Univ London, Dept Phys, Surrey, England. [Bieniek, S. P.; Butterworth, J. M.; Campanelli, M.; Casadei, D.; Chislett, R. T.; Cooper, B. D.; Davison, P.; Falla, R. J.; Freeborn, D.; Gregersen, K.; Hesketh, G. G.; Jansen, E.; Konstantinidis, N.; Korn, A.; Kucuk, H.; Lambourne, L.; Leney, K. J. C.; Martyniuk, A. C.; Mcfayden, J. A.; Nurse, E.; Ochoa, I.; Pilkington, A. D.; Scanlon, T.; Sherwood, P.; Simmons, B.; Wardrope, D. R.; Waugh, B. M.] UCL, Dept Phys & Astron, London, England. [Greenwood, Z. D.; Jana, D. K.; Sawyer, L.; Sircar, A.; Subramaniam, R.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; Davignon, O.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pandini, C. E.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.; Varouchas, D.] UPMC, Lab Phys Nucl & Hautes Energies, Paris, France. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; Davignon, O.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pandini, C. E.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.; Varouchas, D.] Univ Paris Diderot, Paris, France. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; Davignon, O.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pandini, C. E.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.; Varouchas, D.] CNRS, IN2P3, Paris, France. [Akesson, T. P.; Bocchetta, S. S.; Bryngemark, L.; Floderus, A.; Hawkins, A. D.; Hedberg, V.; Ivarsson, J.; Jarlskog, G.; Lytken, E.; Mjornmark, J. U.; Smirnova, O.; Viazlo, O.] Lund Univ, Fysiska Inst, Lund, Sweden. [Arnal, V.; Barreiro, F.; Cantero, J.; De la Torre, H.; Del Peso, J.; Glasman, C.; Merino, J. Llorente; Terron, J.] Univ Autonoma Madrid, Dept Fis Teor C15, Madrid, Spain. [Bertella, C.; Blum, W.; Buescher, V.; Caputo, R.; Caudron, J.; Cerio, B. C.; Ellinghaus, F.; Endner, O. C.; Ertel, E.; Fiedler, F.; Torregrosa, E. Fullana; Heck, T.; Hohlfeld, M.; Huelsing, T. A.; Karnevskiy, M.; Kleinknecht, K.; Koenig, S.; Kpke, L.; Lin, T. H.; Lungwitz, M.; Masetti, L.; Mattmann, J.; Meyer, C.; Moritz, S.; Poettgen, R.; Rave, S.; Sander, H. G.; Schaeffer, J.; Schaefer, U.; Schmitt, C.; Schott, M.; Schroeder, C.; Schuh, N.; Simioni, E.; Tapprogge, S.; Urrejola, P.; Wollstadt, S. J.; Zimmermann, C.; Zinser, M.] Johannes Gutenberg Univ Mainz, Inst Phys, Mainz, Germany. [Balli, F.; Barnes, S. L.; Cox, B. E.; Da Via, C.; Forti, A.; Ponce, J. M. Iturbe; Joshi, K. D.; Keoshkerian, H.; Klinger, J. A.; Loebinger, F. K.; Marsden, S. P.; Masik, J.; Neep, T. J.; Oh, A.; Ospanov, R.; Pater, J. R.; Peters, R. F. Y.; Price, D.; Qin, Y.; Queitsch-Maitland, M.; Robinson, J. E. M.; Schwanenberger, C.; Thompson, R. J.; Tomlinson, L.; Watts, S.; Webb, S.; Woudstra, M. J.; Wyatt, T. R.] Univ Manchester, Sch Phys & Astron, Manchester, Lancs, England. [Aad, G.; Alio, L.; Barbero, M.; Coadou, Y.; Diaconu, C.; Diglio, S.; Djama, F.; Feligioni, L.; Gao, J.; Hallewell, G. D.; Hubaut, F.; Kahn, S. J.; Knoops, E. B. F. G.; Le Guirriec, E.; Li, B.; Liu, J.; Madaffari, D.; Mochizuki, K.; Monnier, E.; Muanza, S.; Nagai, Y.; Nagy, E.; Pralavorio, P.; Rozanov, A.; Serre, T.; Talby, M.; Torres, R. E. Ticse; Tiouchichine, E.; Tisserant, S.; Toth, J.; Touchard, F.; Ughetto, M.; Vacavant, L.] Aix Marseille Univ, CPPM, Marseille, France. [Aad, G.; Alio, L.; Barbero, M.; Coadou, Y.; Diaconu, C.; Diglio, S.; Djama, F.; Feligioni, L.; Gao, J.; Hallewell, G. D.; Hubaut, F.; Kahn, S. J.; Knoops, E. B. F. G.; Le Guirriec, E.; Li, B.; Liu, J.; Madaffari, D.; Mochizuki, K.; Monnier, E.; Muanza, S.; Nagai, Y.; Nagy, E.; Pralavorio, P.; Rozanov, A.; Serre, T.; Talby, M.; Torres, R. E. Ticse; Tiouchichine, E.; Tisserant, S.; Toth, J.; Touchard, F.; Ughetto, M.; Vacavant, L.] CNRS, IN2P3, Marseille, France. [Bellomo, M.; Bernard, N. R.; Brau, B.; Dallapiccola, C.; Daya-Ishmukhametova, R. K.; Moyse, E. J. W.; Pais, P.; Pueschel, E.; Ventura, D.; Willocq, S.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Belanger-Champagne, C.; Chapleau, B.; Corriveau, F.; Keyes, R. A.; Mantifel, R.; Prince, S.; Robertson, S. H.; Robichaud-Veronneau, A.; Stockton, M. C.; Stoebe, M.; Vachon, B.; Wang, K.; Warburton, A.] McGill Univ, Dept Phys, Montreal, PQ, Canada. [Barberio, E. L.; Brennan, A. J.; Jennens, D.; Kubota, T.; Hanninger, G. Nunes; Nuti, F.; Rados, P.; Spiller, L. A.; Tan, K. G.; Taylor, G. N.; Thong, W. M.; Urquijo, P.; Volpi, M.; Zanzi, D.] Univ Melbourne, Sch Phys, Melbourne, Vic, Australia. [Amidei, D.; Chelstowska, M. A.; Cheng, H. C.; Dai, T.; Diehl, E. B.; Feng, H.; Ferretti, C.; Fleischmann, P.; Goldfarb, S.; Hu, X.; Levin, D.; Liu, L.; Long, J. D.; Lu, N.; Mckee, S. P.; McCarn, A.; Neal, H. A.; Panikashvili, N.; Qian, J.; Schwarz, T. A.; Searcy, J.; Thun, R. P.; Wilson, A.; Wu, Y.; Yu, J. M.; Zhang, D.; Zhou, B.; Zhu, J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Abolins, M.; Gonzalez, B. Alvarez; Arabidze, G.; Brock, R.; Chegwidden, A.; Fisher, W. C.; Halladjian, G.; Hauser, R.; Hayden, D.; Huston, J.; Linnemann, J. T.; Martin, B.; Pope, B. G.; Schoenrock, B. D.; Schwienhorst, R.; Ta, D.; Tollefson, K.; True, P.; Willis, C.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI USA. [Alimonti, G.; Andreazza, A.; Besana, M. I.; Carminati, L.; Consonni, S. M.; Costa, G.; Fanti, M.; Giugni, D.; Lari, T.; Mandelli, L.; Mazza, S. M.; Meroni, C.; Perini, L.; Pizio, C.; Ragusa, F.; Resconi, S.; Shojaii, S.; Simoniello, R.; Tartarelli, G. F.; Troncon, C.; Turra, R.; Perez, M. Villaplana] INFN Sez Milano, Milan, Italy. [Andreazza, A.; Carminati, L.; Consonni, S. M.; Fanti, M.; Mazza, S. M.; Perini, L.; Pizio, C.; Ragusa, F.; Shojaii, S.; Simoniello, R.; Turra, R.; Perez, M. Villaplana] Univ Milan, Dipartimento Fis, Milan, Italy. [Harkusha, S.; Kulchitsky, Y.; Kurochkin, Y. A.; Tsiareshka, P. V.] Natl Acad Sci Belarus, B I Stepanov Inst Phys, Minsk, Byelarus. [Hrynevich, A.; Yanush, S.] Natl Sci & Educ Ctr Particle & High Energy Phys, Minsk, Byelarus. [Taylor, F. E.] MIT, Dept Phys, Cambridge, MA USA. [Arguin, J-F.; Azuelos, G.; Dallaire, F.; Gauthier, L.; Leroy, C.; Rezvani, R.; Saadi, D. Shoaleh; Soueid, P.] Univ Montreal, Grp Particle Phys, Montreal, PQ, Canada. [Akimov, A. V.; Baranov, S. P.; Gavrilenko, I. L.; Komar, A. A.; Mashinistov, R.; Mouraviev, S. V.; Nechaeva, P. Yu.; Shmeleva, A.; Snesarev, A. A.; Sulin, V. V.; Tikhomirov, V. O.; Zhukov, K.] Acad Sci, P N Lebedev Inst Phys, Moscow, Russia. [Artamonov, A.; Gorbounov, P. A.; Khovanskiy, V.; Kishimoto, T.; Shatalov, P. B.; Tsukerman, I. I.] ITEP, Moscow, Russia. [Antonov, A.; Belotskiy, K.; Bulekov, O.; Dolgoshein, B. A.; Kantserov, V. A.; Khodinov, A.; Krasnopevtsev, D.; Romaniouk, A.; Shulga, E.; Smirnov, S. Yu.; Smirnov, Y.; Soldatov, E. Yu.; Timoshenko, S.; Vorobev, K.] Natl Res Nucl Univ MEPhI, Moscow, Russia. [Boldyrev, A. S.; Gladilin, L. K.; Grishkevich, Y. V.; Kramarenko, V. A.; Maevskiy, A.; Rud, V. I.; Sivoklokov, S. Yu.; Smirnova, L. N.; Turchikhin, S.] M V Lomonosov Moscow State Univ, D V skobeltsyn Inst Nucl Phys, Moscow, Russia. [Adomeit, S.; Becker, S.; Bender, M.; Biebel, O.; Bock, C.; Bortfeldt, J.; Calfayan, P.; Chow, B. K. B.; Duckeck, G.; Elmsheuser, J.; Hertenberger, R.; Hoenig, F.; Legger, F.; Lorenz, J.; Loesel, P. J.; Mann, A.; Mehlhase, S.; Meineck, C.; Mitrevski, J.; Mueller, R. S. P.; Nunnemann, T.; Rauscher, F.; Ruschke, A.; Sanders, M. P.; Schaile, D.; Unverdorben, C.; Vladoiu, D.; Walker, R.; Wittkowski, J.] Univ Munich, Fak Phys, Munich, Germany. [Barillari, T.; Bethke, S.; Bronner, J.; Compostella, G.; Cortiana, G.; Ecker, K. M.; Flowerdew, M. J.; Goblirsch-Kolb, M.; Ince, T.; Kiryunin, A. E.; Kluth, S.; Kortner, O.; Kortner, S.; Kroha, H.; Macchiolo, A.; Maier, A. A.; Manfredini, A.; Menke, S.; Moser, H. G.; Mueller, F.; Nagel, M.; Nisius, R.; Nowak, S.; Oberlack, H.; Pahl, C.; Richter, R.; Salihagic, D.; Sandstroem, R.; Schacht, P.; Schwegler, Ph.; Sforza, F.; Spettel, F.; Stern, S.; Stonjek, S.; Terzo, S.; von der Schmitt, H.; Wildauer, A.] Werner Heisenberg Inst, Max Planck Inst Phys, Munich, Germany. [Shimojima, M.] Nagasaki Inst Appl Sci, Nagasaki, Japan. [Horii, Y.; Morvaj, L.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Grad Sch Sci, Nagoya, Aichi 4648601, Japan. [Horii, Y.; Morvaj, L.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Kobayashi Maskawa Inst, Nagoya, Aichi 4648601, Japan. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Carlino, G.; Conventi, F.; De Asmundis, R.; Della Pietra, M.; Di Donato, C.; Doria, A.; Iengo, P.; Izzo, V.; Merola, L.; Perrella, S.; Rossi, E.; Sanchez, A.; Sekhniaidze, G.; Zurzolo, G.] INFN Sez Napoli, Naples, Italy. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Di Donato, C.; Merola, L.; Perrella, S.; Rossi, E.; Sanchez, A.; Zurzolo, G.] Univ Naples Federico II, Dipartimento Fis, Naples, Italy. [Gorelov, I.; Hoeferkamp, M. R.; Seidel, S. C.; Toms, K.; Wang, R.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Besjes, G. J.; Caron, S.; Croft, V.; De Groot, N.; Filthaut, F.; Galea, C.; Klok, P. F.; Konig, A. C.; Nektarijevic, S.; Salvucci, A.; Strubig, A.] Radboud Univ Nijmegen Nikhef, Inst Math Astrophys & Particle Phys, Nijmegen, Netherlands. [Aben, R.; Angelozzi, I.; Beemster, L. J.; Bentvelsen, S.; Berge, D.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Brenner, L.; Butti, P.; Castelli, A.; Colijn, A. P.; de Jong, P.; De Nooij, L.; Deigaard, I.; Deluca, C.; Dhaliwal, S.; Ferrari, P.; Gadatsch, S.; Geerts, D. A. A.; Hartjes, F.; Hessey, N. P.; Hod, N.; Igonkina, O.; Karastathis, N.; Kluit, P.; Koffeman, E.; Linde, F.; Mahlstedt, J.; Mechnich, J.; Meyer, J.; Oussoren, K. P.; Sabato, G.; Salek, D.; Slawinska, M.; Valencic, N.; Van den Wollenberg, W.; Van der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; Van der Leeuw, R.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.; Weits, H.; Williams, S.] Univ Amsterdam, Nikhef Natl Inst Subat Phys, Amsterdam, Netherlands. [Aben, R.; Angelozzi, I.; Beemster, L. J.; Bentvelsen, S.; Berge, D.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Brenner, L.; Butti, P.; Castelli, A.; Colijn, A. P.; de Jong, P.; De Nooij, L.; Deigaard, I.; Deluca, C.; Dhaliwal, S.; Ferrari, P.; Gadatsch, S.; Geerts, D. A. A.; Hartjes, F.; Hessey, N. P.; Hod, N.; Igonkina, O.; Karastathis, N.; Kluit, P.; Koffeman, E.; Linde, F.; Mahlstedt, J.; Mechnich, J.; Meyer, J.; Oussoren, K. P.; Sabato, G.; Salek, D.; Slawinska, M.; Valencic, N.; Van den Wollenberg, W.; Van der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; Van der Leeuw, R.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.; Weits, H.; Williams, S.] Univ Amsterdam, Amsterdam, Netherlands. [Adelman, J.; Burghgrave, B.; Chakraborty, D.; Cole, S.; Suhr, C.; Yurkewicz, A.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Anisenkov, A. V.; Arik, M.; Bobrovnikov, V. S.; Bogdanchikov, A. G.; Cetin, S. A.; Kazanin, V. F.; Kharlamov, A. G.; Korol, A. A.; Malyshev, V. M.; Maslennikov, A. L.; Maximov, D. A.; Peleganchuk, S. V.; Rezanova, O. L.; Soukharev, A. M.; Talyshev, A. A.; Tikhonov, Yu. A.] SB RAS, Budker Inst Nucl Phys, Novosibirsk, Russia. [Bernius, C.; Cranmer, K.; Haas, A.; Heinrich, L.; van Huysduynen, L. Hooft; Kaplan, B.; Karthik, K.; Konoplich, R.; Kreiss, S.; Mincer, A. I.; Nemethy, P.; Neves, R. M.] NYU, Dept Phys, New York, NY 10003 USA. [Beacham, J. B.; Gan, K. K.; Ishmukhametov, R.; Kagan, H.; Kass, R. D.; Looper, K. A.; Merritt, H.; Moss, J.; Nagarkar, A.; Pignotti, D. T.; Shrestha, S.; Tannenwald, B. B.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Fac Sci, Okayama 700, Japan. [Abbott, B.; Alhroob, M.; Bertsche, C.; Bertsche, D.; Gutierrez, P.; Hasib, A.; Norberg, S.; Saleem, M.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA. [Abi, B.; Bousson, N.; Haley, J.; Khanov, A.; Rizatdinova, F.; Sidorov, D.; Yu, J.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA. [Chytka, L.; Hamal, P.; Hrabovsky, M.; Kvita, J.; Nozka, L.] Palacky Univ, RCPTM, CR-77147 Olomouc, Czech Republic. [Brau, J. E.; Brost, E.; Hopkins, W. H.; Majewski, S.; Potter, C. T.; Ptacek, E.; Radloff, P.; Shamim, M.; Sinev, N. B.; Strom, D. M.; Torrence, E.; Wanotayaroj, C.; Winklmeier, F.] Univ Oregon, Ctr High Energy Phys, Eugene, OR 97403 USA. [Khalek, S. Abdel; Ayoub, M. K.; Bassalat, A.; Becot, C.; Binet, S.; Bourdarios, C.; Charfeddine, D.; De Regie, J. B. De Vivie; Delgove, D.; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Grivaz, J-F.; Guillemin, T.; Hariri, F.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Ideal, E.; Kado, M.; Lounis, A.; Makovec, N.; Morange, N.; Nellist, C.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Rybkin, G.; Schaffer, A. C.; Scifo, E.; Serin, L.; Simion, S.; Tanaka, R.; Tran, H. L.; Zerwas, D.; Zhang, Z.; Zhao, Y.] Univ Paris 11, LAL, Orsay, France. [Khalek, S. Abdel; Ayoub, M. K.; Bassalat, A.; Becot, C.; Binet, S.; Bourdarios, C.; Charfeddine, D.; De Regie, J. B. De Vivie; Delgove, D.; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Grivaz, J-F.; Guillemin, T.; Hariri, F.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Ideal, E.; Kado, M.; Lounis, A.; Makovec, N.; Morange, N.; Nellist, C.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Rybkin, G.; Schaffer, A. C.; Scifo, E.; Serin, L.; Simion, S.; Tanaka, R.; Tran, H. L.; Zerwas, D.; Zhang, Z.; Zhao, Y.] CNRS, IN2P3, Orsay, France. [Endo, M.; Hanagaki, K.; Nomachi, M.; Okamura, W.; Sugaya, Y.; Teoh, J. J.; Yamaguchi, Y.] Osaka Univ, Grad Sch Sci, Osaka, Japan. [Bugge, L.; Bugge, M. K.; Cameron, D.; Catmore, J. R.; Franconi, L.; Gjelsten, B. K.; Gramstad, E.; Morisbak, V.; Ould-Saada, F.; Pajchel, K.; Pedersen, M.; Read, A. L.; Rohne, O.; Stapnes, S.; Strandlie, A.] Univ Oslo, Dept Phys, Oslo, Norway. [Barr, A. J.; Becker, K.; Behr, K.; Beresford, L.; Boddy, C. R.; Cooper-Sarkar, A. M.; Ortuzar, M. Crispin; Dafinca, A.; Davies, E.; Frost, J. A.; Gallas, E. J.; Gupta, S.; Gwenlan, C.; Hall, D.; Hays, C. P.; Henderson, J.; Howard, J.; Huffman, T. B.; Issever, C.; Kalderon, C. W.; King, R. S. B.; Kogan, L. A.; Lewis, A.; Nagai, K.; Nickerson, R. B.; Pachal, K.; Pickering, M. A.; Ryder, N. C.; Sawyer, C.; Tseng, J. C-L.; Viehhauser, G. H. A.; Weidberg, A. R.; Zhong, J.] Univ Oxford, Dept Phys, Oxford, England. [Conta, C.; Dondero, P.; Ferrari, R.; Fraternali, M.; Gaudio, G.; Livan, M.; Negri, A.; Polesello, G.; Rebuzzi, D. M.; Rimoldi, A.; Vercesi, V.] INFN Sez Pavia, Pavia, Italy. [Conta, C.; Dondero, P.; Fraternali, M.; Livan, M.; Negri, A.; Rebuzzi, D. M.; Rimoldi, A.] Univ Pavia, Dipartimento Fis, I-27100 Pavia, Italy. [Brendlinger, K.; Heim, S.; Hines, E.; Hong, T. M.; Jackson, B.; Kroll, J.; Lipeles, E.; Meyer, C.; Stahlman, J.; Thomson, E.; Tuna, A. N.; Vanguri, R.; Williams, H. H.; Yoshihara, K.] Univ Penn, Dept Phys, Philadelphia, PA 19104 USA. [Brendlinger, K.; Heim, S.; Hines, E.; Hong, T. M.; Jackson, B.; Kroll, J.; Lipeles, E.; Meyer, C.; Stahlman, J.; Thomson, E.; Tuna, A. N.; Vanguri, R.; Williams, H. H.; Yoshihara, K.] Petersburg Nucl Phys Inst, Gatchina, Russia. [Ezhilov, A.; Fedin, O. L.; Gratchev, V.; Levchenko, M.; Maleev, V. P.; Ryabov, Y. F.; Schegelsky, V. A.; Sedykh, E.; Seliverstov, D. M.; Solovyev, V.] Petersburg Nucl Phys Inst, Gatchina, Russia. [Annovi, A.; Beccherle, R.; Bertolucci, F.; Cavasinni, V.; Del Prete, T.; Dell'Orso, M.; Donati, S.; Giannetti, P.; Leone, S.; Roda, C.; Scuri, F.; Volpi, G.; White, S.] INFN Sez Pisa, Pisa, Italy. [Annovi, A.; Beccherle, R.; Bertolucci, F.; Cavasinni, V.; Del Prete, T.; Dell'Orso, M.; Donati, S.; Giannetti, P.; Leone, S.; Roda, C.; Scuri, F.; Volpi, G.; White, S.] Univ Pisa, Dipartimento Fis E Fermi, Pisa, Italy. [Bianchi, R. M.; Boudreau, J.; Cleland, W.; Escobar, C.; Mueller, J.; Sapp, K.; Saraiva, J. G.; Su, J.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Amorim, A.; Carvalho, J.; Galhardo, B.; Gomes, A.; Maioa, A.; Maneira, J.; Onofre, A.; Palma, A.; Pina, J.; Pinto, B.; Santos, H.; Silva, J.; Delgado, A. Tavares; Veloso, F.; Wolters, H.] Lab Instrumentacao & Fis Expt Particulas LIP, Lisbon, Portugal. [Amorim, A.; Carvalho, J.; Muino, P. Conde; de Sousa, M. J. Da Cunha Sargedas; Fiolhais, M. C. N.; Gomes, A.; Jorge, P. M.; Miguens, J. Machado; Maioa, A.; Maneira, J.; Palma, A.; Pedro, R.; Pina, J.; Saraiva, J. G.; Silva, J.; Delgado, A. Tavares; Veloso, F.] Univ Lisbon, Fac Ciencias, Lisbon, Portugal. [Dos Santos, S. P. Amor; Galhardo, B.; Wolters, H.] Univ Coimbra, Dept Phys, Coimbra, Portugal. [Gomes, A.; Maioa, A.; Pina, J.] Univ Lisbon, Ctr Fis Nucl, Lisbon, Portugal. [Onofre, A.] Univ Minho, Dept Fis, Braga, Portugal. [Aguilar-Saavedra, J. A.] Univ Granada, Dept Fis Teor & Cosmos, Granada, Spain. [Aguilar-Saavedra, J. A.] Univ Granada, CAFPE, Granada, Spain. Univ Nova Lisboa, Dept Fis, Caparica, Portugal. Univ Nova Lisboa, CEFITEC, Fac Ciencias Tecnol, Caparica, Portugal. [Chudoba, J.; Havranek, M.; Hejbal, J.; Jakoubek, T.; Kepka, O.; Kupco, A.; Kus, V.; Lokajicek, M.; Lysak, R.; Marcisovsky, M.; Mikestikova, M.; Nemecek, S.; Sicho, P.; Staroba, P.; Svatos, M.; Tasevsky, M.; Vrba, V.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Augsten, K.; Caforio, D.; Gallus, P.; Guenther, J.; Jakubek, J.; Kohout, Z.; Myska, M.; Pospisil, S.; Seifert, F.; Simak, V.; Slavicek, T.; Smolek, K.; Solar, M.; Solc, J.; Sopczak, A.; Sopko, B.; Sopko, V.; Suk, M.; Turecek, D.; Vacek, V.; Vlasak, M.; Vokac, P.; Vykydal, Z.; Zeman, M.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Balek, P.; Berta, P.; Chalupkova, I.; Davidek, T.; Dolejsi, J.; Dolezal, Z.; Faltova, J.; Kodys, P.; Kosek, T.; Leitner, R.; Pleskot, V.; Reznicek, P.; Rybar, M.; Scheirich, D.; Spousta, M.; Sykora, T.; Tas, P.; Todorova-Nova, S.; Valkar, S.; Vorobel, V.] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic. [Borisov, A.; Cheremushkina, E.; Denisov, S. P.; Fakhrutdinov, R. M.; Fenyuk, A. B.; Golubkov, D.; Hasegawa, S.; Kamenshchikov, A.; Karyukhin, A. N.; Kozhin, A. S.; Minaenko, A. A.; Myagkov, A. G.; Nikolaenko, V.; Solodkov, A. A.; Solovyanov, O. V.; Starchenko, E. A.; Zaitsev, A. M.; Zenin, O.] State Res Ctr, Inst High Energy Phys, Protvino, Russia. [Adye, T.; Baines, J. T.; Barnett, B. M.; Burke, S.; Dewhurst, A.; Dopke, J.; Emeliyanov, D.; Gallop, B. J.; Gee, C. N. P.; Haywood, S. J.; Kirk, J.; Martin-Haugh, S.; McCubbin, N. A.; McMahon, S. J.; Middleton, R. P.; Murray, W. J.; Phillips, P. W.; Sankey, D. P. C.; Tyndel, M.; Wickens, F. J.; Wielers, M.] Rutherford Appleton Lab, Particle Phys Dept, Didcot OX11 0QX, Oxon, England. [Tanaka, S.] Ritsumeikan Univ, Kusatsu, Shiga, Japan. [Anulli, F.; Bagiacchi, P.; Bagnaia, P.; Bauce, M.; Bini, C.; Ciapetti, G.; De Pedis, D.; De Salvo, A.; Di Domenico, A.; Falciano, S.; Gabrielli, A.; Gauzzi, P.; Gentile, S.; Giagu, S.; Kuna, M.; Lacava, F.; Luci, C.; Luminari, L.; Marzano, F.; Mirabelli, G.; Monzani, S.; Nisati, A.; Pasqualucci, E.; Petrolo, E.; Pontecorvo, L.; Rescigno, M.; Rosati, S.; Tehrani, F. Safai; Vanadia, M.; Vari, R.; Veneziano, S.; Verducci, M.; Zanello, L.] INFN Sez Roma, Rome, Italy. [Bagiacchi, P.; Bagnaia, P.; Bauce, M.; Bini, C.; Di Domenico, A.; Gabrielli, A.; Gauzzi, P.; Gentile, S.; Giagu, S.; Kuna, M.; Lacava, F.; Luci, C.; Monzani, S.; Vanadia, M.; Verducci, M.; Zanello, L.] Sapienza Univ Roma, Dipartimento Fis, Rome, Italy. [Aielli, G.; Cardarelli, R.; Cattani, G.; Ceradini, F.; Di Ciaccio, A.; Grossi, G. C.; Iuppa, R.; Liberti, B.; Mazzaferro, L.; Paolozzi, L.; Salamon, A.] INFN Sez Roma Tor Vergata, Rome, Italy. [Aielli, G.; Cattani, G.; Ceradini, F.; Di Ciaccio, A.; Grossi, G. C.; Iuppa, R.; Mazzaferro, L.; Paolozzi, L.; Santonico, R.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy. [Bacci, C.; Baroncelli, A.; Biglietti, M.; Di Micco, B.; Farilla, A.; Graziani, E.; Iodice, M.; Orestano, D.; Pastore, F.; Petrucci, F.; Puddu, D.; Salamanna, G.; Stanescu, C.; Taccini, C.; Trovatelli, M.] INFN Sez Roma Tre, Rome, Italy. [Bacci, C.; Di Micco, B.; Orestano, D.; Pastore, F.; Petrucci, F.; Puddu, D.; Salamanna, G.; Taccini, C.; Trovatelli, M.] Univ Roma, Dipartimento Matemat & Fis, Rome, Italy. [Benchekroun, D.; Chafaq, A.; Gouighri, M.; Hoummada, A.] Univ Hassan 2, Fac Sci Ain Chock, Reseau Univ Phys Hautes Energies, Casablanca, Morocco. [Ghazlane, H.] Ctr Natl Energie Sci Tech Nucl, Rabat, Morocco. [El Kacimi, M.; Goujdami, D.] Univ Cadi Ayyad, Fac Sci Semlalia, LPHEA Marrakech, Marrakech, Morocco. [Boutouil, S.; Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] Univ Mohamed Premier, Fac Sci, Oujda, Morocco. [Boutouil, S.; Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] LPTPM, Oujda, Morocco. [El Moursli, R. Cherkaoui; Fassi, F.; Haddad, N.; Idrissi, Z.] Univ Mohammed V Agdal, Fac Sci, Rabat, Morocco. [Bachacou, H.; Bauer, F.; Besson, N.; Blanchard, J-B.; Boonekamp, M.; Calandri, A.; Chevalier, L.; Hoffmann, M. Dano; Deliot, F.; Etienvre, A. I.; Formica, A.; Giraud, P. F.; Da Costa, J. Goncalves Pinto Firmino; Guyot, C.; Hanna, R.; Hassani, S.; Kozanecki, W.; Lancon, E.; Laporte, J. F.; Maiani, C.; Mansoulie, B.; Martinez, H.; Meric, N.; Meyer, J-P.; Nicolaidou, R.; Ouraou, A.; Protopapadaki, E.; Royon, C. R.; Saimpert, M.; Schune, Ph.; Schwemling, Ph.; Schwindling, J.] CEA Saclay Commissariat Energie Atom & Energies A, DSM IRFU Inst Rech Lois Fondamentales Univ, Gif Sur Yvette, France. [Battaglia, M.; Debenedetti, C.; Grabas, H. M. X.; Grillo, A. A.; Kuhl, A.; Law, A. T.; Liang, Z.; Litke, A. M.; Lockman, W. S.; Manning, P. M.; Nielsen, J.; Reece, R.; Rose, P.; Sadrozinski, H. F-W.; Schumm, B. A.; Seiden, A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Blackburn, D.; Coccaro, A.; Goussiou, A. G.; Hsu, S-C.; Lubatti, H. J.; Marx, M.; Rompotis, N.; Rosten, R.; Rothberg, J.; Russell, H. L.; De Bruin, P. H. Sales; Watts, G.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Anastopoulos, C.; Costanzo, D.; Donszelmann, T. Cuhadar; Dawson, I.; Fletcher, G. T.; Hodgkinson, M. C.; Hodgson, P.; Johansson, P.; Korolkova, E. V.; Kyriazopoulos, D.; Paredes, B. Lopez; Miyagawa, P. S.; Paganis, E.; Parker, K. A.; Tovey, D. R.] Univ Sheffield, Dept Phys & Astron, Sheffield, S Yorkshire, England. [Hasegawa, Y.; Takeshita, T.] Shinshu Univ, Dept Phys, Nagano, Japan. [Atlay, N. B.; Buchholz, P.; Czirr, H.; Fleck, I.; Gaur, B.; Ibragimov, I.; Ikematsu, K.; Rosenthal, O.; Walkowiak, W.; Ziolkowski, M.] Univ Siegen, Fachbereich Phys, D-57068 Siegen, Germany. [Buat, Q.; Dawe, E.; Horton, A. J.; O'Neil, D. C.; Stelzer, B.; Tanasijczuk, A. J.; Torres, H.; Van Nieuwkoop, J.; Vetterli, M. C.] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada. [Barklow, T.; Bartoldus, R.; Bawa, H. S.; Black, J. E.; Cogan, J. G.; Fulsom, B. G.; Gao, Y. S.; Garelli, N.; Grenier, P.; Kagan, M.; Kocian, M.; Koi, T.; Malone, C.; Mount, R.; Nef, P. D.; Piacquadio, G.; Salnikov, A.; Schwartzman, A.; Silverstein, D.; Strauss, E.; Su, D.; Swiatlowski, M.; Tompkins, L.; Wittgen, M.; Young, C.] SLAC Natl Accelerator Lab, Stanford, CA USA. [Astalosa, R.; Bartos, P.; Blazek, T.; Federic, P.; Plazak, L.; Stavina, P.; Sykora, I.; Tokar, S.; Zenis, T.] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia. [Antos, J.; Bruncko, D.; Kladiva, E.; Strizenec, P.; Urban, J.] Slovak Acad Sci, Inst Expt Phys, Dept Subnucl Phys, Kosice 04353, Slovakia. [Hamilton, A.; Meehan, S.] Univ Cape Town, Dept Phys, Cape Town, South Africa. [Aurousseau, M.; Castaneda-Miranda, E.; Connell, S. H.; Lee, C. A.; Yacoob, S.] Univ Johannesburg, Dept Phys, Johannesburg, South Africa. [Bristow, K.; Carrillo-Montoya, D.; Hamity, G. N.; Hsu, C.; March, L.; Garcia, B. R. Mellado; Ruan, X.; Vickey, T.; Boeriu, O. E. Vickey] Univ Witwatersrand, Sch Phys, Johannesburg, South Africa. [Abulaiti, Y.; Akerstedt, H.; Annovi, A.; Asman, B.; Bendtz, K.; Bertoli, G.; Bylund, O. Bessidskaia; Bohm, C.; Clement, C.; Cribbs, W. A.; Eriksson, D.; Hellman, S.; Jon-And, K.; Khandanyan, H.; Kim, H.; Klimek, P.; Lundberg, O.; Milstead, D. A.; Moa, T.; Molander, S.; Pani, P.; Petridis, A.; Plucinski, P.; Rossetti, V.; Shcherbakova, A.; Silverstein, S. B.; Sjolin, J.; Strandberg, S.; Tylmad, M.] Stockholm Univ, Dept Phys, S-10691 Stockholm, Sweden. [Abulaiti, Y.; Akerstedt, H.; Asman, B.; Bendtz, K.; Bertoli, G.; Bylund, O. Bessidskaia; Clement, C.; Cribbs, W. A.; Jon-And, K.; Khandanyan, H.; Kim, H.; Klimek, P.; Lundberg, O.; Milstead, D. A.; Moa, T.; Molander, S.; Pani, P.; Petridis, A.; Plucinski, P.; Rossetti, V.; Shcherbakova, A.; Sjolin, J.; Strandberg, S.; Tylmad, M.] Oskar Klein Ctr, Stockholm, Sweden. [Jovicevic, J.; Kuwertz, E. S.; Lund-Jensen, B.; Morley, A. K.; Strandberg, J.] Royal Inst Technol, Dept Phys, S-10044 Stockholm, Sweden. [Balestri, T.; Bee, C. P.; Campoverde, A.; Chen, K.; Engelmann, R.; Grassi, V.; Hobbs, J.; Jia, J.; Li, H.; Lindquist, B. E.; Mastrandrea, P.; McCarthy, R. L.; Puldon, D.; Radhakrishnan, S. K.; Rijssenbeek, M.; Schamberger, R. D.; Tsybychev, D.; Zaman, A.] SUNY Stony Brook, Dept Phys, Stony Brook, NY USA. [Balestri, T.; Bee, C. P.; Campoverde, A.; Chen, K.; Engelmann, R.; Grassi, V.; Hobbs, J.; Jia, J.; Li, H.; Lindquist, B. E.; Mastrandrea, P.; McCarthy, R. L.; Puldon, D.; Radhakrishnan, S. K.; Rijssenbeek, M.; Schamberger, R. D.; Tsybychev, D.; Zaman, A.] SUNY Stony Brook, Dept Astron, Stony Brook, NY USA. [Balestri, T.; Bee, C. P.; Campoverde, A.; Chen, K.; Engelmann, R.; Grassi, V.; Hobbs, J.; Jia, J.; Li, H.; Lindquist, B. E.; Mastrandrea, P.; McCarthy, R. L.; Puldon, D.; Radhakrishnan, S. K.; Rijssenbeek, M.; Schamberger, R. D.; Tsybychev, D.; Zaman, A.] SUNY Stony Brook, Dept Chem, Stony Brook, NY USA. [Asquith, L.; Cerri, A.; Barajas, C. A. Chavez; De Sanctis, U.; De Santo, A.; Grout, Z. J.; Jeanty, L.; Potter, C. J.; Salvatore, F.; Castillo, I. Santoyo; Shehu, C. Y.; Suruliz, K.; Sutton, M. R.; Vivarelli, I.] Univ Sussex, Dept Phys & Astron, Brighton, E Sussex, England. [Black, C. W.; Cuthbert, C.; Finelli, K. D.; Jeng, G-Y.; Limosani, A.; Patel, N. D.; Saavedra, A. F.; Scarcella, M.; Varvell, K. E.; Watson, I. J.; Yabsley, B.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. [Abdallah, J.; Chu, M. L.; Hou, S.; Hsu, P. J.; Jamin, D. O.; Lee, S. C.; Liu, B.; Liu, D.; LoSterzo, F.; Mazini, R.; Shi, L.; Soh, D. A.; Teng, P. K.; Wang, S. M.; Yang, Y.; Zhang, L.] Acad Sin, Inst Phys, Taipei, Taiwan. [Abreu, H.; Cheatham, S.; Di Mattia, A.; Kopeliansky, R.; Musto, E.] Techn Israel Inst Technol, Dept Phys, Haifa, Israel. [Abramowicz, H.; Alexander, G.; Amram, N.; Ashkenazi, A.; Bella, G.; Benary, O.; Benhammou, Y.; Davies, M.; Etzion, E.; Gershon, A.; Gueta, O.; Guttman, N.; Munwes, Y.; Oren, Y.; Silver, Y.; Soffer, A.; Taiblum, N.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Bachas, K.; Gkaitatzis, S.; Gkialas, I.; Iliadis, D.; Kimura, N.; Kordas, K.; Kourkoumeli-Charalampidi, A.; Leisos, A.; Orlando, N.; Papageorgiou, K.; Hernandez, D. Paredes; Petridou, C.; Sampsonidis, D.; Sotiropoulou, C. L.; Tsionou, D.] Aristotle Univ Thessaloniki, Dept Phys, Thessaloniki, Greece. [Akimoto, G.; Asai, S.; Dohmae, T.; Enari, Y.; Hanawa, K.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kazama, S.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Minami, Y.; Nakamura, T.; Ninomiya, Y.; Okuyama, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamamoto, S.; Yamanaka, T.] Univ Tokyo, Int Ctr Elementary Particle Phys, Tokyo, Japan. [Akimoto, G.; Asai, S.; Dohmae, T.; Enari, Y.; Hanawa, K.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kazama, S.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Minami, Y.; Nakamura, T.; Ninomiya, Y.; Okuyama, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamamoto, S.; Yamanaka, T.] Univ Tokyo, Dept Phys, Tokyo 113, Japan. [Bratzler, U.; Fukunaga, C.] Tokyo Metropolitan Univ, Grad Sch Sci & Technol, Tokyo 158, Japan. [Hirose, M.; Ishitsuka, M.; Jinnouchi, O.; Kobayashi, D.; Kuze, M.; Motohashi, K.; Nagai, R.; Nobe, T.; Pettersson, N. E.] Tokyo Inst Technol, Dept Phys, Tokyo 152, Japan. [AbouZeid, O. S.; Batista, S. J.; Chau, C. C.; DeMarco, D. A.; Diamond, M.; Ilic, N.; Krieger, P.; Mc Goldrick, G.; Orr, R. S.; Polifka, R.; Rudolph, M. S.; Savard, P.; Schramm, S.; Sinervo, P.; Spreitzer, T.; Taenzer, J.; Teuscher, R. J.; Trischuk, W.; Venturi, N.] Univ Toronto, Dept Phys, Toronto, ON, Canada. [Canepa, A.; Chekulaev, S. V.; Koutsman, A.; Oram, C. J.; Codina, E. Perez; Schneider, B.; Schouten, D.; Seuster, R.; Stelzer-Chilton, O.; Tafirout, R.; Trigger, I. M.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Garcia, J. A. Benitez; Ramos, J. Manjarres; Palacino, G.; Qureshi, A.; Taylor, W.] York Univ, Dept Phys & Astron, Toronto, ON M3J 2R7, Canada. [Hara, K.; Hayashi, T.; Kim, S. H.; Kiuchi, K.; Nagata, K.; Okawa, H.; Sato, K.; Ukegawa, F.] Univ Tsukuba, Fac Pure & Appl Sci, Tsukuba, Ibaraki, Japan. [Beauchemin, P. H.; Hamilton, S.; Meoni, E.; Rolli, S.; Sliwa, K.; Wetter, J.] Tufts Univ, Dept Phys & Astron, Medford, MA 02155 USA. [Moreno, D.; Navarro, G.; Sandoval, C.] Univ Antonio Narino, Ctr Invest, Bogota, Colombia. [Corso-Radu, A.; Gerbaudo, D.; Lankford, A. J.; Mete, A. S.; Nelson, A.; Relich, M.; Scannicchio, D. A.; Schernau, M.; Shimmin, C. O.; Taffard, A.; Unel, G.; Whiteson, D.; Zhou, N.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA USA. [Acharya, B. S.; Barisonzi, M.; Brazzale, S. F.; Cobal, M.; Giordani, M. P.; Miglioranzi, S.; Pinamonti, M.; Quayle, W. B.; Shaw, K.; Soualah, R.] INFN Grp Coll Udine, Sez Trieste, Udine, Italy. [Acharya, B. S.; Barisonzi, M.; Quayle, W. B.; Shaw, K.] Abdus Salaam Int Ctr Theoret Phys, Trieste, Italy. [Brazzale, S. F.; Cobal, M.; Giordani, M. P.; Miglioranzi, S.; Pinamonti, M.; Soualah, R.] Univ Udine, Dipartimento Chim Fis & Ambiente, I-33100 Udine, Italy. [Atkinson, M.; Basye, A.; Cavaliere, V.; Cerny, K.; Chang, P.; Errede, S.; Lie, K.; Liss, T. M.; Neubauer, M. S.; Shang, R.; Vichou, I.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Kuutmann, E. Bergeaas; Brenner, R.; Buszello, C. P.; Ekelof, T.; Ellert, M.; Ferrari, A.; Isaksson, C.; Madsen, A.; Ohman, H.; Pelikan, D.; Rangel-Smith, C.] Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden. [Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Martinez, P. Fernandez; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; de la Hoz, S. Gonzaez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Quiles, A. Irles; Pena, J. Jimenez; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Garcia, E. Oliver; Lopez, S. Pedraza; Garcia-Estan, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Pastor, E. Torro; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Vos, M.] Univ Valencia, Inst Fis Corpuscular IFIC, Valencia, Spain. [Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Martinez, P. Fernandez; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; de la Hoz, S. Gonzaez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Quiles, A. Irles; Pena, J. Jimenez; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Garcia, E. Oliver; Lopez, S. Pedraza; Garcia-Estan, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Pastor, E. Torro; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Vos, M.] Univ Valencia, Dept Fis Atom Mol & Nucl, Valencia, Spain. [Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Martinez, P. Fernandez; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; de la Hoz, S. Gonzaez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Quiles, A. Irles; Pena, J. Jimenez; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Garcia, E. Oliver; Lopez, S. Pedraza; Garcia-Estan, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Pastor, E. Torro; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Vos, M.] Univ Valencia, Dept Ingn Elect, Valencia, Spain. [Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Martinez, P. Fernandez; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; de la Hoz, S. Gonzaez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Quiles, A. Irles; Pena, J. Jimenez; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Garcia, E. Oliver; Lopez, S. Pedraza; Garcia-Estan, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Pastor, E. Torro; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Vos, M.] Univ Valencia, Inst Microelect Barcelona IMB CNM, Valencia, Spain. [Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Martinez, P. Fernandez; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; de la Hoz, S. Gonzaez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Quiles, A. Irles; Pena, J. Jimenez; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Garcia, E. Oliver; Lopez, S. Pedraza; Garcia-Estan, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Pastor, E. Torro; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Vos, M.] CSIC, Valencia, Spain. [Danninger, M.; Fedorko, W.; Gay, C.; Gecse, Z.; King, S. B.; Lister, A.; Swedish, S.] Univ British Columbia, Dept Phys, Vancouver, BC, Canada. [Albert, J.; Berghaus, F.; David, C.; Elliot, A. A.; Fincke-Keeler, M.; Hamano, K.; Hill, E.; Keeler, R.; Kowalewski, R.; Kwan, T.; Lefebvre, M.; Marino, C. P.; McPherson, R. A.; Ouellette, E. A.; Pearce, J.; Sobie, R.; Venturi, M.] Univ Victoria, Dept Phys & Astron, Victoria, BC, Canada. [Beckingham, M.; Farrington, S. M.; Harrison, P. F.; Janus, M.; Jeske, C.; Jones, G.; Martin, T. A.; Murray, W. J.; Pianori, E.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Iizawa, T.; Mitani, T.; Sakurai, Y.; Yorita, K.] Waseda Univ, Tokyo, Japan. [Barak, L.; Bressler, S.; Citron, Z. H.; Duchovni, E.; Gross, E.; Lellouch, D.; Levinson, L. J.; Mikenberg, G.; Milov, A.; Pitt, M.; Roth, I.; Schaarschmidt, J.; Smakhtin, V.] Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel. [Banerjee, Sw.; Hard, A. S.; Hellman, S.; Heng, Y.; Ji, H.; Ju, X.; Kashif, L.; Kruse, A.; Ming, Y.; Pan, Y. B.; Wang, F.; Wiedenmann, W.; Wu, S. L.; Yang, H.; Zhang, F.; Zobernig, G.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Kuger, F.; Redelbach, A.; Schreyer, M.; Sidiropoulou, O.; Siragusa, G.; Stroehmer, R.; Tam, J. Y. C.; Trefzger, T.; Weber, S. W.; Zibell, A.] Univ Wurzburg, Fak Phys & Astronomie, D-97070 Wurzburg, Germany. [Bannoura, A. A. E.; Beermann, T. A.; Braun, H. M.; Cornelissen, T.; Duda, D.; Ernis, G.; Fischer, J.; Fleischmann, S.; Flick, T.; Gabizon, O.; Hamacher, K.; Harenberg, T.; Heim, T.; Hirschbuehl, D.; Kersten, S.; Kohlmann, S.; Lenzen, G.; Maetig, P.; Neumann, M.; Pataraia, S.; Riegel, C. J.; Sandhoff, M.; Tepel, F.; Wagner, W.; Wicke, D.; Zeitnitz, C.] Berg Univ Wuppertal, Fachbereich C Phys, Wuppertal, Germany. [Baker, O. K.; Cummings, J.; Demers, S.; Garberson, F.; Gkougkousis, E. L.; Guest, D.; Henrichs, A.; Lagouri, T.; Leister, A. G.; Loginov, A.; Tipton, P.; Wang, X.] Yale Univ, Dept Phys, New Haven, CT USA. [Hakobyan, H.; Vardanyan, G.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Rahal, G.] Inst Natl Phys Nucl & Phys Particules IN2P3, Ctr Calcul, Villeurbanne, France. Kings Coll London, Dept Phys, London, England. [Ahmadov, F.; Huseynov, N.] Azerbaijan Acad Sci, Inst Phys, Baku 370143, Azerbaijan. [Anisenkov, A. V.; Kazanin, V. F.; Korol, A. A.; Maslennikov, A. L.; Maximov, D. A.; Rezanova, O. L.; Soukharev, A. M.; Talyshev, A. A.; Tikhonov, Yu. A.] Novosibirsk State Univ, Novosibirsk 630090, Russia. [Gingrich, D. M.; Oakham, F. G.; Savard, P.; Vetterli, M. C.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Bawa, H. S.; Gao, Y. S.] Calif State Univ Fresno, Dept Phys, Fresno, CA 93740 USA. Univ Fribourg, Dept Phys, CH-1700 Fribourg, Switzerland. [Castro, N. F.] Univ Porto, Dept Fis & Astron, Fac Ciencias, P-4100 Oporto, Portugal. [Chelkov, G. A.] Tomsk State Univ, Tomsk 634050, Russia. [Chen, L.] Aix Marseille Univ, CPPM, Marseille, France. [Chen, L.] CNRS, IN2P3, Marseille, France. [Conventi, F.] Univ Napoli Parthenope, Naples, Italy. [McPherson, R. A.; Robertson, S. H.; Sobie, R.; Teuscher, R. J.] IPP, Victoria, BC, Canada. Rutherford Appleton Lab, Particle Phys Dept, Didcot OX11 0QX, Oxon, England. [De Simone, A.; Pinamonti, M.] Int Sch Adv Studies SISSA, Trieste, Italy. [Fedin, O. L.] St Petersburg State Polytech Univ, Dept Phys, St Petersburg, Russia. [Greenwood, Z. D.; Roza, A. Juste; Sawyer, L.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Grinstein, S.; Martinez, M.] ICREA, Inst Catalana Recerca & Estudis Avancats, Barcelona, Spain. [Hsu, P. J.] Natl Tsing Hua Univ, Dept Phys, Hsinchu, Taiwan. [Ilchenko, Y.; Onyisi, P. U. E.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. [Jacquess, T. D.; Riottos, A. W.] Univ Geneva, Dept Theoret Phys, CH-1211 Geneva, Switzerland. [Jejelava, J.] Ilia State Univ, Inst Theoret Phys, Tbilisi, Rep of Georgia. [Jenni, P.] CERN, Geneva, Switzerland. [Khubua, J.] GTU, Tbilisi, Rep of Georgia. [Kono, T.] Ochanomizu Univ, Ochadai Acad Prod, Tokyo 112, Japan. [Konoplich, R.] Manhattan Coll, New York, NY USA. [Li, B.] Acad Sin, Inst Phys, Taipei, Taiwan. [Li, Y.] Univ Paris 11, LAL, Orsay, France. [Li, Y.] CNRS, IN2P3, Orsay, France. [Lin, S. C.] Acad Sin, Acad Sin Grid Comp, Inst Phys, Taipei, Taiwan. [Messina, A.] Sapienza Univ Roma, Dipartimento Fis, Rome, Italy. [Myagkov, A. G.; Nikolaenko, V.; Zaitsev, A. M.] Moscow Inst Phys, Dolgoprudnyi, Russia. [Myagkov, A. G.; Nikolaenko, V.; Zaitsev, A. M.] Technol State Univ, Dolgoprudnyi, Russia. [Nessi, M.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Purohit, M.] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. [Shi, L.; Soh, D. A.] Sun Yat Sen Univ, Sch Phys & Engn, Guangzhou, Peoples R China. [Smirnova, L. N.; Turchikhin, S.] M V Lomonosov Moscow State Univ, Fac Phys, Moscow, Russia. [Tikhomirov, V. O.] Natl Res Nucl Univ MEPhI, Moscow, Russia. [Tompkins, L.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Toth, J.] Wigner Res Ctr Phys, Inst Particle & Nucl Phys, Budapest, Hungary. [Vickey, T.] Univ Oxford, Dept Phys, Oxford, England. [Xu, L.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Yacoob, S.] Univ KwaZulu Natal, Discipline Phys, Durban, South Africa. [Yusuff, I.] Univ Malaya, Dept Phys, Kuala Lumpur 59100, Malaysia. RP Aad, G (reprint author), Aix Marseille Univ, CPPM, Marseille, France. RI la rotonda, laura/B-4028-2016; Gavrilenko, Igor/M-8260-2015; Veneziano, Stefano/J-1610-2012; Tikhomirov, Vladimir/M-6194-2015; spagnolo, stefania/A-6359-2012; Di Domenico, Antonio/G-6301-2011; Tassi, Enrico/K-3958-2015; Boyko, Igor/J-3659-2013; Ciubancan, Liviu Mihai/L-2412-2015; White, Ryan/E-2979-2015; Mitsou, Vasiliki/D-1967-2009; Zhukov, Konstantin/M-6027-2015; Livan, Michele/D-7531-2012; Shmeleva, Alevtina/M-6199-2015; Gerbaudo, Davide/J-4536-2012; Solodkov, Alexander/B-8623-2017; Zaitsev, Alexandre/B-8989-2017; Peleganchuk, Sergey/J-6722-2014; Monzani, Simone/D-6328-2017; Korol, Aleksandr/A-6244-2014; Capua, Marcella/A-8549-2015; Tartarelli, Giuseppe Francesco/A-5629-2016; Petrucci, Fabrizio/G-8348-2012; Fassi, Farida/F-3571-2016; Kantserov, Vadim/M-9761-2015; Vanadia, Marco/K-5870-2016; Ippolito, Valerio/L-1435-2016; Maneira, Jose/D-8486-2011; Prokoshin, Fedor/E-2795-2012; KHODINOV, ALEKSANDR/D-6269-2015; Staroba, Pavel/G-8850-2014; Goncalo, Ricardo/M-3153-2016; Gauzzi, Paolo/D-2615-2009; Maleev, Victor/R-4140-2016; Mindur, Bartosz/A-2253-2017; Gutierrez, Phillip/C-1161-2011; Fabbri, Laura/H-3442-2012; Doyle, Anthony/C-5889-2009; Gonzalez de la Hoz, Santiago/E-2494-2016; Guo, Jun/O-5202-2015; Aguilar Saavedra, Juan Antonio/F-1256-2016; Leyton, Michael/G-2214-2016; Jones, Roger/H-5578-2011; Vranjes Milosavljevic, Marija/F-9847-2016; SULIN, VLADIMIR/N-2793-2015; Nechaeva, Polina/N-1148-2015; Vykydal, Zdenek/H-6426-2016; Olshevskiy, Alexander/I-1580-2016; Snesarev, Andrey/H-5090-2013; Ventura, Andrea/A-9544-2015; Villa, Mauro/C-9883-2009; Chekulaev, Sergey/O-1145-2015; Warburton, Andreas/N-8028-2013; Brooks, William/C-8636-2013; Gorelov, Igor/J-9010-2015; Gladilin, Leonid/B-5226-2011; De, Kaushik/N-1953-2013; Carvalho, Joao/M-4060-2013; Mashinistov, Ruslan/M-8356-2015; Buttar, Craig/D-3706-2011; Smirnova, Oxana/A-4401-2013 OI la rotonda, laura/0000-0002-6780-5829; Osculati, Bianca Maria/0000-0002-7246-060X; Giorgi, Filippo Maria/0000-0003-1589-2163; Coccaro, Andrea/0000-0003-2368-4559; Veneziano, Stefano/0000-0002-2598-2659; Tikhomirov, Vladimir/0000-0002-9634-0581; spagnolo, stefania/0000-0001-7482-6348; Di Domenico, Antonio/0000-0001-8078-2759; Boyko, Igor/0000-0002-3355-4662; Ciubancan, Liviu Mihai/0000-0003-1837-2841; White, Ryan/0000-0003-3589-5900; Mitsou, Vasiliki/0000-0002-1533-8886; Livan, Michele/0000-0002-5877-0062; Gerbaudo, Davide/0000-0002-4463-0878; Solodkov, Alexander/0000-0002-2737-8674; Zaitsev, Alexandre/0000-0002-4961-8368; Peleganchuk, Sergey/0000-0003-0907-7592; Monzani, Simone/0000-0002-0479-2207; Korol, Aleksandr/0000-0001-8448-218X; Giordani, Mario/0000-0002-0792-6039; Capua, Marcella/0000-0002-2443-6525; Di Micco, Biagio/0000-0002-4067-1592; Tartarelli, Giuseppe Francesco/0000-0002-4244-502X; Petrucci, Fabrizio/0000-0002-5278-2206; Fassi, Farida/0000-0002-6423-7213; Kantserov, Vadim/0000-0001-8255-416X; Vanadia, Marco/0000-0003-2684-276X; Ippolito, Valerio/0000-0001-5126-1620; Maneira, Jose/0000-0002-3222-2738; Prokoshin, Fedor/0000-0001-6389-5399; KHODINOV, ALEKSANDR/0000-0003-3551-5808; Goncalo, Ricardo/0000-0002-3826-3442; Gauzzi, Paolo/0000-0003-4841-5822; Mindur, Bartosz/0000-0002-5511-2611; Fabbri, Laura/0000-0002-4002-8353; Doyle, Anthony/0000-0001-6322-6195; Gonzalez de la Hoz, Santiago/0000-0001-5304-5390; Guo, Jun/0000-0001-8125-9433; Aguilar Saavedra, Juan Antonio/0000-0002-5475-8920; Leyton, Michael/0000-0002-0727-8107; Jones, Roger/0000-0002-6427-3513; Vranjes Milosavljevic, Marija/0000-0003-4477-9733; SULIN, VLADIMIR/0000-0003-3943-2495; Vykydal, Zdenek/0000-0003-2329-0672; Olshevskiy, Alexander/0000-0002-8902-1793; Ventura, Andrea/0000-0002-3368-3413; Villa, Mauro/0000-0002-9181-8048; Warburton, Andreas/0000-0002-2298-7315; Brooks, William/0000-0001-6161-3570; Gorelov, Igor/0000-0001-5570-0133; Gladilin, Leonid/0000-0001-9422-8636; De, Kaushik/0000-0002-5647-4489; Carvalho, Joao/0000-0002-3015-7821; Mashinistov, Ruslan/0000-0001-7925-4676; Smirnova, Oxana/0000-0003-2517-531X FU ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRCand Lundbeck Foundation, Denmark; EPLANET, ERC and NSRF, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT and NSRF, Greece; RGC, Hong Kong SAR, China; ISF, MINERVA, GIF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNiSW and NCN, Poland; GRICES and FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society; DOE and NSF, United States of America; Leverhulme Trust, United Kingdom FX We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRCand Lundbeck Foundation, Denmark; EPLANET, ERC and NSRF, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT and NSRF, Greece; RGC, Hong Kong SAR, China; ISF, MINERVA, GIF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNiSW and NCN, Poland; GRICES and FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide. NR 138 TC 46 Z9 46 U1 16 U2 77 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6044 EI 1434-6052 J9 EUR PHYS J C JI Eur. Phys. J. C PD JUL 1 PY 2015 VL 75 IS 7 AR 299 DI 10.1140/epjc/s10052-015-3517-3 PG 43 WC Physics, Particles & Fields SC Physics GA CL7AZ UT WOS:000357123400003 ER PT J AU Khachatryan, V Sirunyan, AM Tumasyan, A Adam, W Bergauer, T Dragicevic, M Ero, J Friedl, M Fruhwirth, R Ghete, VM Hartl, C Hormann, N Hrubec, J Jeitler, M Kiesenhofer, W Knunz, V Krammer, M Kratschmer, I Liko, D Mikulec, I Rabady, D Rahbaran, B Rohringer, H Schofbeck, R Strauss, J Treberer-Treberspurg, W Waltenberger, W Wulz, CE Mossolov, V Shumeiko, N Gonzalez, JS Alderweireldt, S Bansal, S Cornelis, T De Wolf, EA Janssen, X Knutsson, A Lauwers, J Luyckx, S Ochesanu, S Rougny, R Van de Klundert, M Van Haevermaet, H Van Mechelen, P Van Remortel, N Van Spilbeeck, A Blekman, F Blyweert, S D'Hondt, J Daci, N Heracleous, N Keaveney, J Lowette, S Maes, M Olbrechts, A Python, Q Strom, D Tavernier, S Van Doninck, W Van Mulders, P Van Onsem, GP Villella, I Caillol, C Clerbaux, B De Lentdecker, G Dobur, D Favart, L Gay, APR Grebenyuk, A Leonard, A Mohammadi, A Pernie, L Randle-Conde, A Reis, T Seva, T Thomas, L Vander Velde, C Vanlaer, P Wang, J Zenoni, F Adler, V Beernaert, K Benucci, L Cimmino, A Costantini, S Crucy, S Dildick, S Fagot, A Garcia, G Mccartin, J Rios, AAO Ryckbosch, D Diblen, SS Sigamani, M Strobbe, N Thyssen, F Tytgat, M Yazgan, E Zaganidis, N Basegmez, S Beluffi, C Bruno, G Castello, R Caudron, A Ceard, L Da Silveira, G Delaere, C du Pree, T Favart, D Forthomme, L Giammanco, A Hollar, J Jafari, A Jez, P Komm, M Lemaitre, V Nuttens, C Pagano, D Perrini, L Pin, A Piotrzkowski, K Popov, A Quertenmont, L Selvaggi, M Marono, MV Garcia, JMV Beliy, N Caebergs, T Daubie, E Hammad, GH Alda, WL Alves, GA Brito, L Martins, M Martins, TD Herrera, CM Pol, ME Teles, PR Carvalho, W Chinellato, J Custodio, A Da Costa, EM Damiao, DD Martins, CD De Souza, SF Malbouisson, H Figueiredo, DM Mundim, L Nogima, H Da Silva, WLP Santaolalla, J Santoro, A Sznajder, A Manganote, EJT Pereira, AV Bernardes, CA Dogra, S Tomei, TRFP Gregores, EM Mercadante, PG Novaes, SF Padula, SS Aleksandrov, A Genchev, V Hadjiiska, R Iaydjiev, P Marinov, A Piperov, S Rodozov, M Sultanov, G Vutova, M Dimitrov, A Glushkov, I Litov, L Pavlov, B Petkov, P Bian, JG Chen, GM Chen, HS Chen, M Cheng, T Du, R Jiang, CH Plestina, R Romeo, F Tao, J Wang, Z Asawatangtrakuldee, C Ban, Y Li, Q Liu, S Mao, Y Qian, J Wang, D Xu, Z Zou, W Avila, C Cabrera, A Sierra, LFC Florez, C Gomez, JP Moreno, BG Sanabria, JC Godinovic, N Lelas, D Polic, D Puljak, I Antunovic, Z Kovac, M Brigljevic, V Kadija, K Luetic, J Mekterovic, D Sudic, L Attikis, A Mavromanolakis, G Mousa, J Nicolaou, C Ptochos, F Razis, PA Bodlak, M Finger, M Finger, M Assran, Y Kamel, AE Mahmoud, MA Radi, A Kadastik, M Murumaa, M Raidal, M Tiko, A Eerola, P Fedi, G Voutilainen, M Harkonen, J Karimaki, V Kinnunen, R Kortelainen, J Lampen, T Lassila-Perini, K Lehti, S Linden, T Luukka, P Maenpaa, T Peltola, T Tuominen, E Tuominiemi, J Tuovinen, E Wendland, L Talvitie, J Tuuva, T Besancon, M Couderc, F Dejardin, M Denegri, D Fabbro, B Faure, JL Favaro, C Ferri, F Ganjour, S Givernaud, A Gras, P de Monchenault, GH Jarry, P Locci, E Malcles, J Rander, J Rosowsky, A Titov, M Baffioni, S Beaudette, F Busson, P Charlot, C Dahms, T Dalchenko, M Dobrzynski, L Filipovic, N Florent, A de Cassagnac, RG Mastrolorenzo, L Mine, P Mironov, C Naranjo, N Nguyen, M Ochando, C Ortona, G Paganini, P Regnard, S Salerno, R Sauvan, JB Sirois, Y Veelken, C Yilmaz, Y Zabi, A Agram, JL Andrea, J Aubin, A Bloch, D Brom, JM Chabert, EC Collard, C Conte, E Fontaine, J Gele, D Goerlach, U Goetzmann, C Le Bihan, AC Skovpen, K Van Hove, P Gadrat, S Beauceron, S Beaupere, N Boudoul, G Bouvier, E Brochet, S Montoya, CAC Chasserat, J Chierici, R Contardo, D Depasse, P El Mamouni, H Fan, J Fay, J Gascon, S Gouzevitch, M Ille, B Kurca, T Lethuillier, M Mirabito, L Perries, S Alvarez, JDR Sabes, D Sgandurra, L Sordini, V Donckt, MV Verdier, P Viret, S Xiao, H Tsamalaidze, Z Autermann, C Beranek, S Bontenackels, M Edelhoff, M Feld, L Heister, A Hindrichs, O Klein, K Ostapchuk, A Raupach, F Sammet, J Schael, S Schulte, F Weber, H Wittmer, B Zhukov, V Ata, M Brodski, M Dietz-Laursonn, E Duchardt, D Erdmann, M Fischer, R Guth, A Hebbeker, T Heidemann, C Hoepfner, K Klingebiel, D Knutzen, S Kreuzer, P Merschmeyer, M Meyer, A Millet, P Olschewski, M Padeken, K Papacz, P Reithler, H Schmitz, A Sonnenschein, L Teyssier, D Thur, S Weber, M Cherepanov, V Erdogan, Y Flugge, G Geenen, H Geisler, M Ahmad, WH Hoehle, F Kargoll, B Kress, T Kuessel, Y Kunsken, A Lingemann, J Nowack, A Nugent, IM Pooth, O Stahl, A Martin, MA Asin, I Bartosik, N Behr, J Behrens, U Bell, AJ Bethani, A Borras, K Burgmeier, A Cakir, A Calligaris, L Campbell, A Choudhury, S Costanza, F Pardos, CD Dolinska, G Dooling, S Dorland, T Eckerlin, G Eckstein, D Eichhorn, T Flucke, G Garcia, JG Geiser, A Gunnellini, P Hauk, J Hempel, M Jung, H Kalogeropoulos, A Kasemann, M Katsas, P Kieseler, J Kleinwort, C Korol, L Krucker, D Lange, W Leonard, J Lipka, K Lobanov, A Lohmann, W Lutz, B Mankel, R Marfin, I Melzer-Pellmann, IA Meyer, AB Mittag, G Mnich, J Mussgiller, A Naumann-Emme, S Nayak, A Ntomari, E Perrey, H Pitzl, D Placakyte, R Raspereza, A Cipriano, PMR Roland, B Ron, E Sahin, MO Salfeld-Nebgen, J Saxena, P Schoerner-Sadenius, T Schroder, M Seitz, C Spannagel, S Trevino, ADRV Walsh, R Wissing, C Blobel, V Vignali, MC Draeger, AR Erfle, J Garutti, E Goebel, K Gorner, M Haller, J Hoffmann, M Hoing, RS Junkes, A Kirschenmann, H Klanner, R Kogler, R Lange, J Lapsien, T Lenz, T Marchesini, I Ott, J Peiffer, T Pietsch, N Poehlsen, J Poehlsen, T Rathjens, D Sander, C Schettler, H Schleper, P Schlieckau, E Schmidt, A Seidel, M Sola, V Stadie, H Steinbruck, G Troendle, D Usai, E Vanelderen, L Vanhoefer, A Barth, C Baus, C Berger, J Boser, C Butz, E Chwalek, T De Boer, W Descroix, A Dierlamm, A Feindt, M Frensch, F Giffels, M Hartmann, F Hauth, T Husemann, U Katkov, I Kornmayer, A Kuznetsova, E Pardo, PL Mozer, MU Muller, T Muller, T Nurnberg, A Quast, G Rabbertz, K Rocker, S Simonis, HJ Stober, FM Ulrich, R Wagner-Kuhr, J Wayand, S Weiler, T Wolf, R Daskalakis, G Geralis, T Giakoumopoulou, VA Kyriakis, A Loukas, D Markou, A Markou, C Psallidas, A Topsis-Giotis, I Agapitos, A Kesisoglou, S Panagiotou, A Saoulidou, N Stiliaris, E Aslanoglou, X Evangelou, I Flouris, G Foudas, C Kokkas, P Manthos, N Papadopoulos, I Paradas, E Strologas, J Bencze, G Hajdu, C Hidas, P Horvath, D Sikler, F Veszpremi, V Vesztergombi, G Zsigmond, AJ Beni, N Czellar, S Karancsi, J Molnar, J Palinkas, J Szillasi, Z Makovec, A Raics, P Trocsanyi, ZL Ujvari, B Swain, SK Beri, SB Bhatnagar, V Gupta, R Bhawandeep, U Kalsi, AK Kaur, M Kumar, R Mittal, M Nishu, N Singh, JB Kumar, A Kumar, A Ahuja, S Bhardwaj, A Choudhary, BC Kumar, A Malhotra, S Naimuddin, M Ranjan, K Sharma, V Banerjee, S Bhattacharya, S Chatterjee, K Dutta, S Gomber, B Jain, S Jain, S Khurana, R Modak, A Mukherjee, S Roy, D Sarkar, S Sharan, M Abdulsalam, A Dutta, D Kumar, V Mohanty, AK Pant, LM Shukla, P Topkar, A Aziz, T Banerjee, S Bhowmik, S Chatterjee, RM Dewanjee, RK Dugad, S Ganguly, S Ghosh, S Guchait, M Gurtu, A Kole, G Kumar, S Maity, M Majumder, G Mazumdar, K Mohanty, GB Parida, B Sudhakar, K Wickramage, N Bakhshiansohi, H Behnamian, H Etesami, SM Fahim, A Goldouzian, R Khakzad, M Najafabadi, MM Naseri, M Mehdiabadi, SP Hosseinabadi, FR Safarzadeh, B Zeinali, M Felcini, M Grunewald, M Abbrescia, M Calabria, C Chhibra, SS Colaleo, A Creanza, D De Filippis, N De Palma, M Fiore, L Iaselli, G Maggi, G Maggi, M My, S Nuzzo, S Pompili, A Pugliese, G Radogna, R Selvaggi, G Sharma, A Silvestris, L Venditti, R Verwilligen, P Abbiendi, G Benvenuti, AC Bonacorsi, D Braibant-Giacomelli, S Brigliadori, L Campanini, R Capiluppi, P Castro, A Cavallo, FR Codispoti, G Cuffiani, M Dallavalle, GM Fabbri, F Fanfani, A Fasanella, D Giacomelli, P Grandi, C Guiducci, L Marcellini, S Masetti, G Montanari, A Navarria, FL Perrotta, A Primavera, F Rossi, AM Rovelli, T Sirolia, GP Tosi, N Travaglini, R Albergo, S Cappello, G Chiorboli, M Costa, S Giordano, F Potenza, R Tricomi, A Tuve, C Barbagli, G Ciulli, V Civinini, C D'Alessandro, R Focardi, E Gallo, E Gonzi, S Gori, V Lenzi, P Meschini, M Paoletti, S Sguazzoni, G Tropiano, A Benussi, L Bianco, S Fabbri, F Piccolo, D Ferretti, R Ferro, F Lo Vetere, M Robutti, E Tosi, S Dinardo, ME Fiorendi, S Gennai, S Gerosa, R Ghezzi, A Govoni, P Lucchini, MT Malvezzi, S Manzoni, RA Martelli, A Marzocchi, B Menasce, D Moroni, L Paganoni, M Pedrini, D Ragazzi, S Redaelli, N de Fatis, TT Buontempo, S Cavallo, N Di Guida, S Fabozzi, F Iorio, AOM Lista, L Meola, S Merola, M Paolucci, P Azzi, P Bacchetta, N Bellato, M Biasotto, M Dall'Osso, M Dorigo, T Galanti, M Giubilato, P Gonella, F Gozzelino, A Kanishchev, K Lacaprara, S Margoni, M Meneguzzo, AT Montecassiano, F Passaseo, M Pazzini, J Pegoraro, M Pozzobon, N Ronchese, P Simonetto, F Torassa, E Tosi, M Vanini, S Ventura, S Zotto, P Zucchetta, A Gabusi, M Ratti, SP Re, V Riccardi, C Salvini, P Vitulo, P Biasini, M Bilei, GM Ciangottini, D Fano, L Lariccia, P Mantovani, G Menichelli, M Saha, A Santocchia, A Spiezia, A Androsov, K Azzurri, P Bagliesi, G Bernardini, J Boccali, T Broccolo, G Castaldi, R Ciocci, MA Dell'Orso, R Donato, S Fiori, F Foa, L Giassi, A Grippo, MT Ligabue, F Lomtadze, T Martini, L Messineo, A Moon, CS Palla, F Rizzi, A Savoy-Navarro, A Serban, AT Spagnolo, P Squillacioti, P Tenchini, R Tonelli, G Venturi, A Verdini, PG Vernieri, C Barone, L Cavallari, F D'imperio, G Del Re, D Diemoz, M Jorda, C Longo, E Margaroli, F Meridiani, P Micheli, F Nourbakhsh, S Organtini, G Paramatti, R Rahatlou, S Rovelli, C Santanastasio, F Soffi, L Traczyk, P Amapane, N Arcidiacono, R Argiro, S Arneodo, M Bellan, R Biino, C Cartiglia, N Casasso, S Costa, M Degano, A Demaria, N Finco, L Mariotti, C Maselli, S Migliore, E Monaco, V Musich, M Obertino, MM Pacher, L Pastrone, N Pelliccioni, M Angioni, GLP Potenza, A Romero, A Ruspa, M Sacchi, R Solano, A Staiano, A Tamponi, U Belforte, S Candelise, V Casarsa, M Cossutti, F Della Ricca, G Gobbo, B La Licata, C Marone, M Schizzi, A Umer, T Zanetti, A Chang, S Kropivnitskaya, TA Nam, SK Kim, DH Kim, GN Kim, MS Kong, DJ Lee, S Oh, YD Park, H Sakharov, A Son, DC Kim, TJ Kim, JY Song, S Choi, S Gyun, D Hong, B Jo, M Kim, H Kim, Y Lee, B Lee, KS Park, SK Roh, Y Yoo, HD Choi, M Kim, JH Park, IC Ryu, G Ryu, MS Choi, Y Choi, YK Goh, J Kim, D Kwon, E Lee, J Yu, I Juodagalvis, A Komaragiri, JR Ali, MABM Linares, EC Castilla-Valdez, H De la Cruz-Burelo, E Heredia-de La Cruz, I Hernandez-Almada, A Lopez-Fernandez, R Sanchez-Hernandez, A Moreno, SC Valencia, FV Pedraza, I Ibarguen, HAS Pineda, AM Krofcheck, D Butler, PH Reucroft, S Ahmad, A Ahmad, M Hassan, Q Hoorani, HR Khan, WA Khurshid, T Shoaib, M Bialkowska, H Bluj, M Boimska, B Frueboes, T Gorski, M Kazana, M Nawrocki, K Romanowska-Rybinska, K Szleper, M Brona, G Bunkowski, K Cwiok, M Dominik, W Doroba, K Kalinowski, A Konecki, M Krolikowski, J Misiura, M Olszewski, M Wolszczak, W Bargassa, P Silva, CBDE Faccioli, P Parracho, PGF Gallinaro, M Iglesias, LL Nguyen, F Antunes, JR Seixas, J Varela, J Vischia, P Afanasiev, S Bunin, P Gavrilenko, M Golutvin, I Gorbunov, I Kamenev, A Karjavin, V Konoplyanikov, V Lanev, A Malakhov, A Matveev, V Moisenz, P Palichik, V Perelygin, V Shmatov, S Skatchkov, N Smirnov, V Zarubin, A Golovtsov, V Ivanov, Y Kim, V Levchenko, P Murzin, V Oreshkin, V Smirnov, I Sulimov, V Uvarov, L Vavilov, S Vorobyev, A Vorobyev, A Andreev, Y Dermenev, A Gninenko, S Golubev, N Kirsanov, M Krasnikov, N Pashenkov, A Tlisov, D Toropin, A Epshteyn, V Gavrilov, V Lychkovskaya, N Popov, V Pozdnyakov, L Safronov, G Semenov, S Spiridonov, A Stolin, V Vlasov, E Zhokin, A Andreev, V Azarkin, M Dremin, I Kirakosyan, M Leonidov, A Mesyats, G Rusakov, SV Vinogradov, A Belyaev, A Boos, E Dubinin, M Dudko, L Ershov, A Gribushin, A Klyukhin, V Kodolova, O Lokhtin, I Obraztsov, S Petrushanko, S Savrin, V Snigirev, A Azhgirey, I Bayshev, I Bitioukov, S Kachanov, V Kalinin, A Konstantinov, D Krychkine, V Petrov, V Ryutin, R Sobol, A Tourtchanovitch, L Troshin, S Tyurin, N Uzunian, A Volkov, A Adzic, P Ekmedzic, M Milosevic, J Rekovic, V Maestre, JA Battilana, C Calvo, E Cerrada, M Llatas, MC Colino, N De la Cruz, B Peris, AD Vazquez, DD Del Valle, AE Bedoya, CF Ramos, JPF Flix, J Fouz, MC Garcia-Abia, P Lopez, OG Lopez, SG Hernandez, JM Josa, MI De Martino, EN Yzquierdo, APC Pelayo, JP Olmeda, AQ Redondo, I Romero, L Soares, MS Albajar, C de Troconiz, JF Missiroli, M Moran, D Brun, H Cuevas, J Menendez, JF Folgueras, S Caballero, IG Cifuentes, JAB Cabrillo, IJ Calderon, A Campderros, JD Fernandez, M Gomez, G Graziano, A Virto, AL Marco, J Marco, R Rivero, CM Matorras, F Sanchez, FJM Gomez, JP Rodrigo, T Rodriguez-Marrero, Y Ruiz-Jimeno, A Scodellaro, L Vila, I Cortabitarte, RV Abbaneo, D Auffray, E Auzinger, G Bachtis, M Baillon, P Ball, AH Barney, D Benaglia, A Bendavid, J Benhabib, L Benitez, JF Bernet, C Bloch, P Bocci, A Bonato, A Bondu, O Botta, C Breuker, H Camporesi, T Cerminara, G Colafranceschi, S D'Alfonso, M d'Enterria, D Dabrowski, A David, A De Guio, F De Roeck, A De Visscher, S Di Marco, E Dobson, M Dordevic, M Dorney, B Dupont-Sagorin, N Elliott-Peisert, A Franzoni, G Funk, W Gigi, D Gill, K Giordano, D Girone, M Glege, F Guida, R Gundacker, S Guthoff, M Hammer, J Hansen, M Harris, P Hegeman, J Innocente, V Janot, P Kousouris, K Krajczar, K Lecoq, P Lourenco, C Magini, N Malgeri, L Mannelli, M Marrouche, J Masetti, L Meijers, F Mersi, S Meschi, E Moortgat, F Morovic, S Mulders, M Orsini, L Pape, L Perez, E Perrozzi, L Petrilli, A Petrucciani, G Pfeiffer, A Pimia, M Piparo, D Plagge, M Racz, A Rolandi, G Rovere, M Sakulin, H Schafer, C Schwick, C Sharma, A Siegrist, P Silva, P Simon, M Sphicas, P Spiga, D Steggemann, J Stieger, B Stoye, M Takahashi, Y Treille, D Tsirou, A Veres, GI Wardle, N Wohri, HK Wollny, H Zeuner, WD Bertl, W Deiters, K Erdmann, W Horisberger, R Ingram, Q Kaestli, HC Kotlinski, D Langenegger, U Renker, D Rohe, T Bachmair, F Bani, L Bianchini, L Buchmann, MA Casal, B Chanon, N Dissertori, G Dittmar, M Donega, M Dunser, M Eller, P Grab, C Hits, D Hoss, J Lustermann, W Mangano, B Marini, AC Marionneau, M del Arbol, PMR Masciovecchio, M Meister, D Mohr, N Musella, P Nageli, C Nessi-Tedaldi, F Pandolfi, F Pauss, F Peruzzi, M Quittnat, M Rebane, L Rossini, M Starodumov, A Takahashi, M Theofilatos, K Wallny, R Weber, HA Amsler, C Canelli, MF Chiochia, V De Cosa, A Hinzmann, A Hreus, T Kilminster, B Lange, C Mejias, BM Ngadiuba, J Pinna, D Robmann, P Ronga, FJ Taroni, S Verzetti, M Yang, Y Cardaci, M Chen, KH Ferro, C Kuo, CM Lin, W Lu, YJ Volpe, R Yu, SS Chang, P Chang, YH Chang, YW Chao, Y Chen, KF Chen, PH Dietz, C Grundler, U Hou, WS Kao, KY Liu, YF Lu, RS Majumder, D Petrakou, E Tzeng, YM Wilken, R Asavapibhop, B Singh, G Srimanobhas, N Suwonjandee, N Adiguzel, A Bakirci, MN Cerci, S Dozen, C Dumanoglu, I Eskut, E Girgis, S Gokbulut, G Gurpinar, E Hos, I Kangal, EE Topaksu, AK Onengut, G Ozdemir, K Ozturk, S Polatoz, A Cerci, DS Tali, B Topakli, H Vergili, M Akin, IV Bilin, B Bilmis, S Gamsizkan, H Isildak, B Karapinar, G Ocalan, K Sekmen, S Surat, UE Yalvac, M Zeyrek, M Albayrak, A Gulmez, E Kaya, M Kaya, O Yetkin, T Cankocak, K Vardarli, FI Levchuk, L Sorokin, P Brooke, JJ Clement, E Cussans, D Flacher, H Goldstein, J Grimes, M Heath, GP Heath, HF Jacob, J Kreczko, L Lucas, C Meng, Z Newbold, DM Paramesvaran, S Poll, A Sakuma, T Senkin, S Smith, VJ Bell, KW Belyaev, A Brew, C Brown, RM Cockerill, DJA Coughlan, JA Harder, K Harper, S Olaiya, E Petyt, D Shepherd-Themistocleous, CH Thea, A Tomalin, IR Williams, T Womersley, WJ Worm, SD Baber, M Bainbridge, R Buchmuller, O Burton, D Colling, D Cripps, N Dauncey, P Davies, G Della Negra, M Dunne, P Ferguson, W Fulcher, J Futyan, D Hall, G Iles, G Jarvis, M Karapostoli, G Kenzie, M Lane, R Lucas, R Lyons, L Magnan, AM Malik, S Mathias, B Nash, J Nikitenko, A Pela, J Pesaresi, M Petridis, K Raymond, DM Rogerson, S Rose, A Seez, C Sharp, P Tapper, A Acosta, MV Virdee, T Zenz, SC Cole, JE Hobson, PR Khan, A Kyberd, P Leggat, D Leslie, D Reid, ID Symonds, P Teodorescu, L Turner, M Dittmann, J Hatakeyama, K Kasmi, A Liu, H Scarborough, T Charaf, O Cooper, SI Henderson, C Rumerio, P Avetisyan, A Bose, T Fantasia, C Lawson, P Richardson, C Rohlf, J St John, J Sulak, L Alimena, J Berry, E Bhattacharya, S Christopher, G Cutts, D Demiragli, Z Dhingra, N Ferapontov, A Garabedian, A Heintz, U Kukartsev, G Laird, E Landsberg, G Luk, M Narain, M Segala, M Sinthuprasith, T Speer, T Swanson, J Breedon, R Breto, G Sanchez, MCD Chauhan, S Chertok, M Conway, J Conway, R Cox, PT Erbacher, R Gardner, M Ko, W Lander, R Mulhearn, M Pellett, D Pilot, J Ricci-Tam, F Shalhout, S Smith, J Squires, M Stolp, D Tripathi, M Wilbur, S Yohay, R Cousins, R Everaerts, P Farrell, C Hauser, J Ignatenko, M Rakness, G Takasugi, E Valuev, V Weber, M Burt, K Clare, R Ellison, J Gary, JW Hanson, G Heilman, J Rikova, MI Jandir, P Kennedy, E Lacroix, F Long, OR Luthra, A Malberti, M Negrete, MO Shrinivas, A Sumowidagdo, S Wimpenny, S Branson, JG Cerati, GB Cittolin, S D'Agnolo, RT Holzner, A Kelley, R Klein, D Letts, J Macneill, I Olivito, D Padhi, S Palmer, C Pieri, M Sani, M Sharma, V Simon, S Tadel, M Tu, Y Vartak, A Welke, C Wurthwein, F Yagil, A Barge, D Bradmiller-Feld, J Campagnari, C Danielson, T Dishaw, A Dutta, V Flowers, K Sevilla, MF Geffert, P George, C Golf, F Gouskos, L Incandela, J Justus, C Mccoll, N Richman, J Stuart, D To, W West, C Yoo, J Apresyan, A Bornheim, A Bunn, J Chen, Y Duarte, J Mott, A Newman, HB Pena, C Pierini, M Spiropulu, M Vlimant, JR Wilkinson, R Xie, S Zhu, RY Azzolini, V Calamba, A Carlson, B Ferguson, T Iiyama, Y Paulini, M Russ, J Vogel, H Vorobiev, I Cumalat, JP Ford, WT Gaz, A Krohn, M Lopez, EL Nauenberg, U Smith, JG Stenson, K Wagner, SR Alexander, J Chatterjee, A Chaves, J Chu, J Dittmer, S Eggert, N Mirman, N Kaufman, GN Patterson, JR Ryd, A Salvati, E Skinnari, L Sun, W Teo, WD Thom, J Thompson, J Tucker, J Weng, Y Winstrom, L Wittich, P Winn, D Abdullin, S Albrow, M Anderson, J Apollinari, G Bauerdick, LAT Beretvas, A Berryhill, J Bhat, PC Bolla, G Burkett, K Butler, JN Cheung, HWK Chlebana, F Cihangir, S Elvira, VD Fisk, I Freeman, J Gao, Y Gottschalk, E Gray, L Green, D Grunendahl, S Gutsche, O Hanlon, J Hare, D Harris, RM Hirschauer, J Hooberman, B Jindariani, S Johnson, M Joshi, U Kaadze, K Klima, B Kreis, B Kwan, S Linacre, J Lincoln, D Lipton, R Liu, T Lykken, J Maeshima, K Marraffino, JM Outschoorn, VIM Maruyama, S Mason, D McBride, P Merkel, P Mishra, K Mrenna, S Nahn, S Newman-Holmes, C O'Dell, V Prokofyev, O Sexton-Kennedy, E Sharma, S Soha, A Spalding, WJ Spiegel, L Taylor, L Tkaczyk, S Tran, NV Uplegger, L Vaandering, EW Vidal, R Whitbeck, A Whitmore, J Yang, F Acosta, D Avery, P Bortignon, P Bourilkov, D Carver, M Curry, D Das, S De Gruttola, M Di Giovanni, GP Field, RD Fisher, M Furic, IK Hugon, J Konigsberg, J Korytov, A Kypreos, T Low, JF Matchev, K Mei, H Milenovic, P Mitselmakher, G Muniz, L Rinkevicius, A Shchutska, L Snowball, M Sperka, D Yelton, J Zakaria, M Hewamanage, S Linn, S Markowitz, P Martinez, G Rodriguez, JL Adams, T Askew, A Bochenek, J Diamond, B Haas, J Hagopian, S Hagopian, V Johnson, KF Prosper, H Veeraraghavan, V Weinberg, M Baarmand, MM Hohlmann, M Kalakhety, H Yumiceva, F Adams, MR Apanasevich, L Berry, D Betts, RR Bucinskaite, I Cavanaugh, R Evdokimov, O Gauthier, L Gerber, CE Hofman, DJ Kurt, P Moon, DH O'Brien, C Gonzalez, LDS Silkworth, C Turner, P Varelas, N Bilki, B Clarida, W Dilsiz, K Haytmyradov, M Merlo, JP Mermerkaya, H Mestvirishvili, A Moeller, A Nachtman, J Ogul, H Onel, Y Ozok, F Penzo, A Rahmat, R Sen, S Tan, P Tiras, E Wetzel, J Yi, K Barnett, BA Blumenfeld, B Bolognesi, S Fehling, D Gritsan, AV Maksimovic, P Martin, C Swartz, M Baringer, P Bean, A Benelli, G Bruner, C Kennyiii, RP Malek, M Murray, M Noonan, D Sanders, S Sekaric, J Stringer, R Wang, Q Wood, JS Chakaberia, I Ivanov, A Khalil, S Makouski, M Maravin, Y Saini, LK Skhirtladze, N Svintradze, I Gronberg, J Lange, D Rebassoo, F Wright, D Baden, A Belloni, A Calvert, B Eno, SC Gomez, JA Hadley, NJ Kellogg, RG Kolberg, T Lu, Y Mignerey, AC Pedro, K Skuja, A Tonjes, MB Tonwar, SC Apyan, A Barbieri, R Busza, W Cali, IA Chan, M Di Matteo, L Ceballos, GG Goncharov, M Gulhan, D Klute, M Lai, YS Lee, YJ Levin, A Luckey, PD Paus, C Ralph, D Roland, C Roland, G Stephans, GSF Sumorok, K Velicanu, D Veverka, J Wyslouch, B Yang, M Zanetti, M Zhukova, V Dahmes, B Gude, A Kao, SC Klapoetke, K Kubota, Y Mans, J Pastika, N Rusack, R Singovsky, A Tambe, N Turkewitz, J Acosta, JG Oliveros, S Avdeeva, E Bloom, K Bose, S Claes, DR Dominguez, A Suarez, RG Keller, J Knowlton, D Kravchenko, I Lazo-Flores, J Meier, F Ratnikov, F Snow, GR Zvada, M Dolen, J Godshalk, A Iashvili, I Kharchilava, A Kumar, A Rappoccio, S Alverson, G Barberis, E Baumgartel, D Chasco, M Massironi, A Morse, DM Nash, D Orimoto, T Trocino, D Wang, RJ Wood, D Zhang, J Hahn, KA Kubik, A Mucia, N Odell, N Pollack, B Pozdnyakov, A Schmitt, M Stoynev, S Sung, K Velasco, M Won, S Brinkerhoff, A Chan, KM Drozdetskiy, A Hildreth, M Jessop, C Karmgard, DJ Kellams, N Lannon, K Lynch, S Marinelli, N Musienko, Y Pearson, T Planer, M Ruchti, R Smith, G Valls, N Wayne, M Wolf, M Woodard, A Antonelli, L Brinson, J Bylsma, B Durkin, LS Flowers, S Hart, A Hill, C Hughes, R Kotov, K Ling, TY Luo, W Puigh, D Rodenburg, M Winer, BL Wolfe, H Wulsin, HW Driga, O Elmer, P Hardenbrook, J Hebda, P Hunt, A Koay, SA Lujan, P Marlow, D Medvedeva, T Mooney, M Olsen, J Piroue, P Quan, X Saka, H Stickland, D Tully, C Werner, JS Zuranski, A Brownson, E Malik, S Mendez, H Vargas, JER Barnes, VE Benedetti, D Bortoletto, D De Mattia, M Gutay, L Hu, Z Jha, MK Jones, M Jung, K Kress, M Leonardo, N Miller, DH Neumeister, N Radburn-Smith, BC Shi, X Shipsey, I Silvers, D Svyatkovskiy, A Wang, F Xie, W Xu, L Zablocki, J Parashar, N Stupak, J Adair, A Akgun, B Ecklund, KM Geurts, FJM Li, W Michlin, B Padley, BP Redjimi, R Roberts, J Zabel, J Betchart, B Bodek, A Covarelli, R de Barbaro, P Demina, R Eshaq, Y Ferbel, T Garcia-Bellido, A Goldenzweig, P Han, J Harel, A Khukhunaishvili, A Korjenevski, S Petrillo, G Vishnevskiy, D Ciesielski, R Demortier, L Goulianos, K Mesropian, C Arora, S Barker, A Chou, JP Contreras-Campana, C Contreras-Campana, E Duggan, D Ferencek, D Gershtein, Y Gray, R Halkiadakis, E Hidas, D Kaplan, S Lath, A Panwalkar, S Park, M Patel, R Salur, S Schnetzer, S Somalwar, S Stone, R Thomas, S Thomassen, P Walker, M Rose, K Spanier, S York, A Bouhali, O Hernandez, AC Eusebi, R Flanagan, W Gilmore, J Kamon, T Khotilovich, V Krutelyov, V Montalvo, R Osipenkov, I Pakhotin, Y Perloff, A Roe, J Rose, A Safonov, A Suarez, I Tatarinov, A Ulmer, KA Akchurin, N Cowden, C Damgov, J Dragoiu, C Dudero, PR Faulkner, J Kovitanggoon, K Kunori, S Lee, SW Libeiro, T Volobouev, I Appelt, E Delannoy, AG Greene, S Gurrola, A Johns, W Maguire, C Mao, Y Melo, A Sharma, M Sheldon, P Snook, B Tuo, S Velkovska, J Arenton, MW Boutle, S Cox, B Francis, B Goodell, J Hirosky, R Ledovskoy, A Li, H Lin, C Neu, C Wood, J Clarke, C Harr, R Karchin, PE Don, CKK Lamichhane, P Sturdy, J Belknap, DA Carlsmith, D Cepeda, M Dasu, S Dodd, L Duric, S Friis, E Hall-Wilton, R Herndon, M Herve, A Klabbers, P Lanaro, A Lazaridis, C Levine, A Loveless, R Mohapatra, A Ojalvo, I Perry, T Pierro, GA Polese, G Ross, I Sarangi, T Savin, A Smith, WH Taylor, D Vuosalo, C Woods, N AF Khachatryan, V. Sirunyan, A. M. Tumasyan, A. Adam, W. Bergauer, T. Dragicevic, M. Eroe, J. Friedl, M. Fruehwirth, R. Ghete, V. M. Hartl, C. Hoermann, N. Hrubec, J. Jeitler, M. Kiesenhofer, W. Knuenz, V. Krammer, M. Kraetschmer, I. Liko, D. Mikulec, I. Rabady, D. Rahbaran, B. Rohringer, H. Schoefbeck, R. Strauss, J. Treberer-Treberspurg, W. Waltenberger, W. Wulz, C. -E. Mossolov, V. Shumeiko, N. Gonzalez, J. Suarez Alderweireldt, S. Bansal, S. Cornelis, T. De Wolf, E. A. Janssen, X. Knutsson, A. Lauwers, J. Luyckx, S. Ochesanu, S. Rougny, R. Van de Klundert, M. Van Haevermaet, H. Van Mechelen, P. Van Remortel, N. Van Spilbeeck, A. Blekman, F. Blyweert, S. D'Hondt, J. Daci, N. Heracleous, N. Keaveney, J. Lowette, S. Maes, M. Olbrechts, A. Python, Q. Strom, D. Tavernier, S. Van Doninck, W. Van Mulders, P. Van Onsem, G. P. Villella, I. Caillol, C. Clerbaux, B. De Lentdecker, G. Dobur, D. Favart, L. Gay, A. P. R. Grebenyuk, A. Leonard, A. Mohammadi, A. Pernie, L. Randle-conde, A. Reis, T. Seva, T. Thomas, L. Vander Velde, C. Vanlaer, P. Wang, J. Zenoni, F. Adler, V. Beernaert, K. Benucci, L. Cimmino, A. Costantini, S. Crucy, S. Dildick, S. Fagot, A. Garcia, G. Mccartin, J. Rios, A. A. Ocampo Ryckbosch, D. Diblen, S. Salva Sigamani, M. Strobbe, N. Thyssen, F. Tytgat, M. Yazgan, E. Zaganidis, N. Basegmez, S. Beluffi, C. Bruno, G. Castello, R. Caudron, A. Ceard, L. Da Silveira, G. Delaere, C. du Pree, T. Favart, D. Forthomme, L. Giammanco, A. Hollar, J. Jafari, A. Jez, P. Komm, M. Lemaitre, V. Nuttens, C. Pagano, D. Perrini, L. Pin, A. Piotrzkowski, K. Popov, A. Quertenmont, L. Selvaggi, M. Marono, M. Vidal Garcia, J. M. Vizan Beliy, N. Caebergs, T. Daubie, E. Hammad, G. H. Alda Junior, W. L. Alves, G. A. Brito, L. Correa Martins Junior, M. Dos Reis Martins, T. Mora Herrera, C. Pol, M. E. Rebello Teles, P. Carvalho, W. Chinellato, J. Custodio, A. Da Costa, E. M. De Jesus Damiao, D. De Oliveira Martins, C. Fonseca De Souza, S. Malbouisson, H. Matos Figueiredo, D. Mundim, L. Nogima, H. Prado Da Silva, W. L. Santaolalla, J. Santoro, A. Sznajder, A. Tonelli Manganote, E. J. Vilela Pereira, A. Bernardes, C. A. Dogra, S. Fernandez Perez Tomei, T. R. Gregores, E. M. Mercadante, P. G. Novaes, S. F. Padula, Sandra S. Aleksandrov, A. Genchev, V. Hadjiiska, R. Iaydjiev, P. Marinov, A. Piperov, S. Rodozov, M. Sultanov, G. Vutova, M. Dimitrov, A. Glushkov, I. Litov, L. Pavlov, B. Petkov, P. Bian, J. G. Chen, G. M. Chen, H. S. Chen, M. Cheng, T. Du, R. Jiang, C. H. Plestina, R. Romeo, F. Tao, J. Wang, Z. Asawatangtrakuldee, C. Ban, Y. Li, Q. Liu, S. Mao, Y. Qian, J. Wang, D. Xu, Z. Zou, W. Avila, C. Cabrera, A. Chaparro Sierra, L. F. Florez, C. Gomez, J. P. Gomez Moreno, B. Sanabria, J. C. Godinovic, N. Lelas, D. Polic, D. Puljak, I. Antunovic, Z. Kovac, M. Brigljevic, V. Kadija, K. Luetic, J. Mekterovic, D. Sudic, L. Attikis, A. Mavromanolakis, G. Mousa, J. Nicolaou, C. Ptochos, F. Razis, P. A. Bodlak, M. Finger, M. Finger, M., Jr. Assran, Y. Kamel, A. Ellithi Mahmoud, M. A. Radi, A. Kadastik, M. Murumaa, M. Raidal, M. Tiko, A. Eerola, P. Fedi, G. Voutilainen, M. Harkonen, J. Karimaki, V. Kinnunen, R. Kortelainen, J. Lampen, T. Lassila-Perini, K. Lehti, S. Linden, T. Luukka, P. Maenpaa, T. Peltola, T. Tuominen, E. Tuominiemi, J. Tuovinen, E. Wendland, L. Talvitie, J. Tuuva, T. Besancon, M. Couderc, F. Dejardin, M. Denegri, D. Fabbro, B. Faure, J. L. Favaro, C. Ferri, F. Ganjour, S. Givernaud, A. Gras, P. de Monchenault, G. Hamel Jarry, P. Locci, E. Malcles, J. Rander, J. Rosowsky, A. Titov, M. Baffioni, S. Beaudette, F. Busson, P. Charlot, C. Dahms, T. Dalchenko, M. Dobrzynski, L. Filipovic, N. Florent, A. de Cassagnac, R. Granier Mastrolorenzo, L. Mine, P. Mironov, C. Naranjo, N. Nguyen, M. Ochando, C. Ortona, G. Paganini, P. Regnard, S. Salerno, R. Sauvan, J. B. Sirois, Y. Veelken, C. Yilmaz, Y. Zabi, A. Agram, J. -L. Andrea, J. Aubin, A. Bloch, D. Brom, J. -M. Chabert, E. C. Collard, C. Conte, E. Fontaine, J. C. Gele, D. Goerlach, U. Goetzmann, C. Le Bihan, A. -C. Skovpen, K. Van Hove, P. Gadrat, S. Beauceron, S. Beaupere, N. Boudoul, G. Bouvier, E. Brochet, S. Montoya, C. A. Carrillo Chasserat, J. Chierici, R. Contardo, D. Depasse, P. El Mamouni, H. Fan, J. Fay, J. Gascon, S. Gouzevitch, M. Ille, B. Kurca, T. Lethuillier, M. Mirabito, L. Perries, S. Alvarez, J. D. Ruiz Sabes, D. Sgandurra, L. Sordini, V. Donckt, M. Vander Verdier, P. Viret, S. Xiao, H. Tsamalaidze, Z. Autermann, C. Beranek, S. Bontenackels, M. Edelhoff, M. Feld, L. Heister, A. Hindrichs, O. Klein, K. Ostapchuk, A. Raupach, F. Sammet, J. Schael, S. Schulte, F. Weber, H. Wittmer, B. Zhukov, V. Ata, M. Brodski, M. Dietz-Laursonn, E. Duchardt, D. Erdmann, M. Fischer, R. Gueth, A. Hebbeker, T. Heidemann, C. Hoepfner, K. Klingebiel, D. Knutzen, S. Kreuzer, P. Merschmeyer, M. Meyer, A. Millet, P. Olschewski, M. Padeken, K. Papacz, P. Reithler, H. Schmitz, A. Sonnenschein, L. Teyssier, D. Thueer, S. Weber, M. Cherepanov, V. Erdogan, Y. Fluegge, G. Geenen, H. Geisler, M. Ahmad, W. Haj Hoehle, F. Kargoll, B. Kress, T. Kuessel, Y. Kuensken, A. Lingemann, J. Nowack, A. Nugent, I. M. Pooth, O. Stahl, A. Martin, M. Aldaya Asin, I. Bartosik, N. Behr, J. Behrens, U. Bell, A. J. Bethani, A. Borras, K. Burgmeier, A. Cakir, A. Calligaris, L. Campbell, A. Choudhury, S. Costanza, F. Pardos, C. Diez Dolinska, G. Dooling, S. Dorland, T. Eckerlin, G. Eckstein, D. Eichhorn, T. Flucke, G. Garcia, J. Garay Geiser, A. Gunnellini, P. Hauk, J. Hempel, M. Jung, H. Kalogeropoulos, A. Kasemann, M. Katsas, P. Kieseler, J. Kleinwort, C. Korol, L. Kruecker, D. Lange, W. Leonard, J. Lipka, K. Lobanov, A. Lohmann, W. Lutz, B. Mankel, R. Marfin, I. Melzer-Pellmann, I. -A. Meyer, A. B. Mittag, G. Mnich, J. Mussgiller, A. Naumann-Emme, S. Nayak, A. Ntomari, E. Perrey, H. Pitzl, D. Placakyte, R. Raspereza, A. Cipriano, P. M. Ribeiro Roland, B. Ron, E. Sahin, M. Oe. Salfeld-Nebgen, J. Saxena, P. Schoerner-Sadenius, T. Schroeder, M. Seitz, C. Spannagel, S. Trevino, A. D. R. Vargas Walsh, R. Wissing, C. Blobel, V. Vignali, M. Centis Draeger, A. R. Erfle, J. Garutti, E. Goebel, K. Goerner, M. Haller, J. Hoffmann, M. Hoeing, R. S. Junkes, A. Kirschenmann, H. Klanner, R. Kogler, R. Lange, J. Lapsien, T. Lenz, T. Marchesini, I. Ott, J. Peiffer, T. Pietsch, N. Poehlsen, J. Poehlsen, T. Rathjens, D. Sander, C. Schettler, H. Schleper, P. Schlieckau, E. Schmidt, A. Seidel, M. Sola, V. Stadie, H. Steinbrueck, G. Troendle, D. Usai, E. Vanelderen, L. Vanhoefer, A. Barth, C. Baus, C. Berger, J. Boeser, C. Butz, E. Chwalek, T. De Boer, W. Descroix, A. Dierlamm, A. Feindt, M. Frensch, F. Giffels, M. Hartmann, F. Hauth, T. Husemann, U. Katkov, I. Kornmayer, A. Kuznetsova, E. Pardo, P. Lobelle Mozer, M. U. Mueller, T. Mueller, Th. Nuernberg, A. Quast, G. Rabbertz, K. Roecker, S. Simonis, H. J. Stober, F. M. Ulrich, R. Wagner-Kuhr, J. Wayand, S. Weiler, T. Anagnostou, G. Daskalakis, G. Geralis, T. Giakoumopoulou, V. A. Kyriakis, A. Loukas, D. Markou, A. Markou, C. Psallidas, A. Topsis-Giotis, I. Agapitos, A. Kesisoglou, S. Panagiotou, A. Saoulidou, N. Stiliaris, E. Aslanoglou, X. Evangelou, I. Flouris, G. Foudas, C. Kokkas, P. Manthos, N. Papadopoulos, I. Paradas, E. Strologas, J. Bencze, G. Hajdu, C. Hidas, P. Horvath, D. Sikler, F. Veszpremi, V. Vesztergombi, G. Zsigmond, A. J. Beni, N. Czellar, S. Karancsi, J. Molnar, J. Palinkas, J. Szillasi, Z. Makovec, A. Raics, P. Trocsanyi, Z. L. Ujvari, B. Swain, S. K. Beri, S. B. Bhatnagar, V. Gupta, R. Bhawandeep, U. Kalsi, A. K. Kaur, M. Kumar, R. Mittal, M. Nishu, N. Singh, J. B. Kumar, Ashok Kumar, Arun Ahuja, S. Bhardwaj, A. Choudhary, B. C. Kumar, A. Malhotra, S. Naimuddin, M. Ranjan, K. Sharma, V. Banerjee, S. Bhattacharya, S. Chatterjee, K. Dutta, S. Gomber, B. Jain, Sa. Jain, Sh. Khurana, R. Modak, A. Mukherjee, S. Roy, D. Sarkar, S. Sharan, M. Abdulsalam, A. Dutta, D. Kumar, V. Mohanty, A. K. Pant, L. M. Shukla, P. Topkar, A. Aziz, T. Banerjee, S. Bhowmik, S. Chatterjee, R. M. Dewanjee, R. K. Dugad, S. Ganguly, S. Ghosh, S. Guchait, M. Gurtu, A. Kole, G. Kumar, S. Maity, M. Majumder, G. Mazumdar, K. Mohanty, G. B. Parida, B. Sudhakar, K. Wickramage, N. Bakhshiansohi, H. Behnamian, H. Etesami, S. M. Fahim, A. Goldouzian, R. Khakzad, M. Najafabadi, M. Mohammadi Naseri, M. Mehdiabadi, S. Paktinat Hosseinabadi, F. Rezaei Safarzadeh, B. Zeinali, M. Felcini, M. Grunewald, M. Abbrescia, M. Calabria, C. Chhibra, S. S. Colaleo, A. Creanza, D. De Filippis, N. De Palma, M. Fiore, L. Iaselli, G. Maggi, G. Maggi, M. My, S. Nuzzo, S. Pompili, A. Pugliese, G. Radogna, R. Selvaggi, G. Sharma, A. Silvestris, L. Venditti, R. Verwilligen, P. Abbiendi, G. Benvenuti, A. C. Bonacorsi, D. Braibant-Giacomelli, S. Brigliadori, L. Campanini, R. Capiluppi, P. Castro, A. Cavallo, F. R. Codispoti, G. Cuffiani, M. Dallavalle, G. M. Fabbri, F. Fanfani, A. Fasanella, D. Giacomelli, P. Grandi, C. Guiducci, L. Marcellini, S. Masetti, G. Montanari, A. Navarria, F. L. Perrotta, A. Primavera, F. Rossi, A. M. Rovelli, T. Sirolia, G. P. Tosi, N. Travaglini, R. Albergo, S. Cappello, G. Chiorboli, M. Costa, S. Giordano, F. Potenza, R. Tricomi, A. Tuve, C. Barbagli, G. Ciulli, V. Civinini, C. D'Alessandro, R. Focardi, E. Gallo, E. Gonzi, S. Gori, V. Lenzi, P. Meschini, M. Paoletti, S. Sguazzoni, G. Tropiano, A. Benussi, L. Bianco, S. Fabbri, F. Piccolo, D. Ferretti, R. Ferro, F. Lo Vetere, M. Robutti, E. Tosi, S. Dinardo, M. E. Fiorendi, S. Gennai, S. Gerosa, R. Ghezzi, A. Govoni, P. Lucchini, M. T. Malvezzi, S. Manzoni, R. A. Martelli, A. Marzocchi, B. Menasce, D. Moroni, L. Paganoni, M. Pedrini, D. Ragazzi, S. Redaelli, N. de Fatis, T. Tabarelli Buontempo, S. Cavallo, N. Di Guida, S. Fabozzi, F. Iorio, A. O. M. Lista, L. Meola, S. Merola, M. Paolucci, P. Azzi, P. Bacchetta, N. Bellato, M. Biasotto, M. Dall'Osso, M. Dorigo, T. Galanti, M. Giubilato, P. Gonella, F. Gozzelino, A. Kanishchev, K. Lacaprara, S. Margoni, M. Meneguzzo, A. T. Montecassiano, F. Passaseo, M. Pazzini, J. Pegoraro, M. Pozzobon, N. Ronchese, P. Simonetto, F. Torassa, E. Tosi, M. Vanini, S. Ventura, S. Zotto, P. Zucchetta, A. Gabusi, M. Ratti, S. P. Re, V. Riccardi, C. Salvini, P. Vitulo, P. Biasini, M. Bilei, G. M. Ciangottini, D. Fano, L. Lariccia, P. Mantovani, G. Menichelli, M. Saha, A. Santocchia, A. Spiezia, A. Androsov, K. Azzurri, P. Bagliesi, G. Bernardini, J. Boccali, T. Broccolo, G. Castaldi, R. Ciocci, M. A. Dell'Orso, R. Donato, S. Fiori, F. Foa, L. Giassi, A. Grippo, M. T. Ligabue, F. Lomtadze, T. Martini, L. Messineo, A. Moon, C. S. Palla, F. Rizzi, A. Savoy-Navarro, A. Serban, A. T. Spagnolo, P. Squillacioti, P. Tenchini, R. Tonelli, G. Venturi, A. Verdini, P. G. Vernieri, C. Barone, L. Cavallari, F. D'imperio, G. Del Re, D. Diemoz, M. Jorda, C. Longo, E. Margaroli, F. Meridiani, P. Micheli, F. Nourbakhsh, S. Organtini, G. Paramatti, R. Rahatlou, S. Rovelli, C. Santanastasio, F. Soffi, L. Traczyk, P. Amapane, N. Arcidiacono, R. Argiro, S. Arneodo, M. Bellan, R. Biino, C. Cartiglia, N. Casasso, S. Costa, M. Degano, A. Demaria, N. Finco, L. Mariotti, C. Maselli, S. Migliore, E. Monaco, V. Musich, M. Obertino, M. M. Pacher, L. Pastrone, N. Pelliccioni, M. Angioni, G. L. Pinna Potenza, A. Romero, A. Ruspa, M. Sacchi, R. Solano, A. Staiano, A. Tamponi, U. Belforte, S. Candelise, V. Casarsa, M. Cossutti, F. Della Ricca, G. Gobbo, B. La Licata, C. Marone, M. Schizzi, A. Umer, T. Zanetti, A. Chang, S. Kropivnitskaya, T. A. Nam, S. K. Kim, D. H. Kim, G. N. Kim, M. S. Kong, D. J. Lee, S. Oh, Y. D. Park, H. Sakharov, A. Son, D. C. Kim, T. J. Kim, J. Y. Song, S. Choi, S. Gyun, D. Hong, B. Jo, M. Kim, H. Kim, Y. Lee, B. Lee, K. S. Park, S. K. Roh, Y. Yoo, H. D. Choi, M. Kim, J. H. Park, I. C. Ryu, G. Ryu, M. S. Choi, Y. Choi, Y. K. Goh, J. Kim, D. Kwon, E. Lee, J. Yu, I. Juodagalvis, A. Komaragiri, J. R. Ali, M. A. B. Md Casimiro Linares, E. Castilla-Valdez, H. De la Cruz-Burelo, E. Heredia-de La Cruz, I. Hernandez-Almada, A. Lopez-Fernandez, R. Sanchez-Hernandez, A. Carrillo Moreno, S. Vazquez Valencia, F. Pedraza, I. Salazar Ibarguen, H. A. Morelos Pineda, A. Krofcheck, D. Butler, P. H. Reucroft, S. Ahmad, A. Ahmad, M. Hassan, Q. Hoorani, H. R. Khan, W. A. Khurshid, T. Shoaib, M. Bialkowska, H. Bluj, M. Boimska, B. Frueboes, T. Gorski, M. Kazana, M. Nawrocki, K. Romanowska-Rybinska, K. Szleper, M. Brona, G. Bunkowski, K. Cwiok, M. Dominik, W. Doroba, K. Kalinowski, A. Konecki, M. Krolikowski, J. Misiura, M. Olszewski, M. Wolszczak, W. Bargassa, P. Beirao Da Cruz E Silva, C. Faccioli, P. Ferreira Parracho, P. G. Gallinaro, M. Lloret Iglesias, L. Nguyen, F. Rodrigues Antunes, J. Seixas, J. Varela, J. Vischia, P. Afanasiev, S. Bunin, P. Gavrilenko, M. Golutvin, I. Gorbunov, I. Kamenev, A. Karjavin, V. Konoplyanikov, V. Lanev, A. Malakhov, A. Matveev, V. Moisenz, P. Palichik, V. Perelygin, V. Shmatov, S. Skatchkov, N. Smirnov, V. Zarubin, A. Golovtsov, V. Ivanov, Y. Kim, V. Levchenko, P. Murzin, V. Oreshkin, V. Smirnov, I. Sulimov, V. Uvarov, L. Vavilov, S. Vorobyev, A. Vorobyev, An. Andreev, Yu. Dermenev, A. Gninenko, S. Golubev, N. Kirsanov, M. Krasnikov, N. Pashenkov, A. Tlisov, D. Toropin, A. Epshteyn, V. Gavrilov, V. Lychkovskaya, N. Popov, V. Pozdnyakov, L. Safronov, G. Semenov, S. Spiridonov, A. Stolin, V. Vlasov, E. Zhokin, A. Andreev, V. Azarkin, M. Dremin, I. Kirakosyan, M. Leonidov, A. Mesyats, G. Rusakov, S. V. Vinogradov, A. Belyaev, A. Boos, E. Dubinin, M. Dudko, L. Ershov, A. Gribushin, A. Klyukhin, V. Kodolova, O. Lokhtin, I. Obraztsov, S. Petrushanko, S. Savrin, V. Snigirev, A. Azhgirey, I. Bayshev, I. Bitioukov, S. Kachanov, V. Kalinin, A. Konstantinov, D. Krychkine, V. Petrov, V. Ryutin, R. Sobol, A. Tourtchanovitch, L. Troshin, S. Tyurin, N. Uzunian, A. Volkov, A. Adzic, P. Ekmedzic, M. Milosevic, J. Rekovic, V. Alcaraz Maestre, J. Battilana, C. Calvo, E. Cerrada, M. Chamizo Llatas, M. Colino, N. De la Cruz, B. Delgado Peris, A. Dominguez Vazquez, D. Escalante Del Valle, A. Fernandez Bedoya, C. Fernandez Ramos, J. P. Flix, J. Fouz, M. C. Garcia-Abia, P. Gonzalez Lopez, O. Goy Lopez, S. Hernandez, J. M. Josa, M. I. Navarro De Martino, E. Perez-Calero Yzquierdo, A. Puerta Pelayo, J. Quintario Olmeda, A. Redondo, I. Romero, L. Soares, M. S. Albajar, C. de Troconiz, J. F. Missiroli, M. Moran, D. Brun, H. Cuevas, J. Fernandez Menendez, J. Folgueras, S. Gonzalez Caballero, I. Brochero Cifuentes, J. A. Cabrillo, I. J. Calderon, A. Duarte Campderros, J. Fernandez, M. Gomez, G. Graziano, A. Lopez Virto, A. Marco, J. Marco, R. Martinez Rivero, C. Matorras, F. Munoz Sanchez, F. J. Piedra Gomez, J. Rodrigo, T. Rodriguez-Marrero, Y. Ruiz-Jimeno, A. Scodellaro, L. Vila, I. Vilar Cortabitarte, R. Abbaneo, D. Auffray, E. Auzinger, G. Bachtis, M. Baillon, P. Ball, A. H. Barney, D. Benaglia, A. Bendavid, J. Benhabib, L. Benitez, J. F. Bernet, C. Bloch, P. Bocci, A. Bonato, A. Bondu, O. Botta, C. Breuker, H. Camporesi, T. Cerminara, G. Colafranceschi, S. D'Alfonso, M. d'Enterria, D. Dabrowski, A. David, A. De Guio, F. De Roeck, A. De Visscher, S. Di Marco, E. Dobson, M. Dordevic, M. Dorney, B. Dupont-Sagorin, N. Elliott-Peisert, A. Franzoni, G. Funk, W. Gigi, D. Gill, K. Giordano, D. Girone, M. Glege, F. Guida, R. Gundacker, S. Guthoff, M. Hammer, J. Hansen, M. Harris, P. Hegeman, J. Innocente, V. Janot, P. Kousouris, K. Krajczar, K. Lecoq, P. Lourenco, C. Magini, N. Malgeri, L. Mannelli, M. Marrouche, J. Masetti, L. Meijers, F. Mersi, S. Meschi, E. Moortgat, F. Morovic, S. Mulders, M. Orsini, L. Pape, L. Perez, E. Perrozzi, L. Petrilli, A. Petrucciani, G. Pfeiffer, A. Pimiae, M. Piparo, D. Plagge, M. Racz, A. Rolandi, G. Rovere, M. Sakulin, H. Schaefer, C. Schwick, C. Sharma, A. Siegrist, P. Silva, P. Simon, M. Sphicas, P. Spiga, D. Steggemann, J. Stieger, B. Stoye, M. Takahashi, Y. Treille, D. Tsirou, A. Veres, G. I. Wardle, N. Woehri, H. K. Wollny, H. Zeuner, W. D. Bertl, W. Deiters, K. Erdmann, W. Horisberger, R. Ingram, Q. Kaestli, H. C. Kotlinski, D. Langenegger, U. Renker, D. Rohe, T. Bachmair, F. Baeni, L. Bianchini, L. Buchmann, M. A. Casal, B. Chanon, N. Dissertori, G. Dittmar, M. Donega, M. Duenser, M. Eller, P. Grab, C. Hits, D. Hoss, J. Lustermann, W. Mangano, B. Marini, A. C. Marionneau, M. del Arbol, P. Martinez Ruiz Masciovecchio, M. Meister, D. Mohr, N. Musella, P. Naegeli, C. Nessi-Tedaldi, F. Pandolfi, F. Pauss, F. Peruzzi, M. Quittnat, M. Rebane, L. Rossini, M. Starodumov, A. Takahashi, M. Theofilatos, K. Wallny, R. Weber, H. A. Amsler, C. Canelli, M. F. Chiochia, V. De Cosa, A. Hinzmann, A. Hreus, T. Kilminster, B. Lange, C. Mejias, B. Millan Ngadiuba, J. Pinna, D. Robmann, P. Ronga, F. J. Taroni, S. Verzetti, M. Yang, Y. Cardaci, M. Chen, K. H. Ferro, C. Kuo, C. M. Lin, W. Lu, Y. J. Volpe, R. Yu, S. S. Chang, P. Chang, Y. H. Chang, Y. W. Chao, Y. Chen, K. F. Chen, P. H. Dietz, C. Grundler, U. Hou, W. -S. Kao, K. Y. Liu, Y. F. Lu, R. -S. Majumder, D. Petrakou, E. Tzeng, Y. M. Wilken, R. Asavapibhop, B. Singh, G. Srimanobhas, N. Suwonjandee, N. Adiguzel, A. Bakirci, M. N. Cerci, S. Dozen, C. Dumanoglu, I. Eskut, E. Girgis, S. Gokbulut, G. Gurpinar, E. Hos, I. Kangal, E. E. Topaksu, A. Kayis Onengut, G. Ozdemir, K. Ozturk, S. Polatoz, A. Cerci, D. Sunar Tali, B. Topakli, H. Vergili, M. Akin, I. V. Bilin, B. Bilmis, S. Gamsizkan, H. Isildak, B. Karapinar, G. Ocalan, K. Sekmen, S. Surat, U. E. Yalvac, M. Zeyrek, M. Albayrak, A. Gulmez, E. Kaya, M. Kaya, O. Yetkin, T. Cankocak, K. Vardarli, F. I. Levchuk, L. Sorokin, P. Brooke, J. J. Clement, E. Cussans, D. Flacher, H. Goldstein, J. Grimes, M. Heath, G. P. Heath, H. F. Jacob, J. Kreczko, L. Lucas, C. Meng, Z. Newbold, D. M. Paramesvaran, S. Poll, A. Sakuma, T. Senkin, S. Smith, V. J. Bell, K. W. Belyaev, A. Brew, C. Brown, R. M. Cockerill, D. J. A. Coughlan, J. A. Harder, K. Harper, S. Olaiya, E. Petyt, D. Shepherd-Themistocleous, C. H. Thea, A. Tomalin, I. R. Williams, T. Womersley, W. J. Worm, S. D. Baber, M. Bainbridge, R. Buchmuller, O. Burton, D. Colling, D. Cripps, N. Dauncey, P. Davies, G. Della Negra, M. Dunne, P. Ferguson, W. Fulcher, J. Futyan, D. Hall, G. Iles, G. Jarvis, M. Karapostoli, G. Kenzie, M. Lane, R. Lucas, R. Lyons, L. Magnan, A. -M. Malik, S. Mathias, B. Nash, J. Nikitenko, A. Pela, J. Pesaresi, M. Petridis, K. Raymond, D. M. Rogerson, S. Rose, A. Seez, C. Sharp, P. Tapper, A. Acosta, M. Vazquez Virdee, T. Zenz, S. C. Cole, J. E. Hobson, P. R. Khan, A. Kyberd, P. Leggat, D. Leslie, D. Reid, I. D. Symonds, P. Teodorescu, L. Turner, M. Dittmann, J. Hatakeyama, K. Kasmi, A. Liu, H. Scarborough, T. Charaf, O. Cooper, S. I. Henderson, C. Rumerio, P. Avetisyan, A. Bose, T. Fantasia, C. Lawson, P. Richardson, C. Rohlf, J. St John, J. Sulak, L. Alimena, J. Berry, E. Bhattacharya, S. Christopher, G. Cutts, D. Demiragli, Z. Dhingra, N. Ferapontov, A. Garabedian, A. Heintz, U. Kukartsev, G. Laird, E. Landsberg, G. Luk, M. Narain, M. Segala, M. Sinthuprasith, T. Speer, T. Swanson, J. Breedon, R. Breto, G. Sanchez, M. Calderon De la Barca Chauhan, S. Chertok, M. Conway, J. Conway, R. Cox, P. T. Erbacher, R. Gardner, M. Ko, W. Lander, R. Mulhearn, M. Pellett, D. Pilot, J. Ricci-Tam, F. Shalhout, S. Smith, J. Squires, M. Stolp, D. Tripathi, M. Wilbur, S. Yohay, R. Cousins, R. Everaerts, P. Farrell, C. Hauser, J. Ignatenko, M. Rakness, G. Takasugi, E. Valuev, V. Weber, M. Burt, K. Clare, R. Ellison, J. Gary, J. W. Hanson, G. Heilman, J. Rikova, M. Ivova Jandir, P. Kennedy, E. Lacroix, F. Long, O. R. Luthra, A. Malberti, M. Negrete, M. Olmedo Shrinivas, A. Sumowidagdo, S. Wimpenny, S. Branson, J. G. Cerati, G. B. Cittolin, S. D'Agnolo, R. T. Holzner, A. Kelley, R. Klein, D. Letts, J. Macneill, I. Olivito, D. Padhi, S. Palmer, C. Pieri, M. Sani, M. Sharma, V. Simon, S. Tadel, M. Tu, Y. Vartak, A. Welke, C. Wuerthwein, F. Yagil, A. Barge, D. Bradmiller-Feld, J. Campagnari, C. Danielson, T. Dishaw, A. Dutta, V. Flowers, K. Sevilla, M. Franco Geffert, P. George, C. Golf, F. Gouskos, L. Incandela, J. Justus, C. Mccoll, N. Richman, J. Stuart, D. To, W. West, C. Yoo, J. Apresyan, A. Bornheim, A. Bunn, J. Chen, Y. Duarte, J. Mott, A. Newman, H. B. Pena, C. Pierini, M. Spiropulu, M. Vlimant, J. R. Wilkinson, R. Xie, S. Zhu, R. Y. Azzolini, V. Calamba, A. Carlson, B. Ferguson, T. Iiyama, Y. Paulini, M. Russ, J. Vogel, H. Vorobiev, I. Cumalat, J. P. Ford, W. T. Gaz, A. Krohn, M. Lopez, E. Luiggi Nauenberg, U. Smith, J. G. Stenson, K. Wagner, S. R. Alexander, J. Chatterjee, A. Chaves, J. Chu, J. Dittmer, S. Eggert, N. Mirman, N. Kaufman, G. Nicolas Patterson, J. R. Ryd, A. Salvati, E. Skinnari, L. Sun, W. Teo, W. D. Thom, J. Thompson, J. Tucker, J. Weng, Y. Winstrom, L. Wittich, P. Winn, D. Abdullin, S. Albrow, M. Anderson, J. Apollinari, G. Bauerdick, L. A. T. Beretvas, A. Berryhill, J. Bhat, P. C. Bolla, G. Burkett, K. Butler, J. N. Cheung, H. W. K. Chlebana, F. Cihangir, S. Elvira, V. D. Fisk, I. Freeman, J. Gao, Y. Gottschalk, E. Gray, L. Green, D. Gruenendahl, S. Gutsche, O. Hanlon, J. Hare, D. Harris, R. M. Hirschauer, J. Hooberman, B. Jindariani, S. Johnson, M. Joshi, U. Kaadze, K. Klima, B. Kreis, B. Kwan, S. Linacre, J. Lincoln, D. Lipton, R. Liu, T. Lykken, J. Maeshima, K. Marraffino, J. M. Outschoorn, V. I. Martinez Maruyama, S. Mason, D. McBride, P. Merkel, P. Mishra, K. Mrenna, S. Nahn, S. Newman-Holmes, C. O'Dell, V. Prokofyev, O. Sexton-Kennedy, E. Sharma, S. Soha, A. Spalding, W. J. Spiegel, L. Taylor, L. Tkaczyk, S. Tran, N. V. Uplegger, L. Vaandering, E. W. Vidal, R. Whitbeck, A. Whitmore, J. Yang, F. Acosta, D. Avery, P. Bortignon, P. Bourilkov, D. Carver, M. Curry, D. Das, S. De Gruttola, M. Di Giovanni, G. P. Field, R. D. Fisher, M. Furic, I. K. Hugon, J. Konigsberg, J. Korytov, A. Kypreos, T. Low, J. F. Matchev, K. Mei, H. Milenovic, P. Mitselmakher, G. Muniz, L. Rinkevicius, A. Shchutska, L. Snowball, M. Sperka, D. Yelton, J. Zakaria, M. Hewamanage, S. Linn, S. Markowitz, P. Martinez, G. Rodriguez, J. L. Adams, T. Askew, A. Bochenek, J. Diamond, B. Haas, J. Hagopian, S. Hagopian, V. Johnson, K. F. Prosper, H. Veeraraghavan, V. Weinberg, M. Baarmand, M. M. Hohlmann, M. Kalakhety, H. Yumiceva, F. Adams, M. R. Apanasevich, L. Berry, D. Betts, R. R. Bucinskaite, I. Cavanaugh, R. Evdokimov, O. Gauthier, L. Gerber, C. E. Hofman, D. J. Kurt, P. Moon, D. H. O'Brien, C. Gonzalez, L. D. Sandoval Silkworth, C. Turner, P. Varelas, N. Bilki, B. Clarida, W. Dilsiz, K. Haytmyradov, M. Merlo, J. -P. Mermerkaya, H. Mestvirishvili, A. Moeller, A. Nachtman, J. Ogul, H. Onel, Y. Ozok, F. Penzo, A. Rahmat, R. Sen, S. Tan, P. Tiras, E. Wetzel, J. Yi, K. Barnett, B. A. Blumenfeld, B. Bolognesi, S. Fehling, D. Gritsan, A. V. Maksimovic, P. Martin, C. Swartz, M. Baringer, P. Bean, A. Benelli, G. Bruner, C. Kennyiii, R. P. Malek, M. Murray, M. Noonan, D. Sanders, S. Sekaric, J. Stringer, R. Wang, Q. Wood, J. S. Chakaberia, I. Ivanov, A. Khalil, S. Makouski, M. Maravin, Y. Saini, L. K. Skhirtladze, N. Svintradze, I. Gronberg, J. Lange, D. Rebassoo, F. Wright, D. Baden, A. Belloni, A. Calvert, B. Eno, S. C. Gomez, J. A. Hadley, N. J. Kellogg, R. G. Kolberg, T. Lu, Y. Mignerey, A. C. Pedro, K. Skuja, A. Tonjes, M. B. Tonwar, S. C. Apyan, A. Barbieri, R. Busza, W. Cali, I. A. Chan, M. Di Matteo, L. Ceballos, G. Gomez Goncharov, M. Gulhan, D. Klute, M. Lai, Y. S. Lee, Y. -J. Levin, A. Luckey, P. D. Paus, C. Ralph, D. Roland, C. Roland, G. Stephans, G. S. F. Sumorok, K. Velicanu, D. Veverka, J. Wyslouch, B. Yang, M. Zanetti, M. Zhukova, V. Dahmes, B. Gude, A. Kao, S. C. Klapoetke, K. Kubota, Y. Mans, J. Pastika, N. Rusack, R. Singovsky, A. Tambe, N. Turkewitz, J. Acosta, J. G. Oliveros, S. Avdeeva, E. Bloom, K. Bose, S. Claes, D. R. Dominguez, A. Suarez, R. Gonzalez Keller, J. Knowlton, D. Kravchenko, I. Lazo-Flores, J. Meier, F. Ratnikov, F. Snow, G. R. Zvada, M. Dolen, J. Godshalk, A. Iashvili, I. Kharchilava, A. Kumar, A. Rappoccio, S. Alverson, G. Barberis, E. Baumgartel, D. Chasco, M. Massironi, A. Morse, D. M. Nash, D. Orimoto, T. Trocino, D. Wang, R. J. Wood, D. Zhang, J. Hahn, K. A. Kubik, A. Mucia, N. Odell, N. Pollack, B. Pozdnyakov, A. Schmitt, M. Stoynev, S. Sung, K. Velasco, M. Won, S. Brinkerhoff, A. Chan, K. M. Drozdetskiy, A. Hildreth, M. Jessop, C. Karmgard, D. J. Kellams, N. Lannon, K. Lynch, S. Marinelli, N. Musienko, Y. Pearson, T. Planer, M. Ruchti, R. Smith, G. Valls, N. Wayne, M. Wolf, M. Woodard, A. Antonelli, L. Brinson, J. Bylsma, B. Durkin, L. S. Flowers, S. Hart, A. Hill, C. Hughes, R. Kotov, K. Ling, T. Y. Luo, W. Puigh, D. Rodenburg, M. Winer, B. L. Wolfe, H. Wulsin, H. W. Driga, O. Elmer, P. Hardenbrook, J. Hebda, P. Hunt, A. Koay, S. A. Lujan, P. Marlow, D. Medvedeva, T. Mooney, M. Olsen, J. Piroue, P. Quan, X. Saka, H. Stickland, D. Tully, C. Werner, J. S. Zuranski, A. Brownson, E. Malik, S. Mendez, H. Vargas, J. E. Ramirez Barnes, V. E. Benedetti, D. Bortoletto, D. De Mattia, M. Gutay, L. Hu, Z. Jha, M. K. Jones, M. Jung, K. Kress, M. Leonardo, N. Miller, D. H. Neumeister, N. Radburn-Smith, B. C. Shi, X. Shipsey, I. Silvers, D. Svyatkovskiy, A. Wang, F. Xie, W. Xu, L. Zablocki, J. Parashar, N. Stupak, J. Adair, A. Akgun, B. Ecklund, K. M. Geurts, F. J. M. Li, W. Michlin, B. Padley, B. P. Redjimi, R. Roberts, J. Zabel, J. Betchart, B. Bodek, A. Covarelli, R. de Barbaro, P. Demina, R. Eshaq, Y. Ferbel, T. Garcia-Bellido, A. Goldenzweig, P. Han, J. Harel, A. Khukhunaishvili, A. Korjenevski, S. Petrillo, G. Vishnevskiy, D. Ciesielski, R. Demortier, L. Goulianos, K. Mesropian, C. Arora, S. Barker, A. Chou, J. P. Contreras-Campana, C. Contreras-Campana, E. Duggan, D. Ferencek, D. Gershtein, Y. Gray, R. Halkiadakis, E. Hidas, D. Kaplan, S. Lath, A. Panwalkar, S. Park, M. Patel, R. Salur, S. Schnetzer, S. Somalwar, S. Stone, R. Thomas, S. Thomassen, P. Walker, M. Rose, K. Spanier, S. York, A. Bouhali, O. Hernandez, A. Castaneda Eusebi, R. Flanagan, W. Gilmore, J. Kamon, T. Khotilovich, V. Krutelyov, V. Montalvo, R. Osipenkov, I. Pakhotin, Y. Perloff, A. Roe, J. Rose, A. Safonov, A. Suarez, I. Tatarinov, A. Ulmer, K. A. Akchurin, N. Cowden, C. Damgov, J. Dragoiu, C. Dudero, P. R. Faulkner, J. Kovitanggoon, K. Kunori, S. Lee, S. W. Libeiro, T. Volobouev, I. Appelt, E. Delannoy, A. G. Greene, S. Gurrola, A. Johns, W. Maguire, C. Mao, Y. Melo, A. Sharma, M. Sheldon, P. Snook, B. Tuo, S. Velkovska, J. Arenton, M. W. Boutle, S. Cox, B. Francis, B. Goodell, J. Hirosky, R. Ledovskoy, A. Li, H. Lin, C. Neu, C. Wood, J. Clarke, C. Harr, R. Karchin, P. E. Don, C. Kottachchi Kankanamge Lamichhane, P. Sturdy, J. Belknap, D. A. Carlsmith, D. Cepeda, M. Dasu, S. Dodd, L. Duric, S. Friis, E. Hall-Wilton, R. Herndon, M. Herve, A. Klabbers, P. Lanaro, A. Lazaridis, C. Levine, A. Loveless, R. Mohapatra, A. Ojalvo, I. Perry, T. Pierro, G. A. Polese, G. Ross, I. Sarangi, T. Savin, A. Smith, W. H. Taylor, D. Vuosalo, C. Woods, N. CA CMS Collaboration TI Distributions of topological observables in inclusive three- and four-jet events in pp collisions at root s=7 TeV SO EUROPEAN PHYSICAL JOURNAL C LA English DT Article ID SPIN CORRELATIONS; Z0 DECAYS; QCD; FRAGMENTATION; SIMULATION; JETS AB This paper presents distributions of topological observables in inclusive three- and four-jet events produced in pp collisions at a centre-of-mass energy of 7 TeV with a data sample collected by the CMS experiment corresponding to a luminosity of 5.1 fb(-1). The distributions are corrected for detector effects, and compared with several event generators based on two- and multi-parton matrix elements at leading order. Among the considered calculations, MadGraph interfaced with PYTHIA6 displays the overall best agreement with data. C1 [CMS Collaboration] CERN, CH-1211 Geneva 23, Switzerland. [Sirunyan, A. M.; Tumasyan, A.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Adam, W.; Bergauer, T.; Dragicevic, M.; Eroe, J.; Friedl, M.; Fruehwirth, R.; Ghete, V. M.; Hartl, C.; Hoermann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Knuenz, V.; Krammer, M.; Kraetschmer, I.; Liko, D.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, H.; Schoefbeck, R.; Strauss, J.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C. -E.] OeAW, Inst Hochenergiephys, Vienna, Austria. [Mossolov, V.; Shumeiko, N.; Gonzalez, J. Suarez] Natl Ctr Particle & High Energy Phys, Minsk, Byelarus. [Alderweireldt, S.; Bansal, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Knutsson, A.; Lauwers, J.; Luyckx, S.; Ochesanu, S.; Rougny, R.; Van de Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.] Univ Antwerp, B-2020 Antwerp, Belgium. [Blekman, F.; Blyweert, S.; D'Hondt, J.; Daci, N.; Heracleous, N.; Keaveney, J.; Lowette, S.; Maes, M.; Olbrechts, A.; Python, Q.; Strom, D.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.] Vrije Univ Brussel, Brussels, Belgium. [Khachatryan, V.; Caillol, C.; Clerbaux, B.; De Lentdecker, G.; Dobur, D.; Favart, L.; Gay, A. P. R.; Grebenyuk, A.; Leonard, A.; Mohammadi, A.; Pernie, L.; Randle-conde, A.; Reis, T.; Seva, T.; Thomas, L.; Vander Velde, C.; Vanlaer, P.; Wang, J.; Zenoni, F.] Univ Libre Bruxelles, Brussels, Belgium. [Adler, V.; Beernaert, K.; Benucci, L.; Cimmino, A.; Costantini, S.; Crucy, S.; Dildick, S.; Fagot, A.; Garcia, G.; Mccartin, J.; Rios, A. A. Ocampo; Ryckbosch, D.; Diblen, S. Salva; Sigamani, M.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Yazgan, E.; Zaganidis, N.] Univ Ghent, B-9000 Ghent, Belgium. [Basegmez, S.; Beluffi, C.; Bruno, G.; Castello, R.; Caudron, A.; Ceard, L.; Da Silveira, G.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Jafari, A.; Jez, P.; Komm, M.; Lemaitre, V.; Nuttens, C.; Pagano, D.; Perrini, L.; Pin, A.; Piotrzkowski, K.; Popov, A.; Quertenmont, L.; Selvaggi, M.; Marono, M. Vidal; Garcia, J. M. Vizan] Catholic Univ Louvain, Louvain La Neuve, Belgium. [Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.] Univ Mons, B-7000 Mons, Belgium. [Alda Junior, W. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Dos Reis Martins, T.; Mora Herrera, C.; Pol, M. E.; Rebello Teles, P.] Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil. [Carvalho, W.; Chinellato, J.; Custodio, A.; Da Costa, E. M.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Malbouisson, H.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santaolalla, J.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Dogra, S.; Fernandez Perez Tomei, T. R.; Novaes, S. F.; Padula, Sandra S.] Univ Estadual Paulista, Sao Paulo, Brazil. [Bernardes, C. A.; Gregores, E. M.; Mercadante, P. G.] Univ Fed ABC, Sao Paulo, Brazil. [Aleksandrov, A.; Genchev, V.; Hadjiiska, R.; Iaydjiev, P.; Marinov, A.; Piperov, S.; Rodozov, M.; Sultanov, G.; Vutova, M.] Bulgarian Acad Sci, Inst Nucl Res & Nucl Energy, Sofia, Bulgaria. [Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.] Univ Sofia, BU-1126 Sofia, Bulgaria. [Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Cheng, T.; Du, R.; Jiang, C. H.; Plestina, R.; Romeo, F.; Tao, J.; Wang, Z.] Inst High Energy Phys, Beijing 100039, Peoples R China. [Asawatangtrakuldee, C.; Ban, Y.; Li, Q.; Liu, S.; Mao, Y.; Qian, J.; Wang, D.; Xu, Z.; Zou, W.] Peking Univ, State Key Lab Nucl Phys & Technol, Beijing 100871, Peoples R China. [Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; Gomez Moreno, B.; Sanabria, J. C.] Univ Los Andes, Bogota, Colombia. [Godinovic, N.; Lelas, D.; Polic, D.; Puljak, I.] Univ Split, Fac Elect Engn Mech Engn & Naval Architecture, Split, Croatia. [Antunovic, Z.; Kovac, M.] Univ Split, Fac Sci, Split, Croatia. [Brigljevic, V.; Kadija, K.; Luetic, J.; Mekterovic, D.; Sudic, L.] Rudjer Boskovic Inst, Zagreb, Croatia. [Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.] Univ Cyprus, Nicosia, Cyprus. [Bodlak, M.; Finger, M.; Finger, M., Jr.] Charles Univ Prague, Prague, Czech Republic. [Assran, Y.; Kamel, A. Ellithi; Mahmoud, M. A.; Radi, A.] Arab Republ Egypt, Egyptian Network High Energy Phys, Acad Sci Res & Technol, Cairo, Egypt. [Giammanco, A.; Kadastik, M.; Murumaa, M.; Raidal, M.; Tiko, A.] NICPB, Tallinn, Estonia. [Eerola, P.; Fedi, G.; Voutilainen, M.] Univ Helsinki, Dept Phys, Helsinki, Finland. [Harkonen, J.; Karimaki, V.; Kinnunen, R.; Kortelainen, J.; Lampen, T.; Lassila-Perini, K.; Lehti, S.; Linden, T.; Luukka, P.; Maenpaa, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.] Helsinki Inst Phys, Helsinki, Finland. [Talvitie, J.; Tuuva, T.] Lappeenranta Univ Technol, Lappeenranta, Finland. [Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; de Monchenault, G. Hamel; Jarry, P.; Locci, E.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.] CEA Saclay, DSM IRFU, F-91191 Gif Sur Yvette, France. [Plestina, R.; Baffioni, S.; Beaudette, F.; Busson, P.; Charlot, C.; Dahms, T.; Dalchenko, M.; Dobrzynski, L.; Filipovic, N.; Florent, A.; de Cassagnac, R. Granier; Mastrolorenzo, L.; Mine, P.; Mironov, C.; Naranjo, N.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Regnard, S.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Veelken, C.; Yilmaz, Y.; Zabi, A.; Bernet, C.] Ecole Polytech, IN2P3 CNRS, Lab Leprince Ringuet, Palaiseau, France. [Beluffi, C.; Agram, J. -L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J. -M.; Chabert, E. C.; Collard, C.; Conte, E.; Fontaine, J. C.; Gele, D.; Goerlach, U.; Goetzmann, C.; Le Bihan, A. -C.; Skovpen, K.; Van Hove, P.] Univ Haute Alsace Mulhouse, Univ Strasbourg, Inst Pluridisciplinaire Hubert Curien, CNRS IN2P3, Strasbourg, France. [Gadrat, S.] CNRS IN2P3, Inst Natl Phys Nucl & Phys Particules, Ctr Calcul, Villeurbanne, France. [Beauceron, S.; Beaupere, N.; Boudoul, G.; Bouvier, E.; Brochet, S.; Montoya, C. A. Carrillo; Chasserat, J.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Kurca, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Alvarez, J. D. Ruiz; Sabes, D.; Sgandurra, L.; Sordini, V.; Donckt, M. Vander; Verdier, P.; Viret, S.; Xiao, H.] Univ Lyon 1, CNRS IN2P3, Inst Phys Nucl Lyon, F-69622 Villeurbanne, France. [Tsamalaidze, Z.] Tbilisi State Univ, Inst High Energy Phys & Informatizat, GE-380086 Tbilisi, Rep of Georgia. [Autermann, C.; Beranek, S.; Bontenackels, M.; Edelhoff, M.; Feld, L.; Heister, A.; Hindrichs, O.; Klein, K.; Ostapchuk, A.; Raupach, F.; Sammet, J.; Schael, S.; Schulte, F.; Weber, H.; Wittmer, B.; Zhukov, V.] Rhein Westfal TH Aachen, Phys Inst 1, Aachen, Germany. [Ata, M.; Brodski, M.; Dietz-Laursonn, E.; Duchardt, D.; Erdmann, M.; Fischer, R.; Gueth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Klingebiel, D.; Knutzen, S.; Kreuzer, P.; Merschmeyer, M.; Meyer, A.; Millet, P.; Olschewski, M.; Padeken, K.; Papacz, P.; Reithler, H.; Schmitz, A.; Sonnenschein, L.; Teyssier, D.; Thueer, S.; Weber, M.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany. [Cherepanov, V.; Erdogan, Y.; Fluegge, G.; Geenen, H.; Geisler, M.; Ahmad, W. Haj; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Kuensken, A.; Lingemann, J.; Nowack, A.; Nugent, I. M.; Pooth, O.; Stahl, A.] Rhein Westfal TH Aachen, Phys Inst B 3, Aachen, Germany. [Martin, M. Aldaya; Asin, I.; Bartosik, N.; Behr, J.; Behrens, U.; Bell, A. J.; Bethani, A.; Borras, K.; Burgmeier, A.; Cakir, A.; Calligaris, L.; Campbell, A.; Choudhury, S.; Costanza, F.; Pardos, C. Diez; Dolinska, G.; Dooling, S.; Dorland, T.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Flucke, G.; Garcia, J. Garay; Geiser, A.; Gunnellini, P.; Hauk, J.; Hempel, M.; Jung, H.; Kalogeropoulos, A.; Kasemann, M.; Katsas, P.; Kieseler, J.; Kleinwort, C.; Korol, L.; Kruecker, D.; Lange, W.; Leonard, J.; Lipka, K.; Lobanov, A.; Lohmann, W.; Lutz, B.; Mankel, R.; Marfin, I.; Melzer-Pellmann, I. -A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Nayak, A.; Ntomari, E.; Perrey, H.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Cipriano, P. M. Ribeiro; Roland, B.; Ron, E.; Sahin, M. Oe.; Salfeld-Nebgen, J.; Saxena, P.; Schoerner-Sadenius, T.; Schroeder, M.; Seitz, C.; Spannagel, S.; Trevino, A. D. R. Vargas; Walsh, R.; Wissing, C.] DESY, Hamburg, Germany. [Blobel, V.; Vignali, M. Centis; Draeger, A. R.; Erfle, J.; Garutti, E.; Goebel, K.; Goerner, M.; Haller, J.; Hoffmann, M.; Hoeing, R. S.; Junkes, A.; Kirschenmann, H.; Klanner, R.; Kogler, R.; Lange, J.; Lapsien, T.; Lenz, T.; Marchesini, I.; Ott, J.; Peiffer, T.; Pietsch, N.; Poehlsen, J.; Poehlsen, T.; Rathjens, D.; Sander, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Seidel, M.; Sola, V.; Stadie, H.; Steinbrueck, G.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.] Univ Hamburg, Hamburg, Germany. [Barth, C.; Baus, C.; Berger, J.; Boeser, C.; Butz, E.; Chwalek, T.; De Boer, W.; Descroix, A.; Dierlamm, A.; Feindt, M.; Frensch, F.; Giffels, M.; Hartmann, F.; Hauth, T.; Husemann, U.; Katkov, I.; Kornmayer, A.; Kuznetsova, E.; Pardo, P. Lobelle; Mozer, M. U.; Mueller, T.; Mueller, Th.; Nuernberg, A.; Quast, G.; Rabbertz, K.; Roecker, S.; Simonis, H. J.; Stober, F. M.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weiler, T.; Anagnostou, G.] Univ Karlsruhe, Inst Expt Kernphys, Karlsruhe, Germany. [Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Markou, A.; Markou, C.; Psallidas, A.; Topsis-Giotis, I.] NCSR Demokritos, INPP, Aghia Paraskevi, Greece. [Agapitos, A.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Stiliaris, E.; Sphicas, P.] Univ Athens, Athens, Greece. [Aslanoglou, X.; Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Strologas, J.] Univ Ioannina, GR-45110 Ioannina, Greece. [Bencze, G.; Hajdu, C.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.] Wigner Res Ctr Phys, Budapest, Hungary. [Horvath, D.; Beni, N.; Czellar, S.; Karancsi, J.; Molnar, J.; Palinkas, J.; Szillasi, Z.] Inst Nucl Res ATOMKI, Debrecen, Hungary. [Karancsi, J.; Makovec, A.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.] Debrecen Univ Med, H-4012 Debrecen, Hungary. [Swain, S. K.] Natl Inst Sci Educ & Res, Bhubaneswar, Orissa, India. [Beri, S. B.; Bhatnagar, V.; Gupta, R.; Bhawandeep, U.; Kalsi, A. K.; Kaur, M.; Kumar, R.; Mittal, M.; Nishu, N.; Singh, J. B.] Panjab Univ, Chandigarh 160014, India. [Kumar, Ashok; Kumar, Arun; Ahuja, S.; Bhardwaj, A.; Choudhary, B. C.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, V.] Univ Delhi, Delhi 110007, India. [Banerjee, S.; Bhattacharya, S.; Chatterjee, K.; Dutta, S.; Gomber, B.; Jain, Sa.; Jain, Sh.; Khurana, R.; Modak, A.; Mukherjee, S.; Roy, D.; Sarkar, S.; Sharan, M.] Saha Inst Nucl Phys, Kolkata, India. [Abdulsalam, A.; Dutta, D.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Topkar, A.] Bhabha Atom Res Ctr, Mumbai 400085, Maharashtra, India. [Aziz, T.; Banerjee, S.; Bhowmik, S.; Chatterjee, R. M.; Dewanjee, R. K.; Dugad, S.; Ganguly, S.; Ghosh, S.; Guchait, M.; Gurtu, A.; Kole, G.; Kumar, S.; Maity, M.; Majumder, G.; Mazumdar, K.; Mohanty, G. B.; Parida, B.; Sudhakar, K.; Wickramage, N.] Tata Inst Fundamental Res, Mumbai 400005, Maharashtra, India. [Behnamian, H.; Etesami, S. M.; Fahim, A.; Goldouzian, R.; Khakzad, M.; Najafabadi, M. Mohammadi; Naseri, M.; Mehdiabadi, S. Paktinat; Hosseinabadi, F. Rezaei; Safarzadeh, B.; Zeinali, M.] Inst Res Fundamental Sci IPM, Tehran, Iran. [Felcini, M.; Grunewald, M.] Univ Coll Dublin, Dublin 2, Ireland. [Abbrescia, M.; Calabria, C.; Chhibra, S. S.; Colaleo, A.; Creanza, D.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Selvaggi, G.; Silvestris, L.; Venditti, R.; Verwilligen, P.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Abbrescia, M.; Calabria, C.; Chhibra, S. S.; De Palma, M.; Nuzzo, S.; Pompili, A.; Radogna, R.; Selvaggi, G.; Venditti, R.] Univ Bari, Bari, Italy. [Creanza, D.; De Filippis, N.; Iaselli, G.; Maggi, G.; My, S.; Pugliese, G.] Politecn Bari, Bari, Italy. [Abbiendi, G.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Primavera, F.; Rossi, A. M.; Rovelli, T.; Sirolia, G. P.; Tosi, N.; Travaglini, R.] Ist Nazl Fis Nucl, Sez Bologna, I-40126 Bologna, Italy. [Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fanfani, A.; Fasanella, D.; Guiducci, L.; Navarria, F. L.; Primavera, F.; Rossi, A. M.; Rovelli, T.; Sirolia, G. P.; Tosi, N.; Travaglini, R.] Univ Bologna, Bologna, Italy. [Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.] Ist Nazl Fis Nucl, Sez Catania, I-95129 Catania, Italy. [Albergo, S.; Chiorboli, M.; Costa, S.; Potenza, R.; Tricomi, A.; Tuve, C.] Univ Catania, Catania, Italy. CSFNSM, Catania, Italy. [Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Gallo, E.; Gonzi, S.; Gori, V.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.] Ist Nazl Fis Nucl, Sez Firenze, I-50125 Florence, Italy. [Ciulli, V.; D'Alessandro, R.; Focardi, E.; Gonzi, S.; Gori, V.; Lenzi, P.; Tropiano, A.] Univ Florence, Florence, Italy. [Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.] Ist Nazl Fis Nucl, Nazl Frascati Lab, I-00044 Frascati, Italy. [Ferretti, R.; Ferro, F.; Lo Vetere, M.; Robutti, E.; Tosi, S.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Ferretti, R.; Lo Vetere, M.; Tosi, S.] Univ Genoa, Genoa, Italy. [Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Gerosa, R.; Ghezzi, A.; Govoni, P.; Lucchini, M. T.; Malvezzi, S.; Manzoni, R. A.; Martelli, A.; Marzocchi, B.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; de Fatis, T. Tabarelli] Ist Nazl Fis Nucl, Sez Milano Bicocca, I-20133 Milan, Italy. [Dinardo, M. E.; Fiorendi, S.; Gerosa, R.; Ghezzi, A.; Govoni, P.; Lucchini, M. T.; Manzoni, R. A.; Martelli, A.; Marzocchi, B.; Paganoni, M.; Ragazzi, S.; de Fatis, T. Tabarelli] Univ Milano Bicocca, Milan, Italy. [Buontempo, S.; Cavallo, N.; Di Guida, S.; Fabozzi, F.; Iorio, A. O. M.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.] Ist Nazl Fis Nucl, Sez Napoli, I-80125 Naples, Italy. [Iorio, A. O. M.] Univ Naples Federico II, Naples, Italy. [Cavallo, N.; Fabozzi, F.] Univ Basilicata Potenza, Naples, Italy. [Di Guida, S.; Meola, S.] Univ G Marconi Roma, Naples, Italy. [Azzi, P.; Bacchetta, N.; Bellato, M.; Biasotto, M.; Dall'Osso, M.; Dorigo, T.; Galanti, M.; Giubilato, P.; Gonella, F.; Gozzelino, A.; Kanishchev, K.; Lacaprara, S.; Margoni, M.; Meneguzzo, A. T.; Montecassiano, F.; Passaseo, M.; Pazzini, J.; Pegoraro, M.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Vanini, S.; Ventura, S.; Zotto, P.; Zucchetta, A.] Ist Nazl Fis Nucl, Sez Padova, Padua, Italy. [Biasotto, M.; Dorigo, T.; Galanti, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Tosi, M.; Vanini, S.; Zotto, P.; Zucchetta, A.] Univ Padua, Padua, Italy. [Kanishchev, K.; Margoni, M.] Univ Trento, Padua, Italy. [Gabusi, M.; Ratti, S. P.; Re, V.; Riccardi, C.; Salvini, P.; Vitulo, P.] Ist Nazl Fis Nucl, Sez Pavia, I-27100 Pavia, Italy. [Gabusi, M.; Ratti, S. P.; Riccardi, C.; Vitulo, P.] Univ Pavia, I-27100 Pavia, Italy. [Biasini, M.; Bilei, G. M.; Ciangottini, D.; Fano, L.; Lariccia, P.; Mantovani, G.; Menichelli, M.; Saha, A.; Santocchia, A.; Spiezia, A.] Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy. [Biasini, M.; Ciangottini, D.; Fano, L.; Lariccia, P.; Mantovani, G.; Santocchia, A.; Spiezia, A.] Univ Perugia, I-06100 Perugia, Italy. [Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Broccolo, G.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fiori, F.; Foa, L.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Moon, C. S.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Serban, A. T.; Spagnolo, P.; Squillacioti, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Vernieri, C.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy. [Broccolo, G.; Martini, L.; Messineo, A.; Rizzi, A.; Tonelli, G.; Verdini, P. G.] Univ Pisa, Pisa, Italy. [Donato, S.; Fiori, F.; Foa, L.; Ligabue, F.; Vernieri, C.] Scuola Normale Super Pisa, Pisa, Italy. [Barone, L.; Cavallari, F.; D'imperio, G.; Del Re, D.; Diemoz, M.; Jorda, C.; Longo, E.; Margaroli, F.; Meridiani, P.; Micheli, F.; Nourbakhsh, S.; Organtini, G.; Paramatti, R.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Soffi, L.; Traczyk, P.] Ist Nazl Fis Nucl, Sez Roma, Rome, Italy. [Barone, L.; D'imperio, G.; Del Re, D.; Longo, E.; Margaroli, F.; Micheli, F.; Nourbakhsh, S.; Organtini, G.; Rahatlou, S.; Santanastasio, F.; Soffi, L.; Traczyk, P.] Univ Rome, Rome, Italy. [Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bellan, R.; Biino, C.; Cartiglia, N.; Casasso, S.; Costa, M.; Degano, A.; Demaria, N.; Finco, L.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Musich, M.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Angioni, G. L. Pinna; Potenza, A.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Tamponi, U.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Amapane, N.; Argiro, S.; Bellan, R.; Casasso, S.; Costa, M.; Degano, A.; Finco, L.; Migliore, E.; Monaco, V.; Pacher, L.; Angioni, G. L. Pinna; Potenza, A.; Romero, A.; Sacchi, R.; Solano, A.] Univ Turin, Turin, Italy. [Arcidiacono, R.; Arneodo, M.; Obertino, M. M.; Ruspa, M.] Univ Piemonte Orientale Novara, Turin, Italy. [Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; La Licata, C.; Marone, M.; Schizzi, A.; Umer, T.; Zanetti, A.] Ist Nazl Fis Nucl, Sez Trieste, Trieste, Italy. [Candelise, V.; Della Ricca, G.; La Licata, C.; Marone, M.; Schizzi, A.; Umer, T.] Univ Trieste, Trieste, Italy. [Chang, S.; Kropivnitskaya, T. A.; Nam, S. K.] Kangwon Natl Univ, Chunchon, South Korea. [Kim, D. H.; Kim, G. N.; Kim, M. S.; Kong, D. J.; Lee, S.; Oh, Y. D.; Park, H.; Sakharov, A.; Son, D. C.; Kamon, T.] Kyungpook Natl Univ, Taegu 702701, South Korea. [Kim, T. J.] Chonbuk Natl Univ, Chonju, South Korea. [Kim, J. Y.; Song, S.] Chonnam Natl Univ, Inst Universe & Elementary Particles, Kwangju, South Korea. [Yoo, H. D.] Seoul Natl Univ, Seoul, South Korea. [Choi, M.; Kim, J. H.; Park, I. C.; Ryu, G.; Ryu, M. S.] Univ Seoul, Seoul, South Korea. [Choi, Y.; Choi, Y. K.; Goh, J.; Kim, D.; Kwon, E.; Lee, J.; Yu, I.] Sungkyunkwan Univ, Suwon, South Korea. [Juodagalvis, A.] Vilnius State Univ, Vilnius, Lithuania. [Komaragiri, J. R.; Ali, M. A. B. Md] Univ Malaya, Natl Ctr Particle Phys, Kuala Lumpur, Malaysia. [Casimiro Linares, E.; Castilla-Valdez, H.; De la Cruz-Burelo, E.; Heredia-de La Cruz, I.; Hernandez-Almada, A.; Lopez-Fernandez, R.; Sanchez-Hernandez, A.] IPN, Ctr Invest & Estudios Avanzados, Mexico City 07738, DF, Mexico. [Carrillo Moreno, S.; Vazquez Valencia, F.] Univ Iberoamer, Mexico City, DF, Mexico. [Pedraza, I.; Salazar Ibarguen, H. A.] Benemerita Univ Autonoma Puebla, Puebla, Mexico. [Morelos Pineda, A.] Univ Autonoma San Luis Potosi, San Luis Potosi, Mexico. [Krofcheck, D.] Univ Auckland, Auckland 1, New Zealand. [Butler, P. H.; Reucroft, S.] Univ Canterbury, Christchurch 1, New Zealand. [Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Khan, W. A.; Khurshid, T.; Shoaib, M.] Quaid I Azam Univ, Natl Ctr Phys, Islamabad, Pakistan. [Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Gorski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.] Natl Ctr Nucl Res, Otwock, Poland. [Brona, G.; Bunkowski, K.; Cwiok, M.; Dominik, W.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Wolszczak, W.] Univ Warsaw, Inst Expt Phys, Fac Phys, Warsaw, Poland. [Bargassa, P.; Beirao Da Cruz E Silva, C.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Lloret Iglesias, L.; Nguyen, F.; Rodrigues Antunes, J.; Seixas, J.; Varela, J.; Vischia, P.] Lab Instrumentacao & Fis Expt Particulas, Lisbon, Portugal. [Finger, M., Jr.; Tsamalaidze, Z.; Afanasiev, S.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Konoplyanikov, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Skatchkov, N.; Smirnov, V.; Zarubin, A.] Joint Inst Nucl Res, Dubna, Russia. [Golovtsov, V.; Ivanov, Y.; Kim, V.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Vorobyev, An.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Matveev, V.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Musienko, Y.] Russian Acad Sci, Inst Nucl Res, Moscow 117312, Russia. [Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, L.; Safronov, G.; Semenov, S.; Spiridonov, A.; Stolin, V.; Vlasov, E.; Zhokin, A.; Starodumov, A.; Nikitenko, A.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Vinogradov, A.] PN Lebedev Phys Inst, Moscow 117924, Russia. [Popov, A.; Zhukov, V.; Katkov, I.; Belyaev, A.; Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.] Inst High Energy Phys, State Res Ctr Russian Federat, Protvino, Russia. [Adzic, P.; Ekmedzic, M.; Milosevic, J.; Rekovic, V.; Milenovic, P.] Univ Belgrade, Fac Phys, Vinca Inst Nucl Sci, Belgrade 11001, Serbia. [Alcaraz Maestre, J.; Battilana, C.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De la Cruz, B.; Delgado Peris, A.; Dominguez Vazquez, D.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernandez Ramos, J. P.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Navarro De Martino, E.; Perez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.] Ctr Invest Energet Medioambientales & Tecnol CIEM, Madrid, Spain. [Albajar, C.; de Troconiz, J. F.; Missiroli, M.; Moran, D.] Univ Autonoma Madrid, Madrid, Spain. [Brun, H.; Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.] Univ Oviedo, Oviedo, Spain. [Brochero Cifuentes, J. A.; Cabrillo, I. J.; Calderon, A.; Duarte Campderros, J.; Fernandez, M.; Gomez, G.; Graziano, A.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Munoz Sanchez, F. J.; Piedra Gomez, J.; Rodrigo, T.; Rodriguez-Marrero, Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Vila, I.; Vilar Cortabitarte, R.] CSIC Univ Cantabria, Inst Fis Cantabria IFCA, Santander, Spain. [Rabady, D.; Pernie, L.; Genchev, V.; Boudoul, G.; Contardo, D.; Lingemann, J.; Hartmann, F.; Kornmayer, A.; Mohanty, A. K.; Radogna, R.; Silvestris, L.; Gennai, S.; Gerosa, R.; Lucchini, M. T.; Paolucci, P.; Ciangottini, D.; Spiezia, A.; Donato, S.; Palla, F.; Micheli, F.; Traczyk, P.; Casasso, S.; Finco, L.; Candelise, V.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Benaglia, A.; Bendavid, J.; Benhabib, L.; Benitez, J. F.; Bernet, C.; Bloch, P.; Bocci, A.; Bonato, A.; Bondu, O.; Botta, C.; Breuker, H.; Camporesi, T.; Cerminara, G.; Colafranceschi, S.; D'Alfonso, M.; d'Enterria, D.; Dabrowski, A.; David, A.; De Guio, F.; De Roeck, A.; De Visscher, S.; Di Marco, E.; Dobson, M.; Dordevic, M.; Dorney, B.; Dupont-Sagorin, N.; Elliott-Peisert, A.; Franzoni, G.; Funk, W.; Gigi, D.; Gill, K.; Giordano, D.; Girone, M.; Glege, F.; Guida, R.; Gundacker, S.; Guthoff, M.; Hammer, J.; Hansen, M.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Kousouris, K.; Krajczar, K.; Lecoq, P.; Lourenco, C.; Magini, N.; Malgeri, L.; Mannelli, M.; Marrouche, J.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moortgat, F.; Morovic, S.; Mulders, M.; Orsini, L.; Pape, L.; Perez, E.; Perrozzi, L.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pimiae, M.; Piparo, D.; Plagge, M.; Racz, A.; Rolandi, G.; Rovere, M.; Sakulin, H.; Schaefer, C.; Schwick, C.; Sharma, A.; Siegrist, P.; Silva, P.; Simon, M.; Sphicas, P.; Spiga, D.; Steggemann, J.; Stieger, B.; Stoye, M.; Takahashi, Y.; Treille, D.; Tsirou, A.; Veres, G. I.; Wardle, N.; Woehri, H. K.; Wollny, H.; Zeuner, W. D.; Stickland, D.] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland. [Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Renker, D.; Rohe, T.; Naegeli, C.] Paul Scherrer Inst, Villigen, Switzerland. [Bachmair, F.; Baeni, L.; Bianchini, L.; Buchmann, M. A.; Casal, B.; Chanon, N.; Dissertori, G.; Dittmar, M.; Donega, M.; Duenser, M.; Eller, P.; Grab, C.; Hits, D.; Hoss, J.; Lustermann, W.; Mangano, B.; Marini, A. C.; Marionneau, M.; del Arbol, P. Martinez Ruiz; Masciovecchio, M.; Meister, D.; Mohr, N.; Musella, P.; Naegeli, C.; Nessi-Tedaldi, F.; Pandolfi, F.; Pauss, F.; Peruzzi, M.; Quittnat, M.; Rebane, L.; Rossini, M.; Starodumov, A.; Takahashi, M.; Theofilatos, K.; Wallny, R.; Weber, H. A.] Swiss Fed Inst Technol, Inst Particle Phys, Zurich, Switzerland. [Amsler, C.; Canelli, M. F.; Chiochia, V.; De Cosa, A.; Hinzmann, A.; Hreus, T.; Kilminster, B.; Lange, C.; Mejias, B. Millan; Ngadiuba, J.; Pinna, D.; Robmann, P.; Ronga, F. J.; Taroni, S.; Verzetti, M.; Yang, Y.] Univ Zurich, Zurich, Switzerland. [Cardaci, M.; Chen, K. H.; Ferro, C.; Kuo, C. M.; Lin, W.; Lu, Y. J.; Volpe, R.; Yu, S. S.] Natl Cent Univ, Chungli 32054, Taiwan. [Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Chen, P. H.; Dietz, C.; Grundler, U.; Hou, W. -S.; Kao, K. Y.; Liu, Y. F.; Lu, R. -S.; Majumder, D.; Petrakou, E.; Tzeng, Y. M.; Wilken, R.] Natl Taiwan Univ, Taipei 10764, Taiwan. [Asavapibhop, B.; Singh, G.; Srimanobhas, N.; Suwonjandee, N.] Chulalongkorn Univ, Fac Sci, Dept Phys, Bangkok, Thailand. [Adiguzel, A.; Bakirci, M. N.; Cerci, S.; Dozen, C.; Dumanoglu, I.; Eskut, E.; Girgis, S.; Gokbulut, G.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Topaksu, A. Kayis; Onengut, G.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Cerci, D. Sunar; Tali, B.; Topakli, H.; Vergili, M.] Cukurova Univ, Adana, Turkey. [Akin, I. V.; Bilin, B.; Bilmis, S.; Gamsizkan, H.; Isildak, B.; Karapinar, G.; Ocalan, K.; Sekmen, S.; Surat, U. E.; Yalvac, M.; Zeyrek, M.] Middle E Tech Univ, Dept Phys, TR-06531 Ankara, Turkey. [Albayrak, A.; Gulmez, E.; Kaya, M.; Kaya, O.; Yetkin, T.] Bogazici Univ, Istanbul, Turkey. [Cankocak, K.; Vardarli, F. I.] Istanbul Tech Univ, TR-80626 Istanbul, Turkey. [Levchuk, L.; Sorokin, P.] Kharkov Phys & Technol Inst, Natl Sci Ctr, UA-310108 Kharkov, Ukraine. [Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Meng, Z.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Sakuma, T.; Senkin, S.; Smith, V. J.] Univ Bristol, Bristol, Avon, England. [Newbold, D. M.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Williams, T.; Womersley, W. J.; Worm, S. D.; Lucas, R.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Baber, M.; Bainbridge, R.; Buchmuller, O.; Burton, D.; Colling, D.; Cripps, N.; Dauncey, P.; Davies, G.; Della Negra, M.; Dunne, P.; Ferguson, W.; Fulcher, J.; Futyan, D.; Hall, G.; Iles, G.; Jarvis, M.; Karapostoli, G.; Kenzie, M.; Lane, R.; Lucas, R.; Lyons, L.; Magnan, A. -M.; Malik, S.; Mathias, B.; Nash, J.; Nikitenko, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Raymond, D. M.; Rogerson, S.; Rose, A.; Seez, C.; Sharp, P.; Tapper, A.; Acosta, M. Vazquez; Virdee, T.; Zenz, S. C.] Univ London Imperial Coll Sci Technol & Med, London, England. [Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Dittmann, J.; Hatakeyama, K.; Kasmi, A.; Liu, H.; Scarborough, T.] Baylor Univ, Waco, TX 76798 USA. [Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.] Univ Alabama, Tuscaloosa, AL USA. [Avetisyan, A.; Bose, T.; Fantasia, C.; Lawson, P.; Richardson, C.; Rohlf, J.; St John, J.; Sulak, L.] Boston Univ, Boston, MA 02215 USA. [Alimena, J.; Berry, E.; Bhattacharya, S.; Christopher, G.; Cutts, D.; Demiragli, Z.; Dhingra, N.; Ferapontov, A.; Garabedian, A.; Heintz, U.; Kukartsev, G.; Laird, E.; Landsberg, G.; Luk, M.; Narain, M.; Segala, M.; Sinthuprasith, T.; Speer, T.; Swanson, J.] Brown Univ, Providence, RI 02912 USA. [Breedon, R.; Breto, G.; Sanchez, M. Calderon De la Barca; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Gardner, M.; Ko, W.; Lander, R.; Mulhearn, M.; Pellett, D.; Pilot, J.; Ricci-Tam, F.; Shalhout, S.; Smith, J.; Squires, M.; Stolp, D.; Tripathi, M.; Wilbur, S.; Yohay, R.] Univ Calif Davis, Davis, CA 95616 USA. [Cousins, R.; Everaerts, P.; Farrell, C.; Hauser, J.; Ignatenko, M.; Rakness, G.; Takasugi, E.; Valuev, V.; Weber, M.] Univ Calif Los Angeles, Los Angeles, CA USA. [Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Hanson, G.; Heilman, J.; Rikova, M. Ivova; Jandir, P.; Kennedy, E.; Lacroix, F.; Long, O. R.; Luthra, A.; Malberti, M.; Negrete, M. Olmedo; Shrinivas, A.; Sumowidagdo, S.; Wimpenny, S.] Univ Calif Riverside, Riverside, CA 92521 USA. [Branson, J. G.; Cerati, G. B.; Cittolin, S.; D'Agnolo, R. T.; Holzner, A.; Kelley, R.; Klein, D.; Letts, J.; Macneill, I.; Olivito, D.; Padhi, S.; Palmer, C.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Tadel, M.; Tu, Y.; Vartak, A.; Welke, C.; Wuerthwein, F.; Yagil, A.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Barge, D.; Bradmiller-Feld, J.; Campagnari, C.; Danielson, T.; Dishaw, A.; Dutta, V.; Flowers, K.; Sevilla, M. Franco; Geffert, P.; George, C.; Golf, F.; Gouskos, L.; Incandela, J.; Justus, C.; Mccoll, N.; Richman, J.; Stuart, D.; To, W.; West, C.; Yoo, J.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Dubinin, M.; Apresyan, A.; Bornheim, A.; Bunn, J.; Chen, Y.; Duarte, J.; Mott, A.; Newman, H. B.; Pena, C.; Pierini, M.; Spiropulu, M.; Vlimant, J. R.; Wilkinson, R.; Xie, S.; Zhu, R. Y.] CALTECH, Pasadena, CA 91125 USA. [Azzolini, V.; Calamba, A.; Carlson, B.; Ferguson, T.; Iiyama, Y.; Paulini, M.; Russ, J.; Vogel, H.; Vorobiev, I.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Cumalat, J. P.; Ford, W. T.; Gaz, A.; Krohn, M.; Lopez, E. Luiggi; Nauenberg, U.; Smith, J. G.; Stenson, K.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Alexander, J.; Chatterjee, A.; Chaves, J.; Chu, J.; Dittmer, S.; Eggert, N.; Mirman, N.; Kaufman, G. Nicolas; Patterson, J. R.; Ryd, A.; Salvati, E.; Skinnari, L.; Sun, W.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Weng, Y.; Winstrom, L.; Wittich, P.] Cornell Univ, Ithaca, NY USA. [Winn, D.] Fairfield Univ, Fairfield, CT 06430 USA. [Abdullin, S.; Albrow, M.; Anderson, J.; Apollinari, G.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gao, Y.; Gottschalk, E.; Gray, L.; Green, D.; Gruenendahl, S.; Gutsche, O.; Hanlon, J.; Hare, D.; Harris, R. M.; Hirschauer, J.; Hooberman, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Kaadze, K.; Klima, B.; Kreis, B.; Kwan, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, T.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Outschoorn, V. I. Martinez; Maruyama, S.; Mason, D.; McBride, P.; Merkel, P.; Mishra, K.; Mrenna, S.; Nahn, S.; Newman-Holmes, C.; O'Dell, V.; Prokofyev, O.; Sexton-Kennedy, E.; Sharma, S.; Soha, A.; Spalding, W. J.; Spiegel, L.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vidal, R.; Whitbeck, A.; Whitmore, J.; Yang, F.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Carver, M.; Curry, D.; Das, S.; De Gruttola, M.; Di Giovanni, G. P.; Field, R. D.; Fisher, M.; Furic, I. K.; Hugon, J.; Konigsberg, J.; Korytov, A.; Kypreos, T.; Low, J. F.; Matchev, K.; Mei, H.; Milenovic, P.; Mitselmakher, G.; Muniz, L.; Rinkevicius, A.; Shchutska, L.; Snowball, M.; Sperka, D.; Yelton, J.; Zakaria, M.] Univ Florida, Gainesville, FL USA. [Hewamanage, S.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.] Florida Int Univ, Miami, FL 33199 USA. [Adams, T.; Askew, A.; Bochenek, J.; Diamond, B.; Haas, J.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Prosper, H.; Veeraraghavan, V.; Weinberg, M.] Florida State Univ, Tallahassee, FL 32306 USA. [Baarmand, M. M.; Hohlmann, M.; Kalakhety, H.; Yumiceva, F.] Florida Inst Technol, Melbourne, FL 32901 USA. [Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Kurt, P.; Moon, D. H.; O'Brien, C.; Gonzalez, L. D. Sandoval; Silkworth, C.; Turner, P.; Varelas, N.] UIC, Chicago, IL USA. [Bilki, B.; Clarida, W.; Dilsiz, K.; Haytmyradov, M.; Merlo, J. -P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Rahmat, R.; Sen, S.; Tan, P.; Tiras, E.; Wetzel, J.; Yi, K.] Univ Iowa, Iowa City, IA USA. [Barnett, B. A.; Blumenfeld, B.; Bolognesi, S.; Fehling, D.; Gritsan, A. V.; Maksimovic, P.; Martin, C.; Swartz, M.] Johns Hopkins Univ, Baltimore, MD USA. [Baringer, P.; Bean, A.; Benelli, G.; Bruner, C.; Kennyiii, R. P.; Malek, M.; Murray, M.; Noonan, D.; Sanders, S.; Sekaric, J.; Stringer, R.; Wang, Q.; Wood, J. S.] Univ Kansas, Lawrence, KS 66045 USA. [Chakaberia, I.; Ivanov, A.; Khalil, S.; Makouski, M.; Maravin, Y.; Saini, L. K.; Skhirtladze, N.; Svintradze, I.] Kansas State Univ, Manhattan, KS 66506 USA. [Gronberg, J.; Lange, D.; Rebassoo, F.; Wright, D.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Baden, A.; Belloni, A.; Calvert, B.; Eno, S. C.; Gomez, J. A.; Hadley, N. J.; Kellogg, R. G.; Kolberg, T.; Lu, Y.; Mignerey, A. C.; Pedro, K.; Skuja, A.; Tonjes, M. B.; Tonwar, S. C.] Univ Maryland, College Pk, MD 20742 USA. [Apyan, A.; Barbieri, R.; Busza, W.; Cali, I. A.; Chan, M.; Di Matteo, L.; Ceballos, G. Gomez; Goncharov, M.; Gulhan, D.; Klute, M.; Lai, Y. S.; Lee, Y. -J.; Levin, A.; Luckey, P. D.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Stephans, G. S. F.; Sumorok, K.; Velicanu, D.; Veverka, J.; Wyslouch, B.; Yang, M.; Zanetti, M.; Zhukova, V.] MIT, Cambridge, MA 02139 USA. [Dahmes, B.; Gude, A.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Mans, J.; Pastika, N.; Rusack, R.; Singovsky, A.; Tambe, N.; Turkewitz, J.] Univ Minnesota, Minneapolis, MN USA. [Acosta, J. G.; Oliveros, S.] Univ Mississippi, Oxford, MS USA. [Avdeeva, E.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Suarez, R. Gonzalez; Keller, J.; Knowlton, D.; Kravchenko, I.; Lazo-Flores, J.; Meier, F.; Ratnikov, F.; Snow, G. R.; Zvada, M.] Univ Nebraska, Lincoln, NE USA. [Dolen, J.; Godshalk, A.; Iashvili, I.; Kharchilava, A.; Kumar, A.; Rappoccio, S.] SUNY Buffalo, Buffalo, NY 14260 USA. [Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; Trocino, D.; Wang, R. J.; Wood, D.; Zhang, J.] Northeastern Univ, Boston, MA 02115 USA. [Hahn, K. A.; Kubik, A.; Mucia, N.; Odell, N.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Sung, K.; Velasco, M.; Won, S.] Northwestern Univ, Evanston, IL USA. [Brinkerhoff, A.; Chan, K. M.; Drozdetskiy, A.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Lynch, S.; Marinelli, N.; Musienko, Y.; Pearson, T.; Planer, M.; Ruchti, R.; Smith, G.; Valls, N.; Wayne, M.; Wolf, M.; Woodard, A.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Antonelli, L.; Brinson, J.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Hart, A.; Hill, C.; Hughes, R.; Kotov, K.; Ling, T. Y.; Luo, W.; Puigh, D.; Rodenburg, M.; Winer, B. L.; Wolfe, H.; Wulsin, H. W.] Ohio State Univ, Columbus, OH 43210 USA. [Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Hunt, A.; Koay, S. A.; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Piroue, P.; Quan, X.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zuranski, A.] Princeton Univ, Princeton, NJ 08544 USA. [Brownson, E.; Malik, S.; Mendez, H.; Vargas, J. E. Ramirez] Univ Puerto Rico, Mayaguez, PR USA. [Savoy-Navarro, A.; Barnes, V. E.; Benedetti, D.; Bortoletto, D.; De Mattia, M.; Gutay, L.; Hu, Z.; Jha, M. K.; Jones, M.; Jung, K.; Kress, M.; Leonardo, N.; Miller, D. H.; Neumeister, N.; Radburn-Smith, B. C.; Shi, X.; Shipsey, I.; Silvers, D.; Svyatkovskiy, A.; Wang, F.; Xie, W.; Xu, L.; Zablocki, J.] Purdue Univ, W Lafayette, IN 47907 USA. [Parashar, N.; Stupak, J.] Purdue Univ Calumet, Hammond, LA USA. [Adair, A.; Akgun, B.; Ecklund, K. M.; Geurts, F. J. M.; Li, W.; Michlin, B.; Padley, B. P.; Redjimi, R.; Roberts, J.; Zabel, J.] Rice Univ, Houston, TX USA. [Betchart, B.; Bodek, A.; Covarelli, R.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Garcia-Bellido, A.; Goldenzweig, P.; Han, J.; Harel, A.; Khukhunaishvili, A.; Korjenevski, S.; Petrillo, G.; Vishnevskiy, D.] Univ Rochester, Rochester, NY 14627 USA. [Ciesielski, R.; Demortier, L.; Goulianos, K.; Mesropian, C.] Rockefeller Univ, New York, NY 10021 USA. [Arora, S.; Barker, A.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Duggan, D.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Kaplan, S.; Lath, A.; Panwalkar, S.; Park, M.; Patel, R.; Salur, S.; Schnetzer, S.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.] Rutgers State Univ, Piscataway, NJ USA. [Rose, K.; Spanier, S.; York, A.] Univ Tennessee, Knoxville, TN USA. [Bouhali, O.; Hernandez, A. Castaneda; Eusebi, R.; Flanagan, W.; Gilmore, J.; Kamon, T.; Khotilovich, V.; Krutelyov, V.; Montalvo, R.; Osipenkov, I.; Pakhotin, Y.; Perloff, A.; Roe, J.; Rose, A.; Safonov, A.; Suarez, I.; Tatarinov, A.; Ulmer, K. A.] Texas A&M Univ, College Stn, TX USA. [Akchurin, N.; Cowden, C.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Kovitanggoon, K.; Kunori, S.; Lee, S. W.; Libeiro, T.; Volobouev, I.] Texas Tech Univ, Lubbock, TX 79409 USA. [Appelt, E.; Delannoy, A. G.; Greene, S.; Gurrola, A.; Johns, W.; Maguire, C.; Mao, Y.; Melo, A.; Sharma, M.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.] Vanderbilt Univ, Nashville, TN 37235 USA. [Arenton, M. W.; Boutle, S.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Li, H.; Lin, C.; Neu, C.; Wood, J.] Univ Virginia, Charlottesville, VA USA. [Clarke, C.; Harr, R.; Karchin, P. E.; Don, C. Kottachchi Kankanamge; Lamichhane, P.; Sturdy, J.] Wayne State Univ, Detroit, MI USA. [Belknap, D. A.; Carlsmith, D.; Cepeda, M.; Dasu, S.; Dodd, L.; Duric, S.; Friis, E.; Hall-Wilton, R.; Herndon, M.; Herve, A.; Klabbers, P.; Lanaro, A.; Lazaridis, C.; Levine, A.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Perry, T.; Pierro, G. A.; Polese, G.; Ross, I.; Sarangi, T.; Savin, A.; Smith, W. H.; Taylor, D.; Vuosalo, C.; Woods, N.] Univ Wisconsin, Madison, WI 53706 USA. [Wulz, C. -E.] Vienna Univ Technol, A-1040 Vienna, Austria. [Chinellato, J.; Tonelli Manganote, E. J.] Univ Estadual Campinas, Campinas, Brazil. [Assran, Y.] Suez Univ, Suez, Egypt. [Kamel, A. Ellithi] Cairo Univ, Cairo, Egypt. [Mahmoud, M. A.] Fayoum Univ, Al Fayyum, Egypt. [Radi, A.] British Univ Egypt, Cairo, Egypt. [Radi, A.] Ain Shams Univ, Cairo, Egypt. [Agram, J. -L.; Conte, E.; Fontaine, J. C.] Univ Haute Alsace, Mulhouse, France. [Hempel, M.; Lohmann, W.; Marfin, I.] Brandenburg Tech Univ Cottbus, Cottbus, Germany. [Vesztergombi, G.] Eotvos Lorand Univ, Budapest, Hungary. [Bhowmik, S.; Maity, M.] Visva Bharati Univ, Santini Ketan, W Bengal, India. [Gurtu, A.] King Abdulaziz Univ, Jeddah 21413, Saudi Arabia. [Wickramage, N.] Univ Ruhuna, Matara, Sri Lanka. [Etesami, S. M.] Isfahan Univ Technol, Esfahan, Iran. [Fahim, A.] Univ Tehran, Dept Engn Sci, Tehran, Iran. [Safarzadeh, B.] Islamic Azad Univ, Sci & Res Branch, Plasma Phys Res Ctr, Tehran, Iran. [Biasotto, M.] Ist Nazl Fis Nucl, Lab Nazl Legnaro, I-35020 Legnaro, Italy. [Androsov, K.; Ciocci, M. A.; Grippo, M. T.; Squillacioti, P.] Univ Siena, I-53100 Siena, Italy. [Moon, C. S.] CNRS, IN2P3, Paris, France. [Heredia-de La Cruz, I.] Univ Michoacana, Morelia, Michoacan, Mexico. [Kim, V.] St Petersburg State Polytech Univ, St Petersburg, Russia. [Azarkin, M.; Dremin, I.; Leonidov, A.] Natl Res Nucl Univ, Moscow Engn Phys Inst MEPhI, Moscow, Russia. [Adzic, P.] Univ Belgrade, Fac Phys, Belgrade 11001, Serbia. [Colafranceschi, S.] Univ Rome, Fac Ingn, Rome, Italy. [Rolandi, G.] Ist Nazl Fis Nucl, Scuola Normale & Sez, Pisa, Italy. [Amsler, C.] Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Bakirci, M. N.; Ozturk, S.; Topakli, H.] Gaziosmanpasa Univ, Tokat, Turkey. [Cerci, S.; Cerci, D. Sunar; Tali, B.] Adiyaman Univ, Adiyaman, Turkey. [Onengut, G.] Cag Univ, Mersin, Turkey. [Gamsizkan, H.] Anadolu Univ, Eskisehir, Turkey. [Isildak, B.] Ozyegin Univ, Istanbul, Turkey. [Karapinar, G.] Izmir Inst Technol, Izmir, Turkey. [Ocalan, K.] Necmettin Erbakan Univ, Konya, Turkey. [Kaya, M.] Mimar Sinan Univ, Istanbul, Turkey. [Kaya, O.] Kafkas Univ, Kars, Turkey. [Yetkin, T.] Yildiz Tekn Univ, Istanbul, Turkey. [Belyaev, A.] Univ Southampton, Sch Phys & Astron, Southampton, Hants, England. [Bilki, B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Mermerkaya, H.] Erzincan Univ, Erzincan, Turkey. [Bouhali, O.] Texas A& M Univ Qatar, Doha, Qatar. [Choi, S.; Gyun, D.; Hong, B.; Jo, M.; Kim, H.; Kim, Y.; Lee, B.; Lee, K. S.; Park, S. K.; Roh, Y.] Korea Univ, Seoul, South Korea. RP Khachatryan, V (reprint author), Yerevan Phys Inst, Yerevan 375036, Armenia. RI Sguazzoni, Giacomo/J-4620-2015; Ligabue, Franco/F-3432-2014; Goh, Junghwan/Q-3720-2016; Flix, Josep/G-5414-2012; Ruiz, Alberto/E-4473-2011; Govoni, Pietro/K-9619-2016; Tuominen, Eija/A-5288-2017; Yazgan, Efe/C-4521-2014; Paulini, Manfred/N-7794-2014; Inst. of Physics, Gleb Wataghin/A-9780-2017; Ogul, Hasan/S-7951-2016; ciocci, maria agnese /I-2153-2015; Vilela Pereira, Antonio/L-4142-2016; Sznajder, Andre/L-1621-2016; Da Silveira, Gustavo Gil/N-7279-2014; Mora Herrera, Maria Clemencia/L-3893-2016; Mundim, Luiz/A-1291-2012; Haj Ahmad, Wael/E-6738-2016; Konecki, Marcin/G-4164-2015; Vogel, Helmut/N-8882-2014; Benussi, Luigi/O-9684-2014; Xie, Si/O-6830-2016; Leonardo, Nuno/M-6940-2016; Perez-Calero Yzquierdo, Antonio/F-2235-2013; Novaes, Sergio/D-3532-2012; Della Ricca, Giuseppe/B-6826-2013; Chinellato, Jose Augusto/I-7972-2012; Tomei, Thiago/E-7091-2012; Dubinin, Mikhail/I-3942-2016; Stahl, Achim/E-8846-2011; Kirakosyan, Martin/N-2701-2015; Gulmez, Erhan/P-9518-2015; Tinoco Mendes, Andre David/D-4314-2011; Seixas, Joao/F-5441-2013; Matorras, Francisco/I-4983-2015; Gennai, Simone/P-2880-2015; TUVE', Cristina/P-3933-2015; Dudko, Lev/D-7127-2012; KIM, Tae Jeong/P-7848-2015; Menasce, Dario/A-2168-2016; Paganoni, Marco/A-4235-2016; Azarkin, Maxim/N-2578-2015; de Jesus Damiao, Dilson/G-6218-2012; Calvo Alamillo, Enrique/L-1203-2014; Hernandez Calama, Jose Maria/H-9127-2015; Cerrada, Marcos/J-6934-2014; Lokhtin, Igor/D-7004-2012; Manganote, Edmilson/K-8251-2013; Dremin, Igor/K-8053-2015; VARDARLI, Fuat Ilkehan/B-6360-2013; Hoorani, Hafeez/D-1791-2013; Dogra, Sunil /B-5330-2013; Leonidov, Andrey/M-4440-2013; Andreev, Vladimir/M-8665-2015; Vinogradov, Alexey/O-2375-2015; Petrushanko, Sergey/D-6880-2012; Cakir, Altan/P-1024-2015; Montanari, Alessandro/J-2420-2012; Rovelli, Tiziano/K-4432-2015 OI Gerosa, Raffaele/0000-0001-8359-3734; Attia Mahmoud, Mohammed/0000-0001-8692-5458; Bilki, Burak/0000-0001-9515-3306; Sguazzoni, Giacomo/0000-0002-0791-3350; Casarsa, Massimo/0000-0002-1353-8964; Ligabue, Franco/0000-0002-1549-7107; Diemoz, Marcella/0000-0002-3810-8530; Ghezzi, Alessio/0000-0002-8184-7953; Demaria, Natale/0000-0003-0743-9465; Benaglia, Andrea Davide/0000-0003-1124-8450; Covarelli, Roberto/0000-0003-1216-5235; Ciulli, Vitaliano/0000-0003-1947-3396; Androsov, Konstantin/0000-0003-2694-6542; Fiorendi, Sara/0000-0003-3273-9419; Martelli, Arabella/0000-0003-3530-2255; Gonzi, Sandro/0000-0003-4754-645X; Goh, Junghwan/0000-0002-1129-2083; Flix, Josep/0000-0003-2688-8047; Ruiz, Alberto/0000-0002-3639-0368; Govoni, Pietro/0000-0002-0227-1301; Tuominen, Eija/0000-0002-7073-7767; Yazgan, Efe/0000-0001-5732-7950; Paulini, Manfred/0000-0002-6714-5787; Ogul, Hasan/0000-0002-5121-2893; ciocci, maria agnese /0000-0003-0002-5462; Di Matteo, Leonardo/0000-0001-6698-1735; Boccali, Tommaso/0000-0002-9930-9299; Vilela Pereira, Antonio/0000-0003-3177-4626; Sznajder, Andre/0000-0001-6998-1108; Da Silveira, Gustavo Gil/0000-0003-3514-7056; Mora Herrera, Maria Clemencia/0000-0003-3915-3170; Mundim, Luiz/0000-0001-9964-7805; Haj Ahmad, Wael/0000-0003-1491-0446; Konecki, Marcin/0000-0001-9482-4841; Vogel, Helmut/0000-0002-6109-3023; Benussi, Luigi/0000-0002-2363-8889; Xie, Si/0000-0003-2509-5731; Leonardo, Nuno/0000-0002-9746-4594; Perez-Calero Yzquierdo, Antonio/0000-0003-3036-7965; Novaes, Sergio/0000-0003-0471-8549; Della Ricca, Giuseppe/0000-0003-2831-6982; Chinellato, Jose Augusto/0000-0002-3240-6270; Tomei, Thiago/0000-0002-1809-5226; Dubinin, Mikhail/0000-0002-7766-7175; Stahl, Achim/0000-0002-8369-7506; Gulmez, Erhan/0000-0002-6353-518X; Tinoco Mendes, Andre David/0000-0001-5854-7699; Seixas, Joao/0000-0002-7531-0842; Matorras, Francisco/0000-0003-4295-5668; TUVE', Cristina/0000-0003-0739-3153; Dudko, Lev/0000-0002-4462-3192; KIM, Tae Jeong/0000-0001-8336-2434; Menasce, Dario/0000-0002-9918-1686; Paganoni, Marco/0000-0003-2461-275X; de Jesus Damiao, Dilson/0000-0002-3769-1680; Calvo Alamillo, Enrique/0000-0002-1100-2963; Hernandez Calama, Jose Maria/0000-0001-6436-7547; Cerrada, Marcos/0000-0003-0112-1691; Montanari, Alessandro/0000-0003-2748-6373; Rovelli, Tiziano/0000-0002-9746-4842 FU European Union, Regional Development Fund; Compagnia di San Paolo (Torino); Consorzio per la Fisica (Trieste); MIUR (Italy) [20108T4XTM]; Thalis programme; Aristeia programme; EU-ESF; Greek NSRF; National Priorities Research Program by Qatar National Research Fund FX We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centres and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses.; Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: the Austrian Federal Ministry of Science, Research and Economy and the Austrian Science Fund; the Belgian Fonds de la Recherche Scientifique, and Fonds voor Wetenschappelijk Onderzoek; the Brazilian Funding Agencies (CNPq, CAPES, FAPERJ, and FAPESP); the Bulgarian Ministry of Education and Science; CERN; the Chinese Academy of Sciences, Ministry of Science and Technology, and National Natural Science Foundation of China; the Colombian Funding Agency (COLCIENCIAS); the Croatian Ministry of Science, Education and Sport, and the Croatian Science Foundation; the Research Promotion Foundation, Cyprus; the Ministry of Education and Research, Estonian Research Council via IUT23-4 and IUT23-6 and European Regional Development Fund, Estonia; the Academy of Finland, Finnish Ministry of Education and Culture, and Helsinki Institute of Physics; the Institut National de Physique Nucleaire et de Physique des Particules/CNRS, and Commissariat a l'Energie Atomique et aux Energies Alternatives/CEA, France; the Bundesministerium fur Bildung und Forschung, Deutsche Forschungsgemeinschaft, and Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany; the General Secretariat for Research and Technology, Greece; the National Scientific Research Foundation, and National Innovation Office, Hungary; the Department of Atomic Energy and the Department of Science and Technology, India; the Institute for Studies in Theoretical Physics and Mathematics, Iran; the Science Foundation, Ireland; the Istituto Nazionale di Fisica Nucleare, Italy; the Ministry of Science, ICT and Future Planning, and National Research Foundation (NRF), Republic of Korea; the Lithuanian Academy of Sciences; the Ministry of Education, and University of Malaya (Malaysia); the Mexican Funding Agencies (CINVESTAV, CONACYT, SEP, and UASLP-FAI); the Ministry of Business, Innovation and Employment, New Zealand; the Pakistan Atomic Energy Commission; the Ministry of Science and Higher Education and the National Science Centre, Poland; the Fundacao para a Ciencia e a Tecnologia, Portugal; JINR, Dubna; the Ministry of Education and Science of the Russian Federation, the Federal Agency of Atomic Energy of the Russian Federation, Russian Academy of Sciences, and the Russian Foundation for Basic Research; the Ministry of Education, Science and Technological Development of Serbia; the Secretaria de Estado de Investigacion, Desarrollo e Innovacion and Programa Consolider-Ingenio 2010, Spain; the Swiss Funding Agencies (ETH Board, ETH Zurich, PSI, SNF, UniZH, Canton Zurich, and SER); the Ministry of Science and Technology, Taipei; the Thailand Center of Excellence in Physics, the Institute for the Promotion of Teaching Science and Technology of Thailand, Special Task Force for Activating Research and the National Science and Technology Development Agency of Thailand; the Scientific and Technical Research Council of Turkey, and Turkish Atomic Energy Authority; the National Academy of Sciences of Ukraine, and State Fund for Fundamental Researches, Ukraine; the Science and Technology Facilities Council, UK; the US Department of Energy, and the US National Science Foundation. Individuals have received support from the Marie-Curie programme and the European Research Council and EPLANET(European Union); the Leventis Foundation; the A. P.; Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation a la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Council of Science and Industrial Research, India; the HOMING PLUS programme of Foundation for Polish Science, cofinanced from European Union, Regional Development Fund; the Compagnia di San Paolo (Torino); the Consorzio per la Fisica (Trieste); MIUR Project 20108T4XTM (Italy); the Thalis and Aristeia programmes cofinanced by EU-ESF and the Greek NSRF; and the National Priorities Research Program by Qatar National Research Fund. NR 37 TC 0 Z9 0 U1 9 U2 44 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6044 EI 1434-6052 J9 EUR PHYS J C JI Eur. Phys. J. C PD JUL 1 PY 2015 VL 75 IS 7 AR 302 DI 10.1140/epjc/s10052-015-3491-9 PG 26 WC Physics, Particles & Fields SC Physics GA CL7AZ UT WOS:000357123400006 ER PT J AU Sabne, A Sakdhnagool, P Lee, S Vetter, JS AF Sabne, Amit Sakdhnagool, Putt Lee, Seyong Vetter, Jeffrey S. TI UNDERSTANDING PORTABILITY OF A HIGH-LEVEL PROGRAMMING MODEL ON CONTEMPORARY HETEROGENEOUS ARCHITECTURES SO IEEE MICRO LA English DT Article AB HeteroIR is a high-level, architecture-independent intermediate representation for mapping high-level programming models to heterogeneous architectures. The authors present a compiler approach that translates OpenACC programs into HeteroIR and accelerator kernels to obtain OpenACC functional portability. They evaluate the performance portability obtained by OpenACC and study the effects of compiler optimizations and OpenACC program settings on various architectures to provide insights into the achieved performance portability. C1 [Sabne, Amit; Sakdhnagool, Putt] Purdue Univ, Sch Elect & Comp Engn, W Lafayette, IN 47907 USA. [Lee, Seyong] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN USA. [Vetter, Jeffrey S.] Oak Ridge Natl Lab, Future Technol Grp, Oak Ridge, TN USA. RP Sabne, A (reprint author), Purdue Univ, Sch Elect & Comp Engn, W Lafayette, IN 47907 USA. EM asabne@purdue.edu; psakdhna@purdue.edu; lees2@ornl.gov; vetter@ornl.gov FU US Department of Energy [DE-AC05-00OR22725]; Office of Advanced Scientific Computing Research in the DoE FX This manuscript has been authored by Oak Ridge National Laboratory, which is managed by UT-Battelle under contract no. DE-AC05-00OR22725 with the US Department of Energy. The US government retains, and the publisher, by accepting the article for publication, acknowledges that the US government retains, a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for US government purposes. The DoE will provide public access to these results of federally sponsored research in accordance with the DoE Public Access Plan (http://energy.gov/downloads/doe-public-accessplan). This research is sponsored by the Office of Advanced Scientific Computing Research in the DoE. NR 9 TC 1 Z9 1 U1 0 U2 1 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 0272-1732 EI 1937-4143 J9 IEEE MICRO JI IEEE Micro PD JUL-AUG PY 2015 VL 35 IS 4 BP 48 EP 58 PG 11 WC Computer Science, Hardware & Architecture; Computer Science, Software Engineering SC Computer Science GA CP0VN UT WOS:000359594300007 ER PT J AU Sakaguchi, K Leung, LR Zhao, C Yang, Q Lu, J Hagos, S Rauscher, SA Dong, L Ringler, TD Lauritzen, PH AF Sakaguchi, Koichi Leung, L. Ruby Zhao, Chun Yang, Qing Lu, Jian Hagos, Samson Rauscher, Sara A. Dong, Li Ringler, Todd D. Lauritzen, Peter H. TI Exploring a Multiresolution Approach Using AMIP Simulations SO JOURNAL OF CLIMATE LA English DT Review ID COMMUNITY-ATMOSPHERIC-MODEL; REGIONAL CLIMATE-CHANGE; LOW-LEVEL JET; SOUTHERN-HEMISPHERE WINTER; GENERAL-CIRCULATION MODEL; DYNAMICAL CORE; AQUAPLANET SIMULATIONS; PRECIPITATION EXTREMES; HORIZONTAL RESOLUTION; GLOBAL PRECIPITATION AB This study presents a diagnosis of a multiresolution approach using the Model for Prediction Across Scales-Atmosphere (MPAS-A) for simulating regional climate. Four Atmospheric Model Intercomparison Project (AMIP) experiments were conducted for 1999-2009. In the first two experiments, MPAS-A was configured using global quasi-uniform grids at 120- and 30-km grid spacing. In the other two experiments, MPAS-A was configured using variable-resolution (VR) mesh with local refinement at 30 km over North America and South America and embedded in a quasi-uniform domain at 120 km elsewhere. Precipitation and related fields in the four simulations are examined to determine how well the VRs reproduce the features simulated by the globally high-resolution model in the refined domain. In previous analyses of idealized aquaplanet simulations, characteristics of the global high-resolution simulation in moist processes developed only near the boundary of the refined region. In contrast, AMIP simulations with VR grids can reproduce high-resolution characteristics across the refined domain, particularly in South America. This finding indicates the importance of finely resolved lower boundary forcings such as topography and surface heterogeneity for regional climate and demonstrates the ability of the MPAS-A VR to replicate the large-scale moisture transport as simulated in the quasi-uniform high-resolution model. Upscale effects from the high-resolution regions on a large-scale circulation outside the refined domain are observed, but the effects are mainly limited to northeastern Asia during the warm season. Together, the results support the multiresolution approach as a computationally efficient and physically consistent method for modeling regional climate. C1 [Sakaguchi, Koichi; Leung, L. Ruby; Zhao, Chun; Yang, Qing; Lu, Jian; Hagos, Samson] Pacific NW Natl Lab, Atmospher Sci & Global Change Div, Richland, WA 99352 USA. [Rauscher, Sara A.] Univ Delaware, Dept Geog, Newark, DE USA. [Dong, Li] Auburn Univ, Sch Forestry & Wildlife Sci, Auburn, AL 36849 USA. [Ringler, Todd D.] Los Alamos Natl Lab, Climate Ocean & Sea Ice Modeling Grp, Div Theoret, Los Alamos, NM USA. [Lauritzen, Peter H.] Natl Ctr Atmospher Res, Climate & Global Dynam Lab, Boulder, CO 80307 USA. RP Leung, LR (reprint author), Pacific NW Natl Lab, Atmospher Sci & Global Change Div, 902 Battelle Blvd, Richland, WA 99352 USA. EM ruby.leung@pnnl.gov RI Yang, Qing/H-3275-2011; Zhao, Chun/A-2581-2012 OI Yang, Qing/0000-0003-2067-5999; Zhao, Chun/0000-0003-4693-7213 FU U.S. Department of Energy (DOE) Office of Science Biological and Environmental Research; Office of Science [DE-AC02-05CH11231]; National Science Foundation; DOE by Battelle Memorial Institute [DE-AC05-76RL01830] FX This study was supported by the U.S. Department of Energy (DOE) Office of Science Biological and Environmental Research as part of the Regional and Global Climate Modeling program. The research used computational resources from the National Energy Research Scientific Computing Center (NERSC), a DOE User Facility supported by the Office of Science under Contract DE-AC02-05CH11231. Additional computational resources were provided by the Pacific Northwest National Laboratory (PNNL) Institutional Computing program. The FV-CAM4 data were provided by the Earth system grid data portal from the National Center for Atmospheric Research (NCAR), which is supported by grants from the National Science Foundation. The authors wish to thank Dr. Travis O'Brien of Lawrence Berkeley National Laboratory for facilitating the use of the model data archive at NERSC. We also thank Drs. Jin-Ho Yoon, Matus Martini, Phil Rasch, and Hailong Wang for their insights provided through discussions. The thorough review and constructive comments by two anonymous reviewers are also greatly appreciated. PNNL is operated for DOE by Battelle Memorial Institute under contract DE-AC05-76RL01830. NR 119 TC 6 Z9 6 U1 2 U2 10 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 EI 1520-0442 J9 J CLIMATE JI J. Clim. PD JUL PY 2015 VL 28 IS 14 BP 5549 EP 5574 DI 10.1175/JCLI-D-14-00729.1 PG 26 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CP1LR UT WOS:000359637800004 ER PT J AU Yang, B Zhang, YC Qian, Y Wu, TW Huang, AN Fang, YJ AF Yang, Ben Zhang, Yaocun Qian, Yun Wu, Tongwen Huang, Anning Fang, Yongjie TI Parametric Sensitivity Analysis for the Asian Summer Monsoon Precipitation Simulation in the Beijing Climate Center AGCM, Version 2.1 SO JOURNAL OF CLIMATE LA English DT Article ID CONVECTIVE PARAMETERIZATION SCHEME; GENERAL-CIRCULATION MODELS; SEA-SURFACE TEMPERATURE; TROPICAL INDIAN-OCEAN; INTERANNUAL VARIABILITY; EAST-ASIA; EL-NINO; WESTERN PACIFIC; UNCERTAINTY QUANTIFICATION; CUMULUS PARAMETERIZATION AB In this study, the authors apply an efficient sampling approach and conduct a large number of simulations to explore the sensitivity of the simulated Asian summer monsoon (ASM) precipitation, including the climatological state and interannual variability, to eight parameters related to the cloud and precipitation processes in the Beijing Climate Center AGCM, version 2.1 (BCC_AGCM2.1). The results herein show that BCC_AGCM2.1 has large biases in simulating the ASM precipitation. The precipitation efficiency and evaporation coefficient for deep convection are the most sensitive parameters in simulating the ASM precipitation. With optimal parameter values, the simulated precipitation climatology could be remarkably improved, including increased precipitation over the equatorial Indian Ocean, suppressed precipitation over the Philippine Sea, and more realistic mei-yu distribution over eastern China. The ASM precipitation interannual variability is further analyzed, with a focus on the ENSO impacts. It is shown that simulations with better ASM precipitation climatology can also produce more realistic precipitation anomalies during El Nino-decaying summer. In the low-skill experiments for precipitation climatology, the ENSO-induced precipitation anomalies are most significant over continents (vs over ocean in observations) in the South Asian monsoon region. More realistic results are derived from the higher-skill experiments with stronger anomalies over the Indian Ocean and weaker anomalies over India and the western Pacific Ocean, favoring more evident easterly anomalies forced by the tropical Indian Ocean warming and stronger Indian Ocean-western Pacific teleconnection as observed. The model results reveal a strong connection between the simulated ASM precipitation climatological state and interannual variability in BCC_AGCM2.1 when key parameters are perturbed. C1 [Yang, Ben; Zhang, Yaocun; Huang, Anning] Nanjing Univ, Sch Atmospher Sci, Nanjing 210023, Jiangsu, Peoples R China. [Yang, Ben; Zhang, Yaocun; Huang, Anning] Jiangsu Collaborat Innovat Ctr Climate Change, Nanjing, Jiangsu, Peoples R China. [Qian, Yun] Pacific NW Natl Lab, Atmospher Sci & Global Change Div, Richland, WA 99352 USA. [Wu, Tongwen; Fang, Yongjie] China Meteorol Adm, Natl Climate Ctr, Beijing Climate Ctr, Beijing, Peoples R China. RP Zhang, YC (reprint author), Nanjing Univ, Sch Atmospher Sci, 163 Xianlin Ave, Nanjing 210023, Jiangsu, Peoples R China. EM yczhang@nju.edu.cn RI qian, yun/E-1845-2011; Yang, Ben/O-8548-2015 FU National Natural Science Foundation of China [41305084, 41475092]; Fundamental Research Funds for the Central Universities [20620140049]; Special Program for China Meteorology Trade [GYHY201306020]; Jiangsu Collaborative Innovation Center for Climate Change; U.S. Department of Energy's (DOE) Office of Science; DOE by Battelle Memorial Institute [DE-AC05-76RL01830] FX The authors acknowledge the editor and three anonymous reviewers for the careful review and constructive comments, and Xiaoge Xin and Jie Zhang of the Beijing Climate Center for help in model configurations. This work is jointly supported by the National Natural Science Foundation of China (41305084 and 41475092), the Fundamental Research Funds for the Central Universities (20620140049), the Special Program for China Meteorology Trade (GYHY201306020), and the Jiangsu Collaborative Innovation Center for Climate Change. The contribution of Yun Qian in this study is supported by the U.S. Department of Energy's (DOE) Office of Science as part of the Regional and Global Climate Modeling Program. The Pacific Northwest National Laboratory is operated for DOE by Battelle Memorial Institute under Contract DE-AC05-76RL01830. NR 98 TC 4 Z9 4 U1 5 U2 15 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 EI 1520-0442 J9 J CLIMATE JI J. Clim. PD JUL PY 2015 VL 28 IS 14 BP 5622 EP 5644 DI 10.1175/JCLI-D-14-00655.1 PG 23 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CP1LR UT WOS:000359637800008 ER PT J AU Simas-Rodrigues, C Villela, HDM Martins, AP Marques, LG Colepicolo, P Tonon, AP AF Simas-Rodrigues, Cntia Villela, Helena D. M. Martins, Aline P. Marques, Luiza G. Colepicolo, Pio Tonon, Angela P. TI Microalgae for economic applications: advantages and perspectives for bioethanol SO JOURNAL OF EXPERIMENTAL BOTANY LA English DT Review DE Biochemical effects; bioethanol; biofuels; environmental impacts; genetic manipulation; microalgae ID ADP-GLUCOSE PYROPHOSPHORYLASE; CHLORELLA-VULGARIS BEIJERINCK; CHLAMYDOMONAS-REINHARDTII BIOMASS; CHLOROPHYLL ANTENNA SIZE; ETHANOL-PRODUCTION; ZYMOMONAS-MOBILIS; BIOFUEL PRODUCTION; GREEN-ALGA; FERMENTATIVE METABOLISM; BIODIESEL PRODUCTION AB Renewable energy has attracted significant interest in recent years as a result of sustainability, environmental impact, and socio-economic considerations. Given existing technological knowledge and based on projections relating to biofuels derived from microalgae, microalgal feedstock is considered to be one of the most important renewable energy sources potentially available for industrial production. Therefore, this review examines microalgal bioethanol technology, which converts biomass from microalgae to fuel, the chemical processes involved, and possible ways of increasing the bioethanol yield, such as abiotic factors and genetic manipulation of fermenting organisms. C1 [Simas-Rodrigues, Cntia; Villela, Helena D. M.; Martins, Aline P.; Marques, Luiza G.; Colepicolo, Pio] Univ Sao Paulo, Inst Quim, Dept Bioquim, BR-05508000 Sao Paulo, Brazil. [Tonon, Angela P.] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87545 USA. RP Tonon, AP (reprint author), Los Alamos Natl Lab, Biosci Div, POB M888, Los Alamos, NM 87545 USA. EM angptpnon@gmail.com RI Tonon, Angela/H-3546-2012; Martins, Aline/H-7951-2012 OI Martins, Aline/0000-0003-4847-7580 FU Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (Foundation for Research Support of the State of Sao Paulo) [11/16072-5, 10/50193-1, 04/11459-5]; FAPESP [11/16072-5, 10/50193-1, 04/11459-5]; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (National Counsel of Technological and Scientific Development, CNPq) [142168/2009-2] FX This work was supported by Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (Foundation for Research Support of the State of Sao Paulo, or FAPESP) [projects 11/16072-5, 10/50193-1 and 04/11459-5] and Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (National Counsel of Technological and Scientific Development, CNPq) [project 142168/2009-2]. NR 140 TC 6 Z9 6 U1 1 U2 45 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0022-0957 EI 1460-2431 J9 J EXP BOT JI J. Exp. Bot. PD JUL PY 2015 VL 66 IS 14 SI SI BP 4097 EP 4108 DI 10.1093/jxb/erv130 PG 12 WC Plant Sciences SC Plant Sciences GA CP2CU UT WOS:000359685900002 PM 25873683 ER PT J AU Cushman, JC Davis, SC Yang, XH Borland, AM AF Cushman, John C. Davis, Sarah C. Yang, Xiaohan Borland, Anne M. TI Development and use of bioenergy feedstocks for semi-arid and arid lands SO JOURNAL OF EXPERIMENTAL BOTANY LA English DT Review DE Agave; arid lands; bioenergy feedstocks; ethanol; Opuntia; renewable energy; semi-arid lands ID OPUNTIA-FICUS-INDICA; CRASSULACEAN ACID METABOLISM; CACTUS PEAR OPUNTIA; ENVIRONMENTAL PRODUCTIVITY INDEXES; AGAVE-TEQUILANA WEBER; NET CO2 UPTAKE; ETHANOL-PRODUCTION; WATER FOOTPRINT; LIGNOCELLULOSIC BIOFUELS; KLUYVEROMYCES-MARXIANUS AB Global climate change is predicted to increase heat, drought, and soil-drying conditions, and thereby increase crop sensitivity to water vapour pressure deficit, resulting in productivity losses. Increasing competition between agricultural freshwater use and municipal or industrial uses suggest that crops with greater heat and drought durability and greater water-use efficiency will be crucial for sustainable biomass production systems in the future. Agave (Agavaceae) and Opuntia (Cactaceae) represent highly water-use efficient bioenergy crops that could diversify bioenergy feedstock supply yet preserve or expand feedstock production into semi-arid, abandoned, or degraded agricultural lands, and reclaim drylands. Agave and Opuntia are crassulacean acid metabolism species that can achieve high water-use efficiencies and grow in water-limited areas with insufficient precipitation to support traditional C-3 or C-4 bioenergy crops. Both Agave and Opuntia have the potential to produce above-ground biomass rivalling that of C-3 and C-4 crops under optimal growing conditions. The low lignin and high amorphous cellulose contents of Agave and Opuntia lignocellulosic biomass will be less recalcitrant to deconstruction than traditional feedstocks, as confirmed by pretreatments that improve saccharification of Agave. Refined environmental productivity indices and geographical information systems modelling have provided estimates of Agave and Opuntia biomass productivity and terrestrial sequestration of atmospheric CO2; however, the accuracy of such modelling efforts can be improved through the expansion of field trials in diverse geographical settings. Lastly, life cycle analysis indicates that Agave would have productivity, life cycle energy, and greenhouse gas balances comparable or superior to those of traditional bioenergy feedstocks, but would be far more water-use efficient. C1 [Cushman, John C.] Univ Nevada, Dept Biochem & Mol Biol, MS330, Reno, NV 89557 USA. [Davis, Sarah C.] Ohio Univ, Voinovich Sch Leadership & Publ Affairs, Athens, OH 45701 USA. [Davis, Sarah C.] Ohio Univ, Dept Environm & Plant Biol, Athens, OH 45701 USA. [Yang, Xiaohan; Borland, Anne M.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. [Borland, Anne M.] Newcastle Univ, Sch Biol, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England. RP Cushman, JC (reprint author), Univ Nevada, Dept Biochem & Mol Biol, MS330, Reno, NV 89557 USA. EM jcushman@unr.edu RI Yang, Xiaohan/A-6975-2011 OI Yang, Xiaohan/0000-0001-5207-4210 FU Department of Energy (DOE), Office of Science, Genomic Science Program [DE-SC0008834]; Nevada Agricultural Experiment Station [NAES-00377, NAES-00380]; US DOE [DE-AC05-00OR22725] FX This review is based on work supported by the Department of Energy (DOE), Office of Science, Genomic Science Program under Award Number DE-SC0008834. Additional support from the Nevada Agricultural Experiment Station under projects NAES-00377 and NAES-00380 is acknowledged. The contents of this review are solely the responsibility of the authors and do not necessarily represent the official views of the DOE. The authors wish to Mary Ann Cushman for critical review and clarifying comments on the manuscript and Lori Kunder (Kunder Design Studio) for assistance with figure preparation. Oak Ridge National Laboratory is managed by UT-Battelle, LLC for the US DOE under Contract Number DE-AC05-00OR22725. NR 171 TC 7 Z9 7 U1 8 U2 39 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0022-0957 EI 1460-2431 J9 J EXP BOT JI J. Exp. Bot. PD JUL PY 2015 VL 66 IS 14 SI SI BP 4177 EP 4193 DI 10.1093/jxb/erv087 PG 17 WC Plant Sciences SC Plant Sciences GA CP2CU UT WOS:000359685900008 PM 25873672 ER PT J AU Pattathil, S Hahn, MG Dale, BE Chundawat, SPS AF Pattathil, Sivakumar Hahn, Michael G. Dale, Bruce E. Chundawat, Shishir P. S. TI Insights into plant cell wall structure, architecture, and integrity using glycome profiling of native and AFEX (TM)-pre-treated biomass SO JOURNAL OF EXPERIMENTAL BOTANY LA English DT Article DE AFEX; biofuels; cell walls; glycome profiling; plant biomass; recalcitrance ID FIBER EXPANSION AFEX; LIGNOCELLULOSIC BIOMASS; ENZYMATIC DIGESTIBILITY; MONOCLONAL-ANTIBODIES; PRETREATMENT; RECALCITRANCE; HEMICELLULOSE; CELLULOSE; BIOFUELS; ENZYMES AB Cell walls, which constitute the bulk of plant biomass, vary considerably in their structure, composition, and architecture. Studies on plant cell walls can be conducted on both native and pre-treated plant biomass samples, allowing an enhanced understanding of these structural and compositional variations. Here glycome profiling was employed to determine the relative abundance of matrix polysaccharides in several phylogenetically distinct native and pre-treated plant biomasses. Eight distinct biomass types belonging to four different subgroups (i.e. monocot grasses, woody dicots, herbaceous dicots, and softwoods) were subjected to various regimes of AFEX (TM) (ammonia fiber expansion) pre-treatment [AFEX is a trademark of MBI, Lansing (http://www.mbi.org)]. This approach allowed detailed analysis of close to 200 cell wall glycan epitopes and their relative extractability using a high-throughput platform. In general, irrespective of the phylogenetic origin, AFEX (TM) pre-treatment appeared to cause loosening and improved accessibility of various xylan epitope subclasses in most plant biomass materials studied. For most biomass types analysed, such loosening was also evident for other major non-cellulosic components including subclasses of pectin and xyloglucan epitopes. The studies also demonstrate that AFEX (TM) pre-treatment significantly reduced cell wall recalcitrance among diverse phylogenies (except softwoods) by inducing structural modifications to polysaccharides that were not detectable by conventional gross composition analyses. It was found that monitoring changes in cell wall glycan compositions and their relative extractability for untreated and pre-treated plant biomass can provide an improved understanding of variations in structure and composition of plant cell walls and delineate the role(s) of matrix polysaccharides in cell wall recalcitrance. C1 [Pattathil, Sivakumar; Hahn, Michael G.] Univ Georgia, Complex Carbohydrate Res Ctr, Athens, GA 30602 USA. [Pattathil, Sivakumar; Hahn, Michael G.] Oak Ridge Natl Lab, BioEnergy Sci Ctr, Oak Ridge, TN 37831 USA. [Dale, Bruce E.; Chundawat, Shishir P. S.] Michigan State Univ, DOE Great Lakes Bioenergy Res Ctr, Dept Chem Engn & Mat Sci, E Lansing, MI 48824 USA. RP Pattathil, S (reprint author), Univ Georgia, Complex Carbohydrate Res Ctr, Athens, GA 30602 USA. EM siva@ccrc.uga.edu; shishir.chundawat@rutgers.edu FU Office of Biological and Environmental Research, Office of Science, US Department of Energy [DE-AC05-00OR22725]; National Science Foundation Plant Genome Program [DBI-0421683, IOS-0923992]; Department of Energy, Office of Science, Office of Biological and Environmental Research [DE-FC02-07ER64494]; National Science Foundation [1236120] FX The glycome profiling analyses were supported by the BioEnergy Science Center administered by Oak Ridge National Laboratory and funded by Grant DE-AC05-00OR22725 from the Office of Biological and Environmental Research, Office of Science, US Department of Energy. The generation of the CCRC series of plant cell wall glycan-directed monoclonal antibodies used in this work was supported by the National Science Foundation Plant Genome Program (DBI-0421683 and IOS-0923992). Biomass pre-treatment and composition analyses were supported by the DOE Great Lakes Bioenergy Research Center (supported by the Department of Energy, Office of Science, Office of Biological and Environmental Research, through Cooperative Agreement DE-FC02-07ER64494 between The Board of Regents of the University of Wisconsin System and the Department of Energy). SPSC acknowledges partial support from the National Science Foundation Grant #1236120 (CBET-Energy for Sustainability) and would like to thank all members of the Dale lab for their enthusiastic and timely support. We also thank the GLBRC Cell Wall Analytical Facility (Cliff Foster) for conducting biomass composition analyses. We thank Professor Jonathan Walton (Michigan State University), Professor Art Ragauskas (Georgia Institute of Technology), and Professor Jack Saddler (University of British Columbia) for providing the goldenrod, loblolly pine, and Douglas fir biomass samples. We thank Ms Maria J Soto, a graduate student in our laboratory, for critically reading the manuscript. Special thanks to Novozymes for their generous gift of enzymes. NR 58 TC 10 Z9 11 U1 7 U2 39 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0022-0957 EI 1460-2431 J9 J EXP BOT JI J. Exp. Bot. PD JUL PY 2015 VL 66 IS 14 SI SI BP 4279 EP 4294 DI 10.1093/jxb/erv107 PG 16 WC Plant Sciences SC Plant Sciences GA CP2CU UT WOS:000359685900015 PM 25911738 ER PT J AU Li, MY Heckwolf, M Crowe, JD Williams, DL Magee, TD Kaeppler, SM de Leon, N Hodge, DB AF Li, Muyang Heckwolf, Marlies Crowe, Jacob D. Williams, Daniel L. Magee, Timothy D. Kaeppler, Shawn M. de Leon, Natalia Hodge, David B. TI Cell-wall properties contributing to improved deconstruction by alkaline pre-treatment and enzymatic hydrolysis in diverse maize (Zea mays L.) lines SO JOURNAL OF EXPERIMENTAL BOTANY LA English DT Article DE Biofuels; cell-wall recalcitrance; enzymatic hydrolysis; maize; plant cell-wall characterization; pre-treatment ID FORAGE QUALITY VARIATION; NEUTRAL DETERGENT FIBER; IN-VITRO DIGESTIBILITY; 3 PERENNIAL GRASSES; CORN STOVER; BIOMASS RECALCITRANCE; STRUCTURAL FEATURES; CELLULOSIC ETHANOL; DOWN-REGULATION; SUGAR RELEASE AB A maize (Zea mays L. subsp. mays) diversity panel consisting of 26 maize lines exhibiting a wide range of cell-wall properties and responses to hydrolysis by cellulolytic enzymes was employed to investigate the relationship between cell-wall properties, cell-wall responses to mild NaOH pre-treatment, and enzymatic hydrolysis yields. Enzymatic hydrolysis of the cellulose in the untreated maize was found to be positively correlated with the water retention value, which is a measure of cell-wall susceptibility to swelling. It was also positively correlated with the lignin syringyl/guaiacyl ratio and negatively correlated with the initial cell-wall lignin, xylan, acetate, and p-coumaric acid (pCA) content, as well as pCA released from the cell wall by pre-treatment. The hydrolysis yield following pre-treatment exhibited statistically significant negative correlations to the lignin content after pre-treatment and positive correlations to the solubilized ferulic acid and pCA. Several unanticipated results were observed, including a positive correlation between initial lignin and acetate content, lack of correlation between acetate content and initial xylan content, and negative correlation between each of these three variables to the hydrolysis yields for untreated maize. Another surprising result was that pCA release was negatively correlated with hydrolysis yields for untreated maize and, along with ferulic acid release, was positively correlated with the pre-treated maize hydrolysis yields. This indicates that these properties that may negatively contribute to the recalcitrance in untreated cell walls may positively contribute to their deconstruction by alkaline pre-treatment. C1 [Li, Muyang; Hodge, David B.] Michigan State Univ, Dept Biosyst & Agr Engn, E Lansing, MI 48824 USA. [Li, Muyang; Heckwolf, Marlies; Williams, Daniel L.; Kaeppler, Shawn M.; de Leon, Natalia; Hodge, David B.] DOE Great Lakes Bioenergy Res Ctr, Madison, WI 53703 USA. [Crowe, Jacob D.; Williams, Daniel L.; Magee, Timothy D.; Hodge, David B.] Michigan State Univ, Dept Chem Engn & Mat Sci, E Lansing, MI 48824 USA. [Kaeppler, Shawn M.; de Leon, Natalia] Univ Wisconsin, Dept Agron, Madison, WI 53706 USA. [Hodge, David B.] Lulea Univ Technol, Div Sustainable Proc Engn, S-97187 Lulea, Sweden. RP Hodge, DB (reprint author), Michigan State Univ, Dept Biosyst & Agr Engn, E Lansing, MI 48824 USA. EM hodgeda@msu.edu OI Kaeppler, Shawn/0000-0002-5964-1668 FU US Department of Energy Great Lakes Bioenergy Research Center [DOE BER Office of Science DE-FC02-07ER64494]; US National Science Foundation [NSF CBET 1336622]; US Department of Energy, Office of Science [DE-FOA-0000995]; US Department of Energy, Office of Basic Energy Sciences (BES) [DE-FOA-0000995]; US Department of Energy, Office of Biological and Environmental Research (BER) [DE-FOA-0000995] FX The authors would like to acknowledge Robert Sykes (NREL) for generously performing py-MBMS analysis on the samples. This work was supported by the US Department of Energy Great Lakes Bioenergy Research Center (grant no. DOE BER Office of Science DE-FC02-07ER64494). ML and JDC were supported in part by a grant from the US National Science Foundation (grant no. NSF CBET 1336622). David Hodge is grateful for support by a travel award from the US Department of Energy, Office of Science, Office of Basic Energy Sciences (BES) and the Office of Biological and Environmental Research (BER), DE-FOA-0000995. NR 73 TC 2 Z9 2 U1 4 U2 22 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0022-0957 EI 1460-2431 J9 J EXP BOT JI J. Exp. Bot. PD JUL PY 2015 VL 66 IS 14 SI SI BP 4305 EP 4315 DI 10.1093/jxb/erv016 PG 11 WC Plant Sciences SC Plant Sciences GA CP2CU UT WOS:000359685900017 PM 25871649 ER PT J AU Cass, CL Peraldi, A Dowd, PF Mottiar, Y Santoro, N Karlen, SD Bukhman, YV Foster, CE Thrower, N Bruno, LC Moskvin, OV Johnson, ET Willhoit, ME Phutane, M Ralph, J Mansfield, SD Nicholson, P Sedbrook, JC AF Cass, Cynthia L. Peraldi, Antoine Dowd, Patrick F. Mottiar, Yaseen Santoro, Nicholas Karlen, Steven D. Bukhman, Yury V. Foster, Cliff E. Thrower, Nick Bruno, Laura C. Moskvin, Oleg V. Johnson, Eric T. Willhoit, Megan E. Phutane, Megha Ralph, John Mansfield, Shawn D. Nicholson, Paul Sedbrook, John C. TI Effects of PHENYLALANINE AMMONIA LYASE (PAL) knockdown on cell wall composition, biomass digestibility, and biotic and abiotic stress responses in Brachypodium SO JOURNAL OF EXPERIMENTAL BOTANY LA English DT Article DE Bioenergy; ferulic acid; Fusarium; grass; herbivory; lignin; phenylpropanoid; saccharification; tyrosine ammonia lyase; ultraviolet light ID CINNAMYL ALCOHOL-DEHYDROGENASE; FUSARIUM-GRAMINEARUM; ARABIDOPSIS-THALIANA; SACCHARIFICATION EFFICIENCY; SPODOPTERA-FRUGIPERDA; LIGNIN BIOSYNTHESIS; DISEASE RESISTANCE; ETHANOL-PRODUCTION; INSECT RESISTANCE; GENE-EXPRESSION AB The phenylpropanoid pathway in plants synthesizes a variety of structural and defence compounds, and is an important target in efforts to reduce cell wall lignin for improved biomass conversion to biofuels. Little is known concerning the trade-offs in grasses when perturbing the function of the first gene family in the pathway, PHENYLALANINE AMMONIA LYASE (PAL). Therefore, PAL isoforms in the model grass Brachypodium distachyon were targeted, by RNA interference (RNAi), and large reductions (up to 85%) in stem tissue transcript abundance for two of the eight putative BdPAL genes were identified. The cell walls of stems of BdPAL-knockdown plants had reductions of 43% in lignin and 57% in cell wall-bound ferulate, and a nearly 2-fold increase in the amounts of polysaccharide-derived carbohydrates released by thermochemical and hydrolytic enzymic partial digestion. PAL-knockdown plants exhibited delayed development and reduced root growth, along with increased susceptibilities to the fungal pathogens Fusarium culmorum and Magnaporthe oryzae. Surprisingly, these plants generally had wild-type (WT) resistances to caterpillar herbivory, drought, and ultraviolet light. RNA sequencing analyses revealed that the expression of genes associated with stress responses including ethylene biosynthesis and signalling were significantly altered in PAL knocked-down plants under non-challenging conditions. These data reveal that, although an attenuation of the phenylpropanoid pathway increases carbohydrate availability for biofuel, it can adversely affect plant growth and disease resistance to fungal pathogens. The data identify notable differences between the stress responses of these monocot pal mutants versus Arabidopsis (a dicot) pal mutants and provide insights into the challenges that may arise when deploying phenylpropanoid pathway-altered bioenergy crops. C1 [Cass, Cynthia L.; Willhoit, Megan E.; Phutane, Megha; Sedbrook, John C.] Illinois State Univ, Sch Biol Sci, Normal, IL 61790 USA. [Cass, Cynthia L.; Mottiar, Yaseen; Karlen, Steven D.; Bukhman, Yury V.; Moskvin, Oleg V.; Willhoit, Megan E.; Phutane, Megha; Ralph, John; Mansfield, Shawn D.; Sedbrook, John C.] US DOE, Great Lakes Bioenergy Res Ctr, Madison, WI 53706 USA. [Peraldi, Antoine; Bruno, Laura C.; Nicholson, Paul] John Innes Ctr, Dept Crop Genet, Norwich NR4 7UH, Norfolk, England. [Dowd, Patrick F.; Johnson, Eric T.] ARS, USDA, Natl Ctr Agr Utilizat Res, Crop Bioprotect Res Unit, Peoria, IL 61604 USA. [Mottiar, Yaseen; Mansfield, Shawn D.] Univ British Columbia, Dept Wood Sci, Vancouver, BC V6T 1Z4, Canada. [Santoro, Nicholas; Foster, Cliff E.; Thrower, Nick] Michigan State Univ, US Dept Energy, Great Lakes Bioenergy Res Ctr, E Lansing, MI 48824 USA. [Ralph, John] Univ Wisconsin, Wisconsin Energy Inst, Dept Biochem, Madison, WI 53706 USA. RP Sedbrook, JC (reprint author), Illinois State Univ, Sch Biol Sci, Normal, IL 61790 USA. EM jcsedbr@ilstu.edu FU US Department of Energy Great Lakes Bioenergy Research Center (Department of Energy, Biological and Environmental Research, Office of Science) [DE-FC02-07ER64494]; USDA Agricultural Research Service CRIS projects [3620-42000-041-00D] FX We thank Mark Doehring, David Lee, and Stephen Lutgen for technical assistance, and John Vogel for providing the BdPAL1 cDNA clone. We also thank Bruce Dien, Jim Webb, John Vogel, Craig Gatto, and Alejandro Rooney for valuable discussions. This work was supported by the US Department of Energy Great Lakes Bioenergy Research Center (Department of Energy, Biological and Environmental Research, Office of Science grant no. DE-FC02-07ER64494) and USDA Agricultural Research Service CRIS projects 3620-42000-041-00D. Mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the US Department of Agriculture. USDA is an equal opportunity provider and employer. NR 95 TC 13 Z9 14 U1 7 U2 41 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0022-0957 EI 1460-2431 J9 J EXP BOT JI J. Exp. Bot. PD JUL PY 2015 VL 66 IS 14 SI SI BP 4317 EP 4335 DI 10.1093/jxb/erv269 PG 19 WC Plant Sciences SC Plant Sciences GA CP2CU UT WOS:000359685900018 PM 26093023 ER PT J AU Lara-Chavez, A Lowman, S Kim, S Tang, YH Zhang, JY Udvardi, M Nowak, J Flinn, B Mei, CS AF Lara-Chavez, Alejandra Lowman, Scott Kim, Seonhwa Tang, Yuhong Zhang, Jiyi Udvardi, Michael Nowak, Jerzy Flinn, Barry Mei, Chuansheng TI Global gene expression profiling of two switchgrass cultivars following inoculation with Burkholderia phytofirmans strain PsJN SO JOURNAL OF EXPERIMENTAL BOTANY LA English DT Article DE Beneficial bacterial endophyte; Burkholderia phytofirmans strain PsJN; gene expression profiling; genotypic specificity; growth promotion; Panicum virgatum L. ID PANICUM VIRGATUM L.; VITIS-VINIFERA L.; RICE ORYZA-SATIVA; PLANT-GROWTH; ENDOPHYTIC COLONIZATION; TRANSCRIPTION FACTORS; SALICYLIC-ACID; ABIOTIC STRESS; BACTERIAL ENDOPHYTE; SIGNALING NETWORKS AB Improvement and year-to-year stabilization of biomass yields are primary objectives for the development of a low-input switchgrass feedstock production system using microbial endophytes. An earlier investigation of the effect of Burkholderia phytofirmans strain PsJN on switchgrass germplasm demonstrated differential responses between genotypes. PsJN inoculation of cv. Alamo (lowland ecotype) increased the plant root system, shoot length, and biomass yields, whereas it had no beneficial effect on cv. Cave-in-Rock (upland ecotype). To understand the gene networks governing plant growth promotion responses triggered by PsJN, the gene expression profiles were analysed in these two hosts, following seedling inoculation. The Affymetrix platform switchgrass expressed sequence tag (EST) microarray chip representing 122 972 probe sets, developed by the DOE BioEnergy Science Center, was employed to assess transcript abundance at 0.5, 2, 4, and 8 DAI (days after PsJN inoculation). Approximately 20 000 switchgrass probe sets showed significant responses in either cultivar. Switchgrass identifiers were used to map 19 421 genes in MapMan software. There were apparent differences in gene expression profiling between responsive and non-responsive cultivars after PsJN inoculation. Overall, there were 14 984 and 9691 genes affected by PsJN inoculation in Alamo and Cave-in-Rock, respectively. Of these, 394 are annotated as pathogenesis-related genes. In the responsive cv. Alamo, 68 pathogenesis-related genes were affected, compared with only 10 in the non-responsive cv. Cave-in-Rock. At the very early stage at 0.5 DAI, both cultivars exhibited similar recognition and defence responses, such as genes in signalling and proteolysis, after which the defence reaction in the responsive cv. Alamo became weaker while it was sustained in non-responsive cv. Cave-in-Rock. C1 [Lara-Chavez, Alejandra; Lowman, Scott; Kim, Seonhwa; Flinn, Barry; Mei, Chuansheng] Inst Adv Learning & Res, Inst Sustainable & Renewable Resources, Danville, VA 24540 USA. [Lowman, Scott; Nowak, Jerzy; Flinn, Barry; Mei, Chuansheng] Virginia Polytech Inst & State Univ, Dept Hort, Blacksburg, VA 24601 USA. [Flinn, Barry; Mei, Chuansheng] Virginia Polytech Inst & State Univ, Dept Forest Resources & Environm Conservat, Blacksburg, VA 24601 USA. [Tang, Yuhong; Zhang, Jiyi; Udvardi, Michael] Samuel Roberts Noble Fdn Inc, Div Plant Biol, Ardmore, OK 73401 USA. [Tang, Yuhong; Zhang, Jiyi; Udvardi, Michael] US DOE, BioEnergy Sci Ctr, Oak Ridge, TN 37831 USA. RP Mei, CS (reprint author), Inst Adv Learning & Res, Inst Sustainable & Renewable Resources, Danville, VA 24540 USA. EM chuansheng.mei@ialr.org FU Office of Science (BER), US Department of Energy for Plant Feedstock Genomics for Bioenergy Program [DE-SC0004951] FX This work was funded by the Office of Science (BER), US Department of Energy for Plant Feedstock Genomics for Bioenergy Program (DE-SC0004951). NR 85 TC 2 Z9 2 U1 7 U2 25 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0022-0957 EI 1460-2431 J9 J EXP BOT JI J. Exp. Bot. PD JUL PY 2015 VL 66 IS 14 SI SI BP 4337 EP 4350 DI 10.1093/jxb/erv096 PG 14 WC Plant Sciences SC Plant Sciences GA CP2CU UT WOS:000359685900019 PM 25788737 ER PT J AU Du Frane, WL Stern, LA Constable, S Weitemeyer, KA Smith, MM Roberts, JJ AF Du Frane, Wyatt L. Stern, Laura A. Constable, Steven Weitemeyer, Karen A. Smith, Megan M. Roberts, Jeffery J. TI Electrical properties of methane hydrate plus sediment mixtures SO JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH LA English DT Article DE gas hydrates; electrical conductivity; methane; ice; ionic impurities; controlled source electromagnetics ID GAS HYDRATE; POLYCRYSTALLINE OLIVINE; ELECTROMAGNETIC SURVEY; MARINE-SEDIMENTS; NATURAL-GAS; SEA-FLOOR; WATER; ICE; PERMEABILITY; TEMPERATURE AB Knowledge of the electrical properties of multicomponent systems with gas hydrate, sediments, and pore water is needed to help relate electromagnetic (EM) measurements to specific gas hydrate concentration and distribution patterns in nature. Toward this goal, we built a pressure cell capable of measuring in situ electrical properties of multicomponent systems such that the effects of individual components and mixing relations can be assessed. We first established the temperature-dependent electrical conductivity (sigma) of pure, single-phase methane hydrate to be similar to 5 orders of magnitude lower than seawater, a substantial contrast that can help differentiate hydrate deposits from significantly more conductive water-saturated sediments in EM field surveys. Here we report sigma measurements of two-component systems in which methane hydrate is mixed with variable amounts of quartz sand or glass beads. Sand by itself has low sigma but is found to increase the overall sigma of mixtures with well-connected methane hydrate. Alternatively, the overall sigma decreases when sand concentrations are high enough to cause gas hydrate to be poorly connected, indicating that hydrate grains provide the primary conduction path. Our measurements suggest that impurities from sand induce chemical interactions and/or doping effects that result in higher electrical conductivity with lower temperature dependence. These results can be used in the modeling of massive or two-phase gas-hydrate-bearing systems devoid of conductive pore water. Further experiments that include a free water phase are the necessary next steps toward developing complex models relevant to most natural systems. C1 [Du Frane, Wyatt L.; Smith, Megan M.; Roberts, Jeffery J.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Stern, Laura A.] US Geol Survey, Menlo Pk, CA 94025 USA. [Constable, Steven; Weitemeyer, Karen A.] Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USA. [Weitemeyer, Karen A.] Univ Southampton, Natl Oceanog Ctr Southampton, Southampton, Hants, England. RP Du Frane, WL (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM Wyatt.DuFrane@asu.edu RI Constable, Steven/B-8959-2008 FU DOE [DE-NT0005668]; USGS Gas Hydrate Project [DE-NT0006147]; DOE's Methane Hydrate RD Program [DE-NT0006147]; [DE-AC52-07NA27344] FX The authors thank S. Roberts (LLNL) for assisting with ion chromatography measurements; W. Durham (MIT) for providing the OK#1 sand used in this study; J. Pinkston, S. Kirby, D. Lockner, W. Waite, and A. Hunt (U. S. Geological Survey) for their helpful discussions, advice, and reviews; and J. Lemire (Scripps Institution of Oceanography) for the help with the cell fabrication and design. Data supporting Figures 3-5 are available in the supporting information. Support for this work was provided by DOE contract DE-NT0005668 awarded to S. Constable (SIO) and Interagency Agreement DE-NT0006147 between the USGS Gas Hydrate Project and the DOE's Methane Hydrate R&D Program. Prepared by LLNL under contract DE-AC52-07NA27344. The use of trade, product, industry, or firm names in this report is for descriptive purposes only and does not constitute endorsement by the U. S. Geological Survey or the U. S. Government. NR 44 TC 1 Z9 1 U1 0 U2 5 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9313 EI 2169-9356 J9 J GEOPHYS RES-SOL EA JI J. Geophys. Res.-Solid Earth PD JUL PY 2015 VL 120 IS 7 BP 4773 EP 4783 DI 10.1002/2015JB011940 PG 11 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA CP2ZN UT WOS:000359746700007 ER PT J AU Lei, QH Latham, JP Tsang, CF Xiang, JS Lang, P AF Lei, Qinghua Latham, John-Paul Tsang, Chin-Fu Xiang, Jiansheng Lang, Philipp TI A new approach to upscaling fracture network models while preserving geostatistical and geomechanical characteristics SO JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH LA English DT Article DE Scaling; Fractures; Random walk; Geomechanical constraints; Permeability; Flow structure ID STRESS-DEPENDENT PERMEABILITY; SCALING RELATIONS; LENGTH DISTRIBUTION; CRYSTALLINE ROCKS; DEFORMATION BANDS; DISPLACEMENT; FAULTS; CONNECTIVITY; APERTURE; SYSTEMS AB A new approach to upscaling two-dimensional fracture network models is proposed for preserving geostatistical and geomechanical characteristics of a smaller-scale source fracture pattern. First, the scaling properties of an outcrop system are examined in terms of spatial organization, lengths, connectivity, and normal/shear displacements using fractal geometry and power law relations. The fracture pattern is observed to be nonfractal with the fractal dimension D approximate to 2, while its length distribution tends to follow a power law with the exponent 2 formaldehyde > acetaldehyde even though acetaldehyde yields were 10-fold greater than formaldehyde and acrolein. C1 [Corley, Richard A.; Kabilan, Senthil; Kuprat, Andrew P.; Jacob, Richard E.; Minard, Kevin R.; Teeguarden, Justin G.; Timchalk, Charles; Einstein, Daniel R.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. [Carson, James P.] Univ Texas Austin, Texas Adv Comp Ctr, Austin, TX 78758 USA. [Pipavath, Sudhakar] Univ Washington, Radiol, Seattle, WA 98195 USA. [Glenny, Robb] Univ Washington, Div Pulm & Crit Care Med, Seattle, WA 98195 USA. RP Corley, RA (reprint author), Pacific NW Natl Lab, Div Biol Sci, 902 Battelle Blvd,POB 999,MSIN J4-02, Richland, WA 99352 USA. EM rick.corley@pnnl.gov FU National Heart, Lung, and Blood Institute of the National Institutes of Health [R01 HL073598]; Reynolds Tobacco Co. [56296] FX National Heart, Lung, and Blood Institute of the National Institutes of Health (R01 HL073598). R.J. Reynolds Tobacco Co. under a separate contract with Battelle (Project 56296 to R.A.C., S.K., A.P.K., D.R.E., and C.T.) and published previously (Corley et al., 2012). NR 70 TC 5 Z9 5 U1 2 U2 11 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 1096-6080 EI 1096-0929 J9 TOXICOL SCI JI Toxicol. Sci. PD JUL PY 2015 VL 146 IS 1 BP 65 EP 88 DI 10.1093/toxsci/kfv071 PG 24 WC Toxicology SC Toxicology GA CP1IH UT WOS:000359629000007 PM 25858911 ER PT J AU Tilton, SC Siddens, LK Krueger, SK Larkin, AJ Lohr, CV Williams, DE Baird, WM Waters, KM AF Tilton, Susan C. Siddens, Lisbeth K. Krueger, Sharon K. Larkin, Andrew J. Loehr, Christiane V. Williams, David E. Baird, William M. Waters, Katrina M. TI Mechanism-Based Classification of PAH Mixtures to Predict Carcinogenic Potential SO TOXICOLOGICAL SCIENCES LA English DT Article DE polycyclic aromatic hydrocarbons; toxicogenomics; modeling; skin cancer; mixtures ID POLYCYCLIC AROMATIC-HYDROCARBONS; GENE-EXPRESSION; COMPLEX-MIXTURES; MICROARRAY DATA; RISK-ASSESSMENT; C57BL/6 MICE; VARIANCE; MOUSE; TCDD; SKIN AB We have previously shown that relative potency factors and DNA adduct measurements are inadequate for predicting carcinogenicity of certain polycyclic aromatic hydrocarbons (PAHs) and PAH mixtures, particularly those that function through alternate pathways or exhibit greater promotional activity compared to benzo[a] pyrene (BaP). Therefore, we developed a pathway-based approach for classification of tumor outcome after dermal exposure to PAH/mixtures. FVB/N mice were exposed to dibenzo[def, p] chrysene (DBC), BaP, or environmental PAH mixtures (Mix 1-3) following a 2-stage initiation/promotion skin tumor protocol. Resulting tumor incidence could be categorized by carcinogenic potency as DBC>> BaP = Mix2 = Mix3> Mix1 = Control, based on statistical significance. Gene expression profiles measured in skin of mice collected 12h post-initiation were compared with tumor outcome for identification of short-term bioactivity profiles. A Bayesian integration model was utilized to identify biological pathways predictive of PAH carcinogenic potential during initiation. Integration of probability matrices from four enriched pathways (P<. 05) for DNA damage, apoptosis, response to chemical stimulus, and interferon gamma signaling resulted in the highest classification accuracy with leave-one-out cross validation. This pathway-driven approach was successfully utilized to distinguish early regulatory events during initiation prognostic for tumor outcome and provides proof-of-concept for using short-term initiation studies to classify carcinogenic potential of environmental PAH mixtures. These data further provide a 'source-to-outcome' model that could be used to predict PAH interactions during tumorigenesis and provide an example of how mode-of-action-based risk assessment could be employed for environmental PAH mixtures. C1 [Tilton, Susan C.; Siddens, Lisbeth K.; Krueger, Sharon K.; Larkin, Andrew J.; Williams, David E.; Baird, William M.; Waters, Katrina M.] Oregon State Univ, Superfund Res Ctr, Corvallis, OR 97331 USA. [Tilton, Susan C.; Siddens, Lisbeth K.; Larkin, Andrew J.; Williams, David E.; Baird, William M.] Oregon State Univ, Environm & Mol Toxicol Dept, Corvallis, OR 97331 USA. [Krueger, Sharon K.; Williams, David E.] Oregon State Univ, Linus Pauling Inst, Corvallis, OR 97331 USA. [Loehr, Christiane V.] Oregon State Univ, Coll Vet Med, Corvallis, OR 97331 USA. [Waters, Katrina M.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. RP Tilton, SC (reprint author), Oregon State Univ, Environm & Mol Toxicol Dept, Corvallis, OR 97331 USA. EM susan.tilton@oregonstate.edu FU National Institute of Environmental Health Sciences [P42 ES016465]; ARRA Supplement to Promote Diversity in Health Research [P42 ES016465-S1, P01 CA90890] FX National Institute of Environmental Health Sciences grants P42 ES016465, ARRA Supplement to Promote Diversity in Health Research P42 ES016465-S1 and P01 CA90890. NR 25 TC 5 Z9 5 U1 1 U2 17 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 1096-6080 EI 1096-0929 J9 TOXICOL SCI JI Toxicol. Sci. PD JUL PY 2015 VL 146 IS 1 BP 135 EP 145 DI 10.1093/toxsci/kfv080 PG 11 WC Toxicology SC Toxicology GA CP1IH UT WOS:000359629000012 PM 25908611 ER PT J AU Van Bonn, W LaPointe, A Gibbons, SM Frazier, A Hampton-Marcell, J Gilbert, J AF Van Bonn, William LaPointe, Allen Gibbons, Sean M. Frazier, Angel Hampton-Marcell, Jarrad Gilbert, Jack TI Aquarium microbiome response to ninety-percent system water change: Clues to microbiome management SO ZOO BIOLOGY LA English DT Article DE aquatic microbes; aquarium life support; veterinary; dysbiosis; fish health ID HYGIENE HYPOTHESIS; ENVIRONMENT AB The bacterial community composition and structure of water from an established teleost fish system was examined before, during and after a major water change to explore the impact of such a water-change disturbance on the stability of the aquarium water microbiome. The diversity and evenness of the bacterial community significantly increased following the 90% water replacement. While the change in bacterial community structure was significant, it was slight, and was also weakly correlated with changes in physicochemical parameters. Interestingly there was a significant shift in the correlative network relationships between operational taxonomic units from before to after the water replacement. We suggest this shift in network structure is due to the turnover of many taxa during the course of water replacement. These observations will inform future studies into manipulation of the microbiome by changing system environmental parameter values to optimize resident animal health. Zoo Biol. 34:360-367, 2015. (c) 2015 Wiley Periodicals Inc. C1 [Van Bonn, William; LaPointe, Allen] John G Shedd Aquarium, A Watson Armour III Ctr Anim Hlth & Welf, Chicago, IL 60605 USA. [Gibbons, Sean M.; Gilbert, Jack] Univ Chicago, Grad Program Biophys Sci, Chicago, IL 60637 USA. [Gibbons, Sean M.; Frazier, Angel; Hampton-Marcell, Jarrad; Gilbert, Jack] Argonne Natl Lab, Biosci Div, Inst Genom & Syst Biol, Argonne, IL 60439 USA. [Hampton-Marcell, Jarrad; Gilbert, Jack] Univ Chicago, Dept Ecol & Evolut, Chicago, IL 60637 USA. [Gilbert, Jack] Univ Chicago, Dept Surg, Chicago, IL 60637 USA. [Gilbert, Jack] Marine Biol Lab, Woods Hole, MA 02543 USA. [Gilbert, Jack] Zhejiang Univ, Coll Environm & Resource Sci, Hangzhou 310058, Zhejiang, Peoples R China. RP Van Bonn, W (reprint author), John G Shedd Aquarium, A Watson Armour III Ctr Anim Hlth & Welf, 1200 South Lake Shore Dr, Chicago, IL 60605 USA. EM bvanbonn@sheddaquarium.org FU EPA STAR Graduate Fellowship FX We are grateful to Mr. James Clark, aquarist responsible for study system, Ms. Caryn Svienty, Ms. Julie Nagler and Ms. Jennifer Bozych for water sample collection and processing. We thank Ms. Lei Zhao for assistance with statistical analyses. The authors confirm no conflict of interest involved in this work product. Sean Gibbons was supported by an EPA STAR Graduate Fellowship. NR 15 TC 0 Z9 0 U1 2 U2 14 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0733-3188 EI 1098-2361 J9 ZOO BIOL JI Zoo Biol. PD JUL-AUG PY 2015 VL 34 IS 4 BP 360 EP 367 DI 10.1002/zoo.21220 PG 8 WC Veterinary Sciences; Zoology SC Veterinary Sciences; Zoology GA CO7SQ UT WOS:000359362500009 PM 26031788 ER PT J AU Uphoff, H AF Uphoff, Heidi TI Reading the Comments: Likers, Haters, and Manipulators at the Bottom of the Web SO LIBRARY JOURNAL LA English DT Book Review C1 [Uphoff, Heidi] Los Alamos Natl Lab, Los Alamos, NM USA. RP Uphoff, H (reprint author), Los Alamos Natl Lab, Los Alamos, NM USA. NR 1 TC 0 Z9 0 U1 1 U2 1 PU REED BUSINESS INFORMATION PI NEW YORK PA 360 PARK AVENUE SOUTH, NEW YORK, NY 10010 USA SN 0363-0277 J9 LIBR J JI Libr. J. PD JUL PY 2015 VL 140 IS 12 BP 109 EP 109 PG 1 WC Information Science & Library Science SC Information Science & Library Science GA CM7BJ UT WOS:000357845100273 ER PT J AU Li, JR Ross, SS Liu, Y Liu, YX Wang, KH Chen, HY Liu, FT Laurence, TA Liu, GY AF Li, Jie-Ren Ross, Shailise S. Liu, Yang Liu, Ying X. Wang, Kang-hsin Chen, Huan-Yuan Liu, Fu-Tong Laurence, Ted A. Liu, Gang-yu TI Engineered Nanostructures of Haptens Lead to Unexpected Formation of Membrane Nanotubes Connecting Rat Basophilic Leukemia Cells SO ACS NANO LA English DT Article DE membrane nanotubes; rat basophilic leukemia (RBL) cells; mast cells; atomic force microscopy (AFM); scanning electron microscopy (SEM); haptens; particle lithography ID FC-EPSILON-RI; ATOMIC-FORCE MICROSCOPY; ENDOTHELIAL PROGENITOR CELLS; MAST-CELLS; TUNNELING NANOTUBES; INTERCELLULAR TRANSPORTATION; PARTICLE LITHOGRAPHY; NEGATIVE REGULATION; ALLERGIC RESPONSES; LIPID-BILAYERS AB A recent finding reports that co-stimulation of the high-affinity immunoglobulin E (IgE) receptor (Fc epsilon RI) and the chemokine receptor 1 (CCR1) triggered formation of membrane nanotubes among bone-marrow-derived mast cells. The co-stimulation was attained using corresponding ligands: IgE binding antigen and macrophage inflammatory protein 1 alpha (MIP1 alpha), respectively. However, this approach failed to trigger formation of nanotubes among rat basophilic leukemia (RBL) cells due to the lack of CCR1 on the cell surface (Int. Immunol 2010,22 (2), 113-128). RBL cells are frequently used as a model for mast cells and are best known for antibody-mediated activation via Fc epsilon RI. This work reports the successful formation of membrane nanotubes among RBLs using only one stimulus, a hapten of 2,4-dinitrophenyl (DNP) molecules, which are presented as nanostructures with our designed spatial arrangements. This observation underlines the significance of the local presentation of ligands in the context of impacting the cellular signaling cascades. In the case of RBL, certain DNP nanostructures suppress antigen-induced degranulation and facilitate the rearrangement of the cytoskeleton to form nanotubes. These results demonstrate an important scientific concept; engineered nanostructures enable cellular signaling cascades, where current technologies encounter great difficulties. More importantly, nanotechnology offers a new platform to selectively activate and/or inhibit desired cellular signaling cascades. C1 [Li, Jie-Ren; Ross, Shailise S.; Liu, Yang; Liu, Ying X.; Wang, Kang-hsin; Liu, Gang-yu] Univ Calif Davis, Dept Chem, Davis, CA 95616 USA. [Chen, Huan-Yuan; Liu, Fu-Tong] Univ Calif Davis, Sch Med, Dept Dermatol, Sacramento, CA 95817 USA. [Chen, Huan-Yuan; Liu, Fu-Tong] Acad Sinica, Inst Biomed Sci, Taipei, Taiwan. [Laurence, Ted A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Liu, GY (reprint author), Univ Calif Davis, Dept Chem, Davis, CA 95616 USA. EM gyliu@ucdavis.edu FU National Institutes of Health [1R21CA176850-01]; Gordon and Betty Moore Foundation; Alfred P. Sloan Foundation Minority Ph.D. Scholarship; UCD-LLNL Joint Graduate Mentorship Award FX We would like to thank Mr. Alan Hicklin at the UC Davis' Keck Spectral Imaging Facility for his technical assistance, and Ms. Susan Stagner for her help in the preparation of the manuscript. This work was supported by National Institutes of Health (1R21CA176850-01) and the Gordon and Betty Moore Foundation. S.S.R. is a recipient of the Alfred P. Sloan Foundation Minority Ph.D. Scholarship. Y.L. is supported by a UCD-LLNL Joint Graduate Mentorship Award. NR 78 TC 3 Z9 3 U1 9 U2 23 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD JUL PY 2015 VL 9 IS 7 BP 6738 EP 6746 DI 10.1021/acsnano.5b02270 PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA CO0EP UT WOS:000358823200010 PM 26057701 ER PT J AU Brubaker, CE Velluto, D Demurtas, D Phelps, EA Hubbell, JA AF Brubaker, Carrie E. Velluto, Diana Demurtas, Davide Phelps, Edward A. Hubbell, Jeffrey A. TI Crystalline Oligo(ethylene sulfide) Domains Define Highly Stable Supramolecular Block Copolymer Assemblies SO ACS NANO LA English DT Article DE polymer; self-assembly; nanoparticle; micelle; cylindrical micelle; hydrogel ID POLY(PROPYLENE SULFIDE); POLY(ETHYLENE GLYCOL); IMAGE-ANALYSIS; MICELLES; POLYMERS; NANOPARTICLES; DELIVERY; CORE; MORPHOLOGIES; MICROSCOPY AB With proper control over copolymer design and solvation conditions, self-assembled materials display impressive morphological variety that encompasses nanoscale colloids as well as bulk three-dimensional architectures. Here we take advantage of both hydrophobicity and crystallinity to mediate supramolecular self-assembly of spherical micellar, linear fibrillar, or hydrogel structures by a family of highly asymmetric poly(ethylene glycol)-b-oligo(ethylene sulfide) (PEG-OES) copolymers. Assembly structural polymorphism was achieved with modification of PEG-OES topology (linear versus multiarm) and with precise, monomer-by-monomer control of DES length. Notably, all three morphologies were accessed utilizing OES oligomers with degrees of polymerization as short as three. These exceptionally small assembly forming blocks represent the first application of ethylene sulfide oligomers in supramolecular materials. While the assemblies demonstrated robust aqueous stability over time, oxidation by hydrogen peroxide progressively converted ethylene sulfide residues to increasingly hydrophilic and amorphous sulfoxides and sulfones, causing morphological changes and permanent disassembly. We utilized complementary microscopic and spectroscopic techniques to confirm this chemical stimulus-responsive behavior in self-assembled PEG-OES colloidal dispersions and physical gels. In addition to inherent stimulus-responsive behavior, fibrillar assemblies demonstrated biologically relevant molecular delivery, as confirmed by the dose-dependent activation of murine bone marrow-derived dendritic cells following fibril-mediated delivery of the immunological adjuvant monophosphoryl lipid A. In physical gels composed of either linear or multiarm PEG-DES precursors, rheologic analysis also identified mechanical stimuli-responsive shear thinning behavior. Thanks to the facile preparation, user-defined morphology, aqueous stability, carrier functionality, and stimuli-responsive behaviors of PEG-OES supramolecular assemblies, our findings support a future role for these materials as injectable or implantable biomaterials. C1 [Brubaker, Carrie E.; Velluto, Diana; Phelps, Edward A.; Hubbell, Jeffrey A.] Ecole Polytech Fed Lausanne, Sch Life Sci, Inst Bioengn, CH-1015 Lausanne, Switzerland. [Demurtas, Davide] Ecole Polytech Fed Lausanne, Sch Basic Sci, Interdisciplinary Ctr Electron Microscopy, CH-1015 Lausanne, Switzerland. [Hubbell, Jeffrey A.] Ecole Polytech Fed Lausanne, Sch Basic Sci, Inst Chem Sci & Engn, CH-1015 Lausanne, Switzerland. [Hubbell, Jeffrey A.] Univ Chicago, Inst Mol Engn, Chicago, IL 60637 USA. [Hubbell, Jeffrey A.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Hubbell, JA (reprint author), Ecole Polytech Fed Lausanne, Sch Life Sci, Inst Bioengn, CH-1015 Lausanne, Switzerland. EM jeffrey.hubbell@epfl.ch RI Phelps, Edward/Q-1302-2016 OI Phelps, Edward/0000-0001-8666-805X FU ERC; Whitaker Foundation/IIE FX This work was supported by ERC Advanced Grant Nanolmmune, under the Seventh Framework Programme (J.A.H) and by the Whitaker Foundation/IIE (C.E.B). We gratefully recognize F. Spiga for technical assistance with SPR acquisition, and F. Sordo and T. Nardi for rheometer access. 1H NMR spectroscopy was performed in the EPFL Institute of Chemical Sciences and Engineering. The EPFL Molecular and Hybrid Materials Characterization Center and J. Morisod are recognized for DSC access and training. Confocal microscopy was acquired in the EPFL BioImaging and Optics Platform. We thank C. Card and D. S. Wilson for editorial feedback during manuscript preparation. NR 49 TC 6 Z9 6 U1 11 U2 74 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD JUL PY 2015 VL 9 IS 7 BP 6872 EP 6881 DI 10.1021/acsnano.5b02937 PG 10 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA CO0EP UT WOS:000358823200024 PM 26125494 ER PT J AU Voros, M Galli, G Zimanyi, GT AF Voeroes, Marton Galli, Giulia Zimanyi, Gergely T. TI Colloidal Nanoparticles for Intermediate Band Solar Cells SO ACS NANO LA English DT Article DE nanocrystal; nanoparticle solid; intermediate band; solar cell; density functional theory; doping; absorption ID CDSE QUANTUM DOTS; DENSITY-FUNCTIONAL THEORY; AB-INITIO CALCULATIONS; AUGMENTED-WAVE METHOD; SEMICONDUCTOR NANOCRYSTALS; CARRIER MULTIPLICATION; EDGE ENERGIES; THIN-FILMS; EFFICIENCY; CHARGE AB The Intermediate Band (IB) solar cell concept is a promising idea to transcend the Shockley-Queisser limit. Using the results of first-principles calculations, we propose that colloidal nanoparticles (CNPs) are a viable and efficient platform for the implementation of the IB solar cell concept. We focused on CdSe CNPs and we showed that intragap states present in the isolated CNPs with reconstructed surfaces combine to form an IB in arrays of CNPs, which is well separated from the valence and conduction band edges. We demonstrated that optical transitions to and from the IB are active. We also showed that the IB can be electron doped in a solution, e.g., by decamethylcobaltocene, thus activating an IB-induced absorption process. Our results, together with the recent report of a nearly 10% efficient CNP solar cell, indicate that colloidal nanoparticle intermediate band solar cells are a promising platform to overcome the Shockley-Queisser limit. C1 [Voeroes, Marton; Zimanyi, Gergely T.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Voeroes, Marton; Galli, Giulia] Univ Chicago, Inst Mol Engn, Chicago, IL 60637 USA. [Galli, Giulia] Argonne Natl Lab, Lemont, IL 60439 USA. RP Voros, M (reprint author), Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. EM vormar@gmail.com; gagalli@uchicago.edu; zimanyi@physics.ucdavis.edu OI Voros, Marton/0000-0003-1321-9207 FU NSF [DMR-1035468]; National Energy Research Scientific Computing Center (NERSC) through NISE; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]; Center for Advanced Solar Photophysics (CASP), an Energy Frontier Research Center (EFRC) - US Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences (BES) FX The authors thank A. Marti, A. Nozik, J. Krich, S. Hubbard, A. Freundlich, J. Skone, T. Szilvasi for useful discussions and N. Brawand for rendering the nanoparticle solid image. M.V. thanks A. Csuhai for inspiring discussions. This research was supported by the NSF Solar Collaborative under DMR-1035468. This research used resources of the National Energy Research Scientific Computing Center (NERSC) through the NISE project Larnint. NERSC is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The authors also acknowledge support from the Center for Advanced Solar Photophysics (CASP), an Energy Frontier Research Center (EFRC) funded by the US Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences (BES). NR 96 TC 3 Z9 3 U1 9 U2 62 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD JUL PY 2015 VL 9 IS 7 BP 6882 EP 6890 DI 10.1021/acsnano.5b00332 PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA CO0EP UT WOS:000358823200025 PM 26042468 ER PT J AU Johnson, PE Muttil, P MacKenzie, D Carnes, EC Pelowitz, J Mara, NA Mook, WM Jett, SD Dunphy, DR Timmins, GS Brinker, CJ AF Johnson, Patrick E. Muttil, Pavan MacKenzie, Debra Carnes, Eric C. Pelowitz, Jennifer Mara, Nathan A. Mook, William M. Jett, Stephen D. Dunphy, Darren R. Timmins, Graham S. Brinker, C. Jeffrey TI Spray-Dried Multiscale Nano-biocomposites Containing Living Cells SO ACS NANO LA English DT Article DE viable-but-not-culturable cells; biopreservation; bacterial persistence; cellular; encapsulation; sol-gel; spray drying; evaporation-induced self-assembly ID NONCULTURABLE STATE; DRUG-DELIVERY; PARTICLES; SILICA; BACTERIA; NANOPARTICLES; AEROSOL; PROTEIN; ATP; NANOINDENTATION AB Three-dimensional encapsulation of cells within nanostructured silica gels or matrices enables applications as diverse as biosensors, microbial fuel cells, artificial organs, and vaccines; it also allows the study of individual cell behaviors. Recent progress has improved the performance and flexibility of cellular encapsulation, yet there remains a need for robust scalable processes. Here, we report a spray-drying process enabling the large-scale production of functional nano-biocomposites (NBCs) containing living cells within ordered 3D lipid-silica nanostructures. The spray-drying process is demonstrated to work with multiple cell types and results in dry powders exhibiting a unique combination of properties including highly ordered 3D nanostructure, extended lipid fluidity, tunable macromorphologies and aerodynamic diameters, and unexpectedly high physical strength. Nanoindentation of the encasing nanostructure revealed a Young's modulus and hardness of 13 and 1.4 GPa, respectively. We hypothesized this high strength would prevent cell growth and force bacteria into viable but not culturable (VBNC) states. In concordance with the VBNC state, cellular ATP levels remained elevated even over eight months. However, their ability to undergo resuscitation and enter growth phase greatly decreased with time in the VBNC state. A quantitative method of determining resuscitation frequencies was developed and showed that, after 36 weeks in a NBC-induced VBNC, less than 1 in 10 000 cells underwent resuscitation. The NBC platform production of large quantities of VBNC cells is of interest for research in bacterial persistence and screening of drugs targeting such cells. NBCs may also enable long-term preservation of living cells for applications in cell-based sensing and the packaging and delivery of live-cell vaccines. C1 [Johnson, Patrick E.] Univ New Mexico, Dept Nanosci & Microsyst Engn, Ctr Microengineered Mat, Albuquerque, NM 87106 USA. [Muttil, Pavan; MacKenzie, Debra; Timmins, Graham S.] Univ New Mexico, Dept Pharmaceut Sci, Ctr Microengineered Mat, Albuquerque, NM 87106 USA. [Jett, Stephen D.] Univ New Mexico, Dept Cell Biol & Physiol, Ctr Microengineered Mat, Albuquerque, NM 87106 USA. [Johnson, Patrick E.; Dunphy, Darren R.; Brinker, C. Jeffrey] Univ New Mexico, Dept Chem & Biol Engn, Ctr Microengineered Mat, Albuquerque, NM 87106 USA. [Mara, Nathan A.; Mook, William M.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. [Mara, Nathan A.] Los Alamos Natl Lab, Inst Mat Sci, Los Alamos, NM 87545 USA. [Carnes, Eric C.; Pelowitz, Jennifer; Brinker, C. Jeffrey] Sandia Natl Labs, Adv Mat Lab, Albuquerque, NM 87185 USA. RP Timmins, GS (reprint author), Univ New Mexico, Dept Pharmaceut Sci, Ctr Microengineered Mat, Albuquerque, NM 87106 USA. EM gtimmins@salud.unm.edu; cjbrink@sandia.gov RI Mara, Nathan/J-4509-2014 FU University of New Mexico; Cancer Center Fluorescence Microscopy Shared Resource; U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division; Sandia National Laboratory LDRD program; NSF IGERT program; Air Force Office of Scientific Research [FA9550-14-1-0066]; U.S. Department of Energy [DE-AC52-06NA25396]; NIH/NIAID [AI081015, 081090] FX We would like to thank Y. B. Jiang for help with TEM sample preparation. Fluorescence images in this paper were generated in the University of New Mexico & Cancer Center Fluorescence Microscopy Shared Resource funded as detailed at http://hsc.unm.edu/crtc/microscopy/acknowledgements.html. C.J.B. and E.C. acknowledge support from the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division, and the Sandia National Laboratory LDRD program. P.E.J. and J.P. acknowledge support from the NSF IGERT program and the Air Force Office of Scientific Research under grant no. FA9550-14-1-0066. Nanoindentation studies were performed at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science. Los Alamos National Laboratory, an affirmative action equal opportunity employer, is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. G.S.T. acknowledges support from NIH/NIAID AI081015 and 081090. C.J.B. and E.C.C. acknowledge support from the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division for support of self-assembly of lipid-silica nanocomposites, and the Sandia National Laboratory LDRD program for support of studies of cellular function. We thank Patrick Fleig for preparing the aerosol samples shown in Supplemental Figure 2. TEM Data were generated in the UNM Electron Microscopy Shared Facility supported by the University of New Mexico Health Sciences Center and the University of New Mexico Cancer Center. NR 66 TC 6 Z9 6 U1 11 U2 52 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD JUL PY 2015 VL 9 IS 7 BP 6961 EP 6977 DI 10.1021/acsnano.5b01139 PG 17 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA CO0EP UT WOS:000358823200033 PM 26083188 ER PT J AU Zhang, JB Chernomordik, BD Crisp, RW Kroupa, DM Luther, JM Miller, EM Gao, JB Beard, MC AF Zhang, Jianbing Chernomordik, Boris D. Crisp, Ryan W. Kroupa, Daniel M. Luther, Joseph M. Miller, Elisa M. Gao, Jianbo Beard, Matthew C. TI Preparation of Cd/Pb Chalcogenide Heterostructured Janus Particles via Controllable Cation Exchange SO ACS NANO LA English DT Article DE quantum dots; heterostructures; cation-exchange reactions; synthesis; lead chalcogenide ID DOT SOLAR-CELLS; QUANTUM DOTS; CORE/SHELL NANOCRYSTALS; COLLOIDAL NANOCRYSTALS; SULFIDE NANOCRYSTALS; INFRARED-EMISSION; ION-EXCHANGE; II-VI; PBSE; NANORODS AB We developed a strategy for producing quasi-spherical nanocrystals of anisotropic heterostructures of Cd/Pb chalcogenides. The nanostructures are fabricated via a controlled cation exchange reaction where the Cd2+ cation is exchanged for the Pb2+ cation. The cation exchange reaction is thermally activated and can be controlled by adjusting the reaction temperature or time. We characterized the particles using TEM, XPS, PL, and absorption spectroscopy. With complete exchange, high quality Pb-chalcogenide quantum dots are produced. In addition to Cd2+, we also find suitable conditions for the exchange of Zn2+ cations for Pb2+ cations. The cation exchange is anisotropic starting at one edge of the nanocrystals and proceeds along the (111) direction producing a sharp interface at a (111) crystallographic plane. Instead of spherical core/shell structures, we produced and studied quasi-spherical CdS/PbS and CdSe/PbSe Janus-type heterostructures. Nontrivial PL behavior was observed from the CdS(e)/PbS(e) heterostructures as the Pb:Cd ratio is increased. C1 [Zhang, Jianbing] Huazhong Univ Sci & Technol, Sch Opt & Elect Informat, Wuhan 430074, Hubei, Peoples R China. [Zhang, Jianbing; Chernomordik, Boris D.; Crisp, Ryan W.; Kroupa, Daniel M.; Luther, Joseph M.; Miller, Elisa M.; Beard, Matthew C.] Natl Renewable Energy Lab, Chem & Mat Sci Ctr, Golden, CO 80401 USA. [Crisp, Ryan W.] Colorado Sch Mines, Dept Phys, Golden, CO 80401 USA. [Kroupa, Daniel M.] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA. [Gao, Jianbo] Los Alamos Natl Lab, Ctr Adv Solar Photophys, Los Alamos, NM 87545 USA. RP Beard, MC (reprint author), Natl Renewable Energy Lab, Chem & Mat Sci Ctr, Golden, CO 80401 USA. EM matt.beard@nrel.gov OI BEARD, MATTHEW/0000-0002-2711-1355 FU U.S. Department of Energy Office of Science, Office of Basic Energy Sciences; DOE [DE-AC36-08G028308]; National Natural Science Foundation of China [51302096]; Fundamental Research Funds of Wuhan City [2013060501010163]; NREL Director's Postdoctoral Fellowship FX This material is based upon work supported by the U.S. Department of Energy Office of Science, Office of Basic Energy Sciences. J.M.L, J.G., B.D.C. J.Z., and M.C.B acknowledge the Energy Frontier Research Centers program within the Center for Advanced Solar Photophysics, D.M.K. acknowledges support from the solar photochemistry program. DOE funding was provided to NREL through contract DE-AC36-08G028308. E.M.M. was supported an NREL Director's Postdoctoral Fellowship. J.Z. acknowledges partial support of the National Natural Science Foundation of China (No. 51302096) and the Fundamental Research Funds of Wuhan City (No. 2013060501010163). NR 52 TC 13 Z9 13 U1 23 U2 83 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD JUL PY 2015 VL 9 IS 7 BP 7151 EP 7163 DI 10.1021/acsnano.5b01859 PG 13 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA CO0EP UT WOS:000358823200052 PM 26161785 ER PT J AU Agar, JC Damodaran, AR Velarde, GA Pandya, S Mangalam, RVK Martin, LW AF Agar, Joshua C. Damodaran, Anoop R. Velarde, Gabriel A. Pandya, Shishir Mangalam, R. V. K. Martin, Lane W. TI Complex Evolution of Built-in Potential in Compositionally-Graded PbZr1-xTixO3 Thin Films SO ACS NANO LA English DT Article DE ferroelectrics; PbZr1-xTixO3; thin films; compositionally-graded heterostructures; permittivity ID MISFIT RELAXATION MECHANISMS; ZIRCONATE-TITANATE CERAMICS; FERROELECTRIC PROPERTIES; DOMAIN CONFIGURATIONS; ELECTRIC POLARIZATION; FLEXOELECTRICITY; BEHAVIOR; ENERGY; PIEZOELECTRICITY; NANOGENERATORS AB Epitaxial strain has been widely used to tune crystal and domain structures in ferroelectric thin films. New avenues of strain engineering based on varying the composition at the nanometer scale have been shown to generate symmetry breaking and large strain gradients culminating in large built-in potentials. In this work, we develop routes to deterministically control these builtin potentials by exploiting the interplay between strain gradients, strain accommodation, and domain formation in compositionally graded PbZr1-xTi3O3 heterostructures. We demonstrate that variations in the nature of the compositional gradient and heterostructure thickness can be used to control both the crystal and domain structures and give rise to nonintuitive evolution of the built-in potential, which does not scale directly with the magnitude of the strain gradient as would be expected. Instead, large built-in potentials are observed in compositionally-graded heterostructures that contain (1) compositional gradients that traverse chemistries associated with structural phase boundaries (such as the morphotropic phase boundary) and (2) ferroelastic domain structures. In turn, the built-in potential is observed to be dependent on a combination of flexoelectric effects (i.e., polarization strain gradient coupling), chemical-gradient effects (i.e., polarization chemical potential gradient coupling), and local inhomogeneities (in structure or chemistry) that enhance strain (and/or chemical potential) gradients such as areas with nonlinear lattice parameter variation with chemistry or near ferroelastic domain boundaries. Regardless of origin, large built-in potentials act to suppress the dielectric permittivity, while having minimal impact on the magnitude of the polarization, which is important for the optimization of these materials for a range of nanoapplications from vibrational energy harvesting to thermal energy conversion and beyond. C1 [Agar, Joshua C.; Damodaran, Anoop R.; Pandya, Shishir; Mangalam, R. V. K.; Martin, Lane W.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Agar, Joshua C.; Velarde, Gabriel A.; Martin, Lane W.] Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA. [Martin, Lane W.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Martin, LW (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. EM lwmartin@berkeley.edu RI Martin, Lane/H-2409-2011 OI Martin, Lane/0000-0003-1889-2513 FU National Science Foundation [DMR-1451219, ENG-1434147]; Army Research Office [W911NF-14-1-0104] FX J.C.A. and L.W.M. acknowledge support from the National Science Foundation under grant number DMR-1451219. A.R.D. and S.P. acknowledge the support of the Army Research Office under grant number W911NF-14-1-0104. R.V.K.M: acknowledges support from the National Science Foundation under grant ENG-1434147. NR 67 TC 9 Z9 9 U1 6 U2 43 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD JUL PY 2015 VL 9 IS 7 BP 7332 EP 7342 DI 10.1021/acsnano.5b02289 PG 11 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA CO0EP UT WOS:000358823200070 PM 26125636 ER PT J AU Sun, XH Jiang, KZ Zhang, N Guo, SJ Huang, XQ AF Sun, Xiuhui Jiang, Kezhu Zhang, Nan Guo, Shaojun Huang, Xiaoqing TI Crystalline Control of {111} Bounded Pt3Cu Nanocrystals: Multiply-Twinned Pt3Cu Icosahedra with Enhanced Electrocatalytic Properties SO ACS NANO LA English DT Article DE Platinum; copper; icosahedron; twin defect; electrocatalyst ID OXYGEN REDUCTION REACTION; ALLOY NANOPARTICLES; DEFECT CHEMISTRY; SOLID-STATE; METAL; PD; EVOLUTION; CATALYSIS; TRANSPORT; NANOCUBES AB Despite that different facets have distinct catalytic behavior, the important role of twin defects on enhancing the catalytic performance of metallic nanocrystals is largely unrevealed. The key challenge in demonstrating the importance of twin defects for catalysis is the extreme difficulties in creating nanostructures with the same exposed facets but tunable twin defects that are suitable for catalytic investigations. Herein, we show an efficient synthetic strategy to selectively synthesize {111}-terminated Pt3Cu nanocrystals with controllable crystalline features. Two distinct {111}-bounded shapes, namely, multiply-twinned Pt3Cu icosahedra and single-crystalline Pt3Cu octahedra, are successfully prepared by simply changing the types of Cu precursors with the other growth parameters unchanged. Electrocatalytic studies show that the {111}-terminated Pt3Cu nanocrystals exhibit the very interesting crystalline nature-dependent electrocatalytic activities toward both the oxygen reduction reaction (ORR) and methanol oxidation reaction (MOR) with multiply-twinned Pt3Cu icosahedra demonstrating enhanced electrocatalytic activities compared to the single-crystalline Pt3Cu octahedra due to their additional yet important effect of twin defect. As a result, under the multiple tuning conditions (alloy, shape, and twin effects), the multiply-twinned Pt3Cu icosahedra exhibit much enhanced electrocatalytic activities in both ORR and MOR with respect to the Pt black. The present work highlights the importance of twin defects in enhancing electrocatalytic activities of metallic nanocrystals. C1 [Sun, Xiuhui; Jiang, Kezhu; Zhang, Nan; Huang, Xiaoqing] Soochow Univ, Coll Chem Chem Engn & Mat Sci, Suzhou 215123, Jiangsu, Peoples R China. [Guo, Shaojun] Los Alamos Natl Lab, Phys Chem & Appl Spect, Los Alamos, NM 87545 USA. RP Guo, SJ (reprint author), Los Alamos Natl Lab, Phys Chem & Appl Spect, POB 1663, Los Alamos, NM 87545 USA. EM shaojun.guo.nano@gmail.com; hxq006@suda.edu.cn RI Guo, Shaojun/A-8449-2011 OI Guo, Shaojun/0000-0002-5941-414X FU Soochow University; Young Thousand Talented Program FX This work was financially supported by the start-up funding from Soochow University and Young Thousand Talented Program. NR 43 TC 28 Z9 28 U1 34 U2 164 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD JUL PY 2015 VL 9 IS 7 BP 7634 EP 7640 DI 10.1021/acsnano.5b02986 PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA CO0EP UT WOS:000358823200100 PM 26172056 ER PT J AU Bi, S He, ZR Chen, JH Li, DW AF Bi, Sheng He, Zhengran Chen, Jihua Li, Dawen TI Solution-grown small-molecule organic semiconductor with enhanced crystal alignment and areal coverage for organic thin film transistors SO AIP ADVANCES LA English DT Article ID FIELD-EFFECT TRANSISTORS; HIGH-PERFORMANCE; SINGLE-CRYSTALS; PHOTOPHYSICAL PROPERTIES; CONJUGATED POLYMERS; SOLAR-CELLS; DIKETOPYRROLOPYRROLE; PENTACENE; MOBILITY; PHOTOVOLTAICS AB Drop casting of small-molecule organic semiconductors typically forms crystals with random orientation and poor areal coverage, which leads to significant performance variations of organic thin-film transistors (OTFTs). In this study, we utilize the controlled evaporative self-assembly (CESA) method combined with binary solvent system to control the crystal growth. A small-molecule organic semiconductor, 2,5-Di-(2-ethylhexyl)-3,6-bis(5 ''-n-hexyl-2,2',5',2 '']terthiophen-5-yl)-pyrrolo[3,4-c]pyrrole-1,4-dione (SMDPPEH), is used as an example to demonstrate the effectiveness of our approach. By optimizing the double solvent ratios, well-aligned SMDPPEH crystals with significantly improved areal coverage were achieved. As a result, the SMDPPEH based OTFTs exhibit a mobility of 1.6 x 10(-2) cm(2)/Vs, which is the highest mobility from SMDPPEH ever reported. (C) 2015 Author(s). C1 [Bi, Sheng; He, Zhengran; Li, Dawen] Univ Alabama, Dept Elect & Comp Engn, Ctr Mat Informat Technol, Tuscaloosa, AL 35487 USA. [Chen, Jihua] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Li, DW (reprint author), Univ Alabama, Dept Elect & Comp Engn, Ctr Mat Informat Technol, Tuscaloosa, AL 35487 USA. EM dawenl@eng.ua.edu RI Chen, Jihua/F-1417-2011; He, Zhengran/A-9898-2017 OI Chen, Jihua/0000-0001-6879-5936; FU National Science Foundation [ECCS-1151140]; University of Alabama FX This work was supported by National Science Foundation (ECCS-1151140) and Research Stimulation Program at The University of Alabama. A portion of experimental design and analysis was conducted at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility. NR 38 TC 3 Z9 3 U1 3 U2 33 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 2158-3226 J9 AIP ADV JI AIP Adv. PD JUL PY 2015 VL 5 IS 7 AR 077170 DI 10.1063/1.4927577 PG 10 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA CO1NQ UT WOS:000358922500070 ER PT J AU Kim, JS Kim, SY Kim, DH Ott, RT Kim, HG Lee, MH AF Kim, J. S. Kim, S. Y. Kim, D. H. Ott, R. T. Kim, H. G. Lee, M. H. TI Effect of hydrothermal condition on the formation of multi-component oxides of Ni-based metallic glass under high temperature water near the critical point SO AIP ADVANCES LA English DT Article ID SUPERCRITICAL WATER; SURFACE-AREA; NANOPARTICLES; CRYSTALLIZATION; COMPOSITES AB The specific feature of multi-component oxides synthesized by hydrothermal process under high temperature (633 K) and highly pressurized water (18.9 MPa) near critical point. Effects of hydrothermal processing duration times 24 hours and 72 hours, respectively, on the oxide formation of the Ni59Zr20Ti16Si2Sn3 metallic glass synthesized by powder metallurgy process were characterized by X-ray diffractometer, differential scanning calorimeter along with the particle size, morphology and crystalline phase of the oxides. The crystallization of the needle-shape NiTiO3, ZrTiO4 and ZrSnO4 ternary oxide phases observed on the surface of metallic glass at below glass transition temperature and the morphology of oxide phases changed to plate-shape around 2 mu m in diameter by the increase processing time. This hydrothermal processing in subcritical water provides accelerated dense metal oxide crystals due to the reaction medium being at higher pressure than conventional oxidation processing. (C) 2015 Author(s). C1 [Kim, J. S.; Lee, M. H.] Iljin Global Co Ltd, Headquarters Bearing Div, Seoul 135875, South Korea. [Kim, S. Y.] Korea Inst Ind Technol, Rare Met R&D Grp, Inchon 406840, South Korea. [Kim, D. H.] Yonsei Univ, Ctr Noncrystalline Mat, Seoul 120749, South Korea. [Ott, R. T.] US DOE, Div Mat & Engn, Ames Lab, Ames, IA 50011 USA. [Kim, H. G.] Korea Atom Energy Inst, LWR Fuel Technol Div, Taejon 305600, South Korea. RP Lee, MH (reprint author), Iljin Global Co Ltd, Headquarters Bearing Div, Seoul 135875, South Korea. EM mhlee1@kitech.re.kr OI KIM, SONGYi/0000-0001-5185-2279; LEE, MIN HA/0000-0001-6006-0628 FU Industrial Technology Innovation Program - Ministry of Trade, Industry and Energy (MOTIE); Korea Institute of Technology Evaluation and Planning (KETEP) FX This work was supported by the Industrial Technology Innovation Program funded by the Ministry of Trade, Industry and Energy (MOTIE) and Korea Institute of Technology Evaluation and Planning (KETEP). NR 14 TC 1 Z9 1 U1 2 U2 15 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 2158-3226 J9 AIP ADV JI AIP Adv. PD JUL PY 2015 VL 5 IS 7 AR 077132 DI 10.1063/1.4926972 PG 7 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA CO1NQ UT WOS:000358922500032 ER PT J AU Li, Y Xu, B Hu, SY Li, YL Li, QL Liu, W AF Li, Yi Xu, Ben Hu, Shenyang Li, Yulan Li, Qiulin Liu, Wei TI Simulation of magnetic hysteresis loops and magnetic Barkhausen noise of alpha-iron containing nonmagnetic particles SO AIP ADVANCES LA English DT Article ID PRESSURE-VESSEL STEELS; MONTE-CARLO-SIMULATION; FERROMAGNETIC MATERIALS; RADIATION-DAMAGE; RPV STEELS; IRRADIATION; EMBRITTLEMENT; PARAMETERS; CLUSTERS; MODEL AB The magnetic hysteresis loops and Barkhausen noise of a single alpha-iron with nonmagnetic particles are simulated to investigate into the magnetic hardening due to Cu-rich precipitates in irradiated reactor pressure vessel (RPV) steels. Phase field method basing Landau-Lifshitz-Gilbert (LLG) equation is used for this simulation. The results show that the presence of the nonmagnetic particle could result in magnetic hardening by making the nucleation of reversed domains difficult. The coercive field is found to increase, while the intensity of Barkhausen noise voltage is decreased when the nonmagnetic particle is introduced. Simulations demonstrate the impact of nucleation field of reversed domains on the magnetization reversal behavior and the magnetic properties. (C) 2015 Author(s). C1 [Li, Yi; Xu, Ben; Li, Qiulin; Liu, Wei] Tsinghua Univ, Sch Mat Sci & Engn, Beijing 100084, Peoples R China. [Li, Yi; Li, Qiulin; Liu, Wei] Tsinghua Univ, Grad Sch Shenzhen, Shenzhen 518055, Peoples R China. [Hu, Shenyang; Li, Yulan] Pacific NW Natl Lab, Energy Mat Div, Richland, WA 99352 USA. RP Liu, W (reprint author), Tsinghua Univ, Sch Mat Sci & Engn, Beijing 100084, Peoples R China. EM liuw@mail.tsinghua.edu.cn NR 28 TC 1 Z9 1 U1 8 U2 26 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 2158-3226 J9 AIP ADV JI AIP Adv. PD JUL PY 2015 VL 5 IS 7 AR 077168 DI 10.1063/1.4927548 PG 7 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA CO1NQ UT WOS:000358922500068 ER PT J AU Smartt, SJ Valenti, S Fraser, M Inserra, C Young, DR Sullivan, M Pastorello, A Benetti, S Gal-Yam, A Knapic, C Molinaro, M Smareglia, R Smith, KW Taubenberger, S Yaron, O Anderson, JP Ashall, C Balland, C Baltay, C Barbarino, C Bauer, FE Baumont, S Bersier, D Blagorodnova, N Bongard, S Botticella, MT Bufano, F Bulla, M Cappellaro, E Campbell, H Cellier-Holzem, F Chen, TW Childress, MJ Clocchiatti, A Contreras, C Dall'Ora, M Danziger, J de Jaeger, T De Cia, A Della Valle, M Dennefeld, M Elias-Rosa, N Elman, N Feindt, U Fleury, M Gall, E Gonzalez-Gaitan, S Galbany, L Garoffolo, AM Greggio, L Guillou, LL Hachinger, S Hadjiyska, E Hage, PE Hillebrandt, W Hodgkin, S Hsiao, EY James, PA Jerkstrand, A Kangas, T Kankare, E Kotak, R Kromer, M Kuncarayakti, H Leloudas, G Lundqvist, P Lyman, JD Hook, IM Maguire, K Manulis, I Margheim, SJ Mattila, S Maund, JR Mazzali, PA McCrum, M McKinnon, R Moreno-Raya, ME Nicholl, M Nugent, P Pain, R Pignata, G Phillips, MM Polshaw, J Pumo, ML Rabinowitz, D Reilly, E Romero-Canizales, C Scalzo, R Schmidt, B Schulze, S Sim, S Sollerman, J Taddia, F Tartaglia, L Terreran, G Tomasella, L Turatto, M Walker, E Walton, NA Wyrzykowski, L Yuan, F Zampieri, L AF Smartt, S. J. Valenti, S. Fraser, M. Inserra, C. Young, D. R. Sullivan, M. Pastorello, A. Benetti, S. Gal-Yam, A. Knapic, C. Molinaro, M. Smareglia, R. Smith, K. W. Taubenberger, S. Yaron, O. Anderson, J. P. Ashall, C. Balland, C. Baltay, C. Barbarino, C. Bauer, F. E. Baumont, S. Bersier, D. Blagorodnova, N. Bongard, S. Botticella, M. T. Bufano, F. Bulla, M. Cappellaro, E. Campbell, H. Cellier-Holzem, F. Chen, T. -W. Childress, M. J. Clocchiatti, A. Contreras, C. Dall'Ora, M. Danziger, J. de Jaeger, T. De Cia, A. Della Valle, M. Dennefeld, M. Elias-Rosa, N. Elman, N. Feindt, U. Fleury, M. Gall, E. Gonzalez-Gaitan, S. Galbany, L. Morales Garoffolo, A. Greggio, L. Guillou, L. L. Hachinger, S. Hadjiyska, E. Hage, P. E. Hillebrandt, W. Hodgkin, S. Hsiao, E. Y. James, P. A. Jerkstrand, A. Kangas, T. Kankare, E. Kotak, R. Kromer, M. Kuncarayakti, H. Leloudas, G. Lundqvist, P. Lyman, J. D. Hook, I. M. Maguire, K. Manulis, I. Margheim, S. J. Mattila, S. Maund, J. R. Mazzali, P. A. McCrum, M. McKinnon, R. Moreno-Raya, M. E. Nicholl, M. Nugent, P. Pain, R. Pignata, G. Phillips, M. M. Polshaw, J. Pumo, M. L. Rabinowitz, D. Reilly, E. Romero-Canizales, C. Scalzo, R. Schmidt, B. Schulze, S. Sim, S. Sollerman, J. Taddia, F. Tartaglia, L. Terreran, G. Tomasella, L. Turatto, M. Walker, E. Walton, N. A. Wyrzykowski, L. Yuan, F. Zampieri, L. TI PESSTO: survey description and products from the first data release by the Public ESO Spectroscopic Survey of Transient Objects SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE instrumentation: spectrographs; methods: data analysis; techniques: spectroscopic; surveys; supernovae: general ID OBSERVATORY SUPERNOVA SEARCH; DIGITAL SKY SURVEY; PAN-STARRS 1; CORE-COLLAPSE; IA SUPERNOVAE; ULTRALUMINOUS SUPERNOVAE; SUPERLUMINOUS SUPERNOVAE; IC SUPERNOVAE; MASSIVE STAR; NO EVIDENCE AB Context. The Public European Southern Observatory Spectroscopic Survey of Transient Objects (PESSTO) began as a public spectroscopic survey in April 2012. PESSTO classifies transients from publicly available sources and wide-field surveys, and selects science targets for detailed spectroscopic and photometric follow-up. PESSTO runs for nine months of the year, January - April and August - December inclusive, and typically has allocations of 10 nights per month. Aims. We describe the data reduction strategy and data products that are publicly available through the ESO archive as the Spectroscopic Survey data release 1 (SSDR1). Methods. PESSTO uses the New Technology Telescope with the instruments EFOSC2 and SOFI to provide optical and NIR spectroscopy and imaging. We target supernovae and optical transients brighter than 20.5(m) for classification. Science targets are selected for follow-up based on the PESSTO science goal of extending knowledge of the extremes of the supernova population. We use standard EFOSC2 set-ups providing spectra with resolutions of 13-18 angstrom between 3345-9995 angstrom. A subset of the brighter science targets are selected for SOFI spectroscopy with the blue and red grisms (0.935-2.53 mu m and resolutions 23-33 angstrom) and imaging with broadband JHK(s) filters. Results. This first data release (SSDR1) contains flux calibrated spectra from the first year (April 2012-2013). A total of 221 confirmed supernovae were classified, and we released calibrated optical spectra and classifications publicly within 24 h of the data being taken (via WISeREP). The data in SSDR1 replace those released spectra. They have more reliable and quantifiable flux calibrations, correction for telluric absorption, and are made available in standard ESO Phase 3 formats. We estimate the absolute accuracy of the flux calibrations for EFOSC2 across the whole survey in SSDR1 to be typically similar to 15%, although a number of spectra will have less reliable absolute flux calibration because of weather and slit losses. Acquisition images for each spectrum are available which, in principle, can allow the user to refine the absolute flux calibration. The standard NIR reduction process does not produce high accuracy absolute spectrophotometry but synthetic photometry with accompanying JHK(s) imaging can improve this. Whenever possible, reduced SOFI images are provided to allow this. Conclusions. Future data releases will focus on improving the automated flux calibration of the data products. The rapid turnaround between discovery and classification and access to reliable pipeline processed data products has allowed early science papers in the first few months of the survey. C1 [Smartt, S. J.; Inserra, C.; Young, D. R.; Smith, K. W.; Bulla, M.; Chen, T. -W.; Gall, E.; Jerkstrand, A.; Kankare, E.; Kotak, R.; Maund, J. R.; McCrum, M.; Nicholl, M.; Polshaw, J.; Reilly, E.; Sim, S.; Terreran, G.] Queens Univ Belfast, Sch Math & Phys, Astrophys Res Ctr, Belfast BT7 1NN, Antrim, North Ireland. [Valenti, S.] Las Cumbres Observ Global Telescope Network, Goleta, CA 93117 USA. [Fraser, M.; Blagorodnova, N.; Campbell, H.; Hodgkin, S.; Walton, N. A.; Wyrzykowski, L.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Fraser, M.; Blagorodnova, N.; Campbell, H.; Hodgkin, S.; Walton, N. A.; Wyrzykowski, L.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Sullivan, M.] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England. [Pastorello, A.; Benetti, S.; Cappellaro, E.; Elias-Rosa, N.; Greggio, L.; Hachinger, S.; Pumo, M. L.; Tartaglia, L.; Terreran, G.; Tomasella, L.; Turatto, M.; Zampieri, L.] INAF Osservatorio Astron Padova, I-35122 Padua, Italy. [Gal-Yam, A.; Yaron, O.; De Cia, A.; Leloudas, G.; Manulis, I.] Weizmann Inst Sci, Benoziyo Ctr Astrophys, IL-76100 Rehovot, Israel. [Knapic, C.; Molinaro, M.; Smareglia, R.; Danziger, J.] INAF Osservatorio Astron Trieste, I-34143 Trieste, Italy. [Taubenberger, S.; Hillebrandt, W.] Max Planck Inst Astrophys, D-85748 Garching, Germany. [Anderson, J. P.] European So Observ, Santiago, Chile. [Balland, C.; Baumont, S.; Bongard, S.; Cellier-Holzem, F.; Fleury, M.; Guillou, L. L.; Hage, P. E.; Pain, R.] Univ Paris 07, Univ Paris 06, Lab Phys Nucl & Hautes Energies, CNRS IN2P3, F-75252 Paris 05, France. [Baltay, C.; Elman, N.; Hadjiyska, E.; McKinnon, R.; Rabinowitz, D.; Walker, E.] Yale Univ, Dept Phys, New Haven, CT 06520 USA. [Barbarino, C.; Botticella, M. T.; Dall'Ora, M.; Della Valle, M.] INAF Osservatorio Astron Capodimonte, I-80131 Naples, Italy. [Barbarino, C.] Univ Roma La Sapienza, Dip Fis, I-00185 Rome, Italy. [Barbarino, C.] Univ Roma La Sapienza, ICRA, I-00185 Rome, Italy. [Bauer, F. E.; Clocchiatti, A.; Romero-Canizales, C.; Schulze, S.] Pontificia Univ Catolica Chile, Fac Fis, Inst Astrofis, Santiago 22, Chile. [Bauer, F. E.; Clocchiatti, A.; Pignata, G.; Romero-Canizales, C.; Schulze, S.] Millennium Inst Astrophys, Santiago 7820436, Chile. [Bauer, F. E.] Space Sci Inst, Boulder, CO 80301 USA. [Ashall, C.; Bersier, D.; James, P. A.; Mazzali, P. A.] Liverpool John Moores Univ, Astrophys Res Inst, Liverpool L3 5RF, Merseyside, England. [Bufano, F.; Pignata, G.] Univ Andres Bello, Dept Ciencias Fis, Santiago, Chile. [Childress, M. J.; Scalzo, R.; Schmidt, B.; Yuan, F.] Australian Natl Univ, Res Sch Astron & Astrophys, Canberra, ACT 2611, Australia. [Dennefeld, M.] CNRS, Inst Astrophys Paris, F-75014 Paris, France. [Dennefeld, M.] Univ Paris 06, F-75014 Paris, France. [Elias-Rosa, N.; Morales Garoffolo, A.] Fac Cincies, Inst Ciencies Espai IEEC CSIC, Bellaterra 08193, Spain. [de Jaeger, T.; Gonzalez-Gaitan, S.; Galbany, L.; Kuncarayakti, H.] Univ Chile, Dept Astron, Santiago, Chile. [Mattila, S.] Univ Turku, Finnish Ctr Astron ESO FINCA, Piikkio 21500, Finland. [Leloudas, G.] Univ Copenhagen, Niels Bohr Inst, Dark Cosmol Ctr, DK-2100 Copenhagen, Denmark. [Kromer, M.; Lundqvist, P.; Sollerman, J.; Taddia, F.] Stockholm Univ, Dept Astron, S-10691 Stockholm, Sweden. [Kromer, M.; Lundqvist, P.; Sollerman, J.; Taddia, F.] Stockholm Univ, Oskar Klein Ctr, S-10691 Stockholm, Sweden. [Hook, I. M.] Univ Oxford Astrophys, Oxford OX1 3RH, England. [Hook, I. M.] INAF Astron Observ Rome, I-00040 Monte Porzio Catone, RM, Italy. [Maguire, K.] European So Observ, D-85748 Garching, Germany. [Margheim, S. J.] Southern Operat Ctr, Gemini Observ, La Serena, Chile. [Nugent, P.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Childress, M. J.; Yuan, F.] ARC Ctr Excellence All Sky Astrophys CAASTRO, Bentley, WA, Australia. [Hachinger, S.] Univ Wurzburg, Inst Theoret Phys & Astrophys, D-97074 Wurzburg, Germany. [Hachinger, S.] Univ Wurzburg, Inst Math, D-97074 Wurzburg, Germany. [Wyrzykowski, L.] Univ Warsaw Observ, PL-00478 Warsaw, Poland. [Kangas, T.] Univ Turku, Dept Phys & Astron, Tuorla Observ, Piikkio 21500, Finland. [de Jaeger, T.; Gonzalez-Gaitan, S.; Galbany, L.; Kuncarayakti, H.] Univ Chile, Millennium Inst Astrophys, Santiago, Chile. [Tartaglia, L.] Univ Padua, Dipartimento Fis & Astron, I-35122 Padua, Italy. [Feindt, U.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Nugent, P.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Moreno-Raya, M. E.] CIEMAT, Dept Invest Basica, E-28040 Madrid, Spain. [Contreras, C.; Hsiao, E. Y.; Phillips, M. M.] Las Campanas Observ, Carnegie Observ, Colina El Pino, Chile. [Contreras, C.; Hsiao, E. Y.] Aarhus Univ, Dept Phys & Astron, DK-8000 Aarhus C, Denmark. [Lyman, J. D.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. RP Smartt, SJ (reprint author), Queens Univ Belfast, Sch Math & Phys, Astrophys Res Ctr, Belfast BT7 1NN, Antrim, North Ireland. EM s.smartt@qub.ac.uk RI Jerkstrand, Anders/K-9648-2015; Galbany, Lluis/A-8963-2017; Elias-Rosa, Nancy/D-3759-2014; OI Sullivan, Mark/0000-0001-9053-4820; Dall'Ora, Massimo/0000-0001-8209-0449; James, Philip/0000-0003-4131-5183; Schulze, Steve/0000-0001-6797-1889; Cappellaro, Enrico/0000-0001-5008-8619; Turatto, Massimo/0000-0002-9719-3157; Jerkstrand, Anders/0000-0001-8005-4030; Galbany, Lluis/0000-0002-1296-6887; Elias-Rosa, Nancy/0000-0002-1381-9125; Knapic, Cristina/0000-0002-4752-6777; Greggio, Laura/0000-0003-2634-4875; Molinaro, Marco/0000-0001-5028-6041; Benetti, Stefano/0000-0002-3256-0016; Smareglia, Riccardo/0000-0001-9363-3007; lina, tomasella/0000-0002-3697-2616; Zampieri, Luca/0000-0002-6516-1329; Sollerman, Jesper/0000-0003-1546-6615; Chen, Ting-Wan/0000-0002-1066-6098; Maund, Justyn/0000-0003-0733-7215; Della Valle, Massimo/0000-0003-3142-5020; Schmidt, Brian/0000-0001-6589-1287; Inserra, Cosimo/0000-0002-3968-4409; Fraser, Morgan/0000-0003-2191-1674; Scalzo, Richard/0000-0003-3740-1214; Kotak, Rubina/0000-0001-5455-3653 FU European Organisation for Astronomical Research in the Southern Hemisphere, Chile as part of PESSTO, (the Public ESO Spectroscopic Survey for Transient Objects Survey) ESO programme [188.D-3003, 191.D-0935.]; European Research Council under the European Union [291222]; STFC [ST/I001123/1, ST/L000709/1]; Australian Research Council Centre of Excellence for All-sky Astrophysics (CAASTRO) [CE110001020]; Royal Society; EU/FP7-ERC [615929, 307260]; European Union FP7 programme through ERC [320360]; PRIN-INAF; project Transient Universe: from ESO Large; CONICYT-Chile; Basal-CATA [PFB-06/2007]; FONDECYT [1141218, 3140534]; PCCI [130074]; ALMA-CONICYT [31100004]; "EMBIGGEN" Anillo [ACT1101]; Millennium Institute of Astrophysics (MAS) of the Iniciativa Cientifica Milenio del Ministerio de Economia, Fomento y Turismo [IC120009]; Quantum Universe' I-Core programme by the Israeli Committee for planning and budgeting; ISF; Weizmann-UK; Kimmel award; European Union [267251]; Ministry of Economy, Development, and Tourisms Millennium Science Initiative [IC12009]; CONICYT through FONDECYT [3130680, 3140563, 3140566] FX This work is based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile as part of PESSTO, (the Public ESO Spectroscopic Survey for Transient Objects Survey) ESO programme 188.D-3003, 191.D-0935. Research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013)/ERC Grant agreement No. [291222] (PI : S. J. Smartt) and STFC grants ST/I001123/1 and ST/L000709/1. This research has made use of the SIMBAD database, operated at CDS, Strasbourg, France. M.J.C. acknowledges funding from the Australian Research Council Centre of Excellence for All-sky Astrophysics (CAASTRO), through project number CE110001020 MS acknowledges support from the Royal Society and EU/FP7-ERC grant No. [615929]. MF acknowledges support by the European Union FP7 programme through ERC grant number 320360. S.B., E.C., A.P., L.T. and M.T. are partially supported by the PRIN-INAF 2011 with the project Transient Universe: from ESO Large to PESSTO. We acknowledge CONICYT-Chile grants, Basal-CATA PFB-06/2007 (FEB), FONDECYT 1141218 (FEB) and 3140534 (SS), PCCI 130074 (FEB, SS), ALMA-CONICYT 31100004 (FEB, CRC), "EMBIGGEN" Anillo ACT1101 (FEB), Project IC120009 "Millennium Institute of Astrophysics (MAS) of the Iniciativa Cientifica Milenio del Ministerio de Economia, Fomento y Turismo (FEB, SS, CRC). A.G.-Y. is supported by the EU/FP7-ERC grant No. [307260], The Quantum Universe' I-Core programme by the Israeli Committee for planning and budgeting and the ISF, the Weizmann-UK making connections programme, and the Kimmel award. NER acknowledges support from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement No. 267251 "Astronomy Fellowships in Italy" (AstroFIt). Support for LG, SG and HK is provided by the Ministry of Economy, Development, and Tourisms Millennium Science Initiative through grant IC12009, awarded to The Millennium Institute of Astrophysics, MAS. L.G., S.G. and H.K. acknowledge support by CONICYT through FONDECYT grants 3130680 and 3140563, 3140566 NR 78 TC 30 Z9 30 U1 2 U2 8 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUL PY 2015 VL 579 AR A40 DI 10.1051/0004-6361/201425237 PG 25 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CO0XL UT WOS:000358877100052 ER PT J AU Alam, S Albareti, FD Prieto, CA Anders, F Anderson, SF Anderton, T Andrews, BH Armengaud, E Aubourg, E Bailey, S Basu, S Bautista, JE Beaton, RL Beers, TC Bender, CF Berlind, AA Beutler, F Bhardwaj, V Bird, JC Bizyaev, D Blake, CH Blanton, MR Blomqvist, M Bochanski, JJ Bolton, AS Bovy, J Bradley, AS Brandt, WN Brauer, DE Brinkmann, J Brown, PJ Brownstein, JR Burden, A Burtin, E Busca, NG Cai, Z Capozzi, D Rosell, AC Carr, MA Carrera, R Chambers, KC Chaplin, WJ Chen, YC Chiappini, C Chojnowski, SD Chuang, CH Clerc, N Comparat, J Covey, K Croft, RAC Cuesta, AJ Cunha, K da Costa, LN Da Rio, N Davenport, JRA Dawson, KS De Lee, N Delubac, T Deshpande, R Dhital, S Dutra-Ferreira, L Dwelly, T Ealet, A Ebelke, GL Edmondson, EM Eisenstein, DJ Ellsworth, T Elsworth, Y Epstein, CR Eracleous, M Escoffier, S Esposito, M Evans, ML Fan, XH Fernandez-Alvar, E Feuillet, D Ak, NF Finley, H Finoguenov, A Flaherty, K Fleming, SW Font-Ribera, A Foster, J Frinchaboy, PM Galbraith-Frew, JG Garcia, RA Garcia-Hernandez, DA Perez, AEG Gaulme, P Ge, J Genova-Santos, R Georgakakis, A Ghezzi, L Gillespie, BA Girardi, L Goddard, D Gontcho, SGA Hernandez, JIG Grebel, EK Green, PJ Grieb, JN Grieves, N Gunn, JE Guo, H Harding, P Hasselquist, S Hawley, SL Hayden, M Hearty, FR Hekker, S Ho, S Hogg, DW Holley-Bockelmann, K Holtzman, JA Honscheid, K Huber, D Huehnerhoff, J Ivans, II Jiang, LH Johnson, JA Kinemuchi, K Kirkby, D Kitaura, F Klaene, MA Knapp, GR Kneib, JP Koenig, XP Lam, CR Lan, TW Lang, DT Laurent, P Le Goff, JM Leauthaud, A Lee, KG Lee, YS Licquia, TC Liu, J Long, DC Lopez-Corredoira, M Lorenzo-Oliveira, D Lucatello, S Lundgren, B Lupton, RH Mack, CE Mahadevan, S Maia, MAG Majewski, SR Malanushenko, E Malanushenko, V Manchado, A Manera, M Mao, QQ Maraston, C Marchwinski, RC Margala, D Martell, SL Martig, M Masters, KL Mathur, S McBride, CK McGehee, PM McGreer, ID McMahon, RG Menard, B Menzel, ML Merloni, A Meszaros, S Miller, AA Miralda-Escude, J Miyatake, H Montero-Dorta, AD More, S Morganson, E Morice-Atkinson, X Morrison, HL Mosser, B Muna, D Myers, AD Nandra, K Newman, JA Neyrinck, M Nguyen, DC Nichol, RC Nidever, DL Noterdaeme, P Nuza, SE O'Connell, JE O'Connell, RW O'Connell, R Ogando, RLC Olmstead, MD Oravetz, AE Oravetz, DJ Osumi, K Owen, R Padgett, DL Padmanabhan, N Paegert, M Palanque-Delabrouille, N Pan, KK Parejko, JK Paris, I Park, C Pattarakijwanich, P Pellejero-Ibanez, M Pepper, J Percival, WJ Perez-Fournon, I Perez-Rafols, I Petitjean, P Pieri, MM Pinsonneault, MH de Mello, GFP Prada, F Prakash, A Price-Whelan, AM Protopapas, P Raddick, MJ Rahman, M Reid, BA Rich, J Rix, HW Robin, AC Rockosi, CM Rodrigues, TS Rodriguez-Torres, S Roe, NA Ross, AJ Ross, NP Rossi, G Ruan, JJ Rubino-Martin, JA Rykoff, ES Salazar-Albornoz, S Salvato, M Samushia, L Sanchez, AG Santiago, B Sayres, C Schiavon, RP Schlegel, DJ Schmidt, SJ Schneider, DP Schultheis, M Schwope, AD Scoccola, CG Scott, C Sellgren, K Seo, HJ Serenelli, A Shane, N Shen, Y Shetrone, M Shu, YP Aguirre, VS Sivarani, T Skrutskie, MF Slosar, A Smith, VV Sobreira, F Souto, D Stassun, KG Steinmetz, M Stello, D Strauss, MA Streblyanska, A Suzuki, N Swanson, MEC Tan, JC Tayar, J Terrien, RC Thakar, AR Thomas, D Thomas, N Thompson, BA Tinker, JL Tojeiro, R Troup, NW Vargas-Magana, M Vazquez, JA Verde, L Viel, M Vogt, NP Wake, DA Wang, J Weaver, BA Weinberg, DH Weiner, BJ White, M Wilson, JC Wisniewski, JP Wood-Vasey, WM Yeche, C York, DG Zakamska, NL Zamora, O Zasowski, G Zehavi, I Zhao, GB Zheng, Z Zhou, X Zhou, ZM Zou, H Zhu, GT AF Alam, Shadab Albareti, Franco D. Allende Prieto, Carlos Anders, F. Anderson, Scott F. Anderton, Timothy Andrews, Brett H. Armengaud, Eric Aubourg, Eric Bailey, Stephen Basu, Sarbani Bautista, Julian E. Beaton, Rachael L. Beers, Timothy C. Bender, Chad F. Berlind, Andreas A. Beutler, Florian Bhardwaj, Vaishali Bird, Jonathan C. Bizyaev, Dmitry Blake, Cullen H. Blanton, Michael R. Blomqvist, Michael Bochanski, John J. Bolton, Adam S. Bovy, Jo Bradley, A. Shelden Brandt, W. N. Brauer, D. E. Brinkmann, J. Brown, Peter J. Brownstein, Joel R. Burden, Angela Burtin, Etienne Busca, Nicolas G. Cai, Zheng Capozzi, Diego Rosell, Aurelio Carnero Carr, Michael A. Carrera, Ricardo Chambers, K. C. Chaplin, William James Chen, Yen-Chi Chiappini, Cristina Chojnowski, S. Drew Chuang, Chia-Hsun Clerc, Nicolas Comparat, Johan Covey, Kevin Croft, Rupert A. C. Cuesta, Antonio J. Cunha, Katia da Costa, Luiz N. Da Rio, Nicola Davenport, James R. A. Dawson, Kyle S. De Lee, Nathan Delubac, Timothee Deshpande, Rohit Dhital, Saurav Dutra-Ferreira, Leticia Dwelly, Tom Ealet, Anne Ebelke, Garrett L. Edmondson, Edward M. Eisenstein, Daniel J. Ellsworth, Tristan Elsworth, Yvonne Epstein, Courtney R. Eracleous, Michael Escoffier, Stephanie Esposito, Massimiliano Evans, Michael L. Fan, Xiaohui Fernandez-Alvar, Emma Feuillet, Diane Ak, Nurten Filiz Finley, Hayley Finoguenov, Alexis Flaherty, Kevin Fleming, Scott W. Font-Ribera, Andreu Foster, Jonathan Frinchaboy, Peter M. Galbraith-Frew, J. G. Garcia, Rafael A. Garcia-Hernandez, D. A. Garcia Perez, Ana E. Gaulme, Patrick Ge, Jian Genova-Santos, R. Georgakakis, A. Ghezzi, Luan Gillespie, Bruce A. Girardi, Leo Goddard, Daniel Gontcho, Satya Gontcho A. Gonzalez Hernandez, Jonay I. Grebel, Eva K. Green, Paul J. Grieb, Jan Niklas Grieves, Nolan Gunn, James E. Guo, Hong Harding, Paul Hasselquist, Sten Hawley, Suzanne L. Hayden, Michael Hearty, Fred R. Hekker, Saskia Ho, Shirley Hogg, David W. Holley-Bockelmann, Kelly Holtzman, Jon A. Honscheid, Klaus Huber, Daniel Huehnerhoff, Joseph Ivans, Inese I. Jiang, Linhua Johnson, Jennifer A. Kinemuchi, Karen Kirkby, David Kitaura, Francisco Klaene, Mark A. Knapp, Gillian R. Kneib, Jean-Paul Koenig, Xavier P. Lam, Charles R. Lan, Ting-Wen Lang, Dustin Laurent, Pierre Le Goff, Jean-Marc Leauthaud, Alexie Lee, Khee-Gan Lee, Young Sun Licquia, Timothy C. Liu, Jian Long, Daniel C. Lopez-Corredoira, Martin Lorenzo-Oliveira, Diego Lucatello, Sara Lundgren, Britt Lupton, Robert H. Mack, Claude E., III Mahadevan, Suvrath Maia, Marcio A. G. Majewski, Steven R. Malanushenko, Elena Malanushenko, Viktor Manchado, A. Manera, Marc Mao, Qingqing Maraston, Claudia Marchwinski, Robert C. Margala, Daniel Martell, Sarah L. Martig, Marie Masters, Karen L. Mathur, Savita McBride, Cameron K. McGehee, Peregrine M. McGreer, Ian D. McMahon, Richard G. Menard, Brice Menzel, Marie-Luise Merloni, Andrea Meszaros, Szabolcs Miller, Adam A. Miralda-Escude, Jordi Miyatake, Hironao Montero-Dorta, Antonio D. More, Surhud Morganson, Eric Morice-Atkinson, Xan Morrison, Heather L. Mosser, Benoit Muna, Demitri Myers, Adam D. Nandra, Kirpal Newman, Jeffrey A. Neyrinck, Mark Nguyen, Duy Cuong Nichol, Robert C. Nidever, David L. Noterdaeme, Pasquier Nuza, Sebastian E. O'Connell, Julia E. O'Connell, Robert W. O'Connell, Ross Ogando, Ricardo L. C. Olmstead, Matthew D. Oravetz, Audrey E. Oravetz, Daniel J. Osumi, Keisuke Owen, Russell Padgett, Deborah L. Padmanabhan, Nikhil Paegert, Martin Palanque-Delabrouille, Nathalie Pan, Kaike Parejko, John K. Paris, Isabelle Park, Changbom Pattarakijwanich, Petchara Pellejero-Ibanez, M. Pepper, Joshua Percival, Will J. Perez-Fournon, Ismael Perez-Rafols, Ignasi Petitjean, Patrick Pieri, Matthew M. Pinsonneault, Marc H. Porto de Mello, Gustavo F. Prada, Francisco Prakash, Abhishek Price-Whelan, Adrian M. Protopapas, Pavlos Raddick, M. Jordan Rahman, Mubdi Reid, Beth A. Rich, James Rix, Hans-Walter Robin, Annie C. Rockosi, Constance M. Rodrigues, Thaise S. Rodriguez-Torres, Sergio Roe, Natalie A. Ross, Ashley J. Ross, Nicholas P. Rossi, Graziano Ruan, John J. Rubino-Martin, J. A. Rykoff, Eli S. Salazar-Albornoz, Salvador Salvato, Mara Samushia, Lado Sanchez, Ariel G. Santiago, Basilio Sayres, Conor Schiavon, Ricardo P. Schlegel, David J. Schmidt, Sarah J. Schneider, Donald P. Schultheis, Mathias Schwope, Axel D. Scoccola, C. G. Scott, Caroline Sellgren, Kris Seo, Hee-Jong Serenelli, Aldo Shane, Neville Shen, Yue Shetrone, Matthew Shu, Yiping Aguirre, V. Silva Sivarani, Thirupathi Skrutskie, M. F. Slosar, Anze Smith, Verne V. Sobreira, Flavia Souto, Diogo Stassun, Keivan G. Steinmetz, Matthias Stello, Dennis Strauss, Michael A. Streblyanska, Alina Suzuki, Nao Swanson, Molly E. C. Tan, Jonathan C. Tayar, Jamie Terrien, Ryan C. Thakar, Aniruddha R. Thomas, Daniel Thomas, Neil Thompson, Benjamin A. Tinker, Jeremy L. Tojeiro, Rita Troup, Nicholas W. Vargas-Magana, Mariana Vazquez, Jose A. Verde, Licia Viel, Matteo Vogt, Nicole P. Wake, David A. Wang, Ji Weaver, Benjamin A. Weinberg, David H. Weiner, Benjamin J. White, Martin Wilson, John C. Wisniewski, John P. Wood-Vasey, W. M. Yeche, Christophe York, Donald G. Zakamska, Nadia L. Zamora, O. Zasowski, Gail Zehavi, Idit Zhao, Gong-Bo Zheng, Zheng Zhou, Xu Zhou, Zhimin Zou, Hu Zhu, Guangtun TI THE ELEVENTH AND TWELFTH DATA RELEASES OF THE SLOAN DIGITAL SKY SURVEY: FINAL DATA FROM SDSS-III SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article DE atlases; catalogs; surveys ID OSCILLATION SPECTROSCOPIC SURVEY; GALACTIC EVOLUTION EXPERIMENT; BARYON ACOUSTIC-OSCILLATIONS; LOW-MASS STELLAR; 1ST DATA RELEASE; SOLAR-LIKE STARS; FIXED-DELAY INTERFEROMETRY; CATALOG ARCHIVE SERVER; BROWN DWARF CANDIDATE; MAIN-SEQUENCE STARS AB The third generation of the Sloan Digital Sky Survey (SDSS-III) took data from 2008 to 2014 using the original SDSS wide-field imager, the original and an upgraded multi-object fiber-fed optical spectrograph, a new near-infrared high-resolution spectrograph, and a novel optical interferometer. All of the data from SDSS-III are now made public. In particular, this paper describes Data Release 11 (DR11) including all data acquired through 2013 July, and Data Release 12 (DR12) adding data acquired through 2014 July (including all data included in previous data releases), marking the end of SDSS-III observing. Relative to our previous public release (DR10), DR12 adds one million new spectra of galaxies and quasars from the Baryon Oscillation Spectroscopic Survey (BOSS) over an additional 3000 deg(2) of sky, more than triples the number of H-band spectra of stars as part of the Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE), and includes repeated accurate radial velocity measurements of 5500 stars from the Multi-object APO Radial Velocity Exoplanet Large-area Survey (MARVELS). The APOGEE outputs now include the measured abundances of 15 different elements for each star. In total, SDSS-III added 5200 deg(2) of ugriz imaging; 155,520 spectra of 138,099 stars as part of the Sloan Exploration of Galactic Understanding and Evolution 2 (SEGUE-2) survey; 2,497,484 BOSS spectra of 1,372,737 galaxies, 294,512 quasars, and 247,216 stars over 9376 deg(2); 618,080 APOGEE spectra of 156,593 stars; and 197,040 MARVELS spectra of 5513 stars. Since its first light in 1998, SDSS has imaged over 1/3 of the Celestial sphere in five bands and obtained over five million astronomical spectra. C1 [Alam, Shadab; Croft, Rupert A. C.; Ho, Shirley; Lang, Dustin; O'Connell, Ross; Osumi, Keisuke; Vargas-Magana, Mariana] Carnegie Mellon Univ, Dept Phys, McWilliams Ctr Cosmol, Pittsburgh, PA 15213 USA. [Albareti, Franco D.; Chuang, Chia-Hsun; Comparat, Johan; Prada, Francisco; Rodriguez-Torres, Sergio] Univ Autonoma Madrid, Inst Fis Teor, UAM CSIC, E-28049 Madrid, Spain. [Allende Prieto, Carlos; Carrera, Ricardo; Esposito, Massimiliano; Fernandez-Alvar, Emma; Garcia-Hernandez, D. A.; Garcia Perez, Ana E.; Genova-Santos, R.; Gonzalez Hernandez, Jonay I.; Lopez-Corredoira, Martin; Manchado, A.; Pellejero-Ibanez, M.; Perez-Fournon, Ismael; Rubino-Martin, J. A.; Scoccola, C. G.; Streblyanska, Alina; Zamora, O.] IAC, E-38200 Tenerife, Spain. [Allende Prieto, Carlos; Carrera, Ricardo; Esposito, Massimiliano; Fernandez-Alvar, Emma; Garcia-Hernandez, D. A.; Garcia Perez, Ana E.; Genova-Santos, R.; Gonzalez Hernandez, Jonay I.; Lopez-Corredoira, Martin; Manchado, A.; Pellejero-Ibanez, M.; Perez-Fournon, Ismael; Rubino-Martin, J. A.; Scoccola, C. G.; Streblyanska, Alina; Zamora, O.] Univ La Laguna, Dept Astrofis, E-38206 Tenerife, Spain. [Anders, F.; Brauer, D. E.; Chiappini, Cristina; Kitaura, Francisco; Mack, Claude E., III; Nuza, Sebastian E.; Schwope, Axel D.; Steinmetz, Matthias] Leibniz Inst Astrophys Potsdam AIP, D-14482 Potsdam, Germany. [Anderson, Scott F.; Bhardwaj, Vaishali; Bochanski, John J.; Davenport, James R. A.; Eracleous, Michael; Evans, Michael L.; Hawley, Suzanne L.; Owen, Russell; Ruan, John J.; Sayres, Conor] Univ Washington, Dept Astron, Seattle, WA 98195 USA. [Anderton, Timothy; Bolton, Adam S.; Brownstein, Joel R.; Dawson, Kyle S.; Ellsworth, Tristan; Galbraith-Frew, J. G.; Guo, Hong; Ivans, Inese I.; Montero-Dorta, Antonio D.; Olmstead, Matthew D.; Shu, Yiping; Zheng, Zheng] Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA. [Andrews, Brett H.; Epstein, Courtney R.; Johnson, Jennifer A.; Muna, Demitri; Pinsonneault, Marc H.; Schmidt, Sarah J.; Sellgren, Kris; Tayar, Jamie; Weinberg, David H.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Andrews, Brett H.; Licquia, Timothy C.; Newman, Jeffrey A.; Prakash, Abhishek; Wood-Vasey, W. M.] Univ Pittsburgh, Dept Phys & Astron, PITT PACC, Pittsburgh, PA 15260 USA. [Armengaud, Eric; Burtin, Etienne; Laurent, Pierre; Le Goff, Jean-Marc; Palanque-Delabrouille, Nathalie; Rich, James; Rossi, Graziano; Yeche, Christophe] CEA, Ctr Saclay, Irfu SPP, F-91191 Gif Sur Yvette, France. [Aubourg, Eric; Bautista, Julian E.; Busca, Nicolas G.] Univ Paris Diderot, Sorbonne Paris Cite, Observ Paris, APC,CNRS IN2P3,CEA IRFU, F-75205 Paris, France. [Bailey, Stephen; Beutler, Florian; Bhardwaj, Vaishali; Font-Ribera, Andreu; Reid, Beth A.; Roe, Natalie A.; Schlegel, David J.; White, Martin] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Basu, Sarbani; Koenig, Xavier P.; Wang, Ji] Yale Univ, Dept Astron, New Haven, CT 06520 USA. [Beaton, Rachael L.; Ebelke, Garrett L.; Garcia Perez, Ana E.; Lam, Charles R.; Majewski, Steven R.; O'Connell, Robert W.; Shane, Neville; Skrutskie, M. F.; Troup, Nicholas W.; Wilson, John C.] Univ Virginia, Dept Astron, Charlottesville, VA 22904 USA. [Beaton, Rachael L.; Shen, Yue] Observ Carnegie Inst Washington, Pasadena, CA 91101 USA. [Beers, Timothy C.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. [Beers, Timothy C.] Univ Notre Dame, JINA Ctr Evolut Elements, Notre Dame, IN 46556 USA. [Bender, Chad F.; Brandt, W. N.; Deshpande, Rohit; Eracleous, Michael; Ak, Nurten Filiz; Hearty, Fred R.; Mahadevan, Suvrath; Marchwinski, Robert C.; Schneider, Donald P.; Terrien, Ryan C.] Penn State Univ, Dept Astron & Astrophys, Davey Lab 525, University Pk, PA 16802 USA. [Bender, Chad F.; Deshpande, Rohit; Mahadevan, Suvrath; Marchwinski, Robert C.; Terrien, Ryan C.] Penn State Univ, Ctr Exoplanets & Habitable Worlds, Davey Lab 525, University Pk, PA 16802 USA. [Berlind, Andreas A.; Bird, Jonathan C.; Holley-Bockelmann, Kelly; Mack, Claude E., III; Mao, Qingqing; Paegert, Martin; Pepper, Joshua; Stassun, Keivan G.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. [Bizyaev, Dmitry; Bradley, A. Shelden; Brinkmann, J.; Gaulme, Patrick; Huehnerhoff, Joseph; Kinemuchi, Karen; Klaene, Mark A.; Long, Daniel C.; Malanushenko, Elena; Malanushenko, Viktor; Oravetz, Audrey E.; Oravetz, Daniel J.; Pan, Kaike] Apache Point Observ, Sunspot, NM 88349 USA. [Bizyaev, Dmitry; Chojnowski, S. Drew; Feuillet, Diane; Hasselquist, Sten; Hayden, Michael; Holtzman, Jon A.; Kinemuchi, Karen; Long, Daniel C.; Malanushenko, Elena; Malanushenko, Viktor; Oravetz, Audrey E.; Vogt, Nicole P.] New Mexico State Univ, Dept Astron, Las Cruces, NM 88003 USA. [Bizyaev, Dmitry] Moscow MV Lomonosov State Univ, Sternberg Astron Inst, Moscow 119992, Russia. [Blake, Cullen H.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Blanton, Michael R.; Hogg, David W.; Tinker, Jeremy L.; Weaver, Benjamin A.] NYU, Dept Phys, Ctr Cosmol & Particle Phys, New York, NY 10003 USA. [Blomqvist, Michael; Kirkby, David; Margala, Daniel] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Bochanski, John J.] Rider Univ, Lawrenceville, NJ 08648 USA. [Bovy, Jo] Inst Adv Study, Princeton, NJ 08540 USA. [Brandt, W. N.; Eracleous, Michael; Ak, Nurten Filiz; Schneider, Donald P.] Penn State Univ, Inst Gravitat & Cosmos, University Pk, PA 16802 USA. [Brandt, W. N.] Penn State Univ, Dept Phys, University Pk, PA 16802 USA. [Brown, Peter J.] Texas A&M Univ, George P & Cynthia Woods Mitchell Inst Fundamenta, Dept Phys & Astron, College Stn, TX 77843 USA. [Burden, Angela; Capozzi, Diego; Edmondson, Edward M.; Goddard, Daniel; Manera, Marc; Maraston, Claudia; Masters, Karen L.; Morice-Atkinson, Xan; Nichol, Robert C.; Percival, Will J.; Pieri, Matthew M.; Ross, Ashley J.; Thomas, Daniel; Zhao, Gong-Bo] Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 3FX, Hants, England. [Busca, Nicolas G.; Rosell, Aurelio Carnero; Cunha, Katia; da Costa, Luiz N.; Ghezzi, Luan; Maia, Marcio A. G.; Ogando, Ricardo L. C.; Souto, Diogo] Observ Nacl, BR-20921400 Rio De Janeiro, RJ, Brazil. [Busca, Nicolas G.; Rosell, Aurelio Carnero; Chiappini, Cristina; da Costa, Luiz N.; Dutra-Ferreira, Leticia; Girardi, Leo; Lorenzo-Oliveira, Diego; Maia, Marcio A. G.; Ogando, Ricardo L. C.; Porto de Mello, Gustavo F.; Rodrigues, Thaise S.; Santiago, Basilio; Sobreira, Flavia] Lab Interinstituc & Astron LIneA, BR-20921400 Rio De Janeiro, RJ, Brazil. [Cai, Zheng; Cunha, Katia; Fan, Xiaohui; McGreer, Ian D.; Weiner, Benjamin J.] Steward Observ, Tucson, AZ 85721 USA. [Carr, Michael A.; Gunn, James E.; Knapp, Gillian R.; Lupton, Robert H.; Miyatake, Hironao; Pattarakijwanich, Petchara; Strauss, Michael A.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Chambers, K. C.] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA. [Chaplin, William James; Elsworth, Yvonne] Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England. [Chaplin, William James; Elsworth, Yvonne; Hekker, Saskia; Huber, Daniel; Aguirre, V. Silva; Stello, Dennis] Aarhus Univ, Dept Phys & Astron, SAC, DK-8000 Aarhus C, Denmark. [Chen, Yen-Chi] Carnegie Mellon Univ, Dept Stat, Bruce & Astrid McWilliams Ctr Cosmol, Pittsburgh, PA 15213 USA. [Clerc, Nicolas; Dwelly, Tom; Georgakakis, A.; Grieb, Jan Niklas; Menzel, Marie-Luise; Merloni, Andrea; Nandra, Kirpal; Salazar-Albornoz, Salvador; Salvato, Mara; Sanchez, Ariel G.] Max Planck Inst Extraterr Phys, D-85741 Garching, Germany. [Covey, Kevin] Lowell Observ, Flagstaff, AZ 86001 USA. [Covey, Kevin] Western Washington Univ, Dept Phys & Astron, Bellingham, WA 98225 USA. [Cuesta, Antonio J.; Gontcho, Satya Gontcho A.; Miralda-Escude, Jordi; Perez-Rafols, Ignasi; Verde, Licia] Univ Barcelona, Inst Ciencies Cosmos, IEEC, E-08028 Barcelona, Spain. [Cuesta, Antonio J.; Foster, Jonathan; Padmanabhan, Nikhil] Yale Univ, Yale Ctr Astron & Astrophys, New Haven, CT 06520 USA. [Da Rio, Nicola; Ge, Jian; Grieves, Nolan; Liu, Jian; Tan, Jonathan C.; Thomas, Neil] Univ Florida, Dept Astron, Bryant Space Sci Ctr, Gainesville, FL 32611 USA. [De Lee, Nathan] No Kentucky Univ, Dept Phys & Geol, Highland Hts, KY 41099 USA. [Delubac, Timothee; Kneib, Jean-Paul] EPFL, Lab Astrophys, Observ Sauverny, CH-1290 Versoix, Switzerland. [Dhital, Saurav] Embry Riddle Aeronaut Univ, Dept Phys Sci, Daytona Beach, FL 32114 USA. [Dutra-Ferreira, Leticia; Lorenzo-Oliveira, Diego; Porto de Mello, Gustavo F.] Univ Fed Rio de Janeiro, Observ Valongo, BR-20080090 Rio De Janeiro, Brazil. [Dutra-Ferreira, Leticia] Univ Fed Rio Grande do Norte, Dept Fis, BR-59072970 Natal, RN, Brazil. [Ealet, Anne; Escoffier, Stephanie] Aix Marseille Univ, Ctr Phys Particules Marseille, CNRS IN2P3, F-13288 Marseille, France. [Eisenstein, Daniel J.; Ghezzi, Luan; Green, Paul J.; McBride, Cameron K.; Morganson, Eric; Scott, Caroline; Swanson, Molly E. C.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Eracleous, Michael] Georgia Inst Technol, Ctr Relativist Astrophys, Atlanta, GA 30332 USA. [Ak, Nurten Filiz] Erciyes Univ, Dept Astron & Space Sci, Fac Sci, TR-38039 Kayseri, Turkey. [Finley, Hayley; Noterdaeme, Pasquier; Petitjean, Patrick] UPMC, Inst Astrophys Paris, CNRS, UMR7095, F-75014 Paris, France. [Finoguenov, Alexis] Univ Helsinki, Dept Phys, FI-00140 Helsinki, Finland. [Flaherty, Kevin] Wesleyan Univ, Van Vleck Observ, Dept Astron, Middletown, CT 06459 USA. [Fleming, Scott W.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Fleming, Scott W.] Comp Sci Corp, Baltimore, MD 21218 USA. [Frinchaboy, Peter M.; O'Connell, Julia E.; Thompson, Benjamin A.] Texas Christian Univ, Dept Phys & Astron, Ft Worth, TX 76129 USA. [Garcia, Rafael A.] Univ Paris Diderot, Lab AIM, Ctr Saclay, CEA DSM,CNRS,IRFU SAp, F-91191 Gif Sur Yvette, France. [Gillespie, Bruce A.; Lan, Ting-Wen; Menard, Brice; Neyrinck, Mark; Raddick, M. Jordan; Rahman, Mubdi; Thakar, Aniruddha R.; Zakamska, Nadia L.; Zasowski, Gail; Zhu, Guangtun] Johns Hopkins Univ, Ctr Astrophys Sci, Dept Phys & Astron, Baltimore, MD 21218 USA. [Girardi, Leo; Lucatello, Sara; Rodrigues, Thaise S.] INAF, Osservatorio Astron Padova, I-35122 Padua, Italy. [Grebel, Eva K.] Heidelberg Univ, Zentrum Astron, Astron Rech Inst, D-69120 Heidelberg, Germany. [Harding, Paul; Morrison, Heather L.; Zehavi, Idit] Case Western Reserve Univ, Dept Astron, Cleveland, OH 44106 USA. [Hekker, Saskia] Max Planck Inst Sonnensystemforsch, D-37077 Gottingen, Germany. [Honscheid, Klaus] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Honscheid, Klaus; Johnson, Jennifer A.; Ross, Ashley J.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Huber, Daniel; Stello, Dennis] Univ Sydney, Sch Phys, Sydney Inst Astron SIfA, Sydney, NSW 2006, Australia. [Huber, Daniel] SETI Inst, Mountain View, CA 94043 USA. [Jiang, Linhua; Shen, Yue] Peking Univ, Kavli Inst Astron & Astrophys, Beijing 100871, Peoples R China. [Kneib, Jean-Paul] Univ Provence, CNRS, Lab Astrophys Marseille, F-13388 Marseille 13, France. [Leauthaud, Alexie; Menard, Brice; Miyatake, Hironao; More, Surhud; Suzuki, Nao] Univ Tokyo, Todai Inst Adv Study, Kavli Inst Phys Math Univ Kavli IPMU, WPI, Kashiwa, Chiba 2778583, Japan. [Lee, Khee-Gan; Martig, Marie; Rix, Hans-Walter] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Lee, Young Sun] Chungnam Natl Univ, Dept Astron & Space Sci, Taejon 305764, South Korea. [Lundgren, Britt; Wake, David A.] Univ Wisconsin, Dept Astron, Madison, WI 53703 USA. [Manera, Marc] UCL, London WC1E 6BT, England. [Martell, Sarah L.] Univ New S Wales, Sch Phys, Sydney, NSW 2052, Australia. [Mathur, Savita] Space Sci Inst, Boulder, CO 80301 USA. [McGehee, Peregrine M.] CALTECH, IPAC, Pasadena, CA 91125 USA. [McMahon, Richard G.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [McMahon, Richard G.] Univ Cambridge, Kavli Inst Cosmol, Cambridge CB3 0HA, England. [Meszaros, Szabolcs] ELTE Gothard Astrophys Observ, H-9704 Szombathely, Hungary. [Miller, Adam A.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Miller, Adam A.] CALTECH, Dept Astron, Pasadena, CA 91125 USA. [Miralda-Escude, Jordi; Verde, Licia] Inst Catalana Recerca & Estudis Avancats, E-08010 Barcelona, Spain. [Mosser, Benoit] Univ Paris 07, Univ Paris 06, Observ Paris, LESIA,UMR 8109, F-92195 Meudon, France. [Myers, Adam D.] Univ Wyoming, Dept Phys & Astron, Laramie, WY 82071 USA. [Nguyen, Duy Cuong] Univ Toronto, Dunlap Inst Astron & Astrophys, Toronto, ON M5S 3H4, Canada. [Nidever, David L.] Univ Michigan, Dept Astron, Ann Arbor, MI 48104 USA. [Olmstead, Matthew D.] Kings Coll, Dept Chem & Phys, Wilkes Barre, PA 18711 USA. [Padgett, Deborah L.] NASA GSFC, Greenbelt, MD USA. [Parejko, John K.] Yale Univ, Dept Phys, New Haven, CT USA. [Paris, Isabelle; Viel, Matteo] INAF, Osservatorio Astron Trieste, I-34131 Trieste, Italy. [Park, Changbom] Korea Inst Adv Study, Sch Phys, Seoul 130722, South Korea. [Pepper, Joshua] Lehigh Univ, Dept Phys, Bethlehem, PA 18015 USA. [Perez-Rafols, Ignasi] Univ Barcelona, Fac Fis, Dept Astron & Meteorol, E-08028 Barcelona, Spain. [Pieri, Matthew M.] Aix Marseille Univ, A MIDEX, CNRS, LAM UMR 7326, F-13388 Marseille 13, France. [Prada, Francisco; Rodriguez-Torres, Sergio] Campus Int Excellence UAM CSIC, E-28049 Madrid, Spain. [Prada, Francisco] CSIC, Inst Astrofis Andalucia, E-18080 Granada, Spain. [Price-Whelan, Adrian M.] Columbia Univ, Dept Astron, New York, NY 10027 USA. [Protopapas, Pavlos] Harvard Univ, SEAS, Inst Appl Computat Sci, Cambridge, MA 02138 USA. [Reid, Beth A.; White, Martin] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Robin, Annie C.] Univ Franche Comte, Inst Utinam, UMR CNRS 6213, OSU Theta, F-25010 Besancon, France. [Rockosi, Constance M.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Rodrigues, Thaise S.] Univ Padua, Dipartimento Fis & Astron, I-35122 Padua, Italy. [Ross, Nicholas P.] Drexel Univ, Dept Phys, Philadelphia, PA 19104 USA. [Rossi, Graziano] Sejong Univ, Dept Astron & Space Sci, Seoul 143747, South Korea. [Rykoff, Eli S.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Salazar-Albornoz, Salvador] Univ Sternwarte, D-81679 Munich, Germany. [Salvato, Mara] Cluster Excellence, D-85748 Garching, Germany. [Samushia, Lado] Kansas State Univ, Dept Phys, Manhattan, KS 66506 USA. [Samushia, Lado] Ilia State Univ, Natl Abastumani Astrophys Observ, GE-1060 Tbilisi, Rep of Georgia. [Santiago, Basilio] Univ Fed Rio Grande do Sul, Inst Fis, BR-91501970 Porto Alegre, RS, Brazil. [Schiavon, Ricardo P.] Gemini Observ, Hilo, HI 96720 USA. [Schiavon, Ricardo P.] Liverpool John Moores Univ, Astrophys Res Inst, Liverpool L3 5RF, Merseyside, England. [Schultheis, Mathias] Univ Nice Sophia Antipolis, CNRS, Observ Cote dAzur, Lab Lagrange, F-06304 Nice 4, France. [Seo, Hee-Jong] Ohio Univ, Dept Phys & Astron, Athens, OH 45701 USA. [Serenelli, Aldo] CSIC IEEC, Inst Ciencias Espacio, Fac Ciencias, E-08193 Bellaterra, Spain. [Shetrone, Matthew] Univ Texas Austin, Hobby Eberly Telescope, McDonald Observatory, TX 79734 USA. [Sivarani, Thirupathi] Indian Inst Astrophys, Bangalore 560034, Karnataka, India. [Slosar, Anze; Vazquez, Jose A.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Smith, Verne V.] Natl Opt Astron Observ, Tucson, AZ USA. [Sobreira, Flavia] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Stassun, Keivan G.] Fisk Univ, Dept Phys, Nashville, TN 37208 USA. [Terrien, Ryan C.] Penn State Univ, Penn State Astrobiol Res Ctr, University Pk, PA 16802 USA. [Thomas, Daniel] South East Phys Network, SEPnet, Southampton, Hants, England. [Tojeiro, Rita] Univ St Andrews, Sch Phys & Astron, St Andrews KY16 9SS, Fife, Scotland. [Verde, Licia] Univ Oslo, Inst Theoret Astrophys, NO-0315 Oslo, Norway. [Viel, Matteo] Ist Nazl Fis Nucl, I-34127 Trieste, Italy. [Wake, David A.] Open Univ, Dept Phys Sci, Milton Keynes MK7 6AA, Bucks, England. [Wisniewski, John P.] Univ Oklahoma, HL Dodge Dept Phys & Astron, Norman, OK 73019 USA. [York, Donald G.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [York, Donald G.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Zhao, Gong-Bo] Chinese Acad Sci, Natl Astron Observ, Beijing 100012, Peoples R China. [Zhou, Xu; Zhou, Zhimin; Zou, Hu] Chinese Acad Sci, Key Lab Opt Astron, Natl Astron Observ, Beijing 100012, Peoples R China. RP Wood-Vasey, WM (reprint author), Univ Pittsburgh, Dept Phys & Astron, PITT PACC, 3941 OHara St, Pittsburgh, PA 15260 USA. RI Ogando, Ricardo/A-1747-2010; White, Martin/I-3880-2015; Brandt, William/N-2844-2015; Meszaros, Szabolcs/N-2287-2014; Georgakakis, Antonis/K-4457-2013; Mao, Qingqing/E-2043-2016; Sobreira, Flavia/F-4168-2015; Jiang, Linhua/H-5485-2016; Croft, Rupert/N-8707-2014; EPFL, Physics/O-6514-2016; Carrera, Ricardo/K-8760-2014; OI Covey, Kevin/0000-0001-6914-7797; Davenport, James/0000-0002-0637-835X; Georgakakis, Antonis/0000-0002-3514-2442; Garcia, Rafael/0000-0002-8854-3776; Serenelli, Aldo/0000-0001-6359-2769; Chambers, Kenneth /0000-0001-6965-7789; Pepper, Joshua/0000-0002-3827-8417; Beaton, Rachael/0000-0002-1691-8217; Kirkby, David/0000-0002-8828-5463; Viel, Matteo/0000-0002-2642-5707; Schmidt, Sarah/0000-0002-7224-7702; Zhu, Guangtun/0000-0002-7574-8078; Beutler, Florian/0000-0003-0467-5438; Shane, Neville/0000-0003-1024-7739; Finley, Hayley/0000-0002-1216-8914; Cuesta Vazquez, Antonio Jose/0000-0002-4153-9470; Fleming, Scott/0000-0003-0556-027X; /0000-0002-1891-3794; Verde, Licia/0000-0003-2601-8770; Martig, Marie/0000-0001-5454-1492; McMahon, Richard/0000-0001-8447-8869; Hogg, David/0000-0003-2866-9403; Ogando, Ricardo/0000-0003-2120-1154; White, Martin/0000-0001-9912-5070; Brandt, William/0000-0002-0167-2453; Meszaros, Szabolcs/0000-0001-8237-5209; Escoffier, Stephanie/0000-0002-2847-7498; Mao, Qingqing/0000-0001-6001-6723; Sobreira, Flavia/0000-0002-7822-0658; Jiang, Linhua/0000-0003-4176-6486; Croft, Rupert/0000-0003-0697-2583; Carrera, Ricardo/0000-0001-6143-8151; Rahman, Mubdi/0000-0003-1842-6096 NR 157 TC 340 Z9 341 U1 15 U2 53 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 EI 1538-4365 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD JUL PY 2015 VL 219 IS 1 AR 12 DI 10.1088/0067-0049/219/1/12 PG 27 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CO0RE UT WOS:000358858900012 ER PT J AU Walker, ES Baltay, C Campillay, A Citrenbaum, C Contreras, C Ellman, N Feindt, U Gonzalez, C Graham, ML Hadjiyska, E Hsiao, EY Krisciunas, K McKinnon, R Ment, K Morrell, N Nugent, P Phillips, MM Rabinowitz, D Rostami, S Seron, J Stritzinger, M Sullivan, M Tucker, BE AF Walker, E. S. Baltay, C. Campillay, A. Citrenbaum, C. Contreras, C. Ellman, N. Feindt, U. Gonzalez, C. Graham, M. L. Hadjiyska, E. Hsiao, E. Y. Krisciunas, K. McKinnon, R. Ment, K. Morrell, N. Nugent, P. Phillips, M. M. Rabinowitz, D. Rostami, S. Seron, J. Stritzinger, M. Sullivan, M. Tucker, B. E. TI FIRST RESULTS FROM THE La Silla-QUEST SUPERNOVA SURVEY AND THE CARNEGIE SUPERNOVA PROJECT SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article DE dark energy; supernovae: general; surveys ID HUBBLE-SPACE-TELESCOPE; BARYON ACOUSTIC-OSCILLATIONS; DARK-ENERGY CONSTRAINTS; PHOTOMETRY DATA RELEASE; IA SUPERNOVAE; SKY SURVEY; DUST EXTINCTION; LEGACY SURVEY; LIGHT CURVES; REDSHIFT AB The La Silla/QUEST Variability Survey (LSQ) and the Carnegie Supernova Project (CSP II) are collaborating to discover and obtain photometric light curves for a large sample of low-redshift (z < 0.1) Type Ia supernovae (SNe Ia). The supernovae are discovered in the LSQ survey using the 1 m ESO Schmidt telescope at the La Silla Observatory with the 10 square degree QUEST camera. The follow-up photometric observations are carried out using the 1 m Swope telescope and the 2.5 m du Pont telescopes at the Las Campanas Observatory. This paper describes the survey, discusses the methods of analyzing the data, and presents the light curves for the first 31 SNe Ia obtained in the survey. The SALT 2.4 supernova light-curve fitter was used to analyze the photometric data, and the Hubble diagram for this first sample is presented. The measurement errors for these supernovae averaged 4%, and their intrinsic spread was 14%. C1 [Walker, E. S.; Baltay, C.; Citrenbaum, C.; Ellman, N.; Hadjiyska, E.; Ment, K.; Morrell, N.; Rostami, S.; Seron, J.] Yale Univ, Dept Phys, New Haven, CT 06511 USA. [Campillay, A.; Contreras, C.; Gonzalez, C.; Morrell, N.; Phillips, M. M.; Seron, J.] Carnegie Inst Sci, Las Campanas Observ, La Serena, Chile. [Feindt, U.] Univ Bonn, Inst Phys, HU Berlin & Phys Inst, D-53113 Bonn, Germany. [Contreras, C.; Hsiao, E. Y.; Stritzinger, M.] Aarhus Univ, Dept Phys & Astron, DK-8000 Aarhus C, Denmark. [Krisciunas, K.] Texas A&M Univ, Dept Phys, College Stn, TX 77843 USA. [Nugent, P.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Dept Phys, Berkeley, CA 94720 USA. [Graham, M. L.; Nugent, P.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Sullivan, M.] Univ Southampton, Dept Astron, Southampton SO1 BJ, Hants, England. [Tucker, B. E.] Australian Natl Univ, Sch Astron & Astrophys, Acton, ACT 2601, Australia. RP Walker, ES (reprint author), Yale Univ, Dept Phys, 217 Prospect St, New Haven, CT 06511 USA. OI Sullivan, Mark/0000-0001-9053-4820; stritzinger, maximilian/0000-0002-5571-1833 FU Office of Science of the US Department of Energy [DE-FG02-92ER40704]; Provosts Office at Yale; NSF [AST-0306969, AST-0908886, AST-0607438, AST-1008343]; Danish Agency for Science and Technology and Innovation through a Sapere Aude Level 2 grant FX We thank the staff at Yale University, the Carnegie Observatory, and the La Silla and Las Campanas observatories whose efforts made this supernova survey possible. The Yale group thanks the Office of Science of the US Department of Energy, grant No. DE-FG02-92ER40704 and the Provosts Office at Yale for their support. The C.S.P. acknowledges NSF funding under grants AST-0306969, AST-0908886, AST-0607438, and AST-1008343, and support provided by the Danish Agency for Science and Technology and Innovation through a Sapere Aude Level 2 grant. NR 52 TC 3 Z9 3 U1 1 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 EI 1538-4365 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD JUL PY 2015 VL 219 IS 1 AR 13 DI 10.1088/0067-0049/219/1/13 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CO0RE UT WOS:000358858900013 ER PT J AU Smith, NMG Mlcochova, P Watters, SA Aasa-Chapman, MMI Rabin, N Moore, S Edwards, SG Garson, JA Grant, PR Ferns, RB Kashuba, A Mayor, NP Schellekens, J Marsh, SGE McMichael, AJ Perelson, AS Pillay, D Goonetilleke, N Gupta, RK AF Smith, Nicola M. G. Mlcochova, Petra Watters, Sarah A. Aasa-Chapman, Marlene M. I. Rabin, Neil Moore, Sally Edwards, Simon G. Garson, Jeremy A. Grant, Paul R. Ferns, R. Bridget Kashuba, Angela Mayor, Neema P. Schellekens, Jennifer Marsh, Steven G. E. McMichael, Andrew J. Perelson, Alan S. Pillay, Deenan Goonetilleke, Nilu Gupta, Ravindra K. TI Proof-of-Principle for Immune Control of Global HIV-1 Reactivation In Vivo SO CLINICAL INFECTIOUS DISEASES LA English DT Article DE elite control; HIV; cure; CD8; myeloablation ID HUMAN-IMMUNODEFICIENCY-VIRUS; T-CELL RESPONSES; VIRAL REPLICATION; INFECTION; ESCAPE; HLA; TRANSPLANTATION; LYMPHOCYTES; MUTATIONS; DEPLETION AB Background. Emerging data relating to human immunodeficiency virus type 1 (HIV-1) cure suggest that vaccination to stimulate the host immune response, particularly cytotoxic cells, may be critical to clearing of reactivated HIV-1-infected cells. However, evidence for this approach in humans is lacking, and parameters required for a vaccine are unknown because opportunities to study HIV-1 reactivation are rare. Methods. We present observations from a HIV-1 elite controller, not treated with combination antiretroviral therapy, who experienced viral reactivation following treatment for myeloma with melphalan and autologous stem cell transplantation. Mathematical modeling was performed using a standard viral dynamic model. Enzyme-linked immunospot, intracellular cytokine staining, and tetramer staining were performed on peripheral blood mononuclear cells; in vitro CD8 T-cell-mediated control of virion production by autologous CD4 T cells was quantified; and neutralizing antibody titers were measured. Results. Viral rebound was measured at 28 000 copies/mL on day 13 post-transplant before rapid decay to < 50 copies/mL in 2 distinct phases with t(1/2) of 0.71 days and 4.1 days. These kinetics were consistent with an expansion of cytotoxic effector cells and killing of productively infected CD4 T cells. Following transplantation, innate immune cells, including natural killer cells, recovered with virus rebound. However, most striking was the expansion of highly functional HIV-1-specific cytotoxic CD8 T cells, at numbers consistent with those applied in modeling, as virus control was regained. Conclusions. These observations provide evidence that the human immune response is capable of controlling coordinated global HIV-1 reactivation, remarkably with potency equivalent to combination antiretroviral therapy. These data will inform design of vaccines for use in HIV-1 curative interventions. C1 [Smith, Nicola M. G.; McMichael, Andrew J.; Goonetilleke, Nilu] Univ Oxford, Nuffield Dept Med, Oxford OX1 2JD, England. [Mlcochova, Petra; Watters, Sarah A.; Aasa-Chapman, Marlene M. I.; Garson, Jeremy A.; Ferns, R. Bridget; Pillay, Deenan; Gupta, Ravindra K.] UCL, Div Infect & Immun, Dept Infect, London WC1E 6BT, England. [Rabin, Neil; Moore, Sally; Grant, Paul R.] Univ Coll London Hosp Natl Hlth Serv NHS Fdn Trus, London, England. [Edwards, Simon G.] Cent & North West London NHS Fdn Trust, Mortimer Market Ctr, London, England. [Kashuba, Angela] Univ N Carolina, Eshelman Sch Pharm, Div Pharmacotherapy & Expt Therapeut, Chapel Hill, NC 27515 USA. [Mayor, Neema P.; Schellekens, Jennifer; Marsh, Steven G. E.] Royal Free Hosp, Anthony Nolan Res Inst, London, England. [Mayor, Neema P.; Schellekens, Jennifer; Marsh, Steven G. E.] UCL, Inst Canc, London WC1E 6BT, England. [Perelson, Alan S.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Pillay, Deenan] Univ KwaZulu Natal, Africa Ctr Hlth & Populat Sci, Durban, South Africa. [Goonetilleke, Nilu] Univ N Carolina, Dept Microbiol & Immunol, Chapel Hill, NC 27515 USA. RP Gupta, RK (reprint author), UCL, Div Infect & Immun, London WC1E 6BT, England. EM ravindra.gupta@ucl.ac.uk OI Pillay, Dorsamy/0000-0003-3640-2573 FU Wellcome Trust [WT093722MA]; European Community under project Collaborative HIV and Anti-HIV Drug Resistance Network (CHAIN) [223131]; National Institutes for Health Research University College London Hospitals Biomedical Research Centre; National Institutes of Health [AI028433, OD011095]; McMichael Trust Fund at Oxford University; Creative and Novel Ideas in HIV research award [AI0227763]; Medical Research Council FX This work was supported by the Wellcome Trust Fellowship to R. K. G. (WT093722MA) and the European Community's Seventh Framework Programme (FP7/2007-2013) under the project Collaborative HIV and Anti-HIV Drug Resistance Network (CHAIN; 223131). We also acknowledge support from the National Institutes for Health Research University College London Hospitals Biomedical Research Centre and National Institutes of Health for A. S. P. (AI028433 and OD011095). N. G. was supported by the McMichael Trust Fund at Oxford University and a Creative and Novel Ideas in HIV research award (AI0227763); N. M. G. S. and A. J. M. were supported by the Medical Research Council. NR 35 TC 5 Z9 5 U1 1 U2 8 PU OXFORD UNIV PRESS INC PI CARY PA JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA SN 1058-4838 EI 1537-6591 J9 CLIN INFECT DIS JI Clin. Infect. Dis. PD JUL 1 PY 2015 VL 61 IS 1 BP 120 EP 128 DI 10.1093/cid/civ219 PG 9 WC Immunology; Infectious Diseases; Microbiology SC Immunology; Infectious Diseases; Microbiology GA CO7EX UT WOS:000359323500019 PM 25778749 ER PT J AU Spotts, R Chumbley, LS Ekstrand, L Zhang, S Kreiser, J AF Spotts, Ryan Chumbley, L. Scott Ekstrand, Laura Zhang, Song Kreiser, James TI Angular Determination of Toolmarks Using a Computer-Generated Virtual Tool SO JOURNAL OF FORENSIC SCIENCES LA English DT Article DE forensic science; statistical comparison; computer simulation; algorithm; toolmark; virtual toolmark ID VALIDATION; MARKS AB A blind study to determine whether virtual toolmarks created using a computer could be used to identify and characterize angle of incidence of physical toolmarks was conducted. Six sequentially manufactured screwdriver tips and one random screwdriver were used to create toolmarks at various angles. An apparatus controlled tool angle. Resultant toolmarks were randomly coded and sent to the researchers, who scanned both tips and toolmarks using an optical profilometer to obtain 3D topography data. Developed software was used to create virtual marks based on the tool topography data. Virtual marks generated at angles from 30 to 85 degrees (5 degrees increments) were compared to physical toolmarks using a statistical algorithm. Twenty of twenty toolmarks were correctly identified by the algorithm. On average, the algorithm misidentified the correct angle of incidence by -6.12 degrees. This study presents the results, their significance, and offers reasons for the average angular misidentification. C1 [Spotts, Ryan; Chumbley, L. Scott; Ekstrand, Laura; Zhang, Song] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Kreiser, James] Illinois State Police, Springfield, IL 62712 USA. RP Chumbley, LS (reprint author), Iowa State Univ, Dept Mat Sci & Engn, 214 Wilhelm Hall, Ames, IA 50010 USA. EM chumbley@iastate.edu RI Zhang, Song/C-5294-2012 OI Zhang, Song/0000-0001-8452-4837 FU National Institute of Justice; U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences, Materials Science and Engineering Division; U.S. DOE [DE-AC02-07CH11358]; National Institute of Justice [2011-DNR-0230] FX Supported by the National Institute of Justice and the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences, Materials Science and Engineering Division. The research was performed at the Ames Laboratory, which is operated for the U.S. DOE by Iowa State University under contract number DE-AC02-07CH11358. Funding was provided by award number 2011-DNR-0230 from the National Institute of Justice. NR 12 TC 1 Z9 1 U1 0 U2 2 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0022-1198 EI 1556-4029 J9 J FORENSIC SCI JI J. Forensic Sci. PD JUL PY 2015 VL 60 IS 4 BP 878 EP 884 DI 10.1111/1556-4029.12759 PG 7 WC Medicine, Legal SC Legal Medicine GA CO6JL UT WOS:000359262900006 PM 25929523 ER PT J AU Christov, IC Jordan, PM AF Christov, Ivan C. Jordan, P. M. TI Corrections to Morse and Ingard's variational-based treatment of weakly-nonlinear acoustics in lossless gases (L) (1968) SO JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA LA English DT Article C1 [Christov, Ivan C.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Christov, Ivan C.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Jordan, P. M.] US Naval Res Lab, Acoust Div, Stennis Space Ctr, MS 39529 USA. RP Christov, IC (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM pedro.jordan@nrlssc.navy.mil RI Christov, Ivan/B-9418-2008 OI Christov, Ivan/0000-0001-8531-0531 NR 6 TC 1 Z9 1 U1 1 U2 5 PU ACOUSTICAL SOC AMER AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 0001-4966 EI 1520-8524 J9 J ACOUST SOC AM JI J. Acoust. Soc. Am. PD JUL PY 2015 VL 138 IS 1 BP 361 EP 362 DI 10.1121/1.4922951 PG 2 WC Acoustics; Audiology & Speech-Language Pathology SC Acoustics; Audiology & Speech-Language Pathology GA CO1QB UT WOS:000358929000056 PM 26233035 ER PT J AU Sturtevant, BT Pantea, C Sinha, DN AF Sturtevant, Blake T. Pantea, Cristian Sinha, Dipen N. TI The acoustic nonlinearity parameter in Fluorinert up to 381K and 13.8MPa SO JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA LA English DT Article ID FLUIDS AB This work reports on the determination of the acoustic nonlinearity parameter, B/A, from measured sound speed data, in Fluorinert FC-43 at temperatures up to 381K and pressures up to 13.8MPa using the thermodynamic method. Sound speed was measured using Swept Frequency Acoustic Interferometry at 11 pressures between ambient and 13.8MPa along 6 isotherms between ambient and 381K. Second-order least-squares polynomial fits of measured sound speeds were used to determine temperature and pressure dependence. A room temperature B/A - 11.7 was determined and this parameter was found to increase by a factor of 2.5 over the temperature/pressure range investigated. (C) 2015 Acoustical Society of America C1 [Sturtevant, Blake T.; Pantea, Cristian; Sinha, Dipen N.] Los Alamos Natl Lab, Mat Phys & Applicat, Los Alamos, NM 87545 USA. RP Sturtevant, BT (reprint author), Los Alamos Natl Lab, Mat Phys & Applicat, POB 1663, Los Alamos, NM 87545 USA. EM bsturtev@lanl.gov; pantea@lanl.gov; sinha@lanl.gov RI Pantea, Cristian/D-4108-2009; OI Pantea, Cristian/0000-0002-0805-8923; Sinha, Dipen/0000-0002-3606-7907 FU U.S. Department of Energy Geothermal Technologies Program FX This work was supported by the U.S. Department of Energy Geothermal Technologies Program. NR 11 TC 2 Z9 2 U1 0 U2 3 PU ACOUSTICAL SOC AMER AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 0001-4966 EI 1520-8524 J9 J ACOUST SOC AM JI J. Acoust. Soc. Am. PD JUL PY 2015 VL 138 IS 1 BP EL31 EP EL35 DI 10.1121/1.4922537 PG 5 WC Acoustics; Audiology & Speech-Language Pathology SC Acoustics; Audiology & Speech-Language Pathology GA CO1QB UT WOS:000358929000006 PM 26233057 ER PT J AU Chang, C Cameron, P Elliott, J Perelson, A Roche, M Dantanarayana, A Solomon, A Naranbhai, V Tenakoon, S Hoh, R McMahon, J Sikaris, K Hartogensis, W Bacchetti, P Hecht, F Lifson, J Deeks, S Lewin, S AF Chang, Christina Cameron, Paul Elliott, Julian Perelson, Alan Roche, Michael Dantanarayana, Ashanti Solomon, Ajantha Naranbhai, Vivek Tenakoon, Surekha Hoh, Rebecca McMahon, James Sikaris, Ken Hartogensis, Wendy Bacchetti, Peter Hecht, Frederick Lifson, Jeffrey Deeks, Steve Lewin, Sharon TI Time-associated changes in cell-associated HIV RNA in HIV-infected subjects on suppressive antiretroviral therapy - implications for clinical trials of cure interventions SO JOURNAL OF THE INTERNATIONAL AIDS SOCIETY LA English DT Meeting Abstract C1 [Chang, Christina; Cameron, Paul; Roche, Michael; Dantanarayana, Ashanti; Solomon, Ajantha; Tenakoon, Surekha; Lewin, Sharon] Univ Melbourne, Doherty Inst, Melbourne, Vic, Australia. [Chang, Christina; Cameron, Paul; Elliott, Julian; McMahon, James; Lewin, Sharon] Alfred Hosp, Dept Infect Dis, Melbourne, Vic, Australia. [Perelson, Alan] Los Alamos Natl Lab, Los Alamos, NM USA. [Naranbhai, Vivek] Univ Oxford, Dept Med, Oxford, England. [Hoh, Rebecca; Deeks, Steve] Univ Calif San Francisco, Sch Med, San Francisco, CA USA. [Sikaris, Ken] Dept Pathol, Melbourne, Vic, Australia. [Hartogensis, Wendy; Bacchetti, Peter] Univ Calif San Francisco, Div Biostat, San Francisco, CA 94143 USA. [Hecht, Frederick] Univ Calif San Francisco, Ctr Integrat Med, San Francisco, CA 94143 USA. [Lifson, Jeffrey] NCI, Natl Lab Canc Res, Frederick, MD 21701 USA. EM christina.chang@unimelb.edu.au NR 0 TC 0 Z9 0 U1 0 U2 8 PU INT AIDS SOCIETY PI GENEVA PA AVENUE DE FRANCE 23, GENEVA, 1202, SWITZERLAND SN 1758-2652 J9 J INT AIDS SOC JI J. Int. AIDS Soc. PD JUL PY 2015 VL 18 SU 4 MA MOAA0106LB DI 10.7448/IAS.18.5.20567 PG 1 WC Immunology; Infectious Diseases SC Immunology; Infectious Diseases GA CN8FS UT WOS:000358675700007 ER PT J AU Viljoen, K Wendoh, J Karaoz, U Brodie, E Mulder, N Botha, G Kidzeru, E Butcher, J Gray, C Rosenthal, K Abimiku, A Cameron, B Stintzi, A Jaspan, H AF Viljoen, Katie Wendoh, Jerome Karaoz, Ulas Brodie, Eoin Mulder, Nicola Botha, Gerrit Kidzeru, Elvis Butcher, James Gray, Clive Rosenthal, Ken Abimiku, Alash'le Cameron, Bill Stintzi, Alain Jaspan, Heather TI HIV-exposure, gut microbiome, and vaccine responses in South African infants SO JOURNAL OF THE INTERNATIONAL AIDS SOCIETY LA English DT Meeting Abstract C1 [Viljoen, Katie; Wendoh, Jerome; Kidzeru, Elvis; Gray, Clive; Jaspan, Heather] Univ Cape Town, Inst Infect Dis & Mol Med, Clin Sci Lab, Cape Town, South Africa. [Karaoz, Ulas; Brodie, Eoin] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Mulder, Nicola; Botha, Gerrit] Univ Cape Town, Inst Infect Dis & Mol Med, ZA-7925 Cape Town, South Africa. [Butcher, James; Stintzi, Alain] Ottawa Inst Syst Biol, Ottawa, ON, Canada. [Rosenthal, Ken] McMaster Univ, Inst Mol Med & Hlth, Hamilton, ON, Canada. [Abimiku, Alash'le] Inst Human Virol, Baltimore, MD USA. [Cameron, Bill] Ottawa Hosp Res Inst, Ottawa, ON, Canada. [Jaspan, Heather] Seattle Childrens Res Inst, Seattle, WA USA. [Jaspan, Heather] Univ Washington, Dept Pediat, Global Hlth, Seattle, WA 98195 USA. EM hbjaspan@gmail.com RI Brodie, Eoin/A-7853-2008 OI Brodie, Eoin/0000-0002-8453-8435 NR 0 TC 0 Z9 0 U1 0 U2 4 PU INT AIDS SOCIETY PI GENEVA PA AVENUE DE FRANCE 23, GENEVA, 1202, SWITZERLAND SN 1758-2652 J9 J INT AIDS SOC JI J. Int. AIDS Soc. PD JUL PY 2015 VL 18 SU 4 MA MOAA0205 DI 10.7448/IAS.18.5.20327 PG 1 WC Immunology; Infectious Diseases SC Immunology; Infectious Diseases GA CN8FS UT WOS:000358675700011 ER PT J AU Belianinov, A He, Q Kravchenko, M Jesse, S Borisevich, A Kalinin, SV AF Belianinov, Alex He, Qian Kravchenko, Mikhail Jesse, Stephen Borisevich, Albina Kalinin, Sergei V. TI Identification of phases, symmetries and defects through local crystallography SO NATURE COMMUNICATIONS LA English DT Article ID PROPANE AMMOXIDATION; ELECTRON-MICROSCOPY; OXIDE CATALYSTS; REAL SPACE; POLARIZATION; M1 AB Advances in electron and probe microscopies allow 10 pm or higher precision in measurements of atomic positions. This level of fidelity is sufficient to correlate the length (and hence energy) of bonds, as well as bond angles to functional properties of materials. Traditionally, this relied on mapping locally measured parameters to macroscopic variables, for example, average unit cell. This description effectively ignores the information contained in the microscopic degrees of freedom available in a high-resolution image. Here we introduce an approach for local analysis of material structure based on statistical analysis of individual atomic neighbourhoods. Clustering and multivariate algorithms such as principal component analysis explore the connectivity of lattice and bond structure, as well as identify minute structural distortions, thus allowing for chemical description and identification of phases. This analysis lays the framework for building image genomes and structure-property libraries, based on conjoining structural and spectral realms through local atomic behaviour. C1 [Belianinov, Alex; Kravchenko, Mikhail; Jesse, Stephen; Borisevich, Albina; Kalinin, Sergei V.] Oak Ridge Natl Lab, Inst Funct Imaging Mat, Oak Ridge, TN 37831 USA. [Belianinov, Alex; Kravchenko, Mikhail; Jesse, Stephen; Kalinin, Sergei V.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [He, Qian; Borisevich, Albina] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Belianinov, A (reprint author), Oak Ridge Natl Lab, Inst Funct Imaging Mat, Oak Ridge, TN 37831 USA. EM belianinova@ornl.gov; albinab@ornl.gov; sergei2@ornl.gov RI Borisevich, Albina/B-1624-2009; Kalinin, Sergei/I-9096-2012; Jesse, Stephen/D-3975-2016; He, Qian/J-1277-2014 OI Borisevich, Albina/0000-0002-3953-8460; Kalinin, Sergei/0000-0001-5354-6152; Jesse, Stephen/0000-0002-1168-8483; FU US Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division; Laboratory Directed Research and Development Program of Oak Ridge National Laboratory; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy FX Research for A. Bel., Q. H., M. K., A. Bor., S. V. K., was supported by the US Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division. Research for SJ was sponsored by Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. Department of Energy. This research was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. NR 39 TC 10 Z9 10 U1 1 U2 29 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD JUL PY 2015 VL 6 AR 7801 DI 10.1038/ncomms8801 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CO0RN UT WOS:000358860100003 PM 26190623 ER PT J AU Busch, DJ Houser, JR Hayden, CC Sherman, MB Lafer, EM Stachowiak, JC AF Busch, David J. Houser, Justin R. Hayden, Carl C. Sherman, Michael B. Lafer, Eileen M. Stachowiak, Jeanne C. TI Intrinsically disordered proteins drive membrane curvature SO NATURE COMMUNICATIONS LA English DT Article ID CLATHRIN-MEDIATED ENDOCYTOSIS; SYNAPTIC VESICLE SIZE; COATED VESICLES; DYNAMIC INTERACTIONS; TRIPLET PROTEINS; AP180; CARGO; DIFFUSION; COMPLEX; DOMAIN AB Assembly of highly curved membrane structures is essential to cellular physiology. The prevailing view has been that proteins with curvature-promoting structural motifs, such as wedge-like amphipathic helices and crescent-shaped BAR domains, are required for bending membranes. Here we report that intrinsically disordered domains of the endocytic adaptor proteins, Epsin1 and AP180 are highly potent drivers of membrane curvature. This result is unexpected since intrinsically disordered domains lack a well-defined three-dimensional structure. However, in vitro measurements of membrane curvature and protein diffusivity demonstrate that the large hydrodynamic radii of these domains generate steric pressure that drives membrane bending. When disordered adaptor domains are expressed as transmembrane cargo in mammalian cells, they are excluded from clathrin-coated pits. We propose that a balance of steric pressure on the two surfaces of the membrane drives this exclusion. These results provide quantitative evidence for the influence of steric pressure on the content and assembly of curved cellular membrane structures. C1 [Busch, David J.; Houser, Justin R.; Hayden, Carl C.; Stachowiak, Jeanne C.] Univ Texas Austin, Dept Biomed Engn, Austin, TX 78712 USA. [Hayden, Carl C.] Sandia Natl Labs, Livermore, CA 94550 USA. [Sherman, Michael B.] Univ Texas Med Branch, Dept Biochem & Mol Biol, Galveston, TX 77555 USA. [Lafer, Eileen M.] Univ Texas Hlth Sci Ctr San Antonio, Dept Biochem, UTHSCSA Biochem 415B, San Antonio, TX 78229 USA. [Lafer, Eileen M.] Univ Texas Hlth Sci Ctr San Antonio, Ctr Biomed Neurosci, UTHSCSA Biochem 415B, San Antonio, TX 78229 USA. [Stachowiak, Jeanne C.] Univ Texas Austin, Inst Cellular & Mol Biol, Keeton, TX 78712 USA. RP Stachowiak, JC (reprint author), Univ Texas Austin, Dept Biomed Engn, 107 W Dean Keeton, Austin, TX 78712 USA. EM jcstach@austin.utexas.edu FU National Institutes of Health [1R01GM112065, NIH-NS029051]; University of Texas at Austin FX J.C.S. acknowledges support from the National Institutes of Health (1R01GM112065 to Stachowiak in support of Busch, Houser, and Hayden) as well as startup funding from The University of Texas at Austin. E.M.L. acknowledges support from the National Institutes of Health (NIH-NS029051 to Lafer). We thank Dr Ernst Ungewickell (Hannover Medical School) for providing the Epsin1 CTD and AP180 CTD plasmids, Dr Thomas Kirchhausen (Harvard Medical School) for providing a transferrin receptor plasmid and Dr Anthony Brown (Ohio State University) for making the neurofilament-M plasmid available through Addgene. We thank Dr Dwight Romanovicz and the ICMB Microscopy Facility at UT Austin for assistance with electron microscopy. We thank Dr Allen Liu (University of Michigan) and Dr Sandra Schmid (UT Southwestern Medical School) for providing the RPE cell line stably expressing mCherry-labelled CLC used in this study, as well as for helpful advice using the clathrin pit detection software, freely provided by the lab of Dr Gaudenz Danuser (Harvard Medical School). We thank Dr Terry O'Halloran (UT Austin) for feedback on this project, as well as undergraduate researchers Jerin Jose, Saad Jafri and Brian Li for assistance with preliminary experiments. NR 62 TC 20 Z9 20 U1 12 U2 39 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD JUL PY 2015 VL 6 AR 7875 DI 10.1038/ncomms8875 PG 11 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CO0SH UT WOS:000358862100002 PM 26204806 ER PT J AU Cecchini, NM Steffes, K Schlappi, MR Gifford, AN Greenberg, JT AF Cecchini, Nicolas M. Steffes, Kevin Schlaeppi, Michael R. Gifford, Andrew N. Greenberg, Jean T. TI Arabidopsis AZI1 family proteins mediate signal mobilization for systemic defence priming SO NATURE COMMUNICATIONS LA English DT Article ID LIPID-TRANSFER PROTEINS; MEMBRANE CONTACT SITES; ACQUIRED-RESISTANCE; METHYL SALICYLATE; AZELAIC-ACID; ENDOPLASMIC-RETICULUM; PSEUDOMONAS-SYRINGAE; FREEZING TOLERANCE; SECRETORY PATHWAY; GENE-EXPRESSION AB Priming is a major mechanism behind the immunological 'memory' observed during two key plant systemic defences: systemic acquired resistance (SAR) and induced systemic resistance (ISR). Lipid-derived azelaic acid (AZA) is a mobile priming signal. Here, we show that the lipid transfer protein (LTP)-like AZI1 and its closest paralog EARLI1 are necessary for SAR, ISR and the systemic movement and uptake of AZA in Arabidopsis. Imaging and fractionation studies indicate that AZI1 and EARLI1 localize to expected places for lipid exchange/movement to occur. These are the ER/plasmodesmata, chloroplast outer envelopes and membrane contact sites between them. Furthermore, these LTP-like proteins form complexes and act at the site of SAR establishment. The plastid targeting of AZI1 and AZI1 paralogs occurs through a mechanism that may enable/facilitate their roles in signal mobilization. C1 [Cecchini, Nicolas M.; Steffes, Kevin; Greenberg, Jean T.] Univ Chicago, Dept Mol Genet & Cell Biol, Chicago, IL 60637 USA. [Schlaeppi, Michael R.] Marquette Univ, Dept Biol Sci, Milwaukee, WI 53233 USA. [Gifford, Andrew N.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Greenberg, JT (reprint author), Univ Chicago, Dept Mol Genet & Cell Biol, 929 East 57th St,GCIS Room W519P, Chicago, IL 60637 USA. EM jgreenbe@uchicago.edu OI Greenberg, Jean/0000-0002-7213-7618; Cecchini, Nicolas/0000-0002-2894-7744 FU NSF grant [IOS 0957963]; Genomic Science Program (Science Focus Area 'Plant: Microbe Interfaces'), U.S. Department of Energy, Office of Science, Biological and Environmental Research [DE-AC05-00OR22725]; U.S. Department of Agriculture [2001-35100-10688] FX This research was mainly supported by NSF grant IOS 0957963 to J.T.G. A.N.G.'s contribution was supported by the Genomic Science Program (Science Focus Area 'Plant: Microbe Interfaces'), U.S. Department of Energy, Office of Science, Biological and Environmental Research under the contract DE-AC05-00OR22725. M.R.S.'s contribution was supported by NRI Competitive Grant No. 2001-35100-10688 from the U.S. Department of Agriculture. NR 70 TC 8 Z9 9 U1 7 U2 48 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD JUL PY 2015 VL 6 AR 7658 DI 10.1038/ncomms8658 PG 12 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CO0QW UT WOS:000358858100002 PM 26203923 ER PT J AU Kendrick, BK Hazra, J Balakrishnan, N AF Kendrick, B. K. Hazra, Jisha Balakrishnan, N. TI The geometric phase controls ultracold chemistry SO NATURE COMMUNICATIONS LA English DT Article ID QUANTUM REACTIVE SCATTERING; STATE TRANSITION-PROBABILITIES; HYDROGEN-EXCHANGE REACTION; POTENTIAL-ENERGY SURFACES; CONICAL INTERSECTION; H+O-2 SCATTERING; MOLECULES; DYNAMICS; HO2; RECOMBINATION AB The geometric phase is shown to control the outcome of an ultracold chemical reaction. The control is a direct consequence of the sign change on the interference term between two scattering pathways (direct and looping), which contribute to the reactive collision process in the presence of a conical intersection (point of degeneracy between two Born-Oppenheimer electronic potential energy surfaces). The unique properties of the ultracold energy regime lead to an effective quantization of the scattering phase shift enabling maximum constructive or destructive interference between the two pathways. By taking the O + OH -> H + O-2 reaction as an illustrative example, it is shown that inclusion of the geometric phase modifies ultracold reaction rates by nearly two orders of magnitude. Interesting experimental control possibilities include the application of external electric and magnetic fields that might be used to exploit the geometric phase effect reported here and experimentally switch on or off the reactivity. C1 [Kendrick, B. K.] Los Alamos Natl Lab, Theoret Div T 1, Los Alamos, NM 87545 USA. [Hazra, Jisha; Balakrishnan, N.] Univ Nevada, Dept Chem, Las Vegas, NV 89154 USA. RP Kendrick, BK (reprint author), Los Alamos Natl Lab, Theoret Div T 1, MS B221, Los Alamos, NM 87545 USA. EM bkendric@lanl.gov FU US Department of Energy under Laboratory Directed Research and Development Program at Los Alamos National Laboratory [20140309ER]; National Security Administration of the US Department of Energy [DE-AC52-06NA25396]; Army Research Office, MURI [W911NF-12-1-0476]; National Science Foundation [PHY-1205838] FX We acknowledge G.B. Pradhan for his initial exploratory calculations of the GP effect on the O + OH reaction. B.K.K. acknowledges that part of this work was carried out under the auspices of the US Department of Energy under Project No. 20140309ER of the Laboratory Directed Research and Development Program at Los Alamos National Laboratory. Los Alamos National Laboratory is operated by Los Alamos National Security, LLC, for the National Security Administration of the US Department of Energy under contract DE-AC52-06NA25396. The UNLV team acknowledges support from the Army Research Office, MURI grant No. W911NF-12-1-0476 and the National Science Foundation, grant No. PHY-1205838. NR 52 TC 14 Z9 14 U1 5 U2 17 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD JUL PY 2015 VL 6 AR 7918 DI 10.1038/ncomms8918 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CO0TC UT WOS:000358864700001 PM 26224326 ER PT J AU Mahjouri-Samani, M Lin, MW Wang, K Lupini, AR Lee, J Basile, L Boulesbaa, A Rouleau, CM Puretzky, AA Ivanov, IN Xiao, K Yoon, M Geohegan, DB AF Mahjouri-Samani, Masoud Lin, Ming-Wei Wang, Kai Lupini, Andrew R. Lee, Jaekwang Basile, Leonardo Boulesbaa, Abdelaziz Rouleau, Christopher M. Puretzky, Alexander A. Ivanov, Ilia N. Xiao, Kai Yoon, Mina Geohegan, David B. TI Patterned arrays of lateral heterojunctions within monolayer two-dimensional semiconductors SO NATURE COMMUNICATIONS LA English DT Article ID PULSED-LASER DEPOSITION; LAYER MOS2; MOLYBDENUM-DISULFIDE; SINGLE-LAYER; GROWTH; NANOSHEETS; HETEROSTRUCTURES; TRANSISTORS; GRAPHENE AB The formation of semiconductor heterojunctions and their high-density integration are foundations of modern electronics and optoelectronics. To enable two-dimensional crystalline semiconductors as building blocks in next-generation electronics, developing methods to deterministically form lateral heterojunctions is crucial. Here we demonstrate an approach for the formation of lithographically patterned arrays of lateral semiconducting heterojunctions within a single two-dimensional crystal. Electron beam lithography is used to pattern MoSe2 monolayer crystals with SiO2, and the exposed locations are selectively and totally converted to MoS2 using pulsed laser vaporization of sulfur to form MoSe2/MoS2 heterojunctions in predefined patterns. The junctions and conversion process are studied by Raman and photoluminescence spectroscopy, atomically resolved scanning transmission electron microscopy and device characterization. This demonstration of lateral heterojunction arrays within a monolayer crystal is an essential step for the integration of two-dimensional semiconductor building blocks with different electronic and optoelectronic properties for high-density, ultrathin devices. C1 [Mahjouri-Samani, Masoud; Lin, Ming-Wei; Wang, Kai; Lee, Jaekwang; Basile, Leonardo; Boulesbaa, Abdelaziz; Rouleau, Christopher M.; Puretzky, Alexander A.; Ivanov, Ilia N.; Xiao, Kai; Yoon, Mina; Geohegan, David B.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Lupini, Andrew R.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Basile, Leonardo] Escuela Politec Nacl, Dept Fis, Quito 170525, Ecuador. RP Mahjouri-Samani, M (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. EM mahjourisamm@ornl.gov; geohegandb@ornl.gov RI Wang, Kai/H-4361-2011; Mahjouri-Samani, Masoud/Q-2239-2015; Rouleau, Christopher/Q-2737-2015; Yoon, Mina/A-1965-2016; Puretzky, Alexander/B-5567-2016; Boulesbaa, Abdelaziz/J-3314-2016; Geohegan, David/D-3599-2013; OI ivanov, ilia/0000-0002-6726-2502; Wang, Kai/0000-0002-6405-7837; Mahjouri-Samani, Masoud/0000-0002-6080-7450; Rouleau, Christopher/0000-0002-5488-3537; Yoon, Mina/0000-0002-1317-3301; Puretzky, Alexander/0000-0002-9996-4429; Boulesbaa, Abdelaziz/0000-0003-4519-4403; Geohegan, David/0000-0003-0273-3139; Lin, Ming-Wei/0000-0001-8150-5585 FU US Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division; Scientific User Facilities Division; National Secretariat of Higher Education, Science, Technology and Innovation of Ecuador (SENESCYT) FX Synthesis science including crystal growth, in situ plume diagnostics, TEM analysis, SEM and AFM studies and conversion technique development (M.M.-S., K.W., J.L., A.R.L., K.X., D.B.G., C.M.R., A.A.P. and M.Y.) was supported by the US Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division and performed in part as a user project at the Center for Nanophase Materials Sciences, which is a DOE Office of the Science User Facility. Characterization science at Center for Nanophase Materials Sciences (CNMS) including optical characterization and lithography techniques (M.-W.L., A.B. and I.N.I.) was supported by the Scientific User Facilities Division. L.B. was supported by the National Secretariat of Higher Education, Science, Technology and Innovation of Ecuador (SENESCYT). NR 28 TC 21 Z9 21 U1 20 U2 116 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD JUL PY 2015 VL 6 AR 7749 DI 10.1038/ncomms8749 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CO0RA UT WOS:000358858500055 PM 26198727 ER PT J AU Mairoser, T Mundy, JA Melville, A Hodash, D Cueva, P Held, R Glavic, A Schubert, J Muller, DA Schlom, DG Schmehl, A AF Mairoser, Thomas Mundy, Julia A. Melville, Alexander Hodash, Daniel Cueva, Paul Held, Rainer Glavic, Artur Schubert, Juergen Muller, David A. Schlom, Darrell G. Schmehl, Andreas TI High-quality EuO thin films the easy way via topotactic transformation SO NATURE COMMUNICATIONS LA English DT Article ID CRYSTAL-STRUCTURE; LOW-TEMPERATURE; SOLID-STATE; OXIDE-FILMS; PEROVSKITE; REDUCTION; EUROPIUM; IRON; DEPOSITION; METALS AB Epitaxy is widely employed to create highly oriented crystalline films. A less appreciated, but nonetheless powerful means of creating such films is via topotactic transformation, in which a chemical reaction transforms a single crystal of one phase into a single crystal of a different phase, which inherits its orientation from the original crystal. Topotactic reactions may be applied to epitactic films to substitute, add or remove ions to yield epitactic films of different phases. Here we exploit a topotactic reduction reaction to provide a non-ultra-high vacuum (UHV) means of growing highly oriented single crystalline thin films of the easily over-oxidized half-metallic semiconductor europium monoxide (EuO) with a perfection rivalling that of the best films of the same material grown by molecular-beam epitaxy or UHV pulsed-laser deposition. As the technique only requires high-vacuum deposition equipment, it has the potential to drastically improve the accessibility of high-quality single crystalline films of EuO as well as other difficult-to-synthesize compounds. C1 [Mairoser, Thomas; Schmehl, Andreas] Univ Augsburg, Zentrum Elekt Korrelat & Magnetismus, D-86159 Augsburg, Germany. [Mundy, Julia A.; Cueva, Paul; Muller, David A.] Cornell Univ, Sch Appl & Engn Phys, Ithaca, NY 14853 USA. [Melville, Alexander; Hodash, Daniel; Held, Rainer; Schlom, Darrell G.] Cornell Univ, Dept Mat Sci & Engn, Ithaca, NY 14853 USA. [Glavic, Artur] Oak Ridge Natl Lab, Quantum Condensed Matter Div, Oak Ridge, TN 37831 USA. [Schubert, Juergen] Peter Grunberg Inst, Res Ctr Julich, PGI IT 9, D-52425 Julich, Germany. [Muller, David A.; Schlom, Darrell G.] Kavli Inst Cornell Nanoscale Sci, Ithaca, NY 14853 USA. RP Schlom, DG (reprint author), Cornell Univ, Dept Mat Sci & Engn, Ithaca, NY 14853 USA. EM schlom@cornell.edu RI Glavic, Artur/B-3453-2015; OI Glavic, Artur/0000-0003-4951-235X; Schubert, Jurgen/0000-0003-0185-6794 FU DFG [TRR 80]; EC (oxIDes); AFOSR [FA9550-10-1-0123]; National Science Foundation Materials Research Science and Engineering Centers (MRSEC) programme [DMR-1120296]; NSF [IMR-0417392]; U.S. Department of Energy, Office of Basic Energy Sciences [DE-SC0002334]; Army Research Office; National Science Foundation; Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy FX The work in Augsburg was supported by the DFG (TRR 80) and the EC (oxIDes). The work at Cornell was supported by the AFOSR (Grant No. FA9550-10-1-0123). This work made use of the electron microscopy facility of the Cornell Center for Materials Research (CCMR) with support from the National Science Foundation Materials Research Science and Engineering Centers (MRSEC) programme (DMR-1120296) and NSF IMR-0417392. EELS acquisition and analysis by P.C. and D.A.M. supported by the U.S. Department of Energy, Office of Basic Energy Sciences under Award No. DE-SC0002334. J.A.M. acknowledges financial support from the Army Research Office in the form of a National Defense Science and Engineering Graduate Fellowship and from the National Science Foundation in the form of a graduate research fellowship. The X-ray reflectivity part of this research was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy. NR 50 TC 6 Z9 6 U1 12 U2 38 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD JUL PY 2015 VL 6 AR 7716 DI 10.1038/ncomms8716 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CO0RA UT WOS:000358858500022 PM 26177710 ER PT J AU Svanidze, E Wang, JKK Besara, T Liu, L Huang, Q Siegrist, T Frandsen, B Lynn, JW Nevidomskyy, AH Gamza, MB Aronson, MC Uemura, YJ Morosan, E AF Svanidze, E. Wang, Jiakui K. Besara, T. Liu, L. Huang, Q. Siegrist, T. Frandsen, B. Lynn, J. W. Nevidomskyy, Andriy H. Gamza, Monika B. Aronson, M. C. Uemura, Y. J. Morosan, E. TI An itinerant antiferromagnetic metal without magnetic constituents SO NATURE COMMUNICATIONS LA English DT Article ID ELECTRON FERROMAGNETISM; SPIN FLUCTUATIONS; TRANSITIONS; POINTS AB The origin of magnetism in metals has been traditionally discussed in two diametrically opposite limits: itinerant and local moments. Surprisingly, there are very few known examples of materials that are close to the itinerant limit, and their properties are not universally understood. In the case of the two such examples discovered several decades ago, the itinerant ferromagnets ZrZn2 and Sc3In, the understanding of their magnetic ground states draws on the existence of 3d electrons subject to strong spin fluctuations. Similarly, in Cr, an elemental itinerant antiferromagnet with a spin density wave ground state, its 3d electron character has been deemed crucial to it being magnetic. Here, we report evidence for an itinerant antiferromagnetic metal with no magnetic constituents: TiAu. Antiferromagnetic order occurs below a Neel temperature of 36 K, about an order of magnitude smaller than in Cr, rendering the spin fluctuations in TiAu more important at low temperatures. This itinerant antiferromagnet challenges the currently limited understanding of weak itinerant antiferromagnetism, while providing insights into the effects of spin fluctuations in itinerant-electron systems. C1 [Svanidze, E.; Wang, Jiakui K.; Nevidomskyy, Andriy H.; Morosan, E.] Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA. [Besara, T.; Siegrist, T.] Florida State Univ, Natl High Magnet Field Lab, Tallahassee, FL 32306 USA. [Liu, L.; Frandsen, B.; Uemura, Y. J.] Columbia Univ, Dept Phys, New York, NY 10027 USA. [Huang, Q.; Lynn, J. W.] NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Gamza, Monika B.; Aronson, M. C.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Aronson, M. C.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. RP Morosan, E (reprint author), Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA. EM emorosan@rice.edu RI Besara, Tiglet/M-7969-2014; OI Besara, Tiglet/0000-0002-2143-2254; Nevidomskyy, Andriy/0000-0002-8684-7979 FU NSF [DMR 0847681, DMR-1105961, OISE-0968226, DMR-1436095]; AFOSR MURI; Welch Foundation [C-1818]; US Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH1886]; U.S. Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division [DE-SC0008832]; National Science Foundation [DMR-1157490]; State of Florida; REIMEI project from JAEA, Japan; Friends of Todai Inc. Foundation FX We would like to thank M.B. Maple, P. Dai, M. Foster, S. Kivelson, Z. Deng, T. Munsie, T. Medina, and G. Luke for assistance and discussions. The work at Rice University was supported by NSF DMR 0847681 (E.M. and E.S.), AFOSR MURI (J.K.W.) and the Welch Foundation grant C-1818 (A.H.N.). Work at Brookhaven National Laboratory (M.B.G. and M.C.A.) was carried out under the auspices of the US Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH1886. T.B. and T.S. are supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, under Award #DE-SC0008832. A portion of this work was performed at the National High Magnetic Field Laboratory, which is supported by National Science Foundation Cooperative Agreement No. DMR-1157490 and the State of Florida. Work at Columbia and TRIUMF (L.L., B.F. and Y.J.U.) is supported by NSF grants DMR-1105961, OISE-0968226 (PIRE) and DMR-1436095 (DMREF), REIMEI project from JAEA, Japan, and the Friends of Todai Inc. Foundation. The identification of any commercial product or trade name does not imply endorsement or recommendation by the National Institute of Standards and Technology. NR 32 TC 2 Z9 2 U1 9 U2 47 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD JUL PY 2015 VL 6 AR 7701 DI 10.1038/ncomms8701 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CO0RA UT WOS:000358858500007 PM 26166042 ER PT J AU Wolf, O Campione, S Benz, A Ravikumar, AP Liu, S Luk, TS Kadlec, EA Shaner, EA Klem, JF Sinclair, MB Brener, I AF Wolf, Omri Campione, Salvatore Benz, Alexander Ravikumar, Arvind P. Liu, Sheng Luk, Ting S. Kadlec, Emil A. Shaner, Eric A. Klem, John F. Sinclair, Michael B. Brener, Igal TI Phased-array sources based on nonlinear metamaterial nanocavities SO NATURE COMMUNICATIONS LA English DT Article ID INTERSUBBAND TRANSITIONS; LIGHT; METASURFACES; REFRACTION; PATCHES AB Coherent superposition of light from subwavelength sources is an attractive prospect for the manipulation of the direction, shape and polarization of optical beams. This phenomenon constitutes the basis of phased arrays, commonly used at microwave and radio frequencies. Here we propose a new concept for phased-array sources at infrared frequencies based on metamaterial nanocavities coupled to a highly nonlinear semiconductor heterostructure. Optical pumping of the nanocavity induces a localized, phase-locked, nonlinear resonant polarization that acts as a source feed for a higher-order resonance of the nanocavity. Varying the nanocavity design enables the production of beams with arbitrary shape and polarization. As an example, we demonstrate two second harmonic phased-array sources that perform two optical functions at the second harmonic wavelength (similar to 5 mu m): a beam splitter and a polarizing beam splitter. Proper design of the nanocavity and nonlinear heterostructure will enable such phased arrays to span most of the infrared spectrum. C1 [Wolf, Omri; Campione, Salvatore; Benz, Alexander; Liu, Sheng; Luk, Ting S.; Brener, Igal] Sandia Natl Labs, Ctr Integrated Nanotechnol, Albuquerque, NM 87185 USA. [Wolf, Omri; Campione, Salvatore; Benz, Alexander; Liu, Sheng; Luk, Ting S.; Kadlec, Emil A.; Shaner, Eric A.; Klem, John F.; Sinclair, Michael B.; Brener, Igal] Sandia Natl Labs, Div Sci & Technol, Albuquerque, NM 87185 USA. [Ravikumar, Arvind P.] Princeton Univ, Dept Elect Engn, Princeton, NJ 08544 USA. RP Wolf, O (reprint author), Sandia Natl Labs, Ctr Integrated Nanotechnol, POB 5800, Albuquerque, NM 87185 USA. EM owolf@sandia.gov; ibrener@sandia.gov RI Ravikumar, Arvind/L-1580-2016; OI Campione, Salvatore/0000-0003-4655-5485; Ravikumar, Arvind/0000-0001-8385-6573 FU US Department of Energy (DOE), Office of Basic Energy Sciences, Division of Materials Sciences and Engineering; US DOE's National Nuclear Security Administration [DE-AC04-94AL85000] FX O.W. would like to acknowledge Mr Caner Guclu, University of California Irvine, for his assistance in the far field calculations, Dr Xuedan Ma, Sandia National Laboratories, for her assistance with SEM imaging and Dr Naama Wald for assistance in graphical designs of figures in this manuscript. This work was supported by the US Department of Energy (DOE), Office of Basic Energy Sciences, Division of Materials Sciences and Engineering and performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the US DOE Office of Science. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US DOE's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 24 TC 30 Z9 30 U1 7 U2 29 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD JUL PY 2015 VL 6 AR 7667 DI 10.1038/ncomms8667 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CO0QW UT WOS:000358858100011 PM 26126879 ER PT J AU Yi, M Liu, ZK Zhang, Y Yu, R Zhu, JX Lee, JJ Moore, RG Schmitt, FT Li, W Riggs, SC Chu, JH Lv, B Hu, J Hashimoto, M Mo, SK Hussain, Z Mao, ZQ Chu, CW Fisher, IR Si, Q Shen, ZX Lu, DH AF Yi, M. Liu, Z-K Zhang, Y. Yu, R. Zhu, J. -X. Lee, J. J. Moore, R. G. Schmitt, F. T. Li, W. Riggs, S. C. Chu, J. -H. Lv, B. Hu, J. Hashimoto, M. Mo, S. -K. Hussain, Z. Mao, Z. Q. Chu, C. W. Fisher, I. R. Si, Q. Shen, Z. -X. Lu, D. H. TI Observation of universal strong orbital-dependent correlation effects in iron chalcogenides SO NATURE COMMUNICATIONS LA English DT Article ID ELECTRONIC-STRUCTURE; T-C; SUPERCONDUCTIVITY; FESE; TRANSITION; INSULATOR; PNICTIDES; ORIGIN; FILMS; GAP AB Establishing the appropriate theoretical framework for unconventional superconductivity in the iron-based materials requires correct understanding of both the electron correlation strength and the role of Fermi surfaces. This fundamental issue becomes especially relevant with the discovery of the iron chalcogenide superconductors. Here, we use angle-resolved photoemission spectroscopy to measure three representative iron chalcogenides, FeTe0.56Se0.44, monolayer FeSe grown on SrTiO3 and K0.76Fe1.72Se2. We show that these superconductors are all strongly correlated, with an orbital-selective strong renormalization in the d(xy) bands despite having drastically different Fermi surface topologies. Furthermore, raising temperature brings all three compounds from a metallic state to a phase where the dxy orbital loses all spectral weight while other orbitals remain itinerant. These observations establish that iron chalcogenides display universal orbital-selective strong correlations that are insensitive to the Fermi surface topology, and are close to an orbital-selective Mott phase, hence placing strong constraints for theoretical understanding of iron-based superconductors. C1 [Yi, M.; Liu, Z-K; Zhang, Y.; Lee, J. J.; Moore, R. G.; Schmitt, F. T.; Li, W.; Riggs, S. C.; Chu, J. -H.; Fisher, I. R.; Shen, Z. -X.] Stanford Inst Mat & Energy Sci, SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Yi, M.; Liu, Z-K; Zhang, Y.; Lee, J. J.; Moore, R. G.; Schmitt, F. T.; Li, W.; Riggs, S. C.; Chu, J. -H.; Fisher, I. R.; Shen, Z. -X.] Stanford Univ, Menlo Pk, CA 94025 USA. [Yi, M.; Liu, Z-K; Lee, J. J.; Riggs, S. C.; Fisher, I. R.; Shen, Z. -X.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Yi, M.; Liu, Z-K; Lee, J. J.; Riggs, S. C.; Fisher, I. R.; Shen, Z. -X.] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA. [Yi, M.; Liu, Z-K; Lee, J. J.; Riggs, S. C.; Fisher, I. R.; Shen, Z. -X.] Stanford Univ, Geballe Lab Adv Mat, Stanford, CA 94305 USA. [Zhang, Y.; Mo, S. -K.; Hussain, Z.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Yu, R.] Renmin Univ China, Dept Phys, Beijing 100872, Peoples R China. [Yu, R.; Si, Q.] Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA. [Zhu, J. -X.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Lv, B.; Chu, C. W.] Univ Houston, Texas Ctr Superconduct, Dept Phys, Houston, TX 77204 USA. [Hu, J.; Mao, Z. Q.] Tulane Univ, Dept Phys & Engn Phys, New Orleans, LA 70118 USA. [Hashimoto, M.; Lu, D. H.] SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA. RP Shen, ZX (reprint author), Stanford Inst Mat & Energy Sci, SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. EM zxshen@stanford.edu; dhlu@slac.stanford.edu RI Mo, Sung-Kwan/F-3489-2013; Hu, Jin/C-4141-2014; Yu, Rong/H-3355-2016 OI Mo, Sung-Kwan/0000-0003-0711-8514; Hu, Jin/0000-0003-0080-4239; FU US DOE, Office of Basic Energy Science, Division of Materials Science and Engineering [DE-AC02-76SF00515]; NSF Grant [DMR-1309531]; Robert A. Welch Foundation [C-1411]; National Science Foundation of China [11374361]; Fundamental Research Funds for the Central Universities; Research Funds of Remnin University of China; NSF [DMR-1205469]; U.S. DOE Office of Basic Energy Sciences FX ARPES experiments were performed at the Stanford Synchrotron Radiation Lightsource and the Advanced Light Source, which are both operated by the Office of Basic Energy Sciences, U.S. Department of Energy. The Stanford work is supported by the US DOE, Office of Basic Energy Science, Division of Materials Science and Engineering, under award number DE-AC02-76SF00515. The work at Rice is supported by NSF Grant DMR-1309531 and the Robert A. Welch Foundation Grant No. C-1411. The work at Renmin University is supported by the National Science Foundation of China Grant number 11374361, and the Fundamental Research Funds for the Central Universities and the Research Funds of Remnin University of China. The work at Tulane is supported by the NSF under grant DMR-1205469. The work at Los Alamos was supported by the U.S. DOE Office of Basic Energy Sciences. NR 41 TC 27 Z9 27 U1 9 U2 51 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD JUL PY 2015 VL 6 AR 7777 DI 10.1038/ncomms8777 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CO0RL UT WOS:000358859800003 PM 26204461 ER PT J AU Firestone, RB AF Firestone, R. B. TI Nuclear Data Sheets for A=21 SO NUCLEAR DATA SHEETS LA English DT Article ID THERMAL-NEUTRON CAPTURE; DELAYED-PROTON-DECAY; FIRST EXCITED STATES; DRIP-LINE NUCLEI; ENERGY-LEVELS; BETA-DECAY; MAGNETIC-MOMENT; LIGHT-NUCLEI; RICH NUCLEI; LIFETIME MEASUREMENTS AB This evaluation of A=21 has been updated from previous evaluations published in 2004Fi10,1998En04, 1990En08, and 1978En02. Coverage includes properties of adopted levels and gamma-rays, decay-scheme data (energies, intensities and placement of radiations), and cross reference entries. The following tables continue the tradition of showing the systematic relationships between levels in A=21. Much of the new data in this evaluations were taken directly from the xundl database, compiled under the direction of Balraj Singh, McMaster University. The evaluator is particularly appreciative of the efforts of the xundl compilers. C1 Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. RP Firestone, RB (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Nucl Sci, Ms 88r0192,1 Cyclotron Rd, Berkeley, CA 94720 USA. NR 144 TC 1 Z9 1 U1 1 U2 1 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0090-3752 EI 1095-9904 J9 NUCL DATA SHEETS JI Nucl. Data Sheets PD JUL-AUG PY 2015 VL 127 BP 1 EP 68 DI 10.1016/j.nds.2015.07.001 PG 68 WC Physics, Nuclear SC Physics GA CO0BE UT WOS:000358814300001 ER PT J AU Basunia, MS AF Basunia, M. Shamsuzzoha TI Nuclear Data Sheets for A=22 SO NUCLEAR DATA SHEETS LA English DT Article ID HIGH-SPIN STATES; NEUTRON-RICH NUCLEI; RECOIL-DISTANCE METHOD; DOPPLER-SHIFT ATTENUATION; BEAM GAMMA-SPECTROSCOPY; HALF-LIFE MEASUREMENTS; LOW-ENERGY RESONANCES; RESOLUTION ION-BEAM; SD-SHELL NUCLEI; ROTATIONAL BAND-STRUCTURE AB Evaluated spectroscopic data and level schemes from radioactive decay and nuclear reaction studies are presented for C-22, N-22, O-22, F-22, Ne-22, Na-22, Mg-22, Al-22, and Si-22. This evaluation for A=22 supersedes the earlier one by R. B. Firestone (2005Fi16). C1 Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. RP Basunia, MS (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Nucl Sci, MS 88R0192,1 Cyclotron Rd, Berkeley, CA 94720 USA. FU Office of Basic Energy Sciences, US Department of Energy [DE-AC02-05CH11231] FX This work was supported by Office of Basic Energy Sciences, US Department of Energy, under contract DE-AC02-05CH11231. NR 325 TC 2 Z9 2 U1 1 U2 2 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0090-3752 EI 1095-9904 J9 NUCL DATA SHEETS JI Nucl. Data Sheets PD JUL-AUG PY 2015 VL 127 BP 69 EP 190 DI 10.1016/j.nds.2015.07.002 PG 122 WC Physics, Nuclear SC Physics GA CO0BE UT WOS:000358814300002 ER PT J AU Browne, E Tuli, JK AF Browne, E. Tuli, J. K. TI Nuclear Data Sheets for A=238 SO NUCLEAR DATA SHEETS LA English DT Article ID DOUBLE-BETA-DECAY; EVEN-EVEN NUCLEI; SPONTANEOUSLY-FISSIONING ISOMERS; CAPTURE CROSS-SECTION; INELASTIC NEUTRON-SCATTERING; U-238 SPONTANEOUS-FISSION; ATOMIC MASS EVALUATION; RICH ISOTOPE TH-238; HIGH-SPIN STATES; MACROSCOPIC-MICROSCOPIC APPROACH C1 [Browne, E.] Brookhaven Natl Lab, Natl Nucl Data Ctr, Lawrence Berkeley Natl Lab, Upton, NY 11973 USA. [Tuli, J. K.] Brookhaven Natl Lab, Natl Nucl Data Ctr, Upton, NY 11973 USA. RP Browne, E (reprint author), Brookhaven Natl Lab, Natl Nucl Data Ctr, Lawrence Berkeley Natl Lab, Upton, NY 11973 USA. FU Office of Nuclear Physics, Office of Science, US Department of Energy [DE-AC02-98CH10946] FX Research sponsored by Office of Nuclear Physics, Office of Science, US Department of Energy, under contract DE-AC02-98CH10946. NR 666 TC 3 Z9 3 U1 2 U2 10 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0090-3752 EI 1095-9904 J9 NUCL DATA SHEETS JI Nucl. Data Sheets PD JUL-AUG PY 2015 VL 127 BP 191 EP 332 DI 10.1016/j.nds.2015.07.003 PG 142 WC Physics, Nuclear SC Physics GA CO0BE UT WOS:000358814300003 ER PT J AU Hu, Y Dera, P Zhuravlev, K AF Hu, Yi Dera, Przemyslaw Zhuravlev, Kirill TI Single-crystal diffraction and Raman spectroscopy of hedenbergite up to 33 GPa SO PHYSICS AND CHEMISTRY OF MINERALS LA English DT Article DE Hedenbergite; Diopside; Pyroxenes; High pressure; Synchrotron single-crystal X-ray diffraction; Mantle; Subduction zone ID MEMBER THERMODYNAMIC PROPERTIES; METASTABLE OLIVINE WEDGE; PHASE-TRANSFORMATION; SUBDUCTING SLABS; TRANSITION ZONE; GARNET; POLYHEDRA; PYROXENES; MINERALS; MANTLE AB Pyroxenes are important minerals in Earth's upper mantle and subducting plate. Here, we report results of high-pressure single-crystal X-ray diffraction and Raman spectroscopy experiments conducted on natural Ca, Fe pyroxene hedenbergite up to similar to 33 GPa in diamond anvil cell. Unit cell parameters a, b, c, beta and V, as well as bond lengths of hedenbergite are reported within the studied pressure range. Cell parameters exhibit continuous decrease on compression. Axial compressibilities of a, b and c are calculated to be 1.7(2), 4.9(5) and 2.13(9) x 10(-3) GPa(-1), respectively. Bulk modulus and its pressure derivative are determined to be 131(4) GPa and 3.8(3) by fitting thirdorder Birch-Murnaghan equation of state. Compression mechanism is dominated by polyhedral and bond compression trends typical of clinopyroxenes. In general, shorter bonds show lower compressibility, and SiO4, the smallest polyhedron, shows the lowest compressibility. Angle and elongation distortions are reported for the three types of polyhedra at high pressure. Thirteen vibrational modes are observed with Raman spectroscopy up to similar to 33 GPa. All observed mode frequencies increase as pressure increases. C1 [Hu, Yi] Univ Hawaii Manoa, Sch Ocean & Earth Sci & Technol, Dept Geol & Geophys, Honolulu, HI 96822 USA. [Dera, Przemyslaw] Univ Hawaii Manoa, Sch Ocean & Earth Sci & Technol, Hawaii Inst Geophys & Planetol, Honolulu, HI 96822 USA. [Zhuravlev, Kirill] Univ Chicago, Ctr Adv Radiat Sources, Argonne Natl Lab, Argonne, IL 60439 USA. RP Hu, Y (reprint author), Univ Hawaii Manoa, Sch Ocean & Earth Sci & Technol, Dept Geol & Geophys, 1680 East West Rd,POST Bldg, Honolulu, HI 96822 USA. EM yihu@hawaii.edu FU National Science Foundation Division of Earth Sciences Geophysics [1344942]; National Science Foundation-Earth Sciences [EAR-1128799]; Department of Energy-Geosciences [DE-FG02-94ER14466]; US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; Carnegie-DOE Alliance Center FX The project was supported by the National Science Foundation Division of Earth Sciences Geophysics Grant No. 1344942. Portions of this work were performed at GeoSoilEnviroCARS (Sector 13), Advanced Photon Source (APS), and Argonne National Laboratory. GeoSoilEnviroCARS is supported by the National Science Foundation-Earth Sciences (EAR-1128799) and Department of Energy-Geosciences (DE-FG02-94ER14466). Use of the Advanced Photon Source was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. We would also like to thank Carnegie-DOE Alliance Center for support through Academic Partner subcontract to PD and Prof. R. T. Downs at the University of Arizona for kindly providing the samples from RRUFF collections. We would like to thank the two reviewers, Diego Gatta and Jennifer Kung for helpful comments. NR 38 TC 2 Z9 2 U1 3 U2 13 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0342-1791 EI 1432-2021 J9 PHYS CHEM MINER JI Phys. Chem. Miner. PD JUL PY 2015 VL 42 IS 7 BP 595 EP 608 DI 10.1007/s00269-015-0747-8 PG 14 WC Materials Science, Multidisciplinary; Mineralogy SC Materials Science; Mineralogy GA CO1UE UT WOS:000358940200007 ER PT J AU Bose, A Woo, KM Nora, R Betti, R AF Bose, A. Woo, K. M. Nora, R. Betti, R. TI Hydrodynamic scaling of the deceleration-phase Rayleigh-Taylor instability SO PHYSICS OF PLASMAS LA English DT Article ID INERTIAL CONFINEMENT FUSION; DIRECT-DRIVE; IMPLOSIONS AB The scaling of the deceleration phase of inertial fusion direct-drive implosions is investigated for OMEGA and National Ignition Facility (NIF)-size targets. It is shown that the deceleration-phase Rayleigh-Taylor instability (RTI) does not scale hydro-equivalently with implosion size. This is because ablative stabilization resulting from thermal conduction and radiation transport in a spherically converging geometry is different on the two scales. As a consequence, NIF-scale implosions show lower hot-spot density and mass ablation velocity, allowing for higher RTI growth. On the contrary, stabilization resulting from density-gradient enhancement, caused by reabsorption of radiation emitted from the hot spot, is higher on NIF implosions. Since the RTI mitigation related to thermal conduction and radiation transport scale oppositely with implosion size, the degradation of implosion performance caused by the deceleration RTI is similar for NIF and OMEGA targets. It is found that a minimum threshold for the no-alpha Lawson ignition parameter of chi(Omega) approximate to 0.2 at the OMEGA scale is required to demonstrate hydro-equivalent ignition at the NIF scale for symmetric direct-drive implosions. (C) 2015 AIP Publishing LLC. C1 [Bose, A.; Woo, K. M.; Betti, R.] Univ Rochester, Dept Phys, Laser Energet Lab, Rochester, NY 14623 USA. [Bose, A.; Woo, K. M.; Betti, R.] Univ Rochester, Fus Sci Ctr, Rochester, NY 14623 USA. [Nora, R.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Bose, A (reprint author), Univ Rochester, Dept Phys, Laser Energet Lab, 250 East River Rd, Rochester, NY 14623 USA. EM abos@lle.rochester.edu FU U.S. Department of Energy [DE-FC02-04ER54789, DE-NA0001944]; New York State Energy Research Development Authority; University of Rochester; Office of Fusion Energy Sciences FX The authors thank Dr. K. Anderson, Dr. J. Delettrez, and Dr. R. Epstein from the Laboratory of Laser Energetics, and Professor D. Shvarts from Ben-Gurion University of the Negev, for many useful discussions. This work has been supported by the U.S. Department of Energy under Cooperative Agreement Nos. DE-FC02-04ER54789 (Fusion Science Center supported by the Office of Fusion Energy Sciences) and DE-NA0001944 (National Nuclear Security Administration), the New York State Energy Research Development Authority, and the University of Rochester. The support of DOE does not constitute an endorsement by DOE of the views expressed in this article. NR 31 TC 2 Z9 2 U1 3 U2 14 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD JUL PY 2015 VL 22 IS 7 AR 072702 DI 10.1063/1.4923438 PG 12 WC Physics, Fluids & Plasmas SC Physics GA CO1RT UT WOS:000358933600040 ER PT J AU Daniels, J van Tilborg, J Gonsalves, AJ Schroeder, CB Benedetti, C Esarey, E Leemans, WP AF Daniels, J. van Tilborg, J. Gonsalves, A. J. Schroeder, C. B. Benedetti, C. Esarey, E. Leemans, W. P. TI Plasma density diagnostic for capillary-discharge based plasma channels SO PHYSICS OF PLASMAS LA English DT Article ID LASER-PULSES; ACCELERATORS AB The plasma density in discharged laser guiding structures, of order 10(18) cm(-3), is critical to laser-plasma accelerators. Here, we demonstrate a technique that uses spectral interferometry to measure the on-axis laser group velocity (and thus density) in cm-scale cylindrical hydrogen-discharge plasma channels by using laser pulses with a Gaussian transverse profile. Experimental density retrieval over a range of capillary parameters (density, length, and diameter) is presented. The accuracy (of order 8 x 10(16) cm(-3)) and shot-to-shot stability (of order 2 x 10(16) cm(-3)) of the diagnostic are discussed. (C) 2015 AIP Publishing LLC. C1 [Daniels, J.; van Tilborg, J.; Gonsalves, A. J.; Schroeder, C. B.; Benedetti, C.; Esarey, E.; Leemans, W. P.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Daniels, J.] Eindhoven Univ Technol, NL-5600 MB Eindhoven, Netherlands. RP van Tilborg, J (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM jvantilborg@lbl.gov RI Daniels, Joost/N-2378-2015; OI Daniels, Joost/0000-0002-9480-6077; Schroeder, Carl/0000-0002-9610-0166 FU U.S. Department of Energy, Office of Science, Office of High Energy Physics [DE-AC02-05CH11231] FX The authors acknowledge contributions by F. Mollica and the invaluable support from Scientific, Technical, and Administrative Staff at Lawrence Berkeley National Laboratory. This work was supported by the U.S. Department of Energy, Office of Science, Office of High Energy Physics, under Contract No. DE-AC02-05CH11231. NR 16 TC 1 Z9 1 U1 2 U2 10 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD JUL PY 2015 VL 22 IS 7 AR 073112 DI 10.1063/1.4926825 PG 6 WC Physics, Fluids & Plasmas SC Physics GA CO1RT UT WOS:000358933600058 ER PT J AU King, JD Strait, EJ Lazerson, SA Ferraro, NM Logan, NC Haskey, SR Park, JK Hanson, JM Lanctot, MJ Liu, YQ Nazikian, R Okabayashi, M Paz-Soldan, C Shiraki, D Turnbull, AD AF King, J. D. Strait, E. J. Lazerson, S. A. Ferraro, N. M. Logan, N. C. Haskey, S. R. Park, J. -K. Hanson, J. M. Lanctot, M. J. Liu, Yueqiang Nazikian, R. Okabayashi, M. Paz-Soldan, C. Shiraki, D. Turnbull, A. D. TI Experimental tests of linear and nonlinear three-dimensional equilibrium models in DIII-D SO PHYSICS OF PLASMAS LA English DT Article ID RESISTIVE WALL MODE; ENERGY PRINCIPLE; BOOZER MODEL; D TOKAMAK; HIGH-BETA; COLLISIONALITY REGIME; PLASMAS; STABILITY; CONFINEMENT; PERTURBATIONS AB DIII-D experiments using new detailed magnetic diagnostics show that linear, ideal magnetohydrodynamics (MHD) theory quantitatively describes the magnetic structure (as measured externally) of three-dimensional (3D) equilibria resulting from applied fields with toroidal mode number n = 1, while a nonlinear solution to ideal MHD force balance, using the VMEC code, requires the inclusion of n >= 1 to achieve similar agreement. These tests are carried out near ITER baseline parameters, providing a validated basis on which to exploit 3D fields for plasma control development. Scans of the applied poloidal spectrum and edge safety factor confirm that low-pressure, n = 1 non-axisymmetric tokamak equilibria are determined by a single, dominant, stable eigenmode. However, at higher beta, near the ideal kink mode stability limit in the absence of a conducting wall, the qualitative features of the 3D structure are observed to vary in a way that is not captured by ideal MHD. (C) 2015 AIP Publishing LLC. C1 [King, J. D.] Oak Ridge Inst Sci Educ, Oak Ridge, TN 37830 USA. [King, J. D.; Strait, E. J.; Ferraro, N. M.; Lanctot, M. J.; Paz-Soldan, C.; Turnbull, A. D.] Gen Atom, San Diego, CA 92816 USA. [Lazerson, S. A.; Logan, N. C.; Park, J. -K.; Nazikian, R.; Okabayashi, M.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Haskey, S. R.] Australian Natl Univ, Res Sch Phys Sci & Engn, Plasma Res Lab, Canberra, ACT 0200, Australia. [Hanson, J. M.] Columbia Univ, New York, NY 10027 USA. [Liu, Yueqiang] Culham Sci Ctr, Culham Ctr Fusion Energy, Abingdon OX14 3DB, Oxon, England. [Shiraki, D.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP King, JD (reprint author), Oak Ridge Inst Sci Educ, Oak Ridge, TN 37830 USA. EM kingjd@fusion.gat.com RI Lazerson, Samuel/E-4816-2014; Lanctot, Matthew J/O-4979-2016 OI Lazerson, Samuel/0000-0001-8002-0121; Lanctot, Matthew J/0000-0002-7396-3372 FU U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences [DE-FC02-04ER54698, DE-AC05-06OR23100, DE-AC02-09CH11466, DE-FG02-04ER54761, DE-AC05-00OR22725] FX This material is based upon work supported in part by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences, using the DIII-D National Fusion Facility, a DOE Office of Science user facility, under Award Nos. DE-FC02-04ER54698, DE-AC05-06OR23100, DE-AC02-09CH11466, DE-FG02-04ER54761, and DE-AC05-00OR22725. DIII-D data shown in this paper can be obtained in digital format by following the links at https://fusion.gat.com/global/D3D_DMP. The authors wish to thank R. J. Buttery for encouraging concurrent benchmarking of all codes tested. We also express gratitude to A. H. Reiman for fruitful validation discussions. NR 65 TC 13 Z9 13 U1 0 U2 11 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD JUL PY 2015 VL 22 IS 7 AR 072501 DI 10.1063/1.4923017 PG 9 WC Physics, Fluids & Plasmas SC Physics GA CO1RT UT WOS:000358933600027 ER PT J AU Montgomery, DS Albright, BJ Barnak, DH Chang, PY Davies, JR Fiksel, G Froula, DH Kline, JL MacDonald, MJ Sefkow, AB Yin, L Betti, R AF Montgomery, D. S. Albright, B. J. Barnak, D. H. Chang, P. Y. Davies, J. R. Fiksel, G. Froula, D. H. Kline, J. L. MacDonald, M. J. Sefkow, A. B. Yin, L. Betti, R. TI Use of external magnetic fields in hohlraum plasmas to improve laser-coupling (vol 22, 010703, 2015) SO PHYSICS OF PLASMAS LA English DT Correction C1 [Montgomery, D. S.; Albright, B. J.; Kline, J. L.; Yin, L.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Barnak, D. H.; Chang, P. Y.; Davies, J. R.; Fiksel, G.; Froula, D. H.; Betti, R.] Univ Rochester, Laser Energet Lab, Rochester, NY 14623 USA. [MacDonald, M. J.] Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA. [MacDonald, M. J.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Sefkow, A. B.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Montgomery, DS (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. NR 1 TC 1 Z9 1 U1 1 U2 5 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD JUL PY 2015 VL 22 IS 7 AR 079901 DI 10.1063/1.4926815 PG 1 WC Physics, Fluids & Plasmas SC Physics GA CO1RT UT WOS:000358933600086 ER PT J AU Si, JH Colgate, SA Sonnenfeld, RG Nornberg, MD Li, H Colgate, AS Westpfahl, DJ Romero, VD Martinic, J AF Si, Jiahe Colgate, Stirling A. Sonnenfeld, Richard G. Nornberg, Mark D. Li, Hui Colgate, Arthur S. Westpfahl, David J., Jr. Romero, Van D. Martinic, Joe TI Suppression of turbulent resistivity in turbulent Couette flow SO PHYSICS OF PLASMAS LA English DT Article ID SHEAR-DRIVEN TURBULENCE; RIGA DYNAMO EXPERIMENT; ALPHA-OMEGA-DYNAMO; MAGNETIC-FIELD; ROTATING CYLINDERS; REYNOLDS-NUMBER; TAYLOR FLOW; AGN DISKS; TRANSPORT; CONDUCTIVITY AB Turbulent transport in rapidly rotating shear flow very efficiently transports angular momentum, a critical feature of instabilities responsible both for the dynamics of accretion disks and the turbulent power dissipation in a centrifuge. Turbulent mixing can efficiently transport other quantities like heat and even magnetic flux by enhanced diffusion. This enhancement is particularly evident in homogeneous, isotropic turbulent flows of liquid metals. In the New Mexico dynamo experiment, the effective resistivity is measured using both differential rotation and pulsed magnetic field decay to demonstrate that at very high Reynolds number rotating shear flow can be described entirely by mean flow induction with very little contribution from correlated velocity fluctuations. (C) 2015 AIP Publishing LLC. C1 [Si, Jiahe; Sonnenfeld, Richard G.; Colgate, Arthur S.; Westpfahl, David J., Jr.; Romero, Van D.; Martinic, Joe] New Mexico Inst Min & Technol, Socorro, NM 87801 USA. [Colgate, Stirling A.; Li, Hui] Los Alamos Natl Lab, Los Alamos, NM 87544 USA. [Nornberg, Mark D.] Univ Wisconsin, Madison, WI 53706 USA. RP Si, JH (reprint author), New Mexico Inst Min & Technol, Socorro, NM 87801 USA. EM jsi@nmt.edu OI Westpfahl, David/0000-0001-8865-1817; Si, Jiahe/0000-0002-1683-2093; Sonnenfeld, Richard/0000-0003-0364-850X; Nornberg, Mark/0000-0003-1786-4190 FU NSF [1102444]; LANL; NM-Tech; LANL/LDRD program; DoE/OFES through CMSO; New Mexico Tech office of RED; Colgate family; CMSO [PHY 08-21899] FX We gratefully acknowledge the funding over the years by NSF (Grant No. 1102444), and LANL via a cooperative arrangement with NM-Tech. We offer heartfelt thanks to National Instruments for providing much of the data acquisition system. S.A.C. and H.L. also acknowledge the support by the LANL/LDRD program and DoE/OFES through CMSO. J.S. expresses thanks to the New Mexico Tech office of R&ED for bridging funds between grants. Several members of the Colgate family and other private investors have contributed funds and we are deeply appreciative of their commitment to this project. M.D.N. acknowledges the support from CMSO PHY 08-21899 covering his time for this project. NR 46 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD JUL PY 2015 VL 22 IS 7 AR 072304 DI 10.1063/1.4926582 PG 10 WC Physics, Fluids & Plasmas SC Physics GA CO1RT UT WOS:000358933600023 ER PT J AU Smalyuk, VA Weber, SV Casey, DT Clark, DS Field, JE Haan, SW Hammel, BA Hamza, AV Hoover, DE Landen, OL Nikroo, A Robey, HF Weber, CR AF Smalyuk, V. A. Weber, S. V. Casey, D. T. Clark, D. S. Field, J. E. Haan, S. W. Hammel, B. A. Hamza, A. V. Hoover, D. E. Landen, O. L. Nikroo, A. Robey, H. F. Weber, C. R. TI Hydrodynamic instability growth of three-dimensional, "native-roughness" modulations in x-ray driven, spherical implosions at the National Ignition Facility SO PHYSICS OF PLASMAS LA English DT Article AB Hydrodynamic instability growth experiments with three-dimensional (3-D) surface-roughness modulations were performed on plastic (CH) shell spherical implosions at the National Ignition Facility (NIF) [E. M. Campbell, R. Cauble, and B. A. Remington, AIP Conf. Proc. 429, 3 (1998)]. The initial capsule outer-surface roughness was similar to the standard specifications ("native roughness") used in a majority of implosions on NIF. The experiments included instability growth measurements of the perturbations seeded by the thin membranes (or tents) used to hold the capsules inside the hohlraums. In addition, initial modulations included two divots used as spatial fiducials to determine the convergence in the experiments and to check the accuracy of 3D simulations in calculating growth of known initial perturbations. The instability growth measurements were performed using x-ray, through-foil radiography of one side of the imploding shell, based on time-resolved pinhole imaging. Averaging over 30 similar images significantly increases the signal-to-noise ratio, making possible a comparison with 3-D simulations. At a convergence ratio of similar to 3, the measured tent and divot modulations were close to those predicted by 3-D simulations (within similar to 15%-20%), while measured 3-D, broadband modulations were similar to 3-4 times larger than those simulated based on the growth of the known imposed initial surface modulations. In addition, some of the measured 3-D features in x-ray radiographs did not resemble those characterized on the outer capsule surface before the experiments. One of the hypotheses to explain the results is based on the increased instability amplitudes due to modulations of the oxygen content in the bulk of the capsule. As the target assembly and handling procedures involve exposure to UV light, this can increase the uptake of the oxygen into the capsule, with irregularities in the oxygen seeding hydrodynamic instabilities. These new experimental results have prompted looking for ways to reduce UV light exposure during target fabrication. (C) 2015 AIP Publishing LLC. C1 [Smalyuk, V. A.; Weber, S. V.; Casey, D. T.; Clark, D. S.; Field, J. E.; Haan, S. W.; Hammel, B. A.; Hamza, A. V.; Landen, O. L.; Robey, H. F.; Weber, C. R.] Lawrence Livermore Natl Lab, NIF Directorate, Livermore, CA 94550 USA. [Hoover, D. E.; Nikroo, A.] Gen Atom, San Diego, CA 92186 USA. RP Smalyuk, VA (reprint author), Lawrence Livermore Natl Lab, NIF Directorate, Livermore, CA 94550 USA. FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. NR 40 TC 14 Z9 14 U1 0 U2 14 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD JUL PY 2015 VL 22 IS 7 AR 072704 DI 10.1063/1.4926591 PG 10 WC Physics, Fluids & Plasmas SC Physics GA CO1RT UT WOS:000358933600042 ER PT J AU Swadling, GF Lebedev, SV Harvey-Thompson, AJ Rozmus, W Burdiak, G Suttle, L Patankar, S Smith, RA Bennett, M Hall, GN Suzuki-Vidal, F Bland, S Yuan, J AF Swadling, G. F. Lebedev, S. V. Harvey-Thompson, A. J. Rozmus, W. Burdiak, G. Suttle, L. Patankar, S. Smith, R. A. Bennett, M. Hall, G. N. Suzuki-Vidal, F. Bland, S. Yuan, J. TI Interpenetration and deflection phenomena in collisions between supersonic, magnetized, tungsten plasma flows diagnosed using high resolution optical Thomson scattering SO PHYSICS OF PLASMAS LA English DT Article ID Z-PINCH EXPERIMENTS; FIELD; JETS AB An optical Thomson scattering diagnostic has been used to investigate collisions between supersonic, magnetized plasma flows, in particular the transition from collisionless to collisional interaction dynamics. These flows were produced using tungsten wire array z-pinches, driven by the 1.4 MA 240 ns Magpie generator at Imperial College London. Measurements of the collective-mode Thomson scattering ion-feature clearly indicate that the ablation flows are interpenetrating at 100 ns (after current start), and this interpenetration continues until at least 140 ns. The Thomson spectrum at 150 ns shows a clear change in the dynamics of the stream interactions, transitioning towards a collisional, shock-like interaction of the streams near the axis. The Thomson scattering data also provide indirect evidence of the presence of a significant toroidal magnetic field embedded in the "precursor" plasma near the axis of the array over the period 100-140 ns; these observations are in agreement with previous measurements [Swadling et al., Phys. Rev. Lett. 113, 035003 (2014)]. The Thomson scattering measurements at 150 ns suggest that this magnetic field must collapse at around the time the dense precursor column begins to form. (C) 2015 AIP Publishing LLC. C1 [Swadling, G. F.; Lebedev, S. V.; Burdiak, G.; Bland, S.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London SW7 2BW, England. [Harvey-Thompson, A. J.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Rozmus, W.] Univ Alberta, Dept Phys, Edmonton, AB T6G 2J1, Canada. [Yuan, J.] CAE, Inst Fluid Phys, Key Lab Pulsed Power, Mianyang 621900, Peoples R China. RP Swadling, GF (reprint author), Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London SW7 2BW, England. RI Swadling, George/S-5980-2016 OI Swadling, George/0000-0001-8370-8837 FU EPSRC by DOE [EP/G001324/1, DE-F03-02NA00057, DE-SC-0001063]; Sandia National Laboratories FX This work was supported in part by EPSRC Grant No. EP/G001324/1 by DOE cooperative Agreement Nos. DE-F03-02NA00057 and DE-SC-0001063 and by Sandia National Laboratories. NR 40 TC 2 Z9 2 U1 1 U2 11 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD JUL PY 2015 VL 22 IS 7 AR 072706 DI 10.1063/1.4926579 PG 17 WC Physics, Fluids & Plasmas SC Physics GA CO1RT UT WOS:000358933600044 ER PT J AU Matmon, A Hidy, AJ Vainer, S Crouvi, O Fink, D Erel, Y Horwitz, LK Chazan, M AF Matmon, Ari Hidy, Alan J. Vainer, Shlomy Crouvi, Onn Fink, David Erel, Yigal Horwitz, Liora K. Chazan, Michael CA ASTER Team TI New chronology for the southern Kalahari Group sediments with implications for sediment-cycle dynamics and early hominin occupation SO QUATERNARY RESEARCH LA English DT Article DE Kalahari Group; Cosmogenic isotope burial dating; Sedimentary cycles ID NUCLIDE PRODUCTION-RATES; COSMOGENIC NUCLIDES; CENTRAL-AFRICA; DRAINAGE EVOLUTION; WONDERWERK CAVE; MANGANESE FIELD; NAMIB DESERT; ENVIRONMENTAL-CHANGE; LANDSCAPE EVOLUTION; AMS STANDARDS AB Kalahari Group sediments accumulated in the Kalahari basin, which started forming during the breakup of Gondwana in the early Cretaceous. These sediments cover an extensive part of southern Africa and form a low-relief landscape. Current models assume that the Kalahari Group accumulated throughout the entire Cenozoic. However, chronology has been restricted to early-middle Cenozoic biostratigraphic correlations and to OSL dating of only the past similar to 300 ka. We present a new chronological framework that reveals a dynamic nature of sedimentation in the southern Kalahari. Cosmogenic burial ages obtained from a 55 m section of Kalahari Group sediments from the Mamatwan Mine, southern Kalahari, indicate that the majority of deposition at this location occurred rapidly at 1-1.2 Ma. This Pleistocene sequence overlies the Archaean basement, forming a significant hiatus that permits the possibility of many Phanerozoic cycles of deposition and erosion no longer preserved in the sedimentary record. Our data also establish the existence of a shallow early-middle Pleistocene water body that persisted for >450 ka prior to this rapid period of deposition. Evidence from neighboring archeological excavations in southern Africa suggests an association of high-density hominin occupation with this water body. (C) 2015 University of Washington. Published by Elsevier Inc. All rights reserved. C1 [Matmon, Ari; Hidy, Alan J.; Vainer, Shlomy; Erel, Yigal] Hebrew Univ Jerusalem, Fredy & Nadine Herrmann Inst Earth Sci, IL-91904 Jerusalem, Israel. [Hidy, Alan J.] Lawrence Livermore Natl Lab, Ctr Accelerator Mass Spectrometry, Livermore, CA 94550 USA. [Crouvi, Onn] Geol Survey Israel, IL-95501 Jerusalem, Israel. [Fink, David] Australian Nucl Sci & Technol Org, Menai, NSW 2234, Australia. [Horwitz, Liora K.] Hebrew Univ Jerusalem, Fac Life Sci, Natl Nat Hist Collect, IL-91904 Jerusalem, Israel. [Chazan, Michael] Univ Toronto, Dept Anthropol, Toronto, ON M5S 2S2, Canada. RP Matmon, A (reprint author), Hebrew Univ Jerusalem, Fredy & Nadine Herrmann Inst Earth Sci, Edmond J Safra Campus, IL-91904 Jerusalem, Israel. EM arimatmon@mail.huji.ac.il RI fink, David/A-9518-2012 FU Canadian Social Sciences and Humanities Research Council (SSHRC) [LLNL-JRNL-657937] FX We thank the Mamatwan Mine management and geologist, especially, P. Markram, G. van der Bank, D. Spies, A. Ntalo, and Dr. L. Jacobson for their assistance during fieldwork. We thank P. Bierman and an anonymous reviewer for their very constructive reviews. This project was partially funded by a grant from the Canadian Social Sciences and Humanities Research Council (SSHRC) awarded to M. Chazan. This is LLNL-JRNL-657937. NR 120 TC 1 Z9 1 U1 4 U2 12 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0033-5894 EI 1096-0287 J9 QUATERNARY RES JI Quat. Res. PD JUL PY 2015 VL 84 IS 1 BP 118 EP 132 DI 10.1016/j.yqres.2015.04.009 PG 15 WC Geography, Physical; Geosciences, Multidisciplinary SC Physical Geography; Geology GA CO0CE UT WOS:000358816900011 ER PT J AU Simpson, JT Hunter, SR Aytug, T AF Simpson, John T. Hunter, Scott R. Aytug, Tolga TI Superhydrophobic materials and coatings: a review SO REPORTS ON PROGRESS IN PHYSICS LA English DT Review DE superhydrophobic; volumetric; superhydrophilic; oleophobic; desalination; anti-biofouling; anti-corrosion ID SURFACES; LITHOGRAPHY; NANOSTRUCTURES; WETTABILITY; FABRICATION; WATER AB Over the past few years, the scientific community, as well as the world's coatings industry has seen the introduction of oxide/polymer-based superhydrophobic surfaces and coatings with exceptional water repellency. Online videos have caught the public's imagination by showing people walking through mud puddles without getting their tennis shoes wet or muddy, and water literally flying off coated surfaces. This article attempts to explain the basics of this behavior and to discuss and explain the latest superhydrophobic technological breakthroughs. Since superhydrophobic surfaces and coatings can fundamentally change how water interacts with surfaces, and the fact that earth is a water world, it can legitimately be said that this technology has the potential to literally change the world. C1 [Simpson, John T.] Univ Tennessee, Knoxville, TN 37996 USA. [Hunter, Scott R.; Aytug, Tolga] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Simpson, JT (reprint author), Univ Tennessee, Knoxville, TN 37996 USA. EM jsimpso4@utk.edu; huntersr@ornl.gov; aytugt@ornl.gov FU DARPA; USMC, Forrest Pilgrim; SOCOM; US Army; DOE FX I would like to thank the following associates, collaborators, and funding agencies:; My research team and supportive management while at Oak Ridge National Lab; Dr B D'Urso; Dr D Hill; Dr J Wadsworth; My research team and supportive management at University of Tennessee; S McNeany; Dr R Benson; Dr E Drumm; F Tompkins; Funding Agencies for our superhydrophobic technology research; DARPA-Leo Christodoulou; USMC-Matthew Koch, Forrest Pilgrim; SOCOM-Shawn Martin; US Army-Picatinny Arsenal; DOE-EERE; ORNL's superhydrophobic technology licensees; Dry Surface Coatings, LLC-Stewart Kennedy; United Protective Technologies-Brent Barbee, Marty Efird Lowes Corp. NR 53 TC 22 Z9 23 U1 41 U2 202 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0034-4885 EI 1361-6633 J9 REP PROG PHYS JI Rep. Prog. Phys. PD JUL PY 2015 VL 78 IS 8 AR 086501 DI 10.1088/0034-4885/78/8/086501 PG 14 WC Physics, Multidisciplinary SC Physics GA CO0RW UT WOS:000358861000003 PM 26181655 ER PT J AU Kletetschka, G Hruba, J AF Kletetschka, Gunther Hruba, Jolana TI Dissolved Gases and Ice Fracturing During the Freezing of a Multicellular Organism: Lessons from Tardigrades SO BIORESEARCH OPEN ACCESS LA English DT Article DE cryopreservation; cryptobiosis; DNA damage; extracellular damage; survival ID NEMATODE PANAGROLAIMUS-DAVIDI; EUTARDIGRADE RICHTERSIUS-CORONIFER; ANTARCTIC NEMATODE; CRYOPROTECTIVE DEHYDRATION; COLD TOLERANCE; ANHYDROBIOTIC TARDIGRADES; MILNESIUM-TARDIGRADUM; RADIATION TOLERANCE; BELGICA-ANTARCTICA; IONIZING-RADIATION AB Three issues are critical for successful cryopreservation of multicellular material: gases dissolved in liquid, thermal conductivity of the tissue, and localization of microstructures. Here we show that heat distribution is controlled by the gas amount dissolved in liquids and that when changing the liquid into solid, the dissolved gases either form bubbles due to the absence of space in the lattice of solids and/or are migrated toward the concentrated salt and sugar solution at the cost of amount of heat required to be removed to complete a solid-state transition. These factors affect the heat distribution in the organs to be cryopreserved. We show that the gas concentration issue controls fracturing of ice when freezing. There are volumetric changes not only when changing the liquid into solid (volume increases) but also reduction of the volume when reaching lower temperatures (volume decreases). We discuss these issues parallel with observations of the cryosurvivability of multicellular organisms, tardigrades, and discuss their analogy for cryopreservation of large organs. C1 [Kletetschka, Gunther; Hruba, Jolana] Charles Univ Prague, Fac Sci, Prague 12843 2, Czech Republic. [Kletetschka, Gunther] Acad Sci Czech Republic, Inst Geol, Vvi, Prague, Czech Republic. [Kletetschka, Gunther] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Kletetschka, G (reprint author), Charles Univ Prague, Fac Sci, Albertov 6, Prague 12843 2, Czech Republic. EM kletetschka@gmail.com RI Kletetschka, Gunther/C-9996-2011 OI Kletetschka, Gunther/0000-0002-0645-9037 NR 68 TC 0 Z9 0 U1 6 U2 27 PU MARY ANN LIEBERT, INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 2164-7844 EI 2164-7860 J9 BIORESEARCH OPEN ACC JI BioResearch Open Access PD JUL PY 2015 VL 4 IS 1 BP 209 EP 217 DI 10.1089/biores.2015.0008 PG 9 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA CL9QD UT WOS:000357312300020 PM 26309797 ER PT J AU ElSohly, AM Francis, MB AF ElSohly, Adel M. Francis, Matthew B. TI Development of Oxidative Coupling Strategies for Site-Selective Protein Modification SO ACCOUNTS OF CHEMICAL RESEARCH LA English DT Review ID SURFACE MODIFICATION; O-AMINOPHENOLS; CROSS-LINKING; BIOCONJUGATION; CHEMISTRY; BACTERIOPHAGE-MS2; ANILINES; CELLS; DNA; INTEGRATION AB CONSPECTUS: As the need to prepare ever more complex but well-defined materials has increased, a similar need for reliable synthetic strategies to access them has arisen. Accordingly, recent years have seen a steep increase in the development of reactions that can proceed under mild conditions, in aqueous environments, and with low concentrations of reactants. To enable the preparation of well-defined biomolecular materials with novel functional properties, our laboratory has a continuing interest in developing new bioconjugation reactions. A particular area of focus has been the development of oxidative reactions to perform rapid site- and chemoselective couplings of electron rich aromatic species with both unnatural and canonical amino acid residues. This Account details the evolution of oxidative coupling reactions in our laboratory, from initial concepts to highly efficient reactions, focusing on the practical aspects of performing and developing reactions of this type. We begin by discussing our rationale for choosing an oxidative coupling approach to bioconjugation, highlighting many of the benefits that such strategies provide. In addition, we discuss the general workflow we have adopted to discover protein modification reactions directly in aqueous media with biologically relevant substrates. We then review our early explorations of periodate-mediated oxidative couplings between primary anilines and p-phenylenediamine substrates, highlighting the most important lessons that were garnered from these studies. Key mechanistic insights allowed us to develop second-generation reactions between anilines and anisidine derivatives. In addition, we summarize the methods we have used for the introduction of aniline groups onto protein substrates for modification. The development of an efficient and chemoselective coupling of anisidine derivatives with tyrosine residues in the presence of ceric ammonium nitrate is next described. Here, our logic and workflow are used to highlight the challenges and opportunities associated with the optimization of site-selective chemistries that target native amino acids. We close by discussing the most recent reports from our laboratory that have capitalized on the unique reactivity of o-iminoquinone derivatives. We discuss the various oxidants and conditions that can be used to generate these reactive intermediates from appropriate precursors, as well as the product distributions that result. We also describe our work to determine the nature of iminoquinone reactivity with proteins and peptides bearing free N-terminal amino groups. Through this discussion, we hope to facilitate the use of oxidative approaches to protein bioconjugation, as well as inspire the discovery of new reactions for the site-selective modification of biomolecular targets. C1 [ElSohly, Adel M.; Francis, Matthew B.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Francis, Matthew B.] Lawrence Berkeley Natl Labs, Mol Foundry, Berkeley, CA 94720 USA. RP Francis, MB (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM mbfrancis@berkeley.edu FU NIH [R01 GM072700]; DOD Breast Cancer Research Program [BC061995]; DOD BCRP postdoctoral fellowship [W81XWH-14-0400] FX The development of these reactive strategies was generously supported by the NIH (Grant R01 GM072700) and the DOD Breast Cancer Research Program (Grant BC061995). A.M.E. was supported by a DOD BCRP postdoctoral fellowship (Grant W81XWH-14-0400). The authors thank Dr. Allie Obermeyer and Dr. Kristen Seim for very helpful discussions. NR 40 TC 6 Z9 7 U1 12 U2 57 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0001-4842 EI 1520-4898 J9 ACCOUNTS CHEM RES JI Accounts Chem. Res. PD JUL PY 2015 VL 48 IS 7 BP 1971 EP 1978 DI 10.1021/acs.accounts.5b00139 PG 8 WC Chemistry, Multidisciplinary SC Chemistry GA CN6PJ UT WOS:000358556400021 PM 26057118 ER PT J AU Bullock, RM Helm, ML AF Bullock, R. Morris Helm, Monte L. TI Molecular Electrocatalysts for Oxidation of Hydrogen Using Earth-Abundant Metals: Shoving Protons Around with Proton Relays SO ACCOUNTS OF CHEMICAL RESEARCH LA English DT Review ID COUPLED ELECTRON-TRANSFER; PENDANT AMINES; HETEROLYTIC CLEAVAGE; H-2 OXIDATION; COORDINATION SPHERES; TRANSITION-METALS; ACTIVE-SITE; FUEL-CELLS; COMPLEXES; NICKEL AB Sustainable, carbon-neutral energy is needed to supplant the worldwide reliance on fossil fuels in order to address the persistent problem of increasing emissions of CO2. Solar and wind energy are intermittent, highlighting the need to develop energy storage on a huge scale. Electrocatalysts provide a way to convert between electrical energy generated by renewable energy sources and chemical energy in the form of chemical bonds. Oxidation of hydrogen to give two electrons and two protons is carried out in fuel cells, but the typical catalyst is platinum, a precious metal of low earth abundance and high cost. In nature, hydrogenases based on iron or iron/nickel reversibly oxidize hydrogen with remarkable efficiencies and rates. Functional models of these enzymes have been synthesized with the goal of achieving electrocatalytic H-2 oxidation using inexpensive, earth-abundant metals along with a key feature identified in the [FeFe]-hydrogenase: an amine base positioned near the metal. The diphosphine ligands (P2NR)-N-R'2 (1,5-diaza-3,7-diphosphacyclooctane with alkyl or aryl groups on the P and N atoms) are used as ligands in Ni, Fe, and Mn complexes. The pendant amines facilitate binding and heterolytic cleavage of H-2, placing the hydride on the metal and the proton on the amine. The pendant amines also serve as proton relays, accelerating intramolecular and intermolecular proton transfers. Electrochemical oxidations and deprotonations by an exogeneous amine base lead to catalytic cycles for oxidation of H-2 (1 atm) at room temperature for catalysts derived from [Ni((P2NR)-N-Cy'(2))(2)](2+), (CpC6Fe)-Fe-F5((P2N2Bn)-N-tBu)H, and MnH((P2N2Bn)-N-Ph)(bppm)(CO) [bppm = (PAr2F)(2)CH2]. In the oxidation of H-2 catalyzed by [Ni((P2NR)-N-Cy'(2))(2)](2+), the initial product observed experimentally is a Ni(0) complex in which two of the pendant amines are protonated. Two different pathways can occur from this intermediate; deprotonation followed by oxidation occurs with a lower overpotential than the alternate pathway involving oxidation followed by deprotonation. The Mn cation [Mn(PPh2N2Bn)(bppm)(CO)](+) mediates the rapid (>10(4) s(-1) at -95 degrees C), reversible heterolytic cleavage of H-2. Obtaining the optimal benefit of pendant amines incorporated into the ligand requires that the pendant amine be properly positioned to interact with a M-H or M(H-2) bond. In addition, ligands are ideally selected such that the hydride-acceptor ability of the metal and the basicity of a pendant are tuned to give low barriers for heterolytic cleavage of the HH bond and subsequent proton transfer reactions. Using these principles allows the rational design of electrocatalysts for H-2 oxidation using earth-abundant metals. C1 [Bullock, R. Morris; Helm, Monte L.] Pacific NW Natl Lab, Div Phys Sci, Ctr Mol Electrocatalysis, Richland, WA 99352 USA. RP Bullock, RM (reprint author), Pacific NW Natl Lab, Div Phys Sci, Ctr Mol Electrocatalysis, POB 999,K2-12, Richland, WA 99352 USA. EM morris.bullock@pnnl.gov RI Bullock, R. Morris/L-6802-2016 OI Bullock, R. Morris/0000-0001-6306-4851 FU Center for Molecular Electrocatalysis, an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences FX We thank Dan DuBois for many helpful discussions and our co-workers for their dedicated efforts that produced the results described here. This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy. NR 52 TC 28 Z9 28 U1 16 U2 79 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0001-4842 EI 1520-4898 J9 ACCOUNTS CHEM RES JI Accounts Chem. Res. PD JUL PY 2015 VL 48 IS 7 BP 2017 EP 2026 DI 10.1021/acs.accounts.5b00069 PG 10 WC Chemistry, Multidisciplinary SC Chemistry GA CN6PJ UT WOS:000358556400025 PM 26079983 ER PT J AU Zee, DZ Chantarojsiri, T Long, JR Chang, CJ AF Zee, David Z. Chantarojsiri, Teera Long, Jeffrey R. Chang, Christopher J. TI Metal-Polypyridyl Catalysts for Electro- and Photochemical Reduction of Water to Hydrogen SO ACCOUNTS OF CHEMICAL RESEARCH LA English DT Review ID MOLECULAR COBALT COMPLEX; 2ND COORDINATION SPHERE; MOLYBDENUM-OXO CATALYST; H-2 EVOLUTION; ELECTROCATALYTIC REDUCTION; GENERATING HYDROGEN; OXIDATIVE ADDITION; FUNCTIONAL MODELS; AQUEOUS-SOLUTION; MOS2 AB Climate change, rising global energy demand, and energy security concerns motivate research into alternative, sustainable energy sources. In principle, solar energy can meet the worlds energy needs, but the intermittent nature of solar illumination means that it is temporally and spatially separated from its consumption. Developing systems that promote solar-to-fuel conversion, such as via reduction of protons to hydrogen, could bridge this production-consumption gap, but this effort requires invention of catalysts that are cheap, robust, and efficient and that use earth-abundant elements. In this context, catalysts that utilize water as both an earth-abundant, environmentally benign substrate and a solvent for proton reduction are highly desirable. This Account summarizes our studies of molecular metal-polypyridyl catalysts for electrochemical and photochemical reduction of protons to hydrogen. Inspired by concept transfer from biological and materials catalysts, these scaffolds are remarkably resistant to decomposition in water, with fast and selective electrocatalytic and photocatalytic conversions that are sustainable for several days. Their modular nature offers a broad range of opportunities for tuning reactivity by molecular design, including altering ancillary ligand electronics, denticity, and/or incorporating redox-active elements. Our first-generation complex, [(PY4)Co(CH3CN)(2)](2+), catalyzes the reduction of protons from a strong organic acid to hydrogen in 50% water. Subsequent investigations with the pentapyridyl ligand PY5Me(2) furnished molybdenum and cobalt complexes capable of catalyzing the reduction of water in fully aqueous electrolyte with 100% Faradaic efficiency. Of particular note, the complex [(PY5Me(2))MoO](2+) possesses extremely high activity and durability in neutral water, with turnover frequencies at least 8500 mol of H-2 per mole of catalyst per hour and turnover numbers over 600 000 mol of H-2 per mole of catalyst over 3 days at an overpotential of 1.0 V, without apparent loss in activity. Replacing the oxo moiety with a disulfide affords [(PY5Me(2))MoS2](2+), which bears a molecular MoS2 triangle that structurally and functionally mimics bulk molybdenum disulfide, improving the catalytic activity for water reduction. In water buffered to pH 3, catalysis by [(PY5Me(2))MoS2](2+) onsets at 400 mV of overpotential, whereas [(PY5Me(2))MoO](2+) requires an additional 300 mV of driving force to operate at the same current density. Metalation of the PY5Me(2) ligand with an appropriate Co(ii) source also furnishes electrocatalysts that are active in water. Importantly, the onset of catalysis by the [(PY5Me(2))Co(H2O)](2+) series is anodically shifted by introducing electron-withdrawing functional groups on the ligand. With the [(bpy2PYMe)Co(CF3SO3)](1+) system, we showed that introducing a redox-active moiety can facilitate the electro- and photochemical reduction of protons from weak acids such as acetic acid or water. Using a high-throughput photochemical reactor, we examined the structure-reactivity relationship of a series of cobalt(ii) complexes. Taken together, these findings set the stage for the broader application of polypyridyl systems to catalysis under environmentally benign aqueous conditions. C1 [Zee, David Z.; Chantarojsiri, Teera; Long, Jeffrey R.; Chang, Christopher J.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Chang, Christopher J.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Chang, Christopher J.] Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA. [Chang, Christopher J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Long, Jeffrey R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Long, Jeffrey R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Joint Ctr Artificial Photosynth, Berkeley, CA 94720 USA. RP Long, JR (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM jrlong@berkeley.edu; chrischang@berkeley.edu FU DOE/LBNL [101528-002]; Center for Artificial Photosynthesis, a DOE Energy Innovation Hub through Office of Science of the U.S. Department of Energy [DE-SC0004993]; DPST scholarship from Thai government; National Science Foundation FX Our work in sustainable energy catalysis is funded by DOE/LBNL Grant 101528-002 (T.C. and C.J.C.) and the Joint Center for Artificial Photosynthesis, a DOE Energy Innovation Hub, supported through the Office of Science of the U.S. Department of Energy award DE-SC0004993 (D.Z.Z. and J.R.L.). T.C. is supported by a DPST scholarship from the Thai government. D.Z.Z. thanks the National Science Foundation for a Graduate Research Fellowship. C.J.C. is an Investigator with the Howard Hughes Medical Institute. NR 71 TC 35 Z9 35 U1 36 U2 160 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0001-4842 EI 1520-4898 J9 ACCOUNTS CHEM RES JI Accounts Chem. Res. PD JUL PY 2015 VL 48 IS 7 BP 2027 EP 2036 DI 10.1021/acs.accounts.5b00082 PG 10 WC Chemistry, Multidisciplinary SC Chemistry GA CN6PJ UT WOS:000358556400026 PM 26101803 ER PT J AU Hanson, SK Baker, RT AF Hanson, Susan K. Baker, R. Tom TI Knocking on Wood: Base Metal Complexes as Catalysts for Selective Oxidation of Lignin Models and Extracts SO ACCOUNTS OF CHEMICAL RESEARCH LA English DT Review ID AEROBIC ALCOHOL OXIDATION; O BOND-CLEAVAGE; MOLECULAR-OXYGEN ACTIVATION; NITROXYL RADICALS; VANADIUM CATALYST; VERATRYL ALCOHOL; AQUEOUS-MEDIA; IONIC LIQUID; COPPER; MECHANISM AB CONSPECTUS: This work began as part of a biomass conversion catalysis project with UC Santa Barbara funded by the first NSF Chemical Bonding Center, CATSB. Recognizing that catalytic aerobic oxidation of diol C-C bonds could potentially be used to break down lignocellulose, we began to synthesize oxovanadiurn complexes and explore their fundamental reactivity. Of course there were theories regarding the oxidation mechanism, but our mechanistic studies soon revealed a number of surprises of the type that keep all chemists coming back to the bench! We realized that these reactions were also exciting in that they actually used the oxygen-on-every-carbon property of biomass-derived molecules to control the selectivity of the oxidation. When we found that these oxovanadium complexes tended to convert sugars predominantly to formic acid and carbon dioxide, we replaced one of the OH groups with an ether and entered the dark world of lignin chemistry. In this Account, we summarize results from our collaboration and from our individual labs. In particular, we show that oxidation selectivity (C-C vs C-O bond cleavage) of lignin models using air and vanadium complexes depends on the ancillary ligands, the reaction solvent, and the substrate structure (i.e., phenolic vs non-phenolic). Selected vanadium complexes in the presence of added base serve as effective alcohol oxidation catalysts via a novel base-assisted dehydrogenation pathway. In contrast, copper catalysts effect direct C-C bond cleavage of these lignin models, presumably through a radical pathway. The most active vanadium catalyst exhibits unique activity for the depolymerization of organosolv lignin. After Weckhuysen's excellent 2010 review on lignin valorization, the number of catalysis studies and approaches on both lignin models and extracts has expanded rapidly. Today we are seeing new start-ups and lignin production facilities sprouting up across the globe as we all work to prove wrong the old pulp and paper chemist's adage: you can make anything from lignin except money! C1 [Hanson, Susan K.] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. [Baker, R. Tom] Univ Ottawa, Dept Chem, Ottawa, ON K1N 6N5, Canada. [Baker, R. Tom] Univ Ottawa, Ctr Catalysis Res & Innovat, Ottawa, ON K1N 6N5, Canada. RP Hanson, SK (reprint author), Los Alamos Natl Lab, Div Chem, POB 1663, Los Alamos, NM 87545 USA. EM skhanson@lanl.gov; rbaker@uottawa.ca FU NSERC Biomaterials and Chemicals strategic research network (Lignoworks); Los Alamos National Laboratory LDRD [20100160ER]; NSF Center for Enabling New Technologies through Catalysis FX R.T.B. thanks the NSERC Biomaterials and Chemicals strategic research network (Lignoworks) for support of this work and the Canada Foundation for Innovation, Ontario Ministry of Economic Development and Innovation, Canada Research Chairs and the University of Ottawa for providing essential infrastructure. S.K.H. thanks Los Alamos National Laboratory LDRD (20100160ER) and the NSF Center for Enabling New Technologies through Catalysis for funding. NR 56 TC 23 Z9 25 U1 28 U2 172 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0001-4842 EI 1520-4898 J9 ACCOUNTS CHEM RES JI Accounts Chem. Res. PD JUL PY 2015 VL 48 IS 7 BP 2037 EP 2048 DI 10.1021/acs.accounts.5b00104 PG 12 WC Chemistry, Multidisciplinary SC Chemistry GA CN6PJ UT WOS:000358556400027 PM 26151603 ER PT J AU Stacchiola, DJ AF Stacchiola, Dario J. TI Tuning the Properties of Copper-Based Catalysts Based on Molecular in Situ Studies of Model Systems SO ACCOUNTS OF CHEMICAL RESEARCH LA English DT Review ID WATER-GAS SHIFT; SCANNING-TUNNELING-MICROSCOPY; RAY PHOTOELECTRON-SPECTROSCOPY; INFRARED REFLECTION-ABSORPTION; CARBON-MONOXIDE OXIDATION; MIXED-METAL OXIDE; SURFACE SCIENCE; METHANOL SYNTHESIS; REACTION-KINETICS; NANOMETER LEVEL AB Studying catalytic processes at the molecular level is extremely challenging, due to the structural and chemical complexity of the materials used as catalysts and the presence of reactants and products in the reactors environment. The most common materials used on catalysts are transition metals and their oxides. The importance of multifunctional active sites at metal/oxide interfaces has been long recognized, but a molecular picture of them based on experimental observations is only recently emerging. The initial approach to interrogate the surface chemistry of catalysts at the molecular level consisted of studying metal single crystals as models for reactive metal centers, moving later to single crystal or well-defined thin film oxides. The natural next iteration consisted in the deposition of metal nanoparticles on well-defined oxide substrates. Metal nanoparticles contain undercoordinated sites, which are more reactive. It is also possible to create architectures where oxide nanoparticles are deposited on top of metal single crystals, denominated inverse catalysts, leading in this case to a high concentration of reactive cationic sites in direct contact with the underlying fully coordinated metal atoms. Using a second oxide as a support (host), a multifunctional configuration can be built in which both metal and oxide nanoparticles are located in close proximity. Our recent studies on copper-based catalysts are presented here as an example of the application of these complementary model systems, starting from the creation of undercoordinated sites on Cu(111) and Cu2O(111) surfaces, continuing with the formation of mixed-metal copper oxides, the synthesis of ceria nanoparticles on Cu(111) and the codeposition of Cu and ceria nanoparticles on TiO2(110). Catalysts have traditionally been characterized before or after reactions and analyzed based on static representations of surface structures. It is shown here how dynamic changes on a catalysts chemical state and morphology can be followed during a reaction by a combination of in situ microscopy and spectroscopy. In addition to determining the active phase of a catalyst by in situ methods, the presence of weakly adsorbed surface species or intermediates generated only in the presence of reactants can be detected, allowing in turn the comparison of experimental results with first principle modeling of specific reaction mechanisms. Three reactions are used to exemplify the approach: CO oxidation (CO + 1/2O(2) -> CO2), water gas shift reaction (WGSR) (CO + H2O -> CO2 + H-2), and methanol synthesis (CO2 + 3H(2) -> CH3OH + H2O). During CO oxidation, the full conversion of Cu-0 to Cu2+ deactivates an initially outstanding catalyst. This can be remedied by the formation of a TiCuOx mixed-oxide that protects the presence of active partially oxidized Cu+ cations. It is also shown that for the WGSR a switch occurs in the reaction mechanism, going from a redox process on Cu(111) to a more efficient associative pathway at the interface of ceria nanoparticles deposited on Cu(111). Similarly, the activation of CO2 at the ceria/Cu(111) interface allows its facile hydrogenation to methanol. Our combined studies emphasize the need of searching for optimal metal/oxide interfaces, where multifunctional sites can lead to new efficient catalytic reaction pathways. C1 Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Stacchiola, DJ (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RI Stacchiola, Dario/B-1918-2009 OI Stacchiola, Dario/0000-0001-5494-3205 FU U.S. Department of Energy, Office of Basic Energy Science [DE-SC0012704] FX All the work presented here has been carried out in the framework of the Catalysis group research program at Brookhaven National Laboratory. The author is deeply grateful of the close collaboration with Jose Rodriguez, Ping Liu, Sanjaya Senanayake, and all the students and postdocs from the Catalysis Group, who together with our external collaborators are responsible for the experiments presented here. The work at BNL was financed by the U.S. Department of Energy, Office of Basic Energy Science (DE-SC0012704). NR 42 TC 9 Z9 9 U1 27 U2 136 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0001-4842 EI 1520-4898 J9 ACCOUNTS CHEM RES JI Accounts Chem. Res. PD JUL PY 2015 VL 48 IS 7 BP 2151 EP 2158 DI 10.1021/acs.accounts.5b00200 PG 8 WC Chemistry, Multidisciplinary SC Chemistry GA CN6PJ UT WOS:000358556400039 PM 26103058 ER PT J AU Fix, MB Smith, JA Tucker, DL Wester, W Annis, J AF Fix, M. B. Smith, J. A. Tucker, D. L. Wester, W. Annis, J. TI Discovery of a new blue quasar: SDSS J022218.03-062511.1 SO ASTRONOMISCHE NACHRICHTEN LA English DT Article DE quasars: individual: (SDSS J022218.03-062511.1); techniques: spectroscopic ID DIGITAL-SKY-SURVEY; DATA RELEASE; TARGET SELECTION; LUMINOSITY FUNCTION; WHITE-DWARFS; CATALOG; EVOLUTION; GALAXIES; EXPLORER; MISSION AB We report the discovery of a bright blue quasar: SDSS J022218.03-062511.1. This object was discovered spectroscopically while searching for hot white dwarfs that may be used as calibration sources for large sky surveys such as the Dark Energy Survey or the Large Synoptic Survey Telescope project. We present the calibrated spectrum, spectral line shifts and report a redshift of z = 0.521 +/- 0.0015 and a rest-frame g-band luminosity of 8.71x10(11) L-circle dot. (C) 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim C1 [Fix, M. B.; Smith, J. A.] Austin Peay State Univ, Dept Phys & Astron, Clarksville, TN 37044 USA. [Tucker, D. L.; Wester, W.; Annis, J.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Smith, JA (reprint author), Austin Peay State Univ, Dept Phys & Astron, Clarksville, TN 37044 USA. EM smithj@apsu.edu OI Smith, J. Allyn/0000-0002-6261-4601; Tucker, Douglas/0000-0001-7211-5729 FU Department of Energy Visiting Faculty Program; Fermilab Center for Particle Astrophysics; Alfred P. Sloan Foundation; National Science Foundation; U.S. Department of Energy Office of Science; National Aeronautics and Space Administration; NASA [NAS5-98034] FX Partial support for MBF and JAS was provided by the Department of Energy Visiting Faculty Program run by the Department of Energy Office of Science. Additional support came from the Fermilab Center for Particle Astrophysics. Based on observations obtained with the Apache Point Observatory 3.5-meter telescope, which is owned and operated by the Astrophysical Research Consortium. DIStools is used for spectral reductions at Apache Point and was developed by Gordon Richards while at the University of Chicago.; Funding for SDSS-III has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, and the U.S. Department of Energy Office of Science. The SDSS-III web site is http://www.sdss3.org/.; This publication makes use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation.; This research has made use of the NASA/IPAC Extragalactic Database (NED), which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. This research has made use of the SIMBAD database, operated at CDS, Strasbourg, France. This research made use of data from the GALEX mission. GALEX is a NASA small explorer, launched in 2003 April. It is operated for NASA by Caltech under NASA contract NAS5-98034. This publication makes use of data products from the Wide-field Infrared Survey Explorer, which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory California Institute of Technology, funded by the National Aeronautics and Space Administration. The TOPCAT software package10 was used in much of the plotting and analysis in this work. NR 32 TC 0 Z9 0 U1 0 U2 1 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 0004-6337 EI 1521-3994 J9 ASTRON NACHR JI Astro. Nachr. PD JUL PY 2015 VL 336 IS 6 BP 614 EP 618 DI 10.1002/asna.201512173 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CN8TG UT WOS:000358715500009 ER PT J AU Aartsen, MG Ackermann, M Adams, J Aguilar, JA Ahlers, M Ahrens, M Altmann, D Anderson, T Archinger, M Arguelles, C Arlen, TC Auffenberg, J Bai, X Barwick, SW Baum, V Bay, R Baker, M Beatty, JJ Tjus, JB Becker, KH BenZvi, S Berghaus, P Berley, D Bernardini, E Bernhard, A Besson, DZ Binder, G Bindig, D Bissok, M Blaufuss, E Blumenthal, J Boersma, DJ Bohm, C Bos, F Bose, D Boser, S Botner, O Brayeur, L Bretz, HP Brown, AM Buzinsky, N Casey, J Casier, M Cheung, E Chirkin, D Christov, A Christy, B Clark, K Classen, L Clevermann, F Coenders, S Cowen, DF Silva, AHC Daughhetee, J Davis, JC Day, M de Andre, JPAM De Clercq, C Dembinski, H De Ridder, S Desiati, P de Vries, KD de Wasseige, G de With, M DeYoung, T Diaz-Velez, JC Dumm, JP Dunkman, M Eagan, R Eberhardt, B Ehrhardt, T Eichmann, B Eisch, J Euler, S Evenson, PA Fadiran, O Fazely, AR Fedynitch, A Feintzeig, J Felde, J Filimonov, K Finley, C Fischer-Wasels, T Flis, S Frantzen, K Fuchs, T Gaisser, TK Gaior, R Gallagher, J Gerhardt, L Gier, D Gladstone, L Glusenkamp, T Goldschmidt, A Golup, G Gonzalez, JG Goodman, JA Gora, D Grant, D Gretskov, P Groh, JC Gross, A Ha, C Haack, C Ismail, AH Hallen, P Hallgren, A Halzen, F Hanson, K Hebecker, D Heereman, D Heinen, D Helbing, K Hellauer, R Hellwig, D Hickford, S Hignight, J Hill, GC Hoffman, KD Hoffmann, R Homeier, A Hoshina, K Huang, F Huelsnitz, W Hulth, PO Hultqvist, K In, S Ishihara, A Jacobi, E Jacobsen, J Japaridze, GS Jero, K Jurkovic, M Kaminsky, B Kappes, A Karg, T Karle, A Kauer, M Keivani, A Kelley, JL Kheirandish, A Kiryluk, J Klas, J Klein, SR Kohne, JH Kohnen, G Kolanoski, H Koob, A Kopke, L Kopper, C Kopper, S Koskinen, DJ Kowalski, M Krings, K Kroll, G Kroll, M Kunnen, J Kurahashi, N Kuwabara, T Labare, M Lanfranchi, JL Larsen, DT Larson, MJ Lesiak-Bzdak, M Leuermann, M Lunemann, J Madsen, J Maggi, G Mahn, KBM Maruyama, R Mase, K Matis, HS Maunu, R McNally, F Meagher, K Medici, M Meli, A Meures, T Miarecki, S Middell, E Middlemas, E Milke, N Miller, J Mohrmann, L Montaruli, T Morse, R Nahnhauer, R Naumann, U Niederhausen, H Nowicki, SC Nygren, DR Obertacke, A Olivas, A Omairat, A O'Murchadha, A Palczewski, T Paul, L Pepper, JA de los Heros, CP Pfendner, C Pieloth, D Pinat, E Posselt, J Price, PB Przybylski, GT Putz, J Quinnan, M Radel, L Rameez, M Rawlins, K Redl, P Rees, I Reimann, R Relich, M Resconi, E Rhode, W Richman, M Riedel, B Robertson, S Rodrigues, JP Rongen, M Rott, C Ruhe, T Ruzybayev, B Ryckbosch, D Saba, SM Sander, HG Sandroos, J Santander, M Sarkar, S Schatto, K Scheriau, F Schmidt, T Schmitz, M Schoenen, S Schoneberg, S Schonwald, A Schukraft, A Schulte, L Schulz, O Seckel, D Sestayo, Y Seunarine, S Shanidze, R Smith, MWE Soldin, D Spiczak, GM Spiering, C Stamatikos, M Stanev, T Stanisha, NA Stasik, A Stezelberger, T Stokstad, RG Stossl, A Strahler, EA Strom, R Strotjohann, NL Sullivan, GW Sutherland, M Taavola, H Taboada, I Tamburro, A Ter-Antonyan, S Terliuk, A Tesic, G Tilav, S Toale, PA Tobin, MN Tosi, D Tselengidou, M Unger, E Usner, M Vallecorsa, S van Eijndhoven, N Vandenbroucke, J van Santen, J Vanheule, S Vehring, M Voge, M Vraeghe, M Walck, C Wallraff, M Weaver, C Wellons, M Wendt, C Westerhoff, S Whelan, BJ Whitehorn, N Wichary, C Wiebe, K Wiebusch, CH Williams, DR Wissing, H Wolf, M Wood, TR Woschnagg, K Xu, DL Xu, XW Xu, Y Yanez, JP Yodh, G Yoshida, S Zarzhitsky, P Ziemann, J Zoll, M AF Aartsen, M. G. Ackermann, M. Adams, J. Aguilar, J. A. Ahlers, M. Ahrens, M. Altmann, D. Anderson, T. Archinger, M. Arguelles, C. Arlen, T. C. Auffenberg, J. Bai, X. Barwick, S. W. Baum, V. Bay, R. Baker, M. Beatty, J. J. Tjus, J. Becker Becker, K. -H. BenZvi, S. Berghaus, P. Berley, D. Bernardini, E. Bernhard, A. Besson, D. Z. Binder, G. Bindig, D. Bissok, M. Blaufuss, E. Blumenthal, J. Boersma, D. J. Bohm, C. Bos, F. Bose, D. Boeser, S. Botner, O. Brayeur, L. Bretz, H. -P. Brown, A. M. Buzinsky, N. Casey, J. Casier, M. Cheung, E. Chirkin, D. Christov, A. Christy, B. Clark, K. Classen, L. Clevermann, F. Coenders, S. Cowen, D. F. Silva, A. H. Cruz Daughhetee, J. Davis, J. C. Day, M. de Andre, J. P. A. M. De Clercq, C. Dembinski, H. De Ridder, S. Desiati, P. de Vries, K. D. de Wasseige, G. de With, M. DeYoung, T. Diaz-Velez, J. C. Dumm, J. P. Dunkman, M. Eagan, R. Eberhardt, B. Ehrhardt, T. Eichmann, B. Eisch, J. Euler, S. Evenson, P. A. Fadiran, O. Fazely, A. R. Fedynitch, A. Feintzeig, J. Felde, J. Filimonov, K. Finley, C. Fischer-Wasels, T. Flis, S. Frantzen, K. Fuchs, T. Gaisser, T. K. Gaior, R. Gallagher, J. Gerhardt, L. Gier, D. Gladstone, L. Gluesenkamp, T. Goldschmidt, A. Golup, G. Gonzalez, J. G. Goodman, J. A. Gora, D. Grant, D. Gretskov, P. Groh, J. C. Gross, A. Ha, C. Haack, C. Ismail, A. Haj Hallen, P. Hallgren, A. Halzen, F. Hanson, K. Hebecker, D. Heereman, D. Heinen, D. Helbing, K. Hellauer, R. Hellwig, D. Hickford, S. Hignight, J. Hill, G. C. Hoffman, K. D. Hoffmann, R. Homeier, A. Hoshina, K. Huang, F. Huelsnitz, W. Hulth, P. O. Hultqvist, K. In, S. Ishihara, A. Jacobi, E. Jacobsen, J. Japaridze, G. S. Jero, K. Jurkovic, M. Kaminsky, B. Kappes, A. Karg, T. Karle, A. Kauer, M. Keivani, A. Kelley, J. L. Kheirandish, A. Kiryluk, J. Klaes, J. Klein, S. R. Koehne, J. -H. Kohnen, G. Kolanoski, H. Koob, A. Koepke, L. Kopper, C. Kopper, S. Koskinen, D. J. Kowalski, M. Krings, K. Kroll, G. Kroll, M. Kunnen, J. Kurahashi, N. Kuwabara, T. Labare, M. Lanfranchi, J. L. Larsen, D. T. Larson, M. J. Lesiak-Bzdak, M. Leuermann, M. Luenemann, J. Madsen, J. Maggi, G. Mahn, K. B. M. Maruyama, R. Mase, K. Matis, H. S. Maunu, R. McNally, F. Meagher, K. Medici, M. Meli, A. Meures, T. Miarecki, S. Middell, E. Middlemas, E. Milke, N. Miller, J. Mohrmann, L. Montaruli, T. Morse, R. Nahnhauer, R. Naumann, U. Niederhausen, H. Nowicki, S. C. Nygren, D. R. Obertacke, A. Olivas, A. Omairat, A. O'Murchadha, A. Palczewski, T. Paul, L. Pepper, J. A. de los Heros, C. Perez Pfendner, C. Pieloth, D. Pinat, E. Posselt, J. Price, P. B. Przybylski, G. T. Puetz, J. Quinnan, M. Raedel, L. Rameez, M. Rawlins, K. Redl, P. Rees, I. Reimann, R. Relich, M. Resconi, E. Rhode, W. Richman, M. Riedel, B. Robertson, S. Rodrigues, J. P. Rongen, M. Rott, C. Ruhe, T. Ruzybayev, B. Ryckbosch, D. Saba, S. M. Sander, H. -G. Sandroos, J. Santander, M. Sarkar, S. Schatto, K. Scheriau, F. Schmidt, T. Schmitz, M. Schoenen, S. Schoeneberg, S. Schoenwald, A. Schukraft, A. Schulte, L. Schulz, O. Seckel, D. Sestayo, Y. Seunarine, S. Shanidze, R. Smith, M. W. E. Soldin, D. Spiczak, G. M. Spiering, C. Stamatikos, M. Stanev, T. Stanisha, N. A. Stasik, A. Stezelberger, T. Stokstad, R. G. Stoessl, A. Strahler, E. A. Strom, R. Strotjohann, N. L. Sullivan, G. W. Sutherland, M. Taavola, H. Taboada, I. Tamburro, A. Ter-Antonyan, S. Terliuk, A. Tesic, G. Tilav, S. Toale, P. A. Tobin, M. N. Tosi, D. Tselengidou, M. Unger, E. Usner, M. Vallecorsa, S. van Eijndhoven, N. Vandenbroucke, J. van Santen, J. Vanheule, S. Vehring, M. Voge, M. Vraeghe, M. Walck, C. Wallraff, M. Weaver, Ch. Wellons, M. Wendt, C. Westerhoff, S. Whelan, B. J. Whitehorn, N. Wichary, C. Wiebe, K. Wiebusch, C. H. Williams, D. R. Wissing, H. Wolf, M. Wood, T. R. Woschnagg, K. Xu, D. L. Xu, X. W. Xu, Y. Yanez, J. P. Yodh, G. Yoshida, S. Zarzhitsky, P. Ziemann, J. Zoll, M. CA IceCube Collaboration TI SEARCHES FOR TIME-DEPENDENT NEUTRINO SOURCES WITH ICECUBE DATA FROM 2008 TO 2012 SO ASTROPHYSICAL JOURNAL LA English DT Article DE astroparticle physics; binaries: general; BL Lacertae objects: general; galaxies: active; neutrinos; X-rays: binaries ID GAMMA-RAY EMISSION; ACTIVE GALACTIC NUCLEI; LS I+61-DEGREES-303; PROTON BLAZAR; LAC OBJECTS; COSMIC-RAYS; ACCELERATION; TEV; MODEL; 1ES-1959+650 AB In this paper searches for flaring astrophysical neutrino sources and sources with periodic emission with the IceCube neutrino telescope are presented. In contrast to time-integrated searches, where steady emission is assumed, the analyses presented here look for a time-dependent signal of neutrinos using the information from the neutrino arrival times to enhance the discovery potential. A search was performed for correlations between neutrino arrival times and directions, as well as neutrino emission following time-dependent light curves, sporadic emission, or periodicities of candidate sources. These include active galactic nuclei, soft gamma-ray repeaters, supernova remnants hosting pulsars, microquasars, and X-ray binaries. The work presented here updates and extends previously published results to a longer period that covers 4 years. of data from 2008 April 5 to 2012 May 16, including the first year of operation of the completed 86 string detector. The analyses did not find any significant time-dependent point sources of neutrinos, and the results were used to set upper limits on the neutrino flux from source candidates. C1 [Aartsen, M. G.; Hill, G. C.; Robertson, S.; Whelan, B. J.] Univ Adelaide, Sch Chem & Phys, Adelaide, SA 5005, Australia. [Ackermann, M.; Berghaus, P.; Bernardini, E.; Bretz, H. -P.; Silva, A. H. Cruz; Gluesenkamp, T.; Gora, D.; Jacobi, E.; Kaminsky, B.; Karg, T.; Kowalski, M.; Middell, E.; Mohrmann, L.; Nahnhauer, R.; Schoenwald, A.; Shanidze, R.; Spiering, C.; Stasik, A.; Stoessl, A.; Strotjohann, N. L.; Terliuk, A.; Usner, M.; Yanez, J. P.] DESY, D-15735 Zeuthen, Germany. [Adams, J.; Brown, A. M.] Univ Canterbury, Dept Phys & Astron, Christchurch 1, New Zealand. [Aguilar, J. A.; Hanson, K.; Heereman, D.; Meures, T.; O'Murchadha, A.; Pinat, E.] Univ Libre Bruxelles, Fac Sci, B-1050 Brussels, Belgium. [Ahlers, M.; Arguelles, C.; Baker, M.; BenZvi, S.; Chirkin, D.; Day, M.; Desiati, P.; Diaz-Velez, J. C.; Eisch, J.; Fadiran, O.; Feintzeig, J.; Gladstone, L.; Halzen, F.; Hoshina, K.; Jacobsen, J.; Jero, K.; Karle, A.; Kauer, M.; Kelley, J. L.; Kheirandish, A.; Larsen, D. T.; McNally, F.; Middlemas, E.; Morse, R.; Rees, I.; Rodrigues, J. P.; Santander, M.; Tobin, M. N.; Tosi, D.; Vandenbroucke, J.; van Santen, J.; Weaver, Ch.; Wellons, M.; Wendt, C.; Westerhoff, S.; Whitehorn, N.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Ahlers, M.; Arguelles, C.; Baker, M.; BenZvi, S.; Chirkin, D.; Christov, A.; Day, M.; Desiati, P.; Diaz-Velez, J. C.; Eisch, J.; Fadiran, O.; Feintzeig, J.; Gladstone, L.; Halzen, F.; Hoshina, K.; Jacobsen, J.; Jero, K.; Karle, A.; Kauer, M.; Kelley, J. L.; Kheirandish, A.; Larsen, D. T.; McNally, F.; Middlemas, E.; Morse, R.; Rees, I.; Rodrigues, J. P.; Santander, M.; Tobin, M. N.; Tosi, D.; Vandenbroucke, J.; van Santen, J.; Weaver, Ch.; Wellons, M.; Wendt, C.; Westerhoff, S.; Whitehorn, N.] Univ Wisconsin, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA. [Ahrens, M.; Bohm, C.; Christov, A.; Dumm, J. P.; Finley, C.; Flis, S.; Hulth, P. O.; Hultqvist, K.; Walck, C.; Wolf, M.; Zoll, M.] Stockholm Univ, Oskar Klein Ctr, SE-10691 Stockholm, Sweden. [Ahrens, M.; Bohm, C.; Dumm, J. P.; Finley, C.; Flis, S.; Hulth, P. O.; Hultqvist, K.; Walck, C.; Wolf, M.; Zoll, M.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. [Altmann, D.; Classen, L.; Kappes, A.; Tselengidou, M.] Univ Erlangen Nurnberg, Erlangen Ctr Astroparticle Phys, D-91058 Erlangen, Germany. [Anderson, T.; Arlen, T. C.; Christov, A.; Cowen, D. F.; Dunkman, M.; Eagan, R.; Groh, J. C.; Huang, F.; Keivani, A.; Lanfranchi, J. L.; Quinnan, M.; Smith, M. W. E.; Stanisha, N. A.; Tesic, G.] Penn State Univ, Dept Phys, University Pk, PA 16802 USA. [Archinger, M.; Baum, V.; Boeser, S.; Christov, A.; Eberhardt, B.; Ehrhardt, T.; Keivani, A.; Koepke, L.; Kroll, G.; Luenemann, J.; Sander, H. -G.; Schatto, K.; Wiebe, K.] Johannes Gutenberg Univ Mainz, Inst Phys, D-55099 Mainz, Germany. [Auffenberg, J.; Bissok, M.; Blumenthal, J.; Christov, A.; Gier, D.; Gretskov, P.; Haack, C.; Hallen, P.; Heinen, D.; Hellwig, D.; Keivani, A.; Koob, A.; Leuermann, M.; Paul, L.; Puetz, J.; Raedel, L.; Reimann, R.; Rongen, M.; Schoenen, S.; Schukraft, A.; Vehring, M.; Wallraff, M.; Wichary, C.; Wiebusch, C. H.] Rhein Westfal TH Aachen, Inst Phys, D-52056 Aachen, Germany. [Bai, X.] South Dakota Sch Mines & Technol, Dept Phys, Rapid City, SD 57701 USA. [Barwick, S. W.; Yodh, G.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Bay, R.; Binder, G.; Filimonov, K.; Gerhardt, L.; Ha, C.; Klein, S. R.; Miarecki, S.; Price, P. B.; Woschnagg, K.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Beatty, J. J.; Davis, J. C.; Pfendner, C.; Stamatikos, M.; Sutherland, M.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Beatty, J. J.; Christov, A.; Davis, J. C.; Pfendner, C.; Stamatikos, M.; Sutherland, M.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Beatty, J. J.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Tjus, J. Becker; Bos, F.; Eichmann, B.; Fedynitch, A.; Kroll, M.; Saba, S. M.; Schoeneberg, S.] Ruhr Univ Bochum, Fak Phys & Astron, D-44780 Bochum, Germany. [Becker, K. -H.; Bindig, D.; Christov, A.; Fischer-Wasels, T.; Helbing, K.; Hickford, S.; Hoffmann, R.; Klaes, J.; Kopper, S.; Naumann, U.; Obertacke, A.; Omairat, A.; Posselt, J.; Soldin, D.] Univ Gesamthsch Wuppertal, Dept Phys, D-42119 Wuppertal, Germany. [Berley, D.; Blaufuss, E.; Cheung, E.; Christov, A.; Christy, B.; Felde, J.; Goodman, J. A.; Hellauer, R.; Hoffman, K. D.; Huelsnitz, W.; Keivani, A.; Maunu, R.; Meagher, K.; Olivas, A.; Redl, P.; Richman, M.; Schmidt, T.; Sullivan, G. W.; Wissing, H.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Bernhard, A.; Christov, A.; Coenders, S.; Gross, A.; Jurkovic, M.; Keivani, A.; Krings, K.; Olivas, A.; Resconi, E.; Schulz, O.; Sestayo, Y.] Tech Univ Munich, D-85748 Garching, Germany. [Besson, D. Z.] Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA. [Binder, G.; Gerhardt, L.; Goldschmidt, A.; Ha, C.; Klein, S. R.; Matis, H. S.; Miarecki, S.; Nygren, D. R.; Przybylski, G. T.; Stezelberger, T.; Stokstad, R. G.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Boersma, D. J.; Botner, O.; Euler, S.; Hallgren, A.; Strom, R.; Taavola, H.; Unger, E.] Uppsala Univ, Dept Phys & Astron, S-75120 Uppsala, Sweden. [Bose, D.; In, S.; Rott, C.] Sungkyunkwan Univ, Dept Phys, Suwon 440746, South Korea. [Brayeur, L.; Casier, M.; De Clercq, C.; de Vries, K. D.; de Wasseige, G.; Golup, G.; Kunnen, J.; Maggi, G.; Miller, J.; Strahler, E. A.; van Eijndhoven, N.] Vrije Univ Brussel, Dienst ELEM, B-1050 Brussels, Belgium. [Buzinsky, N.; Grant, D.; Kopper, C.; Nowicki, S. C.; Riedel, B.; Wood, T. R.] Univ Alberta, Dept Phys, Edmonton, AB T6G 2E1, Canada. [Casey, J.; Daughhetee, J.; Taboada, I.] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA. [Casey, J.; Daughhetee, J.; Taboada, I.] Georgia Inst Technol, Ctr Relativist Astrophys, Atlanta, GA 30332 USA. [Christov, A.; Montaruli, T.; Rameez, M.; Vallecorsa, S.] Univ Geneva, Dept Phys Nucl & Corpusculaire, CH-1211 Geneva, Switzerland. [Clark, K.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Clevermann, F.; Frantzen, K.; Fuchs, T.; Koehne, J. -H.; Milke, N.; Pieloth, D.; Rhode, W.; Ruhe, T.; Scheriau, F.; Schmitz, M.; Ziemann, J.] TU Dortmund Univ, Dept Phys, D-44221 Dortmund, Germany. [Cowen, D. F.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [de Andre, J. P. A. M.; DeYoung, T.; Hignight, J.; Mahn, K. B. M.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Dembinski, H.; Evenson, P. A.; Gaisser, T. K.; Gonzalez, J. G.; Ruzybayev, B.; Seckel, D.; Stanev, T.; Tamburro, A.; Tilav, S.] Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA. [Dembinski, H.; Evenson, P. A.; Gaisser, T. K.; Gonzalez, J. G.; Ruzybayev, B.; Seckel, D.; Stanev, T.; Tamburro, A.; Tilav, S.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. [De Ridder, S.; Ismail, A. Haj; Labare, M.; Meli, A.; Ryckbosch, D.; Vanheule, S.; Vraeghe, M.] Univ Ghent, Dept Phys & Astron, B-9000 Ghent, Belgium. [de With, M.; Hebecker, D.; Kolanoski, H.; Kowalski, M.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Fazely, A. R.; Ter-Antonyan, S.; Xu, X. W.] Southern Univ, Dept Phys, Baton Rouge, LA 70813 USA. [Gaior, R.; Ishihara, A.; Kuwabara, T.; Mase, K.; Relich, M.; Yoshida, S.] Chiba Univ, Dept Phys, Chiba 2638522, Japan. [Gallagher, J.] Univ Wisconsin, Dept Astron, Madison, WI 53706 USA. [Homeier, A.; Schulte, L.; Voge, M.] Univ Bonn, Inst Phys, D-53115 Bonn, Germany. [Japaridze, G. S.] Clark Atlanta Univ, CTSPS, Atlanta, GA 30314 USA. [Kauer, M.; Maruyama, R.] Yale Univ, Dept Phys, New Haven, CT 06520 USA. [Kiryluk, J.; Lesiak-Bzdak, M.; Niederhausen, H.; Xu, Y.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Kohnen, G.] Univ Mons, B-7000 Mons, Belgium. [Koskinen, D. J.; Larson, M. J.; Medici, M.; Sandroos, J.; Sarkar, S.] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Kurahashi, N.; Meures, T.] Drexel Univ, Dept Phys, Philadelphia, PA 19104 USA. [Madsen, J.; Seunarine, S.; Spiczak, G. M.] Univ Wisconsin, Dept Phys, River Falls, WI 54022 USA. [Palczewski, T.; Pepper, J. A.; Toale, P. A.; Williams, D. R.; Xu, D. L.; Zarzhitsky, P.] Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA. [Rawlins, K.] Univ Alaska Anchorage, Dept Phys & Astron, Anchorage, AK 99508 USA. [Sarkar, S.] Univ Oxford, Dept Phys, Oxford OX1 3NP, England. [Hoshina, K.] Univ Tokyo, Earthquake Res Inst, Bunkyo Ku, Tokyo 1130032, Japan. [Stamatikos, M.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Aartsen, MG (reprint author), Univ Adelaide, Sch Chem & Phys, Adelaide, SA 5005, Australia. RI Maruyama, Reina/A-1064-2013; Koskinen, David/G-3236-2014; Tjus, Julia/G-8145-2012; Beatty, James/D-9310-2011; Sarkar, Subir/G-5978-2011; Wiebusch, Christopher/G-6490-2012; OI Dembinski, Hans/0000-0003-3337-3850; Arguelles Delgado, Carlos/0000-0003-4186-4182; Maruyama, Reina/0000-0003-2794-512X; Koskinen, David/0000-0002-0514-5917; Beatty, James/0000-0003-0481-4952; Sarkar, Subir/0000-0002-3542-858X; Wiebusch, Christopher/0000-0002-6418-3008; Schukraft, Anne/0000-0002-9112-5479; Groh, John/0000-0001-9880-3634; Larsen, Dag Toppe/0000-0002-9898-2174; Perez de los Heros, Carlos/0000-0002-2084-5866; Aguilar Sanchez, Juan Antonio/0000-0003-2252-9514; Strotjohann, Nora Linn/0000-0002-4667-6730 FU U.S. National Science Foundation-Office of Polar Programs; U.S. National Science Foundation-Physics Division; University of Wisconsin Alumni Research Foundation; Grid Laboratory Of Wisconsin (GLOW) grid infrastructure at the University of Wisconsin-Madison; Open Science Grid (OSG) grid infrastructure; U.S. Department of Energy; National Energy Research Scientific Computing Center; Louisiana Optical Network Initiative (LONI) grid computing resources; Natural Sciences and Engineering Research Council of Canada; WestGrid and Compute/Calcul Canada; Swedish Research Council; Swedish Polar Research Secretariat; Swedish National Infrastructure for Computing (SNIC); Knut and Alice Wallenberg Foundation, Sweden; German Ministry for Education and Research (BMBF); Deutsche Forschungsgemeinschaft (DFG); Helmholtz Alliance for Astroparticle Physics (HAP); Research Department of Plasmas with Complex Interactions (Bochum), Germany; Fund for Scientific Research (FNRS-FWO); FWO Odysseus programme; Flanders Institute to encourage scientific and technological research in industry (IWT); Belgian Federal Science Policy Office (Belspo); University of Oxford, United Kingdom; Marsden Fund, New Zealand; Australian Research Council; Japan Society for Promotion of Science (JSPS); Swiss National Science Foundation (SNSF), Switzerland; National Research Foundation of Korea (NRF); Danish National Research Foundation, Denmark (DNRF) FX We acknowledge the support from the following agencies: U.S. National Science Foundation-Office of Polar Programs, U.S. National Science Foundation-Physics Division, University of Wisconsin Alumni Research Foundation, the Grid Laboratory Of Wisconsin (GLOW) grid infrastructure at the University of Wisconsin-Madison, the Open Science Grid (OSG) grid infrastructure; U.S. Department of Energy, and National Energy Research Scientific Computing Center, the Louisiana Optical Network Initiative (LONI) grid computing resources; Natural Sciences and Engineering Research Council of Canada, WestGrid and Compute/Calcul Canada; Swedish Research Council, Swedish Polar Research Secretariat, Swedish National Infrastructure for Computing (SNIC), and Knut and Alice Wallenberg Foundation, Sweden; German Ministry for Education and Research (BMBF), Deutsche Forschungsgemeinschaft (DFG), Helmholtz Alliance for Astroparticle Physics (HAP), Research Department of Plasmas with Complex Interactions (Bochum), Germany; Fund for Scientific Research (FNRS-FWO), FWO Odysseus programme, Flanders Institute to encourage scientific and technological research in industry (IWT), Belgian Federal Science Policy Office (Belspo); University of Oxford, United Kingdom; Marsden Fund, New Zealand; Australian Research Council; Japan Society for Promotion of Science (JSPS); the Swiss National Science Foundation (SNSF), Switzerland; National Research Foundation of Korea (NRF); Danish National Research Foundation, Denmark (DNRF). NR 63 TC 6 Z9 6 U1 0 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUL 1 PY 2015 VL 807 IS 1 AR 46 DI 10.1088/0004-637X/807/1/46 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CO1VX UT WOS:000358945200046 ER PT J AU An, HJ Archibald, RF Hascoet, R Kaspi, VM Beloborodov, AM Archibald, AM Beardmore, A Boggs, SE Christensen, FE Craig, WW Gehrels, N Hailey, CJ Harrison, FA Kennea, J Kouveliotou, C Stern, D Younes, G Zhang, WW AF An, Hongjun Archibald, Robert F. Hascoet, Romain Kaspi, Victoria M. Beloborodov, Andrei M. Archibald, Anne M. Beardmore, Andy Boggs, Steven E. Christensen, Finn E. Craig, William W. Gehrels, Niel Hailey, Charles J. Harrison, Fiona A. Kennea, Jamie Kouveliotou, Chryssa Stern, Daniel Younes, George Zhang, William W. TI DEEP NuSTAR AND SWIFT MONITORING OBSERVATIONS OF THE MAGNETAR 1E 1841-045 SO ASTROPHYSICAL JOURNAL LA English DT Article DE pulsars: individual (1E 1841-045); stars: magnetars; stars: neutron; X-rays: bursts ID X-RAY PULSARS; SOFT GAMMA-REPEATERS; NEUTRON-STARS; KES 73; 4U 0142+61; SPIN-DOWN; EMISSION; BURSTS; OUTBURST; RXTE AB We report on a 350 ks NuSTAR observation of the magnetar 1E 1841-045 taken in 2013 September. During the observation, NuSTAR detected six bursts of short duration, with T-90 less than or similar to 1 s. An elevated level of emission tail is detected after the brightest burst, persisting for similar to 1 ks. The emission showed a power-law decay with a temporal index of 0.5 before returning to the persistent emission level. The long observation also provided detailed phase-resolved spectra of the persistent X-ray emission of the source. By comparing the persistent spectrum with that previously reported, we find that the source hard-band emission has been stable for over approximately 10 yr. The persistent hard-X-ray emission is well fitted by a coronal outflow model, where e(+/-) pairs in the magnetosphere upscatter thermal X-rays. Our fit of phase-resolved spectra allowed us to estimate the angle between the rotational and magnetic dipole axes of the magnetar, alpha(mag) = 0.25, the twisted magnetic flux, 2.5 x 10(26) G cm(2), and the power released in the twisted magnetosphere, L-j = 6 x 10(36) erg s(-1). Assuming this model for the hard-X-ray spectrum, the soft-X-ray component is well fit by a two-blackbody model, with the hotter blackbody consistent with the footprint of the twisted magnetic field lines on the star. We also report on the 3 yr. Swift monitoring observations obtained since 2011 July. The soft-X-ray spectrum remained stable during this period, and the timing behavior was noisy, with large timing residuals. C1 [An, Hongjun; Archibald, Robert F.; Kaspi, Victoria M.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [An, Hongjun] Stanford Univ, Dept Phys, KIPAC, Stanford, CA 94305 USA. [Hascoet, Romain; Beloborodov, Andrei M.; Hailey, Charles J.] Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA. [Archibald, Anne M.] ASTRON, Netherlands Inst Radio Astron, NL-7990 AA Dwingeloo, Netherlands. [Beardmore, Andy] Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England. [Boggs, Steven E.; Craig, William W.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Christensen, Finn E.] Tech Univ Denmark, Natl Space Inst, DTU Space, DK-2800 Lyngby, Denmark. [Craig, William W.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Gehrels, Niel] NASA, Astrophys Sci Div, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Harrison, Fiona A.] CALTECH, Cahill Ctr Astron & Astrophys, Pasadena, CA 91125 USA. [Kennea, Jamie] Penn State Univ, Dept Astron & Astrophys, Lab 525, University Pk, PA 16802 USA. [Kouveliotou, Chryssa; Younes, George] NASA, Space Sci Off, Marshall Space Flight Ctr, Huntsville, AL 35812 USA. [Stern, Daniel] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Zhang, William W.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP An, HJ (reprint author), McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. RI Boggs, Steven/E-4170-2015; OI Boggs, Steven/0000-0001-9567-4224; An, Hongjun/0000-0002-6389-9012; Archibald, Anne/0000-0003-0638-3340; Archibald, Robert/0000-0002-4017-8837 FU NASA [NNG08FD60C, NAS5-00147, NNX13AI34G]; National Aeronautics and Space Administration; Kavli Institute for Particle Astrophysics and Cosmology; NSERC; FQRNT Centre de Recherche Astrophysique du Quebec; R. Howard Webster Foundation Fellowship from the Canadian Institute for Advanced Research (CIFAR); Canada Research Chairs Program; Lorne Trottier Chair in Astrophysics and Cosmology FX This work was supported under NASA Contract No. NNG08FD60C and made use of data from the NuSTAR mission, a project led by the California Institute of Technology, managed by the Jet Propulsion Laboratory, and funded by the National Aeronautics and Space Administration. We thank the NuSTAR Operations, Software, and Calibration teams for support with the execution and analysis of these observations. This research has made use of the NuSTAR Data Analysis Software (NuSTARDAS) jointly developed by the ASI Science Data Center (ASDC, Italy) and the California Institute of Technology (USA). H.A. acknowledges support provided by the NASA sponsored Fermi Contract NAS5-00147 and by Kavli Institute for Particle Astrophysics and Cosmology. V.M.K. acknowledges support from an NSERC Discovery Grant and Accelerator Supplement, the FQRNT Centre de Recherche Astrophysique du Quebec, an R. Howard Webster Foundation Fellowship from the Canadian Institute for Advanced Research (CIFAR), the Canada Research Chairs Program, and the Lorne Trottier Chair in Astrophysics and Cosmology. A.M.B. acknowledges the support by NASA grant NNX13AI34G. NR 57 TC 6 Z9 6 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUL 1 PY 2015 VL 807 IS 1 AR 93 DI 10.1088/0004-637X/807/1/93 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CO1VX UT WOS:000358945200093 ER PT J AU Bechtol, K Drlica-Wagner, A Balbinot, E Pieres, A Simon, JD Yanny, B Santiago, B Wechsler, RH Frieman, J Walker, AR Williams, P Rozo, E Rykoff, ES Queiroz, A Luque, E Benoit-Levy, A Tucker, D Sevilla, I Gruendl, RA da Costa, LN Neto, AF Maia, MAG Abbott, T Allam, S Armstrong, R Bauer, AH Bernstein, GM Bernstein, RA Bertin, E Brooks, D Buckley-Geer, E Burke, DL Rosell, AC Castander, FJ Covarrubias, R D'Andrea, CB DePoy, DL Desai, S Diehl, HT Eifler, TF Estrada, J Evrard, AE Fernandez, E Finley, DA Flaugher, B Gaztanaga, E Gerdes, D Girardi, L Gladders, M Gruen, D Gutierrez, G Hao, J Honscheid, K Jain, B James, D Kent, S Kron, R Kuehn, K Kuropatkin, N Lahav, O Li, TS Lin, H Makler, M March, M Marshall, J Martini, P Merritt, KW Miller, C Miquel, R Mohr, J Neilsen, E Nichol, R Nord, B Ogando, R Peoples, J Petravick, D Plazas, AA Romer, AK Roodman, A Sako, M Sanchez, E Scarpine, V Schubnell, M Smith, RC Soares-Santos, M Sobreira, F Suchyta, E Swanson, MEC Tarle, G Thaler, J Thomas, D Wester, W Zuntz, J AF Bechtol, K. Drlica-Wagner, A. Balbinot, E. Pieres, A. Simon, J. D. Yanny, B. Santiago, B. Wechsler, R. H. Frieman, J. Walker, A. R. Williams, P. Rozo, E. Rykoff, E. S. Queiroz, A. Luque, E. Benoit-Levy, A. Tucker, D. Sevilla, I. Gruendl, R. A. da Costa, L. N. Fausti Neto, A. Maia, M. A. G. Abbott, T. Allam, S. Armstrong, R. Bauer, A. H. Bernstein, G. M. Bernstein, R. A. Bertin, E. Brooks, D. Buckley-Geer, E. Burke, D. L. Carnero Rosell, A. Castander, F. J. Covarrubias, R. D'Andrea, C. B. DePoy, D. L. Desai, S. Diehl, H. T. Eifler, T. F. Estrada, J. Evrard, A. E. Fernandez, E. Finley, D. A. Flaugher, B. Gaztanaga, E. Gerdes, D. Girardi, L. Gladders, M. Gruen, D. Gutierrez, G. Hao, J. Honscheid, K. Jain, B. James, D. Kent, S. Kron, R. Kuehn, K. Kuropatkin, N. Lahav, O. Li, T. S. Lin, H. Makler, M. March, M. Marshall, J. Martini, P. Merritt, K. W. Miller, C. Miquel, R. Mohr, J. Neilsen, E. Nichol, R. Nord, B. Ogando, R. Peoples, J. Petravick, D. Plazas, A. A. Romer, A. K. Roodman, A. Sako, M. Sanchez, E. Scarpine, V. Schubnell, M. Smith, R. C. Soares-Santos, M. Sobreira, F. Suchyta, E. Swanson, M. E. C. Tarle, G. Thaler, J. Thomas, D. Wester, W. Zuntz, J. CA DES Collaboration TI EIGHT NEW MILKY WAY COMPANIONS DISCOVERED IN FIRST-YEAR DARK ENERGY SURVEY DATA SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: dwarf; Local Group ID DWARF SPHEROIDAL GALAXIES; ULTRA-FAINT SATELLITES; STAR-FORMATION HISTORY; DIGITAL SKY SURVEY; GLOBULAR-CLUSTERS; LOCAL GROUP; URSA-MAJOR; STRUCTURAL-PROPERTIES; SPECTROSCOPIC SURVEY; STELLAR POPULATIONS AB We report the discovery of eight new Milky Way companions in similar to 1800 deg(2) of optical imaging data collected during the first year of the Dark Energy Survey (DES). Each system is identified as a statistically significant over-density of individual stars consistent with the expected isochrone and luminosity function of an old and metal-poor stellar population. The objects span a wide range of absolute magnitudes (M-V from -2.2 to -7.4 mag), physical sizes (10-170 pc), and heliocentric distances (30-330 kpc). Based on the low surface brightnesses, large physical sizes, and/or large Galactocentric distances of these objects, several are likely to be new ultra-faint satellite galaxies of the Milky Way and/or Magellanic Clouds. We introduce a likelihood-based algorithm to search for and characterize stellar over-densities, as well as identify stars with high satellite membership probabilities. We also present completeness estimates for detecting ultra-faint galaxies of varying luminosities, sizes, and heliocentric distances in the first-year DES data. C1 [Bechtol, K.; Frieman, J.; Williams, P.; Gladders, M.; Kron, R.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Drlica-Wagner, A.; Yanny, B.; Frieman, J.; Tucker, D.; Allam, S.; Buckley-Geer, E.; Diehl, H. T.; Estrada, J.; Finley, D. A.; Flaugher, B.; Gutierrez, G.; Hao, J.; Kent, S.; Kuropatkin, N.; Lin, H.; Merritt, K. W.; Neilsen, E.; Nord, B.; Peoples, J.; Scarpine, V.; Soares-Santos, M.; Sobreira, F.; Wester, W.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Balbinot, E.] Univ Surrey, Dept Phys, Guildford GU2 7XH, Surrey, England. [Balbinot, E.; Pieres, A.; Santiago, B.; Queiroz, A.; Luque, E.; da Costa, L. N.; Fausti Neto, A.; Maia, M. A. G.; Carnero Rosell, A.; Ogando, R.; Sobreira, F.] Lab Interinst eAstron LIneA, BR-20921400 Rio De Janeiro, RJ, Brazil. [Pieres, A.; Santiago, B.; Queiroz, A.; Luque, E.] Univ Fed Rio Grande do Sul, Inst Fis, BR-91501970 Porto Alegre, RS, Brazil. [Simon, J. D.; Bernstein, R. A.] Carnegie Observ, Pasadena, CA 91101 USA. [Wechsler, R. H.; Roodman, A.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. [Wechsler, R. H.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Wechsler, R. H.; Rozo, E.; Rykoff, E. S.; Burke, D. L.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Walker, A. R.; Abbott, T.; James, D.; Roodman, A.; Smith, R. C.] Natl Opt Astron Observ, Cerro Tololo Inter Amer Observ, La Serena, Chile. [Rozo, E.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Benoit-Levy, A.; Brooks, D.; Lahav, O.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Sevilla, I.; Gruendl, R. A.] Univ Illinois, Dept Astron, Urbana, IL 61801 USA. [Sevilla, I.; Sanchez, E.] Ctr Invest Energet Medioambientales & Tecnol CIEM, Madrid, Spain. [Gruendl, R. A.; Covarrubias, R.; Petravick, D.; Swanson, M. E. C.] Univ Illinois, Natl Ctr Supercomp Applicat, Urbana, IL 61801 USA. [da Costa, L. N.; Maia, M. A. G.; Carnero Rosell, A.; Girardi, L.; Ogando, R.] Observ Nacl, BR-20921400 Rio De Janeiro, RJ, Brazil. [Allam, S.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Armstrong, R.; Bernstein, G. M.; Eifler, T. F.; Jain, B.; March, M.; Sako, M.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Bauer, A. H.; Castander, F. J.; Gaztanaga, E.] Fac Ciencies, IEEC CSIC, Inst Ciencies Espai, E-08193 Bellaterra, Barcelona, Spain. [Bertin, E.] Univ Paris 06, Sorbonne Univ, Inst Astrophys Paris, UMR 7095, F-75014 Paris, France. [Bertin, E.] Inst Astrophys Paris, CNRS, UMR 7095, F-75014 Paris, France. [D'Andrea, C. B.; Nichol, R.; Thomas, D.] Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 3FX, Hants, England. [DePoy, D. L.; Li, T. S.; Marshall, J.] Texas A&M Univ, George P & Cynthia Woods Mitchell Inst Fundamenta, College Stn, TX 77843 USA. [DePoy, D. L.; Li, T. S.; Marshall, J.] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA. [Desai, S.; Mohr, J.] Univ Munich, Dept Phys, D-81679 Munich, Germany. [Desai, S.] Excellence Cluster Universe, D-85748 Garching, Germany. [Eifler, T. F.; Plazas, A. A.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Evrard, A. E.; Gerdes, D.; Miller, C.; Schubnell, M.; Tarle, G.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Fernandez, E.; Gladders, M.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Fernandez, E.; Miquel, R.] Inst Catalana Recerca & Estudis Avancats, E-08010 Barcelona, Spain. [Gruen, D.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Gruen, D.] Univ Observ Munich, D-81679 Munich, Germany. [Honscheid, K.; Suchyta, E.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Honscheid, K.; Martini, P.; Suchyta, E.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Kuehn, K.] Australian Astron Observ, N Ryde, NSW 2113, Australia. [Kuehn, K.] Argonne Natl Lab, Argonne, IL 60439 USA. [Makler, M.] Ctr Brasileiro Pesquisas Fis, ICRA, BR-22290180 Rio De Janeiro, RJ, Brazil. [Martini, P.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Miller, C.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Miquel, R.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Bellaterra, Barcelona, Spain. [Plazas, A. A.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Romer, A. K.] Univ Sussex, Ctr Astron, Brighton BN1 9QH, E Sussex, England. [Thaler, J.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Zuntz, J.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Oxford M13 9PL, England. RP Bechtol, K (reprint author), Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. EM bechtol@kicp.uchicago.edu; kadrlica@fnal.gov RI Ogando, Ricardo/A-1747-2010; Makler, Martin/G-2639-2012; Sanchez, Eusebio/H-5228-2015; Sobreira, Flavia/F-4168-2015; Fernandez, Enrique/L-5387-2014; Gaztanaga, Enrique/L-4894-2014; Balbinot, Eduardo/E-8019-2015; OI Ogando, Ricardo/0000-0003-2120-1154; Makler, Martin/0000-0003-2206-2651; Sanchez, Eusebio/0000-0002-9646-8198; Sobreira, Flavia/0000-0002-7822-0658; Fernandez, Enrique/0000-0002-6405-9488; Gaztanaga, Enrique/0000-0001-9632-0815; Balbinot, Eduardo/0000-0002-1322-3153; Suchyta, Eric/0000-0002-7047-9358; Tucker, Douglas/0000-0001-7211-5729 FU National Science Foundation [1138766, AST-1138766]; PAPDRJ CAPES/FAPERJ Fellowship; DOE grant [DE-AC02-98CH10886]; JPL; U.S. Department of Energy; U.S. National Science Foundation; Ministry of Science and Education of Spain; Science and Technology Facilities Council of the United Kingdom; Higher Education Funding Council for England; National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign; Kavli Institute of Cosmological Physics at the University of Chicago; Center for Cosmology and Astro-Particle Physics at the Ohio State University; Mitchell Institute for Fundamental Physics and Astronomy at Texas AM University; Financiadora de Estudos e Projetos; Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico; Ministerio da Ciencia, Tecnologia e Inovacao; Deutsche Forschungsgemeinschaft; MINECO [AYA2012-39559, ESP2013-48274, FPA2013-47986]; Centro de Excelencia Severo Ochoa [SEV-2012-0234]; European Union; Argonne National Laboratory; University of California at Santa Cruz; University of Cambridge; Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas-Madrid; University of Chicago; University College London; DES-Brazil Consortium; University of Edinburgh; Eidgenossische Technische Hochschule (ETH) Zurich; Fermi National Accelerator Laboratory; University of Illinois at Urbana-Champaign; Institut de Ciencies de l'Espai (IEEC/CSIC); Institut de Fisica d'Altes Energies; Ludwig-Maximilians Universitat Munchen; University of Michigan; National Optical Astronomy Observatory; University of Nottingham; Ohio State University; University of Pennsylvania; University of Portsmouth; SLAC National Accelerator Laboratory, Stanford University; University of Sussex; Texas AM University; Lawrence Berkeley National Laboratory FX We thank Sergey Koposov and collaborators for sending a copy of their submitted paper with their nine discoveries, and Helmut Jerjen for pointing out the association between Kim 2 and DES J2108.8-5109. Marla Geha provided useful comments on the presentation of these results. K.B. and A.D.W. thank Beth Willman for advice regarding the search for ultra-faint galaxies. A.D.W. thanks Ellen Bechtol for her generous hospitality during the preparation of this manuscript. We acknowledge helpful suggestions from the anonymous referee. This work made use of computational resources at the SLAC National Accelerator Laboratory and University of Chicago Research Computing Center. This material is based upon work supported by the National Science Foundation under Grant Number (1138766). A.C.R. acknowledges financial support provided by the PAPDRJ CAPES/FAPERJ Fellowship. A.A.P. was supported by DOE grant DE-AC02-98CH10886 and by JPL, run by Caltech under a contract for NASA. Funding for the DES Projects has been provided by the U.S. Department of Energy, the U.S. National Science Foundation, the Ministry of Science and Education of Spain, the Science and Technology Facilities Council of the United Kingdom, the Higher Education Funding Council for England, the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign, the Kavli Institute of Cosmological Physics at the University of Chicago, the Center for Cosmology and Astro-Particle Physics at the Ohio State University, the Mitchell Institute for Fundamental Physics and Astronomy at Texas A&M University, Financiadora de Estudos e Projetos, Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Cientifico e Tecnologico and the Ministerio da Ciencia, Tecnologia e Inovacao, the Deutsche Forschungsgemeinschaft and the Collaborating Institutions in the Dark Energy Survey. The DES data management system is supported by the National Science Foundation under Grant Number AST-1138766. The DES participants from Spanish institutions are partially supported by MINECO under grants AYA2012-39559, ESP2013-48274, FPA2013-47986, and Centro de Excelencia Severo Ochoa SEV-2012-0234, some of which include ERDF funds from the European Union. The Collaborating Institutions are Argonne National Laboratory, the University of California at Santa Cruz, the University of Cambridge, Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas-Madrid, the University of Chicago, University College London, the DES-Brazil Consortium, the University of Edinburgh, the Eidgenossische Technische Hochschule (ETH) Zurich, Fermi National Accelerator Laboratory, the University of Illinois at Urbana-Champaign, the Institut de Ciencies de l'Espai (IEEC/CSIC), the Institut de Fisica d'Altes Energies, Lawrence Berkeley National Laboratory, the Ludwig-Maximilians Universitat Munchen and the associated Excellence Cluster universe, the University of Michigan, the National Optical Astronomy Observatory, the University of Nottingham, The Ohio State University, the University of Pennsylvania, the University of Portsmouth, SLAC National Accelerator Laboratory, Stanford University, the University of Sussex, and Texas A&M University. NR 102 TC 108 Z9 108 U1 3 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUL 1 PY 2015 VL 807 IS 1 AR 50 DI 10.1088/0004-637X/807/1/50 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CO1VX UT WOS:000358945200050 ER PT J AU Fu, W Lubow, SH Martin, RG AF Fu, Wen Lubow, Stephen H. Martin, Rebecca G. TI THE KOZAI-LIDOV MECHANISM IN HYDRODYNAMICAL DISKS. II. EFFECTS OF BINARY AND DISK PARAMETERS SO ASTROPHYSICAL JOURNAL LA English DT Article DE accretion, accretion disks; binaries: general; hydrodynamics; planets and satellites: formation ID HIERARCHICAL 3-BODY SYSTEMS; SUPERMASSIVE BLACK-HOLES; ECCENTRIC ASTROPHYSICAL DISCS; DIFFERENTIALLY ROTATING-DISKS; WARPED ACCRETION DISCS; X-RAY BINARIES; 16 CYGNI B; PLANETARY ORBITS; STELLAR SPIN; STAR SYSTEMS AB Martin et al. showed that a substantially misaligned accretion disk around one component of a binary system can undergo global damped Kozai-Lidov (KL) oscillations. During these oscillations, the inclination and eccentricity of the disk are periodically exchanged. However, the robustness of this mechanism and its dependence on the system parameters were unexplored. In this paper, we use three-dimensional hydrodynamical simulations to analyze how various binary and disk parameters affect the KL mechanism in hydrodynamical disks. The simulations include the effect of gas pressure and viscosity, but ignore the effects of disk self-gravity. We describe results for different numerical resolutions, binary mass ratios and orbital eccentricities, initial disk sizes, initial disk surface density profiles, disk sound speeds, and disk viscosities. We show that the KL mechanism can operate for a wide range of binary-disk parameters. We discuss the applications of our results to astrophysical disks in various accreting systems. C1 [Fu, Wen] Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA. [Fu, Wen] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Lubow, Stephen H.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Martin, Rebecca G.] Univ Nevada, Dept Phys & Astron, Las Vegas, NV 89154 USA. RP Fu, W (reprint author), Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA. EM wf5@rice.edu FU NASA [NNX11AK61G]; institutional computing program at Los Alamos National Laboratory FX W.F. and S.H.L. acknowledge support from NASA grant NNX11AK61G. Computing resources supporting this work were provided by the institutional computing program at Los Alamos National Laboratory. We thank Daniel Price for providing the PHANTOM code for SPH simulations and SPLASH code (Price 2007) for data analysis and the rendering of figures. NR 81 TC 6 Z9 6 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUL 1 PY 2015 VL 807 IS 1 AR 75 DI 10.1088/0004-637X/807/1/75 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CO1VX UT WOS:000358945200075 ER PT J AU Gelfand, JD Slane, PO Temim, T AF Gelfand, Joseph D. Slane, Patrick O. Temim, Tea TI THE PROPERTIES OF THE PROGENITOR SUPERNOVA, PULSAR WIND, AND NEUTRON STAR INSIDE PWN G54.1+0.3 SO ASTROPHYSICAL JOURNAL LA English DT Article DE ISM: individual objects (PWN G54.1+0.3); ISM: supernova remnants; pulsars: individual (PSR J1930+1852); X-rays: individual (PWN G54.1+0.3) ID RELATIVISTIC COLLISIONLESS SHOCKS; PAIR PRODUCTION MULTIPLICITIES; GALACTIC ABUNDANCE GRADIENT; REMNANT G54.1+0.3; NEBULA G54.1+0.3; CRAB-NEBULA; SPECTRAL EVOLUTION; ACCRETION SHOCK; RADIO-EMISSION; SIGMA-PROBLEM AB The evolution of a pulsar wind nebula (PWN) inside a supernova remnant (SNR) is sensitive to the properties of the central neutron star, pulsar wind, progenitor supernova, and interstellar medium. These properties are both difficult to measure directly and critical for understanding the formation of neutron stars and their interaction with the surrounding medium. In this paper, we determine these properties for PWN G54.1+0.3 by fitting its observed properties with a model for the dynamical and radiative evolution of a PWN inside an SNR. Our modeling suggests that the progenitor of G54.1+0.3 was an isolated similar to 15-20 M-circle dot star which exploded inside a massive star cluster, creating a neutron star initially spinning with a period of P-0 similar to 30-80 ms. We also find that greater than or similar to 99.9% of the pulsar's rotational energy is injected into the PWN as relativistic electrons and positrons whose energy spectrum is well characterized by a broken power law. Finally, we propose future observations which can both test the validity of this model and better determine the properties of this source-in particular, its distance and the initial spin period of the central pulsar. C1 [Gelfand, Joseph D.] NYU Abu Dhabi, New York, NY 10276 USA. [Slane, Patrick O.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Temim, Tea] NASA, Goddard Space Flight Ctr, Observat Cosmol Lab, Greenbelt, MD 20771 USA. [Gelfand, Joseph D.] NYU, Ctr Cosmol & Particle Phys, New York, NY 10003 USA. [Temim, Tea] Oak Ridge Associated Univ, Oak Ridge, TN 37831 USA. RP Gelfand, JD (reprint author), NYU Abu Dhabi, POB 903, New York, NY 10276 USA. EM jg168@nyu.edu OI Gelfand, Joseph/0000-0003-4679-1058; Temim, Tea/0000-0001-7380-3144 FU NASA [RSA 1479542] FX Support for this work was provided by NASA through an award issued by JPL/Caltech (RSA 1479542). J.D.G. will like to thank Erin Sheldon for the IDL code used in the MCMC fits, Kaisey Mandel and David Hogg for useful discussions concerning MCMC fitting, Ester Aliu for information regarding the GeV spectrum, and Roger Chevalier, Vikram Dwarkadas, Daniel Patnaude, and Lorenzo Sironi for useful advice. NR 56 TC 1 Z9 1 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUL 1 PY 2015 VL 807 IS 1 AR 30 DI 10.1088/0004-637X/807/1/30 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CO1VX UT WOS:000358945200030 ER PT J AU Hayashida, M Nalewajko, K Madejski, GM Sikora, M Itoh, R Ajello, M Blandford, RD Buson, S Chiang, J Fukazawa, Y Furniss, AK Urry, CM Hasan, I Harrison, FA Alexander, DM Balokovic, M Barret, D Boggs, SE Christensen, FE Craig, WW Forster, K Giommi, P Grefenstette, B Hailey, C Hornstrup, A Kitaguchi, T Koglin, JE Madsen, KK Mao, PH Miyasaka, H Mori, K Perri, M Pivovaroff, MJ Puccetti, S Rana, V Stern, D Tagliaferri, G Westergaard, NJ Zhang, WW Zoglauer, A Gurwell, MA Uemura, M Akitaya, H Kawabata, KS Kawaguchi, K Kanda, Y Moritani, Y Takaki, K Ui, T Yoshida, M Agarwal, A Gupta, AC AF Hayashida, M. Nalewajko, K. Madejski, G. M. Sikora, M. Itoh, R. Ajello, M. Blandford, R. D. Buson, S. Chiang, J. Fukazawa, Y. Furniss, A. K. Urry, C. M. Hasan, I. Harrison, F. A. Alexander, D. M. Balokovic, M. Barret, D. Boggs, S. E. Christensen, F. E. Craig, W. W. Forster, K. Giommi, P. Grefenstette, B. Hailey, C. Hornstrup, A. Kitaguchi, T. Koglin, J. E. Madsen, K. K. Mao, P. H. Miyasaka, H. Mori, K. Perri, M. Pivovaroff, M. J. Puccetti, S. Rana, V. Stern, D. Tagliaferri, G. Westergaard, N. J. Zhang, W. W. Zoglauer, A. Gurwell, M. A. Uemura, M. Akitaya, H. Kawabata, K. S. Kawaguchi, K. Kanda, Y. Moritani, Y. Takaki, K. Ui, T. Yoshida, M. Agarwal, A. Gupta, A. C. TI RAPID VARIABILITY OF BLAZAR 3C 279 DURING FLARING STATES IN 2013-2014 WITH JOINT FERMI-LAT, NuSTAR, SWIFT, AND GROUND-BASED MULTI-WAVELENGTH OBSERVATIONS SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: active; galaxies: jets; gamma rays: galaxies; quasars: individual (3C 279); radiation mechanisms: non-thermal; X-rays: galaxies ID ACTIVE GALACTIC NUCLEI; LARGE-AREA TELESCOPE; EXTRAGALACTIC RADIO-SOURCES; ENERGY GAMMA-RADIATION; LUMINOUS BLAZARS; PKS 1510-089; MAGNETIC RECONNECTION; RELATIVISTIC JET; BRIGHT BLAZARS; QUASAR 3C-279 AB We report the results of a multiband observing campaign on the famous blazar 3C 279 conducted during a phase of increased activity from 2013 December to 2014 April, including first observations of it with NuSTAR. The gamma-ray emission of the source measured by Fermi-LAT showed multiple distinct flares reaching the highest flux level measured in this object since the beginning of the Fermi mission, with F(E > 100 MeV) of 10(-5) photons cm(-2) s(-1), and with a flux-doubling time scale as short as 2 hr. The gamma-ray spectrum during one of the flares was very hard, with an index of Gamma(gamma) = 1.7 +/- 0.1, which is rarely seen in flat-spectrum radio quasars. The lack of concurrent optical variability implies a very high Compton dominance parameter L-gamma/L-syn > 300. Two 1 day NuSTAR observations with accompanying Swift pointings were separated by 2 weeks, probing different levels of source activity. While the 0.5 - 70 keV X-ray spectrum obtained during the first pointing, and fitted jointly with Swift-XRT is well-described by a simple power law, the second joint observation showed an unusual spectral structure: the spectrum softens by Delta Gamma(X) similar or equal to 0.4 at similar to 4 keV. Modeling the broadband spectral energy distribution during this flare with the standard synchrotron plus inverse-Compton model requires: (1) the location of the gamma-ray emitting region is comparable with the broad-line region radius, (2) a very hard electron energy distribution index p similar or equal to 1, (3) total jet power significantly exceeding the accretion-disk luminosity L-j/L-d greater than or similar to 10, and (4) extremely low jet magnetization with L-B/L-j less than or similar to 10(-4). We also find that single-zone models that match the observed gamma-ray and optical spectra cannot satisfactorily explain the production of X-ray emission. C1 [Hayashida, M.] Univ Tokyo, Inst Cosm Ray Res, Kashiwa, Chiba 2778582, Japan. [Nalewajko, K.; Madejski, G. M.; Blandford, R. D.; Chiang, J.; Furniss, A. K.; Koglin, J. E.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, WW Hansen Expt Phys Lab, Stanford, CA 94305 USA. [Nalewajko, K.; Madejski, G. M.; Blandford, R. D.; Chiang, J.; Furniss, A. K.; Koglin, J. E.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Sikora, M.] Nicolaus Copernicus Astron Ctr, PL-00716 Warsaw, Poland. [Itoh, R.; Fukazawa, Y.; Kawaguchi, K.; Kanda, Y.; Takaki, K.; Ui, T.] Hiroshima Univ, Dept Phys Sci, Higashihiroshima, Hiroshima 7398526, Japan. [Ajello, M.] Clemson Univ, Dept Phys & Astron, Kinard Lab Phys, Clemson, SC 29634 USA. [Buson, S.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Buson, S.] Univ Padua, Dipartimento Fis & Astron G Galilei, I-35131 Padua, Italy. [Urry, C. M.; Hasan, I.] Yale Univ, Yale Ctr Astron & Astrophys, Dept Phys, New Haven, CT 06520 USA. [Harrison, F. A.; Balokovic, M.; Forster, K.; Grefenstette, B.; Madsen, K. K.; Mao, P. H.; Miyasaka, H.; Rana, V.] CALTECH, Cahill Ctr Astron & Astrophys, Pasadena, CA 91125 USA. [Alexander, D. M.] Univ Durham, Dept Phys, Durham DH1 3LE, England. [Barret, D.] Univ Toulouse, UPS OMP, IRAP, Toulouse, France. [Barret, D.; Craig, W. W.] CNRS, Inst Rech Astrophys & Planetol, F-31028 Toulouse 4, France. [Boggs, S. E.; Zoglauer, A.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Christensen, F. E.; Hornstrup, A.; Westergaard, N. J.] Tech Univ Denmark, Natl Space Inst, DTU Space, DK-2800 Lyngby, Denmark. [Craig, W. W.; Pivovaroff, M. J.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Giommi, P.; Perri, M.; Puccetti, S.] ASI Sci Data Ctr, D-52425 Rome, Italy. [Hailey, C.; Mori, K.] Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA. [Kitaguchi, T.] Hiroshima Univ, Grad Sch Sci, Core Res Energet Universe, Higashihiroshima, Hiroshima 7398526, Japan. [Perri, M.; Puccetti, S.] INAF, Osservatorio Astron Roma, I-00040 Monte Porzio Catone, Italy. [Stern, D.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Tagliaferri, G.] INAF, Osservatorio Astron Brera, I-23807 Merate, Italy. [Zhang, W. W.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Gurwell, M. A.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Uemura, M.; Akitaya, H.; Kawabata, K. S.; Moritani, Y.; Yoshida, M.] Hiroshima Univ, Hiroshima Astrophys Sci Ctr, Higashihiroshima, Hiroshima 7398526, Japan. [Agarwal, A.; Gupta, A. C.] Aryabhatta Res Inst Observat Sci ARIES, Naini Tal 263002, India. RP Hayashida, M (reprint author), Univ Tokyo, Inst Cosm Ray Res, 5-1-5 Kashiwanoha, Kashiwa, Chiba 2778582, Japan. EM mahaya@icrr.u-tokyo.ac.jp; knalew@stanford.edu RI Boggs, Steven/E-4170-2015; OI Boggs, Steven/0000-0001-9567-4224; Perri, Matteo/0000-0003-3613-4409; giommi, paolo/0000-0002-2265-5003; Puccetti, Simonetta/0000-0002-2734-7835; Rana, Vikram/0000-0003-1703-8796; Urry, Meg/0000-0002-0745-9792; Ajello, Marco/0000-0002-6584-1703 FU NASA [NNG08FD60C, NAS8-03060]; NASA through Einstein Postdoctoral Fellowship - Chandra X-ray Center [PF3-140130]; NASA Headquarters under the NASA earth and Space Science Fellowship Program [NNX14AQ07H]; Smithsonian Institution; Academia Sinica FX This work was partially supported under the NASA contract no. NNG08FD60C, and made use of observations from the NuSTAR mission, a project led by California Institute of Technology, managed by the Jet Propulsion Laboratory, and funded by NASA. We thank the NuSTAR Operations, Software, and Calibration teams for support of the execution and analysis of these observations. This research has made use of the NuSTAR Data Analysis Software (NuSTARDAS) jointly developed by the ASI Science Data Center (ASDC, Italy) and the California Institute of Technology (USA). This research has made use of the XRT Data Analysis Software (XRTDAS) developed under the responsibility of the ASI Science Data Center (ASDC), Italy. The Submillimeter Array is a joint project between the Smithsonian Astrophysical Observatory and the Academia Sinica Institute of Astronomy and Astrophysics and is funded by the Smithsonian Institution and the Academia Sinica.; K.N. was supported by NASA through Einstein Postdoctoral Fellowship grant number PF3-140130 awarded by the Chandra X-ray Center, which is operated by the Smithsonian Astrophysical Observatory for NASA under contract NAS8-03060. M.B. acknowledges support from NASA Headquarters under the NASA earth and Space Science Fellowship Program, grant NNX14AQ07H. NR 81 TC 33 Z9 33 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUL 1 PY 2015 VL 807 IS 1 AR 79 DI 10.1088/0004-637X/807/1/79 PG 18 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CO1VX UT WOS:000358945200079 ER PT J AU Law, CJ Bower, GC Burke-Spolaor, S Butler, B Lawrence, E Lazio, TJW Mattmann, CA Rupen, M Siemion, A VanderWiel, S AF Law, Casey J. Bower, Geoffrey C. Burke-Spolaor, Sarah Butler, Bryan Lawrence, Earl Lazio, T. Joseph W. Mattmann, Chris A. Rupen, Michael Siemion, Andrew VanderWiel, Scott TI A MILLISECOND INTERFEROMETRIC SEARCH FOR FAST RADIO BURSTS WITH THE VERY LARGE ARRAY SO ASTROPHYSICAL JOURNAL LA English DT Article DE instrumentation: interferometers; intergalactic medium; pulsars: general; radio continuum: general; surveys ID GAMMA-RAY BURSTS; COSMOLOGICAL DISTANCES; TRANSIENT DETECTION; MISSING BARYONS; PULSAR SURVEY; SCINTILLATION; DISCOVERIES; REDSHIFT; MERGERS AB We report on the first millisecond timescale radio interferometric search for the new class of transient known as fast radio bursts (FRBs). We used the Very Large Array (VLA) for a 166 hr, millisecond imaging campaign to detect and precisely localize an FRB. We observed at 1.4 GHz and produced visibilities with 5 ms time resolution over 256 MHz of bandwidth. Dedispersed images were searched for transients with dispersion measures from 0 to 3000 pc cm(-3). No transients were detected in observations of high Galactic latitude fields taken from 2013 September though 2014 October. Observations of a known pulsar show that images typically had a thermal-noise limited sensitivity of 120 mJy beam(-1) (8 sigma; Stokes I) in 5 ms and could detect and localize transients over a wide field of view. Our nondetection limits the FRB rate to less than 7 x 10(4) sky(-1) day(-1) (95% confidence) above a fluence limit of 1.5 Jy ms. The VLA rate limit is consistent with past estimates when published flux limits are recalculated with a homogeneous definition that includes effects of primary beam attenuation, dispersion, pulse width, and sky brightness. This calculation revises the FRB rate downward by a factor of 2, giving the VLA observations a roughly 50% chance of detecting a typical FRB, assuming a pulse width of 3 ms. A 95% confidence constraint would require 600 hr of similar VLA observing. Our survey also limits the repetition rate of an FRB to 2 times less than any known repeating millisecond radio transient. C1 [Law, Casey J.; Siemion, Andrew] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Law, Casey J.; Siemion, Andrew] Univ Calif Berkeley, Radio Astron Lab, Berkeley, CA 94720 USA. [Bower, Geoffrey C.] Acad Sinica, Inst Astron & Astrophys, Hilo, HI 96720 USA. [Burke-Spolaor, Sarah; Lazio, T. Joseph W.; Mattmann, Chris A.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Burke-Spolaor, Sarah; Butler, Bryan] Natl Radio Astron Observ, Socorro, NM 87801 USA. [Lawrence, Earl; VanderWiel, Scott] Los Alamos Natl Lab, Los Alamos, NM USA. [Rupen, Michael] NRC Herzberg, Penticton, BC, Canada. RP Law, CJ (reprint author), Univ Calif Berkeley, Dept Astron, 601 Campbell Hall, Berkeley, CA 94720 USA. OI Law, Casey/0000-0002-4119-9963 FU University of California Office of the President under Lab Fees Research Program Award [237863]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX We thank the VLA staff, particularly Martin Pokorny, Ken Sowinski, Vivek Dhawan, James Robnett, and Joan Wrobel, for working tirelessly to support this challenging observing mode. Peter Williams contributed with wide-ranging Python expertise. This project was supported by the University of California Office of the President under Lab Fees Research Program Award 237863. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. This research used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 43 TC 23 Z9 23 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUL 1 PY 2015 VL 807 IS 1 AR 16 DI 10.1088/0004-637X/807/1/16 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CO1VX UT WOS:000358945200016 ER PT J AU Ryan, BR Dolence, JC Gammie, CF AF Ryan, B. R. Dolence, J. C. Gammie, C. F. TI bhlight: GENERAL RELATIVISTIC RADIATION MAGNETOHYDRODYNAMICS WITH MONTE CARLO TRANSPORT SO ASTROPHYSICAL JOURNAL LA English DT Article DE black hole physics; methods: numerical; relativistic processes ID 2-COMPONENT ACCRETION FLOW; SUPER-EDDINGTON ACCRETION; BLACK-HOLE; SPHERICAL ACCRETION; OPTICALLY THICK; M1 CLOSURE; DISKS; HYDRODYNAMICS; SIMULATION; CODE AB We present bhlight, a numerical scheme for solving the equations of general relativistic radiation magnetohydrodynamics using a direct Monte Carlo solution of the frequency-dependent radiative transport equation. bhlight is designed to evolve black hole accretion flows at intermediate accretion rate, in the regime between the classical radiatively efficient disk and the radiatively inefficient accretion flow (RIAF), in which global radiative effects play a sub-dominant but non-negligible role in disk dynamics. We describe the governing equations, numerical method, idiosyncrasies of our implementation, and a suite of test and convergence results. We also describe example applications to radiative Bondi accretion and to a slowly accreting Kerr black hole in axisymmetry. C1 [Ryan, B. R.; Gammie, C. F.] Univ Illinois, Dept Astron, Urbana, IL 61801 USA. [Dolence, J. C.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Gammie, C. F.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. RP Ryan, BR (reprint author), Univ Illinois, Dept Astron, 1110 W Green St, Urbana, IL 61801 USA. OI Gammie, Charles /0000-0001-7451-8935; Dolence, Joshua/0000-0003-4353-8751 FU NSF [AST 13-33612]; NASA [NNX10AD03G]; Romano Professorial Scholarship; National Science Foundation [OCI-0725070, ACI-1238993]; state of Illinois FX This work was supported by NSF grant AST 13-33612 and NASA grant NNX10AD03G, by a NASA GSRP fellowship to J.C.D, an Illinois Distinguished Fellowship to B.R.R, a Metropolis Fellowship to J.C.D, and a Romano Professorial Scholarship to C.F.G. We thank B. Farris, C. Roedig, and particularly M. Chandra and S. Shapiro for discussions, as well as J. Stone, E. Quataert, and all the members of the horizon collaboration (horizon.astro.illinois.edu). We also thank the anonymous referee for a very useful report. A portion of the analytic results presented here were obtained using the SageMath software package running on SageMathCloud (https://cloud.sagemath.com). A portion of the numerical results presented here were obtained on Princeton's tiger cluster. This research is part of the Blue Waters sustained-petascale computing project, which is supported by the National Science Foundation (awards OCI-0725070 and ACI-1238993) and the state of Illinois. Blue Waters is a joint effort of the University of Illinois at Urbana-Champaign and its National Center for Supercomputing Applications. NR 53 TC 6 Z9 6 U1 1 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUL 1 PY 2015 VL 807 IS 1 AR 31 DI 10.1088/0004-637X/807/1/31 PG 20 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CO1VX UT WOS:000358945200031 ER PT J AU Schneider, MD Hogg, DW Marshall, PJ Dawson, WA Meyers, J Bard, DJ Lang, D AF Schneider, Michael D. Hogg, David W. Marshall, Philip J. Dawson, William A. Meyers, Joshua Bard, Deborah J. Lang, Dustin TI HIERARCHICAL PROBABILISTIC INFERENCE OF COSMIC SHEAR SO ASTROPHYSICAL JOURNAL LA English DT Article DE catalogs; cosmology: observations; gravitational lensing: weak; methods: data analysis; methods: statistical; surveys ID DIRICHLET PROCESS MIXTURE; WEAK-LENSING SURVEYS; GALAXY SHAPE MEASUREMENT; NONPARAMETRIC PROBLEMS; BAYESIAN-INFERENCE; MODELS; CONSTRAINTS; CFHTLENS; DISTRIBUTIONS; REQUIREMENTS AB Point estimators for the shearing of galaxy images induced by gravitational lensing involve a complex inverse problem in the presence of noise, pixelization, and model uncertainties. We present a probabilistic forward modeling approach to gravitational lensing inference that has the potential to mitigate the biased inferences in most common point estimators and is practical for upcoming lensing surveys. The first part of our statistical framework requires specification of a likelihood function for the pixel data in an imaging survey given parameterized models for the galaxies in the images. We derive the lensing shear posterior by marginalizing over all intrinsic galaxy properties that contribute to the pixel data (i.e., not limited to galaxy ellipticities) and learn the distributions for the intrinsic galaxy properties via hierarchical inference with a suitably flexible conditional probabilitiy distribution specification. We use importance sampling to separate the modeling of small imaging areas from the global shear inference, thereby rendering our algorithm computationally tractable for large surveys. With simple numerical examples we demonstrate the improvements in accuracy from our importance sampling approach, as well as the significance of the conditional distribution specification for the intrinsic galaxy properties when the data are generated from an unknown number of distinct galaxy populations with different morphological characteristics. C1 [Schneider, Michael D.; Dawson, William A.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Schneider, Michael D.] Univ Calif Davis, Davis, CA 95616 USA. [Hogg, David W.] NYU, Ctr Cosmol & Particle Phys, New York, NY 10003 USA. [Marshall, Philip J.; Bard, Deborah J.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Meyers, Joshua] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94035 USA. [Lang, Dustin] Carnegie Mellon Univ, Dept Phys, Pittsburgh, PA 15213 USA. RP Schneider, MD (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. EM schneider42@llnl.gov OI Schneider, Michael/0000-0002-8505-7094; Hogg, David/0000-0003-2866-9403 FU U.S. Department of Energy [DE-AC52-07NA27344]; NSF [IIS-1124794]; Moore-Sloan Data Science Environment at NYU FX We thank Dominique Boutigny for several technical reviews of this work and for contributions to our GREAT3 challenge submissions based on these methods. We thank Bob Armstrong, Gary Bernstein, Jim Bosch, and Erin Sheldon for helpful conversations. We also thank the GREAT3 gravitational lensing community challenge team for motivating much of this work and providing valuable feedback on the implementation of our algorithms. Part of this work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. D.W.H. was partially supported by the NSF (grant IIS-1124794) and the Moore-Sloan Data Science Environment at NYU. NR 64 TC 9 Z9 9 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUL 1 PY 2015 VL 807 IS 1 AR 87 DI 10.1088/0004-637X/807/1/87 PG 19 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CO1VX UT WOS:000358945200087 ER PT J AU Zingale, M Malone, CM Nonaka, A Almgren, AS Bell, JB AF Zingale, M. Malone, C. M. Nonaka, A. Almgren, A. S. Bell, J. B. TI COMPARISONS OF TWO- AND THREE-DIMENSIONAL CONVECTION IN TYPE I X-RAY BURSTS SO ASTROPHYSICAL JOURNAL LA English DT Article DE convection; hydrodynamics; methods: numerical; stars: neutron; X-rays: bursts ID HYPERBOLIC CONSERVATION-LAWS; ACCRETING NEUTRON-STARS; EQUATION-OF-STATE; 2-DIMENSIONAL TURBULENCE; SUPERNOVAE; SIMULATIONS; ENERGY; APPROXIMATION; HYDRODYNAMICS; CONSISTENCY AB We perform the first detailed three-dimensional simulation of low Mach number convection preceding runaway thermonuclear ignition in a mixed H/He X-ray burst. Our simulations include a moderate-sized, approximate network that captures hydrogen and helium burning up through rp-process breakout. We look at the difference between two- and three-dimensional convective fields, including the details of the turbulent convection. C1 [Zingale, M.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Malone, C. M.] Los Alamos Natl Lab, CCS 2, Los Alamos, NM 87545 USA. [Nonaka, A.; Almgren, A. S.; Bell, J. B.] Los Alamos Natl Lab, XCP 1, Los Alamos, NM 87545 USA. [Nonaka, A.; Almgren, A. S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Ctr Computat Sci & Engn, Berkeley, CA 94720 USA. RP Zingale, M (reprint author), SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. EM michael.zingale@stonybrook.edu OI Malone, Chris/0000-0002-4045-7932; Zingale, Michael/0000-0001-8401-030X FU DOE/Office of Nuclear Physics grants [DE-FG02-06ER41448, DE-FG02-87ER40317]; National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory [DE-AC52-06NA25396]; Applied Mathematics Program of the DOE Office of Advance Scientific Computing Research under U.S. Department of Energy [DE-AC02-05CH11231]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231, DE-AC05-00OR22725] FX We thank Frank Timmes for making his equation of state publicly available. The work at Stony Brook was supported by DOE/Office of Nuclear Physics grants Nos. DE-FG02-06ER41448 and DE-FG02-87ER40317 to Stony Brook. Work at LANL was done under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396. The work at LBNL was supported by the Applied Mathematics Program of the DOE Office of Advance Scientific Computing Research under U.S. Department of Energy under contract No. DE-AC02-05CH11231. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. An award of computer time was provided by the Innovative and Novel Computational Impact on Theory and Experiment (INCITE) program. This research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725. NR 41 TC 2 Z9 2 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUL 1 PY 2015 VL 807 IS 1 DI 10.1088/0004-637X/807/1/60 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CO1VX UT WOS:000358945200060 ER PT J AU Naumann, S Schwanenberg, D Karimanzira, D Fan, F Allen, C AF Naumann, Steffi Schwanenberg, Dirk Karimanzira, Divas Fan, Fernando Allen, Christopher TI Short-term management of hydropower reservoirs under meteorological uncertainty by means of multi-stage optimization SO AT-AUTOMATISIERUNGSTECHNIK LA English DT Article DE Hydropower; short-term management; multi-stage stochastic optimization AB Uncertainty in meteorology, market volatility and balancing requirements for introducing renewable energy resources into the power grid, environmental obligations require robust management of non-intermittent energy sources such as hydropower. In this paper, a probalistic management system is shown and its performance is discussed in relation to the deterministic one. In the system, scenario trees enable to setup a multi-stage stochastic optimization approach as the mathematical formulation of the short-term system management. The Federal Columbia River Power System (FCRPS), managed by the Bonneville Power Administration, the US Army Corps of Engineers and the Bureau of Reclamation, serves as a large-scale test case for the application of the management system and proves that the stochastic approach is feasible and verify the operational applicability within a real-time environment. C1 [Naumann, Steffi; Karimanzira, Divas] Fraunhofer IOSB AST, Ilmenau, Germany. [Schwanenberg, Dirk] Deltares, Dept Operat Water Management, Delft, Netherlands. [Fan, Fernando] Univ Fed Rio Grande do Sul, Inst Pesquisas Hidraul, Porto Alegre, RS, Brazil. [Allen, Christopher] Bonneville Power Adm, US Dept Energy, Portland, OR USA. RP Karimanzira, D (reprint author), Fraunhofer IOSB AST, Ilmenau, Germany. EM divas.karimanzira@iosb-ast.fraunhofer.de FU BPA [259, 2013-1517]; CEMIG, Deltares and Fraunhofer IOSB-AST FX This research is supported by the BPA (TI ProjectNr. 259, Application 2013-1517), CEMIG, Deltares and Fraunhofer IOSB-AST. Thanks to all colleagues who are involved in the Project. NR 21 TC 0 Z9 0 U1 1 U2 2 PU WALTER DE GRUYTER GMBH PI BERLIN PA GENTHINER STRASSE 13, D-10785 BERLIN, GERMANY SN 0178-2312 J9 AT-AUTOM JI AT-Autom. PD JUL PY 2015 VL 63 IS 7 SI SI BP 535 EP 542 DI 10.1515/auto-2014-1168 PG 8 WC Automation & Control Systems SC Automation & Control Systems GA CN9OV UT WOS:000358779600006 ER PT J AU Villeneuve, S Rabinovici, GD Cohn-Sheehy, BI Madison, C Ayakta, N Ghosh, PM La Joie, R Arthur-Bentil, SK Vogel, JW Marks, SM Lehmann, M Rosen, HJ Reed, B Olichney, J Boxer, AL Miller, BL Borys, E Jin, LW Huang, EJ Grinberg, LT DeCarli, C Seeley, WW Jagust, W AF Villeneuve, Sylvia Rabinovici, Gil D. Cohn-Sheehy, Brendan I. Madison, Cindee Ayakta, Nagehan Ghosh, Pia M. La Joie, Renaud Arthur-Bentil, Samia Kate Vogel, Jacob W. Marks, Shawn M. Lehmann, Manja Rosen, Howard J. Reed, Bruce Olichney, John Boxer, Adam L. Miller, Bruce L. Borys, Ewa Jin, Lee-Way Huang, Eric J. Grinberg, Lea T. DeCarli, Charles Seeley, William W. Jagust, William TI Existing Pittsburgh Compound-B positron emission tomography thresholds are too high: statistical and pathological evaluation SO BRAIN LA English DT Article DE Alzheimer's disease; dementia; biomarkers; neurodegeneration; beta-amyloid ID MILD COGNITIVE IMPAIRMENT; ALZHEIMERS ASSOCIATION WORKGROUPS; AMYLOID-BETA DEPOSITION; NATIONAL INSTITUTE; NEUROPATHOLOGIC ASSESSMENT; DIAGNOSTIC-CRITERIA; FUNCTIONAL CONNECTIVITY; FRONTOTEMPORAL DEMENTIA; HYPOTHETICAL MODEL; DYNAMIC BIOMARKERS AB Arnyloid-beta, a hallmark or Alzheimer's disease, begins accumulating up to two decades before me onset of dementia, and can be detected in vivo applying amyloid-beta positron emission tomography tracers such as carbon-11-labelled Pittsburgh compound-B A variety of threshold,: have been applied in the literature to define Pittsburgh compound-B positron emission tomography positivity, but the ability of these thresholds to detect early amyloid-beta deposition is unknown, and validation studies comparing Pittsburgh compound-B thresholds to post-mortem amyloid burden are lacking. In this study we first derived threshold for amyloid positron emission tomography positivity using Pittsburgh compound-B positron emission tomography in 154 cognitively normal older adult,: with four complementary approaches: (i) reference values from a young control group aged between 2(1 and 31 years; jii) a Gaussian mixture model that assigned each subject a probability of being amyloid-p-positive or amyloid-beta-negative based on Pittsburgh compound-B index uptake; (iii) a k-means cluster approach that clustered subject,: into amyloid-p-positive or amyloid-p-negative based on Pittsburgh compound-B uptake in different brain regions (features); and (iv) an iterative voxel-based analysis that further explored the spatial pattern of early amyloid-beta positron emission tomography signal. Next, we tested the, sensitivity and specificity of the derived thresholds in 50 individuals who underwent Pittsburgh compound-B positron emission tomography during life and brain autopsy mean time positron emission tomography to autopsy 3.1 +/- 1.8 years). Am bid autopsy was classified using Consortium to Establish a Registry for Alzheimer's Disease (CERAD) criteria, unadjusted for age. The analytic approaches yielded low thresholds standard uptake value ratio(low) = 1.21, distribution volume ratio(low) = 1.08) that represent the earliest detectable Pittsburgh compound-B signal, as well as high thresholds (standard uptake value ratio(high) = 1.40, distribution volume ratio(high) = 1.20) that are more conservative in defining Pittsburgh compound-B positron emission tomography positivity. In voxel-wise contrasts, elevated Pittsburgh compound-B retention was first noted in the medial frontal cortex, then the precuneus, lateral frontal and parietal lobes, and finally the lateral temporal lobe. When compared to post-mortem amyloid burden, tow proposed thresholds were more sensitive than high thresholds (sensitivities: distribution volume ratio(low) 81.0% standard uptake value ratio(low) 83.3%; distribution volume ratio(high) 61.9%, standard uptake value ratio(high) 62.5%) for GERM moderate-to-frequent neuritic plaques, with similar specificity (distribution volume ratio(low) 95.8%; standard uptake value ratio: distribution volume ratio(high), and standard uptake value ratio(high) 100.0%). A receiver operator characteristic analysis identified optimal distribution volume ratio (1.06) and standard uptake value ratio;1.20) thresholds that were nearly identical to the a prior distribution volume ratio(low) and standard uptake value ratio(low). In summary, We found that frequently applied thresholds for Pittsburgh compound-B positivity (typically at or above distribution volume ratio(high) and standard uptake value ratio(high)) are overly stringent in defining amyloid positivity. Lower thresholds in this study resulted in higher sensitivity while not comprimising specificity. C1 [Villeneuve, Sylvia; Rabinovici, Gil D.; Cohn-Sheehy, Brendan I.; Madison, Cindee; Ayakta, Nagehan; Ghosh, Pia M.; La Joie, Renaud; Arthur-Bentil, Samia Kate; Vogel, Jacob W.; Marks, Shawn M.; Lehmann, Manja; Jagust, William] Univ Calif Berkeley, Helen Wills Neurosci Inst, Berkeley, CA 94720 USA. [Rabinovici, Gil D.; Cohn-Sheehy, Brendan I.; Ghosh, Pia M.; Arthur-Bentil, Samia Kate; Jagust, William] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Rabinovici, Gil D.; Cohn-Sheehy, Brendan I.; Ayakta, Nagehan; Ghosh, Pia M.; Lehmann, Manja; Rosen, Howard J.; Boxer, Adam L.; Miller, Bruce L.; Grinberg, Lea T.; Seeley, William W.] Univ Calif San Francisco, Dept Neurol, Memory & Aging Ctr, San Francisco, CA USA. [Reed, Bruce; Olichney, John; DeCarli, Charles] Univ Calif Davis, Sch Med, Dept Neurol, Davis, CA 95616 USA. [Reed, Bruce] Vet Affairs Northern Calif Hlth Care Syst, Martinez, CA USA. [Borys, Ewa] Loyola Univ Chicago, Stritch Sch Med, Dept Pathol, Chicago, IL USA. [Jin, Lee-Way] Univ Calif Davis, Dept Pathol & Lab Med, Davis, CA 95616 USA. [Huang, Eric J.; Grinberg, Lea T.; Seeley, William W.] Univ Calif San Francisco, Dept Pathol, San Francisco, CA 94140 USA. RP Villeneuve, S (reprint author), Univ Calif Berkeley, Helen Wills Neurosci Inst, 132 Barker Hall,MC 3190, Berkeley, CA 94720 USA. EM villeneuve.sylvia@gmail.com OI Huang, Eric/0000-0002-5381-3801; Marks, Shawn/0000-0001-9884-8461; La Joie, Renaud/0000-0003-2581-8100 FU National Institute on Aging [K23-AG031861, R01-AG045611, P01-AG1972403, P50-AG023501, R01-AG032306, K24-AG045333, P01-AG12435, P30-AG10129, R01-AG021028, R01-AG031563, R01AG038791, R01-AG034570]; Consortium for Frontotemporal Dementia Research; Tau Consortium; John Douglas French Alzheimer's Foundation; State of California Department of Health Services Alzheimer's Disease Research Center of California [04-33516]; Hellman Family Foundation; Canadian Institutes of Health Research FX This work was supported by National Institute on Aging grants K23-AG031861 and R01-AG045611 to G.D.R., P01-AG1972403 to B.LM. and W.W.S, P50-AG023501 to B.L.M., G.D.R and W.W.S., R01-AG032306 and K24-AG045333 to H.J.R, P01-AG12435, P30-AG10129, R01-AG021028 and R01-AG031563 to C.D., R01-AG031563 to B.R.; R01AG038791 to A.L.B., R01-AG034570 to WJJ; the Consortium for Frontotemporal Dementia Research to B.L.M. and W.W.S; the Tau Consortium to W.W.S., G.D.R and W.J.J.; John Douglas French Alzheimer's Foundation to G.D.R. and B.L.M.; State of California Department of Health Services Alzheimer's Disease Research Center of California grant 04-33516 to B.L.M; Hellman Family Foundation award to G.D.R.; and Canadian Institutes of Health Research post-doctoral fellowship to S.V. NR 64 TC 21 Z9 21 U1 0 U2 7 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0006-8950 EI 1460-2156 J9 BRAIN JI Brain PD JUL 1 PY 2015 VL 138 BP 2020 EP 2033 DI 10.1093/brain/awv112 PN 7 PG 14 WC Clinical Neurology; Neurosciences SC Neurosciences & Neurology GA CN6HY UT WOS:000358536600030 PM 25953778 ER PT J AU Weston, DJ Rogers, A Tschaplinski, TJ Gunter, LE Jawdy, SA Engle, NL Heady, LE Tuskan, GA Wullschleger, SD AF Weston, David J. Rogers, Alistair Tschaplinski, Timothy J. Gunter, Lee E. Jawdy, Sara A. Engle, Nancy L. Heady, Lindsey E. Tuskan, Gerald A. Wullschleger, Stan D. TI Scaling nitrogen and carbon interactions: what are the consequences of biological buffering? SO ECOLOGY AND EVOLUTION LA English DT Article DE Buffering; carbon; ecological genomics; networks; nitrogen; robustness; scaling ID NITRATE REDUCTASE; ARABIDOPSIS-THALIANA; DUPLICATE GENES; CO2 ENRICHMENT; DIFFERENTIAL EXPRESSION; FUNCTIONAL COMPENSATION; DIOXIDE CONCENTRATION; NETWORK STRUCTURE; PLANT CARBON; GLYCINE-MAX AB Understanding the consequences of elevated CO2 (eCO(2); 800ppm) on terrestrial ecosystems is a central theme in global change biology, but relatively little is known about how altered plant C and N metabolism influences higher levels of biological organization. Here, we investigate the consequences of C and N interactions by genetically modifying the N-assimilation pathway in Arabidopsis and initiating growth chamber and mesocosm competition studies at current CO2 (cCO(2); 400ppm) and eCO(2) over multiple generations. Using a suite of ecological, physiological, and molecular genomic tools, we show that a single-gene mutant of a key enzyme (nia2) elicited a highly orchestrated buffering response starting with a fivefold increase in the expression of a gene paralog (nia1) and a 63% increase in the expression of gene network module enriched for N-assimilation genes. The genetic perturbation reduced amino acids, protein, and TCA-cycle intermediate concentrations in the nia2 mutant compared to the wild-type, while eCO(2) mainly increased carbohydrate concentrations. The mutant had reduced net photosynthetic rates due to a 27% decrease in carboxylation capacity and an 18% decrease in electron transport rates. The expression of these buffering mechanisms resulted in a penalty that negatively correlated with fitness and population dynamics yet showed only minor alterations in our estimates of population function, including total per unit area biomass, ground cover, and leaf area index. This study provides insight into the consequences of buffering mechanisms that occur post-genetic perturbations in the N pathway and the associated outcomes these buffering systems have on plant populations relative to eCO(2). C1 [Weston, David J.; Tschaplinski, Timothy J.; Gunter, Lee E.; Jawdy, Sara A.; Engle, Nancy L.; Tuskan, Gerald A.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. [Rogers, Alistair; Heady, Lindsey E.] Brookhaven Natl Lab, Biol Environm & Climate Sci Dept, Upton, NY 11973 USA. [Wullschleger, Stan D.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. RP Weston, DJ (reprint author), Oak Ridge Natl Lab, Biosci Div, POB 2008 MS-6407, Oak Ridge, TN 37831 USA. EM westondj@ornl.gov RI Rogers, Alistair/E-1177-2011; Gunter, Lee/L-3480-2016; Wullschleger, Stan/B-8297-2012; Tuskan, Gerald/A-6225-2011; OI Rogers, Alistair/0000-0001-9262-7430; Gunter, Lee/0000-0003-1211-7532; Wullschleger, Stan/0000-0002-9869-0446; Tuskan, Gerald/0000-0003-0106-1289; Tschaplinski, Timothy/0000-0002-9540-6622; Engle, Nancy/0000-0003-0290-7987 FU U.S. Department of Energy, Office of Science, Office of the Biological and Environmental Research through the Terrestrial Ecosystem Sciences (TES) Program; DOE [DE-AC05-00OR22725]; Brookhaven National Laboratory [DE-AC02-98CHI0886] FX This research was funded by the U.S. Department of Energy, Office of Science, Office of the Biological and Environmental Research through the Terrestrial Ecosystem Sciences (TES) Program. Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the DOE under contract DE-AC05-00OR22725 and Brookhaven National Laboratory under contract No. DE-AC02-98CHI0886. NR 63 TC 1 Z9 1 U1 1 U2 19 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 2045-7758 J9 ECOL EVOL JI Ecol. Evol. PD JUL PY 2015 VL 5 IS 14 BP 2839 EP 2850 DI 10.1002/ece3.1565 PG 12 WC Ecology; Evolutionary Biology SC Environmental Sciences & Ecology; Evolutionary Biology GA CN5EN UT WOS:000358452700008 PM 26306170 ER PT J AU Boeckmann, B Marcet-Houben, M Rees, JA Forslund, K Huerta-Cepas, J Muffato, M Yilmaz, P Xenarios, I Bork, P Lewis, SE Gabaldon, T AF Boeckmann, Brigitte Marcet-Houben, Marina Rees, Jonathan A. Forslund, Kristoffer Huerta-Cepas, Jaime Muffato, Matthieu Yilmaz, Pelin Xenarios, Ioannis Bork, Peer Lewis, Suzanna E. Gabaldon, Toni CA Quest Orthologs Species Tree TI Quest for Orthologs Entails Quest for Tree of Life: In Search of the Gene Stream SO GENOME BIOLOGY AND EVOLUTION LA English DT Article DE Tree of Life; species tree; gene tree support ID GENOME; PHYLOGENY; EVOLUTION; RECONSTRUCTION; EUKARYOTES; RESOLUTION; POSITIONS; ANIMALS; DOMAIN; RNA AB Quest for Orthologs (QfO) is a community effort with the goal to improve and benchmark orthology predictions. As quality assessment assumes prior knowledge on species phylogenies, we investigated the congruency between existing species trees by comparing the relationships of 147 QfO reference organisms from six Tree of Life (ToL)/species tree projects: The National Center for Biotechnology Information (NCBI) taxonomy, Opentree of Life, the sequenced species/species ToL, the 16S ribosomal RNA (rRNA) database, and trees published by Ciccarelli et al. (Ciccarelli FD, et al. 2006. Toward automatic reconstruction of a highly resolved tree of life. Science 311:1283-1287) and by Huerta-Cepas et al. (Huerta-Cepas J, Marcet-Houben M, Gabaldon T. 2014. A nested phylogenetic reconstruction approach provides scalable resolution in the eukaryotic Tree Of Life. PeerJ PrePrints 2: 223) Our study reveals that each species tree suggests a different phylogeny: 87 of the 146 (60%) possible splits of a dichotomous and rooted tree are congruent, while all other splits are incongruent in at least one of the species trees. Topological differences are observed not only at deep speciation events, but also within younger clades, such as Hominidae, Rodentia, Laurasiatheria, or rosids. The evolutionary relationships of 27 archaea and bacteria are highly inconsistent. By assessing 458,108 gene trees from 65 genomes, we show that consistent species topologies are more often supported by gene phylogenies than contradicting ones. The largest concordant species tree includes 77 of the QfO reference organisms at the most. Results are summarized in the form of a consensus ToL (http://swisstree.vital-it.ch/species_tree) that can serve different benchmarking purposes. C1 [Boeckmann, Brigitte; Xenarios, Ioannis] Swiss Prot, Swiss Inst Bioinformat, Geneva, Switzerland. [Marcet-Houben, Marina; Gabaldon, Toni] Ctr Genom Regulat, Bioinformat & Genom, Barcelona, Spain. [Marcet-Houben, Marina; Gabaldon, Toni] Univ Pompeu Fabra, Barcelona, Spain. [Rees, Jonathan A.] Duke Univ, US Natl Evolutionary Synth Ctr, Durham, NC USA. [Forslund, Kristoffer; Huerta-Cepas, Jaime; Bork, Peer] European Mol Biol Lab, Struct & Computat Biol Unit, D-69012 Heidelberg, Germany. [Muffato, Matthieu] European Bioinformat Inst, European Mol Biol Lab, Hinxton, England. [Yilmaz, Pelin] Max Planck Inst Marine Microbiol, Microbial Genom & Bioinformat Res Grp, Bremen, Germany. [Xenarios, Ioannis] Swiss Inst Bioinformat, Vital IT, Lausanne, Switzerland. [Xenarios, Ioannis] Univ Lausanne, Ctr Integrat Genom, Lausanne, Switzerland. [Bork, Peer] Univ Heidelberg Hosp, Germany Mol Med Partnership Unit, Heidelberg, Germany. [Bork, Peer] European Mol Biol Lab, D-69012 Heidelberg, Germany. [Bork, Peer] Max Delbruck Ctr Mol Med, Berlin, Germany. [Lewis, Suzanna E.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Genom Div, Berkeley, CA 94720 USA. [Gabaldon, Toni] Inst Catalana Recerca & Estudis Avancats, Barcelona, Spain. RP Boeckmann, B (reprint author), Swiss Prot, Swiss Inst Bioinformat, Geneva, Switzerland. EM brigitte.boeckmann@isb-sib.ch RI Bork, Peer/F-1813-2013; OI Yilmaz, Pelin/0000-0003-4724-323X; Forslund, Kristoffer/0000-0003-4285-6993; Bork, Peer/0000-0002-2627-833X; Lewis, Suzanna/0000-0002-8343-612X; Gabaldon, Toni/0000-0003-0019-1735; Muffato, Matthieu/0000-0002-7860-3560 FU Swiss Federal Government through the Federal Office of Education and Science; Swiss Institute of Bioinformatics; Spanish ministry of Economy and Competitiveness [BIO2012-37161]; Qatar National Research Fund [NPRP 5-298-3-086]; European Research Council under the European Union [ERC-2012-StG-310325]; Wellcome Trust [WT095908]; European Molecular Biology Laboratory FX The authors wish to thank Vivienne Baillie Gerritsen for proofreading. This work was supported by the Swiss Federal Government through the Federal Office of Education and Science (B.B.). Funding for open access charge: Swiss Institute of Bioinformatics. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. T.G. group research is funded in part by a grant from the Spanish ministry of Economy and Competitiveness (BIO2012-37161), a Grant from the Qatar National Research Fund (NPRP 5-298-3-086), and a grant from the European Research Council under the European Union's Seventh Framework Programme (FP/2007-2013)/ERC (grant agreement no. ERC-2012-StG-310325). M.M. acknowledges support from the Wellcome Trust (grant number WT095908) and the European Molecular Biology Laboratory. NR 60 TC 3 Z9 3 U1 2 U2 15 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 1759-6653 J9 GENOME BIOL EVOL JI Genome Biol. Evol. PD JUL PY 2015 VL 7 IS 7 BP 1988 EP 1999 DI 10.1093/gbe/evv121 PG 12 WC Evolutionary Biology; Genetics & Heredity SC Evolutionary Biology; Genetics & Heredity GA CN9WF UT WOS:000358800500012 PM 26133389 ER PT J AU Campbell, BD Samsel, F AF Campbell, Bruce D. Samsel, Francesca TI Murmurations: Drawing Together Art, Visualization, and Physical Phenomena SO IEEE COMPUTER GRAPHICS AND APPLICATIONS LA English DT Editorial Material C1 [Campbell, Bruce D.] Rhode Isl Sch Design, Providence, RI 02903 USA. [Samsel, Francesca] Univ Texas Austin, Ctr Agile Technol, Austin, TX 78712 USA. [Samsel, Francesca] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Campbell, BD (reprint author), Rhode Isl Sch Design, Providence, RI 02903 USA. EM bcampbel01@risd.edu; figs@cat.utexas.edu NR 4 TC 0 Z9 0 U1 1 U2 1 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 0272-1716 EI 1558-1756 J9 IEEE COMPUT GRAPH JI IEEE Comput. Graph. Appl. PD JUL-AUG PY 2015 VL 35 IS 4 BP 8 EP 12 PG 5 WC Computer Science, Software Engineering SC Computer Science GA CN5WB UT WOS:000358501400003 ER PT J AU Norman, M Larkin, J Vose, A Evans, K AF Norman, Matthew Larkin, Jeffrey Vose, Aaron Evans, Katherine TI A case study of CUDA FORTRAN and OpenACC for an atmospheric climate kernel SO JOURNAL OF COMPUTATIONAL SCIENCE LA English DT Article; Proceedings Paper CT 15th Annual International Conference on Computational Science (ICCS) CY JUN 01-03, 2015 CL Reykjavik Univ, Reykjavik, ICELAND SP Elsevier, Univ Amsterdam, NTU Singapore, Univ Tennessee HO Reykjavik Univ DE OpenACC; Climate; CUDA; GPU; HPC ID SIMULATED CLIMATE; VERTICAL RESOLUTION; MODEL AB The porting of a key kernel in the tracer advection routines of the Community Atmosphere Model Spectral Element (CAM-SE) to use Graphics Processing Units (GPUs) using OpenACC is considered in comparison to an existing CUDA FORTRAN port. The development of the OpenACC kernel for GPUs was substantially simpler than that of the CUDA port. Also, OpenACC performance was about 1.5 x slower than the optimized CUDA version. Particular focus is given to compiler maturity regarding OpenACC implementation for modern FORTRAN, and it is found that the Cray implementation is currently more mature than the PGI implementation. Still, for the case that ran successfully on PGI, the PGI OpenACC runtime was slightly faster than Cray. The results show encouraging performance for OpenACC implementation compared to CUDA while also exposing some issues that may be necessary before the implementations are suitable for porting all of CAM-SE. Most notable are that GPU shared memory should be used by future OpenACC implementations and that derived type support should be expanded. (C) 2015 Published by Elsevier B.V. C1 [Norman, Matthew; Evans, Katherine] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Larkin, Jeffrey] Nvidia, Santa Clara, CA USA. [Vose, Aaron] Cray Seattle, Seattle, WA USA. RP Norman, M (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM normanmr@ornl.gov; jlarkin@nvidia.com; avose@cray.com; evanskj@ornl.gov OI Evans, Katherine/0000-0001-8174-6450 FU Office of Science of the U.S. Department of Energy [DE-AC05-00OR22725] FX This research used resources of the National Center for Computational Sciences at Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725. NR 14 TC 2 Z9 2 U1 0 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1877-7503 J9 J COMPUT SCI-NETH JI J. Comput. Sci. PD JUL PY 2015 VL 9 SI SI BP 1 EP 6 DI 10.1016/j.jocs.2015.04.022 PG 6 WC Computer Science, Interdisciplinary Applications; Computer Science, Theory & Methods SC Computer Science GA CN7PZ UT WOS:000358627800002 ER PT J AU Randles, A Draeger, EW Bailey, PE AF Randles, Amanda Draeger, Erik W. Bailey, Peter E. TI Massively parallel simulations of hemodynamics in the primary large arteries of the human vasculature SO JOURNAL OF COMPUTATIONAL SCIENCE LA English DT Article; Proceedings Paper CT 15th Annual International Conference on Computational Science (ICCS) CY JUN 01-03, 2015 CL Reykjavik Univ, Reykjavik, ICELAND SP Elsevier, Univ Amsterdam, NTU Singapore, Univ Tennessee HO Reykjavik Univ DE Lattice Boltzmann; Computational fluid dynamics; High performance computing; Patient-specific hemodynamics; Strong scaling ID BLOOD-FLOW; MODEL; DYNAMICS; NETWORK AB We present a computational model of three-dimensional and unsteady hemodynamics within the primary large arteries in the human on 1,572,864 cores of the IBM Blue Gene/Q Models of large regions of the circulatory system are needed to study the impact of local factors on global hemodynamics and to inform next generation drug delivery mechanisms. The HARVEY code successfully addresses key challenges that can hinder effective solution of image-based hemodynamics on contemporary supercomputers, such as limited memory capacity and bandwidth, flexible load balancing, and scalability. This work is the first demonstration of large fluid dynamics simulations of the aortofemoral region of the circulatory system at resolutions as small as 10 mu m. Published by Elsevier B.V. C1 [Randles, Amanda; Draeger, Erik W.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Bailey, Peter E.] Univ Arizona, Tucson, AZ USA. RP Randles, A (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM randles2@llnl.gov; draeger1@llnl.gov; pbailey@cs.arizona.edu FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX The authors would like to thank Liam Krauss at LLNL for visualization and analysis work, and the staff at Livermore Computing for system support. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 33 TC 0 Z9 0 U1 1 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1877-7503 J9 J COMPUT SCI-NETH JI J. Comput. Sci. PD JUL PY 2015 VL 9 SI SI BP 70 EP 75 DI 10.1016/j.jocs.2015.04.003 PG 6 WC Computer Science, Interdisciplinary Applications; Computer Science, Theory & Methods SC Computer Science GA CN7PZ UT WOS:000358627800013 ER PT J AU Johnson, BM AF Johnson, B. M. TI Buoyancy instability of homologous implosions SO JOURNAL OF FLUID MECHANICS LA English DT Article DE compressible flows; instability; sonoluminescence ID INERTIAL CONFINEMENT FUSION; PERTURBATIONS; COLLAPSE; GROWTH; BUBBLE AB I consider the hydrodynamic stability of imploding ideal gases as an idealized model for inertial confinement fusion capsules, sonoluminescent bubbles and the gravitational collapse of astrophysical gases. For oblate modes (short-wavelength incompressive modes elongated in the direction of the mean flow), a second-order ordinary differential equation is derived that can be used to assess the stability of any timedependent flow with planar, cylindrical or spherical symmetry. Upon further restricting the analysis to homologous flows, it is shown that a monatomic gas is governed by the Schwarzschild criterion for buoyant stability. Under buoyantly unstable conditions, both entropy and vorticity fluctuations experience power-law growth in time, with a growth rate that depends upon mean flow gradients and, in the absence of dissipative effects, is independent of mode number. If the flow accelerates throughout the implosion, oblate modes amplify by a factor (2C)(vertical bar N0 vertical bar ti), where C is the convergence ratio of the implosion, N-0 is the initial buoyancy frequency and t(i) is the implosion time scale. If, instead, the implosion consists of a coasting phase followed by stagnation, oblate modes amplify by a factor exp (pi vertical bar N-0 vertical bar t(s)), where N-0 is the buoyancy frequency at stagnation and t(s) is the stagnation time scale. Even under stable conditions, vorticity fluctuations grow due to the conservation of angular momentum as the gas is compressed. For non-monatomic gases, this additional growth due to compression results in weak oscillatory growth under conditions that would otherwise be buoyantly stable; this over-stability is consistent with the conservation of wave action in the fluid frame. The above analytical results are verified by evolving the complete set of linear equations as an initial value problem, and it is demonstrated that oblate modes are the fastest-growing modes and that high mode numbers are required to reach this limit (Legendre mode l greater than or similar to 100 for spherical flows). Finally, comparisons are made with a Lagrangian hydrodynamics code, and it is found that a numerical resolution of similar to 30 zones per wavelength is required to capture these solutions accurately. This translates to an angular resolution of similar to(12/l)degrees, or less than or similar to 0.1 degrees to resolve the fastest-growing modes. C1 Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Johnson, BM (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM johnson359@llnl.gov FU Lawrence Livermore National Security, LLC (LLNS) [DE-AC52-07NA27344] FX I thank D. Clark, O. Hurricane, K. Mikaelian, O. Schilling and the referees for their comments. This work was performed under the auspices of Lawrence Livermore National Security, LLC (LLNS) under contract number DE-AC52-07NA27344. NR 29 TC 0 Z9 0 U1 1 U2 5 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0022-1120 EI 1469-7645 J9 J FLUID MECH JI J. Fluid Mech. PD JUL PY 2015 VL 774 AR R4 DI 10.1017/jfm.2015.309 PG 12 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA CN8SQ UT WOS:000358713400004 ER PT J AU Asel, TJ Gao, HT Heinl, TJ Adkins, D Woodward, PM Hoffman, J Bhattacharya, A Brillson, LJ AF Asel, Thaddeus J. Gao, Hantian Heinl, Tyler J. Adkins, Drew Woodward, Patrick M. Hoffman, Jason Bhattacharya, Anand Brillson, Leonard J. TI Near-nanoscale-resolved energy band structure of LaNiO3/La2/3Sr1/3MnO3/SrTiO3 heterostructures and their interfaces SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B LA English DT Article ID SUPERLATTICES; SPECTROSCOPY; LUMINESCENCE; DEFECTS; CASINO; SRTIO3 AB Depth-resolved cathodoluminescence spectroscopy (DRCLS) studies of LNO/LSMO/STO interfaces display an ability to detect optical transitions between orbital-derived energy levels with filled states near the Fermi level of ultrathin complex oxides and to detect changes in the electronic structure at their interfaces on a near-nanometer scale. A differential form of DRCLS (DDRCLS) provides a unique capability to measure electronic features at buried interfaces of ultrathin complex oxide films. DDRCLS measurements demonstrate the abruptness of LNO/LSMO interfaces but atomic layer distortions and altered optical emissions at the LSMO/STO heterojunction. The capability to probe electronic structure at buried complex oxide interfaces with enhanced depth resolution can reveal changes in energy levels within nanometers of interfaces, band alignments across interfaces, and the possible effect of local defects on these energy levels. (C) 2015 American Vacuum Society. C1 [Asel, Thaddeus J.; Gao, Hantian; Brillson, Leonard J.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Heinl, Tyler J.; Brillson, Leonard J.] Ohio State Univ, Dept Elect & Comp Engn, Columbus, OH 43210 USA. [Adkins, Drew; Woodward, Patrick M.] Ohio State Univ, Dept Chem, Columbus, OH 43210 USA. [Hoffman, Jason; Bhattacharya, Anand] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Asel, TJ (reprint author), Ohio State Univ, Dept Phys, 174 W 18th Ave, Columbus, OH 43210 USA. EM asel.3@osu.edu RI Bhattacharya, Anand/G-1645-2011 OI Bhattacharya, Anand/0000-0002-6839-6860 FU NSF MRSEC [DMR-1420451]; NSF [DMR-1305193]; U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-06CH11357]; Department of Energy, Office of Basic Energy Science, Materials Science Division FX This work supported by NSF MRSEC Grant No. DMR-1420451 (Charles Ying) and NSF Grant No. DMR-1305193 (Charles Ying and Haiyan Wang). Work at Argonne National Laboratory, including the use of the Center for Nanoscale Materials and Advanced Photon Source, was supported by the U.S. Department of Energy, Office of Basic Energy Sciences under Contract No. DE-AC02-06CH11357. J.D.H. and A.B. acknowledge support from Department of Energy, Office of Basic Energy Science, Materials Science Division. NR 29 TC 1 Z9 1 U1 7 U2 22 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 1071-1023 J9 J VAC SCI TECHNOL B JI J. Vac. Sci. Technol. B PD JUL PY 2015 VL 33 IS 4 AR 04E103 DI 10.1116/1.4922270 PG 5 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA CN8GB UT WOS:000358676700003 ER PT J AU Douglas, EA Sheng, JJ Verley, JC Carroll, MS AF Douglas, Erica A. Sheng, Josephine J. Verley, Jason C. Carroll, Malcolm S. TI Argon-germane in situ plasma clean for reduced temperature Ge on Si epitaxy by high density plasma chemical vapor deposition SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B LA English DT Article ID SILICON HOMOEPITAXIAL GROWTH; RESONANCE HYDROGEN PLASMA; HIGH-QUALITY GE; THIN-FILMS; PHOTODETECTORS; OXYGEN AB Demand for integration of near infrared optoelectronic functionality with silicon complementary metal oxide semiconductor (CMOS) technology has for many years motivated the investigation of low temperature germanium on silicon deposition processes. This work describes the development of a high density plasma chemical vapor deposition process that uses a low temperature (<460 degrees C) in situ germane/argon plasma surface preparation step for epitaxial growth of germanium on silicon. It is shown that the germane/argon plasma treatment sufficiently removes SiOx and carbon at the surface to enable germanium epitaxy. The use of this surface preparation step demonstrates an alternative way to produce germanium epitaxy at reduced temperatures, a key enabler for increased flexibility of integration with CMOS back-end-of-line fabrication. (C) 2015 American Vacuum Society. C1 [Douglas, Erica A.; Sheng, Josephine J.; Verley, Jason C.; Carroll, Malcolm S.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Sheng, Josephine J.] Univ New Mexico, Dept Elect Engn, Albuquerque, NM 87185 USA. RP Douglas, EA (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM edougla@sandia.gov RI Verley, Jason/C-2026-2008 OI Verley, Jason/0000-0003-2184-677X FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 34 TC 1 Z9 1 U1 1 U2 6 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 1071-1023 J9 J VAC SCI TECHNOL B JI J. Vac. Sci. Technol. B PD JUL PY 2015 VL 33 IS 4 AR 041202 DI 10.1116/1.4921590 PG 7 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA CN8GB UT WOS:000358676700011 ER PT J AU Hwang, YH Dong, C Hsieh, YL Zhu, WD Ahn, S Ren, F Pearton, SJ Kravchenko, II AF Hwang, Ya-Hsi Dong, Chen Hsieh, Yue-Ling Zhu, Weidi Ahn, Shihyun Ren, Fan Pearton, Stephen J. Kravchenko, Ivan I. TI Improvement of drain breakdown voltage with a back-side gate on AlGaN/GaN high electron mobility transistors SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B LA English DT Article ID FIELD-EFFECT TRANSISTOR; MODULATING PLATE; OPERATION AB The effect of a back gate on the dc performance of AlGaN/GaN high electron mobility transistor was investigated. The back gate was fabricated directly under the device active area by etching off the Si substrate, AlN nucleation layer, and graded AlGaN transition layer and depositing Ni/Au-based gate metal on the exposed GaN buffer layer. The reverse bias gate leakage current decreased from 3.9 x 10(-5) to 1.2 x 10(-5) mA/mm by applying -10V at the back gate. Because of the suppression of gate leakage current by the back gate, the drain on/off ratio improved from 1.8 x 10(5) to 1.2 x 10(6) and the subthreshold swing from 204 to 137 mV/dec. Moreover, the drain breakdown voltage could be improved by 40% when the back gate was biased at -25 V. (C) 2015 American Vacuum Society. C1 [Hwang, Ya-Hsi; Dong, Chen; Hsieh, Yue-Ling; Zhu, Weidi; Ahn, Shihyun; Ren, Fan] Univ Florida, Dept Chem Engn, Gainesville, FL 32611 USA. [Pearton, Stephen J.] Univ Florida, Mat Sci & Engn, Gainesville, FL 32611 USA. [Kravchenko, Ivan I.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37830 USA. RP Hwang, YH (reprint author), Univ Florida, Dept Chem Engn, Gainesville, FL 32611 USA. EM fren@che.ufl.edu RI Kravchenko, Ivan/K-3022-2015 OI Kravchenko, Ivan/0000-0003-4999-5822 FU U.S. DOD HDTRA [1-11-1-0020]; NSF [ECCS-1445720] FX The work performed at UF was supported by an U.S. DOD HDTRA Grant No. 1-11-1-0020 monitored by James Reed and a NSF Grant No. ECCS-1445720 monitored by Mahmoud Fallahi. A portion of this research was conducted at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility. NR 20 TC 0 Z9 0 U1 2 U2 13 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 1071-1023 J9 J VAC SCI TECHNOL B JI J. Vac. Sci. Technol. B PD JUL PY 2015 VL 33 IS 4 AR 042201 DI 10.1116/1.4922022 PG 4 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA CN8GB UT WOS:000358676700024 ER PT J AU Xiao, ZG Kisslinger, K AF Xiao, Zhigang Kisslinger, Kim TI Electron-beam-evaporated thin films of hafnium dioxide for fabricating electronic devices SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B LA English DT Article ID ATOMIC LAYER DEPOSITION; INTEGRATED-CIRCUITS; OXIDE; DIELECTRICS; TRANSISTORS; PRECURSORS; OZONE AB Thin films of hafnium dioxide (HfO2) are widely used as the gate oxide in fabricating integrated circuits because of their high dielectric constants. In this paper, the authors report the growth of thin films of HfO2 using e-beam evaporation, and the fabrication of complementary metal-oxide semiconductor (CMOS) integrated circuits using this HfO2 thin film as the gate oxide. The authors analyzed the thin films using high-resolution transmission electron microscopy and electron diffraction, thereby demonstrating that the e-beam-evaporation-grown HfO2 film has a polycrystalline structure and forms an excellent interface with silicon. Accordingly, the authors fabricated 31-stage CMOS ring oscillator to test the quality of the HfO2 thin film as the gate oxide, and obtained excellent rail-to-rail oscillation waveforms from it, denoting that the HfO2 thin film functioned very well as the gate oxide. (C) 2015 American Vacuum Society. C1 [Xiao, Zhigang] Alabama A&M Univ, Dept Elect Engn, Normal, AL 35762 USA. [Kisslinger, Kim] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Xiao, ZG (reprint author), Alabama A&M Univ, Dept Elect Engn, Normal, AL 35762 USA. EM zhigang.xiao@aamu.edu RI Kisslinger, Kim/F-4485-2014 FU U.S. Department of Energy, Office of Basic Energy Sciences [DE-SC00112704]; National Science Foundation [ECCS-1229312, EPS-0814103] FX Research carried out in part at the Center for Functional Nanomaterials, Brookhaven National Laboratory, is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-SC00112704. The research is supported by National Science Foundation under Grant Nos. ECCS-1229312 and EPS-0814103. The authors gratefully thank Avril D. Woodhead for editing the manuscript. NR 15 TC 0 Z9 0 U1 3 U2 10 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 1071-1023 J9 J VAC SCI TECHNOL B JI J. Vac. Sci. Technol. B PD JUL PY 2015 VL 33 IS 4 AR 042001 DI 10.1116/1.4922627 PG 4 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA CN8GB UT WOS:000358676700022 ER PT J AU Haushalter, RW Groff, D Deutsch, S The, L Chavkin, TA Brunner, SF Katz, L Keasling, JD AF Haushalter, Robert W. Groff, Dan Deutsch, Samuel The, Lionadi Chavkin, Ted A. Brunner, Simon F. Katz, Leonard Keasling, Jay D. TI Development of an orthogonal fatty acid biosynthesis system in E. coli for oleochemical production SO METABOLIC ENGINEERING LA English DT Article DE Fatty alcohols; Methyl ketones; Fatty acid synthase; Synthetic biology ID ENGINEERED ESCHERICHIA-COLI; ALCOHOL PRODUCTION; ACYL-COA; REDUCTASE; THIOESTERASE; INHIBITION; SYNTHASES; CHEMICALS; BIOFUELS; PATHWAY AB Here we report recombinant expression and activity of several type I fatty acid synthases that can function in parallel with the native Escherichia colt fatty acid synthase. Corynebacterium glutamicum FAS1A was the most active in E. coli and this fatty acid synthase was leveraged to produce oleochemicals including fatty alcohols and methyl ketones. Coexpression of FAS1A with the ACP/CoA-reductase Maciu2220 from Marinobacter aquaeolei shifted the chain length distribution of fatty alcohols produced. Coexpression of FAS1A with FadM, FadB, and an acyl-CoA-oxidase from Micrococcus luteus resulted in the production of methyl ketones, although at a lower level than cells using the native FAS. This work, to our knowledge, is the first example of in vivo function of a heterologous fatty acid synthase in E. coli. Using FAS1 enzymes for oleochemical production have several potential advantages, and further optimization of this system could lead to strains with more efficient conversion to desired products. Finally, functional expression of these large enzyme complexes in E coli will enable their study without culturing the native organisms. Published by Elsevier Inc. On behalf of International Metabolic Engineering Society. C1 [Haushalter, Robert W.; Groff, Dan; Keasling, Jay D.] Joint BioEnergy Inst, Emeryville, CA 94608 USA. [Haushalter, Robert W.; Groff, Dan; Deutsch, Samuel; Keasling, Jay D.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Deutsch, Samuel] Joint Genome Inst, Walnut Creek, CA 94598 USA. [The, Lionadi; Chavkin, Ted A.; Brunner, Simon F.; Katz, Leonard; Keasling, Jay D.] Univ Calif Berkeley, Inst QB3, Emeryville, CA 94608 USA. [Katz, Leonard; Keasling, Jay D.] Univ Calif Berkeley, Synthet Biol Engn Res Ctr, Berkeley, CA 94720 USA. [Keasling, Jay D.] Univ Calif Berkeley, Dept Bioengn, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. RP Keasling, JD (reprint author), Joint BioEnergy Inst, 5885 Hollis St,4th Floor, Emeryville, CA 94608 USA. EM jdkeasling@lbl.gov OI Brunner, Simon/0000-0002-5935-6189 FU Lawrence Berkeley National Laboratory [DE-AC02-05CH11231]; U. S. Department of Energy [DE-AC02-05CH11231] FX We thank Dr. Ee-Been Goh for supplying plasmids and guidance for the methyl ketone experiments. This work was part of the DOE Joint BioEnergy Institute (http://www.jbei.org) supported by the U. S. Department of Energy Office of Science, Office of Biological and Environmental Research, through Contract DE-AC02-05CH11231 between Lawrence Berkeley National Laboratory and the U. S. Department of Energy. NR 22 TC 11 Z9 12 U1 8 U2 43 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 1096-7176 EI 1096-7184 J9 METAB ENG JI Metab. Eng. PD JUL PY 2015 VL 30 BP 1 EP 6 DI 10.1016/j.ymben.2015.04.003 PG 6 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA CN4UD UT WOS:000358424800001 PM 25887638 ER PT J AU Lee, TC Xiong, W Paddock, T Carrieri, D Chang, IF Chiu, HF Ungerer, J Juo, SHH Maness, PC Yu, JP AF Lee, Tai-Chi Xiong, Wei Paddock, Troy Carrieri, Damian Chang, Ing-Feng Chiu, Hui-Fen Ungerer, Justin Juo, Suh-Hang Hank Maness, Pin-Ching Yu, Jianping TI Engineered xylose utilization enhances bio-products productivity in the cyanobacterium Synechocystis sp PCC 6803 SO METABOLIC ENGINEERING LA English DT Article DE Cyanobacteria; Isotopic tracing; Photomixotrophic growth; Xylose utilization ID CHROMATOGRAPHY-MASS SPECTROMETRY; ACTIVATED HETEROTROPHIC GROWTH; ZYMOMONAS-MOBILIS; GLYCOGEN-STORAGE; GENETIC-ANALYSIS; CARBON-DIOXIDE; ORGANIC-ACIDS; METABOLISM; PATHWAY; FERMENTATION AB Hydrolysis of plant biomass generates a mixture of simple sugars that is particularly rich in glucose and xylose. Fermentation of the released sugars emits CO2 as byproduct due to metabolic inefficiencies. Therefore, the ability of a microbe to simultaneously convert biomass sugars and photosynthetically fix CO2 into target products is very desirable. In this work, the cyanobacterium, Synechocystis 6803, was engineered to grow on xylose in addition to glucose. Both the xylA (xylose isomerase) and xylB (xylulokinase) genes from Escherichia coli were required to confer xylose utilization, but a xylose-specific transporter was not required. Introduction of xylAB into an ethylene-producing strain increased the rate of ethylene production in the presence of xylose. Additionally, introduction of xylAB into a glycogensynthesis mutant enhanced production of keto acids. Isotopic tracer studies found that nearly half of the carbon in the excreted keto acids was derived from the engineered xylose metabolism, while the remainder was derived from CO2 fixation. (C) 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved. C1 [Lee, Tai-Chi; Xiong, Wei; Paddock, Troy; Carrieri, Damian; Ungerer, Justin; Maness, Pin-Ching; Yu, Jianping] Natl Renewable Energy Lab, Biosci Ctr, Golden, CO USA. [Chang, Ing-Feng] Natl Taiwan Univ, Inst Plant Biol, Taipei 10764, Taiwan. [Chiu, Hui-Fen] Kaohsiung Med Univ, Inst Pharmacol, Kaohsiung, Taiwan. [Juo, Suh-Hang Hank] Kaohsiung Med Univ, Dept Genome Med, Kaohsiung, Taiwan. RP Juo, SHH (reprint author), Kaohsiung Med Univ, Dept Genome Med, Kaohsiung, Taiwan. EM hjuo@kmu.edu.tw; Pinching.Maness@nrel.gov; Jianping.Yu@nrel.gov RI Juo, Suh-Hang/C-9545-2009; OI CHANG, ING-FENG/0000-0003-0237-1246 FU National Science Council in Taiwan [100-2911-1-037-503]; U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Fuel Cell Technologies Office; BioEnergy Technologies Office; NREL Director's Postdoc Fellowship FX This work was supported by a Dragon-Gate grant (to TCL, IFC, NEC, SHJ) from National Science Council (project no. 100-2911-1-037-503) (renamed Ministry of Science and Technology as of March 2014) in Taiwan. It was also supported in part by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Fuel Cell Technologies Office (to PCM), BioEnergy Technologies Office (to JY), and NREL Director's Postdoc Fellowship (to WX). The authors acknowledge helpful discussion and technical assistance from Drs. Min Zhang, Yat-Chen Chou, Maria Ghirardi, Michael Seibert, Melissa Cano, and Carrie Eckert, all from NREL. NR 50 TC 10 Z9 10 U1 1 U2 10 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 1096-7176 EI 1096-7184 J9 METAB ENG JI Metab. Eng. PD JUL PY 2015 VL 30 BP 179 EP 189 DI 10.1016/j.ymben.2015.06.002 PG 11 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA CN4UD UT WOS:000358424800019 PM 26079651 ER PT J AU Ceja-Navarro, JA Vega, FE Karaoz, U Hao, Z Jenkins, S Lim, HC Kosina, P Infante, F Northen, TR Brodie, EL AF Ceja-Navarro, Javier A. Vega, Fernando E. Karaoz, Ulas Hao, Zhao Jenkins, Stefan Lim, Hsiao Chien Kosina, Petr Infante, Francisco Northen, Trent R. Brodie, Eoin L. TI Gut microbiota mediate caffeine detoxification in the primary insect pest of coffee SO NATURE COMMUNICATIONS LA English DT Article ID HYPOTHENEMUS-HAMPEI COLEOPTERA; BERRY BORER; SEQUENCE ALIGNMENT; NITROGEN-FIXATION; PURINE ALKALOIDS; TOBACCO PLANTS; GENE; BACTERIA; METHYLXANTHINES; SCOLYTIDAE AB The coffee berry borer (Hypothenemus hampei) is the most devastating insect pest of coffee worldwide with its infestations decreasing crop yield by up to 80%. Caffeine is an alkaloid that can be toxic to insects and is hypothesized to act as a defence mechanism to inhibit herbivory. Here we show that caffeine is degraded in the gut of H. hampei, and that experimental inactivation of the gut microbiota eliminates this activity. We demonstrate that gut microbiota in H. hampei specimens from seven major coffee-producing countries and laboratory-reared colonies share a core of microorganisms. Globally ubiquitous members of the gut microbiota, including prominent Pseudomonas species, subsist on caffeine as a sole source of carbon and nitrogen. Pseudomonas caffeine demethylase genes are expressed in vivo in the gut of H. hampei, and re-inoculation of antibiotic-treated insects with an isolated Pseudomonas strain reinstates caffeine-degradation ability confirming their key role. C1 [Ceja-Navarro, Javier A.; Karaoz, Ulas; Hao, Zhao; Lim, Hsiao Chien; Brodie, Eoin L.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Dept Ecol, Berkeley, CA 94720 USA. [Vega, Fernando E.] USDA ARS, Sustainable Perennial Crops Lab, Beltsville, MD 20705 USA. [Jenkins, Stefan; Northen, Trent R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Genome Dynam Dept, Berkeley, CA 94720 USA. [Kosina, Petr] Int Maize & Wheat Improvement Ctr CIMMYT, El Batan 56130, Texcoco, Mexico. [Infante, Francisco] El Colegio Frontera ECOSUR, Tapachula 30700, Chiapas, Mexico. [Brodie, Eoin L.] Univ Calif Berkeley, Dept Environm Sci Policy & Management, Berkeley, CA 94720 USA. RP Ceja-Navarro, JA (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Dept Ecol, Berkeley, CA 94720 USA. EM jcnavarro@lbl.gov; Fernando.Vega@ars.usda.gov; elbrodie@lbl.gov RI Brodie, Eoin/A-7853-2008; Hao, Zhao/G-2391-2015; Ceja-Navarro, Javier/A-1731-2013; Karaoz, Ulas/J-7093-2014; OI Brodie, Eoin/0000-0002-8453-8435; Hao, Zhao/0000-0003-0677-8529; Ceja-Navarro, Javier/0000-0002-2954-3477; Northen, Trent/0000-0001-8404-3259; Vega, Fernando E./0000-0001-8103-5640; Kosina, Petr/0000-0002-8805-0306; Infante, Francisco/0000-0002-7419-7606 FU United States Department of Agriculture Agricultural Research Service; Laboratory Directed Research and Development programme at the Lawrence Berkeley National Laboratory under United States Department of Energy [DE-AC02-05CH11231]; 'Consejo Nacional de Ciencia y Tecnologia' (CONACyT, Mexico); Laboratory Directed Research and Development Program of Lawrence Berkeley National Laboratory under US Department of Energy [DE-AC02-05CH1121231] FX This work was funded by the United States Department of Agriculture Agricultural Research Service, and part of this work was funded by the Laboratory Directed Research and Development programme at the Lawrence Berkeley National Laboratory under United States Department of Energy contract number DE-AC02-05CH11231. J.A.C.-N. was supported in part by a grant from 'Consejo Nacional de Ciencia y Tecnologia' (CONACyT, Mexico) and the Laboratory Directed Research and Development Program of Lawrence Berkeley National Laboratory under US Department of Energy Contract DE-AC02-05CH1121231. We are very grateful to S. Wiryadiputra (Indonesia), P.K. Vinod Kumar (India), A. Ramirez (Puerto Rico), PePe Miranda (Hawaii) and J. Jaramillo (Kenya) for providing specimens used in this study. We thank Susan Lynch for comments on this manuscript, Hoi-Ying Holman for advice on FTIR analyses, and Clark Santee for laboratory assistance. NR 54 TC 17 Z9 17 U1 13 U2 56 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD JUL PY 2015 VL 6 AR 7618 DI 10.1038/ncomms8618 PG 9 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CO0QM UT WOS:000358857000011 PM 26173063 ER PT J AU Gao, MR Chan, MKY Sun, YG AF Gao, Min-Rui Chan, Maria K. Y. Sun, Yugang TI Edge-terminated molybdenum disulfide with a 9.4-angstrom interlayer spacing for electrochemical hydrogen production SO NATURE COMMUNICATIONS LA English DT Article ID MOS2 ULTRATHIN NANOSHEETS; EVOLUTION REACTION; ELECTROCATALYTIC MATERIALS; CATALYTIC-ACTIVITY; EFFICIENT; SULFIDES; NANOPARTICLES; PERFORMANCE; GRAPHENE; SITES AB Layered molybdenum disulfide has demonstrated great promise as a low-cost alternative to platinum-based catalysts for electrochemical hydrogen production from water. Research effort on this material has focused mainly on synthesizing highly nanostructured molybdenum disulfide that allows the exposure of a large fraction of active edge sites. Here we report a promising microwave-assisted strategy for the synthesis of narrow molybdenum disulfide nanosheets with edge-terminated structure and a significantly expanded interlayer spacing, which exhibit striking kinetic metrics with onset potential of -103mV, Tafel slope of 49mV per decade and exchange current density of 9.62 X 10(-3) mAcm(-2), performing among the best of current molybdenum disulfide catalysts. Besides benefits from the edge-terminated structure, the expanded interlayer distance with modified electronic structure is also responsible for the observed catalytic improvement, which suggests a potential way to design newly advanced molybdenum disulfide catalysts through modulating the interlayer distance. C1 [Gao, Min-Rui; Chan, Maria K. Y.; Sun, Yugang] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Sun, YG (reprint author), Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA. EM ygsun@anl.gov RI Sun, Yugang /A-3683-2010 OI Sun, Yugang /0000-0001-6351-6977 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX Use of the Center for Nanoscale Materials was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 49 TC 62 Z9 62 U1 27 U2 172 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD JUL PY 2015 VL 6 AR 7493 DI 10.1038/ncomms8493 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CO0MD UT WOS:000358844700002 PM 26138031 ER PT J AU Perea, DE Arslan, I Liu, J Ristanovic, Z Kovarik, L Arey, BW Lercher, JA Bare, SR Weckhuysen, BM AF Perea, Daniel E. Arslan, Ilke Liu, Jia Ristanovic, Zoran Kovarik, Libor Arey, Bruce W. Lercher, Johannes A. Bare, Simon R. Weckhuysen, Bert M. TI Determining the location and nearest neighbours of aluminium in zeolites with atom probe tomography SO NATURE COMMUNICATIONS LA English DT Article ID MQ MAS NMR; ZSM-5 CRYSTALS; LOCAL-STRUCTURE; AL-27 MAS; ALK-EDGE; T-SITES; COORDINATION; ACIDITY; SPECTROSCOPY; BETA AB Zeolite catalysis is determined by a combination of pore architecture and Bronsted acidity. As Bronsted acid sites are formed by the substitution of AlO4 for SiO4 tetrahedra, it is of utmost importance to have information on the number as well as the location and neighbouring sites of framework aluminium. Unfortunately, such detailed information has not yet been obtained, mainly due to the lack of suitable characterization methods. Here we report, using the powerful atomic-scale analysis technique known as atom probe tomography, the quantitative spatial distribution of individual aluminium atoms, including their three-dimensional extent of segregation. Using a nearest-neighbour statistical analysis, we precisely determine the short-range distribution of aluminium over the different T-sites and determine the most probable Al-Al neighbouring distance within parent and steamed ZSM-5 crystals, as well as assess the long-range redistribution of aluminium upon zeolite steaming. C1 [Perea, Daniel E.; Liu, Jia; Kovarik, Libor; Arey, Bruce W.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. [Arslan, Ilke; Lercher, Johannes A.] Pacific NW Natl Lab, Inst Integrated Catalysis, Richland, WA 99352 USA. [Ristanovic, Zoran; Weckhuysen, Bert M.] Univ Utrecht, Fac Sci, Debye Inst Nanomat Sci, NL-3584 CG Utrecht, Netherlands. [Lercher, Johannes A.] Tech Univ Munich, Dept Chem, D-85748 Garching, Germany. [Bare, Simon R.] Honeywell Co, UOP LLC, Lincolnshire, IL 60016 USA. RP Bare, SR (reprint author), Honeywell Co, UOP LLC, 25 E Algonquin Rd Des Plaines, Lincolnshire, IL 60016 USA. EM simon.bare@honeywell.com; b.m.weckhuysen@uu.nl RI Perea, Daniel/A-5345-2010; Institute (DINS), Debye/G-7730-2014; Weckhuysen, Bert/D-3742-2009; Kovarik, Libor/L-7139-2016; OI Weckhuysen, Bert/0000-0001-5245-1426; Bare, Simon/0000-0002-4932-0342 FU LDRD programme at PNNL; U.S. Department of Energy [DE-AC05-76RL01830]; Netherlands Organisation for Scientific Research (NWO) Gravitation Program (Netherlands Center for Multiscale Catalytic Energy Conversion, MCEC); TOP NWO-CW Grant; European Research Council (ERC) Advanced Grant [321140]; Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory FX The APT experiments in this study were performed under a science theme user proposal at EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. I. A. acknowledges support through the LDRD programme at PNNL. PNNL is operated by Battelle for the U.S. Department of Energy under contract DE-AC05-76RL01830. B.M.W. acknowledges financial support from the Netherlands Organisation for Scientific Research (NWO) Gravitation Program (Netherlands Center for Multiscale Catalytic Energy Conversion, MCEC) and a TOP NWO-CW Grant, as well as a European Research Council (ERC) Advanced Grant (321140). We acknowledge Machteld Mertens (ExxonMobil) for making the zeolite ZSM-5 crystals. NR 47 TC 12 Z9 13 U1 15 U2 92 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD JUL PY 2015 VL 6 AR 7589 DI 10.1038/ncomms8589 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CO0QB UT WOS:000358855900002 PM 26133270 ER PT J AU Streubel, R Kronast, F Fischer, P Parkinson, D Schmidt, OG Makarov, D AF Streubel, Robert Kronast, Florian Fischer, Peter Parkinson, Dula Schmidt, Oliver G. Makarov, Denys TI Retrieving spin textures on curved magnetic thin films with full-field soft X-ray microscopies SO NATURE COMMUNICATIONS LA English DT Article ID ROLLED-UP NANOMEMBRANES; ELECTRON TOMOGRAPHY; CO/PT MULTILAYERS; DOMAIN-WALL; HOLOGRAPHY; NANOTUBES; MICROSTRUCTURE; ARRAYS AB X-ray tomography is a well-established technique to characterize 3D structures in material sciences and biology; its magnetic analogue-magnetic X-ray tomography-is yet to be developed. Here we demonstrate the visualization and reconstruction of magnetic domain structures in a 3D curved magnetic thin films with tubular shape by means of full-field soft X-ray microscopies. The 3D arrangement of the magnetization is retrieved from a set of 2D projections by analysing the evolution of the magnetic contrast with varying projection angle. Using reconstruction algorithms to analyse the angular evolution of 2D projections provides quantitative information about domain patterns and magnetic coupling phenomena between windings of azimuthally and radially magnetized tubular objects. The present approach represents a first milestone towards visualizing magnetization textures of 3D curved thin films with virtually arbitrary shape. C1 [Streubel, Robert; Schmidt, Oliver G.; Makarov, Denys] IFW Dresden, Inst Integrat Nanosci, D-01069 Dresden, Germany. [Kronast, Florian] Helmholtz Zentrum Berlin Mat & Energie GmbH, D-12489 Berlin, Germany. [Fischer, Peter] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Ctr Xray Opt, Berkeley, CA 94720 USA. [Fischer, Peter] Univ Calif Santa Cruz, Dept Phys, Santa Cruz, CA 95064 USA. [Parkinson, Dula] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Schmidt, Oliver G.] TU Chemnitz, Mat Syst Nanoelect, D-09107 Chemnitz, Germany. RP Streubel, R (reprint author), IFW Dresden, Inst Integrat Nanosci, D-01069 Dresden, Germany. EM r.streubel@ifw-dresden.de; d.makarov@ifw-dresden.de RI Makarov, Denys/G-1025-2011; Streubel, Robert/D-9686-2012; Fischer, Peter/A-3020-2010 OI Fischer, Peter/0000-0002-9824-9343 FU German Science Foundation (DFG) [MA 5144/2-1]; DFG Research Group [FOR1713]; European Research Council under European Union's Seventh Framework programme (FP7/2007 2013)/ERC grant [n.306277]; Future and Emerging Technologies (FET) programme [618083]; Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy [DE-AC02-05-CH11231]; Leading Foreign Research Institute Recruitment Program through the National Research Foundation (NRF) of Korea - Ministry of Education, Science and Technology (MEST) [2012K1A4A3053565] FX We thank Irina Fiering (IFW Dresden) for metal deposition, Professor Joshua Deutsch (UC Santa Cruz) for fruitful discussions on the magnetization reconstruction algorithm and Professor Rudolf Schafer (IFW Dresden) for access to the Kerr microscope. This work is financed via the German Science Foundation (DFG) grant MA 5144/2-1 and DFG Research Group FOR1713, the European Research Council under European Union's Seventh Framework programme (FP7/2007 2013)/ERC grant agreement n.306277 and the Future and Emerging Technologies (FET) programme under FET-Open grant number 618083. We thank HZB for the allocation of synchrotron radiation beamtime. P.F. acknowledges support by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy under Contract No. DE-AC02-05-CH11231 and by the Leading Foreign Research Institute Recruitment Program (Grant No. 2012K1A4A3053565) through the National Research Foundation (NRF) of Korea funded by the Ministry of Education, Science and Technology (MEST). NR 64 TC 10 Z9 10 U1 7 U2 21 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD JUL PY 2015 VL 6 AR 7612 DI 10.1038/ncomms8612 PG 11 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CO0QM UT WOS:000358857000005 PM 26139445 ER PT J AU Wang, X Choi, SI Roling, LT Luo, M Ma, C Zhang, L Chi, MF Liu, JY Xie, ZX Herron, JA Mavrikakis, M Xia, YN AF Wang, Xue Choi, Sang-Il Roling, Luke T. Luo, Ming Ma, Cheng Zhang, Lei Chi, Miaofang Liu, Jingyue Xie, Zhaoxiong Herron, Jeffrey A. Mavrikakis, Manos Xia, Younan TI Palladium-platinum core-shell icosahedra with substantially enhanced activity and durability towards oxygen reduction SO NATURE COMMUNICATIONS LA English DT Article ID TOTAL-ENERGY CALCULATIONS; AUGMENTED-WAVE METHOD; BY-LAYER DEPOSITION; FUEL-CELL CATHODE; MONOLAYER ELECTROCATALYSTS; CATALYTIC-ACTIVITY; ALLOY CATALYSTS; BASIS-SET; NANOPARTICLES; NANOCRYSTALS AB Conformal deposition of platinum as ultrathin shells on facet-controlled palladium nanocrystals offers a great opportunity to enhance the catalytic performance while reducing its loading. Here we report such a system based on palladium icosahedra. Owing to lateral confinement imposed by twin boundaries and thus vertical relaxation only, the platinum overlayers evolve into a corrugated structure under compressive strain. For the core-shell nanocrystals with an average of 2.7 platinum overlayers, their specific and platinum mass activities towards oxygen reduction are enhanced by eight- and sevenfold, respectively, relative to a commercial catalyst. Density functional theory calculations indicate that the enhancement can be attributed to the weakened binding of hydroxyl to the compressed platinum surface supported on palladium. After 10,000 testing cycles, the mass activity of the core-shell nanocrystals is still four times higher than the commercial catalyst. These results demonstrate an effective approach to the development of electrocatalysts with greatly enhanced activity and durability. C1 [Wang, Xue; Choi, Sang-Il; Luo, Ming; Zhang, Lei; Xia, Younan] Georgia Inst Technol, Wallace H Coulter Dept Biomed Engn, Atlanta, GA 30332 USA. [Wang, Xue; Choi, Sang-Il; Luo, Ming; Zhang, Lei; Xia, Younan] Emory Univ, Atlanta, GA 30332 USA. [Wang, Xue; Zhang, Lei; Xie, Zhaoxiong] Xiamen Univ, Collaborat Innovat Ctr Chem Energy Mat, State Key Lab Phys Chem Solid Surfaces, Xiamen 361005, Fujian, Peoples R China. [Wang, Xue; Zhang, Lei; Xie, Zhaoxiong] Xiamen Univ, Dept Chem, Xiamen 361005, Fujian, Peoples R China. [Roling, Luke T.; Herron, Jeffrey A.; Mavrikakis, Manos] Univ Wisconsin, Dept Chem & Biol Engn, Madison, WI 53706 USA. [Ma, Cheng; Chi, Miaofang] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Liu, Jingyue] Arizona State Univ, Dept Phys, Tempe, AZ 85287 USA. [Xia, Younan] Georgia Inst Technol, Sch Chem & Biochem, Atlanta, GA 30332 USA. [Xia, Younan] Georgia Inst Technol, Sch Chem & Biomol Engn, Atlanta, GA 30332 USA. RP Mavrikakis, M (reprint author), Univ Wisconsin, Dept Chem & Biol Engn, Madison, WI 53706 USA. EM emavrikakis@wisc.edu; younan.xia@bme.gatech.edu RI Ma, Cheng/C-9120-2014; Xie, Zhaoxiong/G-3416-2010; Roling, Luke/B-8793-2015; Mavrikakis, Manos/D-5702-2012; Xia, Younan/E-8499-2011; Zhang, Lei/N-7527-2015; Chi, Miaofang/Q-2489-2015; Wang, Xue/D-4488-2012 OI Roling, Luke/0000-0001-9742-2573; Mavrikakis, Manos/0000-0002-5293-5356; Chi, Miaofang/0000-0003-0764-1567; Wang, Xue/0000-0002-6298-1858 FU Georgia Institute of Technology; DOE-BES (Office of Chemical Scienses) [DE-FG02-05ER15731]; China Scholarship Council; ORNL's Center for Nanophase Materials Sciences; Arizona State University; DOE Office of Biological and Environmental Research at PNNL; DOE [DE-AC02-06CH11357, DE-AC02-05CH11231] FX The syntheses were supported by start-up funds from the Georgia Institute of Technology (to Y.X.) while the computations were supported by DOE-BES (Office of Chemical Scienses, grant DE-FG02-05ER15731, to M.M.). As visiting students, X.W., M.L. and L.Z. were also partially supported by the China Scholarship Council. Part of the electron microscopy work was performed through a user project supported by the ORNL's Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility. J.L. gratefully acknowledges the support by Arizona State University and the use of facilities in the John M. Cowley Center for High Resolution Electron Microscopy at Arizona State University. The calculations were performed at supercomputing centres located at EMSL (which is sponsored by the DOE Office of Biological and Environmental Research at PNNL), CNM (supported by DOE contract DE-AC02-06CH11357 to ANL) and NERSC (supported by DOE contract DE-AC02-05CH11231 to LBL). NR 49 TC 76 Z9 77 U1 60 U2 282 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD JUL PY 2015 VL 6 AR 7594 DI 10.1038/ncomms8594 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CO0QD UT WOS:000358856100001 PM 26133469 ER PT J AU Fiedler, JD Lanzatella, C Okada, M Jenkins, J Schmutz, J Tobias, CM AF Fiedler, Jason D. Lanzatella, Christina Okada, Miki Jenkins, Jerry Schmutz, Jeremy Tobias, Christian M. TI High-Density Single Nucleotide Polymorphism Linkage Maps of Lowland Switchgrass using Genotyping-by-Sequencing SO PLANT GENOME LA English DT Article ID PANICUM-VIRGATUM L.; SEGREGATION DISTORTION; SELF-INCOMPATIBILITY; MOLECULAR MARKERS; SNP DISCOVERY; CONSTRUCTION; PLANTS; POPULATIONS; SOFTWARE; HERITABILITY AB Switchgrass (Panicum virgatum L.) is a warm-season perennial grass with promising potential as a bioenergy crop in the United States. However, the lack of genomic resources has slowed the development of plant lines with optimal characteristics for sustainable feedstock production. We generated high-density single nucleotide polymorphism (SNP) linkage maps using a reduced-representation sequencing approach by genotyping 231 F-1 progeny of a cross between two parents of lowland ecotype from the cultivars Kanlow and Alamo. Over 350 million reads were generated and aligned, which enabled identification and ordering of 4611 high-quality SNPs. The total lengths of the resulting framework maps were 1770 cM for the Kanlow parent and 2059 cM for the Alamo parent. These maps show collinearity with maps generated with polymerase chain reaction (PCR)-based simple-sequence repeat (SSR) markers, and new SNP markers were identified in previously unpopulated regions of the genome. Transmission segregation distortion affected all linkage groups (LGs) to differing degrees, and ordering of distorted markers high-lighted several regions of unequal inheritance. Framework maps were adversely affected by the addition of distorted markers with varying severity, but distorted maps were of higher marker density and provided additional information for analysis. Alignment of these linkage maps with a draft version of the switchgrass genome assembly demonstrated high levels of collinearity and provides greater confidence in the validity of both resources. This methodology has proven to be a rapid and cost-effective way to generate high-quality linkage maps of an outcrossing species. C1 [Fiedler, Jason D.; Lanzatella, Christina; Tobias, Christian M.] USDA ARS, Western Reg Res Ctr, Albany, CA 94710 USA. [Okada, Miki] Univ Calif Davis, Davis, CA 95616 USA. [Jenkins, Jerry; Schmutz, Jeremy] HudsonAlpha Genome Sequencing Ctr, Huntsville, AL USA. [Jenkins, Jerry; Schmutz, Jeremy] Joint Genome Inst, Dept Energy, Walnut Creek, CA 94598 USA. RP Tobias, CM (reprint author), USDA ARS, Western Reg Res Ctr, 800 Buchanan St, Albany, CA 94710 USA. EM christian.tobias@ars.usda.gov RI Tobias, Christian/B-6602-2009; Schmutz, Jeremy/N-3173-2013 OI Tobias, Christian/0000-0002-7881-750X; Schmutz, Jeremy/0000-0001-8062-9172 FU USDA-ARS [CRIS 9235-21000-017-00D]; Office of Science of the US Department of Energy [DE-AC02-05CH11231] FX This work was supported by the USDA-ARS, CRIS 9235-21000-017-00D, National Program 301, Plant Genetic Resources, Genomics and Genetic Improvement. The work conducted by the US Department of Energy Joint Genome Institute was supported by the Office of Science of the US Department of Energy under Contract No. DE-AC02-05CH11231. The draft genome sequence data were produced by the US Department of Energy Joint Genome Institute. The USDA-ARS is an equal opportunity/affirmative action employer, and all agency services are available without discrimination. Mention of commercial products and organizations in this manuscript is solely to provide specific information. It does not constitute endorsement by USDA-ARS over other products and organizations not mentioned. NR 81 TC 3 Z9 3 U1 5 U2 20 PU CROP SCIENCE SOC AMER PI MADISON PA 677 S SEGOE ROAD, MADISON, WI 53711 USA SN 1940-3372 J9 PLANT GENOME-US JI Plant Genome PD JUL PY 2015 VL 8 IS 2 DI 10.3835/plantgenome2014.10.0065 PG 14 WC Plant Sciences; Genetics & Heredity SC Plant Sciences; Genetics & Heredity GA CN5BJ UT WOS:000358444200011 ER PT J AU Serba, DD Uppalapati, SR Mukherjee, S Krom, N Tang, YH Mysore, KS Saha, MC AF Serba, Desalegn D. Uppalapati, Srinivasa Rao Mukherjee, Shreyartha Krom, Nick Tang, Yuhong Mysore, Kirankumar S. Saha, Malay C. TI Transcriptome Profiling of Rust Resistance in Switchgrass Using RNA-Seq Analysis SO PLANT GENOME LA English DT Article ID PANICUM-VIRGATUM L.; LIPID-TRANSFER PROTEINS; PROGRAMMED CELL-DEATH; GENE-EXPRESSION ATLAS; PLANT IMMUNE-SYSTEM; PUCCINIA-EMACULATA; 1ST REPORT; ARABIDOPSIS; DEFENSE; ALIGNMENT AB Switchgrass rust caused by Puccinia emaculata is a major limiting factor for switchgrass (Panicum virgatum L.) production, especially in monoculture. Natural populations of switchgrass displayed diverse reactions to P. emaculata when evaluated in an Ardmore, OK, field. To identify the differentially expressed genes during the rust infection process and the mechanisms of switchgrass rust resistance, transcriptome analysis using RNA-Seq was conducted in two pseudo-F 1 parents ('PV281' and 'NFGA472'), and three moderately resistant and three susceptible progenies selected from a three-generation, four-founder switchgrass population (K5 x A4) x (AP13 x VS16). On average, 23.5 million reads per sample (leaf tissue was collected at 0, 24, and 60 h post-inoculation (hpi)) were obtained from paired-end (2 x 100 bp) sequencing on the Illumina HiSeq2000 platform. Mapping of the RNA-Seq reads to the switchgrass reference genome (AP13 ver. 1.1 assembly) constructed a total of 84,209 transcripts from 98,007 gene loci among all of the samples. Further analysis revealed that host defense- related genes, including the nucleotide binding site-leucinerich repeat domain containing disease resistance gene analogs, play an important role in resistance to rust infection. Rust-induced gene (RIG) transcripts inherited across generations were identified. The rust-resistant gene transcripts can be a valuable resource for developing molecular markers for rust resistance. Furthermore, the rust-resistant genotypes and gene transcripts identified in this study can expedite rust-resistant cultivar development in switchgrass. C1 [Serba, Desalegn D.; Saha, Malay C.] Samuel Roberts Noble Fdn Inc, Forage Improvement Div, Ardmore, OK 73401 USA. [Uppalapati, Srinivasa Rao; Tang, Yuhong; Mysore, Kirankumar S.] Samuel Roberts Noble Fdn Inc, Div Plant Biol, Ardmore, OK 73401 USA. [Mukherjee, Shreyartha; Krom, Nick] Samuel Roberts Noble Fdn Inc, Comp Serv, Ardmore, OK 73401 USA. [Uppalapati, Srinivasa Rao] Dupont Pioneer, Dupont Knowledge Ctr, Hyderabad 500078, Telangana, India. [Serba, Desalegn D.; Tang, Yuhong; Saha, Malay C.] Oak Ridge Natl Lab, BioEnergy Sci Ctr, Dept Energy, Oak Ridge, TN 37831 USA. RP Saha, MC (reprint author), Samuel Roberts Noble Fdn Inc, Forage Improvement Div, 2510 Sam Noble Pkwy, Ardmore, OK 73401 USA. EM mcsaha@noble.org FU Department of Energy (DOE); United States Department of Agriculture; BioEnergy Science Center, a U.S. DOE Bioenergy Research Center; Office of Biological and Environmental Research in the DOE Office of Science; National Science Foundation's Experimental Program to Stimulate Competitive Research [EPS-0814361] FX The three-generation, four founder population was developed with funds provided by the Department of Energy (DOE) and United States Department of Agriculture. This research work was partially funded by the BioEnergy Science Center, a U.S. DOE Bioenergy Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science, and the National Science Foundation's Experimental Program to Stimulate Competitive Research (EPS-0814361). The authors thank Stacy Allen of the Genomics and Microarray Core Facility of The Samuel Roberts Noble Foundation for RNA-Seq data generation. We are also thankful to Jackie Kelley for her grammatical editing of the manuscript. Mention of commercial products and companies in this manuscript is solely to provide specific information and does not constitute endorsement by any part herein. NR 74 TC 2 Z9 2 U1 5 U2 21 PU CROP SCIENCE SOC AMER PI MADISON PA 677 S SEGOE ROAD, MADISON, WI 53711 USA SN 1940-3372 J9 PLANT GENOME-US JI Plant Genome PD JUL PY 2015 VL 8 IS 2 DI 10.3835/plantgenome2014.10.0075 PG 12 WC Plant Sciences; Genetics & Heredity SC Plant Sciences; Genetics & Heredity GA CN5BJ UT WOS:000358444200016 ER PT J AU Shi, ZW Bechtel, HA Berweger, S Sun, YH Zeng, B Jin, CH Chang, H Martin, MC Raschke, MB Wang, F AF Shi, Zhiwen Bechtel, Hans A. Berweger, Samuel Sun, Yinghui Zeng, Bo Jin, Chenhao Chang, Henry Martin, Michael C. Raschke, Markus B. Wang, Feng TI Amplitude- and Phase-Resolved Nanospectral Imaging of Phonon Polaritons in Hexagonal Boron Nitride SO ACS PHOTONICS LA English DT Article DE phonon polariton; boron nitride; near-field spectroscopy; synchrotron infrared nanospectroscopy (SINS) ID NEAR-FIELD MICROSCOPY; INFRARED-ABSORPTION; GRAPHENE PLASMONS; DIRAC FERMIONS; LIGHT; HETEROSTRUCTURES; SUPERLATTICES; NANOPARTICLES; SCATTERING; PRESSURE AB Phonon polaritons are quasiparticles resulting from strong coupling of photons with optical phonons. Excitation and control of these quasiparticles in 2D materials offer the opportunity to confine and transport light at the nanoscale. Here, we image the phonon polariton (PhP) spectral response in thin hexagonal boron nitride (hBN) crystals as a representative 2D material using amplitude- and phase-resolved scattering scanning near-field optical microscopy (s-SNOM) using broadband mid-IR synchrotron radiation. The large spectral bandwidth enables the simultaneous measurement of both out-of-plane (780 cm(-1)) and in-plane (1370 cm(-1)) hBN phonon modes. In contrast to the strong in-plane mode, the out-of-plane PhP mode response is weak Measurements of the PhP wavelength reveal a proportional dependence on sample thickness for thin hBN flakes, which can be understood by a general model describing two-dimensional polariton excitation in ultrathin materials. C1 [Shi, Zhiwen; Sun, Yinghui; Zeng, Bo; Jin, Chenhao; Chang, Henry; Wang, Feng] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Bechtel, Hans A.; Martin, Michael C.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source Div, Berkeley, CA 94720 USA. [Wang, Feng] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Berweger, Samuel] NIST, Boulder, CO 80305 USA. [Berweger, Samuel; Raschke, Markus B.] Univ Colorado, Dept Phys, Boulder, CO 80309 USA. [Berweger, Samuel; Raschke, Markus B.] Univ Colorado, Dept Chem, Boulder, CO 80309 USA. [Berweger, Samuel; Raschke, Markus B.] Univ Colorado, JILA, Boulder, CO 80309 USA. [Wang, Feng] Univ Calif Berkeley, Kavli Energy NanoSci Inst, Berkeley, CA 94720 USA. [Wang, Feng] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Wang, F (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM markus.raschke@colorado.edu; fengwang76@berkeley.edu RI Shi, Zhiwen/C-4945-2013; Raschke, Markus/F-8023-2013; Sun, Yinghui/I-5947-2016; wang, Feng/I-5727-2015 OI Shi, Zhiwen/0000-0002-3928-2960; FU Office of Naval Research [N00014-13-1-0464]; David and Lucile Packard fellowship; Office of Biological and Environmental Research, through the U.S. Department of Energy (DOE) [DE-AC02-05CH11231]; U.S. DOE, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DE-FG02-12ER46893] FX Sample preparation and optical measurements in this work were mainly supported by the Office of Naval Research (award N00014-13-1-0464). F.W. acknowledges support from a David and Lucile Packard fellowship. The ALS is supported by the Director, Office of Science, Office of Basic Energy Sciences, and the BSISB is supported by the Office of Biological and Environmental Research, all through the U.S. Department of Energy (DOE) under Contract No. DE-AC02-05CH11231. M.R. acknowledges supported by the U.S. DOE, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, under Award No. DE-FG02-12ER46893. Mention of commercial products is for informational purposes only; it does not imply NIST's recommendation or endorsement. NR 34 TC 12 Z9 12 U1 6 U2 50 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2330-4022 J9 ACS PHOTONICS JI ACS Photonics PD JUL PY 2015 VL 2 IS 7 BP 790 EP 796 DI 10.1021/acsphotonics.5b00007 PG 7 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Optics; Physics, Applied; Physics, Condensed Matter SC Science & Technology - Other Topics; Materials Science; Optics; Physics GA CN1OC UT WOS:000358188300002 ER PT J AU Majewski, J Andre, S Jones, E Chi, E Gabius, HJ AF Majewski, J. Andre, S. Jones, E. Chi, E. Gabius, H. -J. TI X-ray reflectivity and grazing incidence diffraction studies of interaction between human adhesion/growth-regulatory galectin-1 and DPPE-GM1 lipid monolayer at an air/water interface SO BIOCHEMISTRY-MOSCOW LA English DT Article DE agglutinin; Bragg peaks; ganglioside; lectin; X-ray diffraction/reflectivity ID AMPHIPHILIC JANUS GLYCODENDRIMERS; PANCREATIC-CARCINOMA MODEL; NEUROBLASTOMA-CELL-GROWTH; GM1 GANGLIOSIDE; LECTIN GALECTIN-1; BINDING-PROTEINS; SUGAR CODE; CARBOHYDRATE SPECIFICITY; BACTERIAL TOXINS; SURFACE BINDING AB The specific interaction of ganglioside GM1 with the homodimeric (prototype) endogenous lectin galectin-1 triggers growth regulation in tumor and activated effector T cells. This proven biorelevance directed interest to studying association of the lectin to a model surface, i.e. a 1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine/ganglioside GM1 (80: 20 mol%) monolayer, at a bioeffective concentration. Surface expansion by the lectin insertion was detected at a surface pressure of 20 mN/m. On combining the methods of grazing incidence X-ray diffraction and X-ray reflectivity, a transient decrease in lipid-ordered phase of the monolayer was observed. The measured electron density distribution indicated that galectin-1 is oriented with its long axis in the surface plane, ideal for cis-crosslinking. The data reveal a conspicuous difference to the way the pentameric lectin part of the cholera toxin, another GM1-specific lectin, is bound to the monolayer. They also encourage further efforts to monitor effects of structurally different members of the galectin family such as the functionally antagonistic chimera-type galectin-3. C1 [Majewski, J.] Los Alamos Natl Lab, Los Alamos Neutron Sci Ctr, Manuel Lujan Jr Neutron Scattering Ctr, Los Alamos, NM USA. [Andre, S.; Gabius, H. -J.] Univ Munich, Fac Vet Med, Inst Physiol Chem, D-80539 Munich, Germany. [Jones, E.; Chi, E.] Univ New Mexico, Dept Chem & Biol Engn, Ctr Biomed Engn, Albuquerque, NM 87131 USA. RP Gabius, HJ (reprint author), Univ Munich, Fac Vet Med, Inst Physiol Chem, Vet Str 13, D-80539 Munich, Germany. EM gabius@tiph.vetmed.uni-muenchen.de OI Andre, Sabine/0000-0003-0850-0432; Gabius, Hans-Joachim/0000-0003-3467-3900 FU US Department of Energy [W-7405-ENG-36]; Oakridge Associated Universities Ralph E. Powe Junior Faculty Enhancement Award; EC [317297] FX The Los Alamos Neutron Science Center at the Los Alamos National Laboratory is funded by the US Department of Energy under contract W-7405-ENG-36. EYC and EJ would like to acknowledge funding from Oakridge Associated Universities Ralph E. Powe Junior Faculty Enhancement Award and the University of New Mexico Research Allocation Committee for supporting the X-ray scattering experiments. We would also like to acknowledge EC funding (GLYCOPHARM, contract No. 317297), HASYLAB for beam time, Dr. B. Struth for help with the reflectivity and grazing incidence diffraction experiments, and Drs. J. Domingo-Ekark and B. Friday for inspiring discussions. NR 80 TC 6 Z9 6 U1 1 U2 5 PU MAIK NAUKA/INTERPERIODICA/SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013-1578 USA SN 0006-2979 EI 0320-9725 J9 BIOCHEMISTRY-MOSCOW+ JI Biochem.-Moscow PD JUL PY 2015 VL 80 IS 7 BP 943 EP 956 DI 10.1134/S0006297915070135 PG 14 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA CN2KJ UT WOS:000358249500013 PM 26542007 ER PT J AU Wood, CE Hester, SD Chorley, BN Carswell, G George, MH Ward, W Vallanat, B Ren, HZ Fisher, A Lake, AD Okerberg, CV Gaillard, ET Moore, TM Deangelo, AB AF Wood, Charles E. Hester, Susan D. Chorley, Brian N. Carswell, Gleta George, Michael H. Ward, William Vallanat, Beena Ren, Hongzu Fisher, Anna Lake, April D. Okerberg, Carlin V. Gaillard, Elias T. Moore, Tanya M. Deangelo, Anthony B. TI Latent carcinogenicity of early-life exposure to dichloroacetic acid in mice SO CARCINOGENESIS LA English DT Article ID GLUTATHIONE TRANSFERASE-ZETA; MALE B6C3F(1) MOUSE; DOSE-RESPONSE; HEPATOCELLULAR-CARCINOMA; TRICHLOROACETIC-ACID; DRINKING-WATER; LIVER-TUMORS; CANCER-RISK; IN-UTERO; DISEASE AB This study demonstrates latent carcinogenic effects of the metabolic programming agent dichloroacetic acid following transient exposure in mice. Our findings highlight the potential for early-life postnatal changes in cell metabolism to alter cancer risk later in life.Environmental exposures occurring early in life may have an important influence on cancer risk later in life. Here, we investigated carryover effects of dichloroacetic acid (DCA), a small molecule analog of pyruvate with metabolic programming properties, on age-related incidence of liver cancer. The study followed a stop-exposure/promotion design in which 4-week-old male and female B6C3F1 mice received the following treatments: deionized water alone (dH(2)O, control); dH(2)O with 0.06% phenobarbital (PB), a mouse liver tumor promoter; or DCA (1.0, 2.0 or 3.5g/l) for 10 weeks followed by dH(2)O or PB (n = 20-30/group/sex). Pathology and molecular assessments were performed at 98 weeks of age. In the absence of PB, early-life exposure to DCA increased the incidence and number of hepatocellular tumors in male and female mice compared with controls. Significant dose trends were observed in both sexes. At the high dose level, 10 weeks of prior DCA treatment induced comparable effects (a parts per thousand yen85% tumor incidence and number) to those seen after continuous lifetime exposure. Prior DCA treatment did not enhance or inhibit the carcinogenic effects of PB, induce persistent liver cytotoxicity or preneoplastic changes on histopathology or alter DNA sequence variant profiles within liver tumors compared with controls. Distinct changes in liver messenger RNA and micro RNA profiles associated with prior DCA treatment were not apparent at 98 weeks. Our findings demonstrate that early-life exposure to DCA may be as carcinogenic as life-long exposures, potentially via epigenetic-mediated effects related to cellular metabolism. C1 [Wood, Charles E.; Hester, Susan D.; Chorley, Brian N.; Carswell, Gleta; George, Michael H.; Ward, William; Vallanat, Beena; Ren, Hongzu; Fisher, Anna; Lake, April D.; Moore, Tanya M.; Deangelo, Anthony B.] US EPA, Natl Hlth & Environm Effects Res Lab, Res Triangle Pk, NC 27711 USA. [Lake, April D.] Univ N Carolina, Curriculum Toxicol, Chapel Hill, NC 27713 USA. [Lake, April D.] US EPA, Oak Ridge Inst Sci & Educ ORISE, Res Triangle Pk, NC 27711 USA. [Okerberg, Carlin V.; Gaillard, Elias T.] Expt Pathol Labs, Morrisville, NC 27560 USA. RP Wood, CE (reprint author), US EPA, Natl Hlth & Environm Effects Res Lab, Res Triangle Pk, NC 27711 USA. EM wood.charles@epa.gov FU U.S. EPA Office of Research and Development FX The U.S. EPA Office of Research and Development. NR 53 TC 1 Z9 1 U1 3 U2 7 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0143-3334 EI 1460-2180 J9 CARCINOGENESIS JI Carcinogenesis PD JUL PY 2015 VL 36 IS 7 BP 782 EP 791 DI 10.1093/carcin/bgv057 PG 10 WC Oncology SC Oncology GA CN1JN UT WOS:000358175700009 PM 25913432 ER PT J AU Jiang, N Tran, H AF Jiang, Nan Hoang Tran TI Analysis of a Stabilized CNLF Method with Fast Slow Wave Splittings for Flow Problems SO COMPUTATIONAL METHODS IN APPLIED MATHEMATICS LA English DT Article DE CNLF; NSE; Stabilization; Fast-Slow Wave Splitting ID NAVIER-STOKES EQUATIONS; TIME DISCRETIZATION; EVOLUTION-EQUATIONS; NUMERICAL-ANALYSIS; APPROXIMATION; REGULARIZATION; IMPLICIT; EXPLICIT; FILTER AB In this work, we study Crank-Nicolson leap-frog (CNLF) methods with fast-slow wave splittings for Navier-Stokes equations (NSE) with a rotation/Coriolis force term, which is a simplification of geophysical flows. We propose a new stabilized CNLF method where the added stabilization completely removes the method's CFL time step condition. A comprehensive stability and error analysis is given. We also prove that for Oseen equations with the rotation term, the unstable mode (for which u(n+1) + u(n-1) equivalent to 0) of CNLF is asymptotically stable. Numerical results are provided to verify the stability and the convergence of the methods. C1 [Jiang, Nan] Florida State Univ, Dept Comp Sci, Tallahassee, FL 32306 USA. [Hoang Tran] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. RP Jiang, N (reprint author), Florida State Univ, Dept Comp Sci, Tallahassee, FL 32306 USA. EM njiang@fsu.edu; tranha@ornl.gov OI Jiang, Nan/0000-0002-1080-258X FU NSF [DMS 1216465]; AFOSR [FA 9550-12-1-0191] FX The authors were partially supported by NSF grant DMS 1216465 and AFOSR grant FA 9550-12-1-0191. NR 37 TC 0 Z9 0 U1 1 U2 1 PU WALTER DE GRUYTER GMBH PI BERLIN PA GENTHINER STRASSE 13, D-10785 BERLIN, GERMANY SN 1609-4840 EI 1609-9389 J9 COMPUT METH APPL MAT JI Comput. Methods Appl. Math. PD JUL PY 2015 VL 15 IS 3 BP 307 EP 330 DI 10.1515/cmam-2015-0010 PG 24 WC Mathematics, Applied SC Mathematics GA CN3KJ UT WOS:000358324700005 ER PT J AU GopiReddy, LR Tolbert, LM Ozpineci, B Pinto, JOP AF GopiReddy, Lakshmi Reddy Tolbert, Leon M. Ozpineci, Burak Pinto, Joao O. P. TI Rainflow Algorithm-Based Lifetime Estimation of Power Semiconductors in Utility Applications SO IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS LA English DT Article DE Cycle counting; lifetime estimation; power semiconductor reliability; rainflow algorithms; STATCOM ID DEVICE RELIABILITY; PREDICTION; SYSTEMS; TEMPERATURE; TOPOLOGIES; MODULES; IGBT AB Rainflow algorithms are one of the popular counting methods used in fatigue and failure analysis in conjunction with semiconductor lifetime estimation models. However, the rain-flow algorithm used in power semiconductor reliability does not consider the time-dependent mean temperature calculation. The equivalent temperature calculation proposed by Nagode et al. is applied to semiconductor lifetime estimation in this paper. A month-long arc furnace load profile is used as a test profile to estimate temperatures in insulated-gate bipolar transistors (IGBTs) in a STATCOM for reactive compensation of load. The degradation in the life of the IGBT power device is predicted based on time-dependent temperature calculation. C1 [GopiReddy, Lakshmi Reddy; Tolbert, Leon M.; Ozpineci, Burak] Univ Tennessee, Dept Elect Engn & Comp Sci, Knoxville, TN 37996 USA. [Tolbert, Leon M.; Ozpineci, Burak] Oak Ridge Natl Lab, Power Elect & Elect Machinery Res Grp PEEMRG, Knoxville, TN 37932 USA. [Pinto, Joao O. P.] Univ Fed Mato Grosso do Sul, Dept Elect Engn, BR-79070900 Campo Grande, Brazil. RP GopiReddy, LR (reprint author), Univ Tennessee, Dept Elect Engn & Comp Sci, Knoxville, TN 37996 USA. EM lgopired@utk.edu; tolbert@utk.edu; burak@ornl.gov; joaonofre@gmail.com OI Ozpineci, Burak/0000-0002-1672-3348; Tolbert, Leon/0000-0002-7285-609X FU U.S. Department of Energy; Engineering Research Center Program of the National Science Foundation and DOE under NSF [EEC-1041877]; CURENT Industry Partnership Program FX Paper 2014-PEDCC-0495.R1, presented at the 2014 IEEE Applied Power Electronics Conference and Exposition, Fort Worth, TX, USA, March 16-20, and approved for publication in the IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS by the Power Electronic Devices and Components Committee of the IEEE Industry Applications Society. This work was supported in part by the U.S. Department of Energy. This work made use of Engineering Research Center Shared Facilities supported by the Engineering Research Center Program of the National Science Foundation and DOE under NSF Award Number EEC-1041877 and the CURENT Industry Partnership Program. NR 32 TC 5 Z9 5 U1 3 U2 18 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0093-9994 EI 1939-9367 J9 IEEE T IND APPL JI IEEE Trans. Ind. Appl. PD JUL-AUG PY 2015 VL 51 IS 4 BP 3368 EP 3375 DI 10.1109/TIA.2015.2407055 PG 8 WC Engineering, Multidisciplinary; Engineering, Electrical & Electronic SC Engineering GA CN2MN UT WOS:000358255700068 ER PT J AU Berdnikov, VV Somov, SV Pentchev, L AF Berdnikov, V. V. Somov, S. V. Pentchev, L. TI Use of cluster counting technique for particle identification in a drift chamber with the cathode strip readout SO INSTRUMENTS AND EXPERIMENTAL TECHNIQUES LA English DT Article ID IONIZATION AB The possibility of using the clusters counting technique for particle identification in a drift chamber with the cathode strip readout is experimentally investigated. Results of counting of primary ionization clusters on a relativistic particle track, as well as results of computer simulation of pion, kaon, and proton identification in the momentum range of 1-8 GeV/c, are presented. C1 [Berdnikov, V. V.; Somov, S. V.] Natl Res Nucl Univ MEPhI, Moscow 115409, Russia. [Pentchev, L.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. RP Berdnikov, VV (reprint author), Natl Res Nucl Univ MEPhI, Kashirskoe Sh 31, Moscow 115409, Russia. EM vvberdnikov@gmail.com FU Jefferson Science Associates, LLC; United States Department of Energy [DOE_AC05_06OR23177] FX This work was performed by the National Research Nuclear University MEPhI in collaboration with the Thomas Jefferson Accelerator Facility as a part of the GlueX experiment and was supported by the Jefferson Science Associates, LLC, which performs the work of the Thomas Jefferson National Accelerator Facility for the United States Department of Energy under US DOE contract no. DOE_AC05_06OR23177. NR 5 TC 1 Z9 1 U1 0 U2 2 PU MAIK NAUKA/INTERPERIODICA/SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013-1578 USA SN 0020-4412 EI 1608-3180 J9 INSTRUM EXP TECH+ JI Instrum. Exp. Tech. PD JUL PY 2015 VL 58 IS 4 BP 473 EP 477 DI 10.1134/S0020441215030185 PG 5 WC Engineering, Multidisciplinary; Instruments & Instrumentation SC Engineering; Instruments & Instrumentation GA CN4FB UT WOS:000358384700004 ER PT J AU Soniat, M Rogers, DM Rempe, SB AF Soniat, Marielle Rogers, David M. Rempe, Susan B. TI Dispersion- and Exchange-Corrected Density Functional Theory for Sodium Ion Hydration SO JOURNAL OF CHEMICAL THEORY AND COMPUTATION LA English DT Article ID INITIO MOLECULAR-DYNAMICS; QUASI-CHEMICAL THEORY; BASIS-SET LIMIT; AB-INITIO; COUPLED-CLUSTER; WATER CLUSTERS; LIQUID WATER; FREE-ENERGY; AQUEOUS-SOLUTIONS; HYDROGEN GAS AB A challenge in density functional theory is developing functionals that simultaneously describe intermolecular electron correlation and electron delocalization. Recent exchange-correlation functionals address those two issues by adding corrections important at long ranges: an atom-centered pairwise dispersion term to account for correlation and a modified long-range component of the electron exchange term to correct for delocalization. Here we investigate how those corrections influence the accuracy of binding free energy predictions for sodium-water clusters. We find that the dual-corrected omega B97X-D functional gives cluster binding energies closest to high-level ab initio methods (CCSD(T)). Binding energy decomposition shows that the omega B97X-D functional predicts the smallest ion water (pairwise) interaction energy and larger multibody contributions for a four-water cluster than most other functionals a trend consistent with CCSD(T) results. Also, omega B97X-D produces the smallest amounts of charge transfer and the least polarizable waters of the density functionals studied, which mimics the lower polarizability of CCSD. When compared with experimental binding tree energies, however, the exchange-corrected CAM-B3LYP functional performs best (error <1 kcal/mol), possibly because of its parametrization to experimental formation enthalpies. For clusters containing more than four waters, "split-shell" coordination must be considered to obtain accurate free energies in comparison with experiment. C1 [Soniat, Marielle] Univ New Orleans, Dept Chem, New Orleans, LA 70148 USA. [Rogers, David M.; Rempe, Susan B.] Sandia Natl Labs, Ctr Biol & Engn Sci, Albuquerque, NM 87123 USA. [Rogers, David M.] Univ S Florida, Dept Chem, Tampa, FL 33620 USA. RP Rempe, SB (reprint author), Sandia Natl Labs, Ctr Biol & Engn Sci, Albuquerque, NM 87123 USA. EM slrempe@sandia.gov FU State of Louisiana Board of Regents; National Science Foundation under the NSF EPSCoR [EPS-1003897]; University of South Florida Research Foundation; National Science Foundation [PHYS-1066293]; U.S. Department of Energy [DE-AC04-94AL8500] FX M.S. gratefully acknowledges support from the State of Louisiana Board of Regents and the National Science Foundation under the NSF EPSCoR Cooperative Agreement No. EPS-1003897. D.M.R. acknowledges support from the University of South Florida Research Foundation. D.M.R. and S.B.R. acknowledge Sandia's LDRD program. This work was also supported in part by the National Science Foundation under Grant No. PHYS-1066293 and the hospitality of the Aspen Center for Physics. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL8500. NR 123 TC 7 Z9 7 U1 13 U2 31 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1549-9618 EI 1549-9626 J9 J CHEM THEORY COMPUT JI J. Chem. Theory Comput. PD JUL PY 2015 VL 11 IS 7 BP 2958 EP 2967 DI 10.1021/acs.jctc.5b00357 PG 10 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA CN0LJ UT WOS:000358104800007 PM 26575733 ER PT J AU Bereau, T Andrienko, D von Lilienfeld, OA AF Bereau, Tristan Andrienko, Denis von Lilienfeld, O. Anatole TI Transferable Atomic Multipole Machine Learning Models for Small Organic Molecules SO JOURNAL OF CHEMICAL THEORY AND COMPUTATION LA English DT Article ID INTERMOLECULAR INTERACTION ENERGIES; DENSITY-FUNCTIONAL THEORY; FORCE-FIELD; NONCOVALENT INTERACTIONS; COMPLEXES; DYNAMICS; DATABASE; KERNEL; ELECTROSTATICS; SIMULATIONS AB Accurate representation of the molecular electrostatic potential, which is often expanded in distributed multipole moments, is crucial for an efficient evaluation of intermolecular interactions. Here we introduce a machine learning model for multipole coefficients of atom types H, C, O, N, S, F, and Cl in any molecular conformation. The model is trained on quantum-chemical results for atoms in varying chemical environments drawn from thousands of organic molecules. Multipoles in systems with neutral, cationic, and anionic molecular charge states are treated with individual models. The models' predictive accuracy and applicability are illustrated by evaluating intermolecular interaction energies of nearly 1,000 dimers and the cohesive energy of the benzene crystal. C1 [Bereau, Tristan; Andrienko, Denis] Max Planck Inst Polymer Res, D-55128 Mainz, Germany. [von Lilienfeld, O. Anatole] Univ Basel, Inst Phys Chem, CH-4056 Basel, Switzerland. [von Lilienfeld, O. Anatole] Univ Basel, Natl Ctr Computat Design & Discovery Novel Mat, Dept Chem, CH-4056 Basel, Switzerland. [von Lilienfeld, O. Anatole] Argonne Natl Lab, Argonne Leadership Comp Facil, Argonne, IL 60439 USA. RP Bereau, T (reprint author), Max Planck Inst Polymer Res, Ackermannweg 10, D-55128 Mainz, Germany. EM bereau@mpip-mainz.mpg.de; anatole.vonlilienfeld@unibas.ch RI MPIP, Theory/I-9884-2014; von Lilienfeld, O. Anatole/D-8529-2011; Andrienko, Denis/B-7721-2008; Bereau, Tristan/G-4987-2010 OI Andrienko, Denis/0000-0002-1541-1377; Bereau, Tristan/0000-0001-9945-1271 FU Swiss National Science Foundation [PP00P2_138932]; Office of Science of the U.S. Department of Energy (DOE) [DE-AC02-06CH11357] FX O.A.v.L. acknowledges funding from the Swiss National Science Foundation (Grant No. PP00P2_138932). This research used resources of the Argonne Leadership Computing Facility at Argonne National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy (DOE) under Contract DE-AC02-06CH11357. NR 56 TC 4 Z9 4 U1 9 U2 34 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1549-9618 EI 1549-9626 J9 J CHEM THEORY COMPUT JI J. Chem. Theory Comput. PD JUL PY 2015 VL 11 IS 7 BP 3225 EP 3233 DI 10.1021/acs.jctc.5b00301 PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA CN0LJ UT WOS:000358104800033 PM 26575759 ER PT J AU Moore, B Sun, HT Govind, N Kowalski, K Autschbach, J AF Moore, Barry, II Sun, Haitao Govind, Niranjan Kowalski, Karol Autschbach, Jochen TI Charge-Transfer Versus Charge-Transfer-Like Excitations Revisited SO JOURNAL OF CHEMICAL THEORY AND COMPUTATION LA English DT Article ID DENSITY-FUNCTIONAL THEORY; TRANSFER EXCITED-STATES; COUPLED-CLUSTER METHOD; FRONTIER ORBITAL ENERGIES; CYANINE DYES; BASIS-SETS; ELECTRONIC EXCITATION; DELOCALIZATION ERROR; OPTICAL-PROPERTIES; TRANSFER CHARACTER AB Criteria to assess charge-transfer (CT) and CT-like character of electronic excitations are examined. Time-dependent density functional theory (TDDFT) calculations with non-hybrid, hybrid, and tuned long-range corrected (LC) functionals are compared with coupledcluster (CC) benchmarks. The test set comprises an organic CT complex, two push pull donor acceptor chromophores, a cyanine dye, and several polycyclic aromatic hydrocarbons. Proper CT is easily identified. Excitations with significant density changes upon excitation within regions of close spatial proximity can also be diagnosed. For such excitations, the use of LC functionals in TDDFT sometimes leads to dramatic improvements of the singlet energies, similar to proper CT. It is shown that such CT-like excitations do not have the characteristics of physical charge transfer, and improvements with LC functionals may not be obtained for the right reasons. The TDDFT triplet excitation energies are underestimated for all systems, often severely. For the CT-like candidates, the singlet triplet (SIT) separation changes from negative with a non-hybrid functional to positive with a tuned LC functional. For the cyanine, the S/T separation is systematically too large with TDDFT, leading to better error compensation for the singlet energy with a non-hybrid functional. C1 [Moore, Barry, II; Sun, Haitao; Autschbach, Jochen] SUNY Buffalo, Dept Chem, Buffalo, NY 14260 USA. [Sun, Haitao] E China Normal Univ, Dept Phys, State Key Lab Precis Spect, Shanghai 200062, Peoples R China. [Govind, Niranjan; Kowalski, Karol] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. RP Autschbach, J (reprint author), SUNY Buffalo, Dept Chem, Buffalo, NY 14260 USA. EM jochena@buffalo.edu RI Sun, Haitao/O-8894-2016; Autschbach, Jochen/S-5472-2016 OI Autschbach, Jochen/0000-0001-9392-877X FU National Science Foundation [CHE-1265833]; China Scholarship Council; U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research, Scientific Discovery through Advanced Computing (SciDAC) program [DE-SC0008666]; Department of Energy's Office of Biological and Environmental Research FX J.A. and B.M.II acknowledge support by the National Science Foundation, Grant No. CHE-1265833. J.A. thanks Prof. L. Kronik for constructive discussions on the topic of CT. H.S. is grateful for financial support by the China Scholarship Council. N.G. acknowledges support from the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research, Scientific Discovery through Advanced Computing (SciDAC) program, under Award No. DE-SC0008666 for the analytical TDDFT excited-state gradients developments in NWChem. We thank the Center for Computational Research at the Univ. at Buffalo for providing and hosting computational resources. A portion of the calculations were performed at the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at the Pacific Northwest National Laboratory. NR 91 TC 16 Z9 16 U1 7 U2 40 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1549-9618 EI 1549-9626 J9 J CHEM THEORY COMPUT JI J. Chem. Theory Comput. PD JUL PY 2015 VL 11 IS 7 BP 3305 EP 3320 DI 10.1021/acs.jctc.5b00335 PG 16 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA CN0LJ UT WOS:000358104800040 PM 26575765 ER PT J AU Aradi, B Niklasson, AMN Frauenheim, T AF Aradi, Balint Niklasson, Anders M. N. Frauenheim, Thomas TI Extended Lagrangian Density Functional Tight-Binding Molecular Dynamics for Molecules and Solids SO JOURNAL OF CHEMICAL THEORY AND COMPUTATION LA English DT Article ID SIMULATIONS; INTEGRATORS AB A computationally fast quantum mechanical molecular dynamics scheme using an extended Lagrangian density functional tight-binding formulation has been developed and implemented in the DFTB+ electronic structure program package for simulations of solids and molecular systems. The scheme combines the computational speed of self-consistent density functional tight-binding theory with the efficiency and long-term accuracy of extended Lagrangian Born-Oppenheimer molecular dynamics. For systems without self-consistent charge instabilities, only a single diagonalization or construction of the single-particle density matrix is required in each time step. The molecular dynamics simulation scheme can be applied to a broad range of problems in materials science, chemistry, and biology. C1 [Aradi, Balint; Frauenheim, Thomas] Univ Bremen, Bremen Ctr Computat Mat Sci, D-28359 Bremen, Germany. [Niklasson, Anders M. N.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Aradi, B (reprint author), Univ Bremen, Bremen Ctr Computat Mat Sci, Fallturm 1, D-28359 Bremen, Germany. EM aradi@uni-bremen.de FU United States Department of Energy (U.S. DOE), Office of Basic Energy Sciences (FWP) [LANL2014E8AN] FX A.M.N.N. acknowledges support by the United States Department of Energy (U.S. DOE), Office of Basic Energy Sciences (FWP no. LANL2014E8AN). NR 38 TC 2 Z9 2 U1 4 U2 12 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1549-9618 EI 1549-9626 J9 J CHEM THEORY COMPUT JI J. Chem. Theory Comput. PD JUL PY 2015 VL 11 IS 7 BP 3357 EP 3363 DI 10.1021/acs.jctc.5b00324 PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA CN0LJ UT WOS:000358104800044 PM 26575769 ER PT J AU Fernandez-Rodriguez, J Toby, B van Veenendaal, M AF Fernandez-Rodriguez, Javier Toby, Brian van Veenendaal, Michel TI Xclaim: A graphical interface for the calculation of core-hole spectroscopies SO JOURNAL OF ELECTRON SPECTROSCOPY AND RELATED PHENOMENA LA English DT Article DE X-ray absorption spectroscopy; X-ray photoemission; Crystal field; Strongly correlated materials ID X-RAY-ABSORPTION; TRANSITION-METAL COMPOUNDS; ELECTRONIC-STRUCTURE; CIRCULAR-DICHROISM; CRYSTAL-FIELD; BRANCHING RATIO; 3D; PHOTOEMISSION; SPECTRA; DIHALIDES AB Xclaim (X-ray core level atomic multiplets) is a graphical interface for the calculation of core-hole spectroscopy and ground state properties within a charge-transfer multiplet model taking into account a many-body Hamiltonian with Coulomb, spin-orbit, crystal-field, and hybridization interactions. Using Coulomb and spin-orbit parameters calculated in the Hartree-Fock limit and ligand field parameters (crystal-field, hybridization and charge-transfer energy) the program calculates X-ray absorption spectroscopy (XAS), X-ray photoemission spectroscopy (XPS), photoemission spectroscopy (PES) and inverse photoemission (IPES). The program runs on Linux, Windows and MacOS platforms. (C) 2015 Elsevier B.V. All rights reserved. C1 [Fernandez-Rodriguez, Javier; van Veenendaal, Michel] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Fernandez-Rodriguez, Javier; Toby, Brian; van Veenendaal, Michel] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Fernandez-Rodriguez, J (reprint author), No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. EM toby@anl.gov; veenendaal@niu.edu RI Toby, Brian/F-3176-2013 OI Toby, Brian/0000-0001-8793-8285 FU U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DE-FG02-03ER46097]; Computational Materials Science Network (CMSCN) [DE-FG02-08ER46540, DE-SC0007091]; NIU Institute for Nanoscience, Engineering, and Technology; U.S. DOE, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX We are thankful to D. Haskel, U. Staub, and J.A. Blanco for useful discussions. The periodic table was adapted from Robert Von Dreele's program pyFprime [47]. This work was supported by the U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award No. DE-FG02-03ER46097, the time-dependent X-ray spectroscopy collaboration as part of the Computational Materials Science Network (CMSCN) under Grants DE-FG02-08ER46540 and DE-SC0007091, and NIU Institute for Nanoscience, Engineering, and Technology. Work at Argonne National Laboratory was supported by the U.S. DOE, Office of Science, Office of Basic Energy Sciences, under contract No. DE-AC02-06CH11357. NR 43 TC 3 Z9 3 U1 0 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0368-2048 EI 1873-2526 J9 J ELECTRON SPECTROSC JI J. Electron Spectrosc. Relat. Phenom. PD JUL PY 2015 VL 202 BP 81 EP 88 DI 10.1016/j.elspec.2015.03.010 PG 8 WC Spectroscopy SC Spectroscopy GA CM7VM UT WOS:000357904600014 ER PT J AU Zhao, L Klopf, JM Reece, CE Kelley, MJ AF Zhao, L. Klopf, J. M. Reece, C. E. Kelley, M. J. TI Laser polishing for topography management of accelerator cavity surfaces SO MATERIALWISSENSCHAFT UND WERKSTOFFTECHNIK LA English DT Article DE Laser polishing; topography; cavity surfaces AB Improved energy efficiency and reduced cost are greatly desired for advanced particle accelerators. Progress toward these goals can be made by atomically-smoothing the interior surface of the niobium superconducting radiofrequency (SRF) accelerator cavities at the heart of these machines. Laser polishing offers a green alternative to the present aggressive chemical processes. We found parameters suitable for polishing niobium in all surface conditions that are expected for cavity production. Careful measurement of the resulting surface chemistry revealed a modest thinning of the surface oxide layer, but no contamination. C1 [Zhao, L.; Klopf, J. M.; Kelley, M. J.] Coll William & Mary, Dept Appl Sci, Williamsburg, VA 23187 USA. [Zhao, L.; Reece, C. E.; Kelley, M. J.] Jefferson Lab, Newport News, VA 23606 USA. RP Kelley, MJ (reprint author), Coll William & Mary, Dept Appl Sci, Williamsburg, VA 23187 USA. EM mkelley@jlab.org FU Office of High Energy Physics of the U.S. Department of Energy [SC0007907]; U.S. DOE [DE-AC05-06OR23177] FX Liang Zhao is grateful for support by the Office of High Energy Physics of the U.S. Department of Energy under grant SC0007907 to the College of William & Mary. The experiment was conducted at Jefferson Lab. Partly authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. The U.S. Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce this manuscript for U.S. Government purposes. Thanks to staff at the College of William and Mary characterization lab, especially Olga Trofimova for the AFM images. We thank Fred Stevie and Chuanzhen Zhou of North Carolina State University and Jay Tuggle of Virginia Tech for their assistance with materials characterization. NR 19 TC 1 Z9 1 U1 3 U2 10 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 0933-5137 EI 1521-4052 J9 MATERIALWISS WERKST JI Materialwiss. Werkstofftech. PD JUL PY 2015 VL 46 IS 7 BP 675 EP 685 DI 10.1002/mawe.201500323 PG 11 WC Materials Science, Multidisciplinary SC Materials Science GA CN2KD UT WOS:000358248900003 ER PT J AU Ye, B Rest, J Kim, YS Hofman, G Dionne, B AF Ye, Bei Rest, Jeff Kim, Yeon Soo Hofman, Gerard Dionne, Benoit TI DART ANALYSIS OF IRRADIATION BEHAVIOR OF U-Mo/Al DISPERSION FUELS SO NUCLEAR TECHNOLOGY LA English DT Article DE irradiation behavior modeling; U-Mo/Al dispersion fuel; irradiation-induced swelling ID MO ALLOY; LOW-TEMPERATURE; AL MATRIX; ALUMINUM; PRODUCT; GROWTH AB DART (Dispersion Analysis Research Tool) is a computational code developed for integrated simulation of the irradiation behavior of aluminum dispersion fuels used in research reactors. The DART computational code uses a mechanistic fission gas behavior model and a set of up-to-date empirical correlations to simulate the fuel morphology change as a function of burnup. Integrating a thermal calculation subroutine enables fuel material properties to be updated at each time step. This paper describes the primary physical models that form the basis of the DART computational code. A baseline validation was performed through the modeling of several U-Mo/Al mini-plate tests (RERTR-6, 7, and 9) in the Advanced Test Reactor (ATR). A demonstration problem is also presented through the calculation of fuel plate swelling and constituent volume fractions in full-sized plates from the AFIP-1 test in ATR. C1 [Ye, Bei; Rest, Jeff; Kim, Yeon Soo; Hofman, Gerard; Dionne, Benoit] Argonne Natl Lab, Argonne, IL 60439 USA. RP Ye, B (reprint author), Argonne Natl Lab, 9700 South Cass Ave, Argonne, IL 60439 USA. EM bye@anl.gov FU U.S. Department of Energy, Office of Global Threat Reduction [NA-21]; UChicago Argonne, LLC [DE-AC-02-06CH11357]; U.S. Department of Energy [DE-AC-02-06CH11357] FX The authors would like to acknowledge D. Wachs and A. Robinson from INL for PIE data. The physics data from the AFIP-1 test was made available by G. Chang, M. Lillo, and D. M. Perez from INL, which is appreciated. This work was supported by the U.S. Department of Energy, Office of Global Threat Reduction (NA-21), National Nuclear Security Administration, under contract DE-AC-02-06CH11357 between UChicago Argonne, LLC, and the U.S. Department of Energy. NR 39 TC 2 Z9 2 U1 1 U2 4 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 EI 1943-7471 J9 NUCL TECHNOL JI Nucl. Technol. PD JUL PY 2015 VL 191 IS 1 BP 27 EP 40 PG 14 WC Nuclear Science & Technology SC Nuclear Science & Technology GA CN0LF UT WOS:000358104400003 ER PT J AU Davis, KL Knudson, DL Rempe, JL Crepeau, JC Solstad, S AF Davis, K. L. Knudson, D. L. Rempe, J. L. Crepeau, J. C. Solstad, S. TI DESIGN AND LABORATORY EVALUATION OF FUTURE ELONGATION AND DIAMETER MEASUREMENTS AT THE ADVANCED TEST REACTOR SO NUCLEAR TECHNOLOGY LA English DT Article DE in-pile deformation; measurement instrumentation AB New materials are being considered for fuel, cladding, and structures in next-generation and existing nuclear reactors. Such materials can undergo significant dimensional and physical changes during high-temperature irradiation. To accurately predict these changes, real-time data must be obtained under prototypic irradiation conditions for model development and validation. To provide these data, programs such as the Advanced Test Reactor (ATR) National Scientific Users Facility (NSUF) have funded researchers at the Idaho National Laboratory (INL) High Temperature Test Laboratory (HTTL) to develop several instrumented test rigs to obtain data in real time from specimens irradiated in well-controlled pressurized water reactor (PWR) coolant conditions in ATR. This technical note reports the status of INL efforts to develop and evaluate prototype test rigs that rely on linear variable differential transformers (LVDTs) in laboratory settings. Although similar LVDT-based test rigs have been deployed in lower-flux materials testing reactors (MTRs), this effort is unique because it relies on robust LVDTs that can withstand higher temperatures and higher fluxes than often found in other MTR irradiations. Specifically, the test rigs are designed for detecting changes in the length and diameter of specimens irradiated in ATR PWR loops. Once implemented, these test rigs will provide ATR users with unique capabilities that are sorely needed to obtain measurements such as elongation caused by thermal expansion and/or creep loading and diameter changes associated with fuel and cladding swelling, pellet-cladding interaction, and crud buildup. C1 [Davis, K. L.; Knudson, D. L.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Rempe, J. L.] Rempe & Associates LLC, Idaho Falls, ID 83404 USA. [Crepeau, J. C.] Univ Idaho, Dept Mech Engn, Moscow, ID 83844 USA. [Solstad, S.] Inst Energy Technol, N-1777 Halden, Norway. RP Davis, KL (reprint author), Idaho Natl Lab, POB 1625,Mail Stop 3531, Idaho Falls, ID 83415 USA. EM Kurt.Davis@inl.gov OI Rempe, Joy/0000-0001-5527-3549 FU DOE-NE under Idaho Operations Office contract [DE AC07 05ID14517] FX This work was supported by the DOE-NE under Idaho Operations Office contract DE AC07 05ID14517. NR 19 TC 0 Z9 0 U1 2 U2 2 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 EI 1943-7471 J9 NUCL TECHNOL JI Nucl. Technol. PD JUL PY 2015 VL 191 IS 1 BP 92 EP 105 PG 14 WC Nuclear Science & Technology SC Nuclear Science & Technology GA CN0LF UT WOS:000358104400007 ER PT J AU Millsap, DW Cournoyer, ME Landsberger, S Tesmer, J Wang, Y AF Millsap, D. W. Cournoyer, M. E. Landsberger, S. Tesmer, J. Wang, Y. TI DEGRADATION OF NYLON 6,6 FIRE-SUPPRESSION CASING FROM PLUTONIUM GLOVE BOXES UNDER ALPHA AND NEUTRON IRRADIATION SO NUCLEAR TECHNOLOGY LA English DT Article DE alpha ion beam; glove box; nylon 6,6 AB Nylon 6,6 tensile specimens, conforming to the casing for self-contained fire extinguisher systems, have been irradiated using both an accelerator He++ ion beam and a 5-Ci PuBe neutron source to model the radiation damage these systems would likely incur over a lifetime of operation within glove boxes. Following irradiation, these samples were mechanically tested using standard practices as described in ASTM D638. The results of the He++ study indicate that the tensile strength of the nylon specimens undergoes some slight (<10%) degradation while other properties of the samples, such as elongation and tangent modulus, appear to fluctuate with increasing dose levels. The He++-irradiated specimens also have a noticeable level of discoloration corresponding to increasing levels of dose. The neutron-irradiated samples show a higher degree of mechanical degradation than the He++-irradiated samples. C1 [Millsap, D. W.; Landsberger, S.] Univ Texas Austin, Nucl Engn Teaching Lab, Austin, TX 78712 USA. [Cournoyer, M. E.; Tesmer, J.; Wang, Y.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Millsap, DW (reprint author), Univ Texas Austin, Nucl Engn Teaching Lab, 10100 Burnet Rd, Austin, TX 78712 USA. EM s.landsberger@mail.utexas.edu FU U.S. Department of Energy through LANL; Nuclear Materials Technology Division; Ion Beam Materials Laboratory of LANL FX This work was financially supported by the U.S. Department of Energy through LANL and was conducted at the University of Texas at Austin. The authors would like to thank the personnel at the Nuclear Engineering Teaching Laboratory at the University of Texas's Pickle Research Campus. Special thanks are also given to the personnel at the Nuclear Materials Technology Division and the Ion Beam Materials Laboratory of LANL for their support throughout the completion of this research. NR 11 TC 0 Z9 0 U1 0 U2 0 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 EI 1943-7471 J9 NUCL TECHNOL JI Nucl. Technol. PD JUL PY 2015 VL 191 IS 1 BP 106 EP 112 PG 7 WC Nuclear Science & Technology SC Nuclear Science & Technology GA CN0LF UT WOS:000358104400008 ER PT J AU Leander, R Lenhart, S Protopopescu, V AF Leander, Rachel Lenhart, Suzanne Protopopescu, Vladimir TI Optimal control of continuous systems with impulse controls SO OPTIMAL CONTROL APPLICATIONS & METHODS LA English DT Article DE continuous systems; impulse control; discrete time optimal control ID COMPARTMENT MODELS AB Impulse control problems, in which a continuously evolving state is modified by discrete control actions, have applications in epidemiology, medicine, and ecology. In this paper, we present a simple method for solving impulse control problems for systems of differential equations. In particular, we show how impulse control problems can be reformulated and solved as discrete optimal control problems. The method is illustrated with two examples. Published 2014. This article has been contributed to by US Government employees and their work is in the public domain in the USA. C1 [Leander, Rachel] Middle Tennessee State Univ, Dept Math Sci, Murfreesboro, TN 37132 USA. [Lenhart, Suzanne] Univ Tennessee, Dept Math, Knoxville, TN 37996 USA. [Protopopescu, Vladimir] Oak Ridge Natl Lab, Computat Sci & Engn Div, Oak Ridge, TN USA. RP Leander, R (reprint author), Middle Tennessee State Univ, Dept Math Sci, Murfreesboro, TN 37132 USA. EM rleander@mbi.osu.edu FU National Science Foundation [0931642]; National Institute for Mathematical and Biological Synthesis - National Science Foundation; US Department of Homeland Security; US Department of Agriculture through NSF [EF-0832858]; University of Tennessee; University of Tennessee Center for Business and Economic Research; US Department of Energy [DE-AC05-00OR22725] FX Leander's work is supported by the National Science Foundation under Agreement No. 0931642. Lenhart's work is partially supported by the National Institute for Mathematical and Biological Synthesis, sponsored by the National Science Foundation, the US Department of Homeland Security, and the US Department of Agriculture through NSF Award EF-0832858, with additional support from The University of Tennessee. Lenhart is also partially supported by the University of Tennessee Center for Business and Economic Research. The Oak Ridge National Laboratory is managed by UT-Battelle, LLC for the US Department of Energy under contract DE-AC05-00OR22725. NR 20 TC 0 Z9 0 U1 1 U2 3 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0143-2087 EI 1099-1514 J9 OPTIM CONTR APPL MET JI Optim. Control Appl. Methods PD JUL-AUG PY 2015 VL 36 IS 4 BP 535 EP 549 DI 10.1002/oca.2128 PG 15 WC Automation & Control Systems; Operations Research & Management Science; Mathematics, Applied SC Automation & Control Systems; Operations Research & Management Science; Mathematics GA CN1HD UT WOS:000358168400009 ER PT J AU Burr, T Hamada, MS AF Burr, T. Hamada, M. S. TI A Multiplicative Model for Gauge R & R Studies SO QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL LA English DT Article DE Bayesian; repeatability; reproducibility AB We introduce a multiplicative measurement error model and analyze a gauge R & R study with the new model using data from a sample exchange program. Some aspects of designing a gauge R & R study are considered. Also, we analyze data from a factorial experiment where the measurement error arises from the new model using a simultaneous analysis of experimental and gauge R & R study data. WinBUGS code for these analyses is provided. Copyright (c) 2014 John Wiley & Sons, Ltd. C1 [Burr, T.; Hamada, M. S.] Los Alamos Natl Lab, Stat Sci Grp, Los Alamos, NM 87545 USA. RP Hamada, MS (reprint author), Los Alamos Natl Lab, Stat Sci Grp, POB 1663, Los Alamos, NM 87545 USA. EM hamada@lanl.gov NR 11 TC 1 Z9 1 U1 2 U2 3 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0748-8017 EI 1099-1638 J9 QUAL RELIAB ENG INT JI Qual. Reliab. Eng. Int. PD JUL PY 2015 VL 31 IS 5 BP 801 EP 809 DI 10.1002/qre.1638 PG 9 WC Engineering, Multidisciplinary; Engineering, Industrial; Operations Research & Management Science SC Engineering; Operations Research & Management Science GA CN4XJ UT WOS:000358433500008 ER PT J AU Kristo, MJ Keegan, E Colella, M Williams, R Lindvall, R Eppich, G Roberts, S Borg, L Gaffney, A Plaue, J Knight, K Loi, E Hotchkis, M Moody, K Singleton, M Robel, M Hutcheon, I AF Kristo, Michael Joseph Keegan, Elizabeth Colella, Michael Williams, Ross Lindvall, Rachel Eppich, Gary Roberts, Sarah Borg, Lars Gaffney, Amy Plaue, Jonathan Knight, Kim Loi, Elaine Hotchkis, Michael Moody, Kenton Singleton, Michael Robel, Martin Hutcheon, Ian TI Nuclear forensic analysis of uranium oxide powders interdicted in Victoria, Australia SO RADIOCHIMICA ACTA LA English DT Article DE Nuclear forensics; origin assessment; scanning electron microscopy (SEM); X-ray diffraction; inductively coupled plasma mass spectrometry; depleted uranium ID MULTICOMPONENT ISOTOPE SEPARATION; WATERS AB Nuclear forensic analysis was conducted on two uranium samples confiscated during a police investigation in Victoria, Australia. The first sample, designated NSR-F-270409-1, was a depleted uranium powder of moderate purity (similar to 1000 mu g/g total elemental impurities). The chemical form of the uranium was a compound similar to K-2(UO2)(3)O-4 center dot 4H(2)O. While aliquoting NSR-F-270409-1 for analysis, the body and head of a Tineid moth was discovered in the sample. The second sample, designated NSRF-270409-2, was also a depleted uranium powder. It was of reasonably high purity (similar to 380 mu g/g total elemental impurities). The chemical form of the uranium was primarily UO3 center dot 2H(2)O, with minor phases of U3O8 and UO2. While aliquoting NSR-F-270409-2 for analysis, a metal staple of unknown origin was discovered in the sample. The presence of U-236 and U-232 in both samples indicates that the uranium feed stocks for these samples experienced a neutron flux at some point in their history. The reactor burn-up calculated from the isotopic composition of the uranium is consistent with that of spent fuel from natural uranium (NU) fueled Pu production. These nuclear forensic conclusions allow us to categorically exclude Australia as the origin of the material and greatly reduce the number of candidate sources. C1 [Kristo, Michael Joseph; Williams, Ross; Lindvall, Rachel; Eppich, Gary; Roberts, Sarah; Borg, Lars; Gaffney, Amy; Plaue, Jonathan; Knight, Kim; Moody, Kenton; Singleton, Michael; Robel, Martin; Hutcheon, Ian] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Keegan, Elizabeth; Colella, Michael; Loi, Elaine; Hotchkis, Michael] Australian Nucl Sci & Technol Org, Kirrawee, NSW 2232, Australia. RP Kristo, MJ (reprint author), Lawrence Livermore Natl Lab, POB 808,L-186, Livermore, CA 94551 USA. EM kristo2@llnl.gov FU U.S. Department of Energy [DE-AC52-07NA27344]; Department of Energy/National Nuclear Security Administration Office of Nuclear Controls [NA-242]; Department of Energy/National Nuclear Security Administration Office of Nuclear Noncompliance Verification [NA-243] FX Lawrence Livermore National Laboratory performed this work under the auspices of the U.S. Department of Energy under Contract DE-AC52-07NA27344. Funding for this work was provided by the Department of Energy/National Nuclear Security Administration Office of Nuclear Controls (NA-242) and utilized capabilities developed with funding from Department of Energy/National Nuclear Security Administration Office of Nuclear Noncompliance Verification (NA-243). NR 26 TC 2 Z9 2 U1 5 U2 37 PU WALTER DE GRUYTER GMBH PI BERLIN PA GENTHINER STRASSE 13, D-10785 BERLIN, GERMANY SN 0033-8230 J9 RADIOCHIM ACTA JI Radiochim. Acta PD JUL PY 2015 VL 103 IS 7 BP 487 EP 500 DI 10.1515/ract-2014-2363 PG 14 WC Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA CN3UW UT WOS:000358354100003 ER PT J AU Rhee, H Tucker, MT Whittington, WR Horstemeyer, MF Lim, H AF Rhee, Hongjoo Tucker, Matthew T. Whittington, Wilburn R. Horstemeyer, Mark F. Lim, Hyeona TI Structure-property responses of bio-inspired synthetic foams at low and high strain rates SO SCIENCE AND ENGINEERING OF COMPOSITE MATERIALS LA English DT Article DE aluminum foams; low and high strain rate mechanical response; structure-property relations; turtle shell ID COMPRESSIVE BEHAVIOR; ALUMINUM FOAM; MECHANICAL-PROPERTIES; TEMPERATURE; METAL AB Various aluminum foams were fabricated with a structure comparable to the Terrapene carolina (box turtle) shell hierarchy as a synthetic means of attaining the lightweight, yet impact-resistive, nature of the biological counterpart. Each foam was constructed from a single aluminum alloy but with different morphologies and foam densities. By borrowing from the sophistication of biological design, the aluminum foams were shown to exhibit robust mechanical performance. High strain rate experimentation, via split Hopkinson pressure bar, was utilized to reveal the strain rate sensitivity of the foams as well as a metric to compare impact performance. The structure-property relations, necessary for accurate material modeling, were also characterized by way of optical microscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy, and nanoindentation tests. The robust varying mechanical performance was attributed to the biologically inspired materials design. C1 [Rhee, Hongjoo; Whittington, Wilburn R.; Horstemeyer, Mark F.] Mississippi State Univ, Ctr Adv Vehicular Syst, Mississippi State, MS 39762 USA. [Rhee, Hongjoo; Whittington, Wilburn R.; Horstemeyer, Mark F.] Mississippi State Univ, Dept Mech Engn, Mississippi State, MS 39762 USA. [Tucker, Matthew T.] Los Alamos Natl Lab, MST Grp 8, Los Alamos, NM 87545 USA. [Lim, Hyeona] Mississippi State Univ, Dept Math & Stat, Mississippi State, MS 39762 USA. RP Rhee, H (reprint author), Mississippi State Univ, Ctr Adv Vehicular Syst, Mississippi State, MS 39762 USA. EM hrhee@cavs.msstate.edu OI Horstemeyer, Mark/0000-0003-4230-0063 FU Center for Advanced Vehicular Systems at Mississippi State University under grant CAVS Initiatives [190000-060803-021000]; U.S. Department of Army (DOD) [TCN07173 07121203] FX The authors would like to acknowledge-the financial supports for this work from the Center for Advanced Vehicular Systems at Mississippi State University under grant CAVS Initiatives 190000-060803-021000 and the U.S. Department of Army (DOD) through grant TCN07173 07121203. They also thank Cymat Technologies, Ltd. for providing samples. NR 24 TC 0 Z9 0 U1 2 U2 10 PU WALTER DE GRUYTER GMBH PI BERLIN PA GENTHINER STRASSE 13, D-10785 BERLIN, GERMANY SN 0792-1233 EI 2191-0359 J9 SCI ENG COMPOS MATER JI Sci. Eng. Compos. Mater. PD JUL PY 2015 VL 22 IS 4 BP 365 EP 373 DI 10.1515/secm-2013-0238 PG 9 WC Materials Science, Composites SC Materials Science GA CN3LF UT WOS:000358327000003 ER PT J AU Thimmaiah, S Miller, GJ AF Thimmaiah, Srinivasa Miller, Gordon J. TI Influence of Valence Electron Concentration on Laves Phases: Structures and Phase Stability of Pseudo-Binary MgZn2-xPdx SO ZEITSCHRIFT FUR ANORGANISCHE UND ALLGEMEINE CHEMIE LA English DT Article DE Laves phase; X-ray diffraction; Single crystal diffraction; Structure determination; Electronic structure ID INITIO MOLECULAR-DYNAMICS; TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; MG-CU-NI; STACKING VARIANTS; HYDROGEN STORAGE; CRYSTAL-STRUCTURES; ALLOY SYSTEMS; PART II; METALS AB A series of pseudo-binary compounds MgZn2-xPdx (0.15 x 1.0) were synthesized and structurally characterized to understand the role of valence electron concentration (vec) on the prototype Laves phase MgZn2 with Pd-substitution. Three distinctive phase regions were observed with respect to Pd content, all exhibiting fundamental Laves phase structures: 0.1 x 0.3 (MgNi2-type, hP24; MgZn1.80Pd0.20(2)), 0.4 x 0.6 (MgCu2-type, cF24; MgZn1.59Pd0.41(2)), and 0.62 x 0.8 (MgZn2-type, hP12: MgZn1.37Pd0.63(2)). Refinements from single-crystal X-ray diffraction indicated nearly statistical distributions of Pd and Zn atoms among the majority atom sites in these structures. Interestingly, the MgZn2-type structure re-emerges in MgZn2-xPdx at x approximate to 0.7 with the refined composition MgZn1.37(2)Pd0.63 and a c/a ratio of 1.59 compared to 1.64 for binary MgZn2. Electronic structure calculations on a model MgZn1.25Pd0.75 yielded a density of states (DOS) curve showing enhancement of a pseudogap at the Fermi level as a result of electronic stabilization due to the Pd addition. Moreover, integrated crystal orbital Hamilton population (ICOHP) values show significant increases of orbital interactions for (Zn,Pd)-(Zn,Pd) atom pairs within the majority atom substructure, i.e., within the Kagome nets as well as between a Kagome net and an apical site, from binary MgZn2 to the ternary MgZn1.25Pd0.75. Multi-centered bonding is evident from electron localization function (ELF) plots for MgZn1.25Pd0.75, an outcome which is in accordance with analysis of other Laves phases(.> {100}. The underlying surface-structure sensitivity can be attributed to the variation in low-coordinate surface cerium cations between {110} and {100} facets. To further enhance light absorption, Au nanoparticles (NPs) are deposited on CeO2 NRs to form Au/CeO2 plasmonic nanocomposites, which dramatically promotes the photoreactivity that is Au particle size- and excitation light wavelength-dependent. The mechanisms responsible for the enhancement of photocatalytic activity are discussed, highlighting the crucial role of photoexcited charge carrier transfer. C1 [Lei, Wanying; Zhang, Tingting; Liu, Gang; Liu, Minghua] Natl Ctr Nanosci & Technol, Beijing 100190, Peoples R China. [Gu, Lin] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China. [Liu, Ping; Rodriguez, Jose A.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Liu, G (reprint author), Natl Ctr Nanosci & Technol, Beijing 100190, Peoples R China. EM liug@nanoctr.cn; liuminghua@nanoctr.cn RI Gu, Lin/D-9631-2011; Zhang, Tingting/N-9698-2015 OI Gu, Lin/0000-0002-7504-031X; FU National Natural Science Foundation of China [51272048] FX We gratefully acknowledge the financial support of this work from National Natural Science Foundation of China (51272048). NR 39 TC 18 Z9 18 U1 15 U2 125 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2155-5435 J9 ACS CATAL JI ACS Catal. PD JUL PY 2015 VL 5 IS 7 BP 4385 EP 4393 DI 10.1021/acscatal.5b00620 PG 9 WC Chemistry, Physical SC Chemistry GA CM4AO UT WOS:000357626800058 ER PT J AU Pelzer, AW Sturgeon, MR Yanez, AJ Chupka, G O'Brien, MH Katahira, R Cortright, RD Woods, L Beckham, GT Broadbelt, LJ AF Pelzer, Adam W. Sturgeon, Matthew R. Yanez, Abraham J. Chupka, Gina O'Brien, Marykate H. Katahira, Rui Cortright, Randy D. Woods, Liz Beckham, Gregg T. Broadbelt, Linda J. TI Acidolysis of alpha-O-4 Aryl-Ether Bonds in Lignin Model Compounds: A Modeling and Experimental Study SO ACS SUSTAINABLE CHEMISTRY & ENGINEERING LA English DT Article DE Density functional theory; Microkinetic modeling; alpha-O-4; Ether bond ID BENZYL PHENYL ETHER; MOLECULAR-WEIGHT PHENOLS; ACID DEGRADATION; AQUEOUS ACID; BIOFUEL PRODUCTION; ORGANIC-CHEMISTRY; HYDROLYSIS; CLEAVAGE; BIOMASS; WATER AB Lignocellulosic biomass offers a vast, renewable resource for the sustainable production of fuels and chemicals. To date, a commonly employed approach to depolymerize the polysaccharides in plant cell walls employs mineral acids, and upgrading strategies for the resulting sugars are under intense development. Although the behavior of cellulose and hemicellulose is reasonably well characterized, a more thorough understanding of lignin depolymerization mechanisms in acid environments is necessary to predict the fate of lignin under such conditions and ultimately to potentially make lignin a viable feedstock. To this end, dilute acid hydrolysis experiments were performed on two lignin model compounds containing the alpha-O-4 ether linkage at two temperatures concomitant with dilute acid pretreatment. Both primary and secondary products were tracked over time, giving insight into the reaction kinetics. The only difference between the two model compounds was the presence or absence of a methyl group on the alpha-carbon, with the former being typical of native lignin. It was found that methylation of the alpha-carbon increases the rate of reaction by an order of magnitude. Density functional theory calculations were performed on a proposed mechanism initiated by a nucleophilic attack on the alpha-carbon by water with a commensurate protonation of the ether oxygen. The values for the thermodynamics and kinetics derived from these calculations were used as the basis for a microkinetic model of the reaction. Results from this model are in good agreement with the experimental kinetic data for both lignin model compounds and provide useful insight into the primary pathways of alpha-O-4 scission reactions in acid-catalyzed lignin depolymerization. The distribution of primary and secondary products is interpreted as a function of two barriers of formation exhibiting opposite trends upon methylation of the alpha-carbon (one barrier is lowered while the other is increased). Such insights will be needed to construct a comprehensive model of how lignin behaves in a common deconstruction approach. C1 [Sturgeon, Matthew R.; Chupka, Gina; O'Brien, Marykate H.; Katahira, Rui; Beckham, Gregg T.] Natl Renewable Energy Lab, Natl Adv Biofuels Consortium, Golden, CO 80401 USA. [Sturgeon, Matthew R.; Chupka, Gina; O'Brien, Marykate H.; Katahira, Rui; Beckham, Gregg T.] Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO 80401 USA. [Cortright, Randy D.; Woods, Liz] Virent Inc, Madison, WI 53704 USA. [Pelzer, Adam W.; Yanez, Abraham J.; Broadbelt, Linda J.] Northwestern Univ, Dept Chem & Biol Engn, Evanston, IL 60208 USA. RP Pelzer, AW (reprint author), Northwestern Univ, Dept Chem & Biol Engn, Evanston, IL 60208 USA. EM adam.pelzer@northwestern.edu; gregg.beckham@nrel.gov; broadbelt@northwestern.edu RI Broadbelt, Linda/B-7640-2009 FU National Science Foundation [CHE-1314063]; National Advanced Biofuels Consortium - DOE BioEnergy Technologies Office through American Recovery and Reinvestment Act Funds; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]; Department of Energy [DE-EE0005006]; Virent, Inc. FX Work performed by A.W.P. was supported by the National Science Foundation under Grant No. CHE-1314063. We acknowledge funding from the National Advanced Biofuels Consortium, which was funded by the DOE BioEnergy Technologies Office through American Recovery and Reinvestment Act Funds. This research used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. We also acknowledge support from the Department of Energy Grant No. DE-EE0005006 and Virent, Inc. NR 63 TC 5 Z9 5 U1 1 U2 40 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2168-0485 J9 ACS SUSTAIN CHEM ENG JI ACS Sustain. Chem. Eng. PD JUL PY 2015 VL 3 IS 7 BP 1339 EP 1347 DI 10.1021/acssuschemeng.5b00070 PG 9 WC Chemistry, Multidisciplinary; GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Engineering, Chemical SC Chemistry; Science & Technology - Other Topics; Engineering GA CM5EE UT WOS:000357708800011 ER PT J AU Karp, EM Resch, MG Donohoe, BS Ciesielski, PN O'Brien, MH Nill, JE Mittal, A Biddy, MJ Beckham, GT AF Karp, Eric M. Resch, Michael G. Donohoe, Bryon S. Ciesielski, Peter N. O'Brien, Marykate H. Nill, Jennifer E. Mittal, Ashutosh Biddy, Mary J. Beckham, Gregg T. TI Alkaline Pretreatment of Switchgrass SO ACS SUSTAINABLE CHEMISTRY & ENGINEERING LA English DT Article DE Biofuels; Lignin valorization; Enzymatic hydrolysis; Lignocellulose; Pulping ID DILUTE-ACID PRETREATMENT; CLEAN FRACTIONATION PRETREATMENT; SODIUM-HYDROXIDE PRETREATMENT; COMPARATIVE SUGAR RECOVERY; IONIC LIQUID PRETREATMENT; SODA-AQ DELIGNIFICATION; FIBER EXPLOSION AFEX; CORN STOVER; ENZYMATIC-HYDROLYSIS; CELL-WALL AB Alkaline pretreatment using sodium hydroxide offers a means to extract lignin and acetate from lignocellulosic biomass, in turn enabling higher enzymatic digestibility of the remaining polysaccharides and production of a lignin-enriched stream for potential valorization. Key criteria for alkaline pretreatment processes, which are important for commercial feasibility, include the minimization of carbohydrate loss during pretreatment and the ability to capture carbon lost to the liquor stream, much of which will be feedstock dependent. Here, we present a comprehensive study of alkaline pretreatment of switchgrass over NaOH loadings from 35 to 140 mg NaOH/g dry switchgrass and with a constant charge of 0.2% anthraquinone for pretreatment temperatures between 100 and 160 degrees C for 30 min. Full compositional analysis of the pretreated solids are reported as a function of pretreatment severity, along with the yields of each biomass component present in the process streams generated during pretreatment (pretreated solid, liquor, and wash fraction). The pretreated solids are further characterized through crystallinity measurements and electron microscopy. Additionally, enzymatic digestions of the residual solids are performed over a range of enzyme loadings for varying pretreatment severities. These results are compared to our recent work with alkaline pretreatment of corn stover using the ratio of lignin fractionation to carbohydrate retention (in the solids after pretreatment), which highlights the greater recalcitrance of switchgrass relative to corn stover. Specifically, compared to corn stover, switchgrass requires approximately twice the NaOH loading to achieve identical delignification and high enzymatic digestibility. From this work, the optimal pretreatment conditions for switchgrass are suggested to be 154 mg NaOH/g dry switchgrass at 130 degrees C for 30 min at temperature. The results from these bench-scale experiments will serve as a guide to scale up processes for the optimization of lignin removal while minimizing carbohydrate loss during alkaline pretreatment. C1 [Karp, Eric M.; Resch, Michael G.; O'Brien, Marykate H.; Nill, Jennifer E.; Biddy, Mary J.; Beckham, Gregg T.] Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO 80401 USA. [Donohoe, Bryon S.; Ciesielski, Peter N.; Mittal, Ashutosh] Natl Renewable Energy Lab, Biosci Ctr, Golden, CO 80401 USA. RP Beckham, GT (reprint author), Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO 80401 USA. EM gregg.beckham@nrel.gov OI Nill, Jennifer/0000-0002-9274-4650 FU U.S. Department of Energy BioEnergy Technologies Office; U.S. Government FX The authors thank the U.S. Department of Energy BioEnergy Technologies Office for funding this work. We also thank J. B. Sluiter for helpful discussions. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes. NR 73 TC 16 Z9 16 U1 4 U2 45 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2168-0485 J9 ACS SUSTAIN CHEM ENG JI ACS Sustain. Chem. Eng. PD JUL PY 2015 VL 3 IS 7 BP 1479 EP 1491 DI 10.1021/acssuschemeng.5b00201 PG 13 WC Chemistry, Multidisciplinary; GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Engineering, Chemical SC Chemistry; Science & Technology - Other Topics; Engineering GA CM5EE UT WOS:000357708800027 ER PT J AU Malinska, M Dauter, M Kowiel, M Jaskolski, M Dauter, Z AF Malinska, Maura Dauter, Miroslawa Kowiel, Marcin Jaskolski, Mariusz Dauter, Zbigniew TI Protonation and geometry of histidine rings SO ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY LA English DT Article DE imidazole; histidine protonation; hydrogen bond; X-ray crystal structure; stereochemical restraints ID CAMBRIDGE STRUCTURAL DATABASE; CRYSTAL-STRUCTURES; STRUCTURE REFINEMENT; PROTEINS; RESOLUTION; RESTRAINTS; PARAMETERS; ACCURATE; STATE; BOND AB The presence of H atoms connected to either or both of the two N atoms of the imidazole moiety in a histidine residue affects the geometry of the five-membered ring. Analysis of the imidazole moieties found in histidine residues of atomic resolution protein crystal structures in the Protein Data Bank (PDB), and in small-molecule structures retrieved from the Cambridge Structural Database (CSD), identified characteristic patterns of bond lengths and angles related to the protonation state of the imidazole moiety. Using discriminant analysis, two functions could be defined, corresponding to linear combinations of the four most sensitive stereochemical parameters, two bond lengths (ND1-CE1 and CE1-NE2) and two endocyclic angles (-ND1- and -NE2-), that uniquely identify the protonation states of all imidazole moieties in the CSD and can be used to predict which N atom(s) of the histidine side chains in protein structures are protonated. Updated geometrical restraint target values are proposed for differently protonated histidine side chains for use in macromolecular refinement. C1 [Malinska, Maura; Dauter, Zbigniew] NCI, Synchrotron Radiat Res Sect, MCL, Argonne Natl Lab, Argonne, IL 60439 USA. [Dauter, Miroslawa] Leidos Biomedical Res Inc, Basic Sci Program, Argonne Natl Lab, Argonne, IL 60439 USA. [Kowiel, Marcin] Poznan Univ Med Sci, Dept Organ Chem, Poznan, Poland. [Jaskolski, Mariusz] Adam Mickiewicz Univ, Fac Chem, Dept Crystallog, PL-60780 Poznan, Poland. [Jaskolski, Mariusz] Polish Acad Sci, Inst Bioorgan Chem, Ctr Biocrystallog Res, Poznan, Poland. RP Dauter, Z (reprint author), NCI, Synchrotron Radiat Res Sect, MCL, Argonne Natl Lab, Argonne, IL 60439 USA. EM dauter@anl.gov OI Malinska, Maura/0000-0002-7138-7041 FU Intramural Research Program of the National Cancer Institute, Center for Cancer Research; Federal funds from the National Cancer Institute, National Institutes of Health [HHSN261200800E]; National Science Center [2013/10/M/NZ1/00251]; Polish Ministry of Science and Higher Education through the 'Mobility Plus' program FX This project was supported in part by the Intramural Research Program of the National Cancer Institute, Center for Cancer Research and with Federal funds from the National Cancer Institute, National Institutes of Health (Contract No. HHSN261200800E). The content of this publication does not necessarily reflect the views or policies of the US Department of Health and Human Services, nor does mention of trade names, commercial products, or organizations imply endorsement by the US Government. The collaboration of MJ and ZD was supported in part by a grant (2013/10/M/NZ1/00251) from the National Science Center. MM acknowledges the Polish Ministry of Science and Higher Education for financial support through the 'Mobility Plus' program. NR 31 TC 2 Z9 2 U1 2 U2 19 PU INT UNION CRYSTALLOGRAPHY PI CHESTER PA 2 ABBEY SQ, CHESTER, CH1 2HU, ENGLAND SN 2059-7983 J9 ACTA CRYSTALLOGR D JI Acta Crystallogr. Sect. D-Struct. Biol. PD JUL PY 2015 VL 71 BP 1444 EP 1454 DI 10.1107/S1399004715007816 PN 7 PG 11 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA CM6VQ UT WOS:000357829500004 PM 26143916 ER PT J AU Carlin, JL Liu, C Newberg, HJ Beers, TC Chen, L Deng, LC Guhathakurta, P Hou, JL Hou, YH Lepine, S Li, GW Luo, AL Smith, MC Wu, Y Yang, M Yanny, B Zhang, HT Zheng, Z AF Carlin, Jeffrey L. Liu, Chao Newberg, Heidi Jo Beers, Timothy C. Chen, Li Deng, Licai Guhathakurta, Puragra Hou, Jinliang Hou, Yonghui Lepine, Sebastien Li, Guangwei Luo, A-Li Smith, Martin C. Wu, Yue Yang, Ming Yanny, Brian Zhang, Haotong Zheng, Zheng TI ESTIMATION OF DISTANCES TO STARS WITH STELLAR PARAMETERS FROM LAMOST SO ASTRONOMICAL JOURNAL LA English DT Article DE Galaxy: stellar content; Galaxy: structure; stars: distances; surveys ID VELOCITY EXPERIMENT RAVE; DATA RELEASE; THEORETICAL ISOCHRONES; TELESCOPE LAMOST; NSTARS PROJECT; PILOT SURVEY; MILKY-WAY; EVOLUTION; CATALOG; SAMPLE AB We present a method to estimate distances to stars with spectroscopically derived stellar parameters. The technique is a Bayesian approach with likelihood estimated via comparison of measured parameters to a grid of stellar isochrones, and returns a posterior probability density function for each star's absolute magnitude. This technique is tailored specifically to data from the Large Sky Area Multi-object Fiber Spectroscopic Telescope (LAMOST) survey. Because LAMOST obtains roughly 3000 stellar spectra simultaneously within each similar to 5 degrees diameter "plate" that is observed, we can use the stellar parameters of the observed stars to account for the stellar luminosity function and target selection effects. This removes biasing assumptions about the underlying populations, both due to predictions of the luminosity function from stellar evolution modeling, and from Galactic models of stellar populations along each line of sight. Using calibration data of stars with known distances and stellar parameters, we show that our method recovers distances for most stars within similar to 20%, but with some systematic overestimation of distances to halo giants. We apply our code to the LAMOST database, and show that the current precision of LAMOST stellar parameters permits measurements of distances with similar to 40% error bars. This precision should improve as the LAMOST data pipelines continue to be refined. C1 [Carlin, Jeffrey L.; Newberg, Heidi Jo] Rensselaer Polytech Inst, Dept Phys Appl Phys & Astron, Troy, NY 12180 USA. [Carlin, Jeffrey L.] Earlham Coll, Dept Phys & Astron, Richmond, IN 47374 USA. [Liu, Chao; Deng, Licai; Li, Guangwei; Luo, A-Li; Wu, Yue; Yang, Ming; Zhang, Haotong] Chinese Acad Sci, Key Lab Opt Astron, Natl Astron Observ, Beijing 100012, Peoples R China. [Beers, Timothy C.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. [Beers, Timothy C.] Univ Notre Dame, Joint Inst Nucl Astrophys, Notre Dame, IN 46556 USA. [Chen, Li; Hou, Yonghui; Smith, Martin C.] Shanghai Astron Observ, Shanghai 200030, Peoples R China. [Guhathakurta, Puragra] Univ Calif Santa Cruz, Dept Astron & Astrophys, UCO Lick Observ, Santa Cruz, CA 95064 USA. [Hou, Jinliang] Chinese Acad Sci, Nanjing Inst Astron Opt & Technol, Natl Astron Observ, Nanjing 210042, Peoples R China. [Lepine, Sebastien] Georgia State Univ, Dept Phys & Astron, Atlanta, GA 30303 USA. [Yanny, Brian] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Zheng, Zheng] Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA. RP Carlin, JL (reprint author), Rensselaer Polytech Inst, Dept Phys Appl Phys & Astron, Troy, NY 12180 USA. EM jeffreylcarlin@gmail.com RI Yang, Ming/G-5128-2015; OI Yang, Ming/0000-0001-8247-4936; Carlin, Jeffrey/0000-0002-3936-9628; Newberg, Heidi/0000-0001-8348-0983; Guhathakurta, Puragra/0000-0001-8867-4234; Liu, Chao/0000-0002-1802-6917 FU U.S. National Science Foundation [AST 09-37523, AST 14-09421]; Strategic Priority Research Program "The Emergence of Cosmological Structures" of the Chinese Academy of Sciences [XDB09000000]; National Key Basic Research Program of China [2014CB845700]; National Science Foundation of China [11373032, 11333003, 11403056]; Physics Frontiers Center/Joint Institute for Nuclear Astrophysics (JINA) - U.S. National Science Foundation [PHY 08-22648]; Physics Frontier Center/JINA Center for the Evolution of the Elements (JINA-CEE) - U.S. National Science Foundation [PHY 14-30152]; National Development and Reform Commission; National Aeronautics and Space Administration; National Science Foundation FX We thank the anonymous referee for careful and thoughtful comments. This work was supported by the U.S. National Science Foundation under grants AST 09-37523 and AST 14-09421. C. L. also acknowledges the Strategic Priority Research Program "The Emergence of Cosmological Structures" of the Chinese Academy of Sciences, grant No. XDB09000000, the National Key Basic Research Program of China, grants No. 2014CB845700, and the National Science Foundation of China, grants No. 11373032 and 11333003. T. C. B. acknowledges partial support from grant PHY 08-22648: Physics Frontiers Center/Joint Institute for Nuclear Astrophysics (JINA), and PHY 14-30152; Physics Frontier Center/JINA Center for the Evolution of the Elements (JINA-CEE), awarded by the U.S. National Science Foundation. W. Y. appreciates support from the National Science Foundation of China, grant No. 11403056. Guoshoujing Telescope (the Large Sky Area Multi-object Fiber Spectroscopic Telescope LAMOST) is a National Major Scientific Project built by the Chinese Academy of Sciences. Funding for the project has been provided by the National Development and Reform Commission. LAMOST is operated and managed by the National Astronomical Observatories, Chinese Academy of Sciences. This publication makes use of data products from the 2MASS, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation. NR 43 TC 6 Z9 6 U1 2 U2 11 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 EI 1538-3881 J9 ASTRON J JI Astron. J. PD JUL PY 2015 VL 150 IS 1 AR 4 DI 10.1088/0004-6256/150/1/4 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CM5QU UT WOS:000357744400004 ER PT J AU Wang, SYS Huang, WR Yoon, JH AF Wang, Shih-Yu Simon Huang, Wan-Ru Yoon, Jin-Ho TI The North American winter 'dipole' and extremes activity: a CMIP5 assessment SO ATMOSPHERIC SCIENCE LETTERS LA English DT Article DE California drought; dipole; west Pacific warming; ENSO precursor ID EL-NINO; ARCTIC AMPLIFICATION; HEAT WAVES; CIRCULATION; PACIFIC; MODEL; ENSO; SIMULATIONS; OCEAN; TELECONNECTIONS AB The 2013-2014 winter in North America brought intense drought in the West and severe cold in the East. The circulation anomalies were characterized as a dipole: an amplified upper-level ridge over the West Coast and a deepened trough over the central-eastern United States. A previous study using a single model has linked the dipole to the El Nino precursor and found that this link has strengthened in recent years. Here, 17 models from the Coupled Model Intercomparison Project Phase 5 are used to examine the dipole activity. Most models capture the dipole and its association with El Nino precursor and project this association to strengthen. C1 [Wang, Shih-Yu Simon] Utah State Univ, Dept Plants Soils & Climate, Utah Climate Ctr, Logan, UT 84322 USA. [Huang, Wan-Ru] Natl Taiwan Normal Univ, Dept Earth Sci, Taipei, Taiwan. [Yoon, Jin-Ho] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Wang, SYS (reprint author), Utah State Univ, Dept Plants Soils & Climate, Utah Climate Ctr, 4820 Old Main Hill, Logan, UT 84322 USA. EM simon.wang@usu.edu RI YOON, JIN-HO/A-1672-2009; Huang, Wan-Ru/G-7272-2014 OI YOON, JIN-HO/0000-0002-4939-8078; Huang, Wan-Ru/0000-0002-2171-4075 FU Utah Agricultural Experiment Station; Office of Science of the US Department of Energy (DOE) as part of the Earth System Modeling program; Ministry of Science and Technology of Taiwan under MOST [103-2111-M-003-001, 103-2621-M-492-001]; [NNX13AC37G]; [WaterSMART R13AC80039] FX This research was supported by grants NNX13AC37G and WaterSMART R13AC80039, and the Utah Agricultural Experiment Station. Jin-Ho Yoon was supported by the Office of Science of the US Department of Energy (DOE) as part of the Earth System Modeling program. Wan-Ru Huang was supported by the Ministry of Science and Technology of Taiwan under MOST 103-2111-M-003-001 and MOST 103-2621-M-492-001. NR 28 TC 13 Z9 13 U1 3 U2 12 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1530-261X J9 ATMOS SCI LETT JI Atmos. Sci. Lett. PD JUL-SEP PY 2015 VL 16 IS 3 BP 338 EP 345 DI 10.1002/asl2.565 PG 8 WC Geochemistry & Geophysics; Meteorology & Atmospheric Sciences SC Geochemistry & Geophysics; Meteorology & Atmospheric Sciences GA CM9HW UT WOS:000358020000023 ER PT J AU Kim, S Dale, BE AF Kim, Seungdo Dale, Bruce E. TI All biomass is local: The cost, volume produced, and global warming impact of cellulosic biofuels depend strongly on logistics and local conditions SO BIOFUELS BIOPRODUCTS & BIOREFINING-BIOFPR LA English DT Article DE biorefinery; cellulosic ethanol; feedstock supply cluster; global warming impact; minimum ethanol selling price; supply chain ID ETHANOL SUPPLY CHAIN; OPTIMIZATION MODEL; CORN STOVER; SWITCHGRASS; MANAGEMENT; DESIGN AB Current models of cellulosic biofuel systems require that the delivered price of the cellulosic biomass feedstock be kept low. Thus the predicted biorefinery size is relatively small, limiting potential economies of scale. However, it is actually the ultimate selling price of the biofuel that largely determines market penetration. We relaxed the constraint of low delivered feedstock price and explored the resulting effects on biofuel price, biofuel volume produced, and global warming impact (GWI). Feedstock price greatly affects the feedstock supply chains that may develop. Increased feedstock price does not affect the final ethanol selling price very much, but higher feedstock prices greatly increase the amount of ethanol produced. Farmers will supply much more cellulosic biomass at higher feedstock prices, leading to shorter transportation distances with reduced transportation costs and enabling larger biorefineries with improved economies of scale, thereby reducing the ethanol selling price. The cellulosic feedstock supply chain systems were studied as a function of feedstock prices by determining potential feedstock supply clusters and the maximum capacity of cellulosic biorefineries across the United States. Supply clusters were determined by minimizing costs associated with ethanol production. The analysis is based on county-level cellulosic feedstock production data projected in the US Billion-Ton Update report. Each biomass supply cluster is unique in terms of local and regional characteristics (e.g. area, feedstock types), biorefinery capacity, ethanol selling price, and GWI. Very large-scale biorefineries (>= 20 000 dry Mg day(-1)) may be feasible in some regions. (C) 2015 Society of Chemical Industry and John Wiley & Sons, Ltd C1 [Kim, Seungdo; Dale, Bruce E.] Michigan State Univ, Lansing, MI USA. RP Dale, BE (reprint author), Michigan State Univ, DOE Great Lakes Bioenergy Res Ctr, 3815 Technol Blvd, Lansing, MI 48910 USA. EM bdale@egr.msu.edu FU DOE Great Lakes Bioenergy Research Center (DOE BER Office of Science) [DE-FC02-07ER64494]; DOE OBP Office of Energy Efficiency and Renewable Energy [DE-AC05-76RL01830]; AgBioResearch; USDA National Institute of Food and Agriculture FX This work was funded in part by the DOE Great Lakes Bioenergy Research Center (DOE BER Office of Science DE-FC02-07ER64494) and DOE OBP Office of Energy Efficiency and Renewable Energy (DE-AC05-76RL01830). This project was also supported by AgBioResearch and the USDA National Institute of Food and Agriculture. NR 23 TC 5 Z9 5 U1 2 U2 15 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1932-104X EI 1932-1031 J9 BIOFUEL BIOPROD BIOR JI Biofuels Bioprod. Biorefining PD JUL-AUG PY 2015 VL 9 IS 4 BP 422 EP 434 DI 10.1002/bbb.1554 PG 13 WC Biotechnology & Applied Microbiology; Energy & Fuels SC Biotechnology & Applied Microbiology; Energy & Fuels GA CM8RJ UT WOS:000357969400018 ER PT J AU Dale, VH Efroymson, RA Kline, KL Davitt, MS AF Dale, Virginia H. Efroymson, Rebecca A. Kline, Keith L. Davitt, Marcia S. TI A framework for selecting indicators of bioenergy sustainability SO BIOFUELS BIOPRODUCTS & BIOREFINING-BIOFPR LA English DT Review DE best management practices; bioenergy; biomass; criteria; indicators; sustainability ID ECOLOGICAL INDICATORS; BIOFUELS; CONSERVATION; MANAGEMENT; CRITERIA; SCIENCE; POLICY; EMISSIONS; SYSTEMS; IMPACT AB A framework for selecting and evaluating indicators of bioenergy sustainability is presented. This framework is designed to facilitate decision-making about which indicators are useful for assessing sustainability of bioenergy systems and supporting their deployment. Efforts to develop sustainability indicators in the United States and Europe are reviewed. The first steps of the framework for indicator selection are defining the sustainability goals and other goals for a bioenergy project or program, gaining an understanding of the context, and identifying the values of stakeholders. From the goals, context, and stakeholders, the objectives for analysis and criteria for indicator selection can be developed. The user of the framework identifies and ranks indicators, applies them in an assessment, and then evaluates their effectiveness, while identifying gaps that prevent goals from being met, assessing lessons learned, and moving toward best practices. The framework approach emphasizes that the selection of appropriate criteria and indicators is driven by the specific purpose of an analysis. Realistic goals and measures of bioenergy sustainability can be developed systematically with the help of the framework presented here. (C) 2015 Society of Chemical Industry and John Wiley & Sons, Ltd C1 [Dale, Virginia H.; Efroymson, Rebecca A.; Kline, Keith L.] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Davitt, Marcia S.] Virginia Polytech Inst & State Univ, Blacksburg, VA 24061 USA. RP Dale, VH (reprint author), Oak Ridge Natl Lab, Div Environm Sci, Ctr BioEnergy Sustainabil & Climate Change Sci In, Oak Ridge, TN 37831 USA. EM dalevh@ornl.gov OI Kline, Keith/0000-0003-2294-1170; Efroymson, Rebecca/0000-0002-3190-880X FU US Department of Energy (DOE) under Bioenergy Technologies Office; UT-Battelle, LLC, for DOE [DE-AC05-00OR22725] FX This research was supported by the US Department of Energy (DOE) under the Bioenergy Technologies Office. Oak Ridge National Laboratory is managed by the UT-Battelle, LLC, for DOE under contract DE-AC05-00OR22725. The authors thank FM O'Hara, Jr., for his review and Erica Atkin for editing the manuscript. Comments by Amy Wolfe on an earlier draft are also appreciated. NR 47 TC 5 Z9 6 U1 5 U2 17 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1932-104X EI 1932-1031 J9 BIOFUEL BIOPROD BIOR JI Biofuels Bioprod. Biorefining PD JUL-AUG PY 2015 VL 9 IS 4 BP 435 EP 446 DI 10.1002/bbb.1562 PG 12 WC Biotechnology & Applied Microbiology; Energy & Fuels SC Biotechnology & Applied Microbiology; Energy & Fuels GA CM8RJ UT WOS:000357969400019 ER PT J AU Chan-Thaw, CE Villa, A Wang, D Dal Santo, V Biroli, AO Veith, GM Thomas, A Prati, L AF Chan-Thaw, Carine E. Villa, Alberto Wang, Di Dal Santo, Vladimiro Biroli, Alessio Orbelli Veith, Gabriel M. Thomas, Arne Prati, Laura TI PdHx Entrapped in a Covalent Triazine Framework Modulates Selectivity in Glycerol Oxidation SO CHEMCATCHEM LA English DT Article DE cleavage reactions; heterogeneous catalysis; nitrogen heterocycles; oxidation; palladium ID PALLADIUM NANOPARTICLES; IONOTHERMAL SYNTHESIS; AEROBIC OXIDATION; MOLECULAR-OXYGEN; PHASE OXIDATION; SUPPORTED GOLD; CATALYSTS; ALCOHOLS; HYDROGENATION; POLYMERS AB Pd nanoparticles within a nitrogen-containing covalent triazine framework (CTF) material are investigated to understand if the highly tunable CTF chemistry mediates the catalytic properties of the Pd nanoparticles. Surprisingly, our results demonstrate that the CTF stabilizes the formation of 2.6nm PdHx particles within the pores. These confined PdHx particles are very active for the liquid-phase oxidation of glycerol and promote CC cleavage, probably connected with the enhanced insitu formation of H2O2. During recycling tests, the confined particles are transformed progressively to very stable Pd-0 particles. This stability has been attributed mainly to a confinement effect as nanoparticles trapped outside the pores lose activity rapidly. These results indicate that there is a potential to tune CTF chemistry to modify the chemistry of the catalytic metals significantly. C1 [Chan-Thaw, Carine E.; Villa, Alberto; Prati, Laura] Univ Milan, Dept Chem, I-20133 Milan, Italy. [Wang, Di] Karlsruhe Inst Technol, Inst Nanotechnol & Karlsruhe Nano Micro Facil, Eggenstein Leopoldshafen, Germany. [Dal Santo, Vladimiro; Biroli, Alessio Orbelli] CNR Ist Sci & Tecnol Mol, I-20133 Milan, Italy. [Veith, Gabriel M.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Thomas, Arne] Tech Univ Berlin, Dept Chem, Funct Mat, D-10623 Berlin, Germany. RP Prati, L (reprint author), Univ Milan, Dept Chem, Via Golgi 19, I-20133 Milan, Italy. EM laura.prati@unimi.it RI Chan-Thaw, Carine /O-9785-2014; Thomas, Arne/A-2178-2016; Villa, Alberto/H-7355-2013; Prati, Laura/Q-3970-2016 OI Chan-Thaw, Carine /0000-0002-7330-9629; Thomas, Arne/0000-0002-2130-4930; Villa, Alberto/0000-0001-8656-6256; Prati, Laura/0000-0002-8227-9505 FU UniCat cluster of excellence (Unifying Concepts in Catalysis, Berlin); U.S. Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division; Karlsruhe Nano Micro Facility (KNMF) FX We thank Phisan Katekomol for the preparation of the support. Financial support by the UniCat cluster of excellence (Unifying Concepts in Catalysis, Berlin) is gratefully acknowledged. A portion of this research was sponsored by the U.S. Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division (GMV). TEM characterization was performed at KIT and sponsored by Karlsruhe Nano Micro Facility (KNMF). NR 32 TC 4 Z9 4 U1 6 U2 51 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1867-3880 EI 1867-3899 J9 CHEMCATCHEM JI ChemCatChem PD JUL PY 2015 VL 7 IS 14 BP 2149 EP 2154 DI 10.1002/cctc.201500055 PG 6 WC Chemistry, Physical SC Chemistry GA CM8OV UT WOS:000357962400019 ER PT J AU Liu, XP Aranda, MAG Chen, B Wang, PM Harder, R Robinson, I AF Liu, Xianping Aranda, Miguel A. G. Chen, Bo Wang, Peiming Harder, Ross Robinson, Ian TI In Situ Bragg Coherent Diffraction Imaging Study of a Cement Phase Microcrystal during Hydration SO CRYSTAL GROWTH & DESIGN LA English DT Article ID CALCIUM ALUMINATE CEMENTS; GRAIN-BOUNDARIES; RAY; DEFORMATION; KINETICS; CAAL2O4; STRAIN AB Results of Bragg coherent diffraction imaging (BCDI) confirm that ion migration and consumption occur during hydration of calcium monoaluminate (CA). The chemical phase transformation promotes the hydration process and the formation of new hydrates. There is a potential for the formation of hydrates near where the active ions accumulate. BCDI has been used to study the in situ hydration process of CA over a 3 day period. The evolution of three-dimensional (3D) Bragg diffraction electron density, the Bragg density, and strain fields present on the nanoscale within the crystal was measured and visualized. Initial Bragg densities and strains in CA crystal derived from sintering evolve into various degrees during hydration. The variation of Bragg density within the crystal is attributed to the change of the degree of crystal ordering, which could occur through ion transfer during hydration. The observed strain, coming from the interfacial mismatch effect between high Bragg density and low Bragg density parts in the crystal, remained throughout the experiment. The first Bragg density change during the hydration process is due to a big loss of Bragg density as seen in the image amplitude but not its phase. This work provides new evidence supporting the through-solution reaction mechanism of CA. C1 [Liu, Xianping; Chen, Bo; Wang, Peiming; Robinson, Ian] Tongji Univ, Sch Mat Sci & Engn, Shanghai 201804, Peoples R China. [Liu, Xianping; Wang, Peiming] Tongji Univ, Minist Educ, Key Lab Adv Civil Engn Mat, Shanghai 201804, Peoples R China. [Aranda, Miguel A. G.] Univ Malaga, Dept Quim Inorgan Crystalog & Mineral, E-29071 Malaga, Spain. [Aranda, Miguel A. G.] ALBA Synchrotron, E-08290 Barcelona, Spain. [Chen, Bo; Robinson, Ian] UCL, London Ctr Nanotechnol, London WC1H 0AH, England. [Chen, Bo; Robinson, Ian] Rutherford Appleton Lab, Didcot OX11 0FA, Oxon, England. [Harder, Ross] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Liu, XP (reprint author), Tongji Univ, Sch Mat Sci & Engn, Shanghai 201804, Peoples R China. EM lxp@tongji.edu.cn; i.robinson@ucl.ac.uk RI Aranda, Miguel A.G./D-4614-2009 OI Aranda, Miguel A.G./0000-0001-7708-3578 FU National Science Foundation [DMR-9724294]; National Natural Science Foundation of China [51102181]; Tongji University, China; EPSRC [EP/I022562/1]; BBSRC Professorial Fellowship; State Scholarship Fund of China; U.S. Department of Energy [DE-AC02-06CH11357]; FEDER; [MAT2010-16213] FX We acknowledge the use of the Advanced Photon Source, which is operated by the U.S. Department of Energy under Contract No. DE-AC02-06CH11357. The BCDI instrumentation at the Advanced Photon Source beamline 34-ID-C was built with a National Science Foundation grant DMR-9724294. The work was supported by National Natural Science Foundation of China (Project 51102181) and the grant "Materials Nanostructure" from Tongji University, China. The work at UMA was funded by MAT2010-16213 research grant (Spain) which is cofunded by FEDER. Ian Robinson is supported by EPSRC grant EP/I022562/1 and a BBSRC Professorial Fellowship. Xianping Liu is supported by the State Scholarship Fund of China. NR 28 TC 2 Z9 2 U1 3 U2 30 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1528-7483 EI 1528-7505 J9 CRYST GROWTH DES JI Cryst. Growth Des. PD JUL PY 2015 VL 15 IS 7 BP 3087 EP 3091 DI 10.1021/cg5013389 PG 5 WC Chemistry, Multidisciplinary; Crystallography; Materials Science, Multidisciplinary SC Chemistry; Crystallography; Materials Science GA CM1IY UT WOS:000357435800001 ER PT J AU Kaiser, A Sokolov, A Aranson, IS Lowen, H AF Kaiser, A. Sokolov, A. Aranson, I. S. Loewen, H. TI Motion of two micro-wedges in a turbulent bacterial bath SO EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS LA English DT Article ID SWIMMING BACTERIA; COLLECTIVE MOTION; ACTIVE COLLOIDS; PHASE-BEHAVIOR; SPERM CELLS; HYDRODYNAMICS; MACROMOLECULES; PARTICLES; DYNAMICS; MICROCHANNELS AB The motion of a pair of micro-wedges ("carriers") in a turbulent bacterial bath is explored using computer simulations with explicit modeling of the bacteria and experiments. The orientation of the two micro-wedges is fixed by an external magnetic field but the translational coordinates can move freely as induced by the bacterial bath. As a result, two carriers of same orientation move such that their mutual distance decreases, while they drift apart for an anti-parallel orientation. Eventually the two carriers stack on each other with no intervening bacteria exhibiting a stable dynamical mode where the two micro-wedges follow each other with the same velocity. These findings are in qualitative agreement with experiment on two micro-wedges in a bacterial bath. Our results provide insight into understanding self-assembly of many micro-wedges in an active bath. C1 [Kaiser, A.; Loewen, H.] Univ Dusseldorf, Inst Theoret Phys Weiche Mat 2, D-40225 Dusseldorf, Germany. [Sokolov, A.; Aranson, I. S.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Kaiser, A (reprint author), Univ Dusseldorf, Inst Theoret Phys Weiche Mat 2, Univ Str 1, D-40225 Dusseldorf, Germany. RI Kaiser, Andreas/K-2166-2012; Lowen, Hartmut/K-9999-2016 OI Lowen, Hartmut/0000-0001-5376-8062 FU ERC Advanced Grant INTERCOCOS [267499]; German Science Foundation (DFG); U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), Materials Science and Engineering Division FX A. K. was supported by the ERC Advanced Grant INTERCOCOS (Grant No. 267499) and H. L. by the science priority program SPP 1726 of the German Science Foundation (DFG). Work by A. S. and I. S. A. was supported by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), Materials Science and Engineering Division. NR 82 TC 5 Z9 5 U1 3 U2 16 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1951-6355 EI 1951-6401 J9 EUR PHYS J-SPEC TOP JI Eur. Phys. J.-Spec. Top. PD JUL PY 2015 VL 224 IS 7 BP 1275 EP 1286 DI 10.1140/epjst/e2015-02459-x PG 12 WC Physics, Multidisciplinary SC Physics GA CN1IS UT WOS:000358173000009 ER PT J AU Absar, SM Preston, BL AF Absar, Syeda Mariya Preston, Benjamin L. TI Extending the Shared Socioeconomic Pathways for sub-national impacts, adaptation, and vulnerability studies SO GLOBAL ENVIRONMENTAL CHANGE-HUMAN AND POLICY DIMENSIONS LA English DT Article DE Socioeconomic scenarios; Shared Socioeconomic Pathways; Climate change; Vulnerability; Adaptive capacity ID GLOBAL ENVIRONMENTAL-CHANGE; CLIMATE-CHANGE; MULTISCALE NARRATIVES; INTEGRATED ASSESSMENT; SCENARIO DEVELOPMENT; IA PERSPECTIVE; EUROPE; WATER; ASSESSMENTS; TECHNOLOGY AB The exploration of alternative socioeconomic futures is an important aspect of understanding the potential consequences of climate change. While socioeconomic scenarios are common and, at times essential, tools for the impacts, adaptation and vulnerability and integrated assessment modeling research communities, their approaches to scenario development have historically been quite distinct. However, increasing convergence of impacts, adaptation and vulnerability and integrated assessment modeling research in terms of scales of analysis suggests there may be value in the development of a common framework for socioeconomic scenarios. The Shared Socioeconomic Pathways represents an opportunity for the development of such a common framework. However, the scales at which these global storylines have been developed are largely incommensurate with the sub-national scales at which impacts, adaptation and vulnerability and, increasingly, integrated assessment modeling studies are conducted. The objective of this study was to develop sub-national and sectoral extensions of the global SSP storylines in order to identify future socioeconomic challenges for adaptation for the U.S. Southeast. A set of nested qualitative socioeconomic storyline elements, integrated storylines, and accompanying quantitative indicators were developed through an application of the Factor-Actor-Sector framework. In addition to revealing challenges and opportunities associated with the use of the SSPs as a basis for more refined scenario development, this study generated sub-national storyline elements and storylines that can subsequently be used to explore the implications of alternative sub-national socioeconomic futures for the assessment of climate change impacts and adaptation. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Absar, Syeda Mariya] Oak Ridge Natl Lab, Climate Change Sci Inst, Oak Ridge, TN 37831 USA. Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. RP Absar, SM (reprint author), Oak Ridge Natl Lab, Climate Change Sci Inst, Oak Ridge, TN 37831 USA. EM absarsm@ornl.gov OI Preston, Benjamin/0000-0002-7966-2386 FU U.S. Department of Energy, Office of Science, Biological and Environment Research, Integrated Assessment Program [ERKP719]; U.S. Department of Energy [DE-ACO5-000R22725]; DOE Public Access Plan FX This research was sponsored by the U.S. Department of Energy, Office of Science, Biological and Environment Research, Integrated Assessment Program under project ERKP719. This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-ACO5-000R22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan). The authors acknowledge the constructive comments of Kristie L. Ebi and Kasper Kok on prior drafts of this manuscript. NR 104 TC 5 Z9 5 U1 2 U2 20 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0959-3780 EI 1872-9495 J9 GLOBAL ENVIRON CHANG JI Glob. Environ. Change-Human Policy Dimens. PD JUL PY 2015 VL 33 BP 83 EP 96 DI 10.1016/j.gloenvcha.2015.04.004 PG 14 WC Environmental Sciences; Environmental Studies; Geography SC Environmental Sciences & Ecology; Geography GA CM7UV UT WOS:000357902900008 ER PT J AU Gernaat, DEHJ Calvin, K Lucas, PL Luderer, G Otto, SAC Rao, S Strefler, J van Vuuren, DP AF Gernaat, David E. H. J. Calvin, Katherine Lucas, Paul L. Luderer, Gunnar Otto, Sander A. C. Rao, Shilpa Strefler, Jessica van Vuuren, Detlef P. TI Understanding the contribution of non-carbon dioxide gases in deep mitigation scenarios SO GLOBAL ENVIRONMENTAL CHANGE-HUMAN AND POLICY DIMENSIONS LA English DT Article DE Non-CO2 emissions; Deep mitigation scenarios; Climate policy strategies; Methane (CH4); Nitrous oxide (N2O); Fluorinated gasses (F-gas) ID GREENHOUSE GASES; CLIMATE POLICY; EMISSIONS; METHANE; TARGETS; COSTS AB In 2010, the combined emissions of methane (CH4), nitrous oxide (N2O) and the fluorinated gasses (F-gas) accounted for 20-30% of Kyoto emissions and about 30% of radiative forcing. Current scenario studies conclude that in order to reach deep climate targets (radiative forcing of 2.8 W/m(2)) in 2100, carbon dioxide (CO2) emissions will need to be reduced to zero or negative. However, studies indicated that non-CO2 emissions seem to be have less mitigation potential. To support effective climate policy strategies, an in-depth assessment was made of non-CO2 greenhouse gas emission and their sources in achieving an ambitious climate target. Emission scenarios were assessed that had been produced by six integrated assessments models, which contributed to the scenario database for the fifth IPCC report. All model scenarios reduced emissions from energy-related sectors, largely resulting from structural changes and end-of-pipe abatement technologies. However, emission reductions were much less in the agricultural sectors. Furthermore, there were considerable differences in abatement potential between the model scenarios, and most notably in the agricultural sectors. The paper shows that better exploration of long-term abatement potential of non-CO2 emissions is critical for the feasibility of deep climate targets. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Gernaat, David E. H. J.; Otto, Sander A. C.; van Vuuren, Detlef P.] Univ Utrecht, Copernicus Inst Sustainable Dev, NL-3584 CS Utrecht, Netherlands. [Gernaat, David E. H. J.; Lucas, Paul L.; van Vuuren, Detlef P.] PBL Netherlands Environm Assessment Agcy, NL-3720 BA Bilthoven, Netherlands. [Calvin, Katherine] Pacific NW Natl Lab, Joint Global Change Res Inst, Richland, WA 99352 USA. [Calvin, Katherine] Univ Maryland, College Pk, MD USA. [Rao, Shilpa] IIASA, A-2361 Laxenburg, Austria. [Luderer, Gunnar; Strefler, Jessica] Potsdam Inst Climate Impact Res PIK, D-14412 Potsdam, Germany. RP Gernaat, DEHJ (reprint author), Univ Utrecht, Copernicus Inst Sustainable Dev, Heidelberglaan 2, NL-3584 CS Utrecht, Netherlands. EM d.e.h.j.gemaat@uu.nl; katherine.calvin@pnnl.gov; paul.lucas@pbl.nl; luderer@pik-potsdam.de; a.a.c.otto@uu.nl; rao@iiasa.ac.at; strefler@pik-potsdam.de; detlef.vanvuuren@pbl.nl RI Luderer, Gunnar/G-2967-2012; van Vuuren, Detlef/A-4764-2009; Strefler, Jessica/O-7556-2015; OI van Vuuren, Detlef/0000-0003-0398-2831; Gernaat, David/0000-0003-4994-1453; Lucas, Paul/0000-0003-0292-7830 FU European Union Seventh Framework Programme FP7 (LIMITS) [282846] FX The research leading to these results has received funding from the European Union Seventh Framework Programme FP7/2007-2013 under grant agreement no 282846 (LIMITS). NR 48 TC 5 Z9 5 U1 2 U2 11 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0959-3780 EI 1872-9495 J9 GLOBAL ENVIRON CHANG JI Glob. Environ. Change-Human Policy Dimens. PD JUL PY 2015 VL 33 BP 142 EP 153 DI 10.1016/j.gloenvcha.2015.04.010 PG 12 WC Environmental Sciences; Environmental Studies; Geography SC Environmental Sciences & Ecology; Geography GA CM7UV UT WOS:000357902900013 ER PT J AU Lawal, KA Stone, DA Aina, T Rye, C Abiodun, BJ AF Lawal, Kamoru A. Stone, Daithi A. Aina, Tolu Rye, Cameron Abiodun, Babatunde J. TI Trends in the potential spread of seasonal climate simulations over South Africa SO INTERNATIONAL JOURNAL OF CLIMATOLOGY LA English DT Review DE ensemble spread; HadRM3P; seasonal climate simulations; South Africa; predictability; trend ID MODEL INTERCOMPARISON PROJECT; PROBABILITY SKILL SCORES; REGIONAL COUPLED MODEL; ATMOSPHERIC PREDICTABILITY; INTERANNUAL VARIABILITY; ENSEMBLE SIMULATIONS; FORECASTS; RAINFALL; PRECIPITATION; UNCERTAINTY AB This study assesses the existence and importance of trends in the spread of South African climate simulations covering 50 years of a large initial-condition ensemble from a dynamical atmospheric model. It quantifies ensemble spread using two contrasting measures-standard deviation and 10-90th percentile range. The study then evaluates and examines the characteristics of long-term trends in the ensemble spread in relation to trends in the ensemble mean and in the observational record, by considering the skill of the monthly mean precipitation and near surface air temperature simulations. Results provide evidence that variations in ensemble spreads generated by the atmospheric model used in this study reflect fundamental properties of atmospheric variability in the real climate system. We find significant long-term trends in the measures of spread, with a general coastal-inland gradient, suggesting the possibility of existence of interannual variations in the potential range of seasonal climate simulations over South Africa. We also find robust relationships between trends in the observational record, in the simulated ensemble means and in measures of the simulated ensemble spread. Irrespective of the direction of trends, the correspondence of higher model skill when trends in the ensemble spread are larger suggests that the skill produced by a dynamical modelling system may not be independent of the model ability to capture the real atmospheric trends in whatever the model is simulating or forecasting. Therefore, based on historical data, further understanding of how potential predictability is changing has the prospect to improve the interpretation of current estimates of simulation skill. C1 [Lawal, Kamoru A.; Abiodun, Babatunde J.] Univ Cape Town, Climate Syst Anal Grp, Dept Environm & Geog Sci, ZA-7701 Cape Town, South Africa. [Stone, Daithi A.] Lawrence Berkeley Natl Lab, Computat Chem Mat & Climate Grp, Berkeley, CA USA. [Aina, Tolu] Univ Oxford, Oxford E Res Ctr, Oxford OX1 2JD, England. [Rye, Cameron] Univ Oxford, Atmospher Ocean & Planetary Phys, Oxford OX1 2JD, England. RP Lawal, KA (reprint author), Univ Cape Town, Climate Syst Anal Grp, Dept Environm & Geog Sci, ZA-7701 Cape Town, South Africa. EM lawal@csag.uct.ac.za OI Stone, Daithi/0000-0002-2518-100X FU South African Water Research Commission (WRC) [K5/2067/1]; U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research's Regional and Global Climate Modelling Program [DE-AC02-05CH11231]; Microsoft Research FX The authors would like to thank the many volunteers who generously ran the weather@home/SAF model simulations on their personal computers. We acknowledge invaluable advice from Bruce Hewitson, Willem Landman, Geoff Pegram, Francisco Doblas-Reyes and Omar Bellprat; technical assistance on the weather@home/SAF project from the CPDN team at the University of Oxford; Chris Forest and Chuck Pavolski at Pennsylvania State University; the PRECIS team at the UK Met Office; and Phillip Mukwena. KAL was funded by a grant from the South African Water Research Commission (WRC - Project K5/2067/1). DAS was supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research's Regional and Global Climate Modelling Program under contract number DE-AC02-05CH11231. The weather@home/SAF project was developed with support from Microsoft Research. NR 58 TC 0 Z9 0 U1 1 U2 3 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0899-8418 EI 1097-0088 J9 INT J CLIMATOL JI Int. J. Climatol. PD JUL PY 2015 VL 35 IS 9 BP 2193 EP 2209 DI 10.1002/joc.4234 PG 17 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CM7RO UT WOS:000357894100001 ER PT J AU Shupe, MD Turner, DD Zwink, A Thieman, MM Mlawer, EJ Shippert, T AF Shupe, Matthew D. Turner, David D. Zwink, Alexander Thieman, Mandana M. Mlawer, Eli J. Shippert, Timothy TI Deriving Arctic Cloud Microphysics at Barrow, Alaska: Algorithms, Results, and Radiative Closure SO JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY LA English DT Article ID ANGULAR-DISTRIBUTION MODELS; GROUND-BASED OBSERVATIONS; ENERGY SYSTEM INSTRUMENT; MIXED-PHASE CLOUDS; STRATUS CLOUD; TERRA SATELLITE; FLUX ESTIMATION; DOPPLER RADAR; ATMOSPHERE; SURFACE AB Cloud phase and microphysical properties control the radiative effects of clouds in the climate system and are therefore crucial to characterize in a variety of conditions and locations. An Arctic-specific, ground-based, multisensor cloud retrieval system is described here and applied to 2 yr of observations from Barrow, Alaska. Over these 2 yr, clouds occurred 75% of the time, with cloud ice and liquid each occurring nearly 60% of the time. Liquid water occurred at least 25% of the time, even in winter, and existed up to heights of 8 km. The vertically integrated mass of liquid was typically larger than that of ice. While it is generally difficult to evaluate the overall uncertainty of a comprehensive cloud retrieval system of this type, radiative flux closure analyses were performed in which flux calculations using the derived microphysical properties were compared with measurements at the surface and the top of the atmosphere. Radiative closure biases were generally smaller for cloudy scenes relative to clear skies, while the variability of flux closure results was only moderately larger than under clear skies. The best closure at the surface was obtained for liquid-containing clouds. Radiative closure results were compared with those based on a similar, yet simpler, cloud retrieval system. These comparisons demonstrated the importance of accurate cloud-phase and cloud-type classification, and specifically the identification of liquid water, for determining radiative fluxes. Enhanced retrievals of liquid water path for thin clouds were also shown to improve radiative flux calculations. C1 [Shupe, Matthew D.] Cooperat Inst Res Environm Sci, Boulder, CO USA. [Shupe, Matthew D.] NOAA Earth Syst Res Lab, Norman, OK USA. [Turner, David D.] NOAA Natl Severe Storms Lab, Norman, OK USA. [Zwink, Alexander] Univ Oklahoma, Norman, OK 73019 USA. [Thieman, Mandana M.] Sci Syst & Applicat Inc, Hampton, VA USA. [Mlawer, Eli J.] Atmospher & Environm Res, Lexington, MA USA. [Shippert, Timothy] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Shupe, MD (reprint author), R PSD3,325 Broadway, Boulder, CO 80305 USA. EM matthew.shupe@noaa.gov RI Shupe, Matthew/F-8754-2011 OI Shupe, Matthew/0000-0002-0973-9982 FU Office of Science (BER), U.S. Department of Energy [DE-SC0011918, DE-SC0008830, DE-SC0000991, DE-FG01-06ER64167] FX This research was supported by the Office of Science (BER), U.S. Department of Energy, Grants DE-SC0011918, DE-SC0008830, DE-SC0000991, and DE-FG01-06ER64167. Ground-based datasets were obtained from the ARM data archive (www.archive.arm.gov). Connor Flynn provided the MPL dataset. The CERES satellite data were subsected from the full CERES Terra and/or Aqua Edition 3A Single Scanner Footprint dataset, obtained from the NASA Langley Research Center Atmospheric Science Data Center (https://eosweb.larc.nasa.gov/order-data) and described online (http://ceres.larc.nasa.gov/documents/DPC/DPC_current/pdfs/DPC_SSF-Ed3_R 5V2.pdf). NR 42 TC 2 Z9 2 U1 0 U2 15 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 1558-8424 EI 1558-8432 J9 J APPL METEOROL CLIM JI J. Appl. Meteorol. Climatol. PD JUL PY 2015 VL 54 IS 7 BP 1675 EP 1689 DI 10.1175/JAMC-D-15-0054.1 PG 15 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CM9AT UT WOS:000357998100019 ER PT J AU Teplitsky, E Joshi, K Ericson, DL Scalia, A Mullen, JD Sweet, RM Soares, AS AF Teplitsky, Ella Joshi, Karan Ericson, Daniel L. Scalia, Alexander Mullen, Jeffrey D. Sweet, Robert M. Soares, Alexei S. TI High throughput screening using acoustic droplet ejection to combine protein crystals and chemical libraries on crystallization plates at high density SO JOURNAL OF STRUCTURAL BIOLOGY LA English DT Article DE High throughput screening; Fragment screening; Drug discovery; Chemical biology; Acoustic droplet ejection; In situ X-ray data collection; Crystallography; Synchrotron radiation ID X-RAY-DIFFRACTION; MACROMOLECULAR CRYSTALLOGRAPHY; DRUG DESIGN; MICROMESHES; REFINEMENT; INHIBITORS; FRAGMENTS; BEAMLINES; ELECTRON; LIQUIDS AB We describe a high throughput method for screening up to 1728 distinct chemicals with protein crystals on a single microplate. Acoustic droplet ejection (ADE) was used to co-position 2.5 nL of protein, precipitant, and chemicals on a MiTeGen in situ-1 crystallization plate (TM) for screening by co-crystallization or soaking. ADE-transferred droplets follow a precise trajectory which allows all components to be transferred through small apertures in the microplate lid. The apertures were large enough for 2.5 nL droplets to pass through them, but small enough so that they did not disrupt the internal environment created by the mother liquor. Using this system, thermolysin and trypsin crystals were efficiently screened for binding to a heavy-metal mini-library. Fluorescence and X-ray diffraction were used to confirm that each chemical in the heavy-metal library was correctly paired with the intended protein crystal. A fragment mini-library was screened to observe two known lysozyme ligands using both co-crystallization and soaking. A similar approach was used to identify multiple, novel thaumatin binding sites for ascorbic acid. This technology pushes towards a faster, automated, and more flexible strategy for high throughput screening of chemical libraries (such as fragment libraries) using as little as 2.5 nL of each component. (C) 2015 The Authors. Published by Elsevier Inc. C1 [Teplitsky, Ella; Joshi, Karan; Ericson, Daniel L.; Scalia, Alexander; Mullen, Jeffrey D.] Brookhaven Natl Lab, Off Educ Programs, Upton, NY 11973 USA. [Sweet, Robert M.; Soares, Alexei S.] Brookhaven Natl Lab, Photon Sci Directorate, Upton, NY 11973 USA. [Teplitsky, Ella] SUNY Stony Brook, Dept Biochem & Cell Biol, Stony Brook, NY 11794 USA. [Joshi, Karan] PEC Univ Technol, Dept Elect & Elect Commun Engn, Chandigarh, India. [Ericson, Daniel L.] SUNY Buffalo, Dept Biomed Engn, Buffalo, NY 14260 USA. [Scalia, Alexander] SUNY Binghamton, Dept Biol Sci, Binghamton, NY 13902 USA. [Mullen, Jeffrey D.] Univ Oregon, Dept Phys, Eugene, OR 97403 USA. RP Soares, AS (reprint author), Brookhaven Natl Lab, Photon Sci Directorate, Upton, NY 11973 USA. EM soares@bnl.gov FU U.S. Department of Energy, Office of Science, Office of Workforce Development for Teachers and Scientists (WDTS); Brookhaven National Laboratory/U.S. Department of Energy, Laboratory Directed Research and Development Grant [11-008]; US Department of Energy Office of Biological and Environmental Research; US Department of Energy Office of Basic Energy Sciences [DE-AC02-98CH10886, DE-SC0012704]; NIH [P41-RR012408, P41-GM103473, P41-GM111244] FX Personnel for this study were recruited largely through the 2014 spring session of the Science Undergraduate Laboratory Internships Program (SULI), supported through the U.S. Department of Energy, Office of Science, Office of Workforce Development for Teachers and Scientists (WDTS). Major ongoing financial support for acoustic droplet ejection applications was through the Brookhaven National Laboratory/U.S. Department of Energy, Laboratory Directed Research and Development Grant 11-008 and from the US Department of Energy Offices of Biological and Environmental Research and of Basic Energy Sciences grants DE-AC02-98CH10886 and DE-SC0012704 and from NIH grants P41-RR012408, P41-GM103473 and P41-GM111244. Data for this study were measured at beamlines X12b and X25 of the National Synchrotron Light Source. We thank Labcyte Inc., and especially Joe Olechno, Richard Ellson and Richard Stearns, for their technical support and guidance. Author contributions: A.S.S. designed the experiment and wrote the paper, with input from E.T. E.T., A.S.S., D.L.E., and A.S. grew crystals, obtained data and analyzed data. A.S.S., K.J., and J.D.M. designed and built the labware. A.S.S. and R.M.S. trained and supervised student interns. NR 44 TC 4 Z9 5 U1 0 U2 6 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 1047-8477 EI 1095-8657 J9 J STRUCT BIOL JI J. Struct. Biol. PD JUL PY 2015 VL 191 IS 1 BP 49 EP 58 DI 10.1016/j.jsb.2015.05.006 PG 10 WC Biochemistry & Molecular Biology; Biophysics; Cell Biology SC Biochemistry & Molecular Biology; Biophysics; Cell Biology GA CM7WR UT WOS:000357907700006 PM 26027487 ER PT J AU Ihlefeld, JF Kotula, PG Gauntt, BD Gough, DV Brennecka, GL Lu, P Spoerke, ED AF Ihlefeld, Jon F. Kotula, Paul G. Gauntt, Bryan D. Gough, Dara V. Brennecka, Geoff L. Lu, Ping Spoerke, Erik D. TI Solution Chemistry, Substrate, and Processing Effects on Chemical Homogeneity in Lead Zirconate Titanate Thin Films SO JOURNAL OF THE AMERICAN CERAMIC SOCIETY LA English DT Article ID CRYSTALLIZATION BEHAVIOR; GEL; PZT; MICROSTRUCTURE; DEPOSITION; MEMS; INTEGRATION; ELECTRODES; EVOLUTION; ISSUES AB The effects of chemistry, substrate, and processing conditions on through-thickness cation distributions are explored in solution-derived morphotropic composition lead zirconate titanate (PZT) films. Films prepared from chelate-based and conventional sol-gel chemistries were spin cast onto Pt/ZnO/SiO2/Si and Pt/Ti/SiO2/Si substrates and pyrolyzed at 300 degrees C, 350 degrees C, and 400 degrees C prior to crystallization at 700 degrees C either in a preheated furnace or via rapid thermal processing. For films crystallized within a conventional furnace on Pt/ZnO/SiO2/Si substrates no chemical gradients were observed. All films prepared on Pt/Ti/SiO2/Si substrates had increased titanium concentrations near the PZT/Pt interfaces, and the source is shown to be titanium diffusing from the substrate metallization stack. The effect of heating method and rate was explored in films prepared on Pt/ZnO/SiO2/Si substrates with 15 degrees C, 50 degrees C, and 100 degrees C/s heating rates within a rapid thermal annealer. Only one solution chemistry-heating rate combination resulted in the formation of a chemical gradient: a conventional sol-gel chemistry and a 50 degrees C/s heating rate. Infrared spectroscopy of pyrolyzed gel films showed absorption spectra differences in the bonding structure between the two chemistries with the conventional sol-gel-derived films exhibiting a signature more similar to that of a PbTiO3 gel, suggestive of a gel-structure source of gradient formation during crystallization. C1 [Ihlefeld, Jon F.; Gough, Dara V.; Brennecka, Geoff L.; Spoerke, Erik D.] Sandia Natl Labs, Elect Opt & Nano Mat Dept, Albuquerque, NM 87185 USA. [Kotula, Paul G.; Gauntt, Bryan D.; Lu, Ping] Sandia Natl Labs, Mat Characterizat & Performance Dept, Albuquerque, NM 87185 USA. Intel Corp, Hillsboro, OR USA. Colorado Sch Mines, Golden, CO USA. RP Ihlefeld, JF (reprint author), Sandia Natl Labs, Elect Opt & Nano Mat Dept, POB 5800, Albuquerque, NM 87185 USA. EM jihlefe@sandia.gov RI Kotula, Paul/A-7657-2011; Brennecka, Geoff/J-9367-2012 OI Kotula, Paul/0000-0002-7521-2759; Brennecka, Geoff/0000-0002-4476-7655 FU National Institute of Nano Engineering; Laboratory Directed Research and Development program at Sandia National Laboratories; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The authors wish to acknowledge Michael Rye and Garry Bryant for their assistance in TEM sample preparation, Bonnie B. McKenzie and Amy Allen for assistance in collecting SEM images, and Mia A. Blea-Kirby for assistance in substrate preparation. Critical review of this manuscript by Dr. Raegan L. Johnson is greatly appreciated. Support for this work was provided in part by the National Institute of Nano Engineering and by the Laboratory Directed Research and Development program at Sandia National Laboratories. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 44 TC 2 Z9 2 U1 7 U2 33 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0002-7820 EI 1551-2916 J9 J AM CERAM SOC JI J. Am. Ceram. Soc. PD JUL PY 2015 VL 98 IS 7 BP 2028 EP 2038 DI 10.1111/jace.13576 PG 11 WC Materials Science, Ceramics SC Materials Science GA CM7RT UT WOS:000357894800008 ER PT J AU Moffitt, SL Adler, AU Gennett, T Ginley, DS Perkins, JD Mason, TO AF Moffitt, Stephanie L. Adler, Alexander U. Gennett, Thomas Ginley, David S. Perkins, John D. Mason, Thomas O. TI Confirmation of the Dominant Defect Mechanism in Amorphous In-Zn-O Through the Application of In Situ Brouwer Analysis SO JOURNAL OF THE AMERICAN CERAMIC SOCIETY LA English DT Article ID THIN-FILM TRANSISTORS; OXIDE SEMICONDUCTORS; INGAZNO4 AB The dominant point defect mechanism of amorphous (a-) indium zinc oxide (IZO) was probed through in situ electrical characterization of sputtered a-IZO thin films in response to changes in oxygen partial pressure (pO2) at 300 degrees C. The results yielded a power law dependence of conductivity (sigma) versus pO2 of approximate to-1/6. This experimental method, known as Brouwer analysis, confirms doubly-charged oxygen vacancies as the dominant defect species in a-IZO. The success of this study suggests that Brouwer analysis is a viable method for studying the defect mechanisms of amorphous oxides. C1 [Moffitt, Stephanie L.; Adler, Alexander U.; Mason, Thomas O.] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. [Gennett, Thomas; Ginley, David S.; Perkins, John D.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Mason, TO (reprint author), Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. EM t-mason@northwestern.edu RI Mason, Thomas/B-7528-2009 FU NSF MRSEC Program at the Materials Research Center of Northwestern University [DMR 1121262]; MRSEC program of the National Science Foundation at the Materials Research Center of Northwestern University [DMR-1121262]; NSF-NSEC; NSF-MRSEC; Keck Foundation; State of Illinois; Northwestern University; NSF FX This work was supported by the NSF MRSEC Program No. DMR 1121262 at the Materials Research Center of Northwestern University. This work made use of the J.B.Cohen X-Ray Diffraction Facility supported by the MRSEC program of the National Science Foundation (DMR-1121262) at the Materials Research Center of Northwestern University. Ellipsometry was performed in the Keck-II facility of NUANCE Center at Northwestern University. The NUANCE Center is supported by NSF-NSEC, NSF-MRSEC, Keck Foundation, the State of Illinois, and Northwestern University. SLM acknowledges support of a NSF Graduate Research Fellowship. NR 22 TC 0 Z9 0 U1 2 U2 16 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0002-7820 EI 1551-2916 J9 J AM CERAM SOC JI J. Am. Ceram. Soc. PD JUL PY 2015 VL 98 IS 7 BP 2099 EP 2103 DI 10.1111/jace.13518 PG 5 WC Materials Science, Ceramics SC Materials Science GA CM7RT UT WOS:000357894800018 ER PT J AU Price, PM Browning, ND Butt, DP AF Price, Patrick M. Browning, Nigel D. Butt, Darryl P. TI Microdomain Formation, Oxidation, and Cation Ordering in LaCa2Fe3O8+y SO JOURNAL OF THE AMERICAN CERAMIC SOCIETY LA English DT Article ID TRANSMISSION ELECTRON-MICROSCOPE; CALCIUM LANTHANUM FERRITES; MEMBRANES; CAXLA1-XFEO3-Y; SPECTROSCOPY; TRANSPORT AB The compound LaCa2Fe3O8+y, also known as the Grenier phase, is known to undergo an order-disorder transformation (ODT) at high temperatures and oxidation has been observed when the compound is cooled in air after the ODT. In this study, we have synthesized the Grenier compound in air using traditional solid-state reactions and investigated the structure and composition before and after the ODT. Thermal analysis showed that the material undergoes an ODT in both oxygen and argon atmospheres with dynamic, temperature dependent, oxidation upon cooling. Results from scanning transmission electron microscopy (STEM) suggest that the Grenier phase has preferential segregation of Ca and La on the two crystallographic A sites before the ODT, but a random distribution above the ODT temperature. Furthermore, STEM images suggest the possibility that oxygen excess may exist in La-rich regions within microdomains rather than at microdomain boundaries. C1 [Price, Patrick M.; Butt, Darryl P.] Boise State Univ, Dept Mat Sci & Engn, Boise, ID 83725 USA. [Browning, Nigel D.] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99354 USA. [Butt, Darryl P.] Ctr Adv Energy Studies, Idaho Falls, ID 83401 USA. RP Butt, DP (reprint author), Boise State Univ, Dept Mat Sci & Engn, 1910 Univ Dr, Boise, ID 83725 USA. EM darrylbutt@boisestate.edu OI Browning, Nigel/0000-0003-0491-251X FU DOE's Office of Biological and Environmental Research; Department of Energy [DE-AC05-76RLO1830] FX A portion is part of the Chemical Imaging Initiative conducted under the Laboratory Directed Research and Development Program at Pacific Northwest National Laboratory (PNNL) and was performed in the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by DOE's Office of Biological and Environmental Research and located at PNNL. PNNL, a multiprogram national laboratory, is operated by Battelle for the Department of Energy under Contract DE-AC05-76RLO1830. We would also like to thank Hao Yang, Michael Carolan, and Raymond Cutler for their help with this research. NR 23 TC 1 Z9 1 U1 0 U2 6 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0002-7820 EI 1551-2916 J9 J AM CERAM SOC JI J. Am. Ceram. Soc. PD JUL PY 2015 VL 98 IS 7 BP 2248 EP 2254 DI 10.1111/jace.13474 PG 7 WC Materials Science, Ceramics SC Materials Science GA CM7RT UT WOS:000357894800039 ER PT J AU BastaniNejad, M Elmustafa, AA Forman, E Covert, S Hansknecht, J Hernandez-Garcia, C Poelker, M Das, L Kelley, M Williams, P AF BastaniNejad, Mahzad Elmustafa, Abdelmageed A. Forman, Eric Covert, Steven Hansknecht, John Hernandez-Garcia, Carlos Poelker, Matthew Das, Lopa Kelley, Michael Williams, Phillip TI Evaluation of electropolished stainless steel electrodes for use in DC high voltage photoelectron guns SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A LA English DT Article ID VACUUM; HELIUM; METALS AB DC high voltage photoelectron guns are used to produce polarized electron beams for accelerator-based nuclear and high-energy physics research. Low-level field emission (similar to nA) from the cathode electrode degrades the vacuum within the photogun and reduces the photoelectron yield of the delicate GaAs-based photocathode used to produce the electron beams. High-level field emission (> mu A) can cause significant damage the photogun. To minimize field emission, stainless steel electrodes are typically diamond-paste polished, a labor-intensive process often yielding field emission performance with a high degree of variability, sample to sample. As an alternative approach and as comparative study, the performance of electrodes electropolished by conventional commercially available methods is presented. Our observations indicate the electropolished electrodes exhibited less field emission upon the initial application of high voltage, but showed less improvement with gas conditioning compared to the diamond-paste polished electrodes. In contrast, the diamond-paste polished electrodes responded favorably to gas conditioning, and ultimately reached higher voltages and field strengths without field emission, compared to electrodes that were only electropolished. The best performing electrode was one that was both diamond-paste polished and electropolished, reaching a field strength of 18.7 MV/m while generating less than 100 pA of field emission. The authors speculate that the combined processes were the most effective at reducing both large and small scale topography. However, surface science evaluation indicates topography cannot be the only relevant parameter when it comes to predicting field emission performance. (C) 2015 American Vacuum Society. C1 [BastaniNejad, Mahzad; Elmustafa, Abdelmageed A.] Old Dominion Univ, Dept Mech Engn, Norfolk, VA 23529 USA. [Forman, Eric; Covert, Steven; Hansknecht, John; Hernandez-Garcia, Carlos; Poelker, Matthew] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Das, Lopa; Kelley, Michael] Coll William & Mary, Williamsburg, VA 23187 USA. [Williams, Phillip] NASA Langley, Hampton, VA 23681 USA. RP BastaniNejad, M (reprint author), Old Dominion Univ, Dept Mech Engn, Norfolk, VA 23529 USA. EM Mahhzad@gmail.com FU Jefferson Science Associates under U.S. DOE [DE-AC05-84ER40150]; DOE Office of High Energy Physics; Americas Region ILC RD program FX Authored by Jefferson Science Associates under U.S. DOE Contract No. DE-AC05-84ER40150 and with funding from the DOE Office of High Energy Physics and the Americas Region ILC R&D program. The U.S. Government retains a nonexclusive, paid-up, irrevocable, world-wide license to publish or reproduce this manuscript for U.S. Government purposes. NR 27 TC 1 Z9 1 U1 2 U2 8 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 0734-2101 EI 1520-8559 J9 J VAC SCI TECHNOL A JI J. Vac. Sci. Technol. A PD JUL PY 2015 VL 33 IS 4 AR 041401 DI 10.1116/1.4920984 PG 9 WC Materials Science, Coatings & Films; Physics, Applied SC Materials Science; Physics GA CM6UQ UT WOS:000357826400010 ER PT J AU Smith, CR Lang, AC Shutthanandan, V Taheri, ML May, SJ AF Smith, Cole R. Lang, Andrew C. Shutthanandan, Vaithiyalingam Taheri, Mitra L. May, Steven J. TI Effects of cation stoichiometry on electronic and structural properties of LaNiO3 SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A LA English DT Article ID METAL-INSULATOR-TRANSITION; THIN-FILMS; NEUTRON-DIFFRACTION; GROWTH; STABILIZATION; OXIDES AB LaNiO3 films with varying La: Ni ratios were deposited onto SrTiO3 (001) substrates via molecular beam epitaxy to elucidate the effects of cation off-stoichiometry. The physical properties of La-deficient films are found to differ substantially from those of Ni-deficient films, with La-deficient films exhibiting lower electrical resistivities and smaller c-axis parameters than Ni-deficient films. No evidence of secondary phases is observed; however, transmission electron microscopy reveals an abundance of defects, the nature of which differs in lanthanum-and nickel-deficient films. This work illustrates the nontrivial role that cation stoichiometry can play on the functional properties of complex oxides. (C) 2015 American Vacuum Society. C1 [Smith, Cole R.; Lang, Andrew C.; Taheri, Mitra L.; May, Steven J.] Drexel Univ, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA. [Shutthanandan, Vaithiyalingam] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. RP Smith, CR (reprint author), Drexel Univ, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA. EM smay@coe.drexel.edu RI May, Steven/D-8563-2011 OI May, Steven/0000-0002-8097-1549 FU U.S. DOE Office of Biological and Environmental Research; Office of Naval Research [N00014-11-1-0109, N00014-14-1-0058, N00014-11-1-0664]; National Science Foundation [DMR-1040166]; U.S. Army Research Office [W911NF-11-1-0283] FX The authors thank Boris Yakshinskiy at the Laboratory for Surface Modification at Rutgers University for performing some of the Rutherford backscattering spectrometry measurements. RBS experiments were also carried out at the Environmental Molecular Sciences Laboratory (EMSL), a National Scientific User Facility located at Pacific Northwest National Laboratory (PNNL) and supported by the U.S. DOE Office of Biological and Environmental Research. C.S. and S.M. were supported by Office of Naval Research under Grant No. N00014-11-1-0109; A.L. and M.T. were supported by the Office of Naval Research under Grant Nos. N00014-14-1-0058 and N00014-11-1-0664. X-ray diffraction was performed using the Centralized Research Facilities of the College of Engineering at Drexel University; the diffractometer was acquired with support from the National Science Foundation under Grant No. DMR-1040166. The acquisition of the Physical Properties Measurement System was supported by the U.S. Army Research Office under Grant No. W911NF-11-1-0283. NR 44 TC 1 Z9 1 U1 7 U2 38 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 0734-2101 EI 1520-8559 J9 J VAC SCI TECHNOL A JI J. Vac. Sci. Technol. A PD JUL PY 2015 VL 33 IS 4 AR 041510 DI 10.1116/1.4922346 PG 5 WC Materials Science, Coatings & Films; Physics, Applied SC Materials Science; Physics GA CM6UQ UT WOS:000357826400022 ER PT J AU Wagener, R Alexandrov, LB Montesinos-Rongen, M Schlesner, M Haake, A Drexler, HG Richter, J Bignell, GR McDermott, U Siebert, R AF Wagener, R. Alexandrov, L. B. Montesinos-Rongen, M. Schlesner, M. Haake, A. Drexler, H. G. Richter, J. Bignell, G. R. McDermott, U. Siebert, R. TI Analysis of mutational signatures in exomes from B-cell lymphoma cell lines suggest APOBEC3 family members to be involved in the pathogenesis of primary effusion lymphoma SO LEUKEMIA LA English DT Letter ID GENE-EXPRESSION PROFILE; HERPESVIRUS; CANCER C1 [Wagener, R.; Haake, A.; Richter, J.; Siebert, R.] Univ Kiel, Univ Hosp Schleswig Holstein, Inst Human Genet, Kiel, Germany. [Alexandrov, L. B.; Bignell, G. R.; McDermott, U.] Wellcome Trust Canc Sanger Inst, Canc Genome Project, Hinxton, England. [Alexandrov, L. B.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM USA. [Montesinos-Rongen, M.] Univ Hosp Cologne, Inst Neuropathol, Cologne, Germany. [Schlesner, M.] Deutsch Krebsforschungszentrum Heidelberg DKFZ, Div Theoret Bioinformat, Heidelberg, Germany. [Drexler, H. G.] Leibniz Inst, DSMZ German Collect Microorganisms & Cell Culture, Braunschweig, Germany. RP Wagener, R (reprint author), Univ Kiel, Univ Hosp Schleswig Holstein, Inst Human Genet, Campus Kiel, Kiel, Germany. EM rsiebert@medgen.uni-kiel.de RI Schlesner, Matthias/I-4030-2013; Siebert, Reiner/A-8049-2010; OI Schlesner, Matthias/0000-0002-5896-4086; McDermott, Ultan/0000-0001-9032-4700; Alexandrov, Ludmil/0000-0003-3596-4515 NR 15 TC 3 Z9 3 U1 0 U2 4 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0887-6924 EI 1476-5551 J9 LEUKEMIA JI Leukemia PD JUL PY 2015 VL 29 IS 7 BP 1612 EP 1615 DI 10.1038/leu.2015.22 PG 4 WC Oncology; Hematology SC Oncology; Hematology GA CM3ZE UT WOS:000357623100024 PM 25650088 ER PT J AU Ho, CC Wu, SJ Lin, SH Darling, SB Su, WF AF Ho, Chun-Chih Wu, Shang-Jung Lin, Shih-Hsiang Darling, Seth B. Su, Wei-Fang TI Kinetically Enhanced Approach for Rapid and Tunable Self-Assembly of Rod-Coil Block Copolymers SO MACROMOLECULAR RAPID COMMUNICATIONS LA English DT Article DE additives; block copolymers; kinetics; rod-coil; self-assembly ID DIBLOCK COPOLYMER; ORDERED STRUCTURE; PHASE-BEHAVIOR; DIFFUSION; CRYSTALLIZATION; SOLUBILIZATION; HOMOPOLYMERS; SEPARATION; MIXTURES; BLENDS AB A facile approach is reported to process rod-coil block copolymers (BCPs) into highly ordered nanostructures in a rapid, low-energy process. By introducing a selective plasticizer into the rod-coil BCPs during annealing, both the annealing temperature and time to achieve thermodynamic equilibrium and highly ordered structures can be decreased. This process improvement is attributed to enhanced chain mobility, reduced rod-rod interaction, and decreased rod-coil interaction from the additive. The novel method is based on kinetically facilitating thermodynamic equilibrium. The process requires no modification of polymer structure, indicating that a wide variety of desired polymer functionalities can be designed into BCPs for specific applications. C1 [Ho, Chun-Chih; Wu, Shang-Jung; Lin, Shih-Hsiang; Su, Wei-Fang] Natl Taiwan Univ, Dept Mat Sci & Engn, Taipei 10617, Taiwan. [Ho, Chun-Chih; Darling, Seth B.] Argonne Natl Lab, Ctr Nanoscale Mat, Lemont, IL 60439 USA. [Darling, Seth B.] Univ Chicago, Inst Mol Engn, Chicago, IL 60637 USA. RP Ho, CC (reprint author), Natl Taiwan Univ, Dept Mat Sci & Engn, Taipei 10617, Taiwan. EM ccho76@ntu.edu.tw; suwf@ntu.edu.tw RI Su, Wei-Fang/C-2646-2009 FU Ministry of Science and Technology [104-3113-E-002-010, 102-2221-E-002-230-MY3]; US Department of Energy Office of Science, Program in Basic Energy Sciences, Materials Sciences and Engineering Division; US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX This research was financially supported by the Ministry of Science and Technology (104-3113-E-002-010 and 102-2221-E-002-230-MY3) and, in part, by the US Department of Energy Office of Science, Program in Basic Energy Sciences, Materials Sciences and Engineering Division. The authors gratefully thank the Department of Chemistry and College of Bioresources and Agriculture of National Taiwan University for providing their NMR spectrometer and TEM microscope, respectively. Use of the Center for Nanoscale Materials at Argonne National Laboratory was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 31 TC 5 Z9 5 U1 5 U2 33 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1022-1336 EI 1521-3927 J9 MACROMOL RAPID COMM JI Macromol. Rapid Commun. PD JUL PY 2015 VL 36 IS 14 BP 1329 EP 1335 DI 10.1002/marc.201500161 PG 7 WC Polymer Science SC Polymer Science GA CN0DT UT WOS:000358084300003 PM 25996802 ER PT J AU Miller, BW Frost, SHL Frayo, SL Kenoyer, AL Santos, E Jones, JC Green, DJ Hamlin, DK Wilbur, DS Fisher, DR Orozco, JJ Press, OW Pagel, JM Sandmaier, BM AF Miller, Brian W. Frost, Sofia H. L. Frayo, Shani L. Kenoyer, Aimee L. Santos, Erlinda Jones, Jon C. Green, Damian J. Hamlin, Donald K. Wilbur, D. Scott Fisher, Darrell R. Orozco, Johnnie J. Press, Oliver W. Pagel, John M. Sandmaier, Brenda M. TI Quantitative single-particle digital autoradiography with alpha-particle emitters for targeted radionuclide therapy using the iQID camera SO MEDICAL PHYSICS LA English DT Article DE alpha imaging; autoradiography; iQID; targeted radionuclide therapy; alpha particles; At-211-radioimmunotherapy ID ACUTE MYELOID-LEUKEMIA; ENERGY RESOLUTION; LIGHT OUTPUT; ANTIBODY; SCINTILLATORS; ASTATINE-211; MODEL; MICE; IMMUNOTHERAPY; BAZOOKASPECT AB Purpose: Alpha-emitting radionuclides exhibit a potential advantage for cancer treatments because they release large amounts of ionizing energy over a few cell diameters (50-80 mu m), causing localized, irreparable double-strand DNA breaks that lead to cell death. Radioimmunotherapy (RIT) approaches using monoclonal antibodies labeled with alpha emitters may thus inactivate targeted cells with minimal radiation damage to surrounding tissues. Tools are needed to visualize and quantify the radioactivity distribution and absorbed doses to targeted and nontargeted cells for accurate dosimetry of all treatment regimens utilizing a particles, including RIT and others (e.g., Ra-223), especially for organs and tumors with heterogeneous radionuclide distributions. The aim of this study was to evaluate and characterize a novel single-particle digital autoradiography imager, the ionizing-radiation quantum imaging detector (iQID) camera, for use in alpha-RIT experiments. Methods: The iQID camera is a scintillator-based radiation detection system that images and identifies charged-particle and gamma-ray/x-ray emissions spatially and temporally on an event-by-event basis. It employs CCD-CMOS cameras and high-performance computing hardware for real-time imaging and activity quantification of tissue sections, approaching cellular resolutions. In this work, the authors evaluated its characteristics for alpha-particle imaging, including measurements of intrinsic detector spatial resolutions and background count rates at various detector configurations and quantification of activity distributions. The technique was assessed for quantitative imaging of astatine-211 (At-211) activity distributions in cryosections of murine and canine tissue samples. Results: The highest spatial resolution was measured at similar to 20 mu m full width at half maximum and the alpha-particle background was measured at a rate as low as (2.6+/-0.5) x10(-4) cpm/cm(2) (40 mm diameter detector area). Simultaneous imaging of multiple tissue sections was performed using a large-area iQID configuration (empty set 11.5 cm). Estimation of the 211At activity distribution was demonstrated at mBq/mu g-levels. Conclusions: Single-particle digital autoradiography of alpha emitters has advantages over traditional film-based autoradiographic techniques that use phosphor screens, in terms of spatial resolution, sensitivity, and activity quantification capability. The system features and characterization results presented in this study show that the iQID is a promising technology for microdosimetry, because it provides necessary information for interpreting alpha-RIT outcomes and for predicting the therapeutic efficacy of cell-targeted approaches using alpha emitters. (C) 2015 American Association of Physicists in Medicine. C1 [Miller, Brian W.] Pacific NW Natl Lab, Richland, WA 99354 USA. [Miller, Brian W.] Univ Arizona, Coll Opt Sci, Tucson, AZ 85719 USA. [Frost, Sofia H. L.; Frayo, Shani L.; Kenoyer, Aimee L.; Santos, Erlinda; Jones, Jon C.; Green, Damian J.; Orozco, Johnnie J.; Press, Oliver W.; Pagel, John M.; Sandmaier, Brenda M.] Fred Hutchinson Canc Res Ctr, Seattle, WA 98109 USA. [Green, Damian J.; Press, Oliver W.; Pagel, John M.; Sandmaier, Brenda M.] Univ Washington, Dept Med, Seattle, WA 98195 USA. [Hamlin, Donald K.; Wilbur, D. Scott] Univ Washington, Dept Radiat Oncol, Seattle, WA 98195 USA. [Fisher, Darrell R.] Dade Moeller Hlth Grp, Richland, WA 99354 USA. RP Miller, BW (reprint author), Pacific NW Natl Lab, Richland, WA 99354 USA. EM brian.miller@pnnl.gov OI Fisher, Darrell/0000-0002-6526-1637 FU NCI NIH HHS [R01 CA076287, R01 CA109663, P30 CA015704, R01 CA136639, P01 CA078902, R01 CA154897, R01 CA172582, R01CA172582]; NHLBI NIH HHS [P01 HL122173]; NIBIB NIH HHS [P41 EB002035, P41EB002035] NR 42 TC 2 Z9 2 U1 4 U2 10 PU AMER ASSOC PHYSICISTS MEDICINE AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 0094-2405 J9 MED PHYS JI Med. Phys. PD JUL PY 2015 VL 42 IS 7 BP 4094 EP 4105 DI 10.1118/1.4921997 PG 12 WC Radiology, Nuclear Medicine & Medical Imaging SC Radiology, Nuclear Medicine & Medical Imaging GA CM4WN UT WOS:000357686400031 PM 26133610 ER PT J AU Miller, M Schmidt-Kittler, O Bolduc, DM Brower, ET Chaves-Moreira, D Allaire, M Kinzler, KW Jennings, IG Thompson, PE Cole, PA Amzel, LM Vogelstein, B Gabelli, SB AF Miller, Michelle Schmidt-Kittler, Oleg Bolduc, David M. Brower, Evan T. Chaves-Moreira, Daniele Allaire, Marc Kinzler, Kenneth W. Jennings, Ian G. Thompson, Philip E. Cole, Philip A. Amzel, L. Mario Vogelstein, Bert Gabelli, Sandra B. TI Targeting PI3K: The PIP2 binding site SO MOLECULAR CANCER THERAPEUTICS LA English DT Meeting Abstract C1 [Miller, Michelle; Schmidt-Kittler, Oleg; Bolduc, David M.; Brower, Evan T.; Chaves-Moreira, Daniele; Cole, Philip A.; Amzel, L. Mario; Gabelli, Sandra B.] Johns Hopkins Univ, Baltimore, MD USA. [Allaire, Marc] Brookhaven Natl Lab, Upton, NY 11973 USA. [Kinzler, Kenneth W.; Vogelstein, Bert] Ludwig Ctr Canc Genet & Therapeut, Baltimore, MD USA. [Jennings, Ian G.; Thompson, Philip E.] Monash Inst Pharmaceut Sci, Melbourne, Vic, Australia. RI Chaves-Moreira, daniele/L-5133-2015; Gabelli, Sandra/A-3705-2008 OI Gabelli, Sandra/0000-0003-1205-5204 NR 0 TC 0 Z9 0 U1 0 U2 1 PU AMER ASSOC CANCER RESEARCH PI PHILADELPHIA PA 615 CHESTNUT ST, 17TH FLOOR, PHILADELPHIA, PA 19106-4404 USA SN 1535-7163 EI 1538-8514 J9 MOL CANCER THER JI Mol. Cancer Ther. PD JUL PY 2015 VL 14 IS 7 SU S MA PR02 DI 10.1158/1538-8514.PI3K14-PR02 PG 2 WC Oncology SC Oncology GA CN1EF UT WOS:000358159200109 ER PT J AU Jeong, YS Park, JB Jung, HG Kirn, J Luo, XY Lu, J Curtiss, L Amine, K Sun, YK Scrosati, B Lee, YJ AF Jeong, Yo Sub Park, Jin-Bum Jung, Hun-Gi Kirn, Jooho Luo, Xiangyi Lu, Jun Curtiss, Larry Amine, Khalil Sun, Yang-Kook Scrosati, Bruno Lee, Yun Jung TI Study on the Catalytic Activity of Noble Metal Nanoparticles on Reduced Graphene Oxide for Oxygen Evolution Reactions in Lithium-Air Batteries SO NANO LETTERS LA English DT Article DE lithium-air batteries; catalysts; noble metals; electrolyte stability; catalytic mechanism ID NONAQUEOUS LI-O-2 BATTERIES; ELECTROCATALYTIC ACTIVITY; PLATINUM NANOPARTICLES; FUEL-CELLS; REDUCTION; METHANOL; CHARGE; ELECTROLYTE; OXIDATION; CATHODE AB Among many challenges present in Li-air batteries, one of the main reasons of low efficiency is the high charge overpotential due to the slow oxygen evolution reaction (OER). Here, we present systematic evaluation of Pt, Pd, and Ru nanopartides supported on rGO as OER electrocatalysts in Li-air cell cathodes with LiCF3SO3-tetra(ethylene glycol) dimethyl ether (TEGDME) salt-electrolyte system. All of the noble metals explored could lower the charge overpotentials, and among them, Ru-rGO hybrids exhibited the most stable cycling performance and the lowest charge overpotentials. Role of Ru nanopartides in boosting oxidation kinetics of the discharge products were investigated. Apparent behavior of Ru nanoparticles was different from the conventional electrocatalysts that lower activation barrier through electron transfer, because the major contribution of Ru nanopartides in lowering charge overpotential is to control the nature of the discharge products. Ru nanopartides facilitated thin film-like or nanoparticulate Li2O2 formation during oxygen reduction reaction (ORR), which decomposes at lower potentials during charge, although the conventional role as electrocatalysts during OER cannot be ruled out. Pt-and Pd-rGO hybrids showed fluctuating potential profiles during the cycling. Although Pt- and Pd-rGO decomposed the electrolyte after electrochemical cycling, no electrolyte instability was observed with Ru-rGO hybrids. This study provides the possibility of screening selective electrocatalysts for Li-air cells while maintaining electrolyte stability. C1 [Jeong, Yo Sub; Park, Jin-Bum; Jung, Hun-Gi; Kirn, Jooho; Sun, Yang-Kook; Lee, Yun Jung] Hanyang Univ, Dept Energy Engn, Seoul 133791, South Korea. [Jung, Hun-Gi] Hanyang Univ, Dept Chem Engn, Seoul 133791, South Korea. [Luo, Xiangyi; Lu, Jun; Amine, Khalil] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Curtiss, Larry] Argonne Natl Lab, Mat Sci Div, Argonne, IL 60439 USA. [Scrosati, Bruno] Italian Inst Technol, I-16163 Genoa, Italy. RP Sun, YK (reprint author), Hanyang Univ, Dept Energy Engn, Seoul 133791, South Korea. EM yksun@hanyang.ac.kr; bruno.scrosati@uniroma1.lt; yjlee94@hanyang.ac.kr RI Luo, Xiangyi/K-6058-2015 OI Luo, Xiangyi/0000-0002-4817-1461 FU Human Resources Development of the Korea Institute of Energy Technology Evaluation of Planning (KETEP) - Korea government of Ministry of Knowledge Economy [20124010203310]; Pioneer Research Center Program through the National Research Foundation of Korea (NRF) [NRF-2012-0009577]; U.S. Department of Energy [DE-AC0206CH11357]; Vehicle Technologies Office, Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) FX This work was supported by the Human Resources Development of the Korea Institute of Energy Technology Evaluation of Planning (KETEP) grant funded by the Korea government of Ministry of Knowledge Economy (No. 20124010203310). This research was supported by Pioneer Research Center Program (grant no. NRF-2012-0009577) through the National Research Foundation of Korea (NRF). This work was also supported by the U.S. Department of Energy under Contract DE-AC0206CH11357, with the main support provided by the Vehicle Technologies Office, Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE). NR 42 TC 24 Z9 24 U1 36 U2 275 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD JUL PY 2015 VL 15 IS 7 BP 4261 EP 4268 DI 10.1021/nl504425h PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA CM8PM UT WOS:000357964100004 PM 26115340 ER PT J AU Yu, YS Kim, C Shapiro, DA Farmand, M Qian, D Tyliszczak, T Kilcoyne, ALD Celestre, R Marchesini, S Joseph, J Denes, P Warwick, T Strobridge, FC Grey, CP Padmore, H Meng, YS Kostecki, R Cabana, J AF Yu, Young-Sang Kim, Chunjoong Shapiro, David A. Farmand, Maryam Qian, Danna Tyliszczak, Tolek Kilcoyne, A. L. David Celestre, Rich Marchesini, Stefano Joseph, John Denes, Peter Warwick, Tony Strobridge, Fiona C. Grey, Clare P. Padmore, Howard Meng, Ying Shirley Kostecki, Robert Cabana, Jordi TI Dependence on Crystal Size of the Nanoscale Chemical Phase Distribution and Fracture in LixFePO4 SO NANO LETTERS LA English DT Article DE High resolution chemical imaging battery materials; redox phase transformations; chemo-mechanical coupling; LiFePO4 ID ELECTRON-ENERGY-LOSS; X-RAY MICROSCOPY; ROOM-TEMPERATURE; PARTICLE-SIZE; LITHIUM DEINTERCALATION; LIFEPO4 NANOPARTICLES; CATHODE MATERIALS; PHOSPHO-OLIVINES; BATTERIES; INTERCALATION AB The performance of battery electrode materials is strongly affected by inefficiencies in utilization kinetics and cycle life as well as size effects. Observations of phase transformations in these materials with high chemical and spatial resolution can elucidate the relationship between chemical processes and mechanical degradation. Soft X-ray ptychographic microscopy combined with X-ray absorption spectroscopy and electron microscopy creates a powerful suite of tools that we use to assess the chemical and morphological changes in lithium iron phosphate (LiFePO4) micro- and nanocrystals that occur upon delithiation. All sizes of partly delithiated crystal were found to contain two phases with a complex correlation between crystallographic orientation and phase distribution. However, the lattice mismatch between LiFePO4 and FePO4 led to severe fracturing on microcrystals, whereas no mechanical damage was observed in nanoplates, indicating that mechanics are a principal driver in the outstanding electrode performance of LiFePO4 nanoparticles. These results demonstrate the importance of engineering the active electrode material in next generation electrical energy storage systems, which will achieve theoretical limits of energy density and extended stability. This work establishes soft X-ray ptychographic chemical imaging as an essential tool to build comprehensive relationships between mechanics and chemistry that guide this engineering design. C1 [Yu, Young-Sang; Kim, Chunjoong; Cabana, Jordi] Univ Illinois, Dept Chem, Chicago, IL 60607 USA. [Yu, Young-Sang; Shapiro, David A.; Farmand, Maryam; Tyliszczak, Tolek; Kilcoyne, A. L. David; Celestre, Rich; Marchesini, Stefano; Denes, Peter; Warwick, Tony; Padmore, Howard] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Yu, Young-Sang; Qian, Danna; Meng, Ying Shirley] Univ Calif San Diego, Adv Light Source, La Jolla, CA 92121 USA. [Yu, Young-Sang; Kostecki, Robert] Lawrence Berkeley Natl Lab, Energy Storage & Distributed Resources Div, Berkeley, CA 94720 USA. [Joseph, John] Lawrence Berkeley Natl Lab, Engn Div, Berkeley, CA 94720 USA. [Strobridge, Fiona C.; Grey, Clare P.] Univ Cambridge, Dept Chem, Cambridge CB2 1EW, England. [Grey, Clare P.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. RP Cabana, J (reprint author), Univ Illinois, Dept Chem, Chicago, IL 60607 USA. EM jcabana@uic.edu RI Cabana, Jordi/G-6548-2012; Kilcoyne, David/I-1465-2013 OI Cabana, Jordi/0000-0002-2353-5986; FU NorthEast Center for Chemical Energy Storage, an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0012583]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy; Center for Applied Mathematics for Energy Research Applications (CAMERA); Basic Energy Sciences (BES) at the U.S. Department of Energy; Advanced Scientific Computing Research (ASRC) at the U.S. Department of Energy FX This work was supported as part of the NorthEast Center for Chemical Energy Storage, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0012583. Soft X-ray ptychographic microscope works were carried out at either beamline 11.0.2 or beamline 5.3.2.1 at the Advanced Light Source. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The TEM experiments were carried out through a user project supported by Center for Nanophase Materials Sciences (CNMS) at Oak Ridge National Laboratory, which is sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. This work is partially supported by the Center for Applied Mathematics for Energy Research Applications (CAMERA), which is a partnership between Basic Energy Sciences (BES) and Advanced Scientific Computing Research (ASRC) at the U.S. Department of Energy. The authors wish to thank Dr. Guoying Chen (LBNL) for providing samples used in this manuscript. NR 56 TC 22 Z9 22 U1 19 U2 118 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD JUL PY 2015 VL 15 IS 7 BP 4282 EP 4288 DI 10.1021/acs.nanolett.5b01314 PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA CM8PM UT WOS:000357964100007 PM 26061698 ER PT J AU Prasai, D Klots, AR Newaz, AKM Niezgoda, JS Orfield, NJ Escobar, CA Wynn, A Efimov, A Jennings, GK Rosenthal, SJ Bolotin, KI AF Prasai, Dhiraj Klots, Andrey R. Newaz, A. K. M. Niezgoda, J. Scott Orfield, Noah J. Escobar, Carlos A. Wynn, Alex Efimov, Anatoly Jennings, G. Kane Rosenthal, Sandra J. Bolotin, Kirill I. TI Electrical Control of near-Field Energy Transfer between Quantum Dots and Two-Dimensional Semiconductors SO NANO LETTERS LA English DT Article DE Quantum dots; MoS2; TMDCs; FRET; electrical modulation ID MONOLAYER MOS2; MOLYBDENUM-DISULFIDE; OPTICAL-PROPERTIES; CHARGE-TRANSFER; BORON-NITRIDE; PHOTOLUMINESCENCE; SINGLE; STATES; GRAPHENE; SURFACE AB We investigate near-field energy transfer between chemically synthesized quantum dots (QDs) and two-dimensional semiconductors. We fabricate devices in which electrostatically gated semiconducting monolayer molybdenum disulfide (MoS2) is placed atop a homogeneous self-assembled layer of core-shell CdSSe QDs. We demonstrate efficient nonradiative Forster resonant energy transfer (FRET) from QDs into MoS2 and prove that modest gate-induced variation in the excitonic absorption of MoS2 leads to large (-500%) changes in the FRET rate. This in turn allows for up to similar to 75% electrical modulation of QD photoluminescence intensity. The hybrid QD/MoS2 devices operate within a small voltage range, allow for continuous modification of the QD photoluminescence intensity, and can be used for selective tuning of QDs emitting in the visible-IR range. C1 [Prasai, Dhiraj; Rosenthal, Sandra J.] Vanderbilt Univ, Interdisciplinary Grad Program Mat Sci, Nashville, TN 37235 USA. [Klots, Andrey R.; Newaz, A. K. M.; Wynn, Alex; Bolotin, Kirill I.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. [Newaz, A. K. M.] San Francisco State Univ, Dept Phys & Astron, San Francisco, CA 94132 USA. [Niezgoda, J. Scott; Orfield, Noah J.; Rosenthal, Sandra J.] Vanderbilt Univ, Dept Chem, Nashville, TN 37235 USA. [Escobar, Carlos A.; Jennings, G. Kane] Vanderbilt Univ, Dept Chem & Biomol Engn, Nashville, TN 37235 USA. [Efimov, Anatoly] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. [Rosenthal, Sandra J.] Vanderbilt Inst Nanoscale Sci & Engn, Nashville, TN 37235 USA. [Rosenthal, Sandra J.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37830 USA. RP Bolotin, KI (reprint author), Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. EM kirill.bolotin@vanderbilt.edu RI Bolotin, Kirill/O-5101-2016; OI Orfield, Noah/0000-0003-4555-8668; Efimov, Anatoly/0000-0002-5559-4147 FU Office of Naval Research [N000141310299]; NSF [EPS-1004083, CBET-1134509, DMR-1056859] FX We acknowledge useful discussions with Kirill Velizhanin. The work was primarily supported by the Office of Naval Research award N000141310299 with additional funding from NSF EPS-1004083, NSF CBET-1134509 and NSF DMR-1056859. NR 44 TC 17 Z9 17 U1 17 U2 128 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD JUL PY 2015 VL 15 IS 7 BP 4374 EP 4380 DI 10.1021/acs.nanolett.5b00514 PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA CM8PM UT WOS:000357964100020 PM 26027714 ER PT J AU Zhang, BP Lu, P Liu, HN Jiao, L Ye, ZY Jaime, M Balakirev, FF Yuan, HQ Wu, HZ Pan, W Zhang, Y AF Zhang, Bingpo Lu, Ping Liu, Henan Jiao, Lin Ye, Zhenyu Jaime, M. Balakirev, F. F. Yuan, Huiqiu Wu, Huizhen Pan, Wei Zhang, Yong TI Quantum Oscillations in a Two-Dimensional Electron Gas at the Rocksalt/Zincblende Interface of PbTe/CdTe (111) Heterostructures SO NANO LETTERS LA English DT Article DE PbTe/CdTe (111); 2DEG; quantum oscillations; Berry phase; topological insulator ID TOPOLOGICAL CRYSTALLINE INSULATOR; BERRYS PHASE; PBTE; SEMICONDUCTOR; SURFACE; STATE; FILMS; LIMIT; SNTE AB Quantum oscillations are observed in the 2DEG system at the interface of novel heterostructures, PbTe/CdTe (111), with nearly identical lattice parameters (a(PbTe) = 0.6462 nm, a(CdTe) = 0.648 nm) but very different lattice structures (PbTe: rock salt, CdTe: zinc blende). The 2DEG formation mechanism, a mismatch in the bonding configurations of the valence electrons at the interface, is uniquely different from the other known 2DEG systems. The aberration-corrected scanning transmission electron microscope (AC-STEM) characterization indicates an abrupt interface without cation interdiffusion due to a large miscibility gap between the two constituent materials. Electronic transport measurements under magnetic field up to 60 T, with the observation of Landau level filling factor nu = 1, unambiguously reveal a pi Berry phase, suggesting the Dirac Fermion nature of the 2DEG at the heterostructure interface, and the PbTe/CdTe heterostructure being a new candidate for 2D topological crystalline insulators. C1 [Zhang, Bingpo; Jiao, Lin; Ye, Zhenyu; Yuan, Huiqiu; Wu, Huizhen] Zhejiang Univ, Dept Phys, State Key Lab Silicon Mat, Hangzhou 310027, Zhejiang, Peoples R China. [Zhang, Bingpo; Jiao, Lin; Ye, Zhenyu; Yuan, Huiqiu; Wu, Huizhen] Zhejiang Univ, Ctr Correlated Matter, Hangzhou 310027, Zhejiang, Peoples R China. [Lu, Ping; Pan, Wei] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Liu, Henan; Zhang, Yong] Univ N Carolina, Dept Elect Engn, Optoelect Ctr, Charlotte, NC 28223 USA. [Jaime, M.; Balakirev, F. F.] Los Alamos Natl Lab, NHMFL, Los Alamos, NM 87545 USA. RP Wu, HZ (reprint author), Zhejiang Univ, Dept Phys, State Key Lab Silicon Mat, Hangzhou 310027, Zhejiang, Peoples R China. EM hzwu@zju.edu.cn; wpan@sandia.gov; yong.zhang@uncc.edu RI Jaime, Marcelo/F-3791-2015 OI Jaime, Marcelo/0000-0001-5360-5220 FU National Key Basic Research Program of China; Natural Science Foundation of China; Bissell Distinguished Professorship; Department of Energy, the Office of Basic Energy Science, Division of Material Science and Technology; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; National Science Foundation; Department of Energy; State of Florida FX The work at Zhejiang University was supported by National Key Basic Research Program of China and Natural Science Foundation of China. The work at UNC-Charlotte was supported by Bissell Distinguished Professorship. The work at Sandia was supported by the Department of Energy, the Office of Basic Energy Science, Division of Material Science and Technology. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. The work at NHMFL-LANL was performed under the auspices of the National Science Foundation, Department of Energy and State of Florida. We thank Ross McDonald and Jon Bettes for helpful discussions. NR 33 TC 3 Z9 3 U1 4 U2 63 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD JUL PY 2015 VL 15 IS 7 BP 4381 EP 4386 DI 10.1021/acs.nanolett.5b01605 PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA CM8PM UT WOS:000357964100021 PM 26046294 ER PT J AU Li, N Misra, A Shao, S Wang, J AF Li, N. Misra, A. Shao, S. Wang, J. TI Experimental Quantification of Resolved Shear Stresses for Dislocation Motion in TiN SO NANO LETTERS LA English DT Article DE In situ HRTEM; strain mapping; resolved shear stress; dislocation motion; TiN ID IN-SITU NANOINDENTATION; DENSITY-FUNCTIONAL THEORY; ELECTRON-MICROSCOPY; NANOLAYERED COMPOSITES; PLASTIC-DEFORMATION; TWIN BOUNDARIES; PEIERLS STRESS; INTERFACES; MULTILAYERS; TRANSMISSION AB Experimental quantification of the critical resolved shear stress (CRSS) at the level of unit dislocation glide is,still a challenge. By using in situ nanoindentation in a high-resolution transmission electron microscope and strain analysis of the acquired structural images, the CRSS for the motion of individual dislocations on {110}< 011 > slip system and glide dislocation re-emission from a tilt grain boundary in TiN are quantified. This work.,offers an approach to measure the local stresses associated with dislocation motion in high-strength materials. C1 [Li, N.; Misra, A.; Shao, S.] Los Alamos Natl Lab, Mat Phys & Applicat Div, MPA CINT, Los Alamos, NM 87545 USA. [Wang, J.] Los Alamos Natl Lab, Mat Sci & Technol Div, MST 8, Los Alamos, NM 87545 USA. [Misra, A.] Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA. RP Li, N (reprint author), Los Alamos Natl Lab, Mat Phys & Applicat Div, MPA CINT, POB 1663, Los Alamos, NM 87545 USA. EM nanli@lanl.gov; wangj6@lanl.gov RI Misra, Amit/H-1087-2012; Shao, Shuai/B-2037-2014; Wang, Jian/F-2669-2012; Li, Nan /F-8459-2010 OI Shao, Shuai/0000-0002-4718-2783; Wang, Jian/0000-0001-5130-300X; Li, Nan /0000-0002-8248-9027 FU U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences; National Nuclear Security Administration of the U.S. DOE [DE-AC52-06NA25396] FX This work was supported by the U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences. This work was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. DOE, Office of Science. Los Alamos National Laboratory is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. DOE under Contract No. DE-AC52-06NA25396. We appreciated the valuable discussion with Prof. J.P. Hirth and R.G. Hoagland at Los Alamos National Laboratory. NR 48 TC 3 Z9 3 U1 4 U2 31 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD JUL PY 2015 VL 15 IS 7 BP 4434 EP 4439 DI 10.1021/acs.nanolett.5b00791 PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA CM8PM UT WOS:000357964100030 PM 26065576 ER PT J AU Ling, M Qiu, JX Li, S Yan, C Kiefel, MJ Liu, G Zhang, SQ AF Ling, Min Qiu, Jingxia Li, Sheng Yan, Cheng Kiefel, Milton J. Liu, Gao Zhang, Shanqing TI Multifunctional SA-PProDOT Binder for Lithium Ion Batteries SO NANO LETTERS LA English DT Article DE Binders; multifunctions; conductivities; lithium ion phosphate; lithium ion battery ID IN-OIL MICROEMULSIONS; CATHODE MATERIALS; ELECTRICAL-CONDUCTIVITY; LIFEPO4 NANOPARTICLES; NEGATIVE ELECTRODES; RATE-PERFORMANCE; POLYMER BINDER; SILICON ANODES; DOPED LIFEPO4; ESTERIFICATION AB An environmentally benign, highly conductive, and mechanically strong binder system can overcome the dilemma of low conductivity and insufficient mechanical stability of the electrodes to achieve high performance lithium ion batteries (LIBs) at a low cost and in a sustainable way. In this work, the naturally occurring binder sodium alginate (SA) is functionalized with 3,4-propylenedioxythiophene-2,5-dicarboxylic acid (ProDOT) via a one-step esterification reaction in a cydohexane/dodecyl benzenesulfonic acid (DBSA)/water microemulsion system, resulting in a multifunctional polymer binder, that is, SA-PProDOT. With the synergetic effects of the functional groups (e.g., carboxyl, hydroxyl, and ester groups), the resultant SA-PProDOT polymer not only maintains the outstanding binding capabilities of sodium alginate but also enhances the mechanical integrity and lithium ion diffusion coefficient in the LiFePO4 (LFP) electrode during the operation of the batteries. Because of the conjugated network of the PProDOT and the lithium doping under the battery environment, the SA-PProDOT becomes conductive and matches the conductivity needed for LiFePO4 LIBs. Without the need of conductive additives such as carbon black, the resultant batteries have achieved the theoretical specific capacity of LiFePO4 cathode (ca. 170 mAh/g) at C/10 and ca. 120 mAh/g at 1C for more than 400 cycles. C1 [Ling, Min; Qiu, Jingxia; Li, Sheng; Zhang, Shanqing] Griffith Univ, Ctr Clean Environm & Energy, Environm Futures Res Inst, Gold Coast, Qld 4222, Australia. [Ling, Min; Qiu, Jingxia; Li, Sheng; Zhang, Shanqing] Griffith Univ, Griffith Sch Environm, Gold Coast, Qld 4222, Australia. [Yan, Cheng] Queensland Univ Technol, Sch Chem Phys & Mech Engn, Brisbane, Qld 4001, Australia. [Kiefel, Milton J.] Griffith Univ, Inst Glyc, Gold Coast, Qld 4222, Australia. [Ling, Min; Liu, Gao] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. RP Liu, G (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. EM gliu@lbl.gov; s.zhang@griffith.edu.au RI Zhang, Shanqing/C-2590-2008 FU Australia Research Council; Batteries for Advanced Transportation Technologies (BATT) Program at Lawrence Berkeley National Laboratory FX This work is supported by the Australia Research Council and by the Batteries for Advanced Transportation Technologies (BATT) Program at Lawrence Berkeley National Laboratory. The synthesis of polymer binders was conducted in Institute for Glycomics, Griffith University. Electron microscopy experiments are conducted at the Centre for Microscopy & Microanalysis (CMM), located at the University of Queensland. NR 58 TC 6 Z9 6 U1 31 U2 134 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD JUL PY 2015 VL 15 IS 7 BP 4440 EP 4447 DI 10.1021/acs.nanolett.5b00795 PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA CM8PM UT WOS:000357964100031 PM 26061529 ER PT J AU Chen, DD Gao, Y Chen, YY Ren, Y Peng, XG AF Chen, Dongdong Gao, Yuan Chen, Yiya Ren, Yang Peng, Xiaogang TI Structure Identification of Two-Dimensional Colloidal Semiconductor Nanocrystals with Atomic Flat Basal Planes SO NANO LETTERS LA English DT Article DE two-dimensional; nanocrystals; simulation; thickness; unit-cell; XRD ID CDTE NANOCRYSTALS; CDSE PLATELETS; QUANTUM WIRES; NANOPLATELETS; LIGAND; SHAPE; TRANSITION; GRAPHENE; DISKS AB Discrete nature of thickness and flat basal planes of two-dimensional (2D) nanostructures display unique diffraction features. Their origin was uncovered by a new analysis method of powder X-ray diffraction, which reveals thickness and lattice orientation of the 2D nanostructures. Results indicate necessity of adoption of a different unit cell from the corresponding bulk crystal with the same internal atomic packing. For CdSe 2D nanostructures with zinc blende atomic packing, pseudotetragonal lattices are adequate, instead of face-centered cubic. C1 [Chen, Dongdong; Gao, Yuan; Chen, Yiya; Peng, Xiaogang] Zhejiang Univ, Ctr Chem Novel & High Performance Mat, Hangzhou 310027, Peoples R China. [Chen, Dongdong; Gao, Yuan; Chen, Yiya; Peng, Xiaogang] Zhejiang Univ, Dept Chem, Hangzhou 310027, Peoples R China. [Ren, Yang] Argonne Natl Lab, Xray Sci Div, Adv Photon Source, Argonne, IL 60439 USA. RP Peng, XG (reprint author), Zhejiang Univ, Ctr Chem Novel & High Performance Mat, Hangzhou 310027, Peoples R China. EM xpeng@zju.edu.cn RI peng, xiaogang/R-6184-2016 OI peng, xiaogang/0000-0002-5606-8472 FU National Natural Science Foundation of China [21233005]; Fundamental Research Fund for the Central Universities [2014FZA3006]; DOE Office of Science [DE-AC02-06CH11357] FX This work was supported by the National Natural Science Foundation of China (Grants 21233005) and Fundamental Research Fund for the Central Universities (Grant 2014FZA3006). We thank Dr. Zheng Li (Argonne National Laboratory) for inspiring discussions. This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. NR 27 TC 4 Z9 4 U1 16 U2 77 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD JUL PY 2015 VL 15 IS 7 BP 4477 EP 4482 DI 10.1021/acs.nanolett.5b00940 PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA CM8PM UT WOS:000357964100037 PM 26055510 ER PT J AU Kotiuga, M Darancet, P Arroyo, CR Venkataraman, L Neaton, JB AF Kotiuga, Michele Darancet, Pierre Arroyo, Carlos R. Venkataraman, Latha Neaton, Jeffrey B. TI Adsorption-Induced Solvent-Based Electrostatic Gating of Charge Transport through Molecular Junctions SO NANO LETTERS LA English DT Article DE molecular conductance; density functional theory; single molecule electronics; solvent effects ID CONDUCTANCE; THERMOELECTRICITY; HETEROJUNCTIONS; DEPENDENCE; INSULATOR; ALIGNMENT; ENERGY AB Recent experiments have shown that transport properties of molecular-scale devices can be reversibly altered by the surrounding solvent. Here, we use a combination of first-principles calculations and experiment to explain this change in transport properties through a shift in the local electrostatic potential at the junction caused by nearby conducting and solvent molecules chemically bound to the electrodes. This effect is found to alter the conductance of 4,4'-bipyridine-gold junctions by more than 50%. Moreover, we develop-a general electrostatic model that quantitatively relates the conductance and dipoles associated with the bound solvent and conducting molecules. Our work shows that solvent-induced effects can be used to control charge and energy transport at molecular-scale interfaces. C1 [Kotiuga, Michele; Neaton, Jeffrey B.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Kotiuga, Michele; Darancet, Pierre; Neaton, Jeffrey B.] Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. [Darancet, Pierre; Arroyo, Carlos R.; Venkataraman, Latha] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. [Neaton, Jeffrey B.] Univ Calif Berkeley, Kavli Energy NanoSci Inst Berkeley, Berkeley, CA 94720 USA. [Arroyo, Carlos R.] Univ Fuerzas Armadas ESPE, Ctr Nanociencia & Nanotecnol, Sangolqui, Ecuador. RP Neaton, JB (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM jbneaton@lbl.gov RI Neaton, Jeffrey/F-8578-2015; Foundry, Molecular/G-9968-2014; Arroyo, Carlos/H-8022-2016; OI Neaton, Jeffrey/0000-0001-7585-6135; Arroyo, Carlos/0000-0002-1793-5799; Venkataraman, Latha/0000-0002-6957-6089 FU Division of Materials Sciences and Engineering (Theory FWP), under Office of Basic Energy Sciences of the U.S. Department of Energy [DE-AC02-05CH11231]; NSF [DMR-1122594] FX We thank Leeor Kronik for useful discussions and insight regarding the electrostatic model. Portions of this work were performed at the Molecular Foundry and supported by the Division of Materials Sciences and Engineering (Theory FWP), under the auspices of the Office of Basic Energy Sciences of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Latha Venkataraman acknowledges support from the NSF DMR-1122594. NR 45 TC 9 Z9 9 U1 9 U2 38 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD JUL PY 2015 VL 15 IS 7 BP 4498 EP 4503 DI 10.1021/acs.nanolett.5b00990 PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA CM8PM UT WOS:000357964100040 PM 26066095 ER PT J AU Lee, SE Chen, Q Bhat, R Petkiewicz, S Smith, JM Ferry, VE Correia, AL Alivisatos, AP Bissell, MJ AF Lee, Somin Eunice Chen, Qian Bhat, Ramray Petkiewicz, Shayne Smith, Jessica M. Ferry, Vivian E. Correia, Ana Luisa Alivisatos, A. Paul Bissell, Mina J. TI Reversible Aptamer-Au Plasmon Rulers for Secreted Single Molecules SO NANO LETTERS LA English DT Article DE plasmon; single-molecule; secreted molecule; imaging; gold nanoparticle ID MATRIX METALLOPROTEINASES; BRANCHING MORPHOGENESIS; TISSUE ARCHITECTURE; MAMMARY-GLAND; REAL-TIME; NANOPARTICLE; CELLS; GOLD; CANCER; PROTEINASES AB Plasmon rulers, consisting of pairs of gold nanoparticles, allow single-molecule analysis without photobleaching or blinking; however, current plasmon rulers are irreversible, restricting detection to only single events. Here, we present a reversible plasmon ruler, comprised of coupled gold nanoparticles linked by a single aptamer, capable of binding individual secreted molecules with high specificity. We show that the binding of target secreted molecules to the reversible plasmon ruler is characterized by single-molecule sensitivity, high specificity, and reversibility. Such reversible plasmon rulers should enable dynamic and adaptive live-cell measurement of secreted single molecules in their local microenvironment. C1 [Lee, Somin Eunice; Bhat, Ramray; Correia, Ana Luisa; Bissell, Mina J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Life Sci Div, Berkeley, CA 94720 USA. [Chen, Qian; Petkiewicz, Shayne; Smith, Jessica M.; Ferry, Vivian E.; Alivisatos, A. Paul] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Chen, Qian; Petkiewicz, Shayne; Smith, Jessica M.; Ferry, Vivian E.] Univ Calif Berkeley, Dept Chem & Mat Sci & Engn, Berkeley, CA 94720 USA. [Alivisatos, A. Paul] Univ Calif Berkeley, Kavli Energy NanoSci Inst, Berkeley, CA 94720 USA. [Lee, Somin Eunice] Univ Michigan, Dept Elect & Comp Engn, Ann Arbor, MI 48109 USA. [Lee, Somin Eunice] Univ Michigan, Biointerfaces Inst, Ann Arbor, MI 48109 USA. [Bhat, Ramray] Indian Inst Sci, Dept Mol Reprod Dev & Genet, Bangalore 560012, Karnataka, India. RP Lee, SE (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Life Sci Div, Berkeley, CA 94720 USA. EM sleee@umich.edu; apalivisatos@lbl.gov; mjbissell@lbl.gov RI Alivisatos , Paul /N-8863-2015; Correia, Ana Luisa/E-9738-2012 OI Alivisatos , Paul /0000-0001-6895-9048; FU National Institute of Health [F32 EB013972]; National Science Foundation [ECCS-1454188]; Miller Institute for Basic Research in Science at UC Berkeley; Susan G. Komen for the Cure postdoctoral fellowship [KG111229]; King Abdulaziz City for Science and Technology (KACST), Kingdom of Saudi Arabia; NCI [CA064786, CA143836]; Department of Defense Breast Cancer Research Program [W81XWH0810736]; Department of Energy, Office of Biological and Environmental Research [DE-AC02-05CH1123]; Breast Cancer Research Foundation FX The authors thank Dr. Mark Morris and Dr. Bill Jackson at Base Pair Biotechnologies for useful discussion on aptamers. S.E.L was supported by the National Institute of Health (F32 EB013972) and the National Science Foundation (ECCS-1454188). Q.C. was supported by Miller postdoctoral fellowship from the Miller Institute for Basic Research in Science at UC Berkeley. R.B. was supported by a Susan G. Komen for the Cure postdoctoral fellowship (KG111229). The work from the laboratory of A.P.A. was supported by a grant from King Abdulaziz City for Science and Technology (KACST), Kingdom of Saudi Arabia. The laboratory of M.J.B. was supported by funds from the NCI awards CA064786 and CA143836 (Bay Area Physical Sciences Oncology Center); the Department of Defense Breast Cancer Research Program (award W81XWH0810736); the Department of Energy, Office of Biological and Environmental Research (contract no. DE-AC02-05CH1123); and from the Breast Cancer Research Foundation. NR 44 TC 14 Z9 14 U1 17 U2 65 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD JUL PY 2015 VL 15 IS 7 BP 4564 EP 4570 DI 10.1021/acs.nanolett.5b01161 PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA CM8PM UT WOS:000357964100049 PM 26039492 ER PT J AU Zhang, YJ Chen, Q Alivisatos, AP Salmeron, M AF Zhang, Yingjie Chen, Qian Alivisatos, A. Paul Salmeron, Miquel TI Dynamic Charge Carrier Trapping in Quantum Dot Field Effect Transistors SO NANO LETTERS LA English DT Article DE Colloidal quantum dot; dynamic charge trapping; charge transport; field effect transistor; hysteresis; bias stress ID THIN-FILM TRANSISTORS; TEMPERATURE-DEPENDENCE; NANOCRYSTALS; SOLIDS; SURFACE; UNIFICATION; TRANSPORT; LIGANDS; OXYGEN; STATES AB Noncrystalline semiconductor materials often exhibit hysteresis in charge transport measurements whose mechanism is largely unknown. Here we study the dynamics of charge injection and transport in PbS quantum dot (QD) monolayers in a field effect transistor (FET). Using Kelvin probe force microscopy, we measured the temporal response of the QDs as the channel material in a FET following step function changes of gate bias. The measurements reveal an exponential decay of mobile carrier density with time constants of 3-5 s for holes and similar to 10 s for electrons. An Ohmic behavior, with uniform carrier density, was observed along the channel during the injection and transport processes. These slow, uniform carrier trapping processes are reversible, with time constants that depend critically on the gas environment. We propose that the underlying mechanism is some reversible electrochemical process involving dissociation and diffusion of water and/or oxygen related species. These trapping processes are dynamically activated by the injected charges, in contrast with static electronic traps whose presence is independent of the charge state. Understanding and controlling these processes is important for improving the performance of electronic, optoelectronic, and memory devices based on disordered semiconductors. C1 [Zhang, Yingjie] Univ Calif Berkeley, Appl Sci & Technol Grad Program, Berkeley, CA 94720 USA. [Zhang, Yingjie; Alivisatos, A. Paul; Salmeron, Miquel] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Chen, Qian; Alivisatos, A. Paul] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Chen, Qian] Univ Calif Berkeley, Miller Inst Basic Res Sci, Berkeley, CA 94720 USA. [Alivisatos, A. Paul; Salmeron, Miquel] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Alivisatos, A. Paul] Kavli Energy NanoSci Inst, Berkeley, CA 94720 USA. RP Salmeron, M (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM mbsalmeron@lbl.gov RI Alivisatos , Paul /N-8863-2015 OI Alivisatos , Paul /0000-0001-6895-9048 FU Office of Science, the Office of Basic Energy Sciences (BES), Materials Sciences and Engineering (MSE) Division of the U.S. Department of Energy (DOE) [KC3104, DE-AC02-05CH11231]; Miller Institute for Basic Research in Science at UC Berkeley FX We thank Dr. L.-W. Wang and Dr. D. Zherebetskyy for helpful discussions. This work was supported by the "Self-Assembly of Organic/Inorganic Nanocomposite Materials" program, KC3104, Office of Science, the Office of Basic Energy Sciences (BES), Materials Sciences and Engineering (MSE) Division of the U.S. Department of Energy (DOE) under Contract No. DE-AC02-05CH11231. It used resources of the Molecular Foundry, a DOE Office of Science user facility. Q.C. was supported by a Miller fellowship from Miller Institute for Basic Research in Science at UC Berkeley. NR 29 TC 11 Z9 11 U1 11 U2 70 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD JUL PY 2015 VL 15 IS 7 BP 4657 EP 4663 DI 10.1021/acs.nanolett.5b01429 PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA CM8PM UT WOS:000357964100063 PM 26099508 ER PT J AU Qiao, L Jang, JH Singh, DJ Gai, Z Xiao, HY Mehta, A Vasudevan, RK Tselev, A Feng, ZX Zhou, H Li, SA Prellier, W Zu, XT Liu, ZJ Borisevich, A Baddorf, AP Biegalski, MD AF Qiao, Liang Jang, Jae Hyuck Singh, David J. Gai, Zheng Xiao, Haiyan Mehta, Apurva Vasudevan, Rama K. Tselev, Alexander Feng, Zhenxing Zhou, Hua Li, Sean Prellier, Wilfrid Zu, Xiaotao Liu, Zijiang Borisevich, Albina Baddorf, Arthur P. Biegalski, Michael D. TI Dimensionality Controlled Octahedral Symmetry-Mismatch and Functionalities in Epitaxial LaCoO3/SrTiO3 Heterostructures SO NANO LETTERS LA English DT Article DE LaCoO3; oxide heterostructures; symmetry mismatch; octahedral distortion ID SPIN-STATE TRANSITION; LACOO3; PEROVSKITES; SRTIO3; FILMS AB Epitaxial strain provides a powerful approach to manipulate physical properties of materials through rigid compression or extension of their chemical bonds via lattice-mismatch. Although symmetry-mismatch can lead to new physics by stabilizing novel interfacial structures, challenges in obtaining atomic-level structural information as well as lack of a suitable approach to separate it from the parasitical lattice-mismatch have limited the development of this field. Here, we present unambiguous experimental evidence that the symmetry-mismatch can be strongly controlled by dimensionality and significantly impact the collective electronic and magnetic functionalities in ultrathin perovskite LaCoO3/SrTiO3 heterojunctions. State-of-art diffraction and microscopy reveal symmetry breaking dramatically modifies the interfacial structure of CoO6 octahedral building-blocks, resulting in expanded octahedron volume, reduced covalent screening, and stronger electron correlations. Such phenomena fundamentally alter the electronic and magnetic behaviors of LaCoO3 thin-films. We conclude that for epitaxial systems, correlation strength can be tuned by changing orbital hybridization, thus affecting the Coulomb repulsion, U, instead of by changing the band structure as the common paradigm in bulks. These results clarify the origin of magnetic ordering for epitaxial LaCoO3 and provide a route to manipulate electron correlation and magnetic functionality by orbital engineering at oxide heterojunctions. C1 [Qiao, Liang] Univ Manchester, Sch Mat, Manchester M13 9PL, Lancs, England. [Qiao, Liang; Gai, Zheng; Vasudevan, Rama K.; Tselev, Alexander; Baddorf, Arthur P.; Biegalski, Michael D.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Jang, Jae Hyuck; Singh, David J.; Borisevich, Albina] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Xiao, Haiyan; Zu, Xiaotao] Univ Elect Sci & Technol China, Sch Phys Elect, Chengdu 610054, Peoples R China. [Zu, Xiaotao] Univ Elect Sci & Technol China, Inst Fundamental & Frontier Sci, Chengdu 610054, Peoples R China. [Mehta, Apurva] Stanford Univ, SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA. [Feng, Zhenxing] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Zhou, Hua] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Li, Sean] Univ New S Wales, Sch Mat Sci & Engn, Sydney, NSW 2052, Australia. [Prellier, Wilfrid] Normandie Univ, ENSICAEN, CNRS UMR 6508, Lab CRISMAT, F-14050 Caen 4, France. [Liu, Zijiang] Lanzhou City Univ, Dept Phys, Lanzhou 730070, Peoples R China. RP Qiao, L (reprint author), Univ Manchester, Sch Mat, Manchester M13 9PL, Lancs, England. EM liang.qiao@manchester.ac.uk RI Borisevich, Albina/B-1624-2009; Tselev, Alexander/L-8579-2015; Vasudevan, Rama/Q-2530-2015; Gai, Zheng/B-5327-2012; Qiao, Liang/A-8165-2012; Baddorf, Arthur/I-1308-2016; Liu, Zi-Jiang/N-7164-2013 OI Borisevich, Albina/0000-0002-3953-8460; Tselev, Alexander/0000-0002-0098-6696; Vasudevan, Rama/0000-0003-4692-8579; Gai, Zheng/0000-0002-6099-4559; Baddorf, Arthur/0000-0001-7023-2382; Liu, Zi-Jiang/0000-0002-0880-8149 FU Oak Ridge National Laboratory by Scientific User Facilities Division, U.S. Department of Energy [CNMS2014-372, CNMS2014-310]; Department of Energy, BES, Materials Sciences and Engineering Division; Materials Sciences and Engineering Division, Office of Science, U.S. Department of Energy; ORNL's Center for Nanophase Materials Sciences - Scientific User Facilities Division, Basic Energy Sciences, U.S. Department of Energy; scientific research starting funding of Electronic Science and Technology of China [Y02002010401085]; NSAF Joint Foundation of China [U1330103]; Joint Center for Energy Storage Research, an Energy Innovation Hub at Argonne National Laboratory - Office of Science, U.S. Department of Energy; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-76SF00515]; National Natural Science Foundation of China [11464025]; New Century Excellent Talents in University [NCET-11-0906] FX This research (L.Q, G.Z., A.P.B., and M.D.B.) was conducted at the Center for Nanophase Materials Sciences, (proposal number CNMS2014-372 and CNMS2014-310), which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, U.S. Department of Energy. L.Q, acknowledges the new lectureship support from the University of Manchester. The density functional calculations (D.J.S.) and STM (R.K.V. and A.T.) were supported by the Department of Energy, BES, Materials Sciences and Engineering Division. Electron microscopy research (J.H.J. and A.Y.B.) was supported by the Materials Sciences and Engineering Division, Office of Science, U.S. Department of Energy, and through a user project supported by ORNL's Center for Nanophase Materials Sciences, sponsored by the Scientific User Facilities Division, Basic Energy Sciences, U.S. Department of Energy. Synchrotron experiments at Advanced Photon Source is done at beamlines of 11ID-D and 12ID-D. H.Y.X. acknowledges the support of scientific research starting funding of Electronic Science and Technology of China (Grant Y02002010401085) and NSAF Joint Foundation of China (Grant U1330103). Z.X.F. and H.Z. were supported by the Joint Center for Energy Storage Research, an Energy Innovation Hub at Argonne National Laboratory funded by the Office of Science, U.S. Department of Energy. Some of the data (AM.) included in here was collected Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, which is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-76SF00515. Z.J.L was supported by National Natural Science Foundation of China (Grant 11464025) and the New Century Excellent Talents in University (Grant NCET-11-0906) NR 56 TC 5 Z9 5 U1 26 U2 143 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD JUL PY 2015 VL 15 IS 7 BP 4677 EP 4684 DI 10.1021/acs.nanolett.5b01471 PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA CM8PM UT WOS:000357964100066 PM 26103204 ER PT J AU Park, J Park, H Ercius, P Pegoraro, AF Xu, C Kim, JW Han, SH Weitz, DA AF Park, Jungwon Park, Hyesung Ercius, Peter Pegoraro, Adrian F. Xu, Chen Kim, Jin Woong Han, Sang Hoon Weitz, David A. TI Direct Observation of Wet Biological Samples by Graphene Liquid Cell Transmission Electron Microscopy SO NANO LETTERS LA English DT Article DE Liquid phase TEM; graphene liquid cell; multilayer graphene; bioimaging; influenza viruses; epithelial cells ID ATOMIC-RESOLUTION; FLUORESCENCE MICROSCOPY; CRYO-EM; NANOSCALE; WATER; SPECTROSCOPY; TOMOGRAPHY; SPECIMENS; MOTION; BEAM AB Recent development of liquid phase transmission electron microscopy (TEM) enables the study of specimens in wet ambient conditions within a liquid cell; however, direct structural observation of biological samples in their native solution using TEM is challenging since low-mass biomaterials embedded in a thick liquid layer of the host cell demonstrate low contrast. Furthermore, the integrity of delicate wet samples is easily compromised during typical sample preparation and TEM imaging. To overcome these limitations, we introduce a graphene liquid cell (GLC) using multilayer graphene sheets to reliably encapsulate and preserve biological samples in a liquid for TEM observation. We achieve nanometer scale spatial resolution with high contrast using low-dose TEM at room temperature, and we use the GLC to directly observe the structure of influenza viruses in their native buffer solution at room temperature. The GLC is further extended to investigate whole cells in wet conditions using TEM. We also demonstrate the potential of the GLC for correlative studies by TEM and fluorescence light microscopy imaging. C1 [Park, Jungwon; Pegoraro, Adrian F.; Weitz, David A.] Harvard Univ, Dept Appl Phys, Cambridge, MA 02138 USA. [Park, Jungwon; Weitz, David A.] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA. [Park, Hyesung] Ulsan Natl Inst Sci & Technol, Sch Energy & Chem Engn, Ulsan 689798, South Korea. [Ercius, Peter] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. [Xu, Chen] Brandeis Univ, Rosenstiel Basic Med Sci Res Ctr, Waltham, MA 02454 USA. [Kim, Jin Woong] Hanyang Univ, Dept Appl Chem, Ansan 426791, South Korea. [Kim, Jin Woong] Hanyang Univ, Dept Bionano Technol, Ansan 426791, South Korea. [Han, Sang Hoon] Amore Pacific Co R&D Ctr, Yongin 446729, Gyeonggi Do, South Korea. RP Weitz, DA (reprint author), Harvard Univ, Dept Appl Phys, Cambridge, MA 02138 USA. EM weitz@seas.harvard.edu RI Park, Hyesung/H-3544-2014; Foundry, Molecular/G-9968-2014; Park, Jungwon/O-1153-2016 OI Park, Jungwon/0000-0003-2927-4331 FU Amore Pacific; Harvard Materials Research Science and Engineering Center [DMR-1420570]; US Department of Energy [DE-AC02-05CH11231]; National Research Foundation of Korea (NRF) - Korea government (MSIP) [2008-0061891] FX J.P, S.H.H, and D.A.W. acknowledge support from Amore Pacific. This work is also supported by the Harvard Materials Research Science and Engineering Center (DMR-1420570). The aberration-corrected electron microscopy was performed at the Molecular Foundry supported by the US Department of Energy DE-AC02-05CH11231. J.W.K. acknowledges support from the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. 2008-0061891). NR 31 TC 17 Z9 17 U1 13 U2 76 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD JUL PY 2015 VL 15 IS 7 BP 4737 EP 4744 DI 10.1021/acs.nanolett.5b01636 PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA CM8PM UT WOS:000357964100074 PM 26065925 ER PT J AU Bischak, CG Sanehira, EM Precht, JT Luther, JM Ginsberg, NS AF Bischak, Connor G. Sanehira, Erin M. Precht, Jake T. Luther, Joseph M. Ginsberg, Naomi S. TI Heterogeneous Charge Carrier Dynamics in Organic Inorganic Hybrid Materials: Nanoscale Lateral and Depth-Dependent Variation of Recombination Rates in Methylammonium Lead Halide Perovskite Thin Films SO NANO LETTERS LA English DT Article DE Methylammonium-lead halide perovskite; cathodoluminescence; nanoimaging; surface defects; nonradiative recombination; photovoltaics ID HETEROJUNCTION SOLAR-CELLS; IODIDE PEROVSKITE; VAPOR-DEPOSITION; SINGLE-CRYSTALS; HOLE-CONDUCTOR; CH3NH3PBI3; CATHODOLUMINESCENCE; ELECTRON; PERFORMANCE; MICROSCOPY AB We reveal substantial luminescence yield heterogeneity among individual subdiffraction grains of high-performing methylammonium lead halide perovskite films by using high-resolution cathodoluminescence microscopy. Using considerably lower accelerating voltages than is conventional in scanning electron microscopy, we image the electron beam-induced luminescence of the films and statistically characterize the depth-dependent role of defects that promote nonradiative recombination losses. The highest variability in the luminescence intensity is observed at the exposed grain surfaces, which we attribute to surface defects. By probing deeper into the film, it appears that bulk defects are more homogeneously distributed. By identifying the origin and variability of a surface-specific loss mechanism that deleteriously impacts device efficiency, we suggest that producing films homogeneously composed of the highest-luminescence grains found in this study could result in a dramatic improvement of overall device efficiency. We also show that although cathodoluminescence microscopy is generally used only to image inorganic materials it can be a powerful tool to investigate radiative and nonradiative charge carrier recombination on the nanoscale in organic-inorganic hybrid materials. C1 [Bischak, Connor G.; Precht, Jake T.; Ginsberg, Naomi S.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Ginsberg, Naomi S.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Ginsberg, Naomi S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Ginsberg, Naomi S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA 94720 USA. [Sanehira, Erin M.; Luther, Joseph M.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Sanehira, Erin M.] Univ Washington, Dept Elect Engn, Seattle, WA 98195 USA. [Ginsberg, Naomi S.] Kavli Energy NanoSci Inst, Berkeley, CA 94720 USA. RP Ginsberg, NS (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM nsginsberg@berkeley.edu RI Precht, Jake/C-2090-2016 OI Precht, Jake/0000-0002-4692-7886 FU Laboratory Directed Research and Development program at NREL; Department of Energy [DE-AC36-08G028308]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; NSF [DGE 1106400] FX J.M.L. received support through the Laboratory Directed Research and Development program at NREL. Department of Energy funding was provided to NREL through contract DE-AC36-08G028308. E.M.S. acknowledges a NASA Space Technology Research Fellowship. We thank B. To for SEM cross section imaging in Figure 1b. CL characterization was supported by a David and Lucile Packard Fellowship for Science and Engineering to N.S.G. CL and PL at the Lawrence Berkeley Lab Molecular Foundry were performed as part of the Molecular Foundry user program, supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. We are grateful to D. F. Ogletree and S. Aloni at the Molecular Foundry for their ongoing sharing of CL equipment, experience, and advice. C.G.B. acknowledges an NSF Graduate Research Fellowship (DGE 1106400) and N.S.G. acknowledges an Alfred P. Sloan Research Fellowship. NR 63 TC 32 Z9 32 U1 9 U2 101 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD JUL PY 2015 VL 15 IS 7 BP 4799 EP 4807 DI 10.1021/acs.nanolett.5b01917 PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA CM8PM UT WOS:000357964100083 PM 26098220 ER PT J AU Liu, YX Martin, W Williams, M Kim, KS AF Liu, Yuxuan Martin, William Williams, Mark Kim, Kang-Seog TI A Full-Core Resonance Self-Shielding Method Using a Continuous-Energy Quasi-One-Dimensional Slowing-Down Solution that Accounts for Temperature-Dependent Fuel Subregions and Resonance Interference SO NUCLEAR SCIENCE AND ENGINEERING LA English DT Article ID PROBABILITY TABLE METHOD; CROSS-SECTIONS; TRANSPORT; CODE; ABSORPTION; SPACE; ROD AB A correction-based resonance self-shielding method is developed that allows annular subdivision of the fuel rod. The method performs the conventional iteration of the embedded self-shielding method (ESSM) without subdivision of the fuel to capture the interpin shielding effect. The resultant self-shielded cross sections are modified by correction factors incorporating the intrapin effects of radial variation of the shielded cross section, radial temperature distribution, and resonance interference. A quasi one-dimensional slowing-down equation is developed to calculate such correction factors. The method is implemented in the DeCART code and compared with the conventional ESSM and subgroup method with benchmark MCNP results. The new method yields substantially improved results for both spatially dependent reaction rates and eigenvalues for typical pressurized water reactor pin cell cases with uniform and nonuniform fuel temperature profiles. The new method is also proved effective in treating assembly heterogeneity and complex material composition such as mixed oxide fuel, where resonance interference is much more intense. C1 [Liu, Yuxuan; Martin, William] Univ Michigan, Dept Nucl Engn & Radiol Sci, Ann Arbor, MI 48109 USA. [Williams, Mark; Kim, Kang-Seog] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Liu, YX (reprint author), Univ Michigan, Dept Nucl Engn & Radiol Sci, 2355 Bonisteel Boulivard, Ann Arbor, MI 48109 USA. EM yuxuanl@umich.edu FU Consortium for Advanced Simulation of Light Water Reactors, an Energy Innovation Hub for Modeling and Simulation of Nuclear Reactors under U.S. Department of Energy [DE-AC05-00OR22725] FX This research was supported by the Consortium for Advanced Simulation of Light Water Reactors (http://www.casl.gov), an Energy Innovation Hub (http://www.energy.gov/hubs) for Modeling and Simulation of Nuclear Reactors under U.S. Department of Energy contract DE-AC05-00OR22725. The first author wishes to express his gratitude to Han Gyu Joo of Seoul National University for his suggestions. NR 41 TC 5 Z9 5 U1 1 U2 1 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5639 EI 1943-748X J9 NUCL SCI ENG JI Nucl. Sci. Eng. PD JUL PY 2015 VL 180 IS 3 BP 247 EP 272 PG 26 WC Nuclear Science & Technology SC Nuclear Science & Technology GA CN0LN UT WOS:000358105200001 ER PT J AU Sridharan, DM Chappell, LJ Whalen, MK Cucinotta, FA Pluth, JM AF Sridharan, Deepa M. Chappell, Lori J. Whalen, Mary K. Cucinotta, Francis A. Pluth, Janice M. TI Defining the Biological Effectiveness of Components of High-LET Track Structure SO RADIATION RESEARCH LA English DT Article ID HISTONE H2AX PHOSPHORYLATION; DNA-DAMAGE RESPONSE; MAMMALIAN-CELLS; X-RAYS; IONIZING-RADIATION; SPACE EXPLORATION; HZE PARTICLES; REPAIR FOCI; ENERGY; ATM AB During space travel, astronauts are exposed to a wide array of high-linear energy transfer (LET) particles, with differing energies and resulting biological effects. Risk assessment of these exposures carries a large uncertainty predominantly due to the unique track structure of the particle's energy deposition. The complex damage elicited by high charge and energy (HZE) particles results from both lesions along the track core and from energetic electrons, delta rays, generated as a consequence of particle traversal. To better define how cells respond to this complex radiation exposure, a normal hTERT immortalized skin fibroblast cell line was exposed to a defined panel of particles carefully chosen to tease out track structure effects. Phosphorylation kinetics for several key double-strand break (DSB) response proteins (gamma-H2AX, pATF2 and pSMC1) were defined after exposure to ten different high-LET radiation qualities and one low-LET radiation (X ray), at two doses (0.5-2 Gy) and time points (2 and 24 h). The results reveal that the lower energy particles (Fe 300, Si 93 and Ti 300 MeV/u), with a narrower track width and higher number and intensity of d rays, cause the highest degree of persistent damage response. The persistent gamma-H2AX signal at lower energies suggests that damage from these exposures are more difficult to resolve, likely due to the greater complexity of the associated DNA lesions. However, different kinetics were observed for the solely ATM-mediated phosphorylations (pATF2 and pSMC1), revealing a shallow induction at early times and a higher level of residual phosphorylation compared to gamma-H2AX. The differing phospho-protein profiles exhibited, compared to gamma-H2AX, suggests additional functions for these proteins within the cell. The strong correspondence between the predicted curves for energy deposition per nucleosome for each ion/energy combination and the persistent levels of gamma-H2AX indicates that the nature of energy distribution defines residual levels of gamma-H2AX, an indicator of unrepaired DSBs. Our results suggest that decreasing the energy of a particle results in more complex damage that may increase genomic instability and increase the risk of carcinogenesis. (C) 2015 by Radiation Research Society C1 [Sridharan, Deepa M.; Whalen, Mary K.; Pluth, Janice M.] Lawrence Berkeley Natl Lab, Div Life Sci, Albany, CA 94710 USA. [Chappell, Lori J.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Cucinotta, Francis A.] Univ Nevada, Hlth Phys & Diagnost Sci, Las Vegas, NV 89154 USA. RP Pluth, JM (reprint author), Lawrence Berkeley Natl Lab, Dept Canc, Albany, CA 94710 USA. EM jmpluth@lbl.gov FU NASA [NNA06CD661] FX We would like to thank Dr. Ianik Plante for helpful discussions. We also thank Michelle Scott in the LBNL FACS core for assistance with flow cytometry, and Dr. Adam Rusek and the Physics team at NSRL for making this work possible. We also extend a special thanks to our undergraduate interns Jeffrey Liu and Ramey Chan for assisting in this project. This project was supported by NASA award NNA06CD661 to JMP. NR 37 TC 7 Z9 7 U1 1 U2 2 PU RADIATION RESEARCH SOC PI LAWRENCE PA 810 E TENTH STREET, LAWRENCE, KS 66044 USA SN 0033-7587 EI 1938-5404 J9 RADIAT RES JI Radiat. Res. PD JUL PY 2015 VL 184 IS 1 BP 105 EP 119 DI 10.1667/RR13684.1 PG 15 WC Biology; Biophysics; Radiology, Nuclear Medicine & Medical Imaging SC Life Sciences & Biomedicine - Other Topics; Biophysics; Radiology, Nuclear Medicine & Medical Imaging GA CM8NA UT WOS:000357957100012 PM 26114329 ER PT J AU Fu, SF Zhu, CZ Du, D Lin, YH AF Fu, Shaofang Zhu, Chengzhou Du, Dan Lin, Yuehe TI Facile One-Step Synthesis of Three-Dimensional Pd-Ag Bimetallic Alloy Networks and Their Electrocatalytic Activity toward Ethanol Oxidation SO ACS APPLIED MATERIALS & INTERFACES LA English DT Article DE Pd; bimetallic alloy; three-dimensional networks; fuel cell; ethanol oxidation reaction ID OXYGEN REDUCTION REACTION; REDUCED GRAPHENE OXIDE; ALKALINE-MEDIUM; METHANOL ELECTROOXIDATION; FORMIC-ACID; FUEL-CELLS; PALLADIUM; NANOPARTICLES; PLATINUM; MEDIA AB The three-dimensional palladium networks and palladium-silver bimetallic alloy networks were synthesized at room temperature on a large scale using a rapid and simple strategy. The results revealed that the morphology of the networks is not affected by the composition. We demonstrated that the as-prepared unsupported networks exhibited excellent electrochemical activity and stability toward ethanol oxidation reaction in alkaline media due to the formation of palladium-silver alloys as well as the porous nanostructures. The results indicate that the well-defined three-dimensional palladium-silver bimetallic alloy networks are promising catalysts for fuel cells. C1 [Fu, Shaofang; Zhu, Chengzhou; Du, Dan; Lin, Yuehe] Washington State Univ, Dept Mech & Mat Engn, Pullman, WA 99164 USA. [Lin, Yuehe] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Lin, YH (reprint author), Washington State Univ, Dept Mech & Mat Engn, Pullman, WA 99164 USA. EM yuehe.lin@wsu.edu RI Lin, Yuehe/D-9762-2011; FU, SHAOFANG/D-2328-2016; Zhu, Chengzhou/M-3566-2014; OI Lin, Yuehe/0000-0003-3791-7587; FU, SHAOFANG/0000-0002-7871-6573; Zhu, Chengzhou/0000-0003-0679-7965 FU Washington State University, USA FX This work was supported by a startup fund of Washington State University, USA. We thank Franceschi Microscopy & Image Center at Washington State University for TEM measurements. We would like to acknowledge Dr. Hong-Gang Liao at Lawrence Berkeley National Laboratory for TRTEM measurement. NR 44 TC 31 Z9 31 U1 17 U2 103 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1944-8244 J9 ACS APPL MATER INTER JI ACS Appl. Mater. Interfaces PD JUL 1 PY 2015 VL 7 IS 25 BP 13842 EP 13848 DI 10.1021/acsami.5b01963 PG 7 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA CM1JI UT WOS:000357436800014 PM 26053942 ER PT J AU Ledee, DR Kajimoto, M Priddy, CMO Olson, AK Isern, N Robillard-Frayne, I Rosiers, CD Portman, MA AF Ledee, Dolena R. Kajimoto, Masaki Priddy, Colleen M. O'Kelly Olson, Aaron K. Isern, Nancy Robillard-Frayne, Isabelle Rosiers, Christine Des Portman, Michael A. TI Pyruvate modifies metabolic flux and nutrient sensing during extracorporeal membrane oxygenation in an immature swine model SO AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY LA English DT Article DE extracorporeal membrane oxygenation; leucine; pyruvate; metabolism ID ACTIVATED PROTEIN-KINASE; O-GLCNAC LEVELS; FATTY-ACID OXIDATION; AMINO-ACIDS; NEONATAL PIGS; HEXOSAMINE BIOSYNTHESIS; CARDIOPULMONARY BYPASS; MOLECULAR-MECHANISMS; ISCHEMIA-REPERFUSION; IN-VIVO AB Extracorporeal membrane oxygenation (ECMO) provides mechanical circulatory support for infants and children with postoperative cardiopulmonary failure. Nutritional support is mandatory during ECMO although specific actions for substrates on the heart have not been delineated. Prior work shows that enhancing pyruvate oxidation promotes successful weaning from ECMO. Accordingly, we tested the hypothesis that prolonged systemic pyruvate supplementation activates pyruvate oxidation in an immature swine model in vivo. Twelve male mixed-breed Yorkshire piglets (age 30-49 days) received systemic infusion of either normal saline (group C) or pyruvate (group P) during the final 6 h of 8 h of ECMO. Over the final hour, piglets received [2-C-13] pyruvate, as a reference substrate for oxidation, and [C-13(6)]-L-leucine, as an indicator for amino acid oxidation and protein synthesis. A significant increase in lactate and pyruvate concentrations occurred, along with an increase in the absolute concentration of the citric acid cycle intermediates. An increase in anaplerotic flux through pyruvate carboxylation in group P occurred compared with no change in pyruvate oxidation. Additionally, pyruvate promoted an increase in the phosphorylation state of several nutrient-sensitive enzymes, like AMP-activated protein kinase and acetyl CoA carboxylase, suggesting activation for fatty acid oxidation. Pyruvate also promoted O-GlcNAcylation through the hexosamine biosynthetic pathway. In conclusion, although prolonged pyruvate supplementation did not alter pyruvate oxidation, it did elicit changes in nutrient- and energy-sensitive pathways. Therefore, the observed results support the further study of pyruvate and its downstream effect on cardiac function. C1 [Ledee, Dolena R.; Kajimoto, Masaki; Olson, Aaron K.; Portman, Michael A.] Seattle Childrens Res Inst, Ctr Dev Therapeut, Seattle, WA 98101 USA. [Priddy, Colleen M. O'Kelly] Univ Washington, Dept Surg, Seattle, WA 98195 USA. [Isern, Nancy] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. [Robillard-Frayne, Isabelle; Rosiers, Christine Des] Univ Montreal, Dept Nutr, Montreal, PQ H3C 3J7, Canada. [Robillard-Frayne, Isabelle; Rosiers, Christine Des] Montreal Heart Inst, Montreal, PQ H1T 1C8, Canada. [Olson, Aaron K.; Portman, Michael A.] Univ Washington, Dept Pediat, Div Cardiol, Seattle, WA 98195 USA. RP Portman, MA (reprint author), Seattle Childrens Res Inst, 1900 9th Ave, Seattle, WA 98101 USA. EM michael.portman@seattlechildrens.org FU National Institutes of Health [HL60666] FX This work was supported by the National Institutes of Health (HL60666 to M. Portman). NR 54 TC 2 Z9 2 U1 0 U2 1 PU AMER PHYSIOLOGICAL SOC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814 USA SN 0363-6135 EI 1522-1539 J9 AM J PHYSIOL-HEART C JI Am. J. Physiol.-Heart Circul. Physiol. PD JUL 1 PY 2015 VL 309 IS 1 BP H137 EP H146 DI 10.1152/ajpheart.00011.2015 PG 10 WC Cardiac & Cardiovascular Systems; Physiology; Peripheral Vascular Disease SC Cardiovascular System & Cardiology; Physiology GA CM2IG UT WOS:000357502700013 PM 25910802 ER PT J AU Dahlgren, FS Heitman, KN Drexler, NA Massung, RF Behravesh, CB AF Dahlgren, F. Scott Heitman, Kristen Nichols Drexler, Naomi A. Massung, Robert F. Behravesh, Casey Barton TI Human Granulocytic Anaplasmosis in the United States from 2008 to 2012: A Summary of National Surveillance Data SO AMERICAN JOURNAL OF TROPICAL MEDICINE AND HYGIENE LA English DT Article ID IXODES-SCAPULARIS ACARI; NEW-YORK-STATE; EHRLICHIOSIS; IXODIDAE; AGENT; PHAGOCYTOPHILUM; PREVALENCE; VECTOR; WISCONSIN; INFECTION AB Human granulocytic anaplasmosis is an acute, febrile illness transmitted by the ticks Ixodes scapularis and Ixodes pacificus in the United States. We present a summary of passive surveillance data for cases of anaplasmosis with onset during 2008-2012. The overall reported incidence rate (IR) was 6.3 cases per million person-years. Cases were reported from 38 states and from New York City, with the highest incidence in Minnesota (IR = 97), Wisconsin (IR = 79), and Rhode Island (IR = 51). Thirty-seven percent of cases were classified as confirmed, almost exclusively by polymerase chain reaction. The reported case fatality rate was 0.3% and the reported hospitalization rate was 31%. IRs, hospitalization rates, life-threatening complications, and case fatality rates increased with age group. The IR increased from 2008 to 2012 and the geographic range of reported cases of anaplasmosis appears to have increased since 2000-2007. Our findings are consistent with previous case series and recent reports of the expanding range of the tick vector I. scapularis. C1 [Dahlgren, F. Scott; Heitman, Kristen Nichols; Drexler, Naomi A.; Massung, Robert F.; Behravesh, Casey Barton] Ctr Dis Control & Prevent, Rickettsial Zoonoses Branch, Div Vector Borne Dis, Atlanta, GA 30329 USA. Oak Ridge Inst Sci & Educ, Oak Ridge, TN USA. RP Dahlgren, FS (reprint author), Ctr Dis Control & Prevent, Rickettsial Zoonoses Branch, Div Vector Borne Dis, 1600 Clifton Rd NE,Mailstop A-30, Atlanta, GA 30329 USA. EM iot0@cdc.gov; wwd7@cdc.gov; isj3@cdc.gov; rfm2@cdc.gov; dlx9@cdc.gov FU Centers for Disease Control and Prevention; U.S. Department of Energy; CDC FX This study was supported by the Centers for Disease Control and Prevention. This research was supported in part by an appointment to the Research Participation Program at the Centers for Disease Control and Prevention administered by the Oak Ridge Institute for Science and Education through an interagency agreement between the U.S. Department of Energy and CDC. NR 35 TC 4 Z9 4 U1 1 U2 8 PU AMER SOC TROP MED & HYGIENE PI MCLEAN PA 8000 WESTPARK DR, STE 130, MCLEAN, VA 22101 USA SN 0002-9637 EI 1476-1645 J9 AM J TROP MED HYG JI Am. J. Trop. Med. Hyg. PD JUL PY 2015 VL 93 IS 1 BP 66 EP 72 DI 10.4269/ajtmh.15-0122 PG 7 WC Public, Environmental & Occupational Health; Tropical Medicine SC Public, Environmental & Occupational Health; Tropical Medicine GA CM5YG UT WOS:000357764300013 PM 25870428 ER PT J AU Olson, AK Gulsby, WD Cohen, BS Byrne, ME Osborn, DA Miller, KV AF Olson, Andrew K. Gulsby, William D. Cohen, Bradley S. Byrne, Michael E. Osborn, David A. Miller, Karl V. TI Spring Excursions of Mature Male White-tailed Deer (Odocoileus virginianus) in North Central Pennsylvania SO AMERICAN MIDLAND NATURALIST LA English DT Article ID BROWNIAN BRIDGE MOVEMENT; ANIMAL MOVEMENT; PARTURITION; PATTERNS AB During the breeding season, male white-tailed deer (Odocoileus virginianus) have been reported to take excursions outside of their normal home ranges, likely in search of receptive females. However, we documented additional excursive movements by males during spring in north central Pennsylvania. From December 2011 - April 2012, we equipped 13 mature (>= 2.5 y old) male white-tailed deer with global positioning system (GPS) collars programmed to record locations hourly. We defined an excursion as any occasion where a male traveled >= 1.6 km outside of its 95% home range boundaries for >= 12 h. Between 6 April and 6 June 2012, nine males (69.2%) made excursions with six making >= 2 excursions. Mean total path distance and duration of excursions was 4.0 km (range = 1.7-8.0 km) and 22 h (range = 12-40 h), respectively. Although the reason for spring excursions is obscure, hypotheses such as increased doe aggression before parturition, males returning to natal home ranges, or visitation to mineral sites do not appear tenable based on current observations. C1 [Olson, Andrew K.; Gulsby, William D.; Cohen, Bradley S.; Osborn, David A.; Miller, Karl V.] Univ Georgia, DB Warnell Sch Forestry & Nat Resources, Athens, GA 30602 USA. [Byrne, Michael E.] Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29808 USA. RP Gulsby, WD (reprint author), Univ Georgia, DB Warnell Sch Forestry & Nat Resources, Athens, GA 30602 USA. EM gulsbyw@warnell.uga.edu NR 27 TC 1 Z9 1 U1 2 U2 16 PU AMER MIDLAND NATURALIST PI NOTRE DAME PA UNIV NOTRE DAME, BOX 369, ROOM 295 GLSC, NOTRE DAME, IN 46556 USA SN 0003-0031 EI 1938-4238 J9 AM MIDL NAT JI Am. Midl. Nat. PD JUL PY 2015 VL 174 IS 1 BP 96 EP 104 PG 9 WC Biodiversity Conservation; Ecology SC Biodiversity & Conservation; Environmental Sciences & Ecology GA CM7JY UT WOS:000357869400008 ER PT J AU Kwon, KD Refson, K Sposito, G AF Kwon, Kideok D. Refson, Keith Sposito, Garrison TI Transition metal incorporation into mackinawite (tetragonal FeS) SO AMERICAN MINERALOGIST LA English DT Article DE Crystal structure; mackinawite; phase transition; metal sulfides; quantum mechanical calculations; phonon calculations; thermodynamics; mackinawite ID NICKELIAN MACKINAWITE; AB-INITIO; VLAKFONTEIN-TRANSVAAL; STRUCTURAL-PROPERTIES; DYNAMICS; SULFIDE; IRON AB Naturally occurring mackinawite (tetragonal FeS) with incorporated transition metals is an important precursor to the formation of metal sulfides in ore deposits, but experimental results have not been sufficient to establish clear trends in the structure and stability of the transition-metal-enriched mineral. Using density functional theory with dispersion corrections, we report the first systematic examination of the relationship between composition and structure for FeS incorporating bivalent transition metals. Our method was validated by successful calculations of the structures of FeS, FeSe, FeSe1-xSx, Fe1-xMexSe (Me = Co, Ni, Cu), and FeNixTe. Two classes of transition-metal-incorporated FeS structures then were investigated: Fe1-xMexSe (metal-substituted FeS) and FeMexS (FeS intercalated by a metal at either a tetrahedral or square-pyramidal interstitial site), where Me = Co, Ni, and Cu, and x <= 0.25. We find that incorporated transition metals can both increase and decrease lattice parameters, depending on the metal and how it is incorporated into the FeS structure. As the mole fraction of substituting metal increases, the FeS unit-cell volume decreases for Co, is nearly constant for Ni, but increases for Cu. Metal substitution changes the c lattice parameter, which is sensitive to interactions between the mackinawite sheets, as much as it does the a and b lattice parameters. Upon intercalation, the unit-cell volume and c parameter increase but the a and b parameters decrease. Experimental structural data are consistent with our results for metal-substituted FeS. We determined the thermodynamic stability of metal-incorporated FeS by computing the free energy involved in the metal incorporation reactions as a function of chemical potential of sulfur. The thermodynamic results lead to the general conclusions that metal incorporation into mackinawite most likely occurs via substitution, which may be important to influence phase transformation pathways of mackinawite. C1 [Kwon, Kideok D.] Kangwon Natl Univ, Dept Geol, Chunchon 200701, South Korea. [Refson, Keith] STFC Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Refson, Keith] Royal Holloway Univ London, Dept Phys, Egham TW20 0EX, Surrey, England. [Sposito, Garrison] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Dept Geochem, Div Earth Sci, Berkeley, CA 94720 USA. RP Kwon, KD (reprint author), Kangwon Natl Univ, Dept Geol, Chunchon 200701, South Korea. EM kkwon@kangwon.ac.kr FU Basic Science Research Program through the National Research Foundation of Korea (NRF) - Ministry of Science, ICT, and Future Planning [NRF-2013R1A1A1004657]; Kangwon National University; University of California at Berkeley; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT, and Future Planning (NRF-2013R1A1A1004657) and a 2012 Research Grant from Kangwon National University. Support for this research also was received from the University of California at Berkeley through the appointment of G.S. as a Chancellor's Professor. Computations were performed by using resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 55 TC 0 Z9 0 U1 8 U2 41 PU MINERALOGICAL SOC AMER PI CHANTILLY PA 3635 CONCORDE PKWY STE 500, CHANTILLY, VA 20151-1125 USA SN 0003-004X EI 1945-3027 J9 AM MINERAL JI Am. Miner. PD JUL PY 2015 VL 100 IS 7 BP 1509 EP 1517 PG 9 WC Geochemistry & Geophysics; Mineralogy SC Geochemistry & Geophysics; Mineralogy GA CM1HK UT WOS:000357431700017 ER PT J AU Tanis, EA Simon, A Tschauner, O Chow, P Xiao, YM Burnley, P Cline, CJ Hanchar, JM Pettke, T Shen, GY Zhao, YS AF Tanis, Elizabeth A. Simon, Adam Tschauner, Oliver Chow, Paul Xiao, Yuming Burnley, Pamela Cline, Christopher J., II Hanchar, John M. Pettke, Thomas Shen, Guoyin Zhao, Yusheng TI The mobility of Nb in rutile-saturated NaCl- and NaF-bearing aqueous fluids from 1-6.5 GPa and 300-800 degrees C SO AMERICAN MINERALOGIST LA English DT Article DE High field strength elements; niobium; synchrotron; hydrothermal diamond anvil cell; subduction; rutile; aqueous fluid ID SUBDUCTION-ZONE FLUIDS; HIGH-FIELD-STRENGTH; DIAMOND-ANVIL CELL; ISLAND-ARC BASALTS; TRACE-ELEMENTS; MELT EXTRACTION; HIGH-PRESSURE; ICP-MS; SOLUBILITY; MANTLE AB Rutile (TiO2) is an important host phase for high field strength elements (HFSE) such as Nb in metamorphic and subduction zone environments. The observed depletion of Nb in arc rocks is often explained by the hypothesis that rutile sequesters HFSE in the subducted slab and overlying sediment, and is chemically inert with respect to aqueous fluids evolved during prograde metamorphism in the forearc to subarc environment. However, field observations of exhumed terranes, and experimental studies, indicate that HFSE may be soluble in complex aqueous fluids at high pressure (i.e., >0.5 GPa) and moderate to high temperature (i.e., >300 degrees C). In this study, we investigated experimentally the mobility of Nb in NaCl- and NaF-bearing aqueous fluids in equilibrium with Nb-bearing rutile at pressure-temperature conditions applicable to fluid evolution in arc environments. Niobium concentrations in aqueous fluid at rutile saturation were measured directly by using a hydrothermal diamond-anvil cell (HDAC) and synchrotron X-ray fluorescence (SXRF) at 2.1 to 6.5 GPa and 300-500 degrees C, and indirectly by performing mass loss experiments in a piston-cylinder (PC) apparatus at similar to 1 GPa and 700-800 degrees C. The concentration of Nb in a 10 wt% NaCl aqueous fluid increases from 6 to 11 mu g/g as temperature increases from 300 to 500 degrees C, over a pressure range from 2.1 to 2.8 GPa, consistent with a positive temperature dependence. The concentration of Nb in a 20 wt% NaCl aqueous fluid varies from 55 to 150 mu g/g at 300 to 500 degrees C, over a pressure range from 1.8 to 6.4 GPa; however, there is no discernible temperature or pressure dependence. The Nb concentration in a 4 wt% NaF-bearing aqueous fluid increases from 180 to 910 mu g/g as temperature increases from 300 to 500 degrees C over the pressure range 2.1 to 6.5 GPa. The data for the F-bearing fluid indicate that the Nb content of the fluid exhibits a dependence on temperature between 300 and 500 degrees C at >= 2 GPa, but there is no observed dependence on pressure. Together, the data demonstrate that the hydrothermal mobility of Nb is strongly controlled by the composition of the fluid, consistent with published data for Ti. At all experimental conditions, however, the concentration of Nb in the fluid is always lower than coexisting rutile, consistent with a role for rutile in moderating the Nb budget of arc rocks. C1 [Tanis, Elizabeth A.; Simon, Adam] Univ Michigan, Earth & Environm Sci, Ann Arbor, MI 48109 USA. [Tanis, Elizabeth A.; Tschauner, Oliver; Burnley, Pamela; Cline, Christopher J., II] Univ Nevada, High Pressure Sci & Engn Ctr, Las Vegas, NV 89154 USA. [Tschauner, Oliver; Burnley, Pamela; Cline, Christopher J., II] Univ Nevada, Dept Geosci, Las Vegas, NV 89154 USA. [Chow, Paul; Xiao, Yuming] Argonne Natl Lab, Adv Photon Source, HPCAT, Argonne, IL 60439 USA. [Hanchar, John M.; Shen, Guoyin; Zhao, Yusheng] Mem Univ Newfoundland, Earth Sci, St John, NF A1C 5S7, Canada. [Pettke, Thomas] Univ Bern, Inst Geol Sci, CH-3012 Bern, Switzerland. RP Tanis, EA (reprint author), Univ Michigan, Earth & Environm Sci, 2534 CC Little Bldg,1100 North Univ Ave, Ann Arbor, MI 48109 USA. EM eatanis@umich.edu RI Simon, Adam/D-1584-2016 OI Simon, Adam/0000-0002-1733-5718 FU NSF [EAR-1264560]; DOE-NNSA [DE-NA0001974]; DOE-BES [DE-FG02-99ER45775, DE-AC02-06CH11357]; National Nuclear Security Administration through DOE [DE-NA0001982]; Canadian Natural Sciences and Research Council (NSERC); Memorial University of Newfoundland FX We acknowledge NSF EAR-1264560 to Simon, Tschauner, and Burnley. Portions of this work were performed at HPCAT (Sector 16), Advanced Photon Source (APS), Argonne National Laboratory. HPCAT operations are supported by DOE-NNSA under Award No. DE-NA0001974 and DOE-BES under Award No. DE-FG02-99ER45775, with partial instrumentation funding by NSF. HiPSEC provided the HDACs and part of the beamtime. HiPSEC is supported by the National Nuclear Security Administration through DOE Cooperative Agreement DE-NA0001982. APS is supported by DOE-BES, under Contract No. DE-AC02-06CH11357. We acknowledge COMPRESS and GSECARS for the use of the laser drilling system. J.M.H. thanks the Canadian Natural Sciences and Research Council (NSERC) for partial support for this research in the form of a Discovery Grant, and Memorial University of Newfoundland, for additional financial support for this project. NR 62 TC 5 Z9 6 U1 2 U2 17 PU MINERALOGICAL SOC AMER PI CHANTILLY PA 3635 CONCORDE PKWY STE 500, CHANTILLY, VA 20151-1125 USA SN 0003-004X EI 1945-3027 J9 AM MINERAL JI Am. Miner. PD JUL PY 2015 VL 100 IS 7 BP 1600 EP 1609 PG 10 WC Geochemistry & Geophysics; Mineralogy SC Geochemistry & Geophysics; Mineralogy GA CM1HK UT WOS:000357431700028 ER PT J AU Goueguel, C McIntyre, DL Jain, J Karamalidis, AK Carson, C AF Goueguel, Christian McIntyre, Dustin L. Jain, Jinesh Karamalidis, Athanasios K. Carson, Cantwell TI Matrix effect of sodium compounds on the determination of metal ions in aqueous solutions by underwater laser-induced breakdown spectroscopy SO APPLIED OPTICS LA English DT Article ID OCEANIC PRESSURES; PULSE; WATER; LIQUIDS; LIBS AB A significant portion of the carbon sequestration research being performed in the United States involves the risk assessment of injecting large quantities of carbon dioxide into deep saline aquifers. Leakage of CO2 has the potential to affect the quality of groundwater supplies in case contaminants migrate through underlying conduits. New remote sensing and near-surface monitoring technologies are needed to ensure that injection, abandoned, and monitoring wells are structurally sound, and that CO2 remains within the geologic storage reservoir. In this paper, we propose underwater laser-induced breakdown spectroscopy (underwater LIBS) as an analytical method for monitoring naturally occurring elements that can act as tracers to detect a CO2 leak from storage sites. Laboratory-scale experiments were conducted to measure Sr2+, Ca2+, K+, and Li+ in bulk solutions to ascertain the analytical performance of underwater LIBS. We compared the effect of NaCl, Na2CO3, and Na2SO4 on the analytes calibration curves to determine underwater LIBS' ability to analyze samples of sodium compounds. In all cases, the calibration curves showed a good linearity within 2 orders of magnitude. The limit of detections (LODs) obtained for K+ (30 +/- 1 ppb) and Li+ (60 +/- 2 ppb) were in ppb range, while higher LODs were observed for Ca2+ (0.94 +/- 0.14 ppm) and Sr2+ (2.89 +/- 0.11 ppm). Evaluation of the calibration curves for the analytes in mixed solutions showed dependence of the lines' intensity with the sodium compounds. The intensities increased respectively in the presence of dissolved NaCl and Na2SO4, whereas the intensities slightly decreased in the presence of Na2CO3. Finally, the capabilities of underwater LIBS to detect certain elements in the ppb or in the low ppm range make it particularly appealing for in situ monitoring of a CO2 leak. (C) 2015 Optical Society of America C1 [Goueguel, Christian; Carson, Cantwell] US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. [McIntyre, Dustin L.] US DOE, Natl Energy Technol Lab, Morgantown, WV 26507 USA. [Jain, Jinesh] AECOM, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. [Karamalidis, Athanasios K.] Carnegie Mellon Univ, Dept Civil & Environm Engn, Pittsburgh, PA 15213 USA. RP Goueguel, C (reprint author), US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. EM christian.goueguel@netl.doe.gov FU Department of Energy's National Energy Technology Laboratory (NETL); AECOM Technology Corporation FX Department of Energy's National Energy Technology Laboratory (NETL), through a support contract with AECOM Technology Corporation. NR 27 TC 2 Z9 2 U1 5 U2 26 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1559-128X EI 2155-3165 J9 APPL OPTICS JI Appl. Optics PD JUL 1 PY 2015 VL 54 IS 19 BP 6071 EP 6079 DI 10.1364/AO.54.006071 PG 9 WC Optics SC Optics GA CL9ZY UT WOS:000357339200028 PM 26193154 ER PT J AU Sherman, M AF Sherman, Max TI How ASHRAE Set the Rates For Residential Ventilation SO ASHRAE JOURNAL LA English DT Article AB We humans spend much of our life indoors and have always had to ventilate those indoor spaces for health, safety and comfort reasons. But, ventilation did not begin to transform from an art to a science until 1836 when the first quantification of ventilation rates took place in England, where the recommended standard for Parliament was 4 cfm/person (2 L/s per person). Since that time, many illustrious individuals from Nightingale to Billings to Pettenkofer to Yaglou have weighed in on the subject of the proper ventilation rate. C1 Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Sherman, M (reprint author), Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. NR 2 TC 0 Z9 0 U1 1 U2 2 PU AMER SOC HEATING REFRIGERATING AIR-CONDITIONING ENG, INC, PI ATLANTA PA 1791 TULLIE CIRCLE NE, ATLANTA, GA 30329 USA SN 0001-2491 EI 1943-6637 J9 ASHRAE J JI ASHRAE J. PD JUL PY 2015 VL 57 IS 7 BP 20 EP 23 PG 4 WC Thermodynamics; Construction & Building Technology; Engineering, Mechanical SC Thermodynamics; Construction & Building Technology; Engineering GA CM6AQ UT WOS:000357770500004 ER PT J AU Xu, WQ Ramirez, PJ Stacchiola, D Brito, JL Rodriguez, JA AF Xu, Wenqian Ramirez, Pedro J. Stacchiola, Dario Brito, Joaquin L. Rodriguez, Jose A. TI The Carburization of Transition Metal Molybdates (MxMoO4, M = Cu, Ni or Co) and the Generation of Highly Active Metal/Carbide Catalysts for CO2 Hydrogenation SO CATALYSIS LETTERS LA English DT Article DE Molybdenum carbide; Molybdenum oxide; Molybdate; Nickel; Copper; Cobalt; CO2 hydrogenation ID COBALT-BASED CATALYST; METHANOL SYNTHESIS; CARBON-DIOXIDE; MOLYBDENUM CARBIDE; CHARGE POLARIZATION; PHASE-COMPOSITION; SURFACES; ACTIVATION; REDUCTION; PRECURSOR AB A new approach has been tested for the preparation of metal/Mo2C catalysts using mixed-metal oxide molybdates as precursors. Synchrotron-based in situ time-resolved X-ray diffraction was used to study the reduction and carburization processes of Cu-3(MoO4)(2)(OH)(2), alpha-NiMoO4 and CoMoO4 center dot nH(2)O by thermal treatment under mixtures of hydrogen and methane. In all cases, the final product was beta-Mo2C and a metal phase (Cu, Ni, or Co), but the transition sequence varied with the different metals, and it could be related to the reduction potential of the Cu2+, Ni2+ and Co2+ cations inside each molybdate. The synthesized Cu/Mo2C, Ni/Mo2C and Co/Mo2C catalysts were highly active for the hydrogenation of CO2. The metal/Mo2C systems exhibited large variations in the selectivity towards methanol, methane and CnH2n+2 (n > 2) hydrocarbons depending on the nature of the supported metal and its ability to cleave C-O bonds. Cu/Mo2C displayed a high selectivity for CO and methanol production. Ni/Mo2C and Co/Mo2C were the most active catalysts for the activation and full decomposition of CO2, showing high selectivity for the production of methane (Ni case) and CnH2n+2 (n > 2) hydrocarbons (Co case). [GRAPHICS] . C1 [Xu, Wenqian; Ramirez, Pedro J.; Stacchiola, Dario; Rodriguez, Jose A.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Ramirez, Pedro J.] Cent Univ Venezuela, Fac Ciencias, Caracas 1020 A, Venezuela. [Brito, Joaquin L.] IVIC, Ctr Quim, Caracas 1020 A, Venezuela. RP Rodriguez, JA (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. EM rodrigez@bnl.gov RI Stacchiola, Dario/B-1918-2009 OI Stacchiola, Dario/0000-0001-5494-3205 FU U.S. Department of Energy, Chemical Sciences Division [DE-AC02-98CH10886]; INTEVEP; IDB FX The research carried out at BNL was supported by the U.S. Department of Energy, Chemical Sciences Division (DE-AC02-98CH10886). P.J.R. is grateful to INTEVEP and IDB for support of the work carried out at UCV. NR 51 TC 6 Z9 7 U1 30 U2 177 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1011-372X EI 1572-879X J9 CATAL LETT JI Catal. Lett. PD JUL PY 2015 VL 145 IS 7 BP 1365 EP 1373 DI 10.1007/s10562-015-1540-5 PG 9 WC Chemistry, Physical SC Chemistry GA CM2AM UT WOS:000357481900001 ER PT J AU Yan, XH Ye, YX Chen, JP Lu, HJ Zhu, PJ Jiang, FJ AF Yan Xin-Hu Ye Yun-Xiu Chen Jian-Ping Lu Hai-Jiang Zhu Peng-Jia Jiang Feng-Jian TI Radiation and ionization energy loss simulation for the GDH sum rule experiment in Hall-A at Jefferson Lab SO CHINESE PHYSICS C LA English DT Article DE GDH sum rule; radiation thickness; ionization; SAMC ID CHARGED-PARTICLES; PAIR PRODUCTION; ELECTRONS AB The radiation and ionization energy loss are presented for single arm Monte Carlo simulation for the GDH sum rule experiment in Hall-A at the Jefferson Lab. Radiation and ionization energy loss are discussed for C-12 elastic scattering simulation. The relative momentum ratio Delta p/p and C-12 elastic cross section are compared without and with radiative energy loss and a reasonable shape is obtained by the simulation. The total energy loss distribution is obtained, showing a Landau shape for C-12 elastic scattering. This simulation work will give good support for radiation correction analysis of the GDH sum rule experiment. C1 [Yan Xin-Hu; Lu Hai-Jiang; Jiang Feng-Jian] Huangshan Univ, Dept Phys, Huangshan 245041, Peoples R China. [Ye Yun-Xiu; Zhu Peng-Jia] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Peoples R China. [Chen Jian-Ping] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. RP Yan, XH (reprint author), Huangshan Univ, Dept Phys, Huangshan 245041, Peoples R China. EM yanxinhu@mail.ustc.edu.cn FU National Natural Science Foundation of China [11135002, 11275083]; US Department of Energy [DE-AC05-84ER-40150]; Natural Science Foundation of An'hui Educational Committee [KJ2012B179] FX Supported by National Natural Science Foundation of China (11135002, 11275083), US Department of Energy contract DE-AC05-84ER-40150 under which Jefferson Science Associates operates the Thomas Jefferson National Accelerator Facility and Natural Science Foundation of An'hui Educational Committee (KJ2012B179) NR 17 TC 0 Z9 0 U1 0 U2 2 PU CHINESE PHYSICAL SOC PI BEIJING PA P O BOX 603, BEIJING 100080, PEOPLES R CHINA SN 1674-1137 J9 CHINESE PHYS C JI Chin. Phys. C PD JUL PY 2015 VL 39 IS 7 AR 076202 DI 10.1088/1674-1137/39/7/076202 PG 4 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA CM3AO UT WOS:000357553700012 ER PT J AU Kim, Y Hong, S Oh, S Choi, YY Choi, H No, K AF Kim, Yeontae Hong, Seungbum Oh, Sehoon Choi, Yoon-Young Choi, Hyunwoo No, Kwangsoo TI The Effects of an Alkaline Treatment on the Ferroelectric Properties of Poly(vinylidene fluoride trifluoroethylene) Films SO ELECTRONIC MATERIALS LETTERS LA English DT Article DE alkaline etching; polymer degradation; polarization reduction; P(VDF-TrFE); template-based; polymer nanostructure ID CARBON NANOTUBES; NANOWIRE ARRAYS; SPECTROSCOPY; MEMBRANES; GROWTH; CRYSTALLIZATION; DIFLUORIDE); FABRICATION; NANORODS; ROUTE AB The effects of an alkaline treatment on the ferroelectric properties of poly(vinylidene fluoride trifluoroethylene) [P(VDF-TrFE)] copolymer films are investigated. The alkaline treatment resulted in a small change in the surface roughness but no significant change in the grain shape or size of P(VDF-TrFE) copolymer films, as evidenced by both scanning electron microscopy and atomic force microscopy images. However, x-ray photoelectron spectroscopy results indicated that the alkaline etchant of a KOH solution reacted with P(VDF-TrFE) films to decrease the number of C-F bonds while creating new carbon conjugated double bonds, which decreased the remanent polarization of the P(VDF-TrFE) films. These results can improve our understanding of the degradation mechanism of an alkaline treatment. C1 [Kim, Yeontae; Hong, Seungbum; Oh, Sehoon; Choi, Hyunwoo; No, Kwangsoo] Korea Adv Inst Sci & Technol, Dept Mat Sci & Engn, Taejon 305751, South Korea. [Hong, Seungbum; Choi, Yoon-Young] Argonne Natl Lab, Div Mat Sci, Lemont, IL 60439 USA. RP Hong, S (reprint author), Korea Adv Inst Sci & Technol, Dept Mat Sci & Engn, Taejon 305751, South Korea. EM hong@anl.gov; ksno@kaist.ac.kr RI No, Kwangsoo/C-1983-2011; Hong, Seungbum/B-7708-2009 OI Hong, Seungbum/0000-0002-2667-1983 FU Mid-career Researcher Program [2010-0015063]; Conversion Research Center Program through National Research Foundation of Korea (NRF) - Ministry of Education, Science and Technology (MEST) [2011K000674]; U.S. DOE Office of Science Laboratory [DE-AC02-06CH11357]; UChicago Argonne FX This research was supported by the Mid-career Researcher Program (No. 2010-0015063) and Conversion Research Center Program (No. 2011K000674) through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (MEST). Work at Argonne National Laboratory (S.H. and Y.Y.C., data analysis and writing of manuscript) was supported by UChicago Argonne, a U.S. DOE Office of Science Laboratory, operated under Contract No. DE-AC02-06CH11357. NR 32 TC 1 Z9 1 U1 1 U2 11 PU KOREAN INST METALS MATERIALS PI SEOUL PA KIM BLDG 6TH FLOOR, SEOCHO-DAERO 56 GIL 38, SEOCHO-GU, SEOUL 137-881, SOUTH KOREA SN 1738-8090 EI 2093-6788 J9 ELECTRON MATER LETT JI Electron. Mater. Lett. PD JUL PY 2015 VL 11 IS 4 BP 586 EP 591 DI 10.1007/s13391-015-5125-7 PG 6 WC Materials Science, Multidisciplinary SC Materials Science GA CM5DE UT WOS:000357706200008 ER PT J AU Hathaway, JE Rishel, JP Walsh, ME Walsh, MR Taylor, S AF Hathaway, John E. Rishel, Jeremy P. Walsh, Marianne E. Walsh, Michael R. Taylor, Susan TI Explosive particle soil surface dispersion model for detonated military munitions SO ENVIRONMENTAL MONITORING AND ASSESSMENT LA English DT Article DE Explosives; Particulate materials; Simulations AB The accumulation of high explosive mass residue from the detonation of military munitions on training ranges is of environmental concern because of its potential to contaminate the soil, surface water, and groundwater. The US Department of Defense wants to quantify, understand, and remediate high explosive mass residue loadings that might be observed on active firing ranges. Previously, efforts using various sampling methods and techniques have resulted in limited success, due in part to the complicated dispersion pattern of the explosive particle residues upon detonation. In our efforts to simulate particle dispersal for high-and low-order explosions on hypothetical firing ranges, we use experimental particle data from detonations of munitions from a 155-mm howitzer, which are common military munitions. The mass loadings resulting from these simulations provide a previously unattained level of detail to quantify the explosive residue sourceterm for use in soil and water transport models. In addition, the resulting particle placements can be used to test, validate, and optimize particle sampling methods and statistical models as applied to firing ranges. Although the presented results are for a hypothetical 155-mm howitzer firing range, the method can be used for other munition types once the explosive particle characteristics are known. C1 [Hathaway, John E.; Rishel, Jeremy P.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Walsh, Marianne E.; Walsh, Michael R.; Taylor, Susan] Cold Reg Res & Engn Lab, Hanover, NH USA. RP Hathaway, JE (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM john.hathaway@pnnl.gov FU Environmental Security Technology Certification Program (ESTCP) FX We would like to acknowledge the funding support of the Environmental Security Technology Certification Program (ESTCP) and the guidance of Andrea Leeson, the Environmental Restoration program manager of ESTCP. Additionally, we thank the Cold Regions Research and Engineering Laboratory and Pacific Northwest National Laboratory for their resource support. NR 13 TC 0 Z9 0 U1 1 U2 1 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0167-6369 EI 1573-2959 J9 ENVIRON MONIT ASSESS JI Environ. Monit. Assess. PD JUL PY 2015 VL 187 IS 7 AR 415 DI 10.1007/s10661-015-4652-x PG 15 WC Environmental Sciences SC Environmental Sciences & Ecology GA CM0AL UT WOS:000357340500023 PM 26050065 ER PT J AU Ragan, ED Bowman, DA Kopper, R Stinson, C Scerbo, S McMahan, RP AF Ragan, Eric D. Bowman, Doug A. Kopper, Regis Stinson, Cheryl Scerbo, Siroberto McMahan, Ryan P. TI Effects of Field of View and Visual Complexity on Virtual Reality Training Effectiveness for a Visual Scanning Task SO IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS LA English DT Article DE Artificial; augmented; and virtual realities; Graphical user interfaces ID INTERACTION FIDELITY; SIMULATION; ENVIRONMENTS; RELIABILITY; PERFORMANCE; GUIDELINES; IMMERSION; AGREEMENT AB Virtual reality training systems are commonly used in a variety of domains, and it is important to understand how the realism of a training simulation influences training effectiveness. We conducted a controlled experiment to test the effects of display and scenario properties on training effectiveness for a visual scanning task in a simulated urban environment. The experiment varied the levels of field of view and visual complexity during a training phase and then evaluated scanning performance with the simulator's highest levels of fidelity and scene complexity. To assess scanning performance, we measured target detection and adherence to a prescribed strategy. The results show that both field of view and visual complexity significantly affected target detection during training; higher field of view led to better performance and higher visual complexity worsened performance. Additionally, adherence to the prescribed visual scanning strategy during assessment was best when the level of visual complexity during training matched that of the assessment conditions, providing evidence that similar visual complexity was important for learning the technique. The results also demonstrate that task performance during training was not always a sufficient measure of mastery of an instructed technique. That is, if learning a prescribed strategy or skill is the goal of a training exercise, performance in a simulation may not be an appropriate indicator of effectiveness outside of training-evaluation in a more realistic setting may be necessary. C1 [Ragan, Eric D.] Oak Ridge Natl Lab, Cyber & Informat Secur Res Grp, Oak Ridge, TN 37831 USA. [Bowman, Doug A.; Scerbo, Siroberto] Virginia Tech, Dept Comp Sci, Blacksburg, VA 24061 USA. [Kopper, Regis] Duke Univ, Pratt Sch Engn, Durham, NC 27708 USA. [Stinson, Cheryl] Precis Nutr, Toronto, ON M5E 1W7, Canada. [McMahan, Ryan P.] Univ Texas Dallas, Dept Comp Sci, Richardson, TX 75080 USA. RP Ragan, ED (reprint author), Oak Ridge Natl Lab, Cyber & Informat Secur Res Grp, Oak Ridge, TN 37831 USA. EM raganed@ornl.gov; bowman@vt.edu; regis.kopper@duke.edu; cstinson@vt.edu; scerbo@vt.edu; rymcmaha@utdallas.edu FU Immersive Sciences program in the Office of Naval Research; U.S. Department of Energy [DE-AC05-00OR22725] FX The authors would like to thank Tobias Hollerer, Tao Ni, and Peter Squire for their help and support of this research. They also thank Jim Templeman for the ideas for the visual scanning task, and the anonymous raters who reviewed hundreds of scanning trials. This research was funded by the Immersive Sciences program in the Office of Naval Research. This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. NR 50 TC 4 Z9 4 U1 4 U2 17 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 1077-2626 EI 1941-0506 J9 IEEE T VIS COMPUT GR JI IEEE Trans. Vis. Comput. Graph. PD JUL PY 2015 VL 21 IS 7 BP 794 EP 807 DI 10.1109/TVCG.2015.2403312 PG 14 WC Computer Science, Software Engineering SC Computer Science GA CM3QN UT WOS:000357598300002 PM 26357242 ER PT J AU Kim, W Braun, JE AF Kim, Woohyun Braun, James E. TI Extension of a virtual refrigerant charge sensor SO INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID LA English DT Article DE FDD system; Refrigerant charge; Virtual sensor; Variable-speed compressor; Heat pump; Air conditioner ID HEAT-PUMP; PERFORMANCE; IMPACTS AB The primary goal of the work described in this paper was to evaluate and extend a virtual refrigerant charge sensor (VRC) for determining refrigerant charge for equipment having variable-speed compressors and fans. Based on the evaluations, the original VRC sensor (termed model I) was found to work well in estimating the refrigerant charge level for systems with a variable-speed compressor. However, for extreme test conditions such as low compressor speed, the model I needed to be improved. To overcome the limitations, the model was modified to include a term involving the inlet quality to the evaporator (termed model II). The model II gave better performance for systems with a variable-speed compressor. When the superheat of the compressor was zero, neither model II could accurately predict charge level. Therefore, a third approach (Model III) was developed that includes the discharge superheat of the compressor. (C) 2014 Elsevier Ltd and IIR. All rights reserved. C1 [Kim, Woohyun] Pacific NW Natl Lab, Richland, WA 99352 USA. [Braun, James E.] Purdue Univ, Herrick Lab, Mech Engn, W Lafayette, IN 47906 USA. RP Braun, JE (reprint author), Purdue Univ, Herrick Lab, Mech Engn, W Lafayette, IN 47906 USA. EM jbraun@purdue.edu FU National Institute of Standards and Technology FX This work was supported by the National Institute of Standards and Technology. NR 19 TC 1 Z9 1 U1 3 U2 7 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0140-7007 EI 1879-2081 J9 INT J REFRIG JI Int. J. Refrig.-Rev. Int. Froid PD JUL PY 2015 VL 55 BP 224 EP 235 DI 10.1016/j.ijrefrig.2014.09.015 PG 12 WC Thermodynamics; Engineering, Mechanical SC Thermodynamics; Engineering GA CM2WN UT WOS:000357543100020 ER PT J AU Wang, J AF Wang, Jian TI Atomistic Simulations of Dislocation Pileup: Grain Boundaries Interaction SO JOM LA English DT Article ID IN-SITU NANOINDENTATION; SHEAR DEFORMATION; INTERFACE DEFECTS; MECHANISMS; MOTION; DISCONNECTIONS; PLASTICITY; BICRYSTALS; ALUMINUM; ENERGY AB Using molecular dynamics (MD) simulations, we studied the dislocation pileup-grain boundary (GB) interactions. Two I 11 pound asymmetrical tilt grain boundaries in Al are studied to explore the influence of orientation relationship and interface structure on dislocation activities at grain boundaries. To mimic the reality of a dislocation pileup in a coarse-grained polycrystalline, we optimized the dislocation population in MD simulations and developed a predict-correct method to create a dislocation pileup in MD simulations. MD simulations explored several kinetic processes of dislocations-GB reactions: grain boundary sliding, grain boundary migration, slip transmission, dislocation reflection, reconstruction of grain boundary, and the correlation of these kinetic processes with the available slip systems across the GB and atomic structures of the GB. C1 Los Alamos Natl Lab, Mat Sci & Technol Div, Los Alamos, NM 87545 USA. RP Wang, J (reprint author), Los Alamos Natl Lab, Mat Sci & Technol Div, Los Alamos, NM 87545 USA. EM wangj6@lanl.gov RI Wang, Jian/F-2669-2012 OI Wang, Jian/0000-0001-5130-300X FU Los Alamos National Laboratory Directed Research and Development project (LDRD-DR); U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences; Los Alamos National Laboratory Directed Research and Development project [LDRD-ER20140450] FX This work was originally supported by the Los Alamos National Laboratory Directed Research and Development project (LDRD-DR) during 2009-2011 and later finished with the support provided by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences and the Los Alamos National Laboratory Directed Research and Development project LDRD-ER20140450. The author acknowledges collaborations with T.C. Germann, S.M. Valone, R.G. Hoagland, and A.F. Voter, at Los Alamos National Laboratory, Prof. A. Misra at University of Michigan, and Prof. J.P. Hirth. NR 39 TC 4 Z9 4 U1 3 U2 27 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1047-4838 EI 1543-1851 J9 JOM-US JI JOM PD JUL PY 2015 VL 67 IS 7 BP 1515 EP 1525 DI 10.1007/s11837-015-1454-0 PG 11 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing SC Materials Science; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing GA CM1NM UT WOS:000357447600024 ER PT J AU Manero, A Sofronsky, S Knipe, K Meid, C Wischek, J Okasinski, J Almer, J Karlsson, AM Raghavan, S Bartsch, M AF Manero, Albert, II Sofronsky, Stephen Knipe, Kevin Meid, Carla Wischek, Janine Okasinski, John Almer, Jonathan Karlsson, Anette M. Raghavan, Seetha Bartsch, Marion TI Monitoring Local Strain in a Thermal Barrier Coating System Under Thermal Mechanical Gas Turbine Operating Conditions SO JOM LA English DT Article ID X-RAY-DIFFRACTION; FATIGUE CRACKS; THIN-FILMS; STRESS; SPALLATION; OXIDATION; OXIDE; MODEL AB Advances in aircraft and land-based turbine engines have been increasing the extreme loading conditions on traditional engine components and have incited the need for improved performance with the use of protective coatings. These protective coatings shield the load-bearing super alloy blades from the high-temperature combustion gases by creating a thermal gradient over their thickness. This addition extends the life and performance of blades. A more complete understanding of the behavior, failure mechanics, and life expectancy for turbine blades and their coatings is needed to enhance and validate simulation models. As new thermal-barrier-coated materials and deposition methods are developed, strides to effectively test, evaluate, and prepare the technology for industry deployment are of paramount interest. Coupling the experience and expertise of researchers at the University of Central Florida, The German Aerospace Center, and Cleveland State University with the world-class synchrotron x-ray beam at the Advanced Photon Source in Argonne National Laboratory, the synergistic collaboration has yielded previously unseen measurements to look inside the coating layer system for in situ strain measurements during representative service loading. These findings quantify the in situ strain response on multilayer thermal barrier coatings and shed light on the elastic and nonelastic properties of the layers and the role of mechanical load and internal cooling variations on the response. The article discusses the experimental configuration and development of equipment to perform in situ strain measurements on multilayer thin coatings and provides an overview of the achievements thus far. C1 [Manero, Albert, II; Sofronsky, Stephen; Knipe, Kevin; Raghavan, Seetha] Univ Cent Florida, Orlando, FL 32816 USA. [Meid, Carla; Wischek, Janine; Bartsch, Marion] Inst Mat Res, German Aerosp Ctr, Cologne, Germany. [Okasinski, John; Almer, Jonathan] Argonne Natl Lab, Lemont, IL USA. [Karlsson, Anette M.] Cleveland State Univ, Cleveland, OH 44115 USA. RP Manero, A (reprint author), Univ Cent Florida, Orlando, FL 32816 USA. EM seetha.raghavan@ucf.edu; Marion.Bartsch@dlr.de RI Bartsch, Marion/B-9501-2012 OI Bartsch, Marion/0000-0002-3952-2928 FU Fulbright Academic Grant [34142765]; National Science Foundation [OISE 1157619, CMMI 1125696]; German Science Foundation (DFG) [SFB-TRR103]; U.S. DOE [DE-AC02-06CH11357] FX This material is based on work supported by the Fulbright Academic Grant (Grant No. 34142765), National Science Foundation grants (Grant Numbers OISE 1157619, and CMMI 1125696), and by the German Science Foundation (DFG Grant No. SFB-TRR103, Project A3). Use of the Advanced Photon Source, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under Contract No. DE-AC02-06CH11357. NR 29 TC 0 Z9 0 U1 4 U2 28 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1047-4838 EI 1543-1851 J9 JOM-US JI JOM PD JUL PY 2015 VL 67 IS 7 BP 1528 EP 1539 DI 10.1007/s11837-015-1399-3 PG 12 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing SC Materials Science; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing GA CM1NM UT WOS:000357447600026 ER PT J AU Lee, JW Meade, AJ Barrera, EV Templeton, JA AF Lee, Jonathan W. Meade, Andrew J., Jr. Barrera, Enrique V. Templeton, Jeremy A. TI Thermal Transport Mechanisms in Carbon Nanotube-Nanofluids Identified From Molecular Dynamics Simulations SO JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME LA English DT Article DE heat transfer; nanofluids; carbon nanotubes; molecular dynamics ID HEAT-CONDUCTION; COMPOSITES; MODEL; NANOPARTICLES; ENHANCEMENT; SUSPENSIONS; RESISTANCE; INTERFACE; FLOW AB Atomistic simulations of carbon nanotubes (CNTs) in a liquid environment are performed to better understand thermal transport in CNT-based nanofluids. Thermal conductivity is studied using nonequilibrium molecular dynamics (MD) methods to understand the effective conductivity of a solvated CNT combined with a novel application of Hamilton-Crosser (HC) theory to estimate the conductivity of a fluid suspension of CNTs. Simulation results show how the presence of the fluid affects the CNTs ability to transport heat by disrupting the low-frequency acoustic phonons of the CNT. A spatially dependent use of the Irving-Kirkwood relations reveals the localized heat flux, illuminating the heat transfer pathways in the composite material. Model results can be consistently incorporated into HC theory by considering ensembles of CNTs and their surrounding fluid as being present in the liquid. The simulation-informed theory is shown to be consistent with existing experimental results. C1 [Lee, Jonathan W.; Meade, Andrew J., Jr.] Rice Univ, Dept Mech Engn, Houston, TX 77005 USA. [Barrera, Enrique V.] Rice Univ, Dept Mat Sci & Nanoengn, Houston, TX 77005 USA. [Templeton, Jeremy A.] Sandia Natl Labs, Thermal Fluid Sci & Engn Dept, Livermore, CA 94550 USA. RP Lee, JW (reprint author), Rice Univ, Dept Mech Engn, Houston, TX 77005 USA. EM jonathanwlee5@gmail.com; meade@rice.edu; ebarrera@rice.edu; jeremy.templeton@sandia.gov FU Clarkson Aerospace [R7D471]; Welch Foundation [C-1494] FX The authors wish to thank Jonathan Zimmerman and Reese Jones for helpful discussions and Zachary DeSario and Jeffrey Vanichsarn for help with graphic designs. We are also grateful to the Sandia National Laboratories for providing computing resources. This research was funded by the Clarkson Aerospace Grant No. R7D471 and the Welch Foundation Grant No. C-1494. NR 30 TC 1 Z9 1 U1 2 U2 14 PU ASME PI NEW YORK PA TWO PARK AVE, NEW YORK, NY 10016-5990 USA SN 0022-1481 EI 1528-8943 J9 J HEAT TRANS-T ASME JI J. Heat Transf.-Trans. ASME PD JUL PY 2015 VL 137 IS 7 AR 072401 DI 10.1115/1.4029913 PG 8 WC Thermodynamics; Engineering, Mechanical SC Thermodynamics; Engineering GA CM3MB UT WOS:000357585200011 ER PT J AU Alam, TM Pearce, CJ AF Alam, Todd M. Pearce, Charles J. TI Infrared signature of micro-hydration in the organophosphate Sarin: an ab initio study SO JOURNAL OF MOLECULAR MODELING LA English DT Article DE Ab initio; CWA; DFT; IR spectra; Micro-hydration; Sarin; Solvent ID HARMONIC VIBRATIONAL FREQUENCIES; DIMETHYL METHYLPHOSPHONATE; SCALE FACTORS; ACTIVATED CARBONS; WARFARE AGENTS; NERVE AGENTS; ADSORPTION; SPECTRA; WATER; DEGRADATION AB The infrared (IR) spectra of micro-hydrated Sarin center dot(H2O)(n) clusters containing between one and four explicit waters have been studied using ab initio density functional theory (DFT) methods. The phosphate group P=O bond vibration region (similar to 1270 to 1290 cm(-1)) revealed the largest frequency variation with hydration, with a frequency red shift reflecting the direct hydrogen bond formation between the P=O of Sarin and water. Small variations to the P-F stretch (similar to 810 to 815 cm(-1)) and the C-O-P vibrational modes (similar to 995 to 1004 cm(-1)) showed that the water interactions with these functional groups were minor, and that the structures of Sarin were not extensively perturbed in the hydrated complexes. Increasing the number of explicit hydration waters produced only small vibrational changes in the lowest free energy complexes. These minor changes were consistent with a single water-phosphate hydrogen bond being the dominant structure, though a second water-phosphate hydrogen bond was observed in some complexes and was identified by an additional red shift of the P=O bond vibration. The H2O center dot H2O vibrational modes (similar to 3450 to 3660 cm(-1)) increased in complexity with higher hydration levels and reflect the extended hydrogen bonding networks formed between the explicit waters in the hydrated Sarin clusters. C1 [Alam, Todd M.; Pearce, Charles J.] Sandia Natl Labs, Dept Organ Mat Sci, Albuquerque, NM 87185 USA. RP Alam, TM (reprint author), Sandia Natl Labs, Dept Organ Mat Sci, POB 5800, Albuquerque, NM 87185 USA. EM tmalam@sandia.gov FU Defense Threat Reduction Agency (DTRA) [CBS.FATE.03.10.SN.002]; internal ZKW fund FX The authors are extremely thankful for Dr. Douglas Burns (ENSCO) for providing a digital copy of the Sarin (GB) IR spectra reported in ref. [35]. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration. This work was funded by the Defense Threat Reduction Agency (DTRA) under contract CBS.FATE.03.10.SN.002 and by the internal ZKW fund. NR 38 TC 1 Z9 1 U1 0 U2 12 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1610-2940 EI 0948-5023 J9 J MOL MODEL JI J. Mol. Model. PD JUL PY 2015 VL 21 IS 7 AR 182 DI 10.1007/s00894-015-2732-z PG 8 WC Biochemistry & Molecular Biology; Biophysics; Chemistry, Multidisciplinary; Computer Science, Interdisciplinary Applications SC Biochemistry & Molecular Biology; Biophysics; Chemistry; Computer Science GA CM1RQ UT WOS:000357458400020 PM 26122644 ER PT J AU Vasudevamurthy, G Byun, TS Pappano, P Snead, LL Burchell, TD AF Vasudevamurthy, G. Byun, T. S. Pappano, P. Snead, L. L. Burchell, T. D. TI Effect of specimen size and grain orientation on the mechanical and physical properties of NBG-18 nuclear graphite SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID STRENGTH; FRACTURE; GRADE AB We present here a comparison of the measured baseline mechanical and physical properties of with grain (WG) and against grain (AG) non-ASTM size NBG-18 graphite. The objectives of the experiments were twofold: (1) assess the variation in properties with grain orientation; (2) establish a correlation between specimen tensile strength and size. The tensile strength of the smallest sized (4 mm diameter) specimens were about 5% higher than the standard specimens (12 mm diameter) but still within one standard deviation of the ASTM specimen size indicating no significant dependence of strength on specimen size. The thermal expansion coefficient and elastic constants did not show significant dependence on specimen size. Experimental data indicated that the variation of thermal expansion coefficient and elastic constants were still within 5% between the different grain orientations, confirming the isotropic nature of NBG-18 graphite in physical properties. (C) 2015 Elsevier B.V. All rights reserved. C1 [Vasudevamurthy, G.] Virginia Commonwealth Univ, Mech & Nucl Engn, Richmond, VA 23284 USA. [Byun, T. S.; Snead, L. L.; Burchell, T. D.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37838 USA. [Pappano, P.] Off Fus Energy, Dept Energy, Gaithersburg, MD USA. RP Vasudevamurthy, G (reprint author), Virginia Commonwealth Univ, Mech & Nucl Engn, Richmond, VA 23284 USA. RI Burchell, Tim/E-6566-2017 OI Burchell, Tim/0000-0003-1436-1192 NR 24 TC 1 Z9 1 U1 0 U2 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD JUL PY 2015 VL 462 BP 1 EP 7 DI 10.1016/j.jnucmat.2015.02.012 PG 7 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA CM2XP UT WOS:000357545900001 ER PT J AU Liu, XY Andersson, DA AF Liu, X. -Y. Andersson, D. A. TI Molecular dynamics study of fission gas bubble nucleation in UO2 SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID URANIUM-DIOXIDE; HELIUM BUBBLES; POTENTIALS; XENON; FUEL; SIMULATION; RESOLUTION; DIFFUSION; STABILITY; PRODUCTS AB Molecular dynamics (MD) simulations are used to study helium and xenon gas bubble nucleation in UO2. For helium bubbles, the pressure release mechanism is by creating defects on the oxygen sublattice. Helium atoms diffuse away from the bubbles into nearby bulk UO2, thus forming a diffuse interface. For xenon bubbles, over-pressurized bubbles containing xenon can displace uranium atoms, which tend to aggregate around the xenon bubble as a pressure release mechanism. MD simulations of xenon atoms in pre-existing voids suggest that xenon atoms and the replaced uranium atoms occur in a 1:1 ratio, although kinetic factors may reduce that ratio depending on availability of xenon atoms and vacancies around the bubble. Finally, MD simulations suggest that for small bubbles (1-5 xenon atoms), the xenon bubble nucleus at UO2 grain-boundaries has much lower formation energy compared to that of bubbles of similar sizes in the bulk. However, when the xenon bubble grows into larger sizes, this energy difference is reduced. (C) 2015 Elsevier B.V. All rights reserved. C1 [Liu, X. -Y.; Andersson, D. A.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. RP Liu, XY (reprint author), Los Alamos Natl Lab, Div Mat Sci & Technol, MS G755, Los Alamos, NM 87545 USA. EM xyliu@lanl.gov FU U.S. Department of Energy, the Office of Nuclear Energy; Nuclear Energy Advanced Modeling and Simulation (NEAMS) program; National Nuclear Security Administration of the US Department of Energy [DE-AC52-06NA25396] FX We thank Bias Uberuaga and Chris Stanek for valuable discussions and Pankaj Nerikar for sharing of grain-boundary structure data. This work is sponsored by the U.S. Department of Energy, the Office of Nuclear Energy, the Nuclear Energy Advanced Modeling and Simulation (NEAMS) program. The Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC, for the National Nuclear Security Administration of the US Department of Energy under Contract No. DE-AC52-06NA25396. NR 35 TC 3 Z9 3 U1 4 U2 23 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD JUL PY 2015 VL 462 BP 8 EP 14 DI 10.1016/j.jnucmat.2015.03.030 PG 7 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA CM2XP UT WOS:000357545900002 ER PT J AU Andersson, DA Tonks, MR Casillas, L Vyas, S Nerikar, P Uberuaga, BP Stanek, CR AF Andersson, David A. Tonks, Michael R. Casillas, Luis Vyas, Shyam Nerikar, Pankaj Uberuaga, Bias P. Stanek, Christopher R. TI Multiscale simulation of xenon diffusion and grain boundary segregation in UO2 SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID PHASE-FIELD SIMULATION; FISSION-GAS RELEASE; URANIUM-DIOXIDE; VOID MIGRATION; NUCLEAR-FUELS; KINETICS; IRRADIATION; PRODUCTS; BEHAVIOR; XE AB In light water reactor fuel, gaseous fission products segregate to grain boundaries, resulting in the nucleation and growth of large intergranular fission gas bubbles. The segregation rate is controlled by diffusion of fission gas atoms through the grains and interaction with the boundaries. Based on the mechanisms established from earlier density functional theory (DFT) and empirical potential calculations, diffusion models for xenon (Xe), uranium (U) vacancies and U interstitials in UO2 have been derived for both intrinsic (no irradiation) and irradiation conditions. Segregation of Xe to grain boundaries is described by combining the bulk diffusion model with a model for the interaction between Xe atoms and three different grain boundaries in UO2 (Sigma 5 tilt, Sigma 5 twist and a high angle random boundary), as derived from atomistic calculations. The present model does not attempt to capture nucleation or growth of fission gas bubbles at the grain boundaries. The point defect and Xe diffusion and segregation models are implemented in the MARMOT phase field code, which is used to calculate effective Xe and U diffusivities as well as to simulate Xe redistribution for a few simple microstructures. (C) 2015 Elsevier B.V. All rights reserved. C1 [Andersson, David A.; Casillas, Luis; Vyas, Shyam; Nerikar, Pankaj; Uberuaga, Bias P.; Stanek, Christopher R.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. [Tonks, Michael R.] Idaho Natl Lab, Fuel Modeling & Simulat Dept, Idaho Falls, ID 83415 USA. RP Andersson, DA (reprint author), Los Alamos Natl Lab, Div Mat Sci & Technol, MS G755, Los Alamos, NM 87545 USA. EM andersson@lanl.gov OI Vyas, Shyam/0000-0002-2332-5604 FU U.S. Department of Energy, Office of Nuclear Energy, Nuclear Energy Advanced Modeling and Simulation (NEAMS) program; National Nuclear Security Administration of the U.S. Department of Energy [DE-AC52-06NA25396] FX This work was sponsored by the U.S. Department of Energy, Office of Nuclear Energy, Nuclear Energy Advanced Modeling and Simulation (NEAMS) program. Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under Contract No. DE-AC52-06NA25396. NR 57 TC 2 Z9 2 U1 11 U2 40 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD JUL PY 2015 VL 462 BP 15 EP 25 DI 10.1016/j.jnucmat.2015.03.019 PG 11 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA CM2XP UT WOS:000357545900003 ER PT J AU Brown, NR Todosow, M Cuadra, A AF Brown, Nicholas R. Todosow, Michael Cuadra, Arantxa TI Screening of advanced cladding materials and UN-U3Si5 fuel SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID MATERIAL PROPERTY CORRELATIONS; PRESSURIZED-WATER-REACTORS; URANIUM MONONITRIDE AB In the aftermath of Fukushima, a focus of the DOE-NE Advanced Fuels Campaign has been the development of advanced nuclear fuel and cladding options with the potential for improved performance in an accident. Uranium dioxide (UO2) fuels with various advanced cladding materials were analyzed to provide a reference for cladding performance impacts. For advanced cladding options with UO2 fuel, most of the cladding materials have some reactivity and discharge burn-up penalty (in GWd/t). Silicon carbide is one exception in that the reactor physics performance is predicted to be very similar to zirconium alloy cladding. Most candidate claddings performed similar to UO2-Zr fuel-cladding in terms of safety coefficients. The clear exception is that Mo-based materials were identified as potentially challenging from a reactor physics perspective due to high resonance absorption. This paper also includes evaluation of UN-U3Si5 fuels with Kanthal AF or APMT cladding. The objective of the U3Si5 phase in the UN-U3Si5 fuel concept is to shield the nitride phase from water. It was shown that UN-U3Si5 fuels with Kanthal AF or APMT cladding have similar reactor physics and fuel management performance over a wide parameter space of phase fractions when compared to UO2-Zr fuel-cladding. There will be a marginal penalty in discharge burn-up (in GWd/t) and the sensitivity to N-14 content in UN ceramic composites is high. Analysis of the rim effect due to self-shielding in the fuel shows that the UN-based ceramic fuels are not expected to have significantly different relative burn-up distributions at discharge relative to the UO2 reference fuel. However, the overall harder spectrum in the UN ceramic composite fuels increases transuranic build-up, which will increase long-term activity in a once-thru fuel cycle but is expected to be a significant advantage in a fuel cycle with continuous recycling of transuranic material. It is recognized that the fuel and cladding properties assumed in these assessments are preliminary, and that additional data are necessary for these materials, most significantly under irradiation. (C) 2015 Elsevier B.V. All rights reserved. C1 [Brown, Nicholas R.; Todosow, Michael; Cuadra, Arantxa] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Brown, NR (reprint author), Brookhaven Natl Lab, Bldg 817,POB 5000, Upton, NY 11973 USA. EM nbrown@bnl.gov FU U.S. DOE-NE Advanced Fuels Campaign; U.S. Department of Energy [DE-AC02-98CH10886] FX The support of the U.S. DOE-NE Advanced Fuels Campaign is gratefully acknowledged.; This manuscript has been authored by employees of Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. The publisher by accepting the manuscript for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. NR 22 TC 4 Z9 4 U1 1 U2 19 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD JUL PY 2015 VL 462 BP 26 EP 42 DI 10.1016/j.jnucmat.2015.03.016 PG 17 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA CM2XP UT WOS:000357545900004 ER PT J AU Hu, SY Casella, AM Lavender, CA Senor, DJ Burkes, DE AF Hu, Shenyang Casella, Andrew M. Lavender, Curt A. Senor, David J. Burkes, Douglas E. TI Assessment of effective thermal conductivity in U-Mo metallic fuels with distributed gas bubbles SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID KAPITZA RESISTANCE; ALLOY FUEL; TRANSFORMATION; POLYCRYSTALS; SIMULATION; EVOLUTION; MODEL AB This work presents a numerical method to assess the relative impact of various microstructural features including grain sizes, nanometer scale intragranular gas bubbles, and larger intergranular gas bubbles in irradiated U-Mo metallic fuels on the effective thermal conductivity. A phase-field model was employed to construct a three-dimensional polycrystalline U-Mo fuel alloy with a given crystal morphology and gas bubble microstructures. An effective thermal conductivity "concept" was taken to capture the effect of polycrystalline structures and gas bubble microstructures with significant size differences on the thermal conductivity. The thermal conductivity of inhomogeneous materials was calculated by solving the heat transport equation. The obtained results are in reasonably good agreement with experimental measurements made on irradiated U-Mo fuel samples containing similar microstructural features. The developed method can be used to predict the thermal conductivity degradation in operating nuclear fuels if the evolution of microstructures is known during operation of the fuel. Published by Elsevier B.V. C1 [Hu, Shenyang; Casella, Andrew M.; Lavender, Curt A.; Senor, David J.; Burkes, Douglas E.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Hu, SY (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. OI HU, Shenyang/0000-0002-7187-3082 FU Battelle for the United States Department of Energy [DE-AC05-76RL01830]; U.S. Department of Energy, National Nuclear Security Administration, Office of Material Management and Minimization Reactor Conversion Program FX The work described in this article was performed by Pacific Northwest National Laboratory, which is operated by Battelle for the United States Department of Energy under Contract DE-AC05-76RL01830. This study was supported by the U.S. Department of Energy, National Nuclear Security Administration, Office of Material Management and Minimization Reactor Conversion Program. NR 36 TC 1 Z9 1 U1 3 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD JUL PY 2015 VL 462 BP 64 EP 76 DI 10.1016/j.jnucmat.2015.03.039 PG 13 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA CM2XP UT WOS:000357545900007 ER PT J AU Gapud, AA Greenwood, NT Alexander, JA Khan, A Leonard, KJ Aytug, T List, FA Rupich, MW Zhang, Y AF Gapud, A. A. Greenwood, N. T. Alexander, J. A. Khan, A. Leonard, K. J. Aytug, T. List, F. A., III Rupich, M. W. Zhang, Y. TI Irradiation response of commercial, high-T-c superconducting tapes: Electromagnetic transport properties SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID HIGH-TEMPERATURE SUPERCONDUCTORS; IRREVERSIBILITY LINE; FILMS AB Effects of low dose ion irradiation on the electrical transport current properties of commercially available high-temperature superconducting, coated-conductor tapes were investigated, in view of potential applications in irradiative environments. Three different tapes, each with unique and tailored as-grown flux-pinning structures, were irradiated with Au and Ni ions at energies that provide a range of damage effects, with accumulated damage levels near that expected for conductors in, for example, a fusion reactor environment. Measurements using transport current determined the pre- and post-irradiation resistivity, critical current density, and pinning force density, yielding critical temperatures, irreversibility lines, and inferred vortex creep rates. Results show that, at the irradiation damage levels tested, any detriment to as-grown pre-irradiation properties is modest; indeed in one case already-superior pinning forces are enhanced, leading to higher critical currents. (C) 2015 Elsevier B.V. All rights reserved. C1 [Gapud, A. A.; Greenwood, N. T.; Alexander, J. A.] Univ S Alabama, Dept Phys, Mobile, AL 36688 USA. [Khan, A.] Univ S Alabama, Dept Elect & Comp Engn, Mobile, AL 36688 USA. [Leonard, K. J.; Aytug, T.; List, F. A., III; Zhang, Y.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Aytug, T.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Rupich, M. W.] Amer Superconductor Corp, Devens, MA 01434 USA. [Zhang, Y.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. RP Gapud, AA (reprint author), Univ S Alabama, Dept Phys, 411 North Univ Blvd, Mobile, AL 36688 USA. EM gapud@southalabama.edu FU Office of Fusion Energy Sciences, in the U.S. Department of Energy; National Science Foundation FX The Office of Fusion Energy Sciences, in the U.S. Department of Energy, provided funding for this work. Work at the University of South Alabama was also partially funded by the National Science Foundation through a grant for Research at Undergraduate Institutions (RUI). The authors are especially grateful to Alex P. Malozemoff (AMSC) and to David K. Christen (ORNL, retired) for helpful discussions and for reviewing this manuscript. NR 29 TC 2 Z9 2 U1 1 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD JUL PY 2015 VL 462 BP 108 EP 113 DI 10.1016/j.jnucmat.2015.03.047 PG 6 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA CM2XP UT WOS:000357545900012 ER PT J AU Jerden, JL Frey, K Ebert, W AF Jerden, James L., Jr. Frey, Kurt Ebert, William TI A multiphase interfacial model for the dissolution of spent nuclear fuel SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID RADIATION-INDUCED DISSOLUTION; NEAR-FIELD HYDROGEN; OXIDATIVE DISSOLUTION; URANIUM-DIOXIDE; REDOX CONDITIONS; AQUEOUS-SOLUTION; UO2; PEROXIDE; WATER; CORROSION AB The Fuel Matrix Dissolution Model (FMDM) is an electrochemical reaction/diffusion model for the dissolution of spent uranium oxide fuel. The model was developed to provide radionuclide source terms for use in performance assessment calculations for various types of geologic repositories. It is based on mixed potential theory and consists of a two-phase fuel surface made up of UO2 and a noble metal bearing fission product phase in contact with groundwater. The corrosion potential at the surface of the dissolving fuel is calculated by balancing cathodic and anodic reactions occurring at the solution interfaces with UO2 and NMP surfaces. Dissolved oxygen and hydrogen peroxide generated by radiolysis of the groundwater are the major oxidizing agents that promote fuel dissolution. Several reactions occurring on noble metal alloy surfaces are electrically coupled to the UO2 and can catalyze or inhibit oxidative dissolution of the fuel. The most important of these is the oxidation of hydrogen, which counteracts the effects of oxidants (primarily H2O2 and O-2). Inclusion of this reaction greatly decreases the oxidation of U(IV) and slows fuel dissolution significantly. In addition to radiolytic hydrogen, large quantities of hydrogen can be produced by the anoxic corrosion of steel structures within and near the fuel waste package. The model accurately predicts key experimental trends seen in literature data, the most important being the dramatic depression of the fuel dissolution rate by the presence of dissolved hydrogen at even relatively low concentrations (e.g., less than 1 mM). This hydrogen effect counteracts oxidation reactions and can limit fuel degradation to chemical dissolution, which results in radionuclide source term values that are four or five orders of magnitude lower than when oxidative dissolution processes are operative. This paper presents the scientific basis of the model, the approach for modeling used fuel in a disposal system, and preliminary calculations to demonstrate the application and value of the model. (C) 2015 Elsevier B.V. All rights reserved. C1 [Jerden, James L., Jr.; Ebert, William] Argonne Natl Lab, Argonne, IL 60439 USA. [Frey, Kurt] Univ Notre Dame, Notre Dame, IN 46556 USA. RP Jerden, JL (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM jerden@anl.gov FU US Department of Energy, Office of Nuclear Energy; Argonne, a U.S. Department of Energy Office of Science laboratory [DE-AC02-06CH11357] FX This work was supported by the US Department of Energy, Office of Nuclear Energy. The report was prepared at Argonne National Laboratory as part of the Used Fuel Disposition (UFD) Campaign. The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government. This work benefited greatly from discussions with Edgar Buck, James Cunnane, Carlos Jove-Colon, David Sassani and Rick Wittman. NR 76 TC 0 Z9 0 U1 6 U2 35 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD JUL PY 2015 VL 462 BP 135 EP 146 DI 10.1016/j.jnucmat.2015.03.036 PG 12 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA CM2XP UT WOS:000357545900016 ER PT J AU Wagh, AS Sayenko, SY Dovbnya, AN Shkuropatenko, VA Tarasov, RV Rybka, AV Zakharchenko, AA AF Wagh, Arun S. Sayenko, S. Yu. Dovbnya, A. N. Shkuropatenko, V. A. Tarasov, R. V. Rybka, A. V. Zakharchenko, A. A. TI Durability and shielding performance of borated Ceramicrete coatings in beta and gamma radiation fields SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID GLASSES AB Ceramicrete (TM), a chemically bonded phosphate ceramic, was developed for nuclear waste immobilization and nuclear radiation shielding. Ceramicrete products are fabricated by an acid-base reaction between magnesium oxide and mono potassium phosphate. Fillers are used to impart desired properties to the product. Ceramicrete's tailored compositions have resulted in several commercial structural products, including corrosion- and fire-protection coatings. Their borated version, called Borobond (TM), has been studied for its neutron shielding capabilities and is being used in structures built for storage of nuclear materials. This investigation assesses the durability and shielding performance of borated Ceramicrete coatings when exposed to gamma and beta radiations to predict the composition needed for optimal shielding performance in a realistic nuclear radiation field. Investigations were conducted using experimental data coupled with predictive Monte Carlo computer model. The results show that it is possible to produce products for simultaneous shielding of all three types of nuclear radiations, viz., neutrons, gamma-, and beta-rays. Additionally, because sprayable Ceramicrete coatings exhibit excellent corrosion- and fire-protection characteristics on steel, this research also establishes an opportunity to produce thick coatings to enhance the shielding performance of corrosion and fire protection coatings for use in high radiation environment in nuclear industry. (C) 2015 Elsevier B.V. All rights reserved. C1 [Wagh, Arun S.] Argonne Natl Lab, Div Environm Sci, Argonne, IL 60439 USA. [Sayenko, S. Yu.; Dovbnya, A. N.; Shkuropatenko, V. A.; Tarasov, R. V.; Rybka, A. V.; Zakharchenko, A. A.] Kharkov Inst Phys & Technol, Natl Sci Ctr, Kharkov, Ukraine. RP Wagh, AS (reprint author), Argonne Natl Lab, Div Environm Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM asw@anl.gov OI Wagh, Arun/0000-0002-8678-7574 FU U.S. Department of Energy's National Nuclear Security Administration through its Global Initiative on Proliferation Prevention Program (GIPP); Argonne, a U.S. Department of Energy Office of Science Laboratory [DE-AC02-06CH11357] FX This project was funded by U.S. Department of Energy's National Nuclear Security Administration through its Global Initiative on Proliferation Prevention Program (GIPP) to UChicago Argonne LLC, and to Kharkov Institute of Physics and Technology.; The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science Laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform public, and perform publicly and display publicly, by or on behalf of the Government. NR 26 TC 2 Z9 2 U1 5 U2 23 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD JUL PY 2015 VL 462 BP 165 EP 172 DI 10.1016/j.jnucmat.2015.03.049 PG 8 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA CM2XP UT WOS:000357545900019 ER PT J AU Pasebani, S Charit, I Burns, J Alsagabi, S Butt, DP Cole, JI Price, LM Shao, L AF Pasebani, Somayeh Charit, Indrajit Burns, Jatuporn Alsagabi, Sultan Butt, Darryl P. Cole, James I. Price, Lloyd M. Shao, Lin TI Microstructural stability of a self-ion irradiated lanthana-bearing nanostructured ferritic steel SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID DISPERSION-STRENGTHENED STEEL; COMPLEX OXIDE PARTICLES; ODS STEELS; ALLOYING ELEMENTS; NANO-INDENTATION; SPARK PLASMA; NANOCLUSTERS; EVOLUTION; CLUSTERS; TEM AB Thermally stable nanofeatures with high number density are expected to impart excellent high temperature strength and irradiation stability in nanostructured ferritic steels (NFSs) which have potential applications in advanced nuclear reactors. A lanthana-bearing NES (14LMT) developed via mechanical alloying and spark plasma sintering was used in this study. The sintered samples were irradiated by Fe2+ ions to 10, 50 and 100 dpa at 30 degrees C and 500 degrees C. Microstructural and mechanical characteristics of the irradiated samples were studied using different microscopy techniques and nanoindentation, respectively. Overall morphology and number density of the nanofeatures remained unchanged after irradiation. Average radius of nanofeatures in the irradiated sample (100 dpa at 500 degrees C) was slightly reduced. A notable level of irradiation hardening and enhanced dislocation activity occurred after ion irradiation except at 30 degrees C and 2,50 dpa. Other microstructural features like grain boundaries and high density of dislocations also provided defect sinks to assist in defect removal. (C) 2015 Elsevier B.V. All rights reserved. C1 [Pasebani, Somayeh; Charit, Indrajit; Alsagabi, Sultan] Univ Idaho, Dept Chem & Mat Engn, Moscow, ID 83844 USA. [Pasebani, Somayeh; Charit, Indrajit; Burns, Jatuporn; Butt, Darryl P.; Cole, James I.] Ctr Adv Energy Studies, Idaho Falls, ID 83401 USA. [Burns, Jatuporn; Butt, Darryl P.] Boise State Univ, Dept Mat Sci & Engn, Boise, ID 83725 USA. [Alsagabi, Sultan] King Abdulaziz City Sci & Technol, Atom Energy Res Inst, Riyadh, Saudi Arabia. [Cole, James I.] Idaho Natl Lab, Idaho Falls, ID 83401 USA. [Price, Lloyd M.; Shao, Lin] Texas A&M Univ, Dept Nucl Engn, College Stn, TX 77843 USA. RP Charit, I (reprint author), Univ Idaho, Dept Chem & Mat Engn, Moscow, ID 83844 USA. EM icharit@uidaho.edu OI Cole, James/0000-0003-1178-5846 FU U.S. Department of Energy, Office of Nuclear Energy under DOE Idaho Operations Office [DE-AC07-05ID14517]; US Department of Energy [DE-NE0008297] FX The work was supported by the U.S. Department of Energy, Office of Nuclear Energy under DOE Idaho Operations Office Contract DE-AC07-05ID14517, as part of Advanced Test Reactor National Scientific User Facility (ATR NSUF) experiments. The authors gratefully acknowledge the assistance of Dr. Yaqiao Wu, Joanna Taylor and Bryan Forsmann at the Microscopy and Characterization Suite (MaCS) facility of the Center for Advanced Energy Studies (CAES). The Texas A&M group (LS and LP) acknowledge the support by the US Department of Energy through grant DE-NE0008297. NR 44 TC 2 Z9 2 U1 3 U2 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD JUL PY 2015 VL 462 BP 191 EP 204 DI 10.1016/j.jnucmat.2015.03.040 PG 14 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA CM2XP UT WOS:000357545900022 ER PT J AU Li, MM Miller, MK Chen, WY AF Li, Meimei Miller, Michael K. Chen, Wei-Ying TI Phase stability in thermally-aged CASS CF8 under heavy ion irradiation SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID FERRITIC STAINLESS-STEELS; SPINODAL DECOMPOSITION; SPECIMEN PREPARATION; EMBRITTLEMENT; RADIATION; CR AB The stability of the microstructure of a cast austenitic stainless steel (CASS), before and after heavy ion irradiation, was investigated by atom probe tomography (APT). A CF8 ferrite-austenite duplex alloy was thermally aged at 400 degrees C for 10,000 h. After this treatment, APT revealed nanometer-sized G-phase precipitates and Fe-rich alpha and Cr-enriched alpha' phase separated regions in the ferrite. The thermally-aged CF8 specimen was irradiated with 1 MeV Kr ions to a fluence of 1.88 x 10(19) ions/m(2) at 400 degrees C. After irradiation, APT analysis revealed a strong spatial/dose dependence of the G-phase precipitates and the alpha-alpha' spinodal decomposition in the ferrite. For the G-phase precipitates, the number density increased and the mean size decreased with increasing dose, and the particle size distribution changed considerably under irradiation. The inverse coarsening process can be described by recoil resolution. The amplitude of the alpha-alpha' spinodal decomposition in the ferrite was apparently reduced after heavy ion irradiation. (C) 2015 Elsevier B.V. All rights reserved. C1 [Li, Meimei; Chen, Wei-Ying] Argonne Natl Lab, Argonne, IL 60439 USA. [Miller, Michael K.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Li, MM (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM mli@anl.gov FU US Department of Energy Office of Nuclear Energy - UChicago Argonne, LLC. [DE-AC02-06CH11357] FX The ion irradiation was accomplished at Argonne National Laboratory at the IVEM-Tandem Facility, a user facility funded by the US Department of Energy Office of Nuclear Energy, operated under Contract No. DE-AC02-06CH11357 by UChicago Argonne, LLC. Atom probe tomography was conducted at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility. Marquis A. Kirk and Pete Baldo are thanked for assisting ion irradiation experiments at the Argonne's IVEM-Tandem Facility. Yiren Chen at ANL is thanked for providing the materials, helpful discussion, and conducting the paper review. NR 34 TC 4 Z9 4 U1 2 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD JUL PY 2015 VL 462 BP 214 EP 220 DI 10.1016/j.jnucmat.2015.03.034 PG 7 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA CM2XP UT WOS:000357545900024 ER PT J AU Chen, WY Miao, YB Wu, YQ Tomchik, CA Mo, K Gan, J Okuniewski, MA Maloy, SA Stubbins, JF AF Chen, Wei-Ying Miao, Yinbin Wu, Yaqiao Tomchik, Carolyn A. Mo, Kun Gan, Jian Okuniewski, Maria A. Maloy, Stuart A. Stubbins, James F. TI Atom probe study of irradiation-enhanced alpha ' precipitation in neutron-irradiated Fe-Cr model alloys SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID HEAVY-ION IRRADIATIONS; DUPLEX STAINLESS-STEEL; SPINODAL DECOMPOSITION; DAMAGE EVOLUTION; THIN-FOILS; MICROSTRUCTURE; 400-DEGREES-C; TEMPERATURE; SEPARATION; FERRITE AB Atom probe tomography (APT) was performed to study the effects of Cr concentrations, irradiation doses and irradiation temperatures on alpha' phase formation in Fe-Cr model alloys (10-16 at.%) irradiated at 300 and 450 degrees C to 0.01, 0.1 and 1 dpa. For 1 dpa specimens, alpha' precipitates with an average radius of 1.0-1.3 nm were observed. The precipitate density varied significantly from 1.1 x 10(23) to 2.7 x 10(24) 1/m(3), depending on Cr concentrations and irradiation temperatures. The volume fraction of alpha' phase in 1 dpa specimens qualitatively agreed with the phase diagram prediction. For 0.01 dpa and 0.1 dpa, frequency distribution analysis detected slight Cr segregation in high-Cr specimens, but not in Fe-10Cr specimens. Proximity histogram analysis showed that the radial Cr concentration was highest at the center of alpha' precipitates. For most precipitates, the Cr contents were significantly lower than that predicted by the phase diagram. The Cr concentration at precipitate center increased with increasing precipitate size. Published by Elsevier B.V. C1 [Chen, Wei-Ying; Miao, Yinbin; Tomchik, Carolyn A.; Mo, Kun; Stubbins, James F.] Univ Illinois, Dept Nucl Plasma & Radiol Engn, Urbana, IL 61801 USA. [Wu, Yaqiao] Boise State Univ, Dept Mat Sci & Engn, Boise, ID 83725 USA. [Wu, Yaqiao] Ctr Adv Energy Studies, Idaho Falls, ID 83401 USA. [Gan, Jian; Okuniewski, Maria A.] Idaho Natl Lab, Idaho Falls, ID 83401 USA. [Maloy, Stuart A.] Los Alamos Natl Lab, Los Alamos, NM 87544 USA. RP Chen, WY (reprint author), Univ Illinois, Dept Nucl Plasma & Radiol Engn, Urbana, IL 61801 USA. RI Maloy, Stuart/A-8672-2009 OI Maloy, Stuart/0000-0001-8037-1319 FU US Department of Energy ATR NSUF [08-092]; NEUP [485363-973000-191100]; Irradiation Performance of Fe-Cr Base Alloys FX This study was supported by US Department of Energy ATR NSUF under identification number 08-092 and by NEUP under grant number 485363-973000-191100. Both funding are titled 'Irradiation Performance of Fe-Cr Base Alloys'. NR 37 TC 6 Z9 6 U1 3 U2 26 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD JUL PY 2015 VL 462 BP 242 EP 249 DI 10.1016/j.jnucmat.2015.04.005 PG 8 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA CM2XP UT WOS:000357545900027 ER PT J AU Jiang, WL Henager, CH Varga, T Jung, HJ Overman, NR Zhang, CH Gou, J AF Jiang, Weilin Henager, Charles H., Jr. Varga, Tamas Jung, Hee Joon Overman, Nicole R. Zhang, Chonghong Gou, Jie TI Diffusion of Ag, Au and Cs implants in MAX phase Ti3SiC2 SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID GAS-COOLED REACTORS; SILICON-CARBIDE; FUEL-PARTICLES; TEMPERATURE-RANGE; BEHAVIOR; MECHANISMS; OXIDATION; SILVER; AIR; IRRADIATION AB MAX phases (M: early transition metal; A: elements in group 13 or 14; X: C or N), such as titanium silicon carbide (Ti3SiC2), have a unique combination of both metallic and ceramic properties, which make them attractive for potential nuclear applications. Ti3SiC2 has been considered as a possible fuel cladding material. This study reports on the diffusivities of fission product surrogates (Ag and Cs) and a noble metal Au (with diffusion behavior similar to Ag) in this ternary compound at elevated temperatures, as well as in dual-phase nanocomposite of Ti3SiC2/3C-SiC and polycrystalline CVD 3C-SiC for behavior comparisons. Samples were implanted with Ag, Au or Cs ions and characterized with various methods, including X-ray diffraction, electron backscatter diffraction, energy dispersive X-ray spectroscopy, Rutherford backscattering spectrometry, helium ion microscopy, and transmission electron microscopy. The results show that in contrast to immobile Ag in 3C-SiC, there is a significant outward diffusion of Ag in Ti3SiC2 within the dual-phase nanocomposite during Ag ion implantation at 873 K. Similar behavior of Au in polycrystalline Ti3SiC2 was also observed. Cs out-diffusion and release from Ti3SiC2 occurred during post-implantation thermal annealing at 973 K. This study suggests caution and further studies in consideration of Ti3SiC2 as a fuel cladding material for advanced nuclear reactors operating at very high temperatures. (C) 2015 Elsevier B.V. All rights reserved. C1 [Jiang, Weilin; Henager, Charles H., Jr.; Varga, Tamas; Jung, Hee Joon; Overman, Nicole R.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Zhang, Chonghong; Gou, Jie] Chinese Acad Sci, Inst Modern Phys, Lanzhou, Peoples R China. RP Jiang, WL (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM weilin.jiang@pnnl.gov OI Henager, Chuck/0000-0002-8600-6803; Jiang, Weilin/0000-0001-8302-8313 FU NEET program from Office of Nuclear Energy, U.S. Department of Energy (DOE) [DE-AC05-76RL01830]; DOE's Office of Biological and Environmental Research FX This research was supported by a NEET program from Office of Nuclear Energy, U.S. Department of Energy (DOE) under Contract DE-AC05-76RL01830. A portion of the research was performed using EMSL, a national scientific user facility sponsored by the DOE's Office of Biological and Environmental Research located at PNNL. Cesium ion implantation was conducted at the Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China with the help of Juan Liu, Yongqiang Xian and Jingyu Li. We would also like to acknowledge Clyde Chamberlin and Douglas Conner for sample polishing and cutting, and Limin Zhang and Amila Dissanayake for assistance in performing some of the ion-beam experiments. NR 48 TC 6 Z9 6 U1 6 U2 31 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD JUL PY 2015 VL 462 BP 310 EP 320 DI 10.1016/j.jnucmat.2015.04.002 PG 11 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA CM2XP UT WOS:000357545900036 ER PT J AU Setyawan, W Nandipati, G Roche, KJ Heinisch, HL Wirth, BD Kurtz, RJ AF Setyawan, Wahyu Nandipati, Giridhar Roche, Kenneth J. Heinisch, Howard L. Wirth, Brian D. Kurtz, Richard J. TI Displacement cascades and defects annealing in tungsten, Part I: Defect database from molecular dynamics simulations SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID DAMAGE; BCC; METALS; POTENTIALS; MODEL; FCC; HE AB Molecular dynamics simulations have been used to generate a comprehensive database of surviving defects due to displacement cascades in bulk tungsten. Twenty-one data points of primary knock-on atom (PKA) energies ranging from 100 eV (sub-threshold energy) to 100 key (similar to 780 x E-d, where E-d = 128 eV is the average displacement threshold energy) have been completed at 300 K, 1025 K and 2050 K. Within this range of PKA energies, two regimes of power-law energy-dependence of the defect production are observed. A distinct power-law exponent characterizes the number of Frenkel pairs produced within each regime. The two regimes intersect at a transition energy which occurs at approximately 250 x E-d. The transition energy also marks the onset of the formation of large self-interstitial atom (SIA) clusters (size 14 or more). The observed defect clustering behavior is asymmetric, with SIA clustering increasing with temperature, while the vacancy clustering decreases. This asymmetry increases with temperature such that at 2050 K (similar to 0.5T(m)) practically no large vacancy clusters are formed, meanwhile large SIA clusters appear in all simulations. The implication of such asymmetry on the long-term defect survival and damage accumulation is discussed. In addition, [1 0 0]{1 1 0} SIA loops are observed to form directly in the highest energy cascades, while vacancy [1 0 0] loops are observed to form at the lowest temperature and highest PKA energies, although the appearance of both the vacancy and SIA loops with Burgers vector of [1 0 0] type is relatively rare. (C) 2014 Elsevier B.V. All rights reserved. C1 [Setyawan, Wahyu; Nandipati, Giridhar; Roche, Kenneth J.; Heinisch, Howard L.; Kurtz, Richard J.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Roche, Kenneth J.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Wirth, Brian D.] Univ Tennessee, Dept Nucl Engn, Knoxville, TN 37996 USA. [Wirth, Brian D.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Setyawan, W (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM wahyu.setyawan@pnnl.gov RI nandipati, giridhar/C-6232-2012; Wirth, Brian/O-4878-2015 OI nandipati, giridhar/0000-0001-8217-9849; Wirth, Brian/0000-0002-0395-0285 FU U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences [DE-AC06-76RL0-1830]; U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences and Office of Advanced Scientific Computing Research [DE-SC0008875] FX This research has been partially supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences (#DE-AC06-76RL0-1830), and partially supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences and Office of Advanced Scientific Computing Research through the Scientific Discovery through Advanced Computing (SciDAC) Project on Plasma-Surface Interactions, under Award No. DE-SC0008875. Computations were performed on Olympus cluster at Pacific Northwest National Laboratory (Fusion account). The authors would like to acknowledge the use of OVITO [23] and SCIDAVIS [24] softwares for visualization and plotting. NR 20 TC 8 Z9 8 U1 5 U2 22 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD JUL PY 2015 VL 462 BP 329 EP 337 DI 10.1016/j.jnucmat.2014.12.056 PG 9 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA CM2XP UT WOS:000357545900038 ER PT J AU Nandipati, G Setyawan, W Heinisch, HL Roche, KJ Kurtz, RJ Wirth, BD AF Nandipati, Giridhar Setyawan, Wahyu Heinisch, Howard L. Roche, Kenneth J. Kurtz, Richard J. Wirth, Brian D. TI Displacement cascades and defect annealing in tungsten, Part II: Object kinetic Monte Carlo simulation of tungsten cascade aging SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID DAMAGE EVOLUTION; RADIATION-DAMAGE; IRON; CLUSTERS AB The results of object kinetic Monte Carlo (OKMC) simulations of the annealing of primary cascade damage in bulk tungsten using a comprehensive database of cascades obtained from molecular dynamics (Setyawan et al.) are described as a function of primary knock-on atom (PKA) energy at temperatures of 300, 1025 and 2050 K. An increase in SIA clustering coupled with a decrease in vacancy clustering with increasing temperature, in addition to the disparate mobilities of SIAs versus vacancies, causes an interesting effect of temperature on cascade annealing. The annealing efficiency (the ratio of the number of defects after and before annealing) exhibits an inverse U-shape curve as a function of temperature. The capabilities of the newly developed OKMC code KSOME (kinetic simulations of microstructure evolution) used to carry out these simulations are described. (C) 2014 Elsevier B.V. All rights reserved. C1 [Nandipati, Giridhar; Setyawan, Wahyu; Heinisch, Howard L.; Roche, Kenneth J.; Kurtz, Richard J.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Roche, Kenneth J.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Wirth, Brian D.] Univ Tennessee, Knoxville, TN USA. RP Nandipati, G (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM giridhar.nandipati@pnnl.gov RI nandipati, giridhar/C-6232-2012; Wirth, Brian/O-4878-2015 OI nandipati, giridhar/0000-0001-8217-9849; Wirth, Brian/0000-0002-0395-0285 FU Battelle for the United States Department of Energy [DE-AC06-76RL0-1830]; U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences and Office of Advanced Scientific Computing Research [DE-SC0008875] FX The work described in this article was performed at Pacific Northwest National Laboratory, which is operated by Battelle for the United States Department of Energy under Contract DE-AC06-76RL0-1830. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences and Office of Advanced Scientific Computing Research through the Scientific Discovery through Advanced Computing (SciDAC) project on Plasma-Surface Interactions in tungsten, under Award No. DE-SC0008875. All computations were performed on CARVER at the National Energy Research Scientific Computing Center (NERSC). NR 23 TC 5 Z9 5 U1 4 U2 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD JUL PY 2015 VL 462 BP 338 EP 344 DI 10.1016/j.jnucmat.2014.09.067 PG 7 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA CM2XP UT WOS:000357545900039 ER PT J AU Nandipati, G Setyawan, W Heinisch, HL Roche, KJ Kurtz, RJ Wirth, BD AF Nandipati, Giridhar Setyawan, Wahyu Heinisch, Howard L. Roche, Kenneth J. Kurtz, Richard J. Wirth, Brian D. TI Displacement cascades and defect annealing in tungsten, Part III: The sensitivity of cascade annealing in tungsten to the values of kinetic parameters SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID SELF-INTERSTITIAL ATOM; SCALE COMPUTER-SIMULATION; ONE-DIMENSIONAL MOTION; DISLOCATION LOOPS; MICROSTRUCTURAL EVOLUTION; ALPHA-IRON; BCC IRON; MOLECULAR-DYNAMICS; RADIATION-DAMAGE; MONTE-CARLO AB A study has been performed using object kinetic Monte Carlo (OKMC) simulations to investigate various aspects of cascade aging in bulk tungsten (W) and to determine its sensitivity to the kinetic parameters. The primary focus is on how the kinetic parameters affect the intracascade recombination of defects. Results indicate that, due to the disparate mobilities of SIA and vacancy clusters, annealing is dominated by SIA migration even at 2050 K. It was found that for 100 keV cascades initiated at 300 K, recombination is dominated by the annihilation of large defect clusters, while for all the other primary knock-on atom (PKA) energies and temperatures, recombination is primarily due to the migration and rotation of small SIA clusters, while the large SIA clusters escape the simulation cell. The annealing efficiency exhibits an inverse U-shaped curve behavior with increasing temperature, especially at large PKA energies, caused by the asymmetry in SIA and vacancy clustering assisted by the large differences in their mobilities. This behavior is unaffected by the dimensionality of SIA migration, and it persists over a broad range of relative mobilities of SIAs and vacancies. (C) 2015 Elsevier B.V. All rights reserved. C1 [Nandipati, Giridhar; Setyawan, Wahyu; Heinisch, Howard L.; Roche, Kenneth J.; Kurtz, Richard J.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Roche, Kenneth J.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Wirth, Brian D.] Univ Tennessee, Knoxville, TN USA. RP Nandipati, G (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM giridhar.nandipati@pnnl.gov RI nandipati, giridhar/C-6232-2012; Wirth, Brian/O-4878-2015 OI nandipati, giridhar/0000-0001-8217-9849; Wirth, Brian/0000-0002-0395-0285 FU Battelle for the United States Department of Energy [DE-AC06-76RL0-1830]; U.S. Department of Energy, Office of Fusion Energy Sciences and Office of Advanced Scientific Computing Research FX The work described in this article was performed at Pacific Northwest National Laboratory, which is operated by Battelle for the United States Department of Energy under Contract DE-AC06-76RL0-1830. This study has been supported by the U.S. Department of Energy, Office of Fusion Energy Sciences and Office of Advanced Scientific Computing Research through the SciDAC-3 program. All computations were performed on CARVER at National Energy Research Scientific Computing Center (NERSC). NR 48 TC 3 Z9 3 U1 2 U2 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD JUL PY 2015 VL 462 BP 345 EP 353 DI 10.1016/j.jnucmat.2015.01.059 PG 9 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA CM2XP UT WOS:000357545900040 ER PT J AU Whittle, KR Edmondson, PD AF Whittle, K. R. Edmondson, P. D. TI Special Section on "Radiation Damage and the Development of New Nuclear Materials" SO JOURNAL OF NUCLEAR MATERIALS LA English DT Editorial Material C1 [Whittle, K. R.] Univ Sheffield, Dept Mat Sci & Engn, Sheffield S10 2TN, S Yorkshire, England. [Edmondson, P. D.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN USA. RP Whittle, KR (reprint author), Univ Sheffield, Dept Mat Sci & Engn, Sheffield S10 2TN, S Yorkshire, England. RI Whittle, Karl/A-7404-2008 OI Whittle, Karl/0000-0002-8000-0857 NR 0 TC 0 Z9 0 U1 4 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD JUL PY 2015 VL 462 BP 368 EP 368 DI 10.1016/j.jnucmat.2015.05.011 PG 1 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA CM2XP UT WOS:000357545900043 ER PT J AU Edmondson, PD London, A Xu, A Armstrong, DEJ Roberts, SG AF Edmondson, P. D. London, A. Xu, A. Armstrong, D. E. J. Roberts, S. G. TI Small-scale characterisation of irradiated nuclear materials: Part I - Microstructure SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID NANOSTRUCTURED FERRITIC ALLOYS; ODS EUROFER97 STEEL; EU BATCH; TUNGSTEN; HELIUM; STABILITY; NANOCLUSTERS; TEMPERATURE; ENERGY AB The behaviour of nanometre-scale precipitates in oxide dispersion strengthened (ODS) ferritic alloys and tungsten-rhenium alloys for nuclear applications has been examined by atom probe tomography (APT). Low Re content tungsten alloys showed no evidence of Re clustering following self-ion irradiation whereas the 25 at.% Re resulted in cluster formation. The size and composition of clusters varied depending on the material form during irradiation (pre-sharpened needle or bulk). These results highlight the care that must be taken in interpreting data from ion irradiated pre-sharpened needles due to the presence of free surfaces. Self-ion irradiation of the ODS ferritic alloy resulted in a change in the composition of the clusters, indicating a transition from a near-stoichiometric Y2Ti2O7 composition towards a Ti2YO5. Published by Elsevier B.V. C1 [Edmondson, P. D.; London, A.; Xu, A.; Armstrong, D. E. J.; Roberts, S. G.] Univ Oxford, Dept Mat, Oxford OX1 3PH, England. RP Edmondson, PD (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. EM edmondsonpd@ornl.gov OI London, Andrew/0000-0001-6959-9849; Roberts, Steve/0000-0002-3578-2183; Armstrong, David/0000-0002-5067-5108 FU UK's Engineering and Physical Sciences Research Council (EPSRC) [EP/H018921/1]; EPSRC Career Acceleration fellowship [EP/K030043/1] FX The authors would like to acknowledge support from the UK's Engineering and Physical Sciences Research Council (EPSRC) for funding under Grant Reference EP/H018921/1. PDE acknowledges support through an EPSRC Career Acceleration fellowship (EP/K030043/1). NR 37 TC 1 Z9 1 U1 7 U2 28 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD JUL PY 2015 VL 462 BP 369 EP 373 DI 10.1016/j.jnucmat.2014.11.067 PG 5 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA CM2XP UT WOS:000357545900044 ER PT J AU Uberuaga, BP Choudhury, S Caro, A AF Uberuaga, Blas Pedro Choudhury, Samrat Caro, Alfredo TI Ideal sinks are not always ideal: Radiation damage accumulation in nanocomposites SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID GRAIN-BOUNDARIES; TOLERANCE; IRRADIATION; RESISTANCE; DIFFUSION; ENERGY; OXIDES; GOLD AB Designing radiation tolerant materials is one of the primary challenges associated with advanced nuclear energy systems. One attractive route that has received much attention world-wide is to introduce a high density of sinks, often in the form of interfaces or secondary phases. Here, we develop a simple model of such nanocomposites and examine the ramifications of various factors on the overall radiation stability of the material. In particular, we determine how the distribution of secondary phases, the relative sink strength of those phases, and the irradiation temperature influence the radiation tolerance of the matrix. We find that the best scenario is one in which the sinks have intermediate strength, transiently trapping defects before releasing them back into the matrix. Neither perfect sinks nor the complete absence of sinks perform as well. This provides new insight into the optimal properties of nanocomposites for radiation damage environments. (C) 2014 Elsevier B.V. All rights reserved. C1 [Uberuaga, Blas Pedro; Choudhury, Samrat; Caro, Alfredo] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. RP Uberuaga, BP (reprint author), Los Alamos Natl Lab, Div Mat Sci & Technol, POB 1663, Los Alamos, NM 87545 USA. EM blas@lanl.gov RI Choudhury, Samrat/B-4115-2009 FU Center for Materials at Irradiation and Mechanical Extremes; Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [2008LANL1026]; U.S. DOE [DE-AC52-06NA25396] FX The authors gratefully acknowledge support by the Center for Materials at Irradiation and Mechanical Extremes, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number 2008LANL1026. Los Alamos National Laboratory, an affirmative action equal opportunity employer, is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. DOE under contract DE-AC52-06NA25396. We acknowledge helpful discussions with E. Martinez. NR 30 TC 1 Z9 1 U1 0 U2 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD JUL PY 2015 VL 462 BP 402 EP 408 DI 10.1016/j.jnucmat.2014.11.073 PG 7 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA CM2XP UT WOS:000357545900048 ER PT J AU Marian, J Hoang, T Fluss, M Hsiung, LL AF Marian, Jaime Hoang, Tuan Fluss, Michael Hsiung, Luke L. TI A review of helium-hydrogen synergistic effects in radiation damage observed in fusion energy steels and an interaction model to guide future understanding SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID ION-BEAMS; STRUCTURAL-MATERIALS; DISPLACEMENT DAMAGE; SWELLING BEHAVIOR; NEUTRON-SPECTRA; IRRADIATION; F82H; FE; RETENTION; DEUTERIUM AB Under fusion reactor conditions, large quantities of irradiation defects and transmutation gases are produced per unit time by neutrons, resulting in accelerated degradation of structural candidate ferritic (F) and ferritic/martensitic (F/M) steels. Due to the lack of a suitable fusion neutron testing facility, we must rely on high-dose-rate ion-beam experiments and present-day crude modeling estimates. Of particular interest is the possibility of synergistic (positive feedback) effects on materials properties due to the simultaneous action of He, H, and displacement damage (dpa) during operation. In this paper we discuss the state-of-the-art in terms of the experimental understanding of synergistic effects and carry out simulations of triple-species irradiation under ion-beam conditions using first-of-its-kind modeling techniques. Although, state-of-the-art modeling and simulation is not sufficiently well developed to shed light on the experimental uncertainties, we are able to conclude that it is not clear whether synergistic effects, the evidence of which is still not conclusive, will ultimately play a critical role in material performance under fusion energy conditions. We review here some of the evidence for the synergistic effects of hydrogen in the presence of helium and displacement damage, and also include some recent data from our research. While the experimental results to date suggest possible mechanisms for the observed synergistic effects, it is only with more advanced modeling that we can hope to understand the details underlying the experimental observations. By employing modeling and simulation we propose an interaction model that is qualitatively consistent with experimental observations of dpa/He/H irradiation behavior. Our modeling, the results of which should be helpful to researchers going forward, points to gaps and voids in the current understanding of triple ion-beam irradiation effects (displacement damage produced simultaneously with helium and hydrogen implantation) and the synergistic effects of hydrogen. (C) 2014 Elsevier B.V. All rights reserved. C1 [Marian, Jaime] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. [Marian, Jaime; Hoang, Tuan; Fluss, Michael; Hsiung, Luke L.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Hoang, Tuan] Univ Calif Berkeley, Berkeley, CA 94720 USA. RP Marian, J (reprint author), Univ Calif Los Angeles, Los Angeles, CA 90095 USA. EM jmarian@ucla.edu FU DOE's Early Career Research Program; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX JM acknowledges support from DOE's Early Career Research Program. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 34 TC 2 Z9 2 U1 6 U2 27 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD JUL PY 2015 VL 462 BP 409 EP 421 DI 10.1016/j.jnucmat.2014.12.046 PG 13 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA CM2XP UT WOS:000357545900049 ER PT J AU Miller, MK Parish, CM Bei, H AF Miller, M. K. Parish, C. M. Bei, H. TI Controlling diffusion for a self-healing radiation tolerant nanostructured ferritic alloy SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID ATOM-PROBE TOMOGRAPHY; STRUCTURAL-MATERIALS; CREEP STRENGTH; STEELS; NANOCLUSTERS; IRRADIATION; CHALLENGES; STABILITY; ENERGY AB Diffusion plays a major role in the stability of microstructures to extreme conditions of high temperature and high doses of irradiation. In nanostructured ferritic alloys, first principle calculations indicate that the binding energy of vacancies is reduced by the presence of oxygen, titanium and yttrium atoms. Therefore, the number of free vacancies available for diffusion can be greatly reduced. The mechanical properties of these alloys, compared to traditional wrought alloys of similar composition and grain structure, is distinctly different, and the ultrafine grained alloy is distinguished by a high number density of Ti-Y-O-enriched nanoclusters and solute clusters, which drives the mechanical response. When a displacement cascade interacts with a nanocluster, the solute atoms are locally dispersed into the matrix by ballistic collisions, but immediately a new nanocluster reforms due to the local supersaturation of solutes and vacancies until the excess vacancies are consumed. The result of these processes is a structural material for advanced energy systems with a microstructure that is self-healing and tolerant to high doses of radiation and high temperatures. Published by Elsevier B.V. C1 [Miller, M. K.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Parish, C. M.; Bei, H.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Miller, MK (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, POB 2008,MS 6139, Oak Ridge, TN 37831 USA. EM millermk@ornl.gov RI Parish, Chad/J-8381-2013; OI Bei, Hongbin/0000-0003-0283-7990 FU Materials Sciences and Engineering Division, Office of Basic Energy Sciences, US Department of Energy; US Department of Energy's Office of Biological and Environmental Research FX This research was sponsored by the Materials Sciences and Engineering Division, Office of Basic Energy Sciences, US Department of Energy. The microscopy research was conducted at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility. Ion irradiations were performed at the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the US Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. The 14YWT material used in this study was provided by Dr. D.T. Hoelzer, ORNL. The heavy ion irradiations were performed by Dr. Y. Zhang, ORNL. NR 30 TC 2 Z9 2 U1 5 U2 20 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD JUL PY 2015 VL 462 BP 422 EP 427 DI 10.1016/j.jnucmat.2014.12.048 PG 6 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA CM2XP UT WOS:000357545900050 ER PT J AU Miller, MK Reinhard, D Larson, DJ AF Miller, M. K. Reinhard, D. Larson, D. J. TI Detection and quantification of solute clusters in a nanostructured ferritic alloy SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID ATOM-PROBE TOMOGRAPHY; MECHANICAL-PROPERTIES; ION-IRRADIATION; CREEP STRENGTH; HELIUM; NANOCLUSTERS; STEELS; MICROSTRUCTURE; CHALLENGES; EVOLUTION AB A series of simulated atom probe datasets were examined with a friends-of-friends method to establish the detection efficiency required to resolve solute clusters in the ferrite phase of a 14YWT nanostructured ferritic alloy. The size and number densities of solute clusters in the ferrite of the as-milled mechanically-alloyed condition and the stir zone of a friction stir weld were estimated with a prototype high-detection-efficiency (similar to 80%) local electrode atom probe. High number densities, 1.8 x 10(24) m(-3) and 1.2 x 10(24) m(-3), respectively of solute clusters containing between 2 and 9 solute atoms of Ti, Y and O and were detected for these two conditions. These results support first principle calculations that predicted that vacancies stabilize these Ti-Y-O-clusters, which retard diffusion and contribute to the excellent high temperature stability of the microstructure and radiation tolerance of nanostructured ferritic alloys. (C) 2014 Elsevier B.V. All rights reserved. C1 [Miller, M. K.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Reinhard, D.; Larson, D. J.] CAMECA Instruments Inc, Madison, WI 53711 USA. RP Miller, MK (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, POB 2008, Oak Ridge, TN 37831 USA. EM millermk@ornl.gov; David.Reinhard@ametek.com; David.Larson@ametek.com FU U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division FX This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division. Atom probe tomography was conducted at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility. The authors thank Drs. X. Yu and Z. Feng for producing the friction stir weld, and Dr. D.T. Hoelzer for supplying the 14YWT material. NR 47 TC 1 Z9 1 U1 2 U2 16 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD JUL PY 2015 VL 462 BP 428 EP 432 DI 10.1016/j.jnucmat.2014.12.107 PG 5 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA CM2XP UT WOS:000357545900051 ER PT J AU Parish, CM Miller, MK AF Parish, Chad M. Miller, Michael K. TI A review of advantages of high-efficiency X-ray spectrum imaging for analysis of nanostructured ferritic alloys SO JOURNAL OF NUCLEAR MATERIALS LA English DT Review ID MULTIVARIATE STATISTICAL-ANALYSIS; DISPERSION-STRENGTHENED STEELS; ELECTRON-SOLID INTERACTIONS; SPATIAL-RESOLUTION; PARALLEL SIMULATION; ION-IRRADIATION; CREEP STRENGTH; THIN FOILS; HELIUM; MICROANALYSIS AB Nanostructured ferritic alloys (NFAs) exhibit complex microstructures consisting of 100-500 nm ferrite grains, grain boundary solute enrichment, and multiple populations of precipitates and nanoclusters (NCs). Understanding these materials' excellent creep and radiation-tolerance properties requires a combination of multiple atomic-scale experimental techniques. Recent advances in scanning transmission electron microscopy (STEM) hardware and data analysis methods have the potential to revolutionize nanometer-to micrometer-scale materials analysis. Modern high-brightness, high-X-ray collection STEM instruments are capable of enabling advanced experiments, such as simultaneous energy dispersive X-ray spectroscopy and electron energy loss spectroscopy spectrum imaging at nm to sub-nm resolution, that are now well-established for the study of nuclear materials. In this paper, we review past results and present new results illustrating the effectiveness of latest-generation STEM instrumentation and data analysis. (C) 2014 Elsevier B.V. All rights reserved. C1 [Parish, Chad M.; Miller, Michael K.] Oak Ridge Natl Lab, Microscopy Grp, Oak Ridge, TN 37931 USA. RP Parish, CM (reprint author), Oak Ridge Natl Lab, Microscopy Grp, Oak Ridge, TN 37931 USA. EM parishcm@ornl.gov RI Parish, Chad/J-8381-2013 FU U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division FX This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division. Tecnai Osiris STEM usage courtesy of FEI Company, Hillsboro, OR. Sample material is courtesy of Dr. D.T. Hoelzer, ORNL. Research on CM200 TEM was conducted at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility. NR 60 TC 3 Z9 3 U1 3 U2 21 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD JUL PY 2015 VL 462 BP 433 EP 442 DI 10.1016/j.jnucmat.2014.11.134 PG 10 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA CM2XP UT WOS:000357545900052 ER PT J AU Perez-Bergquist, AG Nozawa, T Shih, CH Leonard, KJ Snead, LL Katoh, Y AF Perez-Bergquist, Alejandro G. Nozawa, Takashi Shih, Chunghao Leonard, Keith J. Snead, Lance L. Katoh, Yutai TI High dose neutron irradiation of Hi-Nicalon Type S silicon carbide composites, Part 1: Microstructural evaluations SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID RESEARCH-AND-DEVELOPMENT; SIC/SIC COMPOSITES; INDUCED AMORPHIZATION; FUSION APPLICATIONS; SIC FIBERS; GRAPHITE; TEMPERATURE; CARBON AB Over the past decade, significant progress has been made in the development of silicon carbide (SiC) composites, composed of near-stoichiometric SiC fibers embedded in a crystalline SiC matrix, to the point that such materials can now be considered nuclear grade. Recent neutron irradiation studies of Hi-Nicalon Type S SiC composites showed excellent radiation response at damage levels of 30-40 dpa at temperatures of 300-800 degrees C. However, more recent studies of these same fiber composites irradiated to damage levels of >70 dpa at similar temperatures showed a marked decrease in ultimate flexural strength, particularly at 300 degrees C. Here, electron microscopy is used to analyze the microstructural evolution of these irradiated composites in order to investigate the cause of the degradation. While minimal changes were observed in Hi-Nicalon Type S SiC composites irradiated at 800 degrees C, substantial microstructural evolution is observed in those irradiated at 300 degrees C. Specifically, carbonaceous particles in the fibers grew by 25% compared to the virgin case, and severe cracking occurred at interphase layers. (C) 2014 Elsevier B.V. All rights reserved. C1 [Perez-Bergquist, Alejandro G.; Shih, Chunghao; Leonard, Keith J.; Snead, Lance L.; Katoh, Yutai] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Perez-Bergquist, Alejandro G.] Univ Tennessee, Knoxville, TN USA. [Nozawa, Takashi] Japan Atom Energy Agcy, Rokkasho, Aomori, Japan. RP Perez-Bergquist, AG (reprint author), Oak Ridge Natl Lab, POB 2008 MS6138, Oak Ridge, TN 37831 USA. EM perezbergqag@ornl.gov FU Office of Fusion Energy Sciences, U.S. Department of Energy [AC05-00OR22725]; UT-Battelle, LLC; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy FX This research was sponsored by the Office of Fusion Energy Sciences, U.S. Department of Energy under Contract DE-AC05-00OR22725 with UT-Battelle, LLC. Samples were irradiated in the High Flux Isotope Reactor, an Office of Science User Facility. The TEM characterization utilized ORNL's Shared Research Equipment (ShaRE) User Facility, which is sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. NR 33 TC 3 Z9 3 U1 6 U2 25 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD JUL PY 2015 VL 462 BP 443 EP 449 DI 10.1016/j.jnucmat.2014.06.038 PG 7 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA CM2XP UT WOS:000357545900053 ER PT J AU Katoh, Y Nozawa, T Shih, CH Ozawa, K Koyanagi, T Porter, W Snead, LL AF Katoh, Yutai Nozawa, Takashi Shih, Chunghao Ozawa, Kazumi Koyanagi, Takaaki Porter, Wally Snead, Lance L. TI High-dose neutron irradiation of Hi-Nicalon Type S silicon carbide composites. Part 2: Mechanical and physical properties SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID CERAMIC-MATRIX COMPOSITES; SIC/SIC COMPOSITES; STRUCTURAL APPLICATIONS; TEMPERATURE MONITORS; FIBER; BEHAVIOR; DESIGN AB Nuclear-grade silicon carbide (SiC) composite material was examined for mechanical and thermophysical properties following high-dose neutron irradiation in the High Flux Isotope Reactor at a temperature range of 573-1073 K. The material was chemical vapor-infiltrated SiC-matrix composite with a two-dimensional satin weave Hi-Nicalon Type S SiC fiber reinforcement and a multilayered pyrocarbon/SiC interphase. Moderate (1073 K) to very severe (573 K) degradation in mechanical properties was found after irradiation to >70 dpa, whereas no evidence was found for progressive evolution in swelling and thermal conductivity. The swelling was found to recover upon annealing beyond the irradiation temperature, indicating the irradiation temperature, but only to a limited extent. The observed strength degradation is attributed primarily to fiber damage for all irradiation temperatures, particularly a combination of severe fiber degradation and likely interphase damage at relatively low irradiation temperatures. (C) 2015 Elsevier B.V. All rights reserved. C1 [Katoh, Yutai; Shih, Chunghao; Koyanagi, Takaaki; Porter, Wally; Snead, Lance L.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Nozawa, Takashi; Ozawa, Kazumi] Japan Atom Energy Agcy, Rokkasho, Aomori, Japan. RP Katoh, Y (reprint author), Oak Ridge Natl Lab, POB 2008 MS6138, Oak Ridge, TN 37831 USA. EM katohy@ornl.gov RI Koyanagi, Takaaki/D-9841-2017 OI Koyanagi, Takaaki/0000-0001-7272-4049 FU Office of Fusion Energy Sciences, U.S. Department of Energy [DE-AC05-00OR22725]; Japan Atomic Energy Agency [NFE-10-02779]; UT-Battelle, LLC FX The authors acknowledge A.M. Williams, P.S. Tedder, R.A. Meisner, and H. Wang for assistance in conducting experimental research, K.A. Terrani for technical review, and D.M Counce for editorial review. This research was sponsored by the Office of Fusion Energy Sciences, U.S. Department of Energy, and Japan Atomic Energy Agency under contracts DE-AC05-00OR22725 and NFE-10-02779, respectively, with UT-Battelle, LLC. Samples were irradiated in the High Flux Isotope Reactor, an Office of Science User Facility. NR 35 TC 4 Z9 4 U1 4 U2 23 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD JUL PY 2015 VL 462 BP 450 EP 457 DI 10.1016/j.jnucmat.2014.12.121 PG 8 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA CM2XP UT WOS:000357545900054 ER PT J AU Whittle, KR Blackford, MG Smith, KL Zaluzec, NJ Weyland, M Lumpkin, GR AF Whittle, Karl R. Blackford, Mark G. Smith, Katherine L. Zaluzec, Nestor J. Weyland, Matthew Lumpkin, Gregory R. TI Radiation effects in Zr and Hf containing garnets SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID IRRADIATION-INDUCED AMORPHIZATION; ZIRCONIUM; KIMZEYITE AB Garnets have been considered as host phases for the safe immobilisation of high-level nuclear waste, as they have been shown to accommodate a wide range of elements across three different cation sites, such as Ca, Y, Mn on the a-site, Fe, Al, U, Zr, and Ti on the b-site, and Si, Fe, Al on the c-site. Garnets, due to their ability to have variable composition, make ideal model materials for the examination of radiation damage and recovery in nuclear materials, including as potential waste forms. Kimzeyite, Ca3Zr2FeAlSiO12, has been shown naturally to contain up to 30 wt% Zr, and has previously been examined to elucidate both the structure and ordering within the lattice. This study examines the effects of radiation damage and recovery using in-situ ion beam irradiation with 1 MeV Kr ions at the IVEM-TANDEM facility, Argonne National Laboratory. The complementary Hf containing system Ca3Hf2FeAlSiO12 was also examined, and found to have a different response to irradiation damage. A sample of irradiated Ca3Zr2FeAlSiO12, at 1000 K, was characterised using aberration corrected (S)TEM and found to contain discreet, nano-sized, crystalline Fe rich particles, indicating a competing process during recovery is occurring. (C) 2015 Elsevier B.V. All rights reserved. C1 [Whittle, Karl R.; Blackford, Mark G.; Smith, Katherine L.; Lumpkin, Gregory R.] Australian Nucl Sci & Technol Org, Inst Mat Engn, Menai, NSW 2234, Australia. [Zaluzec, Nestor J.] Argonne Natl Lab, Argonne, IL 60439 USA. [Whittle, Karl R.] Univ Sheffield, Dept Mat Sci & Engn, Sheffield S1 3JD, S Yorkshire, England. [Weyland, Matthew] Monash Univ, Monash Ctr Electron Microscopy, Clayton, Vic 3800, Australia. [Weyland, Matthew] Monash Univ, Dept Mat Engn, Clayton, Vic 3800, Australia. RP Whittle, KR (reprint author), Univ Sheffield, Dept Mat Sci & Engn, Mappin St, Sheffield S1 3JD, S Yorkshire, England. RI Lumpkin, Gregory/A-7558-2008; Whittle, Karl/A-7404-2008; OI Whittle, Karl/0000-0002-8000-0857; Weyland, Matthew/0000-0003-1797-0268 FU U.S. DOE, Basic Energy Sciences [W-31-10-ENG-38]; Access to Major Research Facilities Programme (International Science Linkages Programme under Australian Government's innovation statement, Backing Australia's Ability); Australian Research Council grant [LE0454166]; Monash University FX The authors thank the IVEM-TANDEM facility staff at Argonne National Laboratory (Peter Baldo and Edward Ryan), for assistance during the ion irradiation work. The IVEM-TANDEM is supported as a User Facility by the U.S. DOE, Basic Energy Sciences, under contract W-31-10-ENG-38. We also acknowledge financial support from the Access to Major Research Facilities Programme (a component of the International Science Linkages Programme established under the Australian Government's innovation statement, Backing Australia's Ability). The aberration corrected TEM and STEM EELS data was acquired on instruments within the Monash Centre for Electron Microscopy that were funded by the Australian Research Council grant number LE0454166 and Monash University. NR 12 TC 1 Z9 1 U1 1 U2 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD JUL PY 2015 VL 462 BP 508 EP 513 DI 10.1016/j.jnucmat.2015.02.007 PG 6 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA CM2XP UT WOS:000357545900060 ER PT J AU Reininger, R Liu, ZP Doumy, G Young, LD AF Reininger, Ruben Liu, Zunping Doumy, Gilles Young, Linda TI A simple optical system delivering a tunable micrometer pink beam that can compensate for heat-induced deformations SO JOURNAL OF SYNCHROTRON RADIATION LA English DT Article DE ray tracings; pink beam; undulator radiation; microfocusing; heat load ID SYNCHROTRON; SILICON AB The radiation from an undulator reflected from one or more optical elements (usually termed 'pink-beam') is used in photon-hungry experiments. The optical elements serve as a high-energy cutoff and for focusing purposes. One of the issues with this configuration is maintaining the focal spot dimension as the energy of the undulator is varied, since this changes the heat load absorbed by the first optical element. Finite-element analyses of the power absorbed by a side water-cooled mirror exposed to the radiation emitted by an undulator at the Advanced Photon Source (APS) and at the APS after the proposed upgrade (APSU) reveals that the mirror deformation is very close to a convex cylinder creating a virtual source closer to the mirror than the undulator source. Here a simple optical system is described based on a Kirkpatrick-Baez pair which keeps the focus size to less than 2 mu m(in the APSU case) with a working distance of 350 mm despite the heat-load-induced change in source distance. Detailed ray tracings at several photon energies for both the APS and APSU show that slightly decreasing the angle of incidence on the mirrors corrects the change in the 'virtual' position of the source. The system delivers more than 70% of the first undulator harmonic with very low higher-orders contamination for energies between 5 and 10 keV. C1 [Reininger, Ruben; Liu, Zunping; Doumy, Gilles; Young, Linda] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Reininger, R (reprint author), Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. EM rreininger@anl.gov FU US DOE [DE-AC0206CH11357]; US Department of Energy (DOE) Office of Science, Division of Chemical, Geological and Biological Sciences [DEAC02-06CH11357] FX The Advanced Photon Source, an Office of Science User Facility operated for the US Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the US DOE under Contract No. DE-AC0206CH11357. LY acknowledges support from from the US Department of Energy (DOE) Office of Science, Division of Chemical, Geological and Biological Sciences under Contract No. DEAC02-06CH11357. NR 25 TC 0 Z9 0 U1 1 U2 2 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0909-0495 EI 1600-5775 J9 J SYNCHROTRON RADIAT JI J. Synchrot. Radiat. PD JUL PY 2015 VL 22 BP 930 EP 935 DI 10.1107/S1600577515006566 PN 4 PG 6 WC Instruments & Instrumentation; Optics; Physics, Applied SC Instruments & Instrumentation; Optics; Physics GA CM0YZ UT WOS:000357407900008 PM 26134796 ER PT J AU Ketenoglu, D Harder, M Klementiev, K Upton, M Taherkhani, M Spiwek, M Dill, FU Wille, HC Yavas, H AF Ketenoglu, Didem Harder, Manuel Klementiev, Konstantin Upton, Mary Taherkhani, Mehran Spiwek, Manfred Dill, Frank-Uwe Wille, Hans-Christian Yavas, Hasan TI Resonant inelastic X-ray scattering spectrometer with 25 meV resolution at the Cu K-edge SO JOURNAL OF SYNCHROTRON RADIATION LA English DT Article DE resonant inelastic X-ray scattering (RIXS); high energy-resolution; diced crystal analyzers; quartz ID ENERGY-RESOLUTION; EXCITATIONS; ANALYZERS; CRYSTALS; BACKSCATTERING; DYNAMICS; QUARTZ AB An unparalleled resolution is reported with an inelastic X-ray scattering instrument at the Cu K-edge. Based on a segmented concave analyzer, featuring single-crystal quartz (SiO2) pixels, the spectrometer delivers a resolution near 25 meV (FWHM) at 8981 eV. Besides the quartz analyzer, the performance of the spectrometer relies on a four-bounce Si(553) high-resolution monochromator and focusing Kirkpatrick-Baez optics. The measured resolution agrees with the ray-tracing simulation of an ideal spectrometer. The performance of the spectrometer is demonstrated by reproducing the phonon dispersion curve of a beryllium single-crystal. C1 [Ketenoglu, Didem] Ankara Univ, Dept Engn Phys, Fac Engn, TR-06100 Ankara, Turkey. [Ketenoglu, Didem; Harder, Manuel; Taherkhani, Mehran; Spiwek, Manfred; Dill, Frank-Uwe; Wille, Hans-Christian; Yavas, Hasan] Deutsch Elektronen Synchrotron DESY, D-22607 Hamburg, Germany. [Harder, Manuel] Tech Univ Dortmund, Lehrstuhl Expt Phys 1, D-44221 Dortmund, Germany. [Klementiev, Konstantin] Lund Univ, MAX Lab 4, SE-22100 Lund, Sweden. [Upton, Mary] Argonne Natl Lab, Argonne, IL 60439 USA. RP Yavas, H (reprint author), Deutsch Elektronen Synchrotron DESY, Notkestr 85, D-22607 Hamburg, Germany. EM hasan.yavas@desy.de FU The Scientific and Technological Research Council of Turkey (TUBITAK) through Post-doctoral Research Fellowship [BIDEB-2219]; Federal Ministry for Education and Research (Germany) [BMBF 05K13PE2k] FX Parts of this research were carried out at the light source PETRA III at DESY, a member of the Helmholtz Association (HGF). We would like to thank Milena Lippmann for her assistance in fabricating the quartz wafer; Andrey Siemens, Thorben Schmirander and Jens Herda for their technical help at the beamline; Hermann Franz, Horst Schulte-Schrepping, Ahmet Alatas and Harald Sinn for stimulating discussions. DK acknowledges 'The Scientific and Technological Research Council of Turkey (TUBITAK)' through 'BIDEB-2219 Post-doctoral Research Fellowship'. MH is supported by 'Federal Ministry for Education and Research (Germany)' BMBF 05K13PE2k. NR 30 TC 2 Z9 2 U1 4 U2 18 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0909-0495 EI 1600-5775 J9 J SYNCHROTRON RADIAT JI J. Synchrot. Radiat. PD JUL PY 2015 VL 22 BP 961 EP 967 DI 10.1107/S1600577515009686 PN 4 PG 7 WC Instruments & Instrumentation; Optics; Physics, Applied SC Instruments & Instrumentation; Optics; Physics GA CM0YZ UT WOS:000357407900012 PM 26134800 ER PT J AU Adams, BW Rose-Petruck, C Jiao, YS AF Adams, Bernhard W. Rose-Petruck, Christoph Jiao, Yishuo TI Picosecond-resolved X-ray absorption spectroscopy at low signal contrast using a hard X-ray streak camera SO JOURNAL OF SYNCHROTRON RADIATION LA English DT Article DE X-ray streak camera; high repetition rate; ultrafast laser; photochemistry ID LENS AB A picosecond-resolving hard-X-ray streak camera has been in operation for several years at Sector 7 of the Advanced Photon Source (APS). Several upgrades have been implemented over the past few years to optimize integration into the beamline, reduce the timing jitter, and improve the signal-to-noise ratio. These include the development of X-ray optics for focusing the X-rays into the sample and the entrance slit of the streak camera, and measures to minimize the amount of laser light needed to generate the deflection-voltage ramp. For the latter, the photoconductive switch generating the deflection ramp was replaced with microwave power electronics. With these, the streak camera operates routinely at 88 MHz repetition rate, thus making it compatible with all of the APS fill patterns including use of all the X-rays in the 324-bunch mode. Sample data are shown to demonstrate the performance. C1 [Adams, Bernhard W.] Argonne Natl Lab, Argonne, IL 60439 USA. [Rose-Petruck, Christoph; Jiao, Yishuo] Brown Univ, Providence, RI 02912 USA. RP Adams, BW (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM adams@aps.anl.gov FU US Department of Energy, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX This work was supported by the US Department of Energy, Office of Basic Energy Sciences under Contract No. DE-AC02-06CH11357. We would also like to thank Yuelin Li and Haidan Wen of Sector 7 at the APS for their support of laser operations. NR 15 TC 0 Z9 0 U1 5 U2 6 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0909-0495 EI 1600-5775 J9 J SYNCHROTRON RADIAT JI J. Synchrot. Radiat. PD JUL PY 2015 VL 22 BP 1022 EP 1029 DI 10.1107/S1600577515007912 PN 4 PG 8 WC Instruments & Instrumentation; Optics; Physics, Applied SC Instruments & Instrumentation; Optics; Physics GA CM0YZ UT WOS:000357407900018 PM 26134806 ER PT J AU Vorwerk, C Jorissen, K Rehr, J Ahmed, T AF Vorwerk, Christian Jorissen, Kevin Rehr, John Ahmed, Towfiq TI Real-space multiple-scattering Hubbard model calculations for d- and f-state materials SO JOURNAL OF SYNCHROTRON RADIATION LA English DT Article DE X-ray absorption spectroscopy; multiple scattering; XANES; Hubbard model ID DENSITY-FUNCTIONAL THEORY; ELECTRONIC-STRUCTURE; 1ST-PRINCIPLES CALCULATIONS; SPECTRA; INSULATORS; OXIDES; CEO2 AB Calculations are presented of the electronic structure and X-ray spectra of materials with correlated d- and f-electron states based on the Hubbard model, a real-space multiple-scattering formalism and a rotationally invariant local density approximation. Values of the Hubbard parameter are calculated ab initio using the constrained random-phase approximation. The combination of the real-space Green's function with Hubbard model corrections provides an efficient approach to describe localized correlated electron states in these systems, and their effect on core-level X-ray spectra. Results are presented for the projected density of states and X-ray absorption spectra for transition metal and lanthanide-oxides. Results are found to be in good agreement with experiment. C1 [Vorwerk, Christian; Jorissen, Kevin; Rehr, John] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Ahmed, Towfiq] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Vorwerk, C (reprint author), Univ Washington, Dept Phys, Seattle, WA 98195 USA. EM vorwerk@physik.hu-berlin.de FU DOE [DE-FG03-97ER45623]; Studienstiftung des deutschen Volkes; Deutscher Akademischer Austauschdienst FX This work was supported by DOE Grant DE-FG03-97ER45623 (JJR), Studienstiftung des deutschen Volkes (CV) and Deutscher Akademischer Austauschdienst (CV). NR 29 TC 0 Z9 0 U1 2 U2 7 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0909-0495 EI 1600-5775 J9 J SYNCHROTRON RADIAT JI J. Synchrot. Radiat. PD JUL PY 2015 VL 22 BP 1042 EP 1048 DI 10.1107/S1600577515009698 PN 4 PG 7 WC Instruments & Instrumentation; Optics; Physics, Applied SC Instruments & Instrumentation; Optics; Physics GA CM0YZ UT WOS:000357407900021 PM 26134809 ER PT J AU Nichols, DA Hargis, JC Sanishvili, R Jaishankar, P Defrees, K Smith, EW Wang, KK Prati, F Renslo, AR Woodcock, HL Chen, Y AF Nichols, Derek A. Hargis, Jacqueline C. Sanishvili, Ruslan Jaishankar, Priyadarshini Defrees, Kyle Smith, Emmanuel W. Wang, Kenneth K. Prati, Fabio Renslo, Adam R. Woodcock, H. Lee Chen, Yu TI Ligand-Induced Proton Transfer and Low-Barrier Hydrogen Bond Revealed by X-ray Crystallography SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID PHOTOACTIVE YELLOW PROTEIN; GENERAL FORCE-FIELD; A BETA-LACTAMASE; ULTRAHIGH-RESOLUTION STRUCTURE; PENICILLIN-BINDING PROTEINS; SITE-DIRECTED MUTAGENESIS; SERINE PROTEASES; ENZYMATIC CATALYSIS; ANGSTROM RESOLUTION; MOLECULAR-DYNAMICS AB Ligand binding can change the pK(a) of protein residues and influence enzyme catalysis. Herein, we report three ultrahigh resolution X-ray crystal structures of CTX-M beta-lactamase, directly visualizing protonation state changes along the enzymatic pathway: apo protein at 0.79 angstrom, precovalent complex with nonelectrophilic ligand at 0.89 angstrom, and acylation transition state (TS) analogue at 0.84 angstrom. Binding of the noncovalent ligand induces a proton transfer from the catalytic Ser70 to the negatively charged Glu166, and the formation of a low-barrier hydrogen bond (LBHB) between Ser70 and Lys73, with a length of 2.53 angstrom and the shared hydrogen equidistant from the heteroatoms. QM/MM reaction path calculations determined the proton transfer barrier to be 1.53 kcal/mol. The LBHB is absent in the other two structures although Glu166 remains neutral in the covalent complex. Our data represents the first X-ray crystallographic example of a hydrogen engaged in an enzymatic LBHB, and demonstrates that desolvation of the active site by ligand binding can provide a protein microenvironment conducive to LBHB formation. It also suggests that LBHBs may contribute to stabilization of the TS in general acid/base catalysis together with other preorganized features of enzyme active sites. These structures reconcile previous experimental results suggesting alternatively Glu166 or Lys73 as the general base for acylation, and underline the importance of considering residue protonation state change when modeling protein-ligand interactions. Additionally, the observation of another LBHB (2.47 angstrom) between two conserved residues, Asp233 and Asp246, suggests that LBHBs may potentially play a special structural role in proteins. C1 [Nichols, Derek A.; Smith, Emmanuel W.; Chen, Yu] Univ S Florida, Coll Med, Dept Mol Med, Tampa, FL 33612 USA. [Hargis, Jacqueline C.; Wang, Kenneth K.; Woodcock, H. Lee] Univ S Florida, Dept Chem, Tampa, FL 33612 USA. [Sanishvili, Ruslan] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, GMCA APS, Argonne, IL 60439 USA. [Jaishankar, Priyadarshini; Defrees, Kyle; Renslo, Adam R.] Univ Calif San Francisco, Dept Pharmaceut Chem, San Francisco, CA USA. [Jaishankar, Priyadarshini; Defrees, Kyle; Renslo, Adam R.] Univ Calif San Francisco, Small Mol Discovery Ctr, San Francisco, CA USA. [Prati, Fabio] Univ Modena & Reggio Emilia, Dept Life Sci, I-41100 Modena, Italy. RP Chen, Y (reprint author), Univ S Florida, Coll Med, Dept Mol Med, 12901 Bruce B Downs Blvd,MDC 3522, Tampa, FL 33612 USA. EM ychen1@health.usf.edu FU NIH [AI103158, 1K22HL088341-01A1]; Federal funds from the National Cancer Institute [ACB-12002]; National Institute of General Medical Sciences [AGM-12006]; U.S. Department of Energy, Basic Energy Sciences, Office of Science [W-31-109-ENG-38]; NSF CHE [1156853]; University of South Florida FX We thank Shahriar Mobashery, Jed Fisher, and Wayne Guida for insightful discussions, and Orville Pemberton for reading the manuscript. This work has been supported by the NIH (AI103158 to Y.C.). GM/CA@APS has been funded in whole or in part with Federal funds from the National Cancer Institute (ACB-12002) and the National Institute of General Medical Sciences (AGM-12006). Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Basic Energy Sciences, Office of Science, under Contract No. W-31-109-ENG-38. HLW would like to acknowledge the generous support of NIH (1K22HL088341-01A1), NSF CHE (1156853), and the University of South Florida (start-up). Computations were performed at the USF Research Computing Center and using XSEDE computational resources (MCB120133); both centers are greatly appreciated. NR 70 TC 12 Z9 12 U1 4 U2 32 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JUL 1 PY 2015 VL 137 IS 25 BP 8086 EP 8095 DI 10.1021/jacs.5b00749 PG 10 WC Chemistry, Multidisciplinary SC Chemistry GA CM1JD UT WOS:000357436300029 PM 26057252 ER PT J AU Key, HM Clark, DS Hartwig, JF AF Key, Hanna M. Clark, Douglas S. Hartwig, John F. TI Generation, Characterization, and Tunable Reactivity of Organometallic Fragments Bound to a Protein Ligand SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID SUBSTITUTED CARBONIC-ANHYDRASE; ARTIFICIAL METALLOENZYMES; APO-FERRITIN; COMPLEXES; CATALYSIS; SITE; HYDROGENATION; ACCUMULATION; MANGANESE; BINDING AB Organotransition metal complexes catalyze important synthetic transformations, and the development of these systems has rested on the detailed understanding of the structures and elementary reactions of discrete organometallic complexes bound to organic ligands. One strategy for the creation of new organometallic systems is to exploit the intricate and highly structured ligands found in natural metalloproteins. We report the preparation and characterization of discrete rhodium and iridium fragments bound site-specifically in a kappa(2)-fashion to the protein carbonic anhydrase as a ligand. The reactions of apo human carbonic anhydrase with [Rh(nbd)(2)]BF4 or [M(CO)(2)(acac)] (M=Rh, Ir) form proteins containing Rh or Ir with organometallic ligands. A colorimetric assay was developed to quantify rapidly the metal occupancy at the native metal-binding site, and N-15-H-1 NMR spectroscopy was used to establish the amino acids to which the metal is bound. IR spectroscopy and EXAFS revealed the presence and number of carbonyl ligands and the number total ligands, while UV-vis spectroscopy provided a signature to readily identify species that had been fully characterized. Exploiting these methods, we observed fundamental stoichiometric reactions of the artificial organometallic site of this protein, including reactions that simultaneously form and cleave metal-carbon bonds. The preparation and reactivity of these artificial organometallic proteins demonstrate the potential to study a new genre of organometallic complexes for which the rates and outcomes of organometallic reactions can be controlled by genetic manipulation of the protein scaffold. C1 [Key, Hanna M.; Clark, Douglas S.; Hartwig, John F.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Key, Hanna M.; Hartwig, John F.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Clark, Douglas S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys & Biol Sci Div, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. RP Hartwig, JF (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM jhartwig@berkeley.edu FU Office of Science, U.S. Department of Energy [DE-AC02-05CH11231]; NSF; NIH [gm 68933, 1S10RR022393-01] FX This work was supported by the Director, Office of Science, U.S. Department of Energy, under Contract No. DE-AC02-05CH11231 and by the NSF (graduate research fellowship). We thank the QB3MacroLab facility (subcloning, shared equipment), Dr. Jeffery Pelton and the QB3 Central California 900 MHz NMR facility (useful discussion and instrumentation, supported by NIH grant gm 68933), Dr. Tony Iavarone and the QB3Mass Spectrometry Facility (nano-ESI data collection, supported by NIH grant 1S10RR022393-01), Dr. Junko Yano for EXAFS data collection and analysis, and Prof. Carol Fierke (U. Michigan) for the wild-type carbonic anhydrase gene. Dedicated to Prof. Stephen J. Lippard on the occasion of his 75th birthday. NR 31 TC 1 Z9 1 U1 11 U2 57 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JUL 1 PY 2015 VL 137 IS 25 BP 8261 EP 8268 DI 10.1021/jacs.5b04431 PG 8 WC Chemistry, Multidisciplinary SC Chemistry GA CM1JD UT WOS:000357436300048 PM 26020584 ER PT J AU Yates, LR Gerstung, M Knappskog, S Desmedt, C Gundem, G Van Loo, P Aas, T Alexandrov, LB Larsimont, D Davies, H Li, YL Ju, YS Ramakrishna, M Haugland, HK Lilleng, PK Nik-Zainal, S McLaren, S Butler, A Martin, S Glodzik, D Menzies, A Raine, K Hinton, J Jones, D Mudie, LJ Jiang, B Vincent, D Greene-Colozzi, A Adnet, PY Fatima, A Maetens, M Ignatiadis, M Stratton, MR Sotiriou, C Richardson, AL Lonning, PE Wedge, DC Campbell, PJ AF Yates, Lucy R. Gerstung, Moritz Knappskog, Stian Desmedt, Christine Gundem, Gunes Van Loo, Peter Aas, Turid Alexandrov, Ludmil B. Larsimont, Denis Davies, Helen Li, Yilong Ju, Young Seok Ramakrishna, Manasa Haugland, Hans Kristian Lilleng, Peer Kaare Nik-Zainal, Serena McLaren, Stuart Butler, Adam Martin, Sancha Glodzik, Dominic Menzies, Andrew Raine, Keiran Hinton, Jonathan Jones, David Mudie, Laura J. Jiang, Bing Vincent, Delphine Greene-Colozzi, April Adnet, Pierre-Yves Fatima, Aquila Maetens, Marion Ignatiadis, Michail Stratton, Michael R. Sotiriou, Christos Richardson, Andrea L. Lonning, Per Eystein Wedge, David C. Campbell, Peter J. TI Subclonal diversification of primary breast cancer revealed by multiregion sequencing SO NATURE MEDICINE LA English DT Article ID COPY-NUMBER ALTERATION; TUMOR TYPES; INTRATUMOR HETEROGENEITY; MUTATIONAL PROCESSES; MOLECULAR PORTRAITS; PANCREATIC-CANCER; DRIVER MUTATIONS; PROSTATE-CANCER; CLINICAL-TRIALS; EVOLUTION AB The sequencing of cancer genomes may enable tailoring of therapeutics to the underlying biological abnormalities driving a particular patient's tumor. However, sequencing-based strategies rely heavily on representative sampling of tumors. To understand the subclonal structure of primary breast cancer, we applied whole-genome and targeted sequencing to multiple samples from each of 50 patients' tumors (303 samples in total). The extent of subclonal diversification varied among cases and followed spatial patterns. No strict temporal order was evident, with point mutations and rearrangements affecting the most common breast cancer genes, including PIK3CA, TP53, PTEN, BRCA2 and MYC, occurring early in some tumors and late in others. In 13 out of 50 cancers, potentially targetable mutations were subclonal. Landmarks of disease progression, such as resistance to chemotherapy and the acquisition of invasive or metastatic potential, arose within detectable subclones of antecedent lesions. These findings highlight the importance of including analyses of subclonal structure and tumor evolution in clinical trials of primary breast cancer. C1 [Gerstung, Moritz; Gundem, Gunes; Van Loo, Peter; Alexandrov, Ludmil B.; Davies, Helen; Li, Yilong; Ju, Young Seok; Ramakrishna, Manasa; Nik-Zainal, Serena; McLaren, Stuart; Butler, Adam; Martin, Sancha; Glodzik, Dominic; Menzies, Andrew; Raine, Keiran; Hinton, Jonathan; Jones, David; Mudie, Laura J.; Stratton, Michael R.; Wedge, David C.] Wellcome Trust Sanger Inst, Canc Genome Project, Hinxton, England. [Yates, Lucy R.] Univ Cambridge, Dept Oncol, Cambridge, England. [Knappskog, Stian; Lonning, Per Eystein] Univ Bergen, Sect Oncol, Dept Clin Sci, Bergen, Norway. [Knappskog, Stian; Lonning, Per Eystein] Haukeland Hosp, Dept Oncol, N-5021 Bergen, Norway. [Desmedt, Christine; Larsimont, Denis; Vincent, Delphine; Adnet, Pierre-Yves; Maetens, Marion; Ignatiadis, Michail; Sotiriou, Christos] Univ Libre Bruxelles, Inst Jules Bordet, Breast Canc Translat Res Lab, Brussels, Belgium. [Van Loo, Peter] Univ Leuven, Dept Human Genet, Leuven, Belgium. [Aas, Turid] Haukeland Hosp, Dept Surg, N-5021 Bergen, Norway. [Alexandrov, Ludmil B.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM USA. [Haugland, Hans Kristian; Lilleng, Peer Kaare] Haukeland Hosp, Dept Pathol, N-5021 Bergen, Norway. [Lilleng, Peer Kaare] Univ Bergen, Dept Clin Med, Gade Lab Pathol, Bergen, Norway. [Jiang, Bing; Greene-Colozzi, April; Fatima, Aquila; Richardson, Andrea L.] Dana Farber Canc Inst, Boston, MA 02115 USA. [Richardson, Andrea L.] Harvard Univ, Brigham & Womens Hosp, Sch Med, Boston, MA 02115 USA. RP Campbell, PJ (reprint author), Wellcome Trust Sanger Inst, Canc Genome Project, Hinxton, England. EM pc8@sanger.ac.uk RI Ju, Young Seok/E-1324-2012; OI Alexandrov, Ludmil/0000-0003-3596-4515; Desmedt, Christine/0000-0002-5223-5579; Martin, Sancha/0000-0001-6213-5259; Ju, Young Seok/0000-0002-5514-4189; Gerstung, Moritz/0000-0001-6709-963X; Van Loo, Peter/0000-0003-0292-1949; Knappskog, Stian/0000-0002-4153-1655; Wedge, David/0000-0002-7572-3196 FU Wellcome Trust [077012/Z/05/Z]; Wellcome Trust Intermediate Clinical Research Fellowship [WT100183MA]; Belgian Cancer Plan-Ministry of Health; Breast Cancer Research Foundation; Brussels Region; Norwegian Cancer Society; Norwegian Health Region West; Bergen Research Foundation; European Community's Seventh Framework Programme (FP7) [242006]; Institut National du Cancer (INCa); National Nuclear Security Administration of the US Department of Energy FX This work is supported by the Wellcome Trust. P.J.C. is a Wellcome Trust Senior Clinical Fellow (103858/Z/14/Z). L.R.Y., Y.L. and L.B.A. are funded by Wellcome Trust PhD fellowships. S.N.-Z. is funded by a Wellcome Trust Intermediate Clinical Research Fellowship (WT100183MA). P.V.L. is a postdoctoral researcher at the Research Foundation Flanders (FWO). Work within the project is supported by the Belgian Cancer Plan-Ministry of Health, the Breast Cancer Research Foundation, the Brussels Region, the Norwegian Cancer Society, the Norwegian Health Region West and the Bergen Research Foundation. Some samples referenced in this publication will be included in the Breast Cancer Genome Analyses for the International Cancer Genome Consortium (ICGC) Working Group led by the Wellcome Trust Sanger Institute. BASIS is a part of the ICGC working group and is funded by the European Community's Seventh Framework Programme (FP7/2010-2014) under grant agreement number 242006. This working group also encompasses a triple-negative breast cancer project funded by the Wellcome Trust (grant 077012/Z/05/Z) and a HER2+ breast cancer project funded by Institut National du Cancer (INCa). We thank B. Leirvaag, D. Ekse, N.K. Duong and C. Eriksen for technical assistance. Research performed at Los Alamos National Laboratory was carried out under the auspices of the National Nuclear Security Administration of the US Department of Energy. NR 52 TC 86 Z9 88 U1 5 U2 35 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1078-8956 EI 1546-170X J9 NAT MED JI Nat. Med. PD JUL PY 2015 VL 21 IS 7 BP 751 EP + DI 10.1038/nm.3886 PG 13 WC Biochemistry & Molecular Biology; Cell Biology; Medicine, Research & Experimental SC Biochemistry & Molecular Biology; Cell Biology; Research & Experimental Medicine GA CM3SO UT WOS:000357604600016 PM 26099045 ER PT J AU Maksymovych, P AF Maksymovych, Petro TI COMPLEX OXIDE FERROELECTRICS Electrostatic doping by domain walls SO NATURE NANOTECHNOLOGY LA English DT Editorial Material ID CONDUCTANCE; GAS C1 Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Maksymovych, P (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. EM maksymovychp@ornl.gov RI Maksymovych, Petro/C-3922-2016 OI Maksymovych, Petro/0000-0003-0822-8459 NR 12 TC 1 Z9 1 U1 6 U2 43 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1748-3387 EI 1748-3395 J9 NAT NANOTECHNOL JI Nat. Nanotechnol. PD JUL PY 2015 VL 10 IS 7 BP 571 EP + DI 10.1038/nnano.2015.133 PG 3 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA CM2BW UT WOS:000357485600005 PM 26076470 ER PT J AU Tyo, EC Vajda, S AF Tyo, Eric C. Vajda, Stefan TI Catalysis by clusters with precise numbers of atoms SO NATURE NANOTECHNOLOGY LA English DT Review ID SUPPORTED METAL-CLUSTERS; QUADRUPOLE MASS FILTER; GAS-PHASE OXIDATION; GOLD CLUSTERS; PROPYLENE EPOXIDATION; ELECTRONIC-STRUCTURE; PLATINUM CLUSTERS; GRAPHITE SURFACES; SODIUM CLUSTERS; SHELL STRUCTURE AB Clusters that contain only a small number of atoms can exhibit unique and often unexpected properties. The clusters are of particular interest in catalysis because they can act as individual active sites, and minor changes in size and composition-such as the addition or removal of a single atom-can have a substantial influence on the activity and selectivity of a reaction. Here, we review recent progress in the synthesis and characterization of well-defined subnanometre clusters, and the understanding and exploitation of their catalytic properties. We examine work on size-selected supported clusters in ultrahigh-vacuum environments and under realistic reaction conditions, and explore the use of computational methods to provide a mechanistic understanding of their catalytic properties. We also highlight the potential of size-selected clusters to provide insights into important catalytic processes and their use in the development of novel catalytic systems. C1 [Tyo, Eric C.; Vajda, Stefan] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Vajda, Stefan] Argonne Natl Lab, Nanosci & Technol Div, Argonne, IL 60439 USA. [Vajda, Stefan] Yale Univ, Sch Engn, Dept Chem & Environm Engn, New Haven, CT 06520 USA. [Vajda, Stefan] Univ Chicago, Inst Mol Engn, Chicago, IL 60637 USA. RP Tyo, EC (reprint author), Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. EM vajda@anl.gov FU US Department of Energy from the Division of Materials Science and Engineering, Basic Energy Sciences, Office of Science [DE-AC02-06CH11357] FX The authors acknowledge the support by the US Department of Energy under Contract DE-AC02-06CH11357 from the Division of Materials Science and Engineering, Basic Energy Sciences, Office of Science. NR 109 TC 44 Z9 44 U1 42 U2 200 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1748-3387 EI 1748-3395 J9 NAT NANOTECHNOL JI Nat. Nanotechnol. PD JUL PY 2015 VL 10 IS 7 BP 577 EP 588 DI 10.1038/NNANO.2015.140 PG 12 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA CM2BW UT WOS:000357485600010 PM 26139144 ER PT J AU Cybart, SA Cho, EY Wong, TJ Wehlin, BH Ma, MK Huynh, C Dynes, RC AF Cybart, Shane A. Cho, E. Y. Wong, T. J. Wehlin, Bjoern H. Ma, Meng K. Huynh, Chuong Dynes, R. C. TI Nano Josephson superconducting tunnel junctions in YBa2Cu3O7-delta directly patterned with a focused helium ion beam SO NATURE NANOTECHNOLOGY LA English DT Article ID THIN-FILMS; DAMAGE; TRANSITION; ARRAYS; PAIRS AB Since the discovery of the high-transition-temperature superconductors (HTSs), researchers have explored many methods to fabricate superconducting tunnel junctions from these materials for basic science purposes and applications. HTS circuits operating at liquid-nitrogen temperatures (similar to 77 K) would significantly reduce power requirements in comparison with those fabricated from conventional superconductors. The difficulty is that the superconducting coherence length is very short and anisotropic in these materials, typically similar to 2 nm in the a-b plane and similar to 0.2 nm along the c axis. The electrical properties of Josephson junctions are therefore sensitive to chemical variations and structural defects on atomic length scales(1). To make multiple uniform HTS junctions, control at the atomic level is required. In this Letter we demonstrate all-HTS Josephson superconducting tunnel junctions created by using a 500-pm-diameter focused beam of helium ions to directly write tunnel barriers into YBa2Cu3O7-delta (YBCO) thin films. We demonstrate the ability to control the barrier properties continuously from conducting to insulating by varying the irradiation dose. This technique could provide a reliable and reproducible pathway for scaling up quantum-mechanical circuits operating at liquid-nitrogen temperatures, as well as an avenue to conduct novel planar superconducting tunnelling studies for basic science. C1 [Cybart, Shane A.; Cho, E. Y.; Wong, T. J.; Wehlin, Bjoern H.; Ma, Meng K.; Dynes, R. C.] Univ Calif San Diego, Dept Phys, Oxide Nano Elect Lab, La Jolla, CA 92093 USA. [Cybart, Shane A.; Dynes, R. C.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Huynh, Chuong] Carl Zeiss Microscopy LLC, Peabody, MA 01960 USA. RP Cybart, SA (reprint author), Univ Calif San Diego, Dept Phys, Oxide Nano Elect Lab, La Jolla, CA 92093 USA. EM scybart@ucsd.edu OI Huynh, Chuong/0000-0003-1696-8617 FU Office of Science and Office of Basic Energy Sciences of the US Department of Energy [DEAC02 05CH11231]; AFOSR grant [FA9550-07-1-0493]; UC scholars programme FX This work was supported by the Office of Science and Office of Basic Energy Sciences of the US Department of Energy (contract no. DEAC02 05CH11231) and by an AFOSR grant (FA9550-07-1-0493). M.M. and B.W. were supported by the UC scholars programme. The authors thank G. Schlenvogt for help with ion implantation simulations, K. Chen and P. Roediger for experimental discussions, J. Wu for help with the BCS fit, and K.D. Derr, B. Goetze and J. Notte for helping with setting up the experiment. NR 27 TC 11 Z9 11 U1 7 U2 42 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1748-3387 EI 1748-3395 J9 NAT NANOTECHNOL JI Nat. Nanotechnol. PD JUL PY 2015 VL 10 IS 7 BP 598 EP 602 DI 10.1038/NNANO.2015.76 PG 5 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA CM2BW UT WOS:000357485600013 PM 25915196 ER PT J AU Tian, Y Wang, T Liu, WY Xin, HL Li, HL Ke, YG Shih, WM Gang, O AF Tian, Ye Wang, Tong Liu, Wenyan Xin, Huolin L. Li, Huilin Ke, Yonggang Shih, William M. Gang, Oleg TI Prescribed nanoparticle cluster architectures and low-dimensional arrays built using octahedral DNA origami frames SO NATURE NANOTECHNOLOGY LA English DT Article ID GOLD NANOPARTICLES; NANOSCALE SHAPES; STRANDED-DNA; FOLDING DNA; NANOCLUSTERS; CRYSTALLIZATION; ENHANCEMENT; MOLECULES AB Three-dimensional mesoscale clusters that are formed from nanoparticles spatially arranged in pre-determined positions can be thought of as mesoscale analogues of molecules. These nanoparticle architectures could offer tailored properties due to collective effects, but developing a general platform for fabricating such clusters is a significant challenge. Here, we report a strategy for assembling three-dimensional nanoparticle clusters that uses a molecular frame designed with encoded vertices for particle placement. The frame is a DNA origami octahedron and can be used to fabricate clusters with various symmetries and particle compositions. Cryo-electron microscopy is used to uncover the structure of the DNA frame and to reveal that the nanoparticles are spatially coordinated in the prescribed manner. We show that the DNA frame and one set of nanoparticles can be used to create nanoclusters with different chiroptical activities. We also show that the octahedra can serve as programmable interparticle linkers, allowing one-and two-dimensional arrays to be assembled with designed particle arrangements. C1 [Tian, Ye; Liu, Wenyan; Xin, Huolin L.; Gang, Oleg] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Wang, Tong; Li, Huilin] Brookhaven Natl Lab, Dept Biosci, Upton, NY 11973 USA. [Li, Huilin] SUNY Stony Brook, Dept Biochem & Cell Biol, Stony Brook, NY 11794 USA. [Ke, Yonggang; Shih, William M.] Harvard Univ, Sch Med, Dept Biol Chem & Mol Pharmacol, Boston, MA 02115 USA. [Ke, Yonggang; Shih, William M.] Dana Farber Canc Inst, Dept Canc Biol, Boston, MA 02115 USA. [Ke, Yonggang; Shih, William M.] Harvard Univ, Wyss Inst Biologically Inspired Engn, Boston, MA 02115 USA. RP Tian, Y (reprint author), Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. EM ogang@bnl.gov RI Xin, Huolin/E-2747-2010 OI Xin, Huolin/0000-0002-6521-868X FU US Department of Energy, Office of Basic Energy Sciences [DE-SC0012704]; National Institutes of Health R01 grant [AG029979]; National Science Foundation Expeditions grant [1317694]; Designing Materials to Revolutionize and Engineer Our Future grant [1435964] FX The authors thank J. Li for help with tomography analysis and D. Chen for assistance with schematic drawing. Research carried out at the Centre for Functional Nanomaterials, Brookhaven National Laboratory, was supported by the US Department of Energy, Office of Basic Energy Sciences (contract no. DE-SC0012704). H.L. was supported by a National Institutes of Health R01 grant (AG029979) and W.M.S. was supported by a National Science Foundation Expeditions grant (1317694) and Designing Materials to Revolutionize and Engineer Our Future grant (1435964). NR 45 TC 37 Z9 37 U1 25 U2 97 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1748-3387 EI 1748-3395 J9 NAT NANOTECHNOL JI Nat. Nanotechnol. PD JUL PY 2015 VL 10 IS 7 BP 637 EP + DI 10.1038/NNANO.2015.105 PG 9 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA CM2BW UT WOS:000357485600020 PM 26005999 ER PT J AU Werneburg, GT Henderson, NS Portnoy, EB Sarowar, S Hultgren, SJ Li, HL Thanassi, DG AF Werneburg, Glenn T. Henderson, Nadine S. Portnoy, Erica B. Sarowar, Samema Hultgren, Scott J. Li, Huilin Thanassi, David G. TI The pilus usher controls protein interactions via domain masking and is functional as an oligomer SO NATURE STRUCTURAL & MOLECULAR BIOLOGY LA English DT Article ID OUTER-MEMBRANE USHER; UROPATHOGENIC ESCHERICHIA-COLI; INDEPENDENT-MUTAGENESIS SLIM; SUBUNIT COMPLEX RECOGNITION; DRIVES FIBER FORMATION; FIMD USHER; CRYSTAL-STRUCTURE; STRUCTURAL BASIS; TYPE-1 PILI; N-TERMINUS AB The chaperone-usher (CU) pathway assembles organelles termed pili or fimbriae in Gram-negative bacteria. Type 1 pili expressed by uropathogenic Escherichia coli are prototypical structures assembled by the CU pathway. Biogenesis of pili by the CU pathway requires a periplasmic chaperone and an outer-membrane protein termed the usher (FimD). We show that the FimD C-terminal domains provide the high-affinity substrate-binding site but that these domains are masked in the resting usher. Domain masking requires the FimD plug domain, which serves as a switch controlling usher activation. We demonstrate that usher molecules can act in trans for pilus biogenesis, providing conclusive evidence for a functional usher oligomer. These results reveal mechanisms by which molecular machines such as the usher regulate and harness protein-protein interactions and suggest that ushers may interact in a cooperative manner during pilus assembly in bacteria. C1 [Werneburg, Glenn T.; Henderson, Nadine S.; Portnoy, Erica B.; Thanassi, David G.] SUNY Stony Brook, Ctr Infect Dis, Stony Brook, NY 11794 USA. [Werneburg, Glenn T.; Henderson, Nadine S.; Portnoy, Erica B.; Thanassi, David G.] SUNY Stony Brook, Dept Mol Genet & Microbiol, Stony Brook, NY 11794 USA. [Sarowar, Samema; Li, Huilin] SUNY Stony Brook, Dept Biochem & Cell Biol, Stony Brook, NY 11794 USA. [Sarowar, Samema; Li, Huilin] Brookhaven Natl Lab, Dept Biosci, Upton, NY 11973 USA. [Hultgren, Scott J.] Washington Univ, Sch Med, Dept Mol Microbiol, St Louis, MO 63110 USA. [Hultgren, Scott J.] Washington Univ, Sch Med, Ctr Womens Infect Dis Res, St Louis, MO USA. RP Thanassi, DG (reprint author), SUNY Stony Brook, Ctr Infect Dis, Stony Brook, NY 11794 USA. EM david.thanassi@stonybrook.edu FU US National Institutes of Health (NIH) [R01GM062987, R01AI029549]; Medical Scientist Training Program [T32GM008444]; National Research Service Award from the NIH [F30AI112252]; NIH [S10RR023680] FX We thank the Schultz laboratory (Scripps Research Institute) for providing plasmid pEVOL-pBpF. We thank S. Van Horn of the Stony Brook University Central Microscopy Imaging Center and V. Sampath (Stony Brook University) for assistance with EM. We thank J. Haley, D. Martin and R. Rieger of the Stony Brook Proteomics Center for performing the mass spectrometry analysis and for helpful discussions. We thank S. Scarlata (Stony Brook University), A.W. Karzai (Stony Brook University), K.W. Dodson (Washington University) and A.H. Delcour (University of Houston) for helpful discussions and critical reading of the manuscript. This study was supported by US National Institutes of Health (NIH) grants R01GM062987 (to D.G.T. and H.L.) and R01AI029549 (to S.J.H.). G.T.W. was supported by Medical Scientist Training Program award T32GM008444 and National Research Service Award F30AI112252 from the NIH. The Stony Brook Proteomics Center receives support from NIH award S10RR023680. NR 51 TC 5 Z9 5 U1 2 U2 9 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1545-9993 EI 1545-9985 J9 NAT STRUCT MOL BIOL JI Nat. Struct. Mol. Biol. PD JUL PY 2015 VL 22 IS 7 BP 540 EP + DI 10.1038/nsmb.3044 PG 9 WC Biochemistry & Molecular Biology; Biophysics; Cell Biology SC Biochemistry & Molecular Biology; Biophysics; Cell Biology GA CM3WC UT WOS:000357614900005 PM 26052892 ER PT J AU Wang, XY Wang, XL Hu, QN Dai, XM Tian, HN Zheng, KJ Wang, XP Mao, TL Chen, JG Wang, SC AF Wang, Xiaoyu Wang, Xianling Hu, Qingnan Dai, Xuemei Tian, Hainan Zheng, Kaijie Wang, Xiaoping Mao, Tonglin Chen, Jin-Gui Wang, Shucai TI Characterization of an activation-tagged mutant uncovers a role of GLABRA2 in anthocyanin biosynthesis in Arabidopsis SO PLANT JOURNAL LA English DT Article DE GLABRA2; anthocyanin; flavonoid; transcription factor; Arabidopsis thaliana ID REPEAT R3 MYB; TRANSCRIPTION FACTORS; TRICHOME DEVELOPMENT; GENE ENCODES; CHALCONE SYNTHASE; DOMAIN PROTEIN; CELL-FATE; PHENYLPROPANOID BIOSYNTHESIS; FUNCTIONAL-CHARACTERIZATION; DIFFERENTIAL REGULATION AB In Arabidopsis, anthocyanin biosynthesis is controlled by a MYB-bHLH-WD40 (MBW) transcriptional activator complex. The MBW complex activates the transcription of late biosynthesis genes in the flavonoid pathway, leading to the production of anthocyanins. A similar MBW complex regulates epidermal cell fate by activating the transcription of GLABRA2 (GL2), a homeodomain transcription factor required for trichome formation in shoots and non-hair cell formation in roots. Here we provide experimental evidence to show that GL2 also plays a role in regulating anthocyanin biosynthesis in Arabidopsis. From an activation-tagged mutagenized population of Arabidopsis plants, we isolated a dominant, gain-of-function mutant with reduced anthocyanins. Molecular cloning revealed that this phenotype is caused by an elevated expression of GL2, thus the mutant was named gl2-1D. Consistent with the view that GL2 acts as a negative regulator of anthocyanin biosynthesis, gl2-1D seedlings accumulated less whereas gl2-3 seedlings accumulated more anthocyanins in response to sucrose. Gene expression analysis indicated that expression of late, but not early, biosynthesis genes in the flavonoid pathway was dramatically reduced in gl2-1D but elevated in gl2-3 mutants. Further analysis showed that expression of some MBW component genes involved in the regulation of late biosynthesis genes was reduced in gl2-1D but elevated in gl2-3 mutants, and chromatin immunoprecipitation results indicated that some MBW component genes are targets of GL2. We also showed that GL2 functions as a transcriptional repressor. Taken together, these results indicate that GL2 negatively regulates anthocyanin biosynthesis in Arabidopsis by directly repressing the expression of some MBW component genes. C1 [Wang, Xiaoyu; Wang, Xianling; Hu, Qingnan; Dai, Xuemei; Tian, Hainan; Zheng, Kaijie; Wang, Xiaoping; Wang, Shucai] NE Normal Univ, Key Lab Mol Epigenet MOE, Changchun 130024, Jilin, Peoples R China. [Wang, Xiaoyu; Wang, Xianling; Hu, Qingnan; Dai, Xuemei; Tian, Hainan; Zheng, Kaijie; Wang, Xiaoping; Wang, Shucai] NE Normal Univ, Inst Cytol & Genet, Changchun 130024, Jilin, Peoples R China. [Mao, Tonglin] China Agr Univ, Coll Biol Sci, Dept Plant Sci, State Key Lab Plant Physiol & Biochem, Beijing 100094, Peoples R China. [Chen, Jin-Gui] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. RP Wang, SC (reprint author), NE Normal Univ, Key Lab Mol Epigenet MOE, Changchun 130024, Jilin, Peoples R China. EM wangsc550@nenu.edu.cn RI Chen, Jin-Gui/A-4773-2011 OI Chen, Jin-Gui/0000-0002-1752-4201 FU National Natural Science Foundation of China [31170262]; Programme for Introducing Talents to Universities [B07017]; Northeast Normal University; Laboratory Directed Research and Development Program of Oak Ridge National Laboratory; United States Department of Energy [DE-AC05-00OR22725] FX We thank Dr Brian Ellis (University of British Columbia) for critical reading of this manuscript. This work was supported by the National Natural Science Foundation of China (grant no. 31170262), the Programme for Introducing Talents to Universities (B07017) and the startup funds from Northeast Normal University (http://www.nenu.edu.cn) to S.W., and the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory to J.-G.C. Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the United States Department of Energy under contract DE-AC05-00OR22725. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript, and the authors declared no conflict of interest. NR 84 TC 11 Z9 12 U1 3 U2 34 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0960-7412 EI 1365-313X J9 PLANT J JI Plant J. PD JUL PY 2015 VL 83 IS 2 BP 300 EP 311 DI 10.1111/tpj.12887 PG 12 WC Plant Sciences SC Plant Sciences GA CM3WX UT WOS:000357617200009 PM 26017690 ER PT J AU Qian, X Vogel, P AF Qian, X. Vogel, P. TI Neutrino mass hierarchy SO PROGRESS IN PARTICLE AND NUCLEAR PHYSICS LA English DT Review DE Neutrino oscillation; Neutrino mass hierarchy; Neutrino mixing ID LIQUID-ARGON; ANTINEUTRINO SPECTRA; FISSION-PRODUCTS; ELECTRONS; OSCILLATIONS; IONIZATION; CONVERSION; MODEL; DETECTOR; CHAMBER AB The neutrino mass hierarchy i.e. whether the 113 neutrino mass eigenstate is heavier or lighter than the nu(1) and nu(2) mass eigenstates is one of the remaining undetermined fundamental features of the neutrino Standard Model. Its determination would represent an important step in the formulation of the generalized model and would have a profound impact on the quest of the nature of neutrinos (Dirac or Majorana) and the search for a theory of flavor. In this review we summarize the status of experimental and theoretical work in this field and explore the future opportunities that emerge in light of the recently discovered non-zero and relatively large third neutrino mixing angle theta(13). (C) 2015 Elsevier B.V. All rights reserved. C1 [Qian, X.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Vogel, P.] CALTECH, Kellogg Radiat Lab, Pasadena, CA 91125 USA. RP Qian, X (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. EM xqian@bnl.gov; pvogel@caltech.edu OI Qian, Xin/0000-0002-7903-7935 FU U.S. Department of Energy, Office of Science, Office of High Energy Physics, Early Career Research program [DE-SC0012704] FX We thank Brett Viren, Chao Zhang, Steve Kettell, Wei Tang for reading the manuscript. This material is supported in part by the U.S. Department of Energy, Office of Science, Office of High Energy Physics, Early Career Research program under contract number DE-SC0012704. NR 123 TC 13 Z9 13 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0146-6410 EI 1873-2224 J9 PROG PART NUCL PHYS JI Prog. Part. Nucl. Phys. PD JUL PY 2015 VL 83 BP 1 EP 30 DI 10.1016/j.ppnp.2015.05.002 PG 30 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA CL8RC UT WOS:000357240800001 ER PT J AU Lao, J Sharma, MK Sharma, R Fernandez-Nino, SMG Schmutz, J Ronald, PC Heazlewood, JL Schwessinger, B AF Lao, Jeemeng Sharma, Manoj K. Sharma, Rita Fernandez-Nino, Susana M. Gonzalez Schmutz, Jeremy Ronald, Pamela C. Heazlewood, Joshua L. Schwessinger, Benjamin TI Proteome profile of the endomembrane of developing coleoptiles from switchgrass (Panicum virgatum) SO PROTEOMICS LA English DT Article DE Cell wall; Coleoptile; Endomembrane; Plant proteomics; Switchgrass ID DATABASE SEARCH; UDP-XYLOSE; BIOSYNTHESIS; TOOL; ANNOTATION; ISOFORMS; RESOURCE; RICE AB The cost-effective production of biofuels from lignocellulosic material will likely require manipulation of plant biomass, specifically cell walls. The North American native prairie grass Panicum virgatum (switchgrass) is seen as a potential biofuel crop with an array of genetic resources currently being developed. We have characterized the endomembrane proteome of switchgrass coleoptiles to provide additional information to the switchgrass community. In total, we identified 1750 unique proteins from two biological replicates. These data have been deposited in the ProteomeXchange with the identifier PXD001351 (). C1 [Lao, Jeemeng; Sharma, Manoj K.; Sharma, Rita; Fernandez-Nino, Susana M. Gonzalez; Ronald, Pamela C.; Heazlewood, Joshua L.; Schwessinger, Benjamin] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Joint BioEnergy Inst, Berkeley, CA 94720 USA. [Lao, Jeemeng; Sharma, Manoj K.; Sharma, Rita; Fernandez-Nino, Susana M. Gonzalez; Ronald, Pamela C.; Heazlewood, Joshua L.; Schwessinger, Benjamin] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Sharma, Manoj K.; Sharma, Rita; Ronald, Pamela C.; Schwessinger, Benjamin] Univ Calif Davis, Dept Plant Pathol, Davis, CA 95616 USA. [Sharma, Manoj K.] Jawaharlal Nehru Univ, Sch Biotechnol, New Delhi 110067, India. [Sharma, Rita] Jawaharlal Nehru Univ, Sch Life Sci, New Delhi 110067, India. [Schmutz, Jeremy] Joint Genome Inst, Dept Energy, Walnut Creek, CA USA. [Schmutz, Jeremy] HudsonAlpha Genome Sequencing Ctr, Huntsville, AL USA. [Heazlewood, Joshua L.] Univ Melbourne, Sch Bot, ARC Ctr Excellence Plant Cell Walls, Melbourne, Vic 3010, Australia. RP Schwessinger, B (reprint author), Univ Calif Davis, Dept Plant Pathol, Davis, CA 95616 USA. EM bschwessinger@ucdavis.edu RI Heazlewood, Joshua/A-2554-2008; OI Heazlewood, Joshua/0000-0002-2080-3826; Schwessinger, Benjamin/0000-0002-7194-2922 FU Office of Science, Office of Biological and Environmental Research of the U.S. Department of Energy [DE-AC02-05CH11231]; Australian Research Council Future Fellowship [FT130101165]; DBT, India; Human Frontier Science Program long-term post-doctoral fellowship [LT000674/2012] FX The work conducted by the Joint BioEnergy Institute was supported by the Office of Science, Office of Biological and Environmental Research of the U.S. Department of Energy [DE-AC02-05CH11231]. J.L.H. is supported by an Australian Research Council Future Fellowship [FT130101165]. R.S. and M.K.S. acknowledge DBT, India for the Ramalingaswami Fellowship. B.S. is supported by a Human Frontier Science Program long-term post-doctoral fellowship [LT000674/2012]. We also wish to thank the UC Davis Proteomics Core Facility for sample analysis. Pre-publication data were provided by the Department of Energy Joint Genome Institute. NR 25 TC 0 Z9 0 U1 3 U2 9 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1615-9853 EI 1615-9861 J9 PROTEOMICS JI Proteomics PD JUL PY 2015 VL 15 IS 13 BP 2286 EP 2290 DI 10.1002/pmic.201400487 PG 5 WC Biochemical Research Methods; Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA CL9BA UT WOS:000357267700016 PM 25677556 ER PT J AU Wang, Y Xu, ZD Mao, JH Hung, MS Hsieh, D Au, A Jablons, DM You, L AF Wang, Yang Xu, Zhidong Mao, Jian-Hua Hung, Ming-Szu Hsieh, David Au, Alfred Jablons, David M. You, Liang TI Analysis of lung tumor initiation and progression in transgenic mice for Cre-inducible overexpression of Cul4A gene SO THORACIC CANCER LA English DT Article DE AdenoCre; Cre; Cul4A; lung cancer; mouse models ID K-RAS; CANCER; ADENOCARCINOMA; CELLS; IDENTIFICATION; ONCOGENE; MODELS AB BackgroundLung cancer is the leading cause of morbidity and death worldwide. Although the available lung cancer animal models have been informative and further propel our understanding of human lung cancer, they still do not fully recapitulate the complexities of human lung cancer. The pathogenesis of lung cancer remains highly elusive because of its aggressive biologic nature and considerable heterogeneity, compared to other cancers. The association of Cul4A amplification with aggressive tumor growth and poor prognosis has been suggested. Our previous study suggested that Cul4A is oncogenic in vitro, but its oncogenic role in vivo has not been studied. MethodsViral delivery approaches have been used extensively to model cancer in mouse models. In our experiments, we used Cre-recombinase induced overexpression of the Cul4A gene in transgenic mice to study the role of Cul4A on lung tumor initiation and progression and have developed a new model of lung tumor development in mice harboring a conditionally expressed allele of Cul4A. ResultsHere we show that the use of a recombinant adenovirus expressing Cre-recombinase (AdenoCre) to induce Cul4A overexpression in the lungs of mice allows controls of the timing and multiplicity of tumor initiation. Following our mouse models, we are able to study the potential role of Cul4A in the development and progression in pulmonary adenocarcinoma as well. ConclusionOur findings indicate that Cul4A is oncogenic in vivo, and this mouse model is a tool in understanding the mechanisms of Cul4A in human cancers and for testing experimental therapies targeting Cul4A. C1 [Wang, Yang] Capital Med Univ, Beijing Chao Yang Hosp, Dept Thorac Surg, Beijing, Peoples R China. [Xu, Zhidong; Hsieh, David; Jablons, David M.; You, Liang] Univ Calif San Francisco, Ctr Comprehens Canc, Dept Surg, Thorac Oncol Lab, San Francisco, CA 94143 USA. [Mao, Jian-Hua] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. [Hung, Ming-Szu] Chang Gung Mem Hosp, Div Pulm & Crit Care Med, Chiayi, Taiwan. [Au, Alfred] Univ Calif San Francisco, Ctr Comprehens Canc, Div Diagnost Pathol, San Francisco, CA 94143 USA. RP You, L (reprint author), Univ Calif San Francisco, Ctr Comprehens Canc, Dept Surg, Thorac Oncol Lab, San Francisco, CA 94143 USA. EM Liang.You@ucsfmedctr.org FU NIH [R01 CA140654-01A1]; Kazan, McClain, Abrams, Fernandez, Lyons, Greenwood, Harley & Oberman Foundation, Inc; Estate of Robert Griffiths; Jeffrey and Karen Peterson Family Foundation; Paul and Michelle Zygielbaum; Estate of Norman Mancini; Barbara Isackson Lung Cancer Research Fund FX This study was supported by a NIH grant R01 CA140654-01A1. We are grateful for support from the Kazan, McClain, Abrams, Fernandez, Lyons, Greenwood, Harley & Oberman Foundation, Inc; the Estate of Robert Griffiths; the Jeffrey and Karen Peterson Family Foundation; Paul and Michelle Zygielbaum; the Estate of Norman Mancini; and the Barbara Isackson Lung Cancer Research Fund. We thank Lorretta Chan in the UCSF Cancer Center Tissue Core for her help. We also thank Pamela Derish in the UCSF Department of Surgery for editorial assistance with the manuscript. NR 17 TC 0 Z9 0 U1 1 U2 3 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1759-7706 EI 1759-7714 J9 THORAC CANCER JI Thorac. Cancer PD JUL PY 2015 VL 6 IS 4 BP 480 EP 487 DI 10.1111/1759-7714.12257 PG 8 WC Oncology; Respiratory System SC Oncology; Respiratory System GA CM3ML UT WOS:000357586300016 PM 26273405 ER PT J AU Lax, S Gilbert, JA AF Lax, Simon Gilbert, Jack A. TI Hospital-associated microbiota and implications for nosocomial infections SO TRENDS IN MOLECULAR MEDICINE LA English DT Review DE nosocomial infections; built environment microbiology; microbial ecology; metagenomics ID CARE-ASSOCIATED INFECTIONS; COAGULASE-NEGATIVE STAPHYLOCOCCI; ANTIBIOTIC-RESISTANCE; NECROTIZING ENTEROCOLITIS; INDOOR ENVIRONMENT; MOBILE PHONES; BACTERIAL; INFANT; AUREUS; TRANSMISSION AB The rise of high-throughput sequencing technologies and culture-independent microbial surveys has the potential to revolutionize our understanding of how microbes colonize, move about, and evolve in hospital environments. Genome analysis of individual organisms, characterization of population dynamics, and microbial community ecology are facilitating the identification of novel pathogens, the tracking of disease outbreaks, and the study of the evolution of antibiotic resistance. Here we review the recent applications of these methods to microbial ecology studies in hospitals and discuss their potential to influence hospital management policy and practice and to reduce nosocomial infections and the spread of antibiotic resistance. C1 [Lax, Simon; Gilbert, Jack A.] Univ Chicago, Dept Ecol & Evolut, Chicago, IL 60637 USA. [Lax, Simon; Gilbert, Jack A.] Argonne Natl Lab, Inst Genom & Syst Biol, Dept Biosci, Argonne, IL 60439 USA. [Gilbert, Jack A.] Univ Chicago, Grad Program Biophys Sci, Chicago, IL 60637 USA. [Gilbert, Jack A.] Marine Biol Lab, Woods Hole, MA 02543 USA. [Gilbert, Jack A.] Zhejiang Univ, Coll Environm & Resource Sci, Hangzhou 310058, Zhejiang, Peoples R China. RP Lax, S (reprint author), Univ Chicago, Dept Ecol & Evolut, 1101 E 57th St, Chicago, IL 60637 USA. EM simonlax@uchicago.edu FU US Department of Energy [DE-AC02-06CH11357]; Alfred P. Sloan Foundation FX This work was supported in part by the US Department of Energy under Contract DE-AC02-06CH11357. This work was also supported by the Alfred P. Sloan Foundation's Microbiology of the Built Environment research program. NR 60 TC 9 Z9 9 U1 4 U2 24 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1471-4914 EI 1471-499X J9 TRENDS MOL MED JI Trends Mol. Med PD JUL PY 2015 VL 21 IS 7 BP 427 EP 432 DI 10.1016/j.molmed.2015.03.005 PG 6 WC Biochemistry & Molecular Biology; Cell Biology; Medicine, Research & Experimental SC Biochemistry & Molecular Biology; Cell Biology; Research & Experimental Medicine GA CM6YF UT WOS:000357836900005 PM 25907678 ER PT J AU Li, W Quina, L Turner, EE Visel, A Cox, TC AF Li, W. Quina, L. Turner, E. E. Visel, A. Cox, T. C. TI Common phenotypes in multiple species identifies an Hmx1 enhancer important for lateral facial development SO AMERICAN JOURNAL OF MEDICAL GENETICS PART A LA English DT Meeting Abstract CT 37th Annual Meeting of the Society-for-Craniofacial-Genetics-and-Developmental-Biology (SCGDB) CY OCT 18, 2014 CL Sanford Consortium Regenerat Med, LaJolla, CA SP Soc Craniofacial Genet & Dev Biol HO Sanford Consortium Regenerat Med C1 [Li, W.; Cox, T. C.] Univ Washington, Dept Oral Hlth Sci, Seattle, WA 98195 USA. [Turner, E. E.] Univ Washington, Dept Psychiat, Seattle, WA 98195 USA. [Cox, T. C.] Univ Washington, Dept Pediat Craniofacial Med, Seattle, WA 98195 USA. [Quina, L.; Turner, E. E.] Seattle Childrens Res Inst, Ctr Integrat Brain Res, Seattle, WA USA. [Visel, A.] Seattle Childrens Res Inst, Ctr Dev Biol & Regenerat Med, Seattle, WA USA. [Visel, A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1552-4825 EI 1552-4833 J9 AM J MED GENET A JI Am. J. Med. Genet. A PD JUL PY 2015 VL 167 IS 7 BP 1464 EP 1464 PG 1 WC Genetics & Heredity SC Genetics & Heredity GA CL1BB UT WOS:000356676200028 ER PT J AU Waldhoff, ST Martinich, J Sarofim, M DeAngelo, B McFarland, J Jantarasami, L Shouse, K Crimmins, A Ohrel, S Li, J AF Waldhoff, Stephanie T. Martinich, Jeremy Sarofim, Marcus DeAngelo, Benjamin McFarland, Jim Jantarasami, Lesley Shouse, Kate Crimmins, Allison Ohrel, Sara Li, Jia TI Overview of the special issue: a multi-model framework to achieve consistent evaluation of climate change impacts in the United States SO CLIMATIC CHANGE LA English DT Article C1 [Waldhoff, Stephanie T.] Joint Global Change Res Inst, Pacif NW Natl Lab, College Pk, MD USA. [Martinich, Jeremy; Sarofim, Marcus; DeAngelo, Benjamin; McFarland, Jim; Jantarasami, Lesley; Shouse, Kate; Crimmins, Allison; Ohrel, Sara; Li, Jia] US EPA, Climate Change Div, Washington, DC 20460 USA. RP Waldhoff, ST (reprint author), Pacific NW Natl Lab, Joint Global Change Res Inst, College Pk, MD 20740 USA. EM stephanie.waldhoff@pnnl.gov FU Integrated Assessment Research Program in the Office of Science of the US Department of Energy (US DOE SC-IARP); US DOE SC-IARP FX This research used Evergreen computing resources at the Pacific Northwest National Laboratory's Joint Global Change Research Institute at the University of Maryland in College Park, which is supported by the Integrated Assessment Research Program in the Office of Science of the US Department of Energy (US DOE SC-IARP). Support for Stephanie Waldhoff was also provided by US DOE SC-IARP. The views presented in this paper do not necessarily represent the views of the US Environmental Protection Agency, the US Department of Energy, or Pacific Northwest National Laboratory. NR 26 TC 10 Z9 10 U1 2 U2 7 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0165-0009 EI 1573-1480 J9 CLIMATIC CHANGE JI Clim. Change PD JUL PY 2015 VL 131 IS 1 BP 1 EP 20 DI 10.1007/s10584-014-1206-0 PG 20 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA CL6ZG UT WOS:000357118200001 ER PT J AU Reed, DA Dongarra, J AF Reed, Daniel A. Dongarra, Jack TI Exascale Computing and Big Data SO COMMUNICATIONS OF THE ACM LA English DT Article AB NEARLY TWO CENTURIES ago, the English chemist Humphrey Davy wrote "Nothing tends so much to the advancement of knowledge as the application of a new instrument. The native intellectual powers of men in different times are not so much the causes of the different success of their labors, as the peculiar nature of the means and artificial resources in their possession." Davy's observation that advantage accrues to those who have the most powerful scientific tools is no less true today. In 2013, Martin Karplus, Michael Levitt, and Arieh Warshel received the Nobel Prize in chemistry for their work in computational modeling. The Nobel committee said, "Computer models mirroring real life have become crucial for most advances made in chemistry today," 17 and "Computers unveil chemical processes, such as a catalyst's purification of exhaust fumes or the photosynthesis in green leaves." C1 [Reed, Daniel A.] Univ Iowa, Res & Econ Dev, Iowa City, IA 52242 USA. [Reed, Daniel A.] Univ Iowa, Comp Sci Elect & Comp Engn & Med, Iowa City, IA 52242 USA. [Dongarra, Jack] Univ Tennessee, Knoxville, TN 37996 USA. [Dongarra, Jack] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Dongarra, Jack] Univ Manchester, Manchester M13 9PL, Lancs, England. RP Reed, DA (reprint author), Univ Iowa, Res & Econ Dev, Iowa City, IA 52242 USA. EM dan-reed@uiowa.edu; dongarra@icl.utk.edu FU National Science Foundation [ACI-1349521, ACI-1339822]; Department of Energy [DE-FG02-13ER26151] FX We are grateful for insights and perspectives we received from the DARPA and DOE exascale hardware, software, and application study groups. We also acknowledge the insightful comments and suggestions from the reviewers of earlier drafts of this article. Daniel A. Reed acknowledges support from the National Science Foundation under NSF grant ACI-1349521. Jack Dongarra acknowledges support from the National Science Foundation under NSF grant ACI-1339822 and by the Department of Energy under DOE grant DE-FG02-13ER26151. NR 23 TC 23 Z9 23 U1 6 U2 21 PU ASSOC COMPUTING MACHINERY PI NEW YORK PA 2 PENN PLAZA, STE 701, NEW YORK, NY 10121-0701 USA SN 0001-0782 EI 1557-7317 J9 COMMUN ACM JI Commun. ACM PD JUL PY 2015 VL 58 IS 7 BP 56 EP 68 DI 10.1145/2699414 PG 13 WC Computer Science, Hardware & Architecture; Computer Science, Software Engineering; Computer Science, Theory & Methods SC Computer Science GA CL7BP UT WOS:000357125200020 ER PT J AU Brooks, B Mueller, RS Young, JC Morowitz, MJ Hettich, RL Banfield, JF AF Brooks, Brandon Mueller, Ryan S. Young, Jacque C. Morowitz, Michael J. Hettich, Robert L. Banfield, Jillian F. TI Strain-resolved microbial community proteomics reveals simultaneous aerobic and anaerobic function during gastrointestinal tract colonization of a preterm infant SO FRONTIERS IN MICROBIOLOGY LA English DT Article DE colonization; infant gut; metaproteomics; microbiome; microbial ecology; physiology ID GUT MICROBIOME; NECROTIZING ENTEROCOLITIS; DELIVERY MODE; VI SECRETION; BACTERIA; DISEASE; IDENTIFICATION; PATHOGENESIS; SHAPE AB While there has been growing interest in the gut microbiome in recent years, it remains unclear whether closely related species and strains have similar or distinct functional roles and if organisms capable of both aerobic and anaerobic growth do so simultaneously. To investigate these questions, we implemented a high-throughput mass spectrometry-based proteomics approach to identify proteins in fecal samples collected on days of life 13-21 from an infant born at 28 weeks gestation. No prior studies have coupled strain-resolved community metagenomics to proteomics for such a purpose. Sequences were manually curated to resolve the genomes of two strains of Citrobacter that were present during the later stage of colonization. Proteome extracts from fecal samples were processed via a nano-2D-LC-MS/MS and peptides were identified based on information predicted from the genome sequences for the dominant organisms, Serratia and the two Citrobacter strains. These organisms are facultative anaerobes, and proteomic information indicates the utilization of both aerobic and anaerobic metabolisms throughout the time series. This may indicate growth in distinct niches within the gastrointestinal tract. We uncovered differences in the physiology of coexisting Citrobacter strains, including differences in motility and chemotaxis functions. Additionally, for both Citrobacter strains we resolved a community-essential role in vitamin metabolism and a predominant role in propionate production. Finally, in this case study we detected differences between genome abundance and activity levels for the dominant populations. This underlines the value in layering proteomic information over genetic potential. C1 [Brooks, Brandon; Mueller, Ryan S.; Banfield, Jillian F.] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94709 USA. [Mueller, Ryan S.] Oregon State Univ, Dept Microbiol, Corvallis, OR 97331 USA. [Young, Jacque C.; Hettich, Robert L.] Univ Tennessee, Dept Genome Sci & Technol, Knoxville, TN USA. [Young, Jacque C.; Hettich, Robert L.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN USA. [Morowitz, Michael J.] Univ Pittsburgh, Sch Med, Dept Surg, Pittsburgh, PA USA. RP Banfield, JF (reprint author), Univ Calif Berkeley, Dept Earth & Planetary Sci, 54 Mulford Hall, Berkeley, CA 94709 USA. EM jbanfield@berkeley.edu RI Hettich, Robert/N-1458-2016 OI Hettich, Robert/0000-0001-7708-786X FU NIH [1R01-GM-103600, 5R01-AI-092531]; March of Dimes Foundation [5-FY10-103]; NSF Graduate Fellowship; Genome Science and Technology program at the University of Tennessee, Knoxville FX We thank Dr. David Tabb for the DTASelect/Contrast software, and Weili Xiong for assistance with the proteomic searches. This work was partly funded by NIH grants 1R01-GM-103600 and 5R01-AI-092531, a March of Dimes Foundation grant 5-FY10-103 (MM), and an NSF Graduate Fellowship to BB and stipend support from the Genome Science and Technology program at the University of Tennessee, Knoxville to JY. NR 47 TC 6 Z9 6 U1 3 U2 22 PU FRONTIERS RESEARCH FOUNDATION PI LAUSANNE PA PO BOX 110, LAUSANNE, 1015, SWITZERLAND SN 1664-302X J9 FRONT MICROBIOL JI Front. Microbiol. PD JUL 1 PY 2015 VL 6 AR 654 DI 10.3389/fmicb.2015.00654 PG 10 WC Microbiology SC Microbiology GA CL9MP UT WOS:000357303100001 PM 26191049 ER PT J AU Ames, SK Gardner, SN Marti, JM Slezak, TR Gokhale, MB Allen, JE AF Ames, Sasha K. Gardner, Shea N. Marti, Jose Manuel Slezak, Tom R. Gokhale, Maya B. Allen, Jonathan E. TI Using populations of human and microbial genomes for organism detection in metagenomes SO GENOME RESEARCH LA English DT Article ID GENERATION SEQUENCING DATA; PATHOGEN IDENTIFICATION; CLINICAL-SAMPLES; MARKER GENES; SEARCH TOOL; CLASSIFICATION; ALIGNMENT; CONTAMINATION; DIVERSITY; SPECIMENS AB Identifying causative disease agents in human patients from shotgun metagenomic sequencing (SMS) presents a powerful tool to apply when other targeted diagnostics fail. Numerous technical challenges remain, however, before SMS can move beyond the role of research tool. Accurately separating the known and unknown organism content remains difficult, particularly when SMS is applied as a last resort. The true amount of human DNA that remains in a sample after screening against the human reference genome and filtering nonbiological components left from library preparation has previously been underreported. In this study, we create the most comprehensive collection of microbial and reference-free human genetic variation available in a database optimized for efficient metagenomic search by extracting sequences from GenBank and the 1000 Genomes Project. The results reveal new human sequences found in individual Human Microbiome Project (HMP) samples. Individual samples contain up to 95% human sequence, and 4% of the individual HMP samples contain 10% or more human reads. Left unidentified, human reads can complicate and slow down further analysis and lead to inaccurately labeled microbial taxa and ultimately lead to privacy concerns as more human genome data is collected. C1 [Ames, Sasha K.; Gokhale, Maya B.] Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Livermore, CA 94550 USA. [Gardner, Shea N.; Slezak, Tom R.; Allen, Jonathan E.] Lawrence Livermore Natl Lab, Global Secur Comp Applicat Div, Livermore, CA 94550 USA. [Marti, Jose Manuel] UVEG, CSIC, Inst Fis Corpuscular, E-46980 Valencia, Spain. RP Allen, JE (reprint author), Lawrence Livermore Natl Lab, Global Secur Comp Applicat Div, Livermore, CA 94550 USA. EM allen99@llnl.gov FU US Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Laboratory Directed Research and Development [33-ER-2012, 08-ER-2011] FX This work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and Laboratory Directed Research and Development (33-ER-2012 and 08-ER-2011). Livermore Computing is acknowledged for providing early access and technical support to enable use of the Catalyst cluster for this study. We thank Inigo Olalde for making the unmapped La Brana reads available for analysis. NR 49 TC 4 Z9 4 U1 3 U2 15 PU COLD SPRING HARBOR LAB PRESS, PUBLICATIONS DEPT PI COLD SPRING HARBOR PA 1 BUNGTOWN RD, COLD SPRING HARBOR, NY 11724 USA SN 1088-9051 EI 1549-5469 J9 GENOME RES JI Genome Res. PD JUL PY 2015 VL 25 IS 7 BP 1056 EP 1067 DI 10.1101/gr.184879.114 PG 12 WC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Genetics & Heredity SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Genetics & Heredity GA CM0GR UT WOS:000357356900012 PM 25926546 ER PT J AU Mouser, PJ N'Guessan, LA Qafoku, NP Sinha, M Williams, KH Dangelmayr, M Resch, CT Peacock, A Wang, Z Figueroa, L Long, PE AF Mouser, P. J. N'Guessan, L. A. Qafoku, N. P. Sinha, M. Williams, K. H. Dangelmayr, M. Resch, C. T. Peacock, A. Wang, Z. Figueroa, L. Long, P. E. TI Influence of Carbon and Microbial Community Priming on the Attenuation of Uranium in a Contaminated Floodplain Aquifer SO GROUNDWATER LA English DT Article ID DISSIMILATORY METAL REDUCTION; NATURAL ORGANIC-MATTER; IN-SITU BIOREDUCTION; U(VI) REDUCTION; FIELD-SCALE; HANFORD SEDIMENT; DISSOLVED-OXYGEN; MILL TAILINGS; OLD RIFLE; BIOREMEDIATION AB The capacity for subsurface sediments to sequester radionuclide contaminants, such as uranium (U), and retain them after bioremediation efforts are completed is critical to the long-term stewardship of re-mediated sites. In U bioremediation strategies, carbon amendment stimulates bioreduction of U(VI) to U(IV), immobilizing it within the sediments. Sediments enriched in natural organic matter are naturally capable of sequestering significant U, but may serve as sources to the aquifer, contributing to plume persistence. Two types of organic-rich sediments were compared to better understand U release mechanisms. Sediments that were artificially primed for U removal were retrieved from an area previously biostimulated while detrital-rich sediments were collected from a location never subject to amendment. Batch incubations demonstrated that primed sediments rapidly removed uranium from the groundwater, whereas naturally reduced sediments released a sizeable portion of U before U(VI)-reduction commenced. Column experiments confirmed that U release persisted for 65 pore volumes in naturally reduced sediments, demonstrating their sink-source behavior. Acetate addition to primed sediments shifted the microbial community from sulfate-reducing bacteria within Desulfobacteraceae to the iron-reducing Geobacteraceae and Firmicutes, associated with efficient U(VI) removal and retention, respectively. In contrast, Geobacteraceae communities in naturally reduced sediments were replaced by sequences with similarity to Pseudomonas spp. during U release, while U(VI) removal only occurred with enrichment of Firmicutes. These investigations stress the importance of characterizing zones with heterogeneous carbon pools at U-contaminated sites prior to the determination of a remedial strategy to identify areas, which may contribute to long-term sourcing of the contaminants. C1 [Mouser, P. J.] Ohio State Univ, Dept Civil Environm & Geodet Engn, Columbus, OH 43210 USA. [N'Guessan, L. A.; Qafoku, N. P.; Sinha, M.; Resch, C. T.; Wang, Z.] Pacific NW Natl Lab, Richland, WA 99352 USA. [N'Guessan, L. A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Sinha, M.] Colorado Sch Mines, Environm Sci & Engn, Golden, CO 80401 USA. [Williams, K. H.; Long, P. E.] Microbial Insights, Rockford, TN 37853 USA. [Dangelmayr, M.; Figueroa, L.] ExxonMobil, Houston, TX 77002 USA. [Peacock, A.] Washington State Univ, Richland, WA 99354 USA. RP Mouser, PJ (reprint author), Ohio State Univ, Dept Civil Environm & Geodet Engn, Columbus, OH 43210 USA. EM mouser.19@osu.edu RI Wang, Zheming/E-8244-2010; Williams, Kenneth/O-5181-2014; Long, Philip/F-5728-2013; OI Wang, Zheming/0000-0002-1986-4357; Williams, Kenneth/0000-0002-3568-1155; Long, Philip/0000-0003-4152-5682; Qafoku, Nikolla P./0000-0002-3258-5379 FU Integrated Field Research Challenge Site (IFRC) at Rifle, Colorado; Lawrence Berkeley National Laboratory's Sustainable Systems Scientific Focus Area; U.S. Department of Energy (DOE), Office of Science, Office of Biological and Environmental Research [DE-AC02-05CH11231]; U.S. DOE [DE-AC02-05CH11231]; DOE [DE-AC06-76RLO 1830] FX This material is based upon work equally supported through the Integrated Field Research Challenge Site (IFRC) at Rifle, Colorado and the Lawrence Berkeley National Laboratory's Sustainable Systems Scientific Focus Area. The U.S. Department of Energy (DOE), Office of Science, Office of Biological and Environmental Research funded the work under contract DE-AC02-05CH11231 (Lawrence Berkeley National Laboratory; operated by the University of California). Part of this research was performed at EMSL, a national scientific user facility at PNNL managed by DOE's Office of Biological and Environmental Research. LBNL is managed for the U.S. DOE by the University of California under contract DE-AC02-05CH11231, while PNNL is operated for the DOE by Battelle under Contract DE-AC06-76RLO 1830. We are especially grateful for the constructive comments offered by the three reviewers. NR 73 TC 4 Z9 4 U1 6 U2 24 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0017-467X EI 1745-6584 J9 GROUNDWATER JI Groundwater PD JUL-AUG PY 2015 VL 53 IS 4 BP 600 EP 613 DI 10.1111/gwat.12238 PG 14 WC Geosciences, Multidisciplinary; Water Resources SC Geology; Water Resources GA CL9GI UT WOS:000357284700014 PM 25047748 ER PT J AU Sanderson, BM Knutti, R Caldwell, P AF Sanderson, Benjamin M. Knutti, Reto Caldwell, Peter TI Addressing Interdependency in a Multimodel Ensemble by Interpolation of Model Properties SO JOURNAL OF CLIMATE LA English DT Article ID MULTIPLE CLIMATE MODELS; SENSITIVITY; TEMPERATURE; PROJECTIONS; FUTURE; CONSTRAINTS; UNCERTAINTY; PREDICTIONS; GENERATION AB The diverse set of Earth system models used to conduct the CMIP5 ensemble can partly sample the uncertainties in future climate projections. However, combining those projections is complicated by the fact that models developed by different groups share ideas and code and therefore biases. The authors propose a method for combining model results into single or multivariate distributions that are more robust to the inclusion of models with a large degree of interdependency. This study uses a multivariate metric of present-day climatology to assess both model performance and similarity in two recent model intercomparisons, CMIP3 and CMIP5. Model characteristics can be interpolated and then resampled in a space defined by independent climate properties. A form of weighting can be applied by sampling more densely in the region of the space close to the projected observations, thus taking into account both model performance and interdependence. The choice of the sampling distribution's parameters is a subjective decision that should reflect the researcher's prior assumptions as to the acceptability of different model errors. C1 [Sanderson, Benjamin M.] Natl Ctr Atmospher Res, Boulder, CO 80305 USA. [Knutti, Reto] ETH, Inst Atmospher & Climate Sci, Zurich, Switzerland. [Caldwell, Peter] Lawrence Livermore Natl Lab, Livermore, CA USA. RP Sanderson, BM (reprint author), Natl Ctr Atmospher Res, 1850 Table Mesa Dr, Boulder, CO 80305 USA. EM bsander@ucar.edu RI Knutti, Reto/B-8763-2008 OI Knutti, Reto/0000-0001-8303-6700 FU Office of Science (BER), U.S. Department of Energy [DE-FC02-97ER62402] FX We acknowledge the World Climate Research Programme's Working Group on Coupled Modeling, which is responsible for CMIP, and we thank the climate modeling groups for producing and making available their model output. For CMIP the U.S. Department of Energy's Program for Climate Model Diagnosis and Intercomparison provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals. Portions of this study were supported by the Office of Science (BER), U.S. Department of Energy, Cooperative Agreement DE-FC02-97ER62402. AIRS data were acquired as part of the activities of NASA's Science Mission Directorate, and are archived and distributed by the Goddard Earth Sciences (GES) Data and Information Services Center (DISC). NR 44 TC 11 Z9 11 U1 1 U2 13 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 EI 1520-0442 J9 J CLIMATE JI J. Clim. PD JUL PY 2015 VL 28 IS 13 BP 5150 EP 5170 DI 10.1175/JCLI-D-14-00361.1 PG 21 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CM2BX UT WOS:000357485700009 ER PT J AU Sanderson, BM Knutti, R Caldwell, P AF Sanderson, Benjamin M. Knutti, Reto Caldwell, Peter TI A Representative Democracy to Reduce Interdependency in a Multimodel Ensemble SO JOURNAL OF CLIMATE LA English DT Article ID CLIMATE SENSITIVITY; SYSTEM MODEL; UNCERTAINTY; PREDICTIONS; DESIGN; CMIP5 AB The collection of Earth system models available in the archive of phase 5 of CMIP (CMIP5) represents, at least to some degree, a sample of uncertainty of future climate evolution. The presence of duplicated code as well as shared forcing and validation data in the multiple models in the archive raises at least three potential problems: biases in the mean and variance, the overestimation of sample size, and the potential for spurious correlations to emerge in the archive because of model replication. Analytical evidence is presented to demonstrate that the distribution of models in the CMIP5 archive is not consistent with a random sample, and a weighting scheme is proposed to reduce some aspects of model codependency in the ensemble. A method is proposed for selecting diverse and skillful subsets of models in the archive, which could be used for impact studies in cases where physically consistent joint projections of multiple variables (and their temporal and spatial characteristics) are required. C1 [Sanderson, Benjamin M.] Natl Ctr Atmospher Res, Boulder, CO 80305 USA. [Knutti, Reto] ETH, Inst Atmospher & Climate Sci, Zurich, Switzerland. [Caldwell, Peter] Lawrence Livermore Natl Lab, Livermore, CA USA. RP Sanderson, BM (reprint author), Natl Ctr Atmospher Res, 1850 Table Mesa Dr, Boulder, CO 80305 USA. EM bsander@ucar.edu RI Knutti, Reto/B-8763-2008 OI Knutti, Reto/0000-0001-8303-6700 FU Office of Science (BER), U.S. Department of Energy [DE-FC02-97ER62402] FX We acknowledge the World Climate Research Programme's Working Group on Coupled Modeling, which is responsible for CMIP, and we thank the climate modeling groups for producing and making available their model output. For CMIP the U.S. Department of Energy's Program for Climate Model Diagnosis and Inter-Comparison provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals. Portions of this study were supported by the Office of Science (BER), U.S. Department of Energy, Cooperative Agreement DE-FC02-97ER62402. We would also like to thank our anonymous reviewers for their extensive and insightful comments. NR 37 TC 8 Z9 8 U1 1 U2 13 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 EI 1520-0442 J9 J CLIMATE JI J. Clim. PD JUL PY 2015 VL 28 IS 13 BP 5171 EP 5194 DI 10.1175/JCLI-D-14-00362.1 PG 24 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CM2BX UT WOS:000357485700010 ER PT J AU Wharton, S Newman, JF Qualley, G Miller, WO AF Wharton, S. Newman, J. F. Qualley, G. Miller, W. O. TI Measuring turbine inflow with vertically-profiling lidar in complex terrain SO JOURNAL OF WIND ENGINEERING AND INDUSTRIAL AERODYNAMICS LA English DT Article DE Complex terrain; Altamont Pass; Wind resource; Wind power; Lidar; Hill "speed-up"; Inflow; Wind shear ID ASKERVEIN HILL PROJECT; BOUNDARY-LAYER FLOW; WIND-TUNNEL; ATMOSPHERIC STABILITY; TURBULENT-FLOW; AIR-FLOW; SPEED; PERFORMANCE; ROUGHNESS; RIDGE AB Two Laser and Detection Ranging (lidar) units were deployed in the Altamont Pass region of California to study complex flow dynamics at a moderately complex terrain wind farm. The lidars provided wind measurements at the base and along the slope of a 140 m tall ridge and captured air flow as it moved up and along the ridge towards an unwaked turbine under varying stability conditions. Elevation enhanced wind speed during well-mixed or near-neutral conditions at the top of the ridge; however, the hill "speed-up" was smaller than expected during stable conditions. At these times the upwind terrain played a significant role in local flow variability as did terrain features within the wind farm. The observations were next analyzed to assess the ability of using vertically-profiling lidar in complex terrain to measure free-stream inflow for evaluating power generation response. Better agreement between the lidar wind speed and expected power was found once the lidar measurements had been adjusted for stability-dependent hill speed-up effects. This suggests that vertically-profiling lidar can be used in complex terrain to measure inflow if the terrain-induced flow features are also considered. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Wharton, S.] Lawrence Livermore Natl Lab, Atmospher Earth & Energy Div, Livermore, CA 94550 USA. [Newman, J. F.] Univ Oklahoma, Sch Meteorol, Norman, OK 73072 USA. [Qualley, G.] Infigen Energy, Dallas, TX 75206 USA. [Miller, W. O.] Lawrence Livermore Natl Lab, Computat Engn Div, Livermore, CA 94550 USA. RP Wharton, S (reprint author), Lawrence Livermore Natl Lab, Atmospher Earth & Energy Div, 7000 East Ave,L-103, Livermore, CA 94550 USA. EM wharton4@llnl.gov; jennifer.newman@ou.edu; Grant.Qualley@pentalum.com; miller99@llnl.gov FU Laboratory Directed Research and Development (LDRD) Award [12-ERD-069]; US Department of Energy, National Nuclear Security Administration [DE-AC52-07NA27344, LLNL-JRNL-660148] FX The authors would like to thank Bryan Maddox (Infigen Energy) and Jeff Mirocha, Cary Gellner and John van Fossen (LLNL) for their assistance with the lidar deployments. Additionally, we would like to thank Dave Carlson (Campbell Scientific) and Tony Rutherford (Zephir Ltd.) for providing guidance on operating the ZephIR 300 lidar and Edward Burin des Roziers (Zephir Ltd.) for running the VENTOS CFD model. This research was supported by a Laboratory Directed Research and Development (LDRD) Award (12-ERD-069). Lawrence Livermore National Laboratory is operated by Lawrence Livermore National Security, LLC, for the US Department of Energy, National Nuclear Security Administration under Contract DE-AC52-07NA27344, LLNL-JRNL-660148. NR 44 TC 2 Z9 2 U1 3 U2 19 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-6105 EI 1872-8197 J9 J WIND ENG IND AEROD JI J. Wind Eng. Ind. Aerodyn. PD JUL PY 2015 VL 142 BP 217 EP 231 DI 10.1016/j.jweia.2015.03.023 PG 15 WC Engineering, Civil; Mechanics SC Engineering; Mechanics GA CL5GP UT WOS:000356988100017 ER PT J AU Chowdhary, K Salloum, M Debusschere, B Larson, VE AF Chowdhary, K. Salloum, M. Debusschere, B. Larson, V. E. TI Quadrature Methods for the Calculation of Subgrid Microphysics Moments SO MONTHLY WEATHER REVIEW LA English DT Article ID COMMUNITY ATMOSPHERE MODEL; GENERAL-CIRCULATION MODEL; LARGE-SCALE MODELS; PROBABILITY DENSITY-FUNCTIONS; BOUNDARY-LAYER CLOUDS; PART I; CLIMATE SIMULATIONS; PARAMETERIZATION; VARIABILITY; OVERLAP AB Many cloud microphysical processes occur on a much smaller scale than a typical numerical grid box can resolve. In such cases, a probability density function (PDF) can act as a proxy for subgrid variability in these microphysical processes. This method is known as the assumed PDF method. By placing a density on the microphysical fields, one can use samples from this density to estimate microphysics averages. In the assumed PDF method, the calculation of such microphysical averages has primarily been done using classical Monte Carlo methods and Latin hypercube sampling. Although these techniques are fairly easy to implement and ubiquitous in the literature, they suffer from slow convergence rates as a function of the number of samples. This paper proposes using deterministic quadrature methods instead of traditional random sampling approaches to compute the microphysics statistical moments for the assumed PDF method. For smooth functions, the quadrature-based methods can achieve much greater accuracy with fewer samples by choosing tailored quadrature points and weights instead of random samples. Moreover, these techniques are fairly easy to implement and conceptually similar to Monte Carlo-type methods. As a prototypical microphysical formula, Khairoutdinov and Kogan's autoconversion and accretion formulas are used to illustrate the benefit of using quadrature instead of Monte Carlo or Latin hypercube sampling. C1 [Chowdhary, K.; Salloum, M.; Debusschere, B.] Sandia Natl Labs, Livermore, CA 94551 USA. [Larson, V. E.] Univ Wisconsin, Milwaukee, WI 53201 USA. RP Chowdhary, K (reprint author), Sandia Natl Labs, 7011 East Ave, Livermore, CA 94551 USA. EM kchowdh@sandia.gov FU Department of Energy Office of Advanced Scientific Computing Research [13-015334]; Office of Science (BER), U.S. Department of Energy [DE-SC0008323]; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This research was supported by the Department of Energy Office of Advanced Scientific Computing Research, work package 13-015334. V. Larson would also like to acknowledge support by the Office of Science (BER), U.S. Department of Energy, under Grant DE-SC0008323. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 54 TC 2 Z9 2 U1 1 U2 8 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0027-0644 EI 1520-0493 J9 MON WEATHER REV JI Mon. Weather Rev. PD JUL PY 2015 VL 143 IS 7 BP 2955 EP 2972 DI 10.1175/MWR-D-14-00168.1 PG 18 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CM3MO UT WOS:000357586600014 ER PT J AU Bourdelle, C Chone, L Fedorczak, N Garbet, X Beyer, P Citrin, J Delabie, E Dif-Pradalier, G Fuhr, G Loarte, A Maggi, CF Militello, F Sarazin, Y Vermare, L AF Bourdelle, C. Chone, L. Fedorczak, N. Garbet, X. Beyer, P. Citrin, J. Delabie, E. Dif-Pradalier, G. Fuhr, G. Loarte, A. Maggi, C. F. Militello, F. Sarazin, Y. Vermare, L. CA JET Contributors TI L to H mode transition: parametric dependencies of the temperature threshold SO NUCLEAR FUSION LA English DT Article DE plasma physics; L H transition; tokamak ID SCRAPE-OFF LAYER; ALCATOR-C-MOD; DIVERTOR GEOMETRY; POWER THRESHOLD; IMPURITY BEHAVIOR; PLASMA OPERATION; VARIED GEOMETRY; VELOCITY SHEAR; JET DIVERTORS; ASDEX UPGRADE AB The L to H mode transition occurs at a critical power which depends on various parameters, such as the magnetic field, the density, etc. Experimental evidence on various tokamaks (JET, ASDEX-Upgrade, DIII-D, Alcator C-Mod) points towards the existence of a critical temperature characterizing the transition. This criterion for the L-H transition is local and is therefore easier to be compared to theoretical approaches. In order to shed light on the mechanisms of the transition, simple theoretical ideas are used to derive a temperature threshold (T-th). They are based on the stabilization of the underlying turbulence by a mean radial electric field shear. The nature of the turbulence varies as the collisionality decreases, from resistive ballooning modes to ion temperature gradient and trapped electron modes. The obtained parametric dependencies of the derived T-th are tested versus magnetic field, density, effective charge. Various robust experimental observations are reproduced, in particular T-th increases with magnetic field B and increases with density below the density roll-over observed on the power threshold. C1 [Bourdelle, C.; Chone, L.; Fedorczak, N.; Garbet, X.; Citrin, J.; Dif-Pradalier, G.; Sarazin, Y.] CEA, IRFM, F-13108 St Paul Les Durance, France. [Chone, L.; Beyer, P.; Fuhr, G.] Aix Marseille Univ, CNRS, PIIM, UMR 7345, F-13397 Marseille 20, France. [Citrin, J.] Trilateral Euregio Cluster, FOM Inst, DIFFER Dutch Inst Fundamental Energy Res, NL-3430 BE Nieuwegein, Netherlands. [Delabie, E.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Loarte, A.] ITER Org, F-13115 St Paul Les Durance, France. [Maggi, C. F.; Militello, F.] Culham Ctr Fus Energy, Abingdon, Oxon, England. [Vermare, L.] Ecole Polytech, Lab Phys Plasmas, F-91128 Palaiseau, France. RP Bourdelle, C (reprint author), CEA, IRFM, F-13108 St Paul Les Durance, France. EM Clarisse.bourdelle@cea.fr RI Dif-Pradalier, Guilhem/K-7442-2015; OI Dif-Pradalier, Guilhem/0000-0003-4869-7049; Delabie, Ephrem/0000-0001-9834-874X FU European Union [633053]; French National Research Agency [ANR-2010-BLAN-940-01] FX This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement number 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission. Part of L. Chone's work has been supported by the French National Research Agency, Project No. ANR-2010-BLAN-940-01. NR 60 TC 2 Z9 2 U1 4 U2 30 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 EI 1741-4326 J9 NUCL FUSION JI Nucl. Fusion PD JUL PY 2015 VL 55 IS 7 AR 073015 DI 10.1088/0029-5515/55/7/073015 PG 14 WC Physics, Fluids & Plasmas SC Physics GA CL8YD UT WOS:000357259600015 ER PT J AU Ferron, JR Holcomb, CT Luce, TC Park, JM Kolemen, E La Haye, RJ Solomon, WM Turco, F AF Ferron, J. R. Holcomb, C. T. Luce, T. C. Park, J. M. Kolemen, E. La Haye, R. J. Solomon, W. M. Turco, F. TI High internal inductance for steady-state operation in ITER and a reactor SO NUCLEAR FUSION LA English DT Article DE internal inductance; steady-state; tokamak operation ID DIII-D TOKAMAK; CYCLOTRON CURRENT DRIVE; FUSION TEST REACTOR; IMPROVED CONFINEMENT; ENERGY CONFINEMENT; CURRENT PROFILE; SAFETY FACTOR; EQUILIBRIA; DISCHARGES; STABILITY AB Increased confinement and ideal stability limits at relatively high values of the internal inductance (l(i)) have enabled an attractive scenario for steady-state tokamak operation to be demonstrated in DIII-D. Normalized plasma pressure in the range appropriate for a reactor has been achieved in high elongation and triangularity double-null divertor discharges with beta(N) approximate to 5 at l(i) approximate to 1.3, near the ideal n = 1 kink stability limit calculated without the effect of a stabilizing vacuum vessel wall, with the ideal-wall limit still higher at beta(N) > 5.5. Confinement is above the H-mode level with H-98(y,H- 2) approximate to 1.8. At q(95) approximate to 7.5, the current is overdriven, with bootstrap current fraction f(BS) approximate to 0.8, noninductive current fraction f(NI) > 1 and negative surface voltage. For ITER (which has a single-null divertor shape), operation at l(i) approximate to 1 is a promising option with f(BS) approximate to 0.5 and the remaining current driven externally near the axis where the electron cyclotron current drive efficiency is high. This scenario has been tested in the ITER shape in DIII-D at q(95) = 4.8, so far reaching f(NI) = 0.7 and f(BS) = 0.4 at beta(N) approximate to 3.5 with performance appropriate for the ITER Q=5 mission, H-89 beta(N)/q(95)(2) approximate to 0.3. Modeling studies explored how increased current drive power for DIII-D could be applied to maintain a stationary, fully noninductive high l(i) discharge. Stable solutions in the double-null shape are found without the vacuum vessel wall at beta(N) = 4, l(i) = 1.07 and f(BS) = 0.5, and at beta(N) = 5 with the vacuum vessel wall. C1 [Ferron, J. R.; Luce, T. C.; La Haye, R. J.] Gen Atom Co, San Diego, CA 92186 USA. [Holcomb, C. T.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Park, J. M.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Kolemen, E.; Solomon, W. M.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Turco, F.] Columbia Univ, New York, NY 10027 USA. RP Ferron, JR (reprint author), Gen Atom Co, POB 85608, San Diego, CA 92186 USA. EM ferron@fusion.gat.com OI Solomon, Wayne/0000-0002-0902-9876 FU U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences, a DOE Office of Science [DE-FC02-04ER54698, DE-AC52-07NA27344, DE-AC05-00OR22725, DE-AC02-09CH11466, DE-FG02-04ER54761] FX This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences, using the DIII-D National Fusion Facility, a DOE Office of Science user facility, under Awards DE-FC02-04ER54698, DE-AC52-07NA27344, DE-AC05-00OR22725, DE-AC02-09CH11466 and DE-FG02-04ER54761. DIII-D data shown in this paper can be obtained in digital format by following the links at https://fusion.gat.com/global/D3D_DMP. NR 56 TC 0 Z9 0 U1 4 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 EI 1741-4326 J9 NUCL FUSION JI Nucl. Fusion PD JUL PY 2015 VL 55 IS 7 AR 073030 DI 10.1088/0029-5515/55/7/073030 PG 13 WC Physics, Fluids & Plasmas SC Physics GA CL8YD UT WOS:000357259600030 ER PT J AU Izzo, VA Parks, PB Eidietis, NW Shiraki, D Hollmann, EM Commaux, N Granetz, RS Humphreys, DA Lasnier, CJ Moyer, RA Paz-Soldan, C Raman, R Strait, EJ AF Izzo, V. A. Parks, P. B. Eidietis, N. W. Shiraki, D. Hollmann, E. M. Commaux, N. Granetz, R. S. Humphreys, D. A. Lasnier, C. J. Moyer, R. A. Paz-Soldan, C. Raman, R. Strait, E. J. TI The role of MHD in 3D aspects of massive gas injection SO NUCLEAR FUSION LA English DT Article DE tokamaks; resistive MHD modes; magnetohydrodynamic ID DISRUPTION MITIGATION; DIII-D; PELLET AB Simulations of massive gas injection for disruption mitigation in DIII-D are carried out to compare the toroidal peaking of radiated power for the cases of one and two gas jets. The radiation toroidal peaking factor (TPF) results from a combination of the distribution of impurities and the distribution of heat flux associated with the n = 1 mode. When ignoring the effects of strong uni-directional neutral beam injection and rotation present in the experiment, the injected impurities are found to spread helically along field lines preferentially toward the high-field-side, which is explained in terms of a nozzle equation. Therefore when considering the plasma rest frame, reversing the current direction also reverses the toroidal direction of impurity spreading. During the pre-thermal quench phase of the disruption, the toroidal peaking of radiated power is reduced in a straightforward manner by increasing from one to two gas jets. However, during the thermal quench phase, reduction in the TPF is achieved only for a particular arrangement of the two gas valves with respect to the field line pitch. In particular, the relationship between the two valve locations and the 1/1 mode phase is critical, where gas valve spacing that is coherent with 1/1 symmetry effectively reduces TPF. C1 [Izzo, V. A.; Hollmann, E. M.; Moyer, R. A.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Parks, P. B.; Eidietis, N. W.; Strait, E. J.] Gen Atom Co, San Diego, CA 92186 USA. [Shiraki, D.; Commaux, N.; Humphreys, D. A.; Paz-Soldan, C.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Granetz, R. S.] MIT, Cambridge, MA 02139 USA. [Lasnier, C. J.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Raman, R.] Univ Washington, Seattle, WA 91815 USA. RP Izzo, VA (reprint author), Univ Calif San Diego, 9500 Gilman Dr, La Jolla, CA 92093 USA. EM izzo@fusion.gat.com FU US Department of Energy, Office of Science, Office of Fusion Energy Sciences [DE-FG02-95ER54309, DE-FC02-04ER54698, DE-AC05-00OR22725, DE-FG02-07ER54917, DE-FC02-99ER54512, DE-AC52-07NA27344]; Office of Science of the U S Department of Energy [DE-AC02-05CH11231] FX This material is based upon work supported in part by the US Department of Energy, Office of Science, Office of Fusion Energy Sciences, Theory Program, using the DIII-D National Fusion Facility, a DOE Office of Science user facility, under Awards DE-FG02-95ER54309, DE-FC02-04ER54698, DE-AC05-00OR22725, DE-FG02-07ER54917, DE-FC02-99ER54512 and DE-AC52-07NA27344. This research used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U S Department of Energy under Award DE-AC02-05CH11231. DIII-D data shown in this paper can be obtained in digital format by following the links at https://fusion.gat.com/global/D3D_DMP. NR 18 TC 2 Z9 2 U1 2 U2 15 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 EI 1741-4326 J9 NUCL FUSION JI Nucl. Fusion PD JUL PY 2015 VL 55 IS 7 AR 073032 DI 10.1088/0029-5515/55/7/073032 PG 8 WC Physics, Fluids & Plasmas SC Physics GA CL8YD UT WOS:000357259600032 ER PT J AU Ono, M Chrzanowski, J Dudek, L Gerhardt, S Heitzenroeder, P Kaita, R Menard, JE Perry, E Stevenson, T Strykowsky, R Titus, P von Halle, A Williams, M Atnafu, ND Blanchard, W Cropper, M Diallo, A Gates, DA Ellis, R Erickson, K Hosea, J Hatcher, R Jurczynski, SZ Kaye, S Labik, G Lawson, J LeBlanc, B Maingi, R Neumeyer, C Raman, R Raftopoulos, S Ramakrishnan, R Roquemore, AL Sabbagh, SA Sichta, P Schneider, H Smith, M Stratton, B Soukhanovskii, V Taylor, G Tresemer, K Zolfaghari, A AF Ono, M. Chrzanowski, J. Dudek, L. Gerhardt, S. Heitzenroeder, P. Kaita, R. Menard, J. E. Perry, E. Stevenson, T. Strykowsky, R. Titus, P. von Halle, A. Williams, M. Atnafu, N. D. Blanchard, W. Cropper, M. Diallo, A. Gates, D. A. Ellis, R. Erickson, K. Hosea, J. Hatcher, R. Jurczynski, S. Z. Kaye, S. Labik, G. Lawson, J. LeBlanc, B. Maingi, R. Neumeyer, C. Raman, R. Raftopoulos, S. Ramakrishnan, R. Roquemore, A. L. Sabbagh, S. A. Sichta, P. Schneider, H. Smith, M. Stratton, B. Soukhanovskii, V. Taylor, G. Tresemer, K. Zolfaghari, A. CA NSTX-U Team TI Progress toward commissioning and plasma operation in NSTX-U SO NUCLEAR FUSION LA English DT Article DE NSTX-U; spherical tokamak; FNSF AB The National Spherical Torus Experiment-Upgrade (NSTX-U) is the most powerful spherical torus facility at PPPL, Princeton USA. The major mission of NSTX-U is to develop the physics basis for an ST-based Fusion Nuclear Science Facility (FNSF). The ST-based FNSF has the promise of achieving the high neutron fluence needed for reactor component testing with relatively modest tritium consumption. At the same time, the unique operating regimes of NSTX-U can contribute to several important issues in the physics of burning plasmas to optimize the performance of ITER. NSTX-U further aims to determine the attractiveness of the compact ST for addressing key research needs on the path toward a fusion demonstration power plant (DEMO). The upgrade will nearly double the toroidal magnetic field B-T to 1 T at a major radius of R-0 = 0.93 m, plasma current I-p to 2MA and neutral beam injection (NBI) heating power to 14MW. The anticipated plasma performance enhancement is a quadrupling of the plasma stored energy and near doubling of the plasma confinement time, which would result in a 5-10 fold increase in the fusion performance parameter n tau T. A much more tangential 2nd NBI system, with 2-3 times higher current drive efficiency compared to the 1st NBI system, is installed to attain the 100% non-inductive operation needed for a compact FNSF design. With higher fields and heating powers, the NSTX-U plasma collisionality will be reduced by a factor of 3-6 to help explore the favourable trend in transport towards the low collisionality FNSF regime. The NSTX-U first plasma is planned for the Summer of 2015, at which time the transition to plasma operations will occur. C1 [Ono, M.; Chrzanowski, J.; Dudek, L.; Gerhardt, S.; Heitzenroeder, P.; Kaita, R.; Menard, J. E.; Perry, E.; Stevenson, T.; Strykowsky, R.; Titus, P.; von Halle, A.; Williams, M.; Atnafu, N. D.; Blanchard, W.; Cropper, M.; Diallo, A.; Gates, D. A.; Ellis, R.; Erickson, K.; Hosea, J.; Hatcher, R.; Jurczynski, S. Z.; Kaye, S.; Labik, G.; Lawson, J.; LeBlanc, B.; Maingi, R.; Neumeyer, C.; Raftopoulos, S.; Ramakrishnan, R.; Roquemore, A. L.; Sichta, P.; Schneider, H.; Smith, M.; Stratton, B.; Taylor, G.; Tresemer, K.; Zolfaghari, A.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Raman, R.] Univ Washington, Seattle, WA 98195 USA. [Sabbagh, S. A.] Columbia Univ, New York, NY 10027 USA. [Soukhanovskii, V.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Ono, M (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM mono@pppl.gov OI Menard, Jonathan/0000-0003-1292-3286 FU DoE [DE-AC02-09CH11466] FX This work was supported by DoE Contract No. DE-AC02-09CH11466. NR 16 TC 4 Z9 4 U1 1 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 EI 1741-4326 J9 NUCL FUSION JI Nucl. Fusion PD JUL PY 2015 VL 55 IS 7 AR 073007 DI 10.1088/0029-5515/55/7/073007 PG 11 WC Physics, Fluids & Plasmas SC Physics GA CL8YD UT WOS:000357259600007 ER PT J AU Shiraki, D Commaux, N Baylor, LR Eidietis, NW Hollmann, EM Izzo, VA Moyer, RA Paz-Soldan, C AF Shiraki, D. Commaux, N. Baylor, L. R. Eidietis, N. W. Hollmann, E. M. Izzo, V. A. Moyer, R. A. Paz-Soldan, C. TI Characterization of MHD activity and its influence on radiation asymmetries during massive gas injection in DIII-D SO NUCLEAR FUSION LA English DT Article DE tokamak; disruption mitigation; massive gas injection; radiation asymmetry ID DISRUPTION MITIGATION; D TOKAMAK; IMPURITY; JET AB Measurements from the DIII-D tokamak show that toroidal radiation asymmetries during fast shutdown by massive gas injection (MGI) are largely driven by n = 1 magnetohydrodynamic modes during the thermal quench. The phenomenology of these modes, which are driven unstable by profile changes as the thermal energy is quenched, is described based on detailed magnetic measurements. The toroidal evolution of the dominantly n = 1 perturbation is understood to be a function of three parameters: the location of the MGI port, pre-MGI plasma rotation, and n = 1 error fields. The resulting level of radiation asymmetry in these DIII-D plasmas is modest, with a toroidal peaking factor (TPF) of 1.2 +/- 0.1 for the total thermal quench energy and 1.4 +/- 0.3 for the peak radiated power, both of which are below the estimated limit for ITER (TPF approximate to 2) (Sugihara et al 2007 Nucl. Fusion 47 337). C1 [Shiraki, D.; Commaux, N.; Baylor, L. R.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Eidietis, N. W.; Paz-Soldan, C.] Gen Atom Co, San Diego, CA 92186 USA. [Hollmann, E. M.; Izzo, V. A.; Moyer, R. A.] Univ Calif San Diego, La Jolla, CA 92093 USA. RP Shiraki, D (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM shirakid@fusion.gat.com FU US Department of Energy, Office of Science, Office of Fusion Energy Sciences, a DOE Office of Science [DE-FC02-04ER54698, DE-AC05-00OR22725, DE-FG02-07ER54609] FX This material is based upon work supported by the US Department of Energy, Office of Science, Office of Fusion Energy Sciences, using the DIII-D National Fusion Facility, a DOE Office of Science user facility, under Awards DE-FC02-04ER54698, DE-AC05-00OR22725 and DE-FG02-07ER54609. DIII-D data shown in this paper can be obtained in digital format by following the links at https://fusion.gat.com/global/D3D_DMP. The authors thank the DIII-D team for maintenance and operation of the machine, in particular D Eldon for his assistance with the Thomson scattering diagnostic in these experiments. NR 22 TC 4 Z9 4 U1 2 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 EI 1741-4326 J9 NUCL FUSION JI Nucl. Fusion PD JUL PY 2015 VL 55 IS 7 AR 073029 DI 10.1088/0029-5515/55/7/073029 PG 7 WC Physics, Fluids & Plasmas SC Physics GA CL8YD UT WOS:000357259600029 ER PT J AU Solomon, WM Burrell, KH Fenstermacher, ME Garofalo, AM Grierson, BA Loarte, A Mckee, GR Nazikian, R Osborne, TH Snyder, PB AF Solomon, W. M. Burrell, K. H. Fenstermacher, M. E. Garofalo, A. M. Grierson, B. A. Loarte, A. McKee, G. R. Nazikian, R. Osborne, T. H. Snyder, P. B. TI Extending the physics basis of quiescent H-mode toward ITER relevant parameters SO NUCLEAR FUSION LA English DT Article DE ELM-free regimes; pedestal pressure; confinement studies; edge modes ID PLASMA-CONFINEMENT; DIII-D; TRANSPORT; TOKAMAK AB Recent experiments on DIII-D have addressed several long-standing issues needed to establish quiescent H-mode (QH-mode) as a viable operating scenario for ITER. In the past, QH-mode was associated with low density operation, but has now been extended to high normalized densities compatible with operation envisioned for ITER. Through the use of strong shaping, QH-mode plasmas have been maintained at high densities, both absolute ((n) over bar (e) approximate to 7 x 10(19) m(-3)) and normalized Greenwald fraction ((n) over bar (e)/n(G) > 0.7). In these plasmas, the pedestal can evolve to very high pressure and edge current as the density is increased. High density QH-mode operation with strong shaping has allowed access to a previously predicted regime of very high pedestal dubbed 'Super H-mode'. Calculations of the pedestal height and width from the EPED model are quantitatively consistent with the experimentally observed density evolution. The confirmation of the shape dependence of the maximum density threshold for QH-mode helps validate the underlying theoretical model of peeling-ballooning modes for edge localized mode ( ELM) stability. In general, QH-mode is found to achieve ELM-stable operation while maintaining adequate impurity exhaust, due to the enhanced impurity transport from an edge harmonic oscillation, thought to be a saturated kink-peeling mode driven by rotation shear. In addition, the impurity confinement time is not affected by rotation, even though the energy confinement time and measured E x B shear are observed to increase at low toroidal rotation. Together with demonstrations of high beta, high confinement and low q(95) for many energy confinement times, these results suggest QH-mode as a potentially attractive operating scenario for the ITER Q = 10 mission. C1 [Solomon, W. M.; Grierson, B. A.; Nazikian, R.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Burrell, K. H.; Garofalo, A. M.; Osborne, T. H.; Snyder, P. B.] Gen Atom Co, San Diego, CA 92186 USA. [Fenstermacher, M. E.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Loarte, A.] ITER Org, F-13067 St Paul Les Durance, France. [McKee, G. R.] Univ Wisconsin, Madison, WI 53706 USA. RP Solomon, WM (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM wsolomon@pppl.gov OI Solomon, Wayne/0000-0002-0902-9876 FU US Department of Energy, Office of Science, Office of Fusion Energy Sciences [DE-AC02-09CH11466, DE-FC02-04ER54698, DE-FG02-95ER54309, DE-AC52-07NA27344, DE-FG02-89ER53296, DE-FG02-08ER54999] FX This material is based upon work supported by the US Department of Energy, Office of Science, Office of Fusion Energy Sciences, using the DIII-D National Fusion Facility, a DOE Office of Science user facility, under Awards DE-AC02-09CH11466, DE-FC02-04ER54698, DE-FG02-95ER54309, DE-AC52-07NA27344, DE-FG02-89ER53296, and DE-FG02-08ER54999. DIII-D data shown in this paper can be obtained in digital format by following the links at https://fusion.gat.com/global/D3D_DMP. The views and opinions expressed herein do not necessarily reflect those of the ITER Organization. NR 26 TC 3 Z9 3 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 EI 1741-4326 J9 NUCL FUSION JI Nucl. Fusion PD JUL PY 2015 VL 55 IS 7 AR 073031 DI 10.1088/0029-5515/55/7/073031 PG 9 WC Physics, Fluids & Plasmas SC Physics GA CL8YD UT WOS:000357259600031 ER PT J AU Van Zeeland, MA Ferraro, NM Grierson, BA Heidbrink, WW Kramer, GJ Lasnier, CJ Pace, DC Allen, SL Chen, X Evans, TE Garcia-Munoz, M Hanson, JM Lanctot, MJ Lao, LL Meyer, WH Moyer, RA Nazikian, R Orlov, DM Paz-Soldan, C Wingen, A AF Van Zeeland, M. A. Ferraro, N. M. Grierson, B. A. Heidbrink, W. W. Kramer, G. J. Lasnier, C. J. Pace, D. C. Allen, S. L. Chen, X. Evans, T. E. Garcia-Munoz, M. Hanson, J. M. Lanctot, M. J. Lao, L. L. Meyer, W. H. Moyer, R. A. Nazikian, R. Orlov, D. M. Paz-Soldan, C. Wingen, A. TI Fast ion transport during applied 3D magnetic perturbations on DIII-D SO NUCLEAR FUSION LA English DT Article DE fast ion transport; 3D magnetic perturbations; prompt beam loss; DIII-D tokamak ID CODE AB Measurements show fast ion losses correlated with applied three-dimensional (3D) fields in a variety of plasmas ranging from L-mode to resonant magnetic perturbation (RMP) edge localized mode (ELM) suppressed H-mode discharges. In DIII-D L-mode discharges with a slowly rotating n = 2 magnetic perturbation, scintillator detector loss signals synchronized with the applied fields are observed to decay within one poloidal transit time after beam turn-off indicating they arise predominantly from prompt loss orbits. Full orbit following using M3D-C1 calculations of the perturbed fields and kinetic profiles reproduce many features of the measured losses and points to the importance of the applied 3D field phase with respect to the beam injection location in determining the overall impact on prompt beam ion loss. Modeling of these results includes a self-consistent calculation of the 3D perturbed beam ion birth profiles and scrape-off-layer ionization, a factor found to be essential to reproducing the experimental measurements. Extension of the simulations to full slowing down timescales, including fueling and the effects of drag and pitch angle scattering, show the applied n = 3 RMPs in ELM suppressed H-mode plasmas can induce a significant loss of energetic particles from the core. With the applied n = 3 fields, up to 8.4% of the injected beam power is predicted to be lost, compared to 2.7% with axisymmetric fields only. These fast ions, originating from minor radii rho > 0.7, are predicted to be primarily passing particles lost to the divertor region, consistent with wide field-of-view infrared periscope measurements of wall heating in n = 3 RMP ELM suppressed plasmas. Edge fast ion D-alpha (FIDA) measurements also confirm a large change in edge fast ion profile due to the n = 3 fields, where the effect was isolated by using short 50 ms RMP-off periods during which ELM suppression was maintained yet the fast ion profile was allowed to recover. The role of resonances between fast ion drift motion and the applied 3D fields in the context of selectively targeting regions of fast ion phase space is also discussed. C1 [Van Zeeland, M. A.; Ferraro, N. M.; Pace, D. C.; Chen, X.; Evans, T. E.; Lanctot, M. J.; Lao, L. L.; Paz-Soldan, C.] Gen Atom Co, San Diego, CA 92186 USA. [Grierson, B. A.; Heidbrink, W. W.; Kramer, G. J.; Nazikian, R.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. Univ Calif Irvine, Irvine, CA 92697 USA. [Lasnier, C. J.; Allen, S. L.; Meyer, W. H.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Garcia-Munoz, M.] Max Planck Inst Plasma Phys, EURATOM Assoc, Garching, Germany. [Hanson, J. M.] Columbia Univ, New York, NY 10027 USA. [Moyer, R. A.; Orlov, D. M.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Wingen, A.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Van Zeeland, MA (reprint author), Gen Atom Co, POB 85608, San Diego, CA 92186 USA. EM vanzeeland@fusion.gat.com RI Orlov, Dmitriy/D-2406-2016; Lanctot, Matthew J/O-4979-2016; OI Orlov, Dmitriy/0000-0002-2230-457X; Lanctot, Matthew J/0000-0002-7396-3372; Wingen, Andreas/0000-0001-8855-1349; garcia-munoz, manuel/0000-0002-3241-502X FU US Department of Energy, Office of Science, Office of Fusion Energy Sciences, a DOE Office of Science [DE-FC02-04ER54698, DE-AC02-09CH11466, SC-G903402, DE-AC52-07NA27344, DE-FG0204ER54761, DE-FG02-07ER54917, DE-AC05-00OR22725] FX This material is based upon work supported in part by the US Department of Energy, Office of Science, Office of Fusion Energy Sciences, using the DIII-D National Fusion Facility, a DOE Office of Science user facility, under awards DE-FC02-04ER54698, DE-AC02-09CH11466, SC-G903402, DE-AC52-07NA27344, DE-FG0204ER54761, DE-FG02-07ER54917 and DE-AC05-00OR22725. DIII-D data shown in this paper can be obtained in digital format by following the links at https://fusion.gat.com/global/D3D_DMP. Effective beam stopping cross sections used in the beam ion birth profile calculations were obtained from the Atomic Data and Analysis Structure (ADAS) compilation. The originating developer of ADAS is the JET Joint Undertaking. NR 36 TC 4 Z9 4 U1 3 U2 18 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 EI 1741-4326 J9 NUCL FUSION JI Nucl. Fusion PD JUL PY 2015 VL 55 IS 7 AR 073028 DI 10.1088/0029-5515/55/7/073028 PG 13 WC Physics, Fluids & Plasmas SC Physics GA CL8YD UT WOS:000357259600028 ER PT J AU Koohbor, B Mallon, S Kidane, A Lu, WY AF Koohbor, Behrad Mallon, Silas Kidane, Addis Lu, Wei-Yang TI The deformation and failure response of closed-cell PMDI foams subjected to dynamic impact loading SO POLYMER TESTING LA English DT Article DE Polymeric foam; PMDI; Dynamic loading; Digital image correlation; Shock tube ID STRAIN-RATE COMPRESSION; HOPKINSON PRESSURE BAR; POLYURETHANE FOAMS; STRESS UNIFORMITY; SYNTACTIC FOAMS; DENSITY; COPPER; RATES AB The present work aims to investigate the bulk deformation and failure response of closed-cell Polymeric Methylene Diphenyl Diisocyanate (PMDI) foams subjected to dynamic impact loading. First, foam specimens of different initial densities are examined and characterized in quasi-static loading conditions, where the deformation behavior of the samples is quantified in terms of the compressive elastic modulus and effective plastic Poisson's ratio. Then, the deformation response of the foam specimens subjected to direct impact loading is examined by taking into account the effects of material compressibility and inertia stresses developed during deformation, using high speed imaging in conjunction with 3D digital image correlation. The stress-strain response and the energy absorption as a function of strain rate and initial density are presented and the bulk failure mechanisms are discussed. It is observed that the initial density of the foam and the applied strain rates have a substantial influence on the strength, bulk failure mechanism and the energy dissipation characteristics of the foam specimens. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Koohbor, Behrad; Mallon, Silas; Kidane, Addis] Univ S Carolina, Dept Mech Engn, Columbia, SC 29208 USA. [Lu, Wei-Yang] Sandia Natl Labs, Livermore, CA 94551 USA. RP Kidane, A (reprint author), Univ S Carolina, Dept Mech Engn, 300 Main St, Columbia, SC 29208 USA. EM kidanea@cec.sc.edu OI , Addis/0000-0003-0830-0158; Koohbor, Behrad/0000-0002-5787-4644 FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 32 TC 7 Z9 7 U1 3 U2 13 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0142-9418 EI 1873-2348 J9 POLYM TEST JI Polym. Test PD JUL PY 2015 VL 44 BP 112 EP 124 DI 10.1016/j.polymertesting.2015.03.016 PG 13 WC Materials Science, Characterization & Testing; Polymer Science SC Materials Science; Polymer Science GA CL8OU UT WOS:000357234800015 ER PT J AU Carbajales-Dale, M Raugei, M Fthenakis, V Barnhart, C AF Carbajales-Dale, Michael Raugei, Marco Fthenakis, Vasilis Barnhart, Charles TI Energy Return on Investment (EROI) of Solar PV: An Attempt at Reconciliation SO PROCEEDINGS OF THE IEEE LA English DT Editorial Material ID PAYBACK TIMES; GAS C1 [Carbajales-Dale, Michael] Clemson Univ, Dept Environm Engn & Earth Sci, Clemson, SC 29634 USA. [Raugei, Marco] Oxford Brookes Univ, Dept Mech Engn & Math Sci, Oxford OX33 1HX, England. [Fthenakis, Vasilis] Columbia Univ, Ctr Life Cycle Anal, New York, NY 10027 USA. [Fthenakis, Vasilis] Brookhaven Natl Lab, Upton, NY 11980 USA. [Barnhart, Charles] Western Washington Univ, Huxley Coll Environm, Bellingham, WA 98225 USA. [Barnhart, Charles] Western Washington Univ, Inst Energy Studies, Bellingham, WA 98225 USA. RP Carbajales-Dale, M (reprint author), Clemson Univ, Dept Environm Engn & Earth Sci, Clemson, SC 29634 USA. RI Carbajales-Dale, Michael/I-7914-2015; Raugei, Marco/N-4737-2015 OI Carbajales-Dale, Michael/0000-0002-1568-384X; Raugei, Marco/0000-0001-5026-8556 NR 32 TC 6 Z9 6 U1 3 U2 17 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9219 EI 1558-2256 J9 P IEEE JI Proc. IEEE PD JUL PY 2015 VL 103 IS 7 SI SI BP 995 EP 999 DI 10.1109/JPROC.2015.2438471 PG 5 WC Engineering, Electrical & Electronic SC Engineering GA CL2WE UT WOS:000356806900001 ER PT J AU Edwards, AH Barnaby, HJ Campbell, KA Kozicki, MN Liu, W Marinella, MJ AF Edwards, Arthur H. Barnaby, Hugh J. Campbell, Kristy A. Kozicki, Michael N. Liu, Wei Marinella, Matthew J. TI Reconfigurable Memristive Device Technologies SO PROCEEDINGS OF THE IEEE LA English DT Article DE Memristor; radiation effects; ReRAM; 3-D integration ID PHASE-CHANGE MEMORY; RANDOM-ACCESS MEMORY; RESISTIVE-SWITCHING MEMORY; INDUCED CRYSTALLIZATION PHENOMENA; PROGRAMMABLE METALLIZATION CELLS; SOLID-ELECTROLYTE MEMORY; DRIVEN ION MIGRATION; GETE-BASED ALLOYS; CHALCOGENIDE GLASSES; NONVOLATILE MEMORY AB In this paper, we present a review of the state of the art in memristor technologies. Along with ionic conducting devices [i.e., conductive bridging random access memory (CBRAM)], we include phase change, and organic/organo-metallic technologies, and we review the most recent advances in oxide-based memristor technologies. We present progress on 3-D integration techniques, and we discuss the behavior of more mature memristive technologies in extreme environments. C1 [Edwards, Arthur H.] Air Force Res Lab, Space Vehicles Directorate, Kirtland AFB, NM 87117 USA. [Barnaby, Hugh J.; Kozicki, Michael N.] Arizona State Univ, Dept Elect Comp & Energy Engn, Mesa, AZ 85281 USA. [Campbell, Kristy A.] Boise State Univ, Dept Elect & Comp Engn, Boise, ID 83725 USA. [Liu, Wei] Univ Michigan, Dept Elect Engn, Ann Arbor, MI 48109 USA. [Marinella, Matthew J.] Sandia Natl Labs, Adv Semicond Device R&D, Albuquerque, NM 87185 USA. RP Edwards, AH (reprint author), Air Force Res Lab, Space Vehicles Directorate, Kirtland AFB, NM 87117 USA. EM Arthur.Edwards@us.af.mil; hbarnaby@asu.edu; KrisCampbell@boisestate.edu; michael.kozicki@asu.edu; wluee@umich.edu; matthew.marinella@sandia.gov FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; Defense Threat Reduction Agency [HDTRA1-11-1-0055]; Air Force Research Laboratory [Det 8/RVKVE, FA9452-13-1-0288]; U.S. Air Force Office of Scientific Research, DEPSCoR [FA9550-07-1-0546]; U.S. Air Force Research Laboratory [FA9453-08-2-0252] FX Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. This work was supported in part by the Defense Threat Reduction Agency under Grant HDTRA1-11-1-0055 and the Air Force Research Laboratory Det 8/RVKVE under Grant FA9452-13-1-0288; and in part by the U.S. Air Force Office of Scientific Research, DEPSCoR, under Grant FA9550-07-1-0546 and the U.S. Air Force Research Laboratory under Grant FA9453-08-2-0252. NR 231 TC 9 Z9 9 U1 13 U2 95 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9219 EI 1558-2256 J9 P IEEE JI Proc. IEEE PD JUL PY 2015 VL 103 IS 7 SI SI BP 1004 EP 1033 DI 10.1109/JPROC.2015.2441752 PG 30 WC Engineering, Electrical & Electronic SC Engineering GA CL2WE UT WOS:000356806900003 ER PT J AU Zhao, HN Dilmore, RM Lvov, SN AF Zhao, Haining Dilmore, Robert M. Lvov, Serguei N. TI Experimental studies and modeling of CO2 solubility in high temperature aqueous CaCl2, MgCl2, Na2SO4, and KCl solutions SO AICHE JOURNAL LA English DT Article DE CO2 solubility; aqueous solutions; activity coefficient; setschenow coefficient; PSUCO2 ID SUPERCRITICAL CARBON-DIOXIDE; ELECTROLYTE-SOLUTIONS; THERMODYNAMIC MODEL; MUTUAL SOLUBILITIES; PHASE-EQUILIBRIA; NACL SOLUTIONS; 2000 BAR; WATER; SEQUESTRATION; PRESSURES AB The phase equilibria of CO2 and aqueous electrolyte solutions are important to various chemical-, petroleum-, and environmental-related technical applications. CO2 solubility in aqueous CaCl2, MgCl2, Na2SO4, and KCl solutions at a pressure of 15 MPa, the temperatures from 323 to 423 K, and the ionic strength from 1 to 6 mol kg(-1) were measured. Based on the measured experimental CO2 solubility, the previous developed fugacity-activity thermodynamic model for the CO2-NaCl-H2O system was extended to account for the effects of different salt species on CO2 solubility in aqueous solutions at temperatures up to 523 K, pressures up to 150 MPa, and salt concentrations up to saturation. Comparisons of different models against literature data reveal a clear improvement of the proposed PSUCO2 model in predicting CO2 solubility in aqueous salt solutions. (c) 2015 American Institute of Chemical Engineers AIChE J, 61: 2286-2297, 2015 C1 [Zhao, Haining; Lvov, Serguei N.] Penn State Univ, John & Willie Leone Family Dept Energy & Mineral, University Pk, PA 16802 USA. [Zhao, Haining; Lvov, Serguei N.] Penn State Univ, EMS Energy Inst, Electrochem Technol Program, University Pk, PA 16802 USA. [Zhao, Haining] Penn State Univ, EMS Energy Inst, Petr & Nat Gas Engn Program, University Pk, PA 16802 USA. [Dilmore, Robert M.] US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. [Lvov, Serguei N.] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. RP Lvov, SN (reprint author), Penn State Univ, John & Willie Leone Family Dept Energy & Mineral, University Pk, PA 16802 USA. EM lvov@psu.edu OI Zhao, Haining/0000-0002-8703-0637 FU U.S. Department of Energy; National Energy Technology Laboratory, and the Regional University Alliance (NETL-RUA); Energy Institute of College of Earth and Mineral Sciences at the Pennsylvania State University FX This work was partly supported by the U.S. Department of Energy, the National Energy Technology Laboratory, and the Regional University Alliance (NETL-RUA) and the Energy Institute of College of Earth and Mineral Sciences at the Pennsylvania State University. We particularly thank Dr. Nikolay N. Akinfiev and Dr. Nicolas Spycher for the access to their computer codes. The authors thank Shimei Ma for her help in preparing the model comparison results. NR 54 TC 3 Z9 3 U1 7 U2 28 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0001-1541 EI 1547-5905 J9 AICHE J JI AICHE J. PD JUL PY 2015 VL 61 IS 7 BP 2286 EP 2297 DI 10.1002/aic.14825 PG 12 WC Engineering, Chemical SC Engineering GA CL1MP UT WOS:000356707900015 ER PT J AU Marchevsky, M Sabbi, G Bajas, H Gourlay, S AF Marchevsky, M. Sabbi, G. Bajas, H. Gourlay, S. TI Acoustic emission during quench training of superconducting accelerator magnets SO CRYOGENICS LA English DT Article DE Piezoelectric transducers; Cryogenic electronics; Acoustic emission; Quench detection; Superconducting accelerator magnets ID SELF-ORGANIZED CRITICALITY AB Acoustic emission (AE) sensing is a viable tool for superconducting magnet diagnostics. Using in-house developed cryogenic amplified piezoelectric sensors, we conducted AE studies during quench training of the US LARP's high-field quadrupole HQ02 and the LBNL's high-field dipole HD3. For both magnets, AE bursts were observed, with spike amplitude and frequency increasing toward the quench current during current up-ramps. In the HQ02, the AE onset upon current ramping is distinct and exhibits a clear memory of the previously-reached quench current (Kaiser effect). On the other hand, in the HD3 magnet the AE amplitude begins to increase well before the previously-reached quench current (felicity effect), suggesting an ongoing progressive mechanical motion in the coils. A clear difference in the AE signature exists between the untrained and trained mechanical states in HD3. Time intervals between the AE signals detected at the opposite ends of HD3 coils were processed using a combination of narrow-band pass filtering; threshold crossing and correlation algorithms; and the spatial distributions of AE sources and the mechanical energy release were calculated. Both distributions appear to be consistent with the quench location distribution. Energy statistics of the AE spikes exhibits a power-law scaling typical for the self-organized critical state. Published by Elsevier Ltd. C1 [Marchevsky, M.; Sabbi, G.; Gourlay, S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Bajas, H.] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland. RP Marchevsky, M (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM mmartchevskii@lbl.gov; glsabbi@lbl.gov; hugues.bajas@cern.ch; sagourlay@lbl.gov FU U.S. Department of Energy [DE-AC02-05CH11231]; US LHC Accelerator Research Program (LARP); European Commission [284404] FX This work was supported by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 and the US LHC Accelerator Research Program (LARP). Part of this work was supported by the European Commission FP7 HiLumi LHC - Grant Agreement 284404. NR 29 TC 4 Z9 4 U1 0 U2 7 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0011-2275 EI 1879-2235 J9 CRYOGENICS JI Cryogenics PD JUL PY 2015 VL 69 BP 50 EP 57 DI 10.1016/j.cryogenics.2015.03.005 PG 8 WC Thermodynamics; Physics, Applied SC Thermodynamics; Physics GA CL5FY UT WOS:000356986400007 ER PT J AU Burton, PD Boyle, L Griego, JJM King, BH AF Burton, Patrick D. Boyle, Liza Griego, James J. M. King, Bruce H. TI Quantification of a Minimum Detectable Soiling Level to Affect Photovoltaic Devices by Natural and Simulated Soils SO IEEE JOURNAL OF PHOTOVOLTAICS LA English DT Article DE Performance loss; photovoltaic (PV) cells; soiling; standardized test methods; surface contamination ID DUST; IMPACT; COVER AB Soil accumulation on photovoltaic (PV) modules presents a challenge to long-term performance prediction and lifetime estimates due to the inherent difficulty in quantifying small changes over an extended period. Low mass loadings of soil are a common occurrence but remain difficult to quantify. In order to more accurately describe the specific effects of sparse soil films on PV systems, we have expanded upon an earlier technique to measure the optical losses due to an artificially applied obscurant film. A synthetic soil analog was sprayed onto glass coupons at very brief intervals with a high-volume, low-pressure pneumatic sprayer. Light transmission through the grime film was evaluated using a quantum efficiency test stand and UV/vis spectroscopy. A 0.1-g/m(2) grime loading was determined to be the limit of mass measurement sensitivity, which is similar to some reports of daily soil accumulation. Predictable, linear decreases in transmission were observed for samples with amass loading between 0.1 and 0.5 g/m(2). A similar change was observed for soiled coupons from an outdoor monitoring station. Collected soil from the field coupons was analyzed to develop a compositional analog for indoor studies. Natural and synthetic soils produced similar decreases in transmission. C1 [Burton, Patrick D.; Griego, James J. M.; King, Bruce H.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Boyle, Liza] Univ Colorado, Boulder, CO 80309 USA. RP Burton, PD (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM pdburto@sandia.gov; liza.boyle@colorado.edu; jamgrie@sandia.gov; bhking@sandia.gov FU U.S. Department of Energy SunShot Initiative; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was supported by the U.S. Department of Energy SunShot Initiative. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 14 TC 3 Z9 3 U1 1 U2 6 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2156-3381 J9 IEEE J PHOTOVOLT JI IEEE J. Photovolt. PD JUL PY 2015 VL 5 IS 4 BP 1143 EP 1149 DI 10.1109/JPHOTOV.2015.2432459 PG 7 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA CL2XX UT WOS:000356812300022 ER PT J AU Shaltout, ML Malikopoulos, AA Pannala, S Chen, DM AF Shaltout, Mohamed L. Malikopoulos, Andreas A. Pannala, Sreekanth Chen, Dongmei TI A Consumer-Oriented Control Framework for Performance Analysis in Hybrid Electric Vehicles SO IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY LA English DT Article DE Battery capacity and lifetime; hybrid electric vehicles (HEVs); multiobjective optimization; power management control ID LITHIUM-ION BATTERY; POWER MANAGEMENT; CONTROL STRATEGIES; ENERGY MANAGEMENT; SYSTEMS; CELLS; SIMULATIONS; ALGORITHMS AB Hybrid electric vehicles (HEVs) have attracted considerable attention due to their potential to reduce fuel consumption and emissions. The objective of this paper is to enhance our understanding of the associated tradeoffs among the HEV subsystems, e.g., the engine, the motor, and the battery, and investigate the related implications for fuel consumption and battery capacity and lifetime. Addressing this problem can provide insights on how to prioritize these objectives based on consumers' needs and preferences. The results of the proposed optimization approach can also be used to investigate the implications for HEV costs related to ownership and warranty. C1 [Shaltout, Mohamed L.; Chen, Dongmei] Univ Texas Austin, Dept Mech Engn, Austin, TX 78712 USA. [Malikopoulos, Andreas A.] Oak Ridge Natl Lab, Energy & Transportat Sci Div, Oak Ridge, TN 37831 USA. [Pannala, Sreekanth] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. RP Shaltout, ML (reprint author), Univ Texas Austin, Dept Mech Engn, Austin, TX 78712 USA. EM mshaltout@utexas.edu; andreas@ornl.gov; pannalas@ornl.gov; dmchen@me.utexas.edu OI Shaltout, Mohamed/0000-0003-4221-291X FU Laboratory Directed Research and Development Program through the Oak Ridge National Laboratory, Oak Ridge, TN, USA; UTBattelle, LLC, through the U.S. DOE [DE-AC05-00OR22725] FX This work was supported in part by the Laboratory Directed Research and Development Program through the Oak Ridge National Laboratory, Oak Ridge, TN, USA, managed by UTBattelle, LLC, for Department of Energy (DOE), and in part by the UTBattelle, LLC, through the U.S. DOE under Contract DE-AC05-00OR22725. Recommended by Associate Editor K. Butts. NR 47 TC 3 Z9 3 U1 1 U2 10 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1063-6536 EI 1558-0865 J9 IEEE T CONTR SYST T JI IEEE Trans. Control Syst. Technol. PD JUL PY 2015 VL 23 IS 4 BP 1451 EP 1464 DI 10.1109/TCST.2014.2376472 PG 14 WC Automation & Control Systems; Engineering, Electrical & Electronic SC Automation & Control Systems; Engineering GA CK8XO UT WOS:000356523600016 ER PT J AU Guo, JH Zhang, Y Young, MA Till, MJ Dimitrovski, A Liu, Y Williging, P Liu, YL AF Guo, Jiahui Zhang, Ye Young, Marcus A. Till, Micah J. Dimitrovski, Aleksandar Liu, Yong Williging, Patrick Liu, Yilu TI Design and Implementation of a Real-Time Off-Grid Operation Detection Tool from a Wide-Area Measurements Perspective SO IEEE TRANSACTIONS ON SMART GRID LA English DT Article DE Frequency deviation; frequency disturbance recorder (FDR); frequency monitoring network system (FNET/GridEye); islanding; off-grid operation detection ID ISLANDING DETECTION; DISTRIBUTED GENERATION; SHIFT AB Real-time situational awareness tools are of critical importance to power system operators, especially during emergencies. The availability of electric power has become a linchpin of most post-disaster response efforts, because public and private sector services depend upon it. Knowledge of the scope and extent of facilities impacted, as well as the duration of their dependence on backup power, enables emergency response officials to plan for contingencies and provide a better overall response. Based on the measurement data acquired by the frequency disturbance recorders deployed in the North American power grids, an off-grid detection method is proposed and implemented. This method monitors the critical electrical loads and detects the transition of these loads from an on-grid operation to an off-grid operation, during which the loads are fed by an uninterrupted power supply or a backup generation system. The details of the detection algorithm are presented, and some case studies and off-grid detection scenarios are also provided to verify the effectiveness and robustness. This paper also presents the real-time implementation of this method and several effectively detected off-grid situations. Moreover, two visualization tools are developed to display the real-time system operation condition in an intuitive manor. C1 [Guo, Jiahui; Zhang, Ye; Till, Micah J.; Liu, Yong; Liu, Yilu] Univ Tennessee, Dept Elect Engn & Comp Sci, Knoxville, TN 37996 USA. [Young, Marcus A.; Dimitrovski, Aleksandar; Liu, Yong; Liu, Yilu] Oak Ridge Natl Lab, Oak Ridge, TN 37830 USA. [Williging, Patrick] US DOE, Washington, DC 20585 USA. RP Guo, JH (reprint author), Univ Tennessee, Dept Elect Engn & Comp Sci, Knoxville, TN 37996 USA. EM jguo7@utk.edu; yzhang86@utk.edu; youngmaii@ornl.gov; mtill@utk.edu; ad1@ornl.gov; yliu66@utk.edu; patrick.willging@hq.doe.gov; liu@utk.edu RI Dimitrovski, Aleksandar/G-5897-2016; Guo, Jiahui/I-8225-2015 OI Dimitrovski, Aleksandar/0000-0001-9109-621X; Guo, Jiahui/0000-0003-0877-2091 FU Engineering Research Center Program of the National Science Foundation (NSF); Department of Energy under NSF [EEC-1041877]; CURENT Industry Partnership Program FX This work was supported in part by the Engineering Research Center Program of the National Science Foundation (NSF), in part by the Department of Energy under NSF Award EEC-1041877, and in part by the CURENT Industry Partnership Program. Paper no. TSG-00421-2014. NR 18 TC 8 Z9 8 U1 3 U2 4 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1949-3053 EI 1949-3061 J9 IEEE T SMART GRID JI IEEE Trans. Smart Grid PD JUL PY 2015 VL 6 IS 4 BP 2080 EP 2087 DI 10.1109/TSG.2014.2350913 PG 8 WC Engineering, Electrical & Electronic SC Engineering GA CL2XL UT WOS:000356810900052 ER PT J AU Jiang, HG Zhang, YC Zhang, JJ Gao, DW Muljadi, E AF Jiang, Huaiguang Zhang, Yingchen Zhang, Jun Jason Gao, David Wenzhong Muljadi, Eduard TI Synchrophasor-Based Auxiliary Controller to Enhance the Voltage Stability of a Distribution System with High Renewable Energy Penetration SO IEEE TRANSACTIONS ON SMART GRID LA English DT Article DE Distributed phasor measurement unit; linear time-variant (LTV) system; model predictive control (MPC); multiple-input and multiple-output (MIMO) control; support vector machine (SVM); wind turbine ID PREDICTIVE CONTROL; POWER-SYSTEMS; PMU PLACEMENT; OBSERVABILITY; TECHNOLOGY AB Wind energy is highly location-dependent. Many desirable wind resources in North America are located in rural areas without direct access to the transmission grid. By connecting megawatt-scale wind turbines to the distribution system, the cost of building transmission facilities can be avoided and wind power supplied to consumers can be greatly increased; however, integrating megawatt-scale wind turbines on distribution feeders will impact the distribution feeder stability, especially voltage stability. Distributed wind turbine generators (WTGs) have the capability to aid in grid stability if equipped with appropriate controllers, but few investigations are focusing on this. This paper investigates the potential of using real-time measurements from distribution phasor measurement units for a new WTG control algorithm to stabilize the voltage deviation of a distribution feeder. This paper proposes a novel auxiliary coordinated-control approach based on a support vector machine (SVM) predictor and a multiple-input and multiple-output model predictive control on linear time-invariant and linear time-variant systems. The voltage condition of the distribution system is predicted by the SVM classifier using synchrophasor measurement data. The controllers equipped on WTGs are triggered by the prediction results. The IEEE 13-bus distribution system with WTGs is used to validate and evaluate the proposed auxiliary control approach. C1 [Jiang, Huaiguang; Zhang, Jun Jason; Gao, David Wenzhong] Univ Denver, Dept Elect & Comp Engn, Denver, CO 80210 USA. [Zhang, Yingchen; Muljadi, Eduard] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Jiang, HG (reprint author), Univ Denver, Dept Elect & Comp Engn, Denver, CO 80210 USA. EM huaiguang.jiang@du.edu FU U.S. Department of Energy [DE-AC36-08-GO28308]; National Renewable Energy Laboratory; National Science Foundation [0844707] FX This work was supported in part by the U.S. Department of Energy under Contract DE-AC36-08-GO28308 with the National Renewable Energy Laboratory, and in part by the National Science Foundation under Grant 0844707. Paper no. TSG-00403-2014. NR 37 TC 5 Z9 5 U1 4 U2 10 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1949-3053 EI 1949-3061 J9 IEEE T SMART GRID JI IEEE Trans. Smart Grid PD JUL PY 2015 VL 6 IS 4 BP 2107 EP 2115 DI 10.1109/TSG.2014.2387012 PG 9 WC Engineering, Electrical & Electronic SC Engineering GA CL2XL UT WOS:000356810900055 ER PT J AU Orwig, KD Ahlstrom, ML Banunarayanan, V Sharp, J Wilczak, JM Freedman, J Haupt, SE Cline, J Bartholomy, O Hamann, HF Hodge, BM Finley, C Nakafuji, D Peterson, JL Maggio, D Marquis, M AF Orwig, Kirsten D. Ahlstrom, Mark L. Banunarayanan, Venkat Sharp, Justin Wilczak, James M. Freedman, Jeffrey Haupt, Sue Ellen Cline, Joel Bartholomy, Obadiah Hamann, Hendrik F. Hodge, Bri-Mathias Finley, Catherine Nakafuji, Dora Peterson, Jack L. Maggio, David Marquis, Melinda TI Recent Trends in Variable Generation Forecasting and Its Value to the Power System SO IEEE TRANSACTIONS ON SUSTAINABLE ENERGY LA English DT Article DE Forecasting; large-scale integration; market design; power-system reliability; renewable energy; solar energy; variable generation; wind energy ID NONHYDROSTATIC ATMOSPHERIC SIMULATION; WIND POWER; PROBABILISTIC FORECASTS; PREDICTION; MODEL; SPEED; INTEGRATION; ARPS AB The rapid deployment of wind and solar energy generation systems has resulted in a need to better understand, predict, and manage variable generation. The uncertainty around wind and solar power forecasts is still viewed by the power industry as being quite high, and many barriers to forecast adoption by power system operators still remain. In response, the U.S. Department of Energy has sponsored, in partnership with the National Oceanic and Atmospheric Administration, public, private, and academic organizations, two projects to advance wind and solar power forecasts. Additionally, several utilities and grid operators have recognized the value of adopting variable generation forecasting and have taken great strides to enhance their usage of forecasting. In parallel, power system markets and operations are evolving to integrate greater amounts of variable generation. This paper will discuss the recent trends in wind and solar power forecasting technologies in the U.S., the role of forecasting in an evolving power system framework, and the benefits to intended forecast users. C1 [Orwig, Kirsten D.; Hodge, Bri-Mathias] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Ahlstrom, Mark L.] WindLogics, St Paul, MN 55108 USA. [Banunarayanan, Venkat] ICF Int & Dept Energy DOE, Washington, DC 20585 USA. [Sharp, Justin] Sharply Focused, Portland, OR 97232 USA. [Wilczak, James M.; Marquis, Melinda] NOAA, Boulder, CO 80305 USA. [Freedman, Jeffrey] SUNY Albany, Atmospher Sci Res Ctr, Albany, NY 12203 USA. [Haupt, Sue Ellen] Natl Ctr Atmospher Res, Boulder, CO 80301 USA. [Cline, Joel] DOE, Washington, DC 20585 USA. [Bartholomy, Obadiah] SMUD, Sacramento, CA 95817 USA. [Hamann, Hendrik F.] IBM Corp, Yorktown Hts, NY 10598 USA. [Finley, Catherine] WindLogics, Grand Rapids, MN 55744 USA. [Nakafuji, Dora] Hawaiian Elect Co, Honolulu, HI 96813 USA. [Peterson, Jack L.] SCE, Rosemead, CA 91770 USA. [Maggio, David] ERCOT, Taylor, TX 76574 USA. RP Orwig, KD (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM kirsten_orwig@swissre.com; mark@windlogics.com; venkat.banunarayanan@icfi.com; justin@sharply-focused.com; james.m.wilczak@noaa.gov; jfreedman@albany.edu; haupt@ucar.edu; joel.cline@ee.doe.gov; obartho@smud.org; hendrikh@us.ibm.com; bri.mathias.hodge@nrel.gov; catherine.finley@windlogics.com; dora.nakafuji@heco.com; jack.peterson@sce.com; david.maggio@ercot.com; melinda.marquis@noaa.gov RI Marquis, Melinda/K-8895-2015 NR 60 TC 3 Z9 3 U1 1 U2 3 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1949-3029 J9 IEEE T SUSTAIN ENERG JI IEEE Trans. Sustain. Energy PD JUL PY 2015 VL 6 IS 3 BP 924 EP 933 DI 10.1109/TSTE.2014.2366118 PG 10 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Engineering, Electrical & Electronic SC Science & Technology - Other Topics; Energy & Fuels; Engineering GA CK8AX UT WOS:000356461100029 ER PT J AU Liu, Y Gracia, JR King, TJ Liu, YL AF Liu, Yong Gracia, Joe R. King, Thomas J. Liu, Yilu TI Frequency Regulation and Oscillation Damping Contributions of Variable-Speed Wind Generators in the US Eastern Interconnection (EI) SO IEEE TRANSACTIONS ON SUSTAINABLE ENERGY LA English DT Article DE Eastern Interconnection (EI); frequency regulation; inter-area oscillation damping; variable-speed wind generators ID POWER-SYSTEM OSCILLATIONS; FAULT RIDE-THROUGH; TURBINES AB The U.S. Eastern Interconnection (EI) is one of the largest electric power grids in the world and is expected to have difficulties in dealing with frequency regulation and oscillation damping issues caused by the increasing wind power. On the other side, variable-speed wind generators can actively engage in frequency regulation or oscillation damping with supplementary control loops. This paper creates a 5% wind power penetration simulation scenario based on the 16 000-bus EI system dynamic model and developed the user-defined wind electrical control model in PSS (R) E that incorporates additional frequency regulation and oscillation damping control loops. The potential contributions of variable-speed wind generations to the EI system frequency regulation and oscillation damping are evaluated and simulation results demonstrate that current and future penetrations of wind power are promising in the EI system frequency regulation and oscillation damping. C1 [Liu, Yong; Liu, Yilu] Univ Tennessee, Dept Elect Engn & Comp Sci, Knoxville, TN 37996 USA. [Gracia, Joe R.; King, Thomas J.] Oak Ridge Natl Lab, Energy & Transportat Sci Div, Oak Ridge, TN 37830 USA. RP Liu, Y (reprint author), Univ Tennessee, Dept Elect Engn & Comp Sci, Knoxville, TN 37996 USA. EM yliu66@utk.edu; graciajr@ornl.gov; kingtjjr@ornl.gov; liu@utk.edu FU Oak Ridge National Laboratory (ORNL); Engineering Research Center Program of the National Science Foundation (NSF); DOE under NSF Award [EEC-1041877]; CURENT Industry Partnership Program FX This work was supported by Oak Ridge National Laboratory (ORNL) and also made use of Engineering Research Center Shared Facilities supported by the Engineering Research Center Program of the National Science Foundation (NSF) and DOE under NSF Award EEC-1041877 and the CURENT Industry Partnership Program. Paper no. TSTE-00503-2013. NR 32 TC 7 Z9 7 U1 1 U2 4 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1949-3029 J9 IEEE T SUSTAIN ENERG JI IEEE Trans. Sustain. Energy PD JUL PY 2015 VL 6 IS 3 BP 951 EP 958 DI 10.1109/TSTE.2014.2318591 PG 8 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Engineering, Electrical & Electronic SC Science & Technology - Other Topics; Energy & Fuels; Engineering GA CK8AX UT WOS:000356461100032 ER PT J AU Singh, M Allen, AJ Muljadi, E Gevorgian, V Zhang, YC Santoso, S AF Singh, Mohit Allen, Alicia J. Muljadi, Eduard Gevorgian, Vahan Zhang, Yingchen Santoso, Surya TI Interarea Oscillation Damping Controls for Wind Power Plants SO IEEE TRANSACTIONS ON SUSTAINABLE ENERGY LA English DT Article DE Doubly fed induction generators; electromechanical dynamics; interarea oscillations; synchronized phasor measurements; two-area system ID PRIMARY FREQUENCY CONTROL; TURBINE; GENERATION; SYSTEMS; INERTIA; SUPPORT AB This paper investigates the potential for wind power plants (WPPs) to damp interarea modes. Interarea modes may be the result of a single or a group of generators oscillating against another group of generators across a weak transmission link. If poorly damped, these power system oscillations can cause system instability and potentially lead to blackouts. Power conversion devices, particularly, megawatt-scale converters that connect wind turbines and photovoltaic power plants to the grid, could be used to damp these oscillations by injecting power into the system out of phase with the potentially unstable mode. In our model, this power may be provided by a WPP. Over time, the net energy injection is near zero; therefore, providing this "static damping" capability is not expected to affect the energy production of a WPP. This is a measurement-based investigation that employs simulated measurement data. It is not a traditional small-signal stability analysis based on Eigenvalues and knowledge of the power system network and its components. Kundur's well-known two-area, four-generator system and a doubly fed induction generator (DFIG)-based WPP are modeled in PSCAD/EMTDC. The WPP model is based on the Western Electricity Coordination Council (WECC) standard model. A controller to damp interarea oscillations is added to the WECC DFIG model, and its effects are studied. Analysis is performed on the data generated by the simulations. The sampling frequency is set to resemble the sampling frequency at which data are available from phasor measurement units in the real world. The Yule-Walker algorithm is used to estimate the power spectral density of these signals. C1 [Singh, Mohit; Allen, Alicia J.; Muljadi, Eduard; Gevorgian, Vahan; Zhang, Yingchen] Natl Renewable Energy Lab, Transmiss & Grid Integrat, Golden, CO 80401 USA. [Santoso, Surya] Univ Texas Austin, Dept Elect & Comp Engn, Austin, TX 73301 USA. RP Singh, M (reprint author), Natl Renewable Energy Lab, Transmiss & Grid Integrat, Golden, CO 80401 USA. EM Mohit.Singh@nrel.gov; alicia.allen@nrel.gov; eduard.muljadi@nrel.gov; vahan.gevorgian@nrel.gov; Yingchen.Zhang@nrel.gov; ssantoso@mail.utexas.edu NR 29 TC 10 Z9 11 U1 3 U2 9 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1949-3029 J9 IEEE T SUSTAIN ENERG JI IEEE Trans. Sustain. Energy PD JUL PY 2015 VL 6 IS 3 BP 967 EP 975 DI 10.1109/TSTE.2014.2348491 PG 9 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Engineering, Electrical & Electronic SC Science & Technology - Other Topics; Energy & Fuels; Engineering GA CK8AX UT WOS:000356461100034 ER PT J AU Zhang, YC Muljadi, E Kosterev, D Singh, M AF Zhang, Yingchen Muljadi, Eduard Kosterev, Dmitry Singh, Mohit TI Wind Power Plant Model Validation Using Synchrophasor Measurements at the Point of Interconnection SO IEEE TRANSACTIONS ON SUSTAINABLE ENERGY LA English DT Article DE Measurement unit; wind power plant (WPP); wind turbine/generator model validation AB A wind power plant (WPP) is different from a conventional power plant in the sense that a WPP may consist of hundreds of small (e.g., 1.5-MW) wind turbine generators (WTGs), whereas a conventional power plant may consist of one or several large generators. Common practice in power system planning to simulate a WPP is to use a single-turbine representation. However, it is important to realize that the response of a single-turbine representation is not the response of an individual turbine; instead, it represents the collective behavior of a WPP. In this paper, we present our experience in validating WPP from available measured data. We investigate the discrepancies between the simulation results and the actual measurement, and we examine the probable causes of these discrepancies. Finally, we offer methods to validate WPP dynamic model to better match the simulation result to the measured data. Understanding the nature of a WPP and the meaning of WPP equivalency is very important to determine the representation of a WPP. C1 [Zhang, Yingchen; Muljadi, Eduard; Singh, Mohit] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Kosterev, Dmitry] BPA, Portland, OR 97232 USA. RP Zhang, YC (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM Yingchen.Zhang@nrel.gov; eduard.muljadi@nrel.gov; dnkosterev@bpa.gov; Mohit.Singh@nrel.gov NR 14 TC 4 Z9 4 U1 0 U2 0 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1949-3029 J9 IEEE T SUSTAIN ENERG JI IEEE Trans. Sustain. Energy PD JUL PY 2015 VL 6 IS 3 BP 984 EP 992 DI 10.1109/TSTE.2014.2343794 PG 9 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Engineering, Electrical & Electronic SC Science & Technology - Other Topics; Energy & Fuels; Engineering GA CK8AX UT WOS:000356461100036 ER PT J AU Gevorgian, V Zhang, YC Ela, E AF Gevorgian, Vahan Zhang, Yingchen Ela, Erik TI Investigating the Impacts of Wind Generation Participation in Interconnection Frequency Response SO IEEE TRANSACTIONS ON SUSTAINABLE ENERGY LA English DT Article DE Active power control; inertial control; primary frequency control; primary frequency response (PFR); wind generation AB The electrical frequency of an interconnection must be maintained very close to its nominal level at all times. Excessive frequency deviations can lead to load shedding, instability, machine damage, and even blackouts. There is rising concern in the power industry in recent years about the declining amount of inertia and primary frequency response (PFR) in many interconnections. This decline may continue due to increasing penetrations of inverter-coupled generation and the planned retirements of conventional thermal plants. Inverter-coupled variable wind generation is capable of contributing to PFR and inertia; however, wind generation PFR and inertia responses differ from those of conventional generators, and it is not entirely understood how this will affect the system at different wind power penetration levels. The simulation work presented in this paper evaluates the impact of the wind generation provision of these active power control strategies on a large, synchronous interconnection. All simulations were conducted on the U.S. Western Interconnection with different levels of wind power penetration levels. The ability of wind power plants to provide PFR-and a combination of synthetic inertial response and PFR-significantly improved the frequency response performance of the system. The simulation results provide insight to designing and operating wind generation active power controls to facilitate adequate frequency response performance of an interconnection. C1 [Gevorgian, Vahan; Zhang, Yingchen; Ela, Erik] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Gevorgian, V (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM vahan.gevorgian@nrel.gov FU Electric Power Research Institute FX The authors gratefully acknowledge the support from the Electric Power Research Institute, especially Mr. V. Singhvi and Dr. P. Pourbeik. The authors are also appreciative of the data provided by Dr. E. Ibanez from the National Renewable Energy Laboratory to illustrate the Western Interconnection wind resources shown in Fig. 2. NR 28 TC 8 Z9 8 U1 0 U2 2 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1949-3029 J9 IEEE T SUSTAIN ENERG JI IEEE Trans. Sustain. Energy PD JUL PY 2015 VL 6 IS 3 BP 1004 EP 1012 DI 10.1109/TSTE.2014.2343836 PG 9 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Engineering, Electrical & Electronic SC Science & Technology - Other Topics; Energy & Fuels; Engineering GA CK8AX UT WOS:000356461100038 ER PT J AU Yue, M Wang, XY AF Yue, Meng Wang, Xiaoyu TI Grid Inertial Response-Based Probabilistic Determination of Energy Storage System Capacity Under High Solar Penetration SO IEEE TRANSACTIONS ON SUSTAINABLE ENERGY LA English DT Article DE Battery energy storage system (BESS); fast cloud transient; inertial response; probabilistic risk assessment (PRA); solar generation AB It is well known that responsive battery energy storage systems (BESSs) are effective means to improve the grid inertial response to various disturbances including the variability of the renewable generation. One of the major issues associated with its implementation is the difficulty in determining the required BESS capacity mainly due to the large amount of inherent uncertainties that cannot be accounted for deterministically. In this study, a probabilistic approach is proposed to properly size the BESS from the perspective of the system inertial response, as an application of probabilistic risk assessment (PRA). The proposed approach enables a risk-informed decision-making process regarding 1) the acceptable level of solar penetration in a given system and 2) the desired BESS capacity (and minimum cost) to achieve an acceptable grid inertial response with a certain confidence level. C1 [Yue, Meng; Wang, Xiaoyu] Brookhaven Natl Lab, Sustainable Energy Technol Dept, Upton, NY 11973 USA. RP Yue, M (reprint author), Brookhaven Natl Lab, Sustainable Energy Technol Dept, Upton, NY 11973 USA. EM yuemeng@bnl.gov NR 23 TC 1 Z9 1 U1 1 U2 3 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1949-3029 J9 IEEE T SUSTAIN ENERG JI IEEE Trans. Sustain. Energy PD JUL PY 2015 VL 6 IS 3 BP 1039 EP 1049 DI 10.1109/TSTE.2014.2328298 PG 11 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Engineering, Electrical & Electronic SC Science & Technology - Other Topics; Energy & Fuels; Engineering GA CK8AX UT WOS:000356461100042 ER PT J AU Konopka, A Lindemann, S Fredrickson, J AF Konopka, Allan Lindemann, Stephen Fredrickson, Jim TI Dynamics in microbial communities: unraveling mechanisms to identify principles SO ISME JOURNAL LA English DT Article ID BACTERIAL COMMUNITIES; ENVIRONMENTAL-CHANGE; ASSEMBLY PROCESSES; CURRENT KNOWLEDGE; FOOD WEBS; DIVERSITY; ECOLOGY; STABILITY; BIODIVERSITY; MAT AB Diversity begets higher-order properties such as functional stability and robustness in microbial communities, but principles that inform conceptual (and eventually predictive) models of community dynamics are lacking. Recent work has shown that selection as well as dispersal and drift shape communities, but the mechanistic bases for assembly of communities and the forces that maintain their function in the face of environmental perturbation are not well understood. Conceptually, some interactions among community members could generate endogenous dynamics in composition, even in the absence of environmental changes. These endogenous dynamics are further perturbed by exogenous forcing factors to produce a richer network of community interactions and it is this 'system' that is the basis for higher-order community properties. Elucidation of principles that follow from this conceptual model requires identifying the mechanisms that (a) optimize diversity within a community and (b) impart community stability. The network of interactions between organisms can be an important element by providing a buffer against disturbance beyond the effect of functional redundancy, as alternative pathways with different combinations of microbes can be recruited to fulfill specific functions. C1 [Konopka, Allan; Lindemann, Stephen; Fredrickson, Jim] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. RP Fredrickson, J (reprint author), Pacific NW Natl Lab, Div Biol Sci, POB 999,MS J4-16, Richland, WA 99352 USA. EM jim.fredrickson@pnnl.gov RI Lindemann, Steve/H-6088-2016 OI Lindemann, Steve/0000-0002-3788-5389 FU Genomic Science Program (GSP); Office of Biological and Environmental Research (OBER); US Department of Energy (DOE); Pacific Northwest National Laboratory (PNNL) Foundational Scientific Focus Area FX This work was supported by the Genomic Science Program (GSP), Office of Biological and Environmental Research (OBER) and US Department of Energy (DOE), and is a contribution of the Pacific Northwest National Laboratory (PNNL) Foundational Scientific Focus Area. Questions posed in this perspective arose during group discussions at PNNL involving Bill Inskeep, Bill Nelson, Margie Romine, Hyun-Seob Song and James Stegen. We thank our colleagues for their role in initiating our development of this manuscript. NR 73 TC 14 Z9 14 U1 14 U2 94 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1751-7362 EI 1751-7370 J9 ISME J JI ISME J. PD JUL PY 2015 VL 9 IS 7 BP 1488 EP 1495 DI 10.1038/ismej.2014.251 PG 8 WC Ecology; Microbiology SC Environmental Sciences & Ecology; Microbiology GA CL2MK UT WOS:000356778000002 PM 25526370 ER PT J AU Amaro, F Wang, W Gilbert, JA Anderson, OR Shuman, HA AF Amaro, Francisco Wang, Wen Gilbert, Jack A. Anderson, O. Roger Shuman, Howard A. TI Diverse protist grazers select for virulence-related traits in Legionella SO ISME JOURNAL LA English DT Article ID HOST-PATHOGEN INTERACTIONS; HUMAN ALVEOLAR MACROPHAGES; ACANTHAMOEBA-CASTELLANII; LEGIONNAIRES-DISEASE; FRESH-WATER; INTRACELLULAR GROWTH; PNEUMOPHILA GENOME; BACTERIA; AMEBAS; CLASSIFICATION AB It is generally accepted that selection for resistance to grazing by protists has contributed to the evolution of Legionella pneumophila as a pathogen. Grazing resistance is becoming more generally recognized as having an important role in the ecology and evolution of bacterial pathogenesis. However, selection for grazing resistance presupposes the existence of protist grazers that provide the selective pressure. To determine whether there are protists that graze on pathogenic Legionella species, we investigated the existence of such organisms in a variety of environmental samples. We isolated and characterized diverse protists that graze on L. pneumophila and determined the effects of adding L. pneumophila on the protist community structures in microcosms made from these environmental samples. Several unrelated organisms were able to graze efficiently on L. pneumophila. The community structures of all samples were markedly altered by the addition of L. pneumophila. Surprisingly, some of the Legionella grazers were closely related to species that are known hosts for L. pneumophila, indicating the presence of unknown specificity determinants for this interaction. These results provide the first direct support for the hypothesis that protist grazers exert selective pressure on Legionella to acquire and retain adaptations that contribute to survival, and that these properties are relevant to the ability of the bacteria to cause disease in people. We also report a novel mechanism of killing of amoebae by one Legionella species that requires an intact Type IV secretion system but does not involve intracellular replication. We refer to this phenomenon as 'food poisoning'. C1 [Amaro, Francisco; Shuman, Howard A.] Univ Chicago, Dept Microbiol, Chicago, IL 60637 USA. [Wang, Wen] Nanjing Normal Univ, Jiangsu Key Lab Biodivers & Biotechnol, Nanjing, Jiangsu, Peoples R China. [Gilbert, Jack A.] Univ Chicago, Div Biol, Argonne Natl Lab, Chicago, IL 60637 USA. [Gilbert, Jack A.] Univ Chicago, Dept Ecol & Evolut, Chicago, IL 60637 USA. [Anderson, O. Roger] Columbia Univ, Div Biol & Paleo Environm, Lamont Doherty Earth Observ, Palisades, NY USA. RP Shuman, HA (reprint author), Univ Chicago, Dept Microbiol, 920 E 58th St, Chicago, IL 60637 USA. EM hashuman@uchicago.edu FU NIAID [5RO1AI23549]; Department of Microbiology, University of Chicago; Fulbright Commission; Ministry of Education of Spain; European Consortium for Ocean Research Drilling, Ministry of Education, Culture, Sports, Science and Technology of Japan FX This work was supported by an award from NIAID, 5RO1AI23549 (H.A.S.) and funds from the Department of Microbiology, University of Chicago. F Amaro was supported by a postdoctoral fellowship from the Fulbright Commission and Ministry of Education of Spain. We thank our colleagues for supplying samples of various Legionella species, including Barry Fields and Claressa Lucas at CDC and Paul Edelstein at the University of Pennsylvania. We would like to thank the following individuals for supplying environmental samples used in this work: Dr Juan Carlos Gutierrez from the Department of Microbiology III, Complutense University of Madrid, Dr Maureen Coleman from the Department of Geophysics at the University of Chicago and Dr Geeta K Rijal from the Metropolitan Water Reclamation District of Greater Chicago. The authors would like to express their appreciation to the Integrated Ocean Drilling Program shipboard technical, operations and engineering personnel of Integrated Ocean Drilling Program Expedition 311 for collecting, archiving and providing the ocean subsurface sample used in this research. Funding for Integrated Ocean Drilling Program was provided by the following agencies at the time of this expedition: European Consortium for Ocean Research Drilling, Ministry of Education, Culture, Sports, Science and Technology of Japan. Ministry of Science and Technology, People's Republic of China, National Science Foundation (United States). Any opinions, findings and conclusions or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the participating agencies, Integrated Ocean Drilling Program Management International or the Integrated Ocean Drilling Program Implementing Organizations. This is Lamont-Doherty Contribution No. 7850. NR 48 TC 5 Z9 5 U1 1 U2 15 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1751-7362 EI 1751-7370 J9 ISME J JI ISME J. PD JUL PY 2015 VL 9 IS 7 BP 1607 EP 1618 DI 10.1038/ismej.2014.248 PG 12 WC Ecology; Microbiology SC Environmental Sciences & Ecology; Microbiology GA CL2MK UT WOS:000356778000012 PM 25575308 ER PT J AU Reda, I Konings, J Xie, Y AF Reda, Ibrahim Konings, Jorgen Xie, Yu TI A method to measure the broadband longwave irradiance in the terrestrial direct solar beam SO JOURNAL OF ATMOSPHERIC AND SOLAR-TERRESTRIAL PHYSICS LA English DT Article DE Longwave in direct solar beam; Pyranometer; Pyrheliometer; Pyrgeometer ID RADIATIVE-TRANSFER; ALGORITHM AB Shortwave radiometers such as pyranometers, pyrheliometers, photovoltaic cells, and longwave radiometers such as pyrgeometers are calibrated with traceability to consensus References, which are maintained by Absolute Cavity Radiometers (ACRs) and the World InfraRed Standard Group (WISG), respectively. Since the ACR is an open cavity with no window, and was developed to measure the extended broadband spectrum of the terrestrial direct solar beam irradiance, then there would be discrepancy in calibrating the shortwave radiometers because of their limited spectral band. On the other hand, pyrgeometers are calibrated during the nighttime only, because no consensus reference has yet been established for the daytime longwave irradiance. This article describes a method to measure the broadband longwave irradiance in the terrestrial direct solar beam from 3 mu m to 50 mu m. The method might be used in developing calibration methods to address the mismatch between the broadband ACR and shortwave radiometers, and the lack of a daytime reference for pyrgeometer calibration. We used the described method to measure the irradiance from sunrise to sunset; the irradiance varied from approximately 1 W m(-2) to 16 W m(-2) with an estimated uncertainty of 1.46 W m(-2), for a solar zenith angle range from 80 to 16, respectively. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Reda, Ibrahim; Xie, Yu] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Konings, Jorgen] Hukseflux Thermal Sensors BV, NL-2628 XJ Delft, Netherlands. RP Reda, I (reprint author), Natl Renewable Energy Lab, 15013 Denver West Pkwy, Golden, CO 80401 USA. EM Ibrahim.Reda@nrel.gov; jorgen@hukseflux.com; Yu.Xie@nrel.gov FU U.S. Department of Energy Office of Energy Efficiency and Renewable Energy/Solar Energy Technologies Program; Environmental Research/Atmospheric Radiation Measurement Program; NREL's Quality Management Systems & Assurance Center-Metrology [DEAC36-08G028308] FX We sincerely appreciate the support of NREL's SRRL and Metrology Laboratory staff for their help in setting up the instruments and maintaining the quality of SRRL data. We thank the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy/Solar Energy Technologies Program, Environmental Research/Atmospheric Radiation Measurement Program, and NREL's Quality Management Systems & Assurance Center-Metrology (Grany no. DEAC36-08G028308) for providing the funds. NR 13 TC 0 Z9 0 U1 4 U2 9 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1364-6826 EI 1879-1824 J9 J ATMOS SOL-TERR PHY JI J. Atmos. Sol.-Terr. Phys. PD JUL PY 2015 VL 129 BP 23 EP 29 DI 10.1016/j.jastp.2015.04.003 PG 7 WC Geochemistry & Geophysics; Meteorology & Atmospheric Sciences SC Geochemistry & Geophysics; Meteorology & Atmospheric Sciences GA CK9JZ UT WOS:000356557700004 ER PT J AU Savukov, I AF Savukov, I. TI Gradient-echo 3D imaging of Rb polarization in fiber-coupled atomic magnetometer SO JOURNAL OF MAGNETIC RESONANCE LA English DT Article DE Atomic magnetometer; MRI; Rb; 3D imaging ID VAPOR; XE-129 AB The analogy between atomic and nuclear spins is exploited to implement 3D imaging of polarization inside the cell of an atomic magnetometer. The resolution of 0.8 mm x 1.2 mm x 1.4 mm has been demonstrated with the gradient-echo imaging method. The imaging can be used in many applications. One such an application is the evaluation of active volume of an atomic magnetometer for sensitivity analysis and optimization. It has been found that imaging resolution is limited due to de-phasing from spin-exchange collisions and diffusion in the presence of gradients, and for a given magnetometer operational parameters, the imaging sequence has been optimized. Diffusion decay of the signal in the presence of gradients has been modeled numerically and analytically, and the analytical results, which agreed with numerical simulations, have been used to fit the spin-echo gradient measurements to extract the diffusion coefficient. The diffusion coefficient was found in agreement with previous measurements. (C) 2015 Elsevier Inc. All rights reserved. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Savukov, I (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM isavukov@lanl.gov OI Savukov, Igor/0000-0003-4190-5335 FU U.S. DOE through the LANL/LDRD program FX This work was supported by the U.S. DOE through the LANL/LDRD program. NR 16 TC 1 Z9 1 U1 5 U2 21 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 1090-7807 EI 1096-0856 J9 J MAGN RESON JI J. Magn. Reson. PD JUL PY 2015 VL 256 BP 9 EP 13 DI 10.1016/j.jmr.2015.03.012 PG 5 WC Biochemical Research Methods; Physics, Atomic, Molecular & Chemical; Spectroscopy SC Biochemistry & Molecular Biology; Physics; Spectroscopy GA CL3HC UT WOS:000356840000002 PM 25965278 ER PT J AU Bertsch, GF Loveland, W Nazarewicz, W Talou, P AF Bertsch, G. F. Loveland, W. Nazarewicz, W. Talou, P. TI Benchmarking nuclear fission theory SO JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS LA English DT Article DE fission; nuclear theory; fission data AB We suggest a small set of fission observables to be used as test cases for validation of theoretical calculations. The purpose is to provide common data to facilitate the comparison of different fission theories and models. The proposed observables are chosen from fission barriers, spontaneous fission lifetimes, fission yield characteristics, and fission isomer excitation energies. C1 [Bertsch, G. F.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Bertsch, G. F.] Univ Washington, Inst Nucl Theory, Seattle, WA 98195 USA. [Loveland, W.] Oregon State Univ, Dept Chem, Corvallis, OR 97331 USA. [Nazarewicz, W.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Nazarewicz, W.] Michigan State Univ, NSCL FRIB Lab, E Lansing, MI 48824 USA. [Nazarewicz, W.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Talou, P.] Los Alamos Natl Lab, Div Theoret, Nucl Phys Grp, Los Alamos, NM 87545 USA. RP Bertsch, GF (reprint author), Univ Washington, Dept Phys, Seattle, WA 98195 USA. FU Institute for Nuclear Theory, 'Quantitative Large Amplitude Shape Dynamics: fission and heavy ion fusion' [INT-13-3]; U.S. Department of Energy [DE-FG02-00ER41132, DE-SC0008511, DE-NA0002574, DE-FG06-97ER41026] FX These benchmarks arose out of the Program INT-13-3 at the Institute for Nuclear Theory, 'Quantitative Large Amplitude Shape Dynamics: fission and heavy ion fusion'. Discussions with A Andreyev, R Mills, and A Sonzogni are gratefully acknowledged. This work was supported by the U.S. Department of Energy under Contract Nos. DE-FG02-00ER41132 (INT), DE-SC0008511 (NUCLEI SciDAC Collaboration), DE-NA0002574 (Stewardship Science Academic Alliances program), and No. DE-FG06-97ER41026 (OSU). NR 9 TC 7 Z9 7 U1 0 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0954-3899 EI 1361-6471 J9 J PHYS G NUCL PARTIC JI J. Phys. G-Nucl. Part. Phys. PD JUL PY 2015 VL 42 IS 7 AR 077001 DI 10.1088/0954-3899/42/7/077001 PG 7 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA CK5HA UT WOS:000356252800015 ER PT J AU Pritychenko, B AF Pritychenko, B. TI An imperfect world of beta beta-decay nuclear data sets? SO JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS LA English DT Article DE nuclear data analysis; double-beta decay; experimental half-lives AB The precision of double-beta (beta beta) decay experimental half-lives and their uncertainties is reevaluated. A complementary analysis of the decay uncertainties indicates deficiencies due to the small size of statistical samples, and incomplete collection of experimental information. Further experimental and theoretical efforts would lead towards to more precise values of beta beta-decay half-lives and nuclear matrix elements. C1 Brookhaven Natl Lab, Natl Nucl Data Ctr, Upton, NY 11973 USA. RP Pritychenko, B (reprint author), Brookhaven Natl Lab, Natl Nucl Data Ctr, Upton, NY 11973 USA. FU Office of Nuclear Physics, Office of Science of the US Department of Energy [DE-AC02-98CH10886]; Brookhaven Science Associates, LC FX The author is indebted to Dr M Herman (BNL) for support of this project and grateful to Dr V Unferth (Viterbo University) for help with the manuscript. This work was funded by the Office of Nuclear Physics, Office of Science of the US Department of Energy, under Contract No. DE-AC02-98CH10886 with Brookhaven Science Associates, LC. NR 30 TC 0 Z9 0 U1 1 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0954-3899 EI 1361-6471 J9 J PHYS G NUCL PARTIC JI J. Phys. G-Nucl. Part. Phys. PD JUL PY 2015 VL 42 IS 7 AR 075103 DI 10.1088/0954-3899/42/7/075103 PG 6 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA CK5HA UT WOS:000356252800006 ER PT J AU Collette, R Douglas, J Patterson, L Bahun, G King, J Keiser, D Schulthess, J AF Collette, R. Douglas, J. Patterson, L. Bahun, G. King, J. Keiser, D., Jr. Schulthess, J. TI Benefits of utilizing CellProfiler as a characterization tool for U-10Mo nuclear fuel SO MATERIALS CHARACTERIZATION LA English DT Article DE Nuclear fuel; Quality metric; Automated image analysis; Fission bubbles; Interaction layer; Segmentation ID IMAGE-ANALYSIS; PLATE AB Automated image processing techniques have the potential to aid in the performance evaluation of nuclear fuels by eliminating judgment calls that may vary from person-to-person or sample-to-sample. Analysis of in-core fuel performance is required for design and safety evaluations related to almost every aspect of the nuclear fuel cycle. This study presents a methodology for assessing the quality of uranium-molybdenum fuel images and describes image analysis routines designed for the characterization of several important microstructural properties. The analyses are performed in CellProfiler, an open-source program designed to enable biologists without training in computer vision or programming to automatically extract cellular measurements from large image sets. The quality metric scores an image based on three parameters: the illumination gradient across the image, the overall focus of the image, and the fraction of the image that contains scratches. The metric presents the user with the ability to 'pass' or 'fail' an image based on a reproducible quality score. Passable images may then be characterized through a separate CellProfiler pipeline, which enlists a variety of common image analysis techniques. The results demonstrate the ability to reliably pass or fail images based on the illumination, focus, and scratch fraction of the image, followed by automatic extraction of morphological data with respect to fission gas voids, interaction layers, and grain boundaries. (C) 2015 Elsevier Inc. All rights reserved. C1 [Collette, R.; Douglas, J.; Patterson, L.; Bahun, G.; King, J.] Colorado Sch Mines, Nucl Sci & Engn Program, Golden, CO 80401 USA. [Keiser, D., Jr.; Schulthess, J.] Idaho Natl Lab, Nucl Fuels & Mat Div, Idaho Falls, ID 83415 USA. RP King, J (reprint author), Colorado Sch Mines, Nucl Sci & Engn Program, 201 Hill Hall,1500 Illinois St, Golden, CO 80401 USA. EM kingjc@mines.edu RI Schulthess, Jason/S-1949-2016 OI Schulthess, Jason/0000-0002-4289-7528 FU Idaho National Laboratory under Battelle Energy Alliance, LLC [00140302]; Colorado School of Mines Nuclear Science and Engineering Program FX This work was funded by the Idaho National Laboratory under Battelle Energy Alliance, LLC contract number 00140302. Additional student support was provided by the Colorado School of Mines Nuclear Science and Engineering Program. NR 21 TC 1 Z9 1 U1 0 U2 3 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1044-5803 EI 1873-4189 J9 MATER CHARACT JI Mater. Charact. PD JUL PY 2015 VL 105 BP 71 EP 81 DI 10.1016/j.matchar.2015.03.034 PG 11 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Materials Science, Characterization & Testing SC Materials Science; Metallurgy & Metallurgical Engineering GA CL5DI UT WOS:000356979600009 ER PT J AU Moreira, AS Horgan, FG Murray, TE Kakouli-Duarte, T AF Moreira, Antonio S. Horgan, Finbarr G. Murray, Tomas E. Kakouli-Duarte, Thomais TI Population genetic structure of Bombus terrestris in Europe: Isolation and genetic differentiation of Irish and British populations SO MOLECULAR ECOLOGY LA English DT Article DE Bombus terrestris; Britain; commercialization; Ireland; microsatellite; population structure ID BUMBLE BEES; HYMENOPTERA APIDAE; BAYESIAN-INFERENCE; CONSERVATION; COMMERCIALIZATION; POLLINATION; BONFERRONI; DIVERSITY; MIGRATION; PROGRAM AB The genetic structure of the earth bumblebee (Bombus terrestris L.) was examined across 22 wild populations and two commercially reared populations using eight microsatellite loci and two mitochondrial genes. Our study included wild bumblebee samples from six populations in Ireland, one from the Isle of Man, four from Britain and 11 from mainland Europe. A further sample was acquired from New Zealand. Observed levels of genetic variability and heterozygosity were low in Ireland and the Isle of Man, but relatively high in continental Europe and among commercial populations. Estimates of F-st revealed significant genetic differentiation among populations. Bayesian cluster analysis indicated that Irish populations were highly differentiated from British and continental populations, the latter two showing higher levels of admixture. The data suggest that the Irish Sea and prevailing south westerly winds act as a considerable geographical barrier to gene flow between populations in Ireland and Britain; however, some immigration from the Isle of Man to Ireland was detected. The results are discussed in the context of the recent commercialization of bumblebees for the European horticultural industry. C1 [Moreira, Antonio S.; Kakouli-Duarte, Thomais] Inst Technol Carlow, Carlow, Carlow, Ireland. [Moreira, Antonio S.; Horgan, Finbarr G.; Murray, Tomas E.] TEAGASC, Agr & Food Dev Author, Oak Pk Res Ctr, Carlow, Carlow, Ireland. RP Moreira, AS (reprint author), Dundalk Inst Technol, Dublin Rd, Dundalk, Louth, Ireland. EM sergio.moreira@dkit.ie FU Irish Department of Agriculture, Food and the Marine as part of a Research Stimulus Grant [RS 06 348] FX Funding for this research was provided by the Irish Department of Agriculture, Food and the Marine as part of a Research Stimulus Grant (RS 06 348). Biological material was collected in accordance with the laws of the countries of origin. We are grateful to Helena Meally for her help with the ABI optimization, Eamon Kehoe for helping with bumblebee sampling and to the anonymous reviewers for helpful comments that improved this manuscript. NR 54 TC 3 Z9 3 U1 8 U2 42 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0962-1083 EI 1365-294X J9 MOL ECOL JI Mol. Ecol. PD JUL PY 2015 VL 24 IS 13 BP 3257 EP 3268 DI 10.1111/mec.13235 PG 12 WC Biochemistry & Molecular Biology; Ecology; Evolutionary Biology SC Biochemistry & Molecular Biology; Environmental Sciences & Ecology; Evolutionary Biology GA CL5AZ UT WOS:000356973100006 PM 25958977 ER PT J AU McDowell, NG Allen, CD AF McDowell, Nathan G. Allen, Craig D. TI Darcy's law predicts widespread forest mortality under climate warming SO NATURE CLIMATE CHANGE LA English DT Article ID TREE MORTALITY; UNITED-STATES; DROUGHT; VEGETATION; HEAT AB Drought and heat-induced tree mortality is accelerating in many forest biomes as a consequence of a warming climate, resulting in a threat to global forests unlike any in recorded history(1-12). Forests store the majority of terrestrial carbon, thus their loss may have significant and sustained impacts on the global carbon cycle(11,12). We use a hydraulic corollary to Darcys law, a core principle of vascular plant physiology(13), to predict characteristics of plants that will survive and die during drought under warmer future climates. Plants that are tall with isohydric stomatal regulation, low hydraulic conductance, and high leaf area are most likely to die from future drought stress. Thus, tall trees of old-growth forests are at the greatest risk of loss, which has ominous implications for terrestrial carbon storage. This application of Darcys law indicates todays forests generally should be replaced by shorter and more xeric plants, owing to future warmer droughts and associated wildfires and pest attacks. The Darcys corollary also provides a simple, robust framework for informing forest management interventions needed to promote the survival of current forests. Given the robustness of Darcys law for predictions of vascular plant function, we conclude with high certainty that todays forests are going to be subject to continued increases in mortality rates that will result in substantial reorganization of their structure and carbon storage. C1 [McDowell, Nathan G.] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. [Allen, Craig D.] US Geol Survey, Ft Collins Sci Ctr, Jemez Mt Field Stn, Los Alamos, NM 87544 USA. RP McDowell, NG (reprint author), Los Alamos Natl Lab, Div Earth & Environm Sci, MS J495, Los Alamos, NM 87545 USA. EM mcdowell@lanl.gov FU European Union grant EUFORINNO; US Department of Energy's Office of Science; Ecosystems and Climate-Land Use programs of the US Geological Survey FX The writing of this manuscript was supported by a European Union grant EUFORINNO, the US Department of Energy's Office of Science, and the Ecosystems and Climate-Land Use programs of the US Geological Survey. NR 29 TC 59 Z9 59 U1 19 U2 135 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1758-678X EI 1758-6798 J9 NAT CLIM CHANGE JI Nat. Clim. Chang. PD JUL PY 2015 VL 5 IS 7 BP 669 EP 672 DI 10.1038/NCLIMATE2641 PG 4 WC Environmental Sciences; Environmental Studies; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA CL3AV UT WOS:000356821900020 ER PT J AU Mander, BA Marks, SM Vogel, JW Rao, V Lu, B Saletin, JM Ancoli-Israel, S Jagust, WJ Walker, MP AF Mander, Bryce A. Marks, Shawn M. Vogel, Jacob W. Rao, Vikram Lu, Brandon Saletin, Jared M. Ancoli-Israel, Sonia Jagust, William J. Walker, Matthew P. TI beta-amyloid disrupts human NREM slow waves and related hippocampus-dependent memory consolidation SO NATURE NEUROSCIENCE LA English DT Article ID MILD COGNITIVE IMPAIRMENT; LESS-THAN-1 HZ OSCILLATION; ALZHEIMERS-DISEASE; OLDER-ADULTS; SLEEP OSCILLATIONS; ELDERLY SUBJECTS; MODEL SELECTION; YOUNG-ADULT; IN-VIVO; BRAIN AB Independent evidence associates beta-amyloid pathology with both non-rapid eye movement (NREM) sleep disruption and memory impairment in older adults. However, whether the influence of beta-amyloid pathology on hippocampus-dependent memory is, in part, driven by impairments of NREM slow wave activity (SWA) and associated overnight memory consolidation is unknown. Here we show that beta-amyloid burden in medial prefrontal cortex (mPFC) correlates significantly with the severity of impairment in NREM SWA generation. Moreover, reduced NREM SWA generation was further associated with impaired overnight memory consolidation and impoverished hippocampal-neocortical memory transformation. Furthermore, structural equation models revealed that the association between mPFC beta-amyloid pathology and impaired hippocampus-dependent memory consolidation was not direct, but instead statistically depended on the intermediary factor of diminished NREM SWA. By linking beta-amyloid pathology with impaired NREM SWA, these data implicate sleep disruption as a mechanistic pathway through which beta-amyloid pathology may contribute to hippocampus-dependent cognitive decline in the elderly. C1 [Mander, Bryce A.; Rao, Vikram; Saletin, Jared M.; Walker, Matthew P.] Univ Calif Berkeley, Sleep & Neuroimaging Lab, Berkeley, CA 94720 USA. [Marks, Shawn M.; Vogel, Jacob W.; Jagust, William J.; Walker, Matthew P.] Univ Calif Berkeley, Helen Wills Neurosci Inst, Berkeley, CA 94720 USA. [Lu, Brandon] Calif Pacific Med Ctr, Div Pulm & Crit Care Med, San Francisco, CA USA. [Ancoli-Israel, Sonia] Univ Calif San Diego, Dept Psychiat, La Jolla, CA 92093 USA. [Jagust, William J.] Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA USA. RP Mander, BA (reprint author), Univ Calif Berkeley, Sleep & Neuroimaging Lab, Berkeley, CA 94720 USA. EM bamander@berkeley.edu; mpwalker@berkeley.edu RI Rao, Vikram/J-6931-2016 FU US National Institutes of Health [R01-AG031164, R01-AG034570, F32-AG039170] FX We thank D. Baquirin, M. Belshe, M. Bhatter, M. Binod, S. Bowditch, C. Dang, J. Gupta, A. Hayenga, D. Holzman, A. Horn, E. Hur, J. Jeng, S. Kumar, J. Lindquist, C. Markeley, E. Mormino, M. Nicholas, S. Rashidi, M. Shonman, L. Zhang and A. Zhu for their assistance; A. Mander for his aid in task design; and M. Rubens and A. Gazzaley for use of their aging template brain. This work was supported by awards R01-AG031164 (M.P.W.), R01-AG034570 (W.J.J.) and F32-AG039170 (B.A.M.) from the US National Institutes of Health. NR 71 TC 45 Z9 45 U1 6 U2 27 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1097-6256 EI 1546-1726 J9 NAT NEUROSCI JI Nat. Neurosci. PD JUL PY 2015 VL 18 IS 7 BP 1051 EP + DI 10.1038/nn.4035 PG 10 WC Neurosciences SC Neurosciences & Neurology GA CL3QU UT WOS:000356866200021 PM 26030850 ER PT J AU Tsui, L Jiang, HC Lu, YM Lee, DH AF Tsui, Lokman Jiang, Hong-Chen Lu, Yuan-Ming Lee, Dung-Hai TI Quantum phase transitions between a class of symmetry protected topological states SO NUCLEAR PHYSICS B LA English DT Article ID SPIN CHAINS AB The subject of this paper is the phase transition between symmetry protected topological states (SPTs). We consider spatial dimension d and symmetry group G so that the cohomology group, Hd+1 (G, U(1)), contains at least one Z(2n) or Z factor. We show that the phase transition between the trivial SPT and the root states that generate the Z(2n) or Z groups can be induced on the boundary of a (d + 1)-dimensional G x Z(2)(T)-symmetric SPT by a Z(2)(T) symmetry breaking field. Moreover we show these boundary phase transitions can be "transplanted" to d dimensions and realized in lattice models as a function of a tuning parameter. The price one pays is for the critical value of the tuning parameter there is an extra non-local (duality-like) symmetry. In the case where the phase transition is continuous, our theory predicts the presence of unusual (sometimes fractionalized) excitations corresponding to delocalized boundary excitations of the non-trivial SPT on one side of the transition. This theory also predicts other phase transition scenarios including first order transition and transition via an intermediate symmetry breaking phase. Published by Elsevier B.V. C1 [Tsui, Lokman; Lee, Dung-Hai] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Lee, Dung-Hai] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Jiang, Hong-Chen] SLAC Natl Accelerator Lab, Stanford Inst Mat & Energy Sci, Menlo Pk, CA 94025 USA. [Lu, Yuan-Ming] Ohio State Univ, Dept Phys, Columbus, OH 43212 USA. RP Lee, DH (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM lokman@berkeley.edu; hcjiang@slac.stanford.edu; lu.1435@osu.edu; dunghai@berkeley.edu RI Jiang, Hongchen/F-8843-2011; Lu, Yuan-Ming/D-7554-2017 OI Jiang, Hongchen/0000-0003-2842-6591; Lu, Yuan-Ming/0000-0001-6275-739X FU U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division [DE-AC02-05CH11231]; Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division [DE-AC02-76SF00515]; Department of Physics at UC Berkeley FX D.H.L. and Y.M.L. were supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division, grant DE-AC02-05CH11231. H.C.J. was supported by the Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division, under Contract DE-AC02-76SF00515. L.M.T. thanks Hong Yao and Ryan Thorngren for insightful discussions and is supported by the Department of Physics at UC Berkeley. NR 29 TC 7 Z9 7 U1 0 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0550-3213 EI 1873-1562 J9 NUCL PHYS B JI Nucl. Phys. B PD JUL PY 2015 VL 896 BP 330 EP 359 DI 10.1016/j.nuclphysb.2015.04.020 PG 30 WC Physics, Particles & Fields SC Physics GA CL0LP UT WOS:000356634500012 ER PT J AU He, H Chung, H Roth, E Luebke, D Hopkinson, D Nulwala, H Matyjaszewski, K AF He, Hongkun Chung, Heesung Roth, Elliot Luebke, David Hopkinson, David Nulwala, Hunaid Matyjaszewski, Krzysztof TI Low glass transition temperature poly(ionic liquid) prepared from a new quaternary ammonium cationic monomer SO POLYMERS FOR ADVANCED TECHNOLOGIES LA English DT Article DE poly(ionic liquid)s; ATRP; glass transition temperature ID TRANSFER RADICAL POLYMERIZATION; IONIC LIQUIDS; CATALYST CONCENTRATION; ELECTRON-TRANSFER; BLOCK-COPOLYMERS; CU CATALYST; ARGET ATRP; SOLVENT AB Well-defined poly(ionic liquid)s (PILs) were synthesized by normal and activators regenerated by electron transfer atom transfer radical polymerization (ATRP) using a new ionic liquid monomer, N-(4-vinylbenzyl)-tris[2-(2-methoxyethoxy)ethyl]ammonium bis(trifluoromethylsulfonyl)imide (VBTA(+)Tf(2)N(-)). ATRP was also used for the preparation of PIL block copolymers using di-functional PIL macroinitiators. Differential scanning calorimetry measurement showed the polyVBTA(+)Tf(2)N(-) had a rather low glass transition temperature of -43 degrees C. Copyright (c) 2015 John Wiley & Sons, Ltd. C1 [He, Hongkun; Chung, Heesung; Nulwala, Hunaid; Matyjaszewski, Krzysztof] Carnegie Mellon Univ, Dept Chem, Ctr Macromol Engn, Pittsburgh, PA 15213 USA. [He, Hongkun; Roth, Elliot; Luebke, David; Hopkinson, David; Nulwala, Hunaid] Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. RP Nulwala, H (reprint author), Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. EM hnulwala@andrew.cmu.edu; km3b@andrew.cmu.edu RI Matyjaszewski, Krzysztof/A-2508-2008; OI Matyjaszewski, Krzysztof/0000-0003-1960-3402; Nulwala, Hunaid/0000-0001-7481-3723 FU NSF [CHE-1400052, DMR-0969301]; DoE [ER-45998]; U.S. Department of Energy's National Energy Technology Laboratory [DE-FE0004000] FX Financial support was provided by NSF support (CHE-1400052 and DMR-0969301) and DoE support (ER-45998). This technical effort was also performed in support of U.S. Department of Energy's National Energy Technology Laboratory's on-going research on CO2 capture under the contract DE-FE0004000. NR 35 TC 1 Z9 1 U1 7 U2 32 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1042-7147 EI 1099-1581 J9 POLYM ADVAN TECHNOL JI Polym. Adv. Technol. PD JUL PY 2015 VL 26 IS 7 SI SI BP 823 EP 828 DI 10.1002/pat.3529 PG 6 WC Polymer Science SC Polymer Science GA CL3UN UT WOS:000356876300012 ER PT J AU Liu, X Bhatia, SR AF Liu, Xiao Bhatia, Surita R. TI Laponite (R) and Laponite (R)-PEO hydrogels with enhanced elasticity in phosphate-buffered saline SO POLYMERS FOR ADVANCED TECHNOLOGIES LA English DT Article DE clay; biomaterials; poly(ethylene gycol); rheology; nanocomposites ID MESENCHYMAL STEM-CELLS; NANOCOMPOSITE HYDROGELS; GLASS-TRANSITION; COLLOIDAL DISKS; DISPERSIONS; POLYMER; CLAY; RHEOLOGY; GELATION; DIFFERENTIATION AB Hydrogels of the synthetic clay Laponite (R) and Laponite (R)-poly (ethylene oxide) (PEO) have long been studied as model systems to understand fundamental aspects of colloidal disks and colloid-polymer systems. More recently, these systems have been explored for a variety of biomedical applications. However, there is limited information in the literature on the fundamental properties of Laponite and Laponite-polymer gels at pH<9. Here, we report the rheological behavior of Laponite and Laponite-PEO systems at biologically relevant conditions (e.g. physiological pH and ionic strength) and examine the effect of phosphate-buffered saline on the properties of the gel. Our results show that the elastic modulus of both Laponite and Laponite-PEO gels increases dramatically, in some cases by one order of magnitude or more, after immersing gels in phosphate-buffered saline. This may be due to an enhanced edge-face interaction between particles in buffered solutions, which would promote a long-lasting network structure of clay particles. These results are relevant to the design of clay-polymer gels and nanocomposites hydrogels for biomaterials applications. Copyright (c) 2015 John Wiley & Sons, Ltd. C1 [Liu, Xiao; Bhatia, Surita R.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Bhatia, Surita R.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11793 USA. RP Bhatia, SR (reprint author), Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11793 USA. EM Surita.bhatia@stonybrook.edu RI Bhatia, Surita/B-4536-2008 FU NSF [CBET-1335787]; US Department of Energy, Office of Basic Energy Sciences [DE-SC0012704] FX The authors gratefully acknowledge financial support from the NSF award CBET-1335787. The research was carried out in part at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the US Department of Energy, Office of Basic Energy Sciences, under contract no. DE-SC0012704. NR 35 TC 2 Z9 2 U1 6 U2 28 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1042-7147 EI 1099-1581 J9 POLYM ADVAN TECHNOL JI Polym. Adv. Technol. PD JUL PY 2015 VL 26 IS 7 SI SI BP 874 EP 879 DI 10.1002/pat.3514 PG 6 WC Polymer Science SC Polymer Science GA CL3UN UT WOS:000356876300018 ER PT J AU Talagani, MR DorMohammadi, S Dutton, R Godines, C Baid, H Abdi, F Kunc, V Compton, B Simunovic, S Duty, C Love, L Post, B Blue, C AF Talagani, M. R. DorMohammadi, S. Dutton, R. Godines, C. Baid, H. Abdi, F. Kunc, V. Compton, B. Simunovic, S. Duty, C. Love, L. Post, B. Blue, C. TI Numerical Simulation of Big Area Additive Manufacturing (3D Printing) of a Full Size Car SO SAMPE JOURNAL LA English DT Article AB Distortion and buildup of residual stresses are common design problems in structures manufactured using additive manufacturing techniques, popularly known as 3D printing. These problems lead to poor product quality, which often is improved by trial and error, where the sensitivity of different manufacturing configurations to product quality are experimentally determined. With the introduction of Big Area Additive Manufacturing (BAAM), where significant amount of material is deposited per unit time, trial and error philosophy reduces the economical efficiency of the process. In this work, a numerical simulation methodology based on Finite Element Method (FEM), multi-scale damage mechanics and fracture mechanics is introduced to simulate the BAAM process for determining product quality in terms of distortions, material damage and interface fracture due to manufacturing. In addition, this tool can be used to obtain the sensitivities of the manufacturing configurations with respect to product quality in an economically efficient manner compared to the trial and error philosophy. Computational tools providing a fully coupled thermo-mechanical solution of polymer additive manufacturing with chopped fiber reinforced plastics are presented. C1 [Talagani, M. R.; DorMohammadi, S.; Dutton, R.; Godines, C.; Baid, H.; Abdi, F.] AlphaStar Corp, Long Beach, CA 90804 USA. [Kunc, V.; Compton, B.; Simunovic, S.; Duty, C.; Love, L.; Post, B.; Blue, C.] Oak Ridge Natl Lab, Oak Ridge, TN USA. RP Abdi, F (reprint author), AlphaStar Corp, Long Beach, CA 90804 USA. EM fabdi@alphastarcorp.com RI Kunc, Vlastimil/E-8270-2017 OI Kunc, Vlastimil/0000-0003-4405-7917 FU U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office [DE-AC05-00OR22725]; UT-Battelle, LLC FX Research sponsored by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office, under contract DE-AC05-00OR22725 with UT-Battelle, LLC. NR 1 TC 3 Z9 3 U1 8 U2 56 PU SAMPE PUBLISHERS PI COVINA PA 1161 PARKVIEW DRIVE, COVINA, CA 91722 USA SN 0091-1062 J9 SAMPE J JI Sampe J. PD JUL-AUG PY 2015 VL 51 IS 4 BP 27 EP 36 PG 10 WC Engineering, Multidisciplinary; Materials Science, Multidisciplinary SC Engineering; Materials Science GA CL6EL UT WOS:000357060300004 ER PT J AU Edwards, MJ White, GF Norman, M Tome-Fernandez, A Ainsworth, E Shi, L Fredrickson, JK Zachara, JM Butt, JN Richardson, DJ Clarke, TA AF Edwards, Marcus J. White, Gaye F. Norman, Michael Tome-Fernandez, Alice Ainsworth, Emma Shi, Liang Fredrickson, Jim K. Zachara, John M. Butt, Julea N. Richardson, David J. Clarke, Thomas A. TI Redox Linked Flavin Sites in Extracellular Decaheme Proteins Involved in Microbe-Mineral Electron Transfer SO SCIENTIFIC REPORTS LA English DT Article ID SHEWANELLA-ONEIDENSIS MR-1; MEMBRANE CYTOCHROMES MTRC; C-TYPE CYTOCHROMES; OUTER-MEMBRANE; CRYSTAL-STRUCTURE; DEINOCOCCUS-RADIODURANS; OXIDATIVE STRESS; OMCA; TRANSPORT; RESPIRATION AB Extracellular microbe-mineral electron transfer is a major driving force for the oxidation of organic carbon in many subsurface environments. Extracellular multi-heme cytochromes of the Shewenella genus play a major role in this process but the mechanism of electron exchange at the interface between cytochrome and acceptor is widely debated. The 1.8 angstrom x-ray crystal structure of the decaheme MtrC revealed a highly conserved CX8C disulfide that, when substituted for AX(8)A, severely compromised the ability of S. oneidensis to grow under aerobic conditions. Reductive cleavage of the disulfide in the presence of flavin mononucleotide (FMN) resulted in the reversible formation of a stable flavocytochrome. Similar results were also observed with other decaheme cytochromes, OmcA, MtrF and UndA. The data suggest that these decaheme cytochromes can transition between highly reactive flavocytochromes or less reactive cytochromes, and that this transition is controlled by a redox active disulfide that responds to the presence of oxygen. C1 [Edwards, Marcus J.; White, Gaye F.; Norman, Michael; Tome-Fernandez, Alice; Ainsworth, Emma; Butt, Julea N.; Richardson, David J.; Clarke, Thomas A.] Univ E Anglia, Sch Biol Sci, Ctr Mol & Struct Biochem, Norwich NR4 7TJ, Norfolk, England. [Edwards, Marcus J.; White, Gaye F.; Norman, Michael; Tome-Fernandez, Alice; Ainsworth, Emma; Butt, Julea N.; Richardson, David J.; Clarke, Thomas A.] Univ E Anglia, Sch Chem, Norwich NR4 7TJ, Norfolk, England. [Shi, Liang; Fredrickson, Jim K.; Zachara, John M.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Richardson, DJ (reprint author), Univ E Anglia, Sch Biol Sci, Ctr Mol & Struct Biochem, Norwich NR4 7TJ, Norfolk, England. EM d.richardson@uea.ac.uk; tom.clarke@uea.ac.uk RI clarke, tom/D-1837-2009; Butt, Julea/E-2133-2011 OI clarke, tom/0000-0002-6234-1914; Butt, Julea/0000-0002-9624-5226 FU Biotechnology and Biological Sciences Research Council [BB/H007288/1, BB/K00929X/1, BB/K009885/1]; U.S. Department of Energy (DOE), Office of Biological and Environmental Research (BER) through the Subsurface Biogeochemical Research (SBR) program; DOE by Battelle [E-AC05-76RLO1830] FX This research was supported by the Biotechnology and Biological Sciences Research Council (BB/H007288/1, BB/K00929X/1 and BB/K009885/1) and the U.S. Department of Energy (DOE), Office of Biological and Environmental Research (BER) through the Subsurface Biogeochemical Research (SBR) program, and is a contribution of Pacific Northwest National Laboratory (PNNL) SBR SFA. PNNL is operated for DOE by Battelle under contract DE-AC05-76RLO1830. We are grateful to Verity Lyall for technical support, Matt Marshall for providing MtrC antibodies and to Dr. Nicholas Watmough for useful discussion. NR 39 TC 17 Z9 17 U1 13 U2 63 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD JUL 1 PY 2015 VL 5 AR 11677 DI 10.1038/srep11677 PG 11 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CL9CK UT WOS:000357272100001 PM 26126857 ER PT J AU Kao, WC Goryll, M Marinella, M Kaplar, RJ Jiao, C Dhar, S Cooper, JA Schroder, DK AF Kao, W. C. Goryll, M. Marinella, M. Kaplar, R. J. Jiao, C. Dhar, S. Cooper, J. A. Schroder, D. K. TI Characterization of fast interface states in nitrogen- and phosphorus-treated 4H-SiC MOS capacitors SO SEMICONDUCTOR SCIENCE AND TECHNOLOGY LA English DT Article DE SiC; conductance measurement; interface state ID MOSFETS AB We investigate 'fast interface states' at semiconductor-dielectric interfaces in SiC MOS capacitors that underwent three different interface passivation processes: two nitrogen-based annealing techniques (NO and nitrogen-plasma) and phosphosilicate glass (PSG). 'Fast interface' states in this case refer to interface states with response times < 1 mu s typically used in standard admittance based MOS characterization methods. In order to appropriately characterize the density of interface states (D-it) taking into account these fast states, conductance and high-low frequency C-V methods were used from room temperature down to 100 K. Measuring at lower temperature shifts the response of the fast interface states into the accessible measurement frequency range. The key finding of this work is that while fast interface states were detected in the nitrided samples, such states were not observed in PSG-passivated samples. On the other hand, conventional interface states with time constants similar to those found in silicon samples were detected at room temperature in the PSG samples. The capture cross-section of fast interface states is larger than that of conventional interface states and demonstrates a different energy dependence. These results strongly indicate that the significantly lower density of fast states at the PSG-SiC interface is one of the main reasons for higher channel mobility in PSG MOSFETs. C1 [Kao, W. C.; Goryll, M.; Schroder, D. K.] Arizona State Univ, Sch Elect Comp & Energy Engn, Tempe, AZ 85287 USA. [Marinella, M.; Kaplar, R. J.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Jiao, C.; Dhar, S.] Auburn Univ, Dept Phys, Allison Lab, Auburn, AL 36849 USA. [Cooper, J. A.] Purdue Univ, Sch Elect & Comp Engn, W Lafayette, IN 47907 USA. [Cooper, J. A.] Purdue Univ, Birck Nanotechnol Ctr, W Lafayette, IN 47907 USA. RP Kao, WC (reprint author), Arizona State Univ, Sch Elect Comp & Energy Engn, Tempe, AZ 85287 USA. EM wkao5@asu.edu FU U.S. Army Research Laboratory [W911NF-07-2-0046]; US National Science Foundation PFI:BIC Program; II-VI Foundation Block-Gift Program; DOE Office of Electricity's Energy Storage Program FX Auburn University acknowledges support from the U.S. Army Research Laboratory (W911NF-07-2-0046, Program Manager: Dr Aivars Lelis), the US National Science Foundation PFI:BIC Program (Program Manager: Dr Sara Nerlove) and the II-VI Foundation Block-Gift Program. The work at Sandia National Laboratories was supported by the DOE Office of Electricity's Energy Storage Program managed by Dr Imre Gyuk. NR 17 TC 1 Z9 1 U1 2 U2 16 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0268-1242 EI 1361-6641 J9 SEMICOND SCI TECH JI Semicond. Sci. Technol. PD JUL PY 2015 VL 30 IS 7 AR 075011 DI 10.1088/0268-1242/30/7/075011 PG 6 WC Engineering, Electrical & Electronic; Materials Science, Multidisciplinary; Physics, Condensed Matter SC Engineering; Materials Science; Physics GA CL3PG UT WOS:000356861800015 ER PT J AU Matsushima, Y Phillips, EM Bergman, RG Ellman, JA AF Matsushima, Yuji Phillips, Eric M. Bergman, Robert G. Ellman, Jonathan A. TI Rhodium(I)-Catalyzed Cycloisomerization of 1,6-Enynes SO SYNLETT LA English DT Article DE rhodium; homogeneous catalysis; ring closure; isomerization; enones ID C-H ACTIVATION; ALPHA,BETA-UNSATURATED KETOXIMES; ENYNE METATHESIS; ALKYNES; PYRIDINES; BOND; TETRAHYDROPYRIDINES; FUNCTIONALIZATION; CYCLIZATION; CATALYSIS AB A new and unexpected rhodium(I)-catalyzed cycloisomerization of 1,6-enynes is reported. Several different alkyne substitution patterns were evaluated under the reaction conditions, including a deuterated derivative that provides some insight into the reaction mechanism. C1 [Matsushima, Yuji; Phillips, Eric M.; Ellman, Jonathan A.] Yale Univ, Dept Chem, New Haven, CT 06520 USA. [Bergman, Robert G.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Dept Chem, Berkeley, CA 94720 USA. RP Ellman, JA (reprint author), Yale Univ, Dept Chem, 225 Prospect St, New Haven, CT 06520 USA. EM jonathan.ellman@yale.edu RI Ellman, Jonathan/C-7732-2013 FU NIH [GM069559]; Division of Chemical Sciences, Geosciences, and Biosciences of the U.S. Department of Energy at LBNL [DE-AC02-05CH11231]; NRSA postdoctoral fellowship [F32GM090661] FX This work was supported by the NIH under Grant No. GM069559 (J.A.E.). R.G.B. was supported by the Director, Office of Science, Office of Basic Energy Sciences, and by the Division of Chemical Sciences, Geosciences, and Biosciences of the U.S. Department of Energy at LBNL under Contract No. DE-AC02-05CH11231. E.M.P. also acknowledges support from an NRSA postdoctoral fellowship (F32GM090661). NR 31 TC 0 Z9 0 U1 0 U2 13 PU GEORG THIEME VERLAG KG PI STUTTGART PA RUDIGERSTR 14, D-70469 STUTTGART, GERMANY SN 0936-5214 EI 1437-2096 J9 SYNLETT JI Synlett PD JUL PY 2015 VL 26 IS 11 BP 1533 EP 1536 DI 10.1055/s-0034-1380359 PG 4 WC Chemistry, Organic SC Chemistry GA CL3OJ UT WOS:000356859200021 PM 26609195 ER PT J AU Sundararaghavan, V Kumar, A Sun, S AF Sundararaghavan, V. Kumar, A. Sun, S. TI Crystal plasticity simulations using nearest neighbor orientation correlation function SO ACTA MATERIALIA LA English DT Article DE Plastic deformation; Texture; Finite element analysis; Simulation; Theory ID TEXTURE EVOLUTION; CRYSTALLOGRAPHIC TEXTURE; FINITE-ELEMENTS; POLYCRYSTALS; DEFORMATION; METALS; MICROSTRUCTURE; SPACE; REPRESENTATION; BEHAVIOR AB A probabilistic scheme is presented for simulating evolution of polycrystalline microstructures during deformation. Microstructure images are described using a compact descriptor called the nearest-neighbor conditional orientation correlation function, defined as the probability density of occurrence of a crystal orientation at one pixel distance from a known orientation. The neighborhood information obtained from this function is used to correct a Taylor-based formulation of crystal plasticity. A finite differencing scheme is developed to capture equilibrium of each orientation in an average sense. The predictions of textures and stresses using our approach are compared against crystal plasticity finite element model of a planar polycrystalline microstructure. We find that the new descriptor is able to capture texture components that are otherwise missed by the Taylor model and provides consistent improvements in the prediction of reorientation and stresses. The simulation speed is significantly faster than crystal plasticity finite element method and is more comparable to that of Taylor models. (C) 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Sundararaghavan, V.] Univ Michigan, Aerosp Engn, Ann Arbor, MI 48109 USA. [Kumar, A.] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Sun, S.] Exmar Offshore, Houston, TX USA. RP Sundararaghavan, V (reprint author), Univ Michigan, Aerosp Engn, Ann Arbor, MI 48109 USA. EM veeras@umich.edu OI Sundararaghavan, Veera/0000-0002-1213-7958 FU Office of Naval Research (ONR) [N00014-12-1-0013] FX The work presented here was funded by Office of Naval Research (ONR) Grant N00014-12-1-0013, with Dr. William Mullins as program manager. NR 24 TC 0 Z9 0 U1 0 U2 5 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 EI 1873-2453 J9 ACTA MATER JI Acta Mater. PD JUL PY 2015 VL 93 BP 12 EP 23 DI 10.1016/j.actamat.2015.04.016 PG 12 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA CK4QE UT WOS:000356207500002 ER PT J AU Xu, Y Yadav, SK Aguiar, JA Anderoglu, O Baldwin, JK Wang, YQ Misra, A Luo, HM Uberuaga, BP Li, N AF Xu, Yun Yadav, Satyesh Kumar Aguiar, Jeffery A. Anderoglu, Osman Baldwin, Jon Kevin Wang, Yongqiang Misra, Amit Luo, Hongmei Uberuaga, Blas P. Li, Nan TI Irradiation-induced formation of a spinel phase at the FeCr/MgO interface SO ACTA MATERIALIA LA English DT Article DE Metal/oxide interfaces; Spinel phase; DFT calculations ID METAL-CERAMIC INTERFACES; TRANSMISSION ELECTRON-MICROSCOPY; ION IRRADIATION; MGO INTERFACES; AB-INITIO; ALUMINATE SPINEL; ATOMIC-SCALE; CHEMISTRY; FILMS; AG AB Oxide dispersion strengthened ferritic/martensitic alloys have attracted significant attention for their potential uses in future nuclear reactors and storage vessels, as the metal/oxide interfaces act as stable high-strength sinks for point defects while also dispersing helium. Here, in order to unravel the evolution and interplay of interface structure and chemistry upon irradiation in these types of materials, an atomically sharp FeCr/MgO interface was synthesized at 500 degrees C and separately annealed and irradiated with Ni3+ ions at 500 degrees C. After annealing, a slight enrichment of Cr atoms was observed at the interface, but no other structural changes were found. However, under irradiation, sufficient Cr diffuses across the interface into the MgO to form a Cr-enriched transition layer that contains spinel precipitates. First-principles calculations indicate that it is energetically favorable to incorporate Cr, but not Fe, substitutionally into MgO. Our results indicate that irradiation can be used to form new phases and complexions at interfaces, which may have different radiation tolerance than the pristine structures. Published by Elsevier Ltd. on behalf of Acta Materialia Inc. C1 [Xu, Yun; Yadav, Satyesh Kumar; Aguiar, Jeffery A.; Anderoglu, Osman; Wang, Yongqiang; Uberuaga, Blas P.] Los Alamos Natl Lab, MST 8, Mat Sci & Technol Div, Los Alamos, NM 87545 USA. [Xu, Yun; Luo, Hongmei] New Mexico State Univ, Dept Chem & Mat Engn, Las Cruces, NM 88003 USA. [Baldwin, Jon Kevin; Li, Nan] Los Alamos Natl Lab, MPA CINT, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA. [Misra, Amit] Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA. RP Li, N (reprint author), Los Alamos Natl Lab, MPA CINT, Mat Phys & Applicat Div, POB 1663, Los Alamos, NM 87545 USA. EM nanli@lanl.gov RI Yadav, Satyesh/M-6588-2014; Misra, Amit/H-1087-2012; Li, Nan /F-8459-2010; OI Li, Nan /0000-0002-8248-9027; Aguiar, Jeffery/0000-0001-6101-4762 FU U.S. Department of Energy through the Los Alamos National Laboratory (LANL)/Laboratory Directed Research & Development (LDRD) Program; National Nuclear Security Administration of the U.S. Department of Energy [DE-AC52-06NA25396]; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy; New Mexico Consortium at LANL FX We gratefully acknowledge the support of the U.S. Department of Energy through the Los Alamos National Laboratory (LANL)/Laboratory Directed Research & Development (LDRD) Program for this work. This research used resources provided by the LANL Institutional Computing Program. This work was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science. LANL, an affirmative action/equal opportunity employer, is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. JAA acknowledges access to the ORNL's ShaRE User Facility where part of the TEM work was performed in collaboration with Miaofang Chi and Juan Carlos Idrobo, which are sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. Y. Xu and H. Luo are affiliates supported by the New Mexico Consortium at LANL. NR 57 TC 3 Z9 3 U1 8 U2 31 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 EI 1873-2453 J9 ACTA MATER JI Acta Mater. PD JUL PY 2015 VL 93 BP 87 EP 94 DI 10.1016/j.actamat.2015.03.042 PG 8 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA CK4QE UT WOS:000356207500008 ER PT J AU Chubukov, V Mingardon, F Schackwitz, W Baidoo, EEK Alonso-Gutierrez, J Hu, QJ Lee, TS Keasling, JD Mukhopadhyay, A AF Chubukov, Victor Mingardon, Florence Schackwitz, Wendy Baidoo, Edward E. K. Alonso-Gutierrez, Jorge Hu, Qijun Lee, Taek Soon Keasling, Jay D. Mukhopadhyay, Aindrila TI Acute Limonene Toxicity in Escherichia coli Is Caused by Limonene Hydroperoxide and Alleviated by a Point Mutation in Alkyl Hydroperoxidase AhpC SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID SACCHAROMYCES-CEREVISIAE; ALKYLHYDROPEROXIDE REDUCTASE; MONOTERPENE BIOSYNTHESIS; MEMBRANE; RADICALS; BIOFUELS; BACTERIA; STRESS; FUELS AB Limonene, a major component of citrus peel oil, has a number of applications related to microbiology. The antimicrobial properties of limonene make it a popular disinfectant and food preservative, while its potential as a biofuel component has made it the target of renewable production efforts through microbial metabolic engineering. For both applications, an understanding of microbial sensitivity or tolerance to limonene is crucial, but the mechanism of limonene toxicity remains enigmatic. In this study, we characterized a limonene-tolerant strain of Escherichia coli and found a mutation in ahpC, encoding alkyl hydroperoxidase, which alleviated limonene toxicity. We show that the acute toxicity previously attributed to limonene is largely due to the common oxidation product limonene hydroperoxide, which forms spontaneously in aerobic environments. The mutant AhpC protein with an L-to-Q change at position 177 (AhpC(L177Q)) was able to alleviate this toxicity by reducing the hydroperoxide to a more benign compound. We show that the degree of limonene toxicity is a function of its oxidation level and that nonoxidized limonene has relatively little toxicity to wild-type E. coli cells. Our results have implications for both the renewable production of limonene and the applications of limonene as an antimicrobial. C1 [Chubukov, Victor; Baidoo, Edward E. K.; Alonso-Gutierrez, Jorge; Hu, Qijun; Lee, Taek Soon; Keasling, Jay D.; Mukhopadhyay, Aindrila] Joint BioEnergy Inst, Emeryville, CA 94608 USA. [Chubukov, Victor; Baidoo, Edward E. K.; Alonso-Gutierrez, Jorge; Hu, Qijun; Lee, Taek Soon; Keasling, Jay D.; Mukhopadhyay, Aindrila] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Mingardon, Florence] Total New Energies USA Inc, Emeryville, CA USA. [Schackwitz, Wendy] Joint Genome Inst, Walnut Creek, CA USA. [Hu, Qijun; Keasling, Jay D.] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. [Keasling, Jay D.] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. RP Mukhopadhyay, A (reprint author), Joint BioEnergy Inst, Emeryville, CA 94608 USA. EM amukhopadhyay@lbl.gov FU Office of Science, Office of Biological and Environmental Research, of the U.S. Department of Energy [DE-AC02-05CH11231]; Total New Energies USA, Inc., Emeryville, CA FX This work, conducted by the Joint BioEnergy Institute, was supported by the Office of Science, Office of Biological and Environmental Research, of the U.S. Department of Energy under contract no. DE-AC02-05CH11231. F.M. was supported by Total New Energies USA, Inc., Emeryville, CA, as part of a joint project between the Joint BioEnergy Institute and Total New Energies USA, Inc. NR 40 TC 10 Z9 10 U1 0 U2 23 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 EI 1098-5336 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD JUL PY 2015 VL 81 IS 14 BP 4690 EP 4696 DI 10.1128/AEM.01102-15 PG 7 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA CK8ZE UT WOS:000356528200014 PM 25934627 ER PT J AU Vary, Z Mullins, E McElwain, JC Doohan, FM AF Vary, Zsolt Mullins, Ewen McElwain, Jennifer C. Doohan, Fiona M. TI The severity of wheat diseases increases when plants and pathogens are acclimatized to elevated carbon dioxide SO GLOBAL CHANGE BIOLOGY LA English DT Article DE carbon dioxide; climate change; disease; Fusarium head blight; Septoria tritici blotch; wheat ID FUSARIUM HEAD BLIGHT; SEPTORIA-TRITICI; MYCOSPHAERELLA-GRAMINICOLA; CO2 CONCENTRATION; CHANGING CLIMATE; RESISTANCE; GROWTH; GRAMINEARUM; EXPRESSION; INFECTION AB Wheat diseases present a constant and evolving threat to food security. We have little understanding as to how increased atmospheric carbon dioxide levels will affect wheat diseases and thus the security of grain supply. Atmospheric CO2 exceeded the 400ppmv benchmark in 2013 and is predicted to double or even treble by the end of the century. This study investigated the impact of both pathogen and wheat acclimation to elevated CO2 on the development of Fusarium head blight (FHB) and Septoria tritici blotch (STB) disease of wheat. Here, plants and pathogens were cultivated under either 390 or 780ppmv CO2 for a period (two wheat generations, multiple pathogen subcultures) prior to standard disease trials. Acclimation of pathogens and the wheat cultivar Remus to elevated CO2 increased the severity of both STB and FHB diseases, relative to ambient conditions. The effect of CO2 on disease development was greater for FHB than for STB. The highest FHB disease levels and associated yield losses were recorded for elevated CO2-acclimated pathogen on elevated CO2-acclimated wheat. When similar FHB experiments were conducted using the disease-resistant cultivar CM82036, pathogen acclimation significantly enhanced disease levels and yield loss under elevated CO2 conditions, thereby indicating a reduction in the effectiveness of the defence pathways innate to this wheat cultivar. We conclude that acclimation to elevated CO2 over the coming decades will have a significant influence on the outcome of plant-pathogen interactions and the durability of disease resistance. C1 [Vary, Zsolt; McElwain, Jennifer C.; Doohan, Fiona M.] Univ Coll Dublin, Coll Sci, UCD Earth Inst, Dublin 4, Ireland. [Vary, Zsolt; McElwain, Jennifer C.; Doohan, Fiona M.] Univ Coll Dublin, Coll Sci, Sch Biol & Environm Sci, Dublin 4, Ireland. [Mullins, Ewen] Oakpark Co, TEAGASC, Crops Res Ctr, Carlow, Ireland. RP Doohan, FM (reprint author), Univ Coll Dublin, Coll Sci, UCD Earth Inst, Dublin 4, Ireland. EM fiona.doohan@ucd.ie OI McElwain, Jennifer/0000-0002-1729-6755; Mullins, Ewen/0000-0003-3005-4264 FU Science Foundation Ireland [10/IN.1/B3028]; Earth and Natural Sciences (ENS) Doctoral Studies Programme; Higher Education Authority (HEA) through the Programme for Research at Third Level Education, Cycle 5 [PRTLI-5]; European Regional Development Fund (ERDF) FX This work was funded by Science Foundation Ireland project 10/IN.1/B3028 and the Earth and Natural Sciences (ENS) Doctoral Studies Programme. The ENS programme is funded by the Higher Education Authority (HEA) through the Programme for Research at Third Level Education, Cycle 5 (PRTLI-5) and is co-funded by the European Regional Development Fund (ERDF). The authors thank Bredagh Moran and Brian Fagan for technical assistance. Zsolt Vary performed the experiments, statistical analysis, contributed to experimental design, manuscript writing and editing. Jennifer McElwain and Ewen Mullins contributed to experimental design and manuscript editing. Fiona Doohan developed the concepts and contributed to experimental design, manuscript writing and editing. NR 60 TC 6 Z9 6 U1 5 U2 32 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1354-1013 EI 1365-2486 J9 GLOBAL CHANGE BIOL JI Glob. Change Biol. PD JUL PY 2015 VL 21 IS 7 BP 2661 EP 2669 DI 10.1111/gcb.12899 PG 9 WC Biodiversity Conservation; Ecology; Environmental Sciences SC Biodiversity & Conservation; Environmental Sciences & Ecology GA CK7OS UT WOS:000356422500018 ER PT J AU Treat, CC Natali, SM Ernakovich, J Iversen, CM Lupascu, M McGuire, AD Norby, RJ Chowdhury, TR Richter, A Santruckova, H Schadel, C Schuur, EAG Sloan, VL Turetsky, MR Waldrop, MP AF Treat, Claire C. Natali, Susan M. Ernakovich, Jessica Iversen, Colleen M. Lupascu, Massimo McGuire, Anthony David Norby, Richard J. Chowdhury, Taniya Roy Richter, Andreas Santruckova, Hana Schaedel, Christina Schuur, Edward A. G. Sloan, Victoria L. Turetsky, Merritt R. Waldrop, Mark P. TI A pan-Arctic synthesis of CH4 and CO2 production from anoxic soil incubations SO GLOBAL CHANGE BIOLOGY LA English DT Article DE anaerobic incubation; arctic; boreal; carbon dioxide; climate change; methane; permafrost ID CLIMATE-CHANGE; METHANE PRODUCTION; PERMAFROST THAW; CARBON RELEASE; TEMPERATURE SENSITIVITY; NORTHERN WETLANDS; ORGANIC-MATTER; GAS-PRODUCTION; PEAT SOILS; TUNDRA AB Permafrost thaw can alter the soil environment through changes in soil moisture, frequently resulting in soil saturation, a shift to anaerobic decomposition, and changes in the plant community. These changes, along with thawing of previously frozen organic material, can alter the form and magnitude of greenhouse gas production from permafrost ecosystems. We synthesized existing methane (CH4) and carbon dioxide (CO2) production measurements from anaerobic incubations of boreal and tundra soils from the geographic permafrost region to evaluate large-scale controls of anaerobic CO2 and CH4 production and compare the relative importance of landscape-level factors (e.g., vegetation type and landscape position), soil properties (e.g., pH, depth, and soil type), and soil environmental conditions (e.g., temperature and relative water table position). We found fivefold higher maximum CH4 production per gram soil carbon from organic soils than mineral soils. Maximum CH4 production from soils in the active layer (ground that thaws and refreezes annually) was nearly four times that of permafrost per gram soil carbon, and CH4 production per gram soil carbon was two times greater from sites without permafrost than sites with permafrost. Maximum CH4 and median anaerobic CO2 production decreased with depth, while CO2:CH4 production increased with depth. Maximum CH4 production was highest in soils with herbaceous vegetation and soils that were either consistently or periodically inundated. This synthesis identifies the need to consider biome, landscape position, and vascular/moss vegetation types when modeling CH4 production in permafrost ecosystems and suggests the need for longer-term anaerobic incubations to fully capture CH4 dynamics. Our results demonstrate that as climate warms in arctic and boreal regions, rates of anaerobic CO2 and CH4 production will increase, not only as a result of increased temperature, but also from shifts in vegetation and increased ground saturation that will accompany permafrost thaw. C1 [Treat, Claire C.] Univ New Hampshire, Inst Study Earth Oceans & Space, Earth Syst Res Ctr, Durham, NH 03824 USA. [Natali, Susan M.] Woods Hole Res Ctr, Falmouth, MA 02540 USA. [Ernakovich, Jessica] Colorado State Univ, Nat Resource Ecol Lab, Ft Collins, CO 80523 USA. [Iversen, Colleen M.; Norby, Richard J.; Sloan, Victoria L.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Iversen, Colleen M.; Norby, Richard J.; Sloan, Victoria L.] Oak Ridge Natl Lab, Climate Change Sci Inst, Oak Ridge, TN 37831 USA. [Lupascu, Massimo] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA 92697 USA. [McGuire, Anthony David] Univ Alaska Fairbanks, US Geol Survey, Alaska Cooperat Fish & Wildlife Res Unit, Fairbanks, AK 99775 USA. [Chowdhury, Taniya Roy] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37830 USA. [Richter, Andreas] Univ Vienna, Dept Microbiol & Ecosyst Sci, A-1090 Vienna, Austria. [Richter, Andreas] Austrian Polar Res Inst, A-1090 Vienna, Austria. [Santruckova, Hana] Univ South Bohemia, Dept Ecosyst Biol, Ceske Budejovice 37005, Czech Republic. [Schaedel, Christina; Schuur, Edward A. G.] Univ Florida, Dept Biol, Gainesville, FL 32611 USA. [Turetsky, Merritt R.] Univ Guelph, Dept Integrat Biol, Guelph, ON N1G 1G2, Canada. [Waldrop, Mark P.] US Geol Survey, Menlo Pk, CA 94025 USA. RP Treat, CC (reprint author), Univ Alaska Fairbanks, Water & Environm Res Ctr, Fairbanks, AK 99775 USA. EM ctreat@usgs.gov RI Richter, Andreas/D-8483-2012; Norby, Richard/C-1773-2012; Ernakovich, Jessica/E-4864-2016; OI Richter, Andreas/0000-0003-3282-4808; Norby, Richard/0000-0002-0238-9828; Ernakovich, Jessica/0000-0002-4493-2489; Schadel, Christina/0000-0003-2145-6210; Treat, Claire/0000-0002-1225-8178 FU Permafrost Carbon Vulnerability Research Coordination Network (NSF); U.S. DOE-SCGF; University of New Hampshire Graduate School Dissertation Year Fellowship; NSF OPP [ARC-1203777]; Next-Generation Ecosystem Experiments (NGEE Arctic) project - Office of Biological and Environmental Research in the U.S. DOE Office of Science; European Research Network CryoCARB [FWF - I370-B17]; USGS Global Change RD program; USGS Climate Science Center FX We thank the Permafrost Carbon Vulnerability Research Coordination Network (NSF Grant to EAGS) for helping us to organize this study. CT acknowledges funding from the U.S. DOE-SCGF and the University of New Hampshire Graduate School Dissertation Year Fellowship. Additional funding was provided by NSF OPP (ARC-1203777) to SMN; the Next-Generation Ecosystem Experiments (NGEE Arctic) project, supported by the Office of Biological and Environmental Research in the U.S. DOE Office of Science, to CMI, RJN, TRC, VLS; European Research Network CryoCARB (FWF - I370-B17) to AR; and USGS Global Change R&D program and the USGS Climate Science Center to MW. Craig Connolly and Adam Marquis provided assistance with GIS and data extraction. We thank Steve Frolking, Evan Kane, and four anonymous reviewers for comments that improved the manuscript. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. NR 88 TC 27 Z9 27 U1 26 U2 114 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1354-1013 EI 1365-2486 J9 GLOBAL CHANGE BIOL JI Glob. Change Biol. PD JUL PY 2015 VL 21 IS 7 BP 2787 EP 2803 DI 10.1111/gcb.12875 PG 17 WC Biodiversity Conservation; Ecology; Environmental Sciences SC Biodiversity & Conservation; Environmental Sciences & Ecology GA CK7OS UT WOS:000356422500028 ER PT J AU Jager, HI Baskaran, LM Schweizer, PE Turhollow, AF Brandt, CC Srinivasan, R AF Jager, Henriette I. Baskaran, Latha M. Schweizer, Peter E. Turhollow, Anthony F. Brandt, Craig C. Srinivasan, Raghavan TI Forecasting changes in water quality in rivers associated with growing biofuels in the Arkansas-White-Red river drainage, USA SO GLOBAL CHANGE BIOLOGY BIOENERGY LA English DT Article DE bioenergy; biofuels; cellulosic feedstocks; land-use change; Panicum virgatum; POLYSYS; Soil Water Assessment Tool; sustainability; water quality ID MISSISSIPPI RIVER; UNITED-STATES; FEEDSTOCK PRODUCTION; LAND-USE; ENVIRONMENTAL IMPACTS; STREAM ECOSYSTEMS; CROP PRODUCTION; ALMANAC MODEL; SWITCHGRASS; BASIN AB Excess nutrients from agriculture in the Mississippi River drainage, USA have degraded water quality in freshwaters and contributed to anoxic conditions in downstream estuaries. Consequently, water quality is a significant concern associated with conversion of lands to bioenergy production. This study focused on the Arkansas-White-Red river basin (AWR), one of five major river basins draining to the Mississippi River. The AWR has a strong precipitation gradient from east to west, and advanced cellulosic feedstocks are projected to become economically feasible within normal-to-wet areas of the region. In this study, we used large-scale watershed modeling to identify areas along this precipitation gradient with potential for improving water quality. We compared simulated water quality in rivers draining projected future landscapes with and without cellulosic bioenergy for two future years, 2022 and 2030 with an assumed farmgate price of $50 per dry ton. Changes in simulated water quantity and quality under future bioenergy scenarios varied among subbasins and years. Median water yield, nutrient loadings, and sediment yield decreased by 2030. Median concentrations of nutrients also decreased, but suspended sediment, which is influenced by decreased flow and in-stream processes, increased. Spatially, decreased loadings prevailed in the transitional ecotone between 97 degrees and 100 degrees longitude, where switchgrass, Panicum virgatum L., is projected to compete against alternative crops and land uses at $50 per dry ton. We conclude that this region contains areas that hold promise for sustainable bioenergy production in terms of both economic feasibility and water quality protection. C1 [Jager, Henriette I.; Baskaran, Latha M.; Schweizer, Peter E.; Turhollow, Anthony F.; Brandt, Craig C.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Srinivasan, Raghavan] Texas A&M Univ, College Stn, TX USA. RP Jager, HI (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM jagerhi@ornl.gov RI Baskaran, Latha/D-9754-2016; Srinivasan, R/D-3937-2009; OI Baskaran, Latha/0000-0001-8487-3914; Jager, Henriette/0000-0003-4253-533X FU Department of Energy Bioenergy Technology Programs; U.S. Department of Energy [DE-AC05-00OR22725] FX This research was funded by the Department of Energy Bioenergy Technology Programs. Oak Ridge National Laboratory is managed by UT-Battelle, LLC for the U.S. Department of Energy under Contract No. DE-AC05-00OR22725. We thank Michelle Thornton (ORNL) for providing DAYMET data. In addition, we appreciate the insightful reviews of Dr. Gangsheng Wang and anonymous reviewers. NR 54 TC 3 Z9 3 U1 3 U2 18 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1757-1693 EI 1757-1707 J9 GCB BIOENERGY JI GCB Bioenergy PD JUL PY 2015 VL 7 IS 4 BP 774 EP 784 DI 10.1111/gcbb.12169 PG 11 WC Agronomy; Biotechnology & Applied Microbiology; Energy & Fuels SC Agriculture; Biotechnology & Applied Microbiology; Energy & Fuels GA CK8ME UT WOS:000356491400019 ER PT J AU Dao, TT Kim, J Seo, S Egger, B Lee, J AF Thanh Tuan Dao Kim, Jungwon Seo, Sangmin Egger, Bernhard Lee, Jaejin TI A Performance Model for GPUs with Caches SO IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS LA English DT Article DE GPU; performance modeling; caches; scheduling; OpenCL; NVIDIA; AMD ID ARCHITECTURES AB To exploit the abundant computational power of the world's fastest supercomputers, an even workload distribution to the typically heterogeneous compute devices is necessary. While relatively accurate performance models exist for conventional CPUs, accurate performance estimation models for modern GPUs do not exist. This paper presents two accurate models for modern GPUs: a sampling-based linear model, and a model based on machine-learning (ML) techniques which improves the accuracy of the linear model and is applicable to modern GPUs with and without caches. We first construct the sampling-based linear model to predict the runtime of an arbitrary OpenCL kernel. Based on an analysis of NVIDIA GPUs' scheduling policies we determine the earliest sampling points that allow an accurate estimation. The linear model cannot capture well the significant effects that memory coalescing or caching as implemented in modern GPUs have on performance. We therefore propose a model based on ML techniques that takes several compiler-generated statistics about the kernel as well as the GPU's hardware performance counters as additional inputs to obtain a more accurate runtime performance estimation for modern GPUs. We demonstrate the effectiveness and broad applicability of the model by applying it to three different NVIDIA GPU architectures and one AMD GPU architecture. On an extensive set of OpenCL benchmarks, on average, the proposed model estimates the runtime performance with less than 7 percent error for a second-generation GTX 280 with no on-chip caches and less than 5 percent for the Fermi-based GTX 580 with hardware caches. On the Kepler-based GTX 680, the linear model has an error of less than 10 percent. On an AMD GPU architecture, Radeon HD 6970, the model estimates with 8 percent of error rates. The proposed technique outperforms existing models by a factor of 5 to 6 in terms of accuracy. C1 [Thanh Tuan Dao; Egger, Bernhard; Lee, Jaejin] Seoul Natl Univ, Sch Comp Sci & Engn, Seoul, South Korea. [Kim, Jungwon] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Seo, Sangmin] Argonne Natl Lab, Math & Comp Sci Div, Lemont, IL 60649 USA. RP Dao, TT (reprint author), Seoul Natl Univ, Sch Comp Sci & Engn, Seoul, South Korea. EM thanhtuan@aces.snu.ac.kr; kimj@ornl.gov; sseo@anl.gov; bernhard@snu.ac.kr; jaejin@snu.ac.kr FU National Research Foundation of Korea (NRF) - Korean government (MSIP) [2013R1A3A2003664]; Ministry of Education, Science and Technology [2012R1A1A1042938]; US Department of Energy, Office of Science [DE-AC02-06CH11357] FX This work was supported by the National Research Foundation of Korea (NRF) grants funded by the Korean government (MSIP) (No. 2013R1A3A2003664) and the Ministry of Education, Science and Technology (No. 2012R1A1A1042938). ICT at Seoul National University provided research facilities for this study. This work was supported in part by the US Department of Energy, Office of Science, under Contract DE-AC02-06CH11357. NR 32 TC 0 Z9 0 U1 1 U2 8 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 1045-9219 EI 1558-2183 J9 IEEE T PARALL DISTR JI IEEE Trans. Parallel Distrib. Syst. PD JUL PY 2015 VL 26 IS 7 BP 1800 EP 1813 DI 10.1109/TPDS.2014.2333526 PG 14 WC Computer Science, Theory & Methods; Engineering, Electrical & Electronic SC Computer Science; Engineering GA CK3TM UT WOS:000356138700002 ER PT J AU Zhang, JC Behzad, B Snir, M AF Zhang, Junchao Behzad, Babak Snir, Marc TI Design of a Multithreaded Barnes-Hut Algorithm for Multicore Clusters SO IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS LA English DT Article DE Barnes-Hut; n-body; PGAS; cluster; multicore ID SIMULATIONS; PERFORMANCE; PARALLEL AB We describe in this paper an implementation of the Barnes-Hut algorithm on multicore clusters. Based on a partitioned global address space (PGAS) library, the design integrates intranode multithreading and internode one-sided communication, exemplifying a PGAS + X programming style. Within a node, the computation is decomposed into tasks (subtasks) and multitasking is used to hide network latency. We study the tradeoffs between locality in private caches and locality in shared caches and bring the insights into the design. As a result, our implementation consumes less memory per core, invokes less internode communication, and enjoys better load-balancing strategies. The final code achieves up to 41 percent performance improvement over a non-multithreaded counterpart. Through detailed comparison, we also show its advantages over other well-known Barnes-Hut implementations, both in programming complexity and in performance. C1 [Zhang, Junchao; Snir, Marc] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA. [Behzad, Babak; Snir, Marc] Univ Illinois, Dept Comp Sci, Urbana, IL 61801 USA. RP Zhang, JC (reprint author), Argonne Natl Lab, Div Math & Comp Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM jczhang@anl.gov; bbehza2@illinois.edu; snir@anl.gov FU US Department of Energy (DOE), Office of Science, Advanced Scientific Computing Research [DE-AC02-06CH11357]; US DOE Sandia National Lab Grant [1205852] FX This work was supported by the US Department of Energy (DOE), Office of Science, Advanced Scientific Computing Research, under Contract DE-AC02-06CH11357, and by the US DOE Sandia National Lab Grant 1205852. NR 33 TC 0 Z9 0 U1 2 U2 4 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 1045-9219 EI 1558-2183 J9 IEEE T PARALL DISTR JI IEEE Trans. Parallel Distrib. Syst. PD JUL PY 2015 VL 26 IS 7 BP 1861 EP 1873 DI 10.1109/TPDS.2014.2331243 PG 13 WC Computer Science, Theory & Methods; Engineering, Electrical & Electronic SC Computer Science; Engineering GA CK3TM UT WOS:000356138700007 ER PT J AU Zheng, QPP Wang, JH Liu, AL AF Zheng, Qipeng P. Wang, Jianhui Liu, Andrew L. TI Stochastic Optimization for Unit Commitment-A Review SO IEEE TRANSACTIONS ON POWER SYSTEMS LA English DT Article DE Electricity market operations; mixed integer programming; pricing; risk constraints; robust optimization; stochastic programming; uncertainty; unit commitment ID WIND POWER-GENERATION; ROBUST OPTIMIZATION; SPINNING RESERVE; PROGRAMMING APPROACH; ELECTRICITY MARKET; UNCERTAIN DEMAND; RISK; MODEL; SECURITY; ENERGY AB Optimization models have been widely used in the power industry to aid the decision-making process of scheduling and dispatching electric power generation resources, a process known as unit commitment (UC). Since UC's birth, there have been two major waves of revolution on UC research and real life practice. The first wave has made mixed integer programming stand out from the early solution and modeling approaches for deterministic UC, such as priority list, dynamic programming, and Lagrangian relaxation. With the high penetration of renewable energy, increasing deregulation of the electricity industry, and growing demands on system reliability, the next wave is focused on transitioning from traditional deterministic approaches to stochastic optimization for unit commitment. Since the literature has grown rapidly in the past several years, this paper is to review the works that have contributed to the modeling and computational aspects of stochastic optimization (SO) based UC. Relevant lines of future research are also discussed to help transform research advances into real-world applications. C1 [Zheng, Qipeng P.] Univ Cent Florida, Dept Ind Engn & Management Syst, Orlando, FL 32816 USA. [Wang, Jianhui] Argonne Natl Lab, Decis & Informat Sci Div, Argonne, IL 60439 USA. [Liu, Andrew L.] Purdue Univ, Sch Ind Engn, W Lafayette, IN 47907 USA. RP Zheng, QPP (reprint author), Univ Cent Florida, Dept Ind Engn & Management Syst, Orlando, FL 32816 USA. EM qipeng.zheng@ucf.edu; jianhui.wang@anl.gov; andrewliu@purdue.edu OI Zheng, Qipeng/0000-0002-4597-3426 FU National Science Foundation [CMMI-1355939, CMMI-1234057]; U.S. Department of Energy Office of Electricity Delivery and Energy Reliability FX The work of Q. P. Zheng was supported in part by the National Science Foundation under Grant CMMI-1355939. The work of J. Wang was supported by the U.S. Department of Energy Office of Electricity Delivery and Energy Reliability. The work of A. L. Liu was supported in part by the National Science Foundation under Grant CMMI-1234057. Paper no. TPWRS-00243-2014. NR 111 TC 24 Z9 26 U1 6 U2 29 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0885-8950 EI 1558-0679 J9 IEEE T POWER SYST JI IEEE Trans. Power Syst. PD JUL PY 2015 VL 30 IS 4 BP 1913 EP 1924 DI 10.1109/TPWRS.2014.2355204 PG 12 WC Engineering, Electrical & Electronic SC Engineering GA CK9AK UT WOS:000356531600025 ER PT J AU Chen, C Wang, JH Li, ZS Sun, HB Wang, ZY AF Chen, Chen Wang, Jianhui Li, Zhengshuo Sun, Hongbin Wang, Zhaoyu TI PMU Uncertainty Quantification in Voltage Stability Analysis SO IEEE TRANSACTIONS ON POWER SYSTEMS LA English DT Article DE Phasor measurement unit; recursive least square; uncertainty; voltage stability AB This letter presents an uncertainty quantification method for phasor measurement units (PMUs) in voltage stability assessment. The effect of local phasor measurement uncertainty on the Thevenin equivalent impedance used for voltage stability analysis is quantified analytically. The results can be used to specify the requirements for PMU uncertainty in voltage stability assessment. C1 [Chen, Chen; Wang, Jianhui] Argonne Natl Lab, Decis & Informat Sci Div, Argonne, IL 60049 USA. [Li, Zhengshuo; Sun, Hongbin] Tsinghua Univ, Dept Elect Engn, State Key Lab Power Syst, Beijing 10084, Peoples R China. [Wang, Zhaoyu] Georgia Inst Technol, Sch Elect & Comp Engn, Atlanta, GA 30332 USA. RP Chen, C (reprint author), Argonne Natl Lab, Decis & Informat Sci Div, Argonne, IL 60049 USA. EM morningchen@anl.gov; jianhui.wang@anl.gov; shuozhengli@sina.com; shb@mail.tsinghua.edu.cn; zhaoyuwang@gatech.edu FU U.S. Department of Energy Office of Electricity Delivery and Energy Reliability; 973 Program [2013CB228203]; NSFC of China [51025725, 51321005] FX This work was supported by the U.S. Department of Energy Office of Electricity Delivery and Energy Reliability. The work of Z. Li and H. Sun was supported by the 973 Program (2013CB228203) and NSFC (51025725, 51321005) of China. Paper no. PESL-00062-2014. NR 4 TC 1 Z9 1 U1 2 U2 5 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0885-8950 EI 1558-0679 J9 IEEE T POWER SYST JI IEEE Trans. Power Syst. PD JUL PY 2015 VL 30 IS 4 BP 2196 EP 2197 DI 10.1109/TPWRS.2014.2357217 PG 2 WC Engineering, Electrical & Electronic SC Engineering GA CK9AK UT WOS:000356531600056 ER PT J AU Qiu, F Wang, JH AF Qiu, Feng Wang, Jianhui TI Distributionally Robust Congestion Management With Dynamic Line Ratings SO IEEE TRANSACTIONS ON POWER SYSTEMS LA English DT Article DE Chance constraint; congestion management; distributionally robust; dynamic line rating; robust optimization AB Dynamic line rating based on real time meteorological data has been shown to be useful in transmission line capacity management. Based on a binary rating forecast, we propose a distributionally robust congestion management model that selectively uses dynamic ratings on critical lines and keeps the risk of thermal overloading below a prescribed level. A case study illustrates that the proposed model can effectively alleviate transmission congestion with a low error rate. C1 [Qiu, Feng; Wang, Jianhui] Argonne Natl Lab, Decis & Informat Sci Div, Argonne, IL 60439 USA. RP Qiu, F (reprint author), Argonne Natl Lab, Decis & Informat Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM fqiu@anl.gov; jianhui.wang@anl.gov FU DOE Office of Electricity Delivery and Energy Reliability Advanced Grid Modeling program FX This work was supported by the DOE Office of Electricity Delivery and Energy Reliability Advanced Grid Modeling program. Paper no. PESL-00064-2014. NR 5 TC 3 Z9 3 U1 3 U2 5 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0885-8950 EI 1558-0679 J9 IEEE T POWER SYST JI IEEE Trans. Power Syst. PD JUL PY 2015 VL 30 IS 4 BP 2198 EP 2199 DI 10.1109/TPWRS.2014.2361012 PG 2 WC Engineering, Electrical & Electronic SC Engineering GA CK9AK UT WOS:000356531600057 ER PT J AU Honrubia-Escribano, A Garcia-Sanchez, T Gomez-Lazaro, E Muljadi, E Molina-Garcia, A AF Honrubia-Escribano, Andres Garcia-Sanchez, Tania Gomez-Lazaro, Emilio Muljadi, E. Molina-Garcia, Angel TI Power quality surveys of photovoltaic power plants: characterisation and analysis of grid-code requirements SO IET RENEWABLE POWER GENERATION LA English DT Article; Proceedings Paper CT 10th Photovoltaic Science, Application and Technology Conference CY APR 23-25, 2014 CL Loughborough Univ, Loughborough, ENGLAND HO Loughborough Univ DE photovoltaic power systems; power supply quality; power grids; power generation reliability; power quality surveys; photovoltaic power plants; European grid-code requirements; power system operation reliability; Spanish PV power plants; fixed array installation; power capacity; dual axis-trackers; voltage dips; supply interruptions; tabular representations; graphical representations; time interval; residual voltage; power 1 MW; power 4 MW; power 5 MW ID VOLTAGE DIPS AB In the past few years, grid-code requirements for grid-connected photovoltaic power plants have experienced a continuous evolution in different countries to ensure a reliable power system operation as the level of renewable energy penetration increases to high levels. According to several European grid-codes, PV power plants must be able to ride through specific and severe disturbances without disconnections. Under this new framework, the present study analyses intensive power quality surveys carried out from 2008 to 2011 in three different Spanish PV power plants: a fixed array installation with 4 MW PV power capacity, a PV power plant including dual axis-trackers with 1 MW PV power capacity, and one more fixed array PV power plant with 5 MW PV power capacity. Voltage dips and supply interruptions have been collected, discussing several methods to characterise the monitored disturbances and to compare these events to current Grid-Code requirements. Furthermore, the time interval around the residual voltage is proposed and defined by the authors as an additional parameter to provide a complete characterisation of the severity of the disturbances. Results from both characterisations of collected data and comparison with current requirements are also included in the study. C1 [Honrubia-Escribano, Andres; Garcia-Sanchez, Tania; Gomez-Lazaro, Emilio] Univ Castilla La Mancha, Renewable Energy Res Inst, Albacete 02071, Spain. [Honrubia-Escribano, Andres; Garcia-Sanchez, Tania; Gomez-Lazaro, Emilio] Univ Castilla La Mancha, DIEEAC EDII AB, Albacete 02071, Spain. [Muljadi, E.] Natl Renewable Energy Lab, Golden, CO USA. [Molina-Garcia, Angel] Univ Politecn Cartagena, Dept Elect Engn, Cartagena 30202, Spain. RP Molina-Garcia, A (reprint author), Univ Politecn Cartagena, Dept Elect Engn, Cartagena 30202, Spain. EM angel.molina@upct.es RI Gomez-Lazaro, Emilio/P-8511-2014; OI Gomez-Lazaro, Emilio/0000-0002-3620-3921; Honrubia Escribano, Andres/0000-0002-9756-8641 FU Junta de Comunidades de Castilla-La Mancha [PEII10-0171-1803]; Ministerio de Economia y Competitividad [ENE2012-34603]; European Union FEDER FX This work was supported by the 'Junta de Comunidades de Castilla-La Mancha' - PEII10-0171-1803 - and 'Ministerio de Economia y Competitividad' - ENE2012-34603 -, both projects co-financed with European Union FEDER funds. The authors also would like to express their appreciation to S. Martin-Martinez for his technical support and Rotonda Energy and Gehrlicher Solar Spain for providing the monitored PV power plants. NR 56 TC 6 Z9 6 U1 0 U2 8 PU INST ENGINEERING TECHNOLOGY-IET PI HERTFORD PA MICHAEL FARADAY HOUSE SIX HILLS WAY STEVENAGE, HERTFORD SG1 2AY, ENGLAND SN 1752-1416 EI 1752-1424 J9 IET RENEW POWER GEN JI IET Renew. Power Gener. PD JUL PY 2015 VL 9 IS 5 BP 466 EP 473 DI 10.1049/iet-rpg.2014.0215 PG 8 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Engineering, Electrical & Electronic SC Science & Technology - Other Topics; Energy & Fuels; Engineering GA CK6VH UT WOS:000356366000011 ER PT J AU Baldasseroni, C Bordel, C Antonakos, C Scholl, A Stone, KH Kortright, JB Hellman, F AF Baldasseroni, C. Bordel, C. Antonakos, C. Scholl, A. Stone, K. H. Kortright, J. B. Hellman, F. TI Temperature-driven growth of antiferromagnetic domains in thin-film FeRh SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article DE magnetic films; magnetic phase transitions; XMLD ID MAGNETIC LINEAR DICHROISM; RH ALLOY; MOMENTS; DIFFRACTION; ABSORPTION; TRANSITION; MICROSCOPY; IMAGES AB The evolution of the antiferromagnetic phase across the temperature-driven ferromagnetic (FM) to antiferromagnetic (AF) phase transition in epitaxial FeRh thin films was studied by x-ray magnetic linear and circular dichroism (XMLD and XMCD) and photoemission electron microscopy. By comparing XMLD and XMCD images recorded at the same temperature, the AF phase was identified, its structure directly imaged, and its evolution studied across the transition. A quantitative analysis of the correlation length of the images shows differences between the characteristic length scale of the two phases with the AF phase having a finer feature size. The asymmetry of the transition from FM to AF upon cooling and AF-FM upon heating is evidenced: upon cooling the formation of AF phase is dominated by nucleation at defects, with little subsequent growth, resulting in a small and non-random final AF domain structure, while upon heating, heterogeneous nucleation at different sites followed by significant domain size growth of the FM phase is observed, resulting in a non-reproducible final FM large domain structure. C1 [Baldasseroni, C.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Bordel, C.] Univ Rouen, GPM, UMR CNRS 6634, F-76801 St Etienne, France. [Bordel, C.; Hellman, F.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Bordel, C.; Stone, K. H.; Kortright, J. B.; Hellman, F.] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94270 USA. [Antonakos, C.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Scholl, A.] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94270 USA. RP Baldasseroni, C (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. EM cbaldasseroni@berkeley.edu RI Scholl, Andreas/K-4876-2012; Stone, Kevin/N-9311-2016 OI Stone, Kevin/0000-0003-1387-1510 FU magnetism program at the Lawrence Berkeley National Laboratory - US Department of Energy, Office of Basic Energy Sciences, Division of Materials Science and Engineering [DE-AC02-05CH11231]; Office of Science, Office of Basic Energy Sciences, of the US Department of Energy [DE-AC02-05CH11231] FX We thank E E Fullerton and his group for providing FeRh samples for preliminary measurements and T Young, A Doran, M Marcus and A Ceballos for help with the PEEM measurements. This work was supported by the magnetism program at the Lawrence Berkeley National Laboratory, funded by the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Science and Engineering under Contract No. DE-AC02-05CH11231. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under Contract No. DE-AC02-05CH11231. NR 39 TC 8 Z9 8 U1 6 U2 52 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 EI 1361-648X J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD JUL 1 PY 2015 VL 27 IS 25 AR 256001 DI 10.1088/0953-8984/27/25/256001 PG 11 WC Physics, Condensed Matter SC Physics GA CK2YU UT WOS:000356082300016 PM 26043719 ER PT J AU Cao, S Wu, N Echtenkamp, W Lauter, V Ambaye, H Komesu, T Binek, C Dowben, PA AF Cao, Shi Wu, Ning Echtenkamp, William Lauter, Valeria Ambaye, Haile Komesu, Takashi Binek, Christian Dowben, Peter A. TI The surface stability of Cr2O3(0001) SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article DE chromia; magneto-electrics; surface stability; surface Debye temperature; surface to bulk core level shift ID ENERGY-ELECTRON DIFFRACTION; OXIDE SURFACES; EXCHANGE BIAS; ALPHA-FE2O3(0001); SPECTROSCOPY; TEMPERATURE; MAGNETISM; FILMS; CRO2 AB The surface of chromia (Cr2O3) has a surface electronic structure distinct from the bulk and a packing density distinct from the bulk. More than a demarcation between the solid and the vacuum, the surface differs from the bulk of chromia, not just because of a partial occupancy of chromium sites, but also because of an increased number of unoccupied surface oxygen sites (vacancy sites), evident in angle-resolved core level photoemission. In spite of the structural differences that exist at the surface, there is, as yet, no evidence that these complications affect the surface Debye temperature beyond the most simple of assumptions regarding the lower coordination of the surface. Using low-energy electron diffraction (LEED), the effective surface Debye temperature (similar to 490 K) is found to be lower than the bulk (similar to 645 K) Debye temperature of Cr2O3(0 0 0 1). This surface effective Debye temperature, indicative of vibrations along the surface normal, uncorrected for anharmonic effects, has a value reduced from the effective bulk Debye temperature yet close to the value root 2 expected from a simple mean field argument. C1 [Cao, Shi; Wu, Ning; Echtenkamp, William; Komesu, Takashi; Binek, Christian; Dowben, Peter A.] Univ Nebraska, Dept Phys & Astron, Lincoln, NE 68588 USA. [Lauter, Valeria; Ambaye, Haile] Oak Ridge Natl Lab, Neutron Sci Directorate, Spallat Neutron Source, Oak Ridge, TN 37831 USA. RP Cao, S (reprint author), Univ Nebraska, Dept Phys & Astron, Theodore Jorgensen Hall,855 North 16th, Lincoln, NE 68588 USA. EM pdowben1@unl.edu RI Ambaye, Haile/D-1503-2016; OI Ambaye, Haile/0000-0002-8122-9952; Cao, Shi/0000-0001-9380-2683; Dowben, Peter/0000-0002-2198-4710 FU C-SPIN, part of STARnet, a Semiconductor Research Corporation program - MARCO; DARPA [SRC 2381.001, SRC 2381.003]; Center for NanoFerroic Devices (CNFD); Semiconductor Research Corporation Nanoelectronics Research Initiative (NRI) [SRC 2398.001]; NSF [DMR-1420645]; Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy FX This work was supported by C-SPIN, part of STARnet, a Semiconductor Research Corporation program sponsored by MARCO and DARPA (SRC 2381.001 and SRC 2381.003) and by the Center for NanoFerroic Devices (CNFD) and the Semiconductor Research Corporation Nanoelectronics Research Initiative (NRI), tasks (SRC 2398.001). Further funding was provided through the NSF-funded Nebraska MRSEC DMR-1420645 grant. The research at ORNL's Spallation Neutron Source was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy. NR 40 TC 2 Z9 2 U1 5 U2 31 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 EI 1361-648X J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD JUL 1 PY 2015 VL 27 IS 25 AR 255003 DI 10.1088/0953-8984/27/25/255003 PG 6 WC Physics, Condensed Matter SC Physics GA CK2YU UT WOS:000356082300006 PM 26020696 ER PT J AU Ehlers, G Podlesnyak, AA Frontzek, MD Pushkarev, AV Shiryaev, SV Barilo, S AF Ehlers, G. Podlesnyak, A. A. Frontzek, M. D. Pushkarev, A. V. Shiryaev, S. V. Barilo, S. TI Damped spin waves in the intermediate ordered phases in Ni3V2O8 SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article DE neutron scattering; spin waves; multiferroic materials ID SPALLATION NEUTRON SOURCE; MULTIFERROICS; FERROELECTRICITY; EXCITATIONS; SCATTERING AB Spin dynamics in the intermediate ordered phases (between 4 and 9 K) in Ni3V2O8 have been studied with inelastic neutron scattering. It is found that the spin waves are very diffuse, indicative of short lived correlations and the coexistence of paramagnetic moments with the long-range ordered state. C1 [Ehlers, G.; Podlesnyak, A. A.] Oak Ridge Natl Lab, Quantum Condensed Matter Div, Oak Ridge, TN 37831 USA. [Frontzek, M. D.] Paul Scherrer Inst, Lab Neutron Scattering & Imaging, CH-5232 Villigen, Switzerland. [Pushkarev, A. V.; Shiryaev, S. V.; Barilo, S.] Inst Solid State & Semicond Phys, Minsk 220072, Byelarus. RP Ehlers, G (reprint author), Oak Ridge Natl Lab, Quantum Condensed Matter Div, Oak Ridge, TN 37831 USA. EM ehlersg@ornl.gov RI Instrument, CNCS/B-4599-2012; Ehlers, Georg/B-5412-2008; Podlesnyak, Andrey/A-5593-2013; Frontzek, Matthias/C-5146-2012 OI Ehlers, Georg/0000-0003-3513-508X; Podlesnyak, Andrey/0000-0001-9366-6319; Frontzek, Matthias/0000-0001-8704-8928 FU Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy; BRFFI-RFFI grant [F14R-094] FX The authors are grateful for the local support staff at SNS. Research at Oak Ridge National Laboratory's Spallation Neutron Source was supported by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. Work at the Institute of Solid State and Semiconductor Physics in Minsk was supported in part by BRFFI-RFFI grant No. F14R-094. NR 43 TC 0 Z9 0 U1 2 U2 13 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 EI 1361-648X J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD JUL 1 PY 2015 VL 27 IS 25 AR 256003 DI 10.1088/0953-8984/27/25/256003 PG 6 WC Physics, Condensed Matter SC Physics GA CK2YU UT WOS:000356082300018 PM 26058062 ER PT J AU Hamada, MS Robertson, AA AF Hamada, M. S. Robertson, A. A. TI Inverting Tolerance Bounds for Confidence on a Specified Proportion of a Population Meeting a Specification SO JOURNAL OF QUALITY TECHNOLOGY LA English DT Article DE Bayesian; Nonlinear Regression; Normal Distribution; Simple Linear Regression AB We consider methods to obtain the confidence that a specified proportion of the population meets a specification. For example, how confident are we that 90% (0.90) of the population does not exceed an upper specification? We show how confidence can be obtained by inverting tolerance bounds. Also, a Bayesian approach can be used to obtain a posterior probability that a specified proportion of the population meets a specification. We consider the single normal population and simple linear regression and nonlinear regression models. We also compare the two methods via a simulation study. C1 [Hamada, M. S.] Los Alamos Natl Lab, Stat Sci Group, Los Alamos, NM 87545 USA. [Robertson, A. A.] Sandia Natl Labs, Dept Elect Syst, Livermore, CA 94550 USA. RP Hamada, MS (reprint author), Los Alamos Natl Lab, Stat Sci Group, POB 1663, Los Alamos, NM 87545 USA. EM hamada@lanl.goy; aarober@sandia.gov FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX We thank C. C. Essix for her support and encouragement of this work. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. We thank an anonymous referee whose helpful comments improved an earlier version of this article. NR 9 TC 0 Z9 0 U1 1 U2 3 PU AMER SOC QUALITY CONTROL-ASQC PI MILWAUKEE PA 600 N PLANKINTON AVE, MILWAUKEE, WI 53203 USA SN 0022-4065 J9 J QUAL TECHNOL JI J. Qual. Technol. PD JUL PY 2015 VL 47 IS 3 BP 209 EP 219 PG 11 WC Engineering, Industrial; Operations Research & Management Science; Statistics & Probability SC Engineering; Operations Research & Management Science; Mathematics GA CL0PE UT WOS:000356643800002 ER PT J AU Calef, M Griffiths, W Schulz, A AF Calef, Matthew Griffiths, Whitney Schulz, Alexia TI Estimating the Number of Stable Configurations for the Generalized Thomson Problem SO JOURNAL OF STATISTICAL PHYSICS LA English DT Article DE Many-body systems; Stability; Unseen species ID FLOATING-POINT SUMMATION; N EQUAL CHARGES; EQUILIBRIUM-CONFIGURATIONS; SPHERE; ENERGY; ASYMPTOTICS; ALGORITHM; SETS AB Given a natural number , one may ask what configuration of points on the two-sphere minimizes the discrete generalized Coulomb energy. If one applies a gradient-based numerical optimization to this problem, one encounters many configurations that are stable but not globally minimal. This led the authors of this manuscript to the question, how many stable configurations are there? In this manuscript we report methods for identifying and counting observed stable configurations, and estimating the actual number of stable configurations. These estimates indicate that for approaching two hundred, there are at least tens of thousands of stable configurations. C1 [Calef, Matthew] Los Alamos Natl Lab, Computat Phys & Methods, Los Alamos, NM 87545 USA. [Griffiths, Whitney] Bank Amer, Financial Inst Grp, New York, NY 10036 USA. [Schulz, Alexia] MIT, Cyber Secur & Informat Sci, Lincoln Lab, Lexington, MA 02420 USA. RP Calef, M (reprint author), Los Alamos Natl Lab, Computat Phys & Methods, POB 1663, Los Alamos, NM 87545 USA. EM mcalef@lanl.gov OI Calef, Matthew/0000-0003-4701-7224 FU National Nuclear Security Administration of the US Department of Energy at Los Alamos National Laboratory [DE-AC52-06NA25396. LA-UR-14-27638]; Air Force [FA8721-05-C-0002] FX The authors are grateful to Mark Ellingham for his clear explanation of Algorithm 2. The authors are also grateful to the referees for their suggested changes to the manuscript. The work of Matthew Calef was performed under the auspices of the National Nuclear Security Administration of the US Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396. LA-UR-14-27638 The work of Alexia Schulz is sponsored by the Assistant Secretary of Defense for Research & Engineering under Air Force Contract #FA8721-05-C-0002. Opinions, interpretations, conclusions and recommendations are those of the authors and are not necessarily endorsed by the United States Government. NR 25 TC 2 Z9 2 U1 1 U2 4 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-4715 EI 1572-9613 J9 J STAT PHYS JI J. Stat. Phys. PD JUL PY 2015 VL 160 IS 1 BP 239 EP 253 DI 10.1007/s10955-015-1245-6 PG 15 WC Physics, Mathematical SC Physics GA CK9SE UT WOS:000356579000012 ER PT J AU Zhang, B Gao, MC Zhang, Y Yang, S Guo, SM AF Zhang, B. Gao, M. C. Zhang, Y. Yang, S. Guo, S. M. TI Senary refractory high entropy alloy MoNbTaTiVW SO MATERIALS SCIENCE AND TECHNOLOGY LA English DT Article DE bcc phase; CALPHAD; High entropy alloy; Microstructure; Refractory; Phase diagram ID WEAR-RESISTANCE; PHASE-FORMATION; MICROSTRUCTURE; ELEMENTS; HARDNESS AB The design approach and validation of a single phase senary refractory high entropy alloy (HEA) MoNbTaTiVW was presented in the present study. The design approach was to combine phase diagram inspection of available binary and ternary systems and Calculation of Phase Diagrams prediction. Experiments using X-ray diffraction and scanning electron microscopy techniques verified a single phase microstructure in body centred cubic lattice for MoNbTaTiVW. The observed elemental segregation agrees well with the solidification prediction using the Scheil model. The lattice constant, density and microhardness were measured to be 0.3216 nm, 4.954 GPa and 11.70 g cm(-3) respectively. The atomic size difference, the Omega parameter, enthalpy of mixing and entropy of mixing for MoNbTaTiVW HEA are 3.1%, 11.1, -3.4 kJ mol(-1) and + 13.39 J K-1 mol(-1) respectively. C1 [Zhang, B.; Zhang, Y.; Guo, S. M.] Louisiana State Univ, Baton Rouge, LA 70803 USA. [Gao, M. C.] Natl Energy Technol Lab, Albany, OR 97321 USA. [Gao, M. C.] AECOM, Albany, OR 97321 USA. [Yang, S.] Southern Univ & A&M Coll, Baton Rouge, LA 70813 USA. RP Guo, SM (reprint author), Louisiana State Univ, Baton Rouge, LA 70803 USA. EM sguo2@lsu.edu FU US Department of Energy National Energy Technology Laboratory (NETL) [DE-FE0004734, DE-FE0011550, DE-FE0008382, DE-FE0007220]; NASA/LaSPACE [LEQSF-EPS(2014)-RAP-12]; NSF-LASiGMA program [EPS-1003897]; Louisiana State University Economic Development Assistantship; Cross-Cutting Technologies Program of NETL under the RES [DE-FE-0004000] FX This publication is based upon work supported by the US Department of Energy National Energy Technology Laboratory (NETL) under award nos. DE-FE0004734, DE-FE0011550, DE-FE0008382, DE-FE0007220; NASA/LaSPACE LEQSF-EPS(2014)-RAP-12; NSF-LASiGMA program (grant no. EPS-1003897); Louisiana State University Economic Development Assistantship; and the Cross-Cutting Technologies Program of NETL under the RES contract DE-FE-0004000. M.C.G. acknowledges general discussion on HEAs with Jeffrey Hawk. NR 32 TC 12 Z9 12 U1 11 U2 58 PU MANEY PUBLISHING PI LEEDS PA STE 1C, JOSEPHS WELL, HANOVER WALK, LEEDS LS3 1AB, W YORKS, ENGLAND SN 0267-0836 EI 1743-2847 J9 MATER SCI TECH-LOND JI Mater. Sci. Technol. PD JUL PY 2015 VL 31 IS 10 BP 1207 EP 1213 DI 10.1179/1743284715Y.0000000031 PG 7 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA CK9SN UT WOS:000356579900012 ER PT J AU Xue, ZY Charonko, JJ Vlachos, PP AF Xue, Zhenyu Charonko, John J. Vlachos, Pavlos P. TI Particle image pattern mutual information and uncertainty estimation for particle image velocimetry SO MEASUREMENT SCIENCE AND TECHNOLOGY LA English DT Article DE particle image velocimetry; uncertainty; cross correlation ID INTERNATIONAL PIV CHALLENGE; PULSED SYSTEMS; OPTIMIZATION AB In this work we introduce a new measure for particle image velocimetry (PIV) cross-correlation quality and establish analytically its connection to the basic PIV theory. This metric, which we term 'mutual information' (MI), can be used to estimate the number of correlated particles and connect to the PIV measurement uncertainty quantification. In PIV the number of particles in common between two consecutive frames forms the basis of the cross-correlation operation that yields the velocity measurement. Since the particle image pattern intensity distribution within each image represents the available signal, the inherent number of common particle pairs between the cross-correlated images, which can be thought of as the amount of mutual information, governs the potential accuracy of the PIV measurement. The number of common particle pairs between the images can be expressed by the product of the image density N-I, and the fraction of particles that leave the frame due to in-plane and out-of-plane motion F-I and F-O, respectively. It has previously been shown that this parameter, NIFIFO, directly relates to the validity of a PIV measurement. However, in real experiments, NIFIFO is unknown and difficult to calculate. Here we propose to overcome this limitation by introducing a new metric (MI), which directly computes the apparent amount of common information contained in the particle patterns of two consecutive images without prior knowledge of the particle field. Both theoretical derivation and experimental results are provided to show that MI and NIFIFO represent the same characteristics of a PIV measurement. Subsequently, MI is used to develop a model for PIV uncertainty estimation. This metric and the corresponding uncertainty model presented herein are applied to both standard and a filtered phase-only (robust phase correlation) correlation methods. These advancements lead to robust uncertainty estimation models, which are tested against both synthetic benchmark data as well as real experimental measurements. For all cases considered here, U-68.5 and U-95 uncertainties demonstrated coverage factors approximately equal to the theoretically expected values of 68.5% and 95%, which reflect 1 sigma and 2 sigma levels in a normal distribution model respectively. C1 [Xue, Zhenyu] Virginia Tech, Dept Mech Engn, Blacksburg, VA 24061 USA. [Charonko, John J.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Vlachos, Pavlos P.] Purdue Univ, Sch Mech Engn, W Lafayette, IN 47907 USA. RP Xue, ZY (reprint author), Virginia Tech, Dept Mech Engn, Blacksburg, VA 24061 USA. EM conanxzy@vt.edu; jcharonk@lanl.gov; pvlachos@purdue.edu RI Charonko, John/D-6701-2013 OI Charonko, John/0000-0002-0396-9672 FU NSF-IDBR award [1152304]; NSF/FDA SIR award [1239265] FX The authors wish to acknowledge the support of NSF-IDBR award 1152304 and the NSF/FDA SIR award 1239265. Also PPV would like to thank B L Smith, B Wieneke, A Sciacchitano and D Neal for the numerous discussions over the past year on the various issues related to the PIV uncertainty quantification. NR 26 TC 7 Z9 7 U1 1 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0957-0233 EI 1361-6501 J9 MEAS SCI TECHNOL JI Meas. Sci. Technol. PD JUL PY 2015 VL 26 IS 7 AR 074001 DI 10.1088/0957-0233/26/7/074001 PG 14 WC Engineering, Multidisciplinary; Instruments & Instrumentation SC Engineering; Instruments & Instrumentation GA CK6BX UT WOS:000356313900003 ER PT J AU Mandelbaum, R Rowe, B Armstrong, R Bard, D Bertin, E Bosch, J Boutigny, D Courbin, F Dawson, WA Donnarumma, A Conti, IF Gavazzi, R Gentile, M Gill, MSS Hogg, DW Huff, EM Jee, MJ Kacprzak, T Kilbinger, M Kuntzer, T Lang, D Luo, WT March, MC Marshall, PJ Meyers, JE Miller, L Miyatake, H Nakajima, R Mboula, FMN Nurbaeva, G Okura, Y Stephane, H Rhodes, J Schneider, MD Shan, HY Sheldon, ES Simet, M Starck, JL Sureau, F Tewes, M Adami, KZ Zhang, J Zuntz, J AF Mandelbaum, Rachel Rowe, Barnaby Armstrong, Robert Bard, Deborah Bertin, Emmanuel Bosch, James Boutigny, Dominique Courbin, Frederic Dawson, William A. Donnarumma, Annamaria Conti, Ian Fenech Gavazzi, Raphael Gentile, Marc Gill, Mandeep S. S. Hogg, David W. Huff, Eric M. Jee, M. James Kacprzak, Tomasz Kilbinger, Martin Kuntzer, Thibault Lang, Dustin Luo, Wentao March, Marisa C. Marshall, Philip J. Meyers, Joshua E. Miller, Lance Miyatake, Hironao Nakajima, Reiko Ngole Mboula, Fred Maurice Nurbaeva, Guldariya Okura, Yuki Paulin-Henriksson, Stephane Rhodes, Jason Schneider, Michael D. Shan, Huanyuan Sheldon, Erin S. Simet, Melanie Starck, Jean-Luc Sureau, Florent Tewes, Malte Adami, Kristian Zarb Zhang, Jun Zuntz, Joe TI GREAT3 results - I. Systematic errors in shear estimation and the impact of real galaxy morphology SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE gravitational lensing: weak; methods: data analysis; techniques: image processing; cosmology: observations ID WEAK LENSING ANALYSIS; SPACE-TELESCOPE OBSERVATIONS; IMAGE-ANALYSIS COMPETITION; SPREAD FUNCTION CORRECTION; ELLIPTIC-WEIGHTED HOLICS; DIGITAL SKY SURVEY; SHAPE MEASUREMENTS; COSMIC SHEAR; NOISE BIAS; GRAVITATIONAL SHEAR AB We present first results from the third GRavitational lEnsing Accuracy Testing (GREAT3) challenge, the third in a sequence of challenges for testing methods of inferring weak gravitational lensing shear distortions from simulated galaxy images. GREAT3 was divided into experiments to test three specific questions, and included simulated space- and ground-based data with constant or cosmologically varying shear fields. The simplest (control) experiment included parametric galaxies with a realistic distribution of signal-to-noise, size, and ellipticity, and a complex point spread function (PSF). The other experiments tested the additional impact of realistic galaxy morphology, multiple exposure imaging, and the uncertainty about a spatially varying PSF; the last two questions will be explored in Paper II. The 24 participating teams competed to estimate lensing shears to within systematic error tolerances for upcoming Stage-IV dark energy surveys, making 1525 submissions overall. GREAT3 saw considerable variety and innovation in the types of methods applied. Several teams now meet or exceed the targets in many of the tests conducted (to within the statistical errors). We conclude that the presence of realistic galaxy morphology in simulations changes shear calibration biases by similar to 1 per cent for a wide range of methods. Other effects such as truncation biases due to finite galaxy postage stamps, and the impact of galaxy type as measured by the S,rsic index, are quantified for the first time. Our results generalize previous studies regarding sensitivities to galaxy size and signal-to-noise, and to PSF properties such as seeing and defocus. Almost all methods' results support the simple model in which additive shear biases depend linearly on PSF ellipticity. C1 [Mandelbaum, Rachel; Lang, Dustin; Simet, Melanie] Carnegie Mellon Univ, Dept Phys, McWilliams Ctr Cosmol, Pittsburgh, PA 15213 USA. [Rowe, Barnaby; Kacprzak, Tomasz] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Armstrong, Robert; Bosch, James; Miyatake, Hironao] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Bard, Deborah; Gill, Mandeep S. S.; Marshall, Philip J.; Meyers, Joshua E.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, Stanford, CA 94305 USA. [Bard, Deborah; Boutigny, Dominique; Gill, Mandeep S. S.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Bertin, Emmanuel; Donnarumma, Annamaria; Gavazzi, Raphael] Univ Paris 06, Inst Astrophys Paris, UMR CNRS 7095, F-75014 Paris, France. [Boutigny, Dominique] CNRS IN2P3, USR 6402, IN2P3, Ctr Calcul, F-69622 Villeurbanne, France. [Courbin, Frederic; Gentile, Marc; Kuntzer, Thibault; Nurbaeva, Guldariya; Shan, Huanyuan] Ecole Polytech Fed Lausanne, Astrophys Lab, Observ Sauverny, CH-1290 Versoix, Switzerland. [Dawson, William A.; Schneider, Michael D.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Conti, Ian Fenech; Adami, Kristian Zarb] Univ Malta, ISSA, Msida 2080, Msd, Malta. [Hogg, David W.] NYU, Dept Phys, Ctr Cosmol & Particle Phys, New York, NY 10003 USA. [Huff, Eric M.] Ohio State Univ, Ctr Cosmol & AstroParticle Phys CCAPP, Columbus, OH 43210 USA. [Huff, Eric M.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Jee, M. James] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Kacprzak, Tomasz] ETH, Inst Astron, CH-8093 Zurich, Switzerland. [Kilbinger, Martin; Ngole Mboula, Fred Maurice; Paulin-Henriksson, Stephane; Starck, Jean-Luc; Sureau, Florent] CEA Saclay, Lab AIM, UMR CEA CNRS Paris 7, Irfu,SAp SEDI,Serv Astrophys, F-91191 Gif Sur Yvette, France. [Luo, Wentao] Shanghai Astron Observ, Key Lab Res Galaxies & Cosmol, Shanghai 200030, Peoples R China. [March, Marisa C.] Univ Penn, David Rittenhouse Lab, Philadelphia, PA 19104 USA. [Miller, Lance; Adami, Kristian Zarb] Univ Oxford, Dept Phys, Oxford OX1 3RH, England. [Miyatake, Hironao] Univ Tokyo, Kavli Inst Phys & Math Universe, WPI, Kashiwa, Chiba 2778582, Japan. [Nakajima, Reiko; Tewes, Malte] Argelander Inst Astron, D-53121 Bonn, Germany. [Okura, Yuki] Natl Astron Observ Japan, Tokyo 1818588, Japan. [Rhodes, Jason] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Rhodes, Jason] CALTECH, Pasadena, CA 91125 USA. [Sheldon, Erin S.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Zhang, Jun] Shanghai Jiao Tong Univ, Dept Phys & Astron, Ctr Astron & Astrophys, Shanghai 200240, Peoples R China. [Zuntz, Joe] Univ Manchester, Jodrell Bank Ctr Astrophys, Manchester M13 9PL, Lancs, England. RP Mandelbaum, R (reprint author), Carnegie Mellon Univ, Dept Phys, McWilliams Ctr Cosmol, 5000 Forbes Ave, Pittsburgh, PA 15213 USA. EM rmandelb@andrew.cmu.edu; barney@barnabyrowe.net RI Mandelbaum, Rachel/N-8955-2014; Zhang, Jun/O-3283-2015; Simet, Melanie/A-3415-2016; EPFL, Physics/O-6514-2016; Shan, Huanyuan/G-3353-2015; OI Mandelbaum, Rachel/0000-0003-2271-1527; Simet, Melanie/0000-0001-8823-8926; Shan, Huanyuan/0000-0001-8534-837X; Rowe, Barnaby/0000-0002-7042-9174; Kilbinger, Martin/0000-0001-9513-7138; Hogg, David/0000-0003-2866-9403; Starck, Jean-Luc/0000-0003-2177-7794 FU PASCAL-2 network; NASA via the Strategic University Research Partnership (SURP) Program of the Jet Propulsion Laboratory, California Institute of Technology; IST Programme of the European Community, under the PASCAL2 Network of Excellence [IST-2007-216886]; National Science Foundation [PHYS-1066293, PHY-0969487]; NASA through a grant from the Space Telescope Science Institute [HST-AR-12857.01-A]; NASA [NAS5-26555]; Alfred P. Sloan Fellowship from the Sloan Foundation; Department of Energy Early Career Award Program; European Research Council [240672]; Japan Society for the Promotion of Science (JSPS) Postdoctoral Fellowships for Research Abroad; JSPS Research Fellowships for Young Scientists; Agence Nationale de la Recherche (ANR Grant 'AMALGAM'); Centre National des Etudes Spatiales (CNES); Deutsche Forschungsgemeinschaft (DFG) [Hi 1495/2-1]; Swiss National Science Foundation (SNSF) [CRSII2_147678, 200020_146813, 200021_146770]; US Department of Energy at Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; US Department of Energy at SLAC National Accelerator Laboratory [DE-AC02-76SF00515]; Marie Curie International Incoming Fellowship within the Seventh European Community Framework Programme; NSFC of China [11103011]; national science foundation of China [11273018, 11433001]; national basic research programme of China [2013CB834900, 2015CB857001]; European Research Council grant SparseAstro [ERC-228261] FX We thank Gary Bernstein and Mike Jarvis for providing helpful feedback on this paper, Peter Freeman for providing guidance on the statistical interpretation of results, and the anonymous referee for making suggestions that improved the presentation of results in the paper. We thank the PASCAL-2 network for its sponsorship of the challenge. This project was supported in part by NASA via the Strategic University Research Partnership (SURP) Program of the Jet Propulsion Laboratory, California Institute of Technology; and by the IST Programme of the European Community, under the PASCAL2 Network of Excellence, IST-2007-216886. This article only reflects the authors' views. This work was supported in part by the National Science Foundation under Grant no. PHYS-1066293 and the hospitality of the Aspen Center for Physics.; RM was supported during the development of the GREAT3 challenge in part by program HST-AR-12857.01-A, provided by NASA through a grant from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Incorporated, under NASA contract NAS5-26555, and in part through an Alfred P. Sloan Fellowship from the Sloan Foundation; her work on the final analysis of results was supported by the Department of Energy Early Career Award Program. BR, JZuntz, and TKacprzak acknowledge support from the European Research Council in the form of a Starting Grant with number 240672. HM acknowledges support from Japan Society for the Promotion of Science (JSPS) Postdoctoral Fellowships for Research Abroad and JSPS Research Fellowships for Young Scientists. The Amalgam@IAP Team (AD, EB, RG) acknowledges the Agence Nationale de la Recherche (ANR Grant 'AMALGAM') and Centre National des Etudes Spatiales (CNES) for financial support. MT acknowledges support from the Deutsche Forschungsgemeinschaft (DFG) grant Hi 1495/2-1. TKuntzer, MGentile, HYS, and FC acknowledge support from the Swiss National Science Foundation (SNSF) under grants CRSII2_147678, 200020_146813 and 200021_146770. Part of the work carried out by the MBI team was performed under the auspices of the US Department of Energy at Lawrence Livermore National Laboratory under contract number DE-AC52-07NA27344 and SLAC National Accelerator Laboratory under contract number DE-AC02-76SF00515. HYS acknowledges the support by a Marie Curie International Incoming Fellowship within the Seventh European Community Framework Programme, and NSFC of China under grants 11103011. JEM was supported by National Science Foundation grant PHY-0969487. JZhang is supported by the national science foundation of China (Grant no. 11273018, 11433001), and the national basic research programme of China (Grant no. 2013CB834900, 2015CB857001). J-LS, MK, FS, and FMNM were supported by the European Research Council grant SparseAstro (ERC-228261). EMH is grateful to Christopher Hirata for insightful discussion and feedback on the MetaCalibration idea. NR 84 TC 21 Z9 21 U1 0 U2 11 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD JUL 1 PY 2015 VL 450 IS 3 BP 2963 EP 3007 DI 10.1093/mnras/stv781 PG 45 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CK6LJ UT WOS:000356339300054 ER PT J AU Ventura, P Karakas, AI Dell'Agli, F Boyer, ML Garcia-Hernandez, DA Di Criscienzo, M Schneider, R AF Ventura, P. Karakas, A. I. Dell'Agli, F. Boyer, M. L. Garcia-Hernandez, D. A. Di Criscienzo, M. Schneider, R. TI The Large Magellanic Cloud as a laboratory for hot bottom burning in massive asymptotic giant branch stars SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE stars: abundances; stars: AGB and post-AGB; dust; extinction ID METALLICITY GLOBULAR-CLUSTERS; 3RD DREDGE-UP; AGB STARS; DUST PRODUCTION; STELLAR WINDS; MINERAL FORMATION; GALAXY EVOLUTION; TURBULENT CONVECTION; HERSCHEL INVENTORY; AGENTS AB We use Spitzer observations of the rich population of asymptotic giant branch (AGB) stars in the Large Magellanic Cloud (LMC) to test models describing the internal structure and nucleosynthesis of the most massive of these stars, i.e. those with initial mass above similar to 4 M-aS (TM). To this aim, we compare Spitzer observations of LMC stars with the theoretical tracks of AGB models, calculated with two of the most popular evolution codes, that are known to differ in particular for the treatment of convection. Although the physical evolution of the two models are significantly different, the properties of dust formed in their winds are surprisingly similar, as is their position in the colour-colour and colour-magnitude diagrams obtained with the Spitzer bands. This model-independent result allows us to select a well-defined region in the ([3.6]-[4.5], [5.8]-[8.0]) plane, populated by AGB stars experiencing hot bottom burning, the progeny of stars with mass M similar to 5.5 M-aS (TM). This result opens up an important test of the strength hot bottom burning using detailed near-IR (H and K bands) spectroscopic analysis of the oxygen-rich, high-luminosity candidates found in the well-defined region of the colour-colour plane. This test is possible because the two stellar evolution codes we use predict very different results for the surface chemistry, and the C/O ratio in particular, owing to their treatment of convection in the envelope and of convective boundaries during third dredge-up. The differences in surface chemistry are most apparent when the model stars reach the phase with the largest infrared emission. C1 [Ventura, P.; Dell'Agli, F.; Di Criscienzo, M.; Schneider, R.] INAF Osservatorio Astron Roma, I-00040 Monte Porzio Catone, RM, Italy. [Karakas, A. I.] Australian Natl Univ, Res Sch Astron & Astrophys, Canberra, ACT 2611, Australia. [Dell'Agli, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00143 Rome, Italy. [Boyer, M. L.] NASA, Goddard Space Flight Ctr, Observat Cosmol Lab, Greenbelt, MD 20771 USA. [Boyer, M. L.] Oak Ridge Associated Univ, Oak Ridge, TN 37831 USA. [Garcia-Hernandez, D. A.] Inst Astrofis Canarias, E-38200 Tenerife, Spain. [Garcia-Hernandez, D. A.] Univ La Laguna, Dept Astrofis, E-38206 Tenerife, Spain. RP Ventura, P (reprint author), INAF Osservatorio Astron Roma, Via Frascati 33, I-00040 Monte Porzio Catone, RM, Italy. EM paolo.ventura@oa-roma.inaf.it RI Schneider, Raffaella/E-4216-2017 OI Ventura, Paolo/0000-0002-5026-6400; Schneider, Raffaella/0000-0001-9317-2888 FU PRIN MIUR [prot. 2010LY5N2T]; Australian Research Council [FT110100475]; Spanish Ministry of Economy and Competitiveness [AYA-2011-27754]; European Research Council under the European Unions [306476] FX PV was supported by PRIN MIUR 2011 'The Chemical and Dynamical Evolution of the Milky Way and Local Group Galaxies' (PI: F. Matteucci), prot. 2010LY5N2T. AIK was supported through an Australian Research Council Future Fellowship (FT110100475). DAGH acknowledges support provided by the Spanish Ministry of Economy and Competitiveness under grant AYA-2011-27754. RS acknowledges funding from the European Research Council under the European Unions Seventh Framework Programme (FP/2007-2013)/ERC Grant Agreement no. 306476. NR 67 TC 12 Z9 12 U1 0 U2 1 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD JUL 1 PY 2015 VL 450 IS 3 BP 3181 EP 3190 DI 10.1093/mnras/stv918 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CK6LJ UT WOS:000356339300069 ER PT J AU Fielding, DB McKee, CF Socrates, A Cunningham, AJ Klein, RI AF Fielding, Drummond B. McKee, Christopher F. Socrates, Aristotle Cunningham, Andrew J. Klein, Richard I. TI The turbulent origin of spin-orbit misalignment in planetary systems SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE accretion; accretion discs; planets and satellites: formation; protoplanetary discs; stars: formation; stars: rotation ID HIERARCHICAL 3-BODY SYSTEMS; ADAPTIVE MESH REFINEMENT; INTERNAL GRAVITY-WAVES; STAR-FORMATION; MOLECULAR CLOUDS; HOT JUPITERS; GRAVITATIONAL COLLAPSE; MAGNETIC BRAKING; STELLAR ROTATION; ACCRETION DISKS AB The turbulent environment from which stars form may lead to misalignment between the stellar spin and the remnant protoplanetary disc. By using hydrodynamic and magnetohydrodynamic simulations, we demonstrate that a wide range of stellar obliquities may be produced as a by-product of forming a star within a turbulent environment. We present a simple semi-analytic model that reveals this connection between the turbulent motions and the orientation of a star and its disc. Our results are consistent with the observed obliquity distribution of hot Jupiters. Migration of misaligned hot Jupiters may, therefore, be due to tidal dissipation in the disc, rather than tidal dissipation of the star-planet interaction. C1 [Fielding, Drummond B.; McKee, Christopher F.; Klein, Richard I.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [McKee, Christopher F.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Cunningham, Andrew J.; Klein, Richard I.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Fielding, DB (reprint author), Univ Calif Berkeley, Dept Astron, 601 Campbell Hall, Berkeley, CA 94720 USA. EM dfielding@berkeley.edu FU National Science Foundation [AST-1211729, DGE-1106400]; NASA [ATP- NNX13AB84G]; US Department of Energy at the Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; National Center of Supercomputing Application under the Extreme Science and Engineering Discovery Environment (XSEDE) by National Science Foundation [TG-MCA00N020, OCI-1053575] FX We wish to thank Fred Adams, Konstantin Batygin, Daniel Fabrycky, Eve J. Lee, Yoram Lithwick, Kevin Schlaufman, and Scott Tremaine for useful discussions regarding the underlying physical implications of this work while this paper was in preparation. CFM would like to thank Scott Tremaine and the Institute for Advanced Study, where this project began, for their hospitality. DBF wishes to thank William J. Gray, Pak-Shing Li and Andrew Myers for their computational expertise, and helping run and analyse the simulations presented in this paper. Support for this work was provided by the National Science Foundation through grant AST-1211729 (CFM and RIK); by NASA through grant ATP- NNX13AB84G (RIK, CFM); and by the US Department of Energy at the Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344 (AJC, RIK). Additionally, DBF is supported by the Berkeley Fellowship for Graduate Study and the National Science Foundation Graduate Research Fellowship under grant number DGE-1106400. This research was supported by a grant of high performance computing resources from the National Center of Supercomputing Application through grant TG-MCA00N020, under the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grant number OCI-1053575. This research has made use of the Exoplanet Orbit Database and the Exoplanet Data Explorer at exoplanets.org (Han et al. 2014). We have also made extensive use of the yt toolkit (Turk et al. 2011) for data analysis and plotting. NR 73 TC 18 Z9 18 U1 0 U2 6 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD JUL 1 PY 2015 VL 450 IS 3 BP 3306 EP 3318 DI 10.1093/mnras/stv836 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CK6LJ UT WOS:000356339300080 ER PT J AU Ice, GE Budai, JD AF Ice, Gene E. Budai, John D. TI Beyond ensemble averages SO NATURE MATERIALS LA English DT News Item ID MICROSCOPY; RESOLUTION C1 [Ice, Gene E.; Budai, John D.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Ice, GE (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. EM icege@ornl.gov; budaijd@ornl.gov RI Budai, John/R-9276-2016 OI Budai, John/0000-0002-7444-1306 NR 11 TC 0 Z9 0 U1 1 U2 15 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1476-1122 EI 1476-4660 J9 NAT MATER JI Nat. Mater. PD JUL PY 2015 VL 14 IS 7 BP 657 EP 658 PG 3 WC Chemistry, Physical; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA CL0KI UT WOS:000356631200009 PM 26099710 ER PT J AU Arcilesi, DJ Ham, TK Kim, IH Sun, XD Christensen, RN Oh, CH AF Arcilesi, David J., Jr. Ham, Tae Kyu Kim, In Hun Sun, Xiaodong Christensen, Richard N. Oh, Chang H. TI Scaling and design analyses of a scaled-down, high-temperature test facility for experimental investigation of the initial stages of a VHTR air-ingress accident SO NUCLEAR ENGINEERING AND DESIGN LA English DT Article ID HEAT-TRANSFER; REACTOR; CONVECTION; PRESSURE; DENSITY AB A critical event in the safety analysis of the very high-temperature gas-cooled reactor (VHTR) is an air-ingress accident. This accident is initiated, in its worst case scenario, by a double-ended guillotine break of the coaxial cross vessel, which leads to a rapid reactor vessel depressurization. In a VHTR, the reactor vessel is located within a reactor cavity that is filled with air during normal operating conditions. Following the vessel depressurization, the dominant mode of ingress of an air helium mixture into the reactor vessel will either be molecular diffusion or density-driven stratified flow. The mode of ingress is hypothesized to depend largely on the break conditions of the cross vessel. Since the time scales of these two ingress phenomena differ by orders of magnitude, it is imperative to understand under which conditions each of these mechanisms will dominate in the air ingress process. Computer models have been developed to analyze this type of accident scenario. There are, however, limited experimental data available to understand the phenomenology of the air-ingress accident and to validate these models. Therefore, there is a need to design and construct a scaled-down experimental test facility to simulate the air-ingress accident scenarios and to collect experimental data. The current paper focuses on the analyses performed for the design and operation of a 1/8th geometric scale (by height and diameter), high-temperature test facility. A geometric scaling analysis for the VHTR, a time scale analysis of the air-ingress phenomenon, a transient depressurization analysis of the reactor vessel, a hydraulic similarity analysis of the test facility, a heat transfer characterization of the hot plenum, a power scaling analysis for the reactor system, and a design analysis of the containment vessel are discussed. (C) 2015 Elsevier B.V. All rights reserved. C1 [Arcilesi, David J., Jr.; Ham, Tae Kyu; Kim, In Hun; Sun, Xiaodong; Christensen, Richard N.] Ohio State Univ, Nucl Engn Program, Columbus, OH 43210 USA. [Oh, Chang H.] Idaho Natl Lab, Idaho Falls, ID 83402 USA. RP Arcilesi, DJ (reprint author), Ohio State Univ, 201 West 19th Ave, Columbus, OH 43210 USA. EM arcilesi.1@osu.edu; ham.47@osu.edu; kim.4704@osu.edu; sun.200@osu.edu; christensen.3@osu.edu RI Sun, Xiaodong/F-3752-2015 OI Sun, Xiaodong/0000-0002-9852-160X FU U.S. Department of Energy's Office of Nuclear Energy's Nuclear Energy University Programs under DOE [DE-AC07-051D14517] FX This research was performed using funding received from the U.S. Department of Energy's Office of Nuclear Energy's Nuclear Energy University Programs under DOE award number DE-AC07-051D14517. NR 34 TC 1 Z9 1 U1 0 U2 1 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0029-5493 J9 NUCL ENG DES JI Nucl. Eng. Des. PD JUL PY 2015 VL 288 BP 141 EP 162 DI 10.1016/j.nucengdes.2015.03.007 PG 22 WC Nuclear Science & Technology SC Nuclear Science & Technology GA CK9GL UT WOS:000356548500013 ER PT J AU Liu, W Lu, J Xie, SP AF Liu, Wei Lu, Jian Xie, Shang-Ping TI Understanding the Indian Ocean response to double CO2 forcing in a coupled model SO OCEAN DYNAMICS LA English DT Article DE Global warming; Indian Ocean Dipole; Bjerknes feedback; WES feedback; Overriding ID EQUATORIAL PACIFIC; ATMOSPHERE MODEL; INDO-PACIFIC; EL-NINO; PRECIPITATION; CIRCULATION; PATTERNS; CMIP5; CYCLE AB This study investigates the roles of multiple ocean-atmospheric feedbacks in the oceanic response to increased carbon dioxide by applying an overriding technique to a coupled climate model. The annual-mean sea surface temperature (SST) response in the Indian Ocean exhibits a zonal-dipolar warming pattern, with a reduced warming in the eastern and enhanced warming in the western tropical Indian Ocean (TIO), reminiscent of the Indian Ocean Dipole (IOD) pattern. The development of the dipole pattern exhibits a pronounced seasonal evolution. The overriding experiments show that the wind-evaporation-sea surface temperature (WES) feedback accounts for most of the enhanced warming in the western and central TIO during May-July with reduced southerly monsoonal wind and contributes partially to the reduced warming in the eastern TIO during June-September. The Bjerknes feedback explains most of the reduced warming in the eastern TIO during August-October, accompanied by a reduction of precipitation, easterly wind anomalies, and a thermocline shoaling along the equator. Both feedbacks facilitate the formation of the dipolar warming pattern in the TIO. The residual from the Bjerknes and WES feedbacks is attributable to the "static" response to increasing CO2. While the static SST response also contributes to the seasonal SST variations, the static precipitation response is relatively uniform in the TIO, appearing as a general increase of precipitation along the equatorial Indian Ocean during June-September. C1 [Liu, Wei; Xie, Shang-Ping] Univ Calif San Diego, Scripps Inst Oceanog CASPO, La Jolla, CA 92093 USA. [Lu, Jian] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Liu, W (reprint author), Univ Calif San Diego, Scripps Inst Oceanog CASPO, 9500 Gilman Dr, La Jolla, CA 92093 USA. EM wel109@ucsd.edu RI Xie, Shang-Ping/C-1254-2009 OI Xie, Shang-Ping/0000-0002-3676-1325 FU NSF [AGS-1249145]; Office of Science of the US Department of Energy FX The authors would like to acknowledge helpful suggestions from Dr. Xiaotong Zheng. WL is supported by NSF AGS-1249145. JL was supported by the Office of Science of the US Department of Energy as part of the Regional and Global Climate Modeling program. NR 32 TC 1 Z9 1 U1 1 U2 7 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1616-7341 EI 1616-7228 J9 OCEAN DYNAM JI Ocean Dyn. PD JUL PY 2015 VL 65 IS 7 BP 1037 EP 1046 DI 10.1007/s10236-015-0854-6 PG 10 WC Oceanography SC Oceanography GA CK9AZ UT WOS:000356533600008 ER PT J AU Luhring, TM Holdo, RM AF Luhring, Thomas M. Holdo, Ricardo M. TI Trade-offs between growth and maturation: the cost of reproduction for surviving environmental extremes SO OECOLOGIA LA English DT Article DE Body size; Life-history strategy; Reproductive allocation; Estivation; Drought; Size structure ID SALAMANDER SIREN INTERMEDIA; SIZE-DEPENDENT MORTALITY; LIFE-HISTORY EVOLUTION; BODY-SIZE; CLIMATE-CHANGE; NATURAL-SELECTION; DROUGHT; WETLAND; ESTIVATION; DEPRESSION AB Life-history trade-offs and the costs of reproduction are central concepts in evolution and ecology. Episodic climatic events such as drought and extreme temperatures provide strong selective pressures that can change the balance of these costs and trade-offs. We used size-structured matrix models parameterized from field and laboratory studies to examine the effect of periodic drought on two species of aquatic salamanders (greater siren, Siren lacertina; lesser siren, Siren intermedia) that differ in size at reproduction and maximum body size. Post-drought body size distributions of the larger species (S. lacertina) are consistent with size-dependent mortality. Smaller individuals were extirpated from the population during each drought while large animals persisted, a pattern that contrasted with that seen in several ectotherms. This appears to be largely explained by estivation proficiency and a positive relationship between body size and estivation potential. Increased body size, however, may come at the cost of fecundity and maturation rate compared to a closely related congener. The cost of somatic allocation in this case may manifest itself via reduced per-capita competitive ability, which (at least in simulation studies) allows the smaller, fast-maturing species to outcompete the larger, slow-maturing species when drought is minimal or nonexistent. C1 [Luhring, Thomas M.; Holdo, Ricardo M.] Univ Missouri, Div Biol Sci, Columbia, MO 65211 USA. [Luhring, Thomas M.] Savannah River Ecol Lab, Aiken, SC USA. RP Luhring, TM (reprint author), Michigan State Univ, Fisheries & Wildlife, Room 13 Nat Resources,480 Wilson Rd, E Lansing, MI 48824 USA. EM tomluhring@gmail.com FU The Trans-World Airlines Scholarship; Life Sciences Fellowship at the University of Missouri; American Museum of Natural History's Theodore Roosevelt Memorial Fund; Department of Energy [DE-FC09-07SR22506] FX R. Semlitsch, S. Pittman, T. Meckley, and G. Connette provided helpful comments on earlier drafts of the manuscript. A. Tucker provided data from 1993 sampling of greater sirens. K. McCleod, and R. Lide provided wetland data. J. W. Gibbons, T. Tuberville, K. Buhlmann, S. Poppy, and the Savannah River Ecology Laboratory provided lab space, academic support, and materials used during parameter data collection. R. Cocroft and the IBM Model Class of 2010 at the University of Missouri provided suggestions and help during initial model development. The Trans-World Airlines Scholarship and Life Sciences Fellowship at the University of Missouri provided financial support to TML during the course of model development. This material is based on work supported by the American Museum of Natural History's Theodore Roosevelt Memorial Fund (to TML), and by the Department of Energy under Award Number DE-FC09-07SR22506 to the University of Georgia Research Foundation. NR 49 TC 4 Z9 4 U1 9 U2 39 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0029-8549 EI 1432-1939 J9 OECOLOGIA JI Oecologia PD JUL PY 2015 VL 178 IS 3 BP 723 EP 732 DI 10.1007/s00442-015-3270-1 PG 10 WC Ecology SC Environmental Sciences & Ecology GA CK9BH UT WOS:000356534400009 PM 25715924 ER PT J AU Kim, TN Spiesman, BJ Buchanan, AL Hakes, AS Halpern, SL Inouye, BD Kilanowski, AL Kortessis, N McNutt, DW Merwin, AC Underwood, N AF Kim, Tania N. Spiesman, Brian J. Buchanan, Amanda L. Hakes, Alyssa S. Halpern, Stacey L. Inouye, Brian D. Kilanowski, Allyssa L. Kortessis, Nicholas McNutt, David W. Merwin, Andrew C. Underwood, Nora TI Selective manipulation of a non-dominant plant and its herbivores affects an old-field plant community SO PLANT ECOLOGY LA English DT Article DE Context-dependency; Competition; Density manipulation; Plant communities; Recovery; Selective removal ID INSECT HERBIVORES; SOLANUM-CAROLINENSE; INTERSPECIFIC COMPETITION; SUCCESSION; DYNAMICS; CARBARYL; DENSITY; IMPACT; DAMAGE AB Competition and herbivory can interact to influence the recovery of plant communities from disturbance. Previous attention has focused on the roles of dominant plant species in structuring plant communities, leaving the roles of subordinate species often overlooked. In this study, we examined how manipulating the density of a subordinate plant species, Solanum carolinense, and its insect herbivores influenced an old-field plant community in northern Florida following a disturbance. Five years following the disturbance, the initial densities of S. carolinense planted at the start of the experiment negatively influenced total plant cover and species diversity, and the cover of some grasses (e.g., Paspalum urvillei) and forbs (e.g., Rubus trivalis). Selectively removing herbivores from S. carolinense increased S. carolinense abundance (both stem densities and cover), increased the total cover of plants in the surrounding plant community, and affected plant community composition. Some plant species increased (e.g., Digitaria ciliaris, Solidago altissima) and others decreased (e.g., Paspalum notatum, Cynodon dactylon) in cover in response to herbivore removal. Herbivore effects on plant community metrics did not depend on S. carolinense density (no significant herbivory by density interaction), suggesting that even at low densities, a reduction of S. carolinense herbivores can influence the rest of the plant community. The recovery of the plant community was context dependent, depending on site- and plot-level differences in underlying environmental conditions and pre-disturbance plant community composition. We demonstrate that the density of and herbivory on a single subordinate plant species can affect the structure of an entire plant community. C1 [Kim, Tania N.; Spiesman, Brian J.; Buchanan, Amanda L.; Hakes, Alyssa S.; Inouye, Brian D.; Kilanowski, Allyssa L.; Kortessis, Nicholas; McNutt, David W.; Merwin, Andrew C.; Underwood, Nora] Florida State Univ, Dept Biol Sci, Tallahassee, FL 32306 USA. [Halpern, Stacey L.] Pacific Univ, Dept Biol, Forest Grove, OR 97116 USA. RP Kim, TN (reprint author), Univ Wisconsin, Great Lakes Bioenergy Res Ctr, Madison, WI 53726 USA. EM tkim@glbrc.wisc.edu FU NSF [DEB-0717221, DEB-0716922]; NRI, CSREES, USDA [2006-35320-16686] FX We thank J. Simonis, J. Fort, C. Venner, J. Hines, and numerous REU students for helping to establish and maintain the project over the 5 years. We thank the staff at the University of Florida North Florida Research and Education Center for their logistical support. Comments from Joshua Grinath greatly improved this manuscript. This project was funded by NSF DEB-0717221 to N. Underwood, and NSF DEB-0716922 and NRI, CSREES, USDA Grant 2006-35320-16686 to S. Halpern. NR 37 TC 1 Z9 1 U1 2 U2 18 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1385-0237 EI 1573-5052 J9 PLANT ECOL JI Plant Ecol. PD JUL PY 2015 VL 216 IS 7 BP 1029 EP 1045 DI 10.1007/s11258-015-0487-3 PG 17 WC Plant Sciences; Ecology; Forestry SC Plant Sciences; Environmental Sciences & Ecology; Forestry GA CK6XT UT WOS:000356372800010 ER PT J AU Evans, BR Bali, G Foston, M Ragauskas, AJ O'Neill, HM Shah, R McGaughey, J Reeves, D Rempe, C Davison, BH AF Evans, Barbara R. Bali, Garima Foston, Marcus Ragauskas, Arthur J. O'Neill, Hugh M. Shah, Riddhi McGaughey, Joseph Reeves, David Rempe, Caroline S. Davison, Brian H. TI Production of deuterated switchgrass by hydroponic cultivation SO PLANTA LA English DT Article DE Biomass; Switchgrass; D2O; Deuteration; NMR; FTIR ID DEUTERIUM; CELLULOSE; BIOMASS; H-1-NMR; GROWTH AB The bioenergy crop switchgrass was grown hydroponically from tiller cuttings in 50 % D (2) O to obtain biomass with 34 % deuterium substitution and physicochemical properties similar to those of H (2) O-grown switchgrass controls. Deuterium enrichment of biological materials can potentially enable expanded experimental use of small angle neutron scattering (SANS) to investigate molecular structural transitions of complex systems such as plant cell walls. Two key advances have been made that facilitate cultivation of switchgrass, an important forage and biofuel crop, for controlled isotopic enrichment: (1) perfusion system with individual chambers and (2) hydroponic growth from tiller cuttings. Plants were grown and maintained for several months with periodic harvest. Photosynthetic activity was monitored by measurement of CO2 in outflow from the growth chambers. Plant morphology and composition appeared normal compared to matched controls grown with H2O. Using this improved method, gram quantities of switchgrass leaves and stems were produced by continuous hydroponic cultivation using growth medium consisting of basal mineral salts in 50 % D2O. Deuterium incorporation was confirmed by detection of the O-D and C-D stretching peaks with FTIR and quantified by H-1- and H-2-NMR. This capability to produce deuterated lignocellulosic biomass under controlled conditions will enhance investigation of cell wall structure and its deconstruction by neutron scattering and NMR techniques. C1 [Evans, Barbara R.; McGaughey, Joseph; Reeves, David; Rempe, Caroline S.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Bali, Garima; Foston, Marcus; Ragauskas, Arthur J.] Georgia Inst Technol, Inst Paper Sci & Technol, Sch Chem & Biochem, Atlanta, GA 30332 USA. [O'Neill, Hugh M.; Shah, Riddhi] Oak Ridge Natl Lab, Biol & Soft Matter Div, Oak Ridge, TN 37831 USA. [Ragauskas, Arthur J.; Davison, Brian H.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. RP Evans, BR (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. EM evansb@ornl.gov RI Davison, Brian/D-7617-2013; OI Davison, Brian/0000-0002-7408-3609; Rempe, Caroline/0000-0002-8326-6423; O'Neill, Hugh/0000-0003-2966-5527; Ragauskas, Arthur/0000-0002-3536-554X FU Genomic Science Program, Office of Biological and Environmental Research, US Department of Energy [FWP ERKP752]; Office of Biological and Environmental Research [FWP ERKP291]; US Department of Energy [DE-AC05-00OR22725]; US Department of Energy Higher Education Research Experience internship; Department of Energy FX This research was supported by the Genomic Science Program, Office of Biological and Environmental Research, US Department of Energy, under Contract FWP ERKP752. The research at Oak Ridge National Laboratory's Center for Structural Molecular Biology (CSMB) was supported by the Office of Biological and Environmental Research under Contract FWP ERKP291, using facilities supported by the Office of Basic Energy Sciences, US Department of Energy. Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the US Department of Energy under Contract DE-AC05-00OR22725. D. Reeves was supported by a US Department of Energy Higher Education Research Experience internship managed by Oak Ridge Institute of Science and Education. C. Rempe was supported by a Department of Energy Science Undergraduate Laboratory Internship and Higher Education Research Experience internship managed by Oak Ridge Institute of Science and Education. NR 31 TC 1 Z9 1 U1 4 U2 18 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0032-0935 EI 1432-2048 J9 PLANTA JI Planta PD JUL PY 2015 VL 242 IS 1 BP 215 EP 222 DI 10.1007/s00425-015-2298-0 PG 8 WC Plant Sciences SC Plant Sciences GA CK8VG UT WOS:000356516800015 PM 25896375 ER PT J AU Green, MA Emery, K Hishikawa, Y Warta, W Dunlop, ED AF Green, Martin A. Emery, Keith Hishikawa, Yoshihiro Warta, Wilhelm Dunlop, Ewan D. TI Solar cell efficiency tables (version 46) SO PROGRESS IN PHOTOVOLTAICS LA English DT Article DE solar cell efficiency; photovoltaic efficiency; energy conversion efficiency ID CONVERSION EFFICIENCY; CONCENTRATOR; STABILITY AB Consolidated tables showing an extensive listing of the highest independently confirmed efficiencies for solar cells and modules are presented. Guidelines for inclusion of results into these tables are outlined, and new entries since January 2015 are reviewed. Copyright (c) 2015 John Wiley & Sons, Ltd. C1 [Green, Martin A.] Univ New S Wales, Australian Ctr Adv Photovolta, Sydney, NSW 2052, Australia. [Emery, Keith] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Hishikawa, Yoshihiro] Natl Inst Adv Ind Sci & Technol, Res Ctr Photovolta Technol RCPVT, Tsukuba, Ibaraki 3058568, Japan. [Warta, Wilhelm] Fraunhofer Inst Solar Energy Syst, Dept Solar Cells Mat & Technol, D-79110 Freiburg, Germany. [Dunlop, Ewan D.] Commiss European Communities, Joint Res Ctr, Inst Energy, Renewable Energy Unit, IT-21027 Ispra, VA, Italy. RP Green, MA (reprint author), Univ New S Wales, Sch Photovolta & Renewable Energy Engn, Sydney, NSW 2052, Australia. EM m.green@unsw.edu.au FU U.S. Department of Energy [DE-AC36-08-GO28308]; National Renewable Energy Laboratory FX The Australian Centre for Advanced Photovoltaics commenced operation in February 2013 with support from the Australian Government through the Australian Renewable Energy Agency (ARENA). The Australian Government does not accept responsibility for the views, information, or advice expressed herein. The work by K. Emery was supported by the U.S. Department of Energy under contract no. DE-AC36-08-GO28308 with the National Renewable Energy Laboratory. NR 46 TC 233 Z9 237 U1 27 U2 263 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1062-7995 EI 1099-159X J9 PROG PHOTOVOLTAICS JI Prog. Photovoltaics PD JUL PY 2015 VL 23 IS 7 BP 805 EP 812 DI 10.1002/pip.2637 PG 8 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA CK6WM UT WOS:000356369400001 ER PT J AU Teplin, CW Grover, S Chitu, A Limanov, A Chahal, M Im, J Amkreutz, D Gall, S Yoon, HP Lasalvia, V Stradins, P Jones, KM Norman, AG Young, DL Branz, HM Lee, BG AF Teplin, Charles W. Grover, Sachit Chitu, Adrian Limanov, Alexander Chahal, Monical Im, James Amkreutz, Daniel Gall, Stefan Yoon, Heayoung P. Lasalvia, Vincenzo Stradins, Paul Jones, Kim M. Norman, Andrew G. Young, David L. Branz, Howard M. Lee, Benjamin G. TI Comparison of thin epitaxial film silicon photovoltaics fabricated on monocrystalline and polycrystalline seed layers on glass SO PROGRESS IN PHOTOVOLTAICS LA English DT Article DE silicon; epitaxy ID SOLAR-CELLS; CRYSTAL SILICON; EFFICIENCY AB We fabricate thin epitaxial crystal silicon solar cells on display glass and fused silica substrates overcoated with a silicon seed layer. To confirm the quality of hot-wire chemical vapor deposition epitaxy, we grow a 2-mu m-thick absorber on a (100) monocrystalline Si layer transfer seed on display glass and achieve 6.5% efficiency with an open circuit voltage (V-OC) of 586mV without light-trapping features. This device enables the evaluation of seed layers on display glass. Using polycrystalline seeds formed from amorphous silicon by laser-induced mixed phase solidification (MPS) and electron beam crystallization, we demonstrate 2.9%, 476mV (MPS) and 4.1%, 551mV (electron beam crystallization) solar cells. Grain boundaries likely limit the solar cell grown on the MPS seed layer, and we establish an upper bound for the grain boundary recombination velocity (S-GB) of 1.6x10(4)cm/s. Copyright (c) 2014 John Wiley & Sons, Ltd. C1 [Teplin, Charles W.; Grover, Sachit; Lasalvia, Vincenzo; Stradins, Paul; Jones, Kim M.; Norman, Andrew G.; Young, David L.; Branz, Howard M.; Lee, Benjamin G.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Chitu, Adrian; Limanov, Alexander; Chahal, Monical; Im, James] Columbia Univ, New York, NY USA. [Amkreutz, Daniel; Gall, Stefan] Helmholtz Zentrum Berlin Mat & Energie, Berlin, Germany. [Yoon, Heayoung P.] NIST, Ctr Nanoscale Sci & Technol, Gaithersburg, MD 20899 USA. RP Teplin, CW (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM chazteplin@gmail.com RI Norman, Andrew/F-1859-2010 OI Norman, Andrew/0000-0001-6368-521X FU US Department of Energy Office of Energy Efficiency and Renewable Energy [DE-AC36-08GO28308]; University of Maryland [70NANB10H193]; National Institute of Standards and Technology Center for Nanoscale Science and Technology through the University of Maryland [70NANB10H193] FX We thank Ta-Ko Chang of Corning Inc. for supplying the layer transfer seeds on display glass (LT seed). Work at NREL was funded by the US Department of Energy Office of Energy Efficiency and Renewable Energy under Contract DE-AC36-08GO28308. We gratefully acknowledge Bill Nemeth for the amorphous silicon growth used to create the MPS seed layers. H. Yoon acknowledges support under the Cooperative Research Agreement between the University of Maryland and the National Institute of Standards and Technology Center for Nanoscale Science and Technology, Award 70NANB10H193, through the University of Maryland. NR 31 TC 4 Z9 4 U1 3 U2 17 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1062-7995 EI 1099-159X J9 PROG PHOTOVOLTAICS JI Prog. Photovoltaics PD JUL PY 2015 VL 23 IS 7 BP 909 EP 917 DI 10.1002/pip.2505 PG 9 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA CK6WM UT WOS:000356369400012 ER PT J AU Close, DW Paul, CD Langan, PS Wilce, MCJ Traore, DAK Halfmann, R Rocha, RC Waldo, GS Payne, RJ Rucker, JB Prescott, M Bradbury, ARM AF Close, Devin W. Paul, Craig Don Langan, Patricia S. Wilce, Matthew C. J. Traore, Daouda A. K. Halfmann, Randal Rocha, Reginaldo C. Waldo, Geoffery S. Payne, Riley J. Rucker, Joseph B. Prescott, Mark Bradbury, Andrew R. M. TI Thermal green protein, an extremely stable, nonaggregating fluorescent protein created by structure-guided surface engineering SO PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS LA English DT Article DE protein engineering; GFP structure; X-ray crystallography; thermal green protein; thermal stability; eCGP123; structure-guided mutagenesis ID ENTROPY REDUCTION; CRYSTAL-STRUCTURE; IN-VIVO; CRYSTALLIZATION; EXPRESSION; STABILITY; GFP; PURIFICATION; MUTAGENESIS; AGGREGATION AB In this article, we describe the engineering and X-ray crystal structure of Thermal Green Protein (TGP), an extremely stable, highly soluble, non-aggregating green fluorescent protein. TGP is a soluble variant of the fluorescent protein eCGP123, which despite being highly stable, has proven to be aggregation-prone. The X-ray crystal structure of eCGP123, also determined within the context of this paper, was used to carry out rational surface engineering to improve its solubility, leading to TGP. The approach involved simultaneously eliminating crystal lattice contacts while increasing the overall negative charge of the protein. Despite intentional disruption of lattice contacts and introduction of high entropy glutamate side chains, TGP crystallized readily in a number of different conditions and the X-ray crystal structure of TGP was determined to 1.9 angstrom resolution. The structural reasons for the enhanced stability of TGP and eCGP123 are discussed. We demonstrate the utility of using TGP as a fusion partner in various assays and significantly, in amyloid assays in which the standard fluorescent protein, EGFP, is undesirable because of aberrant oligomerization. Proteins 2015; 83:1225-1237. (c) 2014 Wiley Periodicals, Inc. C1 [Close, Devin W.; Langan, Patricia S.; Waldo, Geoffery S.; Bradbury, Andrew R. M.] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87545 USA. [Close, Devin W.; Rocha, Reginaldo C.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. [Paul, Craig Don; Wilce, Matthew C. J.; Traore, Daouda A. K.; Prescott, Mark] Monash Univ, Dept Biochem & Mol Biol, Melbourne, Vic 3004, Australia. [Halfmann, Randal] Univ Texas SW Med Ctr Dallas, Dept Biochem, Dallas, TX 75390 USA. [Payne, Riley J.; Rucker, Joseph B.] Integral Mol, Philadelphia, PA USA. RP Bradbury, ARM (reprint author), Los Alamos Natl Lab, Biosci Div, HRL 1 TA 43, Los Alamos, NM 87545 USA. EM amb@lanl.gov RI Langan, Paul/N-5237-2015; Traore, Daouda/B-5242-2013; OI Langan, Paul/0000-0002-0247-3122; Traore, Daouda/0000-0003-1001-4716; Halfmann, Randal/0000-0002-6592-1471; Bradbury, Andrew/0000-0002-5567-8172; Langan, Patricia/0000-0002-1097-5958 FU DTRA [CBS.MEDBIO.04.10.LA.008]; LANL LDRD-ER [20120449ER]; NIH Director's Early Independence Award [DP5-OD009152]; NIH Program Project Grant [GM063210] FX Grant sponsor: DTRA; Grant number: CBS.MEDBIO.04.10.LA.008; Grant sponsor: LANL LDRD-ER; Grant number: 20120449ER; Grant sponsor: NIH Director's Early Independence Award; Grant number: DP5-OD009152; Grant sponsor: NIH Program Project Grant; Grant number: GM063210. NR 71 TC 1 Z9 1 U1 1 U2 20 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0887-3585 EI 1097-0134 J9 PROTEINS JI Proteins PD JUL PY 2015 VL 83 IS 7 BP 1225 EP 1237 DI 10.1002/prot.24699 PG 13 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA CK7TI UT WOS:000356435500003 PM 25287913 ER PT J AU Jha, RK Chakraborti, S Kern, TL Fox, DT Strauss, CEM AF Jha, Ramesh K. Chakraborti, Subhendu Kern, Theresa L. Fox, David T. Strauss, Charlie E. M. TI Rosetta comparative modeling for library design: Engineering alternative inducer specificity in a transcription factor SO PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS LA English DT Article DE protein engineering; transcription factor; pobR; altered specificity; comparative modeling; ligand docking; BLOSUM62; Rosetta ID PROTEIN-STRUCTURE PREDICTION; COMPUTATIONAL DESIGN; EFFECTOR SPECIFICITY; ESCHERICHIA-COLI; BINDING PROTEINS; ACINETOBACTER; REGULATORS; DOCKING; GENE; GENERATION AB Structure-based rational mutagenesis for engineering protein functionality has been limited by the scarcity and difficulty of obtaining crystal structures of desired proteins. On the other hand, when high-throughput selection is possible, directed evolution-based approaches for gaining protein functionalities have been random and fortuitous with limited rationalization. We combine comparative modeling of dimer structures, ab initio loop reconstruction, and ligand docking to select positions for mutagenesis to create a library focused on the ligand-contacting residues. The rationally reduced library requirement enabled conservative control of the substitutions by oligonucleotide synthesis and bounding its size within practical transformation efficiencies (approximate to 10(7) variants). This rational approach was successfully applied on an inducer-binding domain of an Acinetobacter transcription factor (TF), pobR, which shows high specificity for natural effector molecule, 4-hydroxy benzoate (4HB), but no native response to 3,4-dihydroxy benzoate (34DHB). Selection for mutants with high transcriptional induction by 34DHB was carried out at the single-cell level under flow cytometry (via green fluorescent protein expression under the control of pobR promoter). Critically, this selection protocol allows both selection for induction and rejection of constitutively active mutants. In addition to gain-of-function for 34DHB induction, the selected mutants also showed enhanced sensitivity and response for 4HB (native inducer) while no sensitivity was observed for a non-targeted but chemically similar molecule, 2-hydroxy benzoate (2HB). This is unique application of the Rosetta modeling protocols for library design to engineer a TF. Our approach extends applicability of the Rosetta redesign protocol into regimes without a priori precision structural information. Proteins 2015; 83:1327-1340. (c) 2015 Wiley Periodicals, Inc. C1 [Jha, Ramesh K.; Chakraborti, Subhendu; Kern, Theresa L.; Fox, David T.; Strauss, Charlie E. M.] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87545 USA. RP Jha, RK (reprint author), Los Alamos Natl Lab, Biosci Div, POB 1663, Los Alamos, NM 87545 USA. EM rjha@lanl.gov; cems@lanl.gov OI Jha, Ramesh/0000-0001-5904-3441 FU Defense Threat Reduction Agency [CBCALL12-LS-6-0622]; LANL Institutional Computing [W11_Syn-Bio]; UC Lab Fees research program [118766] FX Grant sponsor: Defense Threat Reduction Agency; Grant number: CBCALL12-LS-6-0622; Grant sponsor: LANL Institutional Computing; Grant number: W11_Syn-Bio; Grant sponsor: UC Lab Fees research program; Grant number: 118766. NR 49 TC 8 Z9 8 U1 4 U2 17 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0887-3585 EI 1097-0134 J9 PROTEINS JI Proteins PD JUL PY 2015 VL 83 IS 7 BP 1327 EP 1340 DI 10.1002/prot.24828 PG 14 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA CK7TI UT WOS:000356435500012 PM 25974100 ER PT J AU Dobrescu, BA Lincoln, D AF Dobrescu, Bogdan A. Lincoln, Don TI MYSTERY OF THE HIDDEN COSMOS SO SCIENTIFIC AMERICAN LA English DT Article AB The beautiful spinning pinwheel of the andromeda galaxy, our celestial neighbor, poses a mystery. The breakneck speed of its rotation cannot be explained by applying the known laws of physics to the disk's visible matter. By rights, the gravity generated by the galaxy's apparent mass should cause the stars in the periphery to move more slowly than they actually do. If the visible matter was all there was, Andromeda, and nearly all such quickly rotating galaxies, simply should not exist. C1 [Dobrescu, Bogdan A.] Fermilab Natl Accelerator Lab, Theoret Particle Phys, Batavia, IL 60510 USA. [Lincoln, Don] Fermilab Natl Accelerator Lab, Batavia, IL USA. RP Dobrescu, BA (reprint author), Fermilab Natl Accelerator Lab, Theoret Particle Phys, POB 500, Batavia, IL 60510 USA. NR 0 TC 0 Z9 0 U1 1 U2 4 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 0036-8733 J9 SCI AM JI Sci.Am. PD JUL PY 2015 VL 313 IS 1 BP 32 EP 39 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CL0KY UT WOS:000356632800028 PM 26204713 ER PT J AU Perez, MJR Fthenakis, VM AF Perez, Marc J. R. Fthenakis, Vasilis M. TI On the spatial decorrelation of stochastic solar resource variability at long timescales SO SOLAR ENERGY LA English DT Article DE Correlation; Variability; Solar energy; Photovoltaics ID TERM IRRADIANCE VARIABILITY AB Understanding the spatial and temporal characteristics of solar resource variability is important because it helps inform the discussion surrounding the merits of geographic dispersion and subsequent electrical interconnection of photovoltaics as part of a portfolio of future solutions for coping with this variability. Unpredictable resource variability arising from the stochastic nature of meteorological phenomena (from the passage of clouds to the movement of weather systems) is of most concern for achieving high PV penetration because unlike the passage of seasons or the shift from day to night, the uncertainty makes planning a challenge. A suitable proxy for unpredictable solar resource variability at any given location is the series of variations in the clearness index from one time period to the next because the clearness index is largely independent of the predictable influence of solar geometry. At timescales shorter than one day, the correlation between these variations in clearness index at pairs of distinct geographic locations decreases with spatial extent and with timescale. As the aggregate variability across N decorrelated locations decreases as 1/root N, identifying the distance required to achieve this decorrelation is critical to quantifying the expected reduction in variability from geographic dispersion. Using 10 years of satellite-derived daily-interval solar resource data across the world, we demonstrate that the spatiotemporal behavior of unpredictable solar resource variability is mirrored at longer tirnescales. We do so by examining over 1.4 million unique pairs of sites across the Western hemisphere and quantifying the influence each pair's geographic separation and bearing has on the correlation between the variability of each pair's clearness indices at timescales of one, two, four, seven, fifteen and thirty days. Expected pair-decorrelation distances are estimated by fitting exponential trends to the data using nonlinear least-squares regression and are presented as a function of timescale and pair orientation. Reflecting the predominant direction in which meteorological phenomena propagate at each of these timescales, we find that pairs of sites require considerably shorter distances to decorrelate when they are oriented north to south versus when they are oriented east to west. As at shorter timescales, these decorrelation distances are shown to increase with both timescale and with geographic extent. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Perez, Marc J. R.; Fthenakis, Vasilis M.] Columbia Univ, New York, NY 10025 USA. [Fthenakis, Vasilis M.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Perez, MJR (reprint author), Columbia Univ, New York, NY 10025 USA. EM mjp2167@columbia.edu FU National Science Foundation [DGE 1144155] FX This work is based upon work supported by the National Science Foundation Graduate Research Fellowship Grant No. DGE 1144155. Resources from Columbia University's Center for Life Cycle Analysis and from the Columbia University Fu Foundation of Engineering and Applied Science Eggleston Doctoral Research Fellows' program were instrumental in the success of this research. In addition, solar radiation data used herein were obtained from the NASA Langley Research Center Atmospheric Science Data Center. NR 32 TC 2 Z9 2 U1 0 U2 4 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0038-092X J9 SOL ENERGY JI Sol. Energy PD JUL PY 2015 VL 117 BP 46 EP 58 DI 10.1016/j.solener.2015.04.020 PG 13 WC Energy & Fuels SC Energy & Fuels GA CK9IV UT WOS:000356554700005 ER PT J AU Dong, MR Oropeza, D Chirinos, J Gonzalez, JJ Lu, JD Mao, XL Russo, RE AF Dong, Meirong Oropeza, Dayana Chirinos, Jose Gonzalez, Jhanis J. Lu, Jidong Mao, Xianglei Russo, Richard E. TI Elemental analysis of coal by tandem laser induced breakdown spectroscopy and laser ablation inductively coupled plasma time of flight mass spectrometry SO SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY LA English DT Article DE Laser ablation; Laser-induce breakdown spectroscopy; Inductively coupled plasma mass spectrometry; Coal analysis; Tandem ID MOLECULAR ISOTOPIC SPECTROMETRY; LIBS; SPECTROCHEMISTRY; SAMPLES; STEEL AB The capabilities and analytical benefits of combined LIBS and LA-ICP-MS were evaluated for the analysis of coal samples. The ablation system consisted of a Nd:YAG laser operated 213 nm. A Czerny-turner spectrograph with ICCD detector and time-of-flight based mass spectrometer were utilized for LIBS and ICP-MS detection, respectively. This tandem approach allows simultaneous determination of major and minor elements (C, Si, Ca, Al, Mg), and trace elements (V, Ba, Pb, U, etc.) in the coal samples. The research focused on calibration strategies, specifically the use of univariate and multivariate data analysis on analytical performance. Partial least square regression (PLSR) was shown to minimize and compensate for matrix effects in the emission and mass spectra improving quantitative analysis by LIBS and LA-ICP-MS, respectively. The correlation between measurements from these two techniques demonstrated that mass spectral data combined with LIBS emission measurements by PLSR improved the accuracy and precision for quantitative analysis of trace elements in coal. (C) 2015 Elsevier B.V. All rights reserved. C1 [Dong, Meirong; Lu, Jidong] S China Univ Technol, Sch Elect Power, Guangzhou 510640, Guangdong, Peoples R China. [Dong, Meirong; Oropeza, Dayana; Chirinos, Jose; Gonzalez, Jhanis J.; Mao, Xianglei; Russo, Richard E.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Chirinos, Jose] Cent Univ Venezuela, Fac Ciencias, Escuela Quim, Caracas 1041A, Venezuela. RP Russo, RE (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM RERusso@lbl.gov FU Office of Basic Energy Sciences of the U.S. Department of Energy under the Lawrence Berkeley National Laboratory [DE-AC02-05CH11231]; National Natural Science Foundation of China [51476061, 51406059]; Foundation of State Key Laboratory of Coal Combustion [FSKLCCA1509]; State Key Laboratory of Silicate Materials for Architectures [SYSJJ2014-01]; Guangdong Province Key Laboratory of Efficient and Clean Energy Utilization [2013A061401005]; Key Laboratory of Efficient and Clean Energy Utilization of Guangdong Higher Education Institutes [KLB10004]; Defense Nuclear Nonproliferation Research and Development Office of the U.S. Department of Energy under the Lawrence Berkeley National Laboratory [DE-AC02-05CH11231]; Chemical Science Division of the U.S. Department of Energy under the Lawrence Berkeley National Laboratory [DE-AC02-05CH11231] FX The research was supported by the Office of Basic Energy Sciences (DE-AC02-05CH11231), Chemical Science Division and the Defense Nuclear Nonproliferation Research and Development Office of the U.S. Department of Energy under contract number DE-AC02-05CH11231 at the Lawrence Berkeley National Laboratory. Meirong Dong and Jidong Lu also acknowledge the supports from National Natural Science Foundation of China (No. 51476061 and 51406059), the Foundation of State Key Laboratory of Coal Combustion (No. FSKLCCA1509) and State Key Laboratory of Silicate Materials for Architectures (No. SYSJJ2014-01), Guangdong Province Key Laboratory of Efficient and Clean Energy Utilization (No. 2013A061401005) and Key Laboratory of Efficient and Clean Energy Utilization of Guangdong Higher Education Institutes (No. KLB10004). NR 37 TC 8 Z9 8 U1 7 U2 28 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0584-8547 J9 SPECTROCHIM ACTA B JI Spectroc. Acta Pt. B-Atom. Spectr. PD JUL 1 PY 2015 VL 109 BP 44 EP 50 DI 10.1016/j.sab.2015.04.008 PG 7 WC Spectroscopy SC Spectroscopy GA CL1XZ UT WOS:000356739500007 ER PT J AU Arenal, R Lopez-Bezanilla, A AF Arenal, Raul Lopez-Bezanilla, Alejandro TI Boron nitride materials: an overview from 0D to 3D (nano)structures SO WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE LA English DT Article ID ELECTRON-IRRADIATION; CARBON NANOTUBES; PHASE-DIAGRAM; BN-NANOTUBES; STABILITY; GRAPHENE; LAYER AB Boron nitride (BN) materials present different crystalline phases including fullerene-like (0D), nanotubes (1D, NTs), hexagonal (2D, h-BN), and cubic (3D) structures. These materials show a rich variety of physical and chemical properties with multiple potential applications in industry, science, and technology, especially in the fields of nano-electronics, optoelectronics, field emission, and lubrication in extreme conditions of temperature. BN compounds are chemically and thermally very stable and resistant to oxidation. The large electronic band gap confers to BN compounds complementary electronic properties to the C allotropes with similar structure. The combination of BN and C materials forming heterostructures has gained an increasing importance in the nano-sciences. In particular, heterostructures combining graphene with mono- and multi-layer h-BN, or C- with BN-nanotubes are the object of intensive study in nano-sciences due to their unique electronic properties. Applications based on BN structures have created great expectations and offer enormous possibilities in the next generation of electronic devices. However, the massive production of high-quality defect-free BN materials is still an experimental challenge. (C) 2015 John Wiley & Sons, Ltd. C1 [Arenal, Raul] Univ Zaragoza, INA, LMA, Zaragoza, Spain. [Arenal, Raul] ARAID Fdn, Zaragoza, Spain. [Lopez-Bezanilla, Alejandro] Argonne Natl Lab, Mat Sci Div, Lemont, IL USA. RP Arenal, R (reprint author), Univ Zaragoza, INA, LMA, Zaragoza, Spain. EM arenal@unizar.es RI Arenal, Raul/D-2065-2009; Lopez-Bezanilla, Alejandro/B-9125-2015 OI Arenal, Raul/0000-0002-2071-9093; Lopez-Bezanilla, Alejandro/0000-0002-4142-2360 FU Spanish Ministerio de Economia y Competitividad [FIS2013-46159-C3-3-P]; European Union Seventh Framework Program [312483-ESTEEM2, 604391]; DOE-BES [DE-AC02-06CH11357] FX R.A. acknowledges funding from the Spanish Ministerio de Economia y Competitividad (FIS2013-46159-C3-3-P). The research leading to these results has received funding from the European Union Seventh Framework Program under Grant Agreement 312483-ESTEEM2 (Integrated Infrastructure Initiative-I3) and under Grant Agreement 604391 Graphene Flagship. Work at Argonne is supported by DOE-BES under Contract No. DE-AC02-06CH11357. NR 57 TC 6 Z9 6 U1 17 U2 98 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1759-0876 EI 1759-0884 J9 WIRES COMPUT MOL SCI JI Wiley Interdiscip. Rev.-Comput. Mol. Sci. PD JUL-AUG PY 2015 VL 5 IS 4 BP 299 EP 309 DI 10.1002/wcms.1219 PG 11 WC Chemistry, Multidisciplinary; Mathematical & Computational Biology SC Chemistry; Mathematical & Computational Biology GA CL0CF UT WOS:000356605600001 ER PT J AU Whitehouse, GR Sibilia, MJ Bilanin, AJ Veers, P AF Whitehouse, Glen R. Sibilia, Marc J. Bilanin, Alan J. Veers, Paul TI Variable geometry wind turbine for performance enhancement, improved survivability and reduced cost of energy SO WIND ENERGY LA English DT Article DE variable geometry; VAWT; offshore; wind turbine; furling; active control; optimization; VG-VAWT AB The conceptual design and proof-of-concept testing of a furling vertical axis wind turbine, suited to large-scale offshore deployment, is described. Through the implementation of variable geometry capabilities, extreme storm loads can be reduced, and unsteady flow-related fatigue loads can be minimized thereby reducing capital (structural) and maintenance costs. Moreover, annual power generation can be optimized in real-time to account for unsteady wind effects related to weather and siting thus improving efficiency and annual power generation. Copyright (c) 2014 John Wiley & Sons, Ltd. C1 [Whitehouse, Glen R.; Sibilia, Marc J.; Bilanin, Alan J.] Continuum Dynam Inc, Ewing, NJ 08618 USA. [Veers, Paul] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Whitehouse, GR (reprint author), Continuum Dynam Inc, Ewing, NJ 08618 USA. EM glen@continuum-dynamics.com OI Whitehouse, Glen/0000-0002-6289-499X NR 16 TC 2 Z9 2 U1 2 U2 13 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1095-4244 EI 1099-1824 J9 WIND ENERGY JI Wind Energy PD JUL PY 2015 VL 18 IS 7 BP 1303 EP 1311 DI 10.1002/we.1764 PG 9 WC Energy & Fuels; Engineering, Mechanical SC Energy & Fuels; Engineering GA CL1BV UT WOS:000356678400010 ER PT J AU Fan, RH Peng, RW Huang, XR Wang, M AF Fan, Ren-Hao Peng, Ru-Wen Huang, Xian-Rong Wang, Mu TI Making structured metals transparent for ultrabroadband electromagnetic waves and acoustic waves SO ANNALS OF PHYSICS LA English DT Article DE Transparent structured metals; Broadband metamaterials; Transmission of electromagnetic waves and acoustic waves ID EXTRAORDINARY OPTICAL-TRANSMISSION; SUBWAVELENGTH OPTICS; SOLAR-CELLS; METAMATERIAL; EFFICIENCY; REFRACTION; NANOWIRE; FIELDS; ARRAYS; INDEX AB In this review, we present our recent work on making structured metals transparent for broadband electromagnetic waves and acoustic waves via excitation of surface waves. First, we theoretically show that one-dimensional metallic gratings can become transparent and completely antireflective for extremely broadband electromagnetic waves by relying on surface plasmons or spoof surface plasmons. Second, we experimentally demonstrate that metallic gratings with narrow slits are highly transparent for broadband terahertz waves at oblique incidence and high transmission efficiency is insensitive to the metal thickness. Further, we significantly develop oblique metal gratings transparent for broadband electromagnetic waves (including optical waves and terahertz ones) under normal incidence. In the third, we find the principles of broadband transparency for structured metals can be extended from one-dimensional metallic gratings to two-dimensional cases. Moreover, similar phenomena are found in sonic artificially metallic structures, which present the transparency for broadband acoustic waves. These investigations provide guidelines to develop many novel materials and devices, such as transparent conducting panels, antireflective solar cells, and other broadband metamaterials and stealth technologies. (C) 2015 Elsevier Inc. All rights reserved. C1 [Fan, Ren-Hao; Peng, Ru-Wen; Wang, Mu] Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Natl Lab Solid State Microstruct, Nanjing 210093, Jiangsu, Peoples R China. [Fan, Ren-Hao; Peng, Ru-Wen; Wang, Mu] Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Sch Phys, Nanjing 210093, Jiangsu, Peoples R China. [Huang, Xian-Rong] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Peng, RW (reprint author), Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Natl Lab Solid State Microstruct, Nanjing 210093, Jiangsu, Peoples R China. EM rwpeng@nju.edu.cn FU Ministry of Science and Technology of China [2012CB921502, 2010CB630705]; National Natural Science Foundation of China [11034005, 61475070, 11474157] FX This work was supported by the Ministry of Science and Technology of China (Grant Nos. 2012CB921502 and 2010CB630705), and the National Natural Science Foundation of China (Grant Nos. 11034005, 61475070, and 11474157). NR 57 TC 0 Z9 0 U1 9 U2 53 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0003-4916 EI 1096-035X J9 ANN PHYS-NEW YORK JI Ann. Phys. PD JUL PY 2015 VL 358 BP 5 EP 19 DI 10.1016/j.aop.2014.12.029 PG 15 WC Physics, Multidisciplinary SC Physics GA CK3GK UT WOS:000356104400002 ER PT J AU Xu, T Li, YC Shi, Z Hemme, CL Li, Y Zhu, YH Van Nostrand, JD He, ZL Zhou, JZ AF Xu, Tao Li, Yongchao Shi, Zhou Hemme, Christopher L. Li, Yuan Zhu, Yonghua Van Nostrand, Joy D. He, Zhili Zhou, Jizhong TI Efficient Genome Editing in Clostridium cellulolyticum via CRISPR-Cas9 Nickase SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID SEQUENCE-SPECIFIC ANTIMICROBIALS; HOMOLOGOUS RECOMBINATION; ESCHERICHIA-COLI; CAS SYSTEMS; HUMAN-CELLS; GUIDE RNA; DNA; NUCLEASES; TRANSFORMATION; ENDONUCLEASE AB The CRISPR-Cas9 system is a powerful and revolutionary genome-editing tool for eukaryotic genomes, but its use in bacterial genomes is very limited. Here, we investigated the use of the Streptococcus pyogenes CRISPR-Cas9 system in editing the genome of Clostridium cellulolyticum, a model microorganism for bioenergy research. Wild-type Cas9-induced double-strand breaks were lethal to C. cellulolyticum due to the minimal expression of nonhomologous end joining (NHEJ) components in this strain. To circumvent this lethality, Cas9 nickase was applied to develop a single-nick-triggered homologous recombination strategy, which allows precise one-step editing at intended genomic loci by transforming a single vector. This strategy has a high editing efficiency (>95%) even using short homologous arms (0.2 kb), is able to deliver foreign genes into the genome in a single step without a marker, enables precise editing even at two very similar target sites differing by two bases preceding the seed region, and has a very high target site density (median interval distance of 9 bp and 95.7% gene coverage in C. cellulolyticum). Together, these results establish a simple and robust methodology for genome editing in NHEJ-ineffective prokaryotes. C1 [Xu, Tao; Li, Yongchao; Shi, Zhou; Hemme, Christopher L.; Li, Yuan; Van Nostrand, Joy D.; He, Zhili; Zhou, Jizhong] Univ Oklahoma, Inst Environm Genom, Norman, OK 73019 USA. [Xu, Tao; Li, Yongchao; Shi, Zhou; Hemme, Christopher L.; Li, Yuan; Van Nostrand, Joy D.; He, Zhili; Zhou, Jizhong] Univ Oklahoma, Dept Microbiol & Plant Biol, Norman, OK 73019 USA. [Zhu, Yonghua] Hunan Univ, Coll Biol, Changsha, Hunan, Peoples R China. [Zhou, Jizhong] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Zhou, Jizhong] Tsinghua Univ, Sch Environm, State Key Joint Lab Environm Simulat & Pollut Con, Beijing 100084, Peoples R China. RP Zhou, JZ (reprint author), Univ Oklahoma, Inst Environm Genom, Norman, OK 73019 USA. EM jzhou@ou.edu RI Van Nostrand, Joy/F-1740-2016 OI Van Nostrand, Joy/0000-0001-9548-6450 FU NSF EPSCoR award [EPS 0814361]; Office of the Vice President for Research at the University of Oklahoma; Collaborative Innovation Center for Regional Environmental Quality FX This work was supported by the NSF EPSCoR award EPS 0814361, by the Office of the Vice President for Research at the University of Oklahoma, and by the Collaborative Innovation Center for Regional Environmental Quality. NR 52 TC 33 Z9 33 U1 8 U2 67 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 EI 1098-5336 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD JUL PY 2015 VL 81 IS 13 BP 4423 EP 4431 DI 10.1128/AEM.00873-15 PG 9 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA CJ9TC UT WOS:000355844800020 PM 25911483 ER PT J AU Benedict, JC Smith, SY Collinson, ME Leong-Skornickova, J Specht, CD Fife, JL Marone, F Xiao, XH Parkinson, DY AF Benedict, John C. Smith, Selena Y. Collinson, Margaret E. Leong-Skornickova, Jana Specht, Chelsea D. Fife, Julie L. Marone, Federica Xiao, Xianghui Parkinson, Dilworth Y. TI Evolutionary significance of seed structure in Alpinioideae (Zingiberaceae) SO BOTANICAL JOURNAL OF THE LINNEAN SOCIETY LA English DT Article DE chalaza; chalazal chamber; embryo; mesotesta; micropyle; operculum; seed; Spirematospermum; synchrotron-based X-ray tomographic microscopy (SRXTM); testa ID SP-NOV; PHYLOGENY; ANATOMY; GENUS; CLASSIFICATION; MORPHOLOGY; GINGERS; OVULE; DNA AB Alpinioideae is the largest of the four subfamilies of Zingiberaceae and is widely distributed throughout the New and Old World tropics. Recent molecular studies have shown that, although Alpinioideae is a strongly supported monophyletic subfamily with two distinct tribes (Alpinieae and Riedelieae), large genera, such as Alpinia and Amomum, are polyphyletic and are in need of revision. Alpinia and Amomum have been shown to form seven and three distinct clades, respectively, but, for many of these clades, traditional vegetative and floral synapomorphies have not been found. A broad survey of seeds in Alpinioideae using light microscopy and synchrotron-based X-ray tomographic microscopy has shown that many clades have distinctive seed structures that serve as distinctive apomorphies. Tribes Riedelieae and Alpinieae can be distinguished on the basis of operculum structure, with the exception of three taxa analysed. The most significant seed characters were found to be various modifications of the micropylar and chalazal ends, the cell shape of the endotesta and exotesta, and the location of an endotestal gap. A chalazal chamber and hilar rim are reported for the first time in Zingiberaceae. In addition to characterizing clades of extant lineages, these data offer insights into the taxonomic placement of many fossil zingiberalean seeds that are critical to understanding the origin and evolution of Alpinioideae and Zingiberales as a whole.(c) 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 178, 441-466.. C1 [Benedict, John C.; Smith, Selena Y.] Univ Michigan, Dept Earth & Environm Sci, Ann Arbor, MI 48109 USA. [Smith, Selena Y.] Univ Michigan, Museum Paleontol, Ann Arbor, MI 48109 USA. [Collinson, Margaret E.] Univ London, Dept Earth Sci, Egham TW20 0EX, Surrey, England. [Leong-Skornickova, Jana] Singapore Bot Gardens, Singapore 259569, Singapore. [Specht, Chelsea D.] Univ Calif Berkeley, Dept Plant & Microbial Biol, Berkeley, CA 94720 USA. [Specht, Chelsea D.] Univ Calif Berkeley, Univ & Jepson Herbaria, Berkeley, CA 94720 USA. [Fife, Julie L.; Marone, Federica] Paul Scherrer Inst, Swiss Light Source, CH-5232 Villigen, Switzerland. [Xiao, Xianghui] Argonne Natl Labs, Adv Photon Source, Argonne, IL 60439 USA. [Parkinson, Dilworth Y.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Benedict, JC (reprint author), Univ Michigan, Dept Earth & Environm Sci, Ann Arbor, MI 48109 USA. EM jcbenedi@umich.edu RI Marone, Federica/J-4420-2013; Smith, Selena/I-6259-2012 OI Smith, Selena/0000-0002-5923-0404 FU Heliconia Society International award; Integrated Infrastructure Initiative (I3) on Synchrotrons; FELs through SLS; National Science Foundation [DEB 1257080, 1257701]; National Parks Board, Singapore; Czech Science Foundation [GACR P506-14-13541S]; Michigan Society; DOE Office of Science [DE-AC02-06CH11357]; Office of Science, Office of Basic Energy Sciences, of the US Department of Energy [DE-AC02-05CH11231]; European Community [312284] FX The authors would like to thank A. Reznicek (MICH), W. J. Kress, I. Lopez and J. Wen (US), W. Friedrich (Aarhus University) and J. Kallunki and S. Sylva (NY) for facilitating access to material that formed part of this study, M. Andrew, G. Benson-Martin, S. Brown, J. Defontes, J. Dorey, S. Joomun, S. Little, A. Pineyro, S. McKechnie, K. Morioka, M. Ng, B. Robson, N. Sheldon and R. Yockteng for help at the beamlines, and G. Hodges and L. Tomlin for help with seed photography. Funding was provided from the Heliconia Society International award (J.C.B), Integrated Infrastructure Initiative (I3) on Synchrotrons and FELs through SLS to M.E.C. and S.Y.S., and National Science Foundation grants DEB 1257080 (S.Y.S.) and 1257701 (C.D.S.). The research of J. L. S. is supported by National Parks Board, Singapore and the Czech Science Foundation, GACR P506-14-13541S. S.Y.S. completed part of this study during the tenure of a fellowship from the Michigan Society of Fellows, which is gratefully acknowledged. A portion of this work was included in the PhD dissertation of J.C.B. mentored by K. B. Pigg, whom J.C.B. would like to thank. This research used resources of the Advanced Photon Source, a US Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under Contract No. DE-AC02-05CH11231. The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement no 312284 (CALIPSO). NR 57 TC 4 Z9 4 U1 1 U2 19 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0024-4074 EI 1095-8339 J9 BOT J LINN SOC JI Bot. J. Linnean Soc. PD JUL PY 2015 VL 178 IS 3 SI SI BP 441 EP 466 DI 10.1111/boj.12257 PG 26 WC Plant Sciences SC Plant Sciences GA CK2XV UT WOS:000356079500006 ER PT J AU Burke, U Pitz, WJ Curran, HJ AF Burke, Ultan Pitz, William J. Curran, Henry J. TI Experimental and kinetic modeling study of the shock tube ignition of a large oxygenated fuel: Tri-propylene glycol mono-methyl ether SO COMBUSTION AND FLAME LA English DT Article DE TPGME; Oxygenated fuel; Chemical kinetic modeling; Shock-tube ignition ID DIMETHYL ETHER; FLOW REACTORS; CHEMICAL-KINETICS; RADICALS; OXIDATION; ABSTRACTION; COMBUSTION; MIXTURES; PROPENE AB Tri-propylene glycol monomethyl ether (TPGME) is an important oxygenated fuel additive that can be used to reduce soot in diesel engines. However, a validated chemical kinetic model that incorporates the low- to high-temperature chemistry, needed to simulate ignition in a diesel engine is not available for TPGME. In addition, no fundamental experimental data are available that can be used to validate a TPGME mechanism. In this study, a surrogate chemical kinetic model for TPGME that includes low- and high-temperature chemistry has been developed, and shock tube ignition delay time data has been acquired for its validation at 0.25% TPGME for temperatures in the range of 980-1545 K, at pressures of 10 and 20 atm, and at equivalence ratios of phi = 0.5, 1.0 and 2.0. The predictions from the model have been compared to the experimental measurements with good agreement. Under the experimental conditions investigated in the shock tube, TPGME was found to be consumed by molecular elimination reactions and also H-atom abstraction by (H)over dot atoms and by (O)over dotH and H(O)over dot(2) radicals. In performing sensitivity analyses it was found that the ignition of TPGME is most sensitive to reactions involving propene. Considering how the sensitivity analyses change with pressure, the most sensitive reactions involved (H)over dot atoms at 10 atm and H(O)over dot(2) radicals at 20 atm. With respect to the effect of equivalence ratio, reactions involving (H)over dot atoms are relatively more sensitive under fuel-rich conditions while those involving H(O)over dot(2) radicals are relatively more sensitive under fuel-lean conditions. Further experimental work is needed to enable validation of the model under low-temperature conditions. TPGME was compared to n-heptane which has similar ignition properties based on Cetane Number. Predictions showed that TPGME has a higher overall reactivity compared to n-heptane. In addition, TPGME is shown to produce significantly less soot precursor species when TPGME predictions are compared to n-heptane. (C) 2015 The Combustion Institute. Published by Elsevier Inc. All rights reserved. C1 [Burke, Ultan; Curran, Henry J.] NUI Galway, Sch Chem, Combust Chem Ctr, Galway, Ireland. [Pitz, William J.] Lawrence Livermore Natl Lab, Livermore, CA USA. RP Burke, U (reprint author), Rhein Westfal TH Aachen, Schinkelstr 8, D-52062 Aachen, Germany. EM burke@pcfc.rwth-aachen.de OI Curran, Henry/0000-0002-5124-8562 FU U.S. Department of Energy, Vehicle Technologies Office; US Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Irish Research Council; Department of Energy [DE-EE0005386] FX The authors thank Dr. Eric Kurtz for helpful discussions and Dr. Jim Anderson for providing the treated fuel samples. The authors also thank Dr. Matt McNenly for help with the sensitivity calculations. The work at LLNL was supported by the U.S. Department of Energy, Vehicle Technologies Office (program manager Kevin Stork) and performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. U. Burke and Prof. H.J. Curran would like to acknowledge funding from the Irish Research Council. This material is based upon work supported by the Department of Energy under Award Number DE-EE0005386. NR 38 TC 2 Z9 2 U1 5 U2 24 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0010-2180 EI 1556-2921 J9 COMBUST FLAME JI Combust. Flame PD JUL PY 2015 VL 162 IS 7 BP 2916 EP 2927 DI 10.1016/j.combustflame.2015.03.012 PG 12 WC Thermodynamics; Energy & Fuels; Engineering, Multidisciplinary; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA CK2GK UT WOS:000356028600014 ER PT J AU Nielsen, BC Dogan, ON Howard, BH AF Nielsen, Benjamin C. Dogan, Omer N. Howard, Bret H. TI Effect of temperature on the corrosion of Cu-Pd hydrogen separation membrane alloys in simulated syngas containing H2S SO CORROSION SCIENCE LA English DT Article DE Alloy; Copper; SEM; XRD; High temperature corrosion; Sulfidation ID SURFACE SEGREGATION; SULFIDE; PERMEANCE AB The resistance to sulfidation of hydrogen separation membranes was examined by exposing Pd, Cu, and four Cu-Pd alloys to simulated syngas containing H2S at four different temperatures. The mass change of the samples was determined and the exposed surfaces were characterized by SEM/EDS and XRD. The binary alloys showed much better corrosion resistance than the pure metals at all temperatures. The binary alloys showed a trend reversal, with the high Pd alloys gaining the most mass at the lower temperatures due to sulfidation, while the high Cu alloys gained the most mass at the higher temperatures due to oxidation. Published by Elsevier Ltd. C1 [Nielsen, Benjamin C.; Dogan, Omer N.] US DOE, Natl Energy Technol Lab, Albany, OR 97321 USA. [Nielsen, Benjamin C.] URS Corp, Albany, OR 97321 USA. [Howard, Bret H.] US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. RP Dogan, ON (reprint author), US DOE, Natl Energy Technol Lab, 1450 Queen Ave SW, Albany, OR 97321 USA. EM Omer.Dogan@netl.doe.gov FU RES contract [DE-FE-0004000] FX This work was part of the Coal-Biomass to Liquids Program at NETL, managed by Jenny Tennant. The Research was executed through the NETL Office of Research and Development's Fuels Field Work Proposal (Dirk Link, Technical Coordinator). Research performed by URS Staff was conducted under the RES contract DE-FE-0004000. The authors also wish to thank Joe Tylczak for the use of the SECERF facility at NETL for performing the exposure tests, Dr. Michael Gao for performing the activity calculations, Paul Danielson for metallographic preparation of samples, and David Smith and Richard Chinn for XRD analysis. NR 31 TC 2 Z9 2 U1 3 U2 18 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0010-938X EI 1879-0496 J9 CORROS SCI JI Corrosion Sci. PD JUL PY 2015 VL 96 BP 74 EP 86 DI 10.1016/j.corsci.2015.03.017 PG 13 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA CK3MZ UT WOS:000356121500009 ER PT J AU Cao, FY Shi, ZM Song, GL Liu, M Dargusch, MS Atrens, A AF Cao, Fuyong Shi, Zhiming Song, Guang-Ling Liu, Ming Dargusch, Matthew S. Atrens, Andrej TI Stress corrosion cracking of several solution heat-treated Mg-X alloys SO CORROSION SCIENCE LA English DT Article DE Magnesium; SEM; Hydrogen embrittlement; Stress corrosion ID MAGNESIUM ALLOYS; AL ALLOYS; HYDROGEN EMBRITTLEMENT; SCC; STEELS; PROPAGATION; MECHANISMS; INITIATION; WATER AB The stress corrosion cracking (SCC) behaviour of solution heat-treated as-cast Mg0.1Zr, Mg1Mn, Mg0.1Sr, Mg0.3Si, Mg5Sn, Mg5Zn and Mg0.3Ca in distilled water (DW) was studied using the linearly increasing stress test (LIST). SCC susceptibility was related to the stress rate for all the Mg-X alloys except for Mg0.1Sr. At similar to 7.0 x 10(-4) MPa s(-1), Mg0.3Si and Mg5Sn were immune to SCC; Mg0.1Zr, Mg1Mn and Mg0.1Sr suffered medium SCC; Mg5Zn and Mg0.3Ca suffered relatively more serious SCC. At similar to 7.0 x 10(-5) MPa s(-1), Mg5Zn and Mg0.3Ca suffered the most serious transgranular SCC, whilst the other Mg-X alloys suffered medium SCC. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Cao, Fuyong; Shi, Zhiming; Song, Guang-Ling; Dargusch, Matthew S.; Atrens, Andrej] Univ Queensland, Sch Mech & Min Engn, Mat Engn, Brisbane, Qld 4072, Australia. [Shi, Zhiming; Dargusch, Matthew S.] Univ Queensland, Ctr Adv Mat Proc & Mfg AMPAM, Brisbane, Qld 4072, Australia. [Song, Guang-Ling] Oak Ridge Natl Lab, Corros Sci & Technol, Oak Ridge, TN 37831 USA. [Liu, Ming] GM China Sci Lab, Shanghai 201206, Peoples R China. RP Atrens, A (reprint author), Univ Queensland, Sch Mech & Min Engn, Mat Engn, Brisbane, Qld 4072, Australia. EM Andrejs.Atrens@uq.edu.au RI Song, Guang-Ling/D-9540-2013; Atrens, Andrejs/I-5850-2013; OI Song, Guang-Ling/0000-0002-9802-6836; Atrens, Andrejs/0000-0003-0671-4082; Dargusch, Matthew/0000-0003-4336-5811 FU Australian Research Council Centre of Excellence, Design of Light Alloys [CE0561574]; GM Global Research and Development; China Scholarship Council under State Scholarship Fund FX This research was supported by the Australian Research Council Centre of Excellence, Design of Light Alloys CE0561574 and GM Global Research and Development. Thanks to the China Scholarship Council to provide a scholarship under the State Scholarship Fund to Fuyong Cao. The authors acknowledge the facilities, and the scientific and technical assistance, of the Australian Microscopy & Microanalysis Research Facility at the Centre for Microscopy & Microanalysis, The University of Queensland. NR 41 TC 4 Z9 4 U1 5 U2 18 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0010-938X EI 1879-0496 J9 CORROS SCI JI Corrosion Sci. PD JUL PY 2015 VL 96 BP 121 EP 132 DI 10.1016/j.corsci.2015.04.010 PG 12 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA CK3MZ UT WOS:000356121500013 ER PT J AU Sarrate, J Staten, M AF Sarrate, J. Staten, M. TI Special Issue: 22nd International Meshing Roundtable: Mesh Modeling for Simulations and Visualization Preface SO ENGINEERING WITH COMPUTERS LA English DT Editorial Material C1 [Sarrate, J.] Univ Politecn Cataluna, Lab Calcul Numer LaCaN, Barcelona, Spain. [Staten, M.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Sarrate, J (reprint author), Univ Politecn Cataluna, Lab Calcul Numer LaCaN, Barcelona, Spain. EM jose.sarrate@upc.edu; mlstate@sandia.gov RI sarrate, Jose/D-1906-2012; OI Sarrate, Jose/0000-0003-0182-934X NR 0 TC 0 Z9 0 U1 1 U2 3 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0177-0667 EI 1435-5663 J9 ENG COMPUT-GERMANY JI Eng. Comput. PD JUL PY 2015 VL 31 IS 3 SI SI BP 387 EP 387 DI 10.1007/s00366-015-0403-4 PG 1 WC Computer Science, Interdisciplinary Applications; Engineering, Mechanical SC Computer Science; Engineering GA CK2NK UT WOS:000356047300001 ER PT J AU Dyedov, V Ray, N Einstein, D Jiao, XM Tautges, TJ AF Dyedov, Vladimir Ray, Navamita Einstein, Daniel Jiao, Xiangmin Tautges, Timothy J. TI AHF: array-based half-facet data structure for mixed-dimensional and non-manifold meshes SO ENGINEERING WITH COMPUTERS LA English DT Article; Proceedings Paper CT 22nd International Meshing Roundtable Conference CY OCT 13-16, 2013 CL Orlando, FL DE Mesh generation; Data structure; Non-manifold; Mixed-dimensional meshes; Sibling half-facets; MATLAB ID LIBRARY AB We present an Array-based Half-Facet mesh data structure, or AHF, for efficient mesh query and modification operations. The AHF extends the compact array-based half-edge and half-face data structures (T. J. Alumbaugh and X. Jiao, Compact array-based mesh data structures, IMR, 2005) to support mixed-dimensional and non-manifold meshes. The design goals of our data structure include generality to support such meshes, efficiency of neighborhood queries and mesh modification, compactness of memory footprint, and facilitation of interoperability of mesh-based application codes. To accomplish these goals, our data structure uses sibling half-facets as a core abstraction, coupled with other explicit and implicit representations of entities. A unique feature of our data structure is a comprehensive implementation in MATLAB, which allows rapid prototyping, debugging, testing, and deployment of meshing algorithms and other mesh-based numerical methods. We have also developed a C++ implementation built on top of MOAB (T.J. Tautges, R. Meyers, and K. Merkley, MOAB: A Mesh-Oriented Database, Sandia National Laboratories, 2004). We present some comparisons of the memory requirements and computational costs, and also demonstrate its effectiveness with a few sample applications. C1 [Dyedov, Vladimir; Ray, Navamita; Jiao, Xiangmin] SUNY Stony Brook, Dept Appl Math & Stat, Stony Brook, NY 11794 USA. [Ray, Navamita; Tautges, Timothy J.] Argonne Natl Lab, Math & Comp Sci, Argonne, IL 60439 USA. [Einstein, Daniel] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. RP Jiao, XM (reprint author), SUNY Stony Brook, Dept Appl Math & Stat, Stony Brook, NY 11794 USA. EM xiangmin.jiao@stonybrook.edu RI Ray, Navamita/I-7873-2015; OI Ray, Navamita/0000-0002-8235-1706; Jiao, Xiangmin/0000-0002-7111-9813 FU Nuclear Energy Advanced Modeling and Simulation (NEAMS) program of the Office of Nuclear Energy [DE-AC02-06CH11357]; Office of Science, Advanced Scientific Computing Research from Argonne National Laboratory [DE-AC02-06CH11357]; National Heart, Lung, and Blood Institute [R01HL073598]; U.S. Army Research Laboratory; U.S. Army Research Office [W911NF13102409] FX This work was funded in part under the auspices of the Nuclear Energy Advanced Modeling and Simulation (NEAMS) program of the Office of Nuclear Energy, and the Scientific Discovery through Advanced Computing (SciDAC) program funded by the Office of Science, Advanced Scientific Computing Research, both for the U.S. Department of Energy, under Contract DE-AC02-06CH11357, through a subcontract to Stony Brook University from Argonne National Laboratory. We acknowledge CST Computer Simulation Technology AG for their generous gift to Stony Brook University and thank Drs. Oleg Skipa and Manuel Baptista of CST AG for providing the meshes used in our experimental tests. Daniel Einstein's contribution was supported by Award Number R01HL073598 from the National Heart, Lung, and Blood Institute. Xiangmin Jiao's work was supported in part by the U.S. Army Research Laboratory and the U.S. Army Research Office under grant number W911NF13102409. NR 24 TC 0 Z9 0 U1 1 U2 3 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0177-0667 EI 1435-5663 J9 ENG COMPUT-GERMANY JI Eng. Comput. PD JUL PY 2015 VL 31 IS 3 SI SI BP 389 EP 404 DI 10.1007/s00366-014-0378-6 PG 16 WC Computer Science, Interdisciplinary Applications; Engineering, Mechanical SC Computer Science; Engineering GA CK2NK UT WOS:000356047300002 ER PT J AU Owen, SJ Shelton, TR AF Owen, Steven J. Shelton, Tim R. TI Evaluation of grid-based hex meshes for solid mechanics SO ENGINEERING WITH COMPUTERS LA English DT Article; Proceedings Paper CT 22nd International Meshing Roundtable Conference CY OCT 13-16, 2013 CL Orlando, FL DE Grid-based; Overlay grid; Hexahedral mesh generation; Parallel meshing; Solid mechanics; Pillowing; Smoothing ID QUALITY; OPTIMIZATION; GENERATION AB Grid-based methods for generating all-hex meshes show tremendous promise in automating and speeding up turnaround for computational simulations for solid mechanics. Recognizing some of the inherent weaknesses of grid-based methods, there has been hesitancy in accepting this technology as a viable option for critical FEA. The authors extend previous work on a grid-based method known as sculpt, and evaluate its effectiveness in practice. This study attempts to compare meshes generated with traditional manual pave-and-sweep technologies with those generated with sculpt's automatic overlay grid method. We use a simple torsion pin analysis to understand both linear-elastic and non-linear elastic-plastic responses with grid-based meshes. We also introduce improvements to the sculpt grid-based procedure, including adaptive optimization-based smoothing, hex-dominant and pillowing to capture curve features as proposed techniques for improving mesh quality. This study demonstrates that in the cases tested, equivalent or superior results were achieved with grid-based meshes when compared to pave-and-sweep meshes. C1 [Owen, Steven J.] Sandia Natl Labs, Simulat Modeling Sci, Albuquerque, NM 87185 USA. [Shelton, Tim R.] Sandia Natl Labs, Computat Solid Mech & Struct Dynam, Albuquerque, NM 87185 USA. RP Owen, SJ (reprint author), Sandia Natl Labs, Simulat Modeling Sci, POB 5800, Albuquerque, NM 87185 USA. EM sjowen@sandia.gov; trshelt@sandia.gov FU United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 28 TC 1 Z9 2 U1 3 U2 7 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0177-0667 EI 1435-5663 J9 ENG COMPUT-GERMANY JI Eng. Comput. PD JUL PY 2015 VL 31 IS 3 SI SI BP 529 EP 543 DI 10.1007/s00366-014-0368-8 PG 15 WC Computer Science, Interdisciplinary Applications; Engineering, Mechanical SC Computer Science; Engineering GA CK2NK UT WOS:000356047300011 ER PT J AU Olson, MD Hill, MR Clausen, B Steinzig, M Holden, TM AF Olson, M. D. Hill, M. R. Clausen, B. Steinzig, M. Holden, T. M. TI Residual Stress Measurements in Dissimilar Weld Metal SO EXPERIMENTAL MECHANICS LA English DT Article DE Residual stress; Welding; Slitting; Neutron diffraction; Hole drilling; Electronic speckle pattern interferometry ID HOLE-DRILLING METHOD; LASER SPECKLE INTERFEROMETRY; INVERSE SOLUTIONS AB This paper describes measurements of residual stress in thin slices removed from the wall of a pressurizer safety/relief nozzle, which is a cylindrical welded component found in a nuclear power pressurized water reactor. Because the slices comprise a cross-section through a dissimilar metal weld that joins the low-alloy steel pressurizer to a stainless steel safe-end, the residual stress measurements are difficult. Typical welds have large grains and preferred orientations, along with chemical and phase gradients, that challenge diffraction techniques using neutron or x-ray beams. Welds also contain spatial gradients of residual stress that challenge mechanical release techniques like contour, slitting, and hole drilling. Therefore, the paper describes the application of, and compares the results from, three applicable residual stress measurement techniques: slitting, electronic speckle pattern interferometry hole drilling, and neutron diffraction. The results of slitting and neutron diffraction are in rough agreement, while the results from hole drilling are significantly different. An uncertainty analysis shows that slitting results had the smallest uncertainty, followed by hole drilling, and that neutron diffraction results had large uncertainty, particularly in the weld. C1 [Olson, M. D.; Hill, M. R.] Univ Calif Davis, Dept Mech & Aerosp Engn, Davis, CA 95616 USA. [Clausen, B.] Los Alamos Neutron Sci Ctr, Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Steinzig, M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Holden, T. M.] Northern Stress Technol, Deep River, ON K0J 1P0, Canada. RP Hill, MR (reprint author), Univ Calif Davis, Dept Mech & Aerosp Engn, One Shields Ave, Davis, CA 95616 USA. EM molson@ucdavis.edu; mrhill@ucdavis.edu RI Hill, Michael/A-2525-2016; Olson, Mitchell/A-2841-2016; Clausen, Bjorn/B-3618-2015 OI Hill, Michael/0000-0002-9168-211X; Olson, Mitchell/0000-0002-9886-9825; Clausen, Bjorn/0000-0003-3906-846X FU Electric Power Research Institute, Materials Reliability Program; Alamos National Laboratory (LANL) Summer Program; [20111200] FX The Electric Power Research Institute, Materials Reliability Program (Paul Crooker, Principal Technical Leader) provided financial support for this work. The PWR nozzle was part of an NRC/EPRI cooperative activity on weld residual stress, and the cooperation of the NRC is appreciated (Aladar Csontos, Matthew Kerr, David Rudland, and Howard Rathbun). During the work, the first author (Olson) was supported by the Los Alamos National Laboratory (LANL) Summer Program (Michael B. Prime, mentor). The neutron diffraction work was funded by grant #20111200 for beamtime at the SMARTS diffractometer at LANSCE. The authors also acknowledge Adrian DeWald (Hill Engineering, LLC) for a portion of the slitting measurements, and Michael B. Prime of LANL for helpful discussions. NR 25 TC 4 Z9 4 U1 2 U2 24 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0014-4851 EI 1741-2765 J9 EXP MECH JI Exp. Mech. PD JUL PY 2015 VL 55 IS 6 BP 1093 EP 1103 DI 10.1007/s11340-015-0010-8 PG 11 WC Materials Science, Multidisciplinary; Mechanics; Materials Science, Characterization & Testing SC Materials Science; Mechanics GA CJ6RT UT WOS:000355622000008 ER PT J AU Aref, V Macris, N Vuffray, M AF Aref, Vahid Macris, Nicolas Vuffray, Marc TI Approaching the Rate-Distortion Limit With Spatial Coupling, Belief Propagation, and Decimation SO IEEE TRANSACTIONS ON INFORMATION THEORY LA English DT Article DE Lossy source coding; rate-distortion bound; low-density generator matrix codes; belief propagation; decimation; spatial coupling; threshold saturation; spin glass; cavity method; density evolution; dynamical and condensation phase transitions ID THRESHOLD SATURATION; CONVOLUTIONAL-CODES; POLAR CODES; ENSEMBLES; LDPC; COMPRESSION; ALGORITHMS; CAPACITY; CHANNELS; MATRIX AB We investigate an encoding scheme for lossy compression of a binary symmetric source based on simple spatially coupled low-density generator-matrix codes. The degree of the check nodes is regular and the one of code-bits is Poisson distributed with an average depending on the compression rate. The performance of a low complexity belief propagation guided decimation algorithm is excellent. The algorithmic rate-distortion curve approaches the optimal curve of the ensemble as the width of the coupling window grows. Moreover, as the check degree grows both curves approach the ultimate Shannon rate-distortion limit. The belief propagation guided decimation encoder is based on the posterior measure of a binary symmetric test-channel. This measure can be interpreted as a random Gibbs measure at a temperature directly related to the noise level of the test-channel. We investigate the links between the algorithmic performance of the belief propagation guided decimation encoder and the phase diagram of this Gibbs measure. The phase diagram is investigated thanks to the cavity method of spin glass theory which predicts a number of phase transition thresholds. In particular, the dynamical and condensation phase transition temperatures (equivalently test-channel noise thresholds) are computed. We observe that: 1) the dynamical temperature of the spatially coupled construction saturates toward the condensation temperature and 2) for large degrees the condensation temperature approaches the temperature (i.e., noise level) related to the information theoretic Shannon test-channel noise parameter of rate-distortion theory. This provides heuristic insight into the excellent performance of the belief propagation guided decimation algorithm. This paper contains an introduction to the cavity method. C1 [Aref, Vahid] Alcatel Lucent AG, Bell Labs, Murray Hill, NJ 07974 USA. [Aref, Vahid] Univ Stuttgart, Inst Telecommun, D-70174 Stuttgart, Germany. [Macris, Nicolas] Ecole Polytech Fed Lausanne, Sch Comp & Commun Sci, CH-1015 Lausanne, Switzerland. [Vuffray, Marc] Los Alamos Natl Lab, Div Theory, Los Alamos, NM 87544 USA. [Vuffray, Marc] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87544 USA. RP Aref, V (reprint author), Alcatel Lucent AG, Bell Labs, Murray Hill, NJ 07974 USA. EM vahid.aref@alcatel-lucent.com; nicolas.macris@epfl.ch; vuffray@lanl.gov OI Vuffray, Marc/0000-0001-7999-9897 FU Swiss National Science Foundation [200021-125347, 200020-140388] FX V. Aref was supported by the Swiss National Science Foundation under Grant 200021-125347. M. Vuffray was supported by the Swiss National Science Foundation under Grant 200020-140388. NR 49 TC 2 Z9 2 U1 1 U2 5 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9448 EI 1557-9654 J9 IEEE T INFORM THEORY JI IEEE Trans. Inf. Theory PD JUL PY 2015 VL 61 IS 7 BP 3954 EP 3979 DI 10.1109/TIT.2015.2434842 PG 26 WC Computer Science, Information Systems; Engineering, Electrical & Electronic SC Computer Science; Engineering GA CK5XP UT WOS:000356301600019 ER PT J AU Bent, ZW Poorey, K Brazel, DM LaBauve, AE Sinha, A Curtis, DJ House, SE Tew, KE Hamblin, RY Williams, KP Branda, SS Young, GM Meagher, RJ AF Bent, Zachary W. Poorey, Kunal Brazel, David M. LaBauve, Annette E. Sinha, Anupama Curtis, Deanna J. House, Samantha E. Tew, Karen E. Hamblin, Rachelle Y. Williams, Kelly P. Branda, Steven S. Young, Glenn M. Meagher, Robert J. TI Transcriptomic Analysis of Yersinia enterocolitica Biovar 1B Infecting Murine Macrophages Reveals New Mechanisms of Extracellular and Intracellular Survival SO INFECTION AND IMMUNITY LA English DT Article ID III SECRETION SYSTEM; ENTERICA SEROVAR TYPHIMURIUM; HIGH-PATHOGENICITY ISLAND; RNA-SEQ; IN-VIVO; VIRULENCE; PESTIS; HOST; YSA; PSEUDOTUBERCULOSIS AB Yersinia enterocolitica is typically considered an extracellular pathogen; however, during the course of an infection, a significant number of bacteria are stably maintained within host cell vacuoles. Little is known about this population and the role it plays during an infection. To address this question and to elucidate the spatially and temporally dynamic gene expression patterns of Y. enterocolitica biovar 1B through the course of an in vitro infection, transcriptome sequencing and differential gene expression analysis of bacteria infecting murine macrophage cells were performed under four distinct conditions. Bacteria were first grown in a nutrient-rich medium at 26 degrees C to establish a baseline of gene expression that is unrelated to infection. The transcriptomes of these bacteria were then compared to bacteria grown in a conditioned cell culture medium at 37 degrees C to identify genes that were differentially expressed in response to the increased temperature and medium but not in response to host cells. Infections were then performed, and the transcriptomes of bacteria found on the extracellular surface and intracellular compartments were analyzed individually. The upregulated genes revealed potential roles for a variety of systems in promoting intracellular virulence, including the Ysa type III secretion system, the Yts2 type II secretion system, and the Tad pilus. It was further determined that mutants of each of these systems had decreased virulence while infecting macrophages. Overall, these results reveal the complete set of genes expressed by Y. enterocolitica in response to infection and provide the groundwork for future virulence studies. C1 [Bent, Zachary W.; Poorey, Kunal; Brazel, David M.; Sinha, Anupama; Curtis, Deanna J.; House, Samantha E.; Tew, Karen E.; Hamblin, Rachelle Y.; Williams, Kelly P.] Sandia Natl Labs, Dept Syst Biol, Livermore, CA USA. [LaBauve, Annette E.; Branda, Steven S.; Meagher, Robert J.] Sandia Natl Labs, Dept Biotechnol & Bioengn, Livermore, CA USA. [Young, Glenn M.] Univ Calif Davis, Dept Food Sci & Technol, Davis, CA 95616 USA. RP Bent, ZW (reprint author), 10X Genom, Pleasanton, CA USA. EM zachwbent@gmail.com; rmeaghe@sandia.gov OI Brazel, David/0000-0001-5361-2498 FU NIH [S10RR029668, S10RR027303]; Sandia National Laboratories' Laboratory-Directed Research and Development program; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX We used the Vincent J. Coates Genomics Sequencing Laboratory at UC Berkeley, supported by NIH S10 Instrumentation Grants S10RR029668 and S10RR027303. Sandia National Laboratories' Laboratory-Directed Research and Development program funded this research. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corp., a wholly owned subsidiary of Lockheed Martin Corp., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 78 TC 6 Z9 6 U1 1 U2 14 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0019-9567 EI 1098-5522 J9 INFECT IMMUN JI Infect. Immun. PD JUL PY 2015 VL 83 IS 7 BP 2672 EP 2685 DI 10.1128/IAI.02922-14 PG 14 WC Immunology; Infectious Diseases SC Immunology; Infectious Diseases GA CK5EB UT WOS:000356244000008 PM 25895974 ER PT J AU Hunter, A Preston, DL AF Hunter, A. Preston, D. L. TI Analytic model of the remobilization of pinned glide dislocations from quasi-static to high strain rates SO INTERNATIONAL JOURNAL OF PLASTICITY LA English DT Article DE Dislocations; Mean-first-passage-time (MFPT) theory; Constitutive behavior; Shock waves ID CRYSTAL PLASTICITY; CONSTITUTIVE MODEL; CHEMICAL-REACTIONS; FLOW-STRESS; FCC METALS; DEFORMATION; DYNAMICS; SIMULATIONS; TEMPERATURE; DEPENDENCE AB In this paper, we construct an analytic model describing mobile-immobile dislocation intersections using a mean-first-passage-time (MFPT) framework. By applying MFPT theory to dislocation intersection, the deformation mechanics at high strain rates is more reliably described than in traditional models based on Van't Hoff-Arrhenius thermal activation. The plastic strain rate is expressed as a function of the applied stress, mobile and immobile dislocation densities, material density, and temperature. This kinetic equation is applicable at strain rates from quasi-static to rates in excess of 1012 s(-1), pressures from ambient to about 1000 GPa, and temperatures ranging from zero to the melt temperature. Published by Elsevier Ltd. C1 [Hunter, A.; Preston, D. L.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Hunter, A (reprint author), Los Alamos Natl Lab, POB 1663 MS T086, Los Alamos, NM 87545 USA. EM ahunter@lanl.gov FU Advanced Simulation and Computing (ASC) - Physics and Engineering Models (PEM) Program at Los Alamos National Laboratory (LANL) FX AH and DLP gratefully acknowledge support from the Advanced Simulation and Computing (ASC) - Physics and Engineering Models (PEM) Program at Los Alamos National Laboratory (LANL). LANL is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the US Department of Energy. NR 60 TC 1 Z9 1 U1 2 U2 7 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0749-6419 EI 1879-2154 J9 INT J PLASTICITY JI Int. J. Plast. PD JUL PY 2015 VL 70 BP 1 EP 29 DI 10.1016/j.ijplas.2015.01.008 PG 29 WC Engineering, Mechanical; Materials Science, Multidisciplinary; Mechanics SC Engineering; Materials Science; Mechanics GA CK3IO UT WOS:000356110000001 ER PT J AU Zecevic, M McCabe, RJ Knezevic, M AF Zecevic, Miroslav McCabe, Rodney J. Knezevic, Marko TI Spectral database solutions to elasto-viscoplasticity within finite elements: Application to a cobalt-based FCC superalloy SO INTERNATIONAL JOURNAL OF PLASTICITY LA English DT Article DE Crystal plasticity; Finite elements; UMAT; Microstructures; Anisotropic material ID DUCTILE SINGLE-CRYSTALS; CRYSTALLOGRAPHIC TEXTURE EVOLUTION; EMBEDDED POLYCRYSTAL PLASTICITY; DISCRETE FOURIER-TRANSFORMS; STRAIN-PATH CHANGES; X-RAY-DIFFRACTION; DEFORMATION-BEHAVIOR; MECHANICAL RESPONSE; PROPERTY CLOSURES; FAST COMPUTATION AB We present a computationally efficient, multi-scale model based on crystal plasticity theory for simulations of heterogeneous plastic deformation of metallic components in commercial finite element (FE) codes. Although the model can handle a single crystal, the primary purpose with the present model is to embed a meso-scale polycrystal homogenization at a FE integration point, with the meso-scale homogenization being a Taylor-type model. The responses of single crystals are obtained using a recently developed non-iterative solver, which is based on databases of discrete Fourier transforms allowing for fast retrieval of pre-computed crystal plasticity solutions. We have shown that, when this non-iterative solver is used in place of the Newton-Raphson iterative solver, substantial wall-clock speedups can be achieved. Additionally, the implementation presented here takes the advantage of calculations of the elastic properties based on the spectral representation. To calibrate and validate the new FE elasto-viscoplastic model, we use stress-strain curves and texture data of the cobalt-based face-centered cubic superalloy Haynes 25. For this purpose, the material was deformed monotonically in compression over a wider range of strain rates and temperatures. The model is subsequently applied to simulate the macro-scale mechanical response of the material in compression and rolling. We show that the predictions of the model compare favorably with experimental measurements in terms of the mechanical response and texture evolution. Finally, the evolution of the underlying crystallographic texture in rolling predicted by the new model is compared against the corresponding predictions from the finite element visco-plastic self-consistent (FE-VPSC) model. It is observed that both implementations produce similar predictions, but the model presented here is substantially faster. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Zecevic, Miroslav; Knezevic, Marko] Univ New Hampshire, Dept Mech Engn, Durham, NH 03824 USA. [McCabe, Rodney J.] Los Alamos Natl Lab, Mat Sci & Technol Div, Los Alamos, NM 87545 USA. RP Knezevic, M (reprint author), Univ New Hampshire, Dept Mech Engn, 33 Acad Way,Kingsbury Hall,W119, Durham, NH 03824 USA. EM marko.knezevic@unh.edu OI McCabe, Rodney /0000-0002-6684-7410 FU CEPS Graduate Fellowships program at the University of New Hampshire (UNH); Los Alamos National Laboratory [277871] FX M.Z. acknowledges support from the CEPS Graduate Fellowships program at the University of New Hampshire (UNH). M.K. acknowledges subcontract, NO. 277871, granted by Los Alamos National Laboratory to UNH. Manual Lovato performed the compression test of the Haynes 25 cylinder. NR 77 TC 18 Z9 18 U1 3 U2 11 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0749-6419 EI 1879-2154 J9 INT J PLASTICITY JI Int. J. Plast. PD JUL PY 2015 VL 70 BP 151 EP 165 DI 10.1016/j.ijplas.2015.03.007 PG 15 WC Engineering, Mechanical; Materials Science, Multidisciplinary; Mechanics SC Engineering; Materials Science; Mechanics GA CK3IO UT WOS:000356110000007 ER PT J AU Zhou, XJ Burbey, TJ Westman, E AF Zhou, Xuejun Burbey, Thomas J. Westman, Erik TI The effect of caprock permeability on shear stress path at the aquifer-caprock interface during fluid injection SO INTERNATIONAL JOURNAL OF ROCK MECHANICS AND MINING SCIENCES LA English DT Article DE Fluid injection; Poroelasticity; Permeability; Cap rock; Shear stress; Interface ID INDUCED SEISMICITY; CO2 INJECTION; GROUNDWATER-FLOW; CARBON-DIOXIDE; PORE PRESSURE; RESERVOIR; EARTHQUAKES; MICROSEISMICITY; SEQUESTRATION; MASS AB The permeability of the cap rock is one of the most important properties for determining whether an injected fluid can be sequestered as desired. A literature review on many previously conducted investigations shows that the mechanical properties of a clayey cap rock, such as Young's moduli and Poisson's ratios, are relatively constrained to a small range of potential values in comparison to the permeability, which can vary greatly by many orders of magnitude. We found that the shear stress on the interface between the aquifer and cap rock results in very different temporal behaviors in response to different cap rock permeability. The largest shear stress changes concentrate on the near well region and remain stationary over a long period of time if the cap rock has very low permeability. The shear stresses increase greatly in the near well region at early times but the largest increases tend to migrate to the far side for semi-pervious or pervious cap rock conditions. Shear stress near the well may experience a reversion at the interface clue to the delayed expansion of the cap rock if the cap rock is semi-pervious and more expansive than the aquifer formation. Because of the difficulty in measuring the stresses at depth, these stress changes may only be inferred from in-direct signals, such as induced seismicity. This poses the possibility that we may be able to inversely evaluate whether a cap rock formation is tight (very impermeable), or semi pervious or even permeable by detecting the temporal and spatial occurrences of seismic swarms on the rock interface associated with fluid injection. Published by Elsevier Ltd. C1 [Zhou, Xuejun; Burbey, Thomas J.; Westman, Erik] Reg Univ Alliance, Natl Energy Technol Lab, Pittsburgh, PA USA. [Zhou, Xuejun; Burbey, Thomas J.] Virginia Tech, Dept Geosci, Blacksburg, VA USA. [Westman, Erik] Virginia Tech, Dept Min & Minerals Engn, Blacksburg, VA USA. RP Zhou, XJ (reprint author), Univ Oklahoma, Mewbourne Sch Petr & Geol Engn, 100E Boyd St,SEC 1210, Norman, OK 73019 USA. EM zhouxj@ou.edu FU National Energy Technology Laboratory's under RES [DE-FE0004000] FX This technical effort was performed in support of the National Energy Technology Laboratory's ongoing research in geologic CO2 sequestration under the RES contract DE-FE0004000. The anonymous reviewers are greatly appreciated for providing very helpful comments, Any opinions, findings, and conclusions expressed in this material are those of the authors and do not necessarily state or reflect the views of the NETL. NR 61 TC 2 Z9 2 U1 3 U2 22 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1365-1609 EI 1873-4545 J9 INT J ROCK MECH MIN JI Int. J. Rock Mech. Min. Sci. PD JUL PY 2015 VL 77 BP 1 EP 10 DI 10.1016/j.ijrmms.2015.03.023 PG 10 WC Engineering, Geological; Mining & Mineral Processing SC Engineering; Mining & Mineral Processing GA CK2SD UT WOS:000356061300001 ER PT J AU Clayton, JD Tonge, AL AF Clayton, J. D. Tonge, A. L. TI A nonlinear anisotropic elastic-inelastic constitutive model for polycrystalline ceramics and minerals with application to boron carbide SO INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES LA English DT Article DE Nonlinear elasticity; Plasticity; Shock physics; Ceramics; Minerals ID GRAIN-BOUNDARY PROPERTIES; SHOCK-WAVE COMPRESSION; BRITTLE MATERIALS; MICROMECHANICAL MODEL; BALLISTIC PERFORMANCE; DYNAMIC COMPRESSION; TITANIUM DIBORIDE; POROUS MATERIALS; SINGLE-CRYSTALS; FINITE STRAIN AB A new continuum constitutive theory is developed and implemented for study of polycrystalline brittle solids subjected to possibly large stress and finite deformation. The general theory accounts for elastic anisotropy, nonlinear elasticity (via higher-order elastic constants), thermoelastic coupling, and various inelastic deformation mechanisms, including, but not restricted to, fracture, pore crushing, bulking, and stress-induced amorphization. The internal energy function depends on a logarithmic measure of material strain, entropy, and internal state variables accounting for defect accumulation, for example effects of micro-cracks on the tangent stiffness of the solid. The theory is applied towards a study of dynamic compression of boron carbide ceramic. Solutions to a planar impact problem are Investigated for isotropic and anisotropic, i.e., textured, polycrystals. For the isotropic case, an implementation of the theory containing only two fitting parameters whereby conjugate thermodynamic forces provide evolution laws for damage and granular flow provides close agreement with Hugoniot data. Poled boron carbide polycrystals shocked along the c-axis are predicted to demonstrate higher peak shear stress, but reduced ductility, relative to isotropic polycrystals. Amorphization associated with nonlinear elastic instability is predicted to occur at smaller volumetric compression in poled boron carbide than its isotropic counterpart, which could further reduce relative ductility and strength of the former. Published by Elsevier Ltd. C1 [Clayton, J. D.; Tonge, A. L.] US Army Res Lab, Impact Phys RDRL WMP C, Aberdeen Proving Ground, MD 21005 USA. [Clayton, J. D.] Univ Maryland, A James Clark Sch Engn, College Pk, MD 20742 USA. [Tonge, A. L.] Oak Ridge Associated Univ, Oak Ridge, TN 37831 USA. RP Clayton, JD (reprint author), US Army Res Lab, Impact Phys RDRL WMP C, Aberdeen Proving Ground, MD 21005 USA. EM john.d.clayton1.civ@mail.mil; andrew.l.tonge.civ@mail.mil RI Clayton, John/C-7760-2009 NR 106 TC 6 Z9 6 U1 3 U2 26 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0020-7683 EI 1879-2146 J9 INT J SOLIDS STRUCT JI Int. J. Solids Struct. PD JUL PY 2015 VL 64-65 BP 191 EP 207 DI 10.1016/j.ijsolstr.2015.03.024 PG 17 WC Mechanics SC Mechanics GA CK3JQ UT WOS:000356112800017 ER PT J AU Hossain, F Arnold, J Beighley, E Brown, C Burian, S Chen, J Madadgar, S Mitra, A Niyogi, D Pielke, R Tidwell, V Wegner, D AF Hossain, Faisal Arnold, Jeffrey Beighley, Ed Brown, Casey Burian, Steve Chen, Ji Madadgar, Shahrbanou Mitra, Anindita Niyogi, Dev Pielke, Roger, Sr. Tidwell, Vincent Wegner, Dave TI Local-To-Regional Landscape Drivers of Extreme Weather and Climate: Implications for Water Infrastructure Resilience SO JOURNAL OF HYDROLOGIC ENGINEERING LA English DT Article ID PROBABLE MAXIMUM PRECIPITATION; USE/LAND COVER CHANGES; AMERICAN RIVER; LAND-USE; IMPACTS; RAINFALL; MODELS; FUTURE; DAM; MANAGEMENT AB Forum papers are thought-provoking opinion pieces or essays founded in fact, sometimes containing speculation, on a civil engineering topic of general interest and relevance to the readership of the journal. The views expressed in this Forum article do not necessarily reflect the views of ASCE or the Editorial Board of the journal. C1 [Hossain, Faisal] Univ Washington, Dept Civil & Environm Engn, Seattle, WA 98195 USA. [Arnold, Jeffrey] US Army Corps Engineers, Inst Water Resources, Seattle, WA USA. [Beighley, Ed] Northeastern Univ, Dept Civil & Environm Engn, Boston, MA 02115 USA. [Brown, Casey] Univ Massachusetts, Dept Civil & Environm Engn, Amherst, MA 01003 USA. [Burian, Steve] Univ Utah, Dept Civil & Environm Engn, Salt Lake City, UT 84112 USA. [Chen, Ji] Univ Hong Kong, Dept Civil Engn, Pokfulam, Hong Kong, Peoples R China. [Madadgar, Shahrbanou] Univ Calif Irvine, Civil & Environm Engn, Irvine, CA 92697 USA. [Mitra, Anindita] PERSI, Planning Sustainable Infrastruct, AICP, Seattle, WA 98103 USA. [Niyogi, Dev] Purdue Univ, Dept Agron Crops Soils & Environm Sci, W Lafayette, IN 47907 USA. [Niyogi, Dev] Purdue Univ, Dept Earth Atmospher & Planetary Sci, W Lafayette, IN 47907 USA. [Pielke, Roger, Sr.] Univ Colorado, CIRES, Boulder, CO 80309 USA. [Tidwell, Vincent] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Wegner, Dave] Comm Transportat & Infrastruct, Subcomm Water Resources & Environm, Washington, DC 20515 USA. RP Hossain, F (reprint author), Univ Washington, Dept Civil & Environm Engn, More Hall 201, Seattle, WA 98195 USA. EM fhossain@uw.edu RI Chen, Ji/C-1795-2009; OI Burian, Steven/0000-0003-0523-4968 NR 62 TC 1 Z9 1 U1 5 U2 17 PU ASCE-AMER SOC CIVIL ENGINEERS PI RESTON PA 1801 ALEXANDER BELL DR, RESTON, VA 20191-4400 USA SN 1084-0699 EI 1943-5584 J9 J HYDROL ENG JI J. Hydrol. Eng. PD JUL PY 2015 VL 20 IS 7 AR 02515002 DI 10.1061/(ASCE)HE.1943-5584.0001210 PG 9 WC Engineering, Civil; Environmental Sciences; Water Resources SC Engineering; Environmental Sciences & Ecology; Water Resources GA CK5CB UT WOS:000356238600023 ER PT J AU Touma, D Ashfaq, M Nayak, MA Kao, SC Diffenbaugh, NS AF Touma, Danielle Ashfaq, Moetasim Nayak, Munir A. Kao, Shih-Chieh Diffenbaugh, Noah S. TI A multi-model and multi-index evaluation of drought characteristics in the 21st century SO JOURNAL OF HYDROLOGY LA English DT Article DE Drought; Drought index; Climate change; CMIP5; Uncertainty; Permanent emergence ID CLIMATE-CHANGE; CLIMATOLOGICAL DROUGHT; WATER-RESOURCES; UNITED-STATES; RIVER-BASIN; MODEL; CMIP5; SIMULATIONS; MORTALITY; FOREST AB Drought is a natural hazard that can have severe and long-lasting impacts on natural and human systems. Although increases in global greenhouse forcing are expected to change the characteristics and impacts of drought in the 21st century, there remains persistent uncertainty about how changes in temperature, precipitation and soil moisture will interact to shape the magnitude - and in some cases direction - of drought in different areas of the globe. Using data from 15 global climate models archived in the Coupled Model Intercomparison Project (CMIP5), we assess the likelihood of changes in the spatial extent, duration and number of occurrences of four drought indices: the Standardized Precipitation Index (SPI), the Standardized Runoff Index (SRI), the Standardized Precipitation-Evapotranspiration Index (SPEI) and the Supply-Demand Drought Index (SDDI). We compare these characteristics in two future periods (2010-2054 and 2055-2099) of the Representative Concentration Pathway 8.5 (RCP8.5). We find increases from the baseline period (1961-2005) in the spatial extent, duration and occurrence of "exceptional" drought in subtropical and tropical regions, with many regions showing an increase in both the occurrence and duration. There is strong agreement on the sign of these changes among the individual climate models, although some regions do exhibit substantial uncertainty in the magnitude of change. The changes in SPEI and SDDI characteristics are stronger than the changes in SPI and SRI due to the greater influence of temperature changes in the SPEI and SDDI indices. In particular, we see a robust permanent emergence of the spatial extent of SDDI from the baseline variability in West, East and Saharan Africa as early as 2020 and by 2080 in several other subtropical and tropical regions. The increasing likelihood of exceptional drought identified in our results suggests increasing risk of drought-related stresses for natural and human systems should greenhouse gas concentrations continue along their current trajectory. (C) 2015 The Authors. Published by Elsevier B.V. C1 [Touma, Danielle; Diffenbaugh, Noah S.] Stanford Univ, Dept Environm Earth Syst Sci, Stanford, CA 94305 USA. [Touma, Danielle; Ashfaq, Moetasim; Kao, Shih-Chieh] Oak Ridge Natl Lab, Climate Change Sci Inst, Oak Ridge, TN USA. [Nayak, Munir A.] Univ Iowa, IIHR Hydrosci & Engn, Iowa City, IA USA. [Diffenbaugh, Noah S.] Stanford Univ, Woods Inst Environm, Stanford, CA 94305 USA. RP Touma, D (reprint author), Stanford Univ, 473 Via Ortega,Suite 140, Stanford, CA 94305 USA. EM detouma@stanford.edu RI Kao, Shih-Chieh/B-9428-2012; OI Kao, Shih-Chieh/0000-0002-3207-5328; Touma, Danielle/0000-0003-1992-9904 FU Office of Science of the U.S. Department of Energy [DE-AC05-00OR22725]; Oak Ridge National Laboratory LDRD project [32112413]; NSF [0955283]; Regional and Global Climate Modeling program of DOE Office of Science FX We thank the editor, guest editor and three anonymous reviewers for their insightful and constructive comments. Support for data storage and analysis is provided by the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725. We acknowledge the World Climate Research Program's Working Group on Coupled Modeling responsible for CMIP, and we thank the climate modeling groups for producing and making available their CMIP5 model output. We also thank U.S. Department of Energy's Program for Climate Model Diagnosis and Intercomparison for providing coordinating support and leading development of software infrastructure in partnership with the Global Organization for Earth System Science Portals for CMIP. This work at Oak Ridge National Laboratory is supported by Regional and Global Climate Modeling program of DOE Office of Science and Oak Ridge National Laboratory LDRD project 32112413, and the work at Stanford was supported in part by NSF award #0955283 to NSD. NR 59 TC 11 Z9 11 U1 9 U2 41 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-1694 EI 1879-2707 J9 J HYDROL JI J. Hydrol. PD JUL PY 2015 VL 526 SI SI BP 196 EP 207 DI 10.1016/j.jhydrol.2014.12.011 PG 12 WC Engineering, Civil; Geosciences, Multidisciplinary; Water Resources SC Engineering; Geology; Water Resources GA CK0KS UT WOS:000355894700017 ER PT J AU Demaria, M Desprez, PY Campisi, J Velarde, MC AF Demaria, Marco Desprez, Pierre Yves Campisi, Judith Velarde, Michael C. TI Cell Autonomous and Non-Autonomous Effects of Senescent Cells in the Skin SO JOURNAL OF INVESTIGATIVE DERMATOLOGY LA English DT Review ID DNA-DAMAGE RESPONSE; GROWTH-FACTOR-BETA; MITOCHONDRIAL-DNA; IN-VIVO; EXTRACELLULAR-MATRIX; SECRETORY PHENOTYPE; PHOTODAMAGED SKIN; HUMAN-FIBROBLASTS; LIFE-SPAN; COLLAGEN AB Human and mouse skin accumulate senescent cells in both the epidermis and dermis during aging. When chronically present, senescent cells are thought to enhance the age-dependent deterioration of the skin during extrinsic and intrinsic aging. However, when transiently present, senescent cells promote optimal wound healing. Here, we review recent studies on how senescent cells and the senescence-associated secretory phenotype contribute to different physiological and pathophysiological conditions in the skin with a focus on some of the cell autonomous and non-autonomous functions of senescent cells in the context of skin aging and wound healing. C1 [Demaria, Marco; Desprez, Pierre Yves; Campisi, Judith; Velarde, Michael C.] Buck Inst Res Aging, Campisi Lab, Novato, CA 94945 USA. [Desprez, Pierre Yves] Calif Pacific Med Ctr Res Inst, San Francisco, CA USA. [Campisi, Judith] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. RP Velarde, MC (reprint author), Buck Inst Res Aging, Campisi Lab, 8001 Redwood Blvd, Novato, CA 94945 USA. EM mvelarde@buckinstitute.org OI Demaria, Marco/0000-0002-8429-4813 FU National Institutes of Health [R37-AG009909, P01-AG017242, P01-AG041122, R21-CA166347, K99-AG041221] FX The authors are supported by National Institutes of Health grants R37-AG009909, P01-AG017242, P01-AG041122, R21-CA166347, and K99-AG041221. NR 67 TC 9 Z9 9 U1 2 U2 6 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 0022-202X EI 1523-1747 J9 J INVEST DERMATOL JI J. Invest. Dermatol. PD JUL PY 2015 VL 135 IS 7 BP 1722 EP 1726 DI 10.1038/jid.2015.108 PG 5 WC Dermatology SC Dermatology GA CK4GB UT WOS:000356180100010 PM 25855157 ER PT J AU Dickman, PT AF Dickman, Paul T. TI Introduction to the 8th ICI special issue SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY LA English DT Editorial Material C1 Argonne Natl Lab, Washington Off, Washington, DC 20024 USA. RP Dickman, PT (reprint author), Argonne Natl Lab, Washington Off, Washington, DC 20024 USA. EM pdickman@anl.gov NR 0 TC 0 Z9 0 U1 1 U2 1 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0236-5731 EI 1588-2780 J9 J RADIOANAL NUCL CH JI J. Radioanal. Nucl. Chem. PD JUL PY 2015 VL 305 IS 1 BP 1 EP 1 DI 10.1007/s10967-015-4153-y PG 1 WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA CJ8OX UT WOS:000355763700001 ER PT J AU Stevenson, NR St George, G Simon, J Srivastava, SC Mueller, DW Gonzales, GR Rogers, JA Frank, RK Horn, IM AF Stevenson, Nigel R. St George, George Simon, Jaime Srivastava, Suresh C. Mueller, David W. Gonzales, Gilbert R. Rogers, Jason A. Frank, R. Keith Horn, Ian M. TI Methods of producing high specific activity Sn-117m with commercial cyclotrons SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY LA English DT Article DE Sn-117m; Theragnostic; Accelerator produced isotope; High specific activity ID METASTATIC BONE PAIN; THERAPY; ACID AB Sn-117m is a theragnostic isotope of increasing interest. It has ideal imaging and therapeutic properties for many applications. Production of high specific activity Sn-117m can only be achieved with accelerators and the Sb(p,x) and Cd-116(alpha,3n) reactions provide the highest yields for this isotope. This paper describes the production and a new purification method for obtaining commercial quantities of Sn-117m via the Cd-116(alpha,3n) reaction. The purified Sn-117m has subsequently been chelated with an aminobenzyl derivative of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) and then conjugated with annexin V-128 to produce an agent for the diagnosis and treatment of vulnerable plaque. C1 [Stevenson, Nigel R.; Mueller, David W.; Gonzales, Gilbert R.] Clear Vasc Inc, The Woodlands, TX 77380 USA. [St George, George; Simon, Jaime; Rogers, Jason A.; Frank, R. Keith] IsoTherapeut Grp LLC, Angleton, TX 77515 USA. [Srivastava, Suresh C.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Horn, Ian M.] US Radiopharmaceut, Denton, TX 76205 USA. RP Stevenson, NR (reprint author), Clear Vasc Inc, 21 Waterway Ave,Suite 225, The Woodlands, TX 77380 USA. EM nigel@clearvascular.com FU US Department of Energy (Office of Science/NP Office of Nuclear Physics, Isotope Development and Production for Research and Applications) SBIR Program; NNSA NA-24 GIPP Program at Brookhaven National Laboratory [DE-AC02-98CH10886] FX The authors acknowledge the pioneering work of Dr. Claude Meares and his group at the University of California, Davis in forming [Sn-117m]-DOTA linked molecules. The authors would also like to thank the staff at the University of Washington MC50 Cyclotron for providing irradiation services in the production of Sn-117m. This work was supported in part by the US Department of Energy (Office of Science/NP Office of Nuclear Physics, Isotope Development and Production for Research and Applications) SBIR Program and the NNSA NA-24 GIPP Program, under Contract # DE-AC02-98CH10886 at Brookhaven National Laboratory. The work described here is the subject of US Patents 8,257,681, 8,283,167, 8,632,748, 8,097,064, 8,449,816, 8,705,681, 8,290,110, including continuations and international counterparts. NR 28 TC 7 Z9 7 U1 3 U2 5 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0236-5731 EI 1588-2780 J9 J RADIOANAL NUCL CH JI J. Radioanal. Nucl. Chem. PD JUL PY 2015 VL 305 IS 1 BP 99 EP 108 DI 10.1007/s10967-015-4031-7 PG 10 WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA CJ8OX UT WOS:000355763700014 ER PT J AU Burns, JD Van Cleve, SM Smith, EH Boll, RA AF Burns, Jonathan D. Van Cleve, Shelley M. Smith, Edward H. Boll, Rose A. TI Californium purification and electrodeposition SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY LA English DT Article ID SEPARATIONS; ELEMENTS; TARGETS AB The staff at the Radiochemical Engineering Development Center, located at Oak Ridge National Laboratory, produced a 6.3 +/- A 0.4 GBq (1.7 +/- A 0.1 Ci) Cf-252 source for the Californium Rare Isotope Breeder Upgrade (CARIBU) project at Argonne National Laboratory's Argonne Tandem Linac Accelerator System. The source was produced by electrodeposition of a Cf-252 sample onto a stainless steel substrate, which required material free from excess mass for efficient deposition. The resulting deposition was the largest reported Cf-252 electrodeposition source ever produced. Several different chromatographic purification methods were investigated to determine which would be most effective for final purification of the feed material used for the CARIBU source. The separation of lanthanides from the Cf was of special concern. The separation, using Sm-145, Gd-153, and Cf-249 as tracers, was investigated using BioRad AG 50X8 in alpha-hydroxyisobutyric acid, Eichrom LN resin in both HNO3 and HCl, and Eichrom TEVA resin in NH4SCN. The TEVA NH4SCN system was found to completely separate Sm-145 and Gd-153 from Cf-249 and was adopted into the purification process used in purifying the Cf-252. C1 [Burns, Jonathan D.; Van Cleve, Shelley M.; Boll, Rose A.] Oak Ridge Natl Lab, Nucl Secur & Isotope Technol Div, Oak Ridge, TN 37831 USA. [Smith, Edward H.] Oak Ridge Natl Lab, Nonreactor Nucl Facil Div, Oak Ridge, TN 37831 USA. RP Burns, JD (reprint author), Oak Ridge Natl Lab, Nucl Secur & Isotope Technol Div, POB 2008, Oak Ridge, TN 37831 USA. EM burnsjd@ornl.gov RI Boll, Rose/C-4138-2016; Burns, Jonathan/O-2028-2015 OI Boll, Rose/0000-0003-2507-4834; Burns, Jonathan/0000-0003-0301-9607 FU U.S. Department of Energy, Office of Nuclear Physics, Isotope Development and Production for Research and Applications Program; U.S. Department of Energy [DE AC05-00OR22725, DE-AC0500OR22725]; United States Government FX This research is supported by the U.S. Department of Energy, Office of Nuclear Physics, Isotope Development and Production for Research and Applications Program. ORNL is managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract DE AC05-00OR22725. This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC0500OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for the United States Government purposes. NR 16 TC 3 Z9 3 U1 2 U2 4 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0236-5731 EI 1588-2780 J9 J RADIOANAL NUCL CH JI J. Radioanal. Nucl. Chem. PD JUL PY 2015 VL 305 IS 1 BP 109 EP 116 DI 10.1007/s10967-014-3815-5 PG 8 WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA CJ8OX UT WOS:000355763700015 ER PT J AU Fitzsimmons, J Atcher, R Cutler, C AF Fitzsimmons, Jonathan Atcher, Robert Cutler, Cathy TI Development of a prelabeling approach for a targeted nanochelator SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY LA English DT Article DE Ac-225; Pm-149; Prelabeling; PEI; Radioimmunotherapy; Polyethyleneimine ID BREAST-CANCER; AC-225; POLYETHYLENIMINE; DAUGHTERS; SURVIVAL; TUMORS AB The polymer polyethyleneimine with primary and secondary chelators can retain Ac-225 and its daughters. In this study we optimize a prelabeling approach, followed by addition of secondary chelators and explore crosslinking approaches to add a targeting molecule. A (N-Succinimidyl 3-(2-pyridyldithio)-propionate crosslinking approach was used to obtain a similar to 1 to 1 ratio of the modified PEI to Trastuzumab. This approach coupled with the prelabeling approach would allow the synthesis of the radiolabeled targeted polymer for Ac-225 radioimmunotherapy. C1 [Fitzsimmons, Jonathan; Atcher, Robert] Los Alamos Natl Lab, Los Alamos, NM USA. [Cutler, Cathy] Univ Missouri, Res Reactor Ctr, Columbia, MO USA. RP Fitzsimmons, J (reprint author), Los Alamos Natl Lab, Los Alamos, NM USA. EM john.jmf635@gmail.com OI Atcher, Robert/0000-0003-4656-2247 FU U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research [@-7405-ENG-36]; U.S. DOE Office of Isotope Program FX This work was performed under the auspices of the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research under contract @-7405-ENG-36 and the U.S. DOE Office of Isotope Program. NR 18 TC 1 Z9 1 U1 1 U2 6 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0236-5731 EI 1588-2780 J9 J RADIOANAL NUCL CH JI J. Radioanal. Nucl. Chem. PD JUL PY 2015 VL 305 IS 1 BP 161 EP 167 DI 10.1007/s10967-015-3976-x PG 7 WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA CJ8OX UT WOS:000355763700021 ER PT J AU Wilson, WH Johnson, CM Lowrey, JD Biegalski, SR Haas, DA AF Wilson, William H. Johnson, Christine M. Lowrey, Justin D. Biegalski, Steven R. Haas, Derek A. TI Cosmic-ray induced production of radioactive noble gases in the atmosphere, ground, and seawater SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY LA English DT Article DE CTBT; MCNP; Radioargon; Radioxenon ID NUCLEAR-POWER-PLANT; EQUATION-OF-STATE; XENON; EXPLOSIONS AB This paper describes the development of an MCNP6 model and a suite of supporting MATLAB scripts being developed to conduct detailed studies of the radioactive noble gas background activity concentrations resulting from cosmic-neutron-induced reactions in the Earth's atmosphere, in various geologies, and in seawater. Initial results generated using the MCNP6 model and the suite of supporting MATLAB scripts indicate that the cosmic-neutron-induced Xe-133 background activity concentrations at a depth of 1 m in a geology representative of the Earth's upper crust and a depth of 5 m in seawater are about 3.48 x 10(-1) and 8.49 x 10(-7) mBq m(-3), respectively. C1 [Wilson, William H.; Johnson, Christine M.; Biegalski, Steven R.] Univ Texas Austin, Nucl Engn Teaching Lab, Austin, TX 78758 USA. [Lowrey, Justin D.; Haas, Derek A.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Wilson, WH (reprint author), Univ Texas Austin, Nucl Engn Teaching Lab, 10100 Burnet Rd,Bldg 159, Austin, TX 78758 USA. EM whwilson15@utexas.edu FU Defense Threat Reduction Agency of the United States Department of Defense [HDTRA1-12-1-0018] FX The authors would like to thank the Defense Threat Reduction Agency of the United States Department of Defense for their generous support of the research documented herein through Grant # HDTRA1-12-1-0018. NR 41 TC 2 Z9 2 U1 2 U2 6 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0236-5731 EI 1588-2780 J9 J RADIOANAL NUCL CH JI J. Radioanal. Nucl. Chem. PD JUL PY 2015 VL 305 IS 1 BP 183 EP 192 DI 10.1007/s10967-015-4181-7 PG 10 WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA CJ8OX UT WOS:000355763700024 ER PT J AU Rim, JH Peterson, DS Armenta, CE Gonzales, ER Unlu, K AF Rim, Jung H. Peterson, Dominic S. Armenta, Claudine E. Gonzales, Edward R. Uenlue, Kenan TI Evaluating ligands for use in polymer ligand film (PLF) for plutonium and uranium extraction SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY LA English DT Article DE PLF; Thin film extraction; HEH[EHP]; HDEHP; Crown-ether; Actinide ID HDEHP; COMPLEXATION; ACTINIDES; MEMBRANE AB This paper describes a new analyte extraction technique using polymer ligand film (PLF). PLFs were synthesized to perform direct sorption of analytes onto its surface for direct counting using alpha spectroscopy. The main focus of the new technique is to shorten and simplify the procedure for chemically isolating radionuclides for determination through a radiometric technique. 4'(5')-di-t-butylcyclohexano 18-crown-6 (DtBuCH(18)C(6)) and 2-ethylhexylphosphonic acid (HEH[EHP]) were examined for plutonium extraction. Di(2-ethyl hexyl) phosphoric acid (HDEHP) were examined for plutonium and uranium extraction. DtBuCH(18)C(6) and HEH[EHP] were not effective in plutonium extraction. HDEHP PLFs were effective for plutonium but not for uranium. C1 [Rim, Jung H.; Uenlue, Kenan] Penn State Univ, Dept Mech & Nucl Engn, University Pk, PA 16802 USA. [Rim, Jung H.; Peterson, Dominic S.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. [Armenta, Claudine E.; Gonzales, Edward R.] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. RP Rim, JH (reprint author), Penn State Univ, Dept Mech & Nucl Engn, University Pk, PA 16802 USA. EM jrim@lanl.gov RI Rim, Jung/J-5150-2015; OI Rim, Jung/0000-0002-9081-0917; Peterson, Dominic/0000-0001-8244-565X FU U.S. Departments of Energy Office of Nuclear Nonproliferation Research and Development; U.S. Department of Defense's Defense Threat Reduction Agency; Nuclear Forensics Graduate Fellowship Program - U.S. Department of Homeland Security's Domestic Nuclear Detection Office; U.S. Department of Energy [DE-AC52-06NA25396] FX This research was performed with the support of the U.S. Departments of Energy Office of Nuclear Nonproliferation Research and Development and U.S. Department of Defense's Defense Threat Reduction Agency. The authors also gratefully acknowledge the support from the Nuclear Forensics Graduate Fellowship Program which is sponsored by the U.S. Department of Homeland Security's Domestic Nuclear Detection Office and the U.S. Department of Defense's Defense Threat Reduction Agency. Los Alamos National Laboratory is operated by Los Alamos National Security, LLC for the U.S. Department of Energy under contract number DE-AC52-06NA25396. This document had been reviewed and assigned publication number: LA-UR-14-27688 Version 4. NR 17 TC 1 Z9 1 U1 5 U2 15 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0236-5731 EI 1588-2780 J9 J RADIOANAL NUCL CH JI J. Radioanal. Nucl. Chem. PD JUL PY 2015 VL 305 IS 1 BP 193 EP 198 DI 10.1007/s10967-015-4118-1 PG 6 WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA CJ8OX UT WOS:000355763700025 ER PT J AU Mertz, CJ Kaminski, MD Shkrob, IA Kalensky, M Sullivan, VS Tsai, YF AF Mertz, Carol J. Kaminski, Michael D. Shkrob, Ilya A. Kalensky, Michael Sullivan, Vivian S. Tsai, Yifen TI Development of field-based separations for the rapid identification of uranium and plutonium SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY LA English DT Article DE Uranium; Plutonium; Extraction chromatography; Separations; Flowsheet ID PLASMA-MASS SPECTROMETRY; ENVIRONMENTAL-SAMPLES; EXTRACTION CHROMATOGRAPHY; ALPHA-SPECTROMETRY; ACTINIDES; ACID AB Method development for rapid processing and purification of uranium and plutonium was performed on a gas pressurized extraction chromatographic system using a single column of Eichrom's DGA extraction resin. The demonstration of the U and Pu purification scheme provided in-line flowsheet processing in under 2 h with low reagent volumes (100-240 mu L) for flowsheet processing stages. Quantitative recovery for U and Pu (95 and 98 %, respectively) with high selectivity between the target actinide analytes (99 % purity) in three bed volumes was achieved in the presence of a potential, environmental, interfering contaminant (iron). C1 [Mertz, Carol J.; Kaminski, Michael D.; Shkrob, Ilya A.; Kalensky, Michael; Sullivan, Vivian S.; Tsai, Yifen] Argonne Natl Lab, Argonne, IL 60439 USA. RP Mertz, CJ (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM mertz@anl.gov FU Defense Threat Reduction Agency through U.S. Department of Energy [DEAC02-06CH11357] FX The manuscript was created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory and was supported by the Defense Threat Reduction Agency under interagency agreement, through U.S. Department of Energy contract DEAC02-06CH11357. NR 16 TC 0 Z9 0 U1 10 U2 21 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0236-5731 EI 1588-2780 J9 J RADIOANAL NUCL CH JI J. Radioanal. Nucl. Chem. PD JUL PY 2015 VL 305 IS 1 BP 199 EP 205 DI 10.1007/s10967-015-4123-4 PG 7 WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA CJ8OX UT WOS:000355763700026 ER PT J AU Johnson, C Lowrey, J Biegalski, S Haas, D AF Johnson, Christine Lowrey, Justin Biegalski, Steven Haas, Derek TI Regional transport of radioxenon released from the Chalk River Laboratories medical isotope facility SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY LA English DT Article DE Atmospheric transport modelling; Radioxenon; Medical isotope production; Onsite inspection AB An examination of proposed sampling sites near Chalk River Laboratories in Ontario, Canada is performed by considering the regional transport of radioxenon using atmospheric dispersion modeling. The local geography is considered, as are the local meteorological conditions during the summer months. In particular the impacts of predicted conditions on the imprinting of atmospheric radioxenon into the subsurface are considered and weighed against site proximity, geography, and geology. C1 [Johnson, Christine; Biegalski, Steven] Univ Texas Austin, Nucl Engn Teaching Lab, Austin, TX 78758 USA. [Lowrey, Justin; Haas, Derek] Pacific NW Natl Lab, Richland, WA 99354 USA. RP Johnson, C (reprint author), Univ Texas Austin, Nucl Engn Teaching Lab, 10100 Burnet Rd,Bldg 159, Austin, TX 78758 USA. EM christine.johnson@utexas.edu FU U.S. Department of Defense, Defense Threat Reduction Agency [HDTRA1-12-1-0018] FX The authors would like to thank Ed Korpach and Kurt Ungar of Health Canada for providing access to the Fixed Point Surveillance Network dose data, as well as their assistance in developing the Chalk River Laboratories sampling campaign. The authors would also like to thank George Dolinar of Atomic Energy Canada Limited for his assistance in setting up the Chalk River Laboratories sampling campaign. This material is based upon work supported by the U.S. Department of Defense, Defense Threat Reduction Agency under Grant Number HDTRA1-12-1-0018. NR 19 TC 5 Z9 5 U1 1 U2 6 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0236-5731 EI 1588-2780 J9 J RADIOANAL NUCL CH JI J. Radioanal. Nucl. Chem. PD JUL PY 2015 VL 305 IS 1 BP 207 EP 212 DI 10.1007/s10967-015-4077-6 PG 6 WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA CJ8OX UT WOS:000355763700027 ER PT J AU Dayman, K Biegalski, S Haas, D AF Dayman, Kenneth Biegalski, Steven Haas, Derek TI Determination of short-lived fission product yields with gamma spectrometry SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY LA English DT Article DE Fission product yields; Bayesian analysis; Inverse problems; Gamma spectrometry ID NUCLEAR-CHARGE DISTRIBUTION; ENDF/B-VII.1; SPECTRUM; PU-239; U-235 AB The majority of fission yield measurements to date have examined cumulative yields of long-lived nuclides. We present a method for determining independent as well as cumulative fission yields using gamma spectrometry and a Bayesian inverse analysis. This paper outlines the impetus for new fission product yield measurements, the methodology developed to measure these and other nuclear parameters, and initial experimental results for long-lived nuclides and sensitivity analyses. In initial scoping measurements, the cumulative yield of Ba was estimated as %, and the independent yield of La was estimated to be %. These estimated values are commensurate with existing literature values. C1 [Dayman, Kenneth; Biegalski, Steven] Univ Texas Austin, Austin, TX 78758 USA. [Haas, Derek] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Dayman, K (reprint author), Univ Texas Austin, 10100 Burnet Rd,Bldg 159, Austin, TX 78758 USA. EM kenneth.dayman@gmail.com FU U.S. Department of Homeland Security [2012-DN-130-NF0001-02] FX This material is based upon work supported by the U.S. Department of Homeland Security under Grant Award Number, 2012-DN-130-NF0001-02. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the U.S. Department of Homeland Security. NR 20 TC 1 Z9 1 U1 0 U2 7 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0236-5731 EI 1588-2780 J9 J RADIOANAL NUCL CH JI J. Radioanal. Nucl. Chem. PD JUL PY 2015 VL 305 IS 1 BP 213 EP 223 DI 10.1007/s10967-015-3993-9 PG 11 WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA CJ8OX UT WOS:000355763700028 ER PT J AU Klingberg, FJ Biegalski, SR Haas, D Prinke, A AF Klingberg, Franziska J. Biegalski, Steven R. Haas, Derek Prinke, Amanda TI Xe-127 coincidence decay analysis in support of CTBT verification SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY LA English DT Article DE Xe-127; Neutron activation; beta-gamma Coincidence; International treaty monitoring; Non-proliferation; CTBT AB For ensuring compliance with a Comprehensive Nuclear-Test-Ban Treaty, it is essential to have advanced monitoring technologies for the detection of nuclear testing and to ensure that detected signals are well understood. Traditionally, (131m) Xe, (133m/g) Xe, and Xe-135 originating from fission are analyzed to determine their possible origin. This work explores the non-traditional isotope Xe-127 (T (1/2) = 36.346(3) d) as it can occur as emission from research reactors, is used in medical procedures, and tracer experiments. It is a good candidate for quality assurance and control and inter-laboratory comparisons. Xe-127 was produced via neutron activation and measured with a high purity germanium detector as well as a beta-gamma-coincidence detector system. C1 [Klingberg, Franziska J.; Biegalski, Steven R.] Univ Texas Austin, Nucl Engn Teaching Lab, Austin, TX 78712 USA. [Haas, Derek; Prinke, Amanda] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Klingberg, FJ (reprint author), Univ Texas Austin, Nucl Engn Teaching Lab, 1 Univ Stn,R9000, Austin, TX 78712 USA. EM klingberg@utexas.edu FU U.S. DoD Defense Threat Reduction Agency [HDTRA1-12-1-0009] FX This work was conducted with the U.S. DoD Defense Threat Reduction Agency's support through Grant HDTRA1-12-1-0009. NR 16 TC 2 Z9 2 U1 0 U2 1 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0236-5731 EI 1588-2780 J9 J RADIOANAL NUCL CH JI J. Radioanal. Nucl. Chem. PD JUL PY 2015 VL 305 IS 1 BP 225 EP 232 DI 10.1007/s10967-014-3871-x PG 8 WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA CJ8OX UT WOS:000355763700029 ER PT J AU Horkley, JJ Carney, KP Gantz, EM Davies, JE Lewis, RR Crow, JP Poole, CA Grimes, TS Giglio, JJ AF Horkley, J. J. Carney, K. P. Gantz, E. M. Davies, J. E. Lewis, R. R. Crow, J. P. Poole, C. A. Grimes, T. S. Giglio, J. J. TI Production of highly-enriched Ba-134 for a reference material for isotope dilution mass spectrometry measurements SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY LA English DT Article DE Mass separator; Reference standard; Isotope dilution; Separations; Mass spectrometry; Enriched isotope spike ID SEPARATION; EXTRACTION AB Isotope dilution mass spectrometry (IDMS) is an analytical technique capable of providing accurate and precise quantitation of trace isotope abundance and assay providing measurement uncertainties below 1 %. To achieve these low uncertainties, the IDMS method ideally utilizes chemically pure "spike" solutions that consist of a single highly enriched isotope that is well-characterized relating to the abundance of companion isotopes and concentration in solution. To address a current demand for accurate Cs-137/Ba-137 ratio measurements for "age" determination of radioactive Cs-137 sources, Idaho National Laboratory (INL) is producing enriched Ba-134 isotopes that are tobe used for IDMS spikes to accurately determine Ba-137 accumulation from the decay of Cs-137. The final objective of this work it to provide a homogenous set of reference materials that the National Institute of Standards and Technology can certify as standard reference materials used for IDMS. The process that was developed at INL for the separation and isolation of Ba isotopes, chemical purification of the isotopes in solution, and the encapsulation of the materials will be described. C1 [Horkley, J. J.; Carney, K. P.; Gantz, E. M.; Davies, J. E.; Lewis, R. R.; Crow, J. P.; Poole, C. A.; Grimes, T. S.; Giglio, J. J.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Horkley, JJ (reprint author), Idaho Natl Lab, POB 1625,MS-6180, Idaho Falls, ID 83415 USA. EM Jared.Horkley@inl.gov; Kevin.Carney@inl.gov; Erin.Gantzmay@inl.gov; Jacob.Davies@inl.gov; Russel.Lewis@inl.gov; Jana.Crow@inl.gov; Crystal.Poole@inl.gov; Travis.Grimes@inl.gov; Jeffrey.Giglio@inl.gov FU Beam Imaging Solutions Inc.; Oak Ridge National Laboratory stable isotope mass separator group; National Institute of Standards and Technology; U.S Department of Homeland Security FX The authors wish to thank Beam Imaging Solutions Inc., the Oak Ridge National Laboratory stable isotope mass separator group, the National Institute of Standards and Technology, and the U.S Department of Homeland Security for their continued support for this work. NR 8 TC 1 Z9 1 U1 1 U2 7 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0236-5731 EI 1588-2780 J9 J RADIOANAL NUCL CH JI J. Radioanal. Nucl. Chem. PD JUL PY 2015 VL 305 IS 1 BP 267 EP 275 DI 10.1007/s10967-015-4047-z PG 9 WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA CJ8OX UT WOS:000355763700033 ER PT J AU Mathew, KJ Essex, RM Gradle, C Narayanan, U AF Mathew, K. J. Essex, R. M. Gradle, C. Narayanan, U. TI Uncertainties achievable for uranium isotope-amount ratios: estimates based on the precision and accuracy of recent characterization measurements SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY LA English DT Article DE Uranium; Certified reference materials; Thermal ionization mass spectrometry; Traceability; Uncertainties; ISO-GUM ID METAL ASSAY; STANDARD AB Certified reference materials (CRMs) recently characterized by the NBL for isotope-amount ratios are: (i) CRM 112-A, Uranium (normal) Metal Assay and Isotopic Standard, (ii) CRM 115, Uranium (depleted) Metal Assay and Isotopic Standard, and (iii) CRM 116-A, Uranium (enriched) Metal Assay and Isotopic Standard. NBL also completed re-characterization of the isotope-amount ratios in CRM 125-A, Uranium (UO2) Pellet Assay, Isotopic, and Radio-chronometric Standard. Three different TIMS analytical techniques were employed for the characterization analyses. The total evaporation technique was used for the major isotope-amount ratio measurement, the modified total evaporation technique was used for both the major and minor isotope-amount ratios, and minor isotope-amount ratios were also measured using a Conventional technique. Uncertainties for the characterization studies were calculated from the combined TIMS data sets following the ISO Guide to the expression of uncertainty in measurement. The uncertainty components for the isotope-amount ratio values are discussed. C1 [Mathew, K. J.; Essex, R. M.; Gradle, C.; Narayanan, U.] US DOE, NBL, Argonne, IL 60439 USA. RP Mathew, KJ (reprint author), US DOE, NBL, Bldg 350,9800 S Cass Ave, Argonne, IL 60439 USA. EM kattathu.mathew@ch.doe.gov NR 17 TC 3 Z9 3 U1 4 U2 14 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0236-5731 EI 1588-2780 J9 J RADIOANAL NUCL CH JI J. Radioanal. Nucl. Chem. PD JUL PY 2015 VL 305 IS 1 BP 277 EP 282 DI 10.1007/s10967-014-3828-0 PG 6 WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA CJ8OX UT WOS:000355763700034 ER PT J AU Fitzsimmons, JM Mausner, LF AF Fitzsimmons, J. M. Mausner, L. F. TI Determination of germanium isotope abundances and specific activity in accelerator produced germanium-68 SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY LA English DT Article DE ICP-MS; Ge-68; Germanium; Isotope abundances; Specific activity AB Germanium-68 was produced by irradiation of a gallium target at a linear accelerator and purified by a two-step process involving leaching followed by chromatography. Germanium isotope abundances and specific activities of purified Ge-68 were determined by inductively coupled plasma mass spectrometry (Perkin Elmer ICP-MS ELAN DRC) and gamma spectroscopy. The germanium abundances were: Ge-68 (29.7-60.9 %) Ge-69 (< 1 %), Ge-70 (37.7-64 %), Ge-72 (< 10 %), Ge-73 (0 %), Ge-74 (< 5 %), Ge-76 (0 %) and the specific activities were 53.8-155.9 GBq/mg. The low quantification limits of ICP-MS allow the analysis of diluted gamma counting samples so a separate ICP sample does not have to be prepared. C1 [Fitzsimmons, J. M.; Mausner, L. F.] Brookhaven Natl Lab, Med Isotope Res & Prod Program, Collider Accelerator Dept, Upton, NY 11973 USA. RP Fitzsimmons, JM (reprint author), Brookhaven Natl Lab, Med Isotope Res & Prod Program, Collider Accelerator Dept, Bldg 801, Upton, NY 11973 USA. EM john.jmf635@gmail.com FU Department of Energy, Office of Nuclear Physics, subprogram Isotope Development and Production for Research and Applications FX This study was supported by funding provided by the Department of Energy, Office of Nuclear Physics, subprogram Isotope Development and Production for Research and Applications. Special thanks to the Brookhaven National Laboratory isotope production team: Cleve Dodge, Louis Evers Jr, Anna Goldberg, Elizabeth Korach, Slawko Kurczak, Lisa Muench, Dmitri Medvedev, Joseph O'Conor and Albert Hanson. Special thanks to Mike Nelson for insight into ICP-MS instrumentation. NR 8 TC 3 Z9 3 U1 0 U2 2 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0236-5731 EI 1588-2780 J9 J RADIOANAL NUCL CH JI J. Radioanal. Nucl. Chem. PD JUL PY 2015 VL 305 IS 1 BP 283 EP 286 DI 10.1007/s10967-015-4054-0 PG 4 WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA CJ8OX UT WOS:000355763700035 ER PT J AU Borovikov, V Mendelev, MI King, AH LeSar, R AF Borovikov, Valery Mendelev, Mikhail I. King, Alexander H. LeSar, Richard TI Effect of stacking fault energy on mechanism of plastic deformation in nanotwinned FCC metals SO MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING LA English DT Article DE semi-empirical potentials; molecular dynamics simulation; stacking fault energy ID MOLECULAR-DYNAMICS SIMULATION; NANOCRYSTALLINE METALS; INTERATOMIC POTENTIALS; TWIN BOUNDARIES; STRENGTH; NANOSCALE; CU AB Starting from a semi-empirical potential designed for Cu, we have developed a series of potentials that provide essentially constant values of all significant (calculated) materials properties except for the intrinsic stacking fault energy, which varies over a range that encompasses the lowest and highest values observed in nature. These potentials were employed in molecular dynamics (MD) simulations to investigate how stacking fault energy affects the mechanical behavior of nanotwinned face-centered cubic (FCC) materials. The results indicate that properties such as yield strength and microstructural stability do not vary systematically with stacking fault energy, but rather fall into two distinct regimes corresponding to 'low' and 'high' stacking fault energies. C1 [Borovikov, Valery; Mendelev, Mikhail I.; King, Alexander H.; LeSar, Richard] Ames Lab, Div Mat Sci & Engn, Ames, IA 50011 USA. [King, Alexander H.; LeSar, Richard] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. RP Borovikov, V (reprint author), Ames Lab, Div Mat Sci & Engn, Ames, IA 50011 USA. EM mendelev@ameslab.gov RI King, Alexander/P-6497-2015 OI King, Alexander/0000-0001-7101-6585 FU Department of Energy, Office of Basic Energy Sciences [DE-AC02-07CH11358] FX Work at the Ames Laboratory was supported by the Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-07CH11358. NR 26 TC 7 Z9 7 U1 5 U2 44 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0965-0393 EI 1361-651X J9 MODEL SIMUL MATER SC JI Model. Simul. Mater. Sci. Eng. PD JUL PY 2015 VL 23 IS 5 AR 055003 DI 10.1088/0965-0393/23/5/055003 PG 16 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA CK5TT UT WOS:000356289300003 ER PT J AU Labouriau, A Cady, C Gill, J Taylor, D Zocco, A Stull, J Henderson, K Wrobleski, D AF Labouriau, Andrea Cady, Carl Gill, John Taylor, Dean Zocco, Adam Stull, Jamie Henderson, Kevin Wrobleski, Debra TI The effects of gamma irradiation on RTV polysiloxane foams SO POLYMER DEGRADATION AND STABILITY LA English DT Article DE Polysiloxanes; Gamma irradiation; RTV; Foams ID MOLECULAR-WEIGHT CHANGES; POLY(DIMETHYL SILOXANE); STATISTICAL-MECHANICS; RADIATION-CHEMISTRY; RUBBER ELASTICITY; SILICONE-RUBBER; CROSS-LINKING; POLYDIMETHYLSILOXANES; NETWORKS; TEMPERATURE AB The present work involves the investigation of ionizing radiation effects on silica filled poly (dimethyl siloxane) foam vulcanized at room temperature. In order to better predict aging effects in these materials, it is important to understand the influence of irradiation on structural-rheological property relationships. Polysiloxane foams were subjected to moderate doses of gamma irradiation in an inert atmosphere and characterized by thermal (DSC and TGA), chemical (FT-IR, NMR, Mossbauer, mass spectroscopy, EPR, solvent swelling), microscopy (SEM and AFM), and mechanical (uniaxial compressive load) techniques. Radiation exposure induced cross-linking reactions that predominated over chain scission reactions for the dose range investigated. No long-lived radiation-induced radicals were detected and the porous structure of the irradiated foam remained unchanged. Radiation exposure resulted in gas evolution, decrease in crystallization levels, slight changes in chemistry, and decrease in the molecular weight between cross-links, thereby hardening the foam. (c) 2015 Elsevier Ltd. All rights reserved. C1 [Labouriau, Andrea; Cady, Carl; Gill, John; Taylor, Dean; Zocco, Adam; Stull, Jamie; Henderson, Kevin; Wrobleski, Debra] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Labouriau, A (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. EM andrea@lanl.gov OI Labouriau, Andrea/0000-0001-8033-9132 FU Enhanced Surveillance Campaign; US Department of Energy's National Nuclear Security Administration [DE-AC52-06NA25396] FX We thank Don Hanson and Maryla Wasiolek from Sandia National Laboratories for their help with experiments performed at the GIF. This work was funded by the Enhanced Surveillance Campaign, and the US Department of Energy's National Nuclear Security Administration under contract DE-AC52-06NA25396. NR 30 TC 5 Z9 5 U1 4 U2 34 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0141-3910 EI 1873-2321 J9 POLYM DEGRAD STABIL JI Polym. Degrad. Stabil. PD JUL PY 2015 VL 117 BP 75 EP 83 DI 10.1016/j.polymdegradstab.2015.03.021 PG 9 WC Polymer Science SC Polymer Science GA CK3LK UT WOS:000356117400010 ER PT J AU Bai, H Wang, D Delattre, B Gao, WW De Coninck, J Li, S Tomsia, AP AF Bai, Hao Wang, Dong Delattre, Benjamin Gao, Weiwei De Coninck, Joel Li, Song Tomsia, Antoni P. TI Biomimetic gradient scaffold from ice-templating for self-seeding of cells with capillary effect SO ACTA BIOMATERIALIA LA English DT Article DE Biomimetic; Scaffold; Bone; Cell seeding; Freeze-casting ID LOW-PRESSURE SYSTEM; POROUS SCAFFOLD; BONE-FORMATION; TISSUE; COMPOSITE; COLLECTION; EFFICIENCY; PERFUSION; CERAMICS; GROWTH AB One of the most important issues in bone tissue engineering is the search for new materials and processing techniques to create novel scaffolds with 3-D porous structures. Although many properties such as biodegradability and porosity have been considered in designing bone scaffolds, very limited attention is paid to their capillary effect. In nature, capillary effect is ubiquitously used by plants and animals to constantly transport water and nutrients based on morphological and/or chemical gradient structures at multiple length-scales. In this work, we developed a modified freeze-casting technique to prepare ceramic scaffolds with gradient channel structures. The results show that our hydroxyapatite (HA) scaffolds have interconnected gradient channels that mimic the porous network of natural bone. More importantly, we demonstrate that such a scaffold has a very unique capillary behavior that promotes the self-seeding of cells when in contact with a cell solution due to spontaneous capillary flow generated from gradient channel structures. The strategy developed here provides a new avenue for designing "smart" scaffolds with complex porous structures and biological functions that mimic natural tissues. Published by Elsevier Ltd. on behalf of Acta Materialia Inc. C1 [Bai, Hao; Delattre, Benjamin; Gao, Weiwei; Tomsia, Antoni P.] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Wang, Dong; Li, Song] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. [Delattre, Benjamin; De Coninck, Joel] Univ Mons, Surface & Interface Phys Lab, B-7000 Mons, Belgium. RP Bai, H (reprint author), Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM hbai@lbl.gov RI Bai, Hao/J-5255-2012; Bai, Hao/D-1713-2017 OI Bai, Hao/0000-0002-1707-4976; Bai, Hao/0000-0002-3348-6129 FU National Institute of Dental and Craniofacial Research of the National Institutes of Health [1R01DE015633]; DOE's Office of Basic Energy Sciences FX Research reported in this publication was supported by the National Institute of Dental and Craniofacial Research of the National Institutes of Health under award number 1R01DE015633. The authors also acknowledge support of the X-ray tomography beamline 8.3.2 at the Advanced Light Source (ALS) at Lawrence Berkeley National Laboratory, which is supported by DOE's Office of Basic Energy Sciences. The authors would like to acknowledge Ms. Grace Lau, Dr. Yuan Chen, Mr. James Wu, Mr. Flynn Walsh, Dr. Lei Cheng, Dr. Xu Deng, and Dr. Laurent Gremillard for their kind help with the experiments and discussions. NR 31 TC 7 Z9 7 U1 10 U2 64 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1742-7061 EI 1878-7568 J9 ACTA BIOMATER JI Acta Biomater. PD JUL 1 PY 2015 VL 20 BP 113 EP 119 DI 10.1016/j.actbio.2015.04.007 PG 7 WC Engineering, Biomedical; Materials Science, Biomaterials SC Engineering; Materials Science GA CJ7VJ UT WOS:000355708200012 PM 25871536 ER PT J AU Medvedev, DG Mausner, LF Pile, P AF Medvedev, Dmitri G. Mausner, Leonard F. Pile, Philip TI Tailoring medium energy proton beam to induce low energy nuclear reactions in (SrCl2)-Sr-86 for production of PET radioisotope Y-86 SO APPLIED RADIATION AND ISOTOPES LA English DT Article DE Low energy reaction; BLIP; Yttrium-86; Production; Energy degradation ID LINAC ISOTOPE PRODUCER; RADIOCHEMICAL SEPARATION; TARGETS; PURIFICATION; SR; RADIONUCLIDES; BOMBARDMENT; IRRADIATION; YTTRIUM-86; EXCITATION AB This paper reports results of experiments at Brookhaven Linac Isotope Producer (BLIP) aiming to investigate effective production of positron emitting radioisotope Y-86 by the low energy Sr-86(p,n) reaction. BLIP is a facility at Brookhaven National Laboratory designed for the proton irradiation of the targets for isotope production at high and intermediate proton energies. The proton beam is delivered by the Linear Accelerator (LINAC) whose incident energy is tunable from 200 to 66 MeV in approximately 21 MeV increments. The array was designed to ensure energy degradation from 66 MeV down to less than 20 MeV. Aluminum slabs were used to degrade the proton energy down to the required range. The production yield of Y-86 (1.2 + / -0.1 mCi (44.4 + / -3.7) MBq/mu Ah) and ratio of radioisotopic impurities was determined by assaying an aliquot of the irradiated (SrCl2)-Sr-86 solution by gamma spectroscopy. The analysis of energy dependence of the Y-86 production yield and the ratios of radioisotopic impurities has been used to adjust degrader thickness. Experimental data showed substantial discrepancies in actual energy propagation compared to energy loss calculations. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Medvedev, Dmitri G.; Mausner, Leonard F.; Pile, Philip] Brookhaven Natl Lab, Collider Accelerator Dept, Upton, NY 11973 USA. RP Medvedev, DG (reprint author), Brookhaven Natl Lab, Collider Accelerator Dept, Upton, NY 11973 USA. EM dmedvede@bnl.gov FU US Department of Energy Office of Nuclear Physics Isotope Program FX The this work was supported by the US Department of Energy Office of Nuclear Physics Isotope Program. NR 38 TC 0 Z9 0 U1 1 U2 6 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0969-8043 J9 APPL RADIAT ISOTOPES JI Appl. Radiat. Isot. PD JUL PY 2015 VL 101 BP 20 EP 26 DI 10.1016/j.apradiso.2015.02.021 PG 7 WC Chemistry, Inorganic & Nuclear; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Chemistry; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA CK0IN UT WOS:000355889000004 PM 25813003 ER PT J AU Fitzsimmons, JM Mausner, L AF Fitzsimmons, Jonathan M. Mausner, Leonard TI Production scale purification of Ge-68 and Zn-65 from irradiated gallium metal SO APPLIED RADIATION AND ISOTOPES LA English DT Article DE Gallium-68; Ga-68; Germanium-68; Ge-68; Radiochemical separation AB Germanium-68 (Ge-68) is produced by proton irradiation of a gallium metal target, purified by organic extraction and used in a medical isotope generator to produce Gallium-68 PET imaging agents. The purpose of this work was to implement a production scale separation of Ge-68 and Zn-65 that does not use organic solvents and uses a limited number of columns. The current separation approach was modified to use AG1 resin and/or Sephadex (c) G25 with zinc spikes to purify Ge-68 with near quantitative recovery. The purified Ge-68 meets DOE specifications. Methods utilizing zinc spikes resulted in the purist Ge-68 produced at Brookhaven National Lab with no other impurities by ICP-OES. During process optimization approximately 2.5 Ci of Ge-68 was purified utilizing the different processing methods, and the material was sold to the Nuclear Medicine community between 2012-2013. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Fitzsimmons, Jonathan M.; Mausner, Leonard] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Fitzsimmons, JM (reprint author), Brookhaven Natl Lab, Bldg 801, Upton, NY 11973 USA. EM jfitzsimmons@bnl.gov FU Department of Energy, Office of Nuclear Physics, subprogram Isotope Development and Production for Research and Applications [ST-50-01-03] FX This study was supported by funding provided by the Department of Energy, Office of Nuclear Physics, subprogram Isotope Development and Production for Research and Applications (Core funding grant number ST-50-01-03). Special thanks to the Brookhaven National. Laboratory isotope production team: Anna Goldberg, Slawko Kurczak, Elizabeth Korach, Lisa Muench, Joseph O'Conor, Cleve Dodge, Dmitri Medvedev. NR 13 TC 3 Z9 3 U1 3 U2 11 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0969-8043 J9 APPL RADIAT ISOTOPES JI Appl. Radiat. Isot. PD JUL PY 2015 VL 101 BP 60 EP 64 DI 10.1016/j.apradiso.2015.03.012 PG 5 WC Chemistry, Inorganic & Nuclear; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Chemistry; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA CK0IN UT WOS:000355889000010 PM 25836978 ER PT J AU Bjorgaard, JA Nelson, T Kalinin, K Kuzmenko, V Velizhanin, KA Tretiak, S AF Bjorgaard, J. A. Nelson, T. Kalinin, K. Kuzmenko, V. Velizhanin, K. A. Tretiak, S. TI Simulations of fluorescence solvatochromism in substituted PPV oligomers from excited state molecular dynamics with implicit solvent SO CHEMICAL PHYSICS LETTERS LA English DT Article ID POLARIZABLE CONTINUUM MODEL; DENSITY-FUNCTIONAL THEORY; ELECTRONIC EXCITATIONS; OPTICAL-PROPERTIES; AQUEOUS-SOLUTION; GAS-PHASE; ENERGY; SOLVATION; POLARITY; ACETONE AB An efficient method of treating solvent effects in excited state molecular dynamics (ESMD) is implemented and tested by exploring the solvatochromic effects in substituted p-phenylene vinylene oligomers. A continuum solvent model is used which has very little computational overhead. This allows simulations of ESMD with solvent effects on the scale of hundreds of picoseconds for systems of up to hundreds of atoms. At these time scales, solvatochromic shifts in fluoresence spectra can be described. Solvatochromic shifts in absorption and fluorescence spectra from ESMD are compared with time-dependent density functional theory calculations and experiments. (C) 2015 Elsevier B.V. All rights reserved. C1 [Bjorgaard, J. A.; Tretiak, S.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Bjorgaard, J. A.; Nelson, T.; Velizhanin, K. A.; Tretiak, S.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM USA. [Tretiak, S.] Los Alamos Natl Lab, Ctrt Integrated Nanotechnol, Los Alamos, NM 87545 USA. [Kalinin, K.] Kovo Inst Sci & Technol, Skoldovo 143025, Russia. [Kuzmenko, V.] Natl Tech Univ Ukraine, KPI, UA-03056 Kiev, Ukraine. RP Bjorgaard, JA (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM USA. EM serg@lanl.gov RI Velizhanin, Kirill/C-4835-2008; Tretiak, Sergei/B-5556-2009; OI Tretiak, Sergei/0000-0001-5547-3647; Bjorgaard, Josiah/0000-0003-3679-2487 FU U.S. Department of Energy through Los Alamos National Laboratory (LANL) LDRD Program; U.S. Department of Energy [DE-AC52-06NA25396]; Center for Nonlinear Studies (CNLS); Center for Integrated Nanotechnology (CINT) at LANL FX We acknowledge support of the U.S. Department of Energy through the Los Alamos National Laboratory (LANL) LDRD Program. LANL is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. We also acknowledge support of the Center for Nonlinear Studies (CNLS) and the Center for Integrated Nanotechnology (CINT) at LANL. NR 45 TC 4 Z9 4 U1 1 U2 23 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0009-2614 EI 1873-4448 J9 CHEM PHYS LETT JI Chem. Phys. Lett. PD JUL 1 PY 2015 VL 631 BP 66 EP 69 DI 10.1016/j.cplett.2015.04.030 PG 4 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA CJ6WR UT WOS:000355636400013 ER PT J AU Yin, X Chen, WY Eom, JY Clarke, LE Kim, SH Patel, PL Yu, S Kyle, GP AF Yin, Xiang Chen, Wenying Eom, Jiyong Clarke, Leon E. Kim, Son H. Patel, Pralit L. Yu, Sha Kyle, G. Page TI China's transportation energy consumption and CO2 emissions from a global perspective SO ENERGY POLICY LA English DT Article DE Integrated assessment; Transport sector; CO2 mitigation; GCAM-China ID GREENHOUSE-GAS EMISSIONS; LONG-TERM IMPLICATIONS; CARBON EMISSIONS; RURAL VEHICLES; ROAD TRANSPORT; SCENARIOS; DEMAND; STRATEGIES; POLICY; MODEL AB Rapidly growing energy demand from China's transportation sector in the last two decades have raised concerns over national energy security, local air pollution, and carbon dioxide (CO2) emissions, and there is broad consensus that China's transportation sector will continue to grow in the coming decades. This paper explores the future development of China's transportation sector in terms of service demands, final energy consumption, and CO2 emissions, and their interactions with global climate policy. This study develops a detailed China transportation energy model that is nested in an integrated assessment model Global Change Assessment Model (GCAIVI) to evaluate the long-term energy consumption and CO2 emissions of China's transportation sector from a global perspective. The analysis suggests that, without major policy intervention, future transportation energy consumption and CO2 emissions will continue to rapidly increase and the transportation sector will remain heavily reliant on fossil fuels. Although carbon price policies may significantly reduce the sector's energy consumption and CO2 emissions, the associated changes in service demands and modal split will be modest, particularly in the passenger transport sector. The analysis also suggests that it is more difficult to decarbonize the transportation sector than other sectors of the economy, primarily owing to its heavy reliance on petroleum products. (c) 2015 Elsevier Ltd. All rights reserved. C1 [Yin, Xiang; Chen, Wenying] Tsinghua Univ, Inst Energy Environm & Econ, Hangzhou, Peoples R China. [Eom, Jiyong; Clarke, Leon E.; Kim, Son H.; Patel, Pralit L.; Yu, Sha; Kyle, G. Page] Pacific NW Natl Lab, Joint Global Change Res Inst, Richland, WA 99352 USA. [Eom, Jiyong] Korea Adv Inst Sci & Technol, Seoul, South Korea. RP Chen, WY (reprint author), Tsinghua Univ, Inst Energy Environm & Econ, Hangzhou, Peoples R China. EM chenwy@tsinghua.edu.cn RI Eom, Jiyong/A-1161-2014 FU Ministry of Science and Technology of China [2012BAC20B01]; Ministry of Education of China [12JJD630002]; National Development and Reform Commission, China [2012011]; China Scholar Council FX This study is supported by the Ministry of Science and Technology of China (2012BAC20B01), Ministry of Education of China (12JJD630002), National Development and Reform Commission, China (2012011), and China Scholar Council NR 59 TC 14 Z9 14 U1 6 U2 58 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0301-4215 EI 1873-6777 J9 ENERG POLICY JI Energy Policy PD JUL PY 2015 VL 82 BP 233 EP 248 DI 10.1016/j.enpol.2015.03.021 PG 16 WC Energy & Fuels; Environmental Sciences; Environmental Studies SC Energy & Fuels; Environmental Sciences & Ecology GA CJ3EX UT WOS:000355367300020 ER PT J AU Klumpp, J Brandl, A AF Klumpp, John Brandl, Alexander TI Simultaneous Source Detection and Analysis Using a Zero-inflated Count Rate Model SO HEALTH PHYSICS LA English DT Article ID LOW-LEVEL RADIOACTIVITY; DISTRIBUTIONS AB This paper proposes a novel Bayesian technique that allows for simultaneous source detection and count rate analysis. The technique involves using priors, which include a finite probability that the source count rate is exactly zero. Such priors are called "zero-inflated." Solving the posterior distribution of a zero-inflated count rate model provides the probability that the sample contains a source and a probability distribution for the source count rate if the source exists, without the need to perform redundant computations. Sampling from zero-inflated distributions is straightforward and can be accomplished with easily accessible open source software. In addition, zero-inflated priors lead to finite posterior probabilities of "no source," which is an easy-to-understand and satisfying result. C1 [Klumpp, John; Brandl, Alexander] Colorado State Univ, Ft Collins, CO 80523 USA. RP Klumpp, J (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM jaklumpp@gmail.com NR 16 TC 1 Z9 1 U1 1 U2 3 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA TWO COMMERCE SQ, 2001 MARKET ST, PHILADELPHIA, PA 19103 USA SN 0017-9078 EI 1538-5159 J9 HEALTH PHYS JI Health Phys. PD JUL PY 2015 VL 109 IS 1 BP 35 EP 53 DI 10.1097/HP.0000000000000291 PG 19 WC Environmental Sciences; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA CJ6PL UT WOS:000355615700005 PM 26011497 ER PT J AU Venteris, ER Tagestad, JD Downs, JL Murray, CJ AF Venteris, E. R. Tagestad, J. D. Downs, J. L. Murray, C. J. TI Detection of anomalous crop condition and soil variability mapping using a 26 year Landsat record and the Palmer crop moisture index SO INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION LA English DT Article DE Monitoring; Geologic injection; NDVI; Corn; Soybean; Soil mapping ID ZEA-MAYS L.; ORGANIC-CARBON; YIELD; CORN; TOLERANCE; FIELD; REDISTRIBUTION; TEMPERATURE; LIMITATIONS; MANAGEMENT AB Cost-effective and reliable vegetation monitoring methods are needed for applications ranging from traditional agronomic mapping, to verifying the safety of geologic injection activities. A particular challenge is defining baseline crop conditions and subsequent anomalies from long term imagery records (Landsat) in the face of large spatiotemporal variability. We develop a new method for defining baseline crop response (near peak growth) using the normalized difference vegetation index (NDVI) from 26 years (1986-2011) of Landsat data for 400 km(2) surrounding a planned geologic carbon sequestration site near Jacksonville, Illinois. The normal score transform (y(NDVI)) was applied on a field by field basis to accentuate spatial patterns and level differences due to planting times. We tested crop type and soil moisture (Palmer crop moisture index (CMI)) as predictors of expected crop condition. Spatial patterns in y(NDVI) were similar between corn and soybeans - the two major crops. Linear regressions between y(NDVI) and the cumulative CMI (CCMI) exposed complex interactions between crop condition, field location (topography and soils), and annual moisture. Wet toposequence positions (depressions) were negatively correlated to CCMI and dry positions (crests) positively correlated. However, only 21% of the landscape showed a statistically significant (p <0.05) linear relationship. To map anomalous crop conditions, we defined a tolerance interval based on y(NDVI) statistics. Tested on an independent image (2013), 63 of 1483 possible fields showed unusual crop condition. While the method is not directly suitable for crop health assessment, the spatial patterns in correlation between y(NDVI) and CCMI have potential applications for pest damage detection and edaphological soil mapping, especially in the developing world. (C) 2015 Elsevier B.V. All rights reserved. C1 [Venteris, E. R.; Tagestad, J. D.; Downs, J. L.; Murray, C. J.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Venteris, ER (reprint author), Pacific NW Natl Lab, POB 999,MSIN K9-33, Richland, WA 99352 USA. EM erik.venteris@gmail.com FU Department of Energy [DE-FE0001882, DE-FE0005054] FX This material is based upon work supported by the Department of Energy under Award Number DE-FE0001882 and DE-FE0005054. Richard Skaggs and Vince Vermeul are thanked for providing early reviews of the manuscript. NR 45 TC 2 Z9 2 U1 1 U2 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0303-2434 J9 INT J APPL EARTH OBS JI Int. J. Appl. Earth Obs. Geoinf. PD JUL PY 2015 VL 39 BP 160 EP 170 DI 10.1016/j.jag.2015.03.008 PG 11 WC Remote Sensing SC Remote Sensing GA CJ3FD UT WOS:000355367900017 ER PT J AU Baskes, MI Ortiz, M AF Baskes, M. I. Ortiz, M. TI Scaling Laws in the Ductile Fracture of Metallic Crystals SO JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME LA English DT Article ID VOID GROWTH; CRACK-GROWTH; LATTICE-DEFECTS; COALESCENCE; FAILURE; LOCALIZATION; TOUGHNESS; DYNAMICS; HYDROGEN; NICKEL AB We explore whether the continuum scaling behavior of the fracture energy of metals extends down to the atomistic level. We use an embedded atom method (EAM) model of Ni, thus bypassing the need to model strain-gradient plasticity at the continuum level. The calculations are performed with a number of different 3D periodic size cells using standard molecular dynamics (MD) techniques. A void nucleus of a single vacancy is placed in each cell and the cell is then expanded through repeated NVT MD increments. For each displacement, we then determine which cell size has the lowest energy. The optimal cell size and energy bear a power-law relation to the opening displacement that is consistent with continuum estimates based on strain-gradient plasticity (Fokoua et al., 2014, "Optimal Scaling in Solids Undergoing Ductile Fracture by Void Sheet Formation," Arch. Ration. Mech. Anal. (in press); Fokoua et al., 2014, "Optimal Scaling Laws for Ductile Fracture Derived From Strain-Gradient Microplasticity," J. Mech. Phys. Solids, 62, pp. 295-311). The persistence of power-law scaling of the fracture energy down to the atomistic level is remarkable. C1 [Baskes, M. I.] Mississippi State Univ, Bagley Coll Engn, Mississippi State, MS 39762 USA. [Baskes, M. I.] Univ Calif San Diego, Jacobs Sch Engn, La Jolla, CA 92093 USA. [Baskes, M. I.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Ortiz, M.] CALTECH, Div Engn & Appl Sci, Pasadena, CA 91125 USA. RP Baskes, MI (reprint author), Mississippi State Univ, Bagley Coll Engn, Mississippi State, MS 39762 USA. FU U.S. National Science Foundation through the Partnership for International Research and Education (PIRE) on Science at the Triple Point Between Mathematics, Mechanics, and Materials Science [0967140] FX MO gratefully acknowledges the support of the U.S. National Science Foundation through the Partnership for International Research and Education (PIRE) on Science at the Triple Point Between Mathematics, Mechanics, and Materials Science, Award No. 0967140. NR 32 TC 0 Z9 0 U1 8 U2 15 PU ASME PI NEW YORK PA TWO PARK AVE, NEW YORK, NY 10016-5990 USA SN 0021-8936 EI 1528-9036 J9 J APPL MECH-T ASME JI J. Appl. Mech.-Trans. ASME PD JUL PY 2015 VL 82 IS 7 SI SI AR 071003 DI 10.1115/1.4030329 PG 5 WC Mechanics SC Mechanics GA CK1CB UT WOS:000355941900004 ER PT J AU Li, DS Lavender, C AF Li, Dongsheng Lavender, Curt TI Strengthening and Improving Yield Asymmetry of Magnesium Alloys by Second Phase Particle Refinement Under the Guidance of Integrated Computational Materials Engineering SO JOURNAL OF ENGINEERING MATERIALS AND TECHNOLOGY-TRANSACTIONS OF THE ASME LA English DT Article DE strengthening; magnesium alloys; precipitate; dispersion; ICME ID EXTRUDED MG-3AL-1ZN ALLOY; POLYCRYSTALLINE MATERIALS; MECHANICAL-PROPERTIES; GRAIN-SIZE; DEFORMATION; TEXTURE; MICROSTRUCTURE; EVOLUTION AB Improving yield strength and asymmetry is critical to expand applications of magnesium alloys in industry for higher fuel efficiency and lower CO2 production. Grain refinement is an efficient method for strengthening low symmetry magnesium alloys, achievable by precipitate refinement. This study provides guidance on how precipitate engineering will improve mechanical properties through grain refinement. Precipitate refinement for improving yield strengths and asymmetry is simulated quantitatively by coupling a stochastic second phase grain refinement model and a modified polycrystalline crystal viscoplasticity u-model. Using the stochastic second phase grain refinement model, grain size is quantitatively determined from the precipitate size and volume fraction. Yield strengths, yield asymmetry, and deformation behavior are calculated from the modified u-model. If the precipitate shape and size remain constant, grain size decreases with increasing precipitate volume fraction. If the precipitate volume fraction is kept constant, grain size decreases with decreasing precipitate size during precipitate refinement. Yield strengths increase and asymmetry approves to one with decreasing grain size, contributed by increasing precipitate volume fraction or decreasing precipitate size. C1 [Li, Dongsheng; Lavender, Curt] Pacific NW Natl Lab, CSMD, Richland, WA 99352 USA. [Li, Dongsheng] Pratt & Whitney, Mat & Proc Engn, E Hartford, CT 06118 USA. RP Li, DS (reprint author), Pacific NW Natl Lab, CSMD, Richland, WA 99352 USA. EM dongshengli@gmail.com FU DOE's Office of Energy Efficiency and Renewable Energy; DOE [DE-AC05-76RL01830] FX Support for this work was provided by the DOE's Office of Energy Efficiency and Renewable Energy. Pacific Northwest National Laboratory is operated by Battelle for the DOE under Contract No. DE-AC05-76RL01830. NR 22 TC 1 Z9 1 U1 2 U2 14 PU ASME PI NEW YORK PA TWO PARK AVE, NEW YORK, NY 10016-5990 USA SN 0094-4289 EI 1528-8889 J9 J ENG MATER-T ASME JI J. Eng. Mater. Technol.-Trans. ASME PD JUL PY 2015 VL 137 IS 3 AR 031008 DI 10.1115/1.4030356 PG 7 WC Engineering, Mechanical; Materials Science, Multidisciplinary SC Engineering; Materials Science GA CJ8RI UT WOS:000355770800008 ER PT J AU Hoen, B Brown, JP Jackson, T Thayer, MA Wiser, R Cappers, P AF Hoen, Ben Brown, Jason P. Jackson, Thomas Thayer, Mark A. Wiser, Ryan Cappers, Peter TI Spatial Hedonic Analysis of the Effects of US Wind Energy Facilities on Surrounding Property Values SO JOURNAL OF REAL ESTATE FINANCE AND ECONOMICS LA English DT Article DE Turbines; Wind; Property Value; Price; Hedonic; Spatial ID HOUSE PRICES; ECONOMIC-IMPACTS; ISSUES; PERCEPTIONS; REGRESSION; BENEFITS; TURBINES; QUALITY; MODELS; RISK AB Rapid, large-scale U.S. deployment of wind turbines is expected to continue in the coming years. Because some of that deployment is expected to occur in relatively populous areas, concerns have arisen about the impact of turbines on nearby home values. Previous research on the effects of wind turbines on surrounding home values has been limited by small home-sale data samples and insufficient consideration of confounding home-value factors and spatial dependence. This study examines the largest set of turbine-proximal sales data to date: more than 50,000 home sales including 1,198 within 1 mile of a turbine (331 of which were within a half mile). The data span the periods well before announcement of the wind facilities to well after their construction. We use ordinary least squares and spatial-process difference-in-difference hedonic models to estimate the home-value impacts of the wind facilities, controlling for value factors existing prior to the wind facilities' announcements, the spatial dependence of home values, and value changes over time. A series of robustness models provide greater confidence in the results. We find no statistical evidence that home values near turbines were affected in the turbine post-construction or post-announcement/pre-construction periods. C1 [Hoen, Ben] Lawrence Berkeley Natl Lab, Milan, NY 12571 USA. [Brown, Jason P.] Fed Reserve Bank Kansas City, Kansas City, MO 64198 USA. [Jackson, Thomas] Texas A&M Univ, College Stn, TX 77845 USA. [Jackson, Thomas] Real Property Analyt Inc, College Stn, TX 77845 USA. [Thayer, Mark A.] San Diego State Univ, San Diego, CA 92182 USA. [Wiser, Ryan] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Cappers, Peter] Lawrence Berkeley Natl Lab, Fayetteville, NY 13066 USA. RP Hoen, B (reprint author), Lawrence Berkeley Natl Lab, 20 Sawmill Rd, Milan, NY 12571 USA. EM bhoen@lbl.gov; Jason.Brown@kc.frb.org; tjackson@mays.tamu.edu; mthayer@mail.sdsu.edu; RHWiser@lbl.gov; PACappers@lbl.gov FU Office of Energy Efficiency and Renewable Energy (Wind and Water Power Technologies Office) of the U.S. Department of Energy [DE-AC02-05CH11231]; U.S. DOE FX This work was supported by the Office of Energy Efficiency and Renewable Energy (Wind and Water Power Technologies Office) of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. For funding and supporting this work, we especially thank Patrick Gilman, Cash Fitzpatrick, and Mark Higgins (U.S. DOE). For providing the data that were central to the analysis contained herein, we thank Cameron Rogers (Fiserv) and Joshua Tretter (CoreLogic Inc.), both of whom were highly supportive and extremely patient throughout the complicated data-acquisition process. Finally, we would like to thank the many external reviewers for providing valuable comments on an earlier draft version of the report. Of course, any remaining errors or omissions are our own. The views expressed herein are those of the authors and may not be attributed to the Lawrence Berkeley National Laboratory, the Federal Reserve Bank of Kansas City, Texas A&M University or San Diego State University. NR 55 TC 4 Z9 4 U1 4 U2 18 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0895-5638 EI 1573-045X J9 J REAL ESTATE FINANC JI J. Real Estate Financ. Econ. PD JUL PY 2015 VL 51 IS 1 BP 22 EP 51 DI 10.1007/s11146-014-9477-9 PG 30 WC Business, Finance; Economics; Urban Studies SC Business & Economics; Urban Studies GA CJ7GI UT WOS:000355662300002 ER PT J AU Zhuravleva, M Lindsey, A Chakoumakos, BC Custelcean, R Meilleur, F Hughes, RW Kriven, WM Melcher, CL AF Zhuravleva, M. Lindsey, A. Chakoumakos, B. C. Custelcean, R. Meilleur, F. Hughes, R. W. Kriven, W. M. Melcher, C. L. TI Crystal structure and thermal expansion of a CsCe2Cl7 scintillator SO JOURNAL OF SOLID STATE CHEMISTRY LA English DT Article DE X-ray diffraction; Crystal structure; Thermal expansion; Scintillator; Crystal growth ID HIGH-TEMPERATURE; DIFFRACTION; SYSTEMS; GROWTH; CS AB We used single-crystal X-ray diffraction data to determine crystal structure of CsCe2Cl7. It crystallizes in a P112(1)/b space group with a=19.352(1) angstrom, b=19.352(1) angstrom, c=14.838(1) angstrom, gamma=119.87(2)degrees, and V=4818.6 (5) angstrom(3). Differential scanning calorimetry measurements combined with the structural evolution of CsCe2Cl7 via X-ray diffractometry over a temperature range from room temperature to the melting point indicates no obvious intermediate solid-solid phase transitions. The anisotropy in the average linear coefficient of thermal expansion of the a axis (21.3 x 10(-6)/degrees C) with respect to the b and c axes (27.0 x 10(-6)/degrees C) was determined through lattice parameter refinement of the temperature dependent diffraction patterns. These findings suggest that the reported cracking behavior during melt growth of CsCe2Cl7 bulk crystals using conventional Bridgman and Czochralski techniques may be largely attributed to the anisotropy in thermal expansion. (C) 2015 Elsevier Inc. All rights reserved. C1 [Zhuravleva, M.; Lindsey, A.; Melcher, C. L.] Univ Tennessee, Scintillat Mat Res Ctr, Knoxville, TN 37996 USA. [Zhuravleva, M.; Lindsey, A.; Melcher, C. L.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Chakoumakos, B. C.] Oak Ridge Natl Lab, Quantum Condensed Matter Div, Oak Ridge, TN 37996 USA. [Custelcean, R.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37996 USA. [Meilleur, F.] Oak Ridge Natl Lab, Biol & Soft Matter Div, Oak Ridge, TN 37996 USA. [Hughes, R. W.; Kriven, W. M.] Univ Illinois, Dept Mat Sci & Engn, Urbana, IL USA. RP Zhuravleva, M (reprint author), Univ Tennessee, Scintillat Mat Res Ctr, Dept Mat Sci & Engn, 1508 Middle Dr, Knoxville, TN 37996 USA. EM mzhuravl@utk.edu RI Chakoumakos, Bryan/A-5601-2016; Melcher, Charles/E-9818-2012; Custelcean, Radu/C-1037-2009; Hughes, Robert/G-3902-2011; OI Chakoumakos, Bryan/0000-0002-7870-6543; Melcher, Charles/0000-0002-4586-4764; Custelcean, Radu/0000-0002-0727-7972; Hughes, Robert/0000-0002-6307-4432; Zhuravleva, Mariya/0000-0002-7809-5404 FU U.S. Department of Homeland Security, Domestic Nuclear Detection Office [2012-DN-077-ARI067-03]; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy FX This work has been supported by the U.S. Department of Homeland Security, Domestic Nuclear Detection Office, under Grant # 2012-DN-077-ARI067-03. This support does not constitute an express or implied endorsement on the part of the Government. Authors BCC and FM have been supported in part by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. NR 17 TC 1 Z9 1 U1 1 U2 7 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0022-4596 EI 1095-726X J9 J SOLID STATE CHEM JI J. Solid State Chem. PD JUL PY 2015 VL 227 BP 142 EP 149 DI 10.1016/j.jssc.2015.03.032 PG 8 WC Chemistry, Inorganic & Nuclear; Chemistry, Physical SC Chemistry GA CJ6XW UT WOS:000355639500021 ER PT J AU Schneemeyer, LF Siegrist, T Besara, T Lundberg, M Sun, J Singh, DJ AF Schneemeyer, L. F. Siegrist, T. Besara, T. Lundberg, M. Sun, J. Singh, D. J. TI A family of rare earth molybdenum bronzes: Oxides consisting of periodic arrays of interacting magnetic units SO JOURNAL OF SOLID STATE CHEMISTRY LA English DT Article DE Molybdenum bronzes; Crystallographic structure; Magnetism; Mo8O36 units; DFT calculations ID DIMENSIONAL ELECTRONIC-PROPERTIES; DENSITY-WAVE PROPERTIES; BLUE BRONZE; TUNGSTEN BRONZES; SUPERCONDUCTIVITY; CLUSTERS; GROWTH; PR; ND; LA AB The family of rare earth molybdenum bronzes, reduced ternary molybdates of composition LnMo(16)O(44), was synthesized and a detailed structural study carried out. Bond valence sum (BVS) calculations clearly show that the molybdenum ions in tetrahedral coordination are hexavalent while the electron count in the primitive unit cell is odd. Yet, measurements show that the phases are semiconductors. The temperature dependence of the magnetic susceptibility of samples containing several different rare earth elements was measured. These measurements verified the presence of a 6.5 K magnetic phase transition not arising from the rare earth constituent, but likely associated with the unique isolated ReO3-type Mo8O36 structural subunits in this phase. To better understand the behavior of these materials, electronic structure calculations were performed within density functional theory. Results suggest a magnetic state in which these structural moieties have an internal ferromagnetic arrangement, with small similar to 1/8 mu(B) moments on each Mo. We suggest that the Mo8O36 units behave like pseudoatoms with spin 1/2 derived from a single hole distributed over the eight Mo atoms that are strongly hybridized with the O atoms of the subunit. Interestingly, while the compound is antiferromagnetic, our calculations suggest that a field-stabilized ferromagnetic state, if achievable, will be a narrow band half-metal. (C) 2015 Elsevier Inc. All rights reserved. C1 [Schneemeyer, L. F.] Montclair State Univ, Dept Chem, Montclair, NJ 07043 USA. [Siegrist, T.; Lundberg, M.; Sun, J.] FAMU FSU Coll Engn, Dept Chem & Biomed Engn, Tallahassee, FL 32310 USA. [Siegrist, T.; Besara, T.; Lundberg, M.] Natl High Magnet Field Lab, Tallahassee, FL 32310 USA. [Sun, J.; Singh, D. J.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Siegrist, T (reprint author), FAMU FSU Coll Engn, Dept Chem & Biomed Engn, Tallahassee, FL 32310 USA. EM tsiegrist@fsu.edu RI Besara, Tiglet/M-7969-2014 OI Besara, Tiglet/0000-0002-2143-2254 FU Department of Energy, Basic Energy Science, Division of Materials Sciences [DE-SC0008832]; Department of Energy, Basic Energy Science, Materials Sciences and Engineering Division; Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division; National Science Foundation [DMR-1157490]; State of Florida FX TB and TS acknowledge support by the Department of Energy, Basic Energy Science, Division of Materials Sciences, under Award DE-SC0008832. Work at ORNL was supported by the Department of Energy, Basic Energy Science, Materials Sciences and Engineering Division. JS is grateful for an ORNL GO! fellowship funded by the Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division. A portion of this work was performed at the National High Magnetic Field Laboratory, which is supported by National Science Foundation Cooperative Agreement No. DMR-1157490 and the State of Florida. NR 38 TC 0 Z9 0 U1 5 U2 25 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0022-4596 EI 1095-726X J9 J SOLID STATE CHEM JI J. Solid State Chem. PD JUL PY 2015 VL 227 BP 178 EP 185 DI 10.1016/j.jssc.2015.03.028 PG 8 WC Chemistry, Inorganic & Nuclear; Chemistry, Physical SC Chemistry GA CJ6XW UT WOS:000355639500025 ER PT J AU Zolper, TJ Shiller, P Jungk, M Marks, TJ Chung, YW Greco, A Doll, G LotfizadehDehkordi, B Wang, Q AF Zolper, Thomas J. Shiller, Paul Jungk, Manfred Marks, Tobin J. Chung, Yip-Wah Greco, Aaron Doll, Gary LotfizadehDehkordi, Babak Wang, Qian TI Correlation of Polysiloxane Molecular Structure to Shear-Thinning Power-Law Exponent Using Elastohydrodynamic Film Thickness Measurements SO JOURNAL OF TRIBOLOGY-TRANSACTIONS OF THE ASME LA English DT Article DE elastohydrodynamic lubrication; fluid film lubrication; rheology; viscosity ID HIGH-PRESSURE RHEOLOGY; POLYMER MELTS; POINT CONTACTS; SILOXANE LUBRICANTS; CONFINED LIQUIDS; DYNAMIC SHEAR; OIL FILM; VISCOSITY; FLUIDS; POLYDIMETHYLSILOXANE AB Siloxane-based polymers (polysiloxanes) are susceptible to temporary shear-thinning that manifests as a reduction of elastohydrodynamic film thickness with increasing entrainment speed or effective shear rate. The departure from Newtonian film thickness can be predicted with the power-law exponent ns, an indicator of the severity of shear-thinning in a polymeric fluid that is influenced by the macromolecular structure. In this paper, a combination of extant rheological and tribological models is applied to determine the power-law exponent of several polysiloxanes using film thickness measurements. Film thickness data at several temperatures and slide-to-roll ratios are used to validate the methodology for several siloxane-based polymers with alkyl and aryl branches. C1 [Zolper, Thomas J.] Univ Wisconsin, Dept Mech Engn, Platteville, WI 53818 USA. [Shiller, Paul; Doll, Gary] Univ Akron, Dept Civil Engn, Akron, OH 44325 USA. [Jungk, Manfred] Dow Corning GmbH, D-65201 Wiesbaden, Germany. [Marks, Tobin J.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Chung, Yip-Wah] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. [Chung, Yip-Wah; Wang, Qian] Northwestern Univ, Dept Mech Engn, Evanston, IL 60208 USA. [Greco, Aaron] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. [LotfizadehDehkordi, Babak] Univ Akron, Dept Mech Engn, Akron, OH 44325 USA. RP Zolper, TJ (reprint author), Univ Wisconsin, Dept Mech Engn, Platteville, WI 53818 USA. EM Zolpert@uwplatt.edu RI Chung, Yip-Wah/B-7506-2009; Shiller, Paul/A-8492-2010; Wang, Qian/B-7611-2009; OI Shiller, Paul/0000-0001-9714-8527; Greco, Aaron/0000-0002-2189-0888 FU Dow Corning Corporation; Department of Energy FX The authors thank Dow Corning Corporation and the Department of Energy for support of related research. NR 100 TC 1 Z9 1 U1 0 U2 12 PU ASME PI NEW YORK PA TWO PARK AVE, NEW YORK, NY 10016-5990 USA SN 0742-4787 EI 1528-8897 J9 J TRIBOL-T ASME JI J. Tribol.-Trans. ASME PD JUL PY 2015 VL 137 IS 3 AR 031503 DI 10.1115/1.4029940 PG 10 WC Engineering, Mechanical SC Engineering GA CJ7SU UT WOS:000355700800012 ER PT J AU Graw, F Martin, DN Perelson, AS Uprichard, SL Dahari, H AF Graw, Frederik Martin, Danyelle N. Perelson, Alan S. Uprichard, Susan L. Dahari, Harel TI Quantification of Hepatitis C Virus Cell-to-Cell Spread Using a Stochastic Modeling Approach SO JOURNAL OF VIROLOGY LA English DT Article ID INFECTION IN-VITRO; IMMUNODEFICIENCY-VIRUS; NEUTRALIZING ANTIBODIES; HEPATOMA-CELLS; ENTRY FACTOR; TRANSMISSION; REPLICATION; IDENTIFICATION; DYNAMICS; RECEPTOR AB It has been proposed that viral cell-to-cell transmission plays a role in establishing and maintaining chronic infections. Thus, understanding the mechanisms and kinetics of cell-to-cell spread is fundamental to elucidating the dynamics of infection and may provide insight into factors that determine chronicity. Because hepatitis C virus (HCV) spreads from cell to cell and has a chronicity rate of up to 80% in exposed individuals, we examined the dynamics of HCV cell-to-cell spread in vitro and quantified the effect of inhibiting individual host factors. Using a multidisciplinary approach, we performed HCV spread assays and assessed the appropriateness of different stochastic models for describing HCV focus expansion. To evaluate the effect of blocking specific host cell factors on HCV cell-to-cell transmission, assays were performed in the presence of blocking antibodies and/or small-molecule inhibitors targeting different cellular HCV entry factors. In all experiments, HCV-positive cells were identified by immunohistochemical staining and the number of HCV-positive cells per focus was assessed to determine focus size. We found that HCV focus expansion can best be explained by mathematical models assuming focus size-dependent growth. Consistent with previous reports suggesting that some factors impact HCV cell-to-cell spread to different extents, modeling results estimate a hierarchy of efficacies for blocking HCV cell-to-cell spread when targeting different host factors (e.g., CLDN1 > NPC1L1 > TfR1). This approach can be adapted to describe focus expansion dynamics under a variety of experimental conditions as a means to quantify cell-to-cell transmission and assess the impact of cellular factors, viral factors, and antivirals. IMPORTANCE The ability of viruses to efficiently spread by direct cell-to-cell transmission is thought to play an important role in the establishment and maintenance of viral persistence. As such, elucidating the dynamics of cell-to-cell spread and quantifying the effect of blocking the factors involved has important implications for the design of potent antiviral strategies and controlling viral escape. Mathematical modeling has been widely used to understand HCV infection dynamics and treatment response; however, these models typically assume only cell-free virus infection mechanisms. Here, we used stochastic models describing focus expansion as a means to understand and quantify the dynamics of HCV cell-to-cell spread in vitro and determined the degree to which cell-to-cell spread is reduced when individual HCV entry factors are blocked. The results demonstrate the ability of this approach to recapitulate and quantify cell-to-cell transmission, as well as the impact of specific factors and potential antivirals. C1 [Graw, Frederik] Heidelberg Univ, BioQuant Ctr, Ctr Modeling & Simulat Biosci, Heidelberg, Germany. [Martin, Danyelle N.; Uprichard, Susan L.; Dahari, Harel] Loyola Univ, Med Ctr, Dept Med, Program Expt & Theoret Modeling,Div Hepatol, Maywood, IL 60153 USA. [Perelson, Alan S.; Dahari, Harel] Los Alamos Natl Lab, Theoret Biol & Biophys, Los Alamos, NM USA. [Uprichard, Susan L.] Loyola Univ, Med Ctr, Dept Microbiol & Immunol, Maywood, IL 60153 USA. RP Graw, F (reprint author), Heidelberg Univ, BioQuant Ctr, Ctr Modeling & Simulat Biosci, Heidelberg, Germany. EM frederik.graw@bioquant.uni-heidelberg.de; suprichard@lumc.edu FU Center for Modeling and Simulation in the Biosciences (BIOMS); U.S. Department of Energy [DE AC52 06NA25396]; NIH [R01-AI07881] FX F.G. was supported by the Center for Modeling and Simulation in the Biosciences (BIOMS). Portions of this work were performed under the auspices of the U.S. Department of Energy under contract DE AC52 06NA25396 and supported by NIH grant R01-AI07881. NR 56 TC 7 Z9 8 U1 1 U2 5 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0022-538X EI 1098-5514 J9 J VIROL JI J. Virol. PD JUL PY 2015 VL 89 IS 13 BP 6551 EP 6561 DI 10.1128/JVI.00016-15 PG 11 WC Virology SC Virology GA CJ6GW UT WOS:000355593000004 PM 25833046 ER PT J AU Ogden, KM Hu, LY Jha, BK Sankaran, B Weiss, SR Silverman, RH Patton, JT Prasad, BVV AF Ogden, Kristen M. Hu, Liya Jha, Babal K. Sankaran, Banumathi Weiss, Susan R. Silverman, Robert H. Patton, John T. Prasad, B. V. Venkataram TI Structural Basis for 2 '-5 '-Oligoadenylate Binding and Enzyme Activity of a Viral RNase L Antagonist SO JOURNAL OF VIROLOGY LA English DT Article ID ANTIVIRAL INNATE IMMUNITY; DOUBLE-STRANDED-RNA; PROTEIN-KINASE PKR; MURINE CORONAVIRUS; L PATHWAY; INTERFERON; ROTAVIRUS; PHOSPHODIESTERASE; SYSTEM; 2-5A AB Synthesis of 2'-5'-oligoadenylates (2-5A) by oligoadenylate synthetase (OAS) is an important innate cellular response that limits viral replication by activating the latent cellular RNase, RNase L, to degrade single-stranded RNA. Some rotaviruses and corona-viruses antagonize the OAS/RNase L pathway through the activity of an encoded 2H phosphoesterase domain that cleaves 2-5A. These viral 2H phosphoesterases are phylogenetically related to the cellular A kinase anchoring protein 7 (AKAP7) and share a core structure and an active site that contains two well-defined H Phi(S/T)Phi (where Phi is a hydrophobic residue) motifs, but their mechanism of substrate binding is unknown. Here, we report the structures of a viral 2H phosphoesterase, the C-terminal domain (CTD) of the group A rotavirus (RVA) VP3 protein, both alone and in complex with 2-5A. The domain forms a compact fold, with a concave beta-sheet that contains the catalytic cleft, but it lacks two alpha-helical regions and two beta-strands observed in AKAP7 and other 2H phosphoesterases. The cocrystal structure shows significant conformational changes in the R loop upon ligand binding. Bioinformatics and biochemical analyses reveal that conserved residues and residues required for catalytic activity and substrate binding comprise the catalytic motifs and a region on one side of the binding cleft. We demonstrate that the VP3 CTD of group B rotavirus, but not that of group G, cleaves 2-5A. These findings suggest that the VP3 CTD is a streamlined version of a 2H phosphoesterase with a ligand-binding mechanism that is shared among 2H phosphodiesterases that cleave 2-5A. IMPORTANCE The C-terminal domain (CTD) of rotavirus VP3 is a 2H phosphoesterase that cleaves 2'-5'-oligoadenylates (2-5A), potent activators of an important innate cellular antiviral pathway. 2H phosphoesterase superfamily proteins contain two conserved catalytic motifs and a proposed core structure. Here, we present structures of a viral 2H phosphoesterase, the rotavirus VP3 CTD, alone and in complex with its substrate, 2-5A. The domain lacks two alpha-helical regions and beta-strands present in other 2H phosphoesterases. A loop of the protein undergoes significant structural changes upon substrate binding. Together with our bioinformatics and biochemical findings, the crystal structures suggest that the RVA VP3 CTD domain is a streamlined version of a cellular enzyme that shares a ligand-binding mechanism with other 2H phosphodiesterases that cleave 2-5A but differs from those of 2H phosphodiesterases that cleave other substrates. These findings may aid in the future design of antivirals targeting viral phosphodiesterases with cleavage specificity for 2-5A. C1 [Ogden, Kristen M.; Patton, John T.] NIAID, Infect Dis Lab, NIH, Bethesda, MD 20892 USA. [Hu, Liya; Prasad, B. V. Venkataram] Baylor Coll Med, Verna & Marrs McLean Dept Biochem & Mol Biol, Houston, TX 77030 USA. [Jha, Babal K.; Silverman, Robert H.] Cleveland Clin, Dept Canc Biol, Lerner Res Inst, Cleveland, OH 44106 USA. [Sankaran, Banumathi] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley Ctr Struct Biol, Berkeley, CA 94720 USA. [Weiss, Susan R.] Univ Penn, Dept Microbiol, Perelman Sch Med, Philadelphia, PA 19104 USA. RP Prasad, BVV (reprint author), Baylor Coll Med, Verna & Marrs McLean Dept Biochem & Mol Biol, Houston, TX 77030 USA. EM vprasad@bcm.edu OI Weiss, Susan/0000-0002-8155-4528 FU Intramural Research Program of the National Institute of Allergy and Infectious Diseases at the NIH; NIH [R37 AI36040, RO1-AI104887]; Robert Welch Foundation [Q1279]; NIH; National Institute of General Medical Sciences; Howard Hughes Medical Institute; Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Intramural Research Program of the National Institute of Allergy and Infectious Diseases at the NIH (to K.M.O. and J.T.P.), by NIH grants R37 AI36040 (to B.V.V.P.) and RO1-AI104887 (to S.R.W. and R.H.S.), and by Robert Welch Foundation grant Q1279 (to B.V.V.P.). The Berkeley Center for Structural Biology is supported in part by the NIH, National Institute of General Medical Sciences, and by the Howard Hughes Medical Institute. The Advanced LightSource is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under contract number DE-AC02-05CH11231. NR 46 TC 7 Z9 7 U1 2 U2 17 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0022-538X EI 1098-5514 J9 J VIROL JI J. Virol. PD JUL PY 2015 VL 89 IS 13 BP 6633 EP 6645 DI 10.1128/JVI.00701-15 PG 13 WC Virology SC Virology GA CJ6GW UT WOS:000355593000011 PM 25878106 ER PT J AU Rojas, JV Woodward, JD Chen, N Rondinone, AJ Castano, CH Mirzadeh, S AF Rojas, J. V. Woodward, J. D. Chen, N. Rondinone, A. J. Castano, C. H. Mirzadeh, S. TI Synthesis and characterization of lanthanum phosphate nanoparticles as carriers for Ra-223 and Ra-225 for targeted alpha therapy SO NUCLEAR MEDICINE AND BIOLOGY LA English DT Article DE Targeted alpha therapy; Targeted radioimmunotherapy; Radioactive nanoparticles; Lanthanum phosphate; Actinium-225; Radium-223; Radium-225; in-vitro retention; in-vivo generators ID ACTINIUM-225; RADIUM; AC-225; RADIOIMMUNOTHERAPY; RADIOTOXICITY; RADIONUCLIDES; GENERATOR; MONAZITE; BONE; MICE AB Introduction: Targeted alpha therapy (TAT) has the potential for killing micro-metastases with minimum collateral damage to surrounding healthy tissue. In-vivo generator radionuclides, such as(223)Ra, Ra-225, and Ac-225, are of special interest for radiotherapeutic applications as they emit multiple alpha-particles during their decay. Utilizing appropriate carriers capable of retaining both the parent radioisotope as well as daughter products is important for the effective delivery of the radioisotope to the tumor site while mitigating global in vivo radiotoxicity. In this work, LaPO4 core and core + 2 shells nanopartides (NPs) (NPs with 2 layers of cold LaPO4 deposited on the core surfaces) were synthesized containing either Ra-223 or Ra-225/Ac-225, and the retention of the parents and daughters within the NPs in vitro was investigated. Methods: Core LaPO4 NPs were synthesized in aqueous solution by reacting 1 equivalent of La(NO3)(3), along with few microcuries of either Ra-223 or Ra-225/Ac-225, with 1 equivalent of sodium tripolyphosphate (TPP) under moderate heating and purified by membrane dialysis. Core-shell NPs were also synthesized with one (core + I shell) and two (core + 2 shells) cold LaPO4 layers deposited onto the radioactive cores. The NPs were then characterized by transmission electron microscopy (TEM) and powder x-ray diffraction (XRD). Identification and quantification of radioactive parents and daughters released from the NPs in vitro were investigated using gamma-ray spectroscopy. Results: XRD and TEM analysis revealed that the NPs crystallized in the rhabdophane phase with mean diameters of 3.4 and 63 nm for core and core + 2 shells, respectively. The core LaPO4 NPs retained up to 88% of Ra-223 over 35 days. However, in the core + 2 shells NPs, the retention of Ra-223 and its daughter, Pb-211, was improved to >99.9% over 27 days. Additionally, the retention of Ra-225/Ac-225 parents was >99.98% and -80% for the Fr-221 and Bi-213 daughters over 35 days for the core + 2 shells NPs. Conclusions: The in vitro retention of both parents and daughters results suggests that LaPO4 NPs are potentially effective carriers of radium isotopes. (C) 2015 Elsevier Inc. All rights reserved. C1 [Rojas, J. V.; Castano, C. H.] Missouri Univ Sci & Technol, Dept Min & Nucl Engn, Rolla, MO 65401 USA. [Rojas, J. V.; Woodward, J. D.; Chen, N.; Rondinone, A. J.; Mirzadeh, S.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Rojas, J. V.; Woodward, J. D.; Chen, N.; Rondinone, A. J.; Mirzadeh, S.] Oak Ridge Natl Lab, Nucl Safety & Isotope Technol Div, Oak Ridge, TN 37831 USA. [Chen, N.] Provis Ctr Biomed Res, Knoxville, TN 37909 USA. RP Mirzadeh, S (reprint author), Oak Ridge Natl Lab, Nucl Safety & Isotope Technol Div, Oak Ridge, TN 37831 USA. EM mirzadehs@ornl.gov RI Rondinone, Adam/F-6489-2013 OI Rondinone, Adam/0000-0003-0020-4612 FU Isotope Production/Distribution Program, Office of Nuclear Physics of the US Department of Energy (DOE); DOE Nuclear Energy University Program Graduate Fellowship; Oak Ridge National Laboratory (ORNL) by the Office of Basic Energy Sciences, US DOE FX Research supported in part by the Isotope Production/Distribution Program, Office of Nuclear Physics of the US Department of Energy (DOE) and under a DOE Nuclear Energy University Program Graduate Fellowship. A portion of this research was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory (ORNL) by the Office of Basic Energy Sciences, US DOE. NR 31 TC 2 Z9 2 U1 7 U2 29 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0969-8051 EI 1872-9614 J9 NUCL MED BIOL JI Nucl. Med. Biol. PD JUL PY 2015 VL 42 IS 7 BP 614 EP 620 DI 10.1016/j.nucmedbio.2015.03.007 PG 7 WC Radiology, Nuclear Medicine & Medical Imaging SC Radiology, Nuclear Medicine & Medical Imaging GA CK0HA UT WOS:000355885100005 PM 25900730 ER PT J AU Shi, Y Grogan, P Sun, HB Xiong, JB Yang, YF Zhou, JZ Chu, HY AF Shi, Yu Grogan, Paul Sun, Huaibo Xiong, Jinbo Yang, Yunfeng Zhou, Jizhong Chu, Haiyan TI Multi-scale variability analysis reveals the importance of spatial distance in shaping Arctic soil microbial functional communities SO SOIL BIOLOGY & BIOCHEMISTRY LA English DT Article DE GeoChip; Arctic; PCNM; Biogeography; Functional gene ID SEA OIL PLUME; BACTERIAL DIVERSITY; SCALE; BIOGEOGRAPHY; HETEROGENEITY; ECOSYSTEMS; RESOURCES; PREDICTOR; LANDSCAPE; RESPONSES AB Understanding biological diversity and distribution patterns at multiple spatial scales is a central issue in ecology. Here, we investigated the biogeographical patterns of microbial functional genes in 24 heath soils from across the Arctic using GeoChip-based metagenomics and principal coordinates of neighbour matrices (PCNM)-based analysis. Functional gene richness varied considerably among sites, while the proportions of each major functional gene category were evenly distributed. Functional gene composition varied significantly at most medium to large spatial scales, and the PCNM analyses indicated that 14 20% of the variation in total and major functional gene categories could be attributed primarily to relatively large-scale spatial effects that were consistent with broad-scale variation in soil pH and total nitrogen. The combination of variance partitioning and multi-scales analysis indicated that spatial distance effects accounted for 12% of the total variation in functional gene composition, whereas environmental factors accounted for only 3%. This small but significant influence of spatial variation in determining functional gene distributions contrasts sharply with typical microbial phylotype/species-based biogeographical patterns (including these same Arctic soil samples), which are primarily determined by contemporary environmental heterogeneities. Therefore, our results suggest that historical contingencies such as disturbance events, physical heterogeneities, community interactions or dispersal barriers that occurred in the past, have some significant influence on soil functional gene distribution patterns. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Shi, Yu; Sun, Huaibo; Chu, Haiyan] Chinese Acad Sci, Inst Soil Sci, State Key Lab Soil & Sustainable Agr, Nanjing 210008, Jiangsu, Peoples R China. [Grogan, Paul] Queens Univ, Dept Biol, Kingston, ON K7L 3N6, Canada. [Xiong, Jinbo] Ningbo Univ, Fac Marine Sci, Ningbo 315211, Zhejiang, Peoples R China. [Yang, Yunfeng; Zhou, Jizhong] Tsinghua Univ, Sch Environm, State Key Lab Environm Simulat & Pollut Control, Beijing 100084, Peoples R China. [Shi, Yu] Univ Chinese Acad Sci, Beijing 100049, Peoples R China. [Zhou, Jizhong] Univ Oklahoma, Inst Environm Genom, Norman, OK 73019 USA. [Zhou, Jizhong] Univ Oklahoma, Dept Microbiol & Plant Biol, Norman, OK 73019 USA. [Zhou, Jizhong] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Chu, HY (reprint author), Chinese Acad Sci, Inst Soil Sci, State Key Lab Soil & Sustainable Agr, East Beijing Rd 71, Nanjing 210008, Jiangsu, Peoples R China. EM hychu@issas.ac.cn RI Shi, Yu/P-3378-2015 OI Shi, Yu/0000-0001-9612-8321 FU Chinese Academy of Sciences [XDB15010101]; National Program on Key Basic Research Project [2014CB954002]; National Natural Science Foundation of China [41371254]; NSERC as part of the International Polar Year Project: Climate Change Impacts on Canadian Arctic Tundra; Ontario Early Researcher's Award; US National Science Foundation [EF-1065844]; Office of the Vice President for Research at the University of Oklahoma; Collaborative Innovation Center for Regional Environmental Quality FX We sincerely thank the many research colleagues across the Arctic who collected soil samples on our behalf. We also thank Linda Cameron and several undergraduate students for help with soil processing and lab analyses. This work was supported by the Strategic Priority Research Program (XDB15010101) of the Chinese Academy of Sciences, the National Program on Key Basic Research Project (2014CB954002), and the National Natural Science Foundation of China (41371254) to H. Chu, by NSERC as part of the International Polar Year Project: Climate Change Impacts on Canadian Arctic Tundra (P. Grogan), and by an Ontario Early Researcher's Award (P. Grogan). J. Zhou's effort was partially supported by the US National Science Foundation (EF-1065844), by the Office of the Vice President for Research at the University of Oklahoma, and by the Collaborative Innovation Center for Regional Environmental Quality. The authors declare no conflicts of interest. NR 50 TC 6 Z9 6 U1 15 U2 93 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0038-0717 J9 SOIL BIOL BIOCHEM JI Soil Biol. Biochem. PD JUL PY 2015 VL 86 BP 126 EP 134 DI 10.1016/j.soilbio.2015.03.028 PG 9 WC Soil Science SC Agriculture GA CJ4ZF UT WOS:000355496500015 ER PT J AU Yang, YR Song, YY Scheller, HV Ghosh, A Ban, YH Chen, H Tang, M AF Yang, Yurong Song, Yingying Scheller, Henrik V. Ghosh, Amit Ban, Yihui Chen, Hui Tang, Ming TI Community structure of arbuscular mycorrhizal fungi associated with Robinia pseudoacacia in uncontaminated and heavy metal contaminated soils SO SOIL BIOLOGY & BIOCHEMISTRY LA English DT Article DE Arbuscular mycorrhizal fungi (AMF); Environmental interactions; Heavy metal pollution; Phytoremediation; Robinia pseudoacacia ID MOLECULAR DIVERSITY; MICROBIAL COMMUNITIES; MANAGEMENT-PRACTICES; SOUTHWEST CHINA; PLANT-GROWTH; HOST PLANTS; ZINC; ROOTS; LEAD; BIODIVERSITY AB The significance of arbuscular mycorrhizal fungi (AMF) in soil remediation has been widely recognized because of their ability to promote plant growth and increase phytoremediation efficiency in heavy metal (HM) polluted soils by improving plant nutrient absorption and by influencing the fate of the metals in the plant and soil. However, the symbiotic functions of AMF in remediation of polluted soils depend on plant fungus soil combinations and are greatly influenced by environmental conditions. To better understand the adaptation of plants and the related mycorrhizae to extreme environmental conditions, AMF colonization, spore density and community structure were analyzed in roots or rhizosphere soils of Robinia pseudoacacia. Mycorrhization was compared between uncontaminated soil and heavy metal contaminated soil from a lead zinc mining region of northwest China. Samples were analyzed by restriction fragment length polymorphism (RFLP) screening with AMF-specific primers (NS31 and AM1), and sequencing of rRNA small subunit (SSU). The phylogenetic analysis revealed 28 AMF group types, including six AMF families: Glomeraceae, Claroideoglomeraceae, Diversisporaceae, Acaulosporaceae, Pacisporaceae, and Gigasporaceae. Of all AMF group types, six (21%) were detected based on spore samples alone, four (14%) based on root samples alone, and five (18%) based on samples from root, soil and spore. G1o9 (Rhizophagus intraradices), Gloi7 (Funneliformis mosseae) and Acau3 (Acaulospora sp.) were the three most abundant AMF group types in the current study. Soil Pb and Zn concentrations, pH, organic matter content, and phosphorus levels all showed significant correlations with the AMF species compositions in root and soil samples. Overall, the uncontaminated sites had higher species diversity than sites with heavy metal contamination. The study highlights the effects of different soil chemical parameters on AMF colonization, spore density and community structure in contaminated and uncontaminated sites. The tolerant AMF species isolated and identified from this study have potential for application in phytoremediation of heavy metal contaminated areas. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Yang, Yurong] Northwest A&F Univ, State Key Lab Soil Eros & Dryland Farming Loess P, Yangling 712100, Shaanxi, Peoples R China. [Yang, Yurong; Ban, Yihui; Chen, Hui; Tang, Ming] Northwest A&F Univ, Coll Forestry, Yangling 712100, Shaanxi, Peoples R China. [Song, Yingying] Northwest A&F Univ, Coll Life Sci, Yangling 712100, Shaanxi, Peoples R China. [Scheller, Henrik V.; Ghosh, Amit] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Joint Bioenergy Inst, Berkeley, CA 94720 USA. [Scheller, Henrik V.; Ghosh, Amit] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Scheller, Henrik V.] Univ Calif Berkeley, Dept Plant & Microbial Biol, Berkeley, CA 94720 USA. RP Tang, M (reprint author), Northwest A&F Univ, Coll Forestry, Yangling 712100, Shaanxi, Peoples R China. EM tangm@nwsuaf.edu.cn RI Scheller, Henrik/A-8106-2008 OI Scheller, Henrik/0000-0002-6702-3560 FU National Natural Science Foundation of China [31270639, 31170607, 31170567]; Program for Changjiang Scholars and Innovative Research Team in University of China [IRT1035]; U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research [DE-AC02-05CH11231]; Lawrence Berkeley National Laboratory [DE-AC02-05CH11231]; U. S. Department of Energy [DE-AC02-05CH11231] FX This research was financially supported by the National Natural Science Foundation of China (31270639, 31170607, 31170567), Program for Changjiang Scholars and Innovative Research Team in University of China (IRT1035). HVS was supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, through contract DE-AC02-05CH11231 between Lawrence Berkeley National Laboratory and the U. S. Department of Energy. NR 91 TC 14 Z9 14 U1 19 U2 144 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0038-0717 J9 SOIL BIOL BIOCHEM JI Soil Biol. Biochem. PD JUL PY 2015 VL 86 BP 146 EP 158 DI 10.1016/j.soilbio.2015.03.018 PG 13 WC Soil Science SC Agriculture GA CJ4ZF UT WOS:000355496500017 ER PT J AU Biehl, R Stingaciu, L Oxanna, I Ohl, M Richter, D AF Biehl, R. Stingaciu, L. Oxanna, I. Ohl, M. Richter, D. TI Dynamics and flexibility of human IgG1 antibody by neutron spin echo spectroscopy SO EUROPEAN BIOPHYSICS JOURNAL WITH BIOPHYSICS LETTERS LA English DT Meeting Abstract CT 10th European-Biophysical-Societies-Association (EBSA) European Biophysics Congress CY JUL 18-22, 2015 CL Dresden, GERMANY SP European Biophys Soc Assoc C1 [Biehl, R.; Richter, D.] Forschungszentrum Julich, JCNS 1, Julich, Germany. [Biehl, R.; Richter, D.] Forschungszentrum Julich, ICS Julich Ctr Neutron Sci 1, Julich, Germany. [Biehl, R.; Richter, D.] Forschungszentrum Julich, Inst Complex Syst, Julich, Germany. [Stingaciu, L.; Ohl, M.] Oak Ridge Natl Lab, JCNS SNS Julich Ctr Neutron Sci, Outstn Neutron Spallat Source, Oak Ridge, TN USA. [Oxanna, I.] JCNS FRM II Julich Ctr Neutron Sci, Outstn FRM 2, Garching, Germany. NR 0 TC 0 Z9 0 U1 1 U2 1 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0175-7571 EI 1432-1017 J9 EUR BIOPHYS J BIOPHY JI Eur. Biophys. J. Biophys. Lett. PD JUL PY 2015 VL 44 SU 1 MA P-31 BP S51 EP S51 PG 1 WC Biophysics SC Biophysics GA DR6GW UT WOS:000380001400032 ER PT J AU Kofinger, J Ragusa, MJ Lee, IH Hummer, G Hurley, JH AF Koefinger, J. Ragusa, M. J. Lee, I. -H. Hummer, G. Hurley, J. H. TI Macroautophagy: solution structure of the Atg1 complex SO EUROPEAN BIOPHYSICS JOURNAL WITH BIOPHYSICS LETTERS LA English DT Meeting Abstract CT 10th European-Biophysical-Societies-Association (EBSA) European Biophysics Congress CY JUL 18-22, 2015 CL Dresden, GERMANY SP European Biophys Soc Assoc C1 [Koefinger, J.; Hummer, G.] Max Planck Inst Biophys, Dept Theoret Biophys, D-60438 Frankfurt, Germany. [Ragusa, M. J.; Hurley, J. H.] Univ Calif Berkeley, Calif Inst Quantitat Biosci, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Lee, I. -H.; Hurley, J. H.] Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. [Ragusa, M. J.] Dartmouth Coll, Dept Chem, Hanover, NH 03755 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0175-7571 EI 1432-1017 J9 EUR BIOPHYS J BIOPHY JI Eur. Biophys. J. Biophys. Lett. PD JUL PY 2015 VL 44 SU 1 MA P-54 BP S57 EP S57 PG 1 WC Biophysics SC Biophysics GA DR6GW UT WOS:000380001400055 ER PT J AU Marquardt, D Heberle, F Doktorova, M Geier, B Katsaras, J Pabst, G AF Marquardt, D. Heberle, F. Doktorova, M. Geier, B. Katsaras, J. Pabst, G. TI Quantifying asymmetric liposomes: assessing lipid composition, distribution and structure SO EUROPEAN BIOPHYSICS JOURNAL WITH BIOPHYSICS LETTERS LA English DT Meeting Abstract CT 10th European-Biophysical-Societies-Association (EBSA) European Biophysics Congress CY JUL 18-22, 2015 CL Dresden, GERMANY SP European Biophys Soc Assoc C1 [Marquardt, D.; Geier, B.; Pabst, G.] Graz Univ, Inst Mol Biosci, Biophys Div, A-8010 Graz, Austria. [Heberle, F.; Katsaras, J.] Oak Ridge Natl Lab, Neutron Sci Directorate, Oak Ridge, TN USA. [Doktorova, M.] Cornell Univ, Dept Mol Biol & Genet, Ithaca, NY 14853 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0175-7571 EI 1432-1017 J9 EUR BIOPHYS J BIOPHY JI Eur. Biophys. J. Biophys. Lett. PD JUL PY 2015 VL 44 SU 1 MA P-273 BP S114 EP S114 PG 1 WC Biophysics SC Biophysics GA DR6GW UT WOS:000380001400274 ER PT J AU Timr, S Brabec, J Bondar, A Lazar, J Jungwirth, P AF Timr, S. Brabec, J. Bondar, A. Lazar, J. Jungwirth, P. TI Two-photon absorption anisotropy of membrane fluorescent dyes: Tensors, or vectors? SO EUROPEAN BIOPHYSICS JOURNAL WITH BIOPHYSICS LETTERS LA English DT Meeting Abstract CT 10th European-Biophysical-Societies-Association (EBSA) European Biophysics Congress CY JUL 18-22, 2015 CL Dresden, GERMANY SP European Biophys Soc Assoc C1 [Timr, S.; Lazar, J.; Jungwirth, P.] Inst Organ Chem & Biochem AS CR, Prague, Czech Republic. [Brabec, J.] Lawrence Berkeley Natl Lab, Berkeley, CA USA. [Bondar, A.; Lazar, J.] Inst Nanobiol & Struct Biol GCRC AS CR, Nove Hrady, Czech Republic. NR 0 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0175-7571 EI 1432-1017 J9 EUR BIOPHYS J BIOPHY JI Eur. Biophys. J. Biophys. Lett. PD JUL PY 2015 VL 44 SU 1 MA P-155 BP S83 EP S83 PG 1 WC Biophysics SC Biophysics GA DR6GW UT WOS:000380001400156 ER PT J AU Zhang, R Erler, J Petridis, L Cheng, X Smith, J Langowski, J AF Zhang, R. Erler, J. Petridis, L. Cheng, X. Smith, J. Langowski, J. TI The role of histone tails in the intra-/inter-nucleosome interaction SO EUROPEAN BIOPHYSICS JOURNAL WITH BIOPHYSICS LETTERS LA English DT Meeting Abstract CT 10th European-Biophysical-Societies-Association (EBSA) European Biophysics Congress CY JUL 18-22, 2015 CL Dresden, GERMANY SP European Biophys Soc Assoc C1 [Zhang, R.; Erler, J.; Langowski, J.] German Canc Res Ctr, Div Biophys Macromol, Heidelberg, Germany. [Petridis, L.; Cheng, X.; Smith, J.] Oak Ridge Natl Lab, UT ORNL Ctr Mol Biophys, Oak Ridge, TN USA. RI Langowski, Jorg/A-1843-2011 OI Langowski, Jorg/0000-0001-8600-0666 NR 0 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0175-7571 EI 1432-1017 J9 EUR BIOPHYS J BIOPHY JI Eur. Biophys. J. Biophys. Lett. PD JUL PY 2015 VL 44 SU 1 MA P-518 BP S177 EP S177 PG 1 WC Biophysics SC Biophysics GA DR6GW UT WOS:000380001400519 ER PT J AU Craig, EA Yan, ZY Zhao, QJ AF Craig, Evisabel A. Yan, Zhongyu Zhao, Q. Jay TI The relationship between chemical-induced kidney weight increases and kidney histopathology in rats SO JOURNAL OF APPLIED TOXICOLOGY LA English DT Article DE absolute kidney weight; relative kidney weight; kidney histopathology; renal toxicity; risk assessment ID ORGAN WEIGHT; TOXICITY; SOCIETY AB The kidney is a major site of chemical excretion, which results in its propensity to exhibit chemically-induced toxicological effects at a higher rate than most other organs. Although the kidneys are often weighed in animal toxicity studies, the manner in which these kidney weight measurements are interpreted and the value of this information in predicting renal damage remains controversial. In this study we sought to determine whether a relationship exists between chemically-induced kidney weight changes and renal histopathological alterations. We also examined the relative utility of absolute and relative (kidney-to-body weight ratio) kidney weight in the prediction of renal toxicity. For this, data extracted from oral chemical exposure studies in rats performed by the National Toxicology Program were qualitatively and quantitatively evaluated. Our analysis showed a statistically significant correlation between absolute, but not relative, kidney weight and renal histopathology in chemically-treated rats. This positive correlation between absolute kidney weight and histopathology was observed even with compounds that statistically decreased terminal body weight. Also, changes in absolute kidney weight, which occurred at subchronic exposures, were able to predict the presence or absence of kidney histopathology at both subchronic and chronic exposures. Furthermore, most increases in absolute kidney weight reaching statistical significance (irrespective of the magnitude of change) were found to be relevant for the prediction of histopathological changes. Hence, our findings demonstrate that the evaluation of absolute kidney weight is a useful method for identifying potential renal toxicants. Copyright (c) 2014 John Wiley & Sons, Ltd. C1 [Craig, Evisabel A.; Yan, Zhongyu] Oak Ridge Inst Sci & Educ, Oak Ridge, TN 37831 USA. [Craig, Evisabel A.; Yan, Zhongyu; Zhao, Q. Jay] US EPA, Natl Ctr Environm Assessment, Off Res Dev, Cincinnati, OH 45268 USA. RP Zhao, QJ (reprint author), US EPA, Natl Ctr Environm Assessment, Off Res Dev, Cincinnati, OH 45268 USA. EM zhao.jay@epa.gov NR 14 TC 0 Z9 0 U1 1 U2 4 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0260-437X EI 1099-1263 J9 J APPL TOXICOL JI J. Appl. Toxicol. PD JUL PY 2015 VL 35 IS 7 BP 729 EP 736 DI 10.1002/jat.3036 PG 8 WC Toxicology SC Toxicology GA CJ2QT UT WOS:000355330300005 PM 25092041 ER PT J AU Hinton, TG Byrne, ME Webster, S Beasley, JC AF Hinton, Thomas G. Byrne, Michael E. Webster, Sarah Beasley, James C. TI Quantifying the spatial and temporal variation in dose from external exposure to radiation: a new tool for use on free-ranging wildlife SO JOURNAL OF ENVIRONMENTAL RADIOACTIVITY LA English DT Article DE Global Positioning Systems (GPS); Wildlife dose; Radioecology; External irradiation ID BROWNIAN BRIDGE MOVEMENT; SMALL MAMMALS; CHERNOBYL AB Inadequate dosimetry is often the fundamental problem in much of the controversial research dealing with radiation effects on free-ranging wildlife. Such research is difficult because of the need to measure dose from several potential pathways of exposure (i.e., internal contamination, external irradiation, and inhalation). Difficulties in quantifying external exposures can contribute significantly to the uncertainties of dose-effect relationships. Quantifying an animal's external exposure due to spatial temporal use of habitats that can vary by orders of magnitude in radiation levels is particularly challenging. Historically, wildlife dosimetry studies have largely ignored or been unable to accurately quantify variability in external dose because of technological limitations. The difficulties of quantifying the temporal spatial aspects of external irradiation prompted us to develop a new dosimetry instrument for field research. We merged two existing technologies [Global Positioning Systems (GPS) and electronic dosimeters] to accommodate the restrictive conditions of having a combined unit small enough to be unobtrusively worn on the neck of a free-ranging animal, and sufficiently robust to withstand harsh environmental conditions. The GPS-dosimeter quantifies the spatial and temporal variation in external dose as wildlife traverse radioactively contaminated habitats and sends, via satellites, an animal's location and short term integrated dose to the researcher at a user-defined interval. Herein we describe: (1) the GPS dosimeters; (2) tests to compare their uniformity of response to external irradiation under laboratory conditions; (3) field tests of their durability when worn on wildlife under natural conditions; and (4) a field application of the new technology at a radioactively contaminated site. Use of coupled GPS dosimetry will allow, for the first time, researchers to better understand the relationship of animals to their contaminated habitats and better assess animal responses to the stress of radiological exposures. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Hinton, Thomas G.] Inst Radioprotect & Nucl Safety, Cadarache, France. [Byrne, Michael E.; Webster, Sarah; Beasley, James C.] Univ Georgia, Savannah River Ecol Lab, Warnell Sch Forestry & Nat Resources, Athens, GA 30602 USA. RP Hinton, TG (reprint author), Fukushima Univ, Inst Environm Radioact, 1 Kanayagawa, Fukushima 9601296, Japan. EM tghinton@gmail.com; mbyrne13@uga.edu; swebster@srel.uga.edu; beasley@srel.uga.edu FU Institute of Radiological Protection and Nuclear Safety's (IRSN) Experimental Research Program; European Commission [Fission-2010-3.5.1-269672]; Norwegian Radiation Protection Authority; U.S. Department of Energy (DOE) [DE-FC09-07SR22506] FX The technological developments presented in this paper would not be possible without the contributions of Philipe Fort and Pascal Martin at Mirion Technologies, and Robert Schuman at Vectronic Aerospace. We are very appreciative of their ability to materialize the vision we presented to them. This research was made possible because of funding from the Institute of Radiological Protection and Nuclear Safety's (IRSN) Experimental Research Program, under the leadership of IRSN's Director General, Jacques Repussard. Partial financial support was also provided by a grant from the European Commission to the STAR Network of Excellence in Radioecology (Contract # Fission-2010-3.5.1-269672), the Norwegian Radiation Protection Authority, and the U.S. Department of Energy (DOE) under Award Number DE-FC09-07SR22506 to the University of Georgia Research Foundation. We appreciate the U.S. DOE allowing us access to lands under their control. We wish to thank M. Holdman-Abbott and the Savannah River Nuclear Solutions Calibration Facility for their assistance with the laboratory calibration tests. We also thank J. Nance, J. Kilgo, T. Mims, and M. Vukuvich for their assistance in capturing pigs used in this study. The suggestions of three anonymous reviewers were appreciated and improved the final manuscript. NR 29 TC 3 Z9 4 U1 4 U2 16 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0265-931X EI 1879-1700 J9 J ENVIRON RADIOACTIV JI J. Environ. Radioact. PD JUL PY 2015 VL 145 BP 58 EP 65 DI 10.1016/j.jenvrad.2015.03.027 PG 8 WC Environmental Sciences SC Environmental Sciences & Ecology GA CJ5AG UT WOS:000355499200007 PM 25863721 ER PT J AU Xu, DB Sun, CJ Chen, JS Heald, SM Sanyal, B Rosenberg, RA Zhou, TJ Chow, GM AF Xu, D. B. Sun, C. J. Chen, J. S. Heald, S. M. Sanyal, B. Rosenberg, R. A. Zhou, T. J. Chow, G. M. TI Large enhancement of magnetic moment in L1(0) ordered FePt thin films by Nd substitutional doping SO JOURNAL OF PHYSICS D-APPLIED PHYSICS LA English DT Article DE L1(0) FePt; substitutional doping; magnetic moment ID RAY CIRCULAR-DICHROISM; ND2FE14B; ABSORPTION; ENERGY; RULES AB We studied L1(0) ordered Fe50Pt50-xNdx alloy films, which showed a large enhancement (similar to 18.4% at room temperature and similar to 11.7% at 10 K) of magnetic moment with 6 atomic % of Nd. Analysis of the x-ray magnetic circular dichroism spectra at the Fe L-3,L-2 edges and Nd M-5,M-4 edges in Fe50Pt44Nd6 films indicated a significant contribution of the Nd orbital moment. The origin of the large enhancement of magnetic moment was attributed to the effect of ferromagnetic coupling of the total magnetic moments between Fe and Nd. Density functional theory based first principles calculations supported the experimental observations of increasing moment due to Nd substitution of Pt. C1 [Xu, D. B.; Sun, C. J.; Heald, S. M.; Rosenberg, R. A.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Xu, D. B.; Chen, J. S.; Chow, G. M.] Natl Univ Singapore, Dept Mat Sci & Engn, Singapore 117576, Singapore. [Sanyal, B.] Uppsala Univ, Dept Phys & Astron, S-75120 Uppsala, Sweden. [Zhou, T. J.] ASTAR, Data Storage Inst, Singapore 117608, Singapore. RP Xu, DB (reprint author), Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. EM cjsun@aps.anl.gov; msecgm@nus.edu.sg FU US Department of Energy-Basic Energy Sciences; Canadian Light Source; University of Washington; Advanced Photon Source; US DOE [DE-AC02-06CH11357]; Ministry of Education, Singapore [MOE2012-T2-2-031]; A*STAR [R-284-000-082-305]; Carl Tryggers Stiftelse; Swedish Research Council FX PNC/XSD facilities at the Advanced Photon Source, and research at these facilities, are supported by the US Department of Energy-Basic Energy Sciences, the Canadian Light Source and its funding partners, the University of Washington, and the Advanced Photon Source. Use of the Advanced Photon Source, an Office of the Science User Facility operated for the US Department of Energy (DOE) Office of Science by the Argonne National Laboratory, was supported by the US DOE under Contract No. DE-AC02-06CH11357. Work at the National University of Singapore was supported by the Ministry of Education, Singapore under grant No. MOE2012-T2-2-031, and A*STAR under Grant No. R-284-000-082-305. BS acknowledges Carl Tryggers Stiftelse and the Swedish Research Council for financial support along with the Swedish National Infrastructure for Computing (SNIC) for allocation of supercomputing time. Bangmin Zhang is acknowledged for conducting the SQUID measurements. GMC thanks the PNC/XSD facilities for his sabbatical support. NR 27 TC 0 Z9 0 U1 5 U2 25 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0022-3727 EI 1361-6463 J9 J PHYS D APPL PHYS JI J. Phys. D-Appl. Phys. PD JUL 1 PY 2015 VL 48 IS 25 AR 255001 DI 10.1088/0022-3727/48/25/255001 PG 8 WC Physics, Applied SC Physics GA CJ1HC UT WOS:000355233600001 ER PT J AU Canfield, NL Kim, JY Bonnett, JF Pearson, RL Sprenkle, VL Jung, K AF Canfield, Nathan L. Kim, Jin Y. Bonnett, Jeff F. Pearson, R. L., III Sprenkle, Vincent L. Jung, Keeyoung TI Effects of fabrication conditions on mechanical properties and microstructure of duplex beta ''-Al2O3 solid electrolyte SO MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS LA English DT Article DE Na beta batteries; Duplex BASEs; Sintering conditions; Flexural strength ID BETA-ALUMINAS AB Na-beta batteries are an attractive technology as a large-scale electrical energy storage for grid applications. However, additional improvements in performance and cost are needed for wide market penetration. To improve cell performance by minimizing polarizations, reduction of electrolyte thickness was attempted using a duplex structure consisting of a thin dense electrolyte layer and a porous support layer. In this paper, the effects of sintering conditions, dense electrolyte thickness, and cell orientation on the flexural strength of duplex BASEs fabricated using a vapor phase approach were investigated. It is shown that sintering at temperatures between 1500 and 1550 degrees C results in fine grained microstructures and the highest flexural strength after conversion. Increasing thickness of the dense electrolyte has a small impact on flexural strength, while the orientation of load such that the dense electrolyte is in tension instead of compression has major effects on strength for samples with a well-sintered dense electrolyte. Published by Elsevier B.V. C1 [Canfield, Nathan L.; Kim, Jin Y.; Bonnett, Jeff F.; Pearson, R. L., III; Sprenkle, Vincent L.] Pacific NW Natl Lab, Energy Proc & Mat Div, Richland, WA 99352 USA. [Jung, Keeyoung] Res Inst Ind Sci & Technol RIST, Energy Storage Mat Res Ctr, Pohang, South Korea. RP Kim, JY (reprint author), Pacific NW Natl Lab, Energy Proc & Mat Div, Richland, WA 99352 USA. EM jin.Kim@pnnl.gov FU International Collaborative Energy Technology R&D Program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) - Ministry of Trade, Industry & Energy, Republic of Korea [20128510010070] FX This work was supported by the International Collaborative Energy Technology R&D Program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP), granted by financial resource from the Ministry of Trade, Industry & Energy, Republic of Korea (No. 20128510010070). The authors would like to thank Dr. Bradley Johnson for use of the SEM for microstructure analysis, as well as Mr. Jirgal Mansurov for his contributions to the project during his internship at PNNL. NR 15 TC 0 Z9 0 U1 1 U2 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-5107 EI 1873-4944 J9 MATER SCI ENG B-ADV JI Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater. PD JUL PY 2015 VL 197 BP 43 EP 50 DI 10.1016/j.mseb.2015.03.009 PG 8 WC Materials Science, Multidisciplinary; Physics, Condensed Matter SC Materials Science; Physics GA CJ2ZK UT WOS:000355353000008 ER PT J AU Bygd, HC Forsmark, KD Bratlie, KM AF Bygd, Hannah C. Forsmark, Kiva D. Bratlie, Kaitlin M. TI Altering in vivo macrophage responses with modified polymer properties SO BIOMATERIALS LA English DT Article DE Macrophage phenotype; In vivo test; Surface modification; Polymer properties; Biocompatibility; Biomedical applications ID TUMOR-ASSOCIATED MACROPHAGES; PROTEIN ADSORPTION; ALTERNATIVE ACTIVATION; INFLAMMATORY RESPONSES; IMPLANTED BIOMATERIALS; NEUTROPHIL GRANULES; NECROSIS-FACTOR; CATHEPSIN-D; POLARIZATION; CANCER AB Macrophage reprogramming has long been the focus of research in disease therapeutics and biomaterial implantation. With different chemical and physical properties of materials playing a role in macrophage polarization, it is important to investigate and categorize the activation effects of material parameters both in vitro and in vivo. In this study, we have investigated the effects of material surface chemistry on in vivo polarization of macrophages. The library of materials used here include poly(N-iso-propylacrylamide-co-acrylic acid) (p(NIPAm-co-AAc)) nanoparticles (similar to 600 nm) modified with various functional groups. This study also focuses on the development of a quantitative structure activity relationship method (QSAR) as a predictive tool for determining the macrophage polarization in response to particular biomaterial surface chemistries. Here, we successfully use in vivo imaging and histological analysis to identify the macrophage response and activation. We demonstrate the ability to induce a spectrum of macrophage phenotypes with a change in material functionality as well as identify certain material parameters that seem to correlate with each phenotype. This suggests the potential to develop materials for a variety of applications and predict the outcome of macrophage activation in response to new surface chemistries. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Bygd, Hannah C.; Bratlie, Kaitlin M.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. [Forsmark, Kiva D.; Bratlie, Kaitlin M.] Iowa State Univ, Dept Chem & Biol Engn, Ames, IA 50011 USA. [Bratlie, Kaitlin M.] Ames Natl Lab, Ames, IA 50011 USA. RP Bratlie, KM (reprint author), Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. EM kbratlie@iastate.edu FU National Science Foundation [CBET 1227867]; Roy J. Carver Charitable Trust [13-4265]; NSF ARI-R2 [CMMI-0963224] FX The authors thank Rebecca Steinlage and Samuel Spar land for their assistance in imaging H&E sections. This work was supported by the National Science Foundation under Grant No. CBET 1227867 and the Roy J. Carver Charitable Trust Grant No. 13-4265. The authors also acknowledge support from NSF ARI-R2 (CMMI-0963224) for funding the renovation of the research laboratories used for these studies. NR 91 TC 9 Z9 9 U1 11 U2 61 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0142-9612 EI 1878-5905 J9 BIOMATERIALS JI Biomaterials PD JUL PY 2015 VL 56 BP 187 EP 197 DI 10.1016/j.biomaterials.2015.03.042 PG 11 WC Engineering, Biomedical; Materials Science, Biomaterials SC Engineering; Materials Science GA CI8SI UT WOS:000355041600019 PM 25934291 ER PT J AU Qu, X Hall, A Klein, SA Caldwell, PM AF Qu, Xin Hall, Alex Klein, Stephen A. Caldwell, Peter M. TI The strength of the tropical inversion and its response to climate change in 18 CMIP5 models SO CLIMATE DYNAMICS LA English DT Article DE Tropical inversion; EIS; Fast response; Temperature-mediated change ID LOWER-TROPOSPHERIC STABILITY; LOW CLOUD COVER; ERA-INTERIM; SENSITIVITY; FEEDBACKS; VARIABILITY; SIMULATIONS; SYSTEM; CYCLE AB We examine the tropical inversion strength, measured by the estimated inversion strength (EIS), and its response to climate change in 18 models associated with phase 5 of the coupled model intercomparison project (CMIP5). While CMIP5 models generally capture the geographic distribution of observed EIS, they systematically underestimate it off the west coasts of continents, due to a warm bias in sea surface temperature. The negative EIS bias may contribute to the low bias in tropical low-cloud cover in the same models. Idealized perturbation experiments reveal that anthropogenic forcing leads directly to EIS increases, independent of "temperature-mediated" EIS increases associated with long-term oceanic warming. This fast EIS response to anthropogenic forcing is strongly impacted by nearly instantaneous continental warming. The temperature-mediated EIS change has contributions from both uniform and non-uniform oceanic warming. The substantial EIS increases in uniform oceanic warming simulations are due to warming with height exceeding the moist adiabatic lapse rate in tropical warm pools. EIS also increases in fully-coupled ocean-atmosphere simulations where CO2 concentration is instantaneously quadrupled, due to both fast and temperature-mediated changes. The temperature-mediated EIS change varies with tropical warming in a nonlinear fashion: The EIS change per degree tropical warming is much larger in the early stage of the simulations than in the late stage, due to delayed warming in the eastern parts of the subtropical oceans. Given the importance of EIS in regulating tropical low-cloud cover, this suggests that the tropical low-cloud feedback may also be nonlinear. C1 [Qu, Xin; Hall, Alex] Univ Calif Los Angeles, Dept Atmospher & Ocean Sci, Los Angeles, CA 90095 USA. [Klein, Stephen A.; Caldwell, Peter M.] Lawrence Livermore Natl Lab, Program Climate Model Diag & Intercomparison, Livermore, CA 94551 USA. RP Qu, X (reprint author), Univ Calif Los Angeles, Dept Atmospher & Ocean Sci, POB 951565, Los Angeles, CA 90095 USA. EM xinqu@atmos.ucla.edu RI Hall, Alex/D-8175-2014; Klein, Stephen/H-4337-2016 OI Klein, Stephen/0000-0002-5476-858X FU DOE; United States Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX All authors are supported by DOE's Regional and Global Climate Modeling Program under the project "Identifying Robust Cloud Feedbacks in Observations and Model". The work of LLNL authors was performed under the auspices of the United States Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. We acknowledge the modeling groups, the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and the WCRP's Working Group on Coupled Modelling (WGCM) for their roles in making available the WCRP CMIP5 multi-model datasets. Support of these datasets is provided by the Office of Science, U.S. Department of Energy. We thank Drs. Mark Zelinka, Florent Brient, Chen Zhou and Anthony DeAngelis for many stimulating discussions on the topic. We also thank two anonymous reviewers for their constructive comments on the original manuscript. ERA-Interim data is downloaded from http://www.ecmwf.int/, NCAR/NCEP from http://www.esrl.noaa.gov/ and MERRA from http://disc.sci.gsfc.nasa.gov/. NR 41 TC 11 Z9 11 U1 1 U2 13 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0930-7575 EI 1432-0894 J9 CLIM DYNAM JI Clim. Dyn. PD JUL PY 2015 VL 45 IS 1-2 BP 375 EP 396 DI 10.1007/s00382-014-2441-9 PG 22 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CI4IS UT WOS:000354712500022 ER PT J AU Frierdich, AJ Beard, BL Rosso, KM Scherer, MM Spicuzza, MJ Valley, JW Johnson, CM AF Frierdich, Andrew J. Beard, Brian L. Rosso, Kevin M. Scherer, Michelle M. Spicuzza, Michael J. Valley, John W. Johnson, Clark M. TI Low temperature, non-stoichiometric oxygen-isotope exchange coupled to Fe(II)-goethite interactions SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID MULTI-DIRECTION APPROACH; AQUEOUS FERROUS IRON; ELECTRON-TRANSFER; HYDROGEN ISOTOPE; WATER EXCHANGE; ATOM EXCHANGE; FRENCH-GUIANA; HIGH-PRESSURE; ALPHA-FEOOH; SURFICIAL ENVIRONMENTS AB The oxygen isotope composition of natural iron oxide minerals has been widely used as a paleoclimate proxy. Interpretation of their stable isotope compositions, however, requires accurate knowledge of isotopic fractionation factors and an understanding of their isotopic exchange kinetics, the latter of which informs us how diagenetic processes may alter their isotopic compositions. Prior work has demonstrated that crystalline iron oxides do not significantly exchange oxygen isotopes with pure water at low temperature, which has restricted studies of isotopic fractionation factors to precipitation experiments or theoretical calculations. Using a double three-isotope method (O-18-O-17-O-16 and Fe-57-Fe-56-Fe-54) we compare oxygen and iron isotope exchange kinetics, and demonstrate, for the first time, that oxygen-isotope exchange between structural oxygen in crystalline goethite and water occurs in the presence of aqueous Fe(II) (Fe(II)(aq)) at ambient temperature (i.e., 22-50 degrees C). The three-isotope method was used to extrapolate partial exchange results to infer the equilibrium, mass-dependent isotope fractionations between goethite and water. In addition, this was combined with a reversal approach to equilibrium by reacting goethite in two unique waters that vary in composition by about 16 parts per thousand in O-18/O-16 ratios. Our results show that interactions between Fe(II)(aq) and goethite catalyzes oxygen-isotope exchange between the mineral and bulk fluid; no exchange (within error) is observed when goethite is suspended in O-17-enriched water in the absence of Fe(II)(aq). In contrast, Fe(II)-catalyzed oxygen-isotope exchange is accompanied by significant changes in O-18/O-16 ratios. Despite significant oxygen exchange, however, we observed disproportionate amounts of iron versus oxygen exchange, where iron-isotope exchange in goethite was roughly three times that of oxygen. This disparity provides novel insight into the reactivity of oxide minerals in aqueous solutions, but presents a challenge for utilizing such an approach to determine equilibrium isotope fractionation factors. Despite the uncertainty from extrapolation, there is consistency in goethite-water fractionation factors for our reversal approach to equilibrium, with final weighted average fractionation factors of Delta O-18(Gth-water) = 3.0 (+/- 2.5 parts per thousand) and 0.2 (+/- 0.9 parts per thousand) at 22 degrees C and 1.9 (+/- 1.5 parts per thousand) and -1.6 (+/- 0.8 parts per thousand) at 50 degrees C for nano-particulate and micron-sized goethite, respectively (errors at 2 sigma level). This variability of Delta O-18(Gth-water) with particle size may reflect differences in the grain boundaries of goethite and ratios of surface area to volume. Reaction of ferrihydrite with Fe(II)(aq) in two distinct waters resulted in a quantitative conversion to goethite and complete oxygen-isotope exchange in each case, and similar fractionation factors were observed for experiments using the two waters. Comparison of our results with previous studies of oxygen isotope fractionation between goethite and water suggests that particle size may be a contributing factor to the disparity among experimental studies. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Frierdich, Andrew J.; Beard, Brian L.; Spicuzza, Michael J.; Valley, John W.; Johnson, Clark M.] Univ Wisconsin, Dept Geosci, Madison, WI 53706 USA. [Frierdich, Andrew J.; Scherer, Michelle M.] Univ Iowa, Dept Civil & Environm Engn, Iowa City, IA 52242 USA. [Rosso, Kevin M.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Frierdich, AJ (reprint author), Univ Wisconsin, Dept Geosci, Madison, WI 53706 USA. EM andrew-frierdich@uiowa.edu RI Frierdich, Andrew/A-1596-2016 FU National Science Foundation (NSF) [1347848, 1122855]; NSF [1123978]; Geosciences Research Program at PNNL - U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences Award [DE-FG02-93ER14389] FX This material is based upon work supported by the National Science Foundation (NSF) under Award No. 1347848 to A.J.F. and Grant No. 1122855 to C.M.J. and B.L.B. Additional support was provided by NSF Grant No. 1123978 to M.M.S. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the NSF or the journal reviewers. K.M.R. acknowledges support from the Geosciences Research Program at PNNL sponsored by the U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. Additional funding was provided by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences Award Number DE-FG02-93ER14389 to J.W.V. SEM and XRD analyses were conducted at the Materials Science Center and S. W. Bailey X-ray Diffraction Laboratory, respectively, at the University of Wisconsin-Madison. We thank Thomas Lapen and Tom Trainor for providing water from Houston, Texas and Fairbanks, Alaska, respectively. We also thank Crayton J. Yapp and two anonymous reviewers whose comments considerably improved the manuscript. NR 80 TC 5 Z9 5 U1 4 U2 38 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 EI 1872-9533 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD JUL 1 PY 2015 VL 160 BP 38 EP 54 DI 10.1016/j.gca.2015.03.029 PG 17 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA CI6OJ UT WOS:000354879400004 ER PT J AU Shrivastava, A Pfefferkorn, FE Duffie, NA Ferrier, NJ Smith, CB Malukhin, K Zinn, M AF Shrivastava, Amber Pfefferkorn, Frank E. Duffie, Neil A. Ferrier, Nicola J. Smith, Christopher B. Malukhin, Kostya Zinn, Michael TI Physics-based process model approach for detecting discontinuity during friction stir welding SO INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY LA English DT Article DE Friction stir welding; Discontinuity detection; Dynamic force model ID MATERIAL FLOW; TOOL AB The goal of this work is to develop a method for detecting the creation of discontinuities during friction stir welding. This in situ weld monitoring method could significantly reduce the need for post-process inspection. A process force model and a discontinuity force model were created based on the state-of-the-art understanding of flow around an friction stir welding (FSW) tool. These models are used to predict the FSW forces and size of discontinuities formed in the weld. Friction stir welds with discontinuities and welds without discontinuities were created, and the differences in force dynamics were observed. In this paper, discontinuities were generated by reducing the tool rotation frequency and increasing the tool traverse speed in order to create "cold" welds. Experimental force data for welds with discontinuities and welds without discontinuities compared favorably with the predicted forces. The model currently overpredicts the discontinuity size. C1 [Shrivastava, Amber; Pfefferkorn, Frank E.; Duffie, Neil A.; Malukhin, Kostya; Zinn, Michael] Univ Wisconsin, Dept Mech Engn, Madison, WI 53706 USA. [Ferrier, Nicola J.] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA. [Smith, Christopher B.] Wolf Robot LLC, Ft Collins, CO USA. RP Zinn, M (reprint author), Univ Wisconsin, Dept Mech Engn, Madison, WI 53706 USA. EM mzinn@wisc.edu OI Pfefferkorn, Frank/0000-0002-6575-0190 FU National Science Foundation [CMMI-1332738]; Department of Mechanical Engineering at University of Wisconsin Madison; Machine Tool Technology Research Foundation; US Department of Energy Office of Science [DE-AC02-06CH11357]; Argonne, a US Department of Energy Office of Science laboratory [DE-AC02-06CH11357] FX The authors gratefully acknowledge the support of this work by the National Science Foundation (grant CMMI-1332738), the Department of Mechanical Engineering at University of Wisconsin Madison, the Machine Tool Technology Research Foundation, and colleagues in the Advanced Manufacturing Lab. This material is based upon work supported by the US Department of Energy Office of Science, under contract number DE-AC02-06CH11357.; The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a US Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The US Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government. NR 15 TC 2 Z9 2 U1 1 U2 11 PU SPRINGER LONDON LTD PI LONDON PA 236 GRAYS INN RD, 6TH FLOOR, LONDON WC1X 8HL, ENGLAND SN 0268-3768 EI 1433-3015 J9 INT J ADV MANUF TECH JI Int. J. Adv. Manuf. Technol. PD JUL PY 2015 VL 79 IS 1-4 BP 605 EP 614 DI 10.1007/s00170-015-6868-x PG 10 WC Automation & Control Systems; Engineering, Manufacturing SC Automation & Control Systems; Engineering GA CI3EU UT WOS:000354631200051 ER PT J AU Cekmer, O Um, S Mench, MM AF Cekmer, Ozgur Um, Sukkee Mench, Matthew M. TI Application of path-percolation theory and Lattice-Boltzmann method to investigate structure-property relationships in porous media SO INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER LA English DT Article DE Lattice-Boltzmann model; Path-percolation theory; Porous media; Fluid flow; Mass diffusion; Effective diffusion coefficient ID FUEL-CELL MATERIALS; FLOW AB In this study, path-percolation theory was applied to randomly generate porous media, and effective porosities of these domains were determined. A statistical approach was pursued to determine effective porosity with confidence levels of 95%, 97%, and 99%. Furthermore, the Lattice-Boltzmann method was applied to obtain the velocity distribution throughout the porous channels to evaluate effective tortuosity. Two dimensional lattices with nine velocity components were utilized for fluid flow simulations. A new effective diffusivity model for porous media was developed using the effective porosity and tortuosity determined by path-percolation and Lattice-Boltzmann theories, respectively. Diffusion behavior of gasses in porous media as a function of porosity is typically unpredictable when the porosity is below 0.6, but the developed diffusion model as a function of effective porosity is shown to be useful in all effective porosity ranges. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Cekmer, Ozgur; Mench, Matthew M.] Univ Tennessee, Electrochem Energy Storage & Convers Lab, Dept Mech Aerosp & Biomed Engn, Knoxville, TN 37996 USA. [Um, Sukkee] Hanyang Univ, Sch Mech Engn, Seoul 133791, South Korea. [Mench, Matthew M.] Oak Ridge Natl Lab, Energy & Transportat Sci Div, Oak Ridge, TN 37831 USA. RP Mench, MM (reprint author), Univ Tennessee, Electrochem Energy Storage & Convers Lab, Dept Mech Aerosp & Biomed Engn, Knoxville, TN 37996 USA. EM mmench@utk.edu FU Department of Energy [DE-EE0000470] FX This material is based upon work supported by the Department of Energy under Award Number DE-EE0000470. NR 17 TC 3 Z9 3 U1 3 U2 25 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0017-9310 EI 1879-2189 J9 INT J HEAT MASS TRAN JI Int. J. Heat Mass Transf. PD JUL PY 2015 VL 86 BP 101 EP 112 DI 10.1016/j.ijheatmasstransfer.2015.02.023 PG 12 WC Thermodynamics; Engineering, Mechanical; Mechanics SC Thermodynamics; Engineering; Mechanics GA CI8NV UT WOS:000355029900012 ER PT J AU Garcia-Salaberri, PA Hwang, G Vera, M Weber, AZ Gostick, JT AF Garcia-Salaberri, Pablo A. Hwang, Gisuk Vera, Marcos Weber, Adam Z. Gostick, Jeff T. TI Effective diffusivity in partially-saturated carbon-fiber gas diffusion layers: Effect of through-plane saturation distribution SO INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER LA English DT Article DE Effective diffusivity; Gas diffusion layer; Water saturation; Finite size; X-ray tomography; Lattice Boltzmann method ID MEMBRANE FUEL-CELLS; LATTICE BOLTZMANN METHOD; THIN POROUS-MEDIA; POROSITY DISTRIBUTIONS; OXYGEN DIFFUSIVITY; FRACTAL MODEL; LIQUID-WATER; PEMFC GDLS; TRANSPORT PHENOMENA; MICROPOROUS MEDIA AB The effective diffusivity of gaseous species in partially-saturated finite-size porous media is a valuable parameter for mathematical modeling of many processes, but it is difficult to measure experimentally. In this work, the effective diffusivity of carbon-fiber gas diffusion layers (GDLs) used in polymer electrolyte fuel cells (PEFCs) was determined by performing lattice Boltzmann (LB) simulations on X-ray tomographic reconstructions of invading water configurations. Calculations on dry GDLs were in close agreement with previous experimental data; the effective diffusivity was reduced by the addition of PTFE due to the loss of pore volume and the higher tortuosity of transport paths. The effect of water saturation was significantly larger. It was found that the resistance of water to gas transport was extremely dependent on the saturation distribution through the porous medium, particularly the peak saturation, and not just the average saturation as is typically considered in the literature. Through-plane diffusion was dramatically limited in materials with high-peak local saturations, even at low average saturation levels. No significant limitations were observed for diffusion in the material plane. The computed results demonstrate the strong sensitivity of finite-size porous media to local conditions, highlighting the difficulties of applying volume-averaged continuum-scale modeling techniques to micro-scale materials. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Garcia-Salaberri, Pablo A.; Vera, Marcos] Univ Carlos III Madrid, Dept Ingn Term & Fluidos, Leganes 28911, Spain. [Hwang, Gisuk] Wichita State Univ, Dept Mech Engn, Wichita, KS USA. [Weber, Adam Z.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. [Gostick, Jeff T.] McGill Univ, Dept Chem Engn, Montreal, PQ, Canada. RP Gostick, JT (reprint author), McGill Univ, Dept Chem Engn, Montreal, PQ, Canada. EM jeff.gostick@mcgill.ca RI Vera, Marcos/B-7122-2013; Garcia-Salaberri, Pablo /H-7993-2015 OI Vera, Marcos/0000-0001-6878-1788; Garcia-Salaberri, Pablo /0000-0002-3918-5415 FU Natural Science and Engineering Research Council of Canada; U. S. Department of Energy [DE-AC02-05CH11231]; Spanish Ministerio de Economia y Competitividad (MEC) [ENE2011-24574]; Department of Energy, Office of Basic Energy Sciences [DE-AC02-05CH11231]; Canada Foundation for Innovation (CFI); Ministere de l'Economie, de l'Innovation et des Exportations du Quebec (MEIE); RMGA; Fonds de recherche du Quebec - Nature et technologies (FRQ-NT) FX The authors thank Dr. Jin Hyun Nam (Daegu University, South Korea), Dr. Massoud Kaviany (University of Michigan, USA) and Dr. Felix N. Buchi (Paul Scherrer Institut, Switzerland) for insightful discussions and comments concerning their works [7,22]. The authors also thank Dr. Dula Parkinson and Dr. Alastair MacDowell at the Advanced Light Source (ALS) for help in obtaining and analyzing the tomographic images, as well as the support team of Calcul Quebec and Compute Canada for their help during the simulation campaign. This work was supported by the Natural Science and Engineering Research Council of Canada's Discovery Grant program, the Assistant Secretary for Energy Efficiency and Renewable Energy, Fuel Cell Technologies Program, of the U. S. Department of Energy under contract DE-AC02-05CH11231, and Project ENE2011-24574 of the Spanish Ministerio de Economia y Competitividad (MEC). XCT experiments were performed in the beamline 8.3.2 at ALS, Lawrence Berkeley National Laboratory, which is a national user facility funded by the Department of Energy, Office of Basic Energy Sciences under contract DE-AC02-05CH11231. Numerical calculations were conducted in the supercomputing clusters Guillimin and Colosse managed by Calcul Quebec and Compute Canada [71]. The operation of these supercomputers is funded by the Canada Foundation for Innovation (CFI), Ministere de l'Economie, de l'Innovation et des Exportations du Quebec (MEIE), RMGA and the Fonds de recherche du Quebec - Nature et technologies (FRQ-NT). NR 75 TC 21 Z9 21 U1 4 U2 41 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0017-9310 EI 1879-2189 J9 INT J HEAT MASS TRAN JI Int. J. Heat Mass Transf. PD JUL PY 2015 VL 86 BP 319 EP 333 DI 10.1016/j.ijheatmasstransfer.2015.02.073 PG 15 WC Thermodynamics; Engineering, Mechanical; Mechanics SC Thermodynamics; Engineering; Mechanics GA CI8NV UT WOS:000355029900034 ER PT J AU Wachtor, AJ Mocko, V Jebrail, FF Andrews, MJ AF Wachtor, A. J. Mocko, V. Jebrail, F. F. Andrews, M. J. TI On buoyancy driven mixing by volumetric microwave energy deposition SO INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER LA English DT Article DE Microwaves; Mixing; Rayleigh-Taylor; Unstable stratification; Volumetric energy deposition ID RAYLEIGH-TAYLOR INSTABILITY; DIELECTRIC-RELAXATION; TETRAHYDROFURAN; MIXTURES; BREAKUP AB Investigation of buoyancy driven mixing by volumetric energy deposition is of particular interest to inertial confinement fusion research. This contribution describes a new microwave-facility and an experiment to study buoyancy driven mixing of miscible-fluids by volumetric energy deposition. A light weakly-polar fluid initially rested on top of a heavier and higher polarity fluid. As the fluid system was subjected to microwave radiation, less microwave energy was deposited into the weakly-polar fluid than the higher polarity fluid; thus, the bottom fluid was preferentially heated, and its density decreased due to thermal expansion. With continued microwave heating, the density of the bottom fluid dropped below the density of the upper fluid, creating a Rayleigh Taylor unstable configuration, and, subsequently, buoyancy driven mixing. The miscible pair of toluene and tetrahydrofuran was chosen for the volumetric energy deposition experiments presented. Initially, single fluid microwave heating experiments, for which the source term in the heat equation was varied by variations in the fluid volume, were performed to provide calibration of a mathematical model. The model provided a prediction of the neutral stability point of the system, which facilitated experimental design and understanding. Measurements of the mixing layer width from this two-fluid mixing experiment are compared with results from a self-similar analysis of the governing equations. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Wachtor, A. J.; Mocko, V.; Jebrail, F. F.; Andrews, M. J.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Wachtor, AJ (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. EM ajw@lanl.gov OI Wachtor, Adam/0000-0003-0609-9171 FU U.S. Department of Energy NNSA [DE-AC52-06NA25396]; LANL Science Campaign 4 FX The authors would like to thank Dr. Marion Vance for his contributions to the imaging setup for the experiment. Los Alamos National Laboratory (LANL) is operated by the Los Alamos National Security, LLC for the U.S. Department of Energy NNSA under Contract No. DE-AC52-06NA25396. This work was made possible by funding from LANL Science Campaign 4. NR 29 TC 0 Z9 0 U1 2 U2 6 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0017-9310 EI 1879-2189 J9 INT J HEAT MASS TRAN JI Int. J. Heat Mass Transf. PD JUL PY 2015 VL 86 BP 443 EP 454 DI 10.1016/j.ijheatmasstransfer.2015.01.112 PG 12 WC Thermodynamics; Engineering, Mechanical; Mechanics SC Thermodynamics; Engineering; Mechanics GA CI8NV UT WOS:000355029900046 ER PT J AU Kusuma, VA Roth, EA Clafshenkel, WP Klara, SS Zhou, X Venna, SR Albenze, E Luebke, DR Mauter, MS Koepsel, RR Russell, AJ Hopkinson, D Nulwala, HB AF Kusuma, Victor A. Roth, Elliot A. Clafshenkel, William P. Klara, Steven S. Zhou, Xu Venna, Surendar R. Albenze, Erik Luebke, David R. Mauter, Meagan S. Koepsel, Richard R. Russell, Alan J. Hopkinson, David Nulwala, Hunaid B. TI Crosslinked poly(ethylene oxide) containing siloxanes fabricated through thiol-ene photochemistry SO JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY LA English DT Article DE biocompatible; biocompatibility; crosslinking; differential scanning calorimetry (DSC); films; gas permeation; gas separation membrane; membranes; photochemistry; polyethylene glycol; poly(ethylene oxide); polysiloxanes; siloxane; thiol-ene click ID GAS-TRANSPORT PROPERTIES; 1,2,3-TRIAZOLIUM-BASED POLY(IONIC LIQUID)S; CLICK CHEMISTRY POLYADDITION; MESENCHYMAL STEM-CELLS; SEPARATION MEMBRANES; COUPLING CHEMISTRY; HYDROGELS; POLYMERS; GLYCOL); EFFICIENT AB Homogenous amphiphilic crosslinked polymer films comprising of poly(ethylene oxide) and polysiloxane were synthesized utilizing thiol-ene click photochemistry. A systematic variation in polymer composition was Carried out to obtain high quality films with varied amount of siloxane and poly(ethylene oxide). These films showed improved gas separation performance with high gas permeabilities with good CO2/N-2 selectivity. Furthermore, the resulting films were also tested for its biocompatibility, as a carrier media which allow human adult mesenchymal stem cells to retain their capacity for osteoblastic differentiation after transplantation. The obtained crosslinked films were characterized using differential scanning calorimetry, dynamic mechanical analysis, thermogravimetric analysis, FTIR, Raman-IR, and small angle X-ray scattering. The synthesis ease and commercial availability of the starting materials suggests that these new crosslinked polymer networks could find applications in wide range of applications. (c) 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015, 53, 1548-1557 C1 [Kusuma, Victor A.; Roth, Elliot A.; Zhou, Xu; Venna, Surendar R.; Albenze, Erik; Luebke, David R.; Hopkinson, David; Nulwala, Hunaid B.] US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. [Clafshenkel, William P.; Koepsel, Richard R.; Russell, Alan J.] Carnegie Mellon Univ, Inst Complex Engn Syst, Pittsburgh, PA 15213 USA. [Klara, Steven S.; Mauter, Meagan S.] Carnegie Mellon Univ, Dept Chem Engn, Pittsburgh, PA 15213 USA. [Nulwala, Hunaid B.] Carnegie Mellon Univ, Dept Chem, Pittsburgh, PA 15213 USA. RP Nulwala, HB (reprint author), US DOE, Natl Energy Technol Lab, 626 Cochrans Mill Rd, Pittsburgh, PA 15236 USA. EM hnulwala@andrew.cmu.edu OI Kusuma, Victor/0000-0002-7881-4536; Mauter, Meagan/0000-0002-4932-890X; Nulwala, Hunaid/0000-0001-7481-3723 FU U.S. Department of Energy's National Energy Technology Laboratory [DE-FE0004000] FX This technical effort was performed in support of the U.S. Department of Energy's National Energy Technology Laboratory's ongoing research on CO2 capture under the contract DE-FE0004000. The authors thank Alex Hallenbeck and John Kitchin's research group for the Raman spectroscopy and Adefemi Egbebi for running the TGA experiments. NR 54 TC 3 Z9 3 U1 9 U2 75 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0887-624X EI 1099-0518 J9 J POLYM SCI POL CHEM JI J. Polym. Sci. Pol. Chem. PD JUL 1 PY 2015 VL 53 IS 13 BP 1548 EP 1557 DI 10.1002/pola.27594 PG 10 WC Polymer Science SC Polymer Science GA CI4NP UT WOS:000354727800003 ER PT J AU Deng, XC Hu, MY Wei, XL Wang, W Chen, Z Liu, J Hu, JZ AF Deng, Xuchu Hu, Mary Y. Wei, Xiaoliang Wang, Wei Chen, Zhong Liu, Jun Hu, Jian Zhi TI Natural abundance O-17 nuclear magnetic resonance and computational modeling studies of lithium based liquid electrolytes SO JOURNAL OF POWER SOURCES LA English DT Article DE Natural abundance O-17 NMR; Chemical shift calculation; Ethylene carbonate; Propylene carbonate; Ethyl methyl carbonate; Solvation structure ID MOLECULAR-DYNAMICS SIMULATION; DENSITY-FUNCTIONAL THEORY; REDOX FLOW BATTERIES; ETHYLENE CARBONATE; PROPYLENE CARBONATE; LI-ION; ALKYL CARBONATES; NMR; SPECTROSCOPY; PERCHLORATE AB Natural abundance O-17 NMR measurements were conducted on electrolyte solutions conisting of Li [CF3SO2NSO2CF3] (LiTFSI) dissolved in the solvents of ethylene carbonate (EC), propylene carbonate (PC), ethyl methyl carbonate (EMC), and their mixtures at various concentrations. It was observed that O-17 chemical shifts of solvent molecules change with the concentration of LiTFSI. The chemical shift displacements of carbonyl oxygen are evidently greater than those of ethereal oxygen, strongly indicating that Li+ ion is coordinated with carbonyl oxygen rather than ethereal oxygen. To understand the detailed molecular interaction, computational modeling of O-17 chemical shifts was carried out on proposed solvation structures. By comparing the predicted chemical shifts with the experimental values, it is found that a Li+ ion is coordinated with four double bond oxygen atoms from EC, PC, EMC and TFSI- anion. In the case of excessive amount of solvents of EC, PC and EMC the Li+ coordinated solvent molecules are undergoing quick exchange with bulk solvent molecules, resulting in average O-17 chemical shifts. Several kinds of solvation structures are identified, where the proportion of each structure in the liquid electrolytes investigated depends on the concentration of LiTFSI. (C) 2015 Elsevier B.V. All rights reserved. C1 [Deng, Xuchu; Hu, Mary Y.; Wei, Xiaoliang; Wang, Wei; Liu, Jun; Hu, Jian Zhi] Pacific NW Natl Lab, JCESR, Richland, WA 99352 USA. [Deng, Xuchu; Chen, Zhong] Xiamen Univ, Dept Elect Sci, Xiamen, Peoples R China. RP Hu, JZ (reprint author), Pacific NW Natl Lab, JCESR, Richland, WA 99352 USA. EM jianzhi.Hu@pnnl.gov RI Hu, Jian Zhi/F-7126-2012; Wang, Wei/F-4196-2010; Chen, Zhong/G-4601-2010 OI Wang, Wei/0000-0002-5453-4695; FU Joint Center for Energy Storage Research (JCESR), an Energy Innovation Hub - U.S. Department of Energy, Office of Science, Basic Energy Sciences (BES); U.S. Department of Energy's (DOE's) Office of Electricity Delivery and Energy Reliability (OE) [57558]; DOE's Office of Biological and Environmental Research (BER); National Natural Science Fund of China [21327001]; Department of Energy [DE-AC05-76RLO1830] FX This work was supported as part of the Joint Center for Energy Storage Research (JCESR), an Energy Innovation Hub funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences (BES). The NMR sample preparations were supported by the funding from the U.S. Department of Energy's (DOE's) Office of Electricity Delivery and Energy Reliability (OE) (under Contract No. 57558). The NMR, and computational studies were conducted in the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by DOE's Office of Biological and Environmental Research (BER) and located at PNNL. Xuchu Deng was partially supported by the National Natural Science Fund of China under Grant 21327001. PNNL is operated by Battelle for the Department of Energy under Contract DE-AC05-76RLO1830. NR 50 TC 5 Z9 5 U1 2 U2 45 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 EI 1873-2755 J9 J POWER SOURCES JI J. Power Sources PD JUL 1 PY 2015 VL 285 BP 146 EP 155 DI 10.1016/j.jpowsour.2015.03.091 PG 10 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA CH6IR UT WOS:000354140800018 ER PT J AU Dai, KH Mao, J Song, XY Battaglia, V Liu, G AF Dai, Kehua Mao, Jing Song, Xiangyun Battaglia, Vince Liu, Gao TI Na0.44MnO2 with very fast sodium diffusion and stable cycling synthesized via polyvinylpyrrolidone-combustion method SO JOURNAL OF POWER SOURCES LA English DT Article DE Sodium-ion battery; Sodium manganese oxide; Cathode material; High power; Sodium chemical diffusion coefficient; Polyvinylpyrrolidone ID LITHIUM-ION BATTERIES; POSITIVE ELECTRODE MATERIAL; HIGH-RATE CAPABILITY; ELECTROCHEMICAL PROPERTIES; ENERGY-STORAGE; HIGH-POWER; CATHODE MATERIALS; CRYSTAL-STRUCTURE; OPEN FRAMEWORK; NA AB Na0.44MnO2 is a very promising cathode material in sodium-ion batteries for large-scale application. Na0.44MnO2 with very fast sodium diffusion and stable cycling is prepared by polyvinylpyrrolidone (PVP)-combustion method. X-ray diffraction, scanning electron microscope and high-resolution transmission electron microscopy are conducted to explore the morphology and structure. Electrochemical performance of the samples is examined in coin cells with sodium foil anode and nonaqueous electrolyte. The Na0.44MnO2 sample synthesized at 900 degrees C (NMO-900) discharges the highest capacity of 122.9 mAh g(-1) at C/5. A fast-rate-test technique developed by Newman et al. is adopted for quick determination of the rate capability. All the samples exhibit good rate capability while the NMO-900 shows the best. Normal rate test result supports the reliability of the fast rate test. Even at 20C charge and discharge rate, the NMO-900 delivers 99 mAh g(-1) capacity. The chemical diffusion coefficient of sodium is measured to be around 3 x 10(-12) cm(2) s(-1) by potential intermittent titration technique (PITT). The cycling stability is also very good. The capacity retention after 100 cycles at 1C is 87.9% and the capacity still remains 82.9% even after 700 cycles at 10C. During cycling the coulombic efficiency keeps near 99.8%. (C) 2015 Elsevier B.V. All rights reserved. C1 [Dai, Kehua] Northeastern Univ, Sch Met & Mat, Shenyang 110004, Peoples R China. [Mao, Jing] Zhengzhou Univ, Sch Mat Sci & Engn, Zhengzhou 450002, Peoples R China. [Mao, Jing] Zhengzhou Univ, Int Joint Res Lab Low Carbon & Environm Mat Hena, Zhengzhou 450002, Peoples R China. [Song, Xiangyun; Battaglia, Vince; Liu, Gao] Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. RP Dai, KH (reprint author), Northeastern Univ, Sch Met & Mat, Shenyang 110004, Peoples R China. EM daikh@smm.neu.edu.cn; gliu@lbl.gov RI Foundry, Molecular/G-9968-2014 FU Fundamental Research Funds for the Central Universities of China [N110802002]; National Natural Science Foundation of China [51204038]; Office of Science, Office of Basic Energy Sciences, of the US Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Fundamental Research Funds for the Central Universities of China (N110802002) and the National Natural Science Foundation of China (51204038). This work was also supported by the Assistant Secretary for Energy Efficiency, Vehicle Technologies Office of the U.S. Department of Energy, under the Advanced Battery Materials Research (BMR) Program and Applied Battery Research (ABR) Program. Electron microscopy experiments were conducted at the National Center for Electron Microscopy (NCEM). The NCEM is located at Lawrence Berkeley National Laboratory (LBNL), and is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under contract No. DE-AC02-05CH11231. NR 58 TC 8 Z9 8 U1 15 U2 119 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 EI 1873-2755 J9 J POWER SOURCES JI J. Power Sources PD JUL 1 PY 2015 VL 285 BP 161 EP 168 DI 10.1016/j.jpowsour.2015.03.087 PG 8 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA CH6IR UT WOS:000354140800020 ER PT J AU Reed, D Thomsen, E Wang, W Nie, ZM Li, B Wei, XL Koeppel, B Sprenkle, V AF Reed, David Thomsen, Edwin Wang, Wei Nie, Zimin Li, Bin Wei, Xiaoliang Koeppel, Brian Sprenkle, Vincent TI Performance of Naflon (R) N115, Naflon (R) NR-212, and Naflon (R) NR-211 in a 1 kW class all vanadium mixed acid redox flow battery SO JOURNAL OF POWER SOURCES LA English DT Article DE Vanadium redox flow battery; Naflon (R) membranes; Electrical performance; Cost ID RESEARCH-AND-DEVELOPMENT; ELECTROLYTE; PROGRESS AB Three Nafion (R) membranes of similar composition but different thicknesses were operated in a 3-cell 1 kW class all vanadium mixed acid redox flow battery. The influence of current density on the charge/discharge characteristics, coulombic and energy efficiency, capacity fade, operating temperature and pressure drop in the flow circuit will be discussed and correlated to the Nafion (R) membrane thick-ness. Material costs associated with the Nafion membranes, ease of handling the membranes, and performance impacts will also be discussed. (C) 2015 Elsevier B.V. All rights reserved. C1 [Reed, David; Thomsen, Edwin; Wang, Wei; Nie, Zimin; Li, Bin; Wei, Xiaoliang; Koeppel, Brian; Sprenkle, Vincent] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Reed, D (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM bin.li@pnnl.gov RI Wang, Wei/F-4196-2010 OI Wang, Wei/0000-0002-5453-4695 FU Office Electricity Delivery & Energy Reliability [57558]; Department of Energy [DE_ACS05-76RL01830] FX This work is supported by the Office Electricity Delivery & Energy Reliability's storage program under Contract No. 57558. PNNL is a multiprogram laboratory operated by Battelle Memorial Institute for the Department of Energy under Contract DE_ACS05-76RL01830. NR 14 TC 16 Z9 16 U1 6 U2 53 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 EI 1873-2755 J9 J POWER SOURCES JI J. Power Sources PD JUL 1 PY 2015 VL 285 BP 425 EP 430 DI 10.1016/j.jpowsour.2015.03.099 PG 6 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA CH6IR UT WOS:000354140800052 ER PT J AU Fu, RR Wang, QY Gao, SM Wang, ZY Huang, BB Dai, Y Lu, J AF Fu, Rongrong Wang, Qingyao Gao, Shanmin Wang, Zeyan Huang, Baibiao Dai, Ying Lu, Jun TI Effect of different processes and Ti/Zn molar ratios on the structure, morphology, and enhanced photoelectrochemical and photocatalytic performance of Ti3+ self-doped titanium-zinc hybrid oxides SO JOURNAL OF POWER SOURCES LA English DT Article DE Ti3+ self-doped; Hybrid oxides; Heterojunction; Hydrogen production; Visible light photocatalyst ID VISIBLE-LIGHT IRRADIATION; NANOTUBE ARRAYS; TIO2 NANOPARTICLES; FABRICATION; EFFICIENT; PHASE; ZNO; DEGRADATION; WATER; HETEROJUNCTIONS AB Ti3+ self-doped titanium-zinc hybrid oxides with different phase compositions and morphologies were successfully synthesized using Zn powder as the reductant and Zn source by a chemical-reduction precipitation method with subsequent thermal treatment. The fabricated Ti3+ self-doped TiO2(A)/TiO2(R), TiO2(A)/TiO2(R)/ZnTiO3, and TiO2(A)/ZnO heterojunctions were characterized by X-ray diffraction, transmission electron microscopy, high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, and UV-Vis diffuse reflectance spectroscopy. The effects of various Ti/Zn molar ratios and preparation processes on the structural, morphological, optical, photocurrent and photocatalytic properties of the resultant samples were investigated systematically. Results reveal that Ti3+ self-doping enhances the photoabsorption capability of titanium-zinc hybrid oxides in the visible-light region. Moreover, different processes and Ti/Zn molar ratios play great influences on the structure, morphology, optical, photocurrent and photocatalytic properties of the final products. Ti3+ self-doped titanium-zinc hybrid oxides exhibit excellent photocurrent and photocatalytic activity than pure TiO2 and ZnTiO3 under visible-light irradiation (lambda >= 400 nm). The most active Ti3+ self-doped titanium-zinc hybrid oxides photoanode presents significantly improved water splitting performance. The synergistic effect between the Ti3+ self-doped and heterojunctions is responsible for the enhanced performance of these materials. Published by Elsevier B.V. C1 [Fu, Rongrong; Wang, Qingyao; Gao, Shanmin] Ludong Univ, Coll Chem & Mat Sci, Yantai 264025, Peoples R China. [Gao, Shanmin; Wang, Zeyan; Huang, Baibiao; Dai, Ying] Shandong Univ, State Key Lab Crystal Mat, Jinan 250100, Peoples R China. [Lu, Jun] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Lu, J (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. EM gaosm@ustc.edu; junlu@anl.gov FU Key Project of Natural Science Foundation of Shandong Province [ZR2013EMZ001]; National Basic Research Program of China [2013CB632401]; National Nature Science Foundation of China [51402145]; Project of Shandong Province Higher Educational Science and Technology Program [J12LA01]; Program for Scientific Research Innovation Team in Colleges and Universities of Shandong Province; U.S. Department of Energy [DE-AC0206CH11357]; Vehicle Technologies Office, Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) FX This work was supported by the Key Project of Natural Science Foundation of Shandong Province (ZR2013EMZ001), the National Basic Research Program of China (Grant No. 2013CB632401), the National Nature Science Foundation of China (51402145) and the Project of Shandong Province Higher Educational Science and Technology Program (J12LA01). This research has been partially supported by the Program for Scientific Research Innovation Team in Colleges and Universities of Shandong Province. This work was also supported by the U.S. Department of Energy under Contract DE-AC0206CH11357 with the main support provided by the Vehicle Technologies Office, Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE). NR 51 TC 5 Z9 5 U1 10 U2 81 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 EI 1873-2755 J9 J POWER SOURCES JI J. Power Sources PD JUL 1 PY 2015 VL 285 BP 449 EP 459 DI 10.1016/j.jpowsour.2015.03.070 PG 11 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA CH6IR UT WOS:000354140800055 ER PT J AU Tan, DY Lee, TL Khong, JC Connolley, T Fezzaa, K Mi, JW AF Tan, Dongyue Lee, Tung Lik Khong, Jia Chuan Connolley, Thomas Fezzaa, Kamel Mi, Jiawei TI High-Speed Synchrotron X-ray Imaging Studies of the Ultrasound Shockwave and Enhanced Flow during Metal Solidification Processes SO METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE LA English DT Article ID HIGH-INTENSITY ULTRASOUND; POWER ULTRASOUND; CAVITATION; NUCLEATION; DYNAMICS; BUBBLE; LIQUID; ALLOY AB The highly dynamic behavior of ultrasonic bubble implosion in liquid metal, the multiphase liquid metal flow containing bubbles and particles, and the interaction between ultrasonic waves and semisolid phases during solidification of metal were studied in situ using the complementary ultrafast and high-speed synchrotron X-ray imaging facilities housed, respectively, at the Advanced Photon Source, Argonne National Laboratory, US, and Diamond Light Source, UK. Real-time ultrafast X-ray imaging of 135,780 frames per second revealed that ultrasonic bubble implosion in a liquid Bi-8 wt pctZn alloy can occur in a single wave period (30 kHz), and the effective region affected by the shockwave at implosion was 3.5 times the original bubble diameter. Furthermore, ultrasound bubbles in liquid metal move faster than the primary particles, and the velocity of bubbles is 70 similar to 100 pct higher than that of the primary particles present in the same locations close to the sonotrode. Ultrasound waves can very effectively create a strong swirling flow in a semisolid melt in less than one second. The energetic flow can detach solid particles from the liquid-solid interface and redistribute them back into the bulk liquid very effectively. C1 [Tan, Dongyue; Lee, Tung Lik; Khong, Jia Chuan; Mi, Jiawei] Univ Hull, Sch Engn, Kingston Upon Hull HU6 7RX, East Yorkshire, England. [Connolley, Thomas] I12 JEEP, Diamond Light Source, Didcot OX11 0DE, Oxon, England. [Fezzaa, Kamel] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Tan, DY (reprint author), Univ Hull, Sch Engn, Cottingham Rd, Kingston Upon Hull HU6 7RX, East Yorkshire, England. EM j.mi@hull.ac.uk FU U.K. Engineering and Physical Sciences Research Council [EP/L019965/1]; Royal Society; Hull University & Chinese Scholarship Council (Hull-CSC); Diamond Light Source, UK [EE8542-1]; Advanced Photon Source, Argonne National Laboratory, US [GUP 23649, GUP 26170]; synchrotron X-ray beam time; U.S. DOE [DE-AC02-06CH11357] FX The authors would like to acknowledge the financial support from the U.K. Engineering and Physical Sciences Research Council (Grant No. EP/L019965/1), The Royal Society Industry Fellowship (for J Mi), and the Hull University & Chinese Scholarship Council (Hull-CSC) PhD Studentship (for D. Tan). The awards of the synchrotron X-ray beam time (EE8542-1) by the Diamond Light Source, UK, and the synchrotron X-ray beam time (GUP 23649 and GUP 26170) by the Advanced Photon Source, Argonne National Laboratory, US are also gratefully acknowledged. Use of the Advanced Photon Source, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under Contract No. DE-AC02-06CH11357. Special thanks also go to Julia Malle of Glass Workshop in the Department of Chemistry, University of Hull, who has assisted on making the special quartz tube containers used in the in situ synchrotron X-ray imaging studies. NR 38 TC 3 Z9 3 U1 5 U2 25 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1073-5623 EI 1543-1940 J9 METALL MATER TRANS A JI Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. PD JUL PY 2015 VL 46A IS 7 BP 2851 EP 2861 DI 10.1007/s11661-015-2872-x PG 11 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA CI6UM UT WOS:000354898300012 ER PT J AU Wang, HM Wu, PD Wang, J AF Wang, Huamiao Wu, Peidong Wang, Jian TI Numerical Assessment of the Role of Slip and Twinning in Magnesium Alloy AZ31B During Loading Path Reversal SO METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE LA English DT Article ID SITU NEUTRON-DIFFRACTION; HARDENING EVOLUTION; TEXTURE DEVELOPMENT; INELASTIC BEHAVIOR; CONSTITUTIVE MODEL; STRESS-RELAXATION; PLASTICITY MODELS; ZIRCONIUM ALLOYS; MG ALLOY; DEFORMATION AB Magnesium alloy AZ31B plastically deforms via twinning and slip. Corresponding to the unidirectional nature of twinning, the activity of twinning/detwinning is directly related to loading history and materials texture. Using the elastic viscoplastic self-consistent model implementing with the twinning and detwinning model (EVPSC-TDT), we revisited experimental data of AZ31B sheets under four different strain paths: (1) tension-compression-tension along rolling direction, (2) tension-compression-tension along transverse direction, (3) compression-tension-compression along rolling direction, and (4) compression-tension-compression along transverse direction, and identified the dominant deformation mechanisms with respect to the strain path. We captured plastic deformation behaviors observed in experiments and quantitatively interpreted experimental observations in terms of the activities of different deformation mechanisms and the evolution of texture. It is found that the in-plane pre-tension has slight effect on the subsequent deformation, and the pre-compression and the reverse tension after compression have significant effect on the subsequent deformation. The inelastic behavior under compressive unloading is found to be insignificant at a small strain level but pronounced at a large strain level. Such significant effect is mainly ascribed to the activity of twinning and detwinning. C1 [Wang, Huamiao; Wang, Jian] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. [Wu, Peidong] McMaster Univ, Dept Mech Engn, Hamilton, ON L8S 4L7, Canada. [Wang, Jian] Univ Nebraska, Dept Mech & Mat Engn, Lincoln, NE 68588 USA. RP Wang, HM (reprint author), Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. EM wanghm@lanl.gov RI Wang, Huamiao/F-7693-2010; Wu, Peidong/A-7009-2008; Wang, Jian/F-2669-2012 OI Wang, Huamiao/0000-0002-7167-2483; Wang, Jian/0000-0001-5130-300X FU Natural Sciences and Engineering Research Council of Canada (NSERC); Ontario Ministry of Research and Innovation; US department of Energy, Office of Basic Energy Sciences [FWP-06SCPE401] FX This research was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) and by the Ontario Ministry of Research and Innovation. HW and JW were supported by the US department of Energy, Office of Basic Energy Sciences (Project No: FWP-06SCPE401). NR 60 TC 6 Z9 6 U1 1 U2 25 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1073-5623 EI 1543-1940 J9 METALL MATER TRANS A JI Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. PD JUL PY 2015 VL 46A IS 7 BP 3079 EP 3090 DI 10.1007/s11661-015-2890-8 PG 12 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA CI6UM UT WOS:000354898300033 ER PT J AU Yu, C Cui, LS Hao, SJ Jiang, DQ Shi, XB Liu, ZY Liu, ZP Brown, DE Ren, Y AF Yu, Cun Cui, Lishan Hao, Shijie Jiang, Daqiang Shi, Xiaobin Liu, Zhenyang Liu, Zunping Brown, Dennis E. Ren, Yang TI In Situ High-Energy X-Ray Diffraction Study of Load Partitioning in Nb/NiTi Nanocomposite Plate SO METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE LA English DT Article ID METAL-MATRIX NANOCOMPOSITES; MECHANICAL-PROPERTIES; COMPOSITES; STRENGTH; MICROSTRUCTURE; BEHAVIOR; ALLOYS; WIRES AB A nanocomposite composed of Nb nanosheets and NiTi shape memory alloy was fabricated by multiple cold rolling. High-energy X-ray diffraction measurements were performed to probe the deformation behavior of each component during uniaxial tensile loading at different temperatures. It is demonstrated that, as the samples were tested at 203 K (-70 A degrees C) and 298 K (25 A degrees C), the NiTi matrix exhibited a martensite reorientation and a stress-induced phase transformation, respectively, while the Nb nanosheets showed a higher elastic strain (similar to 2.5 pct) in comparison to that (similar to 0.9 pct) of a sample tested at a higher temperature of 453 K (180 A degrees C). The Nb nanosheets, with a volume fraction of only 13 pct, undertake an applied stress of similar to 90 pct as the NiTi matrix undergoes the martensitic transformation. It appears that the strengthening of Nb nanosheets is optimized as the matrix deforms by a stress-induced phase transformation or by a martensite reorientation in nanocomposite. (C) The Minerals, Metals & Materials Society and ASM International 2015 C1 [Yu, Cun; Cui, Lishan; Hao, Shijie; Jiang, Daqiang; Shi, Xiaobin; Liu, Zhenyang] China Univ Petr, State Key Lab Heavy Oil Proc, Beijing, Peoples R China. [Liu, Zunping; Ren, Yang] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Brown, Dennis E.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. RP Cui, LS (reprint author), China Univ Petr, State Key Lab Heavy Oil Proc, Beijing, Peoples R China. EM lscui@cup.edu.cn; ren@aps.anl.gov RI Jiang, Daqiang /G-5511-2014 FU key National Natural Science Foundation of China (NSFC) [51231008]; National 973 program of China [2012CB619403]; NSFC [51471187, 11474362]; Key Project of Chinese Ministry of Education [313055]; US Department of Energy, Office of Science [DE-AC02-06CH11357]; US Department of Energy, Office of Basic Energy Science [DE-AC02-06CH11357] FX This work was supported by the key National Natural Science Foundation of China (NSFC) (51231008), the National 973 program of China (2012CB619403), the NSFC (51471187 and 11474362), and the Key Project of Chinese Ministry of Education (313055). The use of the Advanced Photon Source was supported by the US Department of Energy, Office of Science, and Office of Basic Energy Science under Contract No. DE-AC02-06CH11357. NR 20 TC 1 Z9 1 U1 1 U2 18 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1073-5623 EI 1543-1940 J9 METALL MATER TRANS A JI Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. PD JUL PY 2015 VL 46A IS 7 BP 3271 EP 3275 DI 10.1007/s11661-015-2816-5 PG 5 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA CI6UM UT WOS:000354898300050 ER PT J AU Kotov, IV Haupt, J Kubanek, P O'Connor, P Takacs, P AF Kotov, I. V. Haupt, J. Kubanek, P. O'Connor, P. Takacs, P. TI X-ray analysis of fully depleted CCDs with small pixel size SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 7th International Conference on New Developments in Photodetection (NDIP) CY JUL, 2014 CL Tours, FRANCE SP Inst Res Fundamental Laws Universe, CEA Tech LIST, Univ Lyon, Univ Claude Bernard Lyon, Inst Natl Physique Nucleaire Physique Particules, French Space Agcy DE CCD; Charge diffusion; Charge transfer efficiency; CCD X-ray detectors ID CHARGE DIFFUSION; DETECTORS; SILICON AB X-ray frames offer a lot of information about CCD. Fe-15 sources are traditionally being used for CCD gain and charge transfer efficiency (CTE) measurements. In addition X-rays can be used for the system linearity Lest. We demonstrate how spectral lines of Fe-55 and Am-241 rad. sources are used for system linearity measurements. The pixel size of modern scientific CCDs is getting smaller. The charge diffusion causes the charge spread among neighboring pixels especially in thick fully depleted sensors. This enables measurement of the charge diffusion using Fe-55 X-rays. On the other hand, the usual CTE characterization method based on single pixel X-ray events becomes statistically deficient. A new way of measuring CTE using shape and amplitude analysis of X-ray clusters is presented and discussed. This method requires high statistical samples. Advances in test automation and express analysis technique allow for acquiring such statistical samples in a short period of time The lateral diffusion measured using e2v CCD250 is presented and implications for X-ray cluster size and expected cluster shape are discussed. The CTE analysis using total X-ray cluster amplitude is presented. This analysis can reveal CTE problems for certain conditions. The statistical analysis of average X-ray cluster shape is presented. The details of our measurement procedure are presented. Published by Elsevier B.V. C1 [Kotov, I. V.; Haupt, J.; O'Connor, P.; Takacs, P.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Kubanek, P.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. RP Kotov, IV (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM kotov@bnl.gov FU National Science Foundation [0809409]; Department of Energy [DE-AC02-76-SFO0515]; SLAC National Accelerator Laboratory; LSSTC Institutional Members FX LSST project activities are supported in part by the National Science Foundation through Governing Cooperative Agreement 0809409 managed by the Association of Universities for Research in Astronomy (AURA), and the Department of Energy under contract DE-AC02-76-SFO0515 with the SLAC National Accelerator Laboratory. Additional LSST funding comes from private donations, grants to universities, and in-kind support from LSSTC Institutional Members. NR 18 TC 0 Z9 0 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUL 1 PY 2015 VL 787 BP 12 EP 19 DI 10.1016//j.nima.2014.10.027 PG 8 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA CI6LE UT WOS:000354869900004 ER PT J AU Kotov, IV O'Connor, P Murray, N AF Kotov, I. V. O'Connor, P. Murray, N. TI Pocket pumped image analysis SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 7th International Conference on New Developments in Photodetection (NDIP) CY JUL, 2014 CL Tours, FRANCE SP Inst Res Fundamental Laws Universe, CEA Tech LIST, Univ Lyon, Univ Claude Bernard Lyon, Inst Natl Physique Nucleaire Physique Particules, French Space Agcy DE CCD; Charge traps; Charge transfer efficiency AB The pocket pumping technique is used to detect small electron trap sites. These traps, if present, degrade CCD charge transfer efficiency. To reveal traps in the active area, a CCD is illuminated with a flat field and, before image is read out, accumulated charges are moved back and forth number of Limes in parallel direction. As charges are moved over a trap, an electron is removed from the original pocket and reemitted in the following pocket. As process repeats one pocket gets depleted and the neighboring pocket gets excess of charges. As a result a "dipole" signal appears on the otherwise flat background level. The amplitude of the dipole signal depends on the trap pumping efficiency. This paper is focused on trap identification technique and particularly on new methods developed for this purpose. The sensor with bad segments was deliberately chosen for algorithms development and to demonstrate sensitivity and power of new methods in uncovering sensor detects. Published by Elsevier B.V. C1 [Kotov, I. V.; O'Connor, P.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Murray, N.] Open Univ, Ctr Elect Imaging, Milton Keynes MK7 6AA, Bucks, England. RP Kotov, IV (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM kotov@bnl.gov FU National Science Foundation [0809409]; Department of Energy [DE-AC02-76-SFO0515]; SLAC National Accelerator Laboratory; LSSTC Institutional Members FX LSST project activities are supported in part by the National Science Foundation through Governing Cooperative Agreement 0809409 managed by the Association of Universities for Research in Astronomy (AURA), and the Department of Energy under contract DE-AC02-76-SFO0515 with the SLAC National Accelerator Laboratory. Additional LssT funding comes from private donations, grants to universities, and in-kind support from LSSTC Institutional Members. NR 5 TC 1 Z9 1 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUL 1 PY 2015 VL 787 BP 26 EP 33 DI 10.1016//j.nima.2014.10.049 PG 8 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA CI6LE UT WOS:000354869900006 ER PT J AU Minot, MJ Bennis, DC Bond, JL Craven, CA O'Mahony, A Renaud, JM Stochaj, ME Elam, JW Mane, AU Demarteau, MW Wagner, RG McPhate, JB Siegmund, OH Elagin, A Frisch, HJ Northrop, R Wetstein, MJ AF Minot, Michael J. Bennis, Daniel C. Bond, Justin L. Craven, Christopher A. O'Mahony, Aileen Renaud, Joseph M. Stochaj, Michael E. Elam, Jeffrey W. Mane, Anil U. Demarteau, Marcellinus W. Wagner, Robert G. McPhate, Jason B. Siegmund, Oswald Helmut Elagin, Andrey Frisch, Henry J. Northrop, Richard Wetstein, Matthew J. TI Pilot production & commercialization of LAPPD (TM) SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 7th International Conference on New Developments in Photodetection (NDIP) CY JUL, 2014 CL Tours, FRANCE SP Inst Res Fundamental Laws Universe, CEA Tech LIST, Univ Lyon, Univ Claude Bernard Lyon, Inst Natl Physique Nucleaire Physique Particules, French Space Agcy DE Large-area picosecond photodetectors (LAPPD); Time of flight detector; Glass capillary array (GCA); Microchannel plate (MCP); Atomic layer deposition (ALD) ID ATOMIC LAYER DEPOSITION AB We present a progress update on plans to establish pilot production and commercialization of Large Area (400 cm(2)) Picosecond Photodetector (LAPPD (TM)). Steps being taken to commercialize this MCP and LAPPD (TM) technology and begin tile pilot production are presented including (1) the manufacture of 203 mm x 203 mm borosilicate glass capillary arrays (GCAs), (2) optimization of MCP performance and creation of an ALD coating facility to manufacture MCPs and (3) design, construction and commissioning of UHV tile integration and sealing facility to produce LAPPDs. Taken together these plans provide a "pathway toward commercialization". (C) 2014 Elsevier B.V. All rights reserved. C1 [Minot, Michael J.; Bennis, Daniel C.; Bond, Justin L.; Craven, Christopher A.; O'Mahony, Aileen; Renaud, Joseph M.; Stochaj, Michael E.] Incom Inc, Charlton, MA 01507 USA. [Elam, Jeffrey W.; Mane, Anil U.; Demarteau, Marcellinus W.; Wagner, Robert G.] Argonne Natl Lab, Argonne, IL 60439 USA. [McPhate, Jason B.; Siegmund, Oswald Helmut] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Elagin, Andrey; Frisch, Henry J.; Northrop, Richard; Wetstein, Matthew J.] Univ Chicago, Chicago, IL 60637 USA. RP Minot, MJ (reprint author), Incom Inc, 294 Southbridge Rd, Charlton, MA 01507 USA. EM mjm@incomusa.com FU U.S. Department of Energy; Argonne National Laboratory; University of California at Berkeley; University of Chicago; University of Hawaii; Fermilab FX The authors would like to thank the U.S. Department of Energy for their continued financial support [13] Funding and the cooperation of the many institutions (Argonne National Laboratory, University of California at Berkeley, University of Chicago, University of Hawaii and Fermilab) that that have contributed to this work. NR 10 TC 9 Z9 9 U1 1 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUL 1 PY 2015 VL 787 BP 78 EP 84 DI 10.1016/j.nima.2014.025 PG 7 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA CI6LE UT WOS:000354869900017 ER PT J AU Anderson, D Apreysan, A Bornheim, A Duarte, J Newman, H Pena, C Ronzhin, A Spiropulu, M Trevor, J Xie, S Zhu, RY AF Anderson, Dustin Apreysan, Artur Bornheim, Adi Duarte, Javier Newman, Harvey Pena, Cristian Ronzhin, Anatoly Spiropulu, Maria Trevor, Jason Xie, Si Zhu, Ren-Yuan TI Precision timing measurements for high energy photons SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 7th International Conference on New Developments in Photodetection (NDIP) CY JUL, 2014 CL Tours, FRANCE SP Inst Res Fundamental Laws Universe, CEA Tech LIST, Univ Lyon, Univ Claude Bernard Lyon, Inst Natl Physique Nucleaire Physique Particules, French Space Agcy DE Precision tinting; Calorimetry; High energy physics; Picosecond AB Particle colliders operating at high luminosities present challenging environments for high energy physics event reconstruction and analysis. We discuss how timing information, with a precision on the order of 10 ps, can aid in the reconstruction of physics events under such conditions. We present calorimeter based timing measurements from test beam experiments in which we explore the ultimate timing precision achievable for high energy photons or electrons of 10 GeV and above. Using a prototype calorimeter consisting of a 1.7 x 1.7 x 1.7 cm(3) lutetium-yttrium oxyortho-silicate (LYSO) crystal cube, read out by micro-channel plate photomultipliers, we demonstrate a time resolution of 33.5 +/- 2.1 ps for an incoming beam energy of 32 GeV. In a second measurement, using a 2.5 x 2.5 x 20 cm(3) LYSO crystal placed perpendicularly to the electron beam, we achieve a time resolution of 59 +/- 11 ps using a beam energy of 4 GeV. We also present timing measurements made using a shashlik-style calorimeter cell made of LYSO and tungsten plates, and demonstrate that the apparatus achieves a time resolution of 54 +/- 5 ps for an incoming beam energy of 32 GeV. (C) 2014 Elsevier B.V. All rights reserved C1 [Anderson, Dustin; Apreysan, Artur; Bornheim, Adi; Duarte, Javier; Newman, Harvey; Pena, Cristian; Spiropulu, Maria; Trevor, Jason; Xie, Si; Zhu, Ren-Yuan] CALTECH, Pasadena, CA 91125 USA. [Ronzhin, Anatoly] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Anderson, D (reprint author), CALTECH, 1200 E Calif Blvd, Pasadena, CA 91125 USA. EM djanders@caltech.edu RI Xie, Si/O-6830-2016 OI Xie, Si/0000-0003-2509-5731 NR 6 TC 1 Z9 1 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUL 1 PY 2015 VL 787 BP 94 EP 97 DI 10.1010/j.nirna.2014.11.041 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA CI6LE UT WOS:000354869900020 ER PT J AU Siegmund, OHW McPhate, JB Tremsin, AS Vallerga, JV Ertley, CD Richner, NJ Gerard, TM Frisch, HJ Elam, JW Mane, AU Wagner, RG Minot, MJ O'Mahony, A Craven, CA AF Siegmund, O. H. W. McPhate, J. B. Tremsin, A. S. Vallerga, J. V. Ertley, C. D. Richner, N. J. Gerard, T. M. Frisch, H. J. Elam, J. W. Mane, A. U. Wagner, R. G. Minot, M. J. O'Mahony, A. Craven, C. A. TI Application of atomic layer deposited microchannel plates to imaging photodetectors with high time resolution SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 7th International Conference on New Developments in Photodetection (NDIP) CY JUL, 2014 CL Tours, FRANCE SP Inst Res Fundamental Laws Universe, CEA Tech LIST, Univ Lyon, Univ Claude Bernard Lyon, Inst Natl Physique Nucleaire Physique Particules, French Space Agcy DE Photon counting; Microchannel plate; Imaging; GaN: Cherenkov: Bialkali AB Novel microchannel plates have been constructed using borosilicate glass micro-capillary array substrates with 20 mu m and 10 mu m pores and coated with resistive, and secondary electron emissive, layers by atomic layer deposition. Microchannel plates in 33 mm, 50 mm and 20 cm square formats have been made and tested. Although their amplification, imaging, and timing properties are comparable to standard glass microchannel plates, the background rates and lifetime characteristics are considerably improved. Sealed tube detectors based on the Planacon tube, and a 25 mm cross delay line readout tube with a GaN(Mg) opaque photocathode deposited on borosilicate microchannel plates have been fabricated. Considerable progress has also been made with 20 cm microchannel plates for a 20 cm format sealed tube sensor with strip-line readout that is being developed for Cherenkov light detection. (C) 2014 Elsevier B.V. All rights reserved C1 [Siegmund, O. H. W.; McPhate, J. B.; Tremsin, A. S.; Vallerga, J. V.; Ertley, C. D.; Richner, N. J.; Gerard, T. M.] Univ Calif Berkeley, Space Sci Lab, Expt Astrophys Grp, Berkeley, CA 94720 USA. [Frisch, H. J.] Univ Chicago, Chicago, IL 60637 USA. [Elam, J. W.; Mane, A. U.; Wagner, R. G.] Argonne Natl Lab, Lemont, IL 60439 USA. [Minot, M. J.; O'Mahony, A.; Craven, C. A.] Incom Inc, Charlton, MA 01507 USA. RP Siegmund, OHW (reprint author), Univ Calif Berkeley, Space Sci Lab, Expt Astrophys Grp, 7 Gauss Way, Berkeley, CA 94720 USA. EM ossy@ssl.berkeley.edu FU DOE/Argonne [DE-AC02-06CH11357]; NASA [NNX14AD34G, NNG11AD54G] FX We wish to thank Incom Inc., PHOTONIS, SVT Inc. J. Hull, and J. Tedesco for their contributions. This work was supported by DOE/Argonne under contract DE-AC02-06CH11357, and NASA grants NNX14AD34G and NNG11AD54G. NR 8 TC 0 Z9 0 U1 6 U2 23 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUL 1 PY 2015 VL 787 BP 110 EP 113 DI 10.1016/j.nima.2014.11.047 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA CI6LE UT WOS:000354869900024 ER PT J AU Dinu, N Nagai, A Para, A AF Dinu, N. Nagai, A. Para, A. TI Studies of MPPC detectors down to cryogenic temperatures SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 7th International Conference on New Developments in Photodetection (NDIP) CY JUL, 2014 CL Tours, FRANCE SP Inst Res Fundamental Laws Universe, CEA Tech LIST, Univ Lyon, Univ Claude Bernard Lyon, Inst Natl Physique Nucleaire Physique Particules, French Space Agcy DE Silicon photomultiplier; Breakdown voltage; Gain; Dark count rate; Capacitance; Signal shape AB This work reports on the behavior of the Multi-Pixel Photon Counter (MPPC) detectors produced by Hamamatsu HPK in a temperature range from +55 degrees C down to -175 degrees C. Devices of 1 x 1 mm(2) and 3 x 3 mm(2) total area and 50 x 50 mu m(2) [well size have been studied. Electrical parameters such as breakdown voltage, gain, capacitance, pulse shape, quenching resistance and dark count rate were measured and some of them showed important temperature variation. Besides this temperature dependence, it is shown that MPPC detectors can operate with a stable gain independent of T if the overvoltage is kept constant. Moreover, at a given temperature, the device of 3 x 3 mm(2) (production year 2011) presents seven times less dark rate/mm(2) with respect to the one of 1 x 1 mm(2) (production year 2007), showing an important technological improvement implemented by HPK during four year's time interval. 2015 Elsevier B.V. All rights reserved. C1 [Dinu, N.; Nagai, A.] Lab Linear Accelerator, F-91898 Orsay, France. [Dinu, N.; Nagai, A.] Univ Paris 11, CNRS IN2P3, F-91898 Orsay, France. [Para, A.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Nagai, A (reprint author), Lab Linear Accelerator, F-91898 Orsay, France. EM nagai@lal.in2p3.fr FU Linear Accelerator Laboratory (LAL); University Paris XI; P2IO French Labex; FRA, LLC [De-AC02-07CH11359]; U.S. Department of Energy FX The authors would like to thank to Dr. Paul Rubinov and Dr. Donna Kubik for their help in the experimental set-up and data taken at Silicon Detector Facility (SiDet), Fermilab, USA. This work was granted by the Linear Accelerator Laboratory (LAL), University Paris XI and P2IO French Labex, Fermi National Accelerator Laboratory is operated by FRA, LLC under Contract no. De-AC02-07CH11359 with the U.S. Department of Energy. NR 10 TC 2 Z9 2 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUL 1 PY 2015 VL 787 BP 275 EP 279 DI 10.1016/j.nima.2014.12.061 PG 5 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA CI6LE UT WOS:000354869900062 ER PT J AU Gorichok, IV Fochuk, PM Verzhak, YV Parashchuk, TO Freik, DM Panchuk, OE Bolotnikov, AE James, RB AF Gorichok, I. V. Fochuk, P. M. Verzhak, Ye. V. Parashchuk, T. O. Freik, D. M. Panchuk, O. E. Bolotnikov, A. E. James, R. B. TI Compensation mechanism of bromine dopants in cadmium telluride single crystals (vol 415, pg 146, 2015) SO JOURNAL OF CRYSTAL GROWTH LA English DT Correction C1 [Gorichok, I. V.; Parashchuk, T. O.; Freik, D. M.] Vasyl Stefanyk Precarpathian Natl Univ, Phys Chem Inst, Ivano Frankivsk, Ukraine. [Fochuk, P. M.; Verzhak, Ye. V.; Panchuk, O. E.] Yuriy Fedkovych Chernivtsi Natl Univ, Dept Inorgan Chem, Chernovtsy, Ukraine. [Bolotnikov, A. E.; James, R. B.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Gorichok, IV (reprint author), Vasyl Stefanyk Precarpathian Natl Univ, Phys Chem Inst, Ivano Frankivsk, Ukraine. EM horichokihor@gmail.com RI Fochuk, Petro/D-9409-2016; Panchuk, Oleg/C-1764-2017 OI Fochuk, Petro/0000-0002-4149-4882; Panchuk, Oleg/0000-0003-3906-1858 NR 1 TC 0 Z9 0 U1 0 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-0248 EI 1873-5002 J9 J CRYST GROWTH JI J. Cryst. Growth PD JUL 1 PY 2015 VL 421 BP 75 EP 75 DI 10.1016/j.jcrysgro.2015.04.016 PG 1 WC Crystallography; Materials Science, Multidisciplinary; Physics, Applied SC Crystallography; Materials Science; Physics GA CI2IU UT WOS:000354570700013 ER PT J AU Bartel, N Chen, M Utgikar, VP Sun, X Kim, IH Christensen, R Sabharwall, P AF Bartel, N. Chen, M. Utgikar, V. P. Sun, X. Kim, I. -H. Christensen, R. Sabharwall, P. TI Comparative analysis of compact heat exchangers for application as the intermediate heat exchanger for advanced nuclear reactors SO ANNALS OF NUCLEAR ENERGY LA English DT Article DE Advanced nuclear reactor; Intermediate heat exchanger; Printed circuit heat exchanger (PCHE); Offset strip-fin heat exchanger (OSFHE); Thermal-hydraulic design; Heat Exchange Compactness AB A comparative evaluation of alternative compact heat exchanger designs for use as the intermediate heat exchanger in advanced nuclear reactor systems is presented in this article. Candidate heat exchangers investigated included the Printed circuit heat exchanger (PCHE) and offset strip-fin heat exchanger (OSFHE). Both these heat exchangers offer high surface area to volume ratio (a measure of compactness [m(2)/m(3)]), high thermal effectiveness, and overall low pressure drop. Helium-helium heat exchanger designs for different heat exchanger types were developed for a 600 MW thermal advanced nuclear reactor. The wavy channel PCHE with a 150 pitch angle was found to offer optimum combination of heat transfer coefficient, compactness and pressure drop as compared to other alternatives. The principles of the comparative analysis presented here will be useful for heat exchanger evaluations in other applications as well. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Bartel, N.; Utgikar, V. P.] Univ Idaho, Nucl Engn Program, Moscow, ID 83844 USA. [Utgikar, V. P.] Univ Idaho, Dept Chem & Mat Engn, Moscow, ID 83844 USA. [Chen, M.; Sun, X.; Kim, I. -H.; Christensen, R.] Ohio State Univ, Dept Mech & Aerosp Engn, Nucl Engn Program, Columbus, OH 43210 USA. [Sabharwall, P.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Utgikar, VP (reprint author), Univ Idaho, Nucl Engn Program, Moscow, ID 83844 USA. EM vutgikar@uidaho.edu OI Chen, Minghui/0000-0002-7380-3037 FU DOE Office of Nuclear Energy's Nuclear Energy University Programs FX This research is being performed using funding received from the DOE Office of Nuclear Energy's Nuclear Energy University Programs. NR 7 TC 3 Z9 3 U1 4 U2 23 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0306-4549 J9 ANN NUCL ENERGY JI Ann. Nucl. Energy PD JUL PY 2015 VL 81 BP 143 EP 149 DI 10.1016/j.anucene.2015.03.029 PG 7 WC Nuclear Science & Technology SC Nuclear Science & Technology GA CH3KI UT WOS:000353929200017 ER PT J AU Richard, J Galloway, J Fensin, M Trellue, H AF Richard, Joshua Galloway, Jack Fensin, Michael Trellue, Holly TI SMITHERS: An object-oriented modular mapping methodology for MCNP-based neutronic-thermal hydraulic multiphysics SO ANNALS OF NUCLEAR ENERGY LA English DT Article DE Neutronic/thermal-hydraulic coupling; Operator splitting in reactor analysis; MCNP6; MONTEBURNS ID TRACE/PARCS; SYSTEM AB A novel object-oriented modular mapping methodology for externally coupled neutronics-thermal hydraulics multiphysics simulations was developed. The Simulator using MCNP with Integrated Thermal-Hydraulics for Exploratory Reactor Studies (SMITHERS) code performs on-the-fly mapping of material-wise power distribution tallies implemented by MCNP-based neutron transport/depletion solvers for use in estimating coolant temperature and density distributions with a separate thermal-hydraulic solver. The key development of SMITHERS is that it reconstructs the hierarchical geometry structure of the material-wise power generation tallies from the depletion solver automatically, with only a modicum of additional information required from the user. Additionally, it performs the basis mapping from the combinatorial geometry of the depletion solver to the required geometry of the thermal-hydraulic solver in a generalizable manner, such that it can transparently accommodate varying levels of thermal-hydraulic solver geometric fidelity, from the nodal geometry of multi-channel analysis solvers to the pin-cell level of discretization for sub-channel analysis solvers. The mapping methodology was specifically developed to be flexible enough such that it could successfully integrate preexisting depletion solver case files with different thermal-hydraulic solvers. This approach allows the user to tailor the selection of a thermal-hydraulic solver to the requirements and limitations of the specific problem under consideration, without needing to modify their existing depletion code input files. To enable support of a wide range of existing depletion solver input decks, SMITHERS can accommodate arbitrarily detailed geometry segmentation for the depletion calculation with a minimum of additional information required from the user. This new implementation was motivated by the desire to enable easier multiphysics modeling of a wide range of reactor types, from power reactors to research reactors. The initial implementation of this modular mapping methodology incorporates the neutronic depletion solver MCNP/MONTEBURNS and a multi-channel analysis two-phase flow thermal hydraulic solver. Two verification test problems were evaluated to verify that the code's routines were operating as intended. Preexisting generic BWR and nontraditional PWR cases were selected to ensure maximum code coverage and evaluate the operation of all implemented mapping routines. The obtained power, coolant temperature, and coolant density results verified that SMITHERS was correctly performing on-the-fly mapping combinatorial-basis MCNP/MONTEBURNS-calculated material powers to the thermal-hydraulic solver's nodal geometry and that nodal coolant temperature and densities were correctly returned to the combinatorial geometry of MCNP. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Richard, Joshua] MIT, Dept Nucl Sci & Engn, Cambridge, MA 02139 USA. [Richard, Joshua; Galloway, Jack; Fensin, Michael; Trellue, Holly] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Richard, J (reprint author), MIT, Dept Nucl Sci & Engn, 77 Massachusetts Ave,Room 24-107, Cambridge, MA 02139 USA. EM jgr426@gmail.com FU National Nuclear Security Administration (NNSA)'s Defense Nuclear Nonproliferation office FX The authors acknowledge support of the National Nuclear Security Administration (NNSA)'s Defense Nuclear Nonproliferation office and the modeling efforts of Noah Fischer while at Los Alamos National Laboratory for generating the BWR assembly MCNP input file and Anna Erickson while at Lawrence Livermore National Laboratory for generating the MCNP input file of the BR3 assembly. NR 32 TC 0 Z9 0 U1 2 U2 12 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0306-4549 J9 ANN NUCL ENERGY JI Ann. Nucl. Energy PD JUL PY 2015 VL 81 BP 150 EP 163 DI 10.1016/j.anucene.2015.03.027 PG 14 WC Nuclear Science & Technology SC Nuclear Science & Technology GA CH3KI UT WOS:000353929200018 ER PT J AU Munasinghe, PS Madden, MEE Brooks, SC Madden, ASE AF Munasinghe, P. Sumudu Madden, Megan E. Elwood Brooks, Scott C. Madden, Andrew S. Elwood TI Dynamic interplay between uranyl phosphate precipitation, sorption, and phase evolution SO APPLIED GEOCHEMISTRY LA English DT Article ID URANIUM-CONTAMINATED SOILS; GOETHITE-COATED SAND; META-AUTUNITE; DISSOLUTION KINETICS; COLES HILL; SOLUBILITY; SPECIATION; SURFACE; ADSORPTION; IMMOBILIZATION AB Natural examples demonstrate uranyl-phosphate minerals can maintain extremely low levels of aqueous uranium in groundwaters due to their low solubility. Therefore, greater understanding of the geochemical factors leading to uranyl phosphate precipitation may lead to successful application of phosphate-bsed remediation methods. However, the solubility of uranyl phosphate phases varies over > 3 orders of magnitude, with the most soluble phases typically observed in lab experiments. To understand the role of common soil/sediment mineral surfaces in the nucleation and transformation of uranyl phosphate minerals under environmentally relevant conditions, batch experiments were carried out with goethite and mica at pH 6 in mixed electrolyte solutions ranging from 1-800 mu M U and 1-800 mu M P. All experiments ended with uranium concentrations below the USEPA MCL for U, but with 2-3 orders of magnitude difference in uranium concentrations. Despite the presence of many cations that are well known to incorporate into less soluble autunite-group minerals, chernikovite rapidly precipitated in all experiments containing U and P, except for solutions with 1 mu M U and 1 mu M P that were calculated to be undersaturated. Textures of uranyl phosphates observed by AFM and TEM indicate that nucleation was homogenous and independent of the initial mineral content. Comparison of time-course U and P concentrations from the experiments with thermodynamic modeling of solution equilibria demonstrated that aqueous uranium concentrations in the experimental systems evolved as increasingly sparingly soluble uranyl phosphate phases nucleated over time, with sorption accelerating the transition between phases by influencing solution chemistry. Aqueous uranium concentrations consistent with partially dehydrated (meta-) autunite were achieved only in experiments containing goethite and/or mica. These dynamic nucleation-growth-sorption-nucleation-growth-sorption cycles occur over the time scales of weeks, not hours or days at room temperature. Lab experiments and field-based investigations of uranium phosphate should consider these or longer time scales for the greatest long-term relevance. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Munasinghe, P. Sumudu; Madden, Megan E. Elwood; Madden, Andrew S. Elwood] Univ Oklahoma, Sch Geol & Geophys, Norman, OK 73019 USA. [Madden, Andrew S. Elwood] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. RP Madden, ASE (reprint author), Univ Oklahoma, Sch Geol & Geophys, 100 East Boyd St,Suite 710, Norman, OK 73019 USA. EM amadden@ou.edu RI Brooks, Scott/B-9439-2012 OI Brooks, Scott/0000-0002-8437-9788 FU OU VPR; OU Foundation FX We are grateful to George Morgan for EPMA analysis, Lee Krumholz for assistance with the KPA, Matt Kendall, Virginia Priegnitz, and Jordan Williams for lab assistance, and Preston Larson and Greg Strout for electron microscopy support. The authors acknowledge financial support from the OU VPR and OU Foundation. NR 65 TC 2 Z9 2 U1 7 U2 41 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0883-2927 J9 APPL GEOCHEM JI Appl. Geochem. PD JUL PY 2015 VL 58 BP 147 EP 160 DI 10.1016/j.apgeochem.2015.04.008 PG 14 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA CH8KA UT WOS:000354284000013 ER PT J AU Yu, PC Xu, XL Decyk, VK Fiuza, F Vieira, J Tsung, FS Fonseca, RA Lu, W Silva, LO Mori, WB AF Yu, Peicheng Xu, Xinlu Decyk, Viktor K. Fiuza, Frederico Vieira, Jorge Tsung, Frank S. Fonseca, Ricardo A. Lu, Wei Silva, Luis O. Mori, Warren B. TI Elimination of the numerical Cerenkov instability for spectral EM-PIC codes SO COMPUTER PHYSICS COMMUNICATIONS LA English DT Article DE Particle-in-cell; Plasma simulation; Relativistic drifting plasma; Numerical Cerenkov instability; Numerical dispersion relation; Spectral solver ID LORENTZ-BOOSTED FRAME; LASER WAKEFIELD ACCELERATORS; PARTICLE SIMULATION; PLASMA; STABILITY; ALGORITHM; SHOCKS; WAVES AB When using an electromagnetic particle-in-cell (EM-PIC) code to simulate a relativistically drifting plasma, a violent numerical instability known as the numerical Cerenkov instability (NCI) occurs. The NCI is due to the unphysical coupling of electromagnetic waves on a grid to wave-particle resonances, including aliased resonances, i.e., omega + 2 pi mu/Delta t = (k(1) + 2 pi v(1)/Delta x(1))nu(0), where mu and v(1) refer to the time and space aliases and the plasma is drifting relativistically at velocity nu(0) in the (1) over cap -direction. We extend our previous work Xu et al. (2013) by recasting the numerical dispersion relation of a relativistically drifting plasma into a form which shows explicitly how the instability results from the coupling modes which are-purely-transverse electromagnetic (EM) modes-and purely longitudinal modes in-the rest frame of the plasma for each time and space aliasing. The dispersion relation for each mu and v(1) is the product of the dispersion relation of these two modes set equal to a coupling term that vanishes in the continuous limit. The new form of the numerical dispersion relation provides an accurate method of systematically calculating the growth rate and location of the mode in the fundamental Brillouin zone for any Maxwell solver for each mu, and v(1). We then focus on the spectral Maxwell solver and systematically discuss its NCI modes. We show that the second fastest growing NCI mode for the spectral solver corresponds to mu = v(1) = 0, that it has a growth rate approximately one order of magnitude smaller than the fastest growing mu = 0 and v(1) = 1 mode, and that its location in the k space fundamental Brillouin zone is sensitive to the grid size and time step. Based on these studies, strategies to systematically eliminate the NCI modes for a spectral solver are developed. We apply these strategies to both relativistic collisionless shock and LWFA simulations, and demonstrate that high-fidelity multi-dimensional simulations of drifting plasmas can be carried out with a spectral Maxwell solver with no evidence of numerical Cerenkov instability. (C) 2015 Elsevier B.V. All rights reserved. C1 [Yu, Peicheng; Mori, Warren B.] Univ Calif Los Angeles, Dept Elect Engn, Los Angeles, CA 90095 USA. [Xu, Xinlu; Lu, Wei] Tsinghua Univ, Dept Engn Phys, Beijing 100084, Peoples R China. [Decyk, Viktor K.; Tsung, Frank S.; Mori, Warren B.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Fiuza, Frederico] Lawrence Livermore Natl Lab, Livermore, CA USA. [Vieira, Jorge; Fonseca, Ricardo A.; Silva, Luis O.] Univ Lisbon, Inst Super Tecn, GOLP Inst Plasma & Fusao Nucl, P-1699 Lisbon, Portugal. [Fonseca, Ricardo A.] ISCTE Inst Univ Lisboa, P-1649026 Lisbon, Portugal. RP Xu, XL (reprint author), Tsinghua Univ, Dept Engn Phys, Beijing 100084, Peoples R China. EM xuxl10@mails.tsinghua.edu.cn RI Lu, Wei/F-2504-2016; Fonseca, Ricardo/B-7680-2009; OI Fonseca, Ricardo/0000-0001-6342-6226; Yu, Peicheng/0000-0002-2286-3152 FU US DOE [DE-SC0008491, DE-SC0008316, E-FC02-04ER54789, DE-FG02-92ER-40727, DE-NA 0001833]; US National Science Foundation [ACI 1339893]; NSFC, Tsinghua University Initiative Scientific Research Program, thousand young talents program [11175102, 11425521]; FCT (Portugal) [EXPL/FIS-PLA/0834/1012]; European Research Council (ERC-AdG Grant) [267841]; LLNL's Lawrence Fellowship FX This work was supported by US DOE under Grants DE-SC0008491, DE-SC0008316, DE-FC02-04ER54789, DE-FG02-92ER-40727, DE-NA 0001833 by the US National Science Foundation under the Grant ACI 1339893, and by NSFC Grant 11175102, 11425521, Tsinghua University Initiative Scientific Research Program, thousand young talents program, and by FCT (Portugal), grant EXPL/FIS-PLA/0834/1012, and by the European Research Council (ERC-2010-AdG Grant 267841), and by LLNL's Lawrence Fellowship. Simulations were carried out on the UCLA Hoffman2 and Dawson2 Clusters, and on Hopper cluster of the National Energy Research Scientific Computing Center. NR 25 TC 6 Z9 6 U1 1 U2 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0010-4655 EI 1879-2944 J9 COMPUT PHYS COMMUN JI Comput. Phys. Commun. PD JUL PY 2015 VL 192 BP 32 EP 47 DI 10.1016/j.cpc.2015.02.018 PG 16 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA CH6IU UT WOS:000354141100004 ER PT J AU Glaser, J Nguyen, TD Anderson, JA Lui, P Spiga, F Millan, JA Morse, DC Glotzer, SC AF Glaser, Jens Trung Dac Nguyen Anderson, Joshua A. Lui, Pak Spiga, Filippo Millan, Jaime A. Morse, David C. Glotzer, Sharon C. TI Strong scaling of general-purpose molecular dynamics simulations on GPUs SO COMPUTER PHYSICS COMMUNICATIONS LA English DT Article DE Multi-GPU; Molecular dynamics; MPI/CUDA; Strong scaling; Weak scaling; Domain decomposition; LAMMPS ID ALGORITHMS; EFFICIENT; CLUSTERS; RDMA; MPI AB We describe a highly optimized implementation of MPI domain decomposition in a GPU-enabled, general-purpose molecular dynamics code, HOOMD-blue (Anderson and Glotzer, 2013). Our approach is inspired by a traditional CPU-based code, LAMMPS (Plimpton, 1995), but is implemented within a code that was designed for execution on GPUs from the start (Anderson et al., 2008). The software supports short-ranged pair force and bond force fields and achieves optimal GPU performance using an autotuning algorithm. We are able to demonstrate equivalent or superior scaling on up to 3375 GPUs in Lennard-Jones and dissipative particle dynamics (DPD) simulations of up to 108 million particles. GPUDirect RDMA capabilities in recent GPU generations provide better performance in full double precision calculations. For a representative polymer physics application, HOOMD-blue 1.0 provides an effective GPU vs. CPU node speed-up of 12.5x. (C) 2015 Elsevier B.V. All rights reserved. C1 [Glaser, Jens; Anderson, Joshua A.; Glotzer, Sharon C.] Univ Michigan, Dept Chem Engn, Ann Arbor, MI 48109 USA. [Millan, Jaime A.; Glotzer, Sharon C.] Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA. [Trung Dac Nguyen] Oak Ridge Natl Lab, Natl Ctr Computat Sci, Oak Ridge, TN 37831 USA. [Lui, Pak] Mellanox Technol Inc, Sunnyvale, CA 94085 USA. [Spiga, Filippo] Univ Cambridge, High Performance Comp Serv, Cambridge CB2 1RX, England. [Morse, David C.] Dept Chem Engn & Mat Sci, Minneapolis, MN 55455 USA. RP Glotzer, SC (reprint author), Univ Michigan, Dept Mat Sci & Engn, 2300 Hayward St, Ann Arbor, MI 48109 USA. EM sglotzer@umich.edu RI Glaser, Jens/J-3014-2014; Morse, David/A-2835-2008; Nguyen, Trung/H-7008-2012; OI Glaser, Jens/0000-0003-1852-3849; Nguyen, Trung/0000-0002-5076-264X; Spiga, Filippo/0000-0003-1448-5304 FU DOD/ASD (RE) [N00244-09-1-0062]; DFG [GL733/1-1]; National Science Foundation, Division of Materials Research [DMR 1409620, DMR 0907338]; Simons Foundation; Office of Science of the US Department of Energy [DE-AC05-00OR22725]; National Science Foundation [ACI 1238993]; state of Illinois; NVIDIA FX This material is based upon work supported by the DOD/ASD (R&E) under Award No. N00244-09-1-0062 (JG, JAA, JAM, SCG). JG acknowledges support by DFG grant GL733/1-1. We also acknowledge support by the National Science Foundation, Division of Materials Research, award DMR 1409620 (JAA and SCG), and award DMR 0907338 (JG and DCM). This work was partially supported by a Simons Investigator award from the Simons Foundation to Sharon Glotzer (SCG, JG). This research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of the US Department of Energy under Contract No. DE-AC05-00OR22725. This research is part of the Blue Waters sustained-petascale computing project, which is supported by the National Science Foundation (award number ACI 1238993) and the state of Illinois. Blue Waters is a joint effort of the University of Illinois at Urbana-Champaign and its National Center for Supercomputing Applications. We thank the University of Cambridge for providing access to their Wilkes cluster. Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the DOD/ASD(R&E). The Glotzer Group at the University of Michigan is a CUDA Research Center. Hardware support by NVIDIA is gratefully acknowledged. NR 50 TC 50 Z9 50 U1 15 U2 51 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0010-4655 EI 1879-2944 J9 COMPUT PHYS COMMUN JI Comput. Phys. Commun. PD JUL PY 2015 VL 192 BP 97 EP 107 DI 10.1016/j.cpc.2015.02.028 PG 11 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA CH6IU UT WOS:000354141100010 ER PT J AU Roehm, D Pavel, RS Barros, K Rouet-Leduc, B McPherson, AL Germann, TC Junghans, C AF Roehm, Dominic Pavel, Robert S. Barros, Kipton Rouet-Leduc, Bertrand McPherson, Allen L. Germann, Timothy C. Junghans, Christoph TI Distributed Database Kriging for Adaptive Sampling (D(2)KAS) SO COMPUTER PHYSICS COMMUNICATIONS LA English DT Article DE Adaptive sampling; Heterogeneous Multiscale Methods; Elastodynamics; Cloud database; Kriging ID HYPERBOLIC CONSERVATION-LAWS; NONOSCILLATORY CENTRAL SCHEMES; ALGORITHMS; SIMULATION; DYNAMICS AB We present an adaptive sampling method supplemented by a distributed database and a prediction method for multiscale simulations using the Heterogeneous Multiscale Method. A finite-volume scheme integrates the macro-scale conservation laws for elastodynamics, which are closed by momentum and energy fluxes evaluated at the micro-scale. In the original approach, molecular dynamics (MD) simulations are launched for every macro-scale volume element. Our adaptive sampling scheme replaces a large fraction of costly micro-scale MD simulations with fast table lookup and prediction. The cloud database Redis provides the plain table lookup, and with locality aware hashing we gather input data for our prediction scheme. For the latter we use kriging, which estimates an unknown value and its uncertainty (error) at a specific location in parameter space by using weighted averages of the neighboring points. We find that our adaptive scheme significantly improves simulation performance by a factor of 2.5-25, while retaining high accuracy for various choices of the algorithm parameters. (C) 2015 Elsevier B.V. All rights reserved. C1 [Roehm, Dominic] Univ Stuttgart, Inst Computat Phys, D-70569 Stuttgart, Germany. [Pavel, Robert S.] Univ Delaware, Dept Elect & Comp Engn, Newark, DE 19716 USA. [Roehm, Dominic; Barros, Kipton; Rouet-Leduc, Bertrand; Germann, Timothy C.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Rouet-Leduc, Bertrand] Univ Cambridge, Dept Mat Sci & Met, Cambridge CB3, England. [Pavel, Robert S.; McPherson, Allen L.; Junghans, Christoph] Los Alamos Natl Lab, Comp & Computat Sci Div, Los Alamos, NM 87545 USA. RP Roehm, D (reprint author), Univ Stuttgart, Inst Computat Phys, D-70569 Stuttgart, Germany. EM dominic.roehm@icp.uni-stuttgart.de RI Junghans, Christoph/G-4238-2010; OI Junghans, Christoph/0000-0003-0925-1458; Germann, Timothy/0000-0002-6813-238X; Barros, Kipton/0000-0002-1333-5972 FU Los Alamos Information Science & Technology Center (IS&T) Co-Design Summer School; US Department of Energy (DOE), Office of Advanced Scientific Computing Research (ASCR) through the Exascale Co-Design Center for Materials in Extreme Environments (ExMatEx); Center for Nonlinear Studies (CNLS); National Nuclear Security Administration of the US Department of Energy [DE-AC52-06NA25396] FX We thank E. Venmugil, A. Y. Rivera and E. Cieren for fruitful discussions at the beginning of this project as well as J. Mohd-Yusof for support with the CoMD code. We further thank Phil Miller for his support with the Charm++ version of the code. This work was supported by the Los Alamos Information Science & Technology Center (IS&T) Co-Design Summer School, the US Department of Energy (DOE), Office of Advanced Scientific Computing Research (ASCR) through the Exascale Co-Design Center for Materials in Extreme Environments (ExMatEx), and the Center for Nonlinear Studies (CNLS). Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the US Department of Energy under contract DE-AC52-06NA25396. Simulations were performed on the CCS-7 cluster Darwin. Assigned: LA-UR-14-27213. NR 42 TC 2 Z9 2 U1 2 U2 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0010-4655 EI 1879-2944 J9 COMPUT PHYS COMMUN JI Comput. Phys. Commun. PD JUL PY 2015 VL 192 BP 138 EP 147 DI 10.1016/j.cpc.2015.03.006 PG 10 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA CH6IU UT WOS:000354141100015 ER PT J AU Januszewski, M Ptok, A Crivelli, D Gardas, B AF Januszewski, Michal Ptok, Andrzej Crivelli, Dawid Gardas, Bartlomiej TI GPU-based acceleration of free energy calculations in solid state physics SO COMPUTER PHYSICS COMMUNICATIONS LA English DT Article DE FFLO; Pnictides; NVIDIA CUDA; PGI CUDA Fortran; Superconductivity ID IRON-BASED SUPERCONDUCTORS; S-WAVE SUPERCONDUCTORS; UNCONVENTIONAL SUPERCONDUCTIVITY; PROCESSING UNITS; MONTE-CARLO; MODEL; PNICTIDES; SYSTEMS AB Obtaining a thermodynamically accurate phase diagram through numerical calculations is a computationally expensive problem that is crucially important to understanding the complex phenomena of solid state physics, such as superconductivity. In this work we show how this type of analysis can be significantly accelerated through the use of modern GPUs. We illustrate this with a concrete example of free energy calculation in multi-band iron-based superconductors, known to exhibit a superconducting state with oscillating order parameter (OP). Our approach can also be used for classical BCS-type superconductors. With a customized algorithm and compiler tuning we are able to achieve a 19 x speedup compared to the CPU (119 x compared to a single CPU core), reducing calculation time from minutes to mere seconds, enabling the analysis of larger systems and the elimination of finite size effects. Program summary Program title: Free_Energy Catalogue identifier: AEVX_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEVX_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU Lesser General Public License, version 3 No. of lines in distributed program, including test data, etc.: 786 No. of bytes in distributed program, including test data, etc.: 6304 Distribution format: tar.gz Programming language: Fortran, CUDA C. Computer: Any with a CUDA-compliant GPU. Operating system: No limits (tested on Linux). RAM: Typically tens of megabytes. Classification: 7, 6.5. Nature of problem: GPU-accelerated free energy calculations in multi-band iron-based superconductor models. Solution method: Parallel parameter space search for a global minimum of free energy. Unusual features: The same core algorithm is implemented in Fortran with OpenMP and OpenACC compiler annotations, as well as in CUDA C. The original Fortran implementation targets the CPU architecture, while the CUDA C version is hand-optimized for modern GPUs. Running time: Problem-dependent, up to several seconds for a single value of momentum and a linear lattice size on the order of 10(3) (C) 2015 Elsevier B.V. All rights reserved. C1 [Januszewski, Michal; Ptok, Andrzej; Crivelli, Dawid; Gardas, Bartlomiej] Univ Silesia, Inst Phys, PL-40007 Katowice, Poland. [Januszewski, Michal] Univ Silesia, Silesian Ctr Educ & Interdisciplinary Res, PL-41500 Chorzow, Poland. [Gardas, Bartlomiej] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Januszewski, M (reprint author), Univ Silesia, Inst Phys, PL-40007 Katowice, Poland. EM michalj@gmail.com; aptok@mmj.pl RI Ptok, Andrzej/F-1792-2013 OI Ptok, Andrzej/0000-0002-5566-2656 FU Forszt Ph.D. fellowship; European Social Fund; NCN project [DEC-2011/01/N/ST3/02473] FX D.C. is supported by the Forszt Ph.D. fellowship, co-funded by the European Social Fund. B.G. is supported by the NCN project DEC-2011/01/N/ST3/02473. The authors would like to thank NVIDIA for providing hardware resources for development and benchmarking. NR 77 TC 7 Z9 7 U1 1 U2 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0010-4655 EI 1879-2944 J9 COMPUT PHYS COMMUN JI Comput. Phys. Commun. PD JUL PY 2015 VL 192 BP 220 EP 227 DI 10.1016/j.cpc.2015.02.012 PG 8 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA CH6IU UT WOS:000354141100021 ER PT J AU Fleharty, ME van Swol, F Petsev, DN AF Fleharty, Mark E. van Swol, Frank Petsev, Dimiter N. TI Charge regulation at semiconductor-electrolyte interfaces SO JOURNAL OF COLLOID AND INTERFACE SCIENCE LA English DT Article DE Semiconductor colloids; Particle interactions; Electric double layer; Charge regulation; Boltzmann distribution; Fermi-Dirac distribution ID COLLOIDAL SILICON NANOCRYSTALS; NANOWIRE NANOSENSORS; ELECTRICAL DETECTION; SURFACE LIGANDS; PHOSPHORUS; ENERGY; MODEL AB The interface between a semiconductor material and an electrolyte solution has interesting and complex electrostatic properties. Its behavior will depend on the density of mobile charge carriers that are present in both phases as well as on the surface chemistry at the interface through local charge regulation. The latter is driven by chemical equilibria involving the immobile surface groups and the potential determining ions in the electrolyte solution. All these lead to an electrostatic potential distribution that propagate such that the electrolyte and the semiconductor are dependent on each other. Hence, any variation in the charge density in one phase will lead to a response in the other. This has significant implications on the physical properties of single semiconductor-electrolyte interfaces and on the electrostatic interactions between semiconductor particles suspended in electrolyte solutions. The present paper expands on our previous publication (Fleharty et al., 2014) and offers new results on the electrostatics of single semiconductor interfaces as well as on the interaction of charged semiconductor colloids suspended in electrolyte solution. (C) 2014 Elsevier Inc. All rights reserved. C1 [Fleharty, Mark E.; van Swol, Frank; Petsev, Dimiter N.] Univ New Mexico, Dept Chem & Biol Engn, Albuquerque, NM 87131 USA. [van Swol, Frank] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Petsev, DN (reprint author), Univ New Mexico, Dept Chem & Biol Engn, Albuquerque, NM 87131 USA. FU NSF [CBET 0844645]; United States Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering; U.S. Department of Energys National Nuclear Security Administration [DE-AC04-94AL85000]; UNM Graduate Excellence Fellowship; GAANN [P200A090028]; Charlotte and William Kraft Graduate Fellowship FX We thank Dr. James E. Miller for reading the manuscript and making many useful comments and suggestions. This research supported by NSF (CBET 0844645) and the United States Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energys National Nuclear Security Administration under Contract DE-AC04-94AL85000.; Mark Fleharty was also supported by the UNM Graduate Excellence Fellowship, GAANN (P200A090028), and the Charlotte and William Kraft Graduate Fellowship. We are also thankful to the UNM Center for Advanced Research Computing for computational resources used in this research. NR 32 TC 1 Z9 1 U1 2 U2 21 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9797 EI 1095-7103 J9 J COLLOID INTERF SCI JI J. Colloid Interface Sci. PD JUL 1 PY 2015 VL 449 SI SI BP 409 EP 415 DI 10.1016/j.jcis.2014.12.058 PG 7 WC Chemistry, Physical SC Chemistry GA CH2IG UT WOS:000353848300050 PM 25595623 ER PT J AU Brown-Shaklee, HJ Sharma, PA Ihlefeld, JF AF Brown-Shaklee, Harlan J. Sharma, Peter A. Ihlefeld, Jon F. TI Instrument for stable high temperature Seebeck coefficient and resistivity measurements under controlled oxygen partial pressure SO JOURNAL OF MATERIALS SCIENCE LA English DT Article ID ELECTRICAL-PROPERTIES; THERMOELECTRIC-POWER; DEFECT CHEMISTRY; CERAMICS; TIO2 AB The transport properties of ceramic materials strongly depend on oxygen activity, which is tuned by changing the partial oxygen pressure (pO(2)) prior to and during measurement. Within, we describe an instrument for highly stable measurements of Seebeck coefficient and electrical resistivity at temperatures up to 1300 K with controlled oxygen partial pressure. An all platinum construction is used to avoid potential materials instabilities that can cause measurement drift. Two independent heaters are employed to establish a small temperature gradient for Seebeck measurements, while keeping the average temperature constant and avoiding errors associated with pO(2)-induced drifts in thermocouple readings. Oxygen equilibrium is monitored using both an O-2 sensor and the transient behavior of the resistance as a proxy. A pO(2) range of 10(-25)-10(0) atm can be established with appropriate gas mixtures. Seebeck measurements were calibrated against a high purity platinum wire, Pt/Pt-Rh thermocouple wire, and a Bi2Te3 Seebeck coefficient Standard Reference Material. To demonstrate the utility of this instrument for oxide materials we present measurements as a function of pO(2) on a 1 % Nb-doped SrTiO3 single crystal, and show systematic changes in properties consistent with oxygen vacancy defect chemistry. An approximately 11 % increase in power factor over a pO(2) range of 10(-19)-10(-8) atm at 973 K for the donor-doped single crystals is observed. C1 [Brown-Shaklee, Harlan J.; Ihlefeld, Jon F.] Sandia Natl Labs, Elect Opt & Nano Mat Dept, Albuquerque, NM 87185 USA. [Sharma, Peter A.] Sandia Natl Labs, Quantum Phenomena Dept, Albuquerque, NM 87185 USA. RP Ihlefeld, JF (reprint author), Sandia Natl Labs, Elect Opt & Nano Mat Dept, POB 5800, Albuquerque, NM 87185 USA. EM hjbrown@sandia.gov; pasharm@sandia.gov; jihlefe@sandia.gov FU Laboratory Directed Research and Development program at Sandia National Laboratories; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The authors would like to acknowledge Kathy Wilkerson for aiding in the preparation of schematics of the measurement system and R.H.T. Wilke for his critical review of this manuscript. This work was funded by the Laboratory Directed Research and Development program at Sandia National Laboratories. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 16 TC 0 Z9 0 U1 1 U2 34 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-2461 EI 1573-4803 J9 J MATER SCI JI J. Mater. Sci. PD JUL PY 2015 VL 50 IS 14 BP 5005 EP 5013 DI 10.1007/s10853-015-9049-2 PG 9 WC Materials Science, Multidisciplinary SC Materials Science GA CH7IM UT WOS:000354209400019 ER PT J AU Zhang, C Li, N Wang, WZ Binienda, WK Fang, HB AF Zhang, Chao Li, Ning Wang, Wenzhi Binienda, Wieslaw K. Fang, Hongbing TI Progressive damage simulation of triaxially braided composite using a 3D meso-scale finite element model SO COMPOSITE STRUCTURES LA English DT Article DE Progressive damage; Textile composite; Finite element model; Delamination; Free-edge effect ID POLYMER-MATRIX COMPOSITE; COHESIVE-ZONE MODEL; FIBER-COMPOSITES; FAILURE ANALYSIS; FRACTURE; WOVEN; PREDICTION; TENSION; IMPACT; JOINTS AB This article proposes a fully three-dimensional finite element model, developed at the meso-scale level, to predict the progressive damage behavior of a single-layer triaxially braided composite subjected to tensile loading conditions. An anisotropic damage model is established by Murakami-Ohno damage theory to predict damage initiation and progression in the fiber tows. A traction-separation law has been applied to predict theoretically the progressive damage of fiber tow interfaces. The proposed model correlates well with experiment on both global stress-strain responses and local strain distributions. According to the damage contours at different global strain levels, the damage development of fiber tows and interlaminar delamination damage of interface are obtained, explicitly analyzed and correlated with experimental observations. The comparison of model prediction and experimental observations indicate that the model can accurately simulate the damage development of this composite material, i.e. fiber bundle splitting, interaction of free-edge effect and delamination, and final failure of the specimen. This paper also discusses the role of material properties/parameters on the global responses through numerical parameter studies. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Zhang, Chao; Li, Ning; Fang, Hongbing] Univ N Carolina, Dept Mech Engn & Engn Sci, Charlotte, NC 28223 USA. [Wang, Wenzhi] Northwestern Polytech Univ, Sch Aeronaut, Xian 710072, Peoples R China. [Binienda, Wieslaw K.] Univ Akron, Dept Civil Engn, Akron, OH 44325 USA. RP Zhang, C (reprint author), Natl Renewable Energy Lab, Computat Sci Ctr, 15013 Denver West Pkwy, Golden, CO 80228 USA. EM Chao.Zhang@nrel.gov RI Zhang, Chao/H-3397-2013 NR 42 TC 8 Z9 9 U1 7 U2 41 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0263-8223 EI 1879-1085 J9 COMPOS STRUCT JI Compos. Struct. PD JUL PY 2015 VL 125 BP 104 EP 116 DI 10.1016/j.compstruct.2015.01.034 PG 13 WC Materials Science, Composites SC Materials Science GA CG3JX UT WOS:000353177600013 ER PT J AU Li, XY Deng, ZD Martinez, JJ Fu, T Titzler, PS Hughes, JS Weiland, MA Brown, RS Trumbo, BA Ahmann, ML Renholds, JF AF Li, Xinya Deng, Zhiqun D. Martinez, Jayson J. Fu, Tao Titzler, P. Scott Hughes, James S. Weiland, Mark A. Brown, Richard S. Trumbo, Bradly A. Ahmann, Martin L. Renholds, Jon F. TI Three-dimensional tracking of juvenile salmon at a mid-reach location between two dams SO FISHERIES RESEARCH LA English DT Article DE Acoustic telemetry; 3-D tracking; Juvenile salmon; Mid-reach reservoir ID ACOUSTIC TELEMETRY SYSTEM; POSITION ACCURACY; LOCALIZATION; PASSAGE; FISH; INSTRUMENTATION; DESIGN; RIVERS; TAGS AB Evaluating fish behavior and migration in response to environmental changes is a fundamental component of fisheries research and recovery of freshwater ecosystems. While spatial distribution and behavior of fishes has been well studied around hydropower facilities, little research has been conducted at a mid-reach location between two dams. The Juvenile Salmon Acoustic Telemetry System (JSATS) cabled receiver system was developed and employed as a reference sensor network for detecting and tracking juvenile salmon in the Columbia River Basin. To supplement acquisition of detection and three-dimensional (3-D) tracking data to estimate survival and fish behavior in the forebays of Little Goose and Lower Monumental dams on the Snake River in eastern Washington State, a mid-reach location was needed to investigate the spatial distribution of migrating juvenile salmon in open-water conditions between the two dams. Lyons Ferry Bridge on State Route 261 at the confluence of the Snake and Palouse Rivers was chosen as the mid-reach location. A JSATS-cabled receiver system configuration was successfully designed and deployed from the bridge's pier structure. Theoretical analysis confirmed the functionality and precision of the deployment design. Validation tests demonstrated sub-meter accuracy of 3-D tracking up to a horizontal distance of 50 m upstream and downstream from the Lyons Ferry Bridge piers. Detection and tracking probabilities of the LFB cabled array were estimated to be 99.98% from field application. This research provided a detailed description of acoustic telemetry system deployment and 3-D tracking as guidance for better understanding of fish migration behavior as they pass through dams and continue downstream through the river between dams. (C) 2015 Elsevier B.V. All rights reserved. C1 [Li, Xinya; Deng, Zhiqun D.; Martinez, Jayson J.; Fu, Tao] Pacific NW Natl Lab, Hydrol Grp, Richland, WA 99352 USA. [Titzler, P. Scott; Hughes, James S.; Weiland, Mark A.; Brown, Richard S.] Pacific NW Natl Lab, Ecol Grp, Richland, WA 99352 USA. [Trumbo, Bradly A.; Ahmann, Martin L.; Renholds, Jon F.] US Army Corps Engineers, Walla Walla, WA 99362 USA. RP Deng, ZD (reprint author), Pacific NW Natl Lab, Hydrol Grp, 3320 Innovat Blvd,POB 999, Richland, WA 99352 USA. EM zhiqun.deng@pnnl.gov RI Deng, Daniel/A-9536-2011 OI Deng, Daniel/0000-0002-8300-8766 FU U.S. Army Corps of Engineers (USACE) Walla Walla District FX This study was funded by the U.S. Army Corps of Engineers (USACE) Walla Walla District and conducted at Pacific Northwest National Laboratory (PNNL), which is operated by Battelle for the U.S. Department of Energy. We greatly appreciate the assistance of USACE staff members including Derek Fryer, Eric Hockersmith, Steve Juhnke, Marvin Shutters, and Tim Wik. We are also grateful to many staff of PNNL, Pacific States Marine Fisheries Commission, and the University of Washington for their technical help and field support. NR 25 TC 3 Z9 3 U1 11 U2 40 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0165-7836 EI 1872-6763 J9 FISH RES JI Fish Res. PD JUL PY 2015 VL 167 BP 216 EP 224 DI 10.1016/j.fishres.2015.01.018 PG 9 WC Fisheries SC Fisheries GA CH0VO UT WOS:000353740700025 ER PT J AU Moore, AS Guymer, TM Morton, J Williams, B Kline, JL Bazin, N Bentley, C Allan, S Brent, K Comley, AJ Flippo, K Cowan, J Taccetti, JM Mussack-Tamashiro, K Schmidt, DW Hamilton, CE Obrey, K Lanier, NE Workman, JB Stevenson, RM AF Moore, Alastair S. Guymer, Thomas M. Morton, John Williams, Benjamin Kline, John L. Bazin, Nicholas Bentley, Christopher Allan, Shelly Brent, Katie Comley, Andrew J. Flippo, Kirk Cowan, Joseph Taccetti, J. Martin Mussack-Tamashiro, Katie Schmidt, Derek W. Hamilton, Christopher E. Obrey, Kimberly Lanier, Nicholas E. Workman, Jonathan B. Stevenson, R. Mark TI Characterization of supersonic radiation diffusion waves SO JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER LA English DT Article DE Radiative transfer; Diffusion; Plasmas; Shock waves; Experiment; Supersonic ID DENSITY FOAM TARGETS; HYDRODYNAMICS; DRIVEN; STABILITY; TRANSPORT; IGNITION; FUSION; SHOCK AB Supersonic and diffusive radiation flow is an important test problem for the radiative transfer models used in radiation-hydrodynamics computer codes owing to solutions being accessible via analytic and numeric methods. We present experimental results with which we compare these solutions by studying supersonic and diffusive flow in the laboratory. We present results of higher-accuracy experiments than previously possible studying radiation flow through up to 7 high-temperature mean free paths of low-density, chlorine-doped polystyrene foam and silicon dioxide aerogel contained by an Au tube. Measurements of the heat front position and absolute measurements of the x-ray emission arrival at the end of the tube are used to test numerical and analytical models. We find excellent absolute agreement with simulations provided that the opacity and the equation of state are adjusted within expected uncertainties; analytical models provide a good phenomenological match to measurements but are not in quantitative agreement due to their limited scope. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Moore, Alastair S.; Guymer, Thomas M.; Morton, John; Williams, Benjamin; Bazin, Nicholas; Bentley, Christopher; Allan, Shelly; Brent, Katie; Comley, Andrew J.; Stevenson, R. Mark] AWE Aldermaston, Reading RG7 4PR, Berks, England. [Kline, John L.; Flippo, Kirk; Cowan, Joseph; Taccetti, J. Martin; Mussack-Tamashiro, Katie; Schmidt, Derek W.; Hamilton, Christopher E.; Obrey, Kimberly; Lanier, Nicholas E.; Workman, Jonathan B.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Moore, AS (reprint author), Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94551 USA. EM alastair.moore@physics.org RI Flippo, Kirk/C-6872-2009; OI Flippo, Kirk/0000-0002-4752-5141; Hamilton, Christopher/0000-0002-1605-5992 FU UK Ministry of Defence; US Department of Energy [DE-AC52-006NA25396, DE-AC52-07NA273444] FX We are grateful to the dedication of the NIF operation team. This work was supported by UK Ministry of Defence and performed under the auspices of the US Department of Energy by Los Alamos National Laboratory under Contract DE-AC52-006NA25396 and Lawrence Livermore National Laboratory under Contract DE-AC52-07NA273444. British Crown Copyright (C)2015. NR 38 TC 5 Z9 5 U1 2 U2 20 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-4073 EI 1879-1352 J9 J QUANT SPECTROSC RA JI J. Quant. Spectrosc. Radiat. Transf. PD JUL PY 2015 VL 159 BP 19 EP 28 DI 10.1016/j.jqsrt.2015.02.020 PG 10 WC Optics; Spectroscopy SC Optics; Spectroscopy GA CH2LZ UT WOS:000353858000003 ER PT J AU Hernandez, L Covington, AM Hernandez, EM Antillon, A Morales-Mori, A Chartkunchand, K Aguilar, A Hinojosa, G AF Hernandez, L. Covington, A. M. Hernandez, E. M. Antillon, A. Morales-Mori, A. Chartkunchand, Kiattichart Aguilar, A. Hinojosa, G. TI Single photoionization of aluminum-like P2+ and magnesium-like P3+ SO JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER LA English DT Article DE Photoionization of phosphorus ions; Absorption lines; VUV spectroscopy; Rydberg states ID HIGH-RESOLUTION; OPACITY CALCULATIONS; CROSS-SECTIONS; ATOMIC DATA; IONS; PHOSPHORUS; IONIZATION AB Absolute single-photoionization cross sections for aluminum-like P2+ have been measured from 26.5 to 66.5 eV using photoion yield spectroscopy. In addition, absolute cross section measurements for the single-photoionization of magnesium-like P3+ have been measured from 43 to 60 eV. For both ions, the measured spectra are dominated by Rydberg series resonances superimposed on a non-resonant direct photoionization cross section. Analyses of these data have helped identify the initial and final states of the Rydberg series observed in each photoion. In addition, quantum defects are derived for each series. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Hernandez, L.; Hernandez, E. M.; Antillon, A.; Morales-Mori, A.; Hinojosa, G.] Univ Nacl Autonoma Mexico, Inst Ciencias Fis, Cuernavaca 62251, Morelos, Mexico. [Covington, A. M.; Chartkunchand, Kiattichart] Univ Nevada, Dept Phys, Reno, NV 89557 USA. [Aguilar, A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Hernandez, E. M.] Univ Autonoma Estado Morelos, Fac Ciencias, Cuernavaca 62209, Morelos, Mexico. RP Hinojosa, G (reprint author), Univ Nacl Autonoma Mexico, Inst Ciencias Fis, Apartado Postal 48-3, Cuernavaca 62251, Morelos, Mexico. EM hinojosa@fis.unam.mx FU Office of Science, Office of Basic Energy Sciences, of the U.S. DOE [DE-AC02-05CH11231]; US DOE NNSA [DE-FC52-06NA27616, UNAM-PAPIIT IN106813] FX US National Science Foundation, The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. DOE Contract DE-AC02-05CH11231. US DOE NNSA through Cooperative Agreement DE-FC52-06NA27616, UNAM-PAPIIT IN106813. NR 28 TC 1 Z9 1 U1 0 U2 1 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-4073 EI 1879-1352 J9 J QUANT SPECTROSC RA JI J. Quant. Spectrosc. Radiat. Transf. PD JUL PY 2015 VL 159 BP 80 EP 86 DI 10.1016/j.jqsrt.2015.03.009 PG 7 WC Optics; Spectroscopy SC Optics; Spectroscopy GA CH2LZ UT WOS:000353858000009 ER PT J AU Ma, BH Liu, SS Hu, ZQ Narayanan, M Balachandran, U AF Ma, Beihai Liu, Shanshan Hu, Zhongqiang Narayanan, Manoj Balachandran, Uthamalingam TI Effect of manganese oxide insertion layer on the dielectric and ferroelectric properties of Pb0.92La0.08Zr0.52Ti0.48O3 films grown by a sol-gel process SO MATERIALS RESEARCH BULLETIN LA English DT Article DE Thin films; Sol-gel chemistry; X-ray diffraction; Dielectric properties; Rayleigh law ID LEAD-ZIRCONATE-TITANATE; THIN-FILMS; CERAMICS AB We incorporated a approximate to 5-nm-thick MnOx insertion layer in the middle of a approximate to 1.38-mu m-thick Pb0.92La0.08Zr0.52Ti0.48O3 (PLZT) film grown by a modified sal-gel process and measured the dielectric and ferroelectric properties of PLZT films with and without MnOx insertion layer. By incorporation of the MnOx layer, residual stress was reduced from approximate to 350 MPa to approximate to 125 MPa, dielectric permittivity decreased from approximate to 1300 to approximate to 950, while dielectric loss increased from approximate to 0.04 to approximate to 0.07 as measured at 10 kHz. Also, remanent polarization increased from approximate to 9.1 mu C/cm(2) to approximate to 11.7 mu C/cm(2), coercive field increased from approximate to 28.7 kV/cm to approximate to 40.3 kV/cm, and internal bias field from approximate to 3 kV/cm to approximate to 14 kV/cm. We have observed decreased irreversible Rayleigh coefficient and dielectric nonlinearity on samples with MnOx insertion layer. These changes in properties are attributable to Mn cation doping as acceptors near the MnOx/PLZT interface, which forms oxygen vacancies and defect induced dipoles like 2Mn'(Ti) - V-o(center dot center dot) (or Mn ''(Ti) - V-o(center dot center dot) acting effectively as pinning centers to hinder domain wall movement. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Ma, Beihai; Liu, Shanshan; Hu, Zhongqiang; Narayanan, Manoj; Balachandran, Uthamalingam] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. RP Ma, BH (reprint author), Argonne Natl Lab, Div Energy Syst, 9700 S Cass Ave, Argonne, IL 60439 USA. EM bma@anl.gov RI Ma, Beihai/I-1674-2013; Hu, Zhongqiang/I-2528-2012 OI Ma, Beihai/0000-0003-3557-2773; Hu, Zhongqiang/0000-0002-7534-0427 FU U.S. Department of Energy, Vehicle Technologies Program [DE-AC02-06CH11357] FX This work was funded by the U.S. Department of Energy, Vehicle Technologies Program, under contract DE-AC02-06CH11357. Authors are grateful to Prof. M. Lanagan at the Pennsylvania State University for his fruitful discussion. Authors thank Dr. R. E. Koritala at Argonne National Laboratory for her help with SEM studies. This work benefited from the use of the Electron Microscopy Center for Materials Research at Argonne National Laboratory. NR 23 TC 0 Z9 0 U1 1 U2 18 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0025-5408 EI 1873-4227 J9 MATER RES BULL JI Mater. Res. Bull. PD JUL PY 2015 VL 67 BP 134 EP 139 DI 10.1016/j.materresbull.2015.03.011 PG 6 WC Materials Science, Multidisciplinary SC Materials Science GA CH2JR UT WOS:000353852000017 ER PT J AU Bloczynski, J Huang, XG Zhang, XL Liao, JF AF Bloczynski, John Huang, Xu-Guang Zhang, Xilin Liao, Jinfeng TI Charge-dependent azimuthal correlations from AuAu to UU collisions SO NUCLEAR PHYSICS A LA English DT Article DE Chiral magnetic effect; U plus U collisions; Quark-gluon plasma; Charge-dependent two-particle correlation ID HEAVY-ION COLLISIONS; QUARK-GLUON PLASMA; NUCLEAR COLLISIONS; MAGNETIC-FIELD; QCD; COLLABORATION; PERSPECTIVE; VIOLATION; SEARCH; MATTER AB We study the charge-dependent azimuthal correlations in relativistic heavy ion collisions, as motivated by the search for the Chiral Magnetic Effect (CME) and the investigation of related background contributions. In particular we aim to understand how these correlations induced by various proposed effects evolve from collisions with AuAu system to that with UU system. To do that, we quantify the generation of magnetic field in UU collisions at RHIC energy and its azimuthal correlation with the matter geometry using event-by-event simulations. Taking the experimental data for charge-dependent azimuthal correlations from AuAu collisions and extrapolating to UU with reasonable assumptions, we examine the resulting correlations to be expected in UU collisions and compare them with recent STAR measurements. Based on such analysis we discuss the viability for explaining the data with a combination of the CME-like and flow-induced contributions. (C) 2015 Elsevier B.V. All rights reserved. C1 [Bloczynski, John; Huang, Xu-Guang; Liao, Jinfeng] Indiana Univ, Dept Phys, Bloomington, IN 47408 USA. [Bloczynski, John; Huang, Xu-Guang; Liao, Jinfeng] Indiana Univ, Ctr Explorat Energy & Matter, Bloomington, IN 47408 USA. [Huang, Xu-Guang] Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China. [Huang, Xu-Guang] Fudan Univ, Ctr Field Theory & Particle Phys, Shanghai 200433, Peoples R China. [Zhang, Xilin] Ohio Univ, Inst Nucl & Particle Phys, Athens, OH 45701 USA. [Zhang, Xilin] Ohio Univ, Dept Phys & Astron, Athens, OH 45701 USA. [Liao, Jinfeng] Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. RP Huang, XG (reprint author), Indiana Univ, Dept Phys, 2401 N Milo B Sampson Lane, Bloomington, IN 47408 USA. EM huangxuguang@fudan.edu.cn RI Huang, Xu-Guang/J-4988-2014 OI Huang, Xu-Guang/0000-0001-6293-4843 FU National Science Foundation [PHY-1352368]; RIKEN BNL Research Center; U.S. Department of Energy [DE-FG02-93ER-40756]; Fudan University [EZH1512519, EZH1512600]; Shanghai Natural Science Foundation [14ZR1403000] FX We are grateful to G. Wang for providing data for UU collisions and for helpful communications. We also thank W.T. Deng and A. Tang for useful discussions. J.L. is grateful to V. Koch for some early discussions on the decomposition analysis. The research of J.L. is supported by the National Science Foundation under Grant No. PHY-1352368. J.L. also thanks the RIKEN BNL Research Center for partial support. X.Z. is currently supported by the U.S. Department of Energy under grant DE-FG02-93ER-40756. X.G.H. is currently under the support of Fudan University grants EZH1512519 and EZH1512600 and Shanghai Natural Science Foundation grant 14ZR1403000. NR 68 TC 14 Z9 14 U1 1 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 EI 1873-1554 J9 NUCL PHYS A JI Nucl. Phys. A PD JUL PY 2015 VL 939 BP 85 EP 100 DI 10.1016/j.nuclphysa.2015.03.012 PG 16 WC Physics, Nuclear SC Physics GA CH1BF UT WOS:000353755400007 ER PT J AU Redlinger, M Eggert, R Woodhouse, M AF Redlinger, Michael Eggert, Roderick Woodhouse, Michael TI Evaluating the availability of gallium, indium, and tellurium from recycled photovoltaic modules SO SOLAR ENERGY MATERIALS AND SOLAR CELLS LA English DT Article DE Recycling; Thin-films; Photovoltaic; PV; Solar module; Mineral availability; Tellurium; Indium; Gallium ID CADMIUM; TE; MANAGEMENT; LIQUOR; PRICE AB The use of thin-film copper indium gallium (di)selenide (CIGS) and cadmium-telluride (CdTe) in solar technologies has grown rapidly in recent years, leading to an increased demand for gallium, indium, and tellurium. In the coming years, recycling these elements from end-of-life photovoltaic (PV) modules may be an important part of their overall supply, but little is known about the economic feasibility and the potential quantities available. This article investigates the future role of PV recycling in supplying gallium, indium, and tellurium. The authors evaluate both the quantities available from recycling over the next century and the associated costs for recycling modules and reusing each element in PV manufacturing. The findings indicate that, in terms of technical potential, there may be significant quantities of each element available from recycling CIGS and CdTe modules. The estimated cost of recovering each element from end-of-life PV modules and reusing it in PV manufacturing is higher than current raw mineral costs; however, learning and economies of scale may reduce the reported early estimates of recycling costs. These findings help improve the understanding of recycling's role in enabling higher levels of CIGS and CdTe module production. (C) 2015 Elsevier B.V. All rights reserved. C1 [Redlinger, Michael; Eggert, Roderick] Colorado Sch Mines, Div Econ & Business, Golden, CO 80401 USA. [Woodhouse, Michael] Natl Renewable Energy Lab, Strateg Energy Anal Ctr, Golden, CO 80401 USA. RP Redlinger, M (reprint author), Colorado Sch Mines, Div Econ & Business, 816 15th St, Golden, CO 80401 USA. EM miredlin@mines.edu; reggert@mine.edu; michael.woodhouse@nrel.gov FU National Renewable Energy Laboratory, Office of Energy Efficiency and Renewable Energy [UGA-041025-66] FX This research was supported by the National Renewable Energy Laboratory, Office of Energy Efficiency and Renewable Energy under Agreement no. UGA-0-41025-66. NR 46 TC 5 Z9 5 U1 10 U2 41 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-0248 EI 1879-3398 J9 SOL ENERG MAT SOL C JI Sol. Energy Mater. Sol. Cells PD JUL PY 2015 VL 138 BP 58 EP 71 DI 10.1016/j.solmat.2015.02.027 PG 14 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA CH0YF UT WOS:000353747600009 ER PT J AU Dam, HF Holmes, NP Andersen, TR Larsen-Olsen, TT Barr, M Kilcoyne, ALD Zhou, XJ Dastoor, PC Krebs, FC Belcher, WJ AF Dam, Henrik F. Holmes, Natalie P. Andersen, Thomas R. Larsen-Olsen, Thue T. Barr, Matthew Kilcoyne, A. L. David Zhou, Xiaojing Dastoor, Paul C. Krebs, Frederik C. Belcher, Warwick J. TI The effect of mesomorphology upon the performance of nanoparticulate organic photovoltaic devices SO SOLAR ENERGY MATERIALS AND SOLAR CELLS LA English DT Article DE Nanoparticle; Morphology; Organic photovoltaic ID POLYMER SOLAR-CELLS; WATER; MORPHOLOGY; NANOMORPHOLOGY; P3HT/PCBM AB Scanning transmission X-ray microscopy (STXM) compositional mapping has been used to probe the mesomorphology of nanoparticles (NPs) synthesized from two very different polymer:fullerene blends: poly(3-hexylthiophene) (P3HT): phenyl-C61-butyric acid methyl ester (PCBM) and poly[4,8-bis(2-ethylhexyloxy)benzo(1,2-b:4,5-b']dithiophene-alt-5, 6-bis(octyloxy)-4,7-di(thiophen-2-yl)(2,1,3-benzothiadiazole)-5,5'-diyl] (PSBTBT): PCBM. The STXM data shows that both blends form core shell NP structures with similar shell compositions, but with different polymer:fullerene ratios in the core regions. P3HT:PCBM and PSBTBT:PCBM NP organic photovoltaic (OPV) devices have been fabricated and exhibit similar device efficiencies, despite the PSBTBT being a much higher performing low band gap material. By comparing the measured NP shell and core compositions with the optimized bulk hetero-junction (BHJ) compositions, we show that the relatively higher performance of the P3HT:PCBM NP device arises from the fact that its shell composition is much closer to the optimal BHJ value than that of the PSBTBT:PCBM NP device. Crown Copyright (C) 2015 Published by Elsevier B.V. All rights reserved. C1 [Dam, Henrik F.; Andersen, Thomas R.; Larsen-Olsen, Thue T.; Krebs, Frederik C.] Tech Univ Denmark, Dept Energy Convers & Storage, DK-4000 Roskilde, Denmark. [Holmes, Natalie P.; Barr, Matthew; Zhou, Xiaojing; Dastoor, Paul C.; Belcher, Warwick J.] Univ Newcastle, Ctr Organ Elect, Callaghan, NSW 2308, Australia. [Kilcoyne, A. L. David] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Belcher, WJ (reprint author), Univ Newcastle, Ctr Organ Elect, Univ Dr, Callaghan, NSW 2308, Australia. EM Warwick.Belcher@newcastle.edu.au RI Larsen-Olsen, Thue/E-1387-2012; Kilcoyne, David/I-1465-2013; OI Larsen-Olsen, Thue/0000-0001-5373-898X; Krebs, Frederik C/0000-0003-1148-4314 FU Danish Strategic Research Council (DSF) [2104-07-0022]; University of Newcastle and the Australian Renewable Energy Agency (ARENA); Danish National Research Foundation; National Natural Science Foundation of China [51011130028]; U.S. Department of Energy [DE-AC02-05CH11231, DE-FG02-98ER45737] FX The Danish Strategic Research Council (DSF 2104-07-0022) is gratefully acknowledged for a PhD scholarship (HD). The University of Newcastle and the Australian Renewable Energy Agency (ARENA) are gratefully acknowledged for PhD scholarships (MB, NH). TA and TL acknowledges support from the Danish National Research Foundation and the National Natural Science Foundation of China (Grant no. 51011130028). The TEM images were collected using the Electron Microscope and X-Ray Unit at the University of Newcastle. This work was performed in part at the Materials node of the Australian National Fabrication Facility. This work has been supported by the US Department of Energy (DE-FG02-98ER45737). The ALS is a national user facility supported by the U.S. Department of Energy under Contract no. DE-AC02-05CH11231. NR 33 TC 5 Z9 5 U1 3 U2 54 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-0248 EI 1879-3398 J9 SOL ENERG MAT SOL C JI Sol. Energy Mater. Sol. Cells PD JUL PY 2015 VL 138 BP 102 EP 108 DI 10.1016/j.solmat.2015.02.028 PG 7 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA CH0YF UT WOS:000353747600014 ER PT J AU Sievers, DA Lischeske, JJ Biddy, MJ Stickel, JJ AF Sievers, David A. Lischeske, James J. Biddy, Mary J. Stickel, Jonathan J. TI A low-cost solid-liquid separation process for enzymatically hydrolyzed corn stover slurries SO BIORESOURCE TECHNOLOGY LA English DT Article DE Flocculation; Solid-liquid separation; Filtration; Biofuels; Enzymatic hydrolysis ID BIOMASS; CONVERSION; GLUCOSE; ETHANOL AB Solid-liquid separation of intermediate process slurries is required in some process configurations for the conversion of lignocellulosic biomass to transportation fuels. Thermochemically pretreated and enzymatically hydrolyzed corn stover slurries have proven difficult to filter due to formation of very low permeability cakes that are rich in lignin. Treatment of two different slurries with polyelectrolyte flocculant was demonstrated to increase mean particle size and filterability. Filtration flux was greatly improved, and thus scaled filter unit capacity was increased approximately 40-fold compared with unflocculated slurry. Although additional costs were accrued using polyelectrolyte, techno-economic analysis revealed that the increase in filter capacity significantly reduced overall production costs. Fuel production cost at 95% sugar recovery was reduced by $1.35 US per gallon gasoline equivalent for dilute- acid pretreated and enzymatically hydrolyzed slurries and $3.40 for slurries produced using an additional alkaline de-acetylation preprocessing step that is even more difficult to natively filter. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Sievers, David A.; Lischeske, James J.; Biddy, Mary J.; Stickel, Jonathan J.] Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO 80401 USA. RP Sievers, DA (reprint author), Natl Renewable Energy Lab, Natl Bioenergy Ctr, 15013 Denver West Pkwy, Golden, CO 80401 USA. EM David.Sievers@nrel.gov FU Bioenergy Technologies Office of EERE, US Department of Energy [EE0005006] FX This work was funded by Award EE0005006 (Cellulosic Biomass Sugars to Advantaged Jet Fuel) from the Bioenergy Technologies Office of EERE, US Department of Energy. This work occurred in partnership with Virent, Inc. We thank Kemira, Inc. for supplying flocculants for this study, and also Jessica Olstad (National Renewable Energy Laboratory), who performed laser diffraction particle size measurements. NR 21 TC 3 Z9 3 U1 1 U2 25 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0960-8524 EI 1873-2976 J9 BIORESOURCE TECHNOL JI Bioresour. Technol. PD JUL PY 2015 VL 187 BP 37 EP 42 DI 10.1016/j.biortech.2015.03.087 PG 6 WC Agricultural Engineering; Biotechnology & Applied Microbiology; Energy & Fuels SC Agriculture; Biotechnology & Applied Microbiology; Energy & Fuels GA CG3PX UT WOS:000353193200006 PM 25836372 ER PT J AU Zou, JD Liu, J Yan, M AF Zou, J. D. Liu, J. Yan, M. TI Crystal structure and magnetic properties of GdSi1.78, Gd(Si0.684Ge0.316)(1.78), GdGe1.57, and GdSn2 compounds SO JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS LA English DT Article DE Rare earth intermetallics; Magnetic properties; Phase transition; Antiferromagnetism; Heat capacity ID RARE-EARTH DISILICIDES; PHASE-TRANSITION; GDSI2; ANTIFERROMAGNETISM; GD-5(SIXGE1-X)(4); GD-5(SI2GE2); SILICIDE; METALS AB Intermetallic compounds of Gd with Si, Ge, and Sri near 1:2 stoichiometry adopt several closely related crystal structures. We find that GdSi1.78 and Gd(Si0.684Ge0.316)(1.78) crystallize in the same GdSi1.4-type orthorhombic structure (space group forma), while GdGe1.57 and GdSn2 adopt alpha-ThSi2-type tetragonal structure (space group I4(1)/amd) and ZrSi2-type orthorhombic structure (space group Cmcm), respectively. All compounds order antiferromagnetically; their Neel temperatures are only weakly affected by the magnetic field of less than 50 kOe. Unusual features are observed including multiple phase transitions and thermomagnetic irreversibilities. (C) 2015 Elsevier B.V. All rights reserved. C1 [Zou, J. D.; Yan, M.] Zhejiang Univ, Sch Mat Sci & Engn, State Key Lab Silicon Mat, Key Lab Novel Mat Informat Technol Zhejiang Prov, Hangzhou 310027, Zhejiang, Peoples R China. [Zou, J. D.; Liu, J.] Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. [Liu, J.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. RP Zou, JD (reprint author), Zhejiang Univ, Sch Mat Sci & Engn, State Key Lab Silicon Mat, Key Lab Novel Mat Informat Technol Zhejiang Prov, Hangzhou 310027, Zhejiang, Peoples R China. EM zoujd@zju.edu.cn; mse_yanmi@zju.edu.cn FU National Natural Science Foundation of China [51471150]; Program for Innovative Research Team in University of Ministry of Education of China [IRT13R54]; U.S. Department of Energy, Office of Basic Energy Science, Division of Materials Sciences and Engineering; U.S. Department of Energy [DE-AC02-07CH11358] FX This work was supported by the National Natural Science Foundation of China (Grant no. 51471150), and Program for Innovative Research Team in University of Ministry of Education of China (IRT13R54). Work at the Ames Laboratory was supported by the U.S. Department of Energy, Office of Basic Energy Science, Division of Materials Sciences and Engineering. The research was performed at the Ames Laboratory operated for the U.S. Department of Energy by Iowa State University under Contract no. DE-AC02-07CH11358. NR 36 TC 4 Z9 4 U1 0 U2 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-8853 EI 1873-4766 J9 J MAGN MAGN MATER JI J. Magn. Magn. Mater. PD JUL 1 PY 2015 VL 385 BP 77 EP 82 DI 10.1016/j.mmm.2015.02.057 PG 6 WC Materials Science, Multidisciplinary; Physics, Condensed Matter SC Materials Science; Physics GA CF3ZY UT WOS:000352489100011 ER PT J AU Ovezmyradov, M Magedov, IV Frolova, LV Chandler, G Garcia, J Bethke, D Shaner, EA Kalugin, NG AF Ovezmyradov, Mekan Magedov, Igor V. Frolova, Liliya V. Chandler, Gary Garcia, Jill Bethke, Donald Shaner, Eric A. Kalugin, Nikolai G. TI Chemical Vapor Deposition of Phosphorous- and Boron-Doped Graphene Using Phenyl-Containing Molecules SO JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY LA English DT Article DE Graphene; Chemical Vapor Deposition; Chemical Doping ID FIELD-EFFECT TRANSISTORS; OXYGEN REDUCTION REACTION; MONOLAYER GRAPHENE; ELECTRONIC-PROPERTIES; RAMAN-SPECTROSCOPY; NITROGEN; NANOSHEETS; GRAPHITE; GROWTH; CARBON AB Simultaneous chemical vapor deposition (CVD) of graphene and "in-situ" phosphorous or boron doping of graphene was accomplished using Triphenylphosphine (TPP) and 4-Methoxyphenylboronic acid (4-MPBA). The TPP and 4-MPBA molecules were sublimated and supplied along with CH4 molecules during graphene growth at atmospheric pressure. The grown graphene samples were characterized using Raman spectroscopy. Phosphorous and boron presence in phosphorous and boron doped graphene was confirmed with Auger electron spectroscopy. The possibility of obtaining phosphorous and boron doped graphene using solid-source molecule precursors via CVD can lead to an easy and rapid production of modified large area graphene. C1 [Ovezmyradov, Mekan; Chandler, Gary; Garcia, Jill; Kalugin, Nikolai G.] New Mexico Inst Min & Technol, Dept Mat Engn, Socorro, NM 87801 USA. [Magedov, Igor V.; Frolova, Liliya V.; Kalugin, Nikolai G.] New Mexico Inst Min & Technol, Dept Chem, Socorro, NM 87801 USA. [Bethke, Donald; Shaner, Eric A.] Ctr Integrated Nanotechnol, Albuquerque, NM 87185 USA. [Bethke, Donald; Shaner, Eric A.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Kalugin, NG (reprint author), New Mexico Inst Min & Technol, Dept Mat Engn, Socorro, NM 87801 USA. FU NSF (ECCS) [0925988]; National Center for Research Resources [5P20RR016480-12]; National Institute of General Medical Sciences from NIH [8 P20 GM103451-12]; DOE Center for Integrated Nanotechnologies user support program [U2008A061, RA2009B066]; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX We acknowledge support from NSF (ECCS #0925988), from the National Center for Research Resources (5P20RR016480-12) and the National Institute of General Medical Sciences (8 P20 GM103451-12) from NIH, and from the DOE Center for Integrated Nanotechnologies user support program (grants #U2008A061 and #RA2009B066). Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 38 TC 3 Z9 3 U1 8 U2 196 PU AMER SCIENTIFIC PUBLISHERS PI VALENCIA PA 26650 THE OLD RD, STE 208, VALENCIA, CA 91381-0751 USA SN 1533-4880 EI 1533-4899 J9 J NANOSCI NANOTECHNO JI J. Nanosci. Nanotechnol. PD JUL PY 2015 VL 15 IS 7 BP 4883 EP 4886 DI 10.1166/jnn.2015.9827 PG 4 WC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA AZ8UF UT WOS:000348489200016 ER PT J AU Akilbekova, D Bratlie, KM AF Akilbekova, Dana Bratlie, Kaitlin M. TI Quantitative Characterization of Collagen in the Fibrotic Capsule Surrounding Implanted Polymeric Microparticles through Second Harmonic Generation Imaging SO PLOS ONE LA English DT Article ID FOREIGN-BODY REACTION; EXTRACELLULAR-MATRIX; SCAR TISSUE; MICROSCOPY; BIOMATERIALS; CELLS; SKIN; BIOCOMPATIBILITY; ORIENTATION; RESPONSES AB The collagenous capsule formed around an implant will ultimately determine the nature of its in vivo fate. To provide a better understanding of how surface modifications can alter the collagen orientation and composition in the fibrotic capsule, we used second harmonic generation (SHG) microscopy to evaluate collagen organization and structure generated in mice subcutaneously injected with chemically functionalized polystyrene particles. SHG is sensitive to the orientation of a molecule, making it a powerful tool for measuring the alignment of collagen fibers. Additionally, SHG arises from the second order susceptibility of the interrogated molecule in response to the electric field. Variation in these tensor components distinguishes different molecular sources of SHG, providing collagen type specificity. Here, we demonstrated the ability of SHG to differentiate collagen type I and type III quantitatively and used this method to examine fibrous capsules of implanted polystyrene particles. Data presented in this work shows a wide range of collagen fiber orientations and collagen compositions in response to surface functionalized polystyrene particles. Dimethylamino functionalized particles were able to form a thin collagenous matrix resembling healthy skin. These findings have the potential to improve the fundamental understanding of how material properties influence collagen organization and composition quantitatively. C1 [Akilbekova, Dana; Bratlie, Kaitlin M.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. [Bratlie, Kaitlin M.] Iowa State Univ, Dept Chem & Biol Engn, Ames, IA 50011 USA. [Bratlie, Kaitlin M.] Ames Natl Lab, Ames, IA 50011 USA. RP Bratlie, KM (reprint author), Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. EM kbratlie@iastate.edu RI Akilbekova, Dana/L-3319-2016 OI Akilbekova, Dana/0000-0003-3694-0355 FU National Science Foundation [CBET 1227867]; Roy J. Carver Charitable Trust [13-4265]; NSF ARI-R2 [CMMI-0963224] FX This work was supported by the National Science Foundation (www.nsf.gov) under grant CBET 1227867 and the Roy J. Carver Charitable Trust (https://www.carvertrust.org/) grant 13-4265. The authors also acknowledge support from NSF ARI-R2 (CMMI-0963224) for funding the renovation of the research laboratories used for these studies. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 49 TC 2 Z9 3 U1 2 U2 13 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD JUN 30 PY 2015 VL 10 IS 6 AR e0130386 DI 10.1371/journal.pone.0130386 PG 17 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CN1BR UT WOS:000358151300013 PM 26125551 ER PT J AU Ma, XD Htoon, H AF Ma, Xuedan Htoon, Han TI Tailoring the photophysical properties of carbon nanotubes by photonic nanostructures SO MODERN PHYSICS LETTERS B LA English DT Review DE Carbon nanotubes; surface plasmons; optical microcavity ID SURFACE-PLASMON POLARITONS; ENHANCED RAMAN-SCATTERING; LIGHT-EMITTING-DIODES; OPTICAL MICROCAVITIES; SPECTRAL DIFFUSION; SOLAR-CELLS; SINGLE; FLUORESCENCE; PHOTOLUMINESCENCE; SPECTROSCOPY AB Single-walled carbon nanotubes (SWCNTs) are nearly ideal one-dimensional systems with potential applications in a wide range of fields. The rich physics of SWCNTs arise from the excitonic nature of their photophysical properties. This review is focused on the results of novel research activities that explore how the photophysical properties of SWCNTs can be altered via their integration with photonic nanostructures including plasmonic structures and photonic microcavities that have resulted in phenomena such as photocurrent enhancement, selection rule breakdown and photoluminescence (PL) modification. C1 [Ma, Xuedan; Htoon, Han] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA. RP Ma, XD (reprint author), Sandia Natl Labs, Ctr Integrated Nanotechnol, POB 5800, Albuquerque, NM 87185 USA. EM xdma2011@lanl.gov; htoon@lanl.gov OI Htoon, Han/0000-0003-3696-2896 FU Center for Integrated Nanotechnologies (CINT), a US Department of Energy, Office of Basic Energy Sciences (OBES) user facility; Los Alamos National Laboratory Directed Research and Development Funds FX This work was conducted, in part, at the Center for Integrated Nanotechnologies (CINT), a US Department of Energy, Office of Basic Energy Sciences (OBES) user facility and supported in part by Los Alamos National Laboratory Directed Research and Development Funds. NR 169 TC 0 Z9 0 U1 6 U2 42 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0217-9849 EI 1793-6640 J9 MOD PHYS LETT B JI Mod. Phys. Lett. B PD JUN 30 PY 2015 VL 29 IS 17 AR 1530004 DI 10.1142/S0217984915300045 PG 20 WC Physics, Applied; Physics, Condensed Matter; Physics, Mathematical SC Physics GA CM2RX UT WOS:000357530900001 ER PT J AU Xu, CZ Liu, Y Yukawa, R Zhang, LX Matsuda, I Miller, T Chiang, TC AF Xu, C. -Z. Liu, Y. Yukawa, R. Zhang, L. -X. Matsuda, I. Miller, T. Chiang, T. -C. TI Photoemission Circular Dichroism and Spin Polarization of the Topological Surface States in Ultrathin Bi2Te3 Films SO PHYSICAL REVIEW LETTERS LA English DT Article ID INSULATORS; BI2SE3; LIMIT AB Circular dichroism (CD) observed by photoemission, being sensitive to the orbital and spin angular momenta of the electronic states, is a powerful probe of the nontrivial surface states of topological insulators, but the experimental results thus far have eluded a comprehensive description. We report a study of Bi2Te3 films with thicknesses ranging from one quintuple layer (two-dimensional limit) to 12 layers (bulk limit) over a wide range of incident photon energy. The data show complex variations in magnitude and sign reversals, which are nevertheless well described by a theoretical calculation including all three photoemission mechanisms: dipole transition, surface photoemission, and spin-orbit coupling. The results establish the nontrivial connection between the spin-orbit texture and CD. C1 [Xu, C. -Z.; Liu, Y.; Zhang, L. -X.; Miller, T.; Chiang, T. -C.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Xu, C. -Z.; Liu, Y.; Zhang, L. -X.; Miller, T.; Chiang, T. -C.] Univ Illinois, Frederick Seitz Mat Res Lab, Urbana, IL 61801 USA. [Liu, Y.] Argonne Natl Lab, Xray Sci Div, Lemont, IL 60439 USA. [Yukawa, R.] Univ Tokyo, Inst Solid State Phys, Kashiwa, Chiba 2778581, Japan. RP Xu, CZ (reprint author), Univ Illinois, Dept Phys, Urbana, IL 61801 USA. RI Xu, Cai-Zhi/P-6597-2016; OI Xu, Cai-Zhi/0000-0002-3746-4795; Liu, Yang/0000-0001-6506-5903 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-FG02-07ER46383]; University of Wisconsin-Madison; NSF [DMR 13-05583] FX This work is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Grant No. DE-FG02-07ER46383 (T.-C.C.). We thank M. Bissen and M. Severson for assistance with beam line operation at the Synchrotron Radiation Center, which was supported by the University of Wisconsin-Madison. T.M. and the beam line operations were partially supported by NSF Grant No. DMR 13-05583. NR 34 TC 3 Z9 3 U1 8 U2 35 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 30 PY 2015 VL 115 IS 1 AR 016801 DI 10.1103/PhysRevLett.115.016801 PG 5 WC Physics, Multidisciplinary SC Physics GA CL6RR UT WOS:000357095400008 PM 26182112 ER PT J AU Negret, A Mihailescu, LC Borcea, C Dessagne, P Guber, KH Kerveno, M Koning, AJ Olacel, A Plompen, AJM Rouki, C Rudolf, G AF Negret, A. Mihailescu, L. C. Borcea, C. Dessagne, Ph. Guber, K. H. Kerveno, M. Koning, A. J. Olacel, A. Plompen, A. J. M. Rouki, C. Rudolf, G. TI Cross section measurements for neutron inelastic scattering and the (n, 2n gamma) reaction on Pb-206 SO PHYSICAL REVIEW C LA English DT Article ID HIGH-RESOLUTION MEASUREMENT; NUCLEAR-DATA EVALUATIONS; ELASTIC-SCATTERING; GAMMA-RAYS; LEVEL DENSITIES; N,2N REACTIONS; OPTICAL-MODEL; LEAD; GELINA; RESONANCES AB Excitation functions for gamma production associated with the neutron inelastic scattering and the (n, 2n) reactions on Pb-206 were measured from threshold up to 18 MeV for about 40 transitions. Two independent measurements were performed using different samples and acquisition systems to check consistency of the results. The neutron flux was determined with a U-235 fission chamber and a procedure that were validated against a fluence standard. For incident energy higher than the threshold for the first excited level and up to 3.5 MeV, estimates are provided for the total inelastic and level cross sections by combining the present gamma production cross sections with the level and decay data of 206Pb reported in the literature. The uncertainty common to all incident energies is 3.0% allowing overall uncertainties from 3.3% to 30% depending on transition and neutron energy. The present data agree well with earlier work, but significantly expand the experimental database while comparisons with model calculations using the TALYS reaction code show good agreement over the full energy range. C1 [Negret, A.; Mihailescu, L. C.; Borcea, C.; Olacel, A.] Horia Hulubei Natl Inst Phys & Nucl Engn, R-077125 Bucharest, Romania. [Mihailescu, L. C.; Plompen, A. J. M.] Commiss European Communities, Joint Res Ctr, Inst Reference Mat & Measurements, B-2440 Geel, Belgium. [Dessagne, Ph.; Kerveno, M.; Rudolf, G.] Univ Strasbourg, IPHC, F-67037 Strasbourg, France. [Dessagne, Ph.; Kerveno, M.; Rudolf, G.] CNRS, UMR7178, F-67037 Strasbourg, France. [Guber, K. H.] Oak Ridge Natl Lab, Reactor & Nucl Syst Div, Oak Ridge, TN 37831 USA. [Koning, A. J.] Nucl Res Grp Petten, NL-1755 ZG Petten, Netherlands. [Olacel, A.] Univ Bucharest, Fac Phys, R-077125 Bucharest, Romania. RP Negret, A (reprint author), Horia Hulubei Natl Inst Phys & Nucl Engn, R-077125 Bucharest, Romania. EM alnegret@tandem.nipne.ro FU European Commission within the Sixth Framework Programme through the EUROTRANS (EURATOM) [516520]; EFNUDAT (EURATOM) [036434]; Seventh Framework Programme through the CHANDA project (EURATOM) [FP7-605203] FX The authors thank the team of GELINA operators for the quality of the neutron beam, A. Moens and C. Quetel for preparation and characterization of the sample, and R. Wynants for technical support. A.N., L.C.M., and C.B. are grateful to IRMM for financial support. This work was partially supported by the European Commission within the Sixth Framework Programme through the EUROTRANS (EURATOM Contract No. 516520) and EFNUDAT (EURATOM Contract No. 036434) projects and within the Seventh Framework Programme through the CHANDA project (EURATOM Contract No. FP7-605203). NR 67 TC 0 Z9 0 U1 6 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD JUN 30 PY 2015 VL 91 IS 6 AR 064618 DI 10.1103/PhysRevC.91.064618 PG 15 WC Physics, Nuclear SC Physics GA CL6QT UT WOS:000357092800002 ER PT J AU Shintani, E Arthur, R Blum, T Izubuchi, T Jung, C Lehner, C AF Shintani, Eigo Arthur, Rudy Blum, Thomas Izubuchi, Taku Jung, Chulwoo Lehner, Christoph TI Covariant approximation averaging SO PHYSICAL REVIEW D LA English DT Article ID LATTICE QCD AB We present a new class of statistical error reduction techniques for Monte Carlo simulations. Using covariant symmetries, we show that correlation functions can be constructed from inexpensive approximations without introducing any systematic bias in the final result. We introduce a new class of covariant approximation averaging techniques, known as all-mode averaging (AMA), in which the approximation takes account of contributions of all eigenmodes through the inverse of the Dirac operator computed from the conjugate gradient method with a relaxed stopping condition. In this paper we compare the performance and computational cost of our new method with traditional methods using correlation functions and masses of the pion, nucleon, and vector meson in N-f = 2 + 1 lattice QCD using domain-wall fermions. This comparison indicates that AMA significantly reduces statistical errors in Monte Carlo calculations over conventional methods for the same cost. C1 [Shintani, Eigo] Johannes Gutenberg Univ Mainz, Inst Kernphys, PRISMA Cluster Excellence, D-55099 Mainz, Germany. [Shintani, Eigo] Johannes Gutenberg Univ Mainz, Inst Kernphys, PRISMA Cluster Excellence, D-55099 Mainz, Germany. [Shintani, Eigo; Blum, Thomas; Izubuchi, Taku] Brookhaven Natl Lab, RIKEN, BNL, Res Ctr, Upton, NY 11973 USA. [Arthur, Rudy] Univ Southern Denmark, Origins & Danish Inst Adv Study DIAS CP3, DK-5230 Odense M, Denmark. [Blum, Thomas] Univ Connecticut, Dept Phys, Storrs, CT 06269 USA. [Izubuchi, Taku; Jung, Chulwoo; Lehner, Christoph] Brookhaven Natl Lab, High Energy Theory Grp, Upton, NY 11973 USA. RP Shintani, E (reprint author), Johannes Gutenberg Univ Mainz, Inst Kernphys, PRISMA Cluster Excellence, D-55099 Mainz, Germany. EM shintani@kph.uni-mainz.de RI Shintani, Eigo/C-8623-2016 FU Japanese Ministry of Education [22540301, 23105714, 23105715, 26400261]; U.S. DOE [DE-AC02-98CH10886, DE-FG02-13ER41989] FX We thank Norman H. Christ for giving an idea of a randomly shifted source method without covariant symmetry presented in Appendix C. We also thank Yasumichi Aoki, Peter Boyle, Tomoni Ishikawa, Meifeng Lin, Robert Mawhinney, Amarjit Soni, OliverWitzel and fellow members of RBC/UKQCD Collaboration for useful discussion and suggestions. Numerical calculations were performed using the RICC at RIKEN and the PC-clusters at FNAL under USQCD collaboration. This work was supported by the Japanese Ministry of Education Grant-in-Aid, No. 22540301 (T. I.), No. 23105714 (E. S.), No. 23105715 (T. I.), No. 26400261 (T. I.), and U.S. DOE Grants No. DE-AC02-98CH10886 (T. I.) and No. DE-FG02-13ER41989 (T. B.). We are grateful to BNL, the RIKEN BNL Research Center, and USQCD for providing resources necessary for completion of this work. NR 44 TC 7 Z9 7 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD JUN 30 PY 2015 VL 91 IS 11 AR 114511 DI 10.1103/PhysRevD.91.114511 PG 23 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CL6QX UT WOS:000357093300003 ER PT J AU Jeong, HM Choi, KM Cheng, T Lee, DK Zhou, RJ Ock, IW Milliron, DJ Goddard, WA Kang, JK AF Jeong, Hyung Mo Choi, Kyung Min Cheng, Tao Lee, Dong Ki Zhou, Renjia Ock, Il Woo Milliron, Delia J. Goddard, William A., III Kang, Jeung Ku TI Rescaling of metal oxide nanocrystals for energy storage having high capacitance and energy density with robust cycle life SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE rescaled atomic clusters; metal oxide nanocrystals; energy storage; molecular dynamic simulation; in situ electrochemical spectroscopy ID ELECTROCHEMICAL PSEUDOCAPACITOR MATERIALS; NICKEL-OXIDE; ASYMMETRIC SUPERCAPACITORS; HIGH-PERFORMANCE; LITHIUM STORAGE; GRAPHENE; NIO; NANOSHEETS; ELECTRODE; CARBON AB Nanocrystals are promising structures, but they are too large for achieving maximum energy storage performance. We show that rescaling 3-nm particles through lithiation followed by delithiation leads to high-performance energy storage by realizing high capacitance close to the theoretical capacitance available via ion-to-atom redox reactions. Reactive force-field (ReaxFF) molecular dynamics simulations support the conclusion that Li atoms react with nickel oxide nanocrystals (NiO-n) to form lithiated core-shell structures (Ni:Li2O), whereas subsequent delithiation causes Ni:Li2O to form atomic clusters of NiO-a. This is consistent with in situ X-ray photoelectron and optical spectroscopy results showing that Ni2+ of the nanocrystal changes during lithiation-delithiation through Ni-0 and back to Ni2+. These processes are also demonstrated to provide a generic route to rescale another metal oxide. Furthermore, assembling NiO-a into the positive electrode of an asymmetric device enables extraction of full capacitance for a counter negative electrode, giving high energy density in addition to robust capacitance retention over 100,000 cycles. C1 [Jeong, Hyung Mo; Choi, Kyung Min; Lee, Dong Ki; Kang, Jeung Ku] Korea Adv Inst Sci & Technol, Dept Mat Sci & Engn, Daejeon 305701, South Korea. [Cheng, Tao; Goddard, William A., III] CALTECH, Mat & Proc Simulat Ctr, Pasadena, CA 91125 USA. [Zhou, Renjia; Milliron, Delia J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. [Ock, Il Woo; Kang, Jeung Ku] Korea Adv Inst Sci & Technol, Grad Sch Energy Environm Water & Sustainabil, Taejon 305701, South Korea. [Milliron, Delia J.] Univ Texas Austin, Dept Chem Engn, Austin, TX 78712 USA. RP Goddard, WA (reprint author), CALTECH, Mat & Proc Simulat Ctr, Pasadena, CA 91125 USA. EM wag@wag.caltech.edu; jeung@kaist.ac.kr RI Milliron, Delia/D-6002-2012; Kang, Jeung ku/C-1610-2011; Foundry, Molecular/G-9968-2014; OI Cheng, Tao/0000-0003-4830-177X FU Global Frontier R&D Program on Center for Hybrid Interface Materials - Ministry of Science, Information and Communication Technology and Future Planning [2013M3A6B1078865]; National Research Foundation of Korea [2011-0028737, 2012M1A2A2671813]; US Department of Energy (DOE) [DE-AC02-05CH11231]; DOE Advanced Research Projects Agency-Energy; National Science Foundation [CBET-1067848] FX This research was supported by the Global Frontier R&D Program (2013M3A6B1078865) on Center for Hybrid Interface Materials funded by the Ministry of Science, Information and Communication Technology and Future Planning, and the National Research Foundation of Korea (2011-0028737, 2012M1A2A2671813). The work at the Molecular Foundry was supported by the US Department of Energy (DOE) under Contract DE-AC02-05CH11231. D.J.M. was supported by DOE Advanced Research Projects Agency-Energy under the same contract. Support for T.C. and W.A.G. was provided by National Science Foundation (CBET-1067848). NR 40 TC 6 Z9 6 U1 6 U2 33 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD JUN 30 PY 2015 VL 112 IS 26 BP 7914 EP 7919 DI 10.1073/pnas.1503546112 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CL6LU UT WOS:000357079400030 PM 26080421 ER PT J AU Wu, XH Moin, P Adrian, RJ Baltzer, JR AF Wu, Xiaohua Moin, Parviz Adrian, Ronald J. Baltzer, Jon R. TI Osborne Reynolds pipe flow: Direct simulation from laminar through gradual transition to fully developed turbulence SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE pipe flow; transition turbulence; direct numerical simulation; spatially evolving ID DIRECT NUMERICAL-SIMULATION; BOUNDARY-LAYERS; CHANNEL FLOW; PROGRESS AB The precise dynamics of breakdown in pipe transition is a century-old unresolved problem in fluid mechanics. We demonstrate that the abruptness and mysteriousness attributed to the Osborne Reynolds pipe transition can be partially resolved with a spatially developing direct simulation that carries weakly but finitely perturbed laminar inflow through gradual rather than abrupt transition arriving at the fully developed turbulent state. Our results with this approach show during transition the energy norms of such inlet perturbations grow exponentially rather than algebraically with axial distance. When inlet disturbance is located in the core region, helical vortex filaments evolve into large-scale reverse hairpin vortices. The interaction of these reverse hairpins among themselves or with the near-wall flow when they descend to the surface from the core produces small-scale hairpin packets, which leads to breakdown. When inlet disturbance is near the wall, certain quasi-spanwise structure is stretched into a Lambda vortex, and develops into a large-scale hairpin vortex. Small-scale hairpin packets emerge near the tip region of the large-scale hairpin vortex, and subsequently grow into a turbulent spot, which is itself a local concentration of small-scale hairpin vortices. This vortex dynamics is broadly analogous to that in the boundary layer bypass transition and in the secondary instability and breakdown stage of natural transition, suggesting the possibility of a partial unification. Under parabolic base flow the friction factor overshoots Moody's correlation. Plug base flow requires stronger inlet disturbance for transition. Accuracy of the results is demonstrated by comparing with analytical solutions before breakdown, and with fully developed turbulence measurements after the completion of transition. C1 [Wu, Xiaohua] Royal Mil Coll Canada, Dept Mech & Aerosp Engn, Kingston, ON K7K 7B4, Canada. [Moin, Parviz] Stanford Univ, Ctr Turbulence Res, Stanford, CA 94305 USA. [Adrian, Ronald J.] Arizona State Univ, Sch Engn Matter Transport & Energy, Tempe, AZ 85287 USA. [Baltzer, Jon R.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Moin, P (reprint author), Stanford Univ, Ctr Turbulence Res, Stanford, CA 94305 USA. EM moin@stanford.edu FU Natural Science and Engineering Research Council of Canada; US Department of Energy; US National Science Foundation; Air Force Office of Scientific Research FX X.W. acknowledges support from the Natural Science and Engineering Research Council of Canada; P.M. is grateful for support from the US Department of Energy and Air Force Office of Scientific Research; R.J.A. and J.R.B. acknowledge support from the US National Science Foundation. NR 26 TC 6 Z9 6 U1 1 U2 20 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD JUN 30 PY 2015 VL 112 IS 26 BP 7920 EP 7924 DI 10.1073/pnas.1509451112 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CL6LU UT WOS:000357079400031 PM 26080447 ER PT J AU Nan, XL Tamgueney, TM Collisson, EA Lin, LJ Pitt, C Galeas, J Lewis, S Gray, JW McCormick, F Chu, S AF Nan, Xiaolin Tamgueney, Tanja M. Collisson, Eric A. Lin, Li-Jung Pitt, Cameron Galeas, Jacqueline Lewis, Sophia Gray, Joe W. McCormick, Frank Chu, Steven TI Ras-GTP dimers activate the Mitogen-Activated Protein Kinase (MAPK) pathway SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE Ras dimer; MAPK signaling; cancer; single molecule imaging; superresolution microscopy ID K-RAS; H-RAS; N-RAS; FORMS DIMERS; INHIBITORS; MEMBRANE; BRAF; MICROSCOPY; ONCOGENES; LOCALIZATION AB Rat sarcoma (Ras) GTPases regulate cell proliferation and survival through effector pathways including Raf-MAPK, and are the most frequently mutated genes in human cancer. Although it is well established that Ras activity requires binding to both GTP and the membrane, details of how Ras operates on the cell membrane to activate its effectors remain elusive. Efforts to target mutant Ras in human cancers to therapeutic benefit have also been largely unsuccessful. Here we show that Ras-GTP forms dimers to activate MAPK. We used quantitative photoactivated localization microscopy (PALM) to analyze the nanoscale spatial organization of PAmCherry1-tagged KRas 4B (hereafter referred to KRas) on the cell membrane under various signaling conditions. We found that at endogenous expression levels KRas forms dimers, and KRas(G12D), a mutant that constitutively binds GTP, activates MAPK. Overexpression of KRas leads to formation of higher order Ras nanoclusters. Conversely, at lower expression levels, KRas(G12D) is monomeric and activates MAPK only when artificially dimerized. Moreover, dimerization and signaling of KRas are both dependent on an intact CAAX (C, cysteine; A, aliphatic; X, any amino acid) motif that is also known to mediate membrane localization. These results reveal a new, dimerization-dependent signaling mechanism of Ras, and suggest Ras dimers as a potential therapeutic target in mutant Ras-driven tumors. C1 [Nan, Xiaolin] Univ Calif Berkeley, Calif Inst Quantitat Biosci QB3, Berkeley, CA 94720 USA. [Nan, Xiaolin; Collisson, Eric A.; Lewis, Sophia; Gray, Joe W.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Life Sci Div, Berkeley, CA 94720 USA. [Nan, Xiaolin; Lin, Li-Jung; Gray, Joe W.] Oregon Hlth & Sci Univ, Knight Canc Inst, Dept Biomed Engn, Portland, OR 97239 USA. [Nan, Xiaolin; Lin, Li-Jung; Gray, Joe W.] Oregon Hlth & Sci Univ, Ctr Spatial Syst Biomed OCSSB, Portland, OR 97239 USA. [Tamgueney, Tanja M.; Collisson, Eric A.; Pitt, Cameron; Galeas, Jacqueline; Gray, Joe W.; McCormick, Frank] Univ Calif San Francisco, Helen Diller Family Comprehens Canc Ctr, San Francisco, CA 94158 USA. [Chu, Steven] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Chu, Steven] Stanford Univ, Dept Mol & Cellular Physiol, Stanford, CA 94305 USA. RP Nan, XL (reprint author), Univ Calif Berkeley, Calif Inst Quantitat Biosci QB3, Berkeley, CA 94720 USA. EM nan@ohsu.edu; grayjo@ohsu.edu; mccormic@cc.ucsf.edu; schu@stanford.edu FU National Institutes of Health (NIH) [K08 CA137153, 5U54CA143836]; National Science Foundation Grant [PHY-0647161]; NIH [U54 CA112970]; U.S. Department of Energy [DE-AC02-05CH11231]; W. M. Keck Foundation; Department of the Army Award [W81XWH-07-1-0663]; Oregon Health and Science University (OHSU); Damon Runyon Cancer Research Foundation; M. J. Murdock Charitable Trust; FEI company FX We thank Drs. Axel Brunger (Stanford University), Martin McMahon [University of California San Francisco (UCSF)], Allan Balmain (UCSF) for helpful discussions, and Alec Peters and Andrew Nickerson for their technical assistance. This work was supported by National Institutes of Health (NIH) Grants K08 CA137153 (to E.A.C.) and 5U54CA143836 (to X.N. and T.M.T.), National Science Foundation Grant PHY-0647161 (to X.N.), and a supplement grant to NIH U54 CA112970 (to X.N.). Research in the laboratory of J.W.G. was supported by the Office of Science and the Office of Biological and Environmental Research, both of the U.S. Department of Energy, under Contract DE-AC02-05CH11231, and by the W. M. Keck Foundation, and by the Department of the Army Award W81XWH-07-1-0663. Research in the Nan laboratory is also supported by startup funds from Oregon Health and Science University (OHSU), the Damon Runyon Cancer Research Foundation, the M. J. Murdock Charitable Trust, and the FEI company. NR 40 TC 33 Z9 33 U1 1 U2 14 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD JUN 30 PY 2015 VL 112 IS 26 BP 7996 EP 8001 DI 10.1073/pnas.1509123112 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CL6LU UT WOS:000357079400044 PM 26080442 ER PT J AU Horne, JE Lavrik, NV Terrones, H Fuentes-Cabrera, M AF Horne, Joseph E. Lavrik, Nickolay V. Terrones, Humberto Fuentes-Cabrera, Miguel TI Extrapolating Dynamic Leidenfrost Principles to Metallic Nanodroplets on Asymmetrically Textured Surfaces SO SCIENTIFIC REPORTS LA English DT Article AB In an effort to enhance our knowledge on how to control the movement of metallic nanodroplets, here we have used classical molecular dynamics simulations to investigate whether Cu nanostructures deposited on nanopillared substrates can be made to jump at desired angles. We find that such control is possible, especially for Cu nanostructures that are symmetric; for asymmetric nanostructures, however, control is more uncertain. The work presented here borrows ideas from two seemingly different fields, metallic droplets and water droplets in the dynamic Leidenfrost regime. Despite the differences in the respective systems, we find common ground in their behavior on nanostructured surfaces. Due to this, we suggest that the ongoing research in Leidenfrost droplets is a fertile area for scientists working on metallic nanodroplets. C1 [Horne, Joseph E.; Terrones, Humberto] Rensselaer Polytech Inst, Dept Phys Appl Phys & Astron, Troy, NY 12180 USA. [Lavrik, Nickolay V.; Fuentes-Cabrera, Miguel] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Fuentes-Cabrera, Miguel] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. RP Fuentes-Cabrera, M (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. EM fuentescabma@ornl.gov RI Lavrik, Nickolay/B-5268-2011; Fuentes-Cabrera, Miguel/Q-2437-2015 OI Lavrik, Nickolay/0000-0002-9543-5634; Fuentes-Cabrera, Miguel/0000-0001-7912-7079 FU Science Undergraduate Laboratory Internships (SULI); Rensselaer Polytechnic Institute FX This research was conducted at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility. J.E.H. was supported by an appointment under the Science Undergraduate Laboratory Internships (SULI), administered by the Oak Ridge Institute for Science and Education between the U.S. Department of Energy and Oak Ridge Associated Universities. J.E.H. and M.F.C. acknowledge computational support from the UT/ORNL National Institute of Computational Sciences. J.E.H. would like to thank Prof. H. Terrones and Rensselaer Polytechnic Institute for financial support during the project. We wish to thank Rebecca Agapov, Pat Collier, Jonathan Boreyko and Bernadeta Srijanto for insightful discussions. NR 13 TC 0 Z9 0 U1 1 U2 24 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD JUN 30 PY 2015 VL 5 AR 11769 DI 10.1038/srep11769 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CL6TO UT WOS:000357100500001 PM 26123648 ER PT J AU Tosun, M Fu, DY Desai, SB Ko, C Kang, JS Lien, DH Najmzadeh, M Tongay, S Wu, JQ Javey, A AF Tosun, Mahmut Fu, Deyi Desai, Sujay B. Ko, Changhyun Kang, Jeong Seuk Lien, Der-Hsien Najmzadeh, Mohammad Tongay, Sefaattin Wu, Junqiao Javey, Ali TI MoS2 Heterojunctions by Thickness Modulation SO SCIENTIFIC REPORTS LA English DT Article ID SINGLE-LAYER MOS2; SCANNING PHOTOCURRENT MICROSCOPY; PROBE FORCE MICROSCOPY; P-N-JUNCTIONS; WORK FUNCTION; SEMICONDUCTOR NANOWIRES; MONOLAYER MOS2; DIODES; HETEROSTRUCTURES; TRANSISTORS AB In this work, we report lateral heterojunction formation in as-exfoliated MoS2 flakes by thickness modulation. Kelvin probe force microscopy is used to map the surface potential at the monolayer-multilayer heterojunction, and consequently the conduction band offset is extracted. Scanning photocurrent microscopy is performed to investigate the spatial photocurrent response along the length of the device including the source and the drain contacts as well as the monolayer-multilayer junction. The peak photocurrent is measured at the monolayer-multilayer interface, which is attributed to the formation of a type-I heterojunction. The work presents experimental and theoretical understanding of the band alignment and photoresponse of thickness modulated MoS2 junctions with important implications for exploring novel optoelectronic devices. C1 [Tosun, Mahmut; Desai, Sujay B.; Kang, Jeong Seuk; Lien, Der-Hsien; Najmzadeh, Mohammad; Javey, Ali] Univ Calif Berkeley, Elect Engn & Comp Sci, Berkeley, CA 94720 USA. [Tosun, Mahmut; Fu, Deyi; Desai, Sujay B.; Kang, Jeong Seuk; Lien, Der-Hsien; Wu, Junqiao; Javey, Ali] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Tosun, Mahmut; Desai, Sujay B.; Kang, Jeong Seuk; Lien, Der-Hsien; Najmzadeh, Mohammad; Javey, Ali] Univ Calif Berkeley, Berkeley Sensor & Actuator Ctr, Berkeley, CA 94720 USA. [Fu, Deyi; Ko, Changhyun; Tongay, Sefaattin; Wu, Junqiao] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. RP Javey, A (reprint author), Univ Calif Berkeley, Elect Engn & Comp Sci, Berkeley, CA 94720 USA. EM ajavey@eecs.berkeley.edu RI Wu, Junqiao/G-7840-2011; Javey, Ali/B-4818-2013; Ko, Changhyun/E-1686-2011; Fu, Deyi/C-6624-2011 OI Wu, Junqiao/0000-0002-1498-0148; Fu, Deyi/0000-0003-1365-8963 FU Office of Science, Office of Basic Energy Sciences, Material Sciences and Engineering Division of U.S. Department of Energy [DE-AC02-05CH11231]; Center for Low Energy Systems Technology (LEAST); STARnet phase of the Focus Center Research Program (FCRP); MARCO; DARPA FX This work was funded by the Director, Office of Science, Office of Basic Energy Sciences, Material Sciences and Engineering Division of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The device fabrication and characterization was funded by the Center for Low Energy Systems Technology (LEAST), one of six centers supported by the STARnet phase of the Focus Center Research Program (FCRP), a Semiconductor Research Corporation program sponsored by MARCO and DARPA. NR 41 TC 16 Z9 17 U1 7 U2 71 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD JUN 30 PY 2015 VL 5 AR 10990 DI 10.1038/srep10990 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CL6UD UT WOS:000357102000001 PM 26121940 ER PT J AU Wang, YF Chan, MA Merino, E AF Wang, Yifeng Chan, Marjorie A. Merino, Enrique TI Self-organized iron-oxide cementation geometry as an indicator of paleo-flows SO SCIENTIFIC REPORTS LA English DT Article ID JURASSIC NAVAJO SANDSTONE; MERIDIANI-PLANUM; COLORADO PLATEAU; CONCRETIONS; MARS; HEMATITE; PRECIPITATION; UTAH; PATTERNS; ROCKS AB Widespread iron oxide precipitation from groundwater in fine-grained red beds displays various patterns, including nodulation, banding and scallops and fingers. Hematite nodules have been reported also from the Meridiani Planum site on Mars and interpreted as evidence for the ancient presence of water on the red planet. Here we show that such patterns can autonomously emerge from a previously unrecognized Ostwald ripening mechanism and they capture rich information regarding ancient chemical and hydrologic environments. A linear instability analysis of the reaction-transport equations suggests that a pattern transition from nodules to bands may result from a symmetry breaking of mineral dissolution and precipitation triggered by groundwater advection. Round nodules tend to develop under nearly stagnant hydrologic conditions, while repetitive bands form in the presence of persistent water flows. Since water circulation is a prerequisite for a sustainable subsurface life, a Martian site with iron oxide precipitation bands, if one were found, may offer a better chance for detecting extraterrestrial biosignatures on Mars than would sites with nodules. C1 [Wang, Yifeng] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Chan, Marjorie A.] Univ Utah, Dept Geol & Geophys, Salt Lake City, UT 84112 USA. [Merino, Enrique] Indiana Univ, Dept Geol Sci, Bloomington, IN 47405 USA. RP Wang, YF (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM ywang@sandia.gov FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; DOE Sandia LDRD Program; Energy Frontier Research Center (EFRC) - U.S Department of Energy (DOE), Office of Sciences (BES); National Aeronautics and Space Administration [NNG06GI10G] FX Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. This work was partly supported by DOE Sandia LDRD Program. The work was also partly supported by an Energy Frontier Research Center (EFRC) funded by the U.S Department of Energy (DOE), Office of Sciences (BES). Chan's effort was an outgrowth of work supported by the National Aeronautics and Space Administration under grant NNG06GI10G (to Chan) issued through the Mars Fundamental Research Program. NR 60 TC 2 Z9 2 U1 2 U2 10 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD JUN 30 PY 2015 VL 5 AR 10792 DI 10.1038/srep10792 PG 15 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CL6TX UT WOS:000357101400001 PM 26123788 ER PT J AU Adam, J Adamova, D Aggarwal, MM Rinella, GA Agnello, M Agrawal, N Ahammed, Z Ahmed, I Ahn, SU Aimo, I Aiola, S Ajaz, M Akindinov, A Alam, SN Aleksandrov, D Alessandro, B Alexandre, D Molina, RA Alici, A Alkin, A Alme, J Alt, T Altinpinar, S Altsybeev, I Prado, CAG Andrei, C Andronic, A Anguelov, V Anielski, J Anticic, T Antinori, F Antonioli, P Aphecetche, L Appelshauser, H Arcelli, S Armesto, N Arnaldi, R Aronsson, T Arsene, IC Arslandok, M Augustinus, A Averbeck, R Azmi, MD Bach, M Badala, A Baek, YW Bagnasco, S Bailhache, R Bala, R Baldisseri, A Ball, M Pedrosa, FB Baral, RC Barbano, AM Barbera, R Barile, F Barnafoldi, GG Barnby, LS Barret, V Bartalini, P Bartke, J Bartsch, E Basile, M Bastid, N Basu, S Bathen, B Batigne, G Camejo, AB Batyunya, B Batzing, PC Bearden, IG Beck, H Bedda, C Behera, NK Belikov, I Bellini, F Martinez, HB Bellwied, R Belmont, R Belmont-Moreno, E Belyaev, V Bencedi, G Beole, S Berceanu, I Bercuci, A Berdnikov, Y Berenyi, D Bertens, RA Berzano, D Betev, L Bhasin, A Bhat, IR Bhati, AK Bhattacharjee, B Bhom, J Bianchi, L Bianchi, N Bianchin, C Bielcik, J Bielcikova, J Bilandzic, A Biswas, S Bjelogrlic, S Blanco, F Blau, D Blume, C Bock, F Bogdanov, A Boggild, H Boldizsar, L Bombara, M Book, J Borel, H Borissov, A Borri, M Bossu, F Botje, M Botta, E Bottger, S Braun-Munzinger, P Bregant, M Breitner, T Broker, TA Browning, TA Broz, M Brucken, EJ Bruna, E Bruno, GE Budnikov, D Buesching, H Bufalino, S Buncic, P Busch, O Buthelezi, Z Buxton, JT Caffarri, D Cai, X Caines, H Diaz, LC Caliva, A Villar, EC Camerini, P Carena, F Carena, W Castellanos, JC Castro, AJ Casula, EAR Cavicchioli, C Sanchez, CC Cepila, J Cerello, P Chang, B Chapeland, S Chartier, M Charvet, JL Chattopadhyay, S Chattopadhyay, S Chelnokov, V Cherney, M Cheshkov, C Cheynis, B Barroso, VC Chinellato, DD Chochula, P Choi, K Chojnacki, M Choudhury, S Christakoglou, P Christensen, CH Christiansen, P Chujo, T Chung, SU Cicalo, C Cifarelli, L Cindolo, F Cleymans, J Colamaria, F Colella, D Collu, A Colocci, M Balbastre, GC del Valle, ZC Connors, ME Contreras, JG Cormier, TM Morales, YC Maldonado, IC Cortese, P Cosentino, MR Costa, F Crochet, P Albino, RC Cuautle, E Cunqueiro, L Dahms, T Dainese, A Danu, A Das, D Das, I Das, S Dash, A Dash, S De, S De Caro, A de Cataldo, G de Cuveland, J De Falco, A De Gruttola, D De Marco, N De Pasquale, S Deisting, A Deloff, A Denes, E D'Erasmo, G Di Bari, D Di Mauro, A Di Nezza, P Corchero, MAD Dietel, T Dillenseger, P Divia, R Djuvsland, O Dobrin, A Dobrowolski, T Gimenez, DD Donigus, B Dordic, O Dubey, AK Dubla, A Ducroux, L Dupieux, P Ehlers, RJ Elia, D Engel, H Erazmus, B Erhardt, F Eschweiler, D Espagnon, B Estienne, M Esumi, S Eum, J Evans, D Evdokimov, S Eyyubova, G Fabbietti, L Fabris, D Faivre, J Fantoni, A Fasel, M Feldkamp, L Felea, D Feliciello, A Feofilov, G Ferencei, J Tellez, AF Ferreiro, EG Ferretti, A Festanti, A Figiel, J Figueredo, MAS Filchagin, S Finogeev, D Fionda, FM Fiore, EM Floris, M Foertsch, S Foka, P Fokin, S Fragiacomo, E Francescon, A Frankenfeld, U Fuchs, U Furget, C Furs, A Girard, MF Gaardhoje, JJ Gagliardi, M Gago, AM Gallio, M Gangadharan, DR Ganoti, P Gao, C Garabatos, C Garcia-Solis, E Gargiulo, C Gasik, P Germain, M Gheata, A Gheata, M Ghosh, P Ghosh, SK Gianotti, P Giubellino, P Giubilato, P Gladysz-Dziadus, E Glassel, P Ramirez, AG Gonzolez-Zamora, P Gorbunov, S Gorlich, L Gotovac, S Grabski, V Graczykowski, LK Grelli, A Grigoras, A Grigoras, C Grigoriev, V Grigoryan, A Grigoryan, S Grinyov, B Grion, N Grosse-Oetringhaus, JF Grossiord, JY Grosso, R Guber, F Guernane, R Guerzoni, B Gulbrandsen, K Gulkanyan, H Gunji, T Gupta, A Gupta, R Haake, R Haaland, O Hadjidakis, C Haiduc, M Hamagaki, H Hamar, G Hanratty, LD Hansen, A Harris, JW Hartmann, H Harton, A Hatzifotiadou, D Hayashi, S Heckel, ST Heide, M Helstrup, H Herghelegiu, A Corral, GH Hess, BA Hetland, KF Hilden, TE Hillemanns, H Hippolyte, B Hristov, P Huang, M Humanic, TJ Hussain, N Hussain, T Hutter, D Hwang, DS Ilkaev, R Ilkiv, I Inaba, M Ionita, C Ippolitov, M Irfan, M Ivanov, M Ivanov, V Izucheev, V Jacobs, PM Jahnke, C Jang, HJ Janik, MA Jayarathna, PHSY Jena, C Jena, S Bustamante, RTJ Jones, PG Jung, H Jusko, A Kadyshevskiy, V Kalinak, P Kalweit, A Kamin, J Kang, JH Kaplin, V Kar, S Uysal, AK Karavichev, O Karavicheva, T Karpechev, E Kebschull, U Keidel, R Keijdener, DLD Keil, M Khan, KH Khan, MM Khan, P Khan, SA Khanzadeev, A Kharlov, Y Kileng, B Kim, B Kim, DW Kim, DJ Kim, H Kim, JS Kim, M Kim, M Kim, S Kim, T Kirsch, S Kisel, I Kiselev, S Kisiel, A Kiss, G Klay, JL Klein, C Klein, J Klein-Bosing, C Kluge, A Knichel, ML Knospe, AG Kobayashi, T Kobdaj, C Kofarago, M Kohler, MK Kollegger, T Kolojvari, A Kondratiev, V Kondratyeva, N Kondratyuk, E Konevskikh, A Kouzinopoulos, C Kovalenko, O Kovalenko, V Kowalski, M Kox, S Meethaleveedu, GK Kral, J Kralik, I Kravcakova, A Krelina, M Kretz, M Krivda, M Krizek, F Kryshen, E Krzewicki, M Kubera, AM Kucera, V Kucheriaev, Y Kugathasan, T Kuhn, C Kuijer, PG Kulakov, I Kumar, J Kumar, L Kurashvili, P Kurepin, A Kurepin, AB Kuryakin, A Kushpil, S Kweon, MJ Kwon, Y La Pointe, SL La Rocca, P Fernandes, CL Lakomov, I Langoy, R Lara, C Lardeux, A Lattuca, A Laudi, E Lea, R Leardini, L Lee, GR Lee, S Legrand, I Lehnert, J Lemmon, RC Lenti, V Leogrande, E Monzon, IL Leoncino, M Levai, P Li, S Li, X Lien, J Lietava, R Lindal, S Lindenstruth, V Lippmann, C Lisa, MA Ljunggren, HM Lodato, DF Loenne, PI Loggins, VR Loginov, V Loizides, C Lopez, X Torres, EL Lowe, A Lu, XG Luettig, P Lunardon, M Luparello, G Maevskaya, A Mager, M Mahajan, S Mahmood, SM Maire, A Majka, RD Malaev, M Cervantes, IM Malinina, L Mal'Kevich, D Malzacher, P Mamonov, A Manceau, L Manko, V Manso, F Manzari, V Marchisone, M Mares, J Margagliotti, GV Margotti, A Margutti, J Marin, A Markert, C Marquard, M Martin, NA Blanco, JM Martinengo, P Martinez, MI Garcia, GM Pedreira, MM Martynov, Y Mas, A Masciocchi, S Masera, M Masoni, A Massacrier, L Mastroserio, A Masui, H Matyja, A Mayer, C Mazer, J Mazzoni, MA Mcdonald, D Meddi, F Menchaca-Rocha, A Meninno, E Perez, JM Meres, M Miake, Y Mieskolainen, MM Mikhaylov, K Milano, L Milosevic, J Minervini, LM Mischke, A Mishra, AN Miskowiec, D Mitra, J Mitu, CM Mohammadi, N Mohanty, B Molnar, L Zetina, LM Montes, E Morando, M De Godoy, DAM Moretto, S Morreale, A Morsch, A Muccifora, V Mudnic, E Muhlheim, D Muhuri, S Mukherjee, M Muller, H Mulligan, JD Munhoz, MG Murray, S Musa, L Musinsky, J Nandi, BK Nania, R Nappi, E Naru, MU Nattrass, C Nayak, K Nayak, TK Nazarenko, S Nedosekin, A Nellen, L Ng, F Nicassio, M Niculescu, M Niedziela, J Nielsen, BS Nikolaev, S Nikulin, S Nikulin, V Noferini, F Nomokonov, P Nooren, G Norman, J Nyanin, A Nystrand, J Oeschler, H Oh, S Oh, SK Ohlson, A Okatan, A Okubo, T Olah, L Oleniacz, J Da Silva, ACO Oliver, MH Onderwaater, J Oppedisano, C Velasquez, AO Oskarsson, A Otwinowski, J Oyama, K Ozdemir, M Pachmayer, Y Pagano, P Paic, G Pajares, C Pal, SK Pan, J Pant, D Papikyan, V Pappalardo, GS Pareek, P Park, WJ Parmar, S Passfeld, A Paticchio, V Paul, B Pawlak, T Peitzmann, T Da Costa, HP De Oliveira, EP Peresunko, D Lara, CEP Peskov, V Pestov, Y Petracek, V Petrov, V Petrovici, M Petta, C Piano, S Pikna, M Pillot, P Pinazza, O Pinsky, L Piyarathna, DB Ploskon, M Planinic, M Pluta, J Pochybova, S Podesta-Lerma, PLM Poghosyan, MG Polichtchouk, B Poljak, N Poonsawat, W Pop, A Porteboeuf-Houssais, S Porter, J Pospisil, J Prasad, SK Preghenella, R Prino, F Pruneau, CA Pshenichnov, I Puccio, M Puddu, G Pujahari, P Punin, V Putschke, J Qvigstad, H Rachevski, A Raha, S Rajput, S Rak, J Rakotozafindrabe, A Ramello, L Raniwala, R Raniwala, S Rasanen, SS Rascanu, BT Rathee, D Read, KF Real, JS Redlich, K Reed, RJ Rehman, A Reichelt, P Reicher, M Reidt, F Ren, X Renfordt, R Reolon, AR Reshetin, A Rettig, F Revol, JP Reygers, K Riabov, V Ricci, RA Richert, T Richter, M Riedler, P Riegler, W Riggi, F Ristea, C Rivetti, A Rocco, E Cahuantzi, MR Manso, AR Roed, K Rogochaya, E Rohr, D Rohrich, D Romita, R Ronchetti, F Ronflette, L Rosnet, P Rossi, A Roukoutakis, F Roy, A Roy, C Roy, P Montero, AJR Rui, R Russo, R Ryabinkin, E Ryabov, Y Rybicki, A Sadovsky, S Safarik, K Sahlmuller, B Sahoo, P Sahoo, R Sahoo, S Sahu, PK Saini, J Sakai, S Saleh, MA Salgado, CA Salzwedel, J Sambyal, S Samsonov, V Castro, XS Sandor, L Sandoval, A Sano, M Santagati, G Sarkar, D Scapparone, E Scarlassara, F Scharenberg, RP Schiaua, C Schicker, R Schmidt, C Schmidt, HR Schuchmann, S Schukraft, J Schulc, M Schuster, T Schutz, Y Schwarz, K Schweda, K Scioli, G Scomparin, E Scott, R Seeder, KS Seger, JE Sekiguchi, Y Selyuzhenkov, I Senosi, K Seo, J Serradilla, E Sevcenco, A Shabanov, A Shabetai, A Shadura, O Shahoyan, R Shangaraev, A Sharma, A Sharma, N Shigaki, K Shtejer, K Sibiriak, Y Siddhanta, S Sielewicz, KM Siemiarczuk, T Silvermyr, D Silvestre, C Simatovic, G Simonetti, G Singaraju, R Singh, R Singha, S Singhal, V Sinha, BC Sinha, T Sitar, B Sitta, M Skaali, TB Slupecki, M Smirnov, N Snellings, RJM Snellman, TW Sogaard, C Soltz, R Song, J Song, M Song, Z Soramel, F Sorensen, S Spacek, M Spiriti, E Sputowska, I Spyropoulou-Stassinaki, M Srivastava, BK Stachel, J Stan, I Stefanek, G Steinpreis, M Stenlund, E Steyn, G Stiller, JH Stocco, D Strmen, P Suaide, AAP Sugitate, T Suire, C Suleymanov, M Sultanov, R Sumbera, M Symons, TJM Szabo, A de Toledo, AS Szarka, I Szczepankiewicz, A Szymanski, M Takahashi, J Tanaka, N Tangaro, MA Takaki, JDT Peloni, AT Tariq, M Tarzila, MG Tauro, A Munoz, GT Telesca, A Terasaki, K Terrevoli, C Teyssier, B Thader, J Thomas, D Tieulent, R Timmins, AR Toia, A Trogolo, S Trubnikov, V Trzaska, WH Tsuji, T Tumkin, A Turrisi, R Tveter, TS Ullaland, K Uras, A Usai, GL Utrobicic, A Vajzer, M Vala, M Palomo, LV Vallero, S Van Der Maarel, J Van Hoorne, JW Van Leeuwen, M Vanat, T Vyvre, PV Varga, D Vargas, A Vargyas, M Varma, R Vasileiou, M Vasiliev, A Vauthier, A Vechernin, V Veen, AM Veldhoen, M Velure, A Venaruzzo, M Vercellin, E Limon, SV Vernet, R Verweij, M Vickovic, L Viesti, G Viinikainen, J Vilakazi, Z Baillie, OV Vinogradov, A Vinogradov, L Vinogradov, Y Virgili, T Vislavicius, V Viyogi, YP Vodopyanov, A Volkl, MA Voloshin, K Voloshin, SA Volpe, G von Haller, B Vorobyev, I Vranic, D Vrlakova, J Vulpescu, B Vyushin, A Wagner, B Wagner, J Wang, H Wang, M Wang, Y Watanabe, D Weber, M Weber, SG Wessels, JP Westerhoff, U Wiechula, J Wikne, J Wilde, M Wilk, G Wilkinson, J Williams, MCS Windelband, B Winn, M Yaldo, CG Yamaguchi, Y Yang, H Yang, P Yano, S Yasnopolskiy, S Yin, Z Yokoyama, H Yoo, IK Yurchenko, V Yushmanov, I Zaborowska, A Zaccolo, V Zaman, A Zampolli, C Zanoli, HJC Zaporozhets, S Zarochentsev, A Zavada, P Zaviyalov, N Zbroszczyk, H Zgura, IS Zhalov, M Zhang, H Zhang, X Zhang, Y Zhao, C Zhigareva, N Zhou, D Zhou, Y Zhou, Z Zhu, H Zhu, J Zhu, X Zichichi, A Zimmermann, A Zimmermann, MB Zinovjev, G Zyzak, M AF Adam, J. Adamova, D. Aggarwal, M. M. Rinella, G. Aglieri Agnello, M. Agrawal, N. Ahammed, Z. Ahmed, I. Ahn, S. U. Aimo, I. Aiola, S. Ajaz, M. Akindinov, A. Alam, S. N. Aleksandrov, D. Alessandro, B. Alexandre, D. Molina, R. Alfaro Alici, A. Alkin, A. Alme, J. Alt, T. Altinpinar, S. Altsybeev, I. Prado, C. Alves Garcia Andrei, C. Andronic, A. Anguelov, V. Anielski, J. Anticic, T. Antinori, F. Antonioli, P. Aphecetche, L. Appelshauser, H. Arcelli, S. Armesto, N. Arnaldi, R. Aronsson, T. Arsene, I. C. Arslandok, M. Augustinus, A. Averbeck, R. Azmi, M. D. Bach, M. Badala, A. Baek, Y. W. Bagnasco, S. Bailhache, R. Bala, R. Baldisseri, A. Ball, M. Pedrosa, F. Baltasar Dos Santos Baral, R. C. Barbano, A. M. Barbera, R. Barile, F. Barnafoeldi, G. G. Barnby, L. S. Barret, V. Bartalini, P. Bartke, J. Bartsch, E. Basile, M. Bastid, N. Basu, S. Bathen, B. Batigne, G. Camejo, A. Batista Batyunya, B. Batzing, P. C. Bearden, I. G. Beck, H. Bedda, C. Behera, N. K. Belikov, I. Bellini, F. Martinez, H. Bello Bellwied, R. Belmont, R. Belmont-Moreno, E. Belyaev, V. Bencedi, G. Beole, S. Berceanu, I. Bercuci, A. Berdnikov, Y. Berenyi, D. Bertens, R. A. Berzano, D. Betev, L. Bhasin, A. Bhat, I. R. Bhati, A. K. Bhattacharjee, B. Bhom, J. Bianchi, L. Bianchi, N. Bianchin, C. Bielcik, J. Bielcikova, J. Bilandzic, A. Biswas, S. Bjelogrlic, S. Blanco, F. Blau, D. Blume, C. Bock, F. Bogdanov, A. Boggild, H. Boldizsar, L. Bombara, M. Book, J. Borel, H. Borissov, A. Borri, M. Bossu, F. Botje, M. Botta, E. Boettger, S. Braun-Munzinger, P. Bregant, M. Breitner, T. Broker, T. A. Browning, T. A. Broz, M. Brucken, E. J. Bruna, E. Bruno, G. E. Budnikov, D. Buesching, H. Bufalino, S. Buncic, P. Busch, O. Buthelezi, Z. Buxton, J. T. Caffarri, D. Cai, X. Caines, H. Diaz, L. Calero Caliva, A. Villar, E. Calvo Camerini, P. Carena, F. Carena, W. Castellanos, J. Castillo Castro, A. J. Casula, E. A. R. Cavicchioli, C. Sanchez, C. Ceballos Cepila, J. Cerello, P. Chang, B. Chapeland, S. Chartier, M. Charvet, J. L. Chattopadhyay, S. Chattopadhyay, S. Chelnokov, V. Cherney, M. Cheshkov, C. Cheynis, B. Barroso, V. Chibante Chinellato, D. D. Chochula, P. Choi, K. Chojnacki, M. Choudhury, S. Christakoglou, P. Christensen, C. H. Christiansen, P. Chujo, T. Chung, S. U. Cicalo, C. Cifarelli, L. Cindolo, F. Cleymans, J. Colamaria, F. Colella, D. Collu, A. Colocci, M. Balbastre, G. Conesa del Valle, Z. Conesa Connors, M. E. Contreras, J. G. Cormier, T. M. Morales, Y. Corrales Maldonado, I. Cortes Cortese, P. Cosentino, M. R. Costa, F. Crochet, P. Albino, R. Cruz Cuautle, E. Cunqueiro, L. Dahms, T. Dainese, A. Danu, A. Das, D. Das, I. Das, S. Dash, A. Dash, S. De, S. De Caro, A. de Cataldo, G. de Cuveland, J. De Falco, A. De Gruttola, D. De Marco, N. De Pasquale, S. Deisting, A. Deloff, A. Denes, E. D'Erasmo, G. Di Bari, D. Di Mauro, A. Di Nezza, P. Corchero, M. A. Diaz Dietel, T. Dillenseger, P. Divia, R. Djuvsland, O. Dobrin, A. Dobrowolski, T. Gimenez, D. Domenicis Doenigus, B. Dordic, O. Dubey, A. K. Dubla, A. Ducroux, L. Dupieux, P. Ehlers, R. J. Elia, D. Engel, H. Erazmus, B. Erhardt, F. Eschweiler, D. Espagnon, B. Estienne, M. Esumi, S. Eum, J. Evans, D. Evdokimov, S. Eyyubova, G. Fabbietti, L. Fabris, D. Faivre, J. Fantoni, A. Fasel, M. Feldkamp, L. Felea, D. Feliciello, A. Feofilov, G. Ferencei, J. Tellez, A. Fernandez Ferreiro, E. G. Ferretti, A. Festanti, A. Figiel, J. Figueredo, M. A. S. Filchagin, S. Finogeev, D. Fionda, F. M. Fiore, E. M. Floris, M. Foertsch, S. Foka, P. Fokin, S. Fragiacomo, E. Francescon, A. Frankenfeld, U. Fuchs, U. Furget, C. Furs, A. Girard, M. Fusco Gaardhoje, J. J. Gagliardi, M. Gago, A. M. Gallio, M. Gangadharan, D. R. Ganoti, P. Gao, C. Garabatos, C. Garcia-Solis, E. Gargiulo, C. Gasik, P. Germain, M. Gheata, A. Gheata, M. Ghosh, P. Ghosh, S. K. Gianotti, P. Giubellino, P. Giubilato, P. Gladysz-Dziadus, E. Glassel, P. Ramirez, A. Gomez Gonzalez-Zamora, P. Gorbunov, S. Gorlich, L. Gotovac, S. Grabski, V. Graczykowski, L. K. Grelli, A. Grigoras, A. Grigoras, C. Grigoriev, V. Grigoryan, A. Grigoryan, S. Grinyov, B. Grion, N. Grosse-Oetringhaus, J. F. Grossiord, J. -Y. Grosso, R. Guber, F. Guernane, R. Guerzoni, B. Gulbrandsen, K. Gulkanyan, H. Gunji, T. Gupta, A. Gupta, R. Haake, R. Haaland, O. Hadjidakis, C. Haiduc, M. Hamagaki, H. Hamar, G. Hanratty, L. D. Hansen, A. Harris, J. W. Hartmann, H. Harton, A. Hatzifotiadou, D. Hayashi, S. Heckel, S. T. Heide, M. Helstrup, H. Herghelegiu, A. Corral, G. Herrera Hess, B. A. Hetland, K. F. Hilden, T. E. Hillemanns, H. Hippolyte, B. Hristov, P. Huang, M. Humanic, T. J. Hussain, N. Hussain, T. Hutter, D. Hwang, D. S. Ilkaev, R. Ilkiv, I. Inaba, M. Ionita, C. Ippolitov, M. Irfan, M. Ivanov, M. Ivanov, V. Izucheev, V. Jacobs, P. M. Jahnke, C. Jang, H. J. Janik, M. A. Jayarathna, P. H. S. Y. Jena, C. Jena, S. Bustamante, R. T. Jimenez Jones, P. G. Jung, H. Jusko, A. Kadyshevskiy, V. Kalinak, P. Kalweit, A. Kamin, J. Kang, J. H. Kaplin, V. Kar, S. Uysal, A. Karasu Karavichev, O. Karavicheva, T. Karpechev, E. Kebschull, U. Keidel, R. Keijdener, D. L. D. Keil, M. Khan, K. H. Khan, M. M. Khan, P. Khan, S. A. Khanzadeev, A. Kharlov, Y. Kileng, B. Kim, B. Kim, D. W. Kim, D. J. Kim, H. Kim, J. S. Kim, M. Kim, M. Kim, S. Kim, T. Kirsch, S. Kisel, I. Kiselev, S. Kisiel, A. Kiss, G. Klay, J. L. Klein, C. Klein, J. Klein-Bosing, C. Kluge, A. Knichel, M. L. Knospe, A. G. Kobayashi, T. Kobdaj, C. Kofarago, M. Kohler, M. K. Kollegger, T. Kolojvari, A. Kondratiev, V. Kondratyeva, N. Kondratyuk, E. Konevskikh, A. Kouzinopoulos, C. Kovalenko, O. Kovalenko, V. Kowalski, M. Kox, S. Meethaleveedu, G. Koyithatta Kral, J. Kralik, I. Kravcakova, A. Krelina, M. Kretz, M. Krivda, M. Krizek, F. Kryshen, E. Krzewicki, M. Kubera, A. M. Kucera, V. Kucheriaev, Y. Kugathasan, T. Kuhn, C. Kuijer, P. G. Kulakov, I. Kumar, J. Kumar, L. Kurashvili, P. Kurepin, A. Kurepin, A. B. Kuryakin, A. Kushpil, S. Kweon, M. J. Kwon, Y. La Pointe, S. L. La Rocca, P. Fernandes, C. Lagana Lakomov, I. Langoy, R. Lara, C. Lardeux, A. Lattuca, A. Laudi, E. Lea, R. Leardini, L. Lee, G. R. Lee, S. Legrand, I. Lehnert, J. Lemmon, R. C. Lenti, V. Leogrande, E. Monzon, I. Leon Leoncino, M. Levai, P. Li, S. Li, X. Lien, J. Lietava, R. Lindal, S. Lindenstruth, V. Lippmann, C. Lisa, M. A. Ljunggren, H. M. Lodato, D. F. Loenne, P. I. Loggins, V. R. Loginov, V. Loizides, C. Lopez, X. Torres, E. Lopez Lowe, A. Lu, X. -G. Luettig, P. Lunardon, M. Luparello, G. Maevskaya, A. Mager, M. Mahajan, S. Mahmood, S. M. Maire, A. Majka, R. D. Malaev, M. Cervantes, I. Maldonado Malinina, L. Mal'Kevich, D. Malzacher, P. Mamonov, A. Manceau, L. Manko, V. Manso, F. Manzari, V. Marchisone, M. Mares, J. Margagliotti, G. V. Margotti, A. Margutti, J. Marin, A. Markert, C. Marquard, M. Martin, N. A. Blanco, J. Martin Martinengo, P. Martinez, M. I. Garcia, G. Martinez Pedreira, M. Martinez Martynov, Y. Mas, A. Masciocchi, S. Masera, M. Masoni, A. Massacrier, L. Mastroserio, A. Masui, H. Matyja, A. Mayer, C. Mazer, J. Mazzoni, M. A. Mcdonald, D. Meddi, F. Menchaca-Rocha, A. Meninno, E. Perez, J. Mercado Meres, M. Miake, Y. Mieskolainen, M. M. Mikhaylov, K. Milano, L. Milosevic, J. Minervini, L. M. Mischke, A. Mishra, A. N. Miskowiec, D. Mitra, J. Mitu, C. M. Mohammadi, N. Mohanty, B. Molnar, L. Zetina, L. Montano Montes, E. Morando, M. De Godoy, D. A. Moreira Moretto, S. Morreale, A. Morsch, A. Muccifora, V. Mudnic, E. Muhlheim, D. Muhuri, S. Mukherjee, M. Muller, H. Mulligan, J. D. Munhoz, M. G. Murray, S. Musa, L. Musinsky, J. Nandi, B. K. Nania, R. Nappi, E. Naru, M. U. Nattrass, C. Nayak, K. Nayak, T. K. Nazarenko, S. Nedosekin, A. Nellen, L. Ng, F. Nicassio, M. Niculescu, M. Niedziela, J. Nielsen, B. S. Nikolaev, S. Nikulin, S. Nikulin, V. Noferini, F. Nomokonov, P. Nooren, G. Norman, J. Nyanin, A. Nystrand, J. Oeschler, H. Oh, S. Oh, S. K. Ohlson, A. Okatan, A. Okubo, T. Olah, L. Oleniacz, J. Da Silva, A. C. Oliveira Oliver, M. H. Onderwaater, J. Oppedisano, C. Velasquez, A. Ortiz Oskarsson, A. Otwinowski, J. Oyama, K. Ozdemir, M. Pachmayer, Y. Pagano, P. Paic, G. Pajares, C. Pal, S. K. Pan, J. Pant, D. Papikyan, V. Pappalardo, G. S. Pareek, P. Park, W. J. Parmar, S. Passfeld, A. Paticchio, V. Paul, B. Pawlak, T. Peitzmann, T. Da Costa, H. Pereira De Oliveira Filho, E. Pereira Peresunko, D. Lara, C. E. Perez Peskov, V. Pestov, Y. Petracek, V. Petrov, V. Petrovici, M. Petta, C. Piano, S. Pikna, M. Pillot, P. Pinazza, O. Pinsky, L. Piyarathna, D. B. Ploskon, M. Planinic, M. Pluta, J. Pochybova, S. Podesta-Lerma, P. L. M. Poghosyan, M. G. Polichtchouk, B. Poljak, N. Poonsawat, W. Pop, A. Porteboeuf-Houssais, S. Porter, J. Pospisil, J. Prasad, S. K. Preghenella, R. Prino, F. Pruneau, C. A. Pshenichnov, I. Puccio, M. Puddu, G. Pujahari, P. Punin, V. Putschke, J. Qvigstad, H. Rachevski, A. Raha, S. Rajput, S. Rak, J. Rakotozafindrabe, A. Ramello, L. Raniwala, R. Raniwala, S. Rasanen, S. S. Rascanu, B. T. Rathee, D. Read, K. F. Real, J. S. Redlich, K. Reed, R. J. Rehman, A. Reichelt, P. Reicher, M. Reidt, F. Ren, X. Renfordt, R. Reolon, A. R. Reshetin, A. Rettig, F. Revol, J. -P. Reygers, K. Riabov, V. Ricci, R. A. Richert, T. Richter, M. Riedler, P. Riegler, W. Riggi, F. Ristea, C. Rivetti, A. Rocco, E. Cahuantzi, M. Rodriguez Manso, A. Rodriguez Roed, K. Rogochaya, E. Rohr, D. Roehrich, D. Romita, R. Ronchetti, F. Ronflette, L. Rosnet, P. Rossi, A. Roukoutakis, F. Roy, A. Roy, C. Roy, P. Montero, A. J. Rubio Rui, R. Russo, R. Ryabinkin, E. Ryabov, Y. Rybicki, A. Sadovsky, S. Safarik, K. Sahlmuller, B. Sahoo, P. Sahoo, R. Sahoo, S. Sahu, P. K. Saini, J. Sakai, S. Saleh, M. A. Salgado, C. A. Salzwedel, J. Sambyal, S. Samsonov, V. Castro, X. Sanchez Sandor, L. Sandoval, A. Sano, M. Santagati, G. Sarkar, D. Scapparone, E. Scarlassara, F. Scharenberg, R. P. Schiaua, C. Schicker, R. Schmidt, C. Schmidt, H. R. Schuchmann, S. Schukraft, J. Schulc, M. Schuster, T. Schutz, Y. Schwarz, K. Schweda, K. Scioli, G. Scomparin, E. Scott, R. Seeder, K. S. Seger, J. E. Sekiguchi, Y. Selyuzhenkov, I. Senosi, K. Seo, J. Serradilla, E. Sevcenco, A. Shabanov, A. Shabetai, A. Shadura, O. Shahoyan, R. Shangaraev, A. Sharma, A. Sharma, N. Shigaki, K. Shtejer, K. Sibiriak, Y. Siddhanta, S. Sielewicz, K. M. Siemiarczuk, T. Silvermyr, D. Silvestre, C. Simatovic, G. Simonetti, G. Singaraju, R. Singh, R. Singha, S. Singhal, V. Sinha, B. C. Sinha, T. Sitar, B. Sitta, M. Skaali, T. B. Slupecki, M. Smirnov, N. Snellings, R. J. M. Snellman, T. W. Sogaard, C. Soltz, R. Song, J. Song, M. Song, Z. Soramel, F. Sorensen, S. Spacek, M. Spiriti, E. Sputowska, I. Spyropoulou-Stassinaki, M. Srivastava, B. K. Stachel, J. Stan, I. Stefanek, G. Steinpreis, M. Stenlund, E. Steyn, G. Stiller, J. H. Stocco, D. Strmen, P. Suaide, A. A. P. Sugitate, T. Suire, C. Suleymanov, M. Sultanov, R. Sumbera, M. Symons, T. J. M. Szabo, A. de Toledo, A. Szanto Szarka, I. Szczepankiewicz, A. Szymanski, M. Takahashi, J. Tanaka, N. Tangaro, M. A. Takaki, J. D. Tapia Peloni, A. Tarantola Tariq, M. Tarzila, M. G. Tauro, A. Munoz, G. Tejeda Telesca, A. Terasaki, K. Terrevoli, C. Teyssier, B. Thader, J. Thomas, D. Tieulent, R. Timmins, A. R. Toia, A. Trogolo, S. Trubnikov, V. Trzaska, W. H. Tsuji, T. Tumkin, A. Turrisi, R. Tveter, T. S. Ullaland, K. Uras, A. Usai, G. L. Utrobicic, A. Vajzer, M. Vala, M. Palomo, L. Valencia Vallero, S. Van Der Maarel, J. Van Hoorne, J. W. Van Leeuwen, M. Vanat, T. Vyvre, P. Vande Varga, D. Vargas, A. Vargyas, M. Varma, R. Vasileiou, M. Vasiliev, A. Vauthier, A. Vechernin, V. Veen, A. M. Veldhoen, M. Velure, A. Venaruzzo, M. Vercellin, E. Limon, S. Vergara Vernet, R. Verweij, M. Vickovic, L. Viesti, G. Viinikainen, J. Vilakazi, Z. Baillie, O. Villalobos Vinogradov, A. Vinogradov, L. Vinogradov, Y. Virgili, T. Vislavicius, V. Viyogi, Y. P. Vodopyanov, A. Voelkl, M. A. Voloshin, K. Voloshin, S. A. Volpe, G. von Haller, B. Vorobyev, I. Vranic, D. Vrlakova, J. Vulpescu, B. Vyushin, A. Wagner, B. Wagner, J. Wang, H. Wang, M. Wang, Y. Watanabe, D. Weber, M. Weber, S. G. Wessels, J. P. Westerhoff, U. Wiechula, J. Wikne, J. Wilde, M. Wilk, G. Wilkinson, J. Williams, M. C. S. Windelband, B. Winn, M. Yaldo, C. G. Yamaguchi, Y. Yang, H. Yang, P. Yano, S. Yasnopolskiy, S. Yin, Z. Yokoyama, H. Yoo, I. -K. Yurchenko, V. Yushmanov, I. Zaborowska, A. Zaccolo, V. Zaman, A. Zampolli, C. Zanoli, H. J. C. Zaporozhets, S. Zarochentsev, A. Zavada, P. Zaviyalov, N. Zbroszczyk, H. Zgura, I. S. Zhalov, M. Zhang, H. Zhang, X. Zhang, Y. Zhao, C. Zhigareva, N. Zhou, D. Zhou, Y. Zhou, Z. Zhu, H. Zhu, J. Zhu, X. Zichichi, A. Zimmermann, A. Zimmermann, M. B. Zinovjev, G. Zyzak, M. CA ALICE Collaboration TI Measurement of jet suppression in central Pb-Pb collisions at root s(NN)=2.76 TeV SO PHYSICS LETTERS B LA English DT Article ID TRANSVERSE-MOMENTUM DEPENDENCE; CHARGED-PARTICLE PRODUCTION; INDUCED GLUON RADIATION; LEAD-LEAD COLLISIONS; PP COLLISIONS; ATLAS DETECTOR; COLLABORATION; PERSPECTIVE; PLASMA; MATTER AB The transverse momentum(p(T)) spectrum and nuclear modification factor (R-AA) of reconstructed jets in 0-10% and 10-30% central Pb-Pb collisions at root s(NN) = 2.76 TeV were measured. Jets were reconstructed using the anti-k(T) jet algorithm with a resolution parameter of R = 0.2 from charged and neutral particles, utilizing the ALICE tracking detectors and Electromagnetic Calorimeter (EMCal). The jet p(T) spectra are reported in the pseudorapidity interval of \eta(jet)\ < 0.5 for 40 < p(T), jet < 120 GeV/c in 0-10% and for 30 < p(T), jet < 100 GeV/c in 10-30% collisions. Reconstructed jets were required to contain a leading charged particle with p(T) > 5 GeV/c to suppress jets constructed from the combinatorial background in Pb-Pb collisions. The leading charged particle requirement applied to jet spectra both in pp and Pb-Pb collisions had a negligible effect on the R-AA. The nuclear modification factor R-AA was found to be 0.28 +/- 0.04 in 0-10% and 0.35 +/- 0.04 in 10-30% collisions, independent of p(T), jet within the uncertainties of the measurement. The observed suppression is in fair agreement with expectations from two model calculations with different approaches to jet quenching. (C) 2015 CERN for the benefit of the ALICE Collaboration. Published by Elsevier B.V. C1 [Grigoryan, A.; Gulkanyan, H.; Papikyan, V.] Yerevan Phys Inst, AI Alikhanyan Natl Sci Lab, Yerevan 375036, Armenia. [Martinez, H. Bello; Maldonado, I. Cortes; Tellez, A. Fernandez; Martinez, M. I.; Cahuantzi, M. Rodriguez; Munoz, G. Tejeda; Vargas, A.; Limon, S. Vergara] Benemerita Univ Autonoma Puebla, Puebla, Mexico. [Alkin, A.; Chelnokov, V.; Grinyov, B.; Martynov, Y.; Shadura, O.; Trubnikov, V.; Yurchenko, V.; Zinovjev, G.] Bogolyubov Inst Theoret Phys, Kiev, Ukraine. [Das, S.; Ghosh, S. K.; Prasad, S. K.; Raha, S.] Bose Inst, Dept Phys, Kolkata, India. [Das, S.; Ghosh, S. K.; Prasad, S. K.; Raha, S.] CAPSS, Kolkata, India. [Pestov, Y.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Klay, J. L.] Calif Polytech State Univ San Luis Obispo, San Luis Obispo, CA USA. [Bartalini, P.; Cai, X.; Gao, C.; Li, S.; Ren, X.; Song, Z.; Wang, M.; Yang, P.; Yin, Z.; Zhang, H.; Zhang, Y.; Zhou, D.; Zhu, H.; Zhu, J.; Zhu, X.] Cent China Normal Univ, Wuhan, Peoples R China. [Vernet, R.] IN2P3, Ctr Calcul, Villeurbanne, France. [Sanchez, C. Ceballos; Torres, E. Lopez; Shtejer, K.] Ctr Aplicac Tecnol & Desarrollo Nucl CEADEN, Havana, Cuba. [Blanco, F.; Corchero, M. A. Diaz; Gonzalez-Zamora, P.; Montes, E.; Montero, A. J. Rubio; Serradilla, E.] Ctr Invest Energet Medioambient & Tecnol CIEMAT, Madrid, Spain. [Contreras, J. G.; Albino, R. Cruz; Corral, G. Herrera; Zetina, L. Montano; Cahuantzi, M. Rodriguez] Ctr Invest & Estudios Avanzados CINVESTAV, Mexico City, DF, Mexico. [Contreras, J. G.; Albino, R. Cruz; Corral, G. Herrera; Zetina, L. Montano; Cahuantzi, M. Rodriguez] Ctr Invest & Estudios Avanzados CINVESTAV, Merida, Venezuela. [Alici, A.; Cifarelli, L.; De Caro, A.; De Gruttola, D.; Noferini, F.; Revol, J. -P.; Zichichi, A.] Ctr Fermi Museo Stor Fis, Rome, Italy. [Alici, A.; Cifarelli, L.; De Caro, A.; De Gruttola, D.; Noferini, F.; Revol, J. -P.; Zichichi, A.] Ctr Studi & Ric Enrico Fermi, Rome, Italy. [Garcia-Solis, E.; Harton, A.] Calif State Univ Chico, Chicago, IL USA. [Li, X.] China Inst Atom Energy, Beijing, Peoples R China. [Baldisseri, A.; Borel, H.; Castellanos, J. Castillo; Charvet, J. L.; Lardeux, A.; Da Costa, H. Pereira; Rakotozafindrabe, A.] IRFU, Commissariat Energie Atom, Saclay, France. [Ahmed, I.; Ajaz, M.; Khan, K. H.; Naru, M. U.; Suleymanov, M.; Zaman, A.] CIIT Ctr Hlth Res, Islamabad, Pakistan. [Armesto, N.; Ferreiro, E. G.; Pajares, C.; Salgado, C. A.] Univ Santiago de Compostela, Dept Fis Particulas, Santiago De Compostela, Spain. [Armesto, N.; Ferreiro, E. G.; Pajares, C.; Salgado, C. A.] Univ Santiago de Compostela, IGFAE, Santiago De Compostela, Spain. [Djuvsland, O.; Haaland, O.; Huang, M.; Loenne, P. I.; Nystrand, J.; Rehman, A.; Roehrich, D.; Ullaland, K.; Velure, A.; Wagner, B.] Univ Bergen, Dept Phys & Technol, Bergen, Norway. [Azmi, M. D.; Hussain, T.; Irfan, M.; Khan, M. M.; Tariq, M.] Aligarh Muslim Univ, Dept Phys, Aligarh 202002, Uttar Pradesh, India. [Buxton, J. T.; Humanic, T. J.; Kubera, A. M.; Lisa, M. A.; Salzwedel, J.; Steinpreis, M.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Chang, B.; Hwang, D. S.; Kim, S.] Sejong Univ, Dept Phys, Seoul, South Korea. [Arsene, I. C.; Batzing, P. C.; Dordic, O.; Lindal, S.; Mahmood, S. M.; Milosevic, J.; Qvigstad, H.; Richter, M.; Roed, K.; Skaali, T. B.; Tveter, T. S.; Wikne, J.; Zhao, C.] Univ Oslo, Inst Phys, Oslo, Norway. [Meddi, F.] Dipartimento Elettrotecn & Elettron Politecn, Bari, Italy. [Meddi, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Meddi, F.] Sezione Ist Nazl Fis Nucl, Rome, Italy. [Casula, E. A. R.; Collu, A.; De Falco, A.; Puddu, G.; Terrevoli, C.; Usai, G. L.] Dipartimento Fis Univ, Cagliari, Italy. [Casula, E. A. R.; Collu, A.; De Falco, A.; Puddu, G.; Terrevoli, C.; Usai, G. L.] Sezione Ist Nazl Fis Nucl, Cagliari, Italy. [Camerini, P.; Lea, R.; Luparello, G.; Margagliotti, G. V.; Rui, R.] Dipartimento Fis Univ, Trieste, Italy. [Camerini, P.; Lea, R.; Luparello, G.; Margagliotti, G. V.; Rui, R.] Sezione Ist Nazl Fis Nucl, Trieste, Italy. [Beole, S.; Berzano, D.; Bianchi, L.; Botta, E.; Morales, Y. Corrales; Ferretti, A.; Gagliardi, M.; Gallio, M.; Lattuca, A.; Leoncino, M.; Marchisone, M.; Masera, M.; Russo, R.; Shtejer, K.; Vallero, S.; Vercellin, E.] Dipartimento Fis Univ, Turin, Italy. [Beole, S.; Berzano, D.; Bianchi, L.; Botta, E.; Morales, Y. Corrales; Ferretti, A.; Gagliardi, M.; Gallio, M.; Lattuca, A.; Leoncino, M.; Marchisone, M.; Masera, M.; Russo, R.; Shtejer, K.; Vallero, S.; Vercellin, E.] Sezione Ist Nazl Fis Nucl, Turin, Italy. [Arcelli, S.; Basile, M.; Bellini, F.; Cifarelli, L.; Colocci, M.; Guerzoni, B.; Scioli, G.; Zichichi, A.] Dipartimento Fis Astron Univ, Bologna, Italy. [Arcelli, S.; Basile, M.; Bellini, F.; Cifarelli, L.; Colocci, M.; Guerzoni, B.; Scioli, G.; Zichichi, A.] Sezione Ist Nazl Fis Nucl, Bologna, Italy. [Barbera, R.; La Rocca, P.; Petta, C.; Riggi, F.; Santagati, G.] Dipartimento Fis & Astron Univ, Catania, Italy. [Barbera, R.; La Rocca, P.; Petta, C.; Riggi, F.; Santagati, G.] Sezione Ist Nazl Fis Nucl, Catania, Italy. [Caffarri, D.; Festanti, A.; Francescon, A.; Giubilato, P.; Jena, C.; Lunardon, M.; Morando, M.; Moretto, S.; Scarlassara, F.; Soramel, F.; Terrevoli, C.; Viesti, G.] Dipartimento Fis Astron Univ, Padua, Italy. [Caffarri, D.; Festanti, A.; Francescon, A.; Giubilato, P.; Jena, C.; Lunardon, M.; Morando, M.; Moretto, S.; Scarlassara, F.; Soramel, F.; Terrevoli, C.; Viesti, G.] Sezione Ist Nazl Fis Nucl, Padua, Italy. [De Caro, A.; De Gruttola, D.; De Pasquale, S.; Girard, M. Fusco; Meninno, E.; Pagano, P.; Virgili, T.] E R Caianiello Univ, Dipartimento Fis, Salerno, Italy. [De Caro, A.; De Gruttola, D.; De Pasquale, S.; Girard, M. Fusco; Meninno, E.; Pagano, P.; Virgili, T.] INFN, Grp Collegato, Salerno, Italy. [Cortese, P.; Ramello, L.; Sitta, M.] Univ Piemonte Orientale, Dipartimento Sci & Innovaz Tecnol, Alessandria, Italy. [Cortese, P.; Ramello, L.; Sitta, M.] INFN, Grp Collegato, Alessandria, Italy. [Barile, F.; Bruno, G. E.; Colamaria, F.; Colella, D.; D'Erasmo, G.; Di Bari, D.; Fiore, E. M.; Mastroserio, A.; Tangaro, M. A.] Dipartimento Interateneo Fis M Merlin, Bari, Italy. [Barile, F.; Bruno, G. E.; Colamaria, F.; Colella, D.; D'Erasmo, G.; Di Bari, D.; Fiore, E. M.; Mastroserio, A.; Tangaro, M. A.] Sezione Ist Nazl Fis Nucl, Bari, Italy. [Christiansen, P.; Ljunggren, H. M.; Oskarsson, A.; Richert, T.; Silvermyr, D.; Sogaard, C.; Stenlund, E.; Vislavicius, V.] Lund Univ, Div Expt High Energy Phys, Lund, Sweden. [Hess, B. A.; Schmidt, H. R.; Wiechula, J.] Univ Tubingen, Tubingen, Germany. [Rinella, G. Aglieri; Augustinus, A.; Pedrosa, F. Baltasar Dos Santos; Berzano, D.; Betev, L.; Buncic, P.; Caffarri, D.; Carena, F.; Carena, W.; Cavicchioli, C.; Chapeland, S.; Barroso, V. Chibante; Chochula, P.; Costa, F.; Cunqueiro, L.; Di Mauro, A.; Divia, R.; Erazmus, B.; Floris, M.; Francescon, A.; Fuchs, U.; Gargiulo, C.; Gheata, A.; Gheata, M.; Giubellino, P.; Grigoras, A.; Grigoras, C.; Grosse-Oetringhaus, J. F.; Grosso, R.; Hillemanns, H.; Hristov, P.; Ionita, C.; Kalweit, A.; Keil, M.; Kluge, A.; Kofarago, M.; Kouzinopoulos, C.; Kowalski, M.; Kryshen, E.; Kugathasan, T.; Lakomov, I.; Laudi, E.; Legrand, I.; Mager, M.; Manzari, V.; Martinengo, P.; Pedreira, M. Martinez; Milano, L.; Morsch, A.; Muller, H.; Musa, L.; Niculescu, M.; Niedziela, J.; Ohlson, A.; Pinazza, O.; Preghenella, R.; Reidt, F.; Riedler, P.; Riegler, W.; Rossi, A.; Safarik, K.; Schukraft, J.; Schutz, Y.; Shahoyan, R.; Sielewicz, K. M.; Simonetti, G.; Szczepankiewicz, A.; Tauro, A.; Telesca, A.; Van Hoorne, J. W.; Vyvre, P. Vande; Volpe, G.; von Haller, B.; Vranic, D.; Weber, M.; Zimmermann, M. B.] European Org Nucl Res CERN, Geneva, Switzerland. [Alme, J.; Helstrup, H.; Hetland, K. F.; Kileng, B.] Bergen Univ Coll, Fac Engn, Bergen, Norway. [Meres, M.; Pikna, M.; Sitar, B.; Strmen, P.; Szabo, A.; Szarka, I.] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia. [Adam, J.; Bielcik, J.; Broz, M.; Cepila, J.; Contreras, J. G.; Eyyubova, G.; Krelina, M.; Petracek, V.; Schulc, M.; Spacek, M.] Czech Tech Univ, Fac Nucl Sci & Phys Engn, CR-16635 Prague, Czech Republic. [Bombara, M.; Kravcakova, A.; Vrlakova, J.] Safarik Univ, Fac Sci, Kosice, Slovakia. [Langoy, R.; Lien, J.] Buskerud & Vestfold Univ Coll, Fac Technol, Vestfold, Norway. [Alt, T.; Bach, M.; de Cuveland, J.; Eschweiler, D.; Gorbunov, S.; Hartmann, H.; Hutter, D.; Kirsch, S.; Kisel, I.; Kollegger, T.; Kretz, M.; Krzewicki, M.; Kulakov, I.; Lindenstruth, V.; Rettig, F.; Rohr, D.; Zyzak, M.] Goethe Univ Frankfurt, Frankfurt Inst Adv Studies, D-60054 Frankfurt, Germany. [Baek, Y. W.; Jung, H.; Kim, D. W.; Kim, J. S.; Kim, M.] Gangneung Wonju Natl Univ, Kangnung, South Korea. [Bhattacharjee, B.; Hussain, N.] Gauhati Univ, Dept Phys, Gauhati, India. [Brucken, E. J.; Hilden, T. E.; Mieskolainen, M. M.; Rasanen, S. S.] HIP, Helsinki, Finland. [Okubo, T.; Shigaki, K.; Sugitate, T.; Yano, S.] Hiroshima Univ, Hiroshima, Japan. [Agrawal, N.; Behera, N. K.; Dash, S.; Meethaleveedu, G. Koyithatta; Kumar, J.; Nandi, B. K.; Pant, D.; Varma, R.] IIT, Bombay, Maharashtra, India. [Mishra, A. N.; Pareek, P.; Roy, A.; Sahoo, P.; Sahoo, R.] IITI, Indore, Madhya Pradesh, India. [Kweon, M. J.] Inha Univ, Inchon, South Korea. [del Valle, Z. Conesa; Das, I.; Espagnon, B.; Hadjidakis, C.; Lakomov, I.; Suire, C.; Takaki, J. D. Tapia] Univ Paris 11, IPNO, CNRS IN2P3, Orsay, France. [Boettger, S.; Breitner, T.; Engel, H.; Kebschull, U.; Lara, C.] Goethe Univ Frankfurt, Inst Informat, D-60054 Frankfurt, Germany. [Appelshauser, H.; Arslandok, M.; Bailhache, R.; Bartsch, E.; Beck, H.; Blume, C.; Book, J.; Broker, T. A.; Buesching, H.; Dillenseger, P.; Doenigus, B.; Heckel, S. T.; Kamin, J.; Klein, C.; Lehnert, J.; Luettig, P.; Marquard, M.; Ozdemir, M.; Peskov, V.; Rascanu, B. T.; Reichelt, P.; Renfordt, R.; Sahlmuller, B.; Schuchmann, S.; Peloni, A. Tarantola; Toia, A.] Goethe Univ Frankfurt, Instr Kernphys, D-60054 Frankfurt, Germany. [Anielski, J.; Bathen, B.; Feldkamp, L.; Haake, R.; Heide, M.; Klein-Bosing, C.; Muhlheim, D.; Passfeld, A.; Wessels, J. P.; Westerhoff, U.; Wilde, M.; Zimmermann, M. B.] Univ Munster, Inst Kernphys, D-48149 Munster, Germany. [Belikov, I.; Ramirez, A. Gomez; Hippolyte, B.; Kalinak, P.; Kuhn, C.; Maire, A.; Molnar, L.; Roy, C.; Castro, X. Sanchez] Univ Strasbourg, IPHC, CNRS IN2P3, Strasbourg, France. [Finogeev, D.; Furs, A.; Guber, F.; Karavichev, O.; Karavicheva, T.; Karpechev, E.; Konevskikh, A.; Kurepin, A.; Kurepin, A. B.; Maevskaya, A.; Pshenichnov, I.; Reshetin, A.; Shabanov, A.] Acad Sci, Inst Nucl Res, Moscow, Russia. [Bertens, R. A.; Bianchin, C.; Bjelogrlic, S.; Caliva, A.; Dobrin, A.; Dubla, A.; Grelli, A.; Keijdener, D. L. D.; Leogrande, E.; Lodato, D. F.; Luparello, G.; Margutti, J.; Mischke, A.; Mohammadi, N.; Nooren, G.; Peitzmann, T.; Reicher, M.; Rocco, E.; Snellings, R. J. M.; Van Der Maarel, J.; Van Leeuwen, M.; Veen, A. M.; Veldhoen, M.; Wang, H.; Yang, H.; Zhou, Y.] Univ Utrecht, Inst Subat Phys, Utrecht, Netherlands. [Akindinov, A.; Kiselev, S.; Mal'Kevich, D.; Mikhaylov, K.; Nedosekin, A.; Sultanov, R.; Voloshin, K.; Zhigareva, N.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Kralik, I.; Krivda, M.; Musinsky, J.; Sandor, L.; Vala, M.] Slovak Acad Sci, Inst Expt Phys, Kosice 04353, Slovakia. [Bala, R.; Mares, J.; Zavada, P.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Baral, R. C.; Sahoo, S.; Sahu, P. K.; Sharma, N.] Inst Phys, Bhubaneswar, Orissa, India. [Danu, A.; Felea, D.; Gheata, M.; Haiduc, M.; Mitu, C. M.; Niculescu, M.; Ristea, C.; Sevcenco, A.; Stan, I.; Zgura, I. S.] ISS, Bucharest, Romania. [Cuautle, E.; Bustamante, R. T. Jimenez; Cervantes, I. Maldonado; Nellen, L.; Velasquez, A. Ortiz; Paic, G.] Univ Nacl Autonoma Mexico, Inst Ciencias Nucl, Mexico City 04510, DF, Mexico. [Molina, R. Alfaro; Belmont-Moreno, E.; Grabski, V.; Menchaca-Rocha, A.; Sandoval, A.; Serradilla, E.] Univ Nacl Autonoma Mexico, Inst Fis, Mexico City 04510, DF, Mexico. [Bossu, F.; Buthelezi, Z.; Foertsch, S.; Murray, S.; Senosi, K.; Steyn, G.] Natl Res Fdn, iThemba LABS, Somerset West, South Africa. [Batyunya, B.; Grigoryan, S.; Kadyshevskiy, V.; Malinina, L.; Mikhaylov, K.; Nomokonov, P.; Rogochaya, E.; Vodopyanov, A.; Zaporozhets, S.] JINR, Dubna, Russia. [Oh, S. K.; Seo, J.] Konkuk Univ, Seoul, South Korea. [Ahn, S. U.; Jang, H. J.; Kim, D. W.] Korea Inst Sci & Technol Informat, Taejon, South Korea. [Uysal, A. Karasu; Okatan, A.] Karatay Univ, KTO, Konya, Turkey. [Barret, V.; Bastid, N.; Camejo, A. Batista; Crochet, P.; Dupieux, P.; Li, S.; Lopez, X.; Manso, F.; Porteboeuf-Houssais, S.; Rosnet, P.; Palomo, L. Valencia; Vulpescu, B.] Univ Clermont Ferrand, CNRS IN2P3, Clermont Univ, LPC, Clermont Ferrand, France. [Balbastre, G. Conesa; Faivre, J.; Furget, C.; Guernane, R.; Kox, S.; Real, J. S.; Silvestre, C.; Vauthier, A.] Univ Grenoble Alpes, CNRS IN2P3, Lab Phys Subatom & Cosmol, Grenoble, France. [Bianchi, N.; Diaz, L. Calero; Di Nezza, P.; Fantoni, A.; Gianotti, P.; Muccifora, V.; Reolon, A. R.; Ronchetti, F.; Sakai, S.; Spiriti, E.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Ricci, R. A.; Venaruzzo, M.] Ist Nazl Fis Nucl, Lab Nazl Legnaro, I-35020 Legnaro, Italy. [Bock, F.; Fasel, M.; Gangadharan, D. R.; Jacobs, P. M.; Loizides, C.; Ploskon, M.; Porter, J.; Symons, T. J. M.; Thader, J.; Zhang, X.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Soltz, R.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Belyaev, V.; Bogdanov, A.; Grigoriev, V.; Ippolitov, M.; Kaplin, V.; Kondratyeva, N.; Loginov, V.; Peresunko, D.] Moscow Engn Phys Inst, Moscow 115409, Russia. [Deloff, A.; Dobrowolski, T.; Ilkiv, I.; Kovalenko, O.; Kurashvili, P.; Redlich, K.; Siemiarczuk, T.; Stefanek, G.; Wilk, G.] Natl Ctr Nucl Studies, Warsaw, Poland. [Andrei, C.; Berceanu, I.; Bercuci, A.; Herghelegiu, A.; Petrovici, M.; Pop, A.; Schiaua, C.; Tarzila, M. G.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Biswas, S.; Kumar, L.; Mohanty, B.; Nayak, K.; Singh, R.; Singha, S.] Natl Inst Sci Educ & Res, Bhubaneswar, Orissa, India. [Bearden, I. G.; Bilandzic, A.; Boggild, H.; Chojnacki, M.; Christensen, C. H.; Gaardhoje, J. J.; Gulbrandsen, K.; Hansen, A.; Nielsen, B. S.; Zaccolo, V.] Univ Copenhagen, Niels Bohr Inst, Copenhagen, Denmark. [Botje, M.; Christakoglou, P.; Dobrin, A.; Kuijer, P. G.; Lara, C. E. Perez; Manso, A. Rodriguez] Nikhef, Natl Inst Subat Phys, Amsterdam, Netherlands. [Borri, M.; Lemmon, R. C.] STFC Daresbury Lab, Nucl Phys Grp, Daresbury, Halton, England. [Adamova, D.; Bielcikova, J.; Ferencei, J.; Krizek, F.; Kucera, V.; Kushpil, S.; Pospisil, J.; Sumbera, M.; Vajzer, M.; Vanat, T.] Acad Sci Czech Republic, Inst Nucl Phys, CZ-25068 Rez, Czech Republic. [Cormier, T. M.; Silvermyr, D.] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Berdnikov, Y.; Ivanov, V.; Khanzadeev, A.; Malaev, M.; Nikulin, V.; Riabov, V.; Ryabov, Y.; Samsonov, V.; Zhalov, M.] Petersburg Nucl Phys Inst, Gatchina, Russia. [Cherney, M.; Poghosyan, M. G.; Seger, J. E.] Creighton Univ, Dept Phys, Omaha, NE 68178 USA. [Aggarwal, M. M.; Bhati, A. K.; Kumar, L.; Parmar, S.; Rathee, D.] Panjab Univ, Dept Phys, Chandigarh 160014, India. [Ganoti, P.; Roukoutakis, F.; Spyropoulou-Stassinaki, M.; Vasileiou, M.] Univ Athens, Dept Phys, Athens, Greece. [Cleymans, J.; Dietel, T.] Univ Cape Town, Dept Phys, ZA-7925 Cape Town, South Africa. [Bhasin, A.; Bhat, I. R.; Gupta, A.; Gupta, R.; Mahajan, S.; Rajput, S.; Sambyal, S.; Sharma, A.] Univ Jammu, Dept Phys, Jammu 180004, India. [Raniwala, R.; Raniwala, S.] Univ Rajasthan, Dept Phys, Jaipur 302004, Rajasthan, India. [Ball, M.; Dahms, T.; Fabbietti, L.; Gasik, P.; Vorobyev, I.] Tech Univ Munich, Dept Phys, D-80290 Munich, Germany. [Anguelov, V.; Bock, F.; Busch, O.; Deisting, A.; Glassel, P.; Klein, J.; Knichel, M. L.; Leardini, L.; Lu, X. -G.; Perez, J. Mercado; Oyama, K.; Pachmayer, Y.; Reidt, F.; Reygers, K.; Schicker, R.; Stachel, J.; Stiller, J. H.; Voelkl, M. A.; Wang, Y.; Wilkinson, J.; Windelband, B.; Winn, M.; Zimmermann, A.] Heidelberg Univ, Inst Phys, Heidelberg, Germany. [Aimo, I.; Averbeck, R.] Politecn Torino, Turin, Italy. [Browning, T. A.; Scharenberg, R. P.; Srivastava, B. K.] Purdue Univ, W Lafayette, IN 47907 USA. [Borissov, A.; Choi, K.; Chung, S. U.; Eum, J.; Oeschler, H.; Seo, J.; Song, J.; Yoo, I. -K.] Pusan Natl Univ, Pusan 609735, South Korea. [Andronic, A.; Braun-Munzinger, P.; Deisting, A.; Foka, P.; Frankenfeld, U.; Garabatos, C.; Ivanov, M.; Kohler, M. K.; Kollegger, T.; Krzewicki, M.; Lippmann, C.; Malzacher, P.; Marin, A.; Martin, N. A.; Masciocchi, S.; Miskowiec, D.; Nicassio, M.; Onderwaater, J.; Otwinowski, J.; Park, W. J.; Schmidt, C.; Schwarz, K.; Schweda, K.; Selyuzhenkov, I.; Thader, J.; Vranic, D.; Wagner, J.; Weber, S. G.] GSI Helmholtzzentrum Schwerionenforsch, Div Res, Darmstadt, Germany. [Andronic, A.; Braun-Munzinger, P.; Deisting, A.; Foka, P.; Frankenfeld, U.; Garabatos, C.; Ivanov, M.; Kohler, M. K.; Kollegger, T.; Krzewicki, M.; Lippmann, C.; Malzacher, P.; Marin, A.; Martin, N. A.; Masciocchi, S.; Miskowiec, D.; Nicassio, M.; Onderwaater, J.; Otwinowski, J.; Park, W. J.; Schmidt, C.; Schwarz, K.; Schweda, K.; Selyuzhenkov, I.; Thader, J.; Vranic, D.; Wagner, J.; Weber, S. G.] GSI Helmholtzzentrum Schwerionenforsch, ExtreMe Matter Inst EMMI, Darmstadt, Germany. [Anticic, T.] Rudjer Boskovic Inst, Zagreb, Croatia. [Budnikov, D.; Filchagin, S.; Ilkaev, R.; Kuryakin, A.; Mamonov, A.; Nazarenko, S.; Punin, V.; Tumkin, A.; Vinogradov, Y.; Vyushin, A.; Zaviyalov, N.] Russian Fed Nucl Ctr VNIIEF, Sarov, Russia. [Aleksandrov, D.; Blau, D.; Fokin, S.; Ippolitov, M.; Kucheriaev, Y.; Manko, V.; Nikolaev, S.; Nikulin, S.; Nyanin, A.; Peresunko, D.; Ryabinkin, E.; Sibiriak, Y.; Vasiliev, A.; Vinogradov, A.; Yasnopolskiy, S.; Yushmanov, I.] Russian Res Ctr Kurchatov Inst, Moscow, Russia. [Chattopadhyay, S.; Das, D.; Das, I.; Khan, P.; Paul, B.; Roy, P.; Sinha, T.] Saha Inst Nucl Phys, Kolkata, India. [Alexandre, D.; Barnby, L. S.; Evans, D.; Hanratty, L. D.; Jones, P. G.; Jusko, A.; Krivda, M.; Lee, G. R.; Lietava, R.; Baillie, O. Villalobos] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England. [Villar, E. Calvo; Gago, A. M.] Pontificia Univ Catolica Peru, Dept Ciencias, Secc Fis, Lima, Peru. [de Cataldo, G.; Elia, D.; Fionda, F. M.; Lenti, V.; Manzari, V.; Minervini, L. M.; Nappi, E.; Paticchio, V.] Sezione Ist Nazl Fis Nucl, Bari, Italy. [Alici, A.; Antonioli, P.; Cindolo, F.; Hatzifotiadou, D.; Margotti, A.; Nania, R.; Noferini, F.; Pinazza, O.; Preghenella, R.; Scapparone, E.; Williams, M. C. S.; Zampolli, C.] Sezione Ist Nazl Fis Nucl, Bologna, Italy. [Cicalo, C.; Masoni, A.; Siddhanta, S.] Sezione Ist Nazl Fis Nucl, Cagliari, Italy. [Badala, A.; Pappalardo, G. S.] Sezione Ist Nazl Fis Nucl, Catania, Italy. [Antinori, F.; Dainese, A.; Fabris, D.; Turrisi, R.] Sezione Ist Nazl Fis Nucl, Padua, Italy. [Mazzoni, M. A.] Sezione Ist Nazl Fis Nucl, Rome, Italy. [Fragiacomo, E.; Grion, N.; Piano, S.; Rachevski, A.] Sezione Ist Nazl Fis Nucl, Trieste, Italy. [Agnello, M.; Aimo, I.; Alessandro, B.; Arnaldi, R.; Bagnasco, S.; Barbano, A. M.; Bedda, C.; Bruna, E.; Bufalino, S.; Cerello, P.; De Marco, N.; Feliciello, A.; La Pointe, S. L.; Manceau, L.; Oppedisano, C.; Prino, F.; Puccio, M.; Rivetti, A.; Scomparin, E.; Trogolo, S.] Sezione Ist Nazl Fis Nucl, Turin, Italy. [Evdokimov, S.; Izucheev, V.; Kharlov, Y.; Kondratyuk, E.; Petrov, V.; Polichtchouk, B.; Sadovsky, S.; Shangaraev, A.] SSC IHEP NRC Kurchatov Inst, Protvino, Russia. [Aphecetche, L.; Batigne, G.; Erazmus, B.; Estienne, M.; Germain, M.; Blanco, J. Martin; Garcia, G. Martinez; Massacrier, L.; De Godoy, D. A. Moreira; Morreale, A.; Pillot, P.; Ronflette, L.; Schutz, Y.; Shabetai, A.; Stocco, D.; Wang, M.; Zhu, J.] Univ Nantes, CNRS IN2P3, Ecole Mines Nantes, SUBATECH, Nantes, France. [Kobdaj, C.; Poonsawat, W.] Suranaree Univ Technol, Nakhon Ratchasima, Thailand. [Gotovac, S.; Mudnic, E.; Vickovic, L.] Tech Univ Split FESB, Split, Croatia. [Bartke, J.; Figiel, J.; Gladysz-Dziadus, E.; Gorlich, L.; Kowalski, M.; Matyja, A.; Mayer, C.; Otwinowski, J.; Rybicki, A.; Sputowska, I.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, Krakow, Poland. [Knospe, A. G.; Markert, C.; Thomas, D.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. [Monzon, I. Leon; Podesta-Lerma, P. L. M.] Univ Autonoma Sinaloa, Culiacan, Mexico. [Prado, C. Alves Garcia; Bregant, M.; Cosentino, M. R.; De, S.; Gimenez, D. Domenicis; Jahnke, C.; Fernandes, C. Lagana; Mas, A.; Munhoz, M. G.; Da Silva, A. C. Oliveira; De Oliveira Filho, E. Pereira; Seeder, K. S.; Suaide, A. A. P.; de Toledo, A. Szanto; Zanoli, H. J. C.] Univ Sao Paulo, Sao Paulo, Brazil. [Chinellato, D. D.; Dash, A.; Takahashi, J.] Univ Estadual Campinas UNICAMP, Campinas, SP, Brazil. [Bellwied, R.; Bianchi, L.; Jayarathna, P. H. S. Y.; Jena, S.; Mcdonald, D.; Ng, F.; Pinsky, L.; Piyarathna, D. B.; Timmins, A. R.; Weber, M.] Univ Houston, Houston, TX USA. [Kim, D. J.; Kral, J.; Rak, J.; Slupecki, M.; Snellman, T. W.; Trzaska, W. H.; Vargyas, M.; Viinikainen, J.] Univ Jyvaskyla, Jyvaskyla, Finland. [Chartier, M.; Figueredo, M. A. S.; Norman, J.; Romita, R.] Univ Liverpool, Liverpool L69 3BX, Merseyside, England. [Castro, A. J.; Mazer, J.; Nattrass, C.; Read, K. F.; Scott, R.; Sharma, N.; Sorensen, S.] Univ Tennessee, Knoxville, TN USA. [Vilakazi, Z.] Univ Witwatersrand, Johannesburg, South Africa. [Gunji, T.; Hamagaki, H.; Hayashi, S.; Sekiguchi, Y.; Terasaki, K.; Tsuji, T.; Yamaguchi, Y.] Univ Tokyo, Tokyo, Japan. [Bhom, J.; Chujo, T.; Esumi, S.; Inaba, M.; Kobayashi, T.; Masui, H.; Miake, Y.; Sano, M.; Tanaka, N.; Watanabe, D.; Yokoyama, H.] Univ Tsukuba, Tsukuba, Ibaraki, Japan. [Erhardt, F.; Planinic, M.; Poljak, N.; Simatovic, G.; Utrobicic, A.] Univ Zagreb, Zagreb 41000, Croatia. [Cheshkov, C.; Cheynis, B.; Ducroux, L.; Grossiord, J. -Y.; Teyssier, B.; Tieulent, R.; Uras, A.] Univ Lyon 1, CNRS IN2P3, IPN Lyon, F-69622 Villeurbanne, France. [Altsybeev, I.; Feofilov, G.; Kolojvari, A.; Kondratiev, V.; Kovalenko, V.; Vechernin, V.; Vinogradov, L.; Zarochentsev, A.] St Petersburg State Univ, V Fock Inst Phys, St Petersburg 199034, Russia. [Ahammed, Z.; Alam, S. N.; Basu, S.; Chattopadhyay, S.; Choudhury, S.; Dubey, A. K.; Ghosh, P.; Kar, S.; Khan, S. A.; Mitra, J.; Mohanty, B.; Muhuri, S.; Mukherjee, M.; Nayak, T. K.; Pal, S. K.; Pawlak, T.; Saini, J.; Sarkar, D.; Singaraju, R.; Singha, S.; Singhal, V.; Sinha, B. C.; Viyogi, Y. P.] Ctr Variable Energy Cyclotron, Kolkata, India. [Milosevic, J.] Vinca Inst Nucl Sci, Belgrade, Serbia. [Graczykowski, L. K.; Janik, M. A.; Kisiel, A.; Oleniacz, J.; Pluta, J.; Szymanski, M.; Zaborowska, A.; Zbroszczyk, H.] Warsaw Univ Technol, Warsaw, Poland. [Belmont, R.; Bianchin, C.; Loggins, V. R.; Pan, J.; Pruneau, C. A.; Pujahari, P.; Putschke, J.; Reed, R. J.; Saleh, M. A.; Verweij, M.; Voloshin, S. A.; Yaldo, C. G.] Wayne State Univ, Detroit, MI USA. [Barnafoeldi, G. G.; Bencedi, G.; Berenyi, D.; Boldizsar, L.; Denes, E.; Hamar, G.; Kiss, G.; Levai, P.; Lowe, A.; Olah, L.; Pochybova, S.; Varga, D.; Volpe, G.] Hungarian Acad Sci, Wigner Res Ctr Phys, Budapest, Hungary. [Aiola, S.; Aronsson, T.; Caines, H.; Connors, M. E.; Ehlers, R. J.; Harris, J. W.; Majka, R. D.; Mulligan, J. D.; Oh, S.; Oliver, M. H.; Schuster, T.; Smirnov, N.] Yale Univ, New Haven, CT USA. [Kang, J. H.; Kim, B.; Kim, H.; Kim, M.; Kim, T.; Kwon, Y.; Lee, S.; Song, M.] Yonsei Univ, Seoul 120749, South Korea. [Keidel, R.] ZTT, Fachhochschule Worms, Worms, Germany. RP Adam, J (reprint author), Czech Tech Univ, Fac Nucl Sci & Phys Engn, CR-16635 Prague, Czech Republic. RI Ferencei, Jozef/H-1308-2014; Adamova, Dagmar/G-9789-2014; Christensen, Christian/D-6461-2012; De Pasquale, Salvatore/B-9165-2008; Chinellato, David/D-3092-2012; Felea, Daniel/C-1885-2012; de Cuveland, Jan/H-6454-2016; Kurepin, Alexey/H-4852-2013; Jena, Deepika/P-2873-2015; Jena, Satyajit/P-2409-2015; Akindinov, Alexander/J-2674-2016; Takahashi, Jun/B-2946-2012; Guber, Fedor/I-4271-2013; Zarochentsev, Andrey/J-6253-2013; Altsybeev, Igor/K-6687-2013; Vinogradov, Leonid/K-3047-2013; Kondratiev, Valery/J-8574-2013; Vechernin, Vladimir/J-5832-2013; Naru, Muhammad Umair/N-5547-2015; Janik, Malgorzata/O-7520-2015; Graczykowski, Lukasz/O-7522-2015; Sevcenco, Adrian/C-1832-2012; feofilov, grigory/A-2549-2013; Kucera, Vit/G-8459-2014; Pshenichnov, Igor/A-4063-2008; Krizek, Filip/G-8967-2014; Bielcikova, Jana/G-9342-2014; Vajzer, Michal/G-8469-2014; Sumbera, Michal/O-7497-2014; Kovalenko, Vladimir/C-5709-2013; Barnby, Lee/G-2135-2010; Barbera, Roberto/G-5805-2012; Bruna, Elena/C-4939-2014; Bregant, Marco/I-7663-2012; Karasu Uysal, Ayben/K-3981-2015; HAMAGAKI, HIDEKI/G-4899-2014; Ferretti, Alessandro/F-4856-2013; Vickovic, Linda/F-3517-2017; Fernandez Tellez, Arturo/E-9700-2017; Nattrass, Christine/J-6752-2016; Usai, Gianluca/E-9604-2015; Cosentino, Mauro/L-2418-2014; Suaide, Alexandre/L-6239-2016; Peitzmann, Thomas/K-2206-2012; Castillo Castellanos, Javier/G-8915-2013; Inst. of Physics, Gleb Wataghin/A-9780-2017; Ferreiro, Elena/C-3797-2017; Armesto, Nestor/C-4341-2017; Martinez Hernandez, Mario Ivan/F-4083-2010 OI Christensen, Christian/0000-0002-1850-0121; De Pasquale, Salvatore/0000-0001-9236-0748; Chinellato, David/0000-0002-9982-9577; Felea, Daniel/0000-0002-3734-9439; de Cuveland, Jan/0000-0003-0455-1398; Kurepin, Alexey/0000-0002-1851-4136; Jena, Deepika/0000-0003-2112-0311; Jena, Satyajit/0000-0002-6220-6982; Akindinov, Alexander/0000-0002-7388-3022; Takahashi, Jun/0000-0002-4091-1779; Guber, Fedor/0000-0001-8790-3218; Zarochentsev, Andrey/0000-0002-3502-8084; Altsybeev, Igor/0000-0002-8079-7026; Vinogradov, Leonid/0000-0001-9247-6230; Kondratiev, Valery/0000-0002-0031-0741; Vechernin, Vladimir/0000-0003-1458-8055; Naru, Muhammad Umair/0000-0001-6489-0784; Janik, Malgorzata/0000-0002-3356-3438; Sevcenco, Adrian/0000-0002-4151-1056; feofilov, grigory/0000-0003-3700-8623; Pshenichnov, Igor/0000-0003-1752-4524; Sumbera, Michal/0000-0002-0639-7323; Kovalenko, Vladimir/0000-0001-6012-6615; Barnby, Lee/0000-0001-7357-9904; Barbera, Roberto/0000-0001-5971-6415; Bruna, Elena/0000-0001-5427-1461; Karasu Uysal, Ayben/0000-0001-6297-2532; Beole', Stefania/0000-0003-4673-8038; Giubilato, Piero/0000-0003-4358-5355; Fernandez Tellez, Arturo/0000-0001-5092-9748; Ferretti, Alessandro/0000-0001-9084-5784; Vickovic, Linda/0000-0002-9820-7960; Fernandez Tellez, Arturo/0000-0003-0152-4220; Riggi, Francesco/0000-0002-0030-8377; Dainese, Andrea/0000-0002-2166-1874; Paticchio, Vincenzo/0000-0002-2916-1671; Scarlassara, Fernando/0000-0002-4663-8216; Turrisi, Rosario/0000-0002-5272-337X; D'Erasmo, Ginevra/0000-0003-3407-6962; Nattrass, Christine/0000-0002-8768-6468; Usai, Gianluca/0000-0002-8659-8378; Cosentino, Mauro/0000-0002-7880-8611; Suaide, Alexandre/0000-0003-2847-6556; Peitzmann, Thomas/0000-0002-7116-899X; Castillo Castellanos, Javier/0000-0002-5187-2779; Ferreiro, Elena/0000-0002-4449-2356; Armesto, Nestor/0000-0003-0940-0783; Martinez Hernandez, Mario Ivan/0000-0002-8503-3009 FU Worldwide LHC Computing Grid (WLCG) collaboration; State Committee of Science; World Federation of Scientists (WFS); Swiss Fonds Kidagan, Armenia; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq); Financiadora de Estudos e Projetos (FINEP); Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP); National Natural Science Foundation of China (NSFC); Chinese Ministry of Education (CMOE); Ministry of Science and Technology of China (MSTC); Ministry of Education and Youth of the Czech Republic; Danish Natural Science Research Council; Carlsberg Foundation; European Research Council under the European Community's Seventh Framework Programme; Helsinki Institute of Physics; French CNRS-IN2P3; Region Pays de Loire; Region Alsace; Region Auvergne; CEA, France; German Bundesministerium fur Bildung, Wissenschaft, Forschung und Technologie (BMBF); Helmholtz Association; General Secretariat for Research and Technology, Ministry of Development, Greece; Hungarian Orszagos Tudomanyos Kutatasi Alappgrammok (OTKA); National Office for Research and Technology (NKTH); Department of Atomic Energy of Government of India; Istituto Nazionale di Fisica Nucleare (INFN); Centro Fermi - Museo Storico della Fisica e Centro Studi e Ricerche "Enrico Fermi", Italy; MEXT, Japan; Joint Institute for Nuclear Research, Dubna; National Research Foundation of Korea (NRF); Consejo Nacional de Cienca y Tecnologia (CONACYT); Direccion General de Asuntos del Personal Academico (DGAPA), Mexico; Amerique Latine Formation academique-European Commission (ALFA-EC); EPLANET Program (European Particle Physics Latin American Network); Stichting voor Fundamenteel Onderzoek der Materie (FOM); Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Netherlands; Research Council of Norway (NFR); National Science Centre of Poland; Ministry of National Education/Institute for Atomic Physics; Consiliul National al Cercetarii, Stiintifice Executive Agency for Higher Education Research Development and Innovation Funding (CNCS-UEFISCDI), Romania; Ministry of Education and Science of Russian Federation; Russian Academy of Sciences; Russian Federal Agency of Atomic Energy; Russian Federal Agency for Science and Innovations; Russian Foundation for Basic Research; Ministry of Education of Slovakia; Department of Science and Technology, Republic of South Africa; Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT); E-Infrastructure shared between Europe and Latin America (EELA); Ministerio de Economia y Competitividad (MINECO) of Spain; Xunta de Galicia (Conselleria de Educacion); Centro de Aplicaciones Tecnologicas y Desarrollo Nuclear (CEADEN), Cubaenergia, Cuba; IAEA (International Atomic Energy Agency); Swedish Research Council (VR); Knut & Alice Wallenberg Foundation (KAW); Ukraine Ministry of Education and Science; United Kingdom Science and Technology Facilities Council (STFC); United States Department of Energy; United States National Science Foundation; State of Texas; State of Ohio; Ministry of Science, Education and Sports of Croatia; Unity through Knowledge Fund, Croatia; Council of Scientific and Industrial Research (CSIR), New Delhi, India; Danish National Research Foundation; Academy of Finland; Department of Science and Technology of Government of India FX The ALICE Collaboration would like to thank all its engineers and technicians for their invaluable contributions to the construction of the experiment and the CERN accelerator teams for the outstanding performance of the LHC complex. The ALICE Collaboration gratefully acknowledges the resources and support provided by all Grid centers and the Worldwide LHC Computing Grid (WLCG) collaboration.; The ALICE Collaboration acknowledges the following funding agencies for their support in building and running the ALICE detector: State Committee of Science, World Federation of Scientists (WFS) and Swiss Fonds Kidagan, Armenia; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Financiadora de Estudos e Projetos (FINEP), Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP); National Natural Science Foundation of China (NSFC), the Chinese Ministry of Education (CMOE) and the Ministry of Science and Technology of China (MSTC); Ministry of Education and Youth of the Czech Republic; Danish Natural Science Research Council, the Carlsberg Foundation and the Danish National Research Foundation; The European Research Council under the European Community's Seventh Framework Programme; Helsinki Institute of Physics and the Academy of Finland; French CNRS-IN2P3, the 'Region Pays de Loire', 'Region Alsace', 'Region Auvergne' and CEA, France; German Bundesministerium fur Bildung, Wissenschaft, Forschung und Technologie (BMBF) and the Helmholtz Association; General Secretariat for Research and Technology, Ministry of Development, Greece; Hungarian Orszagos Tudomanyos Kutatasi Alappgrammok (OTKA) and National Office for Research and Technology (NKTH); Department of Atomic Energy and Department of Science and Technology of the Government of India; Istituto Nazionale di Fisica Nucleare (INFN) and Centro Fermi - Museo Storico della Fisica e Centro Studi e Ricerche "Enrico Fermi", Italy; MEXT Grant-in-Aid for Specially Promoted Research, Japan; Joint Institute for Nuclear Research, Dubna; National Research Foundation of Korea (NRF); Consejo Nacional de Cienca y Tecnologia (CONACYT), Direccion General de Asuntos del Personal Academico (DGAPA), Mexico, Amerique Latine Formation academique-European Commission (ALFA-EC) and the EPLANET Program (European Particle Physics Latin American Network); Stichting voor Fundamenteel Onderzoek der Materie (FOM) and the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Netherlands; Research Council of Norway (NFR); National Science Centre of Poland; Ministry of National Education/Institute for Atomic Physics and Consiliul National al Cercetarii, Stiintifice Executive Agency for Higher Education Research Development and Innovation Funding (CNCS-UEFISCDI), Romania; Ministry of Education and Science of Russian Federation, Russian Academy of Sciences, Russian Federal Agency of Atomic Energy, Russian Federal Agency for Science and Innovations and The Russian Foundation for Basic Research; Ministry of Education of Slovakia; Department of Science and Technology, Republic of South Africa; Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT), E-Infrastructure shared between Europe and Latin America (EELA), Ministerio de Economia y Competitividad (MINECO) of Spain, Xunta de Galicia (Conselleria de Educacion), Centro de Aplicaciones Tecnologicas y Desarrollo Nuclear (CEADEN), Cubaenergia, Cuba, and IAEA (International Atomic Energy Agency); Swedish Research Council (VR) and Knut & Alice Wallenberg Foundation (KAW); Ukraine Ministry of Education and Science; United Kingdom Science and Technology Facilities Council (STFC); The United States Department of Energy, the United States National Science Foundation, the State of Texas, and the State of Ohio; Ministry of Science, Education and Sports of Croatia and Unity through Knowledge Fund, Croatia. Council of Scientific and Industrial Research (CSIR), New Delhi, India. NR 62 TC 25 Z9 25 U1 6 U2 81 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD JUN 30 PY 2015 VL 746 BP 1 EP 14 DI 10.1016/j.physletb.2015.04.039 PG 14 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CJ3JC UT WOS:000355378200001 ER PT J AU Khachatryan, V Sirunyan, AM Tumasyan, A Adam, W Bergauer, T Dragicevic, M Ero, J Friedl, M Fruhwirth, R Ghete, VM Hartl, C Hormann, N Hrubec, J Jeitler, M Kiesenhofer, W Knunz, V Krammer, M Kratschmer, I Liko, D Mikulec, I Rabady, D Rahbaran, B Rohringer, H Schofbeck, R Strauss, J Treberer-Treberspurg, W Waltenberger, W Wulz, CE Mossolov, V Shumeiko, N Zonzalez, JS Alderweireldt, S Bansal, M Bansal, S Cornelis, T De Wolf, EA Janssen, X Knutsson, A Lauwers, J Luyckx, S Ochesanu, S Rougny, R Van De Klundert, M Van Haevermaet, H Van Mechelen, P Van Remortel, N Van Spilbeeck, A Blekman, F Blyweert, S D'Hondt, J Daci, N Heracleous, N Keaveney, J Lowette, S Maes, M Olbrechts, A Python, Q Strom, D Tavernier, S Van Doninck, W Van Mulders, P Van Onsem, GP Villella, I Caillol, C Clerbaux, B De Lentdecker, G Dobur, D Favart, L Gay, APR Grebenyuk, A Leonard, A Mohammadi, A Pernie, L Reis, T Seva, T Thomas, L Vander Velde, C Vanlaer, P Wang, J Zenoni, F Adler, V Beernaert, K Benucci, L Cimmino, A Costantini, S Crucy, S Dildick, S Fagot, A Garcia, G Mccartin, J Rios, AAO Ryckbosch, D Diblen, SS Sigamani, M Strobbe, N Thyssen, F Tytgat, M Yazgan, E Zaganidis, N Basegmez, S Beluffi, C Bruno, G Castello, R Caudron, A Ceard, L Da Silveira, GG Delaere, C du Pree, T Favart, D Forthomme, L Giammanco, A Hollar, J Jafari, A Jez, P Komm, M Lemaitre, V Nuttens, C Pagano, D Perrini, L Pin, A Piotrzkowski, K Popov, A Quertenmont, L Selvaggi, M Marono, MV Garcia, JMV Beliy, N Caebergs, T Daubie, E Hammad, GH Alda, WL Alves, GA Brito, L Martins, MC Martins, TD Herrera, CM Pol, ME Carvalho, W Chinellato, J Custodio, A Da Costa, EM Damiao, DD Martins, CD De Souza, SF Malbouisson, H Figueiredo, DM Mundim, L Nogima, H Da Silva, WLP Santaolalla, J Santoro, A Sznajder, A Manganote, EJT Pereira, AV Bernardes, CA Dogra, S Tomei, TRFP Gregores, EM Mercadante, G Novaes, SF Padula, SS Aleksandrov, A Genchev, V Iaydjiev, P Marinov, A Piperov, S Rodozov, M Sultanov, G Vutova, M Dimitrov, A Glushkov, I Hadjiiska, R Kozhuharov, V Litov, L Pavlov, B Petkov, P Bian, JG Chen, GM Chen, HS Chen, M Cheng, T Du, R Jiang, CH Plestina, R Romeo, F Tao, J Wang, Z Asawatangtrakuldee, C Ban, Y Li, Q Liu, S Mao, Y Qian, SJ Wang, D Zou, W Avila, C Sierra, LFC Florez, C Gomez, JP Moreno, BG Sanabria, JC Godinovic, N Lelas, D Polic, D Puljak, I Antunovic, Z Kovac, M Brigljevic, V Kadija, K Luetic, J Mekterovic, D Sudic, L Attikis, A Mavromanolakis, G Mousa, J Nicolaou, C Ptochos, F Razis, PA Bodlak, M Finger, M Finger, M Assran, Y Elgammal, S Mahmoud, MA Radi, A Kadastik, M Murumaa, M Raidal, M Tiko, A Eerola, P Fedi, G Voutilainen, M Harkonen, J Karimaki, V Kinnunen, R Kortelainen, MJ Lampan, T Lassila-Perini, K Lehti, S Linden, T Luukka, P Maenpaa, T Peltola, T Tuominen, E Tuominiemi, J Tuovinen, E Wendland, L Talvitie, J Tuuva, T Besancon, M Couderc, F Dejardin, M Denegri, D Fabbro, B Faure, JL Favaro, C Ferri, F Ganjour, S Givernaud, A Gras, P de Monchenault, GH Jarry, P Locci, E Malcles, J Rander, J Rosowsky, A Titov, M Baffioni, S Beaudette, F Busson, P Charlot, C Dahms, T Dalchenko, M Dobrzynski, L Filipovic, N Florent, A de Cassagnac, RG Mastrolorenzo, L Mine, P Mironov, C Naranjo, IN Nguyen, M Ochando, C Paganini, P Regnard, S Salerno, R Sauvan, JB Sirois, Y Veelken, C Yilmaz, Y Zabi, A Agram, JL Andrea, J Aubin, A Bloch, D Brom, JM Chabert, EC Collard, C Conte, E Fontaine, JC Gele, D Goerlach, U Goetzmann, C Le Bihan, AC Van Hove, P Gadrat, S Beauceron, S Beaupere, N Boudoul, G Bouvier, E Brochet, S Montoya, CAC Chasserat, J Chierici, R Contardo, D Depasse, P El Mamouni, H Fan, J Fay, J Gascon, S Gouzevitch, M Ille, B Kurca, T Lethuillier, M Mirabito, L Perries, S Alvarez, JDR Sabes, D Sgandurra, L Sordini, V Donckt, M Verdier, P Viret, S Xiao, H Tsamalaidze, Z Autermann, C Beranek, S Bontenackels, M Edelhoff, M Feld, L Heister, A Hindrichs, O Klein, K Ostapchuk, A Raupach, F Sammet, J Schael, S Weber, H Wittmer, B Zhukov, V Ata, M Brodski, M Dietz-Laursonn, E Duchardt, D Erdmann, M Fischer, R Guth, A Hebbeker, T Heidemann, C Hoepfner, K Klingebiel, D Knutzen, S Kreuzer, P Merschmeyer, M Meyer, A Millet, P Olschewski, M Padeken, K Papacz, P Reithler, H Schmitz, SA Sonnenschein, L Teyssier, D Thuer, S Weber, M Cherepanov, V Erdogan, Y Flugge, G Geenen, H Geisler, M Ahmad, WH Hoehle, F Kargoll, B Kress, T Kuessel, Y Kunsken, A Lingemann, J Nowack, A Nugent, IM Perchalla, L Pooth, O Stahl, A Asin, I Bartosik, N Behr, J Behrenhoff, W Behrens, U Bell, AJ Bergholz, M Bethani, A Borras, K Burgmeier, A Cakir, A Calligaris, L Campbell, A Choudhury, S Costanza, F Pardos, CD Dolinska, G Dooling, S Dorland, T Eckerlin, G Eckstein, D Eichhorn, T Flucke, G Garcia, JG Geiser, A Gunnellini, P Hauk, J Hempel, M Horton, D Jung, H Kalogeropoulos, A Kasemann, M Katsas, P Kieseler, J Kleinwort, C Korol, I Krucker, D Lange, W Leonard, J Lipka, K Lobanov, A Lohmann, W Lutz, B Mankel, R Marfin, I Melzer-Pellmann, IA Meyer, AB Mittag, G Mnich, J Mussgiller, A Naumann-Emme, S Nayak, A Novgorodova, O Ntomari, E Perrey, H Pitzl, D Placakyte, R Raspereza, A Cipriano, PMR Roland, B Ron, E Sahin, MO Salfeld-Nebgen, J Saxena, P Schmidt, R Schoerner-Sadenius, T Schroder, M Seitz, C Spannagel, S Trevino, ADRV Walsh, R Wissing, C Martin, MA Blobel, V Vignali, MC Draeger, AR Erfle, J Garutti, E Goebel, K Gorner, M Haller, J Hoffmann, M Hoing, RS Kirschenmann, H Klanner, R Kogler, R Lange, J Lapsien, T Lenz, T Marchesini, I Ott, J Peiffer, T Perieanu, A Pietsch, N Poehlsen, J Poehlsen, T Rathjens, D Sander, C Schettler, H Schleper, P Schlieckau, E Schmidt, A Seidel, M Sola, V Stadie, H Steinbruck, G Troendle, D Usai, E Vanelderen, L Vanhoefer, A Barth, C Baus, C Berger, J Boser, C Butz, E Chwalek, T De Boer, W Descroix, A Dierlamm, A Feindt, M Frensch, F Giffels, M Gilbert, A Hartmann, F Hauth, T Husemann, U Katkov, I Kornmayer, A Kuznetsova, E Pardo, PL Mozer, MU Muller, T Nurnberg, A Quast, G Rabbertz, K Ratnikov, F Rocker, S Simonis, HJ Stober, FM Ulrich, R Wagner-Kuhr, J Wayand, S Weiler, T Wolf, R Anagnostou, G Daskalakis, G Geralis, T Giakoumopoulou, VA Kyriakis, A Loukas, D Markou, A Markou, C Psallidas, A Topsis-Giotis, I Agapitos, A Kesisoglou, S Panagiotou, A Saoulidou, N Stiliaris, E Aslanoglou, X Evangelou, I Flouris, G Foudas, C Kokkas, P Manthos, N Papadopoulos, I Paradas, E Strologas, J Bencze, G Hajdu, C Hidas, P Horvath, D Sikler, F Veszpremi, V Vesztergombi, G Zsigmond, AJ Beni, N Czellar, S Karancsi, J Molnar, J Palinkas, J Szillasi, Z Makovec, A Raics, P Trocsanyi, ZL Ujvari, B Swain, SK Beri, SB Bhatnagar, V Gupta, R Bhawandeep, U Kalsi, AK Kaur, M Kumar, R Mittal, M Nishu, N Singh, JB Kumar, A Kumar, A Ahuja, S Bhardwaj, A Choudhary, BC Kumar, A Malhotra, S Naimuddin, M Ranjan, K Sharma, V Banerjee, S Bhattacharya, S Chatterjee, K Dutta, S Gomber, B Jain, S Jain, S Khurana, R Modak, A Mukherjee, S Roy, D Sarkar, S Sharan, M Abdulsalam, A Dutta, D Kailas, S Kumar, V Mohanty, AK Pant, LM Shukla, P Topkar, A Aziz, T Banerjee, S Bhowmik, S Chatterjee, RM Dewanjee, RK Dugad, S Ganguly, S Ghosh, S Guchait, M Gurtu, A Kole, G Kumar, S Maity, M Majumder, G Mazumdar, K Mohanty, GB Parida, B Sudhakar, K Wickramage, N Bakhshiansohi, H Behnamian, H Etesami, SM Fahim, A Goldouzian, R Khakzad, M Najafabadi, MM Naseri, M Mehdiabadi, SP Hosseinabadi, FR Safarzadeh, B Zeinali, M Felcini, M Grunewald, M Abbrescia, M Calabria, C Chhibra, SS Colaleo, A Creanza, D De Filippis, N De Palma, M Fiore, L Iaselli, G Maggi, G Maggi, M My, S Nuzzo, S Pompili, A Pugliese, G Radogna, R Selvaggi, G Sharma, A Silvestris, L Venditti, R Abbiendi, G Benvenuti, AC Bonacorsi, D Braibant-Giacomelli, S Brigliadori, L Campanini, R Capiluppi, P Castro, A Cavallo, FR Codispoti, G Cuffiani, M Dallavalle, GM Fabbri, F Fanfani, A Fasanella, D Giacomelli, P Grandi, C Guiducci, L Marcellini, S Masetti, G Montanari, A Navarria, FL Perrotta, A Primavera, F Rossi, AM Rovelli, T Siroli, GP Tosi, N Travaglini, R Albergo, S Cappello, G Chiorboli, M Costa, S Giordano, F Potenza, R Tricomi, A Tuve, C Barbagli, G Ciulli, V Civinini, C D'Alessandro, R Focardi, E Gallo, E Gonzia, S Gori, V Lenzi, P Meschini, M Paoletti, S Sguazzoni, G Tropiano, A Benussi, L Bianco, S Fabbri, F Piccolo, D Ferretti, R Ferro, F Lo Vetere, M Robutti, E Tosi, S Dinardo, ME Fiorendi, S Gennai, S Gerosa, R Ghezzi, A Govoni, P Lucchini, MT Malvezzi, S Manzoni, RA Martelli, A Marzocchi, B Menasce, D Moroni, L Paganoni, M Pedrini, D Ragazzi, S Redaelli, N de Fatis, TT Buontempo, S Cavallo, N Di Guida, S Fabozzi, F Iorio, AOM Lista, L Meola, S Merola, M Paolucci, P Azzi, P Bacchetta, N Bisello, D Branca, A Carlin, R Checchia, P Dall'Osso, M Dorigo, T Dosselli, U Galanti, M Gasparini, F Gasparini, U Giubilato, P Gozzelino, A Kanishchev, K Lacaprara, S Margoni, M Meneguzzo, AT Pazzini, J Pozzobon, N Ronchese, P Simonetto, F Torassa, E Tosi, M Zotto, P Zucchetta, A Zumerle, G Gabusi, M Ratti, SP Re, V Riccardi, C Salvini, P Vitulo, P Biasini, M Bilei, GM Ciangottini, D Fano, L Lariccia, P Mantovani, G Menichelli, M Saha, A Santocchia, A Spiezia, A Androsov, K Azzurri, P Bagliesi, G Bernardini, J Boccali, T Broccolo, G Castaldi, R Ciocci, MA Dell'Orso, R Donato, S Fiori, F Foa, L Giassi, A Grippo, MT Ligabue, F Lomtadze, T Martini, L Messineo, A Moon, CS Palla, F Rizzi, A Savoy-Navarro, A Serban, AT Spagnolo, P Squillacioti, P Tenchini, R Tonelli, G Venturi, A Verdini, PG Vernieri, C Barone, L Cavallari, F D'imperio, G Del Re, D Diemoz, M Jorda, C Longo, E Margaroli, F Meridiani, P Micheli, F Nourbakhsh, S Organtini, G Paramatti, R Rahatlou, S Rovelli, C Santanastasio, F Soffi, L Traczyk, P Amapane, N Arcidiacono, R Argiro, S Arneodo, M Bellan, R Biino, C Cartiglia, N Casasso, S Costa, M Degano, A Demaria, N Finco, L Mariotti, C Maselli, S Migliore, E Monaco, V Musich, M Obertino, MM Ortona, G Pacher, L Pastrone, N Pelliccioni, M Angioni, GLP Potenza, A Romero, A Ruspa, M Sacchi, R Solano, A Staiano, A Tamponi, U Belforte, S Candelise, V Casarsa, M Cossutti, F Della Ricca, G Gobbo, B La Licata, C Marone, M Schizzi, A Umer, T Zanetti, A Chang, S Kropivnitskaya, A Nam, SK Kim, DH Kim, GN Kim, MS Kong, DJ Lee, S Oh, YD Park, H Sakharov, A Son, DC Kim, TJ Kim, JY Song, S Choi, S Gyun, D Hong, B Jo, M Kim, H Kim, Y Lee, B Lee, KS Park, SK Roh, Y Choi, M Kim, JH Park, IC Ryu, G Ryu, MS Choi, Y Choi, YK Goh, J Kim, D Kwon, E Lee, J Seo, H Yu, I Juodagalvis, A Komaragiri, JR Ali, MABM Linares, EC Castilla-Valdez, H De La Cruz-Burelo, E Heredia-de La Cruz, I Hernandez-Almada, A Lopez-Fernandez, R Sanchez-Hernandez, A Moreno, SC Valencia, FV Pedraza, I Ibarguen, HAS Pineda, AM Krofcheck, D Butler, PH Reucroft, S Ahmad, A Ahmad, M Hassan, Q Hoorani, HR Khan, WA Khurshid, T Shoaib, M Bialkowska, H Bluj, M Boimska, B Frueboes, T Gorski, M Kazana, M Nawrocki, K Romanowska-Rybinska, K Szleper, M Zalewski, P Brona, G Bunkowski, K Cwiok, M Dominik, W Doroba, K Kalinowski, A Konecki, M Krolikowski, J Misiura, M Olszewski, M Wolszczak, W Bargassa, P Silva, CBDE Faccioli, P Parracho, PGF Gallinaro, M Iglesias, LL Nguyen, F Antunes, JR Seixas, J Varela, J Vischia, P Bunin, P Gavrilenko, M Golutvin, I Gorbunov, I Karjavin, V Konoplyanikov, V Lanev, A Malakhov, A Matveev, V Moisenz, P Palichik, V Perelygin, V Savina, M Shmatov, S Shulha, S Skatchkov, N Smirnov, V Zarubin, A Golovtsov, V Ivanov, Y Kim, V Levchenko, P Murzin, V Oreshkin, V Smirnov, I Sulimov, V Uvarov, L Vavilov, S Vorobyev, A Vorobyev, A Andreev, Y Dermenev, A Gninenko, S Golubev, N Kirsanov, M Krasnikov, N Pashenkov, A Tlisov, D Toropin, A Epshteyn, V Gavrilov, V Lychkovskaya, N Popov, V Pozdnyakov, I Safronov, G Semenov, S Spiridonov, A Stolin, V Vlasov, E Zhokin, A Andreev, V Azarkin, M Dremin, I Kirakosyan, M Leonidov, A Mesyats, G Rusakov, SV Vinogradov, A Belyaev, A Boos, E Bunichev, V Dubinin, M Dudko, L Ershov, A Klyukhin, V Kodolova, O Lokhtin, I Obraztsov, S Perfilov, M Petrushanko, S Savrin, V Azhgirey, I Bayshev, I Bitioukov, S Kachanov, V Kalinin, A Konstantinov, D Krychkine, V Petrov, V Ryutin, R Sobol, A Tourtchanovitch, L Troshin, S Tyurin, N Uzunian, A Volkov, A Adzic, P Ekmedzic, M Milosevic, J Rekovic, V Maestre, JA Battilana, C Calvo, E Cerrada, M Llatas, MC Colino, N De La Cruz, B Peris, AD Vazquez, DD Del Valle, AE Bedoya, CF Ramos, JPF Flix, J Fouz, MC Garcia-Abia, P Lopez, OG Lopez, SG Hernandez, JM Josa, MI De Martino, EN Yzquierdo, APC Pelayo, JP Olmeda, AQ Redondo, I Romero, L Soares, MS Albajar, C de Troconiz, JF Missiroli, M Moran, D Brun, H Cuevas, J Menendez, JF Folgueras, S Caballero, IG Cifuentes, JAB Cabrillo, IJ Calderon, A Campderros, JD Fernandez, M Gomez, G Graziano, A Virto, AL Marco, J Marco, R Rivero, CM Matorras, F Sanchez, FJM Gomez, JP Rodrigo, T Rodriguez-Marrero, AY Ruiz-Jimeno, A Scodellaro, L Vila, I Cortabitarte, RV Abbaneo, D Auffray, E Auzinger, G Bachtis, M Baillon, P Ball, AH Barney, D Benaglia, A Bendavid, J Benhabib, L Benitez, JF Bernet, C Bloch, P Bocci, A Bonato, A Bondu, O Botta, C Breuker, H Camporesi, T Cerminara, G Colafranceschi, S D'Alfonso, M d'Enterria, D Dabrowski, A David, A De Guio, F De Roeck, A De Visscher, S Di Marco, E Dobson, M Dordevic, M Dorney, B Dupont-Sagorin, N Elliott-Peisert, A Eugster, J Franzoni, G Funk, W Gigi, D Gill, K Giordano, D Girone, M Glege, F Guida, R Gundacker, S Guthoff, M Hammer, J Hansen, M Harris, P Hegeman, J Innocente, V Janot, P Kousouris, K Krajczar, K Lecoq, P Lourenco, C Magini, N Malgeri, L Mannelli, M Marrouche, J Masetti, L Meijers, F Mersi, S Meschi, E Moortgat, F Morovic, S Mulders, M Musella, P Orsini, L Pape, L Perez, E Perrozzi, L Petrilli, A Petrucciani, G Pfeiffer, A Pierini, M Pimia, M Piparo, D Plagge, M Racz, A Rolandi, G Rovere, M Sakulin, H Schafer, C Schwick, C Sharma, A Siegrist, P Silva, P Simon, M Sphicas, P Spiga, D Steggemann, J Stieger, B Stoye, M Takahashi, Y Treille, D Tsirou, A Veres, GI Wardle, N Wohri, HK Wollny, H Zeuner, WD Bertl, W Deiters, K Erdmann, W Horisberger, R Ingram, Q Kaestli, HC Kotlinski, D Langenegger, U Renker, D Rohe, T Bachmair, F Bani, L Bianchini, L Buchmann, MA Casal, B Chanon, N Dissertori, G Dittmar, M Donega, M Dunser, M Eller, P Grab, C Hits, D Hoss, J Lustermann, W Mangano, B Marini, AC del Arbol, PMR Masciovecchio, M Meister, D Mohr, N Nageli, C Nessi-Tedaldi, F Pandolfi, F Pauss, F Peruzzi, M Quittnat, M Rebane, L Rossini, M Starodumov, A Takahashi, M Theofilatos, K Wallny, R Weber, HA Amsler, C Canelli, MF Chiochia, V De Cosa, A Hinzmann, A Hreus, T Kilminster, B Lange, C Mejias, BM Ngadiuba, J Robmann, P Ronga, FJ Taroni, S Verzetti, M Yang, Y Cardaci, M Chen, KH Ferro, C Kuo, CM Lin, W Lu, YJ Volpe, R Yu, SS Chang, P Chang, YH Chang, YW Chao, Y Chen, KF Chen, PH Dietz, C Grundler, U Hou, WS Kao, KY Lei, YJ Liu, YF Lu, RS Majumder, D Petrakou, E Tzeng, YM Wilken, R Asavapibhop, B Singh, G Srimanobhas, N Suwonjandee, N Adiguzel, A Bakirci, MN Cerci, S Dozen, C Dumanoglu, I Eskut, E Girgis, S Gokbulut, G Gurpinar, E Hos, I Kangal, EE Topaksu, AK Onengut, G Ozdemir, K Ozturk, S Polatoz, A Cerci, DS Tali, B Topakli, H Vergili, M Akin, IV Bilin, B Bilmis, S Gamsizkan, H Isildak, B Karapinar, G Ocalan, K Sekmen, S Surat, UE Yalvac, M Zeyrek, M Albayrak, EA Gulmez, E Kaya, M Kaya, O Yetkin, T Cankocak, K Vardarli, FI Levchuk, L Sorokin, P Brooke, JJ Clement, E Cussans, D Flacher, H Goldstein, J Grimes, M Heath, GP Heath, HF Jacob, J Kreczko, L Lucas, C Meng, Z Newbold, DM Paramesvaran, S Poll, A Sakuma, T Senkin, S Smith, VJ Williams, T Bell, KW Belyaev, A Brew, C Brown, RM Cockerill, DJA Coughlan, JA Harder, K Harper, S Olaiya, E Petyt, D Shepherd-Themistocleous, CH Thea, A Tomalin, IR Womersley, WJ Worm, SD Baber, M Bainbridge, R Buchmuller, O Burton, D Colling, D Cripps, N Cutajar, M Dauncey, P Davies, G Della Negra, M Dunne, P Ferguson, W Fulcher, J Futyan, D Hall, G Iles, G Jarvis, M Karapostoli, G Kenzie, M Lane, R Lucas, R Lyons, L Magnan, AM Malik, S Mathias, B Nash, J Nikitenko, A Pela, J Pesaresi, M Petridis, K Raymond, DM Rogerson, S Rose, A Seez, C Sharp, P Tapper, A Acosta, MV Virdee, T Zenz, SC Cole, JE Hobson, PR Khan, A Kyberd, P Leggat, D Leslie, D Martin, W Reid, ID Symonds, P Teodorescu, L Turner, M Dittmann, J Hatakeyama, K Kasmi, A Liu, H Scarborough, T Charaf, O Cooper, SI Henderson, C Rumerio, P Avetisyan, A Bose, T Fantasia, C Lawson, P Richardson, C Rohlf, J John, JS Sulak, L Alimena, J Berry, E Bhattacharya, S Christopher, G Cutts, D Demiragli, Z Dhingra, N Ferapontov, A Garabedian, A Heintz, U Kukartsev, G Laird, E Landsberg, G Luk, M Narain, M Segala, M Sinthuprasith, T Speer, T Swanson, J Breedon, R Breto, G Sanchez, MCD Chauhan, S Chertok, M Conway, J Conway, R Cox, PT Erbacher, R Gardner, M Ko, W Lander, R Miceli, T Mulhearn, M Pellett, D Pilot, J Ricci-Tam, F Searle, M Shalhout, S Smith, J Squires, M Stolp, D Tripathi, M Wilbur, S Yohay, R Cousins, R Everaerts, P Farrell, C Hauser, J Ignatenko, M Rakness, G Takasugi, E Valuev, V Weber, M Burt, K Clare, R Ellison, J Gary, JW Hanson, G Heilman, J Rikova, MI Jandir, P Kennedy, E Lacroix, F Long, OR Luthra, A Malberti, M OlmedoNegrete, M Shrinivas, A Sumowidagdo, S Wimpenny, S Branson, JG Cerati, GB Cittolin, S D'Agnolo, RT Holzner, A Kelley, R Klein, D Letts, J Macneill, I Olivito, D Padhi, S Palmer, C Pieri, M Sani, M Sharma, V Simon, S Sudano, E Tadel, M Tu, Y Vartak, A Welke, C Wurthwein, F Yagil, A Barge, D Bradmiller-Feld, J Campagnari, C Danielson, T Dishaw, A Dutta, V Flowers, K Sevilla, MF Geffert, P George, C Golf, F Gouskos, L Incandela, J Justus, C Mccoll, N Richman, J Stuart, D To, W West, C Yoo, J Apresyan, A Bornheim, A Bunn, J Chen, Y Duarte, J Mott, A Newman, HB Pena, C Rogan, C Spiropulu, M Timciuc, V Vlimant, JR Wilkinson, R Xie, S Zhu, RY Azzolini, V Calamba, A Carlson, B Ferguson, T Iiyama, Y Paulini, M Russ, J Vogel, H Vorobiev, I Cumalat, JP Ford, WT Gaz, A Krohn, M Lopez, EL Nauenberg, U Smith, JG Stenson, K Ulmer, KA Wagner, SR Alexander, J Chatterjee, A Chaves, J Chu, J Dittmer, S Eggert, N Mirman, N Kaufman, GN Patterson, JR Ryd, A Salvati, E Skinnari, L Sun, W Teo, WD Thom, J Thompson, J Tucker, J Weng, Y Winstrom, L Wittich, P Winn, D Abdullin, S Albrow, M Anderson, J Apollinari, G Bauerdick, LAT Beretvas, A Berryhill, J Bhat, PC Bolla, G Burkett, K Butler, JN Cheung, HWK Chlebana, F Cihangir, S Elvira, VD Fisk, I Freeman, J Gao, Y Gottschalk, E Gray, L Green, D Grunendahl, S Gutsche, O Hanlon, J Hare, D Harris, RM Hirschauer, J Hooberman, B Jindariani, S Johnson, M Joshi, U Kaadze, K Klima, B Kreis, B Kwan, S Linacre, J Lincoln, D Lipton, R Liu, T Lykken, J Maeshima, K Marraffino, JM Outschoorn, VIM Maruyama, S Mason, D McBride, P Merkel, P Mishra, K Mrenna, S Musienko, Y Nahn, S Newman-Holmes, C O'Dell, V Prokofyev, O Sexton-Kennedy, E Sharma, S Soha, A Spalding, WJ Spiegel, L Taylor, L Tkaczyk, S Tran, NV Uplegger, L Vaandering, EW Vidal, R Whitbeck, A Whitmore, J Yang, F Acosta, D Avery, P Bortignon, P Bourilkov, D Carver, M Curry, D Das, S De Gruttola, M Di Giovanni, GP Field, RD Fisher, M Furic, IK Hugon, J Konigsberg, J Korytov, A Kypreos, T Low, JF Matchev, K Milenovic, P Mitselmakher, G Muniz, L Rinkevicius, A Shchutska, L Snowball, M Sperka, D Yelton, J Zakaria, M Hewamanage, S Linn, S Markowitz, P Martinez, G Rodriguez, JL Adams, T Askew, A Bochenek, J Diamond, B Haas, J Hagopian, S Hagopian, V Johnson, KF Prosper, H Veeraraghavan, V Weinberg, M Baarmand, MM Hohlmann, M Kalakhety, H Yumiceva, F Adams, MR Apanasevich, L Bazterra, VE Berry, D Betts, RR Bucinskaite, I Cavanaugh, R Evdokimov, O Gauthier, L Gerber, CE Hofman, DJ Khalatyan, S Kurt, P Moon, DH O'Brien, C Silkworth, C Turner, P Varelas, N Bilki, B Clarida, W Dilsiz, K Duru, F Haytmyradov, M Merlo, JP Mermerkaya, H Mestvirishvili, A Moeller, A Nachtman, J Ogul, H Onel, Y Ozok, F Penzo, A Rahmat, R Sen, S Tan, P Tiras, E Wetzel, J Yi, K Barnett, BA Blumenfeld, B Bolognesi, S Fehling, D Gritsan, AV Maksimovic, P Martin, C Swartz, M Baringer, P Bean, A Benelli, G Bruner, C Kenny, RP Malek, M Murray, M Noonan, D Sanders, S Sekaric, J Stringer, R Wang, Q Wood, JS Chakaberia, I Ivanov, A Khalil, S Makouski, M Maravin, Y Saini, LK Shrestha, S Skhirtladze, N Svintradze, I Gronberg, J Lange, D Rebassoo, F Wright, D Baden, A Belloni, A Calvert, B Eno, SC Gomez, JA Hadley, NJ Kellogg, RG Kolberg, T Lu, Y Marionneau, M Mignerey, AC Pedro, K Skuja, A Tonjes, MB Tonwar, SC Apyan, A Barbieri, R Bauer, G Busza, W Cali, IA Chan, M Di Matteo, L Ceballos, GG Goncharov, M Gulhan, D Klute, M Lai, YS Lee, YJ Levin, A Luckey, PD Ma, T Paus, C Ralph, D Roland, C Roland, G Stephans, GSF Stockli, F Sumorok, K Velicanu, D Veverka, J Wyslouch, B Yang, M Zanetti, M Zhukova, V Dahmes, B Gude, A Kao, SC Klapoetke, K Kubota, Y Mans, J Pastika, N Rusack, R Singovsky, A Tambe, N Turkewitz, J Acosta, JG Oliveros, S Avdeeva, E Bloom, K Bose, S Claes, DR Dominguez, A Suarez, RG Keller, J Knowlton, D Kravchenko, I Lazo-Flores, J Malik, S Meier, F Snow, GR Zvada, M Dolen, J Godshalk, A Iashvili, I Kharchilava, A Kumar, A Rappoccio, S Alverson, G Barberis, E Baumgartel, D Chasco, M Haley, J Massironi, A Morse, DM Nash, D Orimoto, T Trocino, D Wang, RJ Wood, D Zhang, J Hahn, KA Kubik, A Mucia, N Odell, N Pollack, B Pozdnyakov, A Schmitt, M Stoynev, S Sung, K Velasco, M Won, S Brinkerhoff, A Chan, KM Drozdetskiy, A Hildreth, M Jessop, C Karmgard, DJ Kellams, N Lannon, K Luo, W Lynch, S Marinelli, N Pearson, T Planer, M Ruchti, R Valls, N Wayne, M Wolf, M Woodard, A Antonelli, L Brinson, J Bylsma, B Durkin, LS Flowers, S Hart, A Hill, C Hughes, R Kotov, K Ling, TY Puigh, D Rodenburg, M Smith, G Winer, BL Wolfe, H Wulsin, HW Driga, O Elmer, P Hardenbrook, J Hebda, P Hunt, A Koay, SA Lujan, P Marlow, D Medvedeva, T Mooney, M Olsen, J Piroue, P Quan, X Saka, H Stickland, D Tully, C Werner, JS Zuranski, A Brownson, E Mendez, H Vargas, JER Barnes, VE Benedetti, D Bortoletto, D De Mattia, M Gutay, L Hu, Z Jha, MK Jones, M Jung, K Kress, M Leonardo, N Pegna, DL Maroussov, V Miller, DH Neumeister, N Radburn-Smith, BC Shi, X Shipsey, I Silvers, D Svyatkovskiy, A Wang, F Xie, W Xu, L Yoo, HD Zablocki, J Zheng, Y Parashar, N Stupak, J Adair, A Akgun, B Ecklund, KM Geurts, FJM Li, W Michlin, B Padley, BP Redjimi, R Roberts, J Zabel, J Betchart, B Bodek, A Covarelli, R de Barbaro, P Demina, R Eshaq, Y Ferbel, T Garcia-Bellido, A Goldenzweig, P Han, J Harel, A Khukhunaishvili, A Korjenevski, S Petrillo, G Vishnevskiy, D Ciesielski, R Demortier, L Goulianos, K Lungu, G Mesropian, C Arora, S Barker, A Chou, JP Contreras-Campana, C Contreras-Campana, E Duggan, D Ferencek, D Gershtein, Y Gray, R Halkiadakis, E Hidas, D Kaplan, S Lath, A Panwalkar, S Park, M Patel, R Salur, S Schnetzer, S Somalwar, S Stone, R Thomas, S Thomassen, P Walker, M Rose, K Spanier, S York, A Bouhali, O Hernandez, AC Eusebi, R Flanagan, W Gilmore, J Kamon, T Khotilovich, V Krutelyov, V Montalvo, R Osipenkov, I Pakhotin, Y Perloff, A Roe, J Rose, A Safonov, A Suarez, I Tatarinov, A Akchurin, N Cowden, C Damgov, J Dragoiu, C Dudero, PR Faulkner, J Kovitanggoon, K Kunori, S Lee, SW Libeiro, T Volobouev, I Appelt, E Delannoy, AG Greene, S Gurrola, A Johns, W Maguire, C Mao, Y Melo, A Sharma, M Sheldon, P Snook, B Tuo, S Velkovska, J Arenton, MW Boutle, S Cox, B Francis, B Goodell, J Hirosky, R Ledovskoy, A Li, H Lin, C Neu, C Wood, J Clarke, C Harr, R Karchin, PE Don, CKK Lamichhane, P Sturdy, J Belknap, DA Carlsmith, D Cepeda, M Dasu, S Dodd, L Duric, S Friis, E Hall-Wilton, R Herndon, M Herve, A Klabbers, P Lanaro, A Lazaridis, C Levine, A Loveless, R Mohapatra, A Ojalvo, I Perry, T Pierro, GA Polese, G Ross, I Sarangi, T Savin, A Smith, WH Taylor, D Verwilligen, P Vuosalo, C Woods, N AF Khachatryan, V. Sirunyan, A. M. Tumasyan, A. Adam, W. Bergauer, T. Dragicevic, M. Ero, J. Friedl, M. Fruehwirth, R. Ghete, V. M. Hartl, C. Hoermann, N. Hrubec, J. Jeitler, M. Kiesenhofer, W. Knuenz, V. Krammer, M. Kraetschmer, I. Liko, D. Mikulec, I. Rabady, D. Rahbaran, B. Rohringer, H. Schoefbeck, R. Strauss, J. Treberer-Treberspurg, W. Waltenberger, W. Wulz, C. -E. Mossolov, V. Shumeiko, N. Zonzalez, J. Suarez Alderweireldt, S. Bansal, M. Bansal, S. Cornelis, T. De Wolf, E. A. Janssen, X. Knutsson, A. Lauwers, J. Luyckx, S. Ochesanu, S. Rougny, R. Van De Klundert, M. Van Haevermaet, H. Van Mechelen, P. Van Remortel, N. Van Spilbeeck, A. Blekman, F. Blyweert, S. D'Hondt, J. Daci, N. Heracleous, N. Keaveney, J. Lowette, S. Maes, M. Olbrechts, A. Python, Q. Strom, D. Tavernier, S. Van Doninck, W. Van Mulders, P. Van Onsem, G. P. Villella, I. Caillol, C. Clerbaux, B. De Lentdecker, G. Dobur, D. Favart, L. Gay, A. P. R. Grebenyuk, A. Leonard, A. Mohammadi, A. Pernie, L. Reis, T. Seva, T. Thomas, L. Vander Velde, C. Vanlaer, P. Wang, J. Zenoni, F. Adler, V. Beernaert, K. Benucci, L. Cimmino, A. Costantini, S. Crucy, S. Dildick, S. Fagot, A. Garcia, G. Mccartin, J. Rios, A. A. Ocampo Ryckbosch, D. Diblen, S. Salva Sigamani, M. Strobbe, N. Thyssen, F. Tytgat, M. Yazgan, E. Zaganidis, N. Basegmez, S. Beluffi, C. Bruno, G. Castello, R. Caudron, A. Ceard, L. Da Silveira, G. G. Delaere, C. du Pree, T. Favart, D. Forthomme, L. Giammanco, A. Hollar, J. Jafari, A. Jez, P. Komm, M. Lemaitre, V. Nuttens, C. Pagano, D. Perrini, L. Pin, A. Piotrzkowski, K. Popov, A. Quertenmont, L. Selvaggi, M. Marono, M. Vidal Garcia, J. M. Vizan Beliy, N. Caebergs, T. Daubie, E. Hammad, G. H. Alda Junior, W. L. Alves, G. A. Brito, L. Correa Martins Junior, M. Dos Reis Martins, T. Mora Herrera, C. Pol, M. E. Carvalho, W. Chinellato, J. Custodio, A. Da Costa, E. M. De Jesus Damiao, D. De Oliveira Martins, C. Fonseca De Souza, S. Malbouisson, H. Matos Figueiredo, D. Mundim, L. Nogima, H. Prado Da Silva, W. L. Santaolalla, J. Santoro, A. Sznajder, A. Tonelli Manganote, E. J. Vilela Pereira, A. Bernardes, C. A. Dogra, S. Fernandez Perez Tomei, T. R. Gregores, E. M. Mercadante, G. Novaes, S. F. Padula, Sandra S. Aleksandrov, A. Genchev, V. Iaydjiev, P. Marinov, A. Piperov, S. Rodozov, M. Sultanov, G. Vutova, M. Dimitrov, A. Glushkov, I. Hadjiiska, R. Kozhuharov, V. Litov, L. Pavlov, B. Petkov, P. Bian, J. G. Chen, G. M. Chen, H. S. Chen, M. Cheng, T. Du, R. Jiang, C. H. Plestina, R. Romeo, F. Tao, J. Wang, Z. Asawatangtrakuldee, C. Ban, Y. Li, Q. Liu, S. Mao, Y. Qian, S. J. Wang, D. Zou, W. Avila, C. Chaparro Sierra, L. F. Florez, C. Gomez, J. P. Gomez Moreno, B. Sanabria, J. C. Godinovic, N. Lelas, D. Polic, D. Puljak, I. Antunovic, Z. Kovac, M. Brigljevic, V. Kadija, K. Luetic, J. Mekterovic, D. Sudic, L. Attikis, A. Mavromanolakis, G. Mousa, J. Nicolaou, C. Ptochos, F. Razis, P. A. Bodlak, M. Finger, M. Finger, M., Jr. Assran, Y. Elgammal, S. Mahmoud, M. A. Radi, A. Kadastik, M. Murumaa, M. Raidal, M. Tiko, A. Eerola, P. Fedi, G. Voutilainen, M. Harkonen, J. Karimaki, V. Kinnunen, R. Kortelainen, M. J. Lampen, T. Lassila-Perini, K. Lehti, S. Linden, T. Luukka, P. Maenpaa, T. Peltola, T. Tuominen, E. Tuominiemi, J. Tuovinen, E. Wendland, L. Talvitie, J. Tuuva, T. Besancon, M. Couderc, F. Dejardin, M. Denegri, D. Fabbro, B. Faure, J. L. Favaro, C. Ferri, F. Ganjour, S. Givernaud, A. Gras, P. de Monchenault, G. Hamel Jarry, P. Locci, E. Malcles, J. Rander, J. Rosowsky, A. Titov, M. Baffioni, S. Beaudette, F. Busson, P. Charlot, C. Dahms, T. Dalchenko, M. Dobrzynski, L. Filipovic, N. Florent, A. de Cassagnac, R. Granier Mastrolorenzo, L. Mine, P. Mironov, C. Naranjo, I. N. Nguyen, M. Ochando, C. Paganini, P. Regnard, S. Salerno, R. Sauvan, J. B. Sirois, Y. Veelken, C. Yilmaz, Y. Zabi, A. Agram, J. -L. Andrea, J. Aubin, A. Bloch, D. Brom, J. -M. Chabert, E. C. Collard, C. Conte, E. Fontaine, J. -C. Gele, D. Goerlach, U. Goetzmann, C. Le Bihan, A. -C. Van Hove, P. Gadrat, S. Beauceron, S. Beaupere, N. Boudoul, G. Bouvier, E. Brochet, S. Montoya, C. A. Carrillo Chasserat, J. Chierici, R. Contardo, D. Depasse, P. El Mamouni, H. Fan, J. Fay, J. Gascon, S. Gouzevitch, M. Ille, B. Kurca, T. Lethuillier, M. Mirabito, L. Perries, S. Alvarez, J. D. Ruiz Sabes, D. Sgandurra, L. Sordini, V. Vander Donckt, M. Verdier, P. Viret, S. Xiao, H. Tsamalaidze, Z. Autermann, C. Beranek, S. Bontenackels, M. Edelhoff, M. Feld, L. Heister, A. Hindrichs, O. Klein, K. Ostapchuk, A. Raupach, F. Sammet, J. Schael, S. Weber, H. Wittmer, B. Zhukov, V. Ata, M. Brodski, M. Dietz-Laursonn, E. Duchardt, D. Erdmann, M. Fischer, R. Gueth, A. Hebbeker, T. Heidemann, C. Hoepfner, K. Klingebiel, D. Knutzen, S. Kreuzer, P. Merschmeyer, M. Meyer, A. Millet, P. Olschewski, M. Padeken, K. Papacz, P. Reithler, H. Schmitz, S. A. Sonnenschein, L. Teyssier, D. Thueer, S. Weber, M. Cherepanov, V. Erdogan, Y. Fluegge, G. Geenen, H. Geisler, M. Ahmad, W. Haj Hoehle, F. Kargoll, B. Kress, T. Kuessel, Y. Kuensken, A. Lingemann, J. Nowack, A. Nugent, I. M. Perchalla, L. Pooth, O. Stahl, A. Asin, I. Bartosik, N. Behr, J. Behrenhoff, W. Behrens, U. Bell, A. J. Bergholz, M. Bethani, A. Borras, K. Burgmeier, A. Cakir, A. Calligaris, L. Campbell, A. Choudhury, S. Costanza, F. Pardos, C. Diez Dolinska, G. Dooling, S. Dorland, T. Eckerlin, G. Eckstein, D. Eichhorn, T. Flucke, G. Garcia, J. Garay Geiser, A. Gunnellini, P. Hauk, J. Hempel, M. Horton, D. Jung, H. Kalogeropoulos, A. Kasemann, M. Katsas, P. Kieseler, J. Kleinwort, C. Korol, I. Kruecker, D. Lange, W. Leonard, J. Lipka, K. Lobanov, A. Lohmann, W. Lutz, B. Mankel, R. Marfin, I. Melzer-Pellmann, I. -A. Meyer, A. B. Mittag, G. Mnich, J. Mussgiller, A. Naumann-Emme, S. Nayak, A. Novgorodova, O. Ntomari, E. Perrey, H. Pitzl, D. Placakyte, R. Raspereza, A. Cipriano, P. M. Ribeiro Roland, B. Ron, E. Sahin, M. O. Salfeld-Nebgen, J. Saxena, P. Schmidt, R. Schoerner-Sadenius, T. Schroeder, M. Seitz, C. Spannagel, S. Trevino, A. D. R. Vargas Walsh, R. Wissing, C. Martin, M. Aldaya Blobel, V. Vignali, M. Centis Draeger, A. R. Erfle, J. Garutti, E. Goebel, K. Goerner, M. Haller, J. Hoffmann, M. Hoeing, R. S. Kirschenmann, H. Klanner, R. Kogler, R. Lange, J. Lapsien, T. Lenz, T. Marchesini, I. Ott, J. Peiffer, T. Perieanu, A. Pietsch, N. Poehlsen, J. Poehlsen, T. Rathjens, D. Sander, C. Schettler, H. Schleper, P. Schlieckau, E. Schmidt, A. Seidel, M. Sola, V. Stadie, H. Steinbrueck, G. Troendle, D. Usai, E. Vanelderen, L. Vanhoefer, A. Barth, C. Baus, C. Berger, J. Boeser, C. Butz, E. Chwalek, T. De Boer, W. Descroix, A. Dierlamm, A. Feindt, M. Frensch, F. Giffels, M. Gilbert, A. Hartmann, F. Hauth, T. Husemann, U. Katkov, I. Kornmayer, A. Kuznetsova, E. Pardo, P. Lobelle Mozer, M. U. Mueller, Th. Nuernberg, A. Quast, G. Rabbertz, K. Ratnikov, F. Roecker, S. Simonis, H. J. Stober, F. M. Ulrich, R. Wagner-Kuhr, J. Wayand, S. Weiler, T. Wolf, R. Anagnostou, G. Daskalakis, G. Geralis, T. Giakoumopoulou, V. A. Kyriakis, A. Loukas, D. Markou, A. Markou, C. Psallidas, A. Topsis-Giotis, I. Agapitos, A. Kesisoglou, S. Panagiotou, A. Saoulidou, N. Stiliaris, E. Aslanoglou, X. Evangelou, I. Flouris, G. Foudas, C. Kokkas, P. Manthos, N. Papadopoulos, I. Paradas, E. Strologas, J. Bencze, G. Hajdu, C. Hidas, P. Horvath, D. Sikler, F. Veszpremi, V. Vesztergombi, G. Zsigmond, A. J. Beni, N. Czellar, S. Karancsi, J. Molnar, J. Palinkas, J. Szillasi, Z. Makovec, A. Raics, P. Trocsanyi, Z. L. Ujvari, B. Swain, S. K. Beri, S. B. Bhatnagar, V. Gupta, R. Bhawandeep, U. Kalsi, A. K. Kaur, M. Kumar, R. Mittal, M. Nishu, N. Singh, J. B. Kumar, Ashok Kumar, Arun Ahuja, S. Bhardwaj, A. Choudhary, B. C. Kumar, A. Malhotra, S. Naimuddin, M. Ranjan, K. Sharma, V. Banerjee, S. Bhattacharya, S. Chatterjee, K. Dutta, S. Gomber, B. Jain, Sa. Jain, Sh. Khurana, R. Modak, A. Mukherjee, S. Roy, D. Sarkar, S. Sharan, M. Abdulsalam, A. Dutta, D. Kailas, S. Kumar, V. Mohanty, A. K. Pant, L. M. Shukla, P. Topkar, A. Aziz, T. Banerjee, S. Bhowmik, S. Chatterjee, R. M. Dewanjee, R. K. Dugad, S. Ganguly, S. Ghosh, S. Guchait, M. Gurtu, A. Kole, G. Kumar, S. Maity, M. Majumder, G. Mazumdar, K. Mohanty, G. B. Parida, B. Sudhakar, K. Wickramage, N. Bakhshiansohi, H. Behnamian, H. Etesami, S. M. Fahim, A. Goldouzian, R. Khakzad, M. Najafabadi, M. Mohammadi Naseri, M. Mehdiabadi, S. Paktinat Hosseinabadi, F. Rezaei Safarzadeh, B. Zeinali, M. Felcini, M. Grunewald, M. Abbrescia, M. Calabria, C. Chhibra, S. S. Colaleo, A. Creanza, D. De Filippis, N. De Palma, M. Fiore, L. Iaselli, G. Maggi, G. Maggi, M. My, S. Nuzzo, S. Pompili, A. Pugliese, G. Radogna, R. Selvaggi, G. Sharma, A. Silvestris, L. Venditti, R. Abbiendi, G. Benvenuti, A. C. Bonacorsi, D. Braibant-Giacomelli, S. Brigliadori, L. Campanini, R. Capiluppi, P. Castro, A. Cavallo, F. R. Codispoti, G. Cuffiani, M. Dallavalle, G. M. Fabbri, F. Fanfani, A. Fasanella, D. Giacomelli, P. Grandi, C. Guiducci, L. Marcellini, S. Masetti, G. Montanari, A. Navarria, F. L. Perrotta, A. Primavera, F. Rossi, A. M. Rovelli, T. Siroli, G. P. Tosi, N. Travaglini, R. Albergo, S. Cappello, G. Chiorboli, M. Costa, S. Giordano, F. Potenza, R. Tricomi, A. Tuve, C. Barbagli, G. Ciulli, V. Civinini, C. D'Alessandro, R. Focardi, E. Gallo, E. Gonzi, S. Gori, V. Lenzi, P. Meschini, M. Paoletti, S. Sguazzoni, G. Tropiano, A. Benussi, L. Bianco, S. Fabbri, F. Piccolo, D. Ferretti, R. Ferro, F. Lo Vetere, M. Robutti, E. Tosi, S. Dinardo, M. E. Fiorendi, S. Gennai, S. Gerosa, R. Ghezzi, A. Govoni, P. Lucchini, M. T. Malvezzi, S. Manzoni, R. A. Martelli, A. Marzocchi, B. Menasce, D. Moroni, L. Paganoni, M. Pedrini, D. Ragazzi, S. Redaelli, N. de Fatis, T. Tabarelli Buontempo, S. Cavallo, N. Di Guida, S. Fabozzi, F. Iorio, A. O. M. Lista, L. Meola, S. Merola, M. Paolucci, P. Azzi, P. Bacchetta, N. Bisello, D. Branca, A. Carlin, R. Checchia, P. Dall'Osso, M. Dorigo, T. Dosselli, U. Galanti, M. Gasparini, F. Gasparini, U. Giubilato, P. Gozzelino, A. Kanishchev, K. Lacaprara, S. Margoni, M. Meneguzzo, A. T. Pazzini, J. Pozzobon, N. Ronchese, P. Simonetto, F. Torassa, E. Tosi, M. Zotto, P. Zucchetta, A. Zumerle, G. Gabusi, M. Ratti, S. P. Re, V. Riccardi, C. Salvini, P. Vitulo, P. Biasini, M. Bilei, G. M. Ciangottini, D. Fano, L. Lariccia, P. Mantovani, G. Menichelli, M. Saha, A. Santocchia, A. Spiezia, A. Androsov, K. Azzurri, P. Bagliesi, G. Bernardini, J. Boccali, T. Broccolo, G. Castaldi, R. Ciocci, M. A. Dell'Orso, R. Donato, S. Fiori, F. Foa, L. Giassi, A. Grippo, M. T. Ligabue, F. Lomtadze, T. Martini, L. Messineo, A. Moon, C. S. Palla, F. Rizzi, A. Savoy-Navarro, A. Serban, A. T. Spagnolo, P. Squillacioti, P. Tenchini, R. Tonelli, G. Venturi, A. Verdini, P. G. Vernieri, C. Barone, L. Cavallari, F. D'imperio, G. Del Re, D. Diemoz, M. Jorda, C. Longo, E. Margaroli, F. Meridiani, P. Micheli, F. Nourbakhsh, S. Organtini, G. Paramatti, R. Rahatlou, S. Rovelli, C. Santanastasio, F. Soffi, L. Traczyk, P. Amapane, N. Arcidiacono, R. Argiro, S. Arneodo, M. Bellan, R. Biino, C. Cartiglia, N. Casasso, S. Costa, M. Degano, A. Demaria, N. Finco, L. Mariotti, C. Maselli, S. Migliore, E. Monaco, V. Musich, M. Obertino, M. M. Ortona, G. Pacher, L. Pastrone, N. Pelliccioni, M. Angioni, G. L. Pinna Potenza, A. Romero, A. Ruspa, M. Sacchi, R. Solano, A. Staiano, A. Tamponi, U. Belforte, S. Candelise, V. Casarsa, M. Cossutti, F. Della Ricca, G. Gobbo, B. La Licata, C. Marone, M. Schizzi, A. Umer, T. Zanetti, A. Chang, S. Kropivnitskaya, A. Nam, S. K. Kim, D. H. Kim, G. N. Kim, M. S. Kong, D. J. Lee, S. Oh, Y. D. Park, H. Sakharov, A. Son, D. C. Kim, T. J. Kim, J. Y. Song, S. Choi, S. Gyun, D. Hong, B. Jo, M. Kim, H. Kim, Y. Lee, B. Lee, K. S. Park, S. K. Roh, Y. Choi, M. Kim, J. H. Park, I. C. Ryu, G. Ryu, M. S. Choi, Y. Choi, Y. K. Goh, J. Kim, D. Kwon, E. Lee, J. Seo, H. Yu, I. Juodagalvis, A. Komaragiri, J. R. Ali, M. A. B. Md Linares, E. Casimiro Castilla-Valdez, H. De La Cruz-Burelo, E. Heredia-de La Cruz, I. Hernandez-Almada, A. Lopez-Fernandez, R. Sanchez-Hernandez, A. Moreno, S. Carrillo Valencia, F. Vazquez Pedraza, I. Ibarguen, H. A. Salazar Pineda, A. Morelos Krofcheck, D. Butler, P. H. Reucroft, S. Ahmad, A. Ahmad, M. Hassan, Q. Hoorani, H. R. Khan, W. A. Khurshid, T. Shoaib, M. Bialkowska, H. Bluj, M. Boimska, B. Frueboes, T. Gorski, M. Kazana, M. Nawrocki, K. Romanowska-Rybinska, K. Szleper, M. Zalewski, P. Brona, G. Bunkowski, K. Cwiok, M. Dominik, W. Doroba, K. Kalinowski, A. Konecki, M. Krolikowski, J. Misiura, M. Olszewski, M. Wolszczak, W. Bargassa, P. Da Cruz E Silva, C. Beirao Faccioli, P. Parracho, P. G. Ferreira Gallinaro, M. Iglesias, L. Lloret Nguyen, F. Antunes, J. Rodrigues Seixas, J. Varela, J. Vischia, P. Bunin, P. Gavrilenko, M. Golutvin, I. Gorbunov, I. Karjavin, V. Konoplyanikov, V. Lanev, A. Malakhov, A. Matveev, V. Moisenz, P. Palichik, V. Perelygin, V. Savina, M. Shmatov, S. Shulha, S. Skatchkov, N. Smirnov, V. Zarubin, A. Golovtsov, V. Ivanov, Y. Kim, V. Levchenko, P. Murzin, V. Oreshkin, V. Smirnov, I. Sulimov, V. Uvarov, L. Vavilov, S. Vorobyev, A. Vorobyev, An. Andreev, Yu. Dermenev, A. Gninenko, S. Golubev, N. Kirsanov, M. Krasnikov, N. Pashenkov, A. Tlisov, D. Toropin, A. Epshteyn, V. Gavrilov, V. Lychkovskaya, N. Popov, V. Pozdnyakov, I. Safronov, G. Semenov, S. Spiridonov, A. Stolin, V. Vlasov, E. Zhokin, A. Andreev, V. Azarkin, M. Dremin, I. Kirakosyan, M. Leonidov, A. Mesyats, G. Rusakov, S. V. Vinogradov, A. Belyaev, A. Boos, E. Bunichev, V. Dubinin, M. Dudko, L. Ershov, A. Klyukhin, V. Kodolova, O. Lokhtin, I. Obraztsov, S. Perfilov, M. Petrushanko, S. Savrin, V. Azhgirey, I. Bayshev, I. Bitioukov, S. Kachanov, V. Kalinin, A. Konstantinov, D. Krychkine, V. Petrov, V. Ryutin, R. Sobol, A. Tourtchanovitch, L. Troshin, S. Tyurin, N. Uzunian, A. Volkov, A. Adzic, P. Ekmedzic, M. Milosevic, J. Rekovic, V. Alcaraz Maestre, J. Battilana, C. Calvo, E. Cerrada, M. Chamizo Llatas, M. Colino, N. De La Cruz, B. Delgado Peris, A. Dominguez Vazquez, D. Escalante Del Valle, A. Fernandez Bedoya, C. Fernandez Ramos, J. P. Flix, J. Fouz, M. C. Garcia-Abia, P. Gonzalez Lopez, O. Goy Lopez, S. Hernandez, J. M. Josa, M. I. Navarro De Martino, E. Perez-Calero Yzquierdo, A. Puerta Pelayo, J. Quintario Olmeda, A. Redondo, I. Romero, L. Soares, M. S. Albajar, C. de Troconiz, J. F. Missiroli, M. Moran, D. Brun, H. Cuevas, J. Fernandez Menendez, J. Folgueras, S. Gonzalez Caballero, I. Brochero Cifuentes, J. A. Cabrillo, I. J. Calderon, A. Duarte Campderros, J. Fernandez, M. Gomez, G. Graziano, A. Lopez Virto, A. Marco, J. Marco, R. Martinez Rivero, C. Matorras, F. Munoz Sanchez, F. J. Piedra Gomez, J. Rodrigo, T. Rodriguez-Marrero, A. Y. Ruiz-Jimeno, A. Scodellaro, L. Vila, I. Vilar Cortabitarte, R. Abbaneo, D. Auffray, E. Auzinger, G. Bachtis, M. Baillon, P. Ball, A. H. Barney, D. Benaglia, A. Bendavid, J. Benhabib, L. Benitez, J. F. Bernet, C. Bloch, P. Bocci, A. Bonato, A. Bondu, O. Botta, C. Breuker, H. Camporesi, T. Cerminara, G. Colafranceschi, S. D'Alfonso, M. d'Enterria, D. Dabrowski, A. David, A. De Guio, F. De Roeck, A. De Visscher, S. Di Marco, E. Dobson, M. Dordevic, M. Dorney, B. Dupont-Sagorin, N. Elliott-Peisert, A. Eugster, J. Franzoni, G. Funk, W. Gigi, D. Gill, K. Giordano, D. Girone, M. Glege, F. Guida, R. Gundacker, S. Guthoff, M. Hammer, J. Hansen, M. Harris, P. Hegeman, J. Innocente, V. Janot, P. Kousouris, K. Krajczar, K. Lecoq, P. Lourenco, C. Magini, N. Malgeri, L. Mannelli, M. Marrouche, J. Masetti, L. Meijers, F. Mersi, S. Meschi, E. Moortgat, F. Morovic, S. Mulders, M. Musella, P. Orsini, L. Pape, L. Perez, E. Perrozzi, L. Petrilli, A. Petrucciani, G. Pfeiffer, A. Pierini, M. Pimiae, M. Piparo, D. Plagge, M. Racz, A. Rolandi, G. Rovere, M. Sakulin, H. Schaefer, C. Schwick, C. Sharma, A. Siegrist, P. Silva, P. Simon, M. Sphicas, P. Spiga, D. Steggemann, J. Stieger, B. Stoye, M. Takahashi, Y. Treille, D. Tsirou, A. Veres, G. I. Wardle, N. Woehri, H. K. Wollny, H. Zeuner, W. D. Bertl, W. Deiters, K. Erdmann, W. Horisberger, R. Ingram, Q. Kaestli, H. C. Kotlinski, D. Langenegger, U. Renker, D. Rohe, T. Bachmair, F. Baeni, L. Bianchini, L. Buchmann, M. A. Casal, B. Chanon, N. Dissertori, G. Dittmar, M. Donega, M. Duenser, M. Eller, P. Grab, C. Hits, D. Hoss, J. Lustermann, W. Mangano, B. Marini, A. C. del Arbol, P. Martinez Ruiz Masciovecchio, M. Meister, D. Mohr, N. Naegeli, C. Nessi-Tedaldi, F. Pandolfi, F. Pauss, F. Peruzzi, M. Quittnat, M. Rebane, L. Rossini, M. Starodumov, A. Takahashi, M. Theofilatos, K. Wallny, R. Weber, H. A. Amsler, C. Canelli, M. F. Chiochia, V. De Cosa, A. Hinzmann, A. Hreus, T. Kilminster, B. Lange, C. Mejias, B. Millan Ngadiuba, J. Robmann, P. Ronga, F. J. Taroni, S. Verzetti, M. Yang, Y. Cardaci, M. Chen, K. H. Ferro, C. Kuo, C. M. Lin, W. Lu, Y. J. Volpe, R. Yu, S. S. Chang, P. Chang, Y. H. Chang, Y. W. Chao, Y. Chen, K. F. Chen, P. H. Dietz, C. Grundler, U. Hou, W. -S. Kao, K. Y. Lei, Y. J. Liu, Y. F. Lu, R. -S. Majumder, D. Petrakou, E. Tzeng, Y. M. Wilken, R. Asavapibhop, B. Singh, G. Srimanobhas, N. Suwonjandee, N. Adiguzel, A. Bakirci, M. N. Cerci, S. Dozen, C. Dumanoglu, I. Eskut, E. Girgis, S. Gokbulut, G. Gurpinar, E. Hos, I. Kangal, E. E. Topaksu, A. Kayis Onengut, G. Ozdemir, K. Ozturk, S. Polatoz, A. Cerci, D. Sunar Tali, B. Topakli, H. Vergili, M. Akin, I. V. Bilin, B. Bilmis, S. Gamsizkan, H. Isildak, B. Karapinar, G. Ocalan, K. Sekmen, S. Surat, U. E. Yalvac, M. Zeyrek, M. Albayrak, E. A. Gulmez, E. Kaya, M. Kaya, O. Yetkin, T. Cankocak, K. Vardarli, F. I. Levchuk, L. Sorokin, P. Brooke, J. J. Clement, E. Cussans, D. Flacher, H. Goldstein, J. Grimes, M. Heath, G. P. Heath, H. F. Jacob, J. Kreczko, L. Lucas, C. Meng, Z. Newbold, D. M. Paramesvaran, S. Poll, A. Sakuma, T. Senkin, S. Smith, V. J. Williams, T. Bell, K. W. Belyaev, A. Brew, C. Brown, R. M. Cockerill, D. J. A. Coughlan, J. A. Harder, K. Harper, S. Olaiya, E. Petyt, D. Shepherd-Themistocleous, C. H. Thea, A. Tomalin, I. R. Womersley, W. J. Worm, S. D. Baber, M. Bainbridge, R. Buchmuller, O. Burton, D. Colling, D. Cripps, N. Cutajar, M. Dauncey, P. Davies, G. Della Negra, M. Dunne, P. Ferguson, W. Fulcher, J. Futyan, D. Hall, G. Iles, G. Jarvis, M. Karapostoli, G. Kenzie, M. Lane, R. Lucas, R. Lyons, L. Magnan, A. -M. Malik, S. Mathias, B. Nash, J. Nikitenko, A. Pela, J. Pesaresi, M. Petridis, K. Raymond, D. M. Rogerson, S. Rose, A. Seez, C. Sharp, P. Tapper, A. Acosta, M. Vazquez Virdee, T. Zenz, S. C. Cole, J. E. Hobson, P. R. Khan, A. Kyberd, P. Leggat, D. Leslie, D. Martin, W. Reid, I. D. Symonds, P. Teodorescu, L. Turner, M. Dittmann, J. Hatakeyama, K. Kasmi, A. Liu, H. Scarborough, T. Charaf, O. Cooper, S. I. Henderson, C. Rumerio, P. Avetisyan, A. Bose, T. Fantasia, C. Lawson, P. Richardson, C. Rohlf, J. John, J. St. Sulak, L. Alimena, J. Berry, E. Bhattacharya, S. Christopher, G. Cutts, D. Demiragli, Z. Dhingra, N. Ferapontov, A. Garabedian, A. Heintz, U. Kukartsev, G. Laird, E. Landsberg, G. Luk, M. Narain, M. Segala, M. Sinthuprasith, T. Speer, T. Swanson, J. Breedon, R. Breto, G. Sanchez, M. Calderon De La Barca Chauhan, S. Chertok, M. Conway, J. Conway, R. Cox, P. T. Erbacher, R. Gardner, M. Ko, W. Lander, R. Miceli, T. Mulhearn, M. Pellett, D. Pilot, J. Ricci-Tam, F. Searle, M. Shalhout, S. Smith, J. Squires, M. Stolp, D. Tripathi, M. Wilbur, S. Yohay, R. Cousins, R. Everaerts, P. Farrell, C. Hauser, J. Ignatenko, M. Rakness, G. Takasugi, E. Valuev, V. Weber, M. Burt, K. Clare, R. Ellison, J. Gary, J. W. Hanson, G. Heilman, J. Rikova, M. Ivova Jandir, P. Kennedy, E. Lacroix, F. Long, O. R. Luthra, A. Malberti, M. Negrete, M. Olmedo Shrinivas, A. Sumowidagdo, S. Wimpenny, S. Branson, J. G. Cerati, G. B. Cittolin, S. D'Agnolo, R. T. Holzner, A. Kelley, R. Klein, D. Letts, J. Macneill, I. Olivito, D. Padhi, S. Palmer, C. Pieri, M. Sani, M. Sharma, V. Simon, S. Sudano, E. Tadel, M. Tu, Y. Vartak, A. Welke, C. Wuerthwein, F. Yagil, A. Barge, D. Bradmiller-Feld, J. Campagnari, C. Danielson, T. Dishaw, A. Dutta, V. Flowers, K. Sevilla, M. Franco Geffert, P. George, C. Golf, F. Gouskos, L. Incandela, J. Justus, C. Mccoll, N. Richman, J. Stuart, D. To, W. West, C. Yoo, J. Apresyan, A. Bornheim, A. Bunn, J. Chen, Y. Duarte, J. Mott, A. Newman, H. B. Pena, C. Rogan, C. Spiropulu, M. Timciuc, V. Vlimant, J. R. Wilkinson, R. Xie, S. Zhu, R. Y. Azzolini, V. Calamba, A. Carlson, B. Ferguson, T. Iiyama, Y. Paulini, M. Russ, J. Vogel, H. Vorobiev, I. Cumalat, J. P. Ford, W. T. Gaz, A. Krohn, M. Lopez, E. Luiggi Nauenberg, U. Smith, J. G. Stenson, K. Ulmer, K. A. Wagner, S. R. Alexander, J. Chatterjee, A. Chaves, J. Chu, J. Dittmer, S. Eggert, N. Mirman, N. Kaufman, G. Nicolas Patterson, J. R. Ryd, A. Salvati, E. Skinnari, L. Sun, W. Teo, W. D. Thom, J. Thompson, J. Tucker, J. Weng, Y. Winstrom, L. Wittich, P. Winn, D. Abdullin, S. Albrow, M. Anderson, J. Apollinari, G. Bauerdick, L. A. T. Beretvas, A. Berryhill, J. Bhat, P. C. Bolla, G. Burkett, K. Butler, J. N. Cheung, H. W. K. Chlebana, F. Cihangir, S. Elvira, V. D. Fisk, I. Freeman, J. Gao, Y. Gottschalk, E. Gray, L. Green, D. Gruenendahl, S. Gutsche, O. Hanlon, J. Hare, D. Harris, R. M. Hirschauer, J. Hooberman, B. Jindariani, S. Johnson, M. Joshi, U. Kaadze, K. Klima, B. Kreis, B. Kwan, S. Linacre, J. Lincoln, D. Lipton, R. Liu, T. Lykken, J. Maeshima, K. Marraffino, J. M. Outschoorn, V. I. Martinez Maruyama, S. Mason, D. McBride, P. Merkel, P. Mishra, K. Mrenna, S. Musienko, Y. Nahn, S. Newman-Holmes, C. O'Dell, V. Prokofyev, O. Sexton-Kennedy, E. Sharma, S. Soha, A. Spalding, W. J. Spiegel, L. Taylor, L. Tkaczyk, S. Tran, N. V. Uplegger, L. Vaandering, E. W. Vidal, R. Whitbeck, A. Whitmore, J. Yang, F. Acosta, D. Avery, P. Bortignon, P. Bourilkov, D. Carver, M. Curry, D. Das, S. De Gruttola, M. Di Giovanni, G. P. Field, R. D. Fisher, M. Furic, I. K. Hugon, J. Konigsberg, J. Korytov, A. Kypreos, T. Low, J. F. Matchev, K. Milenovic, P. Mitselmakher, G. Muniz, L. Rinkevicius, A. Shchutska, L. Snowball, M. Sperka, D. Yelton, J. Zakaria, M. Hewamanage, S. Linn, S. Markowitz, P. Martinez, G. Rodriguez, J. L. Adams, T. Askew, A. Bochenek, J. Diamond, B. Haas, J. Hagopian, S. Hagopian, V. Johnson, K. F. Prosper, H. Veeraraghavan, V. Weinberg, M. Baarmand, M. M. Hohlmann, M. Kalakhety, H. Yumiceva, F. Adams, M. R. Apanasevich, L. Bazterra, V. E. Berry, D. Betts, R. R. Bucinskaite, I. Cavanaugh, R. Evdokimov, O. Gauthier, L. Gerber, C. E. Hofman, D. J. Khalatyan, S. Kurt, P. Moon, D. H. O'Brien, C. Silkworth, C. Turner, P. Varelas, N. Bilki, B. Clarida, W. Dilsiz, K. Duru, F. Haytmyradov, M. Merlo, J. -P. Mermerkaya, H. Mestvirishvili, A. Moeller, A. Nachtman, J. Ogul, H. Onel, Y. Ozok, F. Penzo, A. Rahmat, R. Sen, S. Tan, P. Tiras, E. Wetzel, J. Yi, K. Barnett, B. A. Blumenfeld, B. Bolognesi, S. Fehling, D. Gritsan, A. V. Maksimovic, P. Martin, C. Swartz, M. Baringer, P. Bean, A. Benelli, G. Bruner, C. Kenny, R. P., III Malek, M. Murray, M. Noonan, D. Sanders, S. Sekaric, J. Stringer, R. Wang, Q. Wood, J. S. Chakaberia, I. Ivanov, A. Khalil, S. Makouski, M. Maravin, Y. Saini, L. K. Shrestha, S. Skhirtladze, N. Svintradze, I. Gronberg, J. Lange, D. Rebassoo, F. Wright, D. Baden, A. Belloni, A. Calvert, B. Eno, S. C. Gomez, J. A. Hadley, N. J. Kellogg, R. G. Kolberg, T. Lu, Y. Marionneau, M. Mignerey, A. C. Pedro, K. Skuja, A. Tonjes, M. B. Tonwar, S. C. Apyan, A. Barbieri, R. Bauer, G. Busza, W. Cali, I. A. Chan, M. Di Matteo, L. Ceballos, G. Gomez Goncharov, M. Gulhan, D. Klute, M. Lai, Y. S. Lee, Y. -J. Levin, A. Luckey, P. D. Ma, T. Paus, C. Ralph, D. Roland, C. Roland, G. Stephans, G. S. F. Stoeckli, F. Sumorok, K. Velicanu, D. Veverka, J. Wyslouch, B. Yang, M. Zanetti, M. Zhukova, V. Dahmes, B. Gude, A. Kao, S. C. Klapoetke, K. Kubota, Y. Mans, J. Pastika, N. Rusack, R. Singovsky, A. Tambe, N. Turkewitz, J. Acosta, J. G. Oliveros, S. Avdeeva, E. Bloom, K. Bose, S. Claes, D. R. Dominguez, A. Suarez, R. Gonzalez Keller, J. Knowlton, D. Kravchenko, I. Lazo-Flores, J. Malik, S. Meier, F. Snow, G. R. Zvada, M. Dolen, J. Godshalk, A. Iashvili, I. Kharchilava, A. Kumar, A. Rappoccio, S. Alverson, G. Barberis, E. Baumgartel, D. Chasco, M. Haley, J. Massironi, A. Morse, D. M. Nash, D. Orimoto, T. Trocino, D. Wang, R. -J. Wood, D. Zhang, J. Hahn, K. A. Kubik, A. Mucia, N. Odell, N. Pollack, B. Pozdnyakov, A. Schmitt, M. Stoynev, S. Sung, K. Velasco, M. Won, S. Brinkerhoff, A. Chan, K. M. Drozdetskiy, A. Hildreth, M. Jessop, C. Karmgard, D. J. Kellams, N. Lannon, K. Luo, W. Lynch, S. Marinelli, N. Pearson, T. Planer, M. Ruchti, R. Valls, N. Wayne, M. Wolf, M. Woodard, A. Antonelli, L. Brinson, J. Bylsma, B. Durkin, L. S. Flowers, S. Hart, A. Hill, C. Hughes, R. Kotov, K. Ling, T. Y. Puigh, D. Rodenburg, M. Smith, G. Winer, B. L. Wolfe, H. Wulsin, H. W. Driga, O. Elmer, P. Hardenbrook, J. Hebda, P. Hunt, A. Koay, S. A. Lujan, P. Marlow, D. Medvedeva, T. Mooney, M. Olsen, J. Piroue, P. Quan, X. Saka, H. Stickland, D. Tully, C. Werner, J. S. Zuranski, A. Brownson, E. Mendez, H. Vargas, J. E. Ramirez Barnes, V. E. Benedetti, D. Bortoletto, D. De Mattia, M. Gutay, L. Hu, Z. Jha, M. K. Jones, M. Jung, K. Kress, M. Leonardo, N. Pegna, D. Lopes Maroussov, V. Miller, D. H. Neumeister, N. Radburn-Smith, B. C. Shi, X. Shipsey, I. Silvers, D. Svyatkovskiy, A. Wang, F. Xie, W. Xu, L. Yoo, H. D. Zablocki, J. Zheng, Y. Parashar, N. Stupak, J. Adair, A. Akgun, B. Ecklund, K. M. Geurts, F. J. M. Li, W. Michlin, B. Padley, B. P. Redjimi, R. Roberts, J. Zabel, J. Betchart, B. Bodek, A. Covarelli, R. de Barbaro, P. Demina, R. Eshaq, Y. Ferbel, T. Garcia-Bellido, A. Goldenzweig, P. Han, J. Harel, A. Khukhunaishvili, A. Korjenevski, S. Petrillo, G. Vishnevskiy, D. Ciesielski, R. Demortier, L. Goulianos, K. Lungu, G. Mesropian, C. Arora, S. Barker, A. Chou, J. P. Contreras-Campana, C. Contreras-Campana, E. Duggan, D. Ferencek, D. Gershtein, Y. Gray, R. Halkiadakis, E. Hidas, D. Kaplan, S. Lath, A. Panwalkar, S. Park, M. Patel, R. Salur, S. Schnetzer, S. Somalwar, S. Stone, R. Thomas, S. Thomassen, P. Walker, M. Rose, K. Spanier, S. York, A. Bouhali, O. Hernandez, A. Castaneda Eusebi, R. Flanagan, W. Gilmore, J. Kamon, T. Khotilovich, V. Krutelyov, V. Montalvo, R. Osipenkov, I. Pakhotin, Y. Perloff, A. Roe, J. Rose, A. Safonov, A. Suarez, I. Tatarinov, A. Akchurin, N. Cowden, C. Damgov, J. Dragoiu, C. Dudero, P. R. Faulkner, J. Kovitanggoon, K. Kunori, S. Lee, S. W. Libeiro, T. Volobouev, I. Appelt, E. Delannoy, A. G. Greene, S. Gurrola, A. Johns, W. Maguire, C. Mao, Y. Melo, A. Sharma, M. Sheldon, P. Snook, B. Tuo, S. Velkovska, J. Arenton, M. W. Boutle, S. Cox, B. Francis, B. Goodell, J. Hirosky, R. Ledovskoy, A. Li, H. Lin, C. Neu, C. Wood, J. Clarke, C. Harr, R. Karchin, P. E. Don, C. Kottachchi Kankanamge Lamichhane, P. Sturdy, J. Belknap, D. A. Carlsmith, D. Cepeda, M. Dasu, S. Dodd, L. Duric, S. Friis, E. Hall-Wilton, R. Herndon, M. Herve, A. Klabbers, P. Lanaro, A. Lazaridis, C. Levine, A. Loveless, R. Mohapatra, A. Ojalvo, I. Perry, T. Pierro, G. A. Polese, G. Ross, I. Sarangi, T. Savin, A. Smith, W. H. Taylor, D. Verwilligen, P. Vuosalo, C. Woods, N. CA CMS Collaboration TI Search for quark contact interactions and extra spatial dimensions using dijet angular distributions in proton-proton collisions at root s=8 TeV SO PHYSICS LETTERS B LA English DT Article DE CMS; Physics; QCD; Electroweak corrections; Contact interactions; Extra dimensions ID COLLIDER; DETECTOR; PHYSICS; LIMIT AB A search is presented for quark contact interactions and extra spatial dimensions in proton-proton collisions at root s = 8 TeV using dijet angular distributions. The search is based on a data set corresponding to an integrated luminosity of 19.7 fb(-1) collected by the CMS detector at the CERN LHC. Dijet angular distributions are found to be in agreement with the perturbative QCD predictions that include electroweak corrections. Limits on the contact interaction scale from a variety of models at next-to-leading order in QCD corrections are obtained. A benchmark model in which only left-handed quarks participate is excluded up to a scale of 9.0 (11.7) TeV for destructive (constructive) interference at 95% confidence level. Lower limits between 5.9 and 8.4 TeV on the scale of virtual graviton exchange are extracted for the Arkani-Hamed-Dimopoulos-Dvali model of extra spatial dimensions. (C) 2015 CERN for the benefit of the CMS Collaboration. Published by Elsevier B.V. C1 [Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Adam, W.; Bergauer, T.; Dragicevic, M.; Ero, J.; Friedl, M.; Fruehwirth, R.; Ghete, V. M.; Hartl, C.; Hoermann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Knuenz, V.; Krammer, M.; Kraetschmer, I.; Liko, D.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, H.; Schoefbeck, R.; Strauss, J.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C. -E.] Inst Hochenergiephys OeAW, Vienna, Austria. [Mossolov, V.; Shumeiko, N.; Zonzalez, J. Suarez] Natl Ctr Particle & High Energy Phys, Minsk, Byelarus. [Alderweireldt, S.; Bansal, M.; Bansal, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Knutsson, A.; Lauwers, J.; Luyckx, S.; Ochesanu, S.; Rougny, R.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.] Univ Antwerp, Antwerp, Belgium. [Blekman, F.; Blyweert, S.; D'Hondt, J.; Daci, N.; Heracleous, N.; Keaveney, J.; Lowette, S.; Maes, M.; Olbrechts, A.; Python, Q.; Strom, D.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.] Vrije Univ Brussel, Brussels, Belgium. [Caillol, C.; Clerbaux, B.; De Lentdecker, G.; Dobur, D.; Favart, L.; Gay, A. P. R.; Grebenyuk, A.; Leonard, A.; Mohammadi, A.; Pernie, L.; Reis, T.; Seva, T.; Thomas, L.; Vander Velde, C.; Vanlaer, P.; Wang, J.; Zenoni, F.] Univ Libre Bruxelles, Brussels, Belgium. [Adler, V.; Beernaert, K.; Benucci, L.; Cimmino, A.; Costantini, S.; Crucy, S.; Dildick, S.; Fagot, A.; Garcia, G.; Mccartin, J.; Rios, A. A. Ocampo; Ryckbosch, D.; Diblen, S. Salva; Sigamani, M.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Yazgan, E.; Zaganidis, N.] Univ Ghent, B-9000 Ghent, Belgium. [Basegmez, S.; Beluffi, C.; Bruno, G.; Castello, R.; Caudron, A.; Ceard, L.; Da Silveira, G. G.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Jafari, A.; Jez, P.; Komm, M.; Lemaitre, V.; Nuttens, C.; Pagano, D.; Perrini, L.; Pin, A.; Piotrzkowski, K.; Popov, A.; Quertenmont, L.; Selvaggi, M.; Marono, M. Vidal; Garcia, J. M. Vizan] Catholic Univ Louvain, Louvain La Neuve, Belgium. [Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.] Univ Mons, B-7000 Mons, Belgium. [Alda Junior, W. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Dos Reis Martins, T.; Mora Herrera, C.; Pol, M. E.] Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil. [Carvalho, W.; Chinellato, J.; Custodio, A.; Da Costa, E. M.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Malbouisson, H.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santaolalla, J.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Dogra, S.; Fernandez Perez Tomei, T. R.; Novaes, S. F.; Padula, Sandra S.] Univ Estadual Paulista, Sao Paulo, Brazil. [Bernardes, C. A.; Gregores, E. M.; Mercadante, G.] Univ Fed ABC, Sao Paulo, Brazil. [Aleksandrov, A.; Genchev, V.; Iaydjiev, P.; Marinov, A.; Piperov, S.; Rodozov, M.; Sultanov, G.; Vutova, M.] Bulgarian Acad Sci, Inst Nucl Res & Nucl Energy, Sofia, Bulgaria. [Dimitrov, A.; Glushkov, I.; Hadjiiska, R.; Kozhuharov, V.; Litov, L.; Pavlov, B.; Petkov, P.] Univ Sofia, BU-1126 Sofia, Bulgaria. [Aleksandrov, A.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Cheng, T.; Du, R.; Jiang, C. H.; Plestina, R.; Romeo, F.; Tao, J.; Wang, Z.] Inst High Energy Phys, Beijing 100039, Peoples R China. [Asawatangtrakuldee, C.; Ban, Y.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Zou, W.] Peking Univ, State Key Lab Nucl Phys & Technol, Beijing 100871, Peoples R China. [Avila, C.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; Gomez Moreno, B.; Sanabria, J. C.] Univ Los Andes, Bogota, Colombia. [Godinovic, N.; Lelas, D.; Polic, D.; Puljak, I.] Univ Split, Fac Elect Engn Mech Engn & Naval Architecture, Split, Croatia. [Antunovic, Z.; Kovac, M.] Univ Split, Fac Sci, Split, Croatia. [Brigljevic, V.; Kadija, K.; Luetic, J.; Mekterovic, D.; Sudic, L.] Inst Rudjer Boskov, Zagreb, Croatia. [Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.] Univ Cyprus, CY-1678 Nicosia, Cyprus. [Bodlak, M.; Finger, M.; Finger, M., Jr.] Charles Univ Prague, Prague, Czech Republic. [Assran, Y.; Elgammal, S.; Mahmoud, M. A.; Radi, A.] Acad Sci Res & Technol Arab Republ Egypt, Egyptian Network High Energy Phys, Cairo, Egypt. [Kadastik, M.; Murumaa, M.; Raidal, M.; Tiko, A.] NICPB, Tallinn, Estonia. [Eerola, P.; Fedi, G.; Voutilainen, M.] Univ Helsinki, Dept Phys, Helsinki, Finland. [Harkonen, J.; Kortelainen, M. J.; Lassila-Perini, K.; Luukka, P.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.] Helsinki Inst Phys, Helsinki, Finland. [Talvitie, J.; Tuuva, T.] Lappeenranta Univ Technol, Lappeenranta, Finland. [Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; de Monchenault, G. Hamel; Jarry, P.; Locci, E.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.] CEA Saclay, DSM IRFU, F-91191 Gif Sur Yvette, France. [Baffioni, S.; Beaudette, F.; Busson, P.; Charlot, C.; Dahms, T.; Dalchenko, M.; Dobrzynski, L.; Filipovic, N.; Florent, A.; de Cassagnac, R. Granier; Mastrolorenzo, L.; Mine, P.; Mironov, C.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Paganini, P.; Regnard, S.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Veelken, C.; Yilmaz, Y.; Zabi, A.] Ecole Polytech, Lab Leprince Ringuet, IN2P3, CNRS, Palaiseau, France. [Agram, J. -L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J. -M.; Chabert, E. C.; Collard, C.; Conte, E.; Fontaine, J. -C.; Gele, D.; Goerlach, U.; Goetzmann, C.; Le Bihan, A. -C.; Van Hove, P.] Univ Haute Alsace Mulhouse, Univ Strasbourg, Inst Pluridisciplinaire Hubert Curien, CNRS IN2P3, Strasbourg, France. [Gadrat, S.] CNRS, IN2P3, Inst Natl Phys Nucl & Phys Particules, Ctr Calcul, Villeurbanne, France. [Beauceron, S.; Beaupere, N.; Boudoul, G.; Bouvier, E.; Brochet, S.; Montoya, C. A. Carrillo; Chasserat, J.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Kurca, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Alvarez, J. D. Ruiz; Sabes, D.; Sgandurra, L.; Sordini, V.; Vander Donckt, M.; Verdier, P.; Viret, S.; Xiao, H.] Univ Lyon 1, CNRS, IN2P3, Inst Phys Nucl Lyon, F-69622 Villeurbanne, France. [Tsamalaidze, Z.] Tbilisi State Univ, Inst High Energy Phys & Informatizat, GE-380086 Tbilisi, Rep of Georgia. [Autermann, C.; Beranek, S.; Bontenackels, M.; Edelhoff, M.; Feld, L.; Heister, A.; Hindrichs, O.; Klein, K.; Ostapchuk, A.; Raupach, F.; Sammet, J.; Schael, S.; Weber, H.; Wittmer, B.; Zhukov, V.] Rhein Westfal TH Aachen, Inst Phys 1, Aachen, Germany. [Ata, M.; Brodski, M.; Dietz-Laursonn, E.; Duchardt, D.; Erdmann, M.; Fischer, R.; Gueth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Klingebiel, D.; Knutzen, S.; Kreuzer, P.; Merschmeyer, M.; Meyer, A.; Millet, P.; Olschewski, M.; Padeken, K.; Papacz, P.; Reithler, H.; Schmitz, S. A.; Sonnenschein, L.; Teyssier, D.; Thueer, S.; Weber, M.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany. [Cherepanov, V.; Erdogan, Y.; Fluegge, G.; Geenen, H.; Geisler, M.; Ahmad, W. Haj; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Kuensken, A.; Lingemann, J.; Nowack, A.; Nugent, I. M.; Perchalla, L.; Pooth, O.; Stahl, A.] Rhein Westfal TH Aachen, Phys Inst B 3, Aachen, Germany. [Aleksandrov, A.; Asin, I.; Behr, J.; Bell, A. J.; Bergholz, M.; Bethani, A.; Borras, K.; Burgmeier, A.; Cakir, A.; Calligaris, L.; Campbell, A.; Costanza, F.; Pardos, C. Diez; Dolinska, G.; Eckerlin, G.; Eckstein, D.; Flucke, G.; Garcia, J. Garay; Geiser, A.; Hauk, J.; Hempel, M.; Horton, D.; Jung, H.; Kalogeropoulos, A.; Kasemann, M.; Kieseler, J.; Kleinwort, C.; Korol, I.; Kruecker, D.; Leonard, J.; Lipka, K.; Lobanov, A.; Lutz, B.; Marfin, I.; Melzer-Pellmann, I. -A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Nayak, A.; Ntomari, E.; Perrey, H.; Pitzl, D.; Raspereza, A.; Roland, B.; Ron, E.; Salfeld-Nebgen, J.; Schroeder, M.; Seitz, C.; Trevino, A. D. R. Vargas; Wissing, C.] DESY, Hamburg, Germany. [Martin, M. Aldaya; Blobel, V.; Vignali, M. Centis; Draeger, A. R.; Erfle, J.; Garutti, E.; Goebel, K.; Goerner, M.; Haller, J.; Hoffmann, M.; Hoeing, R. S.; Kirschenmann, H.; Klanner, R.; Kogler, R.; Lange, J.; Lapsien, T.; Lenz, T.; Marchesini, I.; Ott, J.; Peiffer, T.; Perieanu, A.; Pietsch, N.; Poehlsen, J.; Poehlsen, T.; Rathjens, D.; Sander, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Seidel, M.; Sola, V.; Stadie, H.; Steinbrueck, G.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.] Univ Hamburg, Hamburg, Germany. [Barth, C.; Baus, C.; Berger, J.; Boeser, C.; Butz, E.; Chwalek, T.; De Boer, W.; Descroix, A.; Dierlamm, A.; Feindt, M.; Frensch, F.; Giffels, M.; Gilbert, A.; Hartmann, F.; Hauth, T.; Husemann, U.; Katkov, I.; Kornmayer, A.; Kuznetsova, E.; Pardo, P. Lobelle; Mozer, M. U.; Mueller, Th.; Nuernberg, A.; Quast, G.; Rabbertz, K.; Ratnikov, F.; Roecker, S.; Simonis, H. J.; Stober, F. M.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weiler, T.; Wolf, R.] Univ Karlsruhe, Inst Expt Kernphys, Karlsruhe, Germany. [Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Markou, A.; Markou, C.; Psallidas, A.; Topsis-Giotis, I.] NCSR Demokritos, INPP, Aghia Paraskevi, Greece. [Agapitos, A.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Stiliaris, E.] Univ Athens, Athens, Greece. [Aslanoglou, X.; Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Strologas, J.] Univ Ioannina, GR-45110 Ioannina, Greece. [Bencze, G.; Hajdu, C.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.] Wigner Res Ctr Phys, Budapest, Hungary. [Beni, N.; Czellar, S.; Karancsi, J.; Molnar, J.; Palinkas, J.; Szillasi, Z.] Inst Nucl Res ATOMKI, Debrecen, Hungary. [Makovec, A.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.] Univ Debrecen, Debrecen, Hungary. [Swain, S. K.] Natl Inst Sci Educ & Res, Bhubaneswar, Orissa, India. [Beri, S. B.; Bhatnagar, V.; Gupta, R.; Bhawandeep, U.; Kalsi, A. K.; Kaur, M.; Kumar, R.; Mittal, M.; Nishu, N.; Singh, J. B.] Panjab Univ, Chandigarh 160014, India. [Kumar, Ashok; Kumar, Arun; Ahuja, S.; Bhardwaj, A.; Choudhary, B. C.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, V.] Univ Delhi, Delhi 110007, India. [Banerjee, S.; Bhattacharya, S.; Chatterjee, K.; Dutta, S.; Gomber, B.; Jain, Sa.; Jain, Sh.; Khurana, R.; Modak, A.; Mukherjee, S.; Roy, D.; Sarkar, S.; Sharan, M.] Saha Inst Nucl Phys, Kolkata, India. [Abdulsalam, A.; Dutta, D.; Kailas, S.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Topkar, A.] Bhabha Atom Res Ctr, Bombay 400085, Maharashtra, India. [Aziz, T.; Banerjee, S.; Bhowmik, S.; Chatterjee, R. M.; Dewanjee, R. K.; Dugad, S.; Ganguly, S.; Ghosh, S.; Guchait, M.; Gurtu, A.; Kole, G.; Kumar, S.; Maity, M.; Majumder, G.; Mazumdar, K.; Mohanty, G. B.; Parida, B.; Sudhakar, K.; Wickramage, N.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. [Bakhshiansohi, H.; Behnamian, H.; Etesami, S. M.; Fahim, A.; Goldouzian, R.; Khakzad, M.; Najafabadi, M. Mohammadi; Naseri, M.; Mehdiabadi, S. Paktinat; Hosseinabadi, F. Rezaei; Safarzadeh, B.; Zeinali, M.] Inst Res Fundamental Sci IPM, Tehran, Iran. [Felcini, M.; Grunewald, M.] Univ Coll Dublin, Dublin 2, Ireland. [Abbrescia, M.; Calabria, C.; Chhibra, S. S.; Colaleo, A.; Creanza, D.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Selvaggi, G.; Silvestris, L.; Venditti, R.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Abbrescia, M.; Calabria, C.; Chhibra, S. S.; De Palma, M.; Nuzzo, S.; Pompili, A.; Radogna, R.; Selvaggi, G.] Univ Bari, Bari, Italy. [Creanza, D.; De Filippis, N.; Iaselli, G.; Maggi, G.; My, S.; Pugliese, G.] Politecn Bari, Bari, Italy. [Abbiendi, G.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Primavera, F.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.] Ist Nazl Fis Nucl, Sez Bologna, I-40126 Bologna, Italy. [Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Codispoti, G.; Cuffiani, M.; Fanfani, A.; Fasanella, D.; Guiducci, L.; Navarria, F. L.; Primavera, F.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.] Univ Bologna, Bologna, Italy. [Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.] Ist Nazl Fis Nucl, Sez Catania, I-95129 Catania, Italy. [Albergo, S.; Chiorboli, M.; Costa, S.; Potenza, R.; Tricomi, A.; Tuve, C.] Univ Catania, Catania, Italy. [Giordano, F.] CSFNSM, Catania, Italy. [Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Gallo, E.; Gonzi, S.; Gori, V.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.] Ist Nazl Fis Nucl, Sezione Firenze, I-50125 Florence, Italy. [Ciulli, V.; D'Alessandro, R.; Gallo, E.; Gonzi, S.; Gori, V.; Tropiano, A.] Univ Florence, Florence, Italy. [Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Ferretti, R.; Ferro, F.; Lo Vetere, M.; Robutti, E.; Tosi, S.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Ferretti, R.; Lo Vetere, M.; Tosi, S.] Univ Genoa, Genoa, Italy. [Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Gerosa, R.; Ghezzi, A.; Govoni, P.; Lucchini, M. T.; Malvezzi, S.; Manzoni, R. A.; Martelli, A.; Marzocchi, B.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; de Fatis, T. Tabarelli] Ist Nazl Fis Nucl, Sez Milano Bicocca, I-20133 Milan, Italy. [Dinardo, M. E.; Fiorendi, S.; Gerosa, R.; Ghezzi, A.; Govoni, P.; Lucchini, M. T.; Manzoni, R. A.; Martelli, A.; Marzocchi, B.; Paganoni, M.; Ragazzi, S.; de Fatis, T. Tabarelli] Univ Milano Bicocca, Milan, Italy. [Buontempo, S.; Cavallo, N.; Di Guida, S.; Fabozzi, F.; Iorio, A. O. M.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.] Ist Nazl Fis Nucl, Sez Napoli, I-80125 Naples, Italy. [Iorio, A. O. M.] Univ Naples Federico II, Naples, Italy. [Cavallo, N.; Fabozzi, F.] Univ Basilicata Potenza, Naples, Italy. [Di Guida, S.; Meola, S.] Univ G Marconi Roma, Naples, Italy. [Azzi, P.; Bacchetta, N.; Bisello, D.; Branca, A.; Carlin, R.; Checchia, P.; Dall'Osso, M.; Dorigo, T.; Dosselli, U.; Galanti, M.; Gasparini, F.; Gasparini, U.; Giubilato, P.; Gozzelino, A.; Kanishchev, K.; Lacaprara, S.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Zotto, P.; Zucchetta, A.; Zumerle, G.] Ist Nazl Fis Nucl, Sez Padova, Padua, Italy. [Bisello, D.; Branca, A.; Carlin, R.; Dall'Osso, M.; Galanti, M.; Gasparini, F.; Gasparini, U.; Giubilato, P.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Tosi, M.; Zotto, P.; Zucchetta, A.; Zumerle, G.] Univ Padua, Padua, Italy. [Kanishchev, K.] Univ Trento, Padua, Italy. [Gabusi, M.; Ratti, S. P.; Re, V.; Riccardi, C.; Salvini, P.; Vitulo, P.] Ist Nazl Fis Nucl, Sez Pavia, I-27100 Pavia, Italy. [Gabusi, M.; Ratti, S. P.; Riccardi, C.; Vitulo, P.] Univ Pavia, I-27100 Pavia, Italy. [Biasini, M.; Bilei, G. M.; Ciangottini, D.; Fano, L.; Lariccia, P.; Mantovani, G.; Menichelli, M.; Saha, A.; Santocchia, A.; Spiezia, A.] Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy. [Biasini, M.; Ciangottini, D.; Fano, L.; Lariccia, P.; Mantovani, G.; Santocchia, A.; Spiezia, A.] Univ Perugia, I-06100 Perugia, Italy. [Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Broccolo, G.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fiori, F.; Foa, L.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Moon, C. S.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Serban, A. T.; Spagnolo, P.; Squillacioti, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Vernieri, C.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy. [Martini, L.; Messineo, A.; Rizzi, A.; Tonelli, G.] Univ Pisa, Pisa, Italy. [Broccolo, G.; Donato, S.; Fiori, F.; Foa, L.; Ligabue, F.; Vernieri, C.] Scuola Normale Super Pisa, Pisa, Italy. [Barone, L.; Cavallari, F.; D'imperio, G.; Del Re, D.; Diemoz, M.; Jorda, C.; Longo, E.; Margaroli, F.; Meridiani, P.; Micheli, F.; Organtini, G.; Paramatti, R.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Soffi, L.; Traczyk, P.] Ist Nazl Fis Nucl, Sez Roma, Rome, Italy. [Barone, L.; D'imperio, G.; Del Re, D.; Longo, E.; Margaroli, F.; Micheli, F.; Organtini, G.; Rahatlou, S.; Santanastasio, F.; Soffi, L.; Traczyk, P.] Univ Rome, Rome, Italy. [Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bellan, R.; Biino, C.; Cartiglia, N.; Casasso, S.; Costa, M.; Degano, A.; Demaria, N.; Finco, L.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Musich, M.; Obertino, M. M.; Ortona, G.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Angioni, G. L. Pinna; Potenza, A.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Tamponi, U.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Amapane, N.; Argiro, S.; Bellan, R.; Casasso, S.; Costa, M.; Degano, A.; Finco, L.; Migliore, E.; Monaco, V.; Ortona, G.; Pacher, L.; Angioni, G. L. Pinna; Potenza, A.; Romero, A.; Sacchi, R.; Solano, A.] Univ Turin, Turin, Italy. [Arcidiacono, R.; Arneodo, M.; Obertino, M. M.; Ruspa, M.] Univ Piemonte Orientale Novara, Turin, Italy. [Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; La Licata, C.; Marone, M.; Schizzi, A.; Umer, T.; Zanetti, A.] Ist Nazl Fis Nucl, Sez Trieste, Trieste, Italy. [Candelise, V.; Della Ricca, G.; La Licata, C.; Marone, M.; Schizzi, A.; Umer, T.] Univ Trieste, Trieste, Italy. [Chang, S.; Kropivnitskaya, A.; Nam, S. K.] Kangwon Natl Univ, Chunchon, South Korea. [Kim, D. H.; Kim, G. N.; Kim, M. S.; Kong, D. J.; Lee, S.; Oh, Y. D.; Park, H.; Sakharov, A.; Son, D. C.; Kamon, T.] Kyungpook Natl Univ, Daegu, South Korea. [Kim, T. J.] Chonbuk Natl Univ, Jeonju 561756, South Korea. [Kim, J. Y.; Song, S.] Chonnam Natl Univ, Inst Univ & Elementary Particles, Kwangju, South Korea. [Choi, S.; Gyun, D.; Hong, B.; Jo, M.; Kim, H.; Kim, Y.; Lee, B.; Lee, K. S.; Park, S. K.; Roh, Y.] Korea Univ, Seoul, South Korea. [Choi, M.; Kim, J. H.; Park, I. C.; Ryu, G.; Ryu, M. S.] Univ Seoul, Seoul, South Korea. [Choi, Y.; Choi, Y. K.; Goh, J.; Kim, D.; Kwon, E.; Lee, J.; Seo, H.; Yu, I.] Sungkyunkwan Univ, Suwon, South Korea. [Juodagalvis, A.] Vilnius Univ, Vilnius, Lithuania. [Komaragiri, J. R.; Ali, M. A. B. Md] Univ Malaya, Natl Ctr Particle Phys, Kuala Lumpur, Malaysia. [Linares, E. Casimiro; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-de La Cruz, I.; Hernandez-Almada, A.; Lopez-Fernandez, R.; Sanchez-Hernandez, A.] IPN, Ctr Invest & Estudios Avanzados, Mexico City 07738, DF, Mexico. [Moreno, S. Carrillo; Valencia, F. Vazquez] Univ Iberoamer, Mexico City, DF, Mexico. [Pedraza, I.; Ibarguen, H. A. Salazar] Benemerita Univ Autonoma Puebla, Puebla, Mexico. [Pineda, A. Morelos] Univ Autonoma San Luis Potosi, San Luis Potosi, Mexico. [Krofcheck, D.] Univ Auckland, Auckland 1, New Zealand. [Butler, P. H.; Reucroft, S.] Univ Canterbury, Christchurch 1, New Zealand. [Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Khan, W. A.; Khurshid, T.; Shoaib, M.] Quaid I Azam Univ, Natl Ctr Phys, Islamabad, Pakistan. [Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Gorski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Zalewski, P.] Natl Ctr Nucl Res, Otwock, Poland. [Brona, G.; Bunkowski, K.; Cwiok, M.; Dominik, W.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Wolszczak, W.] Univ Warsaw, Fac Phys, Inst Expt Phys, Warsaw, Poland. [Bargassa, P.; Da Cruz E Silva, C. Beirao; Faccioli, P.; Parracho, P. G. Ferreira; Gallinaro, M.; Iglesias, L. Lloret; Nguyen, F.; Antunes, J. Rodrigues; Seixas, J.; Varela, J.; Vischia, P.] Lab Instrumentacao & Fis Expt Particulas, Lisbon, Portugal. [Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Karjavin, V.; Konoplyanikov, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Savina, M.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Zarubin, A.] Joint Inst Nucl Res, Dubna, Russia. [Golovtsov, V.; Ivanov, Y.; Kim, V.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Vorobyev, An.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.] Russian Acad Sci, Inst Nucl Res, Moscow 117312, Russia. [Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Semenov, S.; Spiridonov, A.; Stolin, V.; Vlasov, E.; Zhokin, A.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Vinogradov, A.] PN Lebedev Phys Inst, Moscow, Russia. [Belyaev, A.; Boos, E.; Bunichev, V.; Dubinin, M.; Dudko, L.; Ershov, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Obraztsov, S.; Perfilov, M.; Petrushanko, S.; Savrin, V.] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.] Inst High Energy Phys, State Res Ctr Russian Federat, Protvino, Russia. [Adzic, P.; Ekmedzic, M.; Milosevic, J.; Rekovic, V.] Univ Belgrade, Fac Phys, Belgrade 11001, Serbia. [Adzic, P.; Ekmedzic, M.; Milosevic, J.; Rekovic, V.] Vinca Inst Nucl Sci, Belgrade, Serbia. [Alcaraz Maestre, J.; Battilana, C.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Dominguez Vazquez, D.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernandez Ramos, J. P.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Navarro De Martino, E.; Perez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.] CIEMAT, Madrid, Spain. [Albajar, C.; de Troconiz, J. F.; Missiroli, M.; Moran, D.] Univ Autonoma Madrid, Madrid, Spain. [Brun, H.; Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.] Univ Oviedo, Oviedo, Spain. [Brochero Cifuentes, J. A.; Cabrillo, I. J.; Calderon, A.; Duarte Campderros, J.; Fernandez, M.; Gomez, G.; Graziano, A.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Munoz Sanchez, F. J.; Piedra Gomez, J.; Rodrigo, T.; Rodriguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Vila, I.; Vilar Cortabitarte, R.] Univ Cantabria, CSIC, Inst Fis Cantabria IFCA, E-39005 Santander, Spain. [Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Benaglia, A.; Bendavid, J.; Benhabib, L.; Benitez, J. F.; Bernet, C.; Bloch, P.; Bocci, A.; Bonato, A.; Bondu, O.; Botta, C.; Breuker, H.; Camporesi, T.; Cerminara, G.; Colafranceschi, S.; D'Alfonso, M.; d'Enterria, D.; Dabrowski, A.; David, A.; De Guio, F.; De Roeck, A.; De Visscher, S.; Di Marco, E.; Dobson, M.; Dordevic, M.; Dorney, B.; Dupont-Sagorin, N.; Elliott-Peisert, A.; Eugster, J.; Franzoni, G.; Funk, W.; Gigi, D.; Gill, K.; Giordano, D.; Girone, M.; Glege, F.; Guida, R.; Gundacker, S.; Guthoff, M.; Hammer, J.; Hansen, M.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Kousouris, K.; Krajczar, K.; Lecoq, P.; Lourenco, C.; Magini, N.; Malgeri, L.; Mannelli, M.; Marrouche, J.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moortgat, F.; Morovic, S.; Mulders, M.; Musella, P.; Orsini, L.; Pape, L.; Perez, E.; Perrozzi, L.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pierini, M.; Pimiae, M.; Piparo, D.; Plagge, M.; Racz, A.; Rolandi, G.; Rovere, M.; Sakulin, H.; Schaefer, C.; Schwick, C.; Sharma, A.; Siegrist, P.; Silva, P.; Simon, M.; Sphicas, P.; Spiga, D.; Steggemann, J.; Stieger, B.; Stoye, M.; Takahashi, Y.; Treille, D.; Tsirou, A.; Veres, G. I.; Wardle, N.; Woehri, H. K.; Wollny, H.; Zeuner, W. D.] CERN, European Org Nucl Res, Geneva, Switzerland. [Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Renker, D.; Rohe, T.] Paul Scherrer Inst, Villigen, Switzerland. [Bachmair, F.; Baeni, L.; Bianchini, L.; Buchmann, M. A.; Casal, B.; Chanon, N.; Dissertori, G.; Dittmar, M.; Donega, M.; Duenser, M.; Eller, P.; Grab, C.; Hits, D.; Hoss, J.; Lustermann, W.; Mangano, B.; Marini, A. C.; del Arbol, P. Martinez Ruiz; Masciovecchio, M.; Meister, D.; Mohr, N.; Naegeli, C.; Nessi-Tedaldi, F.; Pandolfi, F.; Pauss, F.; Peruzzi, M.; Quittnat, M.; Rebane, L.; Rossini, M.; Starodumov, A.; Takahashi, M.; Theofilatos, K.; Wallny, R.; Weber, H. A.] ETH, Inst Particle Phys, Zurich, Switzerland. [Amsler, C.; Canelli, M. F.; Chiochia, V.; De Cosa, A.; Hinzmann, A.; Hreus, T.; Kilminster, B.; Lange, C.; Mejias, B. Millan; Ngadiuba, J.; Robmann, P.; Ronga, F. J.; Taroni, S.; Verzetti, M.; Yang, Y.] Univ Zurich, Zurich, Switzerland. [Cardaci, M.; Chen, K. H.; Ferro, C.; Kuo, C. M.; Lin, W.; Lu, Y. J.; Volpe, R.; Yu, S. S.] Natl Cent Univ, Chungli, Taiwan. [Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Chen, P. H.; Dietz, C.; Grundler, U.; Hou, W. -S.; Kao, K. Y.; Lei, Y. J.; Liu, Y. F.; Lu, R. -S.; Majumder, D.; Petrakou, E.; Tzeng, Y. M.; Wilken, R.] Natl Taiwan Univ, Taipei 10764, Taiwan. [Asavapibhop, B.; Singh, G.; Srimanobhas, N.; Suwonjandee, N.] Chulalongkorn Univ, Fac Sci, Dept Phys, Bangkok, Thailand. [Adiguzel, A.; Bakirci, M. N.; Cerci, S.; Dozen, C.; Dumanoglu, I.; Eskut, E.; Girgis, S.; Gokbulut, G.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Topaksu, A. Kayis; Onengut, G.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Cerci, D. Sunar; Tali, B.; Topakli, H.; Vergili, M.] Cukurova Univ, Adana, Turkey. [Akin, I. V.; Bilin, B.; Bilmis, S.; Gamsizkan, H.; Isildak, B.; Karapinar, G.; Ocalan, K.; Sekmen, S.; Surat, U. E.; Yalvac, M.; Zeyrek, M.] Middle E Tech Univ, Dept Phys, TR-06531 Ankara, Turkey. [Albayrak, E. A.; Gulmez, E.; Kaya, M.; Kaya, O.; Yetkin, T.] Bogazici Univ, Istanbul, Turkey. [Cankocak, K.; Vardarli, F. I.] Istanbul Tech Univ, TR-80626 Istanbul, Turkey. [Levchuk, L.; Sorokin, P.] Kharkov Inst Phys & Technol, Natl Sci Ctr, Kharkov, Ukraine. [Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Meng, Z.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Sakuma, T.; Senkin, S.; Smith, V. J.; Williams, T.] Univ Bristol, Bristol, Avon, England. [Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Womersley, W. J.; Worm, S. D.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Baber, M.; Bainbridge, R.; Buchmuller, O.; Burton, D.; Colling, D.; Cripps, N.; Cutajar, M.; Dauncey, P.; Davies, G.; Della Negra, M.; Dunne, P.; Ferguson, W.; Fulcher, J.; Futyan, D.; Hall, G.; Iles, G.; Jarvis, M.; Karapostoli, G.; Kenzie, M.; Lane, R.; Lucas, R.; Lyons, L.; Magnan, A. -M.; Malik, S.; Mathias, B.; Nash, J.; Nikitenko, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Raymond, D. M.; Rogerson, S.; Rose, A.; Seez, C.; Sharp, P.; Tapper, A.; Acosta, M. Vazquez; Virdee, T.; Zenz, S. C.] Univ London Imperial Coll Sci Technol & Med, London, England. [Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Martin, W.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Dittmann, J.; Hatakeyama, K.; Kasmi, A.; Liu, H.; Scarborough, T.] Baylor Univ, Waco, TX 76798 USA. [Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.] Univ Alabama, Tuscaloosa, AL USA. [Avetisyan, A.; Bose, T.; Fantasia, C.; Lawson, P.; Richardson, C.; Rohlf, J.; John, J. St.; Sulak, L.] Boston Univ, Boston, MA 02215 USA. [Alimena, J.; Berry, E.; Bhattacharya, S.; Christopher, G.; Cutts, D.; Demiragli, Z.; Dhingra, N.; Ferapontov, A.; Garabedian, A.; Heintz, U.; Kukartsev, G.; Laird, E.; Landsberg, G.; Luk, M.; Narain, M.; Segala, M.; Sinthuprasith, T.; Speer, T.; Swanson, J.] Brown Univ, Providence, RI 02912 USA. [Breedon, R.; Breto, G.; Sanchez, M. Calderon De La Barca; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Gardner, M.; Ko, W.; Lander, R.; Miceli, T.; Mulhearn, M.; Pellett, D.; Pilot, J.; Ricci-Tam, F.; Searle, M.; Shalhout, S.; Smith, J.; Squires, M.; Stolp, D.; Tripathi, M.; Wilbur, S.; Yohay, R.] Univ Calif Davis, Davis, CA 95616 USA. [Cousins, R.; Everaerts, P.; Farrell, C.; Hauser, J.; Ignatenko, M.; Rakness, G.; Takasugi, E.; Valuev, V.; Weber, M.] Univ Calif Los Angeles, Los Angeles, CA USA. [Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Hanson, G.; Heilman, J.; Rikova, M. Ivova; Jandir, P.; Kennedy, E.; Lacroix, F.; Long, O. R.; Luthra, A.; Malberti, M.; Negrete, M. Olmedo; Shrinivas, A.; Sumowidagdo, S.; Wimpenny, S.] Univ Calif Riverside, Riverside, CA 92521 USA. [Radi, A.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; D'Agnolo, R. T.; Holzner, A.; Kelley, R.; Klein, D.; Letts, J.; Macneill, I.; Olivito, D.; Padhi, S.; Palmer, C.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Sudano, E.; Tadel, M.; Tu, Y.; Vartak, A.; Welke, C.; Wuerthwein, F.; Yagil, A.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Barge, D.; Bradmiller-Feld, J.; Campagnari, C.; Danielson, T.; Dishaw, A.; Dutta, V.; Flowers, K.; Sevilla, M. Franco; Geffert, P.; George, C.; Golf, F.; Gouskos, L.; Incandela, J.; Justus, C.; Mccoll, N.; Richman, J.; Stuart, D.; To, W.; West, C.; Yoo, J.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Dubinin, M.; Apresyan, A.; Bornheim, A.; Bunn, J.; Chen, Y.; Duarte, J.; Mott, A.; Newman, H. B.; Pena, C.; Rogan, C.; Spiropulu, M.; Timciuc, V.; Vlimant, J. R.; Wilkinson, R.; Xie, S.; Zhu, R. Y.] CALTECH, Pasadena, CA 91125 USA. [Azzolini, V.; Calamba, A.; Carlson, B.; Ferguson, T.; Iiyama, Y.; Paulini, M.; Russ, J.; Vogel, H.; Vorobiev, I.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Cumalat, J. P.; Ford, W. T.; Gaz, A.; Krohn, M.; Lopez, E. Luiggi; Nauenberg, U.; Smith, J. G.; Stenson, K.; Ulmer, K. A.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Alexander, J.; Chatterjee, A.; Chaves, J.; Chu, J.; Dittmer, S.; Eggert, N.; Mirman, N.; Kaufman, G. Nicolas; Patterson, J. R.; Ryd, A.; Salvati, E.; Skinnari, L.; Sun, W.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Weng, Y.; Winstrom, L.; Wittich, P.] Cornell Univ, Ithaca, NY USA. [Winn, D.] Fairfield Univ, Fairfield, CT 06430 USA. [Abdullin, S.; Albrow, M.; Anderson, J.; Apollinari, G.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gao, Y.; Gottschalk, E.; Gray, L.; Green, D.; Gruenendahl, S.; Gutsche, O.; Hanlon, J.; Hare, D.; Harris, R. M.; Hirschauer, J.; Hooberman, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Kaadze, K.; Klima, B.; Kreis, B.; Kwan, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, T.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Outschoorn, V. I. Martinez; Maruyama, S.; Mason, D.; McBride, P.; Merkel, P.; Mishra, K.; Mrenna, S.; Musienko, Y.; Nahn, S.; Newman-Holmes, C.; O'Dell, V.; Prokofyev, O.; Sexton-Kennedy, E.; Sharma, S.; Soha, A.; Spalding, W. J.; Spiegel, L.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vidal, R.; Whitbeck, A.; Whitmore, J.; Yang, F.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Carver, M.; Curry, D.; Das, S.; De Gruttola, M.; Di Giovanni, G. P.; Field, R. D.; Fisher, M.; Furic, I. K.; Hugon, J.; Konigsberg, J.; Korytov, A.; Kypreos, T.; Low, J. F.; Matchev, K.; Milenovic, P.; Mitselmakher, G.; Muniz, L.; Rinkevicius, A.; Shchutska, L.; Snowball, M.; Sperka, D.; Yelton, J.; Zakaria, M.] Univ Florida, Gainesville, FL USA. [Hewamanage, S.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.] Florida Int Univ, Miami, FL 33199 USA. [Adams, T.; Askew, A.; Bochenek, J.; Diamond, B.; Haas, J.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Prosper, H.; Veeraraghavan, V.; Weinberg, M.] Florida State Univ, Tallahassee, FL 32306 USA. [Baarmand, M. M.; Hohlmann, M.; Kalakhety, H.; Yumiceva, F.] Florida Inst Technol, Melbourne, FL 32901 USA. [Adams, M. R.; Apanasevich, L.; Bazterra, V. E.; Berry, D.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Khalatyan, S.; Kurt, P.; Moon, D. H.; O'Brien, C.; Silkworth, C.; Turner, P.; Varelas, N.] UIC, Chicago, IL USA. [Bilki, B.; Clarida, W.; Dilsiz, K.; Duru, F.; Haytmyradov, M.; Merlo, J. -P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Rahmat, R.; Sen, S.; Tan, P.; Tiras, E.; Wetzel, J.; Yi, K.] Univ Iowa, Iowa City, IA USA. [Barnett, B. A.; Blumenfeld, B.; Bolognesi, S.; Fehling, D.; Gritsan, A. V.; Maksimovic, P.; Martin, C.; Swartz, M.] Johns Hopkins Univ, Baltimore, MD USA. [Baringer, P.; Bean, A.; Benelli, G.; Bruner, C.; Kenny, R. P., III; Malek, M.; Murray, M.; Noonan, D.; Sanders, S.; Sekaric, J.; Stringer, R.; Wang, Q.; Wood, J. S.] Univ Kansas, Lawrence, KS 66045 USA. [Chakaberia, I.; Ivanov, A.; Khalil, S.; Makouski, M.; Maravin, Y.; Saini, L. K.; Shrestha, S.; Skhirtladze, N.; Svintradze, I.] Kansas State Univ, Manhattan, KS 66506 USA. [Gronberg, J.; Lange, D.; Rebassoo, F.; Wright, D.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Baden, A.; Belloni, A.; Calvert, B.; Eno, S. C.; Gomez, J. A.; Hadley, N. J.; Kellogg, R. G.; Kolberg, T.; Lu, Y.; Marionneau, M.; Mignerey, A. C.; Pedro, K.; Skuja, A.; Tonjes, M. B.; Tonwar, S. C.] Univ Maryland, College Pk, MD 20742 USA. [Apyan, A.; Barbieri, R.; Bauer, G.; Busza, W.; Cali, I. A.; Chan, M.; Di Matteo, L.; Ceballos, G. Gomez; Goncharov, M.; Gulhan, D.; Klute, M.; Lai, Y. S.; Lee, Y. -J.; Levin, A.; Luckey, P. D.; Ma, T.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Stephans, G. S. F.; Stoeckli, F.; Sumorok, K.; Velicanu, D.; Veverka, J.; Wyslouch, B.; Yang, M.; Zanetti, M.; Zhukova, V.] MIT, Cambridge, MA 02139 USA. [Dahmes, B.; Gude, A.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Mans, J.; Pastika, N.; Rusack, R.; Singovsky, A.; Tambe, N.; Turkewitz, J.] Univ Minnesota, Minneapolis, MN USA. [Acosta, J. G.; Oliveros, S.] Univ Mississippi, Oxford, MS USA. [Avdeeva, E.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Suarez, R. Gonzalez; Keller, J.; Knowlton, D.; Kravchenko, I.; Lazo-Flores, J.; Malik, S.; Meier, F.; Snow, G. R.; Zvada, M.] Univ Nebraska, Lincoln, NE USA. [Dolen, J.; Godshalk, A.; Iashvili, I.; Kharchilava, A.; Kumar, A.; Rappoccio, S.] SUNY Buffalo, Buffalo, NY 14260 USA. [Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Haley, J.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; Trocino, D.; Wang, R. -J.; Wood, D.; Zhang, J.] Northeastern Univ, Boston, MA 02115 USA. [Hahn, K. A.; Kubik, A.; Mucia, N.; Odell, N.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Sung, K.; Velasco, M.; Won, S.] Northeastern Univ, Evanston, IL USA. [Brinkerhoff, A.; Chan, K. M.; Drozdetskiy, A.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Luo, W.; Lynch, S.; Marinelli, N.; Pearson, T.; Planer, M.; Ruchti, R.; Valls, N.; Wayne, M.; Wolf, M.; Woodard, A.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Antonelli, L.; Brinson, J.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Hart, A.; Hill, C.; Hughes, R.; Kotov, K.; Ling, T. Y.; Puigh, D.; Rodenburg, M.; Smith, G.; Winer, B. L.; Wolfe, H.; Wulsin, H. W.] Ohio State Univ, Columbus, OH 43210 USA. [Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Hunt, A.; Koay, S. A.; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Piroue, P.; Quan, X.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zuranski, A.] Princeton Univ, Princeton, NJ 08544 USA. [Brownson, E.; Mendez, H.; Vargas, J. E. Ramirez] Univ Puerto Rico, Mayaguez, PR USA. [Barnes, V. E.; Benedetti, D.; Bortoletto, D.; De Mattia, M.; Gutay, L.; Hu, Z.; Jha, M. K.; Jones, M.; Jung, K.; Kress, M.; Leonardo, N.; Pegna, D. Lopes; Maroussov, V.; Miller, D. H.; Neumeister, N.; Radburn-Smith, B. C.; Shi, X.; Shipsey, I.; Silvers, D.; Svyatkovskiy, A.; Wang, F.; Xie, W.; Xu, L.; Yoo, H. D.; Zablocki, J.; Zheng, Y.] Purdue Univ, W Lafayette, IN 47907 USA. [Parashar, N.; Stupak, J.] Purdue Univ Calumet, Hammond, LA USA. [Adair, A.; Akgun, B.; Ecklund, K. M.; Geurts, F. J. M.; Li, W.; Michlin, B.; Padley, B. P.; Redjimi, R.; Roberts, J.; Zabel, J.] Rice Univ, Houston, TX USA. [Betchart, B.; Bodek, A.; Covarelli, R.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Garcia-Bellido, A.; Goldenzweig, P.; Han, J.; Harel, A.; Khukhunaishvili, A.; Korjenevski, S.; Petrillo, G.; Vishnevskiy, D.] Univ Rochester, Rochester, NY 14627 USA. [Ciesielski, R.; Demortier, L.; Goulianos, K.; Lungu, G.; Mesropian, C.] Rockefeller Univ, New York, NY 10021 USA. [Arora, S.; Barker, A.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Duggan, D.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Kaplan, S.; Lath, A.; Panwalkar, S.; Park, M.; Patel, R.; Salur, S.; Schnetzer, S.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.] Rutgers State Univ, Piscataway, NJ USA. [Rose, K.; Spanier, S.; York, A.] Univ Tennessee, Knoxville, TN USA. [Bouhali, O.; Hernandez, A. Castaneda; Eusebi, R.; Flanagan, W.; Gilmore, J.; Kamon, T.; Khotilovich, V.; Krutelyov, V.; Montalvo, R.; Osipenkov, I.; Pakhotin, Y.; Perloff, A.; Roe, J.; Rose, A.; Safonov, A.; Suarez, I.; Tatarinov, A.] Texas A&M Univ, College Stn, TX USA. [Akchurin, N.; Cowden, C.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Kovitanggoon, K.; Kunori, S.; Lee, S. W.; Libeiro, T.; Volobouev, I.] Texas Tech Univ, Lubbock, TX 79409 USA. [Appelt, E.; Delannoy, A. G.; Greene, S.; Gurrola, A.; Johns, W.; Maguire, C.; Mao, Y.; Melo, A.; Sharma, M.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.] Vanderbilt Univ, Nashville, TN 37235 USA. [Arenton, M. W.; Boutle, S.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Li, H.; Lin, C.; Neu, C.; Wood, J.] Univ Virginia, Charlottesville, VA USA. [Clarke, C.; Harr, R.; Karchin, P. E.; Don, C. Kottachchi Kankanamge; Lamichhane, P.; Sturdy, J.] Wayne State Univ, Detroit, MI USA. [Belknap, D. A.; Carlsmith, D.; Cepeda, M.; Dasu, S.; Dodd, L.; Duric, S.; Friis, E.; Hall-Wilton, R.; Herndon, M.; Herve, A.; Klabbers, P.; Lanaro, A.; Lazaridis, C.; Levine, A.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Perry, T.; Pierro, G. A.; Polese, G.; Ross, I.; Sarangi, T.; Savin, A.; Smith, W. H.; Taylor, D.; Verwilligen, P.; Vuosalo, C.; Woods, N.] Univ Wisconsin, Madison, WI 53706 USA. [Fruehwirth, R.; Jeitler, M.; Krammer, M.; Wulz, C. -E.] Vienna Univ Technol, A-1040 Vienna, Austria. [Rabady, D.; Pernie, L.; Genchev, V.; Contardo, D.; Lingemann, J.; Hartmann, F.; Hauth, T.; Kornmayer, A.; Mohanty, A. K.; Radogna, R.; Silvestris, L.; Giordano, F.; Gonzi, S.; Gennai, S.; Gerosa, R.; Lucchini, M. T.; Di Guida, S.; Meola, S.; Paolucci, P.; Spiezia, A.; Palla, F.; Vernieri, C.; Micheli, F.; Soffi, L.; Casasso, S.; Obertino, M. M.; Stickland, D.] CERN, European Org Nucl Res, Geneva, Switzerland. [Beluffi, C.] Univ Haute Alsace Mulhouse, Univ Strasbourg, Inst Pluridisciplinaire Hubert Curien, CNRS IN2P3, Strasbourg, France. [Giammanco, A.] NICPB, Tallinn, Estonia. [Popov, A.; Zhukov, V.; Katkov, I.] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Chinellato, J.; Tonelli Manganote, E. J.] Univ Estadual Campinas, Campinas, SP, Brazil. [Plestina, R.; Bernet, C.] Ecole Polytech, IN2P3, CNRS, Lab Leprince Ringuet, Palaiseau, France. [Finger, M., Jr.; Tsamalaidze, Z.] Joint Inst Nucl Res, Dubna, Russia. [Assran, Y.] Suez Univ, Suez, Egypt. [Elgammal, S.] British Univ Egypt, Cairo, Egypt. [Mahmoud, M. A.] Fayoum Univ, Al Fayyum, Egypt. [Radi, A.] Ain Shams Univ, Cairo, Egypt. [Radi, A.] Sultan Qaboos Univ, Muscat, Oman. [Agram, J. -L.; Conte, E.; Fontaine, J. -C.] Univ Haute Alsace, Mulhouse, France. [Bergholz, M.; Lohmann, W.; Marfin, I.; Schmidt, R.] Brandenburg Tech Univ Cottbus, Cottbus, Germany. [Horvath, D.] Inst Nucl Res, ATOMKI, H-4001 Debrecen, Hungary. [Vesztergombi, G.] Eotvos Lorand Univ, Budapest, Hungary. [Karancsi, J.] Univ Debrecen, Debrecen, Hungary. [Bhowmik, S.; Maity, M.] Visva Bharati Univ, Santini Ketan, W Bengal, India. [Gurtu, A.] King Abdulaziz Univ, Jeddah 21413, Saudi Arabia. [Wickramage, N.] Univ Ruhuna, Matara, Sri Lanka. [Etesami, S. M.] Isfahan Univ Technol, Esfahan, Iran. [Fahim, A.] Univ Tehran, Dept Engn Sci, Tehran, Iran. [Safarzadeh, B.] Islamic Azad Univ, Sci & Res Branch, Plasma Phys Res Ctr, Tehran, Iran. [Androsov, K.; Ciocci, M. A.; Grippo, M. T.; Squillacioti, P.] Univ Siena, I-53100 Siena, Italy. [Moon, C. S.] CNRS, IN2P3, Paris, France. [Savoy-Navarro, A.] Purdue Univ, W Lafayette, IN 47907 USA. [Givernaud, A.] Univ Michoacana, Morelia, Michoacan, Mexico. [Matveev, V.; Musienko, Y.] Russian Acad Sci, Inst Nucl Res, Moscow 117312, Russia. [Kim, V.] St Petersburg State Polytech Univ, St Petersburg, Russia. [Beauceron, S.] Univ Belgrade, Fac Phys, Belgrade, Serbia. [Colafranceschi, S.] Univ Rome, Fac Ingn, Rome, Italy. [Schael, S.] Ist Nazl Fis Nucl, Scuola Normale & Sez, Pisa, Italy. [Sphicas, P.] Univ Athens, Athens, Greece. [Kuensken, A.] Paul Scherrer Inst, Villigen, Switzerland. [Cipriano, P. M. Ribeiro] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Amsler, C.] Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Bakirci, M. N.; Topakli, H.] Gaziosmanpasa Univ, Tokat, Turkey. [Cerci, D. Sunar] Adiyaman Univ, Adiyaman, Turkey. [Onengut, G.] Cag Univ, Mersin, Turkey. [Isildak, B.] Ozyegin Univ, Istanbul, Turkey. [Karapinar, G.] Izmir Inst Technol, Izmir, Turkey. [Ocalan, K.] Necmettin Erbakan Univ, Konya, Turkey. [Albayrak, E. A.; Ozok, F.] Mimar Sinan Univ, Istanbul, Turkey. [Kaya, M.] Marmara Univ, Istanbul, Turkey. [Kaya, O.] Kafkas Univ, Kars, Turkey. [Yetkin, T.] Yildiz Tekn Univ, Istanbul, Turkey. [Newbold, D. M.; Lucas, R.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Belyaev, A.] Univ Southampton, Sch Phys & Astron, Southampton, Hants, England. [Bilki, B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Mermerkaya, H.] Erzincan Univ, Erzincan, Turkey. [Bouhali, O.] Texas A&M Univ, Doha, Qatar. [CMS Collaboration] CERN, CH-1211 Geneva 23, Switzerland. RP Khachatryan, V (reprint author), Yerevan Phys Inst, Yerevan 375036, Armenia. RI Vilela Pereira, Antonio/L-4142-2016; Sznajder, Andre/L-1621-2016; Da Silveira, Gustavo Gil/N-7279-2014; Mora Herrera, Maria Clemencia/L-3893-2016; Mundim, Luiz/A-1291-2012; Haj Ahmad, Wael/E-6738-2016; Konecki, Marcin/G-4164-2015; Vogel, Helmut/N-8882-2014; Xie, Si/O-6830-2016; Leonardo, Nuno/M-6940-2016; Perez-Calero Yzquierdo, Antonio/F-2235-2013; Novaes, Sergio/D-3532-2012; Della Ricca, Giuseppe/B-6826-2013; Chinellato, Jose Augusto/I-7972-2012; Tomei, Thiago/E-7091-2012; Dubinin, Mikhail/I-3942-2016; Stahl, Achim/E-8846-2011; Kirakosyan, Martin/N-2701-2015; Gulmez, Erhan/P-9518-2015; Tinoco Mendes, Andre David/D-4314-2011; Seixas, Joao/F-5441-2013; Cakir, Altan/P-1024-2015; Gennai, Simone/P-2880-2015; TUVE', Cristina/P-3933-2015; Dudko, Lev/D-7127-2012; KIM, Tae Jeong/P-7848-2015; Menasce, Dario/A-2168-2016; Paganoni, Marco/A-4235-2016; Azarkin, Maxim/N-2578-2015; de Jesus Damiao, Dilson/G-6218-2012; Horani, Hafeez /L-2414-2015; Calvo Alamillo, Enrique/L-1203-2014; Flix, Josep/G-5414-2012; Cerrada, Marcos/J-6934-2014; Benussi, Luigi/O-9684-2014; Lo Vetere, Maurizio/J-5049-2012; Ragazzi, Stefano/D-2463-2009; Fano, Livio/K-2460-2015; Grandi, Claudio/B-5654-2015; Rovelli, Tiziano/K-4432-2015; Dremin, Igor/K-8053-2015; Hoorani, Hafeez/D-1791-2013; Dogra, Sunil /B-5330-2013; Leonidov, Andrey/M-4440-2013; Andreev, Vladimir/M-8665-2015; Vinogradov, Alexey/O-2375-2015; Petrushanko, Sergey/D-6880-2012; Manganote, Edmilson/K-8251-2013; candelise, vieri/H-2195-2015; Lokhtin, Igor/D-7004-2012; Montanari, Alessandro/J-2420-2012; Hernandez Calama, Jose Maria/H-9127-2015; ciocci, maria agnese /I-2153-2015; Marco, Jesus/B-8735-2008; My, Salvatore/I-5160-2015; Matorras, Francisco/I-4983-2015; VARDARLI, Fuat Ilkehan/B-6360-2013; Bedoya, Cristina/K-8066-2014; Rolandi, Luigi (Gigi)/E-8563-2013; Sguazzoni, Giacomo/J-4620-2015; Ligabue, Franco/F-3432-2014; Calderon, Alicia/K-3658-2014; Goh, Junghwan/Q-3720-2016; Ruiz, Alberto/E-4473-2011; Govoni, Pietro/K-9619-2016; Tuominen, Eija/A-5288-2017; Yazgan, Efe/C-4521-2014; Paulini, Manfred/N-7794-2014; Inst. of Physics, Gleb Wataghin/A-9780-2017; Ogul, Hasan/S-7951-2016; OI Vilela Pereira, Antonio/0000-0003-3177-4626; Sznajder, Andre/0000-0001-6998-1108; Da Silveira, Gustavo Gil/0000-0003-3514-7056; Mora Herrera, Maria Clemencia/0000-0003-3915-3170; Mundim, Luiz/0000-0001-9964-7805; Haj Ahmad, Wael/0000-0003-1491-0446; Konecki, Marcin/0000-0001-9482-4841; Vogel, Helmut/0000-0002-6109-3023; Xie, Si/0000-0003-2509-5731; Leonardo, Nuno/0000-0002-9746-4594; Perez-Calero Yzquierdo, Antonio/0000-0003-3036-7965; Novaes, Sergio/0000-0003-0471-8549; Della Ricca, Giuseppe/0000-0003-2831-6982; Chinellato, Jose Augusto/0000-0002-3240-6270; Tomei, Thiago/0000-0002-1809-5226; Dubinin, Mikhail/0000-0002-7766-7175; Stahl, Achim/0000-0002-8369-7506; Gulmez, Erhan/0000-0002-6353-518X; Tinoco Mendes, Andre David/0000-0001-5854-7699; Seixas, Joao/0000-0002-7531-0842; TUVE', Cristina/0000-0003-0739-3153; Dudko, Lev/0000-0002-4462-3192; KIM, Tae Jeong/0000-0001-8336-2434; Menasce, Dario/0000-0002-9918-1686; Paganoni, Marco/0000-0003-2461-275X; de Jesus Damiao, Dilson/0000-0002-3769-1680; Calvo Alamillo, Enrique/0000-0002-1100-2963; Flix, Josep/0000-0003-2688-8047; Cerrada, Marcos/0000-0003-0112-1691; Benussi, Luigi/0000-0002-2363-8889; Lo Vetere, Maurizio/0000-0002-6520-4480; Ragazzi, Stefano/0000-0001-8219-2074; Fano, Livio/0000-0002-9007-629X; Grandi, Claudio/0000-0001-5998-3070; Rovelli, Tiziano/0000-0002-9746-4842; Montanari, Alessandro/0000-0003-2748-6373; Hernandez Calama, Jose Maria/0000-0001-6436-7547; ciocci, maria agnese /0000-0003-0002-5462; Marco, Jesus/0000-0001-7914-8494; My, Salvatore/0000-0002-9938-2680; Matorras, Francisco/0000-0003-4295-5668; Bedoya, Cristina/0000-0001-8057-9152; Demaria, Natale/0000-0003-0743-9465; Benaglia, Andrea Davide/0000-0003-1124-8450; Covarelli, Roberto/0000-0003-1216-5235; Ciulli, Vitaliano/0000-0003-1947-3396; Androsov, Konstantin/0000-0003-2694-6542; Fiorendi, Sara/0000-0003-3273-9419; Martelli, Arabella/0000-0003-3530-2255; Gonzi, Sandro/0000-0003-4754-645X; Baarmand, Marc/0000-0002-9792-8619; Boccali, Tommaso/0000-0002-9930-9299; Gerosa, Raffaele/0000-0001-8359-3734; Attia Mahmoud, Mohammed/0000-0001-8692-5458; Bilki, Burak/0000-0001-9515-3306; Rolandi, Luigi (Gigi)/0000-0002-0635-274X; Sguazzoni, Giacomo/0000-0002-0791-3350; Casarsa, Massimo/0000-0002-1353-8964; Ligabue, Franco/0000-0002-1549-7107; Diemoz, Marcella/0000-0002-3810-8530; Tricomi, Alessia Rita/0000-0002-5071-5501; Ghezzi, Alessio/0000-0002-8184-7953; Goh, Junghwan/0000-0002-1129-2083; Ruiz, Alberto/0000-0002-3639-0368; Govoni, Pietro/0000-0002-0227-1301; Tuominen, Eija/0000-0002-7073-7767; Yazgan, Efe/0000-0001-5732-7950; Paulini, Manfred/0000-0002-6714-5787; Ogul, Hasan/0000-0002-5121-2893; Bean, Alice/0000-0001-5967-8674; Longo, Egidio/0000-0001-6238-6787; Di Matteo, Leonardo/0000-0001-6698-1735 FU BMWFW (Austria); FWF (Austria); FNRS (Belgium); FWO (Belgium); CNPq (Brazil); CAPES (Brazil); FAPERJ (Brazil); FAPESP (Brazil); MES (Bulgaria); CERN; CAS (China); MoST (China); NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); CSF (Croatia); RPF (Cyprus); MoER (Estonia); ERC IUT (Estonia); ERDF (Estonia); Academy of Finland (Finland); MEC (Finland); HIP (Finland); CEA (France); CNRS/IN2P3 (France); BMBF (Germany); DFG (Germany); HGF (Germany); GSRT (Greece); OTKA (Hungary); NIH (Hungary); DAE (India); DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP (Republic of Korea); NRF (Republic of Korea); LAS (Lithuania); MOE (Malaysia); UM (Malaysia); CINVESTAV (Mexico); CONACYT (Mexico); SEP (Mexico); UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE (Poland); NSC (Poland); FCT (Portugal); JINR (Dubna); MON (Russia); RosAtom (Russia); RAS (Russia); RFBR (Russia); MESTD (Serbia); SEIDI (Spain); CPAN (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter (Thailand); IPST (Thailand); STAR (Thailand); NSTDA (Thailand); TUBITAK (Turkey); TAEK (Turkey); NASU (Ukraine); SFFR (Ukraine); STFC (United Kingdom); DOE (USA); NSF (USA) FX We would like to thank S. Dittmaier and A. Huss for providing us with the electroweak correction factors. We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWFW and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); MoER, ERC IUT and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS and RFBR (Russia); MESTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (USA). NR 55 TC 12 Z9 12 U1 10 U2 83 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD JUN 30 PY 2015 VL 746 BP 79 EP 99 DI 10.1016/j.physletb.2015.04.042 PG 21 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CJ3JC UT WOS:000355378200014 ER PT J AU Khachatryan, V Sirunyan, AM Tumasyan, A Adam, W Bergauer, T Dragicevic, M Ero, J Fabjan, C Friedl, M Fruhwirth, R Ghete, VM Hartl, C Hormann, N Hrubec, J Jeitler, M Kiesenhofer, W Knunz, V Krammer, M Kratschmer, I Liko, D Mikulec, I Rabady, D Rahbaran, B Rohringer, H Schofbeck, R Strauss, J Taurok, A Treberer-Treberspurg, W Waltenberger, W Wulz, CE Mossolov, V Shumeiko, N Gonzalez, JS Alderweireldt, S Bansal, M Bansal, S Cornelis, T De Wolf, EA Janssen, X Knutsson, A Luyckx, S Ochesanu, S Roland, B Rougny, R De Klundert, MV Van Haevermaet, H Van Mechelen, P Van Remortel, N Van Spilbeeck, A Blekman, F Blyweert, S D'Hondt, J Daci, N Heracleous, N Keaveney, J Lowette, S Maes, M Olbrechts, A Python, Q Strom, D Tavernier, S Van Doninck, W Van Mulders, P Van Onsem, GP Villella, I Caillol, C Clerbaux, B De Lentdecker, G Dobur, D Favart, L Gay, APR Grebenyuk, A Leonard, A Mohammadi, A Pernie, L Reis, T Seva, T Thomas, L Vander Velde, C Vanlaer, P Wang, J Adler, V Beernaert, K Cimmino, LBA Cimmino, A Costantini, S Crucy, S Dildick, S Fagot, A Garcia, G Mccartin, J Rios, AAO Ryckbosch, D Diblen, SS Sigamani, M Strobbe, N Thyssen, F Tytgat, M Yazgan, E Zaganidis, N Basegmez, S Beluffi, C Bruno, G Castello, R Caudron, A Ceard, L Da Silveira, GG Delaere, C du Pree, T Favart, D Forthomme, L Giammanco, A Hollar, J Jez, P Komm, M Lemaitre, V Nuttens, C Pagano, D Perrini, L Pin, A Piotrzkowski, K Popov, A Quertenmont, L Selvaggi, M Marono, MV Garcia, JMV Beliy, N Caebergs, T Daubie, E Hammad, GH Junior, WLA Alves, GA Brito, L Martins, MC Martins, TD Herrera, CM Pol, ME Carvalho, W Chinellato, J Custodio, A Da Costa, EM Damiao, DD Martins, CD De Souza, SF Malbouisson, H Figueiredo, DM Mundim, L Nogima, H Da Silva, WLP Santaolalla, J Santoro, A Sznajder, A Manganote, EJT Pereira, AV Bernardes, CA Dogra, S Tomei, TRFP Gregores, EM Mercadante, PG Novaes, SF Padula, S Aleksandrov, A Genchev, V Iaydjiev, P Marinov, A Piperov, S Rodozov, M Stoykova, S Sultanov, G Tcholakov, V Vutova, M Dimitrov, A Glushkov, I Hadjiiska, R Kozhuharov, V Litov, L Pavlov, B Petkov, P Bian, JG Chen, GM Chen, HS Chen, M Du, R Jiang, CH Liang, S Plestina, R Tao, J Wang, X Wang, Z Asawatangtrakuldee, C Ban, Y Guo, Y Li, Q Li, W Liu, S Mao, Y Qian, SJ Wang, D Zhang, L Zou, W Avila, C Sierra, LFC Florez, C Gomez, JP Moreno, BG Sanabria, JC Godinovic, N Lelas, D Polic, D Puljak, I Antunovic, Z Kovac, M Brigljevic, V Kadija, K Luetic, J Mekterovic, D Sudic, L Attikis, A Mavromanolakis, G Mousa, J Nicolaou, C Ptochos, F Razis, PA Bodlak, M Finger, M Finger, M Assran, Y Kamel, AE Mahmoud, MA Radi, A Kadastik, M Murumaa, M Raidal, M Tiko, A Eerola, P Fedi, G Voutilainen, M Harkonen, J Karimaki, V Kinnunen, R Kortelainen, MJ Lampen, T Lassila-Perini, K Lehti, S Linden, T Luukka, P Maenpaa, T Peltola, T Tuominen, E Tuominiemi, J Tuovinen, E Wendland, L Talvitie, J Tuuva, T Besancon, M Couderc, F Dejardin, M Denegri, D Fabbro, B Faure, JL Favaro, C Ferri, F Ganjour, S Givernaud, A Gras, P de Monchenault, GH Jarry, P Locci, E Malcles, J Rander, J Rosowsky, A Titov, M Baffioni, S Beaudette, F Busson, P Charlot, C Dahms, T Dalchenko, M Dobrzynski, L Filipovic, N Florent, A de Cassagnac, RG Mastrolorenzo, L Mine, P Mironov, C Naranjo, IN Nguyen, M Ochando, C Paganini, P Regnard, S Salerno, R Sauvan, JB Sirois, Y Veelken, C Yilmaz, Y Zabi, A Agram, JL Andrea, J Aubin, A Bloch, D Brom, JM Chabert, EC Collard, C Conte, E Fontaine, JC Gele, D Goerlach, U Goetzmann, C Le Bihan, AC Van Hove, P Gadrat, S Beauceron, S Beaupere, N Boudoul, G Bouvier, E Brochet, S Montoya, CAC Chasserat, J Chierici, R Contardo, D Depasse, P El Mamouni, H Fan, J Fay, J Gascon, S Gouzevitch, M Ille, B Kurca, T Lethuillier, M Mirabito, L Perries, S Alvarez, JDR Sabes, D Sgandurra, L Sordini, V Vander Donckt, M Verdier, P Viret, S Xiao, H Tsamalaidze, Z Autermann, C Beranek, S Bontenackels, M Edelhoff, M Feld, L Hindrichs, O Klein, K Ostapchuk, A Perieanu, A Raupach, F Sammet, J Schael, S Weber, H Wittmer, B Zhukov, V Ata, M Brodski, M Dietz-Laursonn, E Duchardt, D Erdmann, M Fischer, R Guth, A Hebbeker, T Heidemann, C Hoepfner, K Klingebiel, D Knutzen, S Kreuzer, P Merschmeyer, M Meyer, A Millet, P Olschewski, M Padeken, K Papacz, P Reithler, H Schmitz, SA Sonnenschein, L Teyssier, D Thuer, S Weber, M Cherepanov, V Erdogan, Y Flugge, G Geenen, H Geisler, M Ahmad, WH Heister, A Hoehle, F Kargoll, B Kress, T Kuessel, Y Lingemann, J Nowack, A Nugent, IM Perchalla, L Pooth, O Stahl, A Asin, I Bartosik, N Behr, J Behrenhoff, W Behrens, U Bell, AJ Bergholz, M Bethani, A Borras, K Burgmeier, A Cakir, A Calligaris, L Campbell, A Choudhury, S Costanza, F Pardos, CD Dooling, S Dorland, T Eckerlin, G Eckstein, D Eichhorn, T Flucke, G Garcia, JG Geiser, A Gunnellini, P Hauk, J Hempel, M Horton, D Jung, H Kalogeropoulos, A Kasemann, M Katsas, P Kieseler, J Kleinwort, C Krucker, D Lange, W Leonard, J Lipka, K Lobanov, A Lohmann, W Lutz, B Mankel, R Marfin, I Melzer-Pellmann, IA Meyer, AB Mittag, G Mnich, J Mussgiller, A Naumann-Emme, S Nayak, A Novgorodova, O Nowak, F Ntomari, E Perrey, H Pitzl, D Placakyte, R Raspereza, A Cipriano, PMR Ron, E Sahin, MO Salfeld-Nebgen, J Saxena, P Schmidt, R Schoerner-Sadenius, T Schroder, M Seitz, C Spannagel, S Trevino, ADRV Walsh, R Wissing, C Martin, MA Blobel, V Vignali, MC Draeger, AR Erfle, J Garutti, E Goebel, K Gorner, M Haller, J Hoffmann, M Hoing, RS Kirschenmann, H Klanner, R Kogler, R Lange, J Lapsien, T Lenz, T Marchesini, I Ott, J Peiffer, T Poehlsen, NPJ Poehlsen, J Poehlsen, T Rathjens, D Sander, C Schettler, H Schleper, P Schlieckau, E Schmidt, A Seidel, M Sola, V Stadie, H Steinbruck, G Troendle, D Usai, E Vanelderen, L Barth, C Baus, C Berger, J Boser, C Butz, E Chwalek, T De Boer, W Descroix, A Dierlamm, A Feindt, M Frensch, F Giffels, M Hartmann, F Hauth, T Husemann, U Katkov, I Kornmayer, A Kuznetsova, E Pardo, PL Mozer, MU Muller, T Nurnberg, A Quast, G Rabbertz, K Ratnikov, F Rocker, S Simonis, HJ Stober, FM Ulrich, R Wagner-Kuhr, J Wayand, S Weiler, T Wolf, R Anagnostou, G Daskalakis, G Geralis, T Giakoumopoulou, VA Kyriakis, A Loukas, D Markou, A Markou, C Psallidas, A Topsis-Giotis, I Agapitos, A Kesisoglou, S Panagiotou, A Saoulidou, N Stiliaris, E Aslanoglou, X Evangelou, I Flouris, G Foudas, C Kokkas, P Manthos, N Papadopoulos, I Paradas, E Bencze, G Hajdu, C Hidas, P Horvath, D Sikler, F Veszpremi, V Vesztergombi, G Zsigmond, AJ Beni, N Czellar, S Karancsi, J Molnar, J Palinkas, J Szillasi, Z Raics, P Trocsanyi, ZL Ujvari, B Swain, SK Beri, SB Bhatnagar, V Gupta, R Bhawandeep, U Kalsi, AK Kaur, M Mittal, M Nishu, N Singh, JB Kumar, A Kumar, A Ahuja, S Bhardwaj, A Choudhary, BC Kumar, A Malhotra, S Naimuddin, M Ranjan, K Sharma, V Banerjee, S Bhattacharya, S Chatterjee, K Dutta, S Gomber, B Jain, S Jain, S Khurana, R Modak, A Mukherjee, S Roy, D Sarkar, S Sharan, M Abdulsalam, A Dutta, D Kailas, S Kumar, V Mohanty, AK Pant, LM Shukla, P Topkar, A Aziz, T Banerjee, S Bhowmik, S Chatterjee, RM Dewanjee, RK Dugad, S Ganguly, S Ghosh, S Guchait, M Gurtu, A Kole, G Kumar, S Maity, M Majumder, G Mazumdar, K Mohanty, GB Parida, B Sudhakar, K Wickramage, N Bakhshiansohi, H Behnamian, H Etesami, SM Fahim, A Goldouzian, R Jafari, A Khakzad, M Najafabadi, MM Naseri, M Mehdiabadi, SP Hosseinabadi, FR Safarzadeh, B Zeinali, M Felcini, M Grunewald, M Abbrescia, M Barbone, L Calabria, C Chhibra, SS Colaleo, A Creanza, D DeFilippis, N De Palma, M Fiore, L Iaselli, G Maggi, G Maggi, M My, S Nuzzo, S Pompili, A Pugliese, G Radogna, R Selvaggi, G Silvestris, L Singh, G Venditti, R Verwilligen, P Zito, G Abbiendi, G Benvenuti, AC Bonacorsi, D Braibant-Giacomelli, S Brigliadori, L Campanini, R Capiluppi, P Castro, A Cavallo, FR Codispoti, G Cuffiani, M Dallavalle, GM Fabbri, F Fanfani, A Fasanella, D Giacomelli, P Grandi, C Guiducci, L Marcellini, S Masetti, G Montanari, A Navarria, FL Perrotta, A Primavera, F Rossi, AM Rovelli, T Siroli, GP Tosi, N Travaglini, R Albergo, S Cappello, G Chiorboli, M Costa, S Giordano, F Potenza, R Tricomi, A Tuve, C Barbagli, G Ciulli, V Civinini, C D'Alessandro, R Focardi, E Gallo, E Gonzi, S Gori, V Lenzi, P Meschini, M Paoletti, S Sguazzoni, G Tropiano, A Benussi, L Bianco, S Fabbri, F Piccolo, D Ferro, F Lo Vetere, M Robutti, E Tosi, S Dinardo, ME Fiorendi, S Gennai, S Gerosa, R Ghezzi, A Govoni, P Lucchini, MT Malvezzi, S Manzoni, RA Martelli, A Marzocchi, B Menasce, D Moroni, L Paganoni, M Pedrini, D Ragazzi, S Redaelli, N de Fatisa, TT Buontempo, S Cavallo, N Di Guida, S Fabozzi, F Iorio, AOM Lista, L Meola, S Merola, M Paolucci, P Azzi, P Bacchetta, N Bisello, D Branca, A Carlin, R Checchia, P Dall'Osso, M Dorigo, T Fanzago, F Galanti, M Gasparini, F Gasparini, U Gonella, F Gozzelino, A Kanishchev, K Lacaprara, S Margoni, M Meneguzzo, AT Pazzini, J Pozzobon, N Ronchese, P Simonetto, F Torassa, E Tosi, M Zotto, P Zucchetta, A Zumerle, G Gabusi, M Ratti, SP Riccardi, C Salvini, P Vitulo, P Biasini, M Bilei, GM Ciangottini, D Fano, L Lariccia, P Mantovani, G Menichelli, M Romeo, F Saha, A Santocchia, A Spiezia, A Androsov, K Azzurri, P Bagliesi, G Bernardini, J Boccali, T Broccolo, G Castaldi, R Ciocci, MA Dell'Orso, R Donato, S Fiori, F Foa, L Giassi, A Grippo, MT Ligabue, F Lomtadze, T Martini, L Messineo, A Moon, CS Palla, F Rizzi, A Savoy-Navarro, A Serban, AT Spagnolo, P Squillacioti, P Tenchini, R Tonelli, G Venturi, A Verdini, PG Vernieri, C Barone, L Cavallari, F D'imperio, G Del Re, D Diemoz, M Grassi, M Jorda, C Longo, E Margaroli, F Meridiani, P Micheli, F Nourbakhsh, S Organtini, G Paramatti, R Rahatlou, S Rovelli, C Santanastasio, F Soffi, L Traczyk, P Amapane, N Arcidiacono, R Argiro, S Arneodo, M Bellan, R Biino, C Cartiglia, N Casasso, S Costa, M Degano, A Demaria, N Finco, L Mariotti, C Maselli, S Migliore, E Monaco, V Musich, M Obertino, MM Ortona, G Pacher, L Pastrone, N Pelliccioni, M PinnaAngioni, GL Potenza, A Romero, A Ruspa, M Sacchi, R Solano, A Staiano, A Trapani, PP Belforte, S Candelise, V Casarsa, M Cossutti, F Della Ricca, G Gobbo, B La Licata, C Marone, M Montanino, D Schizzi, A Umer, T Zanetti, A Chang, S Kropivnitskaya, A Nam, SK Kim, DH Kim, GN Kim, MS Kong, DJ Lee, S Oh, YD Park, H Sakharov, A Son, DC Kim, TJ Kim, JY Song, S Choi, S Gyun, D Hong, B Jo, M Kim, H Kim, Y Lee, B Lee, KS Park, SK Roh, Y Choi, M Kim, JH Park, IC Park, S Ryu, G Ryu, MS Choi, Y Choi, YK Goh, J Kim, D Kwon, E Lee, J Seo, H Yu, I Juodagalvis, A Komaragiri, JR Mdali, MAB Castilla-Valdez, H De La Cruz-Burelo, E La Cruz, IHD Lopez-Fernandez, R Sanchez-Hernandez, A Moreno, SC Valencia, FV Pedraza, I Ibarguen, HAS Linares, EC Pineda, AM Krofcheck, D Butler, PH Reucroft, S Ahmad, A Ahmad, M Hassan, Q Hoorani, HR Khalid, S Khan, WA Khurshid, T Shah, MA Shoaib, M Bialkowska, H Bluj, M Boimska, B Frueboes, T Gorski, M Kazana, M Nawrocki, K Romanowska-Rybinska, K Szleper, M Zalewski, P Brona, G Bunkowski, K Cwiok, M Dominik, W Doroba, K Kalinowski, A Konecki, M Krolikowski, J Misiura, M Olszewski, M Wolszczak, W Bargassa, P Silva, CBDCE Faccioli, P Parracho, PGF Gallinaro, M Nguyen, F Antunes, JR Seixas, J Varela, J Vischia, P Afanasiev, S Bunin, P Gavrilenko, M Golutvin, I Gorbunov, I Kamenev, A Karjavin, V Konoplyanikov, V Lanev, A Malakhov, A Matveev, V Moisenz, P Palichik, V Perelygin, V Shmatov, S Skatchkov, N Smirnov, V Zarubin, A Golovtsov, V Ivanov, Y Kim, V Levchenko, P Murzin, V Oreshkin, V Smirnov, I Sulimov, V Uvarov, L Vavilov, S Vorobyev, A Vorobyev, A Andreev, Y Dermenev, A Gninenko, S Golubev, N Kirsanov, M Krasnikov, N Pashenkov, A Tlisov, D Toropin, A Epshteyn, V Gavrilov, V Lychkovskaya, N Popov, V Safronov, G Semenov, S Spiridonov, A Stolin, V Vlasov, E Zhokin, A Andreev, V Azarkin, M Dremin, I Kirakosyan, M Leonidov, A Mesyats, G Rusakov, SV Vinogradov, A Belyaev, A Boos, E Bunichev, V Dubinin, M Dudko, L Gribushin, A Klyukhin, V Kodolova, O Lokhtin, I Obraztsov, S Perfilov, M Savrin, V Snigirev, A Azhgirey, I Bayshev, I Bitioukov, S Kachanov, V Kalinin, A Konstantinov, D Krychkine, V Petrov, V Ryutin, R Sobol, A Tourtchanovitch, L Troshin, S Tyurin, N Uzunian, A Volkov, A Adzic, P Ekmedzic, M Milosevic, J Rekovic, V Maestre, JA Battilana, C Calvo, E Cerrada, M Llatas, MC Colino, N De La Cruz, B Peris, AD Vazquez, DD Del Valle, AE Bedoya, CF Ramos, JPF Flix, J Fouz, MC Garcia-Abia, P Lopez, OG Lopez, SG Hernandez, JM Josa, MI Merino, G De Martino, EN Yzquierdo, APC Pelayo, JP Olmeda, AQ Redondo, I Romero, L Soares, MS Albajar, C Detroconiz, JF Missiroli, M Moran, D Brun, H Cuevas, J Menendez, JF Folgueras, S Caballero, IG Iglesias, LL Cifuentes, JAB Cabrillo, IJ Calderon, A Campderros, JD Fernandez, M Gomez, G Graziano, A Virto, AL Marco, J Marco, R Rivero, CM Matorras, F Sanchez, FJM Gomez, JP Rodrigo, T Rodriguez-Marrero, AY Ruiz-Jimeno, A Scodellaro, L Vila, I Cortabitarte, RV Abbaneo, D Auffray, E Auzinger, G Bachtis, M Baillon, P Ball, AH Barney, D Benaglia, A Bendavid, J Benhabib, L Benitez, JF Bernet, C Bianchi, G Bloch, P Bocci, A Bonato, A Bondu, O Botta, C Breuker, H Camporesi, T Cerminara, G Colafranceschi, S D'Alfonso, M d'Enterria, D Dabrowski, A David, A De Guio, F De Roeck, A De Visscher, S Dobson, M Dordevic, M Dorney, B Dupont-Sagorin, N Elliott-Peisert, A Eugster, J Franzoni, G Funk, W Gigi, D Gill, K Giordano, D Girone, M Glege, F Guida, R Gundacker, S Guthoff, M Hammer, J Hansen, M Harris, P Hegeman, J Innocente, V Janot, P Kousouris, K Krajczar, K Lecoq, P Lourenco, C Magini, N Malgeri, L Mannelli, M Marrouche, J Masetti, L Meijers, F Mersi, S Meschi, E Moortgat, F Morovic, S Mulders, M Musella, P Orsini, L Pape, L Perez, E Perrozzi, L Petrilli, A Petrucciani, G Pfeiffer, A Pierini, M Pimia, M Piparo, D Plagge, M Racz, A Rolandi, G Rovere, M Sakulin, H Schafer, C Schwick, C Sharma, A Siegrist, P Silva, P Simon, M Sphicas, P Spiga, D Steggemann, J Stieger, B Stoye, M Takahashi, Y Treille, D Tsirou, A Veres, GI Vlimant, JR Wardle, N Wohri, K Wollny, H Zeuner, WD Bertl, W Deiters, K Erdmann, W Horisberger, R Ingram, Q Kaestli, HC Kotlinski, D Langenegger, U Renker, D Rohe, T Bachmair, F Bani, L Bianchini, L Bortignon, P Buchmann, MA Casal, B Chanon, N Deisher, A Dissertori, G Dittmar, M Donega, M Dunser, M Eller, P Grab, C Hits, D Lustermann, W Mangano, B Marini, AC del Arbol, PMR Meister, D Mohr, N Nageli, C Nessi-Tedaldi, F Pandolfi, F Pauss, F Peruzzi, M Quittnat, M Rebane, L Rossini, M Starodumov, A Takahashi, M Theofilatos, K Wallny, R Weber, HA Amsler, C Canelli, MF Chiochia, V De Cosa, A Hinzmann, A Hreus, T Kilminster, B Lange, C Mejias, BM Ngadiuba, J Robmann, P Ronga, FJ Taroni, S Verzetti, M Yang, Y Cardaci, M Chen, KH Ferro, C Kuo, CM Lin, W Lu, YJ Volpe, R Yu, SS Chang, P Chang, YH Chang, YW Chao, Y Chen, KF Chen, PH Dietz, C Grundler, U Hou, WS Kao, KY Lei, YJ Liu, YF Lu, RS Majumder, D Petrakou, E Tzeng, YM Wilken, R Asavapibhop, B Srimanobhas, N Suwonjandee, N Adiguzel, A Bakirci, MN Cerci, S Dozen, C Dumanoglu, I Eskut, E Girgis, S Gokbulut, G Gurpinar, E Hos, I Kangal, EE Topaksu, AK Onengut, G Ozdemir, K Ozturk, S Polatoz, A Sogut, K Cerci, DS Tali, B Topakli, H Vergili, M Akin, IV Bilin, B Bilmis, S Gamsizkan, H Karapinar, G Ocalan, K Sekmen, S Surat, UE Yalvac, M Zeyrek, M Gulmez, E Isildak, B Kaya, M Kaya, O Cankocak, K Vardarli, FI Levchuk, L Sorokin, P Brooke, JJ Clement, E Cussans, D Flacher, H Frazier, R Goldstein, J Grimes, M Heath, GP Heath, HF Jacob, J Kreczko, L Lucas, C Meng, Z Newbold, DM Paramesvaran, S Poll, A Senkin, S Smith, VJ Williams, T Bell, KW Belyaev, A Brew, C Brown, RM Cockerill, DJA Coughlan, JA Harder, K Harper, S Olaiya, E Petyt, D Shepherd-Themistocleous, CH Thea, A Tomalin, IR Womersley, WJ Worm, SD Baber, M Bainbridge, R Buchmuller, O Burton, D Colling, D Cripps, N Cutajar, M Dauncey, P Davies, G Della Negra, M Dunne, P Ferguson, W Fulcher, J Futyan, D Gilbert, A Hall, G Iles, G Jarvis, M Karapostoli, G Kenzie, M Lane, R Lucas, R Lyons, L Magnan, AM Malik, S Mathias, B Nash, J Nikitenko, A Pela, J Pesaresi, M Petridis, K Raymond, DM Rogerson, S Rose, A Seez, C Sharp, P Tapper, A Acosta, MV Virdee, T Zenz, SC Cole, JE Hobson, PR Khan, A Kyberd, P Leggat, D Leslie, D Martin, W Reid, ID Symonds, P Teodorescu, L Turner, M Dittmann, J Hatakeyama, K Kasmi, A Liu, H Scarborough, T Charaf, O Cooper, SI Henderson, C Rumerio, P Avetisyan, A Bose, T Fantasia, C Lawson, P Richardson, C Rohlf, J Sperka, D John, JS Sulak, L Alimena, J Berry, E Bhattacharya, S Christopher, G Cutts, D Demiragli, Z Dhingra, N Ferapontov, A Garabedian, A Heintz, U Kukartsev, G Laird, E Landsberg, G Luk, M Narain, M Segala, M Sinthuprasith, T Speer, T Swanson, J Breedon, R Breto, G Sanchez, MCDLB Chauhan, S Chertok, M Conway, J Conway, R Cox, PT Erbacher, R Gardner, M Ko, W Lander, R Miceli, T Mulhearn, M Pellett, D Pilot, J Ricci-Tam, F Searle, M Shalhout, S Smith, J Squires, M Stolp, D Tripathi, M Wilbur, S Yohay, R Cousins, R Everaerts, P Farrell, C Hauser, J Ignatenko, M Rakness, G Takasugi, E Valuev, V Weber, M Babb, J Burt, K Clare, R Ellison, J Gary, JW Hanson, G Heilman, J Rikova, MI Jandir, P Kennedy, E Lacroix, F Liu, H Long, OR Luthra, A Malberti, M Nguyen, H Negrete, MO Shrinivas, A Sumowidagdo, S Wimpenny, S Andrews, W Branson, JG Cerati, GB Cittolin, S D'Agnolo, RT Evans, D Holzner, A Kelley, R Klein, D Lebourgeois, M Letts, J Macneill, I Olivito, D Padhi, S Palmer, C Pieri, M Sani, M Sharma, V Simon, S Sudano, E Tadel, M Tu, Y Vartak, A Welke, C Wurthwein, F Yagil, A Yoo, J Barge, D Bradmiller-Feld, J Campagnari, C Danielson, T Dishaw, A Flowers, K Sevilla, MF Geffert, P George, C Golf, F Gouskos, L Incandela, J Justus, C Mccoll, N Richman, J Stuart, D To, W West, C Apresyan, A Bornheim, A Bunn, J Chen, Y DiMarco, E Duarte, J Mott, A Newman, HB Pena, C Rogan, C Spiropulu, M Timciuc, V Wilkinson, R Xie, S Zhu, RY Azzolini, V Calamba, A Carlson, B Ferguson, T Iiyama, Y Paulini, M Russ, J Vogel, H Vorobiev, I Cumalat, JP Ford, WT Gaz, A Lopez, EL Nauenberg, U Smith, JG Stenson, K Ulmer, KA Wagner, SR Alexander, J Chatterjee, A Chu, J Dittmer, S Eggert, N Mirman, N Kaufman, GN Patterson, JR Ryd, A Salvati, E Skinnari, L Sun, W Teo, WD Thom, J Thompson, J Tucker, J Weng, Y Winstrom, L Wittich, P Winn, D Abdullin, S Albrow, M Anderson, J Apollinari, G Bauerdick, LAT Beretvas, A Berryhill, J Bhat, PC Burkett, K Butler, JN Cheung, HWK Chlebana, F Cihangir, S Elvira, VD Fisk, I Freeman, J Gao, Y Gottschalk, E Gray, L Green, D Grunendahl, S Gutsche, O Hanlon, J Hare, D Harris, RM Hirschauer, J Hooberman, B Jindariani, S Johnson, M Joshi, U Kaadze, K Klima, B Kreis, B Kwan, S Linacre, J Lincoln, D Lipton, R Liu, T Lykken, J Maeshima, K Marraffino, JM Outschoorn, VIM Maruyama, S Mason, D McBride, P Mishra, K Mrenna, S Musienko, Y Nahn, S Newman-Holmes, C O'Dell, V Prokofyev, O Sexton-Kennedy, E Sharma, S Soha, A Spalding, WJ Spiegel, L Taylor, L Tkaczyk, S Tran, NV Uplegger, L Vaandering, EW Vidal, R Whitbeck, A Whitmore, J Yang, F Acosta, D Avery, P Bourilkov, D Carver, M Cheng, T Curry, D Das, S De Gruttola, M Di Giovanni, GP Field, RD Fisher, M Furic, IK Hugon, J Konigsberg, J Korytov, A Kypreos, T Low, JF Matchev, K Milenovic, P Mitselmakher, G Muniz, L Rinkevicius, A Shchutska, L Snowball, M Yelton, J Zakaria, M Hewamanage, S Linn, S Markowitz, P Martinez, G Rodriguez, JL Adams, T Askew, A Bochenek, J Diamond, B Haas, J Hagopian, S Hagopian, V Johnson, KF Prosper, H Veeraraghavan, V Weinberg, M Baarmand, MM Hohlmann, M Kalakhety, H Yumiceva, F Adams, MR Apanasevich, L Bazterra, VE Berry, D Betts, RR Bucinskaite, I Cavanaugh, R Evdokimov, O Gauthier, L Gerber, CE Hofman, DJ Khalatyan, S Kurt, P Moon, DH O'Brien, C Silkworth, C Turner, P Varelas, N Albayrak, EA Bilki, B Clarida, W Dilsiz, K Duru, F Haytmyradov, M Merlo, JP Mermerkaya, H Mestvirishvili, A Moeller, A Nachtman, J Ogul, H Onel, Y Ozok, F Penzo, A Rahmat, R Sen, S Tan, P Tiras, E Wetzel, J Yetkin, T Yi, K Barnett, BA Blumenfeld, B Bolognesi, S Fehling, D Gritsan, AV Maksimovic, P Martin, C Swartz, M Baringer, P Bean, A Benelli, G Bruner, C Kenny, RP Malek, M Murray, M Noonan, D Sanders, S Sekaric, J Stringer, R Wang, Q Wood, JS Barfuss, AF Chakaberia, I Ivanov, A Khalil, S Makouski, M Maravin, Y Saini, LK Shrestha, S Skhirtladze, N Svintradze, I Gronberg, J Lange, D Rebassoo, F Wright, D Baden, A Belloni, A Calvert, B Eno, SC Gomez, JA Hadley, NJ Kellogg, RG Kolberg, T Lu, Y Marionneau, M Mignerey, AC Pedro, K Skuja, A Tonjes, MB Tonwar, SC Apyan, A Barbieri, R Bauer, G Busza, W Cali, IA Chan, M DiMatteo, L Dutta, V Ceballos, GG Goncharov, M Gulhan, D Klute, M Lai, YS Lee, YJ Levin, A Luckey, PD Ma, T Paus, C Ralph, D Roland, C Roland, G Stephans, GSF Stockli, F Sumorok, K Velicanu, D Veverka, J Wyslouch, B Yang, M Zanetti, M Zhukova, V Dahmes, B Gude, A Kao, SC Klapoetke, K Kubota, Y Mans, J Pastika, N Rusack, R Singovsky, A Tambe, N Turkewitz, J Acosta, JG Oliveros, S Avdeeva, E Bloom, K Bose, S Claes, DR Dominguez, A Suarez, RG Keller, J Knowlton, D Kravchenko, I Lazo-Flores, J Malik, S Meier, F Snow, GR Dolen, J Godshalk, A Iashvili, I Kharchilava, A Kumar, A Rappoccio, S Alverson, G Barberis, E Baumgartel, D Chasco, M Haley, J Massironi, A Morse, DM Nash, D Orimoto, T Trocino, D Wang, RJ Wood, D Zhang, J Hahn, KA Kubik, A Mucia, N Odell, N Pollack, B Pozdnyakov, A Schmitt, M Stoynev, S Sung, K Velasco, M Won, S Brinkerhoff, A Chan, KM Drozdetskiy, A Hildreth, M Jessop, C Karmgard, DJ Kellams, N Lannon, K Luo, W Lynch, S Marinelli, N Pearson, T Planer, M Ruchti, R Valls, N Wayne, M Wolf, M Woodard, A Antonelli, L Brinson, J Bylsma, B Durkin, LS Flowers, S Hill, C Hughes, R Kotov, K Ling, TY Puigh, D Rodenburg, M Smith, G Winer, BL Wolfe, H Wulsin, HW Driga, O Elmer, P Hebda, P Hunt, A Koay, SA Lujan, P Marlow, D Medvedeva, T Mooney, M Olsen, J Piroue, P Quan, X Saka, H Stickland, D Tully, C Werner, JS Zuranski, A Brownson, E Mendez, H Vargas, JER Barnes, VE Benedetti, D Bolla, G Bortoletto, D De Mattia, M Hu, Z Jha, MK Jones, M Jung, K Kress, M Leonardo, N Pegna, DL Maroussov, V Merkel, P Miller, DH Neumeister, N Radburn-Smith, BC Shi, X Shipsey, I Silvers, D Svyatkovskiy, A Wang, F Xie, W Xu, L Yoo, HD Zablocki, J Zheng, Y Parashar, N Stupak, J Adair, A Akgun, B Ecklund, KM Geurts, FJM Li, W Michlin, B Padley, BP Redjimi, R Roberts, J Zabel, J Betchart, B Bodek, A Covarelli, R de Barbaro, P Demina, R Eshaq, Y Ferbel, T Garcia-Bellido, A Goldenzweig, P Han, J Harel, A Khukhunaishvili, A Petrillo, G Vishnevskiy, D Ciesielski, R Demortier, L Goulianos, K Lungu, G Mesropian, C Arora, S Barker, A Chou, JP Contreras-Campana, C Contreras-Campana, E Duggan, D Ferencek, D Gershtein, Y Gray, R Halkiadakis, E Hidas, D Kaplan, S Lath, A Panwalkar, S Park, M Salur, RPS Schnetzer, S Somalwar, S Stone, R Thomas, S Thomassen, P Walker, M Rose, K Spanier, S York, A Bouhali, O Hernandez, AC Eusebi, R Flanagan, W Gilmore, J Kamon, T Khotilovich, V Krutelyov, V Montalvo, R Osipenkov, I Pakhotin, Y Perloff, A Roe, J Rose, A Safonov, A Sakuma, T Suarez, I Tatarinov, A Akchurin, N Cowden, C Damgov, J Dragoiu, C Dudero, PR Faulkner, J Kovitanggoon, K Kunori, S Lee, SW Libeiro, T Volobouev, I Appelt, E Delannoy, AG Greene, S Gurrola, A Johns, W Maguire, C Mao, Y Melo, A Sharma, M Sheldon, P Snook, B Tuo, S Velkovska, J Arenton, MW Boutle, S Cox, B Francis, B Goodell, J Hirosky, R Ledovskoy, A Li, H Lin, C Neu, C Wood, J Clarke, C Harr, R Karchin, PE Don, CKK Lamichhane, P Sturdy, J Belknap, DA Carlsmith, D Cepeda, M Dodd, SDL Duric, S Friis, E Hall-Wilton, R Herndon, M Herve, A Klabbers, P Lanaro, A Lazaridis, C Levine, A Loveless, R Mohapatra, A Ojalvo, I Perry, T Pierro, GA Polese, G Ross, I Sarangi, T Savin, A Smith, WH Taylor, D Vuosalo, C Woods, N AF Khachatryan, V. Sirunyan, A. M. Tumasyan, A. Adam, W. Bergauer, T. Dragicevic, M. Eroe, J. Fabjan, C. Friedl, M. Fruehwirth, R. Ghete, V. M. Hartl, C. Hormann, N. Hrubec, J. Jeitler, M. Kiesenhofer, W. Knunz, V. Krammer, M. Kraetschmer, I. Liko, D. Mikulec, I. Rabady, D. Rahbaran, B. Rohringer, H. Schoefbeck, R. Strauss, J. Taurok, A. Treberer-Treberspurg, W. Waltenberger, W. Wulz, C. -E. Mossolov, V. Shumeiko, N. Gonzalez, J. Suarez Alderweireldt, S. Bansal, M. Bansal, S. Cornelis, T. De Wolf, E. A. Janssen, X. Knutsson, A. Luyckx, S. Ochesanu, S. Roland, B. Rougny, R. De Klundert, M. Van Van Haevermaet, H. Van Mechelen, P. Van Remortel, N. Van Spilbeeck, A. Blekman, F. Blyweert, S. D'Hondt, J. Daci, N. Heracleous, N. Keaveney, J. Lowette, S. Maes, M. Olbrechts, A. Python, Q. Strom, D. Tavernier, S. Van Doninck, W. Van Mulders, P. Van Onsem, G. P. Villella, I. Caillol, C. Clerbaux, B. De Lentdecker, G. Dobur, D. Favart, L. Gay, A. P. R. Grebenyuk, A. Leonard, A. Mohammadi, A. Pernie, L. Reis, T. Seva, T. Thomas, L. Vander Velde, C. Vanlaer, P. Wang, J. Adler, V. Beernaert, K. Benucci, L. Cimmino, A. Costantini, S. Crucy, S. Dildick, S. Fagot, A. Garcia, G. Mccartin, J. Rios, A. A. Ocampo Ryckbosch, D. Diblen, S. Salva Sigamani, M. Strobbe, N. Thyssen, F. Tytgat, M. Yazgan, E. Zaganidis, N. Basegmez, S. Beluffi, C. Bruno, G. Castello, R. Caudron, A. Ceard, L. Da Silveira, G. G. Delaere, C. du Pree, T. Favart, D. Forthomme, L. Giammanco, A. Hollar, J. Jez, P. Komm, M. Lemaitre, V. Nuttens, C. Pagano, D. Perrini, L. Pin, A. Piotrzkowski, K. Popov, A. Quertenmont, L. Selvaggi, M. Marono, M. Vidal Garcia, J. M. Vizan Beliy, N. Caebergs, T. Daubie, E. Hammad, G. H. Junior, W. L. Alda Alves, G. A. Brito, L. Martins Junior, M. Correa Martins, T. Dos Reis Herrera, C. Mora Pol, M. E. Carvalho, W. Chinellato, J. Custodio, A. Da Costa, E. M. Damiao, D. De Jesus Martins, C. De Oliveira De Souza, S. Fonseca Malbouisson, H. Figueiredo, D. Matos Mundim, L. Nogima, H. Da Silva, W. L. Prado Santaolalla, J. Santoro, A. Sznajder, A. Manganote, E. J. Tonelli Pereira, A. Vilela Bernardes, C. A. Dogra, S. Tomei, T. R. Fernandez Perez Gregores, E. M. Mercadante, P. G. Novaes, S. F. Padula, SandraS. Aleksandrov, A. Genchev, V. Iaydjiev, P. Marinov, A. Piperov, S. Rodozov, M. Stoykova, S. Sultanov, G. Tcholakov, V. Vutova, M. Dimitrov, A. Glushkov, I. Hadjiiska, R. Kozhuharov, V. Litov, L. Pavlov, B. Petkov, P. Bian, J. G. Chen, G. M. Chen, H. S. Chen, M. Du, R. Jiang, C. H. Liang, S. Plestina, R. Tao, J. Wang, X. Wang, Z. Asawatangtrakuldee, C. Ban, Y. Guo, Y. Li, Q. Li, W. Liu, S. Mao, Y. Qian, S. J. Wang, D. Zhang, L. Zou, W. Avila, C. Sierra, L. F. Chaparro Florez, C. Gomez, J. P. Moreno, B. Gomez Sanabria, J. C. Godinovic, N. Lelas, D. Polic, D. Puljak, I. Antunovic, Z. Kovac, M. Brigljevic, V. Kadija, K. Luetic, J. Mekterovic, D. Sudic, L. Attikis, A. Mavromanolakis, G. Mousa, J. Nicolaou, C. Ptochos, F. Razis, P. A. Bodlak, M. Finger, M. Finger, M., Jr. Assran, Y. Kamel, A. Ellithi Mahmoud, M. A. Radi, A. Kadastik, M. Murumaa, M. Raidal, M. Tiko, A. Eerola, P. Fedi, G. Voutilainen, M. Harkonen, J. Karimaki, V. Kinnunen, R. Kortelainen, M. J. Lampen, T. Lassila-Perini, K. Lehti, S. Linden, T. Luukka, P. Maenpaa, T. Peltola, T. Tuominen, E. Tuominiemi, J. Tuovinen, E. Wendland, L. Talvitie, J. Tuuva, T. Besancon, M. Couderc, F. Dejardin, M. Denegri, D. Fabbro, B. Faure, J. L. Favaro, C. Ferri, F. Ganjour, S. Givernaud, A. Gras, P. de Monchenault, G. Hamel Jarry, P. Locci, E. Malcles, J. Rander, J. Rosowsky, A. Titov, M. Baffioni, S. Beaudette, F. Busson, P. Charlot, C. Dahms, T. Dalchenko, M. Dobrzynski, L. Filipovic, N. Florent, A. de Cassagnac, R. Granier Mastrolorenzo, L. Mine, P. Mironov, C. Naranjo, I. N. Nguyen, M. Ochando, C. Paganini, P. Regnard, S. Salerno, R. Sauvan, J. B. Sirois, Y. Veelken, C. Yilmaz, Y. Zabi, A. Agram, J. -L. Andrea, J. Aubin, A. Bloch, D. Brom, J. -M. Chabert, E. C. Collard, C. Conte, E. Fontaine, J. -C. Gele, D. Goerlach, U. Goetzmann, C. Le Bihan, A. -C. Van Hove, P. Gadrat, S. Beauceron, S. Beaupere, N. Boudoul, G. Bouvier, E. Brochet, S. Montoya, C. A. Carrillo Chasserat, J. Chierici, R. Contardo, D. Depasse, P. El Mamouni, H. Fan, J. Fay, J. Gascon, S. Gouzevitch, M. Ille, B. Kurca, T. Lethuillier, M. Mirabito, L. Perries, S. Alvarez, J. D. Ruiz Sabes, D. Sgandurra, L. Sordini, V. Vander Donckt, M. Verdier, P. Viret, S. Xiao, H. Tsamalaidze, Z. Autermann, C. Beranek, S. Bontenackels, M. Edelhoff, M. Feld, L. Hindrichs, O. Klein, K. Ostapchuk, A. Perieanu, A. Raupach, F. Sammet, J. Schael, S. Weber, H. Wittmer, B. Zhukov, V. Ata, M. Brodski, M. Dietz-Laursonn, E. Duchardt, D. Erdmann, M. Fischer, R. Gueth, A. Hebbeker, T. Heidemann, C. Hoepfner, K. Klingebiel, D. Knutzen, S. Kreuzer, P. Merschmeyer, M. Meyer, A. Millet, P. Olschewski, M. Padeken, K. Papacz, P. Reithler, H. Schmitz, S. A. Sonnenschein, L. Teyssier, D. Thueer, S. Weber, M. Cherepanov, V. Erdogan, Y. Fluegge, G. Geenen, H. Geisler, M. Ahmad, W. Haj Heister, A. Hoehle, F. Kargoll, B. Kress, T. Kuessel, Y. Lingemann, J. Nowack, A. Nugent, I. M. Perchalla, L. Pooth, O. Stahl, A. Asin, I. Bartosik, N. Behr, J. Behrenhoff, W. Behrens, U. Bell, A. J. Bergholz, M. Bethani, A. Borras, K. Burgmeier, A. Cakir, A. Calligaris, L. Campbell, A. Choudhury, S. Costanza, F. Pardos, C. Diez Dooling, S. Dorland, T. Eckerlin, G. Eckstein, D. Eichhorn, T. Flucke, G. Garcia, J. Garay Geiser, A. Gunnellini, P. Hauk, J. Hempel, M. Horton, D. Jung, H. Kalogeropoulos, A. Kasemann, M. Katsas, P. Kieseler, J. Kleinwort, C. Kruecker, D. Lange, W. Leonard, J. Lipka, K. Lobanov, A. Lohmann, W. Lutz, B. Mankel, R. Marfin, I. Melzer-Pellmann, I. -A. Meyer, A. B. Mittag, G. Mnich, J. Mussgiller, A. Naumann-Emme, S. Nayak, A. Novgorodova, O. Nowak, F. Ntomari, E. Perrey, H. Pitzl, D. Placakyte, R. Raspereza, A. Cipriano, P. M. Ribeiro Ron, E. Sahin, M. O. Salfeld-Nebgen, J. Saxena, P. Schmidt, R. Schoerner-Sadenius, T. Schroeder, M. Seitz, C. Spannagel, S. Trevino, A. D. R. Vargas Walsh, R. Wissing, C. Martin, M. Aldaya Blobel, V. Vignali, M. Centis Draeger, A. R. Erfle, J. Garutti, E. Goebel, K. Gorner, M. Haller, J. Hoffmann, M. Hoeing, R. S. Kirschenmann, H. Klanner, R. Kogler, R. Lange, J. Lapsien, T. Lenz, T. Marchesini, I. Ott, J. Peiffer, T. Pietsch, N. Poehlsen, J. Poehlsen, T. Rathjens, D. Sander, C. Schettler, H. Schleper, P. Schlieckau, E. Schmidt, A. Seidel, M. Sola, V. Stadie, H. Steinbrueck, G. Troendle, D. Usai, E. Vanelderen, L. Barth, C. Baus, C. Berger, J. Boeser, C. Butz, E. Chwalek, T. De Boer, W. Descroix, A. Dierlamm, A. Feindt, M. Frensch, F. Giffels, M. Hartmann, F. Hauth, T. Husemann, U. Katkov, I. Kornmayer, A. Kuznetsova, E. Pardo, P. Lobelle Mozer, M. U. Mueller, Th. Nurnberg, A. Quast, G. Rabbertz, K. Ratnikov, F. Roecker, S. Simonis, H. J. Stober, F. M. Ulrich, R. Wagner-Kuhr, J. Wayand, S. Weiler, T. Wolf, R. Anagnostou, G. Daskalakis, G. Geralis, T. Giakoumopoulou, V. A. Kyriakis, A. Loukas, D. Markou, A. Markou, C. Psallidas, A. Topsis-Giotis, I. Agapitos, A. Kesisoglou, S. Panagiotou, A. Saoulidou, N. Stiliaris, E. Aslanoglou, X. Evangelou, I. Flouris, G. Foudas, C. Kokkas, P. Manthos, N. Papadopoulos, I. Paradas, E. Bencze, G. Hajdu, C. Hidas, P. Horvath, D. Sikler, F. Veszpremi, V. Vesztergombi, G. Zsigmond, A. J. Beni, N. Czellar, S. Karancsi, J. Molnar, J. Palinkas, J. Szillasi, Z. Raics, P. Trocsanyi, Z. L. Ujvari, B. Swain, S. K. Beri, S. B. Bhatnagar, V. Gupta, R. Bhawandeep, U. Kalsi, A. K. Kaur, M. Mittal, M. Nishu, N. Singh, J. B. Kumar, Ashok Kumar, Arun Ahuja, S. Bhardwaj, A. Choudhary, B. C. Kumar, A. Malhotra, S. Naimuddin, M. Ranjan, K. Sharma, V. Banerjee, S. Bhattacharya, S. Chatterjee, K. Dutta, S. Gomber, B. Jain, Sa. Jain, Sh. Khurana, R. Modak, A. Mukherjee, S. Roy, D. Sarkar, S. Sharan, M. Abdulsalam, A. Dutta, D. Kailas, S. Kumar, V. Mohanty, A. K. Pant, L. M. Shukla, P. Topkar, A. Aziz, T. Banerjee, S. Bhowmik, S. Chatterjee, R. M. Dewanjee, R. K. Dugad, S. Ganguly, S. Ghosh, S. Guchait, M. Gurtu, A. Kole, G. Kumar, S. Maity, M. Majumder, G. Mazumdar, K. Mohanty, G. B. Parida, B. Sudhakar, K. Wickramage, N. Bakhshiansohi, H. Behnamian, H. Etesami, S. M. Fahim, A. Goldouzian, R. Jafari, A. Khakzad, M. Najafabadi, M. Mohammadi Naseri, M. Mehdiabadi, S. Paktinat Hosseinabadi, F. Rezaei Safarzadeh, B. Zeinali, M. Felcini, M. Grunewald, M. Abbrescia, M. Barbone, L. Calabria, C. Chhibra, S. S. Colaleo, A. Creanza, D. DeFilippis, N. De Palma, M. Fiore, L. Iaselli, G. Maggi, G. Maggi, M. My, S. Nuzzo, S. Pompili, A. Pugliese, G. Radogna, R. Selvaggi, G. Silvestris, L. Singh, G. Venditti, R. Verwilligen, P. Zito, G. Abbiendi, G. Benvenuti, A. C. Bonacorsi, D. Braibant-Giacomelli, S. Brigliadori, L. Campanini, R. Capiluppi, P. Castro, A. Cavallo, F. R. Codispoti, G. Cuffiani, M. Dallavalle, G. M. Fabbri, F. Fanfani, A. Fasanella, D. Giacomelli, P. Grandi, C. Guiducci, L. Marcellini, S. Masetti, G. Montanari, A. Navarria, F. L. Perrotta, A. Primavera, F. Rossi, A. M. Rovelli, T. Siroli, G. P. Tosi, N. Travaglini, R. Albergo, S. Cappello, G. Chiorboli, M. Costa, S. Giordano, F. Potenza, R. Tricomi, A. Tuve, C. Barbagli, G. Ciulli, V. Civinini, C. D'Alessandro, R. Focardi, E. Gallo, E. Gonzi, S. Gori, V. Lenzi, P. Meschini, M. Paoletti, S. Sguazzoni, G. Tropiano, A. Benussi, L. Bianco, S. Fabbri, F. Piccolo, D. Ferro, F. Lo Vetere, M. Robutti, E. Tosi, S. Dinardo, M. E. Fiorendi, S. Gennai, S. Gerosa, R. Ghezzi, A. Govoni, P. Lucchini, M. T. Malvezzi, S. Manzoni, R. A. Martelli, A. Marzocchi, B. Menasce, D. Moroni, L. Paganoni, M. Pedrini, D. Ragazzi, S. Redaelli, N. de Fatisa, T. Tabarelli Buontempo, S. Cavallo, N. Di Guida, S. Fabozzi, F. Iorio, A. O. M. Lista, L. Meola, S. Merola, M. Paolucci, P. Azzi, P. Bacchetta, N. Bisello, D. Branca, A. Carlin, R. Checchia, P. Dall'Osso, M. Dorigo, T. Fanzago, F. Galanti, M. Gasparini, F. Gasparini, U. Gonella, F. Gozzelino, A. Kanishchev, K. Lacaprara, S. Margoni, M. Meneguzzo, A. T. Pazzini, J. Pozzobon, N. Ronchese, P. Simonetto, F. Torassa, E. Tosi, M. Zotto, P. Zucchetta, A. Zumerle, G. Gabusi, M. Ratti, S. P. Riccardi, C. Salvini, P. Vitulo, P. Biasini, M. Bilei, G. M. Ciangottini, D. Fano, L. Lariccia, P. Mantovani, G. Menichelli, M. Romeo, F. Saha, A. Santocchia, A. Spiezia, A. Androsov, K. Azzurri, P. Bagliesi, G. Bernardini, J. Boccali, T. Broccolo, G. Castaldi, R. Ciocci, M. A. Dell'Orso, R. Donato, S. Fiori, F. Foa, L. Giassi, A. Grippo, M. T. Ligabue, F. Lomtadze, T. Martini, L. Messineo, A. Moon, C. S. Palla, F. Rizzi, A. Savoy-Navarro, A. Serban, A. T. Spagnolo, P. Squillacioti, P. Tenchini, R. Tonelli, G. Venturi, A. Verdini, P. G. Vernieri, C. Barone, L. Cavallari, F. D'imperio, G. Del Re, D. Diemoz, M. Grassi, M. Jorda, C. Longo, E. Margaroli, F. Meridiani, P. Micheli, F. Nourbakhsh, S. Organtini, G. Paramatti, R. Rahatlou, S. Rovelli, C. Santanastasio, F. Soffi, L. Traczyk, P. Amapane, N. Arcidiacono, R. Argiro, S. Arneodo, M. Bellan, R. Biino, C. Cartiglia, N. Casasso, S. Costa, M. Degano, A. Demaria, N. Finco, L. Mariotti, C. Maselli, S. Migliore, E. Monaco, V. Musich, M. Obertino, M. M. Ortona, G. Pacher, L. Pastrone, N. Pelliccioni, M. PinnaAngioni, G. L. Potenza, A. Romero, A. Ruspa, M. Sacchi, R. Solano, A. Staiano, A. Trapani, P. P. Belforte, S. Candelise, V. Casarsa, M. Cossutti, F. Della Ricca, G. Gobbo, B. La Licata, C. Marone, M. Montanino, D. Schizzi, A. Umer, T. Zanetti, A. Chang, S. Kropivnitskaya, A. Nam, S. K. Kim, D. H. Kim, G. N. Kim, M. S. Kong, D. J. Lee, S. Oh, Y. D. Park, H. Sakharov, A. Son, D. C. Kim, T. J. Kim, J. Y. Song, S. Choi, S. Gyun, D. Hong, B. Jo, M. Kim, H. Kim, Y. Lee, B. Lee, K. S. Park, S. K. Roh, Y. Choi, M. Kim, J. H. Park, I. C. Park, S. Ryu, G. Ryu, M. S. Choi, Y. Choi, Y. K. Goh, J. Kim, D. Kwon, E. Lee, J. Seo, H. Yu, I. Juodagalvis, A. Komaragiri, J. R. Mdali, M. A. B. Castilla-Valdez, H. De La Cruz-Burelo, E. La Cruz, I. Heredia-de Lopez-Fernandez, R. Sanchez-Hernandez, A. Moreno, S. Carrillo Valencia, F. Vazquez Pedraza, I. Ibarguen, H. A. Salazar Linares, E. Casimiro Pineda, A. Morelos Krofcheck, D. Butler, P. H. Reucroft, S. Ahmad, A. Ahmad, M. Hassan, Q. Hoorani, H. R. Khalid, S. Khan, W. A. Khurshid, T. Shah, M. A. Shoaib, M. Bialkowska, H. Bluj, M. Boimska, B. Frueboes, T. Gorski, M. Kazana, M. Nawrocki, K. Romanowska-Rybinska, K. Szleper, M. Zalewski, P. Brona, G. Bunkowski, K. Cwiok, M. Dominik, W. Doroba, K. Kalinowski, A. Konecki, M. Krolikowski, J. Misiura, M. Olszewski, M. Wolszczak, W. Bargassa, P. Silva, C. Beirao Da Cruz E. Faccioli, P. Parracho, P. G. Ferreira Gallinaro, M. Nguyen, F. Antunes, J. Rodrigues Seixas, J. Varela, J. Vischia, P. Afanasiev, S. Bunin, P. Gavrilenko, M. Golutvin, I. Gorbunov, I. Kamenev, A. Karjavin, V. Konoplyanikov, V. Lanev, A. Malakhov, A. Matveev, V. Moisenz, P. Palichik, V. Perelygin, V. Shmatov, S. Skatchkov, N. Smirnov, V. Zarubin, A. Golovtsov, V. Ivanov, Y. Kim, V. Levchenko, P. Murzin, V. Oreshkin, V. Smirnov, I. Sulimov, V. Uvarov, L. Vavilov, S. Vorobyev, A. Vorobyev, An. Andreev, Yu. Dermenev, A. Gninenko, S. Golubev, N. Kirsanov, M. Krasnikov, N. Pashenkov, A. Tlisov, D. Toropin, A. Epshteyn, V. Gavrilov, V. Lychkovskaya, N. Popov, V. Safronov, G. Semenov, S. Spiridonov, A. Stolin, V. Vlasov, E. Zhokin, A. Andreev, V. Azarkin, M. Dremin, I. Kirakosyan, M. Leonidov, A. Mesyats, G. Rusakov, S. V. Vinogradov, A. Belyaev, A. Boos, E. Bunichev, V. Dubinin, M. Dudko, L. Gribushin, A. Klyukhin, V. Kodolova, O. Lokhtin, I. Obraztsov, S. Perfilov, M. Savrin, V. Snigirev, A. Azhgirey, I. Bayshev, I. Bitioukov, S. Kachanov, V. Kalinin, A. Konstantinov, D. Krychkine, V. Petrov, V. Ryutin, R. Sobol, A. Tourtchanovitch, L. Troshin, S. Tyurin, N. Uzunian, A. Volkov, A. Adzic, P. Ekmedzic, M. Milosevic, J. Rekovic, V. Maestre, J. Alcaraz Battilana, C. Calvo, E. Cerrada, M. Llatas, M. Chamizo Colino, N. De La Cruz, B. Peris, A. Delgado Vazquez, D. Dominguez Del Valle, A. Escalante Bedoya, C. Fernandez Ramos, J. P. Fernandez Flix, J. Fouz, M. C. Garcia-Abia, P. Lopez, O. Gonzalez Lopez, S. Goy Hernandez, J. M. Josa, M. I. Merino, G. De Martino, E. Navarro Yzquierdo, A. Perez-Calero Pelayo, J. Puerta Olmeda, A. Quintario Redondo, I. Romero, L. Soares, M. S. Albajar, C. Detroconiz, J. F. Missiroli, M. Moran, D. Brun, H. Cuevas, J. Menendez, J. Fernandez Folgueras, S. Caballero, I. Gonzalez Iglesias, L. Lloret Cifuentes, J. A. Brochero Cabrillo, I. J. Calderon, A. Campderros, J. Duarte Fernandez, M. Gomez, G. Graziano, A. Virto, A. Lopez Marco, J. Marco, R. Rivero, C. Martinez Matorras, F. Sanchez, F. J. Munoz Gomez, J. Piedra Rodrigo, T. Rodriguez-Marrero, A. Y. Ruiz-Jimeno, A. Scodellaro, L. Vila, I. Cortabitarte, R. Vilar Abbaneo, D. Auffray, E. Auzinger, G. Bachtis, M. Baillon, P. Ball, A. H. Barney, D. Benaglia, A. Bendavid, J. Benhabib, L. Benitez, J. F. Bernet, C. Bianchi, G. Bloch, P. Bocci, A. Bonato, A. Bondu, O. Botta, C. Breuker, H. Camporesi, T. Cerminara, G. Colafranceschi, S. D'Alfonso, M. d'Enterria, D. Dabrowski, A. David, A. De Guio, F. De Roeck, A. De Visscher, S. Dobson, M. Dordevic, M. Dorney, B. Dupont-Sagorin, N. Elliott-Peisert, A. Eugster, J. Franzoni, G. Funk, W. Gigi, D. Gill, K. Giordano, D. Girone, M. Glege, F. Guida, R. Gundacker, S. Guthoff, M. Hammer, J. Hansen, M. Harris, P. Hegeman, J. Innocente, V. Janot, P. Kousouris, K. Krajczar, K. Lecoq, P. Lourenco, C. Magini, N. Malgeri, L. Mannelli, M. Marrouche, J. Masetti, L. Meijers, F. Mersi, S. Meschi, E. Moortgat, F. Morovic, S. Mulders, M. Musella, P. Orsini, L. Pape, L. Perez, E. Perrozzi, L. Petrilli, A. Petrucciani, G. Pfeiffer, A. Pierini, M. Pimia, M. Piparo, D. Plagge, M. Racz, A. Rolandi, G. Rovere, M. Sakulin, H. Schafer, C. Schwick, C. Sharma, A. Siegrist, P. Silva, P. Simon, M. Sphicas, P. Spiga, D. Steggemann, J. Stieger, B. Stoye, M. Takahashi, Y. Treille, D. Tsirou, A. Veres, G. I. Vlimant, J. R. Wardle, N. Wohri, K. Wollny, H. Zeuner, W. D. Bertl, W. Deiters, K. Erdmann, W. Horisberger, R. Ingram, Q. Kaestli, H. C. Kotlinski, D. Langenegger, U. Renker, D. Rohe, T. Bachmair, F. Bani, L. Bianchini, L. Bortignon, P. Buchmann, M. A. Casal, B. Chanon, N. Deisher, A. Dissertori, G. Dittmar, M. Donega, M. Dunser, M. Eller, P. Grab, C. Hits, D. Lustermann, W. Mangano, B. Marini, A. C. del Arbol, P. Martinez Ruiz Meister, D. Mohr, N. Nageli, C. Nessi-Tedaldi, F. Pandolfi, F. Pauss, F. Peruzzi, M. Quittnat, M. Rebane, L. Rossini, M. Starodumov, A. Takahashi, M. Theofilatos, K. Wallny, R. Weber, H. A. Amsler, C. Canelli, M. F. Chiochia, V. De Cosa, A. Hinzmann, A. Hreus, T. Kilminster, B. Lange, C. Mejias, B. Millan Ngadiuba, J. Robmann, P. Ronga, F. J. Taroni, S. Verzetti, M. Yang, Y. Cardaci, M. Chen, K. H. Ferro, C. Kuo, C. M. Lin, W. Lu, Y. J. Volpe, R. Yu, S. S. Chang, P. Chang, Y. H. Chang, Y. W. Chao, Y. Chen, K. F. Chen, P. H. Dietz, C. Grundler, U. Hou, W. -S. Kao, K. Y. Lei, Y. J. Liu, Y. F. Lu, R. -S. Majumder, D. Petrakou, E. Tzeng, Y. M. Wilken, R. Asavapibhop, B. Srimanobhas, N. Suwonjandee, N. Adiguzel, A. Bakirci, M. N. Cerci, S. Dozen, C. Dumanoglu, I. Eskut, E. Girgis, S. Gokbulut, G. Gurpinar, E. Hos, I. Kangal, E. E. Topaksu, A. Kayis Onengut, G. Ozdemir, K. Ozturk, S. Polatoz, A. Sogut, K. Cerci, D. Sunar Tali, B. Topakli, H. Vergili, M. Akin, I. V. Bilin, B. Bilmis, S. Gamsizkan, H. Karapinar, G. Ocalan, K. Sekmen, S. Surat, U. E. Yalvac, M. Zeyrek, M. Gulmez, E. Isildak, B. Kaya, M. Kaya, O. Cankocak, K. Vardarli, F. I. Levchuk, L. Sorokin, P. Brooke, J. J. Clement, E. Cussans, D. Flacher, H. Frazier, R. Goldstein, J. Grimes, M. Heath, G. P. Heath, H. F. Jacob, J. Kreczko, L. Lucas, C. Meng, Z. Newbold, D. M. Paramesvaran, S. Poll, A. Senkin, S. Smith, V. J. Williams, T. Bell, K. W. Belyaev, A. Brew, C. Brown, R. M. Cockerill, D. J. A. Coughlan, J. A. Harder, K. Harper, S. Olaiya, E. Petyt, D. Shepherd-Themistocleous, C. H. Thea, A. Tomalin, I. R. Womersley, W. J. Worm, S. D. Baber, M. Bainbridge, R. Buchmuller, O. Burton, D. Colling, D. Cripps, N. Cutajar, M. Dauncey, P. Davies, G. Della Negra, M. Dunne, P. Ferguson, W. Fulcher, J. Futyan, D. Gilbert, A. Hall, G. Iles, G. Jarvis, M. Karapostoli, G. Kenzie, M. Lane, R. Lucas, R. Lyons, L. Magnan, A. -M. Malik, S. Mathias, B. Nash, J. Nikitenko, A. Pela, J. Pesaresi, M. Petridis, K. Raymond, D. M. Rogerson, S. Rose, A. Seez, C. Sharp, P. Tapper, A. Acosta, M. Vazquez Virdee, T. Zenz, S. C. Cole, J. E. Hobson, P. R. Khan, A. Kyberd, P. Leggat, D. Leslie, D. Martin, W. Reid, I. D. Symonds, P. Teodorescu, L. Turner, M. Dittmann, J. Hatakeyama, K. Kasmi, A. Liu, H. Scarborough, T. Charaf, O. Cooper, S. I. Henderson, C. Rumerio, P. Avetisyan, A. Bose, T. Fantasia, C. Lawson, P. Richardson, C. Rohlf, J. Sperka, D. John, J. St. Sulak, L. Alimena, J. Berry, E. Bhattacharya, S. Christopher, G. Cutts, D. Demiragli, Z. Dhingra, N. Ferapontov, A. Garabedian, A. Heintz, U. Kukartsev, G. Laird, E. Landsberg, G. Luk, M. Narain, M. Segala, M. Sinthuprasith, T. Speer, T. Swanson, J. Breedon, R. Breto, G. Sanchez, M. Calderon De La Barca Chauhan, S. Chertok, M. Conway, J. Conway, R. Cox, P. T. Erbacher, R. Gardner, M. Ko, W. Lander, R. Miceli, T. Mulhearn, M. Pellett, D. Pilot, J. Ricci-Tam, F. Searle, M. Shalhout, S. Smith, J. Squires, M. Stolp, D. Tripathi, M. Wilbur, S. Yohay, R. Cousins, R. Everaerts, P. Farrell, C. Hauser, J. Ignatenko, M. Rakness, G. Takasugi, E. Valuev, V. Weber, M. Babb, J. Burt, K. Clare, R. Ellison, J. Gary, J. W. Hanson, G. Heilman, J. Rikova, M. Ivova Jandir, P. Kennedy, E. Lacroix, F. Liu, H. Long, O. R. Luthra, A. Malberti, M. Nguyen, H. Negrete, M. Olmedo Shrinivas, A. Sumowidagdo, S. Wimpenny, S. Andrews, W. Branson, J. G. Cerati, G. B. Cittolin, S. D'Agnolo, R. T. Evans, D. Holzner, A. Kelley, R. Klein, D. Lebourgeois, M. Letts, J. Macneill, I. Olivito, D. Padhi, S. Palmer, C. Pieri, M. Sani, M. Sharma, V. Simon, S. Sudano, E. Tadel, M. Tu, Y. Vartak, A. Welke, C. Wuerthwein, F. Yagil, A. Yoo, J. Barge, D. Bradmiller-Feld, J. Campagnari, C. Danielson, T. Dishaw, A. Flowers, K. Sevilla, M. Franco Geffert, P. George, C. Golf, F. Gouskos, L. Incandela, J. Justus, C. Mccoll, N. Richman, J. Stuart, D. To, W. West, C. Apresyan, A. Bornheim, A. Bunn, J. Chen, Y. DiMarco, E. Duarte, J. Mott, A. Newman, H. B. Pena, C. Rogan, C. Spiropulu, M. Timciuc, V. Wilkinson, R. Xie, S. Zhu, R. Y. Azzolini, V. Calamba, A. Carlson, B. Ferguson, T. Iiyama, Y. Paulini, M. Russ, J. Vogel, H. Vorobiev, I. Cumalat, J. P. Ford, W. T. Gaz, A. Lopez, E. Luiggi Nauenberg, U. Smith, J. G. Stenson, K. Ulmer, K. A. Wagner, S. R. Alexander, J. Chatterjee, A. Chu, J. Dittmer, S. Eggert, N. Mirman, N. Kaufman, G. Nicolas Patterson, J. R. Ryd, A. Salvati, E. Skinnari, L. Sun, W. Teo, W. D. Thom, J. Thompson, J. Tucker, J. Weng, Y. Winstrom, L. Wittich, P. Winn, D. Abdullin, S. Albrow, M. Anderson, J. Apollinari, G. Bauerdick, L. A. T. Beretvas, A. Berryhill, J. Bhat, P. C. Burkett, K. Butler, J. N. Cheung, H. W. K. Chlebana, F. Cihangir, S. Elvira, V. D. Fisk, I. Freeman, J. Gao, Y. Gottschalk, E. Gray, L. Green, D. Gruenendahl, S. Gutsche, O. Hanlon, J. Hare, D. Harris, R. M. Hirschauer, J. Hooberman, B. Jindariani, S. Johnson, M. Joshi, U. Kaadze, K. Klima, B. Kreis, B. Kwan, S. Linacre, J. Lincoln, D. Lipton, R. Liu, T. Lykken, J. Maeshima, K. Marraffino, J. M. Outschoorn, V. I. Martinez Maruyama, S. Mason, D. McBride, P. Mishra, K. Mrenna, S. Musienko, Y. Nahn, S. Newman-Holmes, C. O'Dell, V. Prokofyev, O. Sexton-Kennedy, E. Sharma, S. Soha, A. Spalding, W. J. Spiegel, L. Taylor, L. Tkaczyk, S. Tran, N. V. Uplegger, L. Vaandering, E. W. Vidal, R. Whitbeck, A. Whitmore, J. Yang, F. Acosta, D. Avery, P. Bourilkov, D. Carver, M. Cheng, T. Curry, D. Das, S. De Gruttola, M. Di Giovanni, G. P. Field, R. D. Fisher, M. Furic, I. K. Hugon, J. Konigsberg, J. Korytov, A. Kypreos, T. Low, J. F. Matchev, K. Milenovic, P. Mitselmakher, G. Muniz, L. Rinkevicius, A. Shchutska, L. Snowball, M. Yelton, J. Zakaria, M. Hewamanage, S. Linn, S. Markowitz, P. Martinez, G. Rodriguez, J. L. Adams, T. Askew, A. Bochenek, J. Diamond, B. Haas, J. Hagopian, S. Hagopian, V. Johnson, K. F. Prosper, H. Veeraraghavan, V. Weinberg, M. Baarmand, M. M. Hohlmann, M. Kalakhety, H. Yumiceva, F. Adams, M. R. Apanasevich, L. Bazterra, V. E. Berry, D. Betts, R. R. Bucinskaite, I. Cavanaugh, R. Evdokimov, O. Gauthier, L. Gerber, C. E. Hofman, D. J. Khalatyan, S. Kurt, P. Moon, D. H. O'Brien, C. Silkworth, C. Turner, P. Varelas, N. Albayrak, E. A. Bilki, B. Clarida, W. Dilsiz, K. Duru, F. Haytmyradov, M. Merlo, J. -P. Mermerkaya, H. Mestvirishvili, A. Moeller, A. Nachtman, J. Ogul, H. Onel, Y. Ozok, F. Penzo, A. Rahmat, R. Sen, S. Tan, P. Tiras, E. Wetzel, J. Yetkin, T. Yi, K. Barnett, B. A. Blumenfeld, B. Bolognesi, S. Fehling, D. Gritsan, A. V. Maksimovic, P. Martin, C. Swartz, M. Baringer, P. Bean, A. Benelli, G. Bruner, C. Kenny, R. P., III Malek, M. Murray, M. Noonan, D. Sanders, S. Sekaric, J. Stringer, R. Wang, Q. Wood, J. S. Barfuss, A. F. Chakaberia, I. Ivanov, A. Khalil, S. Makouski, M. Maravin, Y. Saini, L. K. Shrestha, S. Skhirtladze, N. Svintradze, I. Gronberg, J. Lange, D. Rebassoo, F. Wright, D. Baden, A. Belloni, A. Calvert, B. Eno, S. C. Gomez, J. A. Hadley, N. J. Kellogg, R. G. Kolberg, T. Lu, Y. Marionneau, M. Mignerey, A. C. Pedro, K. Skuja, A. Tonjes, M. B. Tonwar, S. C. Apyan, A. Barbieri, R. Bauer, G. Busza, W. Cali, I. A. Chan, M. DiMatteo, L. Dutta, V. Ceballos, G. Gomez Goncharov, M. Gulhan, D. Klute, M. Lai, Y. S. Lee, Y. -J. Levin, A. Luckey, P. D. Ma, T. Paus, C. Ralph, D. Roland, C. Roland, G. Stephans, G. S. F. Stoeckli, F. Sumorok, K. Velicanu, D. Veverka, J. Wyslouch, B. Yang, M. Zanetti, M. Zhukova, V. Dahmes, B. Gude, A. Kao, S. C. Klapoetke, K. Kubota, Y. Mans, J. Pastika, N. Rusack, R. Singovsky, A. Tambe, N. Turkewitz, J. Acosta, J. G. Oliveros, S. Avdeeva, E. Bloom, K. Bose, S. Claes, D. R. Dominguez, A. Suarez, R. Gonzalez Keller, J. Knowlton, D. Kravchenko, I. Lazo-Flores, J. Malik, S. Meier, F. Snow, G. R. Dolen, J. Godshalk, A. Iashvili, I. Kharchilava, A. Kumar, A. Rappoccio, S. Alverson, G. Barberis, E. Baumgartel, D. Chasco, M. Haley, J. Massironi, A. Morse, D. M. Nash, D. Orimoto, T. Trocino, D. Wang, R. -J. Wood, D. Zhang, J. Hahn, K. A. Kubik, A. Mucia, N. Odell, N. Pollack, B. Pozdnyakov, A. Schmitt, M. Stoynev, S. Sung, K. Velasco, M. Won, S. Brinkerhoff, A. Chan, K. M. Drozdetskiy, A. Hildreth, M. Jessop, C. Karmgard, D. J. Kellams, N. Lannon, K. Luo, W. Lynch, S. Marinelli, N. Pearson, T. Planer, M. Ruchti, R. Valls, N. Wayne, M. Wolf, M. Woodard, A. Antonelli, L. Brinson, J. Bylsma, B. Durkin, L. S. Flowers, S. Hill, C. Hughes, R. Kotov, K. Ling, T. Y. Puigh, D. Rodenburg, M. Smith, G. Winer, B. L. Wolfe, H. Wulsin, H. W. Driga, O. Elmer, P. Hebda, P. Hunt, A. Koay, S. A. Lujan, P. Marlow, D. Medvedeva, T. Mooney, M. Olsen, J. Piroue, P. Quan, X. Saka, H. Stickland, D. Tully, C. Werner, J. S. Zuranski, A. Brownson, E. Mendez, H. Vargas, J. E. Ramirez Barnes, V. E. Benedetti, D. Bolla, G. Bortoletto, D. De Mattia, M. Hu, Z. Jha, M. K. Jones, M. Jung, K. Kress, M. Leonardo, N. Pegna, D. Lopes Maroussov, V. Merkel, P. Miller, D. H. Neumeister, N. Radburn-Smith, B. C. Shi, X. Shipsey, I. Silvers, D. Svyatkovskiy, A. Wang, F. Xie, W. Xu, L. Yoo, H. D. Zablocki, J. Zheng, Y. Parashar, N. Stupak, J. Adair, A. Akgun, B. Ecklund, K. M. Geurts, F. J. M. Li, W. Michlin, B. Padley, B. P. Redjimi, R. Roberts, J. Zabel, J. Betchart, B. Bodek, A. Covarelli, R. de Barbaro, P. Demina, R. Eshaq, Y. Ferbel, T. Garcia-Bellido, A. Goldenzweig, P. Han, J. Harel, A. Khukhunaishvili, A. Petrillo, G. Vishnevskiy, D. Ciesielski, R. Demortier, L. Goulianos, K. Lungu, G. Mesropian, C. Arora, S. Barker, A. Chou, J. P. Contreras-Campana, C. Contreras-Campana, E. Duggan, D. Ferencek, D. Gershtein, Y. Gray, R. Halkiadakis, E. Hidas, D. Kaplan, S. Lath, A. Panwalkar, S. Park, M. Salur, R. Patel S. Schnetzer, S. Somalwar, S. Stone, R. Thomas, S. Thomassen, P. Walker, M. Rose, K. Spanier, S. York, A. Bouhali, O. Hernandez, A. Castaneda Eusebi, R. Flanagan, W. Gilmore, J. Kamon, T. Khotilovich, V. Krutelyov, V. Montalvo, R. Osipenkov, I. Pakhotin, Y. Perloff, A. Roe, J. Rose, A. Safonov, A. Sakuma, T. Suarez, I. Tatarinov, A. Akchurin, N. Cowden, C. Damgov, J. Dragoiu, C. Dudero, P. R. Faulkner, J. Kovitanggoon, K. Kunori, S. Lee, S. W. Libeiro, T. Volobouev, I. Appelt, E. Delannoy, A. G. Greene, S. Gurrola, A. Johns, W. Maguire, C. Mao, Y. Melo, A. Sharma, M. Sheldon, P. Snook, B. Tuo, S. Velkovska, J. Arenton, M. W. Boutle, S. Cox, B. Francis, B. Goodell, J. Hirosky, R. Ledovskoy, A. Li, H. Lin, C. Neu, C. Wood, J. Clarke, C. Harr, R. Karchin, P. E. Don, C. Kottachchi Kankanamge Lamichhane, P. Sturdy, J. Belknap, D. A. Carlsmith, D. Cepeda, M. Dodd, S. Dasu L. Duric, S. Friis, E. Hall-Wilton, R. Herndon, M. Herve, A. Klabbers, P. Lanaro, A. Lazaridis, C. Levine, A. Loveless, R. Mohapatra, A. Ojalvo, I. Perry, T. Pierro, G. A. Polese, G. Ross, I. Sarangi, T. Savin, A. Smith, W. H. Taylor, D. Vuosalo, C. Woods, N. TI Measurement of the cross section ratio sigma(t(t)over-barb(b)over-bar)/sigma(t(t)over-barjj) in pp collisions at root s=8 TeV SO PHYSICS LETTERS B LA English DT Article DE CMS; Physics; Top physics ID HIGGS-BOSON; ATLAS DETECTOR; LHC AB The first measurement of the cross section ratio sigma(t (t) over barb (b) over bar)/sigma(t (t) over bar jj) is presented using a data sample corresponding to an integrated luminosity of 19.6 fb(-1) collected in pp collisions at root s = 8 TeV with the CMS detector at the LHC. Events with two leptons (e or mu) and four reconstructed jets, including two identified as b quark jets, in the final state are selected. The ratio is determined for a minimum jet transverse momentum p(T) of both 20 and 40 GeV/c. The measured ratio is 0.022 +/- 0.003 (stat) +/- 0.005 (syst) for p(T) > 20GeV/c. The absolute cross sections sigma(t (t) over barb (b) over bar) and sigma(t (t) over bar jj) are also measured. The measured ratio for p(T) > 40 GeV/c is compatible with a theoretical quantum chromodynamics calculation at next-to-leading order. (C) 2015 CERN for the benefit of the CMS Collaboration. Published by Elsevier B.V. C1 [Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Adam, W.; Bergauer, T.; Dragicevic, M.; Eroe, J.; Fabjan, C.; Friedl, M.; Fruehwirth, R.; Ghete, V. M.; Hartl, C.; Hormann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Knunz, V.; Krammer, M.; Kraetschmer, I.; Liko, D.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, H.; Schoefbeck, R.; Strauss, J.; Taurok, A.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C. -E.] Inst Hochenergiephys OeAW, Vienna, Austria. [Mossolov, V.; Shumeiko, N.; Gonzalez, J. Suarez] Natl Ctr Particle & High Energy Phys, Minsk, Byelarus. [Alderweireldt, S.; Bansal, M.; Bansal, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Knutsson, A.; Luyckx, S.; Ochesanu, S.; Roland, B.; Rougny, R.; De Klundert, M. Van; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.] Univ Antwerp, Antwerp, Belgium. [Blekman, F.; Blyweert, S.; D'Hondt, J.; Daci, N.; Heracleous, N.; Keaveney, J.; Lowette, S.; Maes, M.; Olbrechts, A.; Python, Q.; Strom, D.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.] Vrije Univ Brussel, Brussels, Belgium. [Caillol, C.; Clerbaux, B.; De Lentdecker, G.; Dobur, D.; Favart, L.; Gay, A. P. R.; Grebenyuk, A.; Leonard, A.; Mohammadi, A.; Pernie, L.; Reis, T.; Seva, T.; Thomas, L.; Vander Velde, C.; Vanlaer, P.; Wang, J.] Univ Libre Bruxelles, Brussels, Belgium. [Adler, V.; Beernaert, K.; Benucci, L.; Cimmino, A.; Costantini, S.; Crucy, S.; Dildick, S.; Fagot, A.; Garcia, G.; Mccartin, J.; Rios, A. A. Ocampo; Ryckbosch, D.; Diblen, S. Salva; Sigamani, M.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Yazgan, E.; Zaganidis, N.] Univ Ghent, B-9000 Ghent, Belgium. [Basegmez, S.; Beluffi, C.; Bruno, G.; Castello, R.; Caudron, A.; Ceard, L.; Da Silveira, G. G.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Jez, P.; Komm, M.; Lemaitre, V.; Nuttens, C.; Pagano, D.; Perrini, L.; Pin, A.; Piotrzkowski, K.; Popov, A.; Quertenmont, L.; Selvaggi, M.; Marono, M. Vidal; Garcia, J. M. Vizan] Catholic Univ Louvain, Louvain La Neuve, Belgium. [Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.] Univ Mons, B-7000 Mons, Belgium. [Junior, W. L. Alda; Alves, G. A.; Brito, L.; Martins Junior, M. Correa; Martins, T. Dos Reis; Herrera, C. Mora; Pol, M. E.] Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil. [Carvalho, W.; Chinellato, J.; Custodio, A.; Da Costa, E. M.; Damiao, D. De Jesus; Martins, C. De Oliveira; De Souza, S. Fonseca; Malbouisson, H.; Figueiredo, D. Matos; Mundim, L.; Nogima, H.; Da Silva, W. L. Prado; Santaolalla, J.; Santoro, A.; Sznajder, A.; Manganote, E. J. Tonelli; Pereira, A. Vilela] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Dogra, S.; Tomei, T. R. Fernandez Perez; Novaes, S. F.; Padula, SandraS.] Univ Estadual Paulista, Sao Paulo, Brazil. [Bernardes, C. A.; Gregores, E. M.; Mercadante, P. G.] Univ Fed ABC, Sao Paulo, Brazil. [Aleksandrov, A.; Genchev, V.; Iaydjiev, P.; Marinov, A.; Piperov, S.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Tcholakov, V.; Vutova, M.] Inst Nucl Energy Res, Sofia, Bulgaria. [Dimitrov, A.; Glushkov, I.; Hadjiiska, R.; Kozhuharov, V.; Litov, L.; Pavlov, B.; Petkov, P.] Univ Sofia, BU-1126 Sofia, Bulgaria. [Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Du, R.; Jiang, C. H.; Liang, S.; Plestina, R.; Tao, J.; Wang, X.; Wang, Z.] Inst High Energy Phys, Beijing 100039, Peoples R China. [Asawatangtrakuldee, C.; Ban, Y.; Guo, Y.; Li, Q.; Li, W.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Zhang, L.; Zou, W.] Peking Univ, State Key Lab Nucl Phys & Technol, Beijing 100871, Peoples R China. [Avila, C.; Sierra, L. F. Chaparro; Florez, C.; Gomez, J. P.; Moreno, B. Gomez; Sanabria, J. C.] Univ Los Andes, Bogota, Colombia. [Godinovic, N.; Lelas, D.; Polic, D.; Puljak, I.] Univ Split, Fac Elect Engn Mech Engn & Naval Architecture, Split, Croatia. [Antunovic, Z.; Kovac, M.] Univ Split, Fac Sci, Split, Croatia. [Brigljevic, V.; Kadija, K.; Luetic, J.; Mekterovic, D.; Sudic, L.] Inst Rudjer Boskov, Zagreb, Croatia. [Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.] Univ Cyprus, CY-1678 Nicosia, Cyprus. [Bodlak, M.; Finger, M.; Finger, M., Jr.] Charles Univ Prague, Prague, Czech Republic. [Assran, Y.; Kamel, A. Ellithi; Mahmoud, M. A.; Radi, A.] Acad Sci Res & Technol Arab Republ Egypt, Egyptian Network High Energy Phys, Cairo, Egypt. [Kadastik, M.; Murumaa, M.; Raidal, M.; Tiko, A.] NICPB, Tallinn, Estonia. [Eerola, P.; Fedi, G.; Voutilainen, M.] Univ Helsinki, Dept Phys, Helsinki, Finland. [Harkonen, J.; Karimaki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampen, T.; Lassila-Perini, K.; Lehti, S.; Linden, T.; Luukka, P.; Maenpaa, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.] Helsinki Inst Phys, Helsinki, Finland. [Talvitie, J.; Tuuva, T.] Lappeenranta Univ Technol, Lappeenranta, Finland. [Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; de Monchenault, G. Hamel; Jarry, P.; Locci, E.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.] CEA Saclay, DSM, IRFU, F-91191 Gif Sur Yvette, France. [Baffioni, S.; Beaudette, F.; Busson, P.; Charlot, C.; Dahms, T.; Dalchenko, M.; Dobrzynski, L.; Filipovic, N.; Florent, A.; de Cassagnac, R. Granier; Mastrolorenzo, L.; Mine, P.; Mironov, C.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Paganini, P.; Regnard, S.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Veelken, C.; Yilmaz, Y.; Zabi, A.] Ecole Polytech, CNRS, Lab Leprince Ringuet, IN2P3, F-91128 Palaiseau, France. [Agram, J. -L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J. -M.; Chabert, E. C.; Collard, C.; Conte, E.; Fontaine, J. -C.; Gele, D.; Goerlach, U.; Goetzmann, C.; Le Bihan, A. -C.; Van Hove, P.] Univ Haute Alsace Mulhouse, CNRS, Inst Pluridisciplinaire Hubert Curien, Univ Strasbourg,IN2P3, Strasbourg, France. [Gadrat, S.] CNRS, Ctr Calcul, Inst Natl Phys Nucl & Phys Particules, IN2P3, Villeurbanne, France. [Beauceron, S.; Beaupere, N.; Boudoul, G.; Bouvier, E.; Brochet, S.; Montoya, C. A. Carrillo; Chasserat, J.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Kurca, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Alvarez, J. D. Ruiz; Sabes, D.; Sgandurra, L.; Sordini, V.; Vander Donckt, M.; Verdier, P.; Viret, S.; Xiao, H.] Univ Lyon 1, CNRS, IN2P3, Inst Phys Nucl Lyon, F-69622 Villeurbanne, France. [Tsamalaidze, Z.] Tbilisi State Univ, Inst High Energy Phys & Informatizat, GE-380086 Tbilisi, Rep of Georgia. [Autermann, C.; Beranek, S.; Bontenackels, M.; Edelhoff, M.; Feld, L.; Hindrichs, O.; Klein, K.; Ostapchuk, A.; Perieanu, A.; Raupach, F.; Sammet, J.; Schael, S.; Weber, H.; Wittmer, B.; Zhukov, V.] Rhein Westfal TH Aachen, Inst Phys 1, Aachen, Germany. [Ata, M.; Brodski, M.; Dietz-Laursonn, E.; Duchardt, D.; Erdmann, M.; Fischer, R.; Gueth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Klingebiel, D.; Knutzen, S.; Kreuzer, P.; Merschmeyer, M.; Meyer, A.; Millet, P.; Olschewski, M.; Padeken, K.; Papacz, P.; Reithler, H.; Schmitz, S. A.; Sonnenschein, L.; Teyssier, D.; Thueer, S.; Weber, M.] Rhein Westfal TH Aachen, Inst Phys A 3, Aachen, Germany. [Cherepanov, V.; Erdogan, Y.; Fluegge, G.; Geenen, H.; Geisler, M.; Ahmad, W. Haj; Heister, A.; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Lingemann, J.; Nowack, A.; Nugent, I. M.; Perchalla, L.; Pooth, O.; Stahl, A.] Rhein Westfal TH Aachen, Inst Phys B 3, Aachen, Germany. [Asin, I.; Bartosik, N.; Behr, J.; Behrenhoff, W.; Behrens, U.; Bell, A. J.; Bergholz, M.; Bethani, A.; Borras, K.; Burgmeier, A.; Cakir, A.; Calligaris, L.; Campbell, A.; Choudhury, S.; Costanza, F.; Pardos, C. Diez; Dooling, S.; Dorland, T.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Flucke, G.; Garcia, J. Garay; Geiser, A.; Gunnellini, P.; Hauk, J.; Hempel, M.; Horton, D.; Jung, H.; Kalogeropoulos, A.; Kasemann, M.; Katsas, P.; Kieseler, J.; Kleinwort, C.; Kruecker, D.; Lange, W.; Leonard, J.; Lipka, K.; Lobanov, A.; Lohmann, W.; Lutz, B.; Mankel, R.; Marfin, I.; Melzer-Pellmann, I. -A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Nayak, A.; Novgorodova, O.; Nowak, F.; Ntomari, E.; Perrey, H.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Cipriano, P. M. Ribeiro; Ron, E.; Sahin, M. O.; Salfeld-Nebgen, J.; Saxena, P.; Schmidt, R.; Schoerner-Sadenius, T.; Schroeder, M.; Seitz, C.; Spannagel, S.; Trevino, A. D. R. Vargas; Walsh, R.; Wissing, C.] DESY, Hamburg, Germany. [Martin, M. Aldaya; Blobel, V.; Vignali, M. Centis; Draeger, A. R.; Erfle, J.; Garutti, E.; Goebel, K.; Gorner, M.; Haller, J.; Hoffmann, M.; Hoeing, R. S.; Kirschenmann, H.; Klanner, R.; Kogler, R.; Lange, J.; Lapsien, T.; Lenz, T.; Marchesini, I.; Ott, J.; Peiffer, T.; Pietsch, N.; Poehlsen, J.; Poehlsen, T.; Rathjens, D.; Sander, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Seidel, M.; Sola, V.; Stadie, H.; Steinbrueck, G.; Troendle, D.; Usai, E.; Vanelderen, L.] Univ Hamburg, Hamburg, Germany. [Barth, C.; Baus, C.; Berger, J.; Boeser, C.; Butz, E.; Chwalek, T.; De Boer, W.; Descroix, A.; Dierlamm, A.; Feindt, M.; Frensch, F.; Giffels, M.; Hartmann, F.; Hauth, T.; Husemann, U.; Katkov, I.; Kornmayer, A.; Kuznetsova, E.; Pardo, P. Lobelle; Mozer, M. U.; Mueller, Th.; Nurnberg, A.; Quast, G.; Rabbertz, K.; Ratnikov, F.; Roecker, S.; Simonis, H. J.; Stober, F. M.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weiler, T.; Wolf, R.] Inst Expt Kernphys, Karlsruhe, Germany. [Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Markou, A.; Markou, C.; Psallidas, A.; Topsis-Giotis, I.] NCSR Demokritos, INPP, Aghia Paraskevi, Greece. [Agapitos, A.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Stiliaris, E.] Univ Athens, Athens, Greece. [Aslanoglou, X.; Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Manthos, N.; Papadopoulos, I.; Paradas, E.] Univ Ioannina, GR-45110 Ioannina, Greece. [Bencze, G.; Hajdu, C.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.] Wigner Res Ctr Phys, Budapest, Hungary. [Beni, N.; Czellar, S.; Karancsi, J.; Molnar, J.; Palinkas, J.; Szillasi, Z.] Inst Nucl Res ATOMKI, Debrecen, Hungary. [Raics, P.; Trocsanyi, Z. L.; Ujvari, B.] Univ Debrecen, Debrecen, Hungary. [Swain, S. K.] Natl Inst Sci Educ & Res, Bhubaneswar, Orissa, India. [Beri, S. B.; Bhatnagar, V.; Gupta, R.; Bhawandeep, U.; Kalsi, A. K.; Kaur, M.; Mittal, M.; Nishu, N.; Singh, J. B.] Panjab Univ, Chandigarh 160014, India. [Kumar, Ashok; Kumar, Arun; Ahuja, S.; Bhardwaj, A.; Choudhary, B. C.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, V.] Univ Delhi, Delhi 110007, India. [Banerjee, S.; Bhattacharya, S.; Chatterjee, K.; Dutta, S.; Gomber, B.; Jain, Sa.; Jain, Sh.; Khurana, R.; Modak, A.; Mukherjee, S.; Roy, D.; Sarkar, S.; Sharan, M.] Saha Inst Nucl Phys, Kolkata, India. [Abdulsalam, A.; Dutta, D.; Kailas, S.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Topkar, A.] Bhabha Atom Res Ctr, Mumbai 400085, Maharashtra, India. [Aziz, T.; Banerjee, S.; Bhowmik, S.; Chatterjee, R. M.; Dewanjee, R. K.; Dugad, S.; Ganguly, S.; Ghosh, S.; Guchait, M.; Gurtu, A.; Kole, G.; Kumar, S.; Maity, M.; Majumder, G.; Mazumdar, K.; Mohanty, G. B.; Parida, B.; Sudhakar, K.; Wickramage, N.] Tata Inst Fundamental Res, Mumbai 400005, Maharashtra, India. [Bakhshiansohi, H.; Behnamian, H.; Etesami, S. M.; Fahim, A.; Goldouzian, R.; Jafari, A.; Khakzad, M.; Najafabadi, M. Mohammadi; Naseri, M.; Mehdiabadi, S. Paktinat; Hosseinabadi, F. Rezaei; Safarzadeh, B.; Zeinali, M.] Inst Res Fundamental Sci IPM, Tehran, Iran. [Felcini, M.; Grunewald, M.] Univ Coll Dublin, Dublin 2, Ireland. [Pompili, A.; Pugliese, G.; Radogna, R.; Selvaggi, G.; Silvestris, L.; Singh, G.; Venditti, R.; Verwilligen, P.; Zito, G.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Pompili, A.; Radogna, R.; Selvaggi, G.; Singh, G.; Venditti, R.] Univ Bari, Bari, Italy. [Pugliese, G.] Politecn Bari, Bari, Italy. [Abbiendi, G.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Primavera, F.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.] Ist Nazl Fis Nucl, Sez Bologna, I-40126 Bologna, Italy. [Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Codispoti, G.; Cuffiani, M.; Fanfani, A.; Fasanella, D.; Guiducci, L.; Primavera, F.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.] Univ Bologna, Bologna, Italy. [Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.] Ist Nazl Fis Nucl, Sez Catania, I-95129 Catania, Italy. [Albergo, S.; Chiorboli, M.; Costa, S.; Potenza, R.; Tricomi, A.; Tuve, C.] Univ Catania, Catania, Italy. CSFNSM, Catania, Italy. [Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Gallo, E.; Gonzi, S.; Gori, V.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.] Ist Nazl Fis Nucl, Sez Firenze, I-50125 Florence, Italy. [Ciulli, V.; D'Alessandro, R.; Focardi, E.; Gonzi, S.; Gori, V.; Lenzi, P.; Tropiano, A.] Univ Firenze, Florence, Italy. [Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Ferro, F.; Lo Vetere, M.; Robutti, E.; Tosi, S.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Lo Vetere, M.; Tosi, S.] Univ Genoa, Genoa, Italy. [Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Gerosa, R.; Ghezzi, A.; Govoni, P.; Lucchini, M. T.; Malvezzi, S.; Manzoni, R. A.; Martelli, A.; Marzocchi, B.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; de Fatisa, T. Tabarelli] Ist Nazl Fis Nucl, Sez Milan Bicocca, I-20133 Milan, Italy. [Dinardo, M. E.; Fiorendi, S.; Gerosa, R.; Ghezzi, A.; Govoni, P.; Lucchini, M. T.; Manzoni, R. A.; Martelli, A.; Marzocchi, B.; Paganoni, M.; Ragazzi, S.; de Fatisa, T. Tabarelli] Univ Milano Bicocca, Milan, Italy. [Buontempo, S.; Cavallo, N.; Di Guida, S.; Fabozzi, F.; Iorio, A. O. M.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.] Ist Nazl Fis Nucl, Sez Napoli, I-80125 Naples, Italy. [Iorio, A. O. M.] Univ Naples Federico II, Naples, Italy. [Cavallo, N.; Fabozzi, F.] Univ Basilicata Potenza, Naples, Italy. [Di Guida, S.; Meola, S.] Univ G Marconi Roma, Naples, Italy. [Azzi, P.; Bacchetta, N.; Bisello, D.; Branca, A.; Carlin, R.; Checchia, P.; Dall'Osso, M.; Dorigo, T.; Fanzago, F.; Galanti, M.; Gasparini, F.; Gasparini, U.; Gonella, F.; Gozzelino, A.; Kanishchev, K.; Lacaprara, S.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Zotto, P.; Zucchetta, A.; Zumerle, G.] Ist Nazl Fis Nucl, Sez Padova, Padua, Italy. [Bisello, D.; Branca, A.; Carlin, R.; Dall'Osso, M.; Galanti, M.; Gasparini, F.; Gasparini, U.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Tosi, M.; Zotto, P.; Zucchetta, A.; Zumerle, G.] Univ Padua, Padua, Italy. [Kanishchev, K.] Univ Trento Trento, Padua, Italy. [Gabusi, M.; Ratti, S. P.; Riccardi, C.; Salvini, P.; Vitulo, P.] Ist Nazl Fis Nucl, Sez Pavia, I-27100 Pavia, Italy. [Gabusi, M.; Ratti, S. P.; Riccardi, C.; Vitulo, P.] Univ Pavia, I-27100 Pavia, Italy. [Biasini, M.; Bilei, G. M.; Ciangottini, D.; Fano, L.; Lariccia, P.; Mantovani, G.; Menichelli, M.; Romeo, F.; Saha, A.; Santocchia, A.; Spiezia, A.] Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy. [Biasini, M.; Bilei, G. M.; Fano, L.; Lariccia, P.; Mantovani, G.; Romeo, F.; Santocchia, A.; Spiezia, A.] Univ Perugia, I-06100 Perugia, Italy. [Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Broccolo, G.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fiori, F.; Foa, L.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Moon, C. S.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Serban, A. T.; Spagnolo, P.; Squillacioti, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Vernieri, C.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy. [Martini, L.; Messineo, A.; Rizzi, A.; Tonelli, G.] Univ Pisa, Pisa, Italy. [Broccolo, G.; Donato, S.; Fiori, F.; Foa, L.; Ligabue, F.; Vernieri, C.] Scuola Normale Super Pisa, Pisa, Italy. [Barone, L.; Cavallari, F.; D'imperio, G.; Del Re, D.; Diemoz, M.; Grassi, M.; Jorda, C.; Longo, E.; Margaroli, F.; Meridiani, P.; Micheli, F.; Nourbakhsh, S.; Organtini, G.; Paramatti, R.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Soffi, L.; Traczyk, P.] Ist Nazl Fis Nucl, Sez Roma, Rome, Italy. [Barone, L.; D'imperio, G.; Del Re, D.; Grassi, M.; Longo, E.; Margaroli, F.; Meridiani, P.; Nourbakhsh, S.; Rahatlou, S.; Santanastasio, F.; Soffi, L.; Traczyk, P.] Univ Rome, Rome, Italy. [Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bellan, R.; Biino, C.; Cartiglia, N.; Casasso, S.; Costa, M.; Degano, A.; Demaria, N.; Finco, L.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Musich, M.; Obertino, M. M.; Ortona, G.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; PinnaAngioni, G. L.; Potenza, A.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Trapani, P. P.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Amapane, N.; Argiro, S.; Bellan, R.; Casasso, S.; Costa, M.; Degano, A.; Finco, L.; Migliore, E.; Monaco, V.; Ortona, G.; Pacher, L.; PinnaAngioni, G. L.; Potenza, A.; Romero, A.; Sacchi, R.; Solano, A.; Trapani, P. P.] Univ Turin, Turin, Italy. [Arcidiacono, R.; Arneodo, M.; Obertino, M. M.; Ruspa, M.] Univ Piemonte Orientale Novara, Turin, Italy. [Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; La Licata, C.; Marone, M.; Montanino, D.; Schizzi, A.; Umer, T.; Zanetti, A.] Ist Nazl Fis Nucl, Sez Trieste, Trieste, Italy. [Candelise, V.; Della Ricca, G.; La Licata, C.; Marone, M.; Montanino, D.; Schizzi, A.; Umer, T.] Univ Trieste, Trieste, Italy. [Chang, S.; Kropivnitskaya, A.; Nam, S. K.] Kangwon Natl Univ, Chunchon, South Korea. [Kim, D. H.; Kim, G. N.; Kim, M. S.; Kong, D. J.; Lee, S.; Oh, Y. D.; Park, H.; Sakharov, A.; Son, D. C.] Kyungpook Natl Univ, Daegu, South Korea. [Kim, T. J.] Chonbuk Natl Univ, Jeonju 561756, South Korea. [Kim, J. Y.; Song, S.] Chonnam Natl Univ, Inst Univ & Elementary Particles, Kwangju, South Korea. [Choi, S.; Gyun, D.; Hong, B.; Jo, M.; Kim, H.; Kim, Y.; Lee, B.; Lee, K. S.; Park, S. K.; Roh, Y.] Korea Univ, Seoul, South Korea. [Choi, M.; Kim, J. H.; Park, I. C.; Park, S.; Ryu, G.; Ryu, M. S.] Univ Seoul, Seoul, South Korea. [Choi, Y.; Choi, Y. K.; Goh, J.; Kim, D.; Kwon, E.; Lee, J.; Seo, H.; Yu, I.] Sungkyunkwan Univ, Suwon, South Korea. [Juodagalvis, A.] Vilnius Univ, Vilnius, Lithuania. [Komaragiri, J. R.; Mdali, M. A. B.] Univ Malaya, Natl Ctr Particle Phys, Kuala Lumpur, Malaysia. [Castilla-Valdez, H.; De La Cruz-Burelo, E.; La Cruz, I. Heredia-de; Lopez-Fernandez, R.; Sanchez-Hernandez, A.] IPN, Ctr Invest & Estudios Avanzados, Mexico City 07738, DF, Mexico. [Moreno, S. Carrillo; Valencia, F. Vazquez] Univ Iberoamer, Mexico City, DF, Mexico. [Pedraza, I.; Ibarguen, H. A. Salazar] Benemerita Univ Autonoma Puebla, Puebla, Mexico. [Linares, E. Casimiro; Pineda, A. Morelos] Univ Autonoma San Luis Potosi, San Luis Potosi, Mexico. [Krofcheck, D.] Univ Auckland, Auckland 1, New Zealand. [Butler, P. H.; Reucroft, S.] Univ Canterbury, Christchurch 1, New Zealand. [Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Khalid, S.; Khan, W. A.; Khurshid, T.; Shah, M. A.; Shoaib, M.] Quaid I Azam Univ, Natl Ctr Phys, Islamabad, Pakistan. [Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Gorski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Zalewski, P.] Natl Ctr Nucl Res, Otwock, Poland. [Brona, G.; Bunkowski, K.; Cwiok, M.; Dominik, W.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Wolszczak, W.] Univ Warsaw, Fac Phys, Inst Expt Phys, Warsaw, Poland. [Bargassa, P.; Silva, C. Beirao Da Cruz E.; Faccioli, P.; Parracho, P. G. Ferreira; Gallinaro, M.; Nguyen, F.; Antunes, J. Rodrigues; Seixas, J.; Varela, J.; Vischia, P.] Lab Instrumentacao Fis Expt Particulas, Lisbon, Portugal. [Afanasiev, S.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Konoplyanikov, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Skatchkov, N.; Smirnov, V.; Zarubin, A.] Joint Inst Nucl Res, Dubna, Russia. [Golovtsov, V.; Ivanov, Y.; Kim, V.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Vorobyev, An.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.] Russian Acad Sci, Inst Nucl Res, Moscow 117312, Russia. [Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Safronov, G.; Semenov, S.; Spiridonov, A.; Stolin, V.; Vlasov, E.; Zhokin, A.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Vinogradov, A.] PN Lebedev Phys Inst, Moscow, Russia. [Belyaev, A.; Boos, E.; Bunichev, V.; Dubinin, M.; Dudko, L.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Obraztsov, S.; Perfilov, M.; Savrin, V.; Snigirev, A.] Lomonosov Moscow State Univ, Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.] State Res Ctr Russian Federat, Inst High Energy Phys, Protvino, Russia. [Adzic, P.; Ekmedzic, M.; Milosevic, J.; Rekovic, V.] Univ Belgrade, Fac Phys & Vinca Inst Nucl Sci, Belgrade, Serbia. [Maestre, J. Alcaraz; Battilana, C.; Calvo, E.; Cerrada, M.; Llatas, M. Chamizo; Colino, N.; De La Cruz, B.; Peris, A. Delgado; Vazquez, D. Dominguez; Del Valle, A. Escalante; Bedoya, C. Fernandez; Ramos, J. P. Fernandez; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Lopez, O. Gonzalez; Lopez, S. Goy; Hernandez, J. M.; Josa, M. I.; Merino, G.; De Martino, E. Navarro; Yzquierdo, A. Perez-Calero; Pelayo, J. Puerta; Olmeda, A. Quintario; Redondo, I.; Romero, L.; Soares, M. S.] Ctr Invest Energet Medioambient & Tecnol CIEMAT, Madrid, Spain. [Albajar, C.; Detroconiz, J. F.; Missiroli, M.; Moran, D.] Univ Autonoma Madrid, Madrid, Spain. [Brun, H.; Cuevas, J.; Menendez, J. Fernandez; Folgueras, S.; Caballero, I. Gonzalez; Iglesias, L. Lloret] Univ Oviedo, Oviedo, Spain. [Cifuentes, J. A. Brochero; Cabrillo, I. J.; Calderon, A.; Campderros, J. Duarte; Fernandez, M.; Gomez, G.; Graziano, A.; Virto, A. Lopez; Marco, J.; Marco, R.; Rivero, C. Martinez; Matorras, F.; Sanchez, F. J. Munoz; Gomez, J. Piedra; Rodrigo, T.; Rodriguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Vila, I.; Cortabitarte, R. Vilar] Univ Cantabria, CSIC, Inst Fis Cantabria IFCA, E-39005 Santander, Spain. [Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Benaglia, A.; Bendavid, J.; Benhabib, L.; Benitez, J. F.; Bernet, C.; Bianchi, G.; Bloch, P.; Bocci, A.; Bonato, A.; Bondu, O.; Botta, C.; Breuker, H.; Camporesi, T.; Cerminara, G.; Colafranceschi, S.; D'Alfonso, M.; d'Enterria, D.; Dabrowski, A.; David, A.; De Guio, F.; De Roeck, A.; De Visscher, S.; Dobson, M.; Dordevic, M.; Dorney, B.; Dupont-Sagorin, N.; Elliott-Peisert, A.; Eugster, J.; Franzoni, G.; Funk, W.; Gigi, D.; Gill, K.; Giordano, D.; Girone, M.; Glege, F.; Guida, R.; Gundacker, S.; Guthoff, M.; Hammer, J.; Hansen, M.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Kousouris, K.; Krajczar, K.; Lecoq, P.; Lourenco, C.; Magini, N.; Malgeri, L.; Mannelli, M.; Marrouche, J.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moortgat, F.; Morovic, S.; Mulders, M.; Musella, P.; Orsini, L.; Pape, L.; Perez, E.; Perrozzi, L.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pierini, M.; Pimia, M.; Piparo, D.; Plagge, M.; Racz, A.; Rolandi, G.; Rovere, M.; Sakulin, H.; Schafer, C.; Schwick, C.; Sharma, A.; Siegrist, P.; Silva, P.; Simon, M.; Sphicas, P.; Spiga, D.; Steggemann, J.; Stieger, B.; Stoye, M.; Takahashi, Y.; Treille, D.; Tsirou, A.; Veres, G. I.; Vlimant, J. R.; Wardle, N.; Wohri, K.; Wollny, H.; Zeuner, W. D.; Grab, C.; Hits, D.; Lustermann, W.; Mangano, B.; Marini, A. C.; del Arbol, P. Martinez Ruiz; Meister, D.; Mohr, N.; Nageli, C.; Nessi-Tedaldi, F.; Pandolfi, F.; Pauss, F.; Peruzzi, M.; Quittnat, M.; Rebane, L.; Rossini, M.; Starodumov, A.; Takahashi, M.; Theofilatos, K.; Wallny, R.; Weber, H. A.] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland. [Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Renker, D.; Rohe, T.] Paul Scherrer Inst, Villigen, Switzerland. [Bachmair, F.; Bani, L.; Bianchini, L.; Bortignon, P.; Buchmann, M. A.; Casal, B.; Chanon, N.; Deisher, A.; Dissertori, G.; Dittmar, M.; Donega, M.; Dunser, M.; Eller, P.; Grab, C.; Hits, D.; Lustermann, W.; Mangano, B.; Marini, A. C.; del Arbol, P. Martinez Ruiz; Meister, D.; Mohr, N.; Nageli, C.; Nessi-Tedaldi, F.; Pandolfi, F.; Pauss, F.; Peruzzi, M.; Quittnat, M.; Rebane, L.; Rossini, M.; Starodumov, A.; Takahashi, M.; Theofilatos, K.; Wallny, R.; Weber, H. A.] ETH, Inst Particle Phys, Zurich, Switzerland. [Amsler, C.; Canelli, M. F.; Chiochia, V.; De Cosa, A.; Hinzmann, A.; Hreus, T.; Kilminster, B.; Lange, C.; Mejias, B. Millan; Ngadiuba, J.; Robmann, P.; Ronga, F. J.; Taroni, S.; Verzetti, M.; Yang, Y.] Univ Zurich, Zurich, Switzerland. [Cardaci, M.; Chen, K. H.; Ferro, C.; Kuo, C. M.; Lin, W.; Lu, Y. J.; Volpe, R.; Yu, S. S.] Natl Cent Univ, Chungli, Taiwan. [Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Chen, P. H.; Dietz, C.; Grundler, U.; Hou, W. -S.; Kao, K. Y.; Lei, Y. J.; Liu, Y. F.; Lu, R. -S.; Majumder, D.; Petrakou, E.; Tzeng, Y. M.; Wilken, R.] Natl Taiwan Univ, Taipei 10764, Taiwan. [Asavapibhop, B.; Srimanobhas, N.; Suwonjandee, N.] Chulalongkorn Univ, Fac Sci, Dept Phys, Bangkok, Thailand. [Adiguzel, A.; Bakirci, M. N.; Cerci, S.; Dozen, C.; Dumanoglu, I.; Eskut, E.; Girgis, S.; Gokbulut, G.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Topaksu, A. Kayis; Onengut, G.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Sogut, K.; Cerci, D. Sunar; Tali, B.; Topakli, H.; Vergili, M.] Cukurova Univ, Adana, Turkey. [Akin, I. V.; Bilin, B.; Bilmis, S.; Gamsizkan, H.; Karapinar, G.; Ocalan, K.; Sekmen, S.; Surat, U. E.; Yalvac, M.; Zeyrek, M.] Middle E Tech Univ, Dept Phys, TR-06531 Ankara, Turkey. [Gulmez, E.; Isildak, B.; Kaya, M.; Kaya, O.] Bogazici Univ, Istanbul, Turkey. [Cankocak, K.; Vardarli, F. I.] Istanbul Tech Univ, Istanbul, Turkey. [Levchuk, L.; Sorokin, P.] Natl Sci Ctr, Kharkov Inst Phys & Technol, Kharkov, Ukraine. [Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Frazier, R.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Meng, Z.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Senkin, S.; Smith, V. J.; Williams, T.] Univ Bristol, Bristol, Avon, England. [Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Womersley, W. J.; Worm, S. D.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Baber, M.; Bainbridge, R.; Buchmuller, O.; Burton, D.; Colling, D.; Cripps, N.; Cutajar, M.; Dauncey, P.; Davies, G.; Della Negra, M.; Dunne, P.; Ferguson, W.; Fulcher, J.; Futyan, D.; Gilbert, A.; Hall, G.; Iles, G.; Jarvis, M.; Karapostoli, G.; Kenzie, M.; Lane, R.; Lucas, R.; Lyons, L.; Magnan, A. -M.; Malik, S.; Mathias, B.; Nash, J.; Nikitenko, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Raymond, D. M.; Rogerson, S.; Rose, A.; Seez, C.; Sharp, P.; Tapper, A.; Acosta, M. Vazquez; Virdee, T.; Zenz, S. C.] Imperial Coll, London, England. [Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Martin, W.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Dittmann, J.; Hatakeyama, K.; Kasmi, A.; Liu, H.; Scarborough, T.] Baylor Univ, Waco, TX 76798 USA. [Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.] Univ Alabama, Tuscaloosa, AL USA. [Avetisyan, A.; Bose, T.; Fantasia, C.; Lawson, P.; Richardson, C.; Rohlf, J.; Sperka, D.; John, J. St.; Sulak, L.] Boston Univ, Boston, MA 02215 USA. [Alimena, J.; Berry, E.; Bhattacharya, S.; Christopher, G.; Cutts, D.; Demiragli, Z.; Dhingra, N.; Ferapontov, A.; Garabedian, A.; Kukartsev, G.; Laird, E.; Landsberg, G.; Luk, M.; Narain, M.; Segala, M.; Sinthuprasith, T.; Speer, T.; Swanson, J.] Brown Univ, Providence, RI 02912 USA. [Breedon, R.; Breto, G.; Sanchez, M. Calderon De La Barca; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Gardner, M.; Ko, W.; Lander, R.; Miceli, T.; Mulhearn, M.; Pellett, D.; Pilot, J.; Ricci-Tam, F.; Searle, M.; Shalhout, S.; Smith, J.; Squires, M.; Stolp, D.; Tripathi, M.; Wilbur, S.; Yohay, R.] Univ Calif Davis, Davis, CA 95616 USA. [Cousins, R.; Everaerts, P.; Farrell, C.; Hauser, J.; Ignatenko, M.; Rakness, G.; Takasugi, E.; Valuev, V.; Weber, M.] Univ Calif Los Angeles, Los Angeles, CA USA. [Babb, J.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Hanson, G.; Heilman, J.; Rikova, M. Ivova; Jandir, P.; Kennedy, E.; Lacroix, F.; Liu, H.; Long, O. R.; Luthra, A.; Malberti, M.; Nguyen, H.; Negrete, M. Olmedo; Shrinivas, A.; Sumowidagdo, S.; Wimpenny, S.] Univ Calif Riverside, Riverside, CA 92521 USA. [Andrews, W.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; D'Agnolo, R. T.; Evans, D.; Holzner, A.; Kelley, R.; Klein, D.; Lebourgeois, M.; Letts, J.; Macneill, I.; Olivito, D.; Padhi, S.; Palmer, C.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Sudano, E.; Tadel, M.; Tu, Y.; Vartak, A.; Welke, C.; Wuerthwein, F.; Yagil, A.; Yoo, J.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Barge, D.; Bradmiller-Feld, J.; Campagnari, C.; Danielson, T.; Dishaw, A.; Flowers, K.; Sevilla, M. Franco; Geffert, P.; George, C.; Golf, F.; Gouskos, L.; Incandela, J.; Justus, C.; Mccoll, N.; Richman, J.; Stuart, D.; To, W.; West, C.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Apresyan, A.; Bornheim, A.; Bunn, J.; Chen, Y.; DiMarco, E.; Duarte, J.; Mott, A.; Newman, H. B.; Pena, C.; Rogan, C.; Spiropulu, M.; Timciuc, V.; Wilkinson, R.; Xie, S.; Zhu, R. Y.] CALTECH, Pasadena, CA 91125 USA. [Azzolini, V.; Calamba, A.; Carlson, B.; Ferguson, T.; Iiyama, Y.; Paulini, M.; Russ, J.; Vogel, H.; Vorobiev, I.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Cumalat, J. P.; Ford, W. T.; Gaz, A.; Lopez, E. Luiggi; Nauenberg, U.; Smith, J. G.; Stenson, K.; Ulmer, K. A.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Alexander, J.; Chatterjee, A.; Chu, J.; Dittmer, S.; Eggert, N.; Mirman, N.; Kaufman, G. Nicolas; Patterson, J. R.; Ryd, A.; Salvati, E.; Skinnari, L.; Sun, W.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Weng, Y.; Winstrom, L.; Wittich, P.] Cornell Univ, Ithaca, NY USA. [Winn, D.] Fairfield Univ, Fairfield, CT 06430 USA. [Abdullin, S.; Albrow, M.; Anderson, J.; Apollinari, G.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gao, Y.; Gottschalk, E.; Gray, L.; Green, D.; Gruenendahl, S.; Gutsche, O.; Hanlon, J.; Hare, D.; Harris, R. M.; Hirschauer, J.; Hooberman, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Kaadze, K.; Klima, B.; Kreis, B.; Kwan, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, T.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Outschoorn, V. I. Martinez; Maruyama, S.; Mason, D.; McBride, P.; Mishra, K.; Mrenna, S.; Musienko, Y.; Nahn, S.; Newman-Holmes, C.; O'Dell, V.; Prokofyev, O.; Sexton-Kennedy, E.; Sharma, S.; Soha, A.; Spalding, W. J.; Spiegel, L.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vidal, R.; Whitbeck, A.; Whitmore, J.; Yang, F.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Acosta, D.; Avery, P.; Bourilkov, D.; Carver, M.; Cheng, T.; Curry, D.; Das, S.; De Gruttola, M.; Di Giovanni, G. P.; Field, R. D.; Fisher, M.; Furic, I. K.; Hugon, J.; Konigsberg, J.; Korytov, A.; Kypreos, T.; Low, J. F.; Matchev, K.; Milenovic, P.; Mitselmakher, G.; Muniz, L.; Rinkevicius, A.; Shchutska, L.; Snowball, M.; Yelton, J.; Zakaria, M.] Univ Florida, Gainesville, FL USA. [Hewamanage, S.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.] Florida Int Univ, Miami, FL 33199 USA. [Adams, T.; Askew, A.; Bochenek, J.; Diamond, B.; Haas, J.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Prosper, H.; Veeraraghavan, V.; Weinberg, M.] Florida State Univ, Tallahassee, FL 32306 USA. [Baarmand, M. M.; Hohlmann, M.; Kalakhety, H.; Yumiceva, F.] Florida Inst Technol, Melbourne, FL 32901 USA. [Adams, M. R.; Apanasevich, L.; Bazterra, V. E.; Berry, D.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Khalatyan, S.; Kurt, P.; Moon, D. H.; O'Brien, C.; Silkworth, C.; Turner, P.; Varelas, N.] UCL, Chicago, IL USA. [Albayrak, E. A.; Bilki, B.; Clarida, W.; Dilsiz, K.; Duru, F.; Haytmyradov, M.; Merlo, J. -P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Rahmat, R.; Sen, S.; Tan, P.; Tiras, E.; Wetzel, J.; Yetkin, T.; Yi, K.] Univ Iowa, Iowa City, IA USA. [Barnett, B. A.; Blumenfeld, B.; Bolognesi, S.; Fehling, D.; Gritsan, A. V.; Maksimovic, P.; Martin, C.; Swartz, M.] Johns Hopkins Univ, Baltimore, MD USA. [Baringer, P.; Bean, A.; Benelli, G.; Bruner, C.; Kenny, R. P., III; Malek, M.; Murray, M.; Noonan, D.; Sanders, S.; Sekaric, J.; Stringer, R.; Wang, Q.; Wood, J. S.] Univ Kansas, Lawrence, KS 66045 USA. [Barfuss, A. F.; Chakaberia, I.; Ivanov, A.; Khalil, S.; Makouski, M.; Maravin, Y.; Saini, L. K.; Shrestha, S.; Skhirtladze, N.; Svintradze, I.] Kansas State Univ, Manhattan, KS 66506 USA. [Gronberg, J.; Lange, D.; Rebassoo, F.; Wright, D.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Baden, A.; Belloni, A.; Calvert, B.; Eno, S. C.; Gomez, J. A.; Hadley, N. J.; Kellogg, R. G.; Kolberg, T.; Lu, Y.; Marionneau, M.; Mignerey, A. C.; Pedro, K.; Skuja, A.; Tonjes, M. B.; Tonwar, S. C.] Univ Maryland, College Pk, MD 20742 USA. [Apyan, A.; Barbieri, R.; Bauer, G.; Busza, W.; Cali, I. A.; Chan, M.; DiMatteo, L.; Dutta, V.; Ceballos, G. Gomez; Goncharov, M.; Gulhan, D.; Klute, M.; Lai, Y. S.; Lee, Y. -J.; Levin, A.; Luckey, P. D.; Ma, T.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Stephans, G. S. F.; Stoeckli, F.; Sumorok, K.; Velicanu, D.; Veverka, J.; Wyslouch, B.; Yang, M.; Zanetti, M.; Zhukova, V.] MIT, Cambridge, MA 02139 USA. [Dahmes, B.; Gude, A.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Mans, J.; Pastika, N.; Rusack, R.; Singovsky, A.; Tambe, N.; Turkewitz, J.] Univ Minnesota, Minneapolis, MN USA. [Acosta, J. G.; Oliveros, S.] Univ Mississippi, University, MS 38677 USA. [Avdeeva, E.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Suarez, R. Gonzalez; Keller, J.; Knowlton, D.; Kravchenko, I.; Lazo-Flores, J.; Malik, S.; Meier, F.; Snow, G. R.] Univ Nebraska, Lincoln, NE USA. [Dolen, J.; Godshalk, A.; Iashvili, I.; Kharchilava, A.; Kumar, A.; Rappoccio, S.] SUNY Buffalo, Buffalo, NY 14260 USA. [Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Haley, J.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; Trocino, D.; Wang, R. -J.; Wood, D.; Zhang, J.] Northeastern Univ, Boston, MA 02115 USA. [Hahn, K. A.; Kubik, A.; Mucia, N.; Odell, N.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Sung, K.; Velasco, M.; Won, S.] Northwestern Univ, Evanston, IL USA. [Brinkerhoff, A.; Chan, K. M.; Drozdetskiy, A.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Luo, W.; Lynch, S.; Marinelli, N.; Pearson, T.; Planer, M.; Ruchti, R.; Valls, N.; Wayne, M.; Wolf, M.; Woodard, A.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Antonelli, L.; Brinson, J.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Hill, C.; Hughes, R.; Kotov, K.; Ling, T. Y.; Puigh, D.; Rodenburg, M.; Smith, G.; Winer, B. L.; Wolfe, H.; Wulsin, H. W.] Ohio State Univ, Columbus, OH 43210 USA. [Driga, O.; Elmer, P.; Hebda, P.; Hunt, A.; Koay, S. A.; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Piroue, P.; Quan, X.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zuranski, A.] Princeton Univ, Princeton, NJ 08544 USA. [Brownson, E.; Mendez, H.; Vargas, J. E. Ramirez] Univ Puerto Rico, Mayaguez, PR USA. [Barnes, V. E.; Benedetti, D.; Bolla, G.; Bortoletto, D.; De Mattia, M.; Hu, Z.; Jha, M. K.; Jones, M.; Jung, K.; Kress, M.; Leonardo, N.; Pegna, D. Lopes; Maroussov, V.; Merkel, P.; Miller, D. H.; Neumeister, N.; Radburn-Smith, B. C.; Shi, X.; Shipsey, I.; Silvers, D.; Svyatkovskiy, A.; Wang, F.; Xie, W.; Xu, L.; Yoo, H. D.; Zablocki, J.; Zheng, Y.] Purdue Univ, W Lafayette, IN 47907 USA. [Parashar, N.; Stupak, J.] Purdue Univ Calumet, Hammond, LA USA. [Adair, A.; Akgun, B.; Ecklund, K. M.; Geurts, F. J. M.; Li, W.; Michlin, B.; Padley, B. P.; Redjimi, R.; Roberts, J.; Zabel, J.] Rice Univ, Houston, TX USA. [Betchart, B.; Bodek, A.; Covarelli, R.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Garcia-Bellido, A.; Goldenzweig, P.; Han, J.; Harel, A.; Khukhunaishvili, A.; Petrillo, G.; Vishnevskiy, D.] Univ Rochester, Rochester, NY 14627 USA. [Ciesielski, R.; Demortier, L.; Goulianos, K.; Lungu, G.; Mesropian, C.] Rockefeller Univ, New York, NY 10021 USA. [Arora, S.; Barker, A.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Duggan, D.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Kaplan, S.; Lath, A.; Panwalkar, S.; Park, M.; Salur, R. Patel S.; Schnetzer, S.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.] Rutgers State Univ, Piscataway, NJ USA. [Rose, K.; Spanier, S.; York, A.] Univ Tennessee, Knoxville, TN USA. [Bouhali, O.; Hernandez, A. Castaneda; Eusebi, R.; Flanagan, W.; Gilmore, J.; Kamon, T.; Khotilovich, V.; Krutelyov, V.; Montalvo, R.; Osipenkov, I.; Pakhotin, Y.; Perloff, A.; Roe, J.; Rose, A.; Safonov, A.; Sakuma, T.; Suarez, I.; Tatarinov, A.] Texas A&M Univ, College Stn, TX 77843 USA. [Akchurin, N.; Cowden, C.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Kovitanggoon, K.; Kunori, S.; Lee, S. W.; Libeiro, T.; Volobouev, I.] Texas Tech Univ, Lubbock, TX 79409 USA. [Appelt, E.; Delannoy, A. G.; Greene, S.; Gurrola, A.; Johns, W.; Maguire, C.; Mao, Y.; Melo, A.; Sharma, M.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.] Vanderbilt Univ, Nashville, TN 37235 USA. [Arenton, M. W.; Boutle, S.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Li, H.; Lin, C.; Neu, C.; Wood, J.] Univ Virginia, Charlottesville, VA USA. [Clarke, C.; Harr, R.; Karchin, P. E.; Don, C. Kottachchi Kankanamge; Lamichhane, P.; Sturdy, J.] Wayne State Univ, Detroit, MI USA. [Belknap, D. A.; Carlsmith, D.; Cepeda, M.; Dodd, S. Dasu L.; Duric, S.; Friis, E.; Hall-Wilton, R.; Herndon, M.; Herve, A.; Klabbers, P.; Lanaro, A.; Lazaridis, C.; Levine, A.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Perry, T.; Pierro, G. A.; Polese, G.; Ross, I.; Sarangi, T.; Savin, A.; Smith, W. H.; Taylor, D.; Vuosalo, C.; Woods, N.] Univ Wisconsin, Madison, WI 53706 USA. [Fabjan, C.; Fruehwirth, R.; Jeitler, M.; Krammer, M.; Wulz, C. -E.] Vienna Univ Technol, A-1040 Vienna, Austria. [Rabady, D.; Pernie, L.; Boudoul, G.; Contardo, D.; Lingemann, J.; Hartmann, F.; Hauth, T.; Mohanty, A. K.; Radogna, R.; Silvestris, L.; Giordano, F.; Fiorendi, S.; Gennai, S.; Gerosa, R.; Di Guida, S.; Paolucci, P.; Spiezia, A.; Palla, F.; Vernieri, C.; Argiro, S.; Casasso, S.; Obertino, M. M.] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland. Univ Strasbourg, Univ Haute Alsace Mulhouse, Inst Pluridisciplinaire Hubert Curien, CNRS IN2P3, Strasbourg, France. NICPB, Tallinn, Estonia. [Zhukov, V.] Lomonosov Moscow State Univ, Skobeltsyn Inst Nucl Phys, Moscow, Russia. Univ Estadual Campinas, Campinas, Brazil. [Bernet, C.] Ecole Polytech, CNRS, Lab Leprince Ringuet, Palaiseau, France. [Tsamalaidze, Z.] Joint Inst Nucl Res, Dubna, Russia. Suez Univ, Suez, Egypt. Cairo Univ, Cairo, Egypt. Fayoum Univ, Al Fayyum, Egypt. British Univ Egypt, Cairo, Egypt. Sultan Qaboos Univ, Muscat, Oman. [Agram, J. -L.; Conte, E.; Fontaine, J. -C.] Univ Haute Alsace, Mulhouse, France. Brandenburg Tech Univ Cottbus, Cottbus, Germany. [Horvath, D.] Inst Nucl Res ATOMKI, Debrecen, Hungary. [Vesztergombi, G.] Eotvos Lorand Univ, Budapest, Hungary. [Karancsi, J.] Univ Debrecen, Debrecen, Hungary. [Bhowmik, S.; Maity, M.] Visva Bharati Univ, Santini Ketan, W Bengal, India. [Gurtu, A.] King Abdulaziz Univ, Jeddah 21413, Saudi Arabia. [Wickramage, N.] Univ Ruhuna, Matara, Sri Lanka. [Etesami, S. M.] Isfahan Univ Technol, Esfahan, Iran. [Fahim, A.] Sharif Univ Technol, Tehran, Iran. Islamic Azad Univ, Sci & Res Branch, Plasma Phys Res Ctr, Tehran, Iran. [Ciocci, M. A.; Grippo, M. T.; Squillacioti, P.] Univ Siena, I-53100 Siena, Italy. [Moon, C. S.] CNRS, IN2P3, Paris, France. [Savoy-Navarro, A.] Purdue Univ, W Lafayette, IN 47907 USA. [La Cruz, I. Heredia-de] Univ Michoacana, Morelia, Michoacan, Mexico. [Malakhov, A.] Russian Acad Sci, Inst Nucl Res, Moscow 117312, Russia. [Kim, V.] St Petersburg State Polytech Univ, St Petersburg, Russia. [Dubinin, M.] CALTECH, Pasadena, CA 91125 USA. [Adzic, P.] Univ Belgrade, Fac Phys, Belgrade 11001, Serbia. [Colafranceschi, S.] Univ Roma, Fac Ingn, Rome, Italy. [Rolandi, G.] Scuola Normale & Sez INFN, Pisa, Italy. [Sphicas, P.] Univ Athens, Athens, Greece. [Nageli, C.] Paul Scherrer Inst, Villigen, Switzerland. [Starodumov, A.; Nikitenko, A.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Canelli, M. F.] Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Bakirci, M. N.; Topakli, H.] Gaziosmanpasa Univ, Tokat, Turkey. [Cerci, S.; Cerci, D. Sunar; Tali, B.] Adiyaman Univ, Adiyaman, Turkey. [Gokbulut, G.] Cag Univ, Mersin, Turkey. Mersin Univ, Mersin, Turkey. [Karapinar, G.] Izmir Inst Technol, Izmir, Turkey. [Isildak, B.] Ozyegin Univ, Istanbul, Turkey. [Kaya, M.] Marmara Univ, Istanbul, Turkey. [Kaya, O.] Kafkas Univ, Kars, Turkey. [Newbold, D. M.; Lucas, R.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. Univ Southampton, Sch Phys & Astron, Southampton, Hants, England. [Milenovic, P.] Univ Belgrade, Fac Phys, Belgrade 11001, Serbia. [Albayrak, E. A.; Ozok, F.] Univ Belgrade, Vinca Inst Nucl Sci, Belgrade, Serbia. [Bilki, B.] Mimar Sinan Univ, Istanbul, Turkey. [Mermerkaya, H.] Argonne Natl Lab, Argonne, IL 60439 USA. [Yetkin, T.] Erzincan Univ, Erzincan, Turkey. [Bouhali, O.] Yildiz Tekn Univ, Istanbul, Turkey. [Kamon, T.] Texas A&M Univ, Doha, Qatar. Kyungpook Natl Univ, Daegu, South Korea. RP Khachatryan, V (reprint author), Yerevan Phys Inst, Yerevan 375036, Armenia. RI Gennai, Simone/P-2880-2015; TUVE', Cristina/P-3933-2015; Dudko, Lev/D-7127-2012; KIM, Tae Jeong/P-7848-2015; Menasce, Dario/A-2168-2016; Paganoni, Marco/A-4235-2016; Azarkin, Maxim/N-2578-2015; de Jesus Damiao, Dilson/G-6218-2012; Calvo Alamillo, Enrique/L-1203-2014; Flix, Josep/G-5414-2012; Cerrada, Marcos/J-6934-2014; Perez-Calero Yzquierdo, Antonio/F-2235-2013; Novaes, Sergio/D-3532-2012; Lo Vetere, Maurizio/J-5049-2012; Ragazzi, Stefano/D-2463-2009; Fano, Livio/K-2460-2015; Grandi, Claudio/B-5654-2015; Rovelli, Tiziano/K-4432-2015; Dremin, Igor/K-8053-2015; Hoorani, Hafeez/D-1791-2013; Dogra, Sunil /B-5330-2013; Leonidov, Andrey/M-4440-2013; Andreev, Vladimir/M-8665-2015; Vinogradov, Alexey/O-2375-2015; Cakir, Altan/P-1024-2015; Matorras, Francisco/I-4983-2015; ciocci, maria agnese /I-2153-2015; Bedoya, Cristina/K-8066-2014; Marco, Jesus/B-8735-2008; My, Salvatore/I-5160-2015; VARDARLI, Fuat Ilkehan/B-6360-2013; Benussi, Luigi/O-9684-2014; Manganote, Edmilson/K-8251-2013; candelise, vieri/H-2195-2015; Lokhtin, Igor/D-7004-2012; Montanari, Alessandro/J-2420-2012; Hernandez Calama, Jose Maria/H-9127-2015; Govoni, Pietro/K-9619-2016; Tuominen, Eija/A-5288-2017; Yazgan, Efe/C-4521-2014; Paulini, Manfred/N-7794-2014; Inst. of Physics, Gleb Wataghin/A-9780-2017; Ogul, Hasan/S-7951-2016; Da Silveira, Gustavo Gil/N-7279-2014; Mora Herrera, Maria Clemencia/L-3893-2016; Mundim, Luiz/A-1291-2012; Haj Ahmad, Wael/E-6738-2016; Konecki, Marcin/G-4164-2015; Vogel, Helmut/N-8882-2014; Xie, Si/O-6830-2016; Leonardo, Nuno/M-6940-2016; Calderon, Alicia/K-3658-2014; Goh, Junghwan/Q-3720-2016; Ruiz, Alberto/E-4473-2011; Della Ricca, Giuseppe/B-6826-2013; Chinellato, Jose Augusto/I-7972-2012; Tomei, Thiago/E-7091-2012; Dubinin, Mikhail/I-3942-2016; Stahl, Achim/E-8846-2011; Kirakosyan, Martin/N-2701-2015; Gulmez, Erhan/P-9518-2015; Tinoco Mendes, Andre David/D-4314-2011; Seixas, Joao/F-5441-2013; Vilela Pereira, Antonio/L-4142-2016; Sznajder, Andre/L-1621-2016 OI TUVE', Cristina/0000-0003-0739-3153; Dudko, Lev/0000-0002-4462-3192; KIM, Tae Jeong/0000-0001-8336-2434; Menasce, Dario/0000-0002-9918-1686; Paganoni, Marco/0000-0003-2461-275X; de Jesus Damiao, Dilson/0000-0002-3769-1680; Calvo Alamillo, Enrique/0000-0002-1100-2963; Flix, Josep/0000-0003-2688-8047; Cerrada, Marcos/0000-0003-0112-1691; Perez-Calero Yzquierdo, Antonio/0000-0003-3036-7965; Novaes, Sergio/0000-0003-0471-8549; Lo Vetere, Maurizio/0000-0002-6520-4480; Ragazzi, Stefano/0000-0001-8219-2074; Fano, Livio/0000-0002-9007-629X; Grandi, Claudio/0000-0001-5998-3070; Rovelli, Tiziano/0000-0002-9746-4842; Matorras, Francisco/0000-0003-4295-5668; ciocci, maria agnese /0000-0003-0002-5462; Bedoya, Cristina/0000-0001-8057-9152; Marco, Jesus/0000-0001-7914-8494; My, Salvatore/0000-0002-9938-2680; Benussi, Luigi/0000-0002-2363-8889; Montanari, Alessandro/0000-0003-2748-6373; Hernandez Calama, Jose Maria/0000-0001-6436-7547; Govoni, Pietro/0000-0002-0227-1301; Tuominen, Eija/0000-0002-7073-7767; Yazgan, Efe/0000-0001-5732-7950; Paulini, Manfred/0000-0002-6714-5787; Ogul, Hasan/0000-0002-5121-2893; Da Silveira, Gustavo Gil/0000-0003-3514-7056; Mora Herrera, Maria Clemencia/0000-0003-3915-3170; Mundim, Luiz/0000-0001-9964-7805; Haj Ahmad, Wael/0000-0003-1491-0446; Konecki, Marcin/0000-0001-9482-4841; Vogel, Helmut/0000-0002-6109-3023; Xie, Si/0000-0003-2509-5731; Leonardo, Nuno/0000-0002-9746-4594; Goh, Junghwan/0000-0002-1129-2083; Ruiz, Alberto/0000-0002-3639-0368; Della Ricca, Giuseppe/0000-0003-2831-6982; Chinellato, Jose Augusto/0000-0002-3240-6270; Tomei, Thiago/0000-0002-1809-5226; Dubinin, Mikhail/0000-0002-7766-7175; Stahl, Achim/0000-0002-8369-7506; Gulmez, Erhan/0000-0002-6353-518X; Tinoco Mendes, Andre David/0000-0001-5854-7699; Seixas, Joao/0000-0002-7531-0842; Vilela Pereira, Antonio/0000-0003-3177-4626; Sznajder, Andre/0000-0001-6998-1108 FU BMWFW (Austria); FWF (Austria); FNRS (Belgium); FWO (Belgium); CNPq (Brazil); CAPES (Brazil); FAPERJ (Brazil); FAPESP (Brazil); MES (Bulgaria); CERN; CAS (China); MOST (China); NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); CSF (Croatia); RPF (Cyprus); MoER (Estonia); ERC IUT (Estonia); ERDF (Estonia); Academy of Finland (Finland); MEC (Finland); HIP (Finland); CEA (France); CNRS/IN2P3 (France); BMBF (Germany); DFG (Germany); HGF (Germany); GSRT (Greece); OTKA (Hungary); NIH (Hungary); DAE (India); DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP (Republic of Korea); NRF (Republic of Korea); LAS (Lithuania); MOE (Malaysia); UM (Malaysia); CINVESTAV (Mexico); CONACYT (Mexico); SEP (Mexico); UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE (Poland); NSC (Poland); FCT (Portugal); JINR (Dubna); MON (Russia); RosAtom (Russia); RAS (Russia); RFBR (Russia); MESTD (Serbia); SEIDI (Spain); CPAN (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter (Thailand); IPST (Thailand); STAR (Thailand); NSTDA (Thailand); TUBITAK (Turkey); TAEK (Turkey); NASU (Ukraine); SFFR (Ukraine); STFC (United Kingdom); DOE (USA); NSF (USA); Marie-Curie programme; European Research Council; EPLANET (European Union); Leventis Foundation; A.P. Sloan Foundation; Alexander von Humboldt Foundation; Belgian Federal Science Policy Office; Fonds pour la Formation a la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium); Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; Council of Science and Industrial Research, India; HOMING PLUS programme of Foundation For Polish Science; European Union, Regional Development Fund; Compagnia di San Paolo (Torino); Consorzio per la Fisica (Trieste); MIUR (Italy) [20108T4XTM]; Thalis programme; Aristeia programme; EU-ESF; Greek NSRF; National Priorities Research Program by Qatar National Research Fund FX We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centres and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWFW and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MOST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); MoER, ERC IUT and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS and RFBR (Russia); MESTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (USA).; Individuals have received support from the Marie-Curie programme and the European Research Council and EPLANET (European Union); the Leventis Foundation; the A.P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation a la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Council of Science and Industrial Research, India; the HOMING PLUS programme of Foundation For Polish Science, cofinanced from European Union, Regional Development Fund; the Compagnia di San Paolo (Torino); the Consorzio per la Fisica (Trieste); MIUR project 20108T4XTM (Italy); the Thalis and Aristeia programmes cofinanced by EU-ESF and the Greek NSRF; and the National Priorities Research Program by Qatar National Research Fund. NR 45 TC 8 Z9 8 U1 11 U2 75 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD JUN 30 PY 2015 VL 746 BP 132 EP 153 DI 10.1016/j.physletb.2015.04.060 PG 22 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CJ3JC UT WOS:000355378200022 ER PT J AU Batley, JR Kalmus, G Lazzeroni, C Munday, DJ Slater, MW Wotton, SA Arcidiacono, R Bocquet, G Cabibbo, N Ceccucci, A Cundy, D Falaleev, V Fidecaro, M Gatignon, L Gonidec, A Kubischta, W Norton, A Maier, A Patel, M Peters, A Balev, S Frabetti, PL Gersabeck, E Goudzovski, E Hristov, P Kekelidze, V Kozhuharov, V Litov, L Madigozhin, D Molokanova, N Polenkevich, I Potrebenikov, Y Stoynev, S Zinchenko, A Monnier, E Swallow, E Winston, R Rubin, P Walker, A Baldini, W Ramusino, AC Dalpiaz, P Damiani, C Fiorini, M Gianoli, A Martini, M Petrucci, F Savrie, M Scarpa, M Wahl, H Bizzeti, A Lenti, M Veltri, M Calvetti, M Celeghini, E Iacopini, E Ruggiero, G Behler, M Eppard, K Kleinknecht, K Marouelli, P Masetti, L Moosbrugger, U Morales, CM Renk, B Wache, M Wanke, R Winhart, A Coward, D Dabrowski, A Martin, TF Shieh, M Szleper, M Velasco, M Wood, MD Cenci, P Pepe, M Petrucci, MC Anzivino, G Imbergamo, E Nappi, A Piccini, M Raggi, M Valdata-Nappi, M Cerri, C Fantechi, R Collazuol, G DiLella, L Lamanna, G Mannelli, I Michetti, A Costantini, F Doble, N Fiorini, L Giudici, S Pierazzini, G Sozzi, M Venditti, S Bloch-Devaux, B Cheshkov, C Cheze, JB De Beer, M Derre, J Marel, G Mazzucato, E Peyaud, B Vallage, B Holder, M Ziolkowski, M Biino, C Cartiglia, N Marchetto, F Bifani, S Clemencic, M Lopez, SG Dibon, H Jeitler, M Markytan, M Mikulec, I Neuhofer, G Widhalm, L AF Batley, J. R. Kalmus, G. Lazzeroni, C. Munday, D. J. Slater, M. W. Wotton, S. A. Arcidiacono, R. Bocquet, G. Cabibbo, N. Ceccucci, A. Cundy, D. Falaleev, V. Fidecaro, M. Gatignon, L. Gonidec, A. Kubischta, W. Norton, A. Maier, A. Patel, M. Peters, A. Balev, S. Frabetti, P. L. Gersabeck, E. Goudzovski, E. Hristov, P. Kekelidze, V. Kozhuharov, V. Litov, L. Madigozhin, D. Molokanova, N. Polenkevich, I. Potrebenikov, Yu. Stoynev, S. Zinchenko, A. Monnier, E. Swallow, E. Winston, R. Rubin, P. Walker, A. Baldini, W. Ramusino, A. Cotta Dalpiaz, P. Damiani, C. Fiorini, M. Gianoli, A. Martini, M. Petrucci, F. Savrie, M. Scarpa, M. Wahl, H. Bizzeti, A. Lenti, M. Veltri, M. Calvetti, M. Celeghini, E. Iacopini, E. Ruggiero, G. Behler, M. Eppard, K. Kleinknecht, K. Marouelli, P. Masetti, L. Moosbrugger, U. Morales, C. Morales Renk, B. Wache, M. Wanke, R. Winhart, A. Coward, D. Dabrowski, A. Martin, T. Fonseca Shieh, M. Szleper, M. Velasco, M. Wood, M. D. Cenci, P. Pepe, M. Petrucci, M. C. Anzivino, G. Imbergamo, E. Nappi, A. Piccini, M. Raggi, M. Valdata-Nappi, M. Cerri, C. Fantechi, R. Collazuol, G. DiLella, L. Lamanna, G. Mannelli, I. Michetti, A. Costantini, F. Doble, N. Fiorini, L. Giudici, S. Pierazzini, G. Sozzi, M. Venditti, S. Bloch-Devaux, B. Cheshkov, C. Cheze, J. B. De Beer, M. Derre, J. Marel, G. Mazzucato, E. Peyaud, B. Vallage, B. Holder, M. Ziolkowski, M. Biino, C. Cartiglia, N. Marchetto, F. Bifani, S. Clemencic, M. Lopez, S. Goy Dibon, H. Jeitler, M. Markytan, M. Mikulec, I. Neuhofer, G. Widhalm, L. TI Search for the dark photon in pi(0) decays SO PHYSICS LETTERS B LA English DT Article ID DETECTOR AB A sample of 1.69 x 10(7) fully reconstructed pi(0) -> gamma e(+)e(-) decay candidates collected by the NA48/2 experiment at CERN in 2003-2004 is analyzed to search for the dark photon (A') production in the pi(0) -> gamma A' decay followed by the prompt A' -> e(+)e(-) decay. No signal is observed, and an exclusion region in the plane of the dark photon mass m(A') and mixing parameter epsilon(2) is established. The obtained upper limits on epsilon(2) are more stringent than the previous limits in the mass range 9 MeV/c(2) < m(A') < 70 MeV/c(2). The NA48/2 sensitivity to the dark photon production in the K-+/- -> pi(+/-)A' decay is also evaluated. (C) 2015 The Authors. Published by Elsevier B.V. C1 [Batley, J. R.; Kalmus, G.; Lazzeroni, C.; Munday, D. J.; Slater, M. W.; Wotton, S. A.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Arcidiacono, R.; Bocquet, G.; Cabibbo, N.; Ceccucci, A.; Cundy, D.; Falaleev, V.; Fidecaro, M.; Gatignon, L.; Gonidec, A.; Kubischta, W.; Norton, A.; Maier, A.; Patel, M.; Peters, A.; Hristov, P.; Ruggiero, G.; Clemencic, M.] CERN, CH-1211 Geneva 23, Switzerland. [Balev, S.; Frabetti, P. L.; Gersabeck, E.; Goudzovski, E.; Hristov, P.; Kekelidze, V.; Kozhuharov, V.; Litov, L.; Madigozhin, D.; Molokanova, N.; Polenkevich, I.; Potrebenikov, Yu.; Stoynev, S.; Zinchenko, A.] Joint Inst Nucl Res, Dubna 141980, MO, Russia. [Monnier, E.; Swallow, E.; Winston, R.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60126 USA. [Rubin, P.; Walker, A.] Univ Edinburgh, Dept Phys & Astron, Edinburgh EH9 3JZ, Midlothian, Scotland. [Baldini, W.; Ramusino, A. Cotta; Dalpiaz, P.; Damiani, C.; Fiorini, M.; Gianoli, A.; Martini, M.; Petrucci, F.; Savrie, M.; Scarpa, M.; Wahl, H.] Terra Univ, Dipartimento Fis Sci, I-44122 Ferrara, Italy. [Baldini, W.; Ramusino, A. Cotta; Dalpiaz, P.; Damiani, C.; Fiorini, M.; Gianoli, A.; Martini, M.; Petrucci, F.; Savrie, M.; Scarpa, M.; Wahl, H.] Sez INFN Ferrara, I-44122 Ferrara, Italy. [Bizzeti, A.; Lenti, M.; Veltri, M.] Sez INFN Firenze, I-50019 Sesto Fiorentino, Italy. [Calvetti, M.; Celeghini, E.; Iacopini, E.; Ruggiero, G.] Univ & Sez INFN Firenze, Dipartimento Fis, I-50019 Sesto Fiorentino, Italy. [Behler, M.; Eppard, K.; Kleinknecht, K.; Marouelli, P.; Masetti, L.; Moosbrugger, U.; Morales, C. Morales; Renk, B.; Wache, M.; Wanke, R.; Winhart, A.] Johannes Gutenberg Univ Mainz, Inst Phys, D-55099 Mainz, Germany. [Coward, D.; Dabrowski, A.; Martin, T. Fonseca; Shieh, M.; Szleper, M.; Velasco, M.; Wood, M. D.] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. [Cenci, P.; Pepe, M.; Petrucci, M. C.] Sez INFN Perugia, I-06100 Perugia, Italy. [Anzivino, G.; Imbergamo, E.; Nappi, A.; Piccini, M.; Raggi, M.; Valdata-Nappi, M.] Univ & Sez INFN Perugia, Dipartimento Fis, I-06100 Perugia, Italy. [Cerri, C.; Fantechi, R.] Sez INFN Pisa, I-56100 Pisa, Italy. [Collazuol, G.; DiLella, L.; Lamanna, G.; Mannelli, I.; Michetti, A.] Scuola Normale Super Pisa, I-56100 Pisa, Italy. [Collazuol, G.; DiLella, L.; Lamanna, G.; Mannelli, I.; Michetti, A.] Sez INFN Pisa, I-56100 Pisa, Italy. [Costantini, F.; Doble, N.; Fiorini, L.; Giudici, S.; Pierazzini, G.; Sozzi, M.; Venditti, S.] Univ & Sez INFN Pisa, Dipartimento Fis, I-56100 Pisa, Italy. [Bloch-Devaux, B.; Cheshkov, C.; Cheze, J. B.; De Beer, M.; Derre, J.; Marel, G.; Mazzucato, E.; Peyaud, B.; Vallage, B.] CEA Saclay, DSM, IRFU, F-91191 Gif Sur Yvette, France. [Holder, M.; Ziolkowski, M.] Univ Siegen, Fachbereich Phys, D-57068 Siegen, Germany. [Biino, C.; Cartiglia, N.; Marchetto, F.] Sez INFN Torino, I-10125 Turin, Italy. [Bifani, S.; Clemencic, M.; Lopez, S. Goy] Univ & Sez INFN Torino, Dipartimento Fis, I-10125 Turin, Italy. [Dibon, H.; Jeitler, M.; Markytan, M.; Mikulec, I.; Neuhofer, G.; Widhalm, L.] Inst Hochenergiephys, Osterreich Akad Wissensch, A-10560 Vienna, Austria. [Lazzeroni, C.; Slater, M. W.; Goudzovski, E.; Bifani, S.] Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England. [Arcidiacono, R.] Univ Piemonte Orientale, I-10125 Turin, Italy. [Arcidiacono, R.] Sez INFN Torino, I-10125 Turin, Italy. [Cundy, D.] CNR, Ist Cosmogeofis, I-10133 Turin, Italy. [Norton, A.] Univ & Sez INFN Ferrara, Dipartimento Fis & Sci Terra, I-44122 Ferrara, Italy. [Patel, M.] Univ London Imperial Coll Sci Technol & Med, Dept Phys, London SW7 2BW, England. [Gersabeck, E.] Heidelberg Univ, Phys Inst, D-69120 Heidelberg, Germany. [Kozhuharov, V.; Litov, L.] Sofia Univ St Kliment Ohridski, Fac Phys, Sofia 1164, Bulgaria. [Kozhuharov, V.; Lamanna, G.] Lab Nazl Frascati, I-00044 Frascati, Italy. [Stoynev, S.] Northwestern Univ, Evanston, IL 60208 USA. [Monnier, E.] Univ Aix Marseille 2, Ctr Phys Particules Marseille, CNRS, IN2P3, F-13288 Marseille, France. [Winston, R.] Univ Calif Merced, Sch Nat Sci, Merced, CA 95344 USA. [Rubin, P.] George Mason Univ, Sch Phys Astron & Computat Sci, Fairfax, VA 22030 USA. Univ Modena & Reggio Emilia, Dipartimento Sci Fis Informat & Matemat, I-41125 Modena, Italy. [Veltri, M.] Univ Urbino, Ist Fis, I-61029 Urbino, Italy. [Coward, D.; Wood, M. D.] Stanford Univ, SLAC, Menlo Pk, CA 94025 USA. [Collazuol, G.] Univ & Sez INFN Padova, Dipartimento Fis, I-35131 Padua, Italy. [Fiorini, L.] Univ Valencia, Inst Fis Corpuscular IFIC, E-46071 Valencia, Spain. [Bloch-Devaux, B.] Univ Torino, Dipartimento Fis, I-10125 Turin, Italy. [Cheshkov, C.] Univ Lyon 1, Inst Phys Nucl Lyon, F-69622 Villeurbanne, France. [Lopez, S. Goy] Ctr Invest Energet Medioambient & Tecnol, E-28040 Madrid, Spain. RP Goudzovski, E (reprint author), Joint Inst Nucl Res, Dubna 141980, MO, Russia. EM eg@hep.ph.bham.ac.uk RI Gianoli, Alberto/H-5544-2015; Collazuol, Gianmaria/C-5670-2012; OI Gianoli, Alberto/0000-0002-2456-8667; Collazuol, Gianmaria/0000-0002-7876-6124; Bifani, Simone/0000-0001-7072-4854 FU Royal Society University Research Fellowship [UF100308, UF0758946]; UK Particle Physics and Astronomy Research Council [PPA/G/O/1999/00559]; ERC Starting Grant [336581]; Bulgarian National Science Fund [DID02-22]; German Federal Minister for Education and Research [05HK1UM1/1]; German Federal Minister for Research and Technology (BMBF) [056SI74]; Austrian Ministry for Traffic and Research [GZ 616.360/2-IV, GZ 616.363/2-VIII]; Fonds fur Wissenschaft und Forschung FWF [P08929-PHY] FX Supported by a Royal Society University Research Fellowship (UF100308, UF0758946).; Funded by the UK Particle Physics and Astronomy Research Council, grant PPA/G/O/1999/00559.; Supported by ERC Starting Grant 336581.; Now at: Faculty of Physics, University of Sofia "St. Kl. Ohridski", 1164 Sofia, Bulgaria, funded by the Bulgarian National Science Fund under contract DID02-22.; Funded by the German Federal Minister for Education and Research under contract 05HK1UM1/1.; Funded by the German Federal Minister for Research and Technology (BMBF) under contract 056SI74.; Funded by the Austrian Ministry for Traffic and Research under the contract GZ 616.360/2-IV GZ 616.363/2-VIII, and by the Fonds fur Wissenschaft und Forschung FWF No. P08929-PHY. NR 26 TC 47 Z9 50 U1 1 U2 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD JUN 30 PY 2015 VL 746 BP 178 EP 185 DI 10.1016/j.physletb.2015.04.068 PG 8 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CJ3JC UT WOS:000355378200027 ER PT J AU Montagnoli, G Stefanini, AM Esbensen, H Corradi, L Courtin, S Fioretto, E Grebosz, J Haas, F Jia, HM Jiang, CL Mazzocco, M Michelagnoli, C Mijatovic, T Montanari, D Parascandolo, C Scarlassara, F Strano, E Szilner, S Torresi, D AF Montagnoli, G. Stefanini, A. M. Esbensen, H. Corradi, L. Courtin, S. Fioretto, E. Grebosz, J. Haas, F. Jia, H. M. Jiang, C. L. Mazzocco, M. Michelagnoli, C. Mijatovic, T. Montanari, D. Parascandolo, C. Scarlassara, F. Strano, E. Szilner, S. Torresi, D. TI Oscillations above the barrier in the fusion of Si-28+Si-28 SO PHYSICS LETTERS B LA English DT Article DE Heavy-ion fusion; Sub-barrier cross sections; Coupled-channels model ID HEAVY-ION SYSTEMS; CROSS-SECTIONS; LIGHT; NUCLEI; O-16 AB Fusion cross sections of Si-28 + Si-28 have been measured in a range above the barrier with a very small energy step (Delta E-lab = 0.5 MeV). Regular oscillations have been observed, best evidenced in the first derivative of the energy-weighted excitation function. For the first time, quite different behaviors (the appearance of oscillations and the trend of sub-barrier cross sections) have been reproduced within the same theoretical frame, i.e., the coupled-channel model using the shallow M3Y + repulsion potential. The calculations suggest that channel couplings play an important role in the appearance of the oscillations, and that the simple relation between a peak in the derivative of the energy-weighted cross section and the height of a centrifugal barrier is lost, and so is the interpretation of the second derivative of the excitation function as a barrier distribution for this system, at energies above the Coulomb barrier. (C) 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license. C1 [Montagnoli, G.; Mazzocco, M.; Michelagnoli, C.; Montanari, D.; Parascandolo, C.; Scarlassara, F.; Strano, E.; Torresi, D.] Univ Padua, Dipartimento Fis & Astron, I-35131 Padua, Italy. [Montagnoli, G.; Mazzocco, M.; Michelagnoli, C.; Montanari, D.; Parascandolo, C.; Scarlassara, F.; Strano, E.; Torresi, D.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Stefanini, A. M.; Corradi, L.; Fioretto, E.; Jia, H. M.] Ist Nazl Fis Nucl, Lab Nazl Legnaro, I-35020 Legnaro, Padova, Italy. [Esbensen, H.; Jiang, C. L.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Courtin, S.; Haas, F.] Univ Strasbourg, CNRS, IN2P3, IPHC, F-67037 Strasbourg 2, France. [Grebosz, J.] Polish Acad Sci, Inst Nucl Phys, PL-31342 Krakow, Poland. [Mijatovic, T.; Szilner, S.] Rudjer Boskovic Inst, HR-10002 Zagreb, Croatia. RP Montagnoli, G (reprint author), Univ Padua, Dipartimento Fis & Astron, I-35131 Padua, Italy. EM montagnoli@pd.infn.it FU European Union [262010-ENSAR]; Croatian Science Foundation [7194]; U.S. Department of Energy, Office of Science, Office of Nuclear Physics [DE-AC02-06CH11357] FX We acknowledge the highly professional work of the XTU Tandem staff during the beam times, and of M. Loriggiola for excellent target preparation. The research leading to these results has received funding from the European Union Seventh Framework Programme FP7/2007-2013 under Grant Agreement No. 262010-ENSAR. This work has been supported in part by Croatian Science Foundation under the project 7194. H.E. is supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, Contract No. DE-AC02-06CH11357. NR 27 TC 4 Z9 4 U1 0 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD JUN 30 PY 2015 VL 746 BP 300 EP 304 DI 10.1016/j.physletb.2015.05.021 PG 5 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CJ3JC UT WOS:000355378200047 ER PT J AU Adam, J Adamova, D Aggarwal, MM Rinella, GA Agnello, M Agrawal, N Ahammed, Z Ahn, SU Aimo, I Aiola, S Ajaz, M Akindinov, A Alam, SN Aleksandrov, D Alessandro, B Alexandre, D Molina, RA Alici, A Alkin, A Alme, J Alt, T Altinpinar, S Altsybeev, I Prado, CAG Andrei, C Andronic, A Anguelov, V Anielski, J Anticic, T Antinori, F Antonioli, P Aphecetche, L Appelshauser, H Arcelli, S Armesto, N Arnaldi, R Aronsson, T Arsene, IC Arslandok, M Augustinus, A Averbeck, R Azmi, MD Bach, M Badala, A Baek, YW Bagnasco, S Bailhache, R Bala, R Baldisseri, A Pedrosa, FBD Baral, RC Barbano, AM Barbera, R Barile, F Barnafoldi, GG Barnby, LS Barret, V Bartalini, P Bartke, J Bartsch, E Basile, M Bastid, N Basu, S Bathen, B Batigne, G Camejo, AB Batyunya, B Batzing, PC Bearden, IG Beck, H Bedda, C Behera, NK Belikov, I Bellini, F Martinez, HB Bellwied, R Belmont, R Belmont-Moreno, E Belyaev, V Bencedi, G Beole, S Berceanu, I Bercuci, A Berdnikov, Y Berenyi, D Bertens, RA Berzano, D Betev, L Bhasin, A Bhat, IR Bhati, AK Bhattacharjee, B Bhom, J Bianchi, L Bianchi, N Bianchin, C Bielcik, J Bielcikova, J Bilandzic, A Biswas, S Bjelogrlic, S Blanco, F Blau, D Blume, C Bock, F Bogdanov, A Boggild, H Boldizsr, L Bombara, M Book, J Borel, H Borissov, A Borri, M Boss, F Botje, M Botta, E Bottger, S Braun-Munzinger, P Bregant, M Breitner, T Broker, TA Browning, TA Broz, M Brucken, EJ Bruna, E Bruno, GE Budnikov, D Buesching, H Bufalino, S Buncic, P Busch, O Buthelezi, Z Buxton, JT Caffarri, D Cai, X Caines, H Diaz, LC Caliva, A Villar, EC Camerini, P Carena, F Carena, W Castellanos, JC Castro, AJ Casula, EAR Cavicchioli, C Sanchez, CC Cepila, J Cerello, P Chang, B Chapeland, S Chartier, M Charvet, JL Chattopadhyay, S Chattopadhyay, S Chelnokov, V Cherney, M Cheshkov, C Cheynis, B Barroso, VC Chinellato, DD Chochula, P Choi, K Chojnacki, M Choudhury, S Christakoglou, P Christensen, CH Christiansen, P Chujo, T Chung, SU Chunhui, Z Cicalo, C Cifarelli, L Cindolo, F Cleymans, J Colamaria, F Colella, D Collu, A Colocci, M Balbastre, GC del Valle, ZC Connors, ME Contreras, JG Cormier, TM Morales, YC Maldonado, IC Cortese, P Cosentino, MR Costa, F Crochet, P Albino, RC Cuautle, E Cunqueiro, L Dahms, T Dainese, A Danu, A Das, D Das, I Das, S Dash, A Dash, S De, S De Caro, A de Cataldo, G de Cuveland, J De Falco, A De Gruttola, D De Marco, N De Pasquale, S Deisting, A Deloff, A Denes, E D'Erasmo, G Di Bari, D Di Mauro, A Di Nezza, P Corchero, MAD Dietel, T Dillenseger, P Divia, R Djuvsland, O Dobrin, A Dobrowolski, T Gimenez, DD Donigus, B Dordic, O Dubey, AK Dubla, A Ducroux, L Dupieux, P Ehlers, RJ Elia, D Engel, H Erazmus, B Erhardt, F Eschweiler, D Espagnon, B Estienne, M Esumi, S Eum, J Evans, D Evdokimov, S Eyyubova, G Fabbietti, L Fabris, D Faivre, J Fantoni, A Fasel, M Feldkamp, L Felea, D Feliciello, A Feofilov, G Ferencei, J Tellez, AF Ferreiro, EG Ferretti, A Festanti, A Figiel, J Figueredo, MAS Filchagin, S Finogeev, D Fionda, FM Fiore, EM Fleck, MG Floris, M Foertsch, S Foka, P Fokin, S Fragiacomo, E Francescon, A Frankenfeld, U Fuchs, U Furget, C Furs, A Girard, MF Gaardhoje, JJ Gagliardi, M Gago, AM Gallio, M Gangadharan, DR Ganoti, P Gao, C Garabatos, C Garcia-Solis, E Gargiulo, C Gasik, P Germain, M Gheata, A Gheata, M Ghosh, P Ghosh, SK Gianotti, P Giubellino, P Giubilato, P Gladysz-Dziadus, E Glassel, P Ramirez, AG Gonzalez-Zamora, P Gorbunov, S Gorlich, L Gotovac, S Grabski, V Graczykowski, LK Grelli, A Grigoras, A Grigoras, C Grigoriev, V Grigoryan, A Grigoryan, S Grinyov, B Grion, N Grosse-Oetringhaus, JF Grossiord, JY Grosso, R Guber, F Guernane, R Guerzoni, B Gulbrandsen, K Gulkanyan, H Gunji, T Gupta, A Gupta, R Haake, R Haaland, O Hadjidakis, C Haiduc, M Hamagaki, H Hamar, G Hanratty, LD Hansen, A Harris, JW Hartmann, H Harton, A Hatzifotiadou, D Hayashi, S Heckel, ST Heide, M Helstrup, H Herghelegiu, A Corral, GH Hess, BA Hetland, KF Hilden, TE Hillemanns, H Hippolyte, B Hristov, P Huang, M Humanic, TJ Hussain, N Hussain, T Hutter, D Hwang, DS Ilkaev, R Ilkiv, I Inaba, M Ionita, C Ippolitov, M Irfan, M Ivanov, M Ivanov, V Izucheev, V Jacobs, PM Jahnke, C Jang, HJ Janik, MA Jayarathna, PHSY Jena, C Jena, S Bustamante, RTJ Jones, PG Jung, H Jusko, A Kalinak, P Kalweit, A Kamin, J Kang, JH Kaplin, V Kar, S Uysal, AK Karavichev, O Karavicheva, T Karpechev, E Kebschull, U Keidel, R Keijdener, DLD Keil, M Khan, KH Khan, MM Khan, P Khan, SA Khanzadeev, A Kharlov, Y Kileng, B Kim, B Kim, DW Kim, DJ Kim, H Kim, JS Kim, M Kim, M Kim, S Kim, T Kirsch, S Kisel, I Kiselev, S Kisiel, A Kiss, G Klay, JL Klein, C Klein, J Klein-Bosing, C Kluge, A Knichel, ML Knospe, AG Kobayashi, T Kobdaj, C Kofarago, M Kohler, MK Kollegger, T Kolojvari, A Kondratiev, V Kondratyeva, N Kondratyuk, E Konevskikh, A Kouzinopoulos, C Kovalenko, O Kovalenko, V Kowalski, M Kox, S Meethaleveedu, GK Kral, J Kralik, I Kravcakova, A Krelina, M Kretz, M Krivda, M Krizek, F Kryshen, E Krzewicki, M Kubera, AM Kucera, V Kugathasan, T Kuhn, C Kuijer, PG Kulakov, I Kumar, J Kumar, L Kurashvili, P Kurepin, A Kurepin, AB Kuryakin, A Kushpil, S Kweon, MJ Kwon, Y La Pointe, SL La Rocca, P Fernandes, CL Lakomov, I Langoy, R Lara, C Lardeux, A Lattuca, A Laudi, E Lea, R Leardini, L Lee, GR Lee, S Legrand, I Lemmon, RC Lenti, V Leogrande, E Monzon, IL Leoncino, M Levai, P Li, S Li, X Lien, J Lietava, R Lindal, S Lindenstruth, V Lippmann, C Lisa, MA Ljunggren, HM Lodato, DF Loenne, PI Loggins, VR Loginov, V Loizides, C Lopez, X Torres, EL Lowe, A Luettig, P Lunardon, M Luparello, G Luz, PHFND Maevskaya, A Mager, M Mahajan, S Mahmood, SM Maire, A Majka, RD Malaev, M Cervantes, IM Malinina, L Mal'Kevich, D Malzacher, P Mamonov, A Manceau, L Manko, V Manso, F Manzari, V Marchisone, M Mares, J Margagliotti, GV Margotti, A Margutti, J Marin, A Markert, C Marquard, M Martin, NA Blanco, JM Martinengo, P Martinez, MI Garcia, GM Pedreira, MM Martynov, Y Mas, A Masciocchi, S Masera, M Masoni, A Massacrier, L Mastroserio, A Masui, H Matyja, A Mayer, C Mazer, J Mazzoni, MA Mcdonald, D Meddi, F Menchaca-Rocha, A Meninno, E Perez, JM Meres, M Miake, Y Mieskolainen, MM Mikhaylov, K Milano, L Milosevic, J Minervini, LM Mischke, A Mishra, AN Miskowiec, D Mitra, J Mitu, CM Mohammadi, N Mohanty, B Molnar, L Zetina, LM Montes, E Morando, M De Godoy, DAM Moretto, S Morreale, A Morsch, A Muccifora, V Mudnic, E Muhlheim, D Muhuri, S Mukherjee, M Muller, H Mulligan, JD Munhoz, MG Murray, S Musa, L Musinsky, J Nandi, BK Nania, R Nappi, E Naru, MU Nattrass, C Nayak, K Nayak, TK Nazarenko, S Nedosekin, A Nellen, L Ng, F Nicassio, M Niculescu, M Niedziela, J Nielsen, BS Nikolaev, S Nikulin, S Nikulin, V Noferini, F Nomokonov, P Nooren, G Norman, J Nyanin, A Nystrand, J Oeschler, H Oh, S Oh, SK Ohlson, A Okatan, A Okubo, T Olah, L Oleniacz, J Da Silva, ACO Oliver, MH Onderwaater, J Oppedisano, C Velasquez, AO Oskarsson, A Otwinowski, J Oyama, K Ozdemir, M Pachmayer, Y Pagano, P Paic, G Pajares, C Pal, SK Pan, J Pandey, AK Pant, D Papikyan, V Pappalardo, GS Pareek, P Park, WJ Parmar, S Passfeld, A Paticchio, V Paul, B Peitzmann, T Da Costa, HP De Oliveira, EP Peresunko, D Lara, CEP Peskov, V Pestov, Y Petracek, V Petrov, V Petrovici, M Petta, C Piano, S Pikna, M Pillot, P Pinazza, O Pinsky, L Piyarathna, DB Ploskon, M Planinic, M Pluta, J Pochybova, S Podesta-Lerma, PLM Poghosyan, MG Polichtchouk, B Poljak, N Poonsawat, W Pop, A Porteboeuf-Houssais, S Porter, J Pospisil, J Prasad, SK Preghenella, R Prino, F Pruneau, CA Pshenichnov, I Puccio, M Puddu, G Pujahari, P Punin, V Putschke, J Qvigstad, H Rachevski, A Raha, S Rajput, S Rak, J Rakotozafindrabe, A Ramello, L Raniwala, R Raniwala, S Rasanen, SS Rascanu, BT Rathee, D Read, KF Real, JS Redlich, K Reed, RJ Rehman, A Reichelt, P Reicher, M Reidt, F Ren, X Renfordt, R Reolon, AR Reshetin, A Rettig, F Revol, JP Reygers, K Riabov, V Ricci, RA Richert, T Richter, M Riedler, P Riegler, W Riggi, F Ristea, C Rivetti, A Rocco, E Cahuantzi, MR Manso, AR Roed, K Rogochaya, E Rohr, D Rohrich, D Romita, R Ronchetti, F Ronflette, L Rosnet, P Rossi, A Roukoutakis, F Roy, A Roy, C Roy, P Montero, AJR Rui, R Russo, R Ryabinkin, E Ryabov, Y Rybicki, A Sadovsky, S Safarik, K Sahlmuller, B Sahoo, P Sahoo, R Sahoo, S Sahu, PK Saini, J Sakai, S Saleh, MA Salgado, CA Salzwedel, J Sambyal, S Samsonov, V Castro, XS Sandor, L Sandoval, A Sano, M Santagati, G Sarkar, D Scapparone, E Scarlassara, F Scharenberg, RP Schiaua, C Schicker, R Schmidt, C Schmidt, HR Schuchmann, S Schukraft, J Schulc, M Schuster, T Schutz, Y Schwarz, K Schweda, K Scioli, G Scomparin, E Scott, R Seeder, KS Seger, JE Sekiguchi, Y Selyuzhenkov, I Senosi, K Seo, J Serradilla, E Sevcenco, A Shabanov, A Shabetai, A Shadura, O Shahoyan, R Shangaraev, A Sharma, A Sharma, N Shigaki, K Shtejer, K Sibiriak, Y Siddhanta, S Sielewicz, KM Siemiarczuk, T Silvermyr, D Silvestre, C Simatovic, G Simonetti, G Singaraju, R Singh, R Singha, S Singhal, V Sinha, BC Sinha, T Sitar, B Sitta, M Skaali, TB Slupecki, M Smirnov, N Snellings, RJM Snellman, TW Sogaard, C Soltz, R Song, J Song, M Song, Z Soramel, F Sorensen, S Spacek, M Spiriti, E Sputowska, I Spyropoulou-Stassinaki, M Srivastava, BK Stachel, J Stan, I Stefanek, G Steinpreis, M Stenlund, E Steyn, G Stiller, JH Stocco, D Strmen, P Suaide, AAP Sugitate, T Suire, C Suleymanov, M Sultanov, R Sumbera, M Symons, TJM Szabo, A de Toledo, AS Szarka, I Szczepankiewicz, A Szymanski, M Takahashi, J Tanaka, N Tangaro, MA Takaki, JDT Peloni, AT Tariq, M Tarzila, MG Tauro, A Munoz, GT Telesca, A Terasaki, K Terrevoli, C Teyssier, B Thader, J Thomas, D Tieulent, R Timmins, AR Toia, A Trogolo, S Trubnikov, V Trzaska, WH Tsuji, T Tumkin, A Turrisi, R Tveter, TS Ullaland, K Uras, A Usai, GL Utrobicic, A Vajzer, M Vala, M Palomo, LV Vallero, S Van Der Maarel, J Van Hoorne, JW van Leeuwen, M Vanat, T Vyvre, PV Varga, D Vargas, A Vargyas, M Varma, R Vasileiou, M Vasiliev, A Vauthier, A Vechernin, V Veen, AM Veldhoen, M Velure, A Venaruzzo, M Vercellin, E Limon, SV Vernet, R Verweij, M Vickovic, L Viesti, G Viinikainen, J Vilakazi, Z Baillie, OV Vinogradov, A Vinogradov, L Vinogradov, Y Virgili, T Vislavicius, V Viyogi, YP Vodopyanov, A Volkl, MA Voloshin, K Voloshin, SA Volpe, G von Haller, B Vorobyev, I Vranic, D Vrlakova, J Vulpescu, B Vyushin, A Wagner, B Wagner, J Wang, H Wang, M Wang, Y Watanabe, D Weber, M Weber, SG Wessels, JP Westerhoff, U Wiechula, J Wikne, J Wilde, M Wilk, G Wilkinson, J Williams, MCS Windelband, B Winn, M Yaldo, CG Yamaguchi, Y Yang, H Yang, P Yano, S Yin, Z Yokoyama, H Yoo, IK Yurchenko, V Yushmanov, I Zaborowska, A Zaccolo, V Zaman, A Zampolli, C Zanoli, HJC Zaporozhets, S Zarochentsev, A Zavada, P Zaviyalov, N Zbroszczyk, H Zgura, IS Zhalov, M Zhang, H Zhang, X Zhang, Y Zhao, C Zhigareva, N Zhou, D Zhou, Y Zhou, Z Zhu, H Zhu, J Zhu, X Zichichi, A Zimmermann, A Zimmermann, MB Zinovjev, G Zyzak, M AF Adam, J. Adamova, D. Aggarwal, M. M. Rinella, G. Aglieri Agnello, M. Agrawal, N. Ahammed, Z. Ahn, S. U. Aimo, I. Aiola, S. Ajaz, M. Akindinov, A. Alam, S. N. Aleksandrov, D. Alessandro, B. Alexandre, D. Alfaro Molina, R. Alici, A. Alkin, A. Alme, J. Alt, T. Altinpinar, S. Altsybeev, I. Alves Garcia Prado, C. Andrei, C. Andronic, A. Anguelov, V. Anielski, J. Anticic, T. Antinori, F. Antonioli, P. Aphecetche, L. Appelshaeuser, H. Arcelli, S. Armesto, N. Arnaldi, R. Aronsson, T. Arsene, I. C. Arslandok, M. Augustinus, A. Averbeck, R. Azmi, M. D. Bach, M. Badala, A. Baek, Y. W. Bagnasco, S. Bailhache, R. Bala, R. Baldisseri, A. Pedrosa, F. Baltasar Dos Santos Baral, R. C. Barbano, A. M. Barbera, R. Barile, F. Barnafoeldi, G. G. Barnby, L. S. Barret, V. Bartalini, P. Bartke, J. Bartsch, E. Basile, M. Bastid, N. Basu, S. Bathen, B. Batigne, G. Camejo, A. Batista Batyunya, B. Batzing, P. C. Bearden, I. G. Beck, H. Bedda, C. Behera, N. K. Belikov, I. Bellini, F. Bello Martinez, H. Bellwied, R. Belmont, R. Belmont-Moreno, E. Belyaev, V. Bencedi, G. Beole, S. Berceanu, I. Bercuci, A. Berdnikov, Y. Berenyi, D. Bertens, R. A. Berzano, D. Betev, L. Bhasin, A. Bhat, I. R. Bhati, A. K. Bhattacharjee, B. Bhom, J. Bianchi, L. Bianchi, N. Bianchin, C. Bielcik, J. Bielcikova, J. Bilandzic, A. Biswas, S. Bjelogrlic, S. Blanco, F. Blau, D. Blume, C. Bock, F. Bogdanov, A. Boggild, H. Boldizsr, L. Bombara, M. Book, J. Borel, H. Borissov, A. Borri, M. Boss, F. Botje, M. Botta, E. Boettger, S. Braun-Munzinger, P. Bregant, M. Breitner, T. Broker, T. A. Browning, T. A. Broz, M. Brucken, E. J. Bruna, E. Bruno, G. E. Budnikov, D. Buesching, H. Bufalino, S. Buncic, P. Busch, O. Buthelezi, Z. Buxton, J. T. Caffarri, D. Cai, X. Caines, H. Diaz, L. Calero Caliva, A. Calvo Villar, E. Camerini, P. Carena, F. Carena, W. Castellanos, J. Castillo Castro, A. J. Casula, E. A. R. Cavicchioli, C. Ceballos Sanchez, C. Cepila, J. Cerello, P. Chang, B. Chapeland, S. Chartier, M. Charvet, J. L. Chattopadhyay, S. Chattopadhyay, S. Chelnokov, V. Cherney, M. Cheshkov, C. Cheynis, B. Barroso, V. Chibante Chinellato, D. D. Chochula, P. Choi, K. Chojnacki, M. Choudhury, S. Christakoglou, P. Christensen, C. H. Christiansen, P. Chujo, T. Chung, S. U. Chunhui, Z. Cicalo, C. Cifarelli, L. Cindolo, F. Cleymans, J. Colamaria, F. Colella, D. Collu, A. Colocci, M. Balbastre, G. Conesa del Valle, Z. Conesa Connors, M. E. Contreras, J. G. Cormier, T. M. Morales, Y. Corrales Cortes Maldonado, I. Cortese, P. Cosentino, M. R. Costa, F. Crochet, P. Cruz Albino, R. Cuautle, E. Cunqueiro, L. Dahms, T. Dainese, A. Danu, A. Das, D. Das, I. Das, S. Dash, A. Dash, S. De, S. De Caro, A. de Cataldo, G. de Cuveland, J. De Falco, A. De Gruttola, D. De Marco, N. De Pasquale, S. Deisting, A. Deloff, A. Denes, E. D'Erasmo, G. Di Bari, D. Di Mauro, A. Di Nezza, P. Corchero, M. A. Diaz Dietel, T. Dillenseger, P. Divia, R. Djuvsland, O. Dobrin, A. Dobrowolski, T. Domenicis Gimenez, D. Doenigus, B. Dordic, O. Dubey, A. K. Dubla, A. Ducroux, L. Dupieux, P. Ehlers, R. J. Elia, D. Engel, H. Erazmus, B. Erhardt, F. Eschweiler, D. Espagnon, B. Estienne, M. Esumi, S. Eum, J. Evans, D. Evdokimov, S. Eyyubova, G. Fabbietti, L. Fabris, D. Faivre, J. Fantoni, A. Fasel, M. Feldkamp, L. Felea, D. Feliciello, A. Feofilov, G. Ferencei, J. Fernandez Tellez, A. Ferreiro, E. G. Ferretti, A. Festanti, A. Figiel, J. Figueredo, M. A. S. Filchagin, S. Finogeev, D. Fionda, F. M. Fiore, E. M. Fleck, M. G. Floris, M. Foertsch, S. Foka, P. Fokin, S. Fragiacomo, E. Francescon, A. Frankenfeld, U. Fuchs, U. Furget, C. Furs, A. Girard, M. Fusco Gaardhoje, J. J. Gagliardi, M. Gago, A. M. Gallio, M. Gangadharan, D. R. Ganoti, P. Gao, C. Garabatos, C. Garcia-Solis, E. Gargiulo, C. Gasik, P. Germain, M. Gheata, A. Gheata, M. Ghosh, P. Ghosh, S. K. Gianotti, P. Giubellino, P. Giubilato, P. Gladysz-Dziadus, E. Glaessel, P. Ramirez, A. Gomez Gonzalez-Zamora, P. Gorbunov, S. Goerlich, L. Gotovac, S. Grabski, V. Graczykowski, L. K. Grelli, A. Grigoras, A. Grigoras, C. Grigoriev, V. Grigoryan, A. Grigoryan, S. Grinyov, B. Grion, N. Grosse-Oetringhaus, J. F. Grossiord, J. -Y. Grosso, R. Guber, F. Guernane, R. Guerzoni, B. Gulbrandsen, K. Gulkanyan, H. Gunji, T. Gupta, A. Gupta, R. Haake, R. Haaland, O. Hadjidakis, C. Haiduc, M. Hamagaki, H. Hamar, G. Hanratty, L. D. Hansen, A. Harris, J. W. Hartmann, H. Harton, A. Hatzifotiadou, D. Hayashi, S. Heckel, S. T. Heide, M. Helstrup, H. Herghelegiu, A. Herrera Corral, G. Hess, B. A. Hetland, K. F. Hilden, T. E. Hillemanns, H. Hippolyte, B. Hristov, P. Huang, M. Humanic, T. J. Hussain, N. Hussain, T. Hutter, D. Hwang, D. S. Ilkaev, R. Ilkiv, I. Inaba, M. Ionita, C. Ippolitov, M. Irfan, M. Ivanov, M. Ivanov, V. Izucheev, V. Jacobs, P. M. Jahnke, C. Jang, H. J. Janik, M. A. Jayarathna, P. H. S. Y. Jena, C. Jena, S. Jimenez Bustamante, R. T. Jones, P. G. Jung, H. Jusko, A. Kalinak, P. Kalweit, A. Kamin, J. Kang, J. H. Kaplin, V. Kar, S. Uysal, A. Karasu Karavichev, O. Karavicheva, T. Karpechev, E. Kebschull, U. Keidel, R. Keijdener, D. L. D. Keil, M. Khan, K. H. Khan, M. M. Khan, P. Khan, S. A. Khanzadeev, A. Kharlov, Y. Kileng, B. Kim, B. Kim, D. W. Kim, D. J. Kim, H. Kim, J. S. Kim, M. Kim, M. Kim, S. Kim, T. Kirsch, S. Kisel, I. Kiselev, S. Kisiel, A. Kiss, G. Klay, J. L. Klein, C. Klein, J. Klein-Boesing, C. Kluge, A. Knichel, M. L. Knospe, A. G. Kobayashi, T. Kobdaj, C. Kofarago, M. Koehler, M. K. Kollegger, T. Kolojvari, A. Kondratiev, V. Kondratyeva, N. Kondratyuk, E. Konevskikh, A. Kouzinopoulos, C. Kovalenko, O. Kovalenko, V. Kowalski, M. Kox, S. Meethaleveedu, G. Koyithatta Kral, J. Kralik, I. Kravcakova, A. Krelina, M. Kretz, M. Krivda, M. Krizek, F. Kryshen, E. Krzewicki, M. Kubera, A. M. Kucera, V. Kugathasan, T. Kuhn, C. Kuijer, P. G. Kulakov, I. Kumar, J. Kumar, L. Kurashvili, P. Kurepin, A. Kurepin, A. B. Kuryakin, A. Kushpil, S. Kweon, M. J. Kwon, Y. La Pointe, S. L. La Rocca, P. Fernandes, C. Lagana Lakomov, I. Langoy, R. Lara, C. Lardeux, A. Lattuca, A. Laudi, E. Lea, R. Leardini, L. Lee, G. R. Lee, S. Legrand, I. Lemmon, R. C. Lenti, V. Leogrande, E. Leon Monzon, I. Leoncino, M. Levai, P. Li, S. Li, X. Lien, J. Lietava, R. Lindal, S. Lindenstruth, V. Lippmann, C. Lisa, M. A. Ljunggren, H. M. Lodato, D. F. Loenne, P. I. Loggins, V. R. Loginov, V. Loizides, C. Lopez, X. Lopez Torres, E. Lowe, A. Luettig, P. Lunardon, M. Luparello, G. Luz, P. H. F. N. D. Maevskaya, A. Mager, M. Mahajan, S. Mahmood, S. M. Maire, A. Majka, R. D. Malaev, M. Maldonado Cervantes, I. Malinina, L. Mal'Kevich, D. Malzacher, P. Mamonov, A. Manceau, L. Manko, V. Manso, F. Manzari, V. Marchisone, M. Mares, J. Margagliotti, G. V. Margotti, A. Margutti, J. Marin, A. Markert, C. Marquard, M. Martin, N. A. Blanco, J. Martin Martinengo, P. Martinez, M. I. Garcia, G. Martinez Pedreira, M. Martinez Martynov, Y. Mas, A. Masciocchi, S. Masera, M. Masoni, A. Massacrier, L. Mastroserio, A. Masui, H. Matyja, A. Mayer, C. Mazer, J. Mazzoni, M. A. Mcdonald, D. Meddi, F. Menchaca-Rocha, A. Meninno, E. Perez, J. Mercado Meres, M. Miake, Y. Mieskolainen, M. M. Mikhaylov, K. Milano, L. Milosevic, J. Minervini, L. M. Mischke, A. Mishra, A. N. Miskowiec, D. Mitra, J. Mitu, C. M. Mohammadi, N. Mohanty, B. Molnar, L. Montano Zetina, L. Montes, E. Morando, M. De Godoy, D. A. Moreira Moretto, S. Morreale, A. Morsch, A. Muccifora, V. Mudnic, E. Muehlheim, D. Muhuri, S. Mukherjee, M. Mueller, H. Mulligan, J. D. Munhoz, M. G. Murray, S. Musa, L. Musinsky, J. Nandi, B. K. Nania, R. Nappi, E. Naru, M. U. Nattrass, C. Nayak, K. Nayak, T. K. Nazarenko, S. Nedosekin, A. Nellen, L. Ng, F. Nicassio, M. Niculescu, M. Niedziela, J. Nielsen, B. S. Nikolaev, S. Nikulin, S. Nikulin, V. Noferini, F. Nomokonov, P. Nooren, G. Norman, J. Nyanin, A. Nystrand, J. Oeschler, H. Oh, S. Oh, S. K. Ohlson, A. Okatan, A. Okubo, T. Olah, L. Oleniacz, J. Oliveira Da Silva, A. C. Oliver, M. H. Onderwaater, J. Oppedisano, C. Ortiz Velasquez, A. Oskarsson, A. Otwinowski, J. Oyama, K. Ozdemir, M. Pachmayer, Y. Pagano, P. Paic, G. Pajares, C. Pal, S. K. Pan, J. Pandey, A. K. Pant, D. Papikyan, V. Pappalardo, G. S. Pareek, P. Park, W. J. Parmar, S. Passfeld, A. Paticchio, V. Paul, B. Peitzmann, T. Da Costa, H. Pereira Pereira De Oliveira Filho, E. Peresunko, D. Lara, C. E. Perez Peskov, V. Pestov, Y. Petracek, V. Petrov, V. Petrovici, M. Petta, C. Piano, S. Pikna, M. Pillot, P. Pinazza, O. Pinsky, L. Piyarathna, D. B. Ploskon, M. Planinic, M. Pluta, J. Pochybova, S. Podesta-Lerma, P. L. M. Poghosyan, M. G. Polichtchouk, B. Poljak, N. Poonsawat, W. Pop, A. Porteboeuf-Houssais, S. Porter, J. Pospisil, J. Prasad, S. K. Preghenella, R. Prino, F. Pruneau, C. A. Pshenichnov, I. Puccio, M. Puddu, G. Pujahari, P. Punin, V. Putschke, J. Qvigstad, H. Rachevski, A. Raha, S. Rajput, S. Rak, J. Rakotozafindrabe, A. Ramello, L. Raniwala, R. Raniwala, S. Rasanen, S. S. Rascanu, B. T. Rathee, D. Read, K. F. Real, J. S. Redlich, K. Reed, R. J. Rehman, A. Reichelt, P. Reicher, M. Reidt, F. Ren, X. Renfordt, R. Reolon, A. R. Reshetin, A. Rettig, F. Revol, J. -P. Reygers, K. Riabov, V. Ricci, R. A. Richert, T. Richter, M. Riedler, P. Riegler, W. Riggi, F. Ristea, C. Rivetti, A. Rocco, E. Rodriguez Cahuantzi, M. Manso, A. Rodriguez Roed, K. Rogochaya, E. Rohr, D. Rohrich, D. Romita, R. Ronchetti, F. Ronflette, L. Rosnet, P. Rossi, A. Roukoutakis, F. Roy, A. Roy, C. Roy, P. Rubio Montero, A. J. Rui, R. Russo, R. Ryabinkin, E. Ryabov, Y. Rybicki, A. Sadovsky, S. Safarik, K. Sahlmuller, B. Sahoo, P. Sahoo, R. Sahoo, S. Sahu, P. K. Saini, J. Sakai, S. Saleh, M. A. Salgado, C. A. Salzwedel, J. Sambyal, S. Samsonov, V. Castro, X. Sanchez Sandor, L. Sandoval, A. Sano, M. Santagati, G. Sarkar, D. Scapparone, E. Scarlassara, F. Scharenberg, R. P. Schiaua, C. Schicker, R. Schmidt, C. Schmidt, H. R. Schuchmann, S. Schukraft, J. Schulc, M. Schuster, T. Schutz, Y. Schwarz, K. Schweda, K. Scioli, G. Scomparin, E. Scott, R. Seeder, K. S. Seger, J. E. Sekiguchi, Y. Selyuzhenkov, I. Senosi, K. Seo, J. Serradilla, E. Sevcenco, A. Shabanov, A. Shabetai, A. Shadura, O. Shahoyan, R. Shangaraev, A. Sharma, A. Sharma, N. Shigaki, K. Shtejer, K. Sibiriak, Y. Siddhanta, S. Sielewicz, K. M. Siemiarczuk, T. Silvermyr, D. Silvestre, C. Simatovic, G. Simonetti, G. Singaraju, R. Singh, R. Singha, S. Singhal, V. Sinha, B. C. Sinha, T. Sitar, B. Sitta, M. Skaali, T. B. Slupecki, M. Smirnov, N. Snellings, R. J. M. Snellman, T. W. Sogaard, C. Soltz, R. Song, J. Song, M. Song, Z. Soramel, F. Sorensen, S. Spacek, M. Spiriti, E. Sputowska, I. Spyropoulou-Stassinaki, M. Srivastava, B. K. Stachel, J. Stan, I. Stefanek, G. Steinpreis, M. Stenlund, E. Steyn, G. Stiller, J. H. Stocco, D. Strmen, P. Suaide, A. A. P. Sugitate, T. Suire, C. Suleymanov, M. Sultanov, R. Sumbera, M. Symons, T. J. M. Szabo, A. Szanto de Toledo, A. Szarka, I. Szczepankiewicz, A. Szymanski, M. Takahashi, J. Tanaka, N. Tangaro, M. A. Takaki, J. D. Tapia Peloni, A. Tarantola Tariq, M. Tarzila, M. G. Tauro, A. Tejeda Munoz, G. Telesca, A. Terasaki, K. Terrevoli, C. Teyssier, B. Thaeder, J. Thomas, D. Tieulent, R. Timmins, A. R. Toia, A. Trogolo, S. Trubnikov, V. Trzaska, W. H. Tsuji, T. Tumkin, A. Turrisi, R. Tveter, T. S. Ullaland, K. Uras, A. Usai, G. L. Utrobicic, A. Vajzer, M. Vala, M. Palomo, L. Valencia Vallero, S. Van Der Maarel, J. Van Hoorne, J. W. van Leeuwen, M. Vanat, T. Vyvre, P. Vande Varga, D. Vargas, A. Vargyas, M. Varma, R. Vasileiou, M. Vasiliev, A. Vauthier, A. Vechernin, V. Veen, A. M. Veldhoen, M. Velure, A. Venaruzzo, M. Vercellin, E. Vergara Limon, S. Vernet, R. Verweij, M. Vickovic, L. Viesti, G. Viinikainen, J. Vilakazi, Z. Baillie, O. Villalobos Vinogradov, A. Vinogradov, L. Vinogradov, Y. Virgili, T. Vislavicius, V. Viyogi, Y. P. Vodopyanov, A. Voelkl, M. A. Voloshin, K. Voloshin, S. A. Volpe, G. von Haller, B. Vorobyev, I. Vranic, D. Vrlakova, J. Vulpescu, B. Vyushin, A. Wagner, B. Wagner, J. Wang, H. Wang, M. Wang, Y. Watanabe, D. Weber, M. Weber, S. G. Wessels, J. P. Westerhoff, U. Wiechula, J. Wikne, J. Wilde, M. Wilk, G. Wilkinson, J. Williams, M. C. S. Windelband, B. Winn, M. Yaldo, C. G. Yamaguchi, Y. Yang, H. Yang, P. Yano, S. Yin, Z. Yokoyama, H. Yoo, I. -K. Yurchenko, V. Yushmanov, I. Zaborowska, A. Zaccolo, V. Zaman, A. Zampolli, C. Zanoli, H. J. C. Zaporozhets, S. Zarochentsev, A. Zavada, P. Zaviyalov, N. Zbroszczyk, H. Zgura, I. S. Zhalov, M. Zhang, H. Zhang, X. Zhang, Y. Zhao, C. Zhigareva, N. Zhou, D. Zhou, Y. Zhou, Z. Zhu, H. Zhu, J. Zhu, X. Zichichi, A. Zimmermann, A. Zimmermann, M. B. Zinovjev, G. Zyzak, M. CA ALICE Collaboration TI Measurement of dijet k(T) in p-Pb collisions at root s(NN)=5.02 TeV SO PHYSICS LETTERS B LA English DT Article ID TRANSVERSE-MOMENTA; JET; FRAGMENTATION AB A measurement of dijet correlations in p-Pb collisions at root s(NN) = 5.02 TeV with the ALICE detector is presented. Jets are reconstructed from charged particles measured in the central tracking detectors and neutral energy deposited in the electromagnetic calorimeter. The transverse momentum of the full jet (clustered from charged and neutral constituents) and charged jet (clustered from charged particles only) is corrected event-by-event for the contribution of the underlying event, while corrections for underlying event fluctuations and finite detector resolution are applied on an inclusive basis. A projection of the dijet transverse momentum, k(Ty) = p(T,jet)(ch+ne) sin(Delta phi(dijet)) with Delta phi(dijet) the azimuthal angle between a full and charged jet and p(T,jet)(ch+ne) the transverse momentum of the full jet, is used to study nuclear matter effects in p-Pb collisions. This observable is sensitive to the acoplanarity of dijet production and its potential modificationin p-Pb collisions with respect to pp collisions. Measurements of the dijet k(Ty) as a function of the transverse momentum of the full and recoil charged jet, and the event multiplicity are presented. No significant modification of k(Ty) due to nuclear matter effects in p-Pb collisions with respect to the event multiplicity or a PYTHIA8 reference is observed. (C) 2015 CERN for the benefit of the ALICE Collaboration. Published by Elsevier B.V. C1 [Grigoryan, A.; Gulkanyan, H.; Papikyan, V.] Yerevan Phys Inst, AI Alikhanyan Natl Sci Lab, Yerevan 375036, Armenia. [Bello Martinez, H.; Cortes Maldonado, I.; Fernandez Tellez, A.; Martinez, M. I.; Rodriguez Cahuantzi, M.; Tejeda Munoz, G.; Vargas, A.; Vergara Limon, S.] Benemerita Univ Autonoma Puebla, Puebla, Mexico. [Alkin, A.; Chelnokov, V.; Grinyov, B.; Martynov, Y.; Shadura, O.; Trubnikov, V.; Yurchenko, V.; Zinovjev, G.] Bogolyubov Inst Theoret Phys, Kiev, Ukraine. [Das, S.; Ghosh, S. K.; Prasad, S. K.; Raha, S.] Bose Inst, Dept Phys, Kolkata, India. [Das, S.; Ghosh, S. K.; Prasad, S. K.; Raha, S.] Bose Inst, Ctr Astroparticle Phys & Space Sci, Kolkata, India. [Pestov, Y.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Klay, J. L.] Calif Polytech State Univ San Luis Obispo, San Luis Obispo, CA 93407 USA. [Bartalini, P.; Cai, X.; Gao, C.; Li, S.; Ren, X.; Song, Z.; Wang, M.; Yang, P.; Yin, Z.; Zhang, H.; Zhang, Y.; Zhou, D.; Zhu, H.; Zhu, J.; Zhu, X.] Cent China Normal Univ, Wuhan, Peoples R China. [Vernet, R.] IN2P3, Ctr Calcul, Villeurbanne, France. [Ceballos Sanchez, C.; Lopez Torres, E.; Shtejer, K.] Ctr Aplicac Tecnol & Desarrollo Nucl CEADEN, Havana, Cuba. [Blanco, F.; Corchero, M. A. Diaz; Gonzalez-Zamora, P.; Montes, E.; Rubio Montero, A. J.; Serradilla, E.] CIEMAT, Ctr Invest Energet Medioambientale & Tecnol, E-28040 Madrid, Spain. [Contreras, J. G.; Cruz Albino, R.; Herrera Corral, G.; Montano Zetina, L.; Rodriguez Cahuantzi, M.] CINVESTAV, Ctr Invest & Estudios Avanzados, Mexico City 14000, DF, Mexico. [Contreras, J. G.; Cruz Albino, R.; Herrera Corral, G.; Montano Zetina, L.; Rodriguez Cahuantzi, M.] CINVESTAV, Ctr Invest & Estudios Avanzados, Merida, Mexico. [Alici, A.; Cifarelli, L.; De Caro, A.; De Gruttola, D.; Noferini, F.; Revol, J. -P.; Zichichi, A.] Ctr Fermi, Museo Stor Fis, Rome, Italy. [Alici, A.; Cifarelli, L.; De Caro, A.; De Gruttola, D.; Noferini, F.; Revol, J. -P.; Zichichi, A.] Ctr Studi & Ric Enrico Fermi, Rome, Italy. [Garcia-Solis, E.; Harton, A.] Chicago State Univ, Chicago, IL USA. [Li, X.] China Inst Atom Energy, Beijing, Peoples R China. [Baldisseri, A.; Borel, H.; Castellanos, J. Castillo; Charvet, J. L.; Lardeux, A.; Da Costa, H. Pereira; Rakotozafindrabe, A.] IRFU, Commiss Energie Atom, Saclay, France. [Ajaz, M.; Khan, K. H.; Naru, M. U.; Suleymanov, M.; Zaman, A.] COMSATS Inst Informat Technol, Islamabad, Pakistan. [Armesto, N.; Ferreiro, E. G.; Pajares, C.; Salgado, C. A.] Univ Santiago de Compostela, Departamento Fis Particulas, Santiago De Compostela, Spain. [Armesto, N.; Ferreiro, E. G.; Pajares, C.; Salgado, C. A.] Univ Santiago de Compostela, IGFAE, Santiago De Compostela, Spain. [Altinpinar, S.; Djuvsland, O.; Haaland, O.; Huang, M.; Loenne, P. I.; Nystrand, J.; Rehman, A.; Rohrich, D.; Ullaland, K.; Velure, A.; Wagner, B.; Zhou, Z.] Univ Bergen, Dept Phys & Technol, Bergen, Norway. [Azmi, M. D.; Hussain, T.; Irfan, M.; Khan, M. M.; Tariq, M.] Aligarh Muslim Univ, Dept Phys, Aligarh 202002, Uttar Pradesh, India. [Buxton, J. T.; Humanic, T. J.; Kubera, A. M.; Lisa, M. A.; Salzwedel, J.; Steinpreis, M.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Hwang, D. S.; Kim, S.] Sejong Univ, Dept Phys, Seoul, South Korea. [Arsene, I. C.; Batzing, P. C.; Dordic, O.; Lindal, S.; Mahmood, S. M.; Milosevic, J.; Qvigstad, H.; Richter, M.; Roed, K.; Skaali, T. B.; Tveter, T. S.; Wikne, J.; Zhao, C.] Univ Oslo, Dept Phys, Oslo, Norway. [Minervini, L. M.] Dipartimento Elettrotecn & Elettron Politecn, Bari, Italy. [Meddi, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Mazzoni, M. A.; Meddi, F.] Sezione Ist Nazl Fis Nucl, Rome, Italy. [Casula, E. A. R.; Collu, A.; De Falco, A.; Puddu, G.; Terrevoli, C.; Usai, G. L.] Dipartimento Fis Univ, Cagliari, Italy. [Casula, E. A. R.; Cicalo, C.; Collu, A.; De Falco, A.; Masoni, A.; Puddu, G.; Siddhanta, S.; Terrevoli, C.; Usai, G. L.] Sezione Ist Nazl Fis Nucl, Cagliari, Italy. [Camerini, P.; Lea, R.; Luparello, G.; Margagliotti, G. V.; Rui, R.] Dipartimento Fis Univ, Trieste, Italy. [Camerini, P.; Fragiacomo, E.; Grion, N.; Lea, R.; Luparello, G.; Margagliotti, G. V.; Piano, S.; Rachevski, A.; Rui, R.] Sezione Ist Nazl Fis Nucl, Trieste, Italy. [Beole, S.; Berzano, D.; Bianchi, L.; Botta, E.; Morales, Y. Corrales; Ferretti, A.; Gagliardi, M.; Gallio, M.; Lattuca, A.; Leoncino, M.; Marchisone, M.; Masera, M.; Russo, R.; Shtejer, K.; Vallero, S.; Vercellin, E.] Dipartimento Fis Univ, Turin, Italy. [Agnello, M.; Aimo, I.; Alessandro, B.; Arnaldi, R.; Bagnasco, S.; Barbano, A. M.; Bedda, C.; Beole, S.; Berzano, D.; Bianchi, L.; Botta, E.; Bruna, E.; Bufalino, S.; Cerello, P.; Morales, Y. Corrales; De Marco, N.; Feliciello, A.; Ferretti, A.; Gagliardi, M.; Gallio, M.; La Pointe, S. L.; Lattuca, A.; Leoncino, M.; Manceau, L.; Marchisone, M.; Masera, M.; Oppedisano, C.; Prino, F.; Puccio, M.; Rivetti, A.; Russo, R.; Scomparin, E.; Shtejer, K.; Trogolo, S.; Vallero, S.; Vercellin, E.] Sezione Ist Nazl Fis Nucl, Turin, Italy. [Arcelli, S.; Basile, M.; Bellini, F.; Cifarelli, L.; Colocci, M.; Guerzoni, B.; Scioli, G.; Zichichi, A.] Dipartimento Fis & Astron Univ, Bologna, Italy. [Alici, A.; Antonioli, P.; Arcelli, S.; Basile, M.; Bellini, F.; Cifarelli, L.; Cindolo, F.; Colocci, M.; Guerzoni, B.; Hatzifotiadou, D.; Margotti, A.; Nania, R.; Noferini, F.; Pinazza, O.; Preghenella, R.; Scapparone, E.; Scioli, G.; Williams, M. C. S.; Zampolli, C.; Zichichi, A.] Sezione Ist Nazl Fis Nucl, Bologna, Italy. [Barbera, R.; La Rocca, P.; Petta, C.; Riggi, F.; Santagati, G.] Dipartimento Fis & Astron Univ, Catania, Italy. [Badala, A.; Barbera, R.; La Rocca, P.; Pappalardo, G. S.; Petta, C.; Riggi, F.; Santagati, G.] Sezione Ist Nazl Fis Nucl, Catania, Italy. [Caffarri, D.; Festanti, A.; Francescon, A.; Giubilato, P.; Jena, C.; Lunardon, M.; Morando, M.; Moretto, S.; Scarlassara, F.; Soramel, F.; Terrevoli, C.; Viesti, G.] Dipartimento Fis & Astron Univ, Padua, Italy. [Antinori, F.; Caffarri, D.; Dainese, A.; Fabris, D.; Festanti, A.; Francescon, A.; Giubilato, P.; Jena, C.; Lunardon, M.; Moretto, S.; Scarlassara, F.; Soramel, F.; Terrevoli, C.; Turrisi, R.; Viesti, G.] Sezione Ist Nazl Fis Nucl, Padua, Italy. [De Caro, A.; De Gruttola, D.; De Pasquale, S.; Girard, M. Fusco; Meninno, E.; Pagano, P.; Virgili, T.] Dipartimento Fis ER Caianiello Univ, Salerno, Italy. [De Caro, A.; De Gruttola, D.; De Pasquale, S.; Girard, M. Fusco; Meninno, E.; Pagano, P.; Virgili, T.] Ist Nazl Fis Nucl, Grp Collegato, Salerno, Italy. [Cortese, P.; Ramello, L.; Sitta, M.] Univ Piemonte Orientale, Dipartimento Sci & Innovaz Tecnol, Alessandria, Italy. [Cortese, P.; Ramello, L.; Sitta, M.] Ist Nazl Fis Nucl, Grp Collegato, Alessandria, Italy. [Barile, F.; Bruno, G. E.; Colamaria, F.; Colella, D.; D'Erasmo, G.; Di Bari, D.; Fiore, E. M.; Mastroserio, A.; Tangaro, M. A.] Dipartimento Interateneo Fis M Merlin, Bari, Italy. [Barile, F.; Bruno, G. E.; Colamaria, F.; Colella, D.; de Cataldo, G.; D'Erasmo, G.; Di Bari, D.; Elia, D.; Fionda, F. M.; Fiore, E. M.; Lenti, V.; Manzari, V.; Mastroserio, A.; Minervini, L. M.; Nappi, E.; Paticchio, V.; Tangaro, M. A.] Sezione Ist Nazl Fis Nucl, Bari, Italy. [Christiansen, P.; Ljunggren, H. M.; Oskarsson, A.; Richert, T.; Silvermyr, D.; Sogaard, C.; Stenlund, E.; Vislavicius, V.] Lund Univ, Div Expt High Energy Phys, Lund, Sweden. [Hess, B. A.; Schmidt, H. R.; Wiechula, J.] Univ Tubingen, Tubingen, Germany. [Rinella, G. Aglieri; Augustinus, A.; Pedrosa, F. Baltasar Dos Santos; Berzano, D.; Betev, L.; Bufalino, S.; Buncic, P.; Caffarri, D.; Carena, F.; Carena, W.; Cavicchioli, C.; Barroso, V. Chibante; Chochula, P.; Costa, F.; Cunqueiro, L.; Di Mauro, A.; Divia, R.; Erazmus, B.; Floris, M.; Francescon, A.; Fuchs, U.; Gargiulo, C.; Gheata, A.; Gheata, M.; Giubellino, P.; Grigoras, A.; Grigoras, C.; Grosse-Oetringhaus, J. F.; Grosso, R.; Hillemanns, H.; Hristov, P.; Ionita, C.; Kalweit, A.; Keil, M.; Kluge, A.; Kofarago, M.; Kouzinopoulos, C.; Kowalski, M.; Kryshen, E.; Kugathasan, T.; Lakomov, I.; Laudi, E.; Legrand, I.; Mager, M.; Manzari, V.; Martinengo, P.; Pedreira, M. Martinez; Milano, L.; Morsch, A.; Mueller, H.; Musa, L.; Niculescu, M.; Niedziela, J.; Ohlson, A.; Pinazza, O.; Preghenella, R.; Reidt, F.; Riedler, P.; Riegler, W.; Rossi, A.; Safarik, K.; Schukraft, J.; Schutz, Y.; Shahoyan, R.; Sielewicz, K. M.; Simonetti, G.; Szczepankiewicz, A.; Tauro, A.; Telesca, A.; Van Hoorne, J. W.; Vyvre, P. Vande; Volpe, G.; von Haller, B.; Vranic, D.; Weber, M.; Zimmermann, M. B.] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland. [Alme, J.; Helstrup, H.; Hetland, K. F.; Kileng, B.] Bergen Univ Coll, Fac Engn, Bergen, Norway. [Meres, M.; Pikna, M.; Sitar, B.; Strmen, P.; Szabo, A.; Szarka, I.] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia. [Adam, J.; Bielcik, J.; Broz, M.; Cepila, J.; Contreras, J. G.; Eyyubova, G.; Krelina, M.; Petracek, V.; Schulc, M.; Spacek, M.] Czech Tech Univ, Fac Nucl Sci & Phys Engn, CR-11519 Prague, Czech Republic. [Bombara, M.; Kravcakova, A.; Vrlakova, J.] Safarik Univ, Fac Sci, Kosice, Slovakia. [Langoy, R.; Lien, J.] Buskerud & Vestfold Univ Coll, Fac Technol, Vestfold, Norway. [Alt, T.; Bach, M.; de Cuveland, J.; Eschweiler, D.; Gorbunov, S.; Hartmann, H.; Hutter, D.; Kirsch, S.; Kisel, I.; Kollegger, T.; Kretz, M.; Krzewicki, M.; Kulakov, I.; Lindenstruth, V.; Rettig, F.; Rohr, D.; Zyzak, M.] Goethe Univ Frankfurt, Frankfurt Inst Adv Studies, D-60054 Frankfurt, Germany. [Baek, Y. W.; Jung, H.; Kim, D. W.; Kim, J. S.; Kim, M.] Gangneung Wonju Natl Univ, Kangnung, South Korea. [Bhattacharjee, B.; Hussain, N.] Gauhati Univ, Dept Phys, Gauhati, India. [Brucken, E. J.; Hilden, T. E.; Mieskolainen, M. M.; Rasanen, S. S.] Helsinki Inst Phys, Helsinki, Finland. [Okubo, T.; Shigaki, K.; Sugitate, T.; Yano, S.] Hiroshima Univ, Hiroshima, Japan. [Agrawal, N.; Behera, N. K.; Dash, S.; Meethaleveedu, G. Koyithatta; Kumar, J.; Nandi, B. K.; Pandey, A. K.; Pant, D.; Varma, R.] Indian Inst Technol, Bombay 400076, Maharashtra, India. [Behera, N. K.; Mishra, A. N.; Pareek, P.; Roy, A.; Sahoo, P.; Sahoo, R.] Ind Technol Inst, Indore, Madhya Pradesh, India. [Kweon, M. J.] Inha Univ, Inchon, South Korea. [del Valle, Z. Conesa; Das, I.; Espagnon, B.; Hadjidakis, C.; Lakomov, I.; Suire, C.; Takaki, J. D. Tapia] Univ Paris 11, CNRS, IN2P3, Inst Phys Nucl Orsay, F-91405 Orsay, France. [Boettger, S.; Breitner, T.; Engel, H.; Ramirez, A. Gomez; Kebschull, U.; Lara, C.] Goethe Univ Frankfurt, Inst Informat, D-60054 Frankfurt, Germany. [Appelshaeuser, H.; Arslandok, M.; Bailhache, R.; Bartsch, E.; Beck, H.; Blume, C.; Book, J.; Broker, T. A.; Buesching, H.; Dillenseger, P.; Doenigus, B.; Heckel, S. T.; Kamin, J.; Klein, C.; Luettig, P.; Marquard, M.; Ozdemir, M.; Peskov, V.; Rascanu, B. T.; Reichelt, P.; Renfordt, R.; Sahlmuller, B.; Schuchmann, S.; Peloni, A. Tarantola; Toia, A.] Goethe Univ Frankfurt, Inst Kernphys, Frankfurt, Germany. [Anielski, J.; Bathen, B.; Feldkamp, L.; Haake, R.; Heide, M.; Klein-Boesing, C.; Muehlheim, D.; Passfeld, A.; Wessels, J. P.; Westerhoff, U.; Wilde, M.; Zimmermann, M. B.] Univ Munster, Inst Kernphys, D-48149 Munster, Germany. [Belikov, I.; Hippolyte, B.; Kuhn, C.; Maire, A.; Molnar, L.; Roy, C.; Castro, X. Sanchez] Univ Strasbourg, CNRS, IN2P3, Inst Pluridisciplinaire Hubert Curien, Strasbourg, France. [Finogeev, D.; Furs, A.; Guber, F.; Karavichev, O.; Karavicheva, T.; Karpechev, E.; Konevskikh, A.; Kurepin, A.; Maevskaya, A.; Pshenichnov, I.; Reshetin, A.; Shabanov, A.] Russian Acad Sci, Inst Nucl Res, Moscow 117312, Russia. [Bertens, R. A.; Bianchin, C.; Bjelogrlic, S.; Caliva, A.; Chunhui, Z.; Dobrin, A.; Dubla, A.; Grelli, A.; Keijdener, D. L. D.; Leogrande, E.; Lodato, D. F.; Luparello, G.; Margutti, J.; Mischke, A.; Mohammadi, N.; Nooren, G.; Peitzmann, T.; Reicher, M.; Rocco, E.; Snellings, R. J. M.; Van Der Maarel, J.; van Leeuwen, M.; Veen, A. M.; Veldhoen, M.; Wang, H.; Yang, H.; Zhou, Y.] Univ Utrecht, Inst Subat Phys, Utrecht, Netherlands. [Akindinov, A.; Kiselev, S.; Mal'Kevich, D.; Mikhaylov, K.; Nedosekin, A.; Sultanov, R.; Voloshin, K.; Zhigareva, N.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Kalinak, P.; Kralik, I.; Krivda, M.; Musinsky, J.; Sandor, L.; Vala, M.] Slovak Acad Sci, Inst Expt Phys, Kosice 04353, Slovakia. [Mares, J.; Zavada, P.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Baral, R. C.; Sahoo, S.; Sahu, P. K.; Sharma, N.] Inst Phys, Bhubaneswar 751007, Orissa, India. [Danu, A.; Felea, D.; Gheata, M.; Haiduc, M.; Mitu, C. M.; Niculescu, M.; Ristea, C.; Sevcenco, A.; Stan, I.; Zgura, I. S.] Inst Space Sci, Bucharest, Romania. [Cuautle, E.; Jimenez Bustamante, R. T.; Maldonado Cervantes, I.; Nellen, L.; Ortiz Velasquez, A.; Paic, G.] Univ Nacl Autonoma Mexico, Inst Ciencias Nucl, Mexico City 04510, DF, Mexico. [Alfaro Molina, R.; Belmont-Moreno, E.; Grabski, V.; Menchaca-Rocha, A.; Sandoval, A.; Serradilla, E.] Univ Nacl Autonoma Mexico, Inst Fis, Mexico City 01000, DF, Mexico. [Boss, F.; Buthelezi, Z.; Foertsch, S.; Murray, S.; Senosi, K.; Steyn, G.] Natl Res Fdn, iThemba LABS, Somerset West, South Africa. [Buthelezi, Z.; Grigoryan, S.; Malinina, L.; Mikhaylov, K.; Nomokonov, P.; Rogochaya, E.; Vodopyanov, A.; Zaporozhets, S.] Joint Inst Nucl Res, Dubna, Russia. [Oh, S. K.; Seo, J.] Konkuk Univ, Seoul, South Korea. [Ahn, S. U.; Jang, H. J.; Kim, D. W.] Korea Inst Sci & Technol Informat, Taejon, South Korea. [Uysal, A. Karasu; Okatan, A.] KTO Karatay Univ, Konya, Turkey. [Barret, V.; Bastid, N.; Camejo, A. Batista; Crochet, P.; Dupieux, P.; Li, S.; Lopez, X.; Manso, F.; Porteboeuf-Houssais, S.; Rosnet, P.; Palomo, L. Valencia; Vulpescu, B.] Univ Clermont Ferrand, Univ Blaise Pascal, CNRS, IN2P3,Phys Corpusculaire Lab, Clermont Ferrand, France. [Balbastre, G. Conesa; Faivre, J.; Furget, C.; Guernane, R.; Kox, S.; Real, J. S.; Silvestre, C.; Vauthier, A.] Univ Grenoble Alpes, CNRS, IN2P3, Lab Phys Subat & Cosmol, Grenoble, France. [Bianchi, N.; Diaz, L. Calero; Di Nezza, P.; Fantoni, A.; Gianotti, P.; Muccifora, V.; Reolon, A. R.; Ronchetti, F.; Sakai, S.; Spiriti, E.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Ricci, R. A.; Venaruzzo, M.] Ist Nazl Fis Nucl, Lab Nazl Legnaro, I-35020 Legnaro, Italy. [Bock, F.; Fasel, M.; Gangadharan, D. R.; Jacobs, P. M.; Loizides, C.; Ploskon, M.; Porter, J.; Symons, T. J. M.; Thaeder, J.; Zhang, X.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Soltz, R.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Belyaev, V.; Bogdanov, A.; Grigoriev, V.; Ippolitov, M.; Kaplin, V.; Kondratyeva, N.; Loginov, V.; Peresunko, D.] Moscow Engn Phys Inst, Moscow 115409, Russia. [Deloff, A.; Dobrowolski, T.; Ilkiv, I.; Kovalenko, O.; Kurashvili, P.; Redlich, K.; Siemiarczuk, T.; Stefanek, G.; Wilk, G.] Natl Ctr Nucl Studies, Warsaw, Poland. [Andrei, C.; Berceanu, I.; Bercuci, A.; Berenyi, D.; Herghelegiu, A.; Petrovici, M.; Pop, A.; Schiaua, C.; Tarzila, M. G.] Horia Hulubei Natl Inst Phys & Nucl Engn, Bucharest 077125, Romania. [Biswas, S.; Kumar, L.; Mohanty, B.; Nayak, K.; Singh, R.; Singha, S.] Natl Inst Sci Educ & Res, Bhubaneswar, Orissa, India. [Bearden, I. G.; Bilandzic, A.; Boggild, H.; Chojnacki, M.; Christensen, C. H.; Gaardhoje, J. J.; Gulbrandsen, K.; Hansen, A.; Nielsen, B. S.; Zaccolo, V.] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Botje, M.; Christakoglou, P.; Dobrin, A.; Kuijer, P. G.; Lara, C. E. Perez; Manso, A. Rodriguez] Natl Inst Subat Phys, Nikhef, Amsterdam, Netherlands. [Borri, M.; Lemmon, R. C.] STFC Daresbury Lab, Nucl Phys Grp, Daresbury, Halton, England. [Adamova, D.; Bielcikova, J.; Ferencei, J.; Krizek, F.; Kucera, V.; Kushpil, S.; Pospisil, J.; Sumbera, M.; Vajzer, M.; Vanat, T.] Acad Sci Czech Republic, Inst Nucl Phys, CZ-25068 Rez, Czech Republic. [Cormier, T. M.; Silvermyr, D.] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Berdnikov, Y.; Ivanov, V.; Khanzadeev, A.; Malaev, M.; Nikulin, V.; Riabov, V.; Samsonov, V.; Zhalov, M.] Petersburg Nucl Phys Inst, Gatchina, Russia. [Cherney, M.; Poghosyan, M. G.; Seger, J. E.] Creighton Univ, Dept Phys, Omaha, NE 68178 USA. [Aggarwal, M. M.; Bhati, A. K.; Kumar, L.; Parmar, S.; Rathee, D.] Panjab Univ, Dept Phys, Chandigarh 160014, India. [Ganoti, P.; Roukoutakis, F.; Spyropoulou-Stassinaki, M.; Vasileiou, M.] Univ Athens, Dept Phys, Athens, Greece. [Cleymans, J.; Dietel, T.] Univ Cape Town, Dept Phys, ZA-7925 Cape Town, South Africa. [Bala, R.; Bhasin, A.; Bhat, I. R.; Gupta, A.; Gupta, R.; Mahajan, S.; Rajput, S.; Sambyal, S.; Sharma, A.] Univ Jammu, Dept Phys, Jammu 180004, India. [Raniwala, R.; Raniwala, S.] Univ Rajasthan, Dept Phys, Jaipur 302004, Rajasthan, India. [Dahms, T.; Fabbietti, L.; Gasik, P.; Vorobyev, I.] Tech Univ Munich, Dept Phys, D-80290 Munich, Germany. [Anguelov, V.; Bock, F.; Busch, O.; Deisting, A.; Fleck, M. G.; Glaessel, P.; Klein, J.; Knichel, M. L.; Leardini, L.; Perez, J. Mercado; Oeschler, H.; Oyama, K.; Pachmayer, Y.; Reidt, F.; Reygers, K.; Schicker, R.; Stachel, J.; Stiller, J. H.; Voelkl, M. A.; Wang, Y.; Wilkinson, J.; Windelband, B.; Winn, M.; Zimmermann, A.] Heidelberg Univ, Inst Phys, Heidelberg, Germany. [Aimo, I.] Politecn Torino, Turin, Italy. [Browning, T. A.; Scharenberg, R. P.; Srivastava, B. K.] Purdue Univ, W Lafayette, IN 47907 USA. [Borissov, A.; Choi, K.; Chung, S. U.; Eum, J.; Seo, J.; Song, J.; Yoo, I. -K.] Pusan Natl Univ, Pusan 609735, South Korea. [Andronic, A.; Averbeck, R.; Braun-Munzinger, P.; Deisting, A.; Foka, P.; Frankenfeld, U.; Garabatos, C.; Ivanov, M.; Koehler, M. K.; Kollegger, T.; Krzewicki, M.; Lippmann, C.; Malzacher, P.; Marin, A.; Martin, N. A.; Masciocchi, S.; Miskowiec, D.; Nicassio, M.; Onderwaater, J.; Otwinowski, J.; Park, W. J.; Schmidt, C.; Schwarz, K.; Schweda, K.; Selyuzhenkov, I.; Thaeder, J.; Vranic, D.; Wagner, J.; Weber, S. G.] GSI Helmholtzzentrum Schwerionenforsch, Div Res, D-64291 Darmstadt, Germany. [Andronic, A.; Averbeck, R.; Braun-Munzinger, P.; Deisting, A.; Foka, P.; Frankenfeld, U.; Garabatos, C.; Ivanov, M.; Koehler, M. K.; Kollegger, T.; Krzewicki, M.; Lippmann, C.; Malzacher, P.; Marin, A.; Martin, N. A.; Masciocchi, S.; Miskowiec, D.; Nicassio, M.; Onderwaater, J.; Otwinowski, J.; Park, W. J.; Schmidt, C.; Schweda, K.; Selyuzhenkov, I.; Thaeder, J.; Vranic, D.; Wagner, J.; Weber, S. G.] GSI Helmholtzzentrum Schwerionenforsch, ExtreMe Matter Inst EMMI, D-64291 Darmstadt, Germany. [Anticic, T.] Rudjer Boskovic Inst, Zagreb, Croatia. [Budnikov, D.; Filchagin, S.; Ilkaev, R.; Kuryakin, A.; Mamonov, A.; Nazarenko, S.; Punin, V.; Tumkin, A.; Vinogradov, Y.; Vyushin, A.; Zaviyalov, N.] Russian Fed Nucl Ctr VNIIEF, Sarov, Russia. [Aleksandrov, D.; Blau, D.; Fokin, S.; Ippolitov, M.; Manko, V.; Nikolaev, S.; Nikulin, S.; Nyanin, A.; Peresunko, D.; Ryabinkin, E.; Sibiriak, Y.; Vinogradov, A.; Yushmanov, I.] Russian Res Ctr, Kurchatov Inst, Moscow, Russia. [Chattopadhyay, S.; Das, D.; Das, I.; Khan, P.; Paul, B.; Roy, P.; Sinha, T.] Saha Inst Nucl Phys, Kolkata, India. [Alexandre, D.; Barnby, L. S.; Evans, D.; Hanratty, L. D.; Jones, P. G.; Jusko, A.; Krivda, M.; Lee, G. R.; Lietava, R.; Baillie, O. Villalobos] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England. [Calvo Villar, E.; Gago, A. M.] Pontificia Univ Catolica Peru, Dept Ciencias, Secc Fis, Lima, Peru. [Evdokimov, S.; Izucheev, V.; Kharlov, Y.; Kondratyuk, E.; Petrov, V.; Polichtchouk, B.; Sadovsky, S.; Shangaraev, A.] NRC Kurchatov Inst, SSC IHEP, Protvino, Russia. [Aphecetche, L.; Batigne, G.; Erazmus, B.; Estienne, M.; Germain, M.; Blanco, J. Martin; Garcia, G. Martinez; Massacrier, L.; De Godoy, D. A. Moreira; Morreale, A.; Pillot, P.; Ronflette, L.; Schutz, Y.; Shabetai, A.; Stocco, D.; Wang, M.; Zhu, J.] Univ Nantes, CNRS, IN2P3, Ecole Mines Nantes,SUBATECH, Nantes, France. [Kobdaj, C.; Poonsawat, W.] Suranaree Univ Technol, Nakhon Ratchasima, Thailand. [Gotovac, S.; Mudnic, E.; Vickovic, L.] Tech Univ Split FESB, Split, Croatia. [Bartke, J.; Figiel, J.; Gladysz-Dziadus, E.; Goerlich, L.; Kowalski, M.; Matyja, A.; Mayer, C.; Otwinowski, J.; Rybicki, A.; Sputowska, I.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, Krakow, Poland. [Knospe, A. G.; Markert, C.; Thomas, D.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. [Leon Monzon, I.; Podesta-Lerma, P. L. M.] Univ Autonoma Sinaloa, Culiacan, Mexico. [Alves Garcia Prado, C.; Bregant, M.; Cosentino, M. R.; De, S.; Domenicis Gimenez, D.; Jahnke, C.; Fernandes, C. Lagana; Luz, P. H. F. N. D.; Mas, A.; Munhoz, M. G.; Oliveira Da Silva, A. C.; Seeder, K. S.; Suaide, A. A. P.; Szanto de Toledo, A.; Zanoli, H. J. C.] Univ Sao Paulo, Sao Paulo, Brazil. [Chinellato, D. D.; Dash, A.; Takahashi, J.] Univ Estadual Campinas, UNICAMP, Campinas, SP, Brazil. [Bellwied, R.; Bianchi, L.; Jayarathna, P. H. S. Y.; Jena, S.; Mcdonald, D.; Ng, F.; Pinsky, L.; Piyarathna, D. B.; Timmins, A. R.] Univ Houston, Houston, TX USA. [Chang, B.; Kim, D. J.; Kral, J.; Rak, J.; Slupecki, M.; Snellman, T. W.; Trzaska, W. H.; Vargyas, M.; Viinikainen, J.] Univ Jyvaskyla, Jyvaskyla, Finland. [Chartier, M.; Figueredo, M. A. S.; Norman, J.; Romita, R.] Univ Liverpool, Liverpool L69 3BX, Merseyside, England. [Castro, A. J.; Mazer, J.; Nattrass, C.; Read, K. F.; Scott, R.; Sharma, N.; Sorensen, S.] Univ Tennessee, Knoxville, TN USA. [Vilakazi, Z.] Univ Witwatersrand, Johannesburg, South Africa. [Gunji, T.; Hamagaki, H.; Hayashi, S.; Sekiguchi, Y.; Terasaki, K.; Tsuji, T.; Yamaguchi, Y.] Univ Tokyo, Tokyo, Japan. [Bhom, J.; Busch, O.; Chujo, T.; Esumi, S.; Inaba, M.; Kobayashi, T.; Masui, H.; Miake, Y.; Sano, M.; Tanaka, N.; Watanabe, D.; Yokoyama, H.] Univ Tsukuba, Tsukuba, Ibaraki, Japan. [Erhardt, F.; Planinic, M.; Poljak, N.; Simatovic, G.; Utrobicic, A.] Univ Zagreb, Zagreb 41000, Croatia. [Cheshkov, C.; Cheynis, B.; Ducroux, L.; Grossiord, J. -Y.; Teyssier, B.; Tieulent, R.; Uras, A.] Univ Lyon 1, CNRS, IN2P3, IPN Lyon, F-69622 Villeurbanne, France. [Altsybeev, I.; Feofilov, G.; Kolojvari, A.; Kondratiev, V.; Vechernin, V.; Vinogradov, L.; Zarochentsev, A.] St Petersburg State Univ, V Fock Inst Phys, St Petersburg 199034, Russia. [Ahammed, Z.; Alam, S. N.; Basu, S.; Chattopadhyay, S.; Choudhury, S.; Dubey, A. K.; Ghosh, P.; Kar, S.; Khan, S. A.; Mitra, J.; Mohanty, B.; Muhuri, S.; Mukherjee, M.; Nayak, T. K.; Pal, S. K.; Saini, J.; Sarkar, D.; Singaraju, R.; Singha, S.; Singhal, V.; Sinha, B. C.; Viyogi, Y. P.] Ctr Variable Energy Cyclotron, Kolkata, India. [Milosevic, J.] Vinca Inst Nucl Sci, Belgrade, Serbia. [Graczykowski, L. K.; Janik, M. A.; Kisiel, A.; Oleniacz, J.; Pluta, J.; Szymanski, M.; Zaborowska, A.; Zbroszczyk, H.] Warsaw Univ Technol, Warsaw, Poland. [Belmont, R.; Bianchin, C.; Loggins, V. R.; Pan, J.; Pruneau, C. A.; Pujahari, P.; Putschke, J.; Reed, R. J.; Saleh, M. A.; Verweij, M.; Voloshin, S. A.; Yaldo, C. G.] Wayne State Univ, Detroit, MI USA. [Barnafoeldi, G. G.; Bencedi, G.; Berenyi, D.; Boldizsr, L.; Denes, E.; Hamar, G.; Kiss, G.; Levai, P.; Lowe, A.; Olah, L.; Pochybova, S.; Varga, D.; Volpe, G.] Hungarian Acad Sci, Wigner Res Ctr Phys, Budapest, Hungary. [Aiola, S.; Aronsson, T.; Caines, H.; Connors, M. E.; Ehlers, R. J.; Harris, J. W.; Majka, R. D.; Mulligan, J. D.; Oh, S.; Oliver, M. H.; Schuster, T.; Smirnov, N.] Yale Univ, New Haven, CT USA. [Kang, J. H.; Kim, B.; Kim, H.; Kim, M.; Kim, T.; Kwon, Y.; Lee, S.; Song, M.] Yonsei Univ, Seoul 120749, South Korea. [Keidel, R.] Fachhochschule Worms, Zentrum Technol Transfer & Telekommunikat ZTT, Worms, Germany. [Takaki, J. D. Tapia] Univ Kansas, Lawrence, KS 66045 USA. RP Adam, J (reprint author), Czech Tech Univ, Fac Nucl Sci & Phys Engn, CR-11519 Prague, Czech Republic. RI feofilov, grigory/A-2549-2013; Ferencei, Jozef/H-1308-2014; Adamova, Dagmar/G-9789-2014; Christensen, Christian/D-6461-2012; De Pasquale, Salvatore/B-9165-2008; Chinellato, David/D-3092-2012; Felea, Daniel/C-1885-2012; de Cuveland, Jan/H-6454-2016; Kurepin, Alexey/H-4852-2013; Jena, Deepika/P-2873-2015; Jena, Satyajit/P-2409-2015; Akindinov, Alexander/J-2674-2016; Kovalenko, Vladimir/C-5709-2013; Zarochentsev, Andrey/J-6253-2013; Altsybeev, Igor/K-6687-2013; Vinogradov, Leonid/K-3047-2013; Kondratiev, Valery/J-8574-2013; Vechernin, Vladimir/J-5832-2013; Natal da Luz, Hugo/F-6460-2013; Naru, Muhammad Umair/N-5547-2015; Janik, Malgorzata/O-7520-2015; Graczykowski, Lukasz/O-7522-2015; Sevcenco, Adrian/C-1832-2012; Kucera, Vit/G-8459-2014; Krizek, Filip/G-8967-2014; Bielcikova, Jana/G-9342-2014; Vajzer, Michal/G-8469-2014; Sumbera, Michal/O-7497-2014; Barnby, Lee/G-2135-2010; Karasu Uysal, Ayben/K-3981-2015; HAMAGAKI, HIDEKI/G-4899-2014; Pshenichnov, Igor/A-4063-2008; Guber, Fedor/I-4271-2013; Barbera, Roberto/G-5805-2012; Bruna, Elena/C-4939-2014; Bregant, Marco/I-7663-2012; Martinez Hernandez, Mario Ivan/F-4083-2010; Ferretti, Alessandro/F-4856-2013; Vickovic, Linda/F-3517-2017; Fernandez Tellez, Arturo/E-9700-2017; Takahashi, Jun/B-2946-2012; Nattrass, Christine/J-6752-2016; Usai, Gianluca/E-9604-2015; Cosentino, Mauro/L-2418-2014; Suaide, Alexandre/L-6239-2016; Peitzmann, Thomas/K-2206-2012; Castillo Castellanos, Javier/G-8915-2013; Inst. of Physics, Gleb Wataghin/A-9780-2017; Ferreiro, Elena/C-3797-2017; Armesto, Nestor/C-4341-2017 OI feofilov, grigory/0000-0003-3700-8623; Christensen, Christian/0000-0002-1850-0121; De Pasquale, Salvatore/0000-0001-9236-0748; Chinellato, David/0000-0002-9982-9577; Felea, Daniel/0000-0002-3734-9439; de Cuveland, Jan/0000-0003-0455-1398; Kurepin, Alexey/0000-0002-1851-4136; Jena, Deepika/0000-0003-2112-0311; Jena, Satyajit/0000-0002-6220-6982; Akindinov, Alexander/0000-0002-7388-3022; Kovalenko, Vladimir/0000-0001-6012-6615; Zarochentsev, Andrey/0000-0002-3502-8084; Altsybeev, Igor/0000-0002-8079-7026; Vinogradov, Leonid/0000-0001-9247-6230; Kondratiev, Valery/0000-0002-0031-0741; Vechernin, Vladimir/0000-0003-1458-8055; Natal da Luz, Hugo/0000-0003-1177-870X; Naru, Muhammad Umair/0000-0001-6489-0784; Janik, Malgorzata/0000-0002-3356-3438; Sevcenco, Adrian/0000-0002-4151-1056; Sumbera, Michal/0000-0002-0639-7323; Barnby, Lee/0000-0001-7357-9904; Karasu Uysal, Ayben/0000-0001-6297-2532; Pshenichnov, Igor/0000-0003-1752-4524; Guber, Fedor/0000-0001-8790-3218; Barbera, Roberto/0000-0001-5971-6415; Bruna, Elena/0000-0001-5427-1461; Beole', Stefania/0000-0003-4673-8038; Martinez Hernandez, Mario Ivan/0000-0002-8503-3009; Ferretti, Alessandro/0000-0001-9084-5784; Vickovic, Linda/0000-0002-9820-7960; Fernandez Tellez, Arturo/0000-0003-0152-4220; Riggi, Francesco/0000-0002-0030-8377; Dainese, Andrea/0000-0002-2166-1874; Paticchio, Vincenzo/0000-0002-2916-1671; Scarlassara, Fernando/0000-0002-4663-8216; Turrisi, Rosario/0000-0002-5272-337X; D'Erasmo, Ginevra/0000-0003-3407-6962; Takahashi, Jun/0000-0002-4091-1779; Nattrass, Christine/0000-0002-8768-6468; Usai, Gianluca/0000-0002-8659-8378; Cosentino, Mauro/0000-0002-7880-8611; Suaide, Alexandre/0000-0003-2847-6556; Peitzmann, Thomas/0000-0002-7116-899X; Castillo Castellanos, Javier/0000-0002-5187-2779; Ferreiro, Elena/0000-0002-4449-2356; Armesto, Nestor/0000-0003-0940-0783 FU Grid centers; Worldwide LHC Computing Grid (WLCG) Collaboration; State Committee of Science; World Federation of Scientists (WFS); Swiss Fonds Kidagan; Armenia; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq); Financiadora de Estudos e Projetos (FINEP); Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP); National Natural Science Foundation of China (NSFC); Chinese Ministry of Education (CMOE); Ministry of Science and Technology of China (MSTC); Ministry of Education and Youth of the Czech Republic; Danish Natural Science Research Council; Carlsberg Foundation; Danish National Research Foundation; European Research Council under the European Community's Seventh Framework Programme; Helsinki Institute of Physics; Academy of Finland; French CNRS-IN2P3; Region Pays de Loire; Region Alsace; Region Auvergne; CEA, France; German Bundesministerium fur Bildung, Wissenschaft, Forschung und Technologie (BMBF); Helmholtz Association; General Secretariat for Research and Technology, Ministry of Development, Greece; Hungarian Orszagos Tudomanyos Kutatasi Alappgrammok (OTKA); National Office for Research and Technology (NKTH); Department of Atomic Energy and Department of Science and Technology of the Government of India; Istituto Nazionale di Fisica Nucleare (INFN); Centro Fermi - Museo Storico della Fisica e Centro Studi e Ricerche "Enrico Fermi", Italy; MEXT; Joint Institute for Nuclear Research, Dubna; National Research Foundation of Korea (NRF); Consejo Nacional de Ciencia y Tecnologia (CONACYT); Direccion General de Asuntos del Personal Academico (DGAPA), Mexico; Amerique Latine Formation academique-European Commission (ALFA-EC); EPLANET Program (European Particle Physics Latin American Network) Stichting voor Fundamenteel Onderzoek der Materie (FOM); Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Netherlands; Research Council of Norway (NFR); National Science Centre of Poland; Ministry of National Education/Institute for Atomic Physics and Consiliul National al Cercetarii Stiintifice-Executive Agency for Higher Education Research Development and Innovation Funding (CNCS-UEFISCDI), Romania; Ministry of Education and Science of the Russian Federation; Russian Academy of Sciences; Russian Federal Agency of Atomic Energy; Russian Federal Agency for Science and Innovations; Russian Foundation for Basic Research; Ministry of Education of Slovakia; Department of Science and Technology, Republic of South Africa; Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT; Europe and Latin America (EELA); Ministerio de Economia y Competitividad (MINECO) of Spain; Xunta de Galicia (Conselleria de Educacion); Centro de Aplicaciones Tecnologicas y Desarrollo Nuclear (CEADEN), Cubaenergia, Cuba; IAEA (International Atomic Energy Agency); Swedish Research Council (VR); Knut & Alice Wallenberg Foundation (KAW); Ukraine Ministry of Education and Science; United Kingdom Science and Technology Facilities Council (STFC); United States Department of Energy; United States National Science Foundation; State of Texas; State of Ohio; Ministry of Science, Education and Sports of Croatia; Unity through Knowledge Fund, Croatia FX The ALICE Collaboration would like to thank all its engineers and technicians for their invaluable contributions to the construction of the experiment and the CERN accelerator teams for the outstanding performance of the LHC complex. The ALICE Collaboration gratefully acknowledges the resources and support provided by all Grid centers and the Worldwide LHC Computing Grid (WLCG) Collaboration.; The ALICE Collaboration acknowledges the following funding agencies for their support in building and running the ALICE detector: State Committee of Science, World Federation of Scientists (WFS) and Swiss Fonds Kidagan, Armenia, Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Financiadora de Estudos e Projetos (FINEP), Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP); National Natural Science Foundation of China (NSFC), the Chinese Ministry of Education (CMOE) and the Ministry of Science and Technology of China (MSTC); Ministry of Education and Youth of the Czech Republic; Danish Natural Science Research Council, the Carlsberg Foundation and the Danish National Research Foundation; The European Research Council under the European Community's Seventh Framework Programme; Helsinki Institute of Physics and the Academy of Finland; French CNRS-IN2P3, the 'Region Pays de Loire', 'Region Alsace', 'Region Auvergne' and CEA, France; German Bundesministerium fur Bildung, Wissenschaft, Forschung und Technologie (BMBF) and the Helmholtz Association; General Secretariat for Research and Technology, Ministry of Development, Greece; Hungarian Orszagos Tudomanyos Kutatasi Alappgrammok (OTKA) and National Office for Research and Technology (NKTH); Department of Atomic Energy and Department of Science and Technology of the Government of India; Istituto Nazionale di Fisica Nucleare (INFN) and Centro Fermi - Museo Storico della Fisica e Centro Studi e Ricerche "Enrico Fermi", Italy; MEXT Grant-in-Aid for Specially Promoted Research, Japan; Joint Institute for Nuclear Research, Dubna; National Research Foundation of Korea (NRF); Consejo Nacional de Ciencia y Tecnologia (CONACYT), Direccion General de Asuntos del Personal Academico (DGAPA), Mexico, Amerique Latine Formation academique-European Commission (ALFA-EC) and the EPLANET Program (European Particle Physics Latin American Network) Stichting voor Fundamenteel Onderzoek der Materie (FOM) and the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Netherlands; Research Council of Norway (NFR); National Science Centre of Poland; Ministry of National Education/Institute for Atomic Physics and Consiliul National al Cercetarii Stiintifice-Executive Agency for Higher Education Research Development and Innovation Funding (CNCS-UEFISCDI), Romania; Ministry of Education and Science of the Russian Federation, Russian Academy of Sciences, Russian Federal Agency of Atomic Energy, Russian Federal Agency for Science and Innovations and The Russian Foundation for Basic Research; Ministry of Education of Slovakia; Department of Science and Technology, Republic of South Africa; Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT), E-Infrastructure shared between Europe and Latin America (EELA), Ministerio de Economia y Competitividad (MINECO) of Spain, Xunta de Galicia (Conselleria de Educacion), Centro de Aplicaciones Tecnologicas y Desarrollo Nuclear (CEADEN), Cubaenergia, Cuba, and IAEA (International Atomic Energy Agency); Swedish Research Council (VR) and Knut & Alice Wallenberg Foundation (KAW); Ukraine Ministry of Education and Science; United Kingdom Science and Technology Facilities Council (STFC); The United States Department of Energy, the United States National Science Foundation, the State of Texas, and the State of Ohio; Ministry of Science, Education and Sports of Croatia and Unity through Knowledge Fund, Croatia. Council of Scientific and Industrial Research (CSIR), New Delhi, India. NR 36 TC 8 Z9 8 U1 3 U2 57 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD JUN 30 PY 2015 VL 746 BP 385 EP 395 DI 10.1016/j.physletb.2015.05.033 PG 11 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CJ3JC UT WOS:000355378200063 ER PT J AU Kao, TY Cai, XW Lee, AWM Reno, JL Hu, Q AF Kao, Tsung-Yu Cai, Xiaowei Lee, Alan W. M. Reno, John L. Hu, Qing TI Antenna coupled photonic wire lasers SO OPTICS EXPRESS LA English DT Article ID QUANTUM-CASCADE LASERS; METAL WAVE-GUIDES; TERAHERTZ; RADIATION; POWER AB Slope efficiency (SE) is an important performance metric for lasers. In conventional semiconductor lasers, SE can be optimized by careful designs of the facet (or the modulation for DFB lasers) dimension and surface. However, photonic wire lasers intrinsically suffer low SE due to their deep sub-wavelength emitting facets. Inspired by microwave engineering techniques, we show a novel method to extract power from wire lasers using monolithically integrated antennas. These integrated antennas significantly increase the effective radiation area, and consequently enhance the power extraction efficiency. When applied to wire lasers at THz frequency, we achieved the highest single-side slope efficiency (similar to 450 mW/A) in pulsed mode for DFB lasers at 4 THz and a similar to 4x increase in output power at 3 THz compared with a similar structure without antennas. This work demonstrates the versatility of incorporating microwave engineering techniques into laser designs, enabling significant performance enhancements. (C) 2015 Optical Society of America C1 [Kao, Tsung-Yu; Cai, Xiaowei; Hu, Qing] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA. [Kao, Tsung-Yu; Cai, Xiaowei; Hu, Qing] MIT, Elect Res Lab, Cambridge, MA 02139 USA. [Lee, Alan W. M.] LongWave Photon LLC, Mountain View, CA 94043 USA. [Reno, John L.] Ctr Integrated Nanotechnol, Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Kao, TY (reprint author), MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA. EM wilt_kao@mit.edu FU NASA; NSF; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work is supported by NASA and NSF, and also performed at the Center for Integrated Nanotechnologies, a U.S. Department of Energy, Office of Basic Energy Sciences user facility. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. T-Y.K. conceived the strategy, designed and fabricated the devices, and performed the measurements and analysis. X.C. designed, fabricated, and performed the measurements of the 2 THz devices. A.L. contributed to the original idea of antenna-coupled wire laser. J.L.R. provided the material growth. All the work was done under the supervision of Q.H. NR 28 TC 3 Z9 3 U1 2 U2 20 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD JUN 29 PY 2015 VL 23 IS 13 BP 17091 EP 17100 DI 10.1364/OE.23.017091 PG 10 WC Optics SC Optics GA CN6KI UT WOS:000358543300057 PM 26191717 ER PT J AU Zhang, YB Husko, C Lefrancois, S Rey, IH Krauss, TF Schroder, J Eggleton, BJ AF Zhang, Yanbing Husko, Chad Lefrancois, Simon Rey, Isabella H. Krauss, Thomas F. Schroeder, Jochen Eggleton, Benjamin J. TI Non-degenerate two-photon absorption in silicon waveguides: analytical and experimental study SO OPTICS EXPRESS LA English DT Article ID ALL-OPTICAL MODULATION; PHASE-SENSITIVE AMPLIFICATION; REGENERATION; DISPERSION; CHIP AB We theoretically and experimentally investigate the nonlinear evolution of two optical pulses in a silicon waveguide. We provide an analytic solution for the weak probe wave undergoing non-degenerate two-photon absorption (TPA) from the strong pump. At larger pump intensities, we employ a numerical solution to study the interplay between TPA and photo-generated free carriers. We develop a simple and powerful approach to extract and separate out the distinct loss contributions of TPA and free-carrier absorption from readily available experimental data. Our analysis accounts accurately for experimental results in silicon photonic crystal waveguides. (C) 2015 Optical Society of America C1 [Zhang, Yanbing; Husko, Chad; Lefrancois, Simon; Eggleton, Benjamin J.] Univ Sydney, Sch Phys, Inst Photon & Opt Sci, Ctr Ultrahigh Bandwidth Devices Opt Syst CUDOS, Sydney, NSW 2006, Australia. [Husko, Chad] Ctr Nanoscale Mat, Argonne Natl Lab, Argonne, IL 60439 USA. [Rey, Isabella H.; Krauss, Thomas F.] Univ York, Dept Phys, York YO10 5DD, N Yorkshire, England. [Schroeder, Jochen] RMIT, Sch Elect & Comp Engn, Melbourne, Vic 3000, Australia. RP Zhang, YB (reprint author), Univ Sydney, Sch Phys, Inst Photon & Opt Sci, Ctr Ultrahigh Bandwidth Devices Opt Syst CUDOS, Sydney, NSW 2006, Australia. EM y.zhang@physics.usyd.edu.au RI Husko, Chad/J-3453-2014 FU Australian Research Councils; Center of Excellence CUDOS [CE110001018]; Laureate Fellowship [FL120100029]; Discovery Early Career Researcher schemes [DE120101329, DE120102069]; EPSRC of U.K. (Structured Light) [EP/J01771X/1] FX This work was supported by the Australian Research Councils, Center of Excellence CUDOS (CE110001018), Laureate Fellowship (FL120100029), Discovery Early Career Researcher (DE120101329, DE120102069) schemes, and EPSRC of U.K. under Grant EP/J01771X/1 (Structured Light). NR 23 TC 2 Z9 2 U1 2 U2 12 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD JUN 29 PY 2015 VL 23 IS 13 BP 17101 EP 17110 DI 10.1364/OE.23.017101 PG 10 WC Optics SC Optics GA CN6KI UT WOS:000358543300058 PM 26191718 ER PT J AU Abelev, B Adam, J Adamova, D Aggarwal, MM Agnello, M Agostinelli, A Agrawal, N Ahammed, Z Ahmad, N Ahmed, I Ahn, SU Ahn, SA Aimo, I Aiola, S Ajaz, M Akindinov, A Alam, SN Aleksandrov, D Alessandro, B Alexandre, D Alici, A Alkin, A Alme, J Alt, T Altinpinar, S Altsybeev, I Prado, CAG Andrei, C Andronic, A Anguelov, V Anielski, J Anticic, T Antinori, F Antonioli, P Aphecetche, L Appelshauser, H Arcelli, S Armesto, N Arnaldi, R Aronsson, T Arsene, IC Arslandok, M Augustinus, A Averbeck, R Awes, TC Azmi, MD Bach, M Badala, A Baek, YW Bagnasco, S Bailhache, R Bala, R Baldisseri, A Pedrosa, FBD Baral, RC Barbera, R Barile, F Barnafoldi, GG Barnby, LS Barret, V Bartke, J Basile, M Bastid, N Basu, S Bathen, B Batigne, G Camejo, AB Batyunya, B Batzing, PC Baumann, C Bearden, IG Beck, H Bedda, C Behera, NK Belikov, I Bellini, F Bellwied, R Belmont-Moreno, E Belmont, R Belyaev, V Bencedi, G Beole, S Berceanu, I Bercuci, A Berdnikov, Y Berenyi, D Berger, ME Bertens, RA Berzano, D Betev, L Bhasin, A Bhat, IR Bhati, AK Bhattacharjee, B Bhom, J Bianchi, L Bianchi, N Bianchin, C Bielcik, J Bielcikova, J Bilandzic, A Bjelogrlic, S Blanco, F Blau, D Blume, C Bock, F Bogdanov, A Boggild, H Bogolyubsky, M Bohmer, FV Boldizsar, L Bombara, M Book, J Borel, H Borissov, A Bossu, F Botje, M Botta, E Bottger, S Braun-Munzinger, P Bregant, M Breitner, T Broker, TA Browning, TA Broz, M Bruna, E Bruno, GE Budnikov, D Buesching, H Bufalino, S Buncic, P Busch, O Buthelezi, Z Caffarri, D Cai, X Caines, H Diaz, LC Caliva, A Villar, EC Camerini, P Carena, F Carena, W Castellanos, JC Casula, EAR Catanescu, V Cavicchioli, C Sanchez, CC Cepila, J Cerello, P Chang, B Chapeland, S Charvet, JL Chattopadhyay, S Chattopadhyay, S Chelnokov, V Cherney, M Cheshkov, C Cheynis, B Barroso, VC Chinellato, DD Chochula, P Chojnacki, M Choudhury, S Christakoglou, P Christensen, CH Christiansen, P Chujo, T Chung, SU Cicalo, C Cifarelli, L Cindolo, F Cleymans, J Colamaria, F Colella, D Collu, A Colocci, M Balbastre, GC del Valle, ZC Connors, ME Contreras, JG Cormier, TM Morales, YC Cortese, P Maldonado, IC Cosentino, MR Costa, F Crochet, P Albino, RC Cuautle, E Cunqueiro, L Dainese, A Dang, R Danu, A Das, D Das, I Das, K Das, S Dash, A Dash, S De, S Delagrange, H Deloff, A Denes, E D'Erasmo, G De Caro, A de Cataldo, G de Cuveland, J De Falco, A De Gruttola, D De Marco, N De Pasquale, S de Rooij, R Corchero, MAD Dietel, T Dillenseger, P Divia, R Di Bari, D Di Liberto, S Di Mauro, A Di Nezza, P Djuvsland, O Dobrin, A Dobrowolski, T Gimenez, DD Donigus, B Dordic, O Dorheim, S Dubey, AK Dubla, A Ducroux, L Dupieux, P Majumdar, AKD Hilden, TE Ehlers, RJ Elia, D Engel, H Erazmus, B Erdal, HA Eschweiler, D Espagnon, B Esposito, M Estienne, M Esumi, S Evans, D Evdokimov, S Fabris, D Faivre, J Falchieri, D Fantoni, A Fasel, M Fehlker, D Feldkamp, L Felea, D Feliciello, A Feofilov, G Ferencei, J Tellez, AF Ferreiro, EG Ferretti, A Festanti, A Figiel, J Figueredo, MAS Filchagin, S Finogeev, D Fionda, FM Fiore, EM Floratos, E Floris, M Foertsch, S Foka, P Fokin, S Fragiacomo, E Francescon, A Frankenfeld, U Fuchs, U Furget, C Girard, MF Gaardhoje, JJ Gagliardi, M Gago, AM Gallio, M Gangadharan, DR Ganoti, P Garabatos, C Garcia-Solis, E Gargiulo, C Garishvili, I Gerhard, J Germain, M Gheata, A Gheata, M Ghidini, B Ghosh, P Ghosh, SK Gianotti, P Giubellino, P Gladysz-Dziadus, E Glassel, P Ramirez, AG Gonzalez-Zamora, P Gorbunov, S Gorlich, L Gotovac, S Graczykowski, LK Grelli, A Grigoras, A Grigoras, C Grigoriev, V Grigoryan, A Grigoryan, S Grinyov, B Grion, N Grosse-Oetringhaus, JF Grossiord, JY Grosso, R Guber, F Guernane, R Guerzoni, B Guilbaud, M Gulbrandsen, K Gulkanyan, H Gumbo, M Gunji, T Gupta, A Gupta, R Khan, KH Haake, R Haaland, O Hadjidakis, C Haiduc, M Hamagaki, H Hamar, G Hanratty, LD Hansen, A Harris, JW Hartmann, H Harton, A Hatzifotiadou, D Hayashi, S Heckel, ST Heide, M Helstrup, H Herghelegiu, A Corral, GH Hess, BA Hetland, KF Hippolyte, B Hladky, J Hristov, P Huang, M Humanic, TJ Hussain, N Hutter, D Hwang, DS Ilkaev, R Ilkiv, I Inaba, M Innocenti, GM Ionita, C Ippolitov, M Irfan, M Ivanov, M Ivanov, V Jacholkowski, A Jacobs, PM Jahnke, C Jang, HJ Janik, MA Jayarathna, PHSY Jena, C Jena, S Bustamante, RTJ Jones, PG Jung, H Jusko, A Kadyshevskiy, V Kalcher, S Kalinak, P Kalweit, A Kamin, J Kang, JH Kaplin, V Kar, S Uysal, AK Karavichev, O Karavicheva, T Karpechev, E Kebschull, U Keidel, R Keijdener, DLD Svn, MK Khan, MM Khan, P Khan, SA Khanzadeev, A Kharlov, Y Kileng, B Kim, B Kim, DW Kim, DJ Kim, JS Kim, M Kim, M Kim, S Kim, T Kirsch, S Kisel, I Kiselev, S Kisiel, A Kiss, G Klay, JL Klein, J Klein-Bosing, C Kluge, A Knichel, ML Knospe, AG Kobdaj, C Kofarago, M Kohler, MK Kollegger, T Kolojvari, A Kondratiev, V Kondratyeva, N Konevskikh, A Kovalenko, V Kowalski, M Kox, S Meethaleveedu, GK Kral, J Kralik, I Kramer, F Kravcakova, A Krelina, M Kretz, M Krivda, M Krizek, F Kryshen, E Krzewicki, M Kucera, V Kucheriaev, Y Kugathasan, T Kuhn, C Kuijer, PG Kulakov, I Kumar, J Kurashvili, P Kurepin, A Kurepin, AB Kuryakin, A Kushpil, S Kweon, MJ Kwon, Y de Guevara, PL Fernandes, CL Lakomov, I Langoy, R Lara, C Lardeux, A Lattuca, A La Pointe, SL La Rocca, P Lea, R Leardini, L Lee, GR Legrand, I Lehnert, J Lemmon, RC Lenti, V Leogrande, E Leoncino, M Monzon, IL Levai, P Li, S Lien, J Lietava, R Lindal, S Lindenstruth, V Lippmann, C Lisa, MA Ljunggren, HM Lodato, DF Loenne, PI Loggins, VR Loginov, V Lohner, D Loizides, C Lopez, X Torres, EL Lu, XG Luettig, P Lunardon, M Luparello, G Ma, R Maevskaya, A Mager, M Mahapatra, DP Mahmood, SM Maire, A Majka, RD Malaev, M Cervantes, IM Malinina, L Mal'Kevich, D Malzacher, P Mamonov, A Manceau, L Manko, V Manso, F Manzari, V Marchisone, M Mares, J Margagliotti, GV Margotti, A Marin, A Markert, C Marquard, M Martashvili, I Martin, NA Martinengo, P Martinez, MI Garcia, GM Blanco, JM Martynov, Y Mas, A Masciocchi, S Masera, M Masoni, A Massacrier, L Mastroserio, A Matyja, A Mayer, C Mazer, J Mazzoni, MA Meddi, F Menchaca-Rocha, A Perez, JM Meres, M Miake, Y Mikhaylov, K Milano, L Milosevic, J Mischke, A Mishra, AN Miskowiec, D Mitra, J Mitu, CM Mlynarz, J Mohammadi, N Mohanty, B Molnar, L Zetina, LM Montes, E Morando, M De Godoy, DAM Moretto, S Morsch, A Muccifora, V Mudnic, E Muhlheim, D Muhuri, S Mukherjee, M Muller, H Munhoz, MG Murray, S Musa, L Musinsky, J Nandi, BK Nania, R Nappi, E Nattrass, C Nayak, K Nayak, TK Nazarenko, S Nedosekin, A Nicassio, M Niculescu, M Nielsen, BS Nikolaev, S Nikulin, S Nikulin, V Nilsen, BS Noferini, F Nomokonov, P Nooren, G Norman, J Nyanin, A Nystrand, J Oeschler, H Oh, S Oh, SK Okatan, A Olah, L Oleniacz, J Da Silva, ACO Onderwaater, J Oppedisano, C Velasquez, AO Oskarsson, A Otwinowski, J Oyama, K Sahoo, P Pachmayer, Y Pachr, M Pagano, P Paic, G Painke, F Pajares, C Pal, SK Palmeri, A Pant, D Papikyan, V Pappalardo, GS Pareek, P Park, WJ Parmar, S Passfeld, A Patalakha, DI Paticchio, V Paul, B Pawlak, T Peitzmann, T Da Costa, HP De Oliveira, E Peresunko, D Lara, CEP Pesci, A Peskov, V Pestov, Y Petracek, V Petran, M Petris, M Petrovici, M Petta, C Piano, S Pikna, M Pillot, P Pinazza, O Pinsky, L Piyarathna, DB Ploskon, M Planinic, M Pluta, J Pochybova, S Podesta-Lerma, PLM Poghosyan, MG Pohjoisaho, EHO Polichtchouk, B Poljak, N Pop, A Porteboeuf-Houssais, S Porter, J Potukuchi, B Prasad, SK Preghenella, R Prino, F Pruneau, CA Pshenichnov, I Puddu, G Pujahari, P Punin, V Putschke, J Qvigstad, H Rachevski, A Raha, S Rak, J Rakotozafindrabe, A Ramello, L Raniwala, R Raniwala, S Rasanen, SS Rascanu, BT Rathee, D Rauf, AW Razazi, V Read, KF Real, JS Redlich, K Reed, RJ Rehman, A Reichelt, P Reicher, M Reidt, F Renfordt, R Reolon, AR Reshetin, A Rettig, F Revol, JP Reygers, K Riabov, V Ricci, RA Richert, T Richter, M Riedler, P Riegler, W Riggi, F Rivetti, A Rocco, E Cahuantzi, MR Manso, AR Roed, K Rogochaya, E Rohni, S Rohr, D Rohrich, D Romita, R Ronchetti, F Ronflette, L Rosnet, P Rossi, A Roukoutakis, F Roy, A Roy, C Roy, P Montero, AJR Rui, R Russo, R Ryabinkin, E Ryabov, Y Rybicki, A Sadovsky, S Safarik, K Sahlmuller, B Sahoo, R Sahu, PK Saini, J Sakai, S Salgado, CA Salzwedel, J Sambyal, S Samsonov, V Castro, XS Rodriguez, FJS Sandor, L Sandoval, A Sano, M Santagati, G Sarkar, D Scapparone, E Scarlassara, F Scharenberg, RP Schiaua, C Schicker, R Schmidt, C Schmidt, HR Schuchmann, S Schukraft, J Schulc, M Schuster, T Schutz, Y Schwarz, K Schweda, K Scioli, G Scomparin, E Scott, R Segato, G Seger, JE Sekiguchi, Y Selyuzhenkov, I Seo, J Serradilla, E Sevcenco, A Shabetai, A Shabratova, G Shahoyan, R Shangaraev, A Sharma, N Sharma, S Shigaki, K Shtejer, K Sibiriak, Y Siddhanta, S Siemiarczuk, T Silvermyr, D Silvestre, C Simatovic, G Singaraju, R Singh, R Singha, S Singhal, V Sinha, BC Sinha, T Sitar, B Sitta, M Skaali, TB Skjerdal, K Slupecki, M Smirnov, N Snellings, RJM Sogaard, C Soltz, R Song, J Song, M Soramel, F Sorensen, S Spacek, M Spiriti, E Sputowska, I Spyropoulou-Stassinaki, M Srivastava, BK Stachel, J Stan, I Stefanek, G Steinpreis, M Stenlund, E Steyn, G Stiller, JH Stocco, D Stolpovskiy, M Strmen, P Suaide, AAP Sugitate, T Suire, C Suleymanov, M Sultanov, R Sumbera, M Susa, T Symons, TJM Szabo, A de Toledo, AS Szarka, I Szczepankiewicz, A Szymanski, M Takahashi, J Tangaro, MA Takaki, JDT Peloni, AT Martinez, AT Tarzila, MG Tauro, A Munoz, GT Telesca, A Terrevoli, C Thader, J Thomas, D Tieulent, R Timmins, AR Toia, A Trubnikov, V Trzaska, WH Tsuji, T Tumkin, A Turrisi, R Tveter, TS Ullaland, K Uras, A Usai, GL Vajzer, M Vala, M Palomo, LV Vallero, S Vyvre, PV Van der Maarel, J Van Hoorne, JW van Leeuwen, M Vargas, A Vargyas, M Varma, R Vasileiou, M Vasiliev, A Vechernin, V Veldhoen, M Velure, A Venaruzzo, M Vercellin, E Limon, SV Vernet, R Verweij, M Vickovic, L Viesti, G Viinikainen, J Vilakazi, Z Baillie, OV Vinogradov, A Vinogradov, L Vinogradov, Y Virgili, T Viyogi, YP Vodopyanov, A Volkl, MA Voloshin, K Voloshin, SA Volpe, G von Haller, B Vorobyev, I Vranic, D Vrlakova, J Vulpescu, B Vyushin, A Wagner, B Wagner, J Wagner, V Wang, M Wang, Y Watanabe, D Weber, M Wessels, JP Westerhoff, U Wiechula, J Wikne, J Wilde, M Wilk, G Wilkinson, J Williams, MCS Windelband, B Winn, M Yaldo, CG Yamaguchi, Y Yang, H Yang, P Yang, S Yano, S Yasnopolskiy, S Yi, J Yin, Z Yoo, IK Yushmanov, I Zaccolo, V Zach, C Zaman, A Zampolli, C Zaporozhets, S Zarochentsev, A Zavada, P Zaviyalov, N Zbroszczyk, H Zgura, IS Zhalov, M Zhang, H Zhang, X Zhang, Y Zhao, C Zhigareva, N Zhou, D Zhou, F Zhou, Y Zhou, Z Zhu, H Zhu, J Zhu, X Zichichi, A Zimmermann, A Zimmermann, MB Zinovjev, G Zoccarato, Y Zyzak, M AF Abelev, B. Adam, J. Adamova, D. Aggarwal, M. M. Agnello, M. Agostinelli, A. Agrawal, N. Ahammed, Z. Ahmad, N. Ahmed, I. Ahn, S. U. Ahn, S. A. Aimo, I. Aiola, S. Ajaz, M. Akindinov, A. Alam, S. N. Aleksandrov, D. Alessandro, B. Alexandre, D. Alici, A. Alkin, A. Alme, J. Alt, T. Altinpinar, S. Altsybeev, I. Alves Garcia Prado, C. Andrei, C. Andronic, A. Anguelov, V. Anielski, J. Anticic, T. Antinori, F. Antonioli, P. Aphecetche, L. Appelshaeuser, H. Arcelli, S. Armesto, N. Arnaldi, R. Aronsson, T. Arsene, I. C. Arslandok, M. Augustinus, A. Averbeck, R. Awes, T. C. Azmi, M. D. Bach, M. Badala, A. Baek, Y. W. Bagnasco, S. Bailhache, R. Bala, R. Baldisseri, A. Pedrosa, F. Baltasar Dos Santos Baral, R. C. Barbera, R. Barile, F. Barnafoeldi, G. G. Barnby, L. S. Barret, V. Bartke, J. Basile, M. Bastid, N. Basu, S. Bathen, B. Batigne, G. Camejo, A. Batista Batyunya, B. Batzing, P. C. Baumann, C. Bearden, I. G. Beck, H. Bedda, C. Behera, N. K. Belikov, I. Bellini, F. Bellwied, R. Belmont-Moreno, E. Belmont, R., III Belyaev, V. Bencedi, G. Beole, S. Berceanu, I. Bercuci, A. Berdnikov, Y. Berenyi, D. Berger, M. E. Bertens, R. A. Berzano, D. Betev, L. Bhasin, A. Bhat, I. R. Bhati, A. K. Bhattacharjee, B. Bhom, J. Bianchi, L. Bianchi, N. Bianchin, C. Bielcik, J. Bielcikova, J. Bilandzic, A. Bjelogrlic, S. Blanco, F. Blau, D. Blume, C. Bock, F. Bogdanov, A. Boggild, H. Bogolyubsky, M. Boehmer, F. V. Boldizsar, L. Bombara, M. Book, J. Borel, H. Borissov, A. Bossu, F. Botje, M. Botta, E. Boettger, S. Braun-Munzinger, P. Bregant, M. Breitner, T. Broker, T. A. Browning, T. A. Broz, M. Bruna, E. Bruno, G. E. Budnikov, D. Buesching, H. Bufalino, S. Buncic, P. Busch, O. Buthelezi, Z. Caffarri, D. Cai, X. Caines, H. Diaz, L. Calero Caliva, A. Calvo Villar, E. Camerini, P. Carena, F. Carena, W. Castellanos, J. Castillo Casula, E. A. R. Catanescu, V. Cavicchioli, C. Ceballos Sanchez, C. Cepila, J. Cerello, P. Chang, B. Chapeland, S. Charvet, J. L. Chattopadhyay, S. Chattopadhyay, S. Chelnokov, V. Cherney, M. Cheshkov, C. Cheynis, B. Barroso, V. Chibante Chinellato, D. D. Chochula, P. Chojnacki, M. Choudhury, S. Christakoglou, P. Christensen, C. H. Christiansen, P. Chujo, T. Chung, S. U. Cicalo, C. Cifarelli, L. Cindolo, F. Cleymans, J. Colamaria, F. Colella, D. Collu, A. Colocci, M. Balbastre, G. Conesa del Valle, Z. Conesa Connors, M. E. Contreras, J. G. Cormier, T. M. Morales, Y. Corrales Cortese, P. Cortes Maldonado, I. Cosentino, M. R. Costa, F. Crochet, P. Cruz Albino, R. Cuautle, E. Cunqueiro, L. Dainese, A. Dang, R. Danu, A. Das, D. Das, I. Das, K. Das, S. Dash, A. Dash, S. De, S. Delagrange, H. Deloff, A. Denes, E. D'Erasmo, G. De Caro, A. de Cataldo, G. de Cuveland, J. De Falco, A. De Gruttola, D. De Marco, N. De Pasquale, S. de Rooij, R. Diaz Corchero, M. A. Dietel, T. Dillenseger, P. Divia, R. Di Bari, D. Di Liberto, S. Di Mauro, A. Di Nezza, P. Djuvsland, O. Dobrin, A. Dobrowolski, T. Domenicis Gimenez, D. Doenigus, B. Dordic, O. Dorheim, S. Dubey, A. K. Dubla, A. Ducroux, L. Dupieux, P. Majumdar, A. K. Dutta Hilden, T. E. Ehlers, R. J. Elia, D. Engel, H. Erazmus, B. Erdal, H. A. Eschweiler, D. Espagnon, B. Esposito, M. Estienne, M. Esumi, S. Evans, D. Evdokimov, S. Fabris, D. Faivre, J. Falchieri, D. Fantoni, A. Fasel, M. Fehlker, D. Feldkamp, L. Felea, D. Feliciello, A. Feofilov, G. Ferencei, J. Fernandez Tellez, A. Ferreiro, E. G. Ferretti, A. Festanti, A. Figiel, J. Figueredo, M. A. S. Filchagin, S. Finogeev, D. Fionda, F. M. Fiore, E. M. Floratos, E. Floris, M. Foertsch, S. Foka, P. Fokin, S. Fragiacomo, E. Francescon, A. Frankenfeld, U. Fuchs, U. Furget, C. Girard, M. Fusco Gaardhoje, J. J. Gagliardi, M. Gago, A. M. Gallio, M. Gangadharan, D. R. Ganoti, P. Garabatos, C. Garcia-Solis, E. Gargiulo, C. Garishvili, I. Gerhard, J. Germain, M. Gheata, A. Gheata, M. Ghidini, B. Ghosh, P. Ghosh, S. K. Gianotti, P. Giubellino, P. Gladysz-Dziadus, E. Glaessel, P. Ramirez, A. Gomez Gonzalez-Zamora, P. Gorbunov, S. Goerlich, L. Gotovac, S. Graczykowski, L. K. Grelli, A. Grigoras, A. Grigoras, C. Grigoriev, V. Grigoryan, A. Grigoryan, S. Grinyov, B. Grion, N. Grosse-Oetringhaus, J. F. Grossiord, J. -Y. Grosso, R. Guber, F. Guernane, R. Guerzoni, B. Guilbaud, M. Gulbrandsen, K. Gulkanyan, H. Gumbo, M. Gunji, T. Gupta, A. Gupta, R. Khan, K. H. Haake, R. Haaland, O. Hadjidakis, C. Haiduc, M. Hamagaki, H. Hamar, G. Hanratty, L. D. Hansen, A. Harris, J. W. Hartmann, H. Harton, A. Hatzifotiadou, D. Hayashi, S. Heckel, S. T. Heide, M. Helstrup, H. Herghelegiu, A. Herrera Corral, G. Hess, B. A. Hetland, K. F. Hippolyte, B. Hladky, J. Hristov, P. Huang, M. Humanic, T. J. Hussain, N. Hutter, D. Hwang, D. S. Ilkaev, R. Ilkiv, I. Inaba, M. Innocenti, G. M. Ionita, C. Ippolitov, M. Irfan, M. Ivanov, M. Ivanov, V. Jacholkowski, A. Jacobs, P. M. Jahnke, C. Jang, H. J. Janik, M. A. Jayarathna, P. H. S. Y. Jena, C. Jena, S. Jimenez Bustamante, R. T. Jones, P. G. Jung, H. Jusko, A. Kadyshevskiy, V. Kalcher, S. Kalinak, P. Kalweit, A. Kamin, J. Kang, J. H. Kaplin, V. Kar, S. Uysal, A. Karasu Karavichev, O. Karavicheva, T. Karpechev, E. Kebschull, U. Keidel, R. Keijdener, D. L. D. Svn, M. Keil Khan, M. M. Khan, P. Khan, S. A. Khanzadeev, A. Kharlov, Y. Kileng, B. Kim, B. Kim, D. W. Kim, D. J. Kim, J. S. Kim, M. Kim, M. Kim, S. Kim, T. Kirsch, S. Kisel, I. Kiselev, S. Kisiel, A. Kiss, G. Klay, J. L. Klein, J. Klein-Boesing, C. Kluge, A. Knichel, M. L. Knospe, A. G. Kobdaj, C. Kofarago, M. Koehler, M. K. Kollegger, T. Kolojvari, A. Kondratiev, V. Kondratyeva, N. Konevskikh, A. Kovalenko, V. Kowalski, M. Kox, S. Meethaleveedu, G. Koyithatta Kral, J. Kralik, I. Kramer, F. Kravcakova, A. Krelina, M. Kretz, M. Krivda, M. Krizek, F. Kryshen, E. Krzewicki, M. Kucera, V. Kucheriaev, Y. Kugathasan, T. Kuhn, C. Kuijer, P. G. Kulakov, I. Kumar, J. Kurashvili, P. Kurepin, A. Kurepin, A. B. Kuryakin, A. Kushpil, S. Kweon, M. J. Kwon, Y. Ladron de Guevara, P. Lagana Fernandes, C. Lakomov, I. Langoy, R. Lara, C. Lardeux, A. Lattuca, A. La Pointe, S. L. La Rocca, P. Lea, R. Leardini, L. Lee, G. R. Legrand, I. Lehnert, J. Lemmon, R. C. Lenti, V. Leogrande, E. Leoncino, M. Leon Monzon, I. Levai, P. Li, S. Lien, J. Lietava, R. Lindal, S. Lindenstruth, V. Lippmann, C. Lisa, M. A. Ljunggren, H. M. Lodato, D. F. Loenne, P. I. Loggins, V. R. Loginov, V. Lohner, D. Loizides, C. Lopez, X. Lopez Torres, E. Lu, X. -G. Luettig, P. Lunardon, M. Luparello, G. Ma, R. Maevskaya, A. Mager, M. Mahapatra, D. P. Mahmood, S. M. Maire, A. Majka, R. D. Malaev, M. Maldonado Cervantes, I. Malinina, L. Mal'Kevich, D. Malzacher, P. Mamonov, A. Manceau, L. Manko, V. Manso, F. Manzari, V. Marchisone, M. Mares, J. Margagliotti, G. V. Margotti, A. Marin, A. Markert, C. Marquard, M. Martashvili, I. Martin, N. A. Martinengo, P. Martinez, M. I. Garcia, G. Martinez Blanco, J. Martin Martynov, Y. Mas, A. Masciocchi, S. Masera, M. Masoni, A. Massacrier, L. Mastroserio, A. Matyja, A. Mayer, C. Mazer, J. Mazzoni, M. A. Meddi, F. Menchaca-Rocha, A. Perez, J. Mercado Meres, M. Miake, Y. Mikhaylov, K. Milano, L. Milosevic, J. Mischke, A. Mishra, A. N. Miskowiec, D. Mitra, J. Mitu, C. M. Mlynarz, J. Mohammadi, N. Mohanty, B. Molnar, L. Montano Zetina, L. Montes, E. Morando, M. Moreira De Godoy, D. A. Moretto, S. Morsch, A. Muccifora, V. Mudnic, E. Muehlheim, D. Muhuri, S. Mukherjee, M. Mueller, H. Munhoz, M. G. Murray, S. Musa, L. Musinsky, J. Nandi, B. K. Nania, R. Nappi, E. Nattrass, C. Nayak, K. Nayak, T. K. Nazarenko, S. Nedosekin, A. Nicassio, M. Niculescu, M. Nielsen, B. S. Nikolaev, S. Nikulin, S. Nikulin, V. Nilsen, B. S. Noferini, F. Nomokonov, P. Nooren, G. Norman, J. Nyanin, A. Nystrand, J. Oeschler, H. Oh, S. Oh, S. K. Okatan, A. Olah, L. Oleniacz, J. Oliveira Da Silva, A. C. Onderwaater, J. Oppedisano, C. Velasquez, A. Ortiz Oskarsson, A. Otwinowski, J. Oyama, K. Sahoo, P. Pachmayer, Y. Pachr, M. Pagano, P. Paic, G. Painke, F. Pajares, C. Pal, S. K. Palmeri, A. Pant, D. Papikyan, V. Pappalardo, G. S. Pareek, P. Park, W. J. Parmar, S. Passfeld, A. Patalakha, D. I. Paticchio, V. Paul, B. Pawlak, T. Peitzmann, T. Da Costa, H. Pereira Pereira De Oliveira Filho, E. Peresunko, D. Lara, C. E. Perez Pesci, A. Peskov, V. Pestov, Y. Petracek, V. Petran, M. Petris, M. Petrovici, M. Petta, C. Piano, S. Pikna, M. Pillot, P. Pinazza, O. Pinsky, L. Piyarathna, D. B. Ploskon, M. Planinic, M. Pluta, J. Pochybova, S. Podesta-Lerma, P. L. M. Poghosyan, M. G. Pohjoisaho, E. H. O. Polichtchouk, B. Poljak, N. Pop, A. Porteboeuf-Houssais, S. Porter, J. Potukuchi, B. Prasad, S. K. Preghenella, R. Prino, F. Pruneau, C. A. Pshenichnov, I. Puddu, G. Pujahari, P. Punin, V. Putschke, J. Qvigstad, H. Rachevski, A. Raha, S. Rak, J. Rakotozafindrabe, A. Ramello, L. Raniwala, R. Raniwala, S. Rasanen, S. S. Rascanu, B. T. Rathee, D. Rauf, A. W. Razazi, V. Read, K. F. Real, J. S. Redlich, K. Reed, R. J. Rehman, A. Reichelt, P. Reicher, M. Reidt, F. Renfordt, R. Reolon, A. R. Reshetin, A. Rettig, F. Revol, J. -P. Reygers, K. Riabov, V. Ricci, R. A. Richert, T. Richter, M. Riedler, P. Riegler, W. Riggi, F. Rivetti, A. Rocco, E. Rodriguez Cahuantzi, M. Manso, A. Rodriguez Roed, K. Rogochaya, E. Rohni, S. Rohr, D. Rohrich, D. Romita, R. Ronchetti, F. Ronflette, L. Rosnet, P. Rossi, A. Roukoutakis, F. Roy, A. Roy, C. Roy, P. Rubio Montero, A. J. Rui, R. Russo, R. Ryabinkin, E. Ryabov, Y. Rybicki, A. Sadovsky, S. Safarik, K. Sahlmuller, B. Sahoo, R. Sahu, P. K. Saini, J. Sakai, S. Salgado, C. A. Salzwedel, J. Sambyal, S. Samsonov, V. Castro, X. Sanchez Sanchez Rodriguez, F. J. Sandor, L. Sandoval, A. Sano, M. Santagati, G. Sarkar, D. Scapparone, E. Scarlassara, F. Scharenberg, R. P. Schiaua, C. Schicker, R. Schmidt, C. Schmidt, H. R. Schuchmann, S. Schukraft, J. Schulc, M. Schuster, T. Schutz, Y. Schwarz, K. Schweda, K. Scioli, G. Scomparin, E. Scott, R. Segato, G. Seger, J. E. Sekiguchi, Y. Selyuzhenkov, I. Seo, J. Serradilla, E. Sevcenco, A. Shabetai, A. Shabratova, G. Shahoyan, R. Shangaraev, A. Sharma, N. Sharma, S. Shigaki, K. Shtejer, K. Sibiriak, Y. Siddhanta, S. Siemiarczuk, T. Silvermyr, D. Silvestre, C. Simatovic, G. Singaraju, R. Singh, R. Singha, S. Singhal, V. Sinha, B. C. Sinha, T. Sitar, B. Sitta, M. Skaali, T. B. Skjerdal, K. Slupecki, M. Smirnov, N. Snellings, R. J. M. Sogaard, C. Soltz, R. Song, J. Song, M. Soramel, F. Sorensen, S. Spacek, M. Spiriti, E. Sputowska, I. Spyropoulou-Stassinaki, M. Srivastava, B. K. Stachel, J. Stan, I. Stefanek, G. Steinpreis, M. Stenlund, E. Steyn, G. Stiller, J. H. Stocco, D. Stolpovskiy, M. Strmen, P. Suaide, A. A. P. Sugitate, T. Suire, C. Suleymanov, M. Sultanov, R. Sumbera, M. Susa, T. Symons, T. J. M. Szabo, A. Szanto de Toledo, A. Szarka, I. Szczepankiewicz, A. Szymanski, M. Takahashi, J. Tangaro, M. A. Takaki, J. D. Tapia Peloni, A. Tarantola Martinez, A. Tarazona Tarzila, M. G. Tauro, A. Tejeda Munoz, G. Telesca, A. Terrevoli, C. Thaeder, J. Thomas, D. Tieulent, R. Timmins, A. R. Toia, A. Trubnikov, V. Trzaska, W. H. Tsuji, T. Tumkin, A. Turrisi, R. Tveter, T. S. Ullaland, K. Uras, A. Usai, G. L. Vajzer, M. Vala, M. Palomo, L. Valencia Vallero, S. Vyvre, P. Vande Van der Maarel, J. Van Hoorne, J. W. van Leeuwen, M. Vargas, A. Vargyas, M. Varma, R. Vasileiou, M. Vasiliev, A. Vechernin, V. Veldhoen, M. Velure, A. Venaruzzo, M. Vercellin, E. Vergara Limon, S. Vernet, R. Verweij, M. Vickovic, L. Viesti, G. Viinikainen, J. Vilakazi, Z. Baillie, O. Villalobos Vinogradov, A. Vinogradov, L. Vinogradov, Y. Virgili, T. Viyogi, Y. P. Vodopyanov, A. Voelkl, M. A. Voloshin, K. Voloshin, S. A. Volpe, G. von Haller, B. Vorobyev, I. Vranic, D. Vrlakova, J. Vulpescu, B. Vyushin, A. Wagner, B. Wagner, J. Wagner, V. Wang, M. Wang, Y. Watanabe, D. Weber, M. Wessels, J. P. Westerhoff, U. Wiechula, J. Wikne, J. Wilde, M. Wilk, G. Wilkinson, J. Williams, M. C. S. Windelband, B. Winn, M. Yaldo, C. G. Yamaguchi, Y. Yang, H. Yang, P. Yang, S. Yano, S. Yasnopolskiy, S. Yi, J. Yin, Z. Yoo, I. -K. Yushmanov, I. Zaccolo, V. Zach, C. Zaman, A. Zampolli, C. Zaporozhets, S. Zarochentsev, A. Zavada, P. Zaviyalov, N. Zbroszczyk, H. Zgura, I. S. Zhalov, M. Zhang, H. Zhang, X. Zhang, Y. Zhao, C. Zhigareva, N. Zhou, D. Zhou, F. Zhou, Y. Zhou Zhuo Zhu, H. Zhu, J. Zhu, X. Zichichi, A. Zimmermann, A. Zimmermann, M. B. Zinovjev, G. Zoccarato, Y. Zyzak, M. CA ALICE Collaboration TI Elliptic flow of identified hadrons in Pb-Pb collisions at root(NN)-N-s=2.76 Tev SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE Collective flow; Heavy Ions; Particle correlations and fluctuations ID QUARK-GLUON PLASMA; HEAVY-ION COLLISIONS; RELATIVISTIC NUCLEAR COLLISIONS; TRANSVERSE-MOMENTUM; ROOT-S(NN)=2.76 TEV; ANISOTROPIC FLOW; AU+AU COLLISIONS; COLLABORATION; PERSPECTIVE; SUPPRESSION AB The elliptic flow coefficient (v(2)) of identified particles in Pb-Pb collisions at root s(NN) = 2.76 TeV was measured with the ALICE detector at the Large Hadron Collider (LHC). The results were obtained with the Scalar Product method, a two-particle correlation technique, using a pseudo-rapidity gap of |Delta eta| > 0.9 between the identified hadron under study and the reference particles. The v (2) is reported for pi(+/-), K-+/-, K-S(0), p+(p) over bar, phi, Lambda+(Lambda) over bar, Xi+(Xi) over bar (+) and Omega(-)+(Omega) over bar (+) in several collision centralities. In the low transverse momentum (p(T)) region, p(T) < 3 GeV/c, v(2)(p(T)) exhibits a particle mass dependence consistent with elliptic flow accompanied by the transverse radial expansion of the system with a common velocity field. The experimental data for pi (+/-) and the combined K-+/- and K-S(0) results, are described fairly well by hydrodynamic calculations coupled to a hadronic cascade model (VISHNU) for central collisions. However, the same calculations fail to reproduce the v(2)(p(T)) for p+(p) over bar, phi, Lambda+(Lambda) over bar, Xi+(Xi) over bar (+). For transverse momentum values larger than about 3 GeV/c, particles tend to group according to their type, i.e. mesons and baryons. The present measurements exhibit deviations from the number of constituent quark (NCQ) scaling at the level of +/- 20% for p(T) > 3 GeV/c. C1 [Grigoryan, A.; Gulkanyan, H.; Papikyan, V.] AI Alikhanyan Natl Sci Lab Yerevan Phys Inst Fdn, Yerevan, Armenia. [Cortes Maldonado, I.; Fernandez Tellez, A.; Martinez, M. I.; Rodriguez Cahuantzi, M.; Tejeda Munoz, G.; Vargas, A.; Vergara Limon, S.] Benemerita Univ Autonoma Puebla, Puebla, Mexico. [Alkin, A.; Chelnokov, V.; Grinyov, B.; Martynov, Y.; Trubnikov, V.] Bogolyubov Inst Theoret Phys, Kiev, Ukraine. [Das, S.; Ghosh, S. K.; Raha, S.] Bose Inst, Dept Phys, Kolkata, India. [Das, S.; Ghosh, S. K.; Raha, S.] Ctr Astroparticle Phys & Space Sci, Kolkata, India. [Pestov, Y.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Klay, J. L.] Calif Polytech State Univ San Luis Obispo, San Luis Obispo, CA 93407 USA. [Cai, X.; Dang, R.; Wang, M.; Yang, P.; Yin, Z.; Zhang, H.; Zhang, X.; Zhang, Y.; Zhou, D.; Zhou, F.; Zhu, H.; Zhu, J.; Zhu, X.] Cent China Normal Univ, Wuhan, Peoples R China. [Vernet, R.] IN2P3, Ctr Calcul, Villeurbanne, France. [Ceballos Sanchez, C.; Lopez Torres, E.] Ctr Aplicac Tecnol & Desarrollo Nucl CEADEN, Havana, Cuba. [Blanco, F.; Diaz Corchero, M. A.; Gonzalez-Zamora, P.; Montes, E.; Rubio Montero, A. J.; Serradilla, E.] Ctr Invest Energet Medioambientales & Tecnol CIEM, Madrid, Spain. [Cruz Albino, R.; Herrera Corral, G.; Montano Zetina, L.] Ctr Invest & Estudios Avanzados CINVESTAV, Mexico City, DF, Mexico. [Contreras, J. G.; Cruz Albino, R.; Herrera Corral, G.; Montano Zetina, L.] Ctr Invest & Estudios Avanzados CINVESTAV, Merida, Mexico. [Alici, A.; Noferini, F.; Zichichi, A.] Ctr Fermi Museo Stor Fis, Rome, Italy. [Alici, A.; Noferini, F.; Zichichi, A.] Ctr Studi & Ric Enrico Fermi, Rome, Italy. [Garcia-Solis, E.; Harton, A.] Chicago State Univ, Chicago, IL USA. [Baldisseri, A.; Borel, H.; Castellanos, J. Castillo; Charvet, J. L.; Da Costa, H. Pereira; Rakotozafindrabe, A.] Commissariat Energie Atom, IRFU, Saclay, France. [Ahmed, I.; Ajaz, M.; Khan, K. H.; Rauf, A. W.; Suleymanov, M.; Zaman, A.] COMSATS Inst Informat Technol CIIT, Islamabad, Pakistan. [Armesto, N.; Ferreiro, E. G.; Pajares, C.; Salgado, C. A.] Univ Santiago Compostela, Dept Fis Particulas, Santiago De Compostela, Spain. [Armesto, N.; Ferreiro, E. G.; Pajares, C.; Salgado, C. A.] Univ Santiago Compostela, IGFAE, Santiago De Compostela, Spain. [Altinpinar, S.; Djuvsland, O.; Fehlker, D.; Haaland, O.; Huang, M.; Loenne, P. I.; Nystrand, J.; Rehman, A.; Rohrich, D.; Skjerdal, K.; Ullaland, K.; Velure, A.; Wagner, B.; Yang, S.; Zhou Zhuo] Univ Bergen, Dept Phys & Technol, Bergen, Norway. [Ahmad, N.; Irfan, M.] Aligarh Muslim Univ, Dept Phys, Aligarh 202002, Uttar Pradesh, India. [Gangadharan, D. R.; Humanic, T. J.; Lisa, M. A.; Salzwedel, J.; Steinpreis, M.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Hwang, D. S.; Kim, S.] Sejong Univ, Dept Phys, Seoul, South Korea. [Batzing, P. C.; Dordic, O.; Lindal, S.; Mahmood, S. M.; Qvigstad, H.; Richter, M.; Roed, K.; Skaali, T. B.; Tveter, T. S.; Wikne, J.; Zhao, C.] Univ Oslo, Dept Phys, Oslo, Norway. [Meddi, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Di Liberto, S.; Mazzoni, M. A.; Meddi, F.] Sezione Ist Nazl Fis Nucl, Rome, Italy. [Casula, E. A. R.; Collu, A.; De Falco, A.; Puddu, G.; Razazi, V.; Terrevoli, C.; Usai, G. L.] Univ Cagliari, Dipartimento Fis, Cagliari, Italy. [Casula, E. A. R.; Cicalo, C.; Collu, A.; De Falco, A.; Masoni, A.; Puddu, G.; Razazi, V.; Siddhanta, S.; Terrevoli, C.; Usai, G. L.] Sezione Ist Nazl Fis Nucl, Cagliari, Italy. [Camerini, P.; Lea, R.; Margagliotti, G. V.; Rui, R.; Venaruzzo, M.] Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy. [Camerini, P.; Fragiacomo, E.; Grion, N.; Lea, R.; Margagliotti, G. V.; Piano, S.; Rachevski, A.; Rui, R.; Venaruzzo, M.] Sezione Ist Nazl Fis Nucl, Trieste, Italy. [Beole, S.; Berzano, D.; Bianchi, L.; Botta, E.; Morales, Y. Corrales; Ferretti, A.; Gagliardi, M.; Gallio, M.; Innocenti, G. M.; Lattuca, A.; Leoncino, M.; Masera, M.; Russo, R.; Shtejer, K.; Vercellin, E.] Univ Turin, Dipartimento Fis, Turin, Italy. [Agostinelli, A.; Arcelli, S.; Basile, M.; Bellini, F.; Cifarelli, L.; Colocci, M.; Falchieri, D.; Guerzoni, B.; Scioli, G.] Univ Bologna, Dipartimento Fis & Astron, Bologna, Italy. [Agostinelli, A.; Alici, A.; Antonioli, P.; Arcelli, S.; Basile, M.; Bellini, F.; Cifarelli, L.; Cindolo, F.; Colocci, M.; Falchieri, D.; Guerzoni, B.; Hatzifotiadou, D.; Margotti, A.; Nania, R.; Noferini, F.; Pesci, A.; Pinazza, O.; Preghenella, R.; Scapparone, E.; Scioli, G.; Williams, M. C. S.; Zampolli, C.] Sezione Ist Nazl Fis Nucl, Bologna, Italy. [Barbera, R.; Jacholkowski, A.; La Rocca, P.; Petta, C.; Riggi, F.; Santagati, G.] Univ Catania, Dipartimento Fis & Astron, Catania, Italy. [Badala, A.; Barbera, R.; Jacholkowski, A.; La Rocca, P.; Palmeri, A.; Pappalardo, G. S.; Petta, C.; Riggi, F.; Santagati, G.] Sezione Ist Nazl Fis Nucl, Catania, Italy. [Caffarri, D.; Festanti, A.; Francescon, A.; Jena, C.; Lunardon, M.; Morando, M.; Moretto, S.; Scarlassara, F.; Segato, G.; Soramel, F.; Viesti, G.] Univ Padua, Dipartimento Fis & Astron, Padua, Italy. [Antinori, F.; Caffarri, D.; Dainese, A.; Fabris, D.; Festanti, A.; Francescon, A.; Jena, C.; Lunardon, M.; Morando, M.; Moretto, S.; Scarlassara, F.; Segato, G.; Soramel, F.; Toia, A.; Turrisi, R.; Viesti, G.] Sezione Ist Nazl Fis Nucl, Padua, Italy. [De Caro, A.; De Gruttola, D.; De Pasquale, S.; Girard, M. Fusco; Pagano, P.; Virgili, T.] Univ Salerno, Dipartimento Fis ER Caianiello, I-84100 Salerno, Italy. [De Caro, A.; De Gruttola, D.; De Pasquale, S.; Girard, M. Fusco; Pagano, P.; Virgili, T.] Grp Collegato INFN, Salerno, Italy. [Cortese, P.; Ramello, L.; Sitta, M.] Univ Piemonte Orientale, Dipartimento Sci & Innovaz Tecnol, Alessandria, Italy. [Cortese, P.; Ramello, L.; Sitta, M.] Grp Collegato INFN, Alessandria, Italy. [Barile, F.; Bruno, G. E.; Colamaria, F.; Colella, D.; D'Erasmo, G.; Di Bari, D.; Fionda, F. M.; Fiore, E. M.; Ghidini, B.; Mastroserio, A.; Tangaro, M. A.] Dipartimento Interateneo Fis M Merlin, Bari, Italy. [Barile, F.; Bruno, G. E.; Colamaria, F.; Colella, D.; D'Erasmo, G.; de Cataldo, G.; Di Bari, D.; Elia, D.; Fionda, F. M.; Fiore, E. M.; Ghidini, B.; Lenti, V.; Manzari, V.; Mastroserio, A.; Nappi, E.; Paticchio, V.; Tangaro, M. A.] Sezione Ist Nazl Fis Nucl, Bari, Italy. [Christiansen, P.; Ljunggren, H. M.; Velasquez, A. Ortiz; Oskarsson, A.; Richert, T.; Sogaard, C.; Stenlund, E.] Lund Univ, Div Expt High Energy Phys, Lund, Sweden. [Hess, B. A.; Schmidt, H. R.; Wiechula, J.] Univ Tubingen, Tubingen, Germany. [Augustinus, A.; Pedrosa, F. Baltasar Dos Santos; Betev, L.; Buncic, P.; Carena, F.; Carena, W.; Cavicchioli, C.; Chapeland, S.; Barroso, V. Chibante; Chochula, P.; Costa, F.; Divia, R.; Di Mauro, A.; Erazmus, B.; Esposito, M.; Floris, M.; Francescon, A.; Fuchs, U.; Gargiulo, C.; Gheata, A.; Gheata, M.; Giubellino, P.; Grigoras, A.; Grigoras, C.; Grosse-Oetringhaus, J. F.; Grosso, R.; Hristov, P.; Ionita, C.; Kalweit, A.; Svn, M. Keil; Kluge, A.; Kobdaj, C.; Kofarago, M.; Kryshen, E.; Kugathasan, T.; Legrand, I.; Mager, M.; Martinengo, P.; Milano, L.; Morsch, A.; Mueller, H.; Musa, L.; Niculescu, M.; Pinazza, O.; Poghosyan, M. G.; Reidt, F.; Revol, J. -P.; Riedler, P.; Riegler, W.; Rossi, A.; Safarik, K.; Schukraft, J.; Schutz, Y.; Shahoyan, R.; Szczepankiewicz, A.; Martinez, A. Tarazona; Tauro, A.; Telesca, A.; Vyvre, P. Vande; Van Hoorne, J. W.; Volpe, G.; von Haller, B.; Vranic, D.; Zimmermann, M. B.] European Org Nucl Res CERN, Geneva, Switzerland. [Alme, J.; Erdal, H. A.; Helstrup, H.; Hetland, K. F.; Kileng, B.] Bergen Univ Coll, Fac Engn, Bergen, Norway. [Meres, M.; Pikna, M.; Sitar, B.; Strmen, P.; Szabo, A.; Szarka, I.] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia. [Adam, J.; Bielcik, J.; Broz, M.; Cepila, J.; Krelina, M.; Pachr, M.; Petracek, V.; Petran, M.; Schulc, M.; Spacek, M.; Wagner, V.; Zach, C.] Czech Tech Univ, Fac Nucl Sci & Phys Engn, CR-11519 Prague, Czech Republic. [Bombara, M.; Kravcakova, A.; Vrlakova, J.] Safarik Univ, Fac Sci, Kosice, Slovakia. [Alt, T.; Bach, M.; de Cuveland, J.; Eschweiler, D.; Gerhard, J.; Gorbunov, S.; Hartmann, H.; Hutter, D.; Kalcher, S.; Kirsch, S.; Kisel, I.; Kollegger, T.; Kretz, M.; Lindenstruth, V.; Painke, F.; Rettig, F.; Rohr, D.] Goethe Univ Frankfurt, Frankfurt Inst Adv Studies, D-60054 Frankfurt, Germany. [Baek, Y. W.; Jung, H.; Kim, D. W.; Kim, J. S.; Kim, M.; Oh, S. K.] Gangneung Wonju Natl Univ, Kangnung, South Korea. [Bhattacharjee, B.; Hussain, N.] Gauhati Univ, Dept Phys, Gauhati, India. [Hilden, T. E.; Pohjoisaho, E. H. O.; Rasanen, S. S.] Helsinki Inst Phys, Helsinki, Finland. [Shigaki, K.; Sugitate, T.; Yano, S.] Hiroshima Univ, Hiroshima, Japan. [Agrawal, N.; Behera, N. K.; Dash, S.; Meethaleveedu, G. Koyithatta; Kumar, J.; Nandi, B. K.; Pant, D.; Varma, R.] Indian Inst Technol Bombay IIT, Bombay, Maharashtra, India. [Mishra, A. N.; Sahoo, P.; Pareek, P.; Roy, A.; Sahoo, R.] Indian Inst Technol Indore, Indore IITI, Indore, India. [del Valle, Z. Conesa; Das, I.; Espagnon, B.; Hadjidakis, C.; Lakomov, I.; Suire, C.; Takaki, J. D. Tapia] Univ Paris 11, CNRS, IN2P3, IPNO, F-91405 Orsay, France. [Boettger, S.; Breitner, T.; Engel, H.; Ramirez, A. Gomez; Kebschull, U.; Lara, C.] Goethe Univ Frankfurt, Inst Informat, D-60054 Frankfurt, Germany. [Appelshaeuser, H.; Arslandok, M.; Bailhache, R.; Baumann, C.; Beck, H.; Blume, C.; Book, J.; Broker, T. A.; Buesching, H.; Dillenseger, P.; Doenigus, B.; Heckel, S. T.; Kamin, J.; Kramer, F.; Kulakov, I.; Lehnert, J.; Luettig, P.; Marquard, M.; Peskov, V.; Rascanu, B. T.; Reichelt, P.; Renfordt, R.; Sahlmuller, B.; Schuchmann, S.; Peloni, A. Tarantola; Zyzak, M.] Goethe Univ Frankfurt, Inst Kernphys, Frankfurt, Germany. [Anielski, J.; Bathen, B.; Dietel, T.; Feldkamp, L.; Haake, R.; Heide, M.; Klein-Boesing, C.; Muehlheim, D.; Passfeld, A.; Wessels, J. P.; Westerhoff, U.; Wilde, M.; Zimmermann, M. B.] Univ Munster, Inst Kernphys, D-48149 Munster, Germany. [Belikov, I.; Hippolyte, B.; Kuhn, C.; Molnar, L.; Roy, C.; Castro, X. Sanchez] Univ Strasbourg, CNRS, IPHC, IN2P3, Strasbourg, France. [Finogeev, D.; Guber, F.; Karavichev, O.; Karavicheva, T.; Karpechev, E.; Konevskikh, A.; Kurepin, A.; Kurepin, A. B.; Maevskaya, A.; Pshenichnov, I.; Reshetin, A.] Acad Sci, Inst Nucl Res, Moscow, Russia. [Bertens, R. A.; Bianchin, C.; Bjelogrlic, S.; Caliva, A.; de Rooij, R.; Dobrin, A.; Dubla, A.; Grelli, A.; Keijdener, D. L. D.; La Pointe, S. L.; Leogrande, E.; Lodato, D. F.; Luparello, G.; Mischke, A.; Mohammadi, N.; Nooren, G.; Peitzmann, T.; Reicher, M.; Rocco, E.; Snellings, R. J. M.; Thomas, D.; Van der Maarel, J.; van Leeuwen, M.; Veldhoen, M.; Yang, H.; Zhou, Y.] Univ Utrecht, Inst Subatom Phys, Utrecht, Netherlands. [Akindinov, A.; Kiselev, S.; Mal'Kevich, D.; Mikhaylov, K.; Nedosekin, A.; Sultanov, R.; Voloshin, K.; Zhigareva, N.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Kalinak, P.; Kralik, I.; Krivda, M.; Musinsky, J.; Sandor, L.; Vala, M.] Slovak Acad Sci, Inst Expt Phys, Kosice 04353, Slovakia. [Hladky, J.; Mares, J.; Zavada, P.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Baral, R. C.; Mahapatra, D. P.; Sahu, P. K.] Inst Phys, Bhubaneswar 751007, Orissa, India. [Danu, A.; Felea, D.; Gheata, M.; Haiduc, M.; Mitu, C. M.; Niculescu, M.; Sevcenco, A.; Stan, I.; Zgura, I. S.] Inst Space Sci, Bucharest, Romania. [Cuautle, E.; Jimenez Bustamante, R. T.; Ladron de Guevara, P.; Maldonado Cervantes, I.; Paic, G.] Univ Nacl Autonoma Mexico, Inst Ciencias Nucl, Mexico City 04510, DF, Mexico. [Belmont-Moreno, E.; Menchaca-Rocha, A.; Sandoval, A.; Serradilla, E.] Univ Nacl Autonoma Mexico, Inst Fis, Mexico City 01000, DF, Mexico. [Bossu, F.; Buthelezi, Z.; Foertsch, S.; Steyn, G.; Vilakazi, Z.] Natl Res Fdn, iThemba LABS, Somerset West, South Africa. [Batyunya, B.; Grigoryan, S.; Kadyshevskiy, V.; Malinina, L.; Mikhaylov, K.; Nomokonov, P.; Rogochaya, E.; Shabratova, G.; Vala, M.; Vodopyanov, A.; Zaporozhets, S.] Joint Inst Nucl Res, Dubna, Russia. [Ahn, S. U.; Ahn, S. A.; Jang, H. J.; Kim, D. W.] Korea Inst Sci & Technol Informat, Taejon, South Korea. [Uysal, A. Karasu; Okatan, A.] KTO Karatay Univ, Konya, Turkey. [Baek, Y. W.; Barret, V.; Bastid, N.; Camejo, A. Batista; Crochet, P.; Dupieux, P.; Li, S.; Lopez, X.; Manso, F.; Marchisone, M.; Porteboeuf-Houssais, S.; Rosnet, P.; Palomo, L. Valencia; Vulpescu, B.] Univ Clermont Ferrand, Clermont Univ, CNRS, LPC,IN2P3, Clermont Ferrand, France. [Balbastre, G. Conesa; Faivre, J.; Furget, C.; Guernane, R.; Kox, S.; Real, J. S.; Silvestre, C.] Univ Grenoble Alpes, CNRS, IN2P3, Lab Phys Subatom & Cosmol, Grenoble, France. [Bianchi, N.; Diaz, L. Calero; Cunqueiro, L.; Di Nezza, P.; Fantoni, A.; Gianotti, P.; Muccifora, V.; Reolon, A. R.; Ronchetti, F.; Sakai, S.; Spiriti, E.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Ricci, R. A.; Venaruzzo, M.] Ist Nazl Fis Nucl, Lab Nazl Legnaro, I-35020 Legnaro, Italy. [Bock, F.; Jacobs, P. M.; Loizides, C.; Ploskon, M.; Porter, J.; Symons, T. J. M.; Zhang, X.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Abelev, B.; Garishvili, I.; Soltz, R.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Belyaev, V.; Bogdanov, A.; Grigoriev, V.; Kaplin, V.; Kondratyeva, N.; Loginov, V.] Moscow Engn Phys Inst, Moscow 115409, Russia. [Deloff, A.; Dobrowolski, T.; Ilkiv, I.; Kurashvili, P.; Redlich, K.; Siemiarczuk, T.; Stefanek, G.; Wilk, G.] Natl Ctr Nucl Studies, Warsaw, Poland. [Andrei, C.; Berceanu, I.; Bercuci, A.; Catanescu, V.; Herghelegiu, A.; Petris, M.; Petrovici, M.; Pop, A.; Schiaua, C.; Tarzila, M. G.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Mohanty, B.; Nayak, K.; Singha, S.] Natl Inst Sci Educ & Res, Bhubaneswar, Orissa, India. [Bearden, I. G.; Bilandzic, A.; Boggild, H.; Chojnacki, M.; Christensen, C. H.; Gaardhoje, J. J.; Gulbrandsen, K.; Hansen, A.; Nielsen, B. S.; Zaccolo, V.] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Botje, M.; Christakoglou, P.; Kuijer, P. G.; Lara, C. E. Perez; Manso, A. Rodriguez] Natl Inst Subatom Phys, Nikhef, Amsterdam, Netherlands. [Lemmon, R. C.; Romita, R.] STFC Daresbury Lab, Nucl Phys Grp, Daresbury, England. [Adamova, D.; Bielcikova, J.; Ferencei, J.; Krizek, F.; Kucera, V.; Kushpil, S.; Sumbera, M.; Vajzer, M.] Acad Sci Czech Republic, Inst Nucl Phys, Prague, Czech Republic. [Awes, T. C.; Ganoti, P.; Silvermyr, D.] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Berdnikov, Y.; Ivanov, V.; Khanzadeev, A.; Malaev, M.; Nikulin, V.; Riabov, V.; Ryabov, Y.; Samsonov, V.; Zhalov, M.] Petersburg Nucl Phys Inst, Gatchina, Russia. [Cherney, M.; Nilsen, B. S.; Seger, J. E.] Creighton Univ, Dept Phys, Omaha, NE 68178 USA. [Aggarwal, M. M.; Bhati, A. K.; Parmar, S.; Rathee, D.] Panjab Univ, Dept Phys, Chandigarh 160014, India. [Floratos, E.; Roukoutakis, F.; Spyropoulou-Stassinaki, M.; Vasileiou, M.] Univ Athens, Dept Phys, Athens, Greece. [Azmi, M. D.; Cleymans, J.; Gumbo, M.; Murray, S.] Univ Cape Town, Dept Phys, ZA-7925 Cape Town, South Africa. [Bala, R.; Bhasin, A.; Bhat, I. R.; Gupta, A.; Gupta, R.; Potukuchi, B.; Rohni, S.; Sambyal, S.; Sharma, S.; Singh, R.] Univ Jammu, Dept Phys, Jammu 180004, India. [Raniwala, R.; Raniwala, S.] Univ Rajasthan, Dept Phys, Jaipur 302004, Rajasthan, India. [Berger, M. E.; Boehmer, F. V.; Dorheim, S.] Tech Univ Munich, Dept Phys, D-80290 Munich, Germany. [Anguelov, V.; Bock, F.; Busch, O.; Fasel, M.; Glaessel, P.; Klein, J.; Kweon, M. J.; Leardini, L.; Lohner, D.; Lu, X. -G.; Maire, A.; Perez, J. Mercado; Oeschler, H.; Oyama, K.; Pachmayer, Y.; Reygers, K.; Schicker, R.; Stachel, J.; Stiller, J. H.; Vallero, S.; Voelkl, M. A.; Wang, Y.; Wilkinson, J.; Windelband, B.; Winn, M.; Zimmermann, A.] Heidelberg Univ, Inst Phys, Heidelberg, Germany. [Agnello, M.; Aimo, I.; Bedda, C.] Politecn Torino, Turin, Italy. [Browning, T. A.; Scharenberg, R. P.; Srivastava, B. K.] Purdue Univ, W Lafayette, IN 47907 USA. [Borissov, A.; Chung, S. U.; Seo, J.; Song, J.; Yi, J.; Yoo, I. -K.] Pusan Natl Univ, Pusan 609735, South Korea. [Andronic, A.; Arsene, I. C.; Averbeck, R.; Braun-Munzinger, P.; Foka, P.; Frankenfeld, U.; Garabatos, C.; Ivanov, M.; Knichel, M. L.; Koehler, M. K.; Krzewicki, M.; Lippmann, C.; Malzacher, P.; Marin, A.; Martin, N. A.; Masciocchi, S.; Miskowiec, D.; Nicassio, M.; Onderwaater, J.; Otwinowski, J.; Park, W. J.; Schmidt, C.; Schwarz, K.; Schweda, K.; Selyuzhenkov, I.; Thaeder, J.; Vranic, D.; Wagner, J.] GSI Helmholtzzentrum Schwerionenforsch, Div Res, Darmstadt, Germany. [Andronic, A.; Arsene, I. C.; Averbeck, R.; Braun-Munzinger, P.; Foka, P.; Frankenfeld, U.; Garabatos, C.; Ivanov, M.; Knichel, M. L.; Koehler, M. K.; Krzewicki, M.; Lippmann, C.; Malzacher, P.; Marin, A.; Martin, N. A.; Masciocchi, S.; Miskowiec, D.; Nicassio, M.; Onderwaater, J.; Otwinowski, J.; Park, W. J.; Schmidt, C.; Schwarz, K.; Schweda, K.; Selyuzhenkov, I.; Thaeder, J.; Vranic, D.; Wagner, J.] GSI Helmholtzzentrum Schwerionenforsch, ExtreMe Matter Inst EMMI, Darmstadt, Germany. [Anticic, T.; Planinic, M.; Poljak, N.; Susa, T.] Rudjer Boskovic Inst, Zagreb, Croatia. [Budnikov, D.; Filchagin, S.; Ilkaev, R.; Kuryakin, A.; Mamonov, A.; Nazarenko, S.; Punin, V.; Tumkin, A.; Vinogradov, Y.; Vyushin, A.; Zaviyalov, N.] Russian Fed Nucl Ctr VNIIEF, Sarov, Russia. [Aleksandrov, D.; Blau, D.; Fokin, S.; Ippolitov, M.; Kucheriaev, Y.; Manko, V.; Nikolaev, S.; Nikulin, S.; Nyanin, A.; Peresunko, D.; Ryabinkin, E.; Sibiriak, Y.; Vasiliev, A.; Vinogradov, A.; Yasnopolskiy, S.; Yushmanov, I.] Russian Res Ctr, Kurchatov Inst, Moscow, Russia. [Chattopadhyay, S.; Das, D.; Das, K.; Majumdar, A. K. Dutta; Khan, P.; Paul, B.; Roy, P.; Sinha, T.] Saha Inst Nucl Phys, Kolkata, India. [Alexandre, D.; Barnby, L. S.; Evans, D.; Hanratty, L. D.; Jones, P. G.; Jusko, A.; Krivda, M.; Lee, G. R.; Lietava, R.; Baillie, O. Villalobos] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England. [Calvo Villar, E.; Gago, A. M.] Pontificia Univ Catolica Peru, Dept Ciencias, Secc Fis, Lima, Peru. [Agnello, M.; Aimo, I.; Alessandro, B.; Arnaldi, R.; Bagnasco, S.; Bruna, E.; Bufalino, S.; Cerello, P.; De Marco, N.; Feliciello, A.; Manceau, L.; Oppedisano, C.; Prino, F.; Rivetti, A.; Scomparin, E.] Sezione Ist Nazl Fis Nucl, Turin, Italy. [Bogolyubsky, M.; Evdokimov, S.; Kharlov, Y.; Patalakha, D. I.; Polichtchouk, B.; Sadovsky, S.; Shangaraev, A.; Stolpovskiy, M.] NRC Kurchatov Inst, SSC IHEP, Protvino, Russia. [Aphecetche, L.; Batigne, G.; Delagrange, H.; Erazmus, B.; Estienne, M.; Germain, M.; Lardeux, A.; Garcia, G. Martinez; Blanco, J. Martin; Mas, A.; Massacrier, L.; Pillot, P.; Ronflette, L.; Schutz, Y.; Shabetai, A.; Stocco, D.; Wang, M.] Univ Nantes, Ecole Mines Nantes, CNRS, SUBATECH,IN2P3, Nantes, France. [Kobdaj, C.] Suranaree Univ Technol, Nakhon Ratchasima, Thailand. [Gotovac, S.; Mudnic, E.; Vickovic, L.] Tech Univ Split FESB, Split, Croatia. [Bartke, J.; Figiel, J.; Gladysz-Dziadus, E.; Goerlich, L.; Kowalski, M.; Matyja, A.; Mayer, C.; Rybicki, A.; Sputowska, I.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, Krakow, Poland. [Knospe, A. G.; Markert, C.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. [Leon Monzon, I.; Podesta-Lerma, P. L. M.; Sanchez Rodriguez, F. J.] Univ Autonoma Sinaloa, Culiacan, Mexico. [Alves Garcia Prado, C.; Bregant, M.; Cosentino, M. R.; Domenicis Gimenez, D.; Jahnke, C.; Lagana Fernandes, C.; Moreira De Godoy, D. A.; Munhoz, M. G.; Oliveira Da Silva, A. C.; Pereira De Oliveira Filho, E.; Suaide, A. A. P.; Szanto de Toledo, A.] Univ Sao Paulo, Sao Paulo, Brazil. [Dash, A.; Takahashi, J.] Univ Estadual Campinas UNICAMP, Campinas, SP, Brazil. [Bellwied, R.; Chinellato, D. D.; Jayarathna, P. H. S. Y.; Jena, S.; Pinsky, L.; Piyarathna, D. B.; Timmins, A. R.; Weber, M.] Univ Houston, Houston, TX USA. [Chang, B.; Kim, D. J.; Kral, J.; Rak, J.; Slupecki, M.; Trzaska, W. H.; Vargyas, M.; Viinikainen, J.] Univ Jyvaskyla, Jyvaskyla, Finland. [Figueredo, M. A. S.; Norman, J.] Univ Liverpool, Liverpool L69 3BX, Merseyside, England. [Martashvili, I.; Mazer, J.; Nattrass, C.; Read, K. F.; Scott, R.; Sharma, N.; Sorensen, S.] Univ Tennessee, Knoxville, TN USA. [Gunji, T.; Hamagaki, H.; Hayashi, S.; Sekiguchi, Y.; Tsuji, T.; Yamaguchi, Y.] Univ Tokyo, Tokyo, Japan. [Bhom, J.; Chujo, T.; Esumi, S.; Inaba, M.; Miake, Y.; Sano, M.; Watanabe, D.] Univ Tsukuba, Tsukuba, Ibaraki, Japan. [Planinic, M.; Simatovic, G.] Univ Zagreb, Zagreb 41000, Croatia. [Cheshkov, C.; Cheynis, B.; Ducroux, L.; Grossiord, J. -Y.; Guilbaud, M.; Tieulent, R.; Uras, A.; Zoccarato, Y.] Univ Lyon 1, CNRS, IN2P3, IPN Lyon, F-69622 Villeurbanne, France. [Altsybeev, I.; Feofilov, G.; Kolojvari, A.; Kondratiev, V.; Kovalenko, V.; Vechernin, V.; Vinogradov, L.; Vorobyev, I.; Zarochentsev, A.] St Petersburg State Univ, V Fock Inst Phys, St Petersburg 199034, Russia. [Ahammed, Z.; Alam, S. N.; Basu, S.; Chattopadhyay, S.; Choudhury, S.; De, S.; Dubey, A. K.; Ghosh, P.; Kar, S.; Khan, S. A.; Mitra, J.; Mohanty, B.; Muhuri, S.; Mukherjee, M.; Nayak, T. K.; Pal, S. K.; Saini, J.; Sarkar, D.; Singaraju, R.; Singha, S.; Singhal, V.; Sinha, B. C.; Viyogi, Y. P.] Ctr Variable Energy Cyclotron, Kolkata, India. [Langoy, R.; Lien, J.] Vestfold Univ Coll, Tonsberg, Norway. [Graczykowski, L. K.; Janik, M. A.; Kisiel, A.; Oleniacz, J.; Pawlak, T.; Pluta, J.; Szymanski, M.; Zbroszczyk, H.] Warsaw Univ Technol, Warsaw, Poland. [Belmont, R., III; Borissov, A.; Cormier, T. M.; Loggins, V. R.; Mlynarz, J.; Prasad, S. K.; Pruneau, C. A.; Pujahari, P.; Putschke, J.; Verweij, M.; Voloshin, S. A.; Yaldo, C. G.] Wayne State Univ, Detroit, MI USA. [Barnafoeldi, G. G.; Bencedi, G.; Berenyi, D.; Boldizsar, L.; Denes, E.; Hamar, G.; Kiss, G.; Levai, P.; Olah, L.; Pochybova, S.] Hungarian Acad Sci, Wigner Res Ctr Phys, Budapest, Hungary. [Aiola, S.; Aronsson, T.; Caines, H.; Connors, M. E.; Ehlers, R. J.; Harris, J. W.; Ma, R.; Majka, R. D.; Oh, S.; Reed, R. J.; Schuster, T.; Smirnov, N.] Yale Univ, New Haven, CT USA. [Kang, J. H.; Kim, B.; Kim, M.; Kim, T.; Kwon, Y.; Song, M.] Yonsei Univ, Seoul 120749, South Korea. [Keidel, R.] ZTT, Fachhsch Worms, Worms, Germany. [Berdnikov, Y.] St Petersburg State Polytech Univ, St Petersburg, Russia. [Khan, M. M.] Aligarh Muslim Univ, Dept Appl Phys, Aligarh, Uttar Pradesh, India. [Malinina, L.] Moscow MV Lomonosov State Univ, DV Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Milosevic, J.] Univ Belgrade, Fac Phys, Belgrade 11001, Serbia. [Milosevic, J.] Univ Belgrade, Vinca Inst Nucl Sci, Belgrade, Serbia. [Oh, S. K.] Konkuk Univ, Seoul, South Korea. [Redlich, K.] Univ Wroclaw, Inst Theoret Phys, PL-50138 Wroclaw, Poland. [Takaki, J. D. Tapia] Univ Kansas, Lawrence, KS 66045 USA. RP Grigoryan, A (reprint author), AI Alikhanyan Natl Sci Lab Yerevan Phys Inst Fdn, Yerevan, Armenia. RI Graczykowski, Lukasz/O-7522-2015; Sevcenco, Adrian/C-1832-2012; Barnby, Lee/G-2135-2010; feofilov, grigory/A-2549-2013; Kucera, Vit/G-8459-2014; Krizek, Filip/G-8967-2014; Bielcikova, Jana/G-9342-2014; Vajzer, Michal/G-8469-2014; Ferencei, Jozef/H-1308-2014; Sumbera, Michal/O-7497-2014; Adamova, Dagmar/G-9789-2014; Christensen, Christian/D-6461-2012; Bregant, Marco/I-7663-2012; Vechernin, Vladimir/J-5832-2013; Janik, Malgorzata/O-7520-2015; Karasu Uysal, Ayben/K-3981-2015; HAMAGAKI, HIDEKI/G-4899-2014; Pshenichnov, Igor/A-4063-2008; Guber, Fedor/I-4271-2013; Kovalenko, Vladimir/C-5709-2013; Zarochentsev, Andrey/J-6253-2013; Altsybeev, Igor/K-6687-2013; Vinogradov, Leonid/K-3047-2013; Kondratiev, Valery/J-8574-2013; Suaide, Alexandre/L-6239-2016; Peitzmann, Thomas/K-2206-2012; Castillo Castellanos, Javier/G-8915-2013; Inst. of Physics, Gleb Wataghin/A-9780-2017; Ferreiro, Elena/C-3797-2017; Armesto, Nestor/C-4341-2017; Martinez Hernandez, Mario Ivan/F-4083-2010; Ferretti, Alessandro/F-4856-2013; Vickovic, Linda/F-3517-2017; Fernandez Tellez, Arturo/E-9700-2017; De Pasquale, Salvatore/B-9165-2008; Chinellato, David/D-3092-2012; Felea, Daniel/C-1885-2012; de Cuveland, Jan/H-6454-2016; Kurepin, Alexey/H-4852-2013; Jena, Deepika/P-2873-2015; Jena, Satyajit/P-2409-2015; Akindinov, Alexander/J-2674-2016; Takahashi, Jun/B-2946-2012; Nattrass, Christine/J-6752-2016; Usai, Gianluca/E-9604-2015; Cosentino, Mauro/L-2418-2014 OI Sevcenco, Adrian/0000-0002-4151-1056; Barnby, Lee/0000-0001-7357-9904; feofilov, grigory/0000-0003-3700-8623; Sumbera, Michal/0000-0002-0639-7323; Christensen, Christian/0000-0002-1850-0121; Vechernin, Vladimir/0000-0003-1458-8055; Janik, Malgorzata/0000-0002-3356-3438; Karasu Uysal, Ayben/0000-0001-6297-2532; Pshenichnov, Igor/0000-0003-1752-4524; Guber, Fedor/0000-0001-8790-3218; Kovalenko, Vladimir/0000-0001-6012-6615; Zarochentsev, Andrey/0000-0002-3502-8084; Altsybeev, Igor/0000-0002-8079-7026; Vinogradov, Leonid/0000-0001-9247-6230; Kondratiev, Valery/0000-0002-0031-0741; Suaide, Alexandre/0000-0003-2847-6556; Peitzmann, Thomas/0000-0002-7116-899X; Castillo Castellanos, Javier/0000-0002-5187-2779; Ferreiro, Elena/0000-0002-4449-2356; Armesto, Nestor/0000-0003-0940-0783; Martinez Hernandez, Mario Ivan/0000-0002-8503-3009; Ferretti, Alessandro/0000-0001-9084-5784; Vickovic, Linda/0000-0002-9820-7960; Fernandez Tellez, Arturo/0000-0003-0152-4220; De Pasquale, Salvatore/0000-0001-9236-0748; Chinellato, David/0000-0002-9982-9577; Felea, Daniel/0000-0002-3734-9439; de Cuveland, Jan/0000-0003-0455-1398; Kurepin, Alexey/0000-0002-1851-4136; Jena, Deepika/0000-0003-2112-0311; Jena, Satyajit/0000-0002-6220-6982; Akindinov, Alexander/0000-0002-7388-3022; Takahashi, Jun/0000-0002-4091-1779; Nattrass, Christine/0000-0002-8768-6468; Usai, Gianluca/0000-0002-8659-8378; Cosentino, Mauro/0000-0002-7880-8611 FU Grid centres; Worldwide LHC Computing Grid (WLCG) collaboration; State Committee of Science, Armenia; World Federation of Scientists (WFS), Armenia; Swiss Fonds Kidagan, Armenia; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq); Financiadora de Estudos e Projetos (FINEP); Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP); National Natural Science Foundation of China (NSFC); Chinese Ministry of Education (CMOE); Ministry of Science and Technology of China (MSTC); Ministry of Education and Youth of the Czech Republic; Danish Natural Science Research Council; Carlsberg Foundation; Danish National Research Foundation; European Research Council under the European Community's Seventh Framework Programme; Helsinki Institute of Physics; Academy of Finland; French CNRS-IN2P3, France; Region Pays de Loire, France; Region Alsace, France; Region Auvergne, France; CEA, France; German BMBF; Helmholtz Association; General Secretariat for Research and Technology, Ministry of Development, Greece; Hungarian OTKA; National Office for Research and Technology (NKTH); Department of Atomic Energy and Department of Science and Technology of the Government of India; Istituto Nazionale di Fisica Nucleare (INFN), Italy; Centro Fermi - Museo Storico della Fisica e Centro Studi e Ricerche "Enrico Fermi", Italy; MEXT, Japan; Joint Institute for Nuclear Research, Dubna; National Research Foundation of Korea (NRF); CONACYT; DGAPA, Mexico; ALFA-EC; EPLANET Program (European Particle Physics Latin American Network) Stichting voor Fundamenteel Onderzoek der Materie (FOM); Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Netherlands; Research Council of Norway (NFR); Polish Ministry of Science and Higher Education; National Science Centre, Poland; Ministry of National Education/Institute for Atomic Physics; Ministry of Education and Science of Russian Federation; Russian Academy of Sciences; Russian Federal Agency of Atomic Energy; Russian Federal Agency for Science and Innovations; Russian Foundation for Basic Research; Ministry of Education of Slovakia; Department of Science and Technology, South Africa; CIEMAT; EELA; Ministerio de Economia y Competitividad (MINECO) of Spain; Xunta de Galicia (Conselleria de Educacion); CEADEN; Cubaenergia, Cuba; IAEA (International Atomic Energy Agency); Swedish Research Council (VR); Knut & Alice Wallenberg Foundation (KAW); Ukraine Ministry of Education and Science; United Kingdom Science and Technology Facilities Council (STFC); United States Department of Energy; United States National Science Foundation; State of Texas; State of Ohio; CNCS-UEFISCDI - Romania FX The ALICE Collaboration would like to thank all its engineers and technicians for their invaluable contributions to the construction of the experiment and the CERN accelerator teams for the outstanding performance of the LHC complex. The ALICE Collaboration gratefully acknowledges the resources and support provided by all Grid centres and the Worldwide LHC Computing Grid (WLCG) collaboration. The ALICE Collaboration acknowledges the following funding agencies for their support in building and running the ALICE detector: State Committee of Science, World Federation of Scientists (WFS) and Swiss Fonds Kidagan, Armenia, Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Financiadora de Estudos e Projetos (FINEP), Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP); National Natural Science Foundation of China (NSFC), the Chinese Ministry of Education (CMOE) and the Ministry of Science and Technology of China (MSTC); Ministry of Education and Youth of the Czech Republic; Danish Natural Science Research Council, the Carlsberg Foundation and the Danish National Research Foundation; The European Research Council under the European Community's Seventh Framework Programme; Helsinki Institute of Physics and the Academy of Finland; French CNRS-IN2P3, the 'Region Pays de Loire', 'Region Alsace', 'Region Auvergne' and CEA, France; German BMBF and the Helmholtz Association; General Secretariat for Research and Technology, Ministry of Development, Greece; Hungarian OTKA and National Office for Research and Technology (NKTH); Department of Atomic Energy and Department of Science and Technology of the Government of India; Istituto Nazionale di Fisica Nucleare (INFN) and Centro Fermi - Museo Storico della Fisica e Centro Studi e Ricerche "Enrico Fermi", Italy; MEXT Grant-in-Aid for Specially Promoted Research, Japan; Joint Institute for Nuclear Research, Dubna; National Research Foundation of Korea (NRF); CONACYT, DGAPA, Mexico, ALFA-EC and the EPLANET Program (European Particle Physics Latin American Network) Stichting voor Fundamenteel Onderzoek der Materie (FOM) and the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Netherlands; Research Council of Norway (NFR); Polish Ministry of Science and Higher Education; National Science Centre, Poland; Ministry of National Education/Institute for Atomic Physics and CNCS-UEFISCDI - Romania; Ministry of Education and Science of Russian Federation, Russian Academy of Sciences, Russian Federal Agency of Atomic Energy, Russian Federal Agency for Science and Innovations and The Russian Foundation for Basic Research; Ministry of Education of Slovakia; Department of Science and Technology, South Africa; CIEMAT, EELA, Ministerio de Economia y Competitividad (MINECO) of Spain, Xunta de Galicia (Conselleria de Educacion), CEADEN, Cubaenergia, Cuba, and IAEA (International Atomic Energy Agency); Swedish Research Council (VR) and Knut & Alice Wallenberg Foundation (KAW); Ukraine Ministry of Education and Science; United Kingdom Science and Technology Facilities Council (STFC); The United States Department of Energy, the United States National Science Foundation, the State of Texas, and the State of Ohio. NR 91 TC 26 Z9 26 U1 3 U2 53 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD JUN 29 PY 2015 IS 6 AR 190 DI 10.1007/JHEP06(2015)190 PG 41 WC Physics, Particles & Fields SC Physics GA CM5KD UT WOS:000357725800001 ER PT J AU Tamboli, AC van Hest, MFAM Steiner, MA Essig, S Perl, EE Norman, AG Bosco, N Stradins, P AF Tamboli, Adele C. van Hest, Maikel F. A. M. Steiner, Myles A. Essig, Stephanie Perl, Emmett E. Norman, Andrew G. Bosco, Nick Stradins, Paul TI III-V/Si wafer bonding using transparent, conductive oxide interlayers SO APPLIED PHYSICS LETTERS LA English DT Article ID MULTIJUNCTION SOLAR-CELLS; LOW-TEMPERATURE; SI; PHOTONICS; EPITAXY; FILMS AB We present a method for low temperature plasma-activated direct wafer bonding of III-V materials to Si using a transparent, conductive indium zinc oxide interlayer. The transparent, conductive oxide (TCO) layer provides excellent optical transmission as well as electrical conduction, suggesting suitability for Si/III-V hybrid devices including Si-based tandem solar cells. For bonding temperatures ranging from 100 degrees C to 350 degrees C, Ohmic behavior is observed in the sample stacks, with specific contact resistivity below 1 Omega cm(2) for samples bonded at 200 degrees C. Optical absorption measurements show minimal parasitic light absorption, which is limited by the III-V interlayers necessary for Ohmic contact formation to TCOs. These results are promising for Ga0.5In0.5P/Si tandem solar cells operating at 1 sun or low concentration conditions. (C) 2015 AIP Publishing LLC. C1 [Tamboli, Adele C.; van Hest, Maikel F. A. M.; Steiner, Myles A.; Essig, Stephanie; Norman, Andrew G.; Bosco, Nick; Stradins, Paul] Natl Ctr Photovolta, Natl Renewable Energy Lab, Golden, CO 80401 USA. [Perl, Emmett E.] Univ Calif Santa Barbara, Dept Elect & Comp Engn, Santa Barbara, CA 93106 USA. RP Tamboli, AC (reprint author), Natl Ctr Photovolta, Natl Renewable Energy Lab, 15013 Denver West Pkwy, Golden, CO 80401 USA. EM Adele.Tamboli@nrel.gov RI Norman, Andrew/F-1859-2010 OI Norman, Andrew/0000-0001-6368-521X FU DOE EERE SETP [DE-EE00025783]; NSF FX This work was supported by DOE EERE SETP under DE-EE00025783. Bonding was performed in the UCSB Nanofabrication Facility, a member of the NSF-funded NNIN. We thank Bobby To for providing AFM images, Waldo Olavarria for performing III-V growth, Anna Duda for ARC deposition, and Adam Stokes for TEM sample preparation. NR 25 TC 4 Z9 4 U1 4 U2 27 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUN 29 PY 2015 VL 106 IS 26 AR 263904 DI 10.1063/1.4923444 PG 4 WC Physics, Applied SC Physics GA CM4YQ UT WOS:000357693200050 ER PT J AU Upadhya, PC Martinez, JA Li, QM Wang, GT Swartzentruber, BS Taylor, AJ Prasankumar, RP AF Upadhya, Prashanth C. Martinez, Julio A. Li, Qiming Wang, George T. Swartzentruber, Brian S. Taylor, Antoinette J. Prasankumar, Rohit P. TI Space-and-time-resolved spectroscopy of single GaN nanowires SO APPLIED PHYSICS LETTERS LA English DT Article ID PUMP-PROBE MICROSCOPY; ULTRAFAST CARRIER DYNAMICS; CHEMICAL-VAPOR-DEPOSITION; SILICON NANOWIRES; RECOMBINATION; LUMINESCENCE; SAPPHIRE; LIFETIME AB Gallium nitride nanowires have garnered much attention in recent years due to their attractive optical and electrical properties. An understanding of carrier transport, relaxation, and recombination in these quasi-one-dimensional nanosystems is therefore important in optimizing them for various applications. Here, we present ultrafast optical microscopic measurements on single GaN nanowires. Our experiments, performed while varying the light polarization, excitation fluence, and position, give insight into the mechanisms governing carrier dynamics in these nanosystems. (C) 2015 AIP Publishing LLC. C1 [Upadhya, Prashanth C.; Taylor, Antoinette J.; Prasankumar, Rohit P.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. [Upadhya, Prashanth C.] Indian Space Res Org, Lab Electroopt Syst, Bangalore 560058, Karnataka, India. [Martinez, Julio A.; Li, Qiming; Wang, George T.; Swartzentruber, Brian S.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Martinez, Julio A.] New Mexico State Univ, Dept Chem & Mat Engn, Las Cruces, NM 88003 USA. RP Upadhya, PC (reprint author), Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. EM rpprasan@lanl.gov FU Department of Energy, Office of Basic Energy Sciences, Division of Materials Science and Engineering; National Nuclear Security administration of the U.S. Department of Energy [DE-AC52-06NA25396]; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94Al85000] FX This work was supported by the Department of Energy, Office of Basic Energy Sciences, Division of Materials Science and Engineering and performed in part at the Center for Integrated Nanotechnologies, a U.S. Department of Energy, Office of Basic Energy Sciences (BES) user facility under user proposal #U2014B0089. Los Alamos National Laboratory, an affirmative action equal opportunity employer, is operated by Los Alamos National Security, LLC, for the National Nuclear Security administration of the U.S. Department of Energy under Contract No. DE-AC52-06NA25396. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94Al85000. NR 45 TC 3 Z9 3 U1 5 U2 34 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUN 29 PY 2015 VL 106 IS 26 AR 263103 DI 10.1063/1.4923273 PG 5 WC Physics, Applied SC Physics GA CM4YQ UT WOS:000357693200035 ER PT J AU Yu, Q Qi, L Mishra, RK Zeng, XQ Minor, AM AF Yu, Qian Qi, Liang Mishra, Raja K. Zeng, Xiaoqin Minor, Andrew M. TI Size-dependent mechanical properties of Mg nanoparticles used for hydrogen storage SO APPLIED PHYSICS LETTERS LA English DT Article ID GRAIN-BOUNDARIES; ALKALI-HALIDES; PARTICLES; DIFFUSION; STRENGTH; DISLOCATIONS; DEFORMATION; DIMENSIONS; PLASTICITY; ANISOTROPY AB Magnesium (Mg) hydride is a promising hydrogen storage material, yet its application has been limited by the slow hydrogen sorption kinetics. Recently, Mg nanoparticles have shown significant improvement of hydrogen storage properties in terms of dimensional stability upon cycling with the trend that the smaller the particle, the better the sorption kinetics. Since the volume change during sorption generates stress, leading to plastic deformation, the fundamentals of the mechanical deformation of the Mg particles are a significant issue. By using in situ transmission electron microscope compression tests and atomistic simulations on Mg nanoparticles, it was observed that deformation in the larger particles was dominated by the nucleation of hai-type dislocations from stress concentrations at the contact surface, while the smaller particles deformed more homogeneously with greater distribution of multiple types of dislocation sources. Importantly, this improvement of plastic deformation with decrease in size is orientation-independent. First-principles calculations suggest that this improved plasticity can be explained by the nearly-isotropic ideal shear strength for Mg, which becomes more important in smaller nanoparticles. As a result, the smaller Mg nanoparticles demonstrated better plastic stability to accommodate volume change upon hydrogen storage cycling. (C) 2015 AIP Publishing LLC. C1 [Yu, Qian] Zhejiang Univ, Dept Mat Sci & Engn, Ctr Electron Microscopy, Hangzhou 310027, Peoples R China. [Yu, Qian] Zhejiang Univ, Dept Mat Sci & Engn, State Key Lab Silicon Mat, Hangzhou 310027, Peoples R China. [Yu, Qian; Minor, Andrew M.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Yu, Qian; Minor, Andrew M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Natl Ctr Electron Microscopy, Mol Foundry, Berkeley, CA 94720 USA. [Qi, Liang] Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA. [Mishra, Raja K.] Gen Motors Res & Dev Ctr, Warren, MI 48090 USA. [Zeng, Xiaoqin] Shanghai Jiao Tong Univ, Dept Mat Sci & Engn, Shanghai 200240, Peoples R China. RP Yu, Q (reprint author), Zhejiang Univ, Dept Mat Sci & Engn, Ctr Electron Microscopy, Hangzhou 310027, Peoples R China. EM qyuzju@gmail.com RI Qi, Liang/A-3851-2010; Foundry, Molecular/G-9968-2014 OI Qi, Liang/0000-0002-0201-9333; FU General Motors Research and Development Center; U.S. Department of Energy [DE-AC02-05CH11231] FX This research was supported by the General Motors Research and Development Center and performed at the Molecular Foundry at Lawrence Berkeley National Laboratory, which is supported by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 28 TC 4 Z9 4 U1 13 U2 62 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUN 29 PY 2015 VL 106 IS 26 AR 261903 DI 10.1063/1.4921003 PG 5 WC Physics, Applied SC Physics GA CM4YQ UT WOS:000357693200019 ER PT J AU Gamble, JK Jacobson, NT Nielsen, E Baczewski, AD Moussa, JE Montano, I Muller, RP AF Gamble, John King Jacobson, N. Tobias Nielsen, Erik Baczewski, Andrew D. Moussa, Jonathan E. Montano, Ines Muller, Richard P. TI Multivalley effective mass theory simulation of donors in silicon SO PHYSICAL REVIEW B LA English DT Article ID RESONANCE HYPERFINE INTERACTIONS; AUGMENTED-WAVE METHOD; GROUND-STATE; SPIN QUBIT; ELECTRONS; SEMICONDUCTORS; PHOSPHORUS; EQUATION AB Last year, Salfi et al. made the first direct measurements of a donor wave function and found extremely good theoretical agreement with atomistic tight-binding theory results [ Salfi et al., Nat. Mater. 13, 605 (2014)]. Here, we show that multivalley effective mass theory, applied properly, does achieve close agreement with tight-binding results and hence gives reliable predictions. To demonstrate this, we variationally solve the coupled six-valley Shindo-Nara equations, including silicon's full Bloch functions. Surprisingly, we find that including the full Bloch functions necessitates a tetrahedral, rather than spherical, donor central cell correction to accurately reproduce the experimental energy spectrum of a phosphorus impurity in silicon. We cross-validate this method against atomistic tight-binding calculations, showing that the two theories agree well for the calculation of donor-donor tunnel coupling. Further, we benchmark our results by performing a statistical uncertainty analysis, confirming that derived quantities such as the wave function profile and tunnel couplings are robust with respect to variational energy fluctuations. Finally, we apply this method to exhaustively enumerate the tunnel coupling for all donor-donor configurations within a large search volume, demonstrating conclusively that the tunnel coupling has no spatially stable regions. Although this instability is problematic for reliably coupling donor pairs for two-qubit operations, we identify specific target locations where donor qubits can be placed with scanning tunneling microscopy technology to achieve reliably large tunnel couplings. C1 [Gamble, John King; Jacobson, N. Tobias; Baczewski, Andrew D.; Moussa, Jonathan E.; Muller, Richard P.] Sandia Natl Labs, Ctr Res Comp, Albuquerque, NM 87185 USA. [Nielsen, Erik; Montano, Ines] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Gamble, JK (reprint author), Sandia Natl Labs, Ctr Res Comp, Albuquerque, NM 87185 USA. EM jkgambl@sandia.gov; ntjacob@sandia.gov FU Laboratory Directed Research and Development program at Sandia National Laboratories; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX We thank A. Saraiva, W. Witzel, S. Coppersmith, M. Friesen, M. Carroll, A. Frees, T. Boykin, J. Aidun, and P. Schultz for useful discussions and comments on the manuscript, and R. Rahman and G. Klimeck for assistance and support with the NEMO-3D simulations. The simulations presented in this work were performed, in part, on Sandia National Laboratories' Red Sky computing cluster. This work was supported, in part, by the Laboratory Directed Research and Development program at Sandia National Laboratories. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 52 TC 7 Z9 7 U1 3 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD JUN 29 PY 2015 VL 91 IS 23 AR 235318 DI 10.1103/PhysRevB.91.235318 PG 9 WC Physics, Condensed Matter SC Physics GA CL5SS UT WOS:000357021600006 ER PT J AU Kumar, CMN Xiao, Y Lunkenheimer, P Loidl, A Ohl, M AF Kumar, C. M. N. Xiao, Y. Lunkenheimer, P. Loidl, A. Ohl, M. TI Crystal structure, incommensurate magnetic order, and ferroelectricity in Mn1-xCuxWO4 (0 <= x <= 0.19) SO PHYSICAL REVIEW B LA English DT Article ID COLOSSAL DIELECTRIC-CONSTANTS; NEUTRON POWDER DIFFRACTION; MULTIFERROIC MATERIAL; MNWO4; POLARIZATION; TRANSITIONS; PHASES; FIELDS AB We have carried out a systematic study on the effect of Cu doping on nuclear, magnetic, and dielectric properties in Mn1-xCuxWO4 for 0 <= x <= 0.19 by a synergic use of different techniques, viz, heat capacity, magnetization, dielectric, and neutron powder diffraction measurements. Via heat capacity and magnetization measurements we show that with increasing Cu concentration magnetic frustration decreases, which leads to the stabilization of commensurate magnetic ordering. This was further verified by temperature-dependent unit cell volume changes derived from neutron diffraction measurements which was modeled by the Gruneisen approximation. Dielectric measurements show a low temperature phase transition below about 9-10 K. Furthermore, magnetic refinements reveal no changes below this transition indicating a possible spin-flop transition which is unique to the Cu doped system. From these combined studies we have constructed a magnetoelectric phase diagram of this compound. C1 [Kumar, C. M. N.; Xiao, Y.; Ohl, M.] Forschungszentrum Julich, JCNS, D-52425 Julich, Germany. [Kumar, C. M. N.] Oak Ridge Natl Lab, Chem & Engn Mat Div, Oak Ridge, TN 37831 USA. [Xiao, Y.] Forschungszentrum Julich, PGI, D-52425 Julich, Germany. [Lunkenheimer, P.; Loidl, A.] Univ Augsburg, Ctr Elect Correlat & Magnetism, Expt Phys 5, D-86135 Augsburg, Germany. [Ohl, M.] Oak Ridge Natl Lab, Biol & Soft Matter Div, Oak Ridge, TN 37831 USA. [Ohl, M.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. RP Kumar, CMN (reprint author), Forschungszentrum Julich, JCNS, D-52425 Julich, Germany. EM n.kumar@fz-juelich.de; y.xiao@fz-juelich.de RI Lunkenheimer, Peter/C-6196-2008; Xiao, Yinguo/N-9069-2015; Loidl, Alois/L-8199-2015; OI Lunkenheimer, Peter/0000-0002-4525-1394; Loidl, Alois/0000-0002-5579-0746; Chogondahalli Muniraju, Naveen Kumar/0000-0002-8867-8291 FU JCNS; Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy; Deutsche Forschungsgemeinschaft via the Transregional Collaborative Research Center [TRR 80] FX We thank the expert assistance of A. Huq, SNS, Oak Ridge National Laboratory, during the NPD measurements. The authors gratefully acknowledge the financial support provided by JCNS to perform the neutron scattering measurements at the Spallation Neutron Source (SNS), Oak Ridge, USA. Part of the research conducted at SNS was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy. The work at the University of Augsburg was supported by the Deutsche Forschungsgemeinschaft via the Transregional Collaborative Research Center TRR 80. NR 38 TC 6 Z9 6 U1 2 U2 25 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD JUN 29 PY 2015 VL 91 IS 23 AR 235149 DI 10.1103/PhysRevB.91.235149 PG 9 WC Physics, Condensed Matter SC Physics GA CL5SS UT WOS:000357021600004 ER PT J AU Laguna-Marco, MA Kayser, P Alonso, JA Martinez-Lope, MJ van Veenendaal, M Choi, Y Haskel, D AF Laguna-Marco, M. A. Kayser, P. Alonso, J. A. Martinez-Lope, M. J. van Veenendaal, M. Choi, Y. Haskel, D. TI Electronic structure, local magnetism, and spin-orbit effects of Ir(IV)-, Ir(V)-, and Ir(VI)-based compounds SO PHYSICAL REVIEW B LA English DT Article ID RAY CIRCULAR-DICHROISM; PEROVSKITE STRUCTURE; SR2MIRO6 M; DIFFRACTION; TRANSITION; ABSORPTION; CRYSTAL; PHYSICS; PROBE; IR AB Element- and orbital-selective x-ray absorption and magnetic circular dichroism measurements are carried out to probe the electronic structure and magnetism of Ir 5d electronic states in double perovskite Sr2MIrO6 (M = Mg, Ca, Sc, Ti, Ni, Fe, Zn, In) and La2NiIrO6 compounds. All the studied systems present a significant influence of spin-orbit interactions in the electronic ground state. In addition, we find that the Ir 5d local magnetic moment shows different character depending on the oxidation state despite the net magnetization being similar for all the compounds. Ir carries an orbital contribution comparable to the spin contribution for Ir4+ (5d(5)) and Ir5+ (5d(4)) oxides, whereas the orbital contribution is quenched for Ir6+ (5d(3)) samples. Incorporation of a magnetic 3d atom allows getting insight into the magnetic coupling between 5d and 3d transition metals. Together with previous susceptibility and neutron diffractionmeasurements, the results indicate that Ir carries a significant local magnetic moment even in samples without a 3d metal. The size of the (small) net magnetization of these compounds is a result of predominant antiferromagnetic interactions between local moments coupled with structural details of each perovskite structure. C1 [Laguna-Marco, M. A.] Univ Zaragoza, CSIC, Inst Ciencia Mat Aragon, E-50009 Zaragoza, Spain. [Laguna-Marco, M. A.] Univ Zaragoza, CSIC, Dept Fis Mat Condensada, E-50009 Zaragoza, Spain. [Laguna-Marco, M. A.; Kayser, P.; Alonso, J. A.; Martinez-Lope, M. J.] CSIC, Inst Ciencia Mat Madrid, E-28049 Madrid, Spain. [van Veenendaal, M.; Choi, Y.; Haskel, D.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [van Veenendaal, M.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. RP Laguna-Marco, MA (reprint author), Univ Zaragoza, CSIC, Inst Ciencia Mat Aragon, E-50009 Zaragoza, Spain. EM anlaguna@unizar.es RI Alonso, Jose Antonio/A-5245-2011; Laguna-Marco, M. A./G-8042-2011; OI Alonso, Jose Antonio/0000-0001-5329-1225; Laguna-Marco, M. A./0000-0003-4069-0395; Kayser, Paula/0000-0003-1779-1454 FU Spanish MINECO Projects [MAT2014-54425-R, MAT2013-41099-R]; Comunidad de Madrid Project [S2009PPQ-1551]; U.S. Department of Energy (DOE) Office of Science [DE-AC02-06CH11357] FX This work was partially supported by the Spanish MINECO Projects No. MAT2014-54425-R and No. MAT2013-41099-R and by the Comunidad de Madrid Project No. S2009PPQ-1551. M. A. Laguna-Marco acknowledges CSIC and European Social Fund for a JAE-Doc contract. Use of the Advanced Photon Source, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under Contract No. DE-AC02-06CH11357. The authors are grateful to M. Garcia-Hernandez for the magnetic measurements and to J. Chaboy for fruitful discussions. NR 51 TC 8 Z9 8 U1 10 U2 39 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD JUN 29 PY 2015 VL 91 IS 21 AR 214433 DI 10.1103/PhysRevB.91.214433 PG 9 WC Physics, Condensed Matter SC Physics GA CL5SM UT WOS:000357020900003 ER PT J AU Liu, MK Sternbach, AJ Wagner, M Slusar, TV Kong, T Bud'ko, SL Kittiwatanakul, S Qazilbash, MM McLeod, A Fei, Z Abreu, E Zhang, JD Goldflam, M Dai, SY Ni, GX Lu, JW Bechtel, HA Martin, MC Raschke, MB Averitt, RD Wolf, SA Kim, HT Canfield, PC Basov, DN AF Liu, Mengkun Sternbach, Aaron J. Wagner, Martin Slusar, Tetiana V. Kong, Tai Bud'ko, Sergey L. Kittiwatanakul, Salinporn Qazilbash, M. M. McLeod, Alexander Fei, Zhe Abreu, Elsa Zhang, Jingdi Goldflam, Michael Dai, Siyuan Ni, Guang-Xin Lu, Jiwei Bechtel, Hans A. Martin, Michael C. Raschke, Markus B. Averitt, Richard D. Wolf, Stuart A. Kim, Hyun-Tak Canfield, Paul C. Basov, D. N. TI Phase transition in bulk single crystals and thin films of VO2 by nanoscale infrared spectroscopy and imaging SO PHYSICAL REVIEW B LA English DT Article ID METAL-INSULATOR-TRANSITION; VANADIUM DIOXIDE; SELF-ORGANIZATION; TEMPERATURE; DOMAINS; STRAIN; RESISTANCE; RESISTIVITY; ANISOTROPY; MICROSCOPY AB We have systematically studied a variety of vanadium dioxide (VO2) crystalline forms, including bulk single crystals and oriented thin films, using infrared (IR) near-field spectroscopic imaging techniques. By measuring the IR spectroscopic responses of electrons and phonons in VO2 with sub-grain-size spatial resolution (similar to 20 nm), we show that epitaxial strain in VO2 thin films not only triggers spontaneous local phase separations, but also leads to intermediate electronic and lattice states that are intrinsically different from those found in bulk. Generalized rules of strain-and symmetry-dependent mesoscopic phase inhomogeneity are also discussed. These results set the stage for a comprehensive understanding of complex energy landscapes that may not be readily determined by macroscopic approaches. C1 [Liu, Mengkun; Sternbach, Aaron J.; Wagner, Martin; McLeod, Alexander; Fei, Zhe; Zhang, Jingdi; Goldflam, Michael; Dai, Siyuan; Ni, Guang-Xin; Averitt, Richard D.; Basov, D. N.] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. [Liu, Mengkun] SUNY Stony Brook, Dept Phys, Stony Brook, NY 11794 USA. [Slusar, Tetiana V.; Kim, Hyun-Tak] ETRI, Metal Insulator Transit Creat Res Ctr, Taejon 305350, South Korea. [Kong, Tai; Bud'ko, Sergey L.; Canfield, Paul C.] Iowa State Univ, Ames Lab, Ames, IA 50010 USA. [Kong, Tai; Bud'ko, Sergey L.; Canfield, Paul C.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50010 USA. [Kittiwatanakul, Salinporn; Lu, Jiwei; Wolf, Stuart A.] Univ Virginia, Dept Mat Sci & Engn, Charlottesville, VA 22904 USA. [Qazilbash, M. M.] Coll William & Mary, Dept Phys, Williamsburg, VA 23187 USA. [Abreu, Elsa; Zhang, Jingdi] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Abreu, Elsa] ETH, Inst Quantum Elect, CH-8093 Zurich, Switzerland. [Bechtel, Hans A.; Martin, Michael C.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source Div, Berkeley, CA 94720 USA. [Raschke, Markus B.] Univ Colorado, Dept Chem, Dept Phys, Boulder, CO 80309 USA. [Raschke, Markus B.] Univ Colorado, JILA, Boulder, CO 80309 USA. [Wolf, Stuart A.] Univ Virginia, Dept Phys, Charlottesville, VA 22904 USA. [Kim, Hyun-Tak] Korean Univ Sci & Technol, Sch Adv Device Technol, Taejon 305333, South Korea. RP Liu, MK (reprint author), Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. EM mengkun.liu@stonybrook.edu; dbasov@physics.ucsd.edu RI Fei, Zhe/E-6475-2015; Ni, Guangxin/A-1341-2016; Raschke, Markus/F-8023-2013; OI Fei, Zhe/0000-0002-7940-5566; Ni, Guangxin/0000-0002-2394-8924; Kong, Tai/0000-0002-5064-3464; Zhang, Jingdi/0000-0002-4303-816X FU ARO [W911NF-13-1-0210]; Helmholtz Virtual Institute MEMRIOX; DOE-BES [DE-SC0012592, DE-FG02-09ER46643]; Basic Energy Sciences initiative of the U.S. Department of Energy (DOE-BES); Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; U.S. Department of Energy by Iowa State University [DE-AC02-07CH11358]; creative project in ETRI; Nanoelectronics Research Initiative (NRI); VMEC; NSF DMR [1255156]; Jeffress Memorial Trust FX D.N.B. acknowledges support from ARO under Grant No. W911NF-13-1-0210. M.L. and M.G. acknowledge support from Helmholtz Virtual Institute MEMRIOX. Development of nano-optics capabilities at UCSD is supported by DOE-BES under Grant No. DE-SC0012592. R.D.A. and E.A. acknowledge support from DOE-BES under Grant No. DE-FG02-09ER46643. A.S.M. acknowledges support from the Basic Energy Sciences initiative of the U.S. Department of Energy (DOE-BES). The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. P.C.C., S.L.B., and T.K. acknowledge support from the U.S. Department of Energy, Office of Basic Energy Science, Division of Materials Sciences and Engineering for the research performed at the Ames Laboratory. Ames Laboratory is operated for the U.S. Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358. H.T.K. acknowledges support from the creative project in ETRI. S.K., J.L., and S.A.W. are grateful for support from the Nanoelectronics Research Initiative (NRI) and VMEC. M.M.Q. acknowledges support from NSF DMR (Grant No. 1255156) and the Jeffress Memorial Trust. We acknowledge Rob Olmon for valuable discussions and thank him for developing synchrotron infrared near-field spectroscopy (SINS) at the ALS. NR 78 TC 11 Z9 11 U1 15 U2 125 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD JUN 29 PY 2015 VL 91 IS 24 AR 245155 DI 10.1103/PhysRevB.91.245155 PG 10 WC Physics, Condensed Matter SC Physics GA CL5TZ UT WOS:000357025800003 ER PT J AU Maschek, M Rosenkranz, S Heid, R Said, AH Giraldo-Gallo, P Fisher, IR Weber, F AF Maschek, M. Rosenkranz, S. Heid, R. Said, A. H. Giraldo-Gallo, P. Fisher, I. R. Weber, F. TI Wave-vector-dependent electron-phonon coupling and the charge-density-wave transition in TbTe3 SO PHYSICAL REVIEW B LA English DT Article AB We present a high-energy-resolution inelastic x-ray scattering investigation of the soft phonon mode in the charge-density-wave (CDW) system TbTe3. We analyze our data based on lattice dynamical calculations using density-functional-perturbation theory and find clear evidence that strongly momentum-dependent electron-phonon coupling defines the periodicity of the CDW superstructure: Our experiment reveals strong phonon softening and increased phonon linewidths over a large part in reciprocal space adjacent to the CDW ordering vector q(CDW) = (0,0,0.3). Further, q(CDW) is clearly offset from the wave vector of (weak) Fermi surface nesting q(FS) = (0,0,0.25), and our detailed analysis indicates that electron-phonon coupling is responsible for this shift. Hence, we can add TbTe3, which was previously considered as a canonical CDW compound following the Peierls scenario, to the list of distinct charge-density-wave materials characterized by momentum-dependent electron-phonon coupling. C1 [Maschek, M.; Heid, R.; Weber, F.] Karlsruhe Inst Technol, Inst Solid State Phys, D-76021 Karlsruhe, Germany. [Rosenkranz, S.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Heid, R.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Giraldo-Gallo, P.; Fisher, I. R.] Stanford Univ, Geballe Lab Adv Phys, Stanford, CA 94305 USA. [Giraldo-Gallo, P.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Fisher, I. R.] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA. [Giraldo-Gallo, P.; Fisher, I. R.] Stanford Inst Mat & Energy Sci, SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. RP Maschek, M (reprint author), Karlsruhe Inst Technol, Inst Solid State Phys, D-76021 Karlsruhe, Germany. RI Rosenkranz, Stephan/E-4672-2011 OI Rosenkranz, Stephan/0000-0002-5659-0383 FU Helmholtz Society [VH-NG-840]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; DOE, Office of Basic Energy Science [DE-AC02-76SF00515] FX M.M. and F.W. were supported by the Helmholtz Society under Contract No. VH-NG-840. Work at Argonne was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. The work at Stanford University was supported by the DOE, Office of Basic Energy Science, under Contract No. DE-AC02-76SF00515. NR 23 TC 12 Z9 12 U1 4 U2 19 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD JUN 29 PY 2015 VL 91 IS 23 AR 235146 DI 10.1103/PhysRevB.91.235146 PG 4 WC Physics, Condensed Matter SC Physics GA CL5SS UT WOS:000357021600001 ER PT J AU Mou, DX Jiang, R Taufour, V Bud'ko, SL Canfield, PC Kaminski, A AF Mou, Daixiang Jiang, Rui Taufour, Valentin Bud'ko, S. L. Canfield, P. C. Kaminski, Adam TI Momentum dependence of the superconducting gap and in-gap states in MgB2 multiband superconductor SO PHYSICAL REVIEW B LA English DT Article ID MAGNESIUM DIBORIDE; IMPURITIES; ORIGIN; BORON AB We use tunable laser-based angle-resolved photoemission spectroscopy to study the electronic structure of the multiband superconductor MgB2. These results form the baseline for detailed studies of superconductivity in multiband systems. We find that the magnitude of the superconducting gap on both sigma bands follows a BCS-like variation with temperature with Delta(0) similar to 7 meV. The value of the gap is isotropic within experimental uncertainty and in agreement with a pure s-wave pairing symmetry. We also observe in-gap states confined to k(F) of the sigma band that occur at some locations of the sample surface. The energy of this excitation, similar to 3 meV, is somewhat larger than the previously reported gap on pi Fermi sheet and therefore we cannot exclude the possibility of interband scattering as its origin. C1 [Mou, Daixiang] US DOE, Ames Lab, Div Mat Sci & Engn, Ames, IA 50011 USA. Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Mou, DX (reprint author), US DOE, Ames Lab, Div Mat Sci & Engn, Ames, IA 50011 USA. EM kaminski@ameslab.gov FU US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering; US Department of Energy [DE-AC02-07CH11358] FX Research was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering. Ames Laboratory is operated for the US Department of Energy by the Iowa State University under Contract No. DE-AC02-07CH11358. NR 41 TC 1 Z9 1 U1 3 U2 24 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD JUN 29 PY 2015 VL 91 IS 21 AR 214519 DI 10.1103/PhysRevB.91.214519 PG 6 WC Physics, Condensed Matter SC Physics GA CL5SM UT WOS:000357020900006 ER PT J AU Singh, P Smirnov, AV Johnson, DD AF Singh, Prashant Smirnov, A. V. Johnson, D. D. TI Atomic short-range order and incipient long-range order in high-entropy alloys SO PHYSICAL REVIEW B LA English DT Article ID RANDOM SUBSTITUTIONAL ALLOYS; DIFFUSE NEUTRON-SCATTERING; NI-ZN SYSTEM; TI-AL-NB; METALLIC ALLOYS; SOLID-SOLUTIONS; TERNARY ALLOYS; TOTAL-ENERGY; MICROSTRUCTURE; THERMODYNAMICS AB Within density-functional theory, we apply an electronic-structure-based thermodynamic theory to calculate short-ranged order (SRO) in homogeneously disordered substitutional N-component alloys, and its electronic origin. Using the geometric properties of an (N - 1) simplex that describes the Gibbs (compositional) space, we derive the analytic transform of the SRO eigenvectors that provides a unique description of high-temperature SRO in N-component alloys and the incipient low-temperature long-range order. We apply the electronic-based thermodynamic theory and the new general analysis to ternaries (A1 Cu-Ni-Zn and A2 Nb-Al-Ti) for validation, and then to quinary Al-Co-Cr-Fe-Ni high-entropy alloys for predictive assessment. C1 [Singh, Prashant; Smirnov, A. V.; Johnson, D. D.] Iowa State Univ, US Dept Energy, Ames Lab, Ames, IA 50011 USA. [Johnson, D. D.] Iowa State Univ, Mat & Sci Engn, Ames, IA 50011 USA. RP Singh, P (reprint author), Iowa State Univ, US Dept Energy, Ames Lab, Ames, IA 50011 USA. EM prashant@ameslab.gov; smirnov@ameslab.gov; ddj@ameslab.gov OI Johnson, Duane/0000-0003-0794-7283 FU U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences, Materials Science and Engineering Division; DOE Office of Fossil Energy; U.S. DOE by Iowa State University [DE-AC02-07CH11358] FX We would like to thank B. Haber (University of Illinois Urbana-Champaign) for useful discussions on barycentric coordinates, and F. Pinski (University of Cincinnati) for helping to resurrect elements of our old SRO code. The work was supported by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences, Materials Science and Engineering Division. The application of this method to the specific quinary was partially supported by the DOE Office of Fossil Energy (Cross-cutting Research program). The research was performed at the Ames Laboratory, which is operated for the U.S. DOE by Iowa State University under Contract No. DE-AC02-07CH11358. NR 64 TC 8 Z9 8 U1 17 U2 61 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD JUN 29 PY 2015 VL 91 IS 22 AR 224204 DI 10.1103/PhysRevB.91.224204 PG 12 WC Physics, Condensed Matter SC Physics GA CL5SR UT WOS:000357021500002 ER PT J AU Terzic, J Wang, JC Ye, F Song, WH Yuan, SJ Aswartham, S DeLong, LE Streltsov, SV Khomskii, DI Cao, G AF Terzic, J. Wang, J. C. Ye, Feng Song, W. H. Yuan, S. J. Aswartham, S. DeLong, L. E. Streltsov, S. V. Khomskii, D. I. Cao, G. TI Coexisting charge and magnetic orders in the dimer-chain iridate Ba5AlIr2O11 SO PHYSICAL REVIEW B LA English DT Article ID TRANSITION; SR2IRO4 AB We have synthesized and studied single-crystal Ba5AlIr2O11 that features dimer chains of two inequivalent octahedra occupied by tetravalent Ir4+(5d(5)) and pentavalent Ir5+(5d(4)) ions, respectively. Ba5AlIr2O11 is a Mott insulator that undergoes a subtle structural phase transition near T-S = 210 K and a magnetic transition at T-M = 4.5 K; the latter transition is surprisingly resistant to applied magnetic fields mu H-o <= 12 T but more sensitive to modest applied pressure (dT(M)/dp approximate to + 0.61 K/GPa). All results indicate that the phase transition at T-S signals an enhanced charge order that induces electrical dipoles and strong dielectric response near T-S. It is clear that the strong covalency and spin-orbit interaction (SOI) suppress double exchange in Ir dimers and stabilize a novel magnetic state that is neither S = 3/2 nor J = 1/2, but rather lies in an "intermediate" regime between these two states. The novel behavior of Ba5AlIr2O11 therefore provides unique insights into the physics of SOI along with strong covalency in competition with double-exchange interactions of comparable strength. C1 [Terzic, J.; Wang, J. C.; Ye, Feng; Song, W. H.; Yuan, S. J.; Aswartham, S.; DeLong, L. E.; Cao, G.] Univ Kentucky, Dept Phys & Astron, Ctr Adv Mat, Lexington, KY 40506 USA. [Wang, J. C.; Ye, Feng] Oak Ridge Natl Lab, Quantum Condensed Matter Div, Oak Ridge, TN 37831 USA. [Wang, J. C.] Renmin Univ China, Dept Phys, Beijing, Peoples R China. [Song, W. H.] Chinese Acad Sci, Inst Solid State Phys, Hefei, Peoples R China. [Streltsov, S. V.] Inst Met Phys, Ekaterinburg 620041, Russia. [Streltsov, S. V.] Ural Fed Univ, Dept Phys, Ekaterinburg 620002, Russia. [Khomskii, D. I.] Univ Cologne, Inst Phys 2, Cologne, Germany. RP Terzic, J (reprint author), Univ Kentucky, Dept Phys & Astron, Ctr Adv Mat, Lexington, KY 40506 USA. EM cao@uky.edu RI Ye, Feng/B-3210-2010; Streltsov, Sergey/A-8293-2016; Streltsov, Sergey/A-6674-2012 OI Ye, Feng/0000-0001-7477-4648; Streltsov, Sergey/0000-0002-2823-1754 FU National Science Foundation (USA) [DMR-1265162]; Russian Foundation of Basic Research [13-02-00374]; Civil Research and Development Foundation [FSCX-14-61025-0]; DOE BES Office of Scientific User Facilities; China Scholarship Council FX G.C. is thankful to Dr. R. Kaul and Dr. G. Jackeli for useful discussions. This work was supported by the National Science Foundation (USA) via Grant No. DMR-1265162, Russian Foundation of Basic Research via Grant No. 13-02-00374, and Civil Research and Development Foundation via program FSCX-14-61025-0. Work at ORNL was supported by DOE BES Office of Scientific User Facilities (F.Y.), and China Scholarship Council (J.C.W.). NR 32 TC 2 Z9 3 U1 6 U2 17 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD JUN 29 PY 2015 VL 91 IS 23 AR 235147 DI 10.1103/PhysRevB.91.235147 PG 6 WC Physics, Condensed Matter SC Physics GA CL5SS UT WOS:000357021600002 ER PT J AU Signoracci, A Duguet, T Hagen, G Jansen, GR AF Signoracci, A. Duguet, T. Hagen, G. Jansen, G. R. TI Ab initio Bogoliubov coupled cluster theory for open-shell nuclei SO PHYSICAL REVIEW C LA English DT Article ID QUANTUM-CHEMISTRY; CLOSED-SHELL; SYSTEMS; FORCES; STATES AB Background: Ab initio many-body methods have been developed over the past 10 yr to address closed-shell nuclei up to mass A approximate to 130 on the basis of realistic two-and three-nucleon interactions. A current frontier relates to the extension of those many-body methods to the description of open-shell nuclei. Several routes to address open-shell nuclei are currently under investigation, including ideas that exploit spontaneous symmetry breaking. Purpose: Singly open-shell nuclei can be efficiently described via the sole breaking of U(1) gauge symmetry associated with particle-number conservation as a way to account for their superfluid character. While this route was recently followed within the framework of self-consistent Green's function theory, the goal of the present work is to formulate a similar extension within the framework of coupled cluster theory. Methods: We formulate and apply Bogoliubov coupled cluster (BCC) theory, which consists of representing the exact ground-state wave function of the system as the exponential of a quasiparticle excitation cluster operator acting on a Bogoliubov reference state. Equations for the ground-state energy and the cluster amplitudes are derived at the singles and doubles level (BCCSD) both algebraically and diagrammatically. The formalism includes three-nucleon forces at the normal-ordered two-body level. The first BCC code is implemented in m scheme, which will permit the treatment of doubly open-shell nuclei via the further breaking of SU(2) symmetry associated with angular momentum conservation. Results: Proof-of-principle calculations in an N-max = 6 spherical harmonic oscillator basis for O-16,O-18 and Ne-18 in the BCCD approximation are in good agreement with standard coupled cluster results with the same chiral two-nucleon interaction, while O-20 and Mg-20 display underbinding relative to experiment. The breaking of U(1) symmetry, monitored by computing the variance associated with the particle-number operator, is relatively constant for all five nuclei, in both the Hartree-Fock-Bogoliubov and BCCD approximations. Conclusions: The newly developed many-body formalism increases the potential span of ab initio calculations based on single-reference coupled cluster techniques tremendously, i.e., potentially to reach several hundred additional midmass nuclei. The new formalism offers a wealth of potential applications and further extensions dedicated to the description of ground and excited states of open-shell nuclei. Short-term goals include the implementation of three-nucleon forces at the normal-ordered two-body level. Midterm extensions include the approximate treatment of triples corrections and the development of the equation-of-motion methodology to treat both excited states and odd nuclei. Long-term extensions include exact restoration of U(1) and SU(2) symmetries. C1 [Signoracci, A.; Hagen, G.; Jansen, G. R.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Signoracci, A.; Hagen, G.; Jansen, G. R.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Signoracci, A.; Duguet, T.] CEA Saclay, IRFU Serv Phys Nucl, F-91191 Gif Sur Yvette, France. [Duguet, T.] Michigan State Univ, Natl Superconducting Cylcotron Lab, E Lansing, MI 48824 USA. [Duguet, T.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. RP Signoracci, A (reprint author), Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. EM asignora@utk.edu; thomas.duguet@cea.fr; hageng@ornl.gov; gustav.jansen@utk.edu OI Jansen, Gustav R./0000-0003-3558-0968 FU Espace de Structure Nucleaire Theorique (ESNT); U.S. Department of Energy (Oak Ridge National Laboratory) [DEFG02-96ER40963, DE-SC0008499]; Office of Science of the Department of Energy [DE-AC05-00OR22725] FX The authors would like to thank V. Soma for his aid in benchmarking and troubleshooting the m-scheme HFB code, T. Papenbrock and K. A. Wendt for discussions and data relevant to extrapolations and coupled cluster methods, and T. Henderson for useful discussions regarding particle-number variance and convergence in coupled cluster methods with pairing. A.S. acknowledges support from Espace de Structure Nucleaire Theorique (ESNT). This work was supported in part by the U.S. Department of Energy (Oak Ridge National Laboratory), under Grants No. DEFG02-96ER40963 (University of Tennessee) and No. DE-SC0008499 (NUCLEI Sci-DAC collaboration) and Field Work Proposal No. ERKBP57. Computer time was provided by the Innovative and Novel Computational Impact on Theory and Experiment (INCITE) program. This research used resources of the Oak Ridge Leadership Computing Facility located at Oak Ridge National Laboratory, which is supported by the Office of Science of the Department of Energy under Contract No. DE-AC05-00OR22725. NR 65 TC 11 Z9 11 U1 2 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD JUN 29 PY 2015 VL 91 IS 6 AR 064320 DI 10.1103/PhysRevC.91.064320 PG 20 WC Physics, Nuclear SC Physics GA CL5UC UT WOS:000357026100003 ER PT J AU Aad, G Abbott, B Abdallah, J Khalek, SA Abdinov, O Aben, R Abi, B Abolins, M AbouZeid, OS Abramowicz, H Abreu, H Abreu, R Abulaiti, Y Acharya, BS Adamczyk, L Adams, DL Adelman, J Adomeit, S Adye, T Agatonovic-Jovin, T Aguilar-Saavedra, JA Agustoni, M Ahlen, SP Ahmadov, F Aielli, G Akerstedt, H Akesson, TPA Akimoto, G Akimov, AV Alberghi, GL Albert, J Albrand, S Verzini, MJA Aleksa, M Aleksandrov, IN Alexa, C Alexander, G Alexopoulos, T Alhroob, M Alimonti, G Alio, L Alison, J Allbrooke, BMM Allison, LJ Allport, PP Aloisio, A Alonso, A Alonso, F Alpigiani, C Altheimer, A Gonzalez, BA Alviggi, MG Amako, K Coutinho, YA Amelung, C Amidei, D Dos Santos, SPA Amorim, A Amoroso, S Amram, N Amundsen, G Anastopoulos, C Ancu, LS Andari, N Andeen, T Anders, CF Anders, G Anderson, KJ Andreazza, A Andrei, V Anduaga, XS Angelidakis, S Angelozzi, I Anger, P Angerami, A Anghinolfi, F Anisenkov, AV Anjos, N Annovi, A Antonelli, M Antonov, A Antos, J Anulli, F Aoki, M Bella, LA Arabidze, G Arai, Y Araque, JP Arce, ATH Arduh, FA Arguin, JF Argyropoulos, S Arik, M Armbruster, AJ Arnaez, O Arnal, V Arnold, H Arratia, M Arslan, O Artamonov, A Artoni, G Asai, S Asbah, N Ashkenazi, A Asman, B Asquith, L Assamagan, K Astalos, R Atkinson, M Atlay, NB Auerbach, B Augsten, K Aurousseau, M Avolio, G Axen, B Ayoub, MK Azuelos, G Baak, MA Baas, AE Bacci, C Bachacou, H Bachas, K Backes, M Backhaus, M Bagiacchi, P Bagnaia, P Bai, Y Bain, T Baines, JT Baker, OK Balek, P Balestri, T Balli, F Banas, E Banerjee, S Bannoura, AAE Bansil, HS Barak, L Baranov, SP Barberio, EL Barberis, D Barbero, M Barillari, T Barisonzi, M Barklow, T Barlow, N Barnes, SL Barnett, BM Barnett, RM Barnovska, Z Baroncelli, A Barone, G Barr, AJ Barreiro, F da Costa, JBG Bartoldus, R Barton, AE Bartos, P Bassalat, A Basye, A Bates, RL Batista, SJ Batley, JR Battaglia, M Bauce, M Bauer, F Bawa, HS Beacham, JB Beattie, MD Beau, T Beauchemin, PH Beccherle, R Bechtle, P Beck, HP Becker, K Becker, S Beckingham, M Becot, C Beddall, AJ Beddall, A Bednyakov, VA Bee, CP Beemster, LJ Beermann, TA Begel, M Behr, K Belanger-Champagne, C Bell, PJ Bell, WH Bella, G Bellagamba, L Bellerive, A Bellomo, M Belotskiy, K Beltramello, O Benary, O Benchekroun, D Bender, M Bendtz, K Benekos, N Benhammou, Y Noccioli, EB Garcia, JAB Benjamin, DP Bensinger, JR Bentvelsen, S Beresford, L Beretta, M Berge, D Kuutmann, EB Berger, N Berghaus, F Beringer, J Bernard, C Bernard, NR Bernius, C Bernlochner, FU Berry, T Berta, P Bertella, C Bertoli, G Bertolucci, F Bertsche, C Bertsche, D Besana, MI Besjes, GJ Bylund, OB Bessner, M Besson, N Betancourt, C Bethke, S Bevan, AJ Bhimji, W Bianchi, RM Bianchini, L Bianco, M Biebel, O Bieniek, SP Biglietti, M De Mendizabal, JB Bilokon, H Bindi, M Binet, S Bingul, A Bini, C Black, CW Black, JE Black, KM Blackburn, D Blair, RE Blanchard, JB Blanco, JE Blazek, T Bloch, I Blocker, C Blum, W Blumenschein, U Bobbink, GJ Bobrovnikov, VS Bocchetta, SS Bocci, A Bock, C Boehler, M Bogaerts, JA Bogdanchikov, AG Bohm, C Boisvert, V Bold, T Boldea, V Boldyrev, AS Bomben, M Bona, M Boonekamp, M Borisov, A Borissov, G Borroni, S Bortfeldt, J Bortolotto, V Bos, K Boscherini, D Bosman, M Boudreau, J Bouffard, J Bouhova-Thacker, EV Boumediene, D Bourdarios, C Bousson, N Boutouil, S Boveia, A Boyd, J Boyko, IR Bozic, I Bracinik, J Brandt, A Brandt, G Brandt, O Bratzler, U Brau, B Brau, JE Braun, HM Brazzale, SF Brendlinger, K Brennan, AJ Brenner, L Brenner, R Bressler, S Bristow, K Bristow, TM Britton, D Britzger, D Brochu, FM Brock, I Brock, R Bronner, J Brooijmans, G Brooks, T Brooks, WK Brosamer, J Brost, E Brown, J de Renstrom, PAB Bruncko, D Bruneliere, R Bruni, A Bruni, G Bruschi, M Bryngemark, L Buanes, T Buat, Q Buchholz, P Buckley, AG Buda, SI Budagov, IA Buehrer, F Bugge, L Bugge, MK Bulekov, O Burckhart, H Burdin, S Burghgrave, B Burke, S Burmeister, I Busato, E Buscher, D Buescher, V Bussey, P Buszello, CP Butler, JM Butt, AI Buttar, CM Butterworth, JM Butti, P Buttinger, W Buzatu, A Urban, SC Caforio, D Cakir, O Calafiura, P Calandri, A Calderini, G Calfayan, P Caloba, LP Calvet, D Calvet, S Toro, RC Camarda, S Cameron, D Caminada, LM Armadans, RC Campana, S Campanelli, M Campoverde, A Canale, V Canepa, A Bret, MC Cantero, J Cantrill, R Cao, T Garrido, MDMC Caprini, I Caprini, M Capua, M Caputo, R Cardarelli, R Carli, T Carlino, G Carminati, L Caron, S Carquin, E Carrillo-Montoya, GD Carter, JR Carvalho, J Casadei, D Casado, MP Casolino, M Castaneda-Miranda, E Castelli, A Gimenez, VC Castro, NF Catastini, P Catinaccio, A Catmore, JR Cattai, A Cattani, G Caudron, J Cavaliere, V Cavalli, D Cavalli-Sforza, M Cavasinni, V Ceradini, F Cerio, BC Cerny, K Cerqueira, AS Cerri, A Cerrito, L Cerutti, F Cerv, M Cervelli, A Cetin, SA Chafaq, A Chakraborty, D Chalupkova, I Chang, P Chapleau, B Chapman, JD Charfeddine, D Charlton, DG Chau, CC Barajas, CAC Cheatham, S Chegwidden, A Chekanov, S Chekulaev, SV Chelkov, GA Chelstowska, MA Chen, C Chen, H Chen, K Chen, L Chen, S Chen, X Chen, Y Cheng, HC Cheng, Y Cheplakov, A Cheremushkina, E El Moursli, RC Chernyatin, V Cheu, E Chevalier, L Chiarella, V Childers, JT Chilingarov, A Chiodini, G Chisholm, AS Chislett, RT Chitan, A Chizhov, MV Choi, K Chouridou, S Chow, BKB Christodoulou, V Chromek-Burckhart, D Chu, ML Chudoba, J Chuinard, AJ Chwastowski, JJ Chytka, L Ciapetti, G Ciftci, AK Cinca, D Cindro, V Ciocio, A Citron, ZH Ciubancan, M Clark, A Clark, PJ Clarke, RN Cleland, W Clement, C Coadou, Y Cobal, M Coccaro, A Cochran, J Coffey, L Cogan, JG Cole, B Cole, S Colijn, AP Collot, J Colombo, T Compostella, G Muino, PC Coniavitis, E Connell, SH Connelly, IA Consonni, SM Consorti, V Constantinescu, S Conta, C Conti, G Conventi, F Cooke, M Cooper, BD Cooper-Sarkar, AM Copic, K Cornelissen, T Corradi, M Corriveau, F Corso-Radu, A Cortes-Gonzalez, A Cortiana, G Costa, G Costa, MJ Costanzo, D Cote, D Cottin, G Cowan, G Cox, BE Cranmer, K Cree, G Crepe-Renaudin, S Crescioli, F Cribbs, WA Ortuzar, MC Cristinziani, M Croft, V Crosetti, G Donszelmann, TC Cummings, J Curatolo, M Cuthbert, C Czirr, H Czodrowski, P D'Auria, S D'Onofrio, M De Sousa, MJDS Da Via, C Dabrowski, W Dafinca, A Dai, T Dale, O Dallaire, F Dallapiccola, C Dam, M Dandoy, JR Daniells, AC Danninger, M Hoffmann, MD Dao, V Darbo, G Darmora, S Dassoulas, J Dattagupta, A Davey, W David, C Davidek, T Davies, E Davies, M Davison, P Davygora, Y Dawe, E Dawson, I Daya-Ishmukhametova, RK De, K de Asmundis, R De Castro, S De Cecco, S De Groot, N de Jong, P De la Torre, H De Lorenzi, F De Nooij, L De Pedis, D De Salvo, A De Sanctis, U De Santo, A De Regie, JBD Dearnaley, WJ Debbe, R Debenedetti, C Dedovich, DV Deigaard, I Del Peso, J Del Prete, T Delgove, D Deliot, F Delitzsch, CM Deliyergiyev, M Dell'Acqua, A Dell'Asta, L Dell'Orso, M Della Pietra, M della Volpe, D Delmastro, M Delsart, PA Deluca, C DeMarco, DA Demers, S Demichev, M Demilly, A Denisov, SP Derendarz, D Derkaoui, JE Derue, F Dervan, P Desch, K Deterre, C Deviveiros, PO Dewhurst, A Dhaliwal, S Di Ciaccio, A Di Ciaccio, L Di Domenico, A Di Donato, C Di Girolamo, A Di Girolamo, B Di Mattia, A Di Micco, B Di Nardo, R Di Simone, A Di Sipio, R Di Valentino, D Diaconu, C Diamond, M Dias, FA Diaz, MA Diehl, EB Dietrich, J Diglio, S Dimitrievska, A Dingfelder, J Dittus, F Djama, F Djobava, T Djuvsland, JI do Vale, MAB Dobos, D Dobre, M Doglioni, C Dohmae, T Dolejsi, J Dolezal, Z Dolgoshein, BA Donadelli, M Donati, S Dondero, P Donini, J Dopke, J Doria, A Dova, MT Doyle, AT Drechsler, E Dris, M Dubreuil, E Duchovni, E Duckeck, G Ducu, OA Duda, D Dudarev, A Duflot, L Duguid, L Duhrssen, M Dunford, M Yildiz, HD Duren, M Durglishvili, A Duschinger, D Dwuznik, M Dyndal, M Ecker, KM Edson, W Edwards, NC Ehrenfeld, W Eifert, T Eigen, G Einsweiler, K Ekelof, T El Kacimi, M Ellert, M Elles, S Ellinghaus, F Elliot, AA Ellis, N Elmsheuser, J Elsing, M Emeliyanov, D Enari, Y Endner, OC Endo, M Engelmann, R Erdmann, J Ereditato, A Eriksson, D Ernis, G Ernst, J Ernst, M Errede, S Ertel, E Escalier, M Esch, H Escobar, C Esposito, B Etienvre, AI Etzion, E Evans, H Ezhilov, A Fabbri, L Facini, G Fakhrutdinov, RM Falciano, S Falla, RJ Faltova, J Fang, Y Fanti, M Farbin, A Farilla, A Farooque, T Farrell, S Farrington, SM Farthouat, P Fassi, F Fassnacht, P Fassouliotis, D Favareto, A Fayard, L Federic, P Fedin, OL Fedorko, W Feigl, S Feligioni, L Feng, C Feng, EJ Feng, H Fenyuk, AB Martinez, PF Perez, SF Ferrag, S Ferrando, J Ferrari, A Ferrari, P Ferrari, R de Lima, DEF Ferrer, A Ferrere, D Ferretti, C Parodi, AF Fiascaris, M Fiedler, F Filipcic, A Filipuzzi, M Filthaut, F Fincke-Keeler, M Finelli, KD Fiolhais, MCN Fiorini, L Firan, A Fischer, A Fischer, C Fischer, J Fisher, WC Fitzgerald, EA Flechl, M Fleck, I Fleischmann, P Fleischmann, S Fletcher, GT Fletcher, G Flick, T Floderus, A Castillo, LRF Flowerdew, MJ Formica, A Forti, A Fournier, D Fox, H Fracchia, S Francavilla, P Franchini, M Francis, D Franconi, L Franklin, M Fraternali, M Freeborn, D French, ST Friedrich, F Froidevaux, D Frost, JA Fukunaga, C Torregrosa, EF Fulsom, BG Fuster, J Gabaldon, C Gabizon, O Gabrielli, A Gabrielli, A Gadatsch, S Gadomski, S Gagliardi, G Gagnon, P Galea, C Galhardo, B Gallas, EJ Gallop, BJ Gallus, P Galster, G Gan, KK Gao, J Gao, Y Gao, YS Walls, FMG Garberson, F Garcia, C Navarro, JEG Garcia-Sciveres, M Gardner, RW Garelli, N Garonne, V Gatti, C Gaudio, G Gaur, B Gauthier, L Gauzzi, P Gavrilenko, IL Gay, C Gaycken, G Gazis, EN Ge, P Gecse, Z Gee, CNP Geerts, DAA Geich-Gimbel, C Gemme, C Genest, MH Gentile, S George, M George, S Gerbaudo, D Gershon, A Ghazlane, H Ghodbane, N Giacobbe, B Giagu, S Giangiobbe, V Giannetti, P Gianotti, F Gibbard, B Gibson, SM Gilchriese, M Gillam, TPS Gillberg, D Gilles, G Gingrich, DM Giokaris, N Giordani, MP Giorgi, FM Giorgi, FM Giraud, PF Giromini, P Giugni, D Giuliani, C Giulini, M Gjelsten, BK Gkaitatzis, S Gkialas, I Gkougkousis, EL Gladilin, LK Glasman, C Glatzer, J Glaysher, PCF Glazov, A Goblirsch-Kolb, M Goddard, JR Godlewski, J Goldfarb, S Golling, T Golubkov, D Gomes, A Goncalo, R Da Costa, JGPF Gonella, L de la Hoz, SG Parra, GG Gonzalez-Sevilla, S Goossens, L Gorbounov, PA Gordon, HA Gorelov, I Gorini, B Gorini, E Gorisek, A Gornicki, E Goshaw, AT Goessling, C Gostkin, MI Gouighri, M Goujdami, D Goussiou, AG Grabas, HMX Graber, L Grabowska-Bold, I Grafstrom, P Grahn, KJ Gramling, J Gramstad, E Grancagnolo, S Grassi, V Gratchev, V Gray, HM Graziani, E Greenwood, ZD Gregersen, K Gregor, IM Grenier, P Griffiths, J Grillo, AA Grimm, K Grinstein, S Gris, P Grishkevich, YV Grivaz, JF Grohs, JP Grohsjean, A Gross, E Grosse-Knetter, J Grossi, GC Grout, ZJ Guan, L Guenther, J Guescini, F Guest, D Gueta, O Guido, E Guillemin, T Guindon, S Gul, U Gumpert, C Guo, J Gupta, S Gutierrez, P Ortiz, NGG Gutschow, C Guttman, N Guyot, C Gwenlan, C Gwilliam, CB Haas, A Haber, C Hadavand, HK Haddad, N Haefner, P Hagebock, S Hajduk, Z Hakobyan, H Haleem, M Haley, J Hall, D Halladjian, G Hallewell, GD Hamacher, K Hamal, P Hamano, K Hamer, M Hamilton, A Hamilton, S Hamity, GN Hamnett, PG Han, L Hanagaki, K Hanawa, K Hance, M Hanke, P Hanna, R Hansen, JB Hansen, JD Hansen, PH Hara, K Hard, AS Harenberg, T Hariri, F Harkusha, S Harrington, RD Harrison, PF Hartjes, F Hasegawa, M Hasegawa, S Hasegawa, Y Hasib, A Hassani, S Haug, S Hauser, R Hauswald, L Havranek, M Hawkes, CM Hawkings, RJ Hawkins, AD Hayashi, T Hayden, D Hays, CP Hays, JM Hayward, HS Haywood, SJ Head, SJ Heck, T Hedberg, V Heelan, L Heim, S Heim, T Heinemann, B Heinrich, L Hejbal, J Helary, L Heller, M Hellman, S Hellmich, D Helsens, C Henrot-Versille, S Herbert, GH Jimenez, YH Herrberg-Schubert, R Herten, G Hertenberger, R Hervas, L Hesketh, GG Hessey, NP Hetherly, JW Hickling, R Higon-Rodriguez, E Hill, E Hill, JC Hiller, KH Hillier, SJ Hinchliffe, I Hines, E Hinman, RR Hirose, M Hirschbuehl, D Hobbs, J Hod, N Hodgkinson, MC Hodgson, P Hoecker, A Hoeferkamp, MR Hoenig, F Hohlfeld, M Hohn, D Holmes, TR Hong, TM van Huysduynen, LH Hopkins, WH Horii, Y Horton, AJ Hostachy, JY Hou, S Hoummada, A Howard, J Howarth, J Hrabovsky, M Hristova, I Hrivnac, J Hryn'ova, T Hrynevich, A Hsu, C Hsu, PJ Hsu, SC Hu, D Hu, Q Hu, X Huang, Y Hubacek, Z Hubaut, F Huegging, F Huffman, TB Hughes, EW Hughes, G Huhtinen, M Hulsing, TA Huseynov, N Huston, J Huth, J Iacobucci, G Iakovidis, G Ibragimov, I Iconomidou-Fayard, L Ideal, E Idrissi, Z Iengo, P Igonkina, O Iizawa, T Ikegami, Y Ikematsu, K Ikeno, M Ilchenko, Y Iliadis, D Ilic, N Inamaru, Y Ince, T Ioannou, P Iodice, M Iordanidou, K Ippolito, V Quiles, AI Isaksson, C Ishino, M Ishitsuka, M Ishmukhametov, R Issever, C Istin, S Ponce, JMI Iuppa, R Ivarsson, J Iwanski, W Iwasaki, H Izen, JM Izzo, V Jabbar, S Jackson, B Jackson, M Jackson, P Jaekel, MR Jain, V Jakobs, K Jakobsen, S Jakoubek, T Jakubek, J Jamin, DO Jana, DK Jansen, E Jansky, RW Janssen, J Janus, M Jarlskog, G Javadov, N Javurek, T Jeanty, L Jejelava, J Jeng, GY Jennens, D Jenni, P Jentzsch, J Jeske, C Jezequel, S Ji, H Jia, J Jiang, Y Pena, JJ Jin, S Jinaru, A Jinnouchi, O Joergensen, MD Johansson, P Johns, KA Jon-And, K Jones, G Jones, RWL Jones, TJ Jongmanns, J Jorge, PM Joshi, KD Jovicevic, J Ju, X Jung, CA Jussel, P Rozas, AJ Kaci, M Kaczmarska, A Kado, M Kagan, H Kagan, M Kahn, SJ Kajomovitz, E Kalderon, CW Kama, S Kamenshchikov, A Kanaya, N Kaneda, M Kaneti, S Kantserov, VA Kanzaki, J Kaplan, B Kapliy, A Kar, D Karakostas, K Karamaoun, A Karastathis, N Kareem, MJ Karnevskiy, M Karpov, SN Karpova, ZM Karthik, K Kartvelishvili, V Karyukhin, AN Kashif, L Kass, RD Kastanas, A Kataoka, Y Katre, A Katzy, J Kawagoe, K Kawamoto, T Kawamura, G Kazama, S Kazanin, VF Kazarinov, MY Keeler, R Kehoe, R Keil, M Keller, JS Kempster, JJ Keoshkerian, H Kepka, O Kersevan, BP Kersten, S Keyes, RA Khalil-Zada, F Khandanyan, H Khanov, A Kharlamov, A Khodinov, A Khoo, TJ Khoriauli, G Khovanskiy, V Khramov, E Khubua, J Kim, HY Kim, H Kim, SH Kim, Y Kimura, N Kind, OM King, BT King, M King, RSB King, SB Kirk, J Kiryunin, AE Kishimoto, T Kisielewska, D Kiss, F Kiuchi, K Kladiva, E Klein, MH Klein, M Klein, U Kleinknecht, K Klimek, P Klimentov, A Klingenberg, R Klinger, JA Klioutchnikova, T Klok, PF Kluge, EE Kluit, P Kluth, S Kneringer, E Knoops, EBFG Knue, A Kobayashi, D Kobayashi, T Kobel, M Kocian, M Kodys, P Koffas, T Koffeman, E Kogan, LA Kohlmann, S Kohout, Z Kohriki, T Koi, T Kolanoski, H Koletsou, I Komar, AA Komori, Y Kondo, T Kondrashova, N Koneke, K Konig, AC Konig, S Kono, T Konoplich, R Konstantinidis, N Kopeliansky, R Koperny, S Kopke, L Kopp, AK Korcyl, K Kordas, K Korn, A Korol, AA Korolkov, I Korolkova, EV Kortner, O Kortner, S Kosek, T Kostyukhin, VV Kotov, VM Kotwal, A Kourkoumeli-Charalampidi, A Kourkoumelis, C Kouskoura, V Koutsman, A Kowalewski, R Kowalski, TZ Kozanecki, W Kozhin, AS Kramarenko, VA Kramberger, G Krasnopevtsev, D Krasny, MW Krasznahorkay, A Kraus, JK Kravchenko, A Kreiss, S Kretz, M Kretzschmar, J Kreutzfeldt, K Krieger, P Krizka, K Kroeninger, K Kroha, H Kroll, J Kroseberg, J Krstic, J Kruchonak, U Kruger, H Krumnack, N Krumshteyn, ZV Kruse, A Kruse, MC Kruskal, M Kubota, T Kucuk, H Kuday, S Kuehn, S Kugel, A Kuger, F Kuhl, A Kuhl, T Kukhtin, V Kulchitsky, Y Kuleshov, S Kuna, M Kunigo, T Kupco, A Kurashige, H Kurochkin, YA Kurumida, R Kus, V Kuwertz, ES Kuze, M Kvita, J Kwan, T Kyriazopoulos, D La Rosa, A Navarro, JLL La Rotonda, L Lacasta, C Lacava, F Lacey, J Lacker, H Lacour, D Lacuesta, VR Ladygin, E Lafaye, R Laforge, B Lagouri, T Lai, S Lambourne, L Lammers, S Lampen, CL Lampl, W Lancon, E Landgraf, U Landon, MPJ Lang, VS Lankford, AJ Lanni, F Lantzsch, K Laplace, S Lapoire, C Laporte, JF Lari, T Manghi, FL Lassnig, M Laurelli, P Lavrijsen, W Law, AT Laycock, P Le Dortz, O Le Guirriec, E Le Menedeu, E LeCompte, T Ledroit-Guillon, F Lee, CA Lee, SC Lee, L Lefebvre, G Lefebvre, M Legger, F Leggett, C Lehan, A Miotto, GL Lei, X Leight, WA Leisos, A Leister, AG Leite, MAL Leitner, R Lellouch, D Lemmer, B Leney, KJC Lenz, T Lenzen, G Lenzi, B Leone, R Leone, S Leonidopoulos, C Leontsinis, S Leroy, C Lester, CG Levchenko, M Leveque, J Levin, D Levinson, LJ Levy, M Lewis, A Leyko, AM Leyton, M Li, B Li, B Li, H Li, HL Li, L Li, L Li, S Li, Y Liang, Z Liao, H Liberti, B Liblong, A Lichard, P Lie, K Liebal, J Liebig, W Limbach, C Limosani, A Lin, SC Lin, TH Linde, F Lindquist, BE Linnemann, JT Lipeles, E Lipniacka, A Lisovyi, M Liss, TM Lissauer, D Lister, A Litke, AM Liu, B Liu, D Liu, J Liu, JB Liu, K Liu, L Liu, M Liu, M Liu, Y Livan, M Lleres, A Merino, JL Lloyd, SL Lo Sterzo, F Lobodzinska, E Loch, P Lockman, WS Loebinger, FK Loevschall-Jensen, AE Loginov, A Lohse, T Lohwasser, K Lokajicek, M Long, BA Long, JD Long, RE Looper, KA Lopes, L Mateos, DL Paredes, BL Paz, IL Lorenz, J Martinez, NL Losada, M Loscutoff, P Losel, PJ Lou, X Lounis, A Love, J Love, PA Lu, N Lubatti, HJ Luci, C Lucotte, A Luehring, F Lukas, W Luminari, L Lundberg, O Lund-Jensen, B Lungwitz, M Lynn, D Lysak, R Lytken, E Ma, H Ma, LL Maccarrone, G Macchiolo, A Macdonald, CM Miguens, JM Macina, D Madaffari, D Madar, R Maddocks, HJ Mader, WF Madsen, A Maeland, S Maeno, T Maevskiy, A Magradze, E Mahboubi, K Mahlstedt, J Mahmoud, S Maiani, C Maidantchik, C Maier, AA Maier, T Maio, A Majewski, S Makida, Y Makovec, N Malaescu, B Malecki, P Maleev, VP Malek, F Mallik, U Malon, D Malone, C Maltezos, S Malyshev, VM Malyukov, S Mamuzic, J Mancini, G Mandelli, B Mandelli, L Mandic, I Mandrysch, R Maneira, J Manfredini, A de Andrade, LM Ramos, JM Mann, A Manning, PM Manousakis-Katsikakis, A Mansoulie, B Mantifel, R Mantoani, M Mapelli, L March, L Marchiori, G Marcisovsky, M Marino, CP Marjanovic, M Marroquim, F Marsden, SP Marshall, Z Marti, LF Marti-Garcia, S Martin, B Martin, TA Martin, VJ Latour, BMD Martinez, H Martinez, M Martin-Haugh, S Martoiu, VS Martyniuk, AC Marx, M Marzano, F Marzin, A Masetti, L Mashimo, T Mashinistov, R Masik, J Maslennikov, AL Massa, I Massa, L Massol, N Mastrandrea, P Mastroberardino, A Masubuchi, T Mattig, P Mattmann, J Maurer, J Maxfield, SJ Maximov, DA Mazini, R Mazza, SM Mazzaferro, L Mc Goldrick, G Mc Kee, SP McCarn, A McCarthy, RL McCarthy, TG McCubbin, NA McFarlane, KW Mcfayden, JA Mchedlidze, G McMahon, SJ McPherson, RA Medinnis, M Meehan, S Mehlhase, S Mehta, A Meier, K Meineck, C Meirose, B Melachrinos, C Garcia, BRM Meloni, F Mengarelli, A Menke, S Meoni, E Mercurio, KM Mergelmeyer, S Meric, N Mermod, P Merola, L Meroni, C Merritt, FS Merritt, H Messina, A Metcalfe, J Mete, AS Meyer, C Meyer, C Meyer, JP Meyer, J Middleton, RP Miglioranzi, S Mijovic, L Mikenberg, G Mikestikova, M Mikuz, M Milesi, M Milic, A Miller, DW Mills, C Milov, A Milstead, DA Minaenko, AA Minami, Y Minashvili, IA Mincer, AI Mindur, B Mineev, M Ming, Y Mir, LM Mirabelli, G Mitani, T Mitrevski, J Mitsou, VA Miucci, A Miyagawa, PS Mjornmark, JU Moa, T Mochizuki, K Mohapatra, S Mohr, W Molander, S Moles-Valls, R Monig, K Monini, C Monk, J Monnier, E Berlingen, JM Monticelli, F Monzani, S Moore, RW Morange, N Moreno, D Llacer, MM Morettini, P Morgenstern, M Morii, M Morisbak, V Moritz, S Morley, AK Mornacchi, G Morris, JD Morton, A Morvaj, L Moser, HG Mosidze, M Moss, J Motohashi, K Mount, R Mountricha, E Mouraviev, SV Moyse, EJW Muanza, S Mudd, RD Mueller, F Mueller, J Mueller, K Mueller, RSP Mueller, T Muenstermann, D Mullen, P Munwes, Y Quijada, JAM Murray, WJ Musheghyan, H Musto, E Myagkov, AG Myska, M Nackenhorst, O Nadal, J Nagai, K Nagai, R Nagai, Y Nagano, K Nagarkar, A Nagasaka, Y Nagata, K Nagel, M Nagy, E Nairz, AM Nakahama, Y Nakamura, K Nakamura, T Nakano, I Namasivayam, H Nanava, G Garcia, RFN Narayan, R Nattermann, T Naumann, T Navarro, G Nayyar, R Neal, HA Nechaeva, PY Neep, TJ Nef, PD Negri, A Negrini, M Nektarijevic, S Nellist, C Nelson, A Nemecek, S Nemethy, P Nepomuceno, AA Nessi, M Neubauer, MS Neumann, M Neves, RM Nevski, P Newman, PR Nguyen, DH Nickerson, RB Nicolaidou, R Nicquevert, B Nielsen, J Nikiforou, N Nikiforov, A Nikolaenko, V Nikolic-Audit, I Nikolopoulos, K Nilsen, JK Nilsson, P Ninomiya, Y Nisati, A Nisius, R Nobe, T Nomachi, M Nomidis, I Nooney, T Norberg, S Nordberg, M Novgorodova, O Nowak, S Nozaki, M Nozka, L Ntekas, K Hanninger, GN Nunnemann, T Nurse, E Nuti, F O'Brien, BJ O'grady, F O'Neil, DC O'Shea, V Oakham, FG Oberlack, H Obermann, T Ocariz, J Ochi, A Ochoa, I Oda, S Odaka, S Ogren, H Oh, A Oh, SH Ohm, CC Ohman, H Oide, H Okamura, W Okawa, H Okumura, Y Okuyama, T Olariu, A Pino, SAO Damazio, DO Garcia, EO Olszewski, A Olszowska, J Onofre, A Onyisi, PUE Oram, CJ Oreglia, MJ Oren, Y Orestano, D Orlando, N Barrera, CO Orr, RS Osculati, B Ospanov, R Garzon, GOY Otono, H Ouchrif, M Ouellette, EA Ould-Saada, F Ouraou, A Oussoren, KP Ouyang, Q Ovcharova, A Owen, M Owen, RE Ozcan, VE Ozturk, N Pachal, K Pages, AP Aranda, CP Pagacova, M Griso, SP Paganis, E Pahl, C Paige, F Pais, P Pajchel, K Palacino, G Palestini, S Palka, M Pallin, D Palma, A Pan, YB Panagiotopoulou, E Pandini, CE Vazquez, JGP Pani, P Panitkin, S Paolozzi, L Papadopoulou, TD Papageorgiou, K Paramonov, A Hernandez, DP Parker, MA Parker, KA Parodi, F Parsons, JA Parzefall, U Pasqualucci, E Passaggio, S Pastore, F Pastore, F Pasztor, G Pataraia, S Patel, ND Pater, JR Pauly, T Pearce, J Pearson, B Pedersen, LE Pedersen, M Lopez, SP Pedro, R Peleganchuk, SV Pelikan, D Peng, H Penning, B Penwell, J Perepelitsa, DV Codina, EP Garcia-Estan, MTP Perini, L Pernegger, H Perrella, S Peschke, R Peshekhonov, VD Peters, K Peters, RFY Petersen, BA Petersen, TC Petit, E Petridis, A Petridou, C Petrolo, E Petrucci, F Pettersson, NE Pezoa, R Phillips, PW Piacquadio, G Pianori, E Picazio, A Piccaro, E Piccinini, M Pickering, MA Piegaia, R Pignotti, DT Pilcher, JE Pilkington, AD Pina, J Pinamonti, M Pinfold, JL Pingel, A Pinto, B Pires, S Pitt, M Pizio, C Plazak, L Pleier, MA Pleskot, V Plotnikova, E Plucinski, P Pluth, D Poettgen, R Poggioli, L Pohl, D Polesello, G Policicchio, A Polifka, R Polini, A Pollard, CS Polychronakos, V Pommes, K Pontecorvo, L Pope, BG Popeneciu, GA Popovic, DS Poppleton, A Pospisil, S Potamianos, K Potrap, IN Potter, CJ Potter, CT Poulard, G Poveda, J Pozdnyakov, V Pralavorio, P Pranko, A Prasad, S Prell, S Price, D Price, J Price, LE Primavera, M Prince, S Proissl, M Prokofiev, K Prokoshin, F Protopapadaki, E Protopopescu, S Proudfoot, J Przybycien, M Ptacek, E Puddu, D Pueschel, E Puldon, D Purohit, M Puzo, P Qian, J Qin, G Qin, Y Quadt, A Quarrie, DR Quayle, WB Queitsch-Maitland, M Quilty, D Qureshi, A Radeka, V Radescu, V Radhakrishnan, SK Radloff, P Rados, P Ragusa, F Rahal, G Rajagopalan, S Rammensee, M Rangel-Smith, C Rauscher, F Rave, S Rave, TC Ravenscroft, T Raymond, M Read, AL Readioff, NP Rebuzzi, DM Redelbach, A Redlinger, G Reece, R Reeves, K Rehnisch, L Reisin, H Relich, M Rembser, C Ren, H Renaud, A Rescigno, M Resconi, S Rezanova, OL Reznicek, P Rezvani, R Richter, R Richter, S Richter-Was, E Ridel, M Rieck, P Riegel, CJ Rieger, J Rijssenbeek, M Rimoldi, A Rinaldi, L Ristic, B Ritsch, E Riu, I Rizatdinova, F Rizvi, E Robertson, SH Robichaud-Veronneau, A Robinson, D Robinson, JEM Robson, A Roda, C Rodrigues, L Roe, S Rohne, O Rolli, S Romaniouk, A Romano, M Saez, SMR Adam, ER Rompotis, N Ronzani, M Roos, L Ros, E Rosati, S Rosbach, K Rose, P Rosendahl, PL Rosenthal, O Rossetti, V Rossi, E Rossi, LP Rosten, R Rotaru, M Roth, I Rothberg, J Rousseau, D Royon, CR Rozanov, A Rozen, Y Ruan, X Rubbo, F Rubinskiy, I Rud, VI Rudolph, C Rudolph, MS Ruhr, F Ruiz-Martinez, A Rurikova, Z Rusakovich, NA Ruschke, A Russell, HL Rutherfoord, JP Ruthmann, N Ryabov, YF Rybar, M Rybkin, G Ryder, NC Saavedra, AF Sabato, G Sacerdoti, S Saddique, A Sadrozinski, HFW Sadykov, R Tehrani, FS Saimpert, M Sakamoto, H Sakurai, Y Salamanna, G Salamon, A Saleem, M Salek, D De Bruin, PHS Salihagic, D Salnikov, A Salt, J Salvatore, D Salvatore, F Salvucci, A Salzburger, A Sampsonidis, D Sanchez, A Sanchez, J Martinez, VS Sandaker, H Sandbach, RL Sander, HG Sanders, MP Sandhoff, M Sandoval, C Sandstroem, R Sankey, DPC Sansoni, A Santoni, C Santonico, R Santos, H Castillo, IS Sapp, K Sapronov, A Saraiva, JG Sarrazin, B Sasaki, O Sasaki, Y Sato, K Sauvage, G Sauvan, E Savage, G Savard, P Sawyer, C Sawyer, L Saxon, J Sbarra, C Sbrizzi, A Scanlon, T Scannicchio, DA Scarcella, M Scarfone, V Schaarschmidt, J Schacht, P Schaefer, D Schaefer, R Schaeffer, J Schaepe, S Schaetzel, S Schafer, U Schaffer, AC Schaile, D Schamberger, RD Scharf, V Schegelsky, VA Scheirich, D Schernau, M Schiavi, C Schillo, C Schioppa, M Schlenker, S Schmidt, E Schmieden, K Schmitt, C Schmitt, S Schmitt, S Schneider, B Schnellbach, YJ Schnoor, U Schoeffel, L Schoening, A Schoenrock, BD Schopf, E Schorlemmer, ALS Schott, M Schouten, D Schovancova, J Schramm, S Schreyer, M Schroeder, C Schuh, N Schultens, MJ Schultz-Coulon, HC Schulz, H Schumacher, M Schumm, BA Schune, P Schwanenberger, C Schwartzman, A Schwarz, TA Schwegler, P Schwemling, P Schwienhorst, R Schwindling, J Schwindt, T Schwoerer, M Sciacca, FG Scifo, E Sciolla, G Scuri, F Scutti, F Searcy, J Sedov, G Sedykh, E Seema, P Seidel, SC Seiden, A Seifert, F Seixas, JM Sekhniaidze, G Sekula, SJ Selbach, KE Seliverstov, DM Semprini-Cesari, N Serfon, C Serin, L Serkin, L Serre, T Seuster, R Severini, H Sfiligoj, T Sforza, F Sfyrla, A Shabalina, E Shamim, M Shan, LY Shang, R Shank, JT Shapiro, M Shatalov, PB Shaw, K Shcherbakova, A Shehu, CY Sherwood, P Shi, L Shimizu, S Shimmin, CO Shimojima, M Shiyakova, M Shmeleva, A Saadi, DS Shochet, MJ Shojaii, S Shrestha, S Shulga, E Shupe, MA Shushkevich, S Sicho, P Sidiropoulou, O Sidorov, D Sidoti, A Siegert, F Sijacki, D Silva, J Silver, Y Silverstein, D Silverstein, SB Simak, V Simard, O Simic, L Simion, S Simioni, E Simmons, B Simon, D Simoniello, R Sinervo, P Sinev, NB Siragusa, G Sisakyan, AN Sivoklokov, SY Sjolin, J Sjursen, TB Skinner, MB Skottowe, HP Skubic, P Slater, M Slavicek, T Slawinska, M Sliwa, K Smakhtin, V Smart, BH Smestad, L Smirnov, SY Smirnov, Y Smirnova, LN Smirnova, O Smith, MNK Smizanska, M Smolek, K Snesarev, AA Snidero, G Snyder, S Sobie, R Socher, F Soffer, A Soh, DA Solans, CA Solar, M Solc, J Soldatov, EY Soldevila, U Solodkov, AA Soloshenko, A Solovyanov, OV Solovyev, V Sommer, P Song, HY Soni, N Sood, A Sopczak, A Sopko, B Sopko, V Sorin, V Sosa, D Sosebee, M Sotiropoulou, CL Soualah, R Soueid, P Soukharev, AM South, D Spagnolo, S Spalla, M Spano, F Spearman, WR Spettel, F Spighi, R Spigo, G Spiller, LA Spousta, M Spreitzer, T Denis, RDS Staerz, S Stahlman, J Stamen, R Stamm, S Stanecka, E Stanescu, C Stanescu-Bellu, M Stanitzki, MM Stapnes, S Starchenko, EA Stark, J Staroba, P Starovoitov, P Staszewski, R Stavina, P Steinberg, P Stelzer, B Stelzer, HJ Stelzer-Chilton, O Stenzel, H Stern, S Stewart, GA Stillings, JA Stockton, MC Stoebe, M Stoicea, G Stolte, P Stonjek, S Stradling, AR Straessner, A Stramaglia, ME Strandberg, J Strandberg, S Strandlie, A Strauss, E Strauss, M Strizenec, P Stromer, R Strom, DM Stroynowski, R Strubig, A Stucci, SA Stugu, B Styles, NA Su, D Su, J Subramaniam, R Succurro, A Sugaya, Y Suhr, C Suk, M Sulin, VV Sultansoy, S Sumida, T Sun, S Sun, X Sundermann, JE Suruliz, K Susinno, G Sutton, MR Suzuki, Y Svatos, M Swedish, S Swiatlowski, M Sykora, I Sykora, T Ta, D Taccini, C Tackmann, K Taenzer, J Taffard, A Tafirout, R Taiblum, N Takai, H Takashima, R Takeda, H Takeshita, T Takubo, Y Talby, M Talyshev, AA Tam, JYC Tan, KG Tanaka, J Tanaka, R Tanaka, S Tanaka, S Tanasijczuk, AJ Tannenwald, BB Tannoury, N Tapprogge, S Tarem, S Tarrade, F Tartarelli, GF Tas, P Tasevsky, M Tashiro, T Tassi, E Delgado, AT Tayalati, Y Taylor, FE Taylor, GN Taylor, W Teischinger, FA Castanheira, MTD Teixeira-Dias, P Temming, KK Ten Kate, H Teng, PK Teoh, JJ Tepel, F Terada, S Terashi, K Terron, J Terzo, S Testa, M Teuscher, RJ Therhaag, J Theveneaux-Pelzer, T Thomas, JP Thomas-Wilsker, J Thompson, EN Thompson, PD Thompson, RJ Thompson, AS Thomsen, LA Thomson, E Thomson, M Thun, RP Tian, F Tibbetts, MJ Torres, RET Tikhomirov, VO Tikhonov, YA Timoshenko, S Tiouchichine, E Tipton, P Tisserant, S Todorov, T Todorova-Nova, S Tojo, J Tokar, S Tokushuku, K Tollefson, K Tolley, E Tomlinson, L Tomoto, M Tompkins, L Toms, K Torrence, E Torres, H Pastor, ET Toth, J Touchard, F Tovey, DR Tran, HL Trefzger, T Tremblet, L Tricoli, A Trigger, IM Trincaz-Duvoid, S Tripiana, MF Trischuk, W Trocme, B Troncon, C Trottier-McDonald, M Trovatelli, M True, P Trzebinski, M Trzupek, A Tsarouchas, C Tseng, JCL Tsiareshka, PV Tsionou, D Tsipolitis, G Tsirintanis, N Tsiskaridze, S Tsiskaridze, V Tskhadadze, EG Tsukerman, II Tsulaia, V Tsuno, S Tsybychev, D Tudorache, A Tudorache, V Tuna, AN Tupputi, SA Turchikhin, S Turecek, D Turra, R Turvey, AJ Tuts, PM Tykhonov, A Tylmad, M Tyndel, M Ueda, I Ueno, R Ughetto, M Ugland, M Uhlenbrock, M Ukegawa, F Unal, G Undrus, A Unel, G Ungaro, FC Unno, Y Unverdorben, C Urban, J Urquijo, P Urrejola, P Usai, G Usanova, A Vacavant, L Vacek, V Vachon, B Valderanis, C Valencic, N Valentinetti, S Valero, A Valery, L Valkar, S Gallego, EV Vallecorsa, S Ferrer, JAV Van Den Wollenberg, W Van Der Deijl, PC van der Geer, R van der Graaf, H Van Der Leeuw, R van Eldik, N van Gemmeren, P Van Nieuwkoop, J van Vulpen, I van Woerden, MC Vanadia, M Vandelli, W Vanguri, R Vaniachine, A Vannucci, F Vardanyan, G Vari, R Varnes, EW Varol, T Varouchas, D Vartapetian, A Varvell, KE Vazeille, F Schroeder, TV Veatch, J Veloso, F Velz, T Veneziano, S Ventura, A Ventura, D Venturi, M Venturi, N Venturini, A Vercesi, V Verducci, M Verkerke, W Vermeulen, JC Vest, A Vetterli, MC Viazlo, O Vichou, I Vickey, T Boeriu, OEV Viehhauser, GHA Viel, S Vigne, R Villa, M Perez, MV Vilucchi, E Vincter, MG Vinogradov, VB Vivarelli, I Vaque, FV Vlachos, S Vladoiu, D Vlasak, M Vogel, M Vokac, P Volpi, G Volpi, M von der Schmitt, H von Radziewski, H von Toerne, E Vorobel, V Vorobev, K Vos, M Voss, R Vossebeld, JH Vranjes, N Milosavljevic, MV Vrba, V Vreeswijk, M Vuillermet, R Vukotic, I Vykydal, Z Wagner, P Wagner, W Wahlberg, H Wahrmund, S Wakabayashi, J Walder, J Walker, R Walkowiak, W Wang, C Wang, F Wang, H Wang, H Wang, J Wang, J Wang, K Wang, LT Wang, R Wang, SM Wang, T Wang, X Wanotayaroj, C Warburton, A Ward, CP Wardrope, DR Warsinsky, M Washbrook, A Wasicki, C Watkins, PM Watson, AT Watson, IJ Watson, MF Watts, G Watts, S Waugh, BM Webb, S Weber, MS Weber, SW Webster, JS Weidberg, AR Weinert, B Weingarten, J Weiser, C Weits, H Wells, PS Wenaus, T Wendland, D Wengler, T Wenig, S Wermes, N Werner, M Werner, P Wessels, M Wetter, J Whalen, K Wharton, AM White, A White, MJ White, R White, S Whiteson, D Wicke, D Wickens, FJ Wiedenmann, W Wielers, M Wienemann, P Wiglesworth, C Wiik-Fuchs, LAM Wildauer, A Wilkens, HG Williams, HH Williams, S Willis, C Willocq, S Wilson, A Wilson, JA Wingerter-Seez, I Winklmeier, F Winter, BT Wittgen, M Wittkowski, J Wollstadt, SJ Wolter, MW Wolters, H Wosiek, BK Wotschack, J Woudstra, MJ Wozniak, KW Wu, M Wu, M Wu, SL Wu, X Wu, Y Wyatt, TR Wynne, BM Xella, S Xu, D Xu, L Yabsley, B Yacoob, S Yakabe, R Yamada, M Yamaguchi, Y Yamamoto, A Yamamoto, S Yamanaka, T Yamauchi, K Yamazaki, Y Yan, Z Yang, H Yang, H Yang, Y Yao, L Yao, WM Yasu, Y Yatsenko, E Wong, KHY Ye, J Ye, S Yeletskikh, I Yen, AL Yildirim, E Yorita, K Yoshida, R Yoshihara, K Young, C Young, CJS Youssef, S Yu, DR Yu, J Yu, JM Yu, J Yuan, L Yurkewicz, A Yusuff, I Zabinski, B Zaidan, R Zaitsev, AM Zalieckas, J Zaman, A Zambito, S Zanello, L Zanzi, D Zeitnitz, C Zeman, M Zemla, A Zengel, K Zenin, O Zenis, T Zerwas, D Zhang, D Zhang, F Zhang, J Zhang, L Zhang, R Zhang, X Zhang, Z Zhao, X Zhao, Y Zhao, Z Zhemchugov, A Zhong, J Zhou, B Zhou, C Zhou, L Zhou, L Zhou, N Zhu, CG Zhu, H Zhu, J Zhu, Y Zhuang, X Zhukov, K Zibell, A Zieminska, D Zimine, NI Zimmermann, C Zimmermann, R Zimmermann, S Zinonos, Z Zinser, M Ziolkowski, M Zivkovic, L Zobernig, G Zoccoli, A zur Nedden, M Zurzolo, G Zwalinski, L AF Aad, G. Abbott, B. Abdallah, J. Khalek, S. Abdel Abdinov, O. Aben, R. Abi, B. Abolins, M. AbouZeid, O. S. Abramowicz, H. Abreu, H. Abreu, R. Abulaiti, Y. Acharya, B. S. Adamczyk, L. Adams, D. L. Adelman, J. Adomeit, S. Adye, T. Agatonovic-Jovin, T. Aguilar-Saavedra, J. A. Agustoni, M. Ahlen, S. P. Ahmadov, F. Aielli, G. Akerstedt, H. Akesson, T. P. A. Akimoto, G. Akimov, A. V. Alberghi, G. L. Albert, J. Albrand, S. Alconada Verzini, M. J. Aleksa, M. Aleksandrov, I. N. Alexa, C. Alexander, G. Alexopoulos, T. Alhroob, M. Alimonti, G. Alio, L. Alison, J. Allbrooke, B. M. M. Allison, L. J. Allport, P. P. Aloisio, A. Alonso, A. Alonso, F. Alpigiani, C. Altheimer, A. Gonzalez, B. Alvarez Alviggi, M. G. Amako, K. Amaral Coutinho, Y. Amelung, C. Amidei, D. Amor Dos Santos, S. P. Amorim, A. Amoroso, S. Amram, N. Amundsen, G. Anastopoulos, C. Ancu, L. S. Andari, N. Andeen, T. Anders, C. F. Anders, G. Anderson, K. J. Andreazza, A. Andrei, V. Anduaga, X. S. Angelidakis, S. Angelozzi, I. Anger, P. Angerami, A. Anghinolfi, F. Anisenkov, A. V. Anjos, N. Annovi, A. Antonelli, M. Antonov, A. Antos, J. Anulli, F. Aoki, M. Bella, L. Aperio Arabidze, G. Arai, Y. Araque, J. P. Arce, A. T. H. Arduh, F. A. Arguin, J-F. Argyropoulos, S. Arik, M. Armbruster, A. J. Arnaez, O. Arnal, V. Arnold, H. Arratia, M. Arslan, O. Artamonov, A. Artoni, G. Asai, S. Asbah, N. Ashkenazi, A. Asman, B. Asquith, L. Assamagan, K. Astalos, R. Atkinson, M. Atlay, N. B. Auerbach, B. Augsten, K. Aurousseau, M. Avolio, G. Axen, B. Ayoub, M. K. Azuelos, G. Baak, M. A. Baas, A. E. Bacci, C. Bachacou, H. Bachas, K. Backes, M. Backhaus, M. Bagiacchi, P. Bagnaia, P. Bai, Y. Bain, T. Baines, J. T. Baker, O. K. Balek, P. Balestri, T. Balli, F. Banas, E. Banerjee, Sw. Bannoura, A. A. E. Bansil, H. S. Barak, L. Baranov, S. P. Barberio, E. L. Barberis, D. Barbero, M. Barillari, T. Barisonzi, M. Barklow, T. Barlow, N. Barnes, S. L. Barnett, B. M. Barnett, R. M. Barnovska, Z. Baroncelli, A. Barone, G. Barr, A. J. Barreiro, F. da Costa, J. Barreiro Guimaraes Bartoldus, R. Barton, A. E. Bartos, P. Bassalat, A. Basye, A. Bates, R. L. Batista, S. J. Batley, J. R. Battaglia, M. Bauce, M. Bauer, F. Bawa, H. S. Beacham, J. B. Beattie, M. D. Beau, T. Beauchemin, P. H. Beccherle, R. Bechtle, P. Beck, H. P. Becker, K. Becker, S. Beckingham, M. Becot, C. Beddall, A. J. Beddall, A. Bednyakov, V. A. Bee, C. P. Beemster, L. J. Beermann, T. A. Begel, M. Behr, K. Belanger-Champagne, C. Bell, P. J. Bell, W. H. Bella, G. Bellagamba, L. Bellerive, A. Bellomo, M. Belotskiy, K. Beltramello, O. Benary, O. Benchekroun, D. Bender, M. Bendtz, K. Benekos, N. Benhammou, Y. Noccioli, E. Benhar Garcia, J. A. Benitez Benjamin, D. P. Bensinger, J. R. Bentvelsen, S. Beresford, L. Beretta, M. Berge, D. Kuutmann, E. Bergeaas Berger, N. Berghaus, F. Beringer, J. Bernard, C. Bernard, N. R. Bernius, C. Bernlochner, F. U. Berry, T. Berta, P. Bertella, C. Bertoli, G. Bertolucci, F. Bertsche, C. Bertsche, D. Besana, M. I. Besjes, G. J. Bylund, O. Bessidskaia Bessner, M. Besson, N. Betancourt, C. Bethke, S. Bevan, A. J. Bhimji, W. Bianchi, R. M. Bianchini, L. Bianco, M. Biebel, O. Bieniek, S. P. Biglietti, M. De Mendizabal, J. Bilbao Bilokon, H. Bindi, M. Binet, S. Bingul, A. Bini, C. Black, C. W. Black, J. E. Black, K. M. Blackburn, D. Blair, R. E. Blanchard, J. -B. Blanco, J. E. Blazek, T. Bloch, I. Blocker, C. Blum, W. Blumenschein, U. Bobbink, G. J. Bobrovnikov, V. S. Bocchetta, S. S. Bocci, A. Bock, C. Boehler, M. Bogaerts, J. A. Bogdanchikov, A. G. Bohm, C. Boisvert, V. Bold, T. Boldea, V. Boldyrev, A. S. Bomben, M. Bona, M. Boonekamp, M. Borisov, A. Borissov, G. Borroni, S. Bortfeldt, J. Bortolotto, V. Bos, K. Boscherini, D. Bosman, M. Boudreau, J. Bouffard, J. Bouhova-Thacker, E. V. Boumediene, D. Bourdarios, C. Bousson, N. Boutouil, S. Boveia, A. Boyd, J. Boyko, I. R. Bozic, I. Bracinik, J. Brandt, A. Brandt, G. Brandt, O. Bratzler, U. Brau, B. Brau, J. E. Braun, H. M. Brazzale, S. F. Brendlinger, K. Brennan, A. J. Brenner, L. Brenner, R. Bressler, S. Bristow, K. Bristow, T. M. Britton, D. Britzger, D. Brochu, F. M. Brock, I. Brock, R. Bronner, J. Brooijmans, G. Brooks, T. Brooks, W. K. Brosamer, J. Brost, E. Brown, J. Bruckman de Renstrom, P. A. Bruncko, D. Bruneliere, R. Bruni, A. Bruni, G. Bruschi, M. Bryngemark, L. Buanes, T. Buat, Q. Buchholz, P. Buckley, A. G. Buda, S. I. Budagov, I. A. Buehrer, F. Bugge, L. Bugge, M. K. Bulekov, O. Burckhart, H. Burdin, S. Burghgrave, B. Burke, S. Burmeister, I. Busato, E. Buescher, D. Buescher, V. Bussey, P. Buszello, C. P. Butler, J. M. Butt, A. I. Buttar, C. M. Butterworth, J. M. Butti, P. Buttinger, W. Buzatu, A. Cabrera Urban, S. Caforio, D. Cakir, O. Calafiura, P. Calandri, A. Calderini, G. Calfayan, P. Caloba, L. P. Calvet, D. Calvet, S. Camacho Toro, R. Camarda, S. Cameron, D. Caminada, L. M. Caminal Armadans, R. Campana, S. Campanelli, M. Campoverde, A. Canale, V. Canepa, A. Bret, M. Cano Cantero, J. Cantrill, R. Cao, T. Garrido, M. D. M. Capeans Caprini, I. Caprini, M. Capua, M. Caputo, R. Cardarelli, R. Carli, T. Carlino, G. Carminati, L. Caron, S. Carquin, E. Carrillo-Montoya, G. D. Carter, J. R. Carvalho, J. Casadei, D. Casado, M. P. Casolino, M. Castaneda-Miranda, E. Castelli, A. Castillo Gimenez, V. Castro, N. F. Catastini, P. Catinaccio, A. Catmore, J. R. Cattai, A. Cattani, G. Caudron, J. Cavaliere, V. Cavalli, D. Cavalli-Sforza, M. Cavasinni, V. Ceradini, F. Cerio, B. C. Cerny, K. Cerqueira, A. S. Cerri, A. Cerrito, L. Cerutti, F. Cerv, M. Cervelli, A. Cetin, S. A. Chafaq, A. Chakraborty, D. Chalupkova, I. Chang, P. Chapleau, B. Chapman, J. D. Charfeddine, D. Charlton, D. G. Chau, C. C. Chavez Barajas, C. A. Cheatham, S. Chegwidden, A. Chekanov, S. Chekulaev, S. V. Chelkov, G. A. Chelstowska, M. A. Chen, C. Chen, H. Chen, K. Chen, L. Chen, S. Chen, X. Chen, Y. Cheng, H. C. Cheng, Y. Cheplakov, A. Cheremushkina, E. El Moursli, R. Cherkaoui Chernyatin, V. Cheu, E. Chevalier, L. Chiarella, V. Childers, J. T. Chilingarov, A. Chiodini, G. Chisholm, A. S. Chislett, R. T. Chitan, A. Chizhov, M. V. Choi, K. Chouridou, S. Chow, B. K. B. Christodoulou, V. Chromek-Burckhart, D. Chu, M. L. Chudoba, J. Chuinard, A. J. Chwastowski, J. J. Chytka, L. Ciapetti, G. Ciftci, A. K. Cinca, D. Cindro, V. Ciocio, A. Citron, Z. H. Ciubancan, M. Clark, A. Clark, P. J. Clarke, R. N. Cleland, W. Clement, C. Coadou, Y. Cobal, M. Coccaro, A. Cochran, J. Coffey, L. Cogan, J. G. Cole, B. Cole, S. Colijn, A. P. Collot, J. Colombo, T. Compostella, G. Muino, P. Conde Coniavitis, E. Connell, S. H. Connelly, I. A. Consonni, S. M. Consorti, V. Constantinescu, S. Conta, C. Conti, G. Conventi, F. Cooke, M. Cooper, B. D. Cooper-Sarkar, A. M. Copic, K. Cornelissen, T. Corradi, M. Corriveau, F. Corso-Radu, A. Cortes-Gonzalez, A. Cortiana, G. Costa, G. Costa, M. J. Costanzo, D. Cote, D. Cottin, G. Cowan, G. Cox, B. E. Cranmer, K. Cree, G. Crepe-Renaudin, S. Crescioli, F. Cribbs, W. A. Ortuzar, M. Crispin Cristinziani, M. Croft, V. Crosetti, G. Donszelmann, T. Cuhadar Cummings, J. Curatolo, M. Cuthbert, C. Czirr, H. Czodrowski, P. D'Auria, S. D'Onofrio, M. Da Cunha Sargedas De Sousa, M. J. Da Via, C. Dabrowski, W. Dafinca, A. Dai, T. Dale, O. Dallaire, F. Dallapiccola, C. Dam, M. Dandoy, J. R. Daniells, A. C. Danninger, M. Hoffmann, M. Dano Dao, V. Darbo, G. Darmora, S. Dassoulas, J. Dattagupta, A. Davey, W. David, C. Davidek, T. Davies, E. Davies, M. Davison, P. Davygora, Y. Dawe, E. Dawson, I. Daya-Ishmukhametova, R. K. De, K. de Asmundis, R. De Castro, S. De Cecco, S. De Groot, N. de Jong, P. De la Torre, H. De Lorenzi, F. De Nooij, L. De Pedis, D. De Salvo, A. De Sanctis, U. De Santo, A. De Regie, J. B. De Vivie Dearnaley, W. J. Debbe, R. Debenedetti, C. Dedovich, D. V. Deigaard, I. Del Peso, J. Del Prete, T. Delgove, D. Deliot, F. Delitzsch, C. M. Deliyergiyev, M. Dell'Acqua, A. Dell'Asta, L. Dell'Orso, M. Della Pietra, M. della Volpe, D. Delmastro, M. Delsart, P. A. Deluca, C. DeMarco, D. A. Demers, S. Demichev, M. Demilly, A. Denisov, S. P. Derendarz, D. Derkaoui, J. E. Derue, F. Dervan, P. Desch, K. Deterre, C. Deviveiros, P. O. Dewhurst, A. Dhaliwal, S. Di Ciaccio, A. Di Ciaccio, L. Di Domenico, A. Di Donato, C. Di Girolamo, A. Di Girolamo, B. Di Mattia, A. Di Micco, B. Di Nardo, R. Di Simone, A. Di Sipio, R. Di Valentino, D. Diaconu, C. Diamond, M. Dias, F. A. Diaz, M. A. Diehl, E. B. Dietrich, J. Diglio, S. Dimitrievska, A. Dingfelder, J. Dittus, F. Djama, F. Djobava, T. Djuvsland, J. I. do Vale, M. A. B. Dobos, D. Dobre, M. Doglioni, C. Dohmae, T. Dolejsi, J. Dolezal, Z. Dolgoshein, B. A. Donadelli, M. Donati, S. Dondero, P. Donini, J. Dopke, J. Doria, A. Dova, M. T. Doyle, A. T. Drechsler, E. Dris, M. Dubreuil, E. Duchovni, E. Duckeck, G. Ducu, O. A. Duda, D. Dudarev, A. Duflot, L. Duguid, L. Duehrssen, M. Dunford, M. Yildiz, H. Duran Dueren, M. Durglishvili, A. Duschinger, D. Dwuznik, M. Dyndal, M. Ecker, K. M. Edson, W. Edwards, N. C. Ehrenfeld, W. Eifert, T. Eigen, G. Einsweiler, K. Ekelof, T. El Kacimi, M. Ellert, M. Elles, S. Ellinghaus, F. Elliot, A. A. Ellis, N. Elmsheuser, J. Elsing, M. Emeliyanov, D. Enari, Y. Endner, O. C. Endo, M. Engelmann, R. Erdmann, J. Ereditato, A. Eriksson, D. Ernis, G. Ernst, J. Ernst, M. Errede, S. Ertel, E. Escalier, M. Esch, H. Escobar, C. Esposito, B. Etienvre, A. I. Etzion, E. Evans, H. Ezhilov, A. Fabbri, L. Facini, G. Fakhrutdinov, R. M. Falciano, S. Falla, R. J. Faltova, J. Fang, Y. Fanti, M. Farbin, A. Farilla, A. Farooque, T. Farrell, S. Farrington, S. M. Farthouat, P. Fassi, F. Fassnacht, P. Fassouliotis, D. Favareto, A. Fayard, L. Federic, P. Fedin, O. L. Fedorko, W. Feigl, S. Feligioni, L. Feng, C. Feng, E. J. Feng, H. Fenyuk, A. B. Fernandez Martinez, P. Fernandez Perez, S. Ferrag, S. Ferrando, J. Ferrari, A. Ferrari, P. Ferrari, R. de Lima, D. E. Ferreira Ferrer, A. Ferrere, D. Ferretti, C. Parodi, A. Ferretto Fiascaris, M. Fiedler, F. Filipcic, A. Filipuzzi, M. Filthaut, F. Fincke-Keeler, M. Finelli, K. D. Fiolhais, M. C. N. Fiorini, L. Firan, A. Fischer, A. Fischer, C. Fischer, J. Fisher, W. C. Fitzgerald, E. A. Flechl, M. Fleck, I. Fleischmann, P. Fleischmann, S. Fletcher, G. T. Fletcher, G. Flick, T. Floderus, A. Castillo, L. R. Flores Flowerdew, M. J. Formica, A. Forti, A. Fournier, D. Fox, H. Fracchia, S. Francavilla, P. Franchini, M. Francis, D. Franconi, L. Franklin, M. Fraternali, M. Freeborn, D. French, S. T. Friedrich, F. Froidevaux, D. Frost, J. A. Fukunaga, C. Torregrosa, E. Fullana Fulsom, B. G. Fuster, J. Gabaldon, C. Gabizon, O. Gabrielli, A. Gabrielli, A. Gadatsch, S. Gadomski, S. Gagliardi, G. Gagnon, P. Galea, C. Galhardo, B. Gallas, E. J. Gallop, B. J. Gallus, P. Galster, G. Gan, K. K. Gao, J. Gao, Y. Gao, Y. S. Walls, F. M. Garay Garberson, F. Garcia, C. Garcia Navarro, J. E. Garcia-Sciveres, M. Gardner, R. W. Garelli, N. Garonne, V. Gatti, C. Gaudio, G. Gaur, B. Gauthier, L. Gauzzi, P. Gavrilenko, I. L. Gay, C. Gaycken, G. Gazis, E. N. Ge, P. Gecse, Z. Gee, C. N. P. Geerts, D. A. A. Geich-Gimbel, Ch. Gemme, C. Genest, M. H. Gentile, S. George, M. George, S. Gerbaudo, D. Gershon, A. Ghazlane, H. Ghodbane, N. Giacobbe, B. Giagu, S. Giangiobbe, V. Giannetti, P. Gianotti, F. Gibbard, B. Gibson, S. M. Gilchriese, M. Gillam, T. P. S. Gillberg, D. Gilles, G. Gingrich, D. M. Giokaris, N. Giordani, M. P. Giorgi, F. M. Giorgi, F. M. Giraud, P. F. Giromini, P. Giugni, D. Giuliani, C. Giulini, M. Gjelsten, B. K. Gkaitatzis, S. Gkialas, I. Gkougkousis, E. L. Gladilin, L. K. Glasman, C. Glatzer, J. Glaysher, P. C. F. Glazov, A. Goblirsch-Kolb, M. Goddard, J. R. Godlewski, J. Goldfarb, S. Golling, T. Golubkov, D. Gomes, A. Goncalo, R. Goncalves Pinto Firmino Da Costa, J. Gonella, L. Gonzalez de la Hoz, S. Gonzalez Parra, G. Gonzalez-Sevilla, S. Goossens, L. Gorbounov, P. A. Gordon, H. A. Gorelov, I. Gorini, B. Gorini, E. Gorisek, A. Gornicki, E. Goshaw, A. T. Goessling, C. Gostkin, M. I. Gouighri, M. Goujdami, D. Goussiou, A. G. Grabas, H. M. X. Graber, L. Grabowska-Bold, I. Grafstroem, P. Grahn, K-J. Gramling, J. Gramstad, E. Grancagnolo, S. Grassi, V. Gratchev, V. Gray, H. M. Graziani, E. Greenwood, Z. D. Gregersen, K. Gregor, I. M. Grenier, P. Griffiths, J. Grillo, A. A. Grimm, K. Grinstein, S. Gris, Ph. Grishkevich, Y. V. Grivaz, J. -F. Grohs, J. P. Grohsjean, A. Gross, E. Grosse-Knetter, J. Grossi, G. C. Grout, Z. J. Guan, L. Guenther, J. Guescini, F. Guest, D. Gueta, O. Guido, E. Guillemin, T. Guindon, S. Gul, U. Gumpert, C. Guo, J. Gupta, S. Gutierrez, P. Ortiz, N. G. Gutierrez Gutschow, C. Guttman, N. Guyot, C. Gwenlan, C. Gwilliam, C. B. Haas, A. Haber, C. Hadavand, H. K. Haddad, N. Haefner, P. Hageboeck, S. Hajduk, Z. Hakobyan, H. Haleem, M. Haley, J. Hall, D. Halladjian, G. Hallewell, G. D. Hamacher, K. Hamal, P. Hamano, K. Hamer, M. Hamilton, A. Hamilton, S. Hamity, G. N. Hamnett, P. G. Han, L. Hanagaki, K. Hanawa, K. Hance, M. Hanke, P. Hanna, R. Hansen, J. B. Hansen, J. D. Hansen, P. H. Hara, K. Hard, A. S. Harenberg, T. Hariri, F. Harkusha, S. Harrington, R. D. Harrison, P. F. Hartjes, F. Hasegawa, M. Hasegawa, S. Hasegawa, Y. Hasib, A. Hassani, S. Haug, S. Hauser, R. Hauswald, L. Havranek, M. Hawkes, C. M. Hawkings, R. J. Hawkins, A. D. Hayashi, T. Hayden, D. Hays, C. P. Hays, J. M. Hayward, H. S. Haywood, S. J. Head, S. J. Heck, T. Hedberg, V. Heelan, L. Heim, S. Heim, T. Heinemann, B. Heinrich, L. Hejbal, J. Helary, L. Heller, M. Hellman, S. Hellmich, D. Helsens, C. Henrot-Versille, S. Herbert, G. H. Hernandez Jimenez, Y. Herrberg-Schubert, R. Herten, G. Hertenberger, R. Hervas, L. Hesketh, G. G. Hessey, N. P. Hetherly, J. W. Hickling, R. Higon-Rodriguez, E. Hill, E. Hill, J. C. Hiller, K. H. Hillier, S. J. Hinchliffe, I. Hines, E. Hinman, R. R. Hirose, M. Hirschbuehl, D. Hobbs, J. Hod, N. Hodgkinson, M. C. Hodgson, P. Hoecker, A. Hoeferkamp, M. R. Hoenig, F. Hohlfeld, M. Hohn, D. Holmes, T. R. Hong, T. M. van Huysduynen, L. Hooft Hopkins, W. H. Horii, Y. Horton, A. J. Hostachy, J-Y. Hou, S. Hoummada, A. Howard, J. Howarth, J. Hrabovsky, M. Hristova, I. Hrivnac, J. Hryn'ova, T. Hrynevich, A. Hsu, C. Hsu, P. J. Hsu, S. -C. Hu, D. Hu, Q. Hu, X. Huang, Y. Hubacek, Z. Hubaut, F. Huegging, F. Huffman, T. B. Hughes, E. W. Hughes, G. Huhtinen, M. Huelsing, T. A. Huseynov, N. Huston, J. Huth, J. Iacobucci, G. Iakovidis, G. Ibragimov, I. Iconomidou-Fayard, L. Ideal, E. Idrissi, Z. Iengo, P. Igonkina, O. Iizawa, T. Ikegami, Y. Ikematsu, K. Ikeno, M. Ilchenko, Y. Iliadis, D. Ilic, N. Inamaru, Y. Ince, T. Ioannou, P. Iodice, M. Iordanidou, K. Ippolito, V. Irles Quiles, A. Isaksson, C. Ishino, M. Ishitsuka, M. Ishmukhametov, R. Issever, C. Istin, S. Iturbe Ponce, J. M. Iuppa, R. Ivarsson, J. Iwanski, W. Iwasaki, H. Izen, J. M. Izzo, V. Jabbar, S. Jackson, B. Jackson, M. Jackson, P. Jaekel, M. R. Jain, V. Jakobs, K. Jakobsen, S. Jakoubek, T. Jakubek, J. Jamin, D. O. Jana, D. K. Jansen, E. Jansky, R. W. Janssen, J. Janus, M. Jarlskog, G. Javadov, N. Javurek, T. Jeanty, L. Jejelava, J. Jeng, G. -Y. Jennens, D. Jenni, P. Jentzsch, J. Jeske, C. Jezequel, S. Ji, H. Jia, J. Jiang, Y. Jimenez Pena, J. Jin, S. Jinaru, A. Jinnouchi, O. Joergensen, M. D. Johansson, P. Johns, K. A. Jon-And, K. Jones, G. Jones, R. W. L. Jones, T. J. Jongmanns, J. Jorge, P. M. Joshi, K. D. Jovicevic, J. Ju, X. Jung, C. A. Jussel, P. Juste Rozas, A. Kaci, M. Kaczmarska, A. Kado, M. Kagan, H. Kagan, M. Kahn, S. J. Kajomovitz, E. Kalderon, C. W. Kama, S. Kamenshchikov, A. Kanaya, N. Kaneda, M. Kaneti, S. Kantserov, V. A. Kanzaki, J. Kaplan, B. Kapliy, A. Kar, D. Karakostas, K. Karamaoun, A. Karastathis, N. Kareem, M. J. Karnevskiy, M. Karpov, S. N. Karpova, Z. M. Karthik, K. Kartvelishvili, V. Karyukhin, A. N. Kashif, L. Kass, R. D. Kastanas, A. Kataoka, Y. Katre, A. Katzy, J. Kawagoe, K. Kawamoto, T. Kawamura, G. Kazama, S. Kazanin, V. F. Kazarinov, M. Y. Keeler, R. Kehoe, R. Keil, M. Keller, J. S. Kempster, J. J. Keoshkerian, H. Kepka, O. Kersevan, B. P. Kersten, S. Keyes, R. A. Khalil-zada, F. Khandanyan, H. Khanov, A. Kharlamov, A. Khodinov, A. Khoo, T. J. Khoriauli, G. Khovanskiy, V. Khramov, E. Khubua, J. Kim, H. Y. Kim, H. Kim, S. H. Kim, Y. Kimura, N. Kind, O. M. King, B. T. King, M. King, R. S. B. King, S. B. Kirk, J. Kiryunin, A. E. Kishimoto, T. Kisielewska, D. Kiss, F. Kiuchi, K. Kladiva, E. Klein, M. H. Klein, M. Klein, U. Kleinknecht, K. Klimek, P. Klimentov, A. Klingenberg, R. Klinger, J. A. Klioutchnikova, T. Klok, P. F. Kluge, E. -E. Kluit, P. Kluth, S. Kneringer, E. Knoops, E. B. F. G. Knue, A. Kobayashi, D. Kobayashi, T. Kobel, M. Kocian, M. Kodys, P. Koffas, T. Koffeman, E. Kogan, L. A. Kohlmann, S. Kohout, Z. Kohriki, T. Koi, T. Kolanoski, H. Koletsou, I. Komar, A. A. Komori, Y. Kondo, T. Kondrashova, N. Koeneke, K. Koenig, A. C. Koenig, S. Kono, T. Konoplich, R. Konstantinidis, N. Kopeliansky, R. Koperny, S. Koepke, L. Kopp, A. K. Korcyl, K. Kordas, K. Korn, A. Korol, A. A. Korolkov, I. Korolkova, E. V. Kortner, O. Kortner, S. Kosek, T. Kostyukhin, V. V. Kotov, V. M. Kotwal, A. Kourkoumeli-Charalampidi, A. Kourkoumelis, C. Kouskoura, V. Koutsman, A. Kowalewski, R. Kowalski, T. Z. Kozanecki, W. Kozhin, A. S. Kramarenko, V. A. Kramberger, G. Krasnopevtsev, D. Krasny, M. W. Krasznahorkay, A. Kraus, J. K. Kravchenko, A. Kreiss, S. Kretz, M. Kretzschmar, J. Kreutzfeldt, K. Krieger, P. Krizka, K. Kroeninger, K. Kroha, H. Kroll, J. Kroseberg, J. Krstic, J. Kruchonak, U. Krueger, H. Krumnack, N. Krumshteyn, Z. V. Kruse, A. Kruse, M. C. Kruskal, M. Kubota, T. Kucuk, H. Kuday, S. Kuehn, S. Kugel, A. Kuger, F. Kuhl, A. Kuhl, T. Kukhtin, V. Kulchitsky, Y. Kuleshov, S. Kuna, M. Kunigo, T. Kupco, A. Kurashige, H. Kurochkin, Y. A. Kurumida, R. Kus, V. Kuwertz, E. S. Kuze, M. Kvita, J. Kwan, T. Kyriazopoulos, D. La Rosa, A. La Rosa Navarro, J. L. La Rotonda, L. Lacasta, C. Lacava, F. Lacey, J. Lacker, H. Lacour, D. Lacuesta, V. R. Ladygin, E. Lafaye, R. Laforge, B. Lagouri, T. Lai, S. Lambourne, L. Lammers, S. Lampen, C. L. Lampl, W. Lancon, E. Landgraf, U. Landon, M. P. J. Lang, V. S. Lankford, A. J. Lanni, F. Lantzsch, K. Laplace, S. Lapoire, C. Laporte, J. F. Lari, T. Manghi, F. Lasagni Lassnig, M. Laurelli, P. Lavrijsen, W. Law, A. T. Laycock, P. Le Dortz, O. Le Guirriec, E. Le Menedeu, E. LeCompte, T. Ledroit-Guillon, F. Lee, C. A. Lee, S. C. Lee, L. Lefebvre, G. Lefebvre, M. Legger, F. Leggett, C. Lehan, A. Miotto, G. Lehmann Lei, X. Leight, W. A. Leisos, A. Leister, A. G. Leite, M. A. L. Leitner, R. Lellouch, D. Lemmer, B. Leney, K. J. C. Lenz, T. Lenzen, G. Lenzi, B. Leone, R. Leone, S. Leonidopoulos, C. Leontsinis, S. Leroy, C. Lester, C. G. Levchenko, M. Leveque, J. Levin, D. Levinson, L. J. Levy, M. Lewis, A. Leyko, A. M. Leyton, M. Li, B. Li, B. Li, H. Li, H. L. Li, L. Li, L. Li, S. Li, Y. Liang, Z. Liao, H. Liberti, B. Liblong, A. Lichard, P. Lie, K. Liebal, J. Liebig, W. Limbach, C. Limosani, A. Lin, S. C. Lin, T. H. Linde, F. Lindquist, B. E. Linnemann, J. T. Lipeles, E. Lipniacka, A. Lisovyi, M. Liss, T. M. Lissauer, D. Lister, A. Litke, A. M. Liu, B. Liu, D. Liu, J. Liu, J. B. Liu, K. Liu, L. Liu, M. Liu, M. Liu, Y. Livan, M. Lleres, A. Merino, J. Llorente Lloyd, S. L. Lo Sterzo, F. Lobodzinska, E. Loch, P. Lockman, W. S. Loebinger, F. K. Loevschall-Jensen, A. E. Loginov, A. Lohse, T. Lohwasser, K. Lokajicek, M. Long, B. A. Long, J. D. Long, R. E. Looper, K. A. Lopes, L. Mateos, D. Lopez Paredes, B. Lopez Paz, I. Lopez Lorenz, J. Martinez, N. Lorenzo Losada, M. Loscutoff, P. Loesel, P. J. Lou, X. Lounis, A. Love, J. Love, P. A. Lu, N. Lubatti, H. J. Luci, C. Lucotte, A. Luehring, F. Lukas, W. Luminari, L. Lundberg, O. Lund-Jensen, B. Lungwitz, M. Lynn, D. Lysak, R. Lytken, E. Ma, H. Ma, L. L. Maccarrone, G. Macchiolo, A. Macdonald, C. M. Miguens, J. Machado Macina, D. Madaffari, D. Madar, R. Maddocks, H. J. Mader, W. F. Madsen, A. Maeland, S. Maeno, T. Maevskiy, A. Magradze, E. Mahboubi, K. Mahlstedt, J. Mahmoud, S. Maiani, C. Maidantchik, C. Maier, A. A. Maier, T. Maio, A. Majewski, S. Makida, Y. Makovec, N. Malaescu, B. Malecki, Pa. Maleev, V. P. Malek, F. Mallik, U. Malon, D. Malone, C. Maltezos, S. Malyshev, V. M. Malyukov, S. Mamuzic, J. Mancini, G. Mandelli, B. Mandelli, L. Mandic, I. Mandrysch, R. Maneira, J. Manfredini, A. de Andrade Filho, L. Manhaes Ramos, J. Manjarres Mann, A. Manning, P. M. Manousakis-Katsikakis, A. Mansoulie, B. Mantifel, R. Mantoani, M. Mapelli, L. March, L. Marchiori, G. Marcisovsky, M. Marino, C. P. Marjanovic, M. Marroquim, F. Marsden, S. P. Marshall, Z. Marti, L. F. Marti-Garcia, S. Martin, B. Martin, T. A. Martin, V. J. Latour, B. Martin dit Martinez, H. Martinez, M. Martin-Haugh, S. Martoiu, V. S. Martyniuk, A. C. Marx, M. Marzano, F. Marzin, A. Masetti, L. Mashimo, T. Mashinistov, R. Masik, J. Maslennikov, A. L. Massa, I. Massa, L. Massol, N. Mastrandrea, P. Mastroberardino, A. Masubuchi, T. Maettig, P. Mattmann, J. Maurer, J. Maxfield, S. J. Maximov, D. A. Mazini, R. Mazza, S. M. Mazzaferro, L. Mc Goldrick, G. Mc Kee, S. P. McCarn, A. McCarthy, R. L. McCarthy, T. G. McCubbin, N. A. McFarlane, K. W. Mcfayden, J. A. Mchedlidze, G. McMahon, S. J. McPherson, R. A. Medinnis, M. Meehan, S. Mehlhase, S. Mehta, A. Meier, K. Meineck, C. Meirose, B. Melachrinos, C. Garcia, B. R. Mellado Meloni, F. Mengarelli, A. Menke, S. Meoni, E. Mercurio, K. M. Mergelmeyer, S. Meric, N. Mermod, P. Merola, L. Meroni, C. Merritt, F. S. Merritt, H. Messina, A. Metcalfe, J. Mete, A. S. Meyer, C. Meyer, C. Meyer, J-P. Meyer, J. Middleton, R. P. Miglioranzi, S. Mijovic, L. Mikenberg, G. Mikestikova, M. Mikuz, M. Milesi, M. Milic, A. Miller, D. W. Mills, C. Milov, A. Milstead, D. A. Minaenko, A. A. Minami, Y. Minashvili, I. A. Mincer, A. I. Mindur, B. Mineev, M. Ming, Y. Mir, L. M. Mirabelli, G. Mitani, T. Mitrevski, J. Mitsou, V. A. Miucci, A. Miyagawa, P. S. Mjornmark, J. U. Moa, T. Mochizuki, K. Mohapatra, S. Mohr, W. Molander, S. Moles-Valls, R. Moenig, K. Monini, C. Monk, J. Monnier, E. Berlingen, J. Montejo Monticelli, F. Monzani, S. Moore, R. W. Morange, N. Moreno, D. Llacer, M. Moreno Morettini, P. Morgenstern, M. Morii, M. Morisbak, V. Moritz, S. Morley, A. K. Mornacchi, G. Morris, J. D. Morton, A. Morvaj, L. Moser, H. G. Mosidze, M. Moss, J. Motohashi, K. Mount, R. Mountricha, E. Mouraviev, S. V. Moyse, E. J. W. Muanza, S. Mudd, R. D. Mueller, F. Mueller, J. Mueller, K. Mueller, R. S. P. Mueller, T. Muenstermann, D. Mullen, P. Munwes, Y. Quijada, J. A. Murillo Murray, W. J. Musheghyan, H. Musto, E. Myagkov, A. G. Myska, M. Nackenhorst, O. Nadal, J. Nagai, K. Nagai, R. Nagai, Y. Nagano, K. Nagarkar, A. Nagasaka, Y. Nagata, K. Nagel, M. Nagy, E. Nairz, A. M. Nakahama, Y. Nakamura, K. Nakamura, T. Nakano, I. Namasivayam, H. Nanava, G. Garcia, R. F. Naranjo Narayan, R. Nattermann, T. Naumann, T. Navarro, G. Nayyar, R. Neal, H. A. Nechaeva, P. Yu. Neep, T. J. Nef, P. D. Negri, A. Negrini, M. Nektarijevic, S. Nellist, C. Nelson, A. Nemecek, S. Nemethy, P. Nepomuceno, A. A. Nessi, M. Neubauer, M. S. Neumann, M. Neves, R. M. Nevski, P. Newman, P. R. Nguyen, D. H. Nickerson, R. B. Nicolaidou, R. Nicquevert, B. Nielsen, J. Nikiforou, N. Nikiforov, A. Nikolaenko, V. Nikolic-Audit, I. Nikolopoulos, K. Nilsen, J. K. Nilsson, P. Ninomiya, Y. Nisati, A. Nisius, R. Nobe, T. Nomachi, M. Nomidis, I. Nooney, T. Norberg, S. Nordberg, M. Novgorodova, O. Nowak, S. Nozaki, M. Nozka, L. Ntekas, K. Hanninger, G. Nunes Nunnemann, T. Nurse, E. Nuti, F. O'Brien, B. J. O'grady, F. O'Neil, D. C. O'Shea, V. Oakham, F. G. Oberlack, H. Obermann, T. Ocariz, J. Ochi, A. Ochoa, I. Oda, S. Odaka, S. Ogren, H. Oh, A. Oh, S. H. Ohm, C. C. Ohman, H. Oide, H. Okamura, W. Okawa, H. Okumura, Y. Okuyama, T. Olariu, A. Olivares Pino, S. A. Oliveira Damazio, D. Oliver Garcia, E. Olszewski, A. Olszowska, J. Onofre, A. Onyisi, P. U. E. Oram, C. J. Oreglia, M. J. Oren, Y. Orestano, D. Orlando, N. Oropeza Barrera, C. Orr, R. S. Osculati, B. Ospanov, R. Otero y Garzon, G. Otono, H. Ouchrif, M. Ouellette, E. A. Ould-Saada, F. Ouraou, A. Oussoren, K. P. Ouyang, Q. Ovcharova, A. Owen, M. Owen, R. E. Ozcan, V. E. Ozturk, N. Pachal, K. Pacheco Pages, A. Padilla Aranda, C. Pagacova, M. Pagan Griso, S. Paganis, E. Pahl, C. Paige, F. Pais, P. Pajchel, K. Palacino, G. Palestini, S. Palka, M. Pallin, D. Palma, A. Pan, Y. B. Panagiotopoulou, E. Pandini, C. E. Panduro Vazquez, J. G. Pani, P. Panitkin, S. Paolozzi, L. Papadopoulou, Th. D. Papageorgiou, K. Paramonov, A. Paredes Hernandez, D. Parker, M. A. Parker, K. A. Parodi, F. Parsons, J. A. Parzefall, U. Pasqualucci, E. Passaggio, S. Pastore, F. Pastore, Fr. Pasztor, G. Pataraia, S. Patel, N. D. Pater, J. R. Pauly, T. Pearce, J. Pearson, B. Pedersen, L. E. Pedersen, M. Pedraza Lopez, S. Pedro, R. Peleganchuk, S. V. Pelikan, D. Peng, H. Penning, B. Penwell, J. Perepelitsa, D. V. Codina, E. Perez Perez Garcia-Estan, M. T. Perini, L. Pernegger, H. Perrella, S. Peschke, R. Peshekhonov, V. D. Peters, K. Peters, R. F. Y. Petersen, B. A. Petersen, T. C. Petit, E. Petridis, A. Petridou, C. Petrolo, E. Petrucci, F. Pettersson, N. E. Pezoa, R. Phillips, P. W. Piacquadio, G. Pianori, E. Picazio, A. Piccaro, E. Piccinini, M. Pickering, M. A. Piegaia, R. Pignotti, D. T. Pilcher, J. E. Pilkington, A. D. Pina, J. Pinamonti, M. Pinfold, J. L. Pingel, A. Pinto, B. Pires, S. Pitt, M. Pizio, C. Plazak, L. Pleier, M. -A. Pleskot, V. Plotnikova, E. Plucinski, P. Pluth, D. Poettgen, R. Poggioli, L. Pohl, D. Polesello, G. Policicchio, A. Polifka, R. Polini, A. Pollard, C. S. Polychronakos, V. Pommes, K. Pontecorvo, L. Pope, B. G. Popeneciu, G. A. Popovic, D. S. Poppleton, A. Pospisil, S. Potamianos, K. Potrap, I. N. Potter, C. J. Potter, C. T. Poulard, G. Poveda, J. Pozdnyakov, V. Pralavorio, P. Pranko, A. Prasad, S. Prell, S. Price, D. Price, J. Price, L. E. Primavera, M. Prince, S. Proissl, M. Prokofiev, K. Prokoshin, F. Protopapadaki, E. Protopopescu, S. Proudfoot, J. Przybycien, M. Ptacek, E. Puddu, D. Pueschel, E. Puldon, D. Purohit, M. Puzo, P. Qian, J. Qin, G. Qin, Y. Quadt, A. Quarrie, D. R. Quayle, W. B. Queitsch-Maitland, M. Quilty, D. Qureshi, A. Radeka, V. Radescu, V. Radhakrishnan, S. K. Radloff, P. Rados, P. Ragusa, F. Rahal, G. Rajagopalan, S. Rammensee, M. Rangel-Smith, C. Rauscher, F. Rave, S. Rave, T. C. Ravenscroft, T. Raymond, M. Read, A. L. Readioff, N. P. Rebuzzi, D. M. Redelbach, A. Redlinger, G. Reece, R. Reeves, K. Rehnisch, L. Reisin, H. Relich, M. Rembser, C. Ren, H. Renaud, A. Rescigno, M. Resconi, S. Rezanova, O. L. Reznicek, P. Rezvani, R. Richter, R. Richter, S. Richter-Was, E. Ridel, M. Rieck, P. Riegel, C. J. Rieger, J. Rijssenbeek, M. Rimoldi, A. Rinaldi, L. Ristic, B. Ritsch, E. Riu, I. Rizatdinova, F. Rizvi, E. Robertson, S. H. Robichaud-Veronneau, A. Robinson, D. Robinson, J. E. M. Robson, A. Roda, C. Rodrigues, L. Roe, S. Rohne, O. Rolli, S. Romaniouk, A. Romano, M. Saez, S. M. Romano Romero Adam, E. Rompotis, N. Ronzani, M. Roos, L. Ros, E. Rosati, S. Rosbach, K. Rose, P. Rosendahl, P. L. Rosenthal, O. Rossetti, V. Rossi, E. Rossi, L. P. Rosten, R. Rotaru, M. Roth, I. Rothberg, J. Rousseau, D. Royon, C. R. Rozanov, A. Rozen, Y. Ruan, X. Rubbo, F. Rubinskiy, I. Rud, V. I. Rudolph, C. Rudolph, M. S. Ruehr, F. Ruiz-Martinez, A. Rurikova, Z. Rusakovich, N. A. Ruschke, A. Russell, H. L. Rutherfoord, J. P. Ruthmann, N. Ryabov, Y. F. Rybar, M. Rybkin, G. Ryder, N. C. Saavedra, A. F. Sabato, G. Sacerdoti, S. Saddique, A. Sadrozinski, H. F-W. Sadykov, R. Tehrani, F. Safai Saimpert, M. Sakamoto, H. Sakurai, Y. Salamanna, G. Salamon, A. Saleem, M. Salek, D. De Bruin, P. H. Sales Salihagic, D. Salnikov, A. Salt, J. Salvatore, D. Salvatore, F. Salvucci, A. Salzburger, A. Sampsonidis, D. Sanchez, A. Sanchez, J. Sanchez Martinez, V. Sandaker, H. Sandbach, R. L. Sander, H. G. Sanders, M. P. Sandhoff, M. Sandoval, C. Sandstroem, R. Sankey, D. P. C. Sansoni, A. Santoni, C. Santonico, R. Santos, H. Santoyo Castillo, I. Sapp, K. Sapronov, A. Saraiva, J. G. Sarrazin, B. Sasaki, O. Sasaki, Y. Sato, K. Sauvage, G. Sauvan, E. Savage, G. Savard, P. Sawyer, C. Sawyer, L. Saxon, J. Sbarra, C. Sbrizzi, A. Scanlon, T. Scannicchio, D. A. Scarcella, M. Scarfone, V. Schaarschmidt, J. Schacht, P. Schaefer, D. Schaefer, R. Schaeffer, J. Schaepe, S. Schaetzel, S. Schaefer, U. Schaffer, A. C. Schaile, D. Schamberger, R. D. Scharf, V. Schegelsky, V. A. Scheirich, D. Schernau, M. Schiavi, C. Schillo, C. Schioppa, M. Schlenker, S. Schmidt, E. Schmieden, K. Schmitt, C. Schmitt, S. Schmitt, S. Schneider, B. Schnellbach, Y. J. Schnoor, U. Schoeffel, L. Schoening, A. Schoenrock, B. D. Schopf, E. Schorlemmer, A. L. S. Schott, M. Schouten, D. Schovancova, J. Schramm, S. Schreyer, M. Schroeder, C. Schuh, N. Schultens, M. J. Schultz-Coulon, H. -C. Schulz, H. Schumacher, M. Schumm, B. A. Schune, Ph. Schwanenberger, C. Schwartzman, A. Schwarz, T. A. Schwegler, Ph. Schwemling, Ph. Schwienhorst, R. Schwindling, J. Schwindt, T. Schwoerer, M. Sciacca, F. G. Scifo, E. Sciolla, G. Scuri, F. Scutti, F. Searcy, J. Sedov, G. Sedykh, E. Seema, P. Seidel, S. C. Seiden, A. Seifert, F. Seixas, J. M. Sekhniaidze, G. Sekula, S. J. Selbach, K. E. Seliverstov, D. M. Semprini-Cesari, N. Serfon, C. Serin, L. Serkin, L. Serre, T. Seuster, R. Severini, H. Sfiligoj, T. Sforza, F. Sfyrla, A. Shabalina, E. Shamim, M. Shan, L. Y. Shang, R. Shank, J. T. Shapiro, M. Shatalov, P. B. Shaw, K. Shcherbakova, A. Shehu, C. Y. Sherwood, P. Shi, L. Shimizu, S. Shimmin, C. O. Shimojima, M. Shiyakova, M. Shmeleva, A. Saadi, D. Shoaleh Shochet, M. J. Shojaii, S. Shrestha, S. Shulga, E. Shupe, M. A. Shushkevich, S. Sicho, P. Sidiropoulou, O. Sidorov, D. Sidoti, A. Siegert, F. Sijacki, Dj. Silva, J. Silver, Y. Silverstein, D. Silverstein, S. B. Simak, V. Simard, O. Simic, Lj. Simion, S. Simioni, E. Simmons, B. Simon, D. Simoniello, R. Sinervo, P. Sinev, N. B. Siragusa, G. Sisakyan, A. N. Sivoklokov, S. Yu. Sjolin, J. Sjursen, T. B. Skinner, M. B. Skottowe, H. P. Skubic, P. Slater, M. Slavicek, T. Slawinska, M. Sliwa, K. Smakhtin, V. Smart, B. H. Smestad, L. Smirnov, S. Yu. Smirnov, Y. Smirnova, L. N. Smirnova, O. Smith, M. N. K. Smizanska, M. Smolek, K. Snesarev, A. A. Snidero, G. Snyder, S. Sobie, R. Socher, F. Soffer, A. Soh, D. A. Solans, C. A. Solar, M. Solc, J. Soldatov, E. Yu. Soldevila, U. Solodkov, A. A. Soloshenko, A. Solovyanov, O. V. Solovyev, V. Sommer, P. Song, H. Y. Soni, N. Sood, A. Sopczak, A. Sopko, B. Sopko, V. Sorin, V. Sosa, D. Sosebee, M. Sotiropoulou, C. L. Soualah, R. Soueid, P. Soukharev, A. M. South, D. Spagnolo, S. Spalla, M. Spano, F. Spearman, W. R. Spettel, F. Spighi, R. Spigo, G. Spiller, L. A. Spousta, M. Spreitzer, T. Denis, R. D. St. Staerz, S. Stahlman, J. Stamen, R. Stamm, S. Stanecka, E. Stanescu, C. Stanescu-Bellu, M. Stanitzki, M. M. Stapnes, S. Starchenko, E. A. Stark, J. Staroba, P. Starovoitov, P. Staszewski, R. Stavina, P. Steinberg, P. Stelzer, B. Stelzer, H. J. Stelzer-Chilton, O. Stenzel, H. Stern, S. Stewart, G. A. Stillings, J. A. Stockton, M. C. Stoebe, M. Stoicea, G. Stolte, P. Stonjek, S. Stradling, A. R. Straessner, A. Stramaglia, M. E. Strandberg, J. Strandberg, S. Strandlie, A. Strauss, E. Strauss, M. Strizenec, P. Stroehmer, R. Strom, D. M. Stroynowski, R. Strubig, A. Stucci, S. A. Stugu, B. Styles, N. A. Su, D. Su, J. Subramaniam, R. Succurro, A. Sugaya, Y. Suhr, C. Suk, M. Sulin, V. V. Sultansoy, S. Sumida, T. Sun, S. Sun, X. Sundermann, J. E. Suruliz, K. Susinno, G. Sutton, M. R. Suzuki, Y. Svatos, M. Swedish, S. Swiatlowski, M. Sykora, I. Sykora, T. Ta, D. Taccini, C. Tackmann, K. Taenzer, J. Taffard, A. Tafirout, R. Taiblum, N. Takai, H. Takashima, R. Takeda, H. Takeshita, T. Takubo, Y. Talby, M. Talyshev, A. A. Tam, J. Y. C. Tan, K. G. Tanaka, J. Tanaka, R. Tanaka, S. Tanaka, S. Tanasijczuk, A. J. Tannenwald, B. B. Tannoury, N. Tapprogge, S. Tarem, S. Tarrade, F. Tartarelli, G. F. Tas, P. Tasevsky, M. Tashiro, T. Tassi, E. Delgado, A. Tavares Tayalati, Y. Taylor, F. E. Taylor, G. N. Taylor, W. Teischinger, F. A. Castanheira, M. Teixeira Dias Teixeira-Dias, P. Temming, K. K. Ten Kate, H. Teng, P. K. Teoh, J. J. Tepel, F. Terada, S. Terashi, K. Terron, J. Terzo, S. Testa, M. Teuscher, R. J. Therhaag, J. Theveneaux-Pelzer, T. Thomas, J. P. Thomas-Wilsker, J. Thompson, E. N. Thompson, P. D. Thompson, R. J. Thompson, A. S. Thomsen, L. A. Thomson, E. Thomson, M. Thun, R. P. Tian, F. Tibbetts, M. J. Torres, R. E. Ticse Tikhomirov, V. O. Tikhonov, Yu. A. Timoshenko, S. Tiouchichine, E. Tipton, P. Tisserant, S. Todorov, T. Todorova-Nova, S. Tojo, J. Tokar, S. Tokushuku, K. Tollefson, K. Tolley, E. Tomlinson, L. Tomoto, M. Tompkins, L. Toms, K. Torrence, E. Torres, H. Torro Pastor, E. Toth, J. Touchard, F. Tovey, D. R. Tran, H. L. Trefzger, T. Tremblet, L. Tricoli, A. Trigger, I. M. Trincaz-Duvoid, S. Tripiana, M. F. Trischuk, W. Trocme, B. Troncon, C. Trottier-McDonald, M. Trovatelli, M. True, P. Trzebinski, M. Trzupek, A. Tsarouchas, C. Tseng, J. C-L. Tsiareshka, P. V. Tsionou, D. Tsipolitis, G. Tsirintanis, N. Tsiskaridze, S. Tsiskaridze, V. Tskhadadze, E. G. Tsukerman, I. I. Tsulaia, V. Tsuno, S. Tsybychev, D. Tudorache, A. Tudorache, V. Tuna, A. N. Tupputi, S. A. Turchikhin, S. Turecek, D. Turra, R. Turvey, A. J. Tuts, P. M. Tykhonov, A. Tylmad, M. Tyndel, M. Ueda, I. Ueno, R. Ughetto, M. Ugland, M. Uhlenbrock, M. Ukegawa, F. Unal, G. Undrus, A. Unel, G. Ungaro, F. C. Unno, Y. Unverdorben, C. Urban, J. Urquijo, P. Urrejola, P. Usai, G. Usanova, A. Vacavant, L. Vacek, V. Vachon, B. Valderanis, C. Valencic, N. Valentinetti, S. Valero, A. Valery, L. Valkar, S. Valladolid Gallego, E. Vallecorsa, S. Valls Ferrer, J. A. Van Den Wollenberg, W. Van Der Deijl, P. C. van der Geer, R. van der Graaf, H. Van Der Leeuw, R. van Eldik, N. van Gemmeren, P. Van Nieuwkoop, J. van Vulpen, I. van Woerden, M. C. Vanadia, M. Vandelli, W. Vanguri, R. Vaniachine, A. Vannucci, F. Vardanyan, G. Vari, R. Varnes, E. W. Varol, T. Varouchas, D. Vartapetian, A. Varvell, K. E. Vazeille, F. Vazquez Schroeder, T. Veatch, J. Veloso, F. Velz, T. Veneziano, S. Ventura, A. Ventura, D. Venturi, M. Venturi, N. Venturini, A. Vercesi, V. Verducci, M. Verkerke, W. Vermeulen, J. C. Vest, A. Vetterli, M. C. Viazlo, O. Vichou, I. Vickey, T. Boeriu, O. E. Vickey Viehhauser, G. H. A. Viel, S. Vigne, R. Villa, M. Villaplana Perez, M. Vilucchi, E. Vincter, M. G. Vinogradov, V. B. Vivarelli, I. Vives Vaque, F. Vlachos, S. Vladoiu, D. Vlasak, M. Vogel, M. Vokac, P. Volpi, G. Volpi, M. von der Schmitt, H. von Radziewski, H. von Toerne, E. Vorobel, V. Vorobev, K. Vos, M. Voss, R. Vossebeld, J. H. Vranjes, N. Vranjes Milosavljevic, M. Vrba, V. Vreeswijk, M. Vuillermet, R. Vukotic, I. Vykydal, Z. Wagner, P. Wagner, W. Wahlberg, H. Wahrmund, S. Wakabayashi, J. Walder, J. Walker, R. Walkowiak, W. Wang, C. Wang, F. Wang, H. Wang, H. Wang, J. Wang, J. Wang, K. Wang, L. -T. Wang, R. Wang, S. M. Wang, T. Wang, X. Wanotayaroj, C. Warburton, A. Ward, C. P. Wardrope, D. R. Warsinsky, M. Washbrook, A. Wasicki, C. Watkins, P. M. Watson, A. T. Watson, I. J. Watson, M. F. Watts, G. Watts, S. Waugh, B. M. Webb, S. Weber, M. S. Weber, S. W. Webster, J. S. Weidberg, A. R. Weinert, B. Weingarten, J. Weiser, C. Weits, H. Wells, P. S. Wenaus, T. Wendland, D. Wengler, T. Wenig, S. Wermes, N. Werner, M. Werner, P. Wessels, M. Wetter, J. Whalen, K. Wharton, A. M. White, A. White, M. J. White, R. White, S. Whiteson, D. Wicke, D. Wickens, F. J. Wiedenmann, W. Wielers, M. Wienemann, P. Wiglesworth, C. Wiik-Fuchs, L. A. M. Wildauer, A. Wilkens, H. G. Williams, H. H. Williams, S. Willis, C. Willocq, S. Wilson, A. Wilson, J. A. Wingerter-Seez, I. Winklmeier, F. Winter, B. T. Wittgen, M. Wittkowski, J. Wollstadt, S. J. Wolter, M. W. Wolters, H. Wosiek, B. K. Wotschack, J. Woudstra, M. J. Wozniak, K. W. Wu, M. Wu, M. Wu, S. L. Wu, X. Wu, Y. Wyatt, T. R. Wynne, B. M. Xella, S. Xu, D. Xu, L. Yabsley, B. Yacoob, S. Yakabe, R. Yamada, M. Yamaguchi, Y. Yamamoto, A. Yamamoto, S. Yamanaka, T. Yamauchi, K. Yamazaki, Y. Yan, Z. Yang, H. Yang, H. Yang, Y. Yao, L. Yao, W-M. Yasu, Y. Yatsenko, E. Wong, K. H. Yau Ye, J. Ye, S. Yeletskikh, I. Yen, A. L. Yildirim, E. Yorita, K. Yoshida, R. Yoshihara, K. Young, C. Young, C. J. S. Youssef, S. Yu, D. R. Yu, J. Yu, J. M. Yu, J. Yuan, L. Yurkewicz, A. Yusuff, I. Zabinski, B. Zaidan, R. Zaitsev, A. M. Zalieckas, J. Zaman, A. Zambito, S. Zanello, L. Zanzi, D. Zeitnitz, C. Zeman, M. Zemla, A. Zengel, K. Zenin, O. Zenis, T. Zerwas, D. Zhang, D. Zhang, F. Zhang, J. Zhang, L. Zhang, R. Zhang, X. Zhang, Z. Zhao, X. Zhao, Y. Zhao, Z. Zhemchugov, A. Zhong, J. Zhou, B. Zhou, C. Zhou, L. Zhou, L. Zhou, N. Zhu, C. G. Zhu, H. Zhu, J. Zhu, Y. Zhuang, X. Zhukov, K. Zibell, A. Zieminska, D. Zimine, N. I. Zimmermann, C. Zimmermann, R. Zimmermann, S. Zinonos, Z. Zinser, M. Ziolkowski, M. Zivkovic, L. Zobernig, G. Zoccoli, A. zur Nedden, M. Zurzolo, G. Zwalinski, L. CA ATLAS Collaboration TI Search for massive supersymmetric particles decaying to many jets using the ATLAS detector in pp collisions at root s=8 TeV SO PHYSICAL REVIEW D LA English DT Article ID MISSING TRANSVERSE-MOMENTUM; PROTON-PROTON COLLISIONS; SUPERGAUGE TRANSFORMATIONS; HADRON-COLLISIONS; STANDARD MODEL; FINAL-STATES; VIOLATION; INVARIANT; EXTENSION; GLUINOS AB Results of a search for decays of massive particles to fully hadronic final states are presented. This search uses 20.3 fb(-1) of data collected by the ATLAS detector in root s = 8 TeV proton-proton collisions at the LHC. Signatures based on high jet multiplicities without requirements on the missing transverse momentum are used to search for R-parity-violating supersymmetric gluino pair production with subsequent decays to quarks. The analysis is performed using a requirement on the number of jets, in combination with separate requirements on the number of b-tagged jets, as well as a topological observable formed from the scalar sum of the mass values of large-radius jets in the event. Results are interpreted in the context of all possible branching ratios of direct gluino decays to various quark flavors. No significant deviation is observed from the expected Standard Model backgrounds estimated using jet counting as well as data-driven templates of the total-jet-mass spectra. Gluino pair decays to ten or more quarks via intermediate neutralinos are excluded for a gluino with mass m((g) over tilde) < 1 TeV for a neutralino mass m(<(chi)over tilde>10) = 500 GeV. Direct gluino decays to six quarks are excluded for m((g) over tilde) < 917 GeV for light-flavor final states, and results for various flavor hypotheses are presented. C1 [Corriveau, F.; Jackson, P.; Lee, L.; Robertson, S. H.; Soni, N.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia. [Bouffard, J.; Ernst, J.; Fischer, A.; Guindon, S.; Jain, V.] SUNY Albany, Dept Phys, Albany, NY 12222 USA. [Butt, A. I.; Czodrowski, P.; Dassoulas, J.; Gingrich, D. M.; Jabbar, S.; Karamaoun, A.; Moore, R. W.; Pinfold, J. L.; Saddique, A.; Vives Vaque, F.] Univ Alberta, Dept Phys, Edmonton, AB, Canada. [Cakir, O.; Ciftci, A. K.; Yildiz, H. Duran] Ankara Univ, Dept Phys, TR-06100 Ankara, Turkey. [Kuday, S.] Istanbul Aydin Univ, Istanbul, Turkey. [Sultansoy, S.] TOBB Univ Econ & Technol, Div Phys, Ankara, Turkey. [Barnovska, Z.; Berger, N.; Delmastro, M.; Di Ciaccio, L.; Elles, S.; Hryn'ova, T.; Jezequel, S.; Koletsou, I.; Lafaye, R.; Leveque, J.; Massol, N.; Sauvage, G.; Sauvan, E.; Schwoerer, M.; Simard, O.; Todorov, T.; Wingerter-Seez, I.] CNRS, IN2P3, LAPP, Annecy Le Vieux, France. [Barnovska, Z.; Berger, N.; Delmastro, M.; Di Ciaccio, L.; Elles, S.; Hryn'ova, T.; Jezequel, S.; Koletsou, I.; Lafaye, R.; Leveque, J.; Massol, N.; Sauvage, G.; Sauvan, E.; Schwoerer, M.; Simard, O.; Todorov, T.; Wingerter-Seez, I.] Univ Savoie Mt Blanc, Annecy Le Vieux, France. [Auerbach, B.; Blair, R. E.; Chekanov, S.; Childers, J. T.; Feng, E. J.; LeCompte, T.; Love, J.; Malon, D.; Nguyen, D. H.; Paramonov, A.; Price, L. E.; Proudfoot, J.; van Gemmeren, P.; Vaniachine, A.; Wang, R.; Yoshida, R.; Zhang, J.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Cheu, E.; Johns, K. A.; Lampen, C. L.; Lampl, W.; Lei, X.; Leone, R.; Loch, P.; Nayyar, R.; O'grady, F.; Rutherfoord, J. P.; Shupe, M. A.; Varnes, E. W.; Veatch, J.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Brandt, A.; Carrillo-Montoya, G. D.; Cote, D.; Darmora, S.; De, K.; Farbin, A.; Griffiths, J.; Hadavand, H. K.; Heelan, L.; Kim, H. Y.; Ozturk, N.; Schovancova, J.; Sosebee, M.; Stradling, A. R.; Usai, G.; Vartapetian, A.; White, A.; Yu, J.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. [Angelidakis, S.; Chouridou, S.; Fassouliotis, D.; Giokaris, N.; Ioannou, P.; Iordanidou, K.; Kourkoumelis, C.; Manousakis-Katsikakis, A.; Tsirintanis, N.] Univ Athens, Dept Phys, Athens, Greece. [Alexopoulos, T.; Benekos, N.; Dris, M.; Gazis, E. N.; Karakostas, K.; Karastathis, N.; Leontsinis, S.; Maltezos, S.; Ntekas, K.; Panagiotopoulou, E.; Papadopoulou, Th. D.; Tsipolitis, G.; Vlachos, S.] Natl Tech Univ Athens, Dept Phys, Zografos, Greece. [Abdinov, O.; Ahmadov, F.; Huseynov, N.; Javadov, N.; Khalil-zada, F.] Azerbaijan Acad Sci, Inst Phys, Baku, Azerbaijan. [Anjos, N.; Bosman, M.; Caminal Armadans, R.; Casado, M. P.; Casolino, M.; Cavalli-Sforza, M.; Cortes-Gonzalez, A.; Farooque, T.; Fischer, C.; Fracchia, S.; Giangiobbe, V.; Gonzalez Parra, G.; Grinstein, S.; Juste Rozas, A.; Korolkov, I.; Le Menedeu, E.; Paz, I. Lopez; Martinez, M.; Mir, L. M.; Berlingen, J. Montejo; Pacheco Pages, A.; Padilla Aranda, C.; Riu, I.; Sorin, V.; Succurro, A.; Tripiana, M. F.; Tsiskaridze, S.; Valery, L.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Anjos, N.; Bosman, M.; Caminal Armadans, R.; Casado, M. P.; Casolino, M.; Cavalli-Sforza, M.; Cortes-Gonzalez, A.; Farooque, T.; Fischer, C.; Fracchia, S.; Giangiobbe, V.; Gonzalez Parra, G.; Grinstein, S.; Juste Rozas, A.; Korolkov, I.; Le Menedeu, E.; Paz, I. Lopez; Martinez, M.; Mir, L. M.; Berlingen, J. Montejo; Pacheco Pages, A.; Padilla Aranda, C.; Riu, I.; Sorin, V.; Succurro, A.; Tripiana, M. F.; Tsiskaridze, S.; Valery, L.] Univ Autonoma Barcelona, Dept Fis, E-08193 Barcelona, Spain. [Agatonovic-Jovin, T.; Bozic, I.; Dimitrievska, A.; Krstic, J.; Marjanovic, M.; Popovic, D. S.; Sijacki, Dj.; Simic, Lj.; Vranjes, N.; Vranjes Milosavljevic, M.; Zivkovic, L.] Univ Belgrade, Inst Phys, Belgrade, Serbia. [Buanes, T.; Ciftci, A. K.; Dale, O.; Eigen, G.; Kastanas, A.; Liebig, W.; Lipniacka, A.; Maeland, S.; Latour, B. Martin dit; Rosendahl, P. L.; Sandaker, H.; Sjursen, T. B.; Smestad, L.; Stugu, B.; Ugland, M.; Zalieckas, J.] Univ Bergen, Dept Phys & Technol, Bergen, Norway. [Axen, B.; Barnett, R. M.; Beringer, J.; Brandt, G.; Brosamer, J.; Calafiura, P.; Caminada, L. M.; Cerutti, F.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Copic, K.; Einsweiler, K.; Farrell, S.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Hance, M.; Heinemann, B.; Hinchliffe, I.; Hinman, R. R.; Holmes, T. R.; Jeanty, L.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Marshall, Z.; Ohm, C. C.; Ovcharova, A.; Pagan Griso, S.; Potamianos, K.; Pranko, A.; Quarrie, D. R.; Shapiro, M.; Sood, A.; Tibbetts, M. J.; Trottier-McDonald, M.; Tsulaia, V.; Viel, S.; Wang, H.; Yao, W-M.; Yu, D. R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [Axen, B.; Barnett, R. M.; Beringer, J.; Brandt, G.; Brosamer, J.; Calafiura, P.; Caminada, L. M.; Cerutti, F.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Copic, K.; Einsweiler, K.; Farrell, S.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Hance, M.; Heinemann, B.; Hinchliffe, I.; Hinman, R. R.; Holmes, T. R.; Jeanty, L.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Marshall, Z.; Ohm, C. C.; Ovcharova, A.; Pagan Griso, S.; Potamianos, K.; Pranko, A.; Quarrie, D. R.; Shapiro, M.; Sood, A.; Tibbetts, M. J.; Trottier-McDonald, M.; Tsulaia, V.; Viel, S.; Wang, H.; Yao, W-M.; Yu, D. R.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Dietrich, J.; Giorgi, F. M.; Grancagnolo, S.; Herbert, G. H.; Herrberg-Schubert, R.; Hristova, I.; Kind, O. M.; Kolanoski, H.; Lacker, H.; Lohse, T.; Nikiforov, A.; Rehnisch, L.; Rieck, P.; Schulz, H.; Stamm, S.; Wendland, D.; zur Nedden, M.] Humboldt Univ, Dept Phys, D-10099 Berlin, Germany. [Agustoni, M.; Beck, H. P.; Cervelli, A.; Ereditato, A.; Haug, S.; Marti, L. F.; Meloni, F.; Sciacca, F. G.; Stramaglia, M. E.; Stucci, S. A.; Weber, M. S.] Univ Bern, Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Agustoni, M.; Beck, H. P.; Cervelli, A.; Ereditato, A.; Haug, S.; Marti, L. F.; Meloni, F.; Sciacca, F. G.; Stramaglia, M. E.; Stucci, S. A.; Weber, M. S.] Univ Bern, High Energy Phys Lab, Bern, Switzerland. [Allbrooke, B. M. M.; Bella, L. Aperio; Bansil, H. S.; Bracinik, J.; Charlton, D. G.; Chisholm, A. S.; Daniells, A. C.; Hawkes, C. M.; Head, S. J.; Hillier, S. J.; Levy, M.; Mudd, R. D.; Quijada, J. A. Murillo; Newman, P. R.; Nikolopoulos, K.; Owen, R. E.; Slater, M.; Thomas, J. P.; Thompson, P. D.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Wilson, J. A.] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England. [Arik, M.; Istin, S.; Ozcan, V. E.] Bogazici Univ, Dept Phys, Istanbul, Turkey. [Cetin, S. A.] Dogus Univ, Dept Phys, Istanbul, Turkey. [Beddall, A. J.; Beddall, A.; Bingul, A.] Gaziantep Univ, Dept Engn Phys, Gaziantep, Turkey. [Alberghi, G. L.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruschi, M.; Corradi, M.; De Castro, S.; Fabbri, L.; Franchini, M.; Gabrielli, A.; Giacobbe, B.; Giorgi, F. M.; Grafstroem, P.; Manghi, F. Lasagni; Massa, I.; Massa, L.; Mengarelli, A.; Negrini, M.; Piccinini, M.; Polini, A.; Rinaldi, L.; Romano, M.; Sbarra, C.; Sbrizzi, A.; Semprini-Cesari, N.; Sidoti, A.; Spighi, R.; Tupputi, S. A.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Ist Nazl Fis Nucl, Sez Bologna, Bologna, Italy. Univ Bologna, Dipartimento Fis & Astron, Bologna, Italy. [Arslan, O.; Bechtle, P.; Bernlochner, F. U.; Brock, I.; Cristinziani, M.; Davey, W.; Desch, K.; Dingfelder, J.; Ehrenfeld, W.; Geich-Gimbel, Ch.; Gonella, L.; Haefner, P.; Hageboeck, S.; Hellmich, D.; Hohn, D.; Huegging, F.; Janssen, J.; Khoriauli, G.; Kostyukhin, V. V.; Kraus, J. K.; Kroseberg, J.; Krueger, H.; Lenz, T.; Leyko, A. M.; Liebal, J.; Limbach, C.; Mergelmeyer, S.; Mijovic, L.; Mueller, K.; Nanava, G.; Nattermann, T.; Obermann, T.; Pohl, D.; Sarrazin, B.; Schaepe, S.; Schopf, E.; Schultens, M. J.; Schwindt, T.; Scutti, F.; Seema, P.; Stillings, J. A.; Tannoury, N.; Therhaag, J.; Uhlenbrock, M.; Velz, T.; von Toerne, E.; Wagner, P.; Wang, T.; Wermes, N.; Wienemann, P.; Wiik-Fuchs, L. A. M.; Winter, B. T.; Wong, K. H. Yau; Zimmermann, R.] Univ Bonn, Inst Phys, Bonn, Germany. [Ahlen, S. P.; Bernard, C.; Black, K. M.; Butler, J. M.; Dell'Asta, L.; Helary, L.; Kruskal, M.; Long, B. A.; Shank, J. T.; Yan, Z.; Youssef, S.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Amelung, C.; Amundsen, G.; Artoni, G.; Bensinger, J. R.; Bianchini, L.; Blocker, C.; Coffey, L.; Fitzgerald, E. A.; Sciolla, G.; Venturini, A.; Zambito, S.; Zengel, K.] Brandeis Univ, Dept Phys, Waltham, MA 02254 USA. [Amaral Coutinho, Y.; Caloba, L. P.; Maidantchik, C.; Marroquim, F.; Nepomuceno, A. A.; Seixas, J. M.] Univ Fed Rio de Janeiro, COPPE, EE IF, BR-21945 Rio De Janeiro, Brazil. [Cerqueira, A. S.; de Andrade Filho, L. Manhaes] Univ Fed Juiz de Fora, Elect Circuits Dept, Juiz de Fora, Brazil. [do Vale, M. A. B.] Fed Univ Sao Joao Del Rei UFSJ, Sao Joao Del Rei, Brazil. [Donadelli, M.; La Rosa Navarro, J. L.; Leite, M. A. L.] Univ Sao Paulo, Inst Fis, BR-01498 Sao Paulo, Brazil. [Adams, D. L.; Assamagan, K.; Begel, M.; Buttinger, W.; Chen, H.; Chernyatin, V.; Debbe, R.; Ernst, M.; Gibbard, B.; Gordon, H. A.; Iakovidis, G.; Klimentov, A.; Kouskoura, V.; Kravchenko, A.; Lanni, F.; Lissauer, D.; Lynn, D.; Ma, H.; Maeno, T.; Metcalfe, J.; Mountricha, E.; Nevski, P.; Nilsson, P.; Oliveira Damazio, D.; Paige, F.; Panitkin, S.; Perepelitsa, D. V.; Pleier, M. -A.; Polychronakos, V.; Protopopescu, S.; Purohit, M.; Radeka, V.; Rajagopalan, S.; Redlinger, G.; Snyder, S.; Steinberg, P.; Takai, H.; Undrus, A.; Wenaus, T.; Ye, S.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Alexa, C.; Boldea, V.; Buda, S. I.; Caprini, I.; Caprini, M.; Chitan, A.; Ciubancan, M.; Constantinescu, S.; Dobre, M.; Ducu, O. A.; Jinaru, A.; Martoiu, V. S.; Maurer, J.; Olariu, A.; Rotaru, M.; Stoicea, G.; Tudorache, A.; Tudorache, V.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Popeneciu, G. A.] Natl Inst Res & Dev Isotop & Mol Technol, Dept Phys, Cluj Napoca, Romania. [Ducu, O. A.] Univ Politeh Bucharest, Bucharest, Romania. West Univ Timisoara, Timisoara, Romania. [Otero y Garzon, G.; Piegaia, R.; Reisin, H.; Sacerdoti, S.] Univ Buenos Aires, Dept Fis, Buenos Aires, DF, Argentina. [Arratia, M.; Barlow, N.; Batley, J. R.; Brochu, F. M.; Carter, J. R.; Chapman, J. D.; Cottin, G.; French, S. T.; Gillam, T. P. S.; Hill, J. C.; Kaneti, S.; Khoo, T. J.; Lester, C. G.; Mueller, T.; Parker, M. A.; Robinson, D.; Thomson, M.; Ward, C. P.; Yusuff, I.] Univ Cambridge, Cavevdish Lab, Cambridge, England. [Bellerive, A.; Cree, G.; Di Valentino, D.; Koffas, T.; Lacey, J.; Leight, W. A.; McCarthy, T. G.; Nomidis, I.; Oakham, F. G.; Pasztor, G.; Tarrade, F.; Ueno, R.; Vincter, M. G.; Whalen, K.] Carleton Univ, Dept Phys, Ottawa, ON K1S 5B6, Canada. [Abreu, R.; Aleksa, M.; Alonso, A.; Andari, N.; Anders, G.; Anghinolfi, F.; Armbruster, A. J.; Arnaez, O.; Avolio, G.; Baak, M. A.; Backes, M.; Backhaus, M.; Barak, L.; Beltramello, O.; Bianco, M.; Bogaerts, J. A.; Boveia, A.; Boyd, J.; Burckhart, H.; Campana, S.; Garrido, M. D. M. Capeans; Carli, T.; Catinaccio, A.; Cattai, A.; Cerv, M.; Chromek-Burckhart, D.; Conti, G.; Dell'Acqua, A.; Deviveiros, P. O.; Di Girolamo, A.; Di Girolamo, B.; Dittus, F.; Dobos, D.; Dudarev, A.; Duehrssen, M.; Eifert, T.; Ellis, N.; Elsing, M.; Farthouat, P.; Fassnacht, P.; Feigl, S.; Fernandez Perez, S.; Francis, D.; Froidevaux, D.; Garonne, V.; Gianotti, F.; Gillberg, D.; Glatzer, J.; Goossens, L.; Gorini, B.; Gray, H. M.; Hawkings, R. J.; Heller, M.; Helsens, C.; Hervas, L.; Hoecker, A.; Hubacek, Z.; Huhtinen, M.; Iengo, P.; Jaekel, M. R.; Jakobsen, S.; Jenni, P.; Kaneda, M.; Klioutchnikova, T.; Krasznahorkay, A.; Lantzsch, K.; Lapoire, C.; Lassnig, M.; Miotto, G. Lehmann; Lenzi, B.; Lichard, P.; Macina, D.; Malyukov, S.; Mandelli, B.; Mapelli, L.; Marzin, A.; Milic, A.; Mornacchi, G.; Nairz, A. M.; Nakahama, Y.; Nessi, M.; Nicquevert, B.; Nordberg, M.; Oide, H.; Palestini, S.; Pauly, T.; Pernegger, H.; Peters, K.; Petersen, B. A.; Pommes, K.; Poppleton, A.; Poulard, G.; Poveda, J.; Prasad, S.; Rammensee, M.; Raymond, M.; Rembser, C.; Rodrigues, L.; Roe, S.; Ruiz-Martinez, A.; Salzburger, A.; Schaefer, D.; Schlenker, S.; Schmieden, K.; Serfon, C.; Sfyrla, A.; Solans, C. A.; Spigo, G.; Stelzer, H. J.; Teischinger, F. A.; Ten Kate, H.; Tremblet, L.; Tricoli, A.; Tsarouchas, C.; Unal, G.; van Woerden, M. C.; Vandelli, W.; Vigne, R.; Voss, R.; Vuillermet, R.; Wells, P. S.; Wengler, T.; Wenig, S.; Werner, P.; Wilkens, H. G.; Wotschack, J.; Young, C. J. S.; Zwalinski, L.] CERN, Geneva, Switzerland. [Alison, J.; Anderson, K. J.; Cheng, Y.; Dandoy, J. R.; Facini, G.; Fiascaris, M.; Gardner, R. W.; Ilchenko, Y.; Kapliy, A.; Kim, Y.; Krizka, K.; Li, H. L.; Melachrinos, C.; Merritt, F. S.; Miller, D. W.; Okumura, Y.; Onyisi, P. U. E.; Oreglia, M. J.; Penning, B.; Pilcher, J. E.; Saxon, J.; Shochet, M. J.; Vukotic, I.; Wang, L. -T.; Webster, J. S.; Wu, M.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Carquin, E.; Diaz, M. A.; Vogel, M.] Pontificia Univ Catolica Chile, Dept Fis, Santiago, Chile. [Brooks, W. K.; Kuleshov, S.; Pezoa, R.; Prokoshin, F.; White, R.] Univ Tecn Federico Santa Maria, Dept Fis, Valparaiso, Chile. [Bai, Y.; Fang, Y.; Jin, S.; Lou, X.; Ouyang, Q.; Ren, H.; Shan, L. Y.; Sun, X.; Wang, J.; Xu, D.; Yao, L.; Zhu, H.; Zhuang, X.] Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China. [Gao, J.; Guan, L.; Han, L.; Hu, Q.; Jiang, Y.; Li, B.; Liu, J. B.; Liu, M.; Liu, Y.; Peng, H.; Song, H. Y.; Xu, L.; Zhang, R.; Zhao, Z.; Zhu, Y.] Univ Sci & Technol China, Dept Modern Phys, Hefei, Anhui, Peoples R China. [Chen, S.; Li, Y.; Wang, C.] Nanjing Univ, Dept Phys, Nanjing, Jiangsu, Peoples R China. [Chen, L.; Feng, C.; Ge, P.; Ma, L. L.; Zhang, X.; Zhao, Y.; Zhu, C. G.] Shandong Univ, Sch Phys, Jinan, Shandong, Peoples R China. [Guo, J.; Li, L.; Yang, H.] Shanghai Jiao Tong Univ, Dept Phys & Astron, Shanghai Key Lab Particle Phys & Cosmol, Shanghai 200030, Peoples R China. [Chen, X.] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Ghodbane, N.; Gilles, G.; Gris, Ph.; Liao, H.; Madar, R.; Pallin, D.; Saez, S. M. Romano; Santoni, C.; Simon, D.; Theveneaux-Pelzer, T.; Vazeille, F.] Clermont Univ, Lab Phys Corpusculaire, Clermont Ferrand, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Ghodbane, N.; Gilles, G.; Gris, Ph.; Liao, H.; Madar, R.; Pallin, D.; Saez, S. M. Romano; Santoni, C.; Simon, D.; Theveneaux-Pelzer, T.; Vazeille, F.] Univ Clermont Ferrand, Clermont Ferrand, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Ghodbane, N.; Gilles, G.; Gris, Ph.; Liao, H.; Madar, R.; Pallin, D.; Saez, S. M. Romano; Santoni, C.; Simon, D.; Theveneaux-Pelzer, T.; Vazeille, F.] CNRS, IN2P3, Clermont Ferrand, France. [Altheimer, A.; Andeen, T.; Angerami, A.; Bain, T.; Brooijmans, G.; Cole, B.; Hu, D.; Hughes, E. W.; Klein, M. H.; Mohapatra, S.; Nikiforou, N.; Parsons, J. A.; Smith, M. N. K.; Thompson, E. N.; Tian, F.; Tuts, P. M.; Zhou, L.] Columbia Univ, Nevis Lab, Irvington, NY USA. [Alonso, A.; Dam, M.; Galster, G.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Joergensen, M. D.; Loevschall-Jensen, A. E.; Monk, J.; Pedersen, L. E.; Petersen, T. C.; Pingel, A.; Thomsen, L. A.; Wiglesworth, C.; Xella, S.] Univ Copenhagen, Niels Bohr Inst, Copenhagen, Denmark. [Capua, M.; Crosetti, G.; La Rotonda, L.; Mastroberardino, A.; Policicchio, A.; Salvatore, D.; Scarfone, V.; Schioppa, M.; Susinno, G.; Tassi, E.] Ist Nazl Fis Nucl, Nazl Frascati Lab, Grp Collegato Cosenza, Cosenza, Italy. [Capua, M.; Crosetti, G.; La Rotonda, L.; Mastroberardino, A.; Policicchio, A.; Salvatore, D.; Scarfone, V.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dipartimento Fis, I-87036 Arcavacata Di Rende, Italy. [Adamczyk, L.; Bold, T.; Dabrowski, W.; Dwuznik, M.; Dyndal, M.; Grabowska-Bold, I.; Kisielewska, D.; Koperny, S.; Kowalski, T. Z.; Mindur, B.; Przybycien, M.; Zemla, A.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, PL-30059 Krakow, Poland. [Palka, M.; Richter-Was, E.] Jagiellonian Univ, Marian Smoluchowski Inst Phys, Krakow, Poland. [Banas, E.; Bruckman de Renstrom, P. A.; Chwastowski, J. J.; Derendarz, D.; Godlewski, J.; Gornicki, E.; Hajduk, Z.; Iwanski, W.; Kaczmarska, A.; Korcyl, K.; Malecki, Pa.; Olszewski, A.; Olszowska, J.; Stanecka, E.; Staszewski, R.; Trzebinski, M.; Trzupek, A.; Wolter, M. W.; Wosiek, B. K.; Wozniak, K. W.; Zabinski, B.] Polish Acad Sci, Inst Nucl Phys, Krakow, Poland. [Cao, T.; Firan, A.; Hetherly, J. W.; Kama, S.; Kehoe, R.; Sekula, S. J.; Stroynowski, R.; Turvey, A. J.; Varol, T.; Wang, H.; Ye, J.; Zhao, X.; Zhou, L.] So Methodist Univ, Dept Phys, Dallas, TX 75275 USA. [Izen, J. M.; Leyton, M.; Meirose, B.; Namasivayam, H.; Reeves, K.] Univ Texas Dallas, Dept Phys, Richardson, TX 75083 USA. [Argyropoulos, S.; Asbah, N.; Bessner, M.; Bloch, I.; Borroni, S.; Britzger, D.; Camarda, S.; Deterre, C.; Filipuzzi, M.; Glazov, A.; Grahn, K-J.; Gregor, I. M.; Grohsjean, A.; Haleem, M.; Hamnett, P. G.; Hiller, K. H.; Howarth, J.; Huang, Y.; Katzy, J.; Keller, J. S.; Kondrashova, N.; Kuhl, T.; Lisovyi, M.; Lobodzinska, E.; Lohwasser, K.; Mamuzic, J.; Medinnis, M.; Moenig, K.; Garcia, R. F. Naranjo; Naumann, T.; Peschke, R.; Petit, E.; Radescu, V.; Rubinskiy, I.; Schaefer, R.; Schmitt, S.; Sedov, G.; Shushkevich, S.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Starovoitov, P.; Styles, N. A.; Tackmann, K.; Wang, J.; Wasicki, C.; Yatsenko, E.; Yildirim, E.] DESY, Hamburg, Germany. [Argyropoulos, S.; Asbah, N.; Bessner, M.; Bloch, I.; Borroni, S.; Britzger, D.; Camarda, S.; Deterre, C.; Filipuzzi, M.; Glazov, A.; Grahn, K-J.; Gregor, I. M.; Grohsjean, A.; Haleem, M.; Hamnett, P. G.; Hiller, K. H.; Howarth, J.; Huang, Y.; Katzy, J.; Keller, J. S.; Kondrashova, N.; Kuhl, T.; Lisovyi, M.; Lobodzinska, E.; Lohwasser, K.; Mamuzic, J.; Medinnis, M.; Moenig, K.; Garcia, R. F. Naranjo; Naumann, T.; Peschke, R.; Petit, E.; Radescu, V.; Rubinskiy, I.; Schaefer, R.; Schmitt, S.; Sedov, G.; Shushkevich, S.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Starovoitov, P.; Styles, N. A.; Tackmann, K.; Wang, J.; Wasicki, C.; Yatsenko, E.; Yildirim, E.] DESY, Zeuthen, Germany. [Burmeister, I.; Erdmann, J.; Esch, H.; Goessling, C.; Jentzsch, J.; Jung, C. A.; Klingenberg, R.; Kroeninger, K.] Tech Univ Dortmund, Inst Expt Phys 4, D-44221 Dortmund, Germany. [Anger, P.; Duschinger, D.; Friedrich, F.; Grohs, J. P.; Gumpert, C.; Gutschow, C.; Hauswald, L.; Kobel, M.; Mader, W. F.; Morgenstern, M.; Novgorodova, O.; Rudolph, C.; Schnoor, U.; Siegert, F.; Socher, F.; Staerz, S.; Straessner, A.; Vest, A.; Wahrmund, S.] Tech Univ Dortmund, Inst Kern & Teilchenphys, D-44221 Dortmund, Germany. [Arce, A. T. H.; Benjamin, D. P.; Bocci, A.; Cerio, B. C.; Goshaw, A. T.; Kajomovitz, E.; Kotwal, A.; Kruse, M. C.; Li, L.; Li, S.; Liu, M.; Oh, S. H.; Zhou, C.] Duke Univ, Dept Phys, Durham, NC 27706 USA. [Bhimji, W.; Bristow, T. M.; Clark, P. J.; Dias, F. A.; Edwards, N. C.; Gao, Y.; Walls, F. M. Garay; Glaysher, P. C. F.; Harrington, R. D.; Leonidopoulos, C.; Martin, V. J.; Mills, C.; O'Brien, B. J.; Olivares Pino, S. A.; Proissl, M.; Selbach, K. E.; Smart, B. H.; Washbrook, A.; Wynne, B. M.] Univ Edinburgh, Sch Phys & Astron, SUPA, Edinburgh, Midlothian, Scotland. [Antonelli, M.; Beretta, M.; Bilokon, H.; Chiarella, V.; Curatolo, M.; Di Nardo, R.; Esposito, B.; Gatti, C.; Giromini, P.; Laurelli, P.; Maccarrone, G.; Mancini, G.; Sansoni, A.; Testa, M.; Vilucchi, E.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Amoroso, S.; Arnold, H.; Betancourt, C.; Boehler, M.; Bruneliere, R.; Buehrer, F.; Buescher, D.; Coniavitis, E.; Consorti, V.; Dao, V.; Di Simone, A.; Flechl, M.; Giuliani, C.; Herten, G.; Jakobs, K.; Javurek, T.; Jenni, P.; Kiss, F.; Koeneke, K.; Kopp, A. K.; Kuehn, S.; Lai, S.; Landgraf, U.; Mahboubi, K.; Mohr, W.; Pagacova, M.; Parzefall, U.; Rave, T. C.; Ronzani, M.; Rosbach, K.; Ruehr, F.; Rurikova, Z.; Ruthmann, N.; Schillo, C.; Schmidt, E.; Schumacher, M.; Sommer, P.; Sundermann, J. E.; Temming, K. K.; Tsiskaridze, V.; Ungaro, F. C.; von Radziewski, H.; Warsinsky, M.; Weiser, C.; Werner, M.; Zimmermann, S.] Univ Freiburg, Fak Math & Phys, D-79106 Freiburg, Germany. [Ancu, L. S.; Barone, G.; Bell, P. J.; Bell, W. H.; Noccioli, E. Benhar; De Mendizabal, J. Bilbao; Camacho Toro, R.; Clark, A.; Delitzsch, C. M.; della Volpe, D.; Doglioni, C.; Ferrere, D.; Gadomski, S.; Golling, T.; Gonzalez-Sevilla, S.; Gramling, J.; Guescini, F.; Iacobucci, G.; Katre, A.; La Rosa, A.; Mermod, P.; Miucci, A.; Muenstermann, D.; Nessi, M.; Picazio, A.; Ristic, B.; Tykhonov, A.; Vallecorsa, S.; Wu, X.] Univ Geneva, Sect Phy, Geneva, Switzerland. [Barberis, D.; Darbo, G.; Favareto, A.; Parodi, A. Ferretto; Gagliardi, G.; Gemme, C.; Guido, E.; Morettini, P.; Osculati, B.; Parodi, F.; Passaggio, S.; Rossi, L. P.; Schiavi, C.] Ist Nazl Fis Nucl, Sez Genova, Genoa, Italy. [Barberis, D.; Favareto, A.; Parodi, A. Ferretto; Gagliardi, G.; Guido, E.; Osculati, B.; Parodi, F.; Schiavi, C.] Univ Genoa, Dipartimento Fis, Genoa, Italy. [Jejelava, J.; Tskhadadze, E. G.] Iv Javakhishvili Tbilisi State Univ, E Andronikashvili Inst Phys, Tbilisi, Rep of Georgia. [Djobava, T.; Durglishvili, A.; Khubua, J.; Mosidze, M.] Tbilisi State Univ, Inst High Energy Phys, GE-380086 Tbilisi, Rep of Georgia. [Dueren, M.; Kreutzfeldt, K.; Stenzel, H.] Univ Giessen, Inst Phys 2, D-35390 Giessen, Germany. [Bates, R. L.; Britton, D.; Buckley, A. G.; Bussey, P.; Buttar, C. M.; Buzatu, A.; Cinca, D.; D'Auria, S.; Doyle, A. T.; Ferrag, S.; Ferrando, J.; de Lima, D. E. Ferreira; Gul, U.; Ortiz, N. G. Gutierrez; Kar, D.; Knue, A.; Morton, A.; Mullen, P.; O'Shea, V.; Oropeza Barrera, C.; Owen, M.; Pollard, C. S.; Qin, G.; Quilty, D.; Ravenscroft, T.; Robson, A.; Denis, R. D. St.; Stewart, G. A.; Thompson, A. S.] Univ Glasgow, Sch Phys & Astron, SUPA, Glasgow, Lanark, Scotland. [Bindi, M.; Blumenschein, U.; Drechsler, E.; George, M.; Graber, L.; Grosse-Knetter, J.; Hamer, M.; Kareem, M. J.; Kawamura, G.; Keil, M.; Lemmer, B.; Magradze, E.; Mantoani, M.; Mchedlidze, G.; Llacer, M. Moreno; Musheghyan, H.; Nackenhorst, O.; Nadal, J.; Quadt, A.; Rieger, J.; Schorlemmer, A. L. S.; Serkin, L.; Shabalina, E.; Stolte, P.; Vazquez Schroeder, T.; Weingarten, J.; Zinonos, Z.] Univ Gottingen, Inst Phys 2, D-37073 Gottingen, Germany. [Albrand, S.; Brown, J.; Collot, J.; Crepe-Renaudin, S.; Delsart, P. A.; Gabaldon, C.; Genest, M. H.; Hostachy, J-Y.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Monini, C.; Stark, J.; Trocme, B.; Wu, M.] Univ Grenoble Alpes, CNRS, IN2P3, Lab Phys Subatom & Cosmol, Grenoble, France. [Kobayashi, T.; McFarlane, K. W.] Hampton Univ, Dept Phys, Hampton, VA 23668 USA. [da Costa, J. Barreiro Guimaraes; Catastini, P.; Franklin, M.; Huth, J.; Ippolito, V.; Mateos, D. Lopez; Mercurio, K. M.; Morii, M.; Skottowe, H. P.; Spearman, W. R.; Sun, S.; Tolley, E.; Yen, A. L.] Harvard Univ, Lab Particle Phys & Cosmol, Cambridge, MA 02138 USA. [Andrei, V.; Baas, A. E.; Brandt, O.; Davygora, Y.; Djuvsland, J. I.; Dunford, M.; Hanke, P.; Jongmanns, J.; Kluge, E. -E.; Lang, V. S.; Meier, K.; Scharf, V.; Schultz-Coulon, H. -C.; Stamen, R.; Wessels, M.] Heidelberg Univ, Kirchhoff Inst Phys, Heidelberg, Germany. [Anders, C. F.; Giulini, M.; Narayan, R.; Schmitt, S.; Schoening, A.; Sosa, D.] Heidelberg Univ, Inst Phys, Heidelberg, Germany. [Colombo, T.; Kretz, M.; Kugel, A.; Schaetzel, S.] Heidelberg Univ, ZITI Inst Tech Informat, Mannheim, Germany. [Nagasaka, Y.] Hiroshima Inst Technol, Fac Appl Informat Sci, Hiroshima, Japan. [Bortolotto, V.; Castillo, L. R. Flores] Chinese Univ Hong Kong, Dept Phys, Shatin, Hong Kong, Peoples R China. [Bortolotto, V.] Univ Hong Kong, Dept Phys, Hong Kong, Peoples R China. [Bortolotto, V.; Prokofiev, K.] Hong Kong Univ Sci & Technol, Dept Phys, Kowloon, Hong Kong, Peoples R China. [Choi, K.; Dattagupta, A.; Evans, H.; Gagnon, P.; Lammers, S.; Martinez, N. Lorenzo; Luehring, F.; Ogren, H.; Penwell, J.; Weinert, B.; Zieminska, D.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Jansky, R. W.; Jussel, P.; Kneringer, E.; Lukas, W.; Ritsch, E.; Usanova, A.] Leopold Franzens Univ, Inst Astro & Teilchenphys, Innsbruck, Austria. [Mallik, U.; Mandrysch, R.; Zaidan, R.] Univ Iowa, Iowa City, IA USA. [Chen, C.; Cochran, J.; De Lorenzi, F.; Krumnack, N.; Pluth, D.; Prell, S.] Iowa State Univ, Dept Phys & Astron, Ames, IA USA. [Ahmadov, F.; Aleksandrov, I. N.; Bednyakov, V. A.; Boyko, I. R.; Budagov, I. A.; Chelkov, G. A.; Cheplakov, A.; Chizhov, M. V.; Dedovich, D. V.; Demichev, M.; Gostkin, M. I.; Huseynov, N.; Javadov, N.; Karpov, S. N.; Karpova, Z. M.; Kazarinov, M. Y.; Khramov, E.; Kotov, V. M.; Kruchonak, U.; Krumshteyn, Z. V.; Kukhtin, V.; Ladygin, E.; Minashvili, I. A.; Mineev, M.; Peshekhonov, V. D.; Plotnikova, E.; Potrap, I. N.; Pozdnyakov, V.; Rusakovich, N. A.; Sadykov, R.; Sapronov, A.; Shiyakova, M.; Sisakyan, A. N.; Soloshenko, A.; Vinogradov, V. B.; Yeletskikh, I.; Zhemchugov, A.; Zimine, N. I.] JINR Dubna, Dubna, Russia. [Amako, K.; Aoki, M.; Arai, Y.; Ikegami, Y.; Ikeno, M.; Iwasaki, H.; Kanzaki, J.; Kohriki, T.; Kondo, T.; Kono, T.; Makida, Y.; Nagano, K.; Nakamura, K.; Nozaki, M.; Odaka, S.; Sasaki, O.; Suzuki, Y.; Takubo, Y.; Tanaka, S.; Terada, S.; Tokushuku, K.; Tsuno, S.; Unno, Y.; Yamada, M.; Yamamoto, A.; Yasu, Y.] High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki, Japan. [Chen, Y.; Hasegawa, M.; Inamaru, Y.; Kishimoto, T.; Kurashige, H.; Kurumida, R.; Ochi, A.; Shimizu, S.; Takeda, H.; Yakabe, R.; Yamazaki, Y.; Yuan, L.] Kobe Univ, Grad Sch Sci, Kobe, Hyogo 657, Japan. [Ishino, M.; Kunigo, T.; Sumida, T.; Tashiro, T.] Kyoto Univ, Fac Sci, Kyoto, Japan. [Takashima, R.] Kyoto Univ, Kyoto 612, Japan. [Kawagoe, K.; Oda, S.; Otono, H.; Tojo, J.] Kyushu Univ, Dept Phys, Fukuoka 812, Japan. [Alconada Verzini, M. J.; Alonso, F.; Anduaga, X. S.; Arduh, F. A.; Dova, M. T.; Monticelli, F.; Wahlberg, H.] Univ Nacl La Plata, Inst Fis La Plata, La Plata, Argentina. [Alconada Verzini, M. J.; Alonso, F.; Anduaga, X. S.; Arduh, F. A.; Dova, M. T.; Monticelli, F.; Wahlberg, H.] Consejo Nacl Invest Cient & Tecn, La Plata, Argentina. [Allison, L. J.; Barton, A. E.; Beattie, M. D.; Borissov, G.; Bouhova-Thacker, E. V.; Chilingarov, A.; Dearnaley, W. J.; Fox, H.; Grimm, K.; Hughes, G.; Jones, R. W. L.; Kartvelishvili, V.; Long, R. E.; Love, P. A.; Maddocks, H. J.; Skinner, M. B.; Smizanska, M.; Walder, J.; Wharton, A. M.] Univ Lancaster, Dept Phys, Lancaster, England. [Chiodini, G.; Gorini, E.; Primavera, M.; Spagnolo, S.; Ventura, A.] Ist Nazl Fis Nucl, Sez Lecce, Lecce, Italy. [Gorini, E.; Spagnolo, S.; Ventura, A.] Univ Salento, Dipartimento Matemat & Fis, Lecce, Italy. [Allport, P. P.; Burdin, S.; D'Onofrio, M.; Dervan, P.; Gwilliam, C. B.; Hayward, H. S.; Jackson, M.; Jones, T. J.; King, B. T.; Klein, M.; Klein, U.; Kretzschmar, J.; Laycock, P.; Lehan, A.; Mahmoud, S.; Maxfield, S. J.; Mehta, A.; Price, J.; Readioff, N. P.; Schnellbach, Y. J.; Vossebeld, J. H.] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 3BX, Merseyside, England. [Cindro, V.; Deliyergiyev, M.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Mandic, I.; Mikuz, M.; Sfiligoj, T.] Jozef Stefan Inst, Dept Phys, Ljubljana, Slovenia. [Cindro, V.; Deliyergiyev, M.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Mandic, I.; Mikuz, M.; Sfiligoj, T.] Univ Ljubljana, Ljubljana, Slovenia. [Alpigiani, C.; Bevan, A. J.; Bona, M.; Bret, M. Cano; Cerrito, L.; Fletcher, G.; Goddard, J. R.; Hays, J. M.; Hickling, R.; Landon, M. P. J.; Lloyd, S. L.; Morris, J. D.; Nooney, T.; Piccaro, E.; Rizvi, E.; Sandbach, R. L.; Snidero, G.; Castanheira, M. Teixeira Dias] Queen Mary Univ London, Sch Phys & Astron, London, England. [Berry, T.; Blanco, J. E.; Boisvert, V.; Brooks, T.; Connelly, I. A.; Cowan, G.; Duguid, L.; George, S.; Gibson, S. M.; Kempster, J. J.; Panduro Vazquez, J. G.; Pastore, Fr.; Savage, G.; Spano, F.; Teixeira-Dias, P.; Thomas-Wilsker, J.] Royal Holloway Univ London, Dept Phys, Surrey, England. [Bieniek, S. P.; Butterworth, J. M.; Campanelli, M.; Casadei, D.; Chislett, R. T.; Christodoulou, V.; Cooper, B. D.; Davison, P.; Falla, R. J.; Freeborn, D.; Gregersen, K.; Hesketh, G. G.; Jansen, E.; Konstantinidis, N.; Korn, A.; Kucuk, H.; Lambourne, L.; Leney, K. J. C.; Martyniuk, A. C.; Mcfayden, J. A.; Nurse, E.; Ochoa, I.; Pilkington, A. D.; Richter, S.; Scanlon, T.; Sherwood, P.; Simmons, B.; Wardrope, D. R.; Waugh, B. M.] UCL, Dept Phys & Astron, London, England. [Greenwood, Z. D.; Jana, D. K.; Sawyer, L.; Subramaniam, R.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pandini, C. E.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.; Varouchas, D.] UPMC, Lab Phys Nucl & Hautes Energies, Paris, France. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pandini, C. E.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.; Varouchas, D.] Univ Paris Diderot, Paris, France. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pandini, C. E.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.; Varouchas, D.] CNRS, IN2P3, Paris, France. [Akesson, T. P. A.; Bocchetta, S. S.; Bryngemark, L.; Floderus, A.; Hawkins, A. D.; Hedberg, V.; Ivarsson, J.; Jarlskog, G.; Lytken, E.; Mjornmark, J. U.; Smirnova, O.; Viazlo, O.] Lund Univ, Inst Fys, Lund, Sweden. [Arnal, V.; Barreiro, F.; Cantero, J.; De la Torre, H.; Del Peso, J.; Glasman, C.; Merino, J. Llorente; Terron, J.] Univ Autonoma Madrid, Dept Fis Teor C 15, Madrid, Spain. [Bertella, C.; Blum, W.; Buescher, V.; Caputo, R.; Caudron, J.; Ellinghaus, F.; Endner, O. C.; Ertel, E.; Fiedler, F.; Torregrosa, E. Fullana; Heck, T.; Hohlfeld, M.; Huelsing, T. A.; Karnevskiy, M.; Kleinknecht, K.; Koenig, S.; Koepke, L.; Lin, T. H.; Lungwitz, M.; Masetti, L.; Mattmann, J.; Meyer, C.; Moritz, S.; Poettgen, R.; Rave, S.; Sander, H. G.; Schaeffer, J.; Schaefer, U.; Schmitt, C.; Schott, M.; Schroeder, C.; Schuh, N.; Simioni, E.; Tapprogge, S.; Urrejola, P.; Valderanis, C.; Wollstadt, S. J.; Zimmermann, C.; Zinser, M.] Johannes Gutenberg Univ Mainz, Inst Phys, D-55122 Mainz, Germany. [Balli, F.; Barnes, S. L.; Cox, B. E.; Da Via, C.; Forti, A.; Iturbe Ponce, J. M.; Joshi, K. D.; Keoshkerian, H.; Klinger, J. A.; Loebinger, F. K.; Marsden, S. P.; Masik, J.; Neep, T. J.; Oh, A.; Ospanov, R.; Pater, J. R.; Peters, R. F. Y.; Price, D.; Qin, Y.; Queitsch-Maitland, M.; Robinson, J. E. M.; Schwanenberger, C.; Thompson, R. J.; Tomlinson, L.; Watts, S.; Webb, S.; Woudstra, M. J.; Wyatt, T. R.] Univ Manchester, Sch Phys & Astron, Manchester, Lancs, England. [Aad, G.; Alio, L.; Aloisio, A.; Barbero, M.; Chen, L.; Coadou, Y.; Diaconu, C.; Diglio, S.; Djama, F.; Ducu, O. A.; Feligioni, L.; Gao, J.; Hallewell, G. D.; Hubaut, F.; Kahn, S. J.; Knoops, E. B. F. G.; Le Guirriec, E.; Li, B.; Liu, J.; Liu, K.; Madaffari, D.; Mochizuki, K.; Monnier, E.; Muanza, S.; Nagai, Y.; Nagy, E.; Pralavorio, P.; Rozanov, A.; Serre, T.; Talby, M.; Torres, R. E. Ticse; Tiouchichine, E.; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.] Aix Marseille Univ, CPPM, Marseille, France. [Aad, G.; Alio, L.; Barbero, M.; Chen, L.; Coadou, Y.; Diaconu, C.; Diglio, S.; Djama, F.; Ducu, O. A.; Feligioni, L.; Gao, J.; Hallewell, G. D.; Hubaut, F.; Kahn, S. J.; Knoops, E. B. F. G.; Le Guirriec, E.; Li, B.; Liu, J.; Liu, K.; Madaffari, D.; Mochizuki, K.; Monnier, E.; Muanza, S.; Nagai, Y.; Nagy, E.; Pralavorio, P.; Rozanov, A.; Serre, T.; Talby, M.; Torres, R. E. Ticse; Tiouchichine, E.; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.] CNRS, IN2P3, Marseille, France. [Bellomo, M.; Bernard, N. R.; Brau, B.; Dallapiccola, C.; Daya-Ishmukhametova, R. K.; Moyse, E. J. W.; Pais, P.; Pueschel, E.; Ventura, D.; Willocq, S.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Belanger-Champagne, C.; Chapleau, B.; Chuinard, A. J.; Corriveau, F.; Keyes, R. A.; Mantifel, R.; Prince, S.; Robertson, S. H.; Robichaud-Veronneau, A.; Stockton, M. C.; Stoebe, M.; Vachon, B.; Wang, K.; Warburton, A.] McGill Univ, Dept Phys, Montreal, PQ, Canada. [Barberio, E. L.; Brennan, A. J.; Jennens, D.; Kubota, T.; Milesi, M.; Hanninger, G. Nunes; Nuti, F.; Rados, P.; Spiller, L. A.; Tan, K. G.; Taylor, G. N.; Urquijo, P.; Volpi, M.; Zanzi, D.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. [Amidei, D.; Chelstowska, M. A.; Cheng, H. C.; Dai, T.; Diehl, E. B.; Feng, H.; Ferretti, C.; Fleischmann, P.; Goldfarb, S.; Hu, X.; Levin, D.; Liu, L.; Long, J. D.; Lu, N.; Mc Kee, S. P.; McCarn, A.; Neal, H. A.; Qian, J.; Schwarz, T. A.; Searcy, J.; Thun, R. P.; Wilson, A.; Wu, Y.; Yu, J. M.; Zhang, D.; Zhou, B.; Zhu, J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Abolins, M.; Gonzalez, B. Alvarez; Arabidze, G.; Brock, R.; Chegwidden, A.; Fisher, W. C.; Halladjian, G.; Hauser, R.; Hayden, D.; Huston, J.; Linnemann, J. T.; Martin, B.; Pope, B. G.; Schoenrock, B. D.; Schwienhorst, R.; Ta, D.; Tollefson, K.; True, P.; Willis, C.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Alimonti, G.; Andreazza, A.; Besana, M. I.; Carminati, L.; Cavalli, D.; Consonni, S. M.; Costa, G.; Fanti, M.; Giugni, D.; Lari, T.; Mandelli, L.; Mazza, S. M.; Meroni, C.; Perini, L.; Pizio, C.; Ragusa, F.; Resconi, S.; Shojaii, S.; Simoniello, R.; Tartarelli, G. F.; Troncon, C.; Turra, R.; Villaplana Perez, M.] Ist Nazl Fis Nucl, Sez Milano, Milan, Italy. [Andreazza, A.; Carminati, L.; Consonni, S. M.; Fanti, M.; Mazza, S. M.; Perini, L.; Pizio, C.; Ragusa, F.; Shojaii, S.; Simoniello, R.; Turra, R.; Villaplana Perez, M.] Univ Milan, Dipartimento Fis, Milan, Italy. [Harkusha, S.; Kulchitsky, Y.; Kurochkin, Y. A.; Tsiareshka, P. V.] Natl Acad Sci Belarus, BI Stepanov Inst Phys, Minsk, Byelarus. [Hrynevich, A.] Natl Sci & Educ Ctr Particle & High Energy Phys, Minsk, Byelarus. [Taylor, F. E.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Arguin, J-F.; Azuelos, G.; Dallaire, F.; Gauthier, L.; Leroy, C.; Rezvani, R.; Saadi, D. Shoaleh; Soueid, P.] Univ Montreal, Grp Particle Phys, Montreal, PQ, Canada. [Akimov, A. V.; Baranov, S. P.; Gavrilenko, I. L.; Komar, A. A.; Mashinistov, R.; Mouraviev, S. V.; Nechaeva, P. Yu.; Shmeleva, A.; Snesarev, A. A.; Sulin, V. V.; Tikhomirov, V. O.; Zhukov, K.] Acad Sci, PN Lebedev Inst Phys, Moscow, Russia. [Artamonov, A.; Gorbounov, P. A.; Khovanskiy, V.; Shatalov, P. B.; Tsukerman, I. I.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Antonov, A.; Belotskiy, K.; Bulekov, O.; Dolgoshein, B. A.; Kantserov, V. A.; Khodinov, A.; Krasnopevtsev, D.; Romaniouk, A.; Shulga, E.; Smirnov, S. Yu.; Smirnov, Y.; Soldatov, E. Yu.; Timoshenko, S.; Vorobev, K.] Natl Res Nucl Univ MEPhI, Moscow, Russia. [Boldyrev, A. S.; Gladilin, L. K.; Grishkevich, Y. V.; Kramarenko, V. A.; Maevskiy, A.; Rud, V. I.; Sivoklokov, S. Yu.; Smirnova, L. N.; Turchikhin, S.] Moscow MV Lomonosov State Univ, DV Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Adomeit, S.; Becker, S.; Bender, M.; Biebel, O.; Bock, C.; Bortfeldt, J.; Calfayan, P.; Chow, B. K. B.; Duckeck, G.; Elmsheuser, J.; Hertenberger, R.; Hoenig, F.; Legger, F.; Lorenz, J.; Loesel, P. J.; Maier, T.; Mann, A.; Mehlhase, S.; Meineck, C.; Mitrevski, J.; Mueller, R. S. P.; Nunnemann, T.; Rauscher, F.; Ruschke, A.; Sanders, M. P.; Schaile, D.; Unverdorben, C.; Vladoiu, D.; Walker, R.; Wittkowski, J.] Univ Munich, Fak Phys, Munich, Germany. [Barillari, T.; Bethke, S.; Bronner, J.; Compostella, G.; Cortiana, G.; Ecker, K. M.; Flowerdew, M. J.; Goblirsch-Kolb, M.; Ince, T.; Kiryunin, A. E.; Kluth, S.; Kortner, O.; Kortner, S.; Kroha, H.; Macchiolo, A.; Maier, A. A.; Manfredini, A.; Menke, S.; Moser, H. G.; Mueller, F.; Nagel, M.; Nisius, R.; Nowak, S.; Oberlack, H.; Pahl, C.; Richter, R.; Salihagic, D.; Sandstroem, R.; Schacht, P.; Schwegler, Ph.; Sforza, F.; Spettel, F.; Stern, S.; Stonjek, S.; Terzo, S.; von der Schmitt, H.; Wildauer, A.] Max Planck Inst Phys & Astrophys, Werner Heisenberg Inst, D-80805 Munich, Germany. [Edson, W.; Shimojima, M.] Nagasaki Inst Appl Sci, Nagasaki, Japan. [Hasegawa, S.; Horii, Y.; Kuhl, A.; Morvaj, L.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Grad Sch Sci, Nagoya, Aichi 4648601, Japan. [Hasegawa, S.; Horii, Y.; Kuhl, A.; Morvaj, L.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Kobayashi Maskawa Inst, Nagoya, Aichi 4648601, Japan. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Carlino, G.; Conventi, F.; de Asmundis, R.; Della Pietra, M.; Di Donato, C.; Doria, A.; Izzo, V.; Merola, L.; Perrella, S.; Rossi, E.; Sanchez, A.; Sekhniaidze, G.; Zurzolo, G.] Ist Nazl Fis Nucl, Sez Napoli, Naples, Italy. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Di Donato, C.; Merola, L.; Perrella, S.; Rossi, E.; Sanchez, A.; Zurzolo, G.] Univ Naples Federico II, Dipartimento Fis, Naples, Italy. [Gorelov, I.; Hoeferkamp, M. R.; Seidel, S. C.; Toms, K.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Besjes, G. J.; Caron, S.; Croft, V.; De Groot, N.; Filthaut, F.; Galea, C.; Klok, P. F.; Koenig, A. C.; Nektarijevic, S.; Salvucci, A.; Strubig, A.] Radboud Univ Nijmegen Nikhef, Inst Math Astrophys & Particle Phys, NL-6525 ED Nijmegen, Netherlands. [Aben, R.; Angelozzi, I.; Beemster, L. J.; Bentvelsen, S.; Berge, D.; Bobbink, G. J.; Bos, K.; Brenner, L.; Butti, P.; Castelli, A.; Colijn, A. P.; de Jong, P.; De Nooij, L.; Deigaard, I.; Deluca, C.; Dhaliwal, S.; Ferrari, P.; Gadatsch, S.; Geerts, D. A. A.; Hartjes, F.; Hessey, N. P.; Hod, N.; Igonkina, O.; Karastathis, N.; Kluit, P.; Koffeman, E.; Linde, F.; Mahlstedt, J.; Meyer, J.; Oussoren, K. P.; Sabato, G.; Salek, D.; Slawinska, M.; Valencic, N.; Van Den Wollenberg, W.; Van Der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; Van Der Leeuw, R.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.; Weits, H.; Williams, S.] Nikhef Natl Inst Subat Phys, Amsterdam, Netherlands. [Aben, R.; Angelozzi, I.; Beemster, L. J.; Bentvelsen, S.; Berge, D.; Bobbink, G. J.; Bos, K.; Brenner, L.; Butti, P.; Castelli, A.; Colijn, A. P.; de Jong, P.; De Nooij, L.; Deigaard, I.; Deluca, C.; Dhaliwal, S.; Ferrari, P.; Gadatsch, S.; Geerts, D. A. A.; Hartjes, F.; Hessey, N. P.; Hod, N.; Igonkina, O.; Karastathis, N.; Kluit, P.; Koffeman, E.; Linde, F.; Mahlstedt, J.; Meyer, J.; Oussoren, K. P.; Sabato, G.; Salek, D.; Slawinska, M.; Valencic, N.; Van Den Wollenberg, W.; Van Der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; Van Der Leeuw, R.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.; Weits, H.; Williams, S.] Univ Amsterdam, Amsterdam, Netherlands. [Adelman, J.; Burghgrave, B.; Chakraborty, D.; Cole, S.; Suhr, C.; Yurkewicz, A.] No Illinois Univ, Dept Phys, De Kalb, IL USA. [Anisenkov, A. V.; Bobrovnikov, V. S.; Bogdanchikov, A. G.; Kazanin, V. F.; Kharlamov, A.; Korol, A. A.; Malyshev, V. M.; Maslennikov, A. L.; Maximov, D. A.; Peleganchuk, S. V.; Rezanova, O. L.; Soukharev, A. M.; Talyshev, A. A.; Tikhonov, Yu. A.] RAS, Budker Inst Nucl Phys, SB, Novosibirsk, Russia. [Bernius, C.; Cranmer, K.; Haas, A.; Heinrich, L.; van Huysduynen, L. Hooft; Kaplan, B.; Karthik, K.; Konoplich, R.; Kreiss, S.; Mincer, A. I.; Nemethy, P.; Neves, R. M.] NYU, Dept Phys, New York, NY 10003 USA. [Beacham, J. B.; Gan, K. K.; Ishmukhametov, R.; Kagan, H.; Kass, R. D.; Looper, K. A.; Merritt, H.; Moss, J.; Nagarkar, A.; Pignotti, D. T.; Shrestha, S.; Tannenwald, B. B.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Fac Sci, Okayama 700, Japan. [Abbott, B.; Alhroob, M.; Bertsche, C.; Bertsche, D.; Gutierrez, P.; Hasib, A.; Norberg, S.; Pearson, B.; Saleem, M.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA. [Abi, B.; Bousson, N.; Haley, J.; Khanov, A.; Rizatdinova, F.; Sidorov, D.; Yu, J.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA. [Chytka, L.; Hamal, P.; Hrabovsky, M.; Kvita, J.; Nozka, L.] Palacky Univ, RCPTM, CR-77147 Olomouc, Czech Republic. [Brau, J. E.; Brost, E.; Hopkins, W. H.; Majewski, S.; Potter, C. T.; Ptacek, E.; Radloff, P.; Shamim, M.; Sinev, N. B.; Strom, D. M.; Torrence, E.; Wanotayaroj, C.; Winklmeier, F.] Univ Oregon, Ctr High Energy Phys, Eugene, OR 97403 USA. [Khalek, S. Abdel; Ayoub, M. K.; Bassalat, A.; Becot, C.; Binet, S.; Bourdarios, C.; Cervelli, A.; Charfeddine, D.; De Regie, J. B. De Vivie; Delgove, D.; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Gkougkousis, E. L.; Grivaz, J. -F.; Guillemin, T.; Hariri, F.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Kado, M.; Li, Y.; Lounis, A.; Makovec, N.; Morange, N.; Nellist, C.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Rybkin, G.; Schaffer, A. C.; Scifo, E.; Serin, L.; Simion, S.; Tanaka, R.; Tran, H. L.; Zerwas, D.; Zhang, Z.; Zhao, Y.] Univ Paris 11, LAL, Orsay, France. [Khalek, S. Abdel; Ayoub, M. K.; Bassalat, A.; Becot, C.; Binet, S.; Bourdarios, C.; Charfeddine, D.; De Regie, J. B. De Vivie; Delgove, D.; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Gkougkousis, E. L.; Grivaz, J. -F.; Guillemin, T.; Hariri, F.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Kado, M.; Li, Y.; Lounis, A.; Makovec, N.; Morange, N.; Nellist, C.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Rybkin, G.; Schaffer, A. C.; Scifo, E.; Serin, L.; Simion, S.; Tanaka, R.; Tran, H. L.; Zerwas, D.; Zhang, Z.; Zhao, Y.] CNRS, IN2P3, F-91405 Orsay, France. [Endo, M.; Hanagaki, K.; Nomachi, M.; Okamura, W.; Sugaya, Y.; Teoh, J. J.; Yamaguchi, Y.] Osaka Univ, Grad Sch Sci, Osaka, Japan. [Bugge, L.; Bugge, M. K.; Cameron, D.; Catmore, J. R.; Franconi, L.; Gjelsten, B. K.; Gramstad, E.; Morisbak, V.; Nilsen, J. K.; Ould-Saada, F.; Pajchel, K.; Pedersen, M.; Read, A. L.; Rohne, O.; Stapnes, S.; Strandlie, A.] Univ Oslo, Dept Phys, Oslo, Norway. [Barr, A. J.; Becker, K.; Behr, K.; Beresford, L.; Cooper-Sarkar, A. M.; Ortuzar, M. Crispin; Dafinca, A.; Davies, E.; Frost, J. A.; Gallas, E. J.; Gupta, S.; Gwenlan, C.; Hall, D.; Hays, C. P.; Howard, J.; Huffman, T. B.; Issever, C.; Kalderon, C. W.; King, R. S. B.; Kogan, L. A.; Lewis, A.; Nagai, K.; Nickerson, R. B.; Pachal, K.; Pickering, M. A.; Ryder, N. C.; Sawyer, C.; Tseng, J. C-L.; Viehhauser, G. H. A.; Weidberg, A. R.; Zhong, J.] Univ Oxford, Dept Phys, Oxford, England. [Conta, C.; Dondero, P.; Ferrari, R.; Fraternali, M.; Gaudio, G.; Livan, M.; Negri, A.; Polesello, G.; Rebuzzi, D. M.; Rimoldi, A.; Vercesi, V.] Ist Nazl Fis Nucl, Sez Pavia, I-27100 Pavia, Italy. [Conta, C.; Dondero, P.; Fraternali, M.; Livan, M.; Negri, A.; Rebuzzi, D. M.; Rimoldi, A.] Univ Pavia, Dipartimento Fis, I-27100 Pavia, Italy. [Brendlinger, K.; Heim, S.; Hines, E.; Hong, T. M.; Jackson, B.; Kroll, J.; Lipeles, E.; Miguens, J. Machado; Meyer, C.; Stahlman, J.; Thomson, E.; Tuna, A. N.; Vanguri, R.; Williams, H. H.; Yoshihara, K.] Univ Penn, Dept Phys, Philadelphia, PA 19104 USA. [Ezhilov, A.; Fedin, O. L.; Gratchev, V.; Levchenko, M.; Maleev, V. P.; Ryabov, Y. F.; Schegelsky, V. A.; Sedykh, E.; Seliverstov, D. M.; Solovyev, V.] Petersburg Nucl Phys Inst, Gatchina, Russia. [Beccherle, R.; Bertolucci, F.; Cavasinni, V.; Del Prete, T.; Dell'Orso, M.; Donati, S.; Giannetti, P.; Leone, S.; Roda, C.; Scuri, F.; Spalla, M.; Volpi, G.; White, S.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy. [Annovi, A.; Beccherle, R.; Bertolucci, F.; Cavasinni, V.; Del Prete, T.; Dell'Orso, M.; Donati, S.; Giannetti, P.; Leone, S.; Roda, C.; Scuri, F.; Spalla, M.; Volpi, G.; White, S.] Univ Pisa, Dipartimento Fis E Fermi, Pisa, Italy. [Bianchi, R. M.; Boudreau, J.; Cleland, W.; Escobar, C.; Mueller, J.; Sapp, K.; Su, J.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Aguilar-Saavedra, J. A.; Amor Dos Santos, S. P.; Amorim, A.; Araque, J. P.; Cantrill, R.; Carvalho, J.; Castro, N. F.; Muino, P. Conde; Da Cunha Sargedas De Sousa, M. J.; Fiolhais, M. C. N.; Galhardo, B.; Gomes, A.; Goncalo, R.; Jorge, P. M.; Lopes, L.; Maio, A.; Maneira, J.; Onofre, A.; Palma, A.; Pedro, R.; Pina, J.; Pinto, B.; Santos, H.; Saraiva, J. G.; Silva, J.; Delgado, A. Tavares; Veloso, F.; Wolters, H.] LIP, Lab Instrumentacao & Fis Expt Particulas, P-1000 Lisbon, Portugal. [Amorim, A.; Muino, P. Conde; Da Cunha Sargedas De Sousa, M. J.; Gomes, A.; Jorge, P. M.; Miguens, J. Machado; Maio, A.; Maneira, J.; Palma, A.; Pedro, R.; Pina, J.; Delgado, A. Tavares] Univ Lisbon, Fac Ciencias, P-1699 Lisbon, Portugal. [Amor Dos Santos, S. P.; Carvalho, J.; Fiolhais, M. C. N.; Galhardo, B.; Veloso, F.; Wolters, H.] Univ Coimbra, Dept Phys, Coimbra, Portugal. [Gomes, A.; Maio, A.; Pina, J.; Saraiva, J. G.; Silva, J.] Univ Lisbon, Ctr Fis Nucl, P-1699 Lisbon, Portugal. [Onofre, A.] Univ Minho, Dept Fis, Braga, Portugal. [Aguilar-Saavedra, J. A.] Univ Granada, Dept Fis Teor Cosmos, Granada, Spain. [Aguilar-Saavedra, J. A.] Univ Granada, CAFPE, Granada, Spain. [Carvalho, J.] Univ Nova Lisboa, Fac Ciencias & Tecnol, Dept Fis, Caparica, Portugal. [Carvalho, J.] Univ Nova Lisboa, Fac Ciencias & Tecnol, CEFITEC, Caparica, Portugal. [Chudoba, J.; Havranek, M.; Hejbal, J.; Jakoubek, T.; Kepka, O.; Kupco, A.; Kus, V.; Lokajicek, M.; Lysak, R.; Marcisovsky, M.; Mikestikova, M.; Nemecek, S.; Sicho, P.; Staroba, P.; Svatos, M.; Tasevsky, M.; Vrba, V.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Augsten, K.; Caforio, D.; Gallus, P.; Jakubek, J.; Kohout, Z.; Myska, M.; Pospisil, S.; Seifert, F.; Simak, V.; Slavicek, T.; Smolek, K.; Solar, M.; Solc, J.; Sopczak, A.; Sopko, B.; Sopko, V.; Suk, M.; Turecek, D.; Vacek, V.; Vlasak, M.; Vokac, P.; Vykydal, Z.; Zeman, M.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Balek, P.; Berta, P.; Cerny, K.; Chalupkova, I.; Davidek, T.; Dolejsi, J.; Dolezal, Z.; Faltova, J.; Kodys, P.; Kosek, T.; Leitner, R.; Pleskot, V.; Reznicek, P.; Rybar, M.; Scheirich, D.; Spousta, M.; Sykora, T.; Tas, P.; Todorova-Nova, S.; Valkar, S.; Vorobel, V.] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic. [Borisov, A.; Cheremushkina, E.; Denisov, S. P.; Fakhrutdinov, R. M.; Fenyuk, A. B.; Golubkov, D.; Kamenshchikov, A.; Karyukhin, A. N.; Kozhin, A. S.; Minaenko, A. A.; Myagkov, A. G.; Nikolaenko, V.; Solodkov, A. A.; Solovyanov, O. V.; Starchenko, E. A.; Zaitsev, A. M.; Zenin, O.] Inst High Energy Phys, State Res Ctr, Protvino, Russia. [Adye, T.; Baines, J. T.; Barnett, B. M.; Burke, S.; Dewhurst, A.; Dopke, J.; Emeliyanov, D.; Gallop, B. J.; Gee, C. N. P.; Haywood, S. J.; Kirk, J.; Martin-Haugh, S.; McCubbin, N. A.; McMahon, S. J.; Middleton, R. P.; Murray, W. J.; Phillips, P. W.; Sankey, D. P. C.; Tyndel, M.; Wickens, F. J.; Wielers, M.] Rutherford Appleton Lab, Particle Phys Dept, Didcot OX11 0QX, Oxon, England. [Tanaka, S.] Ritsumeikan Univ, Kusatsu, Shiga, Japan. [Anulli, F.; Bagiacchi, P.; Bagnaia, P.; Bauce, M.; Bini, C.; Ciapetti, G.; De Pedis, D.; De Salvo, A.; Di Domenico, A.; Falciano, S.; Gabrielli, A.; Gauzzi, P.; Gentile, S.; Giagu, S.; Kuna, M.; Lacava, F.; Luci, C.; Luminari, L.; Marzano, F.; Messina, A.; Mirabelli, G.; Monzani, S.; Nisati, A.; Pasqualucci, E.; Petrolo, E.; Pontecorvo, L.; Rescigno, M.; Rosati, S.; Tehrani, F. Safai; Vanadia, M.; Vari, R.; Veneziano, S.; Verducci, M.; Zanello, L.] Ist Nazl Fis Nucl, Sez Roma, Rome, Italy. [Bagiacchi, P.; Bagnaia, P.; Bauce, M.; Bini, C.; Ciapetti, G.; Di Domenico, A.; Gabrielli, A.; Gauzzi, P.; Gentile, S.; Giagu, S.; Kuna, M.; Lacava, F.; Luci, C.; Messina, A.; Monzani, S.; Vanadia, M.; Verducci, M.; Zanello, L.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Aielli, G.; Cardarelli, R.; Cattani, G.; Di Ciaccio, A.; Grossi, G. C.; Iuppa, R.; Liberti, B.; Mazzaferro, L.; Paolozzi, L.; Salamon, A.; Santonico, R.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, Rome, Italy. [Aielli, G.; Cattani, G.; Di Ciaccio, A.; Grossi, G. C.; Iuppa, R.; Mazzaferro, L.; Paolozzi, L.; Santonico, R.] Univ Roma Tor Vergata, Dipartimento Fis, Rome, Italy. [Bacci, C.; Baroncelli, A.; Biglietti, M.; Ceradini, F.; Di Micco, B.; Farilla, A.; Graziani, E.; Iodice, M.; Orestano, D.; Pastore, F.; Petrucci, F.; Puddu, D.; Salamanna, G.; Stanescu, C.; Taccini, C.; Trovatelli, M.] Ist Nazl Fis Nucl, Sez Roma Tre, Rome, Italy. [Bacci, C.; Ceradini, F.; Di Micco, B.; Orestano, D.; Pastore, F.; Petrucci, F.; Puddu, D.; Salamanna, G.; Taccini, C.; Trovatelli, M.] Univ Roma Tre, Dipartimento Matemat & Fis, Rome, Italy. [Benchekroun, D.; Chafaq, A.; Gouighri, M.; Hoummada, A.] Univ Hassan 2, Reseau Univ Phys Hautes Energies, Fac Sci Ain Chock, Casablanca, Morocco. [Ghazlane, H.] Ctr Natl Energie Sci Techn Nucl, Rabat, Morocco. [El Kacimi, M.; Goujdami, D.] Univ Cadi Ayyad, Fac Sci Semlalia, LPHEA, Marrakech, Morocco. [Boutouil, S.; Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] Univ Mohamed Premier, Fac Sci, Oujda, Morocco. [Boutouil, S.; Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] LPTPM, Oujda, Morocco. [El Moursli, R. Cherkaoui; Fassi, F.; Haddad, N.; Idrissi, Z.] Univ Mohammed V Agdal, Fac Sci, Rabat, Morocco. [Bachacou, H.; Bauer, F.; Besson, N.; Blanchard, J. -B.; Boonekamp, M.; Calandri, A.; Chevalier, L.; Hoffmann, M. Dano; Deliot, F.; Etienvre, A. I.; Formica, A.; Giraud, P. F.; Goncalves Pinto Firmino Da Costa, J.; Guyot, C.; Hanna, R.; Hassani, S.; Kozanecki, W.; Lancon, E.; Laporte, J. F.; Maiani, C.; Mansoulie, B.; Martinez, H.; Meric, N.; Meyer, J-P.; Nicolaidou, R.; Ouraou, A.; Protopapadaki, E.; Royon, C. R.; Saimpert, M.; Schoeffel, L.; Schune, Ph.; Schwemling, Ph.; Schwindling, J.] CEA Saclay, Commissariat Energie Atom & Energies Alternat, DSM IRFU, Inst Rech Lois Fondament Univers, F-91191 Gif Sur Yvette, France. [Battaglia, M.; Debenedetti, C.; Grabas, H. M. X.; Grillo, A. A.; Guenther, J.; Law, A. T.; Liang, Z.; Litke, A. M.; Lockman, W. S.; Manning, P. M.; Nielsen, J.; Reece, R.; Rose, P.; Sadrozinski, H. F-W.; Schumm, B. A.; Seiden, A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Blackburn, D.; Coccaro, A.; Goussiou, A. G.; Hsu, S. -C.; Lubatti, H. J.; Marx, M.; Rompotis, N.; Rosten, R.; Rothberg, J.; Russell, H. L.; De Bruin, P. H. Sales; Watts, G.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Anastopoulos, C.; Costanzo, D.; Donszelmann, T. Cuhadar; Dawson, I.; Fletcher, G. T.; Hodgkinson, M. C.; Hodgson, P.; Johansson, P.; Korolkova, E. V.; Kyriazopoulos, D.; Paredes, B. Lopez; Macdonald, C. M.; Miyagawa, P. S.; Paganis, E.; Parker, K. A.; Tovey, D. R.] Univ Sheffield, Dept Phys & Astron, Sheffield, S Yorkshire, England. [Hasegawa, Y.; Takeshita, T.] Shinshu Univ, Dept Phys, Nagano, Japan. [Atlay, N. B.; Buchholz, P.; Czirr, H.; Fleck, I.; Gaur, B.; Ibragimov, I.; Ikematsu, K.; Rosenthal, O.; Walkowiak, W.; Ziolkowski, M.] Univ Siegen, Fachbereich Phys, D-57068 Siegen, Germany. [Buat, Q.; Dawe, E.; Horton, A. J.; O'Neil, D. C.; Stelzer, B.; Tanasijczuk, A. J.; Torres, H.; Van Nieuwkoop, J.; Vetterli, M. C.] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada. [Barklow, T.; Bartoldus, R.; Bawa, H. S.; Black, J. E.; Cogan, J. G.; Fulsom, B. G.; Gao, Y. S.; Garelli, N.; Grenier, P.; Kagan, M.; Kocian, M.; Koi, T.; Malone, C.; Mount, R.; Nef, P. D.; Piacquadio, G.; Rubbo, F.; Salnikov, A.; Schwartzman, A.; Silverstein, D.; Strauss, E.; Su, D.; Swiatlowski, M.; Tompkins, L.; Wittgen, M.; Young, C.] SLAC Natl Accelerator Lab, Stanford, CA USA. [Astalos, R.; Bartos, P.; Blazek, T.; Federic, P.; Plazak, L.; Stavina, P.; Sykora, I.; Tokar, S.; Zenis, T.] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia. [Antos, J.; Bruncko, D.; Kladiva, E.; Strizenec, P.; Urban, J.] Slovak Acad Sci, Inst Expt Phys, Dept Subnucl Phys, Kosice 04353, Slovakia. [Hamilton, A.; Meehan, S.] Univ Cape Town, Dept Phys, ZA-7925 Cape Town, South Africa. [Aurousseau, M.; Castaneda-Miranda, E.; Connell, S. H.; Lee, C. A.; Yacoob, S.] Univ Johannesburg, Dept Phys, Johannesburg, South Africa. [Bristow, K.; Hamity, G. N.; Hsu, C.; March, L.; Garcia, B. R. Mellado; Ruan, X.; Vickey, T.; Boeriu, O. E. Vickey] Univ Witwatersrand, Sch Phys, Johannesburg, South Africa. [Abulaiti, Y.; Akerstedt, H.; Asman, B.; Bendtz, K.; Bertoli, G.; Bylund, O. Bessidskaia; Bohm, C.; Clement, C.; Cribbs, W. A.; Eriksson, D.; Hellman, S.; Jon-And, K.; Khandanyan, H.; Kim, H.; Klimek, P.; Lundberg, O.; Milstead, D. A.; Moa, T.; Molander, S.; Pani, P.; Petridis, A.; Plucinski, P.; Rossetti, V.; Shcherbakova, A.; Silverstein, S. B.; Sjolin, J.; Strandberg, S.; Tylmad, M.; Ughetto, M.] Stockholm Univ, Dept Phys, Stockholm, Sweden. [Abulaiti, Y.; Akerstedt, H.; Asman, B.; Bendtz, K.; Bertoli, G.; Bylund, O. Bessidskaia; Clement, C.; Cribbs, W. A.; Hellman, S.; Jon-And, K.; Khandanyan, H.; Kim, H.; Klimek, P.; Lundberg, O.; Milstead, D. A.; Moa, T.; Molander, S.; Pani, P.; Petridis, A.; Plucinski, P.; Rossetti, V.; Shcherbakova, A.; Sjolin, J.; Strandberg, S.; Tylmad, M.; Ughetto, M.] Oskar Klein Ctr, Stockholm, Sweden. [Jovicevic, J.; Kuwertz, E. S.; Lund-Jensen, B.; Morley, A. K.; Strandberg, J.] Royal Inst Technol, Dept Phys, S-10044 Stockholm, Sweden. [Balestri, T.; Bee, C. P.; Campoverde, A.; Chen, K.; Engelmann, R.; Grassi, V.; Hobbs, J.; Jia, J.; Li, H.; Lindquist, B. E.; Mastrandrea, P.; McCarthy, R. L.; Puldon, D.; Radhakrishnan, S. K.; Rijssenbeek, M.; Schamberger, R. D.; Tsybychev, D.; Zaman, A.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Balestri, T.; Bee, C. P.; Campoverde, A.; Chen, K.; Engelmann, R.; Grassi, V.; Hobbs, J.; Jia, J.; Li, H.; Lindquist, B. E.; Mastrandrea, P.; McCarthy, R. L.; Puldon, D.; Radhakrishnan, S. K.; Rijssenbeek, M.; Schamberger, R. D.; Tsybychev, D.; Zaman, A.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Asquith, L.; Cerri, A.; Chavez Barajas, C. A.; De Sanctis, U.; De Santo, A.; Grout, Z. J.; Potter, C. J.; Salvatore, F.; Santoyo Castillo, I.; Shehu, C. Y.; Suruliz, K.; Sutton, M. R.; Vivarelli, I.] Univ Sussex, Dept Phys & Astron, Brighton, E Sussex, England. [Black, C. W.; Cuthbert, C.; Finelli, K. D.; Jeng, G. -Y.; Limosani, A.; Patel, N. D.; Saavedra, A. F.; Scarcella, M.; Varvell, K. E.; Watson, I. J.; Yabsley, B.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. [Abdallah, J.; Chu, M. L.; Hou, S.; Hsu, P. J.; Jamin, D. O.; Lee, S. C.; Lin, S. C.; Liu, B.; Liu, D.; Lo Sterzo, F.; Mazini, R.; Shi, L.; Soh, D. A.; Teng, P. K.; Wang, S. M.; Yang, Y.; Zhang, L.] Acad Sinica, Inst Phys, Taipei 115, Taiwan. [Abreu, H.; Cheatham, S.; Di Mattia, A.; Kopeliansky, R.; Musto, E.; Rozen, Y.; Tarem, S.; van Eldik, N.] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel. [Abramowicz, H.; Alexander, G.; Amram, N.; Ashkenazi, A.; Bella, G.; Benary, O.; Benhammou, Y.; Davies, M.; Etzion, E.; Gershon, A.; Gueta, O.; Guttman, N.; Munwes, Y.; Oren, Y.; Silver, Y.; Soffer, A.; Taiblum, N.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Bachas, K.; Gkaitatzis, S.; Gkialas, I.; Iliadis, D.; Kimura, N.; Kordas, K.; Kourkoumeli-Charalampidi, A.; Leisos, A.; Orlando, N.; Papageorgiou, K.; Paredes Hernandez, D.; Petridou, C.; Sampsonidis, D.; Sotiropoulou, C. L.; Tsionou, D.] Aristotle Univ Thessaloniki, Dept Phys, GR-54006 Thessaloniki, Greece. [Akimoto, G.; Asai, S.; Dohmae, T.; Enari, Y.; Hanawa, K.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kazama, S.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Minami, Y.; Nakamura, T.; Ninomiya, Y.; Okuyama, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamamoto, S.; Yamanaka, T.] Univ Tokyo, Int Ctr Elementary Particle Phys, Tokyo, Japan. [Akimoto, G.; Asai, S.; Dohmae, T.; Enari, Y.; Hanawa, K.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kazama, S.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Minami, Y.; Nakamura, T.; Ninomiya, Y.; Okuyama, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamamoto, S.; Yamanaka, T.] Univ Tokyo, Dept Phys, Tokyo, Japan. [Bratzler, U.; Fukunaga, C.] Tokyo Metropolitan Univ, Grad Sch Sci & Technol, Tokyo 158, Japan. [Hirose, M.; Ishitsuka, M.; Jinnouchi, O.; Kobayashi, D.; Kuze, M.; Motohashi, K.; Nagai, R.; Nobe, T.; Pettersson, N. E.] Tokyo Inst Technol, Dept Phys, Tokyo 152, Japan. [AbouZeid, O. S.; Batista, S. J.; Chau, C. C.; DeMarco, D. A.; Di Sipio, R.; Diamond, M.; Ilic, N.; Krieger, P.; Liblong, A.; Mc Goldrick, G.; Orr, R. S.; Polifka, R.; Rudolph, M. S.; Savard, P.; Schramm, S.; Sinervo, P.; Spreitzer, T.; Taenzer, J.; Teuscher, R. J.; Trischuk, W.; Venturi, N.] Univ Toronto, Dept Phys, Toronto, ON, Canada. [Azuelos, G.; Canepa, A.; Chekulaev, S. V.; Gingrich, D. M.; Koutsman, A.; Oakham, F. G.; Oram, C. J.; Codina, E. Perez; Savard, P.; Schneider, B.; Schouten, D.; Seuster, R.; Stelzer-Chilton, O.; Tafirout, R.; Trigger, I. M.; Vetterli, M. C.] TRIUMF, Vancouver, BC, Canada. [Garcia, J. A. Benitez; Ramos, J. Manjarres; Palacino, G.; Qureshi, A.; Taylor, W.] York Univ, Dept Phys & Astron, Toronto, ON M3J 2R7, Canada. [Hara, K.; Hayashi, T.; Kim, S. H.; Kiuchi, K.; Nagata, K.; Okawa, H.; Sato, K.; Ukegawa, F.] Univ Tsukuba, Fac Pure & Appl Sci, Tsukuba, Ibaraki, Japan. [Beauchemin, P. H.; Hamilton, S.; Meoni, E.; Rolli, S.; Sliwa, K.; Wetter, J.] Tufts Univ, Dept Phys & Astron, Medford, MA 02155 USA. [Losada, M.; Moreno, D.; Navarro, G.; Sandoval, C.] Univ Antonio Narino, Ctr Invest, Bogota, Colombia. [Corso-Radu, A.; Gerbaudo, D.; Lankford, A. J.; Mete, A. S.; Nelson, A.; Relich, M.; Schernau, M.; Shimmin, C. O.; Taffard, A.; Unel, G.; Whiteson, D.; Zhou, N.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA USA. [Acharya, B. S.; Barisonzi, M.; Brazzale, S. F.; Cobal, M.; Giordani, M. P.; Miglioranzi, S.; Pinamonti, M.; Quayle, W. B.; Shaw, K.; Soualah, R.] Ist Nazl Fis Nucl, Grp Collegato Udine, Sez Trieste, Udine, Italy. [Acharya, B. S.; Barisonzi, M.; Quayle, W. B.; Shaw, K.] Abdus Salaam Int Ctr Theoret Phys, Trieste, Italy. [Brazzale, S. F.; Cobal, M.; Giordani, M. P.; Miglioranzi, S.; Pinamonti, M.; Soualah, R.] Univ Udine, Dipartimento Chim Fis & Ambiente, I-33100 Udine, Italy. [Atkinson, M.; Basye, A.; Cavaliere, V.; Chang, P.; Errede, S.; Lie, K.; Liss, T. M.; Neubauer, M. S.; Shang, R.; Vichou, I.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Kuutmann, E. Bergeaas; Brenner, R.; Buszello, C. P.; Ekelof, T.; Ellert, M.; Ferrari, A.; Isaksson, C.; Madsen, A.; Ohman, H.; Pelikan, D.; Rangel-Smith, C.] Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden. [Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Fernandez Martinez, P.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Jimenez Pena, J.; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Vos, M.] Univ Valencia, Inst Fis Corpuscular IFIC, Valencia, Spain. [Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Fernandez Martinez, P.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Jimenez Pena, J.; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Vos, M.] Univ Valencia, Dept Fis Atom Mol & Nucl, Dept Ingn Elect, Valencia, Spain. [Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Fernandez Martinez, P.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Jimenez Pena, J.; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Vos, M.] Univ Valencia, CNM, IBM, Valencia, Spain. [Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Fernandez Martinez, P.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Jimenez Pena, J.; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Vos, M.] CSIC, Valencia, Spain. [Danninger, M.; Fedorko, W.; Gay, C.; Gecse, Z.; King, S. B.; Lister, A.; Swedish, S.] Univ British Columbia, Dept Phys, Vancouver, BC, Canada. [Albert, J.; Bassalat, A.; Berghaus, F.; David, C.; Elliot, A. A.; Fincke-Keeler, M.; Hamano, K.; Hill, E.; Keeler, R.; Kowalewski, R.; Kwan, T.; Lefebvre, M.; Marino, C. P.; McPherson, R. A.; Ouellette, E. A.; Pearce, J.; Sobie, R.; Venturi, M.] Univ Victoria, Dept Phys & Astron, Victoria, BC, Canada. [Beckingham, M.; Farrington, S. M.; Harrison, P. F.; Janus, M.; Jeske, C.; Jones, G.; Martin, T. A.; Murray, W. J.; Pianori, E.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Iizawa, T.; Mitani, T.; Sakurai, Y.; Yorita, K.] Waseda Univ, Tokyo, Japan. [Bressler, S.; Citron, Z. H.; Duchovni, E.; Gross, E.; Lellouch, D.; Levinson, L. J.; Mikenberg, G.; Milov, A.; Pitt, M.; Roth, I.; Schaarschmidt, J.; Smakhtin, V.] Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel. [Banerjee, Sw.; Hard, A. S.; Ji, H.; Ju, X.; Kashif, L.; Kruse, A.; Ming, Y.; Pan, Y. B.; Wang, F.; Wiedenmann, W.; Wu, S. L.; Yang, H.; Zhang, F.; Zobernig, G.] Univ Wisconsin, Dept Phys, Madison, WI USA. [Kuger, F.; Redelbach, A.; Schreyer, M.; Sidiropoulou, O.; Siragusa, G.; Stroehmer, R.; Tam, J. Y. C.; Trefzger, T.; Weber, S. W.; Zibell, A.] Univ Wurzburg, Fak Phys & Astron, D-97070 Wurzburg, Germany. [Bannoura, A. A. E.; Beermann, T. A.; Braun, H. M.; Cornelissen, T.; Duda, D.; Ernis, G.; Fischer, J.; Fleischmann, S.; Flick, T.; Gabizon, O.; Hamacher, K.; Harenberg, T.; Heim, T.; Hirschbuehl, D.; Kersten, S.; Kohlmann, S.; Lenzen, G.; Maettig, P.; Neumann, M.; Pataraia, S.; Riegel, C. J.; Sandhoff, M.; Tepel, F.; Wagner, W.; Wicke, D.; Zeitnitz, C.] Berg Univ Wuppertal, Fachbereich Phys C, Wuppertal, Germany. [Baker, O. K.; Cummings, J.; Demers, S.; Garberson, F.; Guest, D.; Ideal, E.; Lagouri, T.; Leister, A. G.; Loginov, A.; Tipton, P.; Wang, X.] Yale Univ, Dept Phys, New Haven, CT USA. [Hakobyan, H.; Vardanyan, G.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Rahal, G.] IN2P3, Ctr Calcul, Villeurbanne, France. [Acharya, B. S.] Kings Coll London, Dept Phys, London, England. [Anisenkov, A. V.; Bobrovnikov, V. S.; Kazanin, V. F.; Korol, A. A.; Maslennikov, A. L.; Maximov, D. A.; Rezanova, O. L.; Soukharev, A. M.; Talyshev, A. A.; Tikhonov, Yu. A.] Novosibirsk State Univ, Novosibirsk 630090, Russia. [Bawa, H. S.; Gao, Y. S.] Calif State Univ, Dept Phys, Fresno, CA USA. [Beck, H. P.] Univ Fribourg, Dept Phys, CH-1700 Fribourg, Switzerland. [Castro, N. F.] Univ Porto, Fac Ciencias, Dept Fis Astron, P-4100 Oporto, Portugal. [Chelkov, G. A.] Tomsk State Univ, Tomsk 634050, Russia. [Conventi, F.; Della Pietra, M.] Univ Napoli Parthenope, Naples, Italy. [Chelkov, G. A.] Inst Particle Phys, Ottawa, ON, Canada. [Davies, E.] Rutherford Appleton Lab, Particle Phys Dept, Didcot OX11 0QX, Oxon, England. [Fedin, O. L.] St Petersburg State Polytech Univ, Dept Phys, St Petersburg, Russia. [Greenwood, Z. D.; Sawyer, L.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Grinstein, S.; Juste Rozas, A.; Martinez, M.] ICREA, Barcelona, Spain. [Hsu, P. J.] Natl Tsing Hua Univ, Dept Phys, Taipei, Taiwan. [Ilchenko, Y.; Onyisi, P. U. E.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. [Jejelava, J.] Ilia State Univ, Inst Theoret Phys, Tbilisi, Rep of Georgia. [Khubua, J.] Georgian Tech Univ, Tbilisi, Rep of Georgia. [Kono, T.] Ochanomizu Univ, Ochadai Acad Prod, Tokyo 112, Japan. [Konoplich, R.] Manhattan Coll, New York, NY USA. [Li, B.] Acad Sinica, Inst Phys, Taipei 115, Taiwan. [Lin, S. C.] Acad Sinica, Inst Phys, Grid Comp, Taipei 115, Taiwan. [Myagkov, A. G.; Nikolaenko, V.; Zaitsev, A. M.] Moscow Inst Phys & Technol, Dolgoprudnyi, Russia. [Pinamonti, M.] Int Sch Adv Studies SISSA, Trieste, Italy. [Purohit, M.] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. [Shi, L.; Soh, D. A.] Sun Yat Sen Univ, Sch Phys & Engn, Guangzhou 510275, Guangdong, Peoples R China. [Smirnova, L. N.; Turchikhin, S.] Moscow MV Lomonosov State Univ, Fac Phys, Moscow, Russia. [Tikhomirov, V. O.] Natl Res Nucl Univ MEPhI, Moscow, Russia. [Tompkins, L.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Toth, J.] Wigner Res Ctr Phys, Inst Particle & Nucl Phys, Budapest, Hungary. [Yacoob, S.] Univ KwaZulu Natal, Discipline Phys, Durban, South Africa. [Yusuff, I.] Univ Malaya, Dept Phys, Kuala Lumpur 59100, Malaysia. RP Aad, G (reprint author), Aix Marseille Univ, CPPM, Marseille, France. RI Gorelov, Igor/J-9010-2015; Gladilin, Leonid/B-5226-2011; De, Kaushik/N-1953-2013; Carvalho, Joao/M-4060-2013; Mashinistov, Ruslan/M-8356-2015; Buttar, Craig/D-3706-2011; Smirnova, Oxana/A-4401-2013; Gonzalez de la Hoz, Santiago/E-2494-2016; Guo, Jun/O-5202-2015; Aguilar Saavedra, Juan Antonio/F-1256-2016; Vranjes Milosavljevic, Marija/F-9847-2016; Leyton, Michael/G-2214-2016; Tassi, Enrico/K-3958-2015; Boyko, Igor/J-3659-2013; Ciubancan, Liviu Mihai/L-2412-2015; Zhukov, Konstantin/M-6027-2015; Shmeleva, Alevtina/M-6199-2015; Gavrilenko, Igor/M-8260-2015; Veneziano, Stefano/J-1610-2012; Tikhomirov, Vladimir/M-6194-2015; Villa, Mauro/C-9883-2009; Chekulaev, Sergey/O-1145-2015; Warburton, Andreas/N-8028-2013; Brooks, William/C-8636-2013; Della Pietra, Massimo/J-5008-2012; Cavalli-Sforza, Matteo/H-7102-2015; Petrucci, Fabrizio/G-8348-2012; Livan, Michele/D-7531-2012; spagnolo, stefania/A-6359-2012; Di Domenico, Antonio/G-6301-2011; Negrini, Matteo/C-8906-2014; Mitsou, Vasiliki/D-1967-2009; Cortes Gonzalez, Arely/I-1034-2015; White, Ryan/E-2979-2015; Grancagnolo, Sergio/J-3957-2015; Doyle, Anthony/C-5889-2009; Garcia, Jose /H-6339-2015; Korol, Aleksandr/A-6244-2014; Capua, Marcella/A-8549-2015; Tartarelli, Giuseppe Francesco/A-5629-2016; Fassi, Farida/F-3571-2016; la rotonda, laura/B-4028-2016; KHODINOV, ALEKSANDR/D-6269-2015; Staroba, Pavel/G-8850-2014; Goncalo, Ricardo/M-3153-2016; Gauzzi, Paolo/D-2615-2009; Maleev, Victor/R-4140-2016; Mindur, Bartosz/A-2253-2017; Gutierrez, Phillip/C-1161-2011; Fabbri, Laura/H-3442-2012; Gerbaudo, Davide/J-4536-2012; Solodkov, Alexander/B-8623-2017; Zaitsev, Alexandre/B-8989-2017; Peleganchuk, Sergey/J-6722-2014; Monzani, Simone/D-6328-2017; Jones, Roger/H-5578-2011; SULIN, VLADIMIR/N-2793-2015; Nechaeva, Polina/N-1148-2015; Vykydal, Zdenek/H-6426-2016; Snesarev, Andrey/H-5090-2013; Ventura, Andrea/A-9544-2015; Kantserov, Vadim/M-9761-2015; BESSON, NATHALIE/L-6250-2015; La Rosa Navarro, Jose Luis/K-4221-2016; Vanadia, Marco/K-5870-2016; Ippolito, Valerio/L-1435-2016; Maneira, Jose/D-8486-2011; Prokoshin, Fedor/E-2795-2012 OI Gorelov, Igor/0000-0001-5570-0133; Gladilin, Leonid/0000-0001-9422-8636; De, Kaushik/0000-0002-5647-4489; Carvalho, Joao/0000-0002-3015-7821; Mashinistov, Ruslan/0000-0001-7925-4676; Smirnova, Oxana/0000-0003-2517-531X; Gonzalez de la Hoz, Santiago/0000-0001-5304-5390; Guo, Jun/0000-0001-8125-9433; Aguilar Saavedra, Juan Antonio/0000-0002-5475-8920; Vranjes Milosavljevic, Marija/0000-0003-4477-9733; Leyton, Michael/0000-0002-0727-8107; Boyko, Igor/0000-0002-3355-4662; Ciubancan, Liviu Mihai/0000-0003-1837-2841; Veneziano, Stefano/0000-0002-2598-2659; Tikhomirov, Vladimir/0000-0002-9634-0581; Villa, Mauro/0000-0002-9181-8048; Warburton, Andreas/0000-0002-2298-7315; Brooks, William/0000-0001-6161-3570; Della Pietra, Massimo/0000-0003-4446-3368; Petrucci, Fabrizio/0000-0002-5278-2206; Livan, Michele/0000-0002-5877-0062; spagnolo, stefania/0000-0001-7482-6348; Di Domenico, Antonio/0000-0001-8078-2759; Negrini, Matteo/0000-0003-0101-6963; Mitsou, Vasiliki/0000-0002-1533-8886; White, Ryan/0000-0003-3589-5900; Grancagnolo, Sergio/0000-0001-8490-8304; Doyle, Anthony/0000-0001-6322-6195; Della Volpe, Domenico/0000-0001-8530-7447; Pina, Joao /0000-0001-8959-5044; Sotiropoulou, Calliope-Louisa/0000-0001-9851-1658; Price, Darren/0000-0003-2750-9977; Belanger-Champagne, Camille/0000-0003-2368-2617; Korol, Aleksandr/0000-0001-8448-218X; Giordani, Mario/0000-0002-0792-6039; Capua, Marcella/0000-0002-2443-6525; Di Micco, Biagio/0000-0002-4067-1592; Tartarelli, Giuseppe Francesco/0000-0002-4244-502X; Fassi, Farida/0000-0002-6423-7213; la rotonda, laura/0000-0002-6780-5829; Osculati, Bianca Maria/0000-0002-7246-060X; Giorgi, Filippo Maria/0000-0003-1589-2163; Coccaro, Andrea/0000-0003-2368-4559; KHODINOV, ALEKSANDR/0000-0003-3551-5808; Goncalo, Ricardo/0000-0002-3826-3442; Gauzzi, Paolo/0000-0003-4841-5822; Mindur, Bartosz/0000-0002-5511-2611; Fabbri, Laura/0000-0002-4002-8353; Gerbaudo, Davide/0000-0002-4463-0878; Solodkov, Alexander/0000-0002-2737-8674; Zaitsev, Alexandre/0000-0002-4961-8368; Peleganchuk, Sergey/0000-0003-0907-7592; Monzani, Simone/0000-0002-0479-2207; Jones, Roger/0000-0002-6427-3513; SULIN, VLADIMIR/0000-0003-3943-2495; Vykydal, Zdenek/0000-0003-2329-0672; Ventura, Andrea/0000-0002-3368-3413; Kantserov, Vadim/0000-0001-8255-416X; Vanadia, Marco/0000-0003-2684-276X; Ippolito, Valerio/0000-0001-5126-1620; Maneira, Jose/0000-0002-3222-2738; Prokoshin, Fedor/0000-0001-6389-5399 FU ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW, Austria; FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq, Brazil; FAPESP, Brazil; NSERC, Canada; NRC, Canada; CFI, Canada; CERN; CONICYT, Chile; CAS, China; MOST, China; NSFC, China; COLCIENCIAS, Colombia; MSMT CR, Czech Republic; MPO CR, Czech Republic; VSC CR, Czech Republic; DNRF, Denmark; DNSRC, Denmark; Lundbeck Foundation, Denmark; EPLANET, European Union; ERC, European Union; European Union Seventh Framework ProgrammeNSRF, European Union; IN2P3-CNRS, France; CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, Germany; DFG, Germany; HGF, Germany; MPG, Germany; AvH Foundation, Germany; GSRT, greece; NSRF, Greece; RGC, China; Hong Kong SAR, China; ISF, Israel; MINERVA, Israel; GIF, Israel; I-CORE, Israel; Benoziyo Center, Israel; INFN, Italy; MEXT, Japan; JSPS, Japan; CNRST, Morocco; FOM, Netherlands; NWO, Netherlands; BRF, Norway; RCN, Norway; MNiSW, Poland; NCN, Poland; GRICES, Portugal; FCT, Portugal; MNE/IFA, Romania; MES of Russia, Russian Federation; ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS, Slovenia; MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC, Sweden; Wallenberg Foundation, Sweden; SER, Switzerland; SNSF, Switzerland; Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, U.K.; Royal Society, U.K.; DOE, U.S; NSF, U.S; Leverhulme Trust, U.K. FX We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; EPLANET, ERC and European Union Seventh Framework ProgrammeNSRF, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT and NSRF, Greece; RGC, Hong Kong SAR, China; ISF, MINERVA, GIF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNiSW and NCN, Poland; GRICES and FCT, Portugal; MNE/IFA, Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, U.K.; DOE and NSF, U.S. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide. NR 77 TC 7 Z9 7 U1 10 U2 68 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD JUN 29 PY 2015 VL 91 IS 11 AR 112016 DI 10.1103/PhysRevD.91.112016 PG 37 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CL5UE UT WOS:000357026400001 ER PT J AU Aartsen, MG Ackermann, M Adams, J Aguilar, JA Ahlers, M Ahrens, M Altmann, D Anderson, T Archinger, M Arguelles, C Arlen, TC Auffenberg, J Bai, X Barwick, SW Baum, V Bay, R Beatty, JJ Tjus, JB Becker, KH Beiser, E BenZvi, S Berghaus, P Berley, D Bernardini, E Bernhard, A Besson, DZ Binder, G Bindig, D Bissok, M Blaufuss, E Blumenthal, J Boersma, DJ Bohm, C Borner, M Bos, F Bose, D Boser, S Botner, O Braun, J Brayeur, L Bretz, HP Brown, AM Buzinsky, N Casey, J Casier, M Cheung, E Chirkin, D Christov, A Christy, B Clark, K Classen, L Coenders, S Cowen, DF Silva, AHC Daughhetee, J Davis, JC Day, M de Andre, JPAM De Clercq, C Dembinski, H De Ridder, S Desiati, P de Vries, KD de Wasseige, G de With, M DeYoung, T Diaz-Velez, JC Dumm, JP Dunkman, M Eagan, R Eberhardt, B Ehrhardt, T Eichmann, T Euler, S Evenson, PA Fadiran, O Fahey, S Fazely, AR Fedynitch, A Feintzeig, J Felde, J Filimonov, K Finley, C Fischer-Wasels, T Flis, S Fuchs, T Glagla, M Gaisser, TK Gaior, R Gallagher, J Gerhardt, L Ghorbani, K Gier, D Gladstone, L Glusenkamp, T Goldschmidt, A Golup, G Gonzalez, JG Goodman, JA Gora, D Grant, D Gretskov, P Groh, JC Gross, A Ha, C Haack, C Ismail, AH Hallgren, A Halzen, F Hansmann, B Hanson, K Hebecker, D Heereman, D Helbing, K Hellauer, R Hellwig, D Hickford, S Hignight, J Hill, GC Hoffman, KD Hoffmann, R Homeier, A Hoshina, K Huang, F Huber, M Huelsnitz, W Hulth, PO Hultqvist, K In, S Ishihara, A Jacobi, E Japaridze, GS Jero, K Jurkovic, M Kaminsky, B Kappes, A Karg, T Karle, A Kauer, M Keivani, A Kelley, JL Kemp, J Kheirandish, A Kiryluk, J Klas, J Klein, SR Kohnen, G Kolanoski, H Konietz, R Koob, A Kopke, L Kopper, C Kopper, S Koskinen, DJ Kowalski, M Krings, K Kroll, G Kroll, M Kunnen, J Kurahashi, N Kuwabara, T Labare, M Lanfranchi, JL Larson, MJ Lesiak-Bzdak, M Leuermann, M Leuner, J Lunemann, J Madsen, J Maggi, G Mahn, KBM Maruyama, R Mase, K Matis, HS Maunu, R McNally, F Meagher, K Medici, M Meli, A Menne, T Merino, G Meures, T Miarecki, S Middell, E Middlemas, E Miller, J Mohrmann, L Montaruli, T Morse, R Nahnhauer, R Naumann, U Niederhausen, H Nowicki, SC Nygren, DR Obertacke, A Olivas, A Omairat, A O'Murchadha, A Palczewski, T Paul, L Pepper, JA Heros, CPDL Pfendner, C Pieloth, D Pinat, E Posselt, J Price, PB Przybylski, GT Putz, J Quinnan, M Radel, L Rameez, M Rawlins, K Redl, P Reimann, R Relich, M Resconi, E Rhode, W Richman, M Richter, S Riedel, B Robertson, S Rongen, M Rott, C Ruhe, T Ruzybayev, B Ryckbosch, D Saba, SM Sabbatini, L Sander, HG Sandrock, A Sandroos, J Sarkar, S Schatto, K Scheriau, F Schimp, M Schmidt, T Schmitz, M Schoenen, S Schoneberg, S Schonwald, A Schukraft, A Schulte, L Schulz, O Seckel, D Sestayo, Y Seunarine, S Shanidze, R Smith, MWE Soldin, D Spiczak, GM Spiering, C Stahlberg, M Stamatikos, M Stanev, T Stanisha, NA Stasik, A Stezelberger, T Stokstad, RG Stossl, A Strahler, EA Strom, R Strotjohann, NL Sullivan, GW Sutherland, M Taavola, H Taboada, I Ter-Antonyan, S Terliuk, A Tesic, G Tilav, S Toale, PA Tobin, MN Tosi, D Tselengidou, M Unger, E Usner, M Vallecorsa, S van Eijndhoven, N Vandenbroucke, J van Santen, J Vanheule, S Vehring, M Voge, M Vraeghe, M Walck, C Wallraff, M Wandkowsky, N Weaver, C Wendt, C Westerhoff, S Whelan, BJ Whitehorn, N Wichary, C Wiebe, K Wiebusch, CH Wille, L Williams, DR Wissing, H Wolf, M Wood, TR Woschnagg, K Xu, DL Xu, XW Xu, Y Yanez, JP Yodh, G Yoshida, S Zarzhitsky, P Zoll, M AF Aartsen, M. G. Ackermann, M. Adams, J. Aguilar, J. A. Ahlers, M. Ahrens, M. Altmann, D. Anderson, T. Archinger, M. Arguelles, C. Arlen, T. C. Auffenberg, J. Bai, X. Barwick, S. W. Baum, V. Bay, R. Beatty, J. J. Tjus, J. Becker Becker, K. -H. Beiser, E. BenZvi, S. Berghaus, P. Berley, D. Bernardini, E. Bernhard, A. Besson, D. Z. Binder, G. Bindig, D. Bissok, M. Blaufuss, E. Blumenthal, J. Boersma, D. J. Bohm, C. Boerner, M. Bos, F. Bose, D. Boeser, S. Botner, O. Braun, J. Brayeur, L. Bretz, H. -P. Brown, A. M. Buzinsky, N. Casey, J. Casier, M. Cheung, E. Chirkin, D. Christov, A. Christy, B. Clark, K. Classen, L. Coenders, S. Cowen, D. F. Silva, A. H. Cruz Daughhetee, J. Davis, J. C. Day, M. de Andre, J. P. A. M. De Clercq, C. Dembinski, H. De Ridder, S. Desiati, P. de Vries, K. D. de Wasseige, G. de With, M. DeYoung, T. Diaz-Velez, J. C. Dumm, J. P. Dunkman, M. Eagan, R. Eberhardt, B. Ehrhardt, T. Eichmann, T. Euler, S. Evenson, P. A. Fadiran, O. Fahey, S. Fazely, A. R. Fedynitch, A. Feintzeig, J. Felde, J. Filimonov, K. Finley, C. Fischer-Wasels, T. Flis, S. Fuchs, T. Glagla, M. Gaisser, T. K. Gaior, R. Gallagher, J. Gerhardt, L. Ghorbani, K. Gier, D. Gladstone, L. Gluesenkamp, T. Goldschmidt, A. Golup, G. Gonzalez, J. G. Goodman, J. A. Gora, D. Grant, D. Gretskov, P. Groh, J. C. Gross, A. Ha, C. Haack, C. Ismail, A. Haj Hallgren, A. Halzen, F. Hansmann, B. Hanson, K. Hebecker, D. Heereman, D. Helbing, K. Hellauer, R. Hellwig, D. Hickford, S. Hignight, J. Hill, G. C. Hoffman, K. D. Hoffmann, R. Homeier, A. Hoshina, K. Huang, F. Huber, M. Huelsnitz, W. Hulth, P. O. Hultqvist, K. In, S. Ishihara, A. Jacobi, E. Japaridze, G. S. Jero, K. Jurkovic, M. Kaminsky, B. Kappes, A. Karg, T. Karle, A. Kauer, M. Keivani, A. Kelley, J. L. Kemp, J. Kheirandish, A. Kiryluk, J. Klaes, J. Klein, S. R. Kohnen, G. Kolanoski, H. Konietz, R. Koob, A. Koepke, L. Kopper, C. Kopper, S. Koskinen, D. J. Kowalski, M. Krings, K. Kroll, G. Kroll, M. Kunnen, J. Kurahashi, N. Kuwabara, T. Labare, M. Lanfranchi, J. L. Larson, M. J. Lesiak-Bzdak, M. Leuermann, M. Leuner, J. Luenemann, J. Madsen, J. Maggi, G. Mahn, K. B. M. Maruyama, R. Mase, K. Matis, H. S. Maunu, R. McNally, F. Meagher, K. Medici, M. Meli, A. Menne, T. Merino, G. Meures, T. Miarecki, S. Middell, E. Middlemas, E. Miller, J. Mohrmann, L. Montaruli, T. Morse, R. Nahnhauer, R. Naumann, U. Niederhausen, H. Nowicki, S. C. Nygren, D. R. Obertacke, A. Olivas, A. Omairat, A. O'Murchadha, A. Palczewski, T. Paul, L. Pepper, J. A. Heros, C. Perez de los Pfendner, C. Pieloth, D. Pinat, E. Posselt, J. Price, P. B. Przybylski, G. T. Puetz, J. Quinnan, M. Raedel, L. Rameez, M. Rawlins, K. Redl, P. Reimann, R. Relich, M. Resconi, E. Rhode, W. Richman, M. Richter, S. Riedel, B. Robertson, S. Rongen, M. Rott, C. Ruhe, T. Ruzybayev, B. Ryckbosch, D. Saba, S. M. Sabbatini, L. Sander, H. -G. Sandrock, A. Sandroos, J. Sarkar, S. Schatto, K. Scheriau, F. Schimp, M. Schmidt, T. Schmitz, M. Schoenen, S. Schoeneberg, S. Schoenwald, A. Schukraft, A. Schulte, L. Schulz, O. Seckel, D. Sestayo, Y. Seunarine, S. Shanidze, R. Smith, M. W. E. Soldin, D. Spiczak, G. M. Spiering, C. Stahlberg, M. Stamatikos, M. Stanev, T. Stanisha, N. A. Stasik, A. Stezelberger, T. Stokstad, R. G. Stoessl, A. Strahler, E. A. Strom, R. Strotjohann, N. L. Sullivan, G. W. Sutherland, M. Taavola, H. Taboada, I. Ter-Antonyan, S. Terliuk, A. Tesic, G. Tilav, S. Toale, P. A. Tobin, M. N. Tosi, D. Tselengidou, M. Unger, E. Usner, M. Vallecorsa, S. van Eijndhoven, N. Vandenbroucke, J. van Santen, J. Vanheule, S. Vehring, M. Voge, M. Vraeghe, M. Walck, C. Wallraff, M. Wandkowsky, N. Weaver, Ch. Wendt, C. Westerhoff, S. Whelan, B. J. Whitehorn, N. Wichary, C. Wiebe, K. Wiebusch, C. H. Wille, L. Williams, D. R. Wissing, H. Wolf, M. Wood, T. R. Woschnagg, K. Xu, D. L. Xu, X. W. Xu, Y. Yanez, J. P. Yodh, G. Yoshida, S. Zarzhitsky, P. Zoll, M. CA IceCube Collaboration TI Measurement of the Atmospheric nu(e) Spectrum with IceCube SO PHYSICAL REVIEW D LA English DT Article ID ENERGY-SPECTRUM; NEUTRINO FLUX; AMANDA; DIGITIZATION; PERFORMANCE; CASCADES; DETECTOR; DESIGN; SYSTEM; ICE AB We present a measurement of the atmospheric nu(e) spectrum at energies between 0.1 and 100 TeV using data from the first year of the complete IceCube detector. Atmospheric nu(e) originate mainly from the decays of kaons produced in cosmic-ray air showers. This analysis selects 1078 fully contained events in 332 days of live time, and then identifies those consistent with particle showers. A likelihood analysis with improved event selection extends our previous measurement of the conventional v(e) fluxes to higher energies. The data constrain the conventional nu(e) flux to be 1.3(-0.3)(+0.4) times a baseline prediction from a Honda's calculation, including the knee of the cosmic-ray spectrum. A fit to the kaon contribution (xi) to the neutrino flux finds a kaon component that is xi = 1.3(-0.4)(+0.5) times the baseline value. The fitted/measured prompt neutrino flux from charmed hadron decays strongly depends on the assumed astrophysical flux and shape. If the astrophysical component follows a power law, the result for the prompt flux is 0.0(-0.0)(+3.0) times a calculated flux based on the work by Enberg, Reno, and Sarcevic. C1 [Auffenberg, J.; Bissok, M.; Blumenthal, J.; Glagla, M.; Gier, D.; Gretskov, P.; Haack, C.; Hansmann, B.; Hellwig, D.; Kemp, J.; Konietz, R.; Koob, A.; Leuermann, M.; Leuner, J.; Paul, L.; Puetz, J.; Raedel, L.; Reimann, R.; Rongen, M.; Schimp, M.; Schoenen, S.; Schukraft, A.; Stahlberg, M.; Vehring, M.; Wallraff, M.; Wichary, C.; Wiebusch, C. H.] Rhein Westfal TH Aachen, Inst Phys 3, D-52056 Aachen, Germany. [Aartsen, M. G.; Hill, G. C.; Robertson, S.; Whelan, B. J.] Univ Adelaide, Sch Chem Phys, Adelaide, SA 5005, Australia. [Rawlins, K.] Univ Alaska Anchorage, Dept Phys & Astron, Anchorage, AK 99508 USA. [Japaridze, G. S.] Clark Atlanta Univ, CTSPS, Atlanta, GA 30314 USA. [Casey, J.; Daughhetee, J.; Taboada, I.] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA. [Casey, J.; Daughhetee, J.; Taboada, I.] Georgia Inst Technol, Ctr Relativist Astrophys, Atlanta, GA 30332 USA. [Fazely, A. R.; Ter-Antonyan, S.; Xu, X. W.] Southern Univ, Dept Phys, Baton Rouge, LA 70813 USA. [Bay, R.; Binder, G.; Filimonov, K.; Gerhardt, L.; Ha, C.; Klein, S. R.; Miarecki, S.; Price, P. B.; Woschnagg, K.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Binder, G.; Gerhardt, L.; Goldschmidt, A.; Ha, C.; Klein, S. R.; Matis, H. S.; Miarecki, S.; Nygren, D. R.; Przybylski, G. T.; Stezelberger, T.; Stokstad, R. G.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [de With, M.; Hebecker, D.; Kolanoski, H.; Kowalski, M.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Tjus, J. Becker; Bos, F.; Eichmann, T.; Fedynitch, A.; Kroll, M.; Saba, S. M.; Schoeneberg, S.] Ruhr Univ Bochum, Fak Phys & Astron, D-44780 Bochum, Germany. [Homeier, A.; Schulte, L.; Voge, M.] Univ Bonn, Inst Phys, D-53115 Bonn, Germany. [Aguilar, J. A.; Heereman, D.; Meagher, K.; Meures, T.; O'Murchadha, A.; Pinat, E.] Univ Libre Bruxelles, Fac Sci, B-1050 Brussels, Belgium. [Brayeur, L.; Casier, M.; De Clercq, C.; de Vries, K. D.; de Wasseige, G.; Golup, G.; Kunnen, J.; Maggi, G.; Miller, J.; Strahler, E. A.; van Eijndhoven, N.] Vrije Univ Brussel, Dienst ELEM, B-1050 Brussels, Belgium. [Gaior, R.; Ishihara, A.; Kuwabara, T.; Mase, K.; Relich, M.; Yoshida, S.] Chiba Univ, Dept Phys, Chiba 2638522, Japan. [Adams, J.; Brown, A. M.] Univ Canterbury, Dept Phys & Astron, Christchurch 1, New Zealand. [Berley, D.; Blaufuss, E.; Cheung, E.; Christy, B.; Felde, J.; Goodman, J. A.; Hellauer, R.; Hoffman, K. D.; Huelsnitz, W.; Maunu, R.; Olivas, A.; Redl, P.; Richman, M.; Schmidt, T.; Sullivan, G. W.; Wissing, H.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Beatty, J. J.; Davis, J. C.; Pfendner, C.; Stamatikos, M.; Sutherland, M.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Beatty, J. J.; Davis, J. C.; Pfendner, C.; Stamatikos, M.; Sutherland, M.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Beatty, J. J.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Koskinen, D. J.; Larson, M. J.; Medici, M.; Sandroos, J.; Sarkar, S.] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Boerner, M.; Fuchs, T.; Menne, T.; Pieloth, D.; Rhode, W.; Ruhe, T.; Sandrock, A.; Scheriau, F.; Schmitz, M.] TU Dortmund Univ, Dept Phys, D-44221 Dortmund, Germany. [de Andre, J. P. A. M.; DeYoung, T.; Hignight, J.; Mahn, K. B. M.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Buzinsky, N.; Grant, D.; Kopper, C.; Nowicki, S. C.; Riedel, B.; Wood, T. R.] Univ Alberta, Dept Phys, Edmonton, AB T6G 2E1, Canada. [Altmann, D.; Classen, L.; Kappes, A.; Tselengidou, M.] Univ Erlangen Nurnberg, Erlangen Ctr Astroparticle Phys, D-91058 Erlangen, Germany. [Christov, A.; Montaruli, T.; Rameez, M.; Vallecorsa, S.] Univ Geneva, Dept Phys Nucl & Corpusculaire, CH-1211 Geneva, Switzerland. [De Ridder, S.; Ismail, A. Haj; Labare, M.; Meli, A.; Ryckbosch, D.; Vanheule, S.; Vraeghe, M.] Univ Ghent, Dept Phys & Astron, B-9000 Ghent, Belgium. [Barwick, S. W.; Yodh, G.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Besson, D. Z.] Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA. [Gallagher, J.] Univ Wisconsin, Dept Astron, Madison, WI 53706 USA. [Ahlers, M.; Arguelles, C.; Beiser, E.; BenZvi, S.; Braun, J.; Chirkin, D.; Day, M.; Desiati, P.; Diaz-Velez, J. C.; Fadiran, O.; Fahey, S.; Feintzeig, J.; Ghorbani, K.; Gladstone, L.; Halzen, F.; Hanson, K.; Hoshina, K.; Jero, K.; Karle, A.; Kauer, M.; Kelley, J. L.; Kheirandish, A.; McNally, F.; Merino, G.; Middlemas, E.; Morse, R.; Richter, S.; Sabbatini, L.; Tobin, M. N.; Tosi, D.; Vandenbroucke, J.; van Santen, J.; Wandkowsky, N.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wille, L.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Ahlers, M.; Arguelles, C.; Beiser, E.; BenZvi, S.; Braun, J.; Chirkin, D.; Day, M.; Desiati, P.; Diaz-Velez, J. C.; Fadiran, O.; Fahey, S.; Feintzeig, J.; Ghorbani, K.; Gladstone, L.; Halzen, F.; Hanson, K.; Hoshina, K.; Jero, K.; Karle, A.; Kauer, M.; Kelley, J. L.; Kheirandish, A.; McNally, F.; Merino, G.; Middlemas, E.; Morse, R.; Richter, S.; Sabbatini, L.; Tobin, M. N.; Tosi, D.; Vandenbroucke, J.; van Santen, J.; Wandkowsky, N.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wille, L.] Univ Wisconsin, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA. [Archinger, M.; Baum, V.; Boeser, S.; Eberhardt, B.; Ehrhardt, T.; Koepke, L.; Kroll, G.; Luenemann, J.; Sander, H. -G.; Schatto, K.; Wiebe, K.] Johannes Gutenberg Univ Mainz, Inst Phys, D-55099 Mainz, Germany. [Kohnen, G.] Univ Mons, B-7000 Mons, Belgium. [Bernhard, A.; Coenders, S.; Gross, A.; Huber, M.; Jurkovic, M.; Krings, K.; Resconi, E.; Schulz, O.; Sestayo, Y.] Tech Univ Munich, D-85748 Garching, Germany. [Dembinski, H.; Evenson, P. A.; Gaisser, T. K.; Gonzalez, J. G.; Ruzybayev, B.; Seckel, D.; Stanev, T.; Tilav, S.] Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA. [Dembinski, H.; Evenson, P. A.; Gaisser, T. K.; Gonzalez, J. G.; Ruzybayev, B.; Seckel, D.; Stanev, T.; Tilav, S.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. [Kauer, M.; Maruyama, R.] Yale Univ, Dept Phys, New Haven, CT 06520 USA. [Sarkar, S.] Univ Oxford, Dept Phys, Oxford OX1 3NP, England. [Kurahashi, N.] Drexel Univ, Dept Phys, Philadelphia, PA 19104 USA. [Bai, X.] South Dakota Sch Mines & Technol, Dept Phys, Rapid City, SD 57701 USA. [Madsen, J.; Seunarine, S.; Spiczak, G. M.] Univ Wisconsin, Dept Phys, River Falls, WI 54022 USA. [Ahrens, M.; Bohm, C.; Dumm, J. P.; Finley, C.; Flis, S.; Hulth, P. O.; Hultqvist, K.; Walck, C.; Wolf, M.; Zoll, M.] Stockholm Univ, Oskar Klein Ctr, SE-10691 Stockholm, Sweden. [Ahrens, M.; Bohm, C.; Dumm, J. P.; Finley, C.; Flis, S.; Hulth, P. O.; Hultqvist, K.; Walck, C.; Wolf, M.; Zoll, M.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. [Kiryluk, J.; Lesiak-Bzdak, M.; Niederhausen, H.; Xu, Y.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Bose, D.; In, S.; Rott, C.] Sungkyunkwan Univ, Dept Phys, Suwon 440746, South Korea. [Clark, K.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Palczewski, T.; Pepper, J. A.; Toale, P. A.; Williams, D. R.; Xu, D. L.; Zarzhitsky, P.] Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA. [Cowen, D. F.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Anderson, T.; Arlen, T. C.; Cowen, D. F.; Dunkman, M.; Eagan, R.; Groh, J. C.; Huang, F.; Keivani, A.; Lanfranchi, J. L.; Quinnan, M.; Smith, M. W. E.; Stanisha, N. A.; Tesic, G.] Penn State Univ, Dept Phys, University Pk, PA 16802 USA. [Boersma, D. J.; Botner, O.; Euler, S.; Hallgren, A.; Heros, C. Perez de los; Strom, R.; Taavola, H.; Unger, E.] Uppsala Univ, Dept Phys & Astron, S-75120 Uppsala, Sweden. [Becker, K. -H.; Bindig, D.; Fischer-Wasels, T.; Helbing, K.; Hickford, S.; Hoffmann, R.; Klaes, J.; Kopper, S.; Naumann, U.; Obertacke, A.; Omairat, A.; Posselt, J.; Soldin, D.] Univ Wuppertal, Dept Phys, D-42119 Wuppertal, Germany. [Ackermann, M.; Berghaus, P.; Bernardini, E.; Bretz, H. -P.; Silva, A. H. Cruz; Gluesenkamp, T.; Gora, D.; Jacobi, E.; Kaminsky, B.; Karg, T.; Kowalski, M.; Middell, E.; Mohrmann, L.; Nahnhauer, R.; Schoenwald, A.; Shanidze, R.; Spiering, C.; Stasik, A.; Stoessl, A.; Strotjohann, N. L.; Terliuk, A.; Usner, M.; Yanez, J. P.] DESY, D-15735 Zeuthen, Germany. RP Ha, C (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM changhyon.ha@gmail.com RI Maruyama, Reina/A-1064-2013; Koskinen, David/G-3236-2014; Tjus, Julia/G-8145-2012; Beatty, James/D-9310-2011; Sarkar, Subir/G-5978-2011; Wiebusch, Christopher/G-6490-2012; OI Groh, John/0000-0001-9880-3634; Aguilar Sanchez, Juan Antonio/0000-0003-2252-9514; Maruyama, Reina/0000-0003-2794-512X; Koskinen, David/0000-0002-0514-5917; Beatty, James/0000-0003-0481-4952; Sarkar, Subir/0000-0002-3542-858X; Wiebusch, Christopher/0000-0002-6418-3008; Schukraft, Anne/0000-0002-9112-5479 FU U.S. National Science Foundation-Office of Polar Programs; U.S. National Science Foundation-Physics Division; University of Wisconsin Alumni Research Foundation; Grid Laboratory of Wisconsin (GLOW) grid infrastructure at the University of Wisconsin-Madison; Open Science Grid (OSG) grid infrastructure; U.S. Department of Energy; National Energy Research Scientific Computing Center; Louisiana Optical Network Initiative (LONI) grid computing resources; Natural Sciences and Engineering Research Council of Canada; WestGrid and Compute/Calcul Canada; Swedish Research Council; Swedish Polar Research Secretariat; Swedish National Infrastructure for Computing (SNIC); Knut and Alice Wallenberg Foundation, Sweden; German Ministry for Education and Research (BMBF); Deutsche Forschungsgemeinschaft (DFG); Helmholtz Alliance for Astroparticle Physics (HAP); Research Department of Plasmas with Complex Interactions (Bochum), Germany; Fund for Scientific Research (FNRS-FWO); FWO Odysseus program; Flanders Institute to encourage scientific and technological research in industry (IWT); Belgian Federal Science Policy Office (Belspo); University of Oxford, United Kingdom; Marsden Fund, New Zealand; Australian Research Council; Japan Society for Promotion of Science (JSPS); Swiss National Science Foundation (SNSF), Switzerland; National Research Foundation of Korea (NRF); Danish National Research Foundation, Denmark (DNRF) FX We acknowledge the support from the following agencies: U.S. National Science Foundation-Office of Polar Programs, U.S. National Science Foundation-Physics Division, University of Wisconsin Alumni Research Foundation, the Grid Laboratory of Wisconsin (GLOW) grid infrastructure at the University of Wisconsin-Madison, the Open Science Grid (OSG) grid infrastructure, U.S. Department of Energy, and National Energy Research Scientific Computing Center, the Louisiana Optical Network Initiative (LONI) grid computing resources; Natural Sciences and Engineering Research Council of Canada, WestGrid and Compute/Calcul Canada; Swedish Research Council, Swedish Polar Research Secretariat, Swedish National Infrastructure for Computing (SNIC), and Knut and Alice Wallenberg Foundation, Sweden; German Ministry for Education and Research (BMBF), Deutsche Forschungsgemeinschaft (DFG), Helmholtz Alliance for Astroparticle Physics (HAP), Research Department of Plasmas with Complex Interactions (Bochum), Germany; Fund for Scientific Research (FNRS-FWO), FWO Odysseus program, Flanders Institute to encourage scientific and technological research in industry (IWT), Belgian Federal Science Policy Office (Belspo); University of Oxford, United Kingdom; Marsden Fund, New Zealand; Australian Research Council; Japan Society for Promotion of Science (JSPS); the Swiss National Science Foundation (SNSF), Switzerland; National Research Foundation of Korea (NRF); Danish National Research Foundation, Denmark (DNRF). NR 67 TC 7 Z9 7 U1 0 U2 13 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD JUN 29 PY 2015 VL 91 IS 12 AR 122004 DI 10.1103/PhysRevD.91.122004 PG 15 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CL5UK UT WOS:000357027100002 ER EF